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PREFACE

The importance of the Vavilov-Cherenkov radiation stems from the
property that a charge moving uniformly in a medium emits γ quanta at
the angle uniquely related to its energy. This has numerous applications.
We mention only the neutrino experiments in which the neutrino energy is
estimated by the angle at which the electron originating from the decay of
neutrino is observed.

This book is intended for students of the third year and higher, for
postgraduates, and professional scientists, both experimentalists and theo-
reticians. The Landau and Lifschitz treatises Quantum Mechanics, Classi-
cal Field Theory and Electrodynamics of Continuous Media are more than
enough for the understanding of the text.

There are three monographs devoted to the Vavilov-Cherenkov radia-
tion. Jelly’s book Cherenkov Radiation and its Applications published in
1958 contains a short theoretical review of the Vavilov-Cherenkov radi-
ation and a rather extensive description of experimental technique. Ten
years later, the two-volume Zrelov monograph Vavilov-Cherenkov Radia-
tion and Its Application in High-Energy Physics appeared. Its first volume
is a quite extensive review of experimental and theoretical results known up
to 1968. The second volume is devoted to the construction of the Cherenkov
counters. In 1988, the Frank monograph Vavilov-Cherenkov Radiation. The-
oretical Aspects was published. It presents mainly a collection of Frank’s
papers with valuable short commentaries describing their present status. It
is highly desirable to translate this book into English.

The main goal of this book is to present new developments in the theory
of the Vavilov-Cherenkov effect for the 15 years following the appearance
of Frank’s monograph. We briefly mention the main questions treated:

1) The Vavilov-Cherenkov radiation for the unbounded charge motion
in a medium (the so-called Tamm-Frank problem);

2) Exact solutions for semi-infinite and finite charge motions in a non-
dispersive medium. Their study allows one to identify how the Cherenkov
shock waves and the bremsstrahlung shock waves are distributed in space;

3) Accelerated and decelerated charge motions in a medium. Their study
allows one to observe the formation and time evolution of the singular shock

xi



xii PREFACE

waves (including the finite Cherenkov shock wave) arising when the charge
velocity coincides with the velocity of light in a medium;

4) The consideration of the Vavilov-Cherenkov radiation in dispersive
media with and without damping supports Fermi’s claim that a charge
moving uniformly in a dispersive medium radiates at each velocity. It turns
out that the position and magnitude of the maximum of the frequency
distribution depend crucially on the damping parameter value;

5) The measurement of the radiation intensities at finite observational
distances leads to the appearance of plateau in some angular interval. The
linear (not angular) dimensions of this plateau on the observational sphere
do not depend on the sphere radius. Inside this plateau the radiation inten-
sity is not described by the Tamm formula at any observational distance;

6) The taking into account of the finite dimensions of a moving charge
or the medium dispersion leads to the finite energy radiated by a moving
charge for the entire time of its motion. This in turn allows one to determine
how a charge should move if all its energy losses were owed to the Cherenkov
radiation;

7) The Vavilov-Cherenkov radiation for a charge moving in a finite
medium interval. This includes the consideration of the original Tamm
problem (having instantaneous velocity jumps at the beginning and the
end of the charge motion), the smooth Tamm problem (in which there
are no discontinuities of the charge velocity) and the absolutely continuous
charge motion (for which the charge velocity and all its time derivatives
are continuous functions of time) in a finite spatial interval. This permits
one to relate the asymptotic behaviour of the radiation intensities to the
discontinuities of the charge trajectory;

8) It is studied how the radiation intensity changes when a charge moves
in one medium while the observations are made in another, with different
dielectric properties (in fact, this is a typical experimental situation);

9) The Vavilov-Cherenkov and transition radiations for the spherical
interface between two media (previously, only the plane interface was con-
sidered in the physical literature);

10) The radiation of electric, magnetic, and toroidal dipoles moving in
a medium. This allows one to study the radiation arising from the moving
neutral particles (e.g., neutrons, neutrinos, etc.);

11) The fine structure of the Cherenkov rings is studied. We mean un-
der this term the plateau in the radiation intensity (which is due to the
Cherenkov shock wave), sharp maxima at the ends of this plateau (we as-
sociate them with bremsstrahlung shock waves arising at the accelerated
and decelerated parts of the charge trajectory) and small oscillations in-
side this plateau (they are due to the interference of the Cherenkov and
bremsstrahlung shock waves);
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12) The kinematics of the two-photon simultaneous emission for a charge
moving uniformly in medium. It turns out that under certain circumstances
the photon emission angles are fixed. The radiation intensity should have
sharp maxima at these angles (similarly to the single-photon Cherenkov
emission). This creates favourable conditions for the observation of the
two-photon Cherenkov effect.

The importance of the synchrotron radiation is because it is extensively
used for the study of nuclear and particle reactions, astrophysical prob-
lems, and has a variety of biological and medical applications. There are a
few books of the Moscow State University School, and the recently (2002)
published book Radiation Theory of Relativistic Particles (Ed. V.A. Bor-
dovitsyn) which, in fact, presents a collection of papers of various authors
devoted to the questions related to the synchrotron radiation. In the present
monograph we study the synchrotron radiation in a medium, and the syn-
chrotron radiation in vacuum, in the near zone. These questions were not
considered in the references just mentioned.

The questions considered in this monograph were reported in a number
of seminars of the Joint Institute for Nuclear Research, and in various
international scientific conferences and symposia.

My deep gratitude is owed to the administration of the Laboratory of
Theoretical Physics of the Joint Institute for Nuclear Research which has
created nice conditions for the scientific activity, and to my co-authors with-
out whom this monograph could not have appeared. Particular gratitude
is owed to Dr. V.M. Shilov for the technical assistance in the preparation
of this manuscript.
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CHAPTER 1

INTRODUCTION

The Vavilov-Cherenkov (VC) effect and synchrotron radiation (SR) are
two of the most prominent phenomena discovered in the 20th century. The
VC effect arises when a charged particle moves in a medium with a velocity
v greater than the velocity of light cn in a medium. Here cn = c/n, c
is the velocity of light in vacuum and n is the medium refractive index.
It should be noted that the acoustic analogue of the VC effect has been
known from the middle of 19th century. A bullet or shell, moving in the air
with the velocity greater than the velocity of sound in air creates a shock
wave of conical form with its apex approximately at the position of the
moving body. This conical shock wave is usually referred to as the Mach
shock wave after the name of the Austrian scientist Ernst Mach who, while
experimentally studying supersonic air streaming past the body at rest,
obtained remarkable photographs showing the distribution of the velocity
of the air around the body. Similar photographs can be found in [1].

To best of our knowledge, the electromagnetic field (EMF) of a charge
moving uniformly in a dispersion-free medium was first obtained by Oliver
Heaviside in 1889. We quote him ([2] p.335):

The question now suggests itself, What is the state of things when u >
v? It is clear, in the first place, that there can be no disturbance at all in
front of the moving charge (at a point, for simplicity). Next, considering
that the spherical waves emitted by a charge in its motion along the z
axis travel at speed v, the locus of their fronts is a conical surface whose
apex is at the charge itself, whose axis is that of z, and whose semiangle
θ is given by sin θ = v/u.

(Here u and v are the charge velocity and the velocity of light in medium,
resp.). The Heaviside findings concerning this problem were summarized in
Volume 3 of his Electromagnetic Theory published in 1905 ([3]).

Further, Lord Kelvin on p.4 of his paper Nineteenth Century Clouds
over the Dynamical Theory of Heat and Light ([4]) wrote:

If this uniform final velocity of the atom exceeds the velocity of light, by
ever so little, a non-periodic conical wave of equi-voluminal motion is
produced, according to the same principle as that illustrated for sound
by Mach’s beautiful photographs of illumination by electric sparks,
showing, by changed refractivity, the condensational-rarefactional dis-

1



2 CHAPTER 1

turbance produced in air by the motion through it of a rifle bullet. The
semi-vertical angle of the cone, whether in air or ether, is equal to the
angle whose sine is the ratio of the wave velocity to the velocity of the
moving body.

In the footnote to this remark Lord Kelvin states:
On the same principle we see that a body moving steadily (and, with
little error, we may say also that a fish or water fowl propelling itself
by fins or web-feet) through calm water, either floating on the surface
or wholly submerged at some moderate distance below the surface, pro-
duces no wave disturbance if its velocity is less than the minimum wave
velocity due to gravity and surface tension (being about 23 cms. per
second, or 0.44 of a nautical mile per hour, whether for sea or fresh wa-
ter); and if its velocity exceeds the minimum wave velocity, it produces
a wave disturbance bounded by two lines inclined on each side of its
wake at angles each equal to the angle whose sine is the minimum wave
velocity divided by the velocity of the moving body.

Unfortunately, these investigations were forgotten for many years. For ex-
ample, the information about the Heaviside searches appeared only in 1974
as a result of historical findings by Kaiser ([5]) and Tyapkin ([6]).

The modern history of the VC effect begins with the Cherenkov ex-
periments (1934-1937) (see their nice exposition in his Doctor of Science
dissertation [7]) performed at the suggestion of his teacher S.I. Vavilov. In
them the γ quanta from an RaE source trapping into a vessel filled with wa-
ter, induced the blue light detected by the observer outside the vessel. Later
it was associated with the radiation of the Compton electrons knocked out
by the incoming γ quanta from the water molecules. Since electrons in the
Cherenkov experiments were completely absorbed in the water, S.I. Vavilov
attributed the above blue light to the deceleration of electrons ([8]):

We think that the most probable reason for the γ luminescence is the
radiation arising from the deceleration of Compton electrons. The hard-
ness and intensity of γ rays in the experiments of P.A. Cherenkov were
very large. Therefore the number of Compton scattering events and
the number of scattered electrons should be very considerable in fluids.
The free electrons in a dense fluid should be decelerated within negligi-
ble distances. This should be followed by the radiation of a continuous
spectrum. Thus weak visible radiation may arise, although the bound-
ary of bremsstrahlung and its maximum should be located somewhere
in the Roentgen region. It follows from this that the energy distribution
in the visible region should rise towards the violet part of spectrum, and
the blue-violet part of spectrum should be especially intensive.

At first, P.A. Cherenkov was a follower of Vavilov’s explanation of the
nature of radiation observed in his experiments. We quote him [9]:



Introduction 3

All the above-stated facts unambiguously testify that the nature of the
γ luminescence is owed to the electromagnetic deceleration of electrons
moving in a fluid. The facts that γ luminescence is partially polarized
and that its brightness has a highly pronounced asymmetry strongly re-
semble the similar picture for the bremsstrahlung of fast electrons in the
Roentgen region. However, in the case of γ luminescence the complete
theoretical interpretation encounters with a number of difficulties.

(our translation from the Russian).
In 1937 the famous paper by Frank and Tamm [10] appeared in which

the electromagnetic field strengths of a charge moving uniformly in medium
were evaluated in the spectral representation. It was shown there that radia-
tion intensities of an electron moving uniformly in medium are added in the
direction defined by the so-called Cherenkov angle θc (cos θc = 1/βn, β =
v/c, n is the medium refractive index). Tamm and Frank also found the en-
ergy radiated by an electron, per unit length of its path through a cylinder
surface coaxial with the motion axis. These quantities were in agreement
with Cherenkov’s experiments. Owing to the dependence of the refractive
index on the frequency, the velocity of light cn = c/n in the medium is
also frequency-dependent. This leads to the disappearance of the singular
Cherenkov cone in the time representation.

In 1938 the experiment by Collins and Reiling [11] was performed in
which a 2 Mev electron beam was used to study the VC radiation in various
substances. The pronounced Cherenkov rings were observed at the angles
given by the Tamm-Frank theory.

In 1939, in the Tamm paper [12], the motion of an electron in a finite
spatial interval was considered. Under certain approximations he obtained
the formula for the angular radiation intensity which is frequently used by
experimentalists for the identification of the charge velocity. This formula
is now known as the Tamm formula.

After that Cherenkov changed his opinion in a favour of the Tamm-
Frank theory. The reasons for this are analysed in Chapter 5.

The next important step was made by Fermi [13] who considered a
charge moving uniformly in a medium with dielectric constant chosen in a
standard form extensively used in optics. From his calculations it follows
that for this choice of dielectric permittivity a charge moving uniformly in
medium should radiate at each velocity. This, in its turn, means that for
any velocity there exists a frequency interval for which the Tamm-Frank
radiation condition is satisfied.

The first quantum consideration of the VC effect was given by V.L.
Ginzburg [14]. The formula obtained by him up to terms of the order
h̄ω/m0c

2 (m0 is the mass of a moving charge in its rest frame and ω is
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the frequency of an emitted quantum) coincides with the classical expres-
sion given by Tamm and Frank in [10].

After the appearance of these classical papers the studies of the VC
effect developed very quickly. There are three monographs devoted to this
subject. The first one was published in 1958 and was written by Jelley [15].
This book presents a review of experimental and theoretical investigations
of the VC effect. The second one is Zrelov’s two-volume treatise [16]. The
second volume is devoted to Cherenkov counters, and the first volume is
the review of experimental and theoretical studies of the VC radiation. The
Frank book [17] stays slightly aside of two just mentioned monographs. Its
author, one of the founders of the theory of the VC effect and a Nobel prize
winner, does not fear to declare that he does not understand something in a
particular problem, or that something is not very clear to him in a question
discussed. This fair position of Frank has stimulated a lot of investigations
and, in particular, ours.

We briefly review the contents of this book.
Chapter 2 is devoted to the so-called Tamm problem considered by Tamm
in 1939. In this problem, the charge motion in a finite spatial interval is
studied. For the radiation intensity Tamm obtained a remarkably sim-
ple formula. Usually it is believed that for the charge velocity smaller
than the velocity of light in the medium the Tamm formula describes the
bremsstrahlung, whilst for the charge velocity exceeding the velocity of
light in the medium it describes both the bremsstrahlung and the radiation
arising from the charge uniform motion. In 1989 and 1992 two papers by
Ruzicka and Zrelov appeared ([18,19]) in which it was claimed that the radi-
ation observed in the Tamm problem is owed to the instantaneous velocity
jumps at the start and end of the motion. We quote them:

Summing up, one can say that the radiation of a charge moving with a
constant velocity along a limited section of its path (the Tamm problem)
is the result of two bremsstrahlungs produced at the beginning and the
end of motion.

And, further,
Since the Tamm-Frank theory is a limiting case of the Tamm theory
one can consider that the above conclusion is valid for it as well.
On the other hand, it was shown in [20] that in the time representation

for the dispersion-free medium the Cherenkov shock wave (this term means
the shock wave produced by a charge uniformly moving in medium with
a velocity greater than the velocity of light in a medium) exists side by
side with the bremsstrahlung shock waves and cannot be reduced to them.
Then the question arises, how to reconcile results of [18,19] and [20]. The
answer is that the authors of [18,19] analysed the Tamm problem in terms
of the Tamm approximate formula. However, it was shown in [21,22] that
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the Tamm formula, owing to approximations involved in its derivation, does
not describe the Cherenkov shock wave properly. In this chapter, to clarify
this conflicting situation, we analyse this problem in four different ways.

In chapter 3, based on the references [23,26], it is investigated in the
time representation, how a charge moving non-uniformly in a dispersion-
free medium radiates. It is shown that for the semi-infinite accelerated
motion, beginning from the state of rest, an indivisible complex consisting
of the Cherenkov shock wave and the shock wave closing the Cherenkov cone
arises at the instant, when the charge velocity v coincides with the velocity
of light cn in medium. The apex of the Cherenkov shock wave attached to a
moving charge, moves with the charge velocity, while the mentioned-above
shock wave closing the Cherenkov cone propagates with the velocity of light
in medium. This results in an increase of the above complex dimensions. For
the semi-infinite decelerated motion, terminating with the state of rest, it is
shown how the Cherenkov shock wave is transformed into the blunt shock
wave which detaches the charge at the instant when the charge velocity
coincides with the velocity of light in medium. In the same chapter, there
is investigated, in the time representation, the so-called smoothed Tamm
problem. In it the charge velocity changes linearly from zero at the initial
instant up to the value v0 with which it moves in a finite spatial interval.
After that a charge is linearly decelerated, reaching the state of rest at
some other instant of time. The bremsstrahlung shock waves arise at the
start and end of motion. If v0 > cn, a complex, consisting of the Cherenkov
shock wave and the shock wave enclosing the Cherenkov cone, arises at the
accelerated part of a charge trajectory, when the charge velocity v coincides
with cn. This complex detaches from a charge at the decelerated part of its
trajectory when the charge velocity v again coincides with cn. The above
complex does not arise if v0 < cn.

Chapter 4 deals with an unbounded charge motion in a dispersive medium.
The radiation intensities are evaluated [26-28] in the time and the spectral
representations for the dielectric constant chosen in a standard one-pole
form. In the time representation, in the absence of damping there is a crit-
ical charge velocity vc, independent of frequency, below and above which
the behaviour of radiation intensities is essentially different. Above vc the
radiation intensity consists of a number of maxima, the largest of them
is at the same position at which the singular Cherenkov cone lies in the
absence of dispersion. Below vc there is a bunch of radiation intensity max-
ima separated from a moving charge and lying at a quite large distance
from it. The quasi-classical estimations for the position of this bunch and
of particular maxima composing it agree with exact calculations. These
predictions were recently confirmed experimentally [29]. It is shown in the
same chapter that for v > vc the switching on the medium damping leads
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to a decrease of the maxima of the radiation intensity except for those ly-
ing in the neighbourhood of cos θc = c/vn. On the other hand, for v < vc

the radiation intensities are much more affected by the switching on the
damping: they disappear almost completely, even for quite small values of
a damping parameter. In the same chapter, the radiation intensities are
also evaluated in the spectral representation, which is more frequently used
by experimentalists than the time representation. It is shown that both the
value (which is not surprising since the medium is absorptive) and position
of the maximum of the radiation intensity depend crucially on the obser-
vational distance and the damping parameter. This raises uneasy questions
about the interpretation of the VC radiation spectra presented by experi-
mentalists.

The chapter 5 is devoted to the evaluation of the radiation intensities at
finite observational distances and to taking into account the effects of ac-
celerated motion [22,30-32]. This chapter may be viewed as the translation
of chapters 2 and 3 into the frequency language. In fact, experimentalists
measure the number of photons with a given frequency and the energy
radiated by a moving charge at the given frequency. Usually the VC ra-
diation is observed in the frequency interval corresponding to the visible
light. There are only a few experiments (such as [29]) dealing with the VC
radiation in the time representation. Certainly, frequencies lying outside
the frequency interval of a visible light also contribute to the radiation in-
tensity in the time representation. Turning to the observation of the VC
radiation at finite distances we observe that for the Tamm problem the
radiation intensities evaluated on an observational sphere of finite radius r
(the Tamm approximate formula corresponds to an infinite observational
distance) have a plateau in the angular range surrounding the Cherenkov
angle θc. Physically this may be explained as follows. A charge moving in
a finite medium interval emits photons under the Cherenkov angle θc to-
wards the motion axis. A particular photon, emitted at a given instant,
intersects the observational sphere at a particular angle which depends on
the charge position in the interval of motion. Since the transition to the fre-
quency representation involves integration over the whole time of a charge
motion, one obtains the above angular plateau. The appearance of the an-
gular plateau is also supported by the analytic consideration of Chapter
2. The need for formulae working at finite distances is because the Tamm
approximate formula for the angular radiation intensity does not work at
realistic observational distances.

In the same Chapter closed analytical expressions are obtained for the
radiation intensities of a charge moving with deceleration in a finite spatial
interval and valid at a finite distance from a moving charge. The taking
into account of the deceleration effects is needed for describing the recent
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experiments with heavy ions, where pronounced Cherenkov rings were ob-
served [33]. The large velocity losses for heavy ions are owed to their large
atomic number (energy losses are proportional to the square of the charge).
The above analytical formulae are valid for relatively small accelerations
for which the change of a velocity is much smaller than the velocity itself.

Closed analytical expressions for radiation intensities are obtained also
for arbitrary charge deceleration for which the so-called Tamm condition,
allowing us to disregard the acceleration effects, is strongly violated. Un-
fortunately, these analytic formulae are valid only at infinite observational
distances. An important case for applications corresponds to the complete
charge stopping in a medium (this was realized in the original Cherenkov
experiments). When the final velocity is zero and the initial velocity is
greater than the velocity of light cn in medium, the pronounced maximum
in the angular distribution appears at the Cherenkov angle corresponding
to the initial charge velocity.

Using the spectral representation we consider the smooth Tamm prob-
lem in which the charge velocity changes smoothly from zero up to some
value v > cn, with which it moves for some time. After that a charge is
smoothly decelerated down to reaching the state of rest. When non-uniform
parts of the charge interval of motion tend to zero, their contribution to
the radiation intensity also tends to zero, and only the uniform part of the
charge motion interval contributes to the total radiation intensity. However,
according to Chapter 2 the bremsstrahlung shock waves exist even for the
instantaneous velocity jumps. The possible outcome of this controversy is
that not only the velocity jumps but the acceleration jumps as well con-
tribute to the radiation intensity. In fact, for the smooth Tamm problem
treated there are no velocity jumps but there are acceleration jumps at the
start and end of the motion, and at the instants when the uniform and non-
uniform motions meet each other. To see this explicitly we have considered
two kinds of absolutely continuous charge motion in a finite spatial inter-
val. Although the velocity behaviour is visually indistinguishable from the
velocity behaviour in the original Tamm problem (with velocity and accel-
eration discontinuities) and in the smoothed Tamm problem (without the
velocity discontinuities, but with the acceleration ones), the corresponding
intensities differ appreciably: for the absolutely continuous charge motion
the radiation intensities are exponentially small outside some angular inter-
val. This points out that not only the velocity discontinuities are essential,
but the discontinuities of higher derivatives of the charge trajectory as well.

Chapter 6 treats the radiation arising from electric, magnetic, and toro-
idal dipoles moving in medium. As far as we know, Frank was the first
to evaluate the electromagnetic field (EMF) strengths and the energy flux
per unit frequency and per unit length of cylinder surface coaxial with the
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motion axis [34]. These quantities depend on the dipole spatial orientation.
Frank postulated that the moments of electric and magnetic dipoles moving
in a medium are related to those in their rest frame by the same transforma-
tions as in vacuum. For an electric dipole and for a magnetic dipole parallel
to the velocity, he obtained expressions which satisfied him. For a magnetic
dipole perpendicular to the velocity the radiated energy did not disappear
for v = cn. Its vanishing is intuitively expected and is satisfied, e.g., for an
electric charge and dipole and for a magnetic dipole parallel to the velocity.
On these grounds Frank declared [35] the formula for the radiation intensity
of the magnetic dipole perpendicular to the velocity to be incorrect. He also
admitted that the correct expression for the above intensity is obtained if
the above transformation law is changed slightly. This claim was supported
by Ginzburg in [36], who pointed out that the internal structure of a moving
magnetic dipole and the polarization induced inside it are essential. This
idea was further elaborated in [37]. In [38], the radiation of toroidal dipoles
(i.e., elementary (infinitesimally small) toroidal solenoids (TS)) moving uni-
formly in a medium was considered. It was shown that the EMF of the TS
moving in a medium extends beyond its boundaries. This seemed surpris-
ing since the EMF of a TS resting either in the medium (or vacuum) or
moving in the vacuum is confined to its interior. After many years Frank
returned in [39,40] to the original transformation laws. In particular, in [40]
he considered the rectilinear current frame moving uniformly in a medium.
The evaluated electric moment of the current distribution moving in the
medium was in agreement with that obtained by the law postulated in [34].

The goal of this Chapter consideration is to obtain EMF potentials and
strengths for point-like electric and magnetic dipoles and an elementary
toroidal dipole moving in the medium with arbitrary velocity v greater or
smaller than the velocity of light cn in medium. In the reference frame
attached to a moving source there are finite static distributions of charge
and current densities. We postulate that charge and current densities in
the laboratory frame, relative to which the source moves with a constant
velocity, can be obtained from the rest frame densities via Lorentz trans-
formations, the same as in vacuum. The further procedure is to tend the
dimensions of the charge and current sources in the laboratory frame to
zero, in a straightforward solution of the Maxwell equations for the EMF
potentials in the laboratory frame, with the point-like charge and current
densities in the r.h.s. of these equations, and in a subsequent evaluation
of the EMF strengths. In the time and spectral representations, this was
done in [41,42]. The reason for using the spectral representation, which is
extensively used by experimentalists, is to compare our results with those
of [34-40] written in the frequency representation.

In Chapter 7, there is discussed how the VC radiation affects the charge
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motion. Usually the VC radiation is associated with the radiation of a
charge moving uniformly in medium with the velocity greater than the
velocity of light in medium. Owing to the radiation a moving charge in-
evitably loses its energy. The self-energy of a point-like charge is infinite. A
moving point-like charge emits all frequencies. In a dispersion-free medium
all frequencies propagate without damping if the charge velocity is greater
than the velocity of light in medium. The total energy radiated per unit
length, obtained by integration of the spectral energy over all frequencies,
is infinite. There are several ways of overcoming this difficulty. The first is
to consider a charge of finite dimension. Its self-energy E′ is finite. There-
fore there is maximal frequency E′/h̄ which can be emitted. The energy
radiated by a moving charge per unit length is also finite. Equating it to
the loss of kinetic energy one finds how the velocity of a finite charge mov-
ing in a non-dispersive medium changes as a result of the VC radiation.
Another way of achieving the finite energy losses is to consider the charge
motion in a dispersive medium. For this medium with a dielectric constant
approximated by the one-pole formula, the Tamm-Frank radiation condi-
tion βen2(ω) > 1 is satisfied in a finite frequency interval. Integrating the
radiated energy over this interval one obtains a finite value for the energy
radiated per unit length. Equating it to the kinetic energy loss one finds
how the VC radiation affects the velocity of a point-like charge moving in a
dispersive medium. In reality these processes compete with each other and
with ionization energy losses. All these questions are also discussed.

The following problem is also discussed in this Chapter. It deals with
an electric charge moving inside a spatial region S filled with a medium
of refractive index n1, while measurements are made outside this region,
in a medium of refractive index n2. In fact, this is a typical situation in
experiments with VC radiation. For example, in the original Cherenkov
experiments [7] the γ quanta emitted by electrons moving in a vessel filled
with a water were observed outside this vessel by a human eye. The case in
which S was a dielectric cylinder C was considered by Frank and Ginzburg
in 1947 [43] who showed that there will be no radiation flux outside C for
1/n1 < β < 1/n2. Under the radiation flux they realized the radial one (that
is, in the direction perpendicular to the axis of motion). We have evaluated
the energy flux along the axis of motion and have shown that outside the
dielectric cylinder S it is zero everywhere except for the discrete set of
observational frequencies at which it is infinite.

We have considered two other problems corresponding to the radiation
of a charge moving uniformly in a spherically symmetric dielectric sample.
The first of them deals with a charge moving inside a dielectric sphere S of
refractive index n1 (medium 1), while observations of the energy flux are
made outside this sphere in a medium of refractive index n2 (medium 2). It
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is shown that the angular spectrum broadens in comparison with the Tamm
angular spectrum corresponding to the charge motion in a finite interval
lying inside the unbounded medium 1. There is also observed a rise in the
angular intensities at large angles. We associate them with the reflection of
the VC radiation from the internal side of the sphere S. The second problem
treats a charge whose motion begins and ends in a medium 2 of refractive
index n2 and which during its motion penetrates the dielectric sphere S of
refractive index n1 (medium 1). In addition to the VC radiations in medium
1 (if the condition βn1 > 1 is satisfied) and in medium 2 (if the condition
βn2 > 1 is satisfied), and to the bremsstrahlung arising at the beginning
and end of a charge motion in medium 2, there is the so-called transition
radiation arising when a moving charge crosses the surface of the sphere S
separating the media 1 and 2. For the plane boundary between the media 1
and 2, transition radiation was first considered by Frank and Ginzburg in
1946 [44]. In the problems treated (spherical boundary between two media)
the frequency radiation spectrum exhibits the characteristic oscillations.
Probably, they are of the same nature as those for the dielectric cylinder.

Chapter 8 is devoted to the synchrotron radiation, which is such well-
known phenomenon that it seems to be almost impossible to add something
essential in this field. Schott was probably the first person who extensively
studied SR. His findings were summarized in the encyclopedic treatise Elec-
tromagnetic Radiation [45]. He developed the electromagnetic field (EMF)
into Fourier series and found solutions of Maxwell’s equations describing the
field of a charge moving in a vacuum along the circular orbit. The infinite
series of EMF strengths had a very poor convergence in the most interest-
ing case v ∼ c. Fortunately Schott succeeded in an analytical summation of
these series and obtained closed expressions for the radiation intensity aver-
aged over the azimuthal angle ([45], p.125). Further development is owed to
Moscow State University school (see, e.g., books [46]-[49] and review [50])
and to Schwinger et al. [51] who considered the polarization properties of
SR and its quantum aspects. The instantaneous (i.e., taken at the same
instant of a proper time) distribution of SR on the surface of observational
sphere was obtained by Bagrov et al. ([52,53]) and Smolyakov [54]. They
showed that the instantaneous distribution of SR in a vacuum possesses
the so-called projector effect (that is, the SR has the form of a beam which
is very thin for v ∼ c).

Much less is known about SR in a medium. The papers by Schwinger,
Erber et al, [55,56] should be mentioned in this connection. Yet they limited
themselves to an EMF in a spectral representation and did not succeed in
obtaining the EMF strengths and radiation flux in the time representation.
It should be noted that Schott’s summation procedure does not work if
the charge velocity exceeds the velocity of light in medium. The formulae
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obtained by Schott and Schwinger are valid at observational distances r
much larger than the radius a of the charge orbit. In modern electron and
proton accelerators this radius reaches a few hundred meters and even a few
kilometers, respectively. This means that large observational distances are
unachievable in experiments performed on modern accelerators and that
formulae describing the radiation intensity at moderate distances and near
the charge orbit are needed. In the past, time-averaged radiation intensities
in the near zone were studied in ([57-59]). However, their consideration was
based on the expansion of field strengths in powers of a/r. The convergence
of this expansion is rather poor in the neighbourhood of the charge orbit.
SR has numerous applications in nuclear physics (nuclear reactions with γ
quanta), solid state physics (see, e.g., [60]), astronomy ([61,62]), etc.. There
are monographs and special issues of journals devoted to application of SR
([62-64]). The book [65] the major part of which is devoted to the SR should
be also mentioned.

The goal of this Chapter is to study SR in a vacuum and in a medium.
In the latter case, the charge velocity v can be less or greater than the
velocity of light cn in medium. We limit ourselves to consideration in the
time representation. We analyse radiation arising from the charge circular
motion both in the far and near zones, in a vacuum and in a medium. For
synchrotron motion in a medium with the charge velocity greater than the
velocity of light in the medium the singular contours are found on which
the electromagnetic field strengths are infinite. For the charge motion in
a vacuum the contours are found on which electromagnetic field strengths
and radiation intensities acquire maximal values.

Chapter 9 deals with experiments in which the fine structure of the
Cherenkov rings was observed. Under it we mean the existence of the
Cherenkov shock wave of finite extension manifesting as a plateau in the
observed radiation intensity and of the shock wave associated with the ex-
ceeding the light velocity barrier and manifesting as the intensity bursts
at the end of the plateau. Small oscillations of the radiation intensity
inside the plateau are owed to the interference of the VC radiation and
bremsstrahlungs.

There should be also mentioned the intriguing experiments [66] in which
the Cherenkov rings with anomalous large radii (corresponding to the charge
velocity greater than the velocity of light in the vacuum) were observed.

The possibility of the two-photon Cherenkov effect was predicted by
Frank and Tamm in [67] who showed that the conservation of the energy
and momentum does not prohibit the process in which a moving charge
emits simultaneously two photons. There is no experimental confirmation of
this effect up to now. The calculations of the two-photon radiation intensity
are known, but they were performed without paying enough consideration
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to the exact kinematical relations. The goal of this Chapter treatment is to
point out that the two-photon Cherenkov effect will be strongly enhanced
for special orientations of photons and the recoil charge. This makes easier
the experimental search of the 2-photon Cherenkov effect.
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CHAPTER 2

THE TAMM PROBLEM IN THE VAVILOV-CHERENKOV
RADIATION THEORY

2.1. Vavilov-Cherenkov radiation in a finite region of space

The Vavilov-Cherenkov (VC) effect is a well established phenomenon widely
used in physics and technology. A nice exposition of it may be found in
Frank’s book [1]. In most textbooks and scientific papers the VC effect is
considered in the spectral representation. To obtain an answer in the time
representation an inverse Fourier transform should be performed. The diver-
gent integrals occurring obscure the physical picture. As far as we know,
there are only a few attempts in which the VC effect is treated without
using the spectral representation. First, we should mention Sommerfeld’s
paper [2] in which the hypothetical motion of an extended charged particle
in a vacuum with a velocity v > c was considered. Although the relativ-
ity principle prohibits such a motion in the vacuum, all the equations of
[2] are valid in a medium if we identify c with the velocity of light in the
medium. Unfortunately, owing to the finite dimensions of the charge, the
equations describing the field strengths are so complicated that they are
not suitable for physical analysis. The other reference treating the VC ef-
fect without recourse to the Fourier transform is Heaviside’s book [3] in
which the superluminal motions of a point charge both in a vacuum and
an infinitely extended medium were considered. Heaviside was not aware of
Sommerfeld’s paper [2], just as Tamm and Frank [4,5] did not know about
Heaviside’s investigations. It should be noted that Frank and Tamm formu-
lated their results in the spectral representation. The results of Heaviside
(without referring to them) were translated into modern physical language
in [6].

It is our goal to investigate electromagnetic effects arising from the
motion of a point-like charged particle in a medium, in a finite spatial
interval.

2.1.1. MATHEMATICAL PRELIMINARIES

Let a point-like particle with a charge e move in a dispersion-free medium
with polarizabilities ε and µ along the given trajectory �ξ(t). Its electro-
magnetic field (EMF) at the observational point (�r, t) is then given by the

15
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Liénard-Wiechert retarded potentials

Φ(�r, t) =
e

ε

∑ 1
Zi

, �A(�r, t) =
eµ

c

∑
�vi/Zi, (div�A +

εµ

c
Φ̇ = 0). (2.1)

Here �vi = (d�ξ/dt)|t=ti , Zi = ||�r − �ξ(ti)| − �vi(�r − �ξ(ti))/cn|, and cn is the
velocity of light inside the medium (cn = c/

√
εµ). The sum in (2.1) is

performed over all physical roots of the equation

cn(t − t′) = |�r − �ξ(t′)| (2.2)

which tells us that the radiation from a moving charge propagates with the
light velocity cn in medium. To preserve causality the time of radiation t′
should be smaller than the time of observation t. Obviously t′ depends on
the coordinates �r, t of the point P at which the EMF is observed. Let a
particle move with a constant velocity v along the z axis (ξ = vt). Equation
(2.2) then has two roots

cnt′ =
cnt − βnz

1 − β2
n

∓ rm

|1 − β2
n|

. (2.3)

Here rm =
√

(z − vt)2 + ρ2(1 − β2
n), ρ2 = x2 + y2, βn = v/cn. In what

follows we also need cn(t − t′) which is given by

cn(t − t′) = βn
vt − z

β2
n − 1

± rm

|β2
n − 1| . (2.4)

We shall denote the t′ corresponding to the upper and lower signs in (2.3)
and (2.4) as t′1 and t′2, resp.. It is easy to check that

c2
n(t − t′1)(t − t′2) =

r2

β2
n − 1

, r2 = (z − vt)2 + ρ2. (2.5)

Consider a few particular cases.

2.1.2. PARTICULAR CASES.

The uniformly moving charge with a velocity v < cn.
It follows from (2.5) that t− t′1 and t− t′2 have different signs for βn < 1. As
only a positive t−t′ corresponds to the physical situation, one should choose
the plus sign in (2.4) which corresponds to the upper signs both in (2.3)
and (2.4). For the electromagnetic potentials one obtains the well-known
expressions

εΦ =
e

rm
, Az =

eβµ

rm
(β = v/c). (2.6)

It follows from this that a uniformly moving charge carries the EMF with
itself. In fact, EMF strengths decrease as 1/r2 as r → ∞, and therefore no
energy is radiated into the surrounding space.
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A uniformly moving charge with a velocity v > cn.
This section briefly reproduces the contents of [6]. It follows from (2.5) that
for the case treated (t− t′1) and (t− t′2) are of the same sign which coincides
with the sign of the first term in (2.4). It is positive if

t > z/v. (2.7)

The two physical roots are

cnt′1,2 = −cnt − βnz ± rm

β2
n − 1

.

The positivity of the expression staying under the square root in rm requires

M = vt − z − ρ/γn > 0 or t >
z

v
+

ρ

vγn
. (2.8)

Here γn = 1/
√|β2

n − 1|. Since this inequality is stronger than (2.7) one may
use only (2.8), which shows that the EMF is enclosed inside the Cherenkov
cone given by (2.8). Its analogy in acoustics is the Mach cone. For the
electromagnetic potentials one finds

εΦ =
2e

rm
Θ(M), Az =

2eµβ

rm
Θ(M) (2.9)

(the factor 2 appears because there are two physical roots satisfying (2.2)).
Here Θ(x) is a step function. It equals 1 for x > 0 and 0 for x < 0. It is seen
that rm = 0 on the surface of the Cherenkov cone where M = 0. Therefore
electromagnetic potentials are zero outside the Cherenkov cone (M < 0),
differ from zero inside it (M > 0), and are infinite on its surface (M = 0).

The electromagnetic strengths ( �D = ε �E, �E = −gradΦ − �̇A/c, �B = µ �H =
curl �A) are given by

Hφ = − 2eρβ

γ2
nr3

m

Θ(M) +
2eβ

γnrm
δ(M),

ε �E = − 2er

γ2
nr3

m

�nr · Θ(M) +
2eβ

γnrm
· δ(M)�nm (2.10)

Here nr = (ρ�nρ + (z − vt)�nz)/r is the unit radial vector directed inside the
Cherenkov cone from the charge current position and �nm = �nρ/βn−�nz/βnγn

is the unit vector lying on the surface of the Cherenkov cone (Fig. 2.1). The
δ function terms in these equations corresponding to the Cherenkov shock
wave (CSW, for short) differ from zero only on the surface of the Cherenkov
cone.
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Figure 2.1. CSW propagating in an infinite medium. There is no EMF in front of the
Cherenkov cone. Behind it there is the EMF of the moving charge. At the Cherenkov
cone itself there are singular electric, E, and magnetic, H , fields. The latter having only
the φ component is perpendicular to the plane of figure.

We observe that both terms in �E and �H are singular on the Cherenkov
cone (since rm vanishes there). On the other hand, according to the Gauss
theorem the integral from εE taken over the sphere surrounding the charge
should be equal to 4πe. The integrals from each of the terms entering into
E are divergent. Only their sum is finite (take into account their different
signs). This was explicitly shown in [6].

The observer at the (ρ, z) point will see the following picture. There is
no EMF for cnt < Rm (Rm = (z + ρ/γn)/βn). At the time cnt = Rm

the Cherenkov shock wave (CSW) reaches the observer. At this instant the
actual and two coinciding retarded charge positions are za = z + ρ/γn and
zr = z−ργn, resp.. For cnt > Rm the observer sees the EMF of the charged
particle originating from the retarded positions of the particle lying to the
left and right from zr.

At large distances the terms with the Θ functions die out everywhere
except on the Cherenkov cone, and for the electromagnetic field strengths
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one has
ε �E =

2eβn

γnrm
δ(M) · �nm, �H =

2eβ

γnrm
δ(M) · �nφ. (2.11)

The Poynting vector is equal to

�Sc =
c

4π
�E × �H =

c

4π

√
µ

ε
· [ 2eβ

rmγ
δ(M)]2 · �n⊥

m (2.12)

Here �n⊥
m = nρ/βnγn + nz/βn is the unit vector normal to the surface of

the Cherenkov cone (Fig.2.1). An observer being placed at the ρ, z point
will detect the CSW at the instant t = (z + ρ/γn)/v. The beam of charged
particles propagating along the z axis with a velocity v > cn produces an
energy flux in the �n⊥

m direction with the electric vector in the �nm direction.

Uniform motion with v < cn in the finite spatial interval.
Let a charge be at rest at the point z = −z0 for t < −t0 (t0 = z0/v).
During the time interval −t0 < t < t0 the charge moves with the constant
velocity v < cn. For t > t0 the charge is again at rest at the point z = z0.
The electromagnetic potentials are equal to

εΦ =
e

r1
Θ[r1 − cn(t + t0)] +

e

r2
Θ[cn(t − t0) − r2]

+
e

rm
Θ[cn(t + t0) − r1]Θ[r2 − cn(t − t0)],

Az =
eβµ

rm
Θ[cn(t + t0) − r1]Θ[r2 − cn(t − t0)] (2.13)

where we put r1 = [ρ2+(z+z0)2]1/2, r2 = [ρ2+(z−z0)2]1/2. The particular
terms in (2.13) have a simple interpretation. The information about the
beginning of the charge motion has not reached the points for which t <
−t0 + r1/cn . At these spatial points there is a field of the charge resting at
z = −z0 (the first term in Φ). The information on the ending of the motion
has passed through the points for which t > t0 +r2/cn. At those space-time
points there is a field of the charge which is at rest at z = z0 (second term in
Φ). Finally, at the space-time points for which −t0 + r1/cn < t < t0 + r2/cn

there is the field of the uniformly moving charge (last term in Φ ). The
magnetic field strength is equal to

Hφ =
eβ(1 − β2

n)ρ
rm

3
Θ[cn(t + t0) − r1]Θ[r2 − cn(t − t0)]

+
eβρ

r1rm
δ[cn(t + t0) − r1] − eβρ

r2rm
δ[cn(t − t0) − r2].
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Before writing out the electric field strength in a general form we give its
ρ component

Eρ = −∂Φ
∂ρ

=
eρ

εr3
1

Θ[r1 − cn(t + t0)] +
eρ

εr3
2

Θ[cn(t − t0) − r2]

+
eρ(1 − β2

n)
εr3

m

Θ[cn(t + t0) − r1]Θ[r2 − cn(t − t0)]

−δ[cn(t + t0) − r1]
eρ

εr1

(
1
r1

− 1
rm

)

+δ[cn(t − t0) − r2]
eρ

εr2

(
1
r2

− 1
rm

)
.

We now clarify the physical meaning of particular terms entering into this
equation. The first term in the first line describes the electrostatic field of a
charge resting at the point z = −z0 up to an instant t = −t0. It differs from
zero outside the sphere S1 of radius cn(t + t0) with its center at z = −z0.
The second term in the same line describes the electrostatic field of a charge
at rest at the point z = z0 after the instant t = t0. It differs from zero inside
the sphere S2 of radius cn(t−t0) with its center at z = z0. It is easy to check
that for βn < 1 the sphere S2 is always inside S1. The term in the second
line corresponds to the electrostatic component of the EMF produced by a
charge moving in the interval (−z0, z0). The presence of the denominator
r3
m supports this claim. This term differs from zero between the spheres S2

and S1. Since the terms just mentioned decrease as 1/r2 as r → ∞, they
do not contribute to the radiation field. The two terms in the third line
(with 1/r1 and 1/rm in their denominators) describe the BS shock wave
arising at the beginning of motion. Finally, the two terms in the fourth line
describe the BS shock wave arising at the end of motion.

In a vector form, the electric field strength is given by

�E =
e

εr2
1

�n(1)
r Θ[r1 − cn(t + t0)] +

e

εr2
2

�n(2)
r Θ[cn(t − t0) − r2]

+
er(1 − β2

n)
εr3

m

�nrΘ[cn(t + t0) − r1]Θ[r2 − cn(t − t0)]

+
eρδ[cn(t + t0) − r1]

εr1rm
βn�n

(1)
θ − eρδ[cn(t − t0) − r2]

εr2rm
βn�n

(2)
θ , (2.14)

Here �n
(1)
r , �n

(1)
θ , �n

(2)
r and �n

(2)
θ are the radial and polar unit vectors lying

on the spheres S1 and S2 (defined by cn(t + t0) = r1 and cn(t − t0) =
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r2, respectively) with their centers at the points z = −z0 and z = z0,
respectively:

�n(1)
r =

1
r1

[ρ�nρ + (z + z0)�nz] =
1
r1

[�nr(r + z0 cos θ) − �nθz0 sin θ],

�n
(1)
θ =

1
r1

[�nρ(z + z0) − �nzρ] =
1
r1

[�nθ(r + z0 cos θ) + �nrz0 sin θ],

�n(2)
r =

1
r2

[ρ�nρ + (z − z0)�nz] =
1
r2

[�nr(r − z0 cos θ) + �nθz0 sin θ],

�n
(2)
θ =

1
r2

[�nρ(z − z0) − �nzρ] =
1
r2

[�nθ(r − z0 cos θ) − �nrz0 sin θ].

When obtaining (2.14) it was taken into account that rm = |r1−βn(z+z0)|
for cn(t + t0) = r1 and rm = |r2 − βn(z − z0)| for cn(t − t0) = r2. For
βn < 1, these expressions are reduced to rm = r1 − βn(z + z0) and rm =
r2−βn(z− z0), respectively. At the observational distances large compared
with the interval of motion (r � 2z0)

�n(1)
r ≈ �n(2)

r ≈ �nr, �n
(1)
θ ≈ �n

(2)
θ ≈ �nθ.

For a distant observer the radiation field is given by

�E =
eβnρ

εr1rm
δ[cn(t + t0) − r1] · �n(1)

θ − eβnρ

εr2rm
δ[cn(t − t0) − r2] · �n(2)

θ

�H = �nφeβρ

{
δ[cn(t + t0) − r1]

r1rm
− δ[cn(t − t0) − r2n]

r2rm

}
. (2.15)

An observer at the (ρ, z) point will detect the radiation arising from the
particle instantaneous acceleration and deceleration at the instants t =
−t0 + r1/cn and t = t0 + r2/cn, respectively.

The total Poynting vector is equal to the sum of energy fluxes emitted
at the points z = ±z0:

�S = �S1 + �S2, (2.16)

�S1 =
c

4π

√
µ

ε
·
{

eβρδ[cn(t + t0) − r1]
r1rm

}2

· �n(1)
r ,

�S2 =
c

4π

√
µ

ε
·
{

eβρδ[cn(t − t0) − r2]
r2rm

}2

· �n(2)
r .

Here �n
(1)
r and �n

(2)
r are the unit vectors normal to S1 and S2, respectively.

EMF strengths (2.15) are obtained from (2.14) by dropping the terms which
decrease as 1/r2 at infinity. This is possible since rm is nowhere zero for
βn < 1. It turns out that the vector �S differs from zero only on the surfaces
of the spheres S1 and S2. This means that it describes (for r → ∞) only
divergent spherical waves emitted at the z = z0 and z = −z0 points.
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Figure 2.2. The superluminal motion of a charge in a medium begins from the state of
rest at z = −z0. In the z < ργn − z0 region an observer sees (consecutively in time) the
EMF of the charge at rest, the BS shock wave and the EMF of the moving charge. There
is no VCR in this spatial region. In the z > ργn−z0 region the observer sees consecutively
the EMF of the charge at rest, the CSW, the EMF from two retarded positions of the
charge, the BS and the EMF from the retarded position of the charge moving away. The
BS shock wave (not shown here) is tangential to Sc at the point where Sc intersects the
surface z = ργn − z0.

Uniform motion with v > cn in a semi-finite spatial interval.

a) The charge motion begins from the state of rest (Fig. 2.2). Let a charge
be at rest at the point z = −z0 up to an instant t′ = −t0. For t′ > −t0
it moves with a velocity v > cn. For an observer at the point (ρ, z) the
condition for the particle to be at rest is cn(t+ t0) < r1. The condition t′ >
−t0 for the beginning of the charge motion is different for upper and lower
signs in (2.3) (see [7]). The solution corresponding to the upper sign exists
only if z > ργn − z0 and Rm/cn < t < −t0 + r1/cn (Rm = (z + ρ/γn)/βn).
The solution corresponding to the lower sign exists both for z < ργn − z0

and z > ργn − z0. It is easy to check that t > −t0 + r1/cn for z < ργn − z0

and t > Rm/cn for z > ργn − z0. The electric scalar and magnetic vector
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potentials are given by

εΦ =
e

r1
Θ[r1− cn(t+ t0)]+

e

rm
Θ(z +z0−ργn)Θ[r1− cn(t+ t0)]Θ(cnt−Rm)

+
e

rm
Θ(ργn − z0 − z)Θ[cn(t + t0) − r1] +

e

rm
Θ(z + z0 − ργn)Θ(cnt − Rm),

Az =
eβµ

rm
{Θ(z + z0 − ργn)Θ[r1 − cn(t + t0)]Θ(cnt − Rm)

+Θ(ργn− z0 − z)Θ[cn(t+ t0)− r1] + Θ(z + z0 − ργn)Θ(cnt−Rm)}. (2.17)

As a result the observer at the point (ρ, z) will see the following picture:
Let z < ργn − z0. Then, for t < −t0 + r1/cn the observer sees the

electrostatic field of a charge at rest at z = −z0 (the first term in Φ which
differs from zero outside the sphere S1 defined by cn(t + t0) = r1). The
third term in Φ and the second term in Az describe the charge radiation
from particular points of its trajectory. They are confined to the interior of
the sphere S1. There is no CSW in this spatial region.

Let the observer be in the spatial region where z > ργn − z0. In this
case, for t < Rm/cn, he sees the electrostatic field of the charge at rest at
z = −z0 (the first term in Φ). At the time t = Rm/cn the CSW reaches
him. At this instant the retarded positions of a charge coincide and are
given by z′ = z − ργn. In the time interval Rm/cn < t < −t0 + r1/cn the
solution corresponding to the upper sign (the second term in Φ and the
first in Az) gives the EMF from the retarded positions of the particle in the
interval −z0 < z′ < z−ργn. On the other hand, the solution corresponding
to the lower sign (last terms in Φ and Az), describes for t > Rm/cn the
EMF from the retarded position of the charged particle lying to the right
of the z′ = z − ργn. Thus in the time interval Rm/cn < t < −t0 + r1/cn

the observer sees simultaneously the electrostatic field of a charge at rest at
z = −z0, and the EMF from two retarded positions of a charge lying to the
left and right of z′ = z − ργn. At the instant t = −t0 + r1/cn the BS shock
wave from the z = −z0 point reaches the observer. After this instant he sees
the EMF from the charge retarded position lying to the right of z′ = z−ργn.
As the time advances the distance between the observational point and the
particle retarded position increases. Correspondingly the EMF diminishes
at the observational point.

For a distant observer only the singular parts of the field strengths
survive

�E = −eβnρδ(cn(t + t0) − r1)
ε(βn(z + z0) − r1)r1

· �n(1)
θ

+
2e

εγnrm
Θ(z + z0 − ργn)δ(cnt − Rm) · �nm,
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�H = �nφH, H = −eβρδ(cn(t + t0) − r1)
(βn(z + z0) − r1)r1

+
2e

γnrmn
Θ(z + z0 − ργn)δ(cnt − Rm). (2.18)

When obtaining these expressions, we omitted the terms which do not con-
tain delta functions and which decrease as 1/r2 as r → ∞ (they do not
contribute to the radiation). For the terms containing r3

m in their denom-
inators, this is not valid on the Cherenkov cone (since rm = 0 on it). For
the spatial region z < ργn− z0 the singular EMF is confined to the surface
of a sphere S1 of radius r1 = cn(t + t0). A distant observer detects the BS
shock wave at the instant t = −t0 + r1/cn. There is no CSW in this region
of space. For z > ργn−z0 a distant observer detects the CSW at t = Rm/cn

and the BS shock wave at t = −t0 + r1/cn.
The Poynting vector is equal to �S = �S1 + �Sc, where

�S1 =
c

4π

√
µ

ε
·
[
eβρδ(cn(t + t0) − r1)
(βn(z + z0) − r1)r1

]2

· �n(1)
r

is the BS shock wave different from zero at the surface of the shock wave
emitted at the beginning of motion and

�Sc =
c

4π

√
µ

ε
· [ 2eβ

γnrm
Θ(z + z0 − ργn)δ(M)]2 · �n⊥

m (2.19)

is the CSW different from zero at the surface of the Cherenkov cone.

b) The charge motion ends in a state of rest (Fig. 2.3). Let a charge
move with a velocity v > cn from z = −∞ up to a point z = z0. After
that it remains at rest there. The condition for the charge to be at rest is
cn(t− t0) > r2. The solution corresponding to the lower sign in (2.3) exists
only for z < z0 + ργn and Rm/cn < t < t0 + r2/cn (see [7]). The solution
corresponding to the upper sign in (2.3) exists both for z > z0 + ργn if
t > t0 + r2/cn and for z < z0 + ργn if t > Rm/cn. The electromagnetic
potentials are equal to :

Φ =
e

εr2
Θ[cn(t − t0) − r2] +

e

εrm
Θ(z − z0 − ργn)Θ[cn(t − t0) − r2]

+
e

εrm
Θ(cnt − Rm)Θ(z0 + ργn − z){1 + Θ[r2 − cn(t − t0)]},

Az = µβ
e

rm
Θ(z − z0 − ργn)Θ[cn(t − t0) − r2]

+µβ
e

rm
Θ(cnt − Rm)Θ(z0 + ργn − z){1 + Θ[r2 − cn(t − t0)]}. (2.20)



The Tamm Problem in the Vavilov-Cherenkov Radiation Theory 25

Figure 2.3. The superluminal motion ends in the state of rest at z = z0. In the region
z > ργn + z0 the observer sees no field up to some instant, when the shock BS wave
reaches him. Later he sees the EMF of the charge at rest and the EMF from one retarded
position of the charge. In the region z < ργn + z0 the EMF is equal to zero up to
some instant when the CSW reaches the observer. After that he sees the EMF from two
retarded positions of the charge up to the instant when the BS shock wave reaches him.
Later the observer sees simultaneously the field of the charge at rest and that of the
retarded positions of the charge. The BS shock wave (not shown here) is tangential to
Sc at the point where Sc intersects the surface z = ργn + z0.

For an observer in the z > ργn+z0 region there is no EMF for cn(t−t0) < r2.
At t = t0 + r2/cn he detects the BS shock wave. For t > t0 + r2/cn the
observer sees the EMF of the charge at rest at the z = z0 point and the
EMF of the retarded positions of the charge trajectory lying to the left
of the z = z0 point. There is no CSW in this spatial region despite the
presence of the radiation associated with the charge superluminal motion.
For an observer in the z < ργn + z0 region, the EMF is equal to zero for
cnt < Rm. At t = Rm/cn the CSW reaches the observational point. At this
instant two retarded charge positions coincide and are equal to z′ = z−ργn.
For Rm/cn < t < t0 + r2/cn the solution corresponding to the lower sign
gives the EMF emitted from the points of the charge trajectory that lie
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in the interval (z − ργn < z′ < z0). At t = t0 + r2/cn, the BS shock wave
emitted from the z = z0 point reaches the observer. After that, the solution
corresponding to the lower sign gives the EMF of the charge at rest at the
z = z0 point. On the other hand, the solution corresponding to the upper
sign for cnt > Rm gives EMF from the charge retarded positions lying to
the left of z − ργn point. The EMF at the observational point diminishes
as the radiation arrives from more remote points.

The field strengths and Poynting vector in the wave zone are:

�E = e
δ(cn(t − t0) − r2n)

βn(z − z0) − r2

ρβn

εr2
·�n(2)

θ +eδ(cnt−Rm)
2

εrmγn
Θ(ργn+z0−z)·�nm,

�H = e

[
δ(cn(t − t0) − r2)
βn(z − z0) − r2

β

r2
+

2
rmγn

√
εµ

δ(cnt − Rm)

]
· �nφ, (2.21)

S = S2 + Sc, S2 =
c

4π

√
µ

ε
·
[
δ(cn(t − t0) − r2)
βn(z − z0) − r2

ρβ

r2

]2

· �n(2)
r ,

Sc =
c

4π

√
µ

ε
·
[

2β

rmγn
δ(M)Θ(z0 + ργn − z)

]2

· �n⊥
m.

In the spatial region z > ργn + z0 a distant observer detects the BS shock
wave corresponding to the termination of motion at t = t0 +r2/cn. There is
no CSW there. For z < ργn + z0 the observer sees the CSW at t = Rm/cn

and the BS shock wave at t = t0 + r2/cn.

Uniform motion with v > cn in a finite spatial interval.
Let a charge be at rest at the point z = −z0 up to an instant t = −t0
(t0 = z0/v). In the time interval −t0 < t < t0 the particle moves with a
constant velocity v > cn. For t > t0 the particle is again at rest at the
point z = z0 (Fig. 2.4). According to [1,8] the physical realization of this
model is, e.g., β decay followed by nuclear capture. An observer in various
space-time regions will detect the following physical situations:

i) z < ργn − z0.
For t < −t0 + r1/cn the observer sees the EMF of the charge at rest at
z = −z0. At t = −t0 + r1/cn the BS shock wave originating from the
z = −z0 point (BS1 shock wave for short) reaches him. For −t0 + r1/cn <
t < t0 + r2/cn the observer sees the EMF of the charge moving with the
superluminal velocity (the lower sign in (2.3)). At t = t0 + r2/cn the BS
shock wave originating from the z = z0 point (BS2 shock wave for short)
reaches him. Finally, for t > t0 + r2/cn the observer sees the EMF of the
charge at rest at z = z0. There is no CSW in this spatial region despite the
observation of superluminal motion.
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Figure 2.4. The superluminal motion begins from the state of rest at the point z = −z0

and ends by the state of rest at the point z = z0. For the finite distances the space-time
distribution of EMF is rather complicated (see the text). The distant observer will
see the following space-time picture. In the region z < ργn − z0 he detects the BS1

shock wave (from the z = −z0 point) first and BS2 shock wave (from the z = z0

point) later. In the z > ργn + z0 region these waves arrive in the reverse order. In

the ργ − z0 < z < (ρ2γ2
n + z2

0/β2
n)1/2 region the observer consecutively detects the CSW,

BS1 shock wave and the BS2 shock wave. In the region (ρ2γ2
n + z2

0/β2
n)1/2 < z < ργn + z0

the latter two waves arrive in the reverse order. The CSW Sc is tangential to the BS1

shock wave at the point where Sc intersects the surface z = ργ−z0 and to the BS2 shock
wave at the point where Sc intersects the surface z = ργ + z0 (see Fig. 2.7).

ii) ργn − z0 < z < (ρ2γ2
n + z2

0/β2
n)1/2.

For t < Rm/cn the observer sees the EMF of the charge at rest at z = −z0.
At t = Rm/cn the CSW reaches him. For Rm/cn < t < −t0 + r1/cn the
observer simultaneously sees the EMF of the charge at rest at z = −z0

and the EMF of the moving charge (both signs give contribution). At t =
−t0+r1/cn the BS1 shock wave reaches him. For −t0+r1/cn < t < t0+r2/cn

the observer will see the EMF of the moving charge (the lower sign in (2.3)).
At tt0 + r2/cn the BS2 shock wave reaches him. Lastly, for t > t0 + r2/cn

the observer sees the EMF of the charge resting at z = z0
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iii) [ρ2γ2
n + z2

0/β2
n]1/2 < z < z0 + ργn.

For t < Rm/cn the observer sees the EMF of the charge at rest at the
z = −z0 point. At t = Rm/cn the CSW reaches him. For Rm/cn < t <
t0 + r2/cn the observer sees the EMF of the charge at rest at z = −z0 and
the EMF of the moving charge (both signs of Eq.(2.3) give a contribution).
At t = t0 + r2/cn the BS2 shock wave reaches the observational point. For
t0 + r2/cn < t < −t0 + r1/cn the observer simultaneously sees the EMF of
the charge at rest at z = −z0, the EMF of the charge at rest at z = z0, and
the EMF of the moving charge (upper sign in (2.3)). At t = −t0 + r1/cn

the BS1 shock wave reaches him. Finally, for t > −t0 + r1/cn the observer
sees the EMF of the charge at rest at z = z0.

iv) z > z0 + ργn.
For t < t0 + r2/cn the observer will see the EMF of the charge at rest at
the z = −z0 point. At t = t0 + r2/cn the BS2 shock wave reaches him.
For t0 + r2/cn < t < −t0 + r1/cn he sees the EMF of the charge at rest
at the z = ±z0 points and the EMF of the moving charge (the upper sign
in (2.3)). At t = −t0 + r1/cn the BS1 shock wave reaches him. Lastly, for
t > −t0 + r1/cn the observer sees the EMF of the charge at rest at z = z0.
There is no CSW in this spatial region.

The electromagnetic potentials are equal to

Φ = Φ1 + Φ2 + Φm, Az = βµεΦm. (2.22)

Here

Φ1 =
e

εr1
Θ(r1 − cn(t + t0)), Φ2 =

e

εr2
Θ(cn(t − t0) − r2),

Φm =
e

εrm
{Θ(z0 − z + ργn)Θ(z0 + z − ργn)Θ(cnt − Rm)

×[Θ(r1 − cn(t + t0)) + Θ(r2 − cn(t − t0))]

+Θ(z − z0 − ργn)Θ(r1 − cn(t + t0))Θ(cn(t − t0) − r2)

+Θ(ργn − z − z0)Θ(cn(t + t0) − r1)Θ(r2 − cn(t − t0))}.
At large distances the field strengths are

ε �E = −δ(cn(t + t0) − r1))
βn(z + z0) − r1

eρβn

r1
· �n(1)

θ +
δ(cn(t − t0) − r2)
βn(z − z0) − r2

eρβn

r2
· �n(2)

θ

+δ(cnt − Rm)
2e

rmγn
Θ(ργn + z0 − z)Θ(z + z0 − ργn) · �nm,

�H = Hφ�nφ, Hφ = −δ(cn(t + t0) − r1)
βn(z + z0) − r1

eρβ

r1
+

δ(cn(t − t0) − r2)
βn(z − z0) − r2

eρβ

r2
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+
2e

rmγn
√

εµ
δ(cnt − Rm)Θ(ργn + z0 − z)Θ(z + z0 − ργn). (2.23)

When obtaining (2.23), the terms decreasing as 1/r2 at infinity were omit-
ted. Amongst them, there are terms proportional to 1/r3

m. For large ob-
servational distances they are small everywhere except for the Cherenkov
cone, where rm = 0. If one tries to obtain the Fourier field components
from (2.23) one gets the divergent expressions. On the other hand, Fourier
components will be finite if one includes into (2.23) the terms proportional
to 1/r3

m mentioned above. The total Poynting vector reduces to the sum of
energy fluxes radiated at the z = ±z0 points, and to the Cherenkov flux:

�S = �S1 + �Sc + �S2, (2.24)

�S1 =
c

4π

√
µ

ε
·
[
δ(cn(t + t0) − r1)
βn(z + z0) − r1

eρβ

r1

]2

· �n(1)
r ,

�S2 =
c

4π

√
µ

ε
·
[
δ(cn(t − t0) − r2)
βn(z − z0) − r2

eρβ

r2

]2

· �n(2)
r ,

�Sc =
c

4π

√
µ

ε
·
[

2e

rmγn
δ(M)Θ(z + z0 − ργn)Θ(z0 + ργn − z)

]2

· �n⊥
m.

It is seen that �S1 is infinite on the spherical surface cn(t + t0) = r1. The
factor βn(z + z0) − r1 in the denominator vanishes at the point where BS1

intersects the CSW. Correspondingly, �S2 is infinite on the spherical surface
cn(t − t0) = r2. The factor βn(z − z0) − r2 in the denominator vanishes at
the point where BS2 intersects the CSW. Finally, �Sc is infinite on the CSW.
The factor rm in the denominator vanishes on the CSW.

For a distant observer the radiation field looks different in various spatial
regions (Fig. 2.5).

i) z < ργn − z0

At the instant −t0 + r1/cn the observer detects the BS1 shock wave. At the
later time t = t0 + r2/cn he detects the BS2 shock wave. There is no CSW
in this spatial region.

ii) ργn − z0 < z < (ρ2γ2
n + z2

0/β2
n)1/2

The observer detects (consecutively in time) the CSW at t = Rm/cn, the
BS1 shock wave at the instant −t0 + r1/cn and the BS2 shock wave at the
instant t = t0 + r2/cn.

iii) (ρ2γ2
n + z2

0/β2
n)1/2 < z < ργn + z0

The observer sees the CSW at the instant −t0+Rm/cn, the BS2 shock wave
at the instant t0+r2/cn, and the BS1 shock wave at the instant −t0+r1/cn.

iv) z > ργn + z0.
At the instant t0+r2/cn the observer fixes the BS2 shock wave. At the later



30 CHAPTER 2

Figure 2.5. The schematic presentation of the EMF for a superluminal motion in a
finite spatial interval. The magnetic field of the BSs and of the moving charge has only
a φ component. The electric field of the BSs has only the θ1 and θ2 components. The
electric field of the moving charge has singular and non-singular parts. The singular part
�Ec lies on the Cherenkov cone. The non-singular part lies on the radius directed from
the particle actual position inwards the Cherenkov cone.

instant −t0 + r1/cn he detects the BS1 shock wave. As in case i), there is
no CSW in this spatial region.

However, some reservation is needed. In the next chapter the instan-
taneous jumps in velocity in the original Tamm problem will be changed
by the velocity linearly rising (or decreasing) with time. It will be shown
there that, in addition to the BS shock waves arising at the beginning (BS1)
and at the end (BS2) of motion, two new shock waves arise at the instant
when the charge velocity coincides with the velocity of light in medium.
One of them is the Cherenkov shock wave of finite extensions (CM), whilst
the other shock wave closes the Cherenkov cone (CL) (see Fig. 3.8). Owing
to the instantaneous jumps in velocity in the original Tamm problem, the
above three shock waves are created simultaneously. When discussing the
BS shock waves throughout this chapter, we keep in mind the mixture of
these three shock waves (BS1, BS2 and CL). In particular, they are mixed
in electromagnetic field strengths (2.23). The traces of these shock waves
are contained in electromagnetic potentials (2.22). We observe that Φ1 and
Φ2 contain terms with r1 and r2 in their denominators. The electric field
strengths corresponding to them contain δ functions δ[(cnt + t0) − r1] and
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Figure 2.6. An observer not very far from the z axis sees the BS maximum at an
angle different from the Cherenkov angle θc. Thus angular resolution is possible for him.
For a distant observer the time resolution between the VCR and bremsstrahlungs is still
possible.

δ[(cnt − t0) − r2] with r2
1 and r2

2 in their denominators. It is essential that
these electric field strengths are uniformly distributed over the spheres S1

and S2 of the radii r1 = cn(t+t0) and r2 = cn(t−t0) and do not have a max-
imum at the Cherenkov angle θc (cos θc = 1/βn). On the other hand, Φm

and Az contain terms with rm in their denominators. The electric and mag-
netic fields corresponding to them contain the same δ functions as above
but with denominators rm vanishing at the Cherenkov cone. Thus the BS
shock waves treated in this section describe not only the transition of a
charge from the state of rest to the state of motion, but also its exceeding
the velocity of light in medium.

The BS shock waves from the z = ±z0 points have maxima at the angles
θ1 and θ2 slightly different from the Cherenkov angle θc. They are defined
by

cos θ1,2 = ∓ ε0

β2
nγ2

n

+
1
βn

[
1 − (ε0/βnγn)2

]1/2
.

Let the distance from the observational point be comparable with the
motion distance 2z0. This observer then will detect the maximum of the
BS at the angles θ1 and θ2 different from θc, and for him the CSW will
be clearly separated from the BS shock wave. On the other hand, if the
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observer is at a distance much larger than 2z0, the BS from the z = ±z0

points and the CSW will have a maximum at almost the same angle θc. In
this case angular separation of the VCR and BS is hardly possible.

On the observational sphere S of radius r the VCR fills a band of the
finite width r(θ1 − θ2) enclosed between these angles whilst the BS differs
from zero on the whole observational sphere. The observation of the VCR on
the sphere of large radius is masked by the smallness of the angular region
to which the VCR is confined. On the other hand, in the observational
z =const plane the VCR fills the ring R1 < ρ < R2 where R1 = (z− z0)/γn

and R2 = (z + z0)/γn whilst the intensity of BS has pronounced maxima
at ρ = R1 and ρ = R2 (see Chapter 9).

If the intensity of the charged particles is so low that inside the interval
(−z0, z0) there is only one charged particle at each instant of time, the
time resolution between the Cherenkov photons and the BS photons is
still possible. We conclude that the description of the VCR in the time
representation by direct solving of the Maxwell equations greatly simplifies
the consideration. In particular, the prescriptions are easily obtained when
and where the CSW should be observed in order to discriminate it from
the BS shock wave. This is contrasted with the consideration in terms of
the spectral representation where (owing to the lack of the exact analytical
solution) the discrimination of the VCR from the BS presents a problem
(see, e.g., [1,8-10]). On the other hand, if the frequency dependence of ε
and µ is essential, an analysis via the Fourier method seems to be more
appropriate. In this sense these two methods complement each other.

2.1.3. ORIGINAL TAMM PROBLEM

Tamm considered the following problem. A point charge is at rest at the
point z = −z0 of the z axis up to an instant t = −t0. In the time interval
−t0 < t < t0 it moves uniformly along the z axis with a velocity v greater
than the velocity of light cn in medium. For t > t0 the charge is again at
rest at the point z = z0. In the spectral representation the non-vanishing z
of the vector potential (VP) is given by

Aω =
µ

c

∫ 1
R

jω(x′, y′, z′) exp (−inωR/c)dx′dy′dz′,

where R = [(x−x′)2+(y−y′)2+(z−z′)2]1/2 and jω is the Fourier component
of the current density defined as

jω =
1
2π

∫
j(t) exp(−iωt)dt.
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For a charge moving uniformly in the interval (−z0, z0) one finds

j(t) = evδ(x)δ(y)δ(z − vt)Θ(z + z0)Θ(z0 − z)

and
jω =

e

2π
δ(x)δ(y) exp(−iωz/v)Θ(z + z0)Θ(z0 − z).

Inserting all this into Aω and integrating over x′ and y′ one finds

Aω(x, y, z) =
eµ

2πc

∫ z0

−z0

dz′

R
exp

[
−ikn

(
z′

βn
+ R

)]
,

R = [ρ2 + (z − z′)2]1/2, ρ2 = x2 + y2, kn = kn, k =
ω

c
. (2.25)

At large distances from the charge (r � z0) one has R = r−z′ cos θ, cos θ =
z/r. Inserting this into (2.25) and integrating over z′ one obtains

AT
ω(ρ, z) =

eβµ

πrω
exp (−iknr)q(ω), HT

φ =
ienβ sin θ

πcr
exp (−iknr)q,

ET
θ =

ieµβ sin θ

πcr
exp (−iknr)q, q(ω) =

sin [ωt0(1 − βn cos θ)]
1 − βn cos θ

. (2.26)

Superscript T means that these expressions were obtained by Tamm.
In the limit kz0 → ∞

q → π

βn
δ(cos θ − 1/βn), AT

ω(ρ, z) =
e

nrω
δ(cos θ − 1/βn) exp (−iknr),

HT
φ =

ie sin θ

cr
exp (−iknr)δ(cos θ − 1/βn),

ET
θ =

ieµ sin θ

ncr
exp (−iknr)δ(cos θ − 1/βn). (2.26′)

Now we evaluate the field strengths in the time representation. They
are given by

HT
φ = −2eβ

πcr
sin θ

∫ ∞

0
nq(ω) sin[ω(t − r/cn)]dω,

ET
ρ = −2eµβ

πcr
sin θ cos θ

∫ ∞

0
q(ω) sin[ω(t − r/cn)]dω,

ET
z =

2eµβ

πcr
sin2 θ

∫ ∞

0
q(ω) sin[ω(t − r/cn)]dω. (2.27)
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It should be noted that only the spherical θ component of �E differs from
zero

ET
r = 0, ET

θ = −2eµβ

πcr
sin θ

∫ ∞

0
q(ω) sin[ω(t − r/cn)]dω.

Consider now the function q(ω). For ωt0 � 1 it becomes πδ(1 − βn cos θ).
This means that under these conditions �Eω and �Hω have a sharp maximum
at 1− βn cos θ = 0. Or, in other words, photons with the energy h̄ω should
be observed at an angle cos θ = 1/βn.

The energy flux through the sphere of the radius r for the entire motion
of the charge is

E = r2
∫

Sr(t)dtdΩ, Sr =
c

4π
Eθ(t)Hφ(t).

Expressing Eθ(t) and Hφ(t) through their Fourier transforms

Eθ(t) =
∫

Eθ(ω) exp(iωt)dω, Hφ(t) =
∫

Hφ(ω) exp(iωt)dω

and integrating over t, one presents E in the form

E =
∫

d2E
dωdΩ

dωdΩ,

where
d2E

dωdΩ
=

cr2

2
[Eθ(ω)H∗

φ(ω) + c.c.] (2.28)

is the energy radiated into unit solid angle and per frequency unit. Substi-
tuting here Eθ(ω) and Hφ(ω), from (2.26) one finds

d2E
dωdΩ

=
e2µnβ2 sin2 θ

π2c
q2. (2.29)

This is the famous Tamm formula frequently used by experimentalists for
the identification of the charge velocity. Using the relation(

sin αx

x

)2

→ παδ(x) for α → ∞,

one obtains in the limit ωt0 → ∞

q2 → πkz0

β2n
δ

(
cos θ − 1

βn

)
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and
d2E

dωdΩ
→ e2µkz0

πc

(
1 − 1

β2
n

)
δ

(
cos θ − 1

βn

)
. (2.30)

The energy flux per frequency unit through a sphere S of the radius r � z0

is
dE
dω

=
∫

dΩ
d2E

dωdΩ
.

Integrating (2.29) over the solid angle dΩ, one obtains for large kz0

dE
dω

= WBS

for v < cn and
dE
dω

= WBS + WCh (2.31)

for v > cn. Here

WBS =
2e2µ

πcβn2
(ln

1 + βn

|1 − βn| − 2βn) and WCh =
e2µkL

c
(1 − 1

β2
n

).

Here L = 2z0 is the charge interval of motion. Tamm identified WBS with
the spectral distribution of the BS, arising from the instantaneous acceler-
ation and deceleration of the charge at the instants ±t0, respectively. On
the other hand, WCh was identified with the spectral distribution of the
VCR. This is supported by the fact that WCh being related to the charge
interval of motion

d2E
dωdL

=
e2

c2
(1 − 1

β2
n

) (2.32)

coincides with the famous Frank-Tamm formula describing the energy losses
per unit length and per unit frequency for a charge unbounded motion [5].
In the absence of dispersion, the Tamm field strengths (2.27) are easily
integrated:

HT
φ (t) = − eβ sin θ

r(1 − βn cos θ)
{δ[cn(t−t0)−r+z0 cos θ]−δ[cn(t+t0)−r−z0 cos θ]},

ET
θ (t) = − eβ sin θ

rn(1 − βn cos θ)
×

×{δ[cn(t − t0) − r + z0 cos θ] − δ[cn(t + t0) − r − z0 cos θ]}. (2.33)

The Tamm field strengths in the time representation are needed to compare
them with the exact ones given by (2.22) and (2.23). This, in turn, may
shed light on the physical meaning of the Tamm radiation intensity (2.29).
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2.1.4. COMPARISON OF THE TAMM AND EXACT SOLUTIONS

Exact solution
Above (Eqs.(2.22) and (2.23)), we obtained an exact solution of the treated
problem (i.e., the superluminal charge motion in a finite spatial interval)
in the absence of dispersion. For convenience we shall refer to the BS shock
waves emitted at the beginning of the charge motion (t = −t0) and at its
termination (t = t0) as to the BS1 and BS2 shock waves, respectively.

In the wave zone we rewrite the field strengths in the form

�E = �EBS + �ECh, �EBS = �E
(1)
BS + �E

(2)
BS

�H = �HBS + �HCh,

�H = Hφ�nφ, Hφ = HBS + HCh, HBS = H
(1)
BS + H

(2)
BS . (2.34)

Here
�E

(1)
BS = −eβ

n

δ[cn(t + t0) − r1]
βn(z + z0) − r1

r sin θ

r1
�n

(1)
θ ,

�E
(2)
BS =

eβ

n

δ[cn(t − t0) − r2]
βn(z − z0) − r2

r sin θ

r2
�n

(2)
θ ,

�ECh =
2

εrmγn
δ(cnt − Rm)Θ(ργn + z0 − z)Θ(−ργn + z0 + z)�nm,

H
(1)
BS = −eβ

δ[cn(t + t0) − r1]
βn(z + z0) − r1

r sin θ

r1
, H

(2)
BS = eβ

δ[cn(t − t0) − r2]
βn(z − z0) − r2

r sin θ

r2
,

HCh =
2

rmγn
√

εµ
δ(cnt − Rm)Θ(ργn + z0 − z)Θ(−ργn + z0 + z).

Here γn, r1, r2, rm, �n
(1)
θ , �n

(1)
θ and �nm are the same as above. The delta

functions δ[cn(t + t0) − r1] and δ[cn(t − t0) − r2] entering (2.34) describe
spherical BS shock waves emitted at the instants t = −t0 and t = t0; n

(1)
θ

and n
(1)
θ are the unit vectors tangential to the above spherical waves and

lying in the φ = const plane; �E
(1)
BS , �E

(2)
BS , �H

(1)
BS and �H

(2)
BS are the electric

and magnetic field strengths of the BS1 and BS2 shock waves, respectively
As we have learned, owing to the charge instantaneous deceleration, BS1

and BS2 include effects originated at the beginning of motion and those
associated with exceeding the velocity of light barrier. The function δ(cnt−
Rm) describes the position of the CSW. The inequalities Rm < cnt and
Rm > cnt correspond to the points lying inside the VC cone and outside
it, respectively; �nm is the vector lying on the surface of the VC cone; rm is
the so-called Cherenkov singularity: rm = 0 on the VC cone surface; �ECh

and �HCh are the electric and magnetic field strengths describing CSW,
They originate from the charge uniform motion in the interval (−z0, z0);
�ECh and �HCh are infinite on the surface of the VC cone and vanish outside
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it. Inside the VC cone �ECh and �HCh decrease as r−2 at large distances,
and therefore do not give a contribution in the wave zone. These terms
are not included in (2.34), but they are easily restored from the exact
electromagnetic potentials (2.22).

Comparison with the Tamm solution
At large distances one can expand r1 and r2 in (2.34) r1 = r+z0 cos θ, r2 =
r − z0 cos θ. Here r = [ρ2 + z2]1/2. Neglecting z0 in comparison with r in
the denominators of �EBS and �HBS in (2.34), one finds

�ET = �EBS, �HT = �HBS, �E = �ET + �ECh, �H = �HT + �HCh,

where �ET and �HT are the same as in (2.33). This means that the Tamm field
strengths (2.33) describe only the BS shock waves (in the generalized sense
mentioned above) and do not contain the CSW originating from the charge
uniform motion in the interval (−z0, z0). Correspondingly, the maxima of
their Fourier transforms (2.26) refer to the traces of the CSW in the BS
arising from the charge instantaneous deceleration.

To elucidate why the CSW is absent in (2.27) we consider the product
of two Θ functions entering into the definition (2.34) of Cherenkov field
strengths �ECh and �HCh:

Θ(ργn + z0 − z)Θ(−ργn + z0 + z). (2.35)

It is seen that the CSW of the length ∆L = L/βnγn, γn = 1/
√

β2
n − 1, L =

2z0 is enclosed between two straight lines L1 and L2 originating from the
ends of the interval of motion and inclined at the angle θc towards the mo-
tion axis. The CSW, being perpendicular to these straight lines, propagates
along them with its normal inclined at the angle θc towards the motion axis.
We rewrite (2.35) in spherical coordinates

Θ(θ − θ2)Θ(θ1 − θ), (2.35′)

where θ1 and θ2 are defined by

cos θ1 = − ε0

β2
nγ2

n

+
1
βn

[
1 −

(
ε0

βnγn

)2
]1/2

,

cos θ2 =
ε0

β2
nγ2

n

+
1
βn

[
1 −

(
ε0

βnγn

)2
]1/2

and ε0 = z0/r. The CSW intersects the observational sphere S of the radius
r in the angular interval ∆θ = θ1−θ2. With the increase of the observational
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distance r, the angular region ∆θ, to which the CSW is confined, diminishes
(since θ1 → θ2), although the transverse extension ∆L of CSW remains the
same. The CSW associated with the charge uniform motion in the interval
(−z0, z0) drops out if for ∆θ � 1, one naively neglects the term (2.35’)
with the product of two Θ functions.

We prove now that essentially the same approximation was implicitly
made during the transition from (2.25) to (2.26). When changing R in
the exponential in (2.25) to r − z′ cos θ it was implicitly assumed that the
quadratic term in the expansion of R is small compared to the linear term.
Consider this more carefully. We expand R up to the second order:

R ≈ r − z′ cos θ +
z′2

2r
sin2 θ.

In the exponential in (2.25) the following terms then appear

z′

v
+

1
cn

(
r − z′ cos θ +

z′2

2r
sin2 θ

)
.

We collect terms involving z′

z′

cn
[(

1
βn

− cos θ) +
z′

2r
sin2 θ].

Taking for z′ its maximal value z0, we present the condition for the second
term in the expansion of R to be small in the form

ε0 � 2
(

1
βn

− cos θ

)
/ sin2 θ

It is seen that the right hand side of this equation and that of Eq.(2.35)
vanish for cos θ = 1/βn, i.e., at the angle at which the CSW exists. This
means that the absence of the CSW in Eqs. (2.27) is owed to the omission
of second-order terms in the expansion of R in the exponential entering
(2.25).

2.1.5. SPATIAL DISTRIBUTION OF SHOCK WAVES

Consider the spatial distribution of the electromagnetic field (EMF) at a
fixed instant of time. It is convenient to deal with the spatial distribution of
electromagnetic potentials rather than with that of field strengths, which
are the space-time derivatives of electromagnetic potentials.

We rewrite electromagnetic potentials (2.22) in the form

Φ = Φ1 + Φ2 + Φm. (2.36)
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Here

Φ1 =
e

εr1
Θ
(

r1 − cnt − z0

βn

)
, Φ2 =

e

εr2
Θ
(

cnt − r2 − z0

βn

)
,

Φm = Φ(1)
m + Φ(2)

m + Φ(3)
m , Az = A(1)

z + A(2)
z + A(3)

z , A(i)
z = µεβΦ(i)

m ,

Φ(1)
m =

e

εrm
Θ(ργn − z − z0)Θ

(
z0

βn
+ r2 − cnt

)
Θ
(

cnt +
z0

βn
− r1

)
,

Φ(2)
m =

e

εrm
Θ(z − z0 − ργn)Θ

(
r1 − cnt − z0

βn

)
Θ
(

cnt − z0

βn
− r2

)
,

Φ(3)
m =

e

εrm
Θ(z0 + ργn − z)Θ(z + z0 − ργn)Θ(cnt − Rm)

×
[
Θ
(

r1 − cnt − z0

βn

)
+ Θ

(
z0

βn
+ r2 − cnt

)]
.

The theta functions

Θ
(

cnt +
z0

βn
− r1

)
and Θ

(
r1 − cnt − z0

βn

)
define spatial regions which, correspondingly, have and have not been reached
by the BS1 shock wave. Similarly, the theta functions

Θ
(

cnt − z0

βn
− r2

)
and Θ

(
r2 − cnt +

z0

βn

)
define spatial regions which correspondingly have and have not been reached
by the BS2 shock wave. Finally, the theta function

Θ(cnt − Rm)

defines spatial region that has been reached by the CSW.
The potentials Φ1 and Φ2 correspond to the electrostatic fields of the

charge at rest z = −z0 up to an instant −t0 and at z = z0 after the instant
t0. They differ from zero outside BS1 and inside BS2, respectively. On the
other hand, Φm and Az describe the field of a moving charge. A schematic
representation of the shock waves position at the fixed instant of time is
shown in Fig. 2.7.

In the spatial regions 1 and 2 corresponding to z < ργn − z0 and z >
ργn+z0, respectively, there are observed only BS shock waves. In the spatial
region 1 (where A

(1)
z 	= 0, A

(2)
z = A

(3)
z = 0), at the fixed observational

point the BS1 shock wave (defined by cnt + z0/βn = r1) arrives first and
BS2 shock wave (defined by cnt− z0/βn = r2) later. In the spatial region 2
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Figure 2.7. Position of shock waves at the fixed instant of time for β = 0.99 and
βc = 0.75. BS1 and BS2 are BS shock waves emitted at the points ∓z0 of the z axis.
The solid segment between the lines z = ργn − z0 and z = ργn + z0 is the CSW. The
inclination angle of the Cherenkov beam and its width are cos θc = 1/βc and 2z0/βnγn,
respectively.

(where A
(2)
z 	= 0, A

(1)
z = A

(3)
z = 0), these waves arrive in the reverse order.

In the spatial region 3 (where A
(3)
z 	= 0, A

(1)
z = A

(2)
z = 0), defined by

ργn − z0 < z < ργn + z0, there are BS1, BS2 and CSW shock waves.
The latter is defined by the equation cnt = Rm. Before the arrival of the
CSW (i.e., for Rm > cnt) there is an electrostatic field of a charge which
is at rest at z = −z0. After the arrival of the last of the BS shock waves
there is an electrostatic field of a charge which is at rest at z = z0. The
spatial region where Φm and Az (and, therefore, the field of a moving
charge) differ from zero, lies between the BS1 and BS2 shock waves in the
regions 1 and 2 and between CSW and one of the BS shock waves in the
region 3. The spatial region 3 in its turn consists of two sub-regions 31

and 32 defined by the equations ργn − z0 < z < (ρ2γ2
n + z2

0/β2
n)1/2 and

(ρ2γ2
n + z2

0/β2
n)1/2 < z < ργn + z0, respectively. In the region 31 the CSW

arrives first, then BS1, and finally, BS2. In region 32 BS1 and BS2 arrive in
the reverse order.
In brief, A

(1)
z and A

(2)
z describe the BS in the spatial regions 1 and 2,

respectively, while A
(3)
z describe BS and VCR in the spatial region 3.

The polarization vectors of BSs are tangential to the spheres BS1 and
BS2 and lie in the φ = const plane coinciding with the plane of Fig. 2.7.
They are directed along the unit vectors �n

(1)
θ and �n

(2)
θ , respectively. The
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polarization vector of CSW (directed along �nm) lies on the CSW. It is
shown by the solid line in Fig. 2.7 and also lies in the φ = const plane. The
magnetic field having only the φ non-vanishing component is normal to the
plane of figure. The Poynting vectors defining the direction of the energy
transfer are normal to BS1, BS2 and CSW, respectively.

The VCR in the (ρ, z) plane differs from zero inside a beam of width
2z0 sin θc, where θc is the inclination of the beam towards the motion axis
(cos θc = 1/βn). When the charge velocity tends to the velocity of light in
the medium the width of the above beam, as well as the inclination angle,
tend to zero. That is, in this case the beam propagates in a nearly forward
direction. It is essentially that the Cherenkov beam exists for any interval
of motion z0.

2.1.6. TIME EVOLUTION OF THE ELECTROMAGNETIC FIELD ON THE
SURFACE OF A SPHERE

Consider the distribution of VP (in units of e/r) on a sphere S0 of radius
r at various instants of time. There is no EMF on S0 up to an instant
Tn = 1 − ε0(1 + 1/βn). Here Tn = cnt/r. In the time interval

1 − ε0

(
1 +

1
βn

)
≤ Tn ≤ 1 − ε0

(
1 − 1

βn

)
(2.37)

BS radiation begins to fill the back part of S0 corresponding to the angles

−1 < cos θ <
1

2ε0

[(
Tn +

ε0

βn

)2

− 1 − ε20

]
(2.38)

(Fig. 2.8 (a), curve 1). In the time interval

1 − ε0

(
1 − 1

βn

)
≤ Tn ≤

[
1 −

(
ε0

βnγn

)2
]1/2

(2.39)

BS radiation begins to fill the front part of S0 as well:

1
2ε0

[
1 + ε2

0 −
(

Tn − ε0

βn

)2
]
≤ cos θ ≤ 1.

The illuminated back part of S0 is still given by (2.38) (Fig. 2.8 (a), curve
2). The finite jumps of VP shown in these figures lead to the δ function
singularities in Eqs. (2.34) defining BS electromagnetic strengths. In the
time intervals (2.37) and (2.39) these jumps have a finite height. The vector
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Figure 2.8. Time evolution of shock waves on the surface of the sphere S0 for n = 1.333,
β = 0.99, ε0 = 0.1. The vector potential Az is in units of e/r, time T = ct/r: (a): For
small times the BS shock wave occupies only the back part of S0 (curve 1). For larger
times the BS shock wave begins to fill the front part of S0 as well (curve 2). The jumps of
BS shock waves are finite. The jump becomes infinite when the BS shock wave meets the
CSW (curve 3); (b): The amplitude of the CSW is infinite while BS shock waves exhibit
finite jumps; (c): Position of CSW and BS shock waves at the instant when CSW touches
the sphere S0 at only one point.

potential is maximal at the angle at which the jump occurs. The value of
VP is infinite at the angles defined by

cos θ1 = − ε0

β2
nγ2

n

+
1
βn

[
1 −

(
ε0

βnγn

)2
]1/2

and

cos θ2 =
ε0

β2
nγ2

n

+
1
βn

[
1 −

(
ε0

βnγn

)2
]1/2

. (2.40)

which are reached at the time

TCh =
cntCh

r
=

[
1 −

(
ε0

βnγn

)2
]1/2

(Fig. 2.8 (a), curve 3). At this instant, and at these angles, the CSW inter-
sects S0 first time. Or, in other words, the intersection of S0 by the lines
z = ργn − z0 and z = ργn + z0 (Fig. 2.7) occurs at the angles θ1 and θ2.
At this instant the illuminated front and back parts of S0 are given by
0 < θ < θ2 and θ1 < θ < π, respectively. Beginning from this instant the
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CSW intersects the sphere S0 at the angles defined by (see Fig. 2.8 (b))

cos θ
(1)
Ch(T ) =

Tn

βn
− 1

βnγn
(1 − T 2

n)1/2

and
cos θ

(2)
Ch(T ) =

Tn

βn
+

1
βnγn

(1 − T 2
n)1/2.

The positions of the BS1 and BS2 shock waves are given by

cos θ
(1)
BS(T ) =

1
2ε0

[(
Tn +

ε0

βn

)2

− 1 − ε20

]

and

cos θ
(2)
BS(T ) =

1
2ε0

[
1 + ε20 −

(
Tn − ε0

βn

)2
]

,

respectively (i.e., the BS shock waves follow after the CSW). Therefore, at
this instant BS fills the angular regions

θ
(1)
BS(T ) ≤ θ ≤ π and 0 ≤ θ ≤ θ

(2)
BS(T )

whilst the VC radiation occupies the angle interval

θ
(1)
Ch(T ) ≤ θ ≤ θ1 and θ2 ≤ θ ≤ θ

(2)
Ch(T ).

Therefore the VC radiation field and BS overlap in the regions

θ
(1)
BS(T ) ≤ θ ≤ θ1 and θ2 ≤ θ ≤ θ

(2)
BS(T ).

BS1 and BS2 have finite jumps in this angular interval (Fig. 2.8 (b)). The
non-illuminated part of S0 is

θ
(2)
Ch(T ) ≤ θ ≤ θ

(1)
Ch(T ).

This lasts up to an instant Tn = 1 when the CSW intersects S0 only once
at the point corresponding to the angle cos θ = 1/βn (Fig. 2.8 (c)). The
positions of the BS1 and BS2 shock waves at this instant (Tn = 1) are given
by

cos θ =
1
βn

− ε0

2β2
nγ2

n

and cos θ =
1
βn

+
ε0

2β2
nγ2

n

,

respectively. Again, the jumps of BS waves have finite heights whilst the
Cherenkov term Φ(3)

m is infinite at the angle cos θ = 1/βn at which the
CSW intersects S0. After the instant Tn = 1, CSW leaves S0. However,
the Cherenkov post-action still remains (Fig. 2.9 (a)). In the subsequent
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Figure 2.9. Further time evolution of shock waves on the surface of the sphere S0: (a):
The Cherenkov post-action and BS shock waves after the instant when CSW has left S0.;
(b): BS shock waves approach and pass through each other leaving after themselves a zero
electromagnetic field. Numbers 1 and 2 mean BS1 and BS2 shock waves, respectively; (c):
After some instant the BS shock wave begins to fill only the back part of S0. Numbers 1
and 2 mean BS1 and BS2 shock waves, respectively.

time the BS1 and BS2 shock waves approach each other. They meet at the
instant

Tn =

[
1 +

(
ε0

βnγn

)2
]1/2

. (2.41)

at the angle

cos θ =
1
βn

[
1 +

(
ε0

βnγn

)2
]1/2

.

After this instant BS shock waves pass through each other and diverge (Fig.
2.9 (b)). Now BS1 and BS2 move along the front and back semi-spheres,
respectively. There is no EMF on the part of S0 lying between them. The
illuminated parts of S0 are now given by

θ
(2)
BS(T ) ≤ θ ≤ π and 0 ≤ θ ≤ θ

(1)
BS(T ).

The electromagnetic field is zero inside the angle interval

θ
(1)
BS(T ) ≤ θ ≤ θ

(2)
BS(T ).

After the instant of time (2.41), BS1 and BS2 may occupy the same angular
positions cos θ2 and cos θ1 like BS2 and BS1 shown by curve 3 in Fig. 2.8
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(a). But now their jumps are finite. After the instant

Tn = 1 + ε0

(
1 − 1

βn

)
the front part of S0 begins not to be illuminated (Fig. 2.9 (c)). At this
instant the illuminated back part of S0 is given by

−1 ≤ cos θ ≤ −1 +
2(1 + ε0)

βn
− 2ε0

β2
n

.

In the subsequent time the illuminated part of S0 is given by

−1 ≤ cos θ ≤ 1
2ε0

[
1 + ε20 −

(
Tn − ε0

βn

)2
]

.

As time advances, the illuminated part of S0 diminishes. Finally, after the
instant

Tn = 1 + ε0

(
1 +

1
βn

)
the EMF radiation leaves the surface of S0 (and its interior).

We summarize here the main differences between VCR and BS:
On the sphere S0 the VC radiation runs over the angular region

θ2 ≤ θ ≤ θ1,

where θ1 and θ2 are defined by Eqs. (2.40). At each particular instant of
time Tn in the interval [

1 −
(

ε0

βnγn

)2
]1/2

≤ Tn ≤ 1

the VC electromagnetic potentials and field strengths are infinite at the
angles θ

(1)
Ch(T ) and θ

(2)
Ch(T ) at which the CSW intersects S0.

After the instant Tn = 1 the Cherenkov singularity leaves the sphere S0,
but the Cherenkov post-action still remains. This lasts up to the instant
Tn = [1 + (ε0/βnγn)2]1/2.

On the other hand, BS runs over the whole sphere S0 in the time interval

1 − ε0

(
1 +

1
βn

)
≤ Tn ≤ 1 + ε0

(
1 +

1
βn

)
.

The vector potential of BS is infinite only at the angles θ1 and θ2 at the
particular instant of time Tn =

√
1 − ε2

0/β2
nγ2

n when the CSW intersects S0

for the first time. For other times the VP of BS exhibits finite jumps in the
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angular interval −π ≤ θ ≤ π. The BS electromagnetic field strengths (as
spatial-time derivatives of electromagnetic potentials) are infinite at those
angles. Therefore Cherenkov singularities of the vector potential run over
the region θ2 ≤ θ ≤ θ1 of the sphere S0, whilst the BS vector potential is
infinite only at the angles θ1 and θ2 at which BS shock waves meet CSW.

The following particular cases are of special interest. For small ε0 = z0/r
(the observational distance is large compared with the interval of motion)
the Cherenkov singular radiation occupies the narrow angular region

arccos
1
βn

− ε0

βnγn
≤ θ ≤ arccos

1
βn

+
ε0

βnγn
,

whilst the BS is infinite at the boundary points of this interval. In the
opposite case ε0 ≈ 1 (this corresponds to the near zone) the singular VCR
field is confined to the angular region

2
β2

n

− 1 ≤ cos θ ≤ 1,

whilst the BS is singular at cos θ = 2/β2
n − 1, and cos θ = 1 is reached at

the instant Tn = 1/βn.
When the charge velocity is close to the velocity of light in medium

(βn ≈ 1), one has:

cos θ1 ≈ 1
βn

− ε0

β2
nγ2

n

(
1 +

1
2
ε0

)
≈ 1, cos θ2 ≈ 1

βn
− ε0

β2
nγ2

n

(
1 − 1

2
ε0

)
≈ 1,

i.e., there is a narrow Cherenkov beam in a nearly forward direction.

2.1.7. COMPARISON WITH THE TAMM VECTOR POTENTIAL

Now we evaluate the Tamm vector potential

AT =
∞∫

−∞
dω exp (iωt)Aω

Substituting here Aω given by (2.26), we find in the absence of dispersion

AT =
eµ

rn| cos θ − 1/βn|Θ(| cos θ − 1/βn| − |Tn − 1|/ε0). (2.42)

This VP can be also obtained from Az given by (2.36) if we leave in it the
terms A

(1)
z and A

(2)
z describing BS in the regions 1 and 2 (see Fig. 2.7) (with

omitting z0 in the factors Θ(ργn−z−z0) and Θ(z−z0−ργn) entering A
(1)
z

and A
(2)
z ) and drop the term A

(3)
z which is responsible (as we have learned
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from the previous section) for the BS and VC radiation in region 3 and
which describes the Cherenkov beam of the width 2z0/βnγn. It is seen that
AT is infinite only at

Tn = 1, cos θ =
1
βn

. (2.43)

This may be compared with the exact consideration of the previous section
which shows that the BS part of Az is infinite at the instant

TCh =
cntCh

r
=

[
1 −

(
ε0

βnγn

)2
]1/2

(2.44)

at the angles θ1 and θ2 defined by (2.40). The cos θ1 and cos θ2 defined
by (2.40) and TCh given by (2.44) are transformed into cos θ and Tn given
by (2.43) in the limit ε0 → 0. Owing to the dropping of the A

(3)
z term in

(2.36) (describing BS and VCR in the spatial region 3) and the omission of
terms containing ε0 in cos θ1 and cos θ2, BS1 and BS2 waves now have the
common maximum of the infinite height at the angle given by cos θ = 1/βn

at which the Tamm approximation fails.
The analysis of (2.42) shows that the Tamm VP is distributed over S0 in

the following way. There is no EMF of the moving charge up to the instant
Tn = 1 − ε0(1 + 1/βn). For

1 − ε0

(
1 +

1
βn

)
< Tn < 1 − ε0

(
1 − 1

βn

)
the EMF fills only the back part of S0

−1 < cos θ <
1
βn

− 1
ε0

(1 − Tn)

(Fig. 2. 10 a, curve 1). In the time interval

1 − ε0

(
1 − 1

βn

)
< Tn < 1 + ε0

(
1 − 1

βn

)
the illuminated parts of S0 are given by

−1 < cos θ <
1
βn

− 1
ε0

(1 − Tn) and
1
βn

+
1
ε0

(1 − Tn) < cos θ < 1

(Fig. 2.10 a, curves 2 and 3).
The jumps of the BS1 and BS2 shock waves are finite. As Tn tends to

1 the BS1 and BS2 shock waves approach each other and fuse at Tn = 1.
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Figure 2.10. Time evolution of shock waves according to the Tamm approximate picture:
a) The jumps of BS shock waves are finite. After some instant BS shock waves fill both
the back and front parts of S0 (curves 2 and 3); b) Position of the BS shock wave at the
instant when its jump is infinite; c) BS shock waves pass through each other and diverge
leaving after themselves a zero EMF. After some instant BS shock waves fill only the
back part of S0. Numbers 1 and 2 mean BS1 and BS2 shock waves, respectively.

Tamm’s VP is infinite at this instant at the angle given by cos θ = 1/βn

(Fig. 2.10 b). For

1 < Tn < 1 + ε0

(
1 − 1

βn

)
the BS shock waves pass through each other and begin to diverge, BS1 and
BS2 filling the front and back parts of S0, respectively (Fig. 2.10 c):

1
βn

+
1
ε0

(Tn − 1) < cos θ < 1 (BS1)

and
−1 < cos θ <

1
βn

− 1
ε0

(Tn − 1) (BS2).

For larger times

1 + ε0

(
1 − 1

βn

)
< Tn < 1 + ε0

(
1 +

1
βn

)
only the back part of S0 is illuminated:

−1 < cos θ <
1
βn

− 1
ε0

(Tn − 1) (BS2).
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Figure 2.11. Time evolution of BS shock waves for the charge velocity (β = 0.7) less
than the velocity of light in medium (cn = 0.75). Solid and dashed lines are related to
the exact (2.25) and approximate (2.26) vector potentials; a) BS shock waves fill only
the back part of S0; b) The whole sphere S0 is illuminated during some time interval; c)
At later times BS again fills only the back part of S0. When evaluating the Tamm VP
the extra 1/2 factor was occasionally included. After multiplication the dashed curve by
2 it almost coincides with exact solid curve.

Finally, for Tn > 1 + ε0(1 + 1/βn) there is no radiation field on and
inside the S0.

It is seen that the behaviour of the exact and approximate Tamm po-
tentials is very alike in the spatial regions 1 and 2 where VCR is absent and
differs appreciably in the spatial region 3 where it exists. Roughly speaking,
the Tamm vector potential (2.42) describing evolution of BS shock waves in
the absence of CSW imitates the latter in the neighborhood of cos θ = 1/βn

where, as we know, the Tamm approximate VP is not correct.
This complication is absent if the charge velocity is less than the velocity

of light cn in medium. In this case one the exact VP is (see (2.13)):

Az =
eβµ

rm
Θ[cn(t + t0) − r1]Θ[r2 − cn(t − t0)],

while the Tamm VP AT is still given by (2.42). The results of calculations
for β = 0.7, cn ≈ 0.75 are presented in Fig. 2.11. We see on it the exact and
the Tamm VPs for three typical times: T = 1.26; T = 1.334 and T = 1.4.
In general, the EMF distribution on the sphere surface is as follows. There
is no field on S0 up to some instant of time. Later, only the back part of
S0 is illuminated (see Fig. 2.11 a). In the subsequent times the EMF fills
the whole sphere (Fig. 2.11 b). After some instant the EMF again fills only
the back part of S0 (Fig. 2.11 c). Finally, the EMF leaves S0.
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Now we analyze the behaviour of the Tamm VP for small and large
motion intervals z0. For small ε0 = z0/r it follows from (2.42) that

Az =
eµ

rn|(1/βn) − cos θ|δ(1 − Tn). (2.45)

On the other hand, if we pass to the limit ε0 → 0 in Eq.(2.26), i.e., prior to
the integration, then

Aω → eε0µ

πc
exp(−iknr), Az → eε0µ

πnr
δ(Tn − 1), (2.46)

i.e., there is no angular dependence in (2.46). The distinction of (2.46) from
(2.45) is due to the fact that integration takes place for all ω in the interval
(−∞, +∞). For large ω the condition ωz0/v � 1 is violated. This means
that Eq. (2.45) involves the contribution of high frequencies.

For large z0 one obtains from (2.42)

Az =
eµ

rn|(1/βn) − cos θ| . (2.47)

If we take the limit z0 → ∞ in Eq.(2.26), then

Aω ≈ eµβ

rω
exp(−iωr/cn)δ(1 − βn cos θ), Az(t) ∼ δ(1 − βn cos θ). (2.48)

Although Eqs.(2.47) and (2.48) reproduce the position of the Cherenkov
singularity at cos θ = 1/βn, they do not describe the Cherenkov cone. The
reason for this is that the Tamm VP (2.26) is obtained under the condition
z0 � r, and therefore it is not legitimate to take the limit z0 → ∞ in the
expressions following from it (and, in particular, in Eq. (2.42)).

On the other hand, taking the limit z0 → ∞ in the exact expression
(2.36) we obtain the well-known expressions for the electromagnetic poten-
tials describing superluminal motion of charge in an infinite medium:

Az =
2eβµ

rm
Θ(vt − z − ρ/γn), Φ =

2e

εrm
Θ(vt − z − ρ/γn).

The very fact that the Tamm VPs in the spectral (2.26) and time (2.42)
representations are valid both for v < cn and v > cn has given rise to the
extensive discussion in the physical literature concerning the discrimination
between the BS and VCR [9-10].

As follows from our consideration, the physical reason for this is the
absence of the Cherenkov shock wave in (2.26) and (2.42). Exact electro-
magnetic potentials (2.36) and field strengths (2.34) contain CSW for any
motion interval. The induced Cherenkov beam being very thin for z0 → 0
and broad for large z0 in no case can be reduced to the BS.
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2.2. Spatial distribution of Fourier components

The Fourier transform of the vector potential on the sphere S0 of radius r
is given by (2.25)

Aω =
eµ

2πc

z0∫
−z0

dz′

R
exp

[
−ik

(
z′

β
+ nR

)]
.

Here R = [ρ2 + (z − z′)2]1/2. Making the change of integration variable
z′ = z + ρ sinhχ, one obtains

Aω =
eµ

2πc
exp

(
− ikz

β

) χ2∫
χ1

exp
[
− ikρ

β
(sinh χ + βn cosh χ)

]
dχ, (2.49)

where sinh χ1 = −(z0 + z)/ρ and sinhχ2 = (z0 − z)/ρ.

2.2.1. QUASI-CLASSICAL APPROXIMATION

The stationary point of the vector potential (2.49) satisfies the equation
cosh χc + βn sin χc = 0. This gives cosh χc = βnγn, sinhχc = −γn for
β > 1/n. It is seen that χc < χ1 for z < ργn− z0, χc > χ2 for z > ργn + z0,
and χ1 < χc < χ2 for ργn − z0 < z < ργn + z0. For z < ργn − z0 and
z > ργn + z0 one finds

Aout
z =

ieµβ

2πckρ
exp

(
− ikz

β

)
(A2 − A1),

where

A2 =
1

cosh χ2 + βn sinhχ2
exp

[
− ikρ

β
(sinh χ2 + βn cosh χ2)

]

=
r sin θ

r2 − βn(z − z0)
exp

[
− ik

β
(βnr2 − z + z0)

]
,

and

A1 =
1

cosh χ1 + βn sinhχ1
exp

[
− ikρ

β
(sinh χ1 + βn cosh χ1)

]

=
r sin θ

r1 − βn(z + z0)
exp

[
− ik

β
(βnr1 − z − z0)

]
.

Therefore

Aout
z =

ieµβ sin θ

2πck
{ 1
r2 − βn(z − z0)

exp
[
− ik

β
(βnr2 + z0)

]
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− 1
r1 − βn(z + z0)

exp
[
− ik

β
(βnr1 − z0)

]
}.

Inside the interval ργn − z0 < z < ργn + z0 the vector potential is equal to

Ain
z = Aout

z +
eµ

2πc
exp

(
− ikz

β

)√
2πβγn

kr sin θ
exp

(
−i

π

4

)
exp

(
− ikr sin θ

βγn

)
.

It is seen that Aout
z is infinite at z = ργn ± z0 (these infinities are due to

the quasi-classical approximation). Therefore the exact radiation intensity
should have maxima at z = ργn± z0, with a kind of plateau for ργn− z0 <
z < ργn + z0 and a sharp decreasing for z < ργn − z0 and z > ργn + z0. At
the observational distances much larger than the motion length (r � z0)

r1 − βn(z + z0) ≈ r(1 − βn cos θ), r2 − βn(z − z0) ≈ r(1 − βn cos θ),

βnr1 − z0 = βnr − z0(1 − βn cos θ), βnr2 + z0 = βnr + z0(1 − βn cos θ).

Then

Aout
z =

eµβ

πckr
exp(−iknr)

sin[ωt0(1 − βn cos θ)]
1 − βn cos θ

,

which (for r � z0) coincides with the Tamm vector potential AT
z entering

(2.26). Inside the interval ργn − z0 < z < ργn + z0

Ain
z = AT

z +
eµ

2πc
exp

(
− ikz

β

)√
2πβγn

kr sin θ
exp

(
− iπ

4

)
exp

(
− ikr sin θ

βγn

)
.

We observe that the infinities of Aout
z have disappeared owing to the ap-

proximations involved. It is seen that for kr � 1, Ain
z and AT

z behave like
1/

√
kr and 1/kr, respectively. It follows from this that the radiation in-

tensity in the spatial regions z > ργn + z0 and z < ργn − z0 is described
by the Tamm formula (2.29). On the other hand, inside the spatial region
ργn − z0 < z < ργn + z0, the radiation intensity differs appreciably from
the Tamm intensity. In fact, the second term in Ain

z is much larger than
the first one (AT

z ) for kr � 1 (since they decrease as 1/
√

kr and 1/kr for
kr → ∞, respectively). It is easy to check that on the surface of the sphere
of radius r the interval ργn− z0 < z < ργn + z0 corresponds to the angular
interval θ2 < θ < θ1, where θ2 and θ1 are defined by Eq.(2.40). Therefore,
inside this angular interval there should be observed the maximum of the
radiation intensity with its amplitude proportional to the observational dis-
tance r. In the limit r → ∞ the above θ interval diminishes and for the
radiation intensity one gets the δ singularity at cos θ = 1/βn. Probably,
this singularity is owed to the quasi-classical approximation used.
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2.2.2. NUMERICAL CALCULATIONS

We separate in (2.25) real and imaginary parts

ReAω =
eµ

2πc

z0∫
−z0

dz′

R
cos

[
k

(
z′

β
+ nR

)]
,

ImAω = − eµ

2πc

ε0∫
−ε0

dz

R
sin

[
k

(
z′

β
+ nR

)]
. (2.50)

For z0 � r these expressions should be compared with the real and imagi-
nary parts of the Tamm approximate VP (2.26):

ReAω =
eβµq

πrω
cos(knr), ImAω = −eβµq

πrω
sin(knr). (2.51)

These quantities are evaluated (in units of e/2πc) for

knr = 100, β = 0.99, n = 1.334, ε0 = 0.1

(see Figs. 2.12 a, b).
We observe that angular distributions of the VPs (2.50) and (2.51) prac-

tically coincide, having maxima on the small part of S0 in the neighborhood
of cos θ = 1/βn. It is this minor difference between (2.50) and (2.51) that
is responsible for the CSW which is described only by Eq. (2.50).

Now we evaluate the angular dependence of VP (2.50) on the sphere
S0 for the case in which z0 practically coincides with r (ε0 = 0.98). Other
parameters remain the same. We see ( Fig. 2.12 c) that the angular distri-
bution fills the whole sphere S0. There is no pronounced maximum in the
vicinity of cos θ = 1/βn.

We cannot extend these results to larger z0 as the interval of motion
will partly lie outside S0. To consider a charge motion in an arbitrary finite
interval, we evaluate the distribution of VP on the cylinder surface C co-
axial with the motion axis. Let the radius of this cylinder be ρ. Separating
real and imaginary parts in (2.49), one obtains

ReAω =
eµ

2πc

χ2∫
χ1

cos
[
k

(
z

β
+

ρ

β
sinhχ + nρ cosh χ

)]
dχ,

ImAω = − eµ

2πc

χ2∫
χ1

sin
[
k

(
z

β
+

ρ

β
sinhχ + nρ cosh χ

)]
dχ. (2.52)
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Figure 2.12. The real (a) and imaginary (b) parts of the VP in the spectral representation
(in units of e/2πc) on the surface of the sphere S0 for ε0 = z0/r = 0.1. The radiation field
differs essentially from zero in the neighborhood of the Cherenkov critical angle defined by
cos θc = 1/βn. The solid and dotted curves refer to the exact and approximate formulae
(2.5o) and (2.51), respectively. It turns out that a small difference between the Fourier
transforms is responsible for the appearance of the VCR in the space-time representation;
(c): The real and imaginary parts of Aω for ε0 = 0.98. The electromagnetic radiation is
distributed over the whole sphere S0.

Figure 2.13. The real (a) and imaginary (b) parts of Aω on the surface of the cylinder
C for the ratio of the interval motion to the cylinder radius ε0 = 0.1. The electromag-
netic radiation differs from zero in the neighbourhood of z = γn, which corresponds to
cos θc = 1/βn on the sphere (z is in units of ρ, Aω in units of e/2πc); (c): The real part
of Aω for ε0 = 1. There is no sharp radiation maximum in the neighborhood of z = γn.
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The distributions of ReAω and ImAω (in units of e/2πc) on the surface of C
as a function of z̃ = z/ρ are shown in Figs. 2.13 and 2.14 for various values
of ε0 = z0/ρ and ρ fixed. The calculations were made for β = 0.99 and
kρ = 100. We observe that for small ε0 the electromagnetic field differs from
zero only in the vicinity z̃ = γn, which corresponds to cos θ = 1/βn (Figs.
2.13 (a),(b)). As ε0 increases, the VP begin to diffuse over the cylinder
surface. This is illustrated in Figs. 2.13(c) and 2.14(a) where only the real
parts of Aω for ε0 = 1 and ε0 = 10 are presented. Since the behaviour
of ReAω and ImAω is very much alike (Figs. 2.12 and 2.13 (a),(b) clearly
demonstrate this), we limit ourselves to the consideration of ReAω). We
observe the disappearance of pronounced maxima at cos θ = 1/βn.

For the infinite motion (z0 → ∞), Eqs. (2.52) are reduced to

ReAω =
e

2πc

∞∫
−∞

cos
[
k

(
z

β
+

ρ

β
sinhχ + nρ cosh χ

)]
dχ,

ImAω = − e

2πc

∞∫
−∞

sin
[
k

(
z

β
+

ρ

β
sinhχ + nρ cosh χ

)]
dχ, (2.52′).

These expressions can be evaluated in the analytical form (see below)

ReAω

eµ/2πc
= −π

[
J0

(
ωρ

vγn

)
sin

(
ωz

v

)
+ N0

(
ωρ

vγn

)
cos

(
ωz

v

)]
,

ImAω

eµ/2πc
= π

[
N0

(
ωρ

vγn

)
sin

(
ωz

v

)
− J0

(
ωρ

vγn

)
cos

(
ωz

v

)]
(2.53)

for v > cn and
ReAω

eµ/2πc
= 2 cos

(
ωz

v

)
K0

(
ρω

vγn

)
,

ImAω

e/2πc
= −2 sin

(
ωz

v

)
K0

(
ρω

vγn

)
(2.54)

for v < cn (γn = |1 − β2
n|−1/2). We see that for the infinite charge motion

the Aω is a pure periodic function of z (and therefore of the angle θ).
This assertion does not depend on the values of ρ and ω. For example, for
ωρ/vγn � 1 one has

ReAω = − eµ
2πc

√
2vπγn

ρω
sin

[
ω

v

(
z +

ρ

γn

)
− π

4

]
,

ImAω = − eµ
2πc

√
2vπγn

ρω
cos

[
ω

v

(
z +

ρ

γn

)
− π

4

]
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Figure 2.14. The real part of Aω for ε0 = 10; (a): There is no radiation maximum in
the neighborhood of z = γn and the radiation is distributed over the large z interval; (b):
For a small z interval, ReAω evaluated according to Eq.(2.51) for ε0 = 10 and according
to Eq.(2.53) for an infinite interval of motion are indistinguishable.

for v > cn and

ReAω =
eµ
2πc

√
2vπγn

ρω
cos

(
ωz
v

)
exp

(
− ρω

vγn

)
,

ImAω = − eµ
2πc

√
2vπγn

ρω
sin

(
ωz
v

)
exp

(
− ρω

vγn

)
for v < cn. In Fig. 2.14 (b), by comparing the real part of Aω evaluated
according to Eq.(2.51) for ε0 = 10 with the analytical expression (2.53)
valid for ε0 → ∞ we observe their perfect agreement on the small interval
of surface of the cylinder C (they are indistinguishable on the interval
treated). The same coincidence is valid for the imaginary part of Aω.

To prove (2.53) and (2.54), we start from the Green function expansion
in the cylindrical coordinates

Gω(�r, �r′) = − 1
4π

exp(−ikn|�r − �r′|
|�r − �r′| = −

∞∑
m=0

εm cos m(φ − φ′)

×{ 1
4πi

kn∫
−kn

dkz exp[ikz(z − z′)]Gm
(1)(ρ, ρ′)
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+
1

2π2

 −kn∫
−∞

+
∞∫

kn

 dkz exp[ikz(z − z′)]Gm
(2)(ρ, ρ′)}, (2.55)

where εm = 1/(1 + δm0),

Gm
(1)(ρ<, ρ>) = Jm

(√
k2

n − k2
zρ<

)
H(2)

m

(√
k2

n − k2
zρ>

)
,

Gm
(2)(ρ<, ρ>) = Im

(√
k2

z − k2
nρ<

)
Km

(√
k2

z − k2
nρ>

)
.

The Fourier component of VP satisfies the equation

(∆ + k2
n)Aω = −4πµ

c
jω, (2.56)

where kn = ω/cn > 0 and jω = δ(x)δ(y) exp(−iωz/v)/2π The solution of
(2.56) is given by

Aω =
µ

c

∫
Gω(�r, �r′)jω(�r′)dV ′ = −iπµ exp(−iωz/v)H(2)

0

(
ωρ

v

√
β2

n − 1
)

for βn > 1 and

= 2µ exp(−iωz/v)K0

(
ωρ

v

√
1 − β2

n

)
(2.57)

for βn < 1. Separating the real and imaginary parts, we arrive at (2.53)
and (2.54). Collecting in (2.52’), (2.53) and (2.54) the terms at sin(ωz/v)
and cos(ωz/v), we get the integrals

∞∫
0

cos
(

ωρ

v
sinhχ

)
sin

(
ωρ

cn
cosh χ

)
dχ

=
∞∫
0

cos
(

ωρ

v
x

)
sin

(
ωρ

cn

√
x2 + 1

)
dx√

x2 + 1

=
∞∫
1

cos
(

ωρ

v

√
x2 − 1

)
sin

(
ωρ

cn
x

)
dx√

x2 − 1
=

π

2
J0

(
ωρ

v

√
β2

n − 1
)

(2.58)

for v > cn and = 0 for v < cn. In addition

∞∫
0

cos
(

ωρ

v
sinhχ

)
cos

(
ωρ

cn
cosh χ

)
dχ
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=
∞∫
0

cos
(

ωρ

v
x

)
cos

(
ωρ

cn

√
x2 + 1

)
dx√

x2 + 1

=
∞∫
1

cos
(

ωρ

v

√
x2 − 1

)
cos

(
ωρ

cn
x

)
dx√

x2 − 1

= −π

2
N0

(
ωρ

v

√
β2

n − 1
)

(2.59)

for v > cn and = K0((ωρ)/v)
√

1 − β2
n) for v < cn. Here βn = v/cn.

In the limit cases these integrals pass into the tabular ones. For example,
for v → ∞ Eqs. (2.58) are transformed into

∞∫
0

sin
(

ωρ

cn
cosh χ

)
dχ =

π

2
J0

(
ωρ

cn

)

and ∞∫
0

cos
(

ωρ

cn
cosh χ

)
dχ = −π

2
N0

(
ωρ

cn

)
,

whilst Eq. (2.59) for cn → ∞ goes into
∞∫
0

cos
(

ωρ

v
sinhχ

)
dχ = K0

(
ωρ

v

)
.

2.3. Quantum analysis of the Tamm formula

We turn now to the quantum consideration of the Tamm formula. The
usual approach proceeds as follows [11]. Consider the uniform rectilinear
(say, along the z axis) motion of a point charged particle with the velocity
v. The conservation of energy-momentum is written as

�p = �p′ + h̄�k, E = E ′ + h̄ω, (2.60)

where �p,E and �p′,E ′ are the 3-momentum and energy of the initial and final
states of the moving charge; h̄�k and h̄ω are the 3-momentum and energy
of the emitted photon. We present (2.60) in the 4-dimensional form

p − h̄k = p′, p = (�p, E/c). (2.61)

Squaring both sides of this equation and taking into account that p2 =
p′2 = −m2c2 (m is the rest mass of a moving charge) one obtains

(pk) = h̄k2/2, k =
(
�k,

ω

cn

)
. (2.62)
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Or, in a more manifest form

cos θk =
1
βn

(
1 +

n2 − 1
2

h̄ω

E

)
. (2.63)

Here βn = v/cn, cn = c/n is the velocity of light in medium, n is its
refractive index. When deriving (2.63) it was implicitly suggested that the
absolute value of the photon 3-momentum and its energy are related by the
Minkowski formula: |�k| = ω/cn.

When the energy of the emitted Cherenkov photon is much smaller than
the energy of a moving charge, Eq.(2.63) reduces to

cos θk = 1/βn, (2.64)

which can be written in a manifestly covariant form

(pk) = 0. (2.65)

Up to now we have suggested that the emitted photon has definite energy
and momentum. According to [12], the wave function of a photon propa-
gating in vacuum is described by the following expression

iN�e exp [i(�k�r − ωt)], (�e�k) = 0, (�e)2 = 1, (2.66)

where N is the real normalization constant and �e is the photon polarization
vector lying in the plane passing through �k and �p:

(�e)ρ = − cos θk, (�e)z = sin θk, (�e)φ = 0, (ek) = 0. (2.67)

The photon wave function (2.66) identified with the classical vector poten-
tial is obtained in the following way. We take the positive frequency part
of the second-quantized vector potential operator and apply it to the co-
herent state with the fixed �k. The eigenvalue of this VP operator is just
(2.66). Now we show that the gauge invariance permits one to present a
wave function in the form having the form of a classical vector potential

iN ′pµ exp (ikx), (pk) = 0. (2.68)

where N ′ is another real constant. The electromagnetic potentials satisfy
the following equations(

∆ − 1
c2
n

∂2

∂t2

)
�A = −4πµ

c
�j,

(
∆ − 1

c2
n

∂2

∂t2

)
Φ = −4π

ε
ρ,

div�A +
εµ

c
∂Φ
∂t

= 0.
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We apply the gauge transformation

�A → �A′ = �A + �∇χ, Φ → Φ′ = Φ − 1
c
χ̇

to the vector potential (2.66) which plays the role of the photon wave
function. We choose the generating function χ in the form

χ = α exp [i(�k�r − ωt)],

where α will be determined later. Thus,

�A′ = (N�e + iα�k) exp [i(�k�r − ωt)], Φ′ =
iωα

c
exp [i(�k�r − ωt)],

where �e is given by (2.67). We require the disappearance of the ρ component
of �A′. This fixes α:

α =
N

ik
cot θk.

The nonvanishing components of �A′ are given by

A′
z =

N

sin θk
exp [i(�k�r − ωt)], A′

0 =
N

n
cot θk exp [i(�k�r − ωt)].

It is easy to see that A′
z = βA′

0. This completes the proof of (2.68).
Now we take into account that photons described by the wave function

(2.68) are created by the axially symmetrical current of a moving charge.
According to Glauber ([13], Lecture 3) to obtain the VP in the coordinate
representation, one should form a superposition of the wave functions (2.68)
by taking into account the relation (2.65) which tells us that the photon is
emitted at the Cherenkov angle θk defined by (2.64). This superposition is
given by

Aµ(x) = iN ′
∫

pµ exp (ikx)δ(pk)d3k/ω.

The factor 1/ω is introduced using the analogy with the photon wave func-
tion in vacuum where it is needed for the relativistic covariance of Aµ. The
expression pµδ(pu) is (up to a factor) the Fourier transform of the classi-
cal current of the uniformly moving charge. This current creates photons
in coherent states which are observed experimentally. In particular, they
are manifested as a classical electromagnetic radiation. We rewrite Aµ in a
slightly extended form

Aµ = iN ′
∫

pµ exp [i(�k�r − ωt)]δ
[Eω

c2
(1 − βn cos θ)

]
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×n3

c3
dφ d cos θ ω dω. (2.69)

Introducing the cylindrical coordinates (�r = ρ�nρ + z�nz), we present �k�r in
the form

�k�r =
ω

cn
[ρ sin θ cos(φ − φr) + z cos θ].

Inserting this into (2.69) we find

Aµ(�r, t) = iN ′′
∫

pµ exp
[
iω

(
z

cn
cos θk − t

)]

× exp
[
iω

cn
ρ sin θk cos(φ − φr)

]
dφdω,

where N ′′ is the real modified normalization constant and φr is the az-
imuthal angle in the usual space. Integration over φ gives

A0(�r, t) = Az(�r, t)/β, Az(�r, t) =
∞∫
0

exp (−iωt)Az(�r, ω)dω,

where

Az(�r, ω) =
2πiN ′′

sin θk
exp

(
iω

cn
cos θkz

)
J0

(
ω

cn
ρ sin θk

)
. (2.70)

We see that Az(�r, ω) is the oscillating function of the frequency ω without
a pronounced δ function maximum. In the �r, t representation Az(�r, t) (and,
therefore, photon’s wave function) is singular on the Cherenkov cone vt −
z = ρ/γn

ReAz = 2πN ′′pz

∫
sin ω(t − z/v)J0

(
ωρ

cn
sin θk

)
dω

= 2πN ′′pz
v

[(z − vt)2 − ρ2/γ2
n]1/2

Θ((z − vt)2 − ρ2/γ2
n),

ImAz = 2πN ′′pz

∫
cos ω(t − z/v)J0(

ωρ

cn
sin θk)dω =

= 2πN ′′pz
v

[ρ2/γ2
n − (z − vt)2]1/2

Θ(ρ2/γ2
n − (z − vt)2)

Despite the fact that the wave function (2.69) satisfies the free wave equa-
tion and does not contain singular Neumann functions N0 (needed to satisfy
Maxwell equations with a moving charge current in their r.h.s. ), its real
part (which, roughly speaking, corresponds to the classic electromagnetic
potential) properly describes the main features of the VC radiation.
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So far, our conclusion on the absence of CSW in Eqs.(2.26) and (2.27)
has been proved only for the dispersion-free case (as only in this case we
have exact solution). At this time we are unable to prove the same result
in the general case with dispersion. We see that the Tamm formula (2.29)
describes evolution and interference of two generalized BS shock waves
emitted at the beginning and at the end of the charge motion in the spatial
region lying outside the plateau to which the CSW is confined. The Tamm
formula does not describe the CSW originating from the charge uniform
motion in the interval (−z0, z0). On the other hand, the exact solution of
the Tamm problem found in [7] contains both CSW and the BS shock wave
and not in any way can be reduced to the superposition of two BS waves.

Now the paradoxical results of [8,14] in which the Tamm formula (2.29)
was investigated numerically become understandable. Their authors asso-
ciated the Tamm radiation intensity (2.29) with the interference of the BS
shock waves emitted at the beginning and end of the charge motion. With-
out knowing that the CSW associated with the charge uniform motion in
the interval (−z0, z0) is absent in the approximate Tamm equations (2.26)
they concluded that the CSW is a result of the interference of the above
BS shock waves. We quote them:

Summing up, one can say that radiation of a charge moving with a
constant velocity along the limited section of its path (the Tamm prob-
lem) is the result of interference of two bremsstrahlungs produced in
the beginning and at the end of motion. This is especially clear when
the charge moves in vacuum where the laws of electrodynamics prohibit
radiation of a charge moving with a constant velocity.
In the Tamm problem the constant-velocity charge motion over the dis-
tance l between the charge acceleration and stopping instants in the
beginning and at the end of the path only affects the result of interfer-
ence but does not cause the radiation.
As was shown by Tamm [1] and it follows from our paper the radiation
emitted by the charge moving at a constant velocity over the finite
section of the trajectory l has the same characteristics in the limit l →
∞ as the VCR in the Tamm-Frank theory [6]. Since the Tamm-Frank
theory is a limiting case of the Tamm theory, one can consider the same
conclusion is valid for it as well.
Noteworthy is that already in 1939 Vavilov [10] expressed his opinion
that deceleration of the electrons is the most probable reason for the
glow observed in Cerenkov’s experiments.

(We have left the numeration of references in this citation the same as it
was in [14]).

We agree with the authors of [8,14] that the Tamm approximate for-
mulae (2.26),(2.29) and (2.31) can be interpreted as the interference be-
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tween two BS waves if by them we understand the mixture of three shock
waves mentioned above (the BS shock wave associated with the beginning
and the end of the motion and BS shock waves arising when the charge
velocity coincides with the velocity of light in the medium). The Tamm
angular intensity (2.29) is valid everywhere except for the angular interval
θ2 < θ < θ1, where θ1 and θ2 are defined by (2.40). For the observational
distances large compared with the interval of the motion (r � z0),

θ1 = arccos
1
βn

+ δθ and θ2 = arccos
1
βn

− δθ,

where δθ = ε0/βnγn, ε0 = z0/r. Although the angular region 2δθ tends
to zero for r � z0, the length of the arc corresponding to it is finite:
δL = 2z0/βnγn. On this part of the observational sphere the Tamm angular
intensity (2.29) is not valid.

Equation (2.64) defining the position of the maxima of field strengths in
the spectral representation is valid when the point charge moves with the
velocity v > cn in the finite spatial interval small compared with the radius
r of the observational sphere (z0 � r). When the value of z0 is comparable
or larger than r the pronounced maximum of the Fourier transforms of the
field strengths at the angle cos θ = 1/βn disappears. Instead, many maxima
of the same amplitude distributed over the finite region of space arise. In
particular, for the charge unbounded motion the mentioned above Fourier
transforms are highly oscillating functions of space variables distributed
over the whole space. It follows from the present consideration that Eq.
(2.64) (relating to the particular Fourier component) cannot be used for
the identification of the charge velocity if the motion interval is comparable
with the observational distance.

In the usual space-time representation the field strengths, in the absence
of dispersion, are singular in the spatial region ργn−z0 ≤ z ≤ ργn+z0 shown
in Fig. 2.4. When the dispersion is taken into account, many maxima in
the angular distribution of field strengths (in the space-time representation)
appear, but the main maximum is at the same position where the Cherenkov
singularity lies in the absence of dispersion (see Chapter 4).

It should be noted that doubts about the validity of the Tamm for-
mula (2.64) for the maximum of Fourier components were earlier pointed
out by D.V. Skobeltzyne [15]. We mean the so-called Abragam-Minkowski
controversy between the photon energy and its momentum.

2.4. Back to the original Tamm problem

In this section we reproduce the results of section (2.1) beginning with
the spectral representation. This allows us to analyse the approximations
involved.
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2.4.1. EXACT SOLUTION

Let a charge be at rest at the point z = −z0 up to an instant t = −t0. In
the time interval −t0 < t < t0 it moves with a constant velocity v. Finally,
after the instant t0 it is again at rest at the point z = z0. The corresponding
charge and current densities are

ρ(t) = eδ(x)δ(y)×

[δ(z + z0)Θ(−t − t0) + δ(z − z0)Θ(t − t0) + δ(z − vt)Θ(t + t0)Θ(t0 − t)],

�j = j�nz, j = vδ(z − vt)Θ(t + t0)Θ(t0 − t), t0 =
z0

v
.

Their Fourier transforms are

ρ(ω) =
1
2π

∫
ρ(t) exp(−iωt)dt = ρ1(ω) + ρ2(ω) + ρ3(ω),

j(ω) = vρ3(ω), (2.71)

where

ρ1(ω) = − e

2πiω
δ(z + z0)δ(x)δ(y)[exp(iωt0) − exp(iωT )],

ρ2(ω) = − e

2πiω
δ(z − z0)δ(x)δ(y)[exp(−iωT ) − exp(−iωt0)],

ρ3(ω) =
e

2πv
δ(x)δ(y)Θ(z + z0)Θ(z0 − z) exp(−iωz/v), j = vρ3.

In (2.71) the integration over t is performed from −T to T , where T > t0.
Later we take the limit T → ∞.

The electromagnetic potentials are equal to

Φ(ω) = Φ1(ω) + Φ2(ω) + Φ3(ω), A(ω) ≡ Az(ω) = εµβΦ3(ω), (2.72)

where

Φ1(ω) = − e

2πiωε
[exp(iωt0) − exp(iωT )]

exp(−iknR1)
R1

,

Φ2(ω) = − e

2πiωε
[exp(−iωT ) − exp(−iωt0)]

exp(−iknR2)
R2

,

Φ3(ω) =
e

2πvε

z0∫
−z0

dz′

R
exp(− iωz′

v
) exp(−iknR).
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Here R1 = [(z + z0)2 + ρ2]1/2, R2 = [(z − z0)2 + ρ2]1/2, R = [(z − z′)2 +
ρ2]1/2, kn = ω/cn, cn = c/n is the velocity of light in medium, n is its
refractive index.

These potentials satisfy the gauge condition

div �A +
εµ

c

∂Φ
∂t

= 0,

whilst
div �A +

εµ

c

∂Φ3

∂t
	= 0.

Thus Φ1 and Φ2 should be taken into account. Another argument for this
is to evaluate

Er = −∂Φ
∂r

− iω

c
Ar, Ar = A cos θ.

It is easy to check that Er decreases like 1/r2 for r → ∞, whilst it decreases
like 1/r if Φ is substituted by Φ3. Thus Φ1 and Φ2 are needed to guarantee
the correct asymptotic behaviour of electromagnetic field strengths (if we
evaluate �E according to �E = −∇Φ − iω �A/c).

We are primarily interested in the radial energy flux Sr ∼ EθHφ. In the
expression

Eθ = −1
r

∂Φ
∂θ

− iω

c
Aθ, Aθ = − sin θA

the first term in Eθ is the 1/kr part of the second term, and therefore it can
be disregarded (since in realistic conditions kr is about 107). Thus obtained
Eθ differs from the exact Eθ by terms of the order 1/kr.

To make clear the physical meaning of electromagnetic potentials (2.72),
we rewrite them in the time representation:

Φ(t) =
∫

exp(iωt)Φ(ω)dω, Φ(t) = Φ1(t) + Φ2(t) + Φ3(t),

Φ1(t) =
e

εr1
Θ[r1 − cn(t + t0)], Φ2(t) =

e

εr2
Θ[cn(t − t0) − r2],

Φ3(t) =
e

εv

z0∫
−z0

dz′

R
δ(t − z′

v
− knR), R = [(z − z′)2 + ρ2]1/2,

A(t) = εµβΦ3(t). (2.73)

When evaluating Φ1(t) and Φ2(t) it was taken into account that

∞∫
−∞

exp(iωx)dω/ω = iπsign(x).
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The following notation will be useful: the spheres r1 ≡ [ρ2 + (z + z0)2]1/2

and r2 ≡ [ρ2 + (z − z0)2]1/2 will be denoted by S1 and S2. We say that
a particular spatial point lies inside or outside S1 if r1 < cn(t + t0) and
r1 > cn(t + t0), respectively. And similarly for S2.

We see that Φ1(t) differs from zero outside the sphere S1, i.e., at those
points which are not reached by the information about the beginning of the
motion. Furthermore, Φ2(t) differs from zero inside the sphere S2, i.e., at
those points which are reached by the information about the termination of
the motion. Or, in other words, Φ1 and Φ2 describe the electrostatic fields
of a charge which is at rest at the point z = −z0 up to an instant t = −t0
(beginning of motion) and at the point z = z0 after the instant t = t0 (the
termination of motion). In what follows, electrostatic fields associated with
Φ1 and Φ2 will be denoted by E1 and E2, respectively. Obviously, Φ1 and
Φ2 coincide with the first two terms in (2.13).

To evaluate Φ3(t), we use the well-known relation

δ[f(z)] =
∑

i

δ(z − zi)
|f ′(zi)| ,

where the summation runs over all roots of the equation f(z) = 0 and

f ′(zi) =
df(z′)
dz′

|z=zi .

We should find the roots of the equation

t − z′

v
=

R

cn
, R = [(z − z′)2 + ρ2]1/2. (2.74)

Squaring this equation we obtain a quadratic equation relative to z′ with
the roots

z1 = γ2
n(vt − zβ2

n − βnrm), z2 = γ2
n(vt − zβ2

n + βnrm),

rm = [(z − vt)2 + (1 − β2
n)ρ2]1/2, γ2

n =
1

1 − β2
n

. (2.75)

Charge’s velocity is smaller than the velocity of light in medium
Consider first the case βn < 1. Then, only the root z1 satisfies (2.74) (the
appearance of the second root in (2.75) is because the quadratic equation
following from (2.74) can have roots which do not satisfy (2.74)). Now we
impose the condition −z0 < z′ < z0 which means that the motion takes
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Figure 2.15. Positions of shock waves for T = 3 and T = 12 in the exact Tamm problem
for the charge velocity (β = 0.5) smaller than the velocity of light in the medium. Here
T = ct/z0. The vector potential differs from zero between the solid lines for T = 3 and
between the dotted lines for T = 12; ρ and z are in units of z0. The interval of motion
and refractive index are: L = 0.5 cm and n = 1.5, respectively.

place on the interval (−z0, z0). It then follows from (2.74), that Φ3(t) 	= 0
for the spatial points lying inside S1 and outside S2:

Φ3(t) =
e

rmε
Θ[cn(t + t0) − r1]Θ[r2 − cn(t − t0)],

Az = βεµΦ3, t0 =
z0

v
, (2.76)

Physically, Φ3 describes the EMF of a charge moving on the interval (−z0, z0).
It differs from zero at those spatial points which obtained information on
the beginning of motion and did not obtain information on its termination.
It is easy to see that for βn < 1 the S2 sphere lies entirely inside S1, i.e.,
there are no intersections between them. The positions of S1 and S2 spheres
for two different instants of time are shown in Fig. 2.15. The region where
Φ3 	= 0 is between S1 and S2 belonging to the same t. Static fields Φ1 and
Φ2 lie outside S1 and inside S2, respectively.

Equation (2.76) coincides with the last term in Φ given by (2.13).

Charge’s velocity is greater than the velocity of light in medium
Now let βn > 1. Then Φ1, Φ2 and their physical meanings are the same as
for βn < 1. We now turn to Φ3. It is easy to check that the two roots satisfy
(2.74) if z < vt, and there are no roots if z > vt. We need further notation.
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Figure 2.16. Time evolution of shock waves in the exact Tamm problem for the charge
velocity (β = 1) greater than the velocity of light in medium. S1 and S2 are shock
waves radiated at the beginning and termination of motion, respectively. CSW is the
Cherenkov shock wave. The time T = 1 corresponds to the instant when the wave S2

arises (a). For larger times the CSW is tangential both to S1 and S2 and is confined
between the straight lines L1 and L2 (b,c). Part (d) of the figure is a magnified version of
(b). The vector potential is zero in region 2 lying inside S1 and S2 and in region 2 lying
outside S1 and S2 and above the CSW. Only one retarded time contributes in region 3
(lying inside S1 and outside S2) and in region 4 (lying inside S2 and outside S1). Two
retarded times contribute to region 5 lying outside S1 and S2 and below the CSW. Other
parameters are the same as in Fig. 2.15.

We denote by L1 and L2 the straight lines z = −z0+ρ|γn| and z = z0+ρ|γn|,
respectively (Fig. 2.16). We say that a particular point is to the left or right
of L1 if z < −z0+ρ|γn| or z > −z0+ρ|γn|, respectively. And similarly for L2.
Correspondingly, a particular point lies between L1 and L2 if −z0 +ρ|γn| <
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z < z0 + ρ|γn|. The straight lines L1 and L2 are inclined towards the
motion axis at the Cherenkov angle θCh = arccos(1/βn). The CSW is the
straight line z +ρ/|γn| = vt, perpendicular both to L1 and L2 straight lines
and enclosed between them. We observe that the denominators rm vanish
exactly for z + ρ/|γn| = vt, i.e., on the CSW. There are no other zeroes
of rm. We say also that a particular point lies under or above the CSW if
z + ρ/|γn| < vt or z + ρ/|γn| > vt, respectively.
We impose the condition for motion to be on the interval (−z0, z0). Then,
the first root exists in the following space-time domains (Fig. 2.16, d): i)
To the right of L2, it exists only outside S1 and inside S2; ii) Between L1

and L2, it exists outside S1 and under the CSW. The contribution of the
first root to Φ3 is:

Φ(1)
3 =

e

εrm
{Θ(z + z0 − ρ|γn|)Θ(z0 + ρ|γn| − z)Θ(t − z + ρ/|γn|

v
)

+Θ(z − z0 − ρ|γn|)Θ[cn(t − t0) − r2)]}Θ[r1 − cn(t + t0)]. (2.77)

The first term in (2.77) is singular on the CSW (since rm = 0 on it) enclosed
between the straight lines L1 and L2. The second term in (2.77) does not
contain singularities except for the point where S2(=BS2) meets with L2

and CSW .
Now we turn to the second root: i) To the left of the L1, it exists only

inside S1 and outside S2; ii) Between L1 and L2, it exists outside S2 and
under the CSW. Correspondingly, the contribution of the second root is

Φ(2)
3 =

e

εrm
{Θ(z + z0 − ρ|γn|)Θ(z0 + ρ|γn| − z)Θ(t − z + ρ/|γn|

v
)

+Θ(ρ|γn| − z − z0)Θ[cn(t + t0) − r1)]}Θ[r2 − cn(t − t0)]. (2.78)

Again, the first term in this expression is singular on the same CSW. while
the second term does not contain singularities except for the point where
S1(=BS1) meets with L1 and CSW .

The contribution of two roots to Φ3 is

Φ3 = Φ(1)
3 + Φ(2)

3 , Az(t) = βεµΦ3(t). (2.79)

This Φ3 coincides with Φm in (2.36). In Figs. 2.16 (a,b,c) there are shown
positions of S1, S2 and CSW shock waves at various instants of time. In
Fig. 2.16 (d), which is a magnified image of Fig. 2.16 (b), we see five regions
in which the EMF differs from zero. The region 1 lies outside S1 and S2 and
above the CSW. There is only the electrostatic field E1 there. In the region
2 lying inside S1 and S2 there is only the electrostatic field E2. In the region
3 lying inside S1 and outside S2 there is the EMF of a moving charge (only
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the second root contributes). In the region 4 lying inside S2 and outside
S1, there is EMF of a moving charge (only the first root contributes) and
electrostatic fields E1 and E2. Finally, in the region 5 lying outside S1 and
S2 and below the CSW, there is the EMF of a moving charge (both roots
contribute) and electrostatic field E1.

So far we have suggested that for t < −t0 and t > t0 a charge is at rest
at points z = −z0 and z − z0, respectively. However, usually, when dealing
with the Tamm problem, one uses only the vector potential describing the
charge motion on the interval (−z0 < z < z0). It is given by A = µεβΦ3.
One then evaluates the magnetic and electric fields using the relations µ �H =
curl�A and curl�H = iεkω�E valid in the spectral representation. In this case
the terms Φ1 and Φ2 drop out of consideration. There are then nonzero
electromagnetic potentials corresponding to the first root in region 4, the
second root in region 3, and first and second roots in region 5. In other
spatial regions potentials are zero. On the border of regions 3, 4 and 5 with
regions 1 and 2 potentials exhibit jumps, and therefore field strengths have
delta singularities.

Experimentalists insist that they measure �E(ω) and �H(ω) (in fact, they
detect photons with a definite frequency). It is just the reason that enabled
us to operate in preceding sections with the Fourier transforms �E(ω) and
�H(ω).

2.4.2. RESTORING VECTOR POTENTIAL IN THE SPECTRAL
REPRESENTATION

We turn now to the vector potential in the spectral representation given by
(2.72):

Az(ω) =
eµ

2πc

z0∫
−z0

dz′

R
exp

(
− iωz′

v

)
exp(−iknR).

This expression contains both the BS and Cherenkov radiation in an indivis-
ible form. On the other hand, the vector potential in the time representation
is

Az(t) = βεµΦ3(t),

where Φ3(t) is defined by (2.79). Equations (2.77)-(2.79) demonstrate that
contributions of the BS and Cherenkov radiation are unambiguously sepa-
rated. We now apply the inverse Fourier transformation to particular pieces
of Az(t) and try to separate the above contributions in the spectral repre-
sentation. But first, for pedagogical purposes we consider the case βn < 1.
The corresponding VP, in the time representation, is given by (2.76):

Az(t) =
eµβ

rm
Θ[cn(t + t0) − r1]Θ[r2 − cn(t − t0)].
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In the spectral representation, one gets

Az(ω) =
eµβ

2π

t0+r2/cn∫
−t0+r1/cn

dt

rm
exp(−iωt).

Making the change of the integration variable

t =
z

v
+

ρ

β|γn| sinhχ

one has

Az(ω) =
eµ

2πc
exp

(
− ikz

β

) χ2∫
χ1

dχ exp
(
− ikρ

β|γn| sinhχ

)
,

where χ1 and χ2 are defined by

sinhχ1 =
r1βn − z − z0

ρ
|γn|, sinhχ2 =

r2βn − z + z0

ρ
|γn|.

When the interval of motion is much larger than the observational distance,

sinhχ1 → −z0(1 − βn)
ρ

|γn| ≈ −∞, sinhχ2 → z0(1 − βn)
ρ

|γn| ≈ ∞

and
Az(ω) → eµ

πc
exp

(
− ikz

β

)
K0

(
kρ

β|γn|
)

.

We now apply the quasi-classical method for the evaluation of Az(ω). This
gives

Az(ω) =
ieµβ|γn|
2πckρ

(C2 − C1),

where
C1 =

1
cosh χ1

exp
[
− ik

β
(r1βn − z0)

]
,

C2 =
1

cosh χ2
exp

[
− ik

β
(r2βn + z0)

]
.

Now let βn > 1. Then according to (2.77)-(2.79) the VP consists of
three pieces defined in the spatial regions lying to the left of L1, to the
right of L2 and between L1 and L2 (Fig. 2.16):

Az(ω) = A(1)
z (ω) + A(2)

z (ω) + A(3)
z (ω),
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where

A(1)
z (ω) = Θ(z − z0 − ρ|γn|) eµ

2πc
exp

(
− ikz

β

) χ1∫
χ2

exp
(
− ikρ

β|γn| cosh χ

)
dχ,

A(2)
z (ω) = Θ(ρ|γn| − z − z0)

eµ

2πc
exp

(
− ikz

β

) χ2∫
χ1

exp
(
− ikρ

β|γn| cosh χ

)
dχ,

A(3)
z (ω) = Θ(ρ|γn| − z + z0)Θ(z + z0 − ρ|γn|) eµ

2πc
exp

(
− ikz

β

)

×
 χ1∫

0

+
χ2∫
0

 exp
(
− ikρ

β|γn| cosh χ

)
dχ,

where χ1 and χ2 are now defined as follows:

cosh χ1 =
βnr1 − z − z0

ρ
|γn|, cosh χ2 =

βnr2 − z + z0

ρ
|γn|.

In the quasi-classical approximation, one gets

A(1)
z (ω) = −Θ(z − z0 − ρ|γn|) ieµβ|γn|

2πckρ
exp

(
− ikz

β

)
(S2 − S1),

A(2)
z (ω) = Θ(ρ|γn| − z0 − z)

ieµβ|γn|
2πckρ

exp
(
− ikz

β

)
(S2 − S1),

A(3)
z (ω) = Θ(ρ|γn| − z + z0)Θ(z + z0 − ρ|γn|) eµ

2πc
exp

(
− ikz

β

)

×
 iβ|γn|

kr sin θ
(S1 + S2) + exp

(
−i

kρ

β|γn|
)

exp
(
− iπ

4

)√
2πβ|γn|
kr sin θ

 ,

where
S1 =

1
sinhχ1

exp
(
−i

kρ

β|γn| cosh χ1

)
,

S2 =
1

sinhχ2
exp

(
−i

kρ

β|γn| cosh χ2

)
.

For the observational distances much larger than the interval of motion,
one obtains (ε0 = z0/r)

cosh χ2 ≈ |γn|
sin θ

[βn − cos θ + ε0(1 − βn)],
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cosh χ1 ≈ |γn|
sin θ

[βn − cos θ − ε0(1 − βn)],

ε0 = z0/r, sinhχ1 ≈ sinhχ2 ≈ |γn|
sin θ

|1 − βn cos θ|,

Θ(z − z0 − ρ|γn|) ≈ Θ
(

cos θ − 1
βn

− ε0

β2
n|γn|2

)
,

Θ(ρ|γn| − z0 − z) ≈ Θ
(

1
βn

− ε0

β2
n|γn|2 − cos θ

)
Under these approximations, A

(1)
z (ω) and A

(2)
z (ω) coincide with the Tamm

VP (2.26), whilst A
(3)
z (ω) goes into

A(3)
z (ω) ≈ Θ

(
1

βn
+

ε0

β2
n|γn|2 − cos θ

)
Θ
(

cos θ − 1
βn

+
ε0

β2
n|γn|2

)

×{ eµβ

πckr
exp(−iknr)

sin[kz0(1 − βn cos θ)/β]
1 − βn cos θ

+
eµ

2πc
exp

(
− ikz

β

)
exp

(
− iπ

4

)√
2πβ|γn|
kr sin θ

exp
(
−i

kρ

β|γn|
)
}.

It is seen that the term A
(3)
z (ω) (which is absent in the Tamm vector poten-

tial (2.26)) differs from zero in a beam of width 2z0/βnγn. Another impor-
tant observation is that A

(1)
z (ω) and A

(2)
z (ω) decrease as 1/kr for kr → ∞,

whilst A
(3)
z (ω) decreases as 1/

√
kr.

The same result is obtained if one applies the WKB approximation for
the evaluation of Az entering into (2.72). In fact, the integral (2.49) defining
it has a stationary point z′ = z−ργn which lies within the interval (−z0, z0)
for θ2 < θ < θ1, to the left of (−z0) for θ > θ1 and to the right of (z0) for
θ < θ2. Here

cos θ1 =
1

βn

√
1 − ε2

0

β2
n|γ2

n|
− ε0

β2
n|γ2

n|
, cos θ2 =

1
βn

√
1 − ε2

0

β2
n|γ2

n|
+

ε0
β2

n|γ2
n|

.

It is easy to check that in the angular regions θ > θ1 and θ < θ2 only
the boundary points ∓z0 of the interval of motion contribute to BS shock
waves. On the other hand, in the angular region θ2 < θ < θ1 the stationary
point lying inside the interval of motion −z0 < z < z0 contributes to the
Cherenkov shock wave, whilst the boundary points (±z0) contribute to the
BS shock waves.

From the definition (2.49) of the magnetic vector potential in the spec-
tral representation it follows that all the points z′ of the interval of motion
(−z0, z0) contribute to it. In the time representation the factor δ(t− z′/v−
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knR) appears inside the integral. After integration over z′, one obtains Az(t)
given by (2.79) which differs from zero inside the spatial region bounded
by the BS and Cherenkov shock waves. The electromagnetic field strengths
have delta singularities on the borders of this region. Thus the integration
in (2.49) over the interval of motion in the spectral representation language
results in the appearance of BS and Cherenkov shock waves in the time
representation.

2.4.3. THE TAMM APPROXIMATE SOLUTION

The Tamm vector potential in the spectral representation is

AT(ω) =
eµ

πrnω(cos θ − 1/βn)
exp(−iknr) sin[knz0(cos θ − 1/βn)]. (2.80)

It is obtained from Az(ω) given by (2.72) when the conditions

z0 � r, kr � 1, and kz2
0/r � 1

are satisfied. Using (2.80) for the evaluation of field strengths and the radi-
ation intensity, one gets the famous Tamm formula (2.29) for the radiation
intensity. Going in (2.80) to the time representation, one gets

AT(t) =
eµ

rn| cos θ − 1/βn| [Θ
(

1
βn

− cos θ

)
· Θ(r − R1) · Θ(R2 − r)

+Θ
(

cos θ − 1
βn

)
· Θ(r − R2) · Θ(R1 − r)]. (2.81)

Here

R1 = cnt + z0(
1
βn

− cos θ), and R2 = cnt − z0(
1
βn

− cos θ).

Equation (2.81) is an extended version of (2.42). For βn < 1, (2.81) is
transformed into

AT(t) =
eµ

rn(1/βn − cos θ)
· Θ(r − R2)Θ(R1 − r), (2.82)

that is, at a fixed instant of time the electromagnetic field differs from zero
between two non-intersecting curves S1 and S2 defined by r = R1 and
r = R2, respectively. (Fig. 2.17 (a)).

On the other hand, for βn > 1

AT(t) =
eµ

rn(cos θ − 1/βn)
Θ(r − R1) · Θ(R2 − r) (2.83)
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Figure 2.17. (a): Time evolution of shock waves corresponding to the Tamm approx-
imate vector potential (2.82) for the charge velocity smaller than the velocity of light
in the medium. The Tamm vector potential differs from zero between two solid lines for
T = 2, between two dotted lines for T = 5, and between two dashed lines for T = 10;
(b): The same as in (a), but for the charge velocity greater than the velocity of light in
medium. The Tamm vector potential (2.83) and (2.84) differing from zero between two
solid lines for T = 4 and between two dotted lines for T = 10, is singular at the intersec-
tion of lines with the same T . The straight line passing through these singular points is
shown by a thick line. The energy flux propagates mainly along this straight line. Prob-
ably, the absence of CSW in this approximate picture has given rise to associate above
singularities with an interference (intersection) of BS shock waves. Other parameters are
the same as in Fig. 2.15.



76 CHAPTER 2

for cos θ > 1/βn and

AT(t) =
eµ

rn(1/βn − cos θ)
Θ(r − R2) · Θ(R1 − r) (2.84)

for cos θ < 1/βn. For βn > 1 the curves S1 and S2 are intersected at
cos θ = 1/βn.

The region in which AT(t) 	= 0 lies between S1 and S2 (Fig.2.17 (b)).
By comparing this figure with Fig. 2.16 we observe that the CSW shown
in Fig. 2.16 by the thick line and enclosed between the straight lines L1

and L2 degenerates into a point coinciding with the intersection of curves
1 and 2. These intersection points at different instants of time lie on the
same straight line L inclined towards the motion axis under the Cherenkov
angle cos θCh = 1/βn. The electromagnetic potentials and field strengths
are infinite on this line at the distance r = cnt from the origin, and therefore,
the major part of the energy flux propagates under the angle θCh towards
the motion axis (Fig. 2.17 (b)).

For βn > 1 the curves S1 and S2 are always intersected at large distances
(where the Tamm approximation holds). Probably this fact and the absence
of the CSW gave rise to a number of attempts [8,14] to interpret the Tamm
intensity (2.29) as the interference between BS shock waves emitted at the
boundary z = ±z0 points. The standard approach [1,4] associates (2.80)
and (2.81) with the radiation produced by a charge uniformly moving in
medium, in a finite spatial interval, with a velocity v > cn. We believe that
this dilemma cannot be resolved in the framework of the Tamm approxi-
mate solution (2.80).

The question arises of at which stage the CSW has dropped from the
vector potential (2.80)? We have seen above that it presents both in (2.73)
and (2.79). But (2.73) is just the Fourier transform of A(ω) defined in
(2.72). The Tamm vector potential (2.80) is obtained from the exact (2.72)
by changing R → r in the denominator and R → r−z′ cos θ in the exponent.
The first approximation is not essential if the observational distance is much
larger than the interval of motion. It is the second approximation that is
responsible for the disappearance of the CSW. The condition for the validity
of the second of these approximations is not valid in realistic cases. Exact
analytical and numerical calculations show that an enormous broadening
of the angular intensity spectrum takes place in the spectral representation
(see Chapter 5). In the time representation this broadening leads to the
appearance of the CSW enclosed between L1 and L2 straight lines shown
in Fig. 2.16. Equations similar to (2.76)-(2.79) were obtained in section
2.1 but without use the spectral representation (2.72) as an intermediate
step. The latter is needed to recover at what stage of approximations the
CSW drops out from consideration and to make a choice between opposite
interpretations of the Tamm formula for radiation intensity.
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Figure 2.18. A counter-example showing that in the exact Tamm model the presence of
two BS waves is not needed for the existence of the Cherenkov shock wave. In the time
interval −t0 < t < t0 there is a shock wave S1 arising at the beginning of motion and
the CSW. The S2 shock wave has still not appeared. Other parameters are the same as
in Fig. 2.15.

2.4.4. CONCRETE EXAMPLE SHOWING THAT THE CSW IS NOT
ALWAYS REDUCED TO THE INTERFERENCE OF BS SHOCK WAVES

In Fig. 2.18 there are shown positions of shock waves at the instant t = 0
lying inside the interval −t0 < t < t0. At this instant, the shock wave S1

associated with the beginning of motion has arisen, but S2 shock wave asso-
ciated with the termination of motion has not still appeared. In this figure
we see the part of a Cherenkov wave, enclosed between the motion axis
and S1, tangential to the latter and having a normal inclined at the angle
θCh = arccos(1/βn) toward the motion axis. Since the shock wave S2 is ab-
sent, the appearance of the CSW cannot be attributed to the interference
of the waves S1 and S2.

Therefore in the time representation the existence of the shock wave S2

is not needed for the appearance of the CSW. In some time interval the
CSW is enclosed between the motion axis and the shock wave S1. (Figs.
2.16 (a) and 2.18 ). As time advances, the shock wave S2 arises. For large
times the CSW is tangential to S1 and S2 and is enclosed between them
(Fig. 2.16, (b),(c),(d)).
Since the frequency distribution of the radiation intensity σr(ω) involves
integration over all times, all particular configurations shown in Fig. 2.16
contribute to σr(ω). Thus it is still possible to associate the Tamm problem
with the interference of S1 and S2 shock waves (one may argue that, since
all times contribute to the radiation intensity in the spectral representa-
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tion, the large times, when S1 and S2 shock waves are intersected, also
give a contribution to the frequency representation just mentioned). The
contribution of CSW is confined to the region

ρ|γn| − z0 < z < z0 + ρ|γn|,
degenerating (if one drops z0 in this expression) into the straight line in-
clined at the angle θc, cos θc = 1/βn towards the motion axis.

2.5. Schwinger’s approach to the Tamm problem

We begin with the continuity equation following from Maxwell equations

div�S +
∂

∂t
E = −�j �E. (2.85)

Here
�S =

c

4π
( �E × �H), E =

1
8π

(εE2 + µH2).

Integrating this equation over the volume V of the sphere S of radius r
surrounding a moving charge, one finds the following equation describing
the energy conservation∫

Srr
2dΩ +

∂

∂t

∫
EdV = −

∫
�j �EdV. (2.86)

Usual interpretation of this equation proceeds as follows (see, e.g., [16],
pp.276-277):

The first term on the left-hand side represents the electromagnetic en-
ergy flowing out of the volume V through the surface Sr, and the second
term represents the time rate of change of the energy stored by the elec-
tromagnetic field within V .

And further:
The right-hand side, on the other hand, represents the power supplied
by the external forces that maintain the charges in dynamic equilibrium.

Schwinger [17] identifies energy losses of a moving charge with the integral
in the r.h.s. of (2.85)

WS = −
∫

�j �EdV. (2.87)

Substituting �E = −�∇Φ − �̇A/c and integrating by parts one has

WS = −
∫

�j �EdV =
∫

�j(�∇Φ + �̇A/c)dV = −
∫

(div�j −�j �̇A/c)dV
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=
∫

(ρ̇Φ +�j �̇A/c)dV =
d

dt

∫
ρΦdV −

∫
(ρΦ̇ −�j �̇A/c)dV. (2.88)

By definition WS is the energy lost by a moving charge per unit time.
Schwinger discards the first term in the second line of (2.88) on the grounds
that

it is of an accelerated energy type.
The retarded and advanced electromagnetic potentials corresponding to
charge current densities ρ and �j are given by

Φret,adv =
1
ε

∫ 1
R

ρ(�r′, t′)δ(t′ − t ± R/cn)dV ′dt′

=
1

2πε

∞∫
−∞

dω
1
R

ρ(�r′, t′) exp[iω(t′ − t ± R/cn)]dV ′dt′,

�Aret,adv =
µ

c

∫ 1
R

�j(�r′, t′)δ(t′ − t ± R/cn)dV ′dt′

=
µ

2πc

∞∫
−∞

dω
1
R

�j(�r′, t′) exp[iω(t′ − t ± R/cn)]dωdV ′dt′, (2.89)

where ε and µ are the electric and magnetic permittivities, respectively;
R = |�r − �r′| and + and − signs refer to retarded and advanced potentials,
respectively. Furthermore, Schwinger represents retarded electromagnetic
potentials in the form

Φret =
1
2
(Φret + Φadv) +

1
2
(Φret − Φadv),

�Aret =
1
2
( �Aret + �Aadv) +

1
2
( �Aret − �Aadv) (2.90)

and discards the symmetrical part of these equations on the grounds that
the first part of (2.90), derived from the symmetrical combination of �Eret

and �Eadv, changes sign on reversing the positive sense of time and there-
fore represents reactive power. It describes the rate at which the electron
stores energy in the electromagnetic field, an inertial effect with which
we are not concerned. However, the second part of (2.90), derived from
the antisymmetrical combination of �Eret and �Eadv, remains unchanged
on reversing the positive sense of time and therefore represents resistive
power. Subject to one qualification, it describes the rate of irreversible
energy transfer to the electromagnetic field, which is the desired rate of
radiation.
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Correspondingly, electromagnetic potentials are reduced to

Φ = − 1
πε

∞∫
0

dω
1
R

ρ(�r′, t′) sin[ω(t′ − t)] sin(knR)dV ′dt′,

�A = − µ

πc

∞∫
0

dω
1
R

�j(�r′, t′) sin[ω(t′ − t)] sin(knR)dV ′dt′, kn =
ω

cn
. (2.91)

Substituting this into (2.88) we obtain

WS =
∞∫
0

P (ω, t)dω, (2.92)

where

P (ω, t) =
d2E

dtdω
= − ω

πε

∫
dV dV ′dt′

sin knR

R
cos ω(t − t′)

×
[
ρ(�r, t)ρ(�r′, t′) − 1

c2
n

�j(�r, t)�j(�r′, t′)
]

(2.93)

is the energy lost by a moving charge per unit time and per frequency unit.
The angular distribution P (�n, ω, t) is defined as

P (ω, t) =
∫

P (�n, ω, t)dΩ, (2.94)

where

P (�n, ω, t) =
d3E

dtdωdΩ
= − nω2

4π2cε

∫
dV dV ′dt′ cos ω

[
(t′ − t) +

1
cn

�n(�r − �r′)
]

×
[
ρ(�r, t)ρ(�r′, t′) − 1

c2
n

�j(�r, t)�j(�r′, t′)
]

(2.95)

is the energy lost by a moving charge per unit time, per frequency unit, and
per unit solid angle. Here �n is the vector defining the observational point.

Equations (2.93) and (2.95) were obtained by Schwinger [17]. We apply
them to the Tamm problem. In what follows we limit ourselves to dielectric
medium for which ε = n2.

2.5.1. INSTANTANEOUS POWER FREQUENCY SPECTRUM

For the Tamm problem treated, charge and current densities are given by

jz = evδ(x)δ(y)Θ(t + t0)Θ(t0 − t)δ(z − vt), ρ(�r, t) = eδ(x)δ(y)
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×[Θ(−t−t0)δ(z+z0)+Θ(t+t0)Θ(t0−t)δ(z−vt)+Θ(t−t0)δ(z−z0)]. (2.96)

Inserting these expressions into (2.93) and performing integrations, one gets

P (ω, t) = −ωe2

πε
[Θ(−t− t0)P1 +Θ(t− t0)P2 +Θ(t+ t0)Θ(t0− t)P3], (2.97)

where
P1 = −sin ω(t + t0)

cn
+

sin 2ωt0βn

2ωt0v
sin ω(t − t0)

+
1
2v

cos ω(t + t0){si[2t0ω(1 + βn)] − si[2t0ω(1 − βn)]}

+
1
2v

sin ω(t + t0)

{
1
2

ln
(

1 + βn

1 − βn

)2

+ ci[2ωt0|1 − βn|] − ci[2ωt0(1 + βn)]

}
,

P2 =
sin ω(t − t0)

cn
− sin 2ωt0βn

2vt0ω
sin ω(t + t0)

+
1
2v

cos ω(t − t0){si[2t0ω(1 + βn)] − si[2t0ω(1 − βn)]}

− 1
2v

sin ω(t− t0)

{
1
2

ln
(

1 + βn

1 − βn

)2

+ ci[2ωt0|1 − βn|] − ci[2ωt0ω(1 + βn)]

}
,

P3 = −sin ωβn(t + t0)
v(t + t0)

sin ω(t + t0)
ω

+
sin ωβn(t − t0)

v(t − t0)
sin ω(t − t0)

ω

−1 − β2
n

2v
{si[(1 − βn)ω(t0 − t)] − si[(1 + βn)ω(t0 − t)]

si[(1 − βn)ω(t0 + t)] − si[(1 + βn)ω(t0 + t)]}. (2.98)

Here si(x) and ci(x) are the integral sine and cosine. They are defined by
the equations

si(x) = −
∞∫
x

sin t

t
dt = −π

2
+

x∫
0

sin t

t
dt = −π

2
−

∞∑
k=1

(−1)k

(2k − 1)(2k − 1)!
x2k−1,

ci(x) = −
∞∫
x

cos t

t
dt = C +lnx−

x∫
0

1 − cos t

t
dt = C +lnx+

∞∑
k=1

(−1)k

2k(2k)!
x2k.

Here C ≈ 0.577 is Euler’s constant. For large and small x, si(x) and ci(x)
behave as

si(x) → −cos x

x
− sin x

x2
, ci(x) → sin x

x
− cos x

x2
for x → +∞,
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si(x) → −π +
cos x

|x| +
sin |x|

x2
for x → −∞,

si(x) → −π

2
+ x, ci(x) → C + lnx − x2

4
for x → 0.

The following relations

x∫
0

sin2 t

t
dt =

1
2
C +

1
2

ln 2|x| − 1
2
ci(2|x|), si(x) + si(−x) = −π

will be also useful.
The nonvanishing of P1 and P2 terms in (2.97) is because the Fourier

transforms of a static charge density corresponding to charge at rest prior
to the beginning of the charge motion (t < −t0) and after its termination
(t > t0) contribute to (2.93) and (2.95). To see this explicitly we write out
the Fourier transform of charge density (2.96):

ρ(�r, ω) =
1
2π

∞∫
−∞

exp(−iωt)ρ(�r, t)dt =

=
1
2π

eδ(x)δ(y)[δ(z + z0)
−t0∫

−∞
exp(−iωt)dt + δ(z − z0)

∞∫
t0

exp(−iωt)dt

+
1
v
Θ(z + z0)Θ(z0 − z) exp(−iωz/v)].

The first term in the r.h.s. corresponds to the charge which is at rest at
the point z = −z0 up to an instant t = −t0; the second term in the r.h.s.
corresponds to the charge which is at rest at the point z = z0 after the
instant t = t0. Finally, the third term corresponds to the charge moving
between −z0 and z0 points in the time interval −t0 < t < t0. It should be
noted that the first and second terms in this expression are Fourier densities
of a charge which is not permanently at rest at the points z = ±z0, but up
to a instant −t0 and after the instant t0, respectively. In fact, the Fourier
density corresponding to charge which is permanently at rest at the point
z = z0 is

e

2π
δ(z − z0)

∞∫
−∞

exp(iωt)dt = eδ(z − z0)δ(ω).

In the limit ωt0 → ∞ Eqs (2.98) pass into

P1 = − 1
cn

sin[ω(t + t0)]
(

1 − 1
2βn

ln
1 + βn

1 − βn

)
,
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P2 = +
1
cn

sin[ω(t − t0)]
(

1 − 1
2βn

ln
1 + βn

1 − βn

)
, P3 = 0

for βn < 1 and

P1 = − 1
cn

sin[ω(t + t0)]
(

1 − 1
2βn

ln
1 + βn

βn − 1

)
+

π

2v
cos ω(t +

z0

v
),

P2 =
1
cn

sin[ω(t − t0)]
(

1 − 1
2βn

ln
1 + βn

βn − 1

)
+

π

2v
cos ω(t − z0

v
),

P3 = −π

v
(β2

n − 1) (2.99)

for βn > 1. It is seen that the energy radiated during the time interval
−t1 < t < t1, t1 < t0 is equal to zero for βn < 1 and to 2ωve2t1(1 −
1/β2

n)/c2 for βn > 1. This coincides exactly with the VCR spectrum for the
unbounded charge motion (see, e.g., Frank’s book [1]). It should be noted
that expressions for P3 in (2.99) were obtained under the assumption that
the arguments of si and ci entering into P3 (see (2.98)) are sufficiently large,
that is, there should be ω(t0 − t) � 1. This means that P3 in (2.99) is valid
if the observational instant t is not too close to t0.
On the other hand, the terms P1 and P2 in (2.99) were obtained without
this assumption. In particular, the term P2 different from zero for t > t0
shows how the bremsstrahlung (BS) and VCR behave for t > t0, i.e., after
termination of the charge motion. Since the part of P2

1
cn

sin
[
ω

(
t − z0

v

)](
1 − 1

2βn
ln

βn + 1
|βn − 1|

)
is present both for βn < 1 and βn > 1, it may be associated with BS. On
the other hand, the part of P2

π

2v
cos

[
ω

(
t − z0

v

)]
that differs from zero only for βn > 1 may be conditionally attributed to
the Cherenkov post-action.

We observe that for t < −t0 and t > t0 (P1 and P2 terms in (2.97)), the
radiation intensity is a rapidly oscillating function of time t. The time aver-
age of this intensity is zero, so it could hardly be observed experimentally.
Since, on the other hand, for βn > 1 the term P3 in the radiation intensity
(2.97) does not depend on time in the time interval −t1 < t < t1 (t1 � t0),
it contributes coherently to the radiated energy.

To obtain the energy radiated for a finite time interval, one should in-
tegrate (2.97) over t. However, the arising integrals involve integral sine
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and cosine functions. Since we did not succeed in evaluating these integrals
in a closed form, we follow an indirect way in next sections. In subsec-
tion 2.5.2 we evaluate the instant angular-frequency distribution of the
radiated energy. Integrating it over time we obtain (subsect. 2.5.3) the
angular-frequency distribution of the energy radiated for a finite time in-
terval. Finally, integrating the latter over angular variables we obtain a
closed expression for the frequency distribution of the energy radiated for
a finite time interval (Sect. 2.5.4).

2.5.2. INSTANTANEOUS ANGULAR-FREQUENCY DISTRIBUTION OF
THE POWER SPECTRUM

Owing to the axial symmetry of the problem, �n(�r − �r′) = cos θ(z − z′) in
the integrand in (2.95), where θ is the inclination angle of �n towards the
motion axis. Integration over space-time variables in (2.95) gives

P (�n, ω, t) =
d3E

dtdωdΩ
= −ωe2β

2π2c

sin[ωt0(1 − βn cos θ)]
1 − βn cos θ

×[Θ(−t − t0)P1n + Θ(t − t0)P2n + Θ(t + t0)Θ(t0 − t)P3n]. (2.100)

Here
P1n = cos θ cos[ω(t + t0βn cos θ)],

P2n = cos θ cos[ω(t − t0βn cos θ)],

P3n = (cos θ − βn) cos[ωt(1 − βn cos θ)].

2.5.3. ANGULAR-FREQUENCY DISTRIBUTION OF THE RADIATED
ENERGY FOR A FINITE TIME INTERVAL

Integrating (2.100) over the observational time interval −t1 < t < t1, t1 <
t0, one obtains the Fourier distribution of the energy detected for a time
2t1 radiated by a charge moving in the time interval 2t0 (it is suggested
that the observational interval is smaller than the motion one):

E(�n, ω, t1) =
t1∫

−t1

P (�n, ω, t)dt

=
e2β

π2c
(βn − cos θ)

sin ωt0(1 − βn cos θ)
1 − βn cos θ

sin ωt1(1 − βn cos θ)
1 − βn cos θ

. (2.101)

Let ωt0 → ∞. Then

E(�n, ω, t1) → e2βωt1
πc

(
1 − 1

β2
n

)
δ

(
cos θ − 1

βn

)
. (2.102)
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This coincides with the angular-frequency distribution of the radiated en-
ergy in Tamm-Frank theory [11] describing the unbounded charge motion.
For cos θ = 1/βn Eq. (2.101) reduces to

E(�n, ω, t1) =
e2

πnc
(β2

n − 1)ω2t0t1.

It vanishes for βn = 1.
Let the observational time be greater than the charge motion interval

(t1 > t0). Then,

E(�n, ω, t1) =
e2β

π2c

sin[ωt0(1 − βn cos θ)]
1 − βn cos θ

×
[
βn sin2 θ

sin ωt0(1 − βn cos θ)
1 − βn cos θ

− cos θ sin ω(t1 − t0βn cos θ)
]

(2.103)

is the angular-frequency distribution of the energy detected for the time in-
terval 2t1 > 2t0. The first term in square brackets coincides with the Tamm
angular distribution (2.29). The second term originating from integration
of P1 and P2 terms in (2.100) describes the boundary effects. The phys-
ical reason for the appearance of the extra term in (2.103) (second term
in square brackets) is owed to the following reason. The magnetic field �H
is defined as the curl of VP (2.83). Tamm obtained electric field from the
Maxwell equation

curl �H =
ε

c

∂ �E

∂t

valid outside the interval of motion. In the ω representation this equation
looks like

curl �Hω =
iωε

c
�Eω.

This equation suggests that contribution of static electric field existing
before beginning of charge motion and after its termination has dropped
from the Tamm formula (2.29) (because VP (2.25) and magnetic field (2.26)
describe only the charge motion on the interval (−z0, z0)). On the other
hand, Schwinger’s equations (2.93) and (2.95) contain the static electric
field contributions of a charge which is at rest up to the instant t = −t0
and after the instant t = t0. They are responsible for the appearance of
extra term in (2.103). In the �r, t representation, the contribution of the
static electromagnetic field strengths is not essential in the wave zone.
Taking into account that

sin αx

x
→ πδ(x) and

1
α

(
sin αx

x

)2

→ πδ(x) for α → ∞, (2.104)
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one obtains from (2.103) for large ωt0

E(�n, ω, t1) =
e2

πcn
δ(1 − βn cos θ)[ωt0(β2

n − 1) − sin ω(t1 − z0

v
)]. (2.105)

For βn 	= 1 the second term inside the square brackets may be discarded,
and one obtains

E(�n, ω, t1) =
e2

πcn
ωt0(β2

n − 1)δ(1 − βn cos θ). (2.106)

For cos θ = 1/βn Eq. (2.103) is reduced to

E(�n, ω, t1) =
e2

πnc
(β2

n − 1)ω2t20 −
e2

πnc
ωt0 sin ω(t1 − t0).

It does not vanish at βn = 1. Equations (2.101) and (2.103) generalize the
Tamm angular-frequency distribution (2.29) for t1 	= t0.

2.5.4. FREQUENCY DISTRIBUTION OF THE RADIATED ENERGY

Let t0 > t1 (i.e., the detection time is smaller than the motion time).
Integrating (2.101) over the solid angle one finds the following expression
for the frequency distribution of the radiated power:

E(ω, t1) =
e2β

πc

(
1 − 1

β2
n

)
{cos(ω(t1 − t0)(1 − βn))

1 − βn
−cos(ω(t0 − t1)(1 + βn))

1 + βn

−cos(ω(t1 + t0)(1 − βn))
1 − βn

+
cos(ω(t1 + t0)(1 + βn))

1 + βn

+ω(t0 − t1)[si(ω(t0 − t1)(1 − βn)) − si(ω(t0 − t1)(1 + βn))]

−ω(t0 + t1)[si(ω(t0 + t1)(1 − βn)) − si(ω(t0 + t1)(1 + βn))]}

− e2

πεv
[ci(ω(t0 − t1)|1 − βn|) − ci(ω(t0 − t1)(1 + βn))

−ci(ω(t0 + t1)|1 − βn|) + ci(ω(t0 + t1)(1 + βn))]. (2.107)

Now let t1 > t0 (i.e., the detection time is greater than the motion time).
Then,

E(ω, t1) =
2e2β

πc
(βnI1 − I2), (2.108)

where

I1 =
∫

sin3 θdθ[
sinωt0(1 − βn cos θ)

1 − βn cos θ
]2 =

1
βn

(
1 − 1

β2
n

)
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×{sin2 ωt0(1 − βn)
1 − βn

−sin2 ωt0(1 + βn)
1 + βn

−ωt0[si(2ωt0(1−βn))−si(2ωt0(1+βn))]}

− 1
β3

n

[
ln

|1 − βn|
1 + βn

− ci(2ωt0|1 − βn|) + ci(2ωt0(1 + βn))
]

− 1
β2

n

− 1
4β3

nωt0
[sin(2ωt0(1 − βn)) − sin(2ωt0(1 + βn))],

I2 =
∫

sin θ cos θdθ
sinωt0(1 − βn cos θ) sinω(t1 − t0βn cos θ)

1 − βn cos θ

= − 1
4β2

nωt0
sin ω(t1 − t0)[cos(2ωt0(1 − βn)) − cos(2ωt0(1 + βn))]

− 1
βn

cos ω(t1−t0)− 1
4β2

nωt0
cos ω(t1−t0)[sin(2ωt0(1−βn))−sin(2ωt0(1+βn))]

− 1
2β2

n

sin ω(t1 − t0)[si(2ωt0(1 − βn)) − si(2ωt0(1 + βn))]

− 1
2β2

n

cos ω(t1 − t0)[ln
|1 − βn|
1 + βn

− ci(2ωt0|1 − βn|) + ci(2ωt0(1 + βn))].

The typical dependence of E on t0 for t1 fixed is shown in Fig. 2.19.
For large ωt0 and βn < 1, it oscillates around zero. For large ωt0 and

βn > 1, E oscillates around the value

2e2ωt1β

c

(
1 − 1

β2
n

)
,

given by the Tamm-Frank theory [1]. In both cases the amplitude of oscil-
lations decreases like 1/ωt0 for large t0. The typical dependence of E on t1
for t0 fixed is shown in Fig. 2.20.

Since I2 is a periodic function of t1 and I1 does not depend on t1, E
oscillates around the value 2e2β2nI1/πc. Previously the frequency distribu-
tion of the radiated energy in the framework of the Tamm theory was given
by Kobzev and Frank [18] and by Kobzev et al [19]. It is obtained by inte-
grating the Tamm angular distribution (2.29) over the angular variables:

dE
dω

=
2e2β

πc
(1 − 1

β2
n

){sin2 ωt0(1 − βn)
1 − βn

− sin2 ωt0(1 + βn)
1 + βn

−ωt0[si(2ωt0(1 − βn)) − si(2ωt0(1 + βn))]}

− 2e2

πcn2β

[
ln

|1 − βn|
1 + βn

− ci(2ωt0|1 − βn|) + ci(2ωt0(1 + βn))
]
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Figure 2.19. Energy E detected in a fixed time interval t1 as a function of the charge
motion time t0. For βn < 1, E oscillates around zero. For βn > 1 it oscillates around the
finite value (2.31). The amplitude of oscillations decreases like 1/ωt0 for a large time of
motion t0. E is given in units of e2/c, t0 in units of t1.

− e2

πcn2β

{
2βn +

1
2ωt0

[sin 2ωt0(1 − βn)) − sin 2ωt0(1 + βn))]
}

. (2.109)

This expression coincides with the first term in (2.108) which involves I1.
For large ωt0, (2.109) goes into the Tamm equations (2.29).

The frequency dependences of the energy radiated for the time t1 and
given by (2.108) are shown in Figs. 2.21 and 2.22. In Fig. 2.21 one sees the
frequency dependence for the case when the observational time 2t1 is twice
as small as the charge motion time 2t0. For βn < 1, the radiated energy is
concentrated near zero, while for βn > 1 it rises linearly with frequency

E ∼ 2e2ωt1β

c

(
1 − 1

β2
n

)
.

The frequency dependence for the case when the observational time 2t1 is
twice as large as the charge motion time 2t0 is shown in Fig. 2.22. For
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Figure 2.20. Energy E as a function of the detection time t1 for the fixed time of motion
t0. The time interval of motion t0 is fixed. For βn < 1 and βn > 1, E oscillates around
the Tamm values (2.5) and (2.6), respectively. Contrary to the previous figure, there is
no damping of oscillations. E is given in units of e2/c; t1, in units of t0.

βn < 1 the radiated energy oscillates around the Tamm value

2e2

πcβn2

(
ln

1 + βn

1 − βn
− 2βn

)
,

whilst for βn > 1 it again rises linearly but with a coefficient different from
the case t1 < t0:

E ∼ 2e2ωt0β

c
(1 − 1

β2
n

).

It is interesting to compare the frequency distribution (2.109) obtained
by integration the Tamm angular-frequency distribution over the solid angle
with its approximate version (2.31) given by Tamm. Equation (2.31) has
a singularity at β = 1/n, whilst (2.109) is not singular there. To see how
they agree with each other we present them and their difference (Fig. 2.23)
as a function of the velocity β for the parameters L = 2z0 = 0.1 cm and
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Figure 2.21. Frequency dependence of the radiated energy for t1/t0 = 0.5. E is given in
units of e2/c; ω, in units of 1/t0.

λ = 4 · 10−5 cm used above. It is seen that they coincide with each other
everywhere except for the closest vicinity of β = 1/n.

Large interval of motion
Let the observational time be less than the motion time (t1 < t0). Then,
for ω(t0 − t1) � 1, E(ω, t1) is very small for βn < 1. On the other hand, for
βn > 1,

E(ω, t1) =
2ωt1e

2β

c
(1 − 1

β2
n

). (2.110)

This coincides with the frequency distribution of the radiated energy during
the whole charge motion in the Frank-Tamm theory.

Let now the observational time be greater than the motion time (t1 >
t0). Then, for ωt0 � 1 (but t1 > t0) one finds

E(ω, t1) ≈ − 2e2

πcn
[2 − cos ω(t1 − t0)]

(
1 +

1
2βn

ln
1 − βn

1 + βn

)
(2.111)
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Figure 2.22. Frequency dependence of the radiated energy for t1/t0 = 2. E is given in
units of e2/c; ω, in units of 1/t0.

Figure 2.23. (a) Frequency distributions of the radiated energy (in e2/c units) given
by (2.109) and its simplified version (2.31) as functions of the charge velocity. They are
indistinguishable in this scale; (b) the difference between (2.31) and (2.109). The regions
where this difference is negative are shown by dotted lines; ∆β means β − 1/n.
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for βn < 1 and

E(ω, t1) ≈ 2e2β

πc
{πωt0(1 − 1

β2
n

)

− 1
βn

[2− cos ω(t1 − t0)]
(

1 +
1

2βn
ln

βn − 1
1 + βn

)
− π

2β2
n

sin ω(t1 − t0)} (2.112)

for βn > 1.
Non-oscillating parts of these expressions coincide with Eqs. (2.31) given

by Tamm. According to his own words, Eqs. (2.31)
are obtained by neglecting the fast-oscillating terms of the form sinωt0

(Tamm gives only Eqs.(2.31) without deriving them). On the other hand,
Eq.(2.109) obtained in [18,19] gives, in the limit ωt0 → ∞, the Tamm
expressions (2.31) with additional oscillating terms decreasing like 1/ωt0.

Since some terms in (2.107) and (2.108) depend on the parameters (1−
βn)(t0−t1) and (1−βn)(t0+t1), Eqs.(2.110)-(2.112) are not valid for βn ∼ 1
(this corresponds to Cherenkov’s threshold).

Frequency distribution at the Cherenkov threshold
Thus, the case βn = 1 needs a special consideration. One obtains

E(ω, t1) = − e2

πnc

[
ln

t0 − t1
t0 + t1

− ci(2ω(t0 − t1)) + ci(2ω(t0 + t1))
]

(2.113)

for t1 < t0. This expression tends to zero for t1 fixed and t0 → ∞.
On the other hand, for t1 > t0

E(ω, t1) =
2e2

πnc
{
[
1 − 1

2
cos ω(t1 − t0)

]
[C + ln(4ωt0) − ci(4ωt0)]

−[1 − cos ω(t1 − t0)]
[
1 − sin(4ωt0)

4ωt0

]
+ sin ω(t1 − t0)

×
[
1 − cos(4ωt0)

4ωt0
− π

4
− 1

2
sin(4ωt0)

]
}. (2.114)

The non-oscillating part of this expression coincides with that given by
Tamm [1]:

ET =
2e2

πnc
[C + ln(4ωt0) − 1].

On the other hand, Eq.(2.111) obtained by Kobzev and Frank for βn = 1
goes into

EKF =
2e2

πnc

[
C + ln(4ωt0) − 1 − ci(4ωt0) +

sin(4ωt0)
4ωt0

]
.



The Tamm Problem in the Vavilov-Cherenkov Radiation Theory 93

For (t1 − t0) fixed and t0 → ∞, Eq.(2.114) is reduced to

E(ω, t1) → 2e2

πnc
{
[
1 − 1

2
cos ω(t1 − t0)

]
[C + ln(4ωt0)] − 1+

cos ω(t1 − t0) − sin ω(t1 − t0)
[
π

4
+

1
2

sin(4ωt0)
]
}. (2.115)

In the limit t0 → ∞, EKF goes into ET plus oscillating terms decreasing like
1/ωt0.

The main result of this consideration is that the Schwinger approach
incorporates both Tamm-Frank and Tamm problems. The Tamm-Frank
results are obtained when the observational time t1 is smaller than the
charge motion time t0 and t0 → ∞. In particular, there is no radiation
when the charge velocity is smaller than the velocity of light in medium.
The radiated energy rises in direct proportion to the observational time
t1 for βn > 1. The Tamm problem is obtained when t1 > t0 and t0 (and
therefore t1) tends to ∞. The intensity oscillates around the Tamm value
for βn < 1 and rises in proportion to the time of charge motion t0 for
βn > 1.

2.6. The Tamm problem in the spherical basis

2.6.1. EXPANSION OF THE TAMM PROBLEM IN TERMS OF THE
LEGENDRE POLYNOMIALS

We need the expansion of the Green function

G = exp(iknR)/R, R = |�r − �r′|

in spherical coordinates. It is given by

G = 2
∑
m≥0

εm(2l + 1)
(l − m)!
(l + m)!

cos m(φ − φ′)

×Gl(r, r′)Pm
l (cos θ)Pm

l (cos θ′), (2.116)

where
Gl(r, r′) = iknjl(knr<)hl(knr>),

jl(x) =
√

π

2x
Jl+1/2(x) and hl(x) =

√
π

2x
H

(1)
l+1/2(x)

are the spherical Bessel and Hankel functions; Pm
l (x) is the adjoint Legen-

dre polynomial.
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Let a charge move in medium in a finite interval (−z0, z0) (this corre-
sponds to the so-called Tamm problem). The current density corresponding
to the Tamm problem, in cartesian coordinates is given by

jz(ω) =
e

2π
exp(iωz/v)δ(x)δ(y)Θ(z + z0)Θ(z0 − z).

We rewrite this in spherical coordinates:

jz(ω) =
e

4π2r2 sin θ

[
δ(θ) exp(

ikr

β
) + δ(θ − π) exp(− ikr

β
)
]
Θ(z0 − r).

Then on the sphere of the radius r > z0 one obtains

Az(ω) =
ieµkn

2πc

∑
(2l + 1)Plhl(knr)Jl(0, z0),

Hφ(ω) = − iek2n2

2πc

∑
P 1

l hl(knr)J̃l(0, z0),

Eθ(ω) = −ek2µn

2πc

∑
P 1

l Hl(knr)J̃l(0, z0). (2.117)

Here

Jl(0, z0) =
z0∫
0

jl(knr′)fl(r′)dr′, J̃l(0, z0) = Jl−1(0, z0) + Jl+1(0, z0),

fl(r′) = exp(
ikr′

β
) + (−1)l exp(

ikr′

β
),

Hl(x) = ḣl(x) +
hl(x)

x
=

1
2l + 1

[(l + 1)hl−1(x) − lhl+1(x)].

In (2.117) and further on, we omit the arguments of the Legendre poly-
nomials if they are equal to cos θ (θ is the observational angle). At large
distances (kr � 1)

Az ∼ eµ

2πcr
exp(iknr)

∑
(2l + 1)i−lPlJl(0, z0),

Hφ ∼ − ekn

2πcr
exp(iknr)

∑
i−lP 1

l J̃l(0, z0),

Eθ ∼ − ekµ

2πcr
exp(iknr)

∑
i−lP 1

l J̃l(0, z0).
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The distribution of the radiation intensity on the sphere of the radius r

d2E
dωdΩ

=
1
2
cr2(EθH

∗
φ + c.c.) =

e2k2nµ

4π2c
|
∑

i−lP1
l J̃l(0, z0)|2

=
e2k2nµ sin2 θ

4π2c
|
∑

(2l + 1)i−lPlJl(0, z0)|2. (2.118)

Or, in a manifest form,

d2E
dωdΩ

=
e2nµ

π2c
sin2 θ(S1 + S2)2. (2.119)

where

S1 =
∞∑
l=0

(−1)l(4l+1)P2l(cos θ)Ic
2l, S2 =

∞∑
l=0

(−1)l(4l+3)P2l+1(cos θ)Is
2l+1,

Ic
2l =

kz0∫
0

j2l(nx) cos(
x

β
)dx, Is

2l+1 =
kz0∫
0

j2l+1(nx) sin(
x

β
)dx. (2.120)

Integrating over the solid angle, one obtains the frequency distribution
of the radiation:

dE
dω

=
e2k2nµ

πc

∑ l(l + 1)
2l + 1

|J̃l(0, z0)|2

=
8e2nµ

πc
(Ic + Is), (2.121)

where
Ic =

∑ (l + 1)(2l + 1)
4l + 3

(Ic
2l + Ic

2l+2)
2

and
Is =

∑ l(2l + 1)
4l + 1

(Is
2l+1 + Is

2l−1)
2.

These equations are valid if the radius r of the observational sphere is
larger than z0. Eqs. (2.121) and (2.109) should coincide since the same
approximations were involved in their derivation. Numerical calculations
support this claim.

We concentrate now on the vector potential. For this we rewrite it as

Aω =
ieµn

πc

∞∑
l=0

(4l + 1)h2l(knr)P2l(cos θ)Ic
2l
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−eµn

πc

∞∑
l=0

(4l + 3)h2l+1(knr)P2l+1(cos θ)Is
2l+1 (2.122)

Usually observations are made at large distances (kr � 1). For example,
for λ = 4× 10−5 cm and r = 1 m, kr = 2πr/λ ∼ 107. Changing the Hankel
functions by their asymptotic values, one finds

Aω =
eµ

krπc
exp(iknr)(S1 + S2). (2.123)

Obviously vector potentials (2.123) and (2.26) are the same (since the same
approximations are involved in their derivation). Equating them one has

S1 + S2 =
1
n

sin[kz0n(cos θ − 1/βn)
cos θ − 1/βn

. (2.124)

Now we consider the coefficients Ic
2l and Is

2l+1. In the limit kz0 → ∞ the
integrals defining Ic and Is are:

Ic
2l =

∞∫
0

j2l(nx) cos(
x

β
)dx, Is

2l+1 =
∞∫
0

j2l+1(nx) sin(
x

β
)dx.

These integrals can be evaluated in a closed form (see, e.g., [20]). They are
given 0 for βn < 1 and

Ic
2l =

π

2n
(−1)lP2l(1/βn), Is

2l+1 =
π

2n
(−1)lP2l+1(1/βn)

for βn > 1. Substituting them into (2.122) one obtains

Aω =
eµ

2nkrc
exp(iknr)

×
[ ∞∑

l=0

(4l + 1)P2l(cos θ)P2l(
1

βn
) +

∞∑
l=0

(4l + 3)P2l+1(cos θ)P2l+1(
1

βn
)

]

=
eµ

2nkrc
exp(iknr)

∞∑
l=0

(2l + 1)Pl(cos θ)Pl

(
1

βn

)

=
eµ

nkrc
exp(iknr)δ

(
cos θ − 1

βn

)
. (2.125)

In deriving this, we used the relation

∞∑
l=0

(l + 1/2)Pl(x)Pl(x′) = δ(x − x′).
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Vector potential (2.125) coincides with the one entering (2.26’).

2.7. Short résumé of this chapter

What can we learn from this chapter?
1. The approximate Tamm formula (2.29) for the energy radiated by a
moving charge in a finite interval (−z0, z0) describes the interference of two
BS shock waves arising at the beginning and termination of motion and
does not describe the CSW properly. However, some reservation is needed.
In the next chapter the instantaneous velocity jumps of the original Tamm
problem will be replaced by the velocity linearly rising (or decreasing) with
time. It will be shown there that, in addition to the BS shock wave arising at
the beginning of the motion, two new shock waves arise at the instant when
the charge velocity coincides with the velocity of light in medium. Owing
to the instantaneous jump in velocity in the original Tamm problem, the
above three shock waves are created simultaneously. When discussing the
BS shock waves throughout this chapter, we implied the mixture of these
three shock waves.

2. The exact solution of the Tamm problem contains the Cherenkov
shock wave in addition to the BS shock waves. This Cherenkov shock
wave propagates between two straight lines L1 and L2 originating from
the boundary points ±z0 of the interval of motion and inclined at the angle
θc, cos θc = 1/βn towards the motion axis.

3. Applying the Schwinger approach to the solution of the Tamm prob-
lem, we have found that angular-frequency distributions of the energy ra-
diated by a moving charge depend not only on the interval of motion but
also on the observational time interval. This should be kept in mind when
discussing the experimental results.

4. We have made an expansion of the electromagnetic field and radi-
ation intensity corresponding to the Tamm problem in terms of Legendre
polynomials. This will be used in Chapter 7.
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CHAPTER 3

NON-UNIFORM CHARGE MOTION IN A
DISPERSION-FREE MEDIUM

3.1. Introduction

Although the Vavilov-Cherenkov effect is a well established phenomenon
widely used in physics and technology [1,2], many its aspects remain unin-
vestigated up to now. In particular, it is not clear how takes place a transi-
tion from the subluminal velocity régime to the superluminal régime. Some
time ago [3,4], it was suggested that alongside with the usual Cherenkov
and bremsstrahlung (BS) shock waves, the shock wave arises when the
charge velocity coincides with the light velocity in medium. The consid-
eration presented there was purely qualitative without any formulae and
numerical results. It was grounded on the analogy with phenomena oc-
curring in acoustics and hydrodynamics. It seems to us that this analogy
is not complete. In fact, the electromagnetic waves are pure transversal,
whilst acoustic and hydrodynamic waves contain longitudinal components.
Furthermore, the analogy itself cannot be considered as a final proof. This
fact and experimental ambiguity in distinguishing the Cherenkov radiation
from the BS [5] make us consider effects arising from the overcoming the
velocity of light barrier in the framework of the completely solvable model.
To be precise, we consider the accelerated straight line motion of the point
charge in medium and evaluate the arising electromagnetic field (EMF).
We prove the existence of the shock wave arising at the moment when a
charge overcomes the velocity of light barrier. This wave has essentially the
same singularity as the Cherenkov shock wave. It is much stronger than
the singularity of the bremsstrahlung shock wave. Formerly, the acceler-
ated motion of a point charge in a vacuum was considered by Schott [6].
However, his qualitative consideration was purely geometrical, not allowing
the numerical investigations. In the next sections the following definitions
will be used:

1) BS shock wave. By it we mean a singular wave arising at the beginning
or termination of a charge motion.

2) Shock wave originating when a charge velocity exceeds the velocity
of light in medium. By it we mean a singular wave emitted when the charge
velocity coincides the velocity of light in medium.
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3) Cherenkov shock wave. By it we mean the Cherenkov shock wave
attached to a moving charge.

Although these linear waves have some features typical of shock waves
(finite or infinite jumps of certain quantities on their boundaries), they are
not shock waves in the meaning used in hydrodynamics or gas dynamics
where these waves are highly nonlinear formations. This is valid especially
for the BS shock wave. However, for other two singular waves the linearity
is illusory. We demonstrate this using the Cherenkov shock wave as an ex-
ample. Consider a charge moving uniformly in vacuum with a velocity only
slightly smaller than that of light. Its EMF is completely different from the
Cherenkov radiation field. Now let this charge move with the same velocity
in medium. The moving charge interacts with atoms of medium, excites
and ionizes them. The EMFs arising from the electron transitions between
atomic levels, from the acceleration of secondary knocked out electrons,
all these fields being added give the Cherenkov radiation field. Obviously,
this is a highly nonlinear phenomenon and this, in turn, justifies the term
‘shock wave‘ used above. Usually, when considering the charge motion inside
medium one disregards ionization phenomena and takes into account only
excitations of atomic levels. The atomic electrons are treated as harmonic
oscillators. For non-magnetized substances one finds the Lorentz-Lorenz
formula in classical theory and the Kramers-Heisenberg dispersion formula
in quantum theory.

In the present approach we take the refractive index to be independent
of ω. This permits us to solve the problem under consideration explicitly.
The cost of disregarding the dependence of ω is the divergence of integrals
quadratic in Fourier transforms of field strengths (such as the total energy).
Physically, these infinities are owed to the infinite self-energy of a point-like
charge. To avoid divergences one should either make a cut-off procedure
integrating up to some maximal frequency [1], or consider a charge of a
finite size [7,8] (see also Chapter 7). Note that despite the infinite value of
the radiated energy (in the absence of ω dispersion) for a uniformly moving
charge with v > cn, the usual theory correctly describes the position and
propagation of the Cherenkov singularity. We believe that the approach
adopted here is also adequate for the description of space-time distributions
of EMF arising from accelerated motion of a charge.

3.2. Statement of the physical problem

Let a charged particle move inside the non-dispersive medium with polar-
izabilities ε and µ along the given trajectory �ξ(t). Then its EMF at the
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observational point (ρ, z) is given by the Liénard-Wiechert potentials

Φ(�r, t) =
e

ε

∑ 1
|Ri| ,

�A(�r, t) =
eµ

c

∑ �vi

|Ri| , div �A +
εµ

c
Φ̇ = 0. (3.1)

Here

�vi =

(
d�ξ

dt

)
|t=ti , Ri = |�r − �ξ(ti)| − �vi(�r − �ξ(ti))/cn

and cn is the velocity of light inside the medium (cn = c/
√

εµ). The sum-
mation in (3.1) is performed over all physical roots of the equation

cn(t − t′) = |�r − �ξ(t′)|. (3.2)

To preserve the causality, the time t′ of the radiation should be smaller
than the observational time t. Obviously, t′ depends on the coordinates �r, t
of the point P at which the EMF is observed. With the account of (3.2)
one finds for Ri

Ri = cn(t − ti) − �vi(�r − �ξ(ti))/cn. (3.3)

3.2.1. SIMPLEST ACCELERATED AND DECELERATED MOTIONS [9]

Consider the motion of the charged point-like particle inside the medium
with a constant acceleration 2a (thus our acceleration is one half of the
usual) along the Z axis:

ξ = at2. (3.4)

At first glance it seems that this equation describes the nonrelativistic mo-
tion. We analyze this question slightly later. The retarded times t′ satisfy
the following equation

cn(t − t′) = [ρ2 + (z − at′2)2]1/2. (3.5)

It is convenient to introduce the dimensionless variables

t̃ = at/cn, z̃ = az/c2
n, ρ̃ = aρ/c2

n. (3.6)

Then
t̃ − t̃′ = [ρ̃2 + (z̃ − t̃′2)2]1/2. (3.7)

In order not to overload the exposition, we drop the tilda signs:

t − t′ = [ρ2 + (z − t′2)2]1/2 (3.8)

For the case of treated one-dimensional motion the denominators Ri are
given by:

Ri =
c2
n

a
ri, ri = (t − ti) − 2ti(z − t2i ). (3.9)



102 CHAPTER 3

Eq. (3.8) can be reduced to the following equation of fourth degree

t′4 + pt′2 + qt′ + R = 0. (3.10)

Here p = −2(z + 1/2), q = 2t, R = r2 − t2.
We consider the following two problems:
I. A charged particle is at rest at the origin up to a moment t′ = 0. After

that, it is uniformly accelerated in the positive direction of the Z axis. In
this case only positive retarded times t′ are nontrivial.

II. A charged particle is uniformly decelerated moving from z = ∞
to the origin. After the moment t′ = 0 it is at rest there. Only negative
retarded times are nontrivial in this case.

It is easy to check that the moving charge acquires the velocity of light
cn at the instants tc = ±1/2 for the accelerated and decelerated motion,
respectively. The position of a charge at those instants is zc = 1/4.

It is our aim to investigate the space-time distribution of the EMF
arising from such particle motions.

We intend to solve Eq. (3.10). It is obtained by squaring Eq. (3.8). As
a result, extra false roots are possible. They are discarded on the following
physical grounds:

1) physical roots should be real;
2) physical roots should preserve causality. For this the radiation time

t′ should be smaller than the observational time t;
3) the treated accelerated motion takes place for t′ > 0. Negative values

of t′ = t−r correspond to a charge at rest at the origin. If amongst the roots
of (3.10) there occurs a negative one which does not coincide with t′ = t−r,
it should be discarded. Similarly, the treated decelerated motion takes place
for t′ < 0. Positive values of t′ = t − r correspond to a charge resting at
the origin. So if amongst the roots of (3.10) there occurs a positive one not
coinciding with t′ = t− r, it should be discarded. Here r =

√
x2 + y2 + z2.

These conditions define space-time domains in which the solutions of
Eqs. (3.8) and (3.10) exist.

Accelerated motion
For the first of the problems treated (uniform acceleration of the charge
which initially is at rest at the origin) the resulting configuration of the
shock waves for the typical case corresponding to t = 2 is shown in Fig. 3.1.
We see on it the Cherenkov shock wave C

(1)
M , the shock wave C

(1)
L closing

the Cherenkov-Mach cone and the sphere C0 representing the spherical
shock wave arising from the beginning of the charge motion. It turns out
that the surface C

(1)
L is approximated to a high accuracy by the part of

the sphere ρ2 + (z − 1/4)2 = (t− 1/2)2 (shown by the short dash curve C)
which corresponds to the shock wave emitted from the point z = 1/4 at the
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Figure 3.1. Distribution of the shock waves for a uniformly accelerated charge for t = 2.
The short dash curve C represents the spherical wave emitted from the point z = 1/4 at
the instant t = 1/2 when the accelerated charge overcomes the velocity of light barrier.

instant t = 1/2 when the velocity of the charged particle coincides with the
velocity of light in the medium. On the internal sides of the surfaces C

(1)
L

and C
(1)
M electromagnetic potentials acquire infinite values. On the external

side of C
(1)
M lying outside of C0 the electromagnetic potentials are zero (as

there are no solutions there). On the external sides of C
(1)
L and on the part

of the C
(1)
M surface lying inside C0 the electromagnetic potentials have finite

values (owing to the presence of BS shock waves there).
Consider the time evolution of the arising shock waves for the acceler-

ated motion of the charge beginning from the origin at the instant t = 0.
It is shown in Figs. 3.2 and 3.3. All the Cherenkov (Mach) cones shown
in Figs. 3.2 and 3.3 exist only for t > 1/2, z > 1/4. This means that the
observer placed in the spatial region with z < 1/4 will not see either the
Cherenkov shock wave or the shock wave originating from the overcoming
the velocity of light barrier in any instant of time. Only the shock wave C0

(not shown in these figures) associated with the beginning of the charge
motion reaches him at the instant cnt = r. Moreover, the aforementioned
shock waves (C(1)

L and C
(1)
M ) in the z > 1/4 region exist only if the distance

ρ from the Z axis satisfies the equation

ρ < ρc, ρc =
4

3
√

3

(
z − 1

4

)3/2

, z >
1
4
. (3.11)

Inside this region the observer sees at first the Cherenkov shock wave C
(1)
M .

Later he detects the BS shock wave C0 and the shock wave C
(1)
L associ-
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Figure 3.2. The positions of the Cherenkov shock wave C
(1)
M and the shock wave C

(1)
L

arising from the charge exceeding the velocity of light barrier for the accelerated charge
are shown for the instant t = 0.6 (left) and t = 0.75 (right). The short dash curve C
represents the spherical wave emitted from the point z = 1/4 at the instant t = 1/2 when
the accelerated charge overcomes the light barrier.

ated with the exceeding the velocity of light barrier at z = 1/4 at the time
t = 1/2 when the charge velocity is equal to cn. Outside the region defined
by (3.11) the observer sees only the BS shock wave C0 which reaches him
at the instant cnt = r. Furthermore, for t < 1/2 only one retarded solution
(t1) exists. It is confined to the sphere C0 of the radius r = cnt. Therefore
the observer in this time interval will not detect either the Cherenkov shock
wave or that of originating from the exceeding the velocity of light barrier.
The dimensions of the Cherenkov cones shown in Figs. 3.2 and 3.3 are zero
for t = 1/2 and continuously rise with time for t > 1/2. The physical rea-
son for this behaviour is that the shock wave C

(1)
L closing the Cherenkov

cone propagates with the velocity of light cn, while the head part of the
Cherenkov cone (i.e., the Cherenkov shock wave C

(1)
M ) attached to a moving

charge propagates with the velocity v > cn. In the gas dynamics the exis-
tence of at least two shock waves attached to the finite body moving with a
supersonic velocity was proved on the very general grounds by Landau and
Lifshitz [10], Chapter 13). In the present context we associate them with
the shock waves C

(1)
L and C

(1)
M .

Decelerated motion
Now we turn to the uniform deceleration of a charged particle. Let it move
along the positive z semi-axis up to an instant t = 0, after which it is at rest
at the origin. In this case only negative retarded times ti have a physical
meaning.
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Figure 3.3. The same as Fig. 3.2, but for t = 1, 1.5, and 2.

For the observational time t = 2 the resulting configuration of the shock
waves is shown in Fig. 3.4. We see the BS shock wave C0 arising from
the termination of the charge motion and the blunt shock wave C

(2)
L . Its

head part is described with a high accuracy by the sphere ρ2 +(z−1/4)2 =
(t+1/2)2 (shown by the short dash curve) corresponding to the shock wave
emitted from the point z = 1/4 at the instant t = −1/2 when the velocity
of the decelerated charged particle coincides with the velocity of light in
the medium. The electromagnetic potentials vanish outside of C

(2)
L (as no

solutions exist there) and acquire infinite values on the internal part of C
(2)
L

(owing to the vanishing of their denominators R1 and R2). Therefore the
surface C

(2)
L represents the shock wave. As a result, for t > 0, t′ < 0 one

has the shock wave C
(2)
L and the BS wave C0 arising from the termination

of the particle motion.
For the decelerated motion and the observational time t < 0 the physical

solutions exist only inside the Cherenkov cone C
(2)
M (Fig. 3.5). On its inter-

nal boundary the electromagnetic potentials acquire infinite values. On the
external boundary the electromagnetic potentials are zero (as no solutions
exist there). Thus for the case of decelerated motion and the observational
time t = −2 the physical solutions are contained inside the Cherenkov cone
C

(2)
M .
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Figure 3.4. Distribution of the shock waves for a uniformly decelerated charge for t = 2.
The short dash curve represents the spherical wave emitted from the point z = 1/4 at
the instant t = −1/2 when the accelerated charge overcomes the light barrier.

Figure 3.5. The same as Fig. 3.4, but for t = −2.
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Figure 3.6. Continuous transformation of the Cherenkov shock wave (1) into the blunt
shock wave (9) for the decelerated motion. The charge motion terminates at the point
z = 0 at the instant t = 0. The numbers 1-9 refer to the instants of time t = −2; −1.5;
−1; −0.5; 0; 0.5; 1; 1.5 and 2, respectively. Short dash curves represent the positions of
the spherical wave emitted from the point z = 1/4 at the instant t = −1/2 when the
velocity of the decelerated charge coincides with the velocity of light in medium.

For the decelerated motion the time evolution of shock waves is shown
in Fig. 3.6. The observer in the spatial region z < 0 detects the blunt shock
wave C

(2)
L first and the bremsstrahlung shock wave C0 later. It turns out

that the head part of this blunt wave coincides to a high accuracy with the
sphere ρ2 + (z − 1/4)2 = (t + 1/2)2 describing the spherical wave emitted
from the point z = 1/4 at the instant t = −1/2 when the charge velocity
coincides with cn. The observer in the z > 1/2 region detects the Cherenkov
shock wave C

(2)
M first and the bremsstrahlung shock wave C0 later. In order

not to hamper the exposition, we have not mentioned in this section the
continuous radiation which reaches the observer between the arrival of two
shock waves or after the arrival of the last shock wave. It is easily restored
from the above figures.

3.2.2. COMPLETELY RELATIVISTIC ACCELERATED AND
DECELERATED MOTIONS [11]

To avoid troubles arising from the nonrelativistic nature of the motion law
(3.4), we consider the motion of a point-like charge of rest mass m inside
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the medium according to the motion law [12]

z(t) =
√

z2
0 + c2t2 + C.

It may be realized in a constant electric field E directed along the Z axis:
z0 = |mc2/eE| > 0. Here C is an arbitrary constant. We choose it from the
condition z(t) = 0 for t = 0. Therefore

z(t) =
√

z2
0 + c2t2 − z0. (3.12)

This law of motion, being manifestly relativistic, corresponds to constant
proper acceleration [12]. The charge velocity is given by

v =
dz

dt
= c2t(z2

0 + c2t2)−1/2.

Clearly, it tends to the velocity of light in vacuum as t → ∞. The retarded
times t′ satisfy the following equation:

cn(t − t′) =

[
ρ2 +

(
z + z0 −

√
z2
0 + c2t′2

)2
]1/2

. (3.13)

It is convenient to introduce the dimensionless variables

t̃ = ct/z0, z̃ = z/z0, ρ̃ = ρ/z0. (3.14)

Then

α(t̃ − t̃′) =

[
ρ̃2 +

(
z̃ + 1 −

√
1 + t̃′2

)2
]1/2

, (3.15)

where α = cn/c = 1/n is the ratio of the velocity of light in medium to that
in vacuum. In order not to overload the exposition we drop the tilde signs

α(t − t′) =
[
ρ2 +

(
z + 1 −

√
1 + t′2

)2
]1/2

. (3.16)

For the treated one-dimensional motion the denominators Ri entering into
are (3.3) given by

Ri =
z0

α
√

1 + t2i

[
α2(t − ti)

√
1 + t2i − ti

(
z + 1 −

√
1 + t2i

)]
(3.17)
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It is easy to check that the moving charge acquires the velocity of light
cn in medium at the instants tl = ±α/

√
1 − α2 for the accelerated and

decelerated motion, respectively. The position of a charge at those instants
is zl = 1/

√
1 − α2 − 1.

It is our aim to investigate the space-time distribution of EMF arising
from such particle motions. For this we should solve Eq.(3.16). Taking its
square we obtain the fourth degree algebraic equation relative to t′. Solving
it we find space-time domains in which the EMF exists. It is just this way
of finding the EMF which was adopted in [9]. It was shown in the same
reference that there is another, much simpler, approach for recovering EMF
singularities (which was extensively used by Schott [6]). We seek the zeros
of the denominators Ri entering into the definition of the electromagnetic
potentials (3.1). They are obtained from the equation

α2(t − t′)
√

1 + t′2 − t′(z + 1 −
√

1 + t′2 ) = 0. (3.18)

We rewrite (3.16) in the form

ρ2 = α2(t − t′)2 − (z + 1 −
√

1 + t′2 )2. (3.19)

Recovering t′ from (3.18) and substituting it into (3.19) we find the surfaces
ρ(z, t) carrying the singularities of the electromagnetic potentials. They are
just the shock waves which we seek. It turns out that BS shock waves (i.e.,
moving singularities arising from the beginning or termination of a charge
motion) are not described by Eqs. (3.18) and (3.19). The physical reason
for this is that on these surfaces the BS field strengths, not potentials, are
singular [6]. The simplified procedure mentioned above for recovering mov-
ing EMF singularities is to find solutions of (3.18) and (3.19) and add to
them ‘by hand’ the positions of BS shock waves defined by the equation
r = αt, r =

√
ρ2 + z2. The equivalence of this approach to the complete

solution of (3.13) has been proved in [9] where the complete description of
the EMF (not only its moving singularities as in the present approach) of
a moving charge was given. It was shown there that the electromagnetic
potentials exhibit infinite (for the Cherenkov and the shock waves under
consideration) jumps when one crosses the above singular surfaces. Corre-
spondingly, field strengths have the δ type singularities on these surfaces
whilst the space-time propagation of these surfaces describes the propaga-
tion of the radiated energy flux.

In what follows we consider the typical case when the ratio α of the
velocity of light in medium to that in vacuum is equal to 0.8.

Accelerated motion
For the uniform acceleration of the charge resting at the origin up to t = 0
only positive retarded times ti have a physical meaning (negative ti corre-
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Figure 3.7. Typical distribution of the shock waves emitted by an accelerated charge.
CM is the Cherenkov shock wave, CL is the shock wave emitted from the point
zl = (1 − α2)−1/2 at the instant tl = α(1 − α2)−1/2 when the charge velocity coin-
cides with the velocity of light in medium. Part of it is described to good accuracy by
the fictitious spherical surface C (ρ2 + (z − zl)

2 = (t − tl)
2); C0 is the bremsstrahlung

shock wave originating from the beginning (at the instant t = 0) of the charge motion.

spond to a charge at rest at the origin). The resulting configuration of the
shock waves for the typical observational time t = 8 is shown in Fig. 3.7.
We see in it:

i) The Cherenkov shock wave CM having the form of the Cherenkov
cone;

ii) The shock wave CL closing the Cherenkov cone and describing the
shock wave emitted from the point zl = (1 − α2)−1/2 − 1 at the instant
tl = α(1−α2)−1/2 when the velocity of a charge coincides with the velocity
of light in medium;

iii) The BS shock wave C0 arising at the beginning of notion.
It turns out that the surface CL is approximated to good accuracy by

the spherical surface ρ2 + (z − zl)2 = (t − tl)2 (shown by the short dash
curve C). It should be noted that only the part of C coinciding with CL

has a physical meaning.
On the internal sides of the surfaces CL and CM electromagnetic po-



Non-uniform charge motion in a dispersion-free medium 111

c

c c

t = 2

t = 4

t = 8

α = 0 . 8

ρ

z

Figure 3.8. Time evolution of shock waves emitted by an accelerated charge. CM and
CL are respectively the usual Cherenkov shock wave and the shock wave arising at the
instant when the charge velocity coincides with the velocity of light in medium. Pointed
curves are bremsstrahlung shock waves.

tentials acquire infinite values. On the external side of CM lying outside
C0 the magnetic vector potential is zero (as there are no solutions of Eqs.
(3.18),(3.19) there), whilst the electric scalar potential coincides with that
of the charge at rest. On the external sides of CL and on the part of the
surface CM lying inside C0 the electromagnetic potentials have finite values
(as bremsstrahlung has reached these spatial regions).

In the negative z semi-space an experimentalist will detect only the BS
shock wave. In the positive z semi-space, for the sufficiently large times
(t > 2α/(1−α2)), an observer close to the z axis will detect the Cherenkov
shock wave CM first, the BS shock wave C0 later, and, finally, the shock
wave CL originating from the exceeding the velocity of light in medium.
For the observer more remote from the z axis the BS shock wave C0 arrives
first, then CM and finally CL (Fig. 3.7). For the larger distances from the
z axis the observer will see only the BS shock wave.

The positions of the shock waves for different observational times are
shown in Fig. 3.8. The dimension of the Cherenkov cone is zero for t ≤ tl
and continuously increases with time for t > tl. The physical reason for
this is that the CL shock wave closing the Cherenkov cone propagates with
the velocity of light cn, whilst the head part of the Cherenkov cone CM
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attached to a moving charge propagates with a velocity v > cn. It is seen
that for small observational times (t = 2 and t = 4) the BS shock wave
C0 (pointed curve) precedes CM. Later, CM reaches (this happens at the
instant t = 2α/(1 − α2)) and partly passes BS shock wave C0 (t = 8).
However, the CL shock wave is always behind C0 (as both of them propagate
with the velocity cn, but CL is born at the later instant t = tl ). A picture
similar to the t = 8 case remains essentially the same for later times.

Decelerated motion
Now we turn to the second problem (uniform deceleration of the charged
particle along the positive z semi-axis up to a instant t = 0 after which it
is at rest at the origin). In this case only negative retarded times ti have a
physical meaning (positive ti correspond to the charge at rest at the origin).

For an observational time t > 0 the resulting configuration of the shock
waves is shown in Fig. 3.9 where one sees the BS shock wave C0 arising
from the termination of the charge motion (at the instant t = 0) and the
blunt shock wave CM into which the CSW transforms after the termination
of the motion. The head part of CM is described to good accuracy by
the sphere ρ2 + (z − zl)2 = (t + tl)2 corresponding to the fictitious shock
wave C emitted from the point zl = (1 − α2)−1/2 − 1 at the instant tl =
−α(1− α2)−1/2 when the velocity of the decelerated charge coincides with
the velocity of light in medium. Only the part of C coinciding with CM

has a physical meaning. The electromagnetic potentials vanish outside CM

(as no solutions exist there) and acquire infinite values on the internal part
of CM. Therefore the surface CM represents the shock wave. As a result,
for the decelerated motion after termination of the particle motion (t > 0)
one has the shock wave CM detached from a moving charge and the BS
shock wave C0 arising from the termination of the particle motion. After
the C0 shock wave reaches the observer, he will see the electrostatic field
of a charge at rest and bremsstrahlung from remote parts of the charge
trajectory.

The positions of shock waves at different times are shown in Fig. 3.10
where one sees how the acute CSW attached to the moving charge (t = −2)
transforms into the blunt shock wave detached from it (t = 8). The pointed
curves mean the BS shock waves described by the equation r = αt (in
dimensional variables it has the form r = cnt). For the decelerated motion
and t < 0 (i.e., before termination of the charge motion) physical solutions
exist only inside the Cherenkov cone CM ( t = −2 on Fig. 3.10). On the
internal boundary of the Cherenkov cone the electromagnetic potentials
acquire infinite values. On their external boundaries the electromagnetic
potentials are zero (as no solutions exist there). When the charge velocity
coincides with cn the CSW leaves the charge and transforms into the CM
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α

ρ

Figure 3.9. Spatial distribution of the shock waves produced by a decelerated charge in
an uniform electric field. CM is the blunt shock wave into which the CSW transforms after
the charge velocity coincides with the velocity of light in medium. Part of it is approxi-
mated to good accuracy by the fictitious spherical surface C . C0 is the bremsstrahlung
shock wave originating from the termination of the charge motion at t = 0.

shock wave which propagates with the velocity cn (t = 2, 4 and 8 on Fig.
3.10). As has been mentioned, the blunt head parts of these waves are
approximated to a good accuracy by the fictitious surface ρ2 + (z − zl)2 =
(t + tl)2 corresponding to the shock wave emitted at the instant when the
charge velocity coincides with the velocity of light in the medium.

In the negative z half-space an experimentalist will detect the blunt
shock wave first and BS shock wave (short dash curve) later.

In the positive z half-space, for the observational point close to the z
axis the observer will see the CSW first and BS shock wave later. For larger
distances from the z axis he will see at first the blunt shock CM into which
the CSW degenerates after the termination of the charge motion and the
BS shock wave later (Fig. 3.10).

It should be mentioned about the continuous radiation which reaches the
observer between the arrival of the above shock waves, about the continuous
radiation and the electrostatic field of a charge at rest reaching the observer
after the arrival of the last shock wave. They are easily restored from the
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Figure 3.10. Continuous transformation of the acute Cherenkov shock wave attached
to a moving charge (t = −2) into the blunt shock wave detached from a charge (t = 8)
for the decelerated motion. The numbers at the curves mean the observational times.
Pointed curves are bremsstrahlung shock waves. Charge motion is terminated at t = 0.

complete exposition presented in [9] for the z = at2 motion law.
We have investigated the space-time distribution of the electromagnetic

field arising from the accelerated manifestly relativistic charge motion. This
motion is maintained by the constant electric field. Probably this field is
easier to create in gases (than in solids in which the screening effects are
essential) where the Vavilov-Cherenkov effect is also observed. We have
confirmed the intuitive predictions made by Tyapkin [3] and Zrelov et al.
[4] concerning the existence of the new shock wave (in addition to the
Cherenkov and bremsstrahlung shock waves) arising when the charge ve-
locity coincides with the velocity of light in medium. For the accelerated
motion this shock wave forms indivisible unity with Cherenkov’s shock
wave. It closes the Vavilov-Cherenkov radiation cone and propagates with
the velocity of light in the medium. For the decelerated motion the above
shock wave detaches from a moving charge when its velocity coincides with
the velocity of light in medium.

The quantitative conclusions made in [9] for a less realistic external
electric field maintaining the accelerated charge motion are also confirmed.
We have specified under what conditions and in which space-time regions
the above-mentioned new shock waves do exist. It would be interesting to
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observe these shock waves experimentally.

3.3. Smooth Tamm problem in the time representation

In 1939, Tamm [13] solved approximately the following problem: A point
charge is at rest at a fixed point of medium up to some instant t = −t0,
after which it exhibits an instantaneous infinite acceleration and moves
uniformly with a velocity greater than the velocity of light in that medium.
At the instant t = t0 the charge decelerates instantaneously and comes to
a state of rest. Later this problem was qualitatively investigated by Aitken
[14] and Lawson [15] and numerically by Ruzicka and Zrelov [5,16]. The
analytic solution of this problem in the absence of dispersion was found in
[17]. However, in all these studies the information concerning the transition
effects was lost owing to the instantaneous charge acceleration. The main
drawbacks of the original Tamm problem are instantaneous acceleration
and deceleration of a moving charge.

On the other hand, effects arising from unbounded accelerated and de-
celerated motions of a charge were considered in a previous section. It was
shown there that alongside with the bremsstrahlung and Cherenkov shock
waves, a new shock wave arises when the charge velocity coincides with cn.

The aim of this consideration is to avoid infinite acceleration and de-
celeration typical for the Tamm problem by applying methods developed
in [9,17]. For this aim we consider the following charge motion: a charge is
smoothly accelerated, then moves with a constant velocity, and, finally, is
smoothly decelerated (Fig. 3.11).

3.3.1. MOVING SINGULARITIES OF ELECTROMAGNETIC FIELD

Let a point charge move inside the medium with permittivities ε and µ
along the given trajectory �ξ(t). Its EMF at the observational point (ρ, z)
is then given by the Liénard-Wiechert potentials (3.1). Summation in (3.1)
runs over all physical roots of the equation (3.2). Obviously, t′ depends on
the coordinates �r, t of the observational point P .

To investigate the space-time distribution of the EMF of a moving
charge one should find (for the given observational point �r, t) the retarded
times from Eq.(3.2) and substitute them into (3.1).

There is another much simpler method (suggested by Schott [6]) for
recovering EMF singularities. We seek zeros of the denominators Ri entering
into the definition of electromagnetic potentials (3.1). They are obtained
from the equation

cn(t − t′) =
v(t′)
cn

(z − ξ(t′)), (3.20)
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Figure 3.11. Schematic presentation of the smooth Tamm model. Charge accelerates,
moves uniformly with a velocity v0, and decelerates in the time intervals (−t0,−t1),
(−t1, t1) and (t1, t0), respectively.

Combining (3.20) and (3.33) we find ρ(t′) and z(t′)

z = ξ(t′) +
c2

n2v
(t − t′), ρ =

c2(t − t′)
n2vγn

. (3.21)

Here γn = 1/
√

β2n2 − 1, β = v/c.

Our procedure reduces to the following one. For the fixed observation
time t, we vary t′ over the motion interval, evaluate z(t′) and ρ(t′) and
draw the dependence ρ(z) for the fixed t. Due to the axial symmetry of
the problem, this curve is in fact the surface on which the electromagnetic
potentials are singular. It follows from (3.21) that these singular surfaces
exist only if v > c/n, that is if the charge velocity is greater than the light
velocity in medium. There are other surfaces on which the EMF strengths
are singular and which are not described by (3.21). For example, on the
surfaces of the bremsstrahlung (BS) shock waves arising at the start or
the end of motion, the electromagnetic potentials exhibit finite jumps. The
corresponding EMF strengths have δ singularities on these surfaces.



Non-uniform charge motion in a dispersion-free medium 117

Moving singularity of the original Tamm problem
In the time interval −t0 < t′ < t0 (t0 = z0/v0) where a charge moves
uniformly with the velocity v0 equations (3.21) look like

ρ =
c2
n

v0γ0n
(t − t′), z = v0t

′ +
c2
n

v0
(t − t′). (3.22)

Here γ0n = 1/
√

v2
0/c2

n − 1. Excluding t′ from these equations one finds

ρ = (v0t − z)γ0n, (3.23)

where ρ and z are changed in the intervals

z0
1 < z < v0t, 0 < ρ <

c2
n

v0γ0n
(t + t0)

for −t0 < t < t0 and

z0
1 < z < z0

2 , ρ2 < ρ < ρ1

for t > t0. Here

z0
1 =

c2

v0n2
(t + t0) − z0, ρ1 =

c2

v0n2γ0n
(t + t0),

z0
2 =

c2
n

v0
(t − t0) + z0, ρ2 =

c2
n

v0γ0n
(t − t0).

We define the straight lines L1 (z = −z0 +ργn) and L2 (z = z0 +ργn) (Fig.
3.12 (a)). They originate from the ∓z0 points and are inclined at the angle
θc (cos θc = 1/β0n) towards the motion axis. It is seen that for each t > t0
the singular segment (3.23) enclosed between the straight lines L1 and L2

is perpendicular to both of them and coincides with the CSW defined in
Chapter 2. Its normal is inclined at the angle θc towards the motion axis.
As time goes, it propagates between L1 and L2. For −t0 < t < t0 the CSW
is enclosed between the moving charge and the straight line L1.

Smooth Tamm problem
In the smooth Tamm problem (Fig. 3.11) a charge is at rest at the spatial
point z = −z0 up to an instant t = −t0. In the space-time interval −t0 <
t < −t1, −z0 < z < −z1 (we refer to this interval as to region 1) it moves
with constant acceleration a

ξ(t′) = −z0 +
1
2
a(t′ + t0)2, v(t′) = a(t′ + t0).
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Figure 3.12. (a): The position of the shock waves in the original Tamm problem. BS1

and BS2 are the bremsstrahlung shock waves emitted at the beginning and the end of
the charge motion; CSW (thick straight line) is the Cherenkov shock wave; (b): The
position of the shock waves in the limiting case of the smooth Tamm problem (see Fig.
11) when the lengths of accelerated and decelerated parts of the charge trajectory tend to
zero. The thick curves SW1 and SW2 are the shock waves arising at the accelerated and
decelerated parts of the charge trajectory, respectively. Due to the instantaneous velocity
jumps, SW1 and SW2 partly coincide with the BS1 and BS2 shock waves, respectively.

In the space-time interval −t1 < t < t1, −z1 < z < z1 (region 2) it moves
with the constant velocity v0

ξ(t′) = v0t
′, v(t′) = v0.

In the space-time interval t1 < t < t0, z1 < z < z0 (region 3) a charge moves
with constant deceleration a down reaching the state of rest at t = t0:

ξ(t′) = z0 − 1
2
a(t′ − t0)2, v(t′) = a(t0 − t′).

The matching conditions of ξ(t′) and v(t′) at the z = ±z1 points define a, t0
and t1:

a =
v2
0

2(z0 − z1)
, t0 =

2z0 − z1

v0
, t1 =

z1

v0
.

Space region 1. In the space region 1 equations (3.21) are

z = −z0 +
1
2
a(t′ + t0)2 +

c2

n2v
(t − t′), ρ =

c2(t − t′)
n2vγn

, (3.24)
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where v = a(t′ + t0). It follows from this that the charge velocity coincides
with the velocity of light in medium cn = c/n at t′ = −tc, tc ≡ t0 − cn/a.
At this instant

ρc = ρ(t′ = −tc) = 0,

z(1)
c = z(t′ = −tc) = cnt − (1 − 1

β0n
)[z0 − 1

nβ0
(z0 − z1)]. (3.25)

For the observation time t smaller than the time −t1 corresponding the
right boundary of the motion interval 1, ρ(t′) has two zeroes (at t′ = tc and
t′ = t). There is a maximum between them (Fig. 3.13 (a)) at

t′ = t′m ≡ −t0 + (
cn

a
)2/3(t + t0)1/3. (3.26)

Obviously, tc < t′m < t. The corresponding ρ and z are equal to

ρm =
c2
n

a
{[a(t + t0)

cn
]2/3 − 1}3/2,

zm = −z0 +
c2
n

a
{3
2
[
a(t + t0)

cn
]2/3 − 1}. (3.27)

This solution coincides with the analytical solution found in [9] for the
semi-infinite motion beginning from the state of rest. The dependence ρ(z)
has a moon sickle-like form. This complex arises when the charge veloc-
ity coincides with the velocity of light cn in medium. It consists of the
curvilinear Cherenkov shock wave CSW attached to a moving charge and
the shock wave closing the Cherenkov cone. As time goes, the dimensions
of this complex rise (since a charge moves with the velocity v while SW1

propagates with the velocity cn).
For the observation time t greater than the time −t1, ρ has only one zero.

It has a maximum if −t1 < t < −t0 + 2(z0 − z1)v0/c2
n. The corresponding

t′m, ρm, and zm are given by (3.26) and (3.27). In the interval t′m < t′ < −t1,
ρ decreases reaching the value

ρ1 = ρ(t′ = −t1) =
c2

v0n2γn
(t + t1) (3.28)

at the boundary point of the motion interval. The corresponding z is equal
to

z̃1 = z(t′ = −t1) =
c2

v0n2
(t + t1) − z1. (3.29)

It is easy to check that z as a function of t′ has a minimum at t′ = t′m: it
decreases from z

(1)
c at t′ = −tc down to

zm = −z0 +
c2
n

a
{[a(t + t0)

cn
]2/3 − 1} (3.30)
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Figure 3.13. The position of shock waves in the smooth Tamm problem. (a,b,c) For
small and moderate observation times the singularity complex consists of the Cherenkov
shock wave (CSW) attached to a moving charge and the shock wave SW1 closing the
Cherenkov cone and inclined at the right angle towards the motion axis; (d) For large
observation times this complex detaches from a moving charge and propagates with the
velocity of light cn in medium. It consists of the CSW and the singular shock waves SW1

and SW2 perpendicular to the motion axis and arising at the accelerated and decelerated
parts of the charge trajectory.

at t′ = t′m and then increases up to z̃1 for t′ = −t1 (Fig. 3.13(b), dotted
line). For t > −t0+2(z0−z1)v0/c2

n there is no maximum of ρ(t′) which rises
steadily from 0 for t′ = tc up to ρ1 given by (5.5) for t′ = −t1 (Fig. 3.13(c),
dotted line). In particular, ρm = ρ1, zm = z̃1 for t = −t0 + 2(z0 − z1)v0/c2

n.
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Space region 2. In the time interval −t1 < t′ < t1 (t1 = z1/v0) where a
charge moves uniformly with the velocity v0 equations (3.21) look like

ρ =
c2
n

v0γ0n
(t − t′), z = v0t

′ +
c2
n

v0
(t − t′). (3.31)

Here γ0n = 1/
√

v2
0/c2

n − 1. Excluding t′ from these equations one finds

ρ = (v0t − z)γ0n, (3.32)

where ρ and z change in the intervals

z̃1 < z < v0t, 0 < ρ <
c2
n

v0γ0n
(t + t1)

for −t1 < t < t1 and

z̃1 < z < z2, ρ2 < ρ < ρ1

for t > t1. Here z̃1 and ρ1 are the same as above, and

z2 =
c2
n

v0
(t − t1) + z1, ρ2 =

c2
n

v0γ0n
(t − t1). (3.33)

It is seen that for each t > t1 the singular segment (3.33) is enclosed
between the straight lines L1 (ρ = (z + z1)/γ0n) and L2 (ρ = (z − z1)/γ0n)
originating from the boundary points of the interval 2 and inclined at the
angle θc (cos θc = 1/β0n) towards the motion axis (Fig. 3.13(d), solid line).
The singular segment (3.32) is a piece of the Cherenkov shock wave which
is enclosed between L1 and L2 and perpendicular to both of them. Its
normal is inclined at the angle θc towards the motion axis. As time goes,
it propagates between L1 and L2. For −t1 < t < t1 the singular segment
(3.32) is enclosed between the moving charge and the straight line L1 (Fig.
3.13 (c), solid line).

Space region 3. In the time interval t1 < t′ < t0 where a charge moves
with deceleration a equations (3.21) look like

z = z0 − 1
2
a(t′ − t0)2 +

c2

n2v
(t − t′), ρ =

c2(t − t′)
n2vγn

, (3.34)

where v = a(t0− t′). The charge velocity changes steadily from v0 at t′ = t1
down to 0 at t = t0. The above singularity surfaces exist only if cn < v < v0.
The charge velocity coincides with the velocity of light in medium cn = c/n
at t′ = tc. At this instant

ρc = ρ(t′ = tc) = 0,
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z(2)
c = z(t′ = tc) = cnt + (1 − 1

β0n
)[z0 − 1

β0n
(z0 − z1)]. (3.35)

The radius ρ(t′) vanishes at the position of a moving charge (t′ = t) for
t < tc and at t′ = tc for t > tc (Fig 3.13(d)). It is maximal at the start of
the third motion interval 3 (t′ = t1) where

ρ(t′ = t1) = ρ2, z(t′ = t1) = z2

(ρ2 and z2 are the same as in (3.33)).
A complete singular contour composed of its singular pieces defined

in the regions 1,2 and 3 is always closed for the fixed observation time
t. In fact, for −tc < t < −t1 the singular contour lies completely in the
region 1. It begins at the point z = z

(1)
c , ρ = 0 and ends at the point

ρ = 0, z = −z0 + a(t + t0)2/2 coinciding with the current charge position
(Fig. 3.13(a)). For −t1 < t < t1 the singular contour lies in the regions
1 and 2 (Figs. 3.13 (b,c)). Its branch lying in the region 1 begins at the
point z = z

(1)
c , ρ = 0 and ends at the point z = z̃1, ρ = ρ1. Its branch lying

in the region 2 begins at the point z = z̃1, ρ = ρ1 and ends at the point
z = v0t, ρ = 0 coinciding with the current charge position. For t > t1 the
singular contour lies in the regions 1,2 and 3 (Fig. 3.13(d)). Its branch in
region 1 is the same as above. Its branch lying in the region 2 begins at the
point z = z̃1, ρ = ρ1 and ends at the point z = z2, ρ = ρ2. Its branch lying
in the region 3 begins at the point z = z2, ρ = ρ2 and ends at the point
z = z

(2)
c , ρ = 0.

Transition to instantaneous velocity jumps
It is instructive to consider the limit z1 → z0 corresponding to the in-
stantaneous velocity jumps at the start and the end of the charge motion.
Intuitively it is expected that the original Tamm problem should appear in
this limit. Turning to (3.24) we observe that the second term entering into
z vanishes. In fact, it is equal to

1
2
a(t′ + t0)2 =

z0 − z1

β2n2

at t′ = −tc and
1
2
a(t′ + t0)2 =

z0 − z1

β2n2

at t′ = −t1 . Therefore, in the limit z1 → z0 it disappears at the boundaries
of the charge motion interval and, therefore, inside this interval since the
above term is a monotone function of t′. Then, (3.24) reduces to

z = −z0 +
2(z0 − z1)

β2
0n2

t − t0
t′ + t0

,
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ρ =
2(z0 − z1)

β2
0n2

t − t0
t′ + t0


[
nβ2

0c(t′ + t0)
2(z0 − z1

]2

− 1


1/2

. (3.36)

On the other hand, we cannot drop the terms with (z0 − z1) in (3.36) since
the denominator (t′ + t0) is of the same order of smallness. It is seen that
z = z

(1)
c , ρ = ρ

(1)
c = 0 at t′ = −tc and z = z̃1, ρ = ρ1 at t′ = −t1 Here

z(1)
c = cnt − z0(1 − 1

β0n
), z̃1 =

c2
n

v0
t − z0(1 − 1

β2
0n

), ρ1 =
c2
n

v0γ0n
(t + t0).

It follows from (3.36) that

ρ2 + (z + z0)2 = c2
n(t + t0)2 (3.37)

that coincides with the equation of the BS shock wave arising at the be-
ginning of the charge motion (BS1, for short). This singular contour (SW1

in Fig. 3.12 (b)) begins at the point z = z
(1)
c , ρ = ρ

(1)
c = 0 and ends at the

point z = z̃1, ρ = ρ1. It represents the shock wave arising when the charge
velocity coincides with the velocity of light in medium at the accelerated
part of the charge trajectory. The fact that SW1 and BS1 are described
by the same equation (3.37) is physically understandable since both these
waves, due to the instantaneous velocity jump, are created at the same
instant t = −t0, at the same space point z = −z0, and propagate with the
same velocity cn. It should be noted that the BS1 shock wave is distributed
over the whole sphere (3.37) while the singular shock wave SW1 fills only
its part.

The second part of the singular contour is the Cherenkov shock wave
(CSW in Fig. 3.12 (b)) extending from the point z = z̃1, ρ = ρ1 to the
point z = z2, ρ = ρ2. Here

z2 =
c2
n

v0
t + z0(1 − 1

β2
0n

), ρ2 =
c2
n

v0γ0n
(t − t0),

The third part of the singularity contour (SW2 in Fig. 3.12 (b)) begins at
the point z = z2, ρ = ρ2 and ends at z = z

(2)
c , ρ = ρ

(2)
c = 0. Here

z(2)
c = cnt + z0(1 − 1

β0n
).

This part of the singularity contour represents the shock wave arising at the
decelerated part of the charge trajectory. It is described by the equation

ρ2 + (z − z0)2 = c2
n(t − t0)2 (3.38)

coinciding with the equation of the BS2 shock wave emitted at the end
(t = t0, z = z0) of a charge motion. Again, the singularity fills only part of
the sphere (3.38).
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Now we discuss why the configuration of the shock waves in the limiting
case of the smooth Tamm problem (Fig. 3.12(b)) does not coincide with
that of the original Tamm problem (Fig. 3.12(a)). It was shown in [18,19]
that in the spectral representation the radiation intensity (for the fixed ob-
servation wavelength) of the smooth Tamm problem transforms into the
radiation intensity of the original Tamm problem when the length of the
trajectory along which a charge moves nonuniformly tends to zero. How-
ever, Figs. 3.12 ((a),(b)) describe the position of the EMF singularities at
the fixed moment of the observational time (or, in other words, Figs. 3.12
((a),(b)) correspond to the time representation). The time and spectral rep-
resentations of the EMF are related by the Fourier transformation. For an
arbitrary small but finite length l of the charge nonuniform motion in the
smooth Tamm problem, the contribution of the non-uniform motion to the
radiation intensity becomes essential and comparable with the contribution
of the uniform motion for high frequencies. This was clearly shown in [18,
20]. Thus, the appearance of additional shock waves in Fig. 3.12 (b) is due
to the contribution of high frequencies.

3.4. Concluding remarks for this chapter

What can we learn from this chapter?
1. For an accelerated charge motion beginning from a state of rest, the

bremsstrahlung shock wave arises at the start of the motion. When the
charge velocity coincides with the velocity of light cn in medium, the com-
plex arises consisting from two shock waves. One of them is the Cherenkov
shock wave inclined at the angle θc, (cos θc = 1/βn, β is the current
charge velocity) towards the motion axis. The other shock wave, closing
the Cherenkov cone behind it, is perpendicular to the motion axis. As time
advances, the dimensions of this complex grow.

2. For a decelerated motion terminating with the state of rest, the initial
Cherenkov shock wave is transformed into a blunt shock wave when the
charge velocity coincides with cn. This blunt shock wave detaches from a
charge and propagates with the velocity cn.

3. For the smooth Tamm problem consisting of accelerated, deceler-
ated and uniform motions, the bremsstrahlung shock wave arises at the
beginning of the motion. At the instant when the charge velocity coincides
with cn the above complex consisting of the Cherenkov shock wave and
the shock wave closing the Cherenkov cone appears. At the uniform part
of the charge motion this complex moves without changing its form (only
its dimensions grow). At the decelerated part of a charge trajectory the
slope of the Cherenkov shock wave towards the motion axis tends to π/2,
as the charge velocity approaches cn. At this instant the above complex
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detaches from the charge and propagates with the velocity cn. When the
charge motion terminates, the bremsstrahlung shock wave arises.
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CHAPTER 4

CHERENKOV RADIATION
IN A DISPERSIVE MEDIUM

4.1. Introduction

The radiation produced by fast electrons moving in medium was observed
by P.A. Cherenkov in 1934 [1]. Tamm and Frank [2] considered the motion
of a point charge in dispersive medium. They showed that a charge should
radiate when its velocity exceeds the velocity of light in medium cn. For the
frequency independent electric permittivity, the electromagnetic strengths
have δ-like singularities on the surface of the so-called Cherenkov (or Mach)
cone [3]-[6]. This leads to the divergence of the quantities involving the
product of electromagnetic strengths. In particular, this is true for the flux
of the EMF. There are some ways of overcoming this difficulty. Tamm and
Frank operated in the Fourier transformation. They integrated the energy
flux up to some maximal frequency ω0. The other way [7], widely used in
quantum electrodynamics, is to represent the square of the δ function as a
product of two factors: one is a δ function and other is the integral from
the exponent taken over the interval (−T, T ) with a subsequent transition
to the T → ∞ limit. Owing to the δ function, the second integral reduces
to 2T . Dividing both parts of the equation (in which the product of two δ
functions appears) by 2T , one obtains, e.g., the energy flux per unit time.

The goal of this consideration is to evaluate the electromagnetic field
(EMF) arising from the uniform motion of a charge in a non-magnetic
medium described by the frequency dependent one-pole electric permittiv-
ity

ε(ω) = 1 +
ω2

L

ω2
0 − ω2

. (4.1)

Equation (4.1) is a standard parametrization describing a lot of optical
phenomena [8]. It is valid when the wavelength of the electromagnetic field
is much larger than the distance between the particles of a medium on
which the light scatters. The typical atomic dimensions are of the order
a ≈ h̄/mcα, α = e2/h̄c, and m is the electron mass. This gives λ = c/ω � a
or ω � mc2α/h̄ ≈ 5 × 1018s−1. The typical atomic frequencies are of
the order ω0 ≈ mc2/h̄α2 ≈ 1016 s−1. Thus the integration region extends
well beyond ω0 [9]. For ω � ω0, ε(ω) ≈ 1, that is, atomic electrons have
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no enough time to be excited. Following the book [10] and review [11],
we extrapolate the parametrization (4.1) to all ω. This means that we
disregard the excitation of nuclear levels and discrete structure of scatterers.
According to Brillouin ([10], p. 20):

Also, we use the formulas of the dispersion theory in a somewhat more
general way than can be justified physically. Namely, we extend these
formulas to infinitesimally small wavelengths, while their derivation is
justified only for wavelengths large compared with the distance between
dispersing particles.

Sometimes in physical literature another representation of the dielectric
permittivity is used (known as the Lorentz-Lorenz or Clausius-Mossotti
formula (see, e.g., [9,10]):

ε′ =
1 + 2α(ω)/3
1 − α(ω)/3

= 1 +
ω2

L

ω′2
0 − ω2

, α(ω) =
ω2

L

ω2
0 − ω2

,

ω′2
0 = ω2

0 − ω2
L/3. (4.2)

It is generally believed that ε(ω) given by (4.1) describes optical properties
of media for which ε(ω) differs only slightly from unity (e.g., gases), whereas
ε′(ω) describes more general media (liquids, solids, etc.). We see that the
qualitative behaviour of ε and ε′ is almost the same if we identify ω0 and
ωL with ω′

0 and ωL, respectively. This permits us to limit ourselves to the
ε representation in the form (4.1).

So we intend to consider the effects arising from the charge motion in
medium with ε(ω) given by (4.1). This was partly done by E. Fermi in
1940 [12]. He showed that a charged particle moving uniformly in medium
with permittivity (4.1) should radiate at every velocity. He also showed
that energy losses as a function of the charge velocity are less than those
predicted by the Bohr theory [13]. However, Fermi did not evaluate the elec-
tromagnetic strengths for various charge velocities and did not show how
the transition takes place from the subluminal regime to the superluminal.
The Fermi theory was extended to the case of many poles case by Stern-
heimer [14] who obtained satisfactory agreement with experimental data.
Another development of the Fermi theory is its quantum generalization
[15]-[17].

In this consideration we restrict ourselves to the classical theory of the
Vavilov-Cherenkov radiation with electric permittivity given by (4.1) and
its complex analog. It is suggested that the uniform motion of a charge is
maintained by some external force the origin of which is not of interest for
us.

There are experimental indications [18]-[20] that a uniformly moving
charge radiates even if its velocity is less than the velocity of light in
medium. It seems that the present consideration supports this claim.



Cherenkov radiation in a dispersive medium 129

4.2. Mathematical preliminaries

Consider a point charge e moving uniformly in a non-magnetic medium
with a velocity v directed along the z axis. Its charge and current densities
are given by

ρ(�r, t) = eδ(x)δ(y)δ(z − vt), jz = vρ.

Their Fourier transforms are

ρ(�k, ω) =
∫

ρ(�r, t) exp[i(�k�r − ωt)]d3�rdt = 2πeδ(ω − �k�v),

jz(�k, ω) = vρ(�k, ω). (4.3)

In the (�k, ω) space the electromagnetic potentials are given by (see, e.g.,
[21])

Φ(�k, ω) =
4π

ε

ρ(�k, ω)
k2 − ω2

c2
ε
, Az(�k, ω) = 4πβ

ρ(�k, ω)
k2 − ω2

c2
ε
, β = v/c. (4.4)

Here ε(ω) is the electric permittivity of medium. Its frequency dependence
is chosen in a standard form (4.1). In the usual interpretation ωL and ω0

are the plasma frequency ω2
L = 4πNee

2/m (Ne is the number of electrons
per unit volume, m is the electron mass) and some resonance frequency,
respectively. Quantum mechanically, it can be associated with the energy
excitation of the lowest atomic level. Our subsequent exposition does not
depend on this particular interpretation of ωL and ω0. The static limit of
ε(ω) is

ε0 = ε(ω = 0) = 1 +
ω2

L

ω2
0

.

ε(ω) has poles at ω = ±ω0. Being positive for ω2 < ω2
0 it jumps from +∞ to

−∞ when one crosses the point ω2 = ω2
0; ε(ω) has zero at ω2 = ω2

3 = ω2
0+ω2

L
and tends to unity for ω → ∞. In Eq. (4.1) ε(ω) is negative for ω2

0 < ω2 < ω2
3

(Fig. 4.1,a). For the free electromagnetic wave this leads to its damping in
this ω region even for real ε(ω) (see, e.g., [10,22]).
It is seen that

ε−1(ω) = 1 − ω2
L

ω2
3 − ω2

has a zero at ω2 = ω2
0 and a pole at ω2 = ω2

3.
For the EMF radiated by a point charge moving uniformly in a dielectric

medium, the conditions for the damping are modified. It turns out that the
damping takes place for 1 − β2ε > 0. Otherwise (1 − β2ε < 0) there is
no damping. This corresponds to the Tamm-Frank radiation condition. We
now define domains where 1 − β2ε > 0 and 1 − β2ε < 0.
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Figure 4.1. (a): For a free electromagnetic wave propagating in medium the damping
region where ε < 0 corresponds to ω2

0 < ω2 < ω2
3 = ω2

0 +ω2
L; (b): For the electromagnetic

field radiated by a charge moving uniformly in medium with velocity v < vc, the damping
region where 1 − β2ε > 0 lies within the intervals 0 < ω < ωc and ω0 < ω < ∞; (c): For
the electromagnetic field radiated by a charge uniformly moving in medium with velocity
v > vc, the damping region where 1 − β2ε > 0 extends from ω = ω0 to ω = ∞.

For β < βc one has 1−β2ε > 0 for ω2 < ω2
c and ω2 > ω2

0 and 1−β2ε < 0
for ω2

c < ω2 < ω2
0 (Fig. 1,b). For β > βc one obtains 1−β2ε > 0 for ω2 > ω2

0

and 1 − β2ε < 0 for 0 < ω2 < ω2
0 (Fig. 1 c) . Here

βc = ε
−1/2
0 = 1/

√
1 + ω2

L/ω2
0, ωc = ω0

√
1 − ε̃,

ε̃ = β2γ2/β2
cγ2

c , γ2 = (1 − β2)−1, γ2
c = (1 − β2

c)−1.

In what follows, βc, despite its formal appearance and independence
of ω, will play an important role for the analysis of the EMF induced by
a charge moving in medium with a frequency dependent permittivity. We
apply Eq. (4.1) to the medium with βc = 0.75, n =

√
ε0 = 1/βc = 1.333.

The optical properties of this medium are close to those of water for which
n = 1.334. It is seen that βc changes from βc = 0 for N � 1 up to βc = 1
for N = 0. We refer to these limit cases as to optically dense and rarefied
media, respectively.

In the �r, t representation Φ(�r, t) and �A(�r, t) are given by

Φ(�r, t) =
e

πv

∫
dω

ε
eiω(t−z/v) kdk

k2 + (ω2/v2)(1 − β2ε)
J0(kρ).

Az(�r, t) =
e

πc

∫
dωeiω(t−z/v) kdk

k2 + (ω2/v2)(1 − β2ε)
J0(kρ). (4.5)
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The usual way of handling with these integrals is to integrate them first
over k. For this we use the Table integral (see, e.g., [23])

∞∫
0

kdk

k2 + q2
J0(kρ) = K0(ρq), (4.6)

where in the right hand side the value of square root
√

q2 corresponding to
its positive real part should be taken.

4.3. Electromagnetic potentials and field strengths

As was shown in [11], the inclusion of the ω dependencies in ε and ε′ ef-
fectively takes into account the retardation effects. The very fact that the
velocity of light in medium cn is less than the velocity of light in vacuum c
means that oscillators of medium react to the initial electromagnetic field
with some delay. The deviation of cn from c is owed to the deviation of ε
from unity. For the incoming plane wave and frequency independent ω this
was clearly demonstrated in [24]-[26]. At first glance it seems that cn will
be greater than c for ε < 1. However, a more accurate analysis shows [10]
that the group velocity of light in medium is always less than c.

To evaluate integrals entering into (4.5) one should satisfy the condition
Re

√
1 − β2ε > 0. It is satisfied automatically if 1 − β2ε > 0. In this case

the argument of the K0 function is (|ω|ρ/v)
√

1 − β2ε where the square root
means its arithmetic value. Now let 1−β2ε < 0. First, we consider the case
when ε has the imaginary part:

ε(ω) = 1 +
ω2

L

ω2
0 − ω2 + ipω

, p > 0. (4.7)

The positivity of p leads to poles of ε(ω) lying only in the upper complex
ω half-plane. This is required to satisfy the causality condition (for details
see [27]). Sometimes in physical literature [22] it is stated that the causality
condition is satisfied if the poles of ε(ω) lie in the lower ω half-plane. This
is because of a different definition of the Fourier transforms corresponding
to different signs of ω inside the exponentials occurring in (4.3). We are
now able to write out explicit expressions for electromagnetic potentials
and field strengths. In the cylindrical coordinates they are given by

Φ =
e

πv

∞∫
−∞

dω

ε
eiαK0(kρ), Az =

e

πc

∞∫
−∞

dωeiαK0(kρ),

Hφ = βDρ =
e

πc

∞∫
−∞

dωeiαkK1(kρ), Eρ =
e

πv

∞∫
−∞

dω

ε
eiαkK1(kρ),
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Ez = − ie

πc2

∞∫
−∞

dωω(1 − 1
β2ε

)eiαK0(kρ),

Dz =
ie

πv2

∞∫
−∞

dωω(1 − β2ε)eiαK0(kρ). (4.8)

Here α = ω(t − z/v), k2 = (1 − β2ε)ω2/v2. Again, k in Eq.(4.8) means
the value of

√
k2 corresponding to Rek > 0.

These expressions were obtained by Fermi [12]. Their drawback is that
modified Bessel functions K are complex even for real ε (when 1−β2ε < 0).
We intend now to present Eqs. (4.8) in a manifestly real form. This greatly
simplifies calculations. We write 1 − β2ε in the form

1 − β2ε = a + ib =
√

a2 + b2(cos φ + i sin φ) (4.9)

where

a = 1 − β2 − β2ω2
L

ω2
0 − ω2

(ω2
0 − ω2)2 + p2ω2

, b = β2ω2
L

ωp

(ω2
0 − ω2)2 + p2ω2

,

cos φ =
a√

a2 + b2
, sin φ =

b√
a2 + b2

.

Now we take the square root of 1 − β2ε. The positivity of Re
√

1 − β2ε
defines it uniquely:√

1 − β2ε = (a2 + b2)1/4(cos
φ

2
+ i sin

φ

2
),

cos
φ

2
=

1√
2
(1 +

a√
a2 + b2

)1/2, sin
φ

2
=

1√
2

b

|b|(1 − a√
a2 + b2

)1/2. (4.10)

Thus the argument of K functions entering into (4.8) is

ρ
|ω|
v

(a2 + b2)1/4
(

cos
φ

2
+ i sin

φ

2

)
. (4.11)

Although the integrands in (4.8) are complex, the integrals defining elec-
tromagnetic potentials and strengths are real. This is due to the fact that
ε(−ω) = ε∗(ω).

We now take the limit p → 0+. Let 1 − β2ε > 0 in this limit. Then
a > 0, b → 0, cos(φ/2) → 1, sin(φ/2) → 0, and

√
1 − β2ε coincides with

its arithmetic value. Now let 1− β2ε < 0. Then, a < 0, b → 0, cos(φ/2) →
0, sin(φ/2) → b/|b| and

√
1 − β2ε = i

√|1 − β2ε| sign(ω). (it has been taken
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into account that p > 0). This shows that the functions K entering into
the right hand side of Eq. (4.8) reduce to

K0

(
iρ
|ω|
v

√
|1 − β2ε|

)
= − iπ

2
H

(2)
0

(
ρ
|ω|
v

√
|1 − β2ε|

)
,

K1

(
iρ
|ω|
v

√
|1 − β2ε|

)
= −π

2
H

(2)
1

(
ρ
|ω|
v

√
|1 − β2ε|

)
for ω > 0 and

K0

(
−iρ

|ω|
v

√
|1 − β2ε|

)
=

iπ

2
H

(1)
0

(
ρ
|ω|
v

√
|1 − β2ε|

)
,

K1

(
−iρ

|ω|
v

√
|1 − β2ε|

)
= −π

2
H

(1)
1

(
ρ
|ω|
v

√
|1 − β2ε|

)
for ω < 0. Now we are able to write out electromagnetic potentials and
field strengths in a manifestly real form. For β < βc one finds

Φ(�r, t) =
2e

πv

 ωc∫
0

+
∞∫

ω0

 dω

ε
cos αK0 +

e

v

ω0∫
ωc

dω

ε
(sin αJ0 − cos αN0) ,

Az(�r, t) =
2e

πc

 ωc∫
0

+
∞∫

ω0

 dω cos αK0 +
e

c

ω0∫
ωc

dω (sin αJ0 − cos αN0) , (4.12)

Hφ(�r, t) =
2e

πcv

 ωc∫
0

+
∞∫

ω0

ωdω
√
|1 − β2ε| cos αK1

+
e

cv

ω0∫
ωc

ωdω
√
|1 − β2ε| (sinαJ1 − cos αN1) ,

Ez =
2e

πc2

 ωc∫
0

+
∞∫

ω0

(
1 − 1

εβ2

)
ωdω sin αK0

− e

c2

ω0∫
ωc

(
1 − 1

εβ2

)
ωdω(N0 sin α + J0 cos α),

Eρ =
2e

πv2

 ωc∫
0

+
∞∫

ω0

 dω
ω

ε

√
|1 − β2ε| cos αK1
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+
e

v2

ω0∫
ωc

dω
ω

ε

√
|1 − β2ε|(sinαJ1 − cos αN1).

On the other hand, for β > βc

Φ(�r, t) =
2e

πv

∞∫
ω0

dω

ε
cos αK0 +

e

v

ω0∫
0

dω

ε
(sin αJ0 − cos αN0),

Az(�r, t) =
2e

πc

∞∫
ω0

dω cos αK0 +
e

c

ω0∫
0

dω(sin αJ0 − cos αN0), (4.13)

Hφ(�r, t) =
2e

πcv

∞∫
ω0

ωdω
√
|1 − β2ε| cos αK1+

+
e

cv

ω0∫
0

ωdω
√
|1 − β2ε|(sin αJ1 − cos αN1),

Ez =
2e

πc2

∞∫
ω0

(
1 − 1

εβ2

)
ωdω sin αK0

− e

c2

ω0∫
0

(
1 − 1

εβ2

)
ωdω(N0 sin α + J0 cos α),

Eρ =
2e

πv2

∞∫
ω0

dω
ω

ε

√
|1 − β2ε| cos αK1

+
e

v2

ω0∫
0

dω
ω

ε

√
|1 − β2ε| (sinαJ1 − cos αN1) .

Here α = ω(t − z/v). The argument of all the Bessel functions is√
|1 − β2ε|ρω/v.

We observe that integrals containing usual (J, N) and modified (K) Bessel
functions are taken over spatial regions where 1−β2ε < 0 and 1−β2ε > 0,
respectively. Consider particular cases of these expressions.

For ωL → 0 we obtain: ε → 1, βc → 1, ωc → ω0,

Φ =
2e

πv

∞∫
0

dω cos αK0(
ρω

vγ
) =

e

[(z − vt)2 + ρ2/γ2]1/2
,
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Az = βΦ, γ = 1/
√

1 − β2

i.e., we obtain the field of a charge moving uniformly in vacuum.
Let v → 0. Then ωc = ω0 and

Φ =
2e

πε0

∞∫
0

dω cos(
ωz

c
)K0(

ρω

c
) =

e

ε0

1√
ρ2 + z2

, Az = 0

i.e., we obtain the field of a charge resting in medium.
Let ω0 → ∞, ωL → ∞,, but ωL/ω0 is finite. Then

ωc = ω0

√
1 − β2γ2ω2

L/ω2
0 → ∞, ε(ω) → ε0

and

Φ =
2e

πvε0

∞∫
0

dω cos αK0

(
ρω

v

√
1 − β2ε0

)

=
e

ε0

1
[(z − vt)2 + ρ2/γ2

n]1/2
, Az = βε0Φ

for β < βc and

Φ =
e

vε0

∞∫
0

dω(sin αJ0 − cos αN0)

=
2e

ε0

1
[(z − vt)2 − ρ2/γ2

n]1/2
Θ(vt − z − ρ/γn), Az = βε0Φ

for β > βc. Here γn = 1/
√|1 − β2

n|, βn = v/cn, cn = c/
√

ε0. Thus, we
arrive at a charge motion in a medium with a constant electric permittivity
ε = ε0. It is seen that the EMF has the form of an oblate ellipsoid for β < βC

and the Mach (or Cherenkov) cone with its vertex at the charge current
position for β > βc (Fig. 4.2). Electromagnetic potentials are zero outside
the Cherenkov cone (z > vt−ρ/γn), singular at its surface (z = vt−ρ/γn),
and decrease as 1/r inside the Cherenkov cone (z < vt − ρ/γn). It should
be stressed that the integration over the whole range of ω is required for
obtaining correct limit expressions and for guaranteeing the reversibility of
the Fourier transformation.

The distributions of the magnetic field strength Hφ as a function of z
on the surface of a cylinder Cρ of the radius ρ are shown in Figs. 4.3-4.5 for
ε given by (4.1). If the dependence ε of ω were neglected (ε(ω) = ε0), then
for β > βc = 1/n the electromagnetic field would be confined to the interior
of the Cherenkov cone with the solution angle 2θc, sin θc = βc/β = 1/βn
(Fig. 4.2). This means that on the surface of Cρ the electromagnetic field
would be zero for −zc < z < ∞, zc = ρ cot θc = ρ

√
β2n2 − 1.
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Figure 4.2. Schematic presentation of the Cherenkov cone attached to a charge moving
in a dispersion-free medium. The radiation field is confined to the surface of the cone, the
field inside the cone does not contribute to the radiation. On the surface of the cylinder
Cρ the electromagnetic field is zero for z > −zc; σρ means the radial energy flux through
the cylinder surface.

What can we learn from figures 4.3-4.5 ?.
For a small charge velocity (β ≤ 0.4) the magnetic field coincides with

that of a charge moving inside medium with the constant ε = ε0. For β
slightly less than βc (β ≈ 0.6) oscillations appear for negative values of z.
Their amplitude grows as β increases. For β ≈ βc we see a number of peaks
in the neighborhood of z = 0 with the amplitude slowly decreasing in the
z < 0 region. For β = βc there is a large maximum at z = −zc and smaller
ones in the region z < −zc. The period of these oscillations approximately
coincides with that of the medium polarization Tz ≈ 2πvβc/ω0.

Figures 4.3-4.5 demonstrate how the EMF is distributed over the surface
of the cylinder Cρ at a fixed instant of time t. Since all electromagnetic
strengths depend on z and t via z − vt, the periodic dependence on time
(with the period 2πβc/ω0) should be observed at a fixed spatial point.

It is seen that despite the ω dependence of ε, the critical velocity βc =
1/

√
ε0 still has a physical meaning. Indeed, for β > βc the magnetic vector

potential and field strength are very small outside the Mach cone (z > −zc)
exhibiting oscillations inside it (z < −zc). For β < βc the Mach cone
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φ

β

ρ

Figure 4.3. The distribution of the magnetic field strength on the surface of the cylinder
Cρ. The number of a particular curve means β = v/c; z and ρ are in units of c/ω0; Hφ

is in units of eω2
0/c2.



138 CHAPTER 4

β

ρ

φ

Figure 4.4. The same as in Fig.4.3, but for β = 0.7 and 0.8.
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β

ρ

φ

Figure 4.5. The same as in Fig.4.3, but for β = 0.9 and 0.99.



140 CHAPTER 4

ω ω
ω

ω

Figure 4.6. The integration contour discussed in the text

disappears. The EMF being relatively small differs from zero everywhere.
The magnetic field presented in Figs. 4.3-4.5 can be compared with its
non-oscillating behaviour for the frequency-independent ε = ε0:

Hφ =
eβρ(β2n2 − 1)

[(z − vt)2 − ρ2(β2n2 − 1)]3/2
Θ(vt − z − ρ/γn)

+
eβ

γn

δ(vt − z − ρ/γn)
[(z − vt)2 − ρ2(β2n2

0 − 1)]1/2
.

We turn again to Eqs. (4.12) and (4.13). The Fourier components of Φ
and �E have a pole at ω = ω3 =

√
ω2

0 + ω2
L. This leads to the divergence

of integrals defining Φ and �E. It would be tempting to approximate these
integrals by their principal values. We illustrate this using Φ as an example
(see Eq.(4.8)). Consider a closed contour C consisting of three real intervals
((−∞,−ω0−δ), (−ω0+δ, ω0−δ), (ω0+δ,∞)), of two semi-circles C1 and
C2 of the radius δ with their centers at z = −ω0 and z = ω0, respectively,
and of a semi-circle CR of the large radius R (Fig. 4.6). All semi-circles
C1, C2 and CR lie in the upper half-plane. The integral∫

dω

ε
eiαK0(kρ)
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taken over the closed contour C equals zero if the function K0 has no
singularities inside C. The same integral taken over CR is also 0 for t−z/v >
0 due to the exponential factor eiα. Therefore, −ω0−δ∫

−∞
+

ω0−δ∫
−ω0+δ

+
∞∫

ω0+δ

+
∫
C1

+
∫
C2

 dω

ε
eiαK0(kρ) = 0.

In the limit δ → 0 one obtains

V.P.

∞∫
−∞

dω

ε
eiαK0(kρ) = −

∫
C1

+
∫
C2

 dω

ε
eiαK0(kρ)

= −2π
ω2

L

ω3
Θ(t − z/v) sin ω3(t − z/v)K0

(
ρ
|ω3|
v

)
.

For the electric potential one then finds

Φ = −2
e

v

ω2
L

ω3
Θ(t − z/v) sinω3(t − z/v)K0

(
ρ
|ω3|
v

)
. (4.14)

We see that the principal value of the integral treated does not describe the
Cherenkov cone. Probably, this is owing to singularities (poles and branch
points) of the modified Bessel function in the upper ω half-plane. When
evaluating (4.14) we did not take them into account.

4.4. Time-dependent polarization of the medium

Another, more physical, way to obtain EMF of a charge uniformly moving
in medium is to start with the Maxwell equations

div �D = 4πρ, div �B = 0, curl �E = −1
c

�̇B, curl �H =
1
c

�̇D +
4π

c
�j. (4.15)

As the medium is non-magnetic, �B = �H. The second and third Maxwell
equations are satisfied if we put

�H = �∇× �A, �E = −�∇Φ − 1
c

�̇A.

We rewrite Maxwell equations in the ω representation:

Hω
φ = − ∂

∂ρ
Aω

z , Eω
z =

iω

v
(Φω − βAω

z ),

1
ρ

∂

∂ρ
ρ(Eω

ρ + 4πPω
ρ ) − iω

v
(Eω

z + 4πPω
z ) = 4πρω,
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Hω
φ = β(Eω

ρ + 4πPω
ρ ),

iω

v
Eω

ρ +
∂Eω

z

∂ρ
=

iω

c
Hω

φ . (4.16)

The last equation is satisfied trivially if we express electromagnetic strengths
through the electromagnetic potentials:

Eω
ρ = −∂Φω

∂ρ
, Eω

z =
iω

v
Φω − iω

c
Aω

z , Hω
φ = −∂Aω

z

∂ρ
.

In deriving these equations we have taken into account that the z and t
dependencies of the electromagnetic potentials, field strengths, polarization,
charge and current densities enter through the factor exp[iω(t − z/v)] in
their Fourier transforms.

The electric field �E of a moving charge induces the polarization �P (�r, t)
which, being added to �E, gives the electric induction �D = �E+4π �P . Usually
it is believed (see, e.g., [8]-[11], [22], [27] that the ω components of �P and
�E

�Pω =
1
2π

∫
e−iωt �P (�r, t)dt, �Eω =

1
2π

∫
e−iωt �E(�r, t)dt

are related by the formula

4π �Pω =
ω2

L

ω2
0 − ω2 + ipω

�Eω. (4.17)

Using this fact and expressing electromagnetic strengths in Eq.(4.16) through
the potentials we obtain (taking into account that the last equation (4.16)
is satisfied trivially):

∆2Φω − ω2

v2
Φω +

iω

c
div �Aω = −1

ε
4πρω,

∆2A
ω
z +

ω2

c2
εAω

z − ω2

cv
εΦω = −4π

c
jω
z ,

∂Aω
z

∂ρ
= βε

∂Φω

∂ρ
. (4.18)

Here

ρω =
e

v
δ(x)δ(y) exp(−iωz/v), jω

z = eδ(x)δ(y) exp(−iωz/v),

∆2 =
1
ρ

∂

∂ρ
(ρ

∂

∂ρ
).

The last equation (4.18) is satisfied if we choose

Aω
z = βε(ω)Φω. (4.19)
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whilst two others coincide after this substitution. The solutions of these
equations are

Φω =
2e

vε
K0(

ρ|ω|
v

√
1 − β2ε), Aω

z =
2e

c
K0(

ρ|ω|
v

√
1 − β2ε)

(again, a square root means its value with a positive real part).
Now we rewrite Eq.(4.17) in the (�r, t) representation:

�P (t) =
1

8π2

∞∫
−∞

G(t − t′) �E(t′),

where

G(t − t′) = ω2
L

+∞∫
−∞

dω

ω2
0 − ω2 + ipω

eiω(t−t′), (4.20)

Taking into account the positivity of p one finds:
a) for p < ω0:

G(t − t′) = 0 for t′ > t and

G(t − t′) =
2πω2

L√
ω2

0 − p2/4
exp [−p(t − t′)/2] sin

[√
ω2

0 − p2/4(t − t′)
]

for t′ < t.
b) for p > ω0 (this case is unrealistic because usually p � ω0):

G(t − t′) = 0 for t′ > t and

G(t − t′) =
2πω2

L√
ω2

0 − p2/4
exp [−p(t − t′)/2] sinh

[√
p2/4 − ω2

0(t − t′)
]

for t′ < t.
As a result of the positivity of p, the value of the polarization �P at the

instant t is defined by the values of the electric field �E in preceding times
(causality principle). The source of polarization is distributed along the z
axis:

div �P =
e

v
δ(x)δ(y)

ω2
L√

ω2
0 + ω2

L − p2/4
exp [−p(t − z/v)/2]

× sin[
√

ω2
0 + ω2

L − p2/4(t − z/v)]

for z < vt and div �P = 0 for z > vt (this equation is related to the
ω2

0 + ω2
L − p2/4 > 0 case). The origin of oscillations of the potentials and

field strengths behind the Cherenkov cone now becomes understandable. A
moving charge gives rise to a time-dependent polarization source which, in
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the absence of damping, oscillates with a frequency
√

ω2
0 + ω2

L. The oscilla-
tions of polarization, being added, lead to the appearance of the smoothed
Cherenkov cones enclosed in each other. On the surface of the cylindrical
surface Cρ they are manifested as maxima of the potentials, field strengths,
and intensities. The position of the first maximum approximately coincides
with the position of the singular Cherenkov cone in the absence of dis-
persion. The latter case is obtained if we neglect the ω dependence in the
denominator of the integral in (4.20):

G(t − t′) = 2π
ω2

L

ω2
0

δ(t − t′).

Obviously this can be realized for large values of ω0. The introduction of
damping should lead to the decreasing of secondary maxima. To verify this
we have evaluated the magnetic vector potential for various values of the
parameter p (in units of ω0 ) defining the imaginary part of ε(ω). We see
(Fig. 4.7) that for p ≥ 1 the secondary oscillations disappear. Although the
polarization formalism leads to the same expressions (4.12) and (4.13) for
the electromagnetic potentials and field strengths, it presents another, more
physical, point of view on the nature of the Vavilov-Cherenkov radiation.

4.4.1. ANOTHER CHOICE OF POLARIZATION

So far we have dealt with the gauge condition of the form Aω
z = βε(ω)Φω.

It looks highly non-local in the (�r, t) representation. There is another in-
teresting possibility. We substitute

�E = −�∇Φ − 1
c

∂ �A

∂t
, �H = �∇× �A

into the first and fourth Maxwell equations (4.15) (second and third equa-
tions are satisfied automatically) and obtain

∆Φ +
1
c
div �A = −4πρ + 4πdiv �P ,

∆ �A − 1
c2

�̈A = �∇(div �A +
1
c
Φ̇) − 4π

c
(�j + �̇P ).

We try to separate equations for Φ and �A by imposing on them the Lorentz
condition

div �A +
1
c
Φ̇ = 0 (4.21).

This equation is satisfied automatically if we put

Ax = Ay = 0, Az = βΦ (4.22)
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β

β
ρ

A
(Z

)

z
Figure 4.7. Shows how switching on the imaginary part p of the dielectric permittivity
affects the magnetic vector potential; z and Az are in units of c/ω0 and eω0/c, respectively.
The solid, point-like, and short dashed curves refer to p = 0, p = 0.1 and p = 1 (p is in
ω0 units) , respectively. It is seen that secondary maxima are damped for p = 1 more
strongly than the main maximum.
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(it has been taken into account that for the problem treated all the electro-
magnetic quantities depend on z and t through the combination (z − vt)).
Thus we obtain

∆Φ − 1
c2

Φ̈ = −4πρ + 4πdiv �̇P ,

∆ �A − 1
c2

�̈A = −4
π

c
�j − 4

π

c
�̇P .

It follows from this that only the z component of �P differs from zero in the
chosen gauge (as only the z components of �A and �j differ from zero). We
rewrite these equations in the ω representation

∆2Φω + ω2(
1
c2

− 1
v2

)Φω = −4πρω − 4π
iω

v
Pω,

∆2A
ω
z + ω2(

1
c2

− 1
v2

)Aω
z = −4π

c
jω
z − 4π

iω

c
Pω (4.23)

As the medium treated is non-magnetic it is natural to require the coinci-
dence of equations (4.18) and (4.23) for vector potentials satisfying different
gauge conditions. This takes place if Pω is chosen to be proportional to Aω

z :

Pω = − iω

4πc
(ε − 1)Aω

z . (4.24)

One then obtains

∆2Φω + ω2(
ε

c2
− 1

v2
)Φω = −4πρω,

∆2A
ω
z + ω2(

ε

c2
− 1

v2
)Aω

z = −4π

c
jω
z .

The solutions of these equations are

Φω =
2e

v
K0, Aω

z =
2e

c
K0,

Hω
φ =

2e|ω|
cv

√
1 − β2εK1, Eω

ρ = Dω
ρ = Hω

φ/β,

Ez =
2ieω

v2
(1 − β2)K0, Dz =

2ieω

v2
(1 − β2ε)K0, (4.25)

where all K functions depend on the argument (ρω/v)
√

1 − β2ε in which
the value of

√
1 − β2ε corresponding to its positive real part should be

taken. Obviously there is no proportionality between �D and �E for the cho-
sen gauge. In the (�r, t) representations the magnetic vector potential and
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field strength coincide with those in Eqs.(4.12) and (4.13), whilst for Φ, Ez,
and Eρ one has

Φ(�r, t) =
2e

πv

 ωc∫
0

+
∞∫

ω0

 dω cos αK0 +
e

v

ω0∫
ωc

dω(sin αJ0 − cos αN0),

Ez =
2e

πc2

(
1 − 1

β2

)

×
 ωc∫

0

+
∞∫

ω0

ωdω sin αK0 − e

c2

ω0∫
ωc

ωdω(N0 sin α + J0 cos α)

 ,

Eρ =
2e

πv2

 ωc∫
0

+
∞∫

ω0

 dωω
√
|1 − β2ε| cos αK1

+
e

v2

ω0∫
ωc

dωω
√
|1 − β2ε|(sinαJ1 − cos αN1).

for β < βc and

Φ(�r, t) =
2e

πv

∞∫
ω0

dω cos αK0 +
e

v

ω0∫
0

dω(sin αJ0 − cos αN0),

Ez =
2e

πc2

(
1 − 1

β2

) ∞∫
ω0

ωdω sin αK0 − e

c2

ω0∫
0

ωdω(N0 sin α + J0 cos α)

 ,

Eρ =
2e

πv2

∞∫
ω0

dωω
√
|1 − β2ε| cos αK1

+
e

v2

ω0∫
0

dωω
√
|1 − β2ε|(sinαJ1 − cos αN1).

for β > βc. These expressions satisfy the Maxwell equations but with the
polarization different from that used earlier. We observe that the electric
induction �D is the same as above, but the electric strength differs. As the
integrands defining Φ and �E are finite for any value of ω, the corresponding
integrals are convergent and can be evaluated numerically. We observe that
Ez → 0 for β → 1 . This means that for this choice of polarization and
v ≈ c the energy flux in the transverse direction disappears, that is, for
v ≈ c all the energy is radiated in the direction of the charge motion.
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It is surprising that the choice (4.21) of the Lorentz condition almost
inevitably leads to a solution with vanishing ρ component of polarization.
But the physics cannot depend on the gauge choice. Checking all steps
(4.21)-(4.25) in deriving field strengths we observe that the sole weak point
in this chain is Eq. (4.22), which is the simplest realization of the gauge
condition (4.21). Obviously, Eq. (4.22) can be realized in a variety ways. In
particular, it can be realized with two non-vanishing components (Az and
Aρ) of �A (Aφ = 0 owing to the axial symmetry of the treated problem). In
this case we obtain the polarization and field strengths given in section 3
but with different electromagnetic potentials.

We conclude that different definitions (4.17) and (4.24) of the induced
polarization proportional to the electric strength �E and magnetic vector
potential �A, respectively, lead to different physical consequences.

4.5. On the Krönig-Kramers dispersion relations

Up to now we have considered the case when the imaginary part of the
dielectric penetrability was chosen to be zero. Can this be reconciled with
the Krönig-Kramers dispersion relations? Since for the chosen form of the
Fourier integrals the poles of ε(ω) lie in the upper ω half-plane, one has
(see, e.g.,[22]):

+∞∫
−∞

ε(x) − 1
ω − x

dω + iπ[ε(x) − 1] = 0.

Or, separating real and imaginary parts

∞∫
−∞

εr − 1
ω − x

dω = πεi(x),
∞∫

−∞

εi

ω − x
dω = −π[εr(x) − 1] (4.26)

(by the integrals we mean their principal values obtained by closing the
integration contour in the lower ω half-plane). Here εr and εi are the real
and imaginary parts of ω:

εr = 1 +
ω2

L(ω2
0 − ω2)

(ω2
0 − ω2)2 + p2ω2

, εi = − pωω2
L

(ω2
0 − ω2)2 + p2ω2

. (4.27)

At first glance it seems that the relations (4.26) cannot be valid. Take, e.g.,
the second of them. For εi = 0 its left hand side disappears, which is not
valid for its right hand side. However, we cannot put εi = 0 ’by hand’. The
value of imaginary part of ε is determined by the parameter p in (4.27).
Thus we should substitute εi given by (4.27) into (4.26) and then let p go
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to zero. For the integral entering into the left hand side of (4.26) one finds

∞∫
−∞

εi

ω − x
dω = −pω2

L

∫
ωdω

ω − x

1
(ω2

0 − ω2)2 + p2ω2
. (4.28)

A detailed consideration shows that the integral in the right hand side of
this equation is equal to

−π

p

x2 − ω2
0

(x2 − ω2
0)2 + p2x2

. (4.29)

The factor p of the integral in (4.28) compensates the factor 1/p in (4.29).
Thus ∞∫

−∞

εi

ω − x
dω = πω2

L

x2 − ω2
0

(x2 − ω2
0)2 + p2x2

,

that coincides exactly with the right hand side of the second relation (4.26).
The same reasoning proves the validity of the first relation (4.28). Thus,
the Krönig-Kramers relations are valid for any small p > 0. The positivity
of p defines how the integration contour should be closed, which in turn
leads to the validity of the causality condition.

4.6. The energy flux and the number of photons

We evaluate now the energy flux per unit length through the surface of a
cylinder Cρ (Fig.4.2) coaxial with the z axis for the total time of motion.
It is given by

Wρ = 2πρ

+∞∫
−∞

Sρdt =
2πρ

v

+∞∫
−∞

Sρdz,

Sρ =
c

4π
( �E × �H)ρ = − c

4π
EzHφ. (4.30)

Substituting Ez and Hφ from (4.12) and (4.13) and taking into account
that

∞∫
−∞

dt sin ωt cos ω′t = 0,
∞∫

−∞
dt sinωt sin ω′t = π[δ(ω − ω′) − δ(ω + ω′)],

∞∫
−∞

dt cos ωt cos ω′t = π[δ(ω − ω′) + δ(ω + ω′)],



150 CHAPTER 4

we obtain for energy losses per unit length

Wρ =
e2

c2

∫
β2ε>1

ωdω

(
1 − 1

εβ2

)
. (4.31)

This expression was obtained by Tamm and Frank [2]. Inserting ε(ω) given
by (4.1) into (4.31) we find

Wρ =
e2

c2

ω0∫
ωc

ωdω

(
1 − 1

εβ2

)
= − e2ω2

0

2c2β2
cγ2

c

[
1 +

1
β2

ln(1 − β2)
]

(4.32)

for β < βc and

Wρ =
e2

c2

ω0∫
0

ωdω

(
1 − 1

εβ2

)
=

e2ω2
0

2c2

[
− 1

β2γ2
+

1
β2β2

cγ2
c

ln(γ2
c )
]

(4.33)

for β > βc.
Similar expressions were obtained by Fermi [12]. The validity of (4.33) is

also confirmed by the results obtained by Sternheimer [14] (whose equations
reduce to (4.33) in the limit p → 0) and Ginzburg [28].
We observe that only those terms in (4.12) and (4.13) contribute to the
radial energy flux for the total time of motion which contain the usual Bessel
functions (Jµ and Nµ) and correspond to the 1 − β2ε < 0 region without
damping. This permits us to avoid difficulties connected with the above-
mentioned pole of ε−1 (at ω = ω3) which appears only in terms containing
modified Bessel functions in the damping region where 1 − β2ε > 0.

For β → 0 the energy losses Wρ tend to 0, whilst for β → 1 (only this
limit was considered by Tamm and Frank [29]) they tend to the finite value

e2ω2
0

2c2β2
cγ2

c

ln(γ2
c ).

In Fig. 4.8 we present the dimensionless quantity F = Wρ/(e2ω2
0/c2) as a

function of the charge velocity β. The numbers on the curves mean βc. The
vertical lines with arrows divide each curve into two parts corresponding
to the energy losses with velocities β < βc and β > βc and lying to the
left and right of vertical lines, respectively. We see that a charge moving
uniformly in a medium with dispersion law (4.1) radiates at every velocity.

Exactly the same Eqs. (4.31)-(4.33) are obtained if one starts from the
complex ε(ω) given by (4.7), evaluates electromagnetic strengths and radial
energy flux, and then takes the limit p → 0 in them. This will be shown
below.



Cherenkov radiation in a dispersive medium 151

β

β
Figure 4.8. The radial energy losses per unit length (in units of e2ω2

0/c2) as a function
of β = v/c. The number on a particular curve means the critical velocity βc.
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β

ω

ω

Figure 4.9. Spectral distribution of the energy losses (in units of e2ω0/c2); ω is in units
of ω0. The number on a particular curve refers to β = v/c.

The dimensionless spectral distributions f(ω) = w(ω)/(e2ω0/c2) of the

energy loss Wρ =
∞∫
0

w(ω)dω are shown in Fig. 4.9. The numbers on par-

ticular curves mean β. It is seen that for β > βc all ω from the interval
0 < ω < ω0 contribute to the energy losses. For β < βc the interval of
permissible ω (ωc < ω < ω0) diminishes.

The total number of photons emitted per unit length is given by

N =
e2

h̄c2

ω0∫
ωc

dω

(
1 − 1

εβ2

)

=
e2

h̄c2

[
ωc − ω0

β2γ2
+

ω2
L

2β2ω3
ln
(

ω3 + ω0

ω3 − ω0

ω3 − ωc

ω3 + ωc

)]
for β < βc and

N =
e2

h̄c2

ω0∫
0

dω

(
1 − 1

εβ2

)
=

e2

h̄c2

[
− ω0

β2γ2
+

ω2
L

2β2ω3
ln
(

ω3 + ω0

ω3 − ω0

)]
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for β > βc. It is seen that N grows from 0 for β = 0 up to

N =
e2

h̄c2

ω2
L

2β2ω3
ln
(

ω3 + ω0

ω3 − ω0

)
for β = 1. In Fig. 4.10 we present the dimensionless quantity N/(e2ω0/h̄c2)
as a function of the particle velocity β. The numbers on the curves mean βc.
The vertical lines with arrows divide each curve into two parts correspond-
ing to the photon numbers emitted by the charge with velocities β < βc

and β > βc and lying to the left and right of vertical lines, respectively. We
see that an uniformly moving charge emits photons at every velocity. The
spectral distribution n(ω) of the photon number emitted per unit length

and per unit frequency defined as N =
∞∫
0

n(ω)dω is given by

n(ω) =
e2

h̄c2

(
1 − 1

εβ2

)
.

For β < βc, n(ω) changes from 0 at ω = ωc up to n(ω) = e2/h̄c2 at ω = ω0.
For β > βc, n(ω) changes from (e2/h̄c2)(1 − 1/(ε0β

2)) at ω = ωc up to
e2/h̄c2 at ω = ω0. The dimensionless spectral distributions n(ω)/(e2/h̄c2)
of the photon number are shown in Fig. 4.11. The numbers of a particular
curve mean β. It is seen that for β > βc all ω from the interval 0 < ω < ω0

contribute to the number of emitted photons. For β < βc the interval of
permissible ω (ωc < ω < ω0) diminishes, i.e., only high-energy photons
contribute.

So far we have evaluated the total energy losses (i.e., for the whole
time of the charge motion) per unit length. The question arises of how
the radiated flux is distributed in space at a fixed instant of time. The
distributions of the radial energy flux σρ = 2πρSρ on the surface of the
cylinder Cρ of the radius ρ = 10 (in units of c/ω0) are shown in Figs. 4.12
and 4.13 for βc = 0.8 and various charge velocities β. It is seen that despite
the ω dependence of ε the critical velocity βc = 1/

√
ε0 has still a physical

meaning. Indeed, for β > βc the electromagnetic energy flux is very small
outside the Cherenkov cone, exhibiting oscillations in its neighbourhood.
For β < βc the radial flux diminishes and becomes negligible for β ≤ 0.4
(Fig. 4.13). This disagrees with Fig. 4.8, where for βc = 0.8 one sees the
finite value of energy losses for β = 0.4. In the next section we remove this
inconsistency.

We have considered the distribution of the EMF on the surface of Cρ at
the fixed instant of time t. Since all electromagnetic strengths depend on z
and t via the combination z − vt, the periodic dependence of time should
be observed at a fixed spatial point.
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β

β

Figure 4.10. The number of emitted quanta in the radial ρ direction per unit length
(in units of e2ω0/h̄c2) as a function of β = v/c. The number on a particular curve is the
critical velocity βc.
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β

ω

ω

Figure 4.11. Spectral distribution of the emitted quanta (in units of e2/h̄c2); ω is in
units of ω0. The number of a particular curve is β = v/c.

For the frequency-independent ε = ε0 the energy flux is confined to
the surface of the Cherenkov cone. Electromagnetic strengths inside the
Cherenkov cone fall as r−2 at large distances, and therefore do not con-
tribute to the radial flux.

4.7. WKB estimates

The radiation field (described by the integrals in (4.12) and (4.13) contain-
ing usual Bessel functions) can be handled by the WKB method. We follow
closely Tamm’s paper [30] (see also the review [31] and the book [32]). For
this we replace the functions Jν and Nν by their asymptotic values:

Jν(x) ∼
√

2
πx

cos
(

x − νπ

2
− π

4

)
, Nν(x) ∼

√
2

πx
sin

(
x − νπ

2
− π

4

)
.

Then,

Hφ =
e

c

√
2

πvρ

∫
dω

√
ω(β2ε − 1)1/4 cos

(
f +

π

4

)
,
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β
ρ

σ ρ

Figure 4.12. The distribution of the radial energy flux (in units of e2ω3
0/c3) on the

surface of the cylinder Cρ, z is in units of c/ω0. The number on a particular curve is
β = v/c.

Eρ =
e

v

√
2

πvρ

∫
dω

1
ε

√
ω(β2ε − 1)1/4 cos

(
f +

π

4

)
,

Ez = −e

v

√
2

πvρ

∫
dω

1
ε

√
ω(β2ε − 1)3/4 cos

(
f +

π

4

)
. (4.34)

Here f = ω(t − z/v) − √
β2ε − 1ρω/v. The argument of the cosine is a

rapidly oscillating function of ω. The main contribution to the integrals
comes from stationary points at which df/dω = 0. Or, explicitly,

(vt − z)
√

β2ε − 1 = ρ

[
β2 − 1 +

β2ω2
0ω

2
L

(ω2 − ω2
0)2

]
. (4.35)
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σ ρ

β
ρ

Figure 4.13. The same as in Fig. 4.12, but for β < βc.

This equation defines ω as a function of ρ, z. Let this ω be ω1(ρ, z). Then
the WKB method gives

Hφ = −2e

c

√
ω1

vρ|f̈1|
(β2ε1 − 1)1/4 sin f1,

Eρ = − 2e

vε1

√
ω1

vρ|f̈1|
(β2ε1 − 1)1/4 sin f1,

Ez =
2e

vε1

√
ω1

vρ|f̈1|
(β2ε1 − 1)3/4 sin f1 (4.36)

for f̈1 > 0 and

Hφ =
2e

c

√
ω1

vρ|f̈1|
(β2ε1 − 1)1/4 cos f1,

Eρ =
2e

vε1

√
ω1

vρ|f̈1|
(β2ε1 − 1)1/4 cos f1,

Ez = − 2e

vε1

√
ω1

vρ|f̈1|
(β2ε1 − 1)3/4 cos f1 (4.37)
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for f̈1 < 0. Here

f1 = f(ω1), ε1 = ε(ω1), f̈1 =

(
d2f

dω2

)
ω=ω1

.

The electromagnetic strengths are maximal if

ω1(vt − z) − ρω1

√
β2ε1 − 1 = (m − 1/2)πv (4.38)

for f̈1 > 0 and
ω1(vt − z) − ρω1

√
β2ε1 − 1 = mπv (4.39)

for f̈1 < 0. Here m = 1, 2, etc..
The combined solution of (4.35) and (4.38),(4.39) defines the set of

surfaces on which the electromagnetic strengths and the Poynting vector are
maximal. Due to the axial symmetry, these surfaces in the ρ, z coordinates
look like lines. We refer to these lines as trajectories.
Equations (4.35)-(4.39) were obtained by Tamm [30]. We apply them to
the particular ε(ω) given by Eq.(4.1).

The electromagnetic field strengths and radial (i.e., in the ρ direction)
energy flow have sharp maxima on some spatial surfaces. In the ρ, z coor-
dinates these surfaces can be drawn (owing to the axial symmetry of the
problem) by the lines. We refer to them as trajectories. Different trajec-
tories are labelled by the integer numbers m. For the electric penetrabil-
ity taken in the form (4.1), m runs from 1 to ∞. We make the notation
x2

c = 1 − ε̃, ε̃ = β2γ2/β2
cγ2

c . The trajectories can be parametrized by the
equation

vt− z =
mπcβ

ω0ε̃x3
[ε̃− (x2 −1)2], ρ =

mπcβγ

ω0ε̃x3
(1−x2)3/2(x2 −x2

c)
1/2. (4.40)

To obtain the trajectory equation one should find x from the first of these
equations and substitute it into the second one. Instead we prefer to vary
x and compare ρ and vt − z entering into (4.40) and corresponding to the
same parameter x.

We consider cases β > βc and β < βc separately.

4.7.1. CHARGE VELOCITY EXCEEDS THE CRITICAL VELOCITY

It turns out that x2
c < 0 for β > βc. In this case x runs in the interval

0 < x < 1. The particular trajectory begins at the point x = 1 where
vt − z = mπc/ω0 and ρ = 0. The slope of the trajectory is

tan θ = γ
(1 − x2)3/2(x2 − x2

c)1/2

ε̃ − (x2 − 1)2
.
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β

ρ

Figure 4.14. Spatial distribution of the m = 1 trajectory for charge velocities β ≥ βc.
The slope of the trajectory increases as β approaches βc.

When x decreases both vt − z and ρ increase. For very small x

vt − z ∼ mπcβ

ω0ε̃x3
(ε̃ − 1), ρ ∼ mπcβγ

ω0ε̃x3

√
ε̃ − 1.

The asymptotic slope of the trajectory is

tan θ =
ρ

vt − z
∼ (

β2

β2
c

− 1)−1/2.

It is seen that the trajectory slope increases when β approaches βc (Fig.
4.14). Let v = c, i.e., the charge moves with the velocity of light in vacuum.
Then

vt − z =
mπc

ω0x3
, ρ =

mπc

x3ω0
βcγc(1 − x2)3/2.

Eliminating x one obtains

ρ = βcγc(ct − z)

[
1 −

(
mπc

ω0(ct − z)

)2/3
]3/2

.



160 CHAPTER 4

For large ct − z the trajectory is linear (ρ = βcγc(ct − z)). For βc → 0 the
trajectory approaches the motion axis. Let β be slightly greater than βc,

ε̃ = 1 + δ, 0 < δ � 1,

i.e., charge moves almost with the velocity of light in medium. Then in the
limit δ → 0,

vt − z =
mπv

ω0x
(2 − x2), ρ =

mπvγ

ω0x2
(1 − x2)3/2. (4.41)

Excluding x we obtain

ρ =
mπcβcγc

ω0

[y
√

2 + y2/4 − 1 − y2/2]3/2

y2 + 2 − y
√

2 + y2/4
.

Here y = ω0(vt − z)/mπcβc. At large distances one has

ρ ∼ ω0γc

4mπcβc
(vt − z)2.

That is, ρ increases quadratically with the rise of vt − z.

4.7.2. CHARGE VELOCITY IS SMALLER THAN THE CRITICAL
VELOCITY

For β < βc one has ε̃ < 1 and x2
c > 0. The trajectory parametrization

coincides with (4.40) when x lies within the interval
√

4 − 3ε̃− 1 < x2 < 1.
We refer to this part of the trajectory as to branch 1. For β < βc and
1 − ε̃ < x2 <

√
4 − 3ε̃ − 1 the parametrization is given by Eq.(4.40) in

which m should be replaced by m − 1/2. This part of the trajectory is
denoted branch 2. These branches are marked by the numbers 1 and 2 in
Fig. 4.15. It is seen that ρ vanishes for x = xc and x = 1. The corresponding
vt− z lie on the branches 1 and 2, respectively. As the values of vt− z are
finite for ρ = 0, the trajectories are closed for β < βc.

Let β be slightly less than βc, that is

ε̃ = 1 − δ, 0 < δ � 1,

i.e., charge moves with a velocity slightly less than the velocity of light in
medium. The parametrizations of vt−z and ρ are then still given by (4.40),
in which x changes in the interval 3δ/2 < x2 < 1 for the first branch and
in the interval δ/2 < x2 < 3δ/2 for the second branch. This means that the
first branch of the m trajectory for β = βc− δ continuously passes into the
corresponding m trajectory for β = βc + δ for δ → 0.
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ρ

β
β

Figure 4.15. Space distribution of the m = 1 and m = 2 trajectories for βc = 0.8 and
β = 0.799. The trajectories for β < βc are closed (in contrast with the β ≥ βc case shown
in Fig. 4.14). Numbers 1 and 2 mean the branches of a particular trajectory.

As to the second branch, in the limit δ → 0 it degenerates into the
almost vertical line. It begins at z = (m − 1/2)πcβ/ω0

√
δ, where ρ = 0,

and terminates at z = (m − 1/2)πcβ4
√

2/(3
√

3ω0

√
δ), where ρ = 2(m −

1/2)πcβγ/(3
√

3ω0δ) (see Fig. 4.15).
Let ε̃ → 0. This may happen when the charge velocity is much less than

the velocity of light in medium. However, this condition also takes place
when β ≈ βc ≈ 1, but βc is much closer to 1 than β. This is possible because
of the γ factors in the definition of ε̃. In both cases one has

vt − z → mπv

ω0
, ρ → 0.

This means that the radiation flux is concentrated behind the charge on
the motion axis.

The WKB approximation breaks at the neighbourhood of x = xm =
(
√

4 − 3ε̃ − 1)1/2. This value can be reached only for β < βc. The values of
z and ρ at those points are

(vt − z)1 ∼ 4mπcβ

ω0ε̃

ε̃ +
√

4 − 3ε̃ − 2
(
√

4 − 3ε̃ − 1)3/2
,
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ρ1 ∼ mπcβγ

ω0ε̃

(ε̃ +
√

4 − 3ε̃ − 2)1/2(2 −√
4 − 3ε̃)3/2

(
√

4 − 3ε̃ − 1)3/2

for the branch 1. For the branch 2, m should be replaced by m− 1/2. The
slope of the line Cm (strictly speaking, it is a cone rather than a line, but
in the (ρ, z) plane it looks like a straight line (Figs. 4.16 and 4.17)) passing
through the discontinuity points is given by

tan θ =
γ

4
(2 −√

4 − 3ε̃)3/2

(
√

4 − 3ε̃ + ε̃ − 2)1/2
.

In particular,

tan θ ∼ 3
√

3
16

γε̃ for ε̃ → 0

and
tan θ ∼ 1

2
√

2
γ√
δ

for ε̃ → 1 (ε̃ = 1 − δ, δ << 1).

That is, the slope of the line Cm tends to zero for the small charge velocity
and becomes large as β approaches βc. The meaning of this line is that
on a particular trajectory (which itself is the line where field strengths are
maximal) the field strengths become infinite as one approaches the point
at which the WKB method breaks down.

On the surface of the cylinder Cρ (see Fig. 4.2) the field strengths
have maxima at those points in which Cρ is intersected by the trajectories.
Among these maxima the most pronounced (i.e., of the greatest amplitude)
are expected to be those which lie near the point at which Cρ is intersected
by Cm (despite the WKB approximation breaking on it). In what follows
we shall use this result as a tool for the rough estimation of the position
where the radiation intensity is maximal. This will be confirmed by exact
calculations).

Some of the trajectories corresponding to βc = 0.8, β = 0.4 are shown
in Figs. 4.16 and 4.17. It follows from them that there are no trajectories
intersecting the surface of the cylinder Cρ of the radius ρ = 10 in the
interval −100 < z < 0 treated in Fig. 4.13. This means that there should
be no radial energy flux there. The inspection of Fig. 4.17 tells us that for
ρ = 10 the energy flux begins to penetrate the Cρ surface at the distances
z ≤ −200.

4.8. Numerical results

To verify WKB estimates we evaluated for β = 0.4 the distribution of the
energy losses σρ on the surface of Cρ (Fig. 4.18). It is seen that the main
contribution comes from the region in the neighbourhood z ∼ −300. This
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Figure 4.16. Spatial distribution of the selected trajectories for βc = 0.8 and β = 0.4.

σρ distribution consists, in fact, of many peaks. Its fine structure in the
small interval of z is shown in Fig. 4.19. The question arises of how the
trajectories behave for other charge velocities β. It follows from Fig. 4.14
that for β ≥ βc the trajectories are not closed, i.e., they go to infinity as
z tends to −∞. The slope of the trajectories increases as β approaches βc.
This means that for β = βc the EMF of a charge moving uniformly in a
non-dispersive medium differs from zero only in the infinitely thin layer
normal to the charge velocity [33].

Since for β > βc the trajectories intersect the surface Cρ at small values
of z, one should expect the appearance of the energy flux there.

In Figs. 4.20 and 4.21 we present the results of exact (i.e., not WKB)
calculations of the intensity distribution for β = 0.99 and 0.8, respectively.
We observe that for β > βc the main intensity maximum lies approximately
at z = −zc, zc = ρ

√
β2n2 − 1, i.e., at the place, where in the absence of

the ω dispersion (ε = ε0 = ε(0), β2
c = 1/ε0), the Cherenkov singular cone

intersects Cρ.
For β < βc the trajectories are closed (Figs. 4.15-4.17, and 4.22). As

β decreases, the trajectories approach the motion axis. In this case the Cρ

surface is intersected by the trajectories with large m at larger values of
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Figure 4.17. The same as in Fig. 4.16 but for a different z interval.

negative z (compared to the β > βc case) and the maxima of intensity
should also be shifted to a large negative z. This is illustrated by Figs.
4.18 and 4.23 where the intensity spectra are shown for β = 0.4 and 0.6,
respectively.

Consider now the distribution of the radiation flux on the surface of the
sphere S (instead of on the cylinder surface, as we have done up to now).

From Figs. 4.16 and 4.17 based on the WKB estimates and numerical
results presented in Fig. 4.18 it follows that for β < βc the radial radiation
flux is confined to the narrow cone adjusted to the negative z semi-axis
(Fig. 4.24). Its solution angle θc is approximately 5 degrees for βc = 0.8
and β = 0.4.

We conclude that despite the ω dependence of ε, the critical velocity
βc = 1/

√
ε0 still conserves its physical meaning, thus separating closed

(β < βc) and unclosed (β > βc) trajectories.

4.8.1. ESTIMATION OF NON-RADIATION TERMS

Up to now, when evaluating σρ we have taken into account only those terms
in �E and �H which contribute to the energy losses, i.e., to the W given by
Eq. (4.30). They correspond to the terms of �E and �H containing the usual
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σ ρ

Figure 4.18. The distribution of the radial energy flux (in units of e2ω3
0/c3) on the

surface of the cylinder Cρ for β = 0.4; z is in units c/ω0. It is seen that the main
contribution comes from large negative z.

(non-modified) Bessel functions (see Eqs. (4.12) and (4.13)). However, we
cannot use Eqs.(4.12) and (4.13) to evaluate terms with modified Bessel
functions as their contribution to �E is divergent. Instead, the following trick
is used. We find �E and �H for the complex electric permittivity (4.7). They
are finite for the non-zero value of parameter p defining the imaginary part
of ε(ω). The corresponding formulae are collected in Refs. [34,35] and in
section 4.9. Then we tend the parameter p defining the imaginary part of ε
to zero. We expect that for sufficiently small p we obtain the values of �E and
�H which adequately describe the contribution of the terms with modified
Bessel functions. There is also another approach (see [36] and section 4.11)
in which the electric strength �E is not singular (except for the charge motion
axis) even for real ε. It turns out that electromagnetic strengths evaluated
according to the formulae of section 4.9 are indistinguishable from those of
[36] when the parameter p is of an order of 10−5-10−4 in units of ω0. In
what follows, by the words ’terms with modified Bessel functions are taken
into account’ we mean that the calculations are made by means of formulae
presented in section 4.9 for p = 10−4.

When the terms with modified Bessel functions are taken into consid-
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σ ρ

Figure 4.19. Fine structure of the radial energy flux shown in Fig. 4.18.

eration, the characteristic oscillation of σρ appears in the neigbourhood
z = 0 (Figs. 4.25 and 4.26). For β < βc it is described approximately by
the following expression:

σ1
ρ = −cβe2

2ε0
(1 − β2/β2

c)2
ρ2z

[z2 + ρ2(1 − β2/β2
c)]3

(4.42)

corresponding to the energy flux carried by the uniformly moving charge
with the velocity β < βc in medium with a constant ε = ε0. As we have
mentioned, the terms in (4.12) and (4.13) containing modified Bessel func-
tions do not contribute to the total energy losses (4.32). In particular, this
is valid for σ1

ρ given by (4.42):

∞∫
−∞

σ1
ρdz = 0

(owing to the antisymmetry of σρ). For z � ρ and ρ � z, σ1
ρ falls as ρ2/z5

and z/ρ4, respectively.
For β = 0.4 we estimate the value of the term (4.42) in the region

z = −300 where σρ has a maximum (see Fig. 4.18). It turns out that
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Figure 4.20. The distribution of the radial energy flux (in units of e2ω3
0/c3) on the

surface of the cylinder Cρ for β = 0.99; z is in units of c/ω0 It is seen that the main
contribution comes from the small negative values of z.

σρ ≈ 6×10−5 and σ1
ρ ≈ 5×10−12 there, i.e., the contribution of σ1

ρ relative
to σρ is of an order of 10−7, and therefore it is negligible.

For β = 0.6 we see in Fig. 4.23 the σρ distribution evaluated via Eqs.
(4.12) and (4.13) in which the terms with modified Bessel functions are
omitted. Comparing Fig. 4.18 with 4.25 and Fig. 4.23 with 4.26 we conclude
that they coincide everywhere except for the z = 0 region where the term
(4.42) is essential.

For β ≥ βc the contribution of the terms involving modified Bessel
functions in (4.12) and (4.13) is very small. This illustrates Fig. 4.27 where
two distributions σρ with and without inclusion of the above-mentioned
terms are shown for β = 0.8. They are indistinguishable on this figure and
look like one curve. The same is valid for larger charge velocities.

4.9. The influence of the imaginary part of ε

So far we have evaluated the total energy losses per unit length (W ) and
their distribution along the z axis (σρ) for the pure real electric permittivity
given by (4.1). Equation (4.7) is a standard parametrization of the complex
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Figure 4.21. The same as in Fig. 4.20 but for β = 0.8. The radial energy flux is
distributed in a greater z interval.

electric permittivity [22,27]. For the chosen definition (4.5) of the Fourier
transform the causality principle requires p to be positive.

We write out electromagnetic potentials and field strengths for a finite
value of the parameter p defining the imaginary part of ε. Since ε(−ω) =
ε∗(ω), the EMF can be written in a manifestly real form

Φ =
2e

πv

∞∫
0

[(ε−1
r cos α − ε−1

i sin α)K0r − (ε−1
i cos α + ε−1

r sin α)K0i]dω,

Az =
2e

πc

∞∫
0

dω(cos αK0r − sin αK0i),

Hφ =
2e

πvc

∞∫
0

ωdω(a2 + b2)1/4
[
cos

(
φ

2
+ α

)
K1r − sin

(
φ

2
+ α

)
K1i

]
,

Ez = − 2
πv2

∞∫
0

ωdω{[cos α(ε−1
r − β2) − sin αε−1

i ]K0i
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Figure 4.22. The behaviour of the m = 1 trajectory for β = 0.4 and β = 0.6. For β < βc

the trajectories are grouped near the z axis. This shifts the maximum of the energy flux
distribution to larger negative z.

+[sinα(ε−1
r − β2) + cos αε−1

i ]K0r},

Eρ =
2

πv2

∞∫
0

ωdω(a2 + b2)1/4[(ε−1
r cos α − ε−1

i sin α)

×(cos(φ/2)K1r − sin(φ/2)K1i)

−(ε−1
i cos α + ε−1

r sin α)(sin(φ/2)K1r + cos(φ/2)K1i)]. (4.43)

Here we put

K0r = ReK0

(
ρω

v

√
1 − β2ε

)
, K0i = ImK0

(
ρω

v

√
1 − β2ε

)
,

K1r = ReK1

(
ρω

v

√
1 − β2ε

)
, K1i = ImK1

(
ρω

v

√
1 − β2ε

)
.

Furthermore, εr and εi are the real and imaginary parts of ω

εr = 1 +
ω2

L(ω2
0 − ω2)

(ω2
0 − ω2)2 + p2ω2

, εi = − pωω2
L

(ω2
0 − ω2)2 + p2ω2

,
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Figure 4.23. The same as in Fig. 4.18, but for the charge velocity β = 0.6.

Figure 4.24. For the charge velocity β below some critical βc the radial energy flux is
confined to the narrow cone attached to the moving charge. For βc = 0.8 and β = 0.4
the solution angle θc ≈ 5◦.
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Figure 4.25. The same as in Fig. 4.18, but with the inclusion of the non-radiating term
corresponding to the electromagnetic field carried by a moving charge.

ε−1
r = εr/(ε2r + ε2

i ), ε−1
i = −εi/(ε2r + ε2

i ); α = ω(t− z/v); a, b and φ are the
same as in (4.9)-(4.11). The energy flux per unit length through the surface
of a cylinder of the radius ρ coaxial with the z axis for the whole time of
charge motion is defined by Eq.(4.30). Substituting Ez and Hφ given by
(4.43) into it one finds

W =
∞∫
0

f(ω)dω,

where

f(ω) = −2e2ρ

πv3
ω2(a2 + b2)1/4

×{(K0rK1r + K0iK1i)[(ε−1
r − β2) sin(φ/2) − ε−1

i cos(φ/2)]

−(K0iK1r − K0rK1i)[(ε−1
r − β2) cos(φ/2) + ε−1

i sin(φ/2)]}. (4.44)

It is surprising that f(ω) given by (4.44) differs from zero for all ω. That
is, the Tamm-Frank radiation condition (stating that a charge moving uni-
formly in the dielectric medium radiates if the condition β2ε > 1 is satisfied)
fails if p 	= 0. It restores in the limit p → 0.
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Figure 4.26. The same as in Fig. 4.25, but for the charge velocity β = 0.6.

Let 1 − β2ε > 0 in this limit, then

sin
φ

2
→ 0, cos

φ

2
→ 1, εi → 0, ε−1

i → 0, K0i → 0, K1i → 0

and therefore f(ω) → 0 whilst electromagnetic potentials and field strengths
coincide with those terms in (4.12) and (4.13) which contain modified Bessel
functions. On the other hand, if in this limit 1− β2ε < 0, then

sin
φ

2
→ 1 (for p > 0), cos

φ

2
→ 0, εi → 0, ε−1

i → 0,

K0r → −π

2
N0, K0i → −π

2
J0, K1r → −π

2
J1, K1i → π

2
N1,

where the argument of the Bessel functions is (ρ|ω|/v)
√|1 − β2ε|. Substi-

tuting this into (4.44) and using the relation

Jν(x)Nν+1(x) − Nν(x)Jν+1(x) = − 2
πx

one arrives at

f(ω) =
e2ω

c2
(1 − 1

εβ2
).
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Figure 4.27. For β = βc the energy flux distributions with and without a non-radiating
term are practically the same: they are indistinguishable in this figure. The same holds
for β > βc.

This in turn leads to W coinciding exactly with (4.31)-(4.33). Electromag-
netic potentials and field strengths (4.43) coincide with the terms in (4.12)
and (4.13) containing the ordinary Bessel functions.

Now we intend to clarify how the value of the parameter p affects the
radiated electromagnetic field. For this we have evaluated σρ for β = 0.4 on
the surface of cylinder Cρ, ρ = 10 for three different values of parameter
p (in units ω0): p = 10−3 (Fig. 4.28), p = 10−2, and p = 0.1 (Fig. 4.29).
We observe that for p = 10−3 the intensity amplitude is approximately
two times less than for p = 10−4 (Fig. 4.25). For p = 10−2 and p = 0.1 all
oscillations of σρ on the negative z semi-axis practically disappear whilst the
value of the term corresponding to the modified Bessel functions in (4.12)
and (4.13) remains almost the same. In Figs. 4.30 and 4.31 there are given
distributions of the radiated energy on the surface of σρ for β = 0.8 and
β = 0.99 for three different values of p = 10−3, 0.1 and 1. We note that
with a rise of p the oscillations for β < βc are damped much more strongly
than for β ≥ βc. For example, for p = 10−2 and β = 0.99 the values of
the main maxima reduce only slightly (Fig. 4.31) whilst for β = 0.4 and
the same p the oscillations of the radiation intensity completely disappear
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σ ρ

Figure 4.28. The switching on the imaginary part of ε (p = 10−3) reduces the oscillation
amplitude by a factor of approximately 2 compared to that for p = 10−4 (see Fig. 4.25).
The non-radiating term is practically the same as in Fig. 4.25.

(Fig. 4.29). Another observation is that secondary maxima are damped
much more stronger than the main maximum. This is easily realized within
the polarization formalism. In it a moving charge creates a time-dependent
polarization source which, in the absence of damping, oscillates with a
frequency

√
ω2

0 + ω2
L. The oscillating polarization results in the appearance

of secondary electromagnetic waves, which being added are manifested as
maxima of the potentials, field strengths, and intensities. The distribution
of the polarization source for the electric permittivity (4.7) is given by
[34,35]

div �P =
e

v
δ(x)δ(y)

ω2
L√

ω2
0 + ω2

L − p2/4

× exp [−p(t − z/v)/2] × sin[
√

ω2
0 + ω2

L − p2/4(t − z/v)]

for z < vt and div�P = 0 for z > vt (this equation is related to the case ω2
0 +

ω2
L−p2/4 > 0). As a result of the positivity of p the value of the polarization

�P at the instant t is defined by the values of the electric field �E at preceding
times (the causality principle). It follows that for large negative values of z
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σ ρ

Figure 4.29. The radial energy flux for p = 10−2 and p = 10−1. The oscillations
completely disappeared, but the value of the non-radiating term remains practically the
same.

the polarization source is suppressed much more strongly than for z values
close to the current charge position. The position of the first maximum
approximately coincides with the position of the singular Cherenkov cone
in the absence of dispersion.

The total energy losses per unit length W (in units of e2ω2
0/c2) and the

total number of emitted photons N (in units of e2ω0/h̄c2) as a function of
the charge velocity β = v/c for βc = 0.8 and different values of p are shown
in Figs. 4.32 and 4.33. In most the cases W and N decrease with the rising
of p. The sole exception, the origin of which remains unclear for us, is the
intersection of N(β) curves corresponding to p = 0.1 and p = 1 (Fig. 4.33).
The corresponding ω densities f(ω) and n(ω) (entering W =

∫
f(ω)dω and

N =
∫

n(ω)dω) are shown in Figs. 4.34 and 4.35.

4.10. Application to concrete substances

We analyse two particular substances for which the parametrization of ε is
known.
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σ ρ

Figure 4.30. Shows how the inclusion of the imaginary part of ε affects the energy
flux distribution. The number of a particular curve means the parameter p. The charge
velocity is β = 0.8.

The first substance is iodine for which the parametrization of ε in the
form (4.7) may be found in the Brillouin book [10]: Its resonance frequency
lies in a far ultra-violet region and ε tends to 1 as ω → ∞. In this case,
there is a critical velocity below and above which the properties of radiation
differ appreciably. This parametrization is broadly used for the description
of optical phenomena.

The following parametrization of ε

ε = ε∞ +
ω2

L

ω2
0 − ω2 + ipω

(4.45)

with p = 0 was found in [37] for ZnSe. Its resonance frequency lies in a
far infrared region and ε tends to a constant value when ω → ∞. There
are two critical velocities for this case. The behaviour of radiation is essen-
tially different above the large critical velocity, between smaller and larger
critical velocities and below the smaller critical velocity. Despite that the
parametrizations (4.7) and (4.45) are valid in a quite narrow frequency
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Figure 4.31. The same as in Fig. 4.30 but for the charge velocity β = 0.99. Comparing
this figure with Figs. 4.29-4.30, we observe that switching on the imaginary part of ε
affects radiation intensities less for larger β.

region, we apply them to the whole ω semi-axis. Since we will deal with
frequency distributions of radiation we can, at any step, limit consideration
to the suitable frequency region.

The energy flux in the radial direction through the cylinder surface of
the radius ρ is given by

d3E
ρdφdzdt

= − c

4π
Ez(t)Hφ(t).

Integrating this expression over the whole duration of the charge motion
and over the azimuthal angle φ, and multiplying it by ρ, one obtains the
energy radiated for the whole charge motion per unit length of the cylinder
surface

dE
dz

= −cρ

2

∫
EzHφdt.

Substituting here, instead of Ez and Hφ, their Fourier transforms and per-
forming the time integration, one finds

dE
dz

=
∞∫
0

dωσρ(ω),
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β

β

β

Figure 4.32. Shows how the inclusion of the imaginary part of ε affects the total energy
losses W per unit length. The number on a particular curve is the parameter p; W and
p are in units of e2ω2

0/c2 and ω0, respectively.

where

σρ(ω) =
d2E
dzdω

= −πρcEz(ω)H∗
φ(ω) + c.c.

is the energy radiated in the radial direction per unit frequency and per unit
length of the observational cylinder. The identification of the energy flux
with σρ is typical in the Tamm-Frank theory [29] describing the unbounded
charge motion in medium. Finding electromagnetic field strengths from the
Maxwell equations, one obtains

σρ(ω) =
2ie2ω

c2
(1 − 1

β2ε
)x∗K0(x)[K1(x)]∗ + c.c.. (4.46)

Here x =
√

1 − β2ε · (ρω/v). The sign of the square root should be chosen
in such a way as to guarantee the positivity of its real part. In this case
the modified Bessel functions decrease as ρ → ∞. Equation (4.46), after
reducing to the real form, was used for the evaluation of radiation intensities
in [34,35]. In the limit p → 0 it passes into the Tamm-Frank formula (2.32).
For large kρ (k is the wave number, ρ is the radius of the observational
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β

β

β

Figure 4.33. The number of quanta emitted in the radial direction per unit length
(in units of e2ω0/h̄c2) as a function of the charge velocity β for different values of the
parameter p.

cylinder C), the radiation intensity (4.46) goes into [35]

σρ(ω) =
e2ω

c2
[(1− ε̃r

β2
) sin

φ

2
+ ε̃i cos

φ

2
] exp[−2ρω

v
(a2 + b2)1/4 cos

φ

2
], (4.47)

where ε̃r = εr/(ε2r + ε2
i ), ε̃i = −εi/(ε2r + ε2

i ); εr and εi (real and imaginary
parts of ε), a, b and the angle φ were defined in (4.9)-(4.11). Usually, the
condition kρ � 1 is satisfied with great accuracy. For example, for a wave-
length λ = 4× 10−5 cm and ρ = 10 cm, one gets kρ ≈ 106. Equation (4.47)
is valid for arbitrary dielectric permittivity. We apply it to (4.7) and (4.45).

4.10.1. DIELECTRIC PERMITTIVITY (4.7)

Dispersive medium without damping
For the sake of clarity we consider first the case of zero damping (p = 0).
From (4.46) or (4.47) one then easily obtains the Tamm-Frank formula
(4.31). According to Tamm and Frank [29], the total radiated energy is ob-
tained by integrating ETF(ω) over the frequency region satisfying βn>1. It
is easy to check that for β > βc = 1/

√
1 + ω2

L/ω2
0 this condition is satisfied
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ω
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Figure 4.34. Spectral distribution of the energy losses (in units of e2ω0/c2); ω is in units
of ω0. The number of a particular curve means the parameter p.

for 0 < ω < ω0. For β < βc this condition is satisfied for ωc < ω < ω0, where
ωc = ω0

√
1 − β2γ2/β2

cγ2
c . This frequency window narrows as β diminishes.

For β → 0 the frequency spectrum is concentrated near the ω0 frequency.
The total energy radiated per unit length of the observational cylinder is
equal to

dE
dz

=
∞∫
0

Sρ(ω)dω =
e2ω2

0

2c2
[1 − 1/β2 − 1

β2β2
cγ2

c

ln(1 − β2
c)] (4.48)

for β > βc and
dE
dz

= −e2ω2
L

2c2
[1 +

1
β2

ln(1 − β2)] (4.49)

for β < βc.

Dispersive medium with damping
Obviously, the non-damping behaviour of EMF is possible when the index
of the exponent in (4.47) is small. This takes place if cos φ/2 ≈ 0. This, in
turn implies that a = 1 − β2εr < 0, and b � |a|. We need, therefore,
the frequency regions where 1 − β2εr < 0.
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ω

Figure 4.35. Spectral distribution of the emitted quanta (in units of e2/h̄c2 ); ω is in
units of ω0. The number of a particular curve means the parameter p.

Let
βc < β < 1, βc = 1/

√
ε0, ε0 = ε(0) = 1 + ω2

L/ω2
0.

Then 1 − β2εr < 0 for 0 < ω2 < ω2
1,

where

ω2
1,2 = ω2

0 ± Ω0 − 1
2
(p2 + β2γ2ω2

L), Ω0 =
[
1
4
(p2 + β2γ2ω2

L)2 − ω2
0p

2
]1/2

.

In particular, ω1 = ω0 for β = 1 and ω1 =
√

ω2
0 − p2, ω2 = 0 for β = βc.

Let β2
p < β2 < β2

c , where

β2
p =

2pω0 − p2

ω2
L + 2pω0 − p2

(it is therefore suggested that p is sufficiently small to guarantee the pos-
itivity of β2

p. This always takes place for transparent media in which the
Cherenkov radiation is observed). Then 1 − β2εr < 0 for ω2 < ω < ω1. In
particular, ω1 = ω2 = ω0

√
1 − p/ω0 for β = βp.

Finally, for 0 < β < βp there is no room for 1 − β2εr < 0.
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We see that for β > βc the frequency distribution of the radiation
differs from zero for 0 < ω < ω1, whilst for βp < β < βc it is confined
to the frequency window ω2 < ω < ω1. Further decrease in β leads to
the window narrowing. The window width disappears for β = βp when
ω1 = ω2 = ω0

√
1 − p/ω0. Now the non-damping behaviour of the EMF

strengths in addition to 1 − β2εr < 0 requires also that b � |a|. This gives

ω2
L

ωp − ω2
0 + ω2

(ω2
0 − ω2)2 + p2ω2

� 1 − 1
β2

(it has been taken into account that 1 − β2εr < 0). Since the r.h.s. of this
inequality is smaller than 0 its l.h.s. should also be smaller than 0. This
takes place if

ω <
√

ω2
0 + p2/4 − p/2.

For small damping this reduces to ω < ω0 − p/2.

Application to iodine
As an example we consider a dielectric medium with ε0 = 1+ω2

L/ω2
0 ≈ 2.24.

The parameters of this medium are close to those given by Brillouin ([10],
p. 56) for iodine. As to ω0, Brillouin recommends ω0 ≈ 4 · 1016s−1. This
value of ω0 is approximately 10 times larger than the average frequency of
the visible region. However, since all formulae used for calculations depend
only on the ratios ωL/ω0 and p/ω0, we prefer to fix ω0 only at the final
stage.

To illustrate analytic results obtained above we present in Fig. 4.36
dimensionless spectral distributions σρ(ω) = f(ω)/(e2ω0/c2) for a number
of charge velocities β and damping parameters p as a function of ω/ω0.
For p = 0 (Fig. 4.36 (a)), radiation intensities behave in the same way, as
it was explained above. The switching on the damping parameter p affects
radiation intensities for β < βc more strongly than for β > βc. For example,
the radiation intensity corresponding to β = 0.4 (smaller than βc ≈ 0.668)
is very small even for p/ω0 = 10−8 (Fig. 4.36(b)). For larger p the radiation
intensity is so small that it cannot be depicted in the scale used For instance,
for β = βc the maximal value of the radiation intensity equals 2×10−10 for
p/ω0 = 10−4 (Fig. 4.36(c)) and 3× 10−14 for p = 10−2 (Fig. 4.36(d)). With
the rising of p the maximum of the frequency distribution shifts toward the
smaller frequencies. This is owed to the large value of the index under the
sign of exponent in (4.47) (and, especially, to the large value of ρω/v).

So far we have not specified the resonance frequency ω0. If, following
Brillouin, we choose ω0 = 4 × 1016s−1 (which is approximately 10 times
larger than average frequency of the visible light), then it follows from Fig.
4.36 (d) that for p/ω0 = 10−2 (Brillouin recommends p = 0.15), frequency
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Figure 4.36. Radiation intensities corresponding to the dielectric permittivity (4.7)
for a number of velocities and damping parameters p (in ω0 units). The radius of the
observational cylinder ρ = 10 cm. Other medium parameters are the same as suggested by
Brilluoin for iodine. It is seen that the radiation spectrum shifts towards low frequencies
with the rising of p.

distributions are practically zero inside the region of the visible light cor-
responding to ω ≈ ω0/10. This means, in particular, that space-time dis-
tributions of the radiated energy corresponding to realistic p are formed
mainly by photons lying in the far infrared region, and therefore there is
no chance of observing them in the region of visible light.

Up to now we have considered the radiation intensities on the surface
of the cylinder C of the radius ρ = 10 cm. It is interesting to see how they
look for smaller ρ. To be concrete, consider the radiation intensities corre-
sponding to p/ω0 = 10−2. From Fig. 4.36(d) we observe that the maximum
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Figure 4.37. Radiation intensities corresponding to the dielectric permittivity (4.7) for
p/ω0 = 10−2 and for a number of velocities and observational cylinder radii ρ (in cm). It
is seen that the frequency distribution of the radiation crucially depends on the radius ρ.
This leads to the ambiguity in the interpretation of experimental data. The ρ dependence
disappears in the absence of damping.

of σρ is at ω/ω0 = 2 × 10−3 for β = 1 and ρ = 10 cm. For ρ = 1 cm (Fig.
4.37(a)) the maximum of the same radiation intensity is at ω/ω0 ≈ 6×10−3.
This means that all frequency distributions shown in this figure are shifted
towards the larger ω/ω0. This tendency is supported by Figs. 4.37(b,c,d)
where the radiation intensities for ρ = 10−2 cm, ρ = 10−4 cm and ρ = 10−5

cm are presented.
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4.10.2. DIELECTRIC PERMITTIVITY (4.45)

There is an important difference between the parametrizations (4.7) and
(4.45). It is seen that ε(ω) given by (4.7) tends to unity for ω → ∞. This
means that the medium oscillators do not have enough time to be excited in
this limit. On the other hand, ε(ω), given by (4.45), tends to ε∞ in the same
limit. This leads to the appearance of two critical velocities β∞ = 1/

√
ε∞

and β0 = 1/
√

ε0, where ε∞ = ε(ω = ∞) and ε0 = ε(ω = 0) = ε∞ + ω2
L/ω2

0.
Now we evaluate the frequency distribution of the energy radiated by a
point-like charge moving uniformly in ZnSe with the same parameters as in
[37]. But first we make the preliminary estimates. For the parametrizations
(4.45) with p = 0 the radiation (1 − β2ε < 0) condition takes place in the
following ω domains:

For a charge velocity greater than the larger critical velocity (β > β∞)
the radiation condition 1 − β2ε < 0 holds if 0 < ω < ω0 and ω > ω1.
Here ω2

1 = ω2
0(β

2ε0 − 1)/(β2ε∞ − 1). At first glance it seems that for the
parametrization (4.45) the frequency spectrum of the radiation extends to
infinite frequencies. Fortunately this is not so. According to Chapter 7 the
finite dimensions of a moving charge lead to the cut-off of the frequency
spectrum at approximately ωc = c/a, where a is the charge dimension. If
for a we take the classical electron radius (e2/mc2), then ωc ∼ 1023s−1,
which is far above the frequency of the visible light (ω ∼ 1015s−1). For β →
β∞, ω1 → ∞, and only the low frequency part of the radiation spectrum
survives.

For the charge velocity between two critical velocities (β0 < β < β∞)
the radiation condition 1 − β2ε < 0 takes place if 0 < ω < ω0.

Finally, for the charge velocity smaller than the minor critical velocity
(0 < β < β0), the radiation condition 1−β2ε < 0 is realized in the frequency
window ω1 < ω < ω0. There is no radiation outside it. When β → 0,
ω1 → ω0 and the frequency window becomes narrower.

Application to ZnSe
In [37] the following parameters of a dielectric permittivity (4.45) with
p = 0 were found:

ε∞ = 5.79, ε0 = 8.64, ν0 = 6.3 × 1012Hz, ω0 = 2πν0 ≈ 4 · 1013s−1.

The corresponding critical velocities are given by β∞ = 0.416 and β0 = 0.34.
For β > β∞ the frequency distribution is confined to the following ω

regions: 0 < ω < ω0 and ω > ω1. At p = 0 the radiation intensities behave
in accordance with above predictions (Fig. 4.38).

Let p 	= 0. For β > β∞ the radiation intensities corresponding to the
high frequency branch (ω > ω1) vary quite slowly as p increases (Figs.
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Figure 4.38. Radiation intensities corresponding to the dielectric permittivity (4.45)
for p = 0 and a number of charge velocities. The medium parameters are the same as
for ZnSE. There are two critical velocities: β∞ ≈ 0.416 and β0 ≈ 0.34. (a): For β > β∞
there are two frequency regions (0 < ω < ω0 and ω1 < ω < ∞) to which frequency
distributions are confined. For β → β∞, ω1 → ∞; (b): For β0 < β < β∞ the radiation
is confined to the frequency region 0 < ω < ω0 (β = 0.4 and 0.34). For 0 < β < β0, the
radiation is confined to the frequency region ω1 < ω < ω0. For β → 0, ω1 → ω0 and the
frequency window becomes narrower (β = 0.3 and 0.2).

Figure 4.39. The same as in Fig.4.38, but for a nonzero p/ω0 = 10−8. (a): It is seen
that for β > β∞, the high-frequency branch of the spectrum is almost the same as in
the absence of damping. Radiation intensities in the low-frequency part of the spectrum
are two times smaller than for p = 0; (b): For β < β∞, the frequency spectrum is more
sensitive to the change of p. Its position is shifted towards the smaller ω. For β < β0 the
radiation intensities are very small. For example, for β = 0.2 the maximal value of the
radiation intensity is ≈ 5 × 10−6. The cylinder radius ρ = 10 cm.



Cherenkov radiation in a dispersive medium 187

Figure 4.40. The same as in Fig. 4.38, but for a larger p/ω0 = 10−6. (a): For β > β∞
the low-frequency part of the spectrum practically disappears. (b): For β0 < β < β∞,
the frequency spectrum is shifted towards the smaller ω. The radiation intensities are
approximately ten times smaller than those in Fig. 4.39 (b). The radiation intensity
corresponding to β = β0 = 0.34 is multiplied by 100 (that is, the curve shown should
be decreased in 100 times). For β < β0 the radiation intensities are small and cannot
be presented on this scale. Comparing this figure with Figs. 4.38 and 4.40, we observe
that the position of the maximum of the frequency spectrum depends crucially on the
damping parameter.

4.38(a) and 4.39 (a)). On the other hand, the low-energy branch of the
radiation intensity (0 < ω < ω0) is more sensitive to the damping increase:
it is practically invisible even for a quite small value of p/ω0 = 10−6 (Fig.
4.40 (a)).

Let β0 < β < β∞. At p/ω0 = 10−8 and p/ω0 = 10−6 the maximal values
of radiation intensities are, respectively, four and forty times smaller than
for p = 0 (Figs. 4.38(b) and 4.39 (b)). In addition they are shifted towards
the smaller ω. The radiation intensities decrease still more rapidly with
rising p for β < β0. For example, for β = 0.2 and p/ω0 = 10−6 the maximal
value of the radiation intensity is ≈ 5 × 10−6.

The main result of this consideration is that, in absorptive media both
the value and position of the maximum of the frequency distribution cru-
cially depend on the distance at which observations are made. The dimin-
ishing of the radiation intensity is physically clear since only part of the
radiated energy flux reaches the observer if p 	= 0. Does the frequency shift
of the maximum of the radiation intensity mean that any discussion of the
frequency distribution of the radiation intensity should be supplemented by
an indication of the observational distance? In the absence of absorption
(p = 0) the index of the exponent in (4.47) is zero and the dependence on



188 CHAPTER 4

the cylindrical radius ρ drops out. At first glance it is possible to associate
the ρ independent frequency distribution of the radiation intensity with
the pre-exponential factor in (4.47) which is the ρ = 0 limit of (4.47). But
(4.47) is not valid at small distances. Instead, the exact Eq. (4.46) should
be used there which is infinite at ρ = 0 (since a charge moves along the z
axis).

4.11. Cherenkov radiation without use of the spectral represen-
tation

In the �r, t representation Φ(�r, t) and �A(�r, t) are given by

Φ(�r, t) =
e

πv

∫
dω

ε
eiω(t−z/v) kdk

k2 + (ω2/v2)(1 − β2ε)
J0(kρ).

Az(�r, t) =
e

πc

∫
dωeiω(t−z/v) kdk

k2 + (ω2/v2)(1 − β2ε)
J0(kρ). (4.50)

The usual way to handle these integrals is to integrate them first over k.
This was done above in a closed form. The remaining integrals over ω are
interpreted as frequency distributions of EMF associated with the uniform
motion of charge in medium.

In this approach we prefer to take the above integrals first over ω [36].
The advantage of this approach is that arising integrals can be treated
analytically in various particular cases. These integration methods comple-
ment each other. The Maxwell equations (4.15) describing the EMF of a
uniformly moving charge can be handled without any appeal to the ω rep-
resentation. To prove this we rewrite Eq. (4.17) in the �r, t representation:

�P (t) =
1

8π2

∞∫
−∞

G(t − t′) �E(t′)dt′,

where

G(t − t′) = lim
p→0+

ω2
L

+∞∫
−∞

dω

ω2
0 − ω2 + ipω

eiω(t−t′).

A direct calculation shows that

G(t−t′) = 0 for t′ > t and G(t−t′) =
2πω2

L

ω0
sin[ω(t−t′)] for t′ < t.

Substituting �P into the Maxwell equations (4.15) one obtains the system
of integro-differential equations which depend only on the charge velocity
and the medium parameters and which do not contain the frequency ω.
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We represent the denominator entering in (4.50) in the form

1
k2 + ω2(1 − β2ε)/v2

=
v2

1 − β2

ω2 − ω2
0

(ω2 − ω2
1)(ω2 + ω2

2)

=
v2

1 − β2

ω2 − ω2
0

ω2
1 + ω2

2

×
[

1
2ω1

(
1

ω − ω1
− 1

ω + ω1

)
− 1

2iω2

(
1

ω − iω2
− 1

ω + iω2

)]
,

Here

k = ω/c, ω2
3 = ω2

0 + ω2
L, ω2

1 = ω2
0 − Ω + (Ω2 − β2γ2ω2

0ω
2
L)1/2,

ω2
2 = −ω2

0 + Ω + (Ω2 − β2γ2ω2
0ω

2
L)1/2, Ω =

1
2
[ω2

0 + β2γ2(k2c2 + ω2
L)].

Inserting these expressions into (4.50) and performing the ω integration we
get for the electromagnetic potentials and field strengths

Az = A(1)
z + A(2)

z ,

A(1)
z =

ev2γ2

c

∞∫
0

kdkJ0(kρ)F (1)
A , A(2)

z =
ev2γ2

c

∞∫
0

kdkJ0(kρ)F (2)
A

Φ = evγ2

∞∫
0

kdkJ0(kρ)Fφ − 2eω2
L

vω3
sin[ω3(t − z/v)]Θ(t − z/v)K0(ρω3/v),

Hφ = −∂Az

∂ρ
= eβ2cγ2

∞∫
0

k2dkJ1(kρ)FA, Dρ = Hφ/β, (4.51)

Eρ = eγ2v

∞∫
0

k2dkJ1(kρ)Fφ − 2eω2
L

v2
sin ω3(t − z/v)Θ(t − z/v)K1(ρω3/v),

Ez = eγ2

∞∫
0

kdkJ0(kρ)[2

(
β2 − ω2

1 − ω2
0

ω2
1 − ω2

3

)

×ω2
1 − ω2

0

ω2
1 + ω2

2

Θ(t − z/v) cos ω1(t − z/v)

−
(

β2 − ω2
0 + ω2

2

ω2
2 + ω2

3

)
ω2

0 + ω2
2

ω2
2 + ω2

1

· sign(z − vt) exp (−ω2|t − z/v|)]

−2eω2
L

v2
cos ω3(t − z/v)Θ(t − z/v)K0(ρω3/v),
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Dz = −2e

∞∫
0

kdkJ0(kρ)
ω2

1 − ω2
0 + β2γ2ω2

L

ω2
1 + ω2

2

Θ(t − z/v) cos ω1(t − z/v)

−e

∞∫
0

kdkJ0(kρ)
ω2

2 + ω2
0 − β2γ2ω2

L

ω2
1 + ω2

2

exp(−ω2|t − z/v|) · sign(t − z/v).

Here we put:
FA = F

(1)
A + F

(2)
A , Fφ = F

(1)
φ + F

(2)
φ ,

F
(1)
A = −ω2

1 − ω2
0

ω2
1 + ω2

2

2
ω1

Θ(t − z/v) sinω1(t − z/v),

F
(2)
A =

1
ω2

ω2
2 + ω2

0

ω2
1 + ω2

2

exp (−ω2|t − z/v|),

F
(1)
φ = − (ω2

1 − ω2
0)

2

(ω2
1 + ω2

2)(ω
2
1 − ω2

3)
Θ(t − z/v)

2
ω1

sin ω1(t − z/v),

F
(2)
φ =

(ω2
0 + ω2

2)
2

ω2(ω2
1 + ω2

2)(ω
2
3 + ω2

2)
exp (−ω2|t − z/v|). (4.52)

The separation of FA and Fφ into two parts is justified physically. It turns
out (see the next section) that F

(1)
A , F

(1)
φ and F

(2)
A , F

(2)
φ describe cor-

respondingly the radiation field and EMF carried by a uniformly moving
charge. They originate from the ω poles lying in non-damping and damping
regions, respectively.

When evaluating electromagnetic potentials and field strengths we have
taken into account that ε(ω) given by (4.1) is a limiting expression (as
p → 0) of

ε(ω) = 1 +
ω2

L

ω2
0 − ω2 + ipω

having a pole in the upper ω half-plane (for the Fourier transform chosen in
the form (4.3)). This in turn results in an infinitely small positive imaginary
part in ω1 and in factor 2 in the first terms in FA and Fφ. The position
of poles of ε(ω) in the upper complex ω half-plane is needed to satisfy
the causality condition. It is seen that Φ, Eρ, and Ez are singular on the
motion axis behind the moving charge. These singularities are due to the
modified Bessel functions K outside the integrals in (4.51). For a fixed
observational point z on the cylinder surface these singularities as functions
of time oscillate with the frequency ω3 = ω0/βc. For the fixed observational
time t these singularities as functions of the observational point z oscillate
with the frequency ω0/βcv. Since the electric induction �D is not singular
on the motion axis, the electric polarization �P = ( �D− �E)/4π has the same
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singularity as �E. As to the magnetic field �H, it tends to zero when one
approaches the motion axis:

Hφ → eω2
Lω0

c3
Θ(t − z/v) sin[ω0(t − z/v)]ρK0(ρω0/c) for ρ → 0.

4.11.1. PARTICULAR CASES

Consider the limiting cases. In most cases we present analytic results for
the magnetic vector potential (and, rarely, for the electric potential). The
behaviour of EMF strengths is restored by the differentiation of potentials.

1) Let v → 0. Then, ω1 → ω0, ω2 → vγk, Az → 0, and

Φ → eγ

1 + ω2
L/ω2

0

∞∫
0

dkJ0(kρ) exp (−βγkc|t − z/v|)

=
e

ε0

1
[z2 + ρ2]1/2

. (4.53)

i.e., we obtain the field of a charge to be at rest in the medium. It turns
out that only the second term in Fφ contributes to Φ.

2) Let ωL → 0. This corresponds to the zero electron density, at which
the moving charge exhibits scattering. Then, ε → 1, βc → 1, ω1 → 0, ω2 →
γkv,

Az → eβγ

∞∫
0

dkJ0(kρ) exp (−kγ|z − vt|) =
eβ

[(z − vt)2 + ρ2/γ2]1/2
,

Φ → e

[(z − vt)2 + ρ2/γ2]1/2
, (4.54)

i.e., we obtain the field of a charge moving uniformly in vacuum. Again,
only second terms in Fφ and FA contribute to Φ and Az, respectively.

3) Let ωL → ∞. This corresponds to an optically dense medium. Then,

ω2
1 → ω2

0

ω2
L

k2c2, ω2
2 → β2γ2(ω2

L + k2c2) − ω2
0 +

ω2
0

ω2
L

k2c2,

F
(1)
A → 2ω0ωL

β2γ2(ω2
L + k2c2)kc

Θ(t − z/v) sin
ω0kc(t − z/v)

ωL
,

F
(2)
A → e

βγ
√

ω2
L + k2c2

exp(−βγ
√

ω2
L + k2c2|t − z/v|).
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A
(2)
z can be evaluated in a closed form:

A(2)
z → eβ

R
exp(−γωLR/c), R = [(z − vt)2 + β2

cγ2
cρ2/γ2]1/2. (4.55)

whilst the analytic form of A
(1)
z is available only for ρ ≥ ω0c(t − z/v)/ωL:

A(1)
z → 2eω0

c
Θ(t − z/v) sinh[ω0(t − z/v)]K0(ωLρ/c). (4.56)

(it is seen that A
(1)
z decreases exponentially when ρ grows and increases

exponentially with increasing of t − z/v), and on the motion axis:

A(1)
z =

eω0

c
Θ(t − z/v)[exp(−ω0(t − z/v))Ei(ω0(t − z/v))

− exp(ω0(t − z/v))Ei(−ω0(t − z/v))].

Here Ei(x) is an integral exponent. For small and large values of ω0(t−z/v)
this gives:

A(1)
z ≈ −2

eω0

c
Θ(t − z/v) sin(ω0(t − z/v))[C + ln(ω0(t − z/v))]

for ω0(t − z/v) � 1 and

A(1)
z ≈ 2e

c(t − z/v)

for ω0(t−z/v) � 1. Here C is the Euler constant. Thus damped oscillations
of the EMF should be observed on the motion axis behind the charge.

4) Let ω0 → ∞, i.e., the resonance level lies very high. Then

ω2
1 → ω2

0 − β2γ2ω2
L, ω2

2 → β2γ2k2c2,

F
(1)
A → ω2

Lβ2γ2

ω2
0 − ω2

Lβ2γ2 + β2γ2k2c2

2√
ω2

0 − β2γ2ω2
L

×Θ(t − z/v) sin[
√

ω2
0 − ω2

Lβ2γ2(t − z/v)],

F
(2)
A → 1

βγkc
exp(−βγkc|t − z/v|,

A(1)
z → 2eω2

Lβ2γ2

cω0
Θ(t − z/v) sin[ω0(t − z/v)]K0(ρω0/βγc), (4.57)

A(2)
z → eβ

[(z − vt)2 + ρ2/γ2]1/2
, (4.58)



Cherenkov radiation in a dispersive medium 193

We see that a complete VP consists of the term A
(2)
z describing the charge

motion in vacuum and oscillating perturbation A
(1)
z on the axis of the charge

motion.
5) Let ω0 → 0, i.e., the resonance level lies very low. Then,

ω2
1 → ω2

0

k2c2

k2c2 + ω2
L

, ω2
2 → β2γ2(k2c2 + ω2

L) − ω2
Lω2

0

k2c2 + ω2
L

,

F
(1)
A ≈ 2ω2

0ω
2
L

β2γ2ck

1
(k2c2 + ω2

L)3/2
Θ(t − z/v) sin

ω0kc(t − z/v)√
k2c2 + ω2

L

 ,

F
(2)
A ≈ 1

βγ

1√
k2c2 + ω2

L

exp [−βγ
√

k2c2 + ω2
L(t − z/v)],

A(2)
z ≈ eβ

R
exp(−γωLR/c), R = [(vt − z)2 + β2

cγ2
cρ2/γ2]1/2. (4.59)

We succeeded in evaluating A
(1)
z in a closed form in two cases. For ω0ρ/c �

1 the VP slowly oscillates behind the moving charge:

A(1)
z ≈ 2eΘ(t − z/v)

1 − cos ω0(t − z/v)
c(t − z/v)

, (4.60)

On the other hand, for ω0(t − z/v) � 1

A(1)
z ≈ eω2

0ωL

c3
Θ(t − z/v)ρc(t − z/v)K1(ρωL/c).

i.e., there are VP oscillations in the half-space behind the moving charge
decreasing exponentially with increasing ρ.

6) Let ω0 → ∞, ωL → ∞, but ωL/ω0, and therefore βc is finite. One
then finds

ω2
1 → ω2

0(1 − ε̃) + x2ω2
0

ε̃

1 − ε̃
, ω2

2 = x2ω2
0

1
1 − ε̃

.

Az → 2ecβ2γ2ε̃

ω0(1 − ε̃)3/2

δ(ρ)
ρ

sin[
√

1 − ε̃ω0(t − z/v)]

+
eβ

[(z − vt)2 + ρ2(1 − β2ε0)]1/2
,

for β < βc. Here x = βγkc/ω0, ε̃ = β2γ2/β2
cγ2

c .
For β > βc one has

ω2
1 =

ω2
0x

2

ε̃ − 1
, ω2

2 = ω2
0(ε̃ − 1) + x2ω2

0

ε̃

ε̃ − 1
,
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Az → ecβ2γ2ε̃

ω0(ε̃ − 1)3/2

δ(ρ)
ρ

exp[−√
ε̃ − 1ω0(t − z/v)]

+
2eβ

[(z − vt)2 − ρ2(β2ε0 − 1)]1/2
,

(ε0 is the same as above). The origin of the first and second terms in Az and
Φ is owed to the second and first terms in FA and Fφ, respectively. Thus one
obtains the EMF of a charge moving in a medium with a constant electric
permittivity ε̃ = ε0 and the singular EMF on the motion axis.

7) Let the dimensionless quantity ε̃ = β2γ2/β2
cγ2

c � 1. Then,

ω2
1 =

ω2
0x

2
c

1 + x2
c

, ω2
2 = ε̃(1 + x2

c) −
1

1 + x2
c

, xc = βcγckc/ω0,

FA = F
(1)
A + F

(2)
A ,

F
(1)
A =

2
ω0ε̃xc(1 + x2

c)3/2
Θ(t − z/v) sin

[
ω0(t − z/v)

xc√
1 + x2

c

]
,

F
(2)
A =

1
ω0

√
ε̃

1√
1 + x2

c

exp(−
√

ε̃
√

1 + x2
cω0|t − z/v|). (4.61)

Correspondingly,
Az = A(1)

z + A(2)
z ,

where

A(1)
z =

2eω0

c
Θ(t − z/v)

∞∫
0

dx

(1 + x2)3/2
J0

(
ρω0x

βcγcc

)
sin

[
ω0(t − z/v)x√

1 + x2

]
,

A(2)
z =

eβ

R
exp

(
−ω0Rγ

βcγcc

)
, R = [(z − vt)2 + ρ2/γ2]1/2.

We did not succeed in evaluating A
(1)
z in a closed form. Instead, we consider

particular cases when the condition ε̃ � 1 can be realized.
Let β be finite and βc → 0. This corresponds to an optically dense

medium. Then A
(2)
z is exponentially small whereas

A(1)
z =

2eβcγc

(β2
cγ2

cc2(t − z/v)2 − ρ2)1/2
Θ(t − z/v)Θ[βcγcc(t − z/v) − ρ]. (4.62)

is confined to an infinitely narrow cone lying behind the moving charge.
This equation is obtained by neglecting x2

c in the square roots in (4.61).
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Let β → 1, βc → 1 under the condition ε̃ � 1 (that is, β is much closer
to unity than βc). This inequality is possible because of the γ factors in the
definition of ε̃. Then

A(1)
z = 2eΘ(t − z/v)

1 − cos[ω0(t − z/v)]
ct − z

(4.63)

for small values of ρ. It is seen that the VP exhibits oscillations in a half-
space behind the moving charge. More accurately, the condition under
which Eq. (4.63) is valid looks like ρω0/βcγcc � 1. This means that for
βc fixed in the interval 0 < βc < 1, A

(1)
z oscillates for ρ � βcγcc/ω0.

8) Let ε̃ � 1. Then

ω2
1 = ω2

0

(
1 − ε̃

1 + x2

)
, ω2

2 = ω2
0x

2
(

1 +
ε̃

1 + x2

)
, x = βγkc/ω0,

F
(1)
A =

2ε̃

ω0

1
(1 + x2)2

Θ(t − z/v) sin
[
ω0(t − z/v)

(
1 − ε̃

2
1

1 + x2

)]
,

F
(2)
A =

1
ω0x

exp(−ω0x|t − z/v|).

It turns out that A
(2)
z coincides with the VP of a charge moving in a vacuum:

A(2)
z =

ev

[(z − vt)2 + ρ2/γ2]1/2
.

As to A
(1)
z , it can be taken in an analytic form for (t − z/v)ω0ε̃ � 1 :

A(1)
z =

eρω2
0βγ

c2β2
cγ2

c

Θ(t − z/v) sin[ω0(t − z/v)]K1(ρω0/βγc). (4.64)

The condition ε̃ � 1 can be realized in two ways. First, βc can be finite but
β � 1. In this case A

(1)
z is confined to a narrow beam behind the moving

charge:

A(1)
z = e(

πρω3
0β

3γ3

2c3
)1/2 1

β2
cγ2

c

Θ(t−z/v) sin[ω0(t−z/v)] exp(−ρω0

βγc
). (4.65)

On the other hand, the condition ε̃ � 1 can be satisfied when β is close to
1, but βc is much closer to it. Then,

A(1)
z =

eω0ε̃

c
Θ(t − z/v) sin[ω0(t − z/v)]. (4.66)

Thus A
(1)
z is small (owing to the ε̃ factor), but not exponentially small.

This means that one should observe oscillations in the half-space behind
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the moving charge. Physically, βc ≈ 1, β ≈ 1, ε̃ � 1 corresponds to the
motion in an optically rarefied medium (e.g., gas) with a charge velocity
slightly smaller than the velocity of light in medium.

We observe the a noticeable distinction between the cases β ≈ 1, βc ≈
1 corresponding to ε̃ � 1 and ε̃ � 1. In both cases A

(1)
z oscillates in the

half-space behind the moving charge, but the amplitude of oscillations is
considerably smaller for β < βc (owing to the ε̃ factor in (4.66)).

More precisely, the condition under which Eq. (4.66) is valid is ρω0/βγc �
1. This means that for β fixed, the VP oscillations should take place for
small values of ρ.

9) Let the charge velocity exactly coincide with the velocity of light in
medium: β = βc, ε̃ = 1. Then

ω2
1

ω2
0

= −x2

2
+ x(1 + x2/4)1/2,

ω2
2

ω2
0

=
x2

2
+ x(1 + x2/4)1/2.

Let β = βc ≈ 1. This corresponds to a fast charged particle moving in a
rarefied medium. Then

A(1)
z =

4
3

eω0

c
Θ(t − z/v) sin[ω0(t − z/v)]

[
K0

(
ω0ρ√
2βγc

)
− K0

(√
2
ω0ρ

βγc

)]
,

A(2)
z =

eβ

R
exp(−ω0R/v), R = [(z − vt)2 + ρ2/γ2]1/2.

Thus A
(2)
z differs from zero in a neighbourhood of the current charge po-

sition, whereas A
(1)
z describes the oscillations in the half-plane behind the

moving charge. As γ is very large, A
(1)
z as a function of ρ diminishes rather

slowly: it decreases essentially when the radius ρ ≈ √
2cγ/ω0.

4.11.2. NUMERICAL RESULTS.

In this section we present the results of numerical calculations. We intend
to consider the EMF distribution on the surface of the cylinder Cρ of the
radius ρ (Fig. 4.2). This is a usual procedure in the consideration of VC
effect (see, e.g., [29]).

For a frequency-independent electric permittivity (ε = ε0) there is no
radiation for β < βc = ε

−1/2
0 . For β > βc the energy flux is infinite on

the surface of the Cherenkov cone. On the surface of Cρ it is equal to
zero for z > −zc, (zc = ρ

√
β2n2 − 1), and acquires an infinite value at

z = −zc where Cρ intersects the above cone. Inside the Cherenkov cone the
electromagnetic strengths fall as r−2 at large distances, and therefore do
not contribute to the radial flux.

In what follows, the results of numerical calculations will be presented
in dimensionless variables. In particular, lengths will be expressed in units
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of c/ω0, time in units of ω−1
0 , electromagnetic strengths in units of eω2

0/c2,
the Poynting vector �P = (c/4π)( �E × �H) in units of e2ω4

0/c3, etc.. The
advantage of using dimensionless variables is that Cherenkov radiation can
be considered at arbitrary distances.

In Fig. 4.8 we presented the dimensionless quantity F = Wρ/(e2ω2
0/c2)

as a function of the particle velocity β. The numbers on curves are βc.
Vertical lines with arrows divide a curve into two parts corresponding to
the energy losses with velocities β < βc and β > βc and lying to the left
and right of vertical lines, respectively. We see that the charge uniformly
moving in medium radiates at every velocity.

How is this flux distributed over the surface of Cρ? For definiteness we
take βc = 0.75 to which corresponds the refractive index n = 1/βc = 1.333.
This is close to the refractive index of water (n = 1.334). The value of ρ
is chosen to be ρ = 10 (in units of c/ω0). In Fig. 4.41 it is shown how the
quantity σρ = 2πSρ is distributed over the surface of Cρ for β = 0.3. It is
seen that the EMF (corresponding to the A

(1)
z term in Az) differs from zero

only at large distances behind the moving charge. The isolated oscillation in
the neighbourhood of z = 0 corresponds to the EMF carried by the moving
charge. We refer to this part of EMF as the non-radiation EMF. Being
originated from the A

(2)
z term in Az (see Eq.(4.51)), it is approximately

equal to

σ(2)
ρ = −cβe2

2ε0
(1 − β2/β2

c)2
ρ(z − vt)

[z2 + ρ2(1 − β2/β2
c)]3

. (4.67)

As we have mentioned, this corresponds to the radial energy flux carried
by a uniformly moving charge with the velocity β < βc in medium with a
constant ε = ε0. Owing to its antisymmetry w.r.t. z − vt the integral of it
taken over either z or t is equal to zero.

If the distribution of the radiation flux on the surface of the sphere S
(instead of on the cylinder surface Cρ, as we have done up to now) were
considered, the radial radiation flux Sρ would be confined to the narrow
cone adjusted to the negative z semi-axis. As follows from Fig. 4.41a the
solution angle θc of this cone is equal to approximately 3 degrees for βc =
0.75 and β = 0.3, i.e., the radiation is concentrated behind the moving
charge near the motion axis.

When β grows, the relative contribution of the radiation term also in-
creases. This is clearly demonstrated in Fig. 4.41(b) and 4.41(c) where the
distributions of σρ are presented for β = 0.5 and β = 0.99, respectively.
The energy flux distributions presented in Figs. 4.41 (a,b,c) consist in fact
of many oscillations. This is shown in Fig. 4.41(d) where the magnified im-
age of σρ for β = 0.99 is presented. It turns out that the first maximum
of the radiation intensity is in the same place z = −ρ

√
β2n2 − 1 where in
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Figure 4.41. (a): Distribution of the radial energy flux on the surface of Cρ for βc = 0.75;
and β = 0.3. The isolated oscillation in the neighbourhood of the plane z = 0 corresponds
to the non-radiation field carried by a charge. The radiation and non-radiation terms are
of the same order; (b): β = 0.5. The contribution of the non-radiation term relative to
the radiation term is much smaller than for β = 0.3; (c): β = 0.99. The contribution of
the non-radiation term relative to the radiation term is negligible; (d): Fine structure of
the case β = 0.99. It is seen that a seemingly continuous distribution of (c) consists, in
fact, of many peaks.

the absence of dispersion the singular Cherenkov cone intersects the sur-
face of Cρ. To detect the Sρ component of �S, one should have a detector
imbedded into a thin collimator and directed towards the charge motion
axis. The collimator should be impenetrable for the γ quanta with direc-
tions different from the radial direction. It follows from Fig. 4.41 that in a
particular detector (placed in the plane z = const), rapid oscillations of the
radiation intensity as a function of time should be observed (since all the
physical quantities and, in particular, Sρ depend on t and z through the
combination z − vt). It should be asked why so far nobody has observed
these oscillations? From the β = 0.99, βc = 0.75 case presented in Fig.
4.41 d it follows that the diffraction picture differs essentially from zero
on the interval −150 < z − vt < 0, where z is expressed in units of c/ω0.
The typical ω0 value taken from the Frank book [29] is ω0 ≈ 6 × 1015s−1.
This gives c/ω0 ≈ 5 × 10−6 cm. We see that the above interval is of the
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order 10−3 cm. The rapidly moving charge (v ≈ c) traverses this distance
for the time 10−3c−1 ≈ 3 · 10−14s. It follows from Fig. 4.41 d that there are
many oscillations in this time interval. Because of this, they can hardly be
resolved experimentally.

Now we turn to experiments discussed recently in [18,19,20]. In them,
for an electron moving in a gas with a fixed high energy β ≈ 1), the radi-
ation intensity was measured as a function of the gas pressure P . Let Pc

corresponds β = βc. For gas pressures below Pc (in this case β < βc) the
standard Tamm-Frank theory (see, e.g., [29]) predicts zero radiation inten-
sity. A sharp reduction of the radiation intensity was observed in [18,19,20]
for a gas pressure P ≈ Pc/100. To this gas pressure there corresponds ε̃ � 1
despite the fact that β ≈ βc ≈ 1 (this is possible because of the γ factors
in the definition of ε̃).

To clarify the nature of this phenomenon we turn to Eqs. (4.32) and
(4.33) which for a fixed β define energy losses per unit length as a function
of βc. Typical curves are shown in Fig. 4.42 a,b. The numbers on curves
are the charge velocity. It follows from Fig. 4.42 (b) that for β = 0.99
the radiation intensity diminishes approximately 60 fold when βc changes
from 0.9 to 0.999. The corresponding distributions of the energy flux on the
surface of Cρ are shown in Figs. 4 (c) and 4 (d). It is seen that the intensity
at maxima is almost 1000 times smaller for βc = 0.999 than for βc = 0.9.
The intensity distribution is very sharp for βc = 0.9 and quite broad for
βc = 0.999. The physical reason for the sharp reduction of intensity lies in
the increase for βc > β of the region in which the electromagnetic waves
are damped. The sharp reduction of the radiation intensity when the gas
pressure drops below Pc agrees with qualitative estimates of section 4.8.

So far we have evaluated Sρ, the radial component of the Poynting
vector. The integral 2πρ

∫
Sρdz taken over the cylinder surface Cρ is the

same for any ρ. It is equal to vWρ, where v is the charge velocity while the
quantity Wρ independent of ρ is defined by Eqs. (4.31)-(4.33).

The Poynting vector �P has another component, Sz. Both of them define
the direction in which the radiation propagates. The distributions of σz =
2πSz on the surface of Cρ are shown in Figs. 4.43 (a-d). for the charge
velocities β = 0.3, 0.5, 0.75 and 0.99, respectively. The isolated peak in
the neighbourhood of z = 0 plane corresponds to the EMF carried by the
moving charge with itself. Being originated from the second term in Az (see
(4.51)) it is approximately equal to (for β < βc)

σ(2)
z ≈ cβe2ρ

2ε0γ4
n

1
[(z − vt)2 + ρ2/γ2

n]3
, γ2

n = (1 − β2
n)−1, βn = β/βc.

It is seen that the qualitative behaviour of Sz is almost the same as Sρ;
however, the maxima of Sz are approximately twice of those of Sρ. This
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Figure 4.42. (a): Radial energy losses as a function of the critical velocity characterizing
the medium properties. Values of βc close to 1 and 0 correspond to optically rarefied and
dense media, respectively. Numbers on curves are the charge velocity β; (b): The same
as in (a), but for a smaller βc interval; (c): Distribution of the radial energy flux on the
surface of the cylinder Cρ for a critical velocity (βc = 0.9) slightly smaller than the charge
velocity (β = 0.99) which in turn is slightly smaller than the velocity of light in vacuum.
The intensity of radiation is concentrated near the plane z = −zc; (d): The same as
in (c), but for a critical velocity (βc = 0.999) slightly greater than the charge velocity
(β = 0.99). The distribution of the radiation intensity is very broad and by three orders
smaller than in (c).

means that more radiation is emitted in the forward direction than in the
transverse direction. To observe Sz one should orient the collimator (with a
detector inside it) along the z axis. The collimator should be impenetrable
for the γ quanta having directions non-parallel to the axis of motion. Again,
the oscillations of intensity as a function of time should be detected during
the charge motion.

To determine the major direction of the radiation, one should find sur-
faces on which the Poynting vector is maximal . Owing to the axial sym-
metry these surfaces look like lines in ρ, z variables. We shall refer to these
lines as trajectories (see section 4.7). The behaviour of these trajectories
is quite different depending on whether β > βc or β < βc. For β > βc the
trajectories are not closed. When z → ∞, ρ also tends to ∞. For β < βc
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Figure 4.43. Distribution of the z component of the energy flux σz axis on the surface
of Cρ for βc = 0.75; (a): β = 0.3. The isolated peak in the neighbourhood of z = 0 cor-
responds to the non-radiation field carried by a charge. The radiation and non-radiation
terms are of the same order; (b): β = 0.5. The contribution of the non-radiation term
relative to the radiation term is much smaller than for β = 0.3; (c): β = 0.75. The contri-
bution of the non-radiation term relative to the radiation term is negligible. The radiation
is concentrated near the plane z = 0; (d): β = 0.99. The contribution of the non-radiation
term relative to the radiation term is negligible . The radiation is concentrated near the
plane z = −zc.

the trajectories are closed. In the WKB approach, on a particular one of
the surfaces mentioned, the inclination of the Poynting vector towards the
motion axis is given by [35,36]

cos θP =
Sz√

S2
ρ + S2

z

=
1

β
√

ε(x)
.

Here x is a parameter, ε(x) = 1 + [β2
cγ2

c(1 − x2)]−1, Sρ = −cEzHφ/4π and
Sz = cEρHφ/4π. For β > βc, x changes from x = 1 for which ρ is zero, z is
finite and θP = π/2 up to x = 0 for which both ρ and z are infinite whilst
cos θP has the same value βc/β as in the absence of dispersion.

For β < βc a particular trajectory intersects the motion axis two times:
at x = 1 where z is finite and θP = π/2 and at x =

√
1 − ε̃ where z is finite

and greater in absolute value than for x = 1, while θP = 0 there. At the
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point of the trajectory where ρ is maximal the inclination of the Poynting
vector towards the motion axis acquires the intermediate value

cos θP =
1
β

[
1 +

1
β2

cγ2
c(2 −√

4 − 3ε̃)

]−1/2

, ε̃ = β2γ2/β2
cγ2

c .

Consider now the energy flux per unit time through the entire plane z =
const. It is given by

Wz =
∫

Szρdρdφ =
c

2

∫
EρHφρdρ.

Substituting Eρ and Hφ from (4.51) and using the well-known orthogonality
relation between Bessel functions

∞∫
0

ρdρJm(kρ)Jm(k′ρ) =
1
k
δ(k − k′),

one obtains

Wz =
1
2
e2v3γ2

∫
k2dkFA(k, z − vt)

×{γ2Fφ(k, z − vt) − 2
v2

ω0

γ2
cβc

1
k2 + ω2

0/v2β2
c

sin[ω0(t − z/v)/βc]},

where FA and Fφ are given by Eqs. (4.52).
It is not evident that Wz is positive-definite. In Fig. 4.44 (a) we present

Wz as a function of z for βc = 0.75 and β = 0.99. It is seen that Wz is almost
constant in a very broad range of z except for the neighbourhood of the
z = const plane passing through the current charge position. The positivity
of Wz = 2π

∫
Szρdρ means that the energy flow of radiation follows for the

moving charge and does not mean that Sz is also positive. This is illustrated
in Fig. 6(b) where σz = 2πSz as a function of ρ is presented for a particular
plane z = −800. It is seen that Sz contains both positive and negative
parts. This may be understood within the polarization formalism [34,35,36].
In it the moving charge induces the time-dependent polarization of the
medium. This in turn leads to the appearance of the radiation characterized
by the Poynting vector �S. The positivity of Sz means that the part of
the induced radiation flux follows for the moving charge. This fact has
no relation to the well-known difficulty occurring for the radiation of the
accelerated charge moving in a vacuum where the solutions of the Maxwell
equations corresponding to the energy flux directed inward the moving
charge are regarded as unphysical.
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Figure 4.44. (a): The total integral energy flux Wz through the plane normal to the
motion axis as a function of this plane position for β = 0.99 and βc = 0.75; (b): The
distribution of the energy flux in a particular (z = −800) plane normal to the motion
axis as a function of the radial distance ρ. Positive and negative signs of σz correspond
to the energy flow directed inwards the moving charge and outwards it, respectively.

The appearance of medium density oscillations behind the charge mov-
ing in a plasma was predicted in 1952 by Bohm and Pines [38]. The cor-
responding electric potential has been called the wake potential [39]. The
electric field arising from such oscillations has been evaluated by Yu, Sten-
flo and Shukla [40]. For a charge moving in a metal the Cherenkov shock
waves arise when the charge velocity exceeds the Fermi velocity of the solid
[41]. The Cherenkov shock waves should be also induced by heavy ions
moving in an electron plasma with the velocity greater the Fermi veloc-
ity of the electrons in the plasma [42]. However, in all these publications
only the electric field has been evaluated, no attention has been paid to
the magnetic field arising and to the Poynting vector defining the propaga-
tion of the electromagnetic field energy. The latter is the main goal of this
investigation.

Recently, we were aware of an experiment performed by Stevens et al.
[43] which seems to support the theoretical predictions of this Chapter.
The experiment was performed on a single ZnSe crystal of the cubic form
with a side of 5 mm. Its refractive index essentially differs from unity in
the physically interesting frequency region. A laser pulse from an external
source is injected into the sample. This laser pulse represents a wave packet
centered around the frequency ωL which may be varied in some interval.
The injected pulse propagating with a group velocity defined by ωL creates
the distribution of electric dipoles following the laser pulse. The moving
dipoles produce EMF, the properties of which depend on the dipole veloc-
ity vd, which in its turn, is defined by ωL. In particular, this velocity can
be greater or smaller than c0 (c0 = c/ε0, ε0 = ε(ω = 0)). In the experiment



204 CHAPTER 4

treated the quantity measured was the electric field. The character of its
time oscillations essentially depends on the fact whether vd > c0 or vd < c0.
The observed time oscillations of electric field were in good agreement with
the theoretical oscillations.
We believe that this experiment is a great achievement having both theo-
retical and technological meaning. However, Nature never resolutely says
‘Yes’. We briefly enumerate the main reservations:

1) A bunch of electric dipoles is created at one side of the ZnSe cube and
propagates towards the other. Such a motion corresponds to the so-called
Tamm problem (see Chapter 2) describing the charge motion in a finite in-
terval. Theory predicts that a charge uniformly moving in a finite dielectric
slab radiates at each velocity even in the absence of dispersion. This asser-
tion is not changed by the fact that the wavelength is much smaller than
the motion interval (equal to the side of cube) in the experiment treated;

2) The switching of the imaginary part of dielectric permittivity leads
to the damping of the EMF oscillations for v < c0 and to their rather small
attenuation for v > c0. For realistic imaginary parts the oscillations for
v < c0 almost disappear (see this Chapter);

3) An important question is the distance at which the observations
were made: oscillations of the EMF intensity sharply different from the
Cherenkov ones appear at finite distances (see Chapters 5 and 9).

The experiment treated is so fundamental that any ambiguity in its
interpretation should be excluded. Careful analysis of the influence of the
above items on the experiment treated should be made.

4.12. Short résumé of this Chapter

We briefly summarize the main results discussed in this Chapter:

1. It is shown that a point charge moving uniformly in a dielectric
medium with a standard choice (4.1) of electric permittivity should radiate
at each velocity. The distributions of the radiated electromagnetic field
differ drastically for the charge velocity v below and above some critical
value vc which depends on the medium properties and does not depend on
the frequency (despite that the frequency dispersion is taken into account).
For v < vc the radiation flux is concentrated behind the moving charge at
a sufficiently remote distance from the charge.

2. The electromagnetic field radiated by a charge uniformly moving in
a dielectric medium with ε(ω) given by (4.1) consists of many oscillations
which can be observed experimentally. We associate the appearance of these
oscillations with the excitation of the lowest atomic level of the medium by
a moving charge.
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3. The results of recent experiments [18,19,20] and [43] dealing with the
Vavilov-Cherenkov radiation and indicating on the existence of the radia-
tion below the Cherenkov threshold seems to be supported by the present
investigation. We associate this radiation with the frequency dependence
of ε and the non-zero damping.

4. In an absorptive medium, both the value and position of the maxi-
mum of the frequency distribution depend crucially on the damping param-
eter and on the distance at which observations are made. The diminishing
of the radiation intensity is physically clear since only part of the radi-
ated energy flux reaches the observer for a non-zero damping parameter.
Does the frequency shift of the maximum of the radiation intensity mean
that any discussion of the frequency distribution of the radiation intensity
should be supplemented by the indication of the observational distance and
the damping parameter? In the absence of absorption the dependence on
the observational cylindrical radius ρ disappears.
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CHAPTER 5

INFLUENCE OF FINITE OBSERVATIONAL DISTANCES
AND CHARGE DECELERATION

5.1. Introduction

In Chapter 2 we analyzed frequency and angular distributions of the ra-
diation in the so-called Tamm problem. The latter treats a point charge
which is at rest in a medium at the spatial point z = −z0 up to an instant
t = −t0. In the time interval −t0 < t < t0 the charge moves with a con-
stant velocity v that can be smaller or greater than the velocity of light cn

in medium. After the instant t = t0 the charge is again at rest at the point
z = z0. This problem was first considered by Tamm [1] in 1939. Later, it
was analyzed qualitatively by Lawson [2,3] and numerically by Zrelov and
Ruzicka [4,5]. In 1996 the exact solution of the Tamm problem was found
for a non-dispersive medium [5.6]. A careful analysis of this solution given
in [7] showed there that the Tamm formula does not always describe the
VC radiation properly.

In the past, exact electromagnetic field (EMF) strengths and exact elec-
tromagnetic intensities of the Tamm problem were written out in [8]. It
was shown there that the radiation intensity depends crucially on the ob-
servational sphere radius (the formula (2.29) given by Tamm corresponds
to infinite observational distances). However, the calculations carried out
there, were predominantly of a methodological character. The reason is that
formulae obtained in [8] were not suitable for practical applications: EMF
strengths were expressed through the integrals, the accurate evaluation of
which for high frequencies, corresponding to visible light, required a great
number of integration steps.

The goal of this consideration is to obtain more suitable practical for-
mulae describing the radiation intensity of the Tamm problem at finite dis-
tances and having a greater range of applicability than the original Tamm
formula. The original Tamm problem involves instantaneous jumps in veloc-
ity at the start and end of motion. To them correspond infinite acceleration
and deceleration. There are no such jumps in reality. Our next goal is to
study how a smooth transition from the state of rest to the uniform motion
affects the radiation intensities.

The plan of our exposition is as follows. In Section 5.2.1 we reproduce
the Tamm derivation of angular-frequency distributions of the radiation

209
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intensity produced by a point charge moving uniformly in a medium in a
finite spatial interval. Criteria for the validity of the Tamm formula are
given in the same section. Exact electromagnetic fields of the Tamm prob-
lem and radiation intensity are explicitly written out in Section 5.2.2. A
closed expression for the radiation intensity which works at finite obser-
vational distances from a moving charge (the Tamm original formula cor-
responds to an infinite observational distance) is found in Section 5.2.3.
This expression predicts the essential broadening of the angular Cherenkov
spectrum if the measurements are made at realistic distances from a mov-
ing charge. The analytic formula taking into account both the deceleration
of a moving charge owed to the energy losses and a finite distance of the
observational point is presented in Section 5.2.4. It generalizes the formula
found earlier in [9] that is valid only at infinite distances. In Section 5.2.5
we compare exact radiation intensities with approximate analytic intensi-
ties obtained in Sections 5.2.3 and 5.2.4. In all the cases corresponding to
the real experimental situation, there is a perfect agreement between the
exact radiation intensity and analytic formulae found in Sections 5.2.3 and
5.2.4. On the other hand, both of them sharply disagree with the Tamm
radiation intensity. These formulae are applied to the description of the
VC radiation observed in the Darmstadt experiments with heavy ions. The
complications arising and the discussion of the results obtained are given.
In the same section the experiment is proposed of testing the broadening
of the radiation spectrum when it is measured at finite distances.

The analytic formulae obtained in Section 5.2.4 are valid for moderate
accelerations when the loss of velocity is small compared to the velocity
itself. The section 5.3 deals with arbitrary accelerations. Analytic formulae
are obtained for the radiation intensity corresponding to a number of the
smooth Tamm problem (when the transition from the state of versions
rest to the uniform motion proceeds smoothly). These formulae are valid
under the same approximations as the Tamm formula. Various analytic
estimates are given and interesting limiting cases having numerous practical
applications are considered.

5.2. Finite observational distances and small acceleration

5.2.1. THE ORIGINAL TAMM APPROACH

Tamm considered the following problem. A point charge is at rest at a point
z = −z0 of the z axis up to an instant t = −t0 and at the point z = z0 after
the instant t = t0. In the time interval −t0 < t < t0 it moves uniformly
along the z axis with a velocity v greater than the velocity of light cn = c/n
in medium. The non-vanishing z spectral component of the vector potential
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(VP) is given by

Az(x, y, z) =
eµ

2πc

∫ z0

−z0

dz′

R
exp (−iψ),

R = [ρ2 + (z − z′)2]1/2, ρ2 = x2 + y2, ψ = ω

(
z′

v
+

R

cn

)
. (5.1)

In what follows we limit ourselves to a dielectric medium (µ = 1). At large
distances from the moving charge where

R � z0 (5.2)

one obtains in the wave zone, where

knr � 1, kn = ω/cn (5.3)

the following expression for the energy flux through a sphere of radius r for
the whole time of observation

E = r2
∫

SrdΩdt =
∫

d2E
dΩdω

dΩdω,

dΩ = sin θdθdφ, Sr =
c

4π
EθHφ. (5.4)

Here
d2E

dΩdω
=

e2

π2cn
[sin θ

sin ωt0(1 − βn cos θ)
cos θ − 1/βn

]2, βn =
v

cn
(5.5)

is the energy emitted into the solid angle dΩ, in the frequency interval dω.
This famous formula obtained by Tamm is frequently used by experimen-
talists (see, e.g., [10]-[13]) for the identification of the charge velocity.

The typical experimental situations described by the Tamm formula
are:

i) β decay of a nucleus at one spatial point accompanied by a subsequent
absorption of the emitted electron at another point;

ii) A high energy electron consequently moves in a vacuum, enters the
dielectric slab, leaves the slab, and again propagates in the vacuum. Since
an electron moving uniformly in a vacuum does not radiate (apart from
the transition radiation arising at the boundaries of the dielectric slab), the
experimentalists describe this situation by the Tamm formula, assuming
that the electron is created on one side of the slab and is absorbed on the
other.
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In addition to the approximations (5.2) and (5.3), two other implicit
assumptions are made when going from the exact VP (5.22) to the Tamm
field strengths (5.4). The first of them

z0 � 2r

(
1
βn

− cos θ

)
/ sin2 θ. (5.6)

means [7] that the second-order term in the expansion of ψ should be small
as compared with the linear one (taken into account by Tamm). It is seen
that the right hand side of this equation vanishes for cos θ = 1/βn, i.e., at
the angle where the VC radiation exists. Therefore in this angular region,
the second-order terms may be important. The second of the conditions
mentioned

z′2ω sin2 θ

2rcn
� π (5.7)

means that the second-order terms in the expansion of R should be small
not only compared to the linear terms but also compared to π (since ψ
is a phase in (5.1)). Or, taking for θ and z′ their maximal values (θ =
π/2, z′ = z0), one obtains

nL2

8rλ
� 1, L = 2z0, λ =

2πc

ω
. (5.8)

This condition was mentioned by Frank on p. 59 of his book [10]. It should
be noted that for gases these conditions are less restrictive than for solids
and liquids. In fact, since for them βn ≈ 1, the angular spectrum is confined
to the region θ ≈ 0 and conditions (5.6) and (5.7) are reduced to (5.2) and
(5.3), respectively. As a result, for gases, the Tamm expression (5.5) for the
radiated power works when Eqs. (5.6) and (5.7) are valid.

As an illustration, we turn to Ref. [14] where the angular distribution of
the radiation (λ ≈ 4× 10−5 cm) arising from the passage of Au heavy ions
(β ≈ 0.87) through the LiF slab (n ≈ 1.39) of width L = 0.5 cm was inter-
preted in terms of the Tamm formula. Substituting the parameters of [14]
into (5.8) defining the validity of the Tamm formula (5.5), we find that the
left hand side of (5.8) coincides with π for the observational sphere radius
r ≈ 10m. Obviously this value is unrealistic. Since a realistic r is about
10 cm, (5.8) is violated strongly. In this case the Tamm formula does not
describe the experimental situation properly. Thus more accurate formulae
are needed. In the next section, we present the exact EMF strengths of the
Tamm problem.
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5.2.2. EXACT ELECTROMAGNETIC FIELD STRENGTHS AND
ANGULAR-FREQUENCY DISTRIBUTION OF THE RADIATED ENERGY

The energy flux through the unit solid angle of the sphere of the radius r
for the whole time of a charge motion is given by

dW

dΩ
=

c

4π
r2

∞∫
−∞

dt( �E × �H)r. (5.9)

Expressing �E and �H through their Fourier transforms

�E =
∫

exp(iωt) �Eωdω, �H =
∫

exp(iωt) �Hωdω

and integrating over t one finds

dW

dΩ
=

cr2

2

∞∫
−∞

( �E(ω) × �H(−ω))rdω =
∞∫
0

S(ω)dω, (5.10)

where

S(ω, θ) =
d2W

dωdΩ
= cr2[ �E(r)

θ (ω) �H
(r)
φ (ω) + �E

(i)
θ (ω) �H

(i)
φ (ω)]. (5.11)

This quantity shows how a particular Fourier component of the radiated en-
ergy is distributed over the sphere S. The superscripts (r) and (i) mean the
real and imaginary parts of Eθ and Hφ. The exact field strengths obtained
by differentiation of the exact vector potential (5.1) are given by

H
(r)
φ (ω) =

eknr

2πc
sin θ

∫
G

R2
dz′, H

(i)
φ (ω) =

ekn

2πc
sin θ

∫
F

R2
dz′,

E
(r)
θ (ω) =

ek2r

2πω
sin θ

∫ r − z′ cos θ

R3
F1dz′ − 2

knr

∫
F

R2
dz′

 ,

E
(i)
θ (ω) =

ek2r

2πω
sin θ

∫ r − z′ cos θ

R3
G1dz′ +

2
knr

∫
G

R2
dz′

 , (5.12)

where
F = cos ψ − 1

knR
sin ψ, G = sin ψ +

1
knR

cos ψ,

F1 = sin ψ + 3
cos ψ

knR
− 3

sin ψ

k2
nR2

, G1 = cos ψ − 3
sin ψ

knR
− 3

cos ψ

k2
nR2

,
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ψ =
ωz′

v
+ knR, R = (r2 − 2z′r cos θ + z′2)1/2, ε0 = z0/r. (5.13)

The z′ integration in (5.12) is performed over the interval (−z0, z0). When
Eqs. (5.2), (5.3), and (5.8) are satisfied, S(ω, θ) given by (5.11) transforms
into the Tamm formula (5.5).

Unfortunately, EMF strengths (5.12) given in [8] without derivation are
not suitable for realistic cases corresponding to high frequencies. In fact, for
visible light, k = ω/c is of the order 105cm−1. For an observational distance
r ∼ 1 m, one obtains kr ∼ 107. A great number of steps of integration is
needed to obtain the required accuracy. Therefore, some approximations
are needed.

5.2.3. APPROXIMATIONS

In the wave zone where knr � 1, we omit the terms of the order (knr)−1

and higher outside ψ and find

S(ω, θ) =
e2k2r4n

4π2c
sin2 θ[

∫ sin ψ1

R2
dz′ ·

∫ sin ψ1

R3
(r − z′ cos θ)dz′

+
∫ cos ψ1

R2
dz′ ·

∫ cos ψ1

R3
(r − z′ cos θ)dz′], (5.14)

where

ψ1 =
kz′

β
+ kn(R − r), t0 = z0/v. (5.15)

The condition knr � 1 in real experiments is satisfied to a great accuracy
(we have seen kr is of the order 107 for r = 1 m).Therefore Eq.(5.14) is
almost exact. Since ψ1 in (5.15) contains R−1, rather than R, its maximal
value is of the order knz0 rather than knr as in Eq. (5.13). This makes
numerical integration easier if z0 � r (the motion interval is much smaller
than the observational distance). In the latter case one may disregard ε0
outside ψ1. Then

S(ω, θ) =
e2k2n

4π2c
sin2 θ[(

∫
sin ψ1dz′)2 + (

∫
cos ψ1dz′)2]. (5.16)

The expansion of ψ1 up to the first order of ε0 gives the Tamm formula (5.5)
which does not always describe properly the real experimental situation.
Therefore we expand R in ψ1 up to the second order of ε0

R = r − z′ cos θ +
z′2

2r
sin2 θ
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and

ψ1 = knz′(
1
βn

− cos θ +
z′z0

2r
sin2 θ). (5.17)

With this ψ1, S(ω, θ) can be obtained in a closed form

S(ω, θ) =
e2kr

4πc
{[S(z+) − S(z−)]2 + [C(z+) − C(z−)]2}, (5.18)

where

z± =

√
ε0knz0

2
sin θ

(
1 − βn cos θ

ε0βn sin2 θ
± 1

)
,

S(x) =
√

2
π

x∫
0

dt sin t2 and C(x) =
√

2
π

x∫
0

dt cos t2

are the Fresnel integrals. For small and large arguments they behave as

S(x) →
√

2
π

x3

3
, C(x) →

√
2
π

x − 1√
2π

x5

5
for x → 0,

S(x) → 1
2
− 1√

2π

cos x2

x
, C(x) → 1

2
+

1√
2π

sin x2

x
for x → ∞.

It is instructive to see how a transition to the Tamm formula takes place.
For this we present z+ and z− in the form

z± =
1 − βn cos θ

βn sin θ

√
knr

2
± sin θ

√
ε0knz0

2
.

Equation (5.18) was obtained under the assumptions knr � 1 and r � z0.
The first term in z± is then much larger than the second term everywhere
except for cos θ close to 1/βn. Therefore if cos θ 	= 1/βn then

C(z+) − C(z−) ≈ 1√
2π

(
sin z+

2

z+
− sin z2−

z−

)
,

S(z+) − S(z−) ≈ − 1√
2π

(
cos z2

+

z+
− cos z2−

z−

)
,

[C(z+) − C(z−)]2 + [S(z+) − S(z−)]2

≈ 1
2π

{
1
z2
+

+
1
z2−

− 2
z+z−

cos
[
2knz0

βn
(1 − βn cos θ)

]}

≈ 2
πz2

sin2
[
knz0

βn
(1 − βn cos θ)

]
,
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where we put z2
+ = z2− = z2 = knr(1 − βn cos θ)/2βn sin θ outside the sin

and cos. Substituting this into (5.18), we get the Tamm formula (5.5).
It remains to consider the case cos θ ≈ 1/βn. Then

z± ≈ ±z0 sin θ

√
kn

2r
,

[C(z+) − C(z−)]2 + [S(z+) − S(z−)]2

≈ 4C2(z0 sin θ
√

kn/2r) + 4S2(z0 sin θ
√

kn/2r).

The Tamm formula is valid if ε0knz0/2 � 1 which is equivalent to (5.8).
Then

[C(z+) − C(z−)]2 + [S(z+) − S(z−)]2 ≈ 4
π

ε0knz0 sin2 θ

and

S(ω, θ) ≈ e2k2z2
0n

π2c
sin2 θ.

This coincides with the limit cos θ → 1/βn of the Tamm formula.
Equation (5.18) is valid if the third-order terms in the expansion (5.17)

of ψ1 are small compared to π:

1
2
knrε3

0z
′3 cos θ sin2 θ � π (5.19)

(π appears since ψ1 is the phase). If we take for z′ and cos θ sin2 θ their
maximal values one finds

nL3

8λr2
� 1. (5.20)

We collect all approximations involved in derivation of (5.18 )

knr � 1, z0 � r,
nL3

8λr2
� 1. (5.21)

5.2.4. DECELERATED CHARGE MOTION

Consider the following problem. Let a point charge be at rest at the point
z = −z0 up to an instant t = −t0. At t = −t0, the charge acquires the
velocity v1. In the time interval (−t0 < t < t0) the charge decelerates
according to the law

z

z0
=

t

t0
+

at20
2z0

(1 − t2

t20
),

dz

dt
=

z0

t0
− at. (5.22)



Influence of finite observational distances and charge deceleration 217

After the instant t = t0 the charge is again at rest at the point z = z0. The
initial and final velocities of charge are equal to

vi,f = v0 ± at0.

Here
v0 =

vi + vf

2
=

z0

t0
is the charge velocity at the instant t = 0 and at0 = (vi−vf)/2. It turns out
that the same equations (5.11)-(5.13) are valid for the treated decelerated
charge motion with the exception that the function ψ should be changed
by

ψ = ωt0T + knR, (5.23)

where

T =
1
δ
[1 − (1 + δ2 − 2δz′/z0)1/2], δ =

at0
v0

=
vi − vf

vi + vf
.

In the wave zone the same equation (5.14) is valid if one puts

ψ1 = ωt0T + kn(R − r). (5.24)

Dropping ε0 outside the sines and cosines in (5.14), one arrives at (5.16)
with ψ1 given by (5.24).

Expanding square roots entering into R and T up to a second-order of
ε0 and δ, respectively, we obtain

R − r = −z′ cos θ +
z′2

r
sin2 θ, T =

z′

z0
− 1

2
δ(1 − z′2

z2
0

),

ψ1 ≈ kz′(
1
β
− n cos θ +

z′

2r
sin2 θ) − kz0δ

2β
(1 − z′2

z2
0

), βn = v0/cn. (5.25)

With such ψ1 integrals entering into (5.16) can be taken analytically, and
one finds for S(ω, θ)

S(ω, θ) =
e2kr

4πc

ε0βn sin2 θ

ε0βn sin2 θ + δ
{[S(z+) − S(z−)]2 + [C(z+) − C(z−)]2},

(5.26)
where

z± = [
ωt0
2

(δ + βnε0 sin2 θ)]1/2[
1 − βn cos θ

δ + βnε0 sin2 θ
± 1].

Equation (5.26) works if, in addition to (5.21), the third-order term in the
expansion of T entering into ψ1 is small as compared with π:

kz′

2β
δ2(1 − z′2

z2
0

) � π (5.27)
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(again, π arises because ψ1 is a phase). Taking for z′(1 − z′2) its maximal
value (∼ 2/5), we obtain

ωt0
5

δ2 � π, or
Lδ2

5βλ
� 1, β = v0/c. (5.28)

This condition is satisfied for relatively small accelerations. In the limit
δ → 0 (zero acceleration), Eq.(5.26) is reduced to (5.18).

For ε0 → 0 (large radius of the observational sphere), one has

S(ω, θ) =
e2kz0βn sin2 θ

4πcδ
{[S(z+) − S(z−)]2 + [C(z+) − C(z−)]2}, (5.29)

where

z± =

√
kz0δ

2β
(
1 − βn cos θ

δ
± 1).

An equation similar to (5.29) was obtained earlier in Ref. [9], but with the
motion law different from (5.22).

Frequently the angular intensity is measured not on the sphere surface,
but in the plane perpendicular to the motion axis (in the plane z = const
for the case treated). For knz � 1, the energy flux in the z direction is

Sz =
∫

Sz(ω, ρ, z)dωdφρdρ,

where

Sz(ω, ρ, z) =
d3E

dωdφρdρ
= c[Er

ρ(ω)Hr
φ(ω) + Ei

ρ(ω)Hi
φ(ω)]

=
e2k2ρ2n

4π2c
(IsI

′
s + IcI

′
c), (5.30)

Is =
∫

dz′
sin ψ1

R2
, I ′s =

∫
dz′(z − z′)

sin ψ1

R3
, Ic =

∫
dz′

cos ψ1

R2
,

I ′c =
∫

dz′(z − z′)
cos ψ1

R3
, r2 = ρ2 + z2, R2 = ρ2 + (z − z′)2,

z defines the plane in which the measurements are performed and ρ is the
distance from the symmetry axis to the observational point. The integration
over z′ runs from −z0 to z0. If, in addition, z0 � z then

Sz(ω, ρ, z) =
e2k2ρ2nz

4π2cr5


∫ dz′ sin ψ1

2

+

∫ dz′ cos ψ1

2
 . (5.31)



Influence of finite observational distances and charge deceleration 219

In the Fresnel approximation this reduces to

Sz(ω, ρ, z) =
e2kβ0nz0zρ2

4πcr5(δ + ε0βn sin2 θ)

×{[S(z+) − S(z−)]2 + [C(z+) − C(z−)]2}, (5.32)

where z± are obtained from z± entering (5.26) by setting in them sin θ =
ρ/r, cos θ = z/r, r =

√
ρ2 + z2. The physical justification of this sec-

tion considerations is as follows. When a charge enters into the dielectric
slab it decelerates (owing to the VC radiation, ionization losses, etc.). For
high-energy electrons these energy losses are negligible, and the uniform
motion of the electron is a good approximation. However, for heavy ions
for which the VC is also observed the energy losses are essential since they
are proportional to the second-degree of heavy ion atomic number. Equa-
tions (5.14) and (5.16), with ψ1 given by (5.24), are valid for arbitrary
δ = (vi − vf)/(vi + vf). When conditions (5.21),(5.28) and δ � 1 are satis-
fied, they are reduced to (5.29).

5.2.5. NUMERICAL RESULTS

With the parameters n, L, λ the same as in [14] (see Sect. 5.2.1) and β =
0.868, we have evaluated the almost exact radiation intensity (5.14) (be-
cause it was obtained from the exact intensity (5.11) by neglecting the
terms of the order 1/knr and higher outside ψ) and the approximate Fres-
nel (5.18) angular distribution of the radiated energy on the spheres of
the radii r = 1 cm (Fig. 5.1) r = 10 cm (Fig. 5.2), r = 1 m (Fig. 5.3)
and r = 10 m (Fig. 5.4). It is seen that the radiation spectrum broadens
enormously for small observational distances. For example, it occupies an
angular region of approximately 20 degrees for r = 1 cm and 1.5 degrees
for r = 10 cm. These figures demonstrate reasonable agreement between
the Fresnel and exact intensities. In the case r = 10 cm, for which the
condition (5.20) for the validity (5.18) is strongly violated (it looks like
14 � 1), the agreement of (5.14) and (5.18) is quite satisfactory. Even for
the case r = 1cm, for which the inequality (5.20) has the form 1400 � 1,
the Fresnel intensity although being shifted, qualitatively reproduces the
exact radiation intensity (Fig. 5.1). In any case, the Fresnel intensity (5.18)
can be used as a simple (although slightly rough) estimation of the position
and the magnitude of the radiation intensity for realistic observational dis-
tances. On the other hand, both the Fresnel and exact intensities disagree
sharply with the Tamm intensity (5.5). This demonstrates Fig. 5.5, where
the exact (5.14) intensity on the sphere of radius r = 10 m is compared
with the Tamm intensity (5.5) (which does not depend on r and which is
obtained either from (5.14) or from (5.18) in the limit r → ∞).
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Figure 5.1. Exact (solid line) and Fresnel (dotted line) intensities (in units of e2/c) on
the observational sphere of radius r = 1 cm. Parameters of the Tamm problem: the charge
motion interval and velocity are L = 0.5 cm and β = 0.868, respectively.; wavelength
λ = 4 · 10−5 cm; refractive index n = 1.392. It is seen that angular spectrum has a width
approximately 20 degrees.

So far, we have investigated the influence of the radius of the observa-
tional sphere on the intensity distribution over this sphere. Now we analyze
the influence of the charge deceleration on the radiation intensity on the
sphere of infinite radius. The parameters n, L, λ and the initial velocity
βi = 0.875 are the same as in [14]. The radiation Fresnel intensities (5.29)
for final velocities βf = 0.8βi and βf = 0.2βi are shown in Fig. 5.6. Their
form remains practically the same for βf < 0.8βi. When βf tends to βi,
the frequency spectrum tends to the Tamm intensity (5.5). This fact is
illustrated in Fig. 5.7 (where the radiation intensities for βf = 0.9βi and
βf = 0.95βi are shown) and in Fig. 5.8 (where intensities for βf = 0.99βi
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Figure 5.2. The same as in Fig. 5.1, but for r = 10 cm. The width of the angular
spectrum is about 1.5 degrees.

and βf = 0.999βi are presented).
We turn now to experiments made recently in Darmstadt and discussed

in [15]. In them, the beam of Au179
79 ions passed through the LiF slab creating

the VC radiation. The initial energy of the ion beam (i.e., before entering
the slab) was 905 MeV/n. One of the LiF slabs had the width d = 0.5 cm
with the energy loss 73.3 MeV/n, while the other had width d = 0.1 cm with
the energy loss 14.7 Mev/n. The authors of [15] compared the intensities
for the slab widths d = 0.5 and 0.1 cm. In Figs. 5.9-5.12 we present Fresnel
theoretical intensities (5.26) for d = 0.1 and d = 0.5 on the spheres of
various radii. We observe that for observational distances larger than 1
m, the form of the radiation intensity practically does not depend on the
distance, that is, the deceleration plays a major role at these distances. For
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Figure 5.3. The same as in Fig.5.1, but for r = 1 m. The width of angular spectrum is
about 0.15 degrees.

r ≥ 1 m, theoretical intensities strongly resemble experimental radiation
intensities measured in [15].

The relative radiation intensities were measured in [15] in the plane
perpendicular to the motion axis. The position of this plane was not spec-
ified (as it was suggested to be irrelevant). According to one of authors
of Ref.[15] (J. Ruzicka), it was approximately 3 cm. Dimensionless theo-
retical intensities Sz(ω, ρ, z)/(e2/cz2) (where Sz(ω, ρ, z) is given by (5.32)
in the plane z = 3 cm, for d = 0.1 cm and d = 0.5 cm, are shown in
Fig. 5.13. Although the positions of intensities maxima coincide with the
experimental positions, their form differs appreciably. We now discuss the
complications arising.
First, experimentalists claim (Zrelov V.P., private communication) that
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Figure 5.4. The same as in Fig.5.1, but for r = 10 m.

the observed pronounced Cherenkov spectrum arising from the passage of
relativistic protons through a transparent slab is described by the Tamm
formula in the very neighbourhood of the slab. To resolve the inconsistency
between the evaluated and observed angular spectra one may speculate (this
is Zrelov’s ) that the Tamm picture (i.e., the charge particle propagation on
a finite spatial interval) is displayed between spatial inhomogeneities of the
medium. Since the distance between these inhomogeneities is much smaller
than the length of the slab, the pronounced Cherenkov spectrum should be
observed at arbitrary distance from the slab.

Dedrick [16] qualitatively showed that the angular spectrum broadens
if the multiple scattering of a moving charge on the medium spatial in-
homogeneities is taken into account. In this case the resulting interference
picture is a superposition of Tamm’s intensities from particular medium
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Figure 5.5. Exact angular intensity for r = 10 m (solid line) versus the Tamm intensity
(dotted line) which does not depend on r. Their distinction is essential. Comparison of
this figure with Figs. 5.1-5.4 demonstrates that for smaller r the exact radiation intensities
differ drastically from that of Tamm.

inhomogeneities. Quantitatively this was confirmed in Refs. [17,18].

Another possible explanation of this phenomenon is owed to a rather
specific measurement procedure used in experiments similar to [15]. In them
the measurements were performed in the z = const plane where the cam-
era, with a photographic film inside it, was placed. The lens of this camera
was focused on infinity. According to the authors of [15] (Ruzicka, Zrelov)
this optical device effectively transforms the finite distance radiation spec-
trum into the infinite distance spectrum. We do not understand how this
can be, but, if this really takes place, then in the z = 3cm plane, the in-
tensities should have a form corresponding to large distances. In passing,
intensities shown in Figs 5.11 and 5.12, corresponding to large observational
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Figure 5.6. Exact angular intensities (in units of e2/c) on the sphere of infinite radius
arising from decelerated motion in a LiF slab (n = 1.392) of the width L = 0.5 cm; the
observed wavelength λ = 4 × 10−5 cm; the initial velocity βi = 0.875. Solid and dotted
curves correspond to the final velocities βf = 0.2βi and βf = 0.8βi. Qualitatively, the
picture remains the same for smaller βf .

distances, strongly resemble the experimental intensities. We feel that this
question needs further consideration. It should be mentioned about the
Schwinger approach [19] describing the radiation intensity of an arbitrary
moving charge. The final formula contains only integrals of charge-current
densities and does not depend on EMF strengths and the radius of the
observational sphere. This formula was applied to the Tamm problem in
[8] (see Chapter 2). It was shown there that the radiation intensity in the
Schwinger approach strongly resembles that described by the Tamm for-
mula. However, the Schwinger approach uses the half difference of the ad-
vanced and retarded potentials (this conflicts with causality) and ad hoc
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Figure 5.7. The same as in Fig. 5.6 but for βf = 0.9βi (solid line) and βf = 0.95βi

(dotted line).

neglects the terms with definite symmetry properties.
To observe the predicted broadening of the angular spectrum at finite

distances, the measurement of the VC radiation produced by high-energy
electrons (for which the energy losses are negligible) is needed at a dis-
tance from the target where the inequality (5.8), ensuring the validity of
the Tamm formula, is violated. No optical devices distorting the radiation
spectrum (in the sense defined above) should be used, if possible. Now,
if the broadening of the angular spectrum will be observed at arbitrary
distance from the dielectric slab then the multiple scattering mechanism
suggested by Dedrick [16] takes place. On the other hand, the broadening
of the angular spectrum in the immediate neighbourhood of the dielec-
tric slab described by Eqs. (5.14),(5.18),(5.26) and (5.32) will support the
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Figure 5.8. The same as in Fig. 5.6 but for βf = 0.99βi (solid line) and βf = 0.999βi

(dotted line). When βf tends to βi the angular spectrum tends to that of given by the
Tamm formula (2.5).

validity of the original Tamm picture (with its modification for the finite
observational distances). We hope, these formulae and considerations will
be useful to experimentalists.

The frequency distribution of the radiated energy is defined as

S(ω) =
∫

dΩS(ω, θ) = 2π
∫

sin θdθS(ω, θ).

In Fig. 5.14, we present S(ω) in units of e2/c evaluated for parameters the
same as in [15] on the sphere of radius r = 1 m. For S(ω, θ) we used its
Fresnel approximation (5.26), which under the conditions of the Darmstadt
experiments almost coincides with (5.1). In the same figures there are
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Figure 5.9. Theoretical angular spectrum of the VC radiation (in units of e2/c) which
should be observed in the Darmstadt experiments a the sphere of radius r = 1 cm. The
solid and dotted curves refer to the widths of LiF (n = 1.392) slab d = 0.5 cm and d = 0.1
cm, respectively. The initial velocity βi ≈ 0.86064. The final velocity βf ≈ 0.84781 for
d = 0.5 cm and βf ≈ 0.8582 for d = 0.1 cm. The observed wavelength λ = 6.5 × 10−5

cm.

shown the Tamm frequency distributions ST(ω) obtained by integrating
the Tamm formula (5.5) over a solid angle dΩ:

ST(ω) =
2e2kz0

c
(1 − 1

β2
n

) +
4e2

πcn
(

1
2βn

ln
1 + βn

βn − 1
− 1) (5.33)

for βn > 1 and

ST(ω) =
4e2

πcn
(

1
2βn

ln
1 + βn

1 − βn
− 1)
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Figure 5.10. The same as in Fig. 5.9, but for r = 10 cm.

for βn < 1. Here k = ω/c, βn = βn, and 2z0 is the width of the slab. The
value of β in (5.33) is chosen as the half-sum of the velocities of the Au
ions before entering the LiF slab and after the passage this slab. We observe
that the Tamm frequency intensities almost coincide with the Fresnel in-
tensities despite the striking difference in corresponding angular-frequency
distributions.

Up to now we have identified heavy ions with the point-like charged ob-
jects. Since the medium (a dielectric slab) is considered here as structureless
(it is described by the refractive index depending only on the frequency),
the condition for the validity of point-like approximation is the smallness of
the heavy ion dimension R relative to the observed wavelength λ. If for R
we take its radius R = 1.5A1/3 fm and for λ we take the average wavelength
of the optical region λ ≈ 6×10−5 cm, then for A ≈ 200 the above condition
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Figure 5.11. The same as in Fig. 5.9, but for r = 1 m.

is satisfied to a great accuracy: R ≈ 10−12 cm� λ ≈ 6 × 10−5 cm.
Another estimation of the point-like approximation was made in an

important paper [16] where the smallness of the wave packet dimension
λB = h̄/(m0vγ) (coinciding with the de Broglie wavelength) relative to
the motion length L (coinciding with the width of the dielectric slab) was
postulated. Here m0 = mNA is the rest mass of the heavy ion, v is its
velocity, γ = 1/

√
1 − β2, mN is the mass of nucleon. For the case treated

this condition is satisfied to a great accuracy: λB ≈ 5×10−17 cm� L ≈ 0.1
cm. In fact, λB is much smaller than the distance (10−8 cm) between the
neighbouring atoms from which the dielectric slab is composed. This is
essential for the multiple scattering of a charge on the medium spatial
inhomogeneities considered in [16].

The influence of finite dimensions of a moving charge on the radiation of
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Figure 5.12. The same as in Fig. 5.9, but for r = 10 m.

the EMF was studied in [20]. The moving charge density had the Gaussian
form along the motion axis and zero dimensions in the directions perpendic-
ular to it. It was shown there that the EMFs corresponding to a point-like
and diffused charge densities were practically the same up to some critical
frequency ωc = c/a, where c is the velocity of light and a is the parameter
of the Gaussian distribution. If we identify a with the heavy ion radius R,
then in the case treated, ωc ≈ 3 · 1022s−1 which is far off the optical region
(1015s−1 < ω < 1016s−1). Thus, a point-like approximation for heavy ions
charge densities is satisfactory for the treated problem.

In the radiation intensities used in sections 4 and 5, e2 should be changed
to Z2e2 if a propagation of heavy ion with an atomic number Z is consid-
ered. Alternatively one may think that Z2 is included in e2.

The moral of this section is that one should be very careful when ap-
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Figure 5.13. Theoretical radial distribution of the VC radiation intensity (in units of
e2/cz2) which should be observed in the Darmstadt experiments in the plane z = 3 cm.
The solid and dotted curves refer to the widths of LiF slab d = 0.5 cm and d = 0.1 cm,
respectively. Other parameters are the same as in Fig. 5.9.

plying the Tamm formula (5.5) to analyse experimental data. The validity
of the conditions (5.2),(5.3), and (5.8) ensuring the validity of (5.5) should
be verified. The almost exact energy flux (5.14) or the approximate expres-
sions (5.18), (5.26), (5.29) or (5.32) should be used if these conditions are
violated.



Influence of finite observational distances and charge deceleration 233

Figure 5.14. Theoretical frequency spectrum (for the region of visible light) of VC
radiation (in units of e2/c) which should be observed in Darmstadt experiments on a
sphere of radius r = 1 m for d = 0.5 cm and d = 0.1 cm (solid lines). Dotted lines
correspond to the Tamm intensity (5.33).

5.3. Motion in a finite spatial interval with arbitrary acceleration

5.3.1. INTRODUCTION

In 1934-1937, the Russian physicist P.A. Cherenkov performed a series of
experiments under the suggestion of his teacher S.I. Vavilov. In them pho-
tons emitted by Ra atoms passed through water. They induced the blue
light observed visually. Applying an external magnetic field, Cherenkov rec-
ognized that this blue light was produced by secondary electrons knocked
out by photons.

These experiments were explained by Tamm and Frank in 1937-1939
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who attributed the blue light to the radiation of a charge uniformly moving
in medium with a velocity greater than the velocity of light in medium.

Theoretically, when considering the VC radiation one usually treats
either the unbounded charge motion with a constant velocity (this corre-
sponds to the so-called Tamm-Frank problem [10]) or the charge motion
in a finite interval with an instantaneous acceleration and deceleration of a
charge at the beginning and at the end of its motion. This corresponds to the
so-called Tamm problem [1]. The physical justification for the Tamm prob-
lem is as follows. A charge, moving initially uniformly in vacuum (where it
does not radiate), penetrates into the transparent dielectric slab (where it
radiates if the condition cos θCh = 1/βn for the Cherenkov angle is satis-
fied), and finally, after leaving the dielectric slab, moves again in vacuum
without radiating (we disregard the transition radiation at the boundaries
of the dielectric slab). The appearance of radiation at the instant when a
charge enters the slab and its termination at the instant when it leaves
the slab are usually interpreted in terms of the instantaneous charge ac-
celeration at one side of the slab and its instantaneous deceleration at its
other side. Since the Tamm problem is more physical than the Tamm-Frank
problem, it is frequently used for the analysis of experimental data. Another
possible application of the Tamm problem is the electron creation at some
spatial point (nuclear β decay) with its subsequent absorption at another
spatial point (nuclear β capture). Tamm obtained a remarkably simple an-
alytic formula describing the intensity of radiation and interpreted it as the
VC radiation in a finite interval.

Another viewpoint of the nature of the radiation observed by Cherenkov
is owed to Vavilov [21]. According to him,

We think that the most probable reason for the γ luminescence is the
radiation arising from the deceleration of Compton electrons. The hard-
ness and intensity of γ rays in the experiments of P.A. Cherenkov were
very large. Therefore the number of Compton scattering events and the
number of scattered electrons should be very considerable in fluids. The
free electrons in a dense fluid should be decelerated at negligible dis-
tances. This should be followed by the radiation of the continuous spec-
trum. Thus, the weak visible radiation may arise, although the boundary
of bremsstrahlung, and its maximum should be located somewhere in
the Roentgen region. It follows from this that the energy distribution in
the visible region should rise towards the violet part of spectrum, and
the blue violet part of spectrum should be especially intense.

(our translation from Russian).
This Vavilov explanation of the Cherenkov effect has given rise to a

number of attempts (see, e.g., [4,5]) in which the radiation described by
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the Tamm formula was attributed to the interference of bremsstrahlung
(BS) arising at the start and end of motion.

On the other hand, the exact solution of the Tamm problem in a non-
dispersive medium was found and analysed in [6,7]. It was shown there that
the Cherenkov shock wave exists side by side with BS waves in no case can
be reduced to them. Then, how can this fact be reconciled with the results
of [4,5] which describe experimental data quite satisfactorily? The possible
explanation of this controversy is that the exact solution obtained in [6,7]
was written out in the space-time representation, while the authors of [4,5]
operated with the Tamm formula related to the spectral representation. It
might happen that the main contribution to the exact solution of describing
the Cherenkov wave is owed to the integration over the frequency region
lying outside the visible part of the intensity spectrum. Then, in principle,
the radiation in the visible part of spectrum could be described by the
Tamm formula frequently used for the interpretation of experimental data.

The aim of this consideration is to resolve this controversy. We shall op-
erate simultaneously in the spectral representation as authors of [4,5] did
and in the time representation used in [6,7]. Instead of the original Tamm
problem in which a charge exhibits instantaneous acceleration and decelera-
tion, we consider a charge motion with a finite acceleration and deceleration
and uniform motion on the remaining part of a trajectory. This allows us to
separate contributions from the uniform and non-uniform parts of a charge
trajectory. In the past, analytic and numerical results for the motion with
the change of velocity small compared with the charge velocity itself were
obtained in [9,22]. Unfortunately, the analytic formulae obtained there do
not work in the case treated, since the charge is accelerated from the state
of rest up to a velocity close to that of light. Numerically, the smoothed
Tamm problem with a large change of velocity was considered in [23], but
their authors did not aim to resolve there the above controversy between
Refs. [4,5] and [6,7].

5.3.2. MAIN MATHEMATICAL FORMULAE

Let a point charge move along the z axis with a trajectory z = ξ(t) in a non-
dispersive medium of refractive index n. Its charge and current densities
then are equal to

ρ = eδ(x)δ(y)δ(z − ξ(t)), jz = ev(t)δ(x)δ(y)δ(z − ξ(t)), v =
dξ

dt
.
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The Fourier transforms of these densities are equal to

ρ(ω) =
e

2π

∫
exp(−iωt)ρ(t)dt =

e

2π
δ(x)δ(y)

∫
exp(−iωt)δ(z − ξ(t))dt

=
e

2πv
δ(x)δ(y) exp(−iωτ(z)),

jz(ω) =
e

2π
δ(x)δ(y) exp(−iωτ(z)), (5.34)

where τ(z) is the root of the equation z − ξ(t) = 0. It was assumed here
that v > 0, that is, a charge moves in the positive direction of the z axis.

The Fourier transform of the vector potential corresponding to these
densities at the spatial point x, y, z is equal to

Az(ω) =
e

2πc

∫
dz′

R
exp(−iψ), (5.35)

where ψ = ωτ(z′) + knR and R =
√

x2 + y2 + (z − z′)2 and k = ω/c. The
non-vanishing Fourier component of the magnetic field strength is

Hφ(ω) =
ieknr sin θ

2πc

∫
dz′

R2
exp(−iψ)(1 − i

knR
). (5.36)

Here kn = ω/cn and cn = c/n is the velocity of light in medium. Outside
the motion axis, the electric field strengths are obtained from the Maxwell
equation

curl �H(ω) =
iωε

c
�E(ω). (5.37)

The energy flux in the radial direction per unit time and per unit area of
the observational sphere of the radius r is

Sr =
d2W

r2dΩdt
=

c

4π
Eθ(t)Hφ(t).

The energy radiated for the whole charge motion is

∞∫
−∞

Srdt =
c

4π

∞∫
−∞

dtEθ(t)Hφ(t)

=
c

2

∞∫
0

dω[Eθ(ω)H∗
φ(ω) + E∗

θ(ω)H∗
φ(ω)]. (5.38)
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Usually radial energy fluxes are related not to the unit area, but to the unit
solid angle. For this one should multiply Eq. (5.38) by r2 (r is the radius
of the observational sphere). Then

r2

∞∫
−∞

Srdt =
∞∫
0

σr(ω)dω,

where

σr(ω, θ) =
d2W

dΩdω
=

c

2
r2[Eθ(ω)H∗

φ(ω) + E∗
θ(ω)Hφ(ω)]. (5.39)

Let the motion interval L be finite. Then under the conditions (5.2),(5.3)
and (5.6)-(5.8) the radial radiation intensity is given by

σr(ω, θ) =
e2k2n sin2 θ

4π2c
[(
∫

dz′ cos ψ1)2 + (
∫

dz′ sin ψ1)2] (5.40)

with
ψ1 = ωτ(z′) − knz′ cos θ. (5.41)

For uniform rectilinear motion this approximation gives the famous Tamm
formula

σT(ω, θ) =
e2

π2cn
[sin θ

sinωt0(1 − βn cos θ)
cos θ − 1/βn

]2, t0 =
z0

v
βn =

v

cn
. (5.42)

A question arises of why it is needed to use the approximate expression
(5.40) even though the numerical integration is quite easy [8,22]. One of
the reasons is the same as for the use of the Tamm formula which does not
work at realistic distances [8,10]. Despite this and owing to its remarkable
simplicity, the Tamm formula is extensively used by experimentalists for
the planning and interpretation of experiments. Analytic formulae of the
next section are also transparent. Since acceleration effects are treated in
them exactly they are valid under the same conditions (5.2), (5.3), and
(5.8) as the Tamm formula (5.42), but include, in addition, the charge fi-
nite acceleration (or deceleration). Another reason is that experimentalists
want to know what, in fact, they measure. For this they need quite trans-
parent analytic formulae to distinguish contributions from the uniform and
accelerated (decelerated) charge motions. The formulae presented in the
next section satisfy these requirements and may be used for the rough es-
timation of the acceleration effects. After this stage the explicit formulae
presented in this section may be applied (as was done in [22]) to take into
account the effect of finite distances. Our experience [23] tells us that exact
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numerical calculations without preliminary analytical consideration are not
very productive.

In what follows we intend to investigate the deviation from the Tamm
formula arising from the charge deceleration. Let us consider particular
cases.

5.3.3. PARTICULAR CASES

Decelerated and accelerated motion on a finite interval
Let a charge move in the interval (z1, z2) according to the law shown in
Fig. 5.15(a):

z = z1 + v1(t − t1) +
1
2
a(t − t1)2. (5.43)

The motion begins at the instant t1 and terminates at the instant t2. The
charge velocity varies linearly with time from the value v = v1 at t = t1
down to value v = v2 at t = t2: v = v1 +a(t−t1). It is convenient to express
the acceleration a and the motion interval through z1, z2, v1, v2:

a =
v2
1 − v2

2

2(z1 − z2)
, t2 − t1 =

2(z2 − z1)
v2 + v1

.

For the case treated the function τ(z) entering (5.41) is given by

τ(z) = t1 − 2v1
z2 − z1

v2
2 − v2

1

1 −
(

1 +
z − z1

z2 − z1

v2
2 − v2

1

v2
1

)1/2
 . (5.44)

When the conditions (5.2),(5.3) and (5.8) are fulfilled (i.e., ψ1 is of the form
(5.41)), the radiation intensity can be taken in a closed form. For this we
should evaluate integrals

Ic(z1, v1; z2, v2) =
z2∫

z1

cos ψ1dz and Is(z1, v1; z2, v2) =
z2∫

z1

sin ψ1dz (5.45)

entering into (5.40), where ψ1 is the same as in (5.41). We write them in
a manifest form for the motion beginning at the point z1, at the instant t1
with the velocity v1 and ending at the point z2 > z1 with the velocity v2.
There are four possibilities depending on the signs of cos θ and (v1 − v2).
Obviously v2 > v1 and v1 > v2 correspond to accelerated and decelerated
motions, respectively; cos θ > 0 and cos θ < 0 correspond to the observa-
tional angles lying in front and back semispheres, respectively.

1) v2 > v1, cos θ > 0

Ic =
1

kn cos θ
{sin(u2

2−γ)−sin(u2
1−γ)+α

√
2π[cos γ(C2−C1)+sin γ(S2−S1)]},
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Figure 5.15. Time dependences of charge velocities treated in the text.
(a): Charge deceleration in a finite interval. v1, v2 and cn are the charge initial and final
velocities and velocity of light in medium, respectively.
(b): Charge acceleration followed by the uniform motion and deceleration. This case
allows one to estimate contributions to the radiation intensity from the accelerated,
uniform, and decelerated parts of a charge trajectory.
(c): This motion permits one to estimate how the radiation intensity changes when the
transition from a velocity greater to a velocity smaller than the velocity of light in medium
takes place.
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Is=
1

kn cos θ
{cos(u2

2−γ)−cos(u2
1−γ)−α

√
2π[cos γ(S2−S1)−sin γ(C2−C1)]},

2) v2 > v1, cos θ < 0

Ic=− 1
kn cos θ

{sin(u2
2+γ)−sin(u2

1+γ)−α
√

2π[cos γ(C2−C1)−sin γ(S2−S1)]},

Is=
1

kn cos θ
{cos(u2

2+γ)−cos(u2
1+γ)+α

√
2π[cos γ(S2−S1)+sin γ(C2−C1)]},

3) v1 > v2, cos θ > 0

Ic=− 1
kn cos θ

{sin(u2
2+γ)−sin(u2

1+γ)+α
√

2π[cos γ(C2−C1)−sin γ(S2−S1)]},

Is=
1

kn cos θ
{cos(u2

2+γ)−cos(u2
1+γ)−α

√
2π[cos γ(S2−S1)+sin γ(C2−C1)]},

4) v1 > v2, cos θ < 0

Ic=
1

kn cos θ
{sin(u2

2−γ)−sin(u2
1−γ)−α

√
2π[cos γ(C2−C1)+sin γ(S2−S1)]},

Is=
1

kn cos θ
{cos(u2

2−γ)−cos(u2
1−γ)+α

√
2π[cos γ(S2−S1)−sin γ(C2−C1)]}.

Here we put

C1 = C(u1), C2 = C(u2), S1 = S(u1), S2 = S(u2),

α =
[

k(z2 − z1)
n| cos θ(β2

2 − β2
1)|

]1/2

,

u1 =

√
k(z2 − z1)n| cos θ|

|β2
2 − β2

1 |
(

β1 − 1
n cos θ

)
,

u2 =

√
k(z2 − z1)n| cos θ|

|β2
2 − β2

1 |
(

β2 − 1
n cos θ

)
,

γ = ωt1 +
k(z2 − z1)

(β2
2 − β2

1)n cos θ
− kn cos θ

β2
2z1 − β2

1z2

β2
2 − β2

1

− 2β1
k(z2 − z1)
(β2

2 − β2
1)

.

C and S are Fresnel integrals defined as

S(x) =
√

2
π

x∫
0

dt sin t2 and C(x) =
√

2
π

x∫
0

dt cos t2.
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Obviously Ic and Is are the elements from which the total radiation inten-
sity for the charge motion consisting of any superposition of accelerated,
decelerated, and uniform parts can be constructed.

Using them we evaluate the intensity of radiation:

σr(θ) =
e2k2n sin2 θ

4π2c
[(

z2∫
z1

dz′ cos ψ1)2 + (
z2∫

z1

dz′ sin ψ1)2]

=
e2 sin2 θ

2π2cn cos2 θ
{1 − cos(u2

2 − u2
1) + πα2[(C2 − C1)2 + (S2 − S1)2]

±
√

2πα[(C2 − C1)(sinu2
2 − sin u2

1) − (S2 − S1)(cos u2
2 − cos u2

1)]}. (5.46)

The plus and minus signs in (5.46) refer to cos θ > 0 and cos θ < 0, re-
spectively. Furthermore β1 = v1/c and β2 = v2/c. When v1 → v2 = v the
intensity (5.46) goes into the Tamm formula (5.42) in which one should put
t0 = (z2 − z1)/2v.

Figure 5.16 shows angular radial distributions for the fixed initial ve-
locity β1 = 1 and various final velocities β2. The length of the sample was
chosen to be L = 0.5 cm, the wavelength λ = 4 × 10−5 cm, the refractive
index of the sample n = 1.392. For β2 close to β1 (β2 = 0.99) the angular dis-
tribution strongly resembles the Tamm one. When β2 diminishes (β2 = 0.9
and β2 = 0.8) a kind of a plateau appears. Its edges are at the Cherenkov
angles corresponding to β1 and β2 (cos θ1 = 1/β1n, cos θ2 = 1/β2n). On
the Cherenkov threshold (β2 = 1/n), σr has a peculiar form with fast oscil-
lations at large angles. This form remains the same for the velocities below
the Cherenkov threshold, but the oscillations disappear for β2 = 0.

An important case is the decelerated motion with a final zero veloc-
ity. Experimentally it is realized in heavy water reactors where electrons
arising in β decay are decelerated down to a complete stop, in neutrino
experiments, in the original Cherenkov experiments, etc.. Radiation inten-
sities for various initial velocities are shown in Fig. 5.17. It is easy to check
that their maxima, despite the highly non-uniform character of this mo-
tion, are always at the Cherenkov angle θ1 defined by cos θ1 = 1/β1n and
corresponding to the initial velocity v1. The angular dependences of the
radial intensity are always smooth for β2 = 0. Analytically these radia-
tion intensities are described by Eq.(5.46) in the whole angular interval.
For completeness, we have collected in Fig. 5.18 the radiation intensities
corresponding to a number of initial velocities and zero final velocity.

An important quantity is the total energy radiated per unit frequency.
It is obtained by integration of the angular-frequency distribution over the
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Figure 5.16. Radiation intensities (in units of e2/c) corresponding to Fig. 5.15(a) for
β1 = 1 fixed and various β2. (a): For β2 = 0.99 the radiation spectrum is close to that
described by the Tamm formula (5.42). (b): For smaller β2 a kind of plateau appears in
the radiation intensity. Its edges are at the Cherenkov angles corresponding to β1 and β2.
(c): For β2 = 1/n, the distribution of radiation has a specific form without oscillations
to the left of the maximum. (d): This form remains essentially the same for smaller
β2, but the tail oscillations disappear. In all these cases the main radiation maximum
is at cos θ = 1/β1n. All these results are confirmed analytically in section 5.3.4. These
intensities were evaluated for the following parameters: the wavelength λ = 4× 10−5 cm,
the motion length L = 0.5 cm, the refractive index n = 1.392.

solid angle:

σr(ω) =
dE
dω

=
∫

σr(ω, θ)dΩ. (5.47)
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Figure 5.17. Radiation intensities corresponding to Fig. 5.15(a) for β2 = 0 fixed and
various β1. For β1 = 1 the radiation spectrum is shown in Fig. 5.16(d). For smaller β1 the
maximum of intensity shifts to smaller angles (a) reaching zero angle at the Cherenkov
threshold β1 = 1/n (b). The maximum is at the Cherenkov angle corresponding to β1.
Below the Cherenkov threshold the form of the radiation spectrum remains practically
the same, but its amplitude decreases (c,d). Other parameters are the same as in Fig.
5.16.

The integration of the Tamm intensity (5.42) over the solid angle gives
the frequency distribution of the radiated energy σ(ω). It was written out
explicitly in [8] (see also Chapter 2, Eq. (2.109)). In the limit ωt0 → ∞, it
is transformed into the following expression given by Tamm [1]:

σT(ω) =
e2kL

c
(1 − 1

β2
n

)Θ(βn − 1) +
4e2

πcn
(

1
2βn

ln
1 + βn

|βn − 1| − 1).
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Figure 5.18. Angular radiation intensities corresponding to the charge motion with a
complete stop for a number of initial velocities β1. It is seen that these intensities do not
oscillate. The angle where they are maximal increases with increase of β1. The motion
interval L = 0.1 cm, the wavelength λ = 4 × 10−5 cm, the refractive index n = 1.5.

Here k = ω/c, βn = βn, and L = 2z0 is the motion interval. This equation
has a singularity at β = 1/n, whilst σ(ω) given by (2.109) is not singular
there.

We integrate now angular distributions corresponding to the decelerated
motion with a final zero velocity and shown in Fig. 5.18, and relate them
to the Tamm integral intensivity. Fig. 5.19 demonstrates that, despite their
quite different angular distributions, the ratio R of these integral intensities
does not depend on the frequency except for the neighbourhood of β = 1/n
where σT(ω) is not valid. For the charge velocity v above the light velocity
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Figure 5.19. The ratio R of the integral intensity for a motion with a zero final velocity
to the Tamm integral intensity for a number of initial velocities v1. Although R does
not depend on the frequency (except for the velocity β1 = 0.67 close to the Cherenkov
threshold 1/n), it strongly depends on β1 being minimal at the threshold. The analytical
formula (5.63) given below shows that R → 0.5 for small β1. To this frequency interval
there corresponds the wavelength interval (5 × 10−6cm < λ < 10−4 cm) which encom-
passes the visible light interval (4 × 10−5cm < λ < 8× 10−5cm). Numbers on curves are
β1.

cn in medium (where the Tamm intensity is approximately proportional
to ω), this ratio decreases as v approaches cn. For v < cn (where the ω
dependence given by the Tamm formula is logarithmic) R begins to rise.
The analytical considerations (see Eq. (5.63) given below) show that the
radiation intensity (5.47) is one half of σT(ω) for β1n < 1. Therefore R
tends to 1/2 for small β1. We see that integral intensities for the decelerated
motion, up to a factor independent of ω, coincide with the Tamm intensity.
Therefore the total energy, for the decelerated motion,

E =
ω2∫

ω1

dω
dE
dω

radiated in the frequency interval (ω1, ω2) up to the same factor coincides
with the Tamm integral intensity.

Tamm [1] obtained the following condition

t20
2
|dv

dt
| � λ (5.48)
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for the frequency spectrum σ(ω) to be the linear function of frequency. For
the decelerated motion treated, this condition takes the form

v1 − v2

v1 + v2
� λ

L
, (5.49)

where L = z2 − z1 is the motion interval. When the final velocity is zero
(5.49) is reduced to L � λ, which for L = 0.1 cm and λ = 4 × 10−5 cm
takes the form 1 � 4 × 10−4. Figure 5.19 demonstrates that the frequency
independence of the above ratio R takes place despite the strong violation
of the Tamm condition.

The radiation intensity (5.46) disappears for the fixed wavelength if the
acceleration length L = z2 − z1 tends to zero. At first glance, this disagrees
with results of Chapter 2, in which it was mentioned many times about the
BS shock waves arising at the beginning and end of motion. The following
simple consideration underlines this controversy. It is known that the energy
radiated by a non-uniformly moving charge for the whole its motion is given
by

W =
2e2

3c3

∞∫
−∞

|�a(t)|2dt

(�a is the charge acceleration). In the case treated, the acceleration has a
constant value

a =
v2
2 − v2

1

2(z2 − z1)
in the time interval

t2 − t1 = 2
z2 − z1

v1 + v2
.

Substituting all this into W , one finds

W =
e2

3L
(β1 − β2)2(β1 + β2).

It is seen that W → ∞ for L → 0. To see the reason for this, we fix
the acceleration length L and let the radiated frequency tend to ∞. The
radiation intensity then tends to the analytical angular intensity σr(θ, ω)
given by (5.58) and (5.59). It is infinite at the angles θ1 and θ2 defined by
cos θ1 = 1/β1n and cos θ2 = 1/β2n (it is, therefore, suggested that both β1

and β2 are larger than 1/n). To obtain the energy radiated for the whole
charge motion, one should integrate σr(θ, ω) over angles and frequency.
The σr(ω) (5.47) tends to ∞ for ω → ∞, and therefore, the total radiated
energy

σ =
∞∫
0

σr(ω)dω
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is also infinite. Therefore, the infinite value of W , in the limit of a small
length L of acceleration, is owed to the contribution of high frequencies. If L
is so small that for visible light (where the VC is usually observed) kL � 1,
then the disappearance of (5.46) tells us that for this frequency there is no
contribution to the radiation intensity. This contribution reappears for high
frequencies.

It was shown explicitly [23] in the time representation that for the ac-
celerated charge motion, the Cherenkov shock wave and the shock wave
closing the Cherenkov cone arise at the instant when the charge velocity
coincides with the velocity of light in medium. The content of this section
then may be viewed as the translation of [23] into the frequency language
(which is more frequently used by experimentalists).

The calculations of this section were performed with analytical formula
(5.46) which is valid both for the decelerated (v1 > v2) and accelerated
(v2 > v1) charge motion in medium. The results of this section may be
useful for the study of the VC radiation arising from the decelerated motion
of heavy ions in medium (for them the energy losses are large owing to their
large atomic number) [15].

Simplest superposition of accelerated, decelerated, and uniform motions.
We also consider another problem corresponding to the motion shown in
Fig. 5.15(b). A charge is at rest at the spatial point z = −z0 up to an instant
t = −t0. In the time interval −t0 < t < −t1 it moves with acceleration a
up to reaching the velocity v at the spatial point z = −z1:

z = −z0 +
1
2
a(t + t0)2, v(t) = a(t + t0).

In the time interval −t1 < t < t1 a charge moves with the constant velocity
v: z = vt. Finally, in the time interval t1 < t < t0 a charge moves with
deceleration a down to reaching the state of rest at the instant t0 at the
spatial point z = z0:

z = z0 − 1
2
a(t − t0)2, v(t) = −a(t − t0).

It is convenient to express t0, t1, and a through z0, z2 and v:

a =
v2

2(z0 − z1)
, t0 =

2z0 − z1

v
, t1 =

z1

v
.

After the instant t = t0 the charge is at rest at the point z = z0.
The radiation intensity is

σr(ω, θ) =
e2k2n sin2 θ

4π2c
[(Ic)2 + (Is)2]. (5.50)
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Here
Ic =

∑
i

I(i)
c , Is =

∑
i

I(i)
s ,

I(i)
c =

∫
dz′ cos ψi, Ii

s =
∫

dz′ sin ψi (i = 1, 2, 3)

and ψi = −knz′ cos θ + ωτi. The superscripts 1, 2 and 3 refer to the ac-
celerated (−z0 < z′ < −z1), uniform (−z1 < z′ < z1), and decelerated
(z1 < z′ < z0) parts of a charge trajectory. The functions τi(z) entering
into ψi are equal to

τ1 = −2z0 − z1

v
+

2
v

√
(z + z0)(z0 − z1) for − z0 < z < −z1,

τ2 =
z

v
for − z1 < z < z1,

τ3 =
2z0 − z1

v
− 2

v

√
(z0 − z)(z0 − z1) for z1 < z < z0. (5.51)

We rewrite Ic and Is in a manifest form

Ic = Ic(−z0, 0;−z1, v) + Ic(−z1, v; z1, v) + Ic(z1, v; z0, 0),

Is = Is(−z0, 0;−z1, v) + Is(−z1, v; z1, v) + Is(z1, v; z0, 0), (5.52)

where the functions Ic(z1, v1; z2, v2) and Is(z1, v1; z2, v2) are the same as in
(5.45). Owing to the symmetry of the problem,

Is(−z0, 0;−z1, v) = −Is(z1, v; z0, 0), Ic(−z0, 0;−z1, v) = I(z1, v; z0, 0),

Is(−z1, v; z1, v) = 0,

Ic(−z1, v; z1, v) =
2β

(1 − βn cos θ)
sin

[
ωz1

v
(1 − βn cos θ)

]
. (5.53)

Using (5.50) we evaluated a number of angular dependences for β = 1 and
various values of the non-uniform motion lengths z1 (Figs. 5.20 and 5.21).
Each of these figures contains three curves depicting the total intensity
σt given by (5.50), its bremsstrahlung part σBS obtained by dropping in
(5.52) the term Ic(−z1, v; z1, v) corresponding to the uniform motion on
the interval (−z1, z1), and the Tamm intensity σT obtained by dropping in
(5.52) the terms Ic(−z0, 0;−z1, v) and Ic(z1, v; z0, 0) corresponding to the
non-uniform motion. For the motion shown in Fig. 5.15 (b) u1 and u2 are
given by

u1 = −
√

k(z0 − z1)n| cos θ| 1
βn cos θ

,
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Figure 5.20. Radiation intensities corresponding to Fig. 5.15(b) for β = 1 and various
x1. Here x1 = z1/z0 is the part of a charge trajectory on which it moves uniformly. Other
parameters are the same as in Fig. 5.16. Solid and dotted lines refer to the total intensity
and the intensity associated with the charge uniform motion in the interval (−z1, z1),
respectively. Triangles refer to the intensity associated with a charge non-uniform motion
on the intervals (−z0,−z1) and (z1, z0). Since these lines overlap, we have supplied them
with letters t (total), T (Tamm) and BS (bremsstrahlung). To make radiation intensities
more visible, we have averaged them over three neighbouring points, thus considerably
smoothing the oscillations. The same is true for Figs. 5.21 and 5.22. The main maximum
of the total radiation intensity is at the Cherenkov angle defined by cos θ = 1/βn. Its
sudden drop above this angle is owed to the interference of the VC radiation and BS (see
section 5.3.4).

u2 =
√

k(z0 − z1)n| cos θ|
(

1 − 1
βn cos θ

)
.

It follows from this that for z1 → z0 (this corresponds to the vanishing
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interval for the non-uniform motion), u1 → 0, u2 → 0 and Ic(−z0, 0;−z1, v)
and Ic(z1, v; z0, 0) also tend to zero (despite that acceleration and decelera-
tion become infinite in this limit), and the whole intensity is reduced to the
contribution arising from a charge uniform motion in the interval (−z0, z0).
The parameter x1 in Figs. 5.20-5.22 means z1/z0. It shows on which part
of the total path a charge moves uniformly. For example, x1 = 0.999 means
that uniform and non-uniform motions take place on the 0.999 and 0.001
parts of the total motion length, respectively.

We turn to Fig. 5.20(a) corresponding to x1 = 0.999. We see that the
total intensity σt coincides with the Tamm intensity σT only in the immedi-
ate neighbourhood of the main maximum (which, in turn, consists of many
peaks). To the right of this maximum, the intensity of the BS radiation
practically coincides with the Tamm intensity, whilst the total intensity is
much smaller. To the left of the main maximum, σt practically coincides
with σBS, whilst σT is an order smaller. This looks more pronounced for
x1 = 0.99, at which the total and BS intensities increase to the left of the
main maximum. Let x1 = 0.9 (Fig. 5.20(c)). We observe that σBS coincides
with σT to the right of the main maximum and with σt to the left of it.
At the main maximum σt, σBS and σT are of the same order. This picture
remains the same for smaller x1, up to x1 = 0.1 (Fig. 5.20(d)). Beginning
from x1 = 0.01, the maximum of the Tamm intensity begins to decrease
(Fig. 5.21(a)). This is more pronounced for smaller x1 (Fig. 5.21(b)) where
it is shown that for x1 = 0.001 both σT and σBS begin to oscillate to the
right of the main maximum. For very small x1, σT degenerates into

σT(θ) =
4e2nz2

1

λ2c
sin2 θ

whilst σBS coincides with σt everywhere except for large angles, where σBS

is very small (Fig. 5.21(c)). Finally, for x1 = 0, σT = 0 and σBS = σt

everywhere (Fig. 5.21 d).
What can we learn from these figures?
1. The total intensity coincides with BS to the left of the main maximum.
2. The Tamm formula satisfactorily describes BS to the right of the

main radiation maximum.
3. The Tamm formula coincides with the total intensity only in the

immediate vicinity of the main maximum. It disagrees sharply with BS
and with the total intensity to the left of the main maximum.

4. The BS maximum is at the angle cos θ = 1/βn coinciding with the
VC radiation angle. This takes place even for Fig. 5.21(d) which describes
the accelerated and decelerated charge motions and does not include the
uniform motion.

5. The radiation from accelerated and decelerated paths of the charge
trajectory tends to zero when the lengths of these paths tend to zero (de-
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Figure 5.21. The same as in Fig. 5.20, but for smaller x1. It is seen that with the
diminishing of the uniform motion interval, the Tamm radiation intensity tends to zero,
whilst the total intensity approaches the BS intensity. Again, the main maximum of the
total radiation intensity is at the Cherenkov angle defined by cos θ = 1/βn.

spite the infinite acceleration and deceleration). There are no jumps of the
charge velocity for arbitrarily small (yet, finite) acceleration and decelera-
tion paths. Therefore in this limit the Tamm formula describes the radiation
of a charge moving uniformly in the finite interval without recourse to the
velocity jumps at the ends of the motion interval. However, some reserva-
tion is needed. Although there are no jumps in velocity and the acceleration
is everywhere finite for the smoothed Tamm problem, there are jumps in
acceleration at the instants corresponding to the beginning and end of mo-
tion and at the instants when the uniform and non-uniform charge motions
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meet with each other. At these instants the third order time derivatives of
the charge trajectory are infinite and they, in principle, can give a contri-
bution to the Tamm formula. To exclude this possibility the everywhere
continuous charge trajectory should be considered (this will be done below
in this chapter).

The problem treated in this section describes the same physical situa-
tion as the original Tamm problem. Since the acceleration and deceleration
exhibited by a charge are always finite in reality, the problem treated in
this section is more physical.

We consider in some detail the relation of the smoothed Tamm prob-
lem to the original Tamm problem [1]. If the acceleration and deceleration
lengths L of the charge trajectory tend to zero, the total radiation intensity
reduces to the integral over the uniform motion interval

σr(ω, θ) =
e2k2n sin2 θ

4π2c
(Ic)2,

where

Ic =
z0∫

−z0

dz′ cos ψ

with ψ = kz′(1/β−n cos θ). Integrating over z′, one gets the Tamm angular
intensity (5.5). We have seen in Chapter 2, that:

i) in the exactly soluble Tamm problem the BS and Cherenkov shock
waves certainly exist in the time and spectral representations;

ii) the approximate Tamm radiation intensity (5.5) contains the BS
shock waves and does not describe properly the Cherenkov shock wave
originated from the charge motion in the interval (−z0, z0).

Let kL be arbitrary small, but finite (L is the length through which a
charge moves non-uniformly). The contribution of the accelerated (decel-
erated) part of the charge trajectory to the radiation intensity then also
tends to zero and the total radiation intensity coincides with the approxi-
mate Tamm intensity (5.5). Since there are no velocity jumps now, a ques-
tion arises what kind of radiation contributes to the total intensity. This
intriguing situation can be resolved in the following way. Although there
are no velocity jumps, there are acceleration jumps at the start and end of
the motion, and at the instants when the accelerated part of the charge tra-
jectory meets with the uniform part. We associate the non-vanishing total
radiation intensity for kL � 1 with these acceleration jumps. This is valid
only under the approximations (5.2), (5.3), (5.6), and (5.8) which lead to
ψ1 given by (5.41), and which result in the disappearance of the Cherenkov
shock wave. As we have seen in Chapters 2 and 3, the Cherenkov shock
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wave certainly exists in the exactly solvable original and smoothed Tamm
problem.

Let the observed wavelength λ lie in the optical region. Then, for kL �
1, the optical and lower frequencies do not contribute to the integral over
the accelerated and decelerated parts of the charge trajectory. However,
as we have learned from Chapter 2, the BS shock waves exist even for
the instantaneous jumps of the charge velocity. This means that for small
acceleration lengths L, the BS shock wave is formed mainly from high fre-
quencies. To see this explicitly, we now fix L and change λ. For L � λ,
the total radiation intensity reduces to the Tamm one. On the other hand,
for the very short wavelengths satisfying λ � L, both uniform and non-
uniform parts of the charge trajectory contribute to the radiation intensity.
Analytic estimates made in subsection 5.3.4 confirm this. In fact, the radia-
tion intensity (for λ � L) equals (5.68) for θ < θc and zero for θ > θc. Here
cos θc = 1/βn. This radiation intensity disagrees sharply with the Tamm
formula (5.5).

It should be noted that in the time representation the space-time evo-
lution of the shock waves arising in the problem treated was studied in the
past in [23]. It was shown there that a complex consisting of the Cherenkov
shock wave and the shock wave (not BS shock wave) closing the Cherenkov
cone is created at the instant when the charge velocity coincides with the
velocity of light in medium. On the part of the trajectory, corresponding
to the uniform charge motion (Fig. 5.15(b)) the dimensions of this com-
plex grow, but its form remains the same. On the decelerated part of the
charge trajectory it leaves the charge at the instant when the charge veloc-
ity again coincides with the velocity of light in medium. After this instant,
it propagates with the velocity of light in medium. In this section, meeting
the experimentalists demands, we have translated results of [23] into the
frequency language. In fact, experimentalists ask questions like these: how
many photons with frequency ω should be observed, what is their angular
distribution? Analytic formulae of this section answer these questions.

More complicated superposition of accelerated, decelerated,
and uniform motions
We also consider another problem corresponding to the motion shown in
Fig. 5.15(c). This is needed to investigate how the radiation intensity looks
when the velocity v2 changes from the value above cn to the value below it.
A charge is at rest at the spatial point z = −z0 up to an instant t = −t0.
In the time interval −t0 < t < −t1 it moves with an acceleration a up to
reaching the velocity v1 at the spatial point z = −z1:

z = −z0 +
1
2
a(t + t0)2, v = a(t + t0).
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It is convenient to express t1 and a through z1 and v1:

a =
v2
1

2(z0 − z1)
, t0 − t1 =

2(z0 − z1)
v1

.

In the time interval −t1 < t < −t2 a charge moves with deceleration a
down to reaching the velocity v2 at the spatial point z = −z2:

z = −z1 + v1(t + t1) − 1
2
a(t + t1)2, v = a(t + t1).

It is convenient to express t2 and z2 through v2:

z2 = z0 − (z0 − z1)(2 − β2
2

β2
1

), t2 = t0 − 2
2v1 − v2

v2
1

(z0 − z1). (5.54)

In the time interval −t2 < t < t2 a charge moves uniformly with the velocity
v2 up to reaching the spatial point z = z2:

z = −z2 + v2(t + t2), v = v2.

Therefore z2 = v2t2. Substituting z2 and t2 from (3.10) we find t0

t0 =
1
v2

[z0 − (z0 − z1)(2 − 4
v2

v1
+

v2
2

v2
1

)].

In the time interval t2 < t < t1 a charge moves with acceleration a up to
reaching the velocity v1 at the spatial point z = z1:

z = z2 + v2(t − t2) +
1
2
a(t − t2)2, v = v2 + a(t − t2).

Finally, in the time interval t1 < t < t0 a charge moves with deceleration
a down to reaching the state of rest at the instant t0 at the spatial point
z = z0:

z = z1 + v1(t − t1) − 1
2
a(t − t1)2, v = v1 − a(t − t1).

After the instant t0, the charge is at rest at the point z = z0. For that motion
the Fourier transform of the current density reduces to the following sum

jω =
e

2π
δ(x)δ(y)[Θ(z + z0)Θ(−z − z1) exp(−iωτ1)

+Θ(z + z1)Θ(−z − z2) exp(−iωτ2) + Θ(z + z2)Θ(z2 − z) exp(−iωτ3)

+Θ(z − z2)Θ(z1 − z) exp(−iωτ4) + Θ(z − z1)Θ(z0 − z) exp(−iωτ5)],
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where
τ1 = −t0 +

2
v1

√
(z + z0)(z0 − z1),

τ2 = −t0 +
2
v1

[2(z0 − z1) −
√

(z0 − z1)(z0 − z − 2z1)],

τ3 =
z

v2
, τ4 = t0 − 2

v1
[2(z0 − z1) −

√
(z0 − z1)(z0 + z − 2z1)],

τ5 = t0 − 2
v1

√
(z0 − z)(z0 − z1). (5.55)

If the conditions (5.2),(5.3),(5.6) and (5.7) are satisfied then the radiation
intensity can be evaluated analytically:

σr(ω, θ) =
e2 sin2 θ

nπ2c
[(Ic)2 + (Is)2], (5.56)

where:

Ic = Ic(−z0, 0;−z1, v1) + Ic(−z1, v1;−z2, v2) + Ic(−z2, v2; z2, v2)

+Ic(z2, v2; z1, v1) + Ic(z1, v1; z0, 0),

Is = Is(−z0, 0;−z1, v1) + Is(−z1, v1;−z2, v2) + Is(−z2, v2; z2, v2)

+Is(z2, v2; z1, v1) + Is(z1, v1; z0, 0). (5.57)

Again, owing to the symmetry of the problem

Ic(−z0, 0;−z1, v1) = Ic(z1, v1; z0, 0),

Ic(−z1, v1;−z2, v2) = Ic(z2, v2; z1, v1),

Ic(−z2, v2; z2, v2) =
2β2

(1 − β2n cos θ)
sin

[
ωz2

v2
(1 − β2n cos θ)

]
,

Is(−z0, 0;−z1, v1) = −Is(z1, v1; z0, 0),

Is(−z1, v1;−z2, v2) = −Is(z2, v2; z1, v1),

Is(−z2, v2; z2, v2) = 0, Is = 0.

Now we choose β1 = 1, x1 = 0.99, and change β2. The case β2 = 1 is shown
in Fig. 5.20(b). Smaller values of β2 are shown in Fig. 5.22. Consider Fig.
5.22(a), corresponding to β2 = 0.8. We see two Cherenkov maxima at the
angles θ1 = arccos(1/β1n) and θ2 = arccos(1/β2n). As in Figs. 5.20 and
5.21, we observe that the Tamm formula satisfactorily describes BS in the
back part of the angular spectrum (for β = 0.8 this agreement begins from
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Figure 5.22. Total, Tamm, and BS radiation intensities corresponding to Fig. 5.15(c)
for β = 1, x1 = 0.99 and various β2. The case β2 = 1 is considered in Fig. 5.20(b). Other
parameters are the same as in Fig. 5.16. For β1 and β2 greater than 1/n the total intensity
has two maxima at the Cherenkov angles defined by cos θ = 1/β1n and cos θ = 1/β2n
(a,b). At the Cherenkov threshold these maxima have the same height. For β2 < 1/n
only one maximum corresponding to cos θ = 1/β1n survives (c,d). For β2 = 0 the Tamm
intensity is zero, and σt = σBS .

θ ≈ 500). The total intensity is satisfactorily reproduced by the BS inten-
sity everywhere in the front angular region (0 < θ < 500) except for the
immediate neighbourhood of the Cherenkov angle. In this angular region
the Tamm formula disagrees both with the total and BS intensities every-
where except for angles close to the Cherenkov angle. An important case
is β2 = 1/n corresponding to the Cherenkov threshold (Fig. 5.22 b). The
total intensity has two maxima of the same magnitude: one corresponding
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to the Cherenkov maximum (at θ = 00) and other corresponding to the BS
maximum. For β2 below the Cherenkov threshold one Cherenkov maxima
disappears (Fig. 5.22(c)), whilst the Tamm intensity decreases coinciding
at large angles with the intensity of BS. In the forward direction the to-
tal intensity does not differ from the BS intensity. Finally, for β2 = 0 the
Tamm intensity disappears, whilst the total intensity coincides with the BS
intensity (Fig. 5.22(d)).

What can we learn from this section? There are two characteristic ve-
locities β1 and β2 in Fig. 5.22. Correspondingly, there are two Cherenkov
maxima defined by cos θ = 1/β1n and cos θ = 1/β1n when both β1 and β1

are greater than 1/n (Fig. 5.22 (a,b)). When β2 becomes smaller than 1/n,
only one Cherenkov maximum corresponding to cos θ = 1/β1n survives
(Fig. 5.22(c,d)).

5.3.4. ANALYTIC ESTIMATES

In this section the radiation intensities written out in a previous section in
terms of Fresnel integrals will be expressed through elementary functions.
This is possible when the arguments of Fresnel integrals are large. Physically
this means that the product kla is large (k is the wave number and la
is the spatial interval in which a charge moves non-uniformly). For large
arguments, C(x) and S(x) behave as

C(x) → 1
2

+
1√
2π

sin x2

x
, S(x) → 1

2
− 1√

2π

cos x2

x

for x → +∞ and

C(x) → −1
2

+
1√
2π

sin x2

x
, S(x) → −1

2
− 1√

2π

cos x2

x

for x → −∞.

Pure decelerated motion
For the decelerated motion shown in Fig. 5.15 (a) and corresponding to
β1n > 1 and β2n > 1, one finds that for k(z2 − z1) � 1 the radiation
intensity is given by:

σr =
e2n sin2 θ

π2c
{1
4

[
β2 − β1

(1 − β1n cos θ)(1 − β2n cos θ)

]2

+
β1β2

(1 − β1n cos θ)(1 − β2n cos θ)
sin2 ψ} (5.58)
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for 0 < θ < θ2 and θ > θ1. Here we put

cos θ1 = 1/β1n, cos θ2 = 1/β2n, ψ =
k(z2 − z1)
β1 + β2

(
β1 + β2

2
n cos θ − 1).

On the other hand, for θ2 < θ < θ1 one has

σr = σr(5.58) +
e2 sin2 θ

πcn cos2 θ

×
[
α2 +

αn cos θ√
2π

(
β2

cos u2
2 − sin u2

2

β2n cos θ − 1
− β1

cos u2
1 − sin u2

1

β1n cos θ − 1

)]
, (5.59)

where α, u1 and u2 are the same as in (5.46). The term proportional to α2 is
much larger than others everywhere except for the angles close to θ1 and θ2.
For these angles the above expansion of Fresnel integrals fails (since u1 and
u2 vanish at these angles). These formulae mean that radiation intensity
oscillates with decreasing amplitude for 0 < θ < θ2 and θ > θ1 (oscillations
are due to sin2 ψ), and has a plateau

e2α2 sin2 θ

πcn cos2 θ
(5.60)

for θ2 < θ < θ1. The oscillating terms (the first term in (5.59) and the term
proportional to α) are much smaller than the non-oscillating term (5.60).
Exactly such behaviour of σr with maxima at θ1 and θ2 and a rather flat
region between them demonstrates Fig. 5.16 (b).

For β2 = 1/n these formulae predict intensity oscillations for θ > θ1 and
their absence for θ < θ1 (see Fig. 5.16 (c)).

A particular interesting case having numerous practical applications
corresponds to the complete termination of motion (β2 = 0). In this case

σr =
e2nβ2

1

4π2c

sin2 θ

(1 − β1n cos θ)2
(5.61)

for θ > θ1 and

σr = σr(5.61) +
e2 sin2 θ

πcn cos2 θ

(
α2 − β1αn cos θ√

2π

cos u2
1 − sin u2

1

β1n cos θ − 1

)
(5.62)

for θ < θ1. Here α and u1 are the same as in (5.46) if one puts β2 = 0 in
them:

α =
1
β1

√
k(z2 − z1)

n cos θ
, u1 =

√
k(z2 − z1)n cos θ

(
1 − 1

β1n cos θ

)
.
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Since α � 1, the radiation intensity for θ > θ1 is much smaller than
for θ < θ1. There are no intensity oscillations for θ > θ1 and very small
oscillations for θ < θ1 (they are owed to the last term in (5.62) proportional
α which is much smaller than the term proportional α2). Figures 5.16(d)
and 5.17 agree with this prediction. When β1n < 1 the same Eq. (5.61) is
valid for all angles. In this case, the integration over the solid angle can be
performed analytically:

σr(ω) =
∫

σr(θ, ω)dΩ =
2e2

πcn
(

1
2β1n

ln
1 + β1n

1 − β1n
− 1), (5.63)

that is two times smaller then the Tamm frequency intensity (5.33) This
expression is not valid for β1 close to 1/n.

The singularities occurring in (5.58), (5.59), (5.61), and (5.62) are owed
to the condition k(z2 − z1) � 1 used. The initial radiation intensity (5.46)
is finite both for cos θ = 1/β1n and cos θ = 1/β2n.

Smoothed Tamm problem
We now evaluate asymptotic radiation intensities for the motion shown in
Fig. 5.15(b) (the smooth Tamm problem). For this aim we should evaluate
the integrals Ic =

∫
vdτ cos ψ and Is =

∫
vdτ sin ψ entering (5.50). In terms

of Fresnel integrals, they are given by (5.52). Owing to the symmetry of
the problem treated, Is = 0 while Ic is reduced to

Ic = Ia
c + Id

c + Iu
c = 2Ia

c + Iu
c . (5.64)

Here Ia
c , Id

c , and Iu
c are the integrals over the accelerated (−z0 < z < −z1),

decelerated (z1 < z < z0) and uniform (−z1 < z < z1) parts of a charge
trajectory, respectively. Again, it was taken into account that Ia

c = Id
c

owing to the symmetry of the problem. The integral Iu
c corresponding to

the uniform motion on the interval (−z1 < z < z1) is

Iu
c =

2β

k(1 − βn cos θ)
sin[

kz1

β
(1 − βn cos θ)]. (5.65)

Then for θ < π/2 one has

Ia
c =

−z1∫
−z0

dz cos ψ =
1

kn cos θ
{sin(u2

2 − γ) − sin(u2
1 − γ)

+α
√

2π[cos γ(C2 − C1) + sin γ(S2 − S1)]}. (5.66)
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For the motion shown in Fig. 5.15 (b), u1, u2, α and γ are given by

u1 = −
√

k(z0 − z1)n cos θ
1

βn cos θ
,

u2 =
√

k(z0 − z1)n cos θ

(
1 − 1

βn cos θ

)
,

α =
1
β

[
k(z0 − z1)

n cos θ

]1/2

, γ = kz0n cos θ +
k(z0 − z1)
β2n cos θ

− k(2z0 − z1)
β

.

Replacing Fresnel integrals by their asymptotic values, we obtain for k(z0−
z1) � 1 and θ < θc (cos θc = 1/βn):

Ia
c = −α

√
2π

cos γ + sin γ

kn cos θ
+

βn

k(βn cos θ − 1)
sin[kz1(1 − βn cos θ)]. (5.67)

To obtain Ic one should double Ia
c (since Ia

c = Id
c ) and add Iu

c given by
(5.65). This gives

Ic = 2Ia
c + Iu

c = −α
√

2π
cos γ + sin γ

kn cos θ

and

σr =
e2

2πcn2β2
k(z0 − z1)

sin2 θ

cos3 θ
(1 + sin 2γ). (5.68)

We see that for θ < θc the part of Ia
c is compensated by the Tamm amplitude

Iu
c . In this angular region the oscillations are owed to the (1+sin 2γ) factor.

For θ > θc one finds

Ia
c =

βn

k(βn cos θ − 1)
sin[kz1(1 − βn cos θ)]. (5.69)

Inserting (5.65) and (5.69) into (5.64) we find

Ic = 2Ia
c + Iu

c = 0 and σr = 0.

We see that for θ > θc the total contribution of the accelerated and decel-
erated parts of the charge trajectory is compensated by the contribution
of its uniform part. The next terms arising from the expansion of Fres-
nel integrals are of the order 1/k(z0 − z1), and therefore are negligible for
k(z0−z1) � 1. This behaviour of radiation intensities is confirmed by Figs.
5.20 and 5.21 which demonstrate that radiation intensities suddenly drop
for θ > θc.

For θ > θc the radiation intensity disappears for arbitrary z1 satisfying
the condition k(z0 − z1) � 1 and, in particular, for z1 = 0. In this case,
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there is no uniform motion, and the accelerated motion in the interval
−z0 < z < 0 is followed by the decelerated motion in the interval 0 < z <
z0. The radiation intensity is obtained from (5.68) by setting z1 = 0 in it.
For kz0 � 1 it reduces to

σr =
e2kz0 sin2 θ

2πn2c cos3 θ
(1 + sin 2γ) (5.70)

for θ < θc. Here γ = (1−1/βn cos θ)2kz0n cos θ. For θ > θc, σr is small (it is
of the order 1/kz0). Owing to the factor (1 + sin 2γ), σr is a fast oscillating
function of θ for θ < θc (see Fig. 5.21(d)) with a large amplitude (since
kz0 � 1). Fig 5.21 (d) confirms this.

For βn < 1 the condition θ < θc cannot be satisfied and radiation
intensities are of the order 1/k(z0 − z1) � 1 for all angles.

In the opposite case (kz0 → 0), the radiation intensity tends to zero:

σr =
e2µnk2z2

0 sin2 θ

π2c
. (5.71)

This particular case indicates that the disappearance of radiation intensities
at high frequencies above some critical angle has a more general reason. It
will be shown in the next two subsections that radiation intensities describ-
ing the absolutely continuous charge motion in medium are exponentially
small outside some angular region. It should be stressed again that formulae
obtained in this section are not valid near the angle θc where the arguments
of the Fresnel integrals vanish.

5.3.5. THE ABSOLUTELY CONTINUOUS CHARGE MOTION.

When the conditions (5.2), (5.3), and (5.8) are satisfied, the vector potential
(3.1) is reduced to

Aω =
µe

2πcr
exp(iknr)I, (5.72)

where

I =
∫

v(t′) exp[i(ωt′ − kn cos θz(t′))]dt′.

Electromagnetic field strengths contributing to the radial energy flux are

Hφ = − ienk sin θ

2πcr
exp(iknr)I, Eθ = − ieµk sin θ

2πcr
exp(iknr)I.

The radiation intensity is given by

σr(θ, ω) =
d2E

dωdΩ
=

e2k2nµ

4π2c
sin2 θ|I|2. (5.73)
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This means that all information on the radiation intensity is contained in
I. In the quasi-classical approximation,

I = v(tc)

√
2π

|v̇(tc)kn cos θ| exp(±iπ/4) exp(iψc), (5.74)

where ψc = ωtc − knzc cos θ, zc = z(tc) and tc is found from the equation

1 − nβ(tc) cos θ = 0. (5.75)

The ± signs in (5.74) coincide with the sign of v̇(tc)kn cos θ. Under the con-
ditions (5.2), (5.3), and (5.8), the charge uniformly moving in the interval
(−z0, z0) radiates with the intensity given by the famous Tamm formula
(5.5).

Simplest absolutely continuous charge motion.
A charge moves according to the law (Fig. 5.23)

v(t) =
v0

cosh2(t/t0)
. (5.76)

Obviously v(t) = v0 for t = 0 and v(t) → 0 for t → ±∞. The charge
position at the instant t is given by z(t) = v0t0 tanh(t/t0). Therefore the
charge motion is confined to −L/2 < z < L/2, where L = 2v0t0 is the
motion interval. The velocity, being expressed through the current charge
position, is

v(z) = v0(1 − 4z2/L2) (5.77)

The drawback of this motion is that one can not change t0 without changing
the motion interval L.

For the motion law shown in Fig. 5.23, the amplitude I entering in
(5.72) is given by

I =
πv0ωt20

sinh(πωt0/2)
exp(iωt0β0n cos θ)

×Φ(1 + iωt0/2; 2;−2iωt0β0n cos θ), (5.78)

where Φ(α; β; z) is the confluent hypergeometric function. Correspondingly
the radiation intensity is

σr(θ, ω) =
e2nµβ2

0ω4t40
4c sinh2(πωt0/2)

|Φ|2. (5.79)

When ωt0 � 1,

I = 2v0t0 and σr(θ, ω) =
nµ

π2c
e2β2

0ω2t20 sin2 θ. (5.80)
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Figure 5.23. The motion corresponding to (5.76). Left and right parts correspond to
v(t) and v(z), where z is the charge position at the time t. It is seen that the charge
position is confined to a finite spatial interval (−L/2, L/2).

This coincides with (5.71).
In the opposite case (ωt0 � 1), by applying the quasi-classical approxi-

mation one finds that I is exponentially small for all angles if β0 < 1/n. If
β0 > 1/n, I is exponentially small for θ > θc (cos θc = 1/β0n) and

|I|2 =
πct0

√
β0

(n cos θ)3/2k(β0n cos θ − 1)1/2
cos2 ψc (5.81)

for θ < θc. Here

ψc = ω(tc − nzc

c
cos θ) +

π

4
, cosh

tc
t0

=
√

β0n cos θ,

zc = v0t0(1 − 1
nβ0 cos θ

)1/2.

When evaluating |I|2 it was taken into account that Eq. (5.75) has two real
roots for β0n > 1:

tc = ±t0
(√

β0n cos θ +
√

β0n cos θ − 1
)

.

The radiation intensity (5.73), with |I|2 given by (5.81), is the analogue of
the Tamm formula (5.5) for the motion law (5.76).

Radiation intensities σr(θ) corresponding to the charge motion shown in
Fig. 5.23 are presented in Fig. 5.24 for a number of β0 = v0/c together with
the Tamm intensities σT corresponding to the same L = 0.1cm, λ = 4×10−5

cm, n = 1, 5 and β0. It is seen that the positions of main maxima of σr

and σT coincide for v0 > cn and are at the Cherenkov angle defined by
cos θc = 1/β0n. For v0 < cn, σr is much smaller than σT (d). For v0 > cn
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Figure 5.24. Angular radiation intensities corresponding to the charge motion shown in
Fig. 5.23 (solid curves) and the Tamm intensities (dotted lines) for a number of v0. For
v0 > cn the maximum of intensity is at the Cherenkov angle θc defined by cos θc = 1/β0n.
The angle θc decreases with decreasing v0. For β0 > 1/n the radiation intensity falls
almost instantly for θ > θc. For β0 < 1/n the radiation intensity is exponentially small
for all angles. The original angular intensities are highly oscillating functions. To make
them more visible, we draw the Tamm angular intensity through its maxima. Other
intensities, for which the maxima positions are not explicitly known, are obtained by
averaging over three neighbouring points, thus, considerably smoothing the oscillations.
This is valid also for Fig. 5.26.

and θ > θc, σr falls very rapidly and σT dominates in this angular region
(a,b,c). For θ < θc, σr is much larger than σT (a,b) (except for θ = θc). This
is in complete agreement with quasi-classical formula (5.81) which predicts
the exponential decrease of σr for θ > θc and its oscillations described by
(5.81) for θ < θc.



Influence of finite observational distances and charge deceleration 265

Figure 5.25. The motion corresponding to (5.82). Dotted, broken and dotted lines
correspond to τ0 = T0/T = 0.5, 10 and 25, respectively. For large τ0 the interval where a
charge moves with almost constant velocity increases. The charge position is confined to
a finite spatial interval (−L/2, L/2). This motion is much richer than the one shown in
Fig. 5.23.

In the past, analytical radiation intensities for the charge motion in
vacuum shown in Fig. 5.24, were obtained in [24]. In this case (5.75) has no
real roots, and at high frequencies the quasi-classical radiation intensity is
exponentially small for all angles.

More complicated absolutely continuous charge motion.
A charge moves according to the law (Fig. 5.25)

v =
1
2
v0

(
tanh

t + T0

T
− tanh

t − T0

T

)
, (5.82)

The maximal velocity (at t = 0) is ṽ0 = v0 tanh(T0/T ). Equation (5.82) is
slightly inconvenient. When we change either T or T0, the maximal velocity,
the interval to which the motion is confined, and the behaviour of the
velocity inside this interval are also changed. We rewrite this expression in
a slightly different form, more suitable for applications

v(t) = ṽ0
1 + cosh(2T0/T )

cosh(2t/T ) + cosh(2T0/T )
, (5.83)

The charge position at the instant t is given by

z(t) =
LT

4T0
ln

cosh(t + T0)/T

cosh(t − T0)/T
, (5.84)

where
L = 2v0T0 = 2ṽ0T0 coth(T0/T ) (5.85)
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is the motion interval. We reverse this expression, thus obtaining

T0

T
=

1
2

ln
1 + 2T0ṽ0/L

1 − 2T0ṽ0/L
. (5.86)

It is seen that the fixing of ṽ0 and L leaves only one free parameter. If we
identify it with T0 then (5.86) defines T as a function of T0 (for the fixed L
and ṽ0). For T0 � T the r.h.s. of (5.86) should also be small. This is possible
if 2T0ṽ0/L � 1. The r.h.s. of (5.86) then tends to 2T0ṽ0/L. Equating both
sides of (5.86) we find that T = L/2ṽ0 in this limit. For T0 → L/2ṽ0 the
r.h.s. of (5.86) tends to ∞. Therefore T/T0 → 0. It follows from this that
the available interval for T and T0 is (0, L/2ṽ0) (for fixed L and ṽ0). We
express the charge velocity through its current position z. For this we first
express cosh(2t/T ) through z:

cosh
2t

T
=

sinh[T0(1 + 2z/L)/T ]
2 sinh[T0(1 − 2z/L)/T ]

+
sinh[T0(1 − 2z/L)/T ]

2 sinh[T0(1 + 2z/L)/T ]
. (5.87)

Substituting this into (5.83) we obtain v(z). For T0 � T , v(z) reduces to

v(z) = ṽ0(1 − 4z2

L2
), (5.88)

which coincides with (5.77) if we identify ṽ0 with v0. In the opposite case
(T � T0)

v(z) =
ṽ0

1 + exp(−2T0/T ) cosh(2t/T )
. (5.89)

If z is so close to (L/2) that

1 − 2z

L
� T

T0
,

then (5.87) gives

cosh
2t

T
=

T

4T0(1 − 2z/L)
exp

[
T0

T
(1 + 2z/L)

]
and

v(z) =
2ṽ0T0

T
(1 − 2z/L). (5.90)

On the other hand, if

1 − 2z

L
� T

T0

then
cosh(2t/T ) = 1 and v = ṽ0. (5.91)
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Since, according to our assumption, T/T0 � 1, the transition from (5.90) to
(5.91) is realized in a very narrow z interval. For example, for T/T0 = 10−6,
it takes place in the interval (1 − 10−5) < 2z/L < (1 − 10−7). The same
considerations are valid in the neighbourhood of another boundary point
z = −L/2. We conclude: the horizontal part (where v ≈ ṽ0) of the charge
trajectory exists if T � T0 (see (5.91)) and does not exist if T0 � T
(see (5.88)). However, in both cases (T � T0 and T � T0) v(z) decreases
linearly when z approaches boundary points.

The law of motion (5.83) is much richer than (5.76). It is extensively
used in nuclear physics to parametrize the nuclear densities [25,26].

For the law of motion shown in Fig. 5.25 the amplitude I entering into
(5.72) equals

I =
1
2
v0T exp[−iωT0(1 − β0n cos θ)]

ωπT/2
sinh(ωπT/2)

[1 − exp(−4T0/T )]

×2F1[1 − iωT

2
β0n cos θ, 1 +

iωT

2
; 2; 1 − exp(−4T0/T )]. (5.92)

Here 2F1(α, β; γ; z) is the usual hypergeometric function. The radiation
intensity is

σr(θ, ω) =
e2µnβ2

0ω4T 4 sin2 θ

64c sinh2(πωT/2)
[1 − exp(−4T0/T )]2|F |2. (5.93)

Consider particular cases.
Let T be much smaller than T0 (ωT is arbitrary). Then,

σr =
e2µβ0ωT sin2 θ

8π3c cos θ(nβ0 cos θ − 1)

× sinh[(πωTnβ0 cos θ)/2]
sinh(πωT/2) sinh[πωT (β0n cos θ − 1)/2]

. (5.94)

If, in addition, the frequency is so large that ωT � 1, then (5.94), for
β0n < 1, is exponentially small for all angles:

σr =
e2µβ0ωT

4π3c cos θ(1 − nβ0 cos θ)
sin2 θ exp[−πωT (1 − nβ0 cos θ)]. (5.95)

For β0n > 1 and θ > θc (cos θc = 1/β0n), the radiation intensity (5.94)
coincides with (5.95). On the other hand, for θ < θc

σr =
e2µβ0ωT

4π3c cos θ(nβ0 cos θ − 1)
sin2 θ. (5.96)
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In this angular region there is no exponential damping.
Let T0 be much smaller than T . We should first express v0 through ṽ0

and then take the limit T0/T → 0. The hypergeometric function 2F1 is
then transformed into the confluent hypergeometric function Φ, and (5.93)
is transformed into (5.79) if we identify T and ṽ0 entering (5.93) (after
expressing v0 through ṽ0) with t0 and v0 entering (5.79).

In the limit ωT → 0, (5.93) goes into

σr =
e2µnβ2

0ω2T 2
0

π2c
sin2 θ,

which coincides with (5.80) and (5.71). The quasi-classical approximation
being applied to I gives

σr(θ, ω) =
e2β̃0ωTµ sin2 θ

4π2csc cos θ
cos2 ψc (5.97)

for θ < θc and σr is exponentially small outside this angular region. Here

sc = (nβ̃0 cos θ−1)1/2
(

nβ̃0 cos θ − tanh2 T0

T

)1/2

, ψc = ωtc−knzc cos θ+
π

4
;

tc is found from the equation

cosh
2tc
T

= β̃0n cos θ

(
1 + cosh

2T0

T

)
− cosh

2T0

T
,

where zc = z(tc), and z is given by (5.84).
Unfortunately, we have not succeeded in obtaining the Tamm formula

(5.5) from the radiation intensity (5.93). It should appear in the limit
T/T0 → 0 (when the horizontal part of the charge trajectory (where v ≈ ṽ0)
is large). Equations (5.94) and (5.96) are infinite at the Cherenkov an-
gle, but do not oscillate, contrary to the Tamm intensity (5.5). The quasi-
classical expression (5.97) oscillates, but it is also infinite at the Cherenkov
angle (again, contrary to the Tamm intensity). Probably, the inability to
obtain the Tamm formula (5.5) from (5.93) in the limit T/T0 → 0 (when
the dependence v(z), given by (5.83), is visually indistinguishable from that
of the Tamm (see Fig. 5.25)) points to the importance of the velocity dis-
continuities. In fact, there are two velocity jumps in the Tamm problem
and no velocity jumps for the absolutely continuous motion shown in Fig.
5.25.

Radiation intensities σr(θ) corresponding to Fig. 5.25, for fixed β0 = 1,
L = 0.1 cm, λ = 4 × 10−5 cm and a number of diffuseness parameters
τ0 = T0/T , are shown in Fig. 5.26. The positions of the main maxima are
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Figure 5.26. Angular radiation intensities corresponding to the charge motion shown
in Fig. 5.25 (solid lines) for β̃0 = 1 and a number of diffuseness parameters τ0 = T0/T .
Angular intensities approach the Tamm one (dotted line) rather slowly even for large
values of τ0. This is due to their different asymptotic behaviour.

at the Cherenkov angle θc. The fast angular oscillations in the region θ < θc

are described by the quasi-classical formula (5.97). Again we observe that σr

falls almost instantaneously for θ > θc. The reason for this is due to different
asymptotical behaviour of radiation intensities which fall exponentially for
the absolutely continuous motion presented in Fig. 5.25 and do not decrease
with frequency (except for cos θ = 1/βn) for the original Tamm problem
involving two velocity jumps.

In the past, analytical radiation intensities for the charge motion in
vacuum shown in Fig. 5.25 were obtained in [27] and discussed in [28]. In
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Figure 5.27. The unbounded charge motion corresponding to (5.98) and describing the
smooth transition from the velocity v2 at t = −∞ to the velocity v1 at t = ∞.

this case the radiation intensity at high frequencies is exponentially small
for all angles.

Smooth infinite charge motion
Let a charge moves according to the law (Fig. 5.27)

v = v+ + v− tanh
t

t0
, v± =

v1 ± v2

2
, −∞ < t < ∞. (5.98)

The current charge position is z = v+t + v−t0 ln cosh(t/t0). For t → ±∞,
v → v1,2 and z → v1,2t.

For the motion shown in Fig. 5.27 one obtains

I =
ct0

2n cos θ
exp

[
1
2
iωt0n(β1 − β2) cos θ

]
Γ(α2)Γ(−α1)

Γ[iωt0n cos θ(β2 − β1)/2]
,

where Γ(z) is the gamma function and

α1 = iωt0(1 − nβ1 cos θ)/2, α2 = iωt0(1 − nβ2 cos θ)/2.

Correspondingly,

|I|2 =
c2t0π(β2 − β1)

2ωn cos θ(1 − nβ1 cos θ)(1 − nβ2 cos θ)
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× sinh[πn cos θωt0(β2 − β1)/2]
sinh[π(1 − β1n cos θ)ωt0/2] sinh[π(1 − β2n cos θ)ωt0/2]

and

σr(θ, ω) =
e2µωt0 sin2 θ

8πc cos θ
F, (5.99)

where

F =
(β2 − β1)

(1 − nβ1 cos θ)(1 − nβ2 cos θ)

× sinh[πn cos θωt0(β2 − β1)/2]
sinh[π(1 − β1n cos θ)ωt0/2] sinh[π(1 − β2n cos θ)ωt0/2]

.

Here we put cos θ1 = 1/β1n and cos θ2 = 1/β2n.

High-frequency limit of the radiation intensity. Consider the behaviour of
the radiation intensity for ωt0 � 1. Obviously θ1 < θ2 for the decelerated
motion (β2 > β1).
Let β1n > 1 and β2n > 1. Then for θ < θ1

F =
2(β2 − β1)

(β1n cos θ − 1)(β2n cos θ − 1)
exp[−πωt0(β1n cos θ − 1)]. (5.100)

For θ > θ2

F =
2(β2 − β1)

(β1n cos θ − 1)(β2n cos θ − 1)
exp[−πωt0(1 − β2n cos θ)]. (5.101)

Finally, for θ1 < θ < θ2

F =
2(β2 − β1)

(1 − β1n cos θ)(β2n cos θ − 1)
. (5.102)

We see that two maxima should be observed at the Cherenkov angles θ1

and θ2. Between these maxima the radiation intensity is a smooth function
of θ.

For θ < θ1 and θ > θ2, the radiation intensity is exponentially small.
For β1n < 1 and β2n > 1, F is equal to (5.102) for 0 < θ < θ2, and to

(5.101) for θ > θ2.
For β1n < 1 and β2n < 1, F has the form (5.101) and the radiation

intensity is exponentially small for all angles.
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Sharp transition from v2 to v1. For ωt0 � 1 (this corresponds either to
the sharp change of the charge velocity near t = 0 or to large observed
wavelengths) one finds

σr(θ, ω) =
e2nµ sin2 θ

4πc

(β2 − β1)2

(1 − β1n cos θ)2(1 − β2n cos θ)2
. (5.103)

In this case σr(θ, ω) has two maxima at the Cherenkov angles θ1 and θ2 if
both β1n > 1 and β2n > 1 and one maximum at θ2 if β1n < 1 and β2n > 1.

Strictly speaking, the validity of Eqs. (5.99)-(5.103) is slightly in doubt.
When obtaining them we used Eq. (5.72) the validity of which implies that
a charge motion takes place in an interval much smaller than the radius of
the observational sphere S. However, Eq. (5.98) describes the unbounded
charge motion. For a sufficiently large time, when a charge will be outside
S, the validity of (5.72) will break down.

In the past, analytical radiation intensities for the charge motion in
vacuum, shown in Fig. 5.27, were obtained in [29] and discussed in [28]. In
this case the radiation intensity at high frequencies is exponentially small
for all angles.

5.3.6. SUPERPOSITION OF UNIFORM AND ACCELERATED MOTIONS

To avoid the trouble occurring in a previous subsection, we consider the
following problem. A charge is at rest at the point −z0 up to an instant
−t0. In the time interval −t0 < t < −t1, a charge moves uniformly with
the velocity v1 until it reaches the spatial point −z1. In the time interval
−t1 < t < t1 a charge moves with deceleration a until it reaches the spatial
point z1. In the time interval t1 < t < t′0, a charge moves uniformly with
the velocity v2 until it reaches the spatial point z0 where it is at rest for
t > t′0. It is easy to express t1, t0, t

′
0 and a through z1, z0, v1 and v2:

t1 =
2z1

v1 + v2
, t0 =

z0

v1
+

v1 − v2

v1 + v2

z1

v1
, t′0 =

z0

v2
− v1 − v2

v1 + v2

z1

v2
, a =

v2
1 − v2

2

4z1
.

The radiation intensity is

σr(ω, θ) =
e2k2n sin2 θ

4π2c
[(Ic)2 + (Is)2].

Here
Ic =

∑
i

I(i)
c , Is =

∑
i

I(i)
s

and

I(i)
c =

∫
dz′ cos ψi, Ii

s =
∫

dz′ sin ψi, i = 1, 2, 3,
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where ψi = −knz′ cos θ + ωτi. The superscripts 1, 2 and 3 refer to the
uniform motion with the velocity v1 (−z0 < z′ < −z1), the decelerated
motion (−z1 < z′ < z1), and to the uniform motion with the velocity v2

(z1 < z′ < z0), respectively. The functions τi(z) entering ψi are equal to

τ1 =
z

v1
− z1

v1

v1 − v2

v1 + v2
, τ2 =

2z1

v1 − v2
−
√

8z1

v2
1 − v2

2

√
z1

v2
1 + v2

2

v2
1 − v2

2

− z,

τ3 =
z

v2
− z1

v2

v1 − v2

v1 + v2
.

The integrals Ic and Is are given by

Ic =
2β1

k(1 − β1n cos θ)
sin

[
k(z0 − z1)

2

(
1
β1

− n cos θ

)]

× cos
[
k(z0 + z1)

2

(
1
β1
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− n cos θ
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k(n cos θ)3/2
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− n cos θ
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× sin
[
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)
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− 2β1

k(1 − β1n cos θ)
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)]

× sin
[
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(
1
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)
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]

− 2
k(n cos θ)3/2

√
πkz1

β2
1 − β2

2

[cos γ(S2 − S1) + sin γ(C2 − C1)]. (5.104)
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Here

C1 = C(u1), C2 = C(u2), α1 =
v1 − v2

v1 + v2

kz1

β1
, α2 =

v1 − v2

v1 + v2

kz1

β2
,

γ = −kz1n cos θ

β2
1 − β2

2

[(
β1 − 1

n cos θ

)2

+
(

β2 − 1
n cos θ

)2
]

,

u1 =

√
2kz1n cos θ

β2
1 − β2

2

(
β1 − 1

n cos θ

)
, u2 =

√
2kz1n cos θ

β2
1 − β2

2

(
β2 − 1

n cos θ

)
.

C1 = C(u1), C2 = C(u2), S1 = S(u1), S2 = S(u2) are the Fresnel
integrals.

Particular cases
Sharp transition between velocities. When the transition from v1 to v2 is
very sharp (kz1 � 1), one gets

I2
c + I2

s =
4
k2

{ 1
(1/β1 − n cos θ)2

sin2
[
kz0

2

(
1
β1

− n cos θ

)]

+
1

(1/β2 − n cos θ)2
sin2

[
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2

(
1
β2

− n cos θ

)]

+
2

(1/β1 − n cos θ)(1/β2 − n cos θ)
sin

[
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2

(
1
β1

− n cos θ

)]

× sin
[
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2

(
1
β2

− n cos θ

)]
cos

[
kz0

2

(
1
β1

+
1
β2

− 2n cos θ

)]
}. (5.105)

That is, the radiation intensity reduces to the sum of the Tamm intensities
for v1 and v2 and to their interference.

High frequency limit. In the high-frequency limit (kz1 � 1), one gets

I2
c + I2

s =
1
k2

× [
1

(1/β1 − n cos θ)2
+

1
(1/β2 − n cos θ)2

− 2 cos ψ

(1/β1 − n cos θ)(1/β2 − n cos θ)
] (5.106)

for θ > θ1 and θ < θ2 and

I2
c + I2

s = (5.106) +
1
k2

×
[

4πα2

n2 cos2 θ
+

2
√

2πα

n cos θ

(
sin γ1 + cos γ1

1/β1 − n cos θ
+

sin γ2 − cos γ2

1/β2 − n cos θ

)]
(5.107)
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for θ2 < θ < θ1. Here we put

α =

√
2kz1

n(β2
1 − β2

2) cos θ
,

ψ = kz0

(
1
β1

+
1
β2

− 2n cos θ

)
− kz1

(β1 − β2)2

β1β2(β1 + β2)
,

γ1 = kz0

(
1
β1

− n cos θ

)
+ α1 + γ, γ2 = kz0

(
1
β2

− n cos θ

)
− α2 − γ.

Furthermore, θ1 and θ2 are defined by cos θ1 = 1/β1n and cos θ2 = 1/β2n.
Since α � 1, the radiation intensity for θ2 < θ < θ1 is much larger than
for θ < θ2 and θ > θ1. Thus, the radiation intensity has a plateau for
θ2 < θ < θ1, where it changes quite slowly (since the non-oscillating term
proportional to α2 is much larger than the oscillating terms proportional to
α and (5.106)). For θ < θ2 and θ > θ1 the radiation intensity is kz1 times
smaller than for θ2 < θ < θ1. The singularities of the radiation intensity
at θ = θ1 and θ = θ2 are owed to the approximations involved. More
accurately, they are owed to the replacement of the Fresnel integrals by
their asymptotic values. In fact, the integrals Ic and Is defined by (5.104)
are finite at θ = θ1 and θ = θ2.

Comparison with smooth infinite charge motion (5.98)
We observe that the qualitative behaviour of the angular intensity for the
motion treated is very similar to that given by (5.98). For example, in the
high-frequency limit both of them are maximal at the Cherenkov angles
θ1 and θ2 corresponding to the velocities β1 and β2, respectively, have a
plateau between θ1 and θ2 and sharply decrease outside this plateau. The
difference is in their asymptotic behaviour: the radiation intensities are
exponentially small for the absolutely continuous motion (5.98) and are
quite smooth angular functions for the finite charge motion discussed in
this subsection. The other difference is that the radiation intensity (5.99)
corresponding to the motion law (5.98) is infinite at the Cherenkov angles
θ1 and θ2, whilst the radiation intensity (5.104) corresponding to the finite
motion discussed in this subsection is everywhere finite (its infinities in the
high-frequency limit is a result of the approximations involved).

5.3.7. SHORT DISCUSSION OF THE SMOOTHED TAMM PROBLEM

We have considered a number of versions of the smoothed Tamm problem
allowing analytical solutions. They have the common property that for the
charge velocity greater than the velocity of light in medium, an angular
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region exists where the radiation intensity is proportional to the frequency
and the region where the radiation intensity is small for high frequencies.

This investigation is partly inspired by the influential paper [14] in which
the charge motion with a velocity decreasing linearly with time was inves-
tigated numerically. The behaviour of radiation intensities obtained there
strongly resembles the behaviour of analytical intensities (5.58)-(5.62). In
addition the authors of [14] correctly guessed that the Tamm radiation in-
tensity (5.5) is somehow related to the velocity jumps at the start and end
of the motion.

Our understanding of this problem coincides with that given in [24,27,
28,29] for the charge motion in vacuum where it was shown that radiation
intensities for the absolutely continuous motion are exponentially decreas-
ing functions of ω. The modification for a charge moving in medium looks
as follows. The asymptotic behaviour of the radiation intensity depends on
how much the charge motion is discontinuous. For example, for the abso-
lutely continuous charge motions shown in Figs. 5.23, 5.25, and 5.27, the
radiation intensities decrease exponentially with ω for θ above some criti-
cal angle θc, and are proportional to ω for θ < θc. For the motion without
velocity jumps (but with the acceleration jumps) shown in Fig. 5.15(b),
the radiation intensity falls as 1/ω for θ > θc and is proportional to ω for
θ < θc. For the charge motion with velocity and acceleration jumps shown
in Fig. 5.15(a), the radiation intensity does not depend on the frequency for
θ > θc, although it is much smaller than for θ < θc (again, in this angular
region, σr is proportional to ω).

A question arises what kind of the radiation fills the angular region θ <
θc (see Figs. 5.18, 5.20, 5.21, 5.24(a,b), 5.26(a-c)). For this, we again turn to
[23] where the exact radiation fields were obtained for the charge accelerated
and decelerated motions. At the start of motion (t = 0), the spherically
symmetric Bremsstrahlung shock wave (BSW) arises which propagates with
the velocity of light in medium. At the instant t0 when the charge velocity
coincides with the charge velocity in medium, a complex arises consisting
of the finite Cherenkov shock wave SW1 and the shock wave SW2 closing
the Cherenkov cone. The singularities carried by these two shock waves are
the same and are much stronger than the singularity carried by BSW (for
details see again [23]). The SW1 attached to a moving charge intersects
the motion axis at the angle π/2 − θCh, where θCh is the Cherenkov angle
corresponding to the current charge velocity (cos θCh = 1/βn). Obviously
θCh = 0 at t = t0 and θCh = θc at the end of acceleration. Here θc is the
Cherenkov angle corresponding to the maximal charge velocity. The SW2
detached from a charge and intersecting the motion axis behind the charge
at a right angle, differs from zero in the angular sector 0 < θ < θCh. The
angular distribution in the spectral representation (since transition to it
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involves integration over all times) fills the angular region 0 < θ < θc.
We conclude: The radiation intensity in the 0 < θ < θc angular region

consists of the Cherenkov shock wave, the shock wave closing the Cherenkov
cone and the Bremsstrahlung shock wave.

5.3.8. HISTORICAL REMARKS ON THE VC RADIATION AND
BREMSSTRAHLUNG

Cherenkov at first followed the Vavilov explanation of the nature of radia-
tion observed in his experiments. We quote him [30]:

All the facts stated above unambiguously testify that the nature of the γ
luminescence is the electromagnetic deceleration of electrons moving in
a fluid. The facts that γ luminescence is partially polarized, and that its
brightness has a highly pronounced asymmetry, strongly resemble the
similar picture for the bremsstrahlung of fast electrons in the Roent-
gen region. However, in the case of the γ luminescence the complete
theoretical interpretation encounters with a number of difficulties.

(our translation from Russian).
Collins and Reiling [31] shared this viewpoint:
It is to be understood that the electron in its passage through the
medium gradually loses nearly all its energy through ionization and
excitation processes, and the resulting acceleration is responsible for
the VC radiation.

Later, Cherenkov changed his opinion in favour of the Tamm-Frank theory.
What were the reasons for this?

At first we clarify conditions under which the Cherenkov experiments
are performed. According to him ([32], p.24),

...the absorption of electrons in fluids was complete.
This means that we should apply the numerical and analytic results of
Chapter 5 relating to the charge motion with a zero final velocity.

There are three main reasons why Cherenkov abandoned the original
viewpoint. We consider them step by step. In page 33 of [32] he writes

For the radiation produced by electrons in fluids, the angle θ (measured
away from the direction of the electron motion) for which the maximum
of radiation is observed increases with increasing electron velocity. This
dependence of θ is just the opposite of that expected if one suggests that
radiation in fluids is owed to deceleration. For the bremsstrahlung it is
characteristic that the position of the intensity maximum shifts towards
the initial beam with rising electron energy

However, numerical and analytic results obtained and Fig. 5.18 demonstrate
that the maximum of the radiation intensity for the decelerated motion in
medium behaves exactly in the same way as in the Tamm-Frank theory.
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Concerning decreasing of the radiation intensity at large angles. Again,
we quote P.A. Cherenkov ([32], p.34):

To the aforesaid about the azimuthal distribution of the intensity should
be added that the asymmetry of radiation relative to the plane per-
pendicular to the electron beam is more pronounced for the observed
radiation of fluids than for the bremsstrahlung

Turning to the motion law presented in Fig. 5.15(a), it was shown numeri-
cally and analytically (see e.g., Fig. 5.16) that the radiation intensity falls
more rapidly than that described by the Tamm formula (which is almost
symmetrical relative to the Cherenkov angle). For the decelerated motion
with a zero final velocity, the decrease of radiation is determined either by
the exact equation (5.46) (where one should set β2 = 0) or by the analytic
Eqs. (5.61) and (5.62). The latter is infinite at cos θ = 1/βn, whilst (5.46)
gives there σr(cos θ = 1/βn) = e2Ln(1−1/β2

n)/2cλ (L and λ are the motion
interval and wavelength). The Tamm intensity at the same angle is much
larger for L/λ � 1: σT(cos θ = 1/βn) = e2L2n(1 − 1/β2

n)/cλ2 Comparing
(5.5) and (5.61) we see that for θ > θc, σr and σT decrease in the same way,
with the exception that σT oscillates, whilst σr does not (Figs. 5.17 and
5.18). It should be mentioned that no oscillations in the angular intensity
were observed in the original Cherenkov experiments.

The last Cherenkov objection concerns the frequency dependence of the
integral intensity. According to him ([32, p.33)

In both of the cases the same qualitative result is obtained: the energy
of the bremsstrahlung spectrum decreases at large frequencies. For our
purposes it is enough to say that it does not rise with energy. On the
other hand, the experiment shows that for the radiation induced by fast
electrons the energy rises in proportion to the frequency, which, obvi-
ously, disagrees with results following from the bremsstrahlung theory

Turning to Fig. 5.19, we observe that the ratio of the BS integral intensity to
that of Tamm does not depend on the frequency. Since the Tamm integral
intensity rises in proportion to the frequency, the same is valid for the BS
integral intensity.

Let us summarize the discussion: Since the Tamm condition (5.48) is
strongly violated, the radiation observed in the original Cherenkov experi-
ments cannot be attributed uniquely to the uniform motion of the charge.
This fact was intuitively guessed by and Collins and Reiling [31]:

In conclusion it may be stated that the experimental results reported
here are in complete agreement with the classical explanation as de-
veloped by Frank and Tamm. It would be expected, however, that at
very short wavelengths a determination of the intensity would result in
a deviation from the classical theory in much the same way that the
classical theory of Rayleigh-Jeans fails at short wave-lengths.
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Indeed for high frequencies the formulae (5.68), (5.69) and numerical re-
sults (Figs. (5.20) and (5.21)) corresponding to the smooth Tamm problem
disagree drastically with the Tamm radiation intensity.

Thus the Vavilov explanation of these experiments supported initially
by Cherenkov, was at least partly, correct. A sharp distinction of angu-
lar intensities shown in Fig. 5.18 from the Tamm intensity given by (5.5)
supports this claim. Probably the beauty of the Tamm-Frank theory, con-
cretely predicting the position of the radiation maximum, its dependence
on the electron energy and the medium properties, the frequency propor-
tionality of the total radiated energy, the absence of concrete calculations
on the radiation of decelerated electron in medium (Cherenkov used refer-
ences treating BS in vacuum), and the similarity of the predictions of the
Tamm-Frank theory and the BS theory in medium, enabled him to change
his opinion.

The aforesaid is related to the original Cherenkov experiments in which
the Compton electrons knocked out by photons are completely absorbed
in medium. In modern experiments high-energy charged particles move
through a medium almost without energy loss. In this case the Tamm con-
dition (5.48) is valid and one can use either the original Tamm formula (5.5)
or its modifications (5.18) and (5.26) valid for finite observational distances
and small decelerations.

5.4. Short résumé of Chapter 5

We briefly summarize the main results obtained:

1) The analytic formula (5.18) has been found describing the intensity
of the VC radiation at finite distances from a moving charge. It is shown
that under the conditions close to the experimental ones the Cherenkov
angular spectrum broadens enormously. The analytic formula obtained is
in reasonable agreement with the exact formula (5.14) and sharply disagrees
with the Tamm formula (which does not depend on the distance). When
the observational distance tends to infinity, the above formula passes into
the Tamm formula.

2) Also, another closed formula (5.26) has been obtained which takes
into account both the possible deceleration of a charge owed to the en-
ergy losses and the finite distance of the observational point from a moving
charge. For very large observational distances this formula is transformed
into that found in [9]. Previously, the broadening of the Cherenkov angu-
lar spectrum experimentally observed in the heavy ions experiments was
attributed to the deceleration of heavy ions in a dielectric slab [15]. Our
consideration shows that finite distances of the point of observation con-



280 CHAPTER 5

tribute to the above broadening as well. In particular, it should be observed
in high-energy electron experiments (for which the energy losses are negligi-
ble) if the measurements are performed at finite distances from a dielectric
slab.

3) The above formulae are applied to the description of the VC radiation
observed in the recent Darmstadt experiments with heavy ions.

4) The analytic solution (5.46) describing the charge motion in medium
with arbitrary acceleration (deceleration) (Fig. 5.15 (a)) is found. The total
radiation intensity has one maximum at the Cherenkov angle correspond-
ing to β1 (see Fig. 5.16 (a,c,d)) or two maxima at the Cherenkov angles
corresponding to β1 and β2 (Fig. 5.16 (b)). This solution may be applied to
study the radiation produced by electrons moving uniformly in heavy-water
reactors (the electron arising from the β decay of some nucleus, moves with
deceleration, and then is absorbed by another nucleus). Another possible
application is to experiments with heavy ions moving in medium [15] (due
to large atomic numbers, the energy losses for heavy ions are also large).

5) Analytic expressions are found for the electromagnetic field and the
energy flux radiated by a charge moving along the trajectory which consists
of accelerated, decelerated, and uniform motion parts (Fig. 5.15 (b)). It is
shown that when the lengths of accelerated and decelerated parts tend to
zero their contribution to the radiated energy flux also tends to zero despite
the infinite value of acceleration along them. The total radiation intensity
has a maximum at the Cherenkov angle defined by cos θ = 1/βn (Figs. 5.20
and 5.21). The possible applications of this model are the same as those of
the original Tamm problem.

6) Analytic expressions are obtained for the electromagnetic field and
the energy flux radiated by a charge moving along the trajectory shown in
Fig. 5.15(c). The total radiation intensity has two maxima at the Cherenkov
angles defined by cos θ = 1/β1n and cos θ = 1/β2n if both β1 and β2 are
greater than 1/n (Fig. 5.22 (a,b)). Only one maximum corresponding to
cos θ = 1/β1n survives if β2 < 1/n (Fig. 5.22 (c,d)).

It follows from Figs. 5.20 and 5.21 that angular distributions corre-
sponding to finite accelerations are highly non-symmetrical relative to the
Cherenkov angle, whilst distributions described by the Tamm formula are
almost symmetrical. The angular distributions observed by Cherenkov were
also highly non-symmetrical (see, e.g., [32]). They strongly resemble the ra-
diation intensities shown in Fig. 5.18 and corresponding to the zero final
energy.

7) We have evaluated the radiation intensity for the Tamm problem with
absolute continuous time dependence of a charge velocity. It is shown that
the radiation intensity cannot be reduced to the intensity corresponding to
the Tamm problem when the length of acceleration region tends to zero.
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8) The fact that the maximum of the radiation intensity lies at the
Cherenkov angle does not necessarily testify to the charge uniform motion
with a velocity greater than the velocity of light in medium. In fact, we have
shown numerically and analytically that the maximum of the radiation
intensity lies at the Cherenkov angle even if the motion is highly non-
uniform.

9) It is shown for the motion beginning with a velocity v1 and termi-
nating with a velocity v2 that there are two Cherenkov maxima if both β1n
and β2n are greater than 1. Only one Cherenkov maximum survives if one
of these quantities is smaller than 1.

10) The radiation intensity for a charge coming to a complete stop in a
medium does oscillate. Its maximum is at the Cherenkov angle θc defined
by cos θc = 1/βn, where β is the initial velocity. The integral intensity is a
linear function of frequency.
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CHAPTER 6

RADIATION OF ELECTRIC, MAGNETIC AND
TOROIDAL DIPOLES MOVING IN A MEDIUM

6.1. Introduction.

The radiation of Compton electrons moving in water was observed by
Cherenkov in 1934 (see his Doctor of Science dissertation published in [1]).
During 1934-1937 Tamm and Frank associated it with the radiation of elec-
trons moving with a velocity v greater than the velocity of light in medium
cn (see, e.g., the Frank monograph [2]).

The radiation of electric and magnetic dipoles moving uniformly in
medium with v > cn was first considered by Frank in [3,4]. The proce-
dure used by him is as follows. The Maxwell equations are rewritten in
terms of electric and magnetic Hertz vector potentials. The electric and
magnetic field strengths are expressed through them uniquely. In the right
hand sides of these equations there enter electric and magnetic polarizabili-
ties which are expressed through the laboratory frame (LF) electric (π) and
magnetic (µ) moments of a moving particle. These moments are related to
the electric (π′) and magnetic (µ′) moments in the dipole rest frame (RF)
via the relations [5]

�π = �π′ − (1 − γ−1)(�π′�nv)�nv + β(�nv × �µ′),

�µ = �µ′ − (1 − γ−1)(�µ′�nv)�nv − β(�nv × �π′). (6.1)

Here β = v/c, γ = 1/
√

1 − β2, �nv = �v/v, v is the velocity of a dipole
relative to the LF.

Let there be only the electric dipole (µ′ = 0) in the RF. Then

�π = �π′ − (1 − γ−1)(�π′�nv)�nv, �µ = −�β(�nv × �π′). (6.2)

Excluding π′ one finds in the LF

�µ = −β(�nv × �π). (6.3)

Similarly, if only the magnetic moment differs from zero in the RF, then in
the LF

�µ = �µ′ − (1 − γ−1)(�µ′�nv)�nv, �π = β(�nv × �µ). (6.4)
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Using these relations Frank evaluated the electromagnetic field (EMF)
strengths and the energy flux per unit frequency and per unit length of the
cylinder surface coaxial with the motion axis. These quantities depended on
the dipole spatial orientation. For the electric dipole and for the magnetic
dipole parallel to the velocity Frank obtained expressions which satisfied
him. For a magnetic dipole perpendicular to the velocity, the radiated en-
ergy did not disappear for v = cn. Its vanishing is intuitively expected and
is satisfied, e.g., for the electric charge and dipole and for the magnetic
dipole parallel to the velocity. On these grounds Frank declared [6] the for-
mula for the radiation intensity of the magnetic dipole perpendicular to the
velocity as to be incorrect. He also admitted that the correct expression for
the above intensity is obtained if the second of Eqs.(6.4) is changed to

�π = n2β(�nv × �µ), (6.5)

whilst (6.3) remains the same. Here n is the medium refractive index.
Equation (6.5) was supported by Ginzburg [7] who pointed out that the

internal structure of a moving magnetic dipole and the polarization induced
inside it are essential. This idea was further elaborated in [8].

In [9] the radiation of toroidal dipoles (i.e., the elementary (infinitesi-
mally small) toroidal solenoids (TS)) moving uniformly in a medium was
considered. It was shown that the EMF of a TS moving in medium a ex-
tends beyond its boundaries. This seemed to be surprising since the EMF of
a TS either at rest in medium (or vacuum) or moving in vacuum is confined
to its interior.

After many years Frank returned [10,11] to the original transformation
law (6.2)-(6.4). In particular, in [11] a rectangular current frame moving
uniformly in medium was considered. The evaluated electric moment of the
moving current distribution was in agreement with (6.4).

Another transformation law for the magnetic moment, grounding on
the proportionality between the magnetic and mechanical moments was
suggested in [12]. This proportionality taking place, e.g., for an electron,
was confirmed experimentally to a great accuracy in g − 2 experiments.
In them the electron spin precession is described by the Bargmann-Michel-
Telegdi equation. In this theory the spin is a three-vector �s in its rest frame.
In another inertial frame (and, in particular, in the laboratory frame relative
to which a particle with spin moves with the velocity �v), the spin has four
components (�S, S0) defined by

�S = �s +
γ2

γ + 1
(�β · �s)�β, S0 = γ(�β · �s).

A nice exposition of these questions may be found in [13].
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The goal of this consideration is to obtain EMF potentials and strengths
for point-like electric and magnetic dipoles and an elementary toroidal
dipole moving in a medium with an arbitrary velocity v greater or smaller
than the velocity of light cn in medium. In the reference frame attached to
a moving source we have a finite static distribution of charge and current
densities. We postulate that charge and current densities in the laboratory
frame, relative to which the source moves with a constant velocity, can be
obtained from the rest frame densities via the Lorentz transformations, the
same as in vacuum. The further procedure is in decreasing the dimensions
of the LF charge-current sources to zero, in a straightforward solution of the
Maxwell equations for the EMF potentials with the LF point-like charge-
current densities in their r.h.s., and in a subsequent evaluation of the EMF
strengths. In the time and spectral representations, this was done in [14,15].
The reason for using the spectral representation which is extensively used
by experimentalists is to compare our results with those of [1-10] written
in the frequency representation.

The plan of this exposition is as follows. In section 6.3 the electromag-
netic field strengths are evaluated in the time representation for electric,
magnetic and toroidal dipoles moving uniformly in an unbounded non-
dispersive medium. In section 6.4 the same radiation intensities are evalu-
ated in the spectral representation. A lot of misprints in previous publica-
tions is recovered. It is not our aim to recover these misprints, but we need
reliable working formulae which can be applied to concrete physical prob-
lems. In the same section the electromagnetic fields of electric, magnetic
and toroidal dipoles moving uniformly in a finite medium interval are ob-
tained. In section 6.5 the EMF of a precessing magnetic dipole is obtained.
This can be applied to astrophysical problems. A brief discussion of the
results obtained and their summary is given in section 6.6.

6.2. Mathematical preliminaries: equivalent sources of the elec-
tromagnetic field

This section is essentially an extract of [16]. It is needed for the understand-
ing of subsequent exposition.

6.2.1. A PEDAGOGICAL EXAMPLE: CIRCULAR CURRENT.

According to the Ampére hypothesis, the distribution of magnetic dipoles
�M(�r) is equivalent to the current distribution �J(�r) = curl �M(�r). For exam-
ple, a circular current flowing in the z = 0 plane

�J = I�nφδ(ρ − d)δ(z) (6.6)
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Figure 6.1. The circular current �j is equivalent to the magnetization perpendicular to
the current plane.

is equivalent to the magnetization (see Fig. 6.1)

�M = I�nΘ(d − ρ)δ(z) (6.7)

different from zero in the same plane and directed along its normal �n (Θ(x)
is a step function). In what follows, by magnetic and toroidal dipoles we
understand infinitesimal circular loop and toroidal winding with a constant
current flowing in them. When the radius d of the circumference along
which the current flows tends to zero, the current �J becomes ill-defined (it
is not clear what the vector �nφ means at the origin). On the other hand,
the vector �M is still well-defined. In this limit the elementary current (6.6)
turns out to be equivalent to the magnetic dipole oriented normally to the
plane of this current:

�M = Iπd2�nδ3(�r), (δ3(�r) = δ(ρ)δ(z)/2πρ) (6.8)

and
�J = Iπd2curl(�nδ3(�r)) (6.9)

Equations (6.8) and (6.9) define the magnetization and current density
corresponding to the elementary magnetic dipole.
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Figure 6.2. The poloidal current flowing on the torus surface.

6.2.2. THE ELEMENTARY TOROIDAL SOLENOID.

The case next in complexity is the poloidal current flowing in the winding
of TS (Fig. 6.2):

�j = − gc

4π
�nψ

δ(R − R̃)
d + R̃ cos ψ

. (6.10)

The coordinates R̃, ψ and φ are related to the Cartesian ones as follows:

x = (d + R̃ cos ψ) cos φ, y = (d + R̃ cos ψ) sinφ, z = R̃ sin ψ. (6.11)

The condition R̃ = R defines the surface of a particular torus (Fig. 6.3). For
R̃ fixed and ψ, φ varying, the points x, y, z given by (6.11) fill the surface of
the torus (ρ−d)2 + z2 = R2. The choice �j in the form (6.10) is convenient,
because in the static case a magnetic field H is equal to g/ρ inside the torus
and vanishes outside it. In this case g may be also expressed either through
the magnetic flux Φ penetrating the torus or through the total number N
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Figure 6.3. The coordinates R̃, ψ parametrizing the torus.

of turns in the toroidal winding and the current I in a particular turn

g =
Φ

2π(d −√
d2 − R2

=
2NI

c
.

We write out the differential operators div and curl in R̃, ψ, and φ
coordinates:

div �A =
1

R̃(d + R̃ cos ψ)

×
[

∂

∂R̃
R̃(d + R̃ cos ψ)A

R̃
+

∂

∂ψ
(d + R̃ cos ψ)Aψ +

∂

∂φ
R̃Aφ

]
,

(curl �A)
R̃

=
1

R̃(d + R̃ cos ψ)

[
∂

∂φ
(R̃Aψ) − ∂

∂ψ
(d + R̃ cos ψ)Aφ

]
,

(curl �A)φ =
1
R̃

[
∂R̃

∂ψ
− ∂

∂R̃
(R̃Aψ)

]
,

(curl �A)ψ =
1

d + R̃ cos ψ

[
∂

∂R̃
(d + R̃ cos ψ)Aφ − ∂A

R̃

∂φ

]
. (6.12)
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As div�j = 0, the current �j can be presented as the curl of a certain vector
�M :

�j = curl �M. (6.13)

Or, in a manifest form:

− gc

4π

δ(R − R̃)
d + R̃ cos ψ

=
1

d + R̃ cos ψ

[
∂

∂R̃
(d + R̃ cos ψ)Mφ − ∂M

R̃

∂φ

]
.

Due to the axial symmetry of the problem, the term involving φ differenti-
ation drops out, and one obtains

− gc

4π

δ(R − R̃)
d + R̃ cos ψ

=
1

d + R̃ cos ψ

∂

∂R̃
(d + R̃ cos ψ)Mφ.

Contracting by the factor d + R̃ cos ψ one has

− gc

4π
δ(R − R̃) =

∂

∂R̃
(d + R̃ cos ψ)Mφ.

It follows from this that

Mφ =
gc

4π

Θ(R − R̃)
d + R̃ cos ψ

, (6.14)

i.e., Mφ is confined to the interior of the torus (Fig. 6.4).
We rewrite Mφ in cylindrical coordinates:

Mφ =
gc

4πρ
Θ[R −

√
(ρ − d)2 + z2]. (6.15)

Since div �M = 0 the magnetization vector �M can, in its turn, be presented
as a curl of a certain vector �T . It turns out that only the z component of
�T differs from zero:

Tz = − gc

4π
[Θ(d −

√
R2 − z2 − ρ) ln

d −√
R2 − z2

d +
√

R2 − z2

+Θ(d +
√

R2 − z2 − ρ)Θ(ρ − d +
√

R2 − z2) ln
ρ

d +
√

R2 − z2
]. (6.16)

Thus Tz differs from zero in two spatial regions:
a) Inside the torus hole defined as 0 ≤ ρ ≤ d−√

R2 − z2, where Tz does
not depend on ρ:

Tz = − gc

4π
ln

d −√
R2 − z2

d +
√

R2 − z2
. (6.17)
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Figure 6.4. The poloidal current �j flowing on the torus surface is equivalent to the

magnetization �M confined to the interior of the torus and to the toroidization �T directed
along the torus symmetry axis.

b) Inside the torus itself
(
d −√

R2 − z2 ≤ ρ ≤ d +
√

R2 − z2
)

where

Tz = − gc

4π
ln

ρ

d +
√

R2 − z2
. (6.18)

In other spatial regions Tz = 0.
Now let the minor radius R of a torus tend to zero (this corresponds to

an infinitely thin torus). The second term in (6.16) then drops out, whilst
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the first reduces to

Tz → gc

2πd
Θ(d − ρ)

√
R2 − z2. (6.19)

For infinitesimal R √
R2 − z2 → 1

2
πR2δ(z).

Therefore in this limit

�j = curlcurl�T , �T = �nz
gcR2

4d
δ(z)Θ(d − ρ), (6.20)

i.e., the vector �T is confined to the equatorial plane of a torus and is per-
pendicular to it.

Let now d → 0 (in addition to R → 0). In this limit

1
d
Θ(d − ρ) → d

2ρ
δ(ρ)

and the current of an elementary (i.e., infinitely small) TS is

�j = curlcurl�T , �T =
1
4
πcgdR2δ3(�r)�nz. (6.21)

The elementary current flowing in the winding of the elementary TS is then
given by

�j = fcurl(2)(�nδ3(�r)) (6.22)

where curl(2) = curlcurl, �n means the unit vector normal to the equatorial
plane of TS and f = πcgdR2/4.

Physically, Eqs. (6.10), (6.13) and (6.20)-(6.22) mean that the poloidal
current �j given by Eq.(6.10) is equivalent (i.e., produces the same magnetic
field) to the toroidal tube with the magnetization �M defined by (6.14) and
to the toroidization �T given by (6.16). This illustrates Fig. 6.4.

Another remarkable property of these configurations is that they in-
teract in the same way with the time-dependent magnetic or electric field
([16]). For example, the usual current loop interacts with an external mag-
netic field in the same way as the magnetic dipole orthogonal to it. The
poloidal current shown in the upper part of Fig. 6.4, the magnetized ring
corresponding to the magnetization M in its middle part and the toroidal
distribution T in its lower part, all of them interact in the same way with
the external electromagnetic field. Obviously, the equivalence between cur-
rent distributions and magnetizations (toroidizations) is a straightforward
generalization of the original Ampére hypothesis.
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In what follows we need the Lorentz transformation formulae for the
charge and current densities and for electromagnetic strengths. They may
be found in any textbook on electrodynamics (see, e.g., [13,17]). Let ρ′ and
�j′ be charge and current densities in the rest frame S′ which moves with a
constant velocity �v relative to the laboratory frame (LF) S. Then

ρ = γ(ρ′ + �β�j′/c), �j = �j′ +
γ − 1
β2

�β(�β�j′) + γ�vρ′. (6.23)

Here γ = (1 − β2)−1/2, �β = �v/c. If there is no charge density in S′ then

ρ = γ�β�j′/c, �j|| = γ�j′||, j⊥ = j′⊥, (6.24)

where �j|| and j⊥ are the components of �j parallel and perpendicular to �v.
If there is no current density in S′ then

ρ = γρ′, �j = γ�vρ′. (6.25)

Let �E, �D, �H, �B and �E′, �D′, �H ′, �B′ be electromagnetic strengths and induc-
tions in the LF and in S′, resp. Then,

�E = γ( �E′ − �β × �B′) − γ2

γ + 1
�β(�β �E′),

�B = γ( �B′ + �β × �E′) − γ2

γ + 1
�β(�β �B′),

�D = γ( �D′ − �β × �H ′) − γ2

γ + 1
�β(�β �D′),

�H = γ( �H ′ + �β × �D′) − γ2

γ + 1
�β(�β �H ′). (6.26)

We also need constitutive relations [18] in the reference frame which moves
with the velocity �v relative to the laboratory frame (in the latter the sur-
rounding matter is at rest)

�D′ =
1

1 − β2
n

{ε[ �E′(1 − β2) + �β(�β �E′)(1 − n2)] + �β × �H ′(1 − n2)},

�B′ =
1

1 − β2
n

{µ[ �H ′(1 − β2) + �β(�β �H ′)(1 − n2)] − �β × �E′(1 − n2)}, (6.27)

where βn = v/cn, cn = c/n is the velocity of light in medium, n =
√

εµ is
its refractive index, ε and µ are electric permittivity and magnetic perme-
ability, respectively.
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For the sake of completeness, we write out Maxwell equations and wave
equations for the electromagnetic potentials corresponding to charge ρ(�r, t)
and current �j(�r, t) densities imbedded into a non-dispersive medium with
constant ε and µ:

div �D = 4πρ, �D = ε �E, div �B = 0, �B = µ �H,

curl �E = −1
c

∂ �B

∂t
, curl �H =

1
c

∂ �D

∂t
+

4π

c
�j,

�B = curl �A, �E = −gradΦ − 1
c

∂�A
∂t

, div�A +
εµ

c
∂Φ
∂t

= 0,(
∆ − 1

c2
n

∂2

∂t2

)
Φ = −4π

ε
ρCh,

(
∆ − 1

c2
n

∂2

∂t2

)
�A = −4πµ

c
�j.

In what follows, by the term ‘magnetic dipole’ we mean the magnetic
moment carried by an infinitesimal circular loop. The alternative to it is
the magnetic moment composed of two magnetic poles. These two different
realizations of magnetic dipoles interact with magnetic media in a different
way (see, e.g., [8]) .

We also use the fields of electric �p and magnetic �m dipoles which rest
at the origin

�E = − �p

r3
+ 3�r

�r�p

r5
, �B = − �m

r3
+ 3�r

�r�m

r5
. (6.28)

6.3. Electromagnetic field of electric, magnetic, and
toroidal dipoles in time representation.

6.3.1. ELECTROMAGNETIC FIELD OF A MOVING POINT-LIKE
CURRENT LOOP

The velocity is along the loop axis
Consider a conducting loop L moving uniformly in a non-dispersive medium
with the velocity v directed along the loop axis (Fig. 6.5 a).

Let in this loop a constant current I flows. In the reference frame at-
tached to the moving loop, the current density is equal to

�j = I�nφδ(ρ′ − d)δ(z′), ρ′ =
√

x′2 + y′2. (6.29)

In accordance with (6.24) one obtains in the LF

j = I�nφδ(ρ − d)δ(γ(z − vt)) =
I

γ
�nφδ(ρ − d)δ(z − vt). (6.30)

Here �nφ = �ny cos φ − �nx sin φ, γ = 1/
√

1 − β2. Since the current direction
is perpendicular to the velocity, no charge density arises in the LF.
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Figure 6.5. a) There is no induced charge density when the symmetry axis of the current
loop is along the velocity; b) The induced charge density arises when the symmetry axis
of the current loop is perpendicular to the velocity.

The solution of Eq. (6.28) for electromagnetic potentials is given by

Φ =
1
ε

∫ 1
R

ρCh(�r ′, t′)δ(t′ − t + R/cn)dV ′dt′,

�A =
µ

c

∫ 1
R

�j(�r ′, t′)δ(t′ − t + R/cn)dV ′dt′, R = |�r − �r ′|.

Like for a charge at rest the current �j may be expressed through the mag-
netization

�j = curl �M. (6.31)

The magnetization �M is perpendicular to the plane of a current loop:

Mz =
I0

γ
Θ(d − ρ)δ(z − vt). (6.32)
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Substituting this into the vector potential and integrating by parts one
finds

�A =
µ

c
curl

∫ 1
R

δ(t′ − t + R/cn) �MdV ′dt. (6.33)

The electric scalar potential is zero.
Now let the loop radius d tend to zero. Then,

Θ(d − ρ) → πd2δ(x)δ(y) and Mz → I0πd2

γ
δ(x)δ(y)δ(z − vt).

Substituting this into (6.33) and integrating over the spatial variables one
obtains

Aφ = −µI0πd2

cγ

∂α

∂ρ
, (6.34)

where

α =
∫ 1

R
δ(t′ − t + R/cn)dt′, R =

√
ρ2 + (z − vt′)2. (6.35)

This integral can be taken in a closed form (see, e.g., [19]):

α =
1

rm
for v < cn

and
α =

2
rm

Θ(vt − z − ρ/γn) for v > cn. (6.36)

Here rm = [(z − vt)2 + ρ2(1 − β2
n)]1/2, γn = |1 − β2

n|−1/2, βn = v/cn. The
equality vt−z−ρ/γn = 0 defines the surface of the Cherenkov cone attached
to the moving magnetic dipole. Therefore for βn < 1, α differs from zero
everywhere, whilst for βn > 1 it differs from zero only inside the Cherenkov
cone where vt− z−ρ/γn > 0. Performing differentiation in (6.34) one finds

Aφ =
µm(1 − β2

n)ρ
γr3

m

for β < βn and

Aφ =
2µm(1 − β2

n)ρ
γr3

m

Θ(vt − z − ρ/γn) +
2µm

γγnrm
δ(vt − z − ρ/γn) (6.37)

for βn > 1. Here m = I0πd2/c.
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Therefore for βn < 1, Aφ differs from zero everywhere except for the
motion axis. It is infinite at the position of a moving charge and decreases
as r−2 at large distances.

For βn > 1, Aφ vanishes outside the Cherenkov cone, being infinite on
its surface and falling as r−2 inside it.

Electromagnetic field strengths are obtained by differentiating Aφ:

Ex =
µβm

γ

∂2α

∂z∂y
, Ey = −µβm

γ

∂2α

∂z∂x
, Ez = 0,

Bx =
µm

γ

∂2α

∂z∂x
, By =

µm

γ

∂2α

∂z∂y
,

Bz = −µm

γ

[
∆ − (1 − β2

n)
∂2α

∂z2

]
, ∆ =

∂2

∂x2
+

∂2

∂y2
+ (1− β2

n)
∂2

∂z2
. (6.38)

The action of ∆ and ∂2/∂z2 on α gives for βn < 1:

∆α = −4πδ(x)δ(y)δ(z − vt),

(1 − β2
n)

∂2α

∂z2
= −1 − β2

n

r3
m

[
1 − 3

(z − vt)2

r2
m

]
− 4π

3
δ3(�r).

Here δ3(�r) = δ(x)δ(y)δ(z − vt). These relations result from the identity
(see, e.g., [20])

∂2

∂xi∂xj

1
r

= − 1
r3

(
δij − 3

xixj

r2

)
− 4π

3
δijδ

3(�r). (6.39)

Higher derivatives of 1/r are obtained by differentiating (6.39).
For βn < 1 the EMF strengths of a moving point-like current loop are

given by

Ex = 3mµβ
γ3

n

γ

y(z − vt)
r5

, Ey = −3mβµ
γ3

n

γ

y(z − vt)
r5

,

Bx = 3mµ
γ3

n

γ

x(z − vt)
r5

, By = 3mµ
γ3

n

γ

y(z − vt)
r5

,

Bz =
mµ

γ

{
8π

3
δ3(�r) − γn

r3

[
1 − 3γ2

n

(z − vt)2

r2

]}
, (6.40)

where

m = I0πd2/c, r2 = x2 + y2 + (z − vt)2γ2
n, δ3(�r) = δ(x)δ(y)δ(z − vt).
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In what follows, in order not to overload the exposition we drop the δ-
function terms corresponding to the current position of a moving dipole.
They are easily restored from Eq.(6.39).

It is seen that �B in (6.40) strongly resembles the field of magnetic dipole.
On the other hand, the electric field �E having only two Cartesian compo-
nents, cannot be reduced to the field of an electric dipole.

We conclude: for βn < 1 the EMF strengths differ from zero everywhere,
falling like r−3 at large distances. For βn > 1 they are equal to zero outside
the Cherenkov cone (vt − z − ρ/γn < 0), infinite on its surface, and fall
as r−3 inside the Cherenkov cone (vt − z − ρ/γn > 0). As a result, only
the moving EMF singularity coinciding with the Cherenkov cone will be
observed in the wave zone.

In the rest frame of the magnetic dipole the EMF is given by

�E′ = 0, B′
x = 3

mµγ3
n

γ3

x′z′

r′5
, B′

y = 3
mµγ3

n

γ3

y′z′

r′5
,

B′
z = −mµ

γn

γr′3

(
1 − 3

γ2
n

γ2

z′2

r′2

)
,

H ′
x = 3m

γn

γ

x′z′

r′5
, H ′

y = 3m
γn

γ

y′z′

r′5
, H ′

z = −m
γn

γr′3

(
1 − 3

γ2
n

γ2

z′2

r′2

)
,

D′
x = 3m(n2 − 1)

γ3
nβ

γ

y′z′

r′5
, D′

y = −3m(n2 − 1)
γ3

nβ

γ

x′z′

r′5
, (6.41)

where r′2 = (x′2 + y′2) + γ2
nz′2/γ2 and x′ = x, y′ = y, z′ = γ(z − vt).

Since in this reference frame the medium has the velocity −�v, the familiar
constitutive relations �B′ = µ �H ′, �D′ = ε �E′ are not longer valid. Instead,
Eqs. (6.27) should be used.

In vacuum, Eqs. (6.40) and (6.41) reduce to

Ex = 3mγ2 y(z − vt)
r5
0

, Ey = −3mγ2 x(z − vt)
r5
0

,

Hx = 3mγ2 x(z − vt)
r5
0

, Hy = 3mγ2 y(z − vt)
r5
0

,

Hz = −m

r3
0

[
1 − 3

γ2(z − vt)2

r2
0

]
, (6.42)

�E′ = 0, H ′
x = 3m

x′z′

r′5
,

H ′
y = 3m

y′z′

r′5
, H ′

z = − m

r′3

(
1 − 3

z′2

r′2

)
, (6.43)

where r2
0 = γ2(z − vt)2 + x2 + y2 and r′2 = x′2 + y′2 + x′2. Equations (6.42)

and (6.43) are connected by the Lorentz transformation.
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The velocity is in the plane of loop
Let a circular loop move in the direction perpendicular to the symmetry
axis (say, along the x axis, see Fig.5 (b)). Then in the LF one has

jx = −I0δ(z)
yγ

d
δ(ρ1 − d), jy = I0δ(z)

(x − vt)γ
d

δ(ρ1 − d),

ρCh = −I0δ(z)
yvγ

c2d
δ(ρ1 − d).

Here ρ1 = [(x − vt)2γ2 + y2]1/2. The charge density arises because on a
part of the loop, the current has a non-zero projection on the direction of
motion. It is easy to check that

jx = I0γδ(z)
∂

∂y
Mz, jy = −I0

1
γ

δ(z)
∂

∂x
Mz,

ρCh = I0
vγ

c2
δ(z)

∂

∂y
Mz, (6.44)

where Mz = Θ(d − ρ1). In the limit of an infinitesimal loop,

Mz = Θ(d − ρ1) → δ(x − vt)δ(y)πd2/γ. (6.45)

For the electromagnetic potentials one easily finds

Φ =
mβ

ε

∂α1

∂y
, Ax = mµ

∂α1

∂y
, Ay = −mµ

γ2

∂α1

∂x
.

Here

α1 =
∫

dt′
1

R1
δ(t′ − t + R1/cn), R1 = [(x − vt′)2 + y2 + z2]1/2.

Again, this integral can be taken in a closed form:

α1 =
1

r
(1)
m

for βn < 1

and
α1 =

2

r
(1)
m

Θ
(

vt − x − 1
γn

√
y2 + z2

)
(6.46)

for βn > 1. Here r
(1)
m = [(x − vt)2 + (y2 + z2)(1 − β2

n)]1/2. Therefore

Φ = −mβ

ε

y

(r(1)
m )3

(1 − β2
n), Ax = −mµ

y

(r(1)
m )3

(1 − β2
n),
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Ay =
mµ

γ2

x − vt

(r(1)
m )3

for βn < 1 and

Φ = −2
mβ

ε

y

(r(1)
m )3

(1 − β2
n)Θ(vt − x − ρ′/γn)

−2mβ

εγn

y

r
(1)
m ρ′

δ(vt − x − ρ′/γn),

Ax = −2mµ
y

(r(1)
m )3

(1 − β2
n)Θ(vt − x − ρ′/γn)

−2mµ

γn

y

r
(1)
m ρ′

δ(vt − x − ρ′/γn),

Ay =
2mµ

γ2

x − vt

(r(1)
m )3

Θ(vt − x − ρ′/γn) +
2mµ

γ2

1

r
(1)
m

δ(vt − x − ρ′/γn). (6.47)

for βn > 1. Here ρ′ =
√

y2 + z2. Electromagnetic field strengths are given
by

Ex = −mβ

ε
(1 − n2)

∂2α1

∂x∂y
, Ey = −mβ

ε

(
∂2α1

∂y2
+

n2

γ2

∂2α1

∂x2

)
,

Ez = −mβ

ε

∂2α1

∂z∂y
, Bx =

mµ

γ2

∂2α1

∂z∂x
, By = mµ

∂2α1

∂z∂y
,

Bz = −mµ

(
1
γ2

∂2α1

∂x2
+

∂2α1

∂y2

)
. (6.48)

For βn < 1 the EMF falls as r−3 at large distances. For βn > 1 the EMF
strengths vanish outside the Cherenkov cone (vt − x − ρ′/γn < 0), they
decrease like r−3 at large distances inside the Cherenkov cone (vt − x −
ρ′/γn > 0), and they are infinite on the Cherenkov cone. Thus in the wave
zone the electromagnetic field is confined to the Cherenkov cone (vt − x −
ρ′/γn = 0) where it is infinite.

We write out EMF in the manifest form for βn < 1:

Ex = −3m
β

ε
(1 − n2)γ3

n

(x − vt)y
r′5

, Ez = −3m
β

ε
γn

yz

r′5
,

Ey =
mβγn

εr′3

{(
1 − 3

y2

r′2

)
+ n2 γ2

n

γ2

[
1 − 3γ2

n

(x − vt)2

r′2

]}
,

Bx = 3mµ
γ3

n

γ2

(x − vt)z
r′5

, By = 3mµγn
yz

r′5
,
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Bz =
mµγn

r′3

{(
1 − 3

y2

r′2

)
+

γ2
n

γ2

[
1 − 3γ2

n

(x − vt)2

r′2

]}
, (6.49)

where r′2 = y2 + z2 + (x − vt)2γ2
n.

For the motion in the vacuum this reduces to

Ex = 0, Ez = −3
mβγ

c

yz

r5
1

, Ey = −mβγ

cr3
1

(1 − 3z2/r2
1),

Hx = 3mγ
z(x − vt)

r5
1

, Hy = 3mγ
yz

r5
1

, Hz = −mγ
1
r3
1

(1−3z2/r2
1). (6.50)

Here r2
1 = y2 + z2 + (x − vt)2γ2. Again, Eqs. (6.50) can be obtained by

applying a suitable Lorentz transformation to the EMF strengths in the
dipole rest frame.

6.3.2. ELECTROMAGNETIC FIELD OF A MOVING POINT-LIKE
TOROIDAL SOLENOID

Consider the poloidal current (Fig. 6.2) flowing on the surface of a torus

(ρ − d)2 + z2 = R2
0

(R0 and d are the minor and large radii of torus). It is convenient to in-
troduce coordinates ρ = d + R cos ψ, z = R sin ψ (Fig. 6.3). In these
coordinates the poloidal current flowing on the torus surface is given by

�j = j0
δ(R0 − R)

d + R0 cos ψ
�nψ.

Here �nψ = �nz cos ψ − �nρ sin ψ is the vector lying on the torus surface and
defining the current direction, R =

√
(ρ − d)2 + z2. The cylindrical compo-

nents of �j are

jz = j0
δ(R0 − R)

d + R0 cos ψ
cos ψ, jρ = − δ(R0 − R)

d + R0 cos ψ
sin ψ.

The velocity is along the torus axis
Let this current distribution move uniformly along the z axis (directed
along the torus symmetry axis) with the velocity v (Fig. 6.6(a)). In the
LF the non-vanishing charge and current components are

ρCh = j0γβ
ρ − d

cρR0
δ(R0 − R2), jρ = −j0γ

z − vt

ρR0
δ(R0 − R2),

jz = j0γ
ρ − d

ρR0
δ(R0 − R2). (6.51)
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Figure 6.6. The induced charge densities for the cases in which the symmetry axes of
a moving toroidal solenoid are along the velocity (a) or perpendicular to it (b).

Here R2 =
√

(ρ − d)2 + (z − vt)2γ2. These components may be represented
in the form

jz =
1
ρ

∂

∂ρ
(ρMφ), jρ = − 1

γ2

∂Mφ

∂z
, ρCh =

β

cρ

∂

∂ρ
(ρMφ). (6.52)

Here

Mφ = −j0γ
1
ρ
Θ(R0 − R2).

The Cartesian components of �M are

Mx = j0γ
y

ρ2
Θ(R0 − R2), My = −j0γ

x

ρ2
Θ(R0 − R2). (6.53)

Let the minor radius R0 tend to zero. Then

Θ
[
R0 −

√
(ρ − d)2 + (z − vt)2γ2

]
→ πR2

0

γ
δ(ρ − d)δ(z − vt)



302 CHAPTER 6

and
Mx = −j0

d
πR2

0

∂

∂y
Θ(d − ρ)δ(z − vt),

My =
j0

d
πR2

0

∂

∂x
Θ(d − ρ)δ(z − vt). (6.54)

Therefore

jx = − 1
γ2

∂My

∂z
= −j0πR2

0

γ2d

∂2

∂z∂x
Θ(d − ρ)δ(z − vt),

jy =
1
γ2

∂Mx

∂z
= −j0πR2

0

γ2d

∂2

∂z∂y
Θ(d − ρ)δ(z − vt),

jz =
∂My

∂x
− ∂Mx

∂y
=

j0πR2
0

d

(
∂2

∂x2
+

∂2

∂y2

)
Θ(d − ρ)δ(z − vt),

ρCh =
β

c

(
∂My

∂x
− ∂Mx

∂y

)

=
βj0πR2

0

cd

(
∂2

∂x2
+

∂2

∂y2

)
Θ(d − ρ)δ(z − vt). (6.55)

Let the major torus radius also tend to zero. Then

Θ(d − ρ) = πd2δ(x)δ(y)

and

jx = −j0π
2R2

0d

γ2

∂2

∂z∂x
δ(x)δ(y)δ(z − vt),

jy = −j0πR2
0d

γ2d

∂2

∂z∂y
δ(x)δ(y)δ(z − vt),

jz = j0π
2R2

0d

(
∂2

∂x2
+

∂2

∂y2

)
δ(x)δ(y)δ(z − vt),

ρCh =
βj0π

2R2
0d

c

(
∂2

∂x2
+

∂2

∂y2

)
δ(x)δ(y)δ(z − vt). (6.56)

From this one easily obtains the electromagnetic potentials

Φ =
βmt

ε

[
∆ − (1 − β2

n)
∂2

∂z2

]
α, Ax = −mtµ

γ2

∂2

∂z∂x
α,

Ay = −mtµ

γ2

∂2

∂z∂y
α, Az = mtµ

[
∆ − (1 − β2

n)
∂2

∂z2

]
α, (6.57)
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where α is the same as in Eqs. (6.35) and (6.36) and mt = π2j0dR2
0/c.

Being written in a manifest form, the electromagnetic potentials are

Φ =
βmt

ε
(1 − β2

n)
1

r3
m

[
1 − 3

(z − vt)2

r2
m

]
, Ax = −3

mtµ

γ2
(1 − β2

n)
x(z − vt)

r5
m

,

Ay = −3
mtµ

cγ2
(1 − β2

n)
y(z − vt)

r5
m

, Az = µmt(1 − β2
n)

1
r3
m

[
1 − 3

(z − vt)2

r2
m

]
for βn < 1 and

Φ =
2βmt

ε
{1 − β2

n

r3
m

[
1 − 3(1 − β2

n)
(z − vt)2

r2
m

]
Θ(vt − z − ρ/γn)

+2(1 − β2
n)

ρ

γnr3
m

δ(vt − z − ρ/γn)

+
1

rm

[
1
γ2

n

δ̇(vt − z − ρ/γn) − 1
γnρ

δ(vt − z − ρ/γn)
]
},

Az = 2µmt{1 − β2
n

r3
m

[
1 − 3(1 − β2

n)
(z − vt)2

r2
m

]
Θ(vt − z − ρ/γn)

+2(1 − β2
n)

ρ

γnr3
m

δ(vt − z − ρ/γn)

+
1

rm

[
1
γ2

n

δ̇(vt − z − ρ/γn) − 1
γnρ

δ(vt − z − ρ/γn)
]
},

Aρ = −2mtµρ

γ2
[3(1 − β2

n)
z − vt

r5
m

Θ(vt − z − ρ/γn)

+
1

r3
m

(
z − vt

ρ
+ 1 − β2

n

)
δ(vt− z−ρ/γn)+

1
rmργn

δ̇(vt− z−ρ/γn)]. (6.58)

for βn > 1 (the dot above delta function means a derivative over its argu-
ment). In the past, the scalar electric potential Φ for βn < 1 was found in
[9]. The electromagnetic field strengths are equal to

Ex = −βmt

ε

[
∆ + (n2 − 1)

∂2

∂z2

]
∂α

∂x
,

Ey = −βmt

ε

[
∆ + (n2 − 1)

∂2

∂z2

]
∂α

∂y
,

Ez =
βmt

ε
(n2 − 1)

[
∆ + (β2

n − 1)
∂2

∂z2

]
∂α

∂z
,

Bx = mtµ

[
∆ + β2(n2 − 1)

∂2

∂z2

]
∂α

∂y
,
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By = −mtµ

[
∆ + β2(n2 − 1)

∂2

∂z2

]
∂α

∂x
,

Bz = 0, ∆ =
∂2

∂x2
+

∂2

∂y2
+ (1 − β2

n)
∂2

∂z2
. (6.59)

For βn < 1 the EMF falls as r−4 at large distances. For βn > 1 the EMF
field strengths are equal to zero outside the Cherenkov cone; inside this
cone, they fall like r−4 for r → ∞ and they are infinite on the Cherenkov
cone.

We write out the EMF in a manifest form for βn < 1:

Ex = −βmt

ε

3x

r5
(n2 − 1)γ3

nF, Ey = −βmt

ε

3y

r5
(n2 − 1)γ3

nF,

Ez = −βmt

ε
(n2 − 1)

3(z − vt)
r5

γ3
nF, Bx = mtµ

3y

r5
γ3

nβ2(n2 − 1)F,

By = −mtµ
3x

r5
β2γ3

n(n2 − 1)F, Bz = 0, F = 1 − 5
γ2

n(z − vt)2

r2
. (6.60)

It is seen that the electric field of an elementary toroidal solenoid moving
in the non-dispersive medium strongly resembles the field of an electric
quadrupole. As the magnetic field in (6.60) has only the φ component, it
cannot be reduced to the field of a magnetic quadrupole. Provisionally. it
may be called the field of the moving toroidal moment.

The electromagnetic strengths and inductions in the reference frame in
which the toroidal dipole is at rest and the medium moves with the velocity
−�v, are equal to

B′
x =

mtγ

ε
β2γ3

n(n2 − 1)2
3y′

r′5
F ′, F ′ = 1 − 5

γ2
nz′2

γ2r′2
,

B′
y = −mtγ

ε
β2γ3

n(n2 − 1)2
3x′

r′5
F ′, B′

z = 0, �H ′ = 0,

E′
x =

mtγβ

ε
(1 − n2)γn

3x′

r′5
F ′, E′

y =
mtγβ

ε
(1 − n2)γn

3y′

r′5
F ′,

E′
z =

mtβ

ε
(1 − n2)γ3

n

3z′

γr′5
F ′, D′

x = −βmtγ(n2 − 1)γ3
n

3x′

r′5
F ′,

D′
y = −βmtγ(n2 − 1)γ3

n

3y′

r′5
F ′, D′

z = −βmt(n2 − 1)
γ3

n

γ

3z′

r′5
F ′. (6.61)

Here r′2 = (x′2 + y′2) + z′2γ2
n/γ2. It is seen that �H ′ differs from zero only

at the toroidal dipole position (the term with δ function is omitted), whilst
�B′, �D′, and �E′ differ from zero everywhere. In this reference frame there
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are no relations �B′ = µ �H ′, �D′ = ε �E′ which are valid only in the reference
frame where the medium is at rest. Instead Eqs. (6.27) should be used.

From the inspection of Eqs. (6.59)-(6.61) we conclude:
i) For a TS being at rest either in the vacuum or in the medium the

EMF differs from zero only inside the TS.
ii) For a TS moving in vacuum with a constant velocity the EMF differs

from zero only inside the TS. Without any calculations this can be proved
by applying the Lorentz transformation to the EMF strengths of a TS at
rest. Since this transformation is linear and since the EMF strengths vanish
for a TS at rest, they vanish for a moving TS as well.

iii) The EMF of a TS moving in the medium differs from zero both
inside and outside the TS. At first glance this seems to be incorrect. In
fact, let TS initially be at rest in the medium. Let us pass to the Lorentz
reference frame 1 in which the TS velocity is v. In this frame the EMF
strengths vanish outside the TS. Both the TS and medium move with the
velocity V relative this frame. However, Eqs. (6.59),(6.60) are valid in the
frame 2 relative to which the medium is at rest whilst a TS moves with
the velocity v. Therefore, these reference frames are not equivalent. There
is no Lorentz transformation relating them. In the spectral representation,
these important facts were established previously in [9].

The velocity is perpendicular to the torus axis
Let a toroidal solenoid move in medium with the velocity perpendicular
to the torus symmetry axis (Fig. 6(b)). For definiteness, let the TS move
along the x axis. Then in the LF

ρCh = −j0vγ2

c2R0

z(x − vt)
ρ2

1

δ(R1 − R0), jx = −j0
γ2

R0

z(x − vt)
ρ2

1

δ(R1 − R0),

jy = −j0
zy

ρ2
1

δ(R1 − R0)
R0

, jz = j0
ρ1 − d

ρ1

δ(R1 − R0)
R0

.

Here
ρ1 =

√
(x − vt)2γ2 + y2, R1 =

√
(ρ1 − d)2 + z2.

It is easy to check that

jx = −∂My

∂z
, jy =

∂Mx

∂z
, jz =

1
γ2

∂My

∂x
− ∂Mx

∂y
,

ρCh = −β

c

∂My

∂z
, (6.62)

where

My = −j0γ
2 x − vt

ρ2
1

Θ(R0 − R1), Mx = j0
y

ρ2
1

Θ(R0 − R1), Mz = 0.



306 CHAPTER 6

Let the minor radius R0 of a torus tend to zero. Then

Θ(R0 − R1) = πR2
0δ(ρ1 − d)δ(z)

and

Mx = −j0
πR2

0

d

∂

∂y
Θ(d − ρ1)δ(z), My = j0

πR2
0

d

∂

∂x
Θ(d − ρ1)δ(z).

Therefore

ρCh = −βj0πR2
0

cd

∂2

∂x∂z
Θ(d − ρ1)δ(z), jx = −j0πR2

0

d

∂2

∂x∂z
Θ(d − ρ1)δ(z),

jy = −j0πR2
0

d

∂2

∂y∂z
Θ(d − ρ1)δ(z),

jz =
j0πR2

0

dγ2

∂2

∂x2
Θ(d − ρ1)δ(z) +

j0πR2
0

d

∂2

∂y2
Θ(d − ρ1)δ(z).

Now we let the major radius d go to zero. Then

Θ(d − ρ1) =
πd2

γ
δ(x − vt)δ(y),

ρCh = −βj0π
2dR2

0

cγ

∂2

∂x∂z
δ(x − vt)δ(y)δ(z),

jx = −j0π
2dR2

0

γ

∂2

∂x∂z
δ(x − vt)δ(y)δ(z),

jy = −j0π
2dR2

0

γ

∂2

∂y∂z
δ(x − vt)δ(y)δ(z),

jz =
j0π

2dR2
0

γ3

∂2

∂x2
δ(x−vt)δ(y)δ(z)+

j0π
2dR2

0

γ

∂2

∂y2
δ(x−vt)δ(y)δ(z). (6.63)

As a result we arrive at the following electromagnetic potentials:

Φ = −βmt

γε

∂2

∂x∂z
α1, Ax = −mtµ

γ

∂2

∂x∂z
α1,

Ay = −mtµ

γ

∂2

∂y∂z
α1, Az =

mtµ

γ3

∂2

∂x2
α1 +

mtµ

γ

∂2

∂y2
α1,

where α1 is given by (6.46). In the manifest form the EMF potentials are
given by

Φ = −3βmt

εγγ2
n

(x − vt)z
r5
m

, Ax = −3µmt

γγ2
n

(x − vt)z
r5
m

,
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Ay = −3µmt

γγ4
n

yz

r5
m

, Az =
mtµ

γ

[
1

γ2r3
m

(
1 − 3

x2

r2
m

)
+

1
γ2

nr3
m

(
1 − 3

y2

r2
mγ2

n

)]
.

Electromagnetic field strengths are

Ex =
βmt

γε
(1 − n2)

∂3α1

∂x2∂z
, Ey =

βmt

γε
(1 − n2)

∂3α1

∂x∂y∂z
,

Ez =
βmt

γε

[
(n2 − 1)

(
∂2

∂x2
+

∂2

∂y2

)
+ ∆̃

]
∂α1

∂x
,

Bx =
µmt

γ

[
∆̃ + β2(n2 − 1)

∂2

∂x2

]
∂α1

∂y
,

By = −µmt

γ

[
∆̃ + β2(n2 − 1)

∂2

∂x2

]
∂α1

∂x
,

Bz = 0, ∆̃ = (1 − β2
n)

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (6.64)

It is seen that electromagnetic field strengths are equal to zero outside
the Cherenkov cone, fall like r−4 at large distances inside this cone, and
are infinite on the Cherenkov cone. Since for βn < 1, ∆̃α1 = −4πδ(x −
vt)δ(y)δ(z) one may drop the ∆̃ operators in (6.64). This confirms the
previous result that EMF goes beyond a TS moving in medium.

6.3.3. ELECTROMAGNETIC FIELD OF A MOVING POINT-LIKE
ELECTRIC DIPOLE

Consider an electric dipole consisting of point electric charges:

ρd = e[δ3(�r + a�n) − δ3(�r − a�n)].

Here �r defines the dipole center of mass, 2a is the distance between charges
and vector �n defines the dipole orientation. Let the dipole move uniformly
along the z axis (Fig. 6.7). Then,

ρd = eγ{δ(x + anx)δ(y + any)δ[(z − vt)γ + anz]

−δ(x − anx)δ(y − any)δ[(z − vt)γ − anz]}, jz = vρd.

Let the distance between charges tend to zero. Then

ρd = 2ea(�n�∇)δ(x)δ(y)δ(z − vt), jz = vρd. (6.65)

Here
(�n�∇) = �nx∇x + �ny∇y +

1
γ
�nz∇z, ∇i =

∂

∂xi
.



308 CHAPTER 6

Figure 6.7. A moving electric dipole with arbitrary orientation relative to its velocity.

The electromagnetic potentials are equal to

Φ =
2ea

ε
(�n�∇)α, Az = 2eaµβ(�n�∇)α,

where α is the same as in (6.36). In a manifest form the electromagnetic
potentials are

Φ = − 2ea√
1 − β2

nεr3
(�n�r), Az = − 2eaµβ√

1 − β2
nr3

(�n�r),

(�n�r) = xnx + yny + nz(z − vt)
√

1 − β2

1 − β2
n

, r2 = x2 + y2 +
(z − vt)2

1 − β2
n

(6.66)

for βn < 1 and

Φ =
4ea(�n�r)

εr3
1

R, Az =
4eaµβ(�n�r)

r3
1

R (6.67)
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for βn > 1. Here

R =

[
1√

β2
n − 1

Θ
(

vt − z − ρ
√

β2
n − 1

)
− r2

1

ρ
δ

(
vt − z − ρ

√
β2

n − 1
)]

and

r2
1 =

(z − vt)2

β2
n − 1

− ρ2.

The non-vanishing electromagnetic field strengths are

Ex = −2ea

ε

∂

∂x
(�n�∇)α, Ey = −2ea

ε

∂

∂y
(�n�∇)α,

Ez = −2ea

ε
(1 − β2

n)
∂

∂z
(�n�∇)α,

Bx = 2eaµβ
∂

∂y
(�n�∇)α, By = −2eaµβ

∂

∂x
(�n�∇)α. (6.68)

It is seen that electromagnetic field strengths vanish outside the
Cherenkov cone, inside this cone they fall as r−3 at large distances, and
they are infinite on the Cherenkov cone.

We limit ourselves to the βn < 1 case. The EMF is equal to

Ex =
2ea

ε

γn

r3

[
nx − 3

x

r2
(�n�r)

]
, Ey =

2ea

ε

γn

r3

[
ny − 3

y

r2
(�n�r)

]
,

Ez =
2ea

εγ

γn

r3

[
nz − 3γ

z − vt

r2
(�n�r)

]
, Bx = −2eaµβγn

1
r3

[
ny − 3

y

r2
(�n�r)

]
,

By = 2eaµβγn
1
r3

[
nx − 3

x

r2
(�n�r)

]
, Bz = 0. (6.69)

We see that �E resembles the field of an electric dipole, whilst �H, having only
two Cartesian components, cannot be interpreted as the field of a magnetic
dipole.

In the reference frame in which the electric dipole is at rest

B′
x =

2ea(1 − n2)βγγn

ε

1
r′3

[
ny − 3

y′

r′2
(�n�r ′)

]
,

B′
y = −2ea(1 − n2)βγγn

ε

1
r′3

[
nx − 3

x′

r′2
(�n�r ′)

]
, �H ′ = 0,

E′
x = 2ea

γ

γnε

1
r′3

[
nx − 3

x′

r′2
(�n�r ′)

]
, E′

y = 2ea
γ

γnε

1
r′3

[
ny − 3

y′

r′2
(�n�r ′)

]
,
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E′
z = 2ea

γn

γε

1
r′3

[
nz − 3

z′

r′2
(�n�r ′)

]
, D′

x =
2eaγn

γε

1
r′3

[
nx − 3

x′

r′2
(�n�r ′)

]
,

D′
y =

2eaγn

γε

1
r′3

[
ny − 3

y′

r′2
(�n�r ′)

]
,

D′
z = 2ea

γn

γr′3

[
nz − 3

z′

r′3
(�n�r ′)

]
. (6.70)

In this reference frame the constitutive relations (6.27) should be used.
For the vector �n oriented along the motion axis, one gets

Ex = −6eaγ3
n

x(z − vt)
γεr5

, Ey = −6eaγ3
n

y(z − vt)
γεr5

,

Ez =
2ea

ε

[
γn

r3
(1 − 3

γ2
n(z − vt)2

r2
)

]
,

Bx = 6µβeaγ3
n

y(z − vt)
γr5

, By = −6µβeaγ3
n

x(z − vt)
γr5

, (6.71)

where r2 = x2 + y2 + (z − vt)2γ2
n is the same as in (6.36).

For the vector �n perpendicular to the motion axis (say, �n is in the x
direction) the field strengths are

Ex =
2ea

ε

γn

r3

[
1 − 3

x2

r2

]
, Ey = −6eaγn

xy

εr5
, Ez = −6eaγn

x(z − vt)
εr5

,

Bx = 6eaµγnβ
xy

r5
, By = 2eaµβ

γn

r3

[
1 − 3

x2

r2

]
. (6.72)

6.3.4. ELECTROMAGNETIC FIELD OF INDUCED DIPOLE MOMENTS

Now we apply the formalism developed by Frank to evaluate the EMF of
moving magnetic and electric dipoles.

Electromagnetic field of a moving magnetic dipole
In our translation from Russian, the Frank prescription for the evaluation
of EMF of the moving dipole, may be formulated as follows ([6], p. 190):

It is suggested that a moving electric dipole p′1 is equivalent to some
dipoles at rest, namely, to the electric p1 and magnetic m1 placed at
the point coinciding with the instantaneous position of a moving dipole.
The same is suggested for a magnetic dipole.
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According to this prescription the moving magnetic dipole �m′ creates the
following magnetic �m and electric �p dipole moments in the LF:

�m = �m′ − (1 −
√

1 − β2)�v(�v �m′)/v2, �p = (�β × �m′), �β = �v/c. (6.73)

For the �m′ directed along the motion axis, (6.73) passes into

mx = my = 0, mz ≡ m = m′/γ, �p = 0. (6.74)

The EMF of induced dipoles (6.74) which are at rest in the instantaneous
position of the moving magnetic dipole (this is essentially the Frank pre-
scription) is given by

�Ed = 0, Bd
x = 3m

γx(z − vt)
r5

, Bd
y = 3m

γy(z − vt)
r5

,

Bd
z = −m

(
1
r3

− 3
γ2(z − vt)2

r5

)
. (6.75)

Here r = [x2 +y2 +γ2(z−vt)2]1/2. By comparing (6.75) with (6.40) we con-
clude that the magnetic field of a moving point-like current loop resembles
(but not coincides with) that of a magnetic dipole. The non-trivial depen-
dence on γn in (6.40) tells us that the magnetic field of a moving magnetic
dipole cannot be obtained by the simple Frank prescription (6.73).

Furthermore, the Frank prescription (6.74) gives a zero electric field,
while the exact electric field (6.40) differs from zero. Another way to see
this is to write out the electric field created by the induced electric dipole �p
which is at rest in the instantaneous position of a moving magnetic dipole:

(Ed)x = − 1
r3

px + 3x
xpx + ypy + γ(z − vt)pz

r5
,

(Ed)y = − 1
r3

py + 3y
xpx + ypy + γ(z − vt)pz

r5
,

(Ed)z = − 1
r3

pz + 3γz
xpx + ypy + γ(z − vt)pz

r5
, (6.76)

where r2 = x2 + y2 + (z − vt)2γ2.
The exact electric field of a moving point-like current loop has only

the φ component (see (6.40)). It is easy to check that it is impossible to
vanish simultaneously Eρ and Ez for any choice of px, py, pz. This means
that the electric field (6.40) produced by a moving magnetic dipole cannot
be associated with the field of the induced electric dipole.

For the �m′ perpendicular to the motion axis (for definiteness, let the mo-
tion and symmetry axes be along the x and z axes, respectively.) Eq.(6.73)
gives

mx = my = 0, mz = m = m′, py = −βm.
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The EMF generated by this dipole moment is

(Ed)x = −3βmγ
y(x − vt)

r5
, (Ed)y =

βm

r3
− 3βm

y2

r5
, (Ed)z = −3βm

yz

r5
,

(Bd)x = 3γm
z(x − vt)

r5
, (Bd)y = 3γm

yz

r5
, (Bd)z = −m

r3
+ 3m

z2

r5
.

(6.77)
These expressions slightly resemble the exact ones (6.49), but not reduce
to them (again, owing to the nontrivial γn dependence in (6.49)).

The situation remains essentially the same if instead of �p given by (6.1),
the modified Frank formula ([6])

�p = n2(β × m′), n2 = εµ (6.78)

is used.

Electromagnetic field of a moving electric dipole
According to Frank a moving electric dipole �p′ creates the following mag-
netic �m and electric �p dipole moments in the LF:

�p = �p′ − (1 −
√

1 − β2)�v(�v�p′)/v2, �m = −�β × �p′. (6.79)

For �p′ aligned along the motion axis z this reduces to

px = py = 0, pz = p′/γ, �m = 0. (6.80)

The EMF of induced dipoles (6.80) at rest in the instant position of the
moving electric dipole is given by

Ex = p
xγ(z − vt)

r5
, Ey = p

yγ(z − vt)
r5

,

Ez = − p

r3
+ 3p

γ2(z − vt)2

r5
, �B = 0. (6.81)

By comparing this with (6.71) we conclude that the electric field (6.81) of an
induced electric dipole resembles (but does not reduce to) the exact electric
field (6.71) of a moving electric dipole. On the other hand, the magnetic field
vanishes for the induced magnetic moment (6.80) which disagrees with the
behaviour of the exact magnetic field (6.71) of the moving electric dipole.
The latter cannot be attributed to the magnetic dipole.

For an electric dipole oriented perpendicularly (say, in the x direction)
to the motion direction z, one obtains from (6.79) for the non-vanishing
components of induced dipole moments

px ≡ p = p′, my = −βp. (6.82)
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The corresponding EMF is

Ex = − p

r3
+ 3p

x2

r2
, Ey = 3p

xy

r5
, Ez = 3p

xγ(z − vt)
r5

,

Bx = −3βp
xy

r5
, By =

βp

r3
− 3βp

y2

r5
, Bz = −3βp

yγ(z − vt)
r5

. (6.83)

By comparing this with (6.72) we conclude that the electric field of an in-
duced dipole moment resembles the exact electric field (6.72) of a moving
electric dipole. On the other hand, there are three components of the mag-
netic field of the induced moment (6.82) and only two exact non-vanishing
components in (6.72). Therefore the exact magnetic field (6.72) of a moving
electric dipole cannot be attributed to the induced magnetic dipole (6.82).

6.4. Electromagnetic field of electric, magnetic,
and toroidal dipoles in the spectral representation

We consider the radiation of electric, magnetic, and toroidal dipoles moving
uniformly in an unbounded medium (this corresponds to the Tamm-Frank
problem). They are obtained from the corresponding charge-current densi-
ties in an infinitesimal limit. The behaviour of radiation intensities in the
neighbourhood of the Cherenkov threshold β = 1/n is investigated. The
frequency and velocity regions are defined where radiation intensities are
maximal. The comparison with previous attempts is given. We consider also
the radiation of electric, magnetic, and toroidal dipoles moving uniformly
in medium, in a finite spatial interval (this corresponds to the Tamm prob-
lem). The properties of radiation arising from the precession of a magnetic
dipole are also studied.

6.4.1. UNBOUNDED MOTION OF MAGNETIC, TOROIDAL,
AND ELECTRIC DIPOLES IN MEDIUM

Pedagogical example: Uniform unbounded charge motion in medium
Consider first the uniform unbounded charge motion in medium along the
z axis. Charge and current densities are given by

ρCh = eδ(z − vt)δ(x)δ(y), jz = eρCh.

Their Fourier components are given by

ρω =
1
2π

∫
ρCh exp(iωt)dt =

e

2πv
δ(x)δ(y) exp

(
ikz

β

)
,

jω = vρω, k =
ω

c
.
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The electromagnetic potentials corresponding to these densities are

Φ =
1

2πvε

∫
exp

[
ik

(
z′

β
+ nR

)]
dz′

R
, Az = µεβΦ. (6.84)

Here R = [x2 + y2 + (z − z′)2]1/2, ε and µ are the electric and magnetic
constants of the medium, n =

√
εµ is its refractive index. Making the change

of the integration variable z′ = z + ρ sinhχ, we rewrite (6.84) in the form

Φ =
1

2πvε
α, Az = µεβΦ,

where
α = exp(iψ)I,

I =
∞∫

−∞
exp

[
ikρ

(
sinhχ

β
+ n cosh χ

)]
dχ, ψ =

kz

β
. (6.85)

The integral I can be evaluated in a closed form [21] (see also Chapter 2).
It is given by

I = 2K0 for v < cn

and
I = iπH

(1)
0 for v > cn, (6.86)

where the arguments of all Bessel functions are kρ/βγn, γn = |1− β2
n|−1/2,

βn = βn and cn = c/n is the velocity of light in medium. The scalar electric
potential is given by

Φ =
e

πvε
exp(iψ)K0

for v < cn and

Φ =
ie

2vε
exp(iψ)H(1)

0

for v > cn. The magnetic potential is Az = βεµΦ. Correspondingly, the
electromagnetic field strengths are equal to

Eρ =
ek

πvεβγn
exp(iψ)K1, Ez = − iek

πvεβ
(1 − β2n2) exp(iψ)K0,

Hφ =
ek

πvγn
exp(iψ)K1

for βn < 1 and

Eρ = i
ek

2vεβγn
exp(iψ)H(1)

1 , Ez =
ek

2vεβ
(1 − β2n2) exp(iψ)H(1)

0 ,
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Hφ = i
ek

2vγn
exp(iψ)H(1)

1

for βn > 1.
The radial energy flux per unit length and per unit frequency through

the surface of the cylinder of radius ρ coaxial with the motion axis is given
by

σρ =
d2E
dωdz

= −πρc(EzH
∗
φ + E∗

zHφ).

It is equal to zero for βn < 1 and

σρ =
e2ωµ

c2

(
1 − 1

β2n2

)
(6.87)

for βn > 1, which coincides with the frequency distribution of radiation
given by Tamm and Frank.

Radiation of magnetic dipole uniformly moving in medium
The magnetic dipole is parallel to the velocity. Let a constant current I
flow in a current loop. In the time representation the current density in the
LF is given by Eqs. (6.30)-(6.32). The Fourier components of this current
density are

jx(ω) = ∂Mz(ω)/∂y, jy(ω) = −∂Mz(ω)/∂x, jz(ω) = 0,

where

Mz(ω) =
Id2

2γv
δ(x)δ(y) exp(iψ)

and ψ is the same as in (6.85). The vector magnetic potential satisfies the
equation

� �Aω + k2
n

�Aω = −4πµ

c
�jω, kn = kn.

Its non-vanishing components are given by

Ax =
µmd

2πγv

∂α

∂y
, Ay = − µmd

2πγv

∂α

∂x
,

where α is the same as in (6.85) and md = Iπd2/c is the magnetic moment
of the current loop in its rest frame. It is seen that only the φ component
of �Aω differs from zero:

Aω = − mdµ

2πγv

∂α

∂ρ
.

The electromagnetic field strengths are

Eφ = − ikmdµ

2πγv

∂α

∂ρ
, Hρ =

ikmd

2πγβv

∂α

∂ρ
, Hz =

md

2πγvβ2
k2(β2

n − 1)α.
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In a manifest form, they are equal to

Eφ =
ik2mdµ

πβγnγv
exp(iψ)K1, Hρ = − ik2md

πγnγβ2v
exp(iψ)K1,

Hz = − mdk
2

πγvβ2γ2
n

exp(iψ)K0

for βn < 1 and

Eφ = − k2mdµ

2βγnγv
exp(iψ)H(1)

1 , Hρ = − k2md

2γnγβ2v
exp(iψ)H(1)

1 ,

Hz = i
mdk

2

2γvβ2γ2
n

exp(iψ)H(1)
0

for βn > 1. The energy emitted in the radial direction per unit length and
per unit frequency

σρ =
d2E
dωdz

= −πρc(EφH∗
z + HzE

∗
φ)

is equal to zero for v < cn and

σρ =
ω3m2

dµ

v4γ2γ2
n

(6.88)

for v > cn. In the past, this equation was obtained by Frank in [6,9], but
without the factor γ2 in the denominator. It is owed to the factor γ in the
denominator of (6.30). On the other hand, this factor is presented in [3,
4, 22]. When obtaining (6.88) it was suggested that the current density is
equal to (6.29) in the reference frame attached to a moving current loop.
The current density in the LF is obtained from (6.29) by the Lorentz trans-
formation. It follows from (6.88) that the intensity of radiation produced
by a magnetic dipole parallel to the velocity differs from zero in the veloc-
ity window cn < v < c. Therefore, v should not be too close to either cn

or c. For this, n should differ appreciably from unity. Probably, the best
candidate for observing this radiation is a neutron moving in a medium
with large n. By comparing (6.90) with the radiation intensity of a moving
charge (σe = e2ωµ/c2γ2

n) we see that there is a chance of observing the
radiation from a neutron moving in medium only for very high frequencies.

The magnetic dipole is perpendicular to the velocity. Let the current loop
lie in the z = 0 plane with its velocity along the x axis (magnetic dipole
is along the z axis). In the time representation the current density in the



Radiation of electric, magnetic and toroidal dipoles moving in a medium 317

LF is given by Eqs. (6.44) and (6.45). The Fourier components of these
densities are

jx(ω) =
md

2πβ
exp(iψ1)δ(z)

∂

∂y
δ(y), jy(ω) = − md

2πβγ2

∂

∂x
δ(z)δ(y) exp(iψ1),

ρCh(ω) =
md

2πc
δ(z) exp(iψ1)

∂

∂y
δ(y), (6.89)

where ψ1 = kx/β. The electromagnetic potentials are equal to

Φ =
md

2πcε

∂α1

∂y
, Ax =

mdµ

2πv

∂α1

∂y
, Ay = − mdµ

2πγ2v

∂

∂x
α1. (6.90)

Here

α1 = exp(iψ1)
∞∫

−∞
exp

[
ikρ1

(
sinhχ

β
+ n cosh χ

)]
dχ,

ρ1 =
√

y2 + z2. (6.91)

This integral is evaluated along the same lines as α in (6.85). It is equal
to 2K0 for v < cn and iπH

(1)
0 for v > cn. The arguments of these Bessel

functions are kρ1/βγn. The electromagnetic field strengths are

Ex =
imdk cos φ

2πvε
(n2 − 1)

∂α1

∂ρ1
,

Ey =
md

2πcε

{
cos 2φ

ρ1

∂α1

∂ρ1
+

[
cos2 φ

k2(β2
n − 1)
β2

+
k2n2

γ2β2

]
α1

}
,

Ez =
md

2πcε
sin φ cos φ

[
k2(β2

n − 1)
β2

α1 +
2
ρ1

∂α1

∂ρ1

]
,

Hx =
ikmd sin φ

2γ2vβ

∂α1

∂ρ1
, Hy = −md sin φ cos φ

2πv

[
k2(β2

n − 1)
β2

α1 +
2
ρ1

∂α1

∂ρ1

]
,

Hz =
md

2πv

[
k2α1

γ2β2
+

cos 2φ

ρ1

∂α1

∂ρ1
+ cos2 φ

k2(β2
n − 1)
β2

α1

]
.

The angle φ (cos φ = y/ρ1, sin φ = z/ρ1) defines the azimuthal position of
the observational point in the yz plane. It is counted from the y axis. In a
manifest form the field strengths are equal to

Ex = − imdk
2 cos φ

πvβγnε
(n2 − 1) exp(iψ1)K1,

Ey = −kmdc

πε

[
cos 2φ

ρ1βγn
K1 − k

β2

(
n2

γ2
− cos2 φ)

γ2
n

)
K0

]
exp(iψ1),
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Ez = −mdk sin φ cos φ

πβγncε

(
2
ρ1

K1 +
k

βγn
K0

)
exp(iψ1),

Hx = − imdk
2 sin φ

γ2γnvβ2
K1 exp(iψ1),

Hy =
mdk sin φ cos φ

πvβγn

(
k

βγn
K0 +

2
ρ1

K1

)
exp(iψ1),

Hz =
mdk

πvβ

[
k

(
1

βγ2
− cos2 φ

γ2
n

)
K0 − cos2φ

γnρ1
K1

]
exp(iψ1) (6.92)

for v < cn and

Ex =
mdk

2 cos φ

2vβγn
(n2 − 1)H(1)

1 exp(iψ1), Hx =
mdk

2 sin φ

2γ2γnβ2v
H

(1)
1 exp(iψ1),

Ey = − imdk

2εv

[
cos 2φ

ρ1γn
H

(1)
1 − k

β

(
cos2 φ

γ2
n

+
n2

γ2

)
H

(1)
0

]
exp(iψ1),

Ez =
imdk sin φ cos φ

2vεγn

(
k

βγn
H

(1)
0 − 2

ρ1
H

(1)
1

)
exp(iψ1),

Hy = − imdk sin φ cos φ

2vβγn

[
k

βγn
H

(1)
0 − 2

ρ1
H

(1)
1

]
exp(iψ1),

Hz =
imdk

2vβ

[
k

β

(
cos2 φ

γ2
n

+
1
γ2

)
H

(1)
0 − cos 2φ

ρ1γn
H

(1)
1

]
exp(iψ1) (6.93)

for v > cn. To evaluate the energy flux in the radial direction (that is,
perpendicular to the motion axis), one should find the components of field
strengths tangential to the surface of a cylinder coaxial with the motion
axis and perpendicular it. They are given by

Eφ = Ez cos φ − Ey sin φ, Hφ = Hz cos φ − Hy sin φ.

We rewrite them in a manifest form. It is easy to check that

Eφ = −mdk sin φ

πvε

(
1

ρ1γn
K1 +

kn2

βγ2
K0

)
exp(iψ1),

Hφ =
kmd cos φ

πvβ

[
kβ(n2 − 1)K0 − 1

ρ1γn
K1

]
exp(iψ1) (6.94)

for v < cn and

Eφ = − imdk sin φ

2vε

[
kn2

βγ2
H

(1)
0 +

1
ρ1γn

H
(1)
1

]
exp(iψ1),
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Hφ = +
imdk cos φ

2vβ

[
kβ(n2 − 1)H(1)

0 − 1
ρ1γn

H
(1)
1

]
exp(iψ1) (6.95)

for v > cn. The energy flux per unit length and per unit frequency through
the cylindrical surface of radius ρ1 is equal to

d2E
dxdω

=
2π∫
0

σ(ω, φ)dφ,

where

σ(ω, φ) =
d3E

dxdωdφ
=

c

2
ρ1(E∗

φHx + EφH∗
x − H∗

φEx − HφE∗
x). (6.96)

Substituting field strengths here, one obtains that the differential intensity
is zero for v < cn and

σ(ω, φ) =
m2

dk
3

2πεβv

[
n2

γ4β2
sin2 φ + (n2 − 1)2 cos2 φ

]
(6.97)

for v > cn. The integration over φ gives

σ(ω) =
m2

dk
3

2βεv

[
n2

γ4β2
+ (n2 − 1)2

]
. (6.98)

Equations (6.97) and (6.98) coincide with those obtained by Frank [3,4,22],
who noted that in the limit β → 1/n these intensities do no vanish as
it is intuitively expected. On these grounds Frank declared them as to
be incorrect [6]. 30 years later Frank returned to the same problem [10].
He attributed the non-vanishing of the intensities (6.97) and (6.98) to the
specific polarization of the medium.

We analyse this question in some detail. The intensity (6.96) is non-zero
for β = 1/n + ε and zero for β = 1/n − ε, where ε � 1. Since it consists of
EMF strengths (see (6.96), the latter should exhibit a jump at β = 1/n too.
Turning to Eqs. (6.92) and (6.93) defining the EMF strengths we observe
that Ex and Hx are continuous at β = 1/n, while Eφ and Hφ entering
into (6.96) exhibit jump. Further examination shows that this jump is due
to the fact that first terms in the definition of Eφ and Hφ in (6.94) and
(6.95) are not transformed into each other when β changes from 1/n− ε to
1/n+ε. Further reflection shows that this is owed to Eqs. (6.86). Separating
in them real and imaginary parts, one has

I1 =
∞∫
0

cos(
kρ

β
sinhχ) cos(kρn cosh χ) = K0
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for β < 1/n,
I1 = −π

2
N0 (6.99)

for β > 1/n;

I2 =
∞∫
0

cos(
kρ

β
sinhχ) sin(kρn cosh χ) = 0

for β < 1/n,
I2 =

π

2
J0 (6.100)

for β > 1/n, where the arguments of all Bessel functions are kρ/βγn. Now,
I1 is continuous at β = 1/n, whilst I2 is zero for β < 1/n and tends to π/2
as β → 1/n.

Furthermore, for β = 1/n, I2 looks like (y = kρn):

I2 =
∞∫
0

cos(y sinhχ) sin(y cosh χ)dχ =
1
2

∞∫
−∞

cos(y sinhχ) sin(y cosh χ)dχ

=
1
2
Im

∞∫
−∞

exp[iy(sinhχ + cosh χ)]dχ =
1
2
Im

∞∫
−∞

exp[iy expχ]dχ.

Putting t = exp(χ) one obtains

∞∫
−∞

exp[iy exp(χ)]dχ =
∞∫
0

exp(iyt)
dt

t
.

and

Im
∞∫
0

exp(iyt)
dt
t

=
∞∫
0

sin(yt)
dt
t

=
π

2

Therefore I2 is equal to
I2 =

π

2
for β = 1/n + ε,

I2 =
π

4
for β = 1/n and

I2 = 0

for β = 1/n − ε, ε � 1. As a result, the radiation intensities are equal one
half of (6.97) or (6.98) for β = 1/n.
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Again, a neutron moving in a dielectric medium with n appreciably
different from unity is the best candidate for observing this radiation. The
absence of the overall 1/γ factor in (6.97) and (6.98) makes it easier to
observe radiation from a neutron with the spin perpendicular to the velocity
than from a neutron with the spin directed along it.

Electromagnetic field of a point-like toroidal solenoid uniformly moving in
unbounded medium
The velocity is along the torus symmetry axis. Let this current distribu-
tion move uniformly along the z axis (directed along the torus symme-
try axis) with the velocity v. In the time representation, in the labora-
tory frame, the non-vanishing charge and current components are given by
(6.56). The spectral representations of these densities are

ρCh(ω) =
mt

2πc

(
∂2

∂x2
+

∂2

∂y2

)
D, jz(ω) =

mt

2πβ

(
∂2

∂x2
+

∂2

∂y2

)
D,

jx = − mt

2πβγ2

∂2

∂z∂x
D, jy = − mt

2πβγ2

∂2

∂z∂y
D,

where D = δ(x)δ(y) exp(iψ), ψ = kz/β and mt = π2j0dR2
0/c is the toroidal

moment. Electromagnetic potentials are given by

Φ =
mt

2πεc

(
∂2

∂x2
+

∂2

∂y2

)
α, Az =

µmt

2πv
exp(iψ)

(
∂2

∂x2
+

∂2

∂y2

)
α,

Ax = − µmt

2πγ2v

∂2α

∂z∂x
, Ay = − µmt

2πγ2v

∂2α

∂z∂y
,

where α is the same as in (6.85). Electromagnetic field strengths are

Ex =
mtk

2

2πεvβ
(n2 − 1)

∂α

∂x
, Ey =

mtk
2

2πεvβ
(n2 − 1)

∂α

∂y
,

Ez =
ik3mt

2πεvβ2
(n2 − 1)(1 − β2

n)α, Hx = −mtk
2

2πv
(n2 − 1)

∂α

∂y
,

Hy =
mtk

2

2πv
(n2 − 1)

∂α

∂x
, Hz = 0.

Or, explicitly

Eρ = − mtk
3

πεvβ2γn
(n2 − 1) exp(iψ)K1,

Ez =
ik3mt

πεvβ2
(n2 − 1) exp(iψ)(1 − β2

n)K0,
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Hφ = − mtk
3

πvβγn
(n2 − 1) exp(iψ)K1

for βn < 1 and

Eρ = −i
mtk

3

2εvβ2γn
(n2 − 1) exp(iψ)H(1)

1 ,

Ez =
k3mt

2εvβ2
(n2 − 1) exp(iψ)(β2

n − 1)H(1)
0 ,

Hφ = −i
mtk

3

2vβγn
(n2 − 1) exp(iψ)H(1)

1

for βn > 1. The energy loss through the cylinder surface of the radius ρ
coaxial with the motion axis per unit frequency and per unit length is

σρ(ω) =
d2E
dzdω

= −πcρ(EzH
∗
φ + E∗

zHφ).

It is equal to zero for v < cn and

σρ(ω) =
k5m2

t

εvβ3
(β2

n − 1)(n2 − 1)2 (6.101)

for v > cn. In the past, this equation was obtained in [9]. The absence of
the overall 1/γ factor in (6.101) and its proportionality to ω5 show that
the radiation intensity for the toroidal dipole directed along the velocity is
maximal for large frequencies and v ∼ c.

The velocity is perpendicular to the torus axis. Let a toroidal solenoid
move in a medium with a velocity perpendicular to the torus symmetry
axis (coinciding with the z axis). For definiteness let the TS move along the
x axis. Then, in the LF, in the time representation, the charge and current
densities are given by (6.63). The Fourier transforms of these densities are

ρCh = − mt

2πcγ

∂2

∂x∂z
exp(iψ1)δ(y)δ(z),

jx = − mt

2vπγ

∂2

∂x∂z
exp(iψ1)δ(y)δ(z),

jy = − mt

2vπγ

∂2

∂y∂z
exp(iψ1)δ(y)δ(z),

jz =
mt

2vπγ
[
1
γ2

∂2

∂x2
+

∂2

∂y2
] exp(iψ1)δ(y)δ(z).
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Here ψ1 = kx/β. As a result we arrive at the following electromagnetic
potentials:

Φ = − βmt

2cπγε

∂2

∂x∂z
α1, Ax = − mtµ

2vπγ

∂2

∂x∂z
α1,

Ay = − mtµ

2vπγ

∂2

∂y∂z
α1, Az =

mtµ

2vπγ

[
1
γ2

∂2

∂x2
+

∂2

∂y2

]
α1,

where α1 is the same as in (6.91). We give without derivation the EMF
strengths

Ex =
k2mt

2πvβγε
(n2 − 1) sin φ

∂α1

∂ρ1
,

Ey =
ikmt

2πγεv
(n2 − 1) sinφ cos φ

[
k2(β2

n − 1)
β2

α1 +
2
ρ1

∂α1

∂ρ1

]
,

Ez = − ikmt

2πγεv
(n2 − 1)

[
k2

β2
(1 + (β2

n − 1) cos2 φ)α1 +
cos 2φ

ρ1

∂α1

∂ρ1

]
,

Eφ = − ikmt

2πγεv
(n2 − 1) cos φ

[
k2n2α1 +

1
ρ1

∂α1

∂ρ1

]
,

Hx = − mt

2vπγ
k2(n2 − 1) cos φ

∂α1

∂ρ1
, Hy =

imtk
3

2πvγβ
(n2 − 1)α1, Hz = 0,

Hφ = − imtk
3α1

2πvγβ
(n2 − 1) sin φ,

where φ is the angle defining the observational point in the yz plane. It is
counted from the y axis and is defined by (6.92) and (6.93). In a manifest
form the EMF strengths are given by

Ex = − k3mt

πvβ2γγnε
(n2 − 1) sinφK1 exp(iψ1),

Ey =
ikmt

πvγε
(n2 − 1) sin φ cos φ

[
k2

β2
(β2

n − 1)K0 − 2k

ρβγn
K1

]
exp(iψ1),

Ez = − ikmt

πvγε
(n2−1)

[
k2

β2
(1+ cos2 φ(β2

n − 1))K0− k

ρβγn
cos 2φK1

]
exp(iψ1),

Eφ = − ikmt

πvγε
(n2 − 1) cos φ

[
k2n2K0 − k

ρβγn
K1

]
exp(iψ1),

Hx =
mtk

3

πvβγγn
(n2−1) cos φK1 exp(iψ1), Hy =

imtk
3

πvγβ
(n2−1)K0 exp(iψ1),
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Hz = 0, Hφ = − imtk
3

πvγβ
(n2 − 1) sin φK0 exp(iψ1)

for v < cn and

Ex = − imtk
3

2vεβ2γγn
sin φ(n2 − 1)H(1)

1 exp(iψ1),

Ey = − kmt

2vγε
(n2 − 1) sin φ cos φ

[
k2

β2
(β2

n − 1)H(1)
0 − 2k

ρβγn
H

(1)
1

]
exp(iψ1),

Ez =
kmt

2vγε
(n2 − 1)

×
[

k2

β2
(1 + cos2 φ(β2

n − 1))H(1)
0 − k

ρβγn
cos 2φH

(1)
1

]
exp(iψ1),

Eφ =
kmt

2vγε
(n2 − 1) cos φ

[
k2n2H

(1)
0 − k

ρβγn
H

(1)
1

]
exp(iψ1),

Hx =
imtk

3

2vβγγn
(n2 − 1) cos φH

(1)
1 exp(iψ1),

Hy = −mtk
3

2vγβ
(n2 − 1)H(1)

0 exp(iψ1),

Hz = 0, Hφ =
mtk

3

2vγβ
(n2 − 1) sin φH

(1)
0 exp(iψ1)

for v > cn. Again, Eφ and Hφ are tangential to the torus surface and
perpendicular to the torus velocity directed along the x axis.

The energy flux through the cylindrical surface of the radius ρ1 per unit
length and per unit frequency is equal to

d2E
dxdω

=
2π∫
0

σ(ω, φ)dφ,

where

σ(ω, φ) =
d3E

dxdωdφ
=

c

2
ρ1(E∗

φHx + EφH∗
x − H∗

φEx − HφE∗
x).

Substituting here field strengths, one obtains that the differential intensity
is zero for v < cn and

σ(ω, φ) =
k5m2

t

2εvβπγ2
(n2 − 1)2

(
n2 cos2 φ +

1
β2

sin2 φ

)
(6.102)
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for v > cn. The integration over φ gives

σ(ω) =
k5m2

t

2εvβγ2
(n2 − 1)2

(
n2 +

1
β2

)
. (6.103)

As far as we know, the radiation intensities (6.102) and (6.103) are obtained
here for the first time. They are discontinuous: in fact, they decrease from
(6.102) or (6.103) for βn > 1 to their one-half for β = 1/n and to zero for
β < 1/n. Also, we observe the appearance of the velocity window cn < v < c
in which the radiation differs from zero.

Unbounded motion of a point-like electric dipole
Fourier components of the charge and current densities (6.65) are

ρd(ω) =
ea

πv
(�n�∇)δ(x)δ(y) exp

(
ikz

β

)
, jz(ω) = vρd(ω). (6.104)

The electromagnetic potentials are equal to

Φ =
ea

πvε
(�n�∇)α, Az =

eaµ

πc
(�n�∇)α,

where α is the same as in (6.85). The non-vanishing components of EMF
strengths are

Ex = − ea

πvε

∂

∂x
(�n�∇)α, Ey = − ea

πvε

∂

∂y
(�n�∇)α,

Ez = − ea

πvε
(1 − β2

n)
∂

∂z
(�n�∇)α,

Hx =
ea

πc

∂

∂y
(�n�∇)α, Hy = −ea

πc

∂

∂x
(�n�∇)α.

In a manifest form we write out only those components of field strengths
which are needed for the evaluation of the radial cylindric energy flux. They
are equal to

Ez =
2ek2a

πεβ2v
(1 − β2

n)
(

nz

γ
K0 + i

ñρ

γn
K1

)
exp(iψ),

Hφ =
2eak

πv

{
ñρ

[
k

β
(β2

n − 1)K0 − 1
γnρ

K1

]
+

iknz

βγγn
K1

}
exp(iψ)

for v < cn and

Ez =
ek2a

εβ2v
(β2

n − 1)
(

ñρ

γn
H

(1)
1 − i

nz

γ
H

(1)
0

)
exp(iψ),
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Hφ =
eak

v

{
iñρ

[
k

β
(β2

n − 1)H(1)
0 − 1

ργn
H

(1)
1

]
− nz

k

βγγn
H

(1)
1

}
exp(iψ)

for v > cn. Here ψ = kz/β, ñρ = sin θ0 cos(φ− φ0); θ0 is the angle between
the symmetry axis of the electric dipole and its velocity; φ is the azimuthal
position of the observational point on the cylinder surface and φ0 defines the
orientation of the electric dipole in the plane perpendicular to the motion
axis.

The radiation intensity per unit length of the cylindrical surface coaxial
with the motion axis, per unit azimuthal angle and per unit frequency is

σ(φ, ω) =
d3E

dzdφ dω
= −cρ

2
(EzH

∗
φ + E∗

zHφ).

It is equal to

σρ(φ, ω) =
4e2a2k3nzñρ

π2εβ3vγ
(1 − β2

n)

×
[
kρ

β
(1 − β2

n)(K2
0 + K2

1 ) +
1
γn

K0K1

]
(6.105)

for v < cn and

σρ(φ, ω) =
2e2a2k3

πεβ3v
(β2

n − 1){ñ2
ρ(β

2
n − 1) + n2

z(1 − β2) + ñρnz
π

2γ

×
[
kρ

β
(β2

n − 1)(J2
0 + N2

0 + J2
1 + N2

1 ) − 1
γn

(N0N1 + J0J1)
]
} (6.106)

for v > cn. Integrating over the azimuthal angle φ one finds that σρ(ω) = 0
for v < cn and

σρ(ω) =
2e2a2k3

πεβ3v
(β2

n − 1)[(β2
n − 1) sin2 θ0 + 2(1 − β2) cos2 θ0] (6.107)

for v > cn. For the symmetry axis along the velocity (θ0 = 0) and perpen-
dicular to it (θ0 = π/2) one finds

σρ(ω, θ0 = 0) =
4e2a2k3

εβ3v
(β2

n − 1)(1 − β2) (6.108)

and

σρ(ω, θ0 = θ/2) =
2e2a2k3

εβ3v
(β2

n − 1)2, (6.109)

respectively.
Again, the same confusion with (6.108) and (6.109) takes place in the

physical literature. In [6, 10, 23], the factor (1 − β2) in (6.108) is absent.
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Yet, it presents in [3, 4, 22]. In [22], (β2
n − 1), instead of (β2

n − 1)2, enters
(6.109). The expression given in [23] is two times larger than (6.109). The
correct expression for (6.109) is given in [3, 4, 6, 10].

It is rather surprising that for βn < 1 the non-averaged radiation in-
tensities are equal to zero when the symmetry axis is either parallel or
perpendicular to the velocity, but differs from zero for the intermediate in-
clination of the symmetry axis (see (6.105)). Integration over the azimuthal
angle gives σρ(ω, θ) = 0 for βn < 1.

Again, it should be mentioned that we did not intend to demonstrate
misprints in the papers of other authors. What we need are the reliable
formulae suitable for practical applications.

6.4.2. THE TAMM PROBLEM FOR ELECTRIC CHARGE, MAGNETIC,
ELECTRIC, AND TOROIDAL DIPOLES

Pedagogical example: the Tamm problem for the electric charge
Tamm considered the following problem [24]. A point charge is at rest at
the point z = −z0 of the z axis up to an instant t = −t0 and at the
point z = z0 after the instant t = t0. In the time interval −t0 < t < t0,
it moves uniformly along the z axis with the velocity v greater or smaller
than the velocity cn = c/n of light in medium. The non-vanishing z Fourier
component of the vector potential (VP) is given by

Az(x, y, z) =
eµ

2πc
αT , (6.110)

where

αT =
∫ z0

−z0

dz′

R
exp

[
ik

(
z′

β
+ nR

)]
, R = [ρ2+(z−z′)2]1/2, ρ2 = x2+y2.

Tamm presents R in the form R = r−z′ cos θ, thus disregarding the second
order terms relative to z′.

Imposing the conditions:
i) r � z0 (this means that the observational distance is much larger

than the motion interval);
ii) knr � 1, kn = ω/cn (this means that the observations are made in

the wave zone);
iii) nz2

0/2rλ � 1, λ = 2πc/ω (this means that the second-order terms
in the expansion of R should be small compared with π since they enter as
a phase in αT ; λ is the observed wavelength), Tamm obtained the following
expression for αT

αT =
2
kr

exp(iknr)q
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and for the vector magnetic potential

Az =
eµ

πωr
exp(iknr)q. (6.111)

Here
q =

1
1/β − n cos θ

sin[kz0(1/β − n cos θ)].

In the limit kz0 → ∞,

q → πδ(1/β − n cos θ) and Az → eµ

ωnr
exp(iknr)δ(cos θ − 1/βn).

Using (6.111) Tamm evaluated the EMF strengths and the energy flux
through the sphere of the radius r for the whole time of observation

E = r2
∫

SrdΩdt =
∫

d2E
dΩdω

dΩdω, dΩ = sin θdθdφ, Sr =
c

4π
EθHφ,

where
d2E

dΩdω
=

e2µn

π2c
[sin θ

sin kz0(1/β − n cos θ)
n cos θ − 1/β

]2, βn = βn. (6.112)

is the energy emitted into the solid angle dΩ, in the frequency interval dω.
This famous formula obtained by Tamm is frequently used by experimen-
talists for the identification of the charge velocity. When kz0 is large,

d2E
dΩdω

=
e2µkz0

πc
(1 − 1/β2

n)δ(cos θ − 1/βn). (6.113)

Integrating this equation over the solid angle one finds

dE
dω

=
2e2µkz0

c
(1 − 1/β2

n). (6.114)

Correspondingly, the energy radiated per unit frequency and per unit length
(obtained by dividing (6.114) by the motion interval L = 2z0) is

dE
dωdL

=
e2µ

c
(1 − 1/β2

n). (6.115)

The typical experimental situations described by the Tamm formula are:
i) β decay of a nucleus at one spatial point accompanied by a subsequent

absorption of the emitted electron at another point;
ii) A high energy electron consequently moves in the vacuum, enters

the dielectric slab, leaves the slab and propagates again in vacuum. Since
the electron moving uniformly in vacuum does not radiate (apart from the
transition radiation arising at the boundaries of the dielectric slab), the
experimentalists describe this situation via the Tamm formula, assuming
that the electron is created at one side of the slab and is absorbed at the
other.
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The Tamm problem for the magnetic dipole
The magnetic dipole is parallel to the velocity. In this case the Fourier
components of the current density differ from zero only in the motion
interval (−z0, z0). Correspondingly, the magnetic potential and the field
strengths are given by

Aφ = − µmd

2πvγ

∂αT

∂ρ
, µHθ = −∂Aφ

∂r
− cot θ

r
Aφ,

where αT is the same as in (6.110). Using approximations i)-iii), one gets

Hθ = −mdk
2n2 sin θ

2πγv
αT .

The electric field strengths are obtained from the relation

curl �H = −ikε �E

valid outside the motion interval. This gives

Eφ =
k2nµmd

2πγv
αT sin θ.

When evaluating field strengths we have dropped the terms which decrease
at infinity faster than 1/r and which do not contribute to the radiation
flux. The distribution of the radial energy flux on the sphere of the radius
r is given by

σr(θ, φ) =
d2E

dΩdω
= − c

2
r2(EφH∗

θ + E∗
φHθ) =

m2
dk

2n3µ sin2 θ

π2γ2βv
q2. (6.116)

In the limit kz0 → ∞ one has

d2E
dΩdω

=
m2

dk
2n2µkz0

πγ2βv
(1 − 1/β2

n)δ(cos θ − 1/βn). (6.117)

Integration over the solid angle gives the frequency distribution of the emit-
ted radiation per unit frequency and per unit length

dE
dLdω

=
m2

dω
3µ

v4γ2γ2
n

. (6.118)

This coincides with (6.88).
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The magnetic dipole is perpendicular to the velocity. Let the magnetic
dipole directed along the z axis move on the interval (−x0, x0) of the x
axis with a constant velocity v. We write out without derivation the elec-
tromagnetic field strengths contributing to the radial energy flux

Eθ =
mdk

2µn

2πv
α′

T(1 − β2 cos2 θ) cos φ, Eφ = −mdk
2µn

2πvγ2
α′

T cos θ sin φ,

Hθ =
mdk

2n2

2πvγ2
α′

T cos θ sin φ, Hφ =
mdk

2n2

2πv
α′

T(1 − β2 cos2 θ) cos φ.

where

α′
T = (2/kr)q exp(iknr), q = (1/β − n cos θ)−1 sin[kx0(1/β − n cos θ)].

The θ is the angle between the radius vector of the observational point and
the motion axis (which is the x axis). The φ is the observational azimuthal
angle in the yz plane. The value φ = 0 corresponds to the y axis, the
magnetic moment is along the z axis.

The distribution of the radial energy flux on the sphere of the radius r
is given by

σr(θ, φ, ω) =
d2E

dΩdω
=

c

2
r2(EθH

∗
φ + E∗

θHφ − EφH∗
θ − E∗

φHθ)

=
m2

dk
2n3µ

π2βv

[
cos2 φ(1 − β2 cos2 θ)2 + γ−4 sin2 φ cos2 θ

]
q2. (6.119)

In the limit kz0 → ∞ this gives

d2E
dΩdω

=
m2

dk
3z0n

2µ

πβv

×
[
cos2 φ(1 − 1/n2)2 +

1
γ4β2

n

sin2 φ

]
δ(cos θ − 1/βn). (6.120)

Integration over the solid angle gives

d2E
dLdω

=
m2

dk
3n2µ

2βv

[
(1 − 1/n2)2 +

1
γ4β2

n

]
. (6.121)

This coincides with (6.98).
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The Tamm problem for the toroidal dipole
The toroidal dipole is parallel to the velocity. The direction of the toroidal
dipole coincides with the direction of its symmetry axis. The electromag-
netic vector potential and field strengths contributing to the radial energy
flux are given by

Eθ =
imtk

3n2µ

2πv
sin θ(1 − β2 cos2 θ)αT ,

Hφ =
imtk

3n3

2πv
sin θ(1 − β2 cos2 θ)αT ,

where αT is the same as above. The distribution of the radial energy flux
on the sphere of the radius r is given by

σr =
d2E

dΩdω
=

c

2
r2(EθH

∗
φ + E∗

θHφ)

=
m2

tk
4n5µ

π2βv
sin2 θ(1 − β2 cos2 θ)2q2. (6.122)

Here θ is the polar angle of the observational point. In the limit kz0 → ∞,
(6.122) goes into

d2E
dΩdω

=
m2

tk
5z0n

4µ

πβv
(1 − 1/β2

n)(1 − 1/n2)2δ(cos θ − 1/βn). (6.123)

Integration over the solid angle gives

d2E
dLdω

=
m2

tk
5n4µ

βv
(1 − 1/β2

n)(1 − 1/n2)2. (6.124)

This coincides with (6.101).

The symmetry axis is perpendicular to the velocity. In this case the elec-
tromagnetic field strengths contributing to the radial energy flux are given
by

Eθ = − iµmtk
3n2α′

T

2vπεγ
(1 − β2 cos2 θ) cos θ sin φ,

Eφ = − iµmtk
3n2α′

T

2vπεγ
(1 − β2 cos2 θ) cos φ,

Hθ =
imtk

3n3α′
T

2vπγ
(1 − β2 cos2 θ) cos φ,
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Hφ = − imtk
3n3α′

T

2vπγ
(1 − β2 cos2 θ) cos θ sin φ.

Correspondingly, the radial energy flux is

σr(θ, φ, ω) =
d2E

dωdΩ
=

1
2
cr2(EθH

∗
φ + E∗

θHφ − EφH∗
θ − E∗

φHθ)

=
m2

tk
4n5µ

γ2π2vβ
(1 − β2 cos2 θ)2(cos2 θ sin2 φ + cos2 φ)q2. (6.125)

Again, θ is the polar angle of the observational point; the toroidal dipole
is along the z axis, the angle φ defining the position of the observational
point in the yz plane perpendicular to the velocity, is counted from the y
axis.
In the limit kz0 → ∞, (6.125) goes into

d2E
dωdΩ

=
m2

tk
5z0n

4µ

γ2πvβ
(1−1/n2)2(

1
β2

n

sin2 φ+cos2 φ)δ(cos θ−1/βn). (6.126)

The integration over the solid angle φ gives

d2E
dωdL

=
m2

tk
5n4µ

2γ2vβ
(1 − 1/n2)2

(
1
β2

n

+ 1
)

. (6.127)

This coincides with (6.103).

Tamm’s problem for the electric dipole with arbitrary orientation of the
symmetry axis
Let the electric dipole move along the z axis and let it be directed along
the vector �n = (nx, ny, nz) defining the direction of its symmetry axis in
the laboratory reference frame. In this case the vector potential and elec-
tromagnetic field strengths contributing to the radial energy flux are given
by

Az =
ieaµ

πc
(�n�∇)αT , Eθ =

eak2nµ

πc
sin θ

(
ñρ sin θ +

1
γ

nz cos θ

)
αT ,

Hφ =
eak2n2

πc
sin θ

(
ñρ sin θ +

1
γ

nz cos θ

)
αT ,

where ñρ = sin θ0 cos(φ − φ0) and nz = cos θ0; θ and φ define the position
of the observational point; θ0 and φ0 define the orientation of the electric
dipole. Correspondingly the radial energy flux is

σr(θ, φ, ω) =
d2E

dωdΩ
=

1
2
cr2(EθH

∗
φ + E∗

θHφ)

=
4e2a2k2n3µ

π2c

(
ñρ sin θ +

1
γ

nz cos θ

)2

sin2 θq2. (6.128)
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For the electric dipole oriented along the velocity (ñρ = 0, nz = 1) (6.128)
is reduced to

σ‖
r(θ, φ, ω) =

4e2a2k2n3µ

γ2π2c
cos2 θ sin2 θq2. (6.129)

Correspondingly for the electric dipole orientation perpendicular to the
motion axis (ñρ = cos(φ − φ0), nz = 0), one has

σ⊥
r (θ, φ, ω) =

4e2a2k2n3µ

π2c
q2 sin4 θ cos2(φ − φ0). (6.130)

In the limit kz0 → ∞ one finds

d2E
dωdΩ

=
4e2a2k3z0n

2µ

πc

×
(

ñρ

√
1 − 1/β2

n +
1

γβn
nz

)2

(1 − 1/β2
n)δ(cos θ − 1/βn). (6.131)

σ‖
r(θ, φ, ω) =

4e2a2k3z0n
2µ

γ2πc

1
β4

nγ2
n

δ(cos θ − 1/βn), (6.132)

σ⊥
r (θ, φ, ω) =

4e2a2k3z0n
2µ

πcβ4
nγ4

n

cos2(φ − φ0)δ(cos θ − 1/βn). (6.133)

The integration over the solid angle gives

d2E
dωdL

=
2e2a2k3n2µ

c

×
[
sin2 θ0(1 − 1/β2

n) +
2

γ2β2
n

cos2 θ0

]
(1 − 1/β2

n). (6.134)

(
d2E

dωdL
)‖ =

4e2a2k3n2µ

γ2c

1
β2

n

(
1 − 1

β2
n

)
, (6.135)

(
d2E

dωdL
)⊥ =

2e2a2k3n2µ

c

(
1 − 1

β2
n

)2

. (6.136)

These equations coincide with (6.107)-(6.109).

Concluding remarks on the dipoles moving in medium. As expected, the
integral Tamm intensities (that is, integrated over the solid angle) in the
limit kz0 → ∞ (large motion interval) coincide with the radiation intensities
corresponding to the unbounded motion treated in section 2. The radiation
intensities for the Tamm problem differ considerably from those given by
Frank in [3,4]. There is an essential difference between our derivation and
that of [3,4].
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The method used by Frank is quite complicated. He writes the Maxwell
equations in terms of electric and magnetic vector Hertz potentials which
are related to the electromagnetic field strengths. In the right hand sides
of the Maxwell equations there are electric and magnetic polarizations pro-
portional to the LF electric and magnetic moment, respectively. Electric
and magnetic moments in the LF are connected with those in the dipole
RF through the well-known linear relations (see, e.g. [5]). When in the
dipole RF there is only electric or magnetic dipole one may exclude from
these relations the non-zero magnetic moment of the RF, thus obtaining
the relation between the electric and magnetic moments of the LF.

On the other hand, we define the charge and current densities in the RF.
Using the Lorentz transformation, the same as in vacuum, we recalculate
them into the LF. We then let the dimensions of these distributions tend
to zero, thus obtaining infinitesimal the charge and current distributions
corresponding to the electric, magnetic, or toroidal dipoles. With these in-
finitesimal charge and current distributions we solve the Maxwell equations
finding the electromagnetic potentials and field strengths. Using them we
evaluate the radiated energy flux.

6.5. Electromagnetic field of a precessing magnetic dipole

Consider an infinitely thin circular turn with a constant current flowing in
it. Let the center of this current loop coincide with the origin, whilst its
symmetry axis precesses around the z axis with a constant angular velocity
ω0. We choose the rest frame (RF) of this loop as follows. Let �nx, �ny, and
�nz be the orthogonal basis vectors of the laboratory frame (LF). The �ez

vector of RF we align along the loop symmetry axis �n. Being expressed in
terms of the LF basis vectors it is given by

�n = �ez = cos θ0�nz + sin θ0�nρ = �nr,

where �nρ = cos ω0t�nx +sin ω0t�ny and θ0 is the inclination angle of the loop
symmetry axis towards the laboratory z axis. Other two basis vectors of
RF lying in the plane of loop, we choose in the following way

�ex =
1

sin θ0
(�n × �nz) = cos ω0t�ny − sin ω0t�nx = �nφ,

�ey =
1

sin θ0
(�n × (�n × �nz)) = cos ω0t�nρ − sin ω0t�nz = �nθ, (6.137)

that is, �ex, �ey and �ez coincide with the spherical basis vectors.
Let x, y, z and x′, y′, z′ be the coordinates of the same point in the

laboratory and proper reference frames, respectively. They are related as
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follows
x′ = x sin ω0t − y cos ω0t, y′ = ρ cos θ0 − z sin θ0,

z′ = ρ sin θ0 + z cos θ0, (6.138)

where ρ = x cos ω0t + y sin ω0t. The current density in the RF is given by

�j′ = �eψI0δ(z′)δ(ρ′ − d),

where ρ′ =
√

x′2 + y′2; eψ = �ex cos ψ − �ey sin ψ is the vector lying in the
plane of the loop and defining the direction of current and ψ is the azimuthal
angle in the plane of the loop defined by cosψ = x′/d, sin ψ = y′/d. In
the LF, the components of the current density are given by

jx =
(

cos θ0
∂

∂y
− sin ω0t sin θ0

∂

∂z

)
M,

jy =
(
− cos θ0

∂

∂x
+ cos ω0t sin θ0

∂

∂z

)
M,

jz = sin θ0

(
sin ω0t

∂

∂x
− cos ω0t

∂

∂y

)
M, (6.139)

where
M = I0δ(z′)Θ(d −

√
x′2 + y′2).

x′, y′ and z′ should be expressed through the coordinates (x, y, z, t) of the
LF via the relations (6.138). We are interested in studying the point-like
(d → 0) current loop,which is equivalent to the magnetic dipole. In this
limit

M = πd2I0δ(x)δ(y)δ(z).

The vector magnetic potential is given by

�A =
1
c

∫ 1
R

�j(�r′, t′)δ(t′ − t + R/c)dV ′dt′.

After integration one finds for the spherical components of �A:

Ar = 0, Aθ = −πd2I0

c
sin θ0

∂

∂r

sin ψ

r
,

Aφ =
πd2I0

c

(
1
r2

cos θ0 sin θ + sin θ0 cos θ
∂

∂r

sin ψ

r

)
. (6.140)

Here ψ = ω0t−k0r−φ. The non-vanishing components of the field strengths
are

Er = 0, Eφ =
πd2I0k0

c
sin θ0 cos θ

∂

∂r

sin ψ

r
, Eθ =

πd2I0k0

c
sin θ0

∂

∂r

cos ψ

r
,
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Hr =
2πd2I0

cr

(
1
r2

cos θ0 cos θ − sin θ0 sin θ
∂

∂r

cos ψ

r

)
,

Hφ = −πd2I0

c
sin θ0

1
r

∂

∂r
r

∂

∂r

sin ψ

r
,

Hθ = −πd2I0

cr

∂

∂r

(
1
r

cos θ0 sin θ + r sin θ0 cos θ
∂

∂r

cos ψ

r

)
. (6.141)

To evaluate the radiation field one should leave in (6.141) the terms which
decrease no faster than 1/r for r → ∞:

Er = 0, Eθ = −Hφ ≈ πd2k2
0I0

cr
sin θ0 sin ψ,

Hr ≈ 0, Eφ = Hθ ≈ πd2k2
0I0

cr
sin θ0 cos θ cos ψ. (6.142)

The radial energy flux per unit time through a surface element r2dΩ is

Sr =
dE

dtdΩ
=

cr2

4π
(EθHφ − HθEφ)

=
π

4c
(d2k2

0I0 sin θ0)2(sin2 ψ + cos2 θ cos2 ψ). (6.143)

However, experimentalists usually measure not the time distribution of
the energy flux flowing through the observational sphere, but photons with
definite frequency. For this we evaluate the Fourier transforms of the field
strengths

�E(ω) =
1
2π

∞∫
−∞

exp(iωt) �E(t)dt, �H(ω) =
1
2π

∞∫
−∞

exp(iωt) �H(t)dt.

In the wave zone where kr � 1 one finds

Eθ(ω) = Hφ(ω)

= − iπk2
0I0d

2

2cr
sin θ0[exp(−iΦ0)δ(ω + ω0) − exp(iΦ0)δ(ω − ω0)],

Eφ(ω) = −Hθ(ω) = −πk2
0I0d

2

2cr
sin θ0 cos θ

×[exp(−iΦ0)δ(ω + ω0) + exp(iΦ0)δ(ω − ω0)], (6.144)

where Φ0 = k0r +φ. The energy radiated into the unit solid angle, per unit
frequency is

d2E
dωdΩ

=
cr2

4π
(EθH

∗
φ − H∗

θEφ + c.c.)
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=
πk4

0I
2
0d4

8c
sin2 θ0(1 + cos2 θ)[δ(ω − ω0)]2). (6.145)

This means that only the photons with an energy ω0 should be observed.
A question arises of why we did not use the instantaneous Lorentz trans-

formation when transforming the charge and current densities from the
dipole non-inertial RF to the inertial LF.

The reason for this may be illustrated using the circular loop with the
current density j = �j0δ(ρ − a)δ(z)/2πa in its RF as an example. Let this
loop rotate with a constant angular velocity ω around its symmetry axis.
Then in the LF the charge density σ = aωjγ/c2 and the charge

q =
∫

σdV = aωj0γ/c2

arise. Here a is the loop radius, γ = 1/
√

1 − β2, β = aω/c.
This absurd result is because that it is not always possible to apply

the instantaneous Lorentz transformation for the transformation between
the inertial and non-inertial reference frames. The correct approach is as
follows. In the inertial reference frame (that is, in the laboratory frame)
there is only the static current density. In the non-inertial reference frame
(attached to a rotating current loop) both charge and current densities
differ from zero. There is no charge in this reference frame since a charge is
no longer a spatial integral over the charge density, but includes integration
over other hypersurfaces [25].

The content of this section may be applied to the explanation of radia-
tion observed from neutron stars (magnetars) with super-strong magnetic
fields (see e.g., [26].

6.6. Discussion and Conclusion

In this Chapter we have evaluated the electromagnetic fields of electric,
magnetic, and toroidal dipoles moving im medium. We use the following
procedure. First, in the dipole reference rest frame we consider finite charge
and current densities which in the infinitesimal limit reduce to electric, mag-
netic, and toroidal dipoles. Then, we transform these finite charge-current
densities to the laboratory frame using the Lorentz transformation, the
same as in vacuum. Then, we let the dimensions of these densities tend
to zero, thus obtaining densities describing moving electric, magnetic and
toroidal dipoles. With these densities we solve the Maxwell equations, find
electromagnetic potentials, field strengths, and the radiated energy flux.
This procedure is straightforward, without any ambiguities. On the other
hand, complications arise when one formulates the same problem in terms
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of electric and magnetic polarizations (see Introduction). The ambiguity is
owed to the transformation laws between electric and magnetic moments in
two inertial reference frames. Since these two approaches should be equiva-
lent, the question arises of whether the same ambiguity takes place for the
charge and current densities. Or, more exactly: Is it true that charge and
current densities in two inertial reference frames placed in a medium are
related via the vacuum Lorentz transformation? It should be noted that a
standard electrodynamics of moving bodies (see, e.g., [27]-[29]) definitely
supports the same transformation law for the charge and current densities
both in medium and vacuum.

Another ambiguity is that there is another formulation of relativistic
spin theory. We mean the so-called Bargmann-Michel-Telegdi theory. In it
there are three spin components in the spin rest frame, four components in
any other reference frame, and there is no electric moment in this reference
frame.

We briefly summarize the main results obtained:

1. The exact electromagnetic fields of point-like electric and magnetic
dipoles moving in a non-dispersive medium are obtained in the time rep-
resentation. The formalism of induced electric and magnetic moments sug-
gested by Frank does not describe properly the exact electromagnetic fields.

2. The exact electromagnetic field of a point-like toroidal solenoid mov-
ing in a non-dispersive medium is obtained. For the velocity of an elemen-
tary toroidal solenoid smaller than the velocity of light in medium, the
electric field of moving TS is similar to the field of an electric quadrupole.

3. In the spectral representation, treating electric, magnetic and toroidal
dipoles as an infinitesimal limit of corresponding charge and current densi-
ties, we study how they radiate when moving uniformly in an unbounded
medium. The frequency and velocity domains where radiation intensities
are maximal are defined. The behaviour of radiation intensities near the
Cherenkov threshold is investigated in some detail.

4. Radiation intensities are obtained for electric, magnetic, and toroidal
dipoles moving uniformly in a medium, in a finite spatial interval (Tamm
problem).

5. The electromagnetic field arising from the precession of the point-like
magnetic dipole around a fixed spatial axis is found. It turns out that the
precessing magnetic dipole radiates the sole frequency coinciding with that
of the precession.
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CHAPTER 7

QUESTIONS CONCERNING OBSERVATION OF THE
VAVILOV-CHERENKOV RADIATION

7.1. Introduction

It is known that the frequency spectrum of a point-like charge moving
uniformly with a velocity v greater than the velocity of light in medium
extends to infinity. The total radiated energy and the photon number are
infinite. This is because of the point-like structure of a moving charge whose
infinite self-energy is a reservoir allowing charge to move uniformly despite
the energy losses from the radiation, ionization, and the polarization of
the surrounding medium. The easiest way of obtaining the finite frequency
spectrum is to consider a charge of finite dimensions. This was done in
a nice paper [1] in which the charge density having a zero dimension in
the transverse direction and a Gaussian distribution along the motion axis
was considered. The frequency spectrum obtained there, extended up to
v/a, where a is the parameter of the Gaussian distribution. Obviously, this
charge distribution is quite unphysical. The next attempt was made in [2]
in which the charge distributions were chosen in the form of a spherical
shell, a Yukawa distribution, and that of [1]. It should be noted that the
authors of [1] and [2] related their charge densities to the laboratory frame.
It seems to us that it is more natural to relate charge densities to the rest
frame of the moving charge. There are two reasons for this. First, the charge
form factor of a moving charge is the Fourier transform of a charge density
related to the rest frame of a moving charge. Second, in another labora-
tory frame moving relative the initial frame with a constant velocity, the
charge density is no longer spherically symmetric. So we prefer to define
the charge density in its rest frame. Charge and current densities in the
laboratory frame are then obtained by the Lorentz transformation. Solving
the Maxwell equations with these densities, we find electromagnetic field
strengths and the radiated energy flux. This is essentially the procedure
adopted by us. In addition to the current densities studied in [1,2] we con-
sidered the charge density uniformly distributed inside the sphere and the
spherical Gaussian distribution. A charge moving uniformly in medium ra-
diates if its velocity exceeds the velocity of light in medium. If there is no
external force supporting this motion, the charge should be decelerated. In
the absence of dispersion the total energy (obtained by the integration over

341
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the frequency spectrum) is infinite for a point-like charge. For a charge of
finite dimensions this quantity is finite. Equating it to the kinetic energy
loss, one can find how a charge moves when it loses the energy as a result
of the Cherenkov radiation. This is done in subsection (7.2).

Another way of obtaining a finite radiated energy is to take into ac-
count the medium dispersion. The crucial step was made by Frank and
Tamm in 1937 [3] who presented general formulae for the electromag-
netic field strengths and radiation intensity in the spectral representa-
tion without specifying the concrete form of the medium dispersion law.
Their formulae, predicting a concrete angular position of the maximum
of the radiation intensity for a particular charge velocity and wavelength,
are extensively used by experimentalists. The taking into account of the
medium dispersion is important since the refractive index and absorption
depend on the frequency. The disregarding of the medium dispersion is
possible only in a restricted frequency region. For example, for the pure
water the refractive index is almost constant in the visible light region
(4 × 10−5cm < λ < 7 × 10−5cm) and for λ > 1 km [4]. The visible light
region is surrounded by two absorption peaks (at λ = 3 × 10−4 cm and at
λ = 5 × 10−7 cm).

The next important case was made by Fermi [5], who considered an
uniform motion of a charge in medium with a complex dielectric permit-
tivity chosen in a standard one-pole form (4.1) extensively used in optics.
From general formulae presented by him it follows that a charge moving
in such a medium should radiate at each velocity. Physically this can be
understood as follows. The current density of the uniformly moving charge
contains all frequencies. A particular spectral component of the electro-
magnetic wave propagates in medium without damping if the Tamm-Frank
radiation condition β2n2(ω) > 1 is satisfied. For the ε parametrization (4.1)
there always exists a frequency interval for which this condition is satisfied.
Since the transition from the time representation to the spectral represen-
tation involves integration over all frequencies, a charge uniformly moving
in medium described by (4.1) radiates at each velocity. The question arises
of the space-time distribution of this radiation. Analytically and numeri-
cally this was investigated in [6-8], where it was shown that for the charge
velocity v above some critical vc, the switching of the medium dispersion
leads to the appearance of several finite height maxima in the neighbour-
hood of the singular Cherenkov cone corresponding to the non-dispersive
medium. For the charge velocity below vc the bunch of the radiation inten-
sity appears behind the moving charge at a sufficiently large distance from
it. Recent measurements [9] of the space-time distribution of the radiation
intensity for v < vc are in satisfactory agreement with results of [6-8] in
which the finite expressions were obtained for the total (that is, integrated
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over frequency) energy and the number of photons radiated per unit length
of the charge path for the dielectric permittivity (4.1) with p = 0.

In this treatment (subsection (7.3)), equating this energy to the kinetic
energy loss, we find how the Vavilov-Cherenkov (VC) radiation affects the
velocity of a point-like charge moving in a dispersive medium.

So far we have implicitly assumed that the measuring device is in the
same medium in which the charge moves. However, the charge usually
moves in one medium while observations are performed in another. For ex-
ample, in the initial Cherenkov experiments the electrons moved in water,
whilst the observations were made in air. Complications and ambiguities
arising from such experimental procedure are also discussed.

The other problem which will be considered in this chapter is the tran-
sition and VC radiation on dielectric and metallic spheres. The notion of
transition radiation was introduced by Frank and Ginzburg [10] who stud-
ied radiation arising from a uniformly moving charge passing from one
medium to another. They considered the plane boundary between media
1 and 2. A thorough exposition of transition radiation may be found in
[11]. In this chapter we consider the charge motion which begins and ter-
minates in medium 2 and which passes through the dielectric sphere filled
with medium 1. The energy flux is evaluated in medium 2. As far as we
know, the transition radiation for the spherical boundary is considered here
for the first time. In the past, transition radiation was considered in the
physical literature only for plane interfaces. For the problem treated we
have evaluated angular and frequency radiation intensities for a number
of charge velocities and of medium properties. These expressions contain
transition and Cherenkov radiation as well as charge radiation from the
charge instantaneous beginning and termination of motion.

We also analyse attempts to explain transition radiation in terms of the
charge instantaneous stop in one medium and its instantaneous beginning
of motion in another medium [12-14]. We prove that their contribution
to the radiation intensity disappears if the motion with instantaneous ve-
locity jumps can be considered as a limiting case of the charge smooth
motion. We also consider the interpretation of transition radiation in terms
of semi-infinite charge motions, with an instantaneous stop of a charge in
one medium and with its instantaneous start in another medium [10,11].
We show that for the charge velocity greater than the velocity of light in
medium, the terms corresponding to the Cherenkov radiation should be
taken into account.
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7.2. Cherenkov radiation from a charge of finite dimensions

Consider a charge of finite dimensions moving uniformly in a medium with
a velocity v directed along the z axis. Let the charge density in the reference
frame in which it is at rest be spherically symmetric: eρCh(r′), where r′ =√

x′2 + y′2 + z′2. In the laboratory frame (relative to which a charge moves
with a velocity v), the charge and current densities are given by

ρL = eγρCh(r), jz = vρL,

where r = [ρ2+γ2(z−vt)2]1/2, ρ =
√

x2 + y2, γ = (1−β2)−1/2 and β = v/c.
The Fourier transform of ρL is defined as

ρω =
1
2π

∞∫
−∞

dt exp(iωt)ρL(t).

Making the change of variables (t = z/v + ρx/γv) we transform ρω to the
form

ρω =
e

πv
exp(iψ)f(ρ), ψ = ωz/v

where

f(ρ) = ρ

∞∫
0

cos(ωρx/vγ)ρCh(ρ
√

1 + x2)dx.

The electric scalar and magnetic vector (only its z component differs from
zero) potentials are

Φω(x′, y′, z′) =
1
ε

∫ 1
R

exp(iknR)ρω(x′, y′, z′)dV ′, Aω = βµεΦω.

Here R = [(x − x′)2 + (y − y′)2 + (z − z′)2]1/2, kn = kn, k = ω/c, and
n =

√
εµ is the refractive index of the medium with parameters ε and µ.

Now we take into account the expansion

1
R

exp(iknR) =
∞∑

m=0

εm cos m(φ − φ′) (7.1)

×
i

kn∫
−kn

dkz exp[ikz(z − z′)]G(1)
m +

2
π

(
−kn∫
−∞

+
∞∫

kn

)dkz exp[ikz(z − z′)]G(2)
m

 ,

where
G(1)

m = Jm(
√

k2
n − k2

zρ<)H(1))
m (

√
k2

n − k2
zρ>),
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G(2)
m = Im(

√
k2

z − k2
nρ<)Km(

√
k2

z − k2
nρ>), εm =

1
1 + δm, 0

.

Furthermore, Jm, H
(1))
m , Im, and Km are the Bessel, Hankel, modified Bessel

and Macdonald functions, respectively. Substituting this expansion into Φ,
and integrating over z′ and φ′, one gets

Φ(x, y, z) =
2πe

εv
exp(iωz/v)

[
iΘ(βn − 1)H(1)

0 Φ1 +
2
π

Θ(1 − βn)K0Φ2

]
,

Az = βεµΦ,

where

Φ1 =
∫ ∫

ρ2dρdt cos(ωρt/γv)J0ρCh(ρ
√

1 + t2),

and

Φ2 =
∫ ∫

ρ2dρdt cos(ωρt/γv)I0ρCh(ρ
√

1 + t2).

Here and later we drop the arguments of the usual and modified Bessel
functions if they are kρ

√
n2 − 1/β2 and kρ

√
1/β2 − n2, respectively. The

integration over ρ and t runs over the (0,∞) interval.
We intend to find the energy flux in the radial direction through the

surface of a cylinder of the radius ρ coaxial with the motion axis. It coincides
with the energy radiated per unit cylinder length and per unit frequency,
and is given by

Sρ =
d2E
dzdω

= −πρc(EzH
∗
φ + E∗

zHφ).

Thus we need Ez and Hφ. They are equal to

Ez =
2πeiµω

c2
(1 − 1/β2n2) exp(iωz/v)

×
[
iΘ(βn − 1)H(1)

0 Φ1 +
2
π

Θ(1 − βn)K0Φ2

]
,

Hφ =
2πe

c
exp(iωz/v)|k|

√
|n2 − 1/β2|

×
[
iΘ(βn − 1)H(1)

1 Φ1 +
2
π

Θ(1 − βn)K1Φ2

]
.

Substituting them into Sρ one finds

Sρ(ω) = F · STF , (7.2)
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where

STF =
e2µω

c2
(1 − 1/β2n2) (7.3)

is the Tamm-Frank frequency distribution of the energy radiated by the
uniformly moving point-like charge per unit length and per unit frequency
[15], and

F = 16π2Φ2
1 (7.4)

is the factor taking into account the finite dimension of a charge (form
factor, for short).

The number of photons radiated by a moving charge per unit length of
the cylindrical surface and per unit frequency is given by

Nρ(ω) =
d2N

dzdω
= F · NTF , (7.5)

where NTF is the corresponding Tamm-Frank frequency distribution of the
photon number

NTF =
αµ

c
(1 − 1/β2n2), (7.6)

and α = e2/h̄c is the fine structure constant.
The total energy and number of photons radiated per unit length of the

cylindrical surface are obtained by integrating Sρ(ω) and Nρ(ω) over ω

Sρ =
dE
dz

=
∞∫
0

Sρ(ω)dω, Nρ =
dN

dz
=

∞∫
0

Nρ(ω)dω. (7.7)

In what follows, when integrating (7.7) we assume the medium to be
dispersion-free, that is, n does not depend on frequency. Consider particular
cases.

1. Let the charge be uniformly distributed inside the sphere of the radius
a:

ρCh(r) = ρ0Θ(a − r), ρ0 =
1

(4πa3/3)
. (7.8)

Then,
ρL = eγρ0Θ{a − [ρ2 + γ2(z − vt)2]1/2},

ρω =
eγρ0

πω
exp(iωz/v) sin

(
ω

γv

√
a2 − ρ2

)
.

The form factor F entering into (7.2) is given by

F =
9
2
π

J2
3/2(y)

y3
, (7.9)
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where y = ka
√

n2 − 1. The total radiated energy and the number of photons
defined by (7.7) are given by

Sρ =
9e2µ

4a2

1 − 1/β2n2

n2 − 1
, Nρ =

3απµ

5a

1 − 1/β2n2

√
n2 − 1

(7.10)

for β > 1/n and zero otherwise.
2. The charge is distributed over the surface of the sphere

ρ(r) = ρ0δ(a − r), ρ0 = 1/(4πa2). (7.11)

The form factor F is

F =
(

sin y

y

)2

, y = ka
√

n2 − 1. (7.12)

The total energy

Sρ =
∞∫
0

Sρ(ω)dω =
e2µ(1 − β2n2)

a2(n2 − 1)

∞∫
0

dy

y
sin2 y (7.13)

diverges whilst the total number of photons is finite:

Nρ =
∞∫
0

Nρ(ω)dω =
αµπ

2a

1 − 1/β2n2

√
n2 − 1

. (7.14)

The divergence of Sρ is owed to the contribution of high frequencies. In the
past, frequency distribution Sρ(ω) was obtained in [2] but with the form
factor given by

F ′ =
(

sin y′

y′

)2

, where y′ = ka
√

ε.

This leads to different physical predictions: for n slightly greater than 1, the
form factor F also tends to 1 and the frequency distribution Sρ(ω) tends to
the Tamm-Frank distribution whilst the form factor F ′ and the frequency
distribution Sρ(ω), found in [2], are rapidly oscillating functions of ω when
ε → 1.

3. The charge is distributed according to the Gauss law

ρCh(r) = ρ0 exp(−r2/a2), ρ0 = 12/(π3/2a3). (7.15)

Then,
ρω =

eγ

2π2a2v
exp(iψ) exp(−ρ2/a2) exp(−k2a2/4β2).
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The form factor F is
F = exp(−k2a2n2/2). (7.16)

The total radiated energy and the number of photons are finite now

Sρ =
e2µ

a2n2
(1 − 1/β2n2), Nρ =

αµπ3/2

an
(1 − 1/β2n2). (7.17)

4. For the Yukawa charge distribution

ρCh(r) = ρ0
exp(−r/a)

r
, ρ0 =

1
4πa2

, (7.18)

one has

Φ1 =
1
4π

1
1 + k2a2(n2 − 1)

, F =
1

[1 + k2a2(n2 − 1)]2
,

Nρ(ω) = NTFF, Sρ(ω) = STFF, (7.19)

The integral number of emitted photons and the integral radiated energy
are given by

Nρ =
∫

dωNρ(ω) =
πµα

4a
√

n2 − 1
(1 − 1/β2n2),

Sρ =
∫

dωSρ(ω) =
e2µ

2a2(n2 − 1)
(1 − 1/β2n2). (7.20)

The following Sρ(ω) was found in [2] for the Yukawa distribution

Sρ = STFF, where F =
1

16π2c2(1 + k2a2ε)
.

Obviously, this F is not reduced to 1 in the limit a → 0 (as it should be).
This is due to the extra factor 1/16π2c2.

There are two reasons why we cannot compare our results step by step
with those obtained in [1,2]. The first reason is purely technical: the au-
thors of [1,2] carried out the double Fourier transform over space and time
variables, and then returned to the frequency distribution using integra-
tion in k space. The advantage of our approach is that we always operate
in a space-frequency representation, no intermediate steps are needed. The
second reason is a result of different definitions of charge densities. For
example, we define the spherical charge density ρCh in a moving system at-
tached to a moving charge and then recalculate it into the laboratory frame
using the Lorentz transformations, thus obtaining ρL. On the other hand,
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the authors of [2] postulate the spherical charge density ρCh in the labo-
ratory frame. It should be noted that in the laboratory frame the charge
density owed to the γ factors cannot be spherically symmetrical (this fact
is observed experimentally).

7.2.1. CHERENKOV RADIATION AS THE ORIGIN OF THE CHARGE
DECELERATION

The following ambiguity arises. The Cherenkov radiation is usually associ-
ated with the radiation of a charge moving uniformly in a medium. Since
the moving charge radiates, its kinetic energy should decrease. The energy
radiated per unit length is equal to

dE
dz

= C(1 − 1/β2n2) (7.21)

for β > 1/n and zero otherwise. The constant C, independent of β, is
defined by one of Eqs. (7.10), (7.17) or (7.20). Obviously, (7.21) should be
equal to the loss of kinetic energy:

dT

dz
= m0c

2 d

dz

1√
1 − β2

= −C(1 − 1/β2n2). (7.22)

Or, introducing the dimensionless variable z̃ = z/L, L = m0c
2/C, one

obtains
d

dz̃

1√
1 − β2

= −(1 − 1/β2n2). (7.23)

Integrating this equation we find

(n2 − 1)(z̃ − z̃0) =
1
2α

ln

(α + γ−1

α + γ−1
0

)2

· n2β2
0 − 1

n2β2 − 1

− n2(γ − γ0). (7.24)

Here γ = 1/
√

1 − β2, γ0 = 1/
√

1 − β2
0 , α =

√
1 − 1/n2, and β0 is the

charge velocity at the spatial point z0. This equation, being resolved relative
to β, defines the charge velocity β(z) at the particular point z of the motion
axis. It follows from (7.24) that

β → 1 − 1
2(1 − 1/n2)2z̃2

for z̃ → −∞ and

β → 1
n

{
1 +

1
2

exp[−2(n2 − 1)z̃]
}
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Figure 7.1. This figure shows how a moving charge is decelerated when all its energy
losses are owed to the Cherenkov radiation. The solid curve corresponds to a charge of
finite dimensions moving in a dispersion-free medium. The charge velocity approaches 1/n
for z̃ → ∞. The pointed curve corresponds to a point-like charge moving in a dispersive
medium. Its velocity is equal to βc at z̃ = z̃c. Below βc the asymptotic form of β given
by β ∼ βc exp[−(z̃ − z̃c)/4β2

c γ2
c ] was used.

for z̃ → ∞. The dependence β(z̃) for typical parameters n = 1.5, β0 = 0.8
and z0 = 0 is shown in Fig. 7.1.

7.3. Cherenkov radiation in dispersive medium

Another way of obtaining the finite value of the radiated energy and the
number of photons is to take into account the medium dispersion. The
energy flux in the radial direction through the cylinder surface of the radius
ρ is given by

d3E
ρdφdzdt

= − c

4π
Ez(t)Hφ(t).

Integrating this expression over the whole time of a charge motion and
over the azimuthal angle φ, and multiplying it by ρ, one obtains the energy
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radiated for the whole charge motion per unit length of the cylinder surface

dE
dz

= −cρ

2

∫
EzHφdt.

Substituting here instead of Ez and Hφ their Fourier transforms and per-
forming the time integration, one finds

dE
dz

=
∞∫
0

dωσρ(ω), (7.25)

where

σρ(ω) =
d2E
dzdω

= −πρcEz(ω)H∗
φ(ω) + c.c. (7.26)

is the energy radiated in the radial direction per unit frequency and per unit
length of the observational cylinder. The identification of the energy flux
with σρ is typical in the Tamm-Frank theory [15] describing the unbounded
charge motion in medium.

If the dielectric permittivity is chosen in the form

ε(ω) = 1 +
ω2

L

ω2
0 − ω2

,

then σρ(ω) is given by (7.3). The integration in (7.25) runs over the fre-
quency region corresponding 1−β2ε < 0, which corresponds to the Tamm-
Frank condition βn > 1. It is easy to check that for β > βc = 1/

√
1 + ω2

L/ω2
0

this condition is satisfied for 0 < ω < ω0. For β < βc this condition is satis-
fied for ωc < ω < ω0, where ωc = ω0

√
1 − β2γ2/β2

cγ2
c and γc = 1/

√
1 − β2

c .
This frequency window narrows as β diminishes. For β → 0 the frequency
spectrum is concentrated near the frequency ω0. The total energy radi-
ated per unit length of the observational cylinder is equal to [6,7] (see also
Chapter 4)

dE
dz

=
∞∫
0

Sρ(ω)dω =
e2ω2

0

2c2

[
1 − 1/β2 − 1

β2β2
cγ2

c

ln(1 − β2
c)
]

(7.27)

for β > βc and
dE
dz

= −e2ω2
L

2c2

[
1 +

1
β2

ln(1 − β2)
]

(7.28)

for β < βc.
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Energy balance as a result of the medium dispersion.
According to Section 2 the influence of the charge finite dimension becomes
essential for ka ∼ 1. If for a we take 1 fm, then ωf ∼ 1023s−1. On the other
hand, in the presence of dispersion, the frequency spectrum of the radiation
intensity extends up to ω0. If we identify ω0 with the ultraviolet frequency
∼ 1016s−1, then ω0 � ωf . This means that the influence of the dispersion
begins at a much smaller frequency than that owed due to the finite charge
dimensions.

Since in the presence of dispersion dE/dz is finite (see (7.27) and (7.28)),
one can extract v(z) from the energy balance condition dT/z = −dE/dz,
similarly as was done for a charge of finite dimensions. The following equa-
tions are valid now

d

dz̃

1√
1 − β2

= −
(

1 − 1
β2ñ2

)
(7.29)

for β > βc and

d

dz̃

1√
1 − β2

=
(

1
β2

c

− 1
)[

1 +
1
β2

ln(1 − β2)
]

(7.30)

for β < βc. Here we put

ñ2 =
[
1 +

(
1
β2

c

− 1
)

ln(1 − β2
c)
]−1

, z̃ =
z

L
, L =

2m0c
4

e2ω2
L

(
1
β2

c

− 1
)

.

For β > βc one then finds the following equation

(ñ2 − 1)(z̃ − z̃0) =
1
2α

ln

(α + γ−1

α + γ−1
0

)2

· ñ2β2
0 − 1

ñ2β2 − 1

− ñ2(γ − γ0). (7.31)

Here α =
√

1 − 1/ñ2; γ, γ0, and z0 are the same as in (7.24). It follows
from (7.31) that

β → 1 − 1
2(1 − 1/ñ2)2z̃2

for z̃ → −∞. The velocity βc is reached at

z̃c = z̃0+
1

2α(ñ2 − 1)
ln

(α + γ−1
c

α + γ−1
0

)2

· ñ2β2
0 − 1

ñ2β2
c − 1

− ñ2

ñ2 − 1
(γc−γ0). (7.32)

For β > βc the dependence β(z̃) extracted from (7.31) is shown in Fig.1 for
typical parameters βc = 0.5, β0 = 0.9 and z̃0 = 0. Below βc, the asymptotic
form of β̃ given by β̃ ∼ exp[−(z̃ − z̃c)/4β2

cγ2
c ] and obtained from (7.30) is

presented.
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Energy balance as a result of the ionization losses.
Although the energy balance is important from the theoretical viewpoint,
it is slightly academic. The reason is that the energy losses owed to the
ionization of medium atoms are much larger than the Cherenkov radiation
losses. To a good accuracy they are described by

dT/dz = − C

β2
F, (7.33)

where C is a constant dependent on the charge of a moving particle and
on the medium properties, and F is a function weakly dependent on β. For
the electrons propagating in water C ≈ 1.65 Mev/cm. On the other hand,
the constant e2ω2

0/2c2 entering (7.27) is ∼ 10−2 Mev/cm for ω0 ≈ 1016s−1.
Since e2ω2

0/2c2 � C the ionization energy losses are much larger than those
owed to the Cherenkov radiation. This means that usually one can disregard
the Cherenkov energy losses in (7.33). The notable exceptions are: i) gases,
in which ionization energy losses are small; ii) substances with the large
boundary frequency ω0 (lying, e.g., in the Roentgen part of the frequency
spectrum); iii) substances with a refractive index different from unity for
ω → ∞ (the typical example is ZnSE discussed in Chapter 4).

Eq. (7.33) can be solved analytically if one sets F = 1. Then

β(z) =
√

2[x(x + 4)]1/4

[
√

x(x + 4) + x + 2]1/2
. (7.34)

Here x = (zf−z)/L and L = m0c
2/C; zf is the spatial point at which β = 0.

For x → 0, β ∼ √
2x1/4 whilst β ∼ 1−1/x2 for x → ∞. The function β(x) is

shown in Fig. 7.2. The velocity β, as a function of z, drops almost instantly
for small L. This justifies the validity of the Tamm problem [16] which
involves a sudden transition from the charge uniform motion to the state of
rest. On the other hand, for large L (e.g., for heavy particles with not very
large charges Z (for Z large , C ∼ Z2 is also large and, therefore, L is small))
the transition to the state of rest will be smooth and the deviation from
the Tamm picture is to be expected. The radiation intensity corresponding
to the energy losses (7.33) and to the velocity dependence (7.34) is given
by

σr =
e2µnk2 sin2 θ

4π2c
(I2

c + I2
s ), (7.35)

where

Ic =
z2∫

z1

cos ψdz, Is =
z2∫

z1

sin ψdz, ψ = ωt(z) − knz cos θ.
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Figure 7.2. This figure shows how a moving charge is decelerated as a result of the
ionization energy losses described by (7.29). Here x = (zf − z)/L, zf is the spatial point
at which β = 0 and L is the same as in (7.31).

τ(z) = c(tf − t)/L =
√

y2 − 1 +
π

2
− 2 arctan(y +

√
y2 − 1),

y =
1
2
x + 1 +

1
2

√
x(x + 4). (7.36)

To what can the results of this section be applied?
First, we mention the VC radiation from the electron bunches produced in
linear electronic accelerators. According to [17] the typical bunch dimension
is about 1 cm which corresponds to a cut off frequency ω ∼ 3 × 1010s−1

lying in the far infrared region.
The other application is owed to [9], in which predictions of the position

of the radiation maximum made in [6-8] were checked experimentally. In
this reference, the dimension of an electric dipole layer propagating in ZnSe
crystal, was about 10−3 cm. The corresponding cut off frequency ω ∼ 3 ×
1013s−1 lies, again, in the infrared region.

When discussing the VC radiation from extended charges we implic-
itly implied that they are structureless. However, the electronic bunches
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and electric dipole layers mentioned above consist of electrons and elec-
tric dipoles, respectively. For frequencies larger than c/d (d is the distance
between particular charges or dipoles) their internal structure becomes es-
sential. Consequently the VC radiation from particular charges and dipoles
takes place and the above consideration is no longer valid.

7.4. Radiation of a charge moving in a cylindrical
dielectric sample

Up to now we have implicitly suggested that the radiation intensity is ob-
served in the same medium where a charge moves. However, a charge usually
moves in one medium (water, glass) while the observations are made in an-
other medium (air, vacuum) (see, e.g., the nice Cherenkov review [18]). We
intend now to consider arising complications. Consider a cylindrical sample
C of radius a filled with a medium with the parameters ε1 and µ1. This
sample is surrounded by another medium with parameters ε2 and µ2 such
that n2 < n1. Let a charge move with a constant velocity v along the axis
of C with a constant velocity v satisfying the inequality 1/n1 < β < 1/n2

(that is, the medium inside C is optically more dense than outside it). In
the past, this problem was considered by Frank and Ginzburg [19] who,
having written the general solution for arbitrary n1 and n2, applied it to
the concrete case when the medium inside C was vacuum, while outside C
was a medium with the refractive index n2. They obtained the remarkable
result that despite the absence of the energy flux inside C it reappears out-
side C if βn2 > 1.
As to other possibilities, they remark that

Similarly, as it was done above, one may easily consider other particular
cases (βn1 > 1, βn2 < 1; βn1 > 1, βn2 > 1), which will not be considered
here. We note only, that for βn2 < 1, there are no radiation energy losses
for both βn1 < 1 and βn1 > 1.

We consider in some detail the case corresponding to n2 < n1, βn1 >
1, βn2 < 1. One easily finds that the electromagnetic field arising from an
unbounded charge motion along the axis of C is equal to

Az = C2µ2 exp(iψ)K0(2), Hφ = C2k exp(iψ)
√

1/β2
2 − 1K1(2),

Ez = −ikC2µ1(1/β2
2 − 1) exp(iψ)K0(2), Eρ = Hφ/βε2 (7.37)

outside C, and

Az = µ1 exp(iψ)[
ie

2c
H

(1)
0 (1) + C1J0(1)],

Hφ = exp(iψ)kn1

√
1 − 1/β2

1 [
ie

2c
H

(1)
1 (1) + C1J1(1)], Eρ = Hφ/βε1,
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Ez = ikµ1 exp(iψ)(1 − 1/β2
1)[

ie

2c
H

(1)
0 (1) + C1J0(1)] (7.38)

inside it. Here ψ = kz/β, β1 = βn1, β2 = βn2. The arguments of the
Bessel functions are 2 = kρ

√
1/β2 − n2

2 for ρ > a and 1 = kρ
√

n2
1 − 1/β2

for ρ < a.The coefficients C1 and C2 are found from the continuity of Hφ

and Ez at ρ = a:

C1 =
e

2c

[
1
�(n1µ2

√
1/β2

2 − 1K0N1 + n2µ1

√
1 − 1/β2

1K1N0) − i

]
, (7.39)

C2 =
eµ1

πcka�

√
1 − 1/β2

1

1/β2
2 − 1

,

� = n1µ2

√
1/β2

2 − 1K0J1 + µ1n2

√
1 − 1/β2

1K1J0.

The arguments of the usual and modified Bessel functions entering into
(7.39) are kan1

√
1 − 1/β2

1 and kan2

√
1/β2

2 − 1, respectively. We evaluate
now the energy fluxes.

7.4.1. RADIAL ENERGY FLUX

The radial energy flux is

σρ =
d2E
dzdω

= −πρc(EzH
∗
φ + c.c.). (7.40)

Obviously, it is equal to zero outside C and

σρ = −πρck2µ1n1(1 − 1/β2
1)3/2

×{
[
− e

2c
H

(1)
0 (1) + iC1J0(1)

] [
− ie

2c
H

(2)
1 (1) + C∗

1J1(1)
]

+
[
− e

2c
H

(2)
0 (1) − iC∗

1J0(1)
] [

ie

2c
H

(1)
1 (1) + C1J1(1)

]
}

= −πρck2µ1n1(1 − 1/β2
1)3/2

×
− e2

πc2kn1ρ
√

1 − 1/β2
1

+
ie

2c
[J1(1)N0(1) − J0(1)N1(1)](C1 − C∗

1 )

 = 0

inside C (it was taken into account that ImC1 = −e/2c). Thus the radial
energy flux is equal to zero inside C too. This is because the contribu-
tion of the terms with a product of Hankel functions in the energy flux is
compensated by the terms with a product of Bessel and Hankel functions.

The following complication arises. Let the detector be placed outside C,
that is, in the medium where βn2 < 1. In fact, this is a typical situation in
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Cherenkov experiments. For example, in classical Cherenkov experiments
[18] the electrons moved in a vessel filled with water, whilst the observations
of the Cherenkov light were made in air, in a dark room, by a human eye.
There is no radial energy flux outside C. Then, how can the Cherenkov
radiation be observed there? One may argue that since the human eye is
filled with a substance having the refractive index approximately equal to
that of water, the Cherenkov radiation reappears in it (similarly to the
appearance of the radiation in the medium surrounding a vacuum channel
with a charge moving along its axis [19]), and therefore it could be detected.
However, there are now known substances with large refractive indices. Does
this mean that the radial energy flux cannot be detected outside C (for this
it is enough to use a collimator selecting only the photons emitted in the
radial direction) if the measuring device is fabricated from the substance
with a refractive index n2 smaller than 1/β and n1? A possible answer
is given in the following section in which the energy flux in the direction
parallel to the motion axis will be evaluated.

7.4.2. ENERGY FLUX ALONG THE MOTION AXIS

The energy flux parallel to the motion axis is

σz =
d2E
dρdω

= πρc(EρH
∗
φ + c.c.). (7.41)

It is equal to

σz =
ρe2µ2

1µ2(1 − 1/β2
1)

πva2�2
[K1(2)]2 (7.42)

outside C and
σz = πρcµ1k

2
(

1 − 1
β2

1

)
×

×
{

e2

4c2
[J2

1 (1) + N2
1 (1)] + J2

1 (1)|C1|2 − e

c
[N1(1)C1r − J1(1)C1i)]

}
, (7.43)

inside it. Here C1r and C1i are the real and imaginary parts of C1:

C1r =
e

2c

1
�

(
n1µ2

√
1/β2

2 − 1K0N1 + n2µ1

√
1 − 1/β2

1K1N0

)
, C1i = − e

2c
.

In general, σz is exponentially small outside C, except for ω satisfying
� = 0. For these ω, σz is infinite. For large ka the equation � = 0 reduces
to

kan1

√
β2

1 − 1 =
π

4
− arctan

ε2

√
β2

1 − 1

ε1

√
1 − β2

2

+ mπ, (7.44)



358 CHAPTER 7

where m is integer. The distance between the neighbouring maxima of σz

is �ω = πc/(an1

√
β2

1 − 1). For a cylinder radius a ∼ 10 cm, the �ω is
about 1010s−1. The typical optical frequency is about 5 × 1015s−1. Since
a real Cherenkov detector has the finite frequency resolution width (sev-
eral 1015s−1 units) it inevitably covers many maxima of σz, and therefore a
measuring device oriented parallel to the direction of motion will detect the
almost continuous radiation. Inside C, σz given by (7.43) is also singular at
the frequencies defined by (7.43). For other frequencies σz is not exponen-
tially small. As a function of ρ it is infinite on the axis of motion (ρ = 0)
(along which a charge moves) and oscillates with increasing of ρ. There
is no radiation maximum in the z =const plane at the Cherenkov angle
defined by cos θc = 1/βn. The physical interpretation is as follows. A mov-
ing charge emits the Cherenkov gamma ray at the Cherenkov angle. This
Cherenkov gamma ray intersects the particular z =const at some radius
ρ. Depending on the charge position, ρ changes from 0, when the charge
intersects the above the z =const plane, up to ρ = a, when the charge is
at a distance a tan θc in front this plane. A photographic plate placed at
the z =const plane perpendicularly to the motion axis will be darkened,
with a main maximum at ρ = 0 (the intensity of darkening behaves as 1/ρ
for small ρ) and with additional maxima corresponding to the singularities
of (7.43). Sometimes experimentalists (see, e.g., [20,21]) install inside the
cylindrical volume C (especially, when it is filled with a gas) a metallic
mirror inclined at an angle π/4 towards the motion axis. This mirror re-
flects the σz component (7.43) of the internal energy flux in the direction
perpendicular to the motion axis, thus making it possible to observe the
energy flux in the radial direction outside C. The experimentalists see the
pronounced maximum at the Cherenkov angle θc. The possible reasons for
this are: i) transition radiation arising at the surface of the metallic mirror;
ii) a charge deceleration inside this mirror; iii) the finite path of a charge
inside C in the presence of special optical devices focusing the gamma rays
emitted at the Cherenkov angle into the sole Cherenkov ring.

7.4.3. OPTICAL INTERPRETATION

A charge moving uniformly inside the dielectric cylinder C emits a light
ray at the Cherenkov angle θ1 (cos θ1 = 1/βn1) towards the charge motion
axis. Let this ray intersect the cylinder surface at some point and let i be
the angle of incidence (Fig. 7.3). It is easy to check that sin i = cos θ1.
According to classical optics (see, e.g., [22,23]), the angles of incidence i,
reflection i′ and refraction r are inter-related as follows: i = i′, sin r =
(n1/n2) sin i. It follows from Fig. 7.3 that sin r = cos θ2, where θ2 is the
inclination angle of the light ray moving in medium 2 towards the z axis.
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Figure 7.3. An infinite cylindrical dielectric sample C with refractive index n1 is sur-
rounded by the medium with refractive index n2. A charge moving in C emits a γ ray
at the Cherenkov angle θ1. This γ ray leaves C if βn2 > 1. Otherwise it exhibits total
internal reflection and remains within C .

Therefore cos θ2 = (n1/n2) cos θ1 = 1/βn2. That is, if βn2 > 1 the light ray
in medium 2 propagates at the angle θ2 towards the motion axis. Otherwise
(βn2 < 1) total internal reflection takes place. Owing to the translational
symmetry of the problem the same total internal reflection takes place at
all other points where a given light ray meets the cylinder surface. This
means that the light ray emitted by a moving charge remains within the
infinite cylindrical sample if βn2 < 1.

The situation changes slightly if the cylindrical sample has a finite
length. In order not to deal with the transition radiation (arising when
the moving charge passes through the boundaries of media 1 and 2), we
consider the charge motion completely confined within C (Fig. 7.4).

This situation was realized in the original Cherenkov experiments in
which Compton electrons were completely absorbed in water. Usually this
situation is described in terms of the so-called Tamm problem [16], where
the charge moves uniformly with the velocity β > n1 in a finite spatial
interval. After a number of reflections on the surface of C, a particular
light ray reaches the bottom of a cylindrical sample. It is easy to check that
its angle of incidence coincides with θ1. The angle of refraction is given by

sin r′ =
n1

n2
sin θ1 =

n1

n2

√
1 − 1

β2n2
1

.

Obviously the light ray leaves C through its bottom if sin r′ < 1. This is
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Figure 7.4. A charge moves in a finite dielectric cylindrical sample C . There is an
additional possibility for the Cherenkov γ ray to leave C through its bottom (see the
text).

equivalent to

β < min(
1
n2

,
1√

n2
1 − n2

2

).

It follows from this that if n2 > n1/
√

2 then the light ray passes through
the bottom of C and propagates in medium 2 at the angle θ′2 = r′ towards
the motion axis. Let n2 < n1/

√
2. Then for β < 1/

√
n2

1 − n2
2 the light ray

propagates in medium 2 at the same angle θ′2 towards the motion axis. On
the other hand, for

1√
n2

1 − n2
2

< β <
1
n2

total internal reflection takes place at the bottom of C as well. Therefore
in this case the light ray emitted by a moving charge remains within C.

7.5. Vavilov-Cherenkov and transition radiations
for a spherical sample

7.5.1. OPTICAL INTERPRETATION

Consider a dielectric sphere S of the radius R filled with a substance of
refractive index n1 and surrounded by the substance with refractive index
n2 (Fig. 7.5). Let a charge move uniformly in the spatial interval (−z0, z0)
lying completely inside S and let its velocity be such that 1/n1 < β < 1/n2.
Elementary calculations show that the Cherenkov γ ray emitted at the point
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Figure 7.5. There are more chances for the Cherenkov γ ray to leave the sphere S, than
the dielectric cylinder C . The reason is that the Cherenkov γ ray meets S at different
angles of incidence depending on the charge position z on the motion axis. Here i and r
are the angles of incidence and refraction, respectively.

z of the motion axis, propagates outside S at the angle

θ2 = θ + arcsin
[
n1

n2
sin(θ1 − θ)

]
= θ + arcsin

(
n1z

n2R
sin θ1

)
(7.45)

towards the motion axis. Here θ1 is defined by cos θ1 = 1/β1n and θ is
related to the charge particular position z as follows

cos θ =
z

R
sin2 θ1 + cos θ1

√
1 − z2

R2
sin2 θ1. (7.46)
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When a charge moves from z = −z0 to z = z0, cos θ changes in the interval

−z0

R
sin θ1 + cos θ1

√
1 − z2

0

R2
sin2 θ1 < cos θ

<
z0

R
sin θ1 + cos θ1

√
1 − z2

0

R2
sin2 θ1

for z0 < n2R/(n1 sin θ1) and in the interval

−n2

n1
sin θ1 + cos θ1

√
1 − n2

2/n2
1 < cos θ

<
n2

n1
sin θ1 + cos θ1

√
1 − n2

2/n2
1

for z0 > n2R/(n1 sin θ1). Substituting this into (7.45) we find the angular
interval in which the Cherenkov radiation differs from zero outside S. For
a radius of the sphere S much larger than the motion interval (R � z0),
θ2 ≈ θ1, that is, the Cherenkov ray propagates in medium 2 under the same
angle as in medium 1. The aforesaid means that the Cherenkov radiation
has more chances of leaving the sphere than the cylinder. The reason is
that the Cherenkov γ ray meets the sphere surface at different angles of
incidence depending on the charge position on the motion axis. However,
only concrete calculations can determine the value of the radiation intensity
in the medium 2.

The semi-intuitive consideration of two last section
i) shows that the observation of the Cherenkov radiation strongly de-

pends on the boundaries surrounding the volume in which a charge moves;
ii) defines conditions under which the Cherenkov radiation can penetrate

from the medium 1 with βn1 > 1 into the medium 2 with βn2 < 1 without
exhibiting total internal reflection on their boundary.

7.5.2. EXACT SOLUTION

Green’s function
Let the spatial regions inside and outside the sphere S of the radius a be
filled by the substances with parameters ε1, µ1 and ε2, µ2, respectively. The
Green function satisfying equations

(� + k2
1)G = −4πδ3(�r − �r′)

for r < a and
(� + k2

2)G = −4πδ3(�r − �r′)
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for r > a has the same form as (2.116) but with Gl(r, r′) given by

Gl = ik1Θ(a − r)Θ(a − r′)jl(k1r<)hl(k1r>)

+ik2Θ(r − a)Θ(r′ − a)jl(k2r<)hl(k2r>)

+ik1DlΘ(a − r)Θ(r′ − a)jl(k1r)hl(k2r
′)

+ik2ClΘ(r − a)Θ(a − r′)jl(k1r
′)hl(k2r).

Here k1 = kn1 and k2 = kn2,

jl(x) and hl(x) = h
(1)
l (x)

are the spherical Bessel and Hankel functions; the constants Cl and Dl are
defined by the boundary conditions at r = a. The vector potential for a
charge moving along the z axis is found from the equation

Az =
1
c

∫
G(�r, �r′)µ(r′)jz(ω)dV ′, (7.47)

where µ = µ1 for r < a and µ = µ2 for r > a. Let a charge move uniformly
with a velocity v in the interval −z0 < z < z0. The Fourier component of
the current density is given by

jz(ω) =
e

2π
exp(iωz/v)δ(x)δ(y)Θ(z + z0)Θ(z0 − z)

in cartesian coordinates and

jz(ω) =
e

4π2r2 sin θ
[δ(θ) exp(

ikr

β
) + δ(θ − π) exp(− ikr

β
)]Θ(z0 − r) (7.48)

in spherical coordinates.

The Tamm problem for a charge moving inside the spherical sample
Let a charge move in a finite spatial interval (−z0, z0) lying entirely inside
the sphere S of the radius a (Fig. 7.6). The sphere is filled with substance
1 with the parameters ε1 and µ1. The observations are made in the medium
with the parameters ε2 and µ2 surrounding S. Using (7.47) and (7.48) we
easily find the magnetic vector potential corresponding to this problem

Az =
iek2µ2

2πc

∑
(2l + 1)Pl(cos θ)hl(k2r)Cl

for r > a,

Az =
iek1µ1

2πc

∑
(2l + 1)Pl(cos θ)[jl(k1r)Dl + hl(k1r)J

(1)
l (0, z0)],
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Figure 7.6. A charge moves inside a dielectric sphere S filled with the medium 1. The
radiation intensity is measured outside S, in the medium 2.

for z0 < r < a and

Az =
iek1µ1

2πc
×

×
∑

(2l + 1)Pl(cos θ)[jl(k1r)Dl + hl(k1r)J
(1)
l (0, r) + jl(k1r)H

(1)
l (r, z0)]}

for r < z0. Here we put

J
(1)
l (x, y) =

y∫
x

jl(k1r
′)fl(r′)dr′ H

(1)
l (x, y) =

y∫
x

hl(k1r
′)fl(r′)dr′,

fl(r′) = exp(
ikr′

β
) + (−1)l exp(− ikr′

β
), k1 = kn1, k2 = kn2.

The coefficients Cl and DL are to be determined from the continuity of �E
and �H components tangential to the sphere S. The EMF strengths con-
tributing to the radial energy flux are equal to

Hφ = − iek2n2
2

2πc

∑
C̃lP

1
l hl(k2r),

Eθ = − i

ε2kr

d

dr
(rHφ) = −eµ2n2k

2

2πc

∑
Hl(k2r)P 1

l C̃l (7.49)
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for r > a and

Hφ = − iek2n2
1

2πc

∑
P 1

l [D̃ljl(k1r) + J̃
(1)
l (0, z0)hl(k1r)],

Eθ = −eµ1n1k
2

2πc

∑
P 1

l [D̃lJl(k1r) + J̃
(1)
l (0, z0)Hl(k1r)] (7.50)

for z0 < r < a. Here we set

C̃l = Cl−1 + Cl+1, D̃l = Dl−1 + Dl+1,

J̃
(1)
l (x, y) = J

(1)
l−1(x, y) + J

(1)
l+1(x, y)

=
y∫

x

dr′[jl+1(k1r
′) + jl−1(k1r

′)]fl+1dr′ = (2l + 1)
y∫

x

jl(k1r
′)

k1r′
fl+1dr′,

Jl(x) =
djl(x)

dx
+

jl(x)
x

=
1

2l + 1
[(l + 1)jl−1 − ljl+1],

Hl(x) =
dhl(x)

dx
+

hl(x)
x

=
1

2l + 1
[(l + 1)hl−1 − lhl+1],

Imposing the continuity of Hφ and Eθ at r = a, one finds the following
equations for C̃l and D̃l:

n2
2C̃lhl(2) − n2

1D̃ljl(1) = n2
1hl(1)J̃ (1)

l (0, z0),

µ2n2C̃lHl(2) − µ1n1D̃lJl(1) = µ1n1Hl(1)J̃ (1)
l (0, z0),

where 1 = k1a and 2 = k2a. From this one easily finds C̃l:

C̃l =
iµ1

n2k2a2�l
J̃

(1)
l (0, z0), (7.51)

where
�l = µ2n1jl(1)Hl(2) − µ1n2Jl(1)hl(2).

Since EMF strengths contain only C̃l and D̃l, the coefficients Cl and Dl

entering the electromagnetic potentials are not needed.
At large distances one can replace the Hankel function by its asymptotic

value. This gives

Hφ = −ekn2

2πc

exp(ik2r)
r

S, Eθ = −ekµ2

2πc

exp(ik2r)
r

S,

where
S =

∑
i−lP 1

l C̃l.
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The radiation intensity per unit frequency and per unit solid angle is

d2E
dΩdω

=
1
2
cr2(EθH

∗
φ + c.c.) =

e2k2n2µ2

4π2c
|S|2. (7.52)

The integration over the solid angle gives the frequency distribution of
radiation

dE
dω

=
e2k2n2µ2

πc

∑ l(l + 1)
2l + 1

|C̃l|2. (7.53)

When the media inside and outside S are the same (ε1 = ε1 = ε, µ1 = µ2 =
µ) one finds

∆l =
iµ

nk2a2
and C̃l = J̃

(1)
l (0, z0),

that is, one obtains the spherical representation for the single-medium
Tamm problem corresponding to the spatial interval (−z0, z0) (see Chapter
2).

Numerical results
In Fig. 7.7 are shown angular radiation intensities (solid lines) evaluated
according to (7.52) for kz0 = 10, ka = 20, n1 = 2 and n2 = 1 (that is,
there is a vacuum outside S) for a number of charge velocities. Side by side
with them, the Tamm angular intensity (2.29) (dotted lines) corresponding
to n = n1, L = 2z0 are shown. The distinction of (7.52) from the Tamm
angular intensity is owed to the presence of the medium 2 outside S. The
latter results in the broadening of the angular intensity distribution. This
was shown qualitatively above. The corresponding frequency distributions
(7.53) (solid lines) together with the Tamm frequency distributions (2.109)
(dotted lines) are shown in Fig. 7.8. The latter almost coincide with the ap-
proximate intensities (2.31) except for the velocity β = 0.4 lying below the
Cherenkov threshold, where the approximate Tamm frequency distribution
(2.31) depends on the frequency only through n(ω). It is seen from Fig.
7.8 that the frequency distribution (7.53) oscillates around the frequency
distributions (2.109) corresponding to the Tamm problem. When evaluat-
ing dE/dω we have implicitly assumed that in this frequency interval the
refractive index n1 does not depend on ω. In fact, this is a common thing
in refractive media. For example, for the fresh water the refractive index
is almost constant in the frequency interval (6 × 1014 < ω < 6 × 1015) s−1

encompassing the visible light region.
In Fig. 7.9 there are shown angular radiation intensities (solid lines)

evaluated according to (7.52) for kz0 = 10, ka = 20, n1 = 1 and n2 = 2
(that is, there is a vacuum bubble embodied into the medium 2) for a
number of charge velocities. Side by side with them, the Tamm angular in-
tensities (2.29) (dotted lines) corresponding to n = n1, L = 2z0 are shown.
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Figure 7.7. The angular radiation intensities in e2/c units (solid curves) for the
charge motion shown in Fig. 7.6 and various charge velocities. The media parameters
are n1 = 2, n2 = 1 (that is, there is vacuum outside S). Further, kz0 = 10, ka = 20.
The dotted curves are the Tamm angular intensities (2.29) evaluated for kL = 2kz0 and
n = n1. The difference between these two curves is because the medium outside S is not
the same as inside S. The exact angular intensities are much broader than the corre-
sponding Tamm intensities. Probably the rise of angular intensities at large angles shown
in Figs. 7.7 and 7.9 is owed to the reflection of the Vavilov-Cherenkov radiation from the
internal side of S.
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Figure 7.8. The frequency radiation intensities in e2/c units (solid curves) for the charge
motion shown in Fig. 7.6 and various charge velocities. The media parameters are the
same as in Fig. 7.7. Furthermore, kz0 = m, ka = 2m. The dotted curves are the Tamm
frequency intensities (2.109) evaluated for kL = 2kz0 and n = n1. It is seen that the
exact frequency intensities oscillate around the Tamm intensities.
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Figure 7.9. The angular radiation intensities in e2/c units (solid curves) for the charge
motion shown in Fig. 7.6 and various charge velocities. The media parameters are
n1 = 1, n2 = 2 (that is, there is vacuum inside S). Furthermore, kz0 = 10, ka = 20.
The dotted curves are the Tamm angular intensities (2.29) evaluated for kL = 2kz0 and
n = n1.
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It is seen that the presence of a medium outside S affects not so strongly
as in Fig. 7.7. The corresponding frequency distributions are shown in Fig.
7.10. Again, oscillations around the Tamm frequency distribution (2.109)
are observed. Probably, they are of the same nature as oscillations of the
frequency radiation intensity for the cylindrical dielectric sample (see sec-
tion 7.4.2).

Probably, the rise of angular intensities at large angles shown in Figs.
7.7 and 7.9 is owed to the reflection of the Vavilov-Cherenkov radiation
from the internal side of S.

The Tamm problem for a charge passing through the spherical sample
Let a charge move with a constant velocity v on the interval (−z0, z0).
There is a sphere S of radius a < z0 with its center at the origin (Fig. 7.11).
The space inside S is filled with the substance with the parameters ε1, µ1.
Outside S there is a substance with parameters the ε2, µ2. The magnetic
vector potential satisfying the equations (� + k2

2)Az = 0 for r > z0, (� +
k2

2)Az = −4πµ2jz/c for a < r < z0 and (�+ k2
1)Az = −4πµ1jz/c for r < a

is obtained from (7.47) and (7.48). It is given by:

Az =
iek2µ2

2πc

∑
(2l + 1)Plhl(k2r)

[
Cl

µ1

µ2
J

(1)
l (0, a) + J

(2)
l (a, z0)

]
,

for r > z0,

Az =
iek2µ2

2πc

∑
(2l + 1)Pl

×
[
hl(k2r) × Cl

µ1

µ2
J

(1)
l (0, a) + hl(k2r)J

(2)
l (a, r) + jl(k2r)H

(2)
l (r, z0)

]
for a < r < z0 and

Az =
iek1µ1

2πc

∑
(2l + 1)Pl(cos θ)

×
[
jl(k1r)

µ2

µ1
DlH

2
l (2)(a, z0) + hl(k1r)J

(1)
l (0, r) + jl(k1r)H

(1)
l (r, a)

]
for r < a. Here

J
(2)
l (x, y) =

y∫
x

jl(k2r
′)fl(r′)dr′, H

(2)
l (x, y) =

y∫
x

hl(k2r
′)fl(r′)dr.′

It is convenient to redefine Cl and Dl:

C ′
l = Cl

µ1

µ2
J

(1)
l (0, a) + J

(2)
l (a, z0), D′

l = Dl
µ2

µ1
H

(2)
l (a, z0).
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Figure 7.10. The frequency radiation intensities in e2/c units (solid curves) for the
charge motion shown in Fig. 7.6 and various charge velocities. The media parameters
are the same as in Fig. 7.9. Furthermore, kz0 = m, ka = 2m. The dotted curves are the
Tamm frequency intensities (2.109) evaluated for kL = 2kz0 and n = n1.
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Figure 7.11. The charge motion begins and ends in medium 2. A charge passes through
a sphere S filled with the medium 1. The radiation of intensity is measured outside S in
medium 2.

Then,

Az =
iek2µ2

2πc

∑
(2l + 1)Plhl(k2r)C ′

l

for r > z0,

Az =
iek2µ2

2πc

∑
(2l + 1)Pl(cos θ)

×[C ′
lhl(k2r) − hl(k2r)J

(2)
l (r, z0) + jl(k2r)H

(2)
l (r, z0)]

for a < r < z0 and

Az =
iek1µ1

2πc

∑
(2l + 1)Pl(cos θ)

×[D′
ljl(k1r) + hl(k1r)J

(1)
l (0, r) + jl(k1r)H

(1)
l (r, a)].

for r < a.
The EMF strengths contributing to the radial energy flux are

Hφ = − iek2
2

2πc

∑
C̃lP

1
l hl(k2r), Eθ = −ek2µ2n2

2πc

∑
Hl(k2r)P 1

l C̃l (7.54)
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for r > z0,

Hφ = − iek2
2

2πc

∑
P̃ 1

l [C̃lhl(k2r) − hl(k2r)J̃
(2)
l (r, z0) + jl(k2r)H̃

(2)
l (r, z0)],

Eθ = −ek2µ2n2

2πc

×
∑

P̃ 1
l [C̃lHl(k2r) − Hl(k2r)J̃

(2)
l (r, z0) + Jl(k2r)H̃

(2)
l (r, z0)] (7.55)

for a < r < z0 and

Hφ = − iek2
1

2πc

∑
P̃ 1

l [D̃ljl(k1r) + hl(k1r)J̃
(1)
l (0, r) + jl(k1r)H̃

(1)
l (r, a)],

Eθ = −ek2µ1n1

2πc

×
∑

P̃ 1
l [D̃lJl(k1r) + Hl(k1r)J̃

(1)
l (0, r) + Jl(k1r)H̃

(1)
l (r, a)] (7.56)

for r < a. Here

J̃
(2)
l (x, y) = J

(2)
l−1(x, y) + J

(2)
l+1(x, y), H̃

(2)
l (x, y) = H

(2)
l−1(x, y) + H

(2)
l+1(x, y),

J̃
(1)
l (x, y) = J

(1)
l−1(x, y) + J

(1)
l+1(x, y), H̃

(1)
l (x, y) = H

(1)
l−1(x, y) + H

(1)
l+1(x, y),

C̃l = C ′
l−1 + C ′

l+1, D̃l = D′
l−1 + D′

l+1.

Equating Eθ and Hφ at r = a, one obtains the following equations for C̃l

and D̃l:
n2

2hl(2)C̃l − n2
1jl(1)D̃l

= n2
1hl(1)J̃ (1)

l (0, a) + n2
2[hl(2)J̃ (2)

l (a, z0) − jl(2)H̃(2)
l (a, z0)],

µ2n2Hl(2)C̃l − µ1n1Jl(1)D̃l

= µ1n1Hl(1)J̃ (1)
l (0, a) + n2µ2[Hl(2)J̃ (2)

l (a, z0) − Jl(2)H̃(2)
l (a, z0)]}.

Here we put 1 = k1a and 2 = k2a. For example, jl(1) ≡ jl(k1a), etc.. From
this one easily obtains C̃l:

C̃l =
1
�l

{ iµ1

n2k2a2
J̃

(1)
l (0, a) + J̃

(2)
l (a, z0)[µ2n1jl(1)Hl(2) − µ1n2Jl(1)hl(2)]

−H̃
(2)
l (a, z0)[µ2n1jl(1)Jl(2) − µ1n2Jl(1)jl(2)]}
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=
i

�l
{ µ1

n2k2a2
J̃

(1)
l (0, a) + J̃

(2)
l (a, z0)[µ2n1jl(1)Nl(2) − µ1n2Jl(1)nl(2)]

−Ñ
(2)
l (a, z0)[µ2n1jl(1)Jl(2) − µ1n2Jl(1)jl(2)]}. (7.57)

Here �l = n1µ2jl(1)Hl(2)− µ1n2Jl(1)hl(2). Again, we do not need Cl and
Dl entering the vector potential, since the EMF field strengths (and the
radiation intensity) depend only on C̃l and D̃l. At large distances (kr � 1),
one has

Hφ ≈ −ekn2

2πcr
exp(ikn2r)S, Eθ ≈ −ekµ2

2πcr
exp(ikn2r)S,

where
S =

∑
i−lC̃lP

1
l . (7.58)

Correspondingly, the energy flux through a sphere of the radius r is

d2E
dωdΩ

=
1
2
cr2(EθH

∗
φ + c.c.) =

e2k2n2µ2

4π2c
|S|2. (7.59)

Integration over the solid angle gives the frequency distribution of radiation

d2E
dω

=
e2k2n2µ2

πc

∑ l(l + 1)
2l + 1

|C̃l|2. (7.60)

The single-medium Tamm problem is obtained either in the limit ka → 0
or when media 1 and 2 are the same.

Numerical results
In Fig. 7.12 there are shown angular radiation intensities (solid lines) eval-
uated according to (7.59) for kz0 = 20, ka = 10, n1 = 2 and n2 = 1
(that is, there is a vacuum outside the sphere S filled with a substance
with n1 = 2) for a number of the charge velocities. Side by side with
them the Tamm angular intensities (2.29) (dotted lines) corresponding to
n = n1, L = 2a are shown. In fact, it is the usual thing in the Vavilov-
Cherenkov radiation theory to associate the observed radiation with that
part of the charge trajectory where βn > 1. It the case treated it lies within
the sphere S. We observe a rather poor agreement of exact intensity (7.59)
with the Tamm intensity (2.29). An experimentalist studying, e.g., an elec-
tron passing through the dielectric sphere S, will not see the pronounced
Cherenkov maximum at θ = θc (cos θc = 1/βn), and on these grounds will
not identify the Cherenkov radiation and the charge velocity. For β = 0.4
we have not presented the Tamm intensity. The reason is that for this ve-
locity the Tamm intensities arising from the charge motion in the intervals
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Figure 7.12. The angular radiation intensities in e2/c units (solid curves) for the charge
motion shown in Fig. 7.11 and various charge velocities. The medium inside S is dielec-
tric. The media parameters are n1 = 2, n2 = 1 (that is, there is vacuum outside S).
Furthermore, ka = 10, kz0 = 20. The dotted curves are the Tamm angular intensities
(2.29) evaluated for kL = 2ka and n = n1. The non-coincidence of exact angular intensi-
ties with the corresponding Tamm intensities (especially for β = 1 and β = 0.8) and, in
particular, the absence of a pronounced maximum at cos θ = 1/βn demonstrates that the
applicability of the Tamm formula for describing the radiation arising from the charge
passage through the dielectric sample is somewhat in doubt.
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0 < r < a (medium 1) and a < r < z0 (medium 2) are of the same order.
It is not clear to us how to combine the corresponding Tamm amplitudes.
In any case, Eqs. (7.59) and (7.60) give the exact solution of the problem
treated, whilst the Tamm intensities are needed only for the interpretation
purposes.

The corresponding frequency distribution (7.60) also differs appreciably
from that of the Tamm (2.109) (Fig. 7.13).

In Fig. 7.14 there are shown angular radiation intensities (solid lines)
evaluated according to (7.59) for kz0 = 20, ka = 10, n1 = 1 and n2 = 2
(that is, the vacuum bubble inside S surrounded by a substance with n2 =
2) for a number of charge velocities. Side by side with them the Tamm angu-
lar intensities (2.29) (dotted lines) corresponding to n = n2, L = 2(z0 − a)
are shown. In the case treated, the part of the charge trajectory where
βn > 1 lies outside the sphere S. We observe a satisfactory agreement
of the exact intensity (7.59) with the Tamm intensity (2.29). An experi-
mentalist studying, e.g., an electron passing through the dielectric sphere
S will see a pronounced Cherenkov maximum at θ = θc (cos θc = 1/βn).
The corresponding frequency distribution (7.60) does not differ appreciably
from the Tamm distribution (2.109) (Fig. 7.15).

7.5.3. METALLIC SPHERE

On the surface of an ideal conductor the tangential components of the
electric field strength vanish [23]. For a metallic sphere of radius a this
leads to the disappearance of Eθ. This defines C̃l

C̃l = J̃
(2)
l (a, z0) − Jl(2)

Hl(2)
H̃

(2)
l (a, z0)

=
i

Hl(2)
[Nl(2)J̃ (2)

l (a, z0) − Jl(2)Ñ (2)
l (a, z0)]. (7.61)

Then the angular and frequency distributions are given by (7.58)-(7.60),
but with C̃l given by (7.61).

Numerical results
Let there be a vacuum outside S. The corresponding angular distributions
(7.59) (solid lines) are compared in Fig. 7.16 with the Tamm angular inten-
sities (2.29) (dotted lines) evaluated for L = 2(z0 − a) and n = n2. Since
βn ≤ 1 outside S, the angular intensities are quite small. The correspond-
ing frequency distributions (7.60) (solid lines) and those of Tamm (2.109)
(dotted lines) are shown in Fig. 7.17. Their agreement is rather poor.

Let there be a medium with refractive index n2 = 2 outside S. The cor-
responding angular and frequency distributions are shown in Figs. 7.18 and
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Figure 7.13. The frequency radiation intensities in e2/c units (solid curves) for the
charge motion shown in Fig. 7.11 and various charge velocities. The media parameters
are the same as in Fig. 7.12. Furthermore, ka = m, kz0 = 2m. The dotted curves are the
Tamm frequency intensities (2.109) evaluated for kL = 2kz0 and n = n1.
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Figure 7.14. The angular radiation intensities in e2/c units (solid curves) for the charge
motion shown in Fig. 7.11 and various charge velocities. The media parameters are
n1 = 1, n2 = 2 (that is, there is a vacuum inside S). Furthermore, ka = 10, kz0 = 20.
The dotted curves are the Tamm angular intensities (2.29) evaluated for kL = 2k(z0 −a)
and n = n2.
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Figure 7.15. The frequency radiation intensities in e2/c units (solid curves) for the
charge motion shown in Fig. 7.11 and various charge velocities. The media parameters
are the same as in Fig. 7.14. Furthermore, ka = m, kz0 = 2m. The dotted curves are the
Tamm frequency intensities (2.109) evaluated for kL = 2k(z0 − a) and n = n2.
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Figure 7.16. The angular radiation intensities in e2/c units (solid curves) for the charge
motion shown in Fig. 7.11 and various charge velocities. The medium inside S is an
ideal metallic substance (conductor). The medium refractive index outside S is n2 = 1
(vacuum). Furthermore, ka = 10, kz0 = 20. The dotted curves are the Tamm angular
intensities (2.29) evaluated for kL = 2k(z0 − a) and n = n2.
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Figure 7.17. The frequency radiation intensities in e2/c units (solid curves) for the
charge motion shown in Fig. 7.11 and various charge velocities. The medium inside S
is ideal metallic substance. The medium refractive index outside S is n2 = 1 (vacuum).
Furthermore, ka = m, kz0 = 2m. The dotted curves are the Tamm frequency intensities
(2.109) evaluated for kL = 2k(z0 − a) and n = n2.
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7.19, respectively. We observe the satisfactory agreement with the Tamm
intensities evaluated for L = 2(z0 − a) and n = n2.

7.6. Discussion on the transition radiation

The formulae obtained in previous two sections describe the VC radiation,
the radiation arising from the charge instantaneous acceleration and decel-
eration and the transition radiation arising from a charge passing from one
medium to another. To separate the contribution of the transition radiation,
one should subtract (according, e.g., to [11]) the field strengths correspond-
ing to the inhomogeneous solution of the Maxwell equations from the total
field strengths. In the treated case, the field strengths corresponding to the
Tamm problem should be subtracted (they are written out in section 2.6 of
the Chapter 2). This leads to the following redefinition of the C̃l coefficients:

C̃l → C̃l −
√

n1µ1

n2µ2
J̃

(1)
l (0, z0)

for the motion shown in Fig. 7.6,

C̃l → C̃l −
√

n1µ1

n2µ2
J̃

(1)
l (0, a) − J

(2)
l (a, z0)

for the charge motion through the dielectric sphere (Fig. 7.11) and

C̃l → C̃l − J
(2)
l (a, z0)

for the charge motion through the metallic sphere (Fig. 7.11). These newly
defined C̃l being substituted into (7.52), (7.53), (7.59) and (7.60) give tran-
sition radiation intensities. Since the observable radiation intensities are
the total ones presented in Figs. 7.7-7.10 and 7.12-7.19, we do not evaluate
the transition radiation intensities here.

In the physical literature there are semi-intuitive interpretations of the
transition radiation and the radiation in the Tamm problem in terms of
instantaneous acceleration and deceleration, and in terms of semi-infinite
charge motions terminating at one side of the media interface and begin-
ning at the other one. Their insufficiencies (see below) enable us not to
apply them to the consideration of the Vavilov-Cherenkov and transition
radiations on the spherical sample. In any case, exact solutions and numer-
ical calculations presented above contain all the necessary information for
the analysis of experimental data.
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Figure 7.18. The angular radiation intensities in e2/c units (solid curves) for the charge
motion shown in Fig. 7.11 and various charge velocities. The medium inside S is an
ideal metallic substance. The medium refractive index outside S is n2 = 2. Furthermore,
ka = 10, kz0 = 20. The dotted curves are the Tamm angular intensities (2.29) evaluated
for kL = 2k(z0 − a) and n = n2.
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Figure 7.19. The frequency radiation intensities in e2/c units (solid curves) for the
charge motion shown in Fig. 7.11 and various charge velocities. The medium inside S is
an ideal metallic substance. The medium refractive index outside S is n2 = 2. Further-
more, ka = m, kz0 = 2m. The dotted curves are the Tamm frequency intensities (2.109)
evaluated for kL = 2k(z0 − a) and n = n2.
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7.6.1. COMMENT ON THE TRANSITION RADIATION

Interpretation of the transition radiation in terms of instantaneous velocity
jumps
Sometimes the transition radiation is interpreted as a charge uniform mo-
tion with a velocity v in medium 1, its sudden stop in medium 1 at the
border with medium 2, the sudden start of motion in medium 2 and the
charge uniform motion in medium 2 with the velocity v [10,12-14]. It is
suggested that the main contribution to the radiation intensity comes from
the above-mentioned instantaneous jumps of the charge velocity. The radi-
ation intensity arising from the charge sudden stop in medium 1 is taken
in the form

d2E
dωdΩ

=
e2

4π2c

[
�β × �nr

1 − n1(�β�nr)

]2

, (7.62)

where �β = �v/c, �nr is the unit radius vector of the observational point and
n1 is the refractive index of medium 1.

On the other hand, the exact calculations were made in [24] (see also
Chapter 5) for the following decelerated motion along the z axis:

z(t) = z1 + v1(t − t1) − 1
2
a(t − t1)2,

v(t) = v1 − a(t − t1), t1 < t < t2, (7.63)

which begins at the instant t1 at a spatial point z1 with a velocity v1

and ends at the instant t2 at a spatial point z2 with a velocity v2. The
time interval t2 − t1 of the motion and deceleration a are easily expressed
through z1, z2, v1, and v2

t2 − t1 = 2
z2 − z1

v1 + v2
, a =

1
2

v2
1 − v2

2

z2 − z1
. (7.63′)

It was shown in [24] that for a fixed wavelength λ, the intensity of radiation
tends to zero for k(z2 − z1) → 0 (k = 2π/λ). This certainly disagrees with
(7.62) which differs from zero for any interval of motion. To clarify the
situation we turn to the derivation of (7.62).

The derivation of (7.62)
For simplicity, we consider first a charge motion in vacuum closely following
Landau and Lifshitz treatise [25]. Its authors begin with the equations

�H = (�nr × �E), �E = −1
c

�̇A



386 CHAPTER 7

which are valid in the wave zone (the dot above �A means the differentiation
w.r.t. the laboratory time). For the Fourier transform of �H one finds

�Hω = − 1
2πc

∞∫
−∞

(�nr × �̇A) exp(iωt)dt. (7.64)

Now, if �A 	= 0 for t1 < t < t2, then for ω(t2 − t1) � 1 one can put
exp(iωt) ≈ 1, thus obtaining

�Hω = − 1
2πc

∫
�nr × ∂ �A

∂t
= − 1

2πc
�nr × ( �A2 − �A1). (7.65)

Here �A2 = �A(t = t2) and �A1 = �A(t = t1). Furthermore, the authors of [25]
replace �A1 and �A2 by the Liénard-Wiechert potentials. This gives

�Hω =
e

2πcr

[
β2 × nr

1 − (�β2�nr)
− β1 × nr

1 − (�β1�nr)

]
. (7.66)

The radiation intensity per unit frequency and per unit solid angle is

d2E
dωdΩ

= cr2| �Hω|2 =
e2

4π2c

[
β2 × nr

1 − (�β2�nr)
− β1 × nr

1 − (�β1�nr)

]2

. (7.67)

Now if the final velocity is zero (7.67) coincides with (7.62).

Resolution of the paradox
We rewrite the integral entering (6.4) in the form∫

∂ �A

∂t
dt =

∫
∂ �A(t(t′))

∂t′
dt′ = �A2 − �A1, �A2 = �A(t2), �A1 = �A(t1), (7.68)

where t′ is a charge retarded (proper) time. The laboratory times t1 and t2
expressed through the retarded times for the one-dimensional motion along
the z axis are given by

t1 = t′1 +
1
c
[ρ2 + (z − z′1)

2]1/2, t2 = t′2 +
1
c
[ρ2 + (z − z′2)

2]1/2, (7.69)

where z′1 = z′(t′1) and z′2 = z′(t′2) are the charge positions at the times t′1
and t′2.

Now let the charge proper time t′ be uniquely related to its position
z′. Then for z′1 = z′2 one has t′1 = t′2, t1 = t2, and therefore, �A2 = �A1,
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�Hω = 0 and d2E/dωdΩ = 0. We illustrate this using the motion law (7.63)
as an example (note that t and z entering into (7.63) are the charge proper
(retarded) time t′ and its position z′). For this motion t′ is uniquely related
to z′:

t′ = t1 + 2v1
z2 − z1

v2
1 − v2

2

1 −
(

1 − z′ − z1

z2 − z1

v2
1 − v2

2

v2
1

)1/2
 . (7.70)

It follows from this that t′ = t1 for z′ = z1 and t′ = t2 for z′ = z2. According
to (7.63’), t2 = t1 for z2 = z1. Therefore �A2 = �A1 for t1 = t2, and �Hω given
by (7. 65) vanishes in the limit k(z2 − z1) → 0 in accordance with [24].

The main assumptions for the vanishing of �Hω are:
i) the discontinuous charge motion with the velocity jumps can be

viewed as a limiting case of a continuous motion without the velocity jumps
when the length along which the velocity changes from v1 to v2 tends to
zero;

ii) the retarded (proper) time of the charge is uniquely related to its
position.

We conclude: the interpretation of the transition radiation in terms of
the charge instantaneous acceleration and deceleration at the border of two
media is not sufficient if the discontinuous charge motion can be treated as a
limiting case of the continuous charge motion. In any case, the discontinuous
charge motion cannot be realized in nature: it is a suitable idealization of
the continuous charge motion.

In general, �A(t2) does not coincide with �A(t1) if the proper time of
the charge is not uniquely related to its position. Consider, for example, an
immovable elementary (infinitesimal) time dependent source. Then �A(t2) 	=
�A(t1) and �Hω 	= 0. Another possibility of obtaining �A(t2) 	= �A(t1) is to take
into account the internal degrees of freedom of a moving charged particle
(for example, its spin flip on the path between z1 and z2 can give �A(t2) 	=
�A(t1)).

Interpretation of the transition radiation
in terms of the charge semi-infinite motions
In [10,11], the transition radiation was associated with the charge radiation
on the semi-infinite intervals (−∞, 0) and 0,∞ lying in media 1 and 2,
respectively. We analyse this situation using the vector potential as an
example.
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The vector potential corresponding to the charge semi-infinite motion
in medium 1 is given by

Az =
eµ1

2πc

0∫
−∞

dz′

R
exp(iψ), (7.71)

where ψ = kz′/β + k1R, k1 = kn1, R =
√

ρ2 + (z − z′)2. In the quasi-
classical approximation one finds

Az =
eµ1

2πckr

1
1 − βn1 cos θ

(7.72)

for β < β1 = 1/n1. For β > β1

Az = (7.72)

for θ < θ1 and
Az = (7.72) + A

(1)
T

for θ > θ1. Here

A
(1)
T =

eµ1

2πc
exp

(
iπ

4

)√
2πβγ1

kr sin θ
exp

[
ikr

β

(
cos θ +

sin θ

γ1

)]
,

γ1 = 1/
√
|1 − β2

1 |, cos θ1 =
1
β1

. (7.73)

Since AT decreases as 1/
√

kr, the radiation intensity is much larger in the
θ > θ1 angular region.

Similarly, the vector potential corresponding to the charge motion in
medium 2 is given by

Az = − eµ2

2πckr

1
1 − β2 cos θ

(7.74)

for β < β2 (β2 = 1/n2). For β > β2,

Az = (7.74)

for θ > θ2 and
Az = (7.74) + A

(2)
T

for θ < θ2. Here

A
(2)
T =

eµ2

2πc
exp

(
iπ

4

)√
2πβγ2

kr sin θ
exp

[
ikr

β

(
cos θ +

sin θ

γ2

)]
,
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γ2 = 1/
√
|1 − β2

2 |, cos θ2 =
1
β2

. (7.75)

Usually, the terms A
(1)
T and A

(2)
T are dropped in standard considerations

of the transition radiation. Their interference with (7.72) and (7.74) leads
to the oscillations of the radiation intensity in the θ > θ1 angular region
for the charge semi-infinite motion (−∞, 0) in medium 1 and in the θ < θ2

angular region for the charge semi-infinite motion (0,∞) in medium 2.
A further procedure in obtaining intensities of the transition radiation

is the evaluation of EMF strengths corresponding to (7.72) and (7.74) and
their superposition with the corresponding Fresnel coefficients. Sometimes
the secondary photon re-scatterings at the boundary of media 1 and 2 (for
the dielectric plate) are taken into account.

Since we have at hand the exact solution for a charge moving inside and
outside the dielectric or metallic sphere, these tricks are not needed: they
are automatically taken into account in closed expressions for radiation
intensities.

Physical meaning of A
(1)
T and A

(2)
T terms

To clarify the physical meaning of the A
(1)
T and A

(2)
T terms, we consider the

case when media 1 and 2 are the same. The vector potential corresponding
to the infinite motion (−∞,∞) then reduces to the sum of vector potentials
corresponding to semi-infinite motions in media 1 and 2:

Az = 0 (7.76)

for β < 1/n and

Az =
eµ

2πc
exp

(
iπ

4

)√
2πβγn

kr sin θ
exp

[
ikr

β

(
cos θ +

sin θ

γn

)]
(7.77)

for β > 1/n. Here γn = 1/
√|1 − β2

n|, βn = βn.
However, this is the asymptotic form (ρ → ∞) of the Cherenkov vector

potential corresponding to the charge infinite medium

Az =
eµ

πc
K0

(
kρ

βγn

)
for β < 1/n and

Az =
ieµ

2c
exp

(
ikz

β

)
H

(1)
0

(
kρ

βγn

)
(7.78)

for β > 1/n (see Chapter 2). This means that the terms A
(1)
T and A

(2)
T de-

scribe the Cherenkov radiation for the semi-infinite charge motions in media
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1 and 2, respectively. This is also confirmed by the exact solution corre-
sponding to the semi-infinite charge motion in the dispersion-free medium
found in [26,27] in the time representation. Indeed, the spatial regions where
the Cherenkov radiation differs from zero are just the same where the terms
A

(1)
T and A

(2)
T differ from zero.

It is easy to check that the values of Az given by (7.72) are defined by
the boundary point z′ = 0 in (7.71), whilst the values of the terms A

(1)
T and

A
(2)
T are defined by stationary points z′ lying in the intervals (−∞, 0) and

(0,∞), respectively.
We can see that the interpretation of the transition radiation in terms of

semi-infinite motions in the intervals (−∞, 0) and (0,∞) is sufficient only
for β < 1/n. On the other hand, for β > 1/n, the Cherenkov terms A

(1)
T

and A
(2)
T should be taken into account.

7.6.2. COMMENT ON THE TAMM PROBLEM

For the Tamm problem (uniform charge motion in a restricted spatial in-
terval), the vector potential is given by

Az =
eµ1

2πc

z0∫
−z0

dz′

R
exp(iψ), (7.79)

It is easily evaluated in the quasi-classical approximation. For z < ργn− z0

and z > ργn + z0 one gets

Aout
z = − ieµβ sin θ

2πck
{ 1
r2 − βn(z − z0)

exp
[
ik

β
(βnr2 + z0)

]

− 1
r1 − βn(z + z0)

exp
[
ik

β
(βnr1 − z0)

]
}. (7.80)

Here r1 =
√

ρ2 + (z + z0)2 and r2 =
√

ρ2 + (z − z0)2. Inside the interval
ργn − z0 < z < ργn + z0, the vector potential is equal to

Ain
z = Aout

z + ACh
z , (7.81)

where

ACh
z =

eµ

2πc
exp

(
ikz

β

)√
2πβγn

kr sin θ
exp

(
i
π

4

)
exp

(
ikr sin θ

βγn

)
.

It is seen that Aout
z is infinite at z = ργn ± z0. Therefore, the radiation

intensity should have maxima at z = ργn ± z0, with a kind of plateau
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for ργn − z0 < z < ργn + z0 and a sharp decrease for z < ργn − z0 and
z > ργn+z0. At observational distances much larger than the motion length

r1 − βn(z + z0) ≈ r(1 − βn cos θ), r2 − βn(z − z0) ≈ r(1 − βn cos θ),

βnr1 − z0 = βnr − z0(1 − βn cos θ), βnr2 + z0 = βnr + z0(1 − βn cos θ).

Then
Aout

z =
eµβ

πckr
exp(iknr)

sin[ωt0(1 − βn cos θ)]
1 − βn cos θ

(7.82)

coincides with the Tamm vector potential AT
z entering into (2.29). Inside

the interval ργn − z0 < z < ργn + z0,

Ain
z = AT

z + ACh
z . (7.83)

We observe that the infinities of Aout
z have disappeared as a result of the

approximations involved. It is seen that for kr � 1 the ACh
z and AT

z behave
as 1/

√
kr and 1/kr, respectively.

It follows from this that the radiation intensity in the spatial regions
z > ργn + z0 and z < ργn − z0 is described by the Tamm formula (2.29).
On the other hand, inside the spatial region ργn − z0 < z < ργn + z0, the
radiation intensity differs appreciably from the Tamm intensity. In fact, the
second term in Ain

z is much larger than the first (AT
z ) for kr � 1 (since they

decrease as 1/
√

kr and 1/kr for kr → ∞, respectively.) It is easy to check
that on the surface of the sphere of the radius r the intervals z < ργn− z0,
ργn−z0 < z < ργn+z0 and z > ργn+z0 correspond to the angular intervals
θ > θ1, θ2 < θ < θ1 and θ < θ2, where θ1 and θ2 are defined by

cos θ1 = − ε0

β2
nγ2

n

+
1
βn

[
1 −

(
ε0

βnγn

)2
]1/2

,

cos θ2 =
ε0

β2
nγ2

n

+
1
βn

[
1 −

(
ε0

βnγn

)2
]1/2

. (7.84)

Here ε0 = z0/r. For r � z0

θ1 = θc +
ε0

βnγn
, θ2 = θc − ε0

βnγn
,

where θc is defined by cos θc = 1/βn. Therefore inside the angular interval
θ2 < θ < θ1 there should be observed a maximum of the radiation intensity
with its amplitude proportional to the observational distance r. In the limit
r → ∞, the above θ interval decreases and for the radiation intensity one
gets the delta singularity at cos θ = 1/βn (in addition to AT

z ). However, the
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θ integral from it is finite. Although ∆θ = θ1 − θ2 = 2ε0/βnγn is very small
for r � z0, the length of an arc on the observational sphere (on this arc the
radiation intensity differs from the Tamm intensity) is finite: it is given by
2z0/βnγn. It would be interesting to observe this deviation experimentally
(see Chapter 9).

From the previous consideration it follows that ACh
z is a part of the

Cherenkov shock wave enclosed between the straight lines z = −z0 + ργn

and z = z0+ργn with its normal inclined at the angle θc towards the motion
axis. In the quasi-classical approximation the stationary point z′ = z− ργn

of (7.79) lying inside the motion interval (−z0, z0) defines the value of ACh
z .

On the other hand, for the Aout
z the stationary point of (7.79) lies outside

the interval of the charge motion and the value of (7.79) is defined by the
initial and final points of the motion interval. Therefore Aout

z is somehow
related to the beginning and end of the motion.

It was suggested in [28,29] that the origin of Aout
z is due to the BS

shock waves arising from the charge acceleration at the beginning and its
deceleration at the end of the motion. However, if one replaces the instan-
taneous velocity jumps by the smooth change of the velocity then tends
the width of the transition region (where the velocity changes smoothly)
to zero then the contribution of this region to the radiation intensity also
tends to zero [24]. There are no velocity jumps for this smoothed prob-
lem and, therefore, Aout

z cannot be associated with instantaneous velocity
jumps. However, there are acceleration jumps at the beginning and the end
of motion and at the instants when the accelerated motion meets the uni-
form motion. Thus Aout

z can still be associated with acceleration jumps. To
clarify the situation, the Tamm problem with absolutely continuous charge
motion (for which the velocity itself and all its time derivatives are ab-
solutely continuous functions of time) was considered in [30,31] (see also
Chapter 5). It was shown there that the relatively slow decrease of Aout

z

for θ > θ1 and θ < θ2 is replaced by the exponential damping. In the past,
for the charge motion in vacuum, the exponential damping in the whole
angular region was recognized in [32-35].

The same considerations as for the semi-infinite motion show that the
instantaneous velocity jumps at the beginning and the end of motion do not
contribute to the radiation intensity, provided they can be viewed as the
limiting cases of the smooth charge motion in the limit when the lengths of
the accelerated (decelerated) pieces of the charge trajectory tend to zero.

We conclude: the instantaneous velocity jumps at the beginning and
end of the motion do not contribute to the radiation intensity provided,
they can be viewed as a limiting case of the smooth charge motion in the
limit when the lengths of the accelerated (decelerated) pieces of the charge
trajectory tend to zero. This means that the above-mentioned attempts
[28,29] to interpret the radiation intensity given by the Tamm formula
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(2.29) in terms of the charge instantaneous acceleration and deceleration
are insufficient.

We summarize the discussion on the transition radiation: i) the inter-
pretation of the transition radiation and the Tamm problem in terms of
instantaneous acceleration and decceleration is not sufficient;

ii) the usual interpretation of the radiation arising when the charge
crosses the boundary between two media in terms of semi-infinite charge
motions is valid only if β < 1/n1 and β < 1/n2. Otherwise, this interpre-
tation should be supplemented by Cherenkov-like terms;

iii) there is no need for the artificial means mentioned in the previous
two items in the exactly solvable case treated corresponding to the transi-
tion and Cherenkov radiation on a spherical sample.

We briefly review the content of this chapter:
1. It has been analysed how finite dimensions of a moving charge affect

the frequency spectrum of the radiated energy. It has been shown that the
frequency spectrum extends up to ka, where k and a are the wave number
and the typical dimension of a moving charge, respectively.

2. It has been shown how a charge should move in a medium if, in the
absence of an external force, all its energy losses were owed to the Vavilov-
Cherenkov radiation. Analytic formulae for the charge velocity are obtained
for a charge of finite dimensions moving in a dispersion-free medium, for
a point-like charge moving in a dispersive medium, and for the point-like
charge moving in a medium with ionization losses.

3. There have been discussed complications with the observation of the
Vavilov-Cherenkov radiation when a charge moves in a medium in which
the Vavilov-Cherenkov radiation condition holds, whilst the observations of
the radiated energy are made in another medium in which this condition
is not satisfied. It has been shown that the radiation spectrum is discrete
for a charge moving inside a dielectric sample with a velocity greater than
the velocity of light in medium. It is desirable to observe this discreteness
experimentally.

4. It has been found the electromagnetic field arising from the charge
motion confined to a dielectric sphere S which is surrounded by another
dielectric medium with electrical properties different from those inside S.
It has been studied how differences of media properties inside and outside
S affect the angular and frequency radiation intensities for various charge
velocities. In general, these differences lead to the broadening of the angular
spectrum and to the appearance of oscillations in the frequency spectrum.
Probably, they have the same nature as the discreteness of the radiation
spectrum for the dielectric sample mentioned in a previous item. 5. It has
been also considered the radiation of a charge whose motion begins and
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ends in medium 2 and which passes through a dielectric sphere S filled
with medium 1 or through a metallic sphere. The evaluated energy flux
includes the VC and transition radiations as well as those originating from
the beginning and end of motion. To our best knowledge transition radiation
for the spherical interface is considered here for the first time. It is shown
that when medium 2 outside S is a vacuum and medium 1 inside S has a
refractive index n1 satisfying βn1 > 1, the angular and frequency radiation
intensities cannot always be interpreted in terms of the Tamm intensities
corresponding to the charge motion inside S (as is usually believed).

6. It has been proved that the interpretation of the transition radiation
in terms of the instantaneous end of the charge motion in one medium
and its instantaneous start in the other is not valid if the above motion
with sudden velocity jumps can be considered as a limiting case of the
smooth charge motion. It is shown that the interpretation of the transition
radiation in terms of semi-infinite motions with instantaneous end of the
charge motion in one medium and with its instantaneous start in the other
one [10,11] should be supplemented by the VC radiation terms. Certainly,
these remarks are related only to the interpretation of the transition radia-
tion, not to the exact solutions obtained for the plane interface, e.g., in [11].

The content of this chapter is partly based on [36,37]
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CHAPTER 8

SELECTED PROBLEMS OF THE SYNCHROTRON
RADIATION

8.1. Introduction

Synchrotron radiation (SR) is such a well-known phenomenon that it seems
to be almost impossible to add anything essential in this field.

Schott, probably, was the first who extensively studied SR. His find-
ings were summarized in the encyclopedic treatise Electromagnetic Radia-
tion [1]. He expanded the electromagnetic field (EMF) into a Fourier se-
ries and found solutions of the Maxwell equations describing the field of a
charge moving in vacuum along a circular orbit. The infinite series of EMF
strengths had a very poor convergence in the most interesting case v ∼ c.
Fortunately Schott succeeded in an analytical summation of these series
and obtained closed expressions for the radiation intensity averaged over
the azimuthal angle ([1], p.125).

Further development is owed to the Moscow State University school
(see, e.g., the books [2-5] and review [6]) and to Schwinger et al. [7] who
considered the polarization properties of SR and its quantum aspects.

The instantaneous (i.e., taken at the same instant of proper time) dis-
tribution of SR on the surface of the observational sphere was obtained by
Bagrov et al [8,9] and Smolyakov [10]. They showed that the instantaneous
distribution of SR in a vacuum possesses the so-called projector effect (that
is, the SR has the form of a beam which is very thin for v ∼ c).

Much less is known about SR in a medium. The papers by Schwinger,
Erber et al [11,12] should be mentioned in this connection. Yet, they limited
themselves to the EMF in a spectral representation and did not succeed in
obtaining the electromagnetic field strengths and radiation flux in the time
representation. It should be noted that Schott’s summation procedure does
not work if the charge velocity exceeds the velocity of light in medium.

The formulae obtained by Schott and Schwinger are valid at the dis-
tances r much larger than the radius a of a charge orbit.

In modern electron and proton accelerators this radius reaches few hun-
dred meters and few kilometers, respectively. This means that large obser-
vational distances are unachievable in experiments performed on modern
accelerators and the formulae describing the radiation intensity at moderate
distances and near the charge orbit are needed. In the past, time-averaged
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radiation intensities in the near zone were studied in [13-15]. However, their
consideration was based on the expansion of field strengths in powers of a/r.
The convergence of this expansion is rather poor in the neighbourhood of
a charge orbit.

SR has numerous applications in nuclear physics (nuclear reactions with
γ quanta), solid state physics (see, e.g., [16]), astronomy [17,18], etc. There
are books and special issues of journals devoted to application of SR [19-21].

The goal of this Chapter consideration is to study SR in vacuum and
medium. In the latter case the charge velocity v can be less or greater than
the velocity of light in medium cn.

The plan of our exposition is as follows. Section 8.2 is devoted to the SM
in vacuum. In subsection 8.2.1 we present the main mathematical formulae
for synchrotron radiation. In subsection 8.2.2 we evaluated the electromag-
netic energy fluxes radiated for the period of the charge motion in three
mutually orthogonal directions (radial, azimuthal and polar) on the ob-
servational spheres with radii greater and smaller than the charge orbit
radius. Subsection 8.2.3 is devoted to the investigation of the instanta-
neous radiation in vacuum. It is shown that it has a more complicated
structure than was known up to now. The new formula for the intensity
of radiation generalizing the Schwinger formula for arbitrary observational
distances and velocities is obtained. The results of this section may be ap-
plied to astrophysical problems associated, e.g., with sunspots, the Crab
nebula, Jupiter’s radiation belts, etc. [17,18]. The synchrotron radiation in
medium is treated in section 8.3. The necessary mathematical preliminaries
are given in subsection 8.3.1. The explicit expressions for EMF strengths at
arbitrary distances are given in subsection 8.3.2. In section 8.3.3 the spatial
distribution of EMF singularities on the surface of the observational sphere
for the case v > cn is analysed. Their relation to the singularities of the
instantaneous Cherenkov cone attached to a rotating charge is discussed
in subsection 8.3.4. Subsection 8.3.5 is devoted to the consideration of SR
in the wave zone. It turns out that the position of EMF singularities for
v > cn drastically depends on the radius of the observational sphere. At
a fixed instant of laboratory time they fill a spiral-like surface. The space-
time distributions of different polarization components are analysed. The
spatial domains where they vanish and where they are infinite are deter-
mined for various charge velocities and radial distances. The brief account
of the results obtained is given in section 8.4.
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R
δ(t′ − t + R/c)dV ′dt′,

�A =
e

c

∫ �j(�r′, t′)
R

δ(t′ − t + R/c)dV ′dt′. (8.1)

Here R = |�r − �r′|, Ω′ = ω0t
′ − φ, c is the velocity of light in vacuum.

Substituting ρ and �j here one obtains

Φ = e

∫
dt′

R
δ(t′ − t + R/c), Ax = −eβ

∫
dt′

R
sin ω0t

′δ(t′ − t + R/c),

Ay = eβ

∫
dt′

R
cos ω0t

′δ(t′ − t + R/c),

Figure 8.1. Schematic presentation of the synchrotron motion. P (r, θ, φ) is the obser-
vational point.

8.2. Synchrotron radiation in vacuum.

8.2.1. INTRODUCTORY REMARKS

Consider a point charge moving uniformly in vacuum along the circular
orbit of radius a lying in the plane z = 0 (Fig. 8.1): x = a cos ω0t, y =
a sin ω0t.

Charge and current densities and corresponding electromagnetic poten-
tials are given by

ρ = eδ(z)δ(x − a cos ω0t)δ(y − a sin ω0t),

�j = ρv�nφ, �nφ = �ny cos ω0t − �nx sin ω0t, v = aω0,

Φ = e

∫
ρ(�r′, t′)
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R = [r2 + a2 − 2ra sin θ cosΩ′]1/2. (8.2)

To clarify the applicability of Schott’s formula we limit ourselves to the
evaluation of electric potential Φ. Using the relation

δ(τ) =
ω0

2π
(1 + 2

∞∑
m=1

cos mω0τ), (8.3)

we obtain

Φ =
eω0

2π

∫
dt′

R
[1 + 2

∞∑
m=1

cos mω0(t′ − t + R/c)]. (8.4)

The following approximations are usually made in (8.4):
i) Outside the cosine R is replaced by r ;
ii) Inside the cosine R is replaced by r − a sin θ cos(ω0t

′ − φ).
After these approximations Φ is integrated in a closed form:

Φ =
e

r
+

2e

r

∑
m

Jm(mk0a sin θ) cos mχ,

χ = k0r + φ − ω0t − π

2
, k0 =

ω0

c
.

In the same way one obtains the vector potential. Differentiating poten-
tials, one finds field strengths and, finally, the electromagnetic energy flux
through the observational sphere of radius r.

In the wave zone the EMF strengths are given by [1]

Eθ = Hφ = −2eβ

ar
cot θ

∞∑
m=1

mJm(mβ sin θ) sin mχ,

Hθ = −Eφ =
2eβ2

ar

∞∑
m=1

mJ ′
m(mβ sin θ) cos mχ (8.5)

(J ′
m means the derivative of Jm w.r.t. its argument).
The radial energy flux averaged over the period of rotation is

dW

dΩ
= r2 c

4π

∫
(EθHφ − HθEφ)dφ =

∞∑
m=1

Wm(θ), (8.6)

Wm(θ) =
e2cβ2

2πa2
m2[cot2 θJ2

m(mβ sin θ) + β2J ′2
m(mβ sin θ)].

The sum over m in (8.6) is evaluated analytically:

dW

dΩ
=

e2cβ4

32πa2
(Fσ + Fπ),
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Fσ =
4 + 3β2 sin2 θ

(1 − β2 sin2 θ)5/2
, Fπ = cos2 θ

4 + β2 sin2 θ

(1 − β2 sin2 θ)7/2
,

where Fσ and Fπ are the so-called s and π components of polarization (see
sect. 8.3.5).

In the ultra-relativistic limit (1 − β2 � 1), using the asymptotic be-
haviour of the Bessel functions, one finds for Wm(θ) [2-6]

Wm(θ) =
e2c

6π3a2
m2[δ2K2

2/3(mδ3/2/3) + δ cot2 θK2
1/3(mδ3/2/3)]. (8.7)

Here Kν(x) is the modified Bessel function and δ = 1 − β2 sin2 θ.
We now elucidate under what physical conditions the approximations i)
and ii) are satisfied.

The approximation i) means that the observational distance r is much
larger than the orbit radius a. For a typical orbit radius a ≈ 1 m, the
approximation i) will work for r ≥ 5m. However, in modern accelerators
a reaches few hundred meters. In this case, approximation i) will not be
satisfied at realistic distances.

Even worse is the situation with the second approximation. We write
out the argument of the cosine function: ω(t′ − t + R/c). Here ω = mω0 is
the observable frequency. We develop R up to the second order of a2:

R = r

{
1 − a

r
sin θ cos(ω0t

′ − φ) +
a2

2r2
[1 − sin2 θ cos2(ω0t

′ − φ)]

}
. (8.8)

Thus Schott’s formulae are valid if the last term in (8.8), which is of the
order ωa2/cr, is small compared to 2π (since this term is inside the co-
sine), i.e., one should have ωa2/car << 2π. We rewrite this equation using
wavelength λ = 2πc/ω:

a2

rλ
� 1 (8.9)

For a ≈ 1 m and λ ≈ 4×10−5 cm (the optical region), the l.h.s. of (8.9) com-
pares with 1 for r ≈ 100 km. It is the strong violation of the approximation
ii) that enables out to seek another approach to the problem treated.

Equations (8.6) and (8.7) were also obtained by Schwinger [7] without
approximations i) and ii). However, his method of derivation includes the
use of retarded and advanced EMF (the latter conflicts with causality) and
the ad hoc omission of terms with definite symmetry properties.

Other methods of treating SR in a vacuum without using approxima-
tions i) and ii) are owed to the explicit formulae for EMF generated by a
charge in arbitrary motion (see, e.g., [17,22]:

�E =
e

(R − �β �R)3
{(1 − β2)(�R − �βR) +

1
c
[�R × ((�R − �βR) × �̇β)]},
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�H =
1
R

(�R × �E). (8.10)

Here �R is the vector going from the retarded position of the charge to
the observational point P (r, θ, φ); �β = �v/c and �̇β = �̇v/c are taken at the
retarded time t′. We apply these equations to a charge moving along the
circular orbit of radius a. The energy radiated by this charge per unit of
laboratory time, into the unit solid angle of the sphere of the radius r is
given by

d2W

dΩdt
=

c

4π
r2( �E × �H)r. (8.11)

Expressing in this equation the retarded time t′ through the laboratory one
t via the relation:

c(t − t′) = R = [r2 + a2 − 2ra sin θ cos(ω0t
′ − φ)]1/2, (8.12)

we obtain the spatial distribution of radiation at the fixed instant of lab-
oratory time t. This is essentially the idea of the present consideration.
Equation (8.12) can be rewritten in another form

χ = χ′ +
β

ε0
(1 − R̃), (8.13)

where

R̃ = (1+ε2
0−2ε0 sin θ cos χ′)1/2, χ = φ−ω(t−r/c), χ′ = φ−ωt′, ε0 =

a

r
.

In the case treated a charge moves along the circular orbit of the radius a
lying in the plane z = 0:

ξx = a cos ωt′, ξy = a sin ωt′, ξz = 0

(see Fig. 8.1).
In a manifest form, the spherical components of �E look like

Er =
e

ra
Ẽr, Eθ =

e

ra
Ẽθ, Eφ =

e

ra
Ẽφ, (8.14)

where the dimensionless field strengths are

Ẽr =
ε0

Q3
[1 − βR̃ sin θ sin χ′ − β2 sin2 θ cos2 χ′ − ε0(1 − β2) sin θ cos χ′],

Ẽθ =
cos θ

Q3
[β2 cos χ′ − ε0β(β sin θ cos2 χ′ + R̃ sin χ′) − ε2

0(1 − β2) cos χ′],
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Ẽφ =
1

Q3
[β2(βR̃ sin θ−sinχ′)−βε0 cos χ′(R̃−β sin θ sin χ′)+ε20(1−β2) sin χ′].

Here Q = R̃ − β sin θ sin χ′; r, θ, and φ define the position of the observa-
tional point. The spherical components of the Poynting vector

�S =
c

4π
( �E × �H) =

c

4πR
[�RE2 − �E( �E �R)]

are given by

Sr =
ce2

4πr2a2
S̃r, Sθ =

ce2

4πr3a
S̃θ, Sφ =

ce2

4πr3a
S̃φ,

where S̃r, S̃θ and S̃φ are the corresponding dimensionless components:

S̃r =
1 − ε0 sin θ cos χ′

R̃
Ẽ2 − Ẽrε0

1 − β2

Q2
,

S̃θ = −cos θ cos χ′

R̃
Ẽ2 − Ẽθ

1 − β2

Q2
,

S̃φ =
sin χ′

R̃
Ẽ2 − Ẽφ

1 − β2

Q2
. (8.15)

When obtaining (8.15) it was taken into account that

Rr = r − a sin θ cos χ′, Rθ = −a cos θ cos χ′, Rφ = a sinχ′,

�E �R = e(1 − β2)rR̃/Q2.

At large distances (r � a)

Er ≈ O(r−2), Hr ≈ O(r−2), Hφ = Eθ =
eβ2

ra

cos θ cos χ′

q3
,

Eφ = −Hθ =
eβ2

ra

β sin θ − sin χ′

q3
, Sθ = Sφ ≈ O(r−3),

Sr =
c

4π
(E2

φ + E2
θ) =

c

4π

e2β4

r2a2q6
[cos2 θ cos2 χ′ + (β sin θ − sin χ′)2]. (8.16)

Here q = 1 − β sin θ sin χ′. Obviously Srdσr, Sθdσθ and Sφdσφ are energies
radiated per unit of laboratory time through the surface elements dσr =
r2 sin θdθdφ, dσθ = r sin θdrdφ, dσφ = rdrdθ attached to the sphere of
the radius r and oriented in radial, meridional and azimuthal directions,
respectively. Correspondingly,

d3E
sin θdθdφdt

= r2Sr,
d3E

sin θdrdφdt
= rSθ,

d3E
drdθdt

= rSφ
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are the energies per unit of laboratory time related to the rectangles with
sides (dθ, sin θdφ), (dr, sin θdφ) and (dr, dθ), respectively.

8.2.2. ENERGY RADIATED FOR THE PERIOD OF MOTION

We are interested in energies flowing through the above surface elements
for the period of charge motion.

σr =
d2E

sin θdθdφ
= r2

T∫
0

Srdt, σθ =
d2E

sin θdrdφ
= r

T∫
0

Sθdt,

σφ =
d2E
drdθ

= r

T∫
0

Sφdt, T = 2π/ω.

From (8.12) we find

dt =
Q

R̃
dt′ = − Q

R̃ω
dχ′.

Then,

σr =
d2E

sin θdθdφ
=

e2

4πaβ

2π∫
0

S̃r
Q

R̃
dχ′,

σθ =
d2E

sin θdrdφ
=

e2

4πr2β

2π∫
0

S̃θ
Q

R̃
dχ′,

σφ =
d2E
drdθ

=
e2

4πβr2

2π∫
0

S̃φ
Q

R̃
dχ′. (8.17)

The χ′ integration runs from 0 to 2π. For large distances (ε0 → 0) one gets

σθ → 0, σφ → 0, σr → e2β3

4a

1
(1 − β2 sin2 θ)5/2

×
[
2 + β2 sin2 θ − sin2 θ

1 − β2

1 − β2 sin2 θ

(
1 +

1
4
β2 sin2 θ

)]
. (8.18)

Equation (8.18) coincides with that given in [22].
The surface integral from the radial energy flux∫

σrdΩ =
4πβ3γ4

3a
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Figure 8.2. Dimensionless distributions of the radial energy flux σ̃r for the period of
motion as a function of the polar angle θ for β = 0.999, for the radii of an observational
sphere greater (a) and smaller (b) than radius a of the charge orbit. It is seen (a) that the
radial distribution for ε = 0.5 practically coincides with that for ε = 0 (this corresponds
to an infinite observational distance). For r < a (b), σ̃r is large only in the neighbourhood
of a charge orbit (ε = 1.01). The increasing of σ̃r near the charge orbit is owed to the
proximity of a charge and is usually called the focusing effect (see the text).

is equal to the energy radiated by a moving charge during the time T =
2π/ω. It follows from (8.17) that σr, σθ and σφ have different dimen-
sions, and therefore cannot be compared between themselves. To make this
possible we introduce dimensionless intensities

σ̃r = σr/(e2/a), σ̃φ = σφ/(e2/a2), σ̃θ = σθ/(e2/a2).

The radial energy flux σ̃r emitted during the period of a charge motion
is shown in Fig. 8.2 as a function of a polar angle θ. The calculations
were made for the radii of an observational sphere r larger (Fig. 8.2 a) and
smaller (Fig. 8.2 b) than radius a of the charge orbit. It is seen that with the
increase of radius r of the observational sphere, σ̃r reaches its asymptotic
value (8.18) for ε0 ≈ 0.5 (Fig. 8.2 a). On the other hand, for r smaller than
a, σ̃r falls very rapidly with decrease of r (Fig. 8.2 (b)). The increase of the
radial energy flux in the neighbourhood of a charge orbit (ε0 → 1) is owed
to the proximity of the observational point to a moving charge. This fact
was called the ‘focusing’ effect in [15].

The azimuthal energy flux σ̃φ emitted for the period of the charge mo-
tion is shown in Fig. 8.3 as a function of the polar angle θ. In accordance
with Schwinger’s results it is large in the immediate neighbourhood of the
charge trajectory (ε0 = 0.99 and ε0 = 1.01). For large observational dis-
tances it decreases as ε2

0. On the observational spheres lying inside the
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Figure 8.3. Distributions of the dimensionless azimuthal energy flux σ̃φ for the period of
motion as a function of the polar angle θ for β = 0.999, for the radii of the observational
sphere greater (a) or smaller (b) than a. Numbers on curves are ε = a/r. For large
observational distances σ̃φ falls like 1/r2. From the comparison with Fig. 8.2 it follows
that σ̃φ � σ̃r in the neighbourhood of a charge orbit (ε ∼ 1) and σ̃φ � σ̃r at large
distances. This reconciles Schwinger’s and Schott’s predictions.

Figure 8.4. Distributions of the dimensionless polar energy flux σ̃θ for the period of
motion as a function of the polar angle θ for β = 0.999, for the radii of the observational
sphere greater (a) or smaller (b) than a. For large observational distances they decrease
as 1/r2. From the comparison with Figs. 8.1 and 8.2 it follows that σ̃θ is much smaller
than σ̃φ and σ̃r.

charge orbit the dependence σ̃φ is rather flat for ε0 > 2. The polar energy
flux σ̃θ emitted for the period of the charge motion is shown in Fig. 8.4 as
a function of the polar angle θ. Owing to the presence of the factor cos θ in
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S̃θ (see 8.15), σ̃θ exhibits a characteristic oscillation in the neighbourhood
of θ = π/2. It is easy to check that

∫
σθdθ = 0. In general, polar intensities

σ̃θdθ are much smaller than σ̃φ and σ̃r. Comparison of Figs. 8.2 (a) and 8.3
demonstrates that the focusing effect is more pronounced for the energy
flux in the azimuthal direction. This is essentially the Schwinger result,
according to which a charge moving with a velocity v ∼ c radiates mainly
in the direction of its motion. Figs. 8.2 (b) and 8.3 (b) demonstrate that
focusing effect takes place also for r < a.

What is new in this section? The radial energy flux at arbitrary dis-
tances for r > a was studied previously in [13-15], [18]. To the best of our
knowledge, the energy fluxes in other directions and radial energy flux for
r < a were never studied before.

8.2.3. INSTANTANEOUS DISTRIBUTION OF SYNCHROTRON
RADIATION

Up to now we have studied the spatial distribution of the energy radi-
ated for a period of the motion. Now we intend to study its instantaneous
distribution in the laboratory reference frame at a given instant of labora-
tory time. In the past, the instantaneous distribution of the radiated power
at large distances was studied in the reference frame attached to a mov-
ing charge [23-26]. The instantaneous intensity in the radial direction was
identified with Sr defined in (8.16). However, all quantities in this equation
are referred to a fixed instant of proper time t′ of a moving charge (since
χ′ = φ − ωt′). Owing to equation (2.2) different spatial points in Sr corre-
spond to different instants of laboratory time t. The physical meaning of
this intensity is not very clear. We are interested in finding the intensity at
a given instant of laboratory time. For this purpose, for a given instant of
laboratory time t we find t′ from the equation (8.12) at a given spatial point
x, y, z. Substituting t′ thus obtained into the field strengths we find EMF at
the spatial point x, y, z at the given instant t of laboratory time. By varying
x, y, z we obtain the spatial distribution of the EMF at the given instant of
laboratory time. This is essentially the computing procedure used below.

Infinities of field strengths
First we note that the denominators Q entering (8.14) have zero only at
β = 1, θ = π/2, cos χ′ = ε0. The corresponding value of χ is equal to

χ = arccos ε0 + (1 −
√

1 − ε2
0)/ε0. (8.19)

In particular, for large observational distances, ε0 ≈ 0, χ′ ≈ π/2, χ ≈ π/2.
In the neighbourhood of the charge orbit ε0 ≈ 1, χ′ ≈ 0, χ ≈ 1. For the
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intermediate distance ε0 = 0.5 one finds χ′ = π/3, χ = π/3+2(1−√
0.75) ≈

1.3. Thus zeroes of Q fill the interval 1 < χ < π/2. Obviously field strengths
are infinite at those spatial points where Q vanishes. Physically this may
be understood in the framework of the Schwinger approach [7] according to
which a charge moving along a circular trajectory with the velocity v ∼ c
radiates in the direction of its motion. The equation of this radiation line
is

y − a sin ωt′ = − cot ωt′(x − a cos ωt′).

Or, in spherical coordinates,

cos(φ − ωt′) =
a

r
, φ − ωt′ = arccos

a

r

(it was set here θ = π/2 since a charge moves in the equatorial plane).
Substituting this equation into (8.13) one finds

χ = arccos ε0 +
β

ε0
(1 −

√
1 − ε20).

For β = 1 this coincides with (8.19).

Extremes of the Q function
For β 	= 1 and θ 	= π/2 the denominator Q entering the field strengths does
not vanish. Yet it may take minimal and maximal values corresponding to
maximal and minimal values of field strengths, respectively. In the next two
sections we study the positions of Q extremes in the plane θ = const (the
parallel plane) and in the plane φ = const (the meridional plane)

Extremes of field strengths in parallel planes. To find extremes of the
functions Q relative to the azimuthal angle φ we differentiate Q by φ for
r, t, and θ fixed and take into account that

c
dt′

dφ
= − ar sin θ sin χ′

R − βr sin θ sin χ′ = −a sin θ sin χ′

Q
.

Then equating dQ/dφ to zero one has

a sin χ′ = Rβ cos χ′, (8.20)

or, in dimensionless variables,

ε0 sin χ′ = R̃β cos χ′, R̃ = (1 + ε2
0 − 2ε0 sin θ cos χ′)1/2.

This leads to the following third-order equation:

cos3 χ′ − b cos2 χ′ +
ε0

2β2 sin θ
= 0, b =

1 + ε2
0(1 + 1/β2)
2ε0 sin θ

. (8.21)
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This equation has three real roots

cos χ′
1 =

b

3

(
2 cos

ψ

3
+ 1

)
, cos χ′

2 =
b

3

(
1 − cos

ψ

3
+

√
3 sin

ψ

3

)
,

cos χ′
3 =

b

3

(
1 − cos

ψ

3
−

√
3 sin

ψ

3

)
. (8.22)

Here

cos ψ = 1 − 54
ε40β

4 sin2 θ

[β2(1 + ε2
0) + ε2

0]3
, 0 < ψ < π.

Since (cos χ′)1 > 1, it is unphysical. Furthermore, it follows from (8.21)
that cos χ′

2 > 0 and cos χ′
3 < 0. Owing to (8.20), sinχ′ has the same sign

as cos χ′. Therefore

χ′
2 = arccos

[
b

3

(
1 − cos

ψ

3
+

√
3 sin

ψ

3

)]
,

χ′
3 = π + arccos

∣∣∣∣ b3
(

1 − cos
ψ

3
−

√
3 sin

ψ

3

)∣∣∣∣
lie in the first and third quadrants, respectively. From the definition of Q it
follows that χ′

2 and χ′
3 correspond to the minimum and maximum of Q and

to the maximum and minimum of field strengths, respectively. We rewrite
equation (8.13) in the form

χ2 = χ′
2 +

β

ε0
(1 − R̃2), χ3 = χ′

3 +
β

ε0
(1 − R̃3),

R̃2,3 = (1 + ε2
0 − 2ε0 sin θ cos χ′

2,3)
1/2. (8.23)

These equations define χ2 and χ3 (corresponding to the fixed r and θ) for
which the field strengths are maximal and minimal, respectively.

The dependences χ2(θ) and χ3(θ) given by (8.23) for β = 0.999, on the
observational spheres of various radii are shown in Fig. 8.5. A particular
curve defines the position of the field strength maxima and minima on a
sphere of a particular radius. However, the numerical value of extremum
along each of these curves depends on θ. To evaluate the absolute minimum
and maximum of Q, we substitute (8.20) and (8.23) into Q

Q2,3 = R̃2,3

(
1 − β2

ε0
sin θ cos χ′

2,3

)

= R̃2,3

{
1 − β2

6ε2
0

[1 + ε2
0(1 + 1/β2)]

(
1 − cos

ψ

3
±

√
3 sin

ψ

3

)}
.
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Figure 8.5. Lines on which Q is minimal (a) and maximal (b) for β = 0.999 and different
radii of the observational sphere. Numbers on curves mean ε. Along each of these curves
the absolute minimum (a) and maximum (b) of Q are reached at θ = π/2.

Differentiating by θ we find that absolute minimum (for Q2) and max-
imum (for Q3) are reached at θ = π/2. Then, the first of the equations

χ2 = χ′
2 +

β

ε0
(1 − R̃2),

χ3 = χ′
3 +

β

ε0
(1 − R̃3), (8.24)

(where cos χ′
2 and cosχ′

3 are obtained from (8.22) by setting θ = π/2 in
them), generalizes Schwinger’s formula for arbitrary β and ε0.

The azimuthal positions of absolute minimum and maximum of Q as
a function of radius of the observational sphere are shown in Fig. 8.6 for
various charge velocities. It is seen that χ2 and χ3 fill the intervals (0, π/2)
and (π, 3π/2), respectively.

Finally, in Fig. 8.7 it is shown how the function Q−1 behaves in the
equatorial plane θ = π/2. Obviously the maxima of field strengths and
radiation intensity coincide with those of Q−1.

It should be mentioned that Eq. (8.24) defining χ2 may be interpreted
in three ways. First, for fixed t, Eq. (8.24) defines how the azimuthal po-
sition of the maximum of Q−1 changes with r. Clearly this dependence
has a spiral-like structure. Second, for fixed r, Eq.(8.24) defines how the
azimuthal position of the maximum of Q−1 changes with t. Obviously this
dependence is linear. Third, for fixed φ, Eq.(8.24) defines how the radial
position of the maximum of Q−1 changes with t. Obviously, r linearly rises
with t.
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Figure 8.6. Azimuthal position of the absolute minimum (a) and maximum (b) of Q as a
function of radius of the observational sphere. Numbers on curves mean charge velocities
β. It is seen that the absolute minima and maxima of Q fill the regions 0 < χ < π/2 and
π < χ < 3π/2, respectively.

Figure 8.7. Behaviour of Q−1 in the plane θ = π/2 for β = 0.999 and various radii of
the observational sphere. Numbers on curves mean ε.
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Consider particular cases.
1) ε0 → 0. This corresponds to an observational point on the sphere

with a radius r � a. Then

χ2 = χ′
2 → π

2
, φ2 → π

2
+ ω

(
t − r

c

)
,

χ3 = χ′
3 → 3π

2
, φ3 → 3π

2
+ ω

(
t − r

c

)
. (8.25)

Therefore at large distances the minimum and maximum of Q are reached
at the planes χ2 = π/2 and χ3 = 3π/2, respectively. The corresponding
values of Q are equal to Q2 = 1−β sin θ and Q3 = 1+β sin θ. The absolute
minimum and maximum of Q are reached at the points χ2 = π/2, θ = π/2
and χ3 = 3π/2, θ = π/2, respectively. This is demonstrated in Fig. 8.7,
from which it follows that, indeed, for ε0 = 0.1, Q reaches the minimal and
maximal values approximately at these points.

2) β → 0. This corresponds to a charge which is permanently at rest
at the point x = a, y = z = 0. Eqs.(8.21) and (8.22) then give χ2 = χ′

2 =
φ2 = 0, χ3 = χ′

3 = φ3 = π. These values correspond to the nearest and
most remote meridional planes on the sphere of the radius r, respectively.

3) ε0 → 1, θ = π/2, β → 1. This corresponds to the observational point
on the charge trajectory. Then,

χ′
2 → 0, χ2 → 1, φ2 → ωt, χ′

3 → 4π

3
,

χ3 → 4π

3
+ 1 −

√
3, φ3 → ωt +

4π

3
−

√
3.

Again, this is supported by Fig. 8.7 which shows that for ε0 = 0.99, Q
reaches the minimal and maximal values at these points.

The dimensionless instantaneous radial and azimuthal energy fluxes
(8.15) taken along the curves χ2 with minimal Q defined by Eq. (8.23)
and depicted in Fig. 8.5(a) are shown in Figs. 8.8(a) and (b). It is seen
that in the neighbourhood of the charge orbit, the S̃φ component of the
Poynting vector dominates. This may be shown analytically. For simplicity
let ε0 = 1, β = 1, whilst θ = π/2 + δθ. Then,

sin θ ≈ 1 − δ2
θ/2, cos ψ ≈ −1 + 2δ2

θ, cos χ′
2 ≈ 1 − δθ/

√
3,

sin χ′
2 ≈

√
2δθ/

√
3, R̃ ≈

√
2(δθ/

√
3)1/2, Q ≈

√
2(δθ/

√
3)3/2.

We observe that for β = 1 and ε0 = 1

S̃r ∼ |δθ|/
√

3, Sθ ∼ δθ, S̃φ ∼
√

2|δθ

√
3|1/2
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Figure 8.8. Instantaneous radial (a) and azimuthal (b) energy fluxes along the curves

with minimal Q shown in Fig. 5a. Numbers on curves are ε. It is seen that S̃φ � S̃r near
the charge orbit (ε0 = 0.99).

(the same singular factor E2/R̃ is omitted). Hence, it follows that in the
neighbourhood of a charge orbit, S̃φ is much larger than S̃r and Sθ (since
|δθ|1/2 � |δθ| for |δθ| � 1).

The dominance of S̃φ over S̃r near the charge orbit, and S̃r over S̃φ

at large distances may be understood as follows. Following Schwinger [7]
assume that for r ∼ a all energy is radiated along the vector �n = cos ωt�ny−
sin ωt�nx tangential to a charge orbit. An energy flux (lying on the continu-
ation of �n)) then intersects the sphere Sr of the radius r at the azimuthal
angle φ = ωt + arccos(a/r). The scalar product of the radial unit vector
belonging to Sr with the unit vector lying on the continuation of �n (along
which the energy flux propagates) is (�nr�n) = sin(φ−ωt). At large distances
φ − ωt = arccos(a/r) ≈ π/2 and (�nr�n) ≈ 1. Therefore, at large distances
Schwinger’s flux has mainly the radial component.

We now evaluate the radial and azimuthal energy fluxes in the equatorial
plane θ = π/2. For the radii of the observational sphere not too close
to a charge orbit, Sr is positive for all χ (Fig. 8.9(a)). However, in the
neighbourhood of a charge orbit, S̃r may be negative in some region of χ
(the energy flows into the observational sphere there). This is demonstrated
in Fig. 8.9(b), where the region with S̃r < 0 is shown by the dotted line. The
reason for this is evident from Eqs. (8.15). It is seen that S̃r consists of two
terms. The second term is compared with the first one in the neighbourhood
of a charge orbit where ε0 ≈ 1.

On the other hand, both terms in S̃φ are of the same order. Therefore,
one may expect that S̃φ may take negative values in some region of θ for
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Figure 8.9. Instantaneous radial energy fluxes in the plane θ = π/2 for β = 0.999 and
radii of the observational sphere not too close to the charge orbit (a) and in its immediate
neighbournood (b). Numbers on curves mean ε = a/r. In the latter case (b) energy flux
may take negative values shown by the dotted line.

Figure 8.10. Instantaneous azimuthal energy fluxes in the plane θ = π/2 for β = 0.999 at
a large distance from the charge orbit (a) and near it (b). In both cases azimuthal energy
fluxes take negative values (shown by dotted lines) in some angular regions. Numbers on
curves mean ε0.

arbitrary radius of the observational sphere. It is shown in Figs. 10(a) and
10(b) that regions of χ where S̃φ is negative, exist both for large (ε0 = 0.1)
and small (ε0 = 0.99) observational distances. Again, the regions with S̃φ <
0 are shown by the dotted lines. Although the instantaneous radial and
azimuthal EMF fluxes may acquire negative values in some angular regions,
their time averages are positive. Figs. 8.2 (a) and 8.3 demonstrate this.
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Figure 8.11. Radial distribution of Q−1 defining maxima of field strengths for a fixed
laboratory time in the equatorial plane θ = π/2 for a number of charge velocities. The
period of oscillations is 2π/β.

The dependence of Q−1 on the radius in the equatorial plane θ = π/2
at a fixed instant of laboratory time t is shown in Fig. 8.11. The oscillations
with the period 2π/β are observed. The dependences of Q−1 on the labora-
tory time t in the equatorial plane θ = π/2 for the fixed radius are shown in
Fig. 8.12 (a) for a large observational distance (ε0 = 0.1), and in Fig. 8.12
(b) in the neighbourhood of a charge orbit (ε0 = 0.99). Again, oscillations
with the period 2π/β are observed. Both these cases are described by the
following two formulae:

Q−1 =
1

c(t − t′)/r + β sin θ sin(βct′/a − φ)
,

c(t − t′) = [r2 + a2 − 2ra sin θ cos(βct′/a − φ)]1/2.

Extremes of field strengths in meridional planes. Now we find the mini-
mum of Q relative to θ for χ fixed. For this purpose one should solve the
equation dQ/dθ = 0. Taking into account that

dχ′

dθ
= − β cos θ cos χ′

R̃ − β sin θ sin χ′ ,
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Figure 8.12. Time dependences of Q−1 at a fixed radial point lying in θ = π/2 plane
at a large distance (a) and near (b) the charge orbit. The period of oscillations is 2π/β.

we find the following relation

−β cos θ sin θ
cos χ′

R̃ − β sin θ sin χ′ = cos θ
ε0 cos χ′ + βR̃ sin χ′

ε0 sin χ′ − βR̃ cos χ′ . (8.26)

This equation is satisfied trivially for θ = π/2. In this case

Q = R̃ − β sin χ′,

χ = χ′ +
β

ε0
(1 − R̃), R̃ = (1 + ε2

0 − 2ε0 cos χ′)1/2.

To see whether Q reaches the maximum or minimum at this χ′, one should
find d2Q/dθ2 at θ = π/2. It is given by

d2Q

dθ2
(θ = π/2) =

∆
R̃ − β sin χ′ , ∆ = ε0 cos χ′ + βR̃ sin χ′ − β2.

Obviously Q(θ) has a minimum or maximum θ = π/2 for ∆ greater or
smaller than zero, respectively (since R − β sin χ′ is always positive). Cor-
respondingly, Q−1 and field strengths have a maximum or minimum there.
The value of χ is found from the equation χ = χ′ + β(1 − R)/ε0.

Consider particular cases.
For ε0 → 0 (large distances) ∆ = β(sinχ′ − β). Therefore Q, as a

function of θ, has a minimum at θ = π/2 for sinχ′ > β and maximum for
sin χ′ < β. The corresponding χ is given by χ = χ′ + β cos χ′. Therefore
for large distances and β ≈ 1, ∆ is negative everywhere except for the
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Figure 8.13. Azimuthal angular dependence of the parameter ∆ in the equatorial plane
θ = π/2 on the sphere of a particular radius. Q−1 may take maximal values in the region
of χ where ∆ > 0 and minimal values in the region of χ where ∆ < 0. Numbers on curves
mean ε0 = a/r.

neighbourhood of χ′ = π/2. Correspondingly, the maxima of Q−1 and field
strengths should be near χ ≈ χ′ = π/2.

For ε0 ≈ 1 (i.e., near the charge orbit), ∆ and χ are reduced to:

∆ = cos χ′ + 2β sin χ′ sin(χ′/2) − β2, χ = χ′ + β(1 − 2 sin(χ′/2)).

We see that ∆ > 0 for 1 < χ < 1.36 and ∆ < 0 in other regions of χ.
Therefore Q acquires the minimum at θ = π/2 only for 1 < χ < 1.36.

The dependences ∆(χ) for large observational distances (ε0 = 0.1) and
in the neighbourhood of the charge orbit (ε0 = 0.99) are shown in Fig. 8.13.
They are in complete agreement with the analytical results just obtained.
This is also confirmed by Figs. 8.7 and 8.9 where Q−1(χ) and field strengths
are shown in the equatorial plane θ = π/2. We see that maxima of Q−1(χ)
and field strengths lie in the neighbourhood of χ = π/2 for ε0 → 0, whilst its
minima are outside this region. The position of the Q(θ = π/2) extremum
as a function of the observational sphere radius are shown in Figs. 8.6(a)
and (b).
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We conclude: for θ = π/2 the positions and values of Q extremes coin-
cide with those found at the beginning of this section.

For θ 	= π/2 equation (8.26) reduces to

βR̃ sin χ′ = β2 sin θ − ε0 cos χ′. (8.27)

Or,
cos3 χ′ − b cos2 χ′ + c = 0,

where

b =
1 + ε2

0(1 + 1/β2)
2ε0 sin θ

, c =
1 + ε2

0 − β2 sin2 θ

2ε0 sin θ
.

Three roots of this equation are given by

(cos χ′)1 =
b

3

(
2 cos

ψ′

3
+ 1

)
, (cos χ′)2 =

b

3

(
1 − cos

ψ′

3
+

√
3 sin

ψ′

3

)
,

(cos χ′)3 =
b

3

(
1 − cos

ψ′

3
−

√
3 sin

ψ′

3

)
. (8.28)

Here

cos ψ′ = 1 − 54ε2
0 sin2 θ

1 + ε20 − β2 sin2 θ

(1 + ε2
0 + ε2

0/β2)3
.

It is easy to check that (cos χ′)1 > 1, and therefore it is unphysical. We
observe that (cos χ′)2 ≥ 0 and (cosχ′)3 ≤ 0. It follows from (8.27) that
(sin χ′)3 ≥ 0. Therefore

χ′
3 = π − arccos

∣∣∣∣ b3
(

1 − cos
ψ′

3
−

√
3 sin

ψ′

3

)∣∣∣∣ (8.29)

lies in the second quadrant and corresponds to the minimum of Q.
Furthermore (see again (8.27)), if

β2 sin θ − 1
3
ε0b

(
1 − cos

ψ′

3
+

√
3 sin

ψ′

3

)
> 0,

then sin χ′
2 > 0, cos χ′

2 > 0, and

χ′
2 = arccos

b

3

(
1 − cos

ψ′

3
+

√
3 sin

ψ′

3

)
(8.30)

is in the first quadrant. On the other hand, if

β2 sin θ − 1
3
ε0b

(
1 − cos

ψ′

3
+

√
3 sin

ψ′

3

)
< 0,
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Figure 8.14. Position of the Q−1 extremes on a sphere of large radius (a) and near the
charge orbit (b). There are two lines of extremes: χ2 and χ3. The former consists of two
branches connected by the dotted line.

then sin χ′
2 < 0, cos χ′

2 > 0 and

χ′
2 = 2π − arccos

b

3

(
1 − cos

ψ′

3
+

√
3 sin

ψ′

3

)
. (8.31)

is in the fourth quadrant.
The lines on which Q are minimal are obtained from the equations

χ2 = χ′
2 +

β

ε0
(1 − R̃2) and χ3 = χ′

3 +
β

ε0
(1 − R̃3), (8.32)

where R̃2,3 = (1+ε20−2ε0 sin θ cos χ′
2,3)

1/2, and cosχ′
2 and cosχ′

3 are defined
by (8.28).

The dependences (8.32) for β = 1 and the large radius of the observa-
tional sphere (ε0 = 0.1) and near the charge orbit (ε0 = 0.99) are presented
in Fig. 8.14 (a) and 8.14 (b). For the fixed χ they define the angle θ for
which Q is minimal. We see on these figures the lines χ2 and χ3 shown
by the solid and broken lines, respectively. In accordance with (8.30) and
(8.31) the curve χ2 consists of two branches connected by the dotted ver-
tical lines. Keep in mind that these curves do not describe the extreme of
Q at θ = π/2. The behaviour of Q−1 along these curves is shown in Fig.
8.15 (a) (large distances) and in Fig. 8.15 (b) (near the charge orbit). How
to deal with the curves presented in Fig. 8.14? Take, e.g., Fig. 8.14 (b). It
shows at which θ the minimal value of Q is reached for the given χ near the
charge orbit. Now we compare Fig. 8.14 (b) with Fig. 8.16 (a), where the
dependences Q−1(θ) in a number of meridional planes in the neighbourhood
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Figure 8.15. Distribution of Q−1 along the curves χ2 and χ3 shown in Fig. 8.14 and
lying on a sphere of large radius (a) and near the charge orbit (b).

Figure 8.16. θ-dependences of Q−1 in different meridional planes in the neighbourhood
of a charge orbit (a) and at large distances from it (b).

of a charge orbit are presented. Let χ be 0.6. Then Fig. 8.14 (b) tells us that
Q has minima at θ ≈ 1.25 and θ ≈ 1.85. This is confirmed by Fig. 8.16 (a)
in which one sees the maxima of Q−1(θ) at the same θ. When χ increases,
two maxima approach each other (Fig. 8.16 (a), χ = 0.9 and χ = 1). For
some χ, when the horizontal line intersects the curve χ2 only once, these
maxima fuse. For larger χ the horizontal line does not intersect either the
χ2 or χ3 curves. In Fig. 8.16 (a) one observes that for χ = 1.2 there are
no maxima of Q−1 for θ 	= π/2 (as we have mentioned, the extremes of Q
at θ = π/2 are not described by Eq.(8.30) and Fig. 8.14)). For larger χ,
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the horizontal line begins to intersect the χ3 curve. Two maxima of Q−1(θ)
again appear ( Fig. 8.16 (a), χ = 1.8). For larger χ, the intersection of the
horizontal line with χ3 disappears, only the minimum at θ = π/2 remains (
Fig. 8.16 (a), χ = 3). For still larger χ the horizontal line begins to intersect
the second branch of the χ2. Two maxima of Q−1(θ) again appear ( Fig.
8.16 (a), χ = 6). We see that the instantaneous distribution of intensities
has a rather complicated and unexpected structure. For example, it is usu-
ally believed that radiation intensity is maximal in the equatorial θ = π/2
plane. Our consideration shows that this is not always so.

For completeness, we present in Fig. 8.16 (b) the dependences Q−1(θ)
in a number of meridional planes at large distances (ε0 = 0.1).

Consider particular cases.
1) Let ε0 → 0. Then,

cos ψ′ = 1 − 54ε20 sin2 θ(1 − β2 sin2 θ), ψ′ = 6
√

3ε0 sin θ
√

1 − β2 sin2 θ,

cos χ′
2 =

√
1 − β2 sin2 θ, cos χ′

3 = −
√

1 − β2 sin2 θ,

sin χ′
2 = sinχ′

3 = β sin θ, χ′
2 = arccos

√
1 − β2 sin2 θ,

χ′
3 = π − arccos

√
1 − β2 sin2 θ, b =

1
2ε0 sin θ

.

Therefore two lines where Q is minimal appear at large distances. They
are defined by equations (8.32):

χ2 = β sin θ
√

1 − β2 sin2 θ + arccos
√

1 − β2 sin2 θ

and
χ3 = π − β sin θ

√
1 − β2 sin2 θ − arccos

√
1 − β2 sin2 θ.

Approximately these curves resemble those shown in Fig. 8.14(a) corre-
sponding to ε0 = 0.1 (according to (8.30) and (8.31), the second branch of
χ2 disappears in the limit ε0 → 0). The corresponding values of Q along
these curves are given by Q2 = Q3 = 1−β2 sin2 θ. Their minima are reached
at θ = π/2. For β = 1, χ2 and χ3 are transformed into

χ2,3 = sin θ| cos θ| + θ

and
χ2,3 = sin θ| cos θ| − θ,

respectively.
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2) Let β → 0. Then

cos ψ′ = 1 − 54
1 + ε20

ε4
0

β6 sin2 θ, ψ′ = 6
√

3

√
1 + ε2

0

ε2
0

β3 sin θ,

cos χ′
2 =

√
1 + ε20

ε0
β, cos χ′

3 = −
√

1 + ε2
0

ε0
β,

χ2 = χ′
2 =

3π

2
, χ3 = χ′

3 =
π

2
.

In this case Q2 ≈ 1 + β sin θ ≈ 1 and Q3 ≈ 1 − β sin θ ≈ 1.
We see that an instantaneous intensity of SR has a very intricate struc-

ture. However, after averaging over the period of motion these intricacies
disappear (see Figs. 8.2-8.4). The main question is how to detect the instan-
taneous intensity which rotates along the surface of observational sphere
with a velocity v ∼ c. Fortunately, there is a notable exception. An in-
stantaneous SR is observed in astronomical experiments [17, 18, 27, 28].
Since the radius of the orbit along which the charge moves is large (e.g.,
for Jupiter it is about 105 km), the period of its rotation is also large and,
therefore, instantaneous SR is observable.

8.3. Synchrotron radiation in medium

8.3.1. MATHEMATICAL PRELIMINARIES

The essence of the present approach is to find retarded times from the
equation

t − t′ = R/cn. (8.33)

Let ti be these roots. Then, for the circular motion in medium

δ(t′ − t + R/cn) =
∑

i

δ(t′ − ti)|1 + βnr sin θ sin Ωi/Ri|−1, βn = v/cn

Ωi = ω0ti − φ, Ri = [r2 + a2 − 2ar sin θ cosΩi]1/2.

The electromagnetic potentials are given by

Φ =
e

ε0

∑
i

1
|Qi| , Aφ = eµβ

∑
i

cosΩi

|Qi| , Aρ = −eµβ
∑

i

sin Ωi

|Qi| ,

Ar = sin θAρ, Aθ = cos θAρ, Qi = Ri + βnr sin θ sin Ωi. (8.34)

To evaluate field strengths, one should differentiate these expressions w.r.t.
the space and time variables taking into account that retarded times ti also
depend on the observational point. From the equation

cn(t − ti) = Ri
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one finds
dti
dt

=
Ri

Qi
, cn

dti
dr

= −r − a sin θ cosΩi

Qi
,

cn
dti
dθ

= ra
cos θ cosΩi

Qi
, cn

dti
dφ

= ra
sin θ sin Ωi

Qi
.

8.3.2. ELECTROMAGNETIC FIELD STRENGTHS

The following expressions are valid at arbitrary distances at the fixed in-
stant of laboratory time t

Eφ =
e

ε

∑
i

1
|Qi|3 [

Ri

a
β2

n(Ri sin Ωi + βnr sin θ)

−βnRi cosΩi − sin Ωi(a − rβ2
n sin θ cosΩi)],

Eθ =
e

ε
cos θ

∑
i

1
|Qi|3 [

Ri

a
βn(βnRi cosΩi + a sin Ωi)

− cosΩi(a − rβ2
n sin θ cosΩi)],

Er =
e

ε

∑
i

1
|Qi|3 [βnRi sin θ sin Ωi + r(1 − β2

n sin2 θ cos2 Ωi)

+a(β2
n − 1) sin θ cosΩi],

Hφ =
e

a
βr cos θ

∑
i

1
|Qi|3 (βnRi cosΩi + a sin Ωi), (8.35)

Hθ = −eβ
∑

i

1
|Qi|3 [βn

r

a
(Ri sin Ωi + βnr sin θ)

+ sin θ(a − rβ2
n sin θ cosΩi) − r cosΩi],

Hr = eβ cos θ
∑

i

1
|Qi|3 (a − rβ2

n sin θ cosΩi).

The radial energy flux is

Sr =
c

4π
(EθHφ − HθEφ). (8.36)

To obtain the radial energy flux (8.36) we should at first evaluate the EMF
strengths (8.35). For this, for a given space-time point �r, t, we should find
retarded times ti from (8.33) and substitute them into (8.35). Varying �r, t,
we find space-time distribution of the EMF strengths. This is essentially
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the numerical procedure adopted in the next sections. But first we try to
obtain qualitative results without numerical calculations.

8.3.3. SINGULARITIES OF ELECTROMAGNETIC FIELD

We are especially interested in finding the position of singularities of elec-
tromagnetic potentials and field strengths. They are given by

Qi = Ri + βnr sin θ sin Ωi = 0. (8.37)

We observe that ti (or Ωi = ω0ti − φ) satisfies two equations ((8.33) and
(8.37)). We try now to exclude ti (or Ωi) from them, thus obtaining space-
time distribution of singularities without solving the transcendental equa-
tion (8.33).

This procedure was invented by Schott [1]. Later it was applied to the
study of creation and time evolution of Cherenkov shock waves in acceler-
ated rectilinear motion [29]. From (8.37) we find

cosΩ1,2 =
a

rβ2
n sin θ

±(1− sin2 θc

sin2 θ
)1/2, sin Ω1,2 = −

√
1 − cos2 Ω1,2, (8.38)

where

sin θc =
1
βn

√
1 +

a2

r2
(1 − 1

β2
n

).

The careful analysis shows that the above-mentioned singularities exist only
if βn > 1. In this case the singularities are located in the angular region
sin θ > sin θc, r > a/βn. Since cosΩ1 = cosΩ2 = a/(rβ2

n sin θc) for sin θ =
sin θc (this corresponds to θ = arcsin θc and θ = π−arcsin θc), two branches
corresponding to the ± signs in (8.38) represent, in fact, one closed curve
lying on the sphere surface.

As cosΩ1 is always greater than zero and sin Ω1 is always less than zero,
Ω1 lies in the fourth quadrant:

Ω1 = 2π − ω1, (8.39)

where ω1 is in the first quadrant:

ω1 = arccosΩ1, sin ω1 =
√

1 − cos2 Ω1.

Since sin Ω2 is always less than zero Ω2 lies in the fourth quadrant:

Ω2 = 2π − ω2, (8.40)

when cosΩ2 > 0, and in the third quadrant

Ω2 = π + ω2, (8.41)
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when cosΩ2 < 0. Here ω2 lies in the first quadrant:

cos ω2 = | cosΩ2|, sin ω2 =
√

1 − cos2 Ω2.

It turns out that cosΩ2 > 0 for a/βn < r < aγn, (γn = |1 − β2
n|−1/2)

and all angles in the interval sin θc < sin θ < 1. On the other hand, for
r > aγn > a/βn one has cosΩ2 > 0 for sin θc < sin θ < sin θ′c, and cosΩ2 < 0
for sin θ′c < sin θ < 1. Here sin θ′c =

√
1 + ε2/βn, ε = a/r.

We rewrite Eq. (8.33) in the form

Ω = Ωi + βnRi/a, (8.42)

where Ω = ω0t − φ. Substituting Ωi from (8.39)-(8.41), we obtain Ω as a
function of the angle θ and of the radius r.

In r, θ, φ variables Eq.(8.42) realizes the singularity surface at the instant
t of laboratory time. From the independence of the r.h.s. of (8.42) of the
azimuthal angle φ and the invariance of its l.h.s. under the simultaneous
change t → t + δt, φ → φ + ω0δt it follows that the singularity surface at
the instant t → t + δt is obtained from that at the instant t by rotation of
the latter through the angle ω0δt. For r and t fixed, Eq.(8.42) defines the
position of the singularity on the sphere of the radius r at the instant t of
laboratory time.

For θ and φ fixed, Eq. (8.42) defines the radius of the sphere on which the
singularity with angles θ, φ is located at the instant t of laboratory time.
Since there are two values of Ωi satisfying (8.37) (see Eqs.(8.38)-(8.41)),
there are two such spheres.

The singular contour (8.42) exists only for r ≥ a/βn. On the sphere of
the radius r = a/βn it contracts to one point

θ =
π

2
, ω0t − φ = arccos

1
βn

+
1
γn

.

On the sphere of radius a (along the equator of which the charge moves)
two branches of the singular contour (8.42) are given by

ω0t − φ = Ω1,2 + βnR12/a, cosΩ1,2 =
1

β2
n sin θ

±
(

1 − 2β2
n − 1

β4
n sin2 θ

)1/2

.

In particular, there are two singular points on the equator itself:

ω0t − φ = 0, ω0t − φ = arccos
(

2
β2

n

− 1
)

+
2
γn

.

The first of them coincides with the position of a moving charge. For βn → 1
both these points coincide with the position of the charge.
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Consider particular cases.
i) Let βn � 1 (this case is instructive, yet unrealistic since always

β < 1). Eq.(8.38) then gives

sin θc ≈ 0, 0 < θ < π, Ω12 = 0, or π.

This means that the singularity contour coincides with the meridians φ =
ω0t and φ = ω0t − π lying on the observational sphere.

ii) Let the charge velocity coincide with the velocity of light in medium
(βn = 1). Then,

sin θc = sin θ = 1, cosΩ1 = cosΩ2 = a/r.

Since cos Ω1 = cosΩ2 > 0 and sin Ω1 = sin Ω2 < 0, Ω1 (= Ω2) lies in the
fourth quadrant. Correspondingly, Eq. (8.42) takes the form

θ =
π

2
, Ω = ω0t − φ = 2π − arccos

a

r
+

√
r2

a2
− 1, (8.43)

that is, the singularities of the electromagnetic potentials and field strengths
degenerate into one point lying in the equatorial plane. If, in addition,
r → ∞, then

θ =
π

2
, Ω = ω0t − φ =

3
2
π +

r

a
. (8.44)

Again, this equation may be interpreted in two ways. For r, t fixed, it defines
the singularity position on the sphere of radius r at a fixed instant of
laboratory time t:

θ =
π

2
, φ = ω0t − 3

2
π − r

a
.

For θ, φ fixed this equation gives the radius of the sphere on which the
singularity lies:

r = cnt − a(φ − 3π/2).

We observe that for βn = 1 there is only one sphere on which the singularity
lies.

It is essential that Eq. (8.33) has only an odd number of roots (see [1],
pp. 83-87). In what follows we limit ourselves to the velocities βn ≤ 2. In
this case Eq.(8.44) has one root for βn < 1 and three roots for 1 < βn ≤ 2.

8.3.4. DIGRESSION ON THE CHERENKOV RADIATION

As we have seen, for the charge velocity greater than the velocity of light
in medium, SR has singularities on the observational sphere. It would be
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tempting to associate them with the Cherenkov cone attached to a moving
charge.

But first we remember the main facts on the Cherenkov radiation. Let
a point charge moves in a medium, along the z axis, with a velocity v > cn.
Then retarded times t′ satisfy the equation

cn(t − t′) = R, R = [ρ2 + (z − vt′)2]1/2, ρ2 = x2 + y2. (8.45)

Two roots of this equation are given by (see,e.g., [30])

cnt′1,2 = −cnt − βnz ± rm

β2
n − 1

, rm = [(z − vt)2 − (β2
n − 1)ρ2]1/2. (8.46)

The singularities of EMF satisfy equation

R = βn(z − vt′). (8.47)

Now we proceed in the same way as for SR: excluding retarded time t′ from
equations (8.45) and (8.47) we obtain equation for the position of the EMF
singularities at the fixed instant of laboratory time t:

ρ =
vt − z√
β2

n − 1
, z < vt, (8.48)

which coincides with the instantaneous position of the Cherenkov cone.
Now we turn back to the synchrotron motion. The following question

arises:
Does the intersection of the instantaneous Cherenkov cone with the

observational sphere of the radius r give SR singularities studied earlier in
this section?

For definiteness let the charge at the laboratory time t = 0 be on the x
axis, at a distance a from the origin, with its velocity directed along the y
axis. Then Eq. (8.48) defining the instantaneous Cherenkov cone is reduced
to −y√

β2
n − 1

= [(x − a)2 + z2]1/2, y < 0.

To find the singularity contour on the observational sphere of radius r, we
insert into this equation x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ.
This gives

− sin θ sin φ = [(sin θ cos φ − ε)2 + cos2 θ]1/2
√

β2
n − 1,

where θ and φ lie on the observational sphere.
Consider particular cases.



428 CHAPTER 8

For βn � 1 the Cherenkov cone degenerates into the singularity line
lying behind the moving charge and intersecting the observational sphere
at the point θ = π/2, φ = 3π/2. In contrast, the singularity contour of
synchrotron radiation for βn � 1 coincides with meridians φ = 0 and
φ = π of the observational sphere.

For βn → 1 the Cherenkov cone is almost perpendicular to the motion
axis. The singularity contour on the observational sphere is defined as φ ≈
2π − δ, δ << 1 and 0 < θ < π. On the other hand, the singularity contour
of synchrotron radiation for βn ≈ 1 degenerates into one point lying in the
equatorial plane (see (8.43)).

We see that, contrary to intuitive expectations, the singularity contours
of synchrotron radiation on the observational sphere do not coincide with
singularities of the instantaneous Cherenkov cone attached to a moving
charge.

What are the reasons for this? The main differences between the
Cherenkov and synchrotron motions should be mentioned:

i) For the rectilinear Cherenkov motion, there are always two retarded
times for any charge velocity v > cn. On the other hand, for the synchrotron
motion the number of retarded times is always odd and increases with the
increase of βn.

ii) For the rectilinear Cherenkov motion there is no EMF outside the
Cherenkov cone. On the other hand, the EMF of SR differs from zero
everywhere, taking infinite values on the singularity contour (for βn > 1).

iii) The frequency spectrum of Cherenkov radiation is continuous. In
contrast, the frequency spectrum of SR is discrete: only those frequencies
ω are emitted and observed which are integer multiples of ω0 (ω = mω0).

These differences result in different spatial distributions of synchrotron
and Cherenkov radiations.

8.3.5. ELECTROMAGNETIC FIELD IN THE WAVE ZONE

Electromagnetic field strengths
In the wave zone where r � a one has

Φ =
e

εr

∑
i

1
|Zi| , Aφ =

eµβ

r

∑
i

cosΩi

|Zi| , Zi = 1 + βn sin θ sin Ωi,

Aρ = −eµβ

r

∑
i

sin Ωi

|Zi| , Eφ =
eβ2µ

a

1
r

∑
i

sin Ωi + βn sin θ

|Zi|3 ,

Eθ =
eβ2µ

a

cos θ

r

∑
i

cosΩi

|Zi|3 , Er =
e

εr2

∑
i

1
|Zi| , (8.49)
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Hφ =
eββn

a

cos θ

r

∑
i

cosΩi

|Zi|3 , Hθ = −eββn

a

1
r

∑
i

sin Ωi + βn sin θ

|Zi|3 ,

Hr =
eβ

r3

∑
i

a − rβ2
n sin θ cosΩi

|Zi|3 , Zi = 1 + βn sin θ sin Ωi,

Sr =
µce2β4n

4πa2r2

cos2 θ

(∑
i

cosΩi

|Zi|3
)2

+

(∑
i

sin Ωi + βn sin θ

|Zi|3
)2

 . (8.50)

We see that at large distances Er and Hr fall as 1/r2. Therefore their
contribution to the energy flux were negligible if EMF strengths were not
singular.

The singularities of electromagnetic field in the wave zone
We write out equations defining retarded times Ωi in the wave zone

Ωr ≡ ω0t − φ − βnr/a = Ωi − βn sin θ cosΩi (8.51)

and the position of singularities (this is valid only for βn > 1).

1 + βn sin θ sin Ωi = 0. (8.52)

Then

sin Ωi = − 1
βn sin θ

, cosΩi = ±
√

1 −
(

1
βn sin θ

)2

, sin θ >
1
βn

, (8.53)

that is, Ωi lies in fourth quadrant if the + sign is chosen in (8.52) (branch
1) and in third quadrant for the − sign there (branch 2).

Therefore

Ω1 = 2π − arcsin
1

βn sin θ
and Ω2 = π + arcsin

1
βn sin θ

.

Equation (8.51) is then separated into two parts

Ωr = 2π − arcsin
1

βn sin θ
−
√

(βn sin θ)2 − 1,

Ωr = π + arcsin
1

βn sin θ
+
√

(βn sin θ)2 − 1 (8.54)

corresponding to two branches of the singularity contour on the sphere of
radius r at the fixed instant of time t. This contour is closed since the
branches 1 and 2 are intersected when sin θ = 1/βn which corresponds to
the angles θ = arcsin(1/βn) and θ = π − arcsin(1/βn).
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On the other hand, for θ, φ fixed Eq. (8.54) defines two radial distances
on which the singularity lies. These distances increase with time.

In the equatorial plane (θ = π/2), (8.54) is reduced to

Ωr = π + arcsin
1
βn

+
√

β2
n − 1,

Ωr = 2π − arcsin
1
βn

−
√

β2
n − 1. (8.55)

These equations define two azimuthal singularity points in plane θ = π/2
(for the given r and t).

It follows from (8.54) that the singularity contour shifts as a whole
on the surface of the sphere as the observational time t rises. This is not
surprising because of the motion treated is periodic. Much more surprising
is that this contour shifts as a whole when the observation is made on the
neighbouring spheres. In fact, if we shift r in (8.54) by the amount aπ/βn

(which is small compared with r in the wave zone where a � r) then the
singular contour shifts to the opposite side of the sphere (φ → φ − π).

For the sake of clarity we consider in some detail the case βn → 1.
The singularity contour at the given instant of time, on the sphere of a
particular radius then shrinks to one point

Ω(1)
i = Ω(2)

i =
3
2
π, ω0t − φ − r/a =

3
2
π, θ =

π

2
.

At the given instant of time t, the singularity curve S has a spiral form as
a function of radius r:

φ = ω0t − r

a
− 3π

2
. (8.56)

As time goes, this curve rotates as a whole without changing its form.
Let an observer be at the point P (θ = π/2, φ = φ0) on the sphere of

radius r0. At some instant t0, when the singularity curve (8.56) reaches
the observer, he detects an instantaneous flash of light. These intersections
with the singularity curve, and therefore instantaneous flashes of light, will
be repeated periodically with period T = 2π/ω0.

The question arises of how to observe the spiral form of the radiated
energy flux. One should place two γ quanta detectors (say, D1 and D2)
placed on the same singularity curve S and tuned on the coincidence. The
signals from D1 and D2 will then reach the analysing device if the flux of
SR is along the singularity curve S.

Three reservations should be mentioned. First, the distribution of SR
along the above singularity curve S is valid in a uniform medium (say,
gas). However, usually, SR is observed through the window in the body
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of the synchrotron. This may destroy the above picture. Second, SR flux
everywhere differs from zero, taking a maximal value when the singularity
curve passes through the detector. Therefore the detecting device should
have some threshold. Third, to our best knowledge the typical detector
registers the photons with definite energy E = h̄mω0, not EMF energy
fluxes (8.36) and (8.50) composed from the EMF strengths taken at the
fixed instant of laboratory time t and containing the sum over the whole
frequency spectrum. Our experience in dealing with Cherenkov radiation
shows that spatial distributions of radiation in �r, t and �r, ω representations
may be quite different [31].

The same spiral-like behaviour of the radiation intensity holds when
the charge velocity is less than the velocity of light in medium. In fact,
according to (8.50) the dependence of the radial energy flux on r enters
through the overall factor 1/r2 and through the phase Ωi. If we shift r
by an amount δr small compared with r, then in the wave zone all the
changes reduce to the change of the phase factor Ωi. According to (8.51)
the dependence of Ωi on r enters through Ωr = ωt − φ − βnr/a, which is
invariant under the simultaneous change

r → r + δr, φ → φ − δφ, δφ = βnδr/a.

This means that the angular distributions of Sr on the spheres with radii
r and r + δr taken at the same laboratory time t will be the same except
for the shift on the angle δφ. Or, in other words, the change of the sphere
radius leads to the azimuthal shifting of the radial flux distribution as a
whole without changing its form.

Similarly, invariance of Ωi under the simultaneous change

t → t + δt, φ → φ + ω0δt

leads to the rotation of the radiation flux distribution as a whole without
changing its form.

The conservation of the angular dependence of Sr has no place in the
near zone, where r ∼ a. The reason is that for finite distances the de-
pendence on r enters non-trivially in the definition of field strengths (see
Eq.(8.35)).

An interesting question is: how are these spiral-like surfaces formed?
The rotating charge emits photons with definite frequency ω = mω0 which
propagate along straight lines. On the other hand, the direct solution of the
Maxwell equations (without using the frequency representation) gives the
EMF of a spiral-like structure for an uniformly rotating charge. Therefore,
the superposition of Fourier components of the EMF should give an EMF
having a spiral-like spatial structure at a fixed instant of laboratory time.
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For the Cherenkov radiation, for which the exact analytic formulae are
available, the transformation from the spectral components of the EMF
(which differ from zero everywhere) into the EMF in the time representation
(having the form of a Cherenkov cone) may be checked step by step [31,32].
At this instant, we have not succeeded in doing the same procedure for SR.

An important fact proved in [33] by direct calculation is that the total
flux r2

∫
SrdΩ does not depend on the radius r of the observational sphere.

Although this is almost trivial (this follows from the continuity equation
for the density of energy and momentum), the direct check is useful for
controlling approximations.

The polarization components
Usually the radial flux Sr is separated in two parts corresponding to the
so-called π and σ polarizations:

Sr = Sπ + Sσ, Sπ =
ce2µβ4n

4πa2r2
cos2 θ(

∑
i

cosΩi

|Zi|3 )2,

Sσ =
ce2µβ4n

4πa2r2
(
∑

i

sin Ωi + βn sin θ

|Zi|3 )2. (8.57)

Sπ corresponds to Eφ = 0, Eθ 	= 0, whilst Eφ 	= 0, Eθ = 0 for Sσ.
We now consider the behaviour of Sπ and Sσ in the wave zone, on a

sphere of the radius r. Concerning the zeroes and singularities of polariza-
tions it was known only up to now that the polarization Sπ vanishes at
θ = π/2.

Disappearance of π polarization. The component Sπ vanishes if either θ =
π/2 or cosΩi = 0.

1) In the first case

Sσ =
ce2µβ4n

4πa2r2

(∑
i

sin Ωi + βn

|1 + βn sin Ωi|3
)2

, (8.58)

where, according to (8.51), Ωi are found from the equation

Ωr = Ωi − βn cosΩi. (8.59)

These equations define Sσ in the plane θ = π/2. In this plane, according to
(8.58), Sσ disappears for

sin Ωi = −βn (8.60)
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which corresponds to

Ωr = 2π−arcsin βn−βn

√
1 − β2

n, Ωr = π+arcsinβn+βn

√
1 − β2

n. (8.61)

This means that both Sπ and Sσ vanish in two points (8.61) lying in the
plane θ = π/2. This is possible only for βn < 1.

When βn > 1, Sσ, according to (8.58), has no zeroes, but is infinite for
sin Ωi = −1/βn, which corresponds to the points

Ωr = 2π − arcsin
1
βn

−
√

β2
n − 1, Ωr = π + arcsin

1
βn

+
√

β2
n − 1 (8.62)

lying in the θ = π/2 plane.

2) In the second case Sπ vanishes for

cosΩi = 0 (8.63)

which corresponds to

Ωi = π/2 and Ωi = 3π/2. (8.64)

For βn < 1, this, according to (8.51), leads to

Ωr = π/2 and Ωr = 3π/2 (8.65)

(under the modulus 2π). The disappearance of Sπ for Ωr given by (8.65) is
rigorously valid only for βn < 1. For βn > 1 Eq. (8.51), with Ωr = π/2 or
Ωr = 3π/2, may have solutions Ωi different from Ωi = π/2 and Ωi = 3π/2.
As the summation in Sπ is performed over all roots of (8.51) it may not
disappear for such values of Ωr. However, since in all real media where
SR can exist (gases) βn ≈ 1, the additional roots of (8.51) will be close to
Ωi = π/2 and Ωi = 3π/2, respectively. Therefore for βn only slightly greater
than 1, Sπ should have deep minima in the neighbourhood of Ωr = π/2 and
Ωr = 3π/2.

We evaluate Sσ at the points (8.65) where Sπ disappears for βn < 1.
They are given by

Sσ(Ωr =
π

2
) =

ce2µβ4n

4πa2r2

1
(1 + βn sin θ)4

,

Sσ(Ωr =
3π

2
) =

ce2µβ4n

4πa2r2

1
(1 − βn sin θ)4

(8.66)
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These expressions are exactly valid for βn < 1. It is seen that Sσ nowhere
vanishes or takes infinite values. For θ = π/2 it has minimum for Ωr = π/2
and a maximum for Ωr = 3π/2.

For βn > 1, Sσ given by (8.66) should be supplemented at the points
(8.65) by the terms corresponding to additional solutions of Eq. (8.51)
(different from Ωi = π/2 and Ωi = 3π/2). In any case, for βn > 1, Sσ

nowhere vanishes or takes infinite values in the meridional Ωr = π/2 plane,
and is infinite at sin θ = 1/βn in the Ωr = 3π/2 plane.

Disappearance of σ polarization. According to (8.57) the polarization Sσ

vanishes if sin Ωi = −βn sin θ, which defines two lines on the sphere surface:

Ω(1)
r = 2π − arcsin(βn sin θ) − βn sin θ

√
1 − β2

n sin2 θ,

Ω(2)
r = π + arcsin(βn sin θ) + βn sin θ

√
1 − β2

n sin2 θ, (8.67)

where 0 < θ < π for βn < 1 and

0 < θ < arcsin(1/βn) and π − arcsin(1/βn) < θ < π

for βn > 1. On these lines

Sπ =
ce2µβ4n

4πa2r2
cos2 θ

1
(1 − β2

n sin2 θ)4
. (8.68)

Again, these equations are exact only for βn < 1. For βn > 1, one should
solve (8.51) with Ωr given by (8.67) in its l.h.s. The additional solutions Ωi

of this equation will contribute to (8.68). In any case, Sσ will be infinite for
sin θ = 1/βn.

8.3.6. NUMERICAL RESULTS FOR SYNCHROTRON MOTION
IN A MEDIUM

Singularity contours
In this section radii r and radial energy fluxes r2Sr will be expressed in
units of a and ce2/a2, respectively.

In Fig. 8.17, the singularity contours (8.54) are shown for βn = 2; 1.1
(a), βn = 1.01; 1.001 (b) and for βn = 1.000001 (c). The calculations were
made in the wave zone where Eqs.(8.51), (8.52), and (8.54) are valid. It is
seen that in the (Ωr, θ) plane the singularity contour shrinks to the point
(Ωr = 3π/2, θ = π/2) for βn → 1. This coincides with the βn → 1 limit of
Eq. (8.54).

The form of the singularity contours (8.42) for βn = 2 and βn = 1.1 on
spheres of various radii is shown on Fig. 8.18. The minimal value of the
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Figure 8.17. Angular positions of the singularity contour on the sphere for a number of
charge velocities v > cn. Singularity contours contract to the point θ = π/2, Ωr = 3π/2
when v → cn. Numbers on contours are βn = v/cn.

Figure 8.18. Angular positions of singularity contours for various radii of the observa-
tional sphere. The dimension of the singularity contour approaches zero when the sphere
radius takes the minimal value r = a/βn. In the wave zone the singularity contour is
concentrated near Ωr = 3π/2 plane. Numbers on contours are r/a.

sphere radius for which the singularity contour still exists is r = a/βn. For
this value of r,

θ = θc = π/2, cosΩ1 = cosΩ2 = 1/βn,

Ω(1)
r = Ω(2)

r = 2π − 1 − arccos(1/βn) +
√

β2
n − 1.
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Figure 8.19. Spiral behaviour of singularity contours for the time instants T = 0 and
T = π/4 and βn = 1.000001. As time advances, the singularity contour rotates as a whole
without changing its form. On a particular sphere (dotted curve) the singularity is at the
place where it is intersected by the spiral contour. Numbers on dotted lines mean the
sphere radius r/a.

For βn = 2 this is approximately equal to 5.97. Figure 8.18 (b) confirms
this.

The simultaneous (i.e., taken at the same instant of laboratory time t)
spatial distributions of the singularity contour corresponding to θ = π/2
and βn = 1.000001 are shown in Fig. 8.19. They are of spiral structure.
On the particular sphere (shown by a dotted line) the radiation intensity
is infinite at the place where this sphere is intersected by a spiral surface
(for the chosen βn this surface is indistinguishable from the spiral curve,
whilst the intersection region with a particular sphere reduces to a point).
It is seen that the maximum of the radiation intensity occupies the different
angular positions at different radii. It shifts as a whole as a function of time.
The two spiral curves shown in Fig. 8.19 correspond to times T = 0 and
T = π/4. Here T = ω0t.

Polarization components

Consider now how the radial energy flux is distributed over the sphere sur-
face in the wave zone. Concrete calculations were made with dimensionless
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Figure 8.20. Space distribution of the polarization Sσ in the plane θ = π/2 (where
Sπ = 0) for n = 1.00001, which corresponds to βn < 1. In this plane Sσ vanishes at Ωr

given by (8.61). It is concentrated near the plane Ωr = 3π/2 for βn → 1.

intensities

Sr = Sπ + Sσ, Sπ =
µβ4n

4π
cos2 θ

(∑
i

cosΩi

|Zi|3
)2

,

Sσ =
µβ4n

4π

(∑
i

sin Ωi + βn sin θ

|Zi|3
)2

(8.69)

which are obtained from the intensities Sπ, Sσ and Sr given by (8.57) by
multiplying them by the factor r2a2/ce2. We consider only the dielectric
medium (µ = 1).
In Fig. 8.20, for βn < 1, there is shown the dependence of Sσ polarization
on the angle Ωr in the equatorial plane θ = π/2, where Sπ = 0. This figure
illustrates Eq. (8.61) according to which: i) the polarization Sσ disappears
for Ωr given by (8.61) and ii) it is concentrated near the plane Ωr = 3π/2
as βn approaches 1.

In Fig. 8.21 the same dependence of the polarization Sσ on the angle Ωr

is shown for βn > 1. This figure shows that the polarization Sσ is infinite
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Figure 8.21. Spatial distribution of the polarization Sσ in the plane θ = π/2 (where
Sπ = 0) for β = 0.999991 which corresponds to βn > 1. Sσ is infinite at Ωr given by
(8.62) and is concentrated near the plane Ωr = 3π/2 for βn → 1.

for Ωr given by (8.62) and that it is concentrated near Ωr = 3π/2 plane as
βn approaches 1.

Fig 8.22 (a) illustrates that the polarization Sπ, for the fixed sin θ = 0.95
and βn < 1, rigorously disappears for Ωr = π/2 and Ωr = 3π/2. Part (b)
of the same figure shows that for βn > 1 the polarization Sπ has deep a
minimum at the same Ωr. The singularities of Sπ are at Ωr given by (8.54)
where one should put sin = 0.95. This gives Ω1

r ≈ 4.7 and Ω2
r ≈ 4.72. This

illustrates Fig. 8.22 (c), where the behaviour of Sπ in the neighbouhood of
Ωr = 3π/2 is presented.

The dependence of Sσ on the polar angle θ in the meridional plane Ωr =
3π/2 (where Sπ = 0) is shown in Fig. 8.23 (a) for βn < 1. In accordance with
the second equation (8.66) Sσ has a maximum at θ = π/2. Its behaviour
in the plane Ωr = π/2 (where Sπ also vanishes) is shown in Fig. 8.23 (b).
From the first equation (8.66) it follows that Sσ has a minimum at θ = π/2.

For βn > 1 the dependence of Sσ on θ in the plane Ωr = 3π/2 is shown
in Fig. 8.24 (a). The second equation (8.66) tells us that Sσ is infinite
at sin θ = 1/βn, which corresponds to θ ≈ 1.14 rad and θ ≈ 2 rad. The
dependence of Sσ on θ in the meridional plane Ωr = π/2 is shown in
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Figure 8.22. Spatial distribution of the polarization Sπ as a function of the azimuthal
angle Ωr for sin θ = 0.95 and n = 1.1; (a): For βn < 1, Sπ = 0 at Ωr = π/2 and
Ωr = 3π/2; (b): For βn > 1, Sπ has deep minima at Ωr = π/2 and Ωr = 3π/2 and
infinities at Ωr given by (8.54); (c): The behaviour of Sπ polarization near Ωr = 3π/2
plane for βn > 1.

Figure 8.23. The θ-dependence of the polarization Sσ in the meridional planes Ωr = π/2
and Ωr = 3π/2 and n = 1.00001 for the case v < cn. In both these planes Sπ = 0. It is
seen that Sσ is everywhere finite. For θ = π/2 it has a maximum in the Ωr = 3π/2 plane
and minimum in the Ωr = π/2 plane.
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Figure 8.24. The θ-dependence of the polarization Sσ in the Ωr = π/2 and Ωr = 3π/2
meridional planes for n = 1.1 and β = 0.999991, which corresponds to v > cn. Sσ takes
infinite values only in the Ωr = 3π/2 plane at sin θ = 1/βn. In the plane Ωr = π/2, Sσ

has a minimum at θ = π/2.

Fig. 8.24 (b). In agreement with the first Eq.(8.66), Sσ has a minimum
at θ = π/2. The absence of singularities of Sσ in the plane Ωr = π/2
means that they are located in other meridional planes. Fig. 8.18 (c) shows
that in the wave zone the singularities of Sσ lie in the meridional plane
Ωr = 3π/2. The contours on which Sσ vanishes are shown in Fig. 8.25. The
solid and dotted lines correspond to βn < 1 and βn > 1, respectively. The
singularities of the intensity of the SR for βn > 1 are located in the region
− arcsin(1/βn) < θ < arcsin(1/βn), in the neighbourhood of Ωr = 3π/2.
For the case βn = 1.1, the same as in Fig. 8.25, the singularity contour is
presented in Fig. 8.17 (a).

Intensity of synchrotron radiation at finite distances
Up to now we have considered the radial flux distribution in the wave zone
(except for Figs. 8.17 and 8.18). However, the typical radii of synchrotron
orbits vary from a few to a hundred meters for electron synchrotrons and
from hundred meters to 1 kilometer for the proton synchrotrons. In view
of such large radii of synchrotron orbit the measurement of SR in the wave
zone is very problematic.

When considering SR intensities and the position of singularities in the



Selected problems of the synchrotron radiation 441

3 4 5
0

1

2

3

Ω
r

β =0.9
β =1.1θ

6

Figure 8.25. The contours on the sphere surface where Sσ vanishes for βn < 1 (solid
curve) and βn > 1 (dotted curve). The singularity contour lies inside the ‘hole’ formed
by four contours of zeroes. Its position is shown in Fig. 8.17 (a).

wave zone, a suitable combination of variables was Ωr = ω0t − φ − βnr/a
(see Eq. (8.51)). However, Eq. (8.42), valid at arbitrary distances, contains
Ω = ω0t − φ. To reconcile the choice of the variables in the wave zone and
at arbitrary distances, we rewrite (8.42) in the following equivalent form

Ωr = ω0t − φ − βnr/a = Ωi + βn(Ri − r)/a.

This equation together with (8.39)-(8.41) defines the position of singulari-
ties in (Ωr, θ, r) variables at finite distances.

To see how the radial flux distributions change with a decreasing ra-
dius of the observational sphere, we consider the dimensionless radial flux
distributions

r2a2

ce2
Sr,

where Sr is given by (8.36).
In Fig. 8.26, for βn < 1 there are shown instantaneous Sσ intensities in

the equatorial plane θ = π/2 on spheres of various radii r. In particular,
Fig. 8.26 (a) illustrates that intensities Sσ have almost the same height, but
their positions in the equatorial plane change with r, tending to Ωr = 3π/2
in the wave zone. Fig. 8.26 (c) shows that the intensity Sσ for r/a = 100 is
shifted relative to the intensity in the wave zone approximately on 0.1 rad..
The intensity Sσ in the nearest vicinity of the charge trajectory (r/a = 1.01)
is shown in Fig. 8.26 (c). It is seen that in the near zone the radial energy
flux may be negative in some angular region. The same takes place in
vacuum (see Fig. 8.9 (b)).
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Figure 8.26. The behaviour of the polarization Sσ in the equatorial plane θ = π/2 for
n = 1.00001 and β = 0.99 (which corresponds to βn < 1) on the spheres of various radii.
(a): As r increases Sσ shifts as a whole, concentrating around the plane Ωr = 3π/2 in
the wave zone; (b): Sσ polarization for r/a = 100 is shifted relative to that in the wave
zone by 0.1 rad.; (c): In the neighbourhood of the charge orbit Sσ may be negative in
some angular region. Numbers on curves are r/a.

For βn > 1, the instantaneous intensities Sσ in the equatorial plane
θ = π/2 on spheres of various radii r are presented in Fig. 8.27. Similarly
to βn < 1, the position of the intensities Sσ tend to Ωr = 3π/2 for r → ∞.

The instantaneous intensities Sσ in the meridional plane Ωr = 3π/2
(where Sπ disappears) are shown for βn < 1 in Fig. 8.28. It is seen that
these intensities are concentrated near the equatorial plane θ = π/2 as one
approaches the wave zone.

The same Sσ intensities in the meridional plane Ωr = 3π/2 are presented
for βn > 1 in Fig. 8.29. One may observe that for large radii (r/a = 100,∞)
there are singularities of the intensity of SR, whilst for smaller radii (r/a =
1.01, 2, 10) they disappear. To see the reason for their absence turn to Fig.
8.18 (c) in which the position of singularities for βn ≈ 1.1 and radii the same
as in Fig. 8.29 are presented. We see that, indeed, for r/a = 1.01, 2, and 10
the singularity contours do not intersect the meridional plane Ωr = 3π/2.

It follows from Fig. 8.18 that the ‘focusing effect’ the existence of which
was claimed for βn < 1 in [16] takes place also for βn > 1: the angular
region of θ occupied by SR intensities, being zero for r = a/βn, increase
with the increase of r up to some value of r0. Further increasing of r does
not change the dimension of the θ singularity interval. For the case βn = 1.1
shown in Fig. 8.18 (c) this takes place for r/a ≈ 2.
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Figure 8.29. The θ-dependence of the radial energy flux in the meridional plane
Ωr = 3π/2 for n = 1.1 and β = 0.999991 (which corresponds to βn > 1) on spheres
of various radii. Numbers on curves are r/a.

8.4. Conclusion

We briefly summarize the main results obtained in this Chapter.
For the synchrotron motion in vacuum:
1. We have evaluated radial, azimuthal and polar EMF fluxes averaged

over the motion period. The calculations have been performed for arbitrary
velocities and distances, for the observational points lying both inside and
outside the charge orbit. It turns out that azimuthal energy flux is much
larger than the radial flux near the charge orbit and is much smaller than
the radial flux at large distances. This reconciles Schwinger’s and Schott’s
approaches.

2. The instantaneous radial and azimuthal EMF fluxes were evaluated
for various distances and charge velocities. They have a number of unex-
pected properties. In particular, they may acquire negative values in some
angular regions. However, their time averaged values are always positive.
Analytical expressions are obtained for the instantaneous positions of min-
ima and maxima of field strengths. They generalize the famous Schwinger
formula for arbitrary distances and velocities.

Another interesting observation was made in [34]. The angular distribu-
tion of the energy radiated for the period of motion in the radial direction
is given by (8.18). To find its maximal value we find where the θ derivative
of (8.18) vanishes. It turns out that the maximum of (8.18) is reached at
θ = 0 for 0 < β < β1, at θ = π/2 for β2 < β < 1, and for θ defined by

sin2 θ =
2

3β2(1 + 3β2)
[
√

15(2 + 4β2 + 9β2)1/2 − 6 − 3β2]1/2
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for β1 < β < β2. Here

β1 =
1√
7
, β2 =

√
2
3
(
√

6 − 2)1/2.

Therefore there is a smooth transition of the position of the maximum of
radiation from θ = 0 for 0 < β < β1 to θ = π/2 for β2 < β < 1.

For the charge motion in a medium:
1. The space-time distributions of the intensity of synchrotron radia-

tion are obtained for the cases in which the charge velocity v is greater or
smaller than the velocity of light in medium. It has been shown that at
any fixed instant of laboratory time, the distribution of SR intensity has a
spiral structure which rotates as a whole without changing its form. The
experiment is proposed to test its existence.

2. For v > cn it has been found that the singularities of EMF for the
synchrotron radiation differ drastically from the singularities of the instan-
taneous Cherenkov cone attached to a rotating charge.

3. Space-time distributions of different components of polarizations have
been studied both for v < cn and v > cn. Spatial regions in which they
vanish and in which they are infinite are determined.

4. The intensity of synchrotron radiation has studied both in far and
near zones. The dependence of the radiated energy flux distribution on the
observational distance has been also studied.

References

1. Schott G.A. (1912) Electromagnetic Radiation, Cambridge Univ.Press, Cambridge.
2. Sokolov A.A. and Ternov I.M. (1974) The Relativistic Electron Nauka, Moscow (in

Russian).
3. Ternov I.M., Mikhailin V.V. and Khalilov V.R. (1985) Synchrotron radiation and

its applications, Moscow Univ. Publ., Moscow, (in Russian).
4. Ternov I.M. and Mikhailin V.V. (1986) Synchrotron radiation. Theory and experi-

ment., Energoatomizdat, Moscow, (in Russian).
5. Bordovitsyn V.A. (Ed.) (1999) Synchrotron radiation theory and its developments.

In memory of I.M. Ternov, World Scientific, Singapore,.
6. Ternov I.M. (1995) Synchrotron Radiation Usp. Fiz. Nauk, 165, pp. 429-456.
7. Schwinger J. (1949) On the Classical Radiation of Accelerated Electrons

Phys.Rev.,A 75, pp. 1912-1925.
8. Bagrov V.G., (1965) Indicatrix of the Charge Radiation External Field According

to Classical Theory it Optika i Spectroscopija, 28, No 4, pp. 541-544, (In Russian).
9. Sokolov A.A., Ternov I.M. and Bagrov V.G., 1966, Classical theory of synchrotron

radiation, in: Synchrotron Radiation (Eds.:Sokolov A.A. and Ternov I.M.),pp. 18-71
(Moscow, Nauka), in Russian.

10. Smolyakov N.V. (1998) Wave-Optical Properties of Synchrotron Radiation Nucl.
Instr. and Methods,A 405, pp. 235-238.

11. Schwinger J., Tsai W.Y. and Erber T. (1976) Classical and Quantum Theory of
Synergic Synchrotron-Cherenkov Radiation, Ann. of Phys., 96, pp.303-352.

12. Erber T., White D., Tsai W.Y. and Latal H.G. (1976) Experimental Aspects of
Synchrotron-Cherenkov Radiation, Ann. of Phys., 102, pp. 405-447.



446 CHAPTER 8

13. Villaroel D. and Fuenzalida V. (1987) A Study of Synchrotron Radiation near the
Orbit, J.Phys. A: Mathematical and General, 20, pp. 1387-1400.

14. Villaroel D. (1987) Focusing Effect in Synchrotron Radiation, Phys.Rev., A 36, pp.
2980-2983.

15. Villaroel D. and Milan C. (1987) Synchrotron Radiation along the Radial Direction
Phys.Rev., D38, pp. 383-390.

16. Ovchinnikov S.G. (1999) Application of Synchrotron Radiation to the Study of
Magnetic Materials Usp. Fiz. Nauk, 169, pp. 869-887.

17. Jackson J.D., (1975) Classical Electrodynamics, New York, Wiley.
18. Ryabov B.P. (1994) Jovian S emission: Model of Radiation Source J. Geophys. Res.,

99, No E4, pp. 8441-8449.
19. Synchrotron Radiation (1979) (Kunz C.,edit.), Springer, Berlin.
20. (1995) Nuclear Instr. & Methods, A 359, No 1-2.
21. (1998) Nuclear Instr. & Methods, A 405, No 2-3 .
22. L.D. Landau and E.M. Lifshitz (1971) The Classical Theory of Fields, Reading,

Massachusetts, Pergamon, Oxford and Addison-Wesley.
23. Risley J.S., Westerveld W.B. and Peace J.R. (1982) Synchrotron Radiation at Close

Distances to the orbital ring J. Opt. Soc. Am., 72, pp. 943-946.
24. Bagrov V.G., Optics and Spectroscopy, 28, No 4, 541 ( 1965), In Russian.
25. Sokolov A.A., Ternov I.M. and Bagrov V.G. (1966) Classical theory of synchrotron

radiation, in: Synchrotron Radiation (Eds.:Sokolov A.A. and Ternov I.M.), pp. 18-
71, Nauka, Moscow, in Russian.

26. Tomboulian D.H. and Hartman P.L. (1956) Spectral and Angular Distribution of
Ultraviolet Radiation from the 300-Mev Cornell Synchrotron Phys. Rev., 102, pp.
1423-1447.

27. Hillier R. (1984) Gamma Ray Astronomy, Clarendon Press, Oxford.
28. Stecker F.W. (1971) Cosmic Gamma Rays, Momo Book Corp., Baltimore.
29. Afanasiev G.N., Eliseev S.M. and Stepanovsky Yu.P. (1998) Transition of the Light

Velocity in the Vavilov-Cherenkov Effect Proc. Roy. Soc. London, A 454, pp. 1049-
1072;
G.N. Afanasiev and V.G. Kartavenko (1999) Cherenkov-like shock waves associated
with surpassing the light velocity barrier Canadian J. Phys., 77, pp. 561-569.

30. Afanasiev G.N., Beshtoev Kh. and Stepanovsky Yu.P. (1996) Vavilov-Cherenkov
Radiation in a Finite Region of Space Helv. Phys. Acta, 69, pp. 111-129.

31. Afanasiev G.N., Kartavenko V.G. and Stepanovsky Yu.P. (1999) On Tamm’s Prob-
lem in the Vavilov-Cherenkov Radiation Theory J.Phys. D: Applied Physics, 32,
pp. 2029-2043;

32. Afanasiev G.N., Kartavenko V.G. and Magar E.N. (1999) Vavilov-Cherenkov Radia-
tion in Dispersive Medium Physica, B 269, pp. 95-113; Afanasiev G.N., Eliseev S.M
and Stepanovsky Yu.P. (1999) Semi-Analytic Treatment of the Vavilov-Cherenkov
Radiation Physica Scripta, 60, pp. 535-546.

33. Rivera R. and Villaroel D., (2000) Synchrotron Radiation and Symmetries
Am.J.Phys., 68, pp. 41-48.

34. Bagrov et al., (2002) New results in the classical theory of synchrotron radiation
in Proc. XIV Russian Conf. on the Application of Synchrotron Radiation pp.8-17,
Novosibirsk.



CHAPTER 9

SOME EXPERIMENTAL TRENDS IN THE
VAVILOV-CHERENKOV RADIATION THEORY

9.1. Fine structure of the Vavilov-Cherenkov radiation

The classical Tamm-Frank theory [1] explaining the main properties of the
Vavilov-Cherenkov (VC) effect [2,3] is based on the assertion that a charge
moving uniformly in medium with a velocity v greater than the velocity of
light cn in medium radiates spherical waves from each point of its trajectory
[4]. The envelope to these spherical waves propagating with the velocity cn

is the Cherenkov cone with its normal inclined at the angle θc towards the
motion axis. Here cos θc = 1/βn, βn = βn, β = v/c, cn = c/n (c is the
velocity of light in vacuum and n is the medium refractive index).

The radiation of a charge moving uniformly in a finite spatial inter-
val inside the medium is usually studied in the framework of the so-called
Tamm problem [5]. Under certain approximations Tamm obtained a re-
markably simple formula which is frequently used by experimentalists for
the identification of the charge velocity (see, e.g., [6]).

Ruzicka and Zrelov [7] when analyzing the angular spectrum of the
radiation arising in the Tamm problem came to paradoxical result that
this spectrum can be interpreted as an interference of two BS shock waves
arising at the beginning and the end of the charge motion. There was no
place for the Cherenkov radiation in their analysis based on the use of the
Tamm approximate formula.

Tamm himself thought that his formula describes both the Cherenkov
radiation and bremsstrahlung.

To resolve this controversy, the exact solution of the Tamm problem was
obtained in [8] (in the time representation, for a dispersion-free medium).
Its properties were investigated in some detail in [9,10]. It was shown there
that side by side with BS shock waves the Cherenkov shock wave (CSW,
for short) exists. The results obtained in [8-10] resolve the mentioned above
inconsistency between [5] and [7] in the following way: although the Tamm
problem describes both the Cherenkov radiation and bremsstrahlung, its
approximate version (i.e., the Tamm formula) does not describe the CSW
properly.

According to [8-10], when a charge moves in the interval (−z0, z0) the
CSW is enclosed between the moving charge and the straight line L1 orig-
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inating from the point −z0 corresponding to the beginning of motion and
inclined at the angle θc towards the motion axis (see Chapter 2). The CSW
is perpendicular to L1. When a charge stops at an instant t0 the CSW
detaches from it and propagates between the L1 and the straight line L2

originating from the z0 point corresponding to the end of the motion and
inclined at the same angle θc towards the motion axis. The positions of the
shock waves BS1, BS2 and the CSW at a fixed instant of time are shown
in Fig. 9.1(a). For an arbitrary instant of time t > t0, the CSW is always
tangential to both shock waves BS1 and BS2 and is perpendicular both
to L1 and L2. The length of the CSW (coinciding with the distance be-
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Figure 9.1. (a): The position of the Cherenkov shock wave (CSW) and the
bremsstrahlung shock waves arising at the beginning (BS1) and the end (BS2) of the
charge motion at a fixed instant of time. The CSW is enclosed between straight lines
L1 and L2 originating from the points corresponding to the boundaries of the motion
interval; (b): The propagation of the CSW between the straight lines L1 and L2; (c): In
an arbitrary z =const plane perpendicular to the motion axis, the CSW, in the φ =const
plane, cuts off a segment of the same length R2 − R1 for any z; (d) Because of the axial
symmetry of the problem, the CSW in the z =const plane, cuts off a ring with internal
and external radii R1 and R2, respectively. The width R2 − R1 of the Cherenkov ring
and the energy released in it do not depend on the position z of the observational plane.

tween L1 and L2) is L/(βnγn), where L = 2z0 is the motion interval and
γn = 1/

√|1 − β2
n|. As time advances, the CSW propagates between L1 and
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L2 with the velocity of light in medium (Fig. 9.1 (b)). The shock waves BS1

and BS2 are not shown in this figure.
In the spectral representation (since transition to it involves the time

integration) one obtains spatial regions lying to the left of L1 and to the
right of L2 to which the BS1 and BS2 shock waves are confined, and the
spatial region between L1 and L2 to which BS1, BS2 and the CSW are
confined. Let the measurements of the radiation intensity be made in the
plane perpendicular to the motion axis z. The CSW then cuts out in each
of the z =const planes the segment with its length δρ = L/γn independent
of z and with its center at R0 = z/γn (Fig. 9.1 (c)). This picture refers to
a particular φ =const plane (φ is the angle in the z =const plane).

Since the problem treated is the axially symmetric problem, the inter-
section of the CSW with the z =const plane looks like a ring with minor
and major radii equal to R1 = R0 − L/2γn and R2 = R0 + L/2γn, respec-
tively (Fig. 9.1 (d)). This qualitative consideration implies only the possible
existence of a Cherenkov ring of the finite width. To find the distribution
of the radiation intensity within and outside it, numerical calculations are
needed.

When the ratio of the motion interval to the observed wavelength is
very large (this is usual in Cherenkov-like experiments) the Tamm formula
has a sharp delta function peak within the Cherenkov ring. Owing to this
it cannot describe a quite uniform distribution of the radiation intensity
inside the Cherenkov ring.

It should be mentioned that by the ‘shock waves’ used throughout this
Chapter we do not mean the usual shock waves used, e.g., in acoustics or
hydrodynamics where they are the solutions of essentially nonlinear equa-
tions. The Maxwell equations describing the charge motion in medium are
linear, yet they can have solutions (when the charge velocity is greater
than the velocity of light in medium) with properties very similar to the
true shock waves. For example, there is no electromagnetic field outside the
Cherenkov cone, an infinite electromagnetic field on its surface, and a quite
smooth field inside the Cherenkov cone. The analog of the Cherenkov cone
in acoustics is the Mach cone.

We see that due to the approximations involved, an important physics
has dropped out from the consideration. It is our goal to analyze the ex-
perimental and theoretical aspects of this new physics. For this we obtain
the exact (numerical) and approximate (analytical) theoretical radiation
intensities describing a charge motion in finite spatial interval and com-
pare them with existing experimental data. Theoretical intensities (exact
and analytical) predict the existence of the CSW of finite extension man-
ifesting as a plateau in the radiation intensity and of the BS shock wave
manifesting as the intensity bursts at the ends of this plateau. It turns out
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that the theoretical (numerical and analytical) and experimental intensities
are in satisfactory agreement with each other, but disagree sharply with the
Tamm formula.

The observation of the above shock waves encounters certain difficul-
ties when the focusing devices are used which collect radiation from the
part of the charge trajectory lying inside the radiator into the single ring,
thus projecting the VC radiation and bremsstrahlung into the same place.
The typical experimental setup with a lens radiator and the corresponding
Cherenkov ring are shown in Fig. 9.2. In its left part 1 means the proton

Figure 9.2. Left: The scheme of an experiment with a lens radiator; 1 is the proton
beam, 2 is the lens radiator, 3 is the focused VC radiation, 4 is the plane photographic
film placed perpendicular to the motion axis, F is the focal distance for paraxial rays;
Right: the black and white photographic print from the photographic film shown on the
left.

beam with the energy 657 MeV and diameter 0.5 cm, 2 is the lens radiator
with refractive index 1.512 and the focal distance 2.27 cm (for paraxial
rays), 3 is the focused VC radiation (θCh = 35.170), 4 is a plane photo-
graphic film (18 × 24 cm). On the right side there is a black and white
photographic print of the photographic film shown on the left. It has the
form of a narrow ring.

To see how the VC radiation and bremsstrahlung are distributed in
space we turn to experiments in which the VC radiation was observed
without using the focusing devices. These successful (although qualitative)
experiments were performed by V.P. Zrelov (unpublished) in 1962 when
preparing illustrations for the monograph [11] devoted to the VC radia-
tion and its applications. We have processed these experimental data. The
results are presented in the next section.
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One may wonder why we apply the recently developed theoretical meth-
ods for the description of rather ancient experiments. The reason is that
these experiments are the only ones in which the Cherenkov radiation was
studied with rather thick dielectric samples, without using the special fo-
cusing devices.

9.1.1. SIMPLE EXPERIMENTS WITH 657 MEV PROTONS

The first 1962 experiment
The 657 MeV (β = 0.80875) proton beam of the phasotron in the JINR
Laboratory of Nuclear Problems was used. The experimental setup is shown
in Fig. 9.3. The collimated proton beam (1) of diameter 0.5 cm was directed

Figure 9.3. The experimental setup of the experiment discussed (Zrelov 1962). The
proton beam (1) passing through the conical plexiglass radiator (2) induces the VC radi-
ation (3, shaded region) propagating in the direction perpendicular to the cone surface.
The observations are made in the plane photographic film (4) placed perpendicular to
the motion axis.

to the conical polished plexiglass radiator (2) (n = 1.505 for λ = 4 × 10−5

cm). The apex angle of 109.70 of the cone enabled the VC radiation (3) to
go out from the radiator in a direction perpendicular to the cone surface.
The radiation was detected by the plane colour 18 × 24 cm photographic
film placed perpendicular to the beam at a distance of 0.3 cm from the
cone apex. Nearly 1012 protons passed through the conical radiator. The
black and white photographic print and the corresponding photometric
curve (from which the beam background was subtracted) are shown in
the left and right parts of Fig. 9.4, respectively. The photometric curve
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Figure 9.4. Left: The black and white photographic print from the photographic film
shown in Fig.9.3; Right: The photometric curve corresponding to the left part. One
observes the increment of the radiation intensity at ρ ≈ 2.25 cm which corresponds to
the Cherenkov ray emitted from the point where the proton beam enters the radiator.

describes the distribution dE(ρ)/dρ of the energy released inside the ring
of finite width. More accurately, dρ · dE(ρ)/dρ is the energy released in an
elementary ring with minor and major radii ρ and ρ + dρ, respectively. It
is seen from this figure that the increment of the radiation intensity takes
place at a radius ρ = 2.25 cm corresponding to the radiation emitted at
the Cherenkov angle θc from the boundary point where the charge enters
the radiator.

The second 1962 experiment
In another experiment performed in the same year 1962 the maxima of the
radiation intensity corresponding to the radiation from the boundary points
of the radiator are more pronounced. The experimental setup is shown in
Fig. 9.5. The radiator was chosen in the form of a crystalline quartz cube
of side 1.5 cm. The proton beam (1) passed through the cube (2) along the
axis connecting opposite vertices. In this case the VC radiation went out
through the three cube sides inclined at an angle ψ = 35.260 towards the
motion axis. As in the first experiment, the plane colour photographic film
was placed perpendicular to the beam axis, at a distance of L = 2.35 cm
from the cube vertex. This guaranteed a smaller (as compared to a previous
experiment) proton beam background in the region of the VC radiation.
The direction of the rays (4) of the VC radiation through one particular
side G of the cube is shown. The black and white photographic print and
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Figure 9.5. The experimental setup of another experiment (Zrelov 1962). The proton
beam (1) propagates through the quartz cube (2) along the axis connecting the opposite
vertices of the cube. The observations are made in the plane photographic film (3) placed
behind the quartz cube perpendicular to the motion axis; (4) is the direction of the
Cherenkov rays passing through one of the cube sides.

the corresponding photometric curve measured along the direction A-A
(Fig. 9.5) are shown in Fig. 9.6. To make rough estimates, we averaged the
crystalline quartz refractive index over the directions of ordinary and non-
ordinary wave vectors, thus obtaining n = 1.55 for λ = 5 × 10−5 cm. The
corresponding Cherenkov angle was θc = 37.090. In this case the rays of VC
radiation emitted from the cube vertices should be at the radii R1 ≈ 1.4
cm and R2 ≈ 2.3 cm in the photographic film perpendicular to the motion
axis. There is a rather pronounced maximum of radiation in Fig. 9.6 only at
R2 ≈ 2.3 cm which corresponds to the γ ray emitted from the cube vertex
at which the proton beam enters the radiator.

Theoretical consideration and numerical calculations presented below
show that the just mentioned maxima of radiation intensity should indeed
take place and they are owed to the discontinuities at the beginning and
the end of the charge motion interval.

9.1.2. MAIN COMPUTATIONAL FORMULAE

In the past, the finite width of the Cherenkov rings on an observational
sphere S of finite radius r was studied numerically in [12], and analytically
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Figure 9.6. Left: The black and white photographic print from the photographic film
shown in Fig. 9.5; Right: The photometric curve corresponding to the left part along the
direction a−a; x means the distance along a−a. The increments of the radiation intensity
at radii R2 ≈ 2.3 cm and R1 ≈ 1.4 cm correspond to the Cherenkov rays emitted at the
vertices where the beam enters and leaves the cube, respectively. The radiation intensity
for negative x describes the superposition of the VC radiations passing through two sides
of cube (2). The radiation maxima relating to the ends of the Cherenkov rings are more
pronounced than in Fig. 9.4.

and numerically in [13] (see also Chapters 2 and 5).
It was shown there that the angular region to which the Cherenkov ring

is confined is large for small r and diminishes with increasing of r. However,
the width of the band corresponding to the Cherenkov ring remains finite
even for infinite values of r. Since the measurements in the experiment
discussed were made in the plane perpendicular to the motion axis (which
we identify with the z axis), we should adjust formulae obtained in [12,13]
to the case treated.

The exact formula
In the spectral representation the non-vanishing z component of the vector
potential corresponding to the Tamm problem is given by

Az(x, y, z) =
eµ

2πc
αT , (9.1)
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where

αT =
∫ z0

−z0

dz′

R
exp(iψ), ψ = k

(
z′

β
+ nR

)
, R = [ρ2 + (z − z′)2]1/2,

ρ2 = x2 + y2, k =
ω

c
, (9.2)

and µ is the magnetic permeability (in the subsequent concrete calculations
we always put µ = 1).

The field strengths corresponding to this vector potential are

Hφ =
eknρ

2πc

∫
dz′ exp(iψ)

1
R2

(
−i +

1
knR

)
,

Eρ =
iekµρ

2πc

∫
dz′ exp(iψ)

z − z′

R3

(
1 +

3i

knR
− 3

k2
nR2

)
, kn = kn

(we do not write out the z component of the electric strength since it does
not contribute to the z component (along the motion axis) of the energy
flux which is of interest for us).

The energy flux emitted in the frequency interval dω and passing through
the circular ring with radii ρ and ρ+dρ lying in the z =const plane is equal
to

dωdρ
d2E
dρdω

,

where
d2E
dρdω

= 2πρ
c

2
(EρH

∗
φ + c.c.) =

e2k2nµρ3

2πc
(IcI

′
c + IsI

′
s). (9.3)

Here we put

Ic =
∫

dz′
1

R2

(
cos ψ1 − sin ψ1

knR

)
,

I ′c =
∫

dz′
z − z′

R3

[(
1 − 3

k2
nR2

)
cos ψ1 − 3

sin ψ1

knR

]
,

Is =
∫

dz′
1

R2

(
sin ψ1 +

cos ψ1

knR

)
,

I ′s =
∫

dz′
z − z′

R3

[(
1 − 3

k2
nR2

)
sin ψ1 + 3

cos ψ1

knR

]
,

ψ1 =
kz′

β
+ kn(R − r), r2 = ρ2 + z2.
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The Tamm approximate formula
Imposing the conditions: i) R � z0 (this means that the observational
distance is much larger than the motion interval); ii) knR � 1, kn =
ω/cn (this means that the observations are made in the wave zone); iii)
nz2

0/2rλ � π, λ = 2πc/ω (this means that the second-order terms in
the expansion of R should be small compared with π since they enter the
phase ψ1; λ is the observed wavelength), Tamm [5] obtained the following
expression for the magnetic vector potential

Az =
eµ

πnωr
exp(iknr)q,

q =
1

1/βn − cos θ
sin

[
kLn

2

(
1
βn

− cos θ

)]
. (9.4)

Here L = 2z0 is the motion interval and βn = βn, β = v/c. Using this
vector potential one easily evaluates the quantity similar to (9.3)

Sz(T ) =
d2E
dρdω

(T ) =
2e2µzρ3

πncr5
q2, (9.5)

where cos θ = z/r and r =
√

ρ2 + z2. The value of (9.5) at cos θ = 1/βn is
given by

Sz(T )|cos θ=1/βn
=

e2µk2L2

2πcn4β5γ3
nz

, γn =
1√|1 − β2

n|
. (9.6)

For large kL (9.5) is reduced to

Sz(T )|kL�1 =
e2µkL

c

(
1 − 1

β2
n

)
δ

(
ρ − z

γn

)
. (9.7)

Integration over ρ gives the energy flux through entire z =const plane

dE
dω

(TF ) =
e2µkL

c

(
1 − 1

β2
n

)
, k =

ω

c
(9.8)

which is independent of z and coincides with the Tamm-Frank value [1].
Tamm himself evaluated the energy flux per unit solid angle and per

unit frequency through a sphere of infinite radius

d2E
dΩdω

(T ) =
e2µ

π2nc
q2 sin2 θ. (9.9)

This famous formula obtained by Tamm refers to the spectral represen-
tation and is frequently used by experimentalists for identification of the
charge velocity.



Some experimental trends in the Vavilov-Cherenkov radiation theory 457

The Fresnel approximation
This approximation is valid if the terms quadratic in z′ in the expansion
of R inside the ψ1 are taken into account whilst the cubic terms are ne-
glected. The condition for the validity of the Fresnel approximation (in
addition to items i) and ii) of the Tamm formula) is nz3

0/2r2λ � 1. In this
approximation,

d2E
dρdω

(F ) =
e2µkρz

2cr2
[(S+ − S−)2 + (C+ − C−)2]. (9.10)

Here

C± = C(z±), S± = S(z±), z± =

√
knr

2
sin θ

(
1 − βn cos θ

βn sin2 θ
± z0

r

)
,

C(x) and S(x) are the Fresnel integrals defined as

S(x) =
√

2
π

x∫
0

dt sin t2, C(x) =
√

2
π

x∫
0

dt cos t2.

From the asymptotic behaviour of the Fresnel integrals

S(x) ∼ 1
2
− 1√

2π

cos x2

x
, C(x) ∼ 1

2
+

1√
2π

sin x2

x

as x → ∞, and their oddness (C(−x) = −C(x), S(−x) = −S(x)) it
follows that for large kr (9.10) has a kind of plateau (if ρ2 − ρ1 � ρ)

e2µkρz

cr2
, (9.11)

for ρ1 < ρ < ρ2, where ρ1 and ρ2 correspond to the vanishing of the
arguments of the Fresnel integrals. For r � z0, they are reduced to

ρ1,2 =
√

β2
n − 1(z ∓ z0).

Outside the plateau, for a fixed z and ρ → ∞, (9.10) decreases as 1/ρ2

coinciding with the Tamm formula (9.5). Mathematically the existence of
a plateau is because for ρ1 < ρ < ρ2 the Fresnel integral arguments z+ and
z− have different signs. At the Cherenkov threshold (β = 1/n)

z± =

√
knr

2
sin θ

(
1

2 cos2(θ/2)
± z0

r

)
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have the same sign for r > L and the radiation intensity for kr � 1 and
r > L should be small (as compared to the plateau value (9.11)) everywhere.

These asymptotic expressions are not valid at ρ = ρ1 and ρ = ρ2. At
these points the radiation intensities are obtained directly from (9.10)

d2E
dρdω

(ρ = ρ1) =
e2µkzρ1

2cr2
1

×

[
C

(√
2kn

r1
z0 sin θ1

)]2

+

[
S

(√
2kn

r1
z0 sin θ1

)]2
 ,

d2E
dρdω

(ρ = ρ2) =
e2µnkzρ2

2cr2
2

×

[
C

(√
2kn

r2
z0 sin θ2

)]2

+

[
S

(√
2kn

r2
z0 sin θ2

)]2
 , (9.12)

where r1, r2, θ1 and θ2 are defined as

r1 =
√

ρ2
1 + z2, r2 =

√
ρ2

2 + z2, cos θ1 = z/r1, cos θ2 = z/r2.

For kz2
0/z � 1, one gets

d2E
dρdω

(ρ = ρ1) =
e2µkzρ1

4cr2
1

,
d2E
dρdω

(ρ = ρ2) =
e2µnkzρ2

4cr2
2

, (9.13)

that is four times smaller than (9.11) taken at the same points.
For kz2

0/r � 1 the radiation intensity (9.10) outside the Cherenkov ring
coincides with that given by the Tamm formula (9.5).

Frequency distribution Integrating (9.11) over ρ from ρ1 to ρ2 (suggesting
that outside this interval, the radiation intensity (9.10) is negligible), one
gets the frequency distribution of the radiated energy

dE
dω

(F ) =
e2µkL

c

(
1 − 1

β2
n

)
, k =

ω

c
, (9.14)

which coincides with the Tamm-Frank frequency distribution (9.8).
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Energy radiated in the given frequency interval per unit radial distance In-
tegrating (9.11) over ω from ω1 to ω2, one obtains the spatial distribution
of the energy emitted in the frequency interval (ω1, ω2). It is equal to

dE
dρ

(F ) =
e2µρz

2c2r2
(ω2

2 − ω2
1) (9.15)

for ρ1 < ρ < ρ2 and zero outside this interval. When performing the ω
integration we have disregarded the ω dependence of the refractive index
n. This is valid for a quite narrow frequency interval.

The total energy radiated in the given frequency interval. Integration of
(9.14) over ω or (9.15) over ρ gives the total energy emitted in the frequency
interval (ω1, ω2)

E =
e2µL

2c2
(ω2

2 − ω2
1)
(

1 − 1
β2

n

)
. (9.16)

(Again, the medium dispersion has been neglected).

Quasi-classical (WKB) approximation
To make easier the interpretation of the numerical calculations presented in
the next section, we apply the quasi-classical approximation (the stationary
phase method) for the evaluation of the vector potential (9.1). For ρ <
(z − z0)/γn and ρ > (z + z0)/γn (that is, below L2 or above L1) one has

Az(BS) = A1(BS) − A2(BS), (9.17)

where

A1(BS) =
ieµβ

2πck

1
R1

exp(iψ1), A2(BS) =
ieµβ

2πck

1
R2

exp(iψ2),

R1 =
1

r1 − βn(z + z0)
, R2 =

1
r2 − βn(z − z0)

,

ψ1 = k

(
nr1 − z0

β

)
, ψ2 = k

(
nr2 +

z0

β

)
,

r1 =
√

ρ2 + (z + z0)2, r2 =
√

ρ2 + (z − z0)2.

It is seen that for β > 1/n, Aout
z is infinite at ρ = (z − z0)/γn and ρ =

(z +z0)/γn, that is, at the border with the CSW. There are no singularities
in Aout

z for β < 1/n. Expanding r1 and r2 entering ψ1 and ψ2 up to the
first order in z0 (r1 = r + z0 cos θ, r2 = r − z0 cos θ) and setting r1 = r and
r2 = r in R1 and R2 one finds

AT
z =

eµq

πcknr
exp(iknr) (9.18)
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which coincides with the Tamm vector potential (9.4). Owing to the ap-
proximations involved the singularities of A1(BS) and A2(BS) compensate
each other and the vector potential (9.18) becomes finite at all angles. Thus,
Az(BS) is the quasi-classical analogue of the Tamm vector potential.

On the other hand, in the spatial region (z − z0)/γn < ρ < (z + z0)/γn

(that is, between L2 and L1) one has

Az = Az(BS) + Az(Ch), (9.19)

where Az(BS) is the same as in (9.17) while

Az(Ch) =
eµ

2πc
exp(iψCh)

√
2πβγn

kρ

×Θ[ρ − (z − z0)/γn]Θ[(z + z0)/γn − ρ], (9.20)

where Θ(x) is the step function and

ψCh =
kz

β
+

π

4
+

kρ

βγn
.

It should be noted that Az(Ch) exists only if β > 1/n. Otherwise (β < 1/n),
the vector potential is given by (9.17) in the whole angular region.

One can ask on what grounds we have separated the vector potential
into the Cherenkov (Az(Ch)) and bremsstrahlung (Az(BS)) parts? First,
A1(BS) and A2(BS) exist below and above the Cherenkov threshold while
Az(Ch) exists only above it. This is what is intuitively expected for the VC
radiation and bremsstrahlung. Second, Az(Ch) originates from the station-
ary point of the integral αT (see Eq. (9.1)) lying inside the motion interval
(−z0, z0). For A1(BS) and A2(BS) the stationary points lie outside this
interval, and their values are determined by the boundary points (±z0) of
the motion interval. Again, this is intuitively expected since the VC radi-
ation is owed to the charge radiation in the interval (−z0, z0) whilst the
bremsstrahlung is determined by the points (∓z0) corresponding to the be-
ginning and the end of motion, respectively. Third, to clarify the physical
meaning of Az(Ch), we write out the vector potential corresponding to the
unbounded charge motion. It is equal to

Az =
eµ

πc
exp(

ikz

β
)K0(

kρ

βγn
)

for β < 1/n and

Az =
ieµ

2c
exp(

ikz

β
)H(1)

0 (
kρ

βγn
) (9.21)
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for β > 1/n. Since this vector potential tends to (9.20) as ρ → ∞, Az(Ch)
in (9.19) is a piece of the unbounded vector potential (9.21) confined to the
region (z − z0)/γn < ρ < (z + z0)/γn.

It is seen that for kr → ∞, Az(BS) and Az(Ch) decrease as 1/kr and
1/

√
kr, respectively. This means that at large distances, Az(Ch) dominates

in the region (z − z0)/γn < ρ < (z + z0)/γn. Thus Az has a kind of plateau
inside this interval with infinite maxima at its ends (quasi-classics does not
work at these points) and sharply decreases outside it. The corresponding
quasi-classical field strengths are given by

E = E(BS) + E(Ch), H = H(BS) + H(Ch), (9.22)

H(BS) = H1(BS) − H2(BS), E(BS) = E1(BS) − E2(BS),

H1(BS) =
eβρ

2πckr1R2
1

(knR1 + i) exp(iψ1),

H2(BS) =
eβρ

2πckr2R2
2

(knR2 + i) exp(iψ2),

E1(BS) = − eβρ

2πcεk2r2
1R

2
1

exp(iψ1)

×
[
(1 − iknr1)(1 − iknR1)

z + z0

r1
+

r1

R1
(2 − iknR1)

(
z + z0

r1
− βn

)]
,

E2(BS) = − eβρ

2πcεk2r2
2R

2
2

exp(iψ2)

×
[
(1 − iknr2)(1 − iknR2)

z − z0

r2
+

r2

R2
(2 − iknR2)

(
z − z0

r2
− βn

)]

H(Ch) = − e

2πc

√
2πβγn

kρ

1
2ρ

(
2ikρ

βγn
− 1

)
exp(iψCh), E(Ch) =

1
εβ

H(Ch).

Here ε is the electrical permittivity (n2 = εµ). It should be noted that when
evaluating field strengths we have not differentiated step functions entering
(9.20). If this were done the δ functions at the ends of the Cherenkov ring
would appear. Owing to the breaking of the WKB approximation at these
points, the vector potentials and field strengths are singular there and the
inclusion of the δ functions just mentioned does not change anything.

The energy flux along the motion axis is

Sz =
d2E
dρdω

(WKB) = πρc(EH∗ + HE∗) (9.23)

In (9.22) and (9.23), E ≡ Eρ and H ≡ Hφ (in order not to overload
formulae, we have dropped the indices of Eρ and Hφ).
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We estimate the height of the plateau to which mainly H(Ch) and
E(Ch) contribute. It is given by

Sz(plateau) = πρc[E(Ch)H∗(Ch) + H(Ch)E∗(Ch)] ≈ e2µk

cβ2
nγn

(9.24)

Since Sz is negligible outside this plateau and since infinities at the ends
of the Cherenkov ring are unphysical (they are owed to the failure of the
WKB method at these points) the frequency distribution is obtained by
multiplying (9.24) by the width of the Cherenkov ring

dE
dω

(WKB) =
e2kµ

cβ2
nγn

L

γn
=

e2µkL

c
(1 − 1

β2
n

). (9.25)

This coincides with the Tamm-Frank formula (9.8). It is rather surprising
that quite different angular distributions corresponding to the Tamm in-
tensity (9.5), to the Fresnel intensity (9.10) and the quasi-classical intensity
(9.23) give the same frequency distribution (9.8).

9.1.3. NUMERICAL RESULTS

In Fig. 9.7 the radiation intensities are presented for various distances δz
of the observational plane (δz is the distance from the point z = z0 corre-
sponding to the end of motion). We observe the qualitative agreement of
the exact radiation intensity (9.3) with the Fresnel intensity (9.10). Both
of them disagree sharply with the Tamm intensity (9.5) which does not con-
tain the CSW responsible for the appearance of plateau in (9.3) and (9.10).
Fig. 9.7 (d) demonstrates that at large observational distances (δz = 100
cm) the Tamm radiation intensity approaches the exact intensity outside
the Cherenkov ring.

In Fig. 9.8 the magnified versions of exact radiation intensities corre-
sponding to δz = 0.3 cm and δz = 1 cm are presented. In accordance with
quasi-classical predictions, one sees the maxima at the ends of the interval
(z − z0)/γn < ρ < (z + z0)/γn.

In Section 9.1 it was mentioned about the special optical devices fo-
cusing the rays directed at the Cherenkov angle into one ring. In the case
treated it is the plateau shown in Figs. 9.7 and 9.8 and the BS peaks at its
ends that are focused into this ring. The remaining part of BS will form
the tails of the focused total radiation intensity. For such a compressed
radiation distribution the Tamm formula probably has a greater range of
applicability.
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Figure 9.7. Theoretical radiation intensities in a number of planes perpendicular to the
motion axis for the experimental setup shown in Fig. 9.3; δz means the distance (in cm)
from the cone vertex to the observational plane. The solid, dashed, and dotted curves
refer to the exact, Fresnel, and Tamm intensities, respectively. In this figure and the
following figures the radiation theoretical intensities are in e2/cz0 units.

9.1.4. DISCUSSION

Vavilov-Cherenkov radiation and bremsstrahlung on the sphere
In the original and in nearly all subsequent publications about the Tamm
problem, the radiation intensity was considered on the surface of a sphere
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Figure 9.8. Exact theoretical radiation intensities in the δz = 0.3 cm and δz = 1 cm
planes.

of radius r much larger than the motion interval L = 2z0. It is easy to check
that on the surface of the sphere of finite radius r, the intervals

ρ > (z + z0)/γn, (z − z0)/γn < ρ < (z + z0)/γn, and ρ < (z − z0)/γn

correspond to the angular intervals

θ > θ1, θ2 < θ < θ1, and θ < θ2,

where θ1 and θ2 are defined by

cos θ1 = − ε0

β2
nγ2

n

+
1
βn

[1 − (
ε0

βnγn
)2]1/2

and
cos θ2 =

ε0

β2
nγ2

n

+
1
βn

[1 − (
ε0

βnγn
)2]1/2. (9.26)

Here ε0 = z0/r. For r � z0

θ1 = θc +
ε0

βnγn
, θ2 = θc − ε0

βnγn
,
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where θc is defined by cos θc = 1/βn. In this case, the Tamm formula
(9.9) is valid for θ < θ2 and θ > θ1, that is, in nearly the whole angular
region. It should be added that the existence of the Cherenkov shock wave
on the sphere is masked by the smallness of the angular region to which
it is confined. It seems at first that on an observational sphere of infinite
radius there is no room for CSW. This is not so. Although ∆θ = θ1 − θ2 =
2ε0/βnγn is very small for r � z0, the length of an arc corresponding to
∆θ in a particular φ =const plane of the sphere S is finite: it is given by
L = 2z0/βnγn and does not depend on the sphere radius r for r >> z0.
Owing to the axial symmetry of the problem, on the observational sphere
S the region to which the VC radiation is confined looks like a band of
finite width L. Thus the observation of the Cherenkov ring on the sphere
is possible if the detector dimension is smaller than L.

Vavilov-Cherenkov radiation and bremsstrahlung in the plane perpendicular
to the motion axis
The separation of the VC radiation and the BS looks more pronounced in
the plane perpendicular to the motion axis. We illustrate this using the
quasi-classical intensities as an example.

In Fig. 9.9 (a) we present the quasi-classical intensity (9.23) for δz = 0.3
cm. We observe perfect agreement between it and the exact intensity shown
in Fig. 9.8 (a) everywhere except for the boundaries of the region to which
the VC radiation is confined. The quasi-classical approximation is unique
in the sense that contributions of the VC radiation and the BS are clearly
separated in the vector potential (9.19) and field strengths (9.22). To see
the contribution of the BS, we omit Az(Ch), E(Ch), and H(Ch) in these
relations by setting them equal to zero. The resulting intensity describing
BS is shown in Fig. 9.9 (b). It disagrees sharply with the Tamm intensity
(9.5). From the smallness of the BS intensity everywhere except for the
boundaries of the Cherenkov ring it follows that oscillations of the total
radiation intensity inside the Cherenkov ring are owed to the interference
of the VC radiation and the BS.

On the nature of the bremsstrahlung shock waves in the Tamm problem
Some words should be added on the nature of BS shock waves discussed
above. In [7] they were associated with velocity jumps at the beginning and
end of motion.

On the other hand, the smoothed Tamm problem was considered in [14]
in the time representation. In it the charge velocity v changes smoothly from
zero up to some value v0 > cn with which it moves in some time interval.
Later v decreases smoothly from v0 to zero. It was shown there that at the
instant when v coincides with the velocity cn of light in medium, a complex
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Figure 9.9. (a): Quasi-classical radiation intensity in the plane δz = 0.3 cm. It coin-
cides with the exact intensity shown in Fig. 9.8 (a) everywhere except for the boundary
points of the Cherenkov ring where the quasi-classical intensities are infinite owing to the
breaking of the WKB approximation; (b): The quasi-classical bremsstrahlung intensity
(solid curve) and the Tamm intensity (dotted curve) in the plane δz = 0.3 cm. The sharp
disagreement between them is observed.

arises consisting of the CSW with its apex attached to a moving charge, and
the shock wave SW1 closing the Cherenkov cone (and not coinciding with
the BS1 shock wave originating at the beginning of motion). The inclination
angle of the normal to SW1 towards the motion axis (defining the direction
in which SW1 propagates) varies smoothly from 0 at the motion axis up to
the Cherenkov angle θc at the point where SW1 intersects the Cherenkov
cone. Therefore, the radiation produced by the SW1 fills the angular region
0 < θ < θc. As time advances, the dimensions of the above complex grow
since its apex moves with the velocity v > cn, whilst the shock wave SW1

propagates with the velocity cn. In the past, the existence of radiation
arising at the Cherenkov threshold and directed along the motion axis was
suggested in [15].

Since in the original Tamm problem the charge velocity changes in-
stantly from 0 to v0, the CSW and SW1 are not separated in subsequent
instants of time too. They are marked as CSW in Fig. 9.1 (a,b).

The smoothed Tamm problem was also considered in [10] in the spec-
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tral representation. It was shown there that when a length of motion along
which a charge moves non-uniformly tends to zero, its contribution to the
total radiation intensity also tends to zero. There are no velocity jumps
for the smoothed problem, and therefore the BS cannot be associated with
instantaneous velocity jumps. However, there are acceleration jumps at the
beginning and end of motion and at the instants when the accelerated
motion meets the uniform motion. Thus BS can still be associated with
acceleration jumps. To clarify the situation the Tamm problem with ab-
solutely continuous charge motion (for which the velocity itself and all its
time derivatives are absolutely continuous functions of time) was consid-
ered in [16]. It was shown there that a rather slow decrease in the radiation
intensity outside the above plateau is replaced by the exponential damping
(in the past, for the charge motion in vacuum, the exponential damping for
all angles was recognized in [17-20]). It follows from this that the authors
of [7] were not entirely wrong if by the BS shock waves used by them, one
understands the mixture of the shock waves mentioned above and originat-
ing from the discontinuities of velocity, acceleration, other higher velocity
time derivatives, and from the transition through the medium light barrier.

This is also confirmed by the consideration of radiation intensities for
various charge velocities. Figure 9.10 (a) demonstrates that the position of
the maximum of radiation intensity approaches the motion axis, whilst its
width diminishes as the charge velocity approaches the Cherenkov thresh-
old (β = 1/n ≈ 0.665). The radiation intensities presented in Fig. 9.10
(b) show their behaviour just above (β = 0.67) and below (β = 0.66) the
Cherenkov threshold. It is seen that the maxima of the under-threshold
and the over-threshold intensities differ by 105 times. Far from the max-
imum position they approach each other. The radiation intensity at the
Cherenkov threshold shown in Fig. 9.10 (c) is three orders smaller than
that corresponding to β = 0.67. The calculations in Figs. 9.10 (a-c) were
performed using the Fresnel approximate intensity (9.10) which is in good
agreement with the exact intensity (9.3) for the treated position (δz = 10
cm) of the observational plane (as Fig. 9.7 demonstrates).

To see manifestly how the bremsstrahlung changes when one passes
through the Cherenkov threshold we present in Fig. 9.10 (d) the quasi-
classical radiation BS intensities evaluated for β = 0.67 (in this case the VC
radiation was removed by hand from (9.22) similarly as was done for Fig.
9.9 (b)) and β = 0.66. The position of the observational plane is (δz = 0.3
cm). Again, we observe the sharp decrease in the BS intensities in the
neighbourhood of their maxima when one passes the Cherenkov barrier.
This confirms that the BS shock waves used in [7] are the mixture of the
shock waves mentioned above for the charge velocity above the Cherenkov
threshold. For the charge velocity below the Cherenkov threshold only the
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Figure 9.10. (a): Radiation intensities for a number of charge velocities above the
Cherenkov threshold in the observational plane δz = 10 cm. As the charge velocity
approaches the velocity of light in medium, the position of the Cherenkov ring approaches
the motion axis whilst its width diminishes; (b): Radiation intensities for the charge
velocity slightly above (0.67) and below (0.66) the Cherenkov threshold (1/n ≈ 0.6645)
in the plane δz = 10 cm; (c): Radiation intensity at the Cherenkov threshold in the plane
δz = 10 cm. In accordance with theoretical predictions it is much smaller than above the
threshold; (d): Quasi-classical BS intensities for the charge velocity slightly above and
below the Cherenkov threshold in the plane δz = 0.3 cm.
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BS shock waves originating from the discontinuities of velocity, acceleration
and other higher velocity time derivatives survive. They are much smaller
than the singular shock wave originating when the charge velocity coincides
with the velocity of light in medium.

Comparison with experiment
Strictly speaking, the formulae obtained above and describing the fine struc-
ture of the Cherenkov rings are valid if the observations are made in the
same medium where a charge moves. Because of this, the plateau of the
radiation intensity and its bursts at the ends of this plateau cannot be
associated with the transition radiation which appears when a charge in-
tersects the boundary between two media.

Turning to the comparison with experiment, we observe that it cor-
responds to the charge moving subsequently in air, in the medium, and,
finally, again in air. According to [21], the contribution of the transition
radiation which arises at the boundary of the medium with air is approxi-
mately 100 times smaller than the contribution of VC radiation. Since the
uniformly moving charge does not radiate in air, where βn < 1, and radi-
ates in medium, where βn > 1, the observer inside the medium associates
the radiation with the instantaneous appearance and disappearance of a
charge at the medium boundaries and with its uniform motion inside the
medium. We quote, e.g., Jelly ([22], p.59):

A situation alternative to that of a particle of constant velocity travers-
ing a finite slab may arise in the following way; suppose instead that we
have an infinite medium and that a charged particle, initially at rest at
a point A, is rapidly accelerated up to a constant velocity (above the
Cerenkov threshold) which it maintains until, at a point B, it is brought
abruptly to rest. If, as in the first case, the distance AB = d, the output
of Cerenkov radiation will be the same as before. In this case, there will
be radiation at the two points A and B; this will be now identified as a
form of acceleration radiation. This and transition radiation are essen-
tially the same; the intensities work out the same in both cases and it
is only convention which decides which term shall be used.

This justifies the applicability of the Tamm problem for the description of
the discussed experiments.

Comparing theoretical and experimental intensities we see that:
i) theoretical intensities have a plateau (Figs. 9.7-9.10), whilst the ex-

perimental intensities have a triangle form (Figs. 9.4, 9.6);
ii) the observed radiation peaks at the boundaries of the Cherenkov

rings are not so pronounced as the predicted ones.
The triangle form of the observed radiation intensities can be associated

with the non-existence of the instantaneous velocity jumps in realistic cases.
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To prove this, we evaluated the radiation intensities for the smooth Tamm
problem (Fig. 3.11) for a number of intervals of the charge uniform motion
(Fig. 9.11). We observe the existence of the radiation intensity plateau,

Figure 9.11. Spectral radiation intensities for the smooth Tamm problem for various
lengths Lu of the charge uniform motion. The total motion interval is 1 cm, the distance
of the observation plane from the end point of the motion interval is 4.5 cm, the observed
wavelength λ = 5.893 × 10−5 cm, the medium refractive index n = 1.512, the uniform
charge velocity β0 = v0/c = 1. The plateau in the radiation intensity corresponds to the
CSW in Fig. 3.13 (d). The sudden drop of the radiation intensity to the right of this
plateau is due to the absence of the singular shock waves above L1. The oscillations of
the radiation intensities to the left of plateau are due to the interference of the singular
shock waves SW1 and SW2 in the region below L2. The dotted curves are the Tamm
approximate radiation intensities corresponding to the charge uniform motion on the
interval Lu. They are fastly oscillating functions. To make them visible, we draw them
through their maxima.
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its sudden drop to the right of the plateau and its moderate decreasing
to the left of plateau. The sudden drop of the radiation intensity to the
right of the plateau takes place in the space region where only the non-
singular BS shock waves associated with the beginning and the end of a
charge motion exist. In Fig. 3.13 (d), this space region lies above L1. The
plateau corresponds to the space region lying between L2 and L1 where the
singular wave CSW (Cherenkov shock wave) and SW1 (singular shock wave
associated with the transition of the light velocity barrier at the accelerated
part of the charge trajectory) exist. The moderate decrease in the radiation
intensity to the left of the plateau is due to the existence of SW1 and
SW2 shock waves (the latter arises at the decelerated part of the charge
trajectory). The oscillations of the radiation intensity in this region are due
to the interference of SW1 and SW2. The smallness of oscillations inside
the plateau indicates that the contribution of the CSW to the radiation
intensity is much larger than that of SW1.

Turning to Fig. 3.12 (b) describing the position of the shock waves in the
limiting case of the smooth Tamm problem, we see that three shock waves
(BS1, SW1 and CSW) are intersected on the straight line L1. Therefore,
the radiation intensity should be large there. Above L1 (this corresponds to
the region lying to the right of plateau in Fig. 9.11) only the non-singular
shock waves BS1 and BS2 contribute to the radiation intensity. Therefore,
the radiation intensity should be very small there. The experimental curve
shown in Fig. 9.4 partly supports these claims. However, the experimental
intensity decreases smoothly in the space region where the theory predicts
the existence of plateau. The picture similar to Fig. 9.4 might be possible
if the focusing devices (their use is wide-spread in the Cherenkov-like ex-
periments) projecting the γ rays emitted at the Cherenkov angle into the
narrow Cherenkov ring (and transforming the plateau of the radiation in-
tensity into this ring) were used. However, no focusing lens was used in the
experiments discussed in which the Cherenkov light left the radiator along
the direction perpendicular to the radiator surface.

A possible explanation of the deviation of the theoretical data from
the experimental ones is due to the medium dispersion. A charge moving
uniformly in medium emits all frequencies satisfying the Tamm-Frank ra-
diation condition βn(ω) > 1 (see, e.g.,[4]). In the experiment treated the
dependence on the frequency enters through the refractive index n of the
sample (where a charge moves) and through the spectral sensitivity of the
photographic film placed in the observational plane perpendicular to the
motion axis. Let the intervals where a charge is accelerated and decelerated
be arbitrary small but finite. For large frequencies the radiation intensity
in the space region to the left the plateau shown in Fig. 9.11 begins to rise
This was clearly shown in [23,24] and in Chapters 5 and 7. The resulting
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radiation intensities are obtained from those presented in Fig. 9.11 by con-
voluting them with the spectral sensitivity of the photographic film and
integrating over all ω. If the integrand differs from zero for large frequen-
cies and the Tamm-Frank radiation condition is still fulfilled for it, then the
arising radiation intensity will resemble the experimental curve of Fig. 9.4.
However, to perform concrete calculations the knowledge of the frequency
dependence of the sample refractive index and the spectral sensitivity of
the photographic film is needed.

The item ii) can be understood if one takes into account that the experi-
ments mentioned in section 2 were performed with a relatively broad proton
beam (0.5 cm in diameter). This leads to the smoothing of the boundary
peaks after averaging over the diameter of proton beam.

9.1.5. CONCLUDING REMARKS TO THIS SECTION

According to quantum theory [25], a charge moving uniformly in a medium
with a velocity greater than the velocity of light in medium radiates γ
quanta at an angle θc towards the motion axis (cos θc = 1/βn). It should
be noted that for the uniform charge motion in an unbounded medium, a
photographic plate placed perpendicular to the motion axis will be darkened
with an intensity proportional to 1/ρ (ρ is the distance from the motion
axis) without any maximum at the Cherenkov angle. Despite its increase for
small ρ, the energy emitted in a particular ring of width dρ is independent of
ρ. The surface of the cylinder coaxial with the motion axis will be uniformly
darkened.

The Cherenkov ring can be observed only for the finite motion interval.
In the z =const plane the width of the ring is proportional to the charge
motion interval L: ∆R = L/γn (γn = 1/

√|1 − β2
n|, βn = βn). It does

not depend on the position z of the observational plane. The frequency
dependence enters only through the refractive index n. The radiation emit-
ted into a particular ring does not depend on z. For a fixed observational
plane the radiation intensity oscillates within the Cherenkov ring. These
oscillations are owed to the interference of bremsstrahlung and the Vavilov-
Cherenkov radiation in (9.23). The large characteristic peaks at the ends
of the Cherenkov ring are owed to the bremsstrahlung shock waves, which
include shock waves originating from the jumps of velocity, acceleration,
other higher time derivatives of a velocity, and from the transition through
the medium velocity light barrier.

The finite width of the Cherenkov ring in the plane z =const is owed to
the Cherenkov shock wave. Inside the Cherenkov ring (R1 < ρ < R2) the
Tamm formula does not describes the radiation intensity at any position
of the observational plane (see Fig. 9.7). Outside the Cherenkov ring (ρ <
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R1 and ρ > R2) the exact and the Tamm radiation intensities are rather
small. In this spatial region they approach each other at large distances
satisfying kz2

0/r � 1. For the experiments treated in the text, the l.h.s.
of this equation is equal to unity at the distance r ≈ 1 km. On the other
hand, the exact formula (9.3) describes the radiation intensity in all spatial
regions.

We conclude: the experiments performed with a relatively broad 657
MeV proton beam passing through various radiators point to the existence
of diffused radiation peaks at the boundary of the broad Cherenkov rings.
This supports theoretical predictions [7, 15, 26, 27] (see Chapters 2,3 and 5)
on the existence of the shock waves arising when the charge motion begins
and ends, and when the charge velocity coincides with the velocity of light
in medium.

It is desirable to repeat experiments similar to those described in Section
2 with a charged particle beam of a smaller diameter (≈ 0.1 cm), with a
rather thick dielectric sample, without using the focusing devices and for
various observational distances. This should result in the appearance of
more pronounced, just mentioned, radiation peaks.

9.2. Observation of anomalous Cherenkov rings

The Cherenkov radiation induced by the relativistic lead ions moving through
the rarefied air was studied in [28]. In addition to the main Cherenkov ring
with a radius corresponding to the lead ion velocity, additional rings were
observed with radii corresponding to a velocity greater than the velocity of
light in vacuum. A careful analysis of the experimental conditions was made
to exclude the errors possible. The authors of [28] associated the anoma-
lous Cherenkov rings with the existence of tachyons, hypothetical particles
moving with a velocity greater than the velocity of light in vacuum. This
highly intriguing question needs special consideration.

9.3. Two-quantum Cherenkov effect

The possibility of this effect was predicted by Frank and Tamm in [29]:

We note in passing that for v < c the conservation laws prohibit the
emission of one particular photon as well as the simultaneous emission of
a group of photons. However, for the superluminal velocity such higher
order processes are possible although for them the radiation condition
(4) is not necessary.

(Under this condition Tamm and Frank meant the one-photon radiation
condition cos θ = c/vn). In this case, the conservation of energy and mo-
menta does not prohibit the process in which a moving charge emits si-
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multaneously two photons. There is no experimental confirmation for this
effect up to now. We briefly review the main features of the kinematics of
the two photon Cherenkov effect.

The calculations of the two-photon radiation intensity are known [30-
34], but they were performed without paying enough consideration to the
exact kinematical relations. The goal of this treatment is to point out that
the two-photon Cherenkov effect will be enhanced for special orientations
of photons and the recoil charge. This makes easier the experimental search
for the 2-photon Cherenkov effect.

9.3.1. PEDAGOGICAL EXAMPLE: THE KINEMATICS OF THE
ONE-PHOTON CHERENKOV EFFECT

This effect was considered quite schematically in Chapter 2. We consider
here its kinematics in some detail since it clarifies the situation with the
two-photon Cherenkov effect.

Let a point-like charge e having the rest mass m0 move in medium
of the refractive index n. It emits the photon with the frequency ω. The
conservation of the energy and momentum gives

m0c
2γ0 = m0c

2γ + h̄ω, m0�v0γ0 = m0�vγ +
h̄ωn

c
�eγ. (9.27)

Here h̄ is the Plank constant, �v0 and �v are the charge velocities before and
after emitting of the γ quanta; γ = 1/

√
1 − β2, γ0 = 1/

√
1 − β2

0 ; �eγ and ω

are the unit vector in the direction of emitted γ quanta and its frequency,
n is the medium refractive index. We rewrite (9.27) in the dimensionless
form

γ0 = γ + ε, �β0γ0 = �βγ + εn�eγ. (9.28)

Here �β = �v/c, �β0 = �v0/c, ε = h̄ω/m0c
2.

Let �v0 be directed along the z axis. We project all vectors on this axis
and two others perpendicular to it:

�β0 = β0�ez, �β = β[�ez cos θ + sin θ(�ex cos φ + �ey sin φ)],

�eγ = �ez cos θγ + sin θγ(�ex cos φγ + �ey sin φγ)]. (9.29)

Substituting (9.29) into (9.28), one gets

γ0 = γ + ε, β0γ0 = βγ cos θ + nε cos θγ,

βγ sin θ cos φ + nε sin θγ cos φγ = 0,

βγ sin θ sin φ + nε sin θγ sin φγ = 0. (9.30)
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From two last equations one finds

sin θ sin(φ − φγ) = 0, sin θγ sin(φ − φγ) = 0. (9.31)

For sin(φ − φγ) 	= 0, one finds that sin θ = sin θγ = 0. There are three
different physical ways to satisfy this equality.

Let θ = θγ = 0. Then Eqs. (9.30) are reduced to

γ0 = γ + ε, β0γ0 = βγ + nε. (9.32)

From this one easily obtains

β =
2n − β0(n2 + 1)
n2 + 1 − 2nβ0

, ε =
2γ0(β0n − 1)

n2 − 1
. (9.33)

The conditions 0 < ε < γ0 and 0 < β < β0 give

1
n

< β0 <
2n

1 + n2
(9.34)

for n > 1. There are no solutions for n < 1. In the past, the possibility
of the one-photon radiation in the forward direction by a charge moving
in medium was suggested by Tyapkin on the purely intuitive grounds [15].
Equations (9.32)-(9.34) tell us that this assumption is not in conflict with
kinematics.

There are no solutions of (9.30) for θ = 0, θγ = π.
Finally, for θ = π, θγ = 0 one finds

β =
β0(n2 + 1) − 2n

n2 + 1 − 2nβ0
, ε =

2γ0(β0n − 1)
n2 − 1

.

This solution exists only for n > 1, β0 > 2n/(1 + n2).
Let now sin(φ − φγ) = 0. There are no physical solutions of (9.30) if

φ = φγ. It remains only φ = φγ + π. Then,

γ0 = γ + ε, β0γ0 = βγ cos θ + nε cos θγ,

βγ sin θ = nε sin θγ. (9.35)

These equations have the well-known solution given by Ginzburg [25]

cos θγ =
1

β0n

[
1 +

ε(n2 − 1)
2γ0

]
,

cos θ =
β2γ2 + β2

0γ2
0 − n2(γ0 − γ)2

2βγβ0γ0
. (9.36)
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The conditions that the r.h.s. of these equations should be smaller than 1
and greater than -1, lead to the following conditions

|2n − β0(n2 + 1)|
n2 + 1 − 2nβ0

< β < β0, ε <
2γ0(β0n − 1)

n2 − 1
. (9.37)

Eqs. (9.35)-(9.37) can be realized only for n > 1, β0 > 1/n.

9.3.2. THE KINEMATICS OF THE TWO-PHOTON CHERENKOV EFFECT

General formulae
The energy-momentum conservation gives

γ0 = γ + ε1 + ε2, γ0
�β0 = γ�β + ε1n1�e1 + ε2n2�e2. (9.38)

Here
ε1 =

h̄ω1

m0c2
, ε2 =

h̄ω2

m0c2
, n1 = n(ω1), n2 = n(ω2),

ω1 and ω2 are the frequencies of the γ quanta 1 and 2, n1 and n2 are the
corresponding refractive indices, �e1 and �e2 are the unit vectors along the
directions of the emitted photons.

Projecting (9.38) on the same axes as above one gets

γ0 = γ + ε1 + ε2, γ0β0 = γβ cos θ + ε1n1 cos θ1 + ε2n2 cos θ2,

βγ sin θ cos φ + ε1n1 sin θ1 cos φ1 + ε2n2 sin θ2 cos φ2 = 0,

βγ sin θ sin φ + ε1n1 sin θ1 sin φ1 + ε2n2 sin θ2 sin φ2 = 0. (9.39)

From the last two equations one gets

cos(φ1 − φ) =
ε2
2n

2
2 sin2 θ2 − ε2

1n
2
1 sin2 θ1 − β2γ2 sin2 θ

2βγε1n1 sin θ sin θ1
,

cos(φ2 − φ) =
ε2
1n

2
1 sin2 θ1 − ε22n

2
2 sin2 θ2 − β2γ2 sin2 θ

2βγε2n2 sin θ sin θ2
. (9.40)

For the given β0 (initial charge velocity), β, θ, φ (the final charge velocity
and its direction), ε1, θ1 (the frequency and the inclination angle towards
the motion axis for the first photon) the first and second of Eqs. (9.39)
define the frequency and the inclination angle towards the motion axis for
the second photon) while Eqs. (9.40) define azimuthal angles for the 1 and
2 photons. These angles are not independent:

cos(φ2 − φ1) =
β2γ2 sin2 θ − ε2

1n
2
1 sin2 θ1 − ε2

2n
2
2 sin2 θ2

2ε1n1ε2n2 sin θ1 sin θ2
. (9.41)
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The conditions

−1 < cos(φ1 − φ) < 1, −1 < cos(φ2 − φ) < 1, −1 < cos(φ2 − φ1) < 1

lead to the following restrictions on θ, θ1 and θ2:

|n1ε1 sin θ1 − n2ε2 sin θ2|
βγ

≤ sin θ ≤ n1ε1 sin θ1 + n2ε2 sin θ2

βγ
,

|βγ sin θ − n2ε2 sin θ2|
n1ε1

≤ sin θ1 ≤ βγ sin θ + n2ε2 sin θ2

n1ε1
,

|βγ sin θ − n1ε1 sin θ1|
n2ε2

≤ sin θ2 ≤ βγ sin θ + n1ε1 sin θ1

n2ε2
. (9.42)

The energy of the recoil charge enters only through the βγ sin θ term. It
can be excluded using the relations

βγ =
√

(γ0 − ε1 − ε2)2 − 1,

βγ sin θ = [β2γ2 − (γ0β0 − ε1n1 cos θ1 − ε2n2 cos θ2)2]1/2. (9.43)

For the extremely relativistic charges (γ0 >> ε1, γ0 >> ε2)

sin θ =

√
2
γ0

[ε1(n1 cos θ1 − 1) + ε2(n2 cos θ2 − 1)]1/2,

that is, θ → 0 when β0 → 1. It follows from this that

ε1(n1 cos θ1 − 1) + ε2(n2 cos θ2 − 1) ≥ 0.

This inequality cannot be satisfied if both n1 and n2 are smaller than 1.
In the same relativistic limit

βγ sin θ =
√

2γ0[ε1(n1 cos θ1 − 1) + ε2(n2 cos θ2 − 1)]1/2

is finite despite the large
√

γ0 factor. This becomes evident if we rewrite
the first of equations (9.42) in the form

|n1ε1 sin θ1 − n2ε2 sin θ2| ≤ βγ sin θ ≤ n1ε1 sin θ1 + n2ε2 sin θ2

and note that θ enters into two last inequalities (9.42) through the same
combination βγ sin θ.

If the energy of one of photons is zero, Eqs. (9.40)-(9.42) are reduced to
(9.35) and, consequently, to (9.36).
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Particular cases
Inequalities (9.40)-(9.42) reduce to equalities when either the recoil charge
moves in the same direction as the initial one (θ = 0) or when one of
photons moves along the direction of the initial charge (θ1 = 0 or θ2 = 0).
We consider these cases separately.

A charge does not change the motion direction Let θ = 0, that is a charge
does not change the motion direction. Then, from (9.42) it follows that

n1ε1 sin θ1 = n2ε2 sin θ2, (9.44)

whilst (9.41) gives

cos(φ2 − φ1) = −1, φ2 = φ1 + π, (9.45)

that is, photons fly in opposite azimuthal directions. As a result, Eqs. (9.39)
reduce to

γ0 = γ + ε1 + ε2, γ0β0 − γβ = ε1n1 cos θ1 + ε2n2 cos θ2,

n1ε1 sin θ1 = n2ε2 sin θ2. (9.46)

From this one easily obtains cos θ1 and cos θ2

cos θ1 =
(β0γ0 − βγ)2 + ε2

1n
2
1 − ε2

2n
2
2

2(β0γ0 − βγ)ε1n1
,

cos θ2 =
(β0γ0 − βγ)2 − ε2

1n
2
1 + ε2

2n
2
2

2(β0γ0 − βγ)ε2n2
. (9.47)

The conditions −1 < cos θ1 < 1 and −1 < cos θ2 < 1 lead to the inequality
which can be presented in the following two equivalent forms:

|ε1n1 − ε2n2| ≤ β0γ0 − βγ ≤ ε1n1 + ε2n2,

|β0γ0 − βγ − ε1n1| ≤ n2(γ0 − γ − ε1) ≤ β0γ0 − βγ + ε1n1. (9.48)

These inequalities can be easily resolved. For definiteness, we suggest that
n2 > n1. There are the following possibilities depending on n1, n2, β0 and
β (see [39] for details):

1) n2 > 1 > n1.

In this case the inequality (9.48) has solution

β2 < β < β0 for
1
n2

< β0 <
2n2

1 + n2
2

(9.49)
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and
0 < β < β0 for β0 >

2n2

1 + n2
2

. (9.50)

Here

β1 =
2n1 − β0(1 + n2

1)
1 + n2

1 − 2n1β0
, β2 =

2n2 − β0(1 + n2
2)

1 + n2
2 − 2n2β0

.

When the conditions (9.49) and (9.50) are satisfied, the dimensionless en-
ergy of the first photon belongs to the interval

n2(γ0 − γ) − (β0γ0 − βγ)
n1 + n2

≤ ε1 ≤ n2(γ0 − γ) − (β0γ0 − βγ)
n2 − n1

. (9.51)

The energy of the second photon is positive if ε2 = γ0 − γ − ε1 > 0. Since
the inequality

ε1 <
n2(γ0 − γ) − (β0γ0 − βγ)

n2 − n1
< γ0 − γ (9.52)

holds when the inequalities (9.49) and (9.50) are satisfied, the positivity of
ε2 is guaranteed.

1) n2 > n1 > 1.

For n1 < (1 + n2
2)/2n2 (this corresponds to the following chain of in-

equalities 1/n2 < 2n2/(1 + n2
2) < 1/n1 < 2n1/(1 + n2

1)) one obtains:

β2 < β < β0 for
1
n2

< β0 <
2n2

1 + n2
2

,

0 < β < β0 for
2n2

1 + n2
2

< β0 <
1
n1

,

0 < β < β1 for
1
n1

< β0 <
2n1

1 + n2
1

. (9.53)

For n1 > (1+n2
2)/2n2 (this corresponds to the chain of inequalities 1/n2 <

1/n1 < 2n2/(1 + n2
2) < 2n1/(1 + n2

1)) one finds:

β2 < β < β0 for
1
n2

< β0 <
1
n1

,

β2 < β < β1 for
1
n1

< β0 <
2n2

1 + n2
2

,

0 < β < β1 for
2n2

1 + n2
2

< β0 <
2n1

1 + n2
1

. (9.54)
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When β and β0 lie inside the intervals defined by (9.53) and (9.54), ε1

satisfies the same inequality (9.51).
On the other hand, the inequality

n2(γ0 − γ) − (β0γ0 − βγ)
n1 + n2

≤ ε1 ≤ n2(γ0 − γ) + (β0γ0 − βγ)
n2 + n1

(9.55)

holds when
β1 < β < β0 for

1
n1

< β0 <
2n1

1 + n2
1

and
0 < β < β0 for β0 >

2n1

1 + n2
1

. (9.56)

There are no solutions of (9.48) if both n1 and n2 are smaller than 1. A
further analysis of (9.47) and (9.48) requires the knowledge of the dispersion
law n(ω).

For the nondispersive medium, these equations are greatly simplified. It
turns out that ε1 satisfies the inequality

n(γ0 − γ) − (β0γ0 − βγ)
2n

≤ ε1 ≤ n(γ0 − γ) + (β0γ0 − βγ)
2n

(9.57)

which is valid under the condition

n(γ0 − γ) > β0γ0 − βγ. (9.58)

In a manifest form, this equation for n > 1 looks like

2n − β0(n2 + 1)
1 + n2 − 2nβ0

≤ β ≤ β0, for
1
n

< β0 <
2n

1 + n2

and
0 < β < β0 for β0 >

2n

1 + n2
. (9.59)

There are no solutions of (9.57) for n < 1.
As a result, we obtain the following prescription for the measurement

of the two-photon Cherenkov radiation. Set the charged particle detector
on the motion axis. It should be tuned in such a way as to detect a partic-
ular charge velocity in the intervals (9.49), (9.50),(9.53), (9.54) or (9.56).
Correspondingly, the energy of one of the photons should be chosen in the
intervals (9.51) or (9.55). The energy of other photon is found from the
first of Eqs. (9.38). Set the photon detectors under the polar angles given
by (9.47) and, in accordance with (9.45), under opposite azimuthal angles.
Since θ1 and θ2 are uniquely determined by β0, β and ε1, the corresponding
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radiation intensities should have sharp maxima at these angles. Equations
(9.47)-(9.56) are useful if one is able to measure the charge velocity af-
ter emitting the gamma quanta. When only the measurements of gamma
quanta energies are possible we rewrite (9.48) in the form

|β0γ0 − βγ − ε1n1| ≤ n2ε2 ≤ β0γ0 − βγ + ε1n1 (9.60)

and substitute βγ given by (9.43) into (9.47) and (9.60). Then, (9.47) define
θ1 and θ2 for the given ε1 and ε2, while (9.60) defines the available values
of ε1 and ε2.

This is especially clear for the extremely relativistic case when the ve-
locities of the initial and recoil charges are very close to c (β0 ≈ 1, β ≈ 1).
Instead of (9.47) one gets

cos θ1 =
(ε1 + ε2)2 + ε2

1n
2
1 − ε2

2n
2
2

2(ε1 + ε2)ε1n1
,

cos θ2 =
(ε1 + ε2)2 − ε2

1n
2
1 + ε2

2n
2
2

2(ε1 + ε2)ε2n2
. (9.61)

The inequality (9.48) reduces to

1 − n1

n2 − 1
ε1 < ε2 <

n1 + 1
n2 − 1

ε1

for n2 > 1 > n1 and to

n1 − 1
n2 + 1

ε1 < ε2 <
n1 + 1
n2 − 1

ε1 (9.62)

for n2 > n1 > 1.
For the extremely relativistic charges moving in the hypothetical non-

dispersive medium (n > 1) these equations are simplified

cos θ1 =
(ε1 + ε2)2 + n2(ε21 − ε22)

2(ε1 + ε2)ε1n
, cos θ2 =

(ε1 + ε2)2 − n2(ε21 − ε2
2)

2(ε1 + ε2)ε2n
,

n − 1
n + 1

ε1 < ε2 <
n + 1
n − 1

ε1.

It should be mentioned on the case θ = π corresponding to a recoil charge
moving in the backward direction. The photon emission angles and the
available photon frequencies are obtained from (9.47) and (9.48) by replac-
ing (βγ → −βγ) in them. It is seen that at least one of photons should
have high energy.
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One of the photons moves along the direction of the initial charge. For
definiteness, let this photon be the second one (θ2 = 0). Then, it follows
from (9.42) that βγ sin θ = n1ε1 sin θ1. Substituting this into (9.40) one
finds cos(φ1 − φ) = −1, φ1 = φ− π, that is, the recoil charge and photon
fly in opposite azimuthal directions. As a result, one gets the following
equations

γ0 = γ + ε1 + ε2, βγ sin θ = n1ε1 sin θ1,

β0γ0 = ε2n2 + ε1n1 cos θ1 + βγ cos θ.

From this one finds easily θ1 and θ:

cos θ =
(γ0β0 − ε2n2)2 + γ2β2 − ε2

1n
2
1

2γβ(γ0β0 − ε2n2)
,

cos θ1 =
(γ0β0 − ε2n2)2 − γ2β2 + ε2

1n
2
1

2ε1n1(γ0β0 − ε2n2)
. (9.63)

The conditions that r.h.s. of these equations be smaller than 1 and greater
than -1, give the following inequality

|γ0β0 − ε1n1 − ε2n2| < βγ < |γ0β0 + ε1n1 − ε2n2|. (9.64)

These equations are useful when one is able to measure only the photons
energies. In fact, substituting γβ from (9.43) into (9.63) one gets the po-
lar angles of recoil charge and that of the first photon. Making the same
substitution in (9.64), one finds the set of available ε1 and ε2:

|γ0β0− ε1n1− ε2n2| < [(γ0− ε1− ε2)2−1]1/2 < |γ0β0 + ε1n1− ε2n2|. (9.65)

We do not further elaborate Eq.(9.65) by presenting it in a manifest form
similar as it was done for (9.48).

The measurement procedure reduces to the following one. Choose the
photon energies ε1 and ε2. Check, whether they satisfy (9.65). Set the pho-
ton counters at the initial charge motion direction and at the angle θ1

defined in (9.63). Since the kinematical conditions define uniquely θ1 (sim-
ilarly to the one-photon radiation), the corresponding radiation intensity
will have a sharp maximum at this angle for the photons with energy ε1. The
counters tuned into the coincidence, will certainly detect photons arising
from the two-photon Cherenkov effect.

It should be mentioned on the case θ2 = π when one of photons (say, 2)
moves in the backward direction. The emission angles of the recoil charge
and another photon, and the available β, ε1 and ε2 are obtained from (9.63)-
(9.5) by replacing (n2ε2 → −n2ε2) in them.
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9.3.3. BACK TO THE GENERAL TWO-PHOTON CHERENKOV EFFECT

The situation is more complicated for the general two-photon Cherenkov
radiation described by Eqs. (9.39)-(9.42). It is easy to check that only one
of inequalities (9.42) is independent. It is convenient to choose the first of
them rewriting it in the form

(n1ε1 sin θ1−n2ε2 sin θ2)2 ≤ β2γ2 sin2 θ ≤ (n1ε1 sin θ1+n2ε2 sin θ2)2. (9.66)

This inequality is satisfied trivially for particular cases θ = 0 and θ1 = 0.
considered above. However, there are other solutions of (9.66).

Another particular case
To find this case we substitute βγ sin θ from (9.43) to (9.66) thus obtaining
the following inequality

cos θ
(1)
2 < cos θ2 < cos θ

(2)
2 , (9.67)

where
cos θ

(1)
2 = A − R, cos θ

(2)
2 = A + R, (9.68)

A =
c1

2n2ε2

β0γ0 − ε1n1 cos θ1

Z2
,

R =
β0γ0ε

2
1n

2
1 sin θ1

ε2n2Z2
[(cos θ1 − cos θ

(1)
1 )(cos θ

(2)
1 − cos θ1)]1/2,

cos θ
(1)
1 =

ε21n
2
1 + β2

0γ2
0 − (ε2n2 + βγ)2

2β0γ0ε1n1
,

cos θ
(2)
1 =

ε21n
2
1 + β2

0γ2
0 − (ε2n2 − βγ)2

2β0γ0ε1n1
, (9.69)

c1 = ε2
1n

2
1 + ε2

2n
2
2 + (ε1 + ε2)(2γ0 − ε1 − ε2) − 2β0γ0ε1n1 cos θ1,

Z2 = ε2
1n

2
1 + β2

0γ2
0 − 2β0γ0ε1n1 cos θ1.

We see that available values of θ1 are in the interval cos θ
(1)
1 < cos θ1 <

cos θ
(2)
1 . The inequality (9.67) becomes an equality when R = 0. Aside from

the trivial case sin θ1 = 0 considered above, R vanishes for cos θ1 = cos θ
(1)
1

or cos θ1 = cos θ
(2)
1 . The cos θ

(i)
2 corresponding to cos θ

(i)
1 are given by

cos θ
(1)
2 =

β2
0γ2

0 − ε2
1n

2
1 + (ε2n2 + βγ)2

2β0γ0(ε2n2 + βγ)
,

cos θ
(2)
2 =

β2
0γ2

0 − ε2
1n

2
1 + (ε2n2 − βγ)2

2β0γ0(ε2n2 − βγ)
. (9.70)
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Obviously, the r.h.s. of (9.69) and (9.70) should be smaller than 1 and
greater than -1. This defines the interval of ε1 and ε2 for which the solution
discussed exists.

The polar angle of the recoil charge is found from the relation

βγ cos θi = β0γ0 − ε1n1 cos θ
(i)
1 − ε2n2 cos θ

(i)
2 , (9.71)

where cos θ
(i)
1 and cos θ

(i)
2 are the same as in (9.69) and (9.70).

In the relativistic limit (ε1 � γ0, ε2 � γ0) (9.69) and (9.70) go into

cos θ
(1)
1 =

ε1 + ε2 − ε2n2

ε1n1
, cos θ

(1)
2 = 1,

cos θ
(2)
1 =

ε1 + ε2 + ε2n2

ε1n1
, cos θ

(2)
2 = −1.

The first and second lines of these equations coincide with the relativistic
limits of θ2 = 0 and θ2 = π cases considered at the end of section (9.3.2).

Relativistic limit
In the relativistic limit, (9.66) reduces to inequalities

ε1 + ε2 ≤ n1ε1 cos θ1 + n2ε2 cos θ2

ε1 + ε2 ≥ n1ε1 cos θ1 + n2ε2 cos θ2,

which are compatible only if

ε1(n1 cos θ1 − 1) + ε2(n2 cos θ2 − 1) = 0. (9.72)

This equation has no solutions if both n1 and n2 are smaller than 1. We
extract cos θ2:

cos θ2 =
1
n2

+
ε1(1 − n1 cos θ1)

n2ε2
. (9.73)

For definiteness we choose n2 > n1 and n2 > 1. The right hand side of this
equation should be smaller than 1 and greater than -1. This leads to the
following inequality for cos θ1:

1
n1

− ε2(n2 − 1)
ε1n1

≤ cos θ1 ≤ 1
n1

+
ε2(n2 + 1)

ε1n1
.

It is convenient to rewrite this equation in a manifest form.

Let n2 > n1 > 1.
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Then, available θ1 lie in the following intervals

−1 < cos θ1 < 1 for ε2 > ε1
1 + n1

n2 − 1
,

1
n1

− ε2(n2 − 1)
ε1n1

< cos θ1 < 1 for ε1
n1 − 1
n2 + 1

< ε2 < ε1
n1 + 1
n2 − 1

and

1
n1

− ε2(n2 − 1)
ε1n1

≤ cos θ1 ≤ 1
n1

+
ε2(n2 + 1)

ε1n1
for 0 < ε2 < ε1

n1 − 1
n2 + 1

.

Let n2 > 1, n1 < 1.
Then, available values of θ1 belong to the intervals

−1 < cos θ1 < 1 for ε2 > ε1
1 + n1

n2 − 1
,

and

1
n1

− ε2(n2 − 1)
ε1n1

< cos θ1 < 1 for ε1
1 − n1

n2 − 1
< ε2 < ε1

n1 + 1
n2 − 1

.

It follows from these equations that there is a continuum of pairs θ1,θ2 con-
nected by (9.72). This means that in a general relativistic case, rather broad
distributions of radiation intensities should be observed. The kinematical
consideration is not sufficient now and concrete calculations are needed.

In the specific case θ = 0, cos θ1 and cos θ2 also satisfy (9.72) but their
values are fixed by (9.47).

9.3.4. RELATION TO THE CLASSICAL CHERENKOV EFFECT

We discuss now how the classical electromagnetic field strengths (which
are the solutions of the Maxwell equations with classical currents in their
r.h.s.) to the quantum field strengths operators. In quantum electrodynam-
ics [35, 36] they are defined as eigenvalues of the quantum field strengths
operators when they act on the so-called coherent states. The latter can be
presented as an infinite sum over states with a fixed photon numbers. The
coefficients at these states are related to the Fourier components of the
classical currents. Therefore, classical solutions of the Maxwell equations
involve contributions from states with arbitrary photon numbers. Afore-
said is valid only for the current flowing in vacuum. If one suggests that the
same reasoning can be applied to the charge motion in medium, the clas-
sical formulae describing Cherenkov radiation contain contributions from
the states with arbitrary photon numbers.
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9.4. Discussion and Conclusion on the Two-Photon Cherenkov
Effect

Using the analogy with the Doppler effect for the scattering of light by a
charge moving in medium, Frank [4, 37] obtained the following condition
for the emission of two photons:

ε1(βn1 cos θ1 − 1) + ε2(βn2 cos θ2 − 1) = 0, (9.74)

where β is the initial charge velocity. In the relativistic limit (β ≈ 1), (9.74)
coincides with equation (9.72) following from the relativistic kinematics.
However, for arbitrary β, (9.74) is not compatible with exact kinematical
inequalities (9.66) and (9.67) for the two-photon emission and, therefore,
the above analogy with the Doppler effect is not at least complete.

It turns out that highly relativistic charges are not convenient for the
observation of the two-photon Cherenkov effect. As we have seen, in this
case the recoil charge flies in the almost forward direction and it will be
rather difficult to discriminate it from the recoil charge moving exactly
in the forward direction (only for this particular kinematics the photon
emission angles θ1 and θ2 are fixed (see (9.47)). It is desirable to choose
the energy of the initial charge only slightly above the summary energy of
two photons. Certainly, kinematics itself cannot tell us how frequently the
recoil charge or one of the photons moves exactly in the forward direction.
For this, concrete calculations are needed.

In general, to each angle θ1 there corresponds the interval of θ2 defined
by (9.66). Only for special cases:

1) when the recoil charge moves in the same (or in opposite) direction
as the initial charge; 2) when one of the photons moves along (or against)
the direction of the initial charge; 3) for the orientations of the photons and
recoil charge defined by (9.69)- (9.71) the directions of the recoil charge and
photons are uniquely defined similarly to the single-photon Cherenkov ef-
fect. The corresponding radiation intensities should have a sharp maximum
for such orientations.

This makes easier the experimental search for the 2-photon Cherenkov
effect.

The content of this paper is partly grounded on Refs. [38] and [39].
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