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PREFACE

The importance of the Vavilov-Cherenkov radiation stems from the
property that a charge moving uniformly in a medium emits v quanta at
the angle uniquely related to its energy. This has numerous applications.
We mention only the neutrino experiments in which the neutrino energy is
estimated by the angle at which the electron originating from the decay of
neutrino is observed.

This book is intended for students of the third year and higher, for
postgraduates, and professional scientists, both experimentalists and theo-
reticians. The Landau and Lifschitz treatises Quantum Mechanics, Classi-
cal Field Theory and FElectrodynamics of Continuous Media are more than
enough for the understanding of the text.

There are three monographs devoted to the Vavilov-Cherenkov radia-
tion. Jelly’s book Cherenkov Radiation and its Applications published in
1958 contains a short theoretical review of the Vavilov-Cherenkov radi-
ation and a rather extensive description of experimental technique. Ten
years later, the two-volume Zrelov monograph Vawvilov-Cherenkov Radia-
tion and Its Application in High-Energy Physics appeared. Its first volume
is a quite extensive review of experimental and theoretical results known up
to 1968. The second volume is devoted to the construction of the Cherenkov
counters. In 1988, the Frank monograph Vavilov-Cherenkov Radiation. The-
oretical Aspects was published. It presents mainly a collection of Frank’s
papers with valuable short commentaries describing their present status. It
is highly desirable to translate this book into English.

The main goal of this book is to present new developments in the theory
of the Vavilov-Cherenkov effect for the 15 years following the appearance
of Frank’s monograph. We briefly mention the main questions treated:

1) The Vavilov-Cherenkov radiation for the unbounded charge motion
in a medium (the so-called Tamm-Frank problem);

2) Exact solutions for semi-infinite and finite charge motions in a non-
dispersive medium. Their study allows one to identify how the Cherenkov
shock waves and the bremsstrahlung shock waves are distributed in space;

3) Accelerated and decelerated charge motions in a medium. Their study
allows one to observe the formation and time evolution of the singular shock

xi
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waves (including the finite Cherenkov shock wave) arising when the charge
velocity coincides with the velocity of light in a medium,;

4) The consideration of the Vavilov-Cherenkov radiation in dispersive
media with and without damping supports Fermi’s claim that a charge
moving uniformly in a dispersive medium radiates at each velocity. It turns
out that the position and magnitude of the maximum of the frequency
distribution depend crucially on the damping parameter value;

5) The measurement of the radiation intensities at finite observational
distances leads to the appearance of plateau in some angular interval. The
linear (not angular) dimensions of this plateau on the observational sphere
do not depend on the sphere radius. Inside this plateau the radiation inten-
sity is not described by the Tamm formula at any observational distance;

6) The taking into account of the finite dimensions of a moving charge
or the medium dispersion leads to the finite energy radiated by a moving
charge for the entire time of its motion. This in turn allows one to determine
how a charge should move if all its energy losses were owed to the Cherenkov
radiation;

7) The Vavilov-Cherenkov radiation for a charge moving in a finite
medium interval. This includes the consideration of the original Tamm
problem (having instantaneous velocity jumps at the beginning and the
end of the charge motion), the smooth Tamm problem (in which there
are no discontinuities of the charge velocity) and the absolutely continuous
charge motion (for which the charge velocity and all its time derivatives
are continuous functions of time) in a finite spatial interval. This permits
one to relate the asymptotic behaviour of the radiation intensities to the
discontinuities of the charge trajectory;

8) It is studied how the radiation intensity changes when a charge moves
in one medium while the observations are made in another, with different
dielectric properties (in fact, this is a typical experimental situation);

9) The Vavilov-Cherenkov and transition radiations for the spherical
interface between two media (previously, only the plane interface was con-
sidered in the physical literature);

10) The radiation of electric, magnetic, and toroidal dipoles moving in
a medium. This allows one to study the radiation arising from the moving
neutral particles (e.g., neutrons, neutrinos, etc.);

11) The fine structure of the Cherenkov rings is studied. We mean un-
der this term the plateau in the radiation intensity (which is due to the
Cherenkov shock wave), sharp maxima at the ends of this plateau (we as-
sociate them with bremsstrahlung shock waves arising at the accelerated
and decelerated parts of the charge trajectory) and small oscillations in-
side this plateau (they are due to the interference of the Cherenkov and
bremsstrahlung shock waves);
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12) The kinematics of the two-photon simultaneous emission for a charge
moving uniformly in medium. It turns out that under certain circumstances
the photon emission angles are fixed. The radiation intensity should have
sharp maxima at these angles (similarly to the single-photon Cherenkov
emission). This creates favourable conditions for the observation of the
two-photon Cherenkov effect.

The importance of the synchrotron radiation is because it is extensively
used for the study of nuclear and particle reactions, astrophysical prob-
lems, and has a variety of biological and medical applications. There are a
few books of the Moscow State University School, and the recently (2002)
published book Radiation Theory of Relativistic Particles (Ed. V.A. Bor-
dovitsyn) which, in fact, presents a collection of papers of various authors
devoted to the questions related to the synchrotron radiation. In the present
monograph we study the synchrotron radiation in a medium, and the syn-
chrotron radiation in vacuum, in the near zone. These questions were not
considered in the references just mentioned.

The questions considered in this monograph were reported in a number
of seminars of the Joint Institute for Nuclear Research, and in various
international scientific conferences and symposia.

My deep gratitude is owed to the administration of the Laboratory of
Theoretical Physics of the Joint Institute for Nuclear Research which has
created nice conditions for the scientific activity, and to my co-authors with-
out whom this monograph could not have appeared. Particular gratitude
is owed to Dr. V.M. Shilov for the technical assistance in the preparation
of this manuscript.
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CHAPTER 1

INTRODUCTION

The Vavilov-Cherenkov (VC) effect and synchrotron radiation (SR) are
two of the most prominent phenomena discovered in the 20th century. The
VC effect arises when a charged particle moves in a medium with a velocity
v greater than the velocity of light ¢, in a medium. Here ¢, = ¢/n, ¢
is the velocity of light in vacuum and n is the medium refractive index.
It should be noted that the acoustic analogue of the VC effect has been
known from the middle of 19th century. A bullet or shell, moving in the air
with the velocity greater than the velocity of sound in air creates a shock
wave of conical form with its apex approximately at the position of the
moving body. This conical shock wave is usually referred to as the Mach
shock wave after the name of the Austrian scientist Ernst Mach who, while
experimentally studying supersonic air streaming past the body at rest,
obtained remarkable photographs showing the distribution of the velocity
of the air around the body. Similar photographs can be found in [1].

To best of our knowledge, the electromagnetic field (EMF) of a charge
moving uniformly in a dispersion-free medium was first obtained by Oliver
Heaviside in 1889. We quote him ([2] p.335):

The question now suggests itself, What is the state of things when u >

v? It is clear, in the first place, that there can be no disturbance at all in

front of the moving charge (at a point, for simplicity). Next, considering

that the spherical waves emitted by a charge in its motion along the z

axis travel at speed v, the locus of their fronts is a conical surface whose

apex is at the charge itself, whose axis is that of z, and whose semiangle

0 is given by sinf = v/u.

(Here u and v are the charge velocity and the velocity of light in medium,
resp.). The Heaviside findings concerning this problem were summarized in
Volume 3 of his Electromagnetic Theory published in 1905 ([3]).

Further, Lord Kelvin on p.4 of his paper Nineteenth Century Clouds

over the Dynamical Theory of Heat and Light ([4]) wrote:

If this uniform final velocity of the atom exceeds the velocity of light, by
ever so little, a non-periodic conical wave of equi-voluminal motion is
produced, according to the same principle as that illustrated for sound
by Mach’s beautiful photographs of illumination by electric sparks,
showing, by changed refractivity, the condensational-rarefactional dis-
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turbance produced in air by the motion through it of a rifle bullet. The

semi-vertical angle of the cone, whether in air or ether, is equal to the

angle whose sine is the ratio of the wave velocity to the velocity of the
moving body.
In the footnote to this remark Lord Kelvin states:
On the same principle we see that a body moving steadily (and, with
little error, we may say also that a fish or water fowl propelling itself
by fins or web-feet) through calm water, either floating on the surface
or wholly submerged at some moderate distance below the surface, pro-
duces no wave disturbance if its velocity is less than the minimum wave
velocity due to gravity and surface tension (being about 23 cms. per
second, or 0.44 of a nautical mile per hour, whether for sea or fresh wa-
ter); and if its velocity exceeds the minimum wave velocity, it produces

a wave disturbance bounded by two lines inclined on each side of its

wake at angles each equal to the angle whose sine is the minimum wave

velocity divided by the velocity of the moving body.
Unfortunately, these investigations were forgotten for many years. For ex-
ample, the information about the Heaviside searches appeared only in 1974
as a result of historical findings by Kaiser ([5]) and Tyapkin ([6]).

The modern history of the VC effect begins with the Cherenkov ex-
periments (1934-1937) (see their nice exposition in his Doctor of Science
dissertation [7]) performed at the suggestion of his teacher S.I. Vavilov. In
them the v quanta from an RaE source trapping into a vessel filled with wa-
ter, induced the blue light detected by the observer outside the vessel. Later
it was associated with the radiation of the Compton electrons knocked out
by the incoming v quanta from the water molecules. Since electrons in the
Cherenkov experiments were completely absorbed in the water, S.I. Vavilov
attributed the above blue light to the deceleration of electrons ([8]):

We think that the most probable reason for the v luminescence is the

radiation arising from the deceleration of Compton electrons. The hard-

ness and intensity of + rays in the experiments of P.A. Cherenkov were
very large. Therefore the number of Compton scattering events and
the number of scattered electrons should be very considerable in fluids.

The free electrons in a dense fluid should be decelerated within negligi-

ble distances. This should be followed by the radiation of a continuous

spectrum. Thus weak visible radiation may arise, although the bound-
ary of bremsstrahlung and its maximum should be located somewhere
in the Roentgen region. It follows from this that the energy distribution
in the visible region should rise towards the violet part of spectrum, and
the blue-violet part of spectrum should be especially intensive.
At first, P.A. Cherenkov was a follower of Vavilov’s explanation of the
nature of radiation observed in his experiments. We quote him [9]:
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All the above-stated facts unambiguously testify that the nature of the
~ luminescence is owed to the electromagnetic deceleration of electrons
moving in a fluid. The facts that + luminescence is partially polarized
and that its brightness has a highly pronounced asymmetry strongly re-
semble the similar picture for the bremsstrahlung of fast electrons in the
Roentgen region. However, in the case of v luminescence the complete
theoretical interpretation encounters with a number of difficulties.

(our translation from the Russian).

In 1937 the famous paper by Frank and Tamm [10] appeared in which
the electromagnetic field strengths of a charge moving uniformly in medium
were evaluated in the spectral representation. It was shown there that radia-
tion intensities of an electron moving uniformly in medium are added in the
direction defined by the so-called Cherenkov angle 6. (cosf. = 1/06n, 5 =
v/c, n is the medium refractive index). Tamm and Frank also found the en-
ergy radiated by an electron, per unit length of its path through a cylinder
surface coaxial with the motion axis. These quantities were in agreement
with Cherenkov’s experiments. Owing to the dependence of the refractive
index on the frequency, the velocity of light ¢, = ¢/n in the medium is
also frequency-dependent. This leads to the disappearance of the singular
Cherenkov cone in the time representation.

In 1938 the experiment by Collins and Reiling [11] was performed in
which a 2 Mev electron beam was used to study the VC radiation in various
substances. The pronounced Cherenkov rings were observed at the angles
given by the Tamm-Frank theory.

In 1939, in the Tamm paper [12], the motion of an electron in a finite
spatial interval was considered. Under certain approximations he obtained
the formula for the angular radiation intensity which is frequently used by
experimentalists for the identification of the charge velocity. This formula
is now known as the Tamm formula.

After that Cherenkov changed his opinion in a favour of the Tamm-
Frank theory. The reasons for this are analysed in Chapter 5.

The next important step was made by Fermi [13] who considered a
charge moving uniformly in a medium with dielectric constant chosen in a
standard form extensively used in optics. From his calculations it follows
that for this choice of dielectric permittivity a charge moving uniformly in
medium should radiate at each velocity. This, in its turn, means that for
any velocity there exists a frequency interval for which the Tamm-Frank
radiation condition is satisfied.

The first quantum consideration of the VC effect was given by V.L.
Ginzburg [14]. The formula obtained by him up to terms of the order
hiw/moc® (mg is the mass of a moving charge in its rest frame and w is
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the frequency of an emitted quantum) coincides with the classical expres-
sion given by Tamm and Frank in [10].

After the appearance of these classical papers the studies of the VC
effect developed very quickly. There are three monographs devoted to this
subject. The first one was published in 1958 and was written by Jelley [15].
This book presents a review of experimental and theoretical investigations
of the VC effect. The second one is Zrelov’s two-volume treatise [16]. The
second volume is devoted to Cherenkov counters, and the first volume is
the review of experimental and theoretical studies of the VC radiation. The
Frank book [17] stays slightly aside of two just mentioned monographs. Its
author, one of the founders of the theory of the VC effect and a Nobel prize
winner, does not fear to declare that he does not understand something in a
particular problem, or that something is not very clear to him in a question
discussed. This fair position of Frank has stimulated a lot of investigations
and, in particular, ours.

We briefly review the contents of this book.

Chapter 2 is devoted to the so-called Tamm problem considered by Tamm
in 1939. In this problem, the charge motion in a finite spatial interval is
studied. For the radiation intensity Tamm obtained a remarkably sim-
ple formula. Usually it is believed that for the charge velocity smaller
than the velocity of light in the medium the Tamm formula describes the
bremsstrahlung, whilst for the charge velocity exceeding the velocity of
light in the medium it describes both the bremsstrahlung and the radiation
arising from the charge uniform motion. In 1989 and 1992 two papers by
Ruzicka and Zrelov appeared ([18,19]) in which it was claimed that the radi-
ation observed in the Tamm problem is owed to the instantaneous velocity
jumps at the start and end of the motion. We quote them:

Summing up, one can say that the radiation of a charge moving with a

constant velocity along a limited section of its path (the Tamm problem)

is the result of two bremsstrahlungs produced at the beginning and the
end of motion.

And, further,

Since the Tamm-Frank theory is a limiting case of the Tamm theory
one can consider that the above conclusion is valid for it as well.

On the other hand, it was shown in [20] that in the time representation
for the dispersion-free medium the Cherenkov shock wave (this term means
the shock wave produced by a charge uniformly moving in medium with
a velocity greater than the velocity of light in a medium) exists side by
side with the bremsstrahlung shock waves and cannot be reduced to them.
Then the question arises, how to reconcile results of [18,19] and [20]. The
answer is that the authors of [18,19] analysed the Tamm problem in terms
of the Tamm approximate formula. However, it was shown in [21,22] that
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the Tamm formula, owing to approximations involved in its derivation, does
not describe the Cherenkov shock wave properly. In this chapter, to clarify
this conflicting situation, we analyse this problem in four different ways.

In chapter 3, based on the references [23,26], it is investigated in the
time representation, how a charge moving non-uniformly in a dispersion-
free medium radiates. It is shown that for the semi-infinite accelerated
motion, beginning from the state of rest, an indivisible complex consisting
of the Cherenkov shock wave and the shock wave closing the Cherenkov cone
arises at the instant, when the charge velocity v coincides with the velocity
of light ¢, in medium. The apex of the Cherenkov shock wave attached to a
moving charge, moves with the charge velocity, while the mentioned-above
shock wave closing the Cherenkov cone propagates with the velocity of light
in medium. This results in an increase of the above complex dimensions. For
the semi-infinite decelerated motion, terminating with the state of rest, it is
shown how the Cherenkov shock wave is transformed into the blunt shock
wave which detaches the charge at the instant when the charge velocity
coincides with the velocity of light in medium. In the same chapter, there
is investigated, in the time representation, the so-called smoothed Tamm
problem. In it the charge velocity changes linearly from zero at the initial
instant up to the value vy with which it moves in a finite spatial interval.
After that a charge is linearly decelerated, reaching the state of rest at
some other instant of time. The bremsstrahlung shock waves arise at the
start and end of motion. If vy > ¢, a complex, consisting of the Cherenkov
shock wave and the shock wave enclosing the Cherenkov cone, arises at the
accelerated part of a charge trajectory, when the charge velocity v coincides
with ¢,. This complex detaches from a charge at the decelerated part of its
trajectory when the charge velocity v again coincides with c,. The above
complex does not arise if vy < c;,.

Chapter 4 deals with an unbounded charge motion in a dispersive medium.
The radiation intensities are evaluated [26-28] in the time and the spectral
representations for the dielectric constant chosen in a standard one-pole
form. In the time representation, in the absence of damping there is a crit-
ical charge velocity v., independent of frequency, below and above which
the behaviour of radiation intensities is essentially different. Above v, the
radiation intensity consists of a number of maxima, the largest of them
is at the same position at which the singular Cherenkov cone lies in the
absence of dispersion. Below v, there is a bunch of radiation intensity max-
ima separated from a moving charge and lying at a quite large distance
from it. The quasi-classical estimations for the position of this bunch and
of particular maxima composing it agree with exact calculations. These
predictions were recently confirmed experimentally [29]. It is shown in the
same chapter that for v > v, the switching on the medium damping leads
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to a decrease of the maxima of the radiation intensity except for those ly-
ing in the neighbourhood of cosf. = ¢/vn. On the other hand, for v < v,
the radiation intensities are much more affected by the switching on the
damping: they disappear almost completely, even for quite small values of
a damping parameter. In the same chapter, the radiation intensities are
also evaluated in the spectral representation, which is more frequently used
by experimentalists than the time representation. It is shown that both the
value (which is not surprising since the medium is absorptive) and position
of the maximum of the radiation intensity depend crucially on the obser-
vational distance and the damping parameter. This raises uneasy questions
about the interpretation of the VC radiation spectra presented by experi-
mentalists.

The chapter 5 is devoted to the evaluation of the radiation intensities at
finite observational distances and to taking into account the effects of ac-
celerated motion [22,30-32]. This chapter may be viewed as the translation
of chapters 2 and 3 into the frequency language. In fact, experimentalists
measure the number of photons with a given frequency and the energy
radiated by a moving charge at the given frequency. Usually the VC ra-
diation is observed in the frequency interval corresponding to the visible
light. There are only a few experiments (such as [29]) dealing with the VC
radiation in the time representation. Certainly, frequencies lying outside
the frequency interval of a visible light also contribute to the radiation in-
tensity in the time representation. Turning to the observation of the VC
radiation at finite distances we observe that for the Tamm problem the
radiation intensities evaluated on an observational sphere of finite radius r
(the Tamm approximate formula corresponds to an infinite observational
distance) have a plateau in the angular range surrounding the Cherenkov
angle 0.. Physically this may be explained as follows. A charge moving in
a finite medium interval emits photons under the Cherenkov angle 6. to-
wards the motion axis. A particular photon, emitted at a given instant,
intersects the observational sphere at a particular angle which depends on
the charge position in the interval of motion. Since the transition to the fre-
quency representation involves integration over the whole time of a charge
motion, one obtains the above angular plateau. The appearance of the an-
gular plateau is also supported by the analytic consideration of Chapter
2. The need for formulae working at finite distances is because the Tamm
approximate formula for the angular radiation intensity does not work at
realistic observational distances.

In the same Chapter closed analytical expressions are obtained for the
radiation intensities of a charge moving with deceleration in a finite spatial
interval and valid at a finite distance from a moving charge. The taking
into account of the deceleration effects is needed for describing the recent
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experiments with heavy ions, where pronounced Cherenkov rings were ob-
served [33]. The large velocity losses for heavy ions are owed to their large
atomic number (energy losses are proportional to the square of the charge).
The above analytical formulae are valid for relatively small accelerations
for which the change of a velocity is much smaller than the velocity itself.

Closed analytical expressions for radiation intensities are obtained also
for arbitrary charge deceleration for which the so-called Tamm condition,
allowing us to disregard the acceleration effects, is strongly violated. Un-
fortunately, these analytic formulae are valid only at infinite observational
distances. An important case for applications corresponds to the complete
charge stopping in a medium (this was realized in the original Cherenkov
experiments). When the final velocity is zero and the initial velocity is
greater than the velocity of light ¢,, in medium, the pronounced maximum
in the angular distribution appears at the Cherenkov angle corresponding
to the initial charge velocity.

Using the spectral representation we consider the smooth Tamm prob-
lem in which the charge velocity changes smoothly from zero up to some
value v > ¢, with which it moves for some time. After that a charge is
smoothly decelerated down to reaching the state of rest. When non-uniform
parts of the charge interval of motion tend to zero, their contribution to
the radiation intensity also tends to zero, and only the uniform part of the
charge motion interval contributes to the total radiation intensity. However,
according to Chapter 2 the bremsstrahlung shock waves exist even for the
instantaneous velocity jumps. The possible outcome of this controversy is
that not only the velocity jumps but the acceleration jumps as well con-
tribute to the radiation intensity. In fact, for the smooth Tamm problem
treated there are no velocity jumps but there are acceleration jumps at the
start and end of the motion, and at the instants when the uniform and non-
uniform motions meet each other. To see this explicitly we have considered
two kinds of absolutely continuous charge motion in a finite spatial inter-
val. Although the velocity behaviour is visually indistinguishable from the
velocity behaviour in the original Tamm problem (with velocity and accel-
eration discontinuities) and in the smoothed Tamm problem (without the
velocity discontinuities, but with the acceleration ones), the corresponding
intensities differ appreciably: for the absolutely continuous charge motion
the radiation intensities are exponentially small outside some angular inter-
val. This points out that not only the velocity discontinuities are essential,
but the discontinuities of higher derivatives of the charge trajectory as well.

Chapter 6 treats the radiation arising from electric, magnetic, and toro-
idal dipoles moving in medium. As far as we know, Frank was the first
to evaluate the electromagnetic field (EMF) strengths and the energy flux
per unit frequency and per unit length of cylinder surface coaxial with the
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motion axis [34]. These quantities depend on the dipole spatial orientation.
Frank postulated that the moments of electric and magnetic dipoles moving
in a medium are related to those in their rest frame by the same transforma-
tions as in vacuum. For an electric dipole and for a magnetic dipole parallel
to the velocity, he obtained expressions which satisfied him. For a magnetic
dipole perpendicular to the velocity the radiated energy did not disappear
for v = ¢,. Its vanishing is intuitively expected and is satisfied, e.g., for an
electric charge and dipole and for a magnetic dipole parallel to the velocity.
On these grounds Frank declared [35] the formula for the radiation intensity
of the magnetic dipole perpendicular to the velocity to be incorrect. He also
admitted that the correct expression for the above intensity is obtained if
the above transformation law is changed slightly. This claim was supported
by Ginzburg in [36], who pointed out that the internal structure of a moving
magnetic dipole and the polarization induced inside it are essential. This
idea was further elaborated in [37]. In [38], the radiation of toroidal dipoles
(i.e., elementary (infinitesimally small) toroidal solenoids (TS)) moving uni-
formly in a medium was considered. It was shown that the EMF of the TS
moving in a medium extends beyond its boundaries. This seemed surpris-
ing since the EMF of a TS resting either in the medium (or vacuum) or
moving in the vacuum is confined to its interior. After many years Frank
returned in [39,40] to the original transformation laws. In particular, in [40]
he considered the rectilinear current frame moving uniformly in a medium.
The evaluated electric moment of the current distribution moving in the
medium was in agreement with that obtained by the law postulated in [34].

The goal of this Chapter consideration is to obtain EMF potentials and
strengths for point-like electric and magnetic dipoles and an elementary
toroidal dipole moving in the medium with arbitrary velocity v greater or
smaller than the velocity of light ¢, in medium. In the reference frame
attached to a moving source there are finite static distributions of charge
and current densities. We postulate that charge and current densities in
the laboratory frame, relative to which the source moves with a constant
velocity, can be obtained from the rest frame densities via Lorentz trans-
formations, the same as in vacuum. The further procedure is to tend the
dimensions of the charge and current sources in the laboratory frame to
zero, in a straightforward solution of the Maxwell equations for the EMF
potentials in the laboratory frame, with the point-like charge and current
densities in the r.h.s. of these equations, and in a subsequent evaluation
of the EMF strengths. In the time and spectral representations, this was
done in [41,42]. The reason for using the spectral representation, which is
extensively used by experimentalists, is to compare our results with those
of [34-40] written in the frequency representation.

In Chapter 7, there is discussed how the VC radiation affects the charge
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motion. Usually the VC radiation is associated with the radiation of a
charge moving uniformly in medium with the velocity greater than the
velocity of light in medium. Owing to the radiation a moving charge in-
evitably loses its energy. The self-energy of a point-like charge is infinite. A
moving point-like charge emits all frequencies. In a dispersion-free medium
all frequencies propagate without damping if the charge velocity is greater
than the velocity of light in medium. The total energy radiated per unit
length, obtained by integration of the spectral energy over all frequencies,
is infinite. There are several ways of overcoming this difficulty. The first is
to consider a charge of finite dimension. Its self-energy &, is finite. There-
fore there is maximal frequency & /h which can be emitted. The energy
radiated by a moving charge per unit length is also finite. Equating it to
the loss of kinetic energy one finds how the velocity of a finite charge mov-
ing in a non-dispersive medium changes as a result of the VC radiation.
Another way of achieving the finite energy losses is to consider the charge
motion in a dispersive medium. For this medium with a dielectric constant
approximated by the one-pole formula, the Tamm-Frank radiation condi-
tion 3°n%(w) > 1 is satisfied in a finite frequency interval. Integrating the
radiated energy over this interval one obtains a finite value for the energy
radiated per unit length. Equating it to the kinetic energy loss one finds
how the VC radiation affects the velocity of a point-like charge moving in a
dispersive medium. In reality these processes compete with each other and
with ionization energy losses. All these questions are also discussed.

The following problem is also discussed in this Chapter. It deals with
an electric charge moving inside a spatial region S filled with a medium
of refractive index mi, while measurements are made outside this region,
in a medium of refractive index ns. In fact, this is a typical situation in
experiments with VC radiation. For example, in the original Cherenkov
experiments [7] the v quanta emitted by electrons moving in a vessel filled
with a water were observed outside this vessel by a human eye. The case in
which S was a dielectric cylinder C' was considered by Frank and Ginzburg
in 1947 [43] who showed that there will be no radiation flux outside C' for
1/n1 < 8 < 1/ny. Under the radiation flux they realized the radial one (that
is, in the direction perpendicular to the axis of motion). We have evaluated
the energy flux along the axis of motion and have shown that outside the
dielectric cylinder S it is zero everywhere except for the discrete set of
observational frequencies at which it is infinite.

We have considered two other problems corresponding to the radiation
of a charge moving uniformly in a spherically symmetric dielectric sample.
The first of them deals with a charge moving inside a dielectric sphere S of
refractive index n; (medium 1), while observations of the energy flux are
made outside this sphere in a medium of refractive index ny (medium 2). It
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is shown that the angular spectrum broadens in comparison with the Tamm
angular spectrum corresponding to the charge motion in a finite interval
lying inside the unbounded medium 1. There is also observed a rise in the
angular intensities at large angles. We associate them with the reflection of
the VC radiation from the internal side of the sphere S. The second problem
treats a charge whose motion begins and ends in a medium 2 of refractive
index ny and which during its motion penetrates the dielectric sphere S of
refractive index n; (medium 1). In addition to the VC radiations in medium
1 (if the condition Bn; > 1 is satisfied) and in medium 2 (if the condition
fBng > 1 is satisfied), and to the bremsstrahlung arising at the beginning
and end of a charge motion in medium 2, there is the so-called transition
radiation arising when a moving charge crosses the surface of the sphere S
separating the media 1 and 2. For the plane boundary between the media 1
and 2, transition radiation was first considered by Frank and Ginzburg in
1946 [44]. In the problems treated (spherical boundary between two media)
the frequency radiation spectrum exhibits the characteristic oscillations.
Probably, they are of the same nature as those for the dielectric cylinder.

Chapter 8 is devoted to the synchrotron radiation, which is such well-
known phenomenon that it seems to be almost impossible to add something
essential in this field. Schott was probably the first person who extensively
studied SR. His findings were summarized in the encyclopedic treatise Elec-
tromagnetic Radiation [45]. He developed the electromagnetic field (EMF)
into Fourier series and found solutions of Maxwell’s equations describing the
field of a charge moving in a vacuum along the circular orbit. The infinite
series of EMF strengths had a very poor convergence in the most interest-
ing case v ~ c. Fortunately Schott succeeded in an analytical summation of
these series and obtained closed expressions for the radiation intensity aver-
aged over the azimuthal angle ([45], p.125). Further development is owed to
Moscow State University school (see, e.g., books [46]-[49] and review [50])
and to Schwinger et al. [51] who considered the polarization properties of
SR and its quantum aspects. The instantaneous (i.e., taken at the same
instant of a proper time) distribution of SR on the surface of observational
sphere was obtained by Bagrov et al. ([52,53]) and Smolyakov [54]. They
showed that the instantaneous distribution of SR in a vacuum possesses
the so-called projector effect (that is, the SR has the form of a beam which
is very thin for v ~ ¢).

Much less is known about SR in a medium. The papers by Schwinger,
Erber et al, [55,56] should be mentioned in this connection. Yet they limited
themselves to an EMF in a spectral representation and did not succeed in
obtaining the EMF strengths and radiation flux in the time representation.
It should be noted that Schott’s summation procedure does not work if
the charge velocity exceeds the velocity of light in medium. The formulae
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obtained by Schott and Schwinger are valid at observational distances r
much larger than the radius a of the charge orbit. In modern electron and
proton accelerators this radius reaches a few hundred meters and even a few
kilometers, respectively. This means that large observational distances are
unachievable in experiments performed on modern accelerators and that
formulae describing the radiation intensity at moderate distances and near
the charge orbit are needed. In the past, time-averaged radiation intensities
in the near zone were studied in ([57-59]). However, their consideration was
based on the expansion of field strengths in powers of a/r. The convergence
of this expansion is rather poor in the neighbourhood of the charge orbit.
SR has numerous applications in nuclear physics (nuclear reactions with ~y
quanta), solid state physics (see, e.g., [60]), astronomy ([61,62]), etc.. There
are monographs and special issues of journals devoted to application of SR
([62-64]). The book [65] the major part of which is devoted to the SR should
be also mentioned.

The goal of this Chapter is to study SR in a vacuum and in a medium.
In the latter case, the charge velocity v can be less or greater than the
velocity of light ¢, in medium. We limit ourselves to consideration in the
time representation. We analyse radiation arising from the charge circular
motion both in the far and near zones, in a vacuum and in a medium. For
synchrotron motion in a medium with the charge velocity greater than the
velocity of light in the medium the singular contours are found on which
the electromagnetic field strengths are infinite. For the charge motion in
a vacuum the contours are found on which electromagnetic field strengths
and radiation intensities acquire maximal values.

Chapter 9 deals with experiments in which the fine structure of the
Cherenkov rings was observed. Under it we mean the existence of the
Cherenkov shock wave of finite extension manifesting as a plateau in the
observed radiation intensity and of the shock wave associated with the ex-
ceeding the light velocity barrier and manifesting as the intensity bursts
at the end of the plateau. Small oscillations of the radiation intensity
inside the plateau are owed to the interference of the VC radiation and
bremsstrahlungs.

There should be also mentioned the intriguing experiments [66] in which
the Cherenkov rings with anomalous large radii (corresponding to the charge
velocity greater than the velocity of light in the vacuum) were observed.

The possibility of the two-photon Cherenkov effect was predicted by
Frank and Tamm in [67] who showed that the conservation of the energy
and momentum does not prohibit the process in which a moving charge
emits simultaneously two photons. There is no experimental confirmation of
this effect up to now. The calculations of the two-photon radiation intensity
are known, but they were performed without paying enough consideration
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to the exact kinematical relations. The goal of this Chapter treatment is to
point out that the two-photon Cherenkov effect will be strongly enhanced
for special orientations of photons and the recoil charge. This makes easier
the experimental search of the 2-photon Cherenkov effect.
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CHAPTER 2

THE TAMM PROBLEM IN THE VAVILOV-CHERENKOV
RADIATION THEORY

2.1. Vavilov-Cherenkov radiation in a finite region of space

The Vavilov-Cherenkov (VC) effect is a well established phenomenon widely
used in physics and technology. A nice exposition of it may be found in
Frank’s book [1]. In most textbooks and scientific papers the VC effect is
considered in the spectral representation. To obtain an answer in the time
representation an inverse Fourier transform should be performed. The diver-
gent integrals occurring obscure the physical picture. As far as we know,
there are only a few attempts in which the VC effect is treated without
using the spectral representation. First, we should mention Sommerfeld’s
paper [2] in which the hypothetical motion of an extended charged particle
in a vacuum with a velocity v > ¢ was considered. Although the relativ-
ity principle prohibits such a motion in the vacuum, all the equations of
[2] are valid in a medium if we identify ¢ with the velocity of light in the
medium. Unfortunately, owing to the finite dimensions of the charge, the
equations describing the field strengths are so complicated that they are
not suitable for physical analysis. The other reference treating the VC ef-
fect without recourse to the Fourier transform is Heaviside’s book [3] in
which the superluminal motions of a point charge both in a vacuum and
an infinitely extended medium were considered. Heaviside was not aware of
Sommerfeld’s paper [2], just as Tamm and Frank [4,5] did not know about
Heaviside’s investigations. It should be noted that Frank and Tamm formu-
lated their results in the spectral representation. The results of Heaviside
(without referring to them) were translated into modern physical language
in [6].

It is our goal to investigate electromagnetic effects arising from the
motion of a point-like charged particle in a medium, in a finite spatial
interval.

2.1.1. MATHEMATICAL PRELIMINARIES

Let a point-like particle with a charge e move in a dispersion-free medium

with polarizabilities € and p along the given trajectory £(t). Its electro-
magnetic field (EMF) at the observational point (7,¢) is then given by the

15
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Liénard-Wiechert retarded potentials

R e 1 = eu . oo €l
O(7,t) = EZ Z A(F,t) = ~ Z%‘/Zz'» (divA + ?CD =0). (2.1)
Here @ = (d€/dt)|i=t,, Zi = ||F — E(t;)| — G(7 — €(t:))/cnl, and ¢, is the
velocity of light inside the medium (¢, = ¢/ /ep). The sum in (2.1) is
performed over all physical roots of the equation

cnlt —t') = 7= E(t')] (2.2)

which tells us that the radiation from a moving charge propagates with the
light velocity ¢, in medium. To preserve causality the time of radiation ¢’
should be smaller than the time of observation ¢. Obviously ¢ depends on
the coordinates 7, ¢ of the point P at which the EMF is observed. Let a
particle move with a constant velocity v along the z axis (§ = vt). Equation
(2.2) then has two roots

Cnt_ﬁnz:': 'm
1—p5 -8

Here 7, = \/(z —vt)2 + p2(1 — 32), p*> = 22 + 4>, B, = v/cy. In what
follows we also need ¢, (t — t') which is given by

/
cpt =

(2.3)

z Tm,
12 -1

We shall denote the ¢’ corresponding to the upper and lower signs in (2.3)
and (2.4) as t} and t}, resp.. It is easy to check that

cn(t =) = 677,;5 — (2.4)

7’2 2

At —t)(t—1th) = o1 r? = (z —vt)? + p*. (2.5)

n

Consider a few particular cases.

2.1.2. PARTICULAR CASES.

The uniformly moving charge with a velocity v < cy,.

It follows from (2.5) that t — ¢} and t —t}, have different signs for 3, < 1. As
only a positive t—t’ corresponds to the physical situation, one should choose
the plus sign in (2.4) which corresponds to the upper signs both in (2.3)
and (2.4). For the electromagnetic potentials one obtains the well-known
expressions

e@:%, Az_iﬂ—m’“‘ (8 = v/c). (2.6)

It follows from this that a uniformly moving charge carries the EMF with
itself. In fact, EMF strengths decrease as 1/7? as r — oo, and therefore no
energy is radiated into the surrounding space.
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A uniformly moving charge with a velocity v > c¢y,.

This section briefly reproduces the contents of [6]. It follows from (2.5) that
for the case treated (¢t —t}) and (t —t}) are of the same sign which coincides
with the sign of the first term in (2.4). It is positive if

t>z/v. (2.7)
The two physical roots are

cnt — Bnz £,
R

The positivity of the expression staying under the square root in r,, requires

/
Cnt172 - —

M=vt—2z—p/y, >0 or 1> L (2.8)
v v

Here 7, = 1/4/|32 — 1]. Since this inequality is stronger than (2.7) one may
use only (2.8), which shows that the EMF is enclosed inside the Cherenkov

cone given by (2.8). Its analogy in acoustics is the Mach cone. For the
electromagnetic potentials one finds

@ = Lom), A, =k

T'm T'm

O(M) (2.9)

(the factor 2 appears because there are two physical roots satisfying (2.2)).
Here O(x) is a step function. It equals 1 for z > 0 and 0 for = < 0. It is seen
that r,,, = 0 on the surface of the Cherenkov cone where M = 0. Therefore
electromagnetic potentials are zero outside the Cherenkov cone (M < 0),
differ from zero inside it (M > 0), and are infinite on its surface (M = 0).

The electromagnetic strengths (ﬁ =¢E, E = —grad® — Ale, B = ,uﬁ =
curlA) are given by

—26'066(./\/1) n 2¢e3

V%T%@ TnT'm

i O(M) + —

r
772171% YnT'm

Hy =

5(M),

- 2
B _ er

§(M)iim, (2.10)

Here n, = (p1i, + (2 — vt)ii,)/r is the unit radial vector directed inside the
Cherenkov cone from the charge current position and 72,, = 7,/ Bn—1./Bnyn
is the unit vector lying on the surface of the Cherenkov cone (Fig. 2.1). The
0 function terms in these equations corresponding to the Cherenkov shock
wave (CSW, for short) differ from zero only on the surface of the Cherenkov
cone.
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Figure 2.1. CSW propagating in an infinite medium. There is no EMF in front of the
Cherenkov cone. Behind it there is the EMF of the moving charge. At the Cherenkov
cone itself there are singular electric, £, and magnetic, H, fields. The latter having only
the ¢ component is perpendicular to the plane of figure.

We observe that both terms in E and H are singular on the Cherenkov
cone (since ry, vanishes there). On the other hand, according to the Gauss
theorem the integral from eF taken over the sphere surrounding the charge
should be equal to 4we. The integrals from each of the terms entering into
E are divergent. Only their sum is finite (take into account their different
signs). This was explicitly shown in [6].

The observer at the (p, z) point will see the following picture. There is
no EMF for ¢t < Ry, (Rp = (2 + p/7n)/Bn). At the time ¢t = Ry,
the Cherenkov shock wave (CSW) reaches the observer. At this instant the
actual and two coinciding retarded charge positions are z, = z + p/v;, and
Zp = Z— PYn, resp.. For ¢t > Ry, the observer sees the EMF of the charged
particle originating from the retarded positions of the particle lying to the
left and right from z,.

At large distances the terms with the © functions die out everywhere
except on the Cherenkov cone, and for the electromagnetic field strengths
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one has 268 20
— €0n o = € o
el = O(M) -1, H= O(M) - 1ig. 2.11
M) i H = ZAM) A (211)
The Poynting vector is equal to
e Canoc @28 o
_ Ex H= L Bt . 2.12
Se= Bl =\ s i (212)

Here ﬁ# = n,/BnYn + n./By is the unit vector normal to the surface of
the Cherenkov cone (Fig.2.1). An observer being placed at the p, z point
will detect the CSW at the instant ¢ = (2 + p/~5)/v. The beam of charged
particles propagating along the z axis with a velocity v > ¢, produces an
energy flux in the 77,5, direction with the electric vector in the 7, direction.

Uniform motion with v < ¢, in the finite spatial interval.

Let a charge be at rest at the point z = —zp for t < —tg (to = 20/v).
During the time interval —ty < t < tg the charge moves with the constant
velocity v < ¢y,. For t > tg the charge is again at rest at the point z = 2.
The electromagnetic potentials are equal to

€ = 2 O[r — cnlt +to)] + —Olen(t — to) — 1]
T1 )

+-SOlen(t + to) — r1]Ofr2 — enlt — to)),

Tm

A, = ig—u@[cn(t + to) — 7“1]@[7“2 — Cn(t — to)] (2.13)
m

where we put 71 = [p? + (24 20)%]"/2, 72 = [p? + (2 — 20)?]*/2. The particular
terms in (2.13) have a simple interpretation. The information about the
beginning of the charge motion has not reached the points for which t <
—to+171/cn . At these spatial points there is a field of the charge resting at
z = —z¢ (the first term in ®). The information on the ending of the motion
has passed through the points for which ¢ > ty+r2/c,. At those space-time
points there is a field of the charge which is at rest at z = 2 (second term in
®). Finally, at the space-time points for which —tg+ri/c, <t < tog+re/cy
there is the field of the uniformly moving charge (last term in ® ). The
magnetic field strength is equal to

Hy= eﬂ(lr;fi)p@[cn(t +tg) — 71]O[r2 — cult — to)]

+

BP_S1en(t + 1) — 1] — 222

1) t—1g) —7al.
™ Tm roTm [Cn( O) 7’2]
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Before writing out the electric field strength in a general form we give its
p component

0P ep ep
E,=—2 = L0 —calt +to)] + —LO[enlt — to) —
"= "o 6T;1),9[T1 cn(t + 0)]+6r§9[0 (t —to) — 1o
1— 2
+—€p(er3 On) Olen(t +to) — r1]O[r2 — en(t — to)]

_ e (L1
Olen(t + to) Tl]erl <r1 Tm)

1 1
Folen(t —to) — 1a] L <_ - —) .

€Ty \T2 T'm

We now clarify the physical meaning of particular terms entering into this
equation. The first term in the first line describes the electrostatic field of a
charge resting at the point z = —zy up to an instant ¢ = —ty. It differs from
zero outside the sphere S; of radius ¢, (t + to) with its center at z = —z.
The second term in the same line describes the electrostatic field of a charge
at rest at the point z = zg after the instant ¢ = #g. It differs from zero inside
the sphere Sy of radius ¢, (t—to) with its center at z = 2. It is easy to check
that for 8, < 1 the sphere S, is always inside S;. The term in the second
line corresponds to the electrostatic component of the EMF produced by a
charge moving in the interval (—zp, z9). The presence of the denominator
r3. supports this claim. This term differs from zero between the spheres Sy
and S7. Since the terms just mentioned decrease as 1/7? as r — oo, they
do not contribute to the radiation field. The two terms in the third line
(with 1/r; and 1/ry, in their denominators) describe the BS shock wave
arising at the beginning of motion. Finally, the two terms in the fourth line
describe the BS shock wave arising at the end of motion.

In a vector form, the electric field strength is given by

B =-5100r — et +t0)] + —5 7P Ocn(t — to) — 2]
€ry €ry

=B 5 Olen(t 4 to) — 1O — ent — to)]

ers,
+ep5[cn(t +to) — n]ﬁnﬁél) B epdcn(t —to) — r2],8nﬁ(92)7 (2.14)
€r1Tm €r2m

Here ﬁg«l), ﬁél), ﬁ?) and ﬁéz) are the radial and polar unit vectors lying

on the spheres S; and Sy (defined by c,(t + tg) = r1 and c,(t — tg) =
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r9, respectively) with their centers at the points z = —zp and z = zp,
respectively:

— 1 — — — — .

Y = ~[pii,+ (2 + 20)iT] = —[7i(r + 20 c080) = figzosin ),

CH I I 0) + 720 sin 6

Ng " = E[”p(z +20) — 1.p] = H[ne(r + 29 cos 0) + 7i,zp sin 0],

72 = Lrom 7] = L oz

) = —[pii,+ (2 = 20)il) = —[7ir = 20c080) + figzosin ),

) N S N 0) — 7t 2 sin O

ng " = E[”p(z — 20) — Tizp| = E[”B(T — 29 cos ) — 7 zgsin 0].

When obtaining (2.14) it was taken into account that r,,, = |r; — Bn(z+ 20)|
for ¢, (t + to) = 1 and rp, = |re — Bn(z — 20)| for c,(t — to) = ro. For
Bn < 1, these expressions are reduced to 1, = r1 — Bp(z + 20) and 1, =
ro — Bn(z — 2p), respectively. At the observational distances large compared
with the interval of motion (r > 2z)

71~ 72 ~ i~
Ty RN RNy, Ty RNy R T

For a distant observer the radiation field is given by

2 eﬂnp o ) (1) _ €ﬁnp B _ ' _(2)
E = erlrmé[cn(t +tog) — 1] - Tiy 67427’77%5[%(15 to) — o] - 71,
i = fiyeBp { dlen(t +to) —m1]  dlen(t —to) —ron] } . (2.15)
T1"m 79T m

An observer at the (p,z) point will detect the radiation arising from the
particle instantaneous acceleration and deceleration at the instants ¢t =
—to +r1/cn and t = tog + r2/cy, respectively.
The total Poynting vector is equal to the sum of energy fluxes emitted
at the points z = £zq: .
S=25+85,, (2.16)

g - \/ﬁ {6’505[%@ +to) — 1] }2 (1)
1 — 75—\ —° Ny’
4V € T1Tm

2
G, — ¢ [F {eﬂp5[cn(t —to) — 7”2]} @)
A7V € 9T m

i)

Here ﬁg}) and are the unit vectors normal to S; and Sy, respectively.

EMF strengths (2.15) are obtained from (2.14) by dropping the terms which
decrease as 1/r? at infinity. This is possible since 7, is nowhere zero for
Bn < 1. It turns out that the vector S differs from zero only on the surfaces
of the spheres S; and S. This means that it describes (for r — oo) only
divergent spherical waves emitted at the z = zp and z = —zy points.
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Figure 2.2. The superluminal motion of a charge in a medium begins from the state of
rest at z = —z0. In the z < pyn — 2o region an observer sees (consecutively in time) the
EMF of the charge at rest, the BS shock wave and the EMF of the moving charge. There
is no VCR in this spatial region. In the z > py, — 20 region the observer sees consecutively
the EMF of the charge at rest, the CSW, the EMF from two retarded positions of the
charge, the BS and the EMF from the retarded position of the charge moving away. The
BS shock wave (not shown here) is tangential to S, at the point where S. intersects the
surface z = pyn — 20.

Uniform motion with v > ¢y, in a semi-finite spatial interval.

a) The charge motion begins from the state of rest (Fig. 2.2). Let a charge
be at rest at the point z = —zp up to an instant ¢’ = —tg. For t/ > —t,
it moves with a velocity v > ¢,. For an observer at the point (p,z) the
condition for the particle to be at rest is ¢,,(t +t¢) < r1. The condition ¢’ >
—to for the beginning of the charge motion is different for upper and lower
signs in (2.3) (see [7]). The solution corresponding to the upper sign exists
only if 2 > py, — 20 and Rm/cn <t < —tg+ Tl/cn (Rm = (Z + p/’Yn)/ﬂn)'
The solution corresponding to the lower sign exists both for z < pvy, — 20
and z > py, — 20. It is easy to check that ¢ > —tg + 71 /¢y, for z < py, — 20
and t > R,,/cp, for z > py, — 29. The electric scalar and magnetic vector



The Tamm Problem in the Vavilov-Cherenkov Radiation Theory 23

potentials are given by

e = 2 O[ry — cnlt+10)] + Ti@(zﬂo = pn)Olr1 —cn(t+10)|O(cnt — Rin)

1 m

+-20(pn — 20 — 2)Olen(t +t0) = 1] + ~—O(= + 20 = P1a)O(ent — Fom):

m T'm

A, = e6—'“{@(,2 + 20 = pYn)O[r1 — enlt +10)|O(cnt — Rip)

+O(pyn — 20 — 2)Olen(t +to) — 1] + O (2 + 20 — pYn)O(cnt — Rin) }. (2.17)

As a result the observer at the point (p, z) will see the following picture:

Let z < pyn — 2z0. Then, for t < —tg + r1/c, the observer sees the
electrostatic field of a charge at rest at z = —zp (the first term in ® which
differs from zero outside the sphere Sy defined by ¢y (t + t9) = r1). The
third term in ® and the second term in A, describe the charge radiation
from particular points of its trajectory. They are confined to the interior of
the sphere S;. There is no CSW in this spatial region.

Let the observer be in the spatial region where z > pvy, — 20. In this
case, for t < R,,/cn, he sees the electrostatic field of the charge at rest at
z = —zy (the first term in ®). At the time t = R,,/c,, the CSW reaches
him. At this instant the retarded positions of a charge coincide and are
given by 2/ = z — py,. In the time interval R,,/c, < t < —tg + 71 /¢y, the
solution corresponding to the upper sign (the second term in ® and the
first in A,) gives the EMF from the retarded positions of the particle in the
interval —z¢ < 2’ < z — pyp. On the other hand, the solution corresponding
to the lower sign (last terms in ® and A,), describes for t > R,,/c, the
EMF from the retarded position of the charged particle lying to the right
of the 2/ = z — py,. Thus in the time interval R,,/c, < t < —tg + r1/cp
the observer sees simultaneously the electrostatic field of a charge at rest at
z = —zp, and the EMF from two retarded positions of a charge lying to the
left and right of 2’ = z — py,. At the instant t = —tg + r1 /¢, the BS shock
wave from the z = —zy point reaches the observer. After this instant he sees
the EMF from the charge retarded position lying to the right of 2’ = z—pyy,.
As the time advances the distance between the observational point and the
particle retarded position increases. Correspondingly the EMF diminishes
at the observational point.

For a distant observer only the singular parts of the field strengths
survive

B _65n05(0n(75 +to) — 1) 7
€(Bn(z + 20) — 1)1
2e

€EYnTm

—

+ O(z 4 20 — pyn)d(cnt — Rpn) - Tin,
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efpd(cn(t +to) — 1)

ﬁ = T_i H’ H = —
¢ (Bn(z + 20) — 1)1
2e
o Ot 20— pm)d(ent = Rom). (2.18)

When obtaining these expressions, we omitted the terms which do not con-
tain delta functions and which decrease as 1/r2 as r — oo (they do not
contribute to the radiation). For the terms containing 73, in their denom-
inators, this is not valid on the Cherenkov cone (since r,, = 0 on it). For
the spatial region z < py, — 29 the singular EMF is confined to the surface
of a sphere S; of radius 11 = ¢, (t + tg). A distant observer detects the BS
shock wave at the instant ¢t = —tg + 71 /¢y, There is no CSW in this region
of space. For z > pvy, — zp a distant observer detects the CSW at t = R,,/cy,
and the BS shock wave at t = —tg + rl/cn

The Poynting vector is equal to S=235 + SC, where

g _ I [eBpdlenlt+t0) )]
1= { (Bn(z+ 20) —11)11 o

47
is the BS shock wave different from zero at the surface of the shock wave
emitted at the beginning of motion and

= c [u . 2ep
Se=—4/—-
4V e “yurm

O(z + 20 — pn)S(M)]? - i, (2.19)
is the CSW different from zero at the surface of the Cherenkov cone.

b) The charge motion ends in a state of rest (Fig. 2.3). Let a charge
move with a velocity v > ¢, from z = —oc0 up to a point z = zg. After
that it remains at rest there. The condition for the charge to be at rest is
cn(t —to) > r2. The solution corresponding to the lower sign in (2.3) exists
only for z < zg + pyn and Ry, /c, <t < tg + 1r2/cy (see [7]). The solution
corresponding to the upper sign in (2.3) exists both for z > zy + pv, if
t > to+ ra/cy, and for z < zg + pyp if t > Ry,/cn. The electromagnetic
potentials are equal to :

O = Ofen(t —to) —ra] + —@(z =20 = pn)Olen(t — to) — 12

€T2 €rm

+-50(ent — Rin)O(20 + prm — 2){1 + Olra — enlt — to)]1,

€ET'm

A, = ,uﬁi@(z — 20 — pYn)Olcn(t — to) — 12]

T'm

+M6Ti®(0nt — RBm)O(20 + pym — 2){1 + Ofra —cn(t —to)]}. (2.20)
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Figure 2.3. 'The superluminal motion ends in the state of rest at z = 29. In the region
z > pyn + 20 the observer sees no field up to some instant, when the shock BS wave
reaches him. Later he sees the EMF of the charge at rest and the EMF from one retarded
position of the charge. In the region z < pvy, + 20 the EMF is equal to zero up to
some instant when the CSW reaches the observer. After that he sees the EMF from two
retarded positions of the charge up to the instant when the BS shock wave reaches him.
Later the observer sees simultaneously the field of the charge at rest and that of the

retarded positions of the charge. The BS shock wave (not shown here) is tangential to
Sc at the point where S. intersects the surface z = py, + 20.

<

For an observer in the z > pv,,+ 2o region there is no EMF for ¢, (t—tg) < ra.
At t = ty + r2/cn he detects the BS shock wave. For ¢t > ty + r2/c, the
observer sees the EMF of the charge at rest at the z = zy point and the
EMF of the retarded positions of the charge trajectory lying to the left
of the z = zp point. There is no CSW in this spatial region despite the
presence of the radiation associated with the charge superluminal motion.
For an observer in the z < py, + 29 region, the EMF is equal to zero for
et < Ry At t = Ry, /ey, the CSW reaches the observational point. At this
instant two retarded charge positions coincide and are equal to 2/ = z— pyp,.
For Ry, /cn < t <ty + ra/cy, the solution corresponding to the lower sign
gives the EMF emitted from the points of the charge trajectory that lie
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in the interval (z — py, < 2/ < 20). At t = to + ro/cp, the BS shock wave
emitted from the z = zy point reaches the observer. After that, the solution
corresponding to the lower sign gives the EMF of the charge at rest at the
z = zg point. On the other hand, the solution corresponding to the upper
sign for ¢t > R,, gives EMF from the charge retarded positions lying to
the left of z — pv, point. The EMF at the observational point diminishes
as the radiation arrives from more remote points.
The field strengths and Poynting vector in the wave zone are:

E:e(s( nlt = to) = ram) pn il +e§(cnt R,)

Bn(z —20) =12 €rg €"'mYn

= (5(Cn(t — to) — 7’2) ﬁ 2
H=e [ ,Bn(z - ZO) — T2 T2 * Tm'Yn\/a

o - 2
S=S+85, S=C [ {(5(cn(t to) —r2) @} 7O,
€

47T Bn(z — 2z0) =72 T2

@(p'Yn+ZO_Z) T,

§(cnt — Rm)] g (2.21)

po[ 28 r 1
Se=—4/— 6(M)O — Tt
¢ 47r ; [rm% (M)O(20 + pyn — 2)| -1y,
In the spatial region z > pv, + 2o a distant observer detects the BS shock
wave corresponding to the termination of motion at t = to+r3/cy,. There is
no CSW there. For z < py, + 2o the observer sees the CSW at t = R,,/cy,
and the BS shock wave at t = tg + ro/cp,.

Uniform motion with v > ¢, in a finite spatial interval.
Let a charge be at rest at the point z = —zp up to an instant ¢ = —ig
(to = z0/v). In the time interval —tg < t < to the particle moves with a
constant velocity v > ¢,. For t > ty the particle is again at rest at the
point z = zg (Fig. 2.4). According to [1,8] the physical realization of this
model is, e.g., B decay followed by nuclear capture. An observer in various
space-time regions will detect the following physical situations:

i) 2 < pyn — 20.
For t < —ty + 71/cn the observer sees the EMF of the charge at rest at
z = —29. At t = —tg + r1/c, the BS shock wave originating from the
z = —zp point (BS; shock wave for short) reaches him. For —tg + r1 /¢, <
t < top + re2/cn the observer sees the EMF of the charge moving with the
superluminal velocity (the lower sign in (2.3)). At ¢ = tg + r2/c,, the BS
shock wave originating from the z = 2y point (BSy shock wave for short)
reaches him. Finally, for ¢ > ty + r2/c,, the observer sees the EMF of the
charge at rest at z = zg. There is no CSW in this spatial region despite the
observation of superluminal motion.
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Figure 2.4. The superluminal motion begins from the state of rest at the point z = —z9
and ends by the state of rest at the point z = z¢. For the finite distances the space-time
distribution of EMF is rather complicated (see the text). The distant observer will
see the following space-time picture. In the region z < pv, — 20 he detects the BS;
shock wave (from the z = —zo point) first and BSy shock wave (from the z = 2o
point) later. In the z > pvyn + zo region these waves arrive in the reverse order. In
the py — 20 < z < (p?42 + 22 /32)/? region the observer consecutively detects the CSW,
BS; shock wave and the BSa shock wave. In the region (p?y2 +22/82)Y/2 < z < pyn+ 20
the latter two waves arrive in the reverse order. The CSW S, is tangential to the BS;
shock wave at the point where S, intersects the surface z = py — zp and to the BSs shock
wave at the point where S. intersects the surface z = py + 2o (see Fig. 2.7).

i) pym — 20 < 2 < (P*73 + 23/ 82) /2.

For t < R,,/cy the observer sees the EMF of the charge at rest at z = —z.
At t = Ry,/cy, the CSW reaches him. For R,,/c, < t < —ty + r1/c, the
observer simultaneously sees the EMF of the charge at rest at z = —zg
and the EMF of the moving charge (both signs give contribution). At ¢t =
—to+71/cn the BSy shock wave reaches him. For —tg+7r1 /¢, <t < to+re/cyn
the observer will see the EMF of the moving charge (the lower sign in (2.3)).
At tty + r2/c, the BSo shock wave reaches him. Lastly, for ¢ > tg + ro/cy,
the observer sees the EMF of the charge resting at z = 2g
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i) [p?y2 + 28/ B2]Y? < 2 < 20 + pYn.
For t < Ry,/cy the observer sees the EMF of the charge at rest at the
z = —zp point. At t = R,,/c, the CSW reaches him. For R,,/c, < t <
to + r2/c, the observer sees the EMF of the charge at rest at z = —zp and
the EMF of the moving charge (both signs of Eq.(2.3) give a contribution).
At t =ty + ro/c, the BSg shock wave reaches the observational point. For
to + rofcn <t < —to + r1/cy the observer simultaneously sees the EMF of
the charge at rest at z = —zg, the EMF of the charge at rest at z = zg, and
the EMF of the moving charge (upper sign in (2.3)). At t = —tg + r1/cp
the BS; shock wave reaches him. Finally, for ¢ > —to + 1 /¢y, the observer
sees the EMF of the charge at rest at z = 2.

iv) 2> 20 + pyn.
For t < ty + r2/c,, the observer will see the EMF of the charge at rest at
the z = —zg point. At t = to + r2/c, the BSy shock wave reaches him.
For tg + ro/cn, < t < —to + r1/cpn he sees the EMF of the charge at rest
at the z = £z points and the EMF of the moving charge (the upper sign
n (2.3)). At t = —tog + r1/c,, the BS; shock wave reaches him. Lastly, for
t > —to + r1/cy, the observer sees the EMF of the charge at rest at z = z.
There is no CSW in this spatial region.

The electromagnetic potentials are equal to

D= + Dy + Dy, A, = ﬁ,wf(I)m (222)
Here

e e
By = O(m —cn L By = - O(en(t — to) — 7).
1 6T1@<7’1 & (t—l—to)) 2 67’26(0 (t to) 7“2)

D, = f{@(zo — 24 pn)O(20 + 2 — p1n)O(cnt — Rp)

X[O(r1 — cn(t +to)) + O(r2 — cn(t —to))]
+O(2 — 20 — p1n)O(r1 — cn(t +10))O(cn(t — to) — 12)
+O(pyn — 2 — 20)O(cn(t + to) — r1)O(re — cun(t — 1)) }-
At large distances the field strengths are

GE _ _5(Cn(t + tO) - Tl)) epBn ) ﬁél) + 5(Cn(t - tO) - T2) epBn ) T_ié2)
Bu(z +20) =11 11 Bu(z —20) =12 T2
+(ent — Rin) ¢ O(pyn + 20 — 2)O(2 + 20 — PYn) - m,

'mTn

_O(en(t+to) —m1) epB n (cn(t —to) —r2) epB
Bn(z +20) =71 ™1 Bn(z —20) =12 T2

H=Hyiy, Hy=
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When obtaining (2.23), the terms decreasing as 1/r? at infinity were omit-
ted. Amongst them, there are terms proportional to 1/r3,. For large ob-
servational distances they are small everywhere except for the Cherenkov
cone, where 7, = 0. If one tries to obtain the Fourier field components
from (2.23) one gets the divergent expressions. On the other hand, Fourier
components will be finite if one includes into (2.23) the terms proportional
to 1/ rf’n mentioned above. The total Poynting vector reduces to the sum of
energy fluxes radiated at the z = £z points, and to the Cherenkov flux:

d(ent — Rin)O(pyn + 20 — 2)O(2 + 20 — pyn)- (2.23)

Sy + Se + Sa, (2.24)

4

_\/E
2= 47V €

_ 2 2
So= B [ 20000 + 20— 1080 + =) ik

47 TmYn

C’Jl

S =
g _c [m {6cnt+to)—r1)@r.ﬁ(1)
Bn(z +20) =71 11
{ )
)

Oenlt — to —7“2)@}2%(2)
5n2—20 —T2 T2 "

It is seen that Sy is infinite on the spherical surface cn(t +to) = r1. The
factor B,(z + z9) — 1 in the denominator vanishes at the point where BS;
intersects the CSW. Correspondingly, S, is infinite on the spherical surface
cn(t — to) = ra. The factor (,(z — z9) — r2 in the denominator vanishes at
the point where BSs intersects the CSW. Finally, §C is infinite on the CSW.
The factor r,, in the denominator vanishes on the CSW.

For a distant observer the radiation field looks different in various spatial
regions (Fig. 2.5).

i) 2 <pywm—20
At the instant —tg+r1/c, the observer detects the BS; shock wave. At the
later time t = ty + r2/cy, he detects the BSy shock wave. There is no CSW
in this spatial region.

i) pyn — 20 < z < (p%7p + 25/03)"/?
The observer detects (consecutively in time) the CSW at ¢t = R,,/cy, the
BS; shock wave at the instant —tg + r1 /¢, and the BSy shock wave at the
instant t = tg + 1r2/Cp.

i) (p*ya + 25/60)"2 < 2 < pm + 20
The observer sees the CSW at the instant —to+ Ry, /¢y, the BSg shock wave
at the instant to+ry/cp, and the BS; shock wave at the instant —tg+r1/cp,.

iv) z > pyn + 20.
At the instant tg+72/cy, the observer fixes the BSy shock wave. At the later
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Figure 2.5. The schematic presentation of the EMF for a superluminal motion in a
finite spatial interval. The magnetic field of the BSs and of the moving charge has only
a ¢ component. The electric field of the BSs has only the 61 and 63 components. The
electric field of the moving charge has singular and non-singular parts. The singular part
EC lies on the Cherenkov cone. The non-singular part lies on the radius directed from
the particle actual position inwards the Cherenkov cone.

instant —to + r1/¢y, he detects the BS; shock wave. As in case i), there is
no CSW in this spatial region.

However, some reservation is needed. In the next chapter the instan-
taneous jumps in velocity in the original Tamm problem will be changed
by the velocity linearly rising (or decreasing) with time. It will be shown
there that, in addition to the BS shock waves arising at the beginning (BS;)
and at the end (BS3) of motion, two new shock waves arise at the instant
when the charge velocity coincides with the velocity of light in medium.
One of them is the Cherenkov shock wave of finite extensions (C)y), whilst
the other shock wave closes the Cherenkov cone (Cp) (see Fig. 3.8). Owing
to the instantaneous jumps in velocity in the original Tamm problem, the
above three shock waves are created simultaneously. When discussing the
BS shock waves throughout this chapter, we keep in mind the mixture of
these three shock waves (BS;, BSe and Cp). In particular, they are mixed
in electromagnetic field strengths (2.23). The traces of these shock waves
are contained in electromagnetic potentials (2.22). We observe that ®; and
®5 contain terms with r; and r9 in their denominators. The electric field
strengths corresponding to them contain 0 functions 6[(c,t + to) — 1] and
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Figure 2.6. An observer not very far from the z axis sees the BS maximum at an
angle different from the Cherenkov angle .. Thus angular resolution is possible for him.
For a distant observer the time resolution between the VCR and bremsstrahlungs is still
possible.

§[(cnt — to) — o] with r? and r2 in their denominators. It is essential that
these electric field strengths are uniformly distributed over the spheres Sy
and Sy of the radii r1 = ¢, (t+1t9) and 7o = ¢, (t—1p) and do not have a max-
imum at the Cherenkov angle 6. (cosf. = 1/06n). On the other hand, ®,,
and A, contain terms with r,, in their denominators. The electric and mag-
netic fields corresponding to them contain the same § functions as above
but with denominators r,, vanishing at the Cherenkov cone. Thus the BS
shock waves treated in this section describe not only the transition of a
charge from the state of rest to the state of motion, but also its exceeding
the velocity of light in medium.

The BS shock waves from the z = £z points have maxima at the angles
01 and 05 slightly different from the Cherenkov angle 6.. They are defined
by

€0 1 1/2
cosf o = :FW + 3. {1 — (eo/ﬂnfyn)Q] .

Let the distance from the observational point be comparable with the
motion distance 2z. This observer then will detect the maximum of the
BS at the angles #; and 6y different from 6., and for him the CSW will
be clearly separated from the BS shock wave. On the other hand, if the
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observer is at a distance much larger than 2zg, the BS from the z = +2g
points and the CSW will have a maximum at almost the same angle .. In
this case angular separation of the VCR and BS is hardly possible.

On the observational sphere S of radius r the VCR fills a band of the
finite width (67 — #2) enclosed between these angles whilst the BS differs
from zero on the whole observational sphere. The observation of the VCR on
the sphere of large radius is masked by the smallness of the angular region
to which the VCR is confined. On the other hand, in the observational
z =const plane the VCR fills the ring Ry < p < Rz where R = (2 — 20)/7n
and Ry = (2 + 20)/~» whilst the intensity of BS has pronounced maxima
at p = Ry and p = Ry (see Chapter 9).

If the intensity of the charged particles is so low that inside the interval
(=20, 20) there is only one charged particle at each instant of time, the
time resolution between the Cherenkov photons and the BS photons is
still possible. We conclude that the description of the VCR in the time
representation by direct solving of the Maxwell equations greatly simplifies
the consideration. In particular, the prescriptions are easily obtained when
and where the CSW should be observed in order to discriminate it from
the BS shock wave. This is contrasted with the consideration in terms of
the spectral representation where (owing to the lack of the exact analytical
solution) the discrimination of the VCR from the BS presents a problem
(see, e.g., [1,8-10]). On the other hand, if the frequency dependence of €
and p is essential, an analysis via the Fourier method seems to be more
appropriate. In this sense these two methods complement each other.

2.1.3. ORIGINAL TAMM PROBLEM

Tamm considered the following problem. A point charge is at rest at the
point z = —zq of the z axis up to an instant ¢ = —ty. In the time interval
—tg < t < tp it moves uniformly along the z axis with a velocity v greater
than the velocity of light ¢,, in medium. For ¢ > ¢y the charge is again at
rest at the point z = 2. In the spectral representation the non-vanishing z
of the vector potential (VP) is given by

1
A, = ﬁ/ ij(a:’,y’,z’)exp(—ian/c)da:’dy'dz',
c

where R = [(z—2")2+(y—y')?>+(2—2")?]"/? and j,, is the Fourier component
of the current density defined as

1
Jow = g/j(t) exp(—iwt)dt.
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For a charge moving uniformly in the interval (—zp, zo) one finds
Jj(t) = evd(x)d(y)d(z — vt)O(z + 20)O (20 — 2)

and

Jw = 5( ) (y) exp(—iwz/v)O(z + 20)O (20 — 2).

2T

Inserting all this into A, and integrating over ' and 3’ one finds

e 20z . 2
Ay(z,y,2) = 2:6 = exp [ tky, (ﬂ— + R)},
—Z20 n

R=[p%+(z— )2, pr=a2+y% ky=kn, k:%. (2.25)

At large distances from the charge (r > 2) one has R = r—2'cos 6, cosf =
z/r. Inserting this into (2.25) and integrating over z’ one obtains

es , ten3sin 6 _
AE(Pa z) = %GXP (—iknr)q(w), Hg = TGXP (—iknr)q,

b (—iknr)g,  qlw) = sin [wto(1 — By, cos 0)]

2.2
wer 1— B, cosb (2.26)

Superscript T means that these expressions were obtained by Tamm.
In the limit kzg — oo

i T __° _ .
q— %5@059 —1/6n), A,(p,z) = mwé(cos@ 1/6y) exp (—ikyr),

T tesind

exp (—ik,r)d(cosd — 1/5,),

¢ T or
E} = ze,z;:ﬁn@ exp (—ik,r)d(cosd — 1/5,). (2.26")

Now we evaluate the field strengths in the time representation. They
are given by

HY = 2P ging (t —r/cn
& o sm nq w) sinfw(t — r/cp)]|dw
2eul . ©° .
T __ _
E, = o sm@cos@/o g(w) sinfw(t —r/cp)]dw

ET = Zens sin? @ /Oo q(w) sinfw(t —r/cp)]dw. (2.27)
0

wer
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It should be noted that only the spherical # component of E differs from
Zero

2eu
Ef=0, Ej =-

T

b sin 0 /OOO q(w)sinfw(t — r/cy)]dw.

wer

Consider now the function g(w). For wtp > 1 it becomes 7 (1 — (3, cos ).
This means that under these conditions Ew and I;Tw have a sharp maximum
at 1 — B, cosf = 0. Or, in other words, photons with the energy fiw should
be observed at an angle cosf = 1/4,.

The energy flux through the sphere of the radius r for the entire motion
of the charge is

£ =2 / SH(1)dHdS, S, = - Fy(t) Hy(t)
s
Expressing Ey(t) and Hy(t) through their Fourier transforms

Ey(t) = / Eo(w) explivt)dw, Hy(t) = / H p(w) exp(iwt)dw

and integrating over ¢, one presents £ in the form

d’E
= | dwaq®d
where e )
cr .
Tod 7[E9(w)H¢(w) + c.c.] (2.28)

is the energy radiated into unit solid angle and per frequency unit. Substi-
tuting here Fy(w) and Hy(w), from (2.26) one finds

d*& e2pun3% sin? 9q2.

dwdQ) m2c (2.29)

This is the famous Tamm formula frequently used by experimentalists for
the identification of the charge velocity. Using the relation

sin ax
T

2
) — mad(x) for a — oo,

one obtains in the limit wty — oo

q — —627@ ) (cos@ n
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and

d’E e ko 1 1
1-—— -—— . 2.
o0 ( ﬂ%) ) (cos@ ﬂn) (2.30)

The energy flux per frequency unit through a sphere S of the radius r > zg
is

d& d2&

— = [ dQ2 :

dw / dwdf)

Integrating (2.29) over the solid angle df2, one obtains for large kz

d&
o= Whgs
for v < ¢, and
@ = Wgs + W, (2.31)
do  VBs Ch .
for v > ¢,. Here
2e2 1+ 6n e?ukL 1

Wgs =

~28,) and Wo, = “H2(0 - ).

A TN 52
Here L = 2z is the charge interval of motion. Tamm identified Wpg with
the spectral distribution of the BS, arising from the instantaneous acceler-
ation and deceleration of the charge at the instants +tg, respectively. On
the other hand, Wy, was identified with the spectral distribution of the
VCR. This is supported by the fact that Wy being related to the charge
interval of motion

d*& e? 1

S 1-=
dwdL 02( G2

coincides with the famous Frank-Tamm formula describing the energy losses
per unit length and per unit frequency for a charge unbounded motion [5].
In the absence of dispersion, the Tamm field strengths (2.27) are easily
integrated:

) (2.32)

e sin 0

T A
Hy (1) = r(1 — B, cos )

{8[en(t—to)—r+2 cos 0] [cy (t+to) —r—20 cos 6]},

e sin @
" rn(1 — Bncos0) .
x{d[cn(t —to) — r + 2o cos O] — S[cn(t + to) — r — 2o cos 0]} (2.33)

Eg (t) =

The Tamm field strengths in the time representation are needed to compare
them with the exact ones given by (2.22) and (2.23). This, in turn, may
shed light on the physical meaning of the Tamm radiation intensity (2.29).
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2.1.4. COMPARISON OF THE TAMM AND EXACT SOLUTIONS

Ezact solution
Above (Egs.(2.22) and (2.23)), we obtained an exact solution of the treated
problem (i.e., the superluminal charge motion in a finite spatial interval)
in the absence of dispersion. For convenience we shall refer to the BS shock
waves emitted at the beginning of the charge motion (t = —tp) and at its
termination (¢ = tp) as to the BS; and BSy shock waves, respectively.

In the wave zone we rewrite the field strengths in the form

E = Eps+ Ecn, Eps= E](gs) + E(Q) H = Hgs + Hen,

H = Hyiiy, Hy= Hps+ Hon, Hps = HS) + HE). (2.34)
Here
70 _ _efdlen(t +to) — 1] rsind ey
BT Bn(z+20) =71 71 o
22) _ e 6[en(t —to) — 7o rsin Hﬁ(g)
BS ™ n Bulz—20) =712 12 7
ECh = Ty 5(Cnt - Rm)@<p7n + zp — Z)@(_p')’n + 2o + 2>ﬁm7
(1) aO[ea(t +to) —ri] rsing @) Oen(t —tg) — o] rsind
Mg = =0 Bu(z+20) =11 11 Hys = el Bulz —20) =12 12’
2
Hep = —————0(ept — Rp)O(pyn + 20 — 2)O(—pyn + 20 + 2).

(1) 51 R
Here vy, 71, 72, Tm, ”(9 ), né) and 7, are the same as above. The delta

functions d[cy,(t + to) — 1] and dlc,(t — tg) — ro] entering (2.34) describe

spherical BS shock waves emitted at the instants t = —tg and t = ty; n ( )

(1)

and ng’ are the unit vectors tangential to the above spherical waves and

lying in the ¢ = const plane; E]glg, E](gs) , ﬁéls) and ﬁ1(32s) are the electric
and magnetic field strengths of the BS; and BSs shock waves, respectively
As we have learned, owing to the charge instantaneous deceleration, BS;
and BSs include effects originated at the beginning of motion and those
associated with exceeding the velocity of light barrier. The function 6(c,t —
R,,) describes the position of the CSW. The inequalities R,, < ¢pt and
R,, > cut correspond to the points lying inside the VC cone and outside
it, respectively; 7i,, is the vector lying on the surface of the VC cone; 7y, is
the so-called Cherenkov singularity: r,,, = 0 on the VC cone surface; Ecp
and Hcy are the electric and magnetic field strengths describing CSW,
They orlgmate from the charge uniform motion in the interval (—zo, 20);
ECh and HCh are infinite on the surface of the VC cone and vanish outside
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it. Inside the VC cone ECh and ﬁCh decrease as r~2 at large distances,
and therefore do not give a contribution in the wave zone. These terms
are not included in (2.34), but they are easily restored from the exact
electromagnetic potentials (2.22).

Comparison with the Tamm solution

At large distances one can expand 71 and rg in (2.34) r; = r+2pcosf, ro =
r — zgcosf. Here r = [p? + z2]'/2. Neglecting zy in comparison with 7 in
the denominators of Epg and Hpg in (2.34), one finds

ET = EBS, ﬁT = ﬁBS; E= ET + Ecm H= ﬁT + ﬁCha

where Ep and Hr are the same as in (2.33). This means that the Tamm field
strengths (2.33) describe only the BS shock waves (in the generalized sense
mentioned above) and do not contain the CSW originating from the charge
uniform motion in the interval (—zg, z9). Correspondingly, the maxima of
their Fourier transforms (2.26) refer to the traces of the CSW in the BS
arising from the charge instantaneous deceleration.

To elucidate why the CSW is absent in (2.27) we consider the product
of two © functions entering into the definition (2.34) of Cherenkov field
strengths ECh and FICh:

O(pvn + 20 — 2)O(—pyn + 20 + 2). (2.35)

It is seen that the CSW of the length AL = L/BpYn, o =1/ 62 —1,L =
2z¢ is enclosed between two straight lines L1 and Lo originating from the
ends of the interval of motion and inclined at the angle 6. towards the mo-
tion axis. The CSW, being perpendicular to these straight lines, propagates
along them with its normal inclined at the angle 6, towards the motion axis.
We rewrite (2.35) in spherical coordinates

O(0 — 02)0(0; — 0), (2.35)

where 61 and 6, are defined by

p €0 N 1 ) ( €0 )2 1/2
costh =———+—|1— ,
2 B Bnn
o Lo (e )]
cosby = ——+— |1 —
ﬂ?ﬂ% Bn BnYn

and €y = z9/r. The CSW intersects the observational sphere S of the radius
r in the angular interval Af = 61 —60,. With the increase of the observational
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distance r, the angular region Af, to which the CSW is confined, diminishes
(since 1 — 63), although the transverse extension AL of CSW remains the
same. The CSW associated with the charge uniform motion in the interval
(=20, 20) drops out if for Af < 1, one naively neglects the term (2.35")
with the product of two © functions.

We prove now that essentially the same approximation was implicitly
made during the transition from (2.25) to (2.26). When changing R in
the exponential in (2.25) to r — 2’ cos @ it was implicitly assumed that the
quadratic term in the expansion of R is small compared to the linear term.
Consider this more carefully. We expand R up to the second order:

Z/2
R~r—2 cosf + =—sin? 4.
2r
In the exponential in (2.25) the following terms then appear

/ 1 12
i+— (r—z’cos9+;sin29>.

vV Cp r

We collect terms involving 2’

/ 1 Z/ 9
— (= — cos @) + — sin“ 4].
(5 —cost) + 5-sin0)
Taking for 2’ its maximal value zy, we present the condition for the second
term in the expansion of R to be small in the form

1
€ <K 2 (,6_ - COSQ) /sin’ 6
It is seen that the right hand side of this equation and that of Eq.(2.35)
vanish for cosf = 1/f,, i.e., at the angle at which the CSW exists. This
means that the absence of the CSW in Egs. (2.27) is owed to the omission

of second-order terms in the expansion of R in the exponential entering
(2.25).

2.1.5. SPATIAL DISTRIBUTION OF SHOCK WAVES

Consider the spatial distribution of the electromagnetic field (EMF) at a
fixed instant of time. It is convenient to deal with the spatial distribution of
electromagnetic potentials rather than with that of field strengths, which
are the space-time derivatives of electromagnetic potentials.

We rewrite electromagnetic potentials (2.22) in the form

D =P + Dy + Dy, (2.36)
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Here

@1:i®<r1—cnt—z—0>, <I>2:i@<cnt—r2—z—o>,
Bn

G =01 102 100 A, = AW 4 AP 4+ AG) AL = eppD)

e z z
Pl = a@(p% —z—2)0 (ﬂ—i + 1 — cnt> © <cnt + 5_: — 7“1) ,
@) _ gy _ _@> ( _ 2 )
o erm@(z 20 — pYn)© <r1 ent 3, O | cnt 3, ra |,
) = ——O(20+ pyn — 2)0(= + 20 — p10)O et — i)

2 2
X [@ (rl —cpt — ﬂ—i) + 0O <ﬂ—:—|—r2—cnt)] )
The theta functions

z Z
© (cnt—l— ﬁ—i - 7‘1) and © (rl —cpt — ﬂ—?)

define spatial regions which, correspondingly, have and have not been reached
by the BS; shock wave. Similarly, the theta functions

Z Z
© (cnt— ﬂ—i —7"2) and © (7"2 —cpt + ﬂ—(:)

define spatial regions which correspondingly have and have not been reached
by the BSy shock wave. Finally, the theta function

O(cnt — Ri)

defines spatial region that has been reached by the CSW.

The potentials ®; and ®» correspond to the electrostatic fields of the
charge at rest z = —zg up to an instant —ty and at z = zg after the instant
tg. They differ from zero outside BS; and inside BSs, respectively. On the
other hand, ®,,, and A, describe the field of a moving charge. A schematic
representation of the shock waves position at the fixed instant of time is
shown in Fig. 2.7.

In the spatial regions 1 and 2 corresponding to z < py, — 20 and z >
PYn+ 20, respectively, there are observed only BS shock waves. In the spatial
region 1 (where A,(zl) %0, A,(f) = A(Zg) = 0), at the fixed observational
point the BS; shock wave (defined by ¢t + 20/08, = r1) arrives first and
BS, shock wave (defined by ¢t — 20/, = r2) later. In the spatial region 2
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Figure 2.7. Position of shock waves at the fixed instant of time for § = 0.99 and
B = 0.75. BS; and BS2 are BS shock waves emitted at the points Fzo of the z axis.
The solid segment between the lines z = pvy, — 20 and 2z = pyn + 20 is the CSW. The
inclination angle of the Cherenkov beam and its width are cos . = 1/8. and 2z0/BnVn,
respectively.

(where A,(f) £ 0, A,(zl) = AS’) = 0), these waves arrive in the reverse order.
In the spatial region 3 (where A(Z3) # 0, A(Zl) = A(ZQ) = 0), defined by
PIn — 20 < 2 < pyn + 20, there are BS;, BSy and CSW shock waves.
The latter is defined by the equation c¢,t = R,,. Before the arrival of the
CSW (i.e., for R,, > cpt) there is an electrostatic field of a charge which
is at rest at z = —zg. After the arrival of the last of the BS shock waves
there is an electrostatic field of a charge which is at rest at z = zy. The
spatial region where ®,, and A, (and, therefore, the field of a moving
charge) differ from zero, lies between the BS; and BS, shock waves in the
regions 1 and 2 and between CSW and one of the BS shock waves in the
region 3. The spatial region 3 in its turn consists of two sub-regions 3;
and 35 defined by the equations py, — 20 < z < (p*72 + 23/82)Y/? and
(P*72 + 23/ 32)Y? < 2 < pyn + 20, respectively. In the region 3; the CSW
arrives first, then BSy, and finally, BSs. In region 39 BS; and BSs arrive in
the reverse order.

In brief, A,(zl) and A,(Z2) describe the BS in the spatial regions 1 and 2,

respectively, while A,(;’) describe BS and VCR in the spatial region 3.

The polarization vectors of BSs are tangential to the spheres BS; and

BSs, and lie in the ¢ = const plane coinciding with the plane of Fig. 2.7.

They are directed along the unit vectors ﬁél) and ﬁéQ), respectively. The
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polarization vector of CSW (directed along 7i,,) lies on the CSW. It is
shown by the solid line in Fig. 2.7 and also lies in the ¢ = const plane. The
magnetic field having only the ¢ non-vanishing component is normal to the
plane of figure. The Poynting vectors defining the direction of the energy
transfer are normal to BS1, BSy and CSW, respectively.

The VCR in the (p, z) plane differs from zero inside a beam of width
229 sin 0., where 0. is the inclination of the beam towards the motion axis
(cosf. = 1/3,,). When the charge velocity tends to the velocity of light in
the medium the width of the above beam, as well as the inclination angle,
tend to zero. That is, in this case the beam propagates in a nearly forward
direction. It is essentially that the Cherenkov beam exists for any interval
of motion zg.

2.1.6. TIME EVOLUTION OF THE ELECTROMAGNETIC FIELD ON THE
SURFACE OF A SPHERE

Consider the distribution of VP (in units of e/r) on a sphere Sy of radius
r at various instants of time. There is no EMF on Sy up to an instant
T,=1—ey(1+1/8y). Here T), = c,t/r. In the time interval

1 1
1—c¢ (1—|—>§T <1l-—e¢ (1—) 2.37
o\l*g,)sst-oll-g (237)
BS radiation begins to fill the back part of Sy corresponding to the angles
| < cosf < (T+60>2 1- & (2.38)
— cos — — ] —1- :
2¢ " Bn 0

(Fig. 2.8 (a), curve 1). In the time interval

1- (é‘;ﬂﬂ " (2.39)

BS radiation begins to fill the front part of Sy as well:

2
€
1+e%—(Tn—5—0>

n

1

n

< cosf <1.

2¢q

The illuminated back part of Sy is still given by (2.38) (Fig. 2.8 (a), curve
2). The finite jumps of VP shown in these figures lead to the ¢ function
singularities in Eqgs. (2.34) defining BS electromagnetic strengths. In the
time intervals (2.37) and (2.39) these jumps have a finite height. The vector
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Figure 2.8. Time evolution of shock waves on the surface of the sphere Sy for n = 1.333,
B = 0.99, eg = 0.1. The vector potential A is in units of e/r, time T = ct/r: (a): For
small times the BS shock wave occupies only the back part of So (curve 1). For larger
times the BS shock wave begins to fill the front part of Sy as well (curve 2). The jumps of
BS shock waves are finite. The jump becomes infinite when the BS shock wave meets the
CSW (curve 3); (b): The amplitude of the CSW is infinite while BS shock waves exhibit
finite jumps; (c): Position of CSW and BS shock waves at the instant when CSW touches
the sphere Sy at only one point.

potential is maximal at the angle at which the jump occurs. The value of
VP is infinite at the angles defined by

€0 1 €0 2 1/2
=t | = ]
and
€0 1 €0 2 12
cos Oy = 722 + 7, 1- <5n7n> ] . (2.40)

which are reached at the time

cnlcn ( €0 )2
T = = 1 —
= 2 [ s

(Fig. 2.8 (a), curve 3). At this instant, and at these angles, the CSW inter-
sects Sy first time. Or, in other words, the intersection of Sy by the lines
z = pyn — 20 and z = py, + zo (Fig. 2.7) occurs at the angles 6; and 6.
At this instant the illuminated front and back parts of Sy are given by
0 <6 <6y and 6; < 6 < m, respectively. Beginning from this instant the

1/2
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CSW intersects the sphere Sy at the angles defined by (see Fig. 2.8 (b))

T, 1
COSH(I)( T)= 5 5 S (1—T3)1/2

and T )
cos 88T = R (1—T2)12,

The positions of the BS; and BSs shock waves are given by

2
cosGlglg(T) = 210 l(Tn + ;0> -1- 6(2)‘|

2
€0
1+62—(T ——) ,
0 " B

respectively (i.e., the BS shock waves follow after the CSW). Therefore, at
this instant BS fills the angular regions

and

@)y — -
cos g (T) S

000 (T) <9 <m and 0<6<62(T)
whilst the VC radiation occupies the angle interval

QSQ(T)SHS«% and 92§9§9(C2}2(T)_

Therefore the VC radiation field and BS overlap in the regions
000(T) <6 <6, and 6, <6 <6%(T).

BS; and BS; have finite jumps in this angular interval (Fig. 2.8 (b)). The
non-illuminated part of Sy is

OENT) <0 < 05(T).

This lasts up to an instant T,, = 1 when the CSW intersects Sy only once
at the point corresponding to the angle cosf = 1/3,, (Fig. 2.8 (c)). The
positions of the BS; and BSs shock waves at this instant (7}, = 1) are given

by
1 1
cosf = — €0 and cosf = — + €0

B 26273 B 20293
respectively. Again, the jumps of BS waves have finite heights whilst the

Cherenkov term @55’;) is infinite at the angle cos§ = 1/, at which the
CSW intersects Sy. After the instant T,, = 1, CSW leaves Sy. However,
the Cherenkov post-action still remains (Fig. 2.9 (a)). In the subsequent
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Figure 2.9. Further time evolution of shock waves on the surface of the sphere So: (a):
The Cherenkov post-action and BS shock waves after the instant when CSW has left Sp.;
(b): BS shock waves approach and pass through each other leaving after themselves a zero
electromagnetic field. Numbers 1 and 2 mean BS; and BS; shock waves, respectively; (c):
After some instant the BS shock wave begins to fill only the back part of So. Numbers 1
and 2 mean BS; and BS2 shock waves, respectively.

time the BS; and BS, shock waves approach each other. They meet at the

instant
1/2

1+ (/6:;)21 . (2.41)

cos ) = i ll + (5:;%)2] -

After this instant BS shock waves pass through each other and diverge (Fig.
2.9 (b)). Now BS; and BSs move along the front and back semi-spheres,
respectively. There is no EMF on the part of Sy lying between them. The
illuminated parts of Sy are now given by

T, =

at the angle

O(T)<6<m and 0<6<05T).
The electromagnetic field is zero inside the angle interval
1 2
0R3(T) < 0 < O2(T).

After the instant of time (2.41), BS; and BS2 may occupy the same angular
positions cos #2 and cos 0y like BSs and BS; shown by curve 3 in Fig. 2.8
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(a). But now their jumps are finite. After the instant

1
T,=1+4c¢€ (1——)
‘" 6.

the front part of Sp begins not to be illuminated (Fig. 2.9 (c)). At this
instant the illuminated back part of Sy is given by

2(1+e) 26
Bn B2

In the subsequent time the illuminated part of Sy is given by

1+6§—(Tn—%>21.

As time advances, the illuminated part of Sy diminishes. Finally, after the

instant .
T, =1+ €0 (1 + —)
" Bn

the EMF radiation leaves the surface of Sy (and its interior).
We summarize here the main differences between VCR and BS:
On the sphere Sy the VC radiation runs over the angular region

—1<cosf < -1+

1
—1<cosf < —
2¢€0

o < 0 < 01,

where 6; and 0y are defined by Egs. (2.40). At each particular instant of
time 7T, in the interval

ll - <ﬁzovn)2

the VC electromagnetic potentials and field strengths are infinite at the
angles Hgg(T) and Hgﬁ (T') at which the CSW intersects Sp.

After the instant T}, = 1 the Cherenkov singularity leaves the sphere Sy,
but the Cherenkov post-action still remains. This lasts up to the instant
T = [1+ (eo/ Bryn) )M/,

On the other hand, BS runs over the whole sphere Sy in the time interval

1/2
<T,<1

1 1
1—e (1+—)§T <1l+e¢ <1+—).
0 ﬁn n 0 ﬁn
The vector potential of BS is infinite only at the angles #; and 6, at the

particular instant of time T}, = /1 — €3/32v2 when the CSW intersects Sp
for the first time. For other times the VP of BS exhibits finite jumps in the
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angular interval —m < 6§ < . The BS electromagnetic field strengths (as
spatial-time derivatives of electromagnetic potentials) are infinite at those
angles. Therefore Cherenkov singularities of the vector potential run over
the region 6 < 0 < 6, of the sphere Sy, whilst the BS vector potential is
infinite only at the angles 6, and 62 at which BS shock waves meet CSW.

The following particular cases are of special interest. For small ey = 2o /7
(the observational distance is large compared with the interval of motion)
the Cherenkov singular radiation occupies the narrow angular region

1 €0 1 €0
arccos — — < 6 < arccos — + ,
n BnYn n BnYn

whilst the BS is infinite at the boundary points of this interval. In the
opposite case €y ~ 1 (this corresponds to the near zone) the singular VCR
field is confined to the angular region

2
—2—1§0089§1,

n

whilst the BS is singular at cosf = 2/32 — 1, and cosf = 1 is reached at
the instant T,, = 1/0,.

When the charge velocity is close to the velocity of light in medium
(Bn = 1), one has:

1 €0 < 1 > 1 €0 1
— ——— 1+ =-¢ ) =1, cosbh~———=|1—=¢) =1,
Bn 0272 2 Bn 272 2

i.e., there is a narrow Cherenkov beam in a nearly forward direction.

cos ) ~

2.1.7. COMPARISON WITH THE TAMM VECTOR POTENTIAL

Now we evaluate the Tamm vector potential
oo
Ar = / dw exp (iwt) A,
—0o0

Substituting here A, given by (2.26), we find in the absence of dispersion

_ ep B B B
Ar = et —1g, Ol cosd = Vbl = 1T = W) (242)

This VP can be also obtained from A, given by (2.36) if we leave in it the
terms A% and A? describing BS in the regions 1 and 2 (see Fig. 2.7) (with
omitting zp in the factors ©(pvy, — z — 29) and O(z — zg — p7yy) entering AL
and A,(ZQ)) and drop the term A,(ZS) which is responsible (as we have learned
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from the previous section) for the BS and VC radiation in region 3 and
which describes the Cherenkov beam of the width 2z /8,7y, It is seen that
A is infinite only at

1
T,=1, cosf= 3 (2.43)

This may be compared with the exact consideration of the previous section
which shows that the BS part of A, is infinite at the instant

cnt € 211/
nlCh 0
T = =|1—- 2.44
ch r [ (571771) ] ( )

at the angles 6; and 0y defined by (2.40). The cosf; and cosfy defined
by (2.40) and T¢y, given by (2.44) are transformed into cos# and T}, given

by (2.43) in the limit ¢¢ — 0. Owing to the dropping of the AP term in
(2.36) (describing BS and VCR in the spatial region 3) and the omission of
terms containing €y in cos #7 and cos f», BS; and BSs waves now have the
common maximum of the infinite height at the angle given by cosf = 1/,
at which the Tamm approximation fails.

The analysis of (2.42) shows that the Tamm VP is distributed over Sy in
the following way. There is no EMF of the moving charge up to the instant
T,=1—¢€(l+1/5,). For

1_60(1+i><Tn<1_60(1_i)

the EMF fills only the back part of Sy

1 1
—1<cosf < ———(1-1T,
Bn 60( n)

(Fig. 2. 10 a, curve 1). In the time interval

1—60(1—i)<Tn<1+60(1—i>

the illuminated parts of Sy are given by

1 1 1 1
—l1<cos@<———(1-T,) and —+ —(1-T,) <cosf <1
n €0 n €0

(Fig. 2.10 a, curves 2 and 3).
The jumps of the BS; and BSs shock waves are finite. As T, tends to
1 the BS; and BS, shock waves approach each other and fuse at T, = 1.
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Figure 2.10. Time evolution of shock waves according to the Tamm approximate picture:
a) The jumps of BS shock waves are finite. After some instant BS shock waves fill both
the back and front parts of Sp (curves 2 and 3); b) Position of the BS shock wave at the
instant when its jump is infinite; ¢) BS shock waves pass through each other and diverge
leaving after themselves a zero EMF. After some instant BS shock waves fill only the
back part of So. Numbers 1 and 2 mean BS; and BS> shock waves, respectively.

Tamm’s VP is infinite at this instant at the angle given by cosf = 1/,
(Fig. 2.10 b). For

1
1<Tn<1+60(1_ﬂ_>

n

the BS shock waves pass through each other and begin to diverge, BS; and
BS;, filling the front and back parts of Sy, respectively (Fig. 2.10 c):

ﬂl (T —1)<cosf <1 (BSy)
and . )
—l1<cosb<———(T,—1) (BSa).
Bn €0

For larger times

1

only the back part of Sy is illuminated:

—1 < cosf < 1 i(Tn —1) (BS2).
Bn €0
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Figure 2.11. Time evolution of BS shock waves for the charge velocity (8 = 0.7) less
than the velocity of light in medium (¢, = 0.75). Solid and dashed lines are related to
the exact (2.25) and approximate (2.26) vector potentials; a) BS shock waves fill only
the back part of So; b) The whole sphere Sy is illuminated during some time interval; c)
At later times BS again fills only the back part of Sp. When evaluating the Tamm VP
the extra 1/2 factor was occasionally included. After multiplication the dashed curve by
2 it almost coincides with exact solid curve.

Finally, for T, > 1 + eg(1 4+ 1/3,) there is no radiation field on and
inside the Sy.

It is seen that the behaviour of the exact and approximate Tamm po-
tentials is very alike in the spatial regions 1 and 2 where VCR is absent and
differs appreciably in the spatial region 3 where it exists. Roughly speaking,
the Tamm vector potential (2.42) describing evolution of BS shock waves in
the absence of CSW imitates the latter in the neighborhood of cos6 = 1/,
where, as we know, the Tamm approximate VP is not correct.

This complication is absent if the charge velocity is less than the velocity
of light ¢, in medium. In this case one the exact VP is (see (2.13)):

A, = 6ﬁ—u@[cn(t + tg) — r1|O[ra — en(t — to)],

T'm

while the Tamm VP Ar is still given by (2.42). The results of calculations
for 6 = 0.7, ¢, = 0.75 are presented in Fig. 2.11. We see on it the exact and
the Tamm VPs for three typical times: T'= 1.26; T' = 1.334 and T = 1.4.
In general, the EMF distribution on the sphere surface is as follows. There
is no field on Sy up to some instant of time. Later, only the back part of
So is illuminated (see Fig. 2.11 a). In the subsequent times the EMF fills
the whole sphere (Fig. 2.11 b). After some instant the EMF again fills only
the back part of Sy (Fig. 2.11 ¢). Finally, the EMF leaves Sj.
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Now we analyze the behaviour of the Tamm VP for small and large
motion intervals zg. For small €y = 2 /7 it follows from (2.42) that
ef

A= 7 a0~ o) (2.45)

On the other hand, if we pass to the limit g — 0 in Eq.(2.26), i.e., prior to
the integration, then

eeo it
mnr

Ay — % exp(—iknr), A, — S5, - 1), (2.46)
i.e., there is no angular dependence in (2.46). The distinction of (2.46) from
(2.45) is due to the fact that integration takes place for all w in the interval
(=00, +00). For large w the condition wzp/v < 1 is violated. This means
that Eq. (2.45) involves the contribution of high frequencies.

For large zp one obtains from (2.42)

_ el
4. = rn|(1/8,) — cos 8|’

(2.47)
If we take the limit zp — oo in Eq.(2.26), then
eup .
A, = —— exp(—iwr/cy)o(1 — By cos8), A,(t) ~ (1 — Brcosb). (2.48)
rw

Although Eqgs.(2.47) and (2.48) reproduce the position of the Cherenkov
singularity at cosd = 1/, they do not describe the Cherenkov cone. The
reason for this is that the Tamm VP (2.26) is obtained under the condition
zo < r, and therefore it is not legitimate to take the limit zy5 — oo in the
expressions following from it (and, in particular, in Eq. (2.42)).

On the other hand, taking the limit zg — oo in the exact expression
(2.36) we obtain the well-known expressions for the electromagnetic poten-
tials describing superluminal motion of charge in an infinite medium:

2 2
4= 2P0t 2~ plr), @ = 260t~ 2~ pfm).

'm €T'm

The very fact that the Tamm VPs in the spectral (2.26) and time (2.42)
representations are valid both for v < ¢, and v > ¢, has given rise to the
extensive discussion in the physical literature concerning the discrimination
between the BS and VCR [9-10].

As follows from our consideration, the physical reason for this is the
absence of the Cherenkov shock wave in (2.26) and (2.42). Exact electro-
magnetic potentials (2.36) and field strengths (2.34) contain CSW for any
motion interval. The induced Cherenkov beam being very thin for zyp — 0
and broad for large 2y in no case can be reduced to the BS.
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2.2. Spatial distribution of Fourier components
The Fourier transform of the vector potential on the sphere Sy of radius r

is given by (2.25)

e T d 2
w= B[ p =ik (2 +nR)|.
sre | e [ (54w

—20

A

Here R = [p? + (z — #/)?]'/2. Making the change of integration variable
2! = z + psinh x, one obtains

X2

A, = a3 exp (—Zkz) /eXp [—ka (sinh x + Bn cosh X)] dx (2.49)
27c I5] B

X1

where sinh x1 = — (20 + z)/p and sinh xy2 = (20 — 2)/p.

2.2.1. QUASI-CLASSICAL APPROXIMATION

The stationary point of the vector potential (2.49) satisfies the equation
cosh xe + Bpsinx. = 0. This gives cosh x. = BpYn, sinhy. = —, for
B > 1/n. It is seen that x. < x1 for z < pyn — 20, Xc > X2 for z > pyn + 20,
and x1 < Xc < X2 for py, — 20 < 2z < pyn + 20. For z < py, — 20 and
z > pyn + 2o one finds

Aout _ Ze'u’ﬂ exp (_Z) (A2 _ A1)7

? 2mekp 8
where
1 tkp
cosh x2 + Bnsinh x2 oxp [ 3 (sinh x2 + Bn cos XQ)]
rsin 6 [ ik ]
- exp |——(pnrg — 2+ 20)|
2 Balz—z0) Pl B (Brry 0)
and
1 ikp
A = _ikp .
' cosh X1 + Bnsinh x; oxp [ 3 (sinh x1 + Bn cos Xl)]
rsin 0 ik
= e _ B B '
r1 — Bn(z + 20) xp [ 3 (Bnry — z zo)]
Therefore

tep3sin 0 1
2wck  “ro — Bz — 20)

A0 — exp {—%(ﬁm‘z + ZO)]
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B 1 ox [_%
m—Bnz+2) P17

Inside the interval py, — 20 < 2z < pyn + 20 the vector potential is equal to

- k2 27 By K tkrsin 6
- () () (52)
# 2 F ome P 8 krsing P\l )P Bvn

It is seen that A" is infinite at 2 = py, & 2o (these infinities are due to
the quasi-classical approximation). Therefore the exact radiation intensity
should have maxima at z = py, £ zg, with a kind of plateau for py, — zp <
z < pyn + 20 and a sharp decreasing for z < py, — 29 and z > pvy, + 2. At
the observational distances much larger than the motion length (r > zg)

(Bnr; — zo)] }.

1 — Bn(z + 20) = (1 = Brcosf), 12— Bp(z — 20) = (1 — Bycosh),

Bnr1 — 20 = Pnr — 20(1 = BrcosB),  Ppro+ 20 = Bur + 20(1 — Brcosh).

Then ‘ )
A(Z)ut _ eup exp(—'km') Sln[wto(l — [Bn cos )]

wckr 1— Bncosf ’

which (for r > 2g) coincides with the Tamm vector potential AT entering
(2.26). Inside the interval py, — 20 < z < pyn + 20

. ik z 2715y i ikrsin 0
o () () (5.
# =+ ome P 8 krsing P 4 )P Bvn

We observe that the infinities of A% have disappeared owing to the ap-
proximations involved. It is seen that for kr > 1, A and AT behave like
1/VEr and 1/kr, respectively. It follows from this that the radiation in-
tensity in the spatial regions z > pvy, + 20 and z < py, — 2o is described
by the Tamm formula (2.29). On the other hand, inside the spatial region
Pin — 20 < 2z < pyn + 20, the radiation intensity differs appreciably from
the Tamm intensity. In fact, the second term in A”* is much larger than
the first one (AT) for kr > 1 (since they decrease as 1/vkr and 1/kr for
kr — oo, respectively). It is easy to check that on the surface of the sphere
of radius r the interval pv, — 20 < 2z < py, + 20 corresponds to the angular
interval 0y < 0 < 01, where 6 and 6; are defined by Eq.(2.40). Therefore,
inside this angular interval there should be observed the maximum of the
radiation intensity with its amplitude proportional to the observational dis-
tance r. In the limit 7 — oo the above 6 interval diminishes and for the
radiation intensity one gets the § singularity at cosf = 1/(n. Probably,
this singularity is owed to the quasi-classical approximation used.
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2.2.2. NUMERICAL CALCULATIONS

We separate in (2.25) real and imaginary parts

2 /
_ep z 2
ReA, = o = cos [k <B + nR)] ,

20

€0

d !/

ImA, = —% % sin {k: (% + nRﬂ . (2.50)
e

For zy < r these expressions should be compared with the real and imagi-

nary parts of the Tamm approximate VP (2.26):

= chra cos(knr), ImA, = _eBug
Trw Trw

ReA,,

sin(kpr). (2.51)
These quantities are evaluated (in units of e/2mc) for
kEnr =100, B=0.99, n=1334, ¢ =0.1

(see Figs. 2.12 a, b).

We observe that angular distributions of the VPs (2.50) and (2.51) prac-
tically coincide, having maxima on the small part of Sy in the neighborhood
of cosf = 1/f,. It is this minor difference between (2.50) and (2.51) that
is responsible for the CSW which is described only by Eq. (2.50).

Now we evaluate the angular dependence of VP (2.50) on the sphere
So for the case in which zy practically coincides with r (g = 0.98). Other
parameters remain the same. We see ( Fig. 2.12 ¢) that the angular distri-
bution fills the whole sphere Sy. There is no pronounced maximum in the
vicinity of cos = 1/0,,.

We cannot extend these results to larger zp as the interval of motion
will partly lie outside Sp. To consider a charge motion in an arbitrary finite
interval, we evaluate the distribution of VP on the cylinder surface C' co-
axial with the motion axis. Let the radius of this cylinder be p. Separating
real and imaginary parts in (2.49), one obtains

X2

Red, = 2 /cos [k (i + 2 sinh y + np cosh X)] dx,
27c 68 0
X1
X2
ImA, = —;—:C sin {k <% + %sinhx + np cosh x)} dy. (2.52)
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Figure 2.12. Thereal (a) and imaginary (b) parts of the VP in the spectral representation
(in units of e/27c) on the surface of the sphere Sy for €9 = zo/r = 0.1. The radiation field
differs essentially from zero in the neighborhood of the Cherenkov critical angle defined by
cosf. = 1/B,. The solid and dotted curves refer to the exact and approximate formulae
(2.50) and (2.51), respectively. It turns out that a small difference between the Fourier
transforms is responsible for the appearance of the VCR in the space-time representation;
(c): The real and imaginary parts of A, for g = 0.98. The electromagnetic radiation is
distributed over the whole sphere Sp.
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Figure 2.13. The real (a) and imaginary (b) parts of A, on the surface of the cylinder
C for the ratio of the interval motion to the cylinder radius ¢g = 0.1. The electromag-
netic radiation differs from zero in the neighbourhood of z = 7, which corresponds to
cosf. = 1/, on the sphere (z is in units of p, A, in units of e/27¢); (c): The real part
of A, for ¢g = 1. There is no sharp radiation maximum in the neighborhood of z = v,.
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The distributions of ReA,, and ImA,, (in units of e/27c) on the surface of C
as a function of Z = z/p are shown in Figs. 2.13 and 2.14 for various values
of g = 2z9/p and p fixed. The calculations were made for f = 0.99 and
kp = 100. We observe that for small ¢y the electromagnetic field differs from
zero only in the vicinity Z = ~,, which corresponds to cosf = 1/3,, (Figs.
2.13 (a),(b)). As ¢ increases, the VP begin to diffuse over the cylinder
surface. This is illustrated in Figs. 2.13(c) and 2.14(a) where only the real
parts of A, for ¢¢ = 1 and ¢y = 10 are presented. Since the behaviour
of ReA, and ImA,, is very much alike (Figs. 2.12 and 2.13 (a),(b) clearly
demonstrate this), we limit ourselves to the consideration of ReA,). We
observe the disappearance of pronounced maxima at cosf = 1/4,,.
For the infinite motion (29 — o), Egs. (2.52) are reduced to

ReA, = _© / cos [kz (i + a sinh x + ”PCOShXﬂ dx;
2me B B

—0o0

I P P :
ImA, = 5. | sib [k (5 + 3 sinh x + np cosh X)] dx, (2.52).

These expressions can be evaluated in the analytical form (see below)

wrzme = [0 (o) () =9 (530 = ()]
ep/2me VYn, v VYn v
ImA, =T [NO (£> sin (w_z) —Jo <£> oS (gﬂ (2.53)
ep/2me VY v VYn v

for v > ¢, and "
ReA, = 2cos <ﬁ> Ky (p_w) ,
v

ep/2me VYn,

ImA

Ml _ _9gin (wz) Ky (p“’ ) (2.54)
e/2mc v Un

for v < ¢p (7 = |1 — F2]71/2). We see that for the infinite charge motion
the A, is a pure periodic function of z (and therefore of the angle 6).
This assertion does not depend on the values of p and w. For example, for
wp/vyn > 1 one has

2V,
ReA,, = S Y e L00). W [ﬁ (z + ﬁ) — z] ,
27c pw v Yn

2v7m
ImA, = _Sh AV CoS [f (Z + ﬁ) — E]
27c pw v
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Figure 2.14. The real part of A, for g = 10; (a): There is no radiation maximum in
the neighborhood of z = v, and the radiation is distributed over the large z interval; (b):
For a small z interval, ReA,, evaluated according to Eq.(2.51) for g = 10 and according
to Eq.(2.53) for an infinite interval of motion are indistinguishable.

for v > ¢, and

2
ReA, = il el KL (wz) exp <_pw > ,
27c pw v VY

2
ImA, = S e L W <%> exp (_p_w)

27c pw v VYn

for v < ¢,. In Fig. 2.14 (b), by comparing the real part of A, evaluated
according to Eq.(2.51) for ¢y = 10 with the analytical expression (2.53)
valid for ¢g — oo we observe their perfect agreement on the small interval
of surface of the cylinder C' (they are indistinguishable on the interval
treated). The same coincidence is valid for the imaginary part of A,,.

To prove (2.53) and (2.54), we start from the Green function expansion
in the cylindrical coordinates

—_q o = S
(%) = - = O =T S oo — @)

4 |7 — 7| =

kn
1
x{— / dkzexp[ik;z(z—z’)]Gm(l)(p,p’)
47 A
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oo

—kn,

o | [+ [ dkeespliba(e - 0GP0 00), (259)

T
o0 kn

where €, = 1/(1 + dpno),

Gm(l)(P<7P>) =Jm (\/ k% - k§p<) Hr(r%) (\/ k'r% - kZp>) )
Gm(2) (P<7P>) =In (\/ kﬁ - k%ﬂ<) K, (\/ kg - k%ﬂ>) .

The Fourier component of VP satisfies the equation

4
(A+ k) A, = -—Fj, (2.56)

where k, = w/c, > 0 and j, = 0(x)d(y) exp(—iwz/v)/2m The solution of
(2.56) is given by

Au =1 [ Gl "ol i)V = —impexp(—iwz ) Y (%p B2 - 1)

for 8, > 1 and

= 2uexp(—iwz/v) Ky (%\/ 1-— ﬂ%) (2.57)

for 8, < 1. Separating the real and imaginary parts, we arrive at (2.53)
and (2.54). Collecting in (2.527), (2.53) and (2.54) the terms at sin(wz/v)
and cos(wz/v), we get the integrals

o0

/cos (% sinh X) sin (w_p cosh X) dx
/ v Cn

[e.e]
- wp . (wp > dx
= - 7/ 1) ——
0/cos<vx>sm(cn xre + —x2—|—1

_ WP S 1 )sin (“Ly) 92 T %T_)
_/cos<v x 1)Sln<cn:c> o 2J0(v B2 —1) (2.58)
1

for v > ¢, and = 0 for v < ¢,. In addition

o0
/cos (w_p sinh X) cos <w_p cosh x) dx
/ v Cn
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dx
vz +1
d
= [ cos (% x2 — 1) cos (%x> e
v Cn, 2 —1

= TN, (“;p 2 _ 1) (2.59)

for v > ¢, and = Ko((wp)/v)\/1 — 32) for v < ¢,. Here 3, = v/cp.
In the limit cases these integrals pass into the tabular ones. For example,
for v — 0o Egs. (2.58) are transformed into

/sin (w_p cosh X) dx = —Jo <wp>
Cn Cn
0
/cos (— cosh X) dx = ——No (wp) ,
J Cn, Cn

whilst Eq. (2.59) for ¢, — oo goes into

/cos (— sinh X) dx = Ky (wp)
v
0

2.3. Quantum analysis of the Tamm formula

and

We turn now to the quantum consideration of the Tamm formula. The
usual approach proceeds as follows [11]. Consider the uniform rectilinear
(say, along the z axis) motion of a point charged particle with the velocity
v. The conservation of energy-momentum is written as

=7 +hk, E=E&+ hw, (2.60)

where p,€ and p',&" are the 3-momentum and energy of the initial and final
states of the moving charge; hk and hw are the 3-momentum and energy
of the emitted photon. We present (2.60) in the 4-dimensional form

p—hk=p, p=(pE/c). (2.61)
Squaring both sides of this equation and taking into account that p? =
72 2 92 . . .
p'" = —m=c® (m is the rest mass of a moving charge) one obtains

(k) = Fk2/2, k= (E ;") . (2.62)

n
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Or, in a more manifest form

2 _
cos 0, = ﬁl <1 + 2 5 1?) . (2.63)

Here 3, = v/cp, ¢ = ¢/n is the velocity of light in medium, n is its
refractive index. When deriving (2.63) it was implicitly suggested that the
absolute value of the photon 3-momentum and its energy are related by the
Minkowski formula: |k| = w/cp,.

When the energy of the emitted Cherenkov photon is much smaller than
the energy of a moving charge, Eq.(2.63) reduces to

cos O, = 1/, (2.64)
which can be written in a manifestly covariant form
(pk) = 0. (2.65)

Up to now we have suggested that the emitted photon has definite energy
and momentum. According to [12], the wave function of a photon propa-
gating in vacuum is described by the following expression

iNEexp [i(ki —wt)], (k) =0, (&)*=1, (2.66)

where N is the real normalization constant and € is the photon polarization
vector lying in the plane passing through k and p:

(€)= —cosby, (€),=sinby, (€)4=0, (ek)=0. (2.67)

The photon wave function (2.66) identified with the classical vector poten-
tial is obtained in the following way. We take the positive frequency part
of the second-quantized vector potential operator and apply it to the co-
herent state with the fixed k. The eigenvalue of this VP operator is just
(2.66). Now we show that the gauge invariance permits one to present a
wave function in the form having the form of a classical vector potential

iN'p, exp (ikz), (pk) = 0. (2.68)

where N’ is another real constant. The electromagnetic potentials satisfy
the following equations

10%) - AT~ 1 02 47
A= JA=-""27 (A |d=——
( c2 8t2> c J ( c2 Ot? e P
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We apply the gauge transformation
1 17 1 = / 1 .
A—-A=A4+Vx, o> P =P — —x
c

to the vector potential (2.66) which plays the role of the photon wave
function. We choose the generating function y in the form

x = aexp [i(kF — wt)],
where o will be determined later. Thus,

A = (N&+iak)exp [i(k7 — wt)], @ = 2% exp [i(kF — wt))],
C

where €'is given by (2.67). We require the disappearance of the p component
of A’. This fixes a:

o = — cot 0.

ik

The nonvanishing components of A are given by

Al =

o exp [i(ki — wt)], Al = % cot Oy, exp [i (k7 — wt)].
It is easy to see that A, = 3Aj. This completes the proof of (2.68).

Now we take into account that photons described by the wave function
(2.68) are created by the axially symmetrical current of a moving charge.
According to Glauber ([13], Lecture 3) to obtain the VP in the coordinate
representation, one should form a superposition of the wave functions (2.68)
by taking into account the relation (2.65) which tells us that the photon is
emitted at the Cherenkov angle 6 defined by (2.64). This superposition is
given by

Ayz) = iN’/puexp (ikx)d (pk)d3k /w.

The factor 1/w is introduced using the analogy with the photon wave func-
tion in vacuum where it is needed for the relativistic covariance of A,. The
expression p,d(pu) is (up to a factor) the Fourier transform of the classi-
cal current of the uniformly moving charge. This current creates photons
in coherent states which are observed experimentally. In particular, they
are manifested as a classical electromagnetic radiation. We rewrite 4, in a
slightly extended form

A, = iN’ /pu exp [i(F7 — wt))§ | Z2 (1 — B, cos)
C
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3
x " d d cos 0w duw. (2.69)
C

Introducing the cylindrical coordinates (7" = pri, + 2ii.), we present k7 in
the form

]

P =

i[,0 sin @ cos(¢ — ¢,) + z cos b).

Inserting this into (2.69) we find

AL (T t) = iN”/pu exp [z’w (ci cos Oy, — tﬂ

n

X exp [Zcﬁp sin 0 cos(¢p — gbqn)] dodw,

where N” is the real modified normalization constant and ¢, is the az-
imuthal angle in the usual space. Integration over ¢ gives

Ao(7,t) = AT 1) /B, A(Tt) = /GXP(—iwt)Az(ﬁw)dwy
0
where
2 'N// .
A, (Fw) = 7'rz exp <w cos sz> Jo <wpsin 0;€> . (2.70)
sin 0y, Cn Cn

We see that A,(7,w) is the oscillating function of the frequency w without
a pronounced 0 function maximum. In the 7, ¢ representation A,(7,t) (and,
therefore, photon’s wave function) is singular on the Cherenkov cone vt —

z=p/Vn

ReA, = QWN"pz/sinw(t —z/v)Jy (i—p sin Hk) dw

n

[(z = vt)2 = p? 73]/

ImA, = 27TN”pz/COS w(t — z/v)Jo(% sin 0y )dw =

n

= 27N"p. O((z — vt)* — p*/75),

v
[0/ = (2 — vt)?]
Despite the fact that the wave function (2.69) satisfies the free wave equa-
tion and does not contain singular Neumann functions Ny (needed to satisfy
Maxwell equations with a moving charge current in their r.h.s. ), its real

part (which, roughly speaking, corresponds to the classic electromagnetic
potential) properly describes the main features of the VC radiation.

=27N"p,

7200 /7 — (2 = vt)?)
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So far, our conclusion on the absence of CSW in Eqgs.(2.26) and (2.27)
has been proved only for the dispersion-free case (as only in this case we
have exact solution). At this time we are unable to prove the same result
in the general case with dispersion. We see that the Tamm formula (2.29)
describes evolution and interference of two generalized BS shock waves
emitted at the beginning and at the end of the charge motion in the spatial
region lying outside the plateau to which the CSW is confined. The Tamm
formula does not describe the CSW originating from the charge uniform
motion in the interval (—zp,2p). On the other hand, the exact solution of
the Tamm problem found in [7] contains both CSW and the BS shock wave
and not in any way can be reduced to the superposition of two BS waves.

Now the paradoxical results of [8,14] in which the Tamm formula (2.29)
was investigated numerically become understandable. Their authors asso-
ciated the Tamm radiation intensity (2.29) with the interference of the BS
shock waves emitted at the beginning and end of the charge motion. With-
out knowing that the CSW associated with the charge uniform motion in
the interval (—zo, z0) is absent in the approximate Tamm equations (2.26)
they concluded that the CSW is a result of the interference of the above
BS shock waves. We quote them:

Summing up, one can say that radiation of a charge moving with a
constant velocity along the limited section of its path (the Tamm prob-
lem) is the result of interference of two bremsstrahlungs produced in
the beginning and at the end of motion. This is especially clear when
the charge moves in vacuum where the laws of electrodynamics prohibit
radiation of a charge moving with a constant velocity.
In the Tamm problem the constant-velocity charge motion over the dis-
tance [ between the charge acceleration and stopping instants in the
beginning and at the end of the path only affects the result of interfer-
ence but does not cause the radiation.
As was shown by Tamm [1] and it follows from our paper the radiation
emitted by the charge moving at a constant velocity over the finite
section of the trajectory [ has the same characteristics in the limit [ —
oo as the VCR in the Tamm-Frank theory [6]. Since the Tamm-Frank
theory is a limiting case of the Tamm theory, one can consider the same
conclusion is valid for it as well.
Noteworthy is that already in 1939 Vavilov [10] expressed his opinion
that deceleration of the electrons is the most probable reason for the
glow observed in Cerenkov’s experiments.
(We have left the numeration of references in this citation the same as it
was in [14]).
We agree with the authors of [8,14] that the Tamm approximate for-
mulae (2.26),(2.29) and (2.31) can be interpreted as the interference be-
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tween two BS waves if by them we understand the mixture of three shock
waves mentioned above (the BS shock wave associated with the beginning
and the end of the motion and BS shock waves arising when the charge
velocity coincides with the velocity of light in the medium). The Tamm
angular intensity (2.29) is valid everywhere except for the angular interval
02 < 6 < 01, where 6, and 6, are defined by (2.40). For the observational
distances large compared with the interval of the motion (r > zp),

f1 = arccos i + 60 and 60y = arccos i — 00,
B Bn
where 60 = ey/Bnvn, €0 = zo/r. Although the angular region 206 tends
to zero for r > zg, the length of the arc corresponding to it is finite:
OL = 220/ Bn7yn- On this part of the observational sphere the Tamm angular
intensity (2.29) is not valid.

Equation (2.64) defining the position of the maxima of field strengths in
the spectral representation is valid when the point charge moves with the
velocity v > ¢, in the finite spatial interval small compared with the radius
r of the observational sphere (29 < 7). When the value of zy is comparable
or larger than r the pronounced maximum of the Fourier transforms of the
field strengths at the angle cos § = 1/4,, disappears. Instead, many maxima
of the same amplitude distributed over the finite region of space arise. In
particular, for the charge unbounded motion the mentioned above Fourier
transforms are highly oscillating functions of space variables distributed
over the whole space. It follows from the present consideration that Eq.
(2.64) (relating to the particular Fourier component) cannot be used for
the identification of the charge velocity if the motion interval is comparable
with the observational distance.

In the usual space-time representation the field strengths, in the absence
of dispersion, are singular in the spatial region py,—z9 < z < pyn+29 shown
in Fig. 2.4. When the dispersion is taken into account, many maxima in
the angular distribution of field strengths (in the space-time representation)
appear, but the main maximum is at the same position where the Cherenkov
singularity lies in the absence of dispersion (see Chapter 4).

It should be noted that doubts about the validity of the Tamm for-
mula (2.64) for the maximum of Fourier components were earlier pointed
out by D.V. Skobeltzyne [15]. We mean the so-called Abragam-Minkowski
controversy between the photon energy and its momentum.

2.4. Back to the original Tamm problem

In this section we reproduce the results of section (2.1) beginning with
the spectral representation. This allows us to analyse the approximations
involved.
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2.4.1. EXACT SOLUTION

Let a charge be at rest at the point z = —zy up to an instant ¢t = —¢y. In
the time interval —ty < ¢ < tp it moves with a constant velocity v. Finally,
after the instant tg it is again at rest at the point z = z3. The corresponding
charge and current densities are

plt) = ed(a)3(y) x
[6(2 + 20)O(—t — to) + 8(z — 20)O(t — to) + 6(z — vt)O(t + t0)O(to — 1)),

= jil., j=vd(z—vt)O(t+10)O(ty — 1), to= %

<y

Their Fourier transforms are

plw) = % /p(t) exp(—iwt)dt = p1(w) + p2(w) + p3(w),

J(w) = vps(w), (2.71)
where
p1(w) = —5——0(= + 20)0(2) () [exp(iwto) — exp(iwT)],
pa(w) = —5-=0(z = 20)3(x)3(y) exp(—iwT) — exp(—iwto)],
pa(w) = 5—=0()3(y)O(= + 20)O(20 — 2) exp(—iwz/v), j = vps.

In (2.71) the integration over ¢ is performed from —7 to T, where T > t.
Later we take the limit 7" — oo.
The electromagnetic potentials are equal to

O(w) = 1 (w) + P2(w) + P3(w), Alw) = Az(w) = eufP3(w), (2.72)

where
—ik,,
(I)l(w) = - 27:;&)6 [eXp(iwto) — exp(in)]%zl'Rl)7
Ba(w) = — 5o fexp(—iT) — exp(—iwto)] SR,

2g
e dz' iwz ,
O3(w) = / — exp(— ” ) exp(—iknR).

—20
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Here Ry = [(z + 20)%2 4+ p?]Y/?, Ry = [(z — 20)® + p2]"/2, R = [(z — #)? +
P22, ky = w/en, ¢n = ¢/n is the velocity of light in medium, n is its
refractive index.

These potentials satisfy the gauge condition

ep 0P

divA =0

T c ot ’
whilst 5%
€H O3

divA .

T c Ot 70

Thus ®; and ®5 should be taken into account. Another argument for this
is to evaluate 5% i
E,=—— — EAT, A, = Acosb.

or c

It is easy to check that E,. decreases like 1/r2 for r — oo, whilst it decreases
like 1/r if ® is substituted by ®3. Thus ®; and P2 are needed to guarantee
the correct asymptotic behaviour of electromagnetic field strengths (if we
evaluate E according to E = —V® — iwA/c).

We are primarily interested in the radial energy flux S, ~ EgHy. In the
expression

100
Bp— 0% W 4= —singA
r 00 c

the first term in Fy is the 1/kr part of the second term, and therefore it can
be disregarded (since in realistic conditions kr is about 107). Thus obtained
Ey differs from the exact Ey by terms of the order 1/kr.

To make clear the physical meaning of electromagnetic potentials (2.72),
we rewrite them in the time representation:

o(t) = / exp(iwt)D(w)dw, D(E) = B1(t) + Ba(t) + (1),

B1(t) = Ol — enlt +10)], Ba(t) = —Olen(t — to) — ra),

€Ty €T
& _ ¢ dz(; Zlik e 2 211/2
s0) =< [ o= —kaR), R=l(z- )7+,
o
A(t) = epfPs(t). (2.73)

When evaluating ®(t) and ®2(¢) it was taken into account that

[e.e]

/ exp(iwx)dw/w = imsign(x).

—00
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The following notation will be useful: the spheres 71 = [p? + (2 + 2)?]'/?
and 19 = [p? + (2 — 20)?]"/? will be denoted by S; and S;. We say that
a particular spatial point lies inside or outside Sy if r; < ¢,(t + to) and
r1 > cn(t + to), respectively. And similarly for Ss.

We see that ®4(¢) differs from zero outside the sphere Si, i.e., at those
points which are not reached by the information about the beginning of the
motion. Furthermore, ®4(t) differs from zero inside the sphere Sy, i.e., at
those points which are reached by the information about the termination of
the motion. Or, in other words, ®; and ®2 describe the electrostatic fields
of a charge which is at rest at the point z = —zy up to an instant ¢t = —tg
(beginning of motion) and at the point z = zy after the instant ¢t = ¢y (the
termination of motion). In what follows, electrostatic fields associated with
®; and P9 will be denoted by F; and FE», respectively. Obviously, ®; and
®, coincide with the first two terms in (2.13).

To evaluate ®3(t), we use the well-known relation

ot =30

where the summation runs over all roots of the equation f(z) =0 and

f/(zi) = dj;(’:,) Z=2z;

We should find the roots of the equation

t——=—, R=[z- 22+ )2 (2.74)

Cn

Squaring this equation we obtain a quadratic equation relative to 2z’ with
the roots

21 =2 (vt — 202 — Buarm), 22 = V2 (vt — 282 + Burm),

2 1

Vo = T (2.75)

rm = [(z = vt)? + (1= 52)p%' %,

Charge’s velocity is smaller than the velocity of light in medium

Consider first the case [, < 1. Then, only the root z; satisfies (2.74) (the
appearance of the second root in (2.75) is because the quadratic equation
following from (2.74) can have roots which do not satisfy (2.74)). Now we
impose the condition —zy < 2’ < %y which means that the motion takes
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Figure 2.15. Positions of shock waves for T = 3 and T' = 12 in the exact Tamm problem
for the charge velocity (8 = 0.5) smaller than the velocity of light in the medium. Here
T = ct/zo. The vector potential differs from zero between the solid lines for T' = 3 and
between the dotted lines for T = 12; p and z are in units of zo. The interval of motion
and refractive index are: L = 0.5cm and n = 1.5, respectively.

place on the interval (—zp, 2¢). It then follows from (2.74), that ®3(¢) # 0
for the spatial points lying inside S1 and outside .So:

B3(t) = ——Olen(t + to) — 11]O[ra2 — cnlt — to)],

T'm€
A, = Bepts, to= ", (2.76)
Physically, ®3 describes the EMF of a charge moving on the interval (—zg, 2p).
It differs from zero at those spatial points which obtained information on
the beginning of motion and did not obtain information on its termination.
It is easy to see that for (,, < 1 the S5 sphere lies entirely inside Sy, i.e.,
there are no intersections between them. The positions of S7 and Sy spheres
for two different instants of time are shown in Fig. 2.15. The region where
®3 # 0 is between S; and Sy belonging to the same t. Static fields ®; and
®5 lie outside S; and inside Sa, respectively.
Equation (2.76) coincides with the last term in ® given by (2.13).

Charge’s velocity is greater than the velocity of light in medium

Now let 3, > 1. Then ®;, ®5 and their physical meanings are the same as
for 6, < 1. We now turn to ®3. It is easy to check that the two roots satisfy
(2.74) if z < vt, and there are no roots if z > vt. We need further notation.
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Figure 2.16. Time evolution of shock waves in the exact Tamm problem for the charge
velocity (8 = 1) greater than the velocity of light in medium. Si and Sy are shock
waves radiated at the beginning and termination of motion, respectively. CSW is the
Cherenkov shock wave. The time 7" = 1 corresponds to the instant when the wave Sa
arises (a). For larger times the CSW is tangential both to Si and S and is confined
between the straight lines L1 and L2 (b,c). Part (d) of the figure is a magnified version of
(b). The vector potential is zero in region 2 lying inside S; and Sz and in region 2 lying
outside S; and S2 and above the CSW. Only one retarded time contributes in region 3
(lying inside S; and outside S2) and in region 4 (lying inside S2 and outside S1). Two
retarded times contribute to region 5 lying outside S1 and S> and below the CSW. Other
parameters are the same as in Fig. 2.15.

We denote by Lj and Ly the straight lines z = —zo+p|v,| and z = zo+p|ynl,
respectively (Fig. 2.16). We say that a particular point is to the left or right
of Ly if z < —zp+p|yn| or 2 > —20+4p|yn|, respectively. And similarly for L.
Correspondingly, a particular point lies between L1 and Lg if —z¢+ p|yn| <
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z < 2o + p|yn|- The straight lines L; and Ly are inclined towards the
motion axis at the Cherenkov angle 6cy, = arccos(1/8,). The CSW is the
straight line z + p/|vy,| = vt, perpendicular both to Ly and Ly straight lines
and enclosed between them. We observe that the denominators r,, vanish
exactly for z + p/|yn| = vt, i.e., on the CSW. There are no other zeroes
of r,,. We say also that a particular point lies under or above the CSW if
z+ p/|m| < vt or z+ p/|yn| > vt, respectively.

We impose the condition for motion to be on the interval (—zp, zo). Then,
the first root exists in the following space-time domains (Fig. 2.16, d): i)
To the right of Lo, it exists only outside S; and inside Ss; ii) Between L;
and Lo, it exists outside S; and under the CSW. The contribution of the
first root to ®3 is:

Z+p/!7n\)

e
@) = - (6(= + 20 pl)O(z0 + il ~ )0t~ “ L

+0(z — 20 — plyn])Olen(t — to) — r2)]}O[r1 — en(t + to)]. (2.77)

The first term in (2.77) is singular on the CSW (since r,,, = 0 on it) enclosed
between the straight lines L; and Lg. The second term in (2.77) does not
contain singularities except for the point where S3(=BSs) meets with Lo
and CSW.

Now we turn to the second root: i) To the left of the Ly, it exists only
inside S; and outside Ss; ii) Between L and Lo, it exists outside So and
under the CSW. Correspondingly, the contribution of the second root is

o) = %{@(z + 20— plD)© (20 + plval — 2)0(t — L ’;/’7"‘)
+O(p|yn| — 2 — 20)Ocn(t + to) — 71)] }O[r2 — cn(t — to)]. (2.78)

Again, the first term in this expression is singular on the same CSW. while
the second term does not contain singularities except for the point where
S1(=BS1) meets with L; and CSW.

The contribution of two roots to ®3 is

By = ) + 0P, A, (t) = Bepds(t). (2.79)

This ®3 coincides with ®,, in (2.36). In Figs. 2.16 (a,b,c) there are shown
positions of S1, So and CSW shock waves at various instants of time. In
Fig. 2.16 (d), which is a magnified image of Fig. 2.16 (b), we see five regions
in which the EMF differs from zero. The region 1 lies outside .57 and Sy and
above the CSW. There is only the electrostatic field Fy there. In the region
2 lying inside S7 and S5 there is only the electrostatic field Es. In the region
3 lying inside S; and outside S there is the EMF of a moving charge (only
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the second root contributes). In the region 4 lying inside S2 and outside
Si, there is EMF of a moving charge (only the first root contributes) and
electrostatic fields Fq and FEjs. Finally, in the region 5 lying outside S; and
Sy and below the CSW, there is the EMF of a moving charge (both roots
contribute) and electrostatic field Ej.

So far we have suggested that for ¢ < —ty and t > ty a charge is at rest
at points z = —zp and z — zg, respectively. However, usually, when dealing
with the Tamm problem, one uses only the vector potential describing the
charge motion on the interval (—z¢ < z < zg). It is given by A = uePs.
One then evaluates the magnetic and electric fields using the relations ,uﬁ =
curlA and curlH = iekwE valid in the spectral representation. In this case
the terms ®; and ®5 drop out of consideration. There are then nonzero
electromagnetic potentials corresponding to the first root in region 4, the
second root in region 3, and first and second roots in region 5. In other
spatial regions potentials are zero. On the border of regions 3, 4 and 5 with
regions 1 and 2 potentials exhibit jumps, and therefore field strengths have
delta singularities.

Experimentalists insist that they measure E(w) and H(w) (in fact, they
detect photons with a definite frequency). It is just the reason that enabled
us to operate in preceding sections with the Fourier transforms E (w) and

H(w).

2.4.2. RESTORING VECTOR POTENTIAL IN THE SPECTRAL
REPRESENTATION

We turn now to the vector potential in the spectral representation given by
(2.72):

20
ep dz < wz' > ,
A(w) = — —exp | — exp(—ikp,R).
2(w) e p v p( nl?)

w0
This expression contains both the BS and Cherenkov radiation in an indivis-
ible form. On the other hand, the vector potential in the time representation

is
Ax(t) = Beu®s(t),

where ®3(t) is defined by (2.79). Equations (2.77)-(2.79) demonstrate that
contributions of the BS and Cherenkov radiation are unambiguously sepa-
rated. We now apply the inverse Fourier transformation to particular pieces
of A,(t) and try to separate the above contributions in the spectral repre-
sentation. But first, for pedagogical purposes we consider the case Gn < 1.
The corresponding VP, in the time representation, is given by (2.76):

A:(8) = PCOen(t + to) — 1O — enlt — to)].

Tm
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In the spectral representation, one gets

to+r2/cn ’
e ,
A, (w) = éu—ﬂ_ / - exp(—iwt).
m
—tot+ri/cn

Making the change of the integration variable

Z 14
t=—+
v ﬂ|’7n’

sinh x

one has

X2
e 1kz ik .
A, (w) = 2—71:6 exp (—7> /dxexp <_m’}’p| smhx> ,
X1

where x1 and Y2 are defined by

rlﬂn_ Z =

Z T —Z Z
sinh x1 = —0’%’7 sinh xo = r2bn —2 ¥ 20

"Yn‘-

When the interval of motion is much larger than the observational distance,

1-— n . 1— n
sinh x; — _M‘%’ ~ —oo, sinhys — 20(1 - f3 )]’yn\ ~ 00
p p
and " i
ep tkz P
A (w —>—exp(——)K ( )
( ) e ﬂ 0 /8’7n|

We now apply the quasi-classical method for the evaluation of A,(w). This
gives

Az(w) = M(CQ — Cl),

2mckp
where . L
i
Cy = coshx1 exp [_E(Tlﬂn - ZO)] :
1 ik
Co = cosh g P [_E(TQBW, + Zo)] :

Now let fn > 1. Then according to (2.77)-(2.79) the VP consists of
three pieces defined in the spatial regions lying to the left of L1, to the
right of Lo and between L; and Ly (Fig. 2.16):

Ax(w) = AP (W) + AP (W) + AP (),

z
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where

AD (W) =O0(z — 29 — p|’yn])%e p (—%) /exp <_
X2

ikp
cosh X) dx,
Bl

X2
e ikz ik
A(ZQ) (w) = O(plyn| — 2 — zo)z—:c exp (—7> /exp <_Blvp\ cosh X) dx,

X1

k
AP () = Ophul = 2 + 20)O(= + 20 — plynl) 51 exp <_”>

5
X1 X2 &
X /+/ exp < P coshx) dx,
00 Blynl

where x1 and ys are now defined as follows:

ﬁnrl — 2= 20

Bnra — 2 + 20

cosh x1 = [Ynl,  coshxz = |Ynl-
P P
In the quasi-classical approximation, one gets
1 ieu|vn| ikz
AN (w) = —0(2 — 20 — p’%DTk: exp |~ (S2 — 51),

o X
A (@) = O(plyal — 20 — ) Pl (-%) 52~ s0)

2mckp 15}
ikz
Agg)(w) =0O(plyn| — 24 20)0(2 + 20 — ,0|’yn])2—’u exp (—7>
iBlnl (_. kp ) (__) 27Tﬁ|'yn\
kr sinO(S1 +52) + exp lﬂhn| P 4 krsin |’
where )
S = —— h
P sy T ( “Blval n\ o Xl)
1 . kp
Sy = — h .
? sinh x2 P ( Zﬁh’n‘ cos X2>

For the observational distances much larger than the interval of motion,
one obtains (ey = zo/T)

cosh xao =~

S"Y | [Bn — cos B + €o(1 — On)],
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cosh x1 ~ |’Yné [Bn — cos@ — €y(1 — pBn)],
in

\'yn!

€0 = 20/7, sinhy; ~ sinh ya ~ |1 — Bncosb|,

1 €0
O(z — 29 — pln m@(cosG———4>,
( 0 ph/ |) ﬁn ﬂ%|’7n|2

1 €0
C) nl — 20 — 2 %@(——7—0050)
(ph/ | 0 ) Bn ,87%|7n|2
Under these approximations, A(Zl)(w) and A(ZQ) (w) coincide with the Tamm
VP (2.26), whilst A (w) goes into

1 € 1 €
A®) (W %@(——i-io—cosG)@(cos&———i——O)
%O\ Ga * Bhap ot P

euf sin[kzo(1 — Bncos®)/]
{7r kr exp(—iknr) 1— Bncosf

+ﬂe ( 2kz> ex <—m) 2m 3|l ex <—i kp >}
9mc P 6] P\ krsing ¥ Blynl/)

It is seen that the term A% (w) (which is absent in the Tamm vector poten-
tial (2.26)) differs from zero in a beam of width 2z /3, y. Another impor-

tant observation is that A(zl)(w) and AY (w) decrease as 1/kr for kr — oo,

whilst A% (w) decreases as 1/VEr.

The same result is obtained if one applies the WKB approximation for
the evaluation of A, entering into (2.72). In fact, the integral (2.49) defining
it has a stationary point 2’ = z — p~y,, which lies within the interval (—zg, z0)
for 3 < 6 < 0y, to the left of (—zp) for & > #; and to the right of (zg) for
6 < 65. Here

1 6(2) €0 1 e% €0
SO\ T g T R T T e
It is easy to check that in the angular regions 8 > 6y and 6 < 62 only
the boundary points Fzg of the interval of motion contribute to BS shock
waves. On the other hand, in the angular region 6, < 6 < 6 the stationary
point lying inside the interval of motion —zyp < z < zp contributes to the
Cherenkov shock wave, whilst the boundary points (+zp) contribute to the

BS shock waves.

From the definition (2.49) of the magnetic vector potential in the spec-
tral representation it follows that all the points 2z’ of the interval of motion
(—2z0, 20) contribute to it. In the time representation the factor §(t — 2’ /v —
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knR) appears inside the integral. After integration over 2/, one obtains A(t)
given by (2.79) which differs from zero inside the spatial region bounded
by the BS and Cherenkov shock waves. The electromagnetic field strengths
have delta singularities on the borders of this region. Thus the integration
in (2.49) over the interval of motion in the spectral representation language
results in the appearance of BS and Cherenkov shock waves in the time
representation.

2.4.3. THE TAMM APPROXIMATE SOLUTION

The Tamm vector potential in the spectral representation is

e . .
Ar(w) = rmo(cosf — 175, exp(—ikyr) sin[kpzo(cosd — 1/3,)]. (2.80)

It is obtained from A.(w) given by (2.72) when the conditions
n<r, kr<l1, and kzf/r<1

are satisfied. Using (2.80) for the evaluation of field strengths and the radi-
ation intensity, one gets the famous Tamm formula (2.29) for the radiation
intensity. Going in (2.80) to the time representation, one gets

Ar(t) = rn| cos ZM— 1/ By © (i — 9) O(r—Tn)-O(f 1)
+0 (0089 - ;) .O(r — Ry) - O(Ry — 1)]. (2.81)

Here

1 1
Ri =c,t+ Zo(ﬂ_ —cosf), and Ry =c,t— zo(ﬂ— — cosf).

n n

Equation (2.81) is an extended version of (2.42). For (3, < 1, (2.81) is
transformed into

Ar(t) = rn(l/ﬂiu— gy O~ RO — ) (2.82)

that is, at a fixed instant of time the electromagnetic field differs from zero
between two non-intersecting curves S and Sy defined by » = Ry and

r = Ry, respectively. (Fig. 2.17 (a)).
On the other hand, for G, > 1

ep
rn(cos@ — 1/3,)

Ap(t) = O(r— Ry)-O(Ry — 1) (2.83)
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Figure 2.17. (a): Time evolution of shock waves corresponding to the Tamm approx-
imate vector potential (2.82) for the charge velocity smaller than the velocity of light
in the medium. The Tamm vector potential differs from zero between two solid lines for
T = 2, between two dotted lines for 7' = 5, and between two dashed lines for 7' = 10;
(b): The same as in (a), but for the charge velocity greater than the velocity of light in
medium. The Tamm vector potential (2.83) and (2.84) differing from zero between two
solid lines for T' = 4 and between two dotted lines for 7' = 10, is singular at the intersec-
tion of lines with the same T'. The straight line passing through these singular points is
shown by a thick line. The energy flux propagates mainly along this straight line. Prob-
ably, the absence of CSW in this approximate picture has given rise to associate above
singularities with an interference (intersection) of BS shock waves. Other parameters are
the same as in Fig. 2.15.
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for cos > 1/, and

e

Art) = @f— 2070 — F2) - O =) (2.84)
for cosf < 1/B,. For 3, > 1 the curves S; and S, are intersected at
cosf =1/0,.

The region in which At(t) # 0 lies between S; and Sy (Fig.2.17 (b)).
By comparing this figure with Fig. 2.16 we observe that the CSW shown
in Fig. 2.16 by the thick line and enclosed between the straight lines L
and Lo degenerates into a point coinciding with the intersection of curves
1 and 2. These intersection points at different instants of time lie on the
same straight line L inclined towards the motion axis under the Cherenkov
angle cosfcy, = 1/0n. The electromagnetic potentials and field strengths
are infinite on this line at the distance » = ¢,t from the origin, and therefore,
the major part of the energy flux propagates under the angle 6y, towards
the motion axis (Fig. 2.17 (b)).

For 3, > 1 the curves S; and S; are always intersected at large distances
(where the Tamm approximation holds). Probably this fact and the absence
of the CSW gave rise to a number of attempts [8,14] to interpret the Tamm
intensity (2.29) as the interference between BS shock waves emitted at the
boundary z = £z points. The standard approach [1,4] associates (2.80)
and (2.81) with the radiation produced by a charge uniformly moving in
medium, in a finite spatial interval, with a velocity v > ¢,. We believe that
this dilemma cannot be resolved in the framework of the Tamm approxi-
mate solution (2.80).

The question arises of at which stage the CSW has dropped from the
vector potential (2.80)7 We have seen above that it presents both in (2.73)
and (2.79). But (2.73) is just the Fourier transform of A(w) defined in
(2.72). The Tamm vector potential (2.80) is obtained from the exact (2.72)
by changing R — r in the denominator and R — r—2’ cos # in the exponent.
The first approximation is not essential if the observational distance is much
larger than the interval of motion. It is the second approximation that is
responsible for the disappearance of the CSW. The condition for the validity
of the second of these approximations is not valid in realistic cases. Exact
analytical and numerical calculations show that an enormous broadening
of the angular intensity spectrum takes place in the spectral representation
(see Chapter 5). In the time representation this broadening leads to the
appearance of the CSW enclosed between L, and Ls straight lines shown
in Fig. 2.16. Equations similar to (2.76)-(2.79) were obtained in section
2.1 but without use the spectral representation (2.72) as an intermediate
step. The latter is needed to recover at what stage of approximations the
CSW drops out from consideration and to make a choice between opposite
interpretations of the Tamm formula for radiation intensity.
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Figure 2.18. A counter-example showing that in the exact Tamm model the presence of
two BS waves is not needed for the existence of the Cherenkov shock wave. In the time
interval —tg < t < to there is a shock wave S; arising at the beginning of motion and
the CSW. The S shock wave has still not appeared. Other parameters are the same as
in Fig. 2.15.

2.4.4. CONCRETE EXAMPLE SHOWING THAT THE CSW IS NOT
ALWAYS REDUCED TO THE INTERFERENCE OF BS SHOCK WAVES

In Fig. 2.18 there are shown positions of shock waves at the instant ¢ = 0
lying inside the interval —ty < t < tg. At this instant, the shock wave S}
associated with the beginning of motion has arisen, but So shock wave asso-
ciated with the termination of motion has not still appeared. In this figure
we see the part of a Cherenkov wave, enclosed between the motion axis
and S7, tangential to the latter and having a normal inclined at the angle
fcn = arccos(1//n) toward the motion axis. Since the shock wave Sy is ab-
sent, the appearance of the CSW cannot be attributed to the interference
of the waves S; and Ss.

Therefore in the time representation the existence of the shock wave Sy
is not needed for the appearance of the CSW. In some time interval the
CSW is enclosed between the motion axis and the shock wave S;. (Figs.
2.16 (a) and 2.18 ). As time advances, the shock wave Sy arises. For large
times the CSW is tangential to S7 and Sy and is enclosed between them
(Fig. 2.16, (b),(c),(d)).

Since the frequency distribution of the radiation intensity o,(w) involves
integration over all times, all particular configurations shown in Fig. 2.16
contribute to o,(w). Thus it is still possible to associate the Tamm problem
with the interference of S; and Sy shock waves (one may argue that, since
all times contribute to the radiation intensity in the spectral representa-
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tion, the large times, when S; and S5 shock waves are intersected, also
give a contribution to the frequency representation just mentioned). The
contribution of CSW is confined to the region

pln| — 20 < 2 < 20 + plynl,

degenerating (if one drops zp in this expression) into the straight line in-
clined at the angle 0., cosf. = 1/0n towards the motion axis.

2.5. Schwinger’s approach to the Tamm problem

We begin with the continuity equation following from Maxwell equations
.9 -
divS + aé’ =—jF. (2.85)

Here 1
= c = _
S=—"(ExH), &=_—(eE*+uH?).
Integrating this equation over the volume V of the sphere S of radius r

surrounding a moving charge, one finds the following equation describing
the energy conservation

/ S,2d0) + % / £dv = — / FEav. (2.86)

Usual interpretation of this equation proceeds as follows (see, e.g., [16],
pp.276-277):
The first term on the left-hand side represents the electromagnetic en-
ergy flowing out of the volume V' through the surface S, and the second
term represents the time rate of change of the energy stored by the elec-
tromagnetic field within V.

And further:

The right-hand side, on the other hand, represents the power supplied
by the external forces that maintain the charges in dynamic equilibrium.

Schwinger [17] identifies energy losses of a moving charge with the integral
in the r.h.s. of (2.85)

Ws=— [ jEAV. (2.87)

Substituting E=-Vd—-A /c and integrating by parts one has

/ FEaV = [ (90 + AJe)dv / (divj — jA/e)dv
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= [+ jAjaav = % [ovav— [ -Fijgav. (289

By definition Wg is the energy lost by a moving charge per unit time.
Schwinger discards the first term in the second line of (2.88) on the grounds
that

it is of an accelerated energy type.
The retarded and advanced electromagnetic potentials corresponding to
charge current densities p and j are given by

Bty = - / =0l )5 — t & Rje)dV'adt
R (7 ¢ explico(t' — ¢ + R/en)]dV'de,
27e YRV g n

A’ret,adv = % / E;(F’, t/)(s(t/ —t+ R/cn)dV’dt’

[e.e]

K / /
= — dw 7, ) expliw(t’ —t £ R/cy)|dwdV'dt’, 2.89
S [ o J ) explil? — ¢+ Rfey) (2:89)
—00
where € and p are the electric and magnetic permittivities, respectively;
= |F— 7| and + and — signs refer to retarded and advanced potentials,
respectively. Furthermore, Schwinger represents retarded electromagnetic

potentials in the form

1 1
(I)ret - §(q)ret + (I)adv) + 5((1)ret - (I)adv)a
. 1 - . 1 - .
Aret = §(Aret + Aadv) + §(Aret - Aadv) (290>

and discards the symmetrical part of these equations on the grounds that
the first part of (2.90), derived from the symmetrical combination of Eper
and Eadv, changes sign on reversing the positive sense of time and there-
fore represents reactive power. It describes the rate at which the electron
stores energy in the electromagnetic field, an inertial effect with which
we are not concerned. However, the second part of (2.90), derived from
the antisymmetrical combination of Eret and Eadv, remains unchanged
on reversing the positive sense of time and therefore represents resistive
power. Subject to one qualification, it describes the rate of irreversible
energy transfer to the electromagnetic field, which is the desired rate of
radiation.
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Correspondingly, electromagnetic potentials are reduced to

@:-%:mm%mﬂjmmpﬁ-nmmmngﬁc
0
E:——/w ) sinfw(#’ — t)] sin(kR)dV'dt’, m:% (2.91)
Substituting this into (2.88) we obtain
Wy = / Pw, t)dw, (2.92)
where
Plw,t) = jifu S / avav'dy ST oo — )
CROER S (OHOND (2.93)

is the energy lost by a moving charge per unit time and per frequency unit.
The angular distribution P(7,w,t) is defined as

Pw,t) = / P(i, w, £)dQ, (2.94)
where
d*F nw? 1
P _ _ ! 3yl r s A
(1, w,t) Tod Trlee /dVdV dt’ cosw {(t t)+ Cnn(r )
— e 1- > N\ gl
< ot 00l ) - S0 (295)

is the energy lost by a moving charge per unit time, per frequency unit, and
per unit solid angle. Here 77 is the vector defining the observational point.

Equations (2.93) and (2.95) were obtained by Schwinger [17]. We apply
them to the Tamm problem. In what follows we limit ourselves to dielectric

medium for which e = n2.

2.5.1. INSTANTANEOUS POWER FREQUENCY SPECTRUM
For the Tamm problem treated, charge and current densities are given by

J= = evd(z)0(y)O(t + 10)O(to — 1)d(z — vt), p(7', 1) = ed(x)d(y)
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X [@(—t—t0)5(2+20)+®(t+t0)@(f0—t)5(2’—vt)+@(t—t0)(5(2’—2’0)]. (296)

Inserting these expressions into (2.93) and performing integrations, one gets

2
Plw,t) = f%[@(—t—to)Pl +O(t—to) Py +O(t +10)O(to —t)Ps], (2.97)
where ) o
P - _ sinw(t + to) 4 sin wtoBn sinw(t — o)
Cn 2witgv
1
g, cos w(t + to){si[2tow (1 + Bn)] — si[2tow (1 — Bn)]}
1 1. /1 2
+% sinw(t + to) { In (1 i_ gn) + ci[2wto|1 — Br] — ci[2wto(1 + ﬁn)]} ;
Py sinw(t — to) _ sin 2wtofPn sinw(t + to)

Cn 2utgw

4 cosw(t — to) {sil2tow(1 + )] — sil2tow(1 — Gu)])

2
_Qi sinw(t—tgp) { ! In (i i_ g:) + ci2wtp|1l — Bnl|] — ci[2wtow(1 + ﬁn)]} )

v

sinwf(t + to) sinw(t +tg)  sinwfy(t — to) sinw(t — to)
v(t +to) w v(t —to) w
32

- 5, {8l = Br)w(to — )] = si[(1+ B)w(to — 1))

si[(1 = Bp)w(to +t)] — si[(1 + Bn)w(to + t)]}. (2.98)

Here si(z) and ci(x) are the integral sine and cosine. They are defined by
the equations

Py=—

o0

_ sint sint T = (—1)k ok1
- [y Ty [y T

si(@) / +/ 2 k; 2k—1 k-1t

o 7 cost 11— cost B e L

c1(x)——/—dt C’—i—lnx—o/Tdt—C+lnx+£2k(2k)!m :

Here C ~ 0.577 is Euler’s constant. For large and small x, si(x) and ci(z)
behave as

cosz sinx . sinx cosx
- —5, ci(z) — 5

5 for = — +o0,
x x x x

Si(l‘) — —
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. cosz  sin|z|
si(z) —» —m + 2] +—— for z— —o0,
x

T x?
si(x)—>—§+x, cz'(x)—>C+lnx—Z for z= — 0.
The following relations

x

in ¢ 1 1 1
/SH; dt = 50 + §ln 2|z| — §Ci(2|$|)7 si(z) +si(—z) = —m

0

will be also useful.

The nonvanishing of P; and P terms in (2.97) is because the Fourier
transforms of a static charge density corresponding to charge at rest prior
to the beginning of the charge motion (¢t < —tg) and after its termination
(t > to) contribute to (2.93) and (2.95). To see this explicitly we write out
the Fourier transform of charge density (2.96):

1 oo
o) = 5 | exp(-iwt)p(r.t)dt =
— 0

- %65(33)5(9) [0(z + 20) / exp(—iwt)dt + §(z — zp) /exp(—iwt)dt

+%@(z + 20)© (20 — 2) exp(—iwz/v)].

The first term in the r.h.s. corresponds to the charge which is at rest at
the point z = —zp up to an instant ¢t = —tg; the second term in the r.h.s.
corresponds to the charge which is at rest at the point z = zy after the
instant ¢ = tp. Finally, the third term corresponds to the charge moving
between —zy and zgp points in the time interval —tg < t < tg. It should be
noted that the first and second terms in this expression are Fourier densities
of a charge which is not permanently at rest at the points z = 42¢, but up
to a instant —tg and after the instant tg, respectively. In fact, the Fourier
density corresponding to charge which is permanently at rest at the point
zZ=zpis

bz 20) [ explict)dt = ed(z — )o().

In the limit wty — oo Egs (2.98) pass into

P, = _cisin[w(t—i-to)] (1 - %ln 11_/2”) ’
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I 1 1+ﬂn>
P=+— t—1t 1——1 P;=0
2 +cn SIH[W( 0)]< Qﬁn nl _/Bn ’ ’

for B, < 1 and

1 1 146,
Pi = = sinfult + to) (1 -5 ln 5:—51) + o coswlt + 2),
1 1 1
P, = o sinfw(t — t9)] (1 BETH In ﬁ:_ﬁ;’) + % cosw(t — %),
Py=—(5 - 1) (2.99)

for B, > 1. It is seen that the energy radiated during the time interval
—t; <t < t;, t; < tgis equal to zero for 3, < 1 and to 2wve?t;(1 —
1/32)/c? for B, > 1. This coincides exactly with the VCR spectrum for the
unbounded charge motion (see, e.g., Frank’s book [1]). It should be noted
that expressions for P in (2.99) were obtained under the assumption that
the arguments of si and ci entering into P3 (see (2.98)) are sufficiently large,
that is, there should be w(tg —t) > 1. This means that P in (2.99) is valid
if the observational instant ¢ is not too close to tg.

On the other hand, the terms P; and P» in (2.99) were obtained without
this assumption. In particular, the term P, different from zero for ¢t > tg
shows how the bremsstrahlung (BS) and VCR behave for t > to, i.e., after
termination of the charge motion. Since the part of P

isim [w (t— @ﬂ (1— Lhn Gt 1 )

Cn v 203n |ﬁn - 1|
is present both for G, < 1 and 3, > 1, it may be associated with BS. On
the other hand, the part of P

Foeb -2

that differs from zero only for 5, > 1 may be conditionally attributed to
the Cherenkov post-action.

We observe that for t < —tg and ¢ > ¢y (P; and P» terms in (2.97)), the
radiation intensity is a rapidly oscillating function of time ¢. The time aver-
age of this intensity is zero, so it could hardly be observed experimentally.
Since, on the other hand, for §,, > 1 the term P5 in the radiation intensity
(2.97) does not depend on time in the time interval —t; < t < t1 (t; < to),
it contributes coherently to the radiated energy.

To obtain the energy radiated for a finite time interval, one should in-
tegrate (2.97) over t. However, the arising integrals involve integral sine
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and cosine functions. Since we did not succeed in evaluating these integrals
in a closed form, we follow an indirect way in next sections. In subsec-
tion 2.5.2 we evaluate the instant angular-frequency distribution of the
radiated energy. Integrating it over time we obtain (subsect. 2.5.3) the
angular-frequency distribution of the energy radiated for a finite time in-
terval. Finally, integrating the latter over angular variables we obtain a
closed expression for the frequency distribution of the energy radiated for
a finite time interval (Sect. 2.5.4).

2.5.2. INSTANTANEOUS ANGULAR-FREQUENCY DISTRIBUTION OF
THE POWER SPECTRUM

Owing to the axial symmetry of the problem, 7(7 — ) = cosf(z — z) in
the integrand in (2.95), where € is the inclination angle of 7 towards the
motion axis. Integration over space-time variables in (2.95) gives

d3& we? B sin[wto(1 — B3y, cos )]

P(it,w, 1) = -
(7, ,¢) dtdwd) 2m2c 1— B,cosb

X[O(—t — to) Pin + Ot — to) Pon, + O(t + t0)O(tg — t) P3,).  (2.100)

Here
P1y, = cos 0 cos|w(t + tofy, cos 0)],

Py, = cos 0 cos|w(t — tof, cosb)],
Ps,, = (cos O — fBy,) cos[wt(1 — (3, cos §)].

2.5.3. ANGULAR-FREQUENCY DISTRIBUTION OF THE RADIATED
ENERGY FOR A FINITE TIME INTERVAL

Integrating (2.100) over the observational time interval —t; <t <t;, t; <
to, one obtains the Fourier distribution of the energy detected for a time
2t; radiated by a charge moving in the time interval 2ty (it is suggested
that the observational interval is smaller than the motion one):
t1
(7w, 1)) = / P(it, w, t)dt
—t

sinwtop(1 — By, cos8) sinwty (1 — B, cos )

e2p
_ Py 2.101
7r20(ﬁ cos ) 1— 3, cosb 1— 3, cosf (2.101)
Let wtg — oo. Then
. e?Bwty 1 1
E(M,w, t1) — — <1 — ﬂ%) ) <0089 — 3n> . (2.102)
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This coincides with the angular-frequency distribution of the radiated en-
ergy in Tamm-Frank theory [11] describing the unbounded charge motion.
For cosf = 1/, Eq. (2.101) reduces to

2
~ € 2 2
E(f,w, 1) = %(ﬁn — Dw*tots.
It vanishes for 3, = 1.

Let the observational time be greater than the charge motion interval

(t1 > to). Then,

62_6 sin[wto(1 — [y, cos )]

(M, w,t1) = m2c 1— B, cosf

sinwtg(1 — By, cos )
1— (3,cosb

is the angular-frequency distribution of the energy detected for the time in-
terval 2t; > 2ty. The first term in square brackets coincides with the Tamm
angular distribution (2.29). The second term originating from integration
of P, and P, terms in (2.100) describes the boundary effects. The phys-
ical reason for the appearance of the extra term in (2.103) (second term
in square brackets) is owed to the following reason. The magnetic field H
is defined as the curl of VP (2.83). Tamm obtained electric field from the
Maxwell equation

X | 3, sin® 0

— cos O sinw(t; — tofy cos ) (2.103)

curlH = Ea—E

c Ot

valid outside the interval of motion. In the w representation this equation
looks like .

curl[j[w = %E_'w
This equation suggests that contribution of static electric field existing
before beginning of charge motion and after its termination has dropped
from the Tamm formula (2.29) (because VP (2.25) and magnetic field (2.26)
describe only the charge motion on the interval (—zp, 2p)). On the other
hand, Schwinger’s equations (2.93) and (2.95) contain the static electric
field contributions of a charge which is at rest up to the instant ¢ = —tg
and after the instant ¢t = tg. They are responsible for the appearance of
extra term in (2.103). In the 7, ¢ representation, the contribution of the
static electromagnetic field strengths is not essential in the wave zone.
Taking into account that

sin ax sin oex

2
— mo(x) and 1( > — mé(z) for a— o0, (2.104)
a

x T
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one obtains from (2.103) for large wt

E(fyw,t1) = %(5(1 — BpcosB)|wto(B2 — 1) — sinw(t; — %)] (2.105)

For (,, # 1 the second term inside the square brackets may be discarded,
and one obtains

2
E(fl,w, t1) = ﬂ%wto(ﬁg —1)8(1 — B cosb). (2.106)

For cos @ = 1/, Eq. (2.103) is reduced to

2

E(fw.ty) = 2 w22 — C ot sinw(ty — to).
(7, w, 1) (B, — 1wt] W osinw(t; — to)

o2
e
It does not vanish at 3, = 1. Equations (2.101) and (2.103) generalize the
Tamm angular-frequency distribution (2.29) for ¢1 # .

2.5.4. FREQUENCY DISTRIBUTION OF THE RADIATED ENERGY

Let t9 > t1 (i.e., the detection time is smaller than the motion time).
Integrating (2.101) over the solid angle one finds the following expression
for the frequency distribution of the radiated power:

€2 1 cos(w(ty — to)(1 — Gy, cos(w(tg —t1)(1 "
St = 20 (12 L) elet =0 o) _eosluto —)(+ )
_cos(w(ti +to)(1 = Bn)) | cos(w(ts +to)(1+ Bn))
1- ﬁn 1+ ﬁn

'H,d(t() — tl)[Si(w(to — tl)(l — ﬁn)) — Si(w(t[) - tl)(l + ﬁn))]

(o + t)[si(w(to + 1)(1 — Ba) — siwlto + t2) (1 + 5n))]}
::v[ci(w(to —t1)|1 = Bnl) — ci(w(to — t1)(1 + Bn))

—ci(w(to + 1)1 = Bnl) + ci(w(to + t1)(1 4 Bn))]. (2.107)

Now let t; > to (i.e., the detection time is greater than the motion time).

Then,

2¢23
e

E(W,tl) =

(Bndy — I2), (2.108)

where

. sin wto(1 — B, cos 1 1
11:/s1n36?d0[ 10—(ﬂ p—"; )]2_ﬁ_(1_@)



The Tamm Problem in the Vavilov-Cherenkov Radiation Theory 87

sin? wto(1 — By) _sin2 wto(1 + Bn)

x{ -3, 5, —wtg[si(2wto(1—5))—si(2wto(146n))]}
‘% {1“ | : 5"’ ~ Cl(wtol1 = fnl) + ci(2wto(1 + )
~ 5~ g F2eto(1 = 6,)) ~ sin(2ota(1 + 6,)]
I, = /Sin@cos HdHSm wio(1 — fn ios_egji:o;‘jétl — tofPncosb)
B ‘Wlwto sinw(ty — to)[cos(2wto(1 — ) — cos(2wto(1 + )]
_ﬂi cos w(tl_to)_élﬁ;Tto cosw(t1—to)[sin(2wto(1—L5y,))—sin(2wio(1+5,))]
2;2 sinw(t; — to)[si(2wto(1 — Bn)) — si(2wto(1 + Bn))]
1 |1 — ﬁn‘ . .
———cosw(t; —tp)[ln — ci(2wtg|1l — Bn|) + ciRwto(1 + Br))]-

202 1+ 3,

The typical dependence of £ on tq for ¢; fixed is shown in Fig. 2.19.
For large wtg and 3, < 1, it oscillates around zero. For large wty and
Bn > 1, € oscillates around the value

2e2wty B (1 1 >
c B2’

given by the Tamm-Frank theory [1]. In both cases the amplitude of oscil-
lations decreases like 1/wt for large ty. The typical dependence of £ on t;
for tg fixed is shown in Fig. 2.20.

Since Is is a periodic function of ¢; and I; does not depend on t;, &
oscillates around the value 2¢232nI; /mc. Previously the frequency distribu-
tion of the radiated energy in the framework of the Tamm theory was given
by Kobzev and Frank [18] and by Kobzev et al [19]. It is obtained by inte-
grating the Tamm angular distribution (2.29) over the angular variables:

€ 2e*f 1 1 sin?wto(l —Bp)  sin?wto(1 4 Bp)
dw 7TC( 757,21){ 1-5, ; 1+ bn
—wto[si(2wto(1 — Br)) — si(2wto(1 + Bn))]}
2¢2 11— Bl

_Trchﬂ T + Bn, — ci(2wtp|l — Bnl]) + ci(2wio(1 + Bn))
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Figure 2.19. Energy £ detected in a fixed time interval ¢; as a function of the charge
motion time to. For 3, < 1, £ oscillates around zero. For (3,, > 1 it oscillates around the
finite value (2 31) The amphtude of oscillations decreases like 1/wto for a large time of
motion to. £ is given in units of e /c to in units of ¢;.

o2
~ren?d { Bn + ito [sin 2wto(1 — B3,)) — sin 2wtp(1 + ﬁn))]} . (2.109)
This expression coincides with the first term in (2.108) which involves .
For large wtp, (2.109) goes into the Tamm equations (2.29).

The frequency dependences of the energy radiated for the time ¢; and
given by (2.108) are shown in Figs. 2.21 and 2.22. In Fig. 2.21 one sees the
frequency dependence for the case when the observational time 2¢; is twice
as small as the charge motion time 2¢y. For 3,, < 1, the radiated energy is
concentrated near zero, while for (3, > 1 it rises linearly with frequency

22wty 3 1
ex S 1o )

The frequency dependence for the case when the observational time 2¢; is
twice as large as the charge motion time 2ty is shown in Fig. 2.22. For
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Figure 2.20. Energy £ as a function of the detection time t; for the fixed time of motion
to. The time interval of motion t¢ is fixed. For 8, < 1 and 8, > 1, £ oscillates around
the Tamm values (2.5) and (2.6), respectively. Contrary to the previous figure, there is
no damping of oscillations. £ is given in units of €?/c; ¢1, in units of to.

0Bn < 1 the radiated energy oscillates around the Tamm value

2¢? 1+ Bp

1 -2

mcfn? (nl—ﬁn 5”)’

whilst for 3, > 1 it again rises linearly but with a coefficient different from

the case t1 < ty:

N 262wt0ﬁ(1 _ %

c B2

It is interesting to compare the frequency distribution (2.109) obtained

by integration the Tamm angular-frequency distribution over the solid angle

with its approximate version (2.31) given by Tamm. Equation (2.31) has

a singularity at § = 1/n, whilst (2.109) is not singular there. To see how

they agree with each other we present them and their difference (Fig. 2.23)

as a function of the velocity § for the parameters L = 2z¢p = 0.1 cm and

£ ).
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Figure 2.21. Frequency dependence of the radiated energy for ¢1/to = 0.5. £ is given in
units of e?/¢; w, in units of 1/to.

A =4-10"° cm used above. It is seen that they coincide with each other
everywhere except for the closest vicinity of 5 = 1/n.

Large interval of motion

Let the observational time be less than the motion time (¢; < tp). Then,
for w(to —t1) > 1, £(w, t1) is very small for 3,, < 1. On the other hand, for
Brn > 1,

Qwte? 1
E(w,ty) = u’%65(1 -

This coincides with the frequency distribution of the radiated energy during
the whole charge motion in the Frank-Tamm theory.

Let now the observational time be greater than the motion time (¢; >
to). Then, for wty > 1 (but t; > ty) one finds

). (2.110)

2 _
E(w, t1) = —%[2 — cosw(t; — tp)] (1 + % In 1 n gn> (2.111)
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20 40 60 80 100

Figure 2.22. Frequency dependence of the radiated energy for ¢1/tg = 2. £ is given in
units of €?/¢; w, in units of 1/to.

~ 10 .
3
I
S1p b -
I

10 'k 1

10 2k 1

10

10 - .

-0.6 0.0
Agx10°

Figure 2.23. (a) Frequency distributions of the radiated energy (in e?/c units) given
by (2.109) and its simplified version (2.31) as functions of the charge velocity. They are
indistinguishable in this scale; (b) the difference between (2.31) and (2.109). The regions
where this difference is negative are shown by dotted lines; A3 means 3 — 1/n.
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for 8, < 1 and
2

2
ecﬁ{moa - @)

> 532 sinw(t; —to)} (2.112)

E(w, tl) ~

1 1 5n —1
ﬂn[ cosw(t1 — to)] <1 + 57, In e
for G, > 1.
Non-oscillating parts of these expressions coincide with Egs. (2.31) given
by Tamm. According to his own words, Egs. (2.31)
are obtained by neglecting the fast-oscillating terms of the form sinwitg
(Tamm gives only Egs.(2.31) without deriving them). On the other hand,
Eq.(2.109) obtained in [18,19] gives, in the limit wt) — oo, the Tamm
expressions (2.31) with additional oscillating terms decreasing like 1/wtp.
Since some terms in (2.107) and (2.108) depend on the parameters (1 —
Br)(to—t1) and (1—5,)(to+t1), Egs.(2.110)-(2.112) are not valid for 3, ~ 1
(this corresponds to Cherenkov’s threshold).

Frequency distribution at the Cherenkov threshold
Thus, the case (,, = 1 needs a special consideration. One obtains

2
tg—t
E(w,t) = - c {ln 0"l
e to +t1

—ci(2w(tg — t1)) + ci(2w(to + 1)) (2.113)

for t1 < tg. This expression tends to zero for ¢; fixed and {5 — oc.
On the other hand, for ¢t; > tg

E(w 1) = %{ {1 _ %cosw(tl _ to)} (€ + In(dwto) — ci(dwto)]

sin(4wtp)

—[1 = cosw(t; — to)] [1 N 4wty

] + Sincu(tl — to)

1 —cos(dwty) = 1 . }
- = — == 4wt . 2.114
[ dwto g~ psinliwlo) ]} (2114)
The non-oscillating part of this expression coincides with that given by
Tamm [1]:

2¢?

Er = —[C + In(4wtp) — 1].

e

On the other hand, Eq.(2.111) obtained by Kobzev and Frank for 3, = 1

goes into

2¢2 in (4wt
Ecr = 2 [0 4 n(dwto) — 1 — ci(dwty) + SRU«to)
e 4wty
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For (t; — to) fixed and ¢y — oo, Eq.(2.114) is reduced to

E(w,t1) — %{ [1 - %Cosw(tl - to)] [C + In(4wtp)] — 14+

cosw(ty — to) — sinw(t; — tg) [Z + %Sin(4wt0)] }. (2.115)

In the limit tg — oo, EkF goes into E plus oscillating terms decreasing like
1/wty.

The main result of this consideration is that the Schwinger approach
incorporates both Tamm-Frank and Tamm problems. The Tamm-Frank
results are obtained when the observational time ¢; is smaller than the
charge motion time tg and {g — oo. In particular, there is no radiation
when the charge velocity is smaller than the velocity of light in medium.
The radiated energy rises in direct proportion to the observational time
ty for 3, > 1. The Tamm problem is obtained when ¢; > to and ¢y (and
therefore ¢1) tends to co. The intensity oscillates around the Tamm value
for 8, < 1 and rises in proportion to the time of charge motion ¢y for
Gn > 1.

2.6. The Tamm problem in the spherical basis

2.6.1. EXPANSION OF THE TAMM PROBLEM IN TERMS OF THE
LEGENDRE POLYNOMIALS

We need the expansion of the Green function
G = exp(ik,R)/R, R=1|7—7|

in spherical coordinates. It is given by

G=23 en 2z+1>$+2)'cosm<¢ ¢)

m>0 )

xG(r,7")P™(cos §) P/"(cos #'), (2.116)

where

Gl("“a T/) = iknjl(k;nr<)hl( n'r>)a

. @ @
ji@) =\ 5o Tspl@) and @) =4[ HE) (@)

are the spherical Bessel and Hankel functions; P/"(x) is the adjoint Legen-
dre polynomial.
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Let a charge move in medium in a finite interval (—zg, 29) (this corre-

sponds to the so-called Tamm problem). The current density corresponding
to the Tamm problem, in cartesian coordinates is given by

Jo(w) = 5 exp(iwz/0)8(2)5(1)O(= + 20)O(z0 - 2).

We rewrite this in spherical coordinates:

e ikr ikr
j(w) = ———— [6(0 — )+ 6(0 — - —r).
9) = iy SO (5 + 80— mexp(=T)] O 1)
Then on the sphere of the radius r > zy one obtains
tepkn
Ax(w) = == D72+ 1) P (knr) Ji(0, 20),
iek?n? ~
Hy(w) = ——— > Bl hy(knr)Ji(0, 20),
ek?un ~
FEy(w) = — o > P H(knr)Ji(0, 2). (2.117)

Jl(O, ZQ) = /jl(k:nr/)fl(r/)dr/, Jl(O, Zo) = Jl_l(O, Zo) + Jl+1(0, Zo),

0
fi(r") = exp(ilgl) + (—1)lexp(ikﬁr,),
Hifa) = ) + " = L ) e )

In (2.117) and further on, we omit the arguments of the Legendre poly-
nomials if they are equal to cosf (# is the observational angle). At large
distances (kr > 1)

e _ -
A, ~ 5 K exp(iknr) Z(?l + 1)i~ P (0, 20),

wer

Hy~ — Srer exp(iknr) Z i~'PLJ(0, 20),

ERL . I pl§
Ey ~ - exp(iknr) Zz P Ji(0, z0).
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The distribution of the radiation intensity on the sphere of the radius r

d’& 1, . e’k’np 1
Todq = 3" (EoH,j +c.c.) = 1 |Z P} J1 0,20)|?
2f2 20
_ ¢ "“Sln SR IS (20 + 1)i T Py (0, 20) 2 (2.118)
Or, in a manifest form,
d?& e*np .,
= in? 0(S; + S2)*. 2.119
dwd$) w2c o (S +52) ( )
where
S = Z(—l)l(éll—i— 1)Py(cos0)I5;, Sa = Z(—l)l(4l—|—3)Pgl+1(cos 0)15, 1,
1=0 1=0

kzo kzo

. T s , o
5 — / () cos(S)d. Ly, = / ot () sin( S)d.(2.120)
0 0

Integrating over the solid angle, one obtains the frequency distribution
of the radiation:

d€ k>npu (l+1)
= S Ao P
8e2np
= (I.+ 1), (2.121)
e
where (14 1)@+ D)
+ + c c
I.= Z L3 (Is; + Isyy)°
and

(20+1), s
L= m(leﬂ +1I5_4)°

These equations are valid if the radius r of the observational sphere is
larger than zp. Eqgs. (2.121) and (2.109) should coincide since the same
approximations were involved in their derivation. Numerical calculations
support this claim.
We concentrate now on the vector potential. For this we rewrite it as
Tepn w—
A, = 2(41 + 1)hoi(knr) Py(cos 0)Is;

e =0
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eun

- Z(4l + 3)hoi1 (knr) Pyyq (cos 0) 15, 4 (2.122)

e =0

Usually observations are made at large distances (kr > 1). For example,
for A\ =4x 1075 cm and r = 1 m, kr = 277/ ~ 107. Changing the Hankel
functions by their asymptotic values, one finds

€ .
w = kr/:rc exp(iknr)(S1 + S2). (2.123)

Obviously vector potentials (2.123) and (2.26) are the same (since the same
approximations are involved in their derivation). Equating them one has
1 sin[kzon(cosf — 1/4n)
n cosf —1/06n

S1+ .5 = (2.124)

Now we consider the coefficients IS, and I3, 41- In the limit kzp — oo the
integrals defining I, and I, are:

, x
I3, = /jgl(nx) cos(— )dx.
0

. . X
Dz By = [ o (ne)sin(
0

g

These integrals can be evaluated in a closed form (see, e.g., [20]). They are
given 0 for fn < 1 and

m s

I3 = %(—1)@%(1/5”)’ Ly = %(—1)lp2l+1(1/ﬁ”)

for fn > 1. Substituting them into (2.122) one obtains

e ,
Ay =-—H
ke exp(iknr)

o0 o0 1
X Z 4l + 1) Py(cos 0 Pgl )+ Z 4l + 3) Por+1(cos 9)P21+1(5 )1
=0 =0

ey > 1
= St exp(iknr) ; (20 + 1)Py(cos 0) P, <ﬁn>
_ oK : _
= exp(iknr)d (cos@ ﬂn) (2.125)

In deriving this, we used the relation

il+1/2Pl VP(2') = 6(z — o).
1=0
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Vector potential (2.125) coincides with the one entering (2.26’).

2.7. Short résumé of this chapter

What can we learn from this chapter?

1. The approximate Tamm formula (2.29) for the energy radiated by a
moving charge in a finite interval (—zg, z¢) describes the interference of two
BS shock waves arising at the beginning and termination of motion and
does not describe the CSW properly. However, some reservation is needed.
In the next chapter the instantaneous velocity jumps of the original Tamm
problem will be replaced by the velocity linearly rising (or decreasing) with
time. It will be shown there that, in addition to the BS shock wave arising at
the beginning of the motion, two new shock waves arise at the instant when
the charge velocity coincides with the velocity of light in medium. Owing
to the instantaneous jump in velocity in the original Tamm problem, the
above three shock waves are created simultaneously. When discussing the
BS shock waves throughout this chapter, we implied the mixture of these
three shock waves.

2. The exact solution of the Tamm problem contains the Cherenkov
shock wave in addition to the BS shock waves. This Cherenkov shock
wave propagates between two straight lines I, and Lo originating from
the boundary points +z2( of the interval of motion and inclined at the angle
0., cosf. = 1/n towards the motion axis.

3. Applying the Schwinger approach to the solution of the Tamm prob-
lem, we have found that angular-frequency distributions of the energy ra-
diated by a moving charge depend not only on the interval of motion but
also on the observational time interval. This should be kept in mind when
discussing the experimental results.

4. We have made an expansion of the electromagnetic field and radi-
ation intensity corresponding to the Tamm problem in terms of Legendre
polynomials. This will be used in Chapter 7.
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CHAPTER 3

NON-UNIFORM CHARGE MOTION IN A
DISPERSION-FREE MEDIUM

3.1. Introduction

Although the Vavilov-Cherenkov effect is a well established phenomenon
widely used in physics and technology [1,2], many its aspects remain unin-
vestigated up to now. In particular, it is not clear how takes place a transi-
tion from the subluminal velocity régime to the superluminal régime. Some
time ago [3,4], it was suggested that alongside with the usual Cherenkov
and bremsstrahlung (BS) shock waves, the shock wave arises when the
charge velocity coincides with the light velocity in medium. The consid-
eration presented there was purely qualitative without any formulae and
numerical results. It was grounded on the analogy with phenomena oc-
curring in acoustics and hydrodynamics. It seems to us that this analogy
is not complete. In fact, the electromagnetic waves are pure transversal,
whilst acoustic and hydrodynamic waves contain longitudinal components.
Furthermore, the analogy itself cannot be considered as a final proof. This
fact and experimental ambiguity in distinguishing the Cherenkov radiation
from the BS [5] make us consider effects arising from the overcoming the
velocity of light barrier in the framework of the completely solvable model.
To be precise, we consider the accelerated straight line motion of the point
charge in medium and evaluate the arising electromagnetic field (EMF).
We prove the existence of the shock wave arising at the moment when a
charge overcomes the velocity of light barrier. This wave has essentially the
same singularity as the Cherenkov shock wave. It is much stronger than
the singularity of the bremsstrahlung shock wave. Formerly, the acceler-
ated motion of a point charge in a vacuum was considered by Schott [6].
However, his qualitative consideration was purely geometrical, not allowing
the numerical investigations. In the next sections the following definitions
will be used:

1) BS shock wave. By it we mean a singular wave arising at the beginning
or termination of a charge motion.

2) Shock wave originating when a charge velocity exceeds the velocity
of light in medium. By it we mean a singular wave emitted when the charge
velocity coincides the velocity of light in medium.
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3) Cherenkov shock wave. By it we mean the Cherenkov shock wave
attached to a moving charge.

Although these linear waves have some features typical of shock waves
(finite or infinite jumps of certain quantities on their boundaries), they are
not shock waves in the meaning used in hydrodynamics or gas dynamics
where these waves are highly nonlinear formations. This is valid especially
for the BS shock wave. However, for other two singular waves the linearity
is illusory. We demonstrate this using the Cherenkov shock wave as an ex-
ample. Consider a charge moving uniformly in vacuum with a velocity only
slightly smaller than that of light. Its EMF is completely different from the
Cherenkov radiation field. Now let this charge move with the same velocity
in medium. The moving charge interacts with atoms of medium, excites
and ionizes them. The EMFs arising from the electron transitions between
atomic levels, from the acceleration of secondary knocked out electrons,
all these fields being added give the Cherenkov radiation field. Obviously,
this is a highly nonlinear phenomenon and this, in turn, justifies the term
‘shock wave‘ used above. Usually, when considering the charge motion inside
medium one disregards ionization phenomena and takes into account only
excitations of atomic levels. The atomic electrons are treated as harmonic
oscillators. For non-magnetized substances one finds the Lorentz-Lorenz
formula in classical theory and the Kramers-Heisenberg dispersion formula
in quantum theory.

In the present approach we take the refractive index to be independent
of w. This permits us to solve the problem under consideration explicitly.
The cost of disregarding the dependence of w is the divergence of integrals
quadratic in Fourier transforms of field strengths (such as the total energy).
Physically, these infinities are owed to the infinite self-energy of a point-like
charge. To avoid divergences one should either make a cut-off procedure
integrating up to some maximal frequency [1], or consider a charge of a
finite size [7,8] (see also Chapter 7). Note that despite the infinite value of
the radiated energy (in the absence of w dispersion) for a uniformly moving
charge with v > ¢, the usual theory correctly describes the position and
propagation of the Cherenkov singularity. We believe that the approach
adopted here is also adequate for the description of space-time distributions
of EMF arising from accelerated motion of a charge.

3.2. Statement of the physical problem

Let a charged particle move inside the non-dispersive medium with polar-

—

izabilities € and p along the given trajectory £(t). Then its EMF at the
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observational point (p, z) is given by the Liénard-Wiechert potentials

Here
o (dE e Ee) — 57— &
U; = % |t:t¢7 RZ = |7" - (tz) - Ui(?" - g(tl))/cn

and ¢y, is the velocity of light inside the medium (¢, = ¢/ /€u). The sum-
mation in (3.1) is performed over all physical roots of the equation

enlt = 1) = |7 = E(t')]. (3-2)

To preserve the causality, the time ¢’ of the radiation should be smaller
than the observational time ¢t. Obviously, ¢ depends on the coordinates 7, ¢
of the point P at which the EMF is observed. With the account of (3.2)
one finds for R;

—

Ri = Cn(t — tz‘) — UZ(F— §(tl-))/cn. (33)

3.2.1. SIMPLEST ACCELERATED AND DECELERATED MOTIONS 9]

Consider the motion of the charged point-like particle inside the medium
with a constant acceleration 2a (thus our acceleration is one half of the
usual) along the Z axis:

¢ = at’. (3.4)

At first glance it seems that this equation describes the nonrelativistic mo-
tion. We analyze this question slightly later. The retarded times ¢’ satisfy
the following equation

en(t —t) = [p* + (z — at’)H/2. (3.5)
It is convenient to introduce the dimensionless variables
t=at/c,, Z=uaz/c3, p=ap/c’. (3.6)
Then
-t =+ (E-1%2 (3.7)

In order not to overload the exposition, we drop the tilda signs:
t—t = [,02 + (Z - t/2)2]1/2 (38)

For the case of treated one-dimensional motion the denominators R; are

given by:

62

R, = E”m, ri=(t—t;) — 2ti(2 — t3). (3.9)
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Eq. (3.8) can be reduced to the following equation of fourth degree
"y pt? gt + R=0. (3.10)

Here p = —2(z +1/2), ¢ = 2t, R = r* — 2.

We consider the following two problems:

I. A charged particle is at rest at the origin up to a moment ¢’ = 0. After
that, it is uniformly accelerated in the positive direction of the Z axis. In
this case only positive retarded times t' are nontrivial.

II. A charged particle is uniformly decelerated moving from z = oo
to the origin. After the moment ¢ = 0 it is at rest there. Only negative
retarded times are nontrivial in this case.

It is easy to check that the moving charge acquires the velocity of light
¢n, at the instants t. = +1/2 for the accelerated and decelerated motion,
respectively. The position of a charge at those instants is z. = 1/4.

It is our aim to investigate the space-time distribution of the EMF
arising from such particle motions.

We intend to solve Eq. (3.10). It is obtained by squaring Eq. (3.8). As
a result, extra false roots are possible. They are discarded on the following
physical grounds:

1) physical roots should be real;

2) physical roots should preserve causality. For this the radiation time
t' should be smaller than the observational time ¢;

3) the treated accelerated motion takes place for ¢’ > 0. Negative values
of t' = t—r correspond to a charge at rest at the origin. If amongst the roots
of (3.10) there occurs a negative one which does not coincide with ¢’ = t—r,
it should be discarded. Similarly, the treated decelerated motion takes place
for ' < 0. Positive values of t' = t — r correspond to a charge resting at
the origin. So if amongst the roots of (3.10) there occurs a positive one not
coinciding with ¢ = ¢t — r, it should be discarded. Here r = /22 + y2 + 22.

These conditions define space-time domains in which the solutions of
Eqgs. (3.8) and (3.10) exist.

Accelerated motion

For the first of the problems treated (uniform acceleration of the charge
which initially is at rest at the origin) the resulting configuration of the
shock waves for the typical case corresponding to ¢t = 2 is shown in Fig. 3.1.
We see on it the Cherenkov shock wave C](\}), the shock wave C'(Ll) closing
the Cherenkov-Mach cone and the sphere Cj representing the spherical

shock wave arising from the beginning of the charge motion. It turns out

that the surface C(Ll) is approximated to a high accuracy by the part of
the sphere p? + (z — 1/4)? = (t — 1/2)? (shown by the short dash curve O)
which corresponds to the shock wave emitted from the point z = 1/4 at the
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Figure 3.1. Distribution of the shock waves for a uniformly accelerated charge for ¢t = 2.
The short dash curve C represents the spherical wave emitted from the point z = 1/4 at
the instant ¢ = 1/2 when the accelerated charge overcomes the velocity of light barrier.

instant ¢ = 1/2 when the velocity of the charged particle coincides with the
velocity of light in the medium. On the internal sides of the surfaces 01(21)
and C’](\}) electromagnetic potentials acquire infinite values. On the external

side of C’J(\}[) lying outside of Cy the electromagnetic potentials are zero (as

there are no solutions there). On the external sides of CS) and on the part

of the C](\}) surface lying inside Cp the electromagnetic potentials have finite
values (owing to the presence of BS shock waves there).

Consider the time evolution of the arising shock waves for the acceler-
ated motion of the charge beginning from the origin at the instant ¢ = 0.
It is shown in Figs. 3.2 and 3.3. All the Cherenkov (Mach) cones shown
in Figs. 3.2 and 3.3 exist only for ¢ > 1/2, z > 1/4. This means that the
observer placed in the spatial region with z < 1/4 will not see either the
Cherenkov shock wave or the shock wave originating from the overcoming
the velocity of light barrier in any instant of time. Only the shock wave Cj
(not shown in these figures) associated with the beginning of the charge
motion reaches him at the instant c¢,t = r. Moreover, the aforementioned

shock waves (Cg) and C](\?) in the z > 1/4 region exist only if the distance
p from the Z axis satisfies the equation

1 1)*/2 L 3.11
< =—(z2-= > .
p<pepe= 7 (z 4) 2> (3.11)

(1)

Inside this region the observer sees at first the Cherenkov shock wave C} .

Later he detects the BS shock wave Cy and the shock wave Cg) associ-
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Figure 3.2. The positions of the Cherenkov shock wave Cz(vl[) and the shock wave Clg)
arising from the charge exceeding the velocity of light barrier for the accelerated charge
are shown for the instant ¢ = 0.6 (left) and ¢ = 0.75 (right). The short dash curve C
represents the spherical wave emitted from the point z = 1/4 at the instant ¢ = 1/2 when
the accelerated charge overcomes the light barrier.

ated with the exceeding the velocity of light barrier at z = 1/4 at the time
t = 1/2 when the charge velocity is equal to ¢,. Outside the region defined
by (3.11) the observer sees only the BS shock wave Cy which reaches him
at the instant c¢,t = r. Furthermore, for ¢ < 1/2 only one retarded solution
(t1) exists. It is confined to the sphere Cy of the radius r = ¢,t. Therefore
the observer in this time interval will not detect either the Cherenkov shock
wave or that of originating from the exceeding the velocity of light barrier.
The dimensions of the Cherenkov cones shown in Figs. 3.2 and 3.3 are zero
for t = 1/2 and continuously rise with time for ¢ > 1/2. The physical rea-
son for this behaviour is that the shock wave C(Ll) closing the Cherenkov
cone propagates with the velocity of light ¢,, while the head part of the
Cherenkov cone (i.e., the Cherenkov shock wave C](\})) attached to a moving
charge propagates with the velocity v > ¢,. In the gas dynamics the exis-
tence of at least two shock waves attached to the finite body moving with a
supersonic velocity was proved on the very general grounds by Landau and
Lifshitz [10], Chapter 13). In the present context we associate them with

the shock waves Cg) and Cz(\}[)-

Decelerated motion

Now we turn to the uniform deceleration of a charged particle. Let it move
along the positive z semi-axis up to an instant ¢ = 0, after which it is at rest
at the origin. In this case only negative retarded times ¢; have a physical
meaning.
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Figure 3.3. The same as Fig. 3.2, but for t =1, 1.5, and 2.

For the observational time ¢ = 2 the resulting configuration of the shock
waves is shown in Fig. 3.4. We see the BS shock wave Cj arising from
the termination of the charge motion and the blunt shock wave C(LQ). Its
head part is described with a high accuracy by the sphere p? + (2 —1/4)? =
(t+1/2)? (shown by the short dash curve) corresponding to the shock wave
emitted from the point z = 1/4 at the instant ¢t = —1/2 when the velocity
of the decelerated charged particle coincides with the velocity of light in

the medium. The electromagnetic potentials vanish outside of C'(Lz) (as no

solutions exist there) and acquire infinite values on the internal part of CI(LQ)
(owing to the vanishing of their denominators Ry and Rj). Therefore the

surface C](-JQ) represents the shock wave. As a result, for t > 0, ¢ < 0 one

has the shock wave Cg) and the BS wave Cy arising from the termination
of the particle motion.

For the decelerated motion and the observational time ¢ < 0 the physical
solutions exist only inside the Cherenkov cone 01(\3) (Fig. 3.5). On its inter-
nal boundary the electromagnetic potentials acquire infinite values. On the
external boundary the electromagnetic potentials are zero (as no solutions
exist there). Thus for the case of decelerated motion and the observational
time ¢t = —2 the physical solutions are contained inside the Cherenkov cone

c?.
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Figure 8.4. Distribution of the shock waves for a uniformly decelerated charge for ¢ = 2.
The short dash curve represents the spherical wave emitted from the point z = 1/4 at
the instant ¢t = —1/2 when the accelerated charge overcomes the light barrier.
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Figure 3.5. The same as Fig. 3.4, but for ¢t = —2.
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Figure 3.6. Continuous transformation of the Cherenkov shock wave (1) into the blunt
shock wave (9) for the decelerated motion. The charge motion terminates at the point
z = 0 at the instant ¢t = 0. The numbers 1-9 refer to the instants of time ¢t = —2; —1.5;
—1; —0.5; 0; 0.5; 1; 1.5 and 2, respectively. Short dash curves represent the positions of
the spherical wave emitted from the point z = 1/4 at the instant ¢ = —1/2 when the
velocity of the decelerated charge coincides with the velocity of light in medium.

For the decelerated motion the time evolution of shock waves is shown
in Fig. 3.6. The observer in the spatial region z < 0 detects the blunt shock
wave C’f) first and the bremsstrahlung shock wave Cj later. It turns out
that the head part of this blunt wave coincides to a high accuracy with the
sphere p? + (2 — 1/4)? = (t + 1/2)? describing the spherical wave emitted
from the point z = 1/4 at the instant ¢t = —1/2 when the charge velocity
coincides with ¢,,. The observer in the z > 1/2 region detects the Cherenkov

shock wave C'J(\%[) first and the bremsstrahlung shock wave Cy later. In order
not to hamper the exposition, we have not mentioned in this section the
continuous radiation which reaches the observer between the arrival of two
shock waves or after the arrival of the last shock wave. It is easily restored
from the above figures.

3.2.2. COMPLETELY RELATIVISTIC ACCELERATED AND
DECELERATED MOTIONS [11]

To avoid troubles arising from the nonrelativistic nature of the motion law
(3.4), we consider the motion of a point-like charge of rest mass m inside
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the medium according to the motion law [12]

2(t) = \/28 + 22 + C.

It may be realized in a constant electric field F directed along the Z axis:
20 = |mc?/eE| > 0. Here C is an arbitrary constant. We choose it from the
condition z(t) = 0 for ¢t = 0. Therefore

2(t) = \/28 + 2 — 2. (3.12)

This law of motion, being manifestly relativistic, corresponds to constant
proper acceleration [12]. The charge velocity is given by

d
v = d—i = c2t(z(2) + c2t2)_1/2.

Clearly, it tends to the velocity of light in vacuum as ¢ — co. The retarded
times ¢’ satisfy the following equation:

1/2

cn(t—1) = [p2 + (z + 20 — \/ 28 + 2t )2] : (3.13)

It is convenient to introduce the dimensionless variables

t=ct/zy, Z=2/20, p=p/z0. (3.14)

Then
1/2

ﬁ2+<5+1—\/1+7>2] : (3.15)

where o = ¢,,/c = 1/n is the ratio of the velocity of light in medium to that
in vacuum. In order not to overload the exposition we drop the tilde signs

at —1) =

alt —t) = {p2+ (z+1\/1+t/2>2r/2, (3.16)

For the treated one-dimensional motion the denominators R; entering into
are (3.3) given by

Rizzio[aQ(t—ti)\/l—i—tf—ti(z—i—l—\/l—i—t%)} (3.17)
ay/1+t2
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It is easy to check that the moving charge acquires the velocity of light
¢n in medium at the instants ¢t; = +a/v1 — «? for the accelerated and
decelerated motion, respectively. The position of a charge at those instants
isz=1/vV1—a?—1.

It is our aim to investigate the space-time distribution of EMF arising
from such particle motions. For this we should solve Eq.(3.16). Taking its
square we obtain the fourth degree algebraic equation relative to t'. Solving
it we find space-time domains in which the EMF exists. It is just this way
of finding the EMF which was adopted in [9]. It was shown in the same
reference that there is another, much simpler, approach for recovering EMF
singularities (which was extensively used by Schott [6]). We seek the zeros
of the denominators R; entering into the definition of the electromagnetic
potentials (3.1). They are obtained from the equation

2t —t)V14+1t2 —t'(z+1—V1+t2)=0. (3.18)

We rewrite (3.16) in the form

PP=a(t—t) —(z+1—-V1+12)% (3.19)

Recovering ¢’ from (3.18) and substituting it into (3.19) we find the surfaces
p(z,t) carrying the singularities of the electromagnetic potentials. They are
just the shock waves which we seek. It turns out that BS shock waves (i.e.,
moving singularities arising from the beginning or termination of a charge
motion) are not described by Eqgs. (3.18) and (3.19). The physical reason
for this is that on these surfaces the BS field strengths, not potentials, are
singular [6]. The simplified procedure mentioned above for recovering mov-
ing EMF singularities is to find solutions of (3.18) and (3.19) and add to
them ‘by hand’ the positions of BS shock waves defined by the equation
r=at, r=+/p?+ 22 The equivalence of this approach to the complete
solution of (3.13) has been proved in [9] where the complete description of
the EMF (not only its moving singularities as in the present approach) of
a moving charge was given. It was shown there that the electromagnetic
potentials exhibit infinite (for the Cherenkov and the shock waves under
consideration) jumps when one crosses the above singular surfaces. Corre-
spondingly, field strengths have the § type singularities on these surfaces
whilst the space-time propagation of these surfaces describes the propaga-
tion of the radiated energy flux.

In what follows we consider the typical case when the ratio a of the
velocity of light in medium to that in vacuum is equal to 0.8.

Accelerated motion
For the uniform acceleration of the charge resting at the origin up tot =0
only positive retarded times ¢; have a physical meaning (negative ¢; corre-



110 CHAPTER 3

T T T T T T T
6 - .
i C0 -
4 - C .
Q - -
5 oa=0.8 ]
=8
O T I L] I LJ
0 2 4 8

Figure 3.7. Typical distribution of the shock waves emitted by an accelerated charge.
Cn is the Cherenkov shock wave, Cp is the shock wave emitted from the point
z = (1 —a®)7Y? at the instant & = a(1 — o®)~Y2 when the charge velocity coin-
cides with the velocity of light in medium. Part of it is described to good accuracy by
the fictitious spherical surface C' (p? + (z — 21)? = (t — t;)?); Co is the bremsstrahlung
shock wave originating from the beginning (at the instant ¢ = 0) of the charge motion.

spond to a charge at rest at the origin). The resulting configuration of the
shock waves for the typical observational time ¢ = 8 is shown in Fig. 3.7.
We see in it:

i) The Cherenkov shock wave Cjs having the form of the Cherenkov
cone;

ii) The shock wave Cp, closing the Cherenkov cone and describing the
shock wave emitted from the point z; = (1 — a?)~*/2 — 1 at the instant
t; = a(1 —a?)~1/2 when the velocity of a charge coincides with the velocity
of light in medium,;

iii) The BS shock wave C{ arising at the beginning of notion.

It turns out that the surface Cf, is approximated to good accuracy by
the spherical surface p? + (2 — 2;)? = (t — t;)® (shown by the short dash
curve C). It should be noted that only the part of C' coinciding with Cf,
has a physical meaning.

On the internal sides of the surfaces C, and Cjs electromagnetic po-
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Figure 3.8. Time evolution of shock waves emitted by an accelerated charge. Cys and
C1, are respectively the usual Cherenkov shock wave and the shock wave arising at the
instant when the charge velocity coincides with the velocity of light in medium. Pointed
curves are bremsstrahlung shock waves.

tentials acquire infinite values. On the external side of Cjs lying outside
C the magnetic vector potential is zero (as there are no solutions of Egs.
(3.18),(3.19) there), whilst the electric scalar potential coincides with that
of the charge at rest. On the external sides of C; and on the part of the
surface C'ys lying inside Cj the electromagnetic potentials have finite values
(as bremsstrahlung has reached these spatial regions).

In the negative z semi-space an experimentalist will detect only the BS
shock wave. In the positive z semi-space, for the sufficiently large times
(t > 2a/(1—a?)), an observer close to the z axis will detect the Cherenkov
shock wave C)y first, the BS shock wave Cy later, and, finally, the shock
wave (7, originating from the exceeding the velocity of light in medium.
For the observer more remote from the z axis the BS shock wave C arrives
first, then Cs and finally Cp, (Fig. 3.7). For the larger distances from the
z axis the observer will see only the BS shock wave.

The positions of the shock waves for different observational times are
shown in Fig. 3.8. The dimension of the Cherenkov cone is zero for t < t;
and continuously increases with time for ¢ > ¢;. The physical reason for
this is that the C'f, shock wave closing the Cherenkov cone propagates with
the velocity of light c,, whilst the head part of the Cherenkov cone Cj;
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attached to a moving charge propagates with a velocity v > ¢,. It is seen
that for small observational times (t = 2 and ¢ = 4) the BS shock wave
Coy (pointed curve) precedes Cs. Later, Cps reaches (this happens at the
instant ¢ = 2a/(1 — a?)) and partly passes BS shock wave Cy (t = 8).
However, the Cf, shock wave is always behind Cy (as both of them propagate
with the velocity ¢, but Cf, is born at the later instant ¢t = ¢; ). A picture
similar to the ¢t = 8 case remains essentially the same for later times.

Decelerated motion

Now we turn to the second problem (uniform deceleration of the charged
particle along the positive z semi-axis up to a instant ¢ = 0 after which it
is at rest at the origin). In this case only negative retarded times ¢; have a
physical meaning (positive t; correspond to the charge at rest at the origin).

For an observational time ¢ > 0 the resulting configuration of the shock
waves is shown in Fig. 3.9 where one sees the BS shock wave C arising
from the termination of the charge motion (at the instant ¢ = 0) and the
blunt shock wave C's into which the CSW transforms after the termination
of the motion. The head part of Cys is described to good accuracy by
the sphere p? + (z — 2;)? = (t + ;)? corresponding to the fictitious shock
wave C emitted from the point z = (1 — a?)~'/2 — 1 at the instant ¢; =
—a(1 — a?)~/2 when the velocity of the decelerated charge coincides with
the velocity of light in medium. Only the part of C coinciding with Cjy
has a physical meaning. The electromagnetic potentials vanish outside Cjpy
(as no solutions exist there) and acquire infinite values on the internal part
of Cys. Therefore the surface Cs represents the shock wave. As a result,
for the decelerated motion after termination of the particle motion (¢ > 0)
one has the shock wave Cjs detached from a moving charge and the BS
shock wave Cy arising from the termination of the particle motion. After
the Cy shock wave reaches the observer, he will see the electrostatic field
of a charge at rest and bremsstrahlung from remote parts of the charge
trajectory.

The positions of shock waves at different times are shown in Fig. 3.10
where one sees how the acute CSW attached to the moving charge (¢t = —2)
transforms into the blunt shock wave detached from it (¢ = 8). The pointed
curves mean the BS shock waves described by the equation r = at (in
dimensional variables it has the form r = ¢,t). For the decelerated motion
and t < 0 (i.e., before termination of the charge motion) physical solutions
exist only inside the Cherenkov cone Cjs ( t = —2 on Fig. 3.10). On the
internal boundary of the Cherenkov cone the electromagnetic potentials
acquire infinite values. On their external boundaries the electromagnetic
potentials are zero (as no solutions exist there). When the charge velocity
coincides with ¢, the CSW leaves the charge and transforms into the Cs
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Figure 3.9. Spatial distribution of the shock waves produced by a decelerated charge in
an uniform electric field. Cj; is the blunt shock wave into which the CSW transforms after
the charge velocity coincides with the velocity of light in medium. Part of it is approxi-
mated to good accuracy by the fictitious spherical surface C. Cy is the bremsstrahlung
shock wave originating from the termination of the charge motion at ¢ = 0.

shock wave which propagates with the velocity ¢, (¢ = 2, 4 and 8 on Fig.
3.10). As has been mentioned, the blunt head parts of these waves are
approximated to a good accuracy by the fictitious surface p? + (z — )2 =
(t +t;)? corresponding to the shock wave emitted at the instant when the
charge velocity coincides with the velocity of light in the medium.

In the negative z half-space an experimentalist will detect the blunt
shock wave first and BS shock wave (short dash curve) later.

In the positive z half-space, for the observational point close to the z
axis the observer will see the CSW first and BS shock wave later. For larger
distances from the z axis he will see at first the blunt shock C; into which
the CSW degenerates after the termination of the charge motion and the
BS shock wave later (Fig. 3.10).

It should be mentioned about the continuous radiation which reaches the
observer between the arrival of the above shock waves, about the continuous
radiation and the electrostatic field of a charge at rest reaching the observer
after the arrival of the last shock wave. They are easily restored from the
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Figure 3.10. Continuous transformation of the acute Cherenkov shock wave attached
to a moving charge (¢ = —2) into the blunt shock wave detached from a charge (¢t = 8)
for the decelerated motion. The numbers at the curves mean the observational times.
Pointed curves are bremsstrahlung shock waves. Charge motion is terminated at ¢ = 0.

complete exposition presented in [9] for the z = at? motion law.

We have investigated the space-time distribution of the electromagnetic
field arising from the accelerated manifestly relativistic charge motion. This
motion is maintained by the constant electric field. Probably this field is
easier to create in gases (than in solids in which the screening effects are
essential) where the Vavilov-Cherenkov effect is also observed. We have
confirmed the intuitive predictions made by Tyapkin [3] and Zrelov et al.
[4] concerning the existence of the new shock wave (in addition to the
Cherenkov and bremsstrahlung shock waves) arising when the charge ve-
locity coincides with the velocity of light in medium. For the accelerated
motion this shock wave forms indivisible unity with Cherenkov’s shock
wave. It closes the Vavilov-Cherenkov radiation cone and propagates with
the velocity of light in the medium. For the decelerated motion the above
shock wave detaches from a moving charge when its velocity coincides with
the velocity of light in medium.

The quantitative conclusions made in [9] for a less realistic external
electric field maintaining the accelerated charge motion are also confirmed.
We have specified under what conditions and in which space-time regions
the above-mentioned new shock waves do exist. It would be interesting to
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observe these shock waves experimentally.

3.3. Smooth Tamm problem in the time representation

In 1939, Tamm [13] solved approximately the following problem: A point
charge is at rest at a fixed point of medium up to some instant ¢ = —t,
after which it exhibits an instantaneous infinite acceleration and moves
uniformly with a velocity greater than the velocity of light in that medium.
At the instant t = ty the charge decelerates instantaneously and comes to
a state of rest. Later this problem was qualitatively investigated by Aitken
[14] and Lawson [15] and numerically by Ruzicka and Zrelov [5,16]. The
analytic solution of this problem in the absence of dispersion was found in
[17]. However, in all these studies the information concerning the transition
effects was lost owing to the instantaneous charge acceleration. The main
drawbacks of the original Tamm problem are instantaneous acceleration
and deceleration of a moving charge.

On the other hand, effects arising from unbounded accelerated and de-
celerated motions of a charge were considered in a previous section. It was
shown there that alongside with the bremsstrahlung and Cherenkov shock
waves, a new shock wave arises when the charge velocity coincides with c,,.

The aim of this consideration is to avoid infinite acceleration and de-
celeration typical for the Tamm problem by applying methods developed
in [9,17]. For this aim we consider the following charge motion: a charge is
smoothly accelerated, then moves with a constant velocity, and, finally, is
smoothly decelerated (Fig. 3.11).

3.3.1. MOVING SINGULARITIES OF ELECTROMAGNETIC FIELD

Let a point charge move inside the medium with permittivities € and p
along the given trajectory £(t). Its EMF at the observational point (p, 2)
is then given by the Liénard-Wiechert potentials (3.1). Summation in (3.1)
runs over all physical roots of the equation (3.2). Obviously, ¢’ depends on
the coordinates 7, t of the observational point P.

To investigate the space-time distribution of the EMF of a moving
charge one should find (for the given observational point 7, ) the retarded
times from Eq.(3.2) and substitute them into (3.1).

There is another much simpler method (suggested by Schott [6]) for
recovering EMF singularities. We seek zeros of the denominators R; entering
into the definition of electromagnetic potentials (3.1). They are obtained
from the equation

ealt —t) = 2z — (1), (3.20)
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Figure 3.11. Schematic presentation of the smooth Tamm model. Charge accelerates,
moves uniformly with a velocity vo, and decelerates in the time intervals (—to, —t1),
(—t1,t1) and (¢1,t0), respectively.

Combining (3.20) and (3.33) we find p(¢') and z(t')

c? At —t)
— )+ S (t—t), p=SNT0) 3.21
smelt)+ S—t), p= SN (3.21)

Here v, = 1/y/3*n? -1, B =v/ec.

Our procedure reduces to the following one. For the fixed observation
time ¢, we vary t' over the motion interval, evaluate z(t') and p(t') and
draw the dependence p(z) for the fixed t. Due to the axial symmetry of
the problem, this curve is in fact the surface on which the electromagnetic
potentials are singular. It follows from (3.21) that these singular surfaces
exist only if v > ¢/n, that is if the charge velocity is greater than the light
velocity in medium. There are other surfaces on which the EMF strengths
are singular and which are not described by (3.21). For example, on the
surfaces of the bremsstrahlung (BS) shock waves arising at the start or
the end of motion, the electromagnetic potentials exhibit finite jumps. The
corresponding EMF strengths have ¢ singularities on these surfaces.
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Mowving singularity of the original Tamm problem
In the time interval —to < t' < to(to = z0/vo) where a charge moves
uniformly with the velocity vy equations (3.21) look like

& (t —t') vy (t—t') (3.22)
=——7V(t—-1t), z=1g —(t—1). .
p VoYon Vo

Here vo, = 1/1/v¢/c2 — 1. Excluding ¢’ from these equations one finds

p = (vot — 2)Yon, (3.23)

where p and z are changed in the intervals

2

C
2 <z<wt, 0<p< UoVno (t + to)
n

for —tg < t < ty and
0 0
2] <z2<2y, p2<p<p1

for t > tg. Here

2 2

A=t +to) —20, p1=—g—(t+t0),
von? U0n270n
2 2
0 Cn Cn
2o = —(t —tg) + 20 9 = t—1g).
§= 2 —to) 20 = (=)

We define the straight lines Ly (z = —z9+ pyn) and Lo (z = 29+ pyn) (Fig.
3.12 (a)). They originate from the Fzy points and are inclined at the angle
0. (cosf. = 1/0yn) towards the motion axis. It is seen that for each ¢ > ¢
the singular segment (3.23) enclosed between the straight lines L; and Lo
is perpendicular to both of them and coincides with the CSW defined in
Chapter 2. Its normal is inclined at the angle 6. towards the motion axis.
As time goes, it propagates between L1 and Lo. For —tg < t < tg the CSW
is enclosed between the moving charge and the straight line L.

Smooth Tamm problem

In the smooth Tamm problem (Fig. 3.11) a charge is at rest at the spatial
point z = —zg up to an instant ¢ = —ty. In the space-time interval —ty <
t < —t1, —29 < z < —z1 (we refer to this interval as to region 1) it moves
with constant acceleration a

E() = —20 + galt' + 10, v(t') = alt' +1o).
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Figure 3.12. (a): The position of the shock waves in the original Tamm problem. BS;
and BS2 are the bremsstrahlung shock waves emitted at the beginning and the end of
the charge motion; CSW (thick straight line) is the Cherenkov shock wave; (b): The
position of the shock waves in the limiting case of the smooth Tamm problem (see Fig.
11) when the lengths of accelerated and decelerated parts of the charge trajectory tend to
zero. The thick curves SW; and SWy are the shock waves arising at the accelerated and
decelerated parts of the charge trajectory, respectively. Due to the instantaneous velocity
jumps, SW; and SW, partly coincide with the BS; and BS2 shock waves, respectively.

In the space-time interval —t; < ¢t < t;, —2z1 < z < z1 (region 2) it moves
with the constant velocity vg

EX) =wvot', v(t') = vo.

In the space-time interval t; < t < g, 21 < z < 2¢ (region 3) a charge moves
with constant deceleration a down reaching the state of rest at t = tg:

E(t') =20 — %a(t’ —t0)?%,  w(t)) =a(ty—t).

The matching conditions of £(¢) and v(t’) at the z = 42 points define a, ty

and tq:
2
v 2z0 — 2 z
0 0 1 1
t() - - tl - —

“= 2(20*21)’ Vo ’U[)'

Space region 1. In the space region 1 equations (3.21) are

1 c? At —t)
= — —a(t' + o)+ —(t—t' = —F = 3.24
: S 2(1( o)+ n%( Joop n2vy, (3.24)
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where v = a(t' 4 t¢). It follows from this that the charge velocity coincides
with the velocity of light in medium ¢, = ¢/n at ' = —t., t. = to — c,/a.
At this instant
Pc = ,O(t/ - _tc) =0,
1

D=t = —t) = et = (1= g0 e —2)l (329)

For the observation time ¢ smaller than the time —t¢; corresponding the
right boundary of the motion interval 1, p(t') has two zeroes (at ' = t. and
t' =t). There is a maximum between them (Fig. 3.13 (a)) at

V=t =ty + (2 )2/3(t+t )13, (3.26)
Obviously, t. < t,, < t. The corresponding p and z are equal to

C%{[a(t + tO)]2/3 _ 132,

Pm = —
a Cn,

o = —20 + ”{ [ ~1. (3.27)

Cn

This solution coincides with the analytical solution found in [9] for the
semi-infinite motion beginning from the state of rest. The dependence p(z)
has a moon sickle-like form. This complex arises when the charge veloc-
ity coincides with the velocity of light ¢, in medium. It consists of the
curvilinear Cherenkov shock wave CSW attached to a moving charge and
the shock wave closing the Cherenkov cone. As time goes, the dimensions
of this complex rise (since a charge moves with the velocity v while SW;
propagates with the velocity ¢,,).

For the observation time ¢ greater than the time —t1, p has only one zero.
It has a maximum if —t; < t < —tg + 2(20 — 21)vo/c2. The corresponding
Ts Pmy and zp, are given by (3.26) and (3.27). In the interval ¢/, < ¢’ < —t1,
p decreases reaching the value

p1=p(t' = —t1) = (t+t) (3.28)

VoM =Tn
at the boundary point of the motion interval. The corresponding z is equal

to
2

21 = Z(t/ = —tl) =

(t + tl) —21. (329)

von2
It is easy to check that z as a function of ¢’ has a minimum at ¢’ = ¢ : it
decreases from 2t at ¢/ = —t, down to

= =g+ 2 sy (3.30)

TL
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Figure 3.13.

The position of shock waves in the smooth Tamm problem. (a,b,c) For

small and moderate observation times the singularity complex consists of the Cherenkov
shock wave (CSW) attached to a moving charge and the shock wave SW; closing the
Cherenkov cone and inclined at the right angle towards the motion axis; (d) For large

observation times this complex detaches from a moving charge and propagates with the

parts of the charge trajectory.

velocity of light ¢, in medium. It consists of the CSW and the singular shock waves SW;

and SW3 perpendicular to the motion axis and arising at the accelerated and decelerated

at t' = ¢/, and then increases up to 2 for ' = —t; (Fig. 3.13(b), dotted
line). For t > —to+2(z9 — 21)vo/c2 there is no maximum of p(t') which rises
steadily from 0 for ¢’ = ¢, up to p; given by (5.5) for t' = —¢; (Fig. 3.13(c),
dotted line). In particular, p, = p1, 2m = 21 for t = —tg + 2(20 — 21)vo/c2.
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Space region 2. In the time interval —t; < t' < t1 (t1 = z1/vp) where a
charge moves uniformly with the velocity vy equations (3.21) look like

2 2

Cn / / Cn /
=—(t—1t), z=uwvt +—=(t—-1). 3.31
p= ) 1) (331)
Here v, = 1/4/v3/c2 — 1. Excluding ¢’ from these equations one finds
p = (vot — 2)Yon, (3.32)

where p and z change in the intervals

2
~ C
1 <z<yt, 0<p< L (t+t1)
VoYon

for —t; <t <t; and
Z1<z<z, p2<p<p

for ¢t > t1. Here Z; and p; are the same as above, and

Z2:é(t_t1)+21 p2 = & (t—t1) (3.33)
Vo 7 VoYon ‘ ‘

It is seen that for each ¢t > ¢; the singular segment (3.33) is enclosed
between the straight lines Ly (p = (2 + 21)/70n) and L (p = (2 — 21)/Y0n)
originating from the boundary points of the interval 2 and inclined at the
angle 0. (cosf. = 1/Byn) towards the motion axis (Fig. 3.13(d), solid line).
The singular segment (3.32) is a piece of the Cherenkov shock wave which
is enclosed between L; and Lo and perpendicular to both of them. Its
normal is inclined at the angle 6. towards the motion axis. As time goes,
it propagates between L; and Lgy. For —t; < t < t; the singular segment
(3.32) is enclosed between the moving charge and the straight line L; (Fig.
3.13 (c), solid line).

Space region 3. In the time interval t; < ¢’ < to where a charge moves
with deceleration a equations (3.21) look like
1 c? At —t)
z=z20— —alt' —tg)> + —(t—t' = —" 3.34
0 2 ( 0) TLQ’U( )7 p 7’L2’U’)’n ) ( )
where v = a(tp —t'). The charge velocity changes steadily from vg at ¢’ = t;
down to 0 at t = tg. The above singularity surfaces exist only if ¢, < v < vg.
The charge velocity coincides with the velocity of light in medium ¢,, = ¢/n
at ¢/ = t.. At this instant
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1 1
@) ot = 1) = et + (1 — —— )20 — —— (20 — 21)]. 3.35
2 = ol =t) =t + (- 50— o= ) (339)
The radius p(t) vanishes at the position of a moving charge (¢ = t) for
t < tcand at t’ =t for t > t. (Fig 3.13(d)). It is maximal at the start of

the third motion interval 3 (¢’ = ¢1) where
p(t/ = tl) = P2, Z(t/ = tl) = 29

(p2 and z2 are the same as in (3.33)).

A complete singular contour composed of its singular pieces defined
in the regions 1,2 and 3 is always closed for the fixed observation time
t. In fact, for —t. < t < —t; the singular contour lies completely in the
region 1. It begins at the point z = z((;l), p = 0 and ends at the point
p=0,2=—z +a(t + ty)?/2 coinciding with the current charge position
(Fig. 3.13(a)). For —t; < t < t; the singular contour lies in the regions
1 and 2 (Figs. 3.13 (b,c)). Its branch lying in the region 1 begins at the
point z = zgl), p = 0 and ends at the point z = Z1, p = p;. Its branch lying
in the region 2 begins at the point z = Z;, p = p1 and ends at the point
z = vot, p = 0 coinciding with the current charge position. For ¢ > ¢; the
singular contour lies in the regions 1,2 and 3 (Fig. 3.13(d)). Its branch in
region 1 is the same as above. Its branch lying in the region 2 begins at the
point z = Z1, p = p1 and ends at the point z = 29, p = po. Its branch lying
in the( 1)region 3 begins at the point z = 29, p = p2 and ends at the point

2

z=2z:",p=0.

Transition to instantaneous velocity jumps

It is instructive to consider the limit z; — 2y corresponding to the in-
stantaneous velocity jumps at the start and the end of the charge motion.
Intuitively it is expected that the original Tamm problem should appear in
this limit. Turning to (3.24) we observe that the second term entering into
z vanishes. In fact, it is equal to

20 — %1
—a(t' +19)? = 2=+
2 ( 0) 32n?2
at ' = —t, and
1 20 — 21
—a(t' +t9)* = -
2 ( 0) (3%n?
at t = —t1 . Therefore, in the limit 27 — zg it disappears at the boundaries

of the charge motion interval and, therefore, inside this interval since the
above term is a monotone function of ¢'. Then, (3.24) reduces to
2(z0 —2z1) t —to

Ben? '+t

2= —20+
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9 1/2
- 1} . (3.36)

On the other hand, we cannot drop the terms with (29 — 2z1) in (3.36) since

the denominator (' + tp) is of the same order of smallness. It is seen that

z:zgl), p:pgl) =0att = —t.and 2 = 21, p= p1 at t' = —t; Here

i 2(20 — 21) t —to nﬁgc(t’ + t())
p= Ban? '+t 2(z0 — 21

D et (I ) E = - Ay = gy
c — tn 0 ﬁon ) 1 — v 0 /Bgn ) P1 = V0 Yon 0)-
It follows from (3.36) that
P2+ (2 +20)% = At +t)? (3.37)

that coincides with the equation of the BS shock wave arising at the be-
ginning of the charge motion (BS;, for short). This singular contour (SW;
in Fig. 3.12 (b)) begins at the point z = z((;l), p= pf;l) = 0 and ends at the
point z = Z1, p = p1. It represents the shock wave arising when the charge
velocity coincides with the velocity of light in medium at the accelerated
part of the charge trajectory. The fact that SW; and BS; are described
by the same equation (3.37) is physically understandable since both these
waves, due to the instantaneous velocity jump, are created at the same
instant ¢ = —tg, at the same space point z = —z(, and propagate with the
same velocity c¢,,. It should be noted that the BS; shock wave is distributed
over the whole sphere (3.37) while the singular shock wave SW; fills only
its part.

The second part of the singular contour is the Cherenkov shock wave
(CSW in Fig. 3.12 (b)) extending from the point z = Z;, p = p; to the
point z = 23, p = po. Here

2 2
cs, 1 s,
zo=—t+z20(1l——), p2= t—tp),
vo ( 53n) UoVon( )
The third part of the singularity contour (SW2 in Fig. 3.12 (b)) begins at

(2)
c

the point z = 23, p=p2 and ends at z = z2¢, p = pg) = 0. Here

1
2P = cpt + 2(1 — —).
BOn
This part of the singularity contour represents the shock wave arising at the
decelerated part of the charge trajectory. It is described by the equation
P2+ (2= 20)> = At — to)? (3.38)

coinciding with the equation of the BSs shock wave emitted at the end
(t =to, z = zp) of a charge motion. Again, the singularity fills only part of
the sphere (3.38).
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Now we discuss why the configuration of the shock waves in the limiting
case of the smooth Tamm problem (Fig. 3.12(b)) does not coincide with
that of the original Tamm problem (Fig. 3.12(a)). It was shown in [18,19]
that in the spectral representation the radiation intensity (for the fixed ob-
servation wavelength) of the smooth Tamm problem transforms into the
radiation intensity of the original Tamm problem when the length of the
trajectory along which a charge moves nonuniformly tends to zero. How-
ever, Figs. 3.12 ((a),(b)) describe the position of the EMF singularities at
the fixed moment of the observational time (or, in other words, Figs. 3.12
((a),(b)) correspond to the time representation). The time and spectral rep-
resentations of the EMF are related by the Fourier transformation. For an
arbitrary small but finite length [ of the charge nonuniform motion in the
smooth Tamm problem, the contribution of the non-uniform motion to the
radiation intensity becomes essential and comparable with the contribution
of the uniform motion for high frequencies. This was clearly shown in [18,
20]. Thus, the appearance of additional shock waves in Fig. 3.12 (b) is due
to the contribution of high frequencies.

3.4. Concluding remarks for this chapter

What can we learn from this chapter?

1. For an accelerated charge motion beginning from a state of rest, the
bremsstrahlung shock wave arises at the start of the motion. When the
charge velocity coincides with the velocity of light ¢, in medium, the com-
plex arises consisting from two shock waves. One of them is the Cherenkov
shock wave inclined at the angle 6., (cosf. = 1/0n,  is the current
charge velocity) towards the motion axis. The other shock wave, closing
the Cherenkov cone behind it, is perpendicular to the motion axis. As time
advances, the dimensions of this complex grow.

2. For a decelerated motion terminating with the state of rest, the initial
Cherenkov shock wave is transformed into a blunt shock wave when the
charge velocity coincides with ¢,. This blunt shock wave detaches from a
charge and propagates with the velocity c,,.

3. For the smooth Tamm problem consisting of accelerated, deceler-
ated and uniform motions, the bremsstrahlung shock wave arises at the
beginning of the motion. At the instant when the charge velocity coincides
with ¢, the above complex consisting of the Cherenkov shock wave and
the shock wave closing the Cherenkov cone appears. At the uniform part
of the charge motion this complex moves without changing its form (only
its dimensions grow). At the decelerated part of a charge trajectory the
slope of the Cherenkov shock wave towards the motion axis tends to /2,
as the charge velocity approaches c¢,. At this instant the above complex
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detaches from the charge and propagates with the velocity c,. When the
charge motion terminates, the bremsstrahlung shock wave arises.
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CHAPTER 4

CHERENKOV RADIATION
IN A DISPERSIVE MEDIUM

4.1. Introduction

The radiation produced by fast electrons moving in medium was observed
by P.A. Cherenkov in 1934 [1]. Tamm and Frank [2] considered the motion
of a point charge in dispersive medium. They showed that a charge should
radiate when its velocity exceeds the velocity of light in medium c¢,. For the
frequency independent electric permittivity, the electromagnetic strengths
have §-like singularities on the surface of the so-called Cherenkov (or Mach)
cone [3]-[6]. This leads to the divergence of the quantities involving the
product of electromagnetic strengths. In particular, this is true for the flux
of the EMF'. There are some ways of overcoming this difficulty. Tamm and
Frank operated in the Fourier transformation. They integrated the energy
flux up to some maximal frequency wy. The other way [7], widely used in
quantum electrodynamics, is to represent the square of the § function as a
product of two factors: one is a ¢ function and other is the integral from
the exponent taken over the interval (—7,7") with a subsequent transition
to the T — oo limit. Owing to the § function, the second integral reduces
to 27. Dividing both parts of the equation (in which the product of two §
functions appears) by 27, one obtains, e.g., the energy flux per unit time.
The goal of this consideration is to evaluate the electromagnetic field
(EMF) arising from the uniform motion of a charge in a non-magnetic
medium described by the frequency dependent one-pole electric permittiv-
ity
wi

e(w)=1+ G (4.1)
Equation (4.1) is a standard parametrization describing a lot of optical
phenomena [8]. It is valid when the wavelength of the electromagnetic field
is much larger than the distance between the particles of a medium on
which the light scatters. The typical atomic dimensions are of the order
a =~ h/mca, a = e?/hc, and m is the electron mass. This gives A = c/w > a
or w < mc?a/h ~ 5 x 1071, The typical atomic frequencies are of
the order wy ~ mc?/ha® =~ 10'6 s~1. Thus the integration region extends
well beyond wy [9]. For w > wy, €(w) ~ 1, that is, atomic electrons have
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no enough time to be excited. Following the book [10] and review [11],
we extrapolate the parametrization (4.1) to all w. This means that we
disregard the excitation of nuclear levels and discrete structure of scatterers.
According to Brillouin ([10], p. 20):
Also, we use the formulas of the dispersion theory in a somewhat more
general way than can be justified physically. Namely, we extend these
formulas to infinitesimally small wavelengths, while their derivation is
justified only for wavelengths large compared with the distance between
dispersing particles.
Sometimes in physical literature another representation of the dielectric
permittivity is used (known as the Lorentz-Lorenz or Clausius-Mossotti
formula (see, e.g., [9,10]):

1+ 2a(w)/3 w? w?
/: _ 1 L — L
1-a(w)/3 + wi — w?’ aw) wi — w?’
w = wd —wi/3. (4.2)

It is generally believed that e¢(w) given by (4.1) describes optical properties
of media for which e(w) differs only slightly from unity (e.g., gases), whereas
€¢/(w) describes more general media (liquids, solids, etc.). We see that the
qualitative behaviour of € and € is almost the same if we identify wy and
wr, with w(, and wr, respectively. This permits us to limit ourselves to the
e representation in the form (4.1).

So we intend to consider the effects arising from the charge motion in
medium with e(w) given by (4.1). This was partly done by E. Fermi in
1940 [12]. He showed that a charged particle moving uniformly in medium
with permittivity (4.1) should radiate at every velocity. He also showed
that energy losses as a function of the charge velocity are less than those
predicted by the Bohr theory [13]. However, Fermi did not evaluate the elec-
tromagnetic strengths for various charge velocities and did not show how
the transition takes place from the subluminal regime to the superluminal.
The Fermi theory was extended to the case of many poles case by Stern-
heimer [14] who obtained satisfactory agreement with experimental data.
Another development of the Fermi theory is its quantum generalization
[15]-[17].

In this consideration we restrict ourselves to the classical theory of the
Vavilov-Cherenkov radiation with electric permittivity given by (4.1) and
its complex analog. It is suggested that the uniform motion of a charge is
maintained by some external force the origin of which is not of interest for
us.

There are experimental indications [18]-[20] that a uniformly moving
charge radiates even if its velocity is less than the velocity of light in
medium. It seems that the present consideration supports this claim.
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4.2. Mathematical preliminaries

Consider a point charge e moving uniformly in a non-magnetic medium
with a velocity v directed along the z axis. Its charge and current densities
are given by

plF ) = ed(@)d(y)d(z — vt), . = vp.

Their Fourier transforms are
p(E,w) = / (7, ) expli(B7 — wt)]|dPFdt = 2med(w — ko),

jz(E’w) = Up(va)‘ (4.3)

In the (E,w) space the electromagnetic potentials are given by (see, e.g.,

[21])

- 47 E,w - EM)
o) = T LEC) g Foy = amp 2ECL e (4
€ ]{7 — 0_26 k’ — 0_26

Here €(w) is the electric permittivity of medium. Its frequency dependence
is chosen in a standard form (4.1). In the usual interpretation wy, and wy
are the plasma frequency w? = 4rN.e?/m (N, is the number of electrons
per unit volume, m is the electron mass) and some resonance frequency,
respectively. Quantum mechanically, it can be associated with the energy
excitation of the lowest atomic level. Our subsequent exposition does not
depend on this particular interpretation of wy, and wy. The static limit of

e(w) is
2

eoze(w:()):l—i—w—é.
“o

¢(w) has poles at w = +wy. Being positive for w? < wg it jumps from 400 to
—o00 when one crosses the point w? = w3; €(w) has zero at w? = w3 = wi+w?
and tends to unity for w — co. In Eq. (4.1) €(w) is negative for w3 < w? < w3
(Fig. 4.1,a). For the free electromagnetic wave this leads to its damping in
this w region even for real e(w) (see, e.g., [10,22]).

It is seen that

-1
—1—
€ (W) w3 — w?

has a zero at w? = w2 and a pole at w? = w3.

For the EMF radiated by a point charge moving uniformly in a dielectric
medium, the conditions for the damping are modified. It turns out that the
damping takes place for 1 — $%¢ > 0. Otherwise (1 — 3%¢ < 0) there is
no damping. This corresponds to the Tamm-Frank radiation condition. We
now define domains where 1 — %€ > 0 and 1 — % < 0.
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Figure 4.1. (a): For a free electromagnetic wave propagating in medium the damping
region where € < 0 corresponds to wi < w? < w? = wi+w?; (b): For the electromagnetic
field radiated by a charge moving uniformly in medium with velocity v < v., the damping
region where 1 — 3%¢ > 0 lies within the intervals 0 < w < w, and wo < w < °0; (c): For
the electromagnetic field radiated by a charge uniformly moving in medium with velocity
v > ., the damping region where 1 — %¢ > 0 extends from w = wo to w = oo.

For 8 < 3. one has 1 —3%¢ > 0 for w? < w? and w? > w3 and 1 — % < 0
for w? < w? < w2 (Fig. 1,b). For B > 3. one obtains 1— % > 0 for w? > w3
and 1 — 3% < 0 for 0 < w? < wi (Fig. 1 ¢) . Here

B = 681/2 = 1/\/1+w%/w8, We =woV1—¢,

e=[2/B22, P =01-8)"" E=01-8H)"1

In what follows, (., despite its formal appearance and independence
of w, will play an important role for the analysis of the EMF induced by
a charge moving in medium with a frequency dependent permittivity. We
apply Eq. (4.1) to the medium with 3. = 0.75, n = \/eg = 1/5. = 1.333.
The optical properties of this medium are close to those of water for which
n = 1.334. It is seen that (. changes from 3. =0for N > 1 upto G. =1
for N = 0. We refer to these limit cases as to optically dense and rarefied
media, respectively.

In the 7, t representation ®(7,t) and /T(F, t) are given by

e dw kdk
®(F.1) = iw(t—z/v) ko).
(%) TV / e k2 + (w?/v2)(1 — B2%€) Jo(kp)

kdk
k2 + (w?/v2)(1 — B2%¢)

AL (7, t) = % / dwe™(1=2/7) Jo(kp). (4.5)
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The usual way of handling with these integrals is to integrate them first
over k. For this we use the Table integral (see, e.g., [23])

kdk
——=Jo(kp) = K, 4.6
e o(kp) = Ko(pq), (4.6)
0
where in the right hand side the value of square root 1/¢2 corresponding to
its positive real part should be taken.

4.3. Electromagnetic potentials and field strengths

As was shown in [11], the inclusion of the w dependencies in € and € ef-
fectively takes into account the retardation effects. The very fact that the
velocity of light in medium c,, is less than the velocity of light in vacuum c
means that oscillators of medium react to the initial electromagnetic field
with some delay. The deviation of ¢, from c is owed to the deviation of €
from unity. For the incoming plane wave and frequency independent w this
was clearly demonstrated in [24]-[26]. At first glance it seems that ¢, will
be greater than ¢ for e < 1. However, a more accurate analysis shows [10]
that the group velocity of light in medium is always less than c.

To evaluate integrals entering into (4.5) one should satisfy the condition
Re+/1 — 32¢ > 0. It is satisfied automatically if 1 — 3%¢ > 0. In this case
the argument of the Ky function is (Jw|p/v)y/1 — %€ where the square root
means its arithmetic value. Now let 1 — 3%¢ < 0. First, we consider the case
when e has the imaginary part:

wi

e(w)_1+w§—w2+ipw’ p> 0. (4.7)
The positivity of p leads to poles of €(w) lying only in the upper complex
w half-plane. This is required to satisfy the causality condition (for details
see [27]). Sometimes in physical literature [22] it is stated that the causality
condition is satisfied if the poles of €(w) lie in the lower w half-plane. This
is because of a different definition of the Fourier transforms corresponding
to different signs of w inside the exponentials occurring in (4.3). We are
now able to write out explicit expressions for electromagnetic potentials
and field strengths. In the cylindrical coordinates they are given by

o d o
o= / —weio‘Ko(k‘p), A, = £ dwe Koy (kp),
™ € e
e T ; e T dw
Hy=pD, = — dwe' kK (kp), E,= - ?ew‘k‘Kl(kp),

—00 —00
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B =-—5 / (1~ )¢ Ko(kp),

D. =5 / dww (1 — B2)e Ky (kp). (4.8)

Here a = w(t — z/v), k? = (1 — B%€)w?/v?. Again, k in Eq.(4.8) means
the value of V&2 corresponding to Rek > 0.

These expressions were obtained by Fermi [12]. Their drawback is that
modified Bessel functions K are complex even for real e (when 1— 3%¢ < 0).
We intend now to present Egs. (4.8) in a manifestly real form. This greatly
simplifies calculations. We write 1 — 3%¢ in the form

1 — 3% = a+ib= Va2 + b2(cos ¢ + isin @) (4.9)
where
1— 32— 322 w§ — w? b= %2 wp
Ll — W) phu Pl — )2 P
b
cos ¢ = a sin ¢ =

a2+ b2’

VIR

Now we take the square root of 1 — B%. The positivity of Rey/1 — 32¢
defines it uniquely:

V1 — (2% = (a® + b2)1/4(cos§ + isin %),

1 a )1/2 . ¢ 1 b a

cos— = —(1+ , sint = ——(1 - —
» = At Vo 2= v T Ve

Thus the argument of K functions entering into (4.8) is

)2, (4.10)

Wl o o 1/4 )
s (a® 4 b7) (cos2+zsm2>. (4.11)
Although the integrands in (4.8) are complex, the integrals defining elec-
tromagnetic potentials and strengths are real. This is due to the fact that
e(—w) = €*(w).

We now take the limit p — 0+. Let 1 — 3%¢ > 0 in this limit. Then
a>0,b— 0, cos(¢/2) — 1, sin(¢/2) — 0, and /1 — $%€ coincides with
its arithmetic value. Now let 1 — 3%¢ < 0. Then, a < 0, b — 0, cos(¢/2) —
0, sin(¢/2) — b/|b| and /1 — 32e = i\/|1 — F2¢|sign(w). (it has been taken




Cherenkov radiation in a dispersive medium 133

into account that p > 0). This shows that the functions K entering into
the right hand side of Eq. (4.8) reduce to

s (s =) = = (o7l )
(@p—m) ngQ) (H%M)

for w > 0 and

ST ()
i () - ()

for w < 0. Now we are able to write out electromagnetic potentials and
field strengths in a manifestly real form. For 5 < (3. one finds

we o0 wo
2 d d
== (/—i—/) —wcosaK0+E/—w(sinan—cosaNo),
v € v) €
0 wo We
2 We o wo
A, (7 t) = W—i (/—{—/) dwcosaK0+§/dw (sinaJy — cosalNy), (4.12)
0 wo We
Hy(7,t) dwy /|1 — (32 K
o(71) g (/ /) wdwy /|1 — (?€| cos aK1
e T
— d 1— (32 inaJ; — N
+cv/w wr/|1 — (2€| (sinaJp — cosalNy)
— (/ /) (1——) wdw sin a K
e

0
-3 (1 ﬁ2> wdw(Nysina + Jp cos @),

We

771;2 (/ /) dw— |1 — (2% ]cosaKl

(&
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wp
e w

— | dw—/|1 — B2%€|(sinaJq — Ny).
+v2/ wey/| B2€|(sinaJ; — cos aNy)

We

On the other hand, for 8 > (.

O(7,t) / —cosaKy+ — / (sinaJy — cos aNp),

wo

00 wo
2
AR t) = W—i /dw cos aKy + S /duJ(sinaJo — cosaNp), (4.13)

o0
2e
= = [ wdwy/|1 — B2 K
7Tv/ww| B?€| cos a K1+
wo
wo
e
— d 1 — 32¢|(sinaJ; — N
—i—cv/w wy/|1 — B?%€|(sin a1 — cos alNy),
0

2 o
EZ_T('_;/<1 6ﬂ2>wdwsmaK0

wo
wo
< (1 1> dw(No sin o + J )
- — —= | waw SN & COS ¥
CQO 652 0 0 )

E,= 3 /dw—\/ |1 — 3%€| cos a K

e w

] aw? /)1 — 52| (sinady — cosalNy).
—|—1)20/ W |1 — (2€| (sinaJy — cos alNy)

Here o = w(t — z/v). The argument of all the Bessel functions is

\/ 11— B2€|pw/v.

We observe that integrals containing usual (J, N) and modified (/') Bessel
functions are taken over spatial regions where 1 — 3% < 0 and 1 — 3% > 0,
respectively. Consider particular cases of these expressions.

For wy — 0 we obtain: € — 1, 8. — 1,w. — wo,

e
d K
/wcom O(U”Y) [(z — vt)2 + p? /72|12
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A =P, y=1/\1-p5

i.e., we obtain the field of a charge moving uniformly in vacuum.
Let v — 0. Then w, = wp and

pw e 1
dw cos( =——, A.=0
7T€0/ Bl ) €0 /p? + 22

i.e., we obtain the field of a charge resting in medium.
Let wy — 00, wr, — 00,, but wr,/wp is finite. Then

We = WO\/l — B*y2wi/wh — 00, e(w) — €

d K \/1— 32
ero/ W cos o 0( ﬁeo)

e 1
o[t + 2 T

and

d =

for 8 < (B, and

D= /dw sin aJy — cos alNp)
VEQ

2e 1
= g[(z—vt)Q—p2/7%]1/26(vt_z_p/’yn)’ Azzﬂﬁ()@

for B > .. Here v, = 1/\/|1 — 2], Bn = v/cn, cn = ¢/ /€y. Thus, we
arrive at a charge motion in a medium with a constant electric permittivity
€ = €p. It is seen that the EMF has the form of an oblate ellipsoid for 3 < B¢
and the Mach (or Cherenkov) cone with its vertex at the charge current
position for g > . (Fig. 4.2). Electromagnetic potentials are zero outside
the Cherenkov cone (z > vt — p/v,), singular at its surface (z = vt — p/vn),
and decrease as 1/r inside the Cherenkov cone (z < vt — p/7y). It should
be stressed that the integration over the whole range of w is required for
obtaining correct limit expressions and for guaranteeing the reversibility of
the Fourier transformation.

The distributions of the magnetic field strength Hy as a function of z
on the surface of a cylinder C,, of the radius p are shown in Figs. 4.3-4.5 for
€ given by (4.1). If the dependence € of w were neglected (e(w) = €p), then
for 8 > (. = 1/n the electromagnetic field would be confined to the interior
of the Cherenkov cone with the solution angle 26., sinf. = 3./3 = 1/0n
(Fig. 4.2). This means that on the surface of C, the electromagnetic field

would be zero for —z. < z < 00, 2. = pcotf. = py/3?*n? — 1.
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Figure 4.2. Schematic presentation of the Cherenkov cone attached to a charge moving
in a dispersion-free medium. The radiation field is confined to the surface of the cone, the
field inside the cone does not contribute to the radiation. On the surface of the cylinder
C), the electromagnetic field is zero for z > —z.; 0, means the radial energy flux through
the cylinder surface.

What can we learn from figures 4.3-4.5 7.

For a small charge velocity (8 < 0.4) the magnetic field coincides with
that of a charge moving inside medium with the constant ¢ = ¢y3. For 3
slightly less than (. (8 ~ 0.6) oscillations appear for negative values of z.
Their amplitude grows as [ increases. For 3 = (. we see a number of peaks
in the neighborhood of z = 0 with the amplitude slowly decreasing in the
z < 0 region. For 3 = (. there is a large maximum at z = —z. and smaller
ones in the region z < —z.. The period of these oscillations approximately
coincides with that of the medium polarization T, =~ 27v3./wy.

Figures 4.3-4.5 demonstrate how the EMF is distributed over the surface
of the cylinder C, at a fixed instant of time ¢. Since all electromagnetic
strengths depend on z and t via z — vt, the periodic dependence on time
(with the period 27(3./wp) should be observed at a fixed spatial point.

It is seen that despite the w dependence of ¢, the critical velocity 3. =
1/4/€o still has a physical meaning. Indeed, for 3 > (3. the magnetic vector
potential and field strength are very small outside the Mach cone (z > —z.)
exhibiting oscillations inside it (¢ < —z.). For § < (. the Mach cone
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Figure 4.3. The distribution of the magnetic field strength on the surface of the cylinder
Cp. The number of a particular curve means § = v/c; z and p are in units of ¢/wo; Hy
is in units of ewd/c*.
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Figure 4.5. The same as in Fig.4.3, but for 5 = 0.9 and 0.99.
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Figure 4.6. The integration contour discussed in the text

disappears. The EMF being relatively small differs from zero everywhere.
The magnetic field presented in Figs. 4.3-4.5 can be compared with its
non-oscillating behaviour for the frequency-independent € = ¢g:

eBp(3*n® —1)
[(z = vt)? — p?(62n? — 1)]3/2

% 5(1)75_2_10/777,)
Yo [(z = vt)2 — p?(B2ng — 1)]1/2

We turn again to Egs. (4.12) and (4.13). The Fourier components of &
and E have a pole at w = wy = /w3 + w%. This leads to the divergence

of integrals defining ® and E. Tt would be tempting to approximate these
integrals by their principal values. We illustrate this using ® as an example
(see Eq.(4.8)). Consider a closed contour C' consisting of three real intervals
((=o0, —wp—06), (—wo+6,wp—0), (wo+d,00)),of two semi-circles C; and
C5 of the radius § with their centers at z = —wy and z = wy, respectively,
and of a semi-circle Cr of the large radius R (Fig. 4.6). All semi-circles
C1,C5 and CR lie in the upper half-plane. The integral

Hy =

(vt — = — p/7n)

dw
/?ew‘Ko(k:p)
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taken over the closed contour C' equals zero if the function Ky has no
singularities inside C'. The same integral taken over Cg is also 0 for t—z/v >
0 due to the exponential factor e**. Therefore,

—wp—90 wo—0

T T T o) ommasn-o

—wo+6 wot+d C1 Ch

In the limit & — 0 one obtains

V.P. /—em‘Ko (kp) = / / —e‘aKo (kp)

C1 C2

R T ()

w3
For the electric potential one then finds

¢ =— Eﬂ(9(15 — z/v)sinws(t — z/v) Ky < |w5|> . (4.14)

U Ws

We see that the principal value of the integral treated does not describe the
Cherenkov cone. Probably, this is owing to singularities (poles and branch
points) of the modified Bessel function in the upper w half-plane. When
evaluating (4.14) we did not take them into account.

4.4. Time-dependent polarization of the medium
Another, more physical, way to obtain EMF of a charge uniformly moving
in medium is to start with the Maxwell equations

.= .3 = 15 S 4w
divD = 4mp, divB=0, cwlE=—-B, curlH = fD + 73 (4.15)
c

As the medium is non-magnetic, B = H. The second and third Maxwell
equations are satisfied if we put

_, - - _ - 1=
H=VxA FE=-V&--A
c
We rewrite Maxwell equations in the w representation:
0 iw
HY — — — A% Ew _ PY — BAY
¢ (9p z) v ( ﬁ z)’
10

P 3,0 p(E, +4nPy) — —(E“’ + 47 PY) = 4mp®,
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OEY i
= %Hﬁ;. (4.16)

The last equation is satisfied trivially if we express electromagnetic strengths
through the electromagnetic potentials:

w
Hf; = ﬂ(E;" + 47TPZJ), FEPW +

opv w iw
By=—gy BE=¥ -4 Hi=-

DA
op

In deriving these equations we have taken into account that the z and ¢
dependencies of the electromagnetic potentials, field strengths, polarization,
charge and current densities enter through the factor expliw(t — z/v)] in
their Fourier transforms.

The electric field E of a moving charge induces the polarization ﬁ(F, t)
which, being added to E , gives the electric induction D = E+4xP. Usually
it is believed (see, e.g., [8]-[11], [22], [27] that the w components of P and
E
1

B, =1 _ 1
2

w:%

/ e"“tP(7 t)dt, E, / eTWEE(F t)dt

are related by the formula

w? -

4nP, = (4.17)

wi — w? + ipw
Using this fact and expressing electromagnetic strengths in Eq.(4.16) through
the potentials we obtain (taking into account that the last equation (4.16)

is satisfied trivially):
w? w - 1
Ag®¥ — — 0¥ 4+ —divA¥ = ——dmp®,
v c €

w? w? 47 0AY od¥
A9 AY + ——eAY — —ePY = —— 3¢ Z = Be——. .
2A7 + aeds — e Iz ap Be o (4.18)

Here

o= %5(1:)6(1/) exp(—iwz/v), j¥ = ed(x)d(y)exp(—iwz/v),

10, 0
= —a—(/’a—)'
pdp dp
The last equation (4.18) is satisfied if we choose

2

A = Be(w)d®. (4.19)
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whilst two others coincide after this substitution. The solutions of these
equations are

w = 2 T, ae = 2 2L

(again, a square root means its value with a positive real part).
Now we rewrite Eq.(4.17) in the (7, ¢) representation:

t):8—71T2 / Gt — t)E(X),

where
—+oco

G(t—t) w%/wz

dw plw(t=t))
5 — w? +ipw

, (4.20)
—0oQ
Taking into account the positivity of p one finds:
a) for p < wy:
Gt —t)=0fort' >t and

Twa
Gt —t) = \/227]42/4 exp [—p(t —t')/2] sin {\/wg — p?/A(t — t')]
for t' < t.

b) for p > wp (this case is unrealistic because usually p < wp):
G(t—1t)=0fort >t and

w2
Git—t)= 27r7Lexp [—p(t —t')/2] sinh [\/p2/4 —wi(t - t')}
\Jwd —p?/4
for t/ < t.

As a result of the positivity of p, the value of the polarization P at the
instant ¢ is defined by the values of the electric field E in preceding times
(causality principle). The source of polarization is distributed along the z
axis:

2
wr,

)6(y)
\/wo +wi —p?/4

x sinfy/wd + w2 — p2/A(t — 2/v)]

for z < ot and divP = 0 for z > vt (this equation is related to the
wd + w? — p?/4 > 0 case). The origin of oscillations of the potentials and
field strengths behind the Cherenkov cone now becomes understandable. A
moving charge gives rise to a time-dependent polarization source which, in

divP = —(5

exp [—p(t — z/v)/2]
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the absence of damping, oscillates with a frequency /w3 + w?. The oscilla-

tions of polarization, being added, lead to the appearance of the smoothed
Cherenkov cones enclosed in each other. On the surface of the cylindrical
surface C), they are manifested as maxima of the potentials, field strengths,
and intensities. The position of the first maximum approximately coincides
with the position of the singular Cherenkov cone in the absence of dis-
persion. The latter case is obtained if we neglect the w dependence in the
denominator of the integral in (4.20):

w2
Gt —t)=2r"L5(t—1).

“o
Obviously this can be realized for large values of wy. The introduction of
damping should lead to the decreasing of secondary maxima. To verify this
we have evaluated the magnetic vector potential for various values of the
parameter p (in units of wy ) defining the imaginary part of e(w). We see
(Fig. 4.7) that for p > 1 the secondary oscillations disappear. Although the
polarization formalism leads to the same expressions (4.12) and (4.13) for
the electromagnetic potentials and field strengths, it presents another, more
physical, point of view on the nature of the Vavilov-Cherenkov radiation.

4.4.1. ANOTHER CHOICE OF POLARIZATION

So far we have dealt with the gauge condition of the form A% = fe(w)®“.
It looks highly non-local in the (7, t) representation. There is another in-
teresting possibility. We substitute

104
cot’
into the first and fourth Maxwell equations (4.15) (second and third equa-
tions are satisfied automatically) and obtain

—

E=-V®-— H=VxA

1. - .
AP+ —divA = —4wp + 4ndiv P,
c

= 1= - - 1. dT - >,
AA— S A=V (divA+=d) — =+ P).
C C C

We try to separate equations for ® and A by imposing on them the Lorentz
condition

L1,
divA+ -9 =0 (4.21).
c
This equation is satisfied automatically if we put

Ay =A, =0, A, =pd (4.22)
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-30 -20 -10 0 10

Figure 4.7. Shows how switching on the imaginary part p of the dielectric permittivity
affects the magnetic vector potential; z and A, are in units of ¢/wo and ewo /¢, respectively.
The solid, point-like, and short dashed curves refer to p =0, p=0.1 and p =1 (p is in
wo units) , respectively. It is seen that secondary maxima are damped for p = 1 more
strongly than the main maximum.
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(it has been taken into account that for the problem treated all the electro-
magnetic quantities depend on z and ¢ through the combination (z — vt)).

Thus we obtain .

AD — =& = —dmp + drdivP,
c

- 1= o "
AA— A= 4" 47p.

c c c

It follows from this that only the z component of P differs from zero in the
chosen gauge (as only the z components of A and j differ from zero). We

rewrite these equations in the w representation

1 1 ]
Ao®¥ + W ( — —) B = —dmp® — dn =P,
C (% v
w 1 1. .. 4m . w

As the medium treated is non-magnetic it is natural to require the coinci-
dence of equations (4.18) and (4.23) for vector potentials satisfying different
gauge conditions. This takes place if P,, is chosen to be proportional to A%:

One then obtains
Ag®¥ + wz(i i)@“’ = —4mp”
2 2 ’
€ 1 47
B2 +u(5 — Ay = =TT g

2 2
v = °K,, AY = K,
ge = 2l N g, Be = pe = gesg
¢~ e ey, Ej=Dg=Hg/B,
2iew 2iew
E:=~ (1-p*Ky, D,= > (1 — %) Ko, (4.25)

where all K functions depend on the argument (pw/v)\/1 — %€ in which
the value of /1 — [3%¢ corresponding to its positive real part should be
taken. Obviously there is no proportionality between D and E for the cho-
sen gauge. In the (7, t) representations the magnetic vector potential and
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field strength coincide with those in Eqgs.(4.12) and (4.13), whilst for ®, E.,
and E, one has

o(r,t) = (/ /) dw cos aKy + — /dw (sin aJy — cos aelNp),

wo We

2e 1
p= 5 (1)

wWe o0 wo
(/+/> wdw sin a Ky — % /wdw(Ng sina + Jy cosa)] ,
c

0 wo We

2(/ /)dww |1 — 32%€| cos a K,
T
wo
e :
+U—2 /dww\/ |1 — B%€|(sin a.J; — cos alNy).

We

for 8 < (. and

o] wo
2
O(7,t) = 777‘18; /dw cos aKp + % /dw(sinaJo — cos alNp),

o wo
2e 1 . e .
E, = 3 <1 — @> L/wdw sina Ky — =2 /wdw(No sina+ Jpcosa)| ,
0 0
B, = 2 7d JI1 = 82| cos a
= ww — [2%€| cos o
P 2 !

wo

wp
e

— [ d 1 — 32¢|(sinaJ; — Ny).
+”20/ wwy/|1 — B?€|(sin aJ; — cos alNy)

for B > (.. These expressions satisfy the Maxwell equations but with the
polarization different from that used earlier. We observe that the electric
induction D is the same as above, but the electric strength differs. As the
integrands defining ® and E are finite for any value of w, the corresponding
integrals are convergent and can be evaluated numerically. We observe that
E, — 0 for § — 1 . This means that for this choice of polarization and
v &~ c¢ the energy flux in the transverse direction disappears, that is, for
v = ¢ all the energy is radiated in the direction of the charge motion.
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It is surprising that the choice (4.21) of the Lorentz condition almost
inevitably leads to a solution with vanishing p component of polarization.
But the physics cannot depend on the gauge choice. Checking all steps
(4.21)-(4.25) in deriving field strengths we observe that the sole weak point
in this chain is Eq. (4.22), which is the simplest realization of the gauge
condition (4.21). Obviously, Eq. (4.22) can be realized in a variety ways. In
particular, it can be realized with two non-vanishing components (A, and
A,) of A (Ag = 0 owing to the axial symmetry of the treated problem). In
this case we obtain the polarization and field strengths given in section 3
but with different electromagnetic potentials.

We conclude that different definitions (4.17) and (4.24) of the induced
polarization proportional to the electric strength E and magnetic vector
potential ff, respectively, lead to different physical consequences.

4.5. On the Kronig-Kramers dispersion relations

Up to now we have considered the case when the imaginary part of the
dielectric penetrability was chosen to be zero. Can this be reconciled with
the Kronig-Kramers dispersion relations? Since for the chosen form of the
Fourier integrals the poles of €(w) lie in the upper w half-plane, one has
(see, e.g.,[22]):

w—x

+oo
/ ‘E(@;ldw +imle(x) — 1] = 0.

—0o0

Or, separating real and imaginary parts

Ooer—l 7 €;
dw = me; (), dw = —nfen(z) — 1 4.26
[T do=ra@). [ Sdv=rla@) -1 @20)

(by the integrals we mean their principal values obtained by closing the
integration contour in the lower w half-plane). Here €, and ¢; are the real
and imaginary parts of w:
2¢ 2 2 2
wi(w§ —w ww
e =1+ QL(O ) g=- S ] : (4.27)
(B — ) + P (B =) + PP

At first glance it seems that the relations (4.26) cannot be valid. Take, e.g.,
the second of them. For ¢; = 0 its left hand side disappears, which is not
valid for its right hand side. However, we cannot put ¢; = 0 by hand’. The
value of imaginary part of € is determined by the parameter p in (4.27).
Thus we should substitute €; given by (4.27) into (4.26) and then let p go
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to zero. For the integral entering into the left hand side of (4.26) one finds

[e.e]

i 1
/ = —pw%/ wde (4.28)

w— w—1x (W —w?)? + p2w?’
—o0o

A detailed consideration shows that the integral in the right hand side of
this equation is equal to

2 2

™ T — W
I . 4.29
p (22 — wj)? + p*a? (4.29)

The factor p of the integral in (4.28) compensates the factor 1/p in (4.29).
Thus

o0
/ €; d 9 xQ—wg
W= Tw
Ww—z L(x2 — wd)? + p2a?’

— 00

that coincides exactly with the right hand side of the second relation (4.26).
The same reasoning proves the validity of the first relation (4.28). Thus,
the Kronig-Kramers relations are valid for any small p > 0. The positivity
of p defines how the integration contour should be closed, which in turn
leads to the validity of the causality condition.

4.6. The energy flux and the number of photons

We evaluate now the energy flux per unit length through the surface of a
cylinder C, (Fig.4.2) coaxial with the z axis for the total time of motion.
It is given by

+00 9 +00
W, = 21p / Sdt = 2 / S,dz,
v

C = = c
= (ExH),=——F,Hy,. .
S 47r( x H), 1 Bt (4.30)

Substituting £, and Hyg from (4.12) and (4.13) and taking into account
that

(o.9] [e.°]
/dtsinwtcosw't:O, /dtsinwtsinw'tzw[é(w—w’)—5(w+w')],

—0o0 — 00

/ dtcoswt cosw't = m[d(w — ') + 6(w + )],

—00
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we obtain for energy losses per unit length
e? 1
B2e>1

This expression was obtained by Tamm and Frank [2]. Inserting e(w) given
by (4.1) into (4.31) we find

wo

62 1 62(4}(2) 1 )
W= [ (1- ) = “32my? 1 Hma-5)] @)
for B < (. and
o2 1 02,2 1 1
W=7 fwdw|1-—5 ) =55 |- 1 2} 4.33
P2 0/w w( 6ﬁ2> 2¢2 [ 32+2 + 32322 n(v;) ( )

for 8 > (..

Similar expressions were obtained by Fermi [12]. The validity of (4.33) is

also confirmed by the results obtained by Sternheimer [14] (whose equations
reduce to (4.33) in the limit p — 0) and Ginzburg [28].
We observe that only those terms in (4.12) and (4.13) contribute to the
radial energy flux for the total time of motion which contain the usual Bessel
functions (J, and N,) and correspond to the 1 — 3% < 0 region without
damping. This permits us to avoid difficulties connected with the above-
mentioned pole of e~! (at w = w3) which appears only in terms containing
modified Bessel functions in the damping region where 1 — 5% > 0.

For  — 0 the energy losses W, tend to 0, whilst for 3 — 1 (only this
limit was considered by Tamm and Frank [29]) they tend to the finite value

e2wi

0 In(2).

In Fig. 4.8 we present the dimensionless quantity F' = W,/(e*w3/c?) as a
function of the charge velocity 5. The numbers on the curves mean .. The
vertical lines with arrows divide each curve into two parts corresponding
to the energy losses with velocities 8 < (. and 8 > (. and lying to the
left and right of vertical lines, respectively. We see that a charge moving
uniformly in a medium with dispersion law (4.1) radiates at every velocity.

Exactly the same Eqgs. (4.31)-(4.33) are obtained if one starts from the
complex €(w) given by (4.7), evaluates electromagnetic strengths and radial
energy flux, and then takes the limit p — 0 in them. This will be shown
below.
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0,1

F(B)

0,01

1E-3

Figure 4.8. The radial energy losses per unit length (in units of e’w?/c?) as a function
of B = v/c. The number on a particular curve means the critical velocity [..
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flw)

Figure 4.9. Spectral distribution of the energy losses (in units of e2w0/c2); w is in units
of wo. The number on a particular curve refers to 8 = v/c.

The dimensionless spectral distributions f(w) = w(w)/(e?wp/c?) of the
o0

energy loss W, = [ w(w)dw are shown in Fig. 4.9. The numbers on par-
0

ticular curves mean (. It is seen that for 8 > 3. all w from the interval
0 < w < wp contribute to the energy losses. For 3 < . the interval of
permissible w (we. < w < wp) diminishes.

The total number of photons emitted per unit length is given by

e2 “r 1
N=— [dw|]l-—
th/ w( eﬁ2>

€2 | w. — wy w% (wg-i—wg w3 —wc>
= + In
(292 203%ws w3 — Wo w3 + We

for 8 < (. and

e? wo w? w3 + wo
e e
hc2 / n < 662) hc? [ (32~2 + 232ws n w3 — wo
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for 8 > (.. It is seen that N grows from 0 for 5 = 0 up to

NN e
he? 232ws w3 — wy

for 8 = 1. In Fig. 4.10 we present the dimensionless quantity N/(e?wq/hc?)
as a function of the particle velocity 4. The numbers on the curves mean ..
The vertical lines with arrows divide each curve into two parts correspond-
ing to the photon numbers emitted by the charge with velocities 8 < (.
and 3 > (. and lying to the left and right of vertical lines, respectively. We
see that an uniformly moving charge emits photons at every velocity. The
spectral distribution n(w) of the photon number emitted per unit length
o0

and per unit frequency defined as N = | n(w)dw is given by
0

n(w)zi—i(l—#).

For 3 < f3, n(w) changes from 0 at w = w, up to n(w) = €%/hc? at w = wy.
For 3 > B, n(w) changes from (e?/hc?)(1 — 1/(e0f3?)) at w = w, up to
e?/hc? at w = wp. The dimensionless spectral distributions n(w)/(e?/hc?)
of the photon number are shown in Fig. 4.11. The numbers of a particular
curve mean (3. It is seen that for § > [, all w from the interval 0 < w < wy
contribute to the number of emitted photons. For 3 < . the interval of
permissible w (w, < w < wp) diminishes, i.e., only high-energy photons
contribute.

So far we have evaluated the total energy losses (i.e., for the whole
time of the charge motion) per unit length. The question arises of how
the radiated flux is distributed in space at a fixed instant of time. The
distributions of the radial energy flux o, = 27pS, on the surface of the
cylinder C), of the radius p = 10 (in units of ¢/wg) are shown in Figs. 4.12
and 4.13 for 8. = 0.8 and various charge velocities 3. It is seen that despite
the w dependence of € the critical velocity 3. = 1/,/€o has still a physical
meaning. Indeed, for § > (. the electromagnetic energy flux is very small
outside the Cherenkov cone, exhibiting oscillations in its neighbourhood.
For g < f. the radial flux diminishes and becomes negligible for § < 0.4
(Fig. 4.13). This disagrees with Fig. 4.8, where for 5. = 0.8 one sees the
finite value of energy losses for 3 = 0.4. In the next section we remove this
inconsistency.

We have considered the distribution of the EMF on the surface of C, at
the fixed instant of time ¢. Since all electromagnetic strengths depend on z
and t via the combination z — vt, the periodic dependence of time should
be observed at a fixed spatial point.
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0.1

N(B)

0,01

1E-3

Figure 4.10. The number of emitted quanta in the radial p direction per unit length
(in units of e?wo/hc?) as a function of 8 = v/c. The number on a particular curve is the
critical velocity (..



Cherenkov radiation in a dispersive medium 155

n(w)

®

Figure 4.11. Spectral distribution of the emitted quanta (in units of ¢?/hc?); w is in
units of wg. The number of a particular curve is § = v/c.

For the frequency-independent ¢ = ¢y the energy flux is confined to
the surface of the Cherenkov cone. Electromagnetic strengths inside the
Cherenkov cone fall as r~2 at large distances, and therefore do not con-
tribute to the radial flux.

4.7. WKB estimates

The radiation field (described by the integrals in (4.12) and (4.13) contain-
ing usual Bessel functions) can be handled by the WKB method. We follow
closely Tamm'’s paper [30] (see also the review [31] and the book [32]). For
this we replace the functions J, and N, by their asymptotic values:

Then,
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] 0.99

c x10°

T T T T T T T T T
-100 -80 -60 -40 -20 0
z

Figure 4.12. The distribution of the radial energy flux (in units of ¢*wj/c®) on the
surface of the cylinder C,, z is in units of ¢/wo. The number on a particular curve is

B=v/ec

_ e 2 [l a2 - 114 ul
Ep_v\/jvp/dwe\/a(ﬁe 1) cos<f+4),
B = =S\ = [ vi(@e - ) eos (14 7). (4.34)

Here f = w(t — z/v) — /%€ — 1pw/v. The argument of the cosine is a
rapidly oscillating function of w. The main contribution to the integrals
comes from stationary points at which df /dw = 0. Or, explicitly,

2 2 92
(vt —2)\/BPe—1=p [ﬂQ -1+ %] . (4.35)
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Cherenkov radiation in a dispersive medium
T T T T T T T T T
6 0.6 }
5 _
4 -
B,=0.38
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Z
Figure 4.13. The same as in Fig. 4.12, but for § < f..

This equation defines w as a function of p, z. Let this w be wi(p, z). Then

the WKB method gives

2
Hy= " | (8% — 1)Y*sin fi,
¢\ vplfil
p:—ﬁ (B2 — 1)Ysin fo,
ver \l vpl fil
2
= (32— 1)3sin fy
ver \l vpl f1
for fi > 0 and
2
Hy= "2 [ (8% — 1) cos fi,
¢\ vplfil
2
= il w1 (ﬂQel — 1)1/4 cos f1,
ver \[ vplf1]
2e w1

(8% — 1)* cos fy

ver \ vp| fi

(4.36)

(4.37)
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for fl < 0. Here

. 2
J1=flw1), ea=¢€w), fi= (i}é) :

The electromagnetic strengths are maximal if

wi (vt — 2) — pwiy/ 261 — 1= (m —1/2)x (4.38)
wi (vt — 2) — pwiy/B%e1 — 1 = mmv (4.39)

for fl < 0. Here m =1, 2, etc..

The combined solution of (4.35) and (4.38),(4.39) defines the set of
surfaces on which the electromagnetic strengths and the Poynting vector are
maximal. Due to the axial symmetry, these surfaces in the p, z coordinates
look like lines. We refer to these lines as trajectories.

Equations (4.35)-(4.39) were obtained by Tamm [30]. We apply them to
the particular e(w) given by Eq.(4.1).

The electromagnetic field strengths and radial (i.e., in the p direction)
energy flow have sharp maxima on some spatial surfaces. In the p, z coor-
dinates these surfaces can be drawn (owing to the axial symmetry of the
problem) by the lines. We refer to them as trajectories. Different trajec-
tories are labelled by the integer numbers m. For the electric penetrabil-
ity taken in the form (4.1), m runs from 1 to co. We make the notation
22 =1—¢ &= (3*7%/3?~2. The trajectories can be parametrized by the
equation

for fl > 0 and

M e (22— 1)), p= I (1 g2)3/2(y2 _ g2)1/2. (4.40)

woéx3

vt—z =

woéx3

To obtain the trajectory equation one should find x from the first of these
equations and substitute it into the second one. Instead we prefer to vary
x and compare p and vt — z entering into (4.40) and corresponding to the
same parameter x.

We consider cases 8 > (. and 3 < (3. separately.

4.7.1. CHARGE VELOCITY EXCEEDS THE CRITICAL VELOCITY

It turns out that 22 < 0 for 3 > .. In this case  runs in the interval

0 < x < 1. The particular trajectory begins at the point * = 1 where
vt — z = mme/wy and p = 0. The slope of the trajectory is

(1 _ x2)3/2($2 _ 1‘2)1/2

tanf =y @212




Cherenkov radiation in a dispersive medium 159
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Figure 4.14. Spatial distribution of the m = 1 trajectory for charge velocities 3 > (..
The slope of the trajectory increases as 3 approaches [..

When x decreases both vt — 2z and p increase. For very small x

micﬂ(g_ 1), p~ mmefy 1

woéx3

The asymptotic slope of the trajectory is

__Pp 5_2_ —-1/2
tane_vt—z ([3’2 1)~ =

It is seen that the trajectory slope increases when [ approaches (. (Fig.
4.14). Let v = ¢, i.e., the charge moves with the velocity of light in vacuum.
Then

mmc mmc
vt—z= Tl = TN Byl — a?)P,
wox oWy

Eliminating x one obtains

p = Bevelct — 2) ll _ (LC))Q/T 3/2.

wolct — 2
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For large ct — z the trajectory is linear (p = fByc(ct — 2)). For . — 0 the
trajectory approaches the motion axis. Let 8 be slightly greater than g,

E=1+9,0<dx1,

i.e., charge moves almost with the velocity of light in medium. Then in the
limit § — 0,

mmv Mmmoy

(1 —2?)3/2. (4.41)

( _12)’ p=

vt — 2z = 3
Wox Wox

Excluding = we obtain

_ ommcefere [yv2 +yt /4 —1— y2/2]3/2
wo Y2+ 2 —y2+ 24

Here y = wo(vt — z)/mmcf.. At large distances one has

wWoYe 2
t— .
dmmcf, (vt =2)

That is, p increases quadratically with the rise of vt — z.

4.7.2. CHARGE VELOCITY IS SMALLER THAN THE CRITICAL
VELOCITY

For 3 < f3. one has € < 1 and 22 > 0. The trajectory parametrization
coincides with (4.40) when x lies within the interval /4 — 3¢ — 1 < 22 < 1.
We refer to this part of the trajectory as to branch 1. For § < 3. and
1 —¢& < 22 < /4 -3¢ — 1 the parametrization is given by Eq.(4.40) in
which m should be replaced by m — 1/2. This part of the trajectory is
denoted branch 2. These branches are marked by the numbers 1 and 2 in
Fig. 4.15. Tt is seen that p vanishes for x = x. and x = 1. The corresponding
vt — z lie on the branches 1 and 2, respectively. As the values of vt — z are
finite for p = 0, the trajectories are closed for 8 < f..

Let G be slightly less than 3., that is
e=1-46, 0<ok1,

i.e., charge moves with a velocity slightly less than the velocity of light in
medium. The parametrizations of vt — z and p are then still given by (4.40),
in which = changes in the interval 36/2 < 22 < 1 for the first branch and
in the interval §/2 < 22 < 3§/2 for the second branch. This means that the
first branch of the m trajectory for § = 5. — ¢ continuously passes into the
corresponding m trajectory for 5 = §.+ § for § — 0.
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Figure 4.15. Space distribution of the m = 1 and m = 2 trajectories for §. = 0.8 and
B =0.799. The trajectories for 3 < (. are closed (in contrast with the 3 > 3. case shown
in Fig. 4.14). Numbers 1 and 2 mean the branches of a particular trajectory.

As to the second branch, in the limit § — 0 it degenerates into the
almost vertical line. It begins at z = (m — 1/2)wcf/woV/d, where p = 0,
and terminates at z = (m — 1/2)7¢B4v/2/(3v/3woV6), where p = 2(m —
1/2)mcfy/(3v3wod) (see Fig. 4.15).

Let € — 0. This may happen when the charge velocity is much less than
the velocity of light in medium. However, this condition also takes place
when 3 = (. ~ 1, but 3. is much closer to 1 than 3. This is possible because
of the ~ factors in the definition of €. In both cases one has

mmu
vt — 2 — , p—0.
wo

This means that the radiation flux is concentrated behind the charge on
the motion axis.

The WKB approximation breaks at the neighbourhood of x = z,, =
(v/4 =3 — 1)'/2. This value can be reached only for 8 < f.. The values of
z and p at those points are

dmmef €+ 4 — 3¢ — 2
wo€ (V4 —3E—1)3/2

(vt —2)1
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mrcfy (€ 4+ A — 36 — 2)1/2(2 — VA = 38)3/2

wo€ (V4 — 3 —1)3/2
for the branch 1. For the branch 2, m should be replaced by m — 1/2. The
slope of the line C, (strictly speaking, it is a cone rather than a line, but

in the (p, z) plane it looks like a straight line (Figs. 4.16 and 4.17)) passing
through the discontinuity points is given by

v (2-VA=38%2
4(Vi—3e+e—2)1/2

1

tanf =

In particular,
3
tan 6 ~ FVE for €—0

and

tan @ ~ for €e—-1 (€=1-0, 0<<1).

1
2v2V5
That is, the slope of the line C), tends to zero for the small charge velocity
and becomes large as (8 approaches (.. The meaning of this line is that
on a particular trajectory (which itself is the line where field strengths are
maximal) the field strengths become infinite as one approaches the point
at which the WKB method breaks down.

On the surface of the cylinder C, (see Fig. 4.2) the field strengths
have maxima at those points in which C), is intersected by the trajectories.
Among these maxima the most pronounced (i.e., of the greatest amplitude)
are expected to be those which lie near the point at which C}, is intersected
by Cp, (despite the WKB approximation breaking on it). In what follows
we shall use this result as a tool for the rough estimation of the position
where the radiation intensity is maximal. This will be confirmed by exact
calculations).

Some of the trajectories corresponding to B, = 0.8, § = 0.4 are shown
in Figs. 4.16 and 4.17. It follows from them that there are no trajectories
intersecting the surface of the cylinder C, of the radius p = 10 in the
interval —100 < 2z < 0 treated in Fig. 4.13. This means that there should
be no radial energy flux there. The inspection of Fig. 4.17 tells us that for
p = 10 the energy flux begins to penetrate the C, surface at the distances
z < —200.

4.8. Numerical results

To verify WKB estimates we evaluated for 3 = 0.4 the distribution of the
energy losses 0, on the surface of C, (Fig. 4.18). It is seen that the main
contribution comes from the region in the neighbourhood z ~ —300. This
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Figure 4.16. Spatial distribution of the selected trajectories for 5. = 0.8 and g = 0.4.

o, distribution consists, in fact, of many peaks. Its fine structure in the
small interval of z is shown in Fig. 4.19. The question arises of how the
trajectories behave for other charge velocities 3. It follows from Fig. 4.14
that for 8 > (. the trajectories are not closed, i.e., they go to infinity as
z tends to —oo. The slope of the trajectories increases as 3 approaches Q.
This means that for § = (. the EMF of a charge moving uniformly in a
non-dispersive medium differs from zero only in the infinitely thin layer
normal to the charge velocity [33].

Since for 3 > (3. the trajectories intersect the surface C, at small values
of z, one should expect the appearance of the energy flux there.

In Figs. 4.20 and 4.21 we present the results of exact (i.e., not WKB)
calculations of the intensity distribution for § = 0.99 and 0.8, respectively.
We observe that for § > (. the main intensity maximum lies approximately
at 2 = —2z., z. = p\/[3?n? — 1, i.e., at the place, where in the absence of
the w dispersion (e = ¢y = €(0), 32 = 1/¢), the Cherenkov singular cone
intersects C.

For 8 < [ the trajectories are closed (Figs. 4.15-4.17, and 4.22). As
B decreases, the trajectories approach the motion axis. In this case the C),
surface is intersected by the trajectories with large m at larger values of
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Figure 4.17. The same as in Fig. 4.16 but for a different z interval.

negative z (compared to the § > (. case) and the maxima of intensity
should also be shifted to a large negative z. This is illustrated by Figs.
4.18 and 4.23 where the intensity spectra are shown for 3 = 0.4 and 0.6,
respectively.

Consider now the distribution of the radiation flux on the surface of the
sphere S (instead of on the cylinder surface, as we have done up to now).

From Figs. 4.16 and 4.17 based on the WKB estimates and numerical
results presented in Fig. 4.18 it follows that for § < 3. the radial radiation
flux is confined to the narrow cone adjusted to the negative z semi-axis
(Fig. 4.24). Its solution angle 6. is approximately 5 degrees for . = 0.8
and 0 = 0.4.

We conclude that despite the w dependence of ¢, the critical velocity
Be = 1/\/€o still conserves its physical meaning, thus separating closed
(6 < Bc) and unclosed (5 > ;) trajectories.

4.8.1. ESTIMATION OF NON-RADIATION TERMS

Up to now, when evaluating o, we have taken into account only those terms

in E and H which contribute to the energy losses, i.e., to the W given by
Eq. (4.30). They correspond to the terms of £ and H containing the usual
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Figure 4.18. The distribution of the radial energy flux (in units of ¢*wj/c®) on the
surface of the cylinder C, for f§ = 0.4; z is in units ¢/wp. It is seen that the main
contribution comes from large negative z.

(non-modified) Bessel functions (see Eqgs. (4.12) and (4.13)). However, we
cannot use Eqgs.(4.12) and (4.13) to evaluate terms with modified Bessel
functions as their contribution to Eis divergent. Instead, the following trick
is used. We find E and H for the complex electric permittivity (4.7). They
are finite for the non-zero value of parameter p defining the imaginary part
of €(w). The corresponding formulae are collected in Refs. [34,35] and in
section 4.9. Then we tend the parameter p defining the imaginary part of €
to zero. We expect that for sufficiently small p we obtain the values of E and
H which adequately describe the contribution of the terms with modified
Bessel functions. There is also another approach (see [36] and section 4.11)
in which the electric strength E is not singular (except for the charge motion
axis) even for real e. It turns out that electromagnetic strengths evaluated
according to the formulae of section 4.9 are indistinguishable from those of
[36] when the parameter p is of an order of 107°-10~* in units of wp. In
what follows, by the words 'terms with modified Bessel functions are taken
into account’ we mean that the calculations are made by means of formulae
presented in section 4.9 for p = 1074

When the terms with modified Bessel functions are taken into consid-
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Figure 4.19. Fine structure of the radial energy flux shown in Fig. 4.18.

eration, the characteristic oscillation of o, appears in the neigbourhood
z = 0 (Figs. 4.25 and 4.26). For 8 < 3. it is described approximately by
the following expression:

o= D - g

260

p*z
[2* + p?(1 = 32/ B2)]°
corresponding to the energy flux carried by the uniformly moving charge
with the velocity § < (. in medium with a constant € = ¢y. As we have
mentioned, the terms in (4.12) and (4.13) containing modified Bessel func-

tions do not contribute to the total energy losses (4.32). In particular, this
is valid for aé given by (4.42):

(4.42)

o0

/ U;dz =0

—00

(owing to the antisymmetry of 0,). For z > p and p > z, 0/1) falls as p?/2°
and z/p?, respectively.

For f = 0.4 we estimate the value of the term (4.42) in the region
z = —300 where 0, has a maximum (see Fig. 4.18). It turns out that
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Figure 4.20. The distribution of the radial energy flux (in units of ¢*w{/c®) on the
surface of the cylinder C, for 8 = 0.99; z is in units of ¢/wo It is seen that the main
contribution comes from the small negative values of z.

o, =6 % 1075 and J}) ~ 5 x 10712 there, i.e., the contribution of a; relative
to o, is of an order of 1077, and therefore it is negligible.

For 8 = 0.6 we see in Fig. 4.23 the o, distribution evaluated via Egs.
(4.12) and (4.13) in which the terms with modified Bessel functions are
omitted. Comparing Fig. 4.18 with 4.25 and Fig. 4.23 with 4.26 we conclude
that they coincide everywhere except for the z = 0 region where the term
(4.42) is essential.

For B > (. the contribution of the terms involving modified Bessel
functions in (4.12) and (4.13) is very small. This illustrates Fig. 4.27 where
two distributions o, with and without inclusion of the above-mentioned
terms are shown for § = 0.8. They are indistinguishable on this figure and
look like one curve. The same is valid for larger charge velocities.

4.9. The influence of the imaginary part of ¢

So far we have evaluated the total energy losses per unit length (W) and
their distribution along the z axis (0,) for the pure real electric permittivity
given by (4.1). Equation (4.7) is a standard parametrization of the complex



168 CHAPTER 4

4 | i I
34 -
B, =08
1 8=0.8
@ p= 10
2 24 -
x
bo_
14 -
O nn.mu.u.nmumnumu|n-linlAmimmll‘Hl‘Hh“HN“f‘“‘““‘“‘l’li‘."‘i‘l’“i“'l‘“‘“‘m’li“m“i‘l‘i‘m’l‘“‘ e
-400 -200 0

V4

Figure 4.21. The same as in Fig. 4.20 but for 8 = 0.8. The radial energy flux is
distributed in a greater z interval.

electric permittivity [22,27]. For the chosen definition (4.5) of the Fourier
transform the causality principle requires p to be positive.

We write out electromagnetic potentials and field strengths for a finite
value of the parameter p defining the imaginary part of e. Since ¢(—w) =
€"(w), the EMF can be written in a manifestly real form

oo
2
=" /[(6;1 cosa — ¢; T sina) Ko, — (¢; L cosa + ¢, ' sin o) Ko;]dw,
T
0
o
2e .
A, = — [ dw(cos aKy, — sin aKy;),
e
0

2 oo
Hy= = [ wdw(a®+?)'/* [COS (% + 0‘) K1r = sin (% " O‘) K“} ’

Ve

o0

2 _ . _
E, = e wdw{[cos a(e;t — 3?) — sin ae; | Ko;
0
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Figure 4.22. The behaviour of the m = 1 trajectory for 8 = 0.4 and § = 0.6. For 3 < (.
the trajectories are grouped near the z axis. This shifts the maximum of the energy flux
distribution to larger negative z.

+[sina(et — 3%) + cos ae; Ko, b,

E, = 73)2 wdw(a® + b)Y (e cos a — e; sina)
0
X (cos(¢/2) K1, — sin(¢/2)K1;)
—(e;  cosa + e, sin ) (sin(¢/2) K1y + cos(¢/2) K15)). (4.43)

Here we put

Ko = ReKo (21— %) Koy =Ty (21— )
_ReKl( M) Ki = ImKl( M)

Furthermore, €, and ¢; are the real and imaginary parts of w

wi(w§ — w?) powi

=1 L
€r + (@ — w2)2 + p2u?’ €i (W8 — w?)2 + p2u?’
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Figure 4.23. The same as in Fig. 4.18, but for the charge velocity 5 = 0.6.

Figure 4.24. For the charge velocity § below some critical . the radial energy flux is
confined to the narrow cone attached to the moving charge. For 3. = 0.8 and 8 = 0.4
the solution angle 6, = 5°.
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Figure 4.25. The same as in Fig. 4.18, but with the inclusion of the non-radiating term
corresponding to the electromagnetic field carried by a moving charge.

el =e/(E+e2), ¢'=—€/(E+ed);a=w(t—2z/v);a,band ¢ are the
same as in (4.9)-(4.11). The energy flux per unit length through the surface
of a cylinder of the radius p coaxial with the z axis for the whole time of
charge motion is defined by Eq.(4.30). Substituting £, and Hg given by

(4.43) into it one finds

where

< {(Kor K1y + KoiK1i)[(e; ' — %) sin(¢/2) — ¢; ' cos(¢/2)]

—(KoiK1r — KorK1i)[(e;" — 8%) cos(¢/2) + €;  sin(¢/2)]}. (4.44)

It is surprising that f(w) given by (4.44) differs from zero for all w. That
is, the Tamm-Frank radiation condition (stating that a charge moving uni-
formly in the dielectric medium radiates if the condition 5%¢ > 1 is satisfied)
fails if p # 0. It restores in the limit p — 0.
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Figure 4.26. The same as in Fig. 4.25, but for the charge velocity 5 = 0.6.

Let 1 — $%¢ > 0 in this limit, then
¢ ¢ 1

sin§ — 0, cos§ —1, ¢—0, ¢ —0, Koy—0 Ki;—0
and therefore f(w) — 0 whilst electromagnetic potentials and field strengths
coincide with those terms in (4.12) and (4.13) which contain modified Bessel
functions. On the other hand, if in this limit 1 — 5% < 0, then
-1

singﬂl (for p > 0), cos%%O, e—0, € —0,

T T T s
Ko — —§No, Ko; — _§J07 Ky — —§J1, Ky — §N1,

where the argument of the Bessel functions is (p|w|/v)+/|1 — (3%€|. Substi-
tuting this into (4.44) and using the relation

2
Jl/(flf)Nu+1(l') — Nl,(m)JVJrl(:L‘) — _%
one arrives at
2w 1

_ eﬂﬁ)'
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Figure 4.27. For B = (3. the energy flux distributions with and without a non-radiating
term are practically the same: they are indistinguishable in this figure. The same holds

for > (..

This in turn leads to W coinciding exactly with (4.31)-(4.33). Electromag-
netic potentials and field strengths (4.43) coincide with the terms in (4.12)
and (4.13) containing the ordinary Bessel functions.

Now we intend to clarify how the value of the parameter p affects the
radiated electromagnetic field. For this we have evaluated o, for 3 = 0.4 on
the surface of cylinder C),, p = 10 for three different values of parameter
p (in units wp): p = 1073 (Fig. 4.28), p = 1072, and p = 0.1 (Fig. 4.29).
We observe that for p = 1072 the intensity amplitude is approximately
two times less than for p = 10™* (Fig. 4.25). For p = 1072 and p = 0.1 all
oscillations of o, on the negative z semi-axis practically disappear whilst the
value of the term corresponding to the modified Bessel functions in (4.12)
and (4.13) remains almost the same. In Figs. 4.30 and 4.31 there are given
distributions of the radiated energy on the surface of o, for 3 = 0.8 and
B = 0.99 for three different values of p = 1073, 0.1 and 1. We note that
with a rise of p the oscillations for # < . are damped much more strongly
than for 8 > (.. For example, for p = 1072 and # = 0.99 the values of
the main maxima reduce only slightly (Fig. 4.31) whilst for § = 0.4 and
the same p the oscillations of the radiation intensity completely disappear
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Figure 4.28. The switching on the imaginary part of € (p = 1073) reduces the oscillation
amplitude by a factor of approximately 2 compared to that for p = 10™* (see Fig. 4.25).
The non-radiating term is practically the same as in Fig. 4.25.

(Fig. 4.29). Another observation is that secondary maxima are damped
much more stronger than the main maximum. This is easily realized within
the polarization formalism. In it a moving charge creates a time-dependent
polarization source which, in the absence of damping, oscillates with a

frequency \/wi + w%. The oscillating polarization results in the appearance
of secondary electromagnetic waves, which being added are manifested as
maxima of the potentials, field strengths, and intensities. The distribution
of the polarization source for the electric permittivity (4.7) is given by
[34,35]

2
wr

=~ e
divP = —=6(z)d(y)
v \/wg +w? —p?/4

x exp [~p(t — 2/v)/2]  sinfy/wd + w2 — p2/A(t — 2/v)]

for z < vt and divP = 0 for z > vt (this equation is related to the case w3+
w? oL —p?/4 > 0). As a result of the positivity of p the value of the polarization
P at the instant ¢ is defined by the values of the electric field E at preceding
times (the causality principle). It follows that for large negative values of z
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Figure 4.29. The radial energy flux for p = 1072 and p = 10~'. The oscillations
completely disappeared, but the value of the non-radiating term remains practically the
same.

the polarization source is suppressed much more strongly than for z values
close to the current charge position. The position of the first maximum
approximately coincides with the position of the singular Cherenkov cone
in the absence of dispersion.

The total energy losses per unit length W (in units of e?w3/c?) and the
total number of emitted photons N (in units of e2wy/hc?) as a function of
the charge velocity 5 = v/c for §. = 0.8 and different values of p are shown
in Figs. 4.32 and 4.33. In most the cases W and N decrease with the rising
of p. The sole exception, the origin of which remains unclear for us, is the
intersection of N () curves corresponding to p = 0.1 and p = 1 (Fig. 4.33).

The corresponding w densities f(w) and n(w) (entering W = [ f(w)dw and
N = [n(w)dw) are shown in Figs. 4.34 and 4.35.

4.10. Application to concrete substances

We analyse two particular substances for which the parametrization of e is
known.
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Figure 4.30. Shows how the inclusion of the imaginary part of e affects the energy
flux distribution. The number of a particular curve means the parameter p. The charge
velocity is # = 0.8.

The first substance is iodine for which the parametrization of € in the
form (4.7) may be found in the Brillouin book [10]: Its resonance frequency
lies in a far ultra-violet region and € tends to 1 as w — oo. In this case,
there is a critical velocity below and above which the properties of radiation
differ appreciably. This parametrization is broadly used for the description
of optical phenomena.

The following parametrization of e

wi

€= €xt+ — (4.45)

w§ — w? + ipw
with p = 0 was found in [37] for ZnSe. Its resonance frequency lies in a
far infrared region and € tends to a constant value when w — oco. There
are two critical velocities for this case. The behaviour of radiation is essen-
tially different above the large critical velocity, between smaller and larger
critical velocities and below the smaller critical velocity. Despite that the
parametrizations (4.7) and (4.45) are valid in a quite narrow frequency
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Figure 4.31. The same as in Fig. 4.30 but for the charge velocity 5 = 0.99. Comparing
this figure with Figs. 4.29-4.30, we observe that switching on the imaginary part of €
affects radiation intensities less for larger .

region, we apply them to the whole w semi-axis. Since we will deal with
frequency distributions of radiation we can, at any step, limit consideration
to the suitable frequency region.
The energy flux in the radial direction through the cylinder surface of
the radius p is given by
& c
pdpdzdt ~ 1 PO Ho (D).

Integrating this expression over the whole duration of the charge motion
and over the azimuthal angle ¢, and multiplying it by p, one obtains the

energy radiated for the whole charge motion per unit length of the cylinder

surface
d&

cp
— = —— [ E,Hdt.
dz 2 / ¢

Substituting here, instead of E, and Hy, their Fourier transforms and per-
forming the time integration, one finds

7
5 = O/dwap(w),
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Figure 4.82. Shows how the inclusion of the imaginary part of e affects the total energy
losses W per unit length. The number on a particular curve is the parameter p; W and
p are in units of e2w§/02 and wo, respectively.

where
B d2E
 dzdw

op(w) = —mpck,(w)H(w) + c.c.

is the energy radiated in the radial direction per unit frequency and per unit
length of the observational cylinder. The identification of the energy flux
with o, is typical in the Tamm-Frank theory [29] describing the unbounded
charge motion in medium. Finding electromagnetic field strengths from the
Maxwell equations, one obtains

;2
0 (w) = ms—;"a - %)x*Ko(x)[Kl(a:)]* . (4.46)
Here x = /1 — (3%¢ - (pw/v). The sign of the square root should be chosen
in such a way as to guarantee the positivity of its real part. In this case
the modified Bessel functions decrease as p — oo. Equation (4.46), after
reducing to the real form, was used for the evaluation of radiation intensities
in [34,35]. In the limit p — 0 it passes into the Tamm-Frank formula (2.32).
For large kp (k is the wave number, p is the radius of the observational
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Figure 4.33. The number of quanta emitted in the radial direction per unit length
(in units of e?wo/hc?) as a function of the charge velocity 3 for different values of the
parameter p.

cylinder C), the radiation intensity (4.46) goes into [35]

2 3 2
op(w) = ec_;u [(1— %) sin % +€; cos g] exp[—%(a2 +0%)M4 cos %], (4.47)
where &. = €,./(e2 +¢€7), & = —€;/(€2+ €2); € and ¢; (real and imaginary

parts of €), a, b and the angle ¢ were defined in (4.9)-(4.11). Usually, the
condition kp > 1 is satisfied with great accuracy. For example, for a wave-
length A = 4 x 107° ¢cm and p = 10 cm, one gets kp ~ 10°. Equation (4.47)
is valid for arbitrary dielectric permittivity. We apply it to (4.7) and (4.45).

4.10.1. DIELECTRIC PERMITTIVITY (4.7)

Dispersive medium without damping

For the sake of clarity we consider first the case of zero damping (p = 0).
From (4.46) or (4.47) one then easily obtains the Tamm-Frank formula
(4.31). According to Tamm and Frank [29], the total radiated energy is ob-
tained by integrating Erp(w) over the frequency region satisfying Gn>1. It

is easy to check that for 8 > 8. =1/1/1 4+ w? /w3 this condition is satisfied
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Figure 4.34. Spectral distribution of the energy losses (in units of ¢?wp/c?); w is in units
of wg. The number of a particular curve means the parameter p.

for 0 < w < wy. For B < (. this condition is satisfied for w. < w < wy, where
we = woy/1 — 2742/ 32+2. This frequency window narrows as (3 diminishes.
For 8 — 0 the frequency spectrum is concentrated near the wqg frequency.
The total energy radiated per unit length of the observational cylinder is
equal to

T 22 1
c- 0/ Sp(w)de = S22 [1 -1/ - - ()
for 8 > (. and
¢ e2w? 1 9

for 8 < Be.

Dispersive medium with damping

Obviously, the non-damping behaviour of EMF is possible when the index
of the exponent in (4.47) is small. This takes place if cos ¢/2 ~ 0. This, in
turn implies that a = 1 — %6, < 0, and b < |a|. We need, therefore,
the frequency regions where 1 — 3¢, < 0.
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Figure 4.35. Spectral distribution of the emitted quanta (in units of e?/hc? ); w is in
units of wp. The number of a particular curve means the parameter p.

Let
Be<B <1, Be=1/\/eo, e =e(0)=1+uwi/wj.

Then 1 — 3?%¢,. < 0 for 0 < w? < Wi,
where

2 2 L 5 2.2 2 L 5 2.2 232 221/2
W1,2:W0i90—§(p + B vwr), Qo= [Z(P + 8%y wi)” — wyp
In particular, wi = wg for 8 =1 and wy = \/wg —p2, wy =0 for B =4,.

Let ﬁf, < 3% < 32, where

2pwy — p?
w? + 2pwy — p

5 =

2

(it is therefore suggested that p is sufficiently small to guarantee the pos-
itivity of ﬂg. This always takes place for transparent media in which the

Cherenkov radiation is observed). Then 1 — B2€, < 0 for wy < w < wy. In

particular, w; = wy = wo/1 — p/wy for § = ().

Finally, for 0 < 8 < 3, there is no room for 1 — B%e, < 0.
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We see that for 0 > (. the frequency distribution of the radiation
differs from zero for 0 < w < wy, whilst for 3, < 8 < (. it is confined
to the frequency window wy < w < wi. Further decrease in ( leads to
the window narrowing. The window width disappears for 3 = (3, when
w1 = w2 = wpy/1 — p/wy. Now the non-damping behaviour of the EMF
strengths in addition to 1 — 32%¢, < 0 requires also that b < |a|. This gives

2 2

9 Wp—wjt+w
w L1l —-—
Ew2 —w?)? 4 p2u? 32

(it has been taken into account that 1 — 3%, < 0). Since the r.h.s. of this
inequality is smaller than 0 its 1.h.s. should also be smaller than 0. This

takes place if
w < \Jwd +p?/4—p/2.

For small damping this reduces to w < wg — p/2.

Application to iodine

As an example we consider a dielectric medium with ¢y = 1+w? /wi =~ 2.24.
The parameters of this medium are close to those given by Brillouin ([10],
p. 56) for iodine. As to wp, Brillouin recommends wy = 4 - 1015571, This
value of wy is approximately 10 times larger than the average frequency of
the visible region. However, since all formulae used for calculations depend
only on the ratios wr/wy and p/wp, we prefer to fix wy only at the final
stage.

To illustrate analytic results obtained above we present in Fig. 4.36
dimensionless spectral distributions o,(w) = f(w)/(e?wp/c?) for a number
of charge velocities § and damping parameters p as a function of w/wy.
For p = 0 (Fig. 4.36 (a)), radiation intensities behave in the same way, as
it was explained above. The switching on the damping parameter p affects
radiation intensities for 8 < (3. more strongly than for 5 > .. For example,
the radiation intensity corresponding to 3 = 0.4 (smaller than 3. ~ 0.668)
is very small even for p/wy = 1078 (Fig. 4.36(b)). For larger p the radiation
intensity is so small that it cannot be depicted in the scale used For instance,
for 3 = f3. the maximal value of the radiation intensity equals 2 x 10710 for
p/wo = 10~* (Fig. 4.36(c)) and 3 x 10~ for p = 10~2 (Fig. 4.36(d)). With
the rising of p the maximum of the frequency distribution shifts toward the
smaller frequencies. This is owed to the large value of the index under the
sign of exponent in (4.47) (and, especially, to the large value of pw/v).

So far we have not specified the resonance frequency wy. If, following
Brillouin, we choose wy = 4 x 10'6s~! (which is approximately 10 times
larger than average frequency of the visible light), then it follows from Fig.
4.36 (d) that for p/wp = 10~2 (Brillouin recommends p = 0.15), frequency
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Radiation intensities corresponding to the dielectric permittivity (4.7)

Figure 4.36.

for a number of velocities and damping parameters p (in wo units). The radius of the
observational cylinder p = 10 cm. Other medium parameters are the same as suggested by
Brilluoin for iodine. It is seen that the radiation spectrum shifts towards low frequencies

with the rising of p.

distributions are practically zero inside the region of the visible light cor-
responding to w ~ wp/10. This means, in particular, that space-time dis-
tributions of the radiated energy corresponding to realistic p are formed
mainly by photons lying in the far infrared region, and therefore there is
no chance of observing them in the region of visible light.

Up to now we have considered the radiation intensities on the surface
of the cylinder C of the radius p = 10 cm. It is interesting to see how they
look for smaller p. To be concrete, consider the radiation intensities corre-
sponding to p/wy = 10~2. From Fig. 4.36(d) we observe that the maximum
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Figure 4.37. Radiation intensities corresponding to the dielectric permittivity (4.7) for
p/wo = 1072 and for a number of velocities and observational cylinder radii p (in cm). Tt
is seen that the frequency distribution of the radiation crucially depends on the radius p.
This leads to the ambiguity in the interpretation of experimental data. The p dependence

disappears in the absence of damping.

of 0, is at w/wy =2 x 1073 for =1 and p = 10 cm. For p = 1 cm (Fig.
4.37(a)) the maximum of the same radiation intensity is at w/wg ~ 6x 1073,
This means that all frequency distributions shown in this figure are shifted
towards the larger w/wpy. This tendency is supported by Figs. 4.37(b,c,d)
where the radiation intensities for p = 1072 ¢cm, p = 10~% cm and p = 1075

cm are presented.
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4.10.2. DIELECTRIC PERMITTIVITY (4.45)

There is an important difference between the parametrizations (4.7) and
(4.45). It is seen that e(w) given by (4.7) tends to unity for w — oo. This
means that the medium oscillators do not have enough time to be excited in
this limit. On the other hand, e(w), given by (4.45), tends to e in the same
limit. This leads to the appearance of two critical velocities B = 1//€x
and () = 1/./€y, where €x, = €(w = 00) and €y = €(w = 0) = €0 + W3 /w§.
Now we evaluate the frequency distribution of the energy radiated by a
point-like charge moving uniformly in ZnSe with the same parameters as in
[37]. But first we make the preliminary estimates. For the parametrizations
(4.45) with p = 0 the radiation (1 — %€ < 0) condition takes place in the
following w domains:

For a charge velocity greater than the larger critical velocity (6 > ()
the radiation condition 1 — 8% < 0 holds if 0 < w < wp and w > wy.
Here w? = w3 (%€ — 1)/(8%€x — 1). At first glance it seems that for the
parametrization (4.45) the frequency spectrum of the radiation extends to
infinite frequencies. Fortunately this is not so. According to Chapter 7 the
finite dimensions of a moving charge lead to the cut-off of the frequency
spectrum at approximately w. = ¢/a, where a is the charge dimension. If
for a we take the classical electron radius (e?/mc?), then w. ~ 1023571,
which is far above the frequency of the visible light (w ~ 10*s~!). For 3 —
Bs0, w1 — 00, and only the low frequency part of the radiation spectrum
survives.

For the charge velocity between two critical velocities (fy < 5 < o)
the radiation condition 1 — 32¢ < 0 takes place if 0 < w < wp.

Finally, for the charge velocity smaller than the minor critical velocity
(0 < B < fy), the radiation condition 1—3%¢ < 0 is realized in the frequency
window w; < w < wyg. There is no radiation outside it. When 8 — 0,
w1 — wp and the frequency window becomes narrower.

Application to ZnSe
In [37] the following parameters of a dielectric permittivity (4.45) with
p = 0 were found:

€oo =579, € =864, 1vy=06.3x10"Hz, wy=2mry~4-108s71.

The corresponding critical velocities are given by 8., = 0.416 and 3y = 0.34.
For B > By the frequency distribution is confined to the following w
regions: 0 < w < wp and w > wi. At p = 0 the radiation intensities behave
in accordance with above predictions (Fig. 4.38).
Let p # 0. For 8 > (B the radiation intensities corresponding to the
high frequency branch (w > wj) vary quite slowly as p increases (Figs.
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Figure 4.38. Radiation intensities corresponding to the dielectric permittivity (4.45)
for p = 0 and a number of charge velocities. The medium parameters are the same as
for ZnSE. There are two critical velocities: o0 & 0.416 and (o =~ 0.34. (a): For 8 > (s
there are two frequency regions (0 < w < wo and w1 < w < o0) to which frequency
distributions are confined. For f — (o, w1 — 00; (b): For By < 8 < o the radiation
is confined to the frequency region 0 < w < wo (8 = 0.4 and 0.34). For 0 < § < (o, the
radiation is confined to the frequency region wi < w < wp. For  — 0, w1 — wo and the
frequency window becomes narrower (§ = 0.3 and 0.2).
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Figure 4.39. The same as in Fig.4.38, but for a nonzero p/wo = 1075, (a): It is seen
that for § > B0, the high-frequency branch of the spectrum is almost the same as in
the absence of damping. Radiation intensities in the low-frequency part of the spectrum
are two times smaller than for p = 0; (b): For 8 < s, the frequency spectrum is more
sensitive to the change of p. Its position is shifted towards the smaller w. For 8 < 3y the
radiation intensities are very small. For example, for § = 0.2 the maximal value of the
radiation intensity is ~ 5 x 107®. The cylinder radius p = 10 cm.
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Figure 4.40. The same as in Fig. 4.38, but for a larger p/wo = 107°%. (a): For § > fe
the low-frequency part of the spectrum practically disappears. (b): For Gy < 0 < f,
the frequency spectrum is shifted towards the smaller w. The radiation intensities are
approximately ten times smaller than those in Fig. 4.39 (b). The radiation intensity
corresponding to 8 = (o = 0.34 is multiplied by 100 (that is, the curve shown should
be decreased in 100 times). For § < (o the radiation intensities are small and cannot
be presented on this scale. Comparing this figure with Figs. 4.38 and 4.40, we observe
that the position of the maximum of the frequency spectrum depends crucially on the
damping parameter.

4.38(a) and 4.39 (a)). On the other hand, the low-energy branch of the
radiation intensity (0 < w < wyp) is more sensitive to the damping increase:
it is practically invisible even for a quite small value of p/wg = 1076 (Fig.
4.40 (a)).

Let By < B < Boo- At p/wp = 1078 and p/wy = 107° the maximal values
of radiation intensities are, respectively, four and forty times smaller than
for p =0 (Figs. 4.38(b) and 4.39 (b)). In addition they are shifted towards
the smaller w. The radiation intensities decrease still more rapidly with
rising p for 8 < 3p. For example, for 3 = 0.2 and p/wy = 107 the maximal
value of the radiation intensity is ~ 5 x 1076,

The main result of this consideration is that, in absorptive media both
the value and position of the maximum of the frequency distribution cru-
cially depend on the distance at which observations are made. The dimin-
ishing of the radiation intensity is physically clear since only part of the
radiated energy flux reaches the observer if p # 0. Does the frequency shift
of the maximum of the radiation intensity mean that any discussion of the
frequency distribution of the radiation intensity should be supplemented by
an indication of the observational distance? In the absence of absorption
(p = 0) the index of the exponent in (4.47) is zero and the dependence on
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the cylindrical radius p drops out. At first glance it is possible to associate
the p independent frequency distribution of the radiation intensity with
the pre-exponential factor in (4.47) which is the p = 0 limit of (4.47). But
(4.47) is not valid at small distances. Instead, the exact Eq. (4.46) should
be used there which is infinite at p = 0 (since a charge moves along the z
axis).

4.11. Cherenkov radiation without use of the spectral represen-
tation

In the 7, ¢ representation ®(7,¢) and A(7, ) are given by

e [dw kdk
(7 _ w(t—z/v) )
(1) v / ¢ ¢ k2 + (w2 /v2)(1 — B2%) Jolkp)
e ; kdk
A1) = & [ ducit=21) R
A1) m/dwe BT (21— e o) (4.50)

The usual way to handle these integrals is to integrate them first over k.
This was done above in a closed form. The remaining integrals over w are
interpreted as frequency distributions of EMF associated with the uniform
motion of charge in medium.

In this approach we prefer to take the above integrals first over w [36].
The advantage of this approach is that arising integrals can be treated
analytically in various particular cases. These integration methods comple-
ment each other. The Maxwell equations (4.15) describing the EMF of a
uniformly moving charge can be handled without any appeal to the w rep-
resentation. To prove this we rewrite Eq. (4.17) in the 7, ¢ representation:

P(t):8% / Gt — ) E(t')dt,

where
+o00o d
w . ’
G(t—t’) = lim w% / Wew(t_t).
p—0+ wj — w? + 1pw
— 00

A direct calculation shows that

2

2
Git—t)=0 for ¢ >t and G(t—t)= “Lginfw(t—t)] for t <t.
wo

Substituting P into the Maxwell equations (4.15) one obtains the system
of integro-differential equations which depend only on the charge velocity
and the medium parameters and which do not contain the frequency w.
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We represent the denominator entering in (4.50) in the form

1 v? w? — wd

K2+ w2(1— B2%) /02 1— 32 (02— wd)(w? + w?)

v? w?—wd

:1—ﬂ2w%+w%
oo oo ovm) " o o)
2wy \w—w; wHuw 2iws \w —iwy wiwe /]’

k=w/e, wi=wi+wl wi=uwi-Q+ (0= 20du)?

Here

wi = —wj + Q+ (9% - B wiwi) 2, Q= g[wg + B2 (K + Wi

Inserting these expressions into (4.50) and performing the w integration we
get for the electromagnetic potentials and field strengths

A, =AD 4 A(Q),

ev'y 61)’}/

AL = / kdkJo(kp)FV,  AQ = / kdkJo(kp) P

2
P = evy? / kdkJo(kp)Fy — 25:); sinfwz(t — z/v)]|O(t — z/v) Ko(pws/v),
0

A, 7
qu = a = €ﬁ2672 / k2ko1(kp)FA, Dp - Hgb//Bu (451)
0

dp

o0 2
B, = ey / k2dk.Jy (kp)Fy — 22‘;“ sinws(t — 2/v)O(t — 2/v) K1 (pws/v),

by w2 w2
E, = ev? / kdkJo(kp)[2 (52 g)
0

w? —w?
2 2
wi — W
w%_i_w%@(t—z/v)coswl(t—z/v)
2 2 2 2
9 Wy twy )\ wjtwy
- — -sign(z —vt) e —walt — z/v
(ﬂ w§+w§>w§+w% gn(z — vt) exp (—walt — /)
2ew?

sz cosws(t — z/v)O(t — z/v)Ko(pws /v),
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o0 2 2 2.2 2
D, = —Ze/kkoo(lc,o)w1 wg + 627 wL@(t — z/v) coswi(t — z/v)
wi + wj

2., 2 522 92
wy +wy — By wi
wi +wj

0
—e / kdkJo(kp) exp(—wa|t — z/v|) - sign(t — z/v).
0

Here we put:
Fa=F{+FD, Fy=F"+F?

2 2
— 2
F(l):_u_@t_ i t—
A WP+ Wl w (t = z/v)sinwi(t — 2/v),
R = LS o it - )
= ——S——=5exp(—wa|t — z/v
AT g w? Wl P2 ’
2 212
— 2
FY = — (Wi — ) Ot — z/v)— sinwy (t — z/v),
¢ (Wi +wd)(wi — wi) wy
PO (Wi+wd)’
P w(wf + w)(wF + wh)
The separation of F)y and Fy into two parts is justified physically. It turns

out (see the next section) that FE), F q(sl) and Ff), F f) describe cor-
respondingly the radiation field and EMF carried by a uniformly moving
charge. They originate from the w poles lying in non-damping and damping
regions, respectively.

When evaluating electromagnetic potentials and field strengths we have
taken into account that e(w) given by (4.1) is a limiting expression (as
p — 0) of

exp (—walt — z/v]). (4.52)

L@
cw) =1+ wg — w? +ipw

having a pole in the upper w half-plane (for the Fourier transform chosen in
the form (4.3)). This in turn results in an infinitely small positive imaginary
part in wy and in factor 2 in the first terms in F4 and Fy. The position
of poles of €(w) in the upper complex w half-plane is needed to satisfy
the causality condition. It is seen that ®, E,, and E. are singular on the
motion axis behind the moving charge. These singularities are due to the
modified Bessel functions K outside the integrals in (4.51). For a fixed
observational point z on the cylinder surface these singularities as functions
of time oscillate with the frequency ws = wg/ .. For the fixed observational
time ¢ these singularities as functions of the observational point z oscillate
with the frequency wg/B.v. Since the electric induction D is not singular

on the motion axis, the electric polarization P = (D — E) /4 has the same
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singularity as E. As to the magnetic field H , it tends to zero when one
approaches the motion axis:

eww
Hy — LO

O(t — z/v) sinfwo(t — z/v)|pKo(pwo/c) for p— 0.

4.11.1. PARTICULAR CASES

Consider the limiting cases. In most cases we present analytic results for

the magnetic vector potential (and, rarely, for the electric potential). The

behaviour of EMF strengths is restored by the differentiation of potentials.
1) Let v — 0. Then, wq — wp, we — vyk, A, — 0, and

m / dk.Jo(kp) exp (—Bykelt — z/v])

e 1
= 4.53
€0 [22 + p2]l/2 ( )
i.e., we obtain the field of a charge to be at rest in the medium. It turns
out that only the second term in F contributes to ®.
2) Let wy, — 0. This corresponds to the zero electron density, at which
the moving charge exhibits scattering. Then, ¢ — 1, 6. — 1, w3 — 0, ws —
kv,

%
(G = vtP+ 7T

A, — eﬂ’y/koo(k:p) exp (—kvy|z — vt]) =

e

b — ) 4.54

G — o0 + P2 2 oy

i.e., we obtain the field of a charge moving uniformly in vacuum. Again,
only second terms in Fjy and F4 contribute to ® and A, respectively.

3) Let wy, — oo. This corresponds to an optically dense medium. Then,

> Wh2 2 2 2,2, 2 2.2 > Wi,2o

wi — — k¢, wy — By (wp + k%) —wy + k7,
YL “L

(1) 2wowr, . woke(t — z/v)

F,' — T+ k202)k‘c®(t — z/v)sin E—

Fﬁf) — \/7exp —By\Jw? + k22|t — z/v]).

Byy/w? + k2c2
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Ag) can be evaluated in a closed form:

e
A9 — Dosp(qwnhfe), R= (= o)+ 02022 (455)

z

whilst the analytic form of AL is available only for p > woc(t — z/v) Jwr:

A(l) . QGWO

z

O(t — z/v) sinh|wy(t — z/v)|Ko(wLp/c). (4.56)

(it is seen that A,(zl) decreases exponentially when p grows and increases
exponentially with increasing of ¢ — z/v), and on the motion axis:

A = Z26(t - 2 fv)[exp(—wo(t — 2/v)) Eilwo(t — 2/v))

z

—exp(wo(t — 2/v))Ei(—wo(t — z/v))].

Here E;(z) is an integral exponent. For small and large values of wy(t —z/v)
this gives:

A(Zl) ~ —26—0506@ — z/v) sin(wo(t — z/v))[C + In(wo(t — z/v))]
for wo(t — z/v) < 1 and
2e
c(t — z/v)

for wo(t—z/v) > 1. Here C' is the Euler constant. Thus damped oscillations
of the EMF should be observed on the motion axis behind the charge.
4) Let wy — 00, i.e., the resonance level lies very high. Then

Ag) ~

Wi — Wi = B2l wh - PR

w? 322 2
B AP+ PR [
<t — 2/v)sinf\fu — w2 P2t - 2/v)),

FS) —

(2) 1

F - -

A Hﬁvkcexp( Brykelt — z/v],

1) Qew%ﬁ2’y2 .

AL — == L0t — 2 /o) sinfuo(t — 2/v)| Ko(pwo/fye),  (457)
42 ef (4.58)

S RO L
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We see that a complete VP consists of the term A(Z2) describing the charge

motion in vacuum and oscillating perturbation A(Zl) on the axis of the charge
motion.
5) Let wp — 0, i.e., the resonance level lies very low. Then,
k2c? w2 w?
2 2 2 2 2012 2 2 LY0
Wi =2 W3, Wi — k" +wi) — 55—
1 0722 T w% 2 By ( )

F(l) ~ 2w8w% 1
A B22ck (k2c? + w?)

3/2@(15 — z/v)sin [

1 1
F,f) ~ F’Yﬁ exp [—07\/ k2 + wi(t — z/v)),
\/Rect +wy

e
AP ~ Eﬁ exp(—ywiR/c), R=[(vt—2)*+ Bv2p* /)2 (4.59)

We succeeded in evaluating Ag) in a closed form in two cases. For wyp/c <

1 the VP slowly oscillates behind the moving charge:
)1 — coswy(t — z/v)

AW ~ 2 —
3 eO(t — z/v = 2/0)

(4.60)

On the other hand, for wy(t — 2/v) < 1

ewdw
23 L@(t — z/v)pe(t — z/v) K1 (pwr/c).

AS) R~

i.e., there are VP oscillations in the half-space behind the moving charge
decreasing exponentially with increasing p.

6) Let wy — 00, wr, — 00, but wr/wp, and therefore G, is finite. One
then finds

¢ 1
w%—>w(2)(1—€)—|—a:2w(2)1i€, w%:azgwgl_g.
2ec*y%E §
CciE 00) (T (t — 2/v)]

N wo(l — €)3/2
+ e
[(z = vt)? + p*(1 — B2e)] /2’

for § < Be. Here & = Bykc/wo, €= (3%4%/3272.
For 3 > (3. one has

2 ~
. €

ws = wi(E—1) —i—:cszﬁ,
i

wix
e—1

w? =
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ﬂQ 2~ 5 =
e ) ot Tt
2ef3
TG = vt = 2 (P — D]

(€0 is the same as above). The origin of the first and second terms in A, and
® is owed to the second and first terms in F'y and Fy, respectively. Thus one
obtains the EMF of a charge moving in a medium with a constant electric
permittivity € = ¢y and the singular EMF on the motion axis.

7) Let the dimensionless quantity € = 32v%/3%y2 > 1. Then,

2 ng% 2 ~(1+ 2) ﬁ ]C/
wy = ws = To) — ————, Te= c/w
1 1+.’L‘g’ 2 € c 1+x§’ c Ve 05
Fa=FY+FQ,
F = 2 O(t — z/v) sin wo(t—z/v)L
A woére(1 + 22)3/2 M+a2|°

@ _ 1 1 =/
F,  =—————¢ *\/7 1+ z2wolt — . 4.61
A WO\/E\/W Xp( € $cw0| Z/UD ( )

Correspondingly,
A, =AY 4 A2,
where
2ew 7 dx wox\ . [wo(t —z/v)x
(1) _ 0 B / (P 0 ) [ 0 }
A . O(t z/v)o 11 2272 0 orec sin i |

Ry
AR = e (_wo )7 R— (s — o) 4 o2 /~21/2.
S e G [( )"+ 07 /7]
We did not succeed in evaluating A(Zl) in a closed form. Instead, we consider
particular cases when the condition € > 1 can be realized.

Let 8 be finite and 8. — 0. This corresponds to an optically dense
medium. Then A,(f) is exponentially small whereas

A(l) _ 2ef:c
o (BREA(t - z/v)? = pP)L/?

is confined to an infinitely narrow cone lying behind the moving charge.
This equation is obtained by neglecting 22 in the square roots in (4.61).

Ot — z/v)O[Beycc(t — z/v) — p]. (4.62)
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Let § — 1, 8. — 1 under the condition € > 1 (that is, § is much closer
to unity than (.). This inequality is possible because of the v factors in the
definition of €. Then
1 — cos|wy(t — z/v)]

ct —z

AWM = 2¢0(t — z/v) (4.63)
for small values of p. It is seen that the VP exhibits oscillations in a half-
space behind the moving charge. More accurately, the condition under
which Eq. (4.63) is valid looks like pwo/Bcyec < 1. This means that for

0. fixed in the interval 0 < 5. < 1, A(Zl) oscillates for p < Beyec/wo.
8) Let € < 1. Then

€ €

2€ 1
P _ 2
A wo (1 + 22)2

14 22

O(t — z/v) sin [wo(t—z/v) (1—; ! ﬂ,

1
F® = — exp(—wozlt — 2/v]).
2 = L expl(—woalt - 2/

It turns out that A(ZQ) coincides with the VP of a charge moving in a vacuum:

A(2) _ ev
ST G

As to ALY it can be taken in an analytic form for (t — z/v)woé < 1 :

(1 _ epwéﬁfv
B2

The condition € < 1 can be realized in two ways. First, §. can be finite but

O(t — z/v) sinfwo (t — z/v)] K1 (pwo/Bvc). (4.64)

B < 1. In this case AW s confined to a narrow beam behind the moving
charge:

3333
AL = e(wm;ocg Y )1/2531%@(75_'2/”) sinfwo(t — 2/v)] eXp(_Zifyi)' (4.65)

On the other hand, the condition € < 1 can be satisfied when (3 is close to
1, but . is much closer to it. Then,

ewpe

AL = ——O(t — 2/v) sinfwo(t — 2/v)). (4.66)

Thus A,(zl) is small (owing to the € factor), but not exponentially small.
This means that one should observe oscillations in the half-space behind
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the moving charge. Physically, 8. ~ 1, § ~ 1, € < 1 corresponds to the
motion in an optically rarefied medium (e.g., gas) with a charge velocity
slightly smaller than the velocity of light in medium.

We observe the a noticeable distinction between the cases 3~ 1, (.=
1 corresponding to € > 1 and € < 1. In both cases A(Zl) oscillates in the
half-space behind the moving charge, but the amplitude of oscillations is
considerably smaller for 5 < (. (owing to the € factor in (4.66)).

More precisely, the condition under which Eq. (4.66) is valid is pwg /fvc <
1. This means that for § fixed, the VP oscillations should take place for
small values of p.

9) Let the charge velocity exactly coincide with the velocity of light in
medium: 8 = 3., € = 1. Then

2 2 2 2

Wi z 2/,\1/2 w2 _ 7T 2 /,\1/2
— =——+4+z(1+ 4 — = —+4z(1l+ 4 .
w% 5 x( x®/4)H=, wg 5 x( x“/4)

Let 8 = (8. = 1. This corresponds to a fast charged particle moving in a
rarefied medium. Then

(1):%@ — z/v)sinjwo(t — z/v VN wop
AW = 2500t — 2 /u)sinfun(t />][Ko<mw) Ko(ﬁw)],

AP = %exp(—woR/U% R=[(z—vt)* + p* /)2,

Thus A(Z2) differs from zero in a neighbourhood of the current charge po-

sition, whereas A,(Zl) describes the oscillations in the half-plane behind the

moving charge. As ~ is very large, A,(zl) as a function of p diminishes rather
slowly: it decreases essentially when the radius p ~ v/2¢7y/w.

4.11.2. NUMERICAL RESULTS.

In this section we present the results of numerical calculations. We intend
to consider the EMF distribution on the surface of the cylinder C), of the
radius p (Fig. 4.2). This is a usual procedure in the consideration of VC
effect (see, e.g., [29]).

For a frequency-independent electric permittivity (¢ = €p) there is no
radiation for 8 < (. = 661/2. For 8 > (. the energy flux is infinite on
the surface of the Cherenkov cone. On the surface of C, it is equal to
zero for z > —z., (2. = pv/[?n? — 1), and acquires an infinite value at
z = —z. where C, intersects the above cone. Inside the Cherenkov cone the
electromagnetic strengths fall as 7—2 at large distances, and therefore do
not contribute to the radial flux.

In what follows, the results of numerical calculations will be presented
in dimensionless variables. In particular, lengths will be expressed in units
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of ¢/wp, time in units of w L electromagnetic strengths in units of ewg /c2,
the Poynting vector P = (¢/4n)(E x H) in units of e2wd/c3, etc.. The
advantage of using dimensionless variables is that Cherenkov radiation can
be considered at arbitrary distances.

In Fig. 4.8 we presented the dimensionless quantity F' = W,/(e*w3/c?)
as a function of the particle velocity 8. The numbers on curves are (.
Vertical lines with arrows divide a curve into two parts corresponding to
the energy losses with velocities 8 < . and 8 > (. and lying to the left
and right of vertical lines, respectively. We see that the charge uniformly
moving in medium radiates at every velocity.

How is this flux distributed over the surface of C,? For definiteness we
take 8. = 0.75 to which corresponds the refractive index n = 1/3, = 1.333.
This is close to the refractive index of water (n = 1.334). The value of p
is chosen to be p = 10 (in units of ¢/wp). In Fig. 4.41 it is shown how the
quantity o, = 275, is distributed over the surface of C, for 8 = 0.3. It is

seen that the EMF (corresponding to the AY term in A,) differs from zero
only at large distances behind the moving charge. The isolated oscillation in
the neighbourhood of z = 0 corresponds to the EMF carried by the moving
charge. We refer to this part of EMF as the non-radiation EMF. Being
originated from the A® term in A, (see Eq.(4.51)), it is approximately
equal to

2) _ _0562 02/42\2 p(z — vt)
T )
As we have mentioned, this corresponds to the radial energy flux carried
by a uniformly moving charge with the velocity 0 < (. in medium with a
constant € = ¢p. Owing to its antisymmetry w.r.t. z — vt the integral of it
taken over either z or ¢ is equal to zero.

If the distribution of the radiation flux on the surface of the sphere S
(instead of on the cylinder surface C,, as we have done up to now) were
considered, the radial radiation flux S, would be confined to the narrow
cone adjusted to the negative z semi-axis. As follows from Fig. 4.41a the
solution angle 6. of this cone is equal to approximately 3 degrees for G, =
0.75 and B8 = 0.3, i.e., the radiation is concentrated behind the moving
charge near the motion axis.

When [ grows, the relative contribution of the radiation term also in-
creases. This is clearly demonstrated in Fig. 4.41(b) and 4.41(c) where the
distributions of o, are presented for 8 = 0.5 and 8 = 0.99, respectively.
The energy flux distributions presented in Figs. 4.41 (a,b,c) consist in fact
of many oscillations. This is shown in Fig. 4.41(d) where the magnified im-
age of o, for B = 0.99 is presented. It turns out that the first maximum

of the radiation intensity is in the same place z = —p+/3?n? — 1 where in
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Figure 4.41. (a): Distribution of the radial energy flux on the surface of C,, for 8. = 0.75;
and 3 = 0.3. The isolated oscillation in the neighbourhood of the plane z = 0 corresponds
to the non-radiation field carried by a charge. The radiation and non-radiation terms are
of the same order; (b): 8 = 0.5. The contribution of the non-radiation term relative to
the radiation term is much smaller than for 8 = 0.3; (c): § = 0.99. The contribution of
the non-radiation term relative to the radiation term is negligible; (d): Fine structure of
the case 3 = 0.99. It is seen that a seemingly continuous distribution of (c¢) consists, in
fact, of many peaks.

the absence of dispersion the singular Cherenkov cone intersects the sur-
face of C,. To detect the S, component of S, one should have a detector
imbedded into a thin collimator and directed towards the charge motion
axis. The collimator should be impenetrable for the v quanta with direc-
tions different from the radial direction. It follows from Fig. 4.41 that in a
particular detector (placed in the plane z = const), rapid oscillations of the
radiation intensity as a function of time should be observed (since all the
physical quantities and, in particular, S, depend on ¢ and z through the
combination z — vt). It should be asked why so far nobody has observed
these oscillations? From the 8 = 0.99, 5. = 0.75 case presented in Fig.
4.41 d it follows that the diffraction picture differs essentially from zero
on the interval —150 < z — vt < 0, where z is expressed in units of ¢/wy.
The typical wy value taken from the Frank book [29] is wy ~ 6 x 10571,
This gives ¢/wp ~ 5 x 107% cm. We see that the above interval is of the
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order 1073 c¢cm. The rapidly moving charge (v & ¢) traverses this distance
for the time 1073¢~! ~ 3- 10~ !s. It follows from Fig. 4.41 d that there are
many oscillations in this time interval. Because of this, they can hardly be
resolved experimentally.

Now we turn to experiments discussed recently in [18,19,20]. In them,
for an electron moving in a gas with a fixed high energy § ~ 1), the radi-
ation intensity was measured as a function of the gas pressure P. Let P,
corresponds 3 = (.. For gas pressures below P. (in this case 5 < f3.) the
standard Tamm-Frank theory (see, e.g., [29]) predicts zero radiation inten-
sity. A sharp reduction of the radiation intensity was observed in [18,19,20]
for a gas pressure P ~ P./100. To this gas pressure there corresponds € < 1
despite the fact that 8 ~ (. ~ 1 (this is possible because of the v factors
in the definition of €).

To clarify the nature of this phenomenon we turn to Egs. (4.32) and
(4.33) which for a fixed (3 define energy losses per unit length as a function
of B.. Typical curves are shown in Fig. 4.42 a,b. The numbers on curves
are the charge velocity. It follows from Fig. 4.42 (b) that for 5 = 0.99
the radiation intensity diminishes approximately 60 fold when 3. changes
from 0.9 to 0.999. The corresponding distributions of the energy flux on the
surface of C), are shown in Figs. 4 (c) and 4 (d). It is seen that the intensity
at maxima is almost 1000 times smaller for 8. = 0.999 than for 8. = 0.9.
The intensity distribution is very sharp for 8. = 0.9 and quite broad for
Be = 0.999. The physical reason for the sharp reduction of intensity lies in
the increase for 5. > (8 of the region in which the electromagnetic waves
are damped. The sharp reduction of the radiation intensity when the gas
pressure drops below P, agrees with qualitative estimates of section 4.8.

So far we have evaluated S,, the radial component of the Poynting

vector. The integral 2mp [ S,dz taken over the cylinder surface C, is the

same for any p. It is equal to vW,,, where v is the charge velocity while the
quantity W, independent of p is defined by Eqgs. (4.31)-(4.33).

The Poynting vector P has another component, S. Both of them define
the direction in which the radiation propagates. The distributions of o, =
2715, on the surface of C), are shown in Figs. 4.43 (a-d). for the charge
velocities § = 0.3, 0.5, 0.75 and 0.99, respectively. The isolated peak in
the neighbourhood of z = 0 plane corresponds to the EMF carried by the
moving charge with itself. Being originated from the second term in A, (see
(4.51)) it is approximately equal to (for 5 < ()

(2) ~ cfe’p 1 2 _ (1 _ p2y-1 _
~ 260’)/% [(z - Ut)Q + P2/’Y%]3’ Tn = (1 ﬁn) ) 671 - ﬁ/ﬁc
It is seen that the qualitative behaviour of S, is almost the same as Sy;
however, the maxima of S, are approximately twice of those of S,. This
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Figure 4.42. (a): Radial energy losses as a function of the critical velocity characterizing
the medium properties. Values of (3. close to 1 and 0 correspond to optically rarefied and
dense media, respectively. Numbers on curves are the charge velocity 3; (b): The same
as in (a), but for a smaller 3. interval; (c): Distribution of the radial energy flux on the
surface of the cylinder C, for a critical velocity (8. = 0.9) slightly smaller than the charge
velocity (8 = 0.99) which in turn is slightly smaller than the velocity of light in vacuum.
The intensity of radiation is concentrated near the plane z = —z¢; (d): The same as
in (c), but for a critical velocity (8. = 0.999) slightly greater than the charge velocity
(8 =0.99). The distribution of the radiation intensity is very broad and by three orders
smaller than in (c).

means that more radiation is emitted in the forward direction than in the
transverse direction. To observe S, one should orient the collimator (with a
detector inside it) along the z axis. The collimator should be impenetrable
for the v quanta having directions non-parallel to the axis of motion. Again,
the oscillations of intensity as a function of time should be detected during
the charge motion.

To determine the major direction of the radiation, one should find sur-
faces on which the Poynting vector is maximal . Owing to the axial sym-
metry these surfaces look like lines in p, z variables. We shall refer to these
lines as trajectories (see section 4.7). The behaviour of these trajectories
is quite different depending on whether 5 > (. or 8 < (.. For 8 > . the
trajectories are not closed. When z — oo, p also tends to oco. For 8 < (.
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Figure 4.43. Distribution of the z component of the energy flux o, axis on the surface
of C, for B. = 0.75; (a): § = 0.3. The isolated peak in the neighbourhood of z = 0 cor-
responds to the non-radiation field carried by a charge. The radiation and non-radiation
terms are of the same order; (b): 8 = 0.5. The contribution of the non-radiation term
relative to the radiation term is much smaller than for 8 = 0.3; (¢): # = 0.75. The contri-
bution of the non-radiation term relative to the radiation term is negligible. The radiation
is concentrated near the plane z = 0; (d): 8 = 0.99. The contribution of the non-radiation
term relative to the radiation term is negligible . The radiation is concentrated near the
plane z = —z..

the trajectories are closed. In the WKB approach, on a particular one of
the surfaces mentioned, the inclination of the Poynting vector towards the
motion axis is given by [35,36]

s. 1
JS2+ 52 Be(@)

Here z is a parameter, e(z) = 1 + [82v2(1 — 2?)]71, S, = —cE,H/4m and
S, =cE,Hy/4m. For 3 > (3., x changes from z = 1 for which p is zero, z is
finite and p = 7/2 up to x = 0 for which both p and z are infinite whilst
cos Op has the same value 5./ as in the absence of dispersion.

For 3 < . a particular trajectory intersects the motion axis two times:
at x = 1 where z is finite and p = 7/2 and at x = /1 — € where z is finite
and greater in absolute value than for x = 1, while §p = 0 there. At the

cosfp =



202 CHAPTER 4

point of the trajectory where p is maximal the inclination of the Poynting
vector towards the motion axis acquires the intermediate value

é= Y822

1
cosOp = —

1 —-1/2
5 +@ﬁ@—ﬂfﬁﬁ !

Consider now the energy flux per unit time through the entire plane z =
const. It is given by

C
W. = [ Supdpdo = & [ E,Hopdp.

Substituting £, and H from (4.51) and using the well-known orthogonality
relation between Bessel functions

/ pdpTm(kp) Jm(k'p) = %Wf — k),
0

one obtains
1
W, = 62U3’y2/k52dkFA(k‘ z —vt)

9 2 wo 1
A2 =) = e e
where F'4 and Fy, are given by Eqgs. (4.52).

It is not evident that W, is positive-definite. In Fig. 4.44 (a) we present
W, as a function of z for 8. = 0.75 and 8 = 0.99. It is seen that W, is almost
constant in a very broad range of z except for the neighbourhood of the
z = const plane passing through the current charge position. The positivity
of W, =27 [ S,pdp means that the energy flow of radiation follows for the
moving charge and does not mean that S is also positive. This is illustrated
in Fig. 6(b) where o, = 275, as a function of p is presented for a particular
plane z = —800. It is seen that S, contains both positive and negative
parts. This may be understood within the polarization formalism [34,35,36].
In it the moving charge induces the time-dependent polarization of the
medium. This in turn leads to the appearance of the radiation characterized
by the Poynting vector S. The positivity of S, means that the part of
the induced radiation flux follows for the moving charge. This fact has
no relation to the well-known difficulty occurring for the radiation of the
accelerated charge moving in a vacuum where the solutions of the Maxwell
equations corresponding to the energy flux directed inward the moving
charge are regarded as unphysical.

sinfwo(t — z/v) /6] },
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Figure 4.44. (a): The total integral energy flux W, through the plane normal to the
motion axis as a function of this plane position for 8 = 0.99 and 3. = 0.75; (b): The
distribution of the energy flux in a particular (¢ = —800) plane normal to the motion
axis as a function of the radial distance p. Positive and negative signs of ¢, correspond
to the energy flow directed inwards the moving charge and outwards it, respectively.

The appearance of medium density oscillations behind the charge mov-
ing in a plasma was predicted in 1952 by Bohm and Pines [38]. The cor-
responding electric potential has been called the wake potential [39]. The
electric field arising from such oscillations has been evaluated by Yu, Sten-
flo and Shukla [40]. For a charge moving in a metal the Cherenkov shock
waves arise when the charge velocity exceeds the Fermi velocity of the solid
[41]. The Cherenkov shock waves should be also induced by heavy ions
moving in an electron plasma with the velocity greater the Fermi veloc-
ity of the electrons in the plasma [42]. However, in all these publications
only the electric field has been evaluated, no attention has been paid to
the magnetic field arising and to the Poynting vector defining the propaga-
tion of the electromagnetic field energy. The latter is the main goal of this
investigation.

Recently, we were aware of an experiment performed by Stevens et al.
[43] which seems to support the theoretical predictions of this Chapter.
The experiment was performed on a single ZnSe crystal of the cubic form
with a side of 5 mm. Its refractive index essentially differs from unity in
the physically interesting frequency region. A laser pulse from an external
source is injected into the sample. This laser pulse represents a wave packet
centered around the frequency w; which may be varied in some interval.
The injected pulse propagating with a group velocity defined by wy, creates
the distribution of electric dipoles following the laser pulse. The moving
dipoles produce EMF, the properties of which depend on the dipole veloc-
ity vgq, which in its turn, is defined by wy. In particular, this velocity can
be greater or smaller than ¢y (co = ¢/€g, €0 = €(w = 0)). In the experiment
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treated the quantity measured was the electric field. The character of its
time oscillations essentially depends on the fact whether vq > ¢g or vg < ¢g.
The observed time oscillations of electric field were in good agreement with
the theoretical oscillations.

We believe that this experiment is a great achievement having both theo-
retical and technological meaning. However, Nature never resolutely says
‘Yes’. We briefly enumerate the main reservations:

1) A bunch of electric dipoles is created at one side of the ZnSe cube and
propagates towards the other. Such a motion corresponds to the so-called
Tamm problem (see Chapter 2) describing the charge motion in a finite in-
terval. Theory predicts that a charge uniformly moving in a finite dielectric
slab radiates at each velocity even in the absence of dispersion. This asser-
tion is not changed by the fact that the wavelength is much smaller than
the motion interval (equal to the side of cube) in the experiment treated;

2) The switching of the imaginary part of dielectric permittivity leads
to the damping of the EMF oscillations for v < ¢p and to their rather small
attenuation for v > ¢g. For realistic imaginary parts the oscillations for
v < ¢o almost disappear (see this Chapter);

3) An important question is the distance at which the observations
were made: oscillations of the EMF intensity sharply different from the
Cherenkov ones appear at finite distances (see Chapters 5 and 9).

The experiment treated is so fundamental that any ambiguity in its
interpretation should be excluded. Careful analysis of the influence of the
above items on the experiment treated should be made.

4.12. Short résumé of this Chapter

We briefly summarize the main results discussed in this Chapter:

1. It is shown that a point charge moving uniformly in a dielectric
medium with a standard choice (4.1) of electric permittivity should radiate
at each velocity. The distributions of the radiated electromagnetic field
differ drastically for the charge velocity v below and above some critical
value v. which depends on the medium properties and does not depend on
the frequency (despite that the frequency dispersion is taken into account).
For v < v, the radiation flux is concentrated behind the moving charge at
a sufficiently remote distance from the charge.

2. The electromagnetic field radiated by a charge uniformly moving in
a dielectric medium with €¢(w) given by (4.1) consists of many oscillations
which can be observed experimentally. We associate the appearance of these
oscillations with the excitation of the lowest atomic level of the medium by
a moving charge.
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3. The results of recent experiments [18,19,20] and [43] dealing with the
Vavilov-Cherenkov radiation and indicating on the existence of the radia-
tion below the Cherenkov threshold seems to be supported by the present
investigation. We associate this radiation with the frequency dependence
of € and the non-zero damping.

4. In an absorptive medium, both the value and position of the maxi-
mum of the frequency distribution depend crucially on the damping param-
eter and on the distance at which observations are made. The diminishing
of the radiation intensity is physically clear since only part of the radi-
ated energy flux reaches the observer for a non-zero damping parameter.
Does the frequency shift of the maximum of the radiation intensity mean
that any discussion of the frequency distribution of the radiation intensity
should be supplemented by the indication of the observational distance and
the damping parameter? In the absence of absorption the dependence on
the observational cylindrical radius p disappears.
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CHAPTER 5

INFLUENCE OF FINITE OBSERVATIONAL DISTANCES
AND CHARGE DECELERATION

5.1. Introduction

In Chapter 2 we analyzed frequency and angular distributions of the ra-
diation in the so-called Tamm problem. The latter treats a point charge
which is at rest in a medium at the spatial point z = —zy up to an instant
t = —tg. In the time interval —ty < t < tg the charge moves with a con-
stant velocity v that can be smaller or greater than the velocity of light ¢,
in medium. After the instant ¢ = t¢ the charge is again at rest at the point
z = zp. This problem was first considered by Tamm [1] in 1939. Later, it
was analyzed qualitatively by Lawson [2,3] and numerically by Zrelov and
Ruzicka [4,5]. In 1996 the exact solution of the Tamm problem was found
for a non-dispersive medium [5.6]. A careful analysis of this solution given
in [7] showed there that the Tamm formula does not always describe the
VC radiation properly.

In the past, exact electromagnetic field (EMF) strengths and exact elec-
tromagnetic intensities of the Tamm problem were written out in [8]. It
was shown there that the radiation intensity depends crucially on the ob-
servational sphere radius (the formula (2.29) given by Tamm corresponds
to infinite observational distances). However, the calculations carried out
there, were predominantly of a methodological character. The reason is that
formulae obtained in [8] were not suitable for practical applications: EMF
strengths were expressed through the integrals, the accurate evaluation of
which for high frequencies, corresponding to visible light, required a great
number of integration steps.

The goal of this consideration is to obtain more suitable practical for-
mulae describing the radiation intensity of the Tamm problem at finite dis-
tances and having a greater range of applicability than the original Tamm
formula. The original Tamm problem involves instantaneous jumps in veloc-
ity at the start and end of motion. To them correspond infinite acceleration
and deceleration. There are no such jumps in reality. Our next goal is to
study how a smooth transition from the state of rest to the uniform motion
affects the radiation intensities.

The plan of our exposition is as follows. In Section 5.2.1 we reproduce
the Tamm derivation of angular-frequency distributions of the radiation

209
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intensity produced by a point charge moving uniformly in a medium in a
finite spatial interval. Criteria for the validity of the Tamm formula are
given in the same section. Exact electromagnetic fields of the Tamm prob-
lem and radiation intensity are explicitly written out in Section 5.2.2. A
closed expression for the radiation intensity which works at finite obser-
vational distances from a moving charge (the Tamm original formula cor-
responds to an infinite observational distance) is found in Section 5.2.3.
This expression predicts the essential broadening of the angular Cherenkov
spectrum if the measurements are made at realistic distances from a mov-
ing charge. The analytic formula taking into account both the deceleration
of a moving charge owed to the energy losses and a finite distance of the
observational point is presented in Section 5.2.4. It generalizes the formula
found earlier in [9] that is valid only at infinite distances. In Section 5.2.5
we compare exact radiation intensities with approximate analytic intensi-
ties obtained in Sections 5.2.3 and 5.2.4. In all the cases corresponding to
the real experimental situation, there is a perfect agreement between the
exact radiation intensity and analytic formulae found in Sections 5.2.3 and
5.2.4. On the other hand, both of them sharply disagree with the Tamm
radiation intensity. These formulae are applied to the description of the
VC radiation observed in the Darmstadt experiments with heavy ions. The
complications arising and the discussion of the results obtained are given.
In the same section the experiment is proposed of testing the broadening
of the radiation spectrum when it is measured at finite distances.

The analytic formulae obtained in Section 5.2.4 are valid for moderate
accelerations when the loss of velocity is small compared to the velocity
itself. The section 5.3 deals with arbitrary accelerations. Analytic formulae
are obtained for the radiation intensity corresponding to a number of the
smooth Tamm problem (when the transition from the state of versions
rest to the uniform motion proceeds smoothly). These formulae are valid
under the same approximations as the Tamm formula. Various analytic
estimates are given and interesting limiting cases having numerous practical
applications are considered.

5.2. Finite observational distances and small acceleration

5.2.1. THE ORIGINAL TAMM APPROACH

Tamm considered the following problem. A point charge is at rest at a point
z = —zp of the z axis up to an instant t = —tg and at the point z = zg after
the instant ¢ = t¢. In the time interval —ty < ¢t < tp it moves uniformly
along the z axis with a velocity v greater than the velocity of light ¢, = ¢/n
in medium. The non-vanishing z spectral component of the vector potential
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(VP) is given by

ep [* dz'
A = — — -
2 "211/2 2 2 2 7 R
R=[p"+ (z=2)]/% p =a"+y, w—w<;+c—>- (5.1)

In what follows we limit ourselves to a dielectric medium (p = 1). At large
distances from the moving charge where

R> 2z (5.2)
one obtains in the wave zone, where
kpr>1, k,=w/c, (5.3)

the following expression for the energy flux through a sphere of radius r for
the whole time of observation

€= 7”2/5 a9t = [ -L€ 404w
N " ) dQdw ’
dQ = sin 0d0d¢, S, = 41E9H¢. (5.4)
T
Here ) )
d*¢  e* . sinwto(l — Brcosh)., v
dQdw — m2cn [sin cosf —1/0, o = cn (5:5)

is the energy emitted into the solid angle df2, in the frequency interval dw.
This famous formula obtained by Tamm is frequently used by experimen-
talists (see, e.g., [10]-[13]) for the identification of the charge velocity.

The typical experimental situations described by the Tamm formula
are:

i) 8 decay of a nucleus at one spatial point accompanied by a subsequent
absorption of the emitted electron at another point;

ii) A high energy electron consequently moves in a vacuum, enters the
dielectric slab, leaves the slab, and again propagates in the vacuum. Since
an electron moving uniformly in a vacuum does not radiate (apart from
the transition radiation arising at the boundaries of the dielectric slab), the
experimentalists describe this situation by the Tamm formula, assuming
that the electron is created on one side of the slab and is absorbed on the
other.
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In addition to the approximations (5.2) and (5.3), two other implicit
assumptions are made when going from the exact VP (5.22) to the Tamm
field strengths (5.4). The first of them

1
20 L 2r <ﬁ — cos 9) /sin? 4. (5.6)

means [7] that the second-order term in the expansion of ¢ should be small
as compared with the linear one (taken into account by Tamm). It is seen
that the right hand side of this equation vanishes for cosf = 1/4,, i.e., at
the angle where the VC radiation exists. Therefore in this angular region,
the second-order terms may be important. The second of the conditions
mentioned

22wsin? 0

e, LT (5.7)

means that the second-order terms in the expansion of R should be small
not only compared to the linear terms but also compared to 7 (since
is a phase in (5.1)). Or, taking for # and 2’ their maximal values (0 =
/2, Z = zy), one obtains

<1, L=2% A=, (5.8)

This condition was mentioned by Frank on p. 59 of his book [10]. It should
be noted that for gases these conditions are less restrictive than for solids
and liquids. In fact, since for them (,, ~ 1, the angular spectrum is confined
to the region 6 ~ 0 and conditions (5.6) and (5.7) are reduced to (5.2) and
(5.3), respectively. As a result, for gases, the Tamm expression (5.5) for the
radiated power works when Egs. (5.6) and (5.7) are valid.

As an illustration, we turn to Ref. [14] where the angular distribution of
the radiation (A ~ 4 x 107° c¢m) arising from the passage of Au heavy ions
(6 ~ 0.87) through the LiF slab (n ~ 1.39) of width L = 0.5 cm was inter-
preted in terms of the Tamm formula. Substituting the parameters of [14]
into (5.8) defining the validity of the Tamm formula (5.5), we find that the
left hand side of (5.8) coincides with 7 for the observational sphere radius
r =~ 10m. Obviously this value is unrealistic. Since a realistic r is about
10 cm, (5.8) is violated strongly. In this case the Tamm formula does not
describe the experimental situation properly. Thus more accurate formulae
are needed. In the next section, we present the exact EMF strengths of the
Tamm problem.
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5.2.2. EXACT ELECTROMAGNETIC FIELD STRENGTHS AND
ANGULAR-FREQUENCY DISTRIBUTION OF THE RADIATED ENERGY

The energy flux through the unit solid angle of the sphere of the radius r
for the whole time of a charge motion is given by

aw L
Exd .
a0 47r / aH Jr- (5.9)

Expressing E and H through their Fourier transforms

— —

E = /exp(iwt)ﬁwdw, H= /exp(iwt)ﬁwdw

and integrating over ¢ one finds

2 oo o0
% =T [ (Bw) x H(—w))do = / S(w)dw, (5.10)
where
§ 21 70) (D) 200\ 70
S(w,0) = Toda = ¢ [Ey " (w)Hy (w) + By’ (w)Hy' (w)]. (5.11)

This quantity shows how a particular Fourier component of the radiated en-
ergy is distributed over the sphere S. The superscripts (r) and (i) mean the
real and imaginary parts of Ey and Hg. The exact field strengths obtained
by differentiation of the exact vector potential (5.1) are given by

HY (w) = ek"”"” 9/—d ', HY ()= 1n9/—dz

2
r) _ek:r, /r zcos9Fd,_ /
Ey’(w) = Y- sin 0 ( —m n — R2 ,
(i) B ek?r | /r 2’ cos 6 /_
Ey)'(w) = 50 sin 0 ( — Gyd + — o R2dz , (5.12)

1 1
F=cosy— ——siny, G =siny+ —— cos,

knR knR
cos sin sin cos 1)
Fl—SlIlT)Z)+3k R 3@, Gl—COS?,[} 3k‘ R 3@,
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wz'

= — +knR, R=(?—22rcosO+ 22 e =z2/r. (5.13)

The 2’ integration in (5.12) is performed over the interval (—zp, zp). When
Egs. (5.2), (5.3), and (5.8) are satisfied, S(w,6) given by (5.11) transforms
into the Tamm formula (5.5).

Unfortunately, EMF strengths (5.12) given in [8] without derivation are
not suitable for realistic cases corresponding to high frequencies. In fact, for
visible light, k = w/c is of the order 10°cm™!. For an observational distance
r ~ 1 m, one obtains kr ~ 107. A great number of steps of integration is
needed to obtain the required accuracy. Therefore, some approximations
are needed.

5.2.3. APPROXIMATIONS

In the wave zone where k,r > 1, we omit the terms of the order (k,r)~!
and higher outside ¢ and find

e2krin sin ¥ sin ¥
S(w, ) = 12, S 0] f77 dz' - 3 (r — 2’ cos0)dz’
cos 1 cos 1
JP dz - 3 (r — 2’ cos 0)d2'], (5.14)
where
kz'
Y = ?—G—k‘n(R—r), to = zo/v. (5.15)

The condition k,r > 1 in real experiments is satisfied to a great accuracy
(we have seen kr is of the order 107 for » = 1 m).Therefore Eq.(5.14) is
almost exact. Since v in (5.15) contains R — 1, rather than R, its maximal
value is of the order k,zo rather than k,r as in Eq. (5.13). This makes
numerical integration easier if zp < r (the motion interval is much smaller
than the observational distance). In the latter case one may disregard e
outside 1. Then

e2k’n
Slw,6) = 4m2c

sin 6] / singrdz)? + ( / cos nd=')?]. (5.16)

The expansion of 11 up to the first order of ¢ gives the Tamm formula (5.5)
which does not always describe properly the real experimental situation.
Therefore we expand R in 1 up to the second order of ¢

212
R=r—2cosf+ “—sin’6
2r
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and ) )
Y = knz’(m —cosf + %sin2 6). (5.17)
With this ¢, S(w, #) can be obtained in a closed form
ekr 9 9
Sw,0) = - US(z4) = S(e)]” +[Cler) = C(=- )]}, (5.18)
where
eoknzo . 1— B,cosb )
= 0| ——— L1
= 2 o ( €0n sin® 6 ’

S(z) = \/7/dt sint> and Cf(x \/7/dt cos t*

are the Fresnel integrals. For small and large arguments they behave as

— ———f 0
—>\/7 \/790 ol or = — 0,

1 cosz? 1 sinz?

S(m)—>§—\/—2_7r . C(a:)—>§+m .

It is instructive to see how a transition to the Tamm formula takes place.
For this we present z; and z_ in the form

1- ﬁn cos 6 nr 0o €0kn20
24 = .
£ ﬂn sin 6 2 2

Equation (5.18) was obtained under the assumptions k,r > 1 and r > z.
The first term in z4 is then much larger than the second term everywhere
except for cos @ close to 1/3,,. Therefore if cos # 1/, then

1 sinz 2  sinz?
C(m—c*(z)zm( " _in )

1 cos 22 cos 22
S(zy) — S(z_) = e ( Z++ - Z_) ,
[C(z4) = C(z-)” + [S(24) = S(z-))?

i { 1 i 2 CcOS |:2]Z;ZO(1 — ﬁn COs 9)} }

for x — oc.

2 Z% Zye—
2 4

T2

anO

Bn

Q

(1 — By, cos 9)] ,
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where we put 22 = 22 = 22 = k,r(1 — (3, cos0) /23, sin6 outside the sin
and cos. Substituting this into (5.18), we get the Tamm formula (5.5).
It remains to consider the case cos ~ 1/(,. Then

Ik
z4 & +2zpsind 2—:,

[C24) = C (=) + [S(24) = S (=)
~ 4C? (20 sin 0/ kp/27) 4 45% (20 sin 04/ k,, /2r).
The Tamm formula is valid if epkpz0/2 < 1 which is equivalent to (5.8).
Then 4
[C(z1) — C(z )2+ [S(zy) — S(22)]* = ;eoknzo sin? 6
and
e?k?2¢n

5 sin? 6.
m2c

S(w,8) ~

This coincides with the limit cos® — 1/8,, of the Tamm formula.
Equation (5.18) is valid if the third-order terms in the expansion (5.17)
of 11 are small compared to 7:

1
iknregZB cosfsin’ 0 < (5.19)

(7 appears since v is the phase). If we take for 2’ and cosfsin? their
maximal values one finds
nl’ (5.20)
812 ' ’

We collect all approximations involved in derivation of (5.18 )
3

n
anT‘ > 1, AR W < 1. (521)

5.2.4. DECELERATED CHARGE MOTION

Consider the following problem. Let a point charge be at rest at the point
z = —zp up to an instant t = —tg. At t = —tg, the charge acquires the
velocity v1. In the time interval (—ty < ¢t < tp) the charge decelerates
according to the law

z t at? t2 dz =z

Z - 1— = = == _ qat. 5.22
20 to + 22:0( t(Q))7 dt to “ ( )
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After the instant ¢t = ¢y the charge is again at rest at the point z = zy. The
initial and final velocities of charge are equal to

v, f = vo £ aty.
Here
Vi +Vf 20
2 b
is the charge velocity at the instant ¢ = 0 and atg = (v; —vy)/2. It turns out
that the same equations (5.11)-(5.13) are valid for the treated decelerated

charge motion with the exception that the function ¢ should be changed
by

Vo =

Y =wiogT + kn R, (5.23)

where

1 at, Vi — U
L= (8 =262 ) 7], 5= T8 =

In the wave zone the same equation (5.14) is valid if one puts
1 = wtgT + kn(R— 7). (5.24)

Dropping ¢y outside the sines and cosines in (5.14), one arrives at (5.16)
with ¢ given by (5.24).

Expanding square roots entering into R and T" up to a second-order of
€o and 0, respectively, we obtain

2 / 1 12
R—r:—z'cose—i—z—sinzﬁ, T:Z———(S(l—z—2),
T 20 2 25
1 2, kzo0 2"
1 = k2’ (= —ncosh + —sin“ ) — (1-—=%), Bun=vwo/ca (525)

I} 2r 26 25
With such 1, integrals entering into (5.16) can be taken analytically, and
one finds for S(w,0)

e2kr  eyfB,sin®6

Sw,9) = Are eofpsin® 0 + 5{[5( +) = SEIP+[Cler) = CEI,
’ (5.26)
where . - ;
= [ in? g)]1/2[ L~ PnCOSE_
ze = | 2 (0 + Bneo sin® 0)] [5+ﬁn6(]sin29 + 1.

Equation (5.26) works if, in addition to (5.21), the third-order term in the
expansion of T" entering into 1 is small as compared with 7:
k,zl Z/2
=51 - 5.27
5300~ ) < (5.27)
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(again, 7 arises because v is a phase). Taking for 2/(1 — 22) its maximal
value (~ 2/5), we obtain
t L§?
%62 <«m, or ) <1, f=w/ec (5.28)
This condition is satisfied for relatively small accelerations. In the limit
d — 0 (zero acceleration), Eq.(5.26) is reduced to (5.18).
For ¢g — 0 (large radius of the observational sphere), one has

e?kzp 3 sin® 6

S(w,0) = e

{[S(2+) = S +[Cl24) = C(=- )P}, (5.29)

_ [kzod 1 — Bpcosd
Z4 = % ( 5 +1).

An equation similar to (5.29) was obtained earlier in Ref. [9], but with the
motion law different from (5.22).

Frequently the angular intensity is measured not on the sphere surface,
but in the plane perpendicular to the motion axis (in the plane z = const
for the case treated). For k,z > 1, the energy flux in the z direction is

where

S, = / Sz(w, p, z)dwdgpdp,

where
dgg T T 7 1
S.(w,p,2) = dodpdp = c[Ey(w)Hj(w) + B (w)Hg(w)]
2k2 2
_crp ”(I I+ 11, (5.30)
I —/d ,smlﬁl’ /dz Sln¢1’ /d /0051/}1’

= /dz’(z - z’)cols%;pl, r2=p+2% RP=)p"+4 (22

z defines the plane in which the measurements are performed and p is the

distance from the symmetry axis to the observational point. The integration
over z’ runs from —zg to 2. If, in addition, zg < z then

2 2
212 2
Sa(w, p,z) = % (/ dz sinz/q) + (/ dz cosw1> . (5.31)
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In the Fresnel approximation this reduces to

B e2kfBonzozp?
Sa(w, p,2) = 4rerS (8§ + eofAnsin? 6)
x{[S(24) = S(2-) +[C(z4) = C(=)P}, (5.32)

where z1 are obtained from z4 entering (5.26) by setting in them sinf =
p/r, cos@ = z/r, r = \/p*+ z2. The physical justification of this sec-
tion considerations is as follows. When a charge enters into the dielectric
slab it decelerates (owing to the VC radiation, ionization losses, etc.). For
high-energy electrons these energy losses are negligible, and the uniform
motion of the electron is a good approximation. However, for heavy ions
for which the VC is also observed the energy losses are essential since they
are proportional to the second-degree of heavy ion atomic number. Equa-
tions (5.14) and (5.16), with 11 given by (5.24), are valid for arbitrary
0 = (vi —vy)/(vi +vf). When conditions (5.21),(5.28) and § < 1 are satis-
fied, they are reduced to (5.29).

5.2.5. NUMERICAL RESULTS

With the parameters n, L, A the same as in [14] (see Sect. 5.2.1) and § =
0.868, we have evaluated the almost exact radiation intensity (5.14) (be-
cause it was obtained from the exact intensity (5.11) by neglecting the
terms of the order 1/k,r and higher outside 1) and the approximate Fres-
nel (5.18) angular distribution of the radiated energy on the spheres of
the radii r = 1 cm (Fig. 5.1) » = 10 cm (Fig. 5.2), r = 1 m (Fig. 5.3)
and 7 = 10 m (Fig. 5.4). It is seen that the radiation spectrum broadens
enormously for small observational distances. For example, it occupies an
angular region of approximately 20 degrees for r = 1 cm and 1.5 degrees
for r = 10 cm. These figures demonstrate reasonable agreement between
the Fresnel and exact intensities. In the case r = 10 cm, for which the
condition (5.20) for the validity (5.18) is strongly violated (it looks like
14 <« 1), the agreement of (5.14) and (5.18) is quite satisfactory. Even for
the case r = lem, for which the inequality (5.20) has the form 1400 < 1,
the Fresnel intensity although being shifted, qualitatively reproduces the
exact radiation intensity (Fig. 5.1). In any case, the Fresnel intensity (5.18)
can be used as a simple (although slightly rough) estimation of the position
and the magnitude of the radiation intensity for realistic observational dis-
tances. On the other hand, both the Fresnel and exact intensities disagree
sharply with the Tamm intensity (5.5). This demonstrates Fig. 5.5, where
the exact (5.14) intensity on the sphere of radius 7 = 10 m is compared
with the Tamm intensity (5.5) (which does not depend on r and which is
obtained either from (5.14) or from (5.18) in the limit r — o0).
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Figure 5.1. Exact (solid line) and Fresnel (dotted line) intensities (in units of ¢*/c) on
the observational sphere of radius » = 1 cm. Parameters of the Tamm problem: the charge
motion interval and velocity are L = 0.5 cm and § = 0.868, respectively.; wavelength
A =4-10"" cm; refractive index n = 1.392. It is seen that angular spectrum has a width
approximately 20 degrees.

So far, we have investigated the influence of the radius of the observa-
tional sphere on the intensity distribution over this sphere. Now we analyze
the influence of the charge deceleration on the radiation intensity on the
sphere of infinite radius. The parameters n, L, A and the initial velocity
B; = 0.875 are the same as in [14]. The radiation Fresnel intensities (5.29)
for final velocities 8y = 0.83; and 3; = 0.2(3; are shown in Fig. 5.6. Their
form remains practically the same for 8y < 0.83;. When (f tends to (;,
the frequency spectrum tends to the Tamm intensity (5.5). This fact is
illustrated in Fig. 5.7 (where the radiation intensities for 3y = 0.93; and
B = 0.958; are shown) and in Fig. 5.8 (where intensities for gy = 0.994;
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Figure 5.2. The same as in Fig. 5.1, but for » = 10 cm. The width of the angular
spectrum is about 1.5 degrees.

and [ = 0.99903; are presented).

We turn now to experiments made recently in Darmstadt and discussed
in [15]. In them, the beam of Au}” ions passed through the LiF slab creating
the VC radiation. The initial energy of the ion beam (i.e., before entering
the slab) was 905 MeV/n. One of the LiF slabs had the width d = 0.5 cm
with the energy loss 73.3 MeV /n, while the other had width d = 0.1 cm with
the energy loss 14.7 Mev/n. The authors of [15] compared the intensities
for the slab widths d = 0.5 and 0.1 cm. In Figs. 5.9-5.12 we present Fresnel
theoretical intensities (5.26) for d = 0.1 and d = 0.5 on the spheres of
various radii. We observe that for observational distances larger than 1
m, the form of the radiation intensity practically does not depend on the
distance, that is, the deceleration plays a major role at these distances. For
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Figure 5.3. The same as in Fig.5.1, but for » = 1 m. The width of angular spectrum is
about 0.15 degrees.

r > 1 m, theoretical intensities strongly resemble experimental radiation
intensities measured in [15].

The relative radiation intensities were measured in [15] in the plane
perpendicular to the motion axis. The position of this plane was not spec-
ified (as it was suggested to be irrelevant). According to one of authors
of Ref.[15] (J. Ruzicka), it was approximately 3 cm. Dimensionless theo-
retical intensities S, (w, p,2)/(e?/cz?) (where S,(w, p, z) is given by (5.32)
in the plane z = 3 c¢m, for d = 0.1 cm and d = 0.5 cm, are shown in
Fig. 5.13. Although the positions of intensities maxima coincide with the
experimental positions, their form differs appreciably. We now discuss the
complications arising.

First, experimentalists claim (Zrelov V.P., private communication) that
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Figure 5.4. The same as in Fig.5.1, but for r = 10 m.

the observed pronounced Cherenkov spectrum arising from the passage of
relativistic protons through a transparent slab is described by the Tamm
formula in the very neighbourhood of the slab. To resolve the inconsistency
between the evaluated and observed angular spectra one may speculate (this
is Zrelov’s ) that the Tamm picture (i.e., the charge particle propagation on
a finite spatial interval) is displayed between spatial inhomogeneities of the
medium. Since the distance between these inhomogeneities is much smaller
than the length of the slab, the pronounced Cherenkov spectrum should be
observed at arbitrary distance from the slab.

Dedrick [16] qualitatively showed that the angular spectrum broadens
if the multiple scattering of a moving charge on the medium spatial in-
homogeneities is taken into account. In this case the resulting interference
picture is a superposition of Tamm’s intensities from particular medium
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Figure 5.5. Exact angular intensity for r = 10 m (solid line) versus the Tamm intensity
(dotted line) which does not depend on r. Their distinction is essential. Comparison of
this figure with Figs. 5.1-5.4 demonstrates that for smaller r the exact radiation intensities
differ drastically from that of Tamm.

inhomogeneities. Quantitatively this was confirmed in Refs. [17,18].

Another possible explanation of this phenomenon is owed to a rather
specific measurement procedure used in experiments similar to [15]. In them
the measurements were performed in the z = const plane where the cam-
era, with a photographic film inside it, was placed. The lens of this camera
was focused on infinity. According to the authors of [15] (Ruzicka, Zrelov)
this optical device effectively transforms the finite distance radiation spec-
trum into the infinite distance spectrum. We do not understand how this
can be, but, if this really takes place, then in the z = 3¢m plane, the in-
tensities should have a form corresponding to large distances. In passing,
intensities shown in Figs 5.11 and 5.12, corresponding to large observational
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Figure 5.6. Exact angular intensities (in units of ¢?/c¢) on the sphere of infinite radius
arising from decelerated motion in a LiF slab (n = 1.392) of the width L = 0.5 cm; the
observed wavelength A = 4 x 107° c¢m; the initial velocity 3; = 0.875. Solid and dotted
curves correspond to the final velocities Sy = 0.23; and By = 0.83;. Qualitatively, the
picture remains the same for smaller (3;.

distances, strongly resemble the experimental intensities. We feel that this
question needs further consideration. It should be mentioned about the
Schwinger approach [19] describing the radiation intensity of an arbitrary
moving charge. The final formula contains only integrals of charge-current
densities and does not depend on EMF strengths and the radius of the
observational sphere. This formula was applied to the Tamm problem in
[8] (see Chapter 2). It was shown there that the radiation intensity in the
Schwinger approach strongly resembles that described by the Tamm for-
mula. However, the Schwinger approach uses the half difference of the ad-
vanced and retarded potentials (this conflicts with causality) and ad hoc
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Figure 5.7. The same as in Fig. 5.6 but for 8y = 0.93; (solid line) and 3y = 0.950;
(dotted line).

neglects the terms with definite symmetry properties.

To observe the predicted broadening of the angular spectrum at finite
distances, the measurement of the VC radiation produced by high-energy
electrons (for which the energy losses are negligible) is needed at a dis-
tance from the target where the inequality (5.8), ensuring the validity of
the Tamm formula, is violated. No optical devices distorting the radiation
spectrum (in the sense defined above) should be used, if possible. Now,
if the broadening of the angular spectrum will be observed at arbitrary
distance from the dielectric slab then the multiple scattering mechanism
suggested by Dedrick [16] takes place. On the other hand, the broadening
of the angular spectrum in the immediate neighbourhood of the dielec-
tric slab described by Egs. (5.14),(5.18),(5.26) and (5.32) will support the
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Figure 5.8. The same as in Fig. 5.6 but for 3y = 0.998; (solid line) and B = 0.99905;
(dotted line). When [ tends to 3; the angular spectrum tends to that of given by the
Tamm formula (2.5).

validity of the original Tamm picture (with its modification for the finite
observational distances). We hope, these formulae and considerations will
be useful to experimentalists.

The frequency distribution of the radiated energy is defined as

S(w) = / d0S(w, 8) = 27 / sin 065 (w, ).

In Fig. 5.14, we present S(w) in units of e2/c evaluated for parameters the
same as in [15] on the sphere of radius 7 = 1 m. For S(w,f) we used its
Fresnel approximation (5.26), which under the conditions of the Darmstadt
experiments almost coincides with (5.1). In the same figures there are
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Figure 5.9. Theoretical angular spectrum of the VC radiation (in units of ¢?/c) which
should be observed in the Darmstadt experiments a the sphere of radius r = 1 cm. The
solid and dotted curves refer to the widths of LiF (n = 1.392) slab d = 0.5 cm and d = 0.1
cm, respectively. The initial velocity (; ~ 0.86064. The final velocity 5y ~ 0.84781 for
d = 0.5 cm and 3 ~ 0.8582 for d = 0.1 cm. The observed wavelength A = 6.5 x 107°
cm.

shown the Tamm frequency distributions Sp(w) obtained by integrating
the Tamm formula (5.5) over a solid angle d2:

2¢%k 1 4e? 1 . 1+
c ﬁn men Qﬁn Bn -1

Sr(w) —1) (5.33)
for 8, > 1 and
C4e? 1 14 6,

—1)
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Figure 5.10. The same as in Fig. 5.9, but for » = 10 cm.

for 8, < 1. Here k = w/c, B, = fn, and 2z is the width of the slab. The
value of § in (5.33) is chosen as the half-sum of the velocities of the Au
ions before entering the LiF slab and after the passage this slab. We observe
that the Tamm frequency intensities almost coincide with the Fresnel in-
tensities despite the striking difference in corresponding angular-frequency
distributions.

Up to now we have identified heavy ions with the point-like charged ob-
jects. Since the medium (a dielectric slab) is considered here as structureless
(it is described by the refractive index depending only on the frequency),
the condition for the validity of point-like approximation is the smallness of
the heavy ion dimension R relative to the observed wavelength A. If for R
we take its radius R = 1.5A/3 fm and for \ we take the average wavelength
of the optical region A =2 6 x 10~° cm, then for A = 200 the above condition
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Figure 5.11. The same as in Fig. 5.9, but for » = 1 m.

is satisfied to a great accuracy: R ~ 10712 cm< A ~ 6 x 107° cm.

Another estimation of the point-like approximation was made in an
important paper [16] where the smallness of the wave packet dimension
A = h/(movy) (coinciding with the de Broglie wavelength) relative to
the motion length L (coinciding with the width of the dielectric slab) was
postulated. Here mg = myA is the rest mass of the heavy ion, v is its
velocity, v = 1/4/1 — 32, my is the mass of nucleon. For the case treated
this condition is satisfied to a great accuracy: Ag ~ 5x 10717 ecm< L ~ 0.1
cm. In fact, A is much smaller than the distance (1078 c¢m) between the
neighbouring atoms from which the dielectric slab is composed. This is
essential for the multiple scattering of a charge on the medium spatial
inhomogeneities considered in [16].

The influence of finite dimensions of a moving charge on the radiation of
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Figure 5.12. The same as in Fig. 5.9, but for » = 10 m.

the EMF was studied in [20]. The moving charge density had the Gaussian
form along the motion axis and zero dimensions in the directions perpendic-
ular to it. It was shown there that the EMFs corresponding to a point-like
and diffused charge densities were practically the same up to some critical
frequency w. = ¢/a, where c is the velocity of light and a is the parameter
of the Gaussian distribution. If we identify a with the heavy ion radius R,
then in the case treated, w. ~ 3 - 10%2s~! which is far off the optical region
(109571 < w < 10'%s71). Thus, a point-like approximation for heavy ions
charge densities is satisfactory for the treated problem.

In the radiation intensities used in sections 4 and 5, e? should be changed
to Z2e? if a propagation of heavy ion with an atomic number Z is consid-
ered. Alternatively one may think that Z? is included in e?.

The moral of this section is that one should be very careful when ap-
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Figure 5.18. Theoretical radial distribution of the VC radiation intensity (in units of
e?/cz?) which should be observed in the Darmstadt experiments in the plane z = 3 cm.
The solid and dotted curves refer to the widths of LiF slab d = 0.5 cm and d = 0.1 cm,
respectively. Other parameters are the same as in Fig. 5.9.

plying the Tamm formula (5.5) to analyse experimental data. The validity
of the conditions (5.2),(5.3), and (5.8) ensuring the validity of (5.5) should
be verified. The almost exact energy flux (5.14) or the approximate expres-
sions (5.18), (5.26), (5.29) or (5.32) should be used if these conditions are
violated.
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Figure 5.14. Theoretical frequency spectrum (for the region of visible light) of VC
radiation (in units of ¢?/c) which should be observed in Darmstadt experiments on a
sphere of radius r = 1 m for d = 0.5 cm and d = 0.1 cm (solid lines). Dotted lines
correspond to the Tamm intensity (5.33).

5.3. Motion in a finite spatial interval with arbitrary acceleration

5.3.1. INTRODUCTION

In 1934-1937, the Russian physicist P.A. Cherenkov performed a series of
experiments under the suggestion of his teacher S.I. Vavilov. In them pho-
tons emitted by Ra atoms passed through water. They induced the blue
light observed visually. Applying an external magnetic field, Cherenkov rec-
ognized that this blue light was produced by secondary electrons knocked
out by photons.

These experiments were explained by Tamm and Frank in 1937-1939
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who attributed the blue light to the radiation of a charge uniformly moving
in medium with a velocity greater than the velocity of light in medium.

Theoretically, when considering the VC radiation one usually treats
either the unbounded charge motion with a constant velocity (this corre-
sponds to the so-called Tamm-Frank problem [10]) or the charge motion
in a finite interval with an instantaneous acceleration and deceleration of a
charge at the beginning and at the end of its motion. This corresponds to the
so-called Tamm problem [1]. The physical justification for the Tamm prob-
lem is as follows. A charge, moving initially uniformly in vacuum (where it
does not radiate), penetrates into the transparent dielectric slab (where it
radiates if the condition cosfcy, = 1/0n for the Cherenkov angle is satis-
fied), and finally, after leaving the dielectric slab, moves again in vacuum
without radiating (we disregard the transition radiation at the boundaries
of the dielectric slab). The appearance of radiation at the instant when a
charge enters the slab and its termination at the instant when it leaves
the slab are usually interpreted in terms of the instantaneous charge ac-
celeration at one side of the slab and its instantaneous deceleration at its
other side. Since the Tamm problem is more physical than the Tamm-Frank
problem, it is frequently used for the analysis of experimental data. Another
possible application of the Tamm problem is the electron creation at some
spatial point (nuclear 3 decay) with its subsequent absorption at another
spatial point (nuclear 3 capture). Tamm obtained a remarkably simple an-
alytic formula describing the intensity of radiation and interpreted it as the
VC radiation in a finite interval.

Another viewpoint of the nature of the radiation observed by Cherenkov
is owed to Vavilov [21]. According to him,

We think that the most probable reason for the v luminescence is the
radiation arising from the deceleration of Compton electrons. The hard-
ness and intensity of v rays in the experiments of P.A. Cherenkov were
very large. Therefore the number of Compton scattering events and the
number of scattered electrons should be very considerable in fluids. The
free electrons in a dense fluid should be decelerated at negligible dis-
tances. This should be followed by the radiation of the continuous spec-
trum. Thus, the weak visible radiation may arise, although the boundary
of bremsstrahlung, and its maximum should be located somewhere in
the Roentgen region. It follows from this that the energy distribution in
the visible region should rise towards the violet part of spectrum, and
the blue violet part of spectrum should be especially intense.

(our translation from Russian).

This Vavilov explanation of the Cherenkov effect has given rise to a
number of attempts (see, e.g., [4,5]) in which the radiation described by
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the Tamm formula was attributed to the interference of bremsstrahlung
(BS) arising at the start and end of motion.

On the other hand, the exact solution of the Tamm problem in a non-
dispersive medium was found and analysed in [6,7]. It was shown there that
the Cherenkov shock wave exists side by side with BS waves in no case can
be reduced to them. Then, how can this fact be reconciled with the results
of [4,5] which describe experimental data quite satisfactorily? The possible
explanation of this controversy is that the exact solution obtained in [6,7]
was written out in the space-time representation, while the authors of [4,5]
operated with the Tamm formula related to the spectral representation. It
might happen that the main contribution to the exact solution of describing
the Cherenkov wave is owed to the integration over the frequency region
lying outside the visible part of the intensity spectrum. Then, in principle,
the radiation in the visible part of spectrum could be described by the
Tamm formula frequently used for the interpretation of experimental data.

The aim of this consideration is to resolve this controversy. We shall op-
erate simultaneously in the spectral representation as authors of [4,5] did
and in the time representation used in [6,7]. Instead of the original Tamm
problem in which a charge exhibits instantaneous acceleration and decelera-
tion, we consider a charge motion with a finite acceleration and deceleration
and uniform motion on the remaining part of a trajectory. This allows us to
separate contributions from the uniform and non-uniform parts of a charge
trajectory. In the past, analytic and numerical results for the motion with
the change of velocity small compared with the charge velocity itself were
obtained in [9,22]. Unfortunately, the analytic formulae obtained there do
not work in the case treated, since the charge is accelerated from the state
of rest up to a velocity close to that of light. Numerically, the smoothed
Tamm problem with a large change of velocity was considered in [23], but
their authors did not aim to resolve there the above controversy between
Refs. [4,5] and [6,7].

5.3.2. MAIN MATHEMATICAL FORMULAE

Let a point charge move along the z axis with a trajectory z = £(t) in a non-
dispersive medium of refractive index n. Its charge and current densities
then are equal to

p=es(x)d(y)d(z —£(1), .= ev(t)d(z)6(y)6(z — £(t)), v = %
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The Fourier transforms of these densities are equal to

(&

plw) = %

/ exp(—iwt)p(t)dt = - -5(2)3(y) / exp(—iwt)(z — £())dt

_ %5(@5@) exp(—iwT(z)),

J2(w) = 5 0(@)8(y) exp(—iwr(2)), (5.34)

where 7(z) is the root of the equation z — £(¢) = 0. It was assumed here
that v > 0, that is, a charge moves in the positive direction of the z axis.

The Fourier transform of the vector potential corresponding to these
densities at the spatial point z,y, z is equal to

d !
A (w) = ﬁ %exp(—iw), (5.35)

where ¢ = wr(2') + knR and R = /22 + y?> + (2 — 2/)? and k = w/c. The
non-vanishing Fourier component of the magnetic field strength is

iek,rsind [ d2’ i

Hy(w) = o | 2 exp(—i)(1 — kn—R)' (5.36)

Here k,, = w/c, and ¢, = ¢/n is the velocity of light in medium. Outside
the motion axis, the electric field strengths are obtained from the Maxwell
equation

TWE =

curlH (w) = TE(W) (5.37)

The energy flux in the radial direction per unit time and per unit area of
the observational sphere of the radius r is

d2W c
= By Hy(0).
Sr=aa0dr = ax e Hs(t)

The energy radiated for the whole charge motion is

C
/ St = / dtE(t)Hy(t)

=2 0/ duo| Eg(w) H}(w) + Ej(w)H}(w). (5.38)
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Usually radial energy fluxes are related not to the unit area, but to the unit
solid angle. For this one should multiply Eq. (5.38) by 2 (r is the radius
of the observational sphere). Then

2 / Srdt:/ar(w)dw,
—00 0

where

W _ o2 By () HE(w) + B () Ho(w)] (5.39)
dQdw 2 © OV ORI '
Let the motion interval L be finite. Then under the conditions (5.2),(5.3)
and (5.6)-(5.8) the radial radiation intensity is given by

or(w,0) =

e2k2n sin 0

or(w,0) = ———— /dz cos iy )? /dz sin )y )? (5.40)

with
1 = wr(2') — knz' cos . (5.41)

For uniform rectilinear motion this approximation gives the famous Tamm
formula

2 inwtg(l — B, cosb
e . sinwty(l — By cos )]27 to="— [Bpn=—. (5.42)

m2en [sin cost —1/p, v Cn

UT(O.), 0) =

A question arises of why it is needed to use the approximate expression
(5.40) even though the numerical integration is quite easy [8,22]. One of
the reasons is the same as for the use of the Tamm formula which does not
work at realistic distances [8,10]. Despite this and owing to its remarkable
simplicity, the Tamm formula is extensively used by experimentalists for
the planning and interpretation of experiments. Analytic formulae of the
next section are also transparent. Since acceleration effects are treated in
them exactly they are valid under the same conditions (5.2), (5.3), and
(5.8) as the Tamm formula (5.42), but include, in addition, the charge fi-
nite acceleration (or deceleration). Another reason is that experimentalists
want to know what, in fact, they measure. For this they need quite trans-
parent analytic formulae to distinguish contributions from the uniform and
accelerated (decelerated) charge motions. The formulae presented in the
next section satisfy these requirements and may be used for the rough es-
timation of the acceleration effects. After this stage the explicit formulae
presented in this section may be applied (as was done in [22]) to take into
account the effect of finite distances. Our experience [23] tells us that exact
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numerical calculations without preliminary analytical consideration are not
very productive.

In what follows we intend to investigate the deviation from the Tamm
formula arising from the charge deceleration. Let us consider particular
cases.

5.3.3. PARTICULAR CASES

Decelerated and accelerated motion on a finite interval
Let a charge move in the interval (z1,22) according to the law shown in
Fig. 5.15(a):

1
e=zm+u(t—h)+ 5t - t1)2. (5.43)

The motion begins at the instant ¢; and terminates at the instant to. The
charge velocity varies linearly with time from the value v = vy at t = #;
down to value v = vy at t = to: v = vy +a(t —t1). It is convenient to express
the acceleration a and the motion interval through z1, 2o, vy, va:

v? — 3 2(z2 — 21)

=1 2 =
2(21 — 2’2) 2 ! V9 + V1

For the case treated the function 7(z) entering (5.41) is given by

z9 — Z Z—Z ’02—’02 1/2
T(z):tl—zvlﬁ 1- <1+ ! 2—21> . (5.44)

U2 1 22 - Z]_ Ul

When the conditions (5.2),(5.3) and (5.8) are fulfilled (i.e., ¢ is of the form
(5.41)), the radiation intensity can be taken in a closed form. For this we
should evaluate integrals

z2 z2
I(z1,v1; 22,02) = /coswldz and  Is(z1,v1; 22,02) = /sinwldz (5.45)
21 21

entering into (5.40), where 1); is the same as in (5.41). We write them in
a manifest form for the motion beginning at the point z;, at the instant t;
with the velocity v; and ending at the point zo > z; with the velocity vs.
There are four possibilities depending on the signs of cosf and (v; — v2).
Obviously vy > v1 and vy > vg correspond to accelerated and decelerated
motions, respectively; cosf > 0 and cosf < 0 correspond to the observa-
tional angles lying in front and back semispheres, respectively.
1) vg > vy, cosf >0

= m{sin(u%—'y)—sin(u%—'yH—a\/ﬁ[cos ¥(Ca—C1)+siny(S2—S51)]},
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Figure 5.15. Time dependences of charge velocities treated in the text.

(a): Charge deceleration in a finite interval. v1,v2 and ¢, are the charge initial and final
velocities and velocity of light in medium, respectively.

(b): Charge acceleration followed by the uniform motion and deceleration. This case
allows one to estimate contributions to the radiation intensity from the accelerated,
uniform, and decelerated parts of a charge trajectory.

(c): This motion permits one to estimate how the radiation intensity changes when the
transition from a velocity greater to a velocity smaller than the velocity of light in medium
takes place.
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{cos(ud—~)—cos(u?—)—av/2r[cos v(Sa—S1) —siny(Co—C1)]},

- kn cos

2) vg > vy, cosf <0

1
Le=———— {sin(uj+7) —sin(ui+7) —av/2r[cos 7(Co—C1)—siny(So—S1)]},
~ kncosf {cos(uz+7) —cos(uf+y)+av2m[cos y(Sp—S1)+siny(Ca—C1)]},

3) v1 > w9, cosf >0

I.=— {sin(u3+~)—sin(u2+7)+av2r[cos y(Cy—C ) —sin v(Ss—S1)]},

kn cosf

i w— {cos(ud+~)—cos(u2+7)—av/2r[cos (Sa—S1 ) +siny(Co—C1)]},

4) v1 > v9, cosf <0

:knjosé?{sm(u%_w sm(ul ) ar[cosy(CZ Cl)+31n’7(52 Sl)]}
= {cos(uf—y)—cos(uf—)+av/2mlcos (Sp = 51) —sin Y (C2—C)l}:

Here we put

Cy=C(u1), Cy=C(u2), S1=58w), S2=5(u2),

. k(ZQ — Zl) 1/2
Q‘mewg—ﬁﬁ ’

wr k(zo — z1)n| cos | (5 1 )
VB ' ncosd)’

 — k(z2 — z1)n| cos 6| (ﬁ 1 )
2T |33 — B2 > ncosd)’

k(za — 21) B321 — Bize k(z2 — 21)
—k 97 — .
(522 - B%)n cos 0 eos 52 51 2 =5 (52 51)

C and S are Fresnel integrals defined as

S(z) = \/7/altsmt2 and C(x :\/7/(1tcost2

v =wt; +
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Obviously I. and I are the elements from which the total radiation inten-
sity for the charge motion consisting of any superposition of accelerated,
decelerated, and uniform parts can be constructed.

Using them we evaluate the intensity of radiation:

2
or(6) = W /dz cos1)? /dz sin )y )?
7
e?sin? 0 ) ) ) ) ,
= 53 oag il —cos(ui —ud) + ma?[(Ca = C1)* + (85— $1)7]

+v27ra[(Cy — C1)(sinu3 — sinu?) — (Sy — Sy)(cosus — cosu?)]}.  (5.46)

The plus and minus signs in (5.46) refer to cosf > 0 and cosf < 0, re-
spectively. Furthermore 81 = v /¢ and 2 = ve/c. When v; — v9 = v the
intensity (5.46) goes into the Tamm formula (5.42) in which one should put
to = (22 — 21)/2v.

Figure 5.16 shows angular radial distributions for the fixed initial ve-
locity (51 = 1 and various final velocities 3. The length of the sample was
chosen to be L = 0.5 cm, the wavelength A = 4 x 107° cm, the refractive
index of the sample n = 1.392. For 32 close to 31 (B2 = 0.99) the angular dis-
tribution strongly resembles the Tamm one. When (5 diminishes (G2 = 0.9
and (2 = 0.8) a kind of a plateau appears. Its edges are at the Cherenkov
angles corresponding to (1 and (2 (cosf; = 1/61n, cosfy = 1/Fsn). On
the Cherenkov threshold (82 = 1/n), o, has a peculiar form with fast oscil-
lations at large angles. This form remains the same for the velocities below
the Cherenkov threshold, but the oscillations disappear for Gy = 0.

An important case is the decelerated motion with a final zero veloc-
ity. Experimentally it is realized in heavy water reactors where electrons
arising in § decay are decelerated down to a complete stop, in neutrino
experiments, in the original Cherenkov experiments, etc.. Radiation inten-
sities for various initial velocities are shown in Fig. 5.17. It is easy to check
that their maxima, despite the highly non-uniform character of this mo-
tion, are always at the Cherenkov angle ; defined by cos#; = 1/81n and
corresponding to the initial velocity vi. The angular dependences of the
radial intensity are always smooth for f2 = 0. Analytically these radia-
tion intensities are described by Eq.(5.46) in the whole angular interval.
For completeness, we have collected in Fig. 5.18 the radiation intensities
corresponding to a number of initial velocities and zero final velocity.

An important quantity is the total energy radiated per unit frequency.
It is obtained by integration of the angular-frequency distribution over the
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Figure 5.16. Radiation intensities (in units of e?/c) corresponding to Fig. 5.15(a) for
B1 =1 fixed and various f2. (a): For f2 = 0.99 the radiation spectrum is close to that
described by the Tamm formula (5.42). (b): For smaller 3, a kind of plateau appears in
the radiation intensity. Its edges are at the Cherenkov angles corresponding to 51 and (a.
(c): For B2 = 1/n, the distribution of radiation has a specific form without oscillations
to the left of the maximum. (d): This form remains essentially the same for smaller
B2, but the tail oscillations disappear. In all these cases the main radiation maximum
is at cos® = 1/B1n. All these results are confirmed analytically in section 5.3.4. These
intensities were evaluated for the following parameters: the wavelength A =4 x 1075 cm,
the motion length L = 0.5 cm, the refractive index n = 1.392.

solid angle:

_ / o2 (w0, 0)dO. (5.47)
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Figure 5.17. Radiation intensities corresponding to Fig. 5.15(a) for S2 = 0 fixed and
various 1. For $1 = 1 the radiation spectrum is shown in Fig. 5.16(d). For smaller 3; the
maximum of intensity shifts to smaller angles (a) reaching zero angle at the Cherenkov
threshold $; = 1/n (b). The maximum is at the Cherenkov angle corresponding to (3.
Below the Cherenkov threshold the form of the radiation spectrum remains practically
the same, but its amplitude decreases (c,d). Other parameters are the same as in Fig.
5.16.

The integration of the Tamm intensity (5.42) over the solid angle gives
the frequency distribution of the radiated energy o(w). It was written out
explicitly in [8] (see also Chapter 2, Eq. (2.109)). In the limit wty — oo, it
is transformed into the following expression given by Tamm [1]:
_ €’kL 1 4e? 1 14 B,

1).

or(w)
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Figure 5.18. Angular radiation intensities corresponding to the charge motion with a
complete stop for a number of initial velocities f1. It is seen that these intensities do not
oscillate. The angle where they are maximal increases with increase of (1. The motion
interval L = 0.1 cm, the wavelength A = 4 x 107° cm, the refractive index n = 1.5.

Here k =w/c, [, = fn,and L = 2z is the motion interval. This equation
has a singularity at 8 = 1/n, whilst o(w) given by (2.109) is not singular
there.

We integrate now angular distributions corresponding to the decelerated
motion with a final zero velocity and shown in Fig. 5.18, and relate them
to the Tamm integral intensivity. Fig. 5.19 demonstrates that, despite their
quite different angular distributions, the ratio R of these integral intensities
does not depend on the frequency except for the neighbourhood of g = 1/n
where op(w) is not valid. For the charge velocity v above the light velocity
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Figure 5.19. The ratio R of the integral intensity for a motion with a zero final velocity
to the Tamm integral intensity for a number of initial velocities v1. Although R does
not depend on the frequency (except for the velocity 51 = 0.67 close to the Cherenkov
threshold 1/n), it strongly depends on (31 being minimal at the threshold. The analytical
formula (5.63) given below shows that R — 0.5 for small 31. To this frequency interval
there corresponds the wavelength interval (5 x 107%m < X < 10™* cm) which encom-
passes the visible light interval (4 x 10™°¢m < A < 8 x 10™°cm). Numbers on curves are

B

¢p in medium (where the Tamm intensity is approximately proportional
to w), this ratio decreases as v approaches ¢,. For v < ¢, (where the w
dependence given by the Tamm formula is logarithmic) R begins to rise.
The analytical considerations (see Eq. (5.63) given below) show that the
radiation intensity (5.47) is one half of or(w) for Bin < 1. Therefore R
tends to 1/2 for small 8;. We see that integral intensities for the decelerated
motion, up to a factor independent of w, coincide with the Tamm intensity.
Therefore the total energy, for the decelerated motion,

wy

d&

= [ dw"Z

£ /wdw
wi

radiated in the frequency interval (w1, ws) up to the same factor coincides
with the Tamm integral intensity.

Tamm [1] obtained the following condition

t3 dv
20122 A 5.48
5 || < (5.48)
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for the frequency spectrum o(w) to be the linear function of frequency. For
the decelerated motion treated, this condition takes the form
V1 — V2 A

z 5.49
M+W<L, (5.49)

where L = z9 — z1 is the motion interval. When the final velocity is zero
(5.49) is reduced to L < A, which for L = 0.1 cm and A = 4 x 107° cm
takes the form 1 < 4 x 1074, Figure 5.19 demonstrates that the frequency
independence of the above ratio R takes place despite the strong violation
of the Tamm condition.

The radiation intensity (5.46) disappears for the fixed wavelength if the
acceleration length L = z9 — 2z tends to zero. At first glance, this disagrees
with results of Chapter 2, in which it was mentioned many times about the
BS shock waves arising at the beginning and end of motion. The following
simple consideration underlines this controversy. It is known that the energy
radiated by a non-uniformly moving charge for the whole its motion is given
by

2¢? 7 .
U / @t [2dt

(d is the charge acceleration). In the case treated, the acceleration has a

constant value

2 2
vy — Uy

o 2(22 — Zl)

in the time interval
Z9 — 21

to —t1 =2 .
2 ! U1 + U2

Substituting all this into W, one finds

2
W = 22 (B1 = Bo)* (B + Ba).

It is seen that W — oo for L — 0. To see the reason for this, we fix
the acceleration length L and let the radiated frequency tend to co. The
radiation intensity then tends to the analytical angular intensity o,.(6,w)
given by (5.58) and (5.59). It is infinite at the angles 6, and 02 defined by
cosh = 1/B1n and cos Oy = 1/Bon (it is, therefore, suggested that both (3
and (5 are larger than 1/n). To obtain the energy radiated for the whole
charge motion, one should integrate o,(f,w) over angles and frequency.
The o,(w) (5.47) tends to oo for w — oo, and therefore, the total radiated
energy

o= 7JT(w)dw
0
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is also infinite. Therefore, the infinite value of W, in the limit of a small
length L of acceleration, is owed to the contribution of high frequencies. If L
is so small that for visible light (where the VC is usually observed) kL < 1,
then the disappearance of (5.46) tells us that for this frequency there is no
contribution to the radiation intensity. This contribution reappears for high
frequencies.

It was shown explicitly [23] in the time representation that for the ac-
celerated charge motion, the Cherenkov shock wave and the shock wave
closing the Cherenkov cone arise at the instant when the charge velocity
coincides with the velocity of light in medium. The content of this section
then may be viewed as the translation of [23] into the frequency language
(which is more frequently used by experimentalists).

The calculations of this section were performed with analytical formula
(5.46) which is valid both for the decelerated (v; > wy) and accelerated
(vg > wp) charge motion in medium. The results of this section may be
useful for the study of the VC radiation arising from the decelerated motion
of heavy ions in medium (for them the energy losses are large owing to their
large atomic number) [15].

Simplest superposition of accelerated, decelerated, and uniform motions.
We also consider another problem corresponding to the motion shown in
Fig. 5.15(b). A charge is at rest at the spatial point z = —z( up to an instant
t = —tp. In the time interval —ty < t < —t1 it moves with acceleration a
up to reaching the velocity v at the spatial point z = —z;:

1
z=—20+ ia(t +1t0)%,  v(t) = a(t + to).

In the time interval —t; <t < t; a charge moves with the constant velocity
v: z = vt. Finally, in the time interval ¢t; < t < tp a charge moves with
deceleration a down to reaching the state of rest at the instant ¢y at the
spatial point z = zy:

z=2zp— %a(t —t0)?%,  w(t) = —a(t —tp).

It is convenient to express g, t1, and a through 2, 22 and v:

v2 220 — 21 21
tg=——, t1 = —.
v

a:2(z0—z1)’ v

After the instant ¢t = ¢y the charge is at rest at the point z = z.
The radiation intensity is

e2k2n sin? 0

or(w,0) = An2c

[(Ie)* + (Is)?]. (5.50)
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Here
L=>"10, I,=>"10,
i i
10 :/dz’coswi, Igz/dz’sinwi (i=1,2,3)
and 1; = —knz' cosf + wt;. The superscripts 1,2 and 3 refer to the ac-

celerated (—zp < 2/ < —z1), uniform (—z; < 2’ < 21), and decelerated
(21 < 2/ < z9) parts of a charge trajectory. The functions 7;(z) entering
into v; are equal to

22()—2:1 2
== =, Z - for —zp<z<—2z1,
Tl ” —i—v\/(z—i—zo)(zo z1) for 20 < % 2

z
ng; for —2z1 <z< 2,

22’0—21 2
= — — — — — fi < 2z < 20. 5.51
T3 ” U\/(zo 2)(z0 —21) for 21 <2z <z (5.51)

We rewrite I. and I in a manifest form
Ic - Ic(_207 07 —Z1, U) + Ic(—Zl, (I ’U) + IC(Zl7 5 20, O)a

Is = I(—20,0; —21,v) + Is(—21,v; 21,v) + Is(z1,v; 20, 0), (5.52)

where the functions I.(z1, v1; 22,v2) and I4(z1,v1; 22, v2) are the same as in
(5.45). Owing to the symmetry of the problem,

Is(_z()a 07 —Z1, U) = _Is(zla U3 20, O)v Ic(_z()a 07 —Z1, U) = I(Zla V3 20, 0)7

IS(_Zla v; %1, ’U) - 07

2p
(1 — Bncosb)

Using (5.50) we evaluated a number of angular dependences for § = 1 and
various values of the non-uniform motion lengths z; (Figs. 5.20 and 5.21).
Each of these figures contains three curves depicting the total intensity
o given by (5.50), its bremsstrahlung part opg obtained by dropping in
(5.52) the term I.(—z1,v;z21,v) corresponding to the uniform motion on
the interval (—z1, z1), and the Tamm intensity o obtained by dropping in
(5.52) the terms I.(—zp,0; —z1,v) and I.(z1,v;20,0) corresponding to the
non-uniform motion. For the motion shown in Fig. 5.15 (b) u; and ug are
given by

sin %(

1 — fBncosf)|. (5.53)

Ie(—z1,v521,0) =

1
up = —\/k(zo — z1)n| cos@\m,
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Figure 5.20. Radiation intensities corresponding to Fig. 5.15(b) for § = 1 and various
x1. Here &1 = 21/20 is the part of a charge trajectory on which it moves uniformly. Other
parameters are the same as in Fig. 5.16. Solid and dotted lines refer to the total intensity
and the intensity associated with the charge uniform motion in the interval (—z1,21),
respectively. Triangles refer to the intensity associated with a charge non-uniform motion
on the intervals (—zo, —21) and (z1, 20). Since these lines overlap, we have supplied them
with letters ¢ (total), 7' (Tamm) and BS (bremsstrahlung). To make radiation intensities
more visible, we have averaged them over three neighbouring points, thus considerably
smoothing the oscillations. The same is true for Figs. 5.21 and 5.22. The main maximum
of the total radiation intensity is at the Cherenkov angle defined by cos@ = 1/6n. Its
sudden drop above this angle is owed to the interference of the VC radiation and BS (see
section 5.3.4).

1
— — 1 e ——— .
U \/k(zo z1)n| cos | ( n COSG)

It follows from this that for z; — 2y (this corresponds to the vanishing
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interval for the non-uniform motion), u; — 0, ug — 0 and I.(—z9, 0; —z1,v)
and I.(z1,v; 20, 0) also tend to zero (despite that acceleration and decelera-
tion become infinite in this limit), and the whole intensity is reduced to the
contribution arising from a charge uniform motion in the interval (—zg, zo).
The parameter z; in Figs. 5.20-5.22 means z1/zg. It shows on which part
of the total path a charge moves uniformly. For example, 1 = 0.999 means
that uniform and non-uniform motions take place on the 0.999 and 0.001
parts of the total motion length, respectively.

We turn to Fig. 5.20(a) corresponding to x1 = 0.999. We see that the
total intensity o coincides with the Tamm intensity o7 only in the immedi-
ate neighbourhood of the main maximum (which, in turn, consists of many
peaks). To the right of this maximum, the intensity of the BS radiation
practically coincides with the Tamm intensity, whilst the total intensity is
much smaller. To the left of the main maximum, oy practically coincides
with opg, whilst or is an order smaller. This looks more pronounced for
r1 = 0.99, at which the total and BS intensities increase to the left of the
main maximum. Let z; = 0.9 (Fig. 5.20(c)). We observe that opg coincides
with o7 to the right of the main maximum and with o to the left of it.
At the main maximum oy, os and o are of the same order. This picture
remains the same for smaller x1, up to 1 = 0.1 (Fig. 5.20(d)). Beginning
from x; = 0.01, the maximum of the Tamm intensity begins to decrease
(Fig. 5.21(a)). This is more pronounced for smaller z; (Fig. 5.21(b)) where
it is shown that for z1 = 0.001 both o1 and ogg begin to oscillate to the
right of the main maximum. For very small z1, o degenerates into

2,2
or(0) = 46}\;2621 sin? @
whilst opg coincides with oy everywhere except for large angles, where opg
is very small (Fig. 5.21(c)). Finally, for 1 = 0, o7 = 0 and ops = oy
everywhere (Fig. 5.21 d).

What can we learn from these figures?

1. The total intensity coincides with BS to the left of the main maximum.

2. The Tamm formula satisfactorily describes BS to the right of the
main radiation maximum.

3. The Tamm formula coincides with the total intensity only in the
immediate vicinity of the main maximum. It disagrees sharply with BS
and with the total intensity to the left of the main maximum.

4. The BS maximum is at the angle cosf = 1/0n coinciding with the
VC radiation angle. This takes place even for Fig. 5.21(d) which describes
the accelerated and decelerated charge motions and does not include the
uniform motion.

5. The radiation from accelerated and decelerated paths of the charge
trajectory tends to zero when the lengths of these paths tend to zero (de-
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Figure 5.21. The same as in Fig. 5.20, but for smaller z;. It is seen that with the
diminishing of the uniform motion interval, the Tamm radiation intensity tends to zero,
whilst the total intensity approaches the BS intensity. Again, the main maximum of the
total radiation intensity is at the Cherenkov angle defined by cos 6 = 1/0n.

spite the infinite acceleration and deceleration). There are no jumps of the
charge velocity for arbitrarily small (yet, finite) acceleration and decelera-
tion paths. Therefore in this limit the Tamm formula describes the radiation
of a charge moving uniformly in the finite interval without recourse to the
velocity jumps at the ends of the motion interval. However, some reserva-
tion is needed. Although there are no jumps in velocity and the acceleration
is everywhere finite for the smoothed Tamm problem, there are jumps in
acceleration at the instants corresponding to the beginning and end of mo-
tion and at the instants when the uniform and non-uniform charge motions
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meet with each other. At these instants the third order time derivatives of
the charge trajectory are infinite and they, in principle, can give a contri-
bution to the Tamm formula. To exclude this possibility the everywhere
continuous charge trajectory should be considered (this will be done below
in this chapter).

The problem treated in this section describes the same physical situa-
tion as the original Tamm problem. Since the acceleration and deceleration
exhibited by a charge are always finite in reality, the problem treated in
this section is more physical.

We consider in some detail the relation of the smoothed Tamm prob-
lem to the original Tamm problem [1]. If the acceleration and deceleration
lengths L of the charge trajectory tend to zero, the total radiation intensity
reduces to the integral over the uniform motion interval

e2k?nsin2 0

or(w.6) = 4m2c

(Ic)?,
where

20
I.= / dz' cos
B,

with ¢ = k2'(1/8—n cosf). Integrating over z’, one gets the Tamm angular
intensity (5.5). We have seen in Chapter 2, that:

i) in the exactly soluble Tamm problem the BS and Cherenkov shock
waves certainly exist in the time and spectral representations;

ii) the approximate Tamm radiation intensity (5.5) contains the BS
shock waves and does not describe properly the Cherenkov shock wave
originated from the charge motion in the interval (—zo, 2¢).

Let kL be arbitrary small, but finite (L is the length through which a
charge moves non-uniformly). The contribution of the accelerated (decel-
erated) part of the charge trajectory to the radiation intensity then also
tends to zero and the total radiation intensity coincides with the approxi-
mate Tamm intensity (5.5). Since there are no velocity jumps now, a ques-
tion arises what kind of radiation contributes to the total intensity. This
intriguing situation can be resolved in the following way. Although there
are no velocity jumps, there are acceleration jumps at the start and end of
the motion, and at the instants when the accelerated part of the charge tra-
jectory meets with the uniform part. We associate the non-vanishing total
radiation intensity for kL < 1 with these acceleration jumps. This is valid
only under the approximations (5.2), (5.3), (5.6), and (5.8) which lead to
11 given by (5.41), and which result in the disappearance of the Cherenkov
shock wave. As we have seen in Chapters 2 and 3, the Cherenkov shock
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wave certainly exists in the exactly solvable original and smoothed Tamm
problem.

Let the observed wavelength A lie in the optical region. Then, for kL <«
1, the optical and lower frequencies do not contribute to the integral over
the accelerated and decelerated parts of the charge trajectory. However,
as we have learned from Chapter 2, the BS shock waves exist even for
the instantaneous jumps of the charge velocity. This means that for small
acceleration lengths L, the BS shock wave is formed mainly from high fre-
quencies. To see this explicitly, we now fix L and change \. For L < A,
the total radiation intensity reduces to the Tamm one. On the other hand,
for the very short wavelengths satisfying A < L, both uniform and non-
uniform parts of the charge trajectory contribute to the radiation intensity.
Analytic estimates made in subsection 5.3.4 confirm this. In fact, the radia-
tion intensity (for A < L) equals (5.68) for 6 < 6. and zero for § > .. Here
cos . = 1/pn. This radiation intensity disagrees sharply with the Tamm
formula (5.5).

It should be noted that in the time representation the space-time evo-
lution of the shock waves arising in the problem treated was studied in the
past in [23]. It was shown there that a complex consisting of the Cherenkov
shock wave and the shock wave (not BS shock wave) closing the Cherenkov
cone is created at the instant when the charge velocity coincides with the
velocity of light in medium. On the part of the trajectory, corresponding
to the uniform charge motion (Fig. 5.15(b)) the dimensions of this com-
plex grow, but its form remains the same. On the decelerated part of the
charge trajectory it leaves the charge at the instant when the charge veloc-
ity again coincides with the velocity of light in medium. After this instant,
it propagates with the velocity of light in medium. In this section, meeting
the experimentalists demands, we have translated results of [23] into the
frequency language. In fact, experimentalists ask questions like these: how
many photons with frequency w should be observed, what is their angular
distribution? Analytic formulae of this section answer these questions.

More complicated superposition of accelerated, decelerated,

and uniform motions

We also consider another problem corresponding to the motion shown in
Fig. 5.15(c). This is needed to investigate how the radiation intensity looks
when the velocity vs changes from the value above ¢, to the value below it.

A charge is at rest at the spatial point z = —zp up to an instant ¢t = —t.
In the time interval —tg < t < —t; it moves with an acceleration a up to
reaching the velocity v, at the spatial point z = —z:

1
2=z +sat+t0)’, v =alt+to).
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It is convenient to express ¢; and a through z; and v;:

2

2 _

o= Ty = M)
2(20—21) V1

In the time interval —t; < ¢t < —t9 a charge moves with deceleration a
down to reaching the velocity vo at the spatial point z = —z25:

1
z=—z1+ui(t +t1) — §a(t +t1)%, v=alt+t).

It is convenient to express to and zo through wve:

2 21 — v
20 =20 — (20 — 21)(2 — %), ty =to — 2%(20 —z).  (5.54)
1 1

In the time interval —to < t < to a charge moves uniformly with the velocity
v9 up to reaching the spatial point z = 25:

z=—zp+vo(t+t2), v=u0o.

Therefore zo = vola. Substituting zo and t9 from (3.10) we find ¢

1 vy 3
to = —[z0 — (20 — 21)(2 — 422 + 2],
0=, [20 — (20 — 21)( o + U%)]

In the time interval to < t < t; a charge moves with acceleration a up to
reaching the velocity v, at the spatial point z = z;:

1
2=z 4t —to) + jalt - t2)?, v =y +a(t—ta).

Finally, in the time interval ¢t; < t < tp a charge moves with deceleration
a down to reaching the state of rest at the instant tg at the spatial point
zZ = Z0:

1
z=z+v(t—1t1)— §a(t —t1)% v=wv —alt—t).

After the instant g, the charge is at rest at the point z = zg. For that motion
the Fourier transform of the current density reduces to the following sum

Juw = %5(33)5@) [O(z + 20)O(—2z — 21) exp(—iwT )

+0(2 + 21)O(—2 — 22) exp(—iwm) + O(2z + 22)O(22 — 2) exp(—iwT3)
+0O(z — 22)O(21 — 2) exp(—iwTy) + O(2 — 21)O (20 — z) exp(—iwTs)],
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where 5
= —t — —
1 0+7)1\/(Z+Z0)(Z0 2:1),
2
To = —to+ —[2(20 — 21) — \/(zo —21)(20 — 2 — 221)],
U1
z 2
ngg, 7’42150—171[2(20—21)—\/(20—21)(20+Z—221)],
2
7'5:250—;1\/(20—2)(20—21). (555)

If the conditions (5.2),(5.3),(5.6) and (5.7) are satisfied then the radiation
intensity can be evaluated analytically:

e?sin? 0
or(w,0) = ——5—[(Ie)* + (1)*], (5.56)

nmw=c

I = I.(—20,0; —z1,v1) + Ie(—21,v1; —22,v2) + Ic(—22, v2; 22, V2)
+1o(22,v2; 21, v1) + Le(21, 013 20, 0),
Is = Is(—20,0; —21,v1) + Is(—21,v1; —22,v2) + Ls(—22, v2; 22, v2)
+15(z2,v2; 21, v1) + Is(21, v1; 20, 0). (5.57)
Again, owing to the symmetry of the problem

Ie(—20,0; —21,v1) = Ic(21,v15 20, 0),

I(—z1,v1; —22,v2) = Io(22,v2; 21,01),

23 wzy

I.(—2z2,v2; 29, 02) = sin |—= (1 — Bancosf)| ,
( ) Vg

1 — Boncosf
IS(_ZOaO; —Zl,U]_) = _IS(Zlavl;ZOaO)v
I(—z1,v15 —22,v2) = —Is(22,v2; 21, 01),

Is(—22,v2;20,v2) =0, Iy=0.

Now we choose 51 = 1, 1 = 0.99, and change (2. The case f2 = 1 is shown
in Fig. 5.20(b). Smaller values of 2 are shown in Fig. 5.22. Consider Fig.
5.22(a), corresponding to 2 = 0.8. We see two Cherenkov maxima at the
angles 01 = arccos(1//1n) and #2 = arccos(1/Fan). As in Figs. 5.20 and
5.21, we observe that the Tamm formula satisfactorily describes BS in the
back part of the angular spectrum (for 5 = 0.8 this agreement begins from
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Figure 5.22. Total, Tamm, and BS radiation intensities corresponding to Fig. 5.15(c)
for 8 = 1,21 = 0.99 and various 2. The case 2 = 1 is considered in Fig. 5.20(b). Other
parameters are the same as in Fig. 5.16. For 1 and (32 greater than 1/n the total intensity
has two maxima at the Cherenkov angles defined by cosf = 1/81n and cos@ = 1/B2n
(a,b). At the Cherenkov threshold these maxima have the same height. For 2 < 1/n
only one maximum corresponding to cos @ = 1/31n survives (c,d). For 32 = 0 the Tamm
intensity is zero, and o+ = oBs.

6 =~ 50°). The total intensity is satisfactorily reproduced by the BS inten-
sity everywhere in the front angular region (0 < 6 < 50°) except for the
immediate neighbourhood of the Cherenkov angle. In this angular region
the Tamm formula disagrees both with the total and BS intensities every-
where except for angles close to the Cherenkov angle. An important case
is 2 = 1/n corresponding to the Cherenkov threshold (Fig. 5.22 b). The
total intensity has two maxima of the same magnitude: one corresponding
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to the Cherenkov maximum (at § = 0°) and other corresponding to the BS
maximum. For s below the Cherenkov threshold one Cherenkov maxima
disappears (Fig. 5.22(c)), whilst the Tamm intensity decreases coinciding
at large angles with the intensity of BS. In the forward direction the to-
tal intensity does not differ from the BS intensity. Finally, for §o = 0 the
Tamm intensity disappears, whilst the total intensity coincides with the BS
intensity (Fig. 5.22(d)).

What can we learn from this section? There are two characteristic ve-
locities 81 and (32 in Fig. 5.22. Correspondingly, there are two Cherenkov
maxima defined by cos§ = 1/81n and cosf = 1/81n when both 3 and (3
are greater than 1/n (Fig. 5.22 (a,b)). When (2 becomes smaller than 1/n,
only one Cherenkov maximum corresponding to cosf = 1/(1n survives
(Fig. 5.22(c,d)).

5.3.4. ANALYTIC ESTIMATES

In this section the radiation intensities written out in a previous section in
terms of Fresnel integrals will be expressed through elementary functions.
This is possible when the arguments of Fresnel integrals are large. Physically
this means that the product kl, is large (k is the wave number and [,
is the spatial interval in which a charge moves non-uniformly). For large
arguments, C'(z) and S(x) behave as

1 1 sina? 1 1 cosz?

C’(x)—>§+ﬁ prat S(x)—>§_ﬁ .

for x — 400 and

() 1+ 1 sinz? 1 1 cosz?
r) — —— — s — e
2 Vor =z 2 V21 =z

for x — —oo0.

Pure decelerated motion

For the decelerated motion shown in Fig. 5.15 (a) and corresponding to
fin > 1 and (an > 1, one finds that for k(z2 — 21) > 1 the radiation
intensity is given by:

e?nsin? 6 {1 B2 — B ?
m2c 4 | (1= pincosh)(1 — Bancosh)

Op =

B152 L
+(1 — BincosO)(1 — Ban cos ) sin” 1} (5.58)
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for 0 < 6 < 05 and 6 > 6. Here we put

(22 — 21) (ﬂ1 + 2

cosfy = 1/Pin, cosby =1/0Fn, w:k51+52 5

ncosf —1).

On the other hand, for 85 < 6 < 07 one has

(5.58) + eZsin?6
o = o,(5. _
" " men cos? 0

2 2

2 : : 2
5 ancosf cos uj — sinuj cosuf — sinufj
X — 5.59

[a + Vor <62 Bancosf — 1 & Bincosf — 1 )1 ’ (5.59)

where o, u1 and ug are the same as in (5.46). The term proportional to o is
much larger than others everywhere except for the angles close to 8, and 65.
For these angles the above expansion of Fresnel integrals fails (since u; and
ug vanish at these angles). These formulae mean that radiation intensity
oscillates with decreasing amplitude for 0 < 6 < 63 and 6 > 6, (oscillations
are due to sin? 1), and has a plateau

2.2 02
e‘a sm2 0 (5.60)
men cos? 0
for 03 < 6 < 0. The oscillating terms (the first term in (5.59) and the term
proportional to «) are much smaller than the non-oscillating term (5.60).
Exactly such behaviour of o, with maxima at 6; and #2 and a rather flat
region between them demonstrates Fig. 5.16 (b).

For B2 = 1/n these formulae predict intensity oscillations for # > #; and
their absence for 6 < 0 (see Fig. 5.16 (c)).

A particular interesting case having numerous practical applications
corresponds to the complete termination of motion (B2 = 0). In this case

e*n} sin? 6
472¢ (1 — Bincosh)?

(5.61)

or =

for 8 > 61 and

e?sin? 6 < o Prancosd cos u? — sinu?

r=0r(5.61
7 or(5.61) + 2 Bincosf — 1

) (5.62)

men cos2 0

for # < 0y. Here o and w; are the same as in (5.46) if one puts f2 = 0 in
them:

. 1 k(ZQ_Zl) . 1
o= ul—\/k(zz—zl)ncose<1—ﬁlnc089>.
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Since v > 1, the radiation intensity for § > #; is much smaller than
for § < 61. There are no intensity oscillations for 6 > #; and very small
oscillations for § < 6; (they are owed to the last term in (5.62) proportional
o which is much smaller than the term proportional o?). Figures 5.16(d)
and 5.17 agree with this prediction. When #in < 1 the same Eq. (5.61) is
valid for all angles. In this case, the integration over the solid angle can be
performed analytically:

2¢2 1 1 14 Bin
= — n —_
men 20im 1 — Bin

arﬁu)::]/O}(9¢u)dQ 1), (5.63)

that is two times smaller then the Tamm frequency intensity (5.33) This
expression is not valid for 3; close to 1/n.

The singularities occurring in (5.58), (5.59), (5.61), and (5.62) are owed
to the condition k(22 — z1) > 1 used. The initial radiation intensity (5.46)
is finite both for cosf = 1/51n and cosf = 1/Fan.

Smoothed Tamm problem
We now evaluate asymptotic radiation intensities for the motion shown in
Fig. 5.15(b) (the smooth Tamm problem). For this aim we should evaluate

the integrals I. = [wvdr cosvy and Iy = [wvdrsin entering (5.50). In terms

of Fresnel integrals, they are given by (5.52). Owing to the symmetry of
the problem treated, I, = 0 while I, is reduced to

Ie=T0 4+ T34 T4 =21+ T (5.64)

Here 1%, I¢, and I* are the integrals over the accelerated (—zg < z < —21),
decelerated (21 < z < zp) and uniform (—z; < z < z1) parts of a charge
trajectory, respectively. Again, it was taken into account that I¢ = I¢
owing to the symmetry of the problem. The integral I corresponding to
the uniform motion on the interval (—z; < z < z1) is

P C
¢ k(1 — pncosf)

]{32’1

sin[F(l — Bncosb)]. (5.65)

Then for § < /2 one has

—z1

I¢ = /dzcosd}: 2

{sin(uj — ) —sin(ui — )

¢ kn cos 6

—20

+aV/27[cosy(Cy — C1) 4 siny(Ss — S1)]}. (5.66)
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For the motion shown in Fig. 5.15 (b), u1, ug, @ and ~ are given by

1
Bncosf’

1
Uy = \/k:(zo — z1)ncos @ (1 — ﬂncos@) ,

. 1 k(ZO — Zl) 1/2 /{(Zo — Z1) k‘(QZ() — Z1)
@ B[ ncos 6 ] Bncosf I} ’

Replacing Fresnel integrals by their asymptotic values, we obtain for k(zg—
z1) > 1 and 6 < 0. (cosf. = 1/0n):

up = —\/k(zo — z1)ncosé

, v =kzncosf +

cosy + sinvy On )
I = —av?2 kzi(1— 0)]. (5.67
¢ O en cos 0 k(Bncosf — 1) stnfkz1 (1 = fncos6)]. (5.67)
To obtain I. one should double I¢ (since I¢ = I%) and add I* given by
(5.65). This gives

cosy + sinvy
I.=2I4+T"= —avV2n—"———
¢ et N T e cos 0
and ) )
e sin”“ 0 .
oy = Wk(zo - zl)m(l + sin 2). (5.68)

We see that for § < 0. the part of I¢ is compensated by the Tamm amplitude
I'. In this angular region the oscillations are owed to the (14-sin 2v) factor.
For 6 > 6. one finds

10 pn

&= (Frcosd —1) sin[kz1 (1 — Bn cosh)]. (5.69)

Inserting (5.65) and (5.69) into (5.64) we find
I.=2[+1'=0 and o,=0.

We see that for 6 > 6. the total contribution of the accelerated and decel-
erated parts of the charge trajectory is compensated by the contribution
of its uniform part. The next terms arising from the expansion of Fres-
nel integrals are of the order 1/k(z9 — z1), and therefore are negligible for
k(zo—z1) > 1. This behaviour of radiation intensities is confirmed by Figs.
5.20 and 5.21 which demonstrate that radiation intensities suddenly drop
for 6 > 0.

For 6 > 6. the radiation intensity disappears for arbitrary z; satisfying
the condition k(zp — 2z1) > 1 and, in particular, for z; = 0. In this case,
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there is no uniform motion, and the accelerated motion in the interval
—2zg9 < z < 0 is followed by the decelerated motion in the interval 0 < z <
29. The radiation intensity is obtained from (5.68) by setting z; = 0 in it.
For kzg > 1 it reduces to

e2kzosin? 0

or (1 + sin27y) (5.70)

~ 2mn2ccos3
for 0 < 0. Here v = (1—1/Bn cos 0)*kzon cos . For > 0., o, is small (it is
of the order 1/kzp). Owing to the factor (1+sin2y), o, is a fast oscillating
function of 6 for § < 0. (see Fig. 5.21(d)) with a large amplitude (since
kzp > 1). Fig 5.21 (d) confirms this.

For Bn < 1 the condition # < 6. cannot be satisfied and radiation
intensities are of the order 1/k(zg — 2z1) < 1 for all angles.

In the opposite case (kzp — 0), the radiation intensity tends to zero:

e2unk?22 sin? 0
Op = ———F—.

2 (5.71)
This particular case indicates that the disappearance of radiation intensities
at high frequencies above some critical angle has a more general reason. It
will be shown in the next two subsections that radiation intensities describ-
ing the absolutely continuous charge motion in medium are exponentially
small outside some angular region. It should be stressed again that formulae
obtained in this section are not valid near the angle 8. where the arguments
of the Fresnel integrals vanish.

5.3.5. THE ABSOLUTELY CONTINUOUS CHARGE MOTION.

When the conditions (5.2), (5.3), and (5.8) are satisfied, the vector potential
(3.1) is reduced to

_ _He .
w= 5 exp(iknr)l, (5.72)
where

I= /v(t') expli(wt’ — kncos0z(t'))]dt’.

Electromagnetic field strengths contributing to the radial energy flux are

ienk sin 6 iepk sin 6

P e exp(iknr)l, P e exp(iknr)
The radiation intensity is given by
d’E 2k
(0, w) R G2 0)1)2. (5.73)

T dwdQ | 4nle
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This means that all information on the radiation intensity is contained in
I. In the quasi-classical approximation,

2

I=v(te)y| om0
Ve otk cosd]

exp(Lim/4) exp(it)e), (5.74)

where ¢, = wt. — knz.cos, z. = z(t.) and t. is found from the equation
1 —np(t.)cosd = 0. (5.75)

The =+ signs in (5.74) coincide with the sign of v(¢.)kn cos 6. Under the con-
ditions (5.2), (5.3), and (5.8), the charge uniformly moving in the interval
(=20, z0) radiates with the intensity given by the famous Tamm formula
(5.5).

Simplest absolutely continuous charge motion.
A charge moves according to the law (Fig. 5.23)

Vo
t) cosh2 (110" (5.76)
Obviously v(t) = vo for t = 0 and v(t) — 0 for t — £oo. The charge
position at the instant ¢ is given by z(t) = woto tanh(¢/tg). Therefore the
charge motion is confined to —L/2 < z < L/2, where L = 2wty is the
motion interval. The velocity, being expressed through the current charge
position, is

v(z) = vo(1 — 42%/L?) (5.77)

The drawback of this motion is that one can not change to without changing
the motion interval L.

For the motion law shown in Fig. 5.23, the amplitude I entering in
(5.72) is given by

Wvowt% .
I=—r—— t 0
sinh(wwty/2) expiwtofon cos )
X®(1 4 iwtg/2; 2; —2iwtoLon cos b), (5.78)

where ®(a; 3; 2) is the confluent hypergeometric function. Correspondingly
the radiation intensity is

2, 32 444
e“nupowt
or(0,w) = — T g2 (5.79)
4csinh?(mwto/2)
When wty < 1,
I =2upty and o,(0,w)= %62 20212 sin” 6. (5.80)
¢
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V(t) v(2)

; t/to ‘

-4 -L/2 L/2

Figure 5.23. The motion corresponding to (5.76). Left and right parts correspond to
v(t) and v(z), where z is the charge position at the time ¢. It is seen that the charge
position is confined to a finite spatial interval (—L/2, L/2).

This coincides with (5.71).

In the opposite case (wtg > 1), by applying the quasi-classical approxi-
mation one finds that I is exponentially small for all angles if 5y < 1/n. If
Bo > 1/n, I is exponentially small for § > 6. (cosf. = 1/Fyn) and

wetor/ Bo
(ncos 0)3/2k(Bon cos§ — 1)

11> = 7 cos? . (5.81)

for 0 < 6. Here
t
e = w(te — P2 o8 0) + %, cosh t_c = +/Poncosb,
c 0

1

)1/2
nBycos®’

Ze = Uoto(l —

When evaluating |I|? it was taken into account that Eq. (5.75) has two real
roots for Ggn > 1:

t. = %t (\/ﬁoncosﬁ+ v/ Bon cos — 1) )

The radiation intensity (5.73), with |I|? given by (5.81), is the analogue of
the Tamm formula (5.5) for the motion law (5.76).

Radiation intensities ,.(#) corresponding to the charge motion shown in
Fig. 5.23 are presented in Fig. 5.24 for a number of 5y = vy /c together with
the Tamm intensities o corresponding to the same L = 0.1cm, A = 4x107°
cm, n = 1,5 and (y. It is seen that the positions of main maxima of o,
and op coincide for vg > ¢, and are at the Cherenkov angle defined by
cosf. = 1/fyn. For vy < ¢y, o, is much smaller than op (d). For vg > ¢,
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Figure 5.24. Angular radiation intensities corresponding to the charge motion shown in
Fig. 5.23 (solid curves) and the Tamm intensities (dotted lines) for a number of vg. For
vo > ¢n the maximum of intensity is at the Cherenkov angle 0. defined by cos 6. = 1/5on.
The angle 0. decreases with decreasing vo. For Sy > 1/n the radiation intensity falls
almost instantly for 6 > 6.. For Sy < 1/n the radiation intensity is exponentially small
for all angles. The original angular intensities are highly oscillating functions. To make
them more visible, we draw the Tamm angular intensity through its maxima. Other
intensities, for which the maxima positions are not explicitly known, are obtained by
averaging over three neighbouring points, thus, considerably smoothing the oscillations.
This is valid also for Fig. 5.26.

and 6 > 0., o, falls very rapidly and o7 dominates in this angular region
(a,b,c). For 6 < 6., o, is much larger than o7 (a,b) (except for # = 6.). This
is in complete agreement with quasi-classical formula (5.81) which predicts
the exponential decrease of o, for 8 > 6. and its oscillations described by
(5.81) for 6 < 6..
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Comm1----

|....|...}..-'II'-..“..| ..... '2"./T L
-120 -60 0 60 120

L/2

Figure 5.25. The motion corresponding to (5.82). Dotted, broken and dotted lines
correspond to 19 = To/T = 0.5, 10 and 25, respectively. For large 79 the interval where a
charge moves with almost constant velocity increases. The charge position is confined to
a finite spatial interval (—L/2, L/2). This motion is much richer than the one shown in
Fig. 5.23.

In the past, analytical radiation intensities for the charge motion in
vacuum shown in Fig. 5.24, were obtained in [24]. In this case (5.75) has no
real roots, and at high frequencies the quasi-classical radiation intensity is
exponentially small for all angles.

More complicated absolutely continuous charge motion.
A charge moves according to the law (Fig. 5.25)

_ 1 t+T1ph t—1Tp
U= 5 (tanh T tanh T ) , (5.82)

The maximal velocity (at t = 0) is 99 = vg tanh(Ty/T'). Equation (5.82) is
slightly inconvenient. When we change either T or Tj, the maximal velocity,
the interval to which the motion is confined, and the behaviour of the
velocity inside this interval are also changed. We rewrite this expression in
a slightly different form, more suitable for applications

1+ cosh(2Ty/T)

t) =0 .
v(t) =% cosh(2t/T) + cosh(2Ty/T)’ (5:83)
The charge position at the instant ¢ is given by
LT . cosh(t+1Tp)/T
t)y=—In—— 5.84
20 = 0 M st = o) /T (5:84)

where
L = 2vyTy = 2091y COth(Tg/T) (585)
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is the motion interval. We reverse this expression, thus obtaining

Ty 1, 1+2Thio/L

LT (5.86)
It is seen that the fixing of ¥y and L leaves only one free parameter. If we
identify it with Tp then (5.86) defines T as a function of Ty (for the fixed L
and 7). For Ty < T the r.h.s. of (5.86) should also be small. This is possible
if 2Thvp/L < 1. The r.h.s. of (5.86) then tends to 27570/ L. Equating both
sides of (5.86) we find that 7' = L /27 in this limit. For Ty — L/20 the
r.h.s. of (5.86) tends to co. Therefore T'/Ty — 0. It follows from this that
the available interval for 7" and Ty is (0, L/27) (for fixed L and 0g). We
express the charge velocity through its current position z. For this we first
express cosh(2t/T) through z:
2t sinh[Tp(1+22/L)/T] sinh[Ty(1 — 2z/L)/T]

o o = S [Ty (1 = 22/2)/T] | 2smh[To(1 + 22/L)/T]

(5.87)

Substituting this into (5.83) we obtain v(z). For Ty < T', v(z) reduces to

N 42*
v(z) = o(1 — ﬁ)’ (5.88)
which coincides with (5.77) if we identify 99 with vg. In the opposite case
(T < To)

Vo
= . 5.89
v(z) 1 + exp(—2Ty/T') cosh(2t/T) (5.89)
If z is so close to (L/2) that
1— % < z
L STy
then (5.87) gives
ot T T,
h—=———— —(1+2z/L
CONT T a1 —22/0) P {T( +2z/ ﬂ
and 0 T
u(z) = 20201 9. (5.90)
On the other hand, if
1 2j > I
L~ T,

then
cosh(2t/T) =1 and v = 7. (5.91)
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Since, according to our assumption, 7'/Ty < 1, the transition from (5.90) to
(5.91) is realized in a very narrow z interval. For example, for T//Ty = 1076,
it takes place in the interval (1 — 107°) < 2z/L < (1 — 10~7). The same
considerations are valid in the neighbourhood of another boundary point
z = —L/2. We conclude: the horizontal part (where v = ¥y) of the charge
trajectory exists if T < Ty (see (5.91)) and does not exist if Ty < T
(see (5.88)). However, in both cases (T < T and T > Tp) v(z) decreases
linearly when z approaches boundary points.

The law of motion (5.83) is much richer than (5.76). It is extensively
used in nuclear physics to parametrize the nuclear densities [25,26].

For the law of motion shown in Fig. 5.25 the amplitude I entering into
(5.72) equals

1 wrT/2
I = —vyT —iwTp(1 — 50)] ——i————[1 — —4T4/T
21)0 exp[—iwTp( Bon cos 6)] Snh(wrT)2) [ exp( 0/T)]
T T
o1 [1 — %ﬂonCOSG, 14 %; 2:1 — exp(—4Ty/T). (5.92)

Here oF1(a, 8;7;2) is the usual hypergeometric function. The radiation
intensity is

o0(0,w) = e2unF2wiT sin” 6

" 6desinh?(rwT/2) [1 — exp(—4To/T)*|FI*. (5.93)

Consider particular cases.
Let T be much smaller than Ty (wT is arbitrary). Then,

B e?uBowT sin? 0
71~ Sr3ccos 0(nBycosf —1)

sinh[(mwTnBy cos b)) /2]
% sinh(7rwT'/2) sinh[rwT (Bon cos 6 — 1) /2]

If, in addition, the frequency is so large that wT > 1, then (5.94), for
Bon < 1, is exponentially small for all angles:

(5.94)

e?pBowT
oy =

- in? § expl—mwT (1 - G
43¢ cosO(1 — nfy cos ) sin” 0 exp[—7mwT (1 — nfp cos0)].  (5.95)

For fon > 1 and € > 6.(cosf. = 1/Fyn), the radiation intensity (5.94)
coincides with (5.95). On the other hand, for 6 < 6.

_ e? pfowT
~ 4m3ccosO(nfycosf — 1)

sin? 6. (5.96)

Or
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In this angular region there is no exponential damping.

Let Ty be much smaller than 7". We should first express vy through o
and then take the limit To/T — 0. The hypergeometric function oF} is
then transformed into the confluent hypergeometric function ®, and (5.93)
is transformed into (5.79) if we identify 7" and ¥y entering (5.93) (after
expressing vy through 9y) with ¢y and vy entering (5.79).

In the limit w7 — 0, (5.93) goes into
. 62,Lmﬂ§w2T02 in?0,

e
which coincides with (5.80) and (5.71). The quasi-classical approximation
being applied to I gives

27 Tusin? 6
o0(0,w) = EPTHs0 o (5.97)

4d72¢s,.cos b
for 6 < 6. and o, is exponentially small outside this angular region. Here

~ - TO 1/2 T
Se = (nfp cos 9—1)1/2 <nﬁ0 cos f — tanh? T> , Yo = wt.—knz.cos 9+Z;
t. is found from the equation

2t ~ 21T
cosh ?c = Byncosh (1 + cosh T(J) — cosh T

where z. = z(t.), and z is given by (5.84).

Unfortunately, we have not succeeded in obtaining the Tamm formula
(5.5) from the radiation intensity (5.93). It should appear in the limit
T/To — 0 (when the horizontal part of the charge trajectory (where v ~ 7y)
is large). Equations (5.94) and (5.96) are infinite at the Cherenkov an-
gle, but do not oscillate, contrary to the Tamm intensity (5.5). The quasi-
classical expression (5.97) oscillates, but it is also infinite at the Cherenkov
angle (again, contrary to the Tamm intensity). Probably, the inability to
obtain the Tamm formula (5.5) from (5.93) in the limit 7/Ty — 0 (when
the dependence v(z), given by (5.83), is visually indistinguishable from that
of the Tamm (see Fig. 5.25)) points to the importance of the velocity dis-
continuities. In fact, there are two velocity jumps in the Tamm problem
and no velocity jumps for the absolutely continuous motion shown in Fig.
5.25.

Radiation intensities 0,(8) corresponding to Fig. 5.25, for fixed fy = 1,
L =01 cm, A\ =4 x107° cm and a number of diffuseness parameters
70 = Tu/T, are shown in Fig. 5.26. The positions of the main maxima are
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Figure 5.26. Angular radiation intensities corresponding to the charge motion shown
in Fig. 5.25 (solid lines) for Bp = 1 and a number of diffuseness parameters 7o = To /7.
Angular intensities approach the Tamm one (dotted line) rather slowly even for large
values of 79. This is due to their different asymptotic behaviour.

at the Cherenkov angle 0.. The fast angular oscillations in the region 6 < 6,
are described by the quasi-classical formula (5.97). Again we observe that o,
falls almost instantaneously for § > 6.. The reason for this is due to different
asymptotical behaviour of radiation intensities which fall exponentially for
the absolutely continuous motion presented in Fig. 5.25 and do not decrease
with frequency (except for cos@ = 1/4n) for the original Tamm problem
involving two velocity jumps.

In the past, analytical radiation intensities for the charge motion in
vacuum shown in Fig. 5.25 were obtained in [27] and discussed in [28]. In
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1 1 1 1 1 1 1 1 1 J t/to
Figure 5.27. The unbounded charge motion corresponding to (5.98) and describing the
smooth transition from the velocity v2 at ¢ = —oo to the velocity v1 at t = co.

this case the radiation intensity at high frequencies is exponentially small
for all angles.

Smooth infinite charge motion
Let a charge moves according to the law (Fig. 5.27)

t v1 £
v =4 +v_tanh —, vy = 1=

— t . 5.98
o 5 00 <t < oo (5.98)

The current charge position is z = vyt + v_tgIncosh(t/ty). For t — +o0,
v — v12 and z — vy ot.

For the motion shown in Fig. 5.27 one obtains

[(ag)l(—on)
[iwton COS 9(,62 — ,31)/2] ’

Cto

1
I= 5 oos g &P inton(ﬁl — (2) cos 6 T

where I'(2) is the gamma function and
ap = iwtg(l —npPrcos)/2, g =iwty(l —nPacosh)/2.
Correspondingly,
2 Ator (B2 — 1)

~ 2wncos (1 — nBy cos ) (1 — nfacosh)
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sinh[mn cos Bwto (B2 — B1)/2]
x sinh[7(1 — B1n cos 0)wty/2] sinh[r(1 — Fan cos 0wty /2]

and
2wt sin® 0
+(0,w) = ———F—F, .
or(0,w) &mccos b (5.99)
where
(B2 — 1)

F= (1 —=nficos)(1 —nfycosh)

sinh[mn cos Qwto (B2 — 1) /2]
% sinh[7(1 — B1n cos 0)wty/2] sinh[r(1 — Ban cos O)wty /2]

Here we put cosf; = 1/61n and cos by = 1/Fan.

High-frequency limit of the radiation intensity. Consider the behaviour of
the radiation intensity for wtg > 1. Obviously 61 < 6y for the decelerated

motion (B2 > (1).
Let 8in > 1 and Bon > 1. Then for 6 < 64

B 2(B2 — p1)
F = (Brmcosd— 1) (Fan cosf — 1) exp[—mwto(Bincosf —1)].  (5.100)
For 6 > 65
F = 2(0: = B1) exp|—mwto(1l — fancosh)].  (5.101)

(Bincos® —1)(Bancosf — 1)

Finally, for 6; < 0 < 65

2(B2 — 1)
(1 — Bincos)(Bancosf — 1)

F= (5.102)

We see that two maxima should be observed at the Cherenkov angles 6;
and #-. Between these maxima the radiation intensity is a smooth function
of 6.

For § < 01 and 6 > 65, the radiation intensity is exponentially small.

For fin < 1 and fon > 1, F is equal to (5.102) for 0 < 6 < 62, and to
(5.101) for 6 > 6,.

For fin < 1 and fan < 1, F has the form (5.101) and the radiation
intensity is exponentially small for all angles.



272 CHAPTER 5

Sharp transition from vy to vi. For wty < 1 (this corresponds either to
the sharp change of the charge velocity near t = 0 or to large observed
wavelengths) one finds

e?npsin? @ (B2 — p1)?
dre (1 — Bincosh)?(1 — Pancosh)?’

or(f,w) = (5.103)
In this case 0,(0,w) has two maxima at the Cherenkov angles 6, and 65 if
both Gin > 1 and fBon > 1 and one maximum at 65 if Gin < 1 and Bon > 1.

Strictly speaking, the validity of Egs. (5.99)-(5.103) is slightly in doubt.
When obtaining them we used Eq. (5.72) the validity of which implies that
a charge motion takes place in an interval much smaller than the radius of
the observational sphere S. However, Eq. (5.98) describes the unbounded
charge motion. For a sufficiently large time, when a charge will be outside
S, the validity of (5.72) will break down.

In the past, analytical radiation intensities for the charge motion in
vacuum, shown in Fig. 5.27, were obtained in [29] and discussed in [28]. In
this case the radiation intensity at high frequencies is exponentially small
for all angles.

5.3.6. SUPERPOSITION OF UNIFORM AND ACCELERATED MOTIONS

To avoid the trouble occurring in a previous subsection, we consider the
following problem. A charge is at rest at the point —zp up to an instant
—tp. In the time interval —ty < t < —t1, a charge moves uniformly with
the velocity vy until it reaches the spatial point —z;. In the time interval
—t1 <t < t; a charge moves with deceleration a until it reaches the spatial
point z1. In the time interval t; < ¢t < t{,, a charge moves uniformly with
the velocity vo until it reaches the spatial point zg where it is at rest for
t > t(. It is easy to express t1, to, t{, and a through z1, z0,v1 and vs:

221 20 V1 — U2 2] , 20 V1 — U2 2] U% — ’U%
tl: 9 tOZ_ ) tOZ——i—j a =
v + U2 v V1 +v2U V2 V1 + Vg V2 4z

The radiation intensity is

e2k2n sin? 0

_ 2 2
or(w,0) = (L) + (1),
Here
=10 1,=3"1{
and

10 = [z cos i, I= [d'sim i=1,2.3,
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where 1); = —knz’'cos® + wr;. The superscripts 1,2 and 3 refer to the
uniform motion with the velocity v (—z9 < 2/ < —z1), the decelerated
motion (—z; < 2’ < 21), and to the uniform motion with the velocity vo
(21 < 2’ < 2p), respectively. The functions 7;(z) entering v; are equal to

oz Z1 V1 — V2 2z 821 vl +v2
Tn=——-— ’ T2 = — - 2 _ .2 12_2 zZ,
v v U1+ U2 V1 — V2 v] — Uj V] — V3
z 21 U1 — Vg
T3 = — — —

(%) Vg V1 + V2 '
The integrals I. and I are given by

1. = (1 — ;?;”LCOSQ) sin [k(ZOQ_ 21) (% — ncos@)]

k‘(Zo + Zl) < 1 ) :|
b Nl el VA e 0
X COS [ 5 3 n CcOoS + o

+k(1 — fozcos@) sin [k:(zoz— 1) (% - ncosﬁﬂ

X COS [w (é — ncos@) — 052:|

— 2 si {kz ( 2 — COSGﬂ
kn cos 6 A 01+ B2 "

2
_ mhz1 [cos ¥(Cy — C1) — siny(Sz — S1)],

k(n cos 0)3/2 ﬂ% — 32
klzo = 21) <— - ncosﬂﬂ
B2

B
o[ (1

7!{:(1 — 2?711 o5 0) sin {k(zoz— ) (511 — ncos 9)}

1
X sin {k(zo#—i—zl) (E — ncos@) + 041]

I, =
k(1 - ﬂgncose sin

— 1n.CoS 0) - ag]

_ 2 7'(']{32’1
k(ncos9)3/2\ B3 — (33

[cosy(S2 — S1) + siny(Ce — C1)]. (5.104)
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V1 — V2 ]{?21 V1 — V2 k‘Zl
= Qg = =
) )

vl +v2 B v + vy fo

kzmcos& 1 2 1 2
T B -5 [(ﬁl_nCOSH) +(62_ncose> ’

2kzln0050< B 1 ) S 2kzmcos€< B 1 )
B2 — 33 n cos > B2 — 33 ncosf )’

Cy = C(uy), Co = C(u2), S1 = S(u1), S2 = S(ug) are the Fresnel

integrals.

Cl = C’(ul), CQ = C(UQ), a1 =

uyp =

Particular cases
Sharp transition between velocities. When the transition from vy to vy is
very sharp (kz; < 1), one gets

= G e w[F52 (5; —meose)]

(1/[32 —1n cos 0) [k;D (E — n.cos 0)}
+(1/51 — n6059)2(1/ﬁ2 — ncosf) sin {k;o (ﬂl ncos&)}

X sin [kgo (E - ncos@)] cos [kgo (ﬂ1 + % 2ncos€)]} (5.105)

That is, the radiation intensity reduces to the sum of the Tamm intensities
for v; and v9 and to their interference.

High frequency limit. In the high-frequency limit (kz; > 1), one gets
1 n 1

(1/81 —ncos@)2  (1/B2 —ncosh)?
2 cos

~(1/B1 — ncos0)(1/B2 — ncosf)
for 6 > 61 and 6 < 65 and

1
2 2 _
IZ+ 13 =12 X [

] (5.106)

I? + 1% = (5.106) + =

A 2V 21« (sin Y1 +cosy;  sinyg — cos 72> (5.107)
n?cos?f  mcos® \1/B1 —ncosf  1/By —ncosb '
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for 05 < 6 < 6. Here we put

o — kal
~ \n(B - B3)cosd’

B 1 1 B (51 — Ba)?
0= e (54 5, ~Imeost) —kag o

Y1 = kzg (i — n0059> +ai1+7y, 712=kz (i — ncosﬁ) — g — 7.
B B2

Furthermore, 6 and 0 are defined by cosf; = 1/61n and cosfs = 1/[an.
Since o > 1, the radiation intensity for 3 < 6 < 6; is much larger than
for § < 02 and 6 > 61. Thus, the radiation intensity has a plateau for
0 < 0 < 01, where it changes quite slowly (since the non-oscillating term
proportional to a? is much larger than the oscillating terms proportional to
a and (5.106)). For 6 < 65 and 6 > 6, the radiation intensity is kz; times
smaller than for 6, < 6 < 6;. The singularities of the radiation intensity
at # = 6, and # = 6, are owed to the approximations involved. More
accurately, they are owed to the replacement of the Fresnel integrals by
their asymptotic values. In fact, the integrals I. and I defined by (5.104)
are finite at 6 = 61 and 6 = 0.

Comparison with smooth infinite charge motion (5.98)

We observe that the qualitative behaviour of the angular intensity for the
motion treated is very similar to that given by (5.98). For example, in the
high-frequency limit both of them are maximal at the Cherenkov angles
01 and 6y corresponding to the velocities 51 and s, respectively, have a
plateau between 6; and 6 and sharply decrease outside this plateau. The
difference is in their asymptotic behaviour: the radiation intensities are
exponentially small for the absolutely continuous motion (5.98) and are
quite smooth angular functions for the finite charge motion discussed in
this subsection. The other difference is that the radiation intensity (5.99)
corresponding to the motion law (5.98) is infinite at the Cherenkov angles
01 and 6y, whilst the radiation intensity (5.104) corresponding to the finite
motion discussed in this subsection is everywhere finite (its infinities in the
high-frequency limit is a result of the approximations involved).

5.3.7.  SHORT DISCUSSION OF THE SMOOTHED TAMM PROBLEM

We have considered a number of versions of the smoothed Tamm problem
allowing analytical solutions. They have the common property that for the
charge velocity greater than the velocity of light in medium, an angular
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region exists where the radiation intensity is proportional to the frequency
and the region where the radiation intensity is small for high frequencies.

This investigation is partly inspired by the influential paper [14] in which
the charge motion with a velocity decreasing linearly with time was inves-
tigated numerically. The behaviour of radiation intensities obtained there
strongly resembles the behaviour of analytical intensities (5.58)-(5.62). In
addition the authors of [14] correctly guessed that the Tamm radiation in-
tensity (5.5) is somehow related to the velocity jumps at the start and end
of the motion.

Our understanding of this problem coincides with that given in [24,27,
28,29] for the charge motion in vacuum where it was shown that radiation
intensities for the absolutely continuous motion are exponentially decreas-
ing functions of w. The modification for a charge moving in medium looks
as follows. The asymptotic behaviour of the radiation intensity depends on
how much the charge motion is discontinuous. For example, for the abso-
lutely continuous charge motions shown in Figs. 5.23, 5.25, and 5.27, the
radiation intensities decrease exponentially with w for 6 above some criti-
cal angle 6., and are proportional to w for 6 < 6.. For the motion without
velocity jumps (but with the acceleration jumps) shown in Fig. 5.15(b),
the radiation intensity falls as 1/w for # > 6. and is proportional to w for
0 < B.. For the charge motion with velocity and acceleration jumps shown
in Fig. 5.15(a), the radiation intensity does not depend on the frequency for
0 > 0., although it is much smaller than for < 6. (again, in this angular
region, o, is proportional to w).

A question arises what kind of the radiation fills the angular region 6 <
0. (see Figs. 5.18, 5.20, 5.21, 5.24(a,b), 5.26(a-c)). For this, we again turn to
[23] where the exact radiation fields were obtained for the charge accelerated
and decelerated motions. At the start of motion (¢ = 0), the spherically
symmetric Bremsstrahlung shock wave (BSW) arises which propagates with
the velocity of light in medium. At the instant ¢y when the charge velocity
coincides with the charge velocity in medium, a complex arises consisting
of the finite Cherenkov shock wave SW1 and the shock wave SW2 closing
the Cherenkov cone. The singularities carried by these two shock waves are
the same and are much stronger than the singularity carried by BSW (for
details see again [23]). The SW1 attached to a moving charge intersects
the motion axis at the angle w/2 — 6¢p,, where 0¢y, is the Cherenkov angle
corresponding to the current charge velocity (cosfcp = 1/6n). Obviously
Ocn =0 at t = tg and Oy, = 0. at the end of acceleration. Here 6. is the
Cherenkov angle corresponding to the maximal charge velocity. The SW2
detached from a charge and intersecting the motion axis behind the charge
at a right angle, differs from zero in the angular sector 0 < 8 < f¢p. The
angular distribution in the spectral representation (since transition to it
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involves integration over all times) fills the angular region 0 < 6 < 6.

We conclude: The radiation intensity in the 0 < § < 6. angular region
consists of the Cherenkov shock wave, the shock wave closing the Cherenkov
cone and the Bremsstrahlung shock wave.

5.3.8. HISTORICAL REMARKS ON THE VC RADIATION AND
BREMSSTRAHLUNG

Cherenkov at first followed the Vavilov explanation of the nature of radia-
tion observed in his experiments. We quote him [30]:
All the facts stated above unambiguously testify that the nature of the ~
luminescence is the electromagnetic deceleration of electrons moving in
a fluid. The facts that v luminescence is partially polarized, and that its
brightness has a highly pronounced asymmetry, strongly resemble the
similar picture for the bremsstrahlung of fast electrons in the Roent-
gen region. However, in the case of the + luminescence the complete
theoretical interpretation encounters with a number of difficulties.
(our translation from Russian).
Collins and Reiling [31] shared this viewpoint:
It is to be understood that the electron in its passage through the
medium gradually loses nearly all its energy through ionization and
excitation processes, and the resulting acceleration is responsible for
the VC radiation.
Later, Cherenkov changed his opinion in favour of the Tamm-Frank theory.
What were the reasons for this?
At first we clarify conditions under which the Cherenkov experiments
are performed. According to him ([32], p.24),
...the absorption of electrons in fluids was complete.
This means that we should apply the numerical and analytic results of
Chapter 5 relating to the charge motion with a zero final velocity.
There are three main reasons why Cherenkov abandoned the original
viewpoint. We consider them step by step. In page 33 of [32] he writes
For the radiation produced by electrons in fluids, the angle # (measured
away from the direction of the electron motion) for which the maximum
of radiation is observed increases with increasing electron velocity. This
dependence of 6 is just the opposite of that expected if one suggests that
radiation in fluids is owed to deceleration. For the bremsstrahlung it is
characteristic that the position of the intensity maximum shifts towards
the initial beam with rising electron energy
However, numerical and analytic results obtained and Fig. 5.18 demonstrate
that the maximum of the radiation intensity for the decelerated motion in
medium behaves exactly in the same way as in the Tamm-Frank theory.
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Concerning decreasing of the radiation intensity at large angles. Again,
we quote P.A. Cherenkov ([32], p.34):

To the aforesaid about the azimuthal distribution of the intensity should

be added that the asymmetry of radiation relative to the plane per-

pendicular to the electron beam is more pronounced for the observed

radiation of fluids than for the bremsstrahlung
Turning to the motion law presented in Fig. 5.15(a), it was shown numeri-
cally and analytically (see e.g., Fig. 5.16) that the radiation intensity falls
more rapidly than that described by the Tamm formula (which is almost
symmetrical relative to the Cherenkov angle). For the decelerated motion
with a zero final velocity, the decrease of radiation is determined either by
the exact equation (5.46) (where one should set §2 = 0) or by the analytic
Egs. (5.61) and (5.62). The latter is infinite at cos§ = 1/8n, whilst (5.46)
gives there o,.(cos@ = 1/8n) = e?Ln(1—1/32)/2cA (L and X are the motion
interval and wavelength). The Tamm intensity at the same angle is much
larger for L/A > 1: op(cos@ = 1/8n) = e?L*n(1 — 1/32)/cA? Comparing
(5.5) and (5.61) we see that for 8 > 6., o, and o7 decrease in the same way,
with the exception that op oscillates, whilst o, does not (Figs. 5.17 and
5.18). It should be mentioned that no oscillations in the angular intensity
were observed in the original Cherenkov experiments.

The last Cherenkov objection concerns the frequency dependence of the
integral intensity. According to him ([32, p.33)

In both of the cases the same qualitative result is obtained: the energy

of the bremsstrahlung spectrum decreases at large frequencies. For our

purposes it is enough to say that it does not rise with energy. On the

other hand, the experiment shows that for the radiation induced by fast

electrons the energy rises in proportion to the frequency, which, obvi-

ously, disagrees with results following from the bremsstrahlung theory
Turning to Fig. 5.19, we observe that the ratio of the BS integral intensity to
that of Tamm does not depend on the frequency. Since the Tamm integral
intensity rises in proportion to the frequency, the same is valid for the BS
integral intensity.

Let us summarize the discussion: Since the Tamm condition (5.48) is
strongly violated, the radiation observed in the original Cherenkov experi-
ments cannot be attributed uniquely to the uniform motion of the charge.
This fact was intuitively guessed by and Collins and Reiling [31]:

In conclusion it may be stated that the experimental results reported

here are in complete agreement with the classical explanation as de-

veloped by Frank and Tamm. It would be expected, however, that at
very short wavelengths a determination of the intensity would result in

a deviation from the classical theory in much the same way that the

classical theory of Rayleigh-Jeans fails at short wave-lengths.
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Indeed for high frequencies the formulae (5.68), (5.69) and numerical re-
sults (Figs. (5.20) and (5.21)) corresponding to the smooth Tamm problem
disagree drastically with the Tamm radiation intensity.

Thus the Vavilov explanation of these experiments supported initially
by Cherenkov, was at least partly, correct. A sharp distinction of angu-
lar intensities shown in Fig. 5.18 from the Tamm intensity given by (5.5)
supports this claim. Probably the beauty of the Tamm-Frank theory, con-
cretely predicting the position of the radiation maximum, its dependence
on the electron energy and the medium properties, the frequency propor-
tionality of the total radiated energy, the absence of concrete calculations
on the radiation of decelerated electron in medium (Cherenkov used refer-
ences treating BS in vacuum), and the similarity of the predictions of the
Tamm-Frank theory and the BS theory in medium, enabled him to change
his opinion.

The aforesaid is related to the original Cherenkov experiments in which
the Compton electrons knocked out by photons are completely absorbed
in medium. In modern experiments high-energy charged particles move
through a medium almost without energy loss. In this case the Tamm con-
dition (5.48) is valid and one can use either the original Tamm formula (5.5)
or its modifications (5.18) and (5.26) valid for finite observational distances
and small decelerations.

5.4. Short résumé of Chapter 5

We briefly summarize the main results obtained:

1) The analytic formula (5.18) has been found describing the intensity
of the VC radiation at finite distances from a moving charge. It is shown
that under the conditions close to the experimental ones the Cherenkov
angular spectrum broadens enormously. The analytic formula obtained is
in reasonable agreement with the exact formula (5.14) and sharply disagrees
with the Tamm formula (which does not depend on the distance). When
the observational distance tends to infinity, the above formula passes into
the Tamm formula.

2) Also, another closed formula (5.26) has been obtained which takes
into account both the possible deceleration of a charge owed to the en-
ergy losses and the finite distance of the observational point from a moving
charge. For very large observational distances this formula is transformed
into that found in [9]. Previously, the broadening of the Cherenkov angu-
lar spectrum experimentally observed in the heavy ions experiments was
attributed to the deceleration of heavy ions in a dielectric slab [15]. Our
consideration shows that finite distances of the point of observation con-
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tribute to the above broadening as well. In particular, it should be observed
in high-energy electron experiments (for which the energy losses are negligi-
ble) if the measurements are performed at finite distances from a dielectric
slab.

3) The above formulae are applied to the description of the VC radiation
observed in the recent Darmstadt experiments with heavy ions.

4) The analytic solution (5.46) describing the charge motion in medium
with arbitrary acceleration (deceleration) (Fig. 5.15 (a)) is found. The total
radiation intensity has one maximum at the Cherenkov angle correspond-
ing to (1 (see Fig. 5.16 (a,c,d)) or two maxima at the Cherenkov angles
corresponding to 41 and [y (Fig. 5.16 (b)). This solution may be applied to
study the radiation produced by electrons moving uniformly in heavy-water
reactors (the electron arising from the  decay of some nucleus, moves with
deceleration, and then is absorbed by another nucleus). Another possible
application is to experiments with heavy ions moving in medium [15] (due
to large atomic numbers, the energy losses for heavy ions are also large).

5) Analytic expressions are found for the electromagnetic field and the
energy flux radiated by a charge moving along the trajectory which consists
of accelerated, decelerated, and uniform motion parts (Fig. 5.15 (b)). It is
shown that when the lengths of accelerated and decelerated parts tend to
zero their contribution to the radiated energy flux also tends to zero despite
the infinite value of acceleration along them. The total radiation intensity
has a maximum at the Cherenkov angle defined by cosf = 1/6n (Figs. 5.20
and 5.21). The possible applications of this model are the same as those of
the original Tamm problem.

6) Analytic expressions are obtained for the electromagnetic field and
the energy flux radiated by a charge moving along the trajectory shown in
Fig. 5.15(c). The total radiation intensity has two maxima at the Cherenkov
angles defined by cosf = 1/61n and cosf = 1/0an if both ) and [y are
greater than 1/n (Fig. 5.22 (a,b)). Only one maximum corresponding to
cosf = 1/01n survives if B2 < 1/n (Fig. 5.22 (c,d)).

It follows from Figs. 5.20 and 5.21 that angular distributions corre-
sponding to finite accelerations are highly non-symmetrical relative to the
Cherenkov angle, whilst distributions described by the Tamm formula are
almost symmetrical. The angular distributions observed by Cherenkov were
also highly non-symmetrical (see, e.g., [32]). They strongly resemble the ra-
diation intensities shown in Fig. 5.18 and corresponding to the zero final
energy.

7) We have evaluated the radiation intensity for the Tamm problem with
absolute continuous time dependence of a charge velocity. It is shown that
the radiation intensity cannot be reduced to the intensity corresponding to
the Tamm problem when the length of acceleration region tends to zero.
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8) The fact that the maximum of the radiation intensity lies at the
Cherenkov angle does not necessarily testify to the charge uniform motion
with a velocity greater than the velocity of light in medium. In fact, we have
shown numerically and analytically that the maximum of the radiation
intensity lies at the Cherenkov angle even if the motion is highly non-
uniform.

9) It is shown for the motion beginning with a velocity v; and termi-
nating with a velocity vy that there are two Cherenkov maxima if both G1n
and faon are greater than 1. Only one Cherenkov maximum survives if one
of these quantities is smaller than 1.

10) The radiation intensity for a charge coming to a complete stop in a
medium does oscillate. Its maximum is at the Cherenkov angle 6. defined
by cosf. = 1/pn, where 3 is the initial velocity. The integral intensity is a
linear function of frequency.
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CHAPTER 6

RADIATION OF ELECTRIC, MAGNETIC AND
TOROIDAL DIPOLES MOVING IN A MEDIUM

6.1. Introduction.

The radiation of Compton electrons moving in water was observed by
Cherenkov in 1934 (see his Doctor of Science dissertation published in [1]).
During 1934-1937 Tamm and Frank associated it with the radiation of elec-
trons moving with a velocity v greater than the velocity of light in medium
cn (see, e.g., the Frank monograph [2]).

The radiation of electric and magnetic dipoles moving uniformly in
medium with v > ¢, was first considered by Frank in [3,4]. The proce-
dure used by him is as follows. The Maxwell equations are rewritten in
terms of electric and magnetic Hertz vector potentials. The electric and
magnetic field strengths are expressed through them uniquely. In the right
hand sides of these equations there enter electric and magnetic polarizabili-
ties which are expressed through the laboratory frame (LF) electric (7) and
magnetic (¢) moments of a moving particle. These moments are related to
the electric (7') and magnetic (1) moments in the dipole rest frame (RF)
via the relations [5]

T = T_I", - (1 - 7_1)(ﬁ/ﬁv)ﬁv + B(ﬁv X ﬁ/)7

f=i — (1 -y Y@ — Bty x 7). (6.1)

Here 8 = v/e, v = 1/\/1 — (32,1, = ¥/v, v is the velocity of a dipole
relative to the LF.
Let there be only the electric dipole (' = 0) in the RF. Then

7= — (1= @A), fg=—B(yx7). (6.2)
Excluding 7’ one finds in the LF
fi = =pB(7iy x 7). (6.3)

Similarly, if only the magnetic moment differs from zero in the RF, then in
the LF

fi= i — (= @R 7= B, x ). (6.4)
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Using these relations Frank evaluated the electromagnetic field (EMF)
strengths and the energy flux per unit frequency and per unit length of the
cylinder surface coaxial with the motion axis. These quantities depended on
the dipole spatial orientation. For the electric dipole and for the magnetic
dipole parallel to the velocity Frank obtained expressions which satisfied
him. For a magnetic dipole perpendicular to the velocity, the radiated en-
ergy did not disappear for v = ¢,. Its vanishing is intuitively expected and
is satisfied, e.g., for the electric charge and dipole and for the magnetic
dipole parallel to the velocity. On these grounds Frank declared [6] the for-
mula for the radiation intensity of the magnetic dipole perpendicular to the
velocity as to be incorrect. He also admitted that the correct expression for
the above intensity is obtained if the second of Eqs.(6.4) is changed to

7 =n2B(A, x fi), (6.5)

whilst (6.3) remains the same. Here n is the medium refractive index.

Equation (6.5) was supported by Ginzburg [7] who pointed out that the
internal structure of a moving magnetic dipole and the polarization induced
inside it are essential. This idea was further elaborated in [8].

In [9] the radiation of toroidal dipoles (i.e., the elementary (infinitesi-
mally small) toroidal solenoids (TS)) moving uniformly in a medium was
considered. It was shown that the EMF of a TS moving in medium a ex-
tends beyond its boundaries. This seemed to be surprising since the EMF of
a TS either at rest in medium (or vacuum) or moving in vacuum is confined
to its interior.

After many years Frank returned [10,11] to the original transformation
law (6.2)-(6.4). In particular, in [11] a rectangular current frame moving
uniformly in medium was considered. The evaluated electric moment of the
moving current distribution was in agreement with (6.4).

Another transformation law for the magnetic moment, grounding on
the proportionality between the magnetic and mechanical moments was
suggested in [12]. This proportionality taking place, e.g., for an electron,
was confirmed experimentally to a great accuracy in g — 2 experiments.
In them the electron spin precession is described by the Bargmann-Michel-
Telegdi equation. In this theory the spin is a three-vector §'in its rest frame.
In another inertial frame (and, in particular, in the laboratory frame relative
to which a particle with spin moves with the velocity v), the spin has four
components (§ ,Sp) defined by

2

§=§+711<6-§>6, So =~ 3).

A nice exposition of these questions may be found in [13].
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The goal of this consideration is to obtain EMF potentials and strengths
for point-like electric and magnetic dipoles and an elementary toroidal
dipole moving in a medium with an arbitrary velocity v greater or smaller
than the velocity of light ¢, in medium. In the reference frame attached to
a moving source we have a finite static distribution of charge and current
densities. We postulate that charge and current densities in the laboratory
frame, relative to which the source moves with a constant velocity, can be
obtained from the rest frame densities via the Lorentz transformations, the
same as in vacuum. The further procedure is in decreasing the dimensions
of the LF charge-current sources to zero, in a straightforward solution of the
Maxwell equations for the EMF potentials with the LF point-like charge-
current densities in their r.h.s., and in a subsequent evaluation of the EMF
strengths. In the time and spectral representations, this was done in [14,15].
The reason for using the spectral representation which is extensively used
by experimentalists is to compare our results with those of [1-10] written
in the frequency representation.

The plan of this exposition is as follows. In section 6.3 the electromag-
netic field strengths are evaluated in the time representation for electric,
magnetic and toroidal dipoles moving uniformly in an unbounded non-
dispersive medium. In section 6.4 the same radiation intensities are evalu-
ated in the spectral representation. A lot of misprints in previous publica-
tions is recovered. It is not our aim to recover these misprints, but we need
reliable working formulae which can be applied to concrete physical prob-
lems. In the same section the electromagnetic fields of electric, magnetic
and toroidal dipoles moving uniformly in a finite medium interval are ob-
tained. In section 6.5 the EMF of a precessing magnetic dipole is obtained.
This can be applied to astrophysical problems. A brief discussion of the
results obtained and their summary is given in section 6.6.

6.2. Mathematical preliminaries: equivalent sources of the elec-
tromagnetic field

This section is essentially an extract of [16]. It is needed for the understand-
ing of subsequent exposition.

6.2.1. A PEDAGOGICAL EXAMPLE: CIRCULAR CURRENT.

According to the Ampére hypothesis, the distribution of magnetic dipoles
M (7) is equivalent to the current distribution J(7) = curlM (7). For exam-
ple, a circular current flowing in the z = 0 plane

J = Iy (p — d)i(z) (6.6)
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Figure 6.1. The circular current f is equivalent to the magnetization perpendicular to
the current plane.

is equivalent to the magnetization (see Fig. 6.1)
M = I70(d — p)i(z) (6.7)

different from zero in the same plane and directed along its normal 77 (©(z)
is a step function). In what follows, by magnetic and toroidal dipoles we
understand infinitesimal circular loop and toroidal winding with a constant
current flowing in them. When the radius d of the circumference along
which the current flows tends to zero, the current J becomes ill-defined (it
is not clear what the vector 74 means at the origin). On the other hand,

the vector M is still well-defined. In this limit the elementary current (6.6)
turns out to be equivalent to the magnetic dipole oriented normally to the
plane of this current:

M = Ixd?it6*(7), (6°%(F) = 6(p)d(z)/27p) (6.8)

and

J = Ird?curl(id® (7)) (6.9)

Equations (6.8) and (6.9) define the magnetization and current density
corresponding to the elementary magnetic dipole.
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| Z

Figure 6.2. The poloidal current flowing on the torus surface.

6.2.2. THE ELEMENTARY TOROIDAL SOLENOID.

The case next in complexity is the poloidal current flowing in the winding
of TS (Fig. 6.2):

gc . 8(R—R)
=n

R 6.10
4 wd—FRCOS’l/J ( )

j--

The coordinates E, 1 and ¢ are related to the Cartesian ones as follows:
x=(d+ ficomﬁ) cosp, y=(d+ }Nzcosw) sing, z= Rsin. (6.11)

The condition R = R defines the surface of a particular torus (Fig. 6.3). For
R fixed and ¥, ¢ varying, the points z,y, z given by (6.11) fill the surface of
the torus (p—d)? + 22 = R?. The choice j in the form (6.10) is convenient,
because in the static case a magnetic field H is equal to g/p inside the torus
and vanishes outside it. In this case g may be also expressed either through
the magnetic flux ® penetrating the torus or through the total number N
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| Z
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0

Figure 6.3. The coordinates E, 1) parametrizing the torus.

of turns in the toroidal winding and the current [ in a particular turn

- o NI
I omd—VE-R® ¢

We write out the differential operators div and curl in R,%, and ¢
coordinates:

divA—— L
R(d+ Reosd)

x %E(d + Reosth) Az + %(d + Rcosth) Ay + 88¢RA¢] ,
(curl ) = W [aagb(fmlp) - a(?l}(d + }wacosz/J)Aqs} ,
(eurld)y = [g—f; - %@Aw] ,

(curld),, = !

— i(d+f2 )A 045 6.12
d+ Rcosv |OR cos®) s b | (6.12)
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As divj = 0, the current ; can be presented as the curl of a certain vector

M:

7 = curlM. (6.13)
Or, in a manifest form:
5(R—R 1 d OM
_ge = ) _ (d+RCOS’gZJ)M¢— B
AT d+ Recos  d+ Rcost ¢

Due to the axial symmetry of the problem, the term involving ¢ differenti-
ation drops out, and one obtains

_ge SR-B) _ 1 9 (44 Reos)M
47Td—|—Rcos¢ d—i—Rcosz/Jé?R

Contracting by the factor d + ﬁcosw one has

ICSR-R) = L (d+ R
4775(R R)—aﬁ(d%—RcosdJ)M

It follows from this that

— %m (6.14)
47 d + Rcostp’
i.e., My is confined to the interior of the torus (Fig. 6.4).
We rewrite M in cylindrical coordinates:
My=-20[R—\/(p—d)2+22]. (6.15)
dmp

Since divM = 0 the magnetization vector M can, in its turn, be presented
as a curl of a certain vector T'. It turns out that only the z component of
T differs from zero:

RZ _ .2
T, =— R2 — 22 —
47T d+vR2—z2

O(d+ VR? — 22 — d+ VR? - 2?)
( #=0 - A

Thus T, differs from zero in two spatial regions:
a) Inside the torus hole defined as 0 < p < d— v/ R? — 22, where T, does
not depend on p:

P (6.16)

_ 2 _ 2
Tzz—ﬁlnd R°—z

TR (6.17)
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Figure 6.4. The poloidal current j flowing on the torus surface is equivalent to the
magnetization M confined to the interior of the torus and to the toroidization 7" directed
along the torus symmetry axis.

b) Inside the torus itself (d —VR?2-22<p<d+VR?- 22> where

T, =99

p
n—mH ——. 6.18
4 d+4+VR? - 22 (6.18)

In other spatial regions T, = 0.

Now let t