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Preface

This is the second of two volumes that showcase young scientists who
are continuing the outstanding tradition of Russian mathematics in their
home country. There remain numerous strong research groups, partic-
ularly in Moscow and St. Petersburg, despite the familiar difficulties:
academic salaries in Russia remain low, many leading figures have de-
parted and there are plentiful opportunities for employment in university
positions abroad or in sectors in Russia that offer a living wage. It is
hoped that the articles in this book give a picture of the interests and
achievements of mathematicians that participate in some of the active
seminars in the country. Seven have something of the character of a
survey, but also contain many original results and give extensive bibli-
ographies; the eighth is a revised and expanded version of a 2002 research
article.

The first of the two volumes (LMS Lecture Notes 338) was entitled
Surveys in Geomety and Number Theory; this one is mainly on com-
binatorial and algebraic geometry and topology. Both volumes contain
papers based on courses of lectures given at British universities by the
authors under the ‘Young Russian Mathematicians’ scheme, which the
London Mathematical Society set up to help such mathematicians visit
the UK and to provide them with financial support.

In the nineties sheer subsistence was difficult for Russian academics.
Over the last five years things have improved, and the salaries of uni-
versity employees, though not generous, are closer to sufficing for the
necessities of life. It still remains difficult for young scientists to get
established in a career, and two of the contributors to this volume have
since chosen other paths, one in the mathematical diaspora and one in
industry.

Nicholas Young
Department of Pure Mathematics
Leeds University

Yemon Choi
Department of Mathematics
University of Manitoba.

vii






Rank and determinant functions for matrices
OVer Semirings

Alexander E. Guterman

Introduction

The difference between semirings and rings is the lack of additive in-
verses in semirings. The most common examples of semirings which are
not rings are the non-negative integers Z*, the non-negative rationals
Q™ and the non-negative reals R* with usual addition and multiplica-
tion. There are classical examples of non-numerical semirings as well.
One of the first examples appeared in the work of Dedekind [29] in con-
nection with the algebra of ideals of a commutative ring (one can add
and multiply ideals but it is not possible to subtract them). Later Van-
diver [62] proposed the class of semirings as the best class of algebraic
structures which includes both rings and bounded distributive lattices.
Boolean algebras, max-algebras, tropical semirings and fuzzy scalars are
other important examples of semirings. See the monographs [37, 38, 44]
for more details.

During the last few decades, matrices with entries from various semi-
rings have attracted the attention of many researchers working both
in theoretical and applied mathematics. It should be emphasized that
the majority of examples of semirings arise in various applications of
algebra. To illustrate an application of semirings, we present a situation
that arises constantly in parallel computations. To make this situation
more apparent, we give its ‘real life’ analogue. Let us consider k sea-
ports. A ship with certain goods arrives at the i-th port at the moment
x;, 1 =1,..., k. Also there are [ airports with a airplane in each airport.
Each airplane has to depart at the time b;, 7 = 1,...,l. All goods are
delivered by trains from the sea-ports to the airports. Let ¢; ; denote
the travel time from the i-th port to the j-th airport. The problem is to
find x;, i = 1,...,k, (or certain relations between them) in such a way
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that all goods coming on ships will be delivered further by airplanes on
the same day and in optimal time, if b;, j = 1,...,[, (or certain relations
between them) are known.

This problem is not linear in its original formulation since maximum is
not a linear function. However, it can be formulated as a linear problem
using the semiring (R, max, +). Namely, given a I X k matrix T = [t; ;]
and a vector b = [by,. .., bl]t, we need to find a vector x = [z, ... ,xk]t
such that Tx = b (or in some cases Tx < b).

Different analogues of classical matrix invariants in the semiring con-
text have been investigated and applied actively. In the present paper we
survey several possible definitions of ranks and determinants for matrices
over semirings. The relationships between these notions are discussed,
and the arithmetic behaviour of determinant and rank functions for ma-
trices over semirings is investigated. In particular, we provide sharp
estimates for ranks of sums and products of matrices in the context of
semirings. Semiring analogues of the Dieudonné and Frobenius theorems
on linear transformations preserving matrix invariants are given.

Other applications of semirings include: automata theory [25, 33]; opt-
imization theory [6, 22, 26, 48, 60]; optimal control [3, 23]; discrete event
systems [4]; operational research [3]; ergodic control [1, 2]; mathematical
economics [1]; the assignment problem [21, 22]; graph theory [22, 40];
and algebraic geometry [31, 53, 63]. For a detailed index of applications
see [38, pp. 355-356].

1 Preliminaries

Definition 1.1. A semiring (S,+,-) is a set S with two binary opera-
tions, addition (+) and multiplication (-), such that:

e Sisan Abelian monoid under addition (the identity element is denoted
by 0);

e S is a semigroup under multiplication (the identity element, if it exists,
is denoted by 1);

e multiplication is distributive over addition on both sides;

e s0O=0s=0forallseS.

In this paper we assume that there exists a multiplicative identity 1in S
which is different from 0.

Definition 1.2. A semiring S is called commutative if the multiplication
in § is commutative.
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Definition 1.3. A semiring S is called antinegative (or zero-sum-free)
if a4+ b =0 implies that a =b =10

In other words the zero element is the only element with an additive
inverse.

Definition 1.4. We say that a semiring S does not have zero divisors
if from ab = 0 in S it follows that either a = 0 or b = 0.

Definition 1.5. A semiring S is called Boolean if S is isomorphic to a
certain set of subsets of a given set M where the sum of two subsets is
their union and the product is their intersection. The zero element is
the empty set and the identity element is the whole set M.

It can be easily seen that a Boolean semiring is commutative and
antinegative. If a Boolean semiring S consists of only two subsets of
M, namely the empty subset and M, then it is called a binary Boolean
semiring (or {0, 1}-semiring) and is denoted by B.

Definition 1.6. A semiring S is called a chain if S is a totally or-
dered set with universal lower and upper bounds, where addition and
multiplication are defined by a + b = max{a,b} and a - b = min{a, b}.

Note that that any chain semiring S can be represented as a Boolean
algebra of subsets of S by sending each element € S to the associated
negative cone {y € Sly < z}.

2 Semimodules, bases and dimension

Semimodules over semirings are analogues of vector spaces over fields
and modules over rings. The precise definition is as follows.

Definition 2.1. Given a semiring S, we define a left semimodule U
over S to be an Abelian monoid with neutral element 0, equipped with
a function

SxU—-U , (s,u)— su

called scalar multiplication such that for all u and vin U and r,s € S

(i) (sr)u = s(ru),
(ii)) (s +r)u = su+ ru,
(iii) s(u+v)=su+ sv,
(iv) 1u=u,

(v) s0=0=0u.
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Right semimodules and bi-semimodules can be defined in a similar
way.

Definition 2.2. Let U be a semimodule and let P C U be a nonempty
subset. An element u in U is called a left (respectively, right) linear
combination of elements from P if there exists k € N, s1,...,8;, € S,
ui,...,u; € P such that u = Zle s;u; (respectively, u = Zle u;8;).

Definition 2.3. The left (respectively, right) linear span (P)s of the set
P is the set of all left (respectively, right) linear combinations of elements
from P with coefficients from S. We say that the set P generates a subset
VCUiUtV C(P)s.

Note that all linear combinations that we consider are finite and
nonempty by Definition 2.2.

Definition 2.4 ([19, 27, 55]). A subset P of elements in a semimodule U
over a semiring S is called left (respectively, right) linearly independent
if there is no element in P that can be expressed as a left (respectively,
right) linear combination of other elements of P with coefficients in S.
The subset P is called linearly dependent if it is not linearly independent.

Note that in contrast with vector spaces over fields, there are several
ways to define the notion of independence for semimodules. For example,
in [1, 36] the following definition is used.

Definition 2.5. A system of elements, P, in a semimodule U is left
(respectively, right) linearly dependent if there are two left (respectively,
right) linear combinations of elements of P which are equal to each other.
A system is called linearly independent if it is not linearly dependent.

Definition 2.5 is stronger than Definition 2.4. That is, any system
of elements which is independent in the sense of Definition 2.5 is also
independent in the sense of Definition 2.4. The converse is not always
true, as is shown by the following example.

Example 2.6. The system {3,5} of 1-vectors over Z is linearly indepen-
dent in the sense of Definition 2.4 (for any «, 8 € Z neither 3o = 5 nor
508 = 3). However, it is linearly dependent in the sense of Definition 2.5
since 3-5=5"3.

Definition 2.7. Let U be a semimodule and let B be a collection of
elements of U which are left (respectively, right) linearly independent
in the sense of Definition 2.4. The set B is called a left (respectively,



Rank and determinant functions for matrices over semirings 5

right) basis of the semimodule U if the left (respectively, right) linear
span of B is equal to U. The left (respectively, right) dimension of U
is the minimal number of elements in any left (respectively, right) basis
of U.

From now on we will consider only left linear independence (in the
sense of Definition 2.4) and left dimension. However, all our considera-
tions will be valid for right linear independence and right dimension as
well.

3 Rank functions

The theory of matrices over semirings has been an object of intense study
over the last few decades: see for example the monographs [37, 47] and
the references therein. We first introduce some notation.

Let M, »(S) denote the set of m x n matrices with entries in the
semiring S: we write S™ for M,, 1(S) and M,,(S) for M,, ,,(S). The set
M,,(S) is a semiring under the standard matrix addition and multipli-
cation.

Let I,, denote the n x n identity matrix, let J,, , denote the m x n
matrix with all entries equal to 1, and let O, ,, be the m x n zero matrix.
We omit the subscripts if the size is clear from the context, writing I, J
and O respectively.

The matrix E; ; denotes the matrix with (7, j) entry equal to 1 and the
other entries equal to zero. C; = ZT:I E; ; is the ith column matrix,
R; = > | E; ; is the jth row matrix. We denote by diag(a1,...,a,)
the diagonal matrix Y ., a;E;; € My(S) with a1,...,a, € S on the
main diagonal.

Finally. for A € My, ,(S) let A' € M, (S) be the transposed
matrix of A.

Definition 3.1. For A,B € M, ,(S), we say that A dominates B,
A > B, if and only if b; ; # 0 implies that a; ; # 0.

Definition 3.2. Let A = [a;;], B = [b;;] € My n(S) be such that
A > B. Then we denote by A\B the matrix C' = [¢; ;] € My, »(S) such

that
0 ifb; #0
Cij = .
a;; otherwise.

Many authors have investigated various rank functions for matrices
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over semirings and their properties, see [15, 16, 17, 42, 59, 64]. It is
well known that the concept of matrix rank over a field has a geometric
interpretation as the dimension of the image space of the corresponding
linear transformation. The situation is more complicated over semi-
rings; this geometric approach leads to some surprising properties of the
corresponding rank function. For example, it may occur that the rank of
a submatrix is greater than the rank of a matrix. The reason is that the
dimension of a subsemimodule may exceed the dimension of the whole
semimodule.

Example 3.3 ([10]). Let S be an arbitrary antinegative semiring with-
out zero divisors. Consider the semimodule Uy over S generated by the
vectors uy = [0, 1,0]*, uz = [0,0,1]*, uz = [1,0,1]%, ugy = [1,1,0]*. Then
dimUy = 4, but Uy is a proper subsemimodule of the 3-dimensional
S-semimodule S3.

Indeed, it is easy to see that none of uq,us,us, us is a linear comb-
ination of the others. The reason why Uy has no bases of fewer than 4
elements is that [1,0,0]* cannot be expressed as a linear combination of
vectors from Uy due to antinegativity.

We may easily construct the following matrix example based on Ex-
ample 3.3.

Example 3.4. Let S be any antinegative semiring without zero divisors.
Consider

Y =

o O =
o~ o
_ o O
—_ O =
O~ =

and its proper submatrix
00 11
X=1]10 0 1
01 10

The image of the linear operator corresponding to Y is the whole space
S3, so its dimension is 3. However, the dimension of the image of the
linear operator corresponding to X is 4, by Example 3.3.

3.1 Definitions

It turns out that there are many essentially different rank functions for
matrices over semirings. The geometric approach leads to the following
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definitions based on the notion of linear independence introduced in
Definition 2.4.

Definition 3.5. Let A € M, »,(S). The row rank r(A) is defined to
be the dimension of the linear span of the rows of A. The column rank
c(A) is defined to be the dimension of the linear span of the columns
of A.

It is proved in [17] that r(B) < r(A) if B is obtained by deleting some
columns of A, and correspondingly ¢(B) < ¢(A) if B is obtained by
deleting some rows of A. Example 3.4 shows, however, that in general
the rank of a submatrix can be greater than the rank of a matrix.

Let us consider one of the most important semiring rank functions.

Definition 3.6. A matrix A € M,, ,(S) is of factor rank k if there

exist matrices B € My, 1(S) and C € My, ,(S) with A = BC and k

is the smallest positive integer for which such a factorization exists. By

definition the only matrix with factor rank zero is the zero matrix O.
The factor rank of A is denoted by rank(A).

Note that the factor rank of A is equal to the minimum number of
matrices of factor rank 1 with sum equal to A (see the proof in [9, 24]).
Also, for any submatrix B of A we have rank(B) < rank(A), see [17].

The notion of factor rank is important in various applications. It was
used in [45] for demographic investigations, in [65] for combinatorial
optimization problems, and in statistics (see [24] for details).

Definition 3.7. Let & be a subsemiring of a certain field or division
ring. For a matrix A € M,, »,(S) we define p(A) to be the dimension of
the linear span of rows of A over this field or division ring.

It turns out that the values of all aforementioned rank functions may
be different for a matrix over a semiring.

Example 3.8 ([55]). Let

b

I
CESE=E=N"
w o oo w
OO OO
O R NI O

m

“01

o

=

N

+

N

Then p(A) = 3,rank(A4) = 4,7(A) = 5,¢(A) = 6.
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Note that the basis of a linear span of a set of elements need not lie in
this set, see Examples 3.19 and 3.20 below. Therefore we consider also
the following definitions of row and column ranks.

Definition 3.9. Let A € M,,, ,(S). The spanning row rank sr(A) is
the minimum number of rows that span all rows of A, and the spanning
column rank sc(A) is the minimum number of columns that span all
columns of A.

In addition, it appears that over semirings there is no correspondence
between minimal spanning and maximal linearly independent subsets.
Thus we obtain another pair of row and column ranks.

Definition 3.10. A matrix A € M, ,(S) is said to be of mazimal row
rank k (written as mr(A) = k) if it has k linearly independent rows and
any (k + 1) rows are linearly dependent.

Similarly, A is said to be of maximal column rank k (written as
me(A) = k) if it has k linearly independent columns and any (k + 1)
columns are linearly dependent.

Clearly, all the rank functions introduced above coincide for matrices
over fields. However, they are essentially different for matrices over semi-
rings. In the following sections we provide some examples to illustrate
this difference and investigate the relationship between these functions.

Now we consider the so-called combinatorial ranks, which are useful in
graph theory, transversal theory and communication networks (see [20,
38, 58] and references therein). Note that these ranks do not coincide
with the usual rank function even if S is a field.

Definition 3.11. A line of a matrix is a row or a column of this matrix.

Definition 3.12. Let A € M, »,(S). The term rank t(A) is defined to
be the minimum number of lines needed to include all nonzero elements
of A.

We shall denote by t.(A4) the minimum number of columns needed to
include all nonzero elements of A and by ¢,(A) the minimum number of
rows needed to include all nonzero elements of A.

Definition 3.13. A generalized diagonal of a matrix A € M,, »(S) is
a set of min{m, n} positions in A such that no row or column contains
two of these positions.

Proposition 3.14 (Konig Theorem, cf. [20, Theorem 1.2.1]). Let S be
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a semiring, A € M, n(S). Then the term rank of A is the mazimum
number of nonzero entries in some generalized diagonal of A.

The term rank can also be characterized in terms of zero submatrices
of maximal size, as follows.

Proposition 3.15 ([54]). Let S be a semiring, A € M, o(S). Then
t(A) = k if and only if there exist positive integers s,r, s+r =n+m—k,
such that a certain permutation of rows and columns of A contains a
submatriz O, s and no permutation of rows and columns of A contains
Opqifp+g>n+m—k.

The following ‘dual’ matrix invariant is also useful.

Definition 3.16. Let A € M, »,(S). The zero-term rank z(A) is the
minimum number of lines needed to include all zero elements of A.

Note that some of the rank functions discussed above, especially the
factor rank, have been rediscovered several times by many researchers
and are known in the literature under different names. It should be also
pointed out that the list of rank functions introduced here is not com-
plete. We have presented here only the most common notions. There
are other natural ways to define rank functions over semirings, see for
example [5, 30, 38, 37], but we plan to discuss these functions and in-
terrelations between them elsewhere.

3.2 Relationships between different rank functions

As was already mentioned, if the semiring S is a field then
p(A) = rank(A) = r(A4) = ¢(A) = sr(A) = sc(A) = mr(A) = mc(A)

for any matrix A € My, »(S). The situation is quite different for mat-
rices over general semirings. The only relations that hold for an arbitrary
semiring are the following inequalities:

Proposition 3.17 ([9]). Let A € My, n(S). Then:

(i) rank(A4) < min{r(A),c(A)};

(ii) r(A) < sr(A) <mr(A) <m and c(A) < sc(A) < me(A) <n;
(iii) rank(A) < ¢(A);
) if S is a subsemiring of a field then p(A) < rank(A).

(iv
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In [15] the authors investigate how the column rank and the factor
rank of matrices over a certain algebraic system depend on this system.
In [17] the authors consider the sets of numbers r such that every A in
M n(S) with ¢(A) = r has rank(A) = r. They find upper bounds of
such sets for different classes of semirings and establish that these upper
bounds depend considerably on the semiring S.

In contrast to the situation with rank functions over fields, row and
column ranks may not coincide even over commutative semirings.

Example 3.18. Let S be any antinegative semiring without zero divi-
sors. We consider the matrix X defined in Example 3.4. It follows from
Example 3.3 and Proposition 3.17(ii) that ¢(X) = sc¢(X) = me(X) =4
whereas 7(X) = sr(X) = mr(X) = 3.

Actually, the maximal column and row ranks may exceed the respec-
tive spanning ranks, and each of these in turn may exceed the column
and row rank, as the following examples show.

Example 3.19 ([59]). Consider A = [3—/7,V7—2] € M12(Z[V7]T).
We have sc(A) = 2 since 3 — /7 # a(v/7—2) and a(3 — V7) # V7 -2
in Z[v/7]*. However, c¢(A) = 1 since 1 = (3 — v/7) + (v/7 — 2) generates
the column space of A.

Example 3.20 ([9]). Consider A = [4—+/7,V/7—2,1] € M1 3(Z[V7]T).
We have sc(A) = 1, since 1 spans all columns of A. However, in similar
fashion to the previous example, one can see that mc(A) = 2.

All above examples are given for matrices over antinegative semirings.
Below we shall present examples showing that row and column ranks
may be different for matrices over commutative rings as well.

The following example shows that spanning column rank may be
greater than column rank and can even be greater than maximal row
rank for matrices over several commutative rings.

2 3
A =
-
be considered as a matrix with the entries either from the ring Z of

integers, or from the ring Zg of integers modulo 6. In both cases it is
easy to see that sc(4) = 2 but ¢(A) = mr(A) = 1.

Example 3.21. Let

The following example shows that maximal column rank may be
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greater than spanning column rank and can be greater than maximal
row rank for matrices over several commutative rings.

Example 3.22. Let

1 2 3
A_[l 9 3]6/\42)3(2).

Then me(A) = 2 but se(A) = mr(A) = 1.
The next example shows that in general max{r(A4),c(A)} £ t(A).

Example 3.23. Let X be the matrix from Example 3.4: then ¢(X) =4
and r(X) =¢(X) = 3.

The inequality min{r(A), c(4)} < ¢(A) does not hold over Z™.

Example 3.24 ([9]). For

A=

~N Ot W
S O L

7
0] € M3’3(Z+)
0

one has r(A) = ¢(4) =3, t(A) = 2.

Remark 3.25. It is straightforward to see that if S = B is a binary
Boolean semiring then z(A) = ¢(J \ A) for any A € M,,, »(S).

3.8 Arithmetic behaviour of rank

The behaviour of the usual rank function p over fields with respect to
matrix multiplication and addition is illustrated by the following classical
inequalities.

e Bounds for the rank of a sum:
| p(A) = p(B) [< p(A+ B) < p(A) + p(B). (3.1)
o Sylvester’s laws:
p(A) + p(B) — n < p(AB) < min{p(4),p(B)}.  (3.2)
e The Frobenius inequality:

p(AB) + p(BC) < p(ABC) + p(B). (3.3)



12 A. E. Guterman

Here A, B, C are compatible matrices with entries from a field.

Following [9], we investigate the behaviour of different rank functions
over semirings with respect to matrix addition and multiplication. It
turns out that arithmetic properties of rank functions over a semiring
depend considerably on the structure of the semiring.

Definition 3.26. We say that an inequality is ezact if there is a substi-
tution of variables such that equality holds. We say that an inequality
involving rank functions and matrix variables is best possible if, for any
given values of these rank functions, one can substitute matrices with
these values of ranks so that equality holds.

The notion of a ‘best possible’ inequality for given rank functions will
become clearer in the examples to follow: see e.g. Theorem 3.32.

Inequalities for the rank of a sum

Let us show that the lower bound in the inequality (3.1) is not valid for
the factor rank over an arbitrary semiring.

Example 3.27 ([9]). Let S be a Boolean semiring. Then
rank(A 4+ B) Z? |rank(A) — rank(B)|.

To be specific, consider

A=K7 =

= = = = = O
e e e =
— R = = O
e =
— R O ) B = =
—_ O = = =
O = R

and B = I7. Then 1 = rank(J7) = rank(A + B), but over any Boolean
semiring rank(K7) < 5 due to the factorization

Ky, =

_ o O O O - =
OO R Rk Pk =k O
— = =m0 O
—_ = O = = OO
O = = O = O =
O = O = O
O = = OO
S O = O =
_ o O O
O = O O =
S O O = =
—_ o O = O
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(see [28] for more details). Thus
| rank(A)—rank(B)| = rank(B)—rank(A4) > 7—5 = 2 > 1 = rank(A+B).
However, the following bounds are true.

Proposition 3.28 ([9]). Let S be an antinegative semiring and let
A, B € Mp, n(S). Then:

(i) rank(A 4+ B) < min{rank(A) + rank(B), m,n};
rank(4) i B=0
(ii) rank(A+ B) > ¢ rank(B) if A=0
1 i A#O0 and B # 0.

These bounds are exact: the upper bound is best possible and the lower
bound is the best possible over Boolean semirings.

Even in the case when S is a subsemiring of R™, the lower bound
in (3.1) is not valid for the factor rank as the following example shows.

Example 3.29 ([9]). Let r,s > 4 and s < n — 4. Let us consider

1 2 3 4 0000
, 11 , oo o0 o0
A=1101 0 2 B=1y1 ¢ 1

00 2 2 010 1

Note that rank(A’) = 4, p(A’) = 3, rank(B’) = p(B’) =1 and

rank(A’ + B') = p(A' + B') = 2.

Let
/
A 0477‘—4 O4,n—7‘
A= Or—4,4 L4 Or—4,n—'r
Om—r,4 Om—r,r—4 Om,—r,n—r
and
!
B O4,1 O4,5-1 O4n—s—a
B=| Os-14 Os-1,1 Us_1 Os—1n—s—4 | »
Om—s—3,4 Om—s—S,l Om—s—37s—1 Om—s—3,n—s—4
where

U, = Z Ei)j and L = Z Ei’j S Mk(S)

1<i<j<k 1<j<i<k
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Then rank(A4) =, p(A) =r — 1, rank(B) = p(B) = s and
rank(A+ B) =|r—s| -1 < |rank(A4) —rank(B) |

if S is a subsemiring of RT. In order to achieve the same result in the
case r = s+ 3, it is necessary to exchange the blocks A’ and B’ in the
matrices A and B.

However, the following is true.
Proposition 3.30 ([9]). Let S CRT, A,B € M, ,(S). Then
rank(A + B) > |p(A) — p(B)|.
This bound is exact and best possible.
The following example shows that an analogue of the upper bound
in (3.1) is not valid for row and column ranks.

Example 3.31. Consider

N

|
O = = O =
—_ 0 = = O
oS O O OO

S|

|
o o o oo
= O O NN
DN NN O N

It is easy to see that
r(A) =r(B) = sr(A) = sr(B) = mr(A) = mr(B) = 2.
However, over Z we have

r(A+B)=r =5=sr(A+ B)=mr(A+ B)

O~ = O
U OY = W N
SN O N

Proposition 3.32 ([9]). Let S be an antinegative semiring. Then for
O # A, B € My, n(S) we have

1<c¢(A+ B),r(A+ B),sr(A+ B),sc(A+ B),mr(A+ B),mc(A + B).

These bounds are exact over any antinegative semiring and best possible
over Boolean semirings.
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Proof. We are going to show that the lower bound is the best possible.
Let S be a Boolean semiring. For each pair (r,s), 0 < r,s < m we
consider the matrices A,., B given by

i=1
and
J\ (Z Ei,iJrl) ifs<m
BS = s—1 -
J\ (Z EZ-,M) +E,, ifs=m.
i=1
Then

c(Ay) =r(Ay) = sr(Ay) = se(Ay) = mr(4,) = me(4,) =,
¢(Bs) = 1(Bs) = sr(Bs) = sc(Bs) = mr(Bs) = me(Bs) = s,

and A, + By = J has row and column ranks equal to 1. Thus, these
bounds are the best possible for matrices with Boolean entries.
The rest of the proof follows directly from the definitions. O

Proposition 3.33 ([9]). Let S be a subsemiring in RY. Then for all
A, B € My, »n(S) we have

¢(A+B), r(A+ B), sr(A+ B),

These bounds are exact and best possible.

Now we turn to the term rank and the zero term rank. The following
inequalities hold:

Proposition 3.34 ([9]). Let S be an arbitrary semiring. For all matri-
ces A, B € My, »(S) we have:

t(A+ B) < min{t(A) + ¢(B),m,n}.
This bound is exact and best possible.

The following example shows that no analogue of the lower bound
in (3.1) can hold for the term rank over arbitrary semirings.

Example 3.35 ([9]). Let A = B = J,,, , over a field of characteristic 2.
Then t(A + B) =t(0) = 0.
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However, for antinegative semirings there is a lower bound which is
even better than the lower bound presented in (3.1). Namely, the foll-
owing is true.

Proposition 3.36 ([9]). Let S be an antinegative semiring. For any
matrices A, B € My, n(S) the following inequality holds:

t(A+ B) > max{t(A),t(B)}.
This bound is exact and the best possible.

Proposition 3.37 ([9]). Let S be an antinegative semiring. For all
A, B € My, o(S), we have

0 < z(A+ B) <min{z(A),z(B)}
These bounds are exact and best possible.

Proof. Both bounds follow directly from the definition of the zero-term
rank function. In order to check that the lower bound is exact and
best possible, for each pair (r,s), 0 < r,s < min{m,n} we consider the
matrices A,., By given by

A =T\ (Z E)
i=1
and
J\ (Z Ei,i-‘,—l) if s < min{m,n}
i=1

s—1
AN (Z Ei7i+1> + E1 if s = minm,n.

i=1

B, =

Then z(A,) = r, 2(Bs) = s by Definition 3.16 and z(4, + Bs) = 0
by antinegativity. Similarly, it can be checked that the upper bound is
exact and best possible. ([l

Sylvester’s inequalities

Firstly, we demonstrate that the analogue of Sylvester’s lower bound (3.2)
does not hold for the factor rank.
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Example 3.38. Let S be a Boolean semiring, let

1 00 -~ 0

1 10 -~ 0
A— |1 0 1

100 -+ 1

and let B = A'. Then rank(A) = rank(B) = n and
rank(AB) =1 # rank(A) 4+ rank(B) —n=n
since AB = J.
However, we can prove the following result.

Proposition 3.39 ([9]). Let S be an antinegative semiring and let A €
Mm,n(s); B S Mn,k(s) Then:

(i) rank(AB) < min{rank(A),rank(B)};
(ii) provided that S has no zero divisors,

0 4f rank(A)+ rank(B) < n,

rank(AB) > { 1 if rank(A) +rank(B) > n.

These bounds are exact, the upper bound s best possible and the lower
bound is best possible over Boolean semirings.

The next example demonstrates that lower bounds for Sylvester’s and
Frobenius’ inequalities (3.2) and (3.3) for factor rank are not valid in the
case S CRT.

Example 3.40 ([9]). Let

01 1 1 110 0
101 1 110 0
A=11 1 ¢ 4| ®™B=15 ¢ 1 1
11 40 00 1 1

Then p(A) = 3, rank(A) = 4, p(B) = rank(B) = 2 and

AB =

NN ==
NN ==
B~ s NN
B~ NN
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so rank(AB) = 1. Thus,

1 =rank(AB) # rank(A) + rank(B) —n=4+2—-4=2
and

6 =4+ 2 = rank(AI) + rank(IB)
£ rank(AIB) +rank(l) =1+4 =5.

However, the following generalization of the lower bound holds.

Proposition 3.41 ([9]). Let S C Rt, A € M, »(S), B € M, 1(S).
Then
0 i p(A) + p(B) <,

rank(AB) > { _
p(A) + p(B) —n if p(A) + p(B) > n

This bound is exact and best possible.

Proposition 3.42 ([9]). Let S be an antinegative semiring without zero
divisors. For O # A € My, o(S) and O # B € M,, (S) such that
c(A) + r(B) > n, we have

1 < ¢(AB),r(AB), sr(AB), sc(AB), mr(AB), mc(AB) . (3.4)

These bounds are exact over any antinegative semiring without zero di-
visors and best possible over Boolean semirings.

Proof. For O # A € My n(S), O # B € M, 1(S) the matrix A has at
least c(A) (respectively, sc(A), me(A)) nonzero columns while B has at
least r(B) (respectively, sr(B), mr(B)) nonzero rows.

Thus, if ¢(A) + r(B) > n, then AB # O. Hence (3.4) is established.
In order to check the exactness we may take A = B = E ;.

Let S be a Boolean semiring. We consider the matrices

A, = ZEH + ZEm, Bs = ZEm' + ZEl,i ;
i—1 i=1 i=1 i—1

for each pair (r,s) such that 1 < r < min{m,n}, 1 < s < min{k,n}.
Then
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by definition; and since A, Bs = J,
r(A,Bs) = sr(A,.Bs) = mr(A.Bs) =
¢(A;Bs) = sc(A,Bs) = mc(A,Bs) =
as required. O

Note that the condition ¢(A) + r(B) > n is necessary because for
A=1,®0 and B=0 @ I; we have AB = O while k+ j <n.

Proposition 3.43 ([9]). Let S be a subsemiring in RY. Then for A €
Mm,n(s); B e MnJg(S) we have
)

¢(AB), sc(AB), mc(AB),

> - .
r(AB), sr(AB), mr(AB) = %% {0, p(A) 4 p(B) — n}
These bounds are exact and best possible.

The following example, given in [59] for the spanning column rank,
shows that the analogue for the upper bound in (3.2) does not work for
row and column ranks.

Example 3.44 ([59]). Let A= [3,7,7] € M1 3(Z") and let

1 1 1

B=1{0 11

0 0 1

Then c¢(A) = sc(A) = me(A) = 2, ¢(B) = s¢(B) = me(B) = 3 and
¢(AB) = ¢(3,10,17) = sc(AB) = mc(AB)

However, the following upper bounds are proven in [59].

Proposition 3.45 ([59]). Let S be an antinegative semiring. For A €
M n(S), B € M, 1(S) we have

¢(AB) < ¢(B), sc(AB) < sc(B), mc(AB) < me(B),
r(AB) <r(A), sr(AB) <sr(4), mr(AB) < mr(A).

These bounds are exact and best possible.

Now we pass to the term rank.

Example 3.46. The inequality t(AB) < min(¢(A),¢(B)) does not hold.
For instance, take A = C1, B = Ry: then t(AB) =t(J,) =n > 1.

The analogue of the lower bound in (3.2) does not hold for matrices
over arbitrary semirings.
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Example 3.47. Let us consider A = B = J,, over a field whose charac-
teristic divides n. Then t(AB) = t(nJ,) = 0.

However, the following inequalities hold.

Proposition 3.48 ([9]). Let S be an antinegative semiring. Then for
any A € Mo (S), B € My, 1(S), the inequalities

HAB) < min(t, (), t.(B))

and
0 if t(A)+t(B)<n,
t(AB)Z{ t(A)+t(B)—n if t(A)+t(B)>n

hold. These bounds are exact and best possible.

Proposition 3.49 ([9]). Let S be an antinegative semiring. For A €
M n(S), B € M, 1(S) we have

0 < z(AB) < min{z(A4) + 2(B),k,m} .

These bounds are exact and best possible for n > 2.

Frobenius’ inequality
The triple (4, I, A') provides a counterexample in the Boolean case to
Frobenius’ inequality (3.3) for the factor rank, where A is the same
matrix as in Example 3.38. Also, Example 3.40 shows that a direct gen-
eralization of (3.3) does not work for the non-negative reals. However,
we have the following result.

Proposition 3.50 ([9]). Let S C RY, A € M, (S), B € M, (S),
and C € My i(S). Then

p(AB) + p(BC) < rank(ABC) + rank(B).
This bound is exact and best possible.

Example 3.51. Let A and B be the same matrices as in the second part
of the proof of Proposition 3.42, where r and s are such that r+s > n+1.
Then the triple (A, I, B) is a counterexample to the Frobenius inequal-
ities for the column (respectively, row) ranks.

Example 3.52 (]9]). For an arbitrary semiring, the triple (C4, Ry, O)
is a counterexample to the term rank version of the Frobenius ineq-
uality (3.3), since

t(C1R1) + t(R10) =n > t(C1R10) + t(Ry) = 1.
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However, if S is a subsemiring of R then the following trivial version
holds:

p(AB) + p(BC) < t(ABC) + t(B)

Example 3.53. The triple (C1, I, R1) is a counterexample to the zero-
term rank version of the Frobenius inequality, since

z2(C1) + z(R1) = 2n > z(C1Ry) + z(I) = n.

4 The bideterminant function

The development of linear algebra over semirings certainly requires such
an important matrix invariant as the determinant function, see [38]. It
turns out that the determinant cannot be defined in a classical way even
for matrices over commutative semirings without zero divisors. The
main problem is connected with the fact that if a semiring is not a
ring, then there are elements which do not possess additive inverses.
The determinant function for matrices over commutative semirings may
be naturally replaced by the so-called bideterminant (see Definition 4.1
below) which has been known since 1972; see also [49] and [36, 38, 41, 57].

It should be pointed out that the bideterminant is useful for solving
various pure algebraic problems (see [57]) as well as in applications.
For example, it can be used to solve systems of linear equations, see
[36, 39], and can also be applied to certain problems in graph theory,
see [49]. Another application is the problem of verifying whether or not
a given matrix is sign-nonsingular, see [35]. The authors of [35] showed
that this problem is polynomially equivalent to the problem of deciding
if the digraph of the matrix contains a cycle of an even length. The
proof is based on the properties of max-algebraic determinants. See the
monographs [38, 39, 44] for a more detailed exposition of applications of
the bideterminant function over semirings.

Definition 4.1 ([38, Chapter 19]). Let S be a commutative semi-
ring. The bideterminant of a matrix A = [a; ;] € M,(S) is the pair
(IAII*, 1A]7), defined by

||A||+ = Z A1,6(1) """ Gn,o(n)s ||A||_ = Z A1,6(1) """ Gn,o(n)s
ogEA, UESn\An
where S,, is the symmetric group on the set {1,...,n} and A, denotes

the subgroup of even permutations.
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The bideterminant function possesses some natural properties: it is
invariant under matrix transpose, and for any scalar « € S

(loeAlI ™, oAl ™) = (@[ AT, o™ AlI7).

However, some basic properties of the determinant are no longer valid for
the bideterminant. For example, if A is invertible then ||A||™ # | A|~,
but the converse is not always true.

Example 4.2 ([36]). Let us consider A = Ey 1 +2F; 3+3E21+4F32 €
M5(S), where § = (Q1, max, -) is the set of non-negative rationals with
addition defined by a + b = max{a, b} and with the standard multipl-
ication. Then (|| AT, ||A]|”) = (4,6) but A is not invertible.

The bideterminant function is not multiplicative in general. However,
the following weaker version of multiplicativity still holds.

Proposition 4.3 ([56]). For all A, B € M, (S)
[AB|*+[A[ITIBI~+[AITIBIT = |AB||~ +[| A BII* + [l Al = 1B]|
More generally, for Ay,..., As € M, (S), we have

||A1A2...AS||+ + Z ||A1||t1||A2Ht2...||AS ts
t1,...,t5:i:t1---t‘s:7
=[l A1 Az AT+ > 1AL [ Az - [ A

t1yeeyts=F ity ts=+

Now we will concentrate on recognizing various matrix properties in
terms of the bideterminant.

Let R be an associative ring. A matrix A € M,, ,(R) is called right
singular if there exists a nonzero element x € R™ such that Ax = 0.
Similarly, A is called left singular if there exists a nonzero element y €
R™ such that y*A = 0.

It is proved in [19, Theorem 9.1] that the notions of right and left
singularity coincide for square matrices over commutative rings.

Moreover, a square matrix A is singular if and only if det A is a zero
divisor in R, where det A is the usual determinant of a square matrix
over a commutative ring.

The notion of singularity for matrices over semirings can be defined
in a similar way.

Definition 4.4. A matrix A € My, (S) is S-right singular if Ax =0
for some nonzero x € 8", and called S-left singular if y* A = 0! for some
nonzeroy € S™.
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We say A is S-singular if A is either S-left singular or S-right singular.

The following example shows that there are S-left singular matrices
which are not S-right singular, and vice versa, even over antinegative
commutative semirings without zero divisors.

Example 4.5 ([13]). Let

A:[(l) ﬂ , B:E g]eMQ(zﬂ.

We have that Ax = 0 forces x = 0 since Z7 is antinega‘give, Whi%fe
[1,0]A = [0,0]. Similarly y’B = 0" forces y = 0 while B [0,1] = [0,0] .

Definition 4.6. A matrix A € M,, »(S) is S-nonsingular if A is neither
S-left singular nor S-right singular.

Lemma 4.7 ([13, Lemma 3.8]). Let S be an antinegative semiring with-
out zero divisors. Then the following conditions are equivalent for any
matriz A € My, n(S):

(i) A is S-singular,
(ii) A has a zero row or a zero column.

Note that if A is an S-singular square matrix over the commutative
semiring S then (||A||T,||A]~) = (0,0). However, the following example
shows that there are S-nonsingular matrices with bideterminant equal
to (0,0).

Example 4.8. Over any commutative antinegative semiring,

00 1" 00 1
11 0| =0o=11 1 o0
00 1 00 1

If a semiring S is a subsemiring of an associative ring R without zero
divisors, we can introduce another version of singularity as follows.

Definition 4.9. We say that a matrix A € M, ,(S) is R-right singular
if Ax = 0 for some nonzero x € R", and R-left singular if y*A = 0 for
some nonzeroy € R™.

Clearly, R-right (respectively, left) singularity follows from S-right
(respectively, left) singularity. However, the following example shows
that there are S-nonsingular matrices which are R-singular.
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Example 4.10. For any n the matrix J,, = Z?Fl E;,; € My(Z4) is

Z-left and Z-right singular, but Z;-nonsingular.
Definition 4.11. We say that a matrix A € M, ,(S) is R-singular if
it is either R-left singular or R-right singular.

A matrix A € M, »(S) is R-nonsingular if it is not R-singular.

Note that all non-square matrices are R-singular.
If, in addition, we assume that R is a commutative ring, then the
determinant

det(A) = Y (=1)7a1,00) - Anopm = 1417 = A7 (A € Mn(S))

oES,

is well-defined in R, and the following analogue of [19, Theorem 9.1] can
be obtained.

Lemma 4.12 ([13, Lemma 5.3]). If R is an associative commutative
ring without zero divisors then the following conditions are equivalent
for a matriz A € M,(S):

(i) A is R-right singular;
(ii) A is R-left singular;
(ifi) det A =0.

To conclude this section we mention some results on invertibility of
matrices over semirings.

Definition 4.13. Let G be a multiplicative algebraic system with iden-
tity element 1g. An element g € G is left invertible if there is an element
f € G such that fg = 1g, right invertible if there is an element h € G
such that gh = 1g, and invertible if it is both left and right invertible.

Definition 4.14. A matrix A € M, (S) is called monomial if it has
exactly one nonzero element in each row and column.

It follows from [46] that a matrix over an antinegative semiring is
invertible (respectively, left invertible, right invertible) if and only if it
is a monomial matrix such that all its nonzero elements are invertible
(respectively, left invertible, right invertible).

5 Linear transformations that preserve matrix invariants

During the past century much effort has been devoted to the problem of
classifying those linear transformations that preserve matrix invariants
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(linear preservers) over various algebraic structures. The first result of
this type was obtained by G. Frobenius [34] at the end of the 19th cen-
tury. He characterized all bijective determinant-preserving linear trans-
formations of the algebra of complex matrices M., (C).

Theorem 5.1 ([34]). Let T : M,(C) — M, (C) be a bijective linear
transformation such that det(T(X)) = det(X) for all X € M,(C).
Then there exist invertible matrices P,Q € M, (C) with det(PQ) = 1,
such that T has the form

T(X)=PXQ for all X € M,(C)
or

T(X)=PX'Q for all X € M, (C).
The matrices P and Q are unique up to a scalar factor.

This investigation was continued by J. Dieudonné [32], who charac-
terized all bijective linear transformations that map the set of singular
matrices into itself. Starting from these investigations, many researchers
have studied the problem of characterizing the linear transformations on
the n x n matrix algebra M,,(F) over a field F that preserve certain ma-
trix relations, subsets, or properties. A detailed and complete exposition
on this subject can be found in the surveys [50, 51, 55].

The complexity of a given matrix invariant depends on the structure
and especially on the quantity of its linear preservers, which determine
the number of arithmetical operations necessary to compute the invar-
iant. Indeed, the majority of methods for computing the determinant,
the rank and other matrix invariants reduce a matrix to a certain man-
ageable form by means of transformations that do not change the invari-
ant under consideration: that is, these methods are based on the linear
preservers of the matrix invariant.

For example, it is known that a square matrix with coefficients in a
field can be reduced to a diagonal form with only 1 and 0 appearing
on the main diagonal, without changing the rank. This fact provides a
simple algorithm for computing the rank of a square matrix of order n,
which requires O(n?) operations. The same is true for the determinant
function. However, the simplest known method of computing the perma-
nent of a square n x n-matrix (Ryser’s formula) requires (n —1)(2" — 1)
multiplicative operations. Such a difference in computational complexity
reflects the fact that there are only a few linear preservers of permanent,
see the paper [52] by M. Marcus and F. May. These preservers are the
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transposition and the pre- and post-multiplications with certain invert-
ible monomial matrices P and (), while in the case of linear preservers
of determinant and rank, P and @ are almost arbitrary nonsingular
matrices.

During the last few decades much work has been devoted to linear
preservers over semirings, in particular, over antinegative semirings, see
for example [8, 13, 12, 11, 14, 18, 43, 59, 55, 61]. A number of results
concerning linear preservers over fields have parallel versions for matrices
over semirings. We provide a brief overview of these results for some
important matrix invariants such as ranks, bideterminant, singularity
and invertibility.

In the sequel we will use the following terminology.

Definition 5.2. Let S be a semiring, not necessarily commutative. An
operator T : My, n(S) — My, ,(S) is called linear if it is additive and
satisfies

T(aX)=aT(X), T(Xa)=T(X)a forall X € M, ,(S), a €S.

Definition 5.3. We say that an operator T preserves a set P if X € P
implies T'(X) € P. It strongly preserves Pif X € P «<— T(X) € P.

The preservers of matrix relations, functions, and invariants are de-
fined in a similar way.

It often turns out that linear operators on M,, ,(S) that preserve a
certain matrix invariant have one of the following forms.

Definition 5.4. An operator T' : M, o(S) — My, o(S) is called a
(W, V)-operator if there exist matrices W and V of appropriate orders
such that T'(X) = WXV for all X € M, ,(S), or, in the case m = n,
T(X)=WX' for all X € My, »(S).

Definition 5.5. An element of a semiring S is called central if it com-
mutes with all elements of S. The centre of S is the set of all central
elements in S.

Definition 5.6. The matrix X oY denotes the Hadamard or Schur
product, i.e. the (i,7) entry of X oY is z; ;i ;.

Definition 5.7. An operator T is called a (P, Q, B)-operator if there
exist permutation matrices P € M,,(S) and @ € M, (S) and a matrix
B = [b; ;] € My n(S) where all b; ; are nonzero central elements, such
that T(X) = P(X o B)Q for all X € M,, »(S), or, in the case m = n,
T(X)=P(X oB)!Q for all X € My, ,(S).
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Definition 5.8. An operator T is called standard if there exist permu-
tation matrices P € M,,(S) and Q € M, (S), and diagonal matrices
D € M;,(S) and E € M, (S) with invertible central elements on the
main diagonal, such that T(X) = PDXEQ for all X € M, ,(S), or,
in the case m = n, T(X) = PDX'EQ for all X € M,, »(S).

Rank preserving linear transformations

Definition 5.9. Let R be a commutative ring. An element r € R is
called irreducible if r is not invertible in R and for any factorization
r=rirqe, 1,79 € R, either 71 or ry is invertible in R.

Definition 5.10. A commutative ring R is called a unique factorization
domain if the following conditions are satisfied.

(i) R has no zero divisors.

(ii) For any noninvertible r € R there exist irreducible elements
1,...,7 € R such that r =ry---7rg.

(iii) For any other factorization r = ¢y - - - q;, where ¢, ..., q are irre-
ducible in R, it holds that [ = k, and for any ¢, 1 < i < k there
exist j, 1 < j < k such that ¢; = wu;r; for a certain invertible
element u; € R.

Theorem 5.11 ([7, 16]). Let S consist of nonnegative elements of a
unique factorization domain in R. Let T : My n(S) — My n(S) be
a linear operator, min{m,n} > 2. Then the following statements are
equivalent:

(i) T preserves the sets of matrices of factor rank 1 and 2;
(ii) T preserves the sets of matrices of rank 1 and 2, where rank is
the usual rank of a real matriz;
(iii) T is an injective (W, V')-operator.

Note that W and V need not be invertible over S.

Theorem 5.12 ([16]). Let S be a chain semiring, T : My, »(S) —
M. (S) be a linear operator, min{m,n} > 2. Then the following state-
ments are equivalent:

(i) for every k, 1 < k <min{m,n}, T preserves the set of matrices
of factor rank k;
(ii) T preserves the sets of matrices of factor rank 1 and 2;
(iii) T is bijective and preserves the set of matrices of factor rank 1;
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(iv) T is a (W,V)-operator, where the matrices W € My, (S) and
V € M, (S) are invertible.

Theorem 5.13 ([16]). Let S be an arbitrary semiring, T : My, n(S) —
M n(S) be a linear operator. Then the following statements are equiv-
alent:

(i) for every k, 1 < k < min{m,n}, T preserves the set of matrices
of term rank k;
(ii) T preserves the sets of matrices of term rank 1 and 2;
(iil) T strongly preserves the set of matrices of term rank 1;
(iv) T is a (P,Q, B)-operator.

In the case when S is a field the above conditions are also equivalent to
the condition that

e T is nonsingular and preserves the set of matrices of term rank 1.

Similar results are obtained for linear preservers and strong linear
preservers of column ranks and zero-term ranks, see [16] and references
therein.

Semiring versions of Frobenius’ theorem

The following are semiring analogues of Theorem 5.1.

Theorem 5.14 ([13]). Let S be a commutative antinegative semiring
without zero divisors and T : My, (S) — My (S) be a surjective linear
transformation. Then (|T(X)|7,ITX)|7) = (IX||F, 1 X||7) for all
X € M, (S) if and only if T is standard in the sense of Definition 5.8
with (|| PQ|T, I1PQII7) = (|IDE|*,||DE|~) = (1,0). Here the matrices
P, Q are defined uniquely and the matrices D, E are defined uniquely up
to an invertible scalar factor.

If S is a subsemiring of a certain commutative ring R, for example,
S =R*,Q*, or ZT, then the usual determinant function det : M, (S) —
R is well-defined. In this case the following theorem is true.

Theorem 5.15 ([13, 43]). Let S be an arbitrary antinegative subsemi-
ring of a commutative ring R without zero divisors, T : My(S) —
M, (S) be a surjective linear transformation. Then detT(X) = det X
for all X € M, (S) if and only if T is standard in the sense of Defini-
tion 5.8, where det(PQ) = det(DE) = 1. Here P,Q are defined uniquely
and D, E are defined uniquely up to an invertible scalar factor.
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Semiring versions of Dieudonné’s theorem

The following analogues of Dieudonné’s theorem (see [32]) can be ob-
tained for matrices over semirings.

Theorem 5.16. Let S be an antinegative semiring without zero divisors
and T : My, n(S) — My n(S) be a surjective linear operator. Then the
following statements are equivalent:

(i) T preserves the set of S-singular matrices;
(ii) T preserves the set of S-nonsingular matrices;
(iil) T 4s a (P,Q, B)-operator where the entries of B are invertible
elements.

Proof. Similar to the proof of [13, Theorem 3.11]. O

Theorem 5.17. Let S be an antinegative semiring without zero divisors
and T : My (S) — M, (S) be a surjective linear transformation. Then
the following statements are equivalent:

(i) T preserves the set of R-nonsingular matrices;
(ii) T preserves the set of R-singular matrices;
(iii) T is standard in the sense of Definition 5.8.

Here P,Q are defined uniquely and D, E are defined uniquely up to an
invertible scalar factor.

Proof. Similar to the proof of [13, Theorem 5.7]. O

Although the fact that the set of invertible matrices over an antineg-
ative semiring is in a sense very small, it is still possible to characterize
the corresponding linear preservers.

Theorem 5.18. Let S be an antinegative semiring without zero divisors,
T : My (S) — My (S) be a bijective linear transformation. The following
conditions are equivalent:

(i) T preserves the set of invertible matrices;

(iii

)

(ii) T preserves the set of left invertible matrices;
) T preserves the set of right invertible matrices;
)

(iv) T is a (P,Q, B)-operator where the entries of B are invertible
elements.

Our final example shows that there are non-bijective invertibility pre-
servers which are not (P, Q, B)-operators.
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Example 5.19. We consider the transformation T : M,,(8) — M, (S)
defined by

T(A) = diag (i iy z”: ai’n>
i=1 i=1

for all A = [a; ;] € M,(S). Then T evidently preserves invertibility in
M, (S), but T is neither surjective nor a (P, @Q, B)-operator.
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Algebraic geometry over Lie algebras
Ilya V. Kazachkov

Introduction

What is algebraic geometry over algebraic systems? Many important re-
lations between elements of a given algebraic system A can be expressed
by systems of equations over A. The solution sets of such systems are
called algebraic sets over A. Algebraic sets over A form a category, if we
take for morphisms polynomial functions in the sense of Definition 6.1
below. As a discipline, algebraic geometry over A studies structural
properties of this category. The principal example is, of course, alge-
braic geometry over fields. The foundations of algebraic geometry over
groups were laid by Baumslag, Myasnikov and Remeslennikov [3, 27].
The present paper transfers their ideas to algebraic geometry over Lie
algebras.

Let A be a fixed Lie algebra over a field k. We introduce the category
of A-Lie algebras in Sections 1 and 2. Sections 3-7 are built around
the notion of a free A-Lie algebra A[X], which can be viewed as an
analogue of a polynomial algebra over a unitary commutative ring. We
introduce a Lie-algebraic version of the concept of an algebraic set and
study connections between algebraic sets, radical ideals of A[X] and
coordinate algebras (the latter can be viewed as analogues of factor
algebras of a polynomial algebra over a commutative ring by a radical
ideal). These concepts allow us to describe the properties of algebraic
sets in two different languages:

e the language of radical ideals, and

e the language of coordinate algebras.

One of the most important results here is Corollary 7.3, which shows that
the categories of coordinate algebras and algebraic sets are equivalent.

34
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In Sections 8-12, we apply some ideas of universal algebra and model
theory and introduce the notions of A-prevariety, A-variety, A-quasi-
variety and A-universal closure. We transfer some methods of Myasnikov
and Remeslennikov [27] to Lie algebras and solve Plotkin’s problem on
geometric equivalence of Lie algebras. Our exposition is based on a
preprint by Daniyarova [8].

In the two final sections of this survey we describe applications of the
general theorems from Section 1-12 to concrete classes of Lie algebras.
In Section 13 we survey the papers [10, 11]:

e We study the universal closure of a free metabelian Lie algebra of
finite rank r» > 2 over a finite field k& and find two convenient sets of
axioms, ®, and ®!. for its description; the former is written in the
first order language of Lie algebras L, the latter in the language Lg,.
enriched by constants from .

e We describe the structure of finitely generated algebras from the uni-
versal closures §,-ucl(F,) and ucl(g,) in languages Lz and L.

e We prove that in both languages L and Lz the universal theory of a
free metabelian Lie algebra over a finite field is decidable.

Then we apply these results to algebraic geometry over the free meta-
belian Lie algebra §,, 7 > 2, over a finite field k, as follows:

e we give a structural description of coordinate algebras of irreducible
algebraic sets over §,;

e we describe the structure of irreducible algebraic sets;

e we construct a theory of dimension in the category of algebraic sets
over §,;

Section 14 summarizes results by Daniyarova and Remeslennikov [12]
on diophantine geometry over a free Lie algebra F. The objective of
algebraic geometry is to classify irreducible algebraic sets and their co-
ordinate algebras. We believe that the general classification problem
for algebraic sets and coordinate algebras over a free Lie algebra is very
complicated, and will therefore only treat the following two cases:

e algebraic sets defined by systems of equations in one variable;
e bounded algebraic sets (that is, algebraic sets contained in a finite
dimensional affine subspace of F, see Definition 14.8).

In both cases we reduce the problem of classification of algebraic sets
and coordinate algebras to problems in diophantine geometry over the
ground field k.
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We refer to [2, 6, 13, 26] for background facts on Lie algebras, model
theory, category theory and universal algebra.

1 The category of A-Lie algebras

We work with a fixed algebra A of coefficients and introduce the notion
of an A-Lie algebra, which is a Lie-algebraic analogue of an (associative)
algebra over an associative ring.

Definition 1.1. Let A be a fixed Lie algebra over a field k. A Lie
algebra B over k is called an A-Lie algebra if it contains a designated
copy of A, which we shall usually identify with A. More precisely, an
A-Lie algebra B is a Lie algebra together with an embedding o : A — B.
A morphism or A-homomorphism ¢ from an A-Lie algebra B; to an A-
Lie algebra By is a homomorphism of Lie algebras which is the identity
on A (or, in more formal language, a1 = ag where o and agy are the
corresponding embeddings of the Lie algebra A into the A-Lie algebras
B1 and BQ)

Obviously, A-Lie algebras and A-homomorphisms form a category. In
the special case A = {0}, the category of A-Lie algebras is the category
of Lie algebras over k. Note that if A is a nonzero Lie algebra then the
category of A-Lie algebras does not possess a zero object.

Note that A is itself an A-Lie algebra.

We denote by Homy (B1, Bs) the set of all A-homomorphisms from B,
to Ba; 224 denotes isomorphism in the category of A-Lie algebras (A-
isomorphism). The usual notions of free, finitely generated and finitely
presented algebras carry over to the category of A-Lie algebras.

We say that the set X generates an A-Lie algebra B in the category
of A-Lie algebras if the algebra B is generated by the set AU X as a Lie
algebra, i.e. B = (A, X). We use the notation B = (X) ,.

Note that an A-Lie algebra B can be finitely generated in the category
of A-Lie algebras without being finitely generated as a Lie algebra.

Definition 1.2. Let X = {x1,...,z,} be a finite set. An A-Lie algebra
A[X] = (x1,...,%n) 4 is said to be free in the category of A-Lie algebras
if, for any A-Lie algebra B = (by,...,by,), and any map 1 from A [X]
to B which is the identity on A and satisfies ¢(z;) = b;, ¢ = 1,...,n,
the map 1) extends to an A-epimorphism A[X]| — B. We sometimes
say that X is a (free) base of A[X].
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A standard argument from universal algebra yields an equivalent form
of this definition.

Definition 1.3. A free A-Lie algebra with the free base X is the free
Lie product of the free (in the category of Lie k-algebras) Lie algebra
F(X) and algebra A, i.e. A[X]=Ax F(X).

2 The first order language

In this section we show that the category of A-Lie algebras is axiomati-
zable.

The standard first order language L of the theory of Lie algebras over
a fixed field k contains a symbol for multiplication ‘o’, a symbol for
addition ‘+’, a symbol for subtraction ‘—’, a set of symbols {k,, | a € k}
for multiplication by coefficients from the field £ and a constant symbol
‘0’ for zero. The category of A-Lie algebras requires a bigger language
L 4; it consists of L together with the set of constant symbols for elements
in A

LA:LU{ca|a€A}.

It is clear that an A-Lie algebra B can be treated as a model of the
language L4 if the new constant symbols are interpreted in the algebra
B as ¢, = a(a). For brevity, we sometimes omit the multiplication
symbol ‘o’.

Therefore the class of all A-Lie algebras over a field k in the language
L 4 is given by the following two groups of axioms.

(i) The standard series of axioms that define the class of all Lie
algebras over the field k.

(ii) Additional axioms A-D which describe the behaviour of constant
symbols:

A 0= Co,

B Cajartasas = Koy (Cay) + Koy (Cas)
(for all a1,as € A, a1, s € k);

C Cayar = Cay © Cay (for all aq, a9 € A);

D ¢, # 0 (for all nonzero a € A).

Axioms A, B, C and D imply that in an A-Lie algebra B constant
symbols ¢, are interpreted as distinct elements and form a subalgebra
of B isomorphic to A.
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3 Elements of algebraic geometry

Our next objective is to introduce Lie-algebraic counterparts to the class-
ical concepts of algebraic geometry.

Let A be a fixed Lie algebra over a field k. Let X = {z1,...,2,}
be a finite set of variables and A [X] be the free A-Lie algebra with the
base X. We view A [X] as an analogue of a polynomial algebra in finitely
many variables over a unitary commutative ring, and think of elements of
A[X] as polynomials with coefficients in A. We use functional notation

f=fl,...,zn) = f(z1,.. ., Tn,a1,...,0.)

thereby expressing the fact that the Lie polynomial f in A [X] involves
variables x1, ..., T, and, if needed, constants ay,...,a, € A.

A formal equality f = 0 can be treated, in an obvious way, as an
equation over A. Therefore every subset S C A[X] can be treated
as a system of equations with coefficients in A. In parallel with the
commutative case, the set of solutions of S depends on the algebra used
to solve the system. We are specially interested in diophantine problems,
that is, solving systems in A, but for the time being we work in a more
general situation and solve S in an arbitrary A-Lie algebra B.

Let B be an A-Lie algebra and S a subset of A[X]. Then the set

B" = {(b1,7bn)‘ b; € B}

is called the affine n-dimensional space over the algebra B. A point
p=(b1,...,b,) € B™ is called a root of a polynomial f € A[X] if

f(p):f(b15"'7bn7a17"'7a7'):O-

We also say that the polynomial f wvanishes at the point p. A point
p € B™ is called a root or a solution of the system S C A[X] if every
polynomial from S vanishes at p.

Definition 3.1. Let B be an A-Lie algebra and let S be a subset of
A[X]. Then the set

Ve(S)={pe€ B"| f(p) =0 VfeS}
is called the (affine) algebraic set over B defined by S.
Definition 3.2. Let B be an A-Lie algebra, S1 and S3 subsets of A [X].
Then the systems S; and Sy are called equivalent over B if Vp(S1) =

VB(S2). A system S is called inconsistent over B if Vp(S) = () and
consistent otherwise.
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Example 3.3 (Typical examples of algebraic sets).

(i) Every element a € A forms an algebraic set, {a}. Indeed if one
takes S = {z — a} then V5(S) = {a}. In this example n =1 and
X = {z}.

(ii) Every element {(a1,...,an)} € A™ is an algebraic set: if S =
{z1 —a1,...,2n — an} then Vp(S) = {(a1,...,a.)}.

(iii) The centralizer Cg(M) of an arbitrary set of elements M from A
is an algebraic set defined by the system S = {zxom | m € M}.

(iv) The whole affine space B™ is the algebraic set defined by the
system S = {0}.

(v) Let A ={0}. Then the empty set () is not algebraic, since every
algebraic set in B" contains the point (0,...,0).

We need more definitions.

e A polynomial f € A[X] is a consequence of the system S C A[X] if
V(f) 2V(9).
e Let Y be an arbitrary (not necessarily algebraic) subset of B™. The
set
Radp(Y) ={f € A[X]| f(p) =0 VpeY}
is called the radical of the set Y. If Y = () then, by the definition, its
radical is the algebra A [X].

If Y is an algebraic set (Y = Vp(S)) then we also refer to its radical
as the radical of the system of equations S: Radp(S) = Radp(Vp(9)),
ie.

e a polynomial f € A[X] is a consequence of a system S if and only if
f € Radp(9);

e a polynomial f is a consequence of a system S if and only if the system
S’ = SU{f} is equivalent to S.

Therefore, Radp(S) is the maximal (by inclusion) system of equations
equivalent to S.

Proposition 3.4. The radical of a set is an ideal of the algebra A[X].
Proof. Let f,g € Radp(Y) and h € A[X] and let y € Y. By definition,
(af +B9)(y) = af(y) + Bg(y) =0
and (hf)(y) = h(y) - f(y) = h(y) - 0= 0, where o, § € k. O
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Lemma 3.5.

(i) The radical of a system S C A[X] contains the ideal id (S) gen-
erated by the set S, Radp(S) D 1d (S).
(ii) Let Y1 and Yz be subsets of B™ and Sy, Sz subsets of A[X].

If Y1 Q Yé then RadB(Yl) :_) RadB(}/é).
If Sl Q SQ then RadB(Sl) 2 RadB(S2).

(i) For any family of sets {Y;|i € I}, Y; C B™ we have
Radp (U E) = ﬂRadB(K-).
iel i€l

(iv) An ideal I of the algebra A[X] is the radical of an algebraic set
over B if and only if

Radp(Ve(I)) = I.
(v) A setY C B"™ is algebraic over B if and only if
Ve(Radp(Y)) =Y.
(vi) Let Y1,Ys C B™ be two algebraic sets, then
Y1 =Y2 if and only if Radp (Y1) = Radp(Ys).
Thus the radical of an algebraic set describes it uniquely.

Proof. The proofs follow immediately from the definitions. As an ex-
ample, we prove the fourth statement. If Radp(Vp(I)) = I then T is
obviously a radical. Conversely, if I is the radical of an algebraic set
then there exists a system S such that I = Radg(S). Then

Ve(I) = Vg(Radgp(S)) = Vi(S);
consequently, Radg(Vp(I)) = Radp(Vp(S)) = Radp(S) = I. O

Another crucial concept in algebraic geometry is that of coordinate
algebra.

Definition 3.6. Let B be an A-Lie algebra, S a subset of A[X] and
Y C B"™ the algebraic set defined by the system S. Then the factor
algebra

Tp(Y) =T5(8) = 41X Raay(v)

is called the coordinate algebra of the algebraic set Y (or of the system .S).
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Remark 3.7. Observe that if a system S is inconsistent over B then
I'p(S) = 0. Note that the coordinate algebras of consistent systems of
equations are A-Lie algebras and form a full subcategory of the category
of all A-Lie algebras.

The coordinate algebra of an algebraic set can be viewed from a dif-
ferent perspective, as an algebra of polynomial functions. Indeed if Y =
Vi(S) is an algebraic set in B™ then the coordinate algebra I'g(Y") can
be identified with the A-Lie algebra of all polynomial functions on Y7
the latter are the functions from Y into B of the form

f:Y =B, p—flp) (pey),

where f € A[x1,...,2,] is a polynomial.

It is clear that two polynomials f,g € A[X] define the same poly-
nomial function if and only if f—¢g € Radg(Y"). The set of all polynomial
functions Pg(Y) from Y to B admits the natural structure of an A-Lie
algebra. We formulate our observation as the following proposition.

Proposition 3.8. Let B be an A-Lie algebra and Y a nonempty alge-
braic set. Then the coordinate algebra Tp(Y) of Y is the A-Lie algebra
of all polynomial functions on'Y :

Ip(Y) =4 Pp(Y).
Example 3.9. If a € A and Y = {a} then I'p(Y) = A.

Similarly to the commutative case, points of an algebraic set can be
viewed as certain Lie algebra homomorphisms.

Proposition 3.10. Every algebraic set Y over B can be identified with
the set Homa (T p(Y'), B) (see Section 1 for notation) by the rule

0 :Homy(I'p(Y),B) « Y.

Consequently, for any algebraic set Y there is a one-to-one correspon-
dence between points of Y and A-homomorphisms from I'g(Y) to B.

Proof. Indeed the coordinate algebra I'p(Y) is the factor algebra
Tp(Y) =4 Xgaq, ()

for X = {x1,...,2,}. Defining an A-homomorphism from I'g(Y) to B
is equivalent to defining the images in B of the elements of X, that is,
to fixing a point (b1,...,b,) € B™. Therefore, if p € Homyg(I'5(Y), B),
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we set 0(p) = (b1,...,by,), where (b1,...,b,) is the image of X under .
The point (b1, ...,b,) must satisfy the condition

f(by,...,b,) =0 for all f € Radp(Y).

Clearly, this condition holds only at the points of the algebraic set Y.
Obviously, distinct homomorphisms correspond to distinct points and
every point in Y has a pre-image in Homs (I's(Y'), B). O

Developing these ideas further, we come to the following method for
computing the radical Radg(Y") of an algebraic set Y. Let p € B™ be an
arbitrary point and denote by ¢, the A-homomorphism

op AX] = B, feA[X], ¢p(f) = f(p) € B. (3.1)

Clearly, Radg ({p}) = ker ¢,. In view of Lemma 3.5 we have

Radp(Y) = m ker ¢, .
peY

This equality clarifies the structure of the radical of an algebraic set
and the structure of its coordinate algebra. Indeed, by Remak’s Theorem
we have an embedding

Ip(Y) — H A [X]/ker ©p -
pEY

The factor algebra AlX ]/ker ©p is isomorphic to im ¢, and thus embeds
into B. This implies that the coordinate algebra I'g(Y’) embeds into
a cartesian power of the algebra B; we state this observation as the
following proposition.

Proposition 3.11. The coordinate algebra of an algebraic set over B
embeds into an unrestricted cartesian power of B,

I'p(Y) — BY.

In particular, Proposition 3.11 implies that all the identities and quasi-
identities which are true in B are also true in I'g(S) (see Section 9 for
definitions). In particular, if B is an abelian, metabelian or nilpotent
Lie algebra, the coordinate algebra I'p(Y) of an arbitrary algebraic set
Y over B is abelian, metabelian or nilpotent, respectively; in the last
case, the nilpotency class of I'p(Y") does not exceed the nilpotency class
of B.
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4 The Zariski topology

To introduce the Zariski toppology on the n-dimensional affine space B”,
we first formulate the following auxiliary result.

Lemma 4.1. If A is a nonzero Lie algebra then:

(i) the empty set () is an algebraic set over any nonzero A-Lie algebra
B (it suffices to take S = {a} for some nonzero a € A);
(ii) the whole affine space B™ is an algebraic set (see Example 3.3);
(iii) the intersection of a family of algebraic sets over B is also an
algebraic set over B, viz.

i€l il
In view of Lemma 4.1, we can define a topology in B™ by taking
algebraic sets in B™ as a sub-basis for the collection of closed sets. We

call this topology the Zariski topology. For later use we introduce the
following notation for three families of subsets of B™:

e T is the collection of all algebraic sets over B (the sub-basis of the
topology);

e T, is the collection of all finite unions of sets from T (the basis of the
topology);

e T is the collection of all intersections of sets from Y1, i.e. Y5 is the
set of all Zariski closed subsets of the space B™.

Definition 4.2. An A-Lie algebra B is called A-equationally Noetherian
if for any n € N and any system S C Azy,...,x,] there exists a finite
subsystem Sy C S such that Vg (S) = Vi(Sp).

Recall that a topological space (T, 7) is called Noetherian if and only
if every strictly descending chain (with respect to inclusion) of closed
subsets terminates. Provided that a sub-basis ¢ of 7 is closed under
intersections, one can give an equivalent formulation: a topological space
(T,7) is Noetherian if and only if every strictly descending chain of
subsets from o terminates [18].

Lemma 4.3. The algebra B is A-equationally Noetherian if and only
if, for every positive integer n, the affine space B™ is Noetherian.

Proof. Let us assume for the time being that B is A-equationally Noethe-
rian. Consider a decreasing chain Y; D Ys D ... D Y; D ... of algebraic
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sets. By Lemma 3.5, the radicals of these sets form an increasing chain
R.adB(Yl) C RadB(Yg) C ... Let

S = Jradp(Y).

Since the system S is equivalent to its finite subsystem Sy, the chain of
radicals contains only finite number of pairwise distinct ideals, therefore
the both chains terminate after finitely many steps.

Now suppose that for every positive integer n the space B™ is topo-
logically Noetherian. We wish to show that the A-Lie algebra B is A-
equationally Noetherian. Let S C A[zy,...,2,] be an arbitrary system
of equations and s; a polynomial from S. If the system S is equivalent
(over B) to its subsystem Sy = {s1}, then the statement is straight-
forward. Otherwise, there exists an element s; € S ~\ {s1} such that
Ve({s1}) D Ve({s1,s2}). Continuing the construction in an obvious
way, we build a decreasing chain

Ve({s1}) D Ve({s1,82}) D ... D Ve({s1,..-,8:)}) D ...

Since the space B" is topologically Noetherian the chain contains only
a finite number of pairwise distinct sets. Therefore the system S is
equivalent (over B) to a finite subsystem. O

A closed set Y is called irreducible if Y = Y7 U Y>3, where Y7 and Y5
are closed, implies that either Y =Y; or Y =Y5.

Theorem 4.4. Any closed subsetY of B™ over an A-equationally Noethe-
rian A-Lie algebra B can be expressed as a finite union of irreducible
algebraic sets:

Y=Y U---UY.

This decomposition is unique if we assume, in addition, thatY; ¢ Y; for
1 % j; in that case, Y; are referred to as the irreducible components of Y.

The proof is standard; see, for example, [17].

The dimension of an irreducible algebraic set Y is defined in the usual
way. Let Y be an irreducible algebraic set. The supremum, if it exists,
of all integers m such that there exists a chain of irreducible algebraic
sets

Y=Yo2Y12...2Y,

is called the dimension of Y and is denoted by dim(Y). If the supremum
does not exist then, by definition, we set dim(Y") = occ.
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We can generalize this definition when Y is an arbitrary (not neces-
sarily irreducible) algebraic set over an A-equationally Noetherian A-Lie
algebra B: we define its dimension dim(Y") to be the supremum of the
dimensions of its irreducible components.

5 A-Domains

For groups, the notion of a domain (a group that has no zero divisors)
was introduced in [3]; it is useful for formulating irreducibility criteria
for algebraic sets over groups. Here, we introduce a similar concept for
Lie algebras.

Definition 5.1. Let B be an A-Lie algebra, « € B.

e The principal ideal of the subalgebra (A, ) generated by x is called
the A-relative ideal generated by x and denoted by <x>A.

e A nonzero element x € B is called an A-zero divisor if there exists
y € B, y # 0 such that <x>A o <y>A = 0.

e An A-Lie algebra B is an A-domain if it contains no nonzero A-zero
divisors.

Example 5.2. Let A be a nilpotent Lie algebra. Then every element
x € A is a zero divisor.

(Indeed, take a nonzero element y from the centre of A. Then id (y)
is a k-vector space with the basis {y}. The pair (z,y) is a pair of zero
divisors.)

Recall that the Fitting radical of a Lie algebra A is the ideal generated
by the set of all elements from the nilpotent ideals of A. Obviously, if A
is an arbitrary Lie algebra over k, then every nonzero element x of the
Fitting radical Fit(A) of the algebra A is a zero divisor since the ideal
id (x) is nilpotent (see [10]).

The next lemma shows that in an A-domain B every closed subset of
the space B™ is algebraic.

Lemma 5.3. Let B be an A-domain. Then T =T, = To.

Proof. By Lemma 4.1 it will suffice to show that if B is an A-domain
then any finite union of algebraic sets is also algebraic.

Let S1,S52 C A[X] be two consistent systems of equations and assume
that Vp(S1) and Vp(S2) are the algebraic sets defined by the systems
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S1 and Ss, respectively. Then Vp(S1) U Vp(S2) = Vi(S), where

S:{f10f2|fi€<5i>A, s; €5;, i:1,2}.
O

Lemma 5.4. Let B be an A-domain and Y be an arbitrary subset
of B™. Then the closure of Y in the Zariski topology coincides with
VB(RadB(Y)).

Proof. Clearly the set Vg(Radp(Y)) is closed and contains Y. We show
that Vg (Radp(Y)) is contained in every closed set Z such that Y C Z.
According to Lemma 3.5, Radp(Y) D Radp(Z) and thus Vp(Radp(Y)) C
Vi(Radg(Z)). By Lemma 5.3, every closed set in B™ is algebraic over B,
hence Vp(Radp(Z)) = Z and the statement follows. O

6 The category of algebraic sets

In this section we introduce the category AS4 g of algebraic sets over an
A-Lie algebra B. Throughout this section we assume that B is an A-Lie
algebra, A[X] = A[x1,...,2,] and that B™ is the affine n-space over B.

Definition 6.1. The objects of AS4 p are algebraic sets in all affine
n-spaces B", n € N. If Y C B™ and Z C B™ are algebraic sets, then a
map ¢ : Y — Z is a morphism if there exist fi,..., fm € Alx1,..., 2]
such that, for any (b1,...,b,) €Y,

b1, b)) = (Filb1,- . bn)see f(b1s ... bn)) € Z.

Occasionally we refer to morphisms as polynomial maps.
We denote by Hom(Y, Z) the set of all morphisms from Y to Z.

Following usual conventions of category theory, algebraic sets Y and Z
are called isomorphic if there exist morphisms ¢ : Y — Zand0: Z — Y
such that 0y = idy and ¥0 = idy.

Lemma 6.2. LetY C B" and Z C B™ be algebraic sets over B and let
1 be a morphism from'Y to Z. Then

(i) ¥ is a continuous map in the Zariski topology;

(ii) #f Y is an irreducible algebraic set and 1 is an epimorphism then
Z is also irreducible. In particular, both reducibility and irre-
ducibility of algebraic sets are preserved by isomorphisms.
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Proof.

(i) By definition, 1 is continuous if and only if the pre-image Y7 C B™
of any algebraic set Z; C B™ is also algebraic. Let Z; = Vg(S);
then

v (Z1) = {p € B" S(f1(p), ..., fm(p)) = O}

Clearly this subset is algebraic over B.
(ii) Suppose that Z is reducible and Z = Z; U Z,. Then

Y =9 Y (Z1) Uy~ (Z)
and ¥ ~1(Zy), ¥~ (Zy) are proper closed subsets of Y.
(]

Lemma 6.3. Let Z; C B" and Zy C B™ be algebraic sets over B. Then
the set Zy X Zy C B™t™ 4s also algebraic over B.

Proof. Let Z; = V(51), S1 € A[X], X = {x1,...,2,} and let Zy =
VB(S2), So € AY], Y = {y1,...,Ym}, where X and Y are disjoint.
Observe that the set Z; x Zs is defined by the system of equations
SlLJSQgA[XUY]. O

Example 6.4. Let A be a Lie k-algebra with trivial multiplication and
assume that B = A. An elementary reinterpretation of some basic
results of linear algebra yields the following results.

(i) Every consistent system of equations over A is equivalent to a
triangular system of equations.
(ii) The morphisms in the category AS 4, 4 are affine transformations.
(iii) Every algebraic set Y C A™ is isomorphic to an algebraic set of
the form

(AA...,A0,...,0), 0<s<n.

(iv) Every coordinate algebra I'(Y") is A-isomorphic to
A®1linyg {1‘1,...,:175},

where 0 < s < n, and ling {x1,...,zs} is the linear span of the
elements {z1,...,x5} over k.
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7 The Equivalence Theorem

One of the main problems in algebraic geometry is the problem of clas-
sifying algebraic sets up to isomorphism. In this section we prove that
this problem is equivalent to the classification of coordinate algebras.

Denote by CA4,p the category of all coordinate algebras of algebraic
sets from AS4 p (morphisms in CA4 p are A-homomorphisms). As we
observed in Section 3, coordinate algebras of nonempty algebraic sets
over B form a full subcategory of the category of A-Lie algebras (see
Remark 3.7).

Note that if the empty set is an algebraic set then the zero algebra is
a coordinate algebra, and Homa (0, 5(S)) = Homa(I'5(S5),0) = 0.

For the time being we declare (and later show) that the categories
AS4 g and CA p are equivalent but not isomorphic.

A pair (X, S), where here X = {z1,...,2,} and S C A[X], where S
is a radical ideal, is called a co-presentation of the coordinate algebra

Ip(S) =4 [X]/RadB(S)'

Let (X,S1), (Y,S2) be co-presentations, where X = {z1,...,2,},
S1 CAX])andY ={y1,..-,Ym}, S2 € A[Y]. An A-homomorphism ¢ :
A[X] — A[Y] such that ¢(Radp(S1)) C Radp(S2) is called a morphism
from the co-presentation (X, S1) to the co-presentation (Y, Sz).

Naturally, co-presentations (X, S1) and (Y, S3) are called isomorphic if
the respective coordinate algebras I'(S1) and I'g(S2) are A-isomorphic.

The collection of all co-presentations together with the morphisms de-
fined above form a category, which we call the category of co-presentations
of coordinate algebras and denote by CPA4 B.

Theorem 7.1. The categories AS4. g and CPA4 B are isomorphic.
Proof. We construct two contravariant functors
F:AS4p — CPAy B and G : CPAs B — ASa B

such that FG = idcpa, , and GF = idps, ,. We shall define the functors
F and G first on the objects and then on the morphisms of respective
categories.

Every algebraic set Y, as well as every co-presentation, is defined by
the cardinality n of the set of variables X = {z1,...,2,} and by the
radical S = Rad(Y) C A[X] treated as a system of equations. We
therefore set

F(VB(5)) = (X,9), G((X,5)) = Va(S).
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Next we define the functors on the morphisms. To this end, let Z; =
VB(S1) and Z; = Vp(S2) be algebraic sets over B, where S; C A[X],
X =A{z1,...,zp} and S € A[Y], Y = {y1,...,ym} are radicals. Sup-
pose that (X,S1), (Y,S2) are the respective co-presentations. By defi-
nition, a contravariant functor is a morphism-reversing functor, i.e.

’(/J S HOIIl(Zl7 ZQ) — F(’w) S HOIH(()/7 SQ), (X, 51))
v € Hom((Y, S2), (X, S1)) — G(p) € Hom(Z1, Z5).

Choose ¢ € Hom(Z1, Z3) and polynomials fi,..., fm € Alz1,...,25] so
that

w(bla"'abn) = (fl(b17~--,bn),---;fm(bl,-”,bn))a (bla"'vbn) € Zl'

We define F(¢) : A[Y] — A[X] by F()(y;) = fi(z1,...,20), © =
1,...,m. By definition, F(¢)(S2) C S1 and therefore F(¢)) is a mor-
phism in the category CPA4 B.

Now suppose that ¢ € Hom((Y, S2), (X, S1)), i.e. p: A[Y] — A[X]is
an A-homomorphism satisfying ¢(S2) C S1. We define the image G(¢) :
Z1 — Z5 of ¢ under G by polynomial maps fi,..., fim € Alx1,..., 2],
where f1,..., fm are the images of elements of Y under . It is easy to
check the inclusion G(¢)(Z1) C Zs; the equalities

FG = idCPAA‘B and GF = idASAYB

follow from the definitions.
To complete the proof of the theorem we need to show that F and G
are in fact functors, i.e. that

e for an arbitrary algebraic set Z, F(idz) = idg(z);
e for any two morphisms ¢ and 6 in AS4 g, F(¢0) = F()F(¢).

and similarly for G. The verification of these conditions is straightforward
and left to the reader. O

Corollary 7.2. Two algebraic sets are isomorphic if and only if the
respective co-presentations are. Two co-presentations are isomorphic if
and only if the respective coordinate algebras are A-isomorphic.

In informal terms, the categories CPA4 g and CA4 p look very much
alike. The correspondence between the objects and the morphisms of the
categories CPA4 p and CAx p establishes a correspondence between the
categories AS4. g and CA p. However, this correspondence is not one-
to-one: the same coordinate algebra corresponds to different algebraic
sets because it has different co-presentations.
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Corollary 7.3. The category ASa g of algebraic sets over an A-Lie alge-
bra B is equivalent to the category CAa g of coordinate algebras over B.

We note also a corollary from the proof of Theorem 7.1:

Corollary 7.4. Let Y and Z be algebraic sets over an algebra A and
L(Y) and T'(Z) the respective coordinate algebras. Then we have a one-
to-one correspondence between Hom(Y, Z) and Hom(T'(Y),T'(Z)).

Moreover, every embedding of algebraic sets Y C Z corresponds to an
A-epimorphism ¢ : T(Y) — T'(Z) of the respective coordinate algebras.
If, in addition, Y G Z then ker ¢ # 1.

8 Prevarieties

We have already mentioned in Section 3 that coordinate algebras of al-
gebraic sets map into a cartesian power of B. This observation suggests
that this object deserves a detailed study and, indeed, yields results
about coordinate algebras. In this section we develop this approach.
For that purpose, we introduce the concept of a prevariety and study
connections between prevarieties and certain classes of coordinate alge-
bras.

Given a class K of A-Lie algebras over a field k, we denote by S ()
and P4 (K), correspondingly, the classes of all A-Lie subalgebras and all
unrestricted A-cartesian products of algebras from K.

Definition 8.1. Let IC be a class of A-Lie algebras over a field k. The
class I is called an A-prevariety (or, for brevity, just a prevariety) if

K = SaPa(K).

Assume that K is a class of A-Lie algebras over a field k. Then
the least A-prevariety containing K is called the A-prevariety gener-
ated by the class K and is denoted by A—pvar(K). It is easy to see that
A—pvar(K) = Sa P4 (K).

Observe that the definition of the radical of an algebraic set can be
given in terms of intersections of kernels of a certain collection of homo-
morphisms; restricting this collection to homomorphisms with images in
a particular class of algebras, we arrive at the concept of a radical with
respect to a class.

Definition 8.2. Let K be a class of A-Lie algebras over k, C' an A-Lie al-
gebra and S a subset of C'. Consider the family of all A-homomorphisms
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;i : C — D with D € K and such that ker(yp;) 2 S. The intersection of
their kernels is called the radical of the set S with respect to the class IC,

Radc(S) =Radc(S,0) =[]  ker(p:).
SCker(p:)

Note that if C' = A[X] and K = {B} then Radp(S) = Radk (S5, C).

Lemma 8.3. Let K be a class of A-Lie algebras, B an arbitrary A-Lie
algebra and S C B. Then

(i) Radi(S) 2 1d(S).
(i1) Blraay(s) € A—pvar(K).
(iil) Radi(S, B) is the smallest ideal I of the algebra B containing S
and such that B/I € A—pvar(K).
(iV) Rad;C(S) = RadA,pvar(,C)(S).

Proof.

(i) The first statement is straightforward.
(ii) By Remak’s theorem B/Rad;c( S) A-embeds into the cartesian

power [[.; B/ker ;- For each i € I the algebra B/ker p; A-em-

beds into the algebra D, € K. Therefore the algebra B/Rad;g( )
is an A-subalgebra of [],.; Dy, .

(i) Let J be an ideal of B, J 2 S and € A—pvar(/C)B/J. Then
B/ 7 is an A-subalgebra of [[,.; D;, where D; € K. Consequently,
for every i € I there exists an A-homomorphism ¢; : B — D;
such that J C ker ;. Furthermore, J = )
J D Radg(S).

(iv) The inclusion Radx(S) 2 Rada_pvar(x)(S) is obvious. Suppose
that Radx(S) 2 Rad 4 _pvar(x)(S); then

;cr Kerp; and thus

B/RadA_pvar(,C) (S) € A—pV&I‘(’C)7
a contradiction with statement (iii) of the lemma.
O

Since the concept of a prevariety is extremely important, it will be
useful to have an alternative definition.

An A-Lie algebra B is called A-approzimated by a class IC, if for any
b € B, b # 0 there exists an A-homomorphism ¢, : B — C for some
C € K and such that ¢,(b) # 0. The set of all A-Lie algebras that are
A-approximated by the class K is denoted by Res 4 (K).
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Lemma 8.4. For any class of A-Lie algebras K
A—pvar(K) = Resa(K).

Proof. Clearly P4 (K) C Res4(K), therefore A—pvar(K) C Res4(K). To
prove the converse, take an arbitrary A-Lie algebra B € Res4(K). Acc-
ording to Definition 8.2, Radi ({0}, B) = 0; therefore B € A—pvar(K).

O

Another very important feature of prevarieties is that every prevariety
has a theory of generators and relations.

Lemma 8.5. Let K be an A-prevariety of A-Lie algebras over a field k.
Let B be an A-Lie algebra and B = (X | R) its presentation in the cat-
egory of all A-Lie algebras, R C A[X]. Then the algebra C lies in IC if
and only if id (R) = Radi (R, A[X]).

Proof. Let id (R) = Radyx (R, A [X]). Since

BgAA[X}/idu{)»

then by Lemma 8.3 we have B € K.

On the other hand id (R) C Radx (R, A[X]). Therefore, if B € K,
then by Lemma 8.3 id (R) = Radx (R, A [X]). O

By Lemma 8.5, for every algebra B € KC there exists a presentation
B =(X|R);, RC A[X] of the form

B2y A paac (R, A X))

Indeed, if we treat B as an A-Lie algebra then B =4 A [X]/id (R): Next,
since B € K we see that id (R) = Radx (R, A [X]).
The algebra
A [X] = A fag (0, 4 [x))
is called the free object of the prevariety K.
It might occur that id (R) is not finitely generated, and yet
Radi (R, A [X]) = Radx (Ro, A [X])

where Ry is a finite set. In this case the corresponding A-Lie algebra
B is not finitely presented in the category of all A-Lie algebras but is
finitely presented in . Moreover, two prevarieties K1 and Ko coincide
if and only if we have, for any set R C A[X] and any set X,

Rady, (R, A [X]) = Radg, (R, A [X])
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We denote by Ky, the class of all finitely generated A-Lie subalgebras
of K.

Lemma 8.6. Let S4(K) =K and B a finitely generated A-Lie algebra.
Then Radi (R, B) = Radg, (R, B) for any R C B.

Proof. Any A-homomorphism ¢ : B — D, D € K induces an A-
homomorphism ¢g : B — Dy such that Dy = im ¢ and ker ¢ = ker ¢g.
Since Dy is an A-subalgebra of D, we have Ky € K. Finally, since
Dy = im ¢, the algebra Kj is a finitely generated A-algebra. O

The following lemma is a direct corollary of Lemma 8.5.

Lemma 8.7. Let K1 and Ko be prevarieties of A-Lie algebras. Then
(K1)w = (K2)y, if and only if for any finite set X and any finite subset
R C A[X] the radicals Radg, (R, A[X]) and Radg,(R, A[X]) coincide.

The next theorem connects the theory of prevarieties with algebraic
geometry.

Theorem 8.8. Let B be an A-Lie algebra over a field k. Then all coor-
dinate algebras over B lie in the prevariety A—pvar(B) and, conversely,
every finitely generated A-Lie algebra from the prevariety A—pvar(B) is
a coordinate algebra of an algebraic set over B.

Proof. Let C = (X | S) 4 be a finitely generated A-Lie algebra. By Lem-
ma 8.5, C' € A—pvar(B) if and only if id (S) = Rad_pvar(5) (S, 4 [X]).
According to Lemma 8.3, Rada_pyar()(S) = Rada_pvar(p) (S, 4 [X]).
Moreover, Radp(S) = Rad g _pvar(k) (S, A [X]).

Consequently, C € A—pvar(B) if and only if id(S) = Radg(9).
Therefore C' is a coordinate algebra of an algebraic set of Vg(S). O

Corollary 8.9. A finitely generated A-Lie algebra C is a coordinate
algebra over an A-Lie algebra B if and only if C is A-approximated
by B.

Remark 8.10. In Section 7 we introduced the notion of a co-presentation.
We can now reformulate this definition as follows: a co-presentation
(X, S) of a coordinate algebra I'g(S) is its presentation in A—pvar(B).

If C' is a coordinate algebra of an irreducible algebraic set over B then
it possesses yet another, stronger property, which is very important in
the study of universal closures (see Sections 9 and 11).



54 1. V. Kazachkov

Definition 8.11. An A-Lie algebra C is said to be A-discriminated
by an A-Lie algebra B if for every finite subset {ci,...,¢n} of nonzero
elements from the algebra C' there exists an A-homomorphism ¢ : C' —
B such that ¢(c;) # 0, where i = 1,...,m. The set of all A-Lie algebras
discriminated by the algebra B is denoted by Dis4(B).

Lemma 8.12. Let B be an A-Lie algebra and C the coordinate algebra
of an irreducible algebraic set over B. Then C € Disa(B).

Proof. Let C = I'p(Y) = I'g(5), where Y is an irreducible algebraic
set over B. Assume that the statement of the lemma is not true. Then
there exists a tuple

fi+Radp(S),..., fm+Radp(S) € T'p(S), fi¢Radp(S), i=1,...,m,

such that the image of at least one of these elements under every A-
homomorphism ¢ : C' — B is zero. Let Y; be the algebraic set over B
defined by the system of equations SU{f;}, Y; = Vp(SU{f;}). In this
notation

Y=Y1U---UY,, Y#Y, i=1...,m.
This leads to a contradiction, since Y is an irreducible algebraic set. O

Let B = [Lic: B be the unrestricted cartesian power of the algebra
B. We turn the algebra B into an A-Lie algebra by using the diagonal
embedding of A into B. Suppose that the cardinality of the set I is
the maximum of the cardinalities of B and 8g. Then Theorem 8.8,
Proposition 3.11 and Definition 8.1 yield the following result.

Theorem 8.13. Let Y C B™ be an algebraic set over B. Then the
coordinate algebra T'(Y') A-embeds into the algebra B. Conversely, every
finitely generated A-subalgebra of the algebra B is the coordinate algebra
of an algebraic set over B.

Definition 8.14. An n-generated A-subalgebra C' = (c1,...,c;,) , of B
is called the realization of Tg(Y) in B if the complete set of relations
R C A[X] (for the generators cy, ..., ¢, € B) coincides with Rad(Y").

Note that in the above definition, the number n of generators coincides
with the dimension of the affine space B™ O Y, and the generators are
chosen in such a way that R = Rad(Y). However, the realization of
I'p(Y) in B is not unique.

Let C = (c1,...,¢0) 4 and C = (1,...,E,) 4 be two n-generated A-
subalgebras of B and R,R C A[X] be the respective complete sets
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of relations. The algebras C' and C are realizations of the coordinate
algebra of the same algebraic set if and only if R = R.
Therefore Theorem 8.13 can be refined as follows.

Theorem 8.15. Let Y C B™ be an algebraic set. Its coordinate al-
gebra Tp(Y) has a realization in B, Tg(Y) = (c1,...,¢n) 4, ¢i € B.
Furthermore, generators c1,...,c, can be chosen in such a way that

Y = {(cgl,...,cﬁf))\iel}.

Conwersely, if C is a finitely generated A-subalgebra of B, with gener-
ators ¢y, ..., c, Say, then there exists a unique algebraic set'Y such that
C is a realization of Up(Y) in B. In this case

v o (.. ier};

moreover, the closure

{(c(li),...,cg)) |ie I}
i the Zariski topology coincides with Y .

Theorem 8.8 demonstrates the importance of the prevariety A—pvar(B)
in studying algebraic geometry over an A-Lie algebra. Unfortunately,
the language of prevarieties is not very convenient, since prevarieties
are not necessarily axiomatizable classes. In the next section we intro-
duce some additional logical classes which have the advantage of being
axiomatizable, and discuss some of their connections with prevarieties.

9 Universal classes

Given a class I of A-Lie algebras over a field k, we construct several
model-theoretical classes of A-Lie algebras. First we need a number of
definitions.

e An A-universal sentence of the language L 4 is a formula of the type

s t
V$1V$n \/ /\ ’U,” T aL] —0 A wz](x Cl]) #0) ’

where T = (z1,...,%y) is an n-tuple of variables, a;; and ¢;; are sets
of constants from the algebra A and wu;j, w;; are terms in the language
L4 in variables 1, ..., 2.
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If an A-universal sentence involves no constants from the algebra A this
notion specializes into the standard notion of a universal sentence in the
language L.

e An A-identity of the language L4 is the formula of the form

m
Vo1 ---Va, (/\ Ti(i‘,aij) = 0) R
i=1
where r;(Z) are terms in the language L, in variables x1,...,z,. If
an A-identity involves no constants from A we come to the standard
notion of an identity of the language L.
e An A-quasi-identity of the language L 4 is a formula of the form

m
V-V, </\ ri(Z,a;5) =0 — s(z,b) = O) ,

i=1
where r;(Z) and s(Z) are terms. A coefficient-free analogue is the
notion of a quasi-identity.

Now we are ready to introduce the main definitions of this section:
they are standard concepts of universal algebra and model theory.

e A class of Lie algebras K is called a wvariety if it can be axiomatized
by a set of identities.

e A class of Lie algebras K is called a quasivariety if it can be axioma-
tized by a set of quasi-identities.

e A class of Lie algebras K is called a universal class if it can be axiom-
atized by a set of universal sentences.

Replacing identity by A-identity, etc., we come to ‘A-versions’ of these
definitions: A-variety, A-quasivariety and A-universal class.

e The A-variety A—var(K) generated by the class K is the class of all A-
Lie algebras that satisfy all the identities of the language L 4 satisfied
by all algebras from K.

e The A-quasivariety A—qvar(K) generated by the class K is the class
of all A-Lie algebras that satisfy all the quasi-identities of the language
L 4 satisfied by all algebras from K.

e The A-universal closure A—ucl(K) generated by the class K is the
class of all A-Lie algebras that satisfy all the universal sentences of
the language L4 satisfied by all algebras from K.
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For later use (see Section 13) we also need to consider the classes
var(K), qvar(K) and ucl(K), which by definition are the variety, quasi-
variety and universal closure generated by the class IC in the first order
language L. The classes var(K), qvar(K) and ucl(K) are special cases
of the classes A—var(K), A—qvar(K) and A—ucl(K).

Note the following inclusions:

A—ucl(K) € A—qvar(K) C A—var(K).

The first inclusion is obvious, while the second one is implied by the fact
that every identity is equivalent to a conjunction of a finite number of
quasi-identities. For instance, the identity

Vaq -V, <7\ ri(Z) = O>

i=1

is equivalent to the set of m quasi-identities
Vay - Ve, Vy(ly =y — ri(z) = 0).

Obviously the classes A—var(K) and A—qvar(K) are prevarieties.
Moreover,

A—pvar(K) C A—qvar(K) C A—var(K).

10 Quasivarieties

Every quasivariety is a prevariety and therefore quasivarieties allow for
a theory of generators and relations. In this section we give a method
of computation of radicals with respect to a quasivariety.

Let KC be a quasivariety of A-Lie algebras over a field k, B an A-Lie
algebra over k and S a subset of B.

Set Ry to be the ideal of B generated by the set S and suppose that
R; is already defined. Denote by T; the set of all elements in B of the
form s(b1,...,by), where bq,...,b, € B and the quasi-identity

V-V, /\ ri(Z) =0—s(2)=0
j=1
is true in all algebras from IC, r;(b1,...,by) € R;, j =1,...,m. In this
notation we define the ideal R;11 = id (R; UT;). As a result, we have
an ascending chain of ideals in B:

RBo<- <R <Riy1 <.
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Lemma 10.1. In this notation, Radx (S, B) = | R;.
i=0

Proof. Let R =|J;2, R;. An easy induction on i shows that
Radk (S, B) O R.

To prove the reverse inclusion, it suffices to show B/R € K, that is, to
verify that all quasi-identities which are true in every algebra from the
class K are true in the algebra B/R. The latter easily follows from the
definition of the set R. O

Lemma 10.2. Let f € Radx(S,B). Then there exists a finite subset
So,r € S such that f € Radi(So,r, B).

Proof. We use induction on ¢. If f € Ry then the statement is obvious.
Assume that it holds for all the elements from R; and consider an element
f € R;y1. By definition of R;11, f has the form s(by,...,b,). Using an
argument similar to that of Lemma 10.1, we have

s(bi,... by) € Radic({rj (b1, ... .bp), j =1,...m}).

Since, by the inductive assumption, there exist finite sets S; C S such
that 7;(b1,...,b,) € Radi(S;), we have Sp = S1 U---USy,. O

As we mentioned earlier the prevariety A—pvar(B) is of exceptional
importance for algebraic geometry over the algebra B. Note however
that a prevariety is not in general an axiomatizable class. On the
other hand, every quasivariety admits an axiomatic description and
A—pvar(B) C A—qvar(B). The situation is clarified by the following
result of Malcev [25].

Proposition 10.3. A prevariety is axiomatizable if and only if it is a
quasivariety.

This fact leads to the following question:

For which K is the prevariety pvar(K) a quasivariety?

This question is known in the theory of quasivarieties as Malcev’s
Problem [26]. Malcev himself gave the following sufficient condition for
the prevariety pvar(K) to be a quasivariety [25].

Proposition 10.4. Let K be an azxiomatizable class of Lie algebras.
Then pvar(K) is a quasivariety.
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A complete solution of Malcev’s Problem has recently been found by
Gorbunov [15].

Fortunately, if a system of equations S(X) = 0 has only finitely many
variables (as is always the case in the algebraic geometry over B) the
radical Radp(S) in A [X] depends only on finitely generated A-Lie alge-
bras from A—pvar(B). So we can refine the question.

The restricted Malcev problem. For which IC do the subclasses of
finitely generated A-Lie algebras in A—pvar(K) and A—qvar(K) coin-
cide? We are particularly interested in A—pvar(B) and A—qvar(B).

A criterion in Lemma 10.8 gives an answer to this question. For its
formulation we need to define A-q,-compactness.

Definition 10.5. An A-Lie algebra B is called A-q,-compact if for
any n € N, any system of equations S C Alzy,...,z,] and every its
consequence f € Radp(S) there exists a finite subsystem Sp ¢ C 5,
So,r = {fi1,..., fm} such that the following A-quasi-identity is true in
the algebra B:

i=1
or, in other words, f € Radg(So,).

The notion of a g,-compact algebra is a natural generalization of
that of a Noetherian algebra. To say that an algebra is Noetherian is
equivalent to requiring that the finite subsystem Sy from Definition 10.5
is universal for all the consequences of S. Also, ¢,-compactness of an
algebra implies that this finite subsystem Sy depends on the choice of a
consequence of S.

Remark 10.6. If an A-Lie algebra B is A-equationally Noetherian then
B is A-q,-compact.

Recall that a set of formulas 7' is called compact (for the algebra B) if
B satisfies all formulas from 7" whenever every finite submodel satisfies
all formulas from 7. The expression ‘q,-compactness’ comes from the
following observation: an algebra B is A-q,-compact whenever B is
compact with respect to the sentences of the language L 4 of the form

T={s=0|secS}U{f#0}.

B. Plotkin and others use different terminology for saying that an
algebra is g, -compact or equationally Noetherian: the corresponding
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expressions are logically Noetherian for q,-compact algebraic structures
and algebraically Noetherian for equationally Noetherian structures.

Example 10.7. Let B be a nilpotent Lie algebra of class two given
by the following presentation in the variety of class < 2 nilpotent Lie
algebras:

BZ(@i,bi (ieN)|aioaj:O,biobj:O,aiobj:O(iaéj)).

Then the infinite quasi-identity

YaVy /\(xoaizo/\xObjzo)—wcoyZO
i€N JEN

holds in B, but for any finite subsets I, J of N the following quasi-identity
does not hold in B:

VaVy /\(moai:0/\x0bj:0)—>xoy20
iel jeg

Therefore the algebra B is not g,-compact.
Lemma 10.8. An A-Lie algebra B is A-q,-compact if and only if
(A—pvar(B)), = (A—qvar(B)),,.
Proof. We observe first that
(A—pvar(B))., = (A—qvar(B)).
if and only if
Rad A pvar()(S) = Rada_qvar()(S5)

for any system of equations S C A[X] with a finite number of vari-
ables. Recall that, in view of Lemma 8.3, Rad_pvar(5)(S) = Radp(S).
Hence it suffices to show that the algebra B is q,-compact if and only
if Radg_qvar(B)(S) = Radp(S) for any system S C A[X] with a fi-
nite number of variables. Using Lemma 10.1 and definition of the sets
R;, i € N we conclude that the A-g,-compactness of B follows from
the condition Radp(S) = Rads_qvar(B)(S) and hence from the equality
RadA—pvar(B) (S) = RadA—qvar(B) (S)

Now we have to prove the reverse implication. Let B be an A-q,-
compact A-Lie algebra. We shall show that Rad 4 _qyar(5)(S) = Radp(S)
for an arbitrary system S of equations.
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It follows from the definition of the radical with respect to a quasiva-
riety that Radp(S) 2 Rada_qvar()(S). Therefore it will suffice to prove
that f € Rads_qvar()(S) for any f € Radp(S). Since B is g,-compact
then there exists a finite subsystem So y C S, So,5 = {f1,..., fm} such
that the quasi-identity

Vay - Vo, | /\ £;(Z)=0- f(z)=0
j=1

holds in B. Therefore this quasi-identity is satisfied by every algebra
C; € A—qvar(B) and thus f € Rada_qvar(p)(5)- O

Corollary 10.9. Let B be an A-equationally Noetherian A-Lie alge-
bra. Then the class of all coordinate algebras of algebraic sets over B
coincides with the class (A—qvar(B))..

Myasnikov and Remeslennikov [27, §9, Problem 2] asked if there ex-
ists a g,-compact group which is not equationally Noetherian; a similar
question can be formulated for an arbitrary algebraic structure. The
question was answered by Goebel and Shelah [14] who constructed such
a group; the same construction works for Lie algebras. However, the
author’s conversations with B. Plotkin, A. Myasnikov and V. Remeslen-
nikov led to an observation that all counterexamples known so far are
not finitely generated.

Problem. Are there finitely generated q.,-compact A-Lie algebras which
are not A-equationally Noetherian?

11 Universal closure

If an A-Lie algebra B is A-equationally Noetherian then every algebraic
set over B is a finite union of irreducible algebraic sets and, moreover,
this presentation is unique (Theorem 4.4). This shifts the focus of the
study of algebraic sets onto their irreducible components. It turns out
that irreducible algebraic sets and the corresponding coordinate algebras
are the algebraic counterparts to the universal closure of the algebra B
(see Theorem 11.5 below).

Lemma 11.1. Let B and C be A-Lie algebras such that C € Disx(B)
(see Definition 8.11). Then C € A—ucl(B).

Proof. Recall that the condition C' € A—ucl(B) means that every finite
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submodel of the algebra C' A-embeds into the algebra B. This is obvious,
since C' is A-discriminated by the algebra B. O

Corollary 11.2. Let B be an A-Lie algebra, and suppose that a finitely
generated A-Lie algebra C' is the coordinate algebra of an irreducible
algebraic set over B. Then C € A—ucl(B).

Lemma 11.3. Let B be an A-equationally Noetherian A-Lie algebra
and C a finitely generated A-Lie algebra. If C € A—ucl(B) then C €
DiSA(B).

Proof. Since B is A-equationally Noetherian, we have, in view of Remark
10.6 and Lemma 10.8, that

(A—pvar(B)), = (A—qvar(B)).,.

And since A—ucl(B) C A—qvar(B) the algebra C lies in the class
(A—pvar(B)),, i.e. C is a coordinate algebra of an algebraic set over B
and has the form C =T'g(S) for S C A[X], X = {x1,...,2,}. Since B
is A-equationally Noetherian we can assume without loss of generality
that S = {s1,...,sp} is a finite system of equations.

Assume now that the algebra C is not discriminated by B. Then there
exists an m-tuple

f1+Radg(S),..., fm+Radp(S) € T'p(S), fi¢Radp(S),i=1,...,m

such that the image of at least one of these elements under every A-
homomorphism ¢ : C' — B is zero. In other words, this implies that the
algebra B satisfies the universal formula

p m
O =V -Va, /\ $j(Z) =0— \/fz(g’c) =0
j=1 i=1
This yields a contradiction, since C € A—ucl(B) and the formula ® is
not true in the algebra C'. Indeed, after substituting the elements

z1 +Radg(S),...,z, +Radp(S) € I'r(S5)

into ® we see that the consequence is a false statement while the condi-
tion is true. (]

We denote by LDis4(B) the set of all A-Lie algebras such that ev-
ery finitely generated A-Lie subalgebra of an algebra from LDis4(B) is
A-discriminated by B. The following result follows directly from the
previous discussion.
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Theorem 11.4. If B is an A-equationally Noetherian A-Lie algebra
then

A—ucl(B) = LDisu(B).

Theorem 11.5. Let B be an A-equationally Noetherian A-Lie algebra
and C a finitely generated A-Lie algebra. Then C' is the coordinate alge-
bra of an irreducible algebraic set over B if and only if C € A—ucl(B).

Proof. If C is a coordinate algebra of an irreducible algebraic set over
B then, in view of Corollary 11.2, C' € A—ucl(B).

Conversely, let C' be a finitely generated A-Lie algebra from the class
A—ucl(B). By Remark 10.6 and Lemma 10.8,

(A—pvar(B)), = (A—qvar(B)),.

Since A—ucl(B) C A—qvar(B), C lies in the class (A—pvar(B)),: that
is, C' is the coordinate algebra of an algebraic set over B, Y say. By
virtue of Theorem 11.4, C is A-discriminated by the algebra B. We are
left to show that the algebraic set Y is irreducible.

We argue towards a contradiction and assume that the algebraic set
Y isreducible: Y =Y, U---UY,,, Y #Y;,i=1,...,m. Then

RadB(Y) = RadB(Yl) n---N RadB(Ym),

Radp(Y) <Radp(Y;),i=1,...,m.

Let f; € Radp(Y;) ~Radp(Y), i = 1,...,m and let p € Y. For
the time being we treat the elements of C' as polynomial functions (see
Proposition 3.8). Since every A-homomorphism ¢ : C — B can be
regarded as a substitution of a point p € Y into the elements of C (see
Equation (3.1)), the polynomial f; vanishes at p € Y;. Since every point
of Y is contained in at least one of its irreducible components, we come
to a contradiction with the fact that C = T'p(Y) is A-discriminated by
the algebra B. O

Theorem 8.13 shows that the description of coordinate algebras is
equivalent to the description of finitely generated subalgebras of B. It
turns out that any coordinate algebra of an irreducible algebraic set
embeds into the ultrapower [, ; B /D with respect to an ultrafilter D
over the set I (for definitions see [6, 7]). We turn the algebra [[,., B /D
into an A-Lie algebra by using the diagonal embedding of A.

i€l

The following theorem follows from a classical theorem of Malcev [26].
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Theorem 11.6.

(i) LetY be an irreducible algebraic set over B. Then the coordinate
algebra T'g(Y') A-embeds into an ultrapower [],c; BY /D, where
1] = [B.

(ii) If B is A-equationally Noetherian, then any finitely generated A-
subalgebra of any ultrapower B’ /D is a coordinate algebra of an
wrreducible algebraic set over B.

12 Geometric equivalence

B. Plotkin [28] introduced an important notion of geometrical equiva-
lence for algebraic structures. Myasnikov and Remeslennikov [27] discuss
this notion in the case of groups and observe that all their results can
be transferred to an arbitrary algebraic structure. In this section, we
transfer their results to Lie algebras.

At the intuitive level of understanding, two Lie algebras are geometri-
cally equivalent if they produce identical algebraic geometries. More pre-
cisely, A-Lie algebras B and C' are called geometrically equivalent if for
every positive integer n and every system S C A[X], X = {x1,...,2,}
the radicals Radp(S) and Rad¢(.S) coincide.

Since radicals completely determine algebraic sets and their coordinate
algebras, the study of algebraic geometry over B is equivalent to the
study of algebraic geometry over C, provided that B and C are geo-
metrically equivalent. In the latter case, the respective categories of
algebraic sets are isomorphic.

Lemma 12.1. A-Lie algebras B and C are geometrically equivalent if
and only if

(A—pvar(B)). = (A—pvar(C)),,.

Proof. Assume that B and C are geometrically equivalent. Then the
families of coordinate algebras over B and C coincide and, consequently,
the classes (A—pvar(B)), and (A—pvar(C)), also coincide by virtue of
Theorem 8.8.

Now suppose that (A—pvar(B)), = (A—pvar(C)),. Let S C A[X]
be an arbitrary system and consider its radical Radp(S). Applying
Lemma 8.3, we have

RadB(S) = RadA—pvar(B)(S) = Radg—pvar(c) (S) = Radc(S).

By definition, B and C' are geometrically equivalent. O
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Corollary 12.2. If A-Lie algebras B and C are geometrically equivalent
then

A—qvar(B) = A—qvar(C).
Proof. By definition,
A—qvar(B) = A—qvar(A—pvar(B)) = A—qvar((A—pvar(B)).).
Now, in view of Lemma 12.1, A—qvar(B) = A—qvar(C). O

Observe that geometric equivalence of A-Lie algebras B and C does
not follow from equality of the quasivarieties generated by B and C.
As Lemma 12.3 demonstrates, a counterexample can be found only for
non g,-compact A-Lie algebras. Such counterexamples indeed exist, see
Example 10.7. We refer to [27] for more detail.

Nevertheless, for g,-compact Lie algebras, equality of quasivarieties is
equivalent to geometric equivalence.

Lemma 12.3. Let B and C be q,,-compact A-Lie algebras. Then B and
C are geometrically equivalent if and only if A—qvar(B) = A—qvar(C).

Proof. By Corollary 12.2, the geometric equivalence of the algebras B

and C yields A—qvar(B) = A—qvar(C).
Since B and C are g,-compact, then

(A—pvar(B)), = (A—qvar(B)), and (A—pvar(C)), = (A—qvar(C)),

by Lemma 10.8. Therefore the families of coordinate algebras over B and
C coincide and the algebras B and C' are geometrically equivalent. [

13 Algebraic geometry over free metabelian Lie algebras

The objective of this section is to give a brief account of recent results
in algebraic geometry over free metabelian Lie algebras. We shall follow
[9, 10, 11].

Throughout this section § will denote a free metabelian Lie algebra

over a field k. We also use the notation §, = (a1,...,a,) for the free
metabelian Lie algebra of rank r with the set of free generators (the free
base) ai,...,a,.

Recall that a metabelian Lie algebra is a Lie algebra A which satisfies
the identity:

(aob)o(cod)=0.
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We denote by Fit(A) the Fitting radical of the algebra A. It is well-
known that Fit(A) has a natural structure of a module over the ring of
polynomials, see [10].

13.1 The A-localization and the direct module extension of
the Fitting radical

In this subsection we introduce U-algebras; for any U-algebra A over
k we describe two extensions of the Fitting radical of A (introduced in
[10]). These constructions play an important role in the study of the
universal closure of the algebra A (see Sections 9 and 11).

Following [10], we call a metabelian Lie algebra A over a field k a
U-algebra if

o Fit(A) is abelian;
e Fit(A) is a torsion-free module over the ring of polynomials.

Let A be a U-algebra over a field k and {z,, o € A} a maximal set
of elements from A which are linearly independent modulo Fit(A). We
denote by V' the linear span of this set over k.

Let A = (x4, € A) be a maximal ideal of the ring R = k [z, € A].
Denote by Ra the localization of the ring R with respect to A and by
Fita(A) the localization of the module Fit(A) with respect to A, that
is, the closure of Fit(A) under the action of the elements of Ra (for
definitions see [5] and [21]). Consider the direct sum V @& Fita(A4) of
vector spaces over k. By definition, the multiplication on V is inherited
from A and the multiplication on Fita(A) is trivial. Set

UO Zo = U Lo, UEFiIta(A), 24 €V, u-x4 €Fita(A).

and extend multiplication on Fita(A) to V' by linearity.
In this notation, the algebra Aa is called the A-localization of the
algebra A.

Proposition 13.1. Let A be a U-algebra and Aa its A-localization.
Then ucl(A) = ucl(Aa), i.e. the algebras A and Aa are universally
equivalent.

Let M be a torsion-free module over the ring of polynomials R. By
definition, the algebra A & M is the direct sum of k-vector spaces V' &
Fit(A)@® M. To define the structure of an algebraon V@Fit(A)d M we
need to introduce multiplication. The multiplication on V is inherited
from A. The multiplication on Fit(A4) & M is trivial. If b € M and
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Zzo €V, we set boz, = b- 1z, and extend this multiplication by b
to elements from V' using the distributivity law. This operation turns
A ® M into a metabelian Lie algebra over k.

Proposition 13.2. Let A be a U-algebra and M a finitely generated
module over R. Then

o ucl(4) =ucl(Ae M),
e A—ucl(4) = A—ucl(A @ M);
e Fit(A® M) =Fit(4) & M.

The operations of A-localization and direct module extension com-
mute. Following [11], we denote by F, s the direct module extension
of the Fitting radical of §, by the free R-module Ts of the rank s,
37‘,5 = Sr S¥ Ts-

13.2 The case of a finite field

Our aim is to construct diophantine algebraic geometry over the free
metabelian Lie algebra §,.. When r = 1, algebraic geometry over §,
degenerates to Example 6.4. Therefore we restrict ourselves to the non-
degenerate case r > 2.

The universal axioms for the ®,.-algebras

In this section we formulate two collections of universal axioms @, and
®! in the languages L and Lz, , which axiomatize the universal classes
ucl(F,) and Fr—ucl(F,). Most of these formulas are in the first order
language L and consequently belong to both ®, and ®/. We shall write
the two series of formulas simultaneously, at every step indicating the
differences between ®, and /.

Axiom ®1 below is the metabelian identity, axiom ®2 postulates that
there are no non-abelian nilpotent subalgebras and axiom ®3 is the C'T-

axiom:
V$1,$2,J]3,$4 (.1'1332)(.1'3.%‘4) =0. (‘Pl)
VavVy xzyr=0Azyy =0 — xy = 0. (92)
VaVyVz x£0ANzy=0Az2z2=0— yz=0. (®3)

We next introduce an universal formula Fit(z) of the language L and in
one variable which defines the Fitting radical

Fit(z) = (Vy axyx = 0). (13.1)



68 1. V. Kazachkov

An analogue of formula (13.1) in the language Lz, is

Fit'(z) = /\ (xa;x =0). (13.2)
i
From now on we restrict ourselves to the case of a finite field k. In
particular, the vector space gT/Fit(ST) is finite, and its dimension over
kisr.

Lemma 13.3. Let k be a finite field and n € N, n < r. Then the
formula

()0('1:1,-”71777,) = /\ _‘Fit(alxl + +O[n17n)
(0517...70[,”)#6

of the language L is true on the elements {b1,...,bn} of §r if and only
if b1,...,by are linearly independent modulo Fit(F,).

We can express the dimension axiom using formula ¢:
VSL‘l "‘V$r+1 _|QD((E1,...,$T+1). ((1)4)

Since ¢ is an existential formula, the formula —¢ and hence axiom ®4
are universal. This axiom postulates that the dimension of the factor
space B/Fit(B) is at most r, provided that B satisfies ®1 — ®3.

Recall that Fit(F,) has a structure of a module over the ring of poly-
nomials R = k [z1, ..., 2,|. The series of axioms ®5, ®'5, 6, &7 and &'7
express module properties of Fit(F,). In these axioms we use module
(over R) notation. In particular, this involves rewriting the polynomial
f(z1,...,2,), n < r in the signature of metabelian Lie algebra; see
[10] for a more detailed description of transcription from the module
signature to the Lie algebra signature.

The Fitting radical of the free metabelian Lie algebra is a torsion-free
module over the ring R. We use this observation to write the following in-
finite series of axioms. For every nonzero polynomial f € k[z1,...,z,],
n < r, write

D5 : V1 VzoVay - - -V, (2122 - f(x1,. .., 20) =0 A 21290 #0)

(®5)
= (=T, ... x0)).
Since p(x1,...,zy) is a I-formula the formula ®5 is a V-formula.
This property can be expressed in the language Lz as follows. For
any nonzero polynomial f € k[x1,...,x,] write:

Vz1Vze (2122 f(a1,...,a;) =0 — 2129 = 0). (®'5)
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The main advantage of this formula is that it does not involve the for-
mula ¢, thus the restriction on the cardinality of the field k is not sig-
nificant.

For every nonzero Lie polynomial l(ay,...,a,), n < r in variables
ai,...,a, from the free base of §,, we write
Voy Vo, @@, ..., an) = (U1, @) #0). (26)
Since p(x1,...,Ty) is a F-formula the formula ®6 is a V-formula.

The series of axioms ®7 and ®’7 are quite sophisticated. We first
introduce higher-dimensional analogues of Formulas (13.1) and (13.2):

Fit(y1, ...,y T1,...,&n)

= (/\(ywiylzo)) ASERRA </\(ylxiy120)>,

i=1

Fit'(y1,...,u) = Fit'(y1) A -+ AFit' ().

We begin with the series of axioms ®'7 in the language Lz, . Let S be
a fixed finite system of module equations with variables y1,...,¥y; over
the module Fit(§,). Every equation from S has the form

h=y fi(Z)+-+yfilxt) —c=0, c=cla,...,a,)cFit(F,),

where Z = {x1,...,2,} is a vector of variables and f1,..., fi € R = k[Z].
Suppose that S is inconsistent over Fit(F,). This fact can be written, in
an obvious way, as a logical formula in the signature of a module. The
system S gives rise to a system of equations S; over §,. Replace every
module equation h; = 0 from S by the equation b} =0, i =1,...,m
in the signature of Lz, (see [10]). This procedure results in a system of
equations S over §,. For every inconsistent system of module equations
S, write

s =Yy Fit'(y,.om) =\ Riyn,..om) £0. (@)
i=1

Note that we have not used the restriction on the cardinality of the
field k.

Now we turn our attention to the collection ®, in the language L.
Let S be a system of m module equations inconsistent over the Fitting
radical Fita(§,) of A-local Lie algebra (§Fn)a. We write, for every
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n € N, n < r and every such system S:

Yn,g =Vr1 Vo, Yy - Vyr o(z1, ..., 20) AFit(ys, ..., y1) —

— \/hi(yl,...,yl; Z1y...,Zn) £ 0.
i=1
(@7)

The Lie polynomials h;, i = 1, ..., m are constructed from the system S
according to the following procedure. Consider the i-th equation of S.
It has the form

R =wyifi(xr,...,xn) + -ty fi(zi, ..., 2n) —c=0,
fi € R, ¢ =c(ay,...,an) € Fit(Fn).

After replacing every occurrence of a; in c(ai,...,a,) by x; for j =
1,...,n, and rewriting the polynomial A} in the signature of Lie algebras
(see [10]), the resulting Lie polynomial is h;.

Denote by @, and by @, the universal classes axiomatized by ®1-
®7 and by ®1-94, 9’5, &6, 7. respectively. The algebras from these
classes are called, correspondingly, ®,-algebras and @/ -algebras.

13.3 Main results
Assume that the ground field k is finite.

Theorem 13.4. Let A be an arbitrary finitely generated metabelian Lie
algebra over a finite field k. Then the following conditions are equivalent:

o Acucl(F,);
o there exists s € N so that A is a subalgebra of §r,s;
o A is a ®.-algebra.

Corollary 13.5. The universal closure ucl(F,) of the free metabelian
Lie algebra §, is axiomatized by P,..

Theorem 13.6. Let A be an arbitrary finitely generated metabelian §,.-
Lie algebra over a finite field k. Then the following conditions are equiv-
alent:

o AcF,.—ucl(F,);

o Ais a @ -algebra;

o A is §r-isomorphic to the algebra §. ® M, where M is a torsion-free
module over R =k[x1,...,xy].
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It is shown in [10] that for every torsion-free R-module M the algebra
§r & M Fr-embeds into §, s for some s € N. It follows that all ®/-
algebras can be treated as §,-subalgebras of g .

Corollary 13.7. The universal closure ucl(F,) of the free metabelian
Lie algebra §, is aziomatized by P!..

Theorem 13.8. Azioms @, (and ®!) form a recursive set. The uni-
versal theory in the language L (in the language L, , respectively) of the
algebra §, (treated as an F,.-Lie algebra, respectively) over a finite field
k is decidable.

Theorem 13.9. The compatibility problem for a system of equations
over the free metabelian Lie algebra §, is decidable.

This result contrasts with a result of Roman’kov [29] on the compati-
bility problem over metabelian groups: he proved that in the case of free
metabelian groups of a sufficiently large rank the problem is undecidable.
His argument holds for free metabelian Lie rings and free metabelian Lie
algebras, provided that the compatibility problem for the ground field
is undecidable (and thus the ground field is infinite).

We next classify all irreducible algebraic sets over §,.. Combining
Theorems 11.5 and 13.6 we state

Proposition 13.10. Let I' be an §.-Lie algebra. Then T is a coor-
dinate algebra of an irreducible algebraic set over §, if and only if T
18 §r-isomorphic to . ® M, where M is a torsion-free module over
klzy,...,z.].

Let R = k[x1,...,2,] and let M be a finitely generated torsion-free
module over R. Let Homp(M,Fit(§,)) be the set of all R-homomorphisms
from M to Fit(F,) treated as a module over R. The lemma below de-
scribes the canonical implementation of an algebraic set.

Lemma 13.11. In this notation, we have a one-to-one correspondences
Homp (M,Fit(§,)) <> Homg (&, ® M,F,) < Y
where Y is an irreducible algebraic set over §, such thatT'(Y) =F, & M.

Theorem 13.12. Up to isomorphism, every irreducible algebraic set
over §, is either Homp(M,Fit(F,)) for some finitely generated torsion-
free module M over the ring R, or a point.

Corollary 13.13. Every irreducible algebraic set in the affine space §},
n =1, is, up to isomorphism, either a point or Fit(§,).



72 1. V. Kazachkov

Recall that the rank r(M) of the module M over a ring R is the
supremum of cardinalities of linearly independent over R sets of elements
from M. We set r(T'(Y)) =r(M) f T(Y) =5F, & M.

Theorem 13.14. For an irreducible algebraic set'Y over §,
dim((Y) = r(T(Y)) = r(M).

Remark 13.15. When this paper had already been written E. Dani-
yarova published her PhD thesis, where in particular she obtained a
description of the quasivarieties qvar(§,) and §,.—qvar(F,).

14 Algebraic geometry over a free Lie algebra

In this section we outline results by Daniyarova and Remeslennikov [12]
on diophantine geometry over the free Lie algebra.

The aim of algebraic geometry is to classify irreducible algebraic sets
and their coordinate algebras. We expect that the classification problem
of algebraic sets and coordinate algebras in the case of the free Lie
algebra is very difficult if taken in full generality. We treat this problem
only in the two following cases:

e for algebraic sets defined by systems of equations with one variable;
e for bounded algebraic sets (see Definition 14.8).

In these cases, we reduce the problem to the corresponding problem in
the diophantine geometry over the ground field k.

The classification of algebraic sets and coordinate algebras over free
groups was considered in a series of papers [1, 3, 7, 16, 22, 23, 24, 27],
the earliest of which [24] dates back to 1960. In that paper Lyndon
studied one-variable systems of equations over free groups. Recently, a
satisfactory classification of irreducible algebraic sets over a free group F
and their coordinate groups was given in [19, 20]. We begin this section
by comparing results for free Lie algebras [12] and for free groups [7].

Let F be a free group and S any system of equations in one variable
over F (i.e. S C Fx*(z)) such that V§(S) # 0. The full description of all
algebraic sets in F! =T is given by the following two theorems.

Theorem 14.1. Any coordinate group Tr(Y) of an irreducible algebraic
set Y C F! satisfies one of the following three conditions:

o I'p(Y) 2T,

o I'p(Y) X T« (x), where x denotes the free product of groups;
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o Ip(Y) = (F,t | [u,t] =1), where u generates a maximal cyclic sub-
group of F.

Theorem 14.2. If V # F! is an irreducible algebraic set defined by a
system of equations with one variable then:

e cither V is a point, or
o there exist elements f, g, h € F such that V = fCy(g)h, where Cr(g)
stands for the centralizer of g in F.

On the other hand, the classification of algebraic sets is much more
complicated in the case of one-variable equations over the free Lie alge-
bra.

Theorem 14.3. Up to isomorphism, an algebraic set defined by a con-
sistent system of equations with one variable over F is either bounded
(see Definition 14.8) or coincides with F'.

Roughly speaking, bounded algebraic sets are the ones contained in
a finite dimensional affine subspace of F. To make this definition ex-
plicit, we introduce the notion of a parallelepipedon (Section 14.1) and
then show that algebraic geometry in a parallelepipedon is equivalent to
diophantine geometry over the ground field (Section 14.3).

14.1 Parallelepipedons

We shall now show that every finite dimensional affine subspace V of a
finitely generated free Lie algebra F' is an algebraic set.

Let V be a finite dimensional subspace of F', V' = ling(v1,...,Um)
where 1inyg is the linear span over k. Set

si(xz) =z owy; sa(x) = s1(x,v1) 0 81(va,v1) = (£ owvy) o (v 0vy).
Recursively, set
Sm () = Sm—1(2,v1, ..., Um—1) © Sm—1(Vm, V1, -« -, Vm—1)- (14.1)

Note that equations s;(z) = 0 are linear over k& and thus define vector
subspaces of the algebra F'.

Proposition 14.4. Any finite dimensional linear subspace of the algebra
F is an algebraic set over F. Furthermore, an l-dimensional subspace
of F' can be defined by an equation of the type s;.
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Moreover, affine shifts of linear subspaces (affine subspaces) of F are
also algebraic sets. Let ¢ € F' be an arbitrary element. Then the sub-
space V + ¢ (here V is a linear subspace of dimension [) is, obviously,
also an algebraic set over the free Lie algebra F' in the obvious way: it
is defined by the equation s;(z — ¢) = 0.

Corollary 14.5. FEvery affine shift of an arbitrary finite dimensional
linear subspace of the algebra F' is an algebraic set over F.

Using the same argument for systems of equations with n variables,
we get the following result.

Corollary 14.6. Let V;, i = 1,...,n, be finite dimensional linear (or
affine) subspaces of the free Lie algebra F. The direct product V =
Vix.--xV, CF" is an algebraic set over F.

We denote by V the direct product of affine finite dimensional sub-
spaces of F', i.e.

V=WVi+c)x-xVhu+e,) CF,

Vi = ling {v},..., v}, } . We call such spaces parallelepipedons.

Let F' = [[;e; F© and k = [[,¢,;
powers of F' and k, where the cardinality of the set I coincides with
the cardinality of F. We turn the algebra F into an F-Lie algebra by
identifying the diagonal copy of the algebra F' with F. We next apply
Theorem 8.15 and obtain

k@ be the unrestricted cartesian

Proposition 14.7. Let IT'(V) = (&1, ..., &) ¢ be a realization (see Defi-
nition 8.14) of T(V) in F, &1,...,&, € F. Then the generators &; have

the form
G=tvl+ -+t vl Lt €k (14.2)

m;?

and the coefficients t; satisfy the conditions

° {(tz-(l)), le I} = kM if the field k is finite, or

e the elements tz ’s are algebraically independent over k, otherwise.

14.2 Bounded algebraic sets and coordinate algebras

Definition 14.8. An algebraic set Y over F' is called bounded if it is
contained in a parallelepipedon.

We list some properties of bounded algebraic sets.
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e An arbitrary bounded algebraic set Y is contained in infinitely many
parallelepipedons.

e Let Y, Z C F™ be algebraic sets and let Y be bounded. Suppose next
that there exists an epimorphism ¢ : Y — Z. Then Z is also bounded.

This section is mostly concerned with the parallel concept of bounded
coordinate algebra. Set

B(F) = {§ € F| the degrees of the coordinates of ¢ are bounded above} .
Proposition 14.9. In this notation, B(F) = F ®y k.

A coordinate algebra is called bounded if it has a realization in B(F)
(see Definition 8.14).

Proposition 14.10.

(i) An algebraic set Y C F™ over F is bounded if and only if its
coordinate algebra I'p(Y) is bounded.
(ii) If Y C V then any realization of T'rp(Y) = (&1,...,&n) has the
form (14.2).
(iil) If the generators &; in a realization of T'p(Y') have the form (14.2)
then Y C V.

14.3 The correspondences between algebraic sets, radicals
and coordinate algebras
The objective of this section is to establish a correspondence between
bounded algebraic geometry over the free Lie algebra and algebraic ge-
ometry over the ground field k.

We begin with bounded algebraic geometry in dimension 1, that is,
consider algebraic sets Y C F. Fix a parallelepipidon V=V +¢ C F,
where V' = ling {v1,...,0}, dimV = m, ¢ € F. We shall show that
there exists a one-to-one correspondence between bounded algebraic sets
over F' from V and algebraic sets over k that lie in the affine space £™:

Yr CVe Y, CE™
Our correspondence takes the following form. Let Yy C V then
Yii={(a1,...,am) €K™ | aqvr + -+ vy +c € Yr} C k™. (14.3)
Conversely, let Y; be an algebraic set in k™. Set

Yr={a1v1 + -+ amvm | (@1,...,am) €Y} CV. (14.4)
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We wish to show that the sets defined by (14.3) and (14.4) are algebraic.
We do this by constructing the corresponding systems of equations, Sp
and Sk, such that YF = V(SF) and Yk = V(Sk)

As shown in Lemma 3.5, an algebraic set is uniquely determined by its
radical, which will be more convenient for us to work with. First we de-
fine the correspondence between polynomials in F [z] and & [y1, . . ., Ym]-

Consider an arbitrary Lie polynomial f(z) € Radp(Y') and a point

p=aiv1+- -+ apvy, +ceV.
We treat the coefficients «; as variables and write f(p) in the form
f(p) = gl(ala .. .,Oém)U1 4 +gs(a17 .. 'aam)uéﬂ

where ¢1,...,9s € k[y1,...,ym] and uq,...,us € F are linearly inde-
pendent and do not depend on the point p. Clearly

f(p) =0if and only if g1(a1,...,qm) =... =gs(a1,...,am,) =0

We can therefore set Sy = {g1,...,9s} Ck[y1,---,Ym]-
We next construct the inverse correspondence. Consider a polynomial

g(ylaaym)zzaiyzlly;;zn: ) Oqu, 52(217,Zm)€Nm
i
and set My, = max{i1},..., M, = max{i,}. We associate with the

polynomial g(7) a Lie polynomial fy(z) such that

g(y) € Rad(Yy) < fq(x) € Rad(YFp).

Set
fm (E) = Sm—l(ir_c,’l}h...,’l)n_l)
fm-1(@) = Sm-1(x —c,v1,...,0p_2,0,)
fi(x) = Sp_1(x—¢,v9,.. ., Vp1,Up),

where s,,_1 is the Lie polynomial defined by Equation (14.1). Substi-
tuting the point p into the f;’s we obtain

fm(@) = @mbm;  frm—1(P) = am—1bm-1; ...; fi(p) = by,

where b1,...,b, € F are not zeros. Choose a Lie polynomial a € F
so that the degree (see [2] for the definition) of a is greater than the
degrees of the polynomials b;. In that case all the products of the form
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aby -+ -biby -+ bg---by - by are nonzero (see [30] or [4]). We define the
Lie polynomial f4(x) as

fg(a:):Za;aofl(x)o---ofl(x)oblo---oblo-~-

i1 My —iq

...of,,n(x)O...ofm(x)obno...obn.

im My —im
We get, after substituting the point z = p into fy(x),
fo(p) =g(ai,...,an)ao0bio---0bjo---0bp o 0by.
M, My,

Therefore, fo(xz) =0 if and only if g(as,...,an) =0.
We now define the correspondences

Rad(YF) — Rad(Sk)

Rad(Y%) — Rad(Sr)
by setting
Rad(Yr) — Sy = {Sy | f € Rad(Yr)}
and
Rad(Yy) — Sp = {fy(z) € Fz] | g € Rad(Y)} U sim(z —c,v1,...,Um),

where Vp(sm(x — ¢,v1,...,0m)) = V; see Equation (14.1).
The previous argument holds not only in the case when Yr C V + ¢
but also in a more general context Yy C F™. Furthermore,

V=WVi+eg x---xV,+c¢, CF",
with
V}:link{vi,...,vin}.

Indeed, similarly to the dimension 1 case, we can define the correspon-
dence between algebraic sets from V and affine subsets from k™, where
M =mq + -+ my, by setting

_ 1,1 1 1 n, n n n
Yp = {(alvl +"'+amlvml"">alvl —|—-~-+O¢m11}ml +c”)} cv
_ 1 1 n n M
=Yy ={ag,...,0p, ,...,af,...,ap, } C k.
ma My

(14.5)
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The following theorem demonstrates the relation between this con-
struction and the correspondence (14.5).

Theorem 14.11.

o Let Y, C kM be an algebraic set over k. Then the corresponding set
Yr C V is algebraic over F. Moreover, Yr = V(SF).

o Let Yr C 'V be an algebraic set over F. Then the corresponding set
Yy is algebraic over k. Moreover, Y, = V(Sk).

o The maps Yp — Yy, and Yy, — Yr define a one-to-one correspondence
Yr « Yy between algebraic (over F) sets from V C F and algebraic
(over k) sets from kM. Consequently, Yr — Y}, — Yp = idps(ry and
Yi = Yr — Y = idpsiy-

e The correspondence Rad(Yr) <> Rad(Yy) defined above is a one-to-one
correspondence between radical ideals from

k [y%,...,y}nl,...,y?,...,yfnn]
and those radical ideals from §[x1,...,x,] that contain
Smq (T1 — 1)y oy S, (Tn, — ).
Corollary 14.12.

o Let S be a system of equations over F'. If S defines a bounded algebraic
set, then S is equivalent to a finite system Sp.

o If the ground field k is finite, then any subset M C V is algebraic
over F.

A realization of a coordinate ring over k can be defined by analogy
with Definition 8.14. The correspondence (14.5) can be reformulated in
terms of coordinate algebras as follows.

Theorem 14.13. Let Yr C V be a bounded algebraic set over F and
let Y, C kM be the corresponding algebraic set over k. Consider the
F-algebra

CYF = <£17"'7£n>Fa
where each & has the form (14.2). Then Cp is a realization of I'rp(Yr)
if and only if the k-subring
Cro= (b tl, oty 0 )

s bmyo » Yy,

is a realization of the coordinate ring I'y(Yy).
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We have to address some of the differences between the case of dimen-
sion 1 and the case of higher dimensions. If V =V} x --- x V},, is a fixed
variety in £V, we interpret it in &V by partitioning the N variables into
m groups, N = ny + --- + n,,. Note that the affine space kv, N > 1,
represented as a sum of m sub-spaces is not equivalent to the whole k%,
since the notion of a ‘decomposed affine space’ cannot be expressed in
terms of morphisms of algebraic sets.

Note that the interpretations of bounded algebraic geometry over the
algebra F' in dimension 1 and in higher dimensions (as diophantine geo-
metry over k) are very similar.

Finally, we classify algebraic sets defined by systems of equations
with one variable. By Proposition 14.10 the coordinate algebra of any
bounded algebraic set has a realization in B(F). Moreover, according
to Theorem 8.15, ['(Y) is isomorphic to the subalgebra (F, &) of B(F).
Using the machinery of combinatorics in Lie algebras [4, 30], one can
show that the only alternatives are:

e ¢ € B(F), in which case Y is bounded; or
e & ¢ B(F), in which case I'(Y) = F * (z).

Theorem 14.14. Every algebraic set defined by a system of equations
in one variable over the free Lie algebra F is (up to isomorphism) either
bounded, empty, or coincides with F.

Note that the Jacobi identity is not essential for the proofs of most
of the results of Section 14 and they can be generalized to free anti-
commutative algebras [12, Appendix].

Acknowledgements

This work was supported by a grant from the London Mathematical
Society. I am grateful to R. Bryant, E. Daniyarova and R. Stor for useful
comments and remarks, as well as to S. Rees, A. Duncan, G. Megyesi,
K. Goda, M. Batty for their support and to H. Khudaverdyan for lending
me his office. My special thanks go to the London Mathematical Society
for the unique opportunity to write this survey. This text would have
never appeared without V. N. Remeslennikov, to whom I express my
sincere gratitude.



80

(1]
2]
3]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
18]

[19]

1. V. Kazachkov

Bibliography

K. I. Appel. One-variable equations in free groups. Proc. Amer. Math.
Soc., 19:912-918, 1968.

Y. A. Bahturin. Identities in Lie Algebras. Moscow, Nauka, 1985. In
Russian.

G. Baumslag, A. G. Myasnikov, and V. N. Remeslennikov. Algebraic ge-
ometry over groups I. Algebraic sets and ideal theory. J. Algebra, 219:16—
79, 1999.

L. A. Bokut and G. P. Kukin. Algorithmic and Combinatorial Algebra,
volume 255 of Mathematics and its Applications. Kluwer Academic Pub-
lishers Group, Dordrecht, 1994.

N. Bourbaki. Elements of mathematics. Commutative algebra. Hermann,
Paris, 1972. Translated from the French.

C. C. Chang and H. J. Keisler. Model Theory, volume 73 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing
Co., Amsterdam, 1973.

I. M. Chiswell and V. N. Remeslennikov. Equations in free groups with
one variable 1. J. Group Theory, 3:445-466, 2000.

E. Yu. Daniyarova. Elements of algebraic geometry over Lie algebras.
Preprint.

E. Yu. Daniyarova, I. V. Kazatchkov, and V. N. Remeslennikov. Algebraic
geometry over free metabelian Lie algebra I: U-algebras and A-modules.
Preprint N34, Omsk, OmGAU, 2001.

E. Yu. Daniyarova, I. V. Kazatchkov, and V. N. Remeslennikov. Algebraic
geometry over metabelian Lie algebras I: U-algebras and universal classes.
Fundam. Prikl. Mat., 9(3):37-63, 2003. Translation in J. Math. Sci. (New
York), 135(5):3290-3310, 2006.

E. Yu. Daniyarova, I. V. Kazatchkov, and V. N. Remeslennikov. Algebraic
geometry over metabelian Lie algebras II: The finite field case. Fundam.
Prikl. Mat., 9(3):65-87, 2003. Translation in J. Math. Sci. (New York),
135(5):3311-3326, 2006.

E. Yu. Daniyarova and V. N. Remeslennikov. Bounded algebraic ge-
ometry over a free Lie algebra. Algebra Logika, 44(3):269-304, 2005.
Translation in Algebra Logic, 44(3):148-167, 2005.

C. Faith. Algebra: rings, modules and categories. I. Die Grundlehren der
mathematischen Wissenschaften, Band 190. Springer-Verlag, New York,
1973.

R. Goebel and S. Shelah. Radicals and Plotkin’s problem concerning
geometrically equivalent groups. Proc. Amer. Math. Soc., 130:673-674,
2002.

V. A. Gorbunov. Algebraic theory of quasivarieties, volume 5 of Sibirskaya
Shkola Algebry i Logiki. Nauchnaya Kniga, Novosibirsk, 1998.

V. Guirardel. Limit groups and groups acting freely on R"-trees. Geom.
Topol., 8:1427-1470 (electronic), 2004. Cf. arXiv math.GR/0306306.

R. Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in
Mathematics. Springer-Verlag, New York-Heidelberg-Berlin, 1977.

J. L. Kelley. General topology. D. Van Nostrand Company, Inc., Toronto-
New York-London, 1955.

O. Kharlampovich and A. Myasnikov. Irreducible affine varieties over a
free group. I: Irreducibility of quadratic equations and Nullstellensatz. J.
Algebra, 200:472-516, 1998.



[20]

[21]
(22]
23]
24]

(25]

L

Algebraic geometry over Lie algebras 81

O. Kharlampovich and A. Myasnikov. Irreducible affine varieties over a
free group. II: Systems in row-echelon form and description of residually
free groups. J. Algebra, 200:517-570, 1998.

S. Lang. Algebra. Revised third edition., volume 211 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 2002.

A. A. Lorents. The solution of systems of equations in one unknown in
free groups. Dokl. Akad. Nauk., 148:1253-1256, 1963.

A. A. Lorents. Equations without coefficients in free groups. Dokl. Akad.
Nauk., 160:538-540, 1965.

R. C. Lyndon. Equations in free groups. Trans. Amer. Math. Soc, 96:445—
457, 1960.

A. 1. Malcev. Some remarks on quasi-varieties of algebraic structures.
Algebra and Logic, 5(3):3-9, 1966.

A. 1. Malcev. Algebraic Structures. Moscow, Nauka, 1987.

A. G. Myasnikov and V. N. Remeslennikov. Algebraic geometry over
groups II. Logical Foundations. J. Algebra, 234:225-276, 2000.

B. Plotkin. Varieties of algebras and algebraic varieties. Categories of
algebraic varieties. Siberian Advances in Math., 7(2):64-97, 1997.

V. A. Roman’kov. On equations in free metabelian groups. Siberian
Math. J., 20(3):671-673, 1979.

A. 1. Shirshov. Selected papers. Rings and Algebras. “Nauka”, Moscow,
1984. In Russian.

V. Kazachkov

805 Sherbrooke St. West

Mathematics and Statistics Department
McGill University

Montreal, QC,

Canada H3A 2K6
ilya.kazachkov@gmail.com



Destabilization of closed braids
Andrey V. Malyutin

Acknowledgements

I would like to thank Professor Peter Walters and Warwick Mathematics
Institute for their warm hospitality.

Introduction

This paper concerns braid theory and several related subjects: knot
theory, surface mapping class groups, hyperbolic geometry of surfaces,
etc.

The central topic of the paper is the Markov destabilization of braids.
Here we shortly describe some features of the ‘destabilization problem’
in the braid group and explain how the other topics of this paper relate
to this one. There are many works related to destabilization, and we
refer to only a few of them. See for instance [7, 6, 10, 5, 8, 9], [14, 17]
and [19, 20, 21]; older references include [2, 3, 22, 23, 24].

The Artin braid group B, on n strands is determined by the presen-
tation

Bn = <O’1, ey Opn—1 | O’Z‘O'j = JjO'i, |Z —j| 2 2; 0;0;4+10; = Ui+10i0i+1>~

The group B; is trivial, while By = Z. Elements of B,, are called braids.
The generators o1, ..., o,_1 are Artin’s generators.

Closed braids

Suppose L C R? is an oriented link in the oriented 3-space R®. Suppose
A C R® \ L is an infinite ‘unknotted’ curve in R® such that the space
R3 \ A is homeomorphic to the open solid torus. Recall that an open

82
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2-disc D in an open solid torus T is said to be meridional if the space
T ~ D is homeomorphic to the open 3-ball. The link L is called a closed
braid with azis A if there is a fibration of the open solid torus R? \ A
into meridional discs such that L intersects each disc of this fibration
transversally (and orientations of the intersections are coherent). The
number of intersection points of L and a disc of the fibration is the index
of the closed braid (L, A). The closed braids of index n are called n-
braids. We use the term ‘closed braid’ to refer to an isotopy class of
closed braids as well.

The standard ‘closing procedure’ (see, e.g. [2]) transforms a braid
3 € B, into a closed n-braid. There is a well-known one-to-one corre-
spondence between conjugacy classes in the braid groups By, Bs, Bs, . ..
and isotopy classes of closed braids. For this reason, we denote by E
both the conjugacy class of a braid 8 and the corresponding closed braid,
which we identify with the conjugacy class.

We denote by L(@) (or just by L£(«)) the link type represented by a
closed braid a.

The destabilization problem
We say that a closed (n — 1)-braid (= a conjugacy class) @ C B,_4
is obtained from a closed n-braid 8 C B, by a positive (respectively,
negative) destabilization if there is a braid oy € @ such that ayo,—1 € 8
(respectively, ala,ﬂl € B):

) +1 ~
B32mo, -, — aj€a.

We also say that B\ is obtained from @ by a stabilization.

Thus, B admits a destabilization, or is destabilizable, if B contains a
braid of the form X! | W, where W is a word in the letters {07, ..., 021, }.
We observe that 3 admits a positive destabilization if and only if 3’1
admits a negative destabilization. Hence, B is destabilizable if and only
if B_l is destabilizable.

Note that we can use the generator o; as the ‘outermost generator’
instead of 0,,_1: a closed braid B admits a destabilization if and only if
B contains a braid of the form afﬂW, where W is a word in the letters
{O'Qil, ce O’,fil )

Stabilization and destabilization of braids were introduced by Markov
in 1935 (see [22]). The celebrated Markov theorem states that two closed
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braids represent one and the same link type if and only if they are related
by a finite sequence of stabilizations and destabilizations.

While a stabilization can be applied to any closed braid (furthermore,
it can ‘usually’ be applied in many different ways), not each closed braid
is destabilizable. The ‘destabilization problem’ is the problem of re-
cognizing whether a given closed braid admits a destabilization. The
formulation of this problem can be found, for example, in [17, 4].

In this paper we present, in particular, an algorithm which solves
the ‘destabilization problem’, i.e. an algorithm which detects whether
a given closed braid is destabilizable. By an ‘algorithm’ we mean a
‘computational procedure’ that takes a finite number of steps.

Approaches to the destabilization problem and related
problems

We consider the following three approaches to the destabilization prob-
lem.

The ‘knot approach’. Under this approach, we regard braids (or rather
closed braids) as objects in 3-space (see the remarks above ). Here
the destabilization problem has a clear knot-geometric meaning. The
problems most closely related to the destabilization problem are the
problems of admissibility of other ‘braid moves’, e.g. the exchange move
and the generalized flype. Braid moves that are different from the sta-
bilization and destabilization were introduced by Birman and Menasco,
see [5, 6, 7, 8, 10].

The ‘group approach’. This approach is focused on the group structure.
We actually used this approach above in the definition of the destabi-
lization. Admissibility of other braid moves can also be formulated in
these terms.

From the point of view of group theory, the ‘braid moves problems’
belong to a vast family of recognition problems for discrete groups. The
‘simplest’ questions in this family are the word and conjugacy problems,
the problems of (stable) commutator length, etc. Another sample prob-
lem is that of recognizing whether a given element of a group G belongs
to the product of a given collection of subsets (say, subgroups) of G.
For mapping class groups, we have, e.g. the problem of detecting how
many reducible elements of a group we must multiply to obtain a given
element.
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The ‘surface approach’. This approach treats the braid group B, as
the mapping class group of the n-punctured disc D,,, so that we regard
braids as classes of automorphisms of D,,. It turns out that the desta-
bilization problem can be formulated in terms of the action of the braid
group (= the mapping class group) on the space of isotopy classes of
curves (see Subsection 4.1 below).

Admissibility problems for other braid moves can also be formulated
in these terms. From this point of view, recognition problems for braid
moves are just a few problems in a long list that includes, among oth-
ers, the problem of detecting the Nielsen-Thurston type of a surface
automorphism, the problem of detecting the strong irreducibility (this
problem is not solved yet), etc.

To construct an algorithm solving the destabilization problem, we use
the ‘surface approach’. It involves results of hyperbolic geometry and
the Nielsen-Thurston theory. The methods developed can be applied to
recognize (in ‘generic’ cases) whether a given braid admits an exchange
move or a flype. Also, these methods enable us to detect the strong
irreducibility in mapping class groups of certain punctured surfaces and
surfaces with nonempty boundary.

Structure of the paper

In Section 1, we present results concerning closed braids that can be
destabilized in an infinite number of different ways.

In Section 2, we give auxiliary definitions and results related to the
hyperbolic geometry on a punctured disc.

Section 3 concerns the ‘surface approach’ to the braid group.

In Section 4, we describe an algorithm that solves the destabilization
problem.

1 ‘Infinitely destabilizable’ braids

Notation. Let /3 be a closed n-braid. We denote by ’D(B) the set of all
closed (n — 1)-braids that are obtained from ( by a destabilization.

By 6(3) we denote the set of all closed (n+1)-braids that are obtained
from @ by a stabilization. Thus, we have

aecD(P) = Beo6@).
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Proposition 1.1. Let 8 € Bs be a 3-braid representing a knot (i.e. a
one-component link). Let B, be the 5-braid represented by the word
60'2_20'30'40'20'3 N

—2
B = Poy “03040203 € Bs.
(Obuiously, By represents the same knot as 3.) Then the set D(0y) is
infinite.
Proof. We set
P —S S
Bs =0, °Be0y.
(It is clear that 8, € (,.) We obviously have oj0i110; = 0441007, ;.
Using this relation, we obtain
—s —2 s
Bs = 04 °Bo, 0304020307}
= ,302_204_30304020302
= /60520304055020302
—2 —5 _s
= Boy 0304020305 "0y (1.1)
= B0y 2030904030505 °
= foy 2030005040305 °
= ﬁa§_20302040302_8.

We destabilize f,:

Bs = ﬂa§_20302040302_5 (€ Bs)

destabilization s—2 —s
—————— 05 “03020305 ° (€ By)

= ﬁag_Qagagaga{s = 505_1030%_8
and define
o = ﬁaéagagi € By.
Taking the result of the above destabilization and assuming that i =
s — 1, we get the inclusion

{@;}z C D(B,).

Let us show that the set {@;}z of closed braids (i.e. conjugacy classes)
is infinite. Consider the homomorphism

0: By — Bs (03 +— 01,01 +— 01,02 — 02).

Recall that any group homomorphism induces a map on the level of
conjugacy classes. We see that the map of conjugacy classes induced by
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the homomorphism ¢ maps {@;}z to {@}}z, where o, = Booi05". In
order to prove that the set {a@;}z is infinite, it is sufficient to show that
the set {@}} is infinite, which in turn follows from the fact that the set
of link types {£(@})}z is infinite (recall that £(@) denotes the link type
represented by @).

Let

S: B, —S,, o (4,0 +1)

be the standard homomorphism from B,, to the symmetric group. Since
0 represents a knot, it follows that S(8) € {(1,2,3);(3,2,1)}.

We consider the case where S(3) = (1,2,3), the proof in the sec-
ond case being similar. Suppose i is even (say, i = 2k). We see that
S(02*01052%) = (1,2). Then we have

S(O/Qk) (602 010y ) = (L 2, 3) © (1, 2) = (2’ 3)

This means that &), represents a two-component link.

We easily see that the linking number of the two components of the
link £(a},) = L(Bo3F0105 %) is equal to b + k, where b is a constant
depending on  only. This means that if k1 ## ko, then the oriented links
L(ahy,, ) and L(a%,,) are different, whence it follows that the conjugacy
classes a5, and @y, are different. Therefore, the sets {@}}z and {@;}z
are infinite. This completes the proof. o

Remark 1.2. Using Proposition 1.1, it is not hard to prove that any
knot (or, more generally, any link) is represented by a braid /3 such that
the set () is infinite.

Definition 1.3. We say that a closed braid Bis doubly destabilizable ifﬁ
contains a braid of the form o9010302W or of the form o 0;1051051 W,
where I is a word in the letters {03!, ..., Tp— £1 1. In particular, it follows
that if B is doubly destabilizable, then ’D(ﬁ) contains a destabilizable
braid. Clearly, the braid 5* in Proposition 1.1 is doubly destabilizable.

Proposition 1.4. Suppose ﬁ s a closed braid such that the set ’D(B) 18
infinite. Then 3 is doubly destabilizable.

We omit the proof.
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2 Preliminaries: the free group, punctured disc, and
hyperbolic geometry

This section contains notation, definitions, and several statements that
easily follow from well-known results and simple ‘geometric’ considera-
tions. Proofs are mostly omitted.

2.1 The free group and its boundary
Let F be the free group of rank n > 2 with generators {uq,...,un}:

F= <u17"'7un ‘ >
We denote by U the set of the generators and their inverses:
U .= {ul,...7un;uf1,...,u;1}.

Recall that a word wiws ... wy in letters of the alphabet U is said to be
reduced if w; # w,;_ll for each i € {1,...,k — 1}; recall that an element
v € F is represented by a unique reduced word. The number of letters
in the reduced word representing an element v € F' is called the length
of v and we denote it by |v].

The boundary 0F. We denote by F the boundary of the free group F.
Recall that there exists a one-to-one correspondence between the set of
points of OF and the set of all infinite (to the right) reduced words in
generators and their inverses. We use the following metric on the set
FUOF: letv#weé€ FUOF, and let V = vjvy... and W = wyws ...
be the reduced words (either finite or infinite) in generators and their
inverses that represent v and w, respectively. Then we set d(v,w) := 1/r,
where r is the smallest positive integer such that v, # w, (we mean
that the inequality v, # w, holds true, in particular, if we have either
|[v| = r—1or |[w| =r—1). Clearly, the metric space (F'U 9F,d) is
compact.

Action on the boundary. The free group acts naturally on its bound-
ary. We give two (slightly) different descriptions of this action.

On the one hand, any element v € F determines the left shift ¢, :
a +— va of the group F. Being an isometry of F' (in the standard word
metric on F), ¢, has a unique continuous (with respect to the metric d)
extension

¢, : FUOF — FUOQF.
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On the other hand, an element v € F determines the inner automor-
phism ), : a — vav~! of the group F. Being a quasi-isometry of F with
word metric, ¥, has a unique continuous extension

P, FUOF — FUOJF.

Clearly, for any v € F the mappings ¢, and ¢, coincide on F. We
denote the result of the action of an element v € F on a point w € OF
by vw:

vw = ¢, (W) = Py, (w).

Infinite powers. We see that for each nontrivial element v € F the
sequence of powers (v,v%,v3,...) converges to a point of the bound-

ary OF. We denote this point by vT>°. We also use the notation
e (T R

2.2 The fundamental group of the punctured disc

The punctured disc D,,. Let C be the complex plane. We choose n
distinct points on the real interval (—1,1) C C and denote these points
by z1,...,zn from the left to the right. For convenience, we also denote
by zp and by 2,41 the points —1 and 1 of C, respectively.

We denote by D? the closed disc of radius 1 with center 0 in the
complex plane C, and we denote by D,, the disc D? with the points
21,...,2n removed. We also fix the point g := —i € 9D, on the
boundary of the punctured disc D,, as a base point.

The fundamental group ;. The fundamental group w1 (D,,, zo) is a
free group of rank n. In what follows, we denote the group m1 (D, xo)
just by m1. Recall that an element of m = w1 (D, zo) is a homotopy
class of oriented loops

v ([07 1]7 {07 1}) — (D, o).

We denote by ur (1 < k < n) the element of m; represented by a
loop that intersects the interval (—1,1) C C exactly twice: the first time
(recall that we consider oriented loops) between the points z_1 and zy
and the second time between the points zj and zjp41.

Obviously, the set {u1,...,u,} generates the free group .

Definition 2.1 (The distinguished element of 7). Let u € m; be the
homotopy class of the loop having endpoints at zg and tracing the circle
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0D,, once clockwise. Obviously, u = ujus - -u,. In what follows, u is
called the distinguished element.

We denote by 71'50) the set of powers of u, i.e.

0) ._ -1 .0 _ 1.2 .
m o ={...,u,u’=eu,u’ ...}

U the set of all other elements of 1, 1.e.

(1) 0

m =T N

and we denote by 7T£

2.3 Universal covering space

We denote by D;’ the universal covering space of the punctured disc
D,,. By definition D, is a simply connected space. Hence the interior
of D) is homeomorphic to an open 2-disc. The boundary 9 D)’ (it is
the inverse image of 9D,,) is a countable collection of open intervals.

Let X be the inverse image of the base point xy € 9D, (see the
notation of the previous section) in the universal cover. Note that X' C
0 D;’. We fix, once and for all, a base point x € X

We establish a one-to-one correspondence between X and m; by as-
signing to an element v € m = 7w (D,,xo) the endpoint of a curve
v :[0,1] — Dy, where ~ is the lift of any loop representing v such that

7(0) = x.

Remark 2.2 (An important convention). In what follows, we identify
the elements of the group 71 with the corresponding points of X C 90D,,.
In particular, the base point x corresponds to the trivial element e of 7.

Finally, recall that the fundamental group of a topological space is
isomorphic to the group of deck transformations of the universal cover
of this space. A canonical isomorphism between the group 7 and the
group of deck transformations of D]’ takes an element v € 7; to the deck
transformation that maps the base point x to the point v € X = 7.

2.4 Hyperbolic structure

It is well known that D,, admits a hyperbolic metric (provided n > 2) in
which the circle 9D, is a geodesic and the punctures are cusps. Now we
fix, once and for all, such a hyperbolic metric on D,,. (There exists a vast
family of such metrics, but the choice is irrelevant for the constructions
below.)
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Hyperbolic structure on the universal cover. The hyperbolic met-
ric on D, lifts to a hyperbolic metric on the universal cover D) . It is
not hard to prove that D; is convex with respect to this metric. Hence,
Dy can be isometrically embedded in the hyperbolic plane H?, and we
identify D/’ with a subset of H2. Under this inclusion, the boundary of
Dy’ C H? is a union of disjoint geodesics in H?, and H? \. D is a union
of disjoint open half-planes.

Points at infinity. We denote by " the standard compactification of

the hyperbolic plane, i.e. the closed disc obtained from H? by adding a
circle at infinity (the absolute). We denote by D7 the closure of D) in
i (D7 is a compactification of the space D;); thus D NH? = D;>.

Since D)’ is convex, D}’ is homeomorphic to a closed disc. We denote
by K the set of the limit points of D}’ on the absolute:

K := DT~ Dy = D7 N

The set K is a Cantor subset of the absolute.

2.5 The circle ©

_ =2 .

Since the compactification D7y C H™ of the universal cover is homeomor-
phic to a closed disc, the boundary 9D’ is homeomorphic to a circle.
We denote this boundary by ©. Note that

® =9D; UK.

The natural inclusion m C ©. Since d D) C ©, Remark 2.2 yields
a natural inclusion

m™ = X C O.
In particular, the base point x = e is now a base point of ©.
Proposition 2.3. The inclusion m1 — © has a unique continuous ex-
tension

T Uomr — O.
The image of the boundary 0wy under this mapping is K.

The proof of this is standard.

By the convention adopted in Remark 2.2 we have m; C ©. We
‘extend’ this convention to the boundary dm. If w € dm, we denote
the corresponding point of L C © by the same symbol w. Note that
under this convention, in particular, we have v+ € © for any v € 71 \e.
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Remark 2.4. It can be shown that the inverse image in dm of a point
y € K is either one point or a pair of points, furthermore, we can com-
pletely describe the set of pairs of points in dr; that are ‘glued’ in : it
is the set

{H{ouf < vu; >} | v e m,u; € {ur,...,un}}.
(See the notation in Section 2.1 )

Definition 2.5 (Equivariance). Suppose a group G acts on a space S
(an action of G on a topological space X is a homomorphism from G
to the group Homeo(X ) of homeomorphisms of X), and suppose G also
acts on another space, say S3. Recall that a mapping m : S; — 5o
is equivariant with respect to these actions if for each g € G and each
s € 51 we have m(g(s)) = g(m(s)).

Definition 2.6 (Natural action of m; on @). It is clear that each deck
transformation of D;’ is an isometry in the hyperbolic metric and is
uniquely extended to a homeomorphism of the disc D}. Therefore,
each deck transformation induces a homeomorphism of the circle @ =
0D;;. The isomorphism between the group m; and the group of deck
transformations of D)’ (see Section 2.3) determines a homomorphism

m1 — Homeo, (O).

In other words, we obtain an action of the group 7 on the space ©.
We denote by v(y) (or just by vy) the result of the action of an element
v € 71 on a point y € O.

The definition of this action easily implies the following result.

Proposition 2.7. The inclusion m — O is equivariant with respect to
the action of w1 on © (as described just above) and the action of w1 on
itself by left multiplication.

Furthermore, the continuous extension m U 0wy — O (see Proposi-
tion 2.8) is equivariant with respect to the aforementioned action of m
on © and the extended action of m1 on m U dmy by left multiplication
(see Section 2.1).

Proposition 2.8. Let v be a nontrivial element of the fundamental
group m1. Then the corresponding homeomorphism v : ® — O has

either exactly one or exactly two fixed points. More precisely:
e if v is conjugate to a power of a generator (say, v = yuFy~!, where

y € m and k is a nonzero integer), then the homeomorphism v : © —
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© has ezactly one fived point v = yu® = yu; ® = v"> € O (see
Remark 2.4).

e if v is not conjugate to a power of a generator, then the homeomor-
phism v : @ — O has exactly two fized points v=° and vT>°; the fized
point v is repelling, while the fized point vT° is attracting.

2.6 Orderings
2.6.1 Definitions

The linear ordering ‘<’. We consider the space © \ x (we also write
‘O \ e’ to refer to this space, see Remark 2.2). Being homeomorphic to
the real line, this space bears two natural mutually inverse total order-
ings. We denote by < the ordering for which

uyp < uUg.

(See Section 2.5: under the convention adopted in Remark 2.2, the gen-
erators u; and wus of 71 are also points of ®.) We also use the symbol
=:

(91 = 92) <= either (01 =< 02) or (91 = 92)

In what follows, the statement ‘the condition #; < 6> holds for a pair
of points 01,02 € ® means that:

x;é917£027éx and 81{92.

Definition 2.9 (Intervals). Suppose that 6; and 2 are points of © \ e.
We introduce the following natural notation:

(61,02) :={0 €@~ <0 <0}
[01,0) .= {0 €@~ e| b <0 <0b);
(61,0:) :={0€c@®~ec|b <0=b};
[01,05] :={0c@®~e|0 20=<6}.

These sets are called intervals.

Cyclic ordering. Since the space © is homeomorphic to a circle, there
are two natural mutually inverse complete cyclic orderings on ®. We



94 A. V. Malyutin

use the ordering, which corresponds to the ordering <. We denote this
cyclic ordering by the symbol ~. Namely, we write

T1 2o Nx3 and e xy N Ty

whenever 1 < x5 < 3.
We also write

T2 M T3 M T1

whenever

1 M Ty M T3.
Note that these rules determine our cyclic ordering completely.

Remark. By the above definitions, the cyclic ordering ~ is invariant
with respect to the action of m; on @, i.e. for any v € m; we have
vr1 NN VT N ves if 1 N 9 N T3,

Notation. Suppose x1, x2,...,x; are points in ®. The notation
(*) L1 MNT2 N T

means that

(i) the points z1,z9,...,z; are pairwise distinct, and
(ii) if we move along the circle ® clockwise from the point z1, then
first we meet the point x, after that we meet x3, ..., then z;,

and then x; again.
Observe that (k) is equivalent to
T2 AN (NI T

We note also that if f: ® — © is an orientation-preserving homeo-
morphism of @, then (x) is equivalent to

fla) ~ fla2) e flag).

2.6.2 Comparing the elements of w1 with respect to <

In this subsection, we explain how to compare the elements of the fun-
damental group m; C ® with respect to the ordering <.
First, observe that we have

u1<uf1<u2—<u§1<~-~<un-<u;1
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or, equivalently,

e Uy mul_l muzmugl m~~mu"mu;1.

Now, let b and ¢ be distinct nontrivial elements of the free group ;.
Let B = b1by... and C' = cicy ... be the reduced words representing b
and c, respectively.

If their first letters by and ¢; are distinct, then

b<c <= b <cq;

b>c < by » c1.

If by = ¢q, let us denote by V' the maximal common initial subword
of the words B and C. This means that

V:U1...’Uz‘ ::bl...bi:cl...ci,

where either |b] =i < |c|, or |¢| =i < |b], or bi11 # ¢i+1. Furthermore,
if the length of B or C' is i, we set b;41 := e or ¢;41 := e respectively.

Thus, the triple (UZ-_I = b;l = ci_l, bi+1, Ci+1) is a triple of pairwise
distinct letters, and we have

b<c < v, by A ciya;

b»c <— /Ul-_lf\/CiJrl AN b1,

2.7 The set T' of geodesics

Let I be the connected component of 0 D), containing the base point x.
Since we consider D)’ as a subset of H? (see Section 2.4), I is thus a
geodesic in H?. Also, I is an open arc of the circle ®. We define

I' := © ~ clos(I).

Thus, T is an open arc of ®, and I is homeomorphic to the real line R.
Being a subinterval of ® \ x, the set I' inherits the ordering <.

Proposition 2.10. There exists a natural homeomorphism between the
interval T' and the space A of all geodesics in D, that start at the base
point xg and go into the interior of D,,. (Here, by a geodesic in D,,, we
mean a geodesic with respect to the hyperbolic metric on D, that was
fized at the start of Section 2.4.)
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Remark. In the proposition, we regard the set A as a topological space
because A has a natural metric: the distance between two geodesics is
equal to the absolute value of the angle between these geodesics at the
base point xg.

Proof. Let v be a geodesic from A. Let ¥ be the lift of v to the universal
cover that starts at the base point x. Then 7 connects x with a certain
point f(vy) € I'. Clearly, the mapping v — f(y) is a homeomorphism
between A and T'. O

In what follows, we identify the points of I' with the corresponding
geodesics in D,, and call points of ' geodesics.

Definition 2.11 (Fundamental geodesics). We say that a point (= a
geodesic) v € T is fundamental if v represents an element of the fun-
damental group m; = 71(Dy,, zg), i.e. if v € X (see Section 2.3 for the
definition of X). In other words, a geodesic v C D, is fundamental if it
ends at the base point xg.

We denote the set T' N X of all fundamental geodesics by I';. Note
that under the natural inclusion 7 = X C © we have

Per , Ocr
Thus, the natural inclusion m; — @ yields a one-to-one correspondence
r,= Tl'%l).

Remark. As mentioned above , we may identify a point v € T' with the
corresponding geodesic in D,,. By the convention adopted in Remark 2.2,
we may also identify a point v € A with the corresponding element of
the fundamental group. Thus, we regard a fundamental geodesic as a
trinity

‘point of the interval I' — geodesic — element of the free group’.

The set .. Recall that u is the distinguished element. We define
Ki=KNT =K~ {u > ut>}.

Following the convention described earlier (after Proposition 2.3), we
may identify 0w with the Cantor set K; the points u™
the endpoints of the open arc I' C ©®, and are also the endpoints of
the open arc I C ©. It easily follows that for each v € T'; we have
vt e K,.

* and ut>® are
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Definition 2.12. A subset of a topological space is said to be perfect if
it is closed and has no isolated points.

Let R be a topological space homeomorphic to the real line R. Recall
that a nonempty subset H of R is called a Cantor set if H is perfect,
nowhere dense, and compact. We say that a nonempty subset £ C Ris a
x-Cantor set if H is perfect, nowhere dense, and bilaterally unbounded.

Thus, K, is a *-Cantor subset of T.

Remark. Tt is clear that the points of the set I, are infinite geodesics in
D,,, while the points of the set I' \ KL, = 0 D, \ I are finite geodesics
in D,,. In particular, each fundamental geodesic is finite.

Simple geodesics. Recall that a geodesic is said to be simple if it
has no transverse self-intersections. Usually, this notion concerns either
two-sided infinite or closed geodesics. For geodesics of I' we need a more
precise definition of ‘simplicity’.

We say that a fundamental geodesic v € I'x is simple if its image in
D,, is homeomorphic to a circle. In other words, we do not regard the
coincidence of the endpoints of a fundamental geodesic as a transverse
self-intersection.

If a geodesic v € T is not fundamental, then any self-intersection of
v is transverse. Thus, there is no ambiguity about the definition of
simplicity in this case.

We use the following notation:

e 3 denotes the set of all simple geodesics in I';
e Y. denotes the set of all simple fundamental geodesics in T

e 3¢ denotes the set of all simple infinite geodesics in T'.

Types of geodesics in I'. Here is a table with types of geodesics in T’
(by the symbol ‘B’ we mark the types that are ‘not very important’ in
our considerations):

Types of geodesics in T

Finite non-
F 1 (T Infini "
undamental (T';;) fundamental | nite (KC,)
Simple () po u Ying
Non-simple ', X, | [ |
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2.8 Laminations

We recall several notions and facts of lamination theory (see [12, 26, 15]).

A (geodesic) lamination L C D, is a nonempty closed set that is a
union of disjoint simple complete geodesics. These geodesics are the
leaves of L, while the connected components of the set D,, . L are the
regions of L.

A lamination L C D, is perfect if it has no isolated leaves. A perfect
lamination contains an infinite number of leaves.

A perfect lamination L is prime if each leaf of L is dense in L. Each
perfect lamination is a union of a finite number of prime (perfect) lam-
inations.

We say that a prime lamination L C D, is small if there exists a
simple closed geodesic C' C int(D,,) such that L and dD,, lie in distinct
components of the two-component surface D, ~ C. Otherwise, we say
that L is large.

2.9 Subtypes of simple geodesics and structure of T’

Definition 2.13 (Subtypes of simple fundamental geodesics X;). Let
V : m — Z be a homomorphism defined by setting V(u;) = 1 for
1 <4 < n. The number V(v) is called the volume of an element v € 7.

Let z € Z. We denote the set of simple fundamental geodesics with
volume z by X .. Similarly, we denote by ¥ ., 3r>., ¥r <. and
Y r <. the sets of all simple fundamental geodesics with volume > z,
>z, < z and < z, respectively.

Lemma 2.14. For any simple fundamental geodesic v we have
1< V) <n-1.
Equivalently, we have

S, = U PO
ze{#£1,...,£(n—-1)}

Next, we consider simple infinite geodesics. The following lemma eas-
ily follows from standard facts of lamination theory.

Lemma 2.15. Suppose that v € Xt is an infinite simple geodesic.
Then one of the following conditions for the set clos(y) ~ v C D,, holds:

— the set clos(y) \ v is empty;
— the set clos(y) \ v is a simple closed geodesic;
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— the set clos(y) \ v is a prime (perfect) lamination.
Now, we introduce notation for subtypes of simple infinite geodesics.
Definition 2.16. Let v be a simple infinite geodesic.

e If clos(y) ~ v = &, then v ‘falls into a puncture’. In this case, we say
that v is a puncture geodesic.

o If clos(y) \ 7 is a simple closed geodesic (say, C), then v ‘coils’ to C.
In this case, we say that v is a coil geodesic. If v coils to C clockwise
(respectively, counterclockwise), we say that 7 is a right (respectively,
left) coil geodesic.

e If clos(y)\ 7 is a perfect lamination, we say that vy is a perfect geodesic.
We also say that v is large or small, according to whether the corre-
sponding perfect lamination is large or small.

We use the following notation:

e 3, denotes the set of all puncture geodesics;
e X, denotes the set of all coil geodesics;
o 34 denotes the set of all perfect geodesics.

Thus, we have
Sing =2 U Ep U 2.',.
We also set

3. =3%,U3,.

Theorem 2.17. Suppose n > 3, i.e. suppose that the disc D,, which we
consider has n > 3 punctures. Then the set X, is a x-Cantor subset of
T' (see Definition 2.12). Fach perfect geodesic is a two-sided limit point
of .. Each coil geodesic is a one-sided limit point of 3. (each right
coil geodesic is a right-hand limit point, while each left coil geodesic is a
left-hand limit point). In particular, 3, is a countable set and X4, is a
continuum set.

It follows that the space T' \ X g is a countable collection of disjoint
closed intervals, and %, is the set of endpoints of these intervals (left
coil geodesics are right endpoints, while right coil geodesics are left end-
points).

Suppose an interval [m,n2] (see Definition 2.9) is a connected com-
ponent of I' \ Xg,. (Thus, m is a left coil geodesic, while ny is a right
coil geodesic.) Then one of the following two cases holds.
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The interval [n1,n2] contains exactly two simple fundamental geo-
desics (say, v1 and va, where v1 < va):

N < v X v2 <M.

In this case, each point of the open interval (vi,v2) is a finite
nonfundamental simple geodesic and each point of the open in-
tervals (n1,v1) and (v2,n2) is a nonsimple geodesic. Moreover,
the following relations hold:
m=v®, viu=uvy, =0
2—-n<V(v)<-2, 2<V(v)<n-—2.

The interval [n1,m2] contains exactly four simple fundamental
geodesics, vy, vz, vs and v4 Say, where v1 < vy < vz < V4.
In this case, [m,n2] also contains exactly one puncture geodesic,
¢ say, and we have

m < v <ve <( <v3 <vg =<0

Furthermore, any point of the open intervals (vi,v2) and (v3,vy)
is a finite nonfundamental simple geodesic and each point of the
set (m,v1) U (v2,¢) U ((,v3) U (va,m2) is a nonsimple geodesic.
Moreover, the following relations hold:

V1 €EXr _(n-1), V2€ X1, v3E€Xr_1, v4€Xgn-1;
_ _ 1 _ .
viua = vo, V2 = V3, V3 = V4;
and

__ ,,too __ oo +oo __ ,,to©
m=vy , (=u; =V3 , TN2=1y

Corollary 2.18. We have

clos(X;) N\ X, = X,

Furthermore, each perfect geodesic is a two-sided limit point of 3, each
right coil geodesic is a Tight-hand limit point of X, and each left coil
geodesic is a left-hand limit point of 3.

Corollary 2.19. We have

{wt* lveX} =2 Ux,.

Furthermore, for any n € %, there is a unique v € X such that n =

pT®

, while for any ( € X, there are exactly two simple fundamental
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geodesics v and va such that ¢ = v = v . (In the latter case, we

have vive = e and |V (v1)] = |V (v2)] = 1).
Corollary 2.20. We have
r = U (v,vt>°) U U (v, v);
VEX L >0 vEX <0

moreover, the open intervals in the right part of this equality are disjoint.

2.10 Several auxiliary definitions

Definition 2.21 (simplification). Corollary 2.20 implies that for any
nonsimple geodesic v € ' \ ¥ there is a unique simple fundamental
geodesic s(y) € 3, such that there is no simple geodesic between v and
s(y). We say that s(v) is a simplification of .

For a simple geodesic v € X, we set s(y) = 7. We have thus defined
a mapping
s: ' - X.

Clearly, s is <-monotone. Note that by this definition we have s(T" \
¥) =%, and s(I'x) = 3.

Definition 2.22 (maximal elements, right-hand X, -neighbours). Let
v,w € X;. We say that w is the right-hand 3, -neighbour of v and write

Next,(v) = w
if v < w and the interval (v,w) does not contain ¥ elements. We say

that v € ¥ is a mazimal element if v has no right-hand 3 -neighbour.

Theorem 2.17 implies the following result.
Corollary 2.23.

(1) The set of all mazimal elements in X, is the set Xy >o.
(ii) If v € X <o, then Next,(v) = vu.
(iii) Ifv € ¥, 1, then Next,(v) = v1.

Suppose v is a simple fundamental geodesic. Then the image v C D,
is homeomorphic to a circle. We denote by DV the punctured disc in D,
bounded by this circle. Note that D¥ = D™ .

We also define

I':={yeT|~yCD"}
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For a subset A C T we put AY := ANTY. Obviously, for each v € 3 the
set T is a closed bounded subset of I'. We have I'” C [v,v~!] whenever
V(v) > 0, and TV C [v™!, v] otherwise.

Lemma 2.24 (Cf. Corollary 2.18). For each v € X, we have
clos(2;") N X" =3,"

Each perfect geodesic in X," is a two-sided limit point of X;°, each right
coil geodesic in X" is a right-hand limit point of 3°, and each left coil
geodesic in X." is a left-hand limit point of 3,°.

Definition 2.25. Let v € I" and v € X 59. We say that v is the
envelope for v and write v = env(y) if ¥ C D and for each w € X, we
have w C DV whenever v C D". Obviously, the envelope of a geodesic
in T' is unique if it exists.

Remark. Clearly, each puncture geodesic and each coil geodesic has an
envelope. A perfect geodesic v has an envelope if and only if v is a small
perfect geodesic (see Definition 2.16 ).

Remark. If v € <, then env(v™>) = env(v™>°) = v. (Recall that
by Corollary 2.19 we have v¥* € £, UX,.)

2.11 Intersections of geodesics, disjoint geodesics

Definition 2.26 (types of intersections and intersection sets.). Let
(71,72) be an ordered pair of geodesics from I'. Let v € m ~e. We
say that (71,72) has a [transverse] intersection of type v if vys # e and
we have either v < 73 < vy2 or vy2 <71 < v.

Let

v M2 :={v € m ~e| (71,72) has an intersection of type v}.
The set v1 M y2 C 71 \ e is called the intersection set of 1 with ~s.

Proposition 2.27. Suppose 1 and 72 are geodesics from I'. Then
v1 M ve # & if and only if y1 and v2 have transverse intersections. In
particular, v € T is a simple geodesic if and only if vy h v = &.

Remark 2.28. Suppose 71 € I'; and 2 € I';; are fundamental geodesics.
Then the set 3 M 72 is finite. Furthermore, the length (see Section 2.1)
of each intersection type is less then the sum of the lengths of y; and 7.

The definition immediately implies that for any 71, 72 € IT' we have
vEY My <= vl €y .
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Definition 2.29 (x-disjoint geodesics). Any two geodesics in I' have at
least one common point in D,, (the base point x¢), in other words, they
are not disjoint. We say that two geodesics v1,72 € I' are x-disjoint if

v Ny Nint(D,) = @.

Proposition 2.27 implies that geodesics 71 and v, are *-disjoint if and
only if 71 # v2 and v1 h 2 = @.

Lemma 2.30. Suppose v1 € T’ and v2 € T are *-disjoint. Then the
simplifications s(y1) and s(y2) are also *-disjoint.

Definition 2.31 (Strongly and weakly *-disjoint geodesics). We say
that two geodesics 71,72 € T' are strongly x-disjoint if there exist a pair
of simple fundamental geodesics v1 and vg such that v; C DV, v C DV2,
and

D" N D Nint(D,) = 2.

We say that two geodesics 1,72 € I' are weakly *-disjoint if they are
*-disjoint but are not strongly *-disjoint.

Remark 2.32. Note that if ; and 79 are strongly *-disjoint, then their
envelopes env(n1) and env(nsy) exist and they are strongly *-disjoint.

Lemma 2.33. Letni,n2 € X.. Suppose m1 and na are x-disjoint. Then:

e if 1 and 12 are strongly x-disjoint, then the subsets clos(n1) ~m and
clos(n2) \ n2 of D,, are disjoint;
o if 11 and ny are weakly x-disjoint, then clos(m) ~ m = clos(n2) \ n2.

Proposition 2.34. Suppose 11,12 € I'. Then one and only one of the
following conditions holds:

a) n1 =12 and they are simple;

b) m and ny are weakly x-disjoint;
c) m and n2 are strongly *-disjoint;
) m

d and ny have transverse intersections.

2.12 Algorithms

In this subsection we discuss computational procedures that deal with
the above-defined relations in the free group.

By the words ‘an algorithm is given a fundamental geodesic’ we mean
that an algorithm is given an element of the set 7r§1) C m (as a word in

generators and their inverses).
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Lemma 2.35. There exists an algorithm that, given a pair v,w of non-
trivial elements of the fundamental group w1, detects whether v < w.

Proof. Obviously, such an algorithm can be constructed with the help
of the rules described in Section 2.6.2. O

Lemma 2.36. There exists an algorithm that, given a pair v,w of fun-
damental geodesics and a nontrivial element y € w1 \ e, detects whether
the pair (v,w) has an intersection of type y.

Proof. Follows from definition of an intersection type and Lemma 2.35.
O

Corollary 2.37. There exists an algorithm that, given a pair v,w of
fundamental geodesics, computes the intersection set v hw C 1.

Outline of the proof. Formally, one can look through all the elements of
71 with lengths less then the sum of the lengths of v and w (see Remark
2.28), each time applying Lemma 2.36. Certainly, there are much faster
procedures for computing the intersection set. O

Corollary 2.38. There exists an algorithm that detects whether two
gien fundamental geodesics are x-disjoint or not.

Proof. Follows from Definition 2.29 and Corollary 2.37. |

Corollary 2.39. There exists an algorithm that detects whether a given
fundamental geodesic is simple.

Proof. Follows from Proposition 2.27 and Corollary 2.37. O

Lemma 2.40. There exists an algorithm that computes the simplifica-
tion s(v) of a given fundamental geodesic v.

Outline of the proof. It can be proved that for each nonsimple geodesic
7 € T the simplification s(7) and its inverse (s(7))~! are the only simple
elements of the intersection set v rh . Thus, if a given element v € ng)
is not simple (for by Corollary 2.39, we can detect simplicity) we can
find the set {s(v), (s(v))~'} by Corollaries 2.37 and 2.39. The rest is

easy.
Of course, we use a different procedure to compute s(v) in practice.
O

Lemma 2.41. There exists an algorithm that, given a simple fundamen-
tal geodesic v, detects whether v is mazximal, and if v is not mazimal,
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computes the element of the group m that represents the 3,.-geodesic
Next,(v).

Proof. Such an algorithm can easily be constructed with the help of
Corollary 2.23. O

3 Braids and disc automorphisms

In this section, we pass from the study of the punctured disc itself to
the study of its automorphisms. We use the constructions, definitions
and notation of the previous section.

3.1 Braids and disc automorphisms

Definition 3.1. The mapping class group of the punctured disc D,, is
the group

MCG(D,,) := Homeo(D,,,0D,,)/ Homeog(D,, 0Dy,),

where Homeo(D,,, 0D,,) is the group of all orientation-preserving homeo-
morphisms of D,, that fix D,, pointwise, and Homeog(D,, 0D,,) is the
normal subgroup consisting of all homeomorphisms isotopic to the iden-
tity rel 0D,,.

It is well known that the braid group B,, is isomorphic to the mapping
class group MCG(D,,) of the n-punctured disc D,, (see [2] for example).
A canonical isomorphism between these groups can be constructed as
follows: the generator o; € B, is assigned the class of a homeomorphism
that exchanges the ‘punctures’ z; and z;41 (see Section 2.2) by ‘rotating’
them clockwise in the ‘simplest possible way’ (this is a Dehn half-twist).

In what follows, we identify a braid g € B, with the corresponding
class of homeomorphisms in MCG(D,,).

Definition 3.2 (Artin’s action). The group B, = MCG(D,,) acts in a
natural way on the free group m = m1(Dp, xo) by group automorphisms.
This action is called Artin’s action. The following rules determine this
action completely:

ui, ifi#j4,7+1
O’j(ui) = Ui, ifi=j

uy tuiqug, ifi=j 41
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Lemma 3.3. For each braid B € B, the following conditions are equiv-

alent:
d 5(”1) = Uui;
e 3 can be represented by a word in the letters {o2,03,...,0n—1} and

their inverses.
Definition 3.4 (The fundamental braid A). The braid
A:=(0102...0n-1)(0102...0p-2)...(0102)(01) € B,

is called the fundamental braid. The braid A? € B,, generates the center
of the group B,, whenever n > 2. (The center of B,, is an infinite cyclic

group.)
Remark.

(i) The elements of 7T§O) (i.e. the powers of the distinguished element
u) exhaust all B,,-invariant elements in 7.

(ii) In the group B, of automorphisms of the free group m1 (D, xo),
the only inner automorphisms of 71 (D, x¢) are the powers of
A? ¢ B,,. These inner automorphisms are conjugations by powers
of u; conjugation by u corresponds to the action of A=2.

Artin’s action, being an action by group automorphisms, can be uniquely
extended to the continuous action of B,, on the compact space w1 UJmy.
We call the latter action the extended Artin’s action.

3.2 Braid group action on the circle ©®
In this subsection, we describe a natural action of the group B, =
MCG(D,,) on the circle ®. We call this action the Nielsen- Thurston
action. The description of the Nielsen-Thurston action can be found
in [16, 25].

Theorem 3.5. The braid group B, acts naturally on the marked circle
(©,x) by orientation-preserving homeomorphisms.

Proof. First, we observe that every homeomorphism ¢ : D,, — D,, which
is identical on the boundary, has a unique lift ¢~ : D;’ — D;’ such that
¢~ (x) = x. This yields a homomorphism

Homeo(D,,, 0D,,) — Homeo, (D}), ¢+ ¢~.

The homeomorphism ¢~ is uniquely extended to a homeomorphism ¢~
of the disc D} (the proof is standard: see [12] for example.)
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Next, we observe that the restricted homeomorphism ¢~|sp~-e is
completely determined by the class [¢] € MCG(D,) & B,. Indeed,
we observe that for each homeomorphism ¢ € Homeog(D,,,dD,,), the
homeomorphism ™[5 p~ is identical, and since the set d D}, is dense
in @, the autohomeomorphism ~|g is also identical. Thus, we have a
homomorphism

B,, = MCG(D,,) — Homeo4(®), [¢] — ¢”|e.
O

We denote by 8(y) (or just by By) the result of the action of an element
B € B, on a point y € O.

Theorem 3.6. The natural inclusion 1 C © is equivariant with respect
to the Nielsen-Thurston action of B,, on the circle ® and Artin’s action
of By, on the free group w . Consequently, the continuous mapping m U
om — O is equivariant with respect to the Nielsen-Thurston action and
extended Artin’s action.

Remark. It can be shown that the ‘braid automorphisms’ of the free
group 71 are the only automorphisms of 7 that can be extended to the
orientation-preserving homeomorphism of the circle ® D 7.

Lemma 3.7. Let B € By, ve€ m, andy € ©. Then

Blvy) = (Bv)(By).
(using the notation of Definition 2.6).

3.3 Braid group action on T’

The definition of the Nielsen-Thurston action directly implies that this
action is identical on the arc I C © (see the notation at the start of
Section 2.7). Then it is identical on the closure clos(I) C ©. Therefore,
an action of B,, on I' = ® \ clos([) is defined.

Proposition 3.8. The braid group B, acts naturally on the space T' by
orientation-preserving homeomorphisms.

We refer to this action also as the ‘Nielsen-Thurston action’.

Note that the Nielsen-Thurston action preserves the ‘inner structure’
of T', which we studied in Section 2. In particular, this action preserves
the sets of finite, infinite, and fundamental geodesics; it also preserves



108 A. V. Malyutin

simplicity; volume is invariant under the action; the action preserves
the sets of puncture, coil and perfect geodesics (and of course preserves
the sets of right and left puncture geodesics, and sets of small and large
perfect geodesics). Thus, the Nielsen-Thurston action preserves all types
and subtypes of geodesics described above.

The relations which we defined on I' are also invariant under the
Nielsen-Thurston action. First of all, the action preserves, by definition,
the ordering <. This implies that for any 71,72 € I" and any 8 € B,, we
have

By M Bye = By th ).

Therefore, each braid takes a pair of *-disjoint elements to a pair of
*-disjoint elements. Furthermore, each braid takes a pair of strongly
(respectively, weakly) *-disjoint elements to a pair of strongly (respec-
tively, weakly) x-disjoint elements.

We state the following lemma for convenient reference.

Lemma 3.9. Let v,v1,v9 € Xr; 7,711,772 € I'; and 8 € B,. Then we
have:

1 <72 = B(m) < B(1e)

yC DY < fB(y)c DFW

v=-env(y) < fB(v) =env(G(v))

Vg = Nextr(vl) <~ /B(UQ) = NEXtT(/B(Ul))

v=s(y) <= B) =s(6(7)).

Lemma 3.10. For each k € {1,...,n — 1}, the set X coincides
with the orbit of the element uius - - - ug under the action of the braid
group By :

Emk = Bn(’U,1UQ . uk)

Lemma 3.11. Suppose v,w € 1. Then v and w are x-disjoint if and
only if there exists a braid § € By, such that {B(v), B(w)} = {u1, uz}.

Lemma 3.12. Consider the disc D, with n > 3 punctures. Then for
any point v € I', the set of limit points of the orbit B, (v) is X.. Fach
perfect geodesic is a two-sided limit point of By, (7y) and each coil geodesic
is a one-sided limit point of By, (7). Furthermore, each right coil geodesic
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is a right-hand limit point of By (y) and each left coil geodesic is a left-
hand limit point of By ().

3.4 Braid group action on the circle T'/A®

The proofs of the statements presented in this subsection can be found
in [20].

Lemma 3.13. The homeomorphism A% : T — T has no fized points.

Corollary 3.14. The quotient space T'/A? is homeomorphic to the cir-
cle. The braid group By, therefore acts naturally on the circle T /A2,

3.5 The Nielsen-Thurston classification for braids

We recall the definitions of types of braids in the Nielsen-Thurston clas-
sification.

e A braid f is said to be periodic if 37 = A2¢ for a pair of nonzero
integers p, q.

e A braid g is said to be reducible if the corresponding class of homeo-
morphisms of D,, contains a homeomorphism preserving a nonempty
family of pairwise disjoint simple closed geodesics C' C int(D,,) (we
assume that D,, has been endowed with a hyperbolic metric). Such a
family is called a reduction system.

If a braid § is reducible and not periodic, it has a nonempty canon-
ical reduction system C C int(D,,). In this case, in each componentf
of the surface D,, \ C the induced homeomorphism is either periodic
or pseudo-Anosov.

e A braid ( is said to be pseudo-Anosov if it is neither periodic nor
reducible. In this case, by the Nielsen-Thurston classification theorem,
there exist two transversal geodesic laminations Ly C D,, and L, C
D,, (stable and unstable) such that ¢(Ls) = L, and t(L,) = L, for
a certain homeomorphism v : D,, — D,, representing f3.

The Nielsen-Thurston type of a braid is a conjugacy invariant. Hence
the type of a closed braid is defined in a natural way.

1t By ‘component’ we mean a minimal collection of connected components that is
invariant under the action (of the class) of our homeomorphism.
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3.6 On pseudo-Anosov braids

Theorem 3.15. Let 5 € B,, be a braid of pseudo-Anosov type. Then
for a certain positive integer m € N, the set of fixed points of the homeo-
morphism ™ : T/A? — T'/A? (see Corollary 3.14) is nonempty and
finite. Furthermore, each point of this set of fired points is either an
attracting or repelling point of the homeomorphism.

Notation. We use the terms of the previous theorem. We denote by
Pg and Pf, respectively, the sets of attracting and repelling points of
the homeomorphism g™ : I'/A? — T'/A%. Note that these sets do
not depend on the choice of m; in particular, the set Pz := PjU Py
is exactly the set of points with finite orbits for the homeomorphism
B:T/A%? — T /A2

We denote by T3 and T}g the inverse images in I" of the sets P; C T’/ A2
and Py C I'/AZ, respectively. The geodesics of T5 and T are said to
be stable and unstable T-geodesics, respectively, for § (the ‘T’ is for
‘Thurston’). We also denote the set Tj5 UTg by Tp.

Theorem 3.16. Let L(8) and L,(3) be the stable and unstable lami-
nations, respectively, for 3. Then

T ={vel [yNLs(B) =2} ={yeT | clos(y) v = Ls(B) };

T4 = {y €T | yNL.(8) =8} = {y € T | clos(7) ~ v = Lu(B)}.

In particular, each geodesic in Tg is a large perfect geodesic.

Notation. For a pseudo-Anosov braid 8 € B,, we put
q(8) == P3| = [Pg].

Also, we denote by r(() the smallest positive integer such that the home-
omorphism 7% : T'/A? — T'/A? has fixed points. We denote by s(/3)
an integer number such that the homeomorphism g"(®A25(6) . T — T
fixes the set T of T-geodesics pointwise.

The existence of (3) and s(5) follows from Theorem 3.15. It can be
shown that we have

r(B) < q(B) <n—2.
Note also that r(8) divides ¢(3).
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3.7 On reducible braids

Let 8 € B, be a reducible braid. Let C C D,, be a reduction system
for 8. We denote by M the component of D,, \ C that contains 0D,,.
Since M is obtained from the punctured disc D,, by cutting out sev-
eral discs, the surface M is homeomorphic to a disc with m punctures.
Furthermore, we have m < n because each of the cut-out discs contains
at least two punctures of the disc D,,. The definitions imply that our
mapping class 8 € B,, 2 MCG(D,,) induces a certain mapping class [
in the group MCG(M) =2 MCG(D,y,).

Definition 3.17 (Satellites and companions). Let @ be the closed m-
braid that corresponds to the class By;. We say that the closed braid &
is a companion of ﬂ, and ﬁ is a satellite of a.

Let 8 € B, be a reducible nonperiodic braid. Then 3 has canonical
reduction system C C D,,. The companion of B that corresponds to C is
called the principal companion of B

Note that a principal companion is not reducible: it is either pseudo-
Anosov or periodic.

Lemma 3.18.

(i) For every reducible closed braid B the set of companions for B 18
finite.

(ii) Suppose @ is a companion of a reducible closed braid ﬂ Then for
any k € Z the closed braid a* is a companion of ﬂk

(iii) For every periodic reducible closed braid ﬂ, the set of companions
for B consists of periodic braids.

Definition 3.19 (pure-reducible braids). We say that a braid is pure
reducible if it fixes an isotopy class of essential simple closed curves in
D,,; in other words, a pure reducible braid is a reducible braid that has
a reduction system composed of an only one component.

Note that a pure reducible braid represents a multi-component link
(i.e. not a knot).

Definition 3.20 (Split braids). We recall the notion of a split (closed)
braid. A closed braid is split if it is a satellite of a trivial closed 2-braid.
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3.8 On periodic braids

We use standard notation:
6 :=0109-0n_1 € By, 0. == 010 € B,,.

The following well-known result follows from the Kérékjarto theorem
(see [13, 27, 11]).

Proposition 3.21. Each braid of periodic type in B,, is conjugate either
to a power of § or to a power of .

3.9 Algorithms

There are several well-known algorithms that determine the type (in the
Nielsen-Thurston classification) of a given braid: see, e.g. [1, 18]. Fur-
thermore, for the ‘reducible case’ there are standard methods to compute
the canonical reduction system of a reducible braid. Hence, the prin-
cipal companion of a given reducible braid can be computed, and the
pure-reducibility can be detected.

In the ‘pseudo-Anosov case’ there are standard procedures to compute
various characteristics of a given pseudo-Anosov braid. In particular,
for a given pseudo-Anosov braid, each T-geodesic can be described with
any prescribed accuracy, and the numbers ¢(3), r(5), and s(5) can be
computed.

4 The Destabilization Algorithm

In this section, we describe an algorithm that detects whether the con-
jugacy class of a given braid admits a destabilization.

4.1 Geometric reformulation for the destabilization problem

The following result is a variation of a well-known folklore theorem.

Theorem 4.1. Suppose 8 € B,. Then the following conditions are
equivalent:

a) B is a destabilizable closed braid;
b) there is an element v € X1 such that v and B(v) are x-disjoint. (Here
we use the notation introduced in Definitions 2.13, 2.29 and 3.2.)

It turns out that the restriction v € 31 in this theorem is redundant.
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Theorem 4.2. Suppose § € B,. Then the following conditions are
equivalent:

a) there exists a simple fundamental geodesic v € X1 with volume 1
such that v and B(v) are x-disjoint;

b) there exists a simple fundamental geodesic v € X, such that v and
B(v) are x-disjoint;

c) there exists a fundamental geodesic v € T such that v and B(v) are
*-disjoint.

Proof that a)=b)=-c). These implications are trivial.

Proof that ¢)=b). Let v e T'x = ﬂl) be an element of I'; such that v
and [(v) are *-disjoint. Consider the simplification s(v). By Lemma 3.9,
s(B(v)) = B(s(v)); and by Lemma 2.30, s(v) and B(s(v)) = s(8(v)) are
x-disjoint. It remains to note that since v is a fundamental geodesic, its
simplification s(v) is a simple fundamental geodesic.

Proof that b)=-a). Let v € 3, be an element of ¥, such that v and
B(v) are x-disjoint. Since the volumes of simple fundamental geodesics
v and §(v) are equal (see the remarks after Proposition 3.8), it follows
easily that v and B(v) are strongly *-disjoint. Evidently, there exists
an element w € X1 such that w C D" (such an element is unique if
|V (v)] = 1). By Lemma 3.9 we have 8(w) C D?®"). Therefore, w and
O(w) are *-disjoint. O

We say that a nontrivial element v € w1 is a solution for a braid
0B € By, if v and B(v) are #-disjoint. If v € X is a solution for 3, we say
that v is a simple solution; and if v € X is a solution for 3, we say
that v is a prime solution.

Proposition 4.3. The sets of solutions, simple solutions and prime sol-
utions for a braid B are each invariant under the action of the centralizer
of B. In particular, each of these sets is invariant under the action of 3
and A2,

Proof. Obviously, it is sufficient to show that for each braid « such that
af = Ba, geodesics ay and B(ay) are #-disjoint whenever v and 3(7)
are x-disjoint.

Suppose that v and 3(v) are x-disjoint. Then, since the action of a
braid preserve the x-disjointness, «(y) and «(8(y)) are *-disjoint. It
remains to note that since a8 = fBa, we have a(5(y)) = B(a(y)). O
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Algorithms. Using the proofs of Theorems 4.1 and 4.2, and also the
lemmas from Subsection 2.12, one can easily prove that:

e there exists an algorithm that, given a braid § and an element v € 7y,
detects whether v is a solution for f3;

e there exists an algorithm that, given a braid § € B, and a (-solution
v E Wil), computes a prime solution for § and a braid a € B, _1 such

~

that & € D(3).

4.2 On the destabilizability of periodic braids

The periodic case is the most simple one.

Notation: the exponent sum. We denote by exp(8) the exponent
sum of a braid 8 with respect to Artin’s generators. Note that exp is a
conjugacy invariant.

Theorem 4.4. An n-braid B of periodic type is destabilizable if and only
if

0 < |exp(B)| < n? —n.
Proof. Suppose 8 € B, is a braid of periodic type.

Step 1. First we prove that 3 is destabilizable whenever 0 < lexp(0)| <

n? — n. We use Proposition 3.21. It is obvious that

exp(6) =n—1, exp(6®) = (n—1)k; exp(d,)=n, exp(d’)=nt.

These equalities and Proposition 3.21 imply that if 0 < |exp(8)| <

n? —n, then 3 is in the following family of 4n — 6 conjugacy classes:

E:={0":0<|kl<n}U{d:0<|l|<n—1}.

First we consider the following case: § = 3\’“, where 0 < £ < n. Note
that for each i € {1,...,n — 1} we have d(u;) = u;4+1. Consequently,
since 0 < k < n, we have §%(u;) = ui4. Obviously, the elements u;
and w1,y are *-disjoint. This means that u; is a (prime) solution for 6*,
and B = 0% is destabilizable by Theorem 4.1.

Since the inverse of a destabilizable braid is destabilizable (as re-
marked in the introduction to this article), it follows that 57k is desta-
bilizable.

Now, let Bz gﬁ, where 0 < £ < n — 1. We observe that . (u;) = w1
whenever 2 < i < n — 1. Consequently, since 0 < ¢ < n — 1, we have
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6% (uz) = uare. Obviously, the elements us and gy are *-disjoint. This
means that uy is a (prime) solution for 6%, and 3 = 6¢ is destabilizable
by Theorem 4.1. It follows that 6. ¢ is also destabilizable.

Step 2. We prove that if the condition 0 < |exp(3)| < n? —n does not
hold, then 3 is not destabilizable. Proposition 3.21 implies that if 3 is
not in F, then

Be{e, A2, A2y U{s": |kl >n}u{d’: |¢| >n—1}.

The braids ¢, A2, and A~2 are not destabilizable since each of them
represents an n-component link. Braids from the sets {gk 2 |k] > n}
and {3% : |¢| > n — 1} are not destabilizable since each of these braids
has twist number with absolute value greater then 1 (see [20]). O

4.3 The ‘functions’ J3:I' =T

Let 8 € B,, be a braid and let v € m; be an element of the fundamental
group. We denote by fg.,, (or by f if 8 and v are fixed) the composition
of homeomorphisms §: @ — @ and v : @ — O (see Theorem 3.5 and
Definition 2.6):

faoi=v08:0 -0, 6—v(5(0)).

Thus f3,, is an orientation-preserving homeomorphism of the circle ©.
We introduce the following notation:

A:=Ap,:={0€0O| f(0) <0< fle)};
B:=Bg,,:={0€0O| f(e) <0< f()}.

Obviously, A and B are disjoint open subsets of @. Note that e ¢ AUB.

Lemma 4.5. Let f € By, letvem Ne, and let v € I'. Then
veymp(y) < v€ As,,UBg. .

Proof. Follows directly from the above definitions. O

Lemma 4.6. Let f := fg,,, where § € By, and v € m ~ e. Then for
each 6 € ® we have

F0) <0< fle) = fM(e) <0< f7(0);

fle) <0< fO) <= f10) <0< f ).



116 A. V. Malyutin

Proof. We prove the implication f(6) < 6 < f(e) = f~l(e) < 0 <
f~1(0) (proofs for other three implications are quite similar).

Using the notation introduced in Section 2.6 (page 94), we rewrite the
condition f(6) < 0 < f(e) in the form

e f(8) ~ 0~ fle).
This is equivalent to
fle) ~enr f(6) ~ 0.
Since the homeomorphism f~! preserves orientation, it follows that
e fHe) O~ fTHO)
This means exactly that the condition f=!(e) < 0 < f~(0) holds. O
Lemma 4.7. Let f := fg,,, where § € B, and v € m \ e.

a) Suppose Ag,, is not empty. Let 0 € Ag,,,. Then
(10.5@) N (F7.£710) € Ay,

where (f(0), f(e)) and (f~1(e), f1(0)) are subintervals of ®~e. (The
definition of Ag,, and Lemma 4.6 imply that these subintervals are
nonempty).

b) Suppose that Bg;, is not empty and that 8 € Bg,,. Then

(£60).7®) 0 (5710), F7(@)) € Boo:

Proof. We prove assertion a), the proof of the second assertion being
similar. To prove assertion a), it suffices to show that for any 6’ such
that

0 € (£0).1) N (17, 170)), (0)

we have 0’ € Ag. .
Note that condition (0) is equivalent to the following pair of conditions

f(0) <0 < fle) (1)
fe) <0 < f71(0). (2)

We divide the proof into three cases:

(i) the case where ' = 6,
(ii) the case where 6 < ', and
(iii) the case where ¢’ < 6.
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If 0’ = 0, then 6’ € Ag,, by the initial assumption.

(ii) We rewrite (2) in the form

(iii)

F7He) 0"~ f7H0). (2)

Since the homeomorphism f preserves orientation, from (2') it
follows that

e f(0') ~ 6. (3)
We observe that (3) is equivalent to
NCARY] (3)

Combining condition (3'), the assumption § < ¢, and condition
(1), we obtain

f(0)<0<6 < f(e). (4)
This implies
F0') =< 0" < fle). (5)

By the definition of Ag.,, (5) means that §' € Ag.,.
Now, let 6" < 6. This assumption and condition (2) yield

fte) =<0 <o (6)
We rewrite (6) in the form
ey~ ~o. (6")
From (6'), since f preserves the cyclic ordering ~, we obtain
e f(0') ~ f(0). (7)
This is equivalent to
FO) < £(0). (7')
Combining (7') with (1) we obtain (5) again. Therefore 8’ € Ag. ,.
O

Let 8 € B, be a braid and let v € 71 be an element of the fundamental
group. We define the map Jg,, : @ \ e — © \ e as follows (we write f

for fg,.):

ming (f(e); f7H7y)) if v € Ag v
Ts;0(7) = q ming (f7(e); f(7)) if v € Ba,;
Y, otherwise.



118 A. V. Malyutin

The definitions of Ag;, and Bg,, and Lemma 4.6 imply that

a) f(e) # e and f~1(y) # e whenever vy € Ag. ,,
b) f7l(e) # e and f(v) # e whenever v € Bg. ,.

This implies that J3;, is well-defined, i.e. for each v € ® \ e we have
jg;v(’y) €O e

Proposition 4.8 (Properties of J3.,). Let 8 € By, be a braid and let
v € 71 be an element of the fundamental group.

(i) For each v € © \ e we have v =< T, (7).
(ii) The map T, ts nondecreasing (with respect to <).
(i) The map Jp.v is left<-continuous.

(iv) For each v € T' we have Jg,,(7v) € T.

Proof.

(i) Follows from the definition of J3., and Lemma 4.6.
(ii) Suppose the converse, i.e. suppose that there exist points v and
~' from © \ e such that

7<’7/7 jﬁ;v(’)’) >\7f3;v(’y/)'

By assertion (i) of the proposition, we have v < 73,,(7’). Com-
bining this inequality with the initial assumption, we obtain

v =< ’7/ = jﬁ;v(’yl) = jﬁ;v(’y)'

In particular, we have v < J;,(7). Then from the definition
of Js., we conclude that v € AU B. Note also that 4 lies in
the interval (v, 73,4 (7)). Furthermore, the definition of J3,, and
Lemma 4.7 imply that

(v, T3;0(7)) C AUB.

Therefore, v and 4 lie in one and the same connected compo-
nent of the set AU B.

Moreover, the definition of J3,, directly implies that Jg., is
continuous and nondecreasing on each connected component of
the open subset AU B C © \ e. Then, since v and 7’ lie in one
and the same subinterval of AU B, we have J3;,(7) = J;0(Y')-
This is a contradiction and so (ii) is proved.
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As mentioned above, the restrictions

Jﬁ;le B min< (f(e)7 fﬁl(’y))
and
sl 1y —ming (71 (e); (7))

are continuous. In other words, J3,, is continuous (in particular,
left x-continuous) at each point of the open set AU B.

We now prove that J3,, is left <-continuous at each point z €
(® \e)~ (AUB). Note that by definition we have J.,(z) = z.
Further, for any point 2z’ < z, by assertion (i) of the proposition
we have 2’ < J3.,(%'), and by assertion (ii) of the proposition we
have J3,,(2") = J3,v(2) = z. Thus, for any 2’ < z we have

2 2 Tpw(2) 2 2.

It follows trivially that Jg;, is left <-continuous in z, as required.

Letye T Cc®~e If y eI'\(AUB), then J3.,(y) = v and
the result follows trivially. Now, suppose v € T'N (AU B). We
consider the case where v € A (the proof in the case where v € B
is similar).

If v € A, then by definition we have
Tyo() = min (F0): £7'(3).

Moreover, by the definition of A we have f(v) < v < f(e), and
by Lemma 4.6 we have f~1(e) < v < f~%(y). In particular,
v =< fle) and v < f71(9).

Assume that Jg,,(7) € I'. Then, since

Ts:v(v) = min (f(e); £71(7))

and since v < f(e), v < f~1(y), it follows that f(e), f~1(y) &
I'. Furthermore, we observe that f(e) = v and that f=1(y) =
B~YHv™1(y)). Then since f~1(v™1(y)) = f~1(y) € T it follows
that v=!(y) € T'. Thus, we have v = f(e) € T and v~ !(y) € T.
Consequently, v is a power of the distinguished element u and we
have v = v(v™!(y)) ¢ T, a contradiction. Hence Jp.,(7) € T.

O
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Proposition 4.9 (More properties of 7., ). Suppose 3 € By, v € m1\e,
and v € I'. Then we have

veyhpB(y) <= v =< Tso(V)
vE€yMmB() = v=Ts.07)
If ve~ympB(y), then for each ~' € (v, Tp; (7)) we have v € vt B(V').

Proof. Follows directly from Lemmas 4.6 and 4.7, and the definitions of
the intersection set, J3, ., Ag;v, and Bg. . O

Let 8 € B, be a braid. We set

Ts(7) = sup< {Ts;0(7) | v € M1}
To show that the map Jg : I' — T is well-defined, we must prove that
for any v € T' we have
sup< {Jg; () | vE€m} €.
Suppose first that v € T';. Then the set v th 3(v) is either finite or
empty (see Remark 2.28). Thus, by Proposition 4.9, we have
sup< {Ts;0(7) | v Em}
_Jmax{Tp(y) [ve{yh B} ifyhB() # 25
v if v h B(y) = 2.

Equivalently, we have

sup~ {Jp;0(7) [ v € m} = max< {Jp;0(7) [ v € {eU(y M B(7))}}-

Hence, by Proposition 4.8(iv), we have sup{Jg,+(y) | v € m} € T
whenever v € I';.

Now, let v € T'. It can be easily seen that there exists a funda-
mental geodesic 4/ € T'; such that v < /. As established just above,
sup< {Jg,+(7') | v € m} € T'. Assertions (i) and (ii) of Proposition 4.8
trivially imply that

v 2 sup< {Tp;0(7) | v € m} 2 sup< { T (7)) | v € mi}
Therefore sup~ {Jp,+(7) | v € m1} € T', as required.
Proposition 4.10 (Properties of J3). Let 8 be a braid. Then

(i) For each v € T, we have v < J3(v);
(ii) The map Jp is nondecreasing (with respect to <);
(iii) The map Jg is left--continuous.
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Proof. Follows from the definition of J3 and from Proposition 4.8. [

Proposition 4.11 (Properties of Jg). Let 3 be a braid. Then
() v =<Ts(7) <= v B(y) # 2;

(i) v=JTs(y) &= yhp(y) =2.
(iii) Suppose Ja(7y) = v. Suppose v € (v, T3(7)). Then

v hB(Y) # @.
Proof. Follows from the definition of J3 and from Proposition 4.9. [

Lemma 4.12. Let 3 € B,, and letv € X ~o. Suppose v th (vT>) #
&. Then Jz(v) = vtee.

We omit the proof.
Proposition 4.13.
(i) For any 8 € B, and each v € T \ e, we have
jﬁ;v(FW) cI.
(ii) For any B € By, we have
J3(Tx) C Ty
Proof. Follows easily from the definitions. (I
Proposition 4.14.

(i) There exists an algorithm that, given a braid 3, an element v €
m e, and an element w € 'y, computes the element Jg,,(w).

(ii) There exists an algorithm that, given a braid [ and an element
v € T'x, computes the element Jp(v).

Proof. This follows from the lemmas of Section 2.12 and the definitions.
O

4.4 Obstacles
Let 3 be a braid. A geodesic  from the set 3, = X, U X4 is called
a [-obstacle if v and () have no transverse intersections but are not
strongly *-disjoint. In other words, v € X, is a (-obstacle if either
v = B(vy) or v and B(y) are weakly *-disjoint.

Lemma 4.15. The set of (-obstacles for a pseudo-Anosov braid (8 is
either empty or equal to the set of T-geodesics for (3.
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4.5 The Fundamental Algorithm

In this subsection, we present an algorithm that, given a braid 4 and an
interval without S-obstacles [y,n) C T', where v, n € X, detects whether
[v,n) contains simple solutions for 8, and outputs such a solution if one
exists.

The Fundamental Algorithm.
Input: g € By; v,n € 3.

®0. Assign t:=0; zg := 7.
®1. Compare x; and 7; if z; > 7, then stop:

the interval [v,7n) does not contain simple solutions for 3.

®2. Check whether z; is a solution for 3; if yes, then stop:

x¢ € [y,m) is a simple solution for 3.
®3. If 24 has a right-hand ¥ -neighbour (see Definition 2.22), then:

assign 441 := Next, (x¢).

®4. If z; is maximal, then:

— compute Jp(z¢);

— compute the simplification s(Js(z));
— assign xy41 = s(Tp(xr)).

®5. Reassign t :=t+ 1, and go to Mark ®1.

Proposition 4.16. Let § € B,,. Let v,n € X,. Suppose that the
interval [y,n) C T does not contain [3-obstacles. Then the Fundamental
Algorithm, given (8;7,7n) as input, takes a finite number of steps.

Furthermore, it stops on Mark ®1 if and only if [y,n) does not contain
simple solutions for B; and it stops on Mark ®2 if and only if [y,n)
contains a simple solution for 3.

Proof. We analyse how the algorithm works. It takes as input a triple
(B;7v,1n) and assigns z¢ := v on Mark ®0. After that, on Marks ®1 and
®2 the algorithm checks if the following condition holds

(Co) (xo > m) or (xo is a solution).

If (Cy) holds, then the algorithm stops and outputs an ‘answer’. Assume
now that (Cp) does not hold. Then algorithm proceeds to Marks ®3 and
®4 to compute x7.
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Claim 1.

(i)
(i)
(iii)

T € X
1 > Xo;
The interval [zg, 1) does not contain simple solutions for (.

Proof of the claim. Suppose first that z( is not a maximal element. In

this case we have x7 = Next,.(z¢). Hence, 1 € X, and x; > z by the

definitions. Since x; = Next,(x¢), the interval (zg, 1) does not contain

simple geodesics. Since we assume that (Cpy) does not hold, x¢ is not a

solution, and so the interval [zg,z1) does not contain simple solutions

for 3.

Suppose, therefore, that zy is maximal.

(i)
(i)

(iii)

We see that x1 = s(Jg(z0)) € X, by Proposition 4.13 and the
definition of the simplification (Definition 2.20).

Consider the geodesic ¢ := z$>. By the results of Section 2, ¢
is a right coil geodesic and env(¢) = x¢. From Theorem 2.17 it
follows by construction that ¢ € [y,n).

Let us show that ¢ and 3(¢) have transverse intersections. As-

sume otherwise: then, since ¢ € [y,7) and [y, 1) does not contain
B-obstacles, we conclude that ¢ and 8(¢) are strongly *-disjoint
(see the definition of an obstacle). The envelopes xy = env((¢)
and ((zg) = env(B(¢)) are therefore (strongly) -disjoint (see
Remark 2.32). This means that zo is a solution for 3, which
contradicts the assumption that (Cp) does not hold. Thus, ¢
and B(¢) have transverse intersections. Then by Lemma 4.12,
we have Jg(xo) > {, whence by Theorem 2.17 it follows that
x1 = s(Js(x0)) = xo.
First we recall that z is not a solution (since we assume that (Cj)
does not hold). Furthermore, by Proposition 4.11(ii), the interval
(w0, Tp(x0)) does not contain solutions for 8. If Jz(xo) is simple,
then =1 = s(Js(xo)) = Jp(zo) and this completes the proof. If
Js(xo) is not a simple geodesic, then by the definition of the
simplification there are no simple geodesics between Jz(zo) and
s(Jp(xo)), whence we easily deduce that the interval [z, z1) =
[0, 8(T3(x0))) does not contain simple solutions for (.

The claim is proved. |
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Now we return to the algorithm. After computing x; on Marks ®3
and ®4, the algorithm proceeds to Mark ®b5; it reassigns ¢t from 0 to
1 and goes to Mark ®1. Being on Mark ®1 again, we can see that
the situation is similar to the one in the very beginning, except that
now the input is the triple (8;z1,7) instead of the triple (8;zq,n). The
algorithm repeats the procedure described above: on Marks ®1 and ®2
the algorithm checks whether the following condition holds:

(Ch) (x1 > m) or (z; is a solution).

If (C1) holds, then the algorithm stops. If (C1) is not true, then the algo-
rithm proceeds to Marks ®3 and ®4 where it computes 5. (By analogy
with Claim 1, we can prove that x5 € X; 2 = x1; the interval [z1, 22)
does not contain simple solutions for 5.) After that, the algorithm goes
to Mark ®5, then to Mark ®1, and so on.

Now we are able to describe the process of the algorithm’s work as
a whole. The Fundamental Algorithm, given a triple (5;7,n), begins
to generate a sequence xg(= 7), 21,2, ... of elements of T'. Each time
after computing x, the algorithm checks the condition

(Cr) (x = m) or (zy is a solution).

If (Ck) holds, then the algorithm stops. If (Cf) is not true, then the
algorithm generates xj11.
By induction on k we prove the following (see the proof of Claim 1):

Claim 2.

(i) zo,21,..., Tk € Xy;
(i) mo <21 < ... < Tk;
(iii) The interval [xg, zx) = [xo,21)U---U[xk_1, 2x) does not contain
simple solutions for g.

Now, we are ready to prove the following part of the proposition:

Claim 3. If the algorithm at some moment stops on Mark ®1, then
[v,7m) does not contain simple solutions for 8. If the algorithm stops on
Mark ®2, then [y,7) contains a simple solution for 3.

Proof of the claim. Suppose the algorithm stops on Mark ®1. This
means that for a certain nonnegative integer k we have z > 7. By
assertion (iii) of Claim 2, the interval [z, z)) does not contain simple
solutions for 3. Consequently, since zj > 7, the interval [y,n) C [z, zk)
does not contain simple solutions for 3.
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Suppose the algorithm stops on Mark ®2. This means that for a
certain nonnegative integer k the geodesic xy is a simple solution for 3.
By assertion (ii) of Claim 2, we have v = xg < ). Since the algorithm
does not stop on Mark ®1 while checking xj, we have x < 7. Thus,
the simple solution xy is in [y, 7).

The claim is proved. O

Claim 4. The Fundamental Algorithm, given a braid and an interval
without obstacles for this braid, stops after a finite number of steps.

Proof of the claim. Assume that the algorithm takes an infinite number
of steps. Then the considerations above imply that the algorithm com-
putes an infinite sequence of simple fundamental elements xg, x1, x2, . . .
such that

o =21 <T2 < ...

where z; € [y,n). Since the sequence {z:} is increasing and bounded
above by 7, there exists a limit

¢ := lim xy.
t—o0

Let us analyse what kind of geodesic ¢ is. Since ( is a left-hand
limit point of a sequence consisting of simple fundamental elements,
Theorem 2.17 implies that ¢ is either a perfect geodesic or a left coil
geodesic.

Since each element of the sequence {x;} is in [vy,n), we have ¢ € [y, n].
Moreover, since 7 is a finite geodesic, while ( is an infinite one, we have
¢ # n. This implies that ¢ € [y,n). Thus, since [y,7n) does not contain
[-obstacles, ¢ is not a J-obstacle. Then by the definition of an obstacle,
¢ and B(Q) either have transverse intersections or are strongly *-disjoint.

Assume first that ¢ and 3({) are strongly x-disjoint. Then the en-
velopes env(¢) and env(3(¢)) = B(env(({)) are strongly *-disjoint (see Re-
mark 2.32). Therefore, for each simple fundamental geodesic v C Denv(©)
we have B(v) ¢ D) e, each simple fundamental geodesic v C
D) is a simple solution for 5. Combining this fact with Lemma, 2.24,
one can easily conclude that ¢ is a right-hand limit for simple solutions
of 8. On the other hand, since each interval [y, zj) does not contain sim-
ple solutions for 3 (assertion (iii) of Claim 2), it follows that the interval
[, ¢) does not contain simple solutions for 3, giving a contradiction.

Now, assume that ¢ and 8(¢) have transverse intersections. Then by
Proposition 4.11(i), J3(¢) > ¢. On the other hand, Jj3 is left-continuous,
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whence it follows that for a certain ¢’ < ¢ we have J3(¢’) > ¢. Then by
assertion (i) of Proposition 4.10, for any ¢” > ¢’ we have J3(¢") > .
Further, by definition of ¢ there exists N € N such that z; > ¢’ whenever
t > N. Note that at least one of the elements xn, Tnt1, TNt2, TN+3 1S
maximal (this follows from Theorem 2.17). Say zy 4, is maximal, where
r€{0,1,2,3}; then zn4r+1 = $(J3(xn4r)). Since N +r > N, we have
Zn4r = ¢ and hence Jg(xn+r) > ¢. Therefore, since ¢ is in X,, we

have xn1r1+1 = s(Tp(xN+r)) > ¢, which again gives a contradiction.
Thus, we have established that ¢ and (({) neither coincide nor are
weakly *-disjoint; also, ¢ and 3(¢) are neither strongly *-disjoint nor
have transverse intersections. But this is impossible by Proposition 2.34.
O

The theorem now follows from Claims 3 and 4. O

4.6 Suitable sets of intervals for a pseudo-Anosov braid

Definition 4.17. Let 3 be a braid of pseudo-Anosov type. Let
E = {[v1,v}),. .., [ve,v})}, vi,v € Xp
be a finite set of subintervals of I'. We define
E:=[v;,v})U...Uug,v}) CT.
We say that the set E is suitable for G if

| A¥B(E) =T\ T,
r,SEL

where T C T is the set of T-geodesics for 3 (see Section 3.6).

Proposition 4.18. Suppose 3 is a braid of pseudo-Anosov type. Sup-
pose E is a suitable set of intervals for 3. Then the following conditions
hold.

(i) If there is a simple solution for [3, then there is a simple solution
for B in the set E.
(ii) The intervals of E do not contain [3-obstacles.

Proof. The first condition follows from the definition of a suitable set of
intervals and Proposition 4.3. The second follows from the definition of
a suitable set of intervals and Lemma 4.15. |
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An algorithm that computes a suitable set of intervals. Let 3
be a pseudo-Anosov braid. First, we compute the numbers

q:= q(ﬁ)v ri= T(ﬁ)v §i= S(ﬂ)

(see Section 3.6 for notation). Furthermore, let t; € T be an arbitrary
T-geodesic (we can ‘choose’ t; from the interval [uy, A?(u1)] C T, for ex-
ample). The definitions imply that the interval [t;, A%(t;)] C T contains
exactly 2¢ + 1 T-geodesics for (. Let

Tﬁ N [tl,AQ(tl)} = {tl, .. 7t2q,t2q+1 = AQ(h)}

where t; <ty < ... < tgg11. As observed in Section 3.9, we can com-
pute the (large perfect) geodesics t1, ..., tog+1 to any prescribed accu-
racy. It follows that we can compute a set of fundamental geodesics
{wi1, ..., waq} C I'x such that w; € (¢;,t,41) for each ¢ € {1,...,2¢}.

Then we compute the simplifications y; := s(w;). By Theorem 2.17 it
follows that y; € (t;,t;41) for each i € {1,...,2q}.

Foreachi € {1,...,2m} we then compute the element y] := 3" A% (y,).
Since the homeomorphism 37A% : T' — T fixes T pointwise, we have
yé S (ti, ti+l) for each i € {1, R QQ}.

Now, for ¢ € {1,...,2q} we assign v; := y; and v, := y. if y; < yj;
while we assign v; := y, and v} := y; if ¥} < y;.

We claim that the resulting set {[vi,v]), ..., [v2q, v5,)} of intervals is
suitable for (. Indeed, we obviously have

U (37 Aa%) ([vi,v) = (ti, tira).

z€ZL
It follows that
F = U (/BTA%)Z([’U%U;) U---u [’U2q7véq))
z€EZL
= (t1,t2) U+~ U (taq, tag+1) = (t1,t2g+1) N\ T

Then we have (recall that tog1 = A%(t1))

U A% (F) =T\ Tp.

2€7Z
Remark. Note that if » = r(8) # 1 then the suitable set of inter-
vals {[v1,v1),...,[vag, v5,)} that we compute is ‘excessive’. Its subset
{lv1,v1),- -+, [vag/r vh, )} consisting of 2¢/r intervals is still a suitable
set of intervals.
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4.7 On the destabilizability of reducible braids

Theorem 4.19. If the principal companion of a reducible braid 3 18
destabilizable, then 3 is destabilizable.

Proof. The proof is obvious from the ‘knot point of view’ (see remarks
in the introduction) O

Theorem 4.20. Suppose B is reducible (nonperiodic), but not pure-
reducible braid. Then 3 is destabilizable if and only if its principal com-
panion is destabilizable.

We omit the proof.

4.8 A destabilization algorithm

Let 3 be a braid. To detect whether the closed braid B is destabilizable,
we first of all determine the Thurston type of 3 (see Sections 3.5 and 3.9).
Then we proceed to a corresponding subalgorithm (for periodic, pseudo-
Anosov, and reducible (nonperiodic) braid types, respectively).

Periodic case

To recognize whether a closed n-braid B of periodic type is destabi-
lizable, it is sufficient to compute the exponent sum exp(3). (For by
Theorem 4.4, (3 is destabilizable if and only if 0 < | exp(3)| < n? —n.)

Pseudo-Anosov case

The procedure of checking whether a given braid B of pseudo-Anosov
type is destabilizable consists of two steps:

1. Find a ‘suitable set of intervals’ for 5 (the outline of an appropriate
algorithm was given in the previous section).

2. Check whether intervals of the suitable set contain a ‘simple solution’
(apply the Fundamental Algorithm from Section 4.5 to each interval
of the suitable set).

If intervals of the suitable set do not contain a simple solution, then B
is not destabilizable. This follows from Theorems 4.1 and 4.2 and from
Proposition 4.18.

Conversely, if intervals of the suitable set contain a simple solution,
then B is destabilizable. This follows from Theorems 4.1 and 4.2.

The definition of a suitable set of intervals and Propositions 4.16
and 4.18 imply that the algorithm just described stops after a finite
number of steps.
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Reducible case

To recognize whether a given braid B of reducible nonperiodic type is
destabilizable, we begin by computlng of the canonical reduction system
and of the principal companion for B We also detect whether ﬁ is pure-
reducible. After that, we consider two subcases: the * generlc one, where
B is not pure-reducible; and the ‘special’ one, where ﬁ is pure-reducible.

We do not describe the subalgorithm for the ‘special’ case in this work.
This case is not difficult to analyse, but this needs a lot of additional
constructions and definitions. Note that the ‘special’ subcase includes
the further subcase of split braids. Clearly, a split braid is destabilizable
if and only if one of its components is destabilizable.

In the ‘generic’ case, we check (using the procedures described above
for the periodic and pseudo-Anosov cases) whether the principal com-
panion & of B is destabilizable (recall that & is either pseudo-Anosov or
periodic). By Theorem 4.20, a reducible but not pure-reducible braid B
is destabilizable if and only if @ is destabilizable.
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n-dimensional local fields and adeles on
n-dimensional schemes

Denis V. Osipov

1 Introduction

The notion of an n-dimensional local field appeared in the works of
A. N. Parshin and K. Kato in the middle of the 1970s. These fields
generalize the usual local fields (which are 1-dimensional in this sense)
and help us to see higher-dimensional algebraic schemes from the local
point of view.

With every flag

XoCXl... CXn_l (dlle:’L)

of irreducible subvarieties on a scheme X (dim X = n) one can canon-
ically associate a ring K(x,,. . x,_,)- In the case where everything is
regularly embedded, the ring is an n-dimensional local field.

Originally, higher-dimensional local fields were used to develop the
generalization of class field theory to schemes of arbitrary dimension (see
the work of A. N. Parshin, K. Kato, S. V. Vostokov and others, [22, 11]).
However, many problems of algebraic varieties can be reformulated in
terms of higher-dimensional local fields and higher adelic theory.

For a scheme X there is an adelic object

!
Ax =] Kxorxu )

where the product is taken over all the flags with respect to certain
restrictions on components of adeles. In [19] A. N. Parshin defined adeles
on algebraic surfaces, which generalize usual adeles on curves. A. A.
Beilinson introduced a simplicial approach to adeles and generalized to
arbitrary dimensional Noetherian schemes in [2].

A. N. Parshin, A. A. Beilinson, A. Huber, A. Yekutiely, V. G. Lom-
adze and others have described connections of higher adelic groups with
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cohomology of coherent sheaves [19, 2, 9, 29, 3, 4], intersection the-
ory [21, 12, 15, 4], Chern classes [21, 10, 4], the theory of residues
[19, 29, 2, 13, 4] and torus actions [5]. This paper is a review of the
basic notions of higher-dimensional local fields and adeles on higher-
dimensional schemes.

The paper is organized as follows. In Section 2 we give a general
definition and formulate classification theorems for n-dimensional local
fields. We describe how n-dimensional local fields appear from algebraic
varieties and arithmetic schemes.

In Section 3 we define higher-dimensional adeles and adelic complexes.
Starting from an example of adelic complexes on algebraic curves, we
give a general simplicial definition for arbitrary Noetherian schemes,
which is due to A. A. Beilinson. We formulate theorems about adelic
resolutions of quasicoherent sheaves on Noetherian schemes. We apply
these general constructions to algebraic sufaces to obtain adelic com-
plexes on algebraic surfaces, which were introduced by A. N. Parshin.

In Section 4 we describe restricted adelic complexes. In constrast
to the adelic complexes from Section 3, restricted adelic complexes are
associated with a single flag of subvarieties. A. N. Parshin introduced
restricted adeles for algebraic surfaces in [23, 24]; the author introduced
restricted adelic complexes for arbitrary schemes in [17]. We also give
the reconstruction theorem on restricted adelic complexes.

In the last section we briefly describe reciprocity laws on algebraic
surfaces.

The author is very grateful to A. N. Parshin for many discussions
on higher-dimensional local fields and adeles. He is also grateful to
M. Taylor for interesting discussions and his hospitality during the visit
to the University of Manchester, which was sponsored by an LMS grant.
The author also acknowledges the support of the Russian Foundation
for Basic Research, via grant no. 05-01-00455.

2 n-dimensional local fields
2.1 Classification theorems

We fix a perfect field k.

We say that K is a local field of dimension 1 with residue field k, if
K is a fraction field of the complete discrete valuation ring Ok with
residue field K = k. We denote by vk the discrete valuation of K and
by mg the maximal ideal of the ring Ok.
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Such a field has the structure K D O — K = k. As examples of
such fields we have the field of power series

K=k(t), Ox=k[t, K=k
and the field of p-adic numbers
K =Q,, Ok = Zy, k=TF,.
Moreover, we have only the following possibilities, see [27, Ch. II]:

Theorem 2.1. Let K be a local field of dimension 1 with residue field k.
Then K is one of the following:

(i) K =k((t)) is the power series field if char K = chark;
(ii) of char K =0 and chark = p then either
(a) K =TFrac(W(k)) where Ox = W (k) is the Witt ring of k
(for example, K = Q,), or
(b) K is a finite totally ramified extension of Frac(W (k)).

Now we give the following inductive definition.

Definition 2.2. We say that a field K is a local field of dimension n
with last residue field k if

(i) n=0 and K = k;
(ii) n > 1 and K is the fraction field of a complete discrete valuation

ring Ok whose residue field K is a local field of dimension n — 1
with last residue field k.

Thus, a local field of dimension n > 1 has the following inductive
structure:

K=K950k - K=KY 50— KWY
ZK(Q) DOK(z) —>...K(n) :k‘,

where for a discrete valuation field F' we let Op be the ring of integers
in F and F be the residue field. The maximal ideals in @ Kk are denoted
by mgu . Each field K@ is a local field of dimension n — i with last
residue field k.

Definition 2.3. A collection of elements t1,...,t, € Ok 1is called a
system of local parameters for the n-dimensional local field K if t1 is a
generator of my and the images of ta, .. .t, in K form a system of local
parameters for the (n — 1)-dimensional local field K%,
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An example of an n-dimensional local field is K = k((¢,)) ... ((t1))-
For this field we have

K9 =k((tn)) ... ((tiy1)) » Ogw =k((tn)) .- ((tig2))[[tisa]].
In the case n = 2 we have
KDOKHKDOR—?]{:.

We can construct the following examples of 2-dimensional local fields
with last residue field k. These examples depend on the characteristic
of the 2-dimensional field K and the characteristics of its residue fields.

o K = k((t2))((t1)) and char K = char K = chark.

o K = F((t)), where F' is a local field of dimension 1 with residue field k
such that char(F') # char(k), for example F' = Q,.

o K = F{{t}}, where F is a local field of dimension 1 with residue
field k.

The field F{{t}} has the following description: a € F{{t}} if and
only if

—+o0
a = Z ait’, a; € F,
1=—00
where lim vp(a;) = +oo and vr(a;) > ¢, for some integer c,.
11— — 00

We define the discrete valuation vp gy by putting
I/F{{t}}(a) = min Z/F(ai).

Then the ring Op (s}, consists of elements a such that all a; € Op, and
the maximal ideal mp(()) consists of elements a such that all a; € mp.
Therefore

F{{t}} = F((t)).
We remark that for F' = k((u)) the field F{{t}} is isomorphic to the
field k((¢))((u)).

There exists the following classification theorem, see [4, 20, 30, 31].

Theorem 2.4. Let K be an n-dimensional local field with finite last
residue field.

(i) If char(K) = p, then K is isomorphic to Fo((t,)) ... ((t1)).
(ii) If char(K(=Y) = 0, then K is isomorphic to F((t,_1))...((t1)),
where F is a 1-dimensional local field.
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(iii) If char(K(™) = 0 and char(K(™+V)) = p, then K is a finite

extension of a field

F{{tn}} - AL{tme2} }(Em)) - ((02)) (%)

and there is a finite extension of K which is of the form (x), but
possibly with different F and t;.

We remark that if 7 is a local parameter for a 1-dimensional local field
F then t1,...,ty, T, timya, ...,y are local parameters for a field

F{{tn}} - A{tmr2} }(Em)) - ((02))-

2.2 Local fields which come from algebraic geometry

Consider an algebraic curve C over the field k. We fix a smooth point p
on C and let

K, = Frac(0,),
where

0, = lim O, /my;

is a completion of the local ring O, at the point p on the curve C. Then

Ky = k(p)((1)), (2.1)

where k(p) = Op/my, is the residue field of the point p on the curve C.
This is the finite extension of the field k, and t is a local parameter of
the point p on the curve C.

We see that the field K, corresponds to case (i) of the classification
theorem 2.1.

Now we consider a field of algebraic numbers K, i.e. a finite extension
of the field Q. Let A be the ring of integers of the field K; then let
X = Spec A (so that X is a 1-dimensional scheme). We fix a closed
point p € X, which corresponds to a maximal ideal in A. Then the
completion of the field K at the point p is

K, = Frac (lim A, /my). (2.2)
We see that K, is a 1-dimensional local field with residue field Fy, and
the field K, corresponds to case (ii) of the classification theorem 2.1.

Now we give the definitions for the general situation. Let R be a ring,
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p a prime ideal of R, M an R-module; let S, = R\ p. We write S, ' M
for the localization of M at S),. For an ideal a of R set

CoM = lim M/a™ M.
—
neN

Let X be a Noetherian scheme of dimension n. Let 6 = (po, ..., pn) be
a chain of points of X (i.e. the chain of integral irreducible subschemes
when considering the closures of the points p;) such that p;+1 € {p;} for
any i, where {p;} is the closure of the point p; in X. We suppose that
for all i, we have dimp; = i.

Restrict § to some affine open neighbourhood Spec B of the closed
point p, on X. Then § determines a chain of prime divisors of the ring
B, which we denote by the same letters (po,...,pn). We define a ring
as follows.

Definition 2.5.

Ks“c,S81...C, S'B (2.3)

Po*~po Pn™ppn

This definition of K5 does not depend on the choice of affine neigh-
bourhood Spec B of the point p, on the scheme X, see [9, Prop. 3.1.3,

Prop. 3.2.1]. We remark that the ring C,, S, ' B from (2.3) coincides

with the completion @pn,X of the local ring of the point p, on the
scheme X.

We now consider examples of (2.3) for small n.

Example 2.6. Let X be an irreducible 1-dimensional scheme (e.g. an
irreducible curve over the field &, or the spectrum of the ring of algebraic
integers). If p is a smooth point of X and 7 is a generic point of X,
then for § = (n,p) we see that K; is a 1-dimensional local field, which
coincides with the field K, from (2.1) or (2.2).

Example 2.7. Now let X be an irreducible algebraic surface over the
field k. Let C be an irreducible divisor of X and p a point on C. We
suppose that p is a smooth point on X and on C. Let 1 be a generic
point of X, and consider 6 = (n, C, p).

Fix a local parameter ¢t € k(X) of the curve C on X at the point p
(t = 0 is a local equation of the curve C' at the point p on X). We also fix
the local parameter v € k(X) at the point p on X which is transversal
to the local parameter ¢ (the divisor v = 0 is transversal to the divisor
t = 0 at the point p). We fix any affine neighbourhood Spec B of p on X.
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Then
CpS, ' B = k(p)[[u, 1]]
CeSe'CpS, ' B = k(p)((w))[[t]]
and
Ks = CyS, ' CeSe'CpS, B = k(p) (w))((1))-

Hence K is a 2-dimensional local field with last residue field k(p). We
see that the field K corresponds to case (i) of the classification theo-
rem 2.4.

Example 2.8. The previous example can be generalized. Let pg,...,p,
be a flag of irreducible subvarieties on an n-dimensional algebraic vari-
ety X over the field k, such that dimp; = n — ¢, p;+1 C p; for all i and
the point p, is a smooth point on all subvarieties p;. We can choose a
system of local parameters t1,...,t, € Op, x of the point p, on X such
that for every 4, the equations t; = 0,...,%; = 0 define a subvariety p;
in some neighbourhood of the point p,, on X. Then according to (2.3)
and similarly to the previous example we have for § = (po, ..., pn)

Ks = k(p)((tn)) ... ((t2))-

Example 2.9. Now we suppose that the scheme X is an arithmetic
surface, i.e. dim X = 2 and we have a flat, projective morphism

f: X —Y =SpecA,

where A is the ring of integers of a number field K. We consider two
kinds of integral irreducible 1-dimensional closed subscheme C' on X.

(i) The subscheme C' is horizontal, i.e. f(C) =Y. We consider a
point z € C which is smooth on X and C. Let 6 = (n,C, z),
where 7 is a generic point of X. Then

Ks = L((t)),

where t = 0 is a local equation of C at the point z on X and
LD Ky D Qyis a finite extension. Thus Kj is a 2-dimensional
local field with finite last residue field.
We see that this field K; corresponds to case (ii) of the classi-
fication theorem 2.4.
(ii) The subscheme C is wertical, i.e. it is a component of a fibre
of f. This C is defined over some finite field F,. We consider
a point € C such that the morphism f is smooth at x and
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the point = is also defined over the field F,. Let § = (n,C,z),
where 7 is a generic point of X, and apply (2.3). For any affine
neighbourhood Spec B of x on X the ring C,.S; ! B coincides with
the completion @z x of the local ring at the point z on X. But
since f is a smooth map at p,

@ZE,X = OKf(g:) ([ul]],
and so
Ks = Ky {{u}},

where K,y O Q) is a finite extension. Thus K is a 2-dimen-
sional local field with finite last residue field.

We see that this field K corresponds to case (iii) of the classi-
fication theorem 2.4.

Note that in both these cases we have a canonical embedding f* of
the 1-dimensional local field K, into the 2-dimensional local field K.

Now we cousider only excellent Noetherian schemes X (e.g. a scheme
of finite type over a field, over Z, or over a complete semi-local Noethe-
rian ring; see [14, §34] and [6, §7.8]).

We introduce the following notation (see [21]). Let 6 = (po, ..., Pn)-
Let a subscheme X; = % be the closure of the point p; in X. We
introduce by induction the schemes X; . in the following diagram

Xo D X1 O X2 D

T T i
X(/) D) X17(X1
T
X{,Oél ) X2;a2

1

Here X'’ denotes the normalization of a scheme X, and X, ,, is an

integral irreducible subscheme in X ; ,

which is mapped onto X;.
By any such diagram we obtain the collection of indices (a1, ... a,). The
finite set of all such collections of indices is denoted by As.

Such a collection of indices (ai,...an) € As determines a chain of
discrete valuations in the following way. The integral irreducible subva-
riety X1,q, of the normal scheme X{, defines the discrete valuation of the
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field of functions on Xy. The residue field of this discrete valuation is
the field of functions on the normal scheme X7 , , and the integer irre-
ducible subscheme X5 ,, defines the discrete valuation here. We proceed
further for as, ..., a, in this way.

Moreover, there is the following theorem [21]. (See also [29, Theo-
rem 3.3.2] for the proof).

Theorem 2.10. Let X be an integral excellent n-dimensional Noethe-
rian scheme. Then, for § = (po,...,pn) the ring Ky is an Artinian ring
and

K5 = H K(al,m,an)

(1.0 ) €A

where every K(q,.....a,) 8 an n-dimensional local field.

Example 2.11. To illustrate this theorem we now compute the ring Ks
in the following situation. Let p be a smooth point on an irreducible
algebraic surface X over k. Suppose an irreducible curve C' C X contains
the point p, but has a node singularity at p (i.e. the completed local
ring of the point p on the curve C is k[[t, u]]/tu for some local formal
parameters u, ¢ of the point p on X).

Let § = (n,C,p), where 7 is a generic point of X, and fix any affine
neighbourhood Spec B of p on X. Then according to (2.3)

CpSy ' B = k(p)|[u, ]
CcSg'CpS, ' B = k(p)(w)[t]] @ k(p)((t)
K5 = 0,8, CeSa' CpS, B = k(p)((w))((1) @ k(p)((H)((w).

=

3 Adeles and adelic complexes
3.1 Adeles on curves

Let C be a smooth connected algebraic curve over the field k. For any
coherent sheaf F on C' we consider an adelic space Ac(F), given by

fp S -7:®Oc OKp

for almost all p

Ac(F) =} e [[ Fooo K,
peC
where the product is over all closed points p of the curve C.
We construct the following complex Ac(F):
F®oc k(C) x [l F®o. Ok, — Ac(F)
peC
a X b — a+b.
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Theorem 3.1 (see e.g. [26]). The cohomology groups of the complex
Ac(F) coincide with the cohomology groups H*(C,F), where F is any
coherent sheaf on C.

Proof. We give here a sketch of the proof. We construct an adelic com-

plex Ay (F) of the sheaf F for any open subset U C C. Taking into

account all U we obtain a complex of sheaves A(F) on the curve C.
For small affine U we find that the complex

00— FU)— Ay(F) —0

is exact, since we can apply the approximation theorem for Dedekind
rings over fields. Therefore the complex A(F) is a resolution of the sheaf
F on C. By construction this resolution is a flasque resolution of the
sheaf F on C, and so calculates the cohomology of the sheaf F on the
curve C. O

3.2 Adeles on higher-dimensional schemes

In this section we give a generalization of adelic complexes to schemes
of arbitrary dimensions.

For algebraic surfaces adelic complexes were introduced by A. N.
Parshin in [19]. We will later give a detailed exposition of adelic com-
plexes on algebraic surfaces, as an application of general machinery con-
structed for arbitrary Noetherian schemes by A. Beilinson in [2]. For a
good exposition and proofs of Beilinson’s results see [9].

Definition of adelic spaces
We introduce the following notation. For any Noetherian scheme X let
P(X) be the set of points of the scheme X. Consider p,q € P(X) and
define the relation p > ¢q if ¢ € @7 i.e. the point p is in the closure
of the point ¢q. Then > is a partial order on P(X). Let S(X) be the
simplicial set induced by (P(X),>), i.e.

S(X)m ={(Pos--->pm) | pi € P(X);pi > pis1}

is the set of m-simplices of S(X) with the usual boundary ¢} and de-
generacy maps o forn € N, 0 <i <n.
Let K C S(X),. For p e P(V) we let

oK {1, pn) €SV | (011 pn) € K}
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Let QS(X) and CS(X) be the categories of quasicoherent and coher-
ent sheaves, respectively, on the scheme X. Let Ab be the category of
Abelian groups.

We have the following proposition, see [2, 9, 8], which is also a defini-
tion.

Proposition 3.2. Let S(X) be the simplicial set associated to the Noethe-
rian scheme X . Then for integer n > 0, K € S(X),, there exist functors

A(K,") : QS(X) — Ab

uniquely determined by the properties (i), (ii), (iil), which are additive
and ezact.

(i) A(K,-) commutes with direct limits.
(ii) For n =0 and F a coherent sheaf on X

AK, F) = [] lim 7, /ml, F,.
peK 1

(iii) Forn >0 and F a coherent sheaf on X

AR F) =[] lImAGK, Fp/myF)
peP(V) 1
Remark 3.3. Since any quasicoherent sheaf on an excellent Noetherian

scheme is a direct limit of coherent sheaves, we can apply property (i)
of this proposition to define A(K, F) on quasicoherent sheaves.

Local factors

By induction on the definition of A(K, F) we get the following proposi-
tion [9, Prop. 2.1.4.].

Proposition 3.4. For any integer n > 0, K C S(X),, and any quasi-
coherent sheaf F on X

AK,F) c J] A6, 7).
JeK

The inclusion is a natural transformation of functors.

From this proposition we see that A(K,F) is a kind of complicated
adelic product inside [[sc; A(d,F). It is therefore important to study
the local factors A(6,F) for 6 € S(X),. We have the following two
propositions from [9] about these local factors.
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Proposition 3.5. Let § = (po,...,pn) € S(X)n. Let U be an open
affine subscheme which contains the point p, and therefore all of 6. Let
M = F(U). Then for a quasicoherent sheaf F

A((sa f) - A(67 M),
where M is a quasicoherent sheaf on U which corresponds to M.

In the following proposition, local factors A(d, F) are computed for
affine schemes.

Proposition 3.6. Let X = Spec R and F = M for some R-module M.
Further let § = (po,...,pn) € S(X)n. Then

A5, F)=Cp, S, ... Cp ST R®R M. (3.1)

Po*~po Pn™~pn

Chpo Sp_ol .Cp, Sp_an is a flat Noetherian R-algebra, and for finitely gen-

erated R-modules

C, S~ t...C, ST'Ror M =C, S-t...C, ST'M.

Po*~po Pn~pp Po*~po Pn™pp

We now compare (3.1) and (2.3) for Ks5. We see that for an n-
dimensional Noetherian scheme X, for § € S(X),, and a quasicoherent
sheaf F

A(6, F) = K5 ®oy F.

Remark 3.7. Due to Theorem 2.10, for § € S(X), the local factors
A(0,Ox) on an excellent Noetherian integral n-dimensional scheme X
are finite products of n-dimensional local fields.

Adelic complexes

Now we want to define adelic complexes on the scheme X. Consider the
simplicial set S(X) with the usual boundary maps 0} and degeneracy
maps o) forn e N, 0 <7 <n.

We note the following property, see [9, Prop. 2.1.5.].

Proposition 3.8. Let K,L,M C S(X), such that K UM = L and
KNM =0. Then there are natural transformations i and w of functors
i()  AK,) — A(L, ")

m() s AL, ) — A(M, )
such that the following diagram is commutative and has split-exact rows

for all quasicoherent sheaves F on X :



n-dimensional local fields and adeles on n-dimensional schemes 143

i(F) m(F)
e —_—

0 — A(K,F) A(L,F) AM,F) — 0

l l l

0 — JI AG,F) — J] AG,F) — ]I A6, F) — 0.

deEK deL seM

The proof is by induction on Proposition 3.2.
Definition 3.9. Let K C S(X)o, F a quasicoherent sheaf. We write
(K, F) : T(X,F) — A(K, F)
for the canonical map, which is a natural transformation of functors.

Definition 3.10. Let K C S(X)ns1, L € S(X),, 6/ K C L for some
1€{0,...,n+1}. We define natural transformations of functors

d:bJrl(Ka La ) : A(L7 ) - A(K7 )
by the following properties.

(i) If i = 0 and F is a coherent sheaf on X, then we apply the
functor A(,K,-) to F — ]—'p/mé,}'p and compose this map with the
projection of Proposition 3.8 for L D ,K. We use the universal

property of [[ lim.
pEP(X)

(ii) Ifi =1, n =0 and F is a coherent sheaf on X, then the projection
of Proposition 3.8 for L D ,K is composed with the following
map: the maps d°(,K, fp/mé}"p) form a projective system for

1l €N and we apply ] lim to them.
pEP(X)

(iii) If ¢+ > 0, n > 0, F is a coherent sheaf, then the hypothesis
SIYK € L implies 07 4 (,K) C L for all p € P(X). Set

d?+1(K7L,}") = H liind?fl(meLJ:p/méfp)'
peP(X) leN

(iv) dt (K, L,-) commutes with direct limits.

For § € S(X)n41 and & = 67 (8) € S(X),, by Definition 3.10 we
have local boundary maps

artt A, F) — AS, F).
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For K C S(X)nt1, L € S(X),, with 6/ K C L we define

Dyt FE) o T AGF) — [ AGF).
deL seK
where (z5)scr — (ys)sexk is given by ys =[] d;’“(x(;/).
The following proposition from [9] is useful for the computation of
boundary maps. It describes the boundary maps d?“ by means of the
boundary maps D?'H on the product of local factors.

Proposition 3.11. Let K C S(X)nt1, L € S(X),, with §7'K C L.
The following diagram commutes:

n+1
d'i

AL,F) —— AK,F)

l l

n+1
1AGF) 2 I AGF).
d€L deK

The proof is by induction on the definitions.

For the scheme X we consider the set S(X)5°Y of nondegenerate n-

dimensional simplices. (A simplex (po,...pn) is nondegenerate if p; #
piy1 for all 4.) For any n > 0 and any quasicoherent sheaf F on X we
write

A% (F) = ASOTD, F).

Consider the boundary maps df™' : A% (F) — A% (F). These satisfy
the following equalities:

&y = dP ) i<j. (3.2)
For n > 1 we define d,, : A’y ' (F) — A% (F) by

n

d" =Y (-1)dy. (3.3)

§=0
We then have the following proposition, which is also a definition.

Proposition 3.12. The differentials d* make A% (F) into a cohomo-
logical complex of Abelian groups Ax (F), which we call the adelic com-
plex of the sheaf F on X.

The proof follows by direct calculations with (3.2) and (3.3).



n-dimensional local fields and adeles on n-dimensional schemes 145

Theorem 3.13. IfF is a quasicoherent sheaf on a Noetherian scheme X,
then

H'(Ax(F)) = H'(X,F) for all i.

Proof. The proof of this theorem is a generalization of the proof of The-
orem 3.1. For any open subscheme U C X we consider the complex

0— FU) L A (F) 45 AL L anF) YD 3.4)

Taking into account all U, we see that the complex (3.4) is a complex of
sheaves on X. Moreover, by Proposition 3.8 the sheaves in this complex
are flasque sheaves, since S(U)Y*? ¢ S(X)7Y for any n.

By [9, Th. 4.1.1], for any affine scheme U the complex (3.4) is an
exact complex. Therefore we have constructed a flasque resolution of
the sheaf 7 on X. This resolution calculates the cohomology of the
sheaf 7 on X. O

Remark 3.14. Here we have constructed reduced adeles, as we used
only nondegenerate simplices in S(X). These reduced adeles really carry
information and they are part of the full complex, see [9].

3.3 Adeles on algebraic surfaces

In this section we verify that the general adelic complex constructed in
the previous section coincides with the adelic complex for curves from
Section 3.1. We also give an application of this general construction of
adelic complexes to algebraic surfaces.

Consider a smooth connected algebraic curve C over a field k. The
set S (C’)(()Ted) consists of the generic point 7 and all closed points p of the
curve C; the set S (C’)gmd) consists of all pairs (n,p). For any coherent
sheaf F on C' we can compute by definition

AL(F) = F @0, k(C) x [[ F®o. Ox,.
peC

Let K C S(C)émi) be a subset consisting of all the closed points of
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the curve C. We have, by definition

Ao (F) = MK, Fy)
= A(K, F @0, k(C))

=A (K, lim  F ®o, Oc(D)>
DeDiv(C)
= lim A(K,F®o. Oc(D))
DeDiv(C)
= lim J] F®o. Ok, (D).
DeDiv(C) peC
Therefore the adelic complex constructed in Section 3.2 coincides with
the adelic complex for curves from Section 3.1.

Now consider a smooth connected algebraic surface X over a field k:

e The set S(X )ghed) consists of the generic point  of X, generic points
of all irreducible curves C' C X and all closed points p € X.

e The set S(X)gTEd) consists of all pairs (n,C), (n,p) and (C,p). (In
our notation we identify the generic point of a curve C' C X with the
curve C.)

e The set S(X){“? consists of all triples (1, C, p).

Consider § = (n,C,p), and let f be a natural map from the local rmg
Op,x to the completion Op x. The curve C defines a prime ideal (o}
the ring O, x. Let Cy, ..., C, be all prime ideals of height 1 in the ring
O, x such that for any i we have f~*(C;) = C". Any such C; we will
call a germ of C at p.

For any such germ C; we define a 2-dimensional local field

Kp,c; = Frac lim ((@p,x)(ci)/Cf(@nx)(ci))
l

where the ring (@r,X)(Ci) is a localization of the ring @, x along the
prime ideal C;. Then according to the formula (2.3), we have (see [4, 19])

A5, 0x) = @ K,c,
and similarly

A((C,p),0x) = EBOKPC
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We compute by definition
A((na O)a OX) = K,

where the field K¢ is the completion of the field k(X)) along the discrete
valuation given by an irreducible curve C on X.
From the definition we see that A((n, p), Ox) is a subring of Frac(O, x)
generated by subrings k(X) and O, x. We denote this subring by K.
By definition we compute
A((n), Ox) = k(X),
A((C)v OX) = Oko,

A((p)v OX) = Op,X-

Remark 3.15. The local boundary maps d’ give natural embeddings
of the rings

A((n), Ox), A((C),0x), Al(p), Ox),
A((n,p), Ox), A((n,0),0x) and A((C,p),Ox)
into the ring K.
By definition,
A% (0x) = k(X) x [] Oke x [] Ovx-
ccx peX

From Proposition 3.2 and similarly to the case of algebraic curves, we
can compute the ring A% (Ox), see [4, 21] for details. For any prime
ideal C C O, x of height 1 we define the subring O, x (c0C) of K, ¢ by

@ILX (OOC) = }El t(_jl@pyx,
l

where tc is a generator of the ideal C in O, x. The ring O, x(coC)
does not depend on the choice of tc.

By p € C C X we denote a germ at p of an irreducible curve C' in X.
Now we have

AX(Ox) = S {focte ][] Kpc: ClandC2hold
peCCX

where the conditions C1 and C2 are as follows.
C1. There exists a divisor D on X such that for any p € C C X

vk, c(fp.c) > ve(D).
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C2. For any irreducible curve C' C X, any integer k and all except
a finite number of points p € C' we have that inside the group
(Kp,C mod Ckoprc)

fo.c mod C*Ok o € O, x(c0C) mod CFO, .

Here we supposed that the curve C has at p a germ C.

We have

(H Kc) ﬁA%(Ox) X H K I'TAX Ox)
c

A&(OX) _ cX peX

X I 9x.c|Nna%©Ox),

peCCX

where the intersection is taken inside HpECC x
Remark 3.15 and the diagonal embeddings

Il k¢ — I Eoc . J]Kr— ][] Kvc

ccx peCCX peX peCCX

K, c with respect to

From the defining formula (3.3) and the explicit description of the
rings A% (Ox) it is easy to see the differentials d™ in the complex Ax (Ox)
( [4, 21]). Indeed, let

Ao=k(X) , Ai=]] Ok ., A= ]] Oux,

ccx peX

and

Apr = < I1 Kc> NA% (Ox), Ap2 = ( I1 Kp> NA%(Ox),

ccx peX
Ajg = I1 OKp,c> NA%(Ox), Aoz =A%(0x).
peCCX

Then the adelic complex Ax (Ox) is

Ay AL Ay — Ao1 ® Aoz ® Az — Ap12
(ao,abaQ) = (a1 _a07a2_a07a2_a1)
(ao1, ao2, ai2) —  ap1 — ap2 + ai2.

Remark 3.16. We note the following interesting property (see [4] and
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[24, Remark 5]). Suppose that X is a projective surface. For any sub-
set I C [0,1,2] there is an embedding A; — Ap12. Now for any subsets
I,J C[0,1,2] we have that inside the group Agio

ArNAy=Amnyg.

This property is also true for the corresponding components of the
adelic complex of any locally free sheaf on X.

4 Restricted adelic complexes

In this section we describe restricted adelic complexes. The main dif-
ference from the adelic complexes constructed in Section 3 is that re-
stricted adelic complexes are associated with one fixed chain (or flag) of
irreducible subvarieties of a scheme X.

Restricted adelic complexes come from the so-called Krichever cor-
respondence [17, 24]; see also [23] for connections with the theory of
(-functions of algebraic curves. For algebraic curves, restricted adelic
complexes originally come from the theory of integrable systems, see [25]:
they were constructed for algebraic surfaces by A. N. Parshin in [24], and
for higher-dimensional schemes by the author in [17].

4.1 Restricted adelic complexes on algebraic curves and
surfaces

Consider an irreducible algebraic curve C' over k. We fix a smooth closed
point p € C. For any coherent sheaf F of rank r on C' we consider the
following complex:

F(C\p,]:) (&) (.7: ®Oc OKT’) — ~7:®OC Kp

4.1
(ao@al) — a1 — ag. ( )
Note that for the torsion-free sheaf F we have natural embeddings

F@OC OKP — f®oc Kp
L(C\p,F) — F@oc K,

where the last embedding is given by
I'(C\p,F) — I'(Spec O, \ p, F) — I'(Spec Ok, \ p, F) = FRo. K.
After the choice of basis of module F,, over the ring O, we have

F Qo Kp = K}G}Br.
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Therefore in this case the complex (4.1) is a complex of subgroups inside
K", where K, is a 1-dimensional local field.
For the following theorem see, for example, [23, 24].

Theorem 4.1. The cohomology groups of the complex (4.1) coincide
with the cohomology groups H*(C,F).

The chain of quasi-isomorphisms between the complex (4.1) and the
adelic complex Ac (F) was constructed in [24]. This proves Theorem 4.1.
We remark that it is important for the proof that C'\ p is an affine curve;
see also Remark 4.13 below.

The complex (4.1) is called the restricted adelic complex on C associ-
ated with the point p.

Now let X be an algebraic surface over k. We fix an irreducible curve
C C X and a point p € C which is a smooth point on both C and X.
Let F be a torsion-free coherent sheaf on X.

The following notation is from [23, 24]. Let € C and let Fa, Fe,
ﬁn be completions of stalks of the sheaf F at scheme points given by =z,
the irreducible curve C' and the generic point 7 of X respectively.

Let

B, (F) = ﬂ (Fe® Kg)N (j:-m ® OKE,D)
D#£C

where D runs over all germs at = of irreducible curves on X which are
not equal to C, and the intersection is done inside the group F, ® K,.
Let

Bc(f):(ﬁc(@Kc)ﬂ mBz
TFEP

where the intersection is done inside .7:'1, ® K c. For all closed points
x # p of C and all germs C at z of C,

Ac(F) = Bo(F)n Fe,
A(f)fi,,m< N ﬁp>.
zxeX-C

We note that A(F) = I'(X — C, F), and for the smooth point = € C
the space B, (Ox) coincides with the space Op x (00C) from Section 3.3.

Theorem 4.2 ([24, Th. 3]). Let X be an irreducible algebraic surface
over a field k, C C X be an irreducible curve, and p € C be a smooth
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point on both C and X. Let F be a torsion-free coherent sheaf on X.
Assume that the surface X — C is affine. Then there exists a chain of
quasi-isomorphisms between the adelic complex Ax (F) and the complex

) Ba(F) & Byp(F) )
A(f)@Ac(}—)@fp—> R —)]:p®K,C
®(fp ® OKp,C)
(4.2)
where the first map is given by
(ao, a1, a2) — (a1 — ag, az — ag, az — ax)
and the second by

(@01, @02, @12) — ao1 — ao2 + a12.

Under the conditions of this theorem the cohomology groups of the
complex (4.2) coincide with the cohomology groups of the adelic complex
Ax (F), and therefore they are equal to H*(X, F).

Definition 4.3. The complex (4.2) is called the restricted adelic com-
plex on X associated with the curve C' and the point p € C.

For the proof of the following proposition, see [24, Prop. 4].

Proposition 4.4. Under the conditions of Theorem 4.2 we suppose also
that F is a locally free sheaf, X is a projective variety, the local rings of X
are Cohen-Macaulay and the curve C' is a locally complete intersection.
Then inside the field K, c we have

Bo(F) N Bp(F) = A(F).

Let the rank of F be r. Then after the choice of basis for the 1-
dimensional free O, x-module F, we have

Fp= @?Txa
Fo® Kpc =K,
Fp® Ok, ¢ = OK;C,
and
By(F) = BE" = 0, x(0C)®" ,  Ac(F) = AF)nOF _,

where the last intersection is done inside K @T
Now due to Proposition 4.4, the complex (4 2) is a complex of sub-
groups of KEC and is uniquely determined by one subgroup B¢ (F) of
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K;‘?g. In fact, all the other components of (4.2) can be defined by inter-
sections of B¢ (F) with subgroups of Kffe, which do not really depend
on the sheaf F.

4.2 Restricted adelic complexes on higher-dimensional
schemes

In this section we construct restricted adelic complexes for arbitrary

schemes. These complexes will generalize the corresponding complexes
from Section 4.1.

General definitions

Let X be a Noetherian separated scheme. Consider a flag of closed
subschemes

XOYyoYiD...D0Y,

in X. Let J; be the ideal sheaf of Y; in X, 0 < j < n. Let i; be the
embedding Y; — X. Let U; be an open subscheme of Y; complementing
Yit1, 0 <i<n—1. Let j; : U; — Y; be the open embedding of U; in
YV, 0<i:<n—-1. Puw U, =Y, and let j, be the identity morphism
from U, to Y,,.

Assume that every point € X has an open affine neighbourhood
U > x such that U NU; is an affine scheme for any 0 < ¢ < n. In what
follows, a flag of subschemes {Y;, 0 < i < n} with this condition is called
a flag with locally affine complements.

Remark 4.5. As an example, the last condition (existence of locally
affine complements) holds in the following cases:

e if Y, is the Cartier divisor on Y; for 0 <i <mn —1;
e if U; is an affine scheme for any 0 < i < n —1 (the intersection of two
open affine subschemes on a separated scheme is an affine subscheme).

Consider the n-dimensional simplex and its standard simplicial set
(without degeneracies). To be precise, consider the set

({0}, {1}, ..., {n}).

Then the simplicial set S = {Si} is given by

o So & {ne{or{1},....{n}}.
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o for k> 1,
def
Sk = {(no,...,mk), wheren € Soandnm_1 <m }.

The boundary map 9; (0 < ¢ < k) is given by eliminating the ith com-
ponent of the k-tuple (7o, ...,nr) to give the ith face of (ng,...,nk).

Let QS(X) be the category of quasicoherent sheaves on X; let Sh(X)
be the category of sheaves of Abelian groups on X. Let f: Y — X be
a morphism of schemes. From now on f* always denotes the pull-back
functor in the category of sheaves of Abelian groups, and f, is the direct
image functor in the category of sheaves of Abelian groups.

We give the following definition from [17].

Definition 4.6. For any (no,...,n) € Sk we define a functor
Vinoreomn) = QS(X) — Sh(X),
which is uniquely determined by the following inductive conditions:

() Vino,...me) commutes with direct limits.
(ii) If F is a coherent sheaf and n € Sy, then

def ;. . . .\ % m
Vo(F) = 1im (i) (i)« (Gn)" (F/ T F).
meN
(iii) If F is a coherent sheaf and (no,...,nk) € Sk, k > 1, then

def .. . . AN m
‘/("707771»---7’716)(‘7:) = 121 V‘(m,...,nk) ((7’770)*(.7770)*(]770) (f/Jnof))
meN

We will sometimes use the equivalent notation for Vi, ., (F), in
which the closed subschemes are indicated explicitly:

ynk)(X , F).
The following proposition [17, Prop. 1] is proved by induction.

Proposition 4.7. Let 0 = (no,...,nx) € Sk. Then the following asser-
tions hold.

(i) The functor V, : QS(X) — Sh(X) is well defined.
(ii) The functor V, is exact and additive.
(iii) The functor V, is local on X, that is, for any open U C X and
any quasicoherent sheaf F on X we have

Vi,

058 oNU,...,
IfY;NU =0, then Y; NU s the empty subscheme of U defined
by the ideal sheaf Oy .
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(iv) For any quasicoherent sheaf F on X, the sheaf Vi, . 5.)(F) is a
sheaf of Ox-modules supported on the subscheme Y, . (In gen-
eral, this sheaf is not quasicoherent.)

(v) For any quasicoherent sheaf F on X we have

Vo(F) =V,(0x) @0y F.

(vi) If each U; is affine, 0 < i < n, then for any quasicoherent sheaf
F on X and any m > 1 we have

H™(X,V,(F)) =0.

Construction of the restricted adelic complex

We consider the standard n-simplex S = {Sk, 0 < k < n} without
degeneracies. If ¢ = (ng,...,n;) € Sk, then 9;(0) is the ith face of o,
0 <i < k. We define a morphism of functors d;(c) : Vy,(s) — Vi, as the
morphism that commutes with direct limits and coincides on coherent
sheaves with the map

Vo, (o) (F) — Vo (F) (4.3)
defined by the following rules.

a) If i = 0, then (4.3) is obtained by applying the functor Vy (o) to the
map

F— (ino)*(jno)*(jno)*(f/‘]gg}-)

and passing to the projective limit with respect to m;
b) If i =1 and k = 1, then we have the natural map

(2770)*(]7}0)*(.7770)*(?/‘]7’;2]:) - ‘/(?71)((Zno)*(jﬂo)*(]7]0)*(]:/]7772?))
Passing to the projective limit with respect to m we get the map (4.3)
in this case.

¢) If i £ 0 and k > 1, then we use induction on k to get the map
Vor_1-(80(0)) ((ing )« (o )« (ing )™ (F/ I F))
- Vao(U)((inU)*(jﬂ())*(jno)*(]:/‘]g;]:))'

Passing to the projective limit with respect to m we get the map (4.3)
in this case.

Proposition 4.8 ([17, Prop. 3]). Forany1 <k <n,0<i<k let

dEE SN dio) P Ve — P Ve

oeSy o€SK_1 oeSy
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We define the map
. id— @ Vo
g€Soy

as the direct sum of the natural maps F — Vo (F). (Here id is the func-
tor of the natural embedding of QS(X) into Sh(X), F is a quasicoherent
sheaf on X and o € Sp.)

Then for all0 <i< j<k<mn-—1 we have

dittal = dittal . (4.4)

Let
N S D

0<i<m

Then, given any quasicoherent sheaf F on X, Proposition 4.8 enables us
to construct the complex of sheaves V(F) in the standard way:

— D VAL P VelF) —
c€Sm_1 gESm

The property d™+1d™ = 0 follows from (4.4) by an easy direct calcula-
tion.

Theorem 4.9 ([17, Th. 1]). Let X be a Noetherian separated scheme
and let Yo D Y1 D ... DY, be a flag of closed subschemes with locally
affine complements. Assume that Yo = X. Then the following complex
18 exact:

0— 7Ly —o. (4.5)

Proof. We give a sketch of the proof. It suffices to consider the case
when the sheaf F is coherent.
Consider the exact sequence of sheaves

0 —H—F — (jo):(jo) " F — G —0.

Since the functors V, are exact for all o, we obtain the following exact
sequence of complexes of sheaves:

0 — V(H) — V(F) — V((jo)«(jo)"F) — V(G) — 0. (4.6)

The sheaves H and G are supported on Y;. Therefore by induction we
may assume that the complexes

0—HLvH) —o0
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0— G2 V(@) —0
are already exact. The complex
0 — (jo)- (G0)"F = V{(jo)-(jo)" F) — 0

is exact, because V (jo)«(jo)*F has the same components as V. (F) for
degrees k and k + 1, where o/ = (0,70, ...,n%) for o = (no,..., k) € Sk.
Now the theorem follows from (4.6). O

For any o € Si, we define

def

A (F) = HYX,V,(F)).

Proposition 4.10 ([17, Prop. 4]). Let X be a Noetherian separated
scheme, and let Yo D Y1 D ... DY, be a flag of closed subschemes such
that U; is affine, 0 < i <n. Let 0 € Sg be arbitrary. Then:

(i) Ay is an exact and additive functor: QS(X) — Ab;
(ii) o X = Spec A and M is some A-module, then

Ay(M) = Ay, (Ox) @4 M.

Let F be any quasicoherent sheaf on X. Applying the functor H°(X,-)
to the complex V(F) we obtain the complex A(F) of Abelian groups:

— P A4 — P A4F) —....

0ESm—1 0ESm

Theorem 4.11 ([17, Th. 2]). Let X be a Noetherian separated scheme.
LetYy D Y1 D... DY, be a flag of closed subschemes such that Yo = X
and Uj; is affine, 0 < i < n. Then the cohomology of the complex A(F)
coincides with that of the sheaf F on X : that s, for any i

H'(X,F) = H'(A(F)).

Proof. Tt follows from Theorem 4.9 and assertion (vi) of Proposition 4.7
that V(F) is an acyclic resolution for the sheaf F. Hence the cohomology
of F may be calculated by means of global sections of this resolution.
This proves Theorem 4.11. O

This theorem immediately yields the following geometric corollary,
see [17, Th. 3.
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Theorem 4.12. Let X be a projective algebraic scheme of dimension n
over a field. Let Yy DYy D ... DY, be a flag of closed subschemes such
that Yo = X and Y; is an ample divisor on Y;—1 for 1 < i < n. Then
for any quasicoherent sheaf F on X and any i we have

HY(X,F) = H'(A(F)).

Proof. Since Y; is an ample divisor on Y;_; for 1 < i < n, we see that
U; is an affine scheme for all 0 < i <n — 1. Since dimY,, =0, U, =Y,
is also affine. Applying Theorem 4.11 we complete the proof. O

Remark 4.13. For any quasicoherent sheaf F and any o = (19) € So,
Ay (F) is the group of sections over Uy, of the sheaf F lifted to the
formal neighbourhood of the subscheme Y, in X. The complex A(F)
can be interpreted as the Cech complex for this ‘acyclic covering’ of the
scheme X.

Definition 4.14. The complex A(F) is called the restricted adelic com-
plex on X associated with the flag Yo D Y1 D ... DY,.

Remark 4.15. Some remarks for curves and surfaces:

e if C'is an algebraic curve, Yy = C and Y7 = p is a smooth point , then
A(F) coincides with the complex (4.1); indeed,

Ao(f) = F(C\p,f), Al(f) = f@oCOKp and Alg(f) = f@ocKp;

e if X is an algebraic surface, Yy = C and Y; = p is a smooth point on
both C and X, then A(F) coincides with the complex (4.2); indeed,

A(F) = AF),  A(F)=Ac(F), A(F)=F,
A1 (F) = Bo(F), Awa(F)=DBy(F), AnF)=F 0k,
and A012<.7:) = .7:-]) ® K ,C-
Reconstruction of the restricted adelic complex
From Proposition 4.8 we have the natural map

d,(a) : Aai(g)<.7:) —>A(7(f)

for any 0 € Sg, 1 <k <n, and any i, 0 <1 < k.
Using (4.4), we obtain the natural map

Apy (F) — Agy (F)

for any locally free sheaf F on X and any 01,09 € S, 01 C 09.
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Proposition 4.16 ([17, Th. 4]). Let X be a projective equidimensional
Cohen-Macaulay scheme of dimension n over a field. Let

YoOY1D...DY,

be a flag of closed subschemes such that Yo = X and Y; is an ample
Cartier divisor on Y;—1 for 1 < i < n. Then the following assertions
hold for any locally free sheaf F on X.

(i) The natural map H°(X,F) — A,(F) is an embedding for any
oc€ 8, 0<k<n.

(ii) The natural map Ay (F) — Asy(F) is an embedding for any
locally free sheaf F on X and any 01,02 € S, 01 C 03.

Remark 4.17. We note that any integral Noetherian scheme of dimen-
sion 1 is a Cohen-Macaulay scheme. Any normal Noetherian scheme of
dimension 2 is a Cohen-Macaulay scheme, see [7, Ch. II, Th. 8.22A].

We denote the unique face of dimension n in S by (0,1,...,n) € S.
By Proposition 4.16 we can embed A, (F) and A,,(F) in Ag,1... n)(F)
for any 01,09 € S and any locally free sheaf F.

Now we may formulate the following theorem [17, Th. 5].

Theorem 4.18. Let all the hypotheses of Proposition 4.16 be satisfied.
Then the following assertions hold for any locally free sheaf F and any
01,09 € 85.

(i) If o1 Noa = 0 then, inside A1, .. n)s
A, (F)N Aoy (F) = HY (X, F).
(ii) If o1 Nog # O then, inside A q,... 5,
Agy (F)N Ay (F) = Aoynioy (F).
Remark 4.19. Theorem 4.18 is similar to the property of adelic com-

plexes Ax (F) which was observed in Remark 3.16.

We assume that the hypotheses of Proposition 4.16 hold and that the
field of definition of the scheme X is k. We also assume that Y,, = p,
where p is a smooth point on each Y;, 0 < i < n.

Let us choose and fix local parameters ¢1,...,t, € 6P7X such that
tily,_, = 0 is a local equation of the divisor Y; in the formal neighbour-
hood of the point p on the scheme Y; 1,1 <7 <n.
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Let F be a rank 1 locally free sheaf on X. We fix a trivializa-
tion e, of F in a formal neighbourhood of the point p on X, that is,
an isomorphism e, : .7:"p — @n x. By our choice of the local para-
meters and the trivialization we can identify A1 . »)(F) with the n-
dimensional local field k(p)((t,))...((t1)). Moreover, we fix a set of
integers 0 < j; < ... < jr < n — 1. Define T(j1,in) € Sn_1 to be the
set

{i:0<i<m,i#j1,..., 0% jr}-
By Proposition 4.16 there is a natural embedding
Ty, jk)(F) - A(O,l,m,n)(f)'
When we identify A1, .. ) (F) with the field k(p)((t,)) ... ((t1)), the

subspace Ao, . (F) corresponds to the following k-subspace:
{Zail,...,inﬁﬁ” Sty € K(D), } @
ij1+1 >0, ij2+1 >0, ... ’ijk“l‘l >0

Thus, by Theorem 4.18, to determine the images of A,(F) inside
k(p)((tn)) .- ((t1)) (for any o € S), it suffices to know only one image
of Aw,...n—1) in k(p)((tn)) ... ((t1)). (All the others are obtained by
taking the intersection of this image with the standard subspaces (4.7)

of k(p)((tn)) - .- ((t1))-)

It is clear that these arguments generalize immediately to locally free
sheaves F of rank r and to the spaces k(p)((tn)) ... ((t1))®".
These arguments lead to the following theorem, which enables one to

reconstruct the restricted adelic complex A(F); see also [17, Th. 6].

Theorem 4.20. Let all the hypotheses of Proposition 4.16 be satisfied.
We also assume that Y, = p, where p is a smooth point on each Y;,
0 <t < n. Let F be a locally free sheaf on X. Then the subspace

A(0,1,...,n71)(~7:) C A(0,1,...,n)(7)

uniquely determines the restricted adelic complex A(F).

5 Reciprocity laws

Let L be a field with discrete valuation vy, valuation ring Oy, and max-
imal ideal mp. The tame symbol is

(fr9)L = (—1)VL(f)yL(g) f”L(g)

poAe) mod myg, (5.1)
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where f, g are elements of L*.
There exists the following reciprocity law (see [26], for example).

Proposition 5.1. Let C' be a complete smooth algebraic curve over k.
For any f,g € k(C)* we have

T Ny (. 90k, = 1, (5.2)
peC

where only finitely many terms in this product are not equal to 1. Here
Nm is the norm map, and the product is taken over all closed points
peC.

Let K be a 2-dimensional local field with last residue field k. There
is a discrete valuation of rank 2 on K:

(Vl,l/g) K" =737,
Here 11 = v is the discrete valuation of the field K, and
va(b) = g (b)),

where v1(t1) = 1. We note that v5 depends on the choice of local par-
ameter t;.

Let mg be the maximal ideal of Ok, and mg be the maximal ideal
of O. Define a map

vg( , ) : K'xXK'—1Z
as the composition of maps
K* x K* — Ky(K) 2 kB 2. 7,

where 0; is the boundary map in algebraic K-theory. The map J2 coin-
cides with the tame symbol (5.1) with respect to the discrete valuation
111, while the map 0; coincides with the discrete valuation vg.

We may also define a map

( , , J)x : K'xXK'xK'—Fk*
as the composition of maps
K* x K* x K* — KM(K) 2 Ky(K) -2k,

where K2 is the Milnor K-group.
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These maps have the following explicit expressions (see [4]):

v (f,9) = v1i(f)va(g) — v2(f)ri(g)
(f.9.h)k = signg (f, g, h) froM gue D pr(fa) mod my  mod my.

Here
signg (f, g.h) = (=1)",
where
B { vi(fva(g)va(h) + vi(g)va(flra(h)  +ri(h)va(g)va(f)
a2 (flri(gvi(h) + va(g)vi(flva(h)  Hva(h)vi(f)vi(g).
Proposition 5.2. For any f,g,h € K*

signg (f, 9,h) = (=1)*
where
A=vi(f,9)vk(f.h) +vk(f,9)vi(f,h)
+v(fy9)ve(f,h) + vk (f, 9)v (f, R)vi (g, h).

The proof follows from direct calculations modulo 2 with A and B,
using the explicit expressions above.

Let X be a smooth algebraic surface over k. We recall the follow-
ing notation from Section 3.3: if C is a curve on X, then K¢ is the
completion of the field k(X)) along the discrete valuation given by the
irreducible curve C' on X; if p is a point on X, then K, is a subring in
Frac(O, x) generated by subrings k(X) and O, x.

There are the following reciprocity laws, see [4].

Theorem 5.3.

(i) We fiz a point p € X and take any f,g,h € K. Then
Z Z/Kp,C(f’g):O
XDC>p
where only finitely many terms in this sum are nonzero, and
H (fvgv h)Kp,C =1
XDCsp

where only finitely many terms in this product are not equal to 1;
both the sum and the product are taken over all germs of irre-
ducible curves on X at p.
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(ii) We fiz an irreducible projective curve C on X and any f,g,h €
K. Then

3 (k@) ki, o(f.9) =0

peCCX

where only finitely many terms in this sum are nonzero, and

H Nmk(l))/k (fvgv h)Kp,C =1
peCCX

where only finitely many terms in this product are not equal to 1;
both the sum and the product are taken over all points p € C and
all germs of irreducible curve C' at p.

Remark 5.4. The relative reciprocity laws were constructed in [15]
(see also [16] for a short exposition) for a smooth projective morphism
f of a smooth algebraic surface X to a smooth algebraic curve S when
chark = 0. If p € C C X then explicit formulas were constructed in [15]
for maps

K>(Kp.c) — Ki)-

Remark 5.5. For a 2-dimensional local field K, the map vi(, ) was
interpreted in [18] as the commutator of liftings of elements f,g € K*
in a central extension of the group K* by Z. From this interpretation
the reciprocity laws for vi( , ) were proved. The proof in [18] uses
adelic rings on an algebraic surface X. This is an abstract version of the
reciprocity law for vi( , ), like the abstract version of the reciprocity
law (5.2) for a projective curve in [1] (and in [28] for the residues of
differentials on a projective curve).

Remark 5.6. We do not describe the reciprocity laws for residues of
differentials of 2-dimensional local fields, which were formulated and
proved in [19] (see also [29]).

Remark 5.7. The symbols vg( , ) and (, , )k correspond to the
unramified and tamely ramified extensions of 2-dimensional local fields
when the last residue field is finite [22].
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Cohomology of face rings, and torus actions

Taras E. Panov

1 Introduction

This article centres on the cohomological aspects of ‘toric topology’, a
new and actively developing field on the borders of equivariant topo-
logy, combinatorial geometry and commutative algebra. The algebro-
geometric counterpart of toric topology, known as ‘toric geometry’ or
algebraic geometry of toric varieties, is now a well established field in
algebraic geometry which is characterized by strong links with combi-
natorial and convex geometry (see the classical survey paper [10] or
the more modern exposition [13]). Since the appearance of Davis and
Januszkiewicz’s work [11], where the concept of a (quasi)toric mani-
fold was introduced as a topological generalization of a smooth compact
toric variety, there has grown an understanding that most phenomena
of smooth toric geometry may be modelled in the purely topological
situation of smooth manifolds with a nicely behaved torus action.

One of the main results of [11] is that the equivariant cohomology of a
toric manifold can be identified with the face ring of the quotient simple
polytope; or, for more general classes of torus actions, with the face ring
of a certain simplicial complex K. The ordinary cohomology of a quasi-
toric manifold can also be effectively identified as the quotient of the
face ring by a regular sequence of degree-two elements, which provides
a generalization of the well-known Danilov-Jurkiewicz theorem of toric
geometry. The notion of the face ring of a simplicial complex sits at
the heart of Stanley’s ‘combinatorial commutative algebra’ [24], linking
geometrical and combinatorial problems concerning simplicial complexes
with commutative and homological algebra. Our concept of toric topo-
logy aims at extending these links and developing new applications by

165
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applying the full strength of the apparatus of equivariant topology of
torus actions.

This article surveys certain new developments of toric topology related
to the cohomology of face rings. Introductory remarks can be found at
the beginning of each section and most subsections. A more detailed
description of the history of the subject, together with an extensive
bibliography, can be found in [8] and its extended Russian version [9].

The current article represents the work of the algebraic topology and
combinatorics group at the Department of Geometry and Topology,
Moscow State University, and the author thanks all its members for the
collaboration and insight gained from numerous discussions, particularly
mentioning Victor Buchstaber, Ilia Baskakov and Arseny Gadzhikur-
banov. The author is also grateful to Nigel Ray for several valuable
comments and suggestions that greatly improved this text, and for his
hospitality during the visit to Manchester which was sponsored by an
LMS grant. He also acknowledges the support of the Russian Foundation
for Basic Research, via grant no. 04-01-00702.

2 Simplicial complexes and face rings

The notion of the face ring k[K] of a simplicial complex K is central to
the algebraic study of triangulations. In this section we review its main
properties, emphasising functoriality with respect to simplicial maps.
Then we introduce the bigraded Tor-algebra Tor(,, ,... ., (K[K], k) using
a finite free resolution of k[K] as a module over the polynomial ring.
The corresponding bigraded Betti numbers are important combinatorial
invariants of K.

2.1 Definition and main properties

Let K = K" ! be an arbitrary (n — 1)-dimensional simplicial complex
on an m-element vertex set V', which we usually identify with the set
of ordinals [m] = {1,...,m}. Those subsets o C V belonging to K are
referred to as simplices; we also use the notation ¢ € K. We count the
empty set @ as a simplex of K. When it is necessary to distinguish
between combinatorial and geometrical objects, we denote by |K| the
geometrical realization of K, which is a triangulated topological space.

Choose a ground commutative ring k with unit (we are mostly in-
terested in the cases k = Z,Q or finite field). Let k[vy,...,v;] be the
graded polynomial algebra over k with degv; = 2. For an arbitrary
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subset w = {i1,...,ix} C [m] denote by v, the square-free monomial
Vi, ... v;,,. The face ring (or Stanley-Reisner algebra) of K is the quo-
tient ring

k[K] =Kk[v1,...,0m]/ Tk,
where Tk is the homogeneous ideal generated by all monomials v, such

that o is not a simplex of K. The ideal Zx is called the Stanley-Reisner
ideal of K.

Example 2.1. Let K be a 2-dimensional simplicial complex shown on
Figure 1. Then

k[K] = k[Ula .- -,?15]/(11105,”3114,U1U2U3,U2U4U5)-
2
4 5
1 3
Fig. 1.

Despite its simple construction, the face ring appears to be a very
powerful tool allowing us to translate the combinatorial properties of
different particular classes of simplicial complexes into the language of
commutative algebra. The resulting field of ‘combinatorial commutative
algebra’, whose foundations were laid by Stanley in his monograph [24],
has attracted a lot of interest from both combinatorialists and commu-
tative algebraists.

Let K; and K3 be two simplicial complexes on the vertex sets [mq]
and [mg] respectively. A set map ¢: [m;] — [m2] is called a simplicial
map between K7 and K if (o) € Ks for any o € K7; we often identify
such a ¢ with its restriction to K7 (regarded as a collection of subsets
of [m4]), and use the notation ¢: K; — K.

Proposition 2.2. Let p: K1 — Ky be a simplicial map. Define a map
o K[wy, .o W, — K[vr, . um, ] by

o(w) = Y w

i€p=1(j)
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Then ©* induces a homomorphism k[Ks] — k[K1], which we will also
denote by p*.

Proof. We have to check that ¢*(Zk,) C Zk,. Suppose 7 = {j1,...,Js} C
[ma2] is not a simplex of Ka. Then

e (wj, -+ wj,) = > Vi g, (2.1)

11€Q~1(j1),-is €0 (Js)

We claim that o = {i1,...,4s} is not a simplex of K; for any monomial
Vi, -+ - U, in the right hand side of the above identity. Indeed, if o € K3
then ¢(0) = 7 € K2 by the definition of simplicial map, which leads to
a contradiction. Hence the right hand side of (2.1) is in Z, . O

2.2 Cohen-Macaulay rings and complexes

Cohen-Macaulay rings and modules play an important role in homolog-
ical commutative algebra and algebraic geometry. A standard reference
for the subject is [6], where the reader may find proofs of the basic
facts about Cohen-Macaulay rings and regular sequences mentioned in
this subsection. In the case of simplicial complexes the Cohen-Macaulay
property of the corresponding face rings leads to important combina-
torial and topological consequences.

Let A = @®;>0A® be a finitely generated commutative graded algebra
over k. We assume that A is connected (A = k) and has only even-
degree graded components, so that we do not need to distinguish between
graded and non-graded commutativity. We denote by A the positive-
degree part of A and by H (A4 ) the set of homogeneous elements in A .

A sequence tq,...,t, of algebraically independent homogeneous ele-
ments of A is called an hsop (homogeneous system of parameters) if A is
a finitely generated klti,...,t,]-module (equivalently, if A/(ty,...,t,)
has finite dimension as a k-vector space).

Lemma 2.3 (Nother normalization lemma). Any finitely generated gra-
ded algebra A over a field k admits an hsop. If k has characteristic zero
and A is generated by degree-two elements, then a degree-two hsop can
be chosen.

A degree-two hsop is called an lsop (linear system of parameters).

A sequence t = ti,...,1 of elements of H(Ay) is called a regular
sequence if t; 41 is not a zero divisor in A/(t1,...,t;) for 0 < i < k.
A regular sequence consists of algebraically independent elements, so it
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generates a polynomial subring in A. It can be shown that ¢ is a regular
sequence if and only if A is a free k[t1, ..., t;]-module.

An algebra A is called Cohen-Macaulay if it admits a regular hsop ¢.
It follows that A is Cohen-Macaulay if and only if it is a free and fin-
itely generated module over its polynomial subring. If k is a field of
characteristic zero and A is generated by degree-two elements, then one
can choose t to be an Isop. A simplicial complex K is called Cohen-
Macaulay (over k) if its face ring k[K] is Cohen-Macaulay.

Example 2.4. Let K = 9A? be the boundary of a 2-simplex. Then
k[K] = k[v1, v2,v3]/(v1v203) .

The elements vy, v € k[K] are algebraically independent, but do not
form an hsop, since k[K]/(v1,v2) = k[vs] is not finite-dimensional as a
k-space. On the other hand, the elements t; = v1 — v3, t2 = v9 — v3 of
k[K] form an hsop, since k[K]/(t1,t2) = k[t]/t3. It is easy to see that
k[K] is a free k[t1,t2]-module with one O-dimensional generator 1, one
1-dimensional generator v1, and one 2-dimensional generator v7. Thus
k[K] is Cohen-Macaulay and (¢1,t2) is a regular sequence.

For an arbitrary simplex o € K define its link and star as the sub-
complexes
linkgko={re K:oUT€ K, cNT=0}
starxo={r€K:0UT € K}.
If v € K is a vertex, then starg v is the subcomplex consisting of all
simplices of K containing v, and all their subsimplices. Note also that
starg v is the cone over link g v.

The following fundamental theorem characterizes Cohen-Macaulay
complexes combinatorially.

Theorem 2.5 (Reisner). A simplicial complex K is Cohen-Macaulay
over k if and only if for any simplex 0 € K (including o = &) and
1 < dim(linkg o), it holds that H;(linkg o;k) = 0.

Using standard techniques of PL topology the previous theorem may
be reformulated in purely topological terms.

Proposition 2.6 (Munkres). K"~ ! is Cohen-Macaulay over k if and
only if for an arbitrary point x € |K|, it holds that

H,(|K|:k) = H;(|K|,|K\e;k) =0  fori<n—1.

Thus any triangulation of a sphere is a Cohen-Macaulay complex.



170 T. E. Panov

2.3 Resolutions and Tor-algebras

Let M be a finitely generated graded k[vy, ..., vy,]-module. A free res-
olution of M is an exact sequence

QAN L N N e - M 0o (22)
where the R~ are finitely generated graded free k[vy, . .. ,v,,]-modules

and the maps d are degree-preserving. By the Hilbert syzygy theorem,
there is a free resolution of M with R=% = 0 for i > m. A resolu-
tion of the form (2.2) determines a bigraded differential k-module [R, d],
where R = @R %, R™% := (R7%) and d: R™% — R™*tLJ. The
bigraded cohomology module H[R,d] has H~*¥[R,d] = 0 for i > 0 and
HYk[R d] = M*. Let [M,0] be the bigraded module with M ~%* = 0
for i >0, M%*k = M*, and zero differential. Then the resolution (2.2)
determines a bigraded map [R,d] — [M, 0] inducing an isomorphism in
cohomology.

Let N be another module; then applying the functor __ ®y[y,,...,0,.] IV
to a resolution [R, d] we get a homomorphism of differential modules

.......... om] N, 0],

which in general does not induce an isomorphism in cohomology. The
(—1)th cohomology module of the cochain complex

. — R7? ® N — ... — RO ® N — 0

is denoted by Tor;[il Um}(M, N). Thus,

Ker[d: 7! ® N—>R ™' ® N|
k[vi,...,0m] k[v1,...,0m]
AR  ® N)

k[v1,..., V]

Since all the R~ and N are graded modules, we actually have a bigraded
k-module

Toryju,,...,v,, ED Tork[vl om) M),

The following properties of Torl:[zv1 vm](M, N) are well known.
Proposition 2.7.

(a) The module Torl:[iv
olution in (2.2);
(b) Tor;[i)h“wm}( -, N) and Tor;[z1

(M, N) does not depend on the choice of res-

1yeeesUm)

(M, -) are covariant functors;

yeresUm]
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(M,N)= M Qk[v1,...,vm] N;
(M, N) = Tor, | vm](N’M)‘

15++Um [’Ul .....

Now put M = k[K] and N = k. Since degv; = 2, we have

UtV

Torypu,.....v, (K[K], k) = € Tor i (k[K], k)
i,7=0
Define the bigraded Betti numbers of k[K] by
5702 (k[K]) == dimy Tor ;' (k[K],k),  0<ij<m. (23)

We also set

BHK[K]) = dimy Tor;[il,___wm](k[K},k) = Zﬂ*i,?j(k[K]).

Example 2.8. Let K be the boundary of a square. Then
k[K] = k[vl, e ,114]/(1)11)3, U2U4).

Let us construct a resolution of k[K]| and calculate the corresponding
bigraded Betti numbers. The module R° has one generator 1 (of de-
gree 0), and the map R® — k[K] is the quotient projection. Its kernel
is the ideal Zx, generated by two monomials v1v3 and vovy. Take R™1
to be a free module on two 4-dimensional generators, denoted vi3 and
va4, and define d: R~' — R by sending v13 to v1v3 and vy to vovs. Its
kernel is generated by one element vov4v13 — v1v3v24. Hence, R~2 has
one generator of degree 8, say a, and the map d: R~? — R™! is injective
and sends a to vav4v13 — V1v3v24. Thus, we have a resolution

0 R2 R7! RO M 0

where rank R® = %0(k[K]) = 1,rank R~! = 37 1% =2 and rank R2 =
p=28 =1.

The Betti numbers 37%% (k[K]) are important combinatorial invar-
iants of the simplicial complex K. The following result expresses them
in terms of homology groups of subcomplexes of K.

Given a subset w C [m], we may restrict K to w and consider the full
subcompler K, = {c € K:0 Cw}.

Theorem 2.9 (Hochster). We have

FREKIK]) = Y dim (K k),

wCm]: |w|=j
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where H* () denotes the reduced cohomology groups and we assume that

)
H- Ho)=k.
Hochster’s original proof of this theorem uses rather complicated com-
binatorial and commutative algebra techniques. Later in Subsection 5.1
we give a topological interpretation of the numbers =% (k[K]) as the
bigraded Betti numbers of a topological space, and prove a generaliza-
tion of Hochster’s theorem.

Example 2.10 (Koszul resolution). Let M = k with the klvy, ..., vy,]-
module structure defined via the map k[vy, ..., v,] — k sending each v;
to 0. Let Afuq,...,un] denote the exterior k-algebra on m generators.
The tensor product R = Afu, ..., um] @ klv1,...,vy] (here and below
we use ® for ®k) may be turned into a differential bigraded algebra by
setting

bidegu; = (—1,2), bidegv; = (0,2),
dui = Vs, dU,‘, = 0, (24)

and requiring d to be a derivation of algebras. An explicit construction
of a cochain homotopy shows that H°[R,d] = k and H ‘[R,d] =
for i > 0. Since Afui,...,Um] @ k[v1,...,0m] is a free klvy, ..., vm]-
module, it determines a free resolution of k. It is known as the Koszul
resolution and its expanded form (2.2) is as follows:

0—>Am[u1,...,um]®k[111,-~-,71m} —
— Aug, . um] @K, o] — K1, .. U] — k — 0
where Af[uy, ..., u,] is the subspace of A[u1,...,u,,] spanned by mono-

mials of length 1.

Now let us consider the differential bigraded algebra [Afuy, ..., un] ®
k[K],d] with d defined as in (2.4).

Lemma 2.11. There is an isomorphism of bigraded modules:
Torkfe, ..o (K[K], k) 2 H[Alu, . .., un] @ kK[K], d]

which endows Tory(y, .. .,.1(K[K], k) with a bigraded algebra structure in
a canonical way.
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Proof. Using the Koszul resolution in the definition of Tor, we calculate
Tork[vl,...7vm](k[K}7 k)
= TOI'k[Ul’M,Um](k7 k[K])
= H[A[ul, o U] @ KU1, U] ko o] k[KH
= H[A[ul, cey U] ® k[K]]

The cohomology in the right hand side is a bigraded algebra, providing
an algebra structure for Tory[y, ... ... (K[K], k). O

The bigraded algebra Toryg,,
of the simplicial complex K.

(k[K], k) is called the Tor-algebra

yeeesUm ]

Lemma 2.12. A simplicial map ¢: K1 — Ko between two simplicial
complexes on the vertex sets [m1] and [ms] respectively induces a homo-
morphism

©F: Totun,. o) (K[K2], k) = Torigu, o j(K[K1] k) (25)

SVm]

of the corresponding Tor-algebras.

Proof. This follows directly from Propositions 2.2 and 2.7 (b). O

3 Toric spaces

Moment-angle complexes provide a functor K — Zk from the category
of simplicial complexes and simplicial maps to the category of spaces
with torus action and equivariant maps. This functor allows us to use
the techniques of equivariant topology in the study of combinatorics of
simplicial complexes and commutative algebra of their face rings; in a
way, it breathes geometrical life into Stanley’s ‘combinatorial commu-
tative algebra’. In particular, the calculation of the cohomology of Zx
opens a way to a topological treatment of homological invariants of face
rings.

The space Zi was introduced for an arbitrary finite simplicial com-
plex K by Davis and Januszkiewicz [11] as a technical tool in their
study of (quasi)toric manifolds, a topological generalization of smooth
algebraic toric varieties. Later this space turned out to be of great in-
dependent interest. For the subsequent study of Z, its place within
‘toric topology’, and connections with combinatorial problems we refer
to [8] and its extended Russian version [9]. Here we review the most
important aspects of this study related to the cohomology of face rings.
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3.1 Moment-angle complexes

The m-torus T™ is a product of m circles; we usually regard it as em-
bedded in C™ in the standard way:

T" ={(z1,...,2m) €C™: |z| =1, i=1,...,m}.
It is contained in the unit polydisc
(D)™ ={(21,...,2m) €EC™: |z| <1, i=1,...,m}.
For an arbitrary subset w C V', define
B, :={(z1,...,2m) € (D*)™: |z;| = 1 for i ¢ w}.

The subspace B,, is homeomorphic to (D?)l x 7=«

Given a simplicial complex K on [m] = {1,...,m}, we define the
moment-angle complex Zx by
Zy = U B, C (D*)™. (3.1)
oK

The torus 7™ acts on (D?)™ coordinatewise and each subspace B,
is invariant under this action. Therefore, the space Zx inherits a torus
action. The quotient (D?)™/T™ can be identified with the unit m-cube

Im .= {(yl,...,ym) ER™:0<y; <1, i= 1,...7m}.
The quotient B, /T™ is then the following |w|-dimensional face of I™:

Cot= {(roe o ym) € Iy = 1if i ¢ ).

Thus the whole quotient Z /T™ is identified with a certain cubical
subcomplex in I, which we denote by cc(K).

Lemma 3.1. The cubical complex cc(K) is PL-homeomorphic to cone K.

Proof. Let K’ denote the barycentric subdivision of K (the vertices of K’
correspond to nonempty simplices o of K). We define a PL embedding
ic: cone K’ — I™ by mapping each vertex o to the vertex (e1,...,&m),
where g; = 0 if i € 0 and ¢; = 1 otherwise, mapping the cone vertex to
(1,...,1) € I', and then extending linearly on the simplices of cone K.
The barycentric subdivision of a face ¢ € K is a subcomplex in K’,
which we denote K’|,. Under the map i, the subcomplex cone K|,
maps onto the face C, C I™. Thus the whole complex cone K’ maps
homeomorphically onto cc(K'), which concludes the proof. [l
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Z

)

[[=]

K = 3 points K =9A?

Fig. 2. Embedding i.: cone K’ — I™.

It follows that the moment-angle complex Zx can be defined by the
pullback diagram

ZK (D2 )m,

| L

ie
coneK' —<— ™

where p is the projection onto the orbit space.

Example 3.2. The embedding i. for two simple cases when K is a three
point complex and the boundary of a triangle is shown in Figure 2.
If K = A™™! is the whole simplex on m vertices, then cc(K) is the
whole cube I, and the above constructed PL-homeomorphism between
cone(A™~1)" and I™ defines the standard triangulation of I™.

The next lemma shows that the space Zg is particularly nice for
certain geometrically important classes of triangulations.

Lemma 3.3. Suppose that K is a triangulation of an (n—1)-dimensional
sphere. Then Zx is a closed (m + n)-dimensional manifold.

In general, if K is a triangulated manifold then Zx \ p~1(1,...,1) is
a noncompact manifold, where (1,...,1) € I™ is the cone vertex and
p (1, 1) =T

Proof. We only prove the first statement here; the proof of the second
is similar and can be found in [9].

Each vertex v; of K corresponds to a vertex of the barycentric subdi-
vision K’, which we continue to denote v;. Let starx: v; be the star of
v; in K’, that is, the subcomplex consisting of all simplices of K’ con-
taining v;, and all their subsimplices. The space cone K’ has a canonical
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face structure, whose facets (codimension-1 faces) are
F;:=starg vy, i=1,...,m, (3.2)

and whose i-faces are nonempty intersections of i-tuples of facets. In
particular, the vertices (0-faces) in this face structure are the barycentres
of (n — 1)-dimensional simplices of K.

For every such barycentre b we denote by U, the subset of cone K’
obtained by removing all faces not containing b. Since K is a triangu-
lation of a sphere, cone K’ is an n-ball; hence each U, is homeomorphic
to an open subset in I™ via a homeomorphism preserving the dimension
of faces. Since each point of cone K’ is contained in some Up, this dis-
plays cone K’ as a manifold with corners. Having identified cone K’ with
cc(K) and further ce(K) with Zx /T™, we see that every point in Zk lies
in a neighbourhood homeomorphic to an open subset in (D?)" x T™~"
and thus in R™*7, O

A particularly important class of examples of sphere triangulations
arise from boundary triangulations of convex polytopes. Suppose P is
a simple n-dimensional convex polytope, i.e. one where each vertex is
contained in exactly n facets. Then the dual (or polar) polytope is
simplicial, and we denote its boundary complex by Kp. Kp is then a
triangulation of an (n — 1)-sphere. The faces of cone K} introduced in
the previous proof coincide with those of P.

Example 3.4. Let K = 0A™~!. Then Zx = o((D*)™) = §?m~1 In
particular, for m = 2 from (3.1) we get the familiar decomposition
S% = D? x S*uU S' x D* ¢ D* x D?
of a 3-sphere into a union of two solid tori.
Using faces (3.2) we can identify the isotropy subgroups of the T"-

action on Zx. Namely, the isotropy subgroup of a point z in the orbit
space cone K’ is the coordinate subtorus

T(x)={(21,...,2m) €T™: z; =1if x ¢ F;}.

In particular, the action is free over the interior (that is, near the cone
point) of cone K.

It follows that the moment-angle complex can be identified with the
quotient

Zx = (T™ x |cone K'|) /~,

where (t1,x) ~ (t2,y) if and only if = y and t1t, ' € T(x). In the case
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when K is the dual triangulation of a simple polytope P™ we may write
(T™ x P™)/~ instead. The latter T™-manifold is the one introduced by
Davis and Januszkiewicz [11], which thereby coincides with our moment-
angle complex.

3.2 Homotopy fibre construction

The classifying space for the circle S can be identified with the infinite-
dimensional projective space CP*°. The classifying space BT™ of the
m-~torus is a product of m copies of CP>°. The cohomology of BT is the
polynomial ring Z[v1, . .., vy], degv; = 2 (the cohomology is taken with
integer coefficients, unless another coefficient ring is explicitly specified).
The total space ET™ of the universal principal T™-bundle over BT™
can be identified with the product of m infinite-dimensional spheres.

In [11] Davis and Januszkiewicz considered the homotopy quotient of
Zk by the T™-action (also known as the Borel construction). We refer
to it as the Davis-Januszkiewicz space:

DJ(K) := ET™ xpm Zx = ET™ x Zx | ~,

where (e, 2) ~ (et~ !,tz). There is a a fibration p: DJ(K) — BT™ with
fibre Zi. The cohomology of the Borel construction of a T"-space X
is called the equivariant cohomology and denoted by Hi.. (X).

A theorem of [11] states that the cohomology ring of DJ(K) (or the
equivariant cohomology of Zk) is isomorphic to Z[K]. This result can
be clarified by an alternative construction of DJ(K) [8], which we review
below.

The space BT™ has the canonical cell decomposition in which each
factor CP®° has one cell in every even dimension. Given w C [m], define
the subproduct

BT :={(x1,...,2m) € BT™: z; = x if i ¢ w},

where # is the basepoint (zero-cell) of CP*>°. Now for a simplicial com-
plex K on [m] define the following cellular subcomplex:

BT* := | ) BT° < BT™ (3.3)
ceK

Proposition 3.5. The cohomology of BT'X is isomorphic to the Stanley-
Reisner ring Z|K]. Moreover, the inclusion i: BT « BT™ of cellular
complezes induces the following quotient epimorphism on cohomology:

2o, . o] — ZIK] = Zvg, . om])/ Tk -
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Proof. Let B2* denote the 2k-dimensional cell in the ith factor of BT™,
and C*(BT™) the cellular cochain module. A monomial vfll . .vf:
resents the cellular cochain (Bflk1 ...prkp)* in C*(BT™). Under the
cochain homomorphism induced by the inclusion BT® < BT™ the
cochain (Bfl’Cl . .B?pk”)* maps identically if {i1,...,4,} € K and to zero

otherwise, whence the statement follows. O

rep-

Theorem 3.6. There is a deformation retraction D.J(K) — BTX such
that the diagram

DJ(K) —— BT™

l H

BTK ', prm
s commutative.

Proof. We have Zx = |J,cx Bo, and each B, is T™-invariant. Hence,
there is the corresponding decomposition of the Borel construction:

DJ(K)=ET™ xgm 2 = | J ET™ xrn B,.
ceK

Suppose |o| = s. Then B, = (D?)* x T™%, so we have
ET™ Xpm By 2 (ET?® xp. (D?)%) x ET™5.

The space ET® x1s (D?)* is the total space of a (D?)*-bundle over BT*,
and ET™™° is contractible. It follows that there is a deformation retrac-
tion ET™ xpm B, — BT?. These homotopy equivalences corresponding
to different simplices fit together to yield the required homotopy equiv-
alence between p: D.J(K) — BT™ and i: BT¥ — BT™. O

Corollary 3.7. The space Zx is the homotopy fibre of the cellular in-
clusion i: BT® — BT™. Hence [11] there are ring isomorphisms

H*(DJ(K)) = Hyw (ZK) = Z[K].

In view of the last two statements we shall also use the notation DJ(K)
for BT¥, and refer to the whole class of spaces homotopy equivalent to
DJ(K) as the Davis-Januszkiewicz homotopy type.

An important question arises: to what extent does the isomorphism
of the cohomology ring of a space X with the face ring Z[K] determine
the homotopy type of X? In other words, for given K, does there exist
a ‘fake’ Davis-Januszkiewicz space, whose cohomology is isomorphic to
Z[K], but which is not homotopy equivalent to DJ(K)? This question
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is addressed in [21]. It is shown there [21, Prop. 5.11] that if Q[K] is a
complete intersection ring and X is a nilpotent cell complex of finite type
whose rational cohomology is isomorphic to Q[K], then X is rationally
homotopy equivalent to DJ(K). Using the formality of DJ(K), this
can be rephrased by saying that the complete intersection face rings are
intrinsically formal in the sense of Sullivan.

Note that the class of simplicial complexes K for which the face ring
Q[K] is a complete intersection has a transparent geometrical interpre-
tation: such a K is a join of simplices and boundaries of simplices.

3.3 Coordinate subspace arrangements

Yet another interpretation of the moment-angle complex Zx comes from
its identification up to homotopy with the complement of the complex
coordinate subspace arrangement corresponding to K. This leads to an
application of toric topology in the theory of arrangements, and allows us
to describe and effectively calculate the cohomology rings of coordinate
subspace arrangement complements and in certain cases identify their
homotopy types.
A coordinate subspace in C™ can be written as

LW:{(’Zl?""Zm)ecmZzil:"':Zikzo} (34)

for some subset w = {i1,...,ix} C [m]. Given a simplicial complex
K, we may define the corresponding coordinate subspace arrangement
{Ly,: w ¢ K} and its complement

UK)=C"\ | Lo
wgK

Note that if K’ C K is a subcomplex, then U(K’) C U(K). It is easy to
see [8, Prop. 8.6] that the assignment K — U(K) defines a one-to-one
order preserving correspondence between the set of simplicial complexes
on [m] and the set of coordinate subspace arrangement complements
in C™.

The subset U(K) C C™ is invariant with respect to the coordinatewise
T™-action. It follows from (3.1) that Zx C U(K).

Proposition 3.8. There is a T™-equivariant deformation retraction

UK) = Zk.
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Proof. In analogy with (3.3), we may write
= v, (3.5)
oeK

where
Uy :={(z1,...,2m) €C™: z; #0 for i ¢ o}.
Then there are obvious homotopy equivalences (deformation retractions)
C7 x (C\0)m\e >, =, B, = (D?)7 x (§1)m\,
These patch together to give the required map U(K) — Zk. O
Example 3.9.

(i) Let K = dA™~ 1. Then U(K) = C™\ 0 (recall that Zy = §?m~1
in this case).
(ii) Let K = {v1,...,vm,m} (m points). Then
1<i<j<m

the complement to the set of all codimension 2 coordinate planes.

(iii) More generally, if K is the i-skeleton of A™~1 then U(K) is the
complement to the set of all coordinate planes of codimension
(1 +2).

The reader may have noticed a similar pattern in several constructions
of toric spaces which appeared above; compare (3.1), (3.3) and (3.5).
The following general framework was suggested to the author by Neil
Strickland in a private communication.

Construction 3.10 (K-power). Let X be a space and W C X a sub-
space. For a simplicial complex K on [m] and o € K, we set

7i={(z1,....,am) EX":x; e Wlorj¢ o}

and

X, W) = | (X, W) = U(HXxHW)
ceK ceK ico i¢o
We refer to the space (X, W)X C X™ as the K-power of (X,W). If
X is a pointed space and W = pt is the basepoint, then we shall use
the abbreviated notation X% := (X, pt)X. Examples considered above
include Zx = (D% SH)E cc(K) = (11, 5K, DJ(K) = (CP>*)X and
U(K)=(C,C"&
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Homotopy theorists would recognize the K-power as an example of
the colimit of a diagram of topological spaces over the face category of
K (objects are simplices and morphisms are inclusions). The diagram
assigns the space (X, W) to a simplex ¢; its colimit is (X, W)¥. These
observations are further developed and used to construct models of loop

spaces of toric spaces as well as for homotopy and homology calculations
in [23] and [22].

3.4 Toric varieties, quasitoric manifolds, and torus
manifolds

Several important classes of manifolds with torus action emerge as quo-
tients of moment-angle complexes by appropriate freely acting subtori.

First we give the following characterization of lsops in the face ring.
Let K™~ ! be a simplicial complex and t1, ..., %, a sequence of degree-two
elements in k[K]. We may write

tiz)\ﬂvl—i——}—)\mvm, 221,771 (36)

For an arbitrary simplex o € K, we have K, = Al7l=1 and k[K,] is the
polynomial ring k(v;: i € o] on |o| generators. The inclusion K, C K
induces the restriction homomorphism r, from k[K] to the polynomial
ring, mapping v; identically if ¢ € ¢ and to zero otherwise.

Lemma 3.11. A degree-two sequence ti,...,t, is an lsop in k[K" 1]
if and only if for every o € K the elements r5(t1),...,75(ty) generate
the positive ideal k[v;: i € o).

Proof. Suppose (3.6) is an Isop. For simplicity we denote its image under
any restriction homomorphism by the same letters. Then the restriction
induces an epimorphism of the quotient rings:

K[K]/(t1, ... tn) — K[vi: i € 0]/(t1, ..., tn).

Since (3.6) is an lsop, k[K]/(t1,...,t,) is a finitely generated k-module.
Hence, so is k[v;: i € o]/(t1,...,tn). But the latter can be finitely
generated only if ¢1,...,t, generates k[v;: i € o]4.

The ‘if’ part may be proved by considering the sum of restrictions

k[K] — EBk[vi: i€ o]

which turns out to be a monomorphism; see [6, Th. 5.1.16] for details.
O
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Obviously, it is enough to consider only restrictions to the maximal
simplices in the previous lemma.

Suppose now that K is Cohen-Macaulay (e.g. K is a sphere triangu-
lation). Then every lsop is a regular sequence (however, for k = Z or a
field of finite characteristic an lsop may fail to exist).

Now we restrict to the case k = Z and organize the coefficients in
(3.6) into an n x m-matrix A = (\;;). For an arbitrary maximal simplex
o € K denote by A, the square submatrix formed by the elements
Aij with j € 0. The matrix A defines a linear map Z™ — Z" and a
homomorphism 7™ — T"™. We denote both by A and denote the kernel
of the latter map by Th.

Theorem 3.12. The following conditions are equivalent:

(a) the sequence (3.6) is an lsop in Z[K"];
(b) det A, = %1 for every mazimal simplex o € K;
(¢) TA X T™ ™ and Ta acts freely on Z.

Proof. The equivalence of (a) and (b) is a reformulation of Lemma 3.11.
Let us prove the equivalence of (b) and (c). Every isotropy subgroup of
the T™-action on Zx has the form

T ={(z1,....2m) €ET™: z;=1if i ¢ o}

for some simplex o € K. Now, (b) is equivalent to the condition that
TaNT? = {e} for arbitrary maximal o, whence the statement follows.
(|

We denote the quotient Z /Ty by M2 (A), and abbreviate it to M2
or to M?" when the context allows. If K is a triangulated sphere, then
Zk is a manifold, hence, so is M2". The n-torus T™ = T™ /T, acts on
M?#". This construction produces the following two important classes of
T™-manifolds as particular examples.

Let K = Kp be a polytopal triangulation, dual to the boundary
complex of a simple polytope P. Then the map A determined by the
matrix A may be regarded as an assignment of an integer vector to
every facet of P. The map A coming from a matrix satisfying the con-
dition of Theorem 3.12(b) was called a characteristic map by Davis and
Januszkiewicz [11]. We refer to the corresponding quotient M32"(A) =
Zk,p /T as a quasitoric manifold (a toric manifold in the terminology
of Davis-Januszkiewicz).
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Let us assume further that P is realized in R"™ with integer coordinates
of vertices, so we can write

P*={z eR": (l;,z) > —a;, i=1,...,m}, (3.7)

where l; are inward pointing normals to the facets of P™ (we may further
assume these vectors to be primitive), and a; € Q. Let A be the matrix
formed by the column vectors I;; 4 = 1,...,m. Then Zg,/Tr can
be identified with the projective toric variety [10, 13] determined by
the polytope P. The condition of Theorem 3.12(b) is equivalent to the
requirement that the toric variety is nonsingular. Thereby a nonsingular
projective toric variety is a quasitoric manifold (but there are many
quasitoric manifolds which are not toric varieties).

We also note that smooth projective toric varieties provide examples
of symplectic 2n-dimensional manifolds with Hamiltonian T™-action.
These symplectic manifolds can be obtained via the process of symplectic
reduction from the standard Hamiltonian 7" -action on C™. A choice
of an (m — n)-dimensional toric subgroup provides a moment map

w: C™ — RM™TT

and the corresponding moment-angle complex Zg, can be identified
with the level surface p~!(a) of the moment map for any of its regular
values a. The details of this construction can be found in [8, p. 130].

Finally, we mention that if K is an arbitrary (not necessarily poly-
topal) triangulation of sphere, then the manifold M2"(A) is a torus
manifold in the sense of Hattori-Masuda [19]. The corresponding multi-
fan has K as the underlying simplicial complex. This particular class of
torus manifolds has many interesting properties.

4 Cohomology of moment-angle complexes

The main result of this section (Theorem 4.7) identifies the integral coho-
mology algebra of the moment-angle complex Zx with the Tor-algebra of
the face ring of the simplicial complex K. Over the rationals this result
was proved in [7] by studying the Eilenberg-Moore spectral sequence of
the fibration Zx — DJ(K) — BT™; a more detailed account of appli-
cations of the Eilenberg-Moore spectral sequence to toric topology can
be found in [8]. The new proof, which works with integer coefficients
as well, relies upon a construction of a special cellular decomposition of
Zk and subsequent analysis of the corresponding cellular cochains.
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One of the key ingredients here is a specific cellular approximation of
the diagonal map A: Zx — Zi x Zk. Cellular cochains do not admit a
functorial associative multiplication because a proper cellular diagonal
approximation does not exist in general. The construction of moment-
angle complexes is given by a functor from the category of simplicial
complexes to the category of spaces with a torus action. We show that
in this special case the cellular approximation of the diagonal is functo-
rial with respect to those maps of moment-angle complexes which are
induced by simplicial maps. The corresponding cellular cochain algebra
is isomorphic to a quotient of the Koszul complex for k[K] by an acyclic
ideal, and its cohomology is isomorphic to the Tor-algebra. The proofs
have been sketched in [5]; here we follow the more detailed exposition
of [9]. Another proof of Theorem 4.7 follows from recent independent
work of M. Franz [12, Th. 1.2].

4.1 Cell decomposition

The polydisc (D?)™ has a cell decomposition in which each D? is sub-
divided into cells 1, T and D of dimensions 0, 1 and 2 respectively, see
Figure 3. Each cell of this complex is a product of cells of 3 different

Fig. 3.

types and we encode it by a word 7 € {D,T,1}™ in a three-letter al-
phabet. Assign to each pair of subsets o,w C [m], 0 Nw = &, the word
7 (0,w) which has the letter D on the positions indexed by o and letter
T on the positions with indices from w.

Lemma 4.1. Zg is a cellular subcomplex of (D*)™. A cell T(o,w) C
(D?)™ belongs to Zk if and only if o € K.

Proof. We have Zx = U,cx B, and each B, is the closure of the cell
T (o,[m] \ o). O
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Therefore we can consider the cellular cochain complex C*(Zk ), which
has an additive basis consisting of the cochains 7 (o, w)*. It has a natural
bigrading defined by

bideg 7 (0, w)" = (—|wl, 2|o| + 2[w|),

so bidegD = (0,2), bidegT = (—1,2) and bidegl = (0,0). More-
over, since the cellular differential does not change the second grading,
C*(Zk) splits into the sum of its components having fixed second degree:

m

C*(Zx) = P ¥ (2x).

Jj=1

The cohomology of Z) thereby acquires an additional grading, and we
may define the bigraded Betti numbers b="%1(Zx) by

b (Zg) i=rank H %% (Zk), i,j=1,...,m.
For the ordinary Betti numbers we have b*(Zx) = Doi—imk b2 (Zg).

Lemma 4.2. Let ¢: K1 — Ky be a simplicial map between simpli-
cial complexes on the sets [m1] and [ma] respectively. Then there is
an equivariant cellular map ¢z : Zx, — Zk, covering the induced map
| cone K1| — | cone KJ|.

Proof. Define a map of polydiscs

QOD: (DQ)ml - (D2)77L27 (Z17 R Z'IYLl) g (w17 AR 7wm2)7
where
w] = H Zis ] = 17 , M2
i€p=1(4)

(we set w; = 1if p~1(j) = @). Assume 7 € K;. In the notation of (3.1),
we have ¢p(B;) C By(r). Since ¢ is a simplicial map, o(7) € K2 and
By(ry C Zk,, so the restriction of pp to Zk, is the required map. [

Corollary 4.3. The correspondence K +— Zg gives rise to a functor
from the category of simplicial complexes and simplicial maps to the
category of spaces with torus actions and equivariant maps. It induces a
natural transformation between the simplicial cochain functor of K and
the cellular cochain functor of Zx .

We also note that the maps respect the bigrading, so the bigraded
Betti numbers are also functorial.
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4.2 Koszul algebras

Our algebraic model for the cellular cochains of Zk is obtained by tak-
ing the quotient of the Koszul algebra [Afug,..., u,] ® k[K],d] from
Lemma 2.11 by a certain acyclic ideal. Namely, we introduce a factor
algebra

R*(K) == Aluy, ..., um) ® Z[K]/(v] = wjv; =0, i = 1,...,m),

where the differential and bigrading are as in (2.4). Let
0: Aug, ..., up] ®Z[K] — R*(K)

be the quotient projection. The algebra R*(K) has a finite additive
basis consisting of the monomials of the form wu,v, where w C [m],
o € K and wNo = @ (remember that we are using the notation u, =
Ugy - . U4, for w = {i1,...,ix}). Therefore, we have an additive inclusion
(a monomorphism of bigraded differential modules)

t: R*(K) — Afug, ..., um] ® Z[K]

which satisfies o - ¢ = id.
The following statement shows that the finite-dimensional quotient
R*(K) has the same cohomology as the Koszul algebra.

Lemma 4.4. The quotient map o: Afus, ..., un) ® Z[K] — R*(K) in-
duces an isomorphism in cohomology.

Proof. The argument is similar to that used in the proof of the acyclicity
of the Koszul resolution. We construct a cochain homotopy between the
maps id and ¢ - ¢ from Afug, ..., un] ® Z[K] to itself, that is, a map s
satisfying

ds+sd=1id—¢-p. (4.1)

First assume that K = A™~!. We denote the corresponding bigraded
algebra Afuq, ..., un] ® Z[K] by

E=FE, =Aui,...,un] @ Zvy,...,vn], (4.2)
while R*(K) is isomorphic to
(Alu] ® Z[v]/ (v? = uwv = 0))*™ = R*(A%)®™. (4.3)
For m = 1, the map s1: E%* = k[v] — E~b* given by
si(ao+av+...+ ajvj) = (agv + asv? + ...+ ajvjfl)u

is a cochain homotopy. Indeed, we can write an element of F as either



Cohomology of face rings, and torus actions 187

z or zu with z = ag + a1v + ... + a;07 € E%%. In the former case,
dsix = v —ap —av = x — tor and s;dr = 0. In the latter case,
ru € E71% then ds;(ru) = 0 and s1d(zu) = zu — apu = zu — Lo(xu).
In both cases (4.1) holds. Now we may assume by induction that for
m = k — 1 there is a cochain homotopy operator sx_1: Fx_1 — Ex_1.
Since By, = Ex_1 Q@ E1, 0k = 0p—1 ® 01 and 1 = 151 @11, a direct check
shows that the map

Sk = Sp—1 ®id + tg—10Kk—1 @ 81

is a cochain homotopy between id and ¢y 0, which finishes the proof for
K=Am"1,

In the case of arbitrary K the algebras Afus,...,un] ® Z[K] are
R*(K) are obtained from (4.2) and (4.3) respectively by factoring out
the Stanley-Reisner ideal Zx. This factorization does not affect the
properties of the constructed map s, which finishes the proof. O

Now comparing the additive structure of R*(K') with that of the cell-
ular cochains C*(K), we see that the two coincide:

Lemma 4.5. The map
g9: R*(K) — C*(2k),

UV — T (o,w)*

1s an isomorphism of bigraded differential modules. In particular, we
have an additive isomorphism

HIR*(K)] = H*(Zx).

Having identified the algebra R* with the cellular cochains of Zx, we
can also interpret the cohomology isomorphism from Lemma 4.4 topo-
logically. To do this we shall identify the Koszul algebra Afuy, ..., ] ®
Z|K] with the cellular cochains of a space homotopy equivalent to Zg.

Let S°° be an infinite-dimensional sphere obtained as a direct limit
(union) of standardly embedded odd-dimensional spheres. The space
S is contractible and has a cell decomposition with one cell in every
dimension. The boundary of an even-dimensional cell is the closure of
the appropriate odd-dimensional cell, while the boundary of an odd cell
is zero. The 2-skeleton of this cell decomposition is a 2-disc decomposed
as shown on Figure 3, while the 1-skeleton is the circle S C §*°. The
cellular cochain complex of §*° can be identified with the algebra

Au] @ Zv], degu=1,degv =2, du=wv,dv=0.
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From the obvious functorial properties of Construction 3.10 we obtain a
deformation retraction

ZK — (DQ,Sl)K N (SOO,Sl)K _ (DQ,Sl)K

onto a cellular subcomplex.

The cellular cochains of the K-power (5%, S1)% can be identified with
the Koszul algebra Afug, ..., u,] ® Z[K]. Since Zx C (S, 81)K is a
deformation retract, the cellular cochain map

Afuy, ... un) ® Z[K] = C*((5*, ")) — C*(2k) = R*(K),

induces an isomorphism in cohomology. In fact, the algebraic homotopy
map s constructed in the proof of Lemma 4.4 is the map induced on the
cochains by the topological homotopy.

4.3 Cellular cochain algebras

Here we introduce a multiplication for cellular cochains of Zx and estab-
lish a ring isomorphism in Lemma 4.5. This task runs into a complication
because cellular cochains in general do not carry a functorial associative
multiplication; the classical definition of the cohomology multiplication
involves a diagonal map, which is not cellular. However, in our case there
is a way to construct a canonical cellular approximation of the diagonal
map A: Zx — Zx X Zi in such a way that the resulting multiplication
in cellular cochains coincides with that in R*(K).

The standard definition of the multiplication in cohomology of a cell
complex X via cellular cochains is as follows. Consider a composite map
of cellular cochain complexes:

CHX) ® CHX) —2— O*(X x X) —2— C*(X). (4.4)
Here the map X assigns to a cellular cochain ¢; ® c2 € C1(X) @ C?(X)
the cochain ¢y x cg € C7%2 (X x X) whose value on a cell e; x ez € X x X
is (—1)792¢q(e1)ca(ez). The map A* is induced by a cellular approxi-
mation A of the diagonal map A: X — X x X. In cohomology, the
map (4.4) induces a multiplication H*(X) ® H*(X) — H*(X) which
does not depend on a choice of cellular approximation and is functorial.
However, the map (4.4) is not itself functorial because of the arbitrari-
ness in the choice of a cellular approximation.
In the special case X = Zx we may apply the following construction.
Consider a map A: D? — D? x D2, defined using polar coordinates
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z2=pe* € D? 0<p<1,0< ¢ <27 as follows:

et (1+p(e*® —1),1) for 0 <¢p<m,
g (1,14 p(e2® —1)) for 7 < ¢ < 2.

This is a cellular map taking D? to dD? x dD? and homotopic to the
diagonal A: D? — D? x D? in the class of such maps. Taking an m-fold
product, we obtain a cellular approximation

A: (D*)™ — (D)™ x (D*)™

which restricts to a cellular approximation for the diagonal map of Zx
for arbitrary K, as described by the following commutative diagram:

ZK N (DQ)m

| |a
Zg x Zg —— (D*)™ x (D*)™
Note that this diagonal approximation is functorial with respect to

those maps Zx, — Zk, of moment-angle complexes that are induced
by simplicial maps K; — K3 (see Lemma 4.2).

Lemma 4.6. The cellular cochain algebra C*(Zk) defined by the dia-
gonal approzimation A: Zx — Zig X Zx and (4.4) is isomorphic to
R*(K). Therefore, we get an isomorphism of cohomology algebras:

H[R*(K)] = H*(2x; Z).

Proof. We first consider the case K = A, that is, Zx = D?. The
cellular cochain complex of D? is additively generated by the cochains
1 € C%D?), T* € CY(D?) and D* € C?(D?) dual to the corresponding
cells, see Figure 3. The multiplication defined in C*(D?) by (4.4) is
trivial, so we get a multiplicative isomorphism

R*(AY) = Alu] ® Z[v]/(v? = uwv = 0) — C*(D?).
Now, for K = A™ ! we obtain a multiplicative isomorphism

A[u1,...,um] ®Z[U1,...
(v = uv; = 0)

Fi (AT = ol e ((o2ym

by taking the tensor product. Since Zx C (D?)™ is a cell subcomplex for
arbitrary K we obtain a multiplicative map ¢: C*((D?)™) — C*(Zk).
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Now consider the commutative diagram
R (A1) —— Cr(DA)™)
Pl J/q
RY(K) —2— C*(Zk).

Here the maps p, f and ¢ are multiplicative, while g is an additive
isomorphism by Lemma 4.5. Take a, 5 € R*(K). Since p is onto, we
have o = p(«/) and 8 = p(3’). Then

9(apB) = gp(a’B') = af(o/B') = gp(a’)gp(8') = g(a)g(B),
and g is also a multiplicative isomorphism, which finishes the proof. [

Combining the results of Lemmas 2.11, 2.12, 4.4 and 4.6, we come to
the main result of this section.

Theorem 4.7. There is an isomorphism, functorial in K, of bigraded
algebras

H*’*(ZK; Z) = TorZ[vl,...,vm] (Z[K], Z) =~ H[A[Ul, - ,um] [ Z[K], d],

where the bigrading and the differential in the last algebra are defined
by (2.4).

As an illustration we give two examples of particular cohomology cal-
culations, which have a transparent geometrical interpretation. More
examples of calculations may be found in [8].

Example 4.8.
o Let K = 0A™ . Then
ZIK] = Zlv1, ..., 0m]/ (V1 V).
The fundamental class of Zx = S?™~ ! is represented by the bideg
(—1,2m) cocycle ujvavs - - - Uy € Afug, ..., um] Q Z[K].
o Let K = {v1,...,un} (m points). Then Zx is homotopy equivalent

to the complement in C™ of the set of all codimension-two coordinate
planes (see Example 3.9). Then

Z[K] = Z[’Ul7 N ,’Um]/(’l}i’l)j7 ) 7é j)
The subspace of cocycles in R*(K) is generated by

Uiy Uiy Wig -+~ Uiy, Kk > 2 and iy # 44 for p # g,
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7;:11). The subspace of coboundaries is gener-

ated by the elements of the form

and has dimension m(

d(ui1 . ulk)
and is ('})-dimensional. Therefore
dim H°(Zk) =1,
dim HY(Zg) = H*(U(K)) = 0,
dim H**1(Zx) = m(T,?:ll) - =E&=-1(), 2<k<m,
and multiplication in the cohomology of Zk is trivial. Note that in
general multiplication in the cohomology of Zk is far from being triv-

ial; for example, if K is a sphere triangulation then Zg is a manifold
by Lemma 3.3.

The above cohomology calculation suggests that the complement of
the subspace arrangement from the previous example is homotopy equiv-
alent to a wedge of spheres. This is indeed the case, as the following
theorem shows.

Theorem 4.9 (Grbié-Theriault [16]). The complement of the set of all
codimension-two coordinate subspaces in C™ has the homotopy type of
the wedge of spheres

k\Z(k —1) (Z) Sk+1,

The proof is based on an analysis of the homotopy fibre of the inclusion
DJ(K) — BT™, which is homotopy equivalent to Zx (or U(K)) by
the first part of Corollary 3.7. We shall return to coordinate subspace
arrangements once again in the next section.

5 Applications to combinatorial commutative algebra
5.1 A multiplicative version of Hochster’s theorem

As a first application we give a proof of a generalization of Hochster’s
theorem (Theorem 2.9) obtained by Baskakov in [3].

The bigraded structure in the cellular cochains of Zx can be further
refined as

O*(ZK)Z @ C*,Qw(ZK)

wC[m]
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where C* 2*(Zf) denotes the subcomplex generated by the cochains
T(o,w\ 0)* with 0 C w and ¢ € K. Thus, C*(Zk) now becomes a
7Z & ZM-graded module, and the bigraded cohomology groups decom-
pose accordingly as

H™M(2g)= @ H > (2x) (5.1)

wClm]: |w|=j

where H »2(Zg) == H ' [C*?*(2k)].
Given two simplicial complexes K7 and K» with vertex sets V; and
V5 respectively, their join is the following complex on Vi U Va:

KixKy:={oc CViUVa:0=01Uo09, 01 € K3, 03 € Ks}.
Now we introduce a multiplication in the sum
D #rK.)
p=>—1,

wC[m]

where K, is the full subcomplex and H ~Y@) = Z, as follows. Take two
elements o € HP(K,,) and § € HY(K,,). Assume that w; Nwy = @.
Then we have an inclusion of subcomplexes

1t Kpyuw, = Ko, UK, — K, * K,
and an isomorphism of reduced simplicial cochains
fiCP(K,,) ®CUK,,) — CPTH(K,, * K,,).
Now set

a-fBi= 0, w1 Nws # G,
) iffla®b) € HPYITY K, w,), w1 Nws = @.

Theorem 5.1 (Baskakov [3, Th. 1]). There are isomorphisms
E[P(Kw) i H:D+1f|w|,2w(ZK)

which are functorial with respect to simplicial maps and induce a ring
isomorphism

v 6P HP(K.) = H(Zk).
p>—1,
wC[m]

Proof. Define a map of cochain complexes

C*(K,) — C*H1-llh2(zy 0% o T(o,w )\ 0)*.
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It is a functorial isomorphism by observation, whence the isomorphism
of the cohomology groups follows.

The statement about the ring isomorphism follows from the isomor-
phism H*(Zg) =2 H[R*(K)] established in Lemma 4.5 and analysing
the ring structure in R*(K). O

Corollary 5.2. There is an isomorphism

H™921(Zy) @ ﬁj—i—l(Kw).

wC[m]: |w|=j

As a further corollary we obtain Hochster’s theorem (Theorem 2.9):

Tor,;” (ZIK],z) = P H¥7H(K,).

Ul»---v'Um]
wC[m]

5.2 Alexander duality and coordinate subspace arrangements
revisited

The multiplicative version of Hochster’s theorem can also be applied to
cohomology calculations of subspace arrangement complements.

A coordinate subspace can be defined either by setting some coordi-
nates to zero as in (3.4), or as the linear span of a subset of the standard
basis in C™. This gives an alternative way to parametrize coordinate
subspace arrangements by simplicial complexes. Namely, we can write

{L,:w¢ K} ={span(e;,,...,€;): {i1,...,9k} € [A(}
where K is the simplicial complex given by
K:={wC[m]: [m]\w¢ K}.

K is called the dual complezr of K. The cohomology of full subcomplexes
in K is related to the homology of links in K by means of the following
combinatorial version of the Alexander duality theorem.

Theorem 5.3 (Alexander duality). Let K # A™™! be a simplicial com-
plex on the set [m] and o ¢ K, that is, 0 = [m]|\ o € K. Then there are
isomorphisms

H;(K,) = H'=37 (link 5).
In particular, for o = [m] we get

Hi(K) = H" 3 (K), —1<j<m-—2.
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A proof can be found in [9, §2.2]. Using the duality between the full
subcomplexes of K and links of K we can reformulate the cohomology
calculation of U(K) as follows.

Proposition 5.4. We have
Hi(U(K)) = @ #2717~ 2(link ).
UGIA(
Proof. From Proposition 3.8 and Corollary 5.2 we obtain
= @ Hp—\‘r\—l(KT)'
7C[m]

Nonempty simplices 7 € K do not contribute to the above sum, since
the corresponding subcomplexes K, are contractible. Since H~1(2) = k
the empty subset of [m] only contributes k to H(U(K)). Hence we may
rewrite the above formula as

@ p—|T|— 1 )

T¢K

Using Theorem 5.3, we calculate
Hy pr1(Ky) = HITIZ3=pH T Gink 2 7) = g2 27172 (link 5 7),
where 7 = [m] \ 7 is a simplex in K, as required. O

Remark. Proposition 5.4 is a particular case of the well-known Goresky-
Macpherson formula [15, Part IIT], which calculates the dimensions of
the (co)homology groups of an arbitrary subspace arrangement in terms
of its intersection poset (which coincides with the poset of faces of K in
the case of coordinate arrangements). Thus the study of moment-angle
complexes not only allows us to retrieve the multiplicative structure
of the cohomology of complex coordinate subspace arrangement com-
plements, but also connects two seemingly unrelated results, namely
the Goresky-Macpherson formula from the theory of arrangements and
Hochster’s formula from combinatorial commutative algebra.

5.3 Massey products in the cohomology of Zx

Here we address the question of existence of nontrivial Massey products
in the Koszul complex

[Alug, ..., un] ® Z[K],d)
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of the face ring. Massey products constitute a series of higher-order op-
erations (or brackets) in the cohomology of a differential graded algebra,
with the second-order operation coinciding with the cohomology mul-
tiplication, while the higher-order brackets are only defined for certain
tuples of cohomology classes. A geometrical approach to constructing
nontrivial triple Massey products in the Koszul complex of the face ring
has been developed by Baskakov in [4] as an extension of the cohomo-
logy calculation in Theorem 5.1. It is well-known that nontrivial higher
Massey products obstruct the formality of a differential graded algebra,
which in our case leads to a family of nonformal moment-angle mani-
folds Zk.

Massey products in the cohomology of the Koszul complex of a local
ring R were studied by Golod [14] in connection with the calculation of
the Poincaré series of Torgr(k,k). The main result of Golod is a calcu-
lation of the Poincaré series for the class of rings with vanishing Massey
products in the Koszul complex (including the cohomology multiplica-
tion). Such rings were called Golod in [17], where the reader can find
a detailed exposition of Golod’s theorem together with several further
applications. The Golod property of face rings was studied in [20], where
several combinatorial criteria for Golodness were given.

The difference between our situation and that of Golod is that we are
mainly interested in the cohomology of the Koszul complex for the face
ring of a sphere triangulation K. The corresponding face ring k[K] does
not qualify for Golodness, as the corresponding moment-angle complex
Zk is a manifold, and therefore, the cohomology of the Koszul complex
of k[K] must possess many nontrivial products. Our approach aims at
identifying a class of simplicial complexes with nontrivial cohomology
product but vanishing higher-order Massey operations in the cohomol-
ogy of the Koszul complex.

Let K; be a triangulation of a sphere S™~! with |V;| = m; vertices,
1=1,2,3. Set m :=mq + ms + mz, n:=ny + ng + ng, and

K:ZKl*KQ*Kg, ZK:ZKIXZKQXZKS.

Note that K is a triangulation of S"~! and Zy is an (m + n)-manifold.
Given o € K, the stellar subdivision of K at o is obtained by replacing
the star of o by the cone over its boundary:

(- (K) = (K \ starg o) U (cone dstarg o).

Now choose maximal simplices o1 € K; and ¢}, 0 € Ky such that
ohbNoy =&, and o3 € K3. Set
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K = Coy Ual (Cogufra (K)).
Then K is a triangulation of S?~! with m + 2 vertices. Take generators
Bie HY Y(Ky,) = H™ 18", i=1,23,
where K v; is the restriction of K to the vertex set of K;, and set
= A(B1) € H™ ™ (Zg) € HP (2,
where + is the isomorphism from Theorem 5.1. Then
Bifa € H™ YKy, ) & H et (smotnaty pr) = 0,

and therefore, ajas = v(6152) = 0, and similarly asas = 0. In these
circumstances the triple Massey product (o, ag, as) C Her”*l(Zk) is
defined. Recall that (aq, ag, a3) is the set of cohomology classes repre-
sented by the cocycles (—1)9¢8%1+1q, f + eas where a; is a cocycle rep-
resenting «;, i = 1,2, 3, while e and f are cochains satisfying de = ajas,
df = asas. A Massey product is called trivial if it contains zero.

Theorem 5.5. The triple Massey product

(a1, a2,a3) C H™"Y(Z5)

in the cohomology of the (m + n 4 2)-manifold Z5 is nontrivial.

Proof. Consider the subcomplex of K consisting of those two new ver-
tices added to K in the process of stellar subdivision. By Lemma 4.2, the
inclusion of this subcomplex induces an embedding of a 3-dimensional
sphere S C Z. Since the two new vertices are not joined by an edge
in Zz, the embedded 3-sphere defines a nontrivial class in H*(Z). By
construction the dual cohomology class is contained in the Massey prod-
uct {aq, g, a3). On the other hand, this Massey product is defined up
to elements from the subspace

oy - Hm2+m3+"2+"3_1(zl~() + as ,Hm1+m2+n1+n2—1(zk)'

The multigraded components of the group H™2*tmstnztns=1(z-) differ-
ent from that determined by the full subcomplex K v,uvs do not affect the
nontriviality of the Massey product, while the multigraded component
corresponding to I~(V2uv3 is zero since this subcomplex is contractible.
The group H™+mztnitn2=1(Z ) is treated similarly. It follows that the
Massey product contains a unique nonzero element in its multigraded
component and so is nontrivial. [l
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As is well known, the nontriviality of Massey products obstructs for-
mality of manifolds, see e.g. [2].

Corollary 5.6. For every sphere triangulation K obtained from another
triangulation by applying two stellar subdivisions as described above, the
2-connected moment-angle manifold Zg is nonformal.

In the proof of Theorem 5.5 the nontriviality of the Massey product
is established geometrically. A parallel argument may be carried out al-
gebraically in terms of the algebra R*(K), as illustrated in the following
example.

Example 5.7. Consider the simple polytope P3 shown on Figure 4.

Ve
f
V4 |
~ |
U1
| ws
|
|
|
| v3

t

V2
Fig. 4.

This polytope is obtained by cutting two non-adjacent edges off a
cube and has 8 facets. The dual triangulation Kp is obtained from an
octahedron by applying stellar subdivisions at two non-adjacent edges.
The face ring is

Z[KP] = Z[U17 o 71}6711]1,11)2]/1-}(}9’

where v;, 1 = 1,...,6, are the generators coming from the facets of the
cube and w, wy are the generators corresponding to the two new facets,
see Figure 4, and

Ip= (U1U2,113”04,1)5716,w1w2,01037v47f5,w1113,w1067w21127w2v4)'
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The corresponding algebra R*(K p) has additional generators uq, . .., ug,
t1 and t9 of total degree 1 satisfying du; = v; and dt; = w;. Consider
the cocycles

a=uwvius, b=wv3uy, c=Uv5ug

and the corresponding cohomology classes a, 3,7 € H~4[R*(K)]. The
equations

ab=de, bc=df

have a solution e = 0, f = wvsusuqug, so the triple Massey product
(o, B,7) € H-12[R*(K)] is defined. This Massey product is nontrivial
by Theorem 5.5. The cocycle

af + ec = vivsuruUzULUG

represents a nontrivial cohomology class [vivsususugug] € (o, 3,7) and
so the algebra R*(Kp) and the manifold Zk . are not formal.

In view of Theorem 5.5, the question arises of describing the class of
simplicial complexes K for which the algebra R*(K) (equivalently, the
Koszul algebra [Afuq, ..., uy,] ® Z[K],d] or the space Zk) is formal (in
particular, does not contain nontrivial Massey products). For example,
a direct calculation shows that this is the case if K is the boundary of a

polygon.

5.4 Toral rank conjecture

Here we relate our cohomological calculations with moment-angle com-
plexes to an interesting conjecture in the theory of transformation groups.
This ‘toral rank conjecture’ has strong links with rational homotopy the-
ory, as described in [1]. Therefore this last subsection, although not con-
taining new results, aims at encouraging rational homotopy theorists to
turn their attention to combinatorial commutative algebra of simplicial
complexes.

A torus action on a space X is called almost free if all isotropy sub-
groups are finite. The toral rank of X, denoted trk(X), is the largest k
for which there exists an almost free T%*-action on X.

The toral rank conjecture of Halperin [18] suggests that

dim H*(X;Q) > 2tk(X)

for any finite dimensional space X. Equality is achieved, for example, if
X =T"
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Moment angle complexes provide a wide class of almost free torus
actions:

Theorem 5.8 (Davis-Januszkiewicz [11, 7.1]). Let K be an (n—1)-dim-
enstonal simplicial complex with m vertices. Then trk Zx > m — n.

Proof. Choose an lsop in t1,...,t, in Q[K] according to Lemma 2.3 and
write

ti=A1v1+ ...+ XimUm, 1=1,...,n.

Then the matrix A = (\;;) defines a linear map A\: Q™ — Q™. Changing
A to kA for a sufficiently large k if necessary, we may assume that A is
induced by a map Z™ — Z", which we also denote by A. It follows from
Lemma 3.11 that for every simplex o € K the restriction A|zo : Z% — Z"
of the map A to the coordinate subspace Z° C Z™ is injective.

Denote by Ty the subgroup in T™ corresponding to the kernel of the
map \: Z™ — Z". Then Ty is a product of an (m — n)-dimensional
torus N and a finite group. The intersection of the torus N with the
coordinate subgroup 77 C T™ is a finite subgroup. Since the isotropy
subgroups of the T™-action on Zk are of the form T (see the proof of
Theorem 3.12), the torus N acts on Zx almost freely. O

Note that by construction the space Zx is 2-connected.

In view of Theorem 5.1, we get the following reformulation of the toral
rank conjecture for Zx:

dim @ H*(K.;Q) >2m"

wC[m]
for any simplicial complex K™~ on m vertices.

Example 5.9. Let K be the boundary of an m-gon. Then the calcula-
tion of [8, Exam. 7.22] shows that

dim H*(Zg) = (m —4)2m "2 4+ 4 > 2m~2,
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Three lectures on the Borsuk partition
problem
Andreii M. Raigorodskii

To A. I. Averbuch, my grandfather

1 Borsuk’s conjecture: a historical overview and
high-dimensional counterexamples

In this lecture we discuss one of the most famous conjectures of combi-
natorial geometry — Borsuk’s conjecture:

every bounded set of points Q C R? having nonzero diameter can be partitioned
into d + 1 subsets of smaller diameter.

First of all we present a detailed history of the problem. Then we proceed
to counterexamples to Borsuk’s conjecture in high dimensions and to
asymptotic lower bounds for the value f(d), where f(d) is the minimal
number such that every bounded set of points can be partitioned into
f(d) parts of smaller diameter. In particular, we describe Nilli’s method
and its far-reaching modifications and extensions obtained by the author.
Finally, we propose new approaches to the multi-dimensional Borsuk
problem and formulate some corresponding conjectures.

1.1 The history of the Borsuk partition problem.

In 1933 K. Borsuk conjectured (see [8]) that every bounded set of points
Q C R? with nonzero diameter can be partitioned into d + 1 subsets of
smaller diameter. (In this text |x — y| denotes the standard Euclidean
distance between two vectors x,y € R? and diam 2 denotes the diame-
ter of a point set  C R? with respect to this distance.) Thus Borsuk’s

202
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conjecture states that every (2 such that 0 < diam 2 < co can be repre-
sented as a disjoint union

Q=0 U UQgis

where diam€); < diam) for all i = 1,...,d + 1. In other words, if
f(d) is the minimal number such that every d-dimensional set of points
can be partitioned into f(d) subsets of smaller diameter, then Borsuk’s
conjecture states that f(d) =d + 1.

In fact, the lower bound f(d) > d + 1 is almost evident: one can
consider the set of all vertices of a regular d-simplex, which of course (by
the pigeonhole principle) cannot be partitioned into d parts of smaller
diameter. There exist more general and sophisticated examples of sets
providing the estimate f(d) > d + 1, such as a sphere (see [7]) or an
arbitrary set of constant width (see [37]).

At the same time, Borsuk’s conjecture appears quite justified. Indeed,
Borsuk himself proved it for the case d = 2 and for the (almost trivial)
case of a Euclidean sphere (see [8] and Lecture 3). Then H. Hadwiger
succeeded in generalizing the last result to the case of an arbitrary body
with a smooth boundary (see [24, 5] and Lecture 2). Because of this, Bor-
suk’s conjecture was widely believed to be true and various approaches
to proving it were proposed by numerous authors. The conjecture was
proved in dimension 3 (see [45, 12, 22, 27, 33, 41, 40, 53] and Lecture 3)
and for any d-dimensional set with a sufficiently rich group of symme-
tries (see [57] and Lecture 2). Moreover, different upper bounds for f(d)
were obtained, the best ones due to O. Schramm [59] and to J. Bourgain
and J. Lindenstrauss [9]:

d
fd) < (\/%* 0(1)> = (1.224...+ o(1))?

(see [53, 6] for details about the preceding results).

Nevertheless, the general case remained open until 1993, when the con-
jecture was dramatically disproved in dimensions d > 2015 by J. Kahn
and G. Kalai [31]. Moreover, Kahn and Kalai showed that

F(d) > (1.203...+ o(1))V¢ .

This result has since been improved more than once: first A. Nilli [42]
found counterexamples in all dimensions d > 946; then J. Grey and
B. Weissbach [21] showed that Borsuk’s conjecture was false for all d >
903, and the present author [48, 49] succeeded in turn in disproving the
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conjecture for d > 561. Finally, A. Hinrichs has very recently discovered
counterexamples for d > 323 [29]. As for lower bounds for f(d), the only
improvement of Kahn and Kalai’s estimate was provided by this author
in [49]:

F(d) > (2/V3+0(1))V2V4 = (1.2255 + o(1))V? .

Note that the possibility of constructing a counterexample to Borsuk’s
conjecture was suggested even before 1993: see [57, 14, 35].

Now we have several possible directions for investigation and conse-
quently for discussion. The first concerns different counterexamples to
Borsuk’s conjecture and lower bounds for the value f(d). We discuss
this in the rest of this lecture; a more detailed history of the correspond-
ing results concerning Borsuk’s problem will be also given. The second
possible direction is to look for solutions for special cases of Borsuk’s
problem. We return to this subject in the second lecture, where we dis-
cuss the approaches of Hadwiger and Rogers and also some results of
the author on (0, 1)-polytopes and cross-polytopes. The third lecture is
devoted to the ‘low-dimensional’ case, i.e. dimensions 2, 3 and 4. We
present new approaches to bridging the gap between the dimension 3
and dimension 323, where nothing is known for sure.

Further details concerning the history of the Borsuk partition problem
can be found in [5, 53, 6, 23, 25, 11, 1].

1.2 Counterexamples to Borsuk’s conjecture, and lower
bounds for f(d)

Kahn and Kalai’s approach

As we mentioned above, the first counterexample to Borsuk’s conjecture
was proposed in [31] by J. Kahn and G. Kalai. The original construction
was based on a famous result by P. Frankl and R. Wilson [18] concerning
some extremal properties of hypergraphs (families of finite sets) whose
edges (finite sets) satisfy special intersection conditions. We start by
formulating Frankl and Wilson’s results.

Theorem 1.1 (P. Frankl, R. Wilson). Put ¢ = p®, where p is a prime
number and o > 1. Consider an n-element set ®,, and a family of its
k-element subsets M = {Mjy,...,Ms} C 2%, Assume that for every
two different i and j the cardinality of the intersection of the sets M;
and M; is not congruent to k modulo q:

card(M; N M;) #k (modgq) foralli#j,i,j=1,...,s.
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Then the cardinality of the whole family of sets M is bounded from above
by the value (qﬁl), e s < (qfl).

For our purposes we need only a special case of this result, formulated
in the following immediate corollary.

Corollary 1.2. Let ¢ = p®, where p and o are as in Theorem 1.1. Let
n = 4q. Consider an n-element set R, and a family of its 5§ = 2q-
element subsets M = {M,,..., M} C 2%, Assume that for every two
different © and j the cardinality of the intersection of the sets M; and

Mj is not equal to 3 = q:
card (M; N M;) # % foralli#ji,j=1,...,s.

Then the cardinality of the whole family of sets M does not exceed

2(,"), de s <2(,")).

To deduce this corollary from Frankl and Wilson’s theorem, it suffices
to divide an arbitrary family of sets M C 2% into two disjoint parts

M= MNKE)UuMNK,),

where KC; consists of all possible F-element subsets of ®,, = {1,...,n}
containing 1 and /C; consists of all §-element subsets of the set {2,...,n}.
Theorem 1.1 is obviously applicable to each of the two parts, and this
proves the corollary.

As for the theorem itself, we shall prove it even in a more general
form while presenting Nilli’s method (see the next part of the lecture
and specifically Remark 1.6).

Now we proceed to the construction of Kahn and Kalai’s counterex-
ample. First of all, we show how to disprove Borsuk’s conjecture in
dimension d = 2015 by using Kahn and Kalai’s approach. To this end,
we fix n = 64 = 4 x 2%, so that in the notation of Frankl and Wilson’s
theorem we have ¢ = 16, p = 2 and @ = 4. Then we consider the set
R, ={1,...,n} and take W to be the collection of all possible pairs of
different elements in R, i.e.

w={(1,2),(1,3),...,(1,n),(2,3),(2,4),...,(2,n),...,(n —1,n)},

n n(n —1)
dW = = ——= = 2016.
= (1) - 0

For each disjoint union ®,, = AL B let
S(A,B) ={w e W :card (wN A) = 1;card (wN B) = 1};
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the cardinality of S(A, B) is obviously equal to (card A) x (card B).
Finally, let M = {S(A, B) : card A = 32 = 2¢}. In this case

) 1/ n 1/64
card S(A,B) =32°=1024 , cardM = 5(71/2) = 5(32>
and M may be naturally interpreted as a family of some 1024-element
subsets of the set Rap16 = {1,...,2016}.

Note that the cardinality of the intersection of the sets S(A, B) € M
and S(C,D) € M is minimal if and only if card(AN C) = ¢ = 16 or,
equivalently, card(B N D) = ¢ = 16. Thus by Corollary 1.2, in any sub-
family of sets £ C M satisfying the condition card £ > 2(;1), one can
find a pair of sets realizing the minimal cardinality of the intersection.

To every S(A4, B) € M assign the (0, 1)-vector

X(A,B) = (1‘1, e 7'1‘2016),

where z; = 1if i € S(A, B) and x; = 0 otherwise. Clearly, for every such
vector the linear relation z1 + - - - 4+ 22016 = card S(A, B) = 1024 holds
and therefore the set X of all vectors x(A, B) lies in an affine subspace
of R?%16 whose dimension is equal to 2015. On the other hand, it is
easy to see that the diameter of X is attained exactly on those pairs
of vectors x(A, B) and x(C, D) whose preimages S(A, B) and S(C, D)
have intersection of minimal cardinality.

Suppose that X can be partitioned into f parts of smaller diameter,
say X = X; U---UXy, where

% (n72)
2(,%)

Then by the pigeonhole principle there is a part X; with cardinality

exceeding 2(,",). Consequently the corresponding family of preimages

f<

L also has cardinality exceeding Z(qfl), which immediately leads to a
contradiction. Thus we have found a set X C R2?%!® that cannot be

partitioned into f parts of smaller diameter, so that

3(u2) _ 3(5)
f(2015) > ——= = =22
2(,")  2(35)
and the construction of Kahn and Kalai’s counterexample in dimension
d = 2015 is complete.
To obtain the general result, one should repeat the above construction
step-by-step for every n = 4q = 4p®, so that the corresponding dimen-
sion of the counterexample will be equal to d = (g) —1 and f(d) will be

= 2872.109... > 2016
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bounded from below by
% (n??)
2(qf1)

Finally, one should apply the Prime Number Theorem (see, for exam-

= (1.203... + o(1))V<.

ple, [47]) and approximate an arbitrary d by some d’ = (g) — 1 with
n = 4p®: one can see that the form of the estimate will not change and
f(d) will remain greater than (1.203...+ 0(1))‘/d.

Remark 1.3. The best dimension that can be achieved within the
framework of Kahn and Kalai’s approach is d = 2015. Indeed, in this
approach we take an arbitrary n of the form n = 4p® and then ap-
ply Frankl and Wilson’s theorem. In principle, we could consider, say,
n = 52 = 4 x 13, which is the nearest to 64 of all the numbers of the
appropriate form. However already in this case d = 1325 whereas f(d)
can be bounded from below only by 601.

Nilli’s method

The main idea of the method that we present in this part of our lecture
goes back to a paper by N. Alon, L. Babai and H. Suzuki (see [2] and
also [4]). The method consists of a straightforward generalization of
Kahn and Kalai’s approach, obtained by slightly extending the Frankl
and Wilson theorem. A. Nilli was the first who applied this method to
disproving Borsuk’s conjecture [42].

Fix n =44 = 4 x 11 and consider the following family of vectors:
Y={x=(r1,...,an) €{-1,1}" 21 =1, 21...2, =1},

i.e. 3 consists of all possible vertices of the cube [—1,1]™ with an even
number of negative coordinates and the first coordinate equal to one.
Clearly card ¥ = 2772 = 242 At the same time, it is easy to see that for
every two vectors a,b € X the scalar product (a,b) is congruent to 0
modulo 4. Moreover, (a,b) =0 (mod 11) if and only if either (a,b) =0
or (a,b) =n, i.e. a=b. Now the following lemma can be formulated.

Lemma 1.4. Let Q = {ay,...,as} C X be any subfamily of vectors with
the property that

(aj,a;) #0 (mod 11) foralli#j,4,57=1,...,s. (1.1)
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Then the cardinality of QQ does not exceed

é(n; 1). (1.2)

Proof. To each a € ¥ assign a polynomial P, € (Z/11Z)[xy,. .., z,]
defined as follows. First take the polynomial

Pa(x) = [[(k = (a,x)) € (Z/11Z)[xs, ..., 2]
k=1

(we suppose that P, exists only for vectors x = (z1,...,2,) € R" with
the first coordinate z1 equal to one; in particular, P, is defined on X).
Then we represent this polynomial as a linear combination of monomials
x?lil xfkk Finally, we substitute 1 for each §;, = 2m + 1 and 0 for
each 0;, = 2m. We denote the resulting linear combination by Pa. Note

that for every a, b € ¥, the equality P,(b) = Pa(b) holds (since z; = +1
and consequently 22 = 1). Moreover, it is easy to see that for a,b € 3,

Pa(b)=0 (mod 11) ifand onlyif (a,b)#0 (mod 11). (1.3)

Now we use (1.3) to show that the polynomials Py, ..., Pa, corre-
sponding to the vectors a; € @ are linearly independent over the field
Z/11Z. Assume the contrary. Let ¢, ...,cs € Z/117Z be constants such
that

(c1y...,¢5) Z(0,...,0) (mod 11) (1.4)

and

1P, (X) + -+ ¢sPa,(x) =0 (mod 11)for all x. (1.5)

We can substitute an arbitrary a;, € @ for x in (1.5). Then (1.3) and
property (1.1) imply that P,,(a;) # 0 (mod 11). Hence for every i
the constant ¢; must be congruent to zero modulo 11, which contra-
dicts (1.4).

It suffices to notice that the estimate

10

cardQ = s < dim{P,} = Z (nk 1)

k=0

follows immediately from the above argument concerning linear inde-
pendence and from the definition of the polynomials P,. This completes
the proof of the lemma. O
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To each x = (z1,...,2,) € X assign the vector x *xx = (y;;) = (x;x;),
i,j=1,...,n, ie.
_ (2 2
X*X = (7,102, ..., X1 Tny -+ -, Tn—1Tn, T)y)-

This correspondence is obviously a bijection and it provides us with the
family of vectors * = {x * x} C R", where card T* = card ¥ = 242,
Furthermore, ¥* lies in an affine subspace of R"™ with dimension d =
(g) = 946. Indeed, the linear relations y;; = y;; and y;; = xf =1 hold.

It is easy to check that the scalar product of any two vectors x * x,
z *z in X* is equal to the square of the scalar product of the preimages
X,z € X. Therefore the diameter of the family of vectors ¥* is attained
exactly on those pairs of vectors X * X,z * z whose preimages have zero
scalar product.

Suppose that >* can be partitioned into f parts of smaller diameter,
Yr=07U---UQ} say, where

242
<= 1
k=0 (nk )
Then by the pigeonhole principle there is a part f with cardQ} >
,16020 (”;1) Thus the corresponding family of preimages €2; C X also

has cardinality greater than 37,°  (".'). Lemma 1.4 and the simple
remarks made before it imply that 2; contains two vectors with zero
scalar product and consequently the diameter of 2} equals the diameter
of the whole family ¥*. This contradicts our supposition and thus

42

F(d) = f(946) > —15 = 1649.87... > 947.

i ("5 )

This completes Nilli’s construction in dimension 946.

Remark 1.5. The above construction can be performed for any di-
mension d = (g) with n = 4p. One can easily check that this dis-
proves Borsuk’s conjecture in all dimensions d > 946. However this
construction does not lead to any substantial improvement of the bound
f(d) > (1.203...+ 0(1))\/31 one can only refine the explicit expression
for o(1). Later we shall discuss various modifications and extensions of
Nilli’s method that lead to improvements of the constant 1.203... and

allow us to deal with the dimensions d = (g), where n = 4p®.

Remark 1.6. Note that the above construction is actually a very straight-
forward and natural generalization of that by Kahn and Kalai. Indeed,
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Lemma 1.4 (more precisely, its extensions; see the previous remark) cor-
responds to Frankl and Wilson’s theorem, and if for a moment we fix
the number of ones in every x € ¥, then we obtain exactly the assertion
of Frankl and Wilson: (1.1) is just a restriction on the cardinalities of
intersections and the sum in (1.2) can be replaced by the maximal bi-
nomial coefficient, since the number of ones is fixed and therefore in the
polynomials Py monomials of lower degree can be represented as linear
combinations of monomials of maximal degree. Moreover, the construc-
tion of X* is completely parallel to that of M in Kahn and Kalai’s
approach, e.g. pairs (x;,z;) correspond to pairs in W, and so on.

At the same time, the bounds in Lemma 1.4 and in its direct extensions
are tight. Indeed, let us consider the family of vectors @, consisting of
all (=1, 1)-vectors whose first coordinate is positive and such that the
number of —1s among the last n — 1 coordinates equals successively

0,(n—-1)-1,2,(n—-1)-3,....p—-3,(n—-1)—(p—2),p— 1,

where as before n = 4p. Then card Q) = ZZ;(I) (";1) and the vectors
from @ are pairwise non-orthogonal modulo p.

Remark 1.7. The value n = 44 in Nilli’s construction is almost the
best possible (cf. Remark 1.3). One can also easily construct a perfectly
analogous counterexample with n = 43, d = 903 (in fact this was done
by J. Grey and B. Weissbach in [21]) and even with n = 42, d = 861.
However, further improvements need the introduction of new ideas; we
shall speak about them below.

A modification of Nilli’s method

In this part of our lecture we present an important modification of Nilli’s
method, proposed by this author in 1997 (see [48]). This modification
allows us to disprove Borsuk’s conjecture in dimension d = 561(= (324))
and even in all dimensions d > 561.

As in the previous part of the lecture, we begin with constructing a
family of vectors 3. However in this case the construction will be slightly

different. For n = 36 = 4 x 9 = 4 x 32, consider
S={x=(x1,...,7,) e{-L1}":my =mp =3 =1,2y...3, = 1}.

Thus X is still a family of vertices of the cube [—1, 1], but in this case the
first three coordinates are fixed and, more importantly, the dimension n
does not have the form n = 4p, where p is a primet. We shall show that

t Of course, in Frankl and Wilson’s theorem the corresponding n could be equal to
4p®; nevertheless, the theorem is not applicable in this case.
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it is in fact still possible to work with such a family (cf. Remarks 1.5
and 1.7 above).

First of all, we note that as before the cardinality of ¥ can be easily
computed and it is equal to 2"~* = 232, Moreover, the scalar product
of any two vectors a,b € X is still congruent to zero modulo four. Con-
sequently we have the following arithmetic property, similar to (but not
coinciding with) the analogous property mentioned before Lemma 1.4.

(a,b)=0 (mod9) ifandonlyif (a,b)=0 forala#be3;
(1.6)

(a,b)=4 (mod9) ifandonlyif (a,b)=4 foralla,beX.
(1.7)

(Here the equalities z1 = xo = x3 = 1 are essential.)

Lemma 1.8. The cardinality of Let Q = {ay,...,as} C X be any sub-
family of vectors with the property that

(a;,a;) #0 (mod 9) and (a;,a;) #4 (mod 9) (1.8)
foralli#3j,i,5=1,...,s. Then the cardinality of Q does not exceed

7

> (") 1.9)
k=0

Note that Property (1.8) is completely parallel to Property (1.1) from
the previous part of the lecture and the difference between them is caused
by the form of the corresponding arithmetic properties. Moreover, the
bound in Lemma 1.8 is still tight.

The proof of this lemma is very close to that of Lemma 1.4. It suffices
to outline the modifications. The polynomials P, now have the form

3

8
Pa(x) = 5 H(k_ (a,x)) X H(k - (a,x))
k=5

k=1

—_

and we suppose that they are defined only for x = (1,1,1,24,...,2,).
We can consider them as elements of Q[zy, ..., x,]. The polynomials Py
are obtained from the polynomials P, just as before.

We consider linear independence over the field of rational numbers Q
rather than over a finite field. We can do this because the polynomials
P, can be interpreted as integer functions on ) whose values, due to
property (1.8), are congruent to zero modulo three except in the case of
Pai (ai).
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The inequality

completes the proof of the lemma. o

Now we proceed to find the family ¥*. The previous approach also
needs some essential refinements. To each x = (z1,...,z,) € ¥ assign
the vector x * x = (y;5) = (ziz;), ¢ = 2,...,n, j = 4,...,n. This
correspondence is obviously a bijection and its form implies the equality
(x*x,z2*2) = ((x,2) — 1)((x,2) — 3). Hence the diameter of ¥* is
attained on those and only those pairs of vectors whose preimages have
scalar product equal to 0 or 4. The actual dimension of ¥* is equal to
d= (";3) +n — 3 = 561. Further steps — namely, applying the pigeon-
hole principle, Lemma 1.8 and the arithmetic properties (1.6)—(1.7) —
coincide precisely with Nilli’s and we do not repeat them. Finally, we
get

32

£(561) > — > 758.

ko ("%7)

This completes the construction of a counterexample in dimension 561.

Remark 1.9. The above argument needs only a slight modification
in order to obtain a counterexample even for d = 560 (see the paper
[62] by B. Weissbach). One should introduce slight changes into the
construction of an initial family of vectors; in place of ¥, one should
consider

X = (Il,...,$n) S {71,1}”2%1 =x9 =1x3 =1,
Y1 = Taxs + TaTe + T5T6 = —1,

ml...g:":l

Then card ¥; = 6 x 229, and the dimension of the corresponding family
37 equals 560 since there is an additional linear relation between the
coordinates y;;. All the other steps of the construction are precisely as
before. Thus

6 29
F(560) > ——= > 0.75 x 758 = 568.5 > 561
k

ko (%)

as required.
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In order to complete this part of the lecture it remains to show how
Borsuk’s conjecture can be disproved for all d > 561. We present the
argument proposed by this author in [49].

Put n = 36 and dyp = 561. Let ¥* be the family of vectors described
while discussing a counterexample in dimension dy. Clearly, the elements
of ¥* can be rewritten as vectors of the form x = (z1,...,2(—1)(n—3))-
It follows from the construction of 3* that there are indices iq,...,%,_3
such that z;; =1 forall j =1,...,n — 3 and all x € ¥*.

Fix an arbitrary dimension d > 564 and put

t=d—do,m=+/(n—1)(n—3)—3+1.

Consider the family of vectors ¥4 = {(21, ..., %(n—1)(n-3)+¢)} such that
Tiy = Ty, = Ty, = 1; thereis i such that 2 <4 <t -1, T(_1)(n-3)45s = M
and

T(n—1)(n=3)+1 = """ = T(n—1)(n—3)+i-1 = 1,
T(n—1)(n—3)+itl = """ = T(n-1)(n—3)+¢ = 1 ;
and all other components are equal to zero. We have card¥y; = ¢t — 2.
Let
id = {(331, <oy Tln—1)(n—3)s 1,..., 1)} c R(=D(n=3)+t
be the family of vectors obtained from those belonging to ¥* by adding
t components equal to 1. Finally, let X7 = g L Xg.

One can easily see that the dimension of an affine subspace containing
¥} equals do + (t — 2) = d — 2. Moreover,

diam ¥y = diam ¥* = \/2(n — 1)(n — 3) — 6 .

At the same time, the distance between any two vectors from ¥4 equals
V2(n —1)(n — 3) — 6, as does the distance between any x € Yy and
y € Bq. Thus f(d—2) > f(do) +t—2> 756+t > d. This completes
the proof. a

Remark 1.10. The above method of ‘lifting’ the dimension of a coun-
terexample can be easily applied in a more general context. The follow-
ing assertion was proved by Gayfullin and Gurevich in [20].

Let M be a subset of R* of diameter D which lies on a (k — 1)-dimensional
sphere of radius r such that r? < 3D2/4. If M is a counterexample to Borsuk’s
conjecture, then there is a counterexample to the conjecture for any d > k.

It is clear that in our case M = X* satisfies the condition of this
assertion: here D = /2(n —1)(n —3) —6 and r = \/(n — 1)(n — 3).
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Remark 1.11. Finally, note that we essentially worked with n = 4 x 32.
As we have already mentioned, it is possible to repeat all the arguments
for the case of an arbitrary n = 4p®. This is described in detail in [62]
(see also [53]) and will not be discussed further.

At the same time, even by applying the general construction to ob-
taining a lower bound for f(d), we get almost the same result as before:
fld) > (1.203...+ 0(1))\/3. All the new refinements are hidden in the
function o(1) and they do not provide us with any improvement of the
main exponent. The goal of the rest of this lecture is to improve the
constant 1.203. ..

Another modification of Nilli’s method

We complete this lecture by presenting another important extension of
Nilli’s method, which leads to an improvement of the lower bound f(d) >
(1.203...+ 0(1))\/3 and to some far-reaching conjectures. First of all,
we prove the author’s result

F(d) > (2/V3+0(1))V2V4 = (1.2255 ... + o(1))V?

(see also [53] and [49]).

Let n € N be sufficiently large. Fix 6 = 1 —1/4/3 and let p be the
odd prime number nearest to the value én. Note that for any sufficiently
large real 2 and for a < 1 (e.g. for & = 38/61), there is a prime number
between x and 2+ 2 (see [47] for example). Hence we may assume that
dn — (0n)* < p < dn + (0n)®. Note that the choice of o will influence
only the form of the function o(1) from our bound.

We continue the proof in the usual way by considering the family of
vectors

S x=(21,...,2n) € {0,1,=1}" :card{i : x; = £1} = p;
N card{i :z; =0} =n—p

In addition, we suppose that the first nonzero coordinate of any x € ¥ is
always positive. Thus we generalize Nilli’s method, considering not only
the vertices of the unit cube in R™ but also the centres of some faces of
the cube. Let us show that ¥ provides us with the desired construction.

Indeed, it is clear that card ¥ = 2p71(2). Moreover, the usual arith-

metic property holds for every two different vectors a, b € X:
(a,b)=0 (mod p) ifandonlyif (a,b)=0. (1.10)

We have the following lemma.
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Lemma 1.12. The cardinality of any subfamily Q = {a1,...,a,} C X
with the property

(aj,a;) #0 (modp) foralli#j,i,7=1,...,s, (1.11)

does not exceed

o1l n n—k
. 1.12
> 2 (W61 e

1=0 k=0

Once again, the main idea of the proof of Lemma 1.12 consists of using
linear independence of some polynomials; these polynomials are defined
over the finite field Z/pZ as in Nilli’s original approach. The trans-
ition from a polynomial P,(x) = Hi;} (k — (a,x)) to the corresponding

polynomial P, is by applying successively the equalities x?

5 = x; to
the standard representation of P,. These equalities have been chosen
because they hold for 0, 1 and —1. Tt is easy to check that (1.11) implies
the linear independence, and to see that the dimension of the space of

the polynomials Py is equal to (1.12).

The final part of the construction is just as in Nilli’s method: take

Yr={xsx=(z2j) : x=(x1,...,25) €X,0,j=1,...,n}

and d = @ — 1. The pigeonhole principle, Lemma 1.12 and (1.10)

imply, after a detailed calculation, that

p—1—1 -1

p—1 (=]
sz (N S ()1 )

= (1.2255 + o(1))V .

This completes the proof of the bound. a

Remark 1.13. The above considerations naturally imply the follow-
ing conclusion. The Frankl and Wilson type or, say, the Alon, Babai
and Suzuki (Nilli) type theorems allow us to deal with some finite d-
dimensional sets of points and to obtain good counterexamples to Bor-
suk’s conjecture as well as nontrivial lower bounds for the value f(d). To
be more precise, all the results from this lecture involve constructing a set
of vertices of the unit cube in R, or a set of vertices and centres of faces
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of this cube. In other words, we could consider the convex hulls of those
sets as well and work ultimately with either so-called (0, 1)-polytopes or
with so-called cross-polytopes (also called (0,1, —1)-polytopes).

One can ask whether it is possible to extend this approach further
by using general integer polytopes, i.e. convex hulls of arbitrary sets
of points in a lattice in R™ (say, in Z"). Unfortunately the author
does not know of any really useful extension of this type; however, the
corresponding approach is discussed in detail in the paper [53].

On the other hand, it is perfectly natural to ask how ‘strong’ the
counterexamples constructed using (0, 1)-and cross-polytopes could be.
In the next lecture we follow this line of investigation and prove some
partial results concerning upper bounds for the minimal number of parts
of smaller diameter necessary to partition a (0,1)-polytope or cross-
polytope from a sufficiently large class.

Let us discuss the bound (1.12) from the last lemma in more detail.
First of all, note that by varying the definition of the corresponding
polynomials one can work not only with prime moduli, but also with
moduli equal to some p® as well. On the other hand, as we mentioned
above, the bounds in Nilli’s method as well and in its first modification
by the author are obviously tight. Now it is easy to understand that the
bound (1.12) is definitely not the best possible. Indeed, consider n = 8
and the family of vectors

=(z1,..., €{0,1,—-1}":card{i: x; = £1} = 4;
s )X (21 xn) €{ }" i car {z x; } (1.13)
card{i:x; =0} =4

(Here, as above, the first nonzero coordinate is supposed to be positive.)
The standard linear algebra method of obtaining an upper bound for
the maximal cardinality of a family of pairwise non-orthogonal vectors
@ C X corresponds in fact to the use of the polynomials

Pa) = 5 [J(k — (a,x)

k=1

and the respective polynomials P, (see also [53, 62]). Therefore card Q
is bounded above by
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(the number of monomials of the form x;x;xy)
+(the number of monomials of the form z7x;)

+(the number of monomials of the form z?)

+(the number of monomials of the form ;) + 1
= 157.

However, it is easy to obtain the estimate card @ < 70 by splitting X
into 70 subfamilies consisting each of eight pairwise orthogonal vectors.
For instance, the first such subfamily can be chosen as follows:

(1,1,1,1,0,0,0,0), (1,1,-1,-1,0,0,0,0),
(1,-1,-1,1,0,0,0,0), (1,-1,1,-1,0,0,0,0),
(0,0,0,0,1,1,1,1), (0,0,0,0,1,1,—-1,-1),
(0,0,0,0,1,-1,-1,1), (0,0,0,0,1,-1,1,-1).

More careful analysis leads to the following far-reaching conjecture.

Conjecture. Ifin the above definition we replace the number 8 by an ar-
bitrary n = 2% and the number 4 (i.e. the number of nonzero coordinates)
by 281 then we obtain the bound card Q < R(n), where R(n) < 2" .

If this conjecture (in a slightly stronger form) is true, then it is possible
to disprove the Borsuk conjecture for all d > 135 and to show that
F(d) > (V2 + 0(1))V2Vd = (1.6325... + 0(1))V? (see also [53, 50] for
some details).

Let us look once again at the case n = 8. As noted above, in this case
the standard (and usually powerful!) linear algebra method is substan-
tially worse than a simple ‘subdivision’ argument. It is still possible to
make the following modification, which is probably far-reaching too, of
the basic polynomial approach. Consider (1.13): instead of polynomials,
to each vector a = (ay,...,a,) € ¥ assign the function

Fa(x) = i((a,x) —2)* - % {% Za;%x?}.

Here the curly brackets {y} denote the fractional part of a real number
y. The last term differs from zero (and is equal to i) if and only if
the nonzero parts of vectors a and x, when interpreted as four-subsets
of ®, = {1,...,n}, have intersection consisting of an odd number of
elements (1 or 3).
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Now we can translate the standard method of finding a linearly in-
dependent system from the language of polynomials into that of our
functions, by proving that for any fixed subfamily @Q = {a;,...,a;} C 2
satisfying the ordinary condition of non-orthogonality, the correspond-
ing functions Fja,,..., Fa, are linearly independent over the field of ra-
tionals. Indeed, F,(x) is integer over @) and is congruent to 1 modulo 2
only when a = x; independence follows. (Here we use the following fact:
the scalar product of any two vectors from @ is even if and only if the
cardinality of the intersection of the nonzero parts of these vectors is
even.)

It remains to compute the dimension of the space of our functions.
This dimension is equal to the following sum:

(number of monomials of the form z?)
+(number of monomials of the form z;z;)

+(number of monomials of the form ;) + 1
number of independent functions of the form
(a22? + -+ a222)/2 with a;,z; € {0,-1,1} )

In our case, the last term in this sum equals %(i) = 35 and therefore
the whole sum equals 80. This gives the boundt s = card@ < 80.
Unfortunately, this bound is also worse than the trivial one, but it has
important advantages: on the one hand, it is substantially better than
the bound s < 157 obtained with the help of the standard linear algebra
method; and on the other hand, the trivial approach does not lead to
any good results in the dimensions n = 2¥, whereas we believe strongly
that one can ‘lift’ the new argument so that it will still work at least for
n = 2%

This suggestion completes the first lecture. We would like to account
for not discussing the result of [29]: of course, it does better in dimension
d = 323, and it even works with an appropriate integer polytope (cf. Re-
mark 1.13); but it cannot be generalized, since it is based exclusively
on the properties of the Leech lattices (see [10]) and those properties
cannot be ‘lifted’ to higher dimensions.

+ Moreover, s < 79, since we have, in addition, the linear relation 2 + - - - + x% =4.
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2 Borsuk’s conjecture: partial solutions and other partial
results

In this lecture we discuss some special cases where one can find a solution
to Borsuk’s problem. Furthermore, we present various new asymptotic
upper bounds (discovered by the author) for the value p(d), where p(d)
is the minimal number such that every d-dimensional (0, 1)-polytope or
cross-polytope from a sufficiently large class can be partitioned into p(d)
parts of smaller diameter.

2.1 Hadwiger’s solution in the ‘smooth’ case

As we mentioned in the first lecture while presenting the history of
Borsuk’s problem, there are some special cases where the corresponding
conjecture can be proved in any dimension d, i.e. there are particular
classes of sets such that every bounded point set Q C R¢ from such a
class can actually be partitioned into d 4+ 1 subsets of smaller diameter.
Of course, in a single lecture it is impossible to give a detailed survey
of all such classes that have ever been discovered. We shall only discuss
those which we regard as the most important in two respects: on the one
hand they illustrate some essential ideas and methods; and on the other
hand they provide us with additional motivation for working at partial
results in Borsuk’s problem, e.g. those concerning (0, 1)-polytopes and
cross-polytopes (cf. Lecture 1 and see §2.3 below; see also [52]). More
detailed surveys (though emphasizing some other aspects of the problem)
can be found in [53] and [6].

In this section we restrict attention to the class of convex bodies §2 C
R? with a smooth boundary 99, so that there exists a unique support
(tangent) plane at every point P € 9. (Here we take the word ‘body’
to mean a compact set with nonempty interior.) Note that convexity
is not a necessary condition, since a set can be partitioned into some
number of parts of smaller diameter whenever its convex hull can (see
[13]). However we assume this condition for convenience.

Now we are ready to formulate the following result due to H. Hadwiger
(see also [24, 5, 6]).

Theorem 2.1. Every convez d-dimensional body Q with a smooth bound-
ary can be partitioned into d + 1 parts of smaller diameter.

We start the proof by considering a Fuclidean sphere; as far as the
Borsuk problem is concerned, it is not different from a Euclidean ball
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(cf. the first part of Lecture 1). A ball in R? is an example of a convex
body with a smooth boundary. It can be partitioned into the required
number of parts as follows.

We can without loss of generality restrict attention to the ball B
of diameter 1. Let R be a regular d-simplex inscribed into B and let
Ry, ..., Rg4+1 be its faces of maximal dimension d — 1. For a face R; let
e, ...,eq be the set of vertices corresponding to this face. Let O be the
centre of the ball. The face R; specifies the part B; = BN A;, where A;
is the angle generated by the vectors Oeq,...,Oey. Thus we partition
B into B = By U--- U Bg4+1. It remains to calculate the diameters of
the parts B; and to check that all these diameters are smaller than 1.
For instance, if d = 2, then each diam B; = ‘/T§ = 0.866... < 1, and if

d =3, then diam B; = /353 = 0.888... < 1.

This simple result is due to Borsuk (see [8]). We shall return to this
example in the next lecture, where we discuss the ‘small-dimensional’
case of Borsuk’s conjecture.

Now we proceed to the proof of Theorem 2.1. In fact, almost every-
thing has already been done. Indeed, the partition B = By U...U Bg41
can be reconstructed for an arbitrary convex body €2 of diameter 1 with
a smooth interior by using the well-known Gauss transformation. To
each point P € 0N assign the point g(P) € 0B such that the tan-
gent plane to B at g(P) is parallel to the tangent plane to Q at P and
the corresponding normal vectors have the same direction. To each set
Bl = B; N 9B assign, in turn, the set Q, = {P € 9Q : g(P) € Bi}.
Clearly diam {2, < 1, since diam B} < 1. Finally, we fix an arbitrary
point @ from the (nonempty) interior of the body 2 and let Q; be the
convex hull of ) and Q. It is clear that diam; < 1. The theorem
follows. ]

Theorem 2.1 was refined by Hadwiger himself (see [24]). The following
result holds:

Theorem 2.2. If a convex body Q C R? of diameter 1 is such that on
the interior side of its boundary a d-dimensional ball of radius r can ‘roll
over’ without obstacles, then

. 1
Q=0 U---UQg1 dlain<1—2r<1— 1_ﬁ>'

For instance, consider the unit ball B. Certainly, Theorem 2.2 is
applicable to 2 = B with r = % (in a way, B is a limiting case of the
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set  in the theorem). Hence by the theorem, B = By U --- U Bgq1
where diam B; < /1 —1/d?. Consequently, if d = 2 then diam B; <
\/3/_4. This bound coincides with the bound obtained in the beginning
of the proof of Theorem 2.1, especially for the ball. However for d = 3,
we only get diam B; < \/% = 0.9428... and this is already worse
than the corresponding estimate diam B; < 0.888... We do not prove
Theorem 2.2 here.

2.2 The ‘centrally symmetric’ case and C. A. Rogers’ partial
solution

In this part of the lecture, we would like to say a few words about the
cases when a body of diameter 1 is symmetric in some sense. First
of all, a simple result due to A. S. Riesling [56] should be mentioned:
every centrally symmetric compact convex d-dimensional body ) can be
partitioned into d + 1 parts of smaller diameter. The partition can be
constructed in the same manner as the one for the ball in the previous
part of the lecture: one should take a regular d-simplex whose centroid
coincides with the symmetry centre of €2, etc. Moreover, the number
d+ 1 of parts of smaller diameter is attained on a ball. In fact, the main
results of Riesling deal with Borsuk’s problem in some spaces of constant
curvature, but we do not dwell on this here (see e.g. [6] for details). We
only note that this result of Riesling is already very important. Since
it does not require any smoothness at all, it remains true for polytopes,
for example.

Now it is natural to proceed to another ‘symmetric’ partial solu-
tion of Borsuk’s problem due to C. A. Rogers. The following theorem
was discovered “in an unsuccessful attempt to disprove Borsuk’s comj-
ecture” [57].

Theorem 2.3. If a set Q of diameter 1 in R? is invariant under the
group of congruences that leave a regular d-simplex invariant, then )
can be covered by a system of d + 1 closed convex sets each of diameter

not exceeding
6 —4v/2
I
tt+1)d

where t = [(d+ 1)/2], provided d > 3.
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We do not give a complete proof of this theorem; however we present
a concise sketch of the proof.

Step 1. It is possible (see [57] and cf. [13]) to prove the following lemma.

Lemma 2.4. Let G be a group of congruences that leave the origin of
R? invariant, and let Q2 be a set of diameter 1 that is invariant under G.
Then there is a closed convex set K of constant width 1 that contains )
and s invariant under G.

Step 2. Suppose that € is a set of constant width 1 and thus of diam-
eter 1. We may assume that € lies in the d-dimensional plane

To+x1+ - -F+x9=0

and is invariant under the group of permutations of the d+1 coordinates
(it is more convenient to work in R4*1). Finally, note that € is contained

in a ball of radius
_d
2(d+1)

(see [30]) and contains the ball of points x = (zo, ..., zq) with
x| <1 N st taa=0
x _ e =
= 2d+1))" d
(see [13]).

Step 3. Let us describe a system of sets Fy, ..., Fg covering 2. Let F;
be the collection of all points x € €2 such that

Tifl — Ti 2> Titjr1l — Tipg,J = 1,...,n,
where the indices of the coordinates are reduced modulo d+1 if necessary.

Step 4. It remains to calculate the diameters of the parts Fy,..., Fy
and to check that the bound from the statement of Theorem holds for
each diam F;. The theorem follows. O

Remark. It is natural to ask whether the covering obtained in this theo-
rem is invariant under the group of congruences of the simplex. Rogers
has shown [57] that such coverings do not necessarily exist by construct-
ing a counterexample in R®.



Three lectures on the Borsuk partition problem 223

2.3 Results for (0,1)-polytopes and cross-polytopes

In this section we discuss in detail some results of the author, which
concern upper bounds for the minimal number of parts of smaller diam-
eter required to partition an arbitrary (0, 1)-polytope or a cross-polytope
from a sufficiently large class. The motivation for this was given in the
first lecture (see Remark 1.13 and also [53, 52]). In order to formulate
the corresponding theorems and to prove them we need some definitions
and notation.

Additional definitions and notation

Consider Euclidean space R?. Let Fj!; = {vi,...,v,} C R? be an
arbitrary family of (0, 1)-vectors such that

(diam}'fil)2 =kand v} +---+of =1foralli

(here v; = (v},...,v%)). In other words, F,‘ZJ is a subset of the set
of vertices of the cube [0,1]? such that the maximal distance between
its elements is equal to vk and the number of nonzero coordinates of
every vector v € .7-",?’1 is equal to I. Hence it is clear that the value k
is even, the inequalities 0 < k < d and 0 < [ < d hold. Moreover,
k < 2l provided 2] < d and k < 2d — 2l provided 2] > d. Note that the
Euclidean distance between vectors from such a family coincides with
the square root of the Hamming distance between them and therefore &k
is the Hamming diameter of this family.

Now let F, ;= {wi,...,w;} C R? be an arbitrary family of
(0,1, —1)-vectors such that

(diamfg’ll,l2)2 = k

(W ++ W =l+l , w+-+wl=1 —1ly foralli

b, ... wd) as before). In other words, f,‘jl 1, is a subset of
301,502

the set of vertices and centres of faces of all the intermediate dimensions
of the cube [—1,1]% such that the maximal distance between its elements
is equal to v/k, the number of unit coordinates in each vector w € F ,i A
is {1, and, moreover, the number of negative components of any vector
is l5. Certainly, this definition also imposes some natural restrictions on
the parameters k, [1, and [s.

Finally, to each family of vectors f,‘jJ = {v1,...,Vs} assign the (0,1)-
polytope Q%l = conv{vy,...,vs}, and to each family of vectors ‘7:;3711,52 =
{w1,...,w;} assign the cross-polytope Qg)ll)lz = conv{wy,..., W¢}.

(here w; = (w



224 A. M. Raigorodskii

Let fr,(d) be the minimal number such that every family of vectors
Fit, (every (0,1)-polytope Qf ;) can be partitioned into fx(d) parts of
smaller diameter (i.e. of diameter less than v/k). Similarly, let fy., 1,(d)
be the minimal number such that every family of vectors F; ,i 1,1, (every
cross-polytope Qz7l17l2) can be partitioned into fx i, 1,(d) parts of smaller
diameter.

Let M., be the graph Hy, = (V{,, &) whose vertex set

V,il = {Vl,...,v((lz)}

consists of all possible d-dimensional (0, 1)-vectors with exactly I nonzero
coordinates, and whose edge set 5,?7 ; consists of all possible pairs (v;, v;) €
Vit x Vi1, satisfying the condition |vq — va|? = k, where the parameters
k and [ are, as above, subject to natural restrictions.

Similarly, let Hg,ll,lz = (V;ill;l2’ E,f)ll’lz) be the graph whose vertex set

Vlg,h,lz = {Wl’ e ’W(zll,ilz)}

consists of all possible d-dimensional (0,1, —1)-vectors with exactly [
positive and Iy negative coordinates, and whose edge set 5,‘3’[“2 is con-
structed like the edge set of 'ngl.

Finally, let x(H{ ;) and x(H{,, ;,) be the chromatic numbers of the
graphs HﬁJ and szllvb (see, e.g. [1, 17, 3, 26] for a detailed discussion
of related matters; see also [38] for some results concerning the value of
X(Hz,z))

In this part of the lecture, we use the combinatorial methods elabo-
rated for the set covering problem to obtain upper bounds for fy ;(d)
and fr1, 1,(d). These bounds are substantially better for a sufficiently
large class of cases than the general estimates of f(d) given in [59] (or,
which is almost the same, in [9]). We also find upper bounds for the
chromatic numbers X(Hg,l) and X(Hg,ll,lz)~

Note that in small dimensions the same problems have been thor-
oughly investigated by several authors, including F. Schiller [58], A. Schr-
ijver and C. Payan [44], J. Petersen [46] and G. M. Ziegler [63, 64]. They
have succeeded in proving that fi;(d) < d+ 1 for all d <9 and all ad-
missible values of k and [. Moreover, they proved Borsuk’s conjecture
for (0, 1)-polytopes in all dimensions d < 9. However the case of cross-
polytopes in small dimensions has never been investigated and it would
be very interesting to discuss it somewhere as well (see also [53]).

Now we can proceed to formulating the results.
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Statements of results

In this lecture we prove the following four theorems, formulated in terms
of the notation introduced above.
It is convenient to introduce the function

F(s,z) = max (x, log E) +x+1 (0<s,1<x) (%)
T
to simplify notation in the following estimates.
Theorem 2.5.
: l d d 1yt
fri(d) < dmln{(k/Q) , B ((z) ) (lfk/Z) (k/Q) )} (2.1)
Theorem 2.6.
d d d l -1
X(Hiy) < F ((l)’ (l+17k/2) (l+17k/2) ) (2.2)
Theorem 2.7.
Fr o (d) < X(Hi g, 0,)

< min F (%) G ) (2) 7 (2) 7).

mi1,ma

(2.3)

Here the minimum is taken over all natural numbers m1 <ly and mq <
ly such that |vi — va|? < k, where vi, vy € RI"™ =2 qre two arbitrary
(0,1, —1)-vectors satisfying the conditions

(,Uil)2 S (v;l—7rzl—m2)2 — ll + lg —m1 —mo,

1 d—my—
vy Feee g T =1 =l —my +me

forvi = (v},... 0d7mTm2) =12

Theorem 2.8. Let X = {(x1,z2)} be the set of all pairs of natural

numbers (z1,z2) (r1 <l1, x2 <lz) such that a pair of (0,1, —1)-vectors
vi,ve € RITT1=%2 satisfying the following restrictions can be found:

o ifvi=(v},... 0T T2 =12, then

Y

(vil)2 4+ (vf_“_“f =l +1ly— 21 — 29 and

d—xz1—2:
O b UfTTTT =~y — @y + 2o

o {v:vy=1}n{v:v5 =1} =0;
o {v:vt=—-1}n{v:vf=-1}=10;
o |vi—vo|? <k.
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Put m; = ming,, ,)ex Ti, i = 1,2. Then fy 1, 1,(d) is bounded above by

: d—m1— d—m1— li—m1\ "L la—may 1
min F (e ) () () T ) @)
Here the minimum is taken over all natural numbers h1 <1y — my and
ha < la — mg such that |wi — wal? < k, where the (0,1, —1)-vectors
W1, Wy € RéTmi—hi—ma—ha pyyst satisfy

(W) 4o (w2 1y 4 1) — g — by — g — ha,

wll + “on + wgl_ml_hl_m2_h2 = ll — l2 — ml - hl + m2 + h2.

1 wd*mI*hI*mZ*hZ)’ i=1,2.

PRI i

with w; = (w

Remark. Clearly, the estimates (2.1), (2.3) and (2.4) are most interesting
when k < d, | < d and [; 4+ I3 < d. Indeed, if we do not assume any of
these conditions, then the cardinality of an arbitrary family of vectors
fg)l or -7:1?,11,12 is bounded from above as follows: s = card ]-"g’l < e“ and
t = card fg’llﬁb < e for all ¢ > 0; and therefore it suffices to consider
the trivial bounds fi;(d) < s and fi,1,(d) <t in order to obtain an
estimate better than that from [59].

Before we proceed to the proof of Theorems 2.5-2.8, we present some
examples illustrating the relation between the bounds (2.1)-(2.4) and
the estimates from [59].

Examples.

1) Let d = 4d’ and k = | = 4. Then the bound (2.1) can be readily

transformed into the inequality
fra(d) < Pi(d)min{(1.414...)¢ (1.240...)%}

where P;(d) is a polynomial. In this case (2.1) is worse than the bound
fri(d) < P(d)(1.5)4% = P(d)(1.224...)¢ (again P(d) is a polynomial)
from the paper [59].

2) Let d=12d', k = % and | = %. Then (2.1) implies the inequality
fr(d) < Py(d) min{(1.206...)¢, (1.454...)%}.

Consequently in this case the estimate (2.1) already becomes better than
the upper bound discovered in [59]. The minimum in (2.1) is attained
on the first of the two arguments.

3) Let d =12d’, k = % and | = 4. Then the bound (2.1) has the form
fra(d) < P3(d) min{(1.206...)%,(1.104...)%}.
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which is also better than the corresponding bound from [59]. However
the minimum in (2.1) is now attained on the second of the two argu-
ments.

4) Let d = 32d', k = % andllilgi%. Put mq :m2:%+1. Then
the values m; and mg satisfy all the conditions of Theorem 2.7, which
yields

Frtn i (d) < Pa(d)(1.209...)%.

Thus the bound (2.3) leads to a better result than the inequality from
[59]. On the other hand, it is clear that the values m; and mg in Theorem
2.8 are equal to zero, and therefore in the case under consideration the
bound (2.4) coincides with that in (2.3).

5) Finally, let d = 24d’ and k = l; = lo = &. Then by applying

Theorem 2.8 we get
freanio(d) < Ps(d)(1.171...)%,

which again is better then the bound from [59]. At the same time,
Theorem 2.7 only allows us to show that f, 1,(d) < Pi(d)(1.277...)%,
which is already worse than the analogous inequality in [59].

The proofs of Theorems 2.5-2.8

In order to prove Theorems 2.5-2.8, we need some additional definitions
relating to the set covering problem.

Consider an arbitrary n-element set; for sake of definiteness, put R, =
{1,...,n}. Consider a collection M = { My, ..., M} C 2%~ of subsets of
R, such that card M; > m for all j. A set S C R, such that SNM; # 0
for all j is called a system of common representatives (s.c.r.) for the
collection M. (It is clear that in general such a set S = S(M) is not
unique for the collection M.) Put 7(M) = min card S(M), where the
minimum is taken over all s.c.r.’s S = S(M) for the collection of sets M.
The value 7(M) is uniquely defined. For every set of parameters n, m
and s, and for each collection M corresponding to this set, the following
upper bound is well known [17, 34, 51]:

sm n

T(M) < max{% log } + % + 1. (2.5)

nm
Thus in the notation defined above in (x), 7(M) < F (s,2). We are
going to use this bound very often in what follows. On the other hand,
various lower bounds for the quantity 7(M) have been established by
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different authors (see [34, 51], for instance). However we do not present
these lower bounds, since we shall not use them in the proofs that follow.

Now we proceed to the proof of Theorem 2.8. The proof is in four
steps.

Step 1. First of all, we fix some values of the parameters k, {1, and [y
and consider an arbitrary family of vectors F | | = {w1,...,w;} C R
To each w; = (w},...,w) € .7-',?711712 we assign the ordered pair of
sets (M}, M?), where M7 = {v € Rq : w¥ = (=1)7*'}. We have
card M/ = 1; and M} N M? = (). Further, let M, =AM M2
be the collection of all pairs (M}, M?). Let m; and mso be the values
defined in the statement of the theorem. In the rest of the proof we
assume that my; > 0 and my > 0; the cases when at least one of the

numbers my, mo is equal to zero can be considered similarly.

Step 2. Let K be the collection of all possible ordered pairs of subsets
(K}, K?) in 2% such that

card K} =m; , cardK? =my and card(K; NK?)=0.

There is a one-to-one correspondence between K and the set §R( @y

mqy,mog
At the same time, to each pair (M}, M?) € szll,lz assign (in one-to-one
fashion) the set

Li={veR  « yiKlcMLEZC ME.

my,m2

Hence card £; = (ll )(7:"2) Finally, let

my
i
L= {‘Cl}f:1 C 2 ("Lll,imz).

Note that the definition of the values m; and mgy implies £; N L; # ()
for all i, j. Indeed, if we fix any two pairs (M}, M?), (M}, M?) € M}, .
and put z; = card(M} N Mjl) and zo = card(M? N Mf), then we get
(x1,22) € X, where X is the set from the statement of the theorem. This
is equivalent to the existence of at least one pair of sets (K., K2) € K
such that K} C (M} N M}) and K} C (M7 N M?). It follows from the
definition of the collection of sets £ that £; N L; # 0 as claimed.

Therefore each set £; € £ is an s.c.r. for £ and consequentlyf

r—r() < (;;1) (TZ) .
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Let {o1,...,0,} be an arbitrary s.c.r. of the minimal cardinality for
£ and let {(K} ,KZ2),...,(K} K2 )} C K be the collection of pairs
corresponding to o1, ...,0,. Finally, let

M ={(M"M?) e M}, ,, K. c M K2 C M}

then Mz,ll,lz = My U--- UM, is a covering, since {o1,...,0,} is an
s.c.r. for £.

Step 3. Consider an arbitrary collection of pairs M; as defined in the
previous part of the proof. For each i let

MY =M'\K, , M**=M*\K. forevery (M' M?) € M,.
Put Ri—m,—m, = Ra \ (K3, UKZ) and let
M;k — {(Ml’*,M2’*) C 2§Rd,m1,m2 . (Ml,M2> c MZ} .

For each pair (M'*, M%*) € M}, the equalities card M7* = [; — m;,
and card(M* N M?*) = 0 hold. Fix two arbitrary quantities hy, ho
satisfying the restrictions from the statement of the theorem and assume
that hy > 0 and hy > 0 (the cases when hihy = 0 can be considered
analogously).

Let K be the collection of all ordered pairs of sets (K}, K2) in 2%d-mi—m»
such that

card K} =h, , cardK2=hy and card(K:NK?)=0.

Arguing as in the second part of the proof, we can find a one-to-one

correspondence between the collection of pairs K and the set §R(d—m1 -ma);
hy, hy
at the same time, each pair (M}*, M2*) € M} corresponds (in one-to-

one fashion) to the set

L, = {)\ € é}t(d_m,l_m,Q) ‘Kl c MM KEc Mf*} .

hi,hg

We get card £, = (h;:nl) (122;712). Finally, put

d77n177n2)

~ ~ * e
£= {Eu}cardMi co (i

v=1
and set

t Note that the bound for 7(£) was obtained with the help of a kind of Erdés-Ko-
Rado-type argument for systems of common representatives, rather than by the
use of the inequality (2.5). See [16].
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e n= (dihTf;;m)’
o m= (") (%)), and

o s =card M} = card M; < ( d—my—ms )

li—my,lz—m2

Then (2.5) implies the inequality 7 = 7(£) < F (s, 2), which does not
depend on 1.

Let {\1,..., Az} be an arbitrary s.c.r. of minimal cardinality for the
collection of sets £. Let {(Ki ,K3),...,(Ki K2 )} C K be the col-
lection of pairs corresponding to the elements A1,..., Az. Again, if we
let

M, = {(Ml’*,MQ’*) eEM; K}, c M"™ K} C M2v*} ,

then M} = M} U--- UM is a covering, since {\,..., Az} is an s.c.r.
for £. Finally, consider one more covering M; = M;; U---UM;z, where

My = {(M" UK} ,M>* UKZ) : (M"“*,M>*) e M}, }.

Step 4. Let us summarize the results of Steps 1-3 of the proof. We
have constructed the covering M%lm = Uj M;;. Fix an arbitrary
element M;; of this covering and an arbitrary pair of sets (M, M?) in
M;;. We can reconstruct the vector w € _7-',‘3711,12 corresponding to the
pair of sets (M1, M?); let F;; be the family of all vectors reconstructed
in this way from the pairs of sets (M, M?) € M;;. We get a covering
}',glylhlz = Uz Uj Fij. The restrictions on h; and ho from the statement
of the theorem imply that if wi,wy € F;;, then |wy — W2|2 < k, and
therefore diam F;; < diam F, ,i 11 1, In other words, we have constructed,
for every hy > 0 and hy > 0, a partitionf of the family of vectors Fjl, ;.
into parts of smaller diameter, such that the number of parts is bounded

from above by
ll ZQ n
(ml) <m2>F (87 E) '

Note that in the case when hihy = 0 a partition of the family fl?,ll,b
into parts of smaller diameter, with a similar bound on the number of
these parts, can also be proposed.

It remains to replace the values n and m in the inequality above
by their explicit expressions in terms of k,ly,lo,m1,mo, h1, and hg, to
bound the quantity s as in the third part of the proof and to take

t By having constructed a covering we have also obtained a partition.
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the minimum over all possible hy and hy. This implies (2.4) and thus
completes the proof. O

To prove Theorem 2.7, it suffices to repeat all the arguments from
parts 1, 2 and 4 of the proof of Theorem 2.8. The difference is that the
values m; and mo must be interpreted as in the statement of Theorem
2.7 and the bound on 7(£) is obtained by means of the estimate (2.5).

It remains to prove Theorems 2.5 and 2.6. The methods we have just
developed can be used to do this. The necessary arguments are closely
connected with Turdn’s problem concerning set covering (see [17, 32,
34, 60]). Nevertheless we present these arguments in detail, at least for
Theorem 2.5. The proof of this theorem is in several places similar to
the proof of Theorem 2.8.

Step 1. First fix some values of the parameters k and ! and consider
an arbitrary family of vectors -7:1?,1 ={vi,...,v,.} C R% To each vector
vi = (v},...,0d) € f,‘jJ assign the set M; = {v € Ry : v/ =1} C

<y Ug

Rg. This yields card M; = [. Finally, let M%J = {M,...,M,} be the
collection of all sets M;.

Step 2. Let K be the collection of all sets K; C R4 such that card K; =

l— % There is a one-to-one correspondence between the collection X and

the set ?R( <) To each set M; € M¢, assign (in one-to-one fashion)
l—k/2 ’

the set

£i:{ye§R( . ):KVCMZ}.

I—k/2

Thus we get card £; = (l_li /2). Finally, let £ be the collection of sets

hid
£={L), c2 (-in),

The relation £; N L; # 0 holds for all admissible values of i and j.
Therefore each set £; € £ is an s.c.r. for £ and consequently

T:ﬂm<<hém)

On the other hand, by putting n = (1_2/2), m = (l_é/z) ands =1r < (‘lj),
we obtain the bound (see (2.5)) 7 < F (s, Z).

Let {o1,...,0.} be an arbitrary s.c.r. of minimal cardinality for £.
Let {K,,,...,Ks.} C K be the collection of sets corresponding to the
elements o1, ...,0,. Finally, if we let

M;={MeM{,: K, C M}
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then MZ ; =MiU---UM; is a covering, since {o1,...,0,} is an s.c.r.
for £.

Step 3. For an arbitrary collection of sets M; defined in the previous
part of the proof consider a covering M; = U, M,,,, where

Ma, = {M e M;: (K,, U{v}) c M}

and {v} N K,, = 0. The number of elements in this covering does not
depend of ¢ and is bounded from above by d.

Step 4. To complete the proof of the theorem it remains to repeat
almost literally the arguments from the fourth part of the proof of The-
orem 2.8. The theorem follows. m|

The proof of Theorem 2.6 coincides almost completely with the proof
of Theorem 2.5. It is only necessary to consider the sets K, C $4 such
that card K, = [ — % + 1, to apply (2.5) in order to bound the value
7(£), and to construct the first covering.

Remark. Once can obtain slight improvements of the estimates presented
in Theorems 2.5-2.8, by calculating the value 7(M) more carefully (see
[34]). However, all such improvements influence only the relations inside
the logarithmic term, so we do not discuss them here.t Note also that
the techniques we have developed can be used to deal with particular
values of the parameters k, [, [1 and ls (see e.g. [17]).

3 Borsuk’s conjecture: the low-dimensional case

In this lecture we mainly consider Borsuk’s problem in dimensions 3
and 4. First we describe some old approaches to the proof of the
conjecture in the 2- and 3-dimensional cases, namely Eggleston’s non-
elementary approach, Griinbaum’s and Heppes’ idea of constructing a
universal cover, and so on. We then discuss a new method (developed re-
cently by the author and, in its computational part, by Yuri Kalnishkan),
which allows us to obtain deep results in dimensions 3 and 4.

t The relations inside the logarithmic term can also be diminished by replacing
factors of the form (‘li) with something based on Frankl and Wilson’s theorem (see

Lecture 1 and [18]), e.g. by (lf;i ).
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3.1 The history of Borsuk’s conjecture in the
low-dimensional case

In Lecture 1 we presented the complete history of the Borsuk partition
problem, except for the (very important) cases d = 2, 3 and 4, since
these cases deserve to be considered in a separate lecture. Now we close
this gap and discuss low-dimensional aspects of the problem.

Before proceeding directly to various results concerning Borsuk’s con-
jecture for 2 < d < 4, note that in the case d = 1 everything is evident.
Indeed, as in the previous lectures we may restrict ourselves to the case
of unit diameter, and any 1-dimensional point set of diameter 1 can be
trivially covered by a segment of the same diameter (length). Then this
segment can be divided into two parts of length %7 which is half as long
as the initial diameter. Later we shall see that this idea of covering every
set by a universal one (e.g. by a segment when d = 1) is very useful.

Let us consider the planar case, i.e. the case d = 2, which is the next
simplest. The conjecture was proved for this case by Borsuk himself [8].
Borsuk’s proof uses a simple lemma first discovered by J. Pal [43]:

Lemma 3.1. FEvery planar point set of diameter 1 can be inscribed into
a regular hexagon such that the distance between its parallel edges (sides)
s equal to 1.

The proof of Lemma 3.1 can be also found in [5] and we shall not
give it here. Note that we use an approach similar to that described for
d = 1: a hexagon plays the part of a ‘2-dimensional segment’, i.e. it is a
universal cover in the following sense.

Definition 3.2. By a universal cover in R? we mean a set ) such that
any set A of fixed diameter lies in some rigid copy of €.

To prove the conjecture, it remains to partition a regular hexagon of
the dimensions described in Lemma 3.1 into three parts of diameter less
than 1 (and this was actually done by Borsuk). Although the diameter
of the hexagon exceeds 1, there exists a natural partition of the hexagon
into three parts which each have diameter \/Tg =0.866... < 1.

This bound is the best possible: one can easily construct an example
of a set Q C R?, diam\S/)_: 1, that cannot be partitioned into three parts

3

of diameter less than *5>. (For instance one can take a unit circle, whose

best partition has already been described in our previous lecture.) In
other words, if (see [53]) we let

ap = sup _inf  max diam¢);
QCR2 £1,..,8023 1=1,2,3
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where the supremum is taken over the sets of diameter 1 and the infimum
over all possible partitions of a fixed set {2 into parts of smaller diameter,
then ay = @ Note that the corresponding value a; defined for d =1
equals % and is attained on a 1-dimensional ‘circle’, i.e. a segment.

We have seen — at least in the planar case, which is the first non-
trivial one — that the idea of constructing an appropriate universal cover
is quite fruitful. Apart from proving Borsuk’s conjecture, it provides
us with some more information, such as the exact value of as. How-
ever, there exists another, partial approach to the case of the Euclidean
plane (cf. Lecture 2). This approach deals only with polygons (or with
finite point sets), but it is worth mentioning here since we encountered
polytopes (in particular, (0, 1)-polytopes and cross-polytopes) quite fre-
quently in the previous lectures.

The idea is purely combinatorial and very simple; it was proposed by
P. Erdés [15] who proved the following result.

Lemma 3.3. Every 2-dimensional point set consisting of n points has
no more than n different pairs of points realizing the diameter.

The proof of Borsuk’s conjecture for polygons relies on this lemma
(see also [25]) and can be done by induction.

The situation in the 3-dimensional case is already much more com-
plicated, and the results are far less satisfactory. J. Perkal [45] and
H. G. Eggleston [12] were the first to prove Borsuk’s conjecture for d = 3,
but their proof is essentially non-elementary and provides no bound for
the value

ag = sup _inf max diam;
QCRS D1, 1<i<4
better than az < 1. In fact, Eggleston generalized Hadwiger’s method
described in the previous lecture. He considered the Gauss transform-
ation g of a 2-dimensional sphere S onto the boundary of an arbitrary
(though not necessarily smooth) convex body in R3. Then he produced
a partition S = S;U---LIS, such that each set g~*(g(S;)) did not contain
antipodal points on S and showed (cf. Lecture 2) that diam ¢(S;) < 1.

A breakthrough was achieved independently by B. Griinbaum [22] and
A. Heppes [27], who found universal covers in R? and partitioned them
into parts of smaller diameter. The result of Griinbaum was slightly
better than that of Heppes: Griinbaum obtained the bound

. /6129030 — 937419+/3
= 15182

=0.9887...
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whereas Heppes only succeeded in showing that

4
asﬁig_z \/§=0.99775...

We shall discuss Griinbaum’s result in some detail. As we have already
mentioned, this result is based on the construction of a universal cover.
The following lemma was proved by D. Gale [19].

Lemma 3.4. Every set Q C R? with diameter 1 can be covered by a
reqular octahedron in which the distance between parallel faces is equal
to 1.

Griinbaum modified the above statement a little bit. His universal
cover is a polyhedron obtained from the one described in Lemma 3.4 by
cutting off three pyramids that contain some three of its vertices; more
precisely, one should take three pairwise orthogonal planes I1;, IIo, I3 in
R3 that are parallel to the corresponding central sections of the octahe-
dron and lie at a distance % from its centre. If our set of diameter 1 has
already been covered by an octahedron, then it lies either entirely ‘below’
some of the three fixed planes of the form II;, or entirely ‘above’ some
of the planes IT; that are symmetricf to II;. Any choice of three planes
with different indices from the set of the six planes IT;, II}, i = 1,2,...,6
gives the same picture (the same polyhedron) and everything is fine.

Lemma 3.4 itself can be found in [5] and [6], for example, so we do
not dwell on it. We do not describe Griinbaum’s partition either, but in
the next section we shall discuss its important modification.

Griinbaum’s estimate for aig remained unimproved until very recently,
when V. Makeev [40, 41] succeeded in showing that a3 < 0.98. Instead of
an octahedron Makeev used a rhombic dodecahedron with the distance
between parallel faces equal to 1; three pairwise orthogonal planes are
taken just as was done by Griinbaum. Unlike Griinbaum, Makeev used
some computer calculations (due to L. Evdokimov) in order to find a
good partition of his universal cover. An important modification of this
approach, leading to further improvements of the bound for a3, will also
be described below.

Recall that a ball (i.e. a segment or circle) provides the best lower
bounds for «;, i < 2. In the case i = 3, the best known lower bound is

t To be more precise: for each i we define II} to be the plane consisting of all points
v such that —v € II;.
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also given by a ball:

=0.888...

3 3
o> 1] 3F V3
6
(cf. Lecture 2). D. Gale [19] even proposed a conjecture stronger than

Borsuk’s:

every d-dimensional set of diameter 1 can be partitioned into d+ 1 parts, none
of whose diameters exceed those appearing in an optimal partition of the unit
ball.

Of course this conjecture is not true for all dimensions, but for d = 3
the question is still open.

To complete the discussion of the situation in R?, note that the special
case of 3-dimensional polytopes was also considered by A. Heppes and
P. Révész [28] who proved the conjecture for this case. Their method
used the Euler formula for 3-dimensional polytopes.

As for d = 4, until recently there used to be only one result, due to
M. Lassak [36]: f(d) < 9. Certainly 9 is very far from the expected
value (even if the conjecture fails in four dimensions). No satisfactory
results are known even for the special case of polytopes.

However, very recently the author and Yu. Kalnishkan have developed
a new approach to investigating Borsuk’s problem in dimensions 3 and
4 (see [54]). We shall describe this approach and discuss its possible far-
reaching consequences in the last part of this lecture, where, apart from
everything else, we introduce the notion of a universal covering system
generalizing that of a universal cover.

Further comments on universal covers can be found in [6, 39, 61].

3.2 A maodification of Grinbaum’s and Makeev’s universal
covers

As we mentioned in the previous section, the 3-dimensional universal
cover found by Gale and Griinbaum can be slightly modified. In this part
of the lecture we present this modification and estimate the diameters
of the corresponding parts.

Let O denote Gale’s octahedron from Lemma 3.4. Fix a rectangular
coordinate system Oxyz in R3. Let
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be the vertices of O. (It is easy to check that the distance between
parallel faces of the octahedron with vertices A, B, C, A’, B', C' equals 1.)
Thus O = conv{A, B,C, A’, B’,C'}, where ‘conv’ denotes the convex
hull of a point set.

Let us construct polyhedra Q' and Q2 by cutting off some parts of O.
To construct Q! take three planes I13, IT3 and 113, defined as follows:

e II! is parallel to the plane containing the points B, B, C, C', i.e. to
the plane Oyz, and lies at distance 0.5 from the origin O on the same
side as the vertex A’;

e I is parallel to the plane containing the points B, B/, A, A’ i.e. to
the plane Ozy, and lies at distance 0.5 from the origin on the same
side as C’; and

e II} is parallel to the remaining coordinate plane and lies at distance
0.475 from it on the same side as B’.

The polyhedron Q! is obtained from O by cutting off the rectangular
pyramids with the vertices A’, B’, and C’ by the planes 11, 13, and II3.
In order to construct 2 we need six planes, whose definitions are very
close to those of II}: they are also parallel to coordinate planes, but now
they go in pairs, so it suffices to specify the distances from O and to
specify the vertices that will be cut off by respective planes. Let I3, T13,
12 correspond to the vertices A’, B’, C' respectively, each with distance
0.5 from O; and let 112, T12, 112 correspond to A, B, C respectively, each
with distance 0.525.

Lemma 3.5. Every set Q C R® of diameter 1 can be inscribed either
into a rigid copy of Q' or into a rigid copy of Q2.

Note that, strictly speaking, this lemma provides us with two sets
such that any other set can be covered at least by one of them rather
than with a single universal cover. This is the simplest example of a
universal covering system (see the next part of the lecture for the exact
definition). The proof of the lemma is by generalizing the arguments
discussed just after Lemma 3.4.

In order to show that Lemma 3.5 leads to an improvement of Griin-
baum’s result (ag < 0.9887...), it remains to construct partitions of Ol
and Q2.

Remark. In the rest of this lecture, for convenience we shall write 0.866
instead of v/3 /2; in a similar way we shall use approximate coordinates
of points. This is justified by Remark 3.6 below.
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A partition for Q'. By cutting off the vertices A’, B’ and C’ from
the octahedron O we created new vertices. Let Aj,..., A4 correspond
to A’ (i.e. they are obtained by cutting off the rectangular pyramid with
vertex A); let By,..., By correspond to B’ and Ci,...,Cy correspond
to C’. The coordinates of these new vertices can be easily computed:

Ay = (—0.5,0,0.366) € AC, Ay =(—0.5,0.366,0) € A'B
A3 = (=0.5,0,—-0.366) € A'C’, A4 = (~0.5,-0.366,0) € A'B,
=(0.391,-0.475,0) € B'A, = (0,-0.475,0.391) € B'C,
= (—0.391,-0.475,0) € B'A’, B4 = (0,-0.475,-0.391) € B'C’,
= (0,0.366, —0.5) €C'B = (0.366,0,—0.5) €C'A
= (0,-0.366,—0.5) € C'B, = (—0.366,0,—0.5) € C'A".

Consider some more points on the boundary of Q!:

= (0,0.458, 0.408) € BC,
= (0.433,0,0.433) € AC,
= (0.408,0.458, 0) € AB,
= (—0.5,0.105,0.138) € A;A;A5Ay,
— (0.148,—0.475,0.148) € B, B,B3By,
(0 138 0.105, —0. 5) c 01020304;

and
I =(-0.5,0.173,0.193) € A1 As,
I, = (0.195,-0.475,0.196) € B;Bs,
I3 = (0.193,0.173, —0.5) e C10y;
L1 (—0.5,—-0.174,0.192) € A Ay,
=(0.2,-0.475,—-0.191) € B;Bau,
L3 =(—0.174,0.192, —0.5) € C1Cy;
L’ =(-0.5,0.192,—-0.174) € AsAs3,
=(—0.191,-0.475,0.2) € B2Bs,
Lg =(0.192,-0.174,-0.5) € CyCs;

and G = (0.2887,0.2887,0.2887) € ABC. (Here X;X,... X}, is short
for conv{ X1, Xa,..., Xy}.) Finally, we get Q' = Qf U--- U Q}, where
the polyhedra Q! are given by

Qi = OB3B,C3C4 A3 Ay L) K1 L1 Ly Ko Ly Ly K3 L3,

O = OAB,CoGHy I Ky Ly Ly K3 I3 Hy,

Q% = OBA,C1GH3I3 K3 L3 L) K I Hy,

Q4 = OCB AyGH 11 K1 Ly Ly Ko I Ho.

The diameter of a polytope is attained on its vertices. It thus remains to
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calculate distances between all vertices of each (fixed) Q. The largest
does not exceed 0.9842 < 0.9887 and the first partition is thereby ‘good’.

A partition for Q2. Recall that in the case of Q2 we cut off six ver-
tices of the octahedron O. Therefore we get 24 new vertices A1, ..., A4,
By,...,By, C1,...,Cy, AY,... A, ..., C1,...,C} that correspond to
the vertices of O denoted using the same letters. The coordinates of the
new vertices are

0.5,0,0.366) e AC, A
0.5,0,—0.366) € A'C’, A4
0.366, —0.5, 0) € B'A,

= (- = (—0.5,0.366,0) € A'B
(- = (-0.5,-0.366,0) € A'B’,
= = (0,—0.5,0.366) € B'C,
(—0.366,—0.5,0) € B'A/, B4 =(0,-0.5,—-0.366) € B'C’,
= (0,0.366, —0.5) €C'B,  Cy=(0.366,0,—0.5) € C'A,
03 =(0,-0.366,—0.5) €C'B’, C4=(-0.366,0,—05) €C'A,
Al = (0.525,0,0.341) € AC, A, =(0.525,0.341,0) € AB,
( (
(- (
( (
( (
(

Ay =(0.525,0,—0.341) € AC,, Al =(0.525,-0.341,0) € ABy,
By = (—0.341,0.525,0) € A2B, Bl = (0,0.525,0.341) € BC,
B} = (0.341,0.525,0) € AB, B) = (0,0.525,—-0.341) € BCj,
C7 = (0,0.341,0.525) € BC, CY = (0.341,0,0.525) € AC,
C; = (0,-0.341,0.525) € ByC, Cy = (—0.341,0,0.525) € A;C.

We need some more points from the boundary of the set Q2. Let Ass,
Bss, Co3 denote the midpoints of the line segments AsAs, BoB3, CoC5

respectively; the points A14, Bia, Cha, Alo, ALy, Bly, Bhs, Cly and Chy
are defined similarly. Finally, consider the points

P, = (—0.30175,0.2625, —0.30175) € Ay A3C4C1 B, B,
P2 = (0.2887,0.2887, 02887) € C|C,B, By A A,

= (0.2625, —0.30175, —0.30175) € AL A, By B4C5Cs
P (—0.30175, —0.30175,0.2625) € ByBsA4A,C4C)

these points belong to the appropriate hexagonal faces of Q2. We now
get the partition Q% = Q3 U ---UQ3, where

Qf = 0C5C4 A3 Ay B3 B4C33C14 Py Ay3 A14 Py B3 B14 Ps,

Q3 = 0010, Ay AL By By Co3C14 Py By By Py Ay Al P,

Q3 = OB B5C 04 A1 Az Aa3 A1 PyCh, O, Py Bhs By P,

OF = OCLC4 By By Ay A Bas B1a Py Aly Ay Py C1,C Py
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One can easily check that none of the diameters diam Q? exceeds the
value 0.9836 < 0.9842 < 0.9887. This completes the construction of a
‘good’ partition for Q2.

Thus we obtain the bound ag < 0.9842.

Remark 3.6. Although some coordinates in the above constructions
were specified approximately, the overall error is of the order 10~%; this
does not affect our bound for as.

Remark 3.7. Of course, our choice of parameters was not optimal. At
the same time, it should be possible to generalize our approach. The
upper bound for ag can definitely be improved. On the other hand, Ma-
keev’s method (octahedron — rhombic dodecahedron) can be modified
too. This would imply estimates even better than az < 0.98. The au-
thor did not perform the corresponding calculations on a computer, but
this direction of research looks really promising; it is natural to expect
an estimate like a3 < 0.975 or even a3z < 0.97.

3.3 An approach due to the author and Yu. A. Kalnishkan.

We start by introducing a notion of a d-dimensional universal covering
system. As usual, only sets Q C R? of diameter 1 are considered.

Definition 3.8. A (possibly infinite, even uncountable) collection of
sets U = {U}, U C R?, is said to be a universal covering system if for
any set 2 C R? of diameter 1 there exists a (not necessarily unique) set
U such that Q C U’, where U’ is a rigid copy of U.

A trivial example of a universal covering system is provided by the
collection of all sets of unit diameter. On the other hand, we have already
encountered universal covering systems consisting of a single set U. We
also constructed a nontrivial example of a two-element covering system.
Clearly, the main problem is in finding universal covering systems [,
which are as ‘good’ as possible, such that every U € 4 admits a partition
into parts of smaller diameter.

Before proceeding to the construction of 4 proposed by the author in
his joint work with Yuri Kalnishkan, note that the diameters of the sets
U from a universal covering system can be substantially greater than 1
(see, e.g. the systems from the previous parts of the lecture).

We start by constructing a partition for an arbitrary d, and then
concentrate on the cases d = 3 and 4 where the construction is most
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effective. Let rq = y/d/2(d +1). Fix r such that % < r < rg and let
B, = B,(0) be the ball of radius r with the centre at the origin O. Note
that%:rl <r2<r3<~~~<rdﬂ‘/7§,dﬂoo.

Consider the following inductive procedure. First take an arbitrary
point on the sphere corresponding to the ball B,.: x; € dB,. Secondly,
consider the segment Ox; and the plane II; which is orthogonal to this
segment and contains the origin: the plane II; divides the sphere 0B,
into two (closed) hemispheres. Thirdly, take an arbitrary point x5 € 0B,
lying on the (closed) hemisphere that does not contain x; and such that
|x2 —x31| < 1. This is the base of the inductive procedure.

Now suppose that the points x1,...,xx_1 € 9B, have already been
constructed. Let II;_; be the plane containing the origin and parallel to
the plane IT) _; passing through x, ..., xj_1. Two situations may occur:
either Iy = II}_, or not. In the first case we terminate the proce-
dure and claim that a set of points x1,...,x;_1 has been constructed.
Otherwise take an arbitrary point x;, € 0B, satisfying

Cmax |x; — x| <1,

i=1,...,k—1
and lying on the (closed) hemisphere that is obtained by intersecting
B, with IIx_; and which does not contain any of the points x;, i =
1,...,k — 1. The procedure can terminate on any k < d + 1, but, of
course, it cannot pass through k = d since g4 = I, ; = R%

Consider an arbitrary set of points x1,...,xx, K < d+ 1 constructed
according to the procedure above and let Bi(x;), i = 1,...,k be the
balls of radii 1 with centres at the points x;. Finally, put

Qr(Xh...,Xk) =B, ﬂBl(Xl) ﬂ'--ﬂBl(Xk)

and let Y = {Q,(x1,...,%xk)}, where r ranges from % to rq and the x;
range over all possible outcomes of the inductive procedure (note that &
also varies; see Remark 3.10 below).

Lemma 3.9. The collection of sets i is a universal covering system.

Proof. We must show that for every set @ C R? of diameter 1 there is
a set U € U such that Q C U. In this proof B(Q) is the ball of smallest
radius circumscribed around Q and r(B(2)) is the radius of this ball.
Fix an arbitrary . Then by Jung’s theorem [30], 2 < r(B(Q)) < rq.
Put r = r(B(Q2)) and B, = B(Q2) (we may move the coordinate system
appropriately). Since B, is the minimal ball circumscribed around €2,
the well-known Helly theorem implies that there is a simplex R C 2 of an
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intermediate dimension [ < d such that B, is minimal for this simplex
as well (see [11] for details concerning Helly’s theorem). Therefore R
contains the origin O, and some m of the vertices of R lie on the sphere
0B,.. In other words, for any plane passing through the origin, there exist
vertices of R in each of the two corresponding (closed) hemispheres.

Hence if we denote the vertices of R that lie on the sphere 0B, by
X1, ...,Xm and recall the inductive procedure, then we obtain

QC U:QT(X17"'7X]€)7

where k£ does not exceed m and the distances among the vectors xi, ..., Xg
are less than or equal to 1, since diam R < diam{) = 1. Moreover,
QC Bi(x;),i=1,...,k, for x;, € R C Q and diam{) = 1. The lemma
follows. O

Remark 3.10. The main advantage of the procedure is that k is large
enough provided r is large enough. For example, if r > ry_1 then k > d.
The distances between the points Xi,...,X; constructed in the proce-
dure are also large enough. This is very important, since the ‘quality’
of the resulting partition depends directly on the number of intersecting
balls and on the pairwise distances between their centres.

The universal covering system 4 from Lemma 3.9 is uncountable and
is therefore rather difficult to work with (i.e. to partition every set U that
belongs to it). However the author has proposed a method of making the
corresponding inductive procedure discrete, at least for d = 3 and 4. It
is possible to choose the points not from the whole boundary of B, but,
roughly speaking, from some e-nets defined on it for every fixed € > 0,
and to finally obtain some new finite universal systems {. = {U.}. The
author has also proposed some refinements of the inductive procedure
and ‘good’ partitions of the corresponding sets U.. Yu. Kalnishkan wrote
a program calculating the diameters. It appears unreasonable to include
technical details of this joint work, since they are rather cumbersome
and do not reflect the essence of the approach. We discuss only some
implications of the method, which are arguably the most interesting.

Theorem 3.11. If Q@ C R? is such that r(B(Q)) € [3,61] U [02,73],
where 61 < &2, then Q can be partitioned into four parts of diameter
S Oé3((51,(52) and

lim 043(51,52) = 3 +6\/§

51—%,62—7s

= 0.888...,
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Here as(d1,02) is defined similar to the quantity as except for the
first supremum in the definition, which is taken over all possible sets
whose smallest covering balls have radii from the aforementioned union
of intervals. In particular, if §; < 0.53 and d2 > 0.6 then ag(d1,d2) <
0.96. (Compare this with Gale’s conjecture from the end of §3.1.)

Remark 3.12. The result of Theorem 3.11 seems rather astonishing.
Indeed, a substantial improvement of the bound as < 0.98 has been
obtained for the cases when the radius of the minimal ball for Q is
either small enough or large enough.

However if we take into account Remark 3.10, this becomes less strange.
If r is large, then k is also large, so that all the corresponding sets can
be ‘well-partitioned’ (in our example r > 0.6 > ro = \/Tg =0.577... and
Remark 3.10 implies that k > 3). If r is small, then even the minimal
ball B, can be ‘well-partitioned’. Note that all these properties only
hold provided our method is used.

Remark 3.13. Note that our method is in fact based on the use of the
so-called (generalized) Reuleauz polytopes (see [55] for definitions). For
instance, the method allows us to partition the ordinary 3-dimensional
Reuleaux polytope into four parts of diameter roughly < 0.81. Thus once
again Helly’s theorem implies that every Q C R? with 7(B(Q)) = r3 can
be partitioned into four parts of diameter < 0.81. On the one hand, this
means that one could even replace the limit do — rg in Theorem 3.11
by a bound ¢ < d2 < 73 (in our method, the bounds are monotone in
r > ¢ for some ¢ < r3). On the other hand, this leads to a partial
strengthening of Gale’s conjecture:

if an arbitrary Q C R satisfies the inequalities ¢ < r(B(Q)) < 73, then it can
be partitioned into four parts of diameters strictly less than the diameters of
the parts from optimal partition of a three-sphere.

Remark 3.14. In the case of d = 4, one can improve the bound f(d) <9
due to M. Lassak [36]. Unfortunately the method does not lead to the
equality f(4) = 5, but on some intervals similar to those appearing in
Theorem 3.11 one can actually bound the number of parts of smaller
diameter for any appropriate set {2 by 5.

We would like to finish this lecture by emphasizing that we strongly
believe that Borsuk’s conjecture is true for R
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Embedding and knotting problems

Many theorems in mathematics state that an arbitrary object of a given
abstractly defined class is a subobject of a certain ‘standard’ object of
this class. Examples include:

e the Cayley theorem on embedding finite groups into the symmetric
groups;

e the representation of any compact Lie group as a subgroup of GL(V)
for a certain linear space V;

e the Urysohn theorem on embedding of normal spaces with countable
basis into Hilbert space;

e the general position theorem on embedding of finite polyhedra into
R™;

e the Menger—Nobeling—Pontryagin theorem on embedding finite-dim-
ensional compact spaces into R™;

e the Whitney theorem on embedding smooth manifolds into R™;

e the Nash theorem on embedding Riemannian manifolds into R™;

o the Gromov theorem on embedding symplectic manifolds into R2™.

The solution of the 13th Hilbert problem by Kolmogorov and Arnold
can also be formulated in terms of embeddings.

Although interesting in themselves, these embeddability theorems also
prove to be powerful tools for solving other problems. Subtler problems
about the embeddability of a given space into R™ for a given m, as
well as about counting such embeddings, are among the most important
classical problems of topology.

According to Zeeman, the classical problems of topology are the fol-
lowing.

1) The homeomorphism problem: when are two given spaces homeomor-
phic?

2) The embedding problem: when does a given space embed into R™?

3) The knotting problem: when are two given embeddings isotopic?

The definitions of embedding and isotopy are recalled in the next sub-
section.
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The embedding and knotting problems have played an outstanding
role in the development of topology. Various methods for the investiga-
tion of these problems were created by such classical figures as G. Alex-
ander, H. Hopf, E. van Kampen, K. Kuratowski, S. MacLane, L. S. Pon-
tryagin, R. Thom, H. Whitney, W. Browder, A. Haefliger, M. Hirsch,
J. F. P. Hudson, M. Irwin, J. Levine, S. Novikov, R. Penrose, J. H. C.
Whitehead, E. C. Zeeman and others. For surveys see [214, Introduc-
tion] and [55, 1, 151, 153]. Nowadays interest in this subject is reviving.

There are only a few cases in which a concrete answer to the embed-
ding and knotting problems can be given. For the best known specific
case of the knotting problem, namely the theory of codimension 2 embed-
dings (in particular, for the classical theory of knots in R3), a complete
concrete classification is neither known nor expected. A concrete com-
plete description of a (nonempty) set of embeddings of a given manifold
up to isotopy is only known either just below the stable range, or for
highly-connected manifolds, or for links and knotted tori. (A concrete,
complete answer to the embedding problem has been obtained addition-
ally for projective spaces [55], products of low-dimensional manifolds or
of graphs [6, 184] and certain twisted products [148, 156].)

Therefore the knotting problem is one of the hardest problems in
topology. The embedding problem is also hard for similar reasons. How-
ever, the statements (but not the proofs!) are simple and accessible to
non-specialists. One of the purposes of this survey is to list such state-
ments. They are presented in Sections 2 and 3. Statements analogous
to those presented (e.g. for non-closed manifolds) are often omitted.

Another purpose of this survey is to outline a general approach useful
for obtaining such concrete complete results. There are interesting ap-
proaches giving nice theoretical results.f The application of surgery
[113, 15, 68, 71, 73, 63, 24] gives good concrete results for simplest
manifolds. The advantage of the surgery approach (compared with the
deleted product approach, see below) is that it works in the presence of
smooth knots S™ — R™. The disadvantage is that it uses the homotopy
type of the complement and the description of possible normal bundles,
and so faces computational difficulties even for relatively simple mani-
folds like tori, see Section 3. (For a successful attempt to overcome this
problem see [107, 175]). According to Wall [206], surgery only reduces
geometric problems on embeddings to algebraic problems which are even
harder to solve.

t The author is grateful to M. Weiss for indicating that the approach of [59, 209]
also gives concrete results on homotopy type of the space of embeddings S — R™.
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The method of the Haefliger-Wu invariant (or the deleted product
method) gives many concrete results. We introduce this invariant in
Section 5. In particular, most of the results from Sections 2, 3 and 4 can
be deduced using the deleted product method (although originally some
of them were proved directly, sometimes in a weaker form). The deleted
product method is a demonstration of a general mathematical idea of
‘complements of diagonals’ and the ‘Gauss mapping’ which appeared in
works of Borsuk and Lefschetz around 1930. The Haefliger-Wu invari-
ant generalizes the linking coefficient, the Whitney obstruction and the
van Kampen obstruction. The deleted product method in the theory
of embeddings was developed by van Kampen (1932), Shapiro (1957),
Wu (1957-59), Haefliger (1962), Weber (1967), Harris (1969) and oth-
ers. The Van-Kampen-Shapiro-Wu approach works for embeddings of
polyhedra, but is closely related to embeddings of manifolds and so is
presented in Section 4. The classical Haefliger-Weber theorem (The-
orem 5.5) asserts the bijectivity of the Haefliger-Wu invariant for em-
beddings of n-dimensional polyhedra and manifolds into R™ under the
‘metastable’ dimension restriction

2m > 3n + 4.

Other embedding invariants may be obtained using p-fold deleted prod-
ucts (see the end of Section 5) or using the complement together with
the normal bundle [15, 24], but these are hard to compute. So the inves-
tigation of embeddings for 2m < 3n + 4 naturally leads to the problem
of finding conditions under which the Haefliger-Wu invariant is com-
plete without the metastable dimension assumption. There have been
many examples showing that for embeddings of manifolds the metastable
dimension restriction is sharp in many senses (Boechat, Freedman, Hae-
fliger, Hsiang, Krushkal, Levine, Mardesic, Segal, Skopenkov, Spiez,
Szarba, Teichner, Zeeman; see Section 5). So it is surprising (Theorem
5.6) that in the piecewise linear category, for d-connected n-dimensional
manifolds, the metastable restriction in the Haefliger-Weber Theorem
can be weakened to

2m > 3n+ 3 —d.

FExamples in this paper

We present many beautiful examples motivated by the embedding and
isotopy problems. In particular:
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e in Section 2 we present a construction of the Hudson torus (which is
simpler than the original one);

e in Section 3 we construct examples illustrating the distinction between
piecewise linear and smooth embeddings;

e in Section 6 we prove some results on the deleted product of the ‘torus’
SP x S and on the Haefliger-Wu invariant of knotted tori.

In Sections 6 and 7 we construct most of the examples of the incom-
pleteness of the van Kampen obstruction and the Haefliger-Wu invari-
ant, announced in Sections 4 and 5. The construction of these examples
is based on knotted tori (see Section 6) or on (higher-dimensional) Cas-
son finger moves (see Section 7). For some other examples we only give
references.

The Haefliger-Weber theorem and its analogue below the metastable
case were obtained by a combination of and the improvement of methods
and results from various parts of topology: the theory of immersions, ho-
motopy theory, engulfing, the Whitney trick, van Kampen finger moves,
the Freedman-Krushkal-Teichner trick and their generalizations. The
most important method is the disjunction method (see the end of Sec-
tion 4, and Section 8). These methods are also applied in other areas.
In Section 8 we prove the surjectivity of the Haefliger-Wu invariant in
the piecewise linear case. For the reader’s convenience, we take a his-
torical approach to the exposition: the disjunction method is applied
in its complete generality only after illustration in simpler particular
cases. We also prove the analogue of the Haefliger-Weber theorem be-
low the metastable range for the simplest case. We do not prove many
other results of Sections 2-5 but give references and sometimes sketch
the proofs.

Sections 6, 7 and 8 depend on Section 5; otherwise the sections are
independent of each other, except for minor details that can well be
omitted during the first reading.

Further references

Let us give a (by no means complete) list of references for closely related
problems in geometric topology (the references inside the papers listed
here could also be useful for a reader). In the problems of embeddability
and isotopy the space R™ can be replaced by an arbitrary space Y. The
case when Y is a manifold has been studied most extensively; for the
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case when Y is a product of trees see [193, Theorem 4.6 and Remark]
and [54, 53, 219, 110].

e For embeddings up to cobordism see [16, 116]; for embeddings up to
homotopy see [33, 191], [206, §11], [92, 31, 62].

e For the classification of link maps see [131, 122, 104, 105, 125, 64, 180].

e For embeddings of polyhedra in some manifolds see [204, 138, 115,
150].

e For the problem of embeddability of compacta and the closely-related
problem of approxzimability by embeddings seet [26, 126, 173, 169, 98,
34, 3, 2], [151, §9], [134, 152, 5, 155, 7, 127, 156, 185, 128].

e For the problem of intersection of compacta see [39, 189].

o For basic embeddings see [193, 177] [153, §5], [110].

o For immersions see [55, 1], cf. [181].

1 Preliminaries
1.1 Definitions and notation

A smooth embedding is a smooth injective map f : N — R™ such that
df is a monomorphism at each point.

By a polyhedron we shall understand a compact polyhedron. A map
f+ N — R™ of a polyhedron N is piecewise-smooth if it is smooth
on each simplex of some smooth triangulation of N. We denote the
piecewise-smooth category by PL. This is the usual notation for the
piecewise-linear category but the classification of piecewise-smooth em-
beddings (or immersions) coincides with the classification of piecewise
linear embeddings (or immersions) [74]. A PL embedding is a PL injec-
tive map f: N — R™.

We write CAT for DIFF or PL. We often omit CAT if a statement
holds in both PL and DIFF categories.

Two embeddings f,g : N — R™ are said to be (ambient) isotopic
(Figure 1.1), if there exists a homeomorphism onto (an ambient isotopy)
F:R™ x I — R™ x I such that

e F(y,0) = (y,0) for each y € R™,
o F(f(x),1)=(g(x),1) for each x € N, and
o F(R™ x {t}) =R"™ x {t} for each t € I.

t The author is grateful to P. Akhmetiev for indicating that the paper [3] contains
a mistake for n = 3,7 and that the paper [2] contains a ’preliminary version’ of
the proof, the complete version being submitted elsewhere.
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FN)xT

R™ x I R™ x I

Fig. 1.1. Isotopic embeddings

An ambient isotopy is also a homotopy R™ x I — R™ or a family
of maps F; : R™ — R™, generated by the map F' in the obvious man-
ner. Evidently, ambient isotopy is an equivalence relation on the set of
embeddings of N into R™. An embedding is said to be trivial if it is
isotopic to the standard embedding (the latter is evidently defined from
the context).

We use the notation of [161]. An equality between sets denotes a
one-to-one correspondence. Denote by V;, , the Stiefel manifold of n-
frames in R™. Let D) be Z for k even and Zs for k odd. Note that
Ly = T (Von—k) for 1 < k < n. If the coefficients are omitted from the
notation of (co)homology groups, then Z-coefficients are assumed. For
a manifold or a polyhedron N we denote its dimension by n = dim .
Denote by Embg 47 (N) the set of CAT embeddings N — R™ up to
ambient CAT isotopy. If | Emb¢r4(N)| = 1, we shall say that N CAT
unknots in R™. For a map f : N — R™ we denote by X(f) = Cl{x €
N : |f~Yfz| > 2} its self-intersection set.

A closed manifold N is called homologically k-connected if N is con-
nected and H;(N) = 0 for each i = 1,...,k. This condition is equiv-
alent to H;(N) = 0 for each i = 0,...,k, where the H; are reduced
homology groups. A pair (N,0N) is called homologically k-connected
if H;(N,ON) = 0 for each i = 0,...,k. Note that if Hy(N,0N) = 0,
then the manifold IV has no closed connected components. We use the
following conventions: 0O-connectedness is equivalent to homological 0-
connectedness and to connectedness; k-connectedness for k < 0 is an
empty condition. We put 7 = 0 for [ < 0.
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1.2 Other equivalence relations and problems

Ambient isotopy is a stronger equivalence relation than non-ambient
isotopy, isoposition, concordance, bordism, etc. Two embeddings f, g :
N — R™ are called (non-ambient) isotopic, if there exists an embedding
F: N xI—R™x I such that

e F(z,0) = (f(2),0),
o F(z,1) = (g9(),1) for each z € N and
o F'(N x {t}) CR™ x {t} for each t € I.

In the DIFF category or for m — n > 3 in the PL (or TOP) category
isotopy implies ambient isotopy [95, 88, 8|, [40, §7]. For m — n < 2 this
is not so: for example, any knot S' — S3 is non-ambiently PL isotopic
to the trivial one, but not necessarily ambiently PL isotopic to it.

Two embeddings f, g : N — R™ are said to be (orientation preserving)
isopositioned, if there is an (orientation preserving) homeomorphism h :
R™ — R™ such that ho f = g. For embeddings into R™, orientation
preserving isoposition is equivalent to isotopy (this is the Alezander-
Guggenheim theorem) [161, 3.22].

Two embeddings f,g: N — R"™ are said to be ambiently concordant
if there is a homeomorphism (onto) F : R™ x I — R™ x I (which is
called a concordance) such that

e F(y,0) = (y,0) for each y € R™ and
o F(f(x),1) = (g(x),1) for each z € N.

The definition of non-ambient concordance is analogously obtained from
that of non-ambient isotopy by dropping the last condition of level-
preservation. In the DIFF category or for m —n > 3 in the PL (or TOP)
category concordance implies ambient concordance and isotopy [114, 91,
94] (this is not so in codimension 2). This result allows a reduction of
the problem of isotopy to the relativized problem of embeddability.

2 The simplest-to-state results on embeddings
2.1 Embeddings just below the stable range
Theorem 2.1 (General position theorem). Every n-polyhedron or n-

manifold embeds into R2"*1 and unknots in R™ for m > 2n + 2.

The restriction m > 2n + 2 in Theorem 2.1 is sharp, as the Hopf
linking S™ LU S™ — R?"*1 shows (Figure 2.1(a)). The number 2n + 1 in
the theorem is the minimal possible for polyhedra.
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Fig. 2.1.

Example 2.2. For each n there exists an n-polyhedron, non-embeddable
in R?”.

In Example 2.2 one can take the n-th power of a nonplanar graph
[184], the n-skeleton of a (2n + 2)-simplex [197, 45] or the (n+ 1)-th join
power of the three-point set (see the proof for this case in Section 5).

Note that N x I embeds into R?"*! for each n-polyhedron N [157], and
unknots in R?"*2 for each n-polyhedron N. (Let us sketch a proof of the
second statement, as follows: by general position every two embeddings
N x I — R?"*2 are regular homotopic, and their restrictions to the spine
N x {1} are isotopic).

Theorem 2.3 ([197, 211]). Every n-manifold embeds into R>".

Theorem 2.3 (as well as Theorem 2.5 below) is proved using general
position and the Whitney trick; the proofs in the smooth and PL case
are sketched in Section 4 and in [161], [153, §8], respectively.

The dimension 2n in Theorem 2.3 is the best possible when n = 2F
because RP2" does not embed into R2" "1 (this is proved using the
mod 2 Whitney obstruction defined below [133, 154, 174]). However it
is not the best possible for other n, by Theorem 2.4 below.

A celebrated and difficult conjecture is that every closed n-manifold
embeds into R?"+1-(") wwhere a(n) is the number of units in the dyadic
expansion of n. The analogous conjecture for immersions was proved in
[112, 29]. Note that if n = 2% + ... 4 2k and ky < -+ < kq(n),
then the n-manifold N = RP?" x .- x RP2™ does not embed into
R27=(") (this is proved again using the mod 2 Whitney obstruction).

Theorem 2.4.

(a) Every n-manifold (except that if n = 2% and the manifold is closed,
we need to assume that it is orientable) embeds into R2n-1

(b) Suppose that N is a closed n-manifold, where n is even, n # 2F(2" +1)



Embedding and knotting of manifolds in Euclidean spaces 257

for integers k,h > 2, and Hi(N) = 0. Then N embeds into R?"~2
provided n > 6 in the PL category or n > 8 in the smooth category.
(c) Suppose that N is a closed n-manifold, where a(n) > 5 and

— either n =0,1(4) and N is orientable, or
—n=2,3(4) and N is non-orientable.

Then N embeds into R?"—2,

The classical results of Theorem 2.4 are much more complicated to
prove than Theorem 2.3: one needs a generalization of the Whitney
trick and calculation of characteristic classes, both nontrivial. Theorems
2.4(a) and (b) follow} from the analogue for d = 0 of Theorem 2.12
below (which is true for orientable manifolds) and [123, Theorem 1.c
and Corollary 2] and [124, Theorem 1], except that Theorem 2.4(a)
for n = 3,4 has to be proved separately [78, 79, 159, 202, 14, 37, 41],
cf. [139, 42]. Theorem 2.4(c) follows from the Haefliger-Weber theorem
(Theorem 5.5 below) and [10, Theorem 45].

The condition ‘a(n) > 5 in Theorem 2.4(c) can be weakened to ‘n > 7
and w,—;(N) = 0 for each i < 4’ (the classes w;(N) are defined in
Section 2.3 below).

Theorem 2.5. Every connected n-manifold unknots in R*"*! forn > 1
[212].

Here for each n the connectedness assumption is indeed necessary and
the dimension 2n+1 is the best possible, as shown by the examples of the
Hopf linking (see above) and the Hudson torus (see below). The Hopf
linking is distinguished from the standard linking using the simplest
(Z-valued or Zy-valued) linking coefficient (whose definition is obtained
from the definition of the Whitney invariant by setting m = 2n + 1, see
Section 2.3 below).

Theorem 2.6. Suppose that n > 2 and a compact n-manifold N has s
closed orientable connected components and t closed non-orientable con-
nected components (and, possibly, some non-closed components). Then
the set of pairwise linking coefficients defines a one-to-one correspon-
dence

t(t—1)

M st+ 5

Emb> " (N) - 2= = @7,
Note that every n-polyhedron N such that H™"(N) =0

t From the proof of [123, p. 100] it follows that the restriction in [123, Theorem 1.c]
should be stated as “the number of h;’s which are equal to hq+1 is even”, cf. [78].
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(a) PL (if n = 2, only TOP) embeds into R?";
(b) PL unknots in R?"+1,

Assertion (a) for n > 3 is deduced from Theorems 4.2 or 5.5 below
[212, 208], see also [82]. For n = 2 it was proved independently [102] and
for n =1 it is trivial. Assertion (b) for n > 2 is deduced from Theorems
4.6 or 5.5 below [147] and for n = 1 it is trivial. In these assertions
for each n the dimensions are the best possible and the H"(N) = 0
assumption is indeed necessary.

2.2 Embedding and unknotting of highly-connected manifolds

Theorem 2.7. The sphere S™, or even any homology n-sphere,

(a) PL unknots in R™ for m —n >3 [216, 190, 56, 167];

(b) DIFF unknots in R™ for m > 22 +2 [66, 69], [1, §7];

(c) PL (if n =3, only TOP) embeds into R"*1 (this follows from [101]);
(d) DIFF embeds into RB™/2+2 [66, 69], [1, §7].

Theorem 2.7(a) is also true [163, 167] in the TOP locally flat category
(see Section 3 for the definition). Here the local flatness assumption is
indeed necessary.

Knots in codimension 2 and the trefoil knot (Example 3.4 below) show
that the dimension restrictions are sharp (even for standard spheres) in
Theorems 2.7(a) and 2.7(b) respectively. By [113, 83], cf. [118, pp. 407—
408] the dimension restriction in Theorem 2.7(d) is indeed necessary
(and conjecturally almost sharp) even for homotopy spheres. However,
from [13], it follows that any 4k-dimensional homotopy sphere embeds
into ROF+1,

Theorems 2.5 and 2.7 may be generalized as follows.

Theorem 2.8 (The Haefliger-Zeeman embedding and isotopy theo-
rems). Forn > 2d+2, every closed homologically d-connected n-manifold

(a) embeds into R?"~¢ (n # 2d + 2 in the DIFF case), and

(b) unknots in RZn—d+1,

Theorem 2.8 was proved directly in [141, 66, 217, 96, 90] for homo-
topically d-connected manifolds. The proofs in [77, 199, 69, 207] and
[1, §7] work for homologically d-connected manifolds; such proofs are
based either on embedding the complement of a ball or on the deleted
product method (Section 5 below), cf. [178, 181]. Theorem 2.8 follows
from Theorems 2.12 and 2.13 below.
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Note that if n < 2d + 1, then every closed homologically d-connected
n-manifold is a homology sphere, so the PL case of Theorem 2.8 gives
nothing more than Theorem 2.7.

For generalizations of Theorem 2.8 see Theorems 2.12, 2.13 below or
[89, 65, 93, 60, 97]. We shall use of them (the simplest case 2m > 3n+ 3
of) the following relative version of Theorem 2.8(a).

Theorem 2.9 (The Penrose-Whitehead-Zeeman-Irwin embedding the-
orem [141, 96]). If m —n > 3, then any proper map from a (2n —m)-
connected PL n-manifold with boundary to a (2n — m + 1)-connected
PL m-manifold with boundary, whose restriction to the boundary is an
embedding, is homotopic (relatively to the boundary) to a PL embedding.

The dimension assumption in Theorem 2.8(b) is sharp, as shown by
the following example.

Example 2.10 (The Hudson torus example). For each p < ¢ there
exists a nontrivial embedding SP x S — RPT2¢+1 [87].

We sketch a simplified construction (see [175]).f Take the standard
embedding 2DP+4+! x §9 ¢ RP+H29+L The Hudson torus is the (linked!)
connected sum of the (p + q)-sphere 20DPT9+! x x with the standard
embedding ODPH! x §9 ¢ Drtatl x §1 c RrH2atl

Remark. The Hudson torus can be distinguished from the standard em-
bedding using the Whitney invariant defined in the subsection under the
same name below [175] or the Haefliger- Wu invariant defined in Section
5 [181].

The rest of this subsection can be omitted on a first reading.

A simplified construction of the Hudson torus [181, 183]

Define a map S° x 7 — D9%! to be the constant 0 € D9+ on one
component and the standard embedding ¢ on the other component.
This map gives an embedding

S0 x 89 — DIt x §9 ¢ DIt2 x §9 c R2a+2

(Figure 2.2).

Each disc D92 x z intersects the image of this embedding at two
points lying in D! x z. For each z € 59, extend this embedding
SY% — D! x x to an embedding S* — D2 x x (Figure 2.3).

1 This construction works even for p = ¢ = 1, in which case the existence of a
knotting ST x S1 — R? is easy in contrast to the higher-dimensional case.
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Fig. 2.2.
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D4
Fig. 2.3.

We thus obtain a nonstandard embedding
St x 87 — DTt x §9 C R27T2,
Taking spheres of dimensions p < g we obtain analogously an embedding
SP % §9 — patrtl o 91 — R2atp+l

(Taking as ¢ above an arbitrary CAT-map S? — 0D™~97P we obtain
analogously a CAT embedding S? x 59 ZXP pm—q x §9 R™.)

It would be interesting to know whether the smooth case of Theorem
2.8(a) holds for n = 2d + 2, i.e. for d-connected 2(d + 1)-manifolds.

An almost smooth embedding is a PL embedding which is a smooth
embedding outside a point.

Theorem 2.11. Let N be a closed smooth (I—1)-connected 21-manifold.

(a) If 1 = 3,5,7 mod 8 and | # 2° — 1, then N almost smoothly embeds
into R2+1,

(b) For | even the manifold N almost smoothly embeds into R**1 if and
only if N is stably parallelizable.
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(¢) If N s almost parallelizable, then N almost smoothly embeds into
R2+2 [119].
(d) For each even  there exists a closed smooth (I — 1)-connected (even

almost parallelizable) 21-manifold which does not smoothly embed into
R3-1 [119].

Theorems 2.11(a) and 2.11(b) are proved in [135, Corollary 1, Theo-
rem 2 and Addendum (1)], cf. [35]. By Theorem 2.11(c) the manifold
from 2.11(d) almost smoothly embeds into R2+2.

Proof of 2.11(c). Ifl = 2, then the result holds by [120, Corollary 10.11],
[20]. So assume that [ # 2. Let Ny be a complement in N to some
open 2[-ball. Then Nj is parallelizable and hence there is an immersion
f: No — R?+1, Since Ny is (I—1)-connected and [ # 2, it follows that it
has an [-dimensional spine [201, 81]. By general position the restriction
of f to this spine is an embedding. Hence the restriction of f to some
neighbourhood of this spine is an embedding. But this neighbourhood
is homeomorphic to Ny. So there is an embedding g : Ny — R+,
Extending the embedding g|an, as a cone in R%*+2 we obtain an almost
smooth embedding of N into R2*2, O

Proof of 2.11(d). Take the Kervaire-Milnor closed smooth almost paral-
lelizable 4k-manifold N whose signature o (V) is nonzero [120, 132]. We
can modify this by surgery [120] and assume further that it is (I — 1)-
connected. Hence the Pontryagin class p;/»(N,R) is nonzero by the
Hirzebruch formula. Therefore p;/o(IN,R) # 0 by the duality theorem
for real Pontryagin classes ([214], cf. [133]). Hence N does not smoothly
embed into R3~! (it does not even immerse in R3~1) [142, 214]. O

The dimension 2n—d in Theorem 2.8(a) can be decreased by 1 for some
pairs (n,d), as Theorem 2.4 shows. However, we conjecture that the
dimension 2n—d in Theorem 2.8(a) cannot be significantly decreased for
some (n,d). This is so for d = 0 (as the example N = RP% x - - - x RP%
shows) and forn = 2,4,8,d = 2 —1 (take N = RP?, CP? HP? or apply
Theorem 2.11(d)). Examples of highly-connected but badly embeddable
manifolds were also exhibited in [84, 35].

2.3 The Whitney obstruction

Let N be a closed manifold. We present the definition in the piecewise
linear case; in the smooth case, there are both an analogous definition
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‘ S(f) = {e € N:[f~"fa] > 2}
g
‘ N U

& =

Fig. 2.4. The self-intersection set X(f)

and a simpler definition [175]. Take any general position map f : N —
R™. Recall the definition of the self-intersection set X(f) from Section
1.1 (see Figure 2.4).

Take a triangulation T of N such that f is linear on simplices of T.
Then the self-intersection set 3(f) is a subcomplex of T. Denote by
[2(f)] € Can—m(N;Z2) the sum of the top-dimensional simplices of 3( f)
(Figure 2.4). Then [X(f)] is a cycle [90, Lemma 11.4], [92, Lemma 1].

Sketch of the proof. It suffices to show that each (2n—m—1)-simplex 7 of
T is in the boundary of an even number of (2n —m)-simplices o C X(f).
We can restrict without loss of generality to the case n C X(f).

By general position, f~1fn consists of simplices n = n1,...,n,. The
link of each lky n; is a sphere of dimension n— (2n—m —1)—1=m—mn,
while the link lkgm= f7 is a sphere of dimension m — (2n—m —1) —1 =
2(m—n). The intersection of two f-images f(lkg n;) of (m—n)-spheres in
the 2(m —n)-sphere lkgm f7) consists of an even number of points. These
intersection points are in 1-1 correspondence with (2n — m)-simplices
o C X(f) containing 7 in their boundaries. O

The modulo 2 Whitney obstruction is the homology class
wm*n(N) = [Z(f)] € H2nfm(N§ ZQ)

The class w; is called the normal Stiefel-Whitney class. This definition
of the normal Stiefel-Whitney classes is equivalent to other definitions
[133], up to Poincaré duality.

The independence of W, (N) from our choice of f follows from the
equality

(E(fo)] = [E(f1)] = [X(F)]

for a general position homotopy F' : N x I — R™ x I between general
position maps fo, f1: N — R™.
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Hence these classes are obstructions to the embeddability of N into

R™: if N embeds into R™ then w;(N) = 0 for i > m —n [210].
The case of N orientable and m — n odd. Fix in advance any
orientation of N and of R™. The definition of the Whitney obstruction
is analogous to the one above, but here [S(f)] is the sum of oriented
simplices o with + signs defined as follows. (For m — n even, the signs
can also be defined but are not used because [X(f)] is not necessarily a
cycle with integer coefficients).

By general position there is a unique simplex 7 of T' such that f(o) =
f(7). The orientation on ¢ induces an orientation on fo and then on 7.
The orientations on ¢ and 7 induce orientations on normal spaces in N
to these simplices. These two orientations (in this order) together with
the orientation on fo induce an orientation on R™. If this orientation
agrees with the fixed orientation of R™, then the coefficient of o is +1,
otherwise —1. Clearly, the change of orientation of o changes the sign
of o in [X(F)], so the sign is well-defined.

Remark. An equivalent definition of the signs in [X(f)] is as follows.
The orientation on ¢ induces an orientation on fo and then on 7, hence
it induces an orientation on their links. Consider the oriented sphere
lkgm fo, that is the link of fo in a certain triangulation of R™ ‘com-
patible’ with T'. The dimension of this sphere is m — 1 — (2n — m) =
2(m —n) — 1. This sphere contains disjoint oriented (m —n — 1)-spheres
f(kro) and f(lkp 7). The coefficient of o in [3(f)] is their linking
coefficient, which equals +1.

The Whitney obstruction is the homology class
V_Vm—n(N) = [X(f)] € Han—m(N; Z).

If N embeds into R"*2% then w;(N) = 0 [210]. (Pontryagin introduced
for each closed orientable n-manifold N the Pontryagin classes p; €
H,,_4;(N;Z), which obstruct embeddability into R"*2i=1 [142].)

By definition w;(N) is a modulo 2 reduction of W;(N). Thus the
classes w;(NN) are easier to compute; however, they are possibly weaker
than ;.

Recall the definition of Z,) from Section 1.1. For a closed orientable
n-manifold N denote by Wy, _n(N) € Hap (N, Z(y—n—1)) the class
Win—n(N) for m —n odd and the class @Wy,—,(N) for m —n even.

Theorem 2.12. Let N be a closed d-connected n-manifold, d > 1. The

manifold N embeds into R>" =41 if W, _4_1(N) = 0, provided n > d+4
orn > 2d+5 in the PL or DIFF cases respectively.
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R™ x I

Fig. 2.5.

See the references listed after Theorem 2.13.

In Theorem 2.12 the d-connectedness assumption can be weakened to
homological d-connectedness, except when n = 2d + 2 in the PL case.
The PL case of Theorem 2.12 gives nothing but Theorem 2.7(c) for
d+4 <n <2d+1. The smooth case of Theorem 2.12 is true if d is even
and n = 2d + 3 [181, Corollary 1.7].

2.4 The Whitney invariant

Let N be a closed connected orientable n-manifold. Let fy : N — R™
be a certain fixed (‘standard’) embedding and let f : N — R™ be an
arbitrary embedding. Take a general position homotopy F' : N x I —
R™ x I between f and fy (Figure 2.5).

Analogously to the above, the self-intersection set 3(F') supports a
(2n —m+1)-cycle [E(F)] in N x I ~ N with the coefficients Z,, —,—1).
The Whitney invariant of f is the homology class of this cycle:

W(f) = [E(F)] € Hap-m+1(N, Zm—n-1))-

Again, W(f) depends only on f and fy but not on the choice of F' [90,
§11], cf. [77, 199, 175].

Theorem 2.13. Let N be a closed orientable homologically d-connected
n-manifold, d > 0. Then the Whitney invariant

W : Emb” ™ (N) — Has1(N, Z(n—a-1))

is a bijection, provided n > d + 3 or n > 2d + 4, in the PL or DIFF
cases respectively.
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Theorems 2.12 and 2.13 were proved{ in [77], [90, §11], [14, 13, 199]
for homotopically d-connected manifolds (except the PL case of Theorem
2.12). The proof works for homologically d-connected manifolds.

By Theorem 2.13 we obtain that the Whitney invariant

W : Emb? P20 (P % §7) — Z,,

is bijective for 1 < p < ¢ — 2, cf. Theorem 3.8 below. The generator is
the Hudson torus.

The PL case of Theorem 2.13 gives nothing but Theorem 2.7(a) for
d+3<n<2d+1.

Analogously to Theorem 2.13 it may be proved that if N is a closed
connected non-orientable n-manifold, then

Hl(N,ZQ) nodd,

Emb®"(N) = :
YASY/ S n even and Hy(N,Z9) =2 75,

provided n > 3 or n > 4, in the PL or DIFF case respectively [10, 199].
(There is a mistake in the calculation for the non-orientable case in [69],
[207, Theorem B].)

Because of the existence of knots the analogues of Theorem 2.13 for
n = d+2 in the PL case, and for (most) n < 2d+3 in the smooth case are
false. So for the smooth category and n < 2d+ 3 a classification is much
harder: until recently the only known concrete complete classification
results were for spheres and their disjoint unions. Recently the following
two results were obtained using the Kreck modification of surgery theory.

Theorem 2.14 ([175]). Let N be a closed homologically (2k — 2)-conn-
ected (4k — 1)-manifold. Then the Whitney invariant

W : Emb%, oy (N) — Hop_1(N)

is surjective, and for each u € Hop_1(N) there is a one-to-one correspon-
dence 1y : Wty — Zg(uy, where d(u) is the divisibility of the projection
of u to the free part of Hi(N).

(Recall that the divisibility of zero is zero and the divisibility of x €
G — {0} is max{d € Z | there exists x1 € G with x = dx1}.)

Theorem 2.14 implies that the Whitney invariant
W : Emb%* (5281 % §2%) . 7

t The author is grateful to J. Boechat for indicating that [13, Theorem 4.2] needs a
correction [175, §5]; this does not affect the main result of [13].
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is surjective, and that for each u € Z there is a one-to-one correspondence
W=ty — Z,.

Theorem 2.15 ([107]).

(a) Let N be a closed connected smooth 4-manifold such that Hi(N) =0
and the signature o(N) of N is free of squares (i.e. is not divisible
by a square of an integer s > 2). Then the Whitney invariant W :
Emb}; pp(N) — Hy(N) is injective. There exists xo € Ha(N) such
that 23 = o(N) and o mod 2 = wy(N), and moreover

imW = {y € Hy(N) | y* +yNaxo = 0}.

(b) Let N be a closed simply-connected smooth 4-manifold embeddable into
S8, Take a composition f: N — S5 C S7 of an embedding and the
inclusion. Then #W W (f) = 12.

Corollary 2.16.

(a) There is a unique embedding f : CP? — R7 up to isoposition (i.e.
for each two embeddings f, f' : CP? — R7 there is a diffeomorphism
h:R” — R7 such that f' = ho f).

(b) For each embedding f : CP? — R” and each nontrivial knot g : S* —
R7 the embedding f#g is isotopic to f.

Conjecture. Every smooth embedding S* x S — R* is PL isotopic to
a connected sum of a knot S? — S* either with the standard embedding,
or with the right Hudson torus, or with the left Hudson torus, or with
the composition of Dehn twist along the parallel and the right Hudson
torus.

A similar conjecture can be stated for arbitrary closed 2-manifolds,
see [43, 44].

2.5 Low-dimensional manifolds

For relatively low-dimensional manifolds there are the following results
not covered by Theorems 2.3, 2.5, 2.4, 2.8(a) and 2.12. (We need not
specify whether PL or DIFF manifolds are under consideration because
every PL manifold of dimension at most 7 is smoothable.)

Theorem 2.17.

(a) A closed orientable 4-manifold N PL embeds into RS if and only if
we(N) =0 [120, Corollary 10.11], [20].
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(b) A closed orientable 4-manifold smoothly embeds into RS if and only if
W2 (N) =0 and p1(N) =0 [120, Corollary 10.11], [20, 162].
(c) Every 2-connected closed 6-manifold is a connected sum of S® x S3
[187, Theorem B] and therefore embeds into R”.
(d) Ewvery closed non-orientable 6-manifold N such that we(N) = 0 and
w3(N) =0 PL embeds into R [181].
(e) Let N be a closed simply-connected 6-manifold whose homology groups
are torsion-free, and with we(N) = 0. Then N
— embeds into R” if and only if it is a connected sum of copies of
52 x 8% and 83 x S3;
— smoothly (or PL locally flat) embeds into RS if and only if p1(N) =
0;
— smoothly embeds into R [205, Theorems 12 and 13].
(f) Ewvery closed homologically 2-connected T-manifold PL embeds into R
[178, 181].
We note that in Theorem 2.17(e), the embeddability in R? is true
also in the PL case, but this is covered by Theorem 2.4(b).
Remark. Take the Dold 5-manifold N such that

71)273(N) = 'lI)Q(N)'lI)3(N) 7é 0

and make a surgery killing 71 (/N). We obtain a simply connected 5-
manifold N’ with we 3(N’") # 0, therefore ws(N’) # 0 and hence N’
does not embed into R®. This remark of Akhmetiev shows that the
dimension 2n — d is the minimal in Theorem 2.8(a) for n = 5 and d = 1.

We conjecture that there exists a 1-connected 6-manifold N with nor-
mal Stiefel-Whitney class W3(IN) # 0 so that N does not embed into R?,
see [205, 220, 221].

3 Links and knotted tori
3.1 The linking coefficient
Definition of the linking coefficient

Fix orientations of S?, S%, S™ and D™ P. Assume that m > ¢+ 3 and
f:S8PUS? — S™ is an embedding. Take an embedding g : D"~ 7 — S™
such that gD™ 7 intersects fS? transversally at exactly one point with
positive sign (Figure 3.1). Then the restriction of g to D™~ 7 is an
orientation preserving homotopy equivalence

h:§mat L gm _ fga (3.1)
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gD™—4 f(z,y)
Q fy
fsP
fz

fSe

Fig. 3.1.
oD™1 x §4 g
~ f(89)

Fig. 3.2.

The induced isomorphism of homotopy groups does not depend on g.
The linking coefficient is

Malf) = |57 L g pso 2 gneamt] g (gmoaty,

Clearly, A12(f) is indeed independent of h.

Analogously we may define \o1(f) € 7,(S™ P~1) for m > p+ 3. The
definition works for m = ¢+2 if the restriction of f to S?is PL unknotted
(this is always so for m > ¢ + 3 by Theorem 2.7(a)). Form =p+q+1
there is a simpler alternative definition.

Construction of a link with prescribed linking coefficient for
p<g<m-—2

Define f on S? to be the standard embedding into R™. Take any CAT
map @ : S? — 9D™ 1. Define the CAT embedding f on S? by

SP XL 9pm=4 x §9 C D™ x §9 C R™,

where ¢ : SP — S7 is the equatorial inclusion and the latter inclusion is
the standard one. See Figure 3.2. Clearly, Aa2(f) = ¢.
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f ,
@ gp D o

Fig. 3.3. Connected sum

If m > £+ ¢+ 2, then ¥ : m,(Sm~971) — 7r5+q+1_m is an isomor-
phism.

Consider the commutative group structure on Emb™ (SPL.S7), defined
by ‘connected sum’ (Figure 3.3) in [71, 73] for m — 3 > p, q.

Theorem 3.1 (The Haefliger-Zeeman theorem). If 1 < p < g, then the
map

Y%Az : Emb™(SP U ST) — 775+q+1,m

is an isomorphism for m > £ +q+2 and for m > 37" +2, in the PL and
DIFF cases respectively.

The surjectivity of A2 is proved above. The injectivity is proved in
(67, 217], or follows from the Haefliger-Weber theorem (Theorem 5.5)
and the deleted product lemma 5.3(a) below.

By Theorem 3.1 we have the following table for m > ?’2—‘1 + 2.

m |2¢+2 2¢+1 2¢ 2g—1 29—2 2¢—3 2¢—4

Emb™(STUS7) | 0 Z Ly Ly Lo 0 0

The stable suspension of the linking coefficient can be described alter-
natively as follows. For an embedding f : SP U .S? — S™ define a map

f:8P x 81— Sm1hy
= _ Jr—fy

For p < ¢ < m — 2 define the a-invariant by

alf) =[f] € [S? x 89, 8™ 7Y = 7y o (S™ ) 2 S, iy

~
u*
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SP x S SP x x = Sp+a
=) - N

y x S4

Fig. 3.4.

The second isomorphism in the formula for a(f) is given by the
SPXST ~y gptaq
ERVED

is the quotient map (Figure 3.4). The map v* is an isomorphism for
m>q+2.

(For m > g+3 this follows by general position and for m = ¢+2 by the
cofibration Barratt-Puppe exact sequence of the pair (SP x S, 5PV S7)
and by the existence of a retraction X(SP x §7) — E(SP Vv §9), cf. [122,
§3).)

By [100, Lemma 5.1] we have a = £3°°\15. Note that the a-invariant
can be defined in more general situations [104].

Freudenthal suspension theorem. The map v : SP x §¢ —

3.2 Borromean rings, the Whitehead link and the trefoil knot

An analogue of the Haefliger-Zeeman theorem holds for links with many
components. However, the collection of pairwise a-invariants (or even
linking coefficients) is not injective for 2m < 3n + 4 and n-dimensional
links with more than two components in R™. This is implied by the
following example.

Example 3.2 (The Borromean rings). The Borromean rings
G2l—1 | g2l-1 | g2l-1 _, R3l

form a nontrivial embedding whose restrictions to 2-componented sub-
links are trivial. ([68, 4.1], [67], cf. [125])

Consider the space R3 with coordinates

(l’,y,Z) = (1'17“-axlaylv--'aylazl7"'7zl)-

The (higher-dimensional) Borromean rings are three embedded spheres
(Figures 3.5 and 3.6(b)) given by the equations

=0 y=20 d z=0
, an
y?+22=1 224222 =1 22422 =1



Embedding and knotting of manifolds in Euclidean spaces 271

22(2’1...21)

Fig. 3.5.

The following classical example shows that the invariant
a=E£I%N\p : Emb™(SP USY) — 75 01 m

can be incomplete for m < & + q + 2 and links with two components,
i.e. that the dimension restriction in the Haefliger-Zeeman theorem is
sharp.

Example 3.3 (The Whitehead link). The Whitehead link
w e S2l—1 L S2l—1 N R?)l
is nontrivial, although a(w) = L*°A3(w) = 0.

The Whitehead link is obtained from Borromean rings by joining two
components with a tube (Figure 3.6(w)). We have

afw)=0 but Aa(w)=[u,u] #0 for [#1,3,7.

Cf. [67, §3]. Note that for [ = 1, 3,7 the Whitehead link is still nontrivial,
although A1a(w) = X271 (w) = 0 (again, see [67, §3]).
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Fig. 3.6.

Example 3.4 (The trefoil knot). The trefoil knot S~ — R3! is not
smoothly trivial (but is PL trivial for I > 2) [68, 73].

The trefoil knot is obtained by joining the three Borromean rings by
two tubes (Figure 3.6(t)).

If we take a cone or a suspension over any codimension 2 knot, then we
obtain a PL embedding f of a ball or of a sphere which is not smoothable,
i.e. is not PL isotopic to a smooth (not necessarily standard) embedding.
This is so because f is not locally flat. ¥ Observe that for m > n + 3
the suspension extension S™ — R™ of any knot S"~! — R™! is PL
isotopic to the standard embedding and is therefore smoothable.

Example 3.5 (The Haefliger torus). There is a PL embedding S?* x
S%F — RO*+1 which is (locally flat but) not PL isotopic to a smooth
embedding [68], [14, p. 165], [13, 6.2].

In order to construct the Haefliger torus take the above trefoil knot
G4k=1 _, RO* Extend this knot to a conical embedding D* — RO+,
By [68], the trefoil knot also extends to a smooth embedding S x
S2k _ DAk R*+! (Figure 3.7). These two extensions together form
the Haefliger torus (Figure 3.8).

3.3 A classification of knots and links below the metastable
range
Let C3"~9 := Embp;pp(S?). The ‘connected sum’ commutative group
structure on Cy"~9 was defined for m > g + 3 in [71], cf. [73]. Theorem
2.7(b) states that C;"~% = 0 for 2m > 3¢ + 4. It is known [71, 129, 107]
that

2k+1 ~ 2k+2 3~ 2k _
O4k—1 =7, C4k+1 &L, Cy=1Zrz, Ci_5=0,

t Recall that an embedding N C R™ of a PL n-manifold N is locally flat if each
point € N has a closed neighbourhood U such that (U, U N N) = (D™, D").
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Fig. 3.7.

disk with
handle

trefoil
knot

Fig. 3.8.
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while

Cestd =7y for s>0 and Cgt' 27,6 7Zs.
Theorem 3.6.
(a) [73], cf. [63] If p,q < m — 3, then
Emb;pp(SP U ST) = Embp, (SPUSY) © C 1@ C)' P,

(b) [78, Theorem 10.7], [186] If p < ¢ < m — 3 and 3m > 2p + 2q + 6,
then for large enough M

Emb7; (5P U S9) 2 m,(S™ ) @ mpigi2—m (Virrm—p—1,11)-

The isomorphism in Theorem 3.6(b) is given by the sum of Aja-
invariant and the S-invariant [186].

By Theorem 3.6(b) (and its proof) the invariant A2 @ A1 is injective
for I > 2 and PL embeddings S?~11S?~1 — R its range is isomorphic
to m_1(S') @ Z;y. However, this invariant is not injective in other
dimensions.

The set Emb™(S™ U --- U .S™) for m > n; + 3 has been described in
terms of exact sequences involving homotopy groups of spheres [71, 73],
of. [113, 63)].

3.4 Knotted tori

Many interesting counterexamples in the theory of embeddings [9, 106,
87, 203, 195, 14, 13, 130, 181, 183] are embeddings S? x S?7 — R™,
i.e. knotted tori. Classification of knotted tori is a natural next step
(after the link theory of [73]) towards classification of embeddings of
arbitrary manifolds: it gives some insight or even precise information
concerning the general case (cf. [87] and [77], [90, §12], [199], see [176])
and reveals new interesting relations to algebraic topology.

Also, since the general knotting problem is recognized to be unsolv-
able, it is very interesting to solve it for the important particular case
of knotted tori.

We use the notation

KT[::/L(],CAT = Embg}AT(SP X Sq).

Notice the change in the role of p in this subsection compared with the
previous ones.
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F(SP x x)
(= o=
annulus
SP x I f +g
g9
g(SP x )
Fig. 3.9.

From the Haefliger-Zeeman isotopy theorem (Theorem 2.8(b)) it fol-
lows that KT}, = 0 for p < ¢ and m > p + 2¢ + 2. The dimension
restriction in this result is sharp by Example 2.10 (the Hudson torus).

Theorem 3.7 (Group structure theorem). The set KT}", has a com-
mutative group structure for m > 2p 4+ q + 3 in the smooth case and
m > max{2p+ ¢+ 2,q + 3} in the PL case [183].

Idea of the proof. See Figure 3.9. By [183] under the dimension assump-
tions for any embedding f : SP x S7 — R™ there is a web, i.e. an
embedding u : DPt! — R™ such that

u(DPTYY N f(SP x §9) = w(dDPT) = f(SP x 1).

Moreover, a web is unique up to isotopy.

Now take two embeddings fo, fi : SP x §9 — R™ and their webs Dg“
and DY, Join the centres of DE™' and D?*! by an arc. Construct an
embedding ODP*! x I — R™ ‘along this arc’ so that

ODPTL % TN fi(SP x §9) = ODP x i = fi(SP x 1) for i=0,1.

Take a ‘connected sum’ of fy and f; ‘along ODP+! x I’. The resulting
embedding SP x §7 — R™ is the sum of fy and f;. O

Theorem 3.8 ([77, 87, 199]).

Z 1<p<
+2¢+1 ~ (9) =p<gq
KT;ngL :{ q .

and

KTV i ip =Ly for 1<p<q-2.
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oD™ 4 x S
\

Fig. 3.10.

The theorem follows from Theorem 2.13 (as well as from Theorem
3.9 below). In the PL case of Theorem 3.8 for p = ¢ we only have a
one-to-one correspondence of sets (because Theorem 3.7 does not give a
group structure for such dimensions). A description of KT. 2615_1’%7 DIFF
is given after Theorem 2.14.

This result can be generalized as follows.

Theorem 3.9 ([181, Corollary 1.5.a]). If 2m > 3¢+ 2p + 4 or 2m >
3q+ 3p+4, in the PL or DIFF cases respectively, then

KTZT;] 2 g (Vin—q,p+1) ® Tp(Vin—p,g+1)-

Note that m,(Vin—p,q+1) = 0 for m > 2p+ ¢ + 2 (which is automatic
for p < g and 2m > 3p + 3¢ + 4). Theorem 3.9 follows from Theorems
5.5, 5.6 and the deleted product lemma 5.3(b) below; it was proved for
2m > 3p+ 3¢+ 4 and m > 2¢g + 3 in [11]. For m > 2p + q + 2 there is
an alternative direct proof [183], but for m < 2p+ ¢+ 2 (when no group
structure exists) no proof is known of Theorem 3.9 that does not refer
to the deleted product method. For an application see [23].

Let us construct a map 7 : mg(Vin—gps1) — KT},

mand in Theorem 3.9. Recall that 74 (V;;,—q,p+1) is isomorphic to a group
of CAT maps S? — V,;,_4p+1 up to CAT homotopy. The latter maps
can be considered as CAT maps ¢ : S7x SP — 90D™ 9. Define the CAT
embedding 7(¢) (Figure 3.10) as the composition

giving one sum-

P x §9 ZXP2 gpm=a G4 = D=9 % §9 ¢ R™,

Let us present some calculations based on Theorem 3.9 and the cal-
culation of 7y (V4,5) [140, 36]. Recall that

Tq(Vin—q,2) =2 mg(S™ 1) @ m (™ 772) for m — ¢ even
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(and mq(Vin—g,2) = T3, 11 BTy 19y, for m—q even and 2m > 3q+6)
because the sphere S™~%~! has a nonzero vector field. In all tables of
this subsection u¥ means (Z,,)".

The Haefliger-Zeeman theorem suggests the following question: how
can we describe KT{:Lq? We have the following table for 2m > 3¢ + 6
and for 2m > 3¢ + 7, in the PL and DIFF cases respectively.

m |2¢+2 2¢+1 2¢ 2g—1 2g—2 2¢-3
KT, qeven | Z 2 22 22 24 0
KTy, qodd 2 Z®2 4 2024 2 0

Theorem 3.8 and [130] suggest the following problem: describe K .
for m < 2q 4+ p. We have the following table for ¢ > 4 or ¢ > p+ 4, in
the PL or DIFF cases respectively.

p | 1 2<p<q-2 qg-1 ¢
KTpi%, q=4s 2 0 2 0
KTph2 g=4s+2| 2 2 22 22
KTPi?, q=4s+1 | Z®?2 22 Z®2* 24
KTPi?, q=45s—1|Z®?2 4 Zo4 42

Classification of smooth embeddings SP x S? — R™ for 2m < 3p +
3q + 3, as well as PL embeddings for 2m < 2p + 3¢ + 3, is much harder
(because of the existence of smooth knots and the incompleteness of the
Haefliger-Wu invariant). However, the statements are simple.

Theorem 3.10.
(a) [183] Ifp<q, m>2p+q+3 and 2m > 3¢+ 2p + 4, then
KT prrr = KT, 6 Cp P 2 my(Vinegp1) © C ",
(b) [175] If 1 < p <2k — 2, then
KT;?,]Zk—l—p = Tap—1-p(Vortpt1,p+1) © Z.

Theorem 3.11 (cf. [183]).
(a)

KTIG,IZ-I:iLDIFF 25 o ® Mo BLD Gy, (DIFF)
where k > 1 and Gy, is an abelian group of order 1, 2 or 4, and

k Il
KT16,4;:i1,PL X5 o BTy DL (PL)
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(b) For each k > 0 we have
KTlﬁ,]ch_—?-l,PL = KTF,IZ-IL_—?:LDIFF =75 0 7

for some integers a = a(k), b = b(k) such that

0 ke{1,3}
1 k+1 is not
a+2b— k(5 ® Zy) — rk(n3),_, @ Zy) = a power of 2

lor0 k+1>8is

a power of 2.

For a generalization of this theorem and its relation to homotopy
groups of Stiefel manifolds see [183, 136].

By the theorem just given and [140, 196, 36] (see the details in [183])
we have the following table.

! 2 3 4 5
KT pp |Z2®2 4 Zo24@2 22
! 6 7 8 9 10

KT . | 2 2 ze2uoe2 2322 262

The following strong result was proved using a clever generalization
of methods from [183].

Theorem 3.12 ([25]). Assume that

4 3
p <gq, p+§q+2<m<p+§q+2 and m > 2p+q+ 2.

Then the group KT, prpp 1S infinite if and only if either ¢ + 1 or

p+q+1 is divisible by 4.

We conclude this subsection with some open problems.

e Find C,7 "%, at least for particular cases.

e Describe KT§,§§§+17D1FF. Note that #KT§£§§+17D1FF € {2,3,4}
[175], cf. Theorem 3.9(b).

e Find K Tgf;};’ 1, DIFF- In this case the Whitney invariant is a surjec-
tion onto Zs, and both preimages consist of 1 or 2 elements.

e Find K Ti ZTDl ;pp for ¢ > 2. In this case the image of the Whitney
invariant is Z V Z for q even, and is either Zy V Zy or Zo @ Zs for q
odd. (Here, if G is a group, G V G is defined by

GVG={(z,y) € G® G | cither x =0 or y = 0}.)
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Fig. 4.1.

The nonempty preimages of the Whitney invariant consist of 1 element
for ¢ odd, of 1, 2, 4 elements for ¢ even > 4, and of 1, 2, 3, 4, 6, 12
elements for ¢ = 2.

It would be interesting to find an action of the group of CAT auto-
homeomorphisms of S? x S? on KT}, o 47 (E. Rees). The above classi-
fication of knotted tori could perhaps be applied to solve for knotted tori
the Hirsch problem about the description of possible normal bundles for
embeddings of manifolds into R™, cf. [130]. The same remark holds for
the following Hirsch-Rourke-Sanderson problem [80, 160], cf. [195, 200]:
which embeddings N — R™*1 qre isotopic to embeddings N — R™?

4 The van Kampen obstruction
4.1 The embeddability of n-complexes in R2"

By the general position theorem (Theorem 2.1) the first nontrivial case
of the embedding problem is the investigation of embeddability of n-
polyhedra in Euclidean space R?", cf. Example 2.2. For n = 1 this
problem was solved by the Kuratowski criterion [109], see also [151, §2],
[182] and references there. However for n > 1, such a simple criterion
does not exist [165]. (Note that there are infinitely many closed non-
orientable 2-surfaces that do not embed into R?, and these do not contain
a common subspace non-embeddable into R?.)

In [197] an obstruction to the embeddability of n-polyhedra in R?"
was constructed for arbitrary n (see also a historical remark at the end
of Section 5).

To explain the idea of van Kampen, we sketch a proof of the nonpla-
narity of K5 (i.e. of the complete graph with 5 vertices, see Figure 4.1).
Take any general position map f : K5 — R2. For each two edges o, 7
the intersection fo N fr consists of a finite number of points.
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Let vy be the sum mod 2 of the numbers | foN f7|, over all non-ordered
pairs {0, 7} of disjoint edges of K.

For the map f shown in Figure 4.1, vy = 1. Every general position
map f : K5 — R? can be transformed to any other such map through
isotopies of R? and ‘the Reidemeister moves’ for graphs in the plane
from Figure 4.2.

This assertion is proved analogously to the Reidemeister theorem for
knots. We will not prove it, since it is needed only for this sketch proof
and not for the rigorous proof. For each edge of K5 with vertices a, b,
the graph K5 — {a, b}, obtained by deleting from Kj the vertices a,b
and the interiors of the edges adjacent to a, b, is a circle (this is the very
property of K5 we need for the proof). Therefore vy is invariant under
the ‘Reidemeister moves’. Hence vy = 1 for each general position map
f : K5 — R2. So K5 is nonplanar. (For a proof without use of the
assertion on the Reidemeister moves see below or [174].)

Similarly, one can prove that the graph K3 3 (three houses and three
wells) is not embeddable into R? and that the 2-skeleton of the 6-simplex
is not embeddable into R* (again, compare this with Example 2.2).

4.2 Ramsey link theory

Now let us discuss some generalizations of the above proof, which are
interesting in themselves and are used in Section 7. From that proof one
actually gets a stronger assertion. Let e be an edge of K5 and X' the
cycle in K35, formed by the edges of K5 disjoint with e. Then K5 — é
embeds into R? (Figure 4.3) and for each embedding g : K5 — é — R?
the g-images of the ends of e (which form a 0-sphere gde = ¢g%%) lie on
different sides of g3?'.

Moreover, let e be a 2-simplex of the 2-skeleton A2 of the 6-simplex
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Fig. 4.3. Embedding of K5 — é

and P = A% — é. Then P embeds into R*. Let ! = e and %2 be
the sphere formed by 2-faces disjoint with e. Then for each embedding
P — R* the images of these spheres link with a nonzero (more precisely,
with an odd) linking number [45].

Using the above idea one can prove the following.

Theorem 4.1 ([164, 32]). For any embedding Ks — R? there are two
cycles in Kg whose images are linked with an odd linking coefficient.

For generalizations see [158, 137, 12, 184, 144].

4.8 The van Kampen obstruction mod 2

Fix a triangulation T of a polyhedron N. The space
T=U{oxTeTxT|ont =0}

is called the simplicial deleted product of N. By the simplicial deleted
product lemma (Lemma 5.4 below) the equivariant homotopy type of T
depends only on IV, so we write N instead of T in this section. Consider
the involution ¢ : N — N defined by ¢(z,y) = (y,z). Let N* = N/t.

For any general position PL map f: N — R? and disjoint edges o, 7
of T', the intersection f(o) N f(7) consists of a finite number of points.
Let

vi(o,m) = [f(o) N f(7)| mod 2.

Then vy is an element of the group C?(N*;Zs) of vectors (which are
called cochains) with components from Zy indexed by 2-simplices of
N*, i.e. by non-ordered products of disjoint edges of N.

This cochain v is invariant under isotopy of R? and the first four
‘Reidemeister moves’ (Figure 4.2, I-IV). The fifth ‘Reidemeister move’
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(passing of fr through fa, see Figure 4.2,V) adds to vy the vector that
assumes value 1 on the class of 2-simplex o x 7 for a € o, and value
0 on the other 2-simplices of N*. This vector is called an elementary
coboundary and is denoted by &[a x 7]. Denote by B?(N*;Zs) the sub-
group of C?(N*;Zs) generated by elementary coboundaries. The van
Kampen obstruction mod 2 is the equivalence class

v(N) := [vf] € H*(N*;Zy) = C*(N*; Zs)/B*(N*; Zs).

(Since dim N* = 2, it follows that C? = Z2))

Sketch of a prooft that v(N) is independent of f. We follow [172, Lem-
ma 3.5]. Consider an arbitrary general position homotopy F : N x [ —
R? x I between general position maps fo, f1 : N — R2. Colour a pair
a x 7 in red if F(a x I) intersects F'(7 x I) in an odd number of points.
Then vy, — vy, is the sum of Y d(a x 7) over all red pairs a x 7. Hence
vy is independent on f. O
Remark. Clearly, v(IN) = 0 for all planar graphs N.

Analogously, one can define the mod 2 van Kampen obstruction
v(N) € H*"(N*; Zy)

which obstructs embeddability of an n-polyhedron N into R2".

4.4 The integral van Kampen obstruction

Fix a triangulation of N and define N, t and N* as above. Choose an
orientation of R?" and orientations of the n-simplices of N. The latter
give orientations on 2n-simplices of N. Clearly, t(o x 7) = (—1)"(7 x &)
(the case n = 1 helps to check the sign) see [172, p .257].

For any general position map f : N — R?" and any two disjoint n-
simplices o, 7 of N the intersection f ()N f(7) consists of a finite number
of points. Define the intersection cochain Vi € CQ"(]V ) by the formula

Vi(o,7) = fo- fr:= Z sign P.

Pefonfr
Here sign P = +1, if for the positive n-bases s1,...,s, and t1,...,t, of ¢
and 7, respectively, we have that fsy,..., fsn, ft1,..., ft,, is a positive

2n-base of R?"; and sign P = —1 otherwise. Clearly [172],
Vi(o x 1) = (=1)"Vi(r x 0) = Vi(t(o x 7)).

t This argument does not use the assertion about ‘the Reidemeister moves’, which
is not proved here.
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So V; induces a cochain in the group C?"(N*). Denote this new cochain
by the same notation V; (we use the old V; only in the proof of Lemma
4.4, so no confusion will arise).

The van Kampen obstruction is the equivalence class

V(N) := [V§] € H*™(N*) = C*"(N*)/B*"(N*).

This class is independent of f (the proof is analogous to that for v(N)).
Clearly, V(N) is an obstruction to the embeddability of N into R?".
One can easily show that V(N) depends on the choice of orientations
of R?" and of the n-simplices of N only up to an automorphism of the
group H?"(N*).
Remark. The author is grateful to S. Melikhov for indicating that in [49,
108, 12] the signs are not accurate, so that the van Kampen obstruction
for odd n erroneously assumes its values in in H%Q(N ;Z) (where the

involution acts on N by exchanging factors and on Z by (—1)").

4.5 The van Kampen-Shapiro- Wu theorem

Theorem 4.2. If an n-polyhedron N embeds into R?", then V(N) = 0.
For n # 2 the converse is true, whereas for n = 2 it is not [197, 172,
212, 49].

The necessity of V(N) = 0 in Theorem 4.2 was actually proved in the
construction of the van Kampen obstruction. Sufficiency in Theorem
4.2 for n > 3 follows from Lemmas 4.4 and 4.5 below, and for n = 1 is
obtained using the Kuratowski graph planarity criterion. A counterex-
ample to the completeness of the van Kampen obstruction for n = 2 is
presented in Section 7.

Definition 4.3. A map g : N — R™ is of a polyhedron N is called a
nondegenerate almost embedding if there exists a triangulation T of N
such that g|, is an embedding for each o € T and ga N gB = B for each
axfcC T.

Lemma 4.4. If N is an n-polyhedron and V(N) = 0, then there exists
a general position nondegenerate almost embedding g : N — R?™ cf. [49,
Lemmas 2 and 4J.

Sketch of the proof. Let T be a triangulation of N. Let ¢ : N — R?"
be a map linear on the simplices of T'. Then ¢ is nondegenerate. The
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condition V(N) = 0 implies that V,, € C2"(N) is a symmetric cobound-
ary. Hence V,, is the sum of some ‘elementary’ symmetric coboundaries
§(o™ x v + St(o™ x v™71) over some 0" x V71 € T. Applying
the van Kampen finger moves (higher-dimensional analogues of Figure
4.2.V) for all pairs 0™ x "~ from this sum we obtain a general posi-
tion nondegenerate map f : N — R2?" such that fa - f3 = 0 for each
o, B € T.

Then by induction on pairs of n-simplices of T and using the Whitney
trick (see below) in the inductive step we obtain the required map g.
See the details in [49]. O

Let us illustrate the application of the Whitney trick by the following
argument.

Sketch proof of Theorem 2.8 in the smooth case. We must show that ev-
ery smooth n-manifold N smoothly embeds into R?". For n < 2 the
proof is trivial, so assume that n > 3.

Using the higher-dimensional analogue of the first Reidemeister move
(Figure 4.2.1), any smooth general position map f : N — R?" can be
modified so that a single self-intersection point with a prescribed sign
will be added. Hence there exists a general position map f : N — R?"
whose self-intersections consist of an even number of isolated points,
with algebraic sum zero.

In order to conclude the proof, we ‘kill’ these double points in pairs.
This procedure is analogous to the second Reidemeister move (Figure
4.2.1T) and is called the Whitney trick. More precisely, take two double
points of opposite sign:

r1,y1,T2,92 € N sothat  f(z1) = f(z2), [f(y1) = f(y2)-

Join z; to y; and z9 to y2 by arcs l; and I3 so that these double points
have ‘opposite signs’ along these arcs (Figure 4.4).

By general position (n > 2), we may assume that the restrictions f|;,
and f|;, are embeddings and that I; and I3 do not contain other double
points of f. Since n > 3, by general position we can embed a 2-disc C
into R?” so that

aC = f(L) U f(lz) and Cnf(N)=aC

(such a disc D is called Whitney’s disc). We can move the f-image of a
regular neighbourhood of /; in IV ‘along’ C so that we ‘cancel’ the double
points f(xz1) = f(x2) and f(y1) = f(y2). For details see [1, 145]. O
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Fig. 4.4. The Whitney trick
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Fig. 4.5. A nondegenerate almost embedding

Lemma 4.5 (The Freedman-Krushkal-Teichner lemma). If there is a
nondegenerate almost embedding ¢ : N — R?™ of an n-polyhedron N
and n > 3, then there is an embedding f : N — R?*" [/9, Lemma 5],
cf. [207, §6], [179].

Proof. Take a triangulation T as in Definition 4.3. We may assume by
induction that paNps = p(anB) for each a, 3 € T such that NG # (
except for (a, B) = (¢™,7™). In addition, we may assume that @™ Ne7"
is a point, p say. Let v be a point of ¢™ N7™. Take PL arcs [y C v U P
and I C vU 79 joining v to ¢~ 'p and containing no self-intersection
points of ¢ in their interiors (Figure 4.5).

Then (I3 Uly) is a circle. Since n > 3, this circle bounds a PL
embedded 2-disc D C R?".

We have by general position (n+2 < 2n) that DN = (). There is a
small neighbourhood D?" of D in R?" rel p(v) that is PL homeomorphic
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to the 2n-ball and such that ¢~!D?" is a neighbourhood of I3 U ly in
N relv and is homeomorphic to the wedge D™ Vv D™. By the “unknotting
wedges theorem” [114], the restriction ¢ : dp~1D?** — D" is unknot-
ted. Hence it can be extended to an embedding h : dp~!D?** — D?",
In order to conclude the proof, set f equal to ¢ on N — dp~1D?" and
to h on Op~tD?". O

Observe that for the embedding f constructed above we have fv:eq ®
onT'.

4.6 Generalizations of the van Kampen obstruction

The idea of the van Kampen obstruction can be applied to calculate
the minimal m such that a polyhedron, which is a product of graphs,
embeds into R™ [184], cf. [52, 6].

Analogously, one can construct the van Kampen- Wu invariant U(f) €
H?"(N*) of an embedding f : N — R?7+1,

Theorem 4.6. If embeddings f,g: N — R*"t! of a finite n-polyhedron
N are isotopic, then U(f) = U(g). For n > 2 the converse is true,
whereas for n =1 it is not [214].

Note that embeddings f,g: N — R3 of a graph N such that U(f) =
U(g) are homologous [194].

We shall not present a proof of this theorem in this paper. For n > 2
it is proved analogously to Theorem 4.2 using the ideas of [153, §12],
and for n =1 it is trivial.

As was pointed out by Shapiro, when V(XN) = 0 (and hence N is
embeddable in R?" for n > 3), one can construct the ‘second obstruction’
to the embeddability of NV in R?"~!, etc, cf. Section 5.

For a subpolyhedron A of a polyhedron N one can analogously define
the obstruction to extending a given embedding A C 0B™ to an embed-
ding N — B™ [49]. This relative van Kampen obstruction is complete
for n # 2 (for n > 3 see [214] and for n = 1 this follows from a relative
version of the Kuratowski criterion [182]) and is incomplete for n = 2
(see Section 7).

Remark. For the van Kampen obstruction for approximability by embed-
dings, see [22, §4], [152], [7, §4] [156, 127, 185].
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5 The Haefliger-Wu invariant
5.1 Basic idea

The ideas of the ‘complement of the diagonal’ and the Gauss map play a
great role in different branches of mathematics [57, 198]. The Haefliger-
Wu invariant is a manifestation of these ideas in the theory of embed-
dings.

The idea of taking the complement of the diagonal originated from two
celebrated theorems: the Lefschetz fixed point theorem and the Borsuk-
Ulam antipodes theorem. In order to state the latter denote the antipode
of a point x € S™ by —x and recall that a map f : S™ — S™ between
spheres is equivariant (or odd) if f(—x) = —f(z) for each z € S™.

Theorem 5.1 (The Borsuk-Ulam theorem).

(a) Forany map f : 8™ — R™ there exists x € S™ such that f(x) = f(—z).

(b) There are no equivariant maps S™ — S™~1.

(c) Every equivariant map S™ — S™ is not homotopic to the constant
map.

Part (c) is nontrivial, see e.g. the proof in [146, 8.8], and we do not
prove it here. We show briefly how part (c) implies the other assertions.

Sketch of a deduction of (a) and (b) from (c). Part (b) follows from (c)
because if ¢ : S — S"~! is an equivariant map, then the restriction
©|gn—1 extends to S™ and therefore is null-homotopic.

In order to present the idea of the Gauss map in the simplest case,
let us deduce (a) from (b). Suppose (a) does not hold, i.e. there exists a
map f:S™ — R™ which does not identify any antipodes. Then a map

rs no_, n—1 is well- n ry — f(ZC)—f(—LL’)
f:S S s well-defined by f(x) F@) = o)l

Evidently f is equivariant, which contradicts (b). O

Construction of Example 2.2. We present a simplified construction in-
vented by Schepin [168, Appendix] and D. Repovs together with the
author [155] (and possibly others). Let T" be a triod, i.e. the graph with
four vertices O, A, B, C and three edges OA, OB and OC. The product
T™*+1 is a cone over some n-polyhedron N.

In order to prove that N does not embed into R2" it suffices to prove
that T7*! does not embed in R2"*!. Suppose to the contrary that there
is an embedding f : 77! — R2**+1. Let p: D? — T be a map which
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Fig. 5.1. The map p: D> — T

Fig. 5.2. The deleted product

does not identify any antipodes of S* = 9D? (e.g. the map from Fig-
ure 5.1). It is easy to check that the map p"*!|ypente : OD?"+2 —
T™*+1 also does not identify any antipodes. Then the composition of
p"t! and f again does not identify antipodes. This contradicts Theo-
rem 5.1(a). O

5.2 Definition of the Haefliger- Wu invariant

The deleted product Nofa topological space N is the product of N with
itself, minus the diagonal:

N={(z,y) e Nx N |z #y}.

This is the configuration space of ordered pairs of distinct points of N.
_Now suppose that f : N — R™ is an embedding. Then the map
f: N — S™~!is well-defined by the Gauss formula

~ _ flx) = f(y)
I ) = TF = fwl

This map is equivariant with respect to the involution ¢(z,y) = (y, z)
on N and the antipodal involution a,,_; on S™~!. Thus the existence
of at least one equivariant map N — 8™ lisa necessary condition for
the embeddability of N in R™.
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f(@,y)
fz

Fig. 5.3. The Gauss map

Consider isotopic embeddings fy, f1 : N — R" and an isotopy f; : N X
I — R™ between them. The homotopy ﬁ is an equivariant homotopy
between ]?0 and ]?1 Hence the existence of an equivariant homotopy
between ﬁ) and fl is necessary for embeddings fo, f1 : N — R™ to be
isotopic.

Definition 5.2 ([213, 66]). The Haefliger-Wu invariant o(f) of the
embedding f is the equivariant homotopy class of the map f.

(This is an application of the ‘h-principle’ idea [61, 2.1.E].)

Let 772}1*1(](7) — [N; 8™ 1., be the set of equivariant maps N —
S™~1 up to equivariant homotopy. Thus the Haefliger-Wu invariant is
a mapping

a = agar(N) : Embgap(N) — 7l (V)

defined by a(f) = [f] € 7™ L(N).

eq

5.3 Calculations of the Haefliger- Wu invariant

It is important that the set wg—l(ﬁ ) can be explicitly calculated in
many cases using methods of algebraic topology. Let us give several
examples (see also [51], [30, start of §2], [69],[70, 1.7.1] [10, 11], [1, 7.1]
[153, 181]. We denote by ‘=’ a bijection between sets.

Theorem 5.3 (The deleted product lemma).

(a) T L(SP SN 275 1y, formZ g+ 2.
(b) 7™ H(SP % 89) = 71y (Vin—g,p+1) ® Tp(Vin—p,q+1) for 2m > 3q+2p+4.

The deleted product lemma will be proved in Section 6; part (b) fol-
lows from the torus lemma (Lemma 6.1). From the proof of part (a) it
follows that the a-invariants of Sections 3 and 5 do indeed coincide for
N = SP )59,
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Lemma 5.4 (The simplicial deleted product lemma). Fiz a triangula-
tion T of a polyhedron N. The simplicial deleted product

T:U{JXTGTXT|UQT=®}

is an equivariant strong deformation retract of]v [172, Lemma 2.1], [86,

§4/.

Sketch of a proof. Let E,. := |J(Uy x U;), where the union is taken
over all mutually disjoint U,, U, that are nonempty faces of o, 7 respec-
tively. Then

o X T Eyr xdiag(oN ).

So for ¢ N7 # @ there is an equivariant strong deformation retraction
o x 17 —diag(c N7) — E,,. These retractions agree on intersections, so
together they form an equivariant strong deformation retraction N —
T. O

Now we sketch how to deduce in a purely algebraic way all the nec-
essary conditions for embeddability and isotopy presented in Sections 2
and 4 from the ‘deleted product necessary conditions’.

Let N be a polyhedron (in particular, a smooth manifold). By Lemma
5.4 there exists an equivariant map N — Sm=Lif and only if there exists
an equivariant map T — S™~1. Define an S™~-bundle

" T x §m—1 gm—1 T
' (%y’S) ~ (y,a:,—s) (Z‘,y) ~ (y,x)
by v[(x,, s)] := [(z,y)]. The existence of an equivariant map T’ — S™~1

is equivalent to the existence of a cross-section of «y; the existence of an
equivariant homotopy between fo and f1 is equivalent to the equivalence
of the corresponding cross-sections of the bundle . Thus the existence
of either can be checked using methods of obstruction theory.

In particular, the Whitney and van Kampen obstructions (Sections 2
and 4) are the first obstructions to the existence of a cross-section of the
bundle 7 [214]; the Whitney and van Kampen-Wu invariants (Sections
2 and 4) are the first obstructions to an equivariant homotopy of ﬁ) and
f1 [214].

5.4 The completeness of the Haefliger- Wu invariant

However trivial the ‘deleted product necessary conditions’ may seem, the
material above shows that they are very useful. Thus it is very interest-
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ing to find out for which cases they are also sufficient for embeddability
and isotopy, i.e. for which cases the following assertions hold:

(e) If there exists an equivariant map & : N — S™~1 then N embeds
into R™.

(s) If there exists an equivariant map P : N — S™1 then there exists
an embedding f : N — R™ such that fzeq .

(i) If fo, f1 : N — R™ are two embeddings and ﬁ) g fl, then fy and f;
are isotopic.

Clearly, (s) and (i) assert the surjectivity and injectivity, respectively,
of a. Obviously, (s) implies (e).
Remark. From (e) it follows that if N TOP embeds into R™, then N PL
or DIFF embeds into R™: in particular, the PL or DIFF embeddability
of N into R™ does not depend on the PL or DIFF structure on N.
Condition (i) has an analogous corollary.

Thus the surjectivity and injectivity of « are directly related to the
embedding and knotting problems.

Theorem 5.5 (The Haefliger-Weber theorem; cf. [70, Theorem 1°], [207,
Theorems 1, 1’]). For embeddings N — R™ of either an n-polyhedron
or a smooth n-manifold N the Haefliger- Wu invariant is

e bijective if 2m > 3n + 4;
o surjective if 2m = 3n + 3.

The metastable dimension restrictions in the Haefliger-Weber theorem
are sharp in the smooth case, as shown by the trefoil knot (Example 3.4)
and other examples of smooth knots ([71]), and by Theorems 2.11(c),
(d) (because the PL embedability N — R2?*2 implies the existence of
an equivariant map N — §2+1 ¢ $31=2). Such dimension restrictions
appeared also in the PL cases of the classical theorems on embeddings
of highly-connected manifolds and of Poincaré complexes (see Theorems
2.7 and 2.8 and [163, 18, 19]), but were later weakened to m > n + 3.

Since the 1960’s it has been conjectured by Viro, Dranishnikov, Kosch-
orke, Sziics, Schepin and others that in Theorem 5.5 the metastable
dimension restrictions can also be weakened to m > n+3 for the PL case
and connected N (possibly at the price of adding the p-fold Haefliger-
Wu invariant, see Section 5.6 below). This turned out to be false not
only for polyhedra (Examples 5.8(d) and 5.10(c) below) but even for
PL manifolds (Examples 5.8(b), 5.8(c) and 5.9(b) below). Surprisingly,
the metastable dimension restrictions can be weakened to m > n +
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3 for highly connected PL n-manifolds (less highly connected than in
Theorems 2.8, 2.12 and 2.13).

Theorem 5.6 ([181]). For embeddings N — R™ of a closed d-connected
PL n-manifold N, with m > n + 3, the Haefliger- Wu invariant is:

e bijective if 2m > 3n+ 3 — d;
e surjective if 2m =3n+ 2 —d.

For d = 1 we need only homological 1-connectedness in Theorem 5.6.

Observe that Theorem 5.6 is not quite the result expected in the
1960s, and that its proof cannot be obtained by direct generalization
of the Haefliger-Weber proof without the invention of new ideas. This
follows from the preceding discussion and the following two remarks.

Remark. The PL case of the Haefliger-Weber Theorem 5.5 holds for
polyhedra, but Theorem 5.6 holds only for highly enough connected PL
manifolds.

Remark. The same (3n — 2m + 2)-connectedness assumption as in the
surjectivity part of Theorem 5.6 appeared in the Hudson PL version
of the Browder-Haefliger-Casson-Sullivan-Wall embedding theorem for
closed manifolds (roughly speaking, it states that a homotopy equiva-
lence between PL manifolds is homotopic to a PL embedding, and it was
proved by engulfing) [89].

This assumption was soon proved to be superfluous (by surgery) [75,
92]. Tt was therefore natural to expect that the (3n—2m+ 3)-connected-
ness assumption in Theorem 5.6 is superfluous (Theorem 5.6 is proved
using a generalization of the engulfing approach). However, the examples
of non-injectivity of the next subsection (Examples 5.8(b), (c)) show that
this assumption is sharp.

In Section 8 we sketch the proof of surjectivity in Theorem 5.5 in the
PL case and present the idea of the proof of Theorem 5.6. Most of the
results of Sections 2, 3 and 4 are corollaries of Theorems 5.5 and 5.6,
although some of them were originally proved independently (sometimes
in a weaker form).

Corollary 5.7. If N is a homologically 1-connected closed smooth n-
manifold, then o5, prp(N) is injective for 2m = 3n+2, n =4s+ 2 and
surjective for 2m = 3n+ 1, n = 4s + 3.

Sketch proof of the corollary. Theorem 5.6 and smoothing theory [74,
1.6], [72, 11.1] imply the following.
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Let N be a closed d-connected (for d = 1, just homologically 1-
connected) smooth n-manifold and m > n + 3.

e If2m > 3n+2—d, then for each ® € 72~ ' (N) there is a PL embedding
f + N — R™ smooth outside a point and such that a(f) = @; a
complete obstruction to the smoothing of f lies in C]'7|".

e If 2m > 3n+3—d, then any two smooth embeddings fy, f1 : N — R™
such that «a(fo) = a(f1) can be joined by a PL isotopy, which is
smooth outside a point; a complete obstruction to the smoothing of

such a PL isotopy lies in C]*~".

The corollary follows from these assertions and C2F , = 0; seef [71,
8.15] and [129, Corollary C]. O

In Theorem 5.6 the surjectivity is not interesting for m < %. In-

deed, if 2250 > 3n42=d then ¢ > Z—1 and n > 6; hence N is a homotopy
sphere, so N = S™ and the surjectivity in Theorem 5.6 is trivial. But

the proof is not simpler for m > 5”4+ 6. the proof can also be considered

as a step towards the analogue of Theorem 5.6 for embeddings into man-
ifolds, which is interesting even for m < %. An analogous remark can
be made about the injectivity in Theorem 5.6.

The Haefliger-Weber theorem (Theorem 5.5) has relative and approx-
imative versions [70, 1.7.2], [207, Theorems 3 and 7], [152], which require
that a constructed embedding or isotopy extend or are close to a given
one. But Theorem 5.6 has such versions only under some additional
assumptions.

Remark.

(i) An interesting corollary of [109, 27, 28] was deduced in [214] for
graphs and in [179] for the general case: a Peano continuum N
embeds into R? if and only if there exists an equivariant map
N — St

(ii) An interesting corollary of [117] was deduced in [214]: embeddings
[9:N— R? of a Peano continuum N are isotopic if and only if

[ ~eq 9.

5.5 The incompleteness of the Haefliger- Wu invariant

Clearly, Sn ~¢q S™. Therefore the Haefliger-Wu invariant is not injec-
tive in codimension 2 (e.g. for knots in R?) and any smoothly nontrivial

t There is a misprint in [71, 8.15]: instead of “CZL“_Q = 0" it should be “Cg;:_Q =0".



294 A. B. Skopenkov

knot S™ — R™ demonstrates the non-injectivity of a';pp(S™). The
‘deleted product necessary conditions’ for embeddability or isotopy do
not reflect either the ambience of isotopy or the distinction between the
DIFF and PL (or TOP) categories. The same assertions hold for gener-
alized Haefliger-Wu invariants (see below) or ‘isovariant maps invariants’
[70], [1, §7].

Let us present other examples. All the examples in this subsection
hold for each set of the parameters k, [, m,n, p satisfying the conditions
in the statement.

Example 5.8 (Examples of non-injectivity). The following maps are
not injective:

a3l(52l_1 L SQl—l L SQl—l)’ a3l(52l—1 L SQl—l) and O‘%IFF(Sm_l);
abF(SP x §*=1) for p < k [181];

)
)

(c) a3F1(St x §2=1) if [ + 1 is not a power of 2 [183];
)

am ((S™ v S™) U §?m=2n=3) for n 4+ 2 <m < (3n+ 3)/2 [181].

Example 5.8(a) follows from the examples of the Borromean rings, the
Whitehead link and the trefoil knot as considered in Section 3. Examples
5.8(b), 5.8(c) and 5.8(d) are constructed below in Sections 6 and 7.

The construction (but not the proof [183]) of Example 5.8(c) is very
simple and explicit.

Construction of Example 5.8(c) in the PL case. Add a strip to
the Whitehead link wg, pr, (see Section 3), i.e. extend it to an embedding

wh 2 80 x 521 U D! x D31 — R3.

0 20—1__ a1 20—1
SOx DY =0D% x D7

This embedding contains connected sum of the components of the White-
head link. The union of wj and the cone over the connected sum
forms an embedding D! x S%~1 — R¥*!. This latter embedding can
clearly be shifted to a proper embedding. The PL Whitehead torus
W1,PL : St x §2=1 _, R3+1 ig the union of this proper embedding and
its mirror image with respect to R3! C R3*! (cf. the definition of i/ in
Section 6).

It is easy to prove that a(w1,pr) = a(fo), where fy is the standard
embedding [183]. It is nontrivial that wi py is not PL isotopic to the
standard embedding when [ + 1 is not a power of 2.

Remark. Example 5.8(a) for o (S%~1 U S%'=1) is based on the linking
coefficient. Example 5.8(c) is much more complicated because S! x $2/~1
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is connected, so the linking coefficient cannot be defined (the linking
coefficient for the restriction to S° x S?~! gives the weaker Example
5.8(b)). A new invariant [183] is therefore required.

Theorem 5.9 (Examples of non-surjectivity). For m > n + 3 the fol-
lowing maps are not surjective:

(a) a™(S™ U S™), if B ¢ m,(S™T"Y) — w8, 1 ., S not epimorphic,
e.g. for

nl| 6 9 12 13 14 21

3nt2 3n—1 3n 3n—1 3n+2 3n—1
2 2 2 2 2 2

10 13 18 19 22 31

(b) a™(S* x S"71), if m —n is odd and £ : 7,1 (S™T) — T w1
is not epimorphic [181], e.g. for

n| 7 10 13 14 15 22

3n—1 3n—4 3n—3 3n—4 3n—1 3n—4
2 2 2 2 2 2

10 13 18 19 22 31

(¢) A%k (57 x §%).

m

Here ¥ : 11 (S™) — mar42(S¥T2) = w7 denotes the stable suspension
mapping (n < k+2).

Example 5.9(a) follows from the formula oo = £X°° A5 and the con-
struction of a link with the prescribed linking coeflicient of Section 3.
Example 5.9(b) is constructed in Section 6.

Example 5.9(c) follows because oS5 (S%F x §2¥) is bijective by Theo-
rem 5.6 (or by [13, 69]) but as shown by the Haefliger torus (Example 3.5)
there exists a PL embedding S?* x % — RO*+1 that is not PL isotopic
to a smooth embedding.

Links give many other examples of non-injectivity and non-surjectivity
of a. From a link example, by gluing an arc joining connected compo-
nents, we can obtain a highly connected polyhedral example.

Theorem 5.10 (Examples of non-embeddability). There exists an equiv-
ariant map N — S™~1 and yet N does not CAT embed into R™ (hence
a@ ar(N) is not surjective), in the following cases:

(a) CAT=DIFF, m = n+ 3, n € {8,9,10,16} and a certain homotopy
n-sphere N;

(b) CAT=DIFF, m =6k — 1, n =4k and a certain (almost parallelizable
(2k — 1)-connected) n-manifold N ;
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(c) CAT=PL, max{3,n} < m < 3%2 and a certain n-polyhedron N
[121, 171, 49, 170, 58].

Example 5.10(a) follows from the existence of a homotopy n-sphere N
which is non-embeddable in codimension 3 [83, 113], cf. [149, §2], [118,
pp. 407-408] (because N = S™ topologically and so N ~eq ﬁ) Exam-
ple 5.10(b) follows from Theorems 2.11(c) and 2.11(d), while Example
5.10(c) is proved in Section 7 below.

Remark. In [179] it is proved that although the 3-adic solenoid X (i.e. the
intersection of an infinite sequence of filled tori, each inscribed in the
previous one with degree 3) does not embed into R?, there nevertheless

exists an equivariant map ¥ — S?.

We conjecture that there exists a nonplanar tree-like continuum N,
for which there are no equivariant maps N — S1.

5.6 The generalized Haefliger- Wu invariant

The example of the Borromean rings (Example 3.2) suggests that one
can introduce an obstruction to embeddability, analogous to the deleted
product obstruction (and the van Kampen obstruction, see Section 4)
but deduced from a triple, quadruple, or higher order product. More-
over, the vanishing of this obstruction should be sufficient for embed-
dability even when this is not so for the deleted product obstruction.

Such an obstruction can indeed be constructed as follows, cf. [108].
Suppose that G is a subgroup of the group S, of permutations of p
elements and let

Ngz{(xl,...,zp)ENp|:172-7£x0(i) foreach o € G\id, i =1,...,p}

where id denotes the identity element of G. The space NG is called the
deleted G-product of N. The group G obviously acts on the space Ne.
For an embedding f : N — R™ the map fG : ]\7@ — ]Ifg"/lg is well-defined
by the formula fg(xl, .o, xp) = (fx1,..., fzp). Clearly, the map fg is
G-equivariant. We can then define the G-Haefliger- Wu invariant

ag = a2 (N) : Emb™(N) — [Neg,R™¢la

by ac(f) = [fa]. The deleted G-product obstruction for the embeddab-
ility of N in R™ is the existence of a G-equivariant map ® : Ng — R™¢.

This approach works well in link theory (the simplest example is
the classification of ‘higher-dimensional Borromean rings’ [67, §3][125,



Embedding and knotting of manifolds in Euclidean spaces 297

Proposition 8.3] by means of o'¢ ). In contrast, surprisingly, the exam-
ples of non-injectivity in Example 5.8 (except for the Borromean rings
of 5.8(a)) demonstrate the non-injectivity of ag for each G: in their
formulations « can be replaced by ag for each G. This follows by the
construction of these examples. Clearly, if « is not surjective, then nei-
ther is ag for each G. Under the conditions for non-embeddability in
Example 5.10, property (e) is false even if we replace the Zg-equivariant
map N — §m-1 by a G-equivariant map Ng — H/%\’;G.

One can obtain other invariants, analogously to the construction of the
generalized Haefliger-Wu invariant, using isovariant rather than equiv-
ariant maps. These invariants are possibly stronger but apparently
harder to calculate (at least for manifolds more complicated than dis-
joint unions of spheres; for a disjoint union of spheres see Theorem 3.6
and [183, remarks after the Haefliger Theorem 1.1]. This seems to be one
of the reasons why these invariants were not mentioned in [214] (whose
last section considered even more complicated generalizations).

5.7 Hzistorical remarks

A particular case of Theorem 5.5 (Theorem 4.2) was discovered by van
Kampen [197]. Van Kampen’s proof of sufficiency in Theorem 4.2 con-
tained a mistake; however, he modified his argument to prove the PL
case of Theorem 2.3. Based on the idea of the Whitney trick invented
in [211], Shapiro and Wu completed the proof [172, 212].

Subsequently their argument was generalized by Haefliger and We-
ber (using some ideas of Shapiro and Zeeman) in order to prove the
Haefliger-Weber Theorem 5.5. The second part of the Weber proof was
simplified in [179] using the idea of the Freedman-Krushkal-Teichner
lemma (Lemma 4.5).

The Whitney trick, on which the proof of sufficiency in Theorem 4.2
for n > 3 is based, cannot be performed for n = 2 [99, 111]. Sarkaria
has found a prooft of the case n = 1 of Theorem 4.2 based on the 1-
dimensional Whitney trick. Sarkaria also asked whether the sufficiency
in Theorem 4.2 holds for the case n = 2. Freedman, Krushkal and
Teichner have constructed an example showing that it does not [49].

The dimension restriction 2m > 3n+3 in the Haefliger-Weber theorem
(Theorem 5.5) comes from the use of the Freudenthal suspension theo-
rem, the Penrose-Whitehead-Zeeman-Irwin embedding theorem (Theo-

1 The author is grateful to K. Sarkaria and M. Skopenkov for indicating that the
argument in [166] is incomplete.
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rem 2.9), a relative version of the Zeeman unknotting theorem (Theorem
2.7(a)) and general position arguments (see Section 8). Torurnczyk and
Spiez showed that one can try to relax the restriction coming from the
Zeeman unknotting theorem (using relative regular neighbourhoods) and
those coming from the Freudenthal theorem (using Whitehead’s ‘hard
part’ of the Freudenthal theorem and the Whitehead higher-dimensional
finger moves, see [47, §10]f) [188, 189], see also [38, 39]. (We note that
the application of higher-dimensional finger moves in this situation was
first suggested by Schepin.)

In 1992 Dranishnikov therefore conjectured that surjectivity might
hold in the Haefliger-Weber Theorem 5.5 for 2m = 3n + 2. However,
Segal and Spiez [171] constructed a counterexample (using the same
higher-dimensional finger moves), which was a weaker version of the
non-embeddability example 5.10(c). Their construction used the Adams
theorem on Hopf invariant 1, and therefore has exceptions corresponding
to the exceptional values 1,3,7. In 1995 the author suggested a way to
remove the codimension-2 exceptions; subsequently, this idea was gener-
alized independently by Segal-Spiez and the author to obtain a simplifi-
cation of [171] which did not use the Adams theorem, and therefore has
no exceptions [170]. This simplified construction leads to the example
of non-embeddability given as Example 5.10(c).

6 The deleted product of the torus
6.1 Proof of the deleted product lemma
Proof of Theorem 5.3(a). We have

SP LIS~y SP x STLISP x S1L1SP L S

where the involution on the right-hand side exchanges antipodes in S?
and in 59, as well as the corresponding points from the two copies of
SP x 87 (Figure 6.1). Therefore, analogously to the definition of the
a-invariant in Section 3, we have

A (SP59) = [SP x §9, 8™ = ad, L for m—2>pg

as required. O

1 A preliminary version of the material in [47] can be found in English translation
as [46].
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q q /
ST x 85

/ //
. q q
/ S5 x S

Fig. 6.1. S L] 54

Recall that the equivariant Stiefel manifold V24, is the space of equiv-
ariant maps S®~' — S™~!. Denote by a; : S¥ — S* the antipodal
map.

Lemma 6.1 (The torus lemma [181]). Forp < q and m > p+q+3 there
exist groups Hgfq’l and Hgfgl, a group structure on w;’}l’l(qu), and
homomorphisms o, v, p, T and o' forming the diagram below, in which
the right-hand square commutes and the left-hand square either com-

mutes or anticommutes.

- o e
7o (Viegps1) —— KT, —2 @m=1(5p x Sa)
Z+p+2
pl@—upw lo/ vlp+q+3 (6.1)
eq g -1 bry -1 -1
-7 —t
Tq(Vint gpt1) serp iy P1 graprz P ©llgp

Each of the homomorphisms o, v, p and pry s an isomorphism under
the dimension restriction m > A, where A is shown near the correspond-
ing arrow in Diagram (6.1).

Proof. There is an equivariant deformation retraction
H, : 5P x §9 — adiag SP x S9 x S9 U SP x SP x adiag S9,
adiag SP xadiag S9

where adiag denotes the antidagonal (see Figure 6.2). More precisely,
for non-antipodal points = and y of S¥ and t € [0, 1], let

_ (1—t)x+ty
oyt = T e T

Define the deformation H; : SP x S7 — SP x S by setting H(z,y, x1,y1)
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SP

5% 51 adiag SP x 7 x

adiag S1?
diag(SP x S
diag S 8l )
adiag S?
SP x SP x adiag 54
Sp
Fig. 6.2.
to be

([l’, yvt]v [yvxvt]v [33172417 26t]7 [ylvxla 25t]) if |$ay| Z |$17y1|
([{E, Y, 2(1 - 5)t]7 [yvmv 2(1 - 5)t]7 [xla ylat]v [yla xlat]) if |$1,y1| > |m,y|

Where 5 = %
lz1,y1]+]z,y]
Let

H;r;_l = 71';?1_1(5'? X qu)

where the involution on SP x S27 is a, x t, and t, : S?7 — S27 is the
symmetry with respect to S¢ C S2?¢. The group structure on H;’;_l is
defined as follows: for equivariant maps ¢, : SP x §24 — §™~1 define
the map ¢ + 1 : SP x S27 — §™~! on z x S2? to be the ordinary sum
of the restrictions of ¢ and ¢ to z x S??; and analogously, define the
identity and the inverse of ¢ on x x S2? to be the ordinary identity and
the ordinary inverse of |, g2q.

Let vg : S9 x 87 — ZZC‘SS‘Z >~ §24 be the quotient map, cf. Section 3.
Consider the involution (s,z,y) — (—s,y,2) on SP x S7 x S9. For
m > p+ q+ 3 by general position we have a one-to-one correspondence

(idse xvg)* s 1 (SP x ST x §9) = Tt

One can check that the involution on S? x S? exchanging factors corre-
sponds to t,.
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f(=sx 89
f(SP x S9)
—_ =
F(s x §7)
Fig. 6.3.

Consider the restrictions of an equivariant map SP x S — S™~! to
adiag S? x S?x S? and to SP x SP x adiag S?. Define the map -y to be the
direct sum of the compositions of such restrictions and the isomorphisms
(idsr xvg)* and (idga xvp)*. If

dim(adiag S? x adiag S?) =p+q¢<(m—1)—2

then v is a one-to-one correspondence, by general position and the
Borsuk /h_(\)rgotopy extension theorem. Take the group structure on
71 (SP x §9) induced by . Then v is an isomorphism.

By general position, for 2p+ g < m — 2 we have Hg’;_l = 0; hence pr;
is an isomorphism.

Given an embedding f : SP x S7 — R™, let &/(f) be the map corre-
sponding under the isomorphism (idgr Xv4)* to the map S? x S7x S9 —
S™~1 defined by

(S,l‘, y) = ((57'1:)7 (_Say))'

Clearly the right-hand square of Diagram (6.1) commutes.

The map 7 was defined after Theorem 3.9. Recall also that p is the
inclusion-induced homomorphism; by [76, 183], p is an isomorphism for
m > 3 4 p+2. We define o as follows: an element ¢ € mq(Vol 1)
can be considered as a map ¢ : S? x S¢ — S™~9~! guch that p(—xz,y) =
—p(z,y) for each x € SP. Let o(p) be the g-fold SP-fibrewise suspension
of such a map @, i.e. 0(©)|zxs2¢ = 2(Y|zxsa). It is easy to see that o
is a homomorphism.

The (anti)commutativity of the left-hand square in Diagram (6.1) is
proved for p = 0 using the representation S™~! = §m—a-1 x §a-1 and
deforming o/7(¢) to the SP-fibrewise suspension o(p) of ¢ [100]. For
p > 0 we apply this deformation for each x € SP independently.
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{b T

. S91D?
59 51 5% KL 7T,

<,

1%

—_ o~

Fig. 6.4. The map pr: S? x X957 — TI(SP x S9)

It remains to prove that o is an isomorphism for m > 3'1% +2 >
p + q + 2. For this, observe that ¢ is a composition

e m—qg— ¥4 m— r* m—
Tq(Vel yy1) = T 97 (SP x §7) == 71 (R9(SP x §7)) 2 Tt

Here the involution on S? x S is a,, X idgs, the involutions on 3457 and
on X9(SP x S7) are the ‘suspension’ involutions over idgs and a, X idga;

the map
5% x D4
1 SP x 2981 = §P
pr . ><S"1><y,y€('“)D‘1
SP x §9 x D1

— SPx Sixy, yeodDa = ST x 5
is a quotient map (Figure 6.4). The SP-fibrewise group structures on
797 1(SP % §9) and on w2~ H(29(SP x S9)) are defined analogously to
that on I} - L. By the equivariant version of the Freudenthal suspension
theorem, it follows that the above map X9 is an isomorphism for p+ g <
2(m—q—1) —2.

The nontrivial preimages of pr are SP x [S? x y], y € 9D? and their
union is homeomorphic to SP x 9D?. Since dim(S? x §D?) = p+q—1, by
general position it follows that pr* is an isomorphism for p+¢—1 < m—3.
Therefore o is an isomorphism for m > Bq% +2 > p+q+2, and we are
done. |

Note that the above map (ids» Xvg)* is an isomorphism also for m =
p+q—+2. This is proved using the cofibration exact sequence of the pair
(8P x 89 x S1,5P x (S7V 59)), together with a retraction

Y(SP x 81 x §9) — B(SP x (89Vv S9))
obtained from the retraction

idgr x7q : SP x $(87 x §1) — SP x £(S9V §9)
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by shrinking the product of SP with the vertex of the suspension to a
point.

Lemma 6.2 (The generalized torus lemma [181]).
(@) Ifs23, p1<--<ps,n=p1+-+ps and
N =8P x ... x SPs

then the same assertion as in Lemma 6.1 holds for the following dia-

gram:
m 1/ A7
T Vi prst) —— Bnb™(N) —— (W)
snopl +2lp la' 2nfprp2+3lv
eq o m—1 pTy m—1
Tpe—p, (VL —_— 17 — QI
n p1( m n+p1,p1+1) 37"‘101""2 P1,M—P1 In—pa42 15Tpi,n—p;

(6.2)
(b) Suppose that s > 3, n = p1+ - +ps, p1 < -+ < ps and m >
2n —p1 —p2 + 3. (For s = 3 and CAT=DIFF assume also that

m > 322 +2.) Then

Embm(spl X X Sps) = @Trnfpi (menJrPi,PnLl)'
=1

Proof. Part (b) follows from part (a) and Theorems 5.5 and 5.6. The
proof of (a) is analogous to the proof of the torus lemma (Lemma 6.1).
We shall only define 7 and ¢ and omit the details.

The map 7 is defined as follows. An element ¢ € mp—p, (Vin—n+ps ,p1+1)
is represented by a map S" Pt x SPr — Sm—ntPi=l Consider the
projections

pry i N — SPrx§P2H 4P = GP1x §"™P1 and pry: N — SP2x---x SPs.

Analogously to the case s = 2, define an embedding 7(¢) as the compo-
sition
SP1 % §P2 x ... x GPs LPoPr)XPry o ym—ntpr o GP2 o L.y GPs c R™.

The map o is defined analogously to the case s = 2 as the SP'-fibrewise
(n — p1)-fold suspension.
Let q1 :=n — p1. Equivalently, ¢ is a composition
T (Veq ): Wqurl(spl % SlIl)
a1\"m—qi,p1+1 eq
Eq

0 gl (57 x §0)) P el
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Here the maps ¥ and pr* are isomorphisms for 2m > 3n — 2p; +4
and m > n + 2, respectively. Therefore ¢ is an isomorphism for m >
3n/2—p; +2. O

Note that under the assumptions of Lemma 6.2(b) we have m > 32 +2
for s > 4.

6.2 Proofs of non-injectivity and non-surjectivity for
Ezxzamples 5.8(b) and 5.9(b)
Lemma 6.3 (The decomposition lemma [181]). Form >2p+q+ 1>
q+3 there is the following (anti)commutative diagram, in which the first
and the third lines are exact. The map v is epimorphic for m — q even
and im v is the subgroup of elements of order 2 for m — q odd.

Tq(Vin—q—1,p) ——  Tg(Vin—g,p+1) . Tg(Vin—q,1)

,“'//

|7 |7 |-

Emb’ggl(Sp—l x S9) — Emb’s, (SP x S9) e T (§m—a1)

0
L L =
p—1 o
m—2 m—1 S
Hp—Lq u Hp,q y T2q+1-m
(6.3)

Only the right-hand squares and the exactness at Hz’;";_l of Diagram
(6.3) are used for the examples. The left-hand squares are interesting in
themselves and are useful elsewhere [183]. (The definition of u here is

simpler than that in [181].)

Definition of the maps from the diagram. Let v and p/ be the
homomorphisms induced by the ‘forgetting the first p vectors’ bundle

Vm*qfl P
s Vm
—q,1-

Vm—q,p+1

For an embedding f : S x S7 — R™ let v/ (f) be the linking coefficient
of flexse and f|_zxse in R™. Define the map v : Hgfq_l — Hg?;l o
Ty my1 to be ‘the restriction over x x 52,

In order to define p’, denote by

SP = DF U D"
DT =Sp=1=0D"

the standard decomposition of SP. Define R and R™~! analogously.
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Add a strip to an embedding f : SP71 x §9 — R™~! ie. extend it to
an embedding

[ 8Pt x 51 U DY x D% — R™.
SP=1xD1=8D" x D

Since m > 2p+q+1, it follows that this extension is unique up to isotopy.
The union of f’ with the cone over the restriction of f’ to the boundary
forms an embedding D x S — RY'. This latter embedding can clearly
be shifted to a proper embedding. Define p/f : SP x S — R™ to be
the union of this proper embedding and its mirror image with respect
to R~ c R™.

Let us define the map p first for the case p = 1. For a map ¢ :
S§24 — §m=2 define the map pp to be the equivariant extension of the
composition

D! x §21 P, »g2a 22, gm—1,

In order to define the map pu for arbitrary p, replace H;":fq and Hg};l by
T2 (89S x §9)) and 7w (29(SP x S7)) respectively (see the proof
of Lemma 6.1). For an equivariant map ¢ : X9(SP~! x §9) — §™~2 Jet

e be the composition

NI(SP x §9) = RU(NSPL x §9) T2 matl (gp-t ¢ gay ZE, 5 gm-2
where pr is the map from the proof of Lemma 6.1. Clearly, the definition
for arbitrary p agrees with that for p = 1.

Remark. Note that except for the map p, all the maps in Diagram (6.3)
are defined for m > p+q + 3.

The embedding 1/ f can also be defined by the Penrose-Whitehead-
Zeeman-Irwin embedding theorem (Theorem 2.9) and its isotopy ana-
logue. For m > 2p + ¢ + 2 any embedding f : SP~! x §9 — §gm~1
can be extended to a PL embedding fy : DY x S?7 — R'7, uniquely
up to isotopy. Then two embeddings f; and f_ define an embedding
w(f): 8P x ST —R™.

Proof of Lemma 6.3. Tt is easy to check that both v and u are homo-
morphisms.

Clearly,the upper-left square of the diagram commutes; and clearly
the upper-right square of the diagram commutes (see details in [195,
Lemma 3]). The bottom-right square of the diagram (anti)commutes by
[100, Lemma 5.1].

We prove the commutativity of the bottom-left square for p = 1; the
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proof is analogous for the general case. Take an embedding f : S%x .59 —
R™~L. Then ap/f = pagf on SO x §24. Also, for each y € St x §9 x S4
the points (o1 f)y and (uag f)y are either both in the upper or both in
the lower hemisphere of S™~1. Hence o'y’ f ~¢, pog f.

Let us prove exactness at H;rgfl. Clearly, e = 0. On the other hand,
if ® : SP x §%¢ — §™~! is an equivariant map such that ®|,, g2 is
null-homotopic, then by the Borsuk homotopy extension theorem & is
equivariantly homotopic to a map which maps * x S2? and a,(*) x 527
to antipodal points of S™~!. By the equivariant suspension theorem the
latter map is in im y, since p — 1+ 2¢ < 2(m —2) — 1. So kerv = im p.

Clearly im v consists of homotopy classes ¢ € IIf" ! extendable to a
map D' x §29 — S™~1 Such maps ¢, considered as maps ¢ : S29 —
Sm=1 are exactly those which satisfy a,,—1 0 ¢ ot, ~ . The latter
condition is equivalent to (—1)™y = (—1)%p (for m odd this follows by
[143, complement to lecture 6, (10), p. 264], since hg : ma(S™71) —
T2 (S?™3) and 2¢ < 2m — 3). So imv = ker(1 — (—1)™~9). O

Proof of non-surjectivity in Fxample 5.9(b). Set ¢ = n—1 < m — 4.
Look at the bottom-right square of Diagram (6.3) and use the surjectiv-
ity of v for m — ¢ even. The specific examples can be found using [196,
§14] (set l=m—n=m—qg—1and k=2¢+1—m). O

Proof of non-injectivity in Example 5.8(b). Since p < k, we have m >
2p+q+2. Look at the right squares of Diagram (6.3) and use Lemma 6.4
below. O

Lemma 6.4.

(a) TI=1 is finite when p+q+2 < m < 2q.
(b) The image of the restriction-induced homomorphism

vy Tap—1(Vakg1,pr1) — Tar—1(S%F)
is infinite for p < 2k.

Proof. Let us prove (a) by induction on p. The base of the induction is
p = 0, when Hg;_l & 5,(S™71) is indeed finite. The inductive step of
(a) follows by the induction hypothesis and the exactness of the bottom
line from Diagram (6.3).

In order to prove (b) for p = 0 observe that the map vy is an isomor-
phism and m4%_1(S%%) is infinite. Suppose that p > 1 and there is an
infinite set {x;} € mar—1(Vak+1,,) with distinct Vz’,'_l—images. Consider
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the Serre fibration SZFT1=P — Vop g 1 2, Vak+1,p and the following
segment of its exact sequence:

¥a _
Tan—1(Vas1,p1) — Tap—1(Vak1,p) — Tap—2(SZ7P).

Since myx_2(S%FP) is finite, by exactness it follows that the number of
congruence classes of map_1(Vagt1,p) modulo im), is finite. Therefore
an infinite number of the z; (we may assume all the ;) lie in the same
congruence class. By passing from {x;} to {x; — 21} we may assume that
this congruence class is the subgroup im v, itself. Hence the inductive

step follows from v, = v;_;1.. O

To state our final remarks in this section we need some more notation.
For a group G define G|i) to be G when k is even and the subgroup of
G formed by elements of order 2 when k is odd.

For m—q even, it follows from the existence of a section s : 7 (Vin—q,1) —
Tq(Vin—q,2) that v and hence v/ is epimorphic.

We also have imv = im v’ = imv” = Tog_41,[m—q for 2m > 3¢ + 4.
Note that imv = may_ 11, m—gq even for 2m < 3¢ + 3, but by Lemma
6.4(b) im 1" # 7wy (S™97) g for 2m < 3¢+ 3.

We conjecture that if m — ¢ is even > 4 and 2m > 3q + 4, then
H;’fq‘l = 7r2sq_m+2 &) ﬂgsq_mH. We also conjecture that in general H;’;_l
is adjoint to Wzsquﬁﬁ[qu] ® wgquﬂ,[qu], unless m = 2¢ + 1 and
q = 2l is even, when II{'y, = Zy (cf. the formula for my(Vyn_g2) after

Theorem 3.9). Since imv = 7725q_m+1 [ by the decomposition lemma

m—q)’
(Lemma 6.3) the conjecture would follow from coim p 7r2Sq7m +2,[m—q]

(recall that we identify Hg;fz = 7725q7m+2).

7 The Borromean rings and the Haefliger-Wu invariant

All examples illustrating that the metastable dimension restrictions in
embedding theorems are sharp have their origin in the Borromean rings
(Example 3.2). So let us illustrate the ideas of Examples 5.8(d) and
5.10(c) by giving an alternative construction of three circles embedded
into R? so that every pair of them is unlinked but all three are linked
together. Our construction is based on the fact that the fundamental
group is not always commutative.

Take two unknotted circles ¥ and ¥ in R? far away from each other.
Embed in R — (X UY) the figure eight, i.e. the wedge C of two oriented
circles, so that the inclusion ¢ C R3 — (¥ U Y) induces an isomor-
phism of the fundamental groups. Take generators a and a of m (C') &
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fl (SQm—2n—3)

ﬁ

fO(STL v S'rl) — fl(STL v S'rl)

Fig. 7.1. Another construction of the Borromean rings

71 (R? — (X U X)) represented by the two arbitrarily oriented circles of
the figure eight. Consider a map S* — C C R3 representing the element
aaa"'a"'. By general position, there is an embedding f : S* — R? very
close to this map. It is easy to choose f so that ¥ and f(S'), ¥ and
f(SY) are unlinked (because f induces the zero homomorphism of the
1-dimensional homology groups). Then ¥, ¥ and f(S!) are as required
(see Figure 7.1, where m =3, n=1, f = f; and C = fp(S™ v S™).) In-
deed, ¥ and ¥ are unlinked by their definition. But f induces a nonzero

homomorphism of the fundamental groups. Therefore the three circles
%, ¥ and f(S') are linked together.

Remark. Higher-dimensional Boromean rings can be constructed analo-
gously, using Whitehead products instead of commutators.

Sketch of a counterexample. The following construction provides a

counterexample to the relative versions of Theorem 4.2 for n = 2 and to

the surjectivity in the Haefliger-Weber Theorem 5.5 for m = 2n = 4.
Let

N=D>*UuD*>UD? and A=0D?>UdD*UdD>.

Let A C S3 22 9D* be (generalized) Borromean rings.

Since all three rings are linked, it follows that the embedding A — 9D*
cannot be extended to an embedding N — D*. But since each pair of
Borromean rings is unlinked, it follows that the corresponding relative
Haefliger-Wu or van Kampen obstruction to this extension vanishes.
This is so because both the Haefliger-Wu obstruction and the van Kam-
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pen obstruction involve 2-fold products and double intersections, but
involve neither 3-fold products nor triple intersections.

Proof of non-injectivity in Example 5.8(d). The reader is recommended
to read this proof first forn = 1 and m = 3. Let N = S?vSnu§2m—2n-3
and take the standard embedding fo : N — S™. Then

Sgm _ fO(Sn v Sn) ~ Sm—n—l Vi Sm—n—l-

Take a map ¢ : S2m=2=3 — §™ — f,(S™ V S™) representing the White-
head product (for m — n = 2, a commutator) of generators. If n = 1
and m = 3, then ¢ is homotopic to an embedding by general position. If
n > 1, then 2m < 3n+3 implies that m < 2n, i.e. m—(2m—2n—-3) > 3.
Since also 2(2m —2n—3) —m+1 < m—n—2 by the Penrose-Whitehead-
Zeeman-Irwin embedding theorem (Theorem 2.9), it follows that ¢ is
homotopic to an embedding. Define f; : N — S™ on S™ V 8" as fy and
on §?m=2n=3 a5 such an embedding (Figure 7.1). Since the homotopy
class of ¢ is nontrivial, it follows that f; : N — S™ is not isotopic to
the standard embedding fo : N — S™.

Let us prove that a(fy) = a(f1). Using ‘finger moves’ (analogously to
the construction of Example 7.1 below) we construct a map F' : N x I —
R™ x I such that

F(Z’,O) = (fo(x)70)7 F(l‘, 1) = (fl(x)v 1) and
F((S™VS™) x I)N F(S*™2"=3 x [) = .

Then there is a triangulation T of N such that no images of disjoint
simplices intersect throughout F;. Then the map ﬁt is well-defined on
the simplicial deleted product T. Since T is an equivariant deformation
retract of N, it follows that a(fo) = a(f1).

(One can also check that in general o (V) fo = a& (N) f1 for each G,
so a@(N) is not injective.) O

The above gives us a 3-dimensional visualization of the celebrated
Casson finger moves. Combine the homotopy F constructed in the
above proof for n = 1 and m = 3 with the ‘reverse’ homotopy. We get a
homotopy G : N x I — R3 x I between standard embeddings N — R3
(Figure 7.2). This homotopy is obtained from the identity isotopy by
Casson finger moves.

We conjecture that the nontrivial embedding f of Example 5.8(b)
can be obtained from explicitly defined Borromean rings S™ LI S™ U
§2m=2n=3 — R™ [67], [125, Proposition 8.3] by ‘wedging’ S™ LI S™. We
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S %0
dy @y «nj @EE& % ,
\ ) S x 1
]
S3 x 2

Fig. 7.2. Casson finger moves

also conjecture that by joining the two n-spheres of the above linking
with a tube, we obtain a nontrivial embedding S™ LI §2m—2n=3 _ R™
with trivial a-invariant (although this would be harder to prove: either
we assume that m —n ¢ {2,4,8} and need to check that the linking
coefficient of the obtained link is [tm—n—1,tm—n—1] 7# 0, or we need to
apply the S-invariant (cf. [67, §3], [183]).

Example 7.1. There exists a 2-polyhedron N non-embeddable into
R* but for which there exists a PL nondegenerate almost-embedding
f: N — R4

(The definition of a nondegenerate almost embedding was given before
Lemma 4.4.)

Remark. The polyhedron N from Example 7.1 is even topologically non-
embeddable into R,

Before constructing Example 7.1 let us explain its meaning. By the
definition of the van Kampen obstruction (see Section 4), Example 7.1
implies the Freedman-Krushkal-Teichner example, i.e. Theorem 4.2 for
n = 2, as follows. Take a triangulation T' of N from the definition of
an almost embeddmg f: N — R* Then the Gauss map f T — S8 is
well-defined on T'. Since T is an equivariant deformation retract of ]\7 it
follows that there exists an equivariant mapping N — S3. So Example
7.1 implies non-embeddability in Example 5.10(c) for m = 2n = 4.
However, it gives even more and shows the non-surjectivity not only
of the Haefliger-Wu invariant, but also of the generalized Haefliger-Wu
invariants (see Section 5).

Preliminary construction for Example 7.1.
Let @ be the 2-skeleton of the 6-simplex minus the interior of one 2-
simplex from this 2-skeleton. Recall from Section 4.2 that ) contains
two disjoint spheres with the following property:
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2 52

! i

r=71

Fig. 7.3.

for each embedding Q — R*, these spheres

(#)

link with an odd linking number.

(An alternative proof of this fact is presented in the proof of Lemma 7.2
below.)

Let us denote these spheres by X2 and X'. We write Q to denote
a copy of the space @ (for a subset A C @ its copy is denoted by
A C Q).Embed Q U@ into R* in the standard way, i.e. so that

(a) the copies @ and Q are far away from one another;
(b) both %2 and %2 are unknotted.

Then %2 and ¥? are unlinked. Take any point 2 € £!; join the points
2 and Z by an arc in R*, and pull small neighbourhoods in Q and Q
of these points to each other along this arc. We obtain an embedding
QV Q C R* (Figure 7.3).

In Figure 7.3 each sphere X', ¥, ¥2 and %2 of dimensions 1, 1, 2 and 2
respectively, is shown as 1-dimensional. Consider the wedge X' VE! with
the base point = Z. Then the inclusion ©! v X1 c R* — (X2 U £2)
induces an isomorphism of the fundamental groups. Take generators
a and @ of the group 1 (X! V 1) represented by the two (arbitrarily
oriented) circles of the figure eight.

Sketch of the Freedman-Krushkal-Teichner construction. Here we sketch
a construction of an example for Theorem 4.2 for n = 2. This construc-
tion is a bit simpler than that of Example 7.1, but it makes vanishing
of the obstruction less clear, and it gives neither Example 7.1 nor the
example 5.10(c) of non-embeddability.

Take a map S* — L1V ! representing the element [a,a) = aaa~ta L.
Let N’ be the mapping cone of the composition of this map with the
inclusion X' vl c QVQ, i.e.



312 A. B. Skopenkov

N' = B? U QVQ).

a,al:0B2—X1vEt
[a,a]

Let us sketch the proof of the non-embeddability of N’ into R*. Sup-
pose to the contrary that there exists an embedding h : N’ — R%
The nontrivial element [a, @] of m1 (X V £!) goes under h to a loop in
R* — h(X% U £2), which extends to hD? and hence is null-homotopic.
This is a contradiction because h induces a monomorphism

T (B vED - (R — (22U E?)).

If both AX? and hX? are unknotted in R*, then the above assertion is
clear. In general (i.e. when the spheres are knotted) the above assertion
is proved using Stallings’ theorem on the lower central series of groups
[192, 49], see below.

We have V(N’) = 0 because the van Kampen obstruction only detects
the homology property that the loop [a,a] is null-homologous (for a
detailed proof see [49]).

Since the van Kampen obstruction is a complete obstruction for the
existence of an equivariant map N/ — §3 (for these dimensions), we
obtain non-embeddability in Example 5.10(c) for m = 2n = 4. O

Construction of Example 7.1. Take an embedding QU@ C R* with
the properties (a) and (b) from the preliminary construction (p. 310).
Take any points € X! and y € X2. Join points = to Z and y to 7 by
two arcs in R, Pull small neighbourhoods in @ and @ of these points
to each other along this arc (Figure 7.4). We obtain an embedding

Push a 2-dimensional finger from a small disc D? C X2 near y = ¥
intersecting ¥2 near y = §. We get a new PL map ¢ : K — R* which
has transversal self-intersection points (Figure 7.4).

We can represent a disc neighbourhood B* of an arbitrary intersection
point ¢ € R* as the product B2 x B? of balls, where 0 x 0 corresponds
to the intersection while B2 x 0 and 0 x B? correspond to the images
of 32 and %2 (we denote by 0 the centre of B?). In a neighbourhood of
the point ¢ we have the distinguished or characteristic torus 0B? x 0B?,
cf. [21, 103, 50]. In Figure 7.4 the 2-dimensional distinguished torus is
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distinguished
torus

! i

Fig. 7.4.

shown as 0-dimensional. By (b) we have
T (R —£2v £2) =21 (St v Sh.

Denote by a and a the elements of this group represented by homeo-
morphisms S* — z Vv St and S — S!'V z (for some point z € S?),
respectively (with some orientations). With appropriate orientations
the inclusions of 9B? x z and z x dB? into R* — %2 v 2 are homotopic
to a and a, respectively. Since the map

aaa"ta"t: St — StV St~ (2 x 9B?) Vv (0B? x z)

extends to a map B? — 0B2? x 0B?, it follows that aaa~'a~! is null-
homotopic in R*—g(X2Vv%?2). Then there exists a PL map r : B? — R*—
g(X2 Vv X2) such that 7|sp2 : dB? — X1 v 3! represents the commutator
of the inclusions ! ¢ £ v X! and X! ¢ ! v X', Roughly speaking,
r(B?) is a torus 0 x 0B% x 0B2. Set

N=B* |J (K-D*)ur(B.
dB2=0D?

Analogously to the proof of the Freedman-Krushkal-Teichner example
above, N does not embed into R* (the details are analogous to the
construction of Example 5.10(c) below).

We have N O (K — D?)U B2 = K. Define a map f : N — R* on
(K — Dg) U B? as the composition of a homeomorphism with K and g,
and on r(B?) as the identity. Then X(f) C B?UD?. By the construction
of the balls D? and D? it follows that the balls B? and D? are contained
in the interiors of some adjacent 2-simplices of some triangulation T
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of N. Hence f is a nondegenerate almost embedding (whose image is
g(K)Ur(B?)). O

Construction of the non-embeddability example 5.10(c). The
case m = 3 is proved in [58] using different ideas. The case 4 < m <
n 4 1 can either be proved analogously to [58] or is covered by the case
4 < m > n+ 2. So we present the proof for m > n + 2. This is a
higher-dimensional generalization of Example 7.1.

Let | = m —n—1 > 1. Denote by A¥ the k-skeleton of the
s-simplex with vertices ag ... as.

(The definition of Afs .o makes sense even for n = [ 4 1, which
case is outside the dimension range of Example 5.10(c). If n =1+1=1,
then AR5, 12 is one of the Kuratowski nonplanar graphs, namely K,
and if n = [ +1 > 1 then Af5 ,, 5 is an n-dimensional polyhedron
non-embeddable in R?".)

Set

Q= A?Q...m—i—Q U Con(Al12...m+2 — Int AllQ...l-i—la 0)

K=Q U Q . X'=0Ai1,, and ¥"=0AWL L.
0=0,m=m

The polyhedron @ embeds in R™ (this was actually proved in the first
two paragraphs of the proof of [171, Lemma 1.1]). Embed into R™ two
copies of @ which are far apart. Since m > n+ 2, we can join two points
of ¥" and ¥" by an arc and pull the points of the spheres together
along this arc. Making the same construction for X! and X! we obtain
an embedding K — R™; so we assume that K is a subset of R”. We may
assume that the wedge X vV ¥" is unknotted in R™. (If m > n+2, then
this holds for any embedding K C R™ [114, Theorem 8]; if m = n + 2,
then for our embedding @ — R™ the sphere X" is unknotted in R, and
we can choose an embedding K — R™ so that X"V " is unknotted in
R™.)

Take a triangulation 7' of K. Let D" C ¥" and D™ C X" be PL
discs, each one of them in the interior of an n-simplex of 7' containing
the common point m = m of ¥ and ¥". Take points a € ﬁ”, acDn
and a small arc s C R™ joining a to a. By general position sNK = {a,a}.
Construct a new embedding g : D™ — R™ obtained from the old one by
pushing an n-dimensional finger from D™ along the arc s. Let g, _pn
be the inclusion. We get a new PL map ¢g : K — R™ such that g|
is an embedding but g(D™) N g(D") # () (Figure 7.4).

K—Dn
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By general position dim(g(D™) N D") < 2n —m and g(D™) intersects
D" transversally. Denote by 0 the centre of B¥. We can represent
a disc neighbourhood B™ of an arbitrary point ¢ of this intersection
as the product B?"~™ x B't! x B'f! of balls, where B> ™ x 0 x 0
corresponds to the intersection, while

B ™ x Bl 0 and B? ™ x 0 x B!

correspond to g(D™) and 5”, respectively. In a neighbourhood of the
point ¢ we have the distinguished or characteristic torus 0 x OB+ x
OB

Since ¥" V ¥" is unknotted in R™ C S™, it follows that m(R™ —
¥ v e = (St v SY). Denote by @ and @ the elements of this group
represented by the inclusions of components of the wedge (with some
orientations). Take a point y € B!, With appropriate orientations
the inclusions of

0x dB* xy and 0xyxdBT! into R™—¥"vE"
are homotopic to o and @, respectively. Since the Whitehead product
[,a) : SH71 — Sty S22 (0 x y x 9B v (0 x OB x y)

extends to a map B? — 0 x 9B*! x 9Bt [21, 103, 50], it follows that
[, @] is null-homotopic in R™ — $" v 7.

Denote the linking coefficient by link(-,-): let p = link(X!,¥") and
p = link(X!, 7). The inclusions of X! and ! into R — X"V X" represent
the elements pa and pa of the group m;(R™ — XV ), respectively.
Since

[pa, pa) = ppla, @] = 0 € o1 (R™ — X"V E"),

it follows that the Whitehead product of the (arbitrarily oriented) in-
clusions of ! and X! into R™ — X"V £" is null-homotopic. Hence there
exists a PL map r : B¥ — R™ — X" v £" whose restriction to B2
represents this Whitehead product. Set

N=B" |J (K-D"urB*.
OB"=0D"

Since m < 37” + 1, it follows that 2 < n and hence dim N = n. Anal-
ogously to the proof of Example 7.1, there exists an almost embedding
N — R™. So it remains to prove that N does not embed into R™.
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Proof of the PL non-embeddability of N into R™. Suppose to the con-
trary that there is a PL embedding h : N — S™. Let

Sp=®"-D") |J B"CN.
OB"=0D™

The map hor|gpx can be extended to map
hor: B - R™ — (X" Vv E").

Hence h o 7|gp2 is homotopically trivial in R™ — h(X7 vV £7*). Now we
shall show the contrary and get a contradiction. Let

q = link(hX!, AXT) and G = link(hX!, RE™).

In the case m > n + 2 by [114, Theorem 8] (cf. the construction of
N above) we have S™ — h(X} Vv £") ~ S' v S!. Denote by 8 and 3 the
elements of the group m(R™ — h(X} vV £")) represented by the homeo-
morphisms S! — y Vv S! and S! — S' vy (where y € S!), respectively
(with chosen orientations). Hence the homotopy class of the map

ho r\aBzz - 9B% S R™ — h(Z;L V; i")
is
qq(B3, Bl € mu—1(R™ — h(S} vV E™M).

By the Hilton theorem (see [143, pp. 231, 257], or [85, p. 511]) the map
@ w1 (STL) — o1 (S'V SY) defined by () = [3, B] o is injective
(this can also be proved by using the homotopy exact sequence [85, V.3]).
Hence |3, 3] has infinite order. This implies that the element ¢g[3, 3] is
nontrivial because both ¢ and q are nonzero, in analogy with the property
(#) which was used in the preliminary construction on page 310 (see
Lemma 7.2 below).
In the case m = n + 2 we have [ = 1. Consider the compositions

LoV el 5 RF2 — p(En v )
Ylcntvel 5 RF2 — p(Xn v En).

They are homologous to g and 3, respectively. The commutator of
the homotopy classes of the above compositions is nonzero because the
inclusion ¥! v 3! € R"*2 — (X" v £") induces a monomorphism of the
fundamental groups. The latter is proved analogously to [49, proof of
Lemmas 7 and 8], using the Stallings theorem [192] and the observation
that by the linking lemma (Lemma 7.2 below)
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link(¥", ¥1) = link(E",£1) =1 mod 2
link(£7, £1) = link(S, £1) = 0

as required. O

Lemma 7.2 (The linking lemma). For any PL embedding K C R™ of
the above polyhedron K the pairs (X", X!) and (X", 2! are unlinked, and
link(3", %Y is odd (cf. [171, Lemma 1.4], [49, Lemmas 6, 7 and 8]).

Sketch of the proof. The unlinking part follows because X! (resp. X!)

bounds a disc Afﬁ'.l”lﬂ (resp. Aé"{_l__lﬂ) in K — X" (resp. in K — X7").
We illustrate the idea of the proof of the linking part by proving its

particular case m = 2n = 4] = 4 (for which, however, there exists a

simpler proof). Recall the formulation for this case:

Let Q = A}y ¢— A215. Let S' = A2, and let 2 be the union of 2-simplices
disjoint from AZ1o. Then for each embedding Q@ — R* these spheres link with
an odd linking number.

First we prove a simpler result: that link(f3?, f3') # 0 for each em-
bedding f : @ — R*. (The higher-dimensional analogue of this simpler
result is sufficient for the proof of the non-embeddability for m > n+3.)
If link(fX2, fX1) = 0, then f¥! spans a 2-disc outside f%2. Hence we
can construct an almost embedding A%, o — R%. Therefore there is an

—~

equivariant map Ag; 5 — S5°.

—_~—

Then by [215], any equivariant map A2; 4 — S* should induce a
trivial homomorphism in H;%(-,Z>). But there is an embedding g :

A3, ¢ — RS such that g : A3, 4 — S* induces a nontrivial homomor-
phism in H;?(-, Zs).

Indeed, A2, 5= A3, ;UConA}; 5, where A}, - is a regular 5-
simplex inscribed into the standard unit 4-sphere in R® and the vertex of
the cone is 0. This homeomorphism defines an embedding g : A3, 4 —
R®. The union of 4-cells in the simplicial deleted product AZ, 4 is a
Zo-equivariant 4-cycle.

Let p be a vertex of A}; 5. The map g maps a small neighbourhood

in A2, 4 of the point (p,0) homeomorphically onto a neighbourhood in
S% of p. Hence the g-image of the above 4-cycle is nontrivial, and so g
induces a nontrivial homomorphism in Hy?(-, Zs).

In order to prove the full strength of the particular case m = 2n =
41 = 4, assume to the contrary that link(fX", f¥!) is even. Let A’ be



318 A. B. Skopenkov

a polyhedron obtained from A2, by removing the interiors of an even
number 2r of disjoint 2-discs in A2, and running r pairwise disjoint
tubes between the holes thus formed. Then fX! spans A’ outside fX2.
Let

x=Q | a.

N2, =OA

Then there is an equivariant map X — 3. Therefore by [215] any
equivariant map X — 5% should induce a trivial homomorphism in
qu('vZQ)'

Let p : A — A2, 4 be a map which is the identity on @ and such
that p(A’) = A2,,. Then p: X — A2, . induces an epimorphism in
H(-,Zy) [171, p. 278]. Then f op induces a nontrivial homomorphism
in Hy?, which is a contradiction. O

Sketch proof of the TOP non-embeddability of N into R™. Form > n+
3 TOP non-embeddability follows from PL non-embeddability, by [17].

For m = n+2 we argue as follows. There are arbitrarily close approxi-
mations to the embedding h by PL almost embeddings ' : N — R™ (for
certain triangulations of N). By general position we may assume that
h|s1 and A/ |51 are PL embeddings. The rest of the proof is analogous to
the PL case (in which we need to replace h by k'), because we only used
the Linking Lemma 7.2 but not the fact that h is an embedding. O

Borromean rings and the Boy immersion

The following was proved in [4], cf. [48, 7]. Let h : RP? — R3 be the
Boy immersion. Fix any orientation on the sphere 52 and on the double
points circle A(h). Take a small closed ball D3 C R? containing the
triple point of h. Let r : S — RP? be the standard double covering.
Denote by 71 : R? x R — R? and 75 : R? x R — R the projections. Take
a general position smooth map h : (S2 — hy *D?) — R3 x R such that
7 0o h = hor and for each points z,y € S? — (hor)~!D? such that
hrz = hry and mohx > mohy the following three vectors form a positive
basis of R at the point hrz = hry: the vector along the orientation
of A, the normal vector to the small sheet of h(RP?) containing = and
the normal vector to the small sheet of h(RP?) containing y. Then
B|(hor)*16D3 — 9D3 x R forms the Borromean rings linking (after the
identification D3 x R = R3).
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8 The disjunction method

In this section we illustrate the disjunction method by sketching some
ideas of the proofs of surjectivity in the Haefliger-Weber theorem (The-
orem 5.5) for the PL case, and of Theorem 5.6. The first of these results
can be restated as follows.

Theorem 8.1 (The Weber theorem [207]). Suppose that N is an n-
polyhedron, 2m > 3n +3 and ® : N — S™~! is an equivariant map.
Then there is a PL embedding f : N — R™ such that f ~¢, ® on N.

Simplices of any triangulation 7" are assumed to be linearly ordered
with respect to increasing dimension. The lexicographical ordering on
T x T is used.

8.1 Proof of the Weber theorem for m =2n+1

We present the proof for m = 3 and n = 1 (the general case m = 2n+1
is proved analogously). Take a general position map f : N — R3. Then
it is an embedding, so we only need to modify it in order to obtain the
property f ~¢q ®. This property does not follow by general position.
We obtain it by applying the van Kampen finger moves, i.e. by winding
edges of the graph N around images of other edges.

Note that van Kampen invented his finger moves for the proof of
Lemma 4.4; here we present a generalization of the van Kampen finger
moves.

Proposition 8.2. Let T be a triangulation of a 1-polyhedron N (i.e.
T is a graph representing this 1-polyhedron). For each pair of edges
0,7 € T such that o < 7 there exists a PL embedding f : N — R3 such
that

feq® on Jor = U a x [.
UXT>aXﬂET

Theorem 8.1 for m = 2n + 1 = 3 follows from Proposition 8.2 by
taking o and 7 to be the last simplices of T

Proof of Proposition 8.2, 1st step: construction of balls. By induction on
o X 7. If both ¢ and 7 are the first edge of T', then dim J,, = 1, hence
Proposition 8.2 is true by general position. Now suppose as inductive
hypothesis that f:eq ® on J,, for an embedding f : N — R3. We need
to prove that for ¢ N 7 = () there exists a map

ft: N —R?® such that f*f_veqCI) on JyyUoxTUT X o
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TxT

Fig. 8.1.

Fig. 8.2.

Take points C, € ¢ and C € 7 (Figure 8.2). Join their images by an
arc C' C R3 such that C' N fN = {fC,, fC,}. Let D3 be a small ball
neighbourhood of C! in R? such that f~!1D?3 is a disjoint union of arcs
D, C 6 and D, C 7 containing points C, and C, respectively.

We may assume that fD, is unknotted in D3. Hence a homotopy
equivalence h : D? — fD, — S! is constructed, analogously to the
homotopy equivalence S™ — fS% — S™~4~1 from (3.1) (which was used
in defining the linking coefficients). O

Proof of Proposition 8.2, 2nd step: the van Kampen finger move. In or-
der to construct such an f* we shall wind the arc f|p. around fD, in
D? — fD, (Figure 8.3).
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fDqy

D,

Fig. 8.3.

Take any embedding f* : D, U D, — D3 such that f* = f on

D,UdD,. Let Dy be a copy of D,; identify S! with D, |J  Dy.
8D, =0D,

Identify S with D?— f D, by the homotopy equivalence h given earlier
n (3.1). Define a map

hyp+:8' =D, |J Dy—D*—fD,=S5"
oD, =dD+

_[nf@)  wen,
sl )_{hw(x)) z€ Dy

Since fT = f on D, U dD,, it follows that there is a homotopy f¢ :
D, U D; — D3 from f to f* fixed on D, U &D,. Denote by f, ® and
f+ the restrictions of these maps to Dy x D;, and by f; the restriction
of this map to (Dy x D). Define a map Hjz, : (D X Dy x I) — S?
by

Hip D, xD,x0 = f, Hpp|D,xp,x1 = i, Hizlop,xpoyxr = fr.
By [207, Lemma 1] we have
[H7:] = Slhyp+] € ma(S?).

By the equivariant analogue of the Borsuk homotopy extension theorem,
there is an equivariant extension ¥ : K — 52 of f|J CU(oxr—Dyx D)
such that ¥ ~., ®. We may assume that ¥ = ®, so that & = f on
d(Ds x D;). Therefore Hy 7+ can be defined analogously to above; we
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D, x D, x1I R R = Q
— ‘ 52

can also define Hy, 7 similarly, using the constant homotopy between ®
and f on d(Dy x D). Then

[Hyp] = [Hyf] + [Hppi] = [Hyfl + Slhyp+] € ma(S?).
For every element 3 € m1(S!) there is an embedding
ft:D,— D?—fD,

such that [h;+] = 3. Therefore, by the suspension theorem there exists
amap f*: D, — D>~ fD, such that [Hy7:] = 0. Extend this fT to
all N by f. Then fT is as required. O

8.2 Proof of the Weber theorem for m =2n > 6

Let us introduce some natural and useful definitions.

Definition 8.3. Fix a triangulation T' of an n-polyhedron N. Then a
map f: N — R™ is an embedding if and only if the following conditions
hold:

e fis (T)-nondegenerate, i.e. f|, is an embedding for each o € T

e fisa (T)-almost embedding, i.e. fan f3 =10 for each a x 3 C f;

e fis a T-immersion, i.e. fan f3 = f(an B) for each a, B € T such
that o N 3 # 0.

Plan of the proof of the Weber theorem 8.1 for m = 2n > 6. Take a tri-
angulation T" of N and a general position map f : N — R™ that is
linear on simplices of T. Hence f is nondegenerate. By general pos-
ition, the properties of almost embedding and T-immersion hold unless
dima = dim 8 = n.

Step 1. Wind n-simplices of T' around (n — 1)-simplices (analogously
to the case m = 2n + 1) and thus modify f to obtain additionally the
condition f =, ® on the (2n — 1)-skeleton of T (see Figure 8.5). Such
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T

4

Fig. 8.5.

a van Kampen finger move is a higher-dimensional generalization of the
fifth Reidemeister move (Figure 4.2.V).

Step 2. Now it is possible to remove intersections of disjoint n-simplices
of T and thus modify f so as to make it additionally an almost em-
bedding. This construction is a higher-dimensional generalization of the
first and second Reidemeister moves (Figures 4.2.1 and 4.2.IT), which
are called the Penrose- Whitehead-Zeeman trick and the Whitney trick
respectively. The details for Step 2 are given as Proposition 8.4 below.

Step 1 and Step 2 together are analogues of Lemma 4.4.

Step 3. Wind n-simplices of T around n-simplices (analogously to the
case m = 2n + 1) and thus modify f to obtain additionally the condi-
tion f ~¢ ® on T. These are the van Kampen finger moves in other
dimensions.

Step 4. Remove unnecessary intersections of m-simplices of T° which
have a common face, and thus modify f so as to make it addition-
ally a T-immersion (and hence an embedding). This construction is
a higher-dimensional generalization of the fourth Reidemeister move
(Figure 4.2.1V), an analogue of the Freedman-Krushkal-Teichner lemma
(Lemma 4.5), and is called the Freedman-Krushkal-Teichner trick. O

Proposition 8.4 (cf. Proposition 8.2). Let T be a triangulation of an
n-polyhedron N. For each pair of n-simplices o,7 € T such that o < T
there exists a nondegenerate PL map f : N — R?™ such that

fanfB=0 if 0><'r>oz><ﬂ€f.

Proof. As inductive hypothesis, assume that we have such f for a pair
o x 17 CT. We need to prove that there exists a map f+: N — R?>"
such that

fanfB=0 if oxr>axpBeT.
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Fig. 8.6.

By the inductive hypothesis fo N fr = fo N f7 is a finite set of points.
Let C, C & be an arc containing the points of N f~17 (Figure 8.6). Let
C, C 7 be an arc containing the points of 7 N f~!¢ ‘in the same order’
as Cy. Let C? C R?" be a union of discs such that C? N fo = fC, and
C?’n fr = fC,.

Let D?" be a small neighbourhood of C? in R?" such that f~1D?" is
disjoint union of n-balls D, C ¢ and D, C 7, which are small neigh-
bourhoods of the arcs C, and C; in N. We have the following:

e f|p, and f|p. are proper embeddings into D?";
e fon fr C D,

e D, =0cNf"'D? and D, = 7N f~'D?>"; and

e f0D, N D, = fOD. N fD, — 0.

Since n > 3, it follows that a homotopy equivalence h : D** — fD, —
S™~1 can be constructed in analogous fashion to the homotopy equiv-
alence (3.1). The coefficient of the intersection of fD, and fD, is the
homotopy class

I(fD,, fD;) = [0D, 2220, p2n _ ¢p 1 gn=1) ¢ o (571,
We have

£3"I(f Do, fDr) = [flo(p., x0.)] = [@lo(n, xp.)] = 0 € man_1(S*" 7).

Here the first equality is [207, Proposition 1], the second equality holds
because fz ® on J(Dy x D7) by the inductive hypothesis, and the third
equality holds since ® is defined over T > Dy x D

By the Freudenthal suspension theorem I(fD,, fD,) = 0. Hence the
embedding f|sp, extends to a map f¥: D, — D* — fD,. Using the
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Penrose-Whitehead-Zeeman trick we modify f’ to an embedding. Extend
f over the entire N by f. By general position C? (and hence D?" and
fTD,) is disjoint with f(N —sto—st 7). Therefore f¥ is as required. [J

8.3 Definition of a regular neighbourhood

The notions of collapse and regular neighbourhood are used in our proofs
and are generally important in topology.

A polyhedron Y is said to be obtained from a polyhedron K by an
elementary collapse if K =Y UB" and Y N B™ = B"~!, where B" ! is
a face of the ball B™. This elementary collapse is said to be made from
Cl(OB™ — B"~') along B™ to B"~!. A polyhedron K collapses to Y
(denoted by K\ Y) if there exists a sequence of elementary collapses
K=Ky\ . K1\, -\ K, =Y. A polyhedron K is collapsible if it
collapses to a point.

Clearly, the ball B™ is collapsible, since it is collapsible to its face
B! thence to B2, and so on by induction. Moreover, a cone cK
on a compact polyhedron K is collapsible (to its vertex). Indeed, note
that for each simplex A C K, the cone cA collapses from A to ¢(9A),
hence cK collapses to a point inductively via simplices of decreasing
dimension.

A collapsing K \, Y generates a deformation retraction r : K — Y,
given by deformations of each ball B" to its face B"~!. Consider a
homotopy H; between the identity map K — K and the deformation
retraction r : K — Y, given by the collapse K \, Y. The trace of a
subpolyhedron S of K under the collapse K \ Y is the union of H;(S)
over t € [0,1] (this in fact depends on the homotopy, not only on the
collapse).

Suppose that K is a subpolyhedron of a PL manifold M. A neigh-
bourhood N of K in M is called regular if N is a compact bounded
manifold and N \, K. The same polyhedron can have distinct regular
neighbourhoods. However, the regular neighbourhood is unique up to
homeomorphism and even up to isotopy fixed on K [161]. The regular
neighbourhood of a collapsible polyhedron is a ball [161]. (The converse
statement, i.e. that K C B™ and K Y\, * imply B™ \, K, is true only in
codimension > 3 [90].)

Let us fix the following convention. The notation Ry (K) means ‘a suf-
ficiently small regular neighbourhood of K in M’, when it first appears,
and ‘the regular neighbourhood of K in M’, after the first appearance.
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8.4 Proof of the Weber theorem for the general case
2m > 3n+ 3

The proof of the Weber theorem (Theorem 8.1) for the general case
consists of two steps:

(i) the construction of a nondegenerate almost embedding (an ana-
logue of Lemma 4.4, the details for this step are given as Propo-
sition 8.5 below); and

(ii) the construction of an embedding from a nondegenerate almost
embedding (a generalization of the Freedman-Krushkal-Teichner
lemma 4.5, the details are given in [179, 153]).

Proposition 8.5. Suppose that N is an n-polyhedron with a triangula-
tion T, 2m > 3n+ 3 and P : N — S™1 s an equivariant map. Then
for each o x T € T such that o < T there exists a nondegenerate PL map
f: N — R™ such that

fanfB=10 foreacha x B <o xT (%)
and
Froe ®  on JUT::U{axﬁuﬂxaCT|a><5<a><7}. (xx)

Theorem 8.1 follows from Proposition 8.5 by taking o and 7 to be the
last simplex of T" and then applying a generalization of the Freedman-
Krushkal-Teichner lemma [179]. Theorem 8.1 can also be proved by first
constructing the immersion and then modifying it to an embedding [181].

Proof of Proposition 8.5. Take a general position map f : N — R™
that is linear on the simplices of the triangulation 7. The map f is
already nondegenerate. By the induction hypothesis on ¢ x 7 we may
assume that f is nondegenerate and the properties (x) and (xx) hold.
Suppose that p4+¢ > m—1 (otherwise the inductive step holds by general
position).

The first part of the proof (a generalization of Proposition 8.4 and the
Whitney trick) is to obtain the property fo N f7 = (). The second part
of the proof (a generalization of Proposition 8.2 and the van Kampen
finger moves) is getting the property fzeq donJ,rUocxTUTX0. O
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Constructions of balls D,, D, and D™

The first step in the proof of Proposition 8.5 generalizes the construction
of the arcs Iy, l3 and the disc D in the Whitney trick, or the construction
of Dy, D, and D?*" in the case m = 2n above.

Let ¥ = fon fr. By (%) we have

fon for= foon fr=40.

Hence ¥ = fo N f7. By general position, dim X < p+ ¢ — m.

Let C; C & be the trace of the polyhedron o N f~'7 under some
collapse o \ (a point in 7). Define analogously C C 7. The polyhedra
C,,C; are generalizations of the arcs l1,ls from the Whitney trick, and
of C,, C; above. They are collapsible and satisfy

YC fCon fC, and dimC,,dimC; <p+qg—m+1.

Consider a collapse from some PL m-ball J™ in R™, containing >
in its interior, to a point in J™. Let C be the trail of C, UC, under
this collapse. The polyhedron C' is a generalization of the disc C' from
the Whitney trick. It is collapsible and contains C, U C, and dim C' <
p+q—m+2. Hence by general position, CN fo = C, and CN f1r = C;.

Take the regular neighbourhoods of polyhedra C,,C, and C' in some
sufficiently fine (agreeing) triangulations of o, 7 and R™, respectively.
They are PL balls D2 C ¢, DI C 7 and D™ C R™ such that

(a) flp, and f|p, are proper embeddings into D™;
(b) fon frc D™,

(c) Dy =0cnNftD™and D, =7N f~tD™;

(d) DN fP =0, where P=N —sto — st .

Only the last property needs a proof. By (%) we have C, N P = ). By
general position dim(fP N f7) < n+ g — m, hence

dim(fPNfr)+dimC; <gq

and so C. N P = (). Therefore C' N fP = (), which implies (d).

A generalization of the Whitney trick

Take PL balls D™, D, and D, as above. Since f is nondegenerate and
(%) holds, it follows that fOD,NfD, = f0D.NfD, = 0. Since m—p >
3, it follows that a homotopy equivalence h : D™ — fD, — S™~P~! may
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be constructed analogously to the homotopy equivalence (3.1). The
coefficient of the intersection of f|gp, and f|sp. is the homotopy class

I(flp.. flp.) = [0D, 122z, pm _ pp_ t gm=—p=1] c 1 _ (gm-p-1),
We have

SPI(f|p,. flp,) = (=)™ P[flap, x b)) = [®la(p, x p,y] = 0.

Here the first equality holds by [207, Proposition 1]. The second equality
holds since f ~ @ on 0(Dy x D;) by the inductive hypothesis. The third
equality holds since ® is defined over T > D, x D,. Since 2p 4+ q <
2m — 3 we have ¢ — 1 < 2(m —p — 1) — 2. So by the Freudenthal
suspension theorem, the homomorphism ¥? is a monomorphism. Hence
the embedding f|sp. extends to a map f': D, — D™ — fD,. Since 2q—
m+1 < m—p—2, by the Penrose-Whitehead-Zeeman-Irwin embedding
theorem (Theorem 2.9) it follows that f’ is homotopic reldD; to an
embedding f* : D, — D™ — fD,. Here we again use the inequality
p+ 2q < 2m — 3. Since m — g > 3, by the relative version of Theorem
2.7(a) [218, Corollary 1 to Theorem 9] it follows that there is an ambient
isotopy hy : D™ — D™rel D™ carrying f|p, to fT. Extend fT over
N by the formula

(@) = hi(f(z)) if f(x) € D™ and z € v for some vy D o
a f(z) otherwise.

It is easy to check that f* is a nondegenerate PL map satisfying the
properties (%) and (x*) and such that fTon fTr = 0.

A generalization of the van Kampen finger moves

We begin with the analogous construction of PL balls. By general posi-
tion we can take points C,, € ¢ and C € 7 such that the restrictions of
f to some small neighbourhoods of C, and C’. are embeddings. Since
z,y < m — 2, we can join points fC, and fC, by an arc C C R™
such that CN fN = {fC,, fC.}. Let D™ = Rgm(C). Then f~1D™ is
the disjoint union of PL discs D, C ¢ and D, C 7, which are regular
neighbourhoods in N of C, and C;, respectively.

By the Borsuk homotopy extension theorem, there is an extension
U :T — S™ ! of the map ﬂ.fﬁu(axrff)ax[),) such that ¥ ~ ®. So

U = f on &(Dy x D;). We may assume ¥ = ®. By [207, Lemma 1],
for each map [’ : D, U D, — D™ such that f' = f on D, UdD, and
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f'Ds N f'D; = B and each homotopy f;rel D, LIOD, from f to f’, we
have

(Hyf 7] = [Hofl + Hf 5l = [Hy ) + (—=1)" P2 [hypr] € mpiq(S™ 7).

Here @, }v and f* denote the restrictions of these maps to D, x D;
ﬁ denotes the restriction of this map to (D, x D, ), and the maps H,
hys are defined as in the second step of the proof of Proposition 8.2.
Since 2p + ¢ < 2m — 3, we have ¢ < 2(m —p — 1) — 1. So by the
Freudenthal suspension theorem ¥P is an epimorphism. Since for every
element 3 € 7,(S™ P~1) there is a map (not necessarily an embedding)
f': Dy — D™ — fD, such that

[hff’] = ﬁ and f/ = f on Dcr L aDT’

it follows that we can take f’ so that [Hy 7 7] = 0.
The rest of the proof is the same as in the generalization of the Whit-
ney trick.

8.5 Generalization of the Weber theorem

We illustrate some of the ideas of the proof of Theorem 5.6 by proving
the following weaker result for d € {0,1}.

Theorem 8.6. Suppose that N is a d-connected closed PL n-manifold,
2m > 3n+2—-d, m>n+3 and ®: N — S™=1 4s an equivariant
map. Then there is a PL embedding f : N — R™ [178].

We first recall some classical results and their generalizations, which
are required to prove Theorem 8.6.

Lemma 8.7 (The engulfing lemma). Suppose that N is a (2k+2 —n)-
connected closed n-manifold and K C N is a k-polyhedron such that
n —k > 3 and the inclusion K C N is null-homotopic. Then K can be
engulfed in N, i.e. is contained in an n-ball B C N [141, 218].

Theorem 8.8. Suppose that N is a closed homologically (3n —2m + 2)-
connected PL n-manifold, m —n > 3 and g : N — R™ is a map such
that ¥(g) is contained in some PL m-ball B C N. Then there is an
embedding f : N — R™ such that f =g on N — B.

Proof. The theorem is essentially proved in [79], cf. [178, Theorem 2.1.2].
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Let M = R™ — Int R(g(N — B), gdB). Since N is homologically (3n —
2m + 2)-connected, we have by Alexander duality

Hy(M)= H" ' 7(R™ — M) = H" "N — B) = Hy_ i1 44(N) =0

fori < 2n—m+1. Since m—n > 3, it follows that M is simply connected.
Therefore by the Hurewicz isomorphism theorem we have that M is
(2n—m+1)-connected. Hence by the Penrose-Whitehead-Zeeman-Irwin
embedding theorem (Theorem 2.9) the embedding g : 0B — 0M extends
to an embedding f : B — M. Extending f by g outside B we complete
the proof. O

Theorem 8.9. Let N be an n-polyhedron with triangulation T. If m —
n > 3 and there exists an equivariant map ® : N — S™ 1 then there
exists a general position nondegenerate PL map f: N — R™ such that

fonfr=f(onr) if p=dimo <dim7T=¢q and pt+g+n < 2m-3.

Sketch of the proof. This is analogous to the proof of Theorem 8.1. Re-
call that Theorem 8.1 is proved by induction on o x 7 € T". If dimo = p
and dim 7 = ¢, then we need the following dimensional restrictions:

e p+2g < 2m — 3 to apply the Freudenthal suspension theorem (twice)
and the Penrose-Whitehead-Zeeman trick;

e p+q+n<2m—3to get the property D™ N f(N —sto —st1) = 0.

O

A reduction of Theorem 8.6. It suffices to prove the following.

Claim. For some fine triangulation T of N and a map f: N — R™ as
given by Theorem 8.9, the inclusion X(f) C N is homotopic to a map
to some d-dimensional subpolyhedron of N.

Indeed, since N is d-connected, the claim implies that the inclusion
Y(f) € N is null-homotopic. Since N is (2(2n — m) —n + 2) = d-
connected, by Lemma 8.7 it follows that ¥(f) is contained in some PL
n-ball in N. Then N embeds into R™ by Theorem 8.8. |

Note that if a map f given by Theorem 8.9 is a PL immersion (i.e. a
local embedding), then X(f) does not intersect the (2m—2n—3)-skeleton
of T'. Hence it retracts to the (n — 1 — (2m — 2n — 3)) = d-skeleton of a
triangulation, dual to T, i.e. the claim holds.
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Proof of the claim for d = 0. We may assume that 2m = 3n + 2. Hence
fon fr= f(cN7) unless dimo = dim 7 = n. For n-simplices « and
let

S :{cmf—lfﬂ anp =0
T fan ) — flanB)] anB#£0

(see Figure 8.7).
Then

S(f)= | Sap and SasN Sy =0
a#f3
when a8 # 8. Here o3 is the ordered pair (o, ) when «Ng = @ and the

non-ordered pair {c, 3} when a N 3 # (). Therefore the contractibility
of @ (and of a U 3 for a N # () yields the claimed homotopy. O

Proof of the claim for d = 1. We may assume that 2m = 3n+ 1. Define
af and S, as in the case d = 0. We denote such pairs a8 by Latin
letters i, j, k, l. First we prove that:

(a) S;NS; NS, =0 for distinct 7,5,k =1,...,s;
(b) for each i =1,...,s there is a contractible polyhedron A; C N which
contains S;.

If S;NS; # 0, then there is a contractible polyhedron A;; C N,
containing A; U A;.

Indeed, we may assume that a triangulation T of IV is such that, for
each x € N, the star st?z = ststz is contractible. By Theorem 8.9
Sap # 0 only when

dima=dimgB=n or {dimea,dimpg}={n,n—1}.
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By general position, f has no triple points. Therefore each nonempty
intersection of any three of Sy, ...,Ss can only be of the form

8018 M Saz8 N Sazp = Sap  (0r Spay N Sazs N Spas = Spa)

for some of, oy, 08, 8", a €T, a=a; NazNas.

Since Sup # 0, it follows that dima = n — 1; but since N is a closed
manifold, no three distinct n-simplices of T" intersect in an (n—1)-simplex
of T'. This contradiction shows that (a) is true.

For part (b), let

aupB anpB#0.

If SiﬂSj 75 [Z), then take a pOiIlt Q5 S Sz ﬂSj and let Aij = St2 Qg - From
the definition of S; and A; it follows that S C A; and 4; U A; C Ajj.
By the choice of T', A; and A;; are contractible.

Now we construct a homotopy of ¥(f) onto its ‘reduced’ nerve. From
(a) it follows that the sets S; N .S; are disjoint for distinct non-ordered
pairs ¢,j = 1,...,s. Take disjoint regular neighbourhoods U;; of S; NS
in Ule S;. Since A; is contractible, it follows that there is a homotopy

Aa3:{a ang =10,

FlCI(SZ— UU”> ><I—>Az
J#i

between the inclusion and a constant map to some point a; € A;.

Suppose that S;NS; # 0. Since A;; is contractible, it follows that there
is an arc l;; C Aj;j joining a; and a;. Also we can extend homotopies Fj
and F}; over U;; to a homotopy F;;U;; xI — N between the inclusion and
a map of U,; to l;; (we can do this first for vertices and then for edges).
Since all U;; are disjoint and all F;; are extensions of F; and F}, then all
the constructed homotopies define a homotopy F : (U;l Si) xI— N

between the inclusion and a map onto the following subgraph of N:

(Oai> U (U{lij|1 <i<j<sand SiﬁSjyﬁ@}).

i=1

This completes the proof. O

It follows from our proof that Theorem 8.6 for 2m > 3n+1 is true even

if there only exists an equivariant map to S™~! from the ([%"] - 2)-

skeleton of 7.



Embedding and knotting of manifolds in Euclidean spaces 333

Remark. It would be interesting to know if Theorem 8.6 remains true

when N has singularities of dimension at most m—n—2. This is not clear,

contrary to what is written in [178] (for example, in the suspension of

a homology sphere the complement to vertices is not simply-connected,
so we cannot apply the engulfing lemma).
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On Maxwellian and Boltzmann distributions
Vladimir V. Ten

Introduction

The foundations of the establishment of thermal equilibrium constitute
an old problem, first investigated by Boltzmann in [1]. Although Boltz-
mann’s kinetic equations assume a probabilistic nature of the system, the
starting point was a deterministic and conservative mechanical system
consisting of a finite number of elastically colliding balls. This model is
called the Boltzmann—Gibbs gas.

In this article the normal distribution of velocities is put on a firm
foundation for conservative mechanical systems with a large number of
degrees of freedom, without any additional assumptions of a statistical
or random kind. At the end, the Boltzmann distribution for density in
configuration space is also justified. So, here some of Boltzmann’s ideas
(see [2]) are proved in a rigorous way.

Summary of the article

In Section 1 it is shown that at most points of an n-sphere, the difference
between the joint density of the Cartesian coordinates and the density
of a normal distribution vanishes as n tends to infinity. Our approach is
elementary but requires some technical lemmas whose proofs are deferred
to Section 2.

In Section 3 the whole energy level is considered — the product of a
sphere and a compact configuration space. Then, using the individual
ergodic theorem and Lemma 3.1, deviations of the distribution of veloci-
ties from normal for individual solutions with different initial conditions
are investigated.

Finally, it is shown that for systems with sufficiently many degrees
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of freedom, for most initial conditions the deviation from the normal
distribution is small at almost every moment of time.
Sections 1-3 comprise a revised version of the author’s paper [4].

1 Convergence to the normal distribution

Consider a conservative mechanical system consisting of a huge number
of identical simple systems: the standard model of an ideal gas provides
an example. The phase space of such a system is the product of n simple
phase spaces. For simplicity we shall assume that simple mechanical
systems are one-dimensional, but the analysis works for more dimensions
once the notation is sufficiently extended.

Consider the space of velocities R™{vy,...,v,} — the tangent space
over a point of configuration space. Let us set the total mass and average
square of velocities to be equal to one:

d.o-=1 ka

k=1

3
[t

3

™)

3 |

The general case may be reduced to this by the simple coordinate change

up = ,/%vk. The case of different masses of particles also can be

considered using a proper coordinate change. Here the total mass M
and energy E are assumed to be constants (i.e. do not depend on n).

The energy level in the tangent space over a configuration of n particles
is an (n — 1)-dimensional sphere S,, with centre at the origin and radius
equal to v/n. Introduce the natural uniform density on this sphere.
The density of the magnitude of the coordinate v; on the sphere is
proportional to the (n — 2)-volume of the intersection of S,, and with
the hyperplane v; = const. The result is an (n — 2)-sphere with radius
\/n — v?, whose volume is proportional to

(o) () () -

(the first multiplier is due to the cosine of the angle of projection to the
vy-axis). After normalization the previous expression has the form

n—3

1 ’U% 2
- — . 1.1
Kn( n) (1.1)

Lemma 1.1. The following inequality is valid:

()

<—, —m<zL0.
n
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Lemma 1.2. For any p € N there ezists a constant Cp(a) such that
e* — (1+ E)n_a < Gpla)
n

Lemma 1.3. There is an absolute constant C, such that
‘ 1 C
Kn vV 2T

o
The proofs of these lemmas will be given in Section 2.

|z|P —n<z<0.

n

How can we define ‘similarity’ of two densities (in a rigorous sense)
when one is a continuous function and the other is a sum of delta-
functions? In our case the latter corresponds to the set of n velocities
of our dynamical system at a fixed moment of time, and the density is

1 1
E5(v—v1)+~-~—|—ﬁé(v7vn).

In this paper the difference between their Fourier transforms is sug-
gested as a measure of their ‘similarity’. It is justified by the similarity
between the density of a discrete set of points, represented as a finite
histogram, and the normal density, in the case of small difference of their
Fourier transform.

The Fourier transform of the density of n points vy, ..., v, is

[ il o 1
D,(s) = / EZ(S v —vg)dv = EZBZS%
e k=1 k=1

and the Fourier transform for the standard Gaussian (normal) density
1 —142
——e 2V is

V2m

X 1
D.(s) = /ezsv\/ﬁe_%vzdvze_%SQ.

We shall show that for the majority (in measure) of points on the energy
level S,,, the deviation |®,,(s) — ®.(s)| vanishes uniformly in s as n goes
to infinity.

Consider the sphere S,, with normalized constant density as a proba-
bility space: the random variables are the measurable functions on S,,.
Denote the measure of a subset as P(M), M C S,. This makes it
possible to use the language and apparatus of probability theory. For
example, the expected value (EV) is the mean value of a function.
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Let us define the function ¥(v1) as given by (1.1) on the interval
[—v/n,+/n] and equal to zero for the rest of the line. Thus ¥ is the
density obtained by projecting the uniform density on S,, to the v;-axis.

Define functions & = R(e’*V*) = cos(sv). In terms of probability
theory they are random variables, though they have nothing to do with
randomness in our context; the use of probabilistic terms is for conve-
nience and easy recognition of metric results of the theory.

We have

Mg = /cos(svl)dw

S”L
)

_ / cos(sv1) U (vr) dor

The EV on measure with normal distribution
1
em?
on the probability space R"{vy,...,v,} will be denoted by E. For a
random variable which is constant in every coordinate hyperplane (say
v = const)

—L(i++vd)

(&

o0 oo

1
E&4 =—— | ... | cos(svy) e~ 3 (Wi +]) dvy ... dv,
)’
— 00 — 00

= 7 (son)e 3% d
= — COS(svy)e 2 V1.
o 1 1

oo

Define the random variable

1 & 1 &
M = I ];ﬁk = I;COS(S%)

(this is just the real part of the Fourier transform ®,,(s)). Clearly
M, = Mg =--- =M, and  En, =E§ = - = E&,.

We can now state the main lemma of this section.
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Lemma 1.4. The following estimates hold:

(i)

(ii) [MeF — EeP| <
)
)

IM& — E& | < m?gcl(%)y
Cl(%)7

|M&1&o —E51§2| < nmcl(%);

(M&)? = (B&)?| < —=Ci(3).

(iii

(iv

Let D denote the variance of a ‘random variable’ on the probability
space S,,. Then

Dnp, = M(n, — Mnn)2
= M(7772L - 2n,Mn,, + (Mnn)2)

—M Zskw &g | — (V)

i<j<n

iz <nM§% + 2%

M£1€2) — (M&y)?

Mg " (Mg,)?

- % (MEF — M&1&) + M & — (M&)?

Since E& 1 & = E& = 0, we can estimate this using Lemma 1.4 to get

D, = M(n, — Mnn)2

= L (M&} ~ M&i&o) + MésEs — (M&)” — (616 — (B)?)

2 15

n nV2r
16

——Cy(3).
nv2n 1(2)

Ci(3)

IN

(1.2)

Remark. Note that for functions on a measure space which are inde-
pendent (in the sense of probability theory) the result is very similar,
and so we could say that our functions (one-dimensional projections of
uniform measure on n-sphere) are ‘almost independent’. Moreover, the

‘dependency’ is of order n~!.

Lemma 1.5 (Chebyshev’s inequality).

D1
P(ln —Mn| >¢) < =
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Combining Chebyshev’s inequality with the variance estimate (1.2)
gives
64

e2n\/2m

Ci(

N

).

By Lemma 1.4 we have [M¢; — E& | < — 5277 C1(3) and

P (I —M&| = 5) <

€ 5 . 64
P (|9, —E&| > -+ —=C é><70§
<|77 51‘_2 nv2r 1(3) T &2ny/2m 1(3)

so that

P(|lnn —E&|>¢) < for n >

64 3 10
— o ——ai(3).
= e2nor (2) V2 1(3)

For & = 3(e®v*) = sin(svy) the calculations are analogous. Hence

3
IP’( cos(svr) + - - - + cos(svy,) e >€> < 6401(2)’
n e2ny2m
. : 3
P ( sin(svy) + - - - + sin(svy,) > E) < 64(71(5)7
n e2ny2m

because E cos(svy) = e~ and Esin(sv) = 0.

Thus

: 256 C1 (2

) < B661(5)
e2ny/2m

In words: for every ¢ > 0, the set of points on S,, where the Fourier

transform deviates from normal by more than € can be made arbitrarily

small (in measure) by taking sufficiently large n.

P (‘(I)n(s) — e 3*

(1.3)

Remark. For higher-dimensional simple systems one uses the multi-
dimensional Fourier transform. For instance, in three dimensions we
have

n
i(s i ) 1
/// i(s1v1Fs2v2+5303) E — 0(v1 — V1, V2 — Va2 i, U3 — U3 i) durdvadus,
n
k=1

The integral is similarly reduced to a finite sum. For fixed (s1, s2, 83) we
may introduce new orthogonal coordinates

Wk = 8101,k + S2V2 k + S3VU3.k

and hence the problem is reduced to estimates obtained for one-dimensional
simple systems.
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Note that using this technique we may also prove convergence of the

‘finite histogram’ of this discrete density to the corresponding ‘finite
histogram’ of the normal distribution. Indeed, let

{ﬁ if x € [a,b],

0 otherwise.

@ab(ﬂf)

For sake of convenience we redefine our variables £ by setting

gk:9ab(vk:) k:].,...ﬂ’l,
and let

G+t
o = .

As before it can be shown that

1 C C+1
| M —E&| < =+ — i
n n

1 C Cy+1
|M§1§2—E€1§2|§g+—2= 2
and

Dy, = - (M} ~ E&&) + MG — G — (ME)? + (B& )

2 Cs 1 2
G E. .
_n(b—a)+n n(b—a+c3>

Therefore

b
1 — 1 12
Pl|=) 6, —— [e2v ¢

4 2
> < — | —+0C5).
=° _62n<b—a+ 3)

This estimate may be known but we were unable to find a reference in
the literature.

a

2 Proofs of the lemmas
Proof of Lemma 1.1. Tt is known that

z n—a
lim (1 + —) =e*
n— oo n
for every fixed z. For convenience let a = 0.
Consider the difference

n+1 n
<1+ : ) —(1+3) .
n+1 n
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and with a change of coordinates z =14 z/n let

@= (e —2)" o
Ani¥) = n+1x n+1 .

(as z varies from —n to 0, x varies from 0 to 1).
Suppose the derivative of a, () vanishes at some point x:

n 1 " n—
Oza;(xo):n<n+lmo+n+1> —nap~t.

Then
1

n 1 _ 1—x0)x)™
an(ﬁﬁo): |:(n+1£l}o+ )—.1'0:| .’I,’g 1: %

n+1 n+1

We may assume that the function a, (x) reaches its extremal value at x =
xo (for at the ends of the segment [0, 1] it takes the values (n -+ 1)~(+1)
and 0). Now, the maximum value of ¢(s) = (1 — s)s"~! on [0,1] is
attained at the unique solution sg € (0, 1) of

0=¢'(s)=(n—1)s""2—ns"" L.

The root sy of the equation is equal to (1 - 7—1L), and
1 I\N"" 2t 1
n n n n

=S S S 0

Hence

an, (CC) <an (IO

Thus the terms of the series

n+1
z Z\"
S (1+ - (14+2)
n+1 n
allow a uniform estimate 1/n? for z on the negative semi-axis. Therefore
the absolute accuracy of the series may be estimated as 1/n.
For nonzero a the calculations are more tedious, but in qualitative

terms they repeat almost verbatim those for the zero case. In general
the estimate has the form 2e*~!/n, for example C(2) = 2v/e. O

Proof of Lemma 1.2. The structure of the proof is very similar to that
of Lemma 1.1. Let b, (z) = nP(1 — x)Pay,(z); the expression carries the
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same sense as a,(x) from previous proof. Again let xy be such that

OZb;(ZEQ)
nzo +1\"t" nro+1\"
Then
<n5€0+1>n_ (n+D((p+n)ro—n)
n+1 (nip+n+1xg+p—n2—n) °

Suppose the function b, (z) attains its maximum at = zy (otherwise
we immediately get the estimate by values at 0 and 1). Introduce the
notation

o(s) = nP(1 — s)Ps™ ("5 +1 (n+1)((p+n)s—n) B s> :

n+1 (n(p+n+1)s+p—n2—n)

thus ¢(zg) = bn(zg). Note that the roots of the equation ¢'(s) = 0 lie
to the right of the point sg =1 — %1.

Consider two possibilities: if xg is to the right of sy then the estimate
is easily deduced using Lemma 1.3, since nP(1 — z()? is bounded by
(p+ 1)P; if xg is to the left of sp then it is sufficient to estimate ¢(sg),
since ¢'(s) does not change its sign on the interval [0, so] and ¢(0) = 0.

We observe that

lim o(so)n? = (p + 1)p+2€_(p+1).

n—oo

Hence, for sufficiently large n

ba(z) < ba(zo) < max (Wo)’ (ptl&)

_ max {2(p+ 1)PH2e=r+) (p 4+ 1)PC}
5 .

n

Therefore

n 2 1)p+2e—(p+1) 1)P
‘z‘p’e_z—(l—i—i) ‘<maX{ (p+1)P*2e ,(p+ )C}Sﬂ
n n n

for z <0. O
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Proof of Lemma 1.3. We have

N
K, = /(1702/71) dv
~Va
w/2
-3n—-5 31
—\/E/COS —2n—41§§
—m/2

By Wallis’ formula lim,, .. K,, = v2m. Now

2 1
K, =4/1 1- K
" +n—2( n—2> n?

2 1
K, — K,_2 = 1+ 1-— -1 K, —o.
n—2 n—2

Since K, converges to v/ 2, for sufficiently large n we have K,,_o < 24/7.

and so

Hence
2 1 4T
K,—K,_ — 1= -1 .
[ H— ( n— 2) ‘ = n2
Therefore
1 Var| < 2T
and this is equivalent to the statement of the lemma. [l

Proof of Lemma 1.4. By Lemma 1.2

9 n—3
2
ot (1Y
n

Using the definitions of ‘expected values’ M and E we have

1 40,3 )+c+0(1)S@

IM& — EG| < —
n 2

V2r on n
using the estimate (2.1) for the interval [—/n,+/n] and Lemma 1.3.
This proves the first inequality (i). Since |&1] < 1 the second inequality
(ii) is proved similarly.

)
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For (iii) it is sufficient to note that
cos(sv1) cos(sva) = cos(s(vy + v2)) + sin(svy ) sin(sve)

and the ‘expected value’ of the second term equals zero since sin is
an odd function. The calculcation of M¢;&s is thus reduced to a one-
dimensional integration in vy + vs.

Finally, using (i)

(2
Khﬁﬁ?—@%n%:wwﬁl—E&HNE1+E&'5}%5%?'
and (iv) is proved. =

Proof of Lemma 1.5 (Chebyshev’s inequality). This is standard but we
sketch the proof for the reader’s convenience.

Introduce a new random variable v = (n — Mn)?: then eP(v > ¢) <
Moy, since My is the integral of v over a probability space and eP(v > ¢)
does not exceed the integral of v over the region where v > . Change
¢ to 2 and note that Mv = Dn. O

3 Deviations on individual solutions

Lemma 3.1. Let (2, 1) be a probability measure space. Let f : Q — R
be such that f(w) >0 and [ f(w)du(w) = D. Then
Q

uw(f > VD)= / du(w) < VD.
f(w)=vD

Proof of Lemma 8.1. As in the proof of Lemma 1.5, it can be shown

that
/ dp(w é/fwmmm
Q

fw)>e
(this is Markov’s inequality). Taking e = v/D gives

/ du(w) < T =+/D.
f(w)>vD

and the lemma is proved. O

The canonical invariant measure in the phase space of a mechanical
system, restricted to the energy level U,, = K,, x S,, (the microcanonical
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distribution), is proportional to uniform measure on the velocity sphere
over every point of configuration space K,, (the coefficient depends only
on the configuration coordinates). Therefore, the measure of any subset
like K,, x V (where V C S,,) is equal to P(V) on the sphere S,, after
normalizing the measure.

We denote by du the microcanonical distribution on U,,. For w € U,
let fn(w) be the absolute value of the difference between the Fourier
transform and the normal distribution at the point w. For any positive &

/fn )dpu(w / Fu(w)dp(w / Fulw d#()<€+£

fr(w)<e fn(w)>e

provided u( frn(w) > €) is bounded by the earlier estimate (1.3) and f, (w)
is bounded by 1. The expression ¢ + C(e?n)~! takes its minimal value
at

20)3
._ oy
n3

and inserting this € into the previous expression we obtain

[ farint) <3 (%) -
U,

Thus as n grows the mean value (over phase space) of the variation
fn(w) tends to zero.
Let

gn(w) = lim —/fngw

T—oo T

where g'w is the result of the phase flow of our mechanical system with
initial condition w. By the individual ergodic theoremt of Birkhoff-

Khinchin
/ on(@)dp(w) = / fo@)dpa(w)
U,

U,

[t <3 (§) L

Un

and so

t The theorem holds for every dynamical system with invariant measure. The word
‘ergodic’ in its name refers to the nature of its corollary, not its condition.
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Introduce the notation A =3 (%) 3. By Lemma 3.1

/ du(w) < VAnRE. (3.1)
!Jn(w)Z\/Zn_%

Therefore

1

f1(gn(w) < VARTS) > 1—VAn s, (3.2)

Define
T

gn(w,T) = %/fn(gtw)dt.

0

Using (3.1) and the definition of g, (w) we get the inequality
gn(waT)§2\/Zn_%a w e {gn(w) < An_%}
for sufficiently large T'. Consider the segment of time [0, '] with measure
dt/T as Q; then using Lemma 3.1 once again we have
1
T / dt < Bn~ 1z whenever g, (w) < \/Zn_%,

falgt(@)>Bn" 12
where B = \/2A%.
In other words, for all initial conditions except for a certain subset
with measure of order n= s (see (3.2)), the variation from the normal

distribution has the order of n= 1= for all moments of time except for
segments with total relative measure less than n-iz.

Let us formulate the results achieved above as theorems.

Theorem 3.2. For every e > 0
C

Theorem 3.3. For every n € N there ezists a set B,, C U,,, such that
if w & By, then

fn(gtw) < Cln_%
for every point of time t € b, C R. Here

u(By) < Con™ 6  and m(by) < Cyn~ 12
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where the ‘measure’ m on the real axis is defined by

1
m(b) := limsup T / dt.
T—o00
5[0, 7]

Note that we did not use ergodicity or any other ‘chaotic’ assumptions.
If the system is ergodic then the estimates may be improved as follows.

Theorem 3.4. If the energy level is ergodic then for almost every w the
deviation satisfies

falg'w) < Cin~s

for every point of time t & b% C R, where
m(b2) < Chn~3.
We shall not give the proof in this article.

Remark. All estimates are essentially the same if, in the definition of
fn(w), we work with a finite histogram instead of the Fourier transform:
see the remarks at the end of Section 1.

4 Improvements of estimates

Using more advanced techniques, the estimate of Theorem 3.2 can be
827'L

improved from the order of (¢2n)~! up to e Tnn.

Theorem 4.1. For every e > 0

52n

:U'(fn > 5) < eicma
where C' is a positive constant.

In the proof we use a technique developed in the theory of large devi-
ations. For more details see the book [3] of A. Dembo and O. Zeitouni.

Proof of Theorem 4.1. Let

n

Sn=) (& —M&),
k=1
where |§, — M& | < 1.
Using the theory of large deviations one can show that

< Sn
1%

2

en
el <e 2,

n
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where v denotes measure with standard normal density in R”. Taking

e = Vkn~!lnn this gives
k
1/<|Sn\2vk:nlnn) <n” 2. (4.1)

Let us estimate the mean value of |S,,|* over the sphere S,,. It is easy
to show that

n ‘T)Z
(27T)_5/|Sn|ke_7dx <n.
RTL

Passing to polar coordinates

n z? ¥ opn—1 r?

(2m)"2 /|Sn|k€_ 2 dx:/g/rie_2 / 1S |Fdp(w) | dr.
I ()
R™ 0 S, (r)
We introduce the notation

orn—l1 2

@(7”) = n767 2 s
25T (3)

G(r) = / 1S, Fdpu(w),
S, (r)

where S, (r) is the sphere of radius r (S, (y/n) = S,). Then our earlier
estimate may be written as

7@(7“)G(r)dr <n.

By direct calculations we get

_52
lim ©(vn +6) = 6ﬁ.

so that most of the measure with normal density is concentrated in a
small neighbourhood of S,,. We have

Vvn+1 0o
/ O(r)G(r)dr < /@(T’)G(’I’)d’l’ <.
Vi1 0

Since |VS,|F < kn¥~1 and O(r) are separated from zero on the interval
[vn—1,y/n+ 1], the value G(v/n) may be estimated using (4.1), and

we have
k
2

G(v/n) < Cy(knlnn) (4.2)
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Clearly for any positive A

M & > e — /1/ (eASn > 6)\871) < e(A(}\)—&‘)\)TL
n = el =

whenever

1
A(N) > —InM (e*5) .
()2 M ()
Let us show that we can take A to be C2A?(Inn)~1. Indeed,
1
Me*sn = M (1+/\Sn + EAQS,%JF...) )

Using the inequality M(S2) < Csn and (4.2) we have

k
2

(A2knlnn)

1 00
AS,, 1o
Me Sl—‘r?)\ Csn+Cq E A

k=3
(A2nlnn)®

1 oo
<1+ oMCsn+Chy < O

k=3
Thus we may take A(\) = CgA? Inn, as claimed.
The function e\ — CA? Inn is maximized at A\ = £(2C'Inn)~! and the

maximum value has the form Cye?(Inn)~!. Hence

2
n

Therefore
H(fn26)=u<%26) +u<—% 25)
< 6_02165_2 + e_c"’%
and the theorem is proved. [l

The new estimate will help us to improve those from Theorems 3.3
and 3.4. The mean value of the deviation in phase space is

/ fulw)dp(w) = / ful@)dp(w) + / fo@)dpi(w)
U, fr(w)<tnn fn(w)> 2

Inn (Inn)?n
< —+4+(Ce nhn
SN

7h1_n+9<21n_n
o ynon T T n’
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(Note that in the i.i.d. case this deviation is of order n~=2.)

Theorem 4.2. For every n € N there exists a set B, C U, such that
if w & By, then

Ialg'w) < Cr(lnm)n~=
for every moment of time t ¢ b C R, where
1(B,) < Co(lnn)n~%,  m(b¥) < Cs(lnn)in”s.
Again, this can be improved in the ergodic case:
Theorem 4.3. For almost every w, the deviation
falg'w) < Cin~71nn
for every moment of time t € b C R, where
m(by) < C’én*% Inn.

We omit the proof.

5 Density of particles on configuration space

It is well-known that the density of a gas under potential forces is given
by

D(z) = exp (%V(m)) .

Consider the projection onto configuration space K,, of the microcanon-

ical distribution on the energy level U,, of a system of n particles. This

projected density is proportional to the ‘area’ of a sphere with radius
T, (x), which equals

(B4 +)) = ()=

where Ty, (x) = E — V,,(x) is the kinetic energy at the point x € K™.
Let us assume the potential energy is defined by the sum

M n
Vn(‘rlv"wxn) = gzv(xk)
k=1

Then the density projected from phase space to configuration space is
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proportional to

pon(T1, ... xn) (1—2 >

k=

n—1
2

According to Lemma 1.1 the quantity converges to D(x) at every point.
The projection to one instance of elementary configuration space K
is equal to

po(x1) = / pn(T1, .. xy)das .. dxy,
anl

Therefore

po(z1) — D(z1)

M n
= / pn(gcl,...,mn)—exp(E;V(xk)> dxs ... dx,.

Kn—1

For simplicity we assume that [, dz = 1 and the potential function
V' is bounded in absolute magnitude by some A > 0. Then

lpo(1) — D(21))]
pn(Z1,. .., Tn) — €xp (% Z V(xk)>
k=1

To obtain theorems which are analogous to those from the previous

<

dxy . ..dx, < Ag.
n

Kn—1

section, it is sufficient to prove lemmas analogous to Lemmas 1.3 and 1.4.
This can be done using the calculations stated above.
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