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§3.1. Riemannian manifolds and curvature 358

§3.2. Flows on Riemannian manifolds 375

§3.3. The Ricci flow approach to the Poincaré conjecture 390
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Preface

In February of 2007, I converted my “What’s new” web page of re-
search updates into a blog at terrytao.wordpress.com. This blog
has since grown and evolved to cover a wide variety of mathematical
topics, ranging from my own research updates, to lectures and guest
posts by other mathematicians, to open problems, to class lecture
notes, to expository articles at both basic and advanced levels.

With the encouragement of my blog readers, and also of the AMS,
I published many of the mathematical articles from the first year
(2007) of the blog as [Ta2008b], which will henceforth be referred to
as Structure and Randomness throughout this book. This gave me
the opportunity to improve and update these articles to a publishable
(and citeable) standard, and also to record some of the substantive
feedback I had received on these articles by the readers of the blog.
Given the success of the blog experiment so far, I am now doing the
same for the second year (2008) of articles from the blog, which has
become the book you are now reading.

As with Structure and Randomness, the book begins with a col-
lection of expository articles, ranging in level from completely elemen-
tary logic puzzles to remarks on recent research, which are only loosely
related to each other and to the rest of the book. However, in con-
trast to the previous book, the bulk of this manuscript is dominated
by the lecture notes for two graduate courses I gave during the year.

xi



xii Preface

The two courses stemmed from two very different but fundamental
contributions to mathematics by Henri Poincaré, which explains the
title of the book.

The first course (Chapter 2) was on the topics of topological dy-
namics and ergodic theory, which originated in part from Poincaré’s
pioneering work in chaotic dynamical systems. Many situations in
mathematics, physics, or other sciences can be modeled by a discrete
or continuous dynamical system, which at its most abstract level is
simply a space X, together with a shift T : X → X (or family of
shifts) acting on that space, and possibly preserving either the topo-
logical or measure-theoretic structure of that space. At this level of
generality, there are a countless variety of dynamical systems available
for study, and it may seem hopeless to say much of interest without
specialising to much more concrete systems. Nevertheless, there is a
remarkable phenomenon that dynamical systems can largely be clas-
sified into “structured” (or “periodic”) components, and “random”
(or “mixing”) components1, which then can be used to prove vari-
ous recurrence theorems that apply to very large classes of dynamical
systems, not the least of which is the Furstenberg multiple recurrence
theorem (Theorem 2.10.3). By means of various correspondence prin-
ciples, these recurrence theorems can then be used to prove some
deep theorems in combinatorics and other areas of mathematics, in
particular yielding one of the shortest known proofs of Szemerédi’s
theorem (Theorem 2.10.1) that all sets of integers of positive upper
density contain arbitrarily long arithmetic progressions. The road to
these recurrence theorems, and several related topics (e.g. ergodicity,
and Ratner’s theorem on the equidistribution of unipotent orbits in
homogeneous spaces) will occupy the bulk of this course. I was able
to cover all but the last two sections in a 10-week course at UCLA,
using the exercises provided within the notes to assess the students
(who were generally second or third-year graduate students, having
already taken a course or two in graduate real analysis).

1One also has to consider extensions of systems of one type by another, e.g.
mixing extensions of periodic systems; see Section 2.15 for a precise statement.
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The second course (Chapter 3) focused on a completely differ-
ent problem posed by Poincaré, namely the famous Poincaré conjec-
ture that every simply connected compact three-dimensional man-
ifold is homeomorphic to a sphere, and its recent spectacular so-
lution [Pe2002], [Pe2003], [Pe2003b] by Perelman. This conjec-
ture is purely topological in nature, and yet Perelman’s proof uses
remarkably little topology, instead working almost entirely in the
realm of Riemannian geometry and partial differential equations, and
specifically in a detailed analysis of solutions to Ricci flow on three-
dimensional manifolds, and the singularities formed by such flows.
As such, the course will incorporate, along the way, a review of many
of the basic concepts and results from Riemannian geometry (and to
a lesser extent, from parabolic PDE), while being focused primarily
on the single objective of proving the Poincaré conjecture. Due to
the complexity and technical intricacy of the argument, we will not
be providing a fully complete proof of this conjecture here (but see
[MoTi2007] for a careful and detailed treatment); but we will be
able to cover the high-level features of the argument, as well as many
of the specific components of that argument, in full detail, and the
remaining components are sketched and motivated, with references to
more complete arguments given. In principle, the course material is
sufficiently self-contained that prior exposure to Riemannian geome-
try, PDE, or topology at the graduate level is not strictly necessary,
but in practice, one would probably need some comfort with at least
one of these three areas in order to not be totally overwhelmed by
the material. (I ran this course as a topics course; in particular, I did
not assign homework.)

Finally, I close the book with a third (and largely unrelated)
topic (Chapter 4), namely a series of lectures on recent developments
in additive prime number theory, both by myself and my coauthors,
and by others. These lectures are derived from a lecture I gave at the
annual meeting of the AMS at San Diego in January of 2007, as well
as a lecture series I gave at Penn State University in November 2007.
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A remark on notation

For reasons of space, we will not be able to define every single math-
ematical term that we use in this book. If a term is italicised for
reasons other than emphasis or for definition, then it denotes a stan-
dard mathematical object, result, or concept, which can be easily
looked up in any number of references. (In the blog version of the
book, many of these terms were linked to their Wikipedia pages, or
other on-line reference pages.)

I will however mention a few notational conventions that I will
use throughout. The cardinality of a finite set E will be denoted
|E|. We will use the asymptotic notation X = O(Y ), X � Y , or
Y � X to denote the estimate |X| ≤ CY for some absolute constant
C > 0. In some cases we will need this constant C to depend on a
parameter (e.g. d), in which case we shall indicate this dependence
by subscripts, e.g. X = Od(Y ) or X �d Y . We also sometimes use
X ∼ Y as a synonym for X � Y � X.

In many situations there will be a large parameter n that goes off
to infinity. When that occurs, we also use the notation on→∞(X) or
simply o(X) to denote any quantity bounded in magnitude by c(n)X,
where c(n) is a function depending only on n that goes to zero as n
goes to infinity. If we need c(n) to depend on another parameter, e.g.
d, we indicate this by further subscripts, e.g. on→∞;d(X).

We will occasionally use the averaging notation Ex∈Xf(x) :=
1
|X|
∑
x∈X f(x) to denote the average value of a function f : X → C

on a non-empty finite set X.
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1.1. The blue-eyed islanders puzzle

This is one of my favourite logic puzzles. It has a number of formu-
lations, but I will use this one:

Problem 1.1.1. There is an island upon which a tribe resides. The
tribe consists of 1000 people, with various eye colours. Yet, their
religion forbids them to know their own eye color, or even to discuss
the topic; thus, each resident can (and does) see the eye colors of all
other residents, but has no way of discovering his or her own (there are
no reflective surfaces). If a tribesperson does discover his or her own
eye color, then their religion compels them to commit ritual suicide
at noon the following day in the village square for all to witness. All
the tribespeople are highly logical1 and devout, and they all know
that each other is also highly logical and devout (and they all know
that they all know that each other is highly logical and devout, and
so forth).

Of the 1000 islanders, it turns out that 100 of them have blue
eyes and 900 of them have brown eyes, although the islanders are not
initially aware of these statistics (each of them can of course only see
999 of the 1000 tribespeople).

One day, a blue-eyed foreigner visits to the island and wins the
complete trust of the tribe.

One evening, he addresses the entire tribe to thank them for their
hospitality.

However, not knowing the customs, the foreigner makes the mis-
take of mentioning eye color in his address, remarking how unusual
it is to see another blue-eyed person like myself in this region of the
world.

What effect, if anything, does this faux pas have on the tribe?

The interesting thing about this puzzle is that there are two quite
plausible arguments here, which give opposing conclusions:

1For the purposes of this logic puzzle, “highly logical” means that any conclu-
sion that can logically deduced from the information and observations available to an
islander, will automatically be known to that islander.
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Argument 1. The foreigner has no effect, because his comments
do not tell the tribe anything that they do not already know (everyone
in the tribe can already see that there are several blue-eyed people in
their tribe). �

Argument 2. 100 days after the address, all the blue eyed people
commit suicide. This is proven as a special case of Proposition 1.1.2
below. �

Proposition 1.1.2. Suppose that the tribe had n blue-eyed people for
some positive integer n. Then n days after the travellers address, all
n blue-eyed people commit suicide.

Proof. We induct on n. When n = 1, the single blue-eyed person
realizes that the traveler is referring to him or her, and thus commits
suicide on the next day. Now suppose inductively that n is larger than
1. Each blue-eyed person will reason as follows: “If I am not blue-
eyed, then there will only be n − 1 blue-eyed people on this island,
and so they will all commit suicide n − 1 days after the travelers
address. But when n − 1 days pass, none of the blue-eyed people do
so (because at that stage they have no evidence that they themselves
are blue-eyed). After nobody commits suicide on the (n − 1)st day,
each of the blue eyed people then realizes that they themselves must
have blue eyes, and will then commit suicide on the nth day. �

Which argument is logically valid? Or are the hypotheses of the
puzzle logically impossible to satisfy2?

1.1.1. Notes. I won’t spoil the solution to this puzzle in this article;
but one can find much discussion on this problem at the comments to
the web page for this puzzle, at terrytao.wordpress.com/2008/02/05.
See also xkcd.com/blue eyes.html for some further discussion.

1.2. Kleiner’s proof of Gromov’s theorem

Inn this article, I would like to present the recent simplified proof by
Kleiner[Kl2007] of the celebrated theorem of Gromov[Gr1981] on
groups of polynomial growth.

2Note that this is not the same as the hypotheses being extremely implausible,
which of course they are.
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Let G be an at most countable group generated by a finite set
S of generators, which we can take to be symmetric (i.e. s−1 ∈ S

whenever s ∈ S). Then we can form the Cayley graph Γ, whose
vertices are the elements of G, and with g and gs connected by an
edge for every g ∈ G and s ∈ S. This is a connected regular graph,
with a transitive left-action of G. For any vertex x and R > 0, one
can define the ball B(x,R) in Γ to be the set of all vertices connected
to x by a path of length at most R. We say that G has polynomial
growth if we have the bound |B(x,R)| = O(RO(1)) as R → ∞; one
can easily show that the left-hand side is independent of x, and that
the polynomial growth property does not depend on the choice of
generating set S.

Examples of finitely generated groups of polynomial growth in-
clude

(1) Finite groups;

(2) Abelian groups (e.g. Zd);

(3) Nilpotent groups (a generalisation of 2.);

(4) Virtually nilpotent groups, i.e. it has a nilpotent subgroup
of finite index (a combination of 1. and 3.).

In [Gr1981], Gromov proved that these are the only examples:

Theorem 1.2.1 (Gromov’s theorem). [Gr1981] Let G be a finitely
generated group of polynomial growth. Then G is virtually nilpotent.

Gromov’s original argument used a number of deep tools, includ-
ing the Montgomery-Zippin-Yamabe[MoZi1955] structure theory of
locally compact groups (related to Hilbert’s fifth problem), as well as
various earlier partial results on groups of polynomial growth. Sev-
eral proofs have subsequently been found. Recently, Kleiner[Kl2007]
obtained a proof which was significantly more elementary, although it
still relies on some non-trivial partial versions of Gromov’s theorem.
Specifically, it needs the following result proven by Wolf[Wo1968]
and by Milnor[Mi1968]:

Theorem 1.2.2 (Gromov’s theorem for virtually solvable groups).
[Wo1968],[Mi1968] Let G be a finitely generated group of polynomial
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growth which is virtually solvable (i.e. it has a solvable subgroup of
finite index). Then it is virtually nilpotent.

The argument also needs a related result:

Theorem 1.2.3. Let G be a finitely generated amenable3 group which
is linear, thus G ⊂ GLn(C) for some n. Then G is virtually solvable.

This theorem is an immediate consequence of the Tits alternative[Ti1972],
but also has a short elementary proof, due to Shalom[Sh1998]. An
easy application of the pigeonhole principle to the sequence |B(x,R)|
for R = 1, 2, . . . shows that every group of polynomial growth is
amenable. Thus Theorem 1.2.2 and Theorem 1.2.3 already give Gro-
mov’s theorem for linear groups.

Other than Theorem 1.2.2 and Theorem 1.2.3, Kleiner’s proof
of Theorem 1.2.1 is essentially self contained. The argument also
extends to groups of weakly polynomial growth, which means that
|B(x,R)| = O(RO(1)) for some sequence of radii R going to infin-
ity. (This extension of Gromov’s theorem was first established in
[vdDrWi1984]. But for simplicity we only discuss the polynomial
growth case here.

1.2.1. Reductions. The first few reductions follow the lines of Gro-
mov’s original argument. The first observation is that it suffices to
exhibit an infinite abelianisation of G, or more specifically to prove:

Proposition 1.2.4 (Existence of infinite abelian representation).
Let G be an infinite finitely generated group of polynomial growth.
Then there exists a subgroup G′ of finite index whose abelianisation
G′/[G′, G′] is infinite.

Indeed, if G′ has infinite abelianisation, then one can find a non-
trivial homomorphism α : G′ → Z. The kernel K of this homo-
morphism is a normal subgroup of G′. Using the polynomial growth
hypothesis, one can show that K is also finitely generated; further-
more, it is polynomial growth of one lower order (i.e. the exponent

3In this context, one definition of amenability is that G contains an Følner se-
quence F1, F2, . . . of finite sets, thus

⋃∞
n=1 Fn = G and limn→∞ |gFn∆Fn|/|Fn| = 0

for all g ∈ G.
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in the O(RO(1)) bound for |B(x,R)| is reduced by 1). An induction
hypothesis then gives that K is virtually nilpotent, which easily im-
plies that G′ (and thus G) is virtually solvable. Gromov’s theorem
for infinite G then follows from Theorem 1.2.2. (The theorem is of
course trivial for finite G.)

Remark 1.2.5. The above argument not only shows that G is virtu-
ally solvable, but moreover that G′ is the semidirect product K oφ Z
of a virtually nilpotent group K and the integers, which acts on K

by some automorphism φ. Thus one does not actually need the full
strength of Theorem 1.2.2 here, but only the special case of semidi-
rect products of the above form. In any case, most proofs of Theorem
1.2.2 proceed by reducing to this sort of case anyway.

To show Proposition 1.2.4, it suffices to show

Proposition 1.2.6 (Existence of infinite linear representation). Let
G be an infinite finitely generated group of polynomial growth. Then
there exists a finite-dimensional representation ρ : G → GLn(C)
whose image ρ(G) is infinite.

Indeed, the image ρ(G) ⊂ GLn(C) is also finitely generated with
polynomial growth, and hence by Theorem 1.2.3 and Theorem 1.2.2
is virtually nilpotent (actually, for this argument we don’t need The-
orem 1.2.2 and would be content with virtual solvability). If the
abelianisation of ρ(G) is finite, one can easily pass to a subgroup G′

of finite index and reduce the (virtual) step of ρ(G′) by 1, so one can
quickly reduce to the case when the abelianisation is infinite, at which
point Proposition 1.2.4 follows. So all we need to do now is to prove
Proposition 1.2.6.

1.2.2. Harmonic functions on Cayley graphs. Kleiner’s approach
to Proposition 1.2.6 relies on the notion of a (possibly vector-valued)
harmonic function on the Cayley graph Γ. This is a function f : G→
H taking values in a Hilbert space H such that f(g) = 1

|S|
∑
s∈S f(gs)

for all g ∈ G. Formally, harmonic functions are local minimisers of
the energy functional

E(f) :=
1
2

∑
g∈G
|∇f(g)|2
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where
|∇f(g)|2 :=

1
|S|
∑
s∈S
‖f(gs)− f(g)‖2H

though of course with the caveat that E(f) is often infinite. (This
property is also equivalent to a certain graph Laplacian of f vanish-
ing.)

Of course, every constant function is harmonic. But there are
other harmonic functions too: for instance, on Zd, any linear function
is harmonic (regardless of the actual choice of generators). Kleiner’s
proof of Proposition 1.2.6 follows by combining the following two
results:

Proposition 1.2.7. Let G be an infinite finitely generated group of
polynomial growth. Then there exists an (affine-) isometric (left-
)action of G on a Hilbert space H with no fixed points, and a harmonic
map f : G → H which is G-equivariant (thus f(gh) = gf(h) for all
g, h ∈ G). (Note that by equivariance and the absence of fixed points,
this harmonic map is necessarily non-constant.)

Proposition 1.2.8. Let G be an finitely generated group of polyno-
mial growth, and let d ≥ 0. Then the linear space of harmonic func-
tions u : G → R which grow of order at most d (thus u(g) = O(Rd)
on B(id, R)) is finite-dimensional.

Indeed, if f is the vector-valued map given by Proposition 1.2.7,
then from the G-equivariance it is easy to see that f is of polynomial
growth (indeed it is Lipschitz). But the linear projections {f · v : v ∈
H} of f to scalar-valued harmonic maps lie in a finite-dimensional
space, by Proposition 1.2.8. This implies that the range f(G) of f
lies in a finite-dimensional space V . On the other hand, the obvious
action of G on V has no fixed points (being a restriction of the action
of G on H), and so the image of G in GLn(V ) must be infinite, and
Proposition 1.2.6 follows.

It remains to prove Proposition 1.2.7 and Proposition 1.2.8. Propo-
sition 1.2.7 follows by some more general results of Korevaar-Schoen[KoSc1997]
and Mok[Mo1995], though Kleiner provided an elementary proof
which we sketch below. Proposition 1.2.8 was initially proven by
Colding and Minicozzi[CoMi1997] (for finitely presented groups, at
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least) using Gromov’s theorem; Kleiner’s key new observation was
that Proposition 1.2.8 can be proven directly by an elementary argu-
ment based on a Poincaré inequalities.

1.2.3. A non-constant equivariant harmonic function. We now
sketch the proof of Proposition 1.2.6. The first step is to just get the
action on a Hilbert space with no fixed points:

Lemma 1.2.9. Let G be a countably infinite amenable group. Then
there exists an action of G on a Hilbert space H with no fixed points.

This is essentially the well-known assertion that countably infinite
amenable groups do not obey Property (T), but we can give an explicit
proof as follows. Using amenability, one can construct a nested Følner
sequence F1 ⊂ F2 ⊂ . . . ⊂

⋃
n Fn = G of finite sets with the property

that |(Fn−1 · Fn)∆Fn| ≤ 2−n|Fn| (say). (In the case of groups of
polynomial growth, one can take Fn = B(id, Rn) for some rapidly
growing, randomly chosen sequence of radii Rn.) We then look at
H := l2(N; l2(G)), the Hilbert space of sequences f1, f2, . . . ∈ l2(G)
with

∑
n ‖fn‖2l2(G) <∞. This space has the obvious unitary action of

G, defined as g : (fn(·))n∈N → (fn(g·))n∈N. This action has a fixed
point of 0, but we can delete this fixed point by considering instead
the affine-isometric action f 7→ gf + gh− h, where h is the sequence
h = ( 1

|Fn|1/2 1Fn)n∈N. This sequence h does not directly lie in H, but
observe that gh − h lies in H for every g. One can then easily show
that this action obeys the conclusions of Lemma 1.2.9.

Another way of asserting that an action of G on H has no fixed
point is to say that the energy functional E : H → R+ defined by
E(v) := 1

2

∑
s∈S ‖sv−v‖2H is always strictly positive. So Lemma 1.2.9

concludes that there exists an action of G on a Hilbert space on which
E is strictly positive. It is possible to then conclude that there exists
another action of G on another Hilbert space on which the energy
E is not only strictly positive, but actually attains its minimum at
some vector v. This observation follows from more general results
of Fisher and Margulis[FiMa2005], but one can also argue directly
as follows. For every 0 < λ < 1 and A > 0 , there must exist a
vector v which almost minimises E in the sense that E(v′) ≥ λE(v)
whenever ‖v− v′‖ ≤ AE(v)1/2, since otherwise one could iterate and
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sum a Neumann-type series to obtain a fixed point of v. But then by
shifting v to the origin, and taking an ultrafilter limit (!) as λ → 1
and A→∞, we obtain the claim.

Some elementary calculus of variations then shows that if v is the
energy minimiser, the map f : g 7→ gv is a harmonic G-equivariant
function from G to H, and Proposition 1.2.6 follows.

1.2.4. Poincaré’s inequality, and the complexity of harmonic
functions. Now we turn to the proof of Proposition 1.2.8, which
is the main new ingredient in Kleiner’s argument. To simplify the
exposition, let us cheat4 and suppose that the polynomial growth
condition |B(x,R)| = O(RO(1)) is replaced by the slightly stronger
doubling condition |B(x, 2R)| = O(|B(x,R)|). Similarly, to simplify
the argument, let us pretend that the harmonic functions u : G→ R
are not only of polynomial growth, but also obey a doubling condition∑
x∈B(id,2R) u(x)2 �

∑
x∈B(id,R) u(x)2.

The key point is to exploit the fact that harmonic functions are
fairly smooth. For instance, a simple “integration by parts” argument
shows that if u is harmonic, then

(1.1)
∑

x∈B(id,R)

|∇u(x)|2 dx� R−2
∑

x∈B(id,2R)

|u(x)|2 dx;

this estimate can be established by the usual trick of replacing the
summation over B(id, R) with a smoother cutoff function and then
expanding out the gradient square.

To use this gradient control, Kleiner established the Poincaré
inequality
(1.2)∑
x∈B(x0,R)

∑
y∈B(x0,R)

|u(x)− u(y)|2 � R2|B(x0, R)|
∑

x∈B(x0,3R)

|∇u(x)|2

assuming the doubling condition on balls. This inequality (a variant
of a similar inequality of Coulhon and Saloff-Coste[CoSC1993]) is
actually quite easy to prove. Observe that if x, y ∈ B(x0, R), then

4In practice, one can use pigeonholing arguments to show that polynomial growth
implies doubling on large ranges of scales, which turns out to suffice.
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x = yg for some g ∈ B(0, 2R). Thus it suffices to show that∑
x∈B(x0,R)

|u(x)− u(xg)|2 � R2
∑

x∈B(x0,3R)

|∇u(x)|2

for each such g. But by expanding g as a product of at most 2R
generators, splitting u(x) − u(xg) as a telescoping series, and using
Cauchy-Schwarz, the result follows easily.

Combining (1.1) and (1.2), one sees that a harmonic function
which is controlled on a large ball B(0, R), becomes nearly constant
on small balls B(x, εR) (morally speaking, we have |u(x) − u(y)| �
ε|u(x)| “on the average” on such small balls). In particular, given any
0 < ε < 1, one can now obtain an inequality of the form∑
x∈B(id,R)

|u(x)|2 � 1
|B(id, εR)|

∑
j

|
∑
x∈Bj

u(x)|2 +ε2
∑

x∈B(id,16R)

|u(x)|2

where Bj ranges over a cover of B(id, R) by balls Bj of radius εR
(the number of such balls can be chosen to be polynomially bounded
in 1/ε, by the doubling condition). As a consequence, we see that if
a harmonic function u obeys a doubling condition, and has zero av-
erage on each ball Bj , then it vanishes identically. Morally speaking,
this shows that the space of functions that obeys the doubling con-
dition has finite dimension (bounded by the number of such balls),
yielding Proposition 1.2.8 in the doubling case. It requires a small
amount of combinatorial trickery to obtain this conclusion in the case
when u and the balls B(id, R) exhibit polynomial growth rather than
doubling, but the general idea is still the same.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/02/14,
and was given as a talk in an IPAM workshop on expanders in pure
and applied mathematics in February of 2008.

Yehuda Shalom pointed out that one does not need the full strength
of Proposition 1.2.7 (constructing the vector-valued equivariant har-
monic map) in order to deduce Proposition 1.2.6 from Proposition
1.2.8. Instead, all one needs is a single non-constant scalar harmonic
map f of polynomial growth. Indeed, observe that G acts by left ro-
tation on the space V of harmonic maps of a fixed polynomial growth,
which is finite dimensional by Proposition 1.2.8. If the image of f is
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infinite then Proposition 1.2.6 is immediate, so suppose the image of
f is finite. Then there is a normal subgroup N of G of finite index
which stabilises f (and everyone else in the image of f also). Because
of this, the harmonic map f on G pushes down to a harmonic map
on the quotient space N\G (which still has a right-action of the gen-
erator set S). But it is easy to see that a harmonic map on a finite
connected graph is constant, and so f is constant, a contradiction.

David Fisher pointed out that a simplified treatment of the Montgomery-
Zippin-Yamabe theory of locally compact groups using nonstandard
analysis is given in [Hi].

1.3. Dvir’s proof of the finite field Kakeya
conjecture

One of my favourite unsolved problems in mathematics is the Kakeya
conjecture in geometric measure theory. This conjecture is descended
from the following question, posed by Soichi Kakeya in 1917:

Problem 1.3.1 (Kakeya needle problem). What is the least area in
the plane required to continuously rotate a needle of unit length and
zero thickness around completely (i.e. by 360◦)?

For instance, one can rotate a unit needle inside a unit disk, which
has area π/4. By using a deltoid one requires only π/8 area.

In [Be1919], [Be1928], Besicovitch showed that that in fact one
could rotate a unit needle using an arbitrarily small amount of pos-
itive area. This unintuitive fact was a corollary of two observations.
The first, which is easy, is that one can translate a needle using arbi-
trarily small area, by sliding the needle along the direction it points in
for a long distance (which costs zero area), turning it slightly (costing
a small amount of area), sliding back, and then undoing the turn. The
second fact, which is less obvious, can be phrased as follows. Define
a Kakeya set in R2 to be any set which contains a unit line segment
in each direction.

Theorem 1.3.2. [Be1919] There exists Kakeya sets R2 of arbitrar-
ily small area (or more precisely, Lebesgue measure).
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In fact, one can construct such sets with zero Lebesgue measure.
On the other hand, it was shown by Davies[Da1971] that even though
these sets had zero area, they were still necessarily two-dimensional
(in the sense of either Hausdorff dimension or Minkowski dimension).
This led to an analogous conjecture in higher dimensions:

Conjecture 1.3.3 (Kakeya conjecture). A Besicovitch set in Rn (i.e.
a subset of Rn that contains a unit line segment in every direction)
has Minkowski and Hausdorff dimension equal to n.

This conjecture remains open in dimensions three and higher (and
gets more difficult as the dimension increases), although many partial
results are known. For instance, when n = 3, it is known that Besicov-
itch sets have Hausdorff dimension at least 5/2 (see [Wo1995]) and
upper Minkowski dimension at least 5/2+10−10 (see [KaLaTa2000]).
See also the surveys [Ta2001], [KaTa2002], [Wo1999].

In [Wo1999], Wolff proposed a simpler finite field analogue5 of
the Kakeya conjecture as a model problem that avoided all the tech-
nical issues involving Minkowski and Hausdorff dimension. If Fn is a
vector space over a finite field F , define a Kakeya set to be a subset
of Fn which contains a line in every direction.

Conjecture 1.3.4 (Finite field Kakeya conjecture). Let E ⊂ Fn be
a Kakeya set. Then E has cardinality at least cn|F |n, where cn > 0
depends only on n.

This conjecture has had a significant influence in the subject, in
particular inspiring work on the sum-product phenomenon in finite
fields, which has since proven to have many applications in num-
ber theory and computer science. Modulo minor technicalities, the
progress on the finite field Kakeya conjecture was, until very recently,
essentially the same as that of the original “Euclidean” Kakeya con-
jecture.

Recently, the finite field Kakeya conjecture was proven using a
beautifully simple argument by Dvir[Dv2008], using the polynomial
method in algebraic extremal combinatorics. The proof is so short
that I can present it in full here.

5Cf. Section 1.6 of Structure and Randomness.
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The polynomial method is used to control the size of various sets
E by looking at one or more polynomials P which vanish on that
set E. This philosophy of course closely resembles that of algebraic
geometry, and indeed one could classify the polynomial method as a
kind of “combinatorial algebraic geometry”. An important difference,
though, is that in the combinatorial setting we work over fields that
are definitely not algebraically closed; in particular, we are primarily
interested in polynomials6 and their zero sets over finite fields.

For instance, in high school we learn the following connection be-
tween one-dimensional sets E, and polynomials P (x) of one variable:

Theorem 1.3.5 (Factor theorem). Let F be a field, and d ≥ 1 be an
integer. Let F [x] denote the polynomials in one variable with coeffi-
cients in F .

(1) If P ∈ F [x] is a non-zero polynomial of degree at most d,
then the set {x ∈ F : P (x) = 0} has cardinality at most d.

(2) Conversely, given any set E ⊂ F of cardinality at most d,
there exists a non-zero polynomial P ∈ F [x] of degree at
most d that vanishes on E.

Thus, to obtain an upper bound on the size of a one-dimensional
set E, it would suffice to exhibit a non-zero low-degree polynomial
that vanishes on E; conversely, to lower bound the size of E, one
would have to show that the only low-degree polynomial that vanishes
on E is the zero polynomial. It is the latter type of observation which
is of relevance to the finite field Kakeya problem.

There are analogues of both 1. and 2. above in higher dimen-
sions. For instance, the Schwartz-Zippel lemma[Sc1980] is a higher-
dimensional analogue of 1., as is the combinatorial nullstellensatz of
Alon[Al1999] and Bezout’s theorem from algebraic geometry, while
Stepanov’s method[St1969] exploits a higher-dimensional analogue
of 2. These sorts of techniques and results are collectively referred to
as the polynomial method in extremal algebraic combinatorics. For

6Also, whereas algebraic geometry is more concerned with specific (and often
highly structured) polynomials, the polynomial method requires that one consider
rather generic (and usually quite high degree) polynomials.
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Dvir’s argument, we will need a very simple higher-dimensional ver-
sion of 2. that comes from basic linear algebra, namely

Lemma 1.3.6. Let E ⊂ Fn be a set of cardinality less than
(
n+d
n

)
for some d ≥ 0. Then there exists a non-zero polynomial P ∈
F [x1, . . . , xn] on n variables of degree at most d which vanishes on
E.

Proof. Let V be the vector space of polynomials in F [x1, . . . , xn]
of degree at most d. Elementary combinatorics reveals that V has
dimension

(
n+d
n

)
. On the other hand, the vector space FE of F-valued

functions on E has dimension |E| <
(
n+d
d

)
. Hence the evaluation

map P 7→ (P (x))x∈E from V to FE is non-injective, and the claim
follows. �

Dvir’s argument combines this lemma with

Proposition 1.3.7. Let P ∈ F [x1, . . . , xn] be a polynomial of de-
gree at most |F | − 1 which vanishes on a Kakeya set E. Then P is
identically zero.

Proof. Suppose for contradiction that P is non-zero. We can write
P =

∑d
i=0 Pi, where 0 ≤ d ≤ |F | − 1 is the degree of P and Pi is the

ith homogeneous component, thus Pd is non-zero. Since P vanishes
on E, d cannot be zero.

Let v ∈ Fn\{0} be an arbitrary direction. As E is a Kakeya
set, E contains a line {x + tv : t ∈ F} for some x = xv ∈ Fn, thus
P (x + tv) = 0 for all t ∈ F . The left-hand side is a polynomial in t

of degree at most |F | − 1, and thus vanishes identically by the factor
theorem. In particular, the td coefficient of this polynomial, which
is Pd(v), vanishes for any non-zero v. Since Pd is homogeneous of
degree d > 0, Pd vanishes on all of Fn. Since Pd also has degree less
than |F |, repeated application of the factor theorem for each variable
in turn (or the Schwartz-Zippel lemma[Sc1980], which is much the
same thing) shows that Pd = 0, a contradiction. �

Remark 1.3.8. The point here is that a low-degree polynomial which
vanishes on a line must also vanish on the point at infinity where the
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line touches the hyperplane at infinity. Thus a polynomial which van-
ishes on a Kakeya set vanishes at the entire hyperplane at infinity.
One can then divide out the defining polynomial for that hyperplane
and repeat the process to conclude that the polynomial vanishes iden-
tically.

Combining the lemma and the proposition we obtain

Corollary 1.3.9. Every Kakeya set in Fn has cardinality at least(|F |+n−1
n

)
.

Since
(|F |+n−1

n

)
= 1

n! |F |
n+On(|F |n−1), this establishes the finite

field Kakeya conjecture.

This bound seems to be quite tight. For instance, it gives the
lower bound of |F |(|F |+1)

2 for Kakeya sets in F 2 (which was already im-
plicitly observed by Wolff); this is very close to the exact bound, which
was recently established in [Ba2008], [BlMa2008] to be |F |(|F |+1)

2 +
|F |−1

2 |F | in the case when |F | is odd. (Thanks to Simeon Ball and
Francesco Mazzocca for these references.)

It now seems sensible to revisit other problems in extremal com-
binatorics over finite fields to see if the polynomial method can yield
results there. Certainly close relatives of the Kakeya conjecture (e.g.
the Nikodym set conjecture, or the Kakeya maximal function conjec-
ture) should now be establishable by these methods. On the other
hand, there are other problems (such as the sum-product problem,
Szemerédi-Trotter type theorems, and distance set problems) which
are sensitive to the choice of field F (and in particular, whether that
field contains a subfield of index 2); see [BoKaTa2004]. It would be
interesting to see if there are ways to adapt the polynomial method
in order to detect the existence of subfields.

Very recently, the polynomial method has also been extended to
yield some progress on the Euclidean case; see Section 1.19.

Notes. This article first appeared at terrytao.wordpress.com/2008/03/24.
Thanks to ninguem for corrections.

Seva posed the question of determining the asymptotic best den-
sity for a Kakeya set in, say, Fn3 , as n→∞.
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Some pictures of Kakeya sets can be found at www.math.ucla.edu/ tao/java/Besicovitch.html

or en.wikipedia.org/wiki/Kakeya set.

Further discussion of Dvir’s result can be found online at ilaba.wordpress.com/2008/03/23
and quomodocumque.wordpress.com/2008/03/25.

1.4. The van der Corput lemma, and
equidistribution on nilmanifolds

In this article I would like to record a version of van der Corput
lemma which is particularly applicable for equidistribution of orbits
on nilmanifolds, and morally underlies my paper [GrTa2009c] with
Ben Green on this topic. As an application, I reprove an old theorem
of Leon Green (Theorem 2.16.18) that gives a necessary and sufficient
condition as to whether a linear sequence (gnx)∞n=1 on a nilmanifold
G/Γ is equidistributed, which generalises the famous theorem of Weyl
on equidistribution of polynomials, Theorem 2.6.26.

1.4.1. The classical van der Corput trick. The classical van
der Corput trick (first used implicitly by Weyl) gives a means to
establish the equidistribution of a sequence (xn)∞n=1 in a torus Td

(e.g. a sequence (P (n) mod 1)∞n=1 in the unit circle T = R/Z for
some function P , such as a polynomial). Recall that such a sequence
is said to be equidistributed if one has

(1.3)
1
N

N∑
n=1

f(xn)→
∫
Td
f

as N →∞ for every continuous function f : Td → C; an equivalent7

formulation of equidistribution is that
1
N
|{1 ≤ n ≤ N : xn ∈ B}| → Vol(B)

for every box B in the torus Td. Equidistribution is an important
phenomenon to study in ergodic theory and number theory, but also
arises in applications such as Monte Carlo integration and pseudo-
random number generation.

A fundamental result in the subject is

7The equivalence can be deduced easily from Urysohn’s lemma.
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Theorem 1.4.1 (Weyl equidistribution theorem). A sequence (xn)∞n=1

in Td is equidistributed if and only if the exponential sums

(1.4)
1
N

N∑
n=1

e2πiχ(xn)

converge to zero for every non-trivial character χ : Td → T, i.e. a
non-zero continuous homomorphism to the unit cicle.

Proof. It is clear that (1.4) is a special case of (1.3). Conversely, (1.4)
implies that (1.3) holds whenever f is a finite linear combination of
characters e2πiχ. Applying the Weierstrass approximation theorem,
we obtain the claim. �

The significance of the equidistribution theorem is that it reduces
the study of equidistribution to the question of estimating exponential
sums, which is a problem in analysis and number theory. For instance,
from Theorem 1.4.1 and the geometric series formula we immediately
obtain the following result:

Corollary 1.4.2 (Equidistribution of linear sequences in torii). Let
α ∈ Td. Then the sequence (αn)∞n=1 is equidistributed in Td if and
only if α is totally irrational, which means that χ(α) 6= 0 for all
non-zero characters χ.

For instance, the linear sequence (
√

2n mod 1,
√

3n mod 1) is equidis-
tributed in the two-torus T2, since (

√
2,
√

3) is totally irrational, but
the linear sequence (

√
2n mod 1,

√
8n mod 1) is not8 (the character

χ : (x, y) 7→ y − 2x annihilates (
√

2,
√

8) and thus obstructs equidis-
tribution).

One elementary but very useful tool for estimating exponential
sums is Weyl’s differencing trick, that ultimately rests on the hum-
ble Cauchy-Schwarz inequality. One formulation of this trick can be
phrased as the following inequality (cf. Lemma 2.12.7):

Lemma 1.4.3 (van der Corput inequality). Let a1, a2, . . . be a se-
quence of complex numbers bounded in magnitude by 1. Then for any

8Of course, in the latter case, the orbit is still equidistributed in a smaller torus,
namely the kernel of the character χ mentioned above; this is an extremely simple case
of Ratner’s theorem. See Section 2.16 for further discussion.
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1 ≤ H ≤ N we have

(1.5) | 1
N

N∑
n=1

an| � (
1
H

H−1∑
h=0

| 1
N

N∑
n=1

an+han|)1/2 +O

(
H

N

)
.

Proof. Observe that

1
N

N∑
n=1

an =
1
N

N∑
n=1

an+h +O

(
H

N

)
for every 0 ≤ h ≤ H − 1. Averaging this in h we obtain

1
N

N∑
n=1

an =
1
N

N∑
n=1

1
H

H−1∑
h=0

an+h +O

(
H

N

)
and hence by the Cauchy-Schwarz inequality

| 1
N

N∑
n=1

an| ≤ (
1
N

N∑
n=1

| 1
H

H−1∑
h=0

an+h|2)1/2 +O

(
H

N

)
.

Expanding out the square and rearranging a bit, we soon obtain the
upper bound (1.5) (in fact one can sharpen the constants slightly
here, though this will not be important for this discussion). �

The significance of this inequality is that it replaces the task of
bounding a sum of coefficients an by that of bounding a sum of “dif-
ferentiated” coefficients an+han. This trick is thus useful in “poly-
nomial” type situations when the differentiated coefficients are often
simpler than the original coefficients. One particularly clean applica-
tion of this inequality is as follows:

Corollary 1.4.4 (Van der Corput’s difference theorem). Let (xn)∞n=1

be a sequence in a torus Td such that the difference sequences (xn+h−
xn)∞n=1 are equidistributed for every non-zero h. Then (xn)∞n=1 is
itself equidistributed.

Proof. By Theorem 1.4.1, it suffices to show that (1.4) holds for
every non-trivial character χ. But by Lemma 1.4.3, we can bound
the magnitude of the left-hand side of (1.4) by

(1.6) � (
1
H

H−1∑
h=0

| 1
N

N∑
n=1

e2πiχ(xn+h)e−2πiχ(xn)|)1/2 +O

(
H

N

)
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for any fixed H.

Now we use the fact that χ is a character to simplify e2πiχ(xn+h)e−2πiχ(xn)

as e2πiχ(xn+h−xn). By hypothesis and the equidistribution theorem,
the inner sum 1

N

∑N
n=1 e

2πiχ(xn+h)e−2πiχ(xn) goes to zero as N →∞
for any fixed non-zero h; when instead h is zero, this sum is of course
just 1. We conclude that for fixed H, the expression (1.6) is bounded
by O(1/H) in the limit N →∞. Thus the limit (or limit superior) of
the magnitude of (1.4) is bounded in magnitude by O(1/H) for every
H, and is thus zero. The claim follows. �

By iterating this theorem, and using the observation that the
difference sequence (P (n + h) − P (n))∞n=1 of a polynomial sequence
(P (n))∞n=1 of degree d becomes a polynomial sequence of degree d−1
for any non-zero h, we can conclude by induction the following famous
result of Weyl, generalising Corollary 1.4.2 (see also Theorem 2.1.12,
Corollary 2.4.4, Theorem 2.6.26):

Theorem 1.4.5 (Equidistribution of polynomial sequences in torii).
Let P : Z → Td be a polynomial sequence taking values in a torus.
Then the sequence (P (n))∞n=1 is equidistributed in Td if and only if
χ(P (·)) is non-constant for all non-zero characters χ.

In the one-dimensional case d = 1, this theorem asserts that a
polynomial P : Z → R with real coefficients is equidistributed mod-
ulo one if and only if it has at least one irrational non-constant coef-
ficient; thus for instance the sequence (πn3 +

√
2n2 + 1

4n mod 1)∞n=1

is equidistributed.

1.4.2. A variant of the trick. It turns out that van der Corput’s
difference theorem (Corollary 1.4.4) can be generalised to deal not
just on torii, but on more general measure spaces with a torus action.
Given a topological probability space (X,µ) (which we will take to be
a Polish space to avoid various technicalities) and a sequence (xn)∞n=1

in X, we say that such a sequence is equidistributed with respect to µ
if we have

(1.7)
1
N

N∑
n=1

f(xn)→
∫
X

f dµ
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for all continuous compactly supported functions f : X → C. This
clearly generalises the previous notion of equidistribution, in which
X was a torus and µ was uniform probability measure.

To motivate our generalised version of Corollary 1.4.4, we observe
that the hypothesis “the sequence (xn+h−xn)∞n=1 is equidistributed in
Td” can be phrased in a more dynamical fashion (eliminating the sub-
traction operation, which is algebraic) as the equivalent assertion that
the sequence of pairs ((xn+h, xn))∞n=1 in Td×Td, after quotienting out
by the action of the diagonal subgroup (T)d)∆ := {(y, y) : y ∈ Td},
becomes equidistributed on the quotient space Td×Td/(T)d)∆. This
convoluted reformulation is necessary for generalisations, in which we
do not have a good notion of subtraction, but we still have a good
notion of group action and quotient spaces.

We can now prove

Proposition 1.4.6 (Generalised van der Corput difference theorem).
Let (X,µ) be a (Polish) probability space with a continuous (right-
)action of a torus Td, and let π : X → X/Td be the projection map
onto the quotient space (which then has the pushforward measure π∗µ.
Let (xn)∞n=1 be a sequence in X obeying the following properties:

(1) (Horizontal equidistribution) The projected sequence (π(xn))∞n=1

in X/Td is equidistributed with respect to π∗µ.

(2) (Vertical differenced equidistribution) For every non-zero h,
the sequence ((xn+h, xn)(Td)∆)∞n=1 in the quotiented prod-
uct space (X ×X)/(Td)∆ is equidistributed with respect to
some measure νh which is invariant under the action of the
torus Td ×Td/(Td)∆.

Then (xn)∞n=1 is equidistributed with respect to µ.

Note that Corollary 1.4.4 is the special case of Proposition 1.4.6
in which X is itself the torus Td with the usual translation action
and uniform measure (so that the quotient space is a point).

Proof. We need to verify the property (1.3). If the function f was
invariant under the action of the torus Td, then we could push it
down to the quotient space X/Td and the claim would follow from
hypothesis 1. We may therefore subtract off the invariant component
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Td
f(·y) dy from our function and assume instead that f has zero

vertical mean in the sense that
∫
Td
f(xy) dy = 0 for all x. A Fourier

expansion in the vertical variable (or the Weierstrass approximation
theorem) then allows us to reduce to the case when f has a vertical
frequency given by some non-zero character χ : Td → T of the torus,
in the sense that f(xy) = f(x)e2πiχ(y) for all x ∈ X and y ∈ Td.

Now we apply van der Corput’s inequality as in the proof of
Corollary 1.4.4. Using these arguments, we find that it suffices to
show that

1
N

N∑
n=1

f(xn+h)f(xn)→ 0

for each non-zero h. But the summand here is just the tensor product
function f ⊗ f : X × X → C applied to the pair (xn+h, xn). The
fact that f has a vertical frequency implies that f ⊗ f is invariant
with respect to the diagonal action (Td)∆, and thus this function
descends to the quotient space (X ×X)/(Td)∆. On the other hand,
as the vertical frequency is non-trivial, the latter function also has
zero mean on every orbit of Td ×Td/(Td)∆ and thus vanishes when
integrated against νh. The claim then follows from hypothesis 2. �

As an application, let us prove the following result, first estab-
lished in [Gr1961]:

Theorem 1.4.7 (Equidistribution of linear sequences in nilmani-
folds). Let G/Γ be a nilmanifold (where we take the nilpotent group G
to be connected for simplicity, although this is not strictly necessary),
and let g ∈ G and x ∈ G/Γ. Then (gnx)∞n=1 is equidistributed with
respect to Haar measure on G/Γ if and only if χ(gnx) is non-constant
in n for every non-trivial horizontal character χ : G/Γ → T, where
a horizontal character is any continuous homomorphism χ : G → T
that vanishes on Γ (and thus descends to G/Γ).

This statement happens to contain9 Weyl’s result (Theorem 1.4.5)
as a special case, because polynomial sequences can be encoded as
linear sequences in nilmanifolds; but it is actually stronger, allowing

9It is also equivalent to Theorem 3.16.1.
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extensions to generalised polynomials that involve the floor function
b·c or the fractional part function {}. For instance, if we take

G :=

1 R R
0 1 R
0 0 1

 ; Γ :=

1 Z Z
0 1 Z
0 0 1


and

g :=

1 α β

0 1 γ

0 0 1

 ;x = Γ

for some real numbers α, β, γ then a computation shows that

gnx =

1 {αn} {βn+ αn(n−1)
2 − {αn}bγnc}

0 1 {γn}
0 0 1

Γ

and then Theorem 1.4.7 asserts that the triple

({αn}, {βn+ α
n(n− 1)

2
− {αn}bγnc}, {γn})

is equidistributed in the unit cube [0, 1]3 if and only if the pair (α, γ) is
totally irrational (the rationality of β turns out to be irrelevant). Even
for concrete values such as α =

√
2, β = 0, γ =

√
3, it is not obvious

how to establish this fact directly; for instance a direct application of
Corollary 1.4.4 does not obviously simplify the situation.

Proof of Theorem 1.4.7. (Sketch) It is clear that if χ(gnx) is con-
stant for some non-trivial character, then the orbit gnx is trapped on
a level set of χ and thus cannot equidistribute. Conversely, suppose
that χ(gnx) is never constant. We induct on the step s of the nil-
manifold. The case s = 0 is trivial, and the case s = 1 follows from
Corollary 1.4.2, so suppose inductively that s ≥ 2 and that the claim
has already been proven for smaller s. We then look at the vertical
torus Gs/(Γ∩Gs) ≡ Td, where Gs is the last non-trivial group in the
lower central series (and thus central). The quotient of the nilman-
ifold G/Γ by this torus action turns out to be a nilmanifold of one
lower step (in which G is replaced by G/Gs) and so the projection
of the orbit (gnx)∞n=1 is then equidistributed by induction hypothe-
sis. Applying Proposition 1.4.6, it thus suffices to check that for each
non-zero h, the sequence of pairs (gn+hx, gnx) in G/Γ × G/Γ, after
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quotienting out by the diagonal action of the torus, is equidistributed
with respect to some measure which is invariant under the residual
torus Td ×Td/(Td)∆.

We first pass to the abelianisation (or horizontal torus) G/G2Γ
of the nilmanifold, and observe that the projections π(gn+hx), π(gnx)
of the coefficients of the pair (gn+hx, gnx) to this torus only differ by
a constant π(gh). Thus the pair (gn+hx, gnx) does not range freely
in G/Γ ×G/Γ, but is instead constrained to a translate of a smaller
nilmanifold G/Γ ×π G/Γ, defined as the space of pairs (x, y) with
π(x) = π(y). After quotienting out also by the diagonal vertical torus,
we obtain a nilmanifold coming from the group (G×G2G)/G∆

s , where
G×G2 G is the space of pairs (g, h) of group elements g, h ∈ G whose
projections to the abelianisation G/G2 agree, and G∆

s := {(gs, gs) :
gs ∈ Gs} is the vertical diagonal group. But a short computation
shows that this new group is at most s−1 step nilpotent. One can then
apply the induction hypothesis to show the required equidistribution
properties of (xn+h, xn), thus closing the induction by Proposition
1.4.6. �

There are many further generalisations of these results, including
a polynomial version of Theorem 1.4.7 in [Le2005], [Le2005b] that
also permits G to be disconnected, and quantitative versions of all of
these results in [GrTa2009c].

Notes. This article first appeared at terrytao.wordpress.com/2008/06/14.
Thanks to an anonymous commenter for corrections.

1.5. The strong law of large numbers

Let X be a real-valued random variable, and let X1, X2, X3, . . . be an
infinite sequence of independent and identically distributed copies of
X. Let Xn := 1

n (X1 + . . . + Xn) be the empirical averages of this
sequence. A fundamental theorem in probability theory is the law of
large numbers, which comes in both a weak and a strong form:

Theorem 1.5.1 (Weak law of large numbers). Suppose that the first
moment E|X| of X is finite. Then Xn converges in probability to
EX, thus limn→∞P(|Xn −EX| ≥ ε) = 0 for every ε > 0.
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Theorem 1.5.2 (Strong law of large numbers). Suppose that the
first moment E|X| of X is finite. Then Xn converges almost surely
to EX, thus P(limn→∞Xn = EX) = 1.

Remark 1.5.3. The concepts of convergence in probability and al-
most sure convergence in probability theory are specialisations of the
concepts of convergence in measure and pointwise convergence almost
everywhere in measure theory.

Remark 1.5.4. If one strengthens the first moment assumption to
that of finiteness of the second moment E|X|2, then we of course
have a more precise statement than the (weak) law of large numbers,
namely the central limit theorem, but I will not discuss that theorem
here. With even more hypotheses onX, one similarly has more precise
versions of the strong law of large numbers, such as the Chernoff
inequality, which I will again not discuss here.

The weak law is easy to prove, but the strong law (which of course
implies the weak law, by the dominated convergence theorem) is more
subtle, and in fact the proof of this law (assuming just finiteness of the
first moment) usually only appears in advanced graduate texts. So
I thought I would present a proof here of both laws, which proceeds
by the standard techniques of the moment method and truncation.
The emphasis in this exposition will be on motivation and methods
rather than brevity and strength of results; there do exist proofs of
the strong law in the literature that have been compressed down to
the size of one page or less, but this is not my goal here.

1.5.1. The moment method. The moment method seeks to con-
trol the tail probabilities of a random variable (i.e. the probability
that it fluctuates far from its mean) by means of moments, and in
particular the zeroth, first or second moment. The reason that this
method is so effective is because the first few moments can often be
computed rather precisely. The first moment method usually employs
Markov’s inequality

(1.8) P(|X| ≥ λ) ≤ 1
λ

E|X|

(which follows by taking expectations of the pointwise inequality
λI(|X| ≥ λ) ≤ |X|), whereas the second moment method employs
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some version of Chebyshev’s inequality, such as

(1.9) P(|X| ≥ λ) ≤ 1
λ2

E|X|2

(note that (1.9) is just (1.8) applied to the random variable |X|2 and
to the threshold λ2).

Generally speaking, to compute the first moment one usually em-
ploys linearity of expectation

EX1 + . . .+Xn = EX1 + . . .+ EXn,

whereas to compute the second moment one also needs to under-
stand covariances Cov(Xi, Xj) := E(XiXj) − E(Xi)E(Xj) (which
are particularly simple if one assumes pairwise independence), thanks
to identities such as

E(X1 + . . .+Xn)2 = EX2
1 + . . .+ EX2

n + 2
∑

1≤i<j≤n

XiXj

or the normalised variant
(1.10)
Var(X1+. . .+Xn) = Var(X1)+. . .+Var(Xn)+2

∑
1≤i<j≤n

Cov(Xi, Xj).

Higher moments can in principle give more precise information,
but often require stronger assumptions on the objects being studied,
such as joint independence.

Here is a basic application of the first moment method:

Lemma 1.5.5 (Borel-Cantelli lemma). Let E1, E2, E3, . . . be a se-
quence of events such that

∑∞
n=1 P(En) is finite. Then almost surely,

only finitely many of the events En are true.

Proof. Let I(En) denote the indicator function of the event En. Our
task is to show that

∑∞
n=1 I(En) is almost surely finite. But by

linearity of expectation, the expectation of this random variable is∑∞
n=1 P(En), which is finite by hypothesis. By Markov’s inequality

(1.8) we conclude that

P(
∞∑
n=1

I(En) ≥ λ) ≤ 1
λ

∞∑
n=1

P(En).

Letting λ→∞ we obtain the claim. �
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Returning to the law of large numbers, the first moment method
gives the following tail bound:

Lemma 1.5.6 (First moment tail bound). If E|X| is finite, then

P(|Xn| ≥ λ) ≤ E|X|
λ

.

Proof. By the triangle inequality, |Xn| ≤ |X|n. By linearity of ex-
pectation, the expectation of |X|n is E|X|. The claim now follows
from Markov’s inequality. �

Lemma 1.5.6 is not strong enough by itself to prove the law of
large numbers in either weak or strong form - in particular, it does
not show any improvement as n gets large - but it will be useful to
handle one of the error terms in those proofs.

We can get stronger bounds than Lemma 1.5.6 - in particular,
bounds which improve with n - at the expense of stronger assumptions
on X.

Lemma 1.5.7 (Second moment tail bound). If E|X|2 is finite, then

P(|Xn −E(X)| ≥ λ) ≤ E|X −E(X)|2

nλ2
.

Proof. A standard computation, exploiting (1.10) and the pairwise
independence of the Xi, shows that the variance E|Xn−E(X)|2 of the
empirical averages Xn is equal to 1

n times the variance E|X−E(X)|2
of the original variable X. The claim now follows from Chebyshev’s
inequality (1.9). �

In the opposite direction, there is the zeroth moment method,
more commonly known as the union bound

P(E1 ∨ . . . ∨ En) ≤
n∑
j=1

P(Ej)

or equivalently (to explain the terminology “zeroth moment”)

E(X1 + . . .+Xn)0 ≤ EX0
1 + . . .+X0

n
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for any non-negative random variables X1, . . . , Xn ≥ 0. Applying this
to the empirical means, we obtain the zeroth moment tail estimate

(1.11) P(Xn 6= 0) ≤ nP(X 6= 0).

Just as the second moment bound (Lemma 1.5.7) is only useful
when one has good control on the second moment (or variance) of X,
the zeroth moment tail estimate (1.10) is only useful when we have
good control on the zeroth moment E|X|0 = P(X 6= 0), i.e. when X

is mostly zero.

1.5.2. Truncation. The second moment tail bound (Lemma 1.5.7)
already gives the weak law of large numbers in the case when X has
finite second moment (or equivalently, finite variance). In general,
if all one knows about X is that it has finite first moment, then we
cannot conclude that X has finite second moment. However, we can
perform a truncation

(1.12) X = X≤N +X>N

of X at any desired threshold N , where X≤N := XI(|X| ≤ N) and
X>N := XI(|X| > N). The first term X≤N has finite second mo-
ment; indeed we clearly have

E|X≤N |2 ≤ NE|X|

and hence also we have finite variance

(1.13) E|X≤N −EX≤N |2 ≤ NE|X|.

The second term X>N may have infinite second moment, but its
first moment is well controlled. Indeed, by the monotone convergence
theorem, we have

(1.14) E|X>N | → 0 as N →∞.

By the triangle inequality, we conclude that the first term X≤N has
expectation close to EX:

(1.15) EX≤N → E(X) as N →∞.

These are all the tools we need to prove the weak law of large
numbers:
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Proof of Theorem 1.5.1. Let ε > 0. It suffices to show that when-
ever n is sufficiently large depending on ε, that Xn = EX + O(ε)
with probability 1−O(ε).

From (1.14), (1.15), we can find a threshold N (depending on ε)
such that E|X≥N | = O(ε2) and EX<N = EX + O(ε). Now we use
(1.12) to split

Xn = (X≥N )n + (X<N )n.

From the first moment tail bound (Lemma 1.5.6), we know that
(X≥N )n = O(ε) with probability 1 − O(ε). From the second mo-
ment tail bound (Lemma 1.5.7) and (1.13), we know that (X<N )n =
EX<N+O(ε) = EX+O(ε) with probability 1−O(ε) if n is sufficiently
large depending on N and ε. The claim follows. �

1.5.3. The strong law. The strong law can be proven by pushing
the above methods a bit further, and using a few more tricks.

The first trick is to observe that to prove the strong law, it suffices
to do so for non-negative random variables X ≥ 0. Indeed, this
follows immediately from the simple fact that any random variable
X with finite first moment can be expressed as the difference of two
non-negative random variables max(X, 0),max(−X, 0) of finite first
moment.

Once X is non-negative, we see that the empirical averages Xn

cannot decrease too quickly in n. In particular we observe that

(1.16) Xm ≤ (1 +O(ε))Xn whenever (1− ε)n ≤ m ≤ n.

Because of this quasimonotonicity, we can sparsify the set of n
for which we need to prove the strong law. More precisely, it suffices
to show

Theorem 1.5.8 (Strong law of large numbers, reduced version). Let
X be a non-negative random variable with EX < ∞, and let 1 ≤
n1 ≤ n2 ≤ n3 ≤ . . . be a sequence of integers which is lacunary in
the sense that nj+1/nj > c for some c > 1 and all sufficiently large
j. Then Xnj converges almost surely to EX.

Indeed, if we could prove the reduced version, then on applying
that version to the lacunary sequence nj := b(1 + ε)jc and using
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(1.16) we would see that almost surely the empirical means Xn cannot
deviate by more than a multiplicative error of 1+O(ε) from the mean
EX. Setting ε := 1/m for m = 1, 2, 3, . . . (and using the fact that a
countable intersection of almost sure events remains almost sure) we
obtain the full strong law.

Remark 1.5.9. This sparsification trick is philosophically related to
the dyadic pigeonhole principle philosophy; see [Ta3]. One could eas-
ily sparsify further, so that the lacunarity constant c is large instead
of small, but this turns out not to help us too much in what follows.

Now that we have sparsified the sequence, it becomes economical
to apply the Borel-Cantelli lemma (Lemma 1.5.5). Indeed, by many
applications of that lemma we see that it suffices to show that10

(1.17)
∞∑
j=1

P(Xnj 6= E(X) +O(ε)) <∞

for non-negative X of finite first moment, any lacunary sequence 1 ≤
n1 ≤ n2 ≤ . . . and any ε > 0.

Remark 1.5.10. If we did not first sparsify the sequence, the Borel-
Cantelli lemma would have been too expensive to apply; see Remark
1.5.12 below. Generally speaking, Borel-Cantelli is only worth ap-
plying when one expects the events En to be fairly “disjoint” or “in-
dependent” of each other; in the non-lacunary case, the events En
change very slowly in n, which makes the lemma very inefficient. We
will not see how lacunarity is exploited until the punchline at the very
end of the proof, but certainly there is no harm in taking advantage
of this “free” reduction to the lacunary case now, even if it is not
immediately clear how it will be exploited.

At this point we go back and apply the methods that already
worked to give the weak law. Namely, to estimate each of the tail
probabilities P(Xnj 6= E(X) +O(ε)), we perform a truncation (1.12)
at some threshold Nj . It is not immediately obvious what truncation
to perform, so we adopt the usual strategy of leaving Nj unspecified
for now and optimising in this parameter later.

10This is a slight abuse of the O() notation, but it should be clear what is meant
by this.
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We should at least pick Nj large enough so that EX<Nj = EX+
O(ε). From the second moment tail estimate (Lemma 1.5.7) we con-
clude that (X<Nj )nj is also equal to EX + O(ε) with probability

1−O
(

1
εnj

E|X≤Nj |2
)

. One could attempt to simplify this expression
using (1.13), but this turns out to be a little wasteful, so let us hold
off on that for now. However, (1.13) does strongly suggest that we
want to take Nj to be something like nj , which is worth keeping in
mind in what follows.

Now we look at the contribution of X≥Nj . One could use the
first moment tail estimate (Lemma 1.5.6), but it turns out that the
first moment EX>Nj decays too slowly in j to be of much use (recall
that we are expecting Nj to be like the lacunary sequence nj); the
root problem here is that the decay (1.14) coming from the monotone
convergence theorem is ineffective11.

But there is one last card to play, which is the zeroth moment
method tail estimate (1.11). As mentioned earlier, this bound is lousy
in general - but is very good when X is mostly zero, which is precisely
the situation with X>Nj . and in particular we see that (X>Nj )nj is
zero with probability 1−O(njP(X > Nj)).

Putting this all together, we see that

P(Xnj 6= E(X) +O(ε))� 1
εnj

E|X≤Nj |2 + njP(X > Nj).

Summing this in j, we see that we will be done as soon as we
figure out how to choose Nj so that

(1.18)
∞∑
j=1

1
nj

E|X≤Nj |2

and

(1.19)
∞∑
j=1

njP(X > Nj)

are both finite. As usual, we have a tradeoff: making the Nj larger
makes (1.19) easier to establish at the expense of (1.18), and vice
versa when making Nj smaller.

11One could effectivise this using the finite convergence principle, see Section 1.3
of Structure and Randomness, but this turns out to give very poor results here.
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Based on the discussion earlier, it is natural to try setting Nj :=
nj . Happily, this choice works cleanly; the lacunary nature of nj
ensures (basically from the geometric series formula) that we have
the pointwise estimates

∞∑
j=1

1
nj
X≤nj = O(X)

and
∞∑
j=1

njI(X ≥ nj) = O(X)

(where the implied constant here depends on the sequence n1, n2, . . .,
and in particular on the lacunarity constant c). The claims (1.17),
(1.18) then follow from one last application of linearity of expectation,
giving the strong law of large numbers.

Remark 1.5.11. The above proof in fact shows that the strong law of
large numbers holds even if one only assumes pairwise independence
of the Xn, rather than joint independence.

Remark 1.5.12. It is essential that the random variables X1, X2, . . .

are “recycled” from one empirical average Xn to the next, in order
to get the crucial quasimonotonicity property (1.16). If instead we
took completely independent averages Xn = 1

n (Xn,1 + . . . + Xn,n),
where the Xi,j are all iid, then the strong law of large numbers in
fact breaks down12 with just a first moment assumption. Of course,
if one restricts attention to a lacunary sequence of n then the above
proof goes through in the independent case (since the Borel-Cantelli
lemma is insensitive to this independence). By exploiting the joint
independence further (e.g. by using Chernoff’s inequality) one can
also get the strong law for independent empirical means for the full
sequence n under second moment bounds.

12For a counterexample, consider a random variable X which equals 2m/m2 with

probability 2−m for m = 1, 2, 3, . . .; this random variable (barely) has finite first

moment, but for n ∼ 2m/m2, we see that Xn deviates by at least absolute constant

from its mean with probability � 1/m2. As the empirical means Xn for n ∼ 2m/m2

are now jointly independent, the probability that one of them deviates significantly is
now extremely close to 1 (super-exponentially close in m, in fact), leading to the total
failure of the strong law in this setting.
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Remark 1.5.13. From the perspective of interpolation theory, one
can view the above argument as an interpolation argument, estab-
lishing an L1 estimate (1.17) by interpolating between an L2 estimate
(Lemma 1.5.7) and the L0 estimate (1.11).

Remark 1.5.14. By viewing the sequence X1, X2, . . . as a stationary
process, and thus as a special case of a measure-preserving system one
can view the weak and strong law of large numbers as special cases of
the mean and pointwise ergodic theorems respectively (see Exercise
2.8.9 and Theorem 2.9.4).

Notes. This article first appeared at terrytao.wordpress.com/2008/06/18.
Thanks to toomuchcoffeeman and Joshua Batson for corrections.

Siva pointed out that for bounded random variables, a short proof
of the strong law of large numbers (interpreting this law as an ergodic
theorem for stationary processes) appears in [Ke1995].

Giovanni Pecatti noted that almost sure analogues of the central
limit theorem exist, see e.g. [Be1995].

1.6. The Black-Scholes equation

In this article I would like to describe the mathematical derivation of
the famous Black-Scholes equation in financial mathematics, at least
in the simplified case in which time is discrete. This simplified model
avoids many of the technicalities involving stochastic calculus, Itô’s
formula, etc., and brings the beautifully simple basic idea behind the
derivation of this formula into focus.

The basic type of problem that the Black-Scholes equation solves
(in particular models) is the following. One has an underlying fi-
nancial instrument S, which represents some asset13 which can be
bought and sold at various times t, with the per-unit price St of the
instrument varying with t. Given such an underlying instrument S,
one can create options based on S and on some future time t1, which
give the buyer and seller of the options certain rights and obligations
regarding S at an expiration time t1. For instance,

13For the mathematical model, it is not relevant what type of asset S actually
is, but one could imagine for instance that S is a stock, a commodity, a currency, or a
bond.
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(1) A call option for S at time t1 and at a strike price P gives
the buyer of the option the right (but not the obligation)
to buy a unit of S from the seller of the option at price
P at time t1 (conversely, the seller of the option has the
obligation but not the right to sell a unit of S to the buyer
of the option at time t1, if the buyer so requests).

(2) A put option for S at time t1 and at a strike price P gives
the buyer of the option the right (but not the obligation) to
sell a unit of S to the seller of the option at price P at time
t1 (and conversely, the seller of the option has the obligation
but not the right to buy a unit of S from the buyer of the
option at time t1, if the buyer so requests).

(3) More complicated options, such as straddles and collars, can
be formed by taking linear combinations of call and put
options, e.g. simultaneously buying or selling a call and
a put option. One can also consider “American options”
which offer rights and obligations for an interval of time,
rather than the “European options” described above which
only apply at a fixed time t1. The Black-Scholes formula
applies only to European options, though extensions of this
theory have been applied to American options.

The problem is this: what is the “correct” price, at time t0, to
assign to an European option (such as a put or call option) at a future
expiration time t1? Of course, due to the volatility of the underlying
instrument S, the future price St1 of this instrument is not known
at time t0. Nevertheless - and this is really quite a remarkable fact -
it is still possible to compute deterministically, at time t0, the price
of an option that depends on that unknown price St1 , under certain
assumptions (one of which is that one knows exactly how volatile the
underlying instrument is).

1.6.1. How to compute price. Before we do any mathematics, we
must first settle a fundamental financial question - how can one com-
pute the price of some asset A? In most economic situations, such
a price would depend on many factors, such as the supply and de-
mand of A, transaction costs in buying or selling A, legal regulations
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concerning A, or more intangible factors such as the current mar-
ket sentiment regarding A. Any model that attempted to accurately
describe all of these features would be hideously complicated and in-
volve a large number of parameters that would be nearly impossible
to measure directly. So, in general, one cannot hope to compute such
prices mathematically.

But the situation is much simpler for purely financial products,
such as options, at least when one has a highly deep and liquid market
for the underlying instrument S. More precisely, we will make the
following (unrealistic) assumptions:

• Infinite liquidity Market participants can buy or sell a
unit of the underlying instrument S at any time14.

• Infinite depth Each sale of a unit of S of does not affect
the price of futher sales of units of S.

• No transaction costs The purchase price and sale price of
an asset is the same: in other words, the money spent by a
buyer in a sale is exactly equal to the money earned by the
seller.

• No arbitrage There do not exist risk-free opportunities for
market participants to instantaneously make money.

With these assumptions, the supply situation is simplified enormously,
because any participant in this market can, in principle, use cash to
create an option to sell to others (for instance one can sell a call
option for S and cover it by buying a unit of S at any time before
the expiration time), in contrast to physical assets (e.g. barrels of
oil) which cannot be created purely from market transactions. This
freedom of supply leads to upper bounds on the price of a financial
asset A; if any market participant can instantaneously create a unit
of A at time t0 from market transactions using an amount X (or less)
of cash, then clearly one should not assign such a unit of A a price
greater than X at time t0, otherwise there would exist an arbitrage
opportunity.

14In principle, the participant would need a certain amount of cash, or a certain
amount of S, in order to buy or sell S, but see the infinite credit and short selling
assumptions below.



1.6. The Black-Scholes equation 35

As a simple example of such an upper bound, if a deep and liquid
market allows one to repeatedly buy individual units of A at a price
of X per unit, then for any integer k ≥ 1, the price of k units of A
has an upper bound15 of kX.

As another example, the price at time t0 of a put option for a
unit of S at time t1 at strike price P cannot exceed16 P , because any
market participant can create (and then sell) such an option simply
by setting aside P units of cash to cover the future expense of buying
a unit of S. For similar reasons, the price at time t0 of a call option
for a unit of S at time t1 cannot exceed St0 .

Dually to the above freedom of supply, there is also a freedom of
demand: any participant can, in principle, purchase a financial asset
and convert it into cash by combining the rights offered by that asset
with other purchases. For instance, one could attempt to profit from
a put option by buying a unit of the underlying instrument S and
then (if the price is favourable) exercising the right to sell that unit
to the option seller. This freedom of demand leads to lower bounds
on the price of an asset: if any market participant can instantaneously
convert a unit of A using market transactions into an amount X of
cash, then clearly one should not assign a unit of A any price lower
than X, otherwise there would be an arbitrage opportunity.

To give a trivial example: any option has a lower bound of zero17

for its price, since one can convert an option into zero units of cash
simply by refusing to exercise it.

To summarise so far: freedoms of supply give upper bounds on
the price of an asset A, and freedoms of demand give lower bounds
on the price of an asset A. The lower bounds cannot exceed the
upper bounds, as this would provide an arbitrage opportunity. But

15The true price may be lower, due for instance to volume discounts, but in
general the price of k units of A will be a subadditive function of A. Note though that
if the market is not infinitely deep, then each purchase of a unit may increase the price
of the next unit, leading to superadditive behaviour instead.

16This is an extremely crude upper bound, of course, as the option buyer might
not exercise the option, in which case the P units of cash are recovered, or the option
buyer does exercise in the option, in which case the seller is compensated for the P
units of cash by a unit of S. Also, we are assuming here that there are no costs (e.g.
security costs) associated with holding on an asset over time.

17Note that some financial assets can have a negative cash value - mortgages are
a good example.
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if the lower bounds and upper bounds happen to be equal, then one
can compute the price of A exactly. This is a rare occurrence - one
almost never expects the upper and lower bounds to be so tight. But,
amazingly, this will turn out to be the case for options in the Black-
Scholes model.

To give a simple example of a situation in which upper and lower
bounds match, let us make another assumption:

• Infinite credit Market participants can borrow or lend ar-
bitrary amounts of money at a risk-free interest rate of r.
Thus, for instance, participants can deposit (or lend) X

amount of cash at time t0 and be guaranteed to receive
exp(r(t1− t0))X cash at time t1, and conversely can borrow
X amount of cash at time t0 but pay back exp(r(t1− t0))X
cash at time t1.

Remark 1.6.1. One can renormalise r to be zero, basically by using
real units of currency instead of nominal units, but we will not do so
here.

With this assumption one can now compute the time value of
money. Suppose one has a risk-free government bond A which is
guaranteed to pay out X amount of cash at the maturity time t1 of
the bond. Then, at any time t0 prior to the maturity time, one can
convert A to an amount exp(−r(t1− t0))X of cash, by borrowing this
amount of cash at time t0, and using the proceeds of the bond A to
pay off the debt from this borrowing at time t1. Thus there is a lower
bound of exp(−r(t1 − t0))X to the price of the bond A. Conversely,
given an amount exp(−r(t1− t0))X of cash at time t0, one can create
the equivalent of the bond A simply by depositing or lending out this
cash to obtain X amount of cash at time t1. Thus, in this case the
lower and upper bounds match exactly, and the price of the bond can
be computed at time t0 to be exp(−r(t1 − t0))X. (Because of this
fact, the quantity r in the Black-Scholes model is usually set equal to
the interest rate of an essentially risk-free asset, such as short-term
Treasury bonds.)

One can use the time value of money to produce further upper
and lower bounds on options. For instance, the price at time t0 of a
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put option for a unit of S at time t1 at strike price P cannot be lower
than exp(−r(t1 − t0))P − St0 , since one can always convert the put
option into this amount of cash by buying a unit of S at price St0 at
time t0, holding on to this unit until time t1, and selling at price P
at time t1, which has the equivalent cash value of exp(−r(t1 − t0))P
at time t0. However, in order to make the lower and upper bounds
match, we will need some additional assumptions on how the price St
of the underlying stock evolves with time.

1.6.2. The Black-Scholes model. To simplify the computations,
we shall assume

• Discrete time The time variable t increases in discrete
steps of some time unit dt. (At each time t, one can make
an arbitrary number of purchases and sale of assets, but the
price St of the underlying instrument stays constant for each
fixed t, as guaranteed by the infinite depth hypothesis.)

For instance, one could imagine a market in which the price St
only changes once a day, so in this case dt would be a day in length.
Similarly if St only changes once a minute or once a second.

The Black-Scholes model then describes how the next price St+dt
of the underlying instrument depends on the current price St. The
whole point, of course, is that there is to be some randomness (or
risk) involved in this process. The simplest such model would be that
of a simple random walk18

St+dt = St + εtσ(dt)1/2

where σ > 0 is a constant (representing volatility) and εt = ±1 is a
random variable, equal to +1 or −1 with equal probability; thus in
this model the price either jumps up or jumps down by σ(dt)1/2 for
each time step dt. One can assume that the random variables εt are
jointly independent as t varies, but remarkably we will not need to
use such an independence hypothesis in our analysis. Similarly, we
will not use the fact that the probabilities of going up or down are

18The factor of (dt)1/2 is a natural normalisation, required for this model to con-
verge to Brownian motion in the continuous time limit dt→ 0. with this normalisation,
σ2 basically becomes the amount of variance produced in St per unit time.
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both equal to 1/2; it will turn out, unintuitively enough, that these
probabilities are irrelevant to the final option price.

This simple model has a number of deficiencies. Firstly, it does
not reflect the fact that many assets, while risky, will tend to grow
in value over time. Secondly, the model allows for the possiblity that
the price St becomes negative, which is clearly unrealistic. (A third
deficiency, that it only allows two outcomes at each time step, is more
serious, and will be discussed later.)

To address the first deficiency, one can add a drift term, thus
leading to the model

St+dt = St + µdt+ σεt(dt)1/2

for some fixed µ ∈ R (which could be positive, zero, or negative),
representing the expected rate of appreciation of a unit of S per unit
time. A remarkable (and highly unintuitive) consequence of Black-
Scholes theory is that the exact value of µ will in fact have no impact
on the final formula for the value of an option: an underlying instru-
ment which is rising in value on average will have the same option
pricing as one which is steady or even falling on the average!

To address the second deficiency, we work with the logarithm
logSt of the price of S, rather than the price itself, since this will
make the price positive no matter how we move the logarithm up
and down (as long as we only move the logarithm a finite amount, of
course). More precisely, we adopt the model

(1.20) logSt+dt = logSt + µdt+ σεt(dt)1/2

and so µ now measures the expected relative increase in value per unit
time (as opposed to the expected absolute increase), and similarly σ2

measures the relative increase in variance per unit time. This model
may seem complicated, but the key point is that, given St, there are
only two possible values of St+dt.

1.6.3. Pricing options. Now we begin the task of pricing an option
with expiry date t1 at time t0. The interesting case is of course when t0
is less than t1, but to begin with let us first check what happens when
t0 = t1, so that we are pricing an option that is expiring immediately.
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Consider first a call option. If one has the option to buy a unit
of S at price P at time t1, and St1 was greater or equal to P , then
it is clear that this option could be converted into St1 − P units of
cash, simply by exercising the option and then immediately selling
the stock that was bought. Conversely, given St1 − P units of cash,
one could create such an option (and might even recover this money
if the bearer of the option forgets to exercise it). So we see that when
St1 ≥ P , the price of this option is St1 − P .

On the other hand, if St1 is less than P (in the jargon, the option
is “underwater” or “out of the money”), then it is intuitively clear
that the call option is worthless (i.e. has a price of zero). To see this
more rigorously, recall that any option has a lower bound of zero for
its price. To get the upper bound, one can issue an underwater call
option at no cost, since if someone is foolish enough to exercise that
option, one can simply buy the stock from the open market at St1
and sell it for P , and pocket or discard the difference. Putting all this
together, we see that the price Vt1 of the call option at time t1 is a
function of the price St1 of the underlying instrument at that time,
and is given by the formula

(1.21) Vt1(St1) := max(St1 − P, 0).

For similar reasons, the price Vt1 at time t1 of a put option for a unit
of S at expiry time t1 and strike price P is given by the formula

(1.22) Vt1(St1) := max(P − St1 , 0).

Thus we have worked out the price of both put and call options at
the time of expiry. To handle the general case, we have to move
backwards in time. For reasons that will become clearer shortly, we
shall also need three final assumptions:

• Infinite fungibility Stock can be sold in arbitrary non-
integer amounts.

• Short selling Market participants can borrow arbitrary
amounts of stock, at no interest, for arbitrary amounts of
time.

• No storage costs Market participants can hold arbitrary
amounts of stock at no cost for arbitrary amounts of time.
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The fundamental lemma here is the following:

Lemma 1.6.2. If a financial asset A has a price at time t that is a
function Vt(St) that depends only on the price St of S at time t, then
the same asset has a price at time t−dt that is a function Vt−dt(St−dt)
of the price St−dt of S at time t− dt, where Vt−dt is given from Vt by
an explicit formula (see (1.24) below).

Iterating this lemma, starting from (1.21) and (1.22), and taking
the limit as dt→ 0, will ultimately lead to the Black-Scholes formula
for the price of such options.

Let’s see how this lemma is proven. Suppose we are at time t−dt,
and the price of S is currently s := St−dt. We do not know what the
price St of S at the next time step will be exactly, but thanks to
(1.20), we know that it is one of two values, say s− and s+ with
s+ > s−. From (1.20) we have the explicit formula

(1.23) s± = s exp(1 + µdt± σ(dt)1/2).

By hypothesis, we know that the instrument A has a price of Vt(s+)
or Vt(s−) at time t, depending on whether S has a price of s+ or s−
at this time t. Our task is now to show that A has a price at time
t-dt that depends only on s.

Let us first consider the easy case when Vt(s+) and Vt(s−) are
both equal to the same value, say X. In this case, the instrument
A is (for the purposes of pricing) identical to a bond which matures
at time t with a value of X. By the previous discussion, we thus see
that the price of A at time t-dt is equal to exp(−rdt)X.

Now consider the case when Vt(s+) and Vt(s−) are unequal. Then
there is some risk in the value of A at time t. But - and this is the key
point - one can hedge this risk by buying or selling some units of S.
Suppose for instance one owns one unit of A at time t− dt, and then
buys k units of S at this time at the price s. At time t, one sells the k
units of S, earning ks+ units of cash at time t if the price is s+, and
ks− units if the price is s−. In effect, this hedging strategy adjusts
Vt(s+) and Vt(s−) to Vt(s+) + ks+ and Vt(s−) + ks− respectively,
at the cost of paying ks at time t − dt. If Vt(s+) < Vt(s−), then
one can find a positive k so that the adjusted values Vt(s+) + ks+
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and Vt(s−) + ks− of the instrument are equal (indeed, k is simply
k = (Vt(s−)−Vt(s+))/(s+−s−)). We have thus effectively converted
A, at the cost of ks units of cash at time t − dt, into a bond that
matures at time t with a value of

Vt(s+) + ks+ = Vt(s−) + ks− =
s+Vt(s−)− s−Vt(s+)

s+ − s−
.

Conversely, we can convert such a bond into one unit of A and ks

units of cash at time t−dt by reversing the above procedure. Namely,
instead of buying k units of S at time t − dt to sell at time t, one
instead short sells k units of S at time t − dt to buy back at time
t. More precisely, one borrows k units of stock at time t − dt to sell
immediately, and then at time t buys them back again to repay the
stock loan. (Mathematically, this is equivalent to buying −k units
of stock at time t − dt to sell at time t; thus short selling effectively
allows one to buy negative units of stock, in much the same way
that fungibility allows one to buy fractional units of stock.) We thus
conclude that in this case, A has a value of

exp(−rdt)s+Vt(s−)− s−Vt(s+)
s+ − s−

−ks =
(exp(−rdt)s+ − s)Vt(s−)− (exp(−rdt)s− − s)Vt(s+)

s+ − s−
This analysis was conducted in the case Vt(s+) < Vt(s−), but one can
get the same formula at the end in the opposite case Vt(s+) > Vt(s−);
k is now negative in this case, but since buying a negative amount
of stock is equivalent to short-selling a positive amount of stock (and
vice versa), the arguments go through as before. Substituting the
formula for k, we have thus proven the lemma, with
(1.24)

Vt−dt(s) :=
(exp(−rdt)s+ − s)Vt(s−)− (exp(−rdt)s− − s)Vt(s+)

s+ − s−
.

This is a somewhat complicated formula, but it can be simplified
by means of Taylor expansion (assuming for the moment that Vt is
smooth). To illustrate the idea, let us make the simplifying assump-
tion that r = 0. If we then Taylor expand

Vt(s±) = Vt(s) + (s± − s)∂sVt(s) +
1
2

(s± − s)2∂ssVt(s) +O((dt)3/2)

(cautioning here that the implied constants in the O() notation de-
pend on all sorts of things, such as the third derivative of Vt) and
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note that s+ − s− is comparable to (dt)1/2 in magnitude, then the
right-hand side of (1.24) simplifies to

Vt(s)−
1
2
∂ssVt(s)(s+ − s)(s− − s) +O((dt)3/2).

Since
(s+ − s)(s− − s) = −s2σ2dt+O((dt)3/2)

we thus obtain

Vt−dt(s) = Vt(s) +
1
2
s2σ2∂ssVt(s)dt+O((dt)3/2).

Performing Taylor expansion in t, we thus conclude

∂tVt(s) = −1
2
s2σ2∂ssVt(s) +O((dt)1/2)

and so in the continuum limit dt→ 0 one (formally, at least) obtains
the backwards heat equation

∂tV = −1
2
s2σ2∂ssV.

A similar (but more complicated) computation can be made in the r 6=
0 case (or one can renormalise using real currency units, as remarked
earlier), obtaining the Black-Scholes PDE

∂tV = −1
2
s2σ2∂ssV − rs∂sV + rV.

Using (1.21) or (1.22) as an initial condition, one can then solve
for V at time t0; the quantity Vt0(St0) is then the price of the option19

at time t0.

The above analysis was not rigorous because the error terms were
not properly estimated when taking the continuum limit dt→ 0, and
also because the initial conditions (1.21), (1.22) were not smooth. The
latter turns out to be a very minor difficulty, due to the smoothing
nature of the Black-Scholes PDE (which is a parabolic equation) and
also because one can use the comparison principle (which formalises
the intuitively obvious fact that if a financial asset A is always worth
more than an asset B at time t, then this is also the case at time t−dt)
to approximate the non-smooth options (1.21), (1.22) by smooth ones.
The former difficulty does require a certain amount of non-trivial

19V can be computed explicitly in terms of the error function, leading to the
Black-Scholes formula, which we will not give here.
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analysis (e.g. Fourier analysis or Itô’s formula) but I will not discuss
this here.

There is an enormous amount of literature aimed at relaxing the
idealised hypotheses in the above analysis, for instance adding trans-
action costs, fluctuations in volatility, or more complicated financial
features such as dividends. In some of these more general models,
the upper and lower bounds for the prices of options cease to match
perfectly, due to transaction costs or the inability to perfectly hedge
away the risk; this for instance starts occurring when the underlying
price St can fluctuate to three or more values from a fixed value of
St−dt, as it then becomes impossible in general to make V constant
for all of these values at once purely by buying and selling S. In
particular, the reliability of the Black-Scholes model becomes suspect
when the price movements of S differ significantly from the model
(1.20), for instance if there are occasional very large price swings20.

The other major issue with the Black-Scholes formula is that
it requires one to compute the volatility σ, which is difficult to do
in practice. In fact, the formula is often used in reverse, using the
actual prices in option markets to deduce an implied volatility for an
underlying instrument.

Notes. This article first appeared at terrytao.wordpress.com/2008/07/01.

Kenny Easwaran noted the unintuitive fact that the probabilities
of the two possible values for the right-hand side of (1.20) turn out
to be completely irrelevant for the purposes of pricing an option.

An anonymous commenter noted that in practice, the Black-
Scholes formula (and more robust variants of this formula) are never
applied directly, because the day-to-day volatility is almost impossi-
ble to compute. Instead, the formula is more often applied in reverse,
to obtain an implied volatility from actual option prices which can
then be used either as a convenient shorthand for options trading,
or for pricing more exotic options based on existing prices of simpler
options.

20The world stock and bond markets, in the months following the initial posting
of this article, exhibited this phenomenon quite strongly.
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Figure 1. The Bunimovich stadium. (Figure from wikipedia.)

1.7. Hassell’s proof of scarring for the
Bunimovich stadium

In Section 3.5 of Structure and Randomness, I featured one of my
favorite problems, namely that of establishing scarring for the Buni-
movich stadium. I’m now happy to say that this problem has been
solved (for generic stadiums, at least, and for phase space scarring
rather than physical space scarring) by Andrew Hassell[Ha2008].
Actually, the argument is beautifully simple and short, though it of
course uses the basic theory of eigenfunctions on domains, such as
Weyl’s law, and I would like the gist of it here

Let’s first recall the problem. We consider a stadium domain
formed by adjoining two semicircles on the ends of a rectangle, as in
Figure 1.

We can normalise the rectangle to have height 1 and width t, and
will call this stadium St. For reasons that will be clearer later, it
is convenient to view t as a time parameter, so that the stadium
is steadily getting elongated in time. The Laplacian on this do-
main (with Dirichlet boundary conditions) has a countable sequence
of eigenfunctions u1, u2, . . . associated to an increasing sequence of
eigenvalues 0 = λ1 < λ2 ≤ λ3 ≤ . . ., which we can normalise so that∫
St
|uk|2 = 1 for all k. The conjecture is that the uk do not equidis-

tribute in physical space (or in phase space) in the limit k →∞, or in
other words that quantum unique ergodicity fails. In physical space,
the conjecture is as follows:

Conjecture 1.7.1 (Scarring conjecture). There exists a subset A ⊂
Ω and a sequence ukj of eigenfunctions with λkj → ∞, such that
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A
|ukj |2 does not converge to |A|/|Ω|. Informally, the eigenfunctions

either concentrate (or “scar”) in A, or on the complement of A.

There is some numerical evidence for this conjecture, as discussed
in Section 3.5 of Structure and Randomness; more relevantly for Has-
sell’s argument, there is also a heuristic argument, which we recall
shortly.

Conjecture 1.7.1 only considered scarring in physical space. There
is a (slightly weaker) form of this conjecture which considers scarring
in phase space instead (thus the indicator function 1A is replaced
by a more general pseudodifferential operator); alternatively, one can
phrase things using the Wigner transform. The precise statement is
slightly technical and will not be given here.

Hassell’s result is as follows:

Theorem 1.7.2. [Ha2008] The phase space version of the scarring
conjecture is true for St for almost every t > 0.

Thus, for most stadiums21, there is an infinite sequence of eigen-
functions which exhibit significant non-uniformity in phase space.

Hassell’s argument relies on three ingredients:

1.7.1. The Heller-Zelditch argument. As discussed in Section
3.5 of Structure and Randomness, there is already a heuristic argu-
ment due to Heller[He1991] and refined by Zelditch[Ze2004], which
almost gives the scarring already for any given stadium St - but
it requires one to exclude eigenvalue concentration in an interval
[π2n2 −O(1), π2n2 +O(1)] for some integer n. The point is that the
stadium already exhibits some explicit quasimodes (i.e. approximate
eigenfunctions), namely the tensor products vn = sin(πny)ψ(x) for
some suitable cutoff function ψ(x). Note that ∆vn = π2n2vn +O(1),
so morally this means that the spectrum of vn with respect to the
Laplacian is concentrated in the interval [π2n2 −O(1), π2n2 +O(1)].
On the other hand, this quasimode is highly scarred in phase space
(it is extremely concentrated in momentum space). So if one knew

21In an appendix to [Ha2008], Hassell and Hillairet also extend this result to
other partially rectangular domains.
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that there were only O(1) eigenfunctions in this interval, then22 one
of these eigenfunctions must itself be scarred (basically by the pigeon-
hole principle, or triangle inequality).

The difficulty, as discussed in Structure and Randomness, was
that nobody knew how to prevent a lot of eigenvalues concentrating
in the intervals [π2n2 − O(1), π2n2 + O(1)] - the standard tool for
understanding eigenvalue distribution, namely Weyl’s law, had far too
large an error term for this task. So we need some new ingredients...

1.7.2. The Hadamard eigenvalue variation formula. Now one
starts exploiting the parameter t. As t varies, the eigenvalues and
eigenfunctions of the Laplacian on St will of course change. How do
they change? One can already get some understanding of what is
going on by looking at the variation of eigenvalues and eigenvectors
for self-adjoint matrices rather than operators. Suppose we have a
family A(t) of self-adjoint n × n matrices depending smoothly on a
time parameter t, with some eigenvalue λk(t) and eigenvector uk(t),
also varying smoothly, thus

A(t)uk(t) = λk(t)uk(t).

We normalise the eigenvectors to have unit magnitude. We can
differentiate both sides with respect to t using the product rule to
obtain

Ȧ(t)uk(t) +A(t)u̇k(t) = λ̇k(t)uk(t) + λk(t)u̇k(t).

Now we take the dot product with uk(t). Since we have nor-
malised uk(t) to be a unit vector, we have uk(t) · uk(t) = 1 and
uk(t) · u̇k(t) = 0, and we conclude the variation formula23

〈uk(t), Ȧk(t)uk(t)〉 = λ̇k(t).

Thus, the rate of change of the kth eigenvalue λk can be computed
by testing the rate of change of the matrix A against the normalised
eigenvalue uk.

22The above argument can be made rigorous with a dash of microlocal analysis;
see [Ha2008].

23See Section 1.15 for further discussion of these sorts of variation formulae.
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It turns out that one can do a similar thing for the Laplacian
∆ = ∆t on the domain St. Since the domain St is growing with
t, one could imagine that the Laplacian ∆ is also “growing”, and its
“time derivative” should be given by something on the boundary ∂St.
It requires some care to make this intuition precise, but in [Ha2008],
Hassell was able to show a Hadamard-type variation formula

(1.25) λ̇k(t) = −
∫
∂St

(X · n)|∂nuk(t, x)|2 ds

where ds is the length element on ∂St, n is the outward unit normal,
and X is the vector field which equals + 1

2∂x on the right semicircle
(this is the vector field that grows the width t of the stadium St at a
unit rate).

Note that X · n is always non-negative; so the formula (1.25)
implies that the eigenvalues are decreasing as the width t increases.
This is consistent with Weyl’s law λk = 4π

|St| (1 + o(1))k for these
eigenvalues. Actually, one can be a bit more precise; heat kernel
methods reveal that |∂nuk(t, x)| ∼ λ1/2

k on average, and so from (1.25)
we expect to have

(1.26) −λ̇k ∼ λk

on the average, which is broadly consistent with Weyl’s law.

1.7.3. Quantum unique ergodicity. The last trick in [Ha2008]
is to prove Theorem 1.7.2 by contradiction. To illustrate the idea, let
us suppose that the extreme opposite to Theorem 1.7.2 holds, namely
that no scarring occurs for any stadium St. Informally, this means
that any eigenfunction (with large eigenvalue) for any stadium will
be approximately uniformly distributed in phase space.

According to Egorov’s theorem, eigenfunctions should propagate
their position and momentum in phase space by geodesic flow. Since
all geodesics in the stadium hit the boundary, this in principle allows
us to understand the distribution of an eigenfunction on the bound-
ary in terms of the eigenfunction in the interior. Indeed, one can
show that an eigenfunction which is uniformly distributed in phase
space in the interior, will have a normal derivative which is uniformly
distributed on the boundary (rigorous formulations of this fact date
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back to [GeLe1993]. Thus, by assumption, every eigenvector is uni-
formly distributed on the boundary. Because of this, the eigenvalue
decay (1.26) does not just hold on the average - it holds for all k.
Thus all eigenvalues decay exponentially in t at a steady rate.

But once one has this, it is not hard to show that the eigenvalues
cannot concentrate close to any given interval [π2n2 − O(1), π2n2 +
O(1)] for extended periods of time t. We then apply the Heller-
Zelditch argument and get a contradiction. That’s it! (Modulo de-
tails, of course.)

As always, there are several further directions of research to pur-
sue, for instance to improve the scarring so that one obtains non-
equidistribution in physical space. This seems to be related to the
question of improving the quality of the quasimode used in the Heller-
Zelditch argument; see [BuZw] for further discussion.

Notes. This article first appeared at terrytao.wordpress.com/2008/07/07.

1.8. Tate’s proof of the functional equation

The Riemann zeta function ζ(s), defined for Re(s) > 1 by the formula

(1.27) ζ(s) :=
∑
n∈N

1
ns

where N = {1, 2, . . .} are the natural numbers, and extended mero-
morphically to other values of s by analytic continuation, obeys the
remarkable functional equation

(1.28) Ξ(s) = Ξ(1− s)

where

(1.29) Ξ(s) := Γ∞(s)ζ(s)

is the Riemann Xi function,

(1.30) Γ∞(s) := π−s/2Γ(s/2)

is the Gamma factor at infinity, and the Gamma function Γ(s) is
defined for Re(s) > 1 by

(1.31) Γ(s) :=
∫ ∞

0

e−tts
dt

t
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and extended meromorphically to other values of s by analytic con-
tinuation.

There are many proofs known of the functional equation (1.28).
One of them (dating back to [Ri1859]24) relies on the Poisson sum-
mation formula

(1.32)
∑
a∈Z

f∞(at∞) =
1
|t|∞

∑
a∈Z

f̂∞(a/t∞)

for the reals25 k∞ := R and t ∈ k∗∞, where f is a Schwartz function,
|t|∞ := |t| is the usual Archimedean absolute value on k∞, and

(1.33) f̂∞(ξ∞) :=
∫
k∞

e∞(−x∞ξ∞)f∞(x∞) dx∞

is the Fourier transform on k∞, with e∞(x∞) := e2πix∞ being the
standard character e∞ : k∞ → S1 on k∞. Applying this formula to
the (Archimedean) Gaussian function

(1.34) g∞(x∞) := e−π|x∞|
2
,

which is its own (additive) Fourier transform, and then applying the
multiplicative Fourier transform (i.e. the Mellin transform), one soon
obtains (1.28). One can “clean up” this proof a bit by replacing the
Gaussian by a Dirac delta function, although one now has to work
formally and “renormalise” by throwing away some infinite terms26.
Note how this proof combines the additive Fourier transform with the
multiplicative Fourier transform27.

In the famous 1950 thesis of Tate (see e.g. [CaFr1967, Chapter
XV]), the above argument was reinterpreted using the language of
the adele ring A, with the Poisson summation formula (1.30) on k∞

24Riemann also had another proof of the functional equation relying primarily on
contour integration, which I will not discuss here.

25The reason for this rather strange notation for the real line and its associated
structures will be made clearer shortly.

26One can use the theory of distributions to make this approach rigorous, but I
will not discuss this here.

27Continuing with this theme, the Gamma function (1.31) is an inner product

between an additive character e−t and a multiplicative character ts, and the zeta
function (1.27) can be viewed both additively, as a sum over n, or multiplicatively, as
an Euler product.
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replaced by the Poisson summation formula

(1.35)
∑
a∈k

f(at) =
∑
a∈k

f̂(t/a)

on A, where k = Q is the rationals, t ∈ A, and f is now a Schwartz-
Bruhat function on A. Applying this formula to the adelic (or global)
Gaussian function g(x) := g∞(x∞)

∏
p 1Zp(xp), which is its own Fourier

transform, and then using the adelic Mellin transform, one again ob-
tains (1.28). Again, the proof can be cleaned up by replacing the
Gaussian with a Dirac mass, at the cost of making the computations
formal (or requiring the theory of distributions).

In this post I will write down both Riemann’s proof and Tate’s
proof together (but omitting some technical details), to emphasise
the fact that they are, in some sense, the same proof. However,
Tate’s proof gives a high-level clarity to the situation (in particular,
explaining more adequately why the Gamma factor at infinity (1.30)
fits seamlessly with the Riemann zeta function (1.27) to form the Xi
function (1.28)), and allows one to generalise the functional equation
relatively painlessly to other zeta-functions and L-functions, such as
Dedekind zeta functions and Hecke L-functions.

1.8.1. Riemann’s proof. Applying the Poisson summation formula
(1.28) for k∞ to the Schwartz function (1.34), we see that the theta
function

(1.36) Θ∞(x∞) :=
∑
n∈Z

g∞(nx∞) = 1 + 2
∞∑
n=1

e−πn
2|x∞|2∞

obeys the functional equation

(1.37) Θ∞(x∞) =
1

|x∞|∞
Θ∞(

1
x∞

)

for x∞ ∈ k×∞ := k∞\{0}. In particular, since Θ∞(x∞)− 1 is rapidly
decreasing as x∞ → ∞, we see that Θ∞(x∞) − 1/x∞ is rapidly de-
creasing as x∞ → 0.

Formally, we can take Mellin transforms of (1.37) and conclude
that

(1.38)
∫
k×∞

Θ∞(x∞)|x∞|s∞d×x∞ =
∫
k×∞

Θ∞(x∞)|x∞|1−s∞ d×x∞
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for any s, where d×x∞ := dx∞
|x∞|∞ is the standard multiplicative Haar

measure on k×∞. This does not make rigorous sense, because the
integrands here diverge at 0 and at infinity (which is ultimately due
to the poles of the Riemann Xi function at s = 0 and s = 1), but let us
forge ahead regardless. By making the change of variables y := πn2t2

and using (1.29), (1.30), we see that

(1.39)
∫
k∞

e−πn
2x2
∞ |x∞|s∞d×x∞ = Γ∞(s)n−s

and so from (1.36) and (1.27) we formally have

(1.40)
∫
k∞

Θ∞(x∞)|x∞|s∞d×x∞ =
∫
k∞

|x∞|sd×x∞ + 2Γ∞(s)ζ(s).

If we casually discard the divergent integral
∫
k∞
|x∞|sd×x∞ and ap-

ply (1.38), we formally obtain the functional equation (1.28).

Of course, the above computations were totally formal in nature.
Nevertheless it is possible to make the argument rigorous. For in-
stance, when Re(s) > 1, we have a rigorous version of (1.40), namely

(1.41)
∫
k∞

(Θ∞(x∞)− 1)|x∞|s∞d×x∞ = 2Γ∞(s)ζ(s),

which can be deduced from (1.39) and Fubini’s theorem (or by domi-
nated convergence). Using (1.37) and a little undergraduate calculus,
we can rewrite the left-hand side of (1.41) as

(1.42)
∫ ∞

1

(Θ∞(t)− 1)(ts + t1−s)
dt

t
− 1
s
− 1

1− s
.

Observe that this expression extends meromorphically to all of s
and can thus be taken as a definition of Ξ(s) for all s 6= 0, 1, and the
functional equation (1.28) is then manifestly obvious.

Here is a slightly different way to view the above computations.
Since the Gaussian (1.34) is its own Fourier transform, we see for
every t > 0 that the Fourier transform of e−πt

2|x|2∞ is 1
t e
−π|x|2∞/t

2
.

Integrating this fact against |t|sd×t on k×∞ using (1.39), we obtain
(formally) at least that the Fourier transform28 of Γ∞(s)|x|−s∞ d×x

28Note from scaling considerations it is formally clear that the Fourier transform
of |x|−s∞ d×x must be some sort of constant multiple of |x|1−s∞ d×x; the Gamma fac-
tors can thus be viewed as the normalisation of these multiplicative characters that is
compatible with the Fourier transform.
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is Γ∞(1 − s)|x|1−s∞ d×x. Formally applying the Poisson summation
formula (1.30) to this, and casually discarding the singular terms at
the origin, we obtain (1.28). One can make the above computations
rigorous using the theory of distributions, and by using Gaussians
to regularise the various integrals and summations appearing here,
in which case the computations become essentially equivalent to the
previous ones.

1.8.2. p-adic analogues. The above “Archimedean” Fourier anal-
ysis on k∞ = R has analogues in the p-adic completions kp = Qp of
the rationals k = Q. Recall that the reals k∞ = R are the metric
completion of the rationals k = Q with respect to the metric arising
from the usual Archimedean absolute value x 7→ |x|∞. This absolute
value obeys the following basic properties:

(1) Positivity: we have |x| ≥ 0 for all x, with equality if and
only if x = 0.

(2) Multiplicativity: we have |xy| = |x||y| for all x, y.

(3) Triangle inequality: We have |x+ y| ≤ |x|+ |y| for all x, y.

A function from k to [0,+∞) with the above three properties is
known as an absolute value (or valuation) on k. In addition to the
Archimedean absolute value, each prime p defines a p-adic absolute
value x 7→ |x|p on k, defined by the formula |x|p := p−n, where n is
the number29 of times p divides x. Equivalently, |x|p is the unique
valuation such that |p|p = 1/p and |n|p = 1 whenever n is an integer
coprime to p. One easily verifies that |x|p is an absolute value; in fact
it not only obeys the triangle inequality, but also the ultra-triangle
inequality |x+ y| ≤ max(|x|, |y|), making the p-adic absolute value a
non-Archimedean absolute value.

A classical theorem of Ostrowski asserts that the Archimedean
absolute value x 7→ |x|∞ and the p-adic absolute values x 7→ |x|p
are in fact the only absolute values on the rationals k, up to the
renormalisation of replacing an absolute value |x| with a power |x|α.
If we define a place to be an absolute value up to renormalisation, we
thus see that the rationals k have one Archimedean (or infinite) place

29This number could be negative if the denominator of the rational number x
contains factors of p.
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∞, together with one non-Archimedean (or finite) place p for every
prime. One could have set |p|p to some other value between 0 and
1 than 1/p (thus replacing |x|p with some power |x|αp ) and still get
an absolute value; but this normalisation is natural because it allows
one to write the fundamental theorem of arithmetic in the appealing
form

(1.43)
∏
ν

|x|ν = 1 for all x ∈ k×

where ν ranges over all places, and k× := k\{0} is the multiplicative
group of k. If one takes the metric completion of the rationals k = Q
using a p-adic absolute value |x|p rather than the Archimedean one,
one obtains the p-adic field kp = Qp. One can view this field as a kind
of inverted version of the real field R, in which p has been inverted
to be small rather than large. Some illustrations of this inversion:

(1) In k∞, the sequence pn goes to infinity as n→ +∞ and goes
to zero as n→ −∞; in kp, it is the other way around.

(2) Elements of k∞ can be expressed base p as strings of digits
that need not terminate to the right of the decimal point,
but must terminate to the left. In kp, it is the other way
around30.

(3) In k∞, the integers Z is closed and forms a discrete cocom-
pact additive subgroup. In kp, the integers are not closed,
but their closure Op = Zp (the ring of p-adic integers) forms
a compact codiscrete additive subgroup.

Despite this inversion, we can obtain analogues of most of the addi-
tive and multiplicative Fourier analytic computations of the previous
section for the p-adics.

Let’s first begin with the additive Fourier structure. By the the-
ory of Haar measures, there is a unique translation-invariant measure
dxp on kp = Qp which assigns a unit mass to the compact codiscrete
subgroup Op = Zp. One can check that this measure interacts with

30The famous ambiguity 0.999 . . . = 1.000 . . . in k∞ does not occur in the p-adic
field kp, because the latter has the topology of a Cantor space rather than a continuum.
See also Section 1.6 of Structure and Randomness.
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dilations in the expected manner, thus

(1.44)
∫
kp

f(txp) dxp =
1
|t|

∫
kp

f(xp) dxp

for all absolutely integrable f and all invertible t ∈ k×p := kp\{0}.
Just as k∞ has a standard character e∞ : x 7→ e2πix, we can

define a standard character ep : kp → S1 as the unique character (i.e.
continuous homomorphism from kp to S1) such that ep(pn) = e2πipn

for all integers n (in particular, ep is trivial on the integers, just as e∞
is). One easily verifies that this is indeed a character. From this and
the additive Haar measure dxp, we can now define the p-adic Fourier
transform

(1.45) f̂(ξp) :=
∫
kp

ep(−xpξp)f(xp) dxp

for reasonable (e.g. absolutely integrable) f , and it is a routine matter
to verify all the usual Fourier-analytic identities for this transform
(or one can appeal to the general theory of Fourier analysis on locally
compact abelian groups).

In k∞, we have the Gaussian function (1.34), which is its own
Fourier transform. In kp, the analogous Gaussian function gp : kp →
C is given by the formula

(1.46) gp := 1Op ,

i.e. the p-adic Gaussian is just the indicator function of the p-adic
integers. One easily verifies that this function is also its own Fourier
transform.

Now we turn to the multiplicative Fourier theory for kp. The nat-
ural multiplicative Haar measure d×xp on k×p is given by the formula
d×xp := p

p−1
dxp
|xp|p ; the normalisation factor p

p−1 is natural in order for
the group of units O×p = Zp\pZp to have unit mass.

In k∞, we see from (1.39) that the Gamma factor at infinity can
be expressed (for Re(s) > 1) as the Mellin transform of the Gaussian:

(1.47) Γ∞(s) =
∫
k×∞

g∞(x∞)|x∞|s∞d×x∞.
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In analogy with this, we can define the Gamma factor at p by the
formula

(1.48) Γp(s) =
∫
k×p

gp(xp)|xp|spd×xp.

Due to the simple and explicit nature of all the expressions on the
right-hand side, it is a straightforward matter to compute this factor
explicitly; it becomes

(1.49) Γp(s) = (1− p−s)−1

for Re(s) > 1, at least; of course, one can then extend Γp meromor-
phically in the obvious manner.

In k∞, we showed (formally, at least) that Γ∞(s)|x|s∞ and Γ∞(1−
s)|x|1−s∞ were Fourier transforms of each other. One can similarly
show that Γp(s)|x|sp and Γp(1 − s)|x|1−sp are Fourier transforms of
each other in kp. On the other hand, there is no obvious analogue of
the Poisson summation formula manipulations for kp, because (unlike
k∞), kp lacks a discrete cocompact subgroup.

1.8.3. Tate’s proof. We have just performed some local31 additive
and multiplicative Fourier analysis at a single place. In his famous
thesis, Tate observed that all these local Fourier-analytic computa-
tions could be unified into a single global Fourier-analytic computa-
tion, using the languge of the adele ring A. This ring is the set32 of
all tuples x = (xν)ν , where ν ranges over places and xν ∈ kν , and
furthermore all but finitely many of the xν lie in their associated ring
of integers Oν . This restriction that the xν consists mostly of integers
in kν is important for a large variety of analytic and algebraic reasons;
for instance, it keeps the adele ring σ-compact.

31This use of “local” may seem unrelated to the topological or analytical notion
of “local”, as in “in the vicinity of a single point”, but it is actually much the same
concept; compare for instance the formal power series in p for a p-adic number with
the Taylor series expansion in t − t0 of a function f(t) around a point t0. Indeed one
can view local analysis at a place p as being the analysis of the integers or rationals
when p is “close to zero”; one can make this precise using the language of schemes,
but we will not do so here.

32Equivalently, the adele ring is the tensor product of the rationals k = Q with
the ring of integral adeles R×

∏
p Zp.
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Many of the structures and objects on the local fields kν can be
multiplied together to form corresponding global structures on the
adele ring. For instance:

(1) The commutative ring structures on the kν multiply to-
gether to give a commutative ring structure on A.

(2) The locally compact Hausdorff structures on the kν multiply
together to give a locally compact Hausdorff structure on A.

(3) The local additive Haar measures dxν on the kν multiply
together to give a global additive Haar measure dx on A.

(4) The local characters eν : kν → S1 on the kν multiply to-
gether to give a global character e : A → S1 (here it is es-
sential that most components of an adele are integers, and
so are trivial with respect to their local character).

(5) The local additive Fourier transforms on the kν then multi-
ply to form a global additive Fourier transform on A, defined
as f̂(ξ) :=

∫
A
e(−xξ)f(x) dx for reasonable f .

(6) The local absolute values xν 7→ |xν |ν on kν multiply to
form a global absolute value x 7→ |x| on A, though with the
important caveat that |x| can vanish for non-zero x (indeed,
a simple calculation using Euler’s observation

∏
p(1−

1
p ) = 0

shows that almost every x does this, with respect to additive
Haar measure). The x for which |x| is non-zero are invertible
and known as ideles, and form a multiplicative group A×;
the ideles have measure zero inside the adeles.

(7) The local gaussians gν : kν → C multiply together to form
a global gaussian g : A → C, which is its own Fourier
transform.

(8) The embeddings k ⊂ kν at each place ν multiply together
to form a diagonal embedding k ⊂ A. This embedding is
both discrete (by the fundamental theorem of arithmetic)
and cocompact (this is basically because the integers are
cocompact in the adelic integers).

(9) The local multiplicative Haar measures d×xν multiply to-
gether to form a global multiplicative Haar measure d×x,
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though one should caution that this measure is supported
on the ideles A× rather than the adeles A.

(10) The local Gamma factors Γν(s) for each place ν multiply to-
gether to form the Riemann Xi function (1.29) (for Re(s) >
1 at least), thanks to the Euler product formula ζ(s) =∏
p(1− p−s)−1.

Recall that the local Gamma factors were the local Mellin transforms
of the local Gaussians. Multiplying this together, we see that the
Riemann Xi function is the global Mellin transform of the global
Gaussian:

(1.50) Ξ(s) =
∫
A×

g(x)|x|sd×x.

Our derivation of (1.50) used the Euler product formula. Another
way to establish (1.50) using the original form (1.27) of the zeta func-
tion is to observe (thanks to the fundamental theorem of arithmetic)
that the set J := R+×

∏
pO×p is a fundamental domain for the action

of k× on A×, thus

(1.51) A× =
⊎
a∈k×

a · J.

Partitioning (1.50) using (1.51) and then using (1.39) and (1.27) one
can give an alternate derivation33 of (1.50).

In his thesis, Tate established the Poisson summation formula
(1.35) for the adeles for all sufficiently nice f (e.g. any f in the
Schwartz-Bruhat class would do). Applying this to the global gauss-
ian g, we conclude that the global Theta function Θ(x) :=

∑
a∈k g(ax)

obeys the functional equation

(1.52) Θ(x) =
1
|x|

Θ(
1
x

)

for all ideles t. This formally implies that

(1.53)
∫
J

Θ(x)|x|sd×x =
∫
J

Θ(x)|x|1−sd×x,

which on applying (1.51) and (1.50) (and casually discarding the sin-
gular contributions of a = 0) yields the functional equation (1.28).

33The two derivations are ultimately the same, of course, since the Euler product
formula is itself essentially a restatement of the fundamental theorem of arithmetic.
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One can make this formal computation rigorous in exactly the same
way that Riemann’s proof was made rigorous in previous sections.

Recall that Riemann’s proof could also be established by inspect-
ing the Fourier transforms of Γ∞(s)|x∞|s∞d×x∞. A similar approach
can work here. If we (very formally!) apply the Poisson summation
formula (1.35) to the measure 1J(x)|x|s d×x, one obtains

(1.54) 1 =
∑
a∈k

∫
J

e(−ax)|x|s d×x.

Unpacking this summation using (1.51) (and (1.43)), and casually
discarding the a = 0 term, we formally conclude that

(1.55) 1 =
∫

A×
e(−x)|x|s d×x.

Rescaling this, we formally conclude that the Fourier transform of
|x|s d×x is |x|1−s d×x. Inserting this into (1.50), the functional equa-
tion (1.28) formally follows from Parseval’s theorem; alternatively,
one can derive it by multiplying together all the local facts that the
Fourier transform of Γν(s)|xν |sν d×xν in kν is Γν(1− s)|xν |1−sν d×xν .
These arguments can be made rigorous using the theory of distribu-
tions (and a lot of care), but we will not do so here.

Notes. This article first appeared at terrytao.wordpress.com/2008/07/27.
Thanks to Chandan Singh Dalawat for corrections.

Richard Borcherds recalled Andre Weil’s characterisation of the
gamma factors as the unique constant (up to some standard normal-
isations) that one could place in front of the obvious homogeneous
distributions |x|s to make the resultant distribution holomorphic for
all complex s; this uniqueness can then be used to easily derive the
functional equation. In higher rank groups, the analogue of Weils
description of the gamma factor gives the local L-factor of an auto-
morphic form.

There was some discussion as to when special values (or residues)
of zeta-type functions could be recovered from the same sort of adelic
analysis discussed here; for instance, the class number formula could
be obtained by these methods, but many other special values seem to
require deeper tools to establish.
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1.9. The divisor bound

Given a positive integer n, let d(n) denote the number of divisors of
n (including 1 and n), thus for instance d(6) = 4, and more generally,
if n has a prime factorisation

(1.56) n = pa1
1 . . . pakk

then (by the fundamental theorem of arithmetic)

(1.57) d(n) = (a1 + 1) . . . (ak + 1).

Clearly, d(n) ≤ n. The divisor bound asserts that, as n gets large,
one can improve this trivial bound to

(1.58) d(n) ≤ Cεnε

for any ε > 0, where Cε depends only on ε; equivalently, in asymptotic
notation, one has d(n) = no(1). In fact one has a more precise bound

(1.59) d(n) ≤ nO(1/ log logn) = exp
(
O

(
log n

log log n

))
.

The divisor bound is useful in many applications in number theory,
harmonic analysis, and even PDE (on periodic domains); it asserts
that for any large number n, only a “logarithmically small” set of
numbers less than n will actually divide n exactly, even in the worst-
case34 scenario when n is smooth (i.e. has many small prime factors).

The divisor bound is elementary to prove (and not particularly
difficult), and I was asked about it recently, so I thought I would
provide the proof here, as it serves as a case study in how to establish
worst-case estimates in elementary multiplicative number theory.

34The average value of d(n) is much smaller, being about logn on the average,
as can be seen easily from the double counting identity

∑
n≤N

d(n) = #{(m, l) ∈ N×N : ml ≤ N} =

N∑
m=1

b
N

m
c ∼ N logN,

or from the heuristic that a randomly chosen number m less than n has a probability
about 1/m of dividing n, and

∑
m<n

1
m ∼ logn. However, (1.59) is the correct “worst

case” bound, as I discuss below.
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1.9.1. Proof of (1.58). Let’s first prove the weak form of the divisor
bound (1.58), which is already good enough for many applications
(because a loss of no(1) is often negligible if, say, the final goal is
to extract some polynomial factor in n in one’s eventual estimates).
By rearranging a bit, our task is to show that for any ε > 0, the
expression

(1.60)
d(n)
nε

is bounded uniformly in n by some constant depending on ε. Using
(1.56) and (1.57), we can express (1.60) as a product

(1.61)
k∏
j=1

aj + 1
p
εaj
j

where each term involves a different prime pj , and the aj are at least
1. We have thus “localised” the problem to studying the effect of each
individual prime independently. (We are able to do this because d(n)
is a multiplicative function.)

Let’s fix a prime pj and look at a single term aj+1

p
εaj
j

. The numerator

is linear in aj , while the denominator is exponential. Thus, as per
Malthus, we expect the denominator to dominate, at least when aj is
large. But, because of the ε, the numerator might be able to exceed
the denominator when aj is small - but only if pj is also small.

Following these heuristics, we now divide into cases. Suppose
that pj is large, say pj ≥ exp(1/ε). Then p

εaj
j ≥ exp(aj) ≥ 1 + aj

(by Taylor expansion), and so the contribution of pj to the product
(1.61) is at most 1. So all the large primes give a net contribution of
at most 1 here.

What about the small primes, in which pj < exp(1/ε)? Well, by
Malthus, we know that the sequence a+1

pεaj
goes to zero as a→∞. Since

convergent sequences are bounded, we therefore have some bound of
the form aj+1

p
εaj
j

≤ Cpj ,ε for some Cpj ,ε depending only on pj and ε,

but not on aj . So, each small prime gives a bounded contribution
to (1.61) (uniformly in n). But the number of small primes is itself
bounded (uniformly in n). Thus the total product in (1.61) is also
bounded uniformly in n, and the claim follows.
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1.9.2. Proof of (1.59). One can refine the above analysis to get a
more explicit value of Cε, which will let us get (1.59), as follows.

Again consider the product (1.61) for some ε > 0. As discussed
previously, each prime larger than exp(1/ε) gives a contribution of
at most 1. What about the small primes? Here we can estimate the
denominator from below by Taylor expansion:

p
εaj
j = exp(εaj log pj) ≥ 1 + εaj log pj

and hence
aj + 1
p
εaj
j

≤ aj + 1
1 + εaj log pj

� 1
ε log pj

(the point here being that our bound is uniform in aj). One can of
course use undergraduate calculus to try to sharpen the bound here,
but it turns out not to improve by too much, basically because the
Taylor approximation exp(x) ≈ 1 + x is quite accurate when x is
small, which is the important case here.

Anyway, inserting this bound into (1.61), we see that (1.61) is in
fact bounded by ∏

p<exp(1/ε)

O

(
1

ε log p

)
.

Now let’s be very crude35 and bound log p from below by log 2, and
bound the number of primes less than exp(1/ε) by exp(1/ε). We thus
conclude that

(1.62) ≤ O
(

1
ε

)exp(1/ε)

= exp(exp(O(1/ε)));

unwinding what this means for (1.58), we obtain

d(n) ≤ exp(exp(O(1/ε)))nε

for all n ≥ 1 and ε > 0. If we now set ε = C/ log log n for a sufficiently
large C, then the second term of the RHS dominates the first (as can
be seen by taking logarithms), and the claim (1.59) follows.

35One can of course be more efficient about this, but again it turns out not to
improve the final bounds too much. A general principle is that when one estimating an

expression such as AB , or more generally the product of B terms, each of size about
A, then it is far more important to get a good bound for B than to get a good bound
for A, except in those cases when A is very close to 1.
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The above argument also suggests the counterexample that will
demonstrate that (1.59) is basically sharp. Pick ε > 0, and let n
be the product of all the primes up to exp(1/ε). The prime number
theorem36 tells us that log n ∼ exp(1/ε). On the other hand, the
prime number theorem also tells us that the number of primes dividing
n is ∼ ε exp(1/ε), so by (1.57), log d(n) ∼ ε exp(1/ε). Using these
numbers we see that (1.59) is tight up to constants.

1.9.3. Why is the divisor bound useful? One principal applica-
tion of the divisor bound (and some generalisations of that bound)
is to control the number of solutions to a Diophantine equation. For
instance, (1.58) immediately implies that for any fixed positive n, the
number of solutions to the equation

xy = n

with x, y integer37, is only no(1) at most. This can be leveraged
to some other Diophantine equations by high-school algebra. For
instance, thanks to the identity x2− y2 = (x+ y)(x− y), we conclude
that the number of integer solutions to

x2 − y2 = n

is also at most no(1); similarly, the identity x3 + y3 = (x + y)(x2 −
xy + y2) implies38 that the number of integer solutions to

x3 + y3 = n

is at most no(1).

Now consider the number of solutions to the equation

x2 + y2 = n.

In this case, x2 + y2 does not split over the rationals Q, and so one
cannot directly exploit the divisor bound for the rational integers Z.
However, we can factor x2 + y2 = (x + iy)(x − iy) over the Gauss-
ian rationals Q[

√
−1]. Happily, the Gaussian integers Z[

√
−1] enjoy

36If one does not care about the constants, then one does not need the full
strength of the prime number theorem to show that (1.59) is sharp; the more elemen-
tary bounds of Chebyshev, that say that the number of primes up to N is comparable
to N/ logN up to constants, would suffice.

37For x and y real, the number of solutions is of course infinite.
38Note from Bezout’s theorem (or direct calculation) that x+ y and x2−xy+ y2

determine x, y up to at most a finite ambiguity.
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essentially the same divisor bound as the rational integers Z; the
Gaussian integers have unique factorisation, but perhaps more im-
portantly they only have a finite set of units ({−1,+1,−i,+i} to be
precise). Because of this, one can easily check that x2 + y2 = n also
has at most no(1) solutions.

One can similarly exploit the divisor bound on other number
fields; for instance the divisor bound for Z[

√
−3] lets one count solu-

tions to x2 +xy+y2 = n or x2−xy+y2 = n. On the other hand, not
all number fields have the divisor bound. For instance, Z[

√
2] has an

infinite number of units, which means that the number of solutions
to Pell’s equation

x2 − 2y2 = 1

is infinite.

Another application of the divisor bound comes up in sieve theory.
Here, one is often dealing with functions of the form ν(n) :=

∑
d|n ad,

where the sieve weights ad typically have size O(no(1)), and the sum
is over all d that divide n. The divisor bound (1.58) then implies that
the sieve function ν(n) also has size O(no(1)). This bound is too crude
to deal with the most delicate components of a sieve theory estimate,
but is often very useful for dealing with error terms (especially those
which have gained a factor of n−c relative to the main terms for some
c > 0).

Notes. This article first appeared at terrytao.wordpress.com/2008/09/23.

Marius Overholt and Emmanuel Kowalski noted that the implied
constant in (1.59) is known to be log 2 + o(1), a classical result of
Wigert from 1906 (with a simpler proof given by Ramanujan in 1914).
Explicit constants are also known for the moments of the divisor
function, for instance

1
x

∑
n≤x

d(n)2 = (
1
π2

+ o(1)) log3 x

and more generally
1
x

∑
n≤x

d(n)k = (ck + o(1)) log2k−1 x

for any fixed k ≥ 1 and some explicit constant ck.
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Ben Green noted that there appeared to be no bound approaching
the strength of the divisor bound if one perturbs the integers in a
manner that destroys the number-theoretic structure. For instance,
for a fixed shift θ, it does not seem possible to obtain a bound of
O(no(1)) to the number of solutions to the equation (a+ θ)(b+ θ) =
n+O(1) for integer a, b.

1.10. What is a gauge?

Gauge theory is a term which has connotations of being a fearsomely
complicated part of mathematics - for instance, playing an important
role in quantum field theory, general relativity, geometric PDE, and
so forth. But the underlying concept is really quite simple: a gauge
is nothing more than a “coordinate system” that varies depending
on one’s “location” with respect to some “base space” or “parame-
ter space”, a gauge transform is a change of coordinates applied to
each such location, and a gauge theory is a model for some physical
or mathematical system to which gauge transforms can be applied
(and is typically gauge invariant, in that all physically meaningful
quantities are left unchanged (or transform naturally) under gauge
transformations). By fixing a gauge (thus breaking39 or spending
the gauge symmetry), the model becomes something easier to anal-
yse mathematically, such as a system of partial differential equations
(in classical gauge theories) or a perturbative quantum field theory
(in quantum gauge theories), though the tractability of the resulting
problem can be heavily dependent on the choice of gauge that one
fixed. Deciding exactly how to fix a gauge (or whether one should
spend the gauge symmetry at all) is a key question in the analysis
of gauge theories, and one that often requires the input of geometric
ideas and intuition into that analysis.

I was asked recently to explain what a gauge theory was, and so
I will try to do so in this post. For simplicity, I will focus exclusively
on classical gauge theories; quantum gauge theories are the quantiza-
tion of classical gauge theories and have their own set of conceptual

39This mathematical notion of breaking a symmetry is a little different from the
notion of symmetry breaking in physics, which usually refers to a situation in which a
symmetric state is perturbed into a non-symmetric one.
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difficulties (coming from quantum field theory) that I will not discuss
here. While gauge theories originated from physics, I will not discuss
the physical significance of these theories much here, instead focusing
just on their mathematical aspects. My discussion will be informal,
as I want to try to convey the geometric intuition rather than the
rigorous formalism (which can, of course, be found in any graduate
text on differential geometry).

1.10.1. Coordinate systems. Before I discuss gauges, I first re-
view the more familiar concept of a coordinate system, which is basi-
cally the special case of a gauge when the base space (or parameter
space) is trivial.

Classical mathematics, such as practised by the ancient Greeks,
could be loosely divided into two disciplines, geometry and number
theory, where I use the latter term very broadly, to encompass all sorts
of mathematics dealing with any sort of number. The two disciplines
are unified by the concept of a coordinate system, which allows one
to convert geometric objects to numeric ones or vice versa. The most
well known example of a coordinate system is the Cartesian coordinate
system for the plane (or more generally for a Euclidean space), but
this is just one example of many such systems. For instance:

(1) One can convert a length (of, say, an interval) into an (un-
signed) real number, or vice versa, once one fixes a unit of
length (e.g. the metre or the foot). In this case, the coordi-
nate system is specified by the choice of length unit.

(2) One can convert a displacement along a line into a (signed)
real number, or vice versa, once one fixes a unit of length
and an orientation along that line. In this case, the coor-
dinate system is specified by the length unit together with
the choice of orientation. Alternatively, one can replace the
unit of length and the orientation by a unit displacement
vector e along the line.

(3) One can convert a position (i.e. a point) on a line into a
real number, or vice versa, once one fixes a unit of length,
an orientation along the line, and an origin on that line.
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Equivalently, one can pick an origin O and a unit displace-
ment vector e. This coordinate system essentially identifies
the original line with the standard real line R.

(4) One can generalise these systems to higher dimensions. For
instance, one can convert a displacement along a plane into
a vector in R2, or vice versa, once one fixes two linearly in-
dependent displacement vectors e1, e2 (i.e. a basis) to span
that plane; the Cartesian coordinate system is just one spe-
cial case of this general scheme. Similarly, one can convert a
position on a plane to a vector in R2 once one picks a basis
e1, e2 for that plane as well as an origin O, thus identifying
that plane with the standard Euclidean plane R2. (To put
it another way, units of measurement are nothing more than
one-dimensional (i.e. scalar) coordinate systems.)

(5) To convert an angle in a plane to a signed number (modulo
multiples of 2π), or vice versa, one needs to pick an orienta-
tion on the plane (e.g. to decide that anti-clockwise angles
are positive).

(6) To convert a direction in a plane to a signed number (again
modulo multiples of 2π), or vice versa, one needs to pick
an orientation on the plane, as well as a reference direction
(e.g. true or magnetic north is often used in the case of
ocean navigation).

(7) Similarly, to convert a position on a circle to a number (mod-
ulo multiples of 2π), or vice versa, one needs to pick an
orientation on that circle, together with an origin on that
circle. Such a coordinate system then equates the original
circle to the standard unit circle S1 := {z ∈ C : |z| = 1}
(with the standard origin +1 and the standard anticlockwise
orientation 	).

(8) To convert a position on a two-dimensional sphere (e.g. the
surface of the Earth, as a first approximation) to a point on
the standard unit sphere S2 := {(x, y, z) ∈ R3 : x2 + y2 +
z2}, one can pick an orientation on that sphere, an “origin”
(or “north pole”) for that sphere, and a “prime meridian”
connecting the north pole to its antipode. Alternatively,
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one can view this coordinate system as determining a pair of
Euler angles φ, λ (or a latitude and longitude) to be assigned
to every point on one’s original sphere.

(9) The above examples were all geometric in nature, but one
can also consider “combinatorial” coordinate systems, which
allow one to identify combinatorial objects with numerical
ones. An extremely familiar example of this is enumera-
tion: one can identify a set A of (say) five elements with
the numbers 1,2,3,4,5 simply by choosing an enumeration
a1, a2, . . . , a5 of the set A. One can similarly enumerate
other combinatorial objects (e.g. graphs, relations, trees,
partial orders, etc.), and indeed this is done all the time in
combinatorics. Similarly for algebraic objects, such as cosets
of a subgroup H (or more generally, torsors of a group G);
one can identify such a coset with H itself by designating
an element of that coset to be the “identity” or “origin”.

More generally, a coordinate system40 Φ can be viewed as an iso-
morphism Φ : A → G between a given geometric (or combinatorial)
object A in some class (e.g. a circle), and a standard object G in that
class (e.g. the standard unit circle).

Coordinate systems identify geometric or combinatorial objects
with numerical (or standard) ones, but in many cases, there is no
natural (or canonical) choice of this identification; instead, one may
be faced with a variety of coordinate systems, all equally valid. One
can of course just fix one such system once and for all, in which
case there is no real harm in thinking of the geometric and numeric
objects as being equivalent. If however one plans to change from
one system to the next (or to avoid using such systems altogether),
then it becomes important to carefully distinguish these two types
of objects, to avoid confusion. For instance, if an interval AB is
measured to have a length of 3 yards, then it is OK to write |AB| = 3
(identifying the geometric concept of length with the numeric concept

40To be pedantic, this is what a global coordinate system is; a local coordinate
system, such as the coordinate charts on a manifold, is an isomorphism between a
local piece of a geometric or combinatorial object in a class, and a local piece of a
standard object in that class. I will restrict attention to global coordinate systems for
this discussion.
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of a positive real number) so long as you plan to stick to having the
yard as the unit of length for the rest of one’s analysis. But if one
was also planning to use, say, feet, as a unit of length also, then to
avoid confusing statements such as “|AB| = 3 and |AB| = 9”, one
should specify the coordinate systems explicitly, e.g. “|AB| = 3 yards
and |AB| = 9 feet”. Similarly, identifying a point P in a plane with
its coordinates (e.g. P = (4, 3)) is safe as long as one intends to
only use a single coordinate system throughout; but if one intends
to change coordinates at some point (or to switch to a coordinate-
free perspective) then one should be more careful, e.g. writing P =
4e1 +3e2, or even P = O+4e1 +3e2, if the origin O and basis vectors
e1, e2 of one’s coordinate systems might be subject to future change.

As mentioned above, it is possible to in many cases to dispense
with coordinates altogether. For instance, one can view the length
|AB| of a line segment AB not as a number (which requires one to
select a unit of length), but more abstractly as the equivalence class
of all line segments CD that are congruent to AB. With this per-
spective, |AB| no longer lies in the standard semigroup R+, but in a
more abstract semigroup L (the space of line segments quotiented by
congruence), with addition now defined geometrically (by concatena-
tion of intervals) rather than numerically. A unit of length can now
be viewed as just one of many different isomorphisms Φ : L → R+

between L and R+, but one can abandon the use of such units and
just work with L directly. Many statements in Euclidean geome-
try involving length can be phrased in this manner. For instance,
if B lies in AC, then the statement |AC| = |AB| + |BC| can be
stated in L, and does not require any units to convert L to R+;
with a bit more work, one can also make sense of such statements as
|AC|2 = |AB|2 + |BC|2 for a right-angled triangle ABC (i.e Pythago-
ras’ theorem) while avoiding units41, by defining a symmetric bilinear
product operation × : L × L → A from the abstract semigroup L of
lengths to the abstract semigroup A of areas.

The above abstract coordinate-free perspective is equivalent to a
more concrete coordinate-invariant perspective, in which we do allow

41Indeed, this is basically how the ancient Greeks, who did not quite possess
the modern real number system R, viewed geometry, though of course without the
assistance of such modern terminology as “semigroup” or “bilinear”.
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the use of coordinates to convert all geometric quantities to numeric
ones, but insist that every statement that we write down is invariant
under changes of coordinates. For instance, if we shrink our chosen
unit of length by a factor λ > 0, then the numerical length of every in-
terval increases by a factor of λ, e.g. |AB| 7→ λ|AB|. The coordinate-
invariant approach to length measurement then treats lengths such as
|AB| as numbers, but requires42 all statements involving such lengths
to be invariant under the above scaling symmetry. For instance, a
statement such as |AC|2 = |AB|2+|BC|2 is legitimate under this per-
spective, but a statement such as |AB| = |BC|2 or |AB| = 3 is not.
One can retain this coordinate-invariance symmetry throughout one’s
arguments; or one can, at some point, choose to spend (or break) this
coordinate invariance by selecting (or fixing) the coordinate system
(which, in this case, means selecting a unit length). The advantage
in spending such a symmetry is that one can often normalise one or
more quantities to equal a particularly nice value; for instance, if a
length |AB| is appearing everywhere in one’s arguments, and one has
carefully retained coordinate-invariance up until some key point, then
it can be convenient to spend this invariance43 to normalise |AB| to
equal 1. Conversely, if one has already spent the coordinate invari-
ance, one can often buy it back by converting all the facts, hypotheses,
and desired conclusions one currently possesses in the situation back
to a coordinate-invariant formulation. Thus one could imagine per-
forming one normalisation to do one set of calculations, then undoing
that normalisation to return to a coordinate-free perspective, doing
some coordinate-free manipulations, and then performing a different
normalisation to work on another part of the problem, and so forth44.

42In other words, co-ordinate invariance here is the same thing as being dimen-
sionally consistent. Indeed, dimensional analysis is nothing more than the analysis of
the scaling symmetries in one’s coordinate systems.

43In this case, one only has a one-dimensional family of symmetries, and so can
only normalise one quantity at a time; but when one’s symmetry group is larger, one
can often normalise many more quantities at once; as a rule of thumb, one can normalise
one quantity for each degree of freedom in the symmetry group.

44For instance, in Euclidean geometry problems, it is often convenient to tem-
porarily assign one key point to be the origin (thus spending translation invariance
symmetry), then another, then switch back to a translation-invariant perspective, and
so forth. As long as one is correctly accounting for what symmetries are being spent
and bought at any given time, this can be a very powerful way of simplifying one’s
calculations.
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Given a coordinate system Φ : A → G that identifies some geo-
metric object A with a standard object G, and some isomorphism
Ψ : G → G of that standard object, we can obtain a new coordinate
system Ψ ◦ Φ : A → G of A by composing the two isomorphisms45.
Conversely, every other coordinate system Φ′ : A → G of A arises
in this manner. Thus, the space of coordinate systems on A is (non-
canonically) identifiable with the isomorphism group Isom(G) of G.
This isomorphism group is called the structure group (or gauge group)
of the class of geometric objects. For example, the structure group for
lengths is R+; the structure group for angles is Z/2Z; the structure
group for lines is the affine group Aff(R) = R n R; the structure
group for n-dimensional Euclidean geometry is the Euclidean group
E(n) = O(n)nRn; the structure group for (oriented) 2-spheres is the
(special) orthogonal group SO(3); and so forth46.

1.10.2. Gauges. In our discussion of coordinate systems, we fo-
cused on a single geometric (or combinatorial) object A: a single
line, a single circle, a single set, etc. We then used a single coordinate
system to identify that object with a standard representative of such
an object.

Now let us consider the more general situation in which one has
a family (or fibre bundle) (Ax)x∈X of geometric (or combinatorial)
objects (or fibres) Ax: a family of lines (i.e. a line bundle), a family
of circles (i.e. a circle bundle), a family of sets, etc. This family is
parameterised by some parameter set or base point x, which ranges
in some parameter space or base space X. In many cases one also
requires some topological or differentiable compatibility between the
various fibres; for instance, continuous (or smooth) variations of the
base point should lead to continuous (or smooth) variations in the
fibre. For sake of discussion, however, let us gloss over these compat-
ibility conditions.

In many cases, each individual fibre Ax in a bundle (Ax)x∈X ,
being a geometric object of a certain class, can be identified with a

45I will be vague on what “isomorphism” means; one can formalise the concept
using the language of category theory.

46Indeed, one can basically describe each of the classical geometries (Euclidean,
affine, projective, spherical, hyperbolic, Minkowski, etc.) as a homogeneous space for
its structure group, as per the Erlangen program.
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standard object G in that class, by means of a separate coordinate
system Φx : Ax → G for each base point x. The entire collection Φ =
(Φx)x∈X is then referred to as a (global) gauge or trivialisation for
this bundle (provided that it is compatible with whatever topological
or differentiable structures one has placed on the bundle, but never
mind that for now). Equivalently, a gauge47 is a bundle isomorphism
Φ from the original bundle (Ax)x∈X to the trivial bundle (G)x∈X , in
which every fibre is the standard geometric object G.

Let’s give three concrete examples of bundles and gauges; one
from differential geometry, one from dynamical systems, and one from
combinatorics.

Example 1.10.1 (The circle bundle of the sphere). Recall from the
previous section that the space of directions in a plane (which can be
viewed as the circle of unit vectors) can be identified with the standard
circle S1 after picking an orientation and a reference direction. Now
let us work not on the plane, but on a sphere, and specifically, on
the surface X of the earth. At each point x on this surface, there
is a circle Sx of directions that one can travel along the sphere from
x; the collection SX := (Sx)x∈X of all such circles is then a circle
bundle with base space X (known as the circle bundle; it could also be
viewed as the sphere bundle, cosphere bundle, or orthonormal frame
bundle of X). The structure group of this bundle is the circle group
U(1) ≡ S1 if one preserves orientation, or the semi-direct product
S1 o Z/2Z otherwise.

Now suppose, at every point x on the earth X, the wind is blow-
ing48 in some direction wx ∈ Sx. Thus wind direction can be thought
of as a collection w = (wx)x∈X of representatives from the fibres
of the fibre bundle (Sx)x∈X ; such a collection is known as a sec-
tion of the fibre bundle (it is to bundles as the concept of a graph
{(x, f(x)) : x ∈ X} ⊂ X ×G of a function f : X → G is to the trivial
bundle (G)x∈X).

At present, this section has not been represented in terms of num-
bers; instead, the wind direction w(wx)x∈X is a collection of points on

47There are also local gauges, which only trivialise a portion of the bundle, but
let’s ignore this distinction for now.

48This is not actually possible globally, thanks to the hairy ball theorem, but
let’s ignore this technicality for now.
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various different circles in the circle bundle SX. But one can convert
this section w into a collection of numbers (and more specifically, a
function u : X → S1 from X to S1) by choosing a gauge for this
circle bundle - in other words, by selecting an orientation εx and a
reference direction Nx for each point x on the surface of the Earth
X. For instance, one can pick the anticlockwise orientation 	 and
true north for every point x (ignore for now the problem that this
is not defined at the north and south poles, and so is merely a local
gauge rather than a global one), and then each wind direction wx can
now be identified with a unit complex number u(x) ∈ S1 (e.g. eiπ/4

if the wind is blowing in the northwest direction at x). Now that
one has a numerical function u to play with, rather than a geometric
object w, one can now use analytical tools (e.g. differentiation, inte-
gration, Fourier transforms, etc.) to analyse the wind direction if one
desires. But one should be aware that this function reflects the choice
of gauge as well as the original object of study. If one changes the
gauge (e.g. by using magnetic north instead of true north), then the
function u changes, even though the wind direction w is still the same.
If one does not want to spend the U(1) gauge symmetry, one would
have to take care that all operations one performs on these functions
are gauge-invariant; unfortunately, this restrictive requirement elim-
inates wide swathes of analytic tools (in particular, integration and
the Fourier transform) and so one is often forced to break the gauge
symmetry in order to use analysis. The challenge is then to select the
gauge that maximises the effectiveness of analytic methods.

Example 1.10.2 (Circle extensions of a dynamical system). Recall
(see Section 2.1) that a dynamical system is a pair X = (X,T ),
where X is a space and T : X → X is an invertible map. Given such
a system, and given a cocycle ρ : X → S1 (which, in this context,
is simply a function from X to the unit circle), we can define the
skew product X ×ρ S1 of X and the unit circle S1, twisted by the
cocycle ρ, to be the Cartesian product X × S1 := {(x, u) : x ∈
X,u ∈ S1} with the shift T̃ : (x, u) 7→ (Tx, ρ(x)u); this is easily
seen to be another dynamical system49. Observe that there is a free

49If one wishes to have a topological or measure-theoretic dynamical system, then
ρ will have to be continuous or measurable here, see Section 2.1; but let us ignore such
issues for this discussion.
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action (Sv : (x, u) 7→ (x, vu))v∈S1 of the circle group S1 on the skew
product X ×ρ S1 that commutes with the shift T̃ ; the quotient space
(X ×ρ S1)/S1 of this action is isomorphic to X, thus leading to a
factor map π : X ×ρ S1 → X, which is of course just the projection
map π : (x, u) 7→ x. (An example is provided by the skew shift system,
described in Section 2.2.)

Conversely, suppose that one had a dynamical system X̃ = (X̃, T̃ )
which had a free S1 action (Sv : X̃ → X̃)v∈S1 commuting with the
shift T̃ . If we set X := X̃/S1 to be the quotient space, we thus have a
factor map π : X̃ → X, whose level sets π−1({x}) are all isomorphic
to the circle S1; we call X̃ a circle extension of the dynamical system
X. We can thus view X̃ as a circle bundle (π−1({x}))x∈X with base
space X, thus the level sets π−1({x}) are now the fibres of the bundle,
and the structure group is S1. If one picks a gauge for this bundle,
by choosing a reference point px ∈ π−1({x}) in the fibre for each
base point x (thus in this context a gauge is the same thing as a
section p = (px)x∈X ; this is basically because this bundle is a principal
bundle), then one can identify X̃ with a skew product X ×ρ S1 by
identifying the point Svpx ∈ X̃ with the point (x, v) ∈ X ×ρ S1 for
all x ∈ X, v ∈ S1, and letting ρ be the cocycle defined by the formula

Sρ(x)pTx = T̃ px.

One can check that this is indeed an isomorphism of dynamical
systems; if all the various objects here are continuous (resp. mea-
surable), then one also has an isomorphism of topological dynamical
systems (resp. measure-preserving systems). Thus we see that gauges
allow us to write circle extensions as skew products. However, more
than one gauge is available for any given circle extension; two gauges
(px)x∈X , (p′x)x∈X will give rise to two skew products X×ρS1, X×ρ′S1

which are isomorphic but not identical. Indeed, if we let v : X → S1

be a rotation map that sends px to p′x, thus p′x = Sv(x)px, then we
see that the two cocycles ρ′ and ρ are related by the formula

(1.63) ρ′(x) = v(Tx)−1ρ(x)v(x).

Two cocycles that obey the above relation are called cohomologous;
their skew products are isomorphic to each other. An important
general question in dynamical systems is to understand when two
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given cocycles are in fact cohomologous, for instance by introducing
non-trivial cohomological invariants for such cocycles.

As an example of a circle extension, consider the sphere X = S2

from Example 1.10.1, with a rotation shift T given by, say, rotating
anti-clockwise by some given angle α around the axis connecting the
north and south poles. This rotation also induces a rotation on the
circle bundle X̃ := SX, thus giving a circle extension of the original
system (X,T ). One can then use a gauge to write this system as
a skew product. For instance, if one selects the gauge that chooses
px to be the true north direction at each point x (ignoring for now
the fact that this is not defined at the two poles), then this system
becomes the ordinary product X×0 S

1 of the original system X with
the circle S1, with the cocycle being the trivial cocycle 0. If we were
however to use a different gauge, e.g. magnetic north instead of true
north, one would obtain a different skew-product X ×ρ′ S1, where ρ′

is some cocycle which is cohomologous50 to the trivial cocycle (except
at the poles).

There was nothing terribly special about circles in this example;
one can also define group extensions, or more generally homogeneous
space extensions, of dynamical systems, and have a similar theory,
although one has to take a little care with the order of operations
when the structure group is non-abelian; see e.g. Section 2.6.

Example 1.10.3 (Orienting an undirected graph). The language
of gauge theory is not often used in combinatorics, but nevertheless
combinatorics does provide some simple discrete examples of bundles
and gauges which can be useful in getting an intuitive grasp of the
concept. Consider for instance an undirected graph G = (V,E) of
vertices and edges. I will let X = E denote the space of edges (not
the space of vertices)!. Every edge e ∈ X can be oriented (or directed)
in two different ways; let Ae be the pair of directed edges of e arising
in this manner. Then (Ae)e∈X is a fibre bundle with base space X and
with each fibre isomorphic (in the category of sets) to the standard
two-element set {−1,+1}, with structure group Z/2Z.

50A cocycle which is globally cohomologous to the trivial cocycle is known as a
coboundary. Not every cocycle is a coboundary, especially once one imposes topolog-
ical or measure-theoretic structure, thanks to the presence of various topological or
measure-theoretic invariants, such as degree; see Section 1.21 for further discussion.
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A priori, there is no reason to prefer one orientation of an edge e
over another, and so there is no canonical way to identify each fibre
Ae with the standard set {−1,+1}. Nevertheless, we can go ahead
and arbitrary select a gauge for X by orienting the graph G. This
orientation assigns an oriented edge ~e ∈ Ae to each edge e ∈ X, thus
creating a gauge (or section) (~e)e∈X of the bundle (Ae)e∈X . Once one
selects such a gauge, we can now identify the fibre bundle (Ae)e∈X
with the trivial bundle X × {−1,+1} by identifying the preferred
oriented edge ~e of each unoriented edge e ∈ X with (e,+1), and the
other oriented edge with (e,−1). In particular, any other orientation
of the graph G can be expressed relative to this reference orientation
as a function f : X → {−1,+1}, which measures when the two
orientations agree or disagree with each other.

Recall that every isomorphism Ψ ∈ Isom(G) of a standard geo-
metric object G allowed one to transform a coordinate system Φ :
A→ G on a geometric object A to another coordinate system Ψ ◦Φ :
A → G. We can generalise this observation to gauges: every fam-
ily Ψ = (Ψx)x∈X of isomorphisms on G allows one to transform a
gauge (Φx)x∈X to another gauge (Ψx ◦Φx)x∈X (again assuming that
Ψ respects whatever topological or differentiable structure is present).
Such a collection Ψ is known as a gauge transformation. For instance,
in Example 1.10.1, one could rotate the reference direction Nx at each
point x ∈ X anti-clockwise by some angle θ(x); this would cause the
function u(x) to rotate to u(x)e−iθ(x). In Example 1.10.2, a gauge
transformation is just a map v : X → S1 (which may need to be
continuous or measurable, depending on the structures one places on
X); it rotates a point (x, u) ∈ X×ρ S1 to (x, v−1u), and it also trans-
forms the cocycle ρ by the formula (1.63). In Example 1.10.3, a gauge
transformation would be a map v : X → {−1,+1}; it rotates a point
(x, ε) ∈ X × {−1,+1} to (x, v(x)ε).

Gauge transformations transform functions on the base X in
many ways, but some things remain gauge-invariant. For instance, in
Example 1.10.1, the winding number of a function u : X → S1 along
a closed loop γ ⊂ X would not change under a gauge transforma-
tion (as long as no singularities in the gauge are created, moved, or
destroyed, and the orientation is not reversed). But such topological
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gauge-invariants are not the only gauge invariants of interest; there
are important differential gauge-invariants which make gauge theory
a crucial component of modern differential geometry and geometric
PDE. But to describe these, one needs an additional gauge-theoretic
concept, namely that of a connection on a fibre bundle.

1.10.3. Connections. There are many essentially equivalent ways
to introduce the concept of a connection; I will use the formulation
based primarily on parallel transport, and on differentiation of sec-
tions. To avoid some technical details I will work (somewhat non-
rigorously) with infinitesimals51 such as dx.

In single variable calculus, we learn that if we want to differentiate
a function f : [a, b]→ R at some point x, then we need to compare the
value f(x) of f at x with its value f(x + dx) at some infinitesimally
close point x + dx, take the difference f(x + dx) − f(x), and then
divide by dx, taking limits as dx → 0, if one does not like to use
infinitesimals:

∇f(x) := lim
dx→0

f(x+ dx)− f(x)
dx

.

In several variable calculus, we learn several generalisations of this
concept in which the domain and range of f to be multi-dimensional.
For instance, if f : X → Rd is now a vector-valued function on some
multi-dimensional domain (e.g. a manifold) X, and v is a tangent
vector to X at some point x, we can define the directional derivative
∇vf(x) of f at x by comparing f(x+ vdt) with f(x) for some infini-
tesimal dt, take the difference52 f(x+ vdt)− f(x), divide by dt, and
then take limits as dt→ 0:

∇vf(x) := lim
dt→0

f(x+ vdt)− f(x)
dt

.

If f is sufficiently smooth (being continuously differentiable will do),
the directional derivative is linear in v, thus for instance ∇v+v′f(x) =
∇vf(x) + ∇v′f(x). One can also generalise the range of f to other

51There are ways to make the use of infinitesimals rigorous, such as non-standard
analysis (see Section 1.5 of Structure and Randomness), but this will not be the focus
of this article.

52Strictly speaking, if X is not flat, then x+vdt is only defined up to an ambiguity
of o(dt), but let us ignore this minor issue here, as it is not important in the limit.
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multi-dimensional domains than Rd; the directional derivative then
lives in a tangent space of that domain.

In all of the above examples, though, we were differentiating func-
tions f : X → Y , thus each element x ∈ X in the base (or domain)
gets mapped to an element f(x) in the same range Y . However, in
many geometrical situations we would like to differentiate sections
f = (fx)x∈X instead of functions, thus f now maps each point x ∈ X
in the base to an element fx ∈ Ax of some fibre in a fibre bundle
(Ax)x∈X . For instance, one might want to know how the wind direc-
tion w = (wx)x∈X changes as one moves x in some direction v; thus
computing a directional derivative ∇vw(x) of w at x in direction v.
One can try to mimic the previous definitions in order to define this
directional derivative. For instance, one can move x along v by some
infinitesimal amount dt, creating a nearby point x + vdt, and then
evaluate w at this point to obtain w(x+vdt). But here we hit a snag:
we cannot directly compare w(x+vdt) with w(x), because the former
lives in the fibre Ax+vdt while the latter lives in the fibre Ax.

With a gauge, of course, we can identify all the fibres (and in
particular, Ax+vdt and Ax) with a common object G, in which case
there is no difficulty comparing w(x+vdt) with w(x). But this would
lead to a notion of derivative which is not gauge-invariant, known as
the non-covariant or ordinary derivative in physics.

But there is another way to take a derivative, which does not re-
quire the full strength of a gauge (which identifies all fibres simulta-
neously together). Indeed, in order to compute a derivative ∇vw(x),
one only needs to identify (or connect) two infinitesimally close fibres
together: Ax and Ax+vdt. In practice, these two fibres are already
“within O(dt) of each other” in some sense, but suppose in fact that
we have some means Γ(x → x + vdt) : Ax → Ax+vdt of identifying
these two fibres together (possibly up to errors of o(dt)). Then, we
can pull back w(x+ vdt) from Ax+vdt to Ax through Γ(x→ x+ vdt)
to define the covariant derivative:

∇vw(x) := lim
dt→0

Γ(x→ x+ vdt)−1(w(x+ vdt))− w(x)
dt

.

In order to retain the basic property that ∇vw is linear in v, and
to allow one to extend the infinitesimal identifications Γ(x→ x+ dx)
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to non-infinitesimal identifications, we impose the property that the
Γ(x→ x+ dx) to be approximately transitive in that

(1.64) Γ(x+dx→ x+dx+dx′)◦Γ(x→ x+dx) ≈ Γ(x→ x+dx+dx′)

for all x, dx, dx′, where the ≈ symbol indicates that the error between
the two sides is53 o(|dx| + |dx′|). To oversimplify a little bit, any
collection Γ of infinitesimal maps Γ(x→ x+dx) obeying this property
(and some technical regularity properties) is a connection.

Remark 1.10.4. There are many other important ways to view con-
nections, for instance the Christoffel symbol perspective that we will
discuss a bit later. Another approach is to focus on the differentiation
operation ∇v rather than the identifications Γ(x → x+ dx) or Γ(γ),
and in particular on the algebraic properties of this operation, such
as linearity in v or derivation-type properties (in particular, obeying
various variants of the Leibnitz rule). This approach is particularly
important in algebraic geometry, in which the notion of an infinitesi-
mal or of a path may not always be obviously available, but we will
not discuss it here. For the Riemannian geometry perspective, see
Section 3.1.

The way we have defined it, a connection is a means of iden-
tifying two infinitesimally close fibres Ax, Ax+dx of a fibre bundle
(Ax)x∈X . But, thanks to (1.64), we can also identify two distant fibres
Ax, Ay, provided that we have a path γ : [a, b] → X from x = γ(a)
to y = γ(b), by concatenating the infinitesimal identifications by a
non-commutative variant of a Riemann sum:
(1.65)

Γ(γ) := lim
sup |ti+1−ti|→0

Γ(γ(tn−1)→ γ(tn)) ◦ . . . ◦ Γ(γ(t0)→ γ(t1)),

where a = t0 < t1 < . . . < tn = b ranges over partitions. This gives
us a parallel transport map Γ(γ) : Ax → Ay identifying Ax with Ay,
which in view of its Riemann sum definition, can be viewed as the
“integral” of the connection Γ along the curve γ. This map does not
depend on how one parametrises the path γ, but it can depend on
the choice of path used to travel from x to y.

53The precise nature of this error is actually rather important, being essentially
the curvature of the connection Γ at x in the directions dx, dx′; see Section 3.1 for
further discussion.
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We illustrate these concepts using several examples, including the
three examples introduced earlier.

Example 1.10.5 (Example 1.10.1 continued). The geometry of the
sphere X in Example 1.10.1 provides a natural connection on the cir-
cle bundle SX, the Levi-Civita connection Γ, that lets one transport
directions around the sphere in as “parallel” a manner as possible;
the precise definition is a little technical (see e.g. Section 3.1 for a
brief description). Suppose for instance one starts at some location
x on the equator of the earth, and moves to the antipodal point y
by a great semi-circle γ going through the north pole. The parallel
transport Γ(γ) : Sx → Sy along this path will map the north direc-
tion at x to the south direction at y. On the other hand, if we went
from x to y by a great semi-circle γ′ going along the equator, then
the north direction at x would be transported to the north direction
at y. Given a section u of this circle bundle, the quantity ∇vu(x) can
be interpreted as the rate at which u rotates as one travels from x

with velocity v.

Example 1.10.6 (Example 1.10.2 continued). In Example 1.10.2,
we change the notion of “infinitesimally close” by declaring x and Tx
to be infinitesimally close for any x in the base space X (and more
generally, x and Tnx are non-infinitesimally close for any positive
integer n, being connected by the path x → Tx → . . . → Tnx,
and similarly for negative n). A cocycle ρ : X → S1 can then be
viewed as defining a connection on the skew product X ×ρ S1, by
setting Γ(x 7→ Tx) = ρ(x) (and also Γ(x → x) = 1 and Γ(Tx →
x) = ρ(x)−1 to ensure compatibility with (1.64); to avoid notational
ambiguities let us assume for sake of discussion that x, Tx, T−1x are
always distinct from each other). The non-infinitesimal connections
ρn(x) := Γ(x → Tx → . . . → Tnx) are then given by the formula
ρn(x) = ρ(x)ρ(Tx) . . . ρ(Tn−1x) for positive n (with a similar formula
for negative n). Note that these iterated cocycles ρn also describe the
iterations of the shift T̃ : (x, u) 7→ (Tx, ρ(x)u), indeed T̃n(x, u) =
(Tnx, ρn(x)u).

Example 1.10.7 (Example 1.10.3 continued). In Example 1.10.3,
we declare two edges e, e′ in X to be “infinitesimally close” if they
are adjacent. Then there is a natural notion of parallel transport
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on the bundle (Ae)e∈X ; given two adjacent edges e = {u, v}, e′ =
{v, w}, we let Γ(e → e′) be the isomorphism from Ae = { ~uv, ~vu} to
Ae′ = { ~vw, ~wv} that maps ~uv to ~vw and ~vu to ~wv. Any path γ =
({v1, v2}, {v2, v3}, . . . , {vn−1, vn}) of edges then gives rise to a connec-
tion Γ(γ) identifying A{v1,v2} with A{vn−1,vn}. For instance, the trian-
gular path ({u, v}, {v, w}, {w, u}, {u, v}) induces the identity map on
A{u,v}, whereas the U-turn path ({u, v}, {v, w}, {w, x}, {x, v}, {v, u})
induces the anti-identity map on A{u,v}.

Given an orientation ~G = (~e)e∈X of the graph G, one can “dif-
ferentiate” ~G at an edge {u, v} in the direction {u, v} → {v, w} to
obtain a number ∇{u,v}→{v,w} ~G({u, v}) ∈ {−1,+1}, defined as +1 if
the parallel transport from {u, v} and {v, w} preserves the orienta-
tions given by ~G, and −1 otherwise. This number of course depends
on the choice of orientation. But certain combinations of these num-
bers are independent of such a choice; for instance, given any closed
path γ = {e1, e2, . . . , en, en+1 = e1} of edges in X, the “integral”∏n
i=1∇ei→ei+1

~G(ei) ∈ {−1,+1} is independent of the choice of ori-
entation ~G (indeed, it is equal to +1 if Γ(γ) is the identity, and −1 if
Γ(γ) is the anti-identity.

Example 1.10.8 (Monodromy). One can interpret the monodromy
maps of a covering space in the language of connections. Suppose for
instance that we have a covering space π : X̃ → X of a topological
space X whose fibres π−1({x}) are discrete; thus X̃ is a discrete fibre
bundle over X. The discreteness induces a natural connection Γ on
this space, which is given by the lifting map; in particular, if one
integrates this connection on a closed loop based at some point x,
one obtains the monodromy map of that loop at x.

Example 1.10.9 (Definite integrals). In view of the definition (1.65),
it should not be surprising that the definite integral

∫ b
a
f(x) dx of a

scalar function f : [a, b] → R can be interpreted as an integral of
a connection. Indeed, set X := [a, b], and let (R)x∈X be the trivial
line bundle over X. The function f induces a connection Γf on this
bundle by setting

Γf (x 7→ x+ dx) : y 7→ y + f(x)dx.
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The integral Γf ([a, b]) of this connection along [a, b] is then just the
operation of translation by

∫ b
a
f(x) dx in the real line.

Example 1.10.10 (Line integrals). One can generalise Example 1.10.9
to encompass line integrals in several variable calculus. Indeed, if X
is an n-dimensional domain, then a vector field f = (f1, . . . , fn) :
X → Rn induces a connection Γf on the trivial line bundle (R)x∈X
by setting

Γf (x 7→ x+ dx) : y 7→ y + f1(x)dx1 + . . .+ fn(x)dxn.

The integral Γf (γ) of this connection along a curve γ is then just the
operation of translation by the line integral

∫
γ
f · dx in the real line.

Note that a gauge transformation in this context is just a vertical
translation (x, y) 7→ (x, y + V (x)) of the bundle (R)x∈X ≡ X × R
by some potential function V : X → R, which we will assume to
be smooth for sake of discussion. This transformation conjugates the
connection Γf to the connection Γf−∇V . Note that this is a conserva-
tive transformation: the integral of a connection along a closed loop
is unchanged by gauge transformation.

Example 1.10.11 (ODE). A different way to generalise Example
1.10.9 can be obtained by using the fundamental theorem of calculus
to interpret

∫
[a,b]

f(x) dx as the final value u(b) of the solution to the
initial value problem

u′(t) = f(t); u(a) = 0

for the ordinary differential equation u′ = f . More generally, the
solution u(b) to the initial value problem

u′(t) = F (t, u(t)); u(a) = u0

for some u : [a, b]→ Rn taking values in some Euclidean space54 Rn,
where F : [a, b]×Rn → Rn is a function (let us take it to be Lipschitz,
to avoid technical issues), can also be interpreted as the integral of
a connection Γ on the trivial vector space bundle (Rn)t∈[a,b], defined
by the formula

Γ(t 7→ t+ dt) : y 7→ y + F (t, y)dt.

54One can also interpret ODE for functions u taking values in more general man-
ifolds Y as integration along a connection; we leave the details to the reader.
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Then Γ[a, b] will map u0 to u(b), this is nothing more than the Euler
method for solving ODE. Note that the method of integrating fac-
tors in solving ODE can be interpreted as an attempt to simplify
the connection Γ via a gauge transformation. Indeed, it can be prof-
itable to view the entire theory of connections as a multidimensional
“variable-coefficient” generalisation of the theory of ODE.

Once one selects a gauge, one can express a connection in terms
of that gauge. In the case of vector bundles (in which every fibre is a
d-dimensional vector space for some fixed d), the covariant derivative
∇vw(x) of a section w of that bundle along some vector v emanating
from x can be expressed in any given gauge by the formula

∇vw(x)i = vα∂αw(x)i + vαΓiαjw(x)j

where we use the gauge to express w(x) as a vector (w(x)1, . . . , w(x)d),
the indices i, j = 1, . . . , d are summed over the fibre dimensions (and
α summed over the base dimensions) as per the usual Einstein con-
ventions (see Section 3.1), and the Γiαj := (∇eαej)i are the Christoffel
symbols of this connection relative to this gauge.

One example of this, which models electromagnetism, is a con-
nection on a complex line bundle V = (Vt,x)(t,x)∈R1+3 in spacetime
R1+3 = {(t, x) : t ∈ R, x ∈ R3}. Such a bundle assigns a com-
plex line Vt,x (i.e. a one-dimensional complex vector space, and
thus isomorphic to C) to every point (t, x) in spacetime. The struc-
ture group here is U(1) (strictly speaking, this means that we view
the fibres as normed one-dimensional complex vector spaces, other-
wise the structure group would be C×). A gauge identifies V with
the trivial complex line bundle (C)(t,x)∈R1+3 , thus converting sec-
tions (wt,x)(t,x)∈R1+3 of this bundle into complex-valued functions
φ : R1+3 → C. A connection on V , when described in this gauge,
can be given in terms of fields Aα : R1+3 → R for α = 0, 1, 2, 3; the
covariant derivative of a section in this gauge is then given by the
formula

∇αφ := ∂αφ+ iAαφ.

In the theory of electromagnetism, A0 and (A1, A2, A3) are known
(up to some normalising constants) as the electric potential and mag-
netic potential respectively. Sections of V do not show up directly in
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Maxwell’s equations of electromagnetism, but appear in more compli-
cated variants of these equations, such as the Maxwell-Klein-Gordon
equation.

A gauge transformation of V is given by a map U : R1+3 → S1;
it transforms sections by the formula φ 7→ U−1φ, and connections by
the formula ∇α 7→ U−1∇αU , or equivalently

(1.66) Aα 7→ Aα +
1
i
U−1∂αU = Aα + ∂α

1
i

logU.

In particular, the electromagnetic potential Aα is not gauge invariant
(which broadly corresponds to the concept of being nonphysical or
nonmeasurable in physics), as gauge symmetry allows one to add an
arbitrary gradient function to this potential. However, the curvature
tensor55

Fαβ := [∇α,∇β ] = ∂αAβ − ∂βAα
of the connection is gauge-invariant, and physically measurable in
electromagnetism; the components F0i = −Fi0 for i = 1, 2, 3 of this
field have a physical interpretation as the electric field, and the com-
ponents Fij = −Fji for 1 ≤ i < j ≤ 3 have a physical interpretation
as the magnetic field.

Gauge theories can often be expressed succinctly in terms of a
connection and its curvatures. For instance, Maxwell’s equations in
free space, which describes how electromagnetic radiation propagates
in the presence of charges and currents (but no media other than
vacuum), can be written (after normalising away some physical con-
stants) as56

∂αFαβ = Jβ

55The curvature tensor F can be interpreted as describing the parallel transport
of infinitesimal rectangles; it measures how far off the connection is from being flat,
which means that it can be (locally) “straightened” via some choice of gauge to be the
trivial connection. In nonabelian gauge theories, in which the structure group is more
complicated than just the abelian group U(1), the curvature tensor is non-scalar, but
remains gauge-invariant in a tensor sense (gauge transformations will transform the
curvature as they would transform a tensor of the same rank.

56Actually, this is only half of Maxwell’s equations, but the other half are a
consequence of the interpretation (*) of the electromagnetic field as a curvature of a
U(1) connection, and indeed collapse to the Bianchi identities for that connection.
Thus this purely geometric interpretation of electromagnetism has some non-trivial
physical implications, for instance ruling out the possibility of (classical) magnetic
monopoles.
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where Jβ is the 4-current. If one generalises from complex line bundles
to higher-dimensional vector bundles (with a larger structure group),
one can then write down the (classical) Yang-Mills equation

∇αFαβ = 0

which is the classical model57 for three of the four fundamental forces
in physics: the electromagnetic, weak, and strong nuclear forces (with
structure groups U(1), SU(2), and SU(3) respectively).

The gauge invariance (or gauge freedom) inherent in these equa-
tions complicates their analysis. For instance, due to the gauge free-
dom (1.66), Maxwell’s equations, when viewed in terms of the elec-
tromagnetic potential Aα, are ill-posed: specifying the initial value of
this potential at time zero does not uniquely specify the future value
of this potential (even if one also specifies any number of additional
time derivatives of this potential at time zero), since one can use
(1.66) with a gauge function U that is trivial at time zero but non-
trivial at some future time to demonstrate the non-uniqueness. Thus,
in order to use standard PDE methods to solve these equations, it is
necessary to first fix the gauge to a sufficient extent that it eliminates
this sort of ambiguity. If one were in a one-dimensional situation (as
opposed to the four-dimensional situation of spacetime), with a triv-
ial topology (i.e. the domain is a line rather than a circle), then it is
possible to gauge transform the connection to be completely trivial,
for reasons58 generalising both the fundamental theorem of calculus
and the fundamental theorem of ODEs. However, in higher dimen-
sions, one cannot hope to completely trivialise a connection by gauge
transforms (mainly because of the possibility of a non-zero curvature
form); in general, one cannot hope to do much better than setting a
single component of the connection to equal zero. For instance, for
Maxwell’s equations (or the Yang-Mills equations), one can trivialise
the connection Aα in the time direction, leading to the temporal gauge
condition

A0 = 0.

57The classical model for the fourth force, gravitation, is given by a somewhat
different geometric equation, namely the Einstein equations Gαβ = 8πTαβ , though
this equation is also “gauge-invariant” in some sense.

58Indeed, to trivialise a connection Γ on a line R, one can pick an arbitrary origin
t0 ∈ R and gauge transform each point t ∈ R by Γ([t0, t]).
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This gauge is indeed useful for providing an easy proof of local
existence for these equations, at least for smooth initial data. But
there are many other useful gauges also that one can fix; for instance
one has the Lorenz gauge

∂αAα = 0

which has the nice property of being Lorentz-invariant, and trans-
forms the Maxwell or Yang-Mills equations into linear or nonlinear
wave equations respectively. Another important gauge is the Coulomb
gauge

∂iAi = 0

where i only ranges over spatial indices 1, 2, 3 rather than over space-
time indices 0, 1, 2, 3. This gauge has an elliptic59 variational formu-
lation. In some cases, the correct selection of a gauge is crucial in
order to establish basic properties of the underlying equation, such as
local existence. For instance, the simplest proof of local existence of
the Einstein equations uses the harmonic gauge, which is analogous
to the Lorenz gauge mentioned earlier; the simplest proof of local ex-
istence of Ricci flow uses a gauge of de Turck[DeT1983] that is also
related to harmonic maps (see e.g. Section 3.2); and in my own work
on wave maps[Ta2008b], [Ta2008c], a certain “caloric gauge” based
on harmonic map heat flow is crucial. But in many situations, it is
not yet fully understood whether the use of the correct choice of gauge
is a mere technical convenience, or is more innate to the equation. It
is definitely conceivable, for instance, that a given gauge field equa-
tion is well-posed with one choice of gauge but ill-posed with another.
It would also be desirable to have a more gauge-invariant theory of
PDEs that did not rely so heavily on gauge theory at all, but this
seems to be rather difficult; many of our most powerful tools in PDE
(for instance, the Fourier transform) are highly non-gauge-invariant,
which makes it very inconvenient to try to analyse these equations in
a purely gauge-invariant setting.

59More precisely, Coulomb gauges are critical points of the functional∫
R3
∑3
i=1 |Ai|

2) and thus are expected to be “smaller” and “smoother” than many

other gauges; this intuition can be borne out by standard elliptic theory (or Hodge
theory, in the case of Maxwell’s equations).
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Notes. This article first appeared at terrytao.wordpress.com/2008/09/27.
Thanks to Roland Bacher for corrections.

Pedro Lauridsen Ribeiro pointed out some recent work in devel-
oping gauge-invariant techniques for controlling solutions to gauge
equations, e.g. [KlRo2007], and also noted that a good characteri-
sation for hyperbolicity in gauge-invariant equations was still lacking.

Allen Knutson pointed out two further interesting examples of
bundles and connections. The first was that of a quiver, where the
base space is a graph, the fibres over each vertex is a vector space
(of varying dimension), and the parallel transport maps are linear
transformations from one such space to another. Another was that
of currency trading, where the base space is the set of currencies, the
fibers are one-dimensional vector spaces, and the parallel transport
maps are currency exchange rates. In this example, curvature of
the connection can be interpreted as an arbitrage opportunity; see
[Il1997].

1.11. The Lucas-Lehmer test for Mersenne
primes

Recently, the Great Internet Mersenne Prime Search (GIMPS) an-
nounced the discovery of two new Mersenne primes, both over ten
million digits in length, including one discovered by the computing
team right here at UCLA.

The GIMPS approach to finding Mersenne primes relies of course
on modern computing power, parallelisation, and efficient program-
ming, but the number-theoretic heart of it - aside from some basic
optimisation tricks such as fast multiplication and preliminary sieving
to eliminate some obviously non-prime Mersenne number candidates
- is the Lucas-Lehmer primality test for Mersenne numbers, which is
much faster for this special type of number than any known general-
purpose (deterministic) primality test (such as, say, the AKS primal-
ity test [AgKaSa2004]). This test is easy enough to describe, and I
will do so later in this post, and also has some short elementary proofs
of correctness; but the proofs are sometimes presented in a way that
involves pulling a lot of rabbits out of hats, giving the argument a



1.11. The Lucas-Lehmer test for Mersenne primes 87

magical feel rather than a natural one. In this article, I will try to
explain the basic ideas that make the primality test work, seeking a
proof which is perhaps less elementary and a little longer than some
of the proofs in the literature, but is perhaps a bit better motivated.

1.11.1. Order. We begin with a general discussion of how to tell
when a given number n (which is not necessarily of the Mersenne
form n = 2m − 1) is prime or not. One should think of n as being
moderately large, e.g. n ∼ 10107

(which is broadly the size of the
Mersenne primes discovered recently).

Our starting point will be Lagrange’s theorem, which asserts that

(1.67) a|G| = 1

for any finite group G and any a ∈ G, thus the order ordG(a) of a in
G divides |G|. Specialising this to the multiplicative group F×p of a
finite field of prime order p, we obtain Fermat’s little theorem

(1.68) ap−1 = 1 mod p

for p prime and a coprime to p; applying it instead to the multiplica-
tive group (Z/nZ)× of a cyclic group of order n, we obtain Euler’s
theorem

(1.69) aφ(n) = 1 mod n

whenever a is coprime to n, where φ(n) := |(Z/nZ)×| is the Euler
totient function of n.

Fermat’s little theorem (1.68) already gives a necessary condition
for the primality of a candidate prime n: take any a coprime to n

(typically one picks a small number such as a = 2 or a = 3), and
compute an−1 modulo n. If it is not equal to 1, then n cannot be
prime. This is a (barely) feasible test to execute for n as large as
10107

, because one can compute exponents such as an−1 relatively
quickly, by the trick of repeatedly squaring a modulo n to obtain
a, a2, a22

, a23
, . . . mod n, and then decomposing n − 1 into binary60

60If n is a Mersenne number, then there are some pretty obvious shortcuts one
can take for this last step, using division instead of multiplication.
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to compute an−1. Unfortunately, while this test is necessary for pri-
mality, it is not sufficient, due to the existence of pseudoprimes61. So
Fermat’s little theorem alone does not provide the answer, at least if
one wants a deterministic certificate of primality rather than a prob-
abilistic one.

Nevertheless, the above facts do provide some important infor-
mation about the order ordn(a) := ord(Z/nZ)∗(a) of a modulo n. If
n is prime, Fermat’s little theorem (1.68) tells us that ordn(a) is at
most n− 1 (in fact, it divides n− 1). On the other hand, if n is not
prime, then Euler’s theorem (1.69) tells us that ordn(a) cannot be as
large as n− 1, but is instead at most φ(n), which is now strictly less
than n− 1. Thus: if we can find a number a coprime to n such that
ordn(a) is exactly n− 1, we have certified that n is prime.

Testing whether a given number a is coprime to n is very easy
and fast (thanks to the Euclidean algorithm). Unfortunately, it is
difficult in general to compute62 the order ordn(a) of a number a
if the base n is large; a brute-force approach would require one to
compute up to n−1 powers of a, which is prohibitively expensive if n
has size comparable to 10107

. However, there are a few cases in which
the order can be found very quickly. Suppose that we somehow find
positive integers a, k such that

(1.70) a2k = −1 mod n

(which in particular implies that a is coprime to n). Squaring this,
we obtain

a2k+1
= 1 mod n

and so we see that ordn(a) divides 2k+1 but not 2k, and thus must
be exactly equal to 2k+1. Conversely, if ordn(a) = 2k+1, then we
must have (1.70). So in the special case when the order of a is a
power of 2, we can compute the order using only one exponentiation,
which is computationally feasible for the orders of magnitude we are
considering.

61For instance, the number n = 561 = 3∗11∗17 is not prime, but an−1 = 1 mod n
is true for all a coprime to n (in other words, 561 is a Carmichael number).

62More generally, the problem of computing order exactly in general is closely
related to the discrete logarithm problem, which is notoriously difficult.
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Unfortunately, this is not quite what we need for the Mersenne
prime problem, because if n is a Mersenne number, then it is n plus
1 which is63 a power of 2, rather than n minus 1.

So this is a frustrating near miss: if n is a Mersenne number,
we can easily check if a number has order n + 1 modulo n, but we
needed a test for when a number has order n−1 instead. And indeed,
even when n is prime, Fermat’s little theorem (1.68) shows that it is
impossible for a number to have order n+1 modulo n, since the order
needs to divide n− 1. So we seem to be a bit stuck.

But while n+1 clearly does not divide n−1, it does divide n2−1.
Looking at Lagrange’s theorem (1.67), we then see that it could be
possible to find elements of order n + 1 in a multiplicative group of
order n2 − 1 rather than n− 1. Recall that if n was prime, then the
multiplicative group F×n of the finite field Fn had order n − 1. But
Fn2 is also a finite field, and its multiplicative group F×n2 has order
n2 − 1. Aha!

So the plan (assuming for sake of argument that n is prime) is to
somehow work in the finite field Fn2 instead of Fn, in order to find
elements of order n + 1. We can get our hands on this larger finite
field more concretely by viewing it as a quadratic extension Fn[

√
a],

where a is a quadratic non-residue of n.

Let’s now take n to be a Mersenne prime. What numbers are
quadratic non-residues? A quick appeal to quadratic reciprocity and
some elementary number theory soon reveals that 2 is a quadratic
residue of n, but that 3 is not. Thus we can64 take Fn2 ≡ Fn[

√
3].

Henceforth all calculations will be in this field Fn[
√

3], which of course
contains Fn as a subfield.

Now we need to look for a field element a of order n + 1, which
is a power of 2. Thus (by adapting (1.70) to Fn[

√
3]) we need to find

63The above method would be ideal for finding Fermat primes rather than
Mersenne primes, but it is likely that in fact there are no more such primes to be
found.

64One could work with other numbers than 3 here, but being the smallest qua-
dratic non-residue available, it is the simplest one to use, and the one which is most
likely to be able to take advantage of the strong law of small numbers[Gu1988], which
is the informal assertion that numerical coincidences are most likely to occur amongst
small numbers than amongst large ones.
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a solution to the equation

(1.71) a(n+1)/2 = −1

in this field.

Let’s compute some expressions of the form a(n+1)/2. From Fer-
mat’s little theorem (1.68) we have

3n−1 = 1;

because 3 is not a quadratic residue, we see (from taking discrete
logarithms) that

(1.72) 3(n−1)/2 = −1

and thus
3(n+1)/2 = −3.

Similarly we have

(1.73) 2(n+1)/2 = +2

These are pretty close to (1.71), but not quite right. To go further,
it is convenient to work with nth powers rather than ((n + 1)/2)th

powers - i.e. we work with the Frobenius endomorphism x 7→ xn.
Indeed, since Fn[

√
3] has characteristic n, we have the endomorphism

properties

(1.74) (x+ y)n = xn + yn; (xy)n = xnyn.

From (1.72) we have (
√

3)n = −
√

3, while from (1.68) we have an = a

for a ∈ Fn. From (1.74) we thus see that

(a+ b
√

3)n = a− b
√

3

for a, b ∈ Fn; thus the Frobenius automorphism is nothing more than
Galois conjugation65.

Now we go back from nth powers to ((n + 1)/2)th powers. Mul-
tiplying both sides of the preceding equation by a+ b

√
3, we obtain

(a+ b
√

3)n+1 = a2 − 3b2.

Squaring a+ b
√

3, we conclude

(a2 + 3b2 + 2ab
√

3)(n+1)/2 = a2 − 3b2.

65Actually, this can be deduced quite readily from standard Galois theory.



1.11. The Lucas-Lehmer test for Mersenne primes 91

Now we in a good position to solve the equation (1.71). We cannot
make a2−3b2 equal to −1 - since −1 is not a quadratic residue modulo
3 - but we can make it equal to, say, −2, by setting a = 1 and b = −1
(say):

(4 + 2
√

3)(n+1)/2 = −2.

Dividing this by (1.73) we obtain the desired solution

(1.75) ω(n+1)/2 = −1

to (1.71), where66 ω := 2 +
√

3.

To summarise, we have shown that

Proposition 1.11.1. If n is a Mersenne prime, then (1.75) holds.

Based on our previous discussion, we expect to be able to reverse
this implication. Indeed, we have the following converse:

Lemma 1.11.2. Let n be a Mersenne number. If (1.75) holds (in
the ring (Z/nZ)[

√
3]), then n is prime.

Proof. We use an argument of Bruce[Br1993]. Let q be a prime
divisor of n. Then ω(n+1)/2 = −1 in the field Fq[

√
3] (which we define

as Fq if 3 is a quadratic residue there), thus ω has order exactly n+1
(cf. (1.70)). By Lagrange’s theorem (1.67), this means that n + 1
divides the multiplicative order of Fq[

√
3]×, which is q2 − 1 (if 3 is

a non-residue modulo q) or q − 1 (if 3 is a residue modulo q). In
particular, q has to exceed

√
n. Thus the only prime divisors of n

exceed
√
n, and so by the sieve of Eratosthenes, n is prime. �

We have thus shown

Corollary 1.11.3 (Lucas-Lehmer test, preliminary version). Let n =
2m − 1 with m odd. Then n is prime if and only if (1.75) holds in
Z/nZ[

√
3].

This is already a reasonable criterion, but it is a little non-
elementary (and also a little unpleasant numerically) due to the pres-
ence of the quadratic extension by

√
3. One can get rid of this ex-

tension by the Galois theory trick of taking traces. Indeed, observe

66Note that one could also use ω−1 = 2−
√

3 here; indeed, Galois theory tells us

that +
√

3 and −
√

3 are interchangeable in these computations.
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that ω−1 = 2−
√

3 is the Galois conjugate of ω. Basic Galois theory
tells us that ω(n+1)/4 +ω−(n+1)/4 lies in Z/nZ, and vanishes precisely
when ω(n+1)/2 is equal to -1. So it suffices to show that

ω(n+1)/4 + ω−(n+1)/4 = ω2m−2
+ ω−2m−2

=: Sm−2

vanishes in Z/nZ. The quantity ω(n+1)/4 = ω2m−2
could be com-

puted by repeated squaring in Z/nZ[
√

3]. The quantity Sm−2 can
be computed by a similar device in Z/nZ. Indeed, the sequence
Sj := ω2j + ω−2j is easily seen to obey the recursion

(1.76) Sj = S2
j−1 − 2; S0 = 4

and so we have

Theorem 1.11.4 (Lucas-Lehmer test, final version). Let n = 2m−1
with m odd. Then n is prime if and only if Sm−2 vanishes modulo n,
where Sm−2 is given by the recursion (1.76).

To apply this test, one needs to perform about m squaring op-
erations modulo n. Doing everything as efficiently as possible (in
particular, using fast multiplication), the total cost of testing a single
Mersenne number n = 2m − 1 for primality is about O(m2) (mod-
ulo some logm terms). This turns out to barely be within reach67

of modern computers for m ∼ 107, especially since the algorithm
is somewhat parallelisable. There are general-purpose probabilistic
tests (such as the Miller-Rabin test) which have run-time comparable
to the Lucas-Lehmer test, but as mentioned at the beginning, we are
only interested here in deterministic (and unconditional, in particu-
lar not relying on the generalised Riemann hypothesis) certificates of
primality.

Notes. This article first appeared at terrytao.wordpress.com/2008/10/02.
Thanks to René Schoof, Jernej, and several anonymous commenters
for corrections.

More information on the recently found Mersenne primes can be
found at www.math.ucla.edu/ edson/prime. (I was not involved in

67In contrast, the best known general-purpose deterministic primality testing
algorithm, the AKS algorithm[AgKaSa2004], has a run time of about O(m6) (with a

sizable implicit constant), which is not feasible for m ∼ 107.
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this computing effort.) As for the question “Why do we want to find
such big primes anyway?”, see primes.utm.edu/notes/faq/why.html.

An anonymous commenter pointed out that an application of
large Mersenne primes to coding theory has appeared recently in
[Ye2007].

1.12. Finite subsets of groups with no finite
models

Additive combinatorics is largely focused on the additive properties
of finite subsets A of an additive group G = (G,+). This group can
be finite or infinite, but there is a very convenient trick, the Ruzsa
projection trick, which allows one to reduce the latter case to the
former. For instance, consider the set A = {1, . . . , N} inside the
integers Z. The integers of course form an infinite group, but if we
are only interested in sums of at most two elements of A at a time,
we can embed A inside the finite cyclic group Z/2NZ without losing
any combinatorial information. More precisely, there is a Freiman
isomorphism of order 2 between the set {1, . . . , N} in Z and the set
{1, . . . , N} in Z/2NZ. One can view the latter version of {1, . . . , N}
as a model for the former version of {1, . . . , N}. More generally, it
turns out that any finite set A in an additive group can be modeled in
the above set by an equivalent set in a finite group, and in fact one can
ensure that this ambient modeling group is not much larger than A

itself if A has some additive structure; see [Ru1994] or [TaVu2006,
Lemma 5.26] for a precise statement. This projection trick has a
number of important uses in additive combinatorics, most notably in
Ruzsa’s simplified proof[Ru1994] of Freiman’s theorem[Fr1973].

Given the interest in non-commutative analogues of Freiman’s
theorem (see Section 3.2 of Structure and Randomness), it is natural
to ask whether one can similarly model finite sets A in multiplica-
tive (and non-commutative) groups G = (G,×) using finite models.
Unfortunately (as I learned recently from Akshay Venkatesh, via Ben
Green), this turns out to be impossible in general, due to an old
example of Higman[Hi1951]. More precisely, Higman shows:
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Theorem 1.12.1. There exists an infinite group G generated by four
distinct elements a, b, c, d that obey the relations

(1.77) ab = ba2; bc = cb2; cd = dc2; da = ad2;

in fact, a and c generate the free nonabelian group in G. On the
other hand, if G′ is a finite group containing four elements a, b, c, d
obeying (1.77), then a, b, c, d are all trivial.

As a consequence, the finite set A := {1, a, b, c, d, ab, bc, cd, da}
in G has no model (in the sense of Freiman isomorphisms) in a fi-
nite group. Theorem 1.12.1 is proven by a small amount of elemen-
tary group theory and number theory, and it was neat enough that I
thought I would reproduce it here.

1.12.1. No non-trivial finite models. Let’s first show the second
part of Theorem 1.12.1. The key point is that in a finite group G′,
all elements have finite order, thanks to Lagrange’s theorem. From
(1.77) we have

b−1ab = a2

and hence by induction

(1.78) b−nabn = a2n

for any positive n. One consequence of (1.78) is that if bn = 1, then
a = a2n , and thus a2n−1 = 1. Applying this with n equal to the order
ord(b) of b, we conclude that

ord(a)|2ord(b) − 1.

As a consequence, if ord(a) is divisible by some prime p, then 2ord(b)−1
is divisible by p, which forces p to be odd and ord(b) to be divisible
by the multiplicative order of 2 modulo p. This is at most p− 1 (by
Fermat’s little theorem), and so ord(b) is divisible by a prime strictly
smaller than the prime dividing ord(a). But we can cyclically permute
this argument and conclude that ord(c) is divisible by an even smaller
prime than the prime dividing ord(b), and so forth, creating an infinite
descent, which is absurd. Thus none of ord(a), ord(b), ord(c), ord(d)
can be divisible by any prime, and so a, b, c, d are trivial as claimed.
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Remark 1.12.2. There is nothing special here about using four gen-
erators; the above arguments work with any number of generators
(adapting (1.77) appropriately). But we will need four generators in
order to establish the infinite model below.

Remark 1.12.3. The above argument also shows that the group G

has no non-trivial finite-dimensional linear representation. Indeed,
let a, b, c, d be matrices obeying (1.77), then b is conjugate to b2 =
c−1bc, which by the spectral theorem forces the eigenvalues of b to
be roots of unity, which implies in particular that bn grows at most
polynomially in n; similarly for an. Applying (1.78) we see that a2n

grows at most polynomially in n, which by the Jordan normal form
(see Section 1.13 of Structure and Randomness) for a implies that a
is diagonalisable; since its eigenvalues are roots of unity, it thus has
finite order. Similarly for b, c, d. Now apply the previous argument
to conclude that a, b, c, d are trivial.

1.12.2. Existence of an infinite model. To build the infinite
group G that obeys the relations (1.77), we need the notion of an
amalgamated free product of groups. Recall that the free product
G1 ∗ G2 of two groups G1 and G2 can be defined (up to group iso-
morphism) in one of three equivalent ways:

(1) (Relations-based definition) G1 ∗G2 is the group generated
by the disjoint union G1 ] G2 of G1 and G2, with no fur-
ther relations between these elements beyond those already
present in G1 and G2 separately.

(2) (Category-theoretic definition)G1∗G2 is a group with homo-
morphisms from G1 and G2 into G1 ∗G2, which is universal
in the sense that any other group G’ with homomorphisms
from G1, G2 will have these homomorphisms factor uniquely
through G1 ∗G2.

(3) (Word-based definition) G1 ∗G2 is the collection of all words
g1g2 . . . gn, where each gi lies in either G1 or G2, with no
two adjacent gi, gi+1 lying in the same Gj (let’s label G1, G2

here to be disjoint to avoid notational confusion), with the
obvious group operations.
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It is not hard to see that all three definitions are equivalent, and
that the free product exists and is unique up to group isomorphism.

Example 1.12.4. The free product of the free cyclic group 〈a〉 with
one generator a, and the free cyclic group 〈b〉 with one generator b, is
the free (non-abelian) group 〈a, b〉 on two generators.

We will need a “relative” generalisation of the free product con-
cept, in which the groups G1, G2 are not totally disjoint, but in-
stead share a common subgroup H (or if one wants to proceed more
category-theoretically, with a group H that embeds into both G1

and G2). In this situation, we define the amalgamated free product
G1 ∗H G2 by one of the following two equivalent definitions:

(1) (Relations-based definition) G1∗HG2 is the group generated
by the relative disjoint union G1]HG2 of G1 and G2 (which
is the same as the disjoint union but with the common sub-
group H identified), with no further relations between these
elements beyond those already present in G1 and G2 sepa-
rately.

(2) (Category-theoretic definition) G1 ∗H G2 is a group with
homomorphisms from G1 and G2 into G1 ∗H G2 that agree
onH, which is universal in the sense that any other groupG′

with homomorphisms from G1, G2 that agree on H will have
these homomorphisms factor uniquely through G1 ∗H G2.

Example 1.12.5. Let G1 := 〈a, b|ab = ba2〉 be the group generated
by two elements a, b with one relation ab = ba2. It is not hard to see
that all elements of G1 can be expressed uniquely as bnam for some
integers n, m, and in particular that H := 〈b〉 is a free cyclic group.
Let G2 := 〈b, c|bc = cb2〉 be the group generated by two elements b, c
with one relation bc = cb2, then again H := 〈b〉 is a free cyclic group,
and isomorphic to the previous copy of H. The amalgamated free
product G1 ∗H G2 = 〈a, b, c|ab = ba2, bc = cb2〉 is then generated by
three elements a, b, c with two relations ab = ba2, bc = cb2.

It is not hard to see that the above two definitions are equivalent,
and that G1∗HG2 exists and is unique up to group isomorphism. But
note that I did not give the word-based definition of the amalgamated
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free product yet. We will need to do so now; I will use the arguments
from [Ne1954], though the basic result I need here (namely, Corollary
1.12.8) dates all the way back to the work of Schreier in 1927.

In order to analyse these groups, we will need to study how they
act on various spaces. If G is a group, we define a G-space to be a set
X together with an action (g, x) 7→ gx of G on X (or equivalently,
a homomorphism from G to the permutation group Sym(X) of X).
Thus for instance G is itself a G-space. A G-space X is transitive if
for every x, y ∈ X, there exists g ∈ G such that gx = y. A morphism
from one G-space X to another G-space Y is a map φ : X → Y such
that φ(gx) = gφ(x) for all g ∈ G and x ∈ X. If a morphism has an
inverse that is also a morphism, we say that it is an isomorphism.

The first observation is that a G-space with certain properties
will necessarily be isomorphic to G itself.

Lemma 1.12.6 (Criterion for isomorphism with G). Let G be a
group, let X be a non-empty transitive G-space, and suppose there
is a morphism π :X→ G from the G-space X to the G-space G. Then
π is in fact an isomorphism of G-spaces.

Proof. It suffices to show that π is both injective and surjective. To
show surjectivity, observe that the image π(X) is G-invariant and
non-empty. But the action of G on G is transitive, and so π(X) = G

as desired. To show injectivity, observe from transitivity that if x, x′

are distinct elements of X then x′ = gx for some non-identity g ∈ G,
thus π(x′) = gπ(x), thus π(x′) 6= π(x), establishing injectivity. �

Now we can give the word formulation of the amalgamated free
product.

Lemma 1.12.7 (Word-based description of amalgamated free prod-
uct). Let G1, G2 be two groups with common subgroup H, and let G :=
G1 ∗H G2 be the amalgamated free product. Let G1 =

⋃
s1∈S1

H · s1,
G2 =

⋃
s2∈S2

H · s2 be some partitions of G1, G2 into right-cosets of
H. Let X be the space of all formal words of the form hs1s2 . . . sn,
where h ∈ H, each si lies in either S1 or S2, and no two adjacent
si, si+1 lie in the same Sj. let π : X → G be the obvious evaluation
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map. Then there is an action of G on X for which π becomes an
isomorphism of G-spaces.

Proof. It is easy to verify that G1 and G2 act separately on X in a
manner consistent (via π) with their action on G, and these actions
agree on H. Hence the amalgamated free product G also acts on this
space and turns π into a morphism of G-spaces. From construction
of X we see that the G-action is transitive, and the claim now follows
from Lemma 1.12.6. �

Corollary 1.12.8. Let G1, G2 be two groups with common subgroup
H, and let G := G1 ∗H G2 be the amalgamated free product. Let
g1 ∈ G1 and g2 ∈ G2 be such that the cyclic groups 〈g1〉, 〈g2〉 are
infinite and have no intersection with H. Then g1, g2 generate a free
subgroup in G.

Proof. By hypothesis (and the axiom of choice), we can find a par-
tition G1 =

⋃
s1∈S1

H · s1 where S1 contains the infinite cyclic group
〈g1〉, and similarly we can find a partition G2 =

⋃
s2∈S2

H · s2. Let
X be the space in Lemma 2. Each reduced word formed by g1, g2

then generates a distinct element of X, and thus (by Lemma 1.12.7)
a distinct element of G. The claim follows. �

Remark 1.12.9. The above corollary can also be established by the
ping-pong lemma (which is not surprising, since the proof of that
lemma uses many of the same ideas, and in particular exploiting an
action of G on a space X in order to distinguish various words in
G from each other). Indeed, observe that g1, g

−1
1 map those words

hs1s2 . . . sn in X with s1 6∈ S1 into words hs0s1 . . . sn with s0 ∈ S1,
and similarly for g2, g

−1
2 , which is the type of hypothesis needed to

apply the ping-pong lemma. [Thanks to Ben Green for this observa-
tion.]

Now we can finish the proof of Theorem 1.12.1. As discussed
in Example 1.12.5, the group G1 := 〈a, b, c|ab = ba2, bc = cb2〉 is
the amalgamated free product of 〈a, b|ab = ba2〉 and 〈b, c|bc = cb2〉
relative to 〈b〉. By Corollary 1.12.8, a and c generate the free group
here, thus G1 contains H = 〈a, c〉 as a subgroup. Similarly, the group
G2 := 〈c, d, a|cd = dc2; da = ad2〉 also contains H = 〈a, c〉 as a
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subgroup. We may then form the amalgamated free product

G := G1 ∗H G2 = 〈a, b, c, d|ab = ba2, bc = cb2, cd = dc2, da = ad2〉

and another application of Corollary 1.12.8 shows that b, d gener-
ate the free group (and are in particular distinct); similarly a, c are
distinct. Finally, the group 〈a, b|ab = ba2〉 embeds into G1, which
embeds into G, and so a, b, are also distinct; cyclically permuting
this we conclude that all of the a, b, c, d are distinct as claimed.

Notes. This article first appeared at terrytao.wordpress.com/2008/10/06.
Thanks to an anonymous commenter for corrections.

Ben Green pointed out that for the specific “non-commutative
Freiman theorem” application of trying to characterise finite sets A
of small doubling (thus |A · A| ≤ K|A|), it may still be possible that
some large subset A′ of A has a finite model, even if A itself need
not be. Currently, all known examples of finite sets of small doubling
have this property.

David Fisher pointed out that Remark 1.12.3 can be deduced
from Theorem 1.12.1 using the general fact that all linear groups are
residually finite (i.e. have finite quotients that separate any finite
set). The proof of this latter fact is non-trivial, however.

1.13. Small samples, and the margin of error

In view of this year’s U.S. presidential election, I would like to talk
about some of the basic mathematics underlying electoral polling,
and specifically to explain the fact, which can be highly unintuitive
to those not well versed in statistics, that polls can be accurate even
when sampling only a tiny fraction of the entire population.

Take for instance a nationwide poll of U.S. voters on which pres-
idential candidate they intend to vote for. A typical poll will ask
a number n of randomly selected voters for their opinion; a typical
value here is n = 1000. In contrast, the total voting-eligible popula-
tion of the U.S. - let’s call this set X - is about 200 million68. Thus,
such a poll would sample about 0.0005% of the total population X

68The actual turnout for the 2008 election ended up being approximately 130
million, but let’s ignore this fact for sake of discussion.
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- an incredibly tiny fraction. Nevertheless, the margin of error (at
the 95% confidence level) for such a poll, if conducted under idealised
conditions (see below), is about 3%. In other words, if we let p denote
the proportion of the entire population X that will vote for a given
candidate A, and let p denote the proportion of the polled voters
that will vote for A, then the event p− 0.03 ≤ p ≤ p+ 0.03 will occur
with probability at least 0.95. Thus, for instance (and oversimplifying
somewhat by ignoring the probability-altering effects of conditional
expectation - see below), if the poll reports that 55% of respondents
would vote for A, then the true percentage of the electorate that
would vote for A has at least a 95% chance of lying between 52% and
58%. Larger polls will of course give a smaller margin of error; for
instance the margin of error for an (idealised) poll of 2, 000 voters is
about 2%.

I’ll give a rigorous proof of a weaker version of the above state-
ment (giving a margin of error of about 7%, rather than 3%) in an
appendix at the end of this post. But the main point of my post
here is a little different, namely to address the common misconcep-
tion that the accuracy of a poll is a function of the relative sample
size rather than the absolute sample size, which would suggest that a
poll involving only 0.0005% of the population could not possibly have
a margin of error as low as 3%. I also want to point out some limi-
tations of the mathematical analysis; depending on the methodology
and the context, some polls involving 1000 respondents may have a
much higher margin of error than the idealised rate of 3%.

1.13.1. Assumptions and conclusion. Not all polls are created
equal; there are a certain number of hypotheses on the methodol-
ogy and effectiveness of the poll that we have to assume in order to
make our mathematical conclusions valid. We will make the following
idealised assumptions:

(1) Simple question. Voters polled can only offer one of two
responses, which I will call A and not-A; thus we ignore
the effect of third-party candidates, undecided voters, or
refusals to respond. In particular, we do not try to combine
this data with other questions about the polled voters, such
as demographic data. We also assume that the question is
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unambiguous and cannot be misinterpreted by respondents
(see Hypothesis 3 below).

(2) Perfect response rate. All voters polled offer a response;
there are no refusals to respond to the poll, or failures to
make contact with the voter being polled. (This is a special
case of Hypothesis 1, but deserves to be emphasised.) In
particular, this excludes polls that are self-selected, such as
internet polls (since in most cases, a large fraction of viewers
of a web page with a poll will refuse to respond to that poll).

(3) Honest responses. The response given by a voter to the
poll is an accurate representation whether that voter intends
to vote for A or not; thus we ignore response-distorting ef-
fects such as the Bradley effect, push-polling, tactical voting,
frivolous responses, misunderstanding of the question, or at-
tempts to “game” a poll by the respondents.

(4) Fixed poll size. The number n of polled voters is fixed
in advance; in particular, one cannot keep polling until one
has achieved some desired outcome, and then stop.

(5) Simple random sampling (without replacement). Each
one of the n voters polled is selected uniformly at random
among the entire population X, thus each voter is equally
likely to be selected by the poll, and no non-voter can be
selected by the poll. (In particular, we make the important
assumption that there is no selection bias.) Furthermore,
each polled voter is chosen independently of all the others,
except for the one condition that we do not poll any given
voter more than once. (Thus, once a voter is polled, that
voter is “crossed off the list” of the pool X of voters that one
randomly selects from to determine the next voter polled.)
In particular, we assume that the poll is not clustered.

(6) Honest reporting. The results of the poll are always re-
ported, with no inaccuracies; one cannot cancel, modify, or
ignore a poll once it has begun. In particular, one cannot
conduct multiple polls and only report the “best” results
(thus running the risk of confirmation bias).
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Polls which deviate significantly from these hypotheses (e.g. due to
complex questions, self-selection or other selection bias, confirmation
bias, inaccurate responses, a high refusal rate, variable poll size, or
clustering) will generally be less accurate than an idealised poll with
the same sample size. Of course, there is a substantial literature in
statistics (and polling methodology) devoted to measuring, mitigat-
ing, avoiding, or compensating for these less ideal situations, but we
will not discuss those (important) issues here. We will remark though
that in practice it is difficult to make the poll selection truly uniform.
For instance, if one is conducting a telephone poll, then the sample
will of course be heavily biased towards those voters who actually
own phones; a little more subtly, it will also be biased toward those
voters who are near their phones at the time the poll was conducted,
and have the time and inclination to answer phone calls. As long as
these factors are not strongly correlated with the poll question (i.e.
whether the voter will vote for A), this is not a major concern, but
in some cases, the poll methodology will need to be adjusted (e.g. by
reweighting the sample) to compensate for the non-uniformity.

As stated in the introduction, we let p be the proportion of the
entire population X that will vote for A, and p be the proportion of
the polled voters that will vote for A (which, by Hypotheses 2 and 3,
is exactly equal to the proportion of polled voters that say that they
will vote for A). Under the above idealised conditions, if the number
n of polled voters is 1, 000, and the size of the population X is 200
million, then the margin of error is about 3%, thus P(p− 0.03 ≤ p ≤
p+0.03) ≥0.95.

There is an important subtlety here: it is only the unconditional
probability of the event p− 0.03 ≤ p ≤ p+ 0.03 that is guaranteed to
be greater than 0.95. If one has additional prior information about p
and p, then the conditional probability of this event, relative to this
information, may be very different. For instance, if one had, prior
to the poll, a very good reason to believe that p is almost certainly
between 0.4 and 0.6, and then the poll reports p to be 0.1, then the
conditional probability that p − 0.03 ≤ p ≤ p + 0.03 occurs should
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be lower69 than the unconditional probability. The question of how
to account for prior information is a very delicate one in Bayesian
probability, and will not be discussed here.

One special case of the above point is worth emphasising: the
statement that p − 0.03 ≤ p ≤ p + 0.03 is true with at least 95%
probability is only valid before one actually conducts the poll and
finds out the value of p. Once p is computed, the statement p−0.03 ≤
p ≤ p+ 0.03 is either true or false, i.e. occurs with probability70 1 or
0 (unless one takes a Bayesian approach, as mentioned above).

1.13.2. Nobody asked for my opinion! One intuitive argument
against a poll of small relative size being accurate goes something like
this: a poll of just 1, 000 people among a population of 200, 000, 000
is almost certainly not going to poll myself, or any of my friends or
acquaintances. If the opinions of myself, and everyone that I know,
is not being considered at all in this poll, how could this poll possibly
be accurate?

It is true that if you know, say, 5, 000 voting-eligible people, then
chances are that none of them (or maybe one of them, at best) will be
contacted by the above poll. However, even though the opinions of all
these people are not being directly polled, there will be many other
people with equivalent opinions that will be contacted by the poll.
Through those people, the views of yourself and your friends are being
represented. (This may seem like a very weak form of representation,
but recall that you and your 5,000 friends and acquaintances still only
represent 0.0025% of the total electorate.)

Now one may argue that no two voters are identical, and that
each voter arrives at a decision of who to vote for their own unique
reasons. True enough - but recall that this poll is asking only a
simple question: whether one is going to vote for A or not. Once
one narrowly focuses on this question alone, any two voters who both

69Note though that having priori information just about p, and not p, will not
cause the probability to drop below 95%, as this bound on the confidence level is
uniform in p.

70This phenomenon of course occurs all the time in probability. For instance, if
x denotes the outcome of rolling a fair six-sided die, then before one performs this roll,
the probability that x equals 1 will be 1/6, but after one has seen what the value of
this die is, the probability that x equals 1 will be either 1 or 0.
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decide to vote for A, or to not vote for A, are considered equivalent,
even if they arrive at this decision for totally different reasons. So,
for the purposes of this poll, there are only two types of voters in the
world - A-voters, and not-A-voters - with all voters in one of these two
types considered equivalent. In particular, any given voter is going
to have millions of other equivalent voters distributed throughout the
population X, and a representative fraction of those equivalent voters
is likely to be picked up by the poll.

As mentioned before, polls which offer complex questions (for in-
stance, trying to discern the motivation behind one’s voting choices)
will inherently be less accurate; there are now fewer equivalent vot-
ers for each individual, and it is harder for a poll to pick up each
equivalence class in a representative manner71.

1.13.3. Is there enough information? Another common objec-
tion to the accuracy of polls argues that there is not enough informa-
tion (or “degrees of freedom”) present in the poll sample to accurately
describe the much larger amount of data present in the full popula-
tion; 1, 000 bits of data cannot possibly contain 200, 000, 000 bits of
information. However, we are not asking to find out so much infor-
mation; the purpose of the poll is to estimate just a single piece of
information, namely the number p. If one is willing to accept an error
of up to 3%, then one can represent this piece of information in about
five bits rather than 200, 000, 000. So, in principle at least, there is
more than enough information present in the poll to recover this in-
formation; one does not need to sample the entire population to get
a good reading72.

As before, the accuracy degrades as one asks more and more com-
plicated questions. For instance, if one were to poll 1, 000 voters for
their opinions on two unrelated questions A and B, each of the an-
swers to A and B would be accurate to within 3% with probability

71In particular, the more questions that are asked, the more likely it becomes
that the responses to at least one of these questions will be inaccurate by an amount
exceeding its margin of error. This provides a limit as to how much information one
can confidently extract from data mining any given data set.

72The same general philosophy underlies compressed sensing, see Section 1.2 of
Structure and Randomness, but that’s another story.
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95%, but the probability that the answers to A and B were simulta-
neously accurate to within 3% would be lower (around 90% or so),
and so any data analysis that relies on the responses to both A and B
may not have as high a confidence level as data analysis that relies on
A and B separately. This is consistent with the information-theoretic
perspective: we are demanding more and more bits of information on
our population, and it is harder for our fixed data set to supply so
much information accurately and confidently.

1.13.4. Swings. One intuitive way to gauge the margin of error of
a poll is to see how likely such a poll is to accurately detect a swing
in the electorate. Suppose for instance that over the course of a given
time period (e.g. a week), 7% of the voters switch their vote from
not-A to A, while another 2% of the voters switch their vote from
A to not-A, leading to a net increase of 5% in the proportion p of
voters voting for A. How does would this swing in the vote affect
the proportion p of the voters being polled, if one imagines the same
voters being polled at both the start of the week and at the end of the
week? (Recall that we are assuming that voters will honestly report
their change of mind from one poll to the next.)

If the poll was conducted by simple random sampling, then each
of the 1, 000 voters polled would have a 7% probability of switching
from not-A to A, and and a 2% probability of switching from A to
not-A. Thus, one would expect about 70 of the 1, 000 voters polled
to switch to A, and about 20 to switch to not-A, leading to a net
swing of 50 voters, that would increase p by 5%, thus matching the
increase in p. Now, in practice, there will be some variability here;
due to the luck of the draw, the poll may pick up more or less than 70
of the voters switching to A, and more or less than 20 of the voters
switching to not-A. But having 1, 000 voters to sample is just about
large enough for the law of large numbers73 (Section 1.5) to kick in
and ensure that the number of voters switching to A picked up by the
poll will be significantly larger than the number of voters switching
to not-A. Thus, this poll will have a good chance of detecting a swing

73In appealing to the law of large numbers, we are implicitly exploiting the uni-
formity and independence assumptions in Hypothesis 5.
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of size 5% or more, which is consistent with the assertion of a margin
of error of about 3%.

It is worth noting that this swing of 5% in an electorate of
200, 000, 000 voters represents quite a large shift in absolute terms:
fourteen million voters switching to A and four million switching away
from A. Quite a few of these shifting voters will be picked up by the
poll (in contrast to one’s sphere of friends and acquaintances, which
is likely to be missed completely).

1.13.5. Irregularity. Another intuitive objection to polling accu-
racy is that the voting population is far from homogeneous. For
instance, it is clear that voting preferences for the U.S. presidential
election vary widely among the 50 states - shouldn’t one need to mul-
tiply the poll size by 50 just to accomodate this fact? Similarly for
distinctions in voting patterns based on gender, race, party affiliation,
etc.

Again, these irregularities in voter distribution do not affect the
final accuracy of the poll, for two reasons. Firstly, we are asking only
the simple question of whether a voter votes for A or not-A, and
are not breaking down the answers to this question by state, gender,
race, or any other factor; as stated before, two voters are considered
equivalent as long as they have the same preference for A, even if they
are in different states, have different genders, etc. Secondly, while it is
conceivable that the poll will cluster its sample in one particular state
(or one particular gender, etc.), thus potentially skewing the poll, the
fact that the voters are selected uniformly and independently of each
other prevents this from happening very often74.

The independence hypothesis is rather important. If for instance
one were to poll by picking one particular location75 in the U.S. at ran-
dom, and polling 1, 000 people from that location, then the responses
would be highly correlated (as one could have picked a location which

74And in any event, clustering in a demographic or geographic category is not
what is of direct importance to the accuracy of the poll; the only thing that really
matters in the end is whether there is clustering in the category of A-voters or not-A-
voters.

75Incidentally, in the specific case of the U.S. presidential election, statewide polls
are in fact more relevant to the outcome of the election than nationwide polls, due to
the mechanics of the U.S. Electoral College, but this does not detract from the above
points.
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Figure 2. A low-resolution image of a U.S. president, from [Ha1973].

happens to highly favour A, or highly favour not-A) and would have a
much larger margin of error than if one polled 1, 000 people at random
across the U.S..

1.13.6. Analogies. Some analogies may help explain why the rela-
tive size of a sample is largely irrelevant to the accuracy of a poll.

Suppose one is in front of a large body of water (e.g. a sea or
ocean), and wants to determine whether it is a freshwater or saltwater
body. This can be done very easily: dip one’s finger into the body
of water and taste a single drop. This gives an extremely accurate
result, even though the relative proportion of the sample size to the
population size is, literally, a drop in the ocean; the quintillions of
water molecues and salt molecues present in that drop are more than
sufficient to give a good reading of the salinity76 of the water body.

Another analogy comes from digital imaging. As we all know, a
digital camera takes a picture of a real-world object (e.g. a human
face) and converts it into an array of pixels; an image with a larger
number of pixels will generally lead to a more accurate image than
one with fewer. But even with just a handful of pixels, say 1,000
pixels, one is already able to make crude distinctions between dif-
ferent images, for instance to distinguish a light-skinned face from
a dark-skinned face (despite the fact that skin colour is determined
by millions of cells and quintillions of pigment molecues). See for
instance the well-known image in Figure 2.

76To be fair, in order for this reading to be accurate, one needs to assume that
the salinity is uniformly distributed across the body of water; if for instance the body
happened to be nearly fresh on one side and much saltier on the other, then dipping
one’s finger in just one of these two sides would lead to an inaccurate measurement of
average salinity. But if one were to stir the body of water vigorously, this irregularity of
distribution disappears. The procedure of taking a random sample, with each sample
point being independent of all the others, is analogous to this stirring procedure.
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1.13.7. Appendix: Mathematical justification. One can com-
pute the margin of error for this simple sampling problem very pre-
cisely using the binomial distribution; however I would like to present
here a cruder but more robust estimate, based on the second moment
method, that works in much greater generality than the setting dis-
cussed here. (It is closely related to the arguments in Section 1.5.)
The main mathematical result we need is

Theorem 1.13.1. Let X be a finite set, let A be a subset of X, and
let p := |A|/|X| be the proportion of elements of X that lie in A. Let
x1, . . . , xn be sampled independently and uniformly at random from
X (in particular, we allow repetitions). Let p := |{1 ≤ i ≤ n : xi ∈
A}|/n be the proportion of the x1, . . . , xn (counting repetition) that
lie in A. Then for any r > 0, one has

(1.79) P(|p− p| ≤ r) ≥ 1− 1
4nr2

.

Proof. We use the second moment method. For each 1 ≤ i ≤ n, let
Ii be the indicator of the event xi ∈ A, thus Ii := 1 when xi ∈ A

and Ii = 0 otherwise. Observe that each Ii has a probability of p of
equaling 1, thus

p = EIi.

On the other hand, we have

p =
1
n

n∑
i=1

Ii.

Thus

p− p =
1
n

n∑
i=1

Ii −E(Ii);

squaring this and taking expectations, we obtain

E|p− p|2 =
1
n2

n∑
i=1

Var(Ii) +
2
n

∑
1≤i<j≤n

Cov(Ii, Ij)

where Var(Ii) := E(Ii − EIi)2 is variance of Ii, and Cov(Ii, Ij) :=
E((Ii − p)(Ij − p)) is the covariance of Ii, Ij .

By assumption, the random variable Ii, Ij for i 6= j are indepen-
dent, and so the covariances Cov(Ii, Ij) vanish. On the other hand,
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a direct computation shows that

Var(Ii) = p− p2 =
1
4
− (p− 1

2
)2 ≤ 1

4
for each i. Putting all this together we conclude that

E|p− p|2 ≤ 1
4n

and the claim (1.79) follows from Markov’s inequality. �

Applying this theorem with n = 1000 and r = 1/
√

200 ≈ 0.07, we
conclude that p and p lie within about 7% of each other with proba-
bility at least 95%, regardless of how large the population X is. In the
context of an election poll, this means that if one samples 1000 vot-
ers independently at random (with replacement) whether they would
vote for A, the margin of error for the answer would be at most 7%
at the 95% confidence level.

Remark 1.13.2. Observe that the proof of the above theorem did
not really need the xi to be fully independent of each other; the key
thing was that each xi was close to uniformly distributed, and that the
covariances between the indicators Ii, Ij were small. (In particular,
one only needs pairwise independence rather than joint independence
for the theorem to hold.) Because of this, one can also obtain variants
of the above theorem when one selects x1, . . . , xn for random sampling
without replacement (known as simple random sampling); now there
is a slight correlation between Ii, Ij , but it turns out to be negligible
when X is large, for instance77 when n = 1000 and |X| ∼ 108.

Remark 1.13.3. If one assumes joint independence instead of pair-
wise independence, one can obtain slightly sharper inequalities than
(1.79) (e.g. by using the Chernoff inequality), but at the 95% con-
fidence level, this gives a relatively modest improvement only in the
margin of error (in our specific example, the optimal margin of error
is about 3% rather than 7%).

Remark 1.13.4. An inspection of the argument shows that if p is
known to be very small or very large, then the margin of error is

77For this range of parameters, there is a non-trivial probability of a birthday
paradox occurring, so the two sampling methods are genuinely different from each
other; but they turn out to have almost the same margin of error anyway.
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better than what (1.79) predicts. (In the most extreme case, if p = 0
or p = 1, then it is easy to see that the margin of error is zero.) But
in the case of election polls, p is generally expected to be close to 1/2,
and so one does not expect to be able to improve the margin of error
much from this effect. And in any case, we don’t know the value of p
exactly in practice (otherwise why would we be doing the poll in the
first place?).

Remark 1.13.5. In real world situations, it can be difficult or im-
practical to get the xi to be close to uniformly distributed (because
of sampling bias), and to keep the correlations low (because of effects
such as clustering). Because of this, one often needs to perform a
more complicated sampling procedure than simple random sampling,
which requires more sophisticated statistical analysis than given by
the above theorem. This is beyond the scope of this post, though.

Notes. This article first appeared at terrytao.wordpress.com/2008/10/10.
Thanks to jonm and Kieran for corrections.

A calculator to compute margins of error for various sample sizes
and population sizes can be found at www.americanresearchgroup.com/moe.html.

1.14. Non-measurable sets via non-standard
analysis

In Section 1.4 of Structure and Randomness, I sketched out a non-
rigorous probabilistic argument justifying the following well-known
theorem:

Theorem 1.14.1 (Non-measurable sets exist). There exists a subset
E of the unit interval [0, 1] which is not Lebesgue-measurable.

The idea was to let E be a “random” subset of [0, 1]. If one
(non-rigorously) applies the law of large numbers (Section 1.5), one
expects E to have “density” 1/2 with respect to every subinterval of
[0, 1], which would contradict the Lebesgue differentiation theorem.

I was recently asked whether I could in fact make the above ar-
gument rigorous. This turned out to be more difficult than I had
anticipated, due to some technicalities in trying to make the concept
of a random subset of [0, 1] (which requires an uncountable number of
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“coin flips” to generate) both rigorous and useful. However, there is
a simpler variant of the above argument which can be made rigorous.
Instead of letting E be a “random” subset of [0, 1], one takes E to be
an “alternating” set that contains “every other” real number in [0, 1];
this again should have density 1/2 in every subinterval and thus again
contradict the Lebesgue differentiation theorem.

Of course, in the standard model of the real numbers, it makes
no sense to talk about “every other” or “every second” real number,
as the real numbers are not discrete. If however one employs the
language of non-standard analysis, then it is possible to make the
above argument rigorous, and this is the purpose of my post today.
I will assume some basic familiarity with non-standard analysis, for
instance as discussed in Section 1.5 of Structure and Randomness.

We begin by selecting a non-principal ultrafilter p ∈ βN\N and
use it to construct non-standard models ∗N, ∗[0, 1] of the natural
numbers N and the unit interval [0, 1] by the usual ultrapower con-
struction. We then letN ∈ ∗N be an unlimited non-standard number,
i.e. a non-standard natural number larger than any standard natural
number78.

We can partition the non-standard unit interval ∗[0, 1] into 2N

(non-standard) intervals Jj := [j/2N , (j+1)/2N ] for j = 0, . . . , 2N−1
(the overlap of these intervals will have a negligible impact in our
analysis). We then define the non-standard set ∗E ⊂ ∗[0, 1] to be
the union of those Jj with j odd; this is the formalisation of the
idea of “every other real number” in the introduction. The key prop-
erty about ∗E that we need here is the following symmetry prop-
erty: if I = [a/2n, (a + 1)/2n] is any standard dyadic interval, then
the (non-standard counterpart to the) interval I can be partitioned
(modulo (non-standard) rationals) as the set ∗E ∩ I and its reflec-
tion (2a + 1)/2n − (∗E ∩ I). This demonstrates in particular that
∗E has (non-standard) density 1/2 inside I, but we will need to use
the symmetry property directly, rather than the non-standard den-
sity property, because the former is much easier to transfer to the
standard setting than the latter.

78For instance, one could take N to be the equivalence class in ∗N of the sequence
1, 2, 3, . . ..
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We now return to the standard world, and introduce the standard
set E ⊂ [0, 1], defined as the collection of all standard x ∈ [0, 1] whose
non-standard representative ∗x lies in ∗E. This is certainly a stan-
dard subset of [0, 1]; informally, it is the set of all standard numbers
whose N th digit is 1. We claim that it is not Lebesgue measurable,
thus establishing Theorem 1.14.1. To see this, recall for any stan-
dard dyadic interval I = [a/2n, (a + 1)/2n], that every non-standard
irrational element of I lies in exactly one of ∗E or (2a+ 1)/2n − ∗E.
Applying the transfer principle, we conclude that every standard ir-
rational element of I lies in exactly one of E or (2a + 1)/2n − E.
Thus, if E were measurable, the density of E in the dyadic interval I
must be exactly 1/2. But this contradicts the Lebesgue differentiation
theorem (see e.g. Section 1.4 of Structure and Randomness), and we
are done.

Remark 1.14.2. One can eliminate the non-standard analysis from
this argument and rely directly on the non-principal ultrafilter p.
Indeed, if one inspects the ultrapower construction carefully, one sees
that (outside of the terminating binary rationals, which do not have a
unique binary expansion), E consists of those numbers in [0, 1] whose
1s in the binary expansion lie in p. The symmetry property of E then
reflects the non-principal ultrafilter nature of p, in particular the fact
that membership of a set A ⊂ N in p is insensitive to any finite
modification of A, and reversed by replacing A with its complement.
On the other hand, one cannot eliminate the non-principal ultrafilter
entirely; once one drops the axiom of choice, there exist models of
the real line in which every set is Lebesgue measurable, and so it
is necessary to have some step in the proof of Theorem 1.14.1 that
involves this axiom. In the above argument, choice is used to find the
non-principal ultrafilter p.

Remark 1.14.3. It is tempting to also make the original argument,
based on randomness, work, but I was unable to push it through
completely. Certainly, if one sets ∗E to be a (non-standardly) random
collection of the Jj , then with probability infinitesimally close to 1,
the (non-standard) density of ∗E in any standard dyadic interval (or
indeed, any standard interval) is infinitesimally close to 1/2, thanks
to the law of large numbers. However, I was not able to transfer
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this fact to tell me anything about E; indeed, I could not even show
that E was non-empty. (Question: does there exist a non-standard
subset of ∗[0, 1] of positive (non-infinitesimal) measure which avoids
all standard real numbers? I don’t know the answer to this.)

Notes. This article first appeared at terrytao.wordpress.com/2008/10/14.
Thanks to Timothy Gowers, Wonghang, and an anonymous com-
menter for corrections.

K.P. Hart and Kevin O’Bryant noted that this construction is
quite classical, going back to [Ul1929], [Ta]. K.P. Hart also noted
that in the product space 2R, the set of measurable and non-measurable
sets both have outer measure 1 with respect to product measure, so
a naive attempt to formalise the statement that “a randomly chosen
set is non-measurable” does not work.

1.15. When are eigenvalues stable?

I was asked recently (in relation to my recent work [TaVu2008] with
Van Vu) to explain some standard heuristics regarding how the eigen-
values λ1, . . . , λn of an n× n matrix A behave under small perturba-
tions. These heuristics can be summarised as follows:

(1) For normal matrices (and in particular, unitary or self-
adjoint matrices), eigenvalues are very stable under small
perturbations. For more general matrices, eigenvalues can
become unstable if there is pseudospectrum present.

(2) For self-adjoint (Hermitian) matrices, eigenvalues that are
too close together tend to repel quickly from each other un-
der such perturbations. For more general matrices, eigen-
values can either be repelled or be attracted to each other,
depending on the type of perturbation.

In this article, I would like to briefly explain why these heuristics are
plausible.

1.15.1. Pseudospectrum. As any student of linear algebra knows,
the spectrum σ(A) of a n × n matrix A consists of all the complex
numbers λ such that A − λI fails to be invertible, thus there exists
a non-zero vector v such that (A − λI)v is zero. This is a finite set,
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consisting of at most n points. But there is also an important set
containing the spectrum (and which, at times, can be much larger
than that spectrum), which is the pseudospectrum of the matrix A.
Unlike the spectrum, which is canonically defined, there is more than
one definition of the pseudospectrum; also, this concept depends on
an additional parameter, a small number ε > 0. We will define79 the
pseudospectrum (or more precisely, the ε-pseudospectrum) σε(A) to
be the set of all the complex numbers λ such that A − λI has least
singular value at most ε, or equivalently that there exists a unit vector
v such that |(A− λI)v| ≤ ε.

The significance of the pseudospectrum σε(A) is that it describes
where the spectrum σ(A) can go to under small perturbations. Indeed,
if λ lies in the pseudospectrum σε(A), so that there exists a unit vector
v whose image w := (A− λI)v has magnitude at most ε, then we see
that

(A− wv∗ − λI)v = (A− λI)v − wv∗v = w − w = 0

and so λ lies in the spectrum σ(A−wv∗) of the perturbation A−wv∗
of A. Note that the operator norm of wv∗ is at most ε.

Conversely, if λ does not lie in the pseudospectrum σε(A), and
A+E is a small perturbation of A (with E having operator norm at
most ε), then for any unit vector v, one has

|(A+ E − λI)v| ≥ |(A− λI)v| − |Ev| > ε− ε = 0

by the triangle inequality, and so λ cannot lie in the spectrum of
A+ E.

Thus, if the pseudospectrum is tightly clustered around the spec-
trum, the spectrum is stable under small perturbations; but if the
pseudospectrum is widely dispersed, then the spectrum becomes un-
stable.

No matter what A is, the pseudospectrum σε(A) always contains
the ε-neighbourhood of the spectrum σ(A). Indeed, if v is a unit

79Another equivalent definition is that the ε-pseudospectrum consists of the spec-
trum, together with those complex numbers λ for which the resolvent (A − λ)−1 has
operator norm at least 1/ε.
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eigenvector with eigenvalue λ ∈ σ(A), then (A− λI)v = 0, which im-
plies that |(A−λ′I)v| = |λ−λ′| ≤ ε for any λ′ in the ε-neighbourhood
of λ, and the claim follows.

Conversely, when A is normal, σε(A) consists only of the ε-
neighbourhood of σ(A). This is easiest to see by using the spectral
theorem to diagonalise A and then computing everything explicitly.
In particular, we conclude that if we perturb a normal matrix by a
(possibly non-normal) perturbation of operator norm at most ε, then
the spectrum moves by at most ε.

In the non-normal case, things can be quite different. A good
example is provided by the shift matrix

U :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 .

This matrix is nilpotent : Un = 0. As such, the only eigenvalue is
zero. But observe that for any complex number λ,

(U − λI)


1
λ

. . .

λn−1

λn

 =


0
0
. . .

0
−λn+1

 .

From this and a little computation, we see that if |λ| < 1, then λ will
lie in the O

(
|λ|n+1

1−|λ|

)
-pseudospectrum of U . For fixed ε, we thus see

that σε(U) fills up the unit disk in the high dimensional limit n→∞.
(The pseudospectrum will not venture far beyond the unit disk, as
the operator norm of U is 1.) And indeed, it is easy to perturb U

so that its spectrum moves far away from the origin. For instance,
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observe that the perturbation

U + E :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
ε 0 0 . . . 0


of U has a characteristic polynomial det(U + E − λI) equal80 to
(−λ)n − (−1)nε and so has eigenvalues equal to the nth roots of ε;
for fixed ε and n tending to infinity, this spectrum becomes asymp-
totically uniformly distributed on the unit circle, rather than at the
origin.

Remark 1.15.1. Much more on the theory of pseudospectra can be
found at http://www.comlab.ox.ac.uk/pseudospectra/; thanks to
Nick Trefethen for the reference.

1.15.2. Spectral dynamics. The pseudospectrum tells us, roughly
speaking, how far the spectrum σ(A) of a matrix A can move with
respect to a small perturbation, but does not tell us the direction
in which the spectrum moves. For this, it is convenient to use the
language of calculus: we suppose that A = A(t) varies smoothly with
respect to some time parameter t, and would like to “differentiate”
the spectrum σ(A) with respect to t. Since it is a little unclear what it
means to differentiate a set, let us work instead with the eigenvalues
λj = λj(t) of A = A(t). Note that generically (e.g. for almost all
A), the eigenvalues will be distinct81. So it is not unreasonable to
assume that for all t in some open interval, the λj(t) are distinct; an
application of the implicit function theorem then allows one to make
the λj(t) smooth in t. Similarly, we can make the eigenvectors82

vj = vj(t) vary smoothly in t.

80Alternatively, one can simply observe that Un = εI; this fact is of course related
to the formula for the characteristic polynomial via the Cayley-Hamilton theorem.

81Proof: the eigenvalues are distinct when the characteristic polynomial has no
repeated roots, or equivalently when the resultant of the characteristic polynomial with
its derivative is non-zero. This is clearly a Zariski-open condition; since the condition
is obeyed at least once, it is thus Zariski-dense.

82There is some freedom to multiply each eigenvector by a scalar, but this freedom
will cancel itself out in the end, as we are ultimately interested only in the eigenvalues
rather than the eigenvectors.
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The eigenvectors v1, . . . , vn form a basis of Cn. Let w1, . . . , wn
be the dual basis, thus w∗j vk = δjk for all 1 ≤ j, k ≤ n, and so we have
the reproducing formula

(1.80) u =
n∑
j=1

(w∗ju)vj

for all vectors u. Combining this with the eigenvector equations

(1.81) Avk = λkvk

we obtain the adjoint eigenvector equations

(1.82) w∗kA = λkwk.

Next, we differentiate (1.81) using the product rule to obtain

(1.83) Ȧvk +Av̇k = λ̇kvk + λkv̇k.

Taking the inner product of this with the dual vector wk, and using
(1.82) to cancel some terms, we obtain the first variation formula for
eigenvalues:

(1.84) λ̇k = w∗kȦvk.

Note that if A is normal, then we can take the eigenbasis vk to be
orthonormal, in which case the dual basis wk is identical to vk. In
particular we see that |λ̇k| ≤ ‖Ȧ‖op; the infinitesimal change of each
eigenvalue does not exceed the infinitesimal size of the perturbation.
This is consistent with the stability of the spectrum for normal oper-
ators mentioned in the previous section.

Remark 1.15.2. If A evolves by the Lax pair equation Ȧ = [A,P ]
for some matrix P = P (t), then w∗kȦvk = w∗kλPvk − w∗kPλvk = 0,
and so from (1.84) we see that the spectrum of A is invariant in
time. This fact underpins the inverse scattering method for solving
integrable systems, which we will not discuss here.

Now we look at how the eigenvectors vary. Taking the inner
product instead with a dual vector wj for j 6= k, we obtain

w∗j Ȧvk + (λj − λk)w∗j v̇k = 0;
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applying (1.80) we conclude a first variation formula for the eigenvec-
tors vk, namely that

(1.85) v̇k =
∑
j 6=k

w∗j Ȧvk

λk − λj
vj + ckvk

for some scalar ck (the presence of this term reflects the freedom to
multiply ck by a scalar). Similar considerations for the adjoint give

(1.86) ẇk =
∑
j 6=k

w∗kȦvj
λk − λj

wj − ckwk

(here we use the derivative of the identity w∗kvk = 1 to get the correct
multiple of wk on the right-hand side). We can use (1.84), (1.85),
(1.86) to obtain a second variation formula for the eigenvalues. In-
deed, by differentiating (1.84) we obtain

λ̈k = ẇ∗kȦvk + w∗kÄvk + w∗kȦv̇k;

applying (1.85), (1.86) we conclude the second variation formula

(1.87) λ̈k = w∗kÄvk + 2
∑
j 6=k

(w∗kȦvj)(w
∗
j Ȧvk)

λk − λj
.

Now suppose that A is self-adjoint, so as before we can take vk = wk
to be orthonormal. The above formula then becomes

λ̈k = v∗kÄvk + 2
∑
j 6=k

|v∗kȦvj |2

λk − λj
.

One can view the terms on the right-hand side here as various “forces”
acting on the eigenvalue λk; the acceleration of the original matrix A
provides one such force, while all the other eigenvalues λj provide a
repulsive force83. The closer two eigenvalues are to each other, the
stronger the repulsive force becomes.

When the matrix A is not self-adjoint, then the interaction be-
tween λj and λk can be either repulsive or attractive. Consider for
instance the matrices (

1 t

−t −1

)
.

83As with Newton’s third law, the force that λj exerts on λk is equal and opposite
to the force that λk exerts on λj ; note that this is consistent with the trace formula∑n
k=1 λk = tr(A).
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The eigenvalues of this matrix are ±
√

1− t2 for −1 < t < 1 - so we
see that they are attracted to each other as t evolves, until the matrix
becomes degenerate at t = ±1. In contrast, the self-adjoint matrices(

1 t

t −1

)
.

have eigenvalues ±
√

1 + t2, which repel each other as t evolves.

The repulsion effect of eigenvalues is also consistent with the
smallness of the set of matrices with repeated eigenvalues. Con-
sider for instance the space of Hermitian n × n matrices, which has
real dimension n2. The subset of Hermitian matrices with distinct
eigenvalues can be described by a collection of n orthogonal (com-
plex) one-dimensional eigenspaces (which can be computed to have
2(n − 1) + 2(n − 2) + . . . + 2 = n(n − 1) degrees of freedom) plus n
real eigenvalues (for an additional n degrees of freedom), thus the set
of matrices with distinct eigenvalues has full dimension n2.

Now consider the space of matrices with one repeated eigenvalue.
This can be described by n− 2 orthogonal complex one-dimensional
eigenspaces, plus a complex two-dimensional orthogonal complement
(which has 2(n − 1) + 2(n − 2) + . . . + 4 = n(n − 1) − 2 degrees of
freedom) plus n − 1 real eigenvalues, thus the set of matrices with
repeated eigenvalues only has dimension n2 − 3. Thus it is in fact
very rare for eigenvalues to actually collide, which helps explain why
there must be a repulsion effect in the first place.

An example can help illustrate this phenomenon. Consider the
one-parameter family of Hermitian matrices(

t 0
0 −t

)
.

The eigenvalues of this matrix at time t are of course t and −t, which
cross over each other when t changes sign. Now consider instead the
Hermitian perturbation (

t ε

ε −t

)
for some small ε > 0. The eigenvalues are now

√
t2 + ε2 and−

√
t2 + ε2;

they come close to each other as t approaches 0, but then “bounce”
off of each other due to the repulsion effect.
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Notes. This article first appeared at terrytao.wordpress.com/2008/10/28.
Thanks to orr for corrections.

1.16. Concentration compactness and the profile
decomposition

One of the most important topological concepts in analysis is that of
compactness. There are various flavours of this concept, but let us
focus on sequential compactness: a subset E of a topological space
X is sequentially compact if every sequence in E has a convergent
subsequence whose limit is also in E. This property allows one to do
many things with the set E. For instance, it allows one to maximise
a functional on E:

Proposition 1.16.1 (Existence of extremisers). Let E be a non-
empty sequentially compact subset of a topological space X, and let F :
E → R be a continuous function. Then the supremum supx∈E f(x)
is attained at at least one point x∗ ∈ E, thus F (x) ≤ F (x∗) for all
x ∈ E. (In particular, this supremum is finite.) Similarly for the
infimum.

Proof. Let −∞ < L ≤ +∞ be the supremum L := supx∈E F (x). By
the definition of supremum (and the axiom of (countable) choice), one
can find a sequence x(n) in E such that F (x(n)) → L. By compact-
ness, we can refine this sequence to a subsequence (which, by abuse
of notation, we shall continue to call x(n)) such that x(n) converges to
a limit x in E. Since we still have f(x(n)) → L, and f is continuous
at x, we conclude that f(x) = L, and the claim for the supremum
follows. The claim for the infimum is similar. �

Remark 1.16.2. An inspection of the argument shows that one can
relax the continuity hypothesis on F somewhat: to attain the supre-
mum, it suffices that F be upper semicontinuous, and to attain the
infimum, it suffices that F be lower semicontinuous.

We thus see that sequential compactness is useful, among other
things, for ensuring the existence of extremisers. In finite-dimensional
spaces (such as Rn), compact sets are plentiful; indeed, the Heine-
Borel theorem asserts that every closed and bounded set is compact.
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However, once one moves to infinite-dimensional spaces, such as func-
tion spaces, then the Heine-Borel theorem fails quite dramatically;
most of the closed and bounded sets one encounters in a topological
vector space are non-compact, if one insists on using a reasonably
“strong” topology. This causes a difficulty in (among other things)
calculus of variations, which is often concerned to finding extremisers
to a functional F : E → R on a subset E of an infinite-dimensional
function space X.

In recent decades, mathematicians have found a number of ways
to get around this difficulty. One of them is to weaken the topology to
recover compactness, taking advantage of such results as the Banach-
Alaoglu theorem (or its sequential counterpart). Of course, there is a
tradeoff: weakening the topology makes compactness easier to attain,
but makes the continuity of F harder to establish. Nevertheless, if
F enjoys enough “smoothing” or “cancellation” properties, one can
hope to obtain continuity in the weak topology, allowing one to do
things such as locate extremisers84.

Another option is to abandon trying to make all sequences have
convergent subsequences, and settle just for extremising sequences
to have convergent subsequences, as this would still be enough to
retain Proposition 1.16.1. Pursuing this line of thought leads to the
Palais-Smale condition, which is a substitute for compactness in some
calculus of variations situations.

But in many situations, one cannot weaken the topology to the
point where the domain E becomes compact, without destroying the
continuity (or semi-continuity) of F , though one can often at least find
an intermediate topology (or metric) in which F is continuous, but
for which E is still not quite compact. Thus one can find85 sequences
x(n) in E which do not have any subsequences that converge to a
constant element x ∈ E, even in this intermediate metric. Because of
this, it is a priori conceivable that a continuous function F need not
attain its supremum or infimum.

84The phenomenon that cancellation can lead to continuity in the weak topology
is sometimes referred to as compensated compactness.

85As we shall see shortly, one major cause of this failure of compactness is the
existence of a non-trivial action of a non-compact group G on E; such a group action
can cause compensated compactness or the Palais-Smale condition to fail also.
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Nevertheless, even though a sequence x(n) does not have any sub-
sequences that converge to a constant x, it may have a subsequence
(which we also call x(n)) which converges to some non-constant se-
quence y(n) (in the sense that the distance d(x(n), y(n)) between the
subsequence and the new sequence in a this intermediate metric),
where the approximating sequence y(n) is of a very structured form
(e.g. “concentrating” to a point, or “travelling” off to infinity, or a
superposition y(n) =

∑
j y

(n)
j of several concentrating or travelling

profiles of this form). This weaker form of compactness, in which
superpositions of a certain type of profile completely describe all the
failures (or defects) of compactness, is known as concentration com-
pactness, and the decomposition x(n) ≈

∑
j y

(n)
j of the subsequence

is known as the profile decomposition. In many applications, it is
a sufficiently good substitute for compactness that one can still do
things like locate extremisers for functionals F - though one often
has to make some additional assumptions of F to compensate for the
more complicated nature of the compactness. This phenomenon was
systematically studied by P.L. Lions in the 80s, and found great ap-
plication in calculus of variations and nonlinear elliptic PDE. More
recently, concentration compactness has been a crucial and powerful
tool in the non-perturbative analysis of nonlinear dispersive PDE, in
particular being used to locate “minimal energy blowup solutions” or
“minimal mass blowup solutions” for such a PDE (analogously to how
one can use calculus of variations to find minimal energy solutions to
a nonlinear elliptic equation); see for instance [KiVi2008].

In typical applications, the concentration compactness phenom-
enon is exploited in moderately sophisticated function spaces (such
as Sobolev spaces or Strichartz spaces), with the failure of traditional
compactness being connected to a moderately complicated group G of
symmetries (e.g. the group generated by translations and dilations).
Because of this, concentration compactness can appear to be a rather
complicated and technical concept when it is first encountered. In
this note, I would like to illustrate concentration compactness in a
simple toy setting, namely in the space X = l1(Z) of absolutely sum-
mable sequences, with the uniform (l∞) metric playing the role of
the intermediate metric, and the translation group Z playing the role



1.16. Concentration compactness and the profile decomposition123

of the symmetry group G. This toy setting is significantly simpler
than any model that one would actually use in practice [for instance,
in most applications X is a Hilbert space], but hopefully it serves to
illuminate this useful concept in a less technical fashion.

1.16.1. Defects of compactness in l1(Z). Consider the space

X := l1(Z) := {(xm)m∈Z :
∑
m∈Z

|xm| <∞}

of absolutely summable doubly infinite sequences x = (xm)m∈Z; this
is a normed vector space generated by the basis vectors en := (δn,m)m∈Z
for n ∈ Z (here δ is the Kronecker delta). We can place several topolo-
gies on this space X:

Definition 1.16.3. Let x(n) = (x(n)
m )m∈Z be a sequence in X (i.e. a

sequence of sequences!), and let x = (xm)m∈Zbe another element in
X.

(1) (Strong topology) We say that x(n) converges to x in the
strong topology (or l1 topology) if the l1 distance ‖x(n) −
x‖l1(Z) :=

∑
m∈Z |x

(n)
m − xm| converges to zero.

(2) (Intermediate topology) We say that x(n) converges in x in
the intermediate topology (or uniform topology) if the l∞

distance ‖x(n)−x‖l∞(Z) := supm∈Z |x
(n)
m −xm| converges to

zero.

(3) (Weak topology) We say that x(n) converges86 in x in the
weak topology (or pointwise topology) if x(n)

m → xm as n →
∞ for each m.

Example 1.16.4. The sequence en for n = 1, 2, . . . converges weakly
to zero, but is not convergent in the strong or intermediate topologies.
The sequence 1

n

∑n
n′=1 en′ converges in the intermediate and weak

topologies to zero, but is not convergent in the strong topology.

It is easy to see that strong convergence implies intermediate
convergence, which in turn implies weak convergence, thus justify-
ing the names “strong”, “intermediate”, and “weak”. For bounded

86Strictly speaking, this only describes the weak topology for bounded sequences,
but these are the only sequences we will be considering here.
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sequences, the intermediate topology can also be described by a num-
ber of other norms, e.g. the lp(Z) norm for any p > 1 (this is an easy
application of Hölder’s inequality).

The space X also has the translation action of the group of inte-
gers G := Z, defined using the shift operators Th : X → X for h ∈ G,
defined by the formula

Th(xm)m∈Z := (xm−h)m∈Z

(in particular, Th is linear with Then = en+h). This action is con-
tinuous with respect to all three of the above topologies. (We give G
the discrete topology.)

Inside the infinite-dimensional space X, we let E be the “unit
sphere” (though it looks more like an octahedron, actually)

E := {(xm)m∈Z ∈ X :
∑
m∈Z

|xm| = 1}.

E is clearly invariant under the translation action of G. It is easy to
see that E is closed and bounded in the strong topology (or metric).
However, it is not closed in the weak topology: the sequence en ∈ E of
basis vectors for n = 1, 2, . . . converges weakly to the origin 0, which
lies outside of E. It is also not closed in the intermediate topology;
the sequence 1

n

∑n
n′=1 en′ lies in E but converges in the intermediate

topology to 0, which lies outside of E.

The failure of closure in the weak topology causes failure of com-
pactness in the strong or intermediate topologies. Indeed, the se-
quence en ∈ E cannot have any convergent subsequence in those
topologies, since the limit of such a subsequence would have to equal
its weak limit, which is zero; but en clearly does not converge in either
the strong or intermediate topologies to 0. (To put it another way,
the embedding of l1(Z) into l∞(Z) is not compact.)

More generally, for any fixed profile x ∈ E, the “travelling wave”
(or “travelling profile”) Tnx ∈ E for n = 1, 2, . . . converges weakly to
zero, and so by the above argument has no convergent subsequence
in the strong or intermediate topologies. A little more generally still,
given any sequence h(n) of integers going off to infinity, Th

(n)
x ∈ E is

a sequence in E which has no convergent subsequence in the strong
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or intermediate topologies. Thus we see that the action of the (non-
compact) group G is causing a failure of compactness of E in the
strong and intermediate topologies.

Because of the linear nature of the vector space X, one can also
create examples of sequences in E with no convergent subsequences by
taking superpositions of travelling profiles. For instance, if x1, x2 ∈ X
are two non-negative sequences with ‖x1‖l1(Z) + ‖x2‖l1(Z) = 1, and
h

(n)
1 , h

(n)
2 are two sequences of integers which both go off to infinity,

|h(n)
1 |, |h

(n)
2 | → ∞

then the superposition

x(n) := Th
(n)
1 x1 + Th

(n)
2 x2

of the two travelling profiles Th
(n)
1 x1 and Th

(n)
2 x2 will be a sequence

in E that continues to converge weakly to zero, and so again has no
convergent subsequence in the strong or intermediate topologies.

If x1 and x2 are not non-negative, then there can be cancellations
between Th

(n)
1 x1 and Th

(n)
2 x2, which could cause x(n) to have norm

significantly less than 1 (thus straying away from E). However, if one
also imposes the asymptotic orthogonality condition

|h(n)
2 − h(n)

1 | → ∞

we see that these cancellations vanish in the limit n→∞, and so in
this case87 we can build a modified superposition

x(n) := Th
(n)
1 x1 + Th

(n)
2 x2 + w(n)

that lies in E, with w(n) converging to zero in the strong and uniform
topology, and will once again be a sequence with no convergent subse-
quence. More generally, given any collection xj of non-zero elements
of X with

(1.88)
∑
j

‖xj‖l1(Z) ≤ 1

87If the asymptotic orthogonality condition fails, then one can collapse the su-
perposition of two travelling profiles into a single travelling profile, after passing to

a subsequence if necessary. Indeed, if |h(n)
2 − h(n)

1 | does not go to infinity, then we

can find a subsequence for which h
(n)
2 − h(n)

1 is equal to a constant c, in which case

Th
(n)
1 f1 + Th

(n)
2 f2 is equal to a single travelling profile Th

(n)
1 (f1 + T cf2).
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and any sequences h(n)
j of integers obeying the asymptotic orthogo-

nality condition

(1.89) |h(n)
j′ − h

(n)
j | → ∞ asn→∞

for all j′ > j, we can find a sequence in x(n) that takes the form

(1.90) x(n) =
∑
j

Th
(n)
j xj + w(n)

where w(n) converges to zero in the intermediate topology88. If h(n)
j

goes off to infinity for at least one j with xj non-zero, then this
sequence will have no convergent subsequence.

We have thus demonstrated a large number of ways that com-
pactness of E fails in the strong and intermediate topologies. The
concentration compactness phenomenon, in this setting, tells us that
these are essentially the only ways in which compactness fails in the
intermediate topology. More precisely, one has

Theorem 1.16.5 (Profile decomposition). Let x(n) be a sequence
in E. Then, after passing to a subsequence (which we still call x(n)),
there exist xj ∈ X obeying (1.88), and sequences h(n)

j of integers obey-
ing (1.89), such that we have the decomposition (1.90) where the error
w(n) converges to zero in the intermediate topology. Furthermore, we
can improve (1.88) to

(1.91)
∑
j

‖xj‖l1(Z) + lim
n→∞

‖w(n)‖l1(Z) ≤ 1

Remark 1.16.6. The situation is vastly different in the strong topol-
ogy; in this case, virtually every sequence in E fails to have a con-
vergent subsequence (consider for instance the sequence 1

n

∑n
n′=1 en′

from Example 1.16.4), and there are so many different ways a se-
quence can behave that there is no meaningful profile decomposition.
A more quantitative way to see this is via a computation of met-
ric entropy constants (i.e. covering numbers). Pick a small number
ε > 0 (e.g. ε = 0.1) and a large number N , and consider how many
balls of radius ε in the l1({1, . . . , N}) norm are needed to cover the

88If one has equality in (1.88), one can make w(n) converge in the strong topology
also.
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unit sphere EN in l1({1, . . . , N}). A simple volume packing argu-
ment shows that this number must grow exponentially in N . On the
other hand, if one wants to cover EN with the (much larger) balls
of radius ε in the l∞({1, . . . , N}) topology instead, the number of
balls needed grows only polynomially with N . Indeed, after rounding
down each coefficient of an element of l1({1, . . . , N}) to a multiple of
ε, there are only at most 1/ε non-zero coefficients, and so the total
number of possibilities for this rounded down approximant is about
(n/ε)1/ε. Thus, the metric entropy constants for both the strong and
intermediate topologies go to infinity in the infinite dimensional limit
N → ∞ (thus demonstrating the lack of compactness for both), but
much more rapidly for the former than for the latter.

1.16.2. Proof sketch of Theorem 1.16.5. We now sketch how one
would prove Theorem 1.16.5. The idea is to hunt down and “domes-
ticate”89 the large values of x(n), as these are the only obstructions to
convergence in the intermediate topology. Each large piece of the x(n)

that we capture in this manner will decrease the total “mass” in play,
which guarantees that eventually one runs out of such large pieces, at
which point90 one obtains the decomposition (1.90). In this process
we rely heavily on the freedom to pass to a subsequence at will, which
is useful to eliminate any fluctuations so long as they range over a
compact space of possibilities.

Let’s see how this procedure works. We begin with our bounded
sequence x(n), whose l1 norms are all equal to 1. If this sequence
already converging to zero in the intermediate topology, we are done
(we let j range over the empty set, and set w(n) equal to all of x(n).
So suppose that x(n) are not converging to zero in this topology.
Passing to a subsequence if necessary, this implies the existence of
an ε1 > 0 such that ‖x(n)‖l∞(Z) > ε1 for all n. Thus we can find
integers h(n)

1 such that |x(n)

h
(n)
1

| > ε1 for all n, or equivalently that the

shifts T−h
(n)
1 x(n) have their zero coefficient uniformly bounded below

in magnitude by ε1.

89I thank Kyril Tintarev for this terminology.
90Curiously, the strategy here is very similar to that underlying the structural

theorems that arise in additive combinatorics and ergodic theory; see Section 2.1 of
Structure and Randomness.
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We have used the symmetry group G to move a large compo-
nent of each of the x(n) the origin. Now we take advantage of se-
quential compactness of the unit ball in the weak topology. This
allows one (after passing to another subsequence) to assume that the
shifted elements T−h

(n)
1 x(n) converge weakly to some limit x1; since

the T−h
(n)
1 x(n) are uniformly non-trivial at the origin, the weak limit

x1 is also; in particular, we have ‖x1‖l1(Z) ≥ ε1 > 0. Undoing the
shift, we have obtained a decomposition

x(n) = Th
(n)
1 x1 + w

(n)
1

where the residual w(n)
1 is such that T−h

(n)
1 w

(n)
1 converges weakly to

zero (thus, in some sense w(n)
1 vanishes asymptotically near h(n)

1 ). It is
then not difficult to show the “asymptotic orthogonality” relationship

‖x(n)‖l1(Z) = ‖Th
(n)
1 x1‖l1(Z) + ‖w(n)

1 ‖l1(Z) + o(1)

where o(1) is a quantity that goes to zero as n → ∞; this implies,
in particular, that the residual w(n)

1 eventually has mass strictly less
than that of the original sequence x(n)

1 :

‖w(n)
1 ‖l1(Z) ≤ 1− ε1 + o(1);

in fact we have the more precise relationship

‖x1‖l1(Z) + lim
n→∞

‖w(n)
1 ‖l1(Z) = 1.

Now we take this residual w(n)
1 and repeat the whole process. Namely,

if w(n)
1 converges in the intermediate topology to zero, then we are

done; otherwise, as before, we can find (after passing to a subse-
quence) ε2 > 0, h(n)

2 for which T−h
(n)
2 w

(n)
1 is bounded from below

by ε2 at the origin. Because T−h
(n)
1 w

(n)
1 already converged weakly

to zero, one can conclude that h(n)
2 and h

(n)
1 must be asymptotically

orthogonal in the sense of (1.89).

Passing to a subsequence again, we can assume that T−h
(n)
2 w

(n)
2

converges weakly to a limit x2 with mass at least ε2, leading to a
decomposition

x(n) = Th
(n)
1 x1 + Th

(n)
2 x2 + w

(n)
2
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where the residual w(n)
2 is such that T−h

(n)
1 w

(n)
2 and T−h

(n)
2 w

(n)
2 both

converge weakly to zero, and has norm

‖w(n)
2 ‖l1(Z) ≤ 1− ε1 − ε2 + o(1);

in fact we have the more precise relationship

‖x1‖l1(Z) + ‖x2‖l1(Z) + lim
n→∞

‖w(n)
2 ‖l1(Z) = 1.

One can continue in this vein, extracting more and more travelling
profiles Th

(n)
j xj on finer and finer subsequences, with residuals w(n)

j

that are getting smaller and smaller. The subsequences involved de-
pend on j, but by the usual Cantor (or Arzelá-Ascoli) diagonalisation
argument, one can work with a single sequence throughout. Note
that the amounts of mass εj that are extracted in this process cannot
exceed 1 in total:

∑
j εj ≤ 1 (in fact we have the slightly stronger

statement (1.89)). In particular, the εj must go to zero as j → ∞.
If the εj were selected in a “greedy” manner, this shows that the
asymptotic l∞(Z) norm of the residuals w(n)

j as n → ∞ must decay
to zero as j → ∞. Carefully rearranging the epsilons, this gives the
decomposition (1.90) with residual w(n) converging to zero in the in-
termediate topology, and the verification of the rest of the theorem is
routine.

Remark 1.16.7. It is tempting to view Theorem 1.16.5 as asserting
that the space E with the l∞(Z) can be “compactified” by throwing in
some idealised superposition of profiles that are “infinitely far apart”
from each other. However, I do not know of a clean way to formalise
this compactification.

1.16.3. An application of concentration compactness. As men-
tioned in the introduction, one can use the profile decomposition of
Theorem 1.16.5 as a substitute for compactness in establishing results
analogous to Proposition 1.16.1. The catch is that one needs more
hypotheses on the functional F in order to be able to handle the com-
plicated profiles that come up. It is difficult to formalise the “best”
set of hypotheses that would cover all conceivable situations; it seems
better to just adapt the general arguments to each individual situa-
tion separately. Here is a typical (but certainly not optimal) result of
this type:
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Theorem 1.16.8. . Let X, E be as above. Let F : X → R+ be a
non-negative function with the following properties:

(1) (Continuity) F is continuous in the intermediate topology
on E.

(2) (Homogeneity) F is homogeneous of some degree 1 < p <

∞, thus F (λx) = λpF (x) for all λ > 0 and x ∈ X. (In
particular, F (0) = 0.)

(3) (Invariance) F is G-invariant: F (Thx) = F (x) for all h ∈
Z and x ∈ X.

(4) (Asymptotic additivity) If h(n)
j are a collection of sequences

obeying the asymptotic orthogonality condition (1.88), and
xj ∈ X are such that

∑
j ‖xj‖l1(Z) < ∞, then

∑
j F (xj) <

∞ and F (
∑
j T

h
(n)
j xj) =

∑
j F (xj) + o(1). More generally,

if w(n) is bounded in l1 and converges to zero in the inter-
mediate topology, then F (

∑
j T

h
(n)
j xj +w(n)) =

∑
j F (xj) +

o(1). (Note that this generalises both 1. and 3.)

Then F is bounded on E, and attains its supremum.

A typical example of a functional F obeying the above properties
is

F ((xm)m∈Z) :=
∑
m∈Z

|xm − xm+1|p

for some 1 < p <∞.

Proof. We repeat the proof of Proposition 1.16.1. Let L := supx∈E F (x).
Clearly L ≥ 0; we can assume that L > 0, since the claim is trivial
when L = 0. As before, we have an extremising sequence x(n) ∈ E
with F (x(n))→ L. Applying Theorem 1.16.5, and passing to a subse-
quence, we obtain a decomposition (1.90) with the stated properties.
Applying the asymptotic additivity hypothesis 4., we have

F (x(n)) =
∑
j

F (xj) + o(1)

and in particular

(1.92) L =
∑
j

F (xj).
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This implies in particular that L is finite.

Now, we use the homogeneity assumption. Since F (x) ≤ L when
‖x‖l1(Z) = 1, we obtain the bound F (x) ≤ L‖x‖pl1(Z). We conclude
that

L ≤ L
∑
j

‖xj‖pl1(Z).

Combining this with (1.88) we obtain

L ≤
∑
j

L‖xj‖pl1(Z) ≤ L
∑
j

‖xj‖l1(Z) ≤ L.

Thus all these inequalities must be equality. Analysing this, we see
that all but one of the xj must vanish, with the remaining xj (say x0)
having norm 1. From (1.92) we thus have F (x0) = L, and we have
obtained the desired extremiser. �

Notes. This article first appeared at terrytao.wordpress.com/2008/11/05.
Thanks to Jerry Gagelman, JC, A.P., Dylan Thurston, and David
Speyer for corrections.

1.17. A counterexample to a strong polynomial
Freiman-Ruzsa conjecture

One of my favourite open problems in additive combinatorics is the
polynomial Freiman-Ruzsa conjecture[Gr2005]. It has many equiv-
alent formulations (which is always a healthy sign when consider-
ing a conjecture), but here is one involving “approximate homomor-
phisms”:

Conjecture 1.17.1 (Polynomial Freiman-Ruzsa conjecture). Let f :
Fn2 → Fm2 be a function which is an approximate homomorphism in
the sense that f(x+y)−f(x)−f(y) ∈ S for all x, y ∈ Fn2 and some set
S ⊂ Fm2 . Then there exists a genuine homomorphism g : Fn2 → Fm2
such that f − g takes at most O(|S|O(1)) values.

Remark 1.17.2. The key point here is that the bound on the range
of f−g is at most polynomial in |S|. An exponential bound of 2|S| can
be trivially established by splitting Fm2 into the subspace spanned by
S (which has size at most 2|S|) and some complementary subspace,
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and then letting g be the projection of f to that complementary
subspace.

In a forthcoming paper with Ben Green, we showed that this con-
jecture is equivalent to a certain polynomially quantitative strength-
ening of the inverse conjecture for the Gowers norm U3(Fn2 ). For this
(somewhat technical) post, I want to comment on a possible further
strengthening of this conjecture, namely

Conjecture 1.17.3 (Strong Polynomial Freiman-Ruzsa conjecture).
Let f : Fn2 → Fm2 be a function which is an approximate homomor-
phism in the sense that f(x+ y)− f(x)− f(y) ∈ S for all x, y ∈ Fn2
and some set S ⊂ Fm2 . Then there exists a genuine homomor-
phism g : Fn2 → Fm2 such that f − g takes values in the sumset
CS := S + . . .+ S for some fixed C = O(1).

This conjecture is known to be true for certain types of set S
(e.g. for Hamming balls, this was shown in [Fa2000]). Unfortu-
nately, it is false in general; the purpose of this post is to describe
one counterexample (related to the failure of the inverse conjecture
for the Gowers norm for U4(Fn2 ) for classical polynomials; in partic-
ular, the arguments here have several features in common with those
in [LoMeSa2008], [GrTa2007]; a somewhat different counterexam-
ple also appears in [Fa2000]. The verification of the counterexample
is surprisingly involved, ultimately relying on the multidimensional
Szemerédi theorem[FuKa1979].

1.17.1. Description of counterexample. We let n be a large num-
ber, and replace Fm2 by the n(n+1)

2 -dimensional vector space V of
quadratic forms Q : Fn2 → F2 (with a basis given by the monomials
xixj with 1 ≤ i ≤ j ≤ n). We let f : Fn2 → V be defined by the
formula

f(h1, . . . , hn)(x1, . . . , xn) :=
∑

1≤i<j≤n

hixihjxj .

A brief computation shows that for any h, k ∈ Fn2 , the quadratic form
f(h + k) − f(h) − f(k) is of rank at most three, by which we mean
that it is a function of at most three linear forms. More specifically,
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we have

(1.93) f(h+ k)− f(h)− f(k) = ah,kbh,k + bh,kch,k + ch,kah,k

where

ah,k(x) :=
n∑
i=1

hi(1− ki)xi

bh,k(x) :=
n∑
i=1

(1− hi)xi

ch,k(x) :=
n∑
i=1

hikixi

Thus, if we let S be the space of quadratic forms of rank at most 3,
the hypotheses of Conjecture 1.17.3 hold.

1.17.2. Verification of counterexample. To establish the coun-
terexample, we assume for contradiction that there exists a linear
function g : Fn2 → V such that f(h)− g(h) has bounded rank for all
h, and deduce a contradiction (for n sufficiently large).

By hypothesis, we have linear forms Lh,1, . . . , Lh,d for all h ∈ Fn2
and some d = O(1) and coefficients ch,i,j ∈ F2 for all 1 ≤ i ≤ j ≤ d

such that
f(h)− g(h) =

∑
1≤i≤j≤n

ch,i,jLh,iLh,d

and in particular (by (1.93) and linearity of g)
(1.94)
ah,kbh,k+bh,kch,k+ch,kah,k =

∑
1≤i≤j≤n

ch+k,i,jLh+k,iLh+k,d−ch,i,jLh,iLh,d−ck,i,jLk,iLk,d.

The key point is that the linear forms ah,k, bh,k, ch,k are usu-
ally “independent” of the linear forms Lh,i, Lk,i, Lh+k,i. The crucial
lemma in this regard is

Lemma 1.17.4. If h, k are selected uniformly and independently at
random, then with probability 1−o(1), ah,k is not a linear combination
of the Lh,i, Lk,i, Lh+k,i. Similarly for bh,k, ch,k.

Proof. By cyclically permuting h, k, h + k it suffices to show this
for ch,k. Since there are at most O(1) possible linear combinations
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amongst the Lh,i, Lk,i, Lh+k,i, it suffices to show that for any given
assignments h 7→ L′h, k 7→ L′′k , h+ k 7→ L′′′h+k of linear forms, that the
probability of the event

(1.95) ch,k = L′h + L′′k + L′′′h+k

is o(1). Suppose for contradiction that the event (1.95) holds for a
set E of pairs (h,k) in Fn2 × Fn2 of positive density. Applying the
multidimensional Szemerédi theorem[FuKa1979] we can find (for n
large enough) a square (h, k), (h+ r, k), (h, k + r), (h+ r, k + r) in E

with r non-zero. Applying (1.95) for all four pairs and summing, we
obtain

ch,k + ch+r,k + ch,k+r + ch+r,k+r = 0

(recall we are in characteristic 2). But the left-hand side is equal to
the linear form

∑
i rixi, which is non-zero, a contradiction. �

Now we can obtain the desired contradiction. For a generic choice
of h, k, we now know that none of the ah,k, bh,k, ch,k are linear combi-
nations of the Lh,i, Lk,i, Lh+k,i. Thus, on a given level set of the
Lh,i, Lk,i, Lh+k,i (which form a subspace of Fn2 ), the linear func-
tions ah,k, bh,k, ch,k are non-constant, and so the range of the triplet
(ah,k, bh,k, ch,k) must be an affine subspace of F 3

2 which is not con-
tained in any coordinate plane. This forces this subspace to have
dimension at least two. But then the function (a, b, c) 7→ ab+ bc+ ca

cannot be constant on this space, contradicting (1.94), and so Con-
jecture 1.17.3 fails.

Remark 1.17.5. The function f appearing in the above example is
closely related to the symmetric polynomial

S4(x) :=
∑

1≤i<j<k<l≤n

xixjxkxl.

Indeed, one can show that the derivative S4(x + h) − S4(x) of S4

is equal to f(h), plus some additional terms which involve only a
finite number of linear forms, and the quadratic polynomial S2(x) :=∑

1≤i<j≤n xixj . If it was the case that f could be approximated by
a linear map g modulo low rank errors, then it one could use this to
eventually show that S4 correlated with a cubic polynomial; but it is
known [LoMeSa2008], [GrTa2007] that this is not the case. Thus
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there is an alternate way to verify that the above example is indeed a
counterexample to the strong polynomial Freiman-Ruzsa conjecture.

Notes. This article first appeared at terrytao.wordpress.com/2008/11/09,
and is derived from forthcoming joint work with Ben Green.

1.18. Some notes on “non-classical” polynomials
in finite characteristic

Let k ≥ 0 be an integer. The concept of a polynomial P : R→ R of
one variable of degree < k (or ≤ k − 1) can be defined in one of two
equivalent ways:

• (Global definition) P : R → R is a polynomial of degree
< k iff it can be written in the form P (x) =

∑
0≤j<k cjx

j

for some coefficients cj ∈ R.

• (Local definition) P : R→ R is a polynomial of degree < k

if it is k-times continuously differentiable and dk

dxk
P ≡ 0.

From single variable calculus we know that if P is a polynomial in
the global sense, then it is a polynomial in the local sense; conversely,
if P is a polynomial in the local sense, then from the Taylor series
expansion

P (x) =
∑

0≤j<k

P (j)(0)
j!

xj

we see that P is a polynomial in the global sense. We make the trivial
remark that we have no difficulty dividing by j! here, because the field
R is of characteristic zero.

The above equivalence carries over to higher dimensions:

• (Global definition) P : Rn → R is a polynomial of de-
gree < k iff it can be written in the form P (x1, . . . , xn) =∑

0≤j1,...,jn;j1+...+jn<k
cj1,...,jnx

j1
1 . . . xjnn for some coefficients

cj1,...,jn ∈ R.

• (Local definition) P : Rn → R is a polynomial of degree < k

if it is k-times continuously differentiable and (h1 ·∇) . . . (hk ·
∇)P ≡ 0 for all h1, . . . , hk ∈ Rn.
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Again, it is not difficult to use several variable calculus to show that
these two definitions of a polynomial are equivalent.

The purpose of this (somewhat technical) post here is to record
some basic analogues of the above facts in finite characteristic, in
which the underlying domain of the polynomial P is F or Fn for
some finite field F . In the “classical” case when the range of P is also
the field F, it is a well-known fact (which we reproduce here) that the
local and global definitions of polynomial are equivalent. But in the
“non-classical” case, when P ranges in a more general group (and in
particular in the unit circle R/Z), the global definition needs to be
corrected somewhat by adding some new monomials to the classical
ones xj11 . . . xjnn . Once one does this, one can recover the equivalence
between the local and global definitions.

1.18.1. General theory. One can extend the local definition of a
polynomial to cover maps P : G→ H for any additive91 groups G, H.
Given any such map, and any h ∈ G, define the shift ThP : G → H

and the (discrete) derivative ∆hP : G→ H by the formulae

ThP (x) := P (x+ h); ∆hP = ThP − P,

thus schematically we have

(1.96) ∆h = Th − 1.

We say that P is an (additive) polynomial of degree < k (or degree
≤ k − 1) if ∆h1 . . .∆hkP = 0 for all h1, . . . , hk ∈ G. Note that this
corresponds to the definition of a classical polynomial from Rn to R
once one adds some regularity conditions, such as k-times differentia-
bility (actually, measurability will already suffice).

Examples 1.18.1. The zero function has degree < 0. A constant
function has degree ≤ 0. A homomorphism has degree ≤ 1. Com-
posing a polynomial of degree ≤ k with a homomorphism (either on
the left or right) will give another polynomial of degree ≤ k. The
sum of two polynomials of degree ≤ k is again of degree ≤ k. The
derivative ∆hP of a polynomial of degree < k is of degree < k − 1.

91There is also an important generalisation of this concept to the case of nilpotent
groups; we will not concern ourselves with this generalisation here, but see [Le1998],
[Le2002].
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Since ThP = P + ∆hP , we conclude that the shift of any polynomial
of degree < k is also of degree < k.

Now we show that the product and composition of polynomials
is again a polynomial.

Lemma 1.18.2 (Product of polynomials is again polynomial). Let
P : G→ H,Q : G→ K be polynomials of degree ≤ h, ≤ k respectively
for some h, k ≥ 0, and let B : H ×K → L be a bilinear map. Then
B(P,Q) is a polynomial of degree ≤ h+ k.

Proof. We induct on h + k. The claim is easy when h or k is zero,
so suppose that h, k > 0 and the claim has already been proven for
smaller values of h+ k. From the discrete product rule

∆gB(P,Q) = B(∆gP,Q) +B(T gP,∆gQ)

and induction we see that ∆gB(P,Q) is of degree ≤ h + k − 1, and
thus B(P,Q) has degree ≤ h+ k as desired. �

Corollary 1.18.3. If H is a ring, then the product of two polynomials
from G to H of degree ≤ h,≤ k respectively is of degree ≤ h+ k.

Lemma 1.18.4 (Composition of polynomials is again polynomial).
Let P : G → H,Q : H → K be polynomials of degree ≤ h,≤ k

respectively for some h, k ≥ 0. Then Q ◦ P : G→ K is a polynomial
of degree ≤ hk.

Proof. For inductive reasons it is convenient to prove the following
more general statement: if P : G → H,Q : H → K are polynomi-
als of degree ≤ h + m,≤ k respectively for some m,h, k ≥ 0, and
R1, . . . , Rm : G → H are polynomials of degree ≤ r1, . . . ,≤ rm re-
spectively, where 0 ≤ rj ≤ k for all j, then the function S : G → K

defined by
S(x) := [∆R1(x) . . .∆Rm(x)P ](Q(x))

is a polynomial of degree hk + r1 + . . . + rm. Clearly Lemma 1.18.4
follows from the m ≥ 0 case of this claim.

We prove this claim by induction on h, then for fixed h by in-
duction on m, then for fixed h and m by induction on r1 + . . .+ rm.
Thus, assume that the claim has already been shown for all smaller
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values of h, or for the same value of h and all smaller values of m, or
for the same values of h, m and all smaller values of r1 + . . .+ rm.

If rm = 0 then Rm is constant, and by replacing P with ∆RmP

and decrementing m, we see that the claim follows from the induction
hypothesis. Similarly if any other of the rj vanish (since the derivative
operators commute with each other). So we may assume that rj > 0
for all j.

Let g in G. By considering the successive differences between the
quantities

S(x) = [∆R1(x)∆R2(x) . . .∆Rm(x)](Q(x)),

[∆R1(x)∆R2(x) . . .∆Rm(x)](TgQ(x)),

[∆TgR1(x)∆R2(x) . . .∆Rm(x)](TgQ(x)),

[∆TgR1(x)∆TgR2(x) . . .∆Rm(x)](TgQ(x)),

...

TgS(x) = [∆TgR1(x)∆TgR2(x) . . .∆TgRm(x)](TgQ(x)),

we see that ∆gS(x) is the sum of

[∆R1(x)∆R2(x) . . .∆Rm(x)∆∆gQ(x)P ](Q(x)),

[∆∆gR1(x)∆R2(x) . . .∆Rm(x)](R1(x) + TgQ(x)),

[∆TgR1(x)∆∆gR2(x) . . .∆Rm(x)∆g](R2(x) + TgQ(x))

...

[∆TgR1(x)∆TgR2(x) . . .∆∆gRm(x)∆g](Rm(x) + TgQ(x)).

By the induction hypothesis, each of these terms are polynomials of
degree ≤ hk + r1 + . . .+ rm − 1. The claim follows. �

1.18.2. The classical case. Now we consider polynomials taking
values in a finite field F .

Lemma 1.18.5 (Global description of classical one-dimensional poly-
nomials). Let F be a field of prime order p. For any k ≥ 0, a
function P : F → F is of degree < k if and only if we can expand
P (x) =

∑
0≤j<k cjx

j for some coefficients cj ∈ F ; this expansion is
unique for k ≤ p. Also, every function P : F → F is a polynomial of
degree < p.
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Proof. The “if” portion of the lemma follows from Corollary 1.18.3
(since the identity function x 7→ x is clearly of degree ≤ 1). For the
“only if” part, observe from the binomial identity

Th = (1 + ∆1)h =
h∑
j=0

(
h

j

)
∆j

1

for any non-negative integer h, that

f(h) =
h∑
j=0

(
h

j

)
∆j

1f(0).

Since h 7→
(
h
j

)
= h(h−1)...(h−j+1)

j! can be meaningfully defined on F

for 0 ≤ j < p, we conclude in particular that

f(h) =
p−1∑
j=0

(
h

j

)
∆j

1f(0).

Since
(
h
j

)
can be expanded as a linear combination over F of 1, h, . . . , hj ,

we obtain the remaining claims in Lemma 1.18.5. (Note that as the
space of functions from F to F is p-dimensional, and generated by
1, x, . . . , xp−1, these functions must be linearly independent.) �

Corollary 1.18.6 (Integration lemma). Let f : F → F be a poly-
nomial of degree ≤ k for some 0 ≤ k ≤ p − 2, and let h ∈ F\0.
Then there exists a polynomial P : F → F of degree ≤ k + 1 such
that f = ∆hP . (In particular, this implies the mean zero condi-
tion

∑
x∈F f(x) = 0. Conversely, any function f : F → F with∑

x∈F f(x) = 0 is a polynomial of degree ≤ p− 2.

Proof. From Lemma 1.18.5, the space of polynomials of degree ≤ k

and ≤ k+1 is a vector space over F of dimension k+1 and k+2 respec-
tively. The derivative operator ∆h is a linear transformation from the
latter to the former with a one-dimensional kernel (the space of con-
stants), and must therefore be surjective. The first claim follows. The
second claim follows by a similar dimension counting argument. �

We can iterate Lemma 1.18.5 to describe polynomials in higher
dimensions:
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Lemma 1.18.7 (Global description of classical multi-dimensional
polynomials). Let F be a field of prime order p, and let n ≥ 1. For
any k ≥ 0, a function P : Fn → F is of degree < k if and only if we
can expand P (x1, . . . , xn) =

∑
0≤j1,...,jn:j1+...+jn<k

cj1,...,jnx
j1
1 . . . xjnn

for some coefficients cj1,...,jn ∈ F .

Proof. As before, the “if” portion follows from Corollary 1.18.3, so
it suffices to show the “only if” portion. But this follows by a multi-
dimensional version of the analogous argument used to show Lemma
1.18.5, starting with the identity

T (h1,...,hn) = (1 + ∆e1)h1 . . . (1 + ∆en)hn

for non-negative integers h1, . . . , hn, where e1, . . . , en is the standard
basis of Fn; we leave the details to the reader. �

Remark 1.18.8. The above discussion was for fields F = Fp of prime
order, but we can use these results to describe classical polynomials for
fields F = Fpm of prime power order, by viewing any vector space over
Fpm as a vector space over Fp. Of course, the resulting polynomials
one obtains are merely polynomials over Fp, rather than over Fmp .

1.18.3. The non-classical case. Now we consider polynomials from
F or Fn into other additive groups, where F = Fp is as before a field
of prime order p. Thanks to Pontryagin duality, it suffices (in princi-
ple, at least) to consider polynomials taking values in the unit circle
R/Z. The first basic lemma is the following:

Lemma 1.18.9 (Multiplication by p reduces degree). Let f : Fn →
R/Z be of degree ≤ k + p − 1 for some k ≥ 0. Then pf is of degree
≤ k.

Proof. Since ∆h(pf) = p∆hf for any h, we see by induction that it
suffices to show this lemma when k = 0. Let h ∈ Fn. Raising (1.96)
to the pth power we have

T ph = 1 + p∆h +
p(p− 1)

2
∆2
h + . . .+ p∆p−1

h + ∆p
h.
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Of course, T ph = 1. Applying this identity to f and noting that
∆p
hf = 0 by hypothesis, we conclude that

(1 +
p− 1

2
∆h + . . .+ ∆p−2

h )∆h(pf) = 0.

Inverting (1 + p−1
2 ∆h + . . . + ∆p−2

h ) using Neumann series (and the
finite degree of f) we conclude that ∆h(pf) = 0 for all h, thus pf has
degree ≤ 0 as required. �

Corollary 1.18.10 (Polynomials are discretely valued). If f : Fn →
R/Z is of degree ≤ k, then after subtracting a constant from f , f
takes values in the (pb(k−1)/(p−1)c+1)th roots of unity.

In one dimension, there is a converse to Lemma 1.18.9:

Lemma 1.18.11. Let f : Fn → R/Z be such that pf has degree ≤ k.
Then f has degree ≤ k + p− 1.

Proof. As in Lemma 1.18.9, it suffices to establish the case k = 0.
But this then follows from the last part of Lemma 1.18.5. �

As a corollary we can classify all non-classical polynomials:

Theorem 1.18.12 (Global description of non-classical multi-dimen-
sional polynomials). A function f : Fn → R/Z is a polynomial of
degree < k if and only if it has the form

f(x) = c0 +
∑

0≤j1,...,jn≤p−1;m≥1:j1+...+jn+(p−1)(m−1)<k

cj1,...,jm,m|x1|j1 . . . |xn|jn/pm

for some c0 ∈ R/Z and cj1,...,jm,m ∈ {0, . . . , p− 1}, where x 7→ |x| is
the obvious map from F to {0, . . . , p− 1}.

Proof. The “if” part follows easily from Lemma 1.18.7 in the case
k ≤ p, and then from Lemma 1.18.11 and induction in the general
case. The “only if” part follows from Corollary 1.18.10 and Lemma
1.18.7 in the case k ≤ p. Now suppose inductively that k > p and
the claim has already been proven for smaller values of k. By Lemma
1.18.9 and the induction hypothesis, pf takes the form

pf(x) = c′0+
∑

0≤j1,...,jn≤p−1;m≥1:j1+...+jn+(p−1)(m−1)<k−p+1

c′j1,...,jn,m|x1|j1 . . . |xn|jn/pm
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and thus

f(x) = c0+
∑

0≤j1,...,jn≤p−1;m≥1:j1+...+jn+(p−1)(m−1)<k−p+1

c′j1,...,jn,m|x1|j1 . . . |xn|jn/pm+1+g(x)

where c0 is a pth root of c′0, and g takes values in pth roots of unity.
Applying Lemma 1.18.7 to expand g in monomials, we obtain the
claim. �

As a corollary to this theorem we obtain a converse to Lemma
1.18.9:

Corollary 1.18.13 (pth roots of minimal degree). Let f : Fn → R/Z
be of degree ≤ k for some k ≥ 0. Then there exists g : Fn → R/Z of
degree ≤ k + p− 1 such that pg = f .

Interestingly, there does not seem to be a way to establish this
theorem without going through a global classification theorem such
as Theorem 1.18.12.

Another corollary to Theorem 1.18.12 is that any function from
a finite dimensional vector space Fn to a pm-torsion group for some
m will be a polynomial of finite degree.

Notes. This article first appeared at terrytao.wordpress.com/2008/11/13,
and is derived from [BeTaZi2009]. Thanks to James Cranch for cor-
rections.

1.19. The Kakeya conjecture and the Ham
Sandwich theorem

One of my favourite family of conjectures (and one that has pre-
occupied a significant fraction of my own research) is the family of
Kakeya conjectures in geometric measure theory and harmonic analy-
sis. There are many (not quite equivalent) conjectures in this family.
The cleanest one to state is the set conjecture, Conjecture 1.3.3.

One reason why I find these conjectures fascinating is the sheer
variety of mathematical fields that arise both in the partial results
towards this conjecture, and in the applications of those results to
other problems. See for instance [Wo1999], [Ta2001], [La2008] on
the connections between this problem and other problems in Fourier
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analysis, PDE, and additive combinatorics; there have even been some
connections to number theory[Bo2001] and to cryptography[Bo2005].
At the other end of the pipeline, the mathematical tools that have
gone into the proofs of various partial results have included:

• Maximal functions, covering lemmas, L2 methods [Co1977],
[CoFe1977];

• Fourier analysis [NaStWa1978];

• Multilinear integration [Dr1983], [Ch1984];

• Paraproducts [Ka1999];

• Combinatorial incidence geometry [Bo1991], [Wo1995];

• Multi-scale analysis [Ba1996], [KaLaTa2000], [LaTa2001],
[AlSoVa2003];

• Probabilistic constructions [BaKa2008], [Ba2008];

• Additive combinatorics and graph theory [Bo1999], [KaLaTa2000],
[KaTa1999], [KaTa200b];

• Sum-product theorems [BoKaTa2004];

• Bilinear estimates [TaVaVe1998];

• Perron trees [Sc1962], [Ke1999];

• Group theory [Ka2005];

• Low-degree algebraic geometry [Sc1998], [Ta2005], [MoTa2004];

• High-degree algebraic geometry [Dv2008], [SaSu2008];

• Heat flow monotonicity formulae [BeCaTa2006].

[This list is not exhaustive.]

Very recently, I was pleasantly surprised to see yet another math-
ematical tool used to obtain new progress on the Kakeya conjecture,
namely (a generalisation of) the famous Ham Sandwich theorem from
algebraic topology. This was recently used by Guth[Gu2008] to es-
tablish a certain endpoint multilinear Kakeya estimate left open in
[BeCaTa2006]. With regards to the Kakeya set conjecture, Guth’s
arguments assert, roughly speaking, that the only Kakeya sets that
can fail to have full dimension are those which obey a certain “plani-
ness” property, which informally means that the line segments that
pass through a typical point in the set must be essentially coplanar.
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(This property first surfaced in [KaLaTa2000].) Guth’s arguments
can be viewed as a partial analogue of Dvir’s arguments[Dv2008] in
the finite field setting (which I discussed in Section 1.3) to the Eu-
clidean setting; in particular, both arguments rely crucially on the
ability to create a polynomial of controlled degree that vanishes at
or near a large number of points. Unfortunately, while these argu-
ments fully settle the Kakeya conjecture in the finite field setting, it
appears that some new ideas are still needed to finish off the problem
in the Euclidean setting. Nevertheless this is an interesting new de-
velopment in the long history of this conjecture, in particular demon-
strating that the polynomial method can be successfully applied to
continuous Euclidean problems (i.e. it is not confined to the finite
field setting).

In this article I would like to sketch some of the key ideas in
Guth’s paper, in particular the role of the Ham Sandwich theorem
(or more precisely, a polynomial generalisation of this theorem first
observed [Gr2003]).

1.19.1. The polynomial Ham Sandwich theorem. Let us first
recall the classical Ham Sandwich theorem:

Theorem 1.19.1 (Ham Sandwich theorem). Let U1, . . . , Un be n

bounded open sets in Rn. Then there exists a hyperplane in Rn that
divides each of the open sets U1, . . . , Un into two sets of equal volume.

Remark 1.19.2. The name of the theorem derives from the special
case when n = 3 and U1, U2, U3 are two slices of bread and a slice
of ham. One can view this theorem as a “thickened” version of the
Euclidean geometry axiom that every n points in Rn determine at
least one hyperplane.

There are many proofs of this theorem, but I will focus on the
proof that is based on the Borsuk-Ulam theorem:

Theorem 1.19.3 (Borsuk-Ulam theorem). Let f : Sn → Rn be a
continuous map from the n-dimensional sphere Sn ⊂ Rn+1 to the
Euclidean space Rn which is antipodal (which means that f(−x) =
−f(x) for all x ∈ Sn. Then f(x) = 0 for at least one x ∈ Sn.
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Proof. (Sketch) The set of zeroes of an antipodal map automatically
come in antipodal pairs x, −x. To prove the theorem, we shall es-
tablish the stronger fact that f(x) = 0 for an odd number of disjoint
antipodal pairs, counting multiplicity (avoiding the degenerate an-
tipodal maps which vanish at an infinite set of points). To see this,
first observe that this is true for at least one antipodal map (e.g. one
can use the horizontal projection map (x1, . . . , xn+1) 7→ (x1, . . . , xn)).
Also, the space of all antipodal maps is a vector space, and thus con-
nected (though it takes some effort to show that the space of non-
degenerate antipodal maps is still connected). So one just needs to
show that the parity of the number of pairs of antipodal points where
f vanishes (counting multiplicity) is unchanged with respect to con-
tinuous deformations of f . But some elementary degree theory (or
Morse theory) shows that any (non-degenerate) perturbation of f can
annihilate two such antipodal pairs by collision, or (by the reverse pro-
cedure) spontaneously create two such antipodal pairs from nothing,
but cannot otherwise affect the number of pairs; thus the parity of
the number of such pairs remains invariant92. �

Remark 1.19.4. The Borsuk-Ulam theorem is tied to the more gen-
eral theory of Lyusternik-Schnirelmann category, which is the view-
point taken in [Gu2008], but we will not explicitly use this theory
here.

Proof of the Ham-Sandwich theorem using the Borsuk-Ulam theorem.
We can identify Rn+1 with the space of affine-linear forms (x1, . . . , xn) 7→
a1x1 + . . . + anxn + a0 on Rn. Each non-trivial affine-linear form
P ∈ Rn+1\0 determines a hyperplane {P = 0} that divides Rn

into two half-spaces {P > 0} and {P < 0}. We can then define
f : Rn+1\{0} → Rn to be the function whose jth coordinate fj(P )
at P is the volume of Uj∩{P > 0} minus the volume of Uj∩{P < 0};
thus f measures the extent to which the hyperplane {P = 0} fails to
bisect all of the U1, . . . , Un. It is easy to see that f is continuous,
homogeneous of degree zero, and odd, and so its restriction to Sn is

92It takes some non-trivial effort to make this informal argument rigorous; see
for instance [Ma2003]. [Thanks to Benny Sudakov for this great reference.] One can
also formalise this argument using the language of Z2 singular cohomology.
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an antipodal map. By the Borsuk-Ulam theorem, there exists P such
that f(P ) = 0, and the claim follows. �

We have the following polynomial generalisation of the Ham Sand-
wich theorem:

Theorem 1.19.5 (Polynomial Ham Sandwich theorem). [Gr2003]
Let d ≥ 1, and let U1, . . . , U(n+d

d )−1 be bounded open sets in Rn.
Then there exists a non-trivial polynomial P : Rn → R of degree at
most d such that the sets {P > 0}, {P < 0} partition each of the
U1, . . . , U(n+d

d )−1 into two sets of equal measure.

Note that the ordinary Ham-Sandwich theorem corresponds to
the d = 1 case of this theorem. This theorem can be deduced from
the Borsuk-Ulam theorem in exactly the same way that the ordinary
one is (note that the space of polynomials of degree at most d has
dimension

(
n+d
d

)
; the continuity of the appropriate antipodal function

f : S(n+d
d )−1 → R(n+d

d )−1 follows from the dominated convergence
theorem and the basic observation that a non-trivial polynomial is
non-zero almost everywhere).

Remark 1.19.6. One can also deduce the polynomial Ham Sand-
wich theorem directly from the ordinary Ham Sandwich theorem
(in

(
n+d
d

)
− 1 dimensions) by embedding Rn into R(n+d

d )−1 via the
Veronese embedding, and then thickening the images of U1, . . . , U(n+d

d )−1

slightly in an appropriate fashion; we leave the details as an exercise
to the reader.

The polynomial Ham Sandwich theorem should be compared with
Lemma 1.3.6.

1.19.2. Connection with the Kakeya problem. Now we connect
the polynomial Ham Sandwich theorem to the Kakeya problem. We
begin by replacing the continuous Kakeya set conjecture with a more
quantitative “δ-discretised” problem:

Conjecture 1.19.7 (Kakeya maximal conjecture). Let 0 < δ < 1,
and let T1, . . . , TM be a collection of δ×1 cylindrical tubes pointing in
a δ-separated set of directions (thus the directions of any two of the
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tubes make an angle of at least δ). For each µ ≥ 1, let Eµ be the set
of points x which are contained in at least µ of the tubes T1, . . . , TM .
Then the volume |Eµ| of Eµ obeys the bound |Eµ| .ε δ−εµ−n/(n−1)

for any ε > 0.

Here we are using the asymptotic notation that X & Y if X ≥ cY
for some positive constant c (if the & is subscripted by parameters,
this indicates that c is allowed to depend on those parameters); we
always allow constants to depend on the dimension n. This conjecture
(which is limiting the extent to which tubes in different directions can
overlap) implies the Kakeya set conjecture (for both Minkowski and
Hausdorff dimension) by fairly standard arguments from geometric
measure theory, see e.g. [Bo1991]. The factor of µ−n/(n−1) is natural
(and best possible), as can be seen by considering the example in
which M ∼ δ1−n and all the tubes pass through a common point.

Remark 1.19.8. The name “maximal conjecture” has to do with the
formulation of the above conjecture involving the Kakeya maximal
function, which I will not discuss here.

The maximal conjecture (and the set conjecture) is verified in
the two-dimensional case n = 2 (with the one-dimensional case n = 1
being trivial), but only partial results are known in higher dimensions.
However, one can do better if one only considers certain types of
overlap. Let us say (somewhat informally) that a point x has non-
planar multiplicity & µ with respect to a given collection of tubes
T1, . . . , TM if there exist n separate families of & µ tubes each passing
through x, such that given any n tubes from each of these three
families, the solid angle between the n directions is comparable to
1. (Informally, this is a stronger assertion than saying that x has
& µ tubes passing through it, because we prohibit these tubes from
being essentially contained in a hyperplane.) Then, as a special case
of Guth’s results, one has

Theorem 1.19.9 (Multilinear Kakeya conjecture). [Gu2008] Let
δ, n, T1, . . . , TM , µ be as in the Kakeya maximal conjecture, and let E∗µ
be the set of points with non-planar multiplicity & µ. Then |E∗µ| .
µ−n/(n−1).
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Informally, this implies that the only counterexamples to the
Kakeya maximal conjecture can come from configurations of tubes
such that the tubes that pass through a typical point largely lie in
a hyperplane. In [BeCaTa2006], we established this estimate with
an additional loss of δε by a totally different method (based on heat
flow monotonicity formulae). For a precise statement of the full mul-
tilinear Kakeya conjecture (which is now proven without any epsilon
loss), see [BeCaTa2006] or [Gu2008].

Let’s now sketch why the above result is true (details can be found
in [Gu2008]). I’ll drop the dependence of implied constants on n.
Let x1, . . . , xA be a maximal δ-net of E∗µ (i.e. a set of δ-separated
points in E∗µ that is maximal with respect to set inclusion), then it
will suffice to show that

(1.97) A . δ−nµ−n/(n−1).

Let Qj be the cube of sidelength δ centred at xj with sides parallel to
the axes. Applying the polynomial Ham Sandwich theorem, we can
find a non-trivial polynomial P of degree O(A1/n) whose zero locus
V := {P = 0} bisects each of the cubes Q1, . . . , QA.

For each j, we claim that the hypersurfaces V ∩Qj have surface
area & δn−1. Indeed, if instead one of the V ∩ Qj had surface area
o(δn−1), this would imply that the projection of V ∩Qj to any (n−1)-
dimensional coordinate subspace of Qj has area o(δn−1), in contrast
with the projection of Qj itself which has area δn−1. Thus for each
1 ≤ i ≤ n the complement of V in Qj contains a subset of Qj of
relative density 1 − o(1) that consists entirely of line segments of
length δ in the basis direction ei. From this it is not hard to see
that Qj\V contains a path-connected component of relative density
1− o(1), which contradicts the claim that V bisects Qj .

On the other hand, we know that Qj meets & µ tubes Tk, which
are arranged in a non-planar fashion. Because of this, one can show93

that for a “typical” tube Tk hitting Qj , the projection of V ∩ Qj to
the orthogonal complement of the direction of Tk has area & δn−1.

93Basically, the point is that at any given point of V ∩ Qj , the normal vector
cannot be perpendicular (or close to perpendicular) to all the directions of all the Tk
simultaneously, due to non-planarity.
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To simplify the exposition, let us assume that in fact all tubes Tk
touching Qj are typical.

Each Qj touches ∼ µ tubes Tk (they may touch more than this,
but for sake of exposition let us suppose that they touch exactly this
number of tubes). By double counting, this means that each tube Tk
touches about

(1.98) λ := Aµ/M & δn−1Aµ

cubes Qj on the average, where the inequality in (1.98) comes from
the δ-separated directions of the tubes. In particular, we can find a
(typical) tube Tk which touches at least λ such balls. Let vk be the
direction vector of Tk.

Now look94 at V ∩ Tk. This set contains & λ disjoint sets of the
form V ∩ Qj . Each of these sets, when projected to the orthogonal
complement of Tk, has measure & δn−1. On the other hand, Tk itself,
when projected to this complement, has a measure of O(δn−1). By
the pigeonhole principle, we may thus find a positive measure family
of lines ` in the direction vk passing through Tk which intersect at
& λ of the V ∩Qj . In particular, all lines ` in this family intersect V
in & λ different points.

On the other hand, the restriction of P to ` is a polynomial of
degree O(A1/n). If this degree is much less than λ, this forces P to
vanish on each line ` [cf. Section 1.3]; since the set of such lines has
positive measure, this forces P to be identically zero, a contradiction.
Hence we must have

A1/n & λ

which when combined with (1.98), gives (1.97).

Notes. This article first appeared at terrytao.wordpress.com/2008/11/27.
Thanks to Jordi-Lluis Figeras Romero and an anonymous commenter
for corrections.

94Technically, one has to replace Tk by a slight thickening of itself here, but let
us ignore this issue.
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1.20. An airport-inspired puzzle

I was recently at an international airport, trying to get from one end
of a very long terminal to another. It inspired in me the following
simple maths puzzle, which I thought I would share here:

Suppose you are trying to get from one end A of a terminal to the
other endB. (For simplicity, assume the terminal is a one-dimensional
line segment.) Some portions of the terminal have moving walkways
(in both directions); other portions do not. Your walking speed is
a constant v, but while on a walkway, it is boosted by the speed u

of the walkway for a net speed of v + u. (Obviously, given a choice,
one would only take those walkways that are going in the direction
one wishes to travel in.) Your objective is to get from A to B in the
shortest time possible.

(1) Suppose you need to pause for some period of time, say to tie
your shoe. Is it more efficient to do so while on a walkway,
or off the walkway? Assume the period of time required is
the same in both cases.

(2) Suppose you have a limited amount of energy available to
run and increase your speed to a higher quantity v′ (or v′+u,
if you are on a walkway). Is it more efficient to run while
on a walkway, or off the walkway? Assume that the energy
expenditure is the same in both cases.

(3) Do the answers to the above questions change if one takes
into account the various effects of special relativity, such
as time dilation and the velocity addition formula? (This
is of course an academic question rather than a practical
one. But presumably it should be the time in the airport
frame that one wants to minimise, not time in one’s personal
frame.)

It is not too difficult to answer these questions on both a rigorous
mathematical level and a physically intuitive level, but ideally one
should be able to come up with a satisfying mathematical explanation
that also corresponds well with one’s intuition.
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Notes. This article first appeared at terrytao.wordpress.com/2008/12/09.
Much discussion on this puzzle (including, of course, the correct so-
lution) can be found in the comments to this article.

1.21. Cohomology for dynamical systems

Recall from Section 2.1 that a dynamical system is95 a space X, to-
gether with an action (g, x) 7→ gx of some group G = (G, ·). A useful
notion in the subject is that of an (abelian) cocycle; this is a func-
tion96 ρ : G ×X → U taking values in an abelian group U = (U,+)
that obeys the cocycle equation

(1.99) ρ(gh, x) = ρ(h, x) + ρ(g, hx)

for all g, h ∈ G and x ∈ X. The significance of cocycles in the
subject is that they allow one to construct (abelian) extensions or
skew products X ×ρ U of the original dynamical system X, defined as
the Cartesian product {(x, u) : x ∈ X,u ∈ U} with the group action
g(x, u) := (gx, u + ρ(g, x)). (The cocycle equation (1.99) is needed
to ensure that one indeed has a group action, and in particular that
(gh)(x, u) = g(h(x, u)).) This turns out to be a useful means to build
complex dynamical systems out of simpler ones97.

A special type of cocycle is a coboundary ; this is a cocycle ρ :
G × X → U that takes the form ρ(g, x) := F (gx) − F (x) for some
function F : X → U . (Note that the cocycle equation (1.99) is
automaticaly satisfied if ρ is of this form.) An extension X ×ρ U of
a dynamical system by a coboundary ρ(g, x) := F (gx)−F (x) can be
conjugated to the trivial extension X×0U by the change of variables
(x, u) 7→ (x, u− F (x)).

95In practice, one often places topological or measure-theoretic structure on X
or G, see Section 2.2, but this will not be relevant for the current discussion. In most
applications, G is an abelian (additive) group such as the integers Z or the reals R,
but I prefer to use multiplicative notation here.

96Again, if one is placing topological or measure-theoretic structure on the sys-
tem, one would want ρ to be continuous or measurable, but we will ignore these issues.

97For instance, one can build nilsystems by starting with a point and taking a
finite number of abelian extensions of that point by a certain type of cocycle; see
Section 2.16.
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While every coboundary is a cocycle, the converse is not always
true98. One can measure the extent to which this converse fails by in-
troducing the first cohomology group H1(G,X,U) := Z1(G,X,U)/B1(G,X,U),
where Z1(G,X,U) is the space of cocycles ρ : G × X → U and
B1(G,X,U) is the space of coboundaries (note that both spaces are
abelian groups). In [BeTaZi2009], we make substantial use of some
basic facts about this cohomology group (in the category of measure-
preserving systems) that were established in a [HoKr2005].

The above terminology of cocycles, coboundaries, and cohomol-
ogy groups of course comes from the theory of cohomology in algebraic
topology. Comparing the formal definitions of cohomology groups in
that theory with the ones given above, there is certainly quite a bit of
similarity, but in the dynamical systems literature the precise connec-
tion does not seem to be heavily emphasised. The purpose of this post
is to record the precise fashion in which dynamical systems cohomol-
ogy is a special case of cochain complex cohomology from algebraic
topology, and more specifically is analogous to singular cohomology
(and can also be viewed as the group cohomology of the space of
scalar-valued functions on X, when viewed as a G-module); this is
not particularly difficult, but I found it an instructive exercise (espe-
cially given that my algebraic topology is extremely rusty), though
perhaps this article is more for my own benefit that for anyone else.

1.21.1. Chains. Throughout this discussion, the dynamical system
X, the group G, and the group U will be fixed.

For any n ≥ 0, we define an n-chain to be a formal integer lin-
ear combination of n + 1-tuples (g1, . . . , gn, x), where x ∈ X and
g1, . . . , gn ∈ G. One may wish to think of each such tuple as an “ori-
ented simplex” connecting the n+1 points x, gnx, gn−1gnx, . . . , g1 . . . gnx.
Thus, a 0-chain is a formal combination

∑m
i=1 cixi of points, a 1-chain

is a formal combination
∑m
i=1 ci(gi, xi) of “line segments” from xi to

gixi, and so forth. Let Cn(G,X) be the space of n-chains; this is an

98For instance, if X is a point, the only coboundary is the zero function, whereas
a cocycle is essentially the same thing as a homomorphism from G to U , so in many
cases there will be more cocycles than coboundaries. For a contrasting example, if X
and G are finite (for simplicity) and G acts freely on X, it is not difficult to see that
every cocycle is a coboundary.
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abelian group. We also adopt the convention that Cn(G,X) is trivial
for n < 0.

For each n > 0, we define the boundary map ∂ : Cn(G,X) →
Cn−1(G,X) to be the unique homomorphism such that

∂(g1, . . . , gn, x) = (g1, . . . , gn−1, gnx)

+
n−1∑
i=1

(−1)n−i(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn, x)

+ (−1)n(g2, . . . , gn, x)

thus for instance

∂(g, x) = gx− x
∂(g, h, x) = (g, hx)− (gh, x) + (h, x)

∂(g, h, k, x) = (g, h, kx)− (g, hk, x) + (gh, k, x)− (h, k, x)

and so forth. Note that this is analogous to the boundary map in
singular homology, if one views the n + 1-tuple (x, g1, . . . , gn) as a
simplex as discussed earlier. We also define the boundary maps ∂ :
Cn(G,X) → Cn−1(G,X) for n ≤ 0 to be the trivial map, thus for
instance ∂x = 0. It is not hard to verify the fundamental relation

∂2 = 0

thus turning the sequence of groups Cn(G,X) into a chain complex.

An n-chain with vanishing boundary is called an n-cycle, while
an n-chain which is the boundary of an (n − 1)-chain is called an
n-boundary ; the spaces of n-cycles and n-boundaries are denoted
Zn(G,X) and Bn(G,X) respectively. Thus for instance (gh, x) −
(h, x)− (g, hx) is both a 1-cycle and a 1-boundary. However, if g is a
non-trivial group element that fixes x and G is abelian, one can show
that (g, x) is a 1-cycle but not a 1-boundary.

We define the homology groups Hn(G,X) := Zn(G,X)/Bn(G,X)
for all n. It is a nice exercise to compute these groups in some simple
cases, e.g.

• If G acts transitively on X, then H0(G,X) ≡ Z.

• If G acts freely on X, then Hn(G,X) is trivial for n > 0.
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• If X is a point, then H1(G,X) ≡ G/[G,G] is the abelian-
isation of G. [Question: Is there a nice description of the
higher homology groups Hn(G,X), n > 1 in this case?]

However, I don’t know of any application of these homology groups
to the theory of dynamical systems.

1.21.2. Cochains. An n-cochain is a homomorphism from the space
Cn(G,X) of n-chains to U . Since Cn(G,X) is a free abelian group
generated by the simplices (x, g1, . . . , gn), we can view an n-cochain
as a function F : (x, g1, . . . , gn) → F (x, g1, . . . , gn) from G × . . . ×
G ×X to U . (Again, we are ignoring all measure-theoretic or topo-
logical considerations here.) The space of all n-cochains is denoted
Cn(G,X,U) := Hom(Cn(G,X), U); this is an abelian group.

The boundary map ∂ : Cn(G,X)→ Cn−1(G,X) defines by dual-
ity a coboundary map δ : Cn−1(G,X,U)→ Cn(G,X,U), defined by
the formula

δF (c) := F (∂c)

for all F ∈ Cn−1(G,X,U) and c ∈ Cn(G,X); viewing F as a function
on simplices, we thus have

δF (g1, . . . , gn, x) = F (g1, . . . , gn−1, gnx)

+
n−1∑
i=1

(−1)n−iF (g1, . . . , gi−1, gigi+1, . . . , gn, x)

+ (−1)nF (g2, . . . , gn, x).

Thus for instance

δF (g, x) = F (gx)− F (x)

for 0-cochains F : X → U ,

δρ(g, h, x) = ρ(g, hx)− ρ(gh, x) + ρ(g, x)

for 1-cochains ρ : G×X → U , and so forth.

Because ∂2 = 0, we have δ2 = 0, and so Cn(G,X,U) becomes a
cochain complex. n-cochains whose coboundary vanishes are known
as n-cocycles, and n-cochains which are the coboundary of an (n −
1)-cochain are known as n-coboundaries. The spaces of n-cocycles
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and n-cochains are denoted Zn(G,X,U) and Bn(G,X,U) respec-
tively, allowing us to define the nth cohomology group Hn(G,X,U) :=
Zn(G,X,U)/Bn(G,X,U).

When n = 0, and if the action of G is transitive (in the discrete
category), minimal (in the topological category, see Section 2.2), or
ergodic (in the measure-theoretic category, see Section 2.9), the only
0-cocycles are the constants, and the only 0-coboundary is the zero
function, so H0(G,X,U) ≡ U . When n = 1, it is not hard to see that
the notion of 1-cocycle and 1-coboundary correspond to the notion of
cocycle and coboundary discussed at the beginning of this post.

This whole theory raises the obvious question as to whether the
higher cocycles, coboundaries, and cohomology groups have any rele-
vance in dynamical systems. For instance, a 2-cocycle is (after minor
notational changes) a function ψ : G × G × X → U that obeys the
2-cocycle equation

ψ(g, h, kx)− ψ(g, hk, x) + ψ(gh, k, x)− ψ(h, k, x) = 0

while a 2-coboundary is a function of the form

ψ(g, h, x) := ρ(gh, x)− ρ(h, x)− ρ(g, hx)

for some ρ : G × X → U . Is there some dynamical systems inter-
pretation of these objects, much as 1-cocycles and 1-coboundaries
can be interpreted as describing abelian extensions and essentially
trivial abelian extensions respectively? (See Section 1.21.3 below
for a partial answer.) In [BeTaZi2009], we do briefly encounter
2-coboundaries (we have to deal with various “quasi-cocycles” - 1-
chains ρ whose 2-coboundary δρ does not vanish completely, as with
1-cocycles, but is still of a relatively simple form, such as a constant
or a polynomial) but we do not make systematic use of this concept.
(We also rely heavily in our paper on the cubic complexes X [k] of
Host and Kra, which have some superficial resemblance to the simplex
structures appearing here, but I do not know if there is a substantive
connection in this regard.)

Another oddity is that homology and cohomology, as it is clas-
sically defined, requires the space of chains, cochains, etc. to all
be abelian groups; but for dynamical systems one can certainly talk
about cocycles and coboundaries taking values in a non-abelian group
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U by modifying the definitions slightly, leading to the concept of a
group extension of a dynamical system. (In this context, the first co-
homology H1(G,X,U) becomes a quotient space rather than a group;
see also Section 1.10) It seems to me that in this case, the dynamical
system concept of a cocycle or coboundary cannot be interpreted in
terms of classical cohomology theory (but presumably can be handled
by non-abelian group cohomology).

1.21.3. Epilogue - an interpretation of the second cohomol-
ogy group. Minhyong Kim has provided a nice answer to my ques-
tion about the relevance of higher order cohomology, such asH2(G,X,U),
to the problem of extending dynamical systems. Suppose one has a
short exact sequence

0→ V → Ũ → U → 0

of abelian groups, thus one can view Ũ as the space of pairs (u, v)
with u ∈ U, v ∈ V with some group addition law

(1.100) (u, v) + (u′, v′) := (u+ u′, v + v′ +B(u, u′))

for some function B : U × U → V , that needs to obey a certain set
of axioms to make Ũ an abelian group, which we will not write down
here. We then claim that we have a long exact sequence

(1.101) → H1(G,X, Ũ)→ H1(G,X,U)→ H2(G,X, V )→,

thus H2(G,X, V ) is capable of detecting whether a U -extension of a
G-system X can be lifted to a Ũ -extension.

The first map in (1.101) is obvious: the projection from Ũ to U
induces a projection from 1-cocycles ρ̃ : G × X → Ũ to 1-cocycles
ρ : G × X → U which maps 1-coboundaries to 1-coboundaries, and
thus maps H1(G,X, Ũ) to H1(G,X,U). The second map requires a
bit more thought. Suppose one is given a 1-cocycle ρ : G ×X → U

and asks whether it can be lifted to a 1-cocycle ρ̃ : G×X → Ũ by the
above projection. Writing ρ̃ = (ρ, σ) for some σ : G × X → V and
using (1.99), (1.100), we see that the question is equivalent to finding
a σ that obeys the equation

σ(gh, x) = σ(h, x) + σ(g, hx) +B(ρ(h, x), ρ(g, hx)),
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or in other words, to show that the map Φ(ρ) : (g, h, x) 7→ B(ρ(h, x), ρ(g, hx))
is a V -valued 2-coboundary. The same observation (now setting
σ = 0) shows that the map (g, h, x) 7→ (0,Φ(ρ)) is a Ũ -valued 2-
coboundary (indeed, it is the coboundary of (ρ, 0)), hence a Ũ -valued
2-cocycle, and thus Φ(ρ) is a V -valued 2-cocycle, and so the map
ρ 7→ Φ(ρ) is a map from 1-cocycles ρ : G × X → U to 2-cocycles
Φ(ρ) : G × G × X → V . Similarly, given two 1-cocycles ρ, ρ′ :
G×X → U , we see that (ρ+ρ′, 0) differs from (ρ, 0)+(ρ′, 0) by some
V -valued 1-cochain, so on taking derivatives we see that Φ(ρ+ρ′) dif-
fers from Φ(ρ)+Φ(ρ′) by some 2-coboundary, thus Φ is linear modulo
2-coboundaries. Finally, if ρ is a U -valued 1-coboundary, then (ρ, 0)
is the sum of a Ũ -valued 1-coboundary and a V -valued 1-cochain,
and so on taking derivatives we see that Φ maps 1-coboundaries
to 2-coboundaries99. Hence it induces a map from H1(G,X,U) to
H2(G,X, V ), and then (1.101) is exact by the preceding discussion.

Notes. This article first appeared at terrytao.wordpress.com/2008/12/21.
Thanks to AA for corrections.

Mikael Vejdemo Johansson pointed out that the group cohomol-
ogy formalism developed above also extends to bimodules over G,
though it is not clear what the dynamical interpretation of such bi-
modules would be.

Marlowe noted more generally that as a general rule of thumb,
if a certain cohomology group helps to classify extensions up to con-
jugation, the next cohomology group helps you find out if a certain
candidate for an extension can be extended to a full extension; the
discussion in Section 1.21.3 of course supports this rule.

Peter Samuelson also pointed out that this homology is a special
case of Hochschild homology.

Further discussion on this topic can also be found at http://golem.ph.utexas.edu/category/2008/12/bridge building.html

99Presumably the above arguments are a special case of one of the standard
diagram chasing lemmas in homological algebra, but I don’t know which one it is. One
could also verify these facts from the axioms of B induced from (1.100) and the abelian

group structure on Ũ , but this turns out to be remarkably tedious.
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1.22. A remark on the Kakeya needle problem

Recall from Section 1.3 that given any ε > 0, there exists a planar
set of area at most ε within which a unit needle can be continuously
rotated. I was recently asked (by Claus Dollinger) whether one can
take ε = 0; in other words,

Question 1.22.1. Does there exist a set of measure zero within which
a unit line segment can be continuously rotated by a full rotation?

This question does not seem to be explicitly answered in the
literature. In [vA1942], [Cu1971] it is shown that it is possible to
continuously rotate a unit line segment inside a set of arbitrarily small
measure and of uniformly bounded diameter; this result is of course
implied by a positive answer to the above question (since continuous
functions on compact sets are bounded), but the converse is not true.

In this note, I show that the answer to the question is negative.

Proof. Let E ⊂ R2 be a set in the plane within which a unit line
segment can be continuously rotated. This means that there exists a
continuous map l : t 7→ l(t) from times t ∈ [0, 1] to unit line segments
l(t) ⊂ E. We can parameterise each such line segment as

l(t) = {(x(t) + s cosω(t), y(t) + s sinω(t)) : −0.5 ≤ s ≤ 0.5}

where x, y, ω : [0, 1]→ R are continuous functions.

Recall that on a compact set, all continuous functions are uni-
formly continuous. In particular, there exists ε > 0 such that

(1.102) |x(t)− x(t′)|, |y(t)− y(t′)|, |ω(t)− ω(t′)| ≤ 0.001

(say) whenever t, t′ ∈ [0, 1] are such that |t− t′| ≤ ε.
Fix this ε. Observe that ω(t) cannot be a constant function of

t, otherwise the needle would never rotate. We conclude that there
must exist t0, t1 ∈ [0, 1] with |t0 − t1| ≤ ε and ω(t0) 6= ω(t1).

Without loss of generality, we may assume that t0 < t1 and
x(t0) = y(t0) = ω(t0) = 0. Now let a be any real number between
−0.4 and +0.4. From (1.102) we see that for any t0 ≤ t ≤ t1, the
line l(t) intersects the line x = a in some point (a, ya(t)), which must
therefore lie in E. Furthermore, ya(t) varies continuously in t. By
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the intermediate value theorem, we conclude that the interval be-
tween (a, ya(t0)) and (a, ya(t1)) lies in E. Taking unions over all a
between −0.4 and +0.4, we see that E contains a non-trivial sector,
and thus has non-zero area. The claim follows. �

Remark 1.22.2. A variant of this argument shows a stronger state-
ment, namely that for any fixed c > 0, any set E whose measure is
sufficiently small (depending on c) within which a unit line segment
can be rotated by at least c, must have a diameter of at least 2 − c.
(A similar point was already made in [Cu1971].)

Notes. This article first appeared at terrytao.wordpress.com/2008/12/31.
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2.1. Overview

In this lecture, I define the basic notion of a dynamical system (as
well as the more structured notions of a topological dynamical system
and a measure-preserving system), and describe the main topics we
will cover in this course.

We’ll begin abstractly. Suppose that X is a non-empty set (whose
elements will be referred to as points), and T : X → X is a trans-
formation. Later on we shall put some structures on X (such as a
topology, a σ-algebra, or a probability measure), and some assump-
tions on T , but let us work in total generality for now1.

One can think of X as a state space for some system, and T as
the evolution of some discrete deterministic (autonomous) dynamics
on X: if x is a point in X, denoting the current state of a system,
then Tx can be interpreted as the state of the same system after one
unit of time has elapsed2. More geometrically, one can think of T as
some sort of shift operation (e.g. a rotation) on the space X.

Given X and T , we can define the iterates Tn : X → X for every
non-negative integer n; if T is also invertible, then we can also define
Tn for negative integer n as well. In the language of representation
theory, T induces a representation3 of either the additive semigroup
Z+ or the additive group Z. More generally, one can consider rep-
resentations of other groups, such as the real line R (corresponding
the dynamics t 7→ T t of a continuous time evolution) or a lattice Zd

(which corresponds to the dynamics of d commuting shift operators
T1, . . . , Td : X → X), or of many other semigroups or groups (not
necessarily commutative). However, for simplicity we shall mostly
restrict our attention to Z-actions in this course, though many of
the results here can be generalised to other actions (under suitable
hypotheses on the underlying semigroup or group, of course).

1Indeed, a guiding philosophy in the first half of the course will be to try to study
dynamical systems in as maximal generality as possible; later on, though, when we turn
to more algebraic dynamical systems such as nilsystems, we shall exploit the specific
structure of such systems more thoroughly.

2In particular, evolution equations which are well-posed can be viewed as a con-
tinuous dynamical system.

3From the dynamical perspective, this representation is the mathematical mani-
festation of time.
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Henceforth we assume T to be invertible, in which case we refer
to the pair (X,T ) as a cyclic dynamical system, or dynamical system
for short. Here are some simple examples of such systems:

Example 2.1.1 (Finite systems). X is a finite set, and T : X → X

is a permutation on X.

Example 2.1.2 (Group actions). Let G be a group, and let X be a
homogeneous space for G, i.e. a non-empty space with a transitive
G-action; thus X is isomorphic to G/Γ, where Γ := Stab(x) is the
stabiliser of one of the points x in X. Then every group element
g ∈ G defines a dynamical system (X,Tg) defined by Tgx := gx.

Example 2.1.3 (Circle rotations). As a special case of Example 2.1.2
(or Example 2.1.1), every real number α ∈ R induces a dynamical
system (R/Z, Tα) given by the rotation Tαx := x + α. This is the
prototypical example of a very structured system, with plenty of al-
gebraic structure (e.g. the shift map Tα is an isometry on the circle,
thus two points always stay the same distance apart under shifts).

Example 2.1.4 (Cyclic groups). Another special case of Example
2.1.2 is the cyclic group Z/NZ with shift x 7→ x + 1; this is the
prototypical example of a finite dynamical system.

Example 2.1.5 (Bernoulli systems). Every non-empty set Ω induces
a dynamical system (ΩZ, T ), where T is the left shift T (xn)n∈Z :=
(xn+1)n∈Z. This is the prototypical example of a very pseudorandom
system, with plenty of mixing (e.g. the shift map tends to move a
pair of two points randomly around the space).

Example 2.1.6 (Boolean Bernoulli system). This is isomorphic to
a special case of Example 2.1.5, in which X = 2Z := {A : A ⊂ Z} ≡
{0, 1}Z is the power set of the integers, and TA := A− 1 := {a− 1 :
a ∈ A} is the left shift. (Here we endow {0, 1} with the discrete
topology.)

Example 2.1.7 (Baker’s map). Here, X := [0, 1)2, and T (x, y) :=
({2x}, y+b2xc

2 ), where bxc is the greatest integer function, and {x} :=
x − bxc is the fractional part. This is isomorphic to Example 2.1.6,
as can be seen by inspecting the effect of T on the binary expansions
of x and y.
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The map Tn can be interpreted as an isomorphism in several
different categories:

(1) as a set isomorphism (i.e. a bijection) Tn : X → X from
points x ∈ X to points Tnx ∈ X;

(2) as a Boolean algebra isomorphism Tn : 2X → 2X from sets
E ⊂ X to sets TnE := {Tnx : x ∈ E}; or

(3) as an algebra isomorphism Tn : RX → RX) from real-
valued functions f : X → R to real-valued functions Tnf :
X → R, defined by

(2.1) Tnf(x) := f(T−nx);

(4) as an algebra isomorphism Tn : CX → CX of complex
valued functions, defined again by (2.1).

We will abuse notation and use the same symbol Tn to refer to all of
the above isomorphisms; the specific meaning of Tn should be clear
from context in all cases. Our sign conventions here are chosen so
that we have the pleasant identities

(2.2) Tn{x} = {Tnx}; Tn1E = 1TnE

for all points x and sets E, where of course 1E is the indicator function
of E.

One of the main topics of study in dynamical systems is the as-
ymptotic behaviour of Tn as n → ∞. We can pose this question in
any of the above categories, thus

(1) For a given point x ∈ X, what is the behaviour of Tnx as
n→∞?

(2) For a given set E ⊂ X, what is the behaviour of TnE as
n→∞?

(3) For a given real or complex-valued function f : X → R or
f : X → C, what is the behaviour of Tnf as n→∞?

These are of course very general and vague questions, but we will for-
malise them in many different ways later in the course4. The answer
to these questions also depends very much on the dynamical system;

4For instance, one can distinguish between worst-case, average-case, and best-case
behaviour in x, E, f , or n.
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thus a major focus of study in this subject is to seek classifications
of dynamical systems which allow one to answer the above questions
satisfactorily5.

One can also ask for more quantitative versions of the above
asymptotic questions, in which n ranges in a finite interval (e.g.
[N ] := {1, . . . , N} for some large integer N), as opposed to going
off to infinity, and one wishes to estimate various numerical measure-
ments of Tnx, TnE, or Tnf in this range.

In this very general setting, in whichX is an unstructured set, and
T is an arbitrary bijection, there is not much of interest one can say
with regards to these questions. However, one obtains a surprisingly
rich and powerful theory when one adds a little bit more structure to
X and T (thus changing categories once more). In particular, we will
study the following two structured versions of a dynamical system:

(I) Topological dynamical systems (X,T ) = (X,F , T ), in which
X = (X,F) is a compact metrisable (and thus Hausdorff )
topological space, and T is a topological isomorphism (i.e.
a homeomorphism); and

(II) Measure-preserving systems (X,T ) = (X,X , µ, T ), in which
X = (X,X , µ) is a probability space6, and T is a probability
space isomorphism, i.e. T and T−1 are both measurable,
and µ(TE) = µ(E) for all measurable E ∈ X . For technical
reasons we also require the measurable space (X,X ) to be
separable (i.e. X is countably generated).

Remark 2.1.8. By Urysohn’s metrisation theorem, a compact space
is metrisable if and only if it is Hausdorff and second countable, thus
providing a purely topological characterisation of a topological dy-
namical system.

Remark 2.1.9. It is common to add a bit more structure to each of
these systems, for instance endowing a topological dynamical system

5In particular, ergodic theory is a framework in which our understanding of the
dichotomy between structure and randomness is at is most developed; see Section 2.1.2
of Structure and Randomness.

6In this course we shall tilt towards a measure-theoretic perspective rather than a
probabilistic one, thus it might be better to think of µ of as a normalised finite measure
rather than as a probability measure. On the other hand, we will rely crucially on the
probabilistic notions of conditional expectation and conditional independence later in
this course.
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with a metric, or endowing a measure preserving system with the
structure of a standard Borel space; we will see examples of this in
later lectures.

The study of topological dynamical systems and measure-preserving
systems is known as topological dynamics and ergodic theory respec-
tively. The two subjects are closely analogous at a heuristic level, and
also have some more rigorous connections between them, so we shall
pursue them in a somewhat parallel fashion in this course.

Remark 2.1.10. Observe that we assume compactness in (I) and
finite measure in (II); these ”boundedness” assumptions ensure that
the dynamics somewhat resembles the (overly simple) case of a finite
dynamical system. Dynamics on non-compact topological spaces or
infinite measure spaces is a more complicated topic; see for instance
[Aa1997]. (Thanks to Tamar Ziegler for this reference.)

Note that the action of the isomorphism Tn on sets E and func-
tions f will be compatible with the topological or measure-theoretic
structure:

(1) If (X,T ) = (X,F , T ) is a topological dynamical system,
then Tn : F → F is a topological isomorphism on open
sets, and Tn : C(X) → C(X) is also a C∗-algebra isomor-
phism on the space C(X) of real-valued (or complex-valued)
continuous functions on X.

(2) If (X,T ) = (X,X , µ, T ) is a measure-preserving system,
then Tn : X → X is a σ-algebra isomorphism on measurable
sets, and Tn : Lp(X , µ) → Lp(X , µ) is a Banach space iso-
morphism on pth-power integrable functions for 1 ≤ p ≤ ∞.
(For p = ∞, Tn is a von Neumann algebra isomorphism,
whilst for p = 2, Tn is a Hilbert space isomorphism (i.e. a
unitary transformation).)

We can thus see that tools from the analysis of Banach spaces, von
Neumann algebras, and Hilbert spaces may have some relevance to er-
godic theory; for instance, the spectral theorem for unitary operators
is quite useful.
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In the first half of this course, we will study topological dynamical
systems and measure-preserving systems in great generality (with few
assumptions on the structure of such systems), and then specialise to
specific systems as appropriate. This somewhat abstract approach is
broadly analogous to the combinatorial (as opposed to algebraic or
arithmetic) approach to additive number theory. For instance, we will
shortly be able to establish the following general result in topological
dynamics (see Theorem 2.3.4):

Theorem 2.1.11 (Birkhoff recurrence theorem). Let (X,T) be a
topological dynamical system. Then there exists a point x ∈ X which
is recurrent in the sense that there exists a sequence nj → ∞ such
that Tnjx→ x as j →∞.

As a corollary, we will be able to obtain the more concrete result
(see Section 2.4):

Theorem 2.1.12 (Weyl recurrence theorem). Let P : Z → R/Z be
a polynomial (modulo 1). Then there exists a sequence nj →∞ such
that P (nj)→ P (0).

This is already a somewhat non-trivial theorem; consider for in-
stance the case P (n) :=

√
2n2 mod 1.

In a similar spirit, in Section 2.4 we will be able to prove the
general topological dynamical result (see Theorem 2.4.1):

Theorem 2.1.13 (Topological van der Waerden theorem). Let (Uα)α∈A
be an open cover of a topological dynamical system (X,T ), and let
k ≥ 1 be an integer. Then there exists an open set U in this cover and
a shift n ≥ 1 such that U ∩ TnU ∩ . . .∩ T (k−1)nU 6= ∅. (Equivalently,
there exists U , n, and a point x such that x, Tnx, . . . , T (k−1)nx ∈ U .)

and conclude an (equivalent) combinatorial result:

Theorem 2.1.14 (van der Waerden theorem). Let N = U1∪ . . .∪Um
be a finite colouring of the natural numbers. Then one of the colour
classes Uj contains arbitrarily long arithmetic progressions.

More generally, topological dynamics is an excellent tool for es-
tablishing colouring theorems of Ramsey type.
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Analogously, in Sections 2.10-2.15 we will be able to show the
following general ergodic theory result (see Theorem 2.10.3)):

Theorem 2.1.15 (Furstenberg multiple recurrence theorem). Let
(X,T ) be a measure-preserving system, let E ∈ X be a set of pos-
itive measure, and let k ≥ 1. Then there exists n ≥ 1 such that
E ∩ TnE ∩ . . . ∩ T (k−1)nE 6= ∅ (or equivalently, there exists x ∈ X
and n ≥ 1 such that x, Tnx, . . . , T (k−1)n ∈ E).

Similarly, if f : X → R+ is a bounded measurable non-negative
function which is not almost everywhere zero, and k ≥ 1, then

(2.3) lim inf
N→∞

1
N

N∑
n=1

∫
X

fTnf . . . T (k−1)nf > 0.

and deduce an equivalent (and highly non-trivial) combinatorial
analogue (see Theorem 2.10.1):

Theorem 2.1.16 (Szemerédi’s theorem). Let E ⊂ Z be a set of
positive upper density, thus lim supN→∞

|E∩[−N,N ]|
2N+1 > 0. Then E

contains arbitrarily long arithmetic progressions.

More generally, ergodic theory methods are extremely powerful in
deriving density Ramsey theorems. Indeed, there are several theorems
of this type which currently have no known non-ergodic theory proof7.

The first half of this course will be devoted to results of the above
type, which apply to general topological dynamical systems or general
measure-preserving systems. One important insight that will emerge
from analysis of the latter is that in many cases, a large portion
of the measure-preserving system is irrelevant for the purposes of
understanding long-time average behaviour; instead, there will be a
smaller system, known as a characteristic factor for the system, which
completely controls these asymptotic averages. A deep and powerful
fact is that in many situations, this characteristic factor is extremely
structured algebraically, even if the original system has no obvious
algebraic structure whatsoever. Because of this, it becomes important

7From general techniques in proof theory, one could, in principle, take an ergodic
theory proof and mechanically convert it into what would technically be a non-ergodic
proof, for instance avoiding the use of infinitary objects, but this is not really in the
spirit of what most mathematicians would call a genuinely new proof.
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to study algebraic dynamical systems, such as the group actions on
homogeneous spaces described earlier, as it allows one to obtain more
precise results8. This study will be the focus of the second half of
the course, particularly in the important case of nilsystems - group
actions arising from a nilpotent Lie group with discrete stabiliser.
One of the key results here is Ratner’s theorem, which describes the
distribution of orbits {Tnx : n ∈ Z} in nilsystems, and also in a
more general class of group actions on homogeneous spaces. While
we will not prove Ratner’s theorem in full generality, we will cover a
few special cases of this theorem in Sections 2.16, 2.17.

In closing, I should mention that the topics I intend to cover
in this course are only a small fraction of the vast area of ergodic
theory and dynamical systems; for instance, there are parts of this
field connected with complex analysis and fractals, ODE, probability
and information theory, harmonic analysis, group theory, operator
algebras, or mathematical physics which I will say absolutely nothing
about here.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/01/08.

2.2. Three categories of dynamical systems

Before we begin or study of dynamical systems, topological dynamical
systems, and measure-preserving systems (as defined in Section 2.1),
it is convenient to give these three classes the structure of a category.
One of the basic insights of category theory is that a mathematical
objects in a given class (such as dynamical systems) are best studied
not in isolation, but in relation to each other, via morphisms. Fur-
thermore, many other basic concepts pertaining to these objects (e.g.
subobjects, factors, direct sums, irreducibility, etc.) can be defined in
terms of these morphisms. One advantage of taking this perspective
here is that it provides a unified way of defining these concepts for
the three different categories of dynamical systems, topological dy-
namical systems, and measure-preserving systems that we will study

8For instance, this algebraic structure was used to show that the limit in (2.3) ac-
tually converges, a result which does not seem accessible purely through the techniques
used to prove the Furstenberg recurrence theorem.
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in this course, thus sparing us the need to give any of our definitions
(except for our first one below) in triplicate.

Informally, a morphism between two objects in a class is any map
which respects all the structures of that class. For the three categories
we are interested in, the formal definition is as follows.

Definition 2.2.1 (Morphisms). (1) A morphism φ : (X,T )→
(Y, S) between two dynamical systems is a map φ : X → Y

which intertwines T and S in the sense that S ◦ φ = φ ◦ T .

(2) A morphism φ : (X,F , T )→ (Y,G, S) between two topolog-
ical dynamical systems is a morphism φ : (X,T )→ (Y, S) of
dynamical systems which is also continuous, thus φ−1(U) ∈
F for all U ∈ G.

(3) A morphism φ : (X,X , µ, T ) → (Y,Y, ν, S) between two
measure-preserving systems is a morphism φ : (X,T ) →
(Y, S) of dynamical systems which is also measurable (thus
φ−1(E) ∈ X for all E ∈ Y) and measure-preserving (thus
µ(φ−1(E)) = ν(E) for all E ∈ Y). Equivalently, ν = φ∗(µ)
is the push-forward of µ by φ.

When it is clear what category we are working in, and what the
shifts are, we shall often refer to a system by its underlying space,
thus for instance a morphism φ : (X,X , µ, T )→ (Y,Y, ν, S) might be
abbreviated as φ : X → Y .

If a morphism φ : X → Y has an inverse φ−1 : Y → X which is
also a morphism, we say that φ is an isomorphism, and that X and
Y are isomorphic or conjugate.

It is easy to see that morphisms obey the axioms of a (concrete)
category, or in other words that the identity map idX : X → X on a
system is always a morphism, and the composition ψ ◦ φ : X → Z of
two morphisms φ : X → Y and ψ : Y → Z is again a morphism.

Let’s give some simple examples of morphisms.

Example 2.2.2 (Shift). If (X,T ) is a dynamical system, a topolog-
ical dynamical system, or a measure-preserving dynamical system,
then Tn : X → X is an isomorphism for any integer n. (Indeed,
one can view the map X 7→ Tn as a natural transformation from the
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identity functor on the category of dynamical systems (or topologi-
cal dynamical systems, etc.) to itself, although we will not take this
perspective here.)

Example 2.2.3 (Subsystems). Let (X,T ) be a dynamical system,
and let E be a subset of X which is T -invariant in the sense that
TnE = E for all n. Then the restriction of (E, T �E) of (X,T ) to
E is itself a dynamical system, and the inclusion map ι : E → X

is a morphism. In the category of topological dynamical systems
(X,F , T ), we have the same assertion so long as E is closed (hence
compact, since X is compact). In the category of measure-preserving
systems (X,X , µ, T ), we have the same assertion so long as E has full
measure (thus E ∈ X and µ(E) = 1). We thus see that subsystems are
not very common in measure-preserving systems and will in fact play
very little role there; however, subsystems (and specifically, minimal
subsystems) will play a fundamental role in topological dynamics.

Example 2.2.4 (Skew shift). Let α ∈ R be a fixed real number.
Let (X,T ) be the dynamical system X := (R/Z)2, T : (x1, x2) 7→
(x1 + α, x2 + x1), let (Y, S) be the dynamical system Y := R/Z, S :
y 7→ y + α, and let π : X → Y be the projection map π : (x1, x2) →
x1. Then π is a morphism. If one converts X and Y into either a
topological dynamical system or a measure-preserving system in the
obvious manner, then π remains a morphism. Observe that π foliates
the big space X “upstairs” into “vertical” fibres π−1({y}), y ∈ Y

indexed by the small “horizontal” space “downstairs”; the shift S on
the factor space Y downstairs determines how the fibres move (the
shift T upstairs sends each vertical fibre π−1({y}) to another vertical
fibre π−1({Sy}), but does not govern the dynamics within each fibre.
More generally, any factor map (i.e. a surjective morphism) exhibits
this type of behaviour9.

Example 2.2.5 (Universal pointed dynamical system). Let Z =
(Z,+1) be the dynamical system given by the integers with the stan-
dard shift n 7→ n+ 1. Then given any other dynamical system (X,T )

9Another example of a factor map is the map π : Z/NZ → Z/MZ between two
cyclic groups (with the standard shift x 7→ x + 1) given by π : x 7→ x mod M . This
is a well-defined factor map when M is a factor of N, which may help explain the
terminology. If we wanted to adhere strictly to the category theoretic philosophy, we
should use epimorphisms rather than surjections, but we will not require this subtle
distinction here.
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with a distinguished point x ∈ X, the orbit map φ : n 7→ Tnx is a
morphism from Z to X. This allows us to lift most questions about
dynamical systems (with a distinguished point x) to those for a sin-
gle “universal” dynamical system, namely the integers (with distin-
guished point 0). One cannot pull off the same trick directly with
topological dynamical systems or measure-preserving systems, be-
cause Z is non-compact and does not admit a shift-invariant probabil-
ity measure. As we shall see later, the former difficulty can be resolved
by passing to a universal compactification of the integers, namely the
StoneCěch compactification βZ (or equivalently, the space of ultra-
filters on the integers), though with the important caveat that this
compactification is not metrisable. To resolve the second difficulty
(with the assistance of a distinguished set rather than a distinguished
point), see the next example.

Example 2.2.6 (Universal dynamical system with distinguished set).
Recall the boolean Bernoulli system (2Z, U) (Example 2.1.6). Given
any other dynamical system (X,T ) with a distinguished set A ⊂ X,
the recurrence map φ : X → 2Z defined by φ(x) := {n ∈ Z : Tnx ∈
A} is a morphism. Observe that A = φ−1(B), where B is the cylinder
set B := {E ∈ 2Z : 0 ∈ E}. Thus we can push forward an arbitrary
dynamical system (X,T,A) with distinguished set to a universal dy-
namical system (2Z, U,B). Actually one can restrict (2Z, U,B) to the
subsystem (φ(X), U �φ(X), B∩φ(X)), which is easily seen to be shift-
invariant. In the category of topological dynamical systems, the above
assertions still hold (giving 2Z the product topology), so long as A is
clopen. In the category of measure-preserving systems (X,X , µ, T ),
the above assertions hold as long as A is measurable, 2Z is given the
product σ-algebra, and the push-forward measure φ∗(µ).

Now we begin our analysis of dynamical systems. When studying
other mathematical objects (e.g. groups or representations), often one
of the first steps in the theory is to decompose general objects into
“irreducible” ones, and then hope to classify the latter. Let’s see how
this works for dynamical systems (X,T ) and topological dynamical
systems (X,F , T ). (For measure-preserving systems, the analogous
decomposition will be the ergodic decomposition, which we will discuss
in Section 2.9.5.)
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Definition 2.2.7. A minimal dynamical system is a system (X,T )
which has no proper subsystems (Y, S). A minimal topological dy-
namical system10 is a system (X,F , T ) with no proper subsystems
(Y,G, S).

For a dynamical system, it is not hard to see that for any x ∈ X,
the orbit Y = TZx = {Tnx : n ∈ Z} is a minimal system, and con-
versely that all minimal systems arise in this manner; in particular,
every point is contained in a minimal orbit. It is also easy to see
that any two minimal systems (i.e. orbits) are either disjoint or co-
incident. Thus every dynamical system can be uniquely decomposed
into the disjoint union of minimal systems. Also, every orbit TZx is
isomorphic to Z/Stab(x), where Stab(x) := {n ∈ Z : Tnx = x} is the
stabiliser group of x. Since we know what all the subgroups of Z, we
conclude that every minimal system is either equivalent to a cyclic
group shift (Z/NZ, x 7→ x+1) for some N ≥ 1, or to the integer shift
(Z, x 7→ x + 1). Thus we have completely classified all dynamical
systems up to isomorphism as the arbitrary union of these minimal
examples11.

For topological dynamical systems, it is still true that any two
minimal systems are either disjoint or coincident (why?), but the
situation nevertheless is more complicated. First of all, orbits need
not be closed (consider for instance the circle shift (R/Z, x 7→ x +
α) with α irrational). If one considers the orbit closure TZx of a
point x, then this is now a subsystem (why?), and every minimal
system is the orbit closure of any of its elements (why?), but in the
converse direction, not all orbit closures are minimal. Consider for
instance the boolean Bernoulli system (2Z, A 7→ A−1) with x = N :=
{0, 1, 2, . . .} ∈ 2Z being the natural numbers. Then the orbit TZx of
x consists of all the half-lines {a, a + 1, . . . , } ∈ 2Z for a ∈ Z, but it
is not closed; it has the point Z ∈ 2Z and the point ∅ ∈ 2Z as limit

10One could make the same definition for measure-preserving systems, but it
tends to be a bit vacuous - given any measure preserving system that contains points

of measure zero, one can make it trivially smaller by removing the orbit TZx := {Tnx :
n ∈ Z} of any point x of measure zero. One could place a topology on the space X and
demand that it be compact, in which case minimality just means that the probability
measure µ has full support.

11In the case of finite dynamical systems, the integer shift does not appear, and
we have recovered the classical fact that every permutation is uniquely decomposable
as the product of disjoint cycles.
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points (recall that 2Z is given the product (i.e. pointwise) topology).
Each of these points is an invariant point of T and thus forms its own
orbit closure, which is obviously minimal12.

Thus we see that finite dynamical systems do not quite form a
perfect model for topological dynamical systems. A slightly better
(but still imperfect) model would be that of non-invertible finite dy-
namical systems (X,T ), in which T : X → X is now just a function
rather than a permutation. Then we can still verify that all minimal
orbits are given by disjoint cycles, but they no longer necessarily oc-
cupy all of X; it is quite possible for the orbit TNx = {Tnx : n ∈ N}
of a point x to start outside of any of the minimal cycles, although it
will eventually be absorbed in one of them.

In the above examples, the limit points of an orbit formed their
own minimal orbits. In some cases, one has to pass to limits multiple
times before one reaches a minimal orbit. For instance, consider the
boolean Bernoulli system again, but now consider the point

y :=
∞⋃
n=0

[4n, 2× 4n] = [1, 2] ∪ [4, 8] ∪ [16, 32] ∪ . . . ∈ 2Z

where we use the notation [N,M ] := {n ∈ Z : N ≤ n ≤M}. Observe
that the point x defined earlier is not in the orbit TNy, but lies in
the orbit closure, as it is the limit of T 4ny. On the other hand, the
orbit closure of x does not contain y. So the orbit closure of x is a
subsystem of that of y, and then inside the former system one has
the minimal systems {Z} and {∅}. It is not hard to iterate this type
of example and see that we can have quite intricate hierarchies of
systems.

Exercise 2.2.1. Construct a topological dynamical system (X,F , T )
and a sequence of orbit closures TZxn in X which form a proper
nested sequence, thus

TZx1 ) TZx2 ) TZx3 ) . . .

Hint : Take a countable family of nested Bernoulli systems, and find
a way to represent each one as a orbit closure.

12This argument shows that x itself is not contained in any minimal system -
why?
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Despite this apparent complexity, we can always terminate such
hierarchies of subsystems at a minimal system:

Lemma 2.2.8. Every topological dynamical system (X,F , T ) con-
tains a minimal dynamical system.

Proof. Observe that the intersection of any chain of subsystems of
X is again a subsystem (here we use the finite intersection property
of compact sets to guarantee that the intersection is non-empty, and
we also use the fact that the arbitrary intersection of closed or T -
invariant sets is again closed or T -invariant). The claim then follows
from Zorn’s lemma13. �

Exercise 2.2.2. Recall that every compact metrisable space is second
countable and thus has a countable topological base. Suppose we are
given an explicit enumeration V1, V2, . . . of such a base. Then find a
proof of Lemma 2.2.8 which avoids the axiom of choice.

It would be nice if we could use Lemma 2.2.8 to decompose topo-
logical dynamical systems into the union of minimal subsystems, as we
did in the case of non-topological dynamical systems. Unfortunately
this does not work so well; the problem is that the complement of a
minimal system is an open set rather than a closed set, and so we
cannot cleanly separate a minimal system from its complement14.

We will study minimal dynamical systems in detail in the next
few lectures. I’ll close now with some examples of minimal systems.

Example 2.2.9 (Cyclic group shift). The cyclic group shift (Z/NZ, x 7→
x+ 1), where N is a positive integer, is a minimal system, and these
are the only discrete minimal topological dynamical systems. More
generally, if x is a periodic point of a topological dynamical system
(thus TNx = x for some N ≥ 1), then the closed orbit of x is isomor-
phic to a cyclic group shift and is thus minimal.

13We will always assume the axiom of choice throughout this course.
14In any case, the preceding examples already show that there can be some points

in a system that are not contained in any minimal subsystem. Also, in contrast with
non-invertible non-topological dynamical systems, our examples also show that a closed
orbit can contain multiple minimal subsystems, so we cannot reduce to some sort of
“nilpotent” system that has only one minimal system.
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Example 2.2.10 (Torus shift). Consider a torus shift ((R/Z)d, x 7→
x+ α), where α ∈ Rd is a fixed vector. It turns out that this system
is minimal if and only if15 α is totally irrational, which means that
n · α is not an integer for any non-zero n ∈ Zd.

Example 2.2.11 (Morse sequence). Let A = {a, b} be a two-letter
alphabet, and consider the Bernoulli system (AZ, T ) formed from
doubly infinite words

. . . x−2x−1.x0x1x2 . . .

in A with the left-shift. Now define the sequence of finite words

w1 := a.b;

w2 := abba.baab;

w3 := abbabaabbaababba.baababbaabbabaab;

. . .

by the recursive formula

w1 := a.b; wi+1 := f(wi)

where f(w) denotes the word formed from w by replacing each oc-
currence of a and b by abba and baab respectively. These words wi
converge pointwise to an infinite word

w = . . . abbabaababbabaabbaababba.baababbaabbabaababbabaab . . . .

Exercise 2.2.3. Show that w is not a periodic element of AZ, but
that the orbit TZw is both closed and minimal. Hint : find large sub-
words of w which appear syndetically, which means that the gaps
between each appearance are bounded. In fact, all subwords of w ap-
pear syndetically. One can also work with a more explicit description
of w involving the number of non-zero digits in the binary expansion
of the index. (This set is an example of a substitution minimal set.)

Exercise 2.2.4. Let (X,F , T ) and (Y,G, S) be topological dynamical
systems. Define the product of these systems to be (X×Y,F×G, T ×
S), where X × Y is the Cartesian product, F × G is the product
topology, and T × S is the map (x, y) 7→ (Tx, Sy). Note that there

15The “if” part is slightly non-trivial; see Corollary 1.4.2; but the “only if” part
is easy, and is left as an exercise.
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are obvious projection morphisms from this product system to the two
original systems. Show that this product system is indeed a product
in the sense of category theory, thus any other system that maps
to the two original systems factors uniquely through the product.
Establish analogous claims in the categories of dynamical systems
and measure-preserving systems.

Exercise 2.2.5. Let (X,F , T ) and (Y,G, S) be topological dynamical
systems. Define the disjoint union of these systems to be (X ]Y,F ]
G, T]S) where (X]Y,F]G) is the disjoint union of (X,F) and (Y,G),
and T ]S is the map which agrees with T on X and agrees with S on
Y. Note that there are obvious embedding morphisms from the two
original systems into the disjoint union. Show that the disjoint union
is a coproduct in the sense of category theory, thus any system that
is mapped to from the two origina systems factors uniquely through
the disjoint union. Are analogous claims true for the categories of
dynamical systems and measure-preserving systems?

Notes. This lecture first appeared at terrytao.wordpress.com/2008/01/10.
Thanks to Andy P. and anonymous commenters for corrections.

2.3. Minimal dynamical systems, recurrence,
and the Stone-Cěch compactification

We now begin the study of recurrence in topological dynamical sys-
tems (X,F , T ) - how often a non-empty open set U in X returns to
intersect itself, or how often a point x in X returns to be close to
itself. Not every set or point needs to return to itself; consider for
instance what happens to the shift x 7→ x + 1 on the compactified
integers {−∞} ∪ Z ∪ {+∞}. Nevertheless, we can always show that
at least one set (from any open cover) returns to itself:

Theorem 2.3.1 (Simple recurrence in open covers). Let (X,F , T )
be a topological dynamical system, and let (Uα)α∈A be an open cover
of X. Then there exists an open set Uα in this cover such that Uα ∩
TnUα 6= ∅ for infinitely many n.

Proof. By compactness of X, we can refine the open cover to a finite
subcover. Now consider an orbit TZx = {Tnx : x ∈ Z} of some
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arbitrarily chosen point x ∈ X. By the infinite pigeonhole principle,
one of the sets Uα must contain an infinite number of the points Tnx
counting multiplicity; in other words, the recurrence set S := {n :
Tnx ∈ Uα} is infinite. Letting n0 be an arbitrary element of S, we
thus conclude that Uα∩Tn0−nUα contains Tn0x for every n ∈ S, and
the claim follows. �

Exercise 2.3.1. Conversely, use Theorem 2.3.1 to deduce the infinite
pigeonhole principle (i.e. that whenever Z is coloured into finitely
many colours, one of the colour classes is infinite). Hint : look at
the orbit closure of c inside AZ, where A is the set of colours and
c : Z→ A is the colouring function.)

Now we turn from recurrence of sets to recurrence of individual
points, which is a somewhat more difficult, and highlights the role
of minimal dynamical systems (as introduced in Section 2.2) in the
theory. We will approach the subject from two (largely equivalent) ap-
proaches, the first one being the more traditional “epsilon and delta”
approach, and the second using the Stone-Cěch compactification βZ
of the integers (or equivalently, via ultrafilters).

Before we begin, it will be notationally convenient16 to place a
metric d on our compact metrisable space X. There are of course
infinitely many metrics that one could place here, but they are all
coarsely equivalent in the following sense: if d, d′ are two metrics on
X, then for every δ > 0 there exists an ε > 0 such that d′(x, y) < δ

whenever d(x, y) < ε, and similarly with the role d and d′ reversed.
This claim follows from the standard fact that continuous functions
between compact metric spaces are uniformly continuous. Because
of this equivalence, it will not actually matter for any of our results
what metric we place on our spaces. For instance, we could endow
a Bernoulli system AZ, where A is itself a compact metrisable space
(and thus AZ is compact by Tychonoff’s theorem), with the metric

(2.4) d((an)n∈Z, (bn)n∈Z) :=
∑
n∈Z

2−|n|dA(an, bn)

16As an exercise, the reader is encouraged to recast all the material here in a
manner which does not explicitly mention a metric.
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where dA is some arbitrarily selected metric on A. Note that this
metric is not shift-invariant.

Exercise 2.3.2. Show that if A contains at least two points, then
the Bernoulli system AZ (with the standard shift) cannot be endowed
with a shift-invariant metric. Hint : find two distinct points which
converge to each other under the shift map.

Fix a metric d. For each n, the shift Tn : X → X is contin-
uous, and hence uniformly continuous since X is compact, thus for
every δ > 0 there exists ε > 0 depending on δ and n such that
d(Tnx, Tny) < δ whenever d(x, y) < ε. However, we caution that
the Tn need not be uniformly equicontinuous; the quantity ε appear-
ing above can certainly depend on n. Indeed, they need not even be
equicontinuous. For instance, this will be the case for the Bernoulli
shift with the metric 2.4 (why?), and more generally for any system
that exhibits “mixing” or other chaotic behaviour. At the other ex-
treme, in the case of isometric systems - systems in which T preserves
the metric d - the shifts Tn are all isometries, and thus are clearly
uniformly equicontinuous. (We will study isometric systems further
in Section 2.6.)

We can now classify points x in X based on the dynamics of the
orbit TZx := {Tnx : n ∈ Z}:

Definition 2.3.2 (Points in a topological dynamical system). (1)
x is invariant if Tx = x.

(2) x is periodic if Tnx = x for some non-zero n.

(3) x is almost periodic if for every ε > 0, the set {n ∈ Z :
d(Tnx, x) < ε} is syndetic (i.e. it has bounded gaps);

(4) x is recurrent if for every ε > 0, the set {n ∈ Z : d(Tnx, x) <
ε} is infinite. Equivalently, there exists a sequence nj of
integers with |nj | → ∞ such that limj→∞ Tnjx = x.

It is clear that every invariant point is periodic, that every pe-
riodic point is almost periodic, and every almost periodic point is
recurrent. These inclusions are all strict. For instance, in the circle
shift system (R/Z, x 7→ x + α) with α ∈ R irrational, it turns out
that every point is almost periodic, but no point is periodic.
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Exercise 2.3.3. In the boolean Bernoulli system (2Z, A 7→ A − 1),
show that the discrete Cantor set

(2.5) x :=
∞⋃
N=1

{
N∑
n=0

εn10n : εn ∈ {−1, 0,+1}}

is recurrent but not almost periodic.

In a general topological dynamical system, it is quite possible to
have points which are non-recurrent (as the example of the compact-
ified integer shift already shows). But if we restrict to a minimal
dynamical system, things get much better:

Lemma 2.3.3. If (X,F , T ) is a minimal topological dynamical sys-
tem, then every element of X is almost periodic (and hence recurrent).

Proof. Suppose for contradiction that we can find a point x of X
which is not almost periodic. This means that we can find ε > 0 such
that the set {n : d(Tnx, x) < ε} is not syndetic. Thus, for any m > 0,
we can find an nm such that d(Tnx, x) ≥ ε for all n ∈ [nm−m,nm+m]
(say).

Since X is compact, the sequence Tnmx must have at least one
limit point y. But then one verifies (using the continuity of the shift
operators) that

(2.6) d(Thy, x) = lim
m→∞

d(Tnm+hx, x) ≥ ε

for all h. But this means that the orbit closure TZy of y does not
contain x, contradicting the minimality of X. The claim follows. �

Exercise 2.3.4. If x is a point in a topological dynamical system,
show that x is almost periodic if and only if it lies in a minimal system.
Because of this, almost periodic points are sometimes referred to as
minimal points.

Combining Lemma 2.3.3 with Lemma 2.2.8, we immediately ob-
tain the

Theorem 2.3.4 (Birkhoff recurrence theorem). Every topological dy-
namical system contains at least one point x which is almost periodic
(and hence recurrent).
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Note that this is stronger than Theorem 2.3.1, as can be seen
by considering the element Uα of the open cover which contains the
almost periodic point. Indeed, we now have obtained a stronger con-
clusion, namely that the set of return times {n : TnUα ∩ Uα 6= ∅} is
not only infinite, it is syndetic.

Exercise 2.3.5. State and prove a version of the Birkhoff recurrence
theorem in which the map T : X → X is continuous but not as-
sumed to be invertible. (Of course, all references to Z now need to
be replaced with N.)

The Birkhoff recurrence theorem does not seem particularly strong,
as it only guarantees existence of a single recurrent (or almost peri-
odic point). For general systems, this is inevitable, because it can
happen that the majority of the points are non-recurrent (look at the
compactified integer shift system, for instance). However, suppose
the system is a group quotient (G/Γ, x 7→ gx). To make this a topo-
logical dynamical system, we need G to be a topological group, and
Γ to be a cocompact subgroup of G (such groups are also sometimes
referred to as uniform subgroups). Then we see that the system is
a homogeneous space: given any two points x, y ∈ G/Γ, there exists
a group element h ∈ G such that hx = y. Thus we expect any two
points in G/Γ to behave similarly to each other. Unfortunately, this
does not quite work in general, because the action of h need not pre-
serve the shift x 7→ gx, as there is no reason that h commutes with
g. But suppose that g is a central element of G, i.e. it commutes
with every element of G; this is for instance the case if G is abelian.
Then the action of h is now an isomorphism on the dynamical system
(G/Γ, x 7→ gx). In particular, if hx = y, we see that x is almost
periodic (or recurrent) if and only if y is. We thus conclude:

Theorem 2.3.5 (Kronecker type approximation theorem). Let (G/Γ, x 7→
gx) be a topological group quotient dynamical system such that g lies
in the centre Z(G) of G. Then every point in this system is almost
periodic (and hence recurrent).

Applying this theorem to the torus shift ((R/Z)d, x 7→ x + α),
where α = (α1, . . . , αd) ∈ Rd is a vector, we thus obtain that for any
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ε > 0, the set

(2.7) {n ∈ Z : dist(nα,Zd) < ε}

is syndetic (and in particular, infinite). This should be compared
with the classical Kronecker approximation theorem.

It is natural to ask what happens when g is not central. If G
is a Lie group and the action of g on the Lie algebra g is unipotent
rather than trivial, then Theorem 2.3.5 still holds; this follows from
Ratner’s theorem, which we will discuss in Sections 2.16-2.17. But the
claim is not true for all group quotients. Consider for instance the
Bernoulli shift system (X,T ) = ((Z/2Z)Z, T ), which is isomorphic to
the boolean Bernoulli shift system. As the previous examples have
already shown, this system contains both recurrent and non-recurrent
elements. On the other hand, it is intuitive that this system has
a lot of symmetry, and indeed we can view it as a group quotient
(G/Γ, x 7→ gx). Specifically, G is the lamplighter group G = Z/2Z oZ.
To describe this group, we observe that the group (Z/2Z)Z acts on
X by addition, whilst the group Z acts on X via the shift map T .
The lamplighter group G := (Z/2Z)Z×Z then acts by both addition
and shift:

(2.8) (a, n) : x 7→ Tnx+ a for all (a, n) ∈ G.

In order for this to be a group action, we endow G with the
multiplication law

(2.9) (a, n)(b,m) := (a+ Tnb, n+m);

one easily verifies that this really does make G into a group, and
if we give G the product topology, it becomes a topological group. G
clearly acts transitively on the compact space X, and so X ≡ G/Γ for
some cocompact subgroup Γ (which turns out to be isomorphic to Z
- why?). By construction, the shift map T can be expressed using the
group element (0, 1) ∈ G, and so we have turned the Bernoulli sys-
tem into a group quotient. Since this system contains non-recurrent
points (e.g. the indicator function of the natural numbers) we see
that Theorem 2.3.5 does not hold for arbitrary group quotients.
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2.3.1. The ultrafilter approach. Now we turn to a different ap-
proach to topological recurrence, which relies on compactifying the
underlying group Z that acts on topological dynamical systems. By
doing so, all the epsilon management issues (cf. Section 1.5 of Struc-
ture and Randomness) go away, and the subject becomes very alge-
braic in nature. On the other hand, some subtleties arise also; for
instance, the compactified object βZ is not a group, but merely a
left-continuous semigroup.

This approach is based on ultrafilters or (equivalently) via the
Stone-Cěch compactification. Let us recall how this compactification
works:

Theorem 2.3.6 (Stone-Cěch compactification). Every locally com-
pact Hausdorff (LCH) space X can be embedded in a compact Haus-
dorff space βX in which X is an open dense set. (In particular, if
X is already compact, then βX = X.) Furthermore, any continu-
ous function f : X → Y between LCH spaces extends uniquely to a
continuous function βf : βX → βY .

Proof. (Sketch) This proof uses the intuition that βX should be the
“finest” compactification of X. Recall that a compactification of a
LCH space X is any compact Hausdorff space containing X as an
open dense set. We say that one compactification Y of X is finer
than another Z if there is a surjective17 continuous map from Y to
Z that is the identity on X. For instance, the two-point compactifi-
cation {−∞} ∪ Z ∪ {+∞} of the integers is finer than the one-point
compactification Z∪{∞}. This is clearly a partial ordering; also, the
inverse limit of any chain (totally ordered set) of compactifications
can be verified (by Tychonoff’s theorem) to still be a compactification.
Hence, by Zorn’s lemma18, there is a maximal compactification βX.
To verify the extension property for continuous functions f : X → Y ,
note (by replacing Y with βY if necessary) that we may take Y to be
compact. Let Z be the closure of the graph X ′ := {(x, f(x)) : x ∈ X}

17Note that as X is dense in Y , and Z is Hausdorff, this surjection is unique.
18There is a technical step one needs to verify to apply this lemma, namely the

moduli space of compactifications of X is a set rather than a class. We leave this to
the reader.
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in (βX)×Y . X ′ is clearly homeomorphic to X, and so Z is a compact-
ification of X. Also, there is an obvious surjective continuous map
from Z to βX; thus by maximality, this map must be a homeomor-
phism, thus Z is the graph of a continuous function βf : βX → βY ,
and the claim follows (the uniqueness of βf is easily established). �

Exercise 2.3.6. Let X be discrete (and thus clearly LCH), and let
βX be the Stone-Cěch compactification. For any p ∈ βX, let [p] ∈
22X be the collection of all sets A ⊂ X such that β1A(p) = 1. Show
that [p] is an ultrafilter, or in other words that it obeys the following
four properties:

(1) ∅ 6∈ [p].

(2) If U ∈ [p] and V ∈ 2X are such that U ⊂ V , then V ∈ [p].

(3) If U, V ∈ [p], then U ∩ V ∈ [p].

(4) If U, V ∈ 2X are such that U ∪ V = X, then at least one of
U and V lie in [p].

Furthermore, show that the map p 7→ [p] is a homeomorphism be-
tween βX and the space of ultrafilters, which we endow with the
topology induced from the product topology on 22X ≡ {0, 1}2X , where
we give {0, 1} the discrete topology (one can place some other topolo-
gies here also). Thus we see that in the discrete case, we can represent
the Stone-Cěch compactification explicitly via ultrafilters.

It is easy to see that β(g ◦ f) = (βg) ◦ (βf) whenever f : X → Y

and g : Y → Z are continuous maps between LCH spaces. In the
language of category theory, we thus see that β is a covariant functor
from the category of LCH spaces to the category of compact Hausdorff
spaces19

Exercise 2.3.7. Let X and Y be two LCH spaces. Show that the
disjoint union (βX)] (βY ) of βX and βY is isomorphic to β(X]Y ).
(Indeed, this isomorphism is a natural isomorphism.) In the language
of category theory, this means that β preserves coproducts20.

19The above theorem does not explicitly define βX, but it is not hard to see
that this compactification is unique up to homeomorphism, so the exact form of βX
is somewhat moot. However, it is possible to create an ultrafilter-based description of
βX for general LCH spaces X, though we will not do so here.

20Unfortunately, β does not preserve products, which leads to various subtleties,
such as the non-commutativity of the compactification of commutative groups.
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Note that if f : X → Y is continuous, then βf : βX → βY is
continuous also; since X is dense in βX, we conclude that21

(2.10) βf(p) = lim
x→p

f(x)

for all p ∈ βX, where x is constrained to lie in X. In particular, the
limit on the right exists for any continuous f : X → Y , and thus if
X is discrete, it exists for any (!) function f : X → Y . Each p can
then be viewed as a recipe for taking limits of arbitrary functions in
a consistent fashion (although different p’s can give different limits,
of course). It is this ability to take limits without needing to check
for convergence and without running into contradictions that makes
the Stone-Cěch compactification a useful tool here22.

The integers Z are discrete, and thus are clearly LCH. Thus we
may form the compactification βZ. The addition operation + : Z ×
Z→ Z can then be extended to βZ by the plausible-looking formula

(2.11) p+ q := lim
n→p

lim
m→q

n+m

for all p, q ∈ βZ, where n, m range in the integers Z. Note that the
double limit is guaranteed to exist by (2.10). Equivalently, we have

(2.12) lim
l→p+q

f(l) = lim
n→p

lim
m→q

f(n+m)

for all functions f : Z → X into an LCH space X; one can derive
(2.12) from (2.11) by applying βf : βZ→ βX to both sides of (2.11)
and using (2.10) and the continuity of βf repeatedly. This addition
operation clearly extends that of Z and is associative, thus we have
turned βZ into a semigroup. We caution however that this semigroup
is not commutative, due to the usual difficulty that double limits
in (2.11) cannot be exchanged. (We will prove non-commutativity
shortly.) For similar reasons, βZ is not a group; the obvious attempt
to define a negation operation −p := limn→p−n is well-defined, but
does not actually invert addition. The operation (p, q) 7→ p + q is
continuous in p for fixed q (why?), but is not necessarily continuous
in q for fixed p - again, due to the exchange of limits problem. Thus

21Here and in the sequel, limits such as limx→p are interpreted in the usual
topological sense, thus (2.10) means that for every neighbourhood V of βf(p), there
exists a neighbourhood U of p such that f(x) ∈ V for all x ∈ U .

22See also Section 1.5 of Structure and Randomness for further discussion.
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βZ is merely a left-continuous semigroup. If however p is an integer,
then the first limit in (2.11) disappears, and one easily shows that
q 7→ q + p is continuous in this case (and for similar reasons one also
recovers commutativity, q + p = p+ q).

Exercise 2.3.8. Let us endow the two-point compactification {−∞}∪
Z∪{+∞} with the semigroup structure + in which x+ (+∞) = +∞
and x + (−∞) = −∞ for all x ∈ {−∞} ∪ Z ∪ {+∞} (compare with
(2.11)). Show that there is a unique continuous map π : βZ →
Z ∪ {−∞} ∪ {+∞} which is the identity on Z, and that this map is
a surjective semigroup homomorphism. Using this homomorphism,
conclude:

(1) βZ is not commutative. Furthermore, show that the centre
Z(βZ) := {p ∈ βZ : p+ q = q + p for all q ∈ βZ} is exactly
equal to Z.

(2) Show that if p, q ∈ βZ are such that p+q ∈ Z, then p, q ∈ Z.
(“Once you go to infinity, you can never return.”) Conclude
in particular that βZ is not a group23.

Remark 2.3.7. More generally, we can take any LCH left-continuous
semigroup S and compactify it to obtain a compact Hausdorff left-
continuous semigroup βS. Observe that if f : S → S′ is a homomor-
phism between two LCH left-continuous semigroups, then βf : βS →
βS′ is also a homomorphism. Thus, from the viewpoint of category
theory, β can be viewed as a covariant functor from the category of
LCH left-continuous semigroups to the category of CH left-continuous
semigroups.

The left-continuous non-commutative semigroup structure of βZ
may appear to be terribly weak when compared against the jointly
continuous commutative group structure of Z, but βZ has a decisive
trump card over Z: it is compact. We will see the power of compact-
ness a little later in this lecture.

A topological dynamical system (X,F , T ) yields an action n 7→
Tn of the integers Z. But we can automatically extend this action to

23Note that this conclusion could already be obtained using the coarser one-point
compactification Z ∪ {∞} of the integers.
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an action p 7→ T p of the compactified integers βZ by the formula

(2.13) T px := lim
n→p

Tnx.

(Note that X is already compact, so that the limit in (2.13) stays
in X.) One easily checks from (2.12) that this is indeed an action of
βZ (thus T pT q = T p+q for all p, q ∈ Z). The map T px is continuous
in p by construction; however we caution that it is no longer contin-
uous in x (it’s the exchange-of-limits problem once more!). Indeed,
the map T p : X → X can be quite nasty from an analytic viewpoint;
for instance, it is possible for this map to not be Borel measurable24.
But as we shall see, the algebraic properties of T p are very good, and
suffice for applications to recurrence, because once one has compact-
ified the underlying semigroup βZ, the need for point-set topology
(and for all the epsilons that come with it) mostly disappears. For
instance, we can now replace orbit closures by orbits:

Lemma 2.3.8. Let (X,F , T ) be a topological dynamical system, and
let x ∈ X. Then

TZ(x) = T βZx := {T px : p ∈ βZ}.

Proof. Since βZ is compact, T βZx is compact also. Since Z is dense
in βZ, TZx is dense in T βZx. The claim follows. �

From (2.13) we see that T p is some sort of “limiting shift” oper-
ation. To get some intuition, let us consider the compactified integer
shift ({−∞}∪Z∪{+∞}, x 7→ x+1), and look at the orbit of the point
0. If one only shifts by integers n ∈ Z, then Tn0 can range across the
region Z in the system but cannot reach −∞ or +∞. But now let
p ∈ βZ\Z be any limit point of the positive integers Z+ (note that
at least one such limit point must exist, since Z+ is not compact. In-
deed, in the language of Exercise 2.3.8, the set of all such limit points
is π−1(+∞).) Then from (2.13) we see that T p0 = +∞. Similarly, if
q ∈ βZ\Z is a limit point of the negative integers Z− then T q0 = −∞.
Now, since +∞ invariant, we have T q(+∞) = +∞ by (2.13) again,
and thus T qT p0 = +∞, while T pT q0 = −∞. In particular, we see
that p + q 6= q + p, demonstrating non-commutativity in βZ (again,

24This is the price one pays for introducing beasts generated by the axiom of
choice into one’s mathematical ecosystem.
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compare with Exercise 2.3.8). Informally, the problem here is that
in (2.11), n+m will go to +∞ if we let m go to +∞ first and then
n→ −∞ next, but if we take n→ −∞ first and then m→ +∞ next,
n+m instead goes to −∞.

Exercise 2.3.9. Let A ⊂ Z be a set of integers.

(1) Show that βA can be canonically identified with the closure
of A in βZ, in which case βA becomes a clopen subset of
βZ.

(2) Show that A is infinite if and only if βA 6⊂ Z.

(3) Show that A is syndetic if and only if βA ∩ (βZ + p) 6= ∅
for every p ∈ βZ. (Since βA is clopen, this condition is also
equivalent to requiring βA ∩ (Z + p) 6= ∅ for every p ∈ βZ.)

(4) A set of integers A is said to be thick if it contains arbitrarily
long intervals [an, an+n]; thus syndetic and thick sets always
intersect each other. Show that A is thick if and only if there
exists p ∈ βZ such that βZ+p ⊂ βA. (Again, this condition
is equivalent to requiring Z + p ⊂ βA for some p.)

Recall that a system is minimal if and only if it is the orbit
closure of every point in that system. We thus have a purely algebraic
description of minimality:

Corollary 2.3.9. Let (X,F , T ) be a topological dynamical system.
Then X is minimal if and only if the action of βZ is transitive; thus
for every x, y ∈ Z there exists p ∈ βZ such that T px = y.

One also has purely algebraic descriptions of almost periodicity
and recurrence:

Exercise 2.3.10. Let (X,F , T ) be a topological dynamical system,
and let x be a point in X.

(1) Show that x is almost periodic if and and only if for every
p ∈ βZ there exists q ∈ βZ such that T qT px = x. (In
particular, Lemma 2.3.3 is now an immediate consequence
of Corollary 2.3.9.)

(2) Show that x is recurrent if and only if there exists p ∈ βZ\Z
such that T px = x.
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Note that βZ acts on itself βZ by addition, p : q 7→ p + q, with
the action being continuous when p is an integer. Thus one can
view βZ itself as a topological dynamical system, except with the
caveat that βZ is not metrisable or even first countable (see Exercise
2.3.13). Nevertheless, it is still useful to think of βZ as behaving like
a topological dynamical system. For instance:

Definition 2.3.10. An element p ∈ βZ is said to be minimal or
almost periodic if for every q ∈ βZ there exists r ∈ βZ such that
r + q + p = p.

Equivalently, p is minimal if βZ + p is a minimal left-ideal of βZ,
which explains the terminology.

Exercise 2.3.11. Show that for every p ∈ βZ there exists q ∈ βZ
such that q + p is minimal. Hint : adapt the proof of Lemma 2.2.8.
Also, show that if p is minimal, then q+ p and p+ q are also minimal
for any q ∈ βZ. This shows that minimal elements of βZ exist in
abundance. However, observe from Exercise 2.3.6 that no integer can
be minimal.

Exercise 2.3.12. Show that if p ∈ βZ is minimal, and x is a point
in a topological dynamical system (X,F , T ), then T px is almost peri-
odic. Conversely, show that x is almost periodic if and only if x = T px

for some minimal p. This gives an alternate (and more “algebraic”)
proof of the Birkhoff recurrence theorem.

Exercise 2.3.13. Show that no element of βZ\Z can be written as
a limit of a sequence in Z. Hint : if a sequence nj ∈ Z converged to a
limit p ∈ βZ, one must have βf(p) = limj→∞ f(nj) for all functions
f : Z→ K mapping into a compact Hausdorff space K. Conclude in
particular that βZ is not metrisable, first countable, or sequentially
compact.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/01/13.
Thanks to Richard, R.A., Eric, Liu Xiao Chuan, S.P., and Sean for
corrections.
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2.4. Multiple recurrence

In Section 2.3, we established single recurrence properties for both
open sets and for sequences inside a topological dynamical system
(X,F , T ). In this lecture, we generalise these results to multiple
recurrence. More precisely, we shall show

Theorem 2.4.1 (Multiple recurrence in open covers). Let (X,F , T )
be a topological dynamical system, and let (Uα)α∈A be an open cover
of X. Then there exists Uα such that for every k ≥ 1, we have
Uα ∩ T−rUα ∩ . . . ∩ T−(k−1)rUα 6= ∅ for infinitely many r.

Note that this theorem includes Theorem 2.3.1 as the special case
k = 2. This theorem is also equivalent to the following well-known
combinatorial result:

Theorem 2.4.2 (van der Waerden’s theorem). [vdW1927] Suppose
the integers Z are finitely coloured. Then one of the colour classes
contains arbitrarily long arithmetic progressions.

Exercise 2.4.1. Show that Theorem 2.4.1 and Theorem 2.4.2 are
equivalent.

Exercise 2.4.2. Show that Theorem 2.4.2 fails if “arbitrarily long”
is replaced by “infinitely long”. Deduce that a similar strengthening
of Theorem 2.4.1 also fails.

Exercise 2.4.3. Use Theorem 2.4.2 to deduce a finitary version:
given any positive integers m and k, there exists an integer N such
that whenever {1, . . . , N} is coloured into m colour classes, one of the
colour classes contains an arithmetic progression of length k. Hint :
use a “compactness and contradiction” argument, as in Section 1.3 of
Structure and Randomness.

We also have a stronger version of Theorem 2.4.1:

Theorem 2.4.3 (Multiple Birkhoff recurrence theorem). Let (X,F , T )
be a topological dynamical system. Then for any k ≥ 1 there exists a
point x ∈ X and a sequence rj →∞ of integers such that T irjx→ x

as j →∞ for all 0 ≤ i ≤ k − 1.
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These results already have some application to equidistribution
of explicit sequences. Here is a simple example (which is also a
consequence of Weyl’s polynomial equidistribution theorem, Theorem
2.6.26):

Corollary 2.4.4. Let α be a real number. Then there exists a se-
quence rj →∞ of integers such that dist(r2

jα,Z)→ 0 as j →∞.

Proof. Consider the skew shift system X = (R/Z)2 with T (x, y) :=
(x + α, y + x). By Theorem 2.4.3, there exists (x, y) ∈ X and a
sequence nj →∞ such that T rj (x, y) and T 2rj (x, y) both convege to
(x, y). If we then use the easily verified identity

(2.14) (x, y)− 2T rj (x, y) + T 2rj (x, y) = (0, r2
jα)

we obtain the claim. �

Exercise 2.4.4. Use Theorem 2.4.1 or Theorem 2.4.2 in place of
Theorem 2.4.3 to give an alternate derivation of Corollary 2.4.4.

Exercise 2.4.5. Prove Theorem 1.4.1.

As in Section 2.3, we will give both a traditional topological proof
and an ultrafilter-based proof of Theorem 2.4.1 and Theorem 2.4.3;
the reader is invited to see how the various proofs are ultimately
equivalent to each other.

2.4.1. Topological proof of van der Waerden. We begin by giv-
ing a topological proof of Theorem 2.4.1, due to Furstenberg and
Weiss[FuWe1978], which is secretly a translation of van der Waer-
den’s original “colour focusing” combinatorial proof of Theorem 2.4.2
into the dynamical setting. To prove Theorem 2.4.1, it suffices to
show the following slightly weaker statement:

Theorem 2.4.5. Let (X,F , T ) be a topological dynamical system,
and let (Uα)α∈A be an open cover of X. Then for every k ≥ 1
there exists an open set Uα which contains an arithmetic progression
x, T rx, T 2rx, . . . , T (k−1)rx for some x ∈ X and r > 0.

To see how Theorem 2.4.5 implies Theorem 2.4.1, first observe
from compactness that we can take the open cover to be a finite
cover. Then by the infinite pigeonhole principle, it suffices to establish
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Theorem 2.4.1 for each k ≥ 1 separately. For each such k, Theorem
2.4.5 gives a single arithmetic progression x, T rx, . . . , T (k−1)rx inside
one of the Uα. By replacing the system (X,T ) with the product
system (X × Z/NZ, (x,m) 7→ (Tx,m + 1)) for some large N and
replacing the open cover (Uα)α∈A of X with the open cover (Uα ×
{m})α∈A,m∈Z/NZ of X × Z/NZ, one can make the spacing r in the
arithmetic progression larger than any specified integer N . Thus by
another application of the infinite pigeonhole principle, one of the Uα
contains arithmetic progressions with arbitrarily large step r, and the
claim follows.

Now we need to prove Theorem 2.4.5. By Lemma 2.2.8 to estab-
lish this theorem for minimal dynamical systems. We will need to
note that for minimal systems, Theorem 2.4.5 automatically implies
the following stronger-looking statement:

Theorem 2.4.6. Let (X,F , T ) be a minimal topological dynamical
system, let U be a non-empty open set in X, and let k ≥ 1. Then
U contains an arithmetic progression x, T rx, . . . T (k−1)rx for some
x ∈ X and r ≥ 1.

Indeed, the deduction of Theorem 2.4.6 from Theorem 2.4.5 is
immediate from the following useful fact (cf. Lemma 2.3.3):

Lemma 2.4.7. Let (X,F , T ) be a minimal topological dynamical sys-
tem, and let U be a non-empty open set in X. Then X can be covered
by a finite number of translates TnU of U .

Proof. The set X\
⋃
n∈Z T

nU is a proper closed invariant subset of
X, which must therefore be empty since X is minimal. The claim
then follows from the compactness of X. �

Remark 2.4.8. Of course, the claim is highly false for non-minimal
systems; consider for instance the case when T is the identity. More
generally, if X is non-minimal, consider an open set U which is the
complement of a proper subsystem of X.

Now we need to prove Theorem 2.4.5. We do this by induction
on k. The case k = 1 is trivial, so suppose k ≥ 2 and the claim has
already been shown for k − 1. By the above discussion, we see that
Theorem 2.4.6 is also true for k − 1.
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Now fix a minimal system (X,F , T ) and an open cover (Uα)α∈A,
which we can take to be finite. We need to show that one of the Uα
contains an arithmetic progression x, T rx, . . . , T (k−1)rx of length k.
To do this, we first need an auxiliary construction.

Lemma 2.4.9 (Construction of colour focusing sequence). Let the
notation and assumptions be as above. Then for any J ≥ 0 there
exists a sequence x0, . . . , xJ of points in X, a sequence Uα0 , . . . , UαJ
of sets in the open cover (not necessarily distinct), and a sequence
r1, . . . , rJ of positive integers such that T i(ra+1+...+rb)xb ∈ Uαa for all
0 ≤ a ≤ b ≤ J and 1 ≤ i ≤ k − 1.

Proof. We induct on J . The case J = 0 is trivial. Now sup-
pose inductively that J ≥ 1, and that we have already constructed
x0, . . . , xJ−1, Uα0 , . . . , UαJ−1 , and r1, . . . , rJ−1 with the required prop-
erties. Now let V be a suitably small neighbourhood of xJ−1 (depend-
ing on all the above data) to be chosen later. By Theorem 2.4.6 for
k− 1, V contains an arithmetic progression y, T rJ y, . . . , T (k−2)rJ y of
length k − 1. If one sets xJ := T−rJ y, and lets UαJ be an arbitrary
set in the open cover containing xJ , then we observe that
(2.15)
T i(ra+1+...+rJ )xJ = T i(ra+1+...+rJ−1)(T (i−1)rJ y) ∈ T i(ra+1+...+rJ−1)(V )

for all 0 ≤ a < J and 1 ≤ i ≤ k − 1. If V is a sufficiently
small neighbourhood of xJ−1, we thus see (from the continuity of
the T i(ra+1+...+rJ−1) that we verify all the required properties needed
to close the induction. �

We apply the above lemma with J equal to the number of sets
in the open cover. By the pigeonhole principle, we can thus find
0 ≤ a < b ≤ J such that Uαa = Uαb . If we then set x := xb and
r := ra+1 + . . .+ rb we obtain Theorem 2.4.5 as required.

Remark 2.4.10. It is instructive to compare the k = 2 case of the
above arguments with the proof of Theorem 2.3.1. (For a comparison
of this type of proof with the more classical combinatorial proof, see
[Ta2007].)

2.4.2. Ultrafilter proof of van der Waerden. We now give a
translation of the above proof into the language of ultrafilters (or
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more precisely, the language of Stone-Cěch compactifications). This
language may look a little strange, but it will be convenient when we
study more general colouring theorems in the next lecture. As before,
we will prove Theorem 2.4.5 instead of Theorem 2.4.1 (thus we only
need to find one progression, rather than infinitely many). The key
proposition is

Proposition 2.4.11 (Ultrafilter version of van der Waerden). Let
p be a minimal element of βZ. Then for any k ≥ 1 there exists
q ∈ β(Z×N) such that

(2.16) lim
(n,r)→q

n+ ir + p = p for all 0 ≤ i ≤ k − 1.

Suppose for the moment that this proposition is true. Applying
it with some minimal element p of βZ (which must exist, thanks to
Exercise 2.3.11), we obtain q ∈ β(Z ×N) obeying (2.16). If we let
x := T py for some arbitrary y ∈ X, we thus obtain

(2.17) lim
(n,r)→q

Tn+irx = x for all 0 ≤ i ≤ k − 1.

If we let Uα be an element of the open cover that contains x, we thus
see that Tn+irx ∈ Uα for all 0 ≤ i ≤ k − 1 and all (n, r) ∈ Z ×N
which lie in a sufficiently small neighbourhood of q. Since a LCH
space is always dense in its Stone-Cěch compactification, the space of
all (n, r) with this property is non-empty, and Theorem 2.4.5 follows.

Proof of Proposition 2.4.11. We induct on k. The case k = 1
is trivial (one could take e.g. q = (0, 1), so suppose k > 1 and
that the claim has already been proven for k − 1. Then we can find
q′ ∈ β(Z×N) such that

(2.18) lim
(n,r)→q′

n+ ir + p = p

for all 0 ≤ i ≤ k − 2.

Now consider the expression

(2.19) pi,a,b := lim
(n1,r1)→q′

. . . lim
(nb,rb)→q′

i(ra+1 + . . .+ rb) +mb + p

for any 1 ≤ a ≤ b and 1 ≤ i ≤ k − 1, where

(2.20) mb :=
b∑
i=1

ni − ri.
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Applying (2.18) to the (nb, rb) limit in (2.19), we obtain the recursion
pi,a,b = pi,a,b−1 for all b > a. Iterating this, we conclude that

(2.21) pi,a,b = pi,a,a = p0,a,a

for all 1 ≤ i ≤ k − 1. For i = 0, (2.21) need not hold, but instead we
have the easily verified identity

(2.22) p0,a,b = p0,b,b.

Now let p∗ ∈ βZ\Z be arbitrary (one could pick p∗ := p, for instance)
and define p′ := lima→p∗ p0,a,a = limb→p∗ p0,b,b. Observe from (2.19)
that all the pi,a,b lie in the closed set βZ + p, and so p′ does also.
Since p is minimal, there must exist p′′ ∈ βZ such that p = p′′ + p′.
Expanding this out using (2.21) or (2.22), we conclude that

(2.23) lim
h→p′′

lim
a→p∗

lim
b→p∗

h+ pi,a,b = p

for all 0 ≤ i ≤ k − 1. Applying (2.19), we conclude

(2.24) lim
h→p′′

lim
a→p∗

lim
b→p∗

lim
(n1,r1)→q′

. . . lim
(nb,rb)→q′

n+ ir + p = p

where n := h+mb and r := ra+1 + . . .+rb. Now, define q ∈ β(Z×N)
to be the limit

(2.25) q := lim
h→p′′

lim
a→p∗

lim
b→p∗

lim
(n1,r1)→q′

. . . lim
(nb,rb)→q′

(n, r)

then we obtain Proposition 2.4.11 as desired. �

Exercise 2.4.6. Strengthen Proposition 2.4.11 by adding the ad-
ditional conclusion lim(n,r)→q r 6∈ N. Using this stronger version,
deduce Theorem 2.4.1 directly without using the trick of multiplying
X with a cyclic shift system that was used to deduce Theorem 2.4.1
from Theorem 2.4.5.

Theorem 2.4.1 can be generalised to multiple commuting shifts:

Theorem 2.4.12 (Multiple recurrence in open covers). Let (X,F) be
a compact topological space, and let T1, . . . , Tk : X → X be commuting
homeomorphisms. Let (Uα)α∈A be an open cover of X. Then there
exists Uα such that T−r1 Uα ∩ . . . ∩ T−rk Uα 6= ∅ for infinitely many r.

Exercise 2.4.7. By adapting one of the above arguments, prove
Theorem 2.4.12.
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Exercise 2.4.8. Use Theorem 2.4.12 to establish the following the
multidimensional van der Waerden theorem (due to Gallai): if a lat-
tice Zd is finitely coloured, and v1, . . . , vd ∈ Zd, then one of the colour
classes contains a pattern of the form n + rv1, . . . , n + rvd for some
n ∈ Zd and some non-zero r.

Exercise 2.4.9. Show that Theorem 2.4.12 can fail, even for k = 3
and T1 = id, if the shift maps Tj are not assumed to commute. Hint :
First show that in the free group F2 on two generators a, b, and any
word w ∈ F2 and non-zero integer r, the three words w, anw, bnw can-
not all begin with the same generator after reduction. This can be
used to disprove a non-commutative multidimensional van der Waer-
den theorem, which can turn be used to disprove a non-commutative
version of Theorem 2.4.12.

2.4.3. Proof of multiple Birkhoff. We now use van der Waer-
den’s theorem and an additional Baire category argument to deduce
Theorem 2.4.3 from Theorem 2.4.1. The key new ingredient is

Lemma 2.4.13 (Semicontinuous functions are usually continuous).
Let (X, d) be a metric space, and let F : X → R be semicontinuous.
Then the set of points x where F is discontinuous is a set of the first
category (i.e. a countable union of nowhere dense sets). In particular,
by the Baire category theorem, if X is complete and non-empty, then
F is continuous at at least one point.

Proof. Without loss of generality we can take F to be upper semi-
continuous. Suppose F is discontinuous at some point x. Then, by
upper continuity, there exists a rational number q such that

(2.26) lim inf
y→x

F (y) < q ≤ F (x).

In other words, x lies in the boundary of the closed set {x : F (x) ≥ q}.
But boundaries of closed sets are always nowhere dense, and the claim
follows. �

Now we prove Theorem 2.4.3. Without loss of generality we can
take X to be minimal. Let us place a metric d on the space X. Define
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the function F : X → R+ by the formula

(2.27) F (x) := inf
n≥1

sup
1≤i≤k−1

d(T inx, x).

It will suffice to show that F (x) = 0 for at least one x (notice that
if the infimum is actually attained at zero for some n, then x is a
periodic point and the claim is obvious). Suppose for contradiction
that F is always positive. Observe that F is upper semicontinuous,
and so by Lemma 2.4.13 there exists a point of continuity of F . In
particular there exists a non-empty open set U such that F is bounded
away from zero.

By uniform continuity of Tn, we see that if F is bounded away
from zero on U, it is also bounded away from zero on TnV for any
n (though the bound from below depends on n). Applying Lemma
2.4.7, we conclude that F is bounded away from zero on all of X,
thus there exists ε > 0 such that F (x) > ε for all x ∈ X. But
this contradicts Theorem 2.4.1 (or Theorem 2.4.5), using the balls of
radius ε/2 as the open cover. This contradiction completes the proof
of Theorem 2.4.3.

Exercise 2.4.10. Generalise Theorem 2.4.3 to the case in which T is
merely assumed to be continuous, rather than be a homeomorphism.
Hint : let X̃ ⊂ XZ denote the space of all sequences (xn)n∈Z with
xn+1 = Txn for all n, with the topology induced from the product
space XZ. Use a limiting argument to show that X̃ is non-empty.
Then turn X̃ into a topological dynamical system and apply Theorem
2.4.3.

Exercise 2.4.11. Generalise Theorem 2.4.3 to multiple commuting
shifts (analogously to how Theorem 2.4.12 generalises Theorem 2.4.1).

Exercise 2.4.12. Combine Exercises 2.4.10 and 2.4.11 by obtaining a
generalisation of Theorem 2.4.3 to multiple non-invertible commuting
shifts.

Exercise 2.4.13. Let (X,F , T ) be a minimal topological dynamical
system, and let k ≥ 1. Call a point x in X k-fold recurrent if there
exists a sequence nj →∞ such that T injx→ x for all 0 ≤ i ≤ k − 1.
Show that the set of k-fold recurrent points in X is residual (i.e. the
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complement is of the first category). In particular, the set of k-fold
recurrent points is dense.

Exercise 2.4.14. In the boolean Bernoulli system (2Z, A 7→ A +
1), show that the set A consisting of all non-zero integers which are
divisible by 2 an even number of times is almost periodic. Conclude
that there exists a minimal topological dynamical system (X,F , T )
such that not every point in X is 3-fold recurrent (in the sense of the
previous exercise). (Compare this with the arguments in the previous
lecture, which imply that every point in X is 2-fold recurrent.)

Exercise 2.4.15. Suppose that a sequence of continuous functions
fn : X → R on a metric space converges pointwise everywhere to
another function f : X → R. Show that f is continuous on a residual
set.

Exercise 2.4.16. Let (X,F , T ) be a minimal topological dynamical
system, and let f : X → R be a function which is T -invariant, thus
Tf = f . Show that if f is continuous at even one point x0, then it
has to be constant. Hint : x0 is in the orbit closure of every point in
X.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/01/15.
Thanks to Nilay and an anonymous commenter for corrections. Ed
Dean (answering a question of Richard Borcherds) pointed out the
recent paper [Ge2008] (building on the earlier paper [Gi1987]) that
uses proof mining techniques to convert the topological dynamics
proof of van der Waerden’s theorem into a quantitative argument
that gives essentially the same bounds as the classical combinatorial
proof of that theorem.

2.5. Other topological recurrence results

In this lecture, we use topological dynamics methods to prove some
other Ramsey-type theorems, and more specifically the polynomial
van der Waerden theorem, the hypergraph Ramsey theorem, Hind-
man’s theorem, and the Hales-Jewett theorem. In proving these state-
ments, I have decided to focus on the ultrafilter-based proofs, rather
than the combinatorial or topological proofs, though of course these
styles of proof are also available for each of the above theorems.
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2.5.1. The polynomial van der Waerden theorem. We first
prove a significant generalisation of van der Waerden’s theorem (The-
orem 2.4.2):

Theorem 2.5.1. (Polynomial van der Waerden theorem). Let (P1, . . . , Pk)
be a tuple of be integer-valued polynomials P1, . . . , Pk : Z→ Z (or tu-
ple for short) with P1(0) = . . . = Pk(0). Then whenever the integers
are finitely coloured, one of the colour classes will contain a pattern
of the form n+ P1(r), . . . , n+ Pk(r) for some n ∈ Z and r ∈ N.

This result is due to Bergelson and Leibman [BeLe1996], who
proved it using “epsilon and delta” topological dynamical methods.
A combinatorial proof was obtained more recently in [Wa2000]. In
these notes, I will translate the Bergelson-Leibman argument to the
ultrafilter setting.

Note that the case Pj(r) := (j−1)r recovers the ordinary van der
Waerden theorem. But the result is significantly stronger; it implies
for instance that one of the colour classes contains arbitrarily many
shifted geometric progressions n+r, n+r2, . . . , n+rk, which does not
obviously follow from the van der Waerden theorem. The result here
only claims a single monochromatic pattern n+P1(r), . . . , n+Pk(r),
but it is not hard to amplify this theorem to show that at least one
colour class contains infinitely many such patterns.

Remark 2.5.2. The theorem can fail if the hypothesis P1(0) = . . . =
Pk(0) is dropped; consider for instance the case k = 2, P1(r) = 0,
P2(r) = 2r + 1, and with the integers partitioned (or coloured) into
the odd and even integers. More generally, the theorem fails whenever
there exists a modulus N such that the polynomials P1, . . . , Pk are
never simultaneously equal modulo N . This turns out to be the only
obstruction; this is a somewhat difficult recent result of Bergelson,
Leibman, and Lesigne[BeLeLe2007].

Exercise 2.5.1. Show that the polynomial P (r) := (r2 − 2)(r2 −
3)(r2 − 6)(r2 − 7)(r3 − 3) has a root modulo N for every positive
integer N , but has no root in the integers. Thus we see that the
Bergelson-Leibman-Lesigne result is stronger than the polynomial van
der Waerden theorem; it does not seem possible to directly use the
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latter to conclude that in every finite colouring of the integers, one of
the classes contains the pattern n, n+ P (r).

Here are the topological dynamics and ultrafilter versions of the
above theorem.

Theorem 2.5.3 (Polynomial van der Waerden theorem, topological
dynamics version). Let (P1, . . . , Pk) be a tuple with P1(0) = . . . =
Pk(0). Let (Uα)α∈A be an open cover of a topological dynamical sys-
tem (X,F , T ). Then there exists a set Uα in this cover such that
TP1(r)U ∩ . . . ∩ TPk(r)U 6= ∅ for at least one r > 0.

Theorem 2.5.4 (Polynomial van der Waerden theorem, ultrafilter
version). Let (P1, . . . , Pk) be a tuple with P1(0) = . . . = Pk(0), and
let p ∈ βZ be a minimal ultrafilter. Then there exists q ∈ β(Z ×N)
such that

(2.28) lim
(n,r)→q

n+ Pi(r) + p = p for all1 ≤ i ≤ k.

Exercise 2.5.2. Show that Theorem 2.5.1 and Theorem 2.5.3 are
equivalent, and that Theorem 2.5.4 implies Theorem 2.5.3 (or Theo-
rem 2.5.1). (For the converse implication, see Exercise 2.5.21.)

As in Section 2.4, we shall prove Theorem 2.5.4 by induction.
However, the induction will be more complicated than just inducting
on the number k of polynomials involved, or on the degree of these
polynomials, but will instead involve a more complicated measure of
the “complexity” of the polynomials being measured. Let us say that
a tuple (P1, . . . , Pk) obeys the vdW property if the conclusion of The-
orem 2.5.4 is true for this tuple. Thus for instance, from Proposition
2.4.11 we know that any tuple of linear polynomials which vanish at
the origin will obey the vdW property.

Our goal is to show that every tuple of polynomials which simul-
taneously vanish at the origin has the vdW property. The strategy
will be to reduce from any given tuple to a collection of “simpler”
tuples. We first begin with an easy observation, that one can always
shift one of the polynomials to be zero:

Lemma 2.5.5. (Translation invariance) Let Q be any integer-valued
polynomial. Then a tuple (P1, . . . , Pk) obeys the vdW property if and
only if (P1 −Q, . . . , Pk −Q) has the vdW property.
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Proof. Let p ∈ βZ be minimal. If (P1−Q, . . . , Pk−Q) has the vdW
property, then we can find q ∈ β(Z×N) such that

(2.29) lim
(n,r)→q

n+ Pi(r)−Q(r) + p = p for all 1 ≤ i ≤ k.

If we then define q′ := lim(n,r)→q(n−Q(r), r) ∈ β(Z×N) one easily
verifies that (2.28) holds (with q replaced by q′), and the claim holds.
The converse implication is similar. �

Now we come to the key inductive step.

Lemma 2.5.6 (Inductive step). Let (P0, P1, . . . , Pk) be a tuple with
P0 = 0, and let Q be another integer-valued polynomial. Suppose
that for every finite set of integers h1, . . . , hm, the tuple (Pi(·+ hj)−
Pi(hj)−Q(·))1≤i≤k;1≤j≤m has the vdW property. Then (0, P1, . . . , Pk)
also has the vdW property.

Proof. This will be a reprise of the proof of Proposition 2.4.11. Given
any finite number of pairs (n1, r1), . . . , (nb−1, rb−1) ∈ Z×N with b ≥
1, we see from hypothesis that there exists qb ∈ β(Z×N) (depending
on these pairs) such that
(2.30)

lim
(nb,rb)→qb

nb+Pi(ra+1 + . . .+rb)−Pi(ra+1 + . . .+rb−1)−Q(rb)+p = p

for all 0 ≤ a < b.

Now, for every 0 ≤ a ≤ b and 0 ≤ i ≤ k, consider the expression
pa,b,i ∈ βZ + p defined by

(2.31) pa,b,i := lim
(n1,r1)→q1

. . . lim
(nb,rb)→qb

Pi(ra+1 + . . .+ rb) +mb + p,

where q1, . . . , qb are defined recursively as above and

(2.32) mb :=
b∑
i=1

ni −Q(ri)

From (2.30) we see that

(2.33) pa,b,i = pa,b−1,i

for all 0 ≤ a < b and 1 ≤ i ≤ k, and thus

(2.34) pa,b,i = pa,a,i = pa,a,0
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in this case. For i = 0, we have the slightly different identity

(2.35) pa,b,0 = pb,b,0.

We let p∗ ∈ βZ/Z be arbitrary, and set p′ := lima→p∗ pa,a,0 =
limb→p∗ pb,b,0 ∈ βZ + p. By the minimality of p, we can find p′′ ∈ βZ
such that p′′ + p′ = p. We thus have

(2.36) lim
h→p′′

lim
a→p∗

lim
b→p∗

h+ pa,b,i = p

for all 0 ≤ i ≤ k. If one then sets

(2.37) q := lim
h→p′′

lim
a→p∗

lim
b→p∗

lim
(n1,r1)→q1

. . . lim
(nb,rb)→qb

(n, r)

where n := h+mb and r := ra+1 + . . .+ rb, one easily verifies (2.28)
as required. �

Let’s see how this lemma is used in practice. Suppose we wish
to show that the tuple (0, r2) has the vdW property (where we use
r to denote the independent variable). Applying Lemma 2.5.6 with
Q(r) := r2, we reduce to showing that the tuples ((r + h1)2 − h2

1 −
r2, . . . , (r+hm)2−h2

m− r2
m) have the vdW property for all finite col-

lections h1, . . . , hm of integers. But observe that all the polynomials
in these tuples are linear polynomials that vanish at the origin. By
the ordinary van der Waerden theorem, these tuples all have the vdW
property, and so (0, r2) has the vdW property also.

A similar argument shows that the tuple (0, r2 + P1(r), . . . , r2 +
Pk(r)) has the vdW property whenever P1, . . . , Pk are linear polyno-
mials that vanish at the origin. Applying Lemma 2.5.5, we see that
(Q1(r), r2 + P1(r), . . . , r2 + Pk(r)) obeys the vdW property when Q1

is also linear and vanishing at the origin.

Now, let us consider a tuple (Q1(r), Q2(r), r2 + P1(r), . . . , r2 +
Pk(r)) where Q2 is also a linear polynomial that vanishes at the ori-
gin. The vdW property for this tuple follows from the previously
established vdW properties by first applying Lemma 2.5.5 to reduce
to the case Q1 = 0, and then applying Lemma 2.5.6 with Q = Q2.
Continuing in this fashion, we see that a tuple (Q1(r), . . . , Ql(r), r2 +
P1(r), . . . , r2 +Pk(r)) will also obey the vdW property for any linear
Q1, . . . , Ql, P1, . . . , Pk that vanish at the origin, for any k and l.
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Now the vdW property for the tuple (0, r2, 2r2) follows from the
previously established cases and Lemma 2.5.6 with Q(r) = r2.

Remark 2.5.7. It is possible to continue this inductive procedure
(known as PET induction; the PET stands, variously, for “polynomial
ergodic theorem” or “polynomial exhaustion theorem”); this is carried
out in Exercise 2.5.3 below.

Exercise 2.5.3. Define the top order monomial of a non-zero poly-
nomial P (r) = adr

d + . . .+ a0 with ad 6= 0 to be adrd. Define the top
order monomials of a tuple (0, P1, . . . , Pk) to be the set of top order
monomials of the P1, . . . , Pk, not counting multiplicity; for instance,
the top order monomials of (0, r2, r2 + r, 2r2, 2r2 + r) are {r2, 2r2}.
Define the weight vector of a tuple (P1, . . . , Pk) relative to one of its
members Pi to be the infinite vector (w1, w2, . . .) ∈ ZN

≥0, where each
wd denotes the number of monomials of degree d in the top order
monomials of (P1 − Pi, . . . , Pk − Pi). Thus for instance, the tuple
(0, r2, r2 + r, 2r2, 2r2 + r) has weight vector (0, 2, 0, . . .) with respect
to 0, but weight vector (1, 2, 0, . . .) with respect to (say) r2. Let us say
that one weight vector (w1, w2, . . .) is larger than another (w′1, w

′
2, . . .)

if there exists d ≥ 1 such that wd > w′d and wi = w′i for all i > d.

(1) Show that the space of all weight vectors is a well-ordered
set.

(2) Show that if (0, P1, . . . , Pk) is a tuple with k ≥ 1 and P1

nonlinear, and h1, . . . , hm are integers with m ≥ 1, then
the weight vector of (Pi(· + hj) − Pi(hj))1≤i≤k;1≤j≤m with
respect to P1(·+h1) is strictly smaller than the weight vector
of (0, P1, . . . , Pk) with respect to P1.

(3) Using the previous two claims, Lemma 2.5.5, and Lemma
2.5.6, deduce Theorem 2.5.4.

Exercise 2.5.4. Find a direct proof of Theorem 2.5.3 analogous to
the “epsilon and delta” proof of Theorem 2.5.8 from the previous
lecture. (You can look up [BeLe1996] if you’re stuck.)

Exercise 2.5.5. Let P1, . . . , Pk : Z → Zd be vector-valued polyno-
mials (thus each of the d components of each of the Pi is a poly-
nomial) which all vanish at the origin. Show that if Zd is finitely
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coloured, then one of the colour classes contains a pattern of the form
n+ P1(r), . . . , n+ Pk(r) for some n ∈ Zd and r ∈ N.

Exercise 2.5.6. Show that for any polynomial sequence P : Z →
(R/Z)d taking values in a torus, there exists integers nj → ∞ such
that P (nj) converges to P (0). (One can also tweak the argument
to make the nj converge to positive infinity, by the “doubling up”
trick of replacing P (n) with (P (n), P (−n)).) On the other hand,
show that this claim can fail with exponential sequences such as
P (n) := 10nα mod 1 ∈ R/Z for certain values of α. Thus we see that
polynomials have better recurrence properties than exponentials.

2.5.2. Ramsey’s theorem. Given any finite palette K of colours,
a vertex set V , and an integer k ≥ 1, define a K-coloured hypergraph
G = (V,E) of order k on V to be a function E :

(
V
k

)
→ K, where(

V
k

)
:= {e ⊂ V : |e| = k} denotes the k-element subsets of V . Thus for

instance a hypergraph of order 1 is a vertex colouring, a hypergraph
of order 2 is an edge-coloured complete graph, and so forth. We say
that a hypergraph G is monochromatic if the edge colouring function
E is constant. If W is a subset of V , we refer to the hypergraph
G �W := (W,E �(Wk )) as a subhypergraph of G.

We will now prove the following result:

Theorem 2.5.8 (Hypergraph Ramsey theorem). Let K be a finite
set, let k ≥ 1, and let G = (V,E) be a K-coloured hypergraph of order
k on a countably infinite vertex set V . Then G contains arbitrarily
large finite monochromatic subhypergraphs.

Remark 2.5.9. There is a stronger statement known, namely that
G contains an infinitely large monochromatic subhypergraph, but we
will not prove this statement, known as the infinite hypergraph Ram-
sey theorem. In the case k = 1, these statements are the pigeonhole
principle and infinite pigeonhole principle respectively, and are com-
pared in Section 1.3 of Structure and Randomness.

Exercise 2.5.7. Show that Theorem 2.5.8 implies a finitary ana-
logue: given any finite K and positive integers k, m, there exists
N such that every K-coloured hyeprgraph of order k on {1, . . . , N}
contains a monochromatic subhypergraph on m vertices. Hint : as
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in Exercise 2.5.4, one should use a compactness and contradiction
argument (as in Section 1.3 of Structure and Randomness).

It is not immediately obvious, but Theorem 2.5.8 is a statement
about a topological dynamical system, albeit one in which the un-
derlying group is not the integers Z, but rather the symmetric group
Sym0(V ), defined as the group of bijections from V to itself which
are the identity outside of a finite set. More precisely, we have

Theorem 2.5.10 (Hypergraph Ramsey theorem, topological dynam-
ics version). Let V be a countably infinite set, and let W be a fi-
nite subset of V , thus Sym0(W ) × Sym0(V \W ) is a subgroup of
Sym0(V ). Let (X,F , T ) be a Sym0(V )-topological dynamical system,
thus (X,F) is compact metrisable and T : σ 7→ Tσ is an action of
Sym0(V ) on X via homeomorphisms. Let (Uα)α∈A be an open cover
of X, such that each Uα is Sym0(W )×Sym0(V \W )-invariant. Then
there exists an element Uα of this cover such that for every finite set
Γ ⊂ Sym0(V ) there exists a group element σ ∈ Sym0(V ) such that⋂
γ∈Γ(T γσ)−1(Uα) 6= ∅ (i.e. there exists x ∈ X such that T γσx ∈ Uα

for all γ ∈ Γ).

This claim should be compared with Theorem 2.5.3 or Theorem
2.4.1.

Exercise 2.5.8. Show that Theorem 2.5.8 and Theorem 2.5.10 are
equivalent. Hint : At some point, you will need the use the fact that
the quotient space Sym0(V )/(Sym0(W )×Sym0(V \W )) is isomorphic
to
(
V
|W |
)
.

As before, though, we shall only illustrate the ultrafilter approach
to Ramsey’s theorem, leaving the other approaches to exercises. Here,
we will not work on the compactified integers βZ, but rather on the
compactified25 permutations βSym0(V ). This is a semigroup with
the usual multiplication law

(2.38) pq := lim
σ→p

lim
ρ→q

σρ.

25We will view Sym0(V ) here as a discrete group; one could also give this group

the topology inherited from the product topology on V V , leading to a slightly coarser
(and thus less powerful) compactification, though one which is still sufficient for the
arguments here.
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Let us say that p ∈ βSym0(V ) is minimal if βSym0(V )p is a min-
imal left-ideal of βSym0(V ). One can show (by repeating Exercise
2.3.11) that every left ideal βSym0(V )p contains at least one minimal
element; in particular, minimal elements exist.

Note that if W is a k-element subset of V , then there is an image
map πW : Sym0(V )→

(
V
k

)
which maps a permutation σ to its inverse

image σ−1(W ) of W . We can compactify this to a map26 βπW :
βSym0(V ) → β

(
V
k

)
. We can now formulate the ultrafilter version of

Ramsey’s theorem:

Theorem 2.5.11 (Hypergraph Ramsey theorem, ultrafilter version).
Let V be countably infinite, and let p ∈ βSym0(V ) be minimal. Then
for every finite set W , βπW is constant on βSym0(V )p, thus βπW (qp) =
βπW (p) for all q ∈ βSym0(V ).

This result should be compared with Proposition 2.4.11 (or The-
orem 2.5.4).

Exercise 2.5.9. Show that Theorem 2.5.11 implies both Theorem
2.5.8 and Theorem 2.5.10.

Proof of Theorem 2.5.11. By relabeling we may assume V = {1, 2, 3, . . .}
and W = {1, . . . , k} for some k.

Given any integers 1 ≤ a < i1 < i2 < . . . < ia, let σi1,...,ia ∈
Sym0(V ) denote the permutation that swaps j with ij for all 1 ≤
j ≤ a, but leaves all other integers unchanged. We select some non-
principal ultrafilter p∗ := βV \V and define the sequence p1, p2, . . . ∈
βSym0(V ) by the formula

(2.39) pa := lim
i1→p∗

. . . lim
ia→p∗

σi1,...,iap.

(Note that the condition a < i1 < . . . < ia will be asymptotically true
thanks to the choice of limits here.)

Let a ≥ k, and let α ∈ Sym0(V ) be the a permutation which is
the identity outside of {1, . . . , a}. Then we have the identity

(2.40) πW (ασi1,...,iaρ) = πW (σij1 ,...,ijk ρ)

26Caution: β
(V
k

)
is not the same thing as

(βV
k

)
; for instance the latter is not

even compact.
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for every ρ ∈ Sym0(V ), where j1 < . . . < jk are the elements of
α−1({1, . . . , k}) in order. Taking limits as ρ→ p, and then inserting
the resulting formula into (2.39), we conclude (after discarding the
trivial limits and relabeling the rest) that

(2.41) βπW (αpa) = lim
i1→p∗

. . . lim
ik→p∗

βπW (σi1,...,ikp)

and in particular that βπW (αpa) is independent of α (if α is the iden-
tity outside of {1, . . . , j}. Now let p′ := lima→p∗ pa, then we have
βπW (αp′) independent of p′ for all α ∈ Sym0(V ). Taking limits we
conclude that βπW is constant on (βSym0(V ))p′. But from construc-
tion we see that p′ lies in the closed minimal ideal (βSym0(V ))p, thus
(βSym0(V ))p′ = (βSym0(V ))p. The claim follows. �

Exercise 2.5.10. Establish Theorem 2.5.8 directly by a combinato-
rial argument without recourse to topological dynamics or ultrafilters.
(If you are stuck, I recommend reading the classic text [GrRoSp1980].)

Exercise 2.5.11. Establish Theorem 2.5.10 directly by a topological
dynamics argument, using combinatorial arguments for the k = 1
case but then proceeding by induction afterwards (as in the proof of
Theorem 2.4.5).

Remark 2.5.12. More generally, one can interpret the theory of
graphs and hypergraphs on a vertex set V through the lens of dy-
namics of Sym0(V ) actions; I learned this perspective from Balazs
Szegedy.

2.5.3. Idempotent ultrafilters and Hindman’s theorem. Thus
far, we have been using ultrafilter technology rather lightly, and in-
deed all of the arguments so far can be converted relatively easily to
the topological dynamics formalism, or even a purely combinatorial
formalism, with only a moderate amount of effort. But now we will
exploit some deeper properties of ultrafilters, which are more difficult
to replicate in other settings. In particular, we introduce the notion
of an idempotent ultrafilter.

Definition 2.5.13 (Idempotent). Let (S, ·) be a discrete semigroup,
and let βS be given the usual semigroup operation ·. An element
p ∈ βS is idempotent if p · p = p. (We of course define idempotence
analogously if the group operation on S is denoted by + instead of ·.)
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Of course, 0 is idempotent, but the remarkable fact is that many
other idempotents exist as well. The key tool for creating this is

Lemma 2.5.14 (Ellis-Nakamura lemma). [El1958] Let S be a dis-
crete semigroup, and let K be a compact non-empty sub-semigroup of
βS. Then K contains at least one idempotent.

Proof. A simple application of Zorn’s lemma shows that K contains
a compact non-empty sub-semigroup K ′ which is minimal with re-
spect to set inclusion. We claim that every element of K ′ is idempo-
tent. To see this, let p be an arbitrary element of K ′. Then observe
that K ′p is a compact non-empty sub-semigroup of K ′ and must
therefore be equal to K ′; in particular, p ∈ K ′p. (Note that semi-
groups need not contain an identity.) In particular, the stabiliser
K ′′ := {q ∈ K ′ : qp = p} is non-empty. But one easily observes that
this stabiliser is also a compact sub-semigroup of K ′, and so K ′′ = K ′.
In particular, p must stabilise itself, i.e. it is idempotent. �

Remark 2.5.15. A posteriori, this results shows that the minimal
non-empty sub-semigroups K ′ are in fact just the singleton sets con-
sisting of idempotents. But one cannot really see this without first
deriving all of Lemma 2.5.14.

Idempotence turns out to be particularly powerful when com-
bined with minimality, and to this end we observe the following corol-
lary of the above lemma:

Corollary 2.5.16. Let S be a discrete semigroup. For every p ∈ βS,
there exists q ∈ (βS)p which is both minimal and idempotent.

Proof. By Exercise 2.3.11, there exists r ∈ (βS)p which is minimal.
It is then easy to see that every element of (βS)r is minimal. Since
(βS)r⊂ (βS)p is a compact non-empty sub-semigroup of βS, the claim
now follows from Lemma 2.5.14. �

Remark 2.5.17. Somewhat amusingly, minimal idempotent ultrafil-
ters require three distinct applications of Zorn’s lemma to construct:
one to define the compactified space βS, one to locate a minimal left-
ideal, and one to locate an idempotent inside that ideal! It seems
particularly challenging therefore to define civilised substitutes for
this tool which do not explicitly use the axiom of choice.
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What can we do with minimal idempotent ultrafilters? One par-
ticularly striking example is Hindman’s theorem[Hi1974]. Given any
set A of positive integers, define FS(A) to be the set of all finite
sums

∑
n∈B n from A, where B ranges over all finite non-empty sub-

sets of A. (For instance, if A = {1, 2, 4, . . .} are the powers of 2, then
FS(A) = N.)

Theorem 2.5.18 (Hindman’s theorem). Suppose that the natural
numbers N are finitely coloured. Then one of the colour classes con-
tains a set of the form FS(A) for some infinite set A.

Remark 2.5.19. Theorem 2.5.18 implies Folkman’s theorem[Fo1970],
which has the same hypothesis but concludes that one of the colour
classes contains sets of the form FS(A) for arbitrarily large but finite
sets A. In the converse direction, it does not seem possible to easily
deduce Hindman’s theorem from Folkman’s theorem.

Exercise 2.5.12. Folkman’s theorem in turn implies Schur’s theo-
rem[Sc1916], which asserts that if the natural numbers are finitely
coloured, one of the colour classes contains a set of the form FS({x, y}) =
{x, y, x + y} for some x, y (compare with the k = 3 case of van der
Waerden’s theorem). Using the Cayley graph construction, deduce
Schur’s theorem from Ramsey’s theorem (the k = 2 case of Theo-
rem 2.5.8). Thus we see that there are some connections between the
various Ramsey-type theorems discussed here.

Proof of Theorem 2.5.18. By Corollary 2.5.16, we can find a min-
imal idempotent element p in βN; note that as no element of N is
minimal (cf. Exercise 2.3.8), we know that p 6∈ N. Let c : N →
{1, . . . ,m} denote the given colouring function, then βc(p) is a colour
in {1, . . . ,m}. Since

(2.42) lim
n→p

βc(n) = βc(p)

and

(2.43) lim
n→p

βc(n+ p) = βc(p+ p) = βc(p)

we may find a positive integer n1 such that βc(n1) = βc(n1 + p) =
βc(p). Now from (2.42), (2.43) and the similar calculations

(2.44) lim
n→p

βc(n1 + n) = βc(n1 + p) = βc(p)
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and

(2.45) lim
n→p

βc(n1 + n+ p) = βc(n1 + p+ p) = βc(n1 + p) = βc(p)

we can find an integer n2 > n1 such that βc(n2) = βc(n2 + p) =
βc(n2+n1) = βc(n2+n1+p) = βc(p), thus βc(m) = βc(m+p) = βc(p)
for all m ∈ FS({n1, n2}). Continuing inductively in this fashion, one
can find n1 < n2 < n3 < . . . such that βc(m) = βc(m + p) = βc(p)
for all m ∈ FS({n1, . . . , nk}) and all k. If we set A := {n1, n2, . . .},
the claim follows. �

Remark 2.5.20. Purely combinatorial (and quite succinct) proofs of
Hindman’s theorem exist - see for instance the one in [GrRoSp1980]
- but they generally rely on some ad hoc trickery. Here, the trickery
has been encapsulated into the existence of minimal idempotent ul-
trafilters, which can be reused in other contexts (for instance, we will
use it to prove the Hales-Jewett theorem below).

Exercise 2.5.13. Define an IP-set to be a set of positive integers
which contains a subset of the form FS(A) for some infinite A. Show
that if an IP-set S is finitely coloured, then one of its colour classes
is also an IP-set. Hint : S contains FS(A) for some infinite A =
{a1, a2, a3, . . .}. Show that the set

⋂∞
n=1 βFS({an, an+1, . . .}) is a

compact non-empty semigroup and thus contains a minimal idempo-
tent ultrafilter p. Use this p to repeat the proof of Theorem 2.5.18.

2.5.4. The Hales-Jewett theorem. Given a finite alphabet A, let
A<ω be the free semigroup generated by A, i.e. the set of all finite
non-empty words using the alphabet A, with concatenation as the
group operation. (E.g. if A = {a, b, c}, then A<ω contains words
such as abc and cbb, with abc · cbb = abccbb.) If we add another
letter ∗ to A (the “wildcard” letter), we create a larger semigroup
(A ∪ {∗})<ω (e.g. containing words such as ab ∗ ∗c∗). We of course
assume that ∗ was not already present in A. Given any letter x ∈ A,
we have a semigroup homomorphism πx : (A ∪ {∗})<ω → A<ω which
substitutes every occurrence of the wildcard ∗ with x and leaves all
other letters unchanged. (For instance, πa(ab∗∗c∗) = abaaca.) Define
a combinatorial line in A<ω to be any set of the form {πx(v) : x ∈ A}
for some v ∈ (A ∪ {∗})<ω\A<ω. For instance, if A = {a, b, c}, then
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{abaaca, abbbcb, abcccc} is a combinatorial line, generated by the word
v = ab ∗ ∗c∗.

We shall prove the following fundamental theorem.

Theorem 2.5.21 (Hales-Jewett theorem). [HaJe1963] Let A be a
finite alphabet. If A<ω is finitely coloured, then one of the colour
classes contains a combinatorial line.

Exercise 2.5.14. Show that the Hales-Jewett theorem has the fol-
lowing equivalent formulation: for every finite alphabet A and any
m ≥ 1 there exists N such that if AN is partitioned into m classes,
then one of the classes contains a combinatorial line.

Exercise 2.5.15. Assume the Hales-Jewett theorem. In this exercise
we compare the strength of this theorem against other Ramsey-type
theorems.

(1) Deduce van der Waerden’s theorem (Theorem 2.4.2). Hint :
the base k representation of the non-negative natural num-
bers provides a map from {0, . . . , k − 1}<ω to Z≥0.

(2) Deduce the multidimensional van der Waerden’s theorem of
Gallai (Exercise 2.4.8).

(3) Deduce the syndetic van der Waerden theorem of Furstenberg[Fu1977]:
if the integers are finitely coloured and k is a positive integer,
then there are infinitely many monochromatic arithmetic
progressions n, n + r, . . . , n + (k − 1)r of length k, and fur-
thermore the set of all the step sizes r which appear in such
progressions is syndetic (i.e. it has bounded caps). Hint : ar-
gue by contradiction, assuming that the set of all step sizes
has arbitrarily long gaps, and use the Hales-Jewett theo-
rem in a manner adapted to these gaps. (For an additional
challenge, show that there exists a single colour class whose
progressions of length k have spacings in a syndetic set for
every k.)

(4) Deduce the IP-van der Waerden theorem: If the integers are
finitely coloured, k is a positive integer, and S is an IP-set
(see Exercise 2.5.13), show that there are infinitely many
monochromatic arithmetic progressions whose step size lies
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in S. (For an additional challenge, show that one of the
classes has the property that for every k, the spacings of
the k-term progressions in that class forms an IP ∗-set, i.e.
it has non-empty intersection with every IP-set. There is
an even stronger topological dynamics version of this state-
ment, due to Furstenberg and Weiss[FuWe1978], which I
will not describe here.)

(5) For any d ≥ 1, define a d-dimensional combinatorial sub-
space ofA<ω to be a set of the form {πx1,...,xd(v) : x1, . . . , xd ∈
A}, where v ∈ (A ∪ {∗1, . . . , ∗d})<ω is a word containing
at least one copy of each of the d wildcards ∗1, . . . , ∗d, and
πx1,...,xd : (A∪{∗1, . . . , ∗d})<ω → A<ω is the homomorphism
that substitutes each wildcard ∗j with xj . Show that if A<ω

is finitely coloured, then one of the colour classes contains
arbitrarily high-dimensional combinatorial subspaces.

(6) Let F be a finite field. If the vector space limn→∞ Fn

(the inverse limit of the finite vector spaces Fn) is finitely
coloured, show that one of the colour classes contains ar-
bitrarily high-dimensional affine subspaces over F . (This
geometric Ramsey theorem is due to [GrLeRo1972].)

We now give an ultrafilter-based proof of the Hales-Jewett the-
orem due to Blass[Bl1993]. As usual, the first step is to obtain a
statement involving ultrafilters rather than colourings:

Proposition 2.5.22 (Hales-Jewett theorem, ultrafilter version). Let
A be a finite alphabet, and let p be a minimal idempotent element of
the semigroup β(A<ω). Then there exists q ∈ β(A∪{∗})<ω)\β(A<ω)
such that βπx(q) = p for all x ∈ A.

Exercise 2.5.16. Deduce Theorem 2.5.21 from Proposition 2.5.22.

To prove Proposition 2.5.22, we need a variant of Corollary 2.5.16.
If (S, ·) is a discrete semigroup and p and q are two idempotents in
βS, let us write p ≺ q if we have pq = qp = p.

Exercise 2.5.17. Show that ≺ is a partial ordering on the idempo-
tents of βS, and that an idempotent is minimal in βS if and only if
it is minimal with respect to ≺.
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Lemma 2.5.23. Let S be a discrete semigroup, and let p be an idem-
potent in βS. Then there exists a minimal idempotent q in βS such
that q ≺ p.

Proof. By Exercise 2.3.11 (generalised to arbitrary discrete semi-
groups S), (βS)p contains a minimal left-ideal (βS)r. By Lemma
2.5.14, (βS)r contains an idempotent s. Since s ∈ (βS)p and p is
idempotent, we conclude sp = s. If we then set q := ps, we easily
check that q is idempotent, that q ≺ p, and (since q lies in the minimal
left-ideal (βS)r) it is minimal. The claim follows. �

Proof of Proposition 2.5.22. Since p is an idempotent element of
β(A<ω), it is also an idempotent element of β(A∪{∗})<ω. It need not
be minimal in that semigroup, though. However, by Lemma 2.5.23,
we can find a minimal idempotent q in β(A∪{∗})<ω such that q ≺ p.

Now let x ∈ A. Since πx : (A ∪ {∗})<ω → A<ω is a homo-
morphism, βπx : β(A ∪ {∗})<ω → βA<ω is also a homomorphism
(why?). Since q is idempotent and q ≺ p (note that these are both
purely algebraic statements), we conclude that βπx(q) is idempotent
and βπx(q) ≺ βπx(p). But βπx(p) = p is minimal in βA<ω, hence by
Exercise 2.5.17, we have βπx(q) = p. The claim follows. �

Exercise 2.5.18. Adapt the above proof to give an alternate proof
of the ultrafilter version of van der Waerden’s theorem (Proposition
2.5.22) which relies on idempotence rather than on induction on k.
(If you are stuck, read the proof of [Gl2003, Proposition 1.55].)

Remark 2.5.24. Several of the above Ramsey-type theorems can
be unified. For instance, the polynomial van der Waerden theorem
and the Hales-Jewett theorem have been unified into the polynomial
Hales-Jewett theorem of Bergelson and Leibman[BeLe1999] (see also
[Wa2000]). This type of Ramsey theory is still an active subject,
and we do not yet have a comprehensive and systematic theory (or a
“universal” Ramsey theorem) that encompasses all known examples.

Exercise 2.5.19. Let X be an at most countable set (with the dis-
crete topology), and let F be a family of subsets of X. Show that the
following two statements are equivalent:
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(1) Whenever X is finitely coloured, one of the colour classes
contains a subset in F .

(2) There exists p ∈ βX such that every neighbourhood of p
contains a subset in F .

Exercise 2.5.20. Let X, Y be at most countable sets with the dis-
crete topology, and let f1, . . . , fk : Y → X be a finite collection of
functions. Show that the following two statements are equivalent:

(1) Whenever X is finitely coloured, one of the colour classes
contains a set {f1(y), . . . , fk(y)} for some y ∈ Y .

(2) There exists q ∈ βY such that βf1(q) = . . . = βfk(q).

Hint : look at the closure of {(f1(y), . . . , fk(y)) : y ∈ Y } in (βX)k.

Exercise 2.5.21. Using the previous exercise, deduce Theorem 2.5.4
from Theorem 2.5.1, and deduce Theorem 2.5.11 from Theorem 2.5.8.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/01/21.
Thanks to Yury, Liu Xiao Chuan, Nilay and an anonymous com-
menter for corrections.

2.6. Isometric systems and isometric extensions

In this lecture, we move away from recurrence, and instead focus
on the structure of topological dynamical systems. One remarkable
feature of this subject is that starting from fairly “soft” notions of
structure, such as topological structure, one can extract much more
“hard” or “rigid” notions of structure, such as geometric or algebraic
structure. The key concept needed to capture this structure is that of
an isometric system, or more generally an isometric extension, which
we shall discuss in this lecture. As an application of this theory we
characterise the distribution of polynomial sequences in torii (a baby
case of a variant of Ratner’s theorem due to [Gr1961], which we will
cover in Section 2.16).

2.6.1. Isometric systems. We begin with a key definition.

Definition 2.6.1 (Equicontinuous and isometric systems). Let (X,F , T )
be a topological dynamical system.
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(1) We say that the system is isometric if there exists a met-
ric d on X such that the shift maps Tn : X → X are all
isometries, thus d(Tnx, Tny) = d(x, y) for all n and all x,
y. (Of course, once T is an isometry, all powers Tn are au-
tomatically isometries also, so it suffices to check the n = 1
case.)

(2) We say that the system is equicontinuous if there exists a
metric d on X such that the shift maps Tn : X → X form a
uniformly equicontinuous family, thus for every ε > 0 there
exists δ > 0 such that d(Tnx, Tny) ≤ ε whenever n, x, y
are such that d(x, y) ≤ δ. (As X is compact, equicontinuity
and uniform equicontinuity are equivalent concepts.)

Example 2.6.2. The circle shift x 7→ x+α on R/Z is both isometric
and equicontinuous. On the other hand, the Bernoulli shift on {0, 1}Z
is neither isometric nor equicontinuous (why?).

Example 2.6.3. Any finite dynamical system is both isometric and
equicontinuous (as one can see by using the discrete metric).

Since all metrics are essentially equivalent on compact spaces, we
see that the choice of metric is not actually important when checking
equicontinuity, but it seems to be more important when checking for
isometry. Nevertheless, there is actually no distinction between the
two properties:

Exercise 2.6.1. Show that a topological dynamical system is iso-
metric if and only if it is equicontinuous. Hint : one direction is
obvious. For the other, if Tn is a uniformly equicontinuous family
with respect to a metric d, consider the modified metric d̃(x, y) :=
supn d(Tnx, Tny).

Remark 2.6.4. From this exercise we see that we can upgrade topo-
logical structure (equicontinuity) to geometric structure (isometry).
The motif of studying topology through geometry pervades modern
topology; witness for instance Perelman’s proof of the Poincaré con-
jecture (Chapter 3).
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Exercise 2.6.2 (Ultrafilter characterisation of equicontinuity). Let
(X,F , T ) be a topological dynamical system. Show that X is equicon-
tinuous if and only if the maps T p : X → X are homeomorphisms for
every p ∈ βZ.

Now we upgrade the geometric structure of isometry to the alge-
braic structure of being a compact abelian group action.

Definition 2.6.5 (Kronecker system). A topological dynamical sys-
tem (X,F , T ) is said to be a Kronecker system if it is isomorphic to
a system of the form (K,K, S), where (K,+,K) is a compact abelian
metrisable topological group27, and S : x 7→ x+α is a group rotation
for some α ∈ K.

Example 2.6.6. The circle rotation system is a Kronecker system,
as is the standard shift x 7→ x + 1 on a cyclic group Z/NZ. Any
product of Kronecker systems is again a Kronecker system.

Let us first observe that a Kronecker system is equicontinuous
(and hence isometric). Indeed, the compactness of the topological
group K (and the joint continuity of the addition law + : K×K → K)
easily ensures that the group rotations g : x 7→ x + g are uniformly
equicontinuous as g ∈ K varies. Since the shifts Tn : x 7→ x+ nα are
all group rotations, the claim follows.

On the other hand, not every equicontinuous or isometric system
is Kronecker. Consider for instance a finite dynamical system which
is the disjoint union of two cyclic shifts of distinct order; it is not hard
to see that this is not a Kronecker system. Nevertheless, it clearly
contains Kronecker systems within it. Indeed, we have

Proposition 2.6.7. Every minimal equicontinuous (or isometric)
system (X,F , T ) is a Kronecker system, i.e. isomorphic to an abelian
group rotation (K,K, x 7→ x+α). Furthermore, the orbit {nα : n ∈ Z}
is dense in K.

Proof. By Exercise 2.6.1, we may assume that the system is isomet-
ric, thus we can find a metric d such that all the shift maps Tn are

27A topological group is a group with a topology, such that the group operations
x 7→ x−1 and (x, y) 7→ xy are continuous.
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isometries. We view the Tn as lying inside the space C(X → X) of
continuous maps from X to itself, endowed with the uniform topol-
ogy. Let G ⊂ C(X → X) be the closure of the maps {Tn : n ∈ Z}.
One easily verifies that G is a closed metrisable topological group of
isometries in C(X → X); from the Arzelá-Ascoli theorem we see that
G is compact. Also, since Tn and Tm commute for every n and m,
we see upon taking limits that G is abelian.

Now let x ∈ X be an arbitrary point. Then we see that the
image {f(x) : f ∈ G} of G under the evaluation map f 7→ f(x) is
a compact non-empty invariant subset of X, and thus equal to all
of X by minimality. If we then define the stabiliser Γ := {f ∈ G :
f(x) = x}, we see that Γ is a closed (hence compact) subgroup of
the abelian group G. Since X = {f(x) : f ∈ G}, we thus see that
there is a continuous bijection fΓ 7→ f(x) from the quotient group
K := G/Γ (with the quotient topology) to X. Since both spaces here
are compact Hausdorff, this map is a homeomorphism. This map
is thus an isomorphism of topological dynamical systems between
the Kronecker system K (with the group rotation given by α :=
T mod Γ ∈ G/Γ) and X. Since K is a compact metrisable (thanks to
Hausdorff distance) topological group, the claim follows (relabeling
the group operation as +). Note that the density of {nα : n ∈ Z} in
K is clear from construction. �

Remark 2.6.8. Once one knows that X is homeomorphic to a Kro-
necker system with {nα : n ∈ Z} dense, one can a posteriori return
to the proof and conclude that the stabiliser Γ is trivial. But I do
not see a way to establish that fact directly. In any case, when we
move to isometric extensions below, the analogue of the stabiliser Γ
can certainly be non-trivial.

To get from minimal isometric systems to non-minimal isometric
systems, we can use

Proposition 2.6.9. Any isometric system (X,F , T ) can be parti-
tioned as the union of disjoint minimal isometric systems.

Proof. Since minimal systems are automatically disjoint, it suffices
to show that every point x ∈ X is contained in a minimal dynamical
system, or equivalently that the orbit closure TZx is minimal. If this
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is not the case, then there exists y ∈ TZx such that x does not lie
in the orbit closure of y. But by definition of orbit closure, we can
find a sequence nj such that Tnjx converges to y. By the isometry
property, this implies that T−njy converges to x, and so x is indeed
in the orbit closure of y, a contradiction. �

Thus every equicontinuous or isometric system can be expressed
as a union of disjoint Kronecker systems.

We can use the algebraic structure of isometric systems to ob-
tain much quicker (and slightly stronger) proofs of various recurrence
theorems. For instance, we can give a short proof of (a slight strength-
ening of) the multiple Birkhoff recurrence theorem (Theorem 2.4.3)
as follows:

Proposition 2.6.10 (Multiple Birkhoff for isometric systems). Let
(X,F , T ) be an isometric system. Then for every x ∈ X there exists
a sequence nj →∞ such that T knjx→ x for every integer k.

Proof. By Proposition 2.6.9 followed by Proposition 2.6.7, it suffices
to check this for Kronecker systems (K,K, x 7→ x+α) in which {nα :
n ∈ Z} is dense in K. But then we can find a sequence nj such that
njα → 0 in K, and thus (since K is a topological group) knjα → 0
in K for all k. The claim follows. �

The above argument illustrates one of the reasons why it is de-
sirable to have an algebraic structural theory of various types of dy-
namical systems; it makes it much easier to answer many interesting
questions regarding such systems, such as those involving recurrence.

2.6.2. The Kronecker factor. We have seen isometric systems are
basically Kronecker systems (or unions thereof). Of course, not all
systems are isometric. However, it turns out that every system con-
tains a maximal isometric factor. Recall that a factor of a topological
dynamical system (X,F , T ) is a surjective morphism π : X → Y

from X to another topological dynamical system (Y,G, S). (We shall
sometimes abuse notation and refer to π : X → Y as the factor,
when it is really the quadruplet (π, Y,G, S).) We say that one factor
π : X → Y refines or is finer than another factor π′ : X → Y ′ if
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we can factorise π′ = f ◦ π for some continuous map f : Y → Y ′.
(Note from surjectivity that this map, if it exists, is unique.) We say
that two factors are equivalent if they refine each other. Observe that
modulo equivalence, refinement is a partial ordering on factors.

Example 2.6.11. The identity factor id : X → X is finer than
any other factor of X, which in turn is finer than the trivial factor
pt : X → pt that maps to a point.

Exercise 2.6.3. Show that any factor of a minimal topological dy-
namical system is again minimal.

We note two useful operations on factors. Firstly, given two fac-
tors π : X → Y = Y and π′ : X → Y ′, one can define their join
π∨π′ : X → Y ∨Y ′, where Y ∨Y ′ := {(π(x), π′(x)) : x ∈ X} ⊂ Y ×Y ′
is the compact subspace of the product system Y × Y ′, and π ∨ π′ :
X → Y ∨ Y ′ is the surjective morphism π ∨ π′ : x 7→ (π(x), π′(x)).
One can verify that π ∨ π′ is the least common refinement of π and
π′, hence the name.

Secondly, given a chain (πα)α∈A of factors πα : X → Yα (thus
πα refines πβ for all α > β), one can form their inverse limit π =
lim←(πα)α∈A : X → Y = lim←(Yα)α∈A by first letting fαβ : Yα → Yβ
be the factoring maps for all α > β, observing that fβγ ◦ fαβ = fαγ
for all α > β > γ, and then defining Y ⊂

∏
α Yα to be the compact

subspace of the product system
∏
α Yα defined as

(2.46) Y := {(yα)α∈A : fαβ(yα) = yβ whenever α > β}

and then setting π : x 7→ (πα(x))α∈A. One easily verifies that π is
indeed a factor of X, and it is the least upper bound of the πα.

Next, we observe that these operations interact well with the
isometry property:

Exercise 2.6.4. Let π : X → Y and π′ : X → Y ′ be two factors
such that Y and Y ′ are both isometric. Then π ∨ π′ : X → Y ∨ Y ′ is
also isometric.

Lemma 2.6.12. Let (πα)α∈A be a totally ordered set of factors πα :
X → Yα with Yα = (Yα,Gα, Sα) isometric. Then the inverse limit
π : X → Y of the πα is such that Y is also isometric.
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Proof. Observe that we have factor maps fα : Y → Yα which are
surjective morphisms, which themselves factor as fβ = fαβ ◦ fα for
α > β and some surjective morphisms fαβ : Yα → Yβ . Let us fix
some metric d on Y . For each α ∈ A, consider the compact subset
∆α := {(y, y′) ∈ Y ×Y : fα(y) = fα(y′)} of Y ×Y . These sets decrease
as α increases, and their intersection is the diagonal {(y, y) : y ∈ Y }
(why?). Applying the finite intersection property in the compact sets
{(y, y′) ∩ ∆α : d(y, y′) ≥ ε}, we conclude that for every ε > 0 there
exists α such that d(y, y′) < ε whenever fα(y) = fα(y′).

Now suppose for contradiction that Y is not isometric, and hence
not uniformly equicontinuous. Then there exists a sequences yj , y′j ∈
Y with d(yj , y′j) → 0, an ε > 0, and a sequence nj of integers such
that d(Snjyj , Snjy′j) > ε. By compactness we may assume that yj , y′j
both converge to the same point. But by the preceding discussion,
we can find α ∈ A such that d(y, y′) < ε/4 whenever fα(y) = fα(y′).
In other words, for any z in Yα, the fibre f−1

α ({z}) has diameter at
most ε/4.

Now let zj := fα(yj) and z′j := fα(y′j). Then zj and z′j converge to
the same point z in Yα, and so by equicontinuity of Yα, d(Snjα zj , S

nj
α z′j)

goes to zero. By compactness and passing to a subsequence we can
assume that Snjα zj and S

nj
α z′j both converge to some point z∗ in Yα.

On the other hand, from the preceding discussion and the triangle
inequality, we see that the fibres f−1

α ({Snjα zj}) and f−1
α ({Snjα z′j}) are

separated by a distance at least ε/2 in Y . On the other hand, the dis-
tance between f−1

α ({Snjα zj}) and f−1
α ({z∗}) must go to zero as j →∞

(as a simple sequential compactness argument shows), and similarly
the distance between f−1

α ({Snjα z′j}) and f−1
α ({z∗}) goes to zero. Since

f−1
α ({z∗}) has diameter at most ε/4, we obtain a contradiction. The

claim follows. �

Combining Exercise 2.6.2 and Lemma 2.6.12 with Zorn’s lemma
(and noting that with the trivial factor pt : X → pt, the image pt is
clearly isometric) we obtain

Corollary 2.6.13 (Existence of maximal isometric factor). For every
topological dynamical system (X,F , T ) there is a factor π : X → Y

with Y isometric, and which is maximal with respect to refinement
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among all such factors with this property. This factor is unique up to
equivalence.

By Proposition 2.6.7 and Exercise 2.6.3, the maximal isometric
factor of a minimal system is a Kronecker system, and we refer to it
as theKronecker factor of that minimal system X.

Exercise 2.6.5 (Explicit description of Kronecker factor). Let (X,F , T )
be a minimal topological dynamical system, and let Q ⊂ X ×X be
the set

(2.47) Q :=
⋂
V

(T × T )Z(V )

where V ranges over all open neighbourhoods of the diagonal {(x, x) :
x ∈ X} of X × X, and T × T : (x, y) 7→ (Tx, Ty) is the product
shift. Let ∼ be the finest equivalence relation on X such that the
set R∼ := {(x, y) ∈ X × X : x ∼ y} is closed and contains Q.
(The existence and uniqueness of ∼ can be established by intersecting
R∼ over all candidates ∼ together.) Show that the projection map
π : X → X/ ∼ to the equivalence classes of ∼ (with the quotient
topology) is (up to isomorphism) the Kronecker factor of X.

The Kronecker factor is also closely related to the concept of an
eigenfunction. We say that a continuous function f : X → C is an
eigenfunction of a topological dynamical system (X,F , T ) if it is not
identically zero and we have Tf = λf for some λ ∈ C, which we refer
to as an eigenvalue for T .

Exercise 2.6.6. Let (X,F , T ) be a minimal topological dynamical
system.

(1) Show that if λ is an eigenvalue for T , then λ lies in the
unit circle S1 := {z ∈ C : |z| = 1}, and furthermore there
exists a unimodular eigenfunction g : X → S1 with this
eigenvalue. Hint : the zero set of an eigenfunction is a closed
shift-invariant subset of X.

(2) Show that for every eigenvalue λ, the eigenspace {f ∈ C(X) :
Tf = λf} is one-dimensional, i.e. all eigenvalues have geo-
metric multiplicity 1. Hint : first establish this in the case
λ = 1.



222 2. Ergodic theory

(3) If g : X → S1 is a unimodular eigenfunction with non-trivial
eigenvalue λ 6= 1, show that g : X → g(X) is an isometric
factor of X, where g(X) ⊂ S1 is given the shift z 7→ λz.
Conclude in particular that g = cχ ◦ π, where π : X → K is
the Kronecker factor, χ : K → S1 is a character of K, and
c is a constant. Conversely, show that all functions of the
form cχ ◦ π are eigenfunctions28.

We will see eigenfunctions (and various generalisations of the
eigenfunction concept) playing a decisive role in the structure theory
of measure-preserving systems, which we will get to in a few lectures.

2.6.3. Isometric extensions. To cover more general systems than
just the isometric systems, we need the more flexible concept of an
isometric extension.

Definition 2.6.14 (Extensions). If π : X → Y = (Y,G, S) is a factor
of (X,F , T ), we say that (X,F , T ) is an extension of (Y,G, S), and
refer to π : X → Y as the projection map or factor map. We refer
to the (compact) spaces π−1({y}) for y ∈ Y as the fibres of this
extension.

Example 2.6.15. The skew shift (Example 2.2.4) is an extension
of the circle shift, with the fibres being the “vertical” circles. All
systems are extensions of a point, and (somewhat trivially) are also
extensions of themselves.

Definition 2.6.16 (Isometric extensions). Let (X,F , T ) be an ex-
tension of a topological dynamical system (Y,G, S) with projection
map π : X → Y . We say that this extension is isometric if there ex-
ists a metric dy : π−1({y})× π−1({y})→ R+ on each fiber π−1({y})
with the following properties:

(a) (Isometry) For every y ∈ Y and x, x′ ∈ π−1({y}), we have
dSy(Tx, Tx′) = dy(x, x′).

(b) (Continuity) The function d :
⋃
y∈Y π

−1({y})×π−1({y})→
R+ formed by gluing together all the dy is continuous (where

28From this, it is possible to reconstruct the Kronecker factor canonically from
the eigenfunctions of X; we leave the details to the reader.
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we view the domain as a compact subspace {(x, x′) ∈ X×X :
π(x) = π(x′)} of X ×X).

(c) (Isometry, again) For any y, y′ ∈ Y , the metric spaces (π−1({y}), dy)
and (π−1({y′}), dy′) are isometric.

Example 2.6.17. The skew shift is an isometric extension of the
circle shift, where we give each fibre the standard metric.

Example 2.6.18. A topological dynamical system is an isometric
extension of a point if and only if it is isometric.

Exercise 2.6.7. If X is minimal, show that properties (a), (b) in
Definition 2.6.16 automatically imply property (c). Furthermore, in
this case show that the isometry group Isom(π−1({y})) of any fibre
acts transitively on that fibre. Show however that property (c) can
fail even when properties (a) and (b) hold if X is not assumed to be
minimal.

Exercise 2.6.8 (Topological characterisation of isometric extensions).
Let (X,F , T ) be a extension of a minimal topological dynamical sys-
tem (Y,G, S) with factor map π : X → Y , and let d be a metric on X.
Show that X is an isometric extension if and only if the shift maps Tn

are uniformly equicontinuous relative to π in the sense that for every
ε > 0 there exists δ > 0 such that every x, y ∈ X with π(x) = π(y)
and d(x, y) < δ, we have d(Tnx, Tny) < ε for all n.

An important subclass of isometric extensions are the group ex-
tensions. Recall that an automorphism of a topological dynamical
system is an isomorphism of that system to itself, i.e. a homeomor-
phism that commutes with the shift.

Definition 2.6.19 (Group extensions). Let (X,F , T ) be a topolog-
ical dynamical system. Suppose that we have a compact group G of
automorphisms of X (where we endow G with the uniform topology).
Then the quotient space Y := G\X = {Gx : x ∈ X} is also a com-
pact metrisable space, and one easily sees that the projection map
π : X 7→ Y is a factor map. We refer to X as a group extension of
Y (or of any other system isomorphic to Y ). We refer to G as the
structure group of the extension. We say that the group extension is
an abelian group extension if G is abelian.
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Example 2.6.20 (Cocycle extensions). If G is a compact topological
metrisable group, (Y,G, S) is a topological dynamical system, and a
continuous map σ : Y → G, then we define the cocycle extension
X = Y ×σ G to be the product space Y × G with the shift T :
(y, ζ) 7→ (Sy, σ(y)ζ), and with the factor map π : (y, ζ) 7→ y. One
easily verifies that X is a group extension of Y with structure group
G. The converse is not quite true for topological reasons; not every
G-bundle can be globally trivialised, although one can still describe
general group extensions by patching together cocycle extensions on
local trivalisations.

Example 2.6.21. The skew shift is a cocycle extension (and hence
group extension) Y ×σ (R/Z) of the circle shift Y , with σ(y) := y

being the identity map. Any Kronecker system is an abelian group
extension of a point.

Exercise 2.6.9. Show that every group extension is an isometric
extension. Hint : the group G acts equicontinuously on itself, and
thus isometrically on itself by choosing the right metric, as in Exercise
2.6.1.

Exercise 2.6.10. Let (Y,G, S) be a topological dynamical system,
and G a compact topological metrisable group. We say that two cocy-
cles σ, σ′ : Y → G are cohomologous if we have σ′(y) = φ(Sy)σ(y)φ(y)−1

for some continuous map φ : Y → G. Show that if σ, σ′ are cohomolo-
gous, then the cocycle extensions Y ×σG and Y ×σ′G are isomorphic.
Understanding exactly which cocycles are cohomologous to each other
is a major topic of study in dynamical systems (though not one which
we will pursue here).

In view of Proposition 2.6.7 and Exercise 2.6.15, it is reasonable to
ask whether every minimal isometric extension is a group extension.
The answer is no (though actually constructing a counterexample is
a little tricky). The reason is that we can form intermediate systems
between a system Y = G\X and a group extension X of that system
by quotienting out a subgroup. Indeed, if H is a closed subgroup of
the structure group G, then H\X is a factor of X and an isomet-
ric extension of G\X, but need not be a group extension of G\X
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(basically because G/H need not be a group). But this is the only
obstruction to obtaining an analogue of Proposition 2.6.7:

Lemma 2.6.22. Suppose that X is an isometric extension of another
topological dynamical system Y with projection map π : X → Y .
Suppose also that X is minimal. Then there exists a group extension
Z of Y with structure group G (thus Y ≡ G\Z) and a closed subgroup
H of G such that X is isomorphic to H\Z, and π is (after applying
the isomorphisms) the projection map from H\Z to G\Z; thus we
have the commutative diagram

(2.48)
Z → X = H\Z
↘ ↓

Y = G\Z
.

Proof. For each y ∈ Y , let Vy be the metric space π−1({y}) with the
metric dy given by Definition 2.6.19. Thus for any integer n and any
y ∈ Y , Tn is an isometry from Vy to VSny; taking limits, we see for
any p ∈ βZ that T p is an isometry from Vy to VSpy. Also, the T p

clearly commute with the shift T .

Fix a point y0 ∈ Y , and set G := Isom(Vy0).

Let W be the space of all pairs (y, f) where y ∈ Y and f is
an isometry from Vy0 to Vy. This is a compact metrisable space
with a shift U : (y, f) 7→ (Sy, T ◦ f) and an action g : (y, f) 7→
(y, f ◦ g−1) of G that commutes with U . We let Z be the orbit
closure in W of the G-orbit {y0} × G under the shift U . If we fix a
point x0 ∈ Vy0 , then Z projects onto X by the map f 7→ f(y0), and
onto Y by the map (y, f) 7→ y; these maps of course commute with
the projection π : x 7→ π(x) from X to Y . Because X is minimal
(and thus equal to all of its orbit closures), one sees that all of these
projections are surjective morphisms, thus Z extends both Y and X.
Also, one verifies that Z is a group extension over Y with structure
group G, and a group extension over X with structure group given
by the stabiliser H := {g ∈ G : gx0 = x0}. The claim follows. �

Exercise 2.6.11. Show that if an minimal extension π : X → Y

is finite, then it is automatically an abelian group extension. Hint :
recall from Section 2.2 that minimal finite systems are equivalent to
shifts on a cyclic group.
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An important feature of isometric or group extensions is that
they tend to preserve recurrence properties of the system. We will
see this phenomenon prominently when we turn to the ergodic theory
analogue of isometric extensions, but for now let us give a simple
illustrative result in this direction:

Proposition 2.6.23. Let (X,F , T ) be an isometric extension of (Y,G, S)
with factor map π : X → Y , and let y be a recurrent point of Y (see
Definition 2.3.2 for a definition). Then every point x in the fibre
π−1({y}) is a recurrent point in X.

Proof. It will be convenient to use ultrafilters. In view of Lemma
2.6.22, it suffices to prove the claim for group extensions (note that
recurrence is preserved under morphisms). Since y is recurrent, there
exists p ∈ βZ\Z such that Spy = y (see Exercise 2.3.10). Thus
π(T px) = π(x). Since Y = G\X, this implies that T px = gx for
some g ∈ G. We can iterate this (recalling that G commutes with
T ) to conclude that Tnpx = gnx for all positive integers n. But by
considering the action of g on G, we know (from Theorem 2.3.4) that
we have gnjh → h for some h ∈ G and nj → +∞; canceling the
h, and then applying to x, we conclude that gnjx → x, and thus
Tnjpx → x. If we write q := limj→r njp for some r ∈ βN\N, we
conclude that T qx = x and so x is recurrent as desired. �

2.6.4. Application: distribution of polynomial sequences in
torii. Now we apply the above theory to the following specific prob-
lem:

Problem 2.6.24. Let P : Z→ (R/Z)d be a polynomial sequence in
a d-dimensional torus, thus P (n) =

∑k
j=0 cjn

j for some c0, . . . , ck ∈
(R/Z)d. Compute the orbit closure P (Z) = {P (n) : n ∈ Z}.

(We will be vague here about what “compute” means.)

Example 2.6.25. Is the orbit {(
√

2n mod 1,
√

3n2 mod 1) : n ∈ Z}
dense in the two-dimensional torus (R/Z)2?

The answer should of course depend on the polynomial P ; for
instance if P is constant then the orbit closure is clearly a point.
Similarly, if the polynomial P has a constraint of the form m·P = c for
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some non-zero m ∈ Zd and c ∈ R/Z, then the orbit closure is clearly
going to be contained inside the proper subset {x ∈ (R/Z)d : m · x =
c} of the torus. For instance, {(

√
2n2 mod 1, 2

√
2n2 mod 1) : n ∈ Z}

is clearly not dense in the two-dimensional torus, as it is contained in
the closed one-dimensional subtorus {(x, 2x) : x ∈ R/Z}.

In the above example, it is clear that the problem of computing
the orbit closure of (

√
2n2 mod 1, 2

√
2n2 mod 1) reduces to comput-

ing the orbit closure of (
√

2n2 mod 1). More generally, if a polynomial
P : Z → (R/Z)d obeys a constraint m · P = c for some non-zero ir-
reducible m ∈ Zd (i.e. m does not factor as m = qm′ for some q > 1
and m′ ∈ Zd, or equivalently that the greatest common divisor of the
coefficients of m is 1), then some elementary number theory shows
that the set {x ∈ (R/Z)d : m · x = c} is isomorphic (after an invert-
ible affine transformation with integer coefficients on the torus) to the
standard subtorus (R/Z)d−1).

Exercise 2.6.12. Prove the above claim. Hint : the Euclidean algo-
rithm may come in handy.

Because of this, we see that whenever we have a constraint of the
form m · P = c with m irreducible, we can reduce Problem 2.6.24
to an instance of Problem 2.6.24 with one lower dimension. What
about if m is not irreducible? A typical example of this would be
when29 P (n) := (

√
2n2, 2

√
2n2 + 1

2n). Here, we have the constraint
(−4, 2) · P (n) = 0, which constrains P to the union of two one-
dimensional torii, rather than a single one-dimensional torus. But
we can eliminate this multiplicity by the trick of working with the
odd and even components {P (2n+ 1) : n ∈ Z} and {P (2n) : n ∈ Z}
respectively. One observes that each component obeys an irreducible
constraint, namely (−2, 1) · P (2n) = 0 and (−2, 1) · P (2n + 1) = 1

2

respectively, and so by the preceding discussion, the problem of com-
puting the orbit closures for each of these components reduces to that
of computing an orbit closure in a torus of one lower dimension.

Exercise 2.6.13. More generally, show that whenever P obeys a
constraint m ·P (n) = c with m not necessarily irreducible, then there

29I’m going to drop the “mod 1” terms to remove clutter.
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exists an integer q ≥ 1 such that the orbits {P (qn+ r) : n ∈ Z} obey
a constraint m′ · P (qn+ r) = cr with m′ irreducible.

From Exercises 2.6.12 and 2.6.13, we see that every time we have
a constraint of the form m · P (n) = c for some non-zero m, we can
reduce Problem 2.6.24 to one or more copies of Problem 2.6.24 in one
lower dimension. So, without loss of generality (and by inducting on
dimension) we may assume that no such constraint exists. (We will
see this “induction on dimension” type of argument also in Section
2.16, when we study Ratner-type theorems in more detail.)

Now that all the “obvious” restrictions on the orbit have been
removed, one might now expect P (n) to be uniformly distributed
throughout the torus. Happily, this is indeed the case (at least at the
topological level):

Theorem 2.6.26 (Equidistribution theorem). Let P : Z → (R/Z)d

be a polynomial sequence which does not obey any constraint of the
form m · P (n) = c with m ∈ Zd non-zero. Then the orbit P (Z) is
dense in (R/Z)d (i.e. the orbit closure is the whole torus).

Remark 2.6.27. The recurrence theorems we have already encoun-
tered (e.g. Corollary 2.4.4 or Theorem 2.5.1) do not seem to directly
establish this result, instead giving the weaker result that every ele-
ment in P (Z) is a limit point.

Exercise 2.6.14. Assuming Theorem 2.6.26, show that the answer
to Problem 2.6.24 is always “a finite union of subtorii”, regardless of
what the coefficients of P are.

Theorem 2.6.26 can be proven using Weyl’s theory of equidistribu-
tion (Theorem 1.4.1), which is based on bounds on exponential sums;
but we shall instead use a topological dynamics argument based on
some ideas of Furstenberg[Fu1981]. Amusingly, this argument will
use some global topology (specifically, winding numbers) and not just
local (point-set) topology.

To begin proving this theorem, let us first consider the linear one-
dimensional case, in which one considers the orbit closure of {nα+β :
n ∈ Z} for some α, β ∈ R/Z. The constant term β only affects
this closure by a translation and we can ignore it. One then easily
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checks that the orbit closure {nα : n ∈ Z} is a closed subgroup of
R/Z. Fortunately, we have a classification of these objects:

Lemma 2.6.28. Let H be a closed subgroup of R/Z. Then either
H = R/Z, or H is a cyclic group of the form H = {x ∈ R/Z : Nx =
0} for some N ≥ 1.

Proof. If H is not all of R/Z, then its complement, being a non-
empty open set, is the union of disjoint open intervals. Let x be
the boundary of one of these intervals, then x lies in the closed set
H, Translating the group H by x, we conclude that 0 is also the
boundary of one of these intervals. Since H = −H, we thus see that
0 is an isolated point in H, If we then let y be the closest non-zero
element of H to the origin (the case when H = {0} can of course be
checked separately), we check (using the Euclidean algorithm) that y
generates H, and the claim easily follows. �

Exercise 2.6.15. Using the above lemma, prove Theorem 2.6.26 in
the case when d = 1 and P is linear.

Exercise 2.6.16. Obtain another proof of Lemma 2.6.28 using Fourier
analysis and the fact that the only non-trivial subgroups of Z (the
Pontryagin dual of R/Z) are the groups N · Z for N ≥ 1.

Now we consider the linear case in higher dimensions. The key
lemma is

Lemma 2.6.29. Let H be a closed subgroup of (R/Z)d for some
d ≥ 1 such that π(H) = (R/Z)d−1, where π : (R/Z)d → (R/Z)d−1

is the canonical projection. Then either H = (R/Z)d or H = {x ∈
(R/Z)d : m · x = 0} for some m ∈ Zd with final coefficient non-zero.

Proof. The fibre H ∩ π−1({0}) is isomorphic to a closed subgroup
of R/Z, so we can apply Lemma 2.6.28. If this subgroup is full,
then it is not hard to see that H = (R/Z)d, so suppose instead that
H∩π−1({0}) is isomorphic to the cyclic group of orderN . We then ap-
ply the homomorphism fN : (x1, . . . , xd)→ (x1, . . . , xd−1, Nxd), and
observe that HN := fN (H) is a closed subgroup of (R/Z)d whose
fibres are a point, i.e. HN is a graph {(x, φ(x)) : x ∈ (R/Z)d−1}
for some φ : (R/Z)d−1 → R/Z. Observe that the projection map
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(x, φ(x)) 7→ x is a continuous bijection from the compact Haus-
dorff space HN to the compact Hausdorff space (R/Z)d−1, and is
thus a homeomorphism; in particular, φ is continuous. Also, since
HN is a group, φ must be a homomorphism. It is then a stan-
dard exercise to conclude that φ is linear, and therefore takes the
form (x1, . . . , xd−1) 7→ m1x1 + . . . + md−1xd−1 for some integers
m1, . . . ,md−1. The claim then follows by some routine algebra. �

Exercise 2.6.17. Using the above lemma, prove Theorem 2.6.26 in
the case when d is arbitrary and P is linear.

We now turn to the polynomial case. The basic idea is to re-
express P (n) in terms of the orbit Tnx of some topological dynamical
system on a torus. We have already seen this happen with the skew
shift ((R/Z)2, (x, y) 7→ (x+ α, y + x)), where the orbits Tnx exhibit
quadratic behaviour in n. More generally, an iterated skew shift such
as

(2.49) ((R/Z)d, (x1, . . . , xd) 7→ (x1 + α, x2 + x1, . . . , xd + xd−1))

generates orbits Tnx whose final coefficient contains degree d terms
such as n(n−1)...(n−d+1)

d! α. What we would like to do is find criteria
under which we could demonstrate that systems such as (2.49) are
minimal ; this would mean that every orbit closure in that system
is dense, which would clearly be relevant for proving results such as
Theorem 2.6.26.

To do this, we will exploit the fact that systems such as (2.49)
can be built as towers of isometric extensions; for instance, the system
(2.49) is an isometric extension over the same system (2.49) associ-
ated to d − 1 (which, in the case d = 1, is simply a point). Now,
isometric extensions don’t always preserve minimality; for instance,
if one takes a trivial cocycle extension Y ×0 G then the system is
certainly non-minimal, as every horizontal slice Y × {g} of that sys-
tem is a subsystem. More generally, any cocycle extension which is
cohomologous to the trivial cocycle (see Exercise 2.6.10) will not be
minimal. However, it turns out that if one has a topological obstruc-
tion to triviality, then minimality is preserved. We will formulate this
fact using the machinery of winding numbers. Recall that every con-
tinuous map f : R/Z → R/Z has a winding number [f ] ∈ Z, which
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can be defined as the unique integer such that f is homotopic to the
linear map x 7→ [f ]x. Note that the map f 7→ [f ] is linear, and also
that [f ] is unchanged if one continuously deforms f .

We now give a variant of a lemma of Furstenberg [Fu1981].

Lemma 2.6.30. Let (Y,G, S) be a minimal topological dynamical sys-
tem. Let σ : Y → (R/Z)d be a cocycle such that for every non-zero
m ∈ Zd there exists a loop γ : R/Z→ Y such that S ◦ γ is homotopic
to γ and [m · σ ◦ γ] 6= 0. Then Y ×σ R/Z is also minimal.

Proof. We induct on d. The case d = 0 is trivial, so suppose d ≥
1 and the claim has already been proven for d − 1. Suppose for
contradiction that Y ×σ (R/Z)d contains a proper minimal subsystem
Z. Then π(Z) is a subsystem of Y , and must therefore equal all of Y ,
by minimality of Y . Now we use the action of (R/Z)d on Y×σ(R/Z)d,
which commutes with the shift T : (y, ζ) 7→ (Sy, σ(y) + ζ). For every
θ ∈ (R/Z)d, we see that θ + Z is also a minimal subsystem, and so
is either equal to Z or disjoint from Z. If we let H := {θ ∈ (R/Z)d :
θ + Z = Z}, we conclude that H is a closed subgroup of (R/Z)d.

We now claim that the projection of H to (R/Z)d−1 must be all
of (R/Z)d−1. For if this were not the case, we could project Z down
to Y ×σ′ (R/Z)d−1, where σ′ : Y → (R/Z)d−1 is the projection of σ,
and obtain a proper subsystem of that extension. But by induction
hypothesis we see that Y ×σ′ (R/Z)d−1 is minimal, a contradiction,
thus proving the claim.

We can now apply Lemma 2.6.29. If H is all of (R/Z)d then
Z is all of Y ×σ (R/Z)d, a contradiction. Thus we have H = {ζ ∈
(R/Z)d : m · ζ = 0} for some non-zero m ∈ Zd, and thus Z must take
the form

(2.50) Z = {(y, ζ) ∈ Y ×σ (R/Z)d : m · ζ = φ(y)}

for some φ : Y → R/Z. Arguing as in the proof of Lemma 2.6.29
we can show that Y is homeomorphic to the image of Z under the
map (y, ζ) 7→ (y,m · ζ) and so φ must be continuous. Since Z is
shift-invariant, we must have the equation

(2.51) φ(Sy) = φ(y) +m · σ(y).
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We apply this for y in the loop γ associated to m by hypothesis,
and take degrees to conclude

(2.52) [φ ◦ S ◦ γ] = [φ ◦ γ] + [m · σ ◦ γ].

But as S ◦ γ is homotopic to γ, we have [φ ◦ S ◦ γ] = [φ ◦ γ] and
thus [m · σ ◦ γ] = 0, contradicting the hypothesis. �

Exercise 2.6.18. Using the above lemma and an induction on d,
show that the system (2.49) is minimal whenever α is irrational. (The
key, of course, is to make a good choice for the loop γ that makes all
computations easy.)

Exercise 2.6.19. More generally, show that the product of any finite
number of systems of the form (2.49) remains minimal, as long as the
numbers α that generate each factor system are linearly independent
with respect to each other and to 1 over the rationals Q.

It is now possible to deduce Theorem 2.6.26 from Exercise 2.6.19
and a little bit of linear algebra. We sketch the ideas as follows.
Firstly we take all the non-constant coefficients that appear in P and
look at the space they span, together with 1, over the rationals Q.
This is a finite-dimensional space, and so has a basis containing 1
which is linearly independent over Q. The non-constant coefficients
of P are rational linear combinations of elements of this basis; by di-
viding the basis elements by some suitable integer (and using the trick
of passing from P (n) to P (qn+r) if necessary) we can ensure that the
coefficients of P are in fact integer linear combinations of basis ele-
ments. This allows us to write P as an affine-linear combination (with
integer coefficients) of the coefficients of an orbit in the type of prod-
uct system considered in Exercise 2.6.19. If this affine transformation
has full rank, then we are done; otherwise, the affine transformation
maps to some subspace of the torus of the form {x : m · x = c},
contradicting the hypothesis on P . Theorem 2.6.26 follows.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/01/24.
Thanks to Nilay, mmailliw/william, Zaher Hani, Sugata, and Liu Xiao
Chuan for corrections.
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2.7. Structural theory of topological dynamical
systems

In our final lecture on topological dynamics, we discuss a remark-
able theorem of Furstenberg[Fu1963] that classifies a major type of
topological dynamical system - distal systems - in terms of highly
structured (from an algebraic point of view) systems, namely towers
of isometric extensions. This theorem is also a model for an important
analogous result in ergodic theory, the Furstenberg-Zimmer structure
theorem, which we will turn to in a few lectures. We will not be able
to prove Furstenberg’s structure theorem for distal systems here in
full, but we hope to illustrate some of the key points and ideas.

2.7.1. Distal systems. Furstenberg’s theorem concerns a signifi-
cant generalisation of the equicontinuous (or isometric) systems, namely
the distal systems.

Definition 2.7.1 (Distal systems). Let (X,F , T ) be a topological
dynamical system, and let d be an arbitrary metric on X (it is not
important which one one picks here). We say that two points x, y
in X are proximal if we have lim infn→∞ d(Tnx, Tny) = 0. We say
that X is distal if no two distinct points x 6= y in X are proximal,
or equivalently if for every distinct x, y there exists ε > 0 such that
d(Tnx, Tny) ≥ ε for all n.

It is obvious that every isometric or equicontinuous system is
distal, but the converse is not true, as the following example shows:

Example 2.7.2. If α ∈ R, then the skew shift ((R/Z)2, (x, y) 7→
(x+α, y+x)) turns out to be not equicontinuous; indeed, if we start
with a pair of nearby points (0, 0), (0, 1/2n) for some large n and ap-
ply Tn, one ends up with (nα, n(n−1)

2 α) and (α, n(n−1)
2 α + 1

2 ), thus
demonstrating failure of equicontinuity. On the other hand, the sys-
tem is still distal: given any pair of distinct points (x, y), (x′, y′), ei-
ther x 6= x′ (in which case the horizontal separation between Tn(x, y)
and Tn(x′, y′) is bounded from below) or x = x′ (in which case the
vertical separation is bounded from below).

Exercise 2.7.1. Show that any non-trivial Bernoulli system ΩZ is
not distal.
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Distal systems interact nicely with the action p 7→ T p of the
compactified integers βZ:

Exercise 2.7.2. Let (X,F , T ) be a topological dynamical system.

(1) Show that two points x, y in X are proximal if and only if
T px = T py for some p ∈ βZ.

(2) Show that X is distal if and only if all the maps T p for
p ∈ βZ are injective.

(3) If X is distal, show that T p = id whenever p ∈ βZ is idem-
potent. Hint : use part 2.

(4) If X is distal, show that the set of transformations G :=
{T p : p ∈ βZ} on X forms a group G, known as the Ellis
group of X. Hint : use part 3, together with Lemma 2.5.14.

(5) Show that G is a compact subset of XX (with the product
topology), and that G acts transitively on X if and only if
X is minimal.

Exercise 2.7.3. Show that an inverse limit of a totally ordered set
(Yα)α∈A of distal factors is still distal. (This turns out to be slightly
easier than Lemma 2.6.12.)

Exercise 2.7.4. Show that every topological dynamical system has
a maximal distal factor. Hint : repeat the proof of Corollary 2.6.13.

Exercise 2.7.5. Show that any distal system can be partitioned into
disjoint minimal distal systems. Hint : One can of course adapt the
proof of Proposition 2.6.9; but there is a slicker way to do it by
exploiting the Ellis group.

Note that the skew shift system, while not isometric, does have
a non-trivial isometric factor, namely the circle shift (R/Z, x 7→ x+
α) with the projection map π : (x, y) 7→ x. It turns out that this
phenomenon is general:

Theorem 2.7.3 (Baby Furstenberg structure theorem). Let (X,F , T )
be minimal, distal and non-trivial (i.e. not a point). Then X has a
non-trivial isometric factor π : X → Y .

This result - a toy case of Furstenberg’s full structure theorem -
is already rather difficult to establish. We will not give Furstenberg’s
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original proof here (though see Exercise 2.7.13 below), but will at least
sketch how the factor π : X → Y is constructed. A key object in the
construction is the symmetric function F : X ×X → R+ defined by
the formula

(2.53) F (x, y) := inf
n∈Z

d(Tnx, Tny).

Example 2.7.4. We again consider the skew shift ((R/Z)2, (x, y) 7→
(x+α, y+x)) with α irrational. For sake of concreteness let us choose
the taxicab metric d((x, y), (x′, y′)) := ‖x − x′‖R/Z + ‖y − y′‖R/Z,
where ‖x‖R/Z is the distance from x to the integers. Then one can
check that F ((x, y), (x′, y′)) is equal to ‖x − x′‖R/Z when x − x′ is
irrational, and equal to ‖x − x′‖R/Z + 1

q‖q(y − y
′)‖R/Z when x − x′

is rational, where q is the least positive integer such that q(x− x′) is
an integer. Thus F is highly discontinuous, but it is at least upper
semi-continuous in each of its two variables30.

Exercise 2.7.6. Let G be the Ellis group of a minimal distal system
X.

(1) For any x, y ∈ X, show that F (x, y) = infg∈G d(gx, gy). In
particular, F (gx, gy) = F (x, y) for all g ∈ G.

(2) For any x, y ∈ X, show that the set {(gx, gy) : g ∈ G}
is a minimal subsystem of X × X (with the product shift
(x, y) 7→ (Tx, Ty). Conclude in particular that if F (x, y) <
a, then the set {n ∈ Z : d(Tnx, Tny) < a)} is syndetic.

(3) If x, y ∈ X and a > 0 is such that F (x, y) < a, show that
there exists ε such that F (x, z) < a whenever F (y, z) < ε.

(4) Let XF = (X,FF ) be the space X whose topology is gener-
ated by the basic open sets Ua,x := {y ∈ X : F (x, y) < a}.
(That this is a base follows from 3.) Equivalently, XF is
equipped with the weakest topology on which F is upper
semi-continuous in each variable. Show that XF is a weaker
topological space than X (i.e. the identity map from X to
XF is continuous); in particular, XF is compact. Also show
that all the maps in G are homeomorphisms on XF .

30Actually, the upper semi-continuity of F holds for arbitrary topological dynam-
ical systems, since F is the infimum of continuous functions.



236 2. Ergodic theory

If the space XF defined in Exercise 2.7.6 were Hausdorff, then
the system (XF ,FF , T ) would be equicontinuous, by Exercise 2.6.2.
Unfortunately, XF is not Hausdorff in general. However, it turns out
that we can “quotient out” the non-Hausdorff nature of XF . Define
the equivalence relation ∼ on XF by declaring x ∼ y if we have
F (x, z) = F (y, z) for all z outside of a set of the first category in
X. This is clearly an equivalence relation, and so we can create the
quotient space Y := XF / ∼; since X embeds into XF we thus have
a factor map π : X → Y . It is a deep fact (which we will not prove
here) that this quotient space is non-trivial and Hausdorff, and that
∼ is preserved by the shift T and even by the Ellis group G (thus if
x ∼ y and g ∈ G then gx ∼ gy). Because of this, G continues to act
on Y homeomorphically, and so by Exercise 2.6.2, π : X → Y is a
non-trivial isometric factor of X as desired.

Exercise 2.7.7. Show that in the case of the skew shift (Example
2.7.4), this construction recovers the factor that was discussed just
before Theorem 2.7.3. (The trickiness of this exercise should already
give you some idea of the difficulty level of Theorem 2.7.3.)

2.7.2. The Furstenberg structure theorem for distal systems.
We have already noted that isometric systems are distal systems.
More generally, we have

Exercise 2.7.8. Show that an isometric extension of a distal system
is still distal. Hint : Example 2.7.2 is a good model case.

Thus, for instance, the iterated skew shifts that appear in (2.49)
are distal. Also, recall from Exercise 2.7.7 that the inverse limit of
distal systems is again distal. It turns out that these are the only
ways to generate distal systems, in the following sense:

Theorem 2.7.5 (Furstenberg’s structure theorem for distal systems).
[Fu1963] Let (X,F , T ) be a distal system. Then there exists an ordi-
nal α and a factor Yβ for every β ≤ α with the following properties:

(1) Y∅ is a point.

(2) For every successor ordinal β+ 1 ≤ α, Yβ+1 is an isometric
extension of Yβ.
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(3) For every limit ordinal β ≤ α, Yβ is an inverse limit of the
Yγ for γ < β.

(4) Yα is equal to X.

The collection of factors (Yβ)β≤α is sometimes known as a “Fursten-
berg tower”.

Theorem 2.7.5 follows by applying Zorn’s lemma with the follow-
ing key proposition:

Proposition 2.7.6 (Key inductive step). Let (X,F , T ) be a distal
system, and let Y be a proper factor of X (i.e. the factor map is not
an isomorphism). Then there exists another factor Z of X which is
a proper isometric extension of Y .

Note that Theorem 2.7.3 is the special case of Proposition 2.7.6
when Y is a point. Indeed, Proposition 2.7.6 is proven in the same
way as Theorem 2.7.3, but with several additional technicalities which
I will not discuss here; see [Fu1963] for details.

Exercise 2.7.9. Deduce Theorem 2.7.5 from Proposition 2.7.6 and
Zorn’s lemma.

Remark 2.7.7. It is known that in Theorem 2.7.5, one can take the
ordinal α to be countable, and conversely that for every countable
ordinal α, there exists a system whose smallest Furstenberg tower
has height α; see [BeFo1996].

Remark 2.7.8. Several generalisations and extensions of Fursten-
berg’s structure theorem are known, but they are somewhat technical
to state and will not be detailed here; see [Gl2000] for a discussion.

2.7.3. Weak mixing and isometric factors. We have seen that
distal systems always contain non-trivial isometric factors. What
about more general systems? It turns out that there is in fact a
nice dichotomy between systems with non-trivial isometric factors,
and those without.

Definition 2.7.9 (Topological transitivity). A topological dynamical
system (X,F , T ) is topologically transitive if, for every pair U , V of
non-empty open sets, there exists an integer n such that TnU∩V 6= ∅.
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Exercise 2.7.10. Show that a topological dynamical system is topo-
logically transitive if and only if it is equal to the orbit closure of one
of its points31.

Exercise 2.7.11. Show that any factor of a topologically transitive
system is again topologically transitive.

Definition 2.7.10 (Topological weak mixing). A topological dynam-
ical system (X,F , T ) is topologically weakly mixing if the product
system X ×X is topologically transitive.

Exercise 2.7.12. A system is said to be topologically mixing if for
every pair U , V of non-empty open sets, one has TnU ∩ V 6= ∅ for
all sufficiently large n. Show that topological mixing implies topolog-
ical weak mixing. (The converse is false, but actually constructing a
counterexample is somewhat tricky.)

Example 2.7.11. No circle shift (R/Z, x 7→ x + α) is topologically
weak mixing (or topologically mixing), even though such shifts are
minimal (and hence transitive) when α is irrational. On the other
hand, any Bernoulli shift is easily seen to be topologically mixing
(and hence topologically weak mixing).

We have the following dichotomy, first proven in [KeRo1969]
(using ideas from [Fu1963]):

Theorem 2.7.12 (Dichotomy between structure and randomness).
[KeRo1969] Let (X,F , T ) be a minimal topological dynamical sys-
tem. Then exactly one of the following statements is true:

(1) (Structure) X has a non-trivial isometric factor.

(2) (Randomness) X is topologically weakly mixing.

Remark 2.7.13. Combining this with Exercise 2.6.6, we obtain an
equivalent formulation of this theorem: a minimal system is topologi-
cally weakly mixing if and only if it has no non-trivial eigenfunctions.

31Compare this with minimal systems, which is the orbit closure of any of its
points. Thus minimality is stronger than topological transitivity; for instance, the
compactified integers {−∞}∪Z∪{+∞} with the usual shift is topologically transitive
but not minimal.
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Proof. We first prove the easy direction: that if X has a non-trivial
isometric factor, then it is not topologically weakly mixing. In view of
Exercise 2.7.11, it suffices to prove this when X itself is isometric. Let
x, x′ be two distinct points of Y , let r denote the distance between
x and x′ with respect to the metric that makes X isometric, and
let B and B′ be the open balls of radius r/10 centred at x and x′

respectively. As X is isometric, we see for any integer n that TnB
cannot intersect both B and B′, or equivalently that (T ×T )n(B×B)
cannot intersect B × B′. Thus X is not topologically transitive as
desired.

Now we prove the difficult direction: if X is not topologically
weakly mixing, then it has a non-trivial isometric factor. For this
we use an argument from [BlHoMa2000], based on the earlier work
[McM1978]. By Definition 2.7.10, there exist open non-empty sets
U , V in X × X such that (T × T )nU ∩ V = ∅ for all n. If we thus
set K :=

⋃
n(T × T )nU , we see that K is a compact proper T × T -

invariant subset of X × X with non-empty interior. On the other
hand, the projection of K to either factor of X ×X is a non-empty
compact invariant subset of X and thus must be all of X.

We need to somehow use K to build an isometric factor of X.
For this, we shall move from the topological dynamics setting to that
of the ergodic theory setting. By Corollary 2.7.17 in the appendix,
X admits an invariant Borel measure µ. The support of µ is a non-
empty closed invariant subset of X, and is thus equal to all of X by
minimality.

The space L1(X,µ) is a metric space, with an isometric shift map
Tf := f ◦ T−1. We define the map π : X → L1(X,µ) by the formula

(2.54) π(x) : y 7→ 1K(x, y)

for all x ∈ X, where 1K is the indicator function of K. Because K
has non-empty interior and non-empty exterior, and because µ has
full support, it is not hard to show that π is non-constant. By the
T -invariance of W , it also preserves the shift T . So if we can show
that π is continuous, we see that π(X) will be a non-trivial isometric
factor of X and we will be done.
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Let us first consider the scalar function f(x) :=
∫
X

1K(x, y) dµ(y).
From the dominated convergence theorem and the fact that K is
closed, we see that f is upper semi-continuous, and continuous at at
least one point, thanks to Lemma 2.4.13. On the other hand, since K
is T × T -invariant and µ is T -invariant, we see that f is T -invariant.
Applying Exercise 2.4.16 we see that f is constant. On the other
hand, as K is closed we have lim supx→x0

1K(x, y) ≤ 1K(x0, y) for
any x0 ∈ X, and so by dominated convergence again we see that
1K(x, ·) converges in L1 to zero outside of the support of 1K(x0, ·).
Combining this with the constancy of f we conclude that 1K(x, ·)
converges to 1K(x0, ·) in L1 on all of X, and thus π is continuous as
required. �

Remark 2.7.14. Note how the measure-theoretic structure was used
to obtain metric structure, by passing from the measure space (X,µ)
to the metric space L1(X,µ). This again shows that one can some-
times upgrade weak notions of structure (such as topological or measure-
theoretic structure) to strong notions (such as geometric or algebraic
structure).

Exercise 2.7.13. Use Theorem 2.7.12 to prove Theorem 2.7.3. Hint :
use Exercise 2.7.10.

Remark 2.7.15. It would be very convenient if one had a relative
version of Theorem 2.7.12, namely that if X is an extension of Y ,
then X is either relatively topologically weakly mixing with respect
to Y (which means that the relative product X ×Y X := {(x, x′) ∈
X × X : π(x) = π(x′)} is topologically transitive), or else X has
a factor Z which is a non-trivial isometric extension of Y ; among
other things, this would have given a new proof of Theorem 2.7.5,
and in fact establish a somewhat stronger structural theorem. Unfor-
tunately, this relative version fails; a counterexample (based on the
Morse sequence, Example 2.2.11) can be found in [Gl2003, Exercise
1.19.3]. Nevertheless, the analogue of this claim does hold true in the
measure-theoretic setting, as we shall see in Section 2.12.

2.7.4. Appendix: sequential compactness of Borel probabil-
ity measures. We now recall some standard facts from measure the-
ory about Borel probability measures on a compact metrisable space



2.7. Structural theory 241

X. Recall that a sequence of such measures µn converges in the
vague topology to another µ if we have

∫
X
f dµn →

∫
X
f dµ for all

f ∈ C(X).

Lemma 2.7.16 (Vague sequential compactness). The space Pr(X) of
Borel probability measures on X is sequentially compact in the vague
topology.

Proof. The Riesz representation theorem identifies Pr(X) with the
dual of C(X). From the Stone-Weierstrass theorem we know that
C(X) is separable. The claim then follows from the usual Arzelá-
Ascoli diagonalisation argument. �

Corollary 2.7.17 (Krylov-Bogolubov theorem). Let (X,F , T ) be a
topological dynamical system. Then there exists a T -invariant proba-
bility measure µ on X.

Proof. Pick any point x0 ∈ X and consider the finite probability
measures

(2.55) µN :=
1
N

N∑
n=1

δTnx0

where δx is the Dirac mass at x. By Lemma 2.7.16, some subsequence
µNj converges in the vague topology to another Borel probability
measure µ. Since we have

(2.56)
∫
Tf dµN =

∫
f dµN +Of (1/N)

for all bounded continuous f , we conclude on taking vague limits
and using the Riesz representation theorem that µ is T -invariant as
required. �

Remark 2.7.18. Note that Corollary 2.7.17, like many other re-
sults obtained via compactness methods, guarantees existence of an
invariant measure but not uniqueness (this latter property is known
as unique ergodicity). Even for minimal systems, it is possible for
uniqueness to fail, although actually constructing an example is tricky
(see for instance [Fu1961]). However, as already observed in the
proof of Theorem 2.7.12, any invariant measure on a minimal topo-
logical dynamical system must be full (i.e. its support must be the
whole space).
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Exercise 2.7.14. Show that any topological dynamical system which
is uniquely ergodic is necessarily minimal.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/01/28.

2.8. The mean ergodic theorem

We now leave topological dynamics, and begin our study of measure-
preserving systems (X,X , µ, T ), i.e. a probability space (X,X , µ) to-
gether with a probability space isomorphism T : (X,X , µ)→ (X,X , µ)
(thus T : X → X is invertible, with T and T−1 both being measur-
able, and µ(TnE) = µ(E) for all E ∈ X and all n). For various
technical reasons it is convenient to restrict to the case when the σ-
algebra X is separable, i.e. countably generated. One reason for this
is as follows:

Exercise 2.8.1. Let (X,X , µ) be a probability space with X sepa-
rable. Then the Banach spaces Lp(X,X , µ) are separable (i.e. have
a countable dense subset) for every 1 ≤ p < ∞; in particular, the
Hilbert space L2(X,X , µ) is separable. Show that the claim can fail
for p = ∞. (We allow the Lp spaces to be either real or complex
valued, unless otherwise specified.)

Remark 2.8.1. In practice, the requirement that X be separable is
not particularly onerous. For instance, if one is studying the recur-
rence properties of a function f : X → R on a non-separable measure-
preserving system (X,X , µ, T ), one can restrict X to the separable
sub-σ-algebra X ′ generated by the level sets {x ∈ X : Tnf(x) > q}
for integer n and rational q, thus passing to a separable measure-
preserving system (X,X ′, µ, T ) on which f is still measurable. Thus
we see that in many cases of interest, we can immediately reduce
to the separable case. (In particular, for many of the theorems in
this course, the hypothesis of separability can be dropped, though we
won’t bother to specify for which ones this is the case.)

We are interested in the recurrence properties of sets E ∈ X or
functions f ∈ Lp(X,X , µ). The simplest such recurrence theorem is

Theorem 2.8.2 (Poincaré recurrence theorem). Let (X,X , µ, T ) be
a measure-preserving system, and let E ∈ X be a set of positive
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measure. Then lim supn→+∞ µ(E ∩ TnE) ≥ µ(E)2. In particular,
E ∩ TnE has positive measure (and is thus non-empty) for infinitely
many n.

Remark 2.8.3. This theorem should be compared with Theorem
2.3.1.

Proof. For any integer N > 1, observe that
∫
X

∑N
n=1 1TnE dµ =

Nµ(E), and thus by Cauchy-Schwarz

(2.57)
∫
X

(
N∑
n=1

1TnE)2 dµ ≥ N2µ(E)2.

The left-hand side of (2.57) can be rearranged as

(2.58)
N∑
n=1

N∑
m=1

µ(TnE ∩ TmE).

On the other hand, µ(TnE ∩TmE) = µ(E ∩Tm−nE). From this
one easily obtains the asymptotic

(2.59) (2.58) ≤ (lim sup
n→∞

µ(E ∩ TnE) + o(1))N2,

where o(1) denotes an expression which goes to zero as N goes to
infinity. Combining (2.57), (2.58), (2.59) and taking limits as N →
+∞ we obtain

(2.60) lim sup
n→∞

µ(E ∩ TnE) ≥ µ(E)2

By shift-invariance we have µ(E ∩ T−nE) = µ(E ∩ TnE), and the
claim follows. �

Remark 2.8.4. In classical physics, the evolution of a physical sys-
tem in a compact phase space is given by a (continuous-time) measure-
preserving system (this is Hamilton’s equations of motion combined
with Liouville’s theorem). The Poincaré recurrence theorem then has
the following unintuitive consequence: every collection E of states
of positive measure, no matter how small, must eventually return
to overlap itself given sufficient time. For instance, if one were to
burn a piece of paper in a closed system, then there exist arbitrarily
small perturbations of the initial conditions such that, if one waits
long enough, the piece of paper will eventually reassemble (modulo
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arbitrarily small error)! This seems to contradict the second law of
thermodynamics, but the reason for the discrepancy is because the
time required for the recurrence theorem to take effect is inversely
proportional to the measure of the set E, which in physical situations
is exponentially small in the number of degrees of freedom (which
is already typically quite large, e.g. of the order of the Avogadro
constant). This gives more than enough32 opportunity for Maxwell’s
demon to come into play to reverse the increase of entropy. The
more sophisticated recurrence theorems we will see later have much
poorer quantitative bounds still, so much so that they basically have
no direct significance for any physical dynamical system with many
relevant degrees of freedom.

Exercise 2.8.2. Prove the following generalisation of the Poincaré
recurrence theorem: if (X,X , µ, T ) is a measure-preserving system
and f ∈ L1(X,X , µ) is non-negative, then lim supn→+∞

∫
X
fTnf ≥

(
∫
X
f dµ)2.

Exercise 2.8.3. Give examples to show that the quantity µ(X)2 in
the conclusion of Theorem 2.8.2 cannot be replaced by any smaller
quantity in general, regardless of the actual value of µ(X). Hint : use
a Bernoulli system example.

Exercise 2.8.4. Using the pigeonhole principle instead of the Cauchy-
Schwarz inequality (and in particular, the statement that if µ(E1) +
. . . + µ(En) > 1, then the sets E1, . . . , En cannot all be disjoint),
prove the weaker statement that for any set E of positive measure in
a measure-preserving system, the set E ∩ TnE is non-empty for in-
finitely many n. (This exercise illustrates the general point that the
Cauchy-Schwarz inequality can be viewed as a quantitative strength-
ening of the pigeonhole principle.)

For this section and the next we shall study several variants of
the Poincaré recurrence theorem. We begin by looking at the mean
ergodic theorem, which studies the limiting behaviour of the ergodic
averages 1

N

∑N
n=1 T

nf in various Lp spaces, and in particular in L2.

32This can be viewed as a manifestation of the curse of dimensionality.
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2.8.1. Hilbert space formulation. We begin with the Hilbert space
formulation of the mean ergodic theorem, due to von Neumann.

Theorem 2.8.5 (Von Neumann ergodic theorem). Let U : H → H

be a unitary operator on a separable Hilbert space H, Then for every
v ∈ H we have

(2.61) lim
N→+∞

1
N

N−1∑
n=0

Unv = π(v),

where π : H → HU is the orthogonal projection from H to the closed
subspace and let HU := {v ∈ H : Uv = v} consisting of the U -
invariant vectors.

Proof. We give the slick (but not particularly illuminating) proof of
von Neumann. It is clear that (2.61) holds if v is already invariant
(i.e. v ∈ HU ). Next, let W denote the (possibly non-closed) space
W := {Uw−w : w ∈ H}. If Uw−w lies in W and v lies in HU , then
by unitarity

(2.62) 〈Uw − w, v〉 = 〈w,U−1v〉 − 〈w, v〉 = 〈w, v〉 − 〈w, v〉 = 0

and thus W is orthogonal to HU . In particular π(Uw−w) = 0. From
the telescoping identity

(2.63)
1
N

N−1∑
n=0

Un(Uw − w) =
1
N

(UNw − w)

we conclude that (2.61) also holds if v ∈W ; by linearity we conclude
that (2.61) holds for all v in HU +W . A standard limiting argument
(using the fact that the linear transformations v 7→ π(v) and v 7→
1
N

∑N−1
n=0 U

nv are bounded on H, uniformly in n) then shows that
(2.61) holds for v in the closure HU +W .

To conclude, it suffices to show that the closed space HU +W is
all of H, Suppose for contradiction that this is not the case. Then
there exists a non-zero vector w which is orthogonal to all of HU +W .
In particular, w is orthogonal to Uw−w. Applying the easily verified
identity ‖Uw−w‖2 = −2Re〈Uw−w,w〉 (related to the parallelogram
law) we conclude that Uw = w, thus w lies in HU . This implies that
w is orthogonal to itself and is thus zero, a contradiction. �
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On a measure-preserving system (X,X , µ, T ), the shift map f 7→
Tf is a unitary transformation on the separable Hilbert space L2(X,X , µ).
We conclude

Corollary 2.8.6 (Mean ergodic theorem). Let (X,X , µ, T ) be a measure-
preserving system, and let f ∈ L2(X,X , µ). Then we have 1

N

∑N
n=1 T

nf

converges in L2(X,X , µ) norm to π(f), where π(f) : L2(X,X , µ) →
L2(X,X , µ)T is the orthogonal projection to the space {f ∈ L2(X,X , µ) :
Tf = f} consists of the shift-invariant functions in L2(X,X , µ).

Example 2.8.7 (Finite case). Suppose that (X,X , µ, T ) is a finite
measure-preserving system, with X discrete and µ the uniform prob-
ability measure. Then T is a permutation on X and thus decomposes
as the direct sum of disjoint cycles (possibly including trivial cycles
of length 1). Then the shift-invariant functions are precisely those
functions which are constant on each of these cycles, and the map
f 7→ π(f) replaces a function f : X → C with its average value on
each of these cycles. It is then an instructive exercise to verify the
mean ergodic theorem by hand in this case.

Exercise 2.8.5. With the notation and assumptions of Corollary
2.8.6, show that the limit limN→∞

1
N

∑N−1
n=0

∫
X
Tnff dµ exists, is

real, and is greater than or equal to |
∫
X
f |2. Hint : the constant

function 1 lies in L2(X,X , µ)T .) Note that this is stronger than the
conclusion of Exercise 2.8.2.

Let us now give some other proofs of the von Neumann ergodic
theorem. We first give a proof using the spectral theorem for unitary
operators. This theorem asserts (among other things) that a unitary
operator U : H → H can be expressed in the form U =

∫
S1 λ dµ(λ),

where S1 := {z ∈ C : |z| = 1} is the unit circle and µ is a projection-
valued Borel measure on the circle. More generally, we have

(2.64) Un =
∫
S1
λn dµ(λ)

and so for any vector v in H and any positive integer N we have

(2.65)
1
N

N−1∑
n=0

Unv =
∫
S1

1
N

N−1∑
n=0

λn dµ(λ)v.
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We separate off the λ = 1 portion of this integral. For λ 6= 1, we
have the geometric series formula

(2.66)
1
N

N−1∑
n=0

λn =
1
N

λN − 1
λ− 1

(compare with (2.63)), thus we can rewrite (2.65) as

(2.67) µ({1})v +
∫
S1\{1}

1
N

λN − 1
λ− 1

dµ(λ)v.

Now observe (using (2.66)) that 1
N
λN−λ
λ−1 is bounded in magni-

tude by 1 and converges to zero as N → ∞ for any fixed λ 6= 1.
Applying the dominated convergence theorem (which requires a little
bit of justification in this vector-valued case), we see that the second
term in (2.67) goes to zero as N → ∞. So we see that (2.65) con-
verges to µ({1})v. But µ({1}) is just the orthogonal projection to the
eigenspace of U with eigenvalue 1, i.e. the space HU , thus recovering
the von Neumann ergodic theorem33.

Remark 2.8.8. The above argument in fact shows that the rate of
convergence in the von Neumann ergodic theorem is controlled by the
spectral gap of U - i.e. how well-separated the trivial component {1}
of the spectrum is from the rest of the spectrum. This is one of the
reasons why results on spectral gaps of various operators are highly
prized.

We now give another proof of Theorem 2.8.5, based on the energy
decrement method ; this proof is significantly lengthier, but is par-
ticularly well suited for conversion to finitary quantitative settings.
For any positive integer N, define the averaging operators AN :=
1
N

∑N−1
n=0 U

n; by the triangle inequality we see that ‖ANv‖ ≤ ‖v‖ for
all v. Now we observe

Lemma 2.8.9 (Lack of uniformity implies energy decrement). Sup-
pose ‖ANv‖ ≥ ε. Then ‖v −A∗NANv‖2 ≤ ‖v‖2 − ε2.

33It is instructive to use spectral theory to interpret von Neumann’s proof of this
theorem and see how it relates to the argument just given.
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Proof. This follows from the identity

(2.68) ‖v −A∗NANv‖2 = ‖v‖2 − 2‖ANv‖2 + ‖A∗NANv‖2

and the fact that A∗N has operator norm at most 1. �

We now iterate this to obtain

Proposition 2.8.10 (Koopman-von Neumann type theorem). Let v
be a unit vector, let ε > 0, and let 1 < N1 < N2 < . . . < NJ be a
sequence of integers with J > 1/ε2 + 2. Then there exists 1 ≤ j < J

and a decomposition v = s + r where ‖Us − s‖ = O(J 1
Nj+1

) and
‖ANr‖ ≤ ε for all N ≥ Nj.

Remark 2.8.11. The letters s, r stand for “structured” and “ran-
dom” (or “residual”) respectively. For more on decompositions into
structured and random components, see [Ta2007b].

Proof. We perform the following algorithm:

(1) Initialise j := J − 1, s := 0, and r := v.

(2) If ‖ANr‖ ≤ ε for all N ≥ Nj then STOP. If instead ‖ANr‖ >
ε for some N ≥ Nj , observe from Lemma 2.8.9 that ‖r −
A∗NANr‖2 ≤ ‖r‖2 − ε2.

(3) Replace r with r−A∗NANr, replace s with s+A∗NANr, and
replace j with j − 1. Then return to Step 2.

Observe that this procedure must terminate in at most 1/ε2 steps
(since the energy ‖r‖2 starts at 1, drops by at least ε2 at each stage,
and cannot go below zero). In particular, j stays positive. Observe
also that r always has norm at most 1, and thus ‖(U − I)A∗NANr‖ =
O(1/N) at any given stage of the algorithm. From this and the tri-
angle inequality one easily verifies the required claims. �

Corollary 2.8.12 (Partial von Neumann ergodic theorem). For any
vector v, the averages ANv form a Cauchy sequence in H,

Proof. Without loss of generality we can take v to be a unit vector.
Suppose for contradiction that ANv was not Cauchy. Then one could
find ε > 0 and 1 < N1 < M1 < N2 < M2 < . . . such that ‖ANjv −
AMj

v‖ ≥ 5ε (say) for all j. By sparsifying the sequence if necessary
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we can assume that Nj+1 is large compared to Nj , Mj and ε. Now
we apply Proposition 2.8.10 to find j = Oε(1) and a decomposition
v = s + r such that ‖Us − s‖ = Oε(1/Nj+1) and ‖ANjr‖, ‖AMjr‖ ≤
ε. If Nj+1 is large enough depending on Nj ,Mj , ε, we thus have
‖ANjs − s‖, ‖AMj

s − s‖ ≤ ε, and thus by the triangle inequality,
‖ANjv −AMj

v‖ ≤ 4ε, a contradiction. �

Remark 2.8.13. This result looks weaker than Theorem 2.8.5, but
the argument is much more robust; for instance, one can modify it to
establish convergence of multiple averages such as 1

N

∑N
n=1 T

n
1 f1T

n
2 f2T

n
3 f3

in Lp norms for commuting shifts T1, T2, T3; see [Ta2008]. Further
quantitative analysis of the mean ergodic theorem can be found in
[AvGeTo2008].

Corollary 2.8.12 can be used to recover Theorem 2.8.5 in its full
strength, by combining it with a weak form of Theorem 2.8.5:

Proposition 2.8.14 (Weak von Neumann ergodic theorem). The
conclusion (2.61) of Theorem 2.8.5 holds in the weak topology.

Proof. The averages ANv lie in a bounded subset of the separable
Hilbert space H, and are thus sequentially precompact in the weak
topology by the Banach-Alaoglu theorem. Thus, if (2.61) fails, then
there exists a subsequence ANjv which converges in the weak topology
to some limit w other than π(v). By telescoping series we see that
‖UANjv − ANjv‖ ≤ 2‖v‖/Nj , and so on taking limits we see that
‖Uw − w‖ = 0, i.e. w ∈ HU . On the other hand, if y is any vector
in HU , then A∗Njy = y, and thus on taking inner products with v we
obtain 〈y,ANjv〉 = 〈y, v〉. Taking limits we obtain 〈y, w〉 = 〈y, v〉, i.e.
v − w is orthogonal to HU . These facts imply that w = π(v), giving
the desired contradiction. �

2.8.2. Conditional expectation. We now turn away from the ab-
stract Hilbert approach to the ergodic theorem (which is excellent
for proving the mean ergodic theorem, but not flexible enough to
handle more general ergodic theorems) and turn to a more measure-
theoretic dynamics approach, based on manipulating the four com-
ponents X,X , µ, T of the underlying system separately, rather than
working with the single object L2(X,X , µ) (with the unitary shift
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T ). In particular it is useful to replace the σ-algebra X by a sub-σ-
algebra X ′ ⊂ X , thus reducing the number of measurable functions.
This creates an isometric embedding of Hilbert spaces

(2.69) L2(X,X ′, µ) ⊂ L2(X,X , µ)

and so the former space is a closed subspace of the latter. In par-
ticular, we have an orthogonal projection E(·|X ′) : L2(X,X , µ) →
L2(X,X ′, µ), which can be viewed as the adjoint of the inclusion
(2.69). In other words, for any f ∈ L2(X,X , µ), E(f |X ′) is the
unique34 element of L2(X,X ′, µ) such that

(2.70)
∫
X

E(f |X ′)g dµ =
∫
X

fg dµ

for all g ∈ L2(X,X ′, µ).

Example 2.8.15 (Finite case). Let X be a finite set, thus X can
be viewed as a partition of X, and X ′ ⊂ X is a coarser partition of
X. To avoid degeneracies, assume that every point in X has positive
measure with respect to µ. Then an element f of L2(X,X , µ) is just
a function f : X → C which is constant on each atom of X . Similarly
for L2(X,X ′, µ). The conditional expectation E(f |X ′) is then the
function whose value on each atom A of X ′ is equal to the average
value 1

µ(A)

∫
A
f dµ on that atom. (What needs to be changed here if

some points have zero measure?)

We leave the following standard properties of conditional expec-
tation as an exercise.

Exercise 2.8.6. Let (X,X , µ) be a probability space, and let X ′ be
a sub-σ-algebra. Let f ∈ L2(X,X , µ).

(1) The operator f 7→ E(f |X ′) is a bounded self-adjoint projec-
tion on L2(X,X , µ). It maps real functions to real functions,
it preserves constant functions (and more generally preserves
X ′-valued functions), and commutes with complex conjuga-
tion.

34A reminder: when dealing with Lp spaces, we identify any two functions which
agree µ-almost everywhere. Thus, technically speaking, elements of Lp spaces are not
actually functions, but rather equivalence classes of functions.
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(2) If f is non-negative, then E(f |X ′) is non-negative (up to
sets of measure zero, of course). More generally, we have
a comparison principle: if f , g are real-valued and f ≤ g

pointwise a. e., then E(f |X ′) ≤ E(g|X ′) a.e. Similarly, we
have the triangle inequality |E(f |X ′)| ≤ E(|f ||X ′) a.e..

(3) (Module property) If g ∈ L∞(X,X ′, µ), then E(fg|X ′) =
E(f |X ′)g a.e..

(4) (Contraction) If f ∈ L2(X,X , µ) ∩ Lp(X,X , µ) for some
1 ≤ p ≤ ∞, then ‖E(f |X ′)‖Lp ≤ ‖f‖Lp . Hint : do the p = 1
and p = ∞ cases first. (This implies in particular that
conditional expectation has a unique continuous extension
to Lp(X,X , µ) for 1 ≤ p ≤ ∞; the p =∞ case is exceptional,
but note that L∞ is contained in L2 since µ is finite.)

For applications to ergodic theory, we will only be interested in
taking conditional expectations with respect to a shift-invariant sub-
σ-algebra X ′, thus T and T−1 preserve X ′. In that case T preserves
L2(X,X ′, µ), and thus T commutes with conditional expectation, or
in other words that

(2.71) E(Tnf |X ′) = TnE(f |X ′)

a.e. for all f ∈ L2(X,X , µ) and all n.

Now we connect conditional expectation to the mean ergodic the-
orem. Let X T := {E ∈ X : TE = E a.e.} be the set of essentially
shift-invariant sets. One easily verifies that this is a shift-invariant
sub-σ-algebra of X .

Exercise 2.8.7. Show that if E lies in X T , then there exists a set
F ∈ X which is genuinely invariant (TF = F ) and which differs from
E only by a set of measure zero. Thus it does not matter whether
we deal with shift-invariance or essential shift-invariance here. (More
generally, it will not make any significant difference if we modify any
of the sets in our σ-algebras by null sets.)

The relevance of this algebra to the mean ergodic theorem arises
from the following identity:

Exercise 2.8.8. Show that L2(X,X , µ)T = L2(X,X T , µ).
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As a corollary of this and Corollary 2.8.6, we have

Corollary 2.8.16 (Mean ergodic theorem, again). Let (X,X , µ, T )
be a measure-preserving system. Then for any f ∈ L2(X,X , µ), the
averages 1

N

∑N−1
n=0 T

nf converge in L2 norm to E(f |X T ).

Exercise 2.8.9. Show that Corollary 2.8.12 continues to hold if L2

is replaced throughout by Lp for any 1 ≤ p < ∞. Hint : for the case
p < 2, use that L2 is dense in Lp. For the case p > 2, use that L∞ is
dense in Lp. What happens when p =∞?

Let us now give another proof of Corollary 2.8.16 (leading to a
fourth proof of the mean ergodic theorem). The key here will be
the decomposition35 f = fU⊥ + fU , where fU⊥ := E(f |X T ) is the
“structured” part of f (at least as far as the mean ergodic theorem
is concerned) and fU := f − fU⊥ is the “random” part. As fU⊥ is
shift-invariant, we clearly have

(2.72)
1
N

N−1∑
n=0

TnfU⊥ = fU⊥

so it suffices to show that

(2.73) ‖ 1
N

N−1∑
n=0

TnfU‖2L2 → 0

as N → ∞. But we can expand out the left-hand side (using the
unitarity of T ) as

(2.74) 〈FN , fU 〉 :=
∫
X

FNfU dµ

where FN is the dual function of fU , defined as

(2.75) FN :=
1
N2

N−1∑
n=0

N−1∑
m=0

Tn−mfU .

Now, from the triangle inequality we know that the sequence
of dual functions FN is uniformly bounded in L2 norm, and so by
Cauchy-Schwarz we know that the inner products 〈FN , fU 〉 are bounded.

35The subscripts U⊥, U stand for “anti-uniform” and “uniform” respectively; this
notation is not standard.
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If they converge to zero, we are done; otherwise, by the Bolzano-
Weierstrass theorem, we have 〈FNj , fU 〉 → c for some subsequence Nj
and some non-zero c. (One could also use ultrafilters instead of sub-
sequences here if desired, it makes little difference to the argument.)
By the Banach-Alaoglu theorem (or more precisely, the sequential ver-
sion of this in the separable case), there is a further subsequence FN ′j
which converges weakly (or equivalently in this Hilbert space case, in
the weak-* sense) to some limit F∞ ∈ L2(X,X , µ). Since c is non-
zero, F∞ must also be non-zero. On the other hand, from telescoping
series one easily computes that ‖TFN −FN‖L2 decays like O(1/N) as
N →∞, so on taking limits we have TF∞−F∞ = 0. In other words,
F∞ lies in L2(X,X T , µ).

On the other hand, by construction of fU we have E(fU |X T ) = 0.
From (2.71) and linearity we conclude that E(FN |X T ) = 0 for all N,
so on taking limits we have E(F∞|X T ) = 0. But since F∞ is already
in L2(X,X T , µ), we conclude F∞ = 0, a contradiction.

Remark 2.8.17. The above argument is lengthier than some of the
other proofs of the mean ergodic theorem, but it turns out to be
fairly robust; it demonstrates (using the compactness properties of
certain “dual functions”) that a function fU with sufficiently strong
“mixing” properties (in this case, we require that E(fU |X T ) = 0)
will cancel itself out when taking suitable ergodic averages, thus re-
ducing the study of averages of f to the study of averages of fU =
E(f |X T ). In the modern jargon, this means that X T is (the σ-
algebra induced by) a characteristic factor of the ergodic average
f 7→ limN→∞

1
N

∑N
n=1 T

nf . We will see further examples of char-
acteristic factors for other averages later in this course.

Exercise 2.8.10. Let (Γ, ·) be a countably infinite discrete group.
A Følner sequence is a sequence of increasing finite non-empty sets
Fn in Γ with

⋃
n Fn = Γ with the property that for any given fi-

nite set S ⊂ Γ, we have |(Fn · S)∆Fn|/|Fn| → 0 as n → ∞, where
Fn·S:= {fs : f ∈ Fn, s ∈ S} is the product set of Fn and S, |Fn|
denotes the cardinality of Fn, and ∆ denotes symmetric difference.
(For instance, in the case Γ = Z, the sequence Fn := {−n, . . . , n} is
a Følner sequence.) If Γ acts (on the left) in a measure-preserving
manner on a probability space (X,X , µ), and f ∈ L2(X,X , µ), show



254 2. Ergodic theory

that 1
|Fn|

∑
γ∈Fn f ◦γ

−1 converges in L2 to E(f |XΓ), where XΓ is the
collection of all measurable sets which are Γ-invariant modulo null
sets, and f ◦ γ−1 is the function x 7→ f(γ−1x).

Notes. This lecture first appeared at terrytao.wordpress.com/2008/01/30.
Thanks to Lior Silberman, Pedro Lauridsen Ribeiro, Orr, mmail-
liw/william, Sugata, and Liu Xiao Chuan for corrections.

2.9. Ergodicity

We continue our study of basic ergodic theorems, establishing the
maximal and pointwise ergodic theorems of Birkhoff. Using these
theorems, we can then give several equivalent notions of the funda-
mental concept of ergodicity, which (roughly speaking) plays the role
in measure-preserving dynamics that minimality plays in topological
dynamics. A general measure-preserving system is not necessarily er-
godic, but we shall introduce the ergodic decomposition, which allows
one to express any non-ergodic measure as an average of ergodic mea-
sures (generalising the decomposition of a permutation into disjoint
cycles).

2.9.1. The maximal ergodic theorem. Just as we derived the
mean ergodic theorem from the more abstract von Neumann ergodic
theorem in Section 2.8, we shall derive the maximal ergodic theorem
from the following abstract maximal inequality.

Theorem 2.9.1 (Dunford-Schwartz maximal inequality). Let (X,X , µ)
be a probability space, and let P : L1(X,X , µ)→ L1(X,X , µ) be a lin-
ear operator with P1 = 1 and P ∗1 = 1 (i.e.

∫
X
Pf dµ =

∫
X
f dµ for

all f ∈ L1(X,X , µ)). Assume also that P maps non-negative func-
tions to non-negative functions. Then the maximal function Mf :=
supN>0

1
N

∑N
n=1 P

nf obeys the inequality

(2.76) λµ({Mf > λ}) ≤
∫
Mf>λ

f dµ

for any λ ∈ R.
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Proof. We can rewrite (2.76) as

(2.77)
∫
Mf−λ>0

(f − λ) dµ ≥ 0.

Since Mf − λ = M(f − λ), we thus see (by replacing f with f − λ)
that we can reduce to proving (2.77) in the case λ = 0.

For every m ≥ 1, consider the modified maximal function Fm :=
sup0≤N≤m

∑N−1
n=0 P

nf . Observe thatMf(x) > 0 if and only if Fm(x) >
0 for all sufficiently large m. By the dominated convergence theorem,
it thus suffices to show that

(2.78)
∫
Fm>0

f dµ ≥ 0

for all m. But observe from definition of Fm (and the positivity pre-
serving nature of P ) that we have the pointwise recursive inequality

(2.79) Fm(x) ≤ Fm+1(x) = max(0, f + PFm(x)).

Integrating this on the region Fm > 0 and using the non-negativity
of Fm, we obtain

(2.80)
∫
X

Fm dµ ≤
∫
Fm>0

f +
∫
X

PFm dµ.

Since Fm ∈ L1(X,X , µ) and P ∗1 = 1, the claim follows. �

Applying this in the case when P is a shift operator, and replacing
f by |f |, we obtain

Corollary 2.9.2 (Maximal ergodic theorem). Let (X,X , µ, T ) be a
measure-preserving system. Then for any f ∈ L1(X,X , µ) and λ > 0
one has

(2.81) µ({sup
N

1
N

N−1∑
n=0

|Tnf | > λ}) ≤ 1
λ
‖f‖L1(X,X ,µ).

Note that this inequality implies Markov’s inequality

(2.82) µ({|f | > λ}) ≤ 1
λ

∫
X

|f | dµ.
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as a special case. Applying the real interpolation method, one also
easily deduces the maximal inequality

(2.83) ‖ sup
N

1
N

N−1∑
n=0

|Tnf |‖Lp(X,X ,µ) ≤ Cp‖f‖Lp(X,X ,µ)

for all 1 < p ≤ ∞, where the constant Cp depends on p (it blows up
like O(1/(p− 1)) in the limit p→ 1).

Exercise 2.9.1 (Rising sun inequality). If f ∈ l1(Z), and f∗(m) :=
supN

1
N

∑N−1
n=0 f(m+ n), establish the rising sun inequality

(2.84) λ|{m ∈ Z : f∗(m) > λ}| ≤
∑
m∈Z

f(m)

for any λ > 0. Hint : one can either adapt the proof of Theorem 2.9.1,
or else partition the set appearing in (2.84) into disjoint intervals.
The latter proof also leads to a proof of Corollary 2.9.2 which avoids
the Dunford-Schwartz trick of introducing the functions Fm. The ter-
minology “rising sun” comes from seeing how these intervals interact
with the graph of the partial sums of f , which resembles the shadows
cast on a hilly terrain by a rising sun.

Exercise 2.9.2 (Transference principle). Show that Corollary 2.9.2
can be deduced directly from (2.84). Hint : given f ∈ L1(X,X , µ),
apply (2.84) to the functions fx(n) := Tnf(x) for each x ∈ X (trun-
cating the integers to a finite set if necessary), and then integrate in
x using Fubini’s theorem. (This is an example of a transference prin-
ciple between maximal inequalities on Z and maximal inequalities on
measure-preserving systems.)

Exercise 2.9.3 (Stein-Stromberg maximal inequality). [StSt1983]
Derive a continuous version of the Dunford-Schwartz maximal in-
equality, in which the operators Pn are replaced by a semigroup Pt
acting on both L1 and L∞, in which the underlying measure space is
only assumed to be σ-finite rather than a probability space, and the
averages 1

N

∑N−1
n=0 P

n are replaced by 1
T

∫ T
0
P t dt. Apply this con-

tinuous version with Pt := et∆ equal to the heat operator on Rd for
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d ≥ 1 to deduce the Stein-Stromberg maximal inequality36

(2.85)

m({x ∈ Rd : sup
R>0

1
m(B(x,R))

∫
B(x,r)

|f | dm > λ}) ≤ Cd

λ
‖f‖L1(Rd,dm)

for all λ > 0 and f ∈ L1(Rd, dm), where m is Lebesgue measure,
B(x,R) is the Euclidean ball of radius R centred at x, and the con-
stant C is absolute (independent of d).

Remark 2.9.3. The study of maximal inequalities in ergodic theory
is, of course, a subject in itself; a classical reference is [St1970].

2.9.2. The pointwise ergodic theorem. Using the maximal er-
godic theorem and a standard limiting argument we can now deduce

Theorem 2.9.4 (Pointwise ergodic theorem). Let (X,X , µ, T ) be a
measure-preserving system, and let f ∈ L1(X,X , µ). Then for µ-
almost every x ∈ X, 1

N

∑N−1
n=0 T

nf(x) converges to E(f |X T )(x).

Proof. By subtracting E(f |X T ) from f if necessary, it suffices to
show that

(2.86) lim sup
N→∞

| 1
N

N−1∑
n=0

Tnf(x)| = 0

a.e. whenever E(f |X T ) = 0. By telescoping series, (2.86) is already
true when f takes the form f = Tg − g for some g ∈ L∞(X,X , µ).
So by the arguments used to prove Theorem 2.8.5, we have already
established the claim for a dense class of functions f in L2(X,X , µ)
with E(f |X T ) = 0, and thus also for a dense class of functions in
L1(X,X , µ) with E(f |X T ) = 0 (since the latter space is dense in the
former, and the L2 norm controls the L1 norm by the Cauchy-Schwarz
inequality).

Now we use a standard limiting argument. Let f ∈ L1(X,X , µ)
with E(f |X T ) = 0. Then we can find a sequence fj in the above

36This improves upon the Hardy-Littlewood maximal inequality, which gives the

same estimate but with Cd replaced by Cd. It is an open question whether the depen-
dence on d can be removed entirely; the estimate (2.85) is still the best known in high

dimension. For d = 1, the best constant C is known to be 11+
√

61
12 = 1.567 . . ., a result

of Melas[Me2003].
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dense class which converges in L1 to f . For almost every x, we thus
have

(2.87) lim
N→∞

| 1
N

N−1∑
n=0

Tnfj(x)| = 0

for all j, and so by the triangle inequality we have

(2.88) lim sup
N→∞

| 1
N

N−1∑
n=0

Tnf(x)| ≤ sup
N

1
N

N−1∑
n=0

Tn|f − fj |(x).

But by Corollary 2.9.2 we see that the right-hand side of (2.88)
converges to zero in measure as j →∞. Since the left-hand side does
not depend on j, it must vanish almost everywhere, as required. �

Remark 2.9.5. More generally, one can derive a pointwise conver-
gence result on a class of rough functions by first establishing conver-
gence for a dense subclass of functions, and then establishing a maxi-
mal inequality which is strong enough to allow one to take limits and
establish pointwise convergence for all functions in the larger class.
Conversely, principles such as Stein’s maximal principle[St1961] indi-
cate that in many cases this is in some sense the only way to establish
such pointwise convergence results for rough functions.

Remark 2.9.6. Using the dominated convergence theorem (start-
ing first with bounded functions f in order to get the domination),
one can deduce the mean ergodic theorem from the pointwise ergodic
theorem. But the converse is significantly more difficult; pointwise
convergence for various ergodic averages is often a much harder re-
sult to establish than the corresponding norm convergence result (in
particular, many of the techniques discussed in this course appear to
be of sharply limited utility for pointwise convergence problems), and
many questions in this area remain open.

Exercise 2.9.4 (Lebesgue differentiation theorem). Let f ∈ L1(Rd, dm)
with Lebesgue measure dm. Show that for almost every x ∈ Rd, we
have limr→0+

1
m(B(x,r))

∫
B(x,r)

|f(y)− f(x)| dx = 0, and in particular
that limr→0+

1
m(B(x,r))

∫
B(x,r)

f(y) dx = f(x).
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2.9.3. Ergodicity. Combining the mean ergodic theorem with the
pointwise ergodic theorem (and with Exercises 2.8.7, 2.8.8) we obtain

Theorem 2.9.7 (Characterisations of ergodicity). Let (X,X , µ, T )
be a measure-preserving system. Then the following are equivalent:

(1) Any set E ∈ X which is invariant (thus TE = E) has either
full measure µ(E) = 1 or zero measure µ(E) = 0.

(2) Any set E ∈ X which is almost invariant (thus TE differs
from E by a null set) has either full measure or zero mea-
sure.

(3) Any measurable function f with Tf = f a.e. is constant
a.e.

(4) For any 1 < p < ∞ and f ∈ Lp(X,X , µ), the averages
1
N

∑N
n=0 T

nf converge in Lp norm to
∫
X
f .

(5) For any two f, g ∈ L∞(X,X , µ), we have limN→∞
1
N

∑N
n=1

∫
X

(Tnf)g dµ =
(
∫
X
f dµ)(

∫
X
g dµ).

(6) For any two measurable sets E and F , we have limN→∞
1
N

∑N
n=1 µ(TnE∩

F ) = µ(E)µ(F ).

(7) For any f ∈ L1(X,X , µ), the averages 1
N

∑N
n=0 T

nf con-
verge pointwise almost everywhere to

∫
X
f dµ.

A measure-preserving system with any (and hence all) of the
above properties is said to be ergodic.

Remark 2.9.8. Strictly speaking, ergodicity is a property that ap-
plies to a measure-preserving system (X,X , µ, T ). However, we shall
sometimes abuse notation and apply the adjective “ergodic” to a sin-
gle component of a system, such as the measure µ or the shift T , when
the other three components of the system are clear from context.

Here are some simple examples of ergodicity:

Example 2.9.9. If X is finite with uniform measure, then a shift
map T : X → X is ergodic if and only if it is a cycle.

Example 2.9.10. If a shift T is ergodic, then so is T−1. However,
from Example 2.9.9 we see that it is not necessarily true that Tn is
ergodic for all n (this latter property is also known as total ergodicity).
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Exercise 2.9.5. Show that the circle shift (R/Z, x 7→ x + α) (with
the usual Lebesgue measure) is ergodic if and only if α is irrational.
Hint : analyse the equation Tf = f for (say) f ∈ L2(X,X , µ) using
Fourier analysis. Another way to proceed is to use the Lebesgue
density theorem (or Lebesgue differentiation theorem) combined with
Exercise 2.6.15.

Exercise 2.9.6. Let (Ω,B, µ) be a probability space. Show that the
Bernoulli shift on the product system (ΩZ,BZ, µZ) is ergodic. Hint :
first establish property 6 of Theorem 2.9.7 when E and F each depend
on only finitely many of the coordinates of ΩZ.

Exercise 2.9.7. Let (X,X , µ, T ) be an ergodic system. Show that if
λ is an eigenvalue of T : L2(X,X , µ)→ L2(X,X , µ), then |λ| = 1, the
eigenspace {f ∈ L2(X,X , µ) : Tf = λf} is one-dimensional, and that
every eigenfunction f has constant magnitude |f | a.e.. Show that the
eigenspaces are orthogonal to each other in L2(X,X , µ), and the set
of all eigenvalues of T forms an at most countable subgroup of the
unit circle S1.

Now we give a less trivial example of an ergodic system.

Proposition 2.9.11. (Ergodicity of skew shift) Let α ∈ R be ir-
rational. Then the skew shift ((R/Z)2, (x, y) 7→ (x + α, y + x)) is
ergodic.

Proof. Write the skew shift system as (X,X , µ, T ). To simplify the
notation we shall omit the phrase “almost everywhere” in what fol-
lows.

We use an argument of Parry[Pa1969]. If the system is not
ergodic, then we can find a non-constant f ∈ L2(X,X , µ) such that
Tf = f . Next, we use Fourier analysis to write f =

∑
m fm, where

fm(x, y) :=
∫
R/Z

f(x, y + θ)e−2πimθ dθ. Since f is T -invariant, and
the vertical rotations (x, y) 7→ (x, y+θ) commute with T , we see that
the fm are also T -invariant. The function f0 depends only on the x
variable, and so is constant by Exercise 2.9.5. So it suffices to show
that fm is zero for all non-zero m.

Fix m. We can factorise fm(x, y) = Fm(x)e2πimy. The T -
invariance of fm now implies that Fm(x + α) = e−2πimxFm(x). If
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we then define Fm,θ := Fm(x + θ)Fm(x) for θ ∈ R, we see that
Fm,θ(x + α) = e−2πimθFm,θ(x), thus Fm,θ is an eigenfunction of the
circle shift with eigenvalue e−2πimθ. But this implies (by Exercise
2.9.7) that Fm,θ is orthogonal to Fm,0 for θ close to zero. Taking
limits we see that Fm,0 is orthogonal to itself and must vanish; this
implies that Fm and hence fm vanish as well, as desired. �

Exercise 2.9.8. Show that for any irrational α and any d ≥ 1,
the iterated skew shift system (R/Zd, (x1, . . . , xd) → (x1 + α, x2 +
x1, . . . , xd + xd−1)) is ergodic.

2.9.4. Generic points. Now let us suppose that we have a topolog-
ical measure preserving system (X,F , µ, T ), i.e. a measure-preserving
system (X,X , µ, T ) which is also a topological dynamical system
(X,F , T ), with X the Borel σ-algebra of T . Then we have the space
C(X) of continuous (real or complex-valued) functions on X, which
is dense inside L2(X). From the Stone-Weierstrass theorem we also
see that C(X) is separable.

Definition 2.9.12. Let (X,X , µ) be a probability space. A sequence
x1, x2, x3, . . . in X is said to be uniformly distributed with respect to
µ if we have

(2.89) lim
N→∞

1
N

N∑
n=1

f(xn) =
∫
X

f dµ

for all f ∈ C(X). A point x in X is said to be generic if the forward
orbit x, Tx, T 2x, . . . is uniformly distributed.

Exercise 2.9.9. Let (X,F , µ) be a compact metrisable space with
a Borel probability measure µ, and let x1, x2, . . . be a sequence in
X. Show that this sequence is uniformly distributed if and only if
limN→∞

1
N |{1 ≤ i ≤ N : xi ∈ U}| = µ(U) for all open sets U in X.

From Theorem 2.9.7 and the separability of C(X) we obtain

Proposition 2.9.13. A topological measure-preserving system is er-
godic if and only if almost every point is generic.

A topological measure-preserving system is said to be uniquely
ergodic if every point is generic. The following exercise explains the
terminology:
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Exercise 2.9.10. Show that a topological measure-preserving sys-
tem (X,F , µ, T ) is uniquely ergodic if and only if the only T -invariant
Borel probability measure on T is µ. Hint : use Lemma 2.7.16. Be-
cause of this fact, one can sensibly define what it means for a topolog-
ical dynamical system (X,F , T ) to be uniquely ergodic, namely that
it has a unique T -invariant Borel probability measure.

It is not always the case that an ergodic system is uniquely er-
godic. For instance, in the Bernoulli system {0, 1}Z (with uniform
measure on {0, 1}, say), the point 0Z is not generic. However, for
more algebraic systems, it turns out that ergodicity and unique er-
godicity are largely equivalent. We illustrate this with the circle and
skew shifts:

Exercise 2.9.11. Show that the circle shift (R/Z, x 7→ x+α) (with
the usual Lebesgue measure) is uniquely ergodic if and only if α is
irrational. Hint : first show in the circle shift system that any translate
of a generic point is generic.

Proposition 2.9.14 (Unique ergodicity of skew shift). Let α ∈ R be
irrational. Then the skew shift ((R/Z)2, (x, y) 7→ (x + α, y + x)) is
uniquely ergodic.

Proof. We use an argument of Furstenberg[Fu1981]. We again write
the skew shift as (X,X , µ, T ). Suppose this system was not uniquely
ergodic, then by Exercise 2.9.10 there is another shift-invariant Borel
probability measure µ′ 6= µ. If we push µ and µ′ down to the circle
shift system (R/Z, x 7→ x + α) by the projection map (x, y) 7→ x,
then by Exercises 2.9.10, 2.9.11 we must get the same measure. Thus
µ and µ′ must agree on any set of the form A× (R/Z).

Let E denote the points in X which are generic with respect to
µ; note that this set is Borel measurable. By Proposition 2.9.13, this
set has full measure in µ. Also, since the vertical rotations (x, y) 7→
(x, y + θ) commute with T and preserve µ, we see that E must be
invariant under such rotations; thus they are of the form A× (R/Z)
for some A. By the preceding discussion, we conclude that E also
has full measure in µ′. But then (by the pointwise or mean ergodic
theorem for (X,X , µ′, T )) we conclude that Eµ′(f |X T ) =

∫
X
f dµ

µ′-almost everywhere for every continuous f , and thus on integrating
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with respect to µ′ we obtain
∫
X
f dµ′ =

∫
X
f dµ for every continuous

f . But then by the Riesz representation theorem we have µ = µ′, a
contradiction. �

Corollary 2.9.15. If α ∈ R is irrational, then the sequence (αn2 mod 1)n∈N
is uniformly distributed in R/Z (with respect to uniform measure).

Exercise 2.9.12. Show that the systems considered in Exercise 2.9.8
are uniquely ergodic. Conclude that the exponent 2 in Corollary
2.9.15 can be replaced by any positive integer d.

Note that the topological dynamics theory developed in Section
2.6 only establishes the weaker statement that the above sequence is
dense in R/Z rather than uniformly distributed. More generally, it
seems that ergodic theory methods can prove topological dynamics
results, but not vice versa. Here is another simple example of the
same phenomenon:

Exercise 2.9.13. Show that a uniquely ergodic topological dynam-
ical system is necessarily minimal. (The converse is not necessarily
true, as already mentioned in Remark 2.7.18.)

2.9.5. The ergodic decomposition. Just as not every topological
dynamical system is minimal, not every measure-preserving system
is ergodic. Nevertheless, there is an important decomposition that
allows one to represent non-ergodic measures as averages of ergodic
measures. One can already see this in the finite case, when X is a
finite set with the discrete σ-algebra, and T : X → X is a permutation
on X, which can be decomposed as the disjoint union of cycles on a
partition X = C1 ∪ . . . ∪ Cm of X. In this case, all shift-invariant
probability measures take the form

(2.90) µ =
m∑
j=1

αjµj

where µj is the uniform probability measure on the cycle Cj ,
and αj are non-negative constants adding up to 1. Each of the µj
are ergodic, but no non-trivial linear combination of these measures
is ergodic. Thus we see in the finite case that every shift-invariant
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measure can be uniquely expressed as a convex combination of ergodic
measures.

It turns out that a similar decomposition is available in general,
at least if the underlying measure space is a compact topological space
(or more generally, a Radon space). This is because of the following
general theorem from measure theory.

Definition 2.9.16 (Probability kernel). Let (X,X ) and (Y,Y) be
measurable spaces. A probability kernel y 7→ µy is an assignment of
a probability measure µy on X to each y ∈ Y in such a way that
the map y 7→

∫
X
f dµy is measurable for every bounded measurable

f : X 7→ C.

Example 2.9.17. Every measurable map φ : Y → X induces a
probability kernel y 7→ δφ(y). Every probability measure on X can
be viewed as a probability kernel from a point to X. If y 7→ µy and
x 7→ νx are two probability kernels from Y to X and from X to Z

respectively, their composition x 7→ (µ ◦ ν)x :=
∫
X
µy dνx(y) is also

a probability kernel, where
∫
X
µy dνx(y) is the measure that assigns∫

X
µy(E) dνx(y) to any measurable set E in Z. Thus one can view the

class of measurable spaces and their probability kernels as a category,
which includes the class of measurable spaces and their measurable
maps as a subcategory.

Definition 2.9.18 (Regular space). A measurable space (X,X ) is
said to be regular if there exists a compact metrisable topology F on
X for which X is the Borel σ-algebra.

Example 2.9.19. Every topological measure-preserving system is
regular.

Remark 2.9.20. Measurable spaces (X,X ) in which X is the Borel
σ-algebra of a topological space generated by a separable complete
metric space (i.e. a Polish space) are known as standard Borel spaces.
It is a non-trivial theorem from descriptive set theory that up to
measurable isomorphism, there are only three types of standard Borel
spaces: finite discrete spaces, countable discrete spaces, and the unit
interval [0,1] with the usual Borel σ-algebra. From this one can see
that regular spaces are the same as standard Borel spaces, though we
will not need this fact here.
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Theorem 2.9.21 (Disintegration theorem). Let (X,X , µ) and (Y,Y, ν)
be probability spaces, with (X,X ) regular. Let π : X → Y be a mor-
phism (thus ν = π#µ). Then there exists a probability kernel y 7→ µy
such that

(2.91)
∫
X

f(g ◦ π) dµ =
∫
Y

(
∫
X

f dµy)g(y) dν(y)

for any bounded measurable f : X → C and g : Y → C. Also, for
any such g, we have

(2.92) g ◦ π = g(y), µy − a.e.

for ν-a.e. y.

Furthermore, this probability kernel is unique up to ν-almost ev-
erywhere equivalence, in the sense that if y 7→ µ′y is another probability
kernel with the same properties, then µy = µ′y for ν-almost every y.

We refer to the probability kernel y 7→ µy generated by the above
theorem as the disintegration of µ relative to the factor map π.

Proof. We begin by proving uniqueness. Suppose we have two prob-
ability kernels y 7→ µy, y 7→ µ′y with the above properties. Then on
subtraction we have

(2.93)
∫
Y

(
∫
X

f d(µy − µ′y))g(y) dν(y) = 0

for all bounded measurable f : X → C, g : Y → C. Specialising to
f = 1E for some measurable set E ∈ X , we conclude that µy(E) =
µ′y(E) for ν-almost every y. Since X is regular, it is separable and we
conclude that µy = µ′y for ν-almost every y, as required.

Now we prove existence. The pullback map π# : L2(Y,Y, ν) →
L2(X,X , µ) defined by g 7→ g ◦ π has an adjoint π# : L2(X,X , µ)→
L2(Y,Y, ν), thus

(2.94)
∫
X

f(g ◦ π) dµ =
∫
Y

(π#f)g dν

for all f ∈ L2(X,X , µ) and g ∈ L2(Y,Y, ν). It is easy to see from
duality that we have ‖π#f‖L∞(Y,Y,ν) ≤ ‖f‖C(X) for all f ∈ C(X)
(where we select a compact metrisable topology that generates the
regular σ-algebra X ). Recall that π#f is not quite a measurable
function, but is instead an equivalence class of measurable functions
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modulo ν-almost everywhere equivalence. Since C(X) is separable,
we find a measurable representative π̃#f : Y → C of π#f to every
f ∈ C(X) which varies linearly with f , and is such that |π̃#f(y)| ≤
‖f‖C(X) for all y outside of a set E of ν-measure zero and for all
f ∈ C(X). For all such y, we can then apply the Riesz representation
theorem to obtain a Borel probability measure µy such that

(2.95) π̃#f(y) =
∫
X

f dµy

for all such y. We set µy equal to some arbitrarily fixed Borel probabil-
ity measure for y ∈ E. We then observe that the required properties
(including the measurability of y 7→

∫
X
f dµy) are already obeyed for

f ∈ C(X). To generalise this to bounded measurable f , observe that
the class C of f obeying the required properties is closed under domi-
nated pointwise convergence, and so contains the indicator functions
of open sets (by Urysohn’s lemma). Applying dominated pointwise
convergence again, together with linearity, we see that the sets whose
indicator functions lie in C form a σ-algebra and so contain all Borel
sets. Thus all simple measurable functions lie in C, and on taking
uniform limits we obtain the claim.

Finally, we prove (2.92). From two applications of (2.91) we have

(2.96)
∫
Y

(
∫
X

f(g◦π) dµy)h(y) dν(y) =
∫
Y

(
∫
X

fg(y) dµy)h(y) dν(y)

for all bounded measurable f : X → C and h : Y → C. The claim
follows (using the separability of the space of all f). �

Exercise 2.9.14. Let the notation and assumptions be as in Theorem
2.9.21. Suppose that Y is also regular, and that the map π : X → Y is
continuous with respect to some compact metrisable topologies that
generate X and Y respectively. Then show that for ν-almost every y,
the probability measure νy is supported in π−1({y}).

Proposition 2.9.22 (Ergodic decomposition). Let (X,X , µ, T ) be
a regular measure-preserving system. Let (Y,Y, ν, S) be the system
defined by Y := X, Y := X T , ν := µ �Y , and S := T , and let
π : X → Y be the identity map. Let y 7→ µy be the disintegration of
µ with respect to the factor map π. Then for ν-almost every y, the
measure µy is T -invariant and ergodic.



2.10. The Furstenberg correspondence principle 267

Proof. Observe from the T -invariance µ = T#µ of µ (and of X T )
that the probability kernel y 7→ T#µy would also be a disintegration
of µ. Thus we have µy = T#µy for ν-almost every y.

Now we show the ergodicity. As the space of bounded measurable
f : X → C is separable, it suffices by Theorem 2.9.7 and a limiting
argument to show that for any fixed such f , the averages 1

N

∑N
n=1 T

nf

converge pointwise µy-a.e. to
∫
X
f dµy for ν-a.e. y.

From the pointwise ergodic theorem, we already know that 1
N

∑N
n=1 T

nf

converges to E(f |X T ) outside of a set of µ-measure zero. By (2.91),
this set also has µy-measure zero for ν-almost every y. Thus it will
suffice to show that E(f |X T ) is µy-a.e. equal to

∫
X
f dµy for ν-a.e.

y. Now observe that E(f |X T )(x) = π#f(π(x)), so the claim follows
from (2.92) and (2.95). �

Exercise 2.9.15. Let (X,X ) be a separable measurable space, and
let T be bimeasurable bijection T : X → X. Let M(X ) denote
the Banach space of all finite measures on X with the total varia-
tion norm. Let Pr(X )T ⊂ M(X ) denote the collection of probability
measures on X which are T -invariant. Show that this is a closed con-
vex subset of M(X ), and the extreme points of Pr(X )T are precisely
the ergodic probability measures (which also form a closed subset of
M(X )). (This allows one to prove a variant of Proposition 2.9.22
using Choquet’s theorem.)

Exercise 2.9.16. Show that a topological measure-preserving system
(X,F , T, µ) is uniquely ergodic if and only if the only ergodic shift-
invariant Borel probability measure on X is µ.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/02/04.
Thanks to Lior Silberman and Liu Xiao Chuan for corrections.

2.10. The Furstenberg correspondence principle

In this lecture, we describe the simple but fundamental Furstenberg
correspondence principle which connects the37 “soft analysis” subject
of ergodic theory (in particular, recurrence theorems) with the “hard

37See Section 1.3 of Structure and Randomness for a discussion of the relation-
ship between soft and hard analysis.
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analysis” subject of combinatorial number theory (or more generally
with results of “density Ramsey theory” type). Rather than try to
set up the most general and abstract version of this principle, we
shall instead study the canonical example of this principle in action,
namely the equating of the Furstenberg multiple recurrence theorem
with Szemerédi’s theorem on arithmetic progressions.

In [Sz1975], Szemerédi established the following theorem, which
had been conjectured by Erdős and Turán[ErTu1936]:

Theorem 2.10.1 (Szemerédi’s theorem). [Sz1975] Let k ≥ 1 be an
integer, and let A be a set of integers of positive upper density, thus
lim supN→∞

1
2N+1 |A ∩ {−N, . . . , N}| > 0. Then A contains a non-

trivial arithmetic progression n, n+r, . . . , n+(k−1)r of length k. (By
“non-trivial” we mean that r 6= 0.) Or more succinctly: every set of
integers of positive upper density contains arbitrarily long arithmetic
progressions.

Remark 2.10.2. This theorem is trivial for k = 1 and k = 2. The
first non-trivial case is k = 3, which was proven in [Ro1953] and will
be discussed in Section 2.12.4. The k = 4 case was also established
earlier in [Sz1969].

In [Fu1977], Furstenberg gave another proof of Szemerédi’s the-
orem, by establishing the following equivalent statement:

Theorem 2.10.3 (Furstenberg multiple recurrence theorem). Let
k ≥ 1 be an integer, let (X,X , µ, T ) be a measure-preserving sys-
tem, and let E be a set of positive measure. Then there exists r > 0
such that E ∩ T−rE ∩ . . . ∩ T−(k−1)rE is non-empty.

Remark 2.10.4. The negative signs here can be easily removed be-
cause T is invertible, but I have placed them here for consistency with
some later results involving non-invertible transformations, in which
the negative sign becomes important.

Exercise 2.10.1. Prove that Theorem 2.10.3 is equivalent to the
apparently stronger theorem in which “is non-empty” is replaced by
“has positive measure”, and “there exists r > 0” is replaced by “there
exist infinitely many r > 0”.



2.10. The Furstenberg correspondence principle 269

Note that the k = 1 case of Theorem 2.10.3 is trivial, while the
k = 2 case follows from the Poincaré recurrence theorem (Theorem
2.8.2). We will prove the higher k cases of this theorem in Sections
2.11-2.15. In this one, we will explain why, for any fixed k, Theorem
2.10.1 and Theorem 2.10.3 are equivalent.

Let us first give the easy implication that Theorem 2.10.1 implies
Theorem 2.10.3. This follows immediately from

Lemma 2.10.5. Let (X,X , µ, T ) be a measure-preserving system,
and let E be a set of positive measure. Then there exists a point x in
X such that the recurrence set {n ∈ Z : Tnx ∈ E} has positive upper
density.

Indeed, from Lemma 2.10.5 and Theorem 2.10.1, we obtain a
point x for which the set {n ∈ Z : Tnx ∈ E} contains an arithmetic
progression of length k and some step r, which implies that E∩T rE∩
. . . ∩ T (k−1)rE is non-empty.

Proof of Lemma 2.10.5. Observe (from the shift-invariance of µ)
that

(2.97)
∫
X

1
2N + 1

N∑
n=−N

1TnE dµ = µ(E).

On the other hand, the integrand is at most 1. We conclude that
for each N, the set AN := {x : 1

2N+1

∑N
n=−N 1TnE(x) ≥ µ(E)/2}

must have measure at least µ(E)/2. This implies that the function∑
N 1AN is not absolutely integrable even after excluding an arbitrary

set of measure up to µ(E)/4, which implies that
∑
N 1AN is not finite

a.e., and the claim follows (cf. the proof of the Borel-Cantelli lemma,
Lemma 1.5.5). �

Now we show how Theorem 2.10.3 implies Theorem 2.10.1. If
we could pretend that “upper density” was a probability measure on
the integers, then this implication would be immediate by applying
Theorem 2.10.3 to the dynamical system (Z, n 7→ n + 1). Of course,
we know that the integers do not admit a shift-invariant probability
measure (and upper density is not even additive, let alone a proba-
bility measure). So this does not work directly. Instead, we need to
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first lift from the integers to a more abstract universal space and use
a standard “compactness and contradiction” argument in order to be
able to build the desired probability measure properly.

More precisely, let A be as in Theorem 2.10.1. Consider the
topological boolean Bernoulli dynamical system 2Z with the product
topology and the shift T : B 7→ B + 1. The set A can be viewed as
a point in this system, and the orbit closure X := {A+ n : n ∈ Z} of
that point becomes a subsystem of that Bernoulli system, with the
relative topology.

Suppose for contradiction that A contains no non-trivial progres-
sions of length k, thus A ∩ A + r ∩ . . . ∩ A + (k − 1)r = ∅ for all
r > 0. Then, if we define the cylinder set E := {B ∈ X : 0 ∈ B}
to be the collection of all points in X which (viewed as sets of in-
tegers) contain 0, we see (after unpacking all the definitions) that
E ∩ T rE ∩ . . . T (k−1)rE = ∅ for all r > 0.

In order to apply Theorem 2.10.3 and obtain the desired contra-
diction, we need to find a shift-invariant Borel probability measure µ
on X which assigns a positive measure to E.

For each integer N , consider the measure µN which assigns a
mass of 1

2N+1 to the points T−nA in X for −N ≤ n ≤ N , and
no mass to the rest of X. Then we see that µN (E) = 1

2N+1 |A ∩
{−N, . . . , N}|. Thus, since A has positive upper density, there exists
some sequence Nj going to infinity such that lim infj→∞ µNj (E) > 0.
On the other hand, by vague sequential compactness (Lemma 2.7.16)
we know that some subsequence of µNj converges in the vague topology
to a probability measure µ, which then assigns a positive measure to
the (clopen) set E. As the µNj are asymptotically shift invariant, we
see that µ is invariant also (as in the proof of Corollary 2.7.17). As µ
now has all the required properties, we have completed the deduction
of Theorem 2.10.1 from Theorem 2.10.3.

Exercise 2.10.2. Show that Theorem 2.10.3 in fact implies a seem-
ingly stronger version of Theorem 2.10.1, in which the conclusion
becomes the assertion that the set {n : n, n+ r, . . . , n+ (k− 1)r ∈ A}
has positive upper density for infinitely many r.
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Exercise 2.10.3. Show that Theorem 2.10.1 in fact implies a seem-
ingly stronger version of Theorem 2.10.3: If E1, E2, E3, . . . are sets in a
probability space with uniformly positive measure (i.e. infn µ(En) >
0), then for any k there exists positive integers n, r such that µ(En ∩
En+r ∩ . . . ∩ En+(k−1)r) > 0.

2.10.1. Varnavides type theorems. As observed in [BeHoMcCPa2000],
a similar “compactness and contradiction” argument (combined with
a preliminary averaging-over-dilations trick of Varnavides[Va1959])
allows us to use Theorem 2.10.3 to imply the following apparently
stronger statement:

Theorem 2.10.6. (Uniform Furstenberg multiple recurrence theo-
rem) Let k ≥ 1 be an integer and δ > 0. Then for any measure-
preserving system (X,X , µ, T ) and any measurable set E with µ(E) ≥
δ we have

(2.98)
1
N

N−1∑
r=0

µ(E ∩ T rE ∩ . . . ∩ T (k−1)rE) ≥ c(k, δ)

for all N ≥ 1, where c(k, δ) > 0 is a positive quantity which depends
only on k and δ (i.e. it is uniform over all choices of system and of
the set E with measure at least δ).

Exercise 2.10.4. Assuming Theorem 2.10.6, show that38 if N is
sufficiently large depending on k and δ, then any subset of {1, . . . , N}
with cardinality at least δN will contain at least c′(k, δ)N2 non-trivial
arithmetic progressions of length k, for some c′(k, δ) > 0. Conclude
in particular that Theorem 2.10.6 implies Theorem 2.10.1.

It is clear that Theorem 2.10.6 implies Theorem 2.10.3; let us
now establish the converse. We first use an averaging argument of
Varnavides to reduce Theorem 2.10.6 to a weaker statement, in which
the conclusion (2.98) is not asserted to hold for all N , but instead one
asserts that

(2.99)
1
N0

N0−1∑
r=1

µ(E ∩ T rE ∩ . . . ∩ T (k−1)rE) ≥ c(k, δ)

38This result for k = 3 was first established in [Va1959] via an averaging argu-
ment from Roth’s theorem.
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is true for some N0 = N0(k, δ) > 0 depending only on k and δ (note
that the r=0 term in (2.99) has been dropped, otherwise the claim is
trivial). To see why one can recover (2.98) from (2.99), observe by
replacing the shift T with a power T a that we can amplify (2.99) to

(2.100)
1
N0

N0−1∑
r=1

µ(E ∩ T arE ∩ . . . ∩ T (k−1)arE) ≥ c(k, δ)

for all a. Averaging (2.100) over 1 ≤ a ≤ N we easily conclude (2.98).

It remains to prove that (2.100) holds under the hypotheses of
Theorem 2.10.6. Our next reduction is to observe that for it suffices
to perform this task for the boolean Bernoulli system X0 := 2Z with
the cylinder set E0 := {B ∈ X0 : 0 ∈ B} as before. To see this,
recall from Example 2.2.6 that there is a morphism φ : X → X0 from
any measure-preserving system (X,X , µ, T ) with a distinguished set
E to the system X0 with the product σ-algebra X0, the usual shift
T0, and the set E0, and with the push-forward measure µ0 := φ#µ.
Specifically, φ sends any point x in X to its recurrence set φ(x) :=
{n ∈ Z : Tnx ∈ E}. Using this morphism it is not difficult to show
that the claim (2.98) for (X,X , µ, T ) and E would follow from the
same claim for (X0,X0, µ0, T0) and E0.

We still need to prove (2.99) for the boolean system. The point
is that by lifting to this universal setting, the dynamical system
(X,X , T ) and the set E have been canonically fixed; the only re-
maining parameter is the probability measure µ. But now we can
exploit vague sequential compactness again as follows.

Suppose for contradiction that Theorem 2.10.6 failed for the boolean
system. Then by carefully negating all the quantifiers, we can find
δ > 0 such that for any N0 there is a sequence of shift-invariant
probability measures µj on X with µj(E) ≥ δ,

(2.101)
1
N0

N0−1∑
r=1

µj(E ∩ T rE ∩ . . . ∩ T (k−1)rE)→ 0

as j → ∞. Note that if (2.101) holds for one value of N0, then it
also holds for all smaller values of N0. A standard diagonalisation
argument then allows us to build a sequence µj as above, but which
obeys (2.101) for all N0 ≥ 1.
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Now we are finally in a good position to apply vague sequential
compactness. By passing to a subsequence if necessary, we may as-
sume that µj converges vaguely to a limit µ, which is a shift-invariant
probability measure. In particular we have µ(E) ≥ δ > 0, while from
(2.101) we see that

(2.102)
1
N0

N0−1∑
r=1

µ(E ∩ T rE ∩ . . . ∩ T (k−1)rE) = 0

for all N0 ≥ 1; thus the sets E ∩ T rE ∩ . . . ∩ T (k−1)rE all have
zero measure for r > 0. But this contradicts Theorem 2.10.3 (and
Exercise 2.10.1). This completes the deduction of Theorem 2.10.6
from Theorem 2.10.3.

2.10.2. Other recurrence theorems and their combinatorial
counterparts. The Furstenberg correspondence principle can be ex-
tended to relate several other recurrence theorems to their combinato-
rial analogues. We give some representative examples here (without
proofs). Firstly, there is a multidimensional version of Szemerédi’s
theorem (compare with Exercise 2.4.8):

Theorem 2.10.7 (Multidimensional Szemerédi theorem). [FuKa1979]
Let d ≥ 1, let v1, . . . , vk ∈ Zd, and let A ⊂ Zd be a set of positive upper
Banach density (which means that lim supN→∞ |A ∩ BN |/|BN | > 0,
where BN := {−N, . . . , N}d). Then A contains a pattern of the form
n+ rv1, . . . , n+ rvk for some n ∈ Zd and r > 0.

Note that Theorem 2.10.1 corresponds to the special case when
d = 1 and vi = i− 1.

This theorem was first proven by Furstenberg and Katznelson
[FuKa1979], who deduced it via the correspondence principle from
the following generalisation of Theorem 2.10.3:

Theorem 2.10.8 (Recurrence for multiple commuting shifts). [FuKa1979]
Let k ≥ 1 be an integer, let (X,X , µ) be a probability space, let
T1, . . . , Tk : X → X be measure-preserving bimeasurable maps which
commute with each other, and let E be a set of positive measure. Then
there exists r > 0 such that T r1E ∩ T r2E ∩ . . . ∩ T rkE is non-empty.



274 2. Ergodic theory

Exercise 2.10.5. Show that Theorem 2.10.7 and Theorem 2.10.8 are
equivalent.

Exercise 2.10.6. State an analogue of Theorem 2.10.6 for multiple
commuting shifts, and prove that it is equivalent to Theorem 2.10.8.

There is also a polynomial version of these theorems (cf. Theorem
2.5.1), which we will also state in general dimension:

Theorem 2.10.9 (Multidimensional polynomial Szemerédi theorem).
[BeLe1996] Let d ≥ 1, let P1, . . . , Pk : Z → Zd be polynomials
with P1(0) = . . . = Pk(0) = 0, and let A ⊂ Zd be a set of posi-
tive upper Banach density. Then A contains a pattern of the form
n+ P1(r), . . . , n+ Pk(r) for some n ∈ Zd and r > 0.

This theorem was established by Bergelson and Leibman[BeLe1996],
who deduced it from

Theorem 2.10.10 (Polynomial recurrence for multiple commuting
shifts). [BeLe1996] Let k, (X,X , µ), T1, . . . , Tk : X → X, E be as
in Theorem 2.10.8, and let P1, . . . , Pk be as in Theorem 2.10.9. Then
there exists r > 0 such that T−P1(r)E ∩ T−P2(r)E ∩ . . . ∩ T−Pk(r)E is
non-empty, where we adopt the convention T (a1,...,ak) := T a1

1 . . . T akk
(thus we are making the action of Zd on X explicit).

Exercise 2.10.7. Show that Theorem 2.10.9 and Theorem 2.10.10
are equivalent.

Exercise 2.10.8. State an analogue of Theorem 2.10.6 for polyno-
mial recurrence for multiple commuting shifts, and prove that it is
equivalent to Theorem 2.10.10. Hint : first establish this in the case
that each of the Pj are monomials, in which case there is enough di-
lation symmetry to use the Varnavides averaging trick. Interestingly,
if one only restricts attention to one-dimensional systems k = 1, it
does not seem possible to deduce the uniform polynomial recurrence
theorem from the non-uniform polynomial recurrence theorem, thus
indicating that the averaging trick is less universal in its applicability
than the correspondence principle.

In the above theorems, the underlying action was given by either
the integer group Z or the lattice group Zd. It is not too difficult to
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generalise these results to the semigroups N and Nd (thus dropping
the assumption that the shift maps are invertible), by using a trick
similar to that used in Exercise 2.4.10, or by using the correspondence
principle back and forth a few times. A bit more surprisingly, it is pos-
sible to extend these results to even weaker objects than semigroups.
To describe this we need some more notation.

Define a partial semigroup (G, ·) to be a set G together with a
partially defined multiplication operation · : Ω → G for some subset
Ω ⊂ G×G, which is associative in the sense that whenever (a · b) · c
is defined, then a · (b · c) is defined and equal to (a · b) · c, and vice
versa. A good example of a partial semigroup is the finite subsets(
S
<ω

)
:= {A ⊂ S : |A| <∞} of a fixed set S, where the multiplication

operation A ·B is disjoint union, or more precisely A·B:= A∪B when
A and B are disjoint, and A ·B is undefined otherwise.

Remark 2.10.11. One can extend a partial semigroup to be a gen-
uine semigroup by adjoining a new element err to G, and redefining
multiplication a · b to equal err if it was previously undefined (or if
one of a or b was already equal to err). However, we will avoid using
this trick here, as it tends to complicate the notation a little.

One can take Cartesian products of partial semigroups in the ob-
vious manner to obtain more partial semigroups. In particular, we
have the partial semigroup

(
N
<ω

)d
for any d ≥ 1, defined as the col-

lection of d-tuples (A1, . . . , Ad) of finite sets of natural numbers (not
necessarily disjoint), with the partial semigroup law (A1, . . . , Ad) ·
(B1, . . . , Bd) := (A1 ∪ B1, . . . , Ad ∪ Bd) whenever Ai and Bi are dis-
joint for each 1 ≤ i ≤ d.

If (X,X , µ) is a probability space and (G, ·) is a partial semigroup,
we define a measure-preserving action of G on X to be an assignment
of a measure-preserving transformation T g : X → X (not necessarily
invertible) to each g ∈ G, such that T g·h = T gTh whenever g · h is
defined.

An action T of
(

N
<ω

)
on X is known as an IP system on X; it is

generated by a countable number T1, T2, . . . of commuting measure-
preserving transformations, with TA :=

∏
i∈A T

i. (Admittedly, it is
possible that the action of the empty set is not necessarily the identity,



276 2. Ergodic theory

but this turns out to have a negligible impact on matters.) An action
T of

(
N
<ω

)d
is then a collection of d simultaneously commuting IP

systems.

In [FuKa1985], Furstenberg and Katznelson showed the follow-
ing generalisation of Theorem 2.10.8:

Theorem 2.10.12 (IP multiple recurrence theorem). Let T be an
action of

(
N
<ω

)d
on a probability space (X,X , µ). Then there exists a

non-empty set A ∈
(

N
<ω

)
such that E∩(TA1)−1(E)∩ . . .∩(TAd)−1(E)

is non-empty, where Ai := (∅, . . . , ∅, A, ∅, . . . , ∅) is the group element
which equals A in the ith position and is the empty set otherwise.

This theorem has a number of combinatorial consequences39, such
as the following strengthening of Szemerédi’s theorem:

Theorem 2.10.13 (IP Szemerédi theorem). [FuKa1985] Let A be
a set of integers of positive upper density, let k ≥ 1, and let B ⊂ N be
infinite. Then A contains an arithmetic progression n, n+ r, . . . , n+
(k − 1)r of length k in which r lies in FS(B), the set of finite sums
of B (cf. Theorem 2.5.18).

Exercise 2.10.9. Deduce Theorem 2.10.13 from Theorem 2.10.12.

Exercise 2.10.10. Using Theorem 2.10.13, show that for any k, and
any set of integers A of positive upper density, the set of steps r which
occur in the arithmetic progressions in A of length k is syndetic.

Exercise 2.10.11. Using Theorem 2.10.12, show that if F is a fi-
nite field, and F<ω :=

⋃∞
n=0 Fn is the canonical vector space over F

spanned (in the algebraic sense) by a countably infinite number of ba-
sis vectors, show that any subset A of F<ω of positive upper Banach
density (which means that lim supn→∞ |A ∩ Fn|/|Fn| > 0 contains
affine subspaces of arbitrarily high dimension.

The IP recurrence theorem is already very powerful, but even
stronger theorems are known. For instance, in [FuKa1991], Fursten-
berg and Katznelson established the following deep strengthening of

39There is also a multidimensional version of this theorem, but it requires a fair
amount of notation to state properly.
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the Hales-Jewett theorem (Theorem 2.5.21), as well as of Exercise
2.10.11 above:

Theorem 2.10.14 (Density Hales-Jewett theorem). [FuKa1991]
Let A be a finite alphabet. If E is a subset of A<ω of positive up-
per Banach density, then E contains a combinatorial line.

This theorem was deduced (via an advanced form of the corre-
spondence principle) by a somewhat complicated recurrence theorem
which we will not state here; rather than the action of a group, semi-
group, or partial semigroup, one instead works with an ensemble of
sets (as in Exercise 2.10.3), and furthermore one regularises the sys-
tem of the probability space and set ensemble (which can collectively
be viewed as a random process) to be what Furstenberg and Katznel-
son call a strongly stationary process, which (very) roughly means
that the statistics of this process look “the same” when restricted to
any combinatorial subspace of a fixed dimension.

Remark 2.10.15. Similar correspondence principles can be estab-
lished connecting property testing results for graphs and hypergraphs
to the measure theory of exchangeable measures: see [Ta2007c],
[AuTa2008], [AvGeTo2008], [Ta2008]. Finally, we have implic-
itly been using a similar correspondence principle between topological
dynamics and colouring Ramsey theorems in Sections 2.3, 2.4, 2.5.

Remark 2.10.16. The Furstenberg correspondence principle also
comes tantalisingly close to deducing my theorem with Ben Green
[GrTa2008] that the primes contain arbitrarily long arithmetic pro-
gressions from Szemerédi’s theorem. More precisely, they show that
any subset A of a genuinely random set of integers with logarithmic-
type density B, with A having positive relative upper density with re-
spect to B, contains arbitrarily long arithmetic progressions; see [Ta].
Unfortunately, the almost primes are not known to quite obey enough
“correlation conditions” to behave sufficiently pseudorandomly that
these arguments apply to the primes, though perhaps there is still a
“softer” way to prove our theorem than the way we did it (see the
recent papers [Go2008], [ReTrTuVa2008] for some progress in this
direction).
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Notes. This lecture first appeared at terrytao.wordpress.com/2008/02/10.
Thanks to Liu Xiao Chuan for corrections.

2.11. Compact systems

The primary objective of this lecture and the next few will be to give a
proof of the Furstenberg recurrence theorem (Theorem 2.10.3). Along
the way we will develop a structural theory for measure-preserving
systems.

The basic strategy of Furstenberg’s proof is to first prove the re-
currence theorems for very simple systems - either those with “almost
periodic” (or compact) dynamics or with “weakly mixing” dynamics.
These cases are quite easy, but don’t manage to cover all the cases.
To go further, we need to consider various combinations of these sys-
tems. For instance, by viewing a general system as an extension of
the maximal compact factor, we will be able to prove Roth’s theorem
(which is equivalent to the k = 3 form of the Furstenberg recurrence
theorem). To handle the general case, we need to consider compact
extensions of compact factors, compact extensions of compact exten-
sions of compact factors, etc., as well as weakly mixing extensions of
all the previously mentioned factors.

In this lecture, we will consider those measure-preserving systems
(X,X , µ, T ) which are compact or almost periodic. These systems are
analogous to the equicontinuous or isometric systems in topological
dynamics discussed in Section 2.6, and as with those systems, we will
be able to characterise such systems (or more precisely, the ergodic
ones) algebraically as Kronecker systems, though this is not strictly
necessary for the proof of the recurrence theorem.

2.11.1. Almost periodic functions. We begin with a basic defi-
nition.

Definition 2.11.1. Let (X,X , µ, T ) be a measure-preserving system.
A function f ∈ L2(X,X , µ) is almost periodic if the orbit closure
{Tnf : n ∈ Z} is compact in L2(X,X , µ).
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Example 2.11.2. If f is periodic (i.e. Tnf = f for some n > 0)
then it is clearly almost periodic. In particular, any shift-invariant
function (such as a constant function) is almost periodic.

Example 2.11.3. In the circle shift system (R/Z, x 7→ x+α), every
function f ∈ L2(R/Z) is almost periodic, because the orbit closure
lies inside the set {f(·+θ) : θ ∈ R/Z}, which is the continuous image
of a circle R/Z and therefore compact.

Exercise 2.11.1. Let (X,X , µ, T ) be a measure-preserving system,
and let f ∈ L2(X,X , µ). Show that f is almost periodic in the ergodic
theory sense (i.e. Definition 2.11.1 above) if and only if it is almost
periodic in the topological dynamical systems sense (see Section 2.3),
i.e. if the sets {n ∈ Z : ‖Tnf − f‖L2(X,X ,µ) ≤ ε} are syndetic for
every ε > 0. Hint : if f is almost periodic in the ergodic theory
sense, show that the orbit closure is an isometric system and thus
a Kronecker system, at which point Theorem 2.3.5 can be applied.
For the converse implication, use the Heine-Borel theorem and the
isometric nature of T on L2.

Exercise 2.11.2. Let (X,X , µ, T ) be a measure-preserving system.
Show that the space of almost periodic functions in L2(X,X , µ) is a
closed shift-invariant subspace which is also closed under the point-
wise operations f, g 7→ max(f, g) and f, g 7→ min(f, g). Similarly,
show that the space of almost periodic functions in L∞(X,X , µ) is a
closed subspace which is also an algebra (closed under products) as
well as closed under max and min.

Exercise 2.11.3. Show that in any Bernoulli system ΩZ, the only
almost periodic functions are the constants. Hint : first show that if
f ∈ L2(X,X , µ) has mean zero, then limn→∞

∫
X
fTnf dµ = 0, by

first considering elementary functions.

Let us now recall the Furstenberg multiple recurrence theorem,
which we now phrase in terms of functions rather than sets:

Theorem 2.11.4 (Furstenberg multiple recurrence theorem). Let
(X,X , µ, T ) be a measure-preserving system, let k ≥ 1, and let f ∈
L∞(X,X , µ) be a non-negative function with

∫
X
f dµ > 0. Then we
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have

lim inf
N→∞

1
N

N−1∑
r=0

∫
X

fT rf . . . T (k−1)rf > 0.

Exercise 2.11.4. Show that Theorem 2.11.4 is equivalent to Theo-
rem 2.10.3.

We can now quickly establish this theorem in the almost periodic
case:

Proposition 2.11.5. Theorem 2.11.4 is true whenever f is almost
periodic.

Proof. Without loss of generality we may assume that f is bounded
a.e. by 1. Let ε > 0 be chosen later. Recall from Exercise 2.11.1
that Tnf lies within ε of f in the L2 topology for a syndetic set
of n. For all such n, one also has ‖T (j+1)nf − T jnf‖L2(X,X ,µ) ≤ ε

for all j, since T acts isometrically. By the triangle inequality, we
conclude that T jnf lies within Ok(ε) of f in L2 for 0 ≤ j ≤ k.
On the other hand, from Hölder’s inequality we see that on the unit
ball of L∞(X,X , µ) with the L2 topology, pointwise multiplication is
Lipschitz. Applying this fact repeatedly, we conclude that for n in
this syndetic set, fTnf . . . T (k−1)nf lies within Ok(ε) in L2 of fk. In
particular,

(2.103)
∫
X

fTnf . . . T (k−1)nf dµ =
∫
X

fk dµ+Ok(ε).

On the other hand, since
∫
f dµ > 0, we must have

∫
X
fk dµ > 0.

Choosing ε sufficiently small, we thus see that the left-hand side of
(2.103) is uniformly bounded away from zero in a syndetic set, and
the conclusion of Theorem 2.11.4 follows. �

Remark 2.11.6. Because f lives in a Kronecker system, one can
also obtain the above result using various multiple recurrence the-
orems from topological dynamics, such as Proposition 2.6.10 or the
Birkhoff multiple recurrence theorem (Theorem 2.3.4), though to get
the full strength of the results, one needs to use either syndetic van
der Waerden theorem, see part 3 of Exercise 2.5.15, or the Varnavides
averaging trick from the Section 2.10.1. We leave the details to the
reader.
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2.11.2. Kronecker systems and Haar measure. We have seen
how nice almost periodic functions are. Motivated by this, we define

Definition 2.11.7. A measure-preserving system (X,X , µ, T ) is said
to be compact if every function in L2(X,X , µ) is almost periodic.

Thus, for instance, by Example 2.11.3, the circle shift system is
compact, but from Exercise 2.11.3, no non-trivial Bernoulli system
is compact. From Proposition 2.11.5 we know that the Furstenberg
recurrence theorem is true for compact systems.

One source of compact systems comes from Kronecker systems,
as introduced in Definition 2.6.5. As such systems are topological
rather than measure-theoretic, we will need to endow them with a
canonical measure - Haar measure - first.

Let G be a compact metrisable topological group (not necessarily
abelian). Without an ambient measure, we cannot yet define the
convolution f ∗ g of two continuous functions f, g ∈ C(G). However,
we can define the convolution µ ∗ f of a finite Borel measure µ on G

and a continuous function f ∈ C(G) to be the function

(2.104) µ ∗ f(x) :=
∫
G

f(y−1x) dµ(y),

which (by the uniform continuity of f) is easily seen to be another
continuous function. We similarly define

(2.105) f ∗ µ(x) :=
∫
G

f(xy−1) dµ(y).

Also, one can define the convolution µ∗ν of two finite Borel measures
to be the finite Borel measure defined as

(2.106) µ ∗ ν(E) :=
∫
G

ν(y−1 · E) dµ(y)

for all Borel sets E. For instance, the convolution δx ∗ δy of two
Dirac masses is another Dirac mass δxy. Fubini’s theorem tells us
that the convolution of two finite measures is another finite measure.
Convolution is also bilinear and associative (thus (µ∗ν)∗ρ = µ∗(ν∗ρ),
f ∗(µ∗ν) = (f ∗µ)∗ν, (µ∗f)∗ν = µ∗(f ∗ν), and (µ∗ν)∗f = µ∗(ν∗f)
for measures µ, ν, ρ and continuous f); in particular, left-convolution
and right-convolution commute. Also observe that the convolution of
two Borel probability measures is again a Borel probability measure.
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Convolution also has a powerful smoothing effect that can upgrade
weak convergence to strong convergence. Specifically, if µn converges
in the vague sense to µ, and f is continuous, then an easy application
of compactness of the underlying group G reveals that µn∗f converges
in the uniform sense to µ ∗ f .

Let us say that a number c is a left-mean (resp. right-mean) of a
continuous function f ∈ C(G) if there exists a probability measure µ
such that µ ∗ f (resp. f ∗ µn) is equal to a constant c. For compact
metrisable groups G, this mean is well defined:

Lemma 2.11.8 (Existence and uniqueness of mean). Let G be a
compact metrisable topological group, and let f ∈ C(G). Then there
exists a unique constant c which is both a left-mean and right-mean
of f .

Proof. Without loss of generality we can take f to be real-valued.
Let us first show that there exists a left-mean. Define the oscilla-
tion of a real-valued continuous function to be the difference between
its maximum and minimum. By the vague sequential compactness
of probability measures (Lemma 2.7.16), one can find a probability
measure µ which minimises the oscillation of µ ∗ f . If this oscillation
is zero, we are done. If the oscillation is non-zero, then (using the
compactness of the group and the transitivity of the group action)
it is not hard to find a finite number of left rotations of µ ∗ f whose
average has strictly smaller oscillation than that of µ∗f (basically by
rotating the places where µ ∗ f is near its maximum to cover where it
is near its mimum). Thus we have a finitely supported probability ν
with ν∗µ∗f having smaller oscillation than µ∗f , a contradiction. We
thus see that a left-mean exists. Similarly, a right-mean exists. But
since left-convolution commutes with right-convolution, we see that
all left-means are equal to all right-means, and the claim follows. �

The map f 7→ c from a continuous function to its mean is a
bounded non-negative linear functional on C(G) which preserves con-
stants, and thus by the Riesz representation theorem is given by a
unique probability measure µ; since left- and right-convolution com-
mute, we see that this measure is both left- and right- invariant.
Conversely, given any such measure µ we easily see (again using the
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commutativity of left-and right-convolution) that f ∗ µ = µ ∗ f = c.
We have thus shown

Corollary 2.11.9 (Existence and uniqueness of Haar measure). If G
is a compact metrisable topological group, then there exists a unique
Borel probability measure µ on G which is both left and right invariant.

In particular, every topological Kronecker system (K,x 7→ x+α)
can be canonically converted into a measure-preserving system, which
is then compact by the same argument used to establish Example
2.11.3. (Actually this observation works for non-abelian Kronecker
systems as well as abelian ones.)

Remark 2.11.10. One can also build left- and right- Haar measures
for locally compact groups; these measures are locally finite Radon
measures rather than Borel probability measures, and are unique up
to constants; however it is no longer the case that such measures are
necessarily equal to each other except in special cases, such as when
the group is abelian or compact. These measures play an impor-
tant role in the harmonic analysis and representation theory of such
groups, but we will not discuss these topics further here.

2.11.3. Classification of compact systems. We have just seen
that every Kronecker system is a compact system. The converse is not
quite true; consider for instance the disjoint union of two Kronecker
systems from different groups (with the probability measure being
split, say, 50 − 50, between the two components). The situation is
similar to that in Section 2.6, in which every Kronecker system was
equicontinuous and isometric, but the converse only held under the
additional assumption of minimality. There is a similar situation here,
but first we need to define the notion of equivalence of two measure-
preserving systems.

Define an abstract measure-preserving system (X , µ, T ) to be an
abstract separable σ-algebra X (i.e. a Boolean algebra in which every
countable sequence has both a supremum and an infimum), together
with an abstract probability measure40 µ : X → [0, 1] and an ab-
stract invertible shift T : X → X which preserves the measure µ

40An abstract measure space (X , µ) is sometimes also known as a measure
algebra.
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(but does not necessarily come from an invertible map T : X → X

on some ambient space). There is an obvious notion of a morphism
Φ : (X , µ, T ) → (Y, ν, S) between abstract measure-preserving sys-
tems, in which Φ : Y → X (note the contravariance) is a σ-algebra
homomorphism with ν = µ ◦ Φ and S ◦ Φ = Φ ◦ T . This makes the
class of abstract measure-preserving systems into a category. In par-
ticular we have a notion of two abstract measure-preserving systems
being isomorphic.

Example 2.11.11. Let (X,X , µ, T ) be a skew shift (y, z) 7→ (y +
α, z + y) and let (Y,Y, ν, S) be the underlying circle shift y 7→ y + α.
These systems are of course non-isomorphic, although there is a fac-
tor map π : X → Y which is a morphism. If however we consider
the σ-algebra π#(Y) ⊂ X (which are the Cartesian products of hor-
izontal Borel sets with the vertical circle R/Z), we see that π in-
duces an isomorphism between the abstract measure-preserving sys-
tems (π#(Y), µ, T ) and (Y, ν, S).

Given a concrete measure-preserving system (X,X , µ, T ), we can
define its abstraction (X/ ∼, µ, T ), where ∼ is the equivalence rela-
tion of almost everywhere equivalence modulo µ. In category theoretic
language, abstraction is a covariant functor from the category of con-
crete measure-preserving systems to the category of abstract measure-
preserving systems. We say that two concrete measure-preserving
systems are equivalent if their abstractions are isomorphic. Thus for
instance, in Example 2.11.11 above, (X,π#(Y), µ, T ) and (Y,Y, ν, S)
are equivalent; there is no concrete isomorphism between these two
systems, but once one abstracts away the underlying sets X and Y,
we can recover an equivalence. As another example, we see that if we
add or remove a null set to a measure-preserving system, we obtain
an abstractly equivalent measure-preserving system.

Remark 2.11.12. Up to null sets, we can also identify an abstract
measure-preserving system (X , µ, T ) with its commutative von Neu-
mann algebra L∞(X , µ) (which acts on the Hilbert space L2(X , µ) by
pointwise multiplication), together with an automorphism T of that
algebra; conversely, one can recover the algebra X as the idempotents
1E of the von Neumann algebra, and the measure µ(E) of a set be-
ing the trace of the idempotent 1E . A significant portion of ergodic
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theory can in fact be rephrased in terms of von Neumann algebras
(which, in particular, naturally suggests a non-commutative general-
isation of the subject), although we will not adopt this perspective
here.

Many results and notions about concrete measure-preserving sys-
tems (X,X , µ, T ) can be rephrased to not require knowledge of the
underlying space X (and to be stable under modification by null
sets), and so can be converted to statements about abstract measure-
preserving systems; for instance, the Furstenberg recurrence theorem
is of this form once one replaces “non-empty” with “positive measure”
(see Exercise 2.10.1). The notion of ergodicity is also of this form. In
particular, such results and notions automatically become preserved
under equivalence. In view of this, the following classification result
is of interest:

Theorem 2.11.13 (Classification of ergodic compact systems). Ev-
ery ergodic compact system is equivalent to an (abelian) Kronecker
system.

To prove this theorem, it is convenient to use a harmonic analysis
approach. Define an eigenfunction of a measure-preserving system
(X,X , µ, T ) to be a bounded measurable function f , not a.e. zero,
such that Tf = λf a.e..

Let Z1 ⊂ X denote the σ-algebra generated by all the eigen-
functions. Note that this contains Z0 := X T , which is the σ-algebra
generated by the eigenfunctions with eigenvalue 1. We have the fol-
lowing fundamental result:

Proposition 2.11.14 (Description of the almost periodic functions).
Let (X,X , µ, T ) be an ergodic measure-preserving system, and let
f ∈ L2(X,X , µ). Then f is almost periodic if and only if it lies
in L2(X,Z1, µ), i.e. if it is Z1-measurable (note that Z1 contains all
null sets of X ).

Remark 2.11.15. One can view (X,Z1, µ, T ) as the maximal com-
pact factor of (X,X , µ, T ), in much the same way that (X,Z0, µ, T )
is the maximal factor on which the system is essentially trivial (every
function is essentially invariant).
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Proof. It is clear that every eigenfunction is almost periodic. From
repeated application of Exercise 2.11.2 we conclude that the indicator
of any set in Z1 is also almost periodic, and thus (by more applications
of Exercise 2.11.2) every function in L2(X,Z1, µ) is almost periodic.

Conversely, suppose f ∈ L2(X,X , µ) is almost periodic. Then the
orbit closure Yf ⊂ L2(X,X , µ) of f is an isometric system; the orbit of
f is clearly dense in Yf , and thus by isometry the orbit of every other
point is also dense. Thus Yf is minimal, and therefore Kronecker by
Proposition 2.6.7; thus we have an isomorphism φ : K → Yf from a
group rotation (K,x 7→ x+α) to Yf . By rotating if necessary we may
assume that φ(0) = f .

By Corollary 2.11.9, K comes with an invariant probability mea-
sure ν. The theory of Fourier analysis on compact abelian groups then
says that L2(K, ν) is spanned by an (orthonormal) basis of characters
χ. In particular, the Dirac mass at 0 (the group identity of K) can
be expressed as the weak limit of finite linear combinations of such
characters.

Now we need to move this information back to X. For this
we use the operator S : L2(K, ν) → L2(X,X , µ) defined by Sh :=∫
K
φ(y)h(y) dν(y); one checks from Minkowski’s integral inequality

that this is a bounded linear map. Because φ is a morphism, and
each character is an eigenfunction of the group rotation x 7→ x + α,
one easily checks that the image Sχ of a character χ is an eigenfunc-
tion. Since the image of the Dirac mass is (formally) just f , we thus
conclude that f is the weak limit41 of finite linear combinations of
characters. In particular, f is equivalent a.e. to a Z1-measurable
function, as desired. �

Exercise 2.11.5 (Spectral description of Kronecker factor). Show
that the product of two eigenfunctions is again an eigenfunction. Us-
ing this and Proposition 2.11.14, conclude that L2(X,Z1, µ) is in
fact equal to Hpp, the closed subspace of the Hilbert space H :=
L2(X,X , µ) generated by the eigenfunctions of the shift operator T .

Exercise 2.11.6. Let (X,X , µ, T ) be a measure-preserving system,
and let f ∈ L2(X,X , µ). We say that f is quasiperiodic if the orbit

41One can in fact use compactness and continuity to make this a strong limit,
but this is not necessary here.
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{Tnf : n ∈ Z} lies in a finite-dimensional space. Show that a func-
tion is quasiperiodic if and only if it is a finite linear combination of
eigenfunctions. Deduce that a function is almost periodic if and only
if it is the limit in L2 of quasiperiodic functions.

Exercise 2.11.7. The purpose of this exercise is to show how ab-
stract measure-preserving systems, and the morphisms between them,
can be satisfactorily modeled by concrete systems and morphisms.

(1) Let (X , µ, T ) be an abstract measure-preserving system. Show
that there exists a concrete regular measure-preserving sys-
tem (X ′,X ′, µ′, T ′) which is equivalent to (X , µ, T ) (thus
after omitting X ′ and quotienting out both σ-algebras by
null sets, the two resulting abstract measure-preserving sys-
tems are isomorphic); the notion of regularity was defined
in Definition 2.9.18. Hint : take a countable shift-invariant
family of sets that generate X (thus T acts on this space by
permutation), and use this to create a σ-algebra morphism
from X to X ′, the product σ-algebra of some boolean space
X ′ := 2Z, endowed with a permutation action T ′.

(2) Let φ : (X , µ, T ) → (Y, ν, S) be an abstract morphism.
Show that there exist regular measure-preserving systems
(X ′,X ′, µ′, T ′) and (Y ′,Y ′, ν′, S′) equivalent to (X , µ, T ) and
(Y, ν, S), together with a concrete morphism φ′ : X ′ → Y ′,
such that obvious commuting square connecting the abstract
σ-algebras X ,Y,X ′,Y ′ quotiented out by null sets does in-
deed commute.

Remark 2.11.16. Exercise 2.11.7 (and various related results) show
that the distinction between concrete and abstract measure-preserving
systems are very minor in practice. There are however other areas
of mathematics in which taking an abstract or “point-less” approach
by deleting (or at least downplaying) the underlying space can lead
to non-trivial generalisations or refinements of the original concrete
concept, for instance when moving from varieties to schemes.

Proof of Theorem 2.11.13. Note that if f is an eigenfunction then
T |f | = |f |, and so (if the system is ergodic) |f | is a.e. constant (which
implies also that the eigenvalue lies on the unit circle). In particular,
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any eigenfunction is invertible. The quotient of two eigenfunctions of
the same eigenvalue is then T -invariant and thus constant a.e. by er-
godicity, which shows that all eigenspaces have geometric multiplicity
1 modulo null sets. As T is unitary, any eigenfunctions of different
eigenvalues are orthogonal to each other; as L2(X,X , µ) is separable,
we conclude that the number of eigenfunctions (up to constants and
a.e. equivalence) is at most countable.

Let (φn)n∈A be a collection of representative eigenfunctions for
some at most countable index set A with eigenvalues λn; we can
normalise |φn| = 1 a.e.. By modifying each eigenfunction on a set of
measure zero (cf. Exercise 2.8.7) we can assume that Tφn = λnφn
and |φn| = 1 everywhere rather than just almost everywhere. Then
the map Φ : x 7→ (log φn(x))n∈A is a morphism from (X,X , µ, T )
to the torus (R/Z)A with the product σ-algebra B, the push-forward
measure Φ#µ, and the shift x 7→ x+α, where α := (log λn)n∈A. From
Proposition 2.11.14 we see that every measurable set in X differs by
a null set from a set in the pullback σ-algebra Φ#(B). From this
it is not hard to see that (X,X , µ, T ) is equivalent to the system
(R/Z)A,B,Φ#µ, x 7→ x+ α).

Now, R/Z)A is a compact metrisable space. The orbit closure K
of α inside this space is thus also compact metrisable. The support of
Φ#µ is shift-invariant and thus K-invariant; but from the ergodicity
of µ we conclude that the support must in fact be a single translate
of K. In particular, Φ#µ is just a translate of Haar measure on K.
From this one easily concludes that (R/Z)A,B,Φ#µ, x 7→ x + α) is
equivalent to the Kronecker system (K,x 7→ x + α) with the Borel
σ-algebra and Haar measure, and the claim follows. �

Exercise 2.11.8. Let (X,X , µ, T ) be a compact system which is not
necessarily ergodic, and let y 7→ µy be the ergodic decomposition
of µ relative to the projection π : (X,X , µ, T ) → (Y,Y, ν, S) given
by Proposition 2.9.22. Show that (X,X , µy, T ) is a compact ergodic
system for ν-almost every y. From this and Theorem 2.11.13, we
conclude that every compact system can be disintegrated into ergodic
Kronecker systems (cf. the discussion after Proposition 2.6.9).

Remark 2.11.17. We comment here on finitary versions of the above
concepts. Consider the cyclic group system (Z/NZ, x 7→ x+ 1) with
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the discrete σ-algebra and uniform probability measure. Strictly
speaking, every function on this system is periodic with period N

and thus almost periodic, and so this is a compact system. But
suppose we consider N as a large parameter going to infinity (in
which case one can view these systems, together with some function
f = fN on these systems, “converging” to some infinite system with
some limit function f , as in the derivation of Theorem 2.10.6 from
Theorem 2.10.3. Then we would be interested in uniform control
on the almost periodicity of the function or the compactness of the
system, i.e. quantitative bounds involving expressions such as O(1)
which are bounded uniformly in N . With such a perspective, the ana-
logue of a quasiperiodic function (see Exercise 2.11.6) is a function
f : Z/NZ→ C which is a linear combination of at most O(1) charac-
ters (i.e. its Fourier transform is non-zero at only O(1) frequencies),
whilst an almost periodic function f is one which is approximable in
L2 by quasiperiodic functions, thus for every ε > 0 one can find a
function with only Oε(1) frequencies which lies within ε of f in L2

norm. Most functions on Z/NZ for large N are not like this, and so
the cyclic shift system is not compact in the asymptotic limit N →∞;
however if one coarsens the underlying σ-algebra significantly one can
recover compactness, though unfortunately one has to replace exact
shift-invariance by approximate shift-invariance when one does so.
For instance if one considers a σ-algebra B generated by a bounded
(O(1)) number of Bohr sets {n ∈ Z/NZ : ‖ ξnN − a‖R/Z ≤ ε}, then B
is no longer shift-invariant in general, but all the functions which are
measurable with respect to this algebra are uniformly almost periodic
in the above sense. For some further developments of these sorts of
“quantitative ergodic theory” ideas, see [GrTa2008], [GrTa2009a],
[GrTa2006], [Ta2006], [Ta2006b], [GrTa2009b], [Ta2008].

Notes. This lecture first appeared at terrytao.wordpress.com/2008/02/11.
Thanks to Emmanuel Kowalski and Liu Xiao Chuan for corrections.

As was pointed out to me anonymously, Theorem 2.12.26 was
essentially established by von Neumann and Halmos (more precisely,
they showed that any ergodic system in which the spectrum of the
shift map is purely discrete is equivalent to a Kronecker system).
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It is also possible to construct the Kronecker system explicitly via
Pontryagin duality.

2.12. Weakly mixing systems

In Section 2.11, we studied the recurrence properties of compact sys-
tems, which are systems in which all measurable functions exhibit al-
most periodicity - they almost return completely to themselves after
repeated shifting. Now, we consider the opposite extreme of mixing
systems - those in which all measurable functions (of mean zero) ex-
hibit mixing42 - they become orthogonal to themselves after repeated
shifting.

We shall see that for weakly mixing systems, averages such as
1
N

∑N−1
n=0 T

nf . . . T (k−1)nf can be computed very explicitly (in fact,
this average converges to the constant (

∫
X
f dµ)k−1). More generally,

we shall see that weakly mixing components of a system tend to
average themselves out and thus become irrelevant when studying
many types of ergodic averages. Our main tool here will be the humble
Cauchy-Schwarz inequality, and in particular a certain consequence
of it, known as the van der Corput lemma.

As one application of this theory, we will be able to establish
Roth’s theorem[Ro1953] (the k = 3 case of Szemerédi’s theorem).

2.12.1. Mixing functions. Much as compact systems were char-
acterised by their abundance of almost periodic functions, we will
characterise mixing systems by their abundance of mixing functions
(this is not standard terminology). To define and motivate this con-
cept, it will be convenient to introduce a weak notion of convergence
(this notation is also not standard):

Definition 2.12.1 (Cesáro convergence). A sequence cn in a normed
vector space is said to converge in the Cesáro sense to a limit c if the
averages 1

N

∑N−1
n=0 cn converge strongly to c, in which case we write

C−limn→∞cn = c. We also write C−supn→∞ cn := lim supN→∞ ‖ 1
N

∑N−1
n=0 cn‖

(thus C−limn→∞cn = 0 if and only if C−supn→∞ cn = 0).

42Actually, there are two different types of mixing, strong mixing and weak mix-
ing, depending on whether the orthogonality occurs individually or on the average;
it is the latter concept which is of more importance to the task of establishing the
Furstenberg recurrence theorem.
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Example 2.12.2. The sequence 0, 1, 0, 1, . . . has a Cesáro limit of
1/2.

Exercise 2.12.1. Let cn be a bounded sequence of non-negative
numbers. Show that the following three statements are equivalent:

(1) C−limn→∞cn = 0.

(2) C−limn→∞|cn|2 = 0.

(3) cn converges to zero in density43.

Which of the implications between 1, 2, 3 remain valid if cn is not
bounded?

Let (X,X , µ, T ) be a measure-preserving system, and let f ∈
L2(X,X , µ) be a function. We consider the correlation coefficients
〈Tnf, f〉 :=

∫
X
Tnff dµ as n goes to infinity. Note that we have the

symmetry 〈Tnf, f〉 = 〈T−nf, f〉, so we only need to consider the case
when n is positive. The mean ergodic theorem (Corollary 2.8.16) tells
us the Cesáro behaviour of these coefficients. Indeed, we have
(2.107)

C−limn→∞〈Tnf, f〉 = 〈E(f |X T ), f〉 = ‖E(f |X T )‖2L2(X,X ,µ)

where X T is the σ-algebra of essentially shift-invariant sets. In partic-
ular, if the system is ergodic, and f has mean zero (i.e.

∫
X
f dµ = 0),

then we have

(2.108) C−limn→∞〈Tnf, f〉 = 0,

thus the correlation coefficients go to zero in the Cesáro sense. How-
ever, this does not necessarily imply that these coefficients go to zero
pointwise. For instance, consider a circle shift system (R/Z, x 7→
x + α) with α irrational (and with uniform measure), thus this sys-
tem is ergodic by Exercise 2.9.5. Then the function f(x) := e2πix

has mean zero, but one easily computes that 〈Tnf, f〉 = e2πinα. The
coefficients e2πinα converge in the Cesáro sense to zero, but have mag-
nitude 1 and thus do not converge to zero pointwise.

43We say cn converges in density to c if for any ε > 0, the set {n ∈ N : |cn−c| >
ε} has upper density zero.
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Definition 2.12.3 (Mixing). Let (X,X , µ, T ) be a measure-preserving
system. A function f ∈ L2(X,X , µ) is strongly mixing if limn→∞〈Tnf, f〉 =
0, and weakly mixing if C−limn→∞|〈Tnf, f〉| = 0.

Remark 2.12.4. Clearly strong mixing implies weak mixing. From
(2.107) we also see that if f is weakly mixing, then E(f |X T ) must
vanish a.e..

Exercise 2.12.2. Show that if f is both almost periodic and weakly
mixing, then it must be 0 almost everywhere. In particular, in a
compact system, the only weakly mixing function is 0 (up to a.e.
equivalence).

Exercise 2.12.3. In any Bernoulli system ΩZ with the product σ-
algebra and a product measure, and the standard shift, show that
any function of mean zero is strongly mixing. Hint : first do this for
functions that depend on only finitely many of the variables.

Exercise 2.12.4. Consider a skew shift system ((R/Z)2, (x, y) 7→
(x+α, y+x)) with the usual Lebesgue measure and Borel σ-algebra,
and with α irrational. Show that the function f(x, y) := e2πix is
neither strongly mixing nor weakly mixing, but that the function
g(x, y) := e2πiy is both strongly mixing and weakly mixing.

Exercise 2.12.5. Let X := CZ be given the product Borel σ-algebra
X and the shift T : (zn)n∈Z → (zn+1)n∈Z. For each d ≥ 1, let µd
be the probability distribution in X of the random sequence (zn)n∈Z
given by the rule

(2.109) zn :=
1

2d/2
∑

ω1,...,ωd∈{0,1}

wω1,...,ωde
2πi

∑d
j=1 ωjn/100j ,

where the wω1,...,ωd are iid standard complex Gaussians (thus each w
has probability distribution e−π|w|

2
dw). Show that each µd is shift

invariant. If µ is a vague limit point of the sequence µd, and f : X →
C is the function defined as f((zn)n∈Z) := sgn(Rez0), show that f is
weakly mixing but not strongly mixing (and more specifically, that
〈T 100jf, f〉 stays bounded away from zero) with respect to the system
(X,X , µ, T ).

Remark 2.12.5. Exercise 2.12.5 illustrates an important point, namely
that stationary processes yield a rich source of measure-preserving



2.12. Weakly mixing systems 293

systems (indeed the two notions are almost equivalent in some sense,
especially after one distinguishes a specific function f on the measure-
preserving system). However, we will not adopt this more probabilis-
tic perspective to ergodic theory here.

Remark 2.12.6. We briefly discuss the finitary analogue of the weak
mixing concept in the context of functions f : Z/NZ→ C on a large
cyclic group Z/NZ with the usual shift x 7→ x + 1. Then one can
compute

(2.110) C−limn→∞|〈Tnf, f〉|2 =
∑

ξ∈Z/NZ

|f̂(ξ)|4

where f̂(ξ) := 1
N

∑
x∈Z/NZ f(x)e−2πixξ/N are the Fourier coefficients

of f . Comparing this against the Plancherel identity ‖f‖2L2 =
∑
ξ∈Z/NZ |f̂(ξ)|2

we thus see that a function f bounded in L2 norm should be consid-
ered “weakly mixing” if it has no large Fourier coefficients. Contrast
this with Remark 2.11.17.

Now let us see some consequences of the weak mixing property.
We need the following lemma, which gives a useful criterion as to
whether a sequence of bounded vectors in a Hilbert space converges
in the Cesáro sense to zero.

Lemma 2.12.7 (van der Corput lemma). Let v1, v2, v3, . . . be a bounded
sequence of vectors in a Hilbert space H, If

(2.111) C−limh→∞C−supn→∞〈vn, vn+h〉 = 0

then C−limn→∞vn = 0.

Informally, this lemma asserts that if each vector in a bounded
sequence tends to be orthogonal to nearby elements in that sequence,
then the vectors will converge to zero in the Cesáro sense. This for-
mulation of the lemma is essentially the version in [Be1987], except
that we have made the minor change of replacing one of the Cesáro
limits with a Cesáro supremum.

Proof. We can normalise so that ‖vn‖ ≤ 1 for all n. In particular, we
have vn = O(1), where O(1) denotes a vector of bounded magnitude.
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For any h and N ≥ 1, we thus have the telescoping identity

(2.112)
1
N

N−1∑
n=0

vn+h =
1
N

N−1∑
n=0

vn +O(|h|/N);

averaging this over all h from 0 to H − 1 for some H ≥ 1, we obtain

(2.113)
1
N

N−1∑
n=0

1
H

H−1∑
h=0

vn+h =
1
N

N−1∑
n=0

vn +O(H/N);

by the triangle inequality we thus have

(2.114) ‖ 1
N

N−1∑
n=0

vn‖ ≤
1
N

N−1∑
n=0

‖ 1
H

H−1∑
h=0

vn+h‖+O(H/N)

where the O() terms are now scalars rather than vectors. We square
this (using the crude inequality (a + b)2 ≤ 2a2 + 2b2) and apply
Cauchy-Schwarz to obtain

(2.115) ‖ 1
N

N−1∑
n=0

vn‖2 ≤ O(
1
N

N−1∑
n=0

‖ 1
H

H−1∑
h=0

vn+h‖2) +O(H2/N2)

which we rearrange as
(2.116)

‖ 1
N

N−1∑
n=0

vn‖2 ≤ O(
1
H2

∑
0≤h,h′<H

1
N

N−1∑
n=0

〈vn+h, vn+h′〉) +O(H2/N2).

We take limits as N →∞ (keeping H fixed for now) to conclude
(2.117)

lim sup
N→∞

‖ 1
N

N−1∑
n=0

vn‖2 ≤ O(
1
H2

∑
0≤h,h′<H

C−supn→∞〈vn+h, vn+h′〉).

Another telescoping argument (and symmetry) gives us

(2.118) C−supn→∞〈vn+h, vn+h′〉 = C−supn→∞〈vn+|h−h′|, vn〉

and so
(2.119)

lim sup
N→∞

‖ 1
N

N−1∑
n=0

vn‖2 ≤ O(
1
H

∑
0≤h<H

C−supn→∞〈vn+h, vn〉).

Taking limits as H →∞ and using (2.111) we obtain the claim. �
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Exercise 2.12.6. Let P : Z→ R/Z be a polynomial with at least one
irrational non-constant coefficient. Using Lemma 2.12.7 (in the scalar
caseH = C) and an induction on degree, show that C−limn→∞e

2πiP (n) =
0. Conclude that the sequence (P (n))n∈N is uniformly distributed
with respect to uniform measure (see Definition 2.9.12 for a defini-
tion of uniform distribution).

Exercise 2.12.7. Using Exercise 2.12.6, give another proof of The-
orem 2.6.26.

We now apply the van der Corput lemma to weakly mixing func-
tions.

Corollary 2.12.8. Let (X,X , µ, T ) be a measure-preserving system,
and let f ∈ L2(X,X , µ) be weakly mixing. Then for any g ∈ L2(X,X , µ)
we have C−limn→∞|〈Tnf, g〉| = 0 and C−limn→∞|〈f, Tng〉| = 0.

Proof. We just prove the first claim, as the second claim is similar.
By Exercise 2.12.1, it suffices to show that

(2.120)
1
N

N−1∑
n=0

|〈Tnf, g〉|2 → 0

as N →∞. The left-hand side can be rewritten as

(2.121) 〈 1
N

N−1∑
n=0

〈g, Tnf〉Tnf, g〉

so by Cauchy-Schwarz it suffices to show that

(2.122) C−limN→∞〈g, Tnf〉Tnf = 0.

Applying the van der Corput lemma and discarding the bounded
coefficients 〈g, Tnf〉, it suffices to show that

(2.123) C−limH→∞C−supn→∞|〈Tn+hf, Tnf〉| = 0.

But 〈Tn+hf, Tnf〉 = 〈Thf, f〉, and the claim now follows from the
weakly mixing nature of f . �
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2.12.2. Weakly mixing systems. Now we consider systems which
are full of mixing functions.

Definition 2.12.9. (Mixing systems) A measure-preserving system
(X,X , µ, T ) is weakly mixing (resp. strongly mixing) if every function
f ∈ L2(X,X , µ) with mean zero is weakly mixing (resp. strongly
mixing).

Example 2.12.10. From Exercise 2.12.2, we know that any system
with a non-trivial Kronecker factor is not weakly mixing (and thus
not strongly mixing). On the other hand, from Exercise 2.12.3, we
know that any Bernoulli system is strongly mixing (and thus weakly
mixing also). From Remark 1 we see that any strongly or weakly
mixing system must be ergodic.

Exercise 2.12.8. Show that the system in Exercise 2.12.5 is weakly
mixing but not strongly mixing.

Here is another characterisation of weak mixing:

Exercise 2.12.9. Let (X,X , µ, T ) be a measure preserving system.
Show that the following are equivalent:

(1) (X,X , µ, T ) is weakly mixing.

(2) For every f, g ∈ L2(X,X , µ), 〈Tnf, g〉 converges in density
to (

∫
X
f dµ)(

∫
X
g dµ). (See Exercise 2.12.1 for a definition

of convergence in density.)

(3) For any measurable E,F , µ(TnE ∩ F ) converges in density
to µ(E)µ(F ).

(4) The product system (X×X,X ×X , µ×µ, T ×T ) is ergodic.

Hint : To equate 1 and 2, use the decomposition f = (f −
∫
X
f dµ) +∫

X
f dµ of a function into its mean and mean-free components. To

equate 2 and 4, use the fact that the space L2(X ×X,X ×X , µ× µ)
is spanned (in the topological vector space sense) by tensor products
(x, y) 7→ f(x)g(y) with f, g ∈ L2(X,X , µ).

Exercise 2.12.10. Show that the equivalences between 1, 2, 3 in
Exercise 2.12.9 remain if “weak mixing” and “converges in density”
are replaced by “strong mixing” and “converges” respectively.
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Exercise 2.12.11. Let (X,F , T ) be any minimal topological system
with Borel σ-algebra B, and let µ be a shift invariant Borel probability
measure. Show that if (X,B, µ, T ) is weakly mixing (resp. strongly
mixing), then (X,F , T ) is topologically weakly mixing (resp. topo-
logically mixing), as defined in Definition 2.12.9 and Exercise 2.7.12.

Exercise 2.12.12. If (X,X , µ, T ) is weakly mixing, show that (X,X , µ, Tn)
is weakly mixing for any non-zero n.

Exercise 2.12.13. Let (X,X , µ, T ) be a measure preserving system.
Show that the following are equivalent:

(1) (X,X , µ, T ) is weakly mixing.

(2) Whenever (Y,Y, ν, S) is ergodic, the product system (X ×
Y,X × Y, µ× ν, T × S) is ergodic.

Hint : To obtain 1 from 2, use Exercise 2.12.9. To obtain 2 from 1,
repeat the methods used to prove Exercise 2.12.9.

Exercise 2.12.14. Show that the product of two weakly mixing sys-
tems is again weakly mixing. Hint : use Exercises 2.12.9 and 2.12.13.

Now we come to an important type of observation for the pur-
poses of establishing the Furstenberg recurrence theorem: in weakly
mixing systems, functions of mean zero are negligible as far as multi-
ple averages are concerned.

Proposition 2.12.11. Let a1, . . . , ak ∈ Z be distinct non-zero in-
tegers for some k ≥ 1. Let (X,X , µ, T ) be weakly mixing, and let
f1, . . . , fk ∈ L∞(X,X , µ) be such that at least one of f1, . . . , fk has
mean zero. Then we have

(2.124) C−limn→∞T
a1nf1 . . . T

aknfk = 0

in L2(X,X , µ).

Proof. We induct on k. When k = 1 the claim follows from the mean
ergodic theorem and Exercise 2.12.12 (recall from Example 2.12.10
that all weakly mixing systems are ergodic).

Now let k ≥ 2 and suppose that the claim has already been proven
for k−1. Without loss of generality we may assume that it is f1 which
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has mean zero. Applying the van der Corput lemma (Lemma 2.12.7),
it suffices to show that

(2.125) C−supn→∞〈T a1(n+h)f1 . . . T
ak(n+h)fk, T

a1nf1 . . . T
aknfk〉

converges in density to zero as h→∞. But the left-hand side can be
rearranged as

(2.126) C−supn→∞

∫
X

T (a1−ak)nf1,h . . . T
(ak−1−ak)nfk−1,hfk,h dµ

where fj,h := T ajhfjfj . Applying Cauchy-Schwarz, it suffices to show
that

(2.127) C−supn→∞T
(a1−ak)nf1,h . . . T

(ak−1−ak)nfk−1,h

converges in density to zero as h→∞.

Since (X,X , µ, T ) is weakly mixing, the mean-zero function f1

is weakly mixing, and so the mean of f1,h goes to zero in density as
h → ∞. As all functions are assumed to be bounded, we can thus
subtract the mean from f1,h in (2.127) without affecting the desired
conclusion, leaving behind the mean-zero component f1,h−

∫
X
f1,h dµ.

But then the contribution of this expression to (2.127) vanishes by
the induction hypothesis. �

Remark 2.12.12. The key point here was that functions f of mean
zero were weakly mixing and thus had the property that Thff almost
had mean zero, and were thus almost weakly mixing. One could it-
erate this further to investigate the behaviour of “higher derivatives”
of f such as Th+h′fThfTh′ff . Pursuing this analysis further leads
to the Gowers-Host-Kra seminorms[HoKr2005], which are closely
related to the Gowers uniformity norms[Go2001] in additive combi-
natorics.

Corollary 2.12.13. Let a1, . . . , ak ∈ Z be distinct integers for some
k ≥ 1, let (X,X , µ, T ) be a weakly mixing system, and let f1, . . . , fk ∈
L∞(X,X , µ). Then

∫
X
T a1nf1 . . . T

aknfk dµ converges in the Cesáro
sense to (

∫
X
f1 dµ) . . . (

∫
X
fk dµ).

Note in particular that this establishes the Furstenberg recurrence
theorem (Theorem 2.11.4) in the case of weakly mixing systems.
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Proof. We again induct on k. The k = 1 case is trivial, so suppose
k > 1 and the claim has already been proven for k − 1. If any of
the functions fj is constant then the claim follows from the induction
hypothesis, so we may subtract off the mean from each function and
suppose that all functions have mean zero. By shift-invariance we may
also fix ak (say) to be zero. The claim now follows from Proposition
2.12.11 and Cauchy-Schwarz. �

Exercise 2.12.15. Show that the Cesáro convergence in Corollary
2.12.8 can be strengthened to convergence in density. Hint : first re-
duce to the mean zero case, then apply Exercise 2.12.14 to work with
the product system instead.

Exercise 2.12.16. Let (X,X , µ, T ) be a weakly mixing system, and
let f ∈ L∞(X,X , µ) have mean zero. Show that Tn

2
f converges in

the Cesáro sense in L2(X,X , µ) to zero. Hint : use van der Corput
and Proposition 2.12.11 or Corollary 2.12.13.)

Exercise 2.12.17. Show that Corollary 2.12.13 continues to hold if
the linear polynomials a1n, . . . , akn are replaced by arbitrary poly-
nomials P1(n), . . . , Pk(n) from the integers to the integers, so long as
the difference between any two of these polynomials is non-constant.
Hint : you will need the “PET induction” machinery from Exercise
2.5.3. This result was first established in [Be1987].

2.12.3. Hilbert-Schmidt operators. We have now established the
Furstenberg recurrence theorem for two distinct types of systems:
compact systems and weakly mixing systems. From Example 2.12.10
we know that these systems are indeed quite distinct from each other.
Here is another indication of “distinctness”:

Exercise 2.12.18. In any measure-preserving system (X,X , µ, T ),
show that almost periodic functions and weakly mixing functions are
always orthogonal to each other.

On the other hand, there are certainly systems which are neither
weakly mixing nor compact (e.g. the skew shift). But we have the
following important dichotomy (cf. Theorem 2.7.12):

Theorem 2.12.14. Suppose that (X,X , µ, T ) is a measure-preserving
system. Then exactly one of the following statements is true:
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(1) (Structure) (X,X , µ, T ) has a non-trivial compact factor44.

(2) (Randomness) (X,X , µ, T ) is weakly mixing.

In Example 2.12.10 we have already shown that 1 and 2 cannot
be both true; the tricky part is to show that lack of weak mixing
implies a non-trivial compact factor.

In order to prove this result, we recall some standard results about
Hilbert-Schmidt operators on a separable45 Hilbert space. We begin
by recalling the notion of tensor product of two Hilbert spaces:

Proposition 2.12.15. Let H,H ′ be two separable Hilbert spaces.
Then there exists another separable Hilbert space H ⊗H ′ and a bilin-
ear tensor product map ⊗ : H ×H ′ → H ⊗H ′ such that

(2.128) 〈v ⊗ v′, w ⊗ w′〉H⊗H′ = 〈v, w〉H〈v′, w′〉H′

for all v, w ∈ H and v′, w′ ∈ H ′. Furthermore, the tensor products
(en⊗e′n′)n∈A,n′∈A′ between any orthonormal bases (en)n∈A, (e′n′)n′∈A′
of H and H’ respectively, form an orthonormal basis of H ⊗H ′.

It is easy to see that H ⊗ H ′ is unique up to isomorphism, and
so we shall abuse notation slightly and refer to H ⊗H ′ as the tensor
product of H and H ′.

Proof. Take any orthonormal bases (en)n∈A and (e′n′)n′∈A′ of H
and H’ respectively, and let H⊗H ′ be the Hilbert space generated by
declaring the formal quantities en ⊗ e′n′ to be an orthonormal basis.
If one then defines

(2.129) (
∑
n

cnen)⊗ (
∑
n′

c′n′en′) :=
∑
n

∑
n′

cnc
′
n′en ⊗ en′

for all square-summable sequences cn and c′n′ , one easily verifies
that ⊗ is indeed a bilinear map that obeys (2.128). in particular, if
(fm)m∈B and (f ′m′)m′∈B′ are some other orthonormal bases of H,H ′

respectively, then from (2.128) (fm⊗f ′m′)m∈B,m′∈B′ is an orthonormal

44[In ergodic theory, a factor of a measure-preserving system is simply a mor-
phism from that system to some other measure-preserving system. Unlike the case with
topological dynamics, we do not need to assume surjectivity of the morphism, since in
the measure-theoretic setting, the image of a morphism always has full measure.

45As usual, the hypothesis of separability is not absolutely essential, but is con-
venient to assume throughout; for instance, it assures that orthonormal bases always
exist and are at most countable.
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set, and one can approximate any element en ⊗ e′n′ in the original
orthonormal basis to arbitrary accuracy by linear combinations from
this orthonormal set, and so this set is in fact an orthonormal basis
as required. �

Example 2.12.16. The tensor product of L2(X,X , µ) and L2(Y,Y, ν)
is L2(X × Y,X × Y, µ × ν), with the tensor product operation f ⊗
g(x, y) := f(x)g(y). The tensor product of Cm and Cn is Cn×m,
which can be thought of as the Hilbert space of n × m (or m × n)
matrices, with the inner product 〈A,B〉 := tr(AB†) = tr(A†B).

Given a Hilbert space H, define its complex conjugate H to be
the same set as H, but with the conjugated scalar multiplication
structure z, v 7→ zv and the conjugated inner product 〈z, w〉H :=
〈z, w〉H = 〈w, z〉H , but with all other structures unchanged. This is
also a Hilbert space46.

Example 2.12.17. The conjugation map f 7→ f is a Hilbert space
isometry between the Hilbert space L2(X,X , µ) and its complex con-
jugate.

Every element K ∈ H ⊗ H ′ induces a bounded linear operator
TK : H → H ′, defined via duality by the formula

(2.130) 〈TKv, v′〉H′ := 〈K, v ⊗ v′〉

for all v ∈ H, v′ ∈ H ′. We refer to K as the kernel of TK . Any
operator T = TK that arises in this manner is called a Hilbert-Schmidt
operator from H to H’. The Hilbert space structure on the space
H ⊗ H ′ of kernels induces an analogous Hilbert space structure on
the Hilbert-Schmidt operators, leading to the Hilbert-Schmidt norm
‖T‖HS and inner product 〈S, T 〉HS for such operators. Here are some
other characterisations of this concept:

Exercise 2.12.19. Let H,H ′ be Hilbert spaces with orthonormal
bases (en)n∈A and (e′n′)n′∈A′ respectively, and let T : H → H ′ be a
bounded linear operator. Show that the following are equivalent:

(1) T is a Hilbert-Schmidt operator.

46Of course, for real Hilbert spaces rather than complex, the notion of complex
conjugation is trivial.
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(2)
∑
n∈A ‖Ten‖2H′ <∞.

(3)
∑
n∈A

∑
n′∈A′ |〈Ten, e′n′〉H′ |2 <∞.

Also, show that if T, S : H → H ′ are Hilbert-Schmidt operators, then

(2.131) 〈T, S〉HS =
∑
n∈A
〈Ten, Sen〉H′

and

(2.132) ‖T‖2HS =
∑
n∈A
‖Ten‖2H′ =

∑
n∈A

∑
n′∈A′

|〈Ten, e′n′〉H′ |2

As one consequence of the above exercise, we see that the Hilbert-
Schmidt norm controls the operator norm, thus ‖Tv‖ ≤ ‖T‖HS‖v‖
for all vectors v.

Remark 2.12.18. From this exercise and Fatou’s lemma, we see in
particular that the limit (in either the norm, strong or weak operator
topologies) of a sequence of Hilbert-Schmidt operators with uniformly
bounded Hilbert-Schmidt norm, is still Hilbert-Schmidt. We also see
that the composition of a Hilbert-Schmidt operator with a bounded
operator is still Hilbert-Schmidt (thus the Hilbert-Schmidt operators
can be viewed as a closed two-sided ideal in the space of bounded
operators).

Example 2.12.19. An operator T : L2(X,X , µ) → L2(Y,Y, ν) is
Hilbert-Schmidt if and only if it takes the form Tf(y) :=

∫
X
K(x, y)f(x) dµ(x)

for some kernel K ∈ L2(X × Y,X × Y, µ × ν), in which case the
Hilbert-Schmidt norm is ‖K‖L2(X×Y,X×Y,µ×ν). The Hilbert-Schmidt
inner product is defined similarly.

Example 2.12.20. The identity operator on an infinite-dimensional
Hilbert space is never Hilbert-Schmidt, despite being bounded. On
the other hand, every finite rank operator is Hilbert-Schmidt.

One of the key properties of Hilbert-Schmidt operators which will
be relevant to us is the following.

Lemma 2.12.21. If T : H → H ′ is Hilbert-Schmidt, then it is com-
pact (i.e. the image of any bounded set is precompact).
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Proof. Let ε > 0 be arbitrary. By Exercise 2.12.19 and monotone
convergence, we can find a finite orthonormal set e1, . . . , eN such that∑N
n=1 ‖Ten‖2H′ ≥ ‖T‖2HS − ε2, and in particular that ‖Ten+1‖H′ ≤ ε

for any en+1 orthogonal to e1, . . . , en. As a consequence, the image
of the unit ball of H under T lies within ε of the image of the unit
ball of the finite-dimensional space span(e1, . . . , eN ). This image is
therefore totally bounded and thus precompact. �

The following exercise may help illuminate the distinction be-
tween bounded operators, Hilbert-Schmidt operators, and compact
operators:

Exercise 2.12.20. Let λn be a sequence of complex numbers, and
consider the diagonal operator T : (zn)n∈N 7→ (λnzn)n∈N on l2(N).

(1) Show that T is a well-defined bounded linear operator on
l2(N) if and only if the sequence (λn) is bounded.

(2) Show that T is Hilbert-Schmidt if and only if the sequence
(λn) is square-summable.

(3) Show that T is compact if and only if the sequence (λn) goes
to zero as n→∞.

Now we apply the above theory to establish Theorem 2.12.14. Let
(X,X , µ, T ) be a measure-preserving system, and let f ∈ L2(X,X , µ).
The rank one operators g 7→ 〈g, Tnf〉Tnf can easily be verified to
have a Hilbert-Schmidt norm of ‖f‖2L2 , and so by the triangle in-
equality, their averages Sf,N : g 7→ 1

N

∑N−1
n=0 〈g, Tnf〉Tnf have a

Hilbert-Schmidt norm of at most ‖f‖2L2 . On the other hand, from
the identity

(2.133) 〈Sf,Ng, h〉 =
1
N

N−1∑
n=0

〈g ⊗ h, (T ⊗ T )n(f ⊗ f)〉

and the mean ergodic theorem (applied to the product space)
we see that Sf,N converges in the weak operator topology47 to some
limit Sf , which is then also Hilbert-Schmidt by Remark 2.12.18, and

47Actually, Sf,N converges to Sf in the Hilbert-Schmidt norm, and thus also in
the operator norm and in the strong topology: this is another application of the mean
ergodic theorem, which we leave as an exercise. Since each of the Sf,N is clearly finite
rank, this gives a direct proof of the compactness of Sf .
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thus compact by Lemma 2.12.21. Also, it is easy to see that Sf is
self-adjoint and commutes with T . As a consequence, we conclude
that for any g ∈ L2(X,X , µ), the image Sfg is almost periodic (since
{TnSfg : n ∈ Z} = Sf{Tng : n ∈ Z} is the image of a bounded set
by the compact operator Sf and therefore precompact).

On the other hand, observe that

(2.134) 〈Sff, f〉 = C−limn→∞|〈Tnf, f〉|2.

Thus by Definition 2.12.3 (and Exercise 2.12.1), we see that 〈Sff, f〉 6=
0 whenever f is not weakly mixing. In particular, f is not orthogonal
to the almost periodic function Sff . From this and Exercise 2.12.18,
we have thus shown

Proposition 2.12.22 (Dichotomy between structure and random-
ness). Let (X,X , µ, T ) be a measure-preserving system. A function
f ∈ L2(X,X , µ) is weakly mixing if and only if it is orthogonal to
all almost periodic functions (or equivalently, orthogonal to all eigen-
functions).

Remark 2.12.23. Interestingly, essentially the same result appears
in the spectral and scattering theory of linear Schrödinger equations,
which in that context is known as the “RAGE theorem” [Ru1969],
[AmGe1973], [En1978].

Remark 2.12.24. The finitary analogue of the expression Sff is
the dual function (of order 2) of f (the dual function of order 1 was
briefly discussed in Section 2.8. If we are working on Z/NZ with
the usual shift, then Sf can be viewed as a Fourier multiplier which
multiplies the Fourier coefficient at ξ by |f̂(ξ)|2; informally, Sf filters
out all the low amplitude frequencies of f, leaving only a handful of
high-amplitude frequencies.

Recall from Proposition 2.12.15 and Exercise 2.12.5 of Lecture 11
that a function f ∈ L2(X,X , µ) is almost periodic if and only if it is
Z1-measurable, or if it lies in the pure point component Hpp of the
shift operator T . We thus have

Corollary 2.12.25 (Koopman-von Neumann theorem). Let (X,X , µ, T )
be a measure-preserving system, and let f ∈ L2(X,X , µ). Let Z1 be
the σ-algebra generated by the eigenfunctions of T .
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(1) f is almost periodic if and only if f ∈ L2(X,Z1, µ) if and
only if f ∈ Hpp.

(2) f is weakly mixing if and only if E(f |Z1) = 0 a.e. if and
only if f ∈ Hc = Hsc+Hac (corresponding to the continuous
spectrum of T ).

(3) In general, f has a unique decomposition f = fU⊥ + fU
into an almost periodic function fU⊥ and a weakly mixing
function fU . Indeed, fU⊥ = E(f |Z1) and fU = f−E(f |Z1).

Theorem 2.12.14 follows immediately from Corollary 2.12.25. In-
deed, if a system is not weakly mixing, then by the above Corollary
we see that Z1 is non-trivial, and the identity map from (X,X , µ, T )
to (X,Z1, µ, T ) yields a non-trivial compact factor.

2.12.4. Roth’s theorem. As a quick application of the above ma-
chinery we give a proof of Roth’s theorem. We first need a variant of
Corollary 2.12.8, which is proven by much the same means:

Exercise 2.12.21. Let (X,X , µ, T ) be an ergodic measure-preserving
system, let a1, a2, a3 be distinct integers, and let f1, f2, f3 ∈ L∞(X,X , µ)
with at least one of f1, f2, f3 weakly mixing. Show that C−limn→∞

∫
X
T a1nf1T

a2nf2T
a3nf3 dµ =

0.

Theorem 2.12.26 (Roth’s theorem). Let (X,X , µ, T ) be an ergodic
measure-preserving system, and let f ∈ L∞(X,X , µ) be non-negative
with

∫
X
f dµ > 0. Then

(2.135) lim inf
N→∞

1
N

N−1∑
n=0

∫
X

fTnfT 2nf dµ > 0.

Proof. We decompose f = fU⊥ + fU as in Corollary 2.12.25. The
contribution of fU is negligible by Exercise 2.12.21, so it suffices to
show that

(2.136) lim inf
N→∞

1
N

N−1∑
n=0

∫
X

fU⊥T
nfU⊥T

2nfU⊥ dµ > 0.

But as fU⊥ is almost periodic, the claim follows from Proposition
2.11.5. �
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One can then immediately establish the k = 3 case of Fursten-
berg’s theorem (Theorem 2.10.3) by combining the above result with
the ergodic decomposition (Proposition 2.9.22). The k = 3 case
of Szemerédi’s theorem (i.e. Roth’s theorem) then follows from the
Furstenberg correspondence principle (see Section 2.10).

Exercise 2.12.22. Let (X,X , µ, T ) be a measure-preserving system,
and let f ∈ L2(X,X , µ) be non-negative. Show that for every ε > 0,
one has 〈Tnf, f〉 ≥

∫
X

(f dµ)2 − ε for infinitely many n. Hint : first
show this when f is almost periodic, and then use Corollary 2.12.8
and Corollary 2.12.25 to prove the general case.) This is a simplified
version of the Khintchine recurrence theorem, which asserts that the
set of such n is not only infinite, but is also syndetic. Analogues of
the Khintchine recurrence theorem hold for double recurrence but not
for triple recurrence; see [BeHoKr2005] for details.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/02/21.
Thanks to Liu Xiao Chuan for corrections.

2.13. Compact extensions

In Section 2.11, we studied compact measure-preserving systems -
those systems (X,X , µ, T ) in which every function f ∈ L2(X,X , µ)
was almost periodic, which meant that their orbit {Tnf : n ∈ Z}
was precompact in the L2(X,X , µ) topology. Among other things,
we were able to easily establish the Furstenberg recurrence theorem
(Theorem 2.11.4) for such systems.

In this section, we generalise these results to a “relative” or “con-
ditional” setting, in which we study systems which are compact rel-
ative to some factor (Y,Y, ν, S) of (X,X , µ, T ). Such systems are to
compact systems as isometric extensions are to isometric systems in
topological dynamics. The main result we establish here is that the
Furstenberg recurrence theorem holds for such compact extensions
whenever the theorem holds for the base. The proof is essentially the
same as in the compact case; the main new trick is to not to work in
the Hilbert spaces L2(X,X , µ) over the complex numbers, but rather
in the Hilbert module48 L2(X,X , µ|Y,Y, ν) over the (commutative)

48Modules are to rings as vector spaces are to fields.
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von Neumann algebra L∞(Y,Y, ν). Because of the compact nature
of the extension, it turns out that results from topological dynamics
(and in particular, van der Waerden’s theorem) can be exploited to
good effect in this argument49.

2.13.1. Hilbert modules. Let X = (X,X , µ, T ) be a measure-
preserving system, and let π : X → Y be a factor map, i.e. a
morphism from X to another system Y = (Y,Y, ν, S). The algebra
L∞(Y ) can be viewed (using π) as a subalgebra of L∞(X); indeed,
it is isomorphic to L∞(X,π#(Y), µ), where π#(Y) := {π−1(E) : E ∈
Y} is the pullback of Y by π.

Example 2.13.1. Throughout these notes we shall use the skew shift
as our running example. Thus, in this example, X = (R/Z)2 with
shift T : (y, z) 7→ (y + α, z + y) for some fixed α (which can be either
rational or irrational), Y = R/Z with shift S : y 7→ y+α, with factor
map π : (y, z) 7→ y. In this case, L∞(Y ) can be thought of (modulo
equivalence on null sets, of course) as the space of bounded functions
on (R/Z)2 which depend only on the first variable.

Example 2.13.2. Another (rather trivial) example is when the factor
system Y is simply a point. In this case, L∞(Y ) is the space of
constants and can be identified with C. At the opposite extreme,
another example is when Y is equal to X. It is instructive to see how
all of the concepts behave in each of these two extreme cases, as well
as the typical intermediate case presented in Example 2.13.1.

The idea here will be to try to “relativise” the machinery of
Hilbert spaces over C to that of Hilbert modules over L∞(Y ). Roughly
speaking, all concepts which used to be complex or real-valued (e.g.
inner products, norms, coefficients, etc.) will now take values in the
algebra L∞(Y ). The following table depicts the various concepts that
will be relativised:

49Note: this operator-algebraic approach is not the only way to understand these
extensions; one can also proceed by disintegrating µ into fibre measures µy for almost
every y ∈ Y and working fibre by fibre. We will discuss the connection between the
two approaches below.
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Absolute / unconditional Relative / conditional
Constants C Factor-measurable functions L∞(Y )
Expectation Ef =

∫
X
f dµ ∈ C Conditional expectation E(f |Y ) ∈ L∞(Y )

Inner product 〈f, g〉L2(X) = Efg Conditional inner product 〈f, g〉L2(X|Y ) = E(fg|Y )
Hilbert space L2(X) Hilbert module L2(X|Y )
Finite-dimensional subspace {

∑d
j=1 cjfj : c1, . . . , cd ∈ C} Finitely generated module {

∑d
j=1 cjfj : c1, . . . , cd ∈ L∞(Y )}

Almost periodic function Conditionally almost periodic function
Compact system Compact extension
Hilbert-Schmidt operator Conditionally Hilbert-Schmidt operator
Weakly mixing function Conditionally weakly mixing function
Weakly mixing system Weakly mixing extension

Remark 2.13.3. In information-theoretic terms, one can view Y as
representing all the observables in the system X that have already
been “measured” in some sense, so that it is now permissible to allow
one’s “constants” to depend on that data, and only study the remain-
ing information present in X conditioning on the observed values in
Y . Note though that once we activate the shift map T , the data in
Y will similarly shift (by S), and so the various fibres of π can inter-
act with each other in a non-trivial manner, so one should take some
caution in applying information-theoretic intuition to this setting.

We have already seen that the factor Y induces a sub-σ-algebra
π#(Y) of X . We therefore have a conditional expectation map f 7→
E(f |Y ) defined for all absolutely integrable f by the formula

(2.137) E(f |Y ) := E(f |π#(Y)).

In general, this expectation only lies in L1(Y ), though for the
functions we shall eventually study, the expectation will always lie in
L∞(Y ) when needed.

As stated in the table, conditional expectation will play the role
in the conditional setting that the unconditional expectation Ef =∫
X
f dµ plays in the unconditional setting. Note though that the

conditional expectation takes values in the algebra L∞(Y ) rather than
in the complex numbers. We recall that conditional expectation is
linear over this algebra, thus

(2.138) E(cf + dg|Y ) = cE(f |Y ) + dE(g|Y )
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for all absolutely integrable f , g and all c, d ∈ L∞(Y ).

Example 2.13.4. Continuing Example 2.13.1, we see that for any ab-
solutely integrable f on (R/Z)2, we have E(f |Y )(y, z) =

∫
R/Z

f(y, z′) dz′

almost everywhere.

Let L2(X|Y ) be the space of all f ∈ L2(X,X , µ) such that the
conditional norm

(2.139) ‖f‖L2(X|Y ) := E(|f |2|Y )1/2

lies in L∞(Y ) (rather than merely in L2(Y ), which it does automati-
cally). Thus for instance we have the inclusions

(2.140) L∞(X) ⊂ L2(X|Y ) ⊂ L2(X).

The space L2(X|Y ) is easily seen to be a vector space over C,
and moreover (thanks to (2.138)) is a module over L∞(Y ).

Exercise 2.13.1. If we introduce the inner product

(2.141) 〈f, g〉L2(X|Y ) := E(fg|Y )

(which, initially, is only in L1(Y )), establish the pointwise Cauchy-
Schwarz inequality

(2.142) |〈f, g〉L2(X|Y )| ≤ ‖f‖L2(X|Y )‖g‖L2(X|Y )

almost everywhere. In particular, the inner product lies in L∞(Y ).
Hint : repeat the standard proof of the Cauchy-Schwarz inequality
verbatim, but with L∞(Y ) playing the role of the constants C.

Example 2.13.5. Continuing Examples 1 and 3, L2(X|Y ) consists
(modulo null set equivalence) of all measurable functions f(y, z) such
that ‖f‖L2(X|Y ) = (

∫
R/Z
|f(y, z)|2 dz)1/2 is bounded a.e. in y, with

the relative inner product

(2.143) 〈f, g〉L2(X|Y )(y) :=
∫
R/Z

f(y, z)g(y, z) dz

defined a.e. in y. Observe in this case that the relative Cauchy-
Schwarz inequality (2.142) follows easily from the standard Cauchy-
Schwarz inequality.
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Exercise 2.13.2. Show that the function f 7→ ‖‖f‖L2(X|Y )‖L∞(Y ) is
a norm on L2(X|Y ), which turns that space into a Banach space50.
Hint : you may need to “relativise” one of the standard proofs that
L2(X) is complete. You may also want to start with the skew shift
example to build some intuition.

As π is a morphism, one can easily check the intertwining rela-
tionship

(2.144) E(Tnf |Y ) = SnE(f |Y )

for all f ∈ L1(X) and integers n. As a consequence we see that
the map T (and all of its powers) preserves the space L2(X|Y ), and
furthermore is conditionally unitary in the sense that

(2.145) 〈Tnf, Tng〉L2(X|Y ) = Sn〈f, g〉L2(X|Y )

for all f, g ∈ L2(X|Y ) and integers n.

In the Hilbert space L2(X) one can create finite dimensional sub-
spaces {c1f1 + . . .+ cdfd : c1, . . . , cd ∈ C} for any f1, . . . , fd ∈ L2(X).
Inside such subspaces we can create the bounded finite-dimensional
zonotopes {c1f1 + . . . + cdfd : c1, . . . , cd ∈ C, |c1|, . . . , |cd| ≤ 1}. Ob-
serve (from the Heine-Borel theorem) that a subset E of L2(X) is pre-
compact if and only if it can be approximated by finite-dimensional
zonotopes in the sense that for every ε > 0, there exists a finite-
dimensional zonotope Z of L2(X) such that E lies within the ε neigh-
bourhood of Z.

Remark 2.13.6. There is nothing special about zonotopes here; just
about any family of bounded finite-dimensional objects would suffice
for this purpose. In fact, it seems to be slightly better (for the pur-
poses of quantitative analysis, and in particular in controlling the de-
pendence on dimension d) to work instead with octahedra, in which
the constraint |c1|, . . . , |cd| ≤ 1 is replaced by |c1|+ . . .+ |cd| = 1; this
perspective is used for instance in [Ta2006].

Inspired by this, let us make some definitions. A finitely generated
module of L2(X|Y ) is any submodule of L2(X|Y ) of the form {c1f1 +
. . .+ cdfd : c1, . . . , cd ∈ L∞(Y )}, where f1, . . . , fd ∈ L2(X|Y ). Inside

50Because of this completeness, we refer to L2(X|Y ) as a Hilbert module over
L∞(Y ).
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such a module we can define a finitely generated module zonotope
{c1f1 + . . . + cdfd : c1, . . . , cd ∈ L∞(Y ); ‖c1‖L∞(Y ), . . . , ‖cd‖L∞(Y ) ≤
1}.

Definition 2.13.7. • A subset E of L2(X|Y ) is said to be
conditionally precompact if for every ε > 0, there exists a
finitely generated module zonotope Z of L2(X|Y ) such that
E lies within the ε-neighbourhood of Z (using the norm from
Exercise 2.13.2).

• A function f ∈ L2(X|Y ) is said to be conditionally almost
periodic if its orbit {Tnf : n ∈ Z} is conditionally precom-
pact.

• A function f ∈ L2(X|Y ) is said to be conditionally almost
periodic in measure if every ε > 0 there exists a set E in Y

of measure at most ε such that f1Ec is conditionally almost
periodic.

• The system X is said to be a compact extension of Y if
every function in L2(X|Y ) is conditionally almost periodic
in measure.

Example 2.13.8. Any bounded subset of L∞(Y ) is conditionally
precompact (though note that it need not be precompact in the topo-
logical sense, using the topology from Exercise 2.13.2). In particular,
every function in L∞(Y ) is conditionally almost periodic.

Example 2.13.9. Every system is a compact extension of itself. A
system is a compact extension of a point if and only if it is a compact
system.

Example 2.13.10. Consider the skew shift (Examples 2.13.1, 2.13.4,
2.13.5), and consider the orbit of the function f(y, z) := e2πiz. A
computation shows that

(2.146) Tnf(y, z) = e2πi
−n(−n−1)

2 αe−2πinyf

which reveals (for α irrational) that f is not almost periodic in the
unconditional sense. However, observe that all the shifts Tnf lie in
the zonotope {cf : c ∈ L∞(Y ), ‖c‖L∞(Y ) ≤ 1} generated by a single
generator f , and so f is conditionally almost periodic.
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Exercise 2.13.3. Consider the skew shift (Examples 1,3,4,7). Show
that a sequence fn ∈ L∞(X) is conditionally precompact if and only if
the sequences fn(y, ·) ∈ L∞(R/Z) are precompact in L2(R/Z) (with
the usual Lebesgue measure) for almost every y.

Exercise 2.13.4. Show that the space of conditionally almost peri-
odic functions in L2(X|Y ) is a shift-invariant L∞(Y ) module, i.e. it
is closed under addition, under multiplication by elements of L∞(Y ),
and under powers Tn of the shift operator.

Exercise 2.13.5. Consider the skew shift (Examples 2.13.1, 2.13.4,
2.13.5, 2.13.10 and Exercise 2.13.3) with α irrational, and let f ∈
L2(X|Y ) be the function defined by setting f(y, z) := e2πinz whenever
n ≥ 1 and y ∈ (1/(n + 1), 1/n]. Show that f is conditionally almost
periodic in measure, but not conditionally almost periodic. Thus the
two notions can be distinct even for bounded functions (a subtlety
that does not arise in the unconditional setting).

Exercise 2.13.6. Let ZX|Y denote the collection of all measurable
sets E in X such that 1E is conditionally almost periodic in measure.
Show that ZX|Y is a shift-invariant sub-σ-algebra of X that con-
tains π#Y, and that a function f ∈ L2(X|Y ) is conditionally almost
periodic in measure if and only if it is Z-measurable. (In particu-
lar, (X,ZX|Y , µ, T ) is the maximal compact extension of Y .) Hint :
you may need to truncate the generators f1, . . . , fd of various module
zonotopes to be in L∞(X) rather than L2(X|Y ).

Exercise 2.13.7. Show that the skew shift (Examples 2.13.1, 2.13.4,
2.13.5, 2.13.10 and Exercises 2.13.3, 2.13.5) is a compact extension
of the circle shift. Hint : Use Example 2.13.10 and Exercise 2.13.6.
Alternatively, approximate a function on the skew torus by its vertical
Fourier expansions. For each fixed horizontal coordinate y, the partial
sums of these vertical Fourier series converge (in the vertical L2 sense)
to the original function, pointwise in y. Now apply Egorov’s theorem.

Exercise 2.13.8. Show that each of the iterated skew shifts (Exercise
2.9.8) are compact extensions of the preceding skew shift.

Exercise 2.13.9. Let (Y,Y, ν, S) be a measure-preserving system,
let G be a compact metrisable group with a closed subgroup H, let
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σ : Y → G be measurable, and let Y ×σ G/H be the extension of Y
with underlying space Y ×G/H , with measure equal to the product
of ν and Haar measure, and shift map T : (y, ζ) 7→ (Sy, σ(y)ζ). Show
that Y ×σ G/H is a compact extension of Y .

2.13.2. Multiple recurrence for compact extensions. Let us
say that a measure-preserving system (X,X , µ, T ) obeys the uniform
multiple recurrence (UMR) property if the conclusion of the Fursten-
berg multiple recurrence theorem holds for this system, thus for all
k ≥ 1 and all non-negative f ∈ L∞(X) with

∫
X
f dµ > 0, we have

(2.147) lim inf
N→∞

1
N

N−1∑
n=0

∫
X

fTnf . . . T (k−1)nf dµ > 0.

Thus in Section 2.11 we showed that all compact systems obey
UMR, and in Section 2.12 we showed that all weakly mixing systems
obey UMR. The Furstenberg multiple recurrence theorem asserts, of
course, that all measure-preserving systems obey UMR.

We now establish an important further step (and, in many ways,
the key step) towards proving that theorem:

Theorem 2.13.11. Suppose that X = (X,X , µ, T ) is a compact ex-
tension of Y = (Y,Y, ν, S). If Y obeys UMR, then so does X.

Note that the converse implication is trivial: if a system obeys
UMR, then all of its factors automatically do also.

Proof. Fix k ≥ 1, and fix a non-negative function f ∈ L∞(X) with∫
X
f dµ > 0. Our objective is to show that (2.147) holds. As X is

a compact extension, f is conditionally almost periodic in measure;
by definition (and uniform integrability), this implies that f can be
bounded from below by another conditionally almost periodic func-
tion which is non-negative with positive mean. Thus we may assume
without loss of generality that f is conditionally almost periodic.

We may normalise ‖f‖L∞(X) = 1 and
∫
X
f dµ = δ for some

0 < δ < 1. The reader may wish to follow this proof using the skew
shift example as a guiding model.
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Let ε > 0 be a small number (depending on k and δ) to be chosen
later. If we set E := {y ∈ Y : E(f |Y ) > δ/2}, then E must have
measure at least δ/2.

Since f is almost periodic, we can find a finitely generated module
zonotope {c1f1 + . . . + cdfd : ‖c1‖L∞(Y ), . . . , ‖cd‖L∞(Y ) ≤ 1} whose
ε-neighbourhood contains the orbit of f . In other words, we have an
identity of the form

(2.148) Tnf = c1,nf1 + . . .+ cd,nfd + en

for all n, where c1,n, . . . , cd,n ∈ L∞(Y ) with norm at most 1, and en ∈
L2(X,Y ) is an error with ‖en‖L2(X|Y ) = O(ε) almost everywhere.

By splitting into real and imaginary parts (and doubling d if
necessary) we may assume that the cj,n are real-valued. By further
duplication we can also assume that ‖fi‖L2(X|Y ) ≤ 1 for each i. By
rounding off cj,n(y) to the nearest multiple of ε/d for each y (and
absorbing the error into the en term) we may assume that cj,n(y) is
always a multiple of ε/d. Thus each cj,n only takes on Oε,d(1) values.

Let K be a large integer (depending on k, d, δ, ε) to be cho-
sen later. Since the factor space Y obeys UMR, and E has positive
measure in Y , we know that

(2.149) lim inf
N→∞

1
N

N−1∑
n=0

∫
Y

1ETn1E . . . T (K−1)n1E dν > 0.

In other words, there exists a constant c > 0 such that

(2.150) ν(Ωn) > c

for a set of n of positive lower density, where Ωn is the set

(2.151) Ωn := E ∩ TnE ∩ . . . ∩ T (K−1)nE.

Let n be as above. By definition of Ωn and E (and (2.145)), we
see that

(2.152) E(T anf |Y )(y) ≥ δ/2

for all y ∈ Ωn and 0 ≤ a < K. Meanwhile, from (2.148) we have

(2.153) ‖T anf − c1,anf1 − . . .− cd,anfd‖L2(X|Y )(y) = O(ε)

for all y ∈ Ωn and 0 ≤ a < K.
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Fix y. For each 0 ≤ a < K, the d-tuple ~can(y) := (c1,an(y), . . . , cd,an(y))
ranges over a set of cardinality Od,ε(1). One can view this as a colour-
ing of {0, . . . ,K−1} into Od,ε(1) colours. Applying van der Waerden’s
theorem (Exercise 2.4.3), we can thus find (if K is sufficiently large de-
pending on d, ε, k) an arithmetic progression a(y), a(y)+r(y), . . . , a(y)+
(k − 1)r(y) in {0, . . . ,K − 1} for each y such that

(2.154) ~ca(y)n(y) = ~c(a(y)+r(y))n(y) = . . . = ~c(a(y)+(k−1)r(y))n(y).

The quantities a(y) and r(y) can of course be chosen to be measurable
in y. By the pigeonhole principle, we can thus find a subset Ω′n of
Ωn of measure at least σ > 0 for some σ depending on c, K, d, ε but
independent of n, and an arithmetic progression a, a+r, . . . , a+(k−1)r
in {0, . . . ,K − 1} such that

(2.155) ~can(y) = ~c(a+r)n(y) = . . . = ~c(a+(k−1)r)n(y)

for all y ∈ Ω′n. (The quantities a and r can still depend on n, but
this will not be of concern to us.)

Fix these values of a, r. From (2.153), (2.155) and the triangle
inequality we see that

(2.156) ‖T (a+jr)nf − T anf‖L2(X|Y )(y) = O(ε)

for all 1 ≤ j ≤ k and y ∈ Ω′n. Recalling that f was normalised to
have L∞(X) norm 1, it is then not hard to conclude (by induction
on k and the relative Cauchy-Schwarz inequality) that
(2.157)
‖T anfT (a+r)nf . . . T (a+(k−1)r)nf − (T anf)k‖L2(X|Y )(y) = Ok(ε)

and thus (by another application of relative Cauchy-Schwarz)
(2.158)
E(T anfT (a+r)nf . . . T (a+(k−1)r)nf)(y) ≥ E((T anf)k|Y )(y)−Ok(ε).

But from (2.151), (2.152) and relative Cauchy-Schwarz again we
have

(2.159) E(T anf |Y )(y) ≥ δ/2−O(ε)

and so by several more applications of relative Cauchy-Schwarz we
have

(2.160) E((T anf)k|Y )(y) ≥ c(k, δ) > 0
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for some positive quantity c(k, δ) (if ε is sufficiently small depending
on k, δ). From (2.158), (2.160) we conclude that

(2.161) E(T anfT (a+r)nf . . . T (a+(k−1)r)nf)(y) ≥ c(k, δ)/2

for y ∈ Ω′n, again if ε is small enough. Integrating this in y and using
the shift-invariance we conclude that

(2.162)
∫
X

fTnrf . . . T (k−1)nrf dµ ≥ c(k, δ)σ/2.

The quantity r depends on n, but ranges between 1 and K − 1,
and so (by the non-negativity of f)

(2.163)
K−1∑
s=1

∫
X

fTnsf . . . T (k−1)nsf dµ ≥ c(k, δ)σ/2

for a set of n of positive lower density. Averaging this for n from 1 to
N (say) one obtains (2.147) as desired. �

Thus for instance we have now established UMR for the skew
shift as well as higher iterates of that shift, thanks to Exercises 2.13.7
and 2.145.

Remark 2.13.12. One can avoid the use of Hilbert modules, etc. by
instead appealing to the theory of disintegration of measures (The-
orem 2.9.21). We sketch the details as follows. First, one has to
restrict attention to those spaces X which are regular, though an in-
spection of the Furstenberg correspondence principle (Section 2.10)
shows that this is in fact automatic for the purposes of such tasks as
proving Szemerédi’s theorem. Once one disintegrates µ with respect
to ν, the situation now resembles the concrete example of the skew
shift, with the fibre measures µy playing the role of integration along
vertical fibers {(y, z) : z ∈ R/Z}. It is then not difficult (and some-
what instructive) to convert the above proof to one using norms such
as L2(X,X ,muy) rather than the module norm L2(X|Y ). We leave
the details to the reader (who can also get them from [Fu1981]).

Remark 2.13.13. It is an intriguing question as to whether there
is any interesting non-commutative extension of the above theory, in
which the underlying von Neumann algebra L∞(Y,Y, ν) is replaced
by a non-commutative von Neumann algebra. While some of the
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theory seems to extend relatively easily, there does appear to be some
genuine difficulties with other parts of the theory, particularly those
involving multiple products such as fTnfT 2nf .

Remark 2.13.14. Just as ergodic compact systems can be described
as group rotation systems (Kronecker systems), it turns out that
ergodic compact extensions can be described as (inverse limits of)
group quotient extensions, somewhat analogously to Lemma 2.6.22.
Roughly speaking, the idea is to first use some spectral theory to
approximate conditionally almost periodic functions by condition-
ally quasiperiodic functions - those functions whose orbit lies on a
finitely generated module zonotope (as opposed to merely being close
to one). One can then use the generators of that zonotope as a basis
from which to build the group quotient extension, and then use some
further trickery to make the group consistent across all fibres. The
precise machinery for this is known as Mackey theory ; it is of particu-
lar importance in the deeper structural theory of dynamical systems,
but we will not describe it in detail here, instead referring the reader
to the papers of Furstenberg[Fu1977] and Zimmer[Zi1976].

Notes. This lecture first appeared at terrytao.wordpress.com/2008/02/27.
Thanks to Liu Xiao Chuan for corrections.

2.14. Weakly mixing extensions

Having studied compact extensions in Section 2.13, we now consider
the opposite type of extension, namely that of a weakly mixing exten-
sion. Just as compact extensions are “relative” versions of compact
systems (see Section 2.11), weakly mixing extensions are “relative”
versions of weakly mixing systems (see Section 2.12), in which the
underlying algebra of scalars C is replaced by L∞(Y ). As in the case
of unconditionally weakly mixing systems, we will be able to use the
van der Corput lemma to neglect “conditionally weakly mixing” func-
tions, thus allowing us to lift the uniform multiple recurrence property
(UMR) from a system to any weakly mixing extension of that system.

To finish the proof of the Furstenberg recurrence theorem requires
two more steps. One is a relative version of the dichotomy between
mixing and compactness: if a system is not weakly mixing relative



318 2. Ergodic theory

to some factor, then that factor has a non-trivial compact extension.
This will be accomplished using the theory of conditional Hilbert-
Schmidt operators in this lecture. Finally, we need the (easy) result
that the UMR property is preserved under limits of chains; this will
be accomplished in the next lecture.

2.14.1. Conditionally weakly mixing functions. Recall that in
a measure-preserving systemX = (X,X , µ, T ), a function f ∈ L2(X) =
L2(X,X , µ) is said to be weakly mixing if the squared inner products
|〈Tnf, f〉X |2 := (

∫
X
Tnff dµ)2 converge in the Cesáro sense, thus

(2.164) lim
N→∞

1
N

N−1∑
n=0

|
∫
X

Tnff dµ|2 = 0.

Now let Y = (Y,Y, ν, S) be a factor of X, so that L∞(Y ) can be
viewed as a subspace of L∞(X). Recall that we have the conditional
inner product 〈f, g〉X|Y := E(fg|Y ) and the Hilbert module L2(X|Y )
of functions f for which 〈f, f〉X|Y lies in L∞(Y ). We shall say that
a function f ∈ L2(X|Y ) is conditionally weakly mixing relative to Y
if the L2 norms ‖〈Tnf, f〉X|Y ‖2L2(Y ) converge to zero in the Cesáro
sense, thus

(2.165) lim
N→∞

1
N

N−1∑
n=0

∫
X

|E(Tnff |Y )|2 dµ = 0.

Example 2.14.1. If X = Y × Z is a product system of the factor
space Y = (Y,Y, ν, S) and another system Z = (Z,Z, ρ, R), then a
function f(y, z) = f(z) of the vertical variable z ∈ Z is weakly mixing
relative to Y if and only if f(z) is weakly mixing in Z.

Much of the theory of weakly mixing systems extends easily to
the conditionally weakly mixing case. For instance:

Exercise 2.14.1. By adapting the proof of Corollary 2.12.13, show
that if f ∈ L2(X|Y ) is conditionally weakly mixing and g ∈ L2(X|Y ),
then ‖〈Tnf, g〉X|Y ‖2L2(Y ) and ‖〈f, Tng〉X|Y ‖2L2(Y ) converge to zero in
the Cesáro sense. Hint : you will need to show that expressions such
as 〈g, Tnf〉X|Y Tnf converge in L2(X) in the Cesáro sense. Apply
the van der Corput lemma and use the fact that 〈g, Tnf〉X|Y are
uniformly bounded in L∞(Y ) by conditional Cauchy-Schwarz.
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Exercise 2.14.2. Show that the space of conditionally weakly mixing
functions in L2(X|Y ) is a module over L∞(Y ) (i.e. it is closed under
addition and multiplication by the “scalars” L∞(Y )), which is also
shift-invariant and topologically closed in the topology of L2(X|Y )
(see Exercise 2.13.2).

Let us now see the first link between conditional weak mixing and
conditional almost periodicity (cf. Exercise 2.12.18):

Lemma 2.14.2. If f ∈ L2(X|Y ) is conditionally weakly mixing and
g ∈ L2(X|Y ) is conditionally almost periodic, then 〈f, g〉X|Y = 0 a.e.

Proof. Since 〈f, g〉X|Y = T−n〈Tnf, Tng〉X|Y , it will suffice to show
that

(2.166) C−supn→∞|〈Tnf, Tng〉X|Y |L2(Y ) = 0.

Let ε > 0 be arbitrary. As g is conditionally almost periodic, one
can find a finitely generated module zonotope {c1f1 + . . . + cdfd :
‖c1‖L∞(Y ), . . . , ‖cd‖L∞(Y ) ≤ 1} with f1, . . . , fd ∈ L2(X|Y ) such that
all the shifts Tng lie within ε (in L2(X|Y )) of this zonotope. Thus
(by conditional Cauchy-Schwarz) we have
(2.167)
‖〈Tnf, Tng〉X|Y ‖L2(Y ) = ‖〈Tnf, c1,nf1+. . .+cd,nfd〉X|Y ‖L2(Y )+O(ε)

for all n and some c1,n, . . . , cd,n ∈ L∞(Y ) with norm at most 1. We
can pull these constants out of the conditional inner product and
bound the left-hand side of (2.167) by

(2.168) ‖〈Tnf, f1〉‖L2(Y ) + . . .+ ‖〈Tnf, f1〉‖L2(Y ) +O(ε).

By Exercise 2.14.1, the Cesáro supremum of (2.168) is at most O(ε).
Since ε is arbitrary, the claim (2.166) follows. �

Since all functions in L∞(Y ) are conditionally almost periodic,
we conclude that every conditionally weakly mixing function f is or-
thogonal to L∞(Y ), or equivalently that E(f |Y ) = 0 a.e. Let us say
that f has relative mean zero if the latter holds.

Definition 2.14.3. A system X is a weakly mixing extension of a
factor Y if every f ∈ L2(X|Y ) with relative mean zero is relatively
weakly mixing.
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Exercise 2.14.3. Show that a product X = Y × Z of a system Y

with a weakly mixing system Z is always a weakly mixing extension
of Y .

Remark 2.14.4. If X is regular, then we can disintegrate the mea-
sure µ as an average µ =

∫
Y
µydν(y), see Theorem 2.9.21. It is then

possible to construct a relative product system X ×Y X, which is the
product system X×X but with the measure µ×νµ :=

∫
Y
µy×µydν(y)

instead of µ×µ. It can then be shown (cf. Exercise 2.12.9) that X is
a weakly mixing extension of Y if and only if X ×Y X is ergodic; see
for instance [Fu1981] for details. However, in these notes we shall
focus instead on the more abstract operator-algebraic approach which
avoids the use of disintegrations.

Now we show that the uniform multiple recurrence property (UMR)
from Section 2.13 is preserved under weakly mixing extensions (cf.
Theorem 2.13.11).

Theorem 2.14.5. Suppose that X = (X,X , µ, T ) is a weakly mixing
extension of Y = (Y,Y, ν, S). If Y obeys UMR, then so does X.

The proof of this theorem rests on the following analogue of
Proposition 2.12.11:

Proposition 2.14.6. Let a1, . . . , ak ∈ Z be distinct integers for some
k ≥ 1. Let X = (X,X , µ, T ) is a weakly mixing extension of Y =
(Y,Y, ν, S), and let f1, . . . , fk ∈ L∞(X) be such that at least one of
f1, . . . , fk has relative mean zero. Then

(2.169) C−limn→∞T
a1nf1 . . . T

aknfk = 0

in L2(X,X , µ).

Exercise 2.14.4. Prove Proposition 2.14.6. Hint : modify (or “rela-
tivise”) the proof of Proposition 2.12.11.

Corollary 2.14.7. Let a1, . . . , ak ∈ Z be distinct integers for some
k ≥ 1. Let X = (X,X , µ, T ) is a weakly mixing extension of Y =
(Y,Y, ν, S), and let f1, . . . , fk ∈ L∞(X). Then
(2.170)

C−limn→∞

∫
X

T a1nf1 . . . T
aknfk dµ−

∫
X

T a1nE(f1|Y ) . . . T aknE(fk|Y ) dµ = 0.
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Exercise 2.14.5. Prove Corollary 2.14.7. Hint : adapt the proof of
Corollary 2.12.13.

Proof of Theorem 2.14.5. Let f ∈ L∞(X) be non-negative with
positive mean. Then E(f |Y ) ∈ L∞(Y ) is also non-negative with
positive mean. Since Y obeys UMR, we have

(2.171) lim inf
N→∞

1
N

N−1∑
n=0

E(f |Y )TnE(f |Y ) . . . T (k−1)nE(f |Y ) > 0.

Applying Corollary 2.14.7 we see that the same statement holds with
E(f |Y ) replaced by f , and the claim follows. �

Remark 2.14.8. As the above proof shows, Corollary 2.14.7 lets us
replace functions in the weakly mixing extension X by their expec-
tations in Y for the purposes of computing k-fold averages. In the
notation of [FuWe1996], Corollary 2.14.7 asserts that Y is a char-
acteristic factor of X for the average (2.170). The deeper structural
theory of such characteristic factors (and in particular, on the minimal
characteristic factor for any given average) is an active and difficult
area of research, with surprising connections with Lie group actions
(and in particular with flows on nilmanifolds), as well as the theory
of inverse problems in additive combinatorics (and in particular to
inverse theorems for the Gowers norms); see for instance [Kr2006]
for a survey of recent developments. The concept of a characteristic
factor (or more precisely, finitary analogues of this concept) also is
fundamental in my work with Ben Green[GrTa2008] on primes in
arithmetic progression.

2.14.2. The dichotomy between structure and randomness.
The remainder of this lecture is devoted to proving the following “rel-
ative” generalisation of Theorem 2.12.14, and which is a fundamental
ingredient in the proof of the Furstenberg recurrence theorem:

Theorem 2.14.9. Suppose that X = (X,X , µ, T ) is an extension of a
system Y = (Y,Y, ν, S). Then exactly one of the following statements
is true:

(1) (Structure) X has a factor Z which is a non-trivial compact
extension of Y .
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(2) (Randomness) X is a weakly mixing extension of Y .

As in Section 2.12, the key to proving this theorem is to show

Proposition 2.14.10. Suppose that X = (X,X , µ, T ) is an exten-
sion of a system Y = (Y,Y, ν, S). Then a function f ∈ L2(X|Y )
is relatively weakly mixing if and only if 〈f, g〉X|Y = 0 a.e. for all
relatively almost periodic g.

The “only if” part of this proposition is Lemma 2.14.2; the harder
part is the “if” part, which we will prove shortly. But for now, let us
see why Proposition 2.14.10 implies Theorem 2.14.9.

From Lemma 2.14.2, we already know that no non-trivial function
can be simultaneously conditionally weakly mixing and conditionally
almost periodic, which shows that cases 1 and 2 of Theorem 2.14.9
cannot simultaneously hold. To finish the proof of Theorem 2.14.9,
suppose that X is not a weakly mixing extension of Y, thus there
exists a function f ∈ L2(X|Y ) of relative mean zero which is not
weakly mixing. By Proposition 2.14.10, there must exist a relatively
almost periodic g ∈ L2(X|Y ) such that 〈f, g〉X|Y does not vanish a.e..
Since f is orthogonal to all functions in L∞(Y ), we conclude that
g is not in L∞(Y ), thus we have a single relatively almost periodic
function. From Exercise 2.13.6, this shows that the maximal compact
extension of Y is non-trivial, and the claim follows.

It thus suffices to prove the “if” part of Proposition 2.14.10; thus
we need to show that every non-conditionally-weakly-mixing function
correlates with some conditionally almost periodic function. But ob-
serve that if f ∈ L2(X|Y ) is not conditionally weakly mixing, then
by definition we have

(2.172) lim sup
N→∞

1
N

N−1∑
n=0

|E(Tnff |Y )|2L2(Y ) > 0.

We can rearrange this as

(2.173) lim sup
N→∞

〈Sf,Nf, f〉X > 0
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where Sf,N : L2(X|Y )→ L2(X|Y ) is the operator

(2.174) Sf,Ng :=
1
N

N−1∑
n=0

E(gTnf |Y )Tnf.

To prove Proposition 2.14.10, it thus suffices (by weak compactness)
to show that

Proposition 2.14.11 (Dual functions are almost periodic). Suppose
that X = (X,X , µ, T ) is an extension of a system Y = (Y,Y, ν, S),
and let f ∈ L2(X|Y ). Let Sf be any limit point of Sf,N in the weak
operator technology. Then Sff is relatively almost periodic.

Remark 2.14.12. By applying the mean ergodic theorem to the
dynamical system X ×Y X, one can show that the sequence DN is
in fact convergent in the weak or strong operator topologies (at least
when X is regular). But to avoid some technicalities we shall present
an argument that does not rely on existence of a strong limit.

As one might expect from the experience with unconditional weak
mixing, the proof of Proposition 2.14.11 relies on the theory of con-
ditionally Hilbert-Schmidt operators on L2(X|Y ). We give here a
definition of such operators which is suited for our needs.

Definition 2.14.13. Let X, Y be as above. A sub-orthonormal set in
L2(X|Y ) is any at most countable sequence eα ∈ L2(X|Y ) such that
〈eα, eβ〉X|Y = 0 a.e. for all α 6= β and 〈eα, eα〉X|Y ≤ 1 a.e. for all α. A
linear operator A : L2(X|Y )→ L2(X|Y ) is said to be a conditionally
Hilbert-Schmidt operator if we have the module property

(2.175) A(cf) = cAf for all c ∈ L∞(Y )

and the bound

(2.176)
∑
α

∑
β

|〈Aeα, fβ〉X,Y |2 ≤ C2 a.e.

for all sub-orthonormal sets {eα}, {fβ} and some constant C > 0; the
best such C is called the (uniform) conditional Hilbert-Schmidt norm
‖‖A‖HS(X|Y )‖L∞(Y ) of A.

Remark 2.14.14. As in Section 2.12, one can also set up the con-
cept of a tensor product of two Hilbert modules, and use that to



324 2. Ergodic theory

define conditionally Hilbert-Schmidt operators in a way which does
not require sub-orthonormal sets. But we will not need to do so here.
One can also define a pointwise conditional Hilbert-Schmidt norm
‖A‖HS(X|Y )(y) for each y ∈ Y , but we will not need this concept.

Example 2.14.15. Suppose Y is just a finite set (with the discrete
σ-algebra), then X splits into finitely many fibres π−1({y}) with the
conditional measures µy, and L2(X|Y ) can be direct sum (with the l∞

norm) of the Hilbert spaces L2(µy). A conditional Hilbert-Schmidt
operator is then equivalent to a family of Hilbert-Schmidt operators
Ay : L2(µy)→ L2(µy) for each y, with the Ay uniformly bounded in
Hilbert-Schmidt norm.

Example 2.14.16. In the skew shift exampleX = (R/Z)2 = {(y, z) :
y, z ∈ R/Z}, Y = (R/Z), one can show that an operator A is con-
ditionally Hilbert-Schmidt if and only if it takes the form Af(y, z) =∫
R/Z

Ky(z, z′)f(y, z′) dz′ a.e. for all f ∈ L2(X|Y ), with ‖‖A‖HS(X|Y )‖L∞(Y ) =
supy(

∫
R/Z

∫
R/Z
|Ky(z, z′)|2dzdz′)1/2 finite.

Exercise 2.14.6. Let f1, f2 ∈ L2(X|Y ) with ‖f1‖L2(X|Y ), ‖f2‖L2(X|Y ) ≤
1 a.e.. Show that the rank one operator g 7→ 〈g, f1〉X|Y f2 is condi-
tionally Hilbert-Schmidt with norm at most 1.

Observe from (2.174) that the Sf,N are averages of rank one op-
erators arising from the functions Tnf , and so by Exercise 2.14.6 and
the triangle inequality we see that the Sf,N are uniformly condition-
ally Hilbert-Schmidt. Taking weak limits using (2.176) (and Fatou’s
lemma) we conclude that Sf is also conditionally Hilbert-Schmidt.

Next, we observe from the telescoping identity that for every h,
ThSf,N − Sf,NTh converges to zero in the weak operator topology
(and even in the operator norm topology) as N → ∞; taking limits,
we see that Sf commutes with T . To show that Sff is conditionally
almost periodic, it thus suffices to show the following analogue of
Lemma 2.12.21:

Lemma 2.14.17. Let A : L2(X|Y ) → L2(X|Y ) be a conditionally
Hilbert-Schmidt operator. Then the image of the unit ball of L2(X|Y )
under A is conditionally precompact.



2.14. Weakly mixing extensions 325

Proof. We shall prove this lemma by establishing a sort of condi-
tional singular value decomposition for A. We can normalise A to
have uniform conditional Hilbert-Schmidt norm 1. We fix ε > 0, and
we will also need an integer k and a small quantity δ > 0 depending
on ε to be chosen later.

We first consider the quantities |〈Ae1, f1〉X|Y |2 where e1, f1 ranges
over all sub-orthonormal sets of cardinality 1. On the one hand, these
quantities are bounded pointwise by 1, thanks to (2.176). On the
other hand, observe that if |〈Ae1, f1〉X|Y |2 and |〈Ae′1, f ′1〉X|Y |2 are of
the above form, then so is the join max(|〈Ae1, f1〉X|Y |2, |〈Ae′1, f ′1〉X|Y |2),
as can be seen by taking tildee1 := e11E+e′11Ec and tildef1 := f11E+
f ′11Ec , where E is the set where |〈Ae1, f1〉X|Y |2 exceeds |〈Ae′1, f ′1〉X|Y |2.
By using a maximising sequence for the quantity

∫
Y
|〈Ae, f〉X|Y |2 dν

and applying joins repeatedly, we can thus (on taking limits) find a
pair e1, f1 which is near-optimal in the sense that |〈Ae1, f1〉X|Y |2 ≥
(1− δ)|〈Ae′1, f ′1〉X|Y |2 a.e. for all competitors e′1, f

′
1.

Now fix e1, f1, and consider the quantity |〈Ae2, f2〉X|Y |2, where
{e1, e2} and {f1, f2} are sub-orthonormal sets. By arguing as be-
fore we can find an e2, f2 which is near optimal in the sense that
|〈Ae2, f2〉X|Y |2 ≥ (1−δ)|〈Ae′2, f ′2〉X|Y |2 a.e. for all competitors e′2, f

′
2.

We continue in this fashion k times to obtain sub-orthonormal
sets {e1, . . . , ek} and {f1, . . . , fk} with the property that |〈Aei, fi〉X|Y |2 ≥
(1−δ)|〈Ae′i, f ′i〉X|Y |2 whenever {e1, . . . , ei−1, e

′
i}, {f1, . . . , fi−1, f

′
i} are

sub-orthonormal sets. On the other hand, from (2.176) we know
that

∑
i |〈Aei, fi〉X|Y |2 ≤ 1. From these two facts we soon conclude

that |〈Ae, f〉X|Y |2 ≤ 1/k + Ok(δ) a.e. whenever {e1, . . . , ek, e} and
{f1, . . . , fk, f} are sub-orthonormal. If k, δ are chosen appropriately
we obtain |〈Ae, f〉X|Y | ≤ ε a.e. Thus (by duality) A maps the unit
ball of the orthogonal complement of the span of {e1, . . . , ek} to the
ε-neighbourhood of the span of {f1, . . . , fk} (with notions such as
orthogonality, span, and neighbourhood being defined conditionally
of course, using the L∞(Y )-Hilbert module structure of L2(X|Y )).
From this it is not hard to establish the desired precompactness. �

Notes. This lecture first appeared at terrytao.wordpress.com/2008/03/02.
Thanks to Lior Silberman, Orr, and Liu Xiao Chuan for corrections.
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2.15. The Furstenberg-Zimmer structure
theorem and the Furstenberg recurrence
theorem

In this lecture - the final one on general measure-preserving dynamics
- we put together the results from the past few lectures to establish the
Furstenberg-Zimmer structure theorem for measure-preserving sys-
tems, and then use this to finish the proof of the Furstenberg recur-
rence theorem.

2.15.1. The Furstenberg-Zimmer structure theorem. LetX =
(X,X , µ, T ) be a measure-preserving system, and let Y = (Y,Y, ν, S)
be a factor. In Theorem 2.14.9, we showed that if X was not a weakly
mixing extension of Y , then we could find a non-trivial compact ex-
tension Z of Y (thus L2(Z) is a non-trivial superspace of L2(Y )).
Combining this with Zorn’s lemma (and starting with the trivial fac-
tor Y = pt), one obtains

Theorem 2.15.1 (Furstenberg-Zimmer structure theorem). [Fu1977],[Zi1976]
Let (X,X , µ, T ) be a measure-preserving system. Then there exists an
ordinal α and a factor Yβ = (Yβ ,Yβ , νβ , Sβ) for every β ≤ α with the
following properties:

(1) Y∅ is a point.

(2) For every successor ordinal β + 1 ≤ α, Yβ+1 is a compact
extension of Yβ.

(3) For every limit ordinal β ≤ α, Yβ is the inverse limit of the
Yγ for the γ < β, in the sense that L2(Yβ) is the closure of⋃
γ<β L

2(Yγ).

(4) X is a weakly mixing extension of Yα.

Remark 2.15.2. This theorem should be compared with Fursten-
berg’s structure theorem for distal systems in topological dynamics
(Theorem 2.7.5). Indeed, in analogy to that theorem, the factors Yβ
are known as distal measure-preserving systems.

Exercise 2.15.1. Deduce Theorem 2.15.1 from Theorem 2.14.9.

Remark 2.15.3. Since the Hilbert spaces L2(Yβ) are increasing in-
side the separable Hilbert space L2(X), it is not hard to see that the
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ordinal α must be at most countable. Conversely, in [BeFo1996] it
was shown that every countable ordinal can appear as the minimal
length of a Furstenberg tower of a given system. Thus, in some sense,
the complexity of a system can be as great as any countable ordinal.
This is because the structure theorem roots out every last trace of
structure from the system, so much so that every remaining function
orthogonal to the final factor L2(Yα) is weakly mixing. But in many
applications one does not need so much weak mixing; for instance to
establish k-fold recurrence for a function f , it would be enough to
obtain weak mixing control on just a few combinations of f (such as
Thff), as we already saw in the proof of Roth’s theorem in Section
2.12. In fact, it is not hard to show that to prove Furstenberg’s re-
currence theorem for a fixed k, one only needs to analyse the first
k−2 steps of the Furstenberg tower. As one consequence of this, it is
possible to avoid the use of Zorn’s lemma (and the axiom of choice)
in the proof of the recurrence theorem.

Remark 2.15.4. Analogues of the structure theorem exist for other
actions, such as the action of Zd on a measure space (which can equiv-
alently be viewed as the action of d commuting shifts T1, . . . , Td : X →
X). There is a new feature in this case, though: instead of having a
tower of purely compact extensions, followed by one weakly mixing
extension at the end, one instead has a tower of hybrid extensions
(known as primitive extensions), each one of which is compact along
one subgroup of Zd and weakly mixing along a complementary sub-
group. See for instance [Fu1981] for details.

2.15.2. The Furstenberg recurrence theorem. The Furstenberg
recurrence theorem asserts that every measure-preserving system (X,X , µ, T )
has the uniform multiple recurrence (UMR) property, thus

(2.177) lim inf
N→∞

1
N

N−1∑
n=0

∫
X

fTnf . . . T (k−1)nf dµ > 0

whenever k ≥ 1 and f ∈ L∞(X) is non-negative with positive mean.
The UMR property is trivially true for a point, and we have al-
ready shown that UMR is preserved by compact extensions (Theorem
2.13.11) and by weakly mixing extensions (Theorem 2.14.5). The for-
mer result lets us climb the successor ordinal steps of the tower in
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Theorem 2.15.1, while the latter lets us jump from the final distal
system Yα to X. But to clinch the proof of the recurrence theorem,
we also need to deal with the limit ordinals. More precisely, we need
to prove

Theorem 2.15.5. (Limits of chains) Let (Yβ)β∈B be a totally ordered
family of factors of a measure-preserving system X (thus L2(Yβ) is
increasing with β, and let Y be the inverse limit of the Yβ. If each of
the Yβ obeys the UMR, then Y does also.

With this theorem, the Furstenberg recurrence theorem (Theo-
rem 2.11.4) follows from the previous theorems and transfinite induc-
tion.

The main difficulty in establishing Theorem 2.15.5 is that while
each Yβ obeys the UMR separately, we do not know that this property
holds uniformly in β. The main new observation needed to establish
the theorem is that there is another way to leverage the UMR from a
factor to an extension... if the support of the function f is sufficiently
“dense”. We motivate this by first considering the unconditional case.

Proposition 2.15.6. (UMR for densely supported functions) Let
(X,X , µ, T ) be a measure-preserving system, let k ≥ 1 be an inte-
ger, and let f ∈ L∞(X) be a non-negative function whose support
{x : f(x) > 0} has measure greater than 1−1/k. Then (2.177) holds.

Proof. By monotone convergence, we can find ε > 0 such that f(x) >
ε for all x outside of a set E of measure at most 1/k − ε. For any n,
this implies that f(x)Tnf(x) . . . T (k−1)nf(x) > εk for all x outside of
the set E ∪TnE ∪ . . .∪T (k−1)nE, which has measure at most 1− kε.
In particular we see that

(2.178)
∫
X

fTnf . . . T (k−1)nf dµ > kεk+1

for all n, and the claim follows. �

As with the other components of the proof of the recurrence the-
orem, we will need to upgrade the above proposition to a “relative”
version:
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Proposition 2.15.7. (UMR for relatively densely supported func-
tions) Let (X,X , µ, T ) be an extension of a factor (Y,Y, ν, S) with
the UMR, let k ≥ 1 be an integer, and let f ∈ L∞(X) be a non-
negative function whose support Ω := {x : f(x) > 0} is such that the
set {y ∈ Y : E(1Ω|Y ) > 1 − 1/k} has positive measure in Y . Then
(2.177) holds.

Proof. By monotone convergence again, we can find ε > 0 such that
the set E := {x : f(x) > ε} is such that the set F := {y ∈ Y :
E(1E |Y ) > 1−1/k+ ε} has positive measure. Since Y has the UMR,
this implies that (2.177) holds for 1F . In other words, there exists
c > 0 such that

(2.179) ν(F ∩ TnF ∩ . . . ∩ T (k−1)nF ) > c

for all n in a set of positive lower density.

Now we turn to f . We have the pointwise lower bound f(x) ≥
ε1E(x), and so

(2.180) fTnf . . . T (k−1)nf(x) ≥ εk1E∩TnE∩...∩T (k−1)nE(x).

We have the crude lower bound

(2.181) 1E∩TnE∩...∩T (k−1)nE(x) ≥ 1−
k−1∑
j=0

1T jnEc(x);

inserting this into (2.180) and taking conditional expectations, we
conclude

(2.182) E(fTnf . . . T (k−1)nf |Y )(y) ≥ εk(1−
k−1∑
j=0

E(1T jnEc |Y )(y))

a.e. On the other hand, we have

(2.183) E(1T jnEc |Y ) = 1−E(1T jnE |Y ) = 1− T jnE(1E |Y ).

By definition of F, we thus see that if y lies in F∩TnF∩. . .∩T (k−1)nF ,
then

(2.184) E(fTnf . . . T (k−1)nf |Y )(y) ≥ εk × kε.

Integrating this and using (2.179), we obtain

(2.185)
∫
X

fTnf . . . T (k−1)nf dµ ≥ cεk × kε
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for all n in a set of positive lower density, and (2.177) follows. �

Proof of Theorem 2.15.5. Let f ∈ L∞(Y ) be non-negative with
positive mean

∫
X
f dµ = c > 0; we may normalise f to be bounded

by 1. Since Y is the inverse limit of the Yβ , we see that the orthogonal
projections E(f |Yβ) converge in L2(X) norm to E(f |Y ) = f . Thus,
for any ε, we can find β such that

(2.186) ‖f −E(f |Yβ)‖L2(X) ≤ ε.

Now E(f |Yβ) has the same mean c as f , and is also bounded by 1.
Thus the set E := {y : E(f |Yβ)(y) ≥ c/2} must have measure at least
c/2 in Yβ . Now if Ω := {x : f(x) > 0}, then we have the pointwise
bound

(2.187) |f −E(f |Yβ)| ≥ c

2
1Ωc1E ;

squaring this and taking conditional expectations we obtain

(2.188) E(|f −E(f |Yβ)|2|Yβ)(y) ≥ c2

4
(1−E(1Ω|Yβ)(y))1E(y),

and so by (2.186) and Markov’s inequality we see that 1−E(1Ω|Yβ)(y)1E(y) <
1/k on a set of measure Oc(ε2). Choosing ε sufficiently small de-
pending on c, we conclude (from the lower bound µ(E) ≥ c/2) that
E(1Ω|Yβ)(y) > 1 − 1/k on a set of positive measure. The claim now
follows from Proposition 2.15.7. �

The proof of the Furstenberg recurrence theorem (and thus Sze-
merédi’s theorem) is finally complete.

Remark 2.15.8. The same type of argument yields many further re-
currence theorems, and thus (by the correspondence principle) many
combinatorial results also. For instance, in [Fu1977] it was noted
that the above arguments allow one to strengthen (2.177) to

(2.189) lim inf
N→∞

inf
M

1
N

M+N−1∑
n=M

∫
X

fTnf . . . T (k−1)nf dµ > 0,

which allows one to conclude that in a set A of positive upper density,
the set of n for which A ∩ (A+ n) ∩ . . . ∩ (A+ (k − 1)n) has positive
upper density is syndetic for every k. One can also extend the argu-
ment to higher dimensions, and to polynomial recurrence without too
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many changes in the structure of the proof. But some more serious
modifications to the argument are needed for other recurrence results
involving IP systems or Hales-Jewett type results; see Section 2.10
for more discussion.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/03/05.
Thanks to Lior Silberman, Nate Chandler, and Liu Xiao Chuan for
corrections.

2.16. A Ratner-type theorem for nilmanifolds

This section and the next will be on Ratner’s theorems on equidis-
tribution of orbits on homogeneous spaces (see also Section 1.11 of
Structure and Randomness for an introduction to this family of re-
sults). Here, I will discuss two special cases of Ratner-type theorems.
In this lecture, I will talk about Ratner-type theorems for discrete
actions (of the integers Z) on nilmanifolds; this case is much sim-
pler than the general case, because there is a simple criterion in the
nilmanifold case to test whether any given orbit is equidistributed
or not. Ben Green and I had need recently[GrTa2009c] to develop
quantitative versions of such theorems for a number-theoretic applica-
tion. In Section 2.17, I will discuss Ratner-type theorems for actions
of SL2(R), which is simpler in a different way (due to the semisim-
plicity of SL2(R), and lack of compact factors).

2.16.1. Nilpotent groups. Before we can get to Ratner-type the-
orems for nilmanifolds, we will need to set up some basic theory for
these nilmanifolds. We begin with a quick review of the concept of
a nilpotent group - a generalisation of that of an abelian group. Our
discussion here will be purely algebraic (no manifolds, topology, or
dynamics will appear at this stage).

Definition 2.16.1 (Commutators). LetG be a (multiplicative) group.
For any two elements g,h in G, we define the commutator [g, h] to be
[g, h] := g−1h−1gh (thus g and h commute if and only if the com-
mutator is trivial). If H and K are subgroups of G, we define the
commutator [H,K] to be the group generated by all the commutators
{[h, k] : h ∈ H, k ∈ K}.
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For future reference we record some trivial identities regarding
commutators:

(2.190) gh = hg[g, h] = [g−1, h−1]hg

(2.191) h−1gh = g[g, h] = [h, g−1]g

(2.192) [g, h]−1 = [h, g].

Exercise 2.16.1. Let H, K be subgroups of a group G.

(1) Show that [H,K] = [K,H].

(2) Show that H is abelian if and only if [H,H] is trivial.

(3) Show that H is central if and only if [H,G] is trivial.

(4) Show that H is normal if and only if [H,G] ⊂ H.

(5) Show that [H,G] is always normal.

(6) If L C H,K is a normal subgroup of both H and K, show
that [H,K]/([H,K] ∩ L) ≡ [H/L,K/L].

(7) Let HK be the group generated by H∪K. Show that [H,K]
is a normal subgroup of HK, and when one quotients by this
subgroup, H/[H,K] and K/[H,K] become abelian.

Exercise 2.16.2. Let G be a group. Show that the group G/[G,G]
is abelian, and is the universal abelianisation of G in the sense that
every homomorphism φ : G→ H from G to an abelian group H can
be uniquely factored as φ = φ̃ ◦ π, where π : G → G/[G,G] is the
quotient map and φ̃ : G/[G,G]→ H is a homomorphism.

Definition 2.16.2 (Nilpotency). Given any group G, define the lower
central series

(2.193) G = G0 = G1 BG2 BG3 B . . .

by setting G0, G1 := G and Gi+1 := [Gi, G] for i ≥ 1. We say
that G is nilpotent of step s if Gs+1 is trivial (and Gs is non-trivial).

Examples 2.16.3. A group is nilpotent of step 0 if and only if it
is trivial. It is nilpotent of step 1 if and only if it is non-trivial and
abelian. Any subgroup or homomorphic image of a nilpotent group
of step s is nilpotent of step at most s. The direct product of two
nilpotent groups is again nilpotent, but the semi-direct product of
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nilpotent groups is merely solvable in general. If G is any group, then
G/Gs+1 is nilpotent of step at most s.

Example 2.16.4. Let n ≥ 1 be an integer, and let

(2.194) Un(R) =


1 R . . . R
0 1 . . . R
...

...
. . .

...
0 0 . . . 1


be the group of all upper-triangular n × n real matrices with 1s on
the diagonal (i.e. the group of unipotent upper-triangular matrices).
Then Un(R) is nilpotent of step n. Similarly if R is replaced by other
fields.

Exercise 2.16.3. Let G be an arbitrary group.

(1) Show that each element Gi of the lower central series is a
characteristic subgroup of G, i.e. φ(Gi) = Gi for all auto-
morphisms51 φ : G→ G.

(2) Show the filtration property [Gi, Gj ] ⊂ Gi+j for all i, j ≥ 0.
Hint : induct on i+j; then, holding i+j fixed, quotient by
Gi+j , and induct on (say) i. Note that once one quotients
by Gi+j , all elements of [Gi−1, Gj ] are central (by the first
induction hypothesis), while Gi−1 commutes with [G,Gj ]
(by the second induction hypothesis). Use these facts to
show that all the generators of [G,Gi−1] commute with Gj .

Exercise 2.16.4. Let G be a nilpotent group of step 2. Establish
the identity

(2.195) gnhn = (gh)n[g, h](
n
2)

for any integer n and any g, h ∈ G, where
(
n
2

)
:= n(n−1)

2 . (This can
be viewed as a discrete version of the first two terms of the Baker-
Campbell-Hausdorff formula. Conclude in particular that the space of

Hall-Petresco sequences n 7→ g0g
n
1 g

(n2)
2 , where gi ∈ Gi for i = 0, 1, 2,

is a group under pointwise multiplication (this group is known as the
Hall-Petresco group of G). There is an analogous identity (and an

51Specialising to inner automorphisms, we see in particular that the Gi are all
normal subgroups of G.



334 2. Ergodic theory

analogous group) for nilpotent groups of higher step; see for instance
[Le1998] for details. The Hall-Petresco group is rather useful for
understanding multiple recurrence and polynomial behaviour in nil-
manifolds; we will not discuss this in detail, but see Exercise 2.16.5
below for a hint as to the connection.

Exercise 2.16.5 (Arithmetic progressions in nilspaces are constrained).
Let G be a nilpotent group of step s ≤ 2, and consider two arithmetic
progressions x, gx, . . . gs+1x and y, hy, . . . , hs+1y of length s+ 2 in G,
where x, y ∈ X and g, h ∈ G. Show that if these progressions agree
in the first s + 1 places (thus gix = hiy for all i = 0, . . . , s) then
they also agree in the last place. Hint : the only tricky case is s = 2.
For this, either use direct algebraic computation, or experiment with
the group of Hall-Petresco sequences from the previous exercise. The
claim is in fact true for general s; see e.g. [GrTa2009d]

Remark 2.16.5. By Exercise 2.16.3.2, the lower central series is a
filtration with respect to the commutator operation g, h 7→ [g, h].
Conversely, if G admits a filtration G = G(0) = G(1) ≥ . . . with
[G(i), G(j)] ⊂ G(i+j) and G(j) trivial for j > s, then it is nilpotent
of step at most s. It is sometimes convenient for inductive purposes
to work with filtrations rather than the lower central series (which
is the “minimal” filtration available to a group G); see for instance
[GrTa2009c].

Remark 2.16.6. LetG be a nilpotent group of step s. Then [G,Gs] =
Gs+1 is trivial and so Gs is central (by Exercise 2.16.1), thus abelian
and normal. By another application of Exercise 2.16.1, we see that
G/Gs is nilpotent of step s−1. Thus we see that any nilpotent group
G of step s is an extension of a nilpotent group G/Gs of step s − 1,
in the sense that we have a short exact sequence

(2.196) 0→ Gs → G→ G/Gs → 0

where the kernel Gs is abelian. Conversely, every abelian extension of
an s−1-step nilpotent group is nilpotent of step at most s. In princi-
ple, this gives a recursive description of s-step nilpotent groups as an
s-fold iterated tower of abelian extensions of the trivial group. Un-
fortunately, while abelian groups are of course very well understood,
abelian extensions are a little inconvenient to work with algebraically;
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the sequence (2.196) is not quite enough, for instance, to assert that
G is a semi-direct product of Gs and G/Gs (this would require some
means of embedding G/Gs back into G, which is not available in gen-
eral). One can identify G (using the axiom of choice) with a product
set G/Gs × Gs with a group law (g, n) · (h,m) = (gh, nmφ(g, h)),
where φ : G/Gs×G/Gs → Gs is a map obeying various cocycle-type
identities, but the algebraic structure of φ is not particularly easy
to exploit. Nevertheless, this recursive tower of extensions seems to
be well suited for understanding the dynamical structure of nilpotent
groups and their quotients, as opposed to their algebraic structure
(cf. our use of recursive towers of extensions in our previous lectures
in dynamical systems and ergodic theory).

In our applications we will not be working with nilpotent groups
G directly, but rather with their homogeneous spaces X, i.e. spaces
with a transitive left-action of G. (Later we will also add some topo-
logical structure to these objects, but let us work in a purely algebraic
setting for now.) Such spaces can be identified with group quotients
X ≡ G/Γ where Γ ≤ G is the stabiliser Γ = {g ∈ G : gx = x} of
some point x in X. (By the transitivity of the action, all stabilisers
are conjugate to each other.) It is important to note that in general,
Γ is not normal, and so X is not a group; it has a left-action of G
but not right-action of G. Note though that any central subgroup of
G acts on either the left or the right.

Now let G be s-step nilpotent, and let us temporarily refer to
X = G/Γ as an s-step nilspace. Then Gs acts on the right in a manner
that commutes with the left-action of G. If we set Γs := Gs ∩ΓCGs,
we see that the right-action of Γs onG/Γ is trivial; thus we in fact have
a right-action of the abelian group Ts := Gs/Γs. (In our applications,
Ts will be a torus.) This action can be easily verified to be free. If
we let X := X/Ts be the quotient space, then we can view X as a
principal Ts-bundle over X. It is not hard to see that X ≡ π(G)/π(Γ),
where π : G → G/Gs is the quotient map. Observe that π(G) is
nilpotent of step s−1, and π(Γ) is a subgroup. Thus we have expressed
an arbitrary s-step nilspace as a principal bundle (by some abelian
group) over an s − 1-step nilspace, and so s-step nilspaces can be
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viewed as towers of abelian principal bundles, just as s-step nilpotent
groups can be viewed as towers of abelian extensions.

2.16.2. Nilmanifolds. It is now time to put some topological struc-
ture (and in particular, Lie structure) on our nilpotent groups and
nilspaces.

Definition 2.16.7 (Nilmanifolds). An s-step nilmanifold is a nilspace
G/Γ, where G is a finite-dimensional Lie group which is nilpotent of
step s, and Γ is a discrete subgroup which is cocompact or uniform
in the sense that the quotient G/Γ is compact.

Remark 2.16.8. In the literature, it is sometimes assumed that the
nilmanifold G/Γ is connected, and that the group G is connected,
or at least that its group π0(G) := G/G◦ of connected components
(G◦ C G being the identity component of G) is finitely generated
(one can often easily reduce to this case in applications). It is also
convenient to assume that G◦ is simply connected (again, one can
usually reduce to this case in applications, by passing to the universal
cover of G◦ if necessary), as this implies (by the Baker-Campbell-
Hausdorff formula) that the nilpotent Lie group G◦ is exponential,
i.e. the exponential map exp : g→ G◦ is a homeomorphism.

Example 2.16.9 (Skew torus). If we define

(2.197) G :=

1 R R
0 1 Z
0 0 1

 ; Γ :=

1 Z Z
0 1 Z
0 0 1


(thus G consists of the upper-triangular unipotent matrices whose
middle right entry is an integer, and Γ is the subgroup in which all
entries are integers) then G/Γ is a 2-step nilmanifold. If we write

(2.198) [x, y] :=

1 x y

0 1 0
0 0 1

Γ

then we see thatG/Γ is isomorphic to the square {[x, y] : 0 ≤ x, y ≤ 1}
with the identifications [x, 1] ≡ [x, 0] and [0, y] := [1, y + x mod 1].
(Topologically, this is homeomorphic to the ordinary 2-torus (R/Z)2,
but the skewness will manifest itself when we do dynamics.)
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Example 2.16.10 (Heisenberg nilmanifold). If we set

(2.199) G :=

1 R R
0 1 R
0 0 1

 ; Γ :=

1 Z Z
0 1 Z
0 0 1


then G/Γ is a 2-step nilmanifold. It can be viewed as a three-
dimensional cube with the faces identified in a somewhat skew fashion,
similarly to the skew torus in Example 2.16.9.

Let g be the Lie algebra of G. Every element g of G acts lin-
early on g by conjugation. Since G is nilpotent, it is not hard to see
(by considering the iterated commutators of g with an infinitesimal
perturbation of the identity) that this linear action is unipotent, and
in particular has determinant 1. Thus, any constant volume form
on this Lie algebra will be preserved by conjugation, which by basic
differential geometry allows us to create a volume form (and hence a
measure) on G which is invariant under both left and right transla-
tion; this Haar measure is clearly unique up to scalar multiplication.
(In other words, nilpotent Lie groups are unimodular.) Restricting
this measure to a fundamental domain of G/Γ and then descending
to the nilmanifold we obtain a left-invariant Haar measure, which (by
compactness) we can normalise to be a Borel probability measure.
(Because of the existence of a left-invariant probability measure µ on
G/Γ, we refer to the discrete subgroup Γ of G as a lattice.) One can
show that this left-invariant Borel probability measure is unique.

Definition 2.16.11 (Nilsystem). An s-step nilsystem (or nilflow)
is a topological measure-preserving system (i.e. both a topological
dynamical system and a measure-preserving system) with underlying
space G/Γ a s-step nilmanifold (with the Borel σ-algebra and left-
invariant probability measure), with a shift T of the form T : x 7→ gx

for some g ∈ G.

Example 2.16.12. The Kronecker systems x 7→ x + α on compact
abelian Lie groups are 1-step nilsystems.

Example 2.16.13. The skew shift system (x, y) 7→ (x + α, y + x)
on the torus (R/Z)2 can be identified with a nilflow on the skew
torus (Example 2.16.9), after identifying (x,y) with [x,y] and using
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the group element

(2.200) g :=

1 α 0
0 1 1
0 0 1


to create the flow.

Example 2.16.14. Consider the Heisenberg nilmanifold (Example
2.16.10) with a flow generated by a group element

(2.201) g :=

1 γ β

0 1 α

0 0 1


for some real numbers α, β, γ. If we identify

(2.202) [x, y, z] :=

1 z y

0 1 x

0 0 1

Γ

then one can verify that
(2.203)

Tn : [x, y, z] 7→ [{x+nα}, y+nβ+
n(n+ 1)

2
αγ−bx+nαc(z+nγ) mod 1, z+nγ mod 1]

where bc and {} are the integer part and fractional part functions
respectively. Thus we see that orbits in this nilsystem are vaguely
quadratic in n, but for the presence of the not-quite-linear operators
bc and {}. (These expressions are known as bracket polynomials, and
are intimately related to the theory of nilsystems.)

Given that we have already seen that nilspaces of step s are princi-
pal abelian bundles of nilspaces of step s−1, it should be unsurprising
that nilsystems of step s are abelian extensions of nilsystems of step
s − 1. But in order to ensure that topological structure is preserved
correctly, we do need to verify one point:

Lemma 2.16.15. Let G/Γ be an s-step nilmanifold, with G connected
and simply connected. Then Γs := Gs ∩ Γ is a discrete cocompact
subgroup of Gs. In particular, Ts := Gs/Γs is a compact connected
abelian Lie group (in other words, it is a torus).
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Proof. Recall that G is exponential and thus identifiable with its Lie
algebra }. The commutators Gi can be similarly identified with the
Lie algebra commutators }i; in particular, the Gi are all connected,
simply connected Lie groups.

The key point to verify is the cocompact nature of Γs in Gs; all
other claims are straightforward. We first work in the abelianisation
G/G2, which is identifiable with its Lie algebra and thus isomorphic
to a vector space. The image of Γ under the quotient map G→ G/G2

is a cocompact subgroup of this vector space; in particular, it contains
a basis of this space. This implies that Γ contains an “abelianised”
basis e1, . . . , ed of G in the sense that every element of G can be
expressed in the form et11 . . . etdd modulo an element of the normal
subgroup G2 for some real numbers t1, . . . , td, where we take ad-
vantage of the exponential nature of G to define real exponentiation
gt := exp(t log(g)). Taking commutators s times (which eliminates all
the “modulo G2” errors), we then see that Gs is generated by expres-
sions of the form [ei1 , [ei2 , [. . . , eis ] . . .]

t for i1, . . . , is ∈ {1, . . . , d} and
real t. Observe that these expressions lie in Γs if t is an integer. As
Gs is abelian, we conclude that each element in Gs can be expressed
as an element of Γs, times a bounded number of elements of the form
[ei1 , [ei2 , [. . . , eis ] . . .]

t with 0 ≤ t < 1. From this we conclude that
the quotient map Gs 7→ Gs/Γs is already surjective on some bounded
set, which we can take to be compact, and so Gs/Γs is compact as
required. �

As a consequence of this lemma, we see that if X = G/Γ is
an s-step nilmanifold with G connected and simply connected, then
X/Ts is an s − 1-step nilmanifold (with G still connected and sim-
ply connected), and that X is a principal Ts-bundle over X/Ts in
the topological sense as well as in the purely algebraic sense. One
consequence of this is that every s-step nilsystem (with G connected
and simply connected) can be viewed as a toral extension (i.e. a
group extension by a torus) of an s− 1-step nilsystem (again with G
connected and simply connected). Thus for instance the skew shift
system (Example 2.16.13) is a circle extension of a circle shift, while
the Heisenberg nilsystem (Example 2.16.14) is a circle extension of
an abelian 2-torus shift.
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Remark 2.16.16. One should caution though that the converse of
the above statement is not necessarily true; an extension X×φT of an
s− 1-step nilsystem X by a torus T using a cocycle φ : X → T need
not be isomorphic to an s-step nilsystem (the cocycle φ has to obey
an an additional equation (or more precisely, a system of equations
when s > 2), known as the Conze-Lesigne equation, before this is the
case. See for instance [Zi2007] for further discussion.

Exercise 2.16.6. Show that Lemma 2.16.15 continues to hold if we
relax the condition that G is connected and simply connected, to
instead require thatG/Γ is connected, thatG/G◦ is finitely generated,
and that G◦ is simply connected.

Exercise 2.16.7. Show that Lemma 2.16.15 continues to hold if Gs
and Γs are replaced by Gi and Γi = Gi ∩ Γ for any 0 ≤ i ≤ s. In
particular, setting i = 2, we obtain a projection map π : X → X2

from X to the Kronecker nilmanifold X2 = (G/G2)/(ΓG2/G2).

Remark 2.16.17. One can take the structural theory of nilmani-
folds much further, in particular developing the theory of Mal’cev
bases (of which the elements e1, . . . , ed used to prove Lemma 2.16.15
were a very crude prototype). See the foundational paper[Ma1951]
of Mal’cev for details, as well as the later paper [Le2005] which ad-
dresses the case in which G is not necessarily connected.

2.16.3. A criterion for ergodicity. We now give a useful criterion
to determine when a given nilsystem is ergodic.

Theorem 2.16.18. Let (X,T ) = (G/Γ, x 7→ gx) be an s-step nilsys-
tem with G connected and simply connected, and let (X2, T2) be the
underlying Kronecker factor, as defined in Exercise 2.16.7. Then X

is ergodic if and only if X2 is ergodic.

This result was first proven in [Gr1961], using spectral theory
methods. We will use an argument of Parry[Pa1969] (and adapted in
[Le2005]), relying on “vertical” Fourier analysis and topological ar-
guments, which we have already used for the skew shift in Proposition
2.9.11. An alternate proof also appears in Section 1.4.

Proof. If X is ergodic, then the factor X2 is certainly ergodic. To
prove the converse implication, we induct on s. The case s ≤ 1 is



2.16. A Ratner-type theorem for nilmanifolds 341

trivial, so suppose s > 1 and the claim has already been proven for
s−1. Then if X2 is ergodic, we already know from induction hypoth-
esis that X/Ts is ergodic. Suppose for contradiction that X is not
ergodic, then we can find a non-constant shift-invariant function on
X. Using Fourier analysis (or representation theory) of the vertical
torus Ts as in Proposition 2.9.11, we may thus find a non-constant
shift-invariant function f which has a single vertical frequency χ in
the sense that one has f(gsx) = χ(gs)f(x) for all x ∈ X, gs ∈ Gs,
and some character χ : Gs → S1. If the character χ is trivial, then f
descends to a non-constant shift-invariant function on X/Ts, contra-
dicting the ergodicity there, so we may assume that χ is non-trivial.
Also, |f | descends to a shift-invariant function on X/Ts and is thus
constant by ergodicity; by normalising we may assume |f | = 1.

Now let gs−1 ∈ Gs−1, and consider the function Fgs−1(x) :=
f(gs−1x)f(x). As Gs is central, we see that Fgs−1 is Gs-invariant
and thus descends to X/Ts. Furthermore, as f is shift-invariant (so
f(gx) = f(x)), and [gs−1, g] ∈ Gs, some computation reveals that
Fgs−1 is an eigenfunction:

(2.204) Fgs−1(gx) = χ([gs−1, g])Fgs−1(x).

In particular, if χ([gs−1, g]) 6= 1, then Fgs−1 must have mean
zero. On the other hand, by continuity (and the fact that |f | = 1)
we know that Fgs−1 has non-zero mean for gs−1 close enough to the
identity. We conclude that χ([gs−1, g]) = 1 for all gs−1 close to the
identity; as the map gs−1 7→ χ([gs−1, g]) is a homomorphism, we
conclude in fact that χ([gs−1, g]) = 1 for all gs−1. In particular,
from (2.204) and ergodicity we see that Fgs−1 is constant, and so
f(gs−1x) = c(gs−1)f(x) for some c(gs−1) ∈ S1.
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Now let h ∈ G be arbitrary. Observe that∫
G

f(hgs−1x)f(x) dµ =
∫
G

f(hy)f(g−1
s−1y) dµ

= c(gs−1)
∫
G

f(hy)f(y) dµ

=
∫
G

f(gs−1hy)f(y) dµ

= χ([gs−1, h])
∫
G

f(hgs−1y)f(y) dµ.(2.205)

For h and gs−1 close enough to the identity, the integral is non-
zero, and we conclude that χ([gs−1, h]) = 1 in this case. The map
(gs−1, h) 7→ χ([gs−1, h]) is a homomorphism in each variable and so
is constant. Since Gs = [Gs−1, G], we conclude that χ is trivial, a
contradiction. �

Remark 2.16.19. The hypothesis that G is connected and simply
connected can be dropped; see [Le2005] for details.

One pleasant fact about nilsystems, as compared with arbitrary
dynamical systems, is that ergodicity can automatically be upgraded
to unique ergodicity:

Theorem 2.16.20. Let (X,T ) be an ergodic nilsystem. Then (X,T )
is also uniquely ergodic. Equivalently, for every x ∈ X, the orbit
(Tnx)n∈Z is equidistributed.

Exercise 2.16.8. By inducting on step and adapting the proof of
Proposition 2.9.14, prove Theorem 2.16.20.

2.16.4. A Ratner-type theorem. A subnilsystem of a nilsystem
(X,T ) = (G/Γ, T ) is a compact subsystem (Y, S) which is of the form
Y = Hx for some x ∈ X and some closed subgroup H ≤ G. One
easily verifies that a subnilsystem is indeed a nilsystem.

From the above theorems we quickly obtain

Corollary 2.16.21 (Dichotomy between structure and randomness).
Let (X,T ) be a nilsystem with group G connected and simply con-
nected, and let x ∈ X. Then exactly one of the following statements
is true:
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(1) The orbit (Tnx)n∈Z is equidistributed.

(2) The orbit (Tnx)n∈Z is contained in a proper subnilsystem
(Y, S) with group H connected and simply connected, and
with dimension strictly smaller than that of G.

Proof. It is clear that 1. and 2. cannot both be true. Now suppose
that 1. is false. By Theorem 2.16.20, this means that (X,T ) is not
ergodic; by Theorem 2.16.18, this implies that the Kronecker system
(X2, T2) is not ergodic. Expanding functions on X2 ≡ G/G2 into
characters and using Fourier analysis, we conclude that there is a
non-trivial character χ : G/G2 → S1 which is T2-invariant. If we let
π : G → G/G2 be the canonical projection, then χ : G → S1 is a
continuous homomorphism, and the kernel H is a closed connected
subgroup of G of strictly lower dimension. Furthermore, Hx is equal
to a level set of χ and is thus compact. Since χ is T2 invariant, we
see that Tnx ∈ Hx for all n, and the claim follows. �

Iterating this corollary, we obtain

Corollary 2.16.22 (Ratner-type theorem for nilmanifolds). Let (X,T )
be a nilsystem with group G connected and simply connected, and let
x ∈ X. Then the orbit (Tnx)n∈Z is equidistributed in some subnil-
manifold (Y, S) of (X,T ). (In particular, this orbit is dense in Y .)
Furthermore, Y = Hx for some closed connected subgroup H of G.

Remark 2.16.23. Analogous claims also hold whenG is not assumed
to be connected or simply connected, and if the orbit (Tnx)n∈Z is re-
placed with a polynomial orbit (T p(n)x)n∈Z; see [Le2005], [Le2005b].
In a different direction, such discrete Ratner-type theorems have been
extended to other unipotent actions on finite volume homogeneous
spaces by Shah[Sh1996]. Quantitative versions of this theorem have
also been obtained by Ben Green and myself[GrTa2009c].

Notes. This lecture first appeared at terrytao.wordpress.com/2008/03/09.
Thanks to Jordi-Lluis Figueras Romero for corrections.
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2.17. A Ratner-type theorem for SL2(R) orbits

In this final section of this chapter, we establish a Ratner-type theo-
rem for actions of the special linear group SL2(R) on homogeneous
spaces. More precisely, we show:

Theorem 2.17.1. Let G be a Lie group, let Γ < G be a discrete
subgroup, and let H ≤ G be a subgroup isomorphic to SL2(R). Let µ
be an H-invariant probability measure on G/Γ which is ergodic with
respect to H (i.e. all H-invariant sets either have full measure or
zero measure). Then µ is homogeneous in the sense that there exists
a closed connected subgroup H ≤ L ≤ G and a closed orbit Lx ⊂ G/Γ
such that µ is L-invariant and supported on Lx.

This result is a special case of a more general theorem of Ratner,
which addresses the case when H is generated by elements which act
unipotently on the Lie algebra g by conjugation, and when G/Γ has
finite volume. To prove this theorem we shall follow an argument of
Einsiedler[Ei2006], which uses many of the same ingredients used in
Ratner’s arguments but in a simplified setting (in particular, taking
advantage of the fact that H is semisimple with no non-trivial com-
pact factors). These arguments have since been extended and made
quantitative in [EiMaVe2007].

2.17.1. Representation theory of SL2(R). Theorem 2.17.1 con-
cerns the action of H ≡ SL2(R) on a homogeneous space G/Γ. Before
we are able to tackle this result, we must first understand the linear
actions of H ≡ SL2(R) on real or complex vector spaces - in other
words, we need to understand the representation theory of the Lie
group SL2(R) (and its associated Lie algebra sl2(R)).

Of course, this theory is very well understood, and by using the
machinery of weight spaces, raising and lowering operators, etc. one
can completely classify all the finite-dimensional representations of
SL2(R); in fact, all such representations are isomorphic to direct
sums of symmetric powers of the standard representation of SL2(R)
on R2. This classification quickly yields all the necessary facts we
will need here. However, we will use only a minimal amount of this
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machinery here, to obtain as direct and elementary a proof of the
results we need as possible.

The first fact we will need is that finite-dimensional representa-
tions of SL2(R) are completely reducible:

Lemma 2.17.2 (Complete reducibility). Let SL2(R) act linearly
(and smoothly) on a finite-dimensional real vector space V, and let
W be a SL2(R)-invariant subspace of V . Then there exists a com-
plementary subspace W ′ to W which is also SL2(R)-invariant (thus
V is isomorphic to the direct sum of W and W ′).

Proof. We will use Weyl’s unitary trick to create the complement
W ′, but in order to invoke this trick, we first need to pass from the
non-compact group SL2(R) to a compact counterpart. This is done
in several stages.

First, we linearise the action of the Lie group SL2(R) by differ-
entiating to create a corresponding linear action of the Lie algebra
sl2(R) in the usual manner.

Next, we complexify the action. Let V C := V ⊗ C and WC :=
W ⊗C be the complexifications of V and W respectively. Then the
complexified Lie algebra sl2(C) acts on both V C and WC, and in
particular the special unitary Lie algebra su2(C) does also.

Since the special unitary group

(2.206) SU2(C) =
{(

α β

−β α

)
: α, β ∈ C; |α|2 + |β|2 = 1

}
is topologically equivalent to the 3-sphere S3 and is thus simply con-
nected, a standard homotopy argument allows one52 to exponentiate
the su2(C) action to create a SU2(C) action, thus creating the desired
compact action.

Now we can apply the unitary trick. Take any Hermitian form
〈, 〉 on V C. This form need not be preserved by the SU2(C) action,
but if one defines the averaged form

(2.207) 〈u, v〉SU2 :=
∫
SU2(C)

〈gu, gv〉 dg

52This trick is not restricted to sl2(R), but can be generalised to other semisimple
Lie algebras using the Cartan decomposition.
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where dg is Haar measure on the compact Lie group SU2(C), then we
see that 〈, 〉SU2 is a Hermitian form which is SU2(C)-invariant; thus
this form endows V C with a Hilbert space structure with respect to
which the SU2(C)-action is unitary. If we then define (W ′)C to be the
orthogonal complement of WC in this Hilbert space, then this vector
space is invariant under the SU2(C) action, and thus (by differentia-
tion) by the su2(C) action. But observe that su2(C) and sl2(R) have
the same complex span (namely, sl2(C)); thus the complex vector
space (W ′)C is also sl2(R)-invariant.

The last thing to do is to undo the complexification. If we let W ′

be the space of real parts of vectors in (W ′)C which are real mod-
ulo WC, then one easily verifies that W ′ is sl2(R)-invariant (hence
SL2(R)-invariant, by exponentiation) and is a complementary sub-
space to W , as required. �

Remark 2.17.3. We can of course iterate the above lemma and
conclude that every finite-dimensional representation of SL2(R) is
the direct sum of irreducible representations, which explains the term
“complete reducibility”. Complete reducibility of finite-dimensional
representations of a Lie algebra (over a field of characteristic zero)
is equivalent to that Lie algebra being semisimple. The situation is
slightly more complicated for Lie groups, though, if such groups are
not simply connected.

An important role in our analysis will be played by the one-
parameter unipotent subgroup U := {ut : t ∈ R} of SL2(R), where

(2.208) ut :=
(

1 t

0 1

)
.

Clearly, the elements of U are unipotent when acting on R2. It
turns out that they are unipotent when acting on all other finite-
dimensional representations also:

Lemma 2.17.4. Suppose that SL2(R) acts on a finite-dimensional
real or complex vector space V . Then the action of any element of U
on V is unipotent.

Proof. By complexifying V if necessary we may assume that V is
complex. The action of the Lie group SL2(R) induces a Lie algebra
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homomorphism ρ : sl2(R) → End(V ). To show that the action of U
is unipotent, it suffices to show that ρ(log u) is nilpotent, where

(2.209) log u =
(

0 1
0 0

)
is the infinitesimal generator of U . To show this, we will exploit the
fact that log u induces a raising operator. We introduce the diagonal
subgroup D := {dt : t ∈ R} of SL2(R), where

(2.210) dt :=
(
et 0
0 e−t

)
.

This group has infinitesimal generator

(2.211) log d =
(

1 0
0 −1

)
.

Observe that [log d, log u] = 2 log u, and thus (since ρ is a Lie algebra
homomorphism)

(2.212) [ρ(log d), ρ(log u)] = 2ρ(log u).

We can rewrite this as

(2.213) (ρ(log d)− λ− 2)ρ(log u) = ρ(log u)(ρ(log d)− λ)

for any λ ∈ C, which on iteration implies that

(2.214) (ρ(log d)− λ− 2r)mρ(log u)r = ρ(log u)r(ρ(log d)− λ)m

for any non-negative integers m, r. But this implies that ρ(log u)r

raises generalised eigenvectors of ρ(log d) of eigenvalue λ to gener-
alised eigenvectors of ρ(log d) of eigenvalue λ + 2m. But as V is fi-
nite dimensional, there are only finitely many eigenvalues of ρ(log d),
and so ρ(log u) is nilpotent on each of the generalised eigenvectors of
ρ(log d). By the Jordan normal form (see Section 1.13 of Structure
and Randomness), these generalised eigenvectors span V , and we are
done. �

Exercise 2.17.1. By carrying the above analysis further (and also
working with the adjoint of U to create lowering operators) show (for
complex V) that ρ(log d) is diagonalisable, and the eigenvalues are
all integers. For an additional challenge: deduce from this that the
representation is isomorphic to a direct sum of the representations
of SL2(R) on the symmetric tensor powers Symk(R2) of R2 (or, if
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you wish, on the space of homogeneous polynomials of degree k on 2
variables).

The group U is merely a subgroup of the group SL2(R), so it
is not a priori evident that any vector (in a space that SL2(R) acts
on) which is U-invariant, is also SL2(R)-invariant. But, thanks to
the highly non-commutative nature of SL2(R), this turns out to be
the case, even in infinite dimensions, once one restricts attention to
continuous unitary actions:

Lemma 2.17.5 (Mautner phenomenon). Let ρ : SL2(R) → U(V )
be a continuous unitary action on a Hilbert space V (possibly infinite
dimensional). Then any vector v ∈ V which is fixed by U , is also
fixed by SL2(R).

Proof. We use an argument of Margulis. We may of course take v
to be non-zero. Let ε > 0 be a small number. Then even though the

matrix wε :=
(

1 0
ε 1

)
is very close to the identity, the double orbit

UwεU can stray very far away from U . Indeed, from the algebraic
identity

(2.215)
(
et 0
ε e−t

)
= u(et−1)/εwεu(e−t−1)/ε

which is valid for any t ∈ R, we see that this double orbit in fact
comes very close to the diagonal group D. Applying (2.215) to the
U-invariant vector v and taking inner products with v, we conclude
from unitarity that

(2.216)
〈
ρ(
(
et 0
ε e−t

)
)v, v

〉
= 〈ρ(wε)v, v〉.

Taking limits as ε → 0 (taking advantage of the continuity of ρ) we
conclude that 〈ρ(dt)v, v〉 = 〈v, v〉. Since ρ(dt)v has the same length
as v, we conclude from the converse Cauchy-Schwarz inequality that
ρ(dt)v = v, i.e. that v is D-invariant. Since U and D generate
SL2(R), the claim follows. �

Remark 2.17.6. The key fact about U being used here is that its
Lie algebra is not trapped inside any proper ideal of sl2(R), which,
in turn, follows from the fact that this Lie algebra is simple. One
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can do the same thing for semisimple Lie algebras provided that the
unipotent group U is non-degenerate in the sense that it has non-
trivial projection onto each simple factor.

This phenomenon has an immediate dynamical corollary:

Corollary 2.17.7 (Moore ergodic theorem). Suppose that SL2(R)
acts in a measure-preserving fashion on a probability space (X,X , µ).
If this action is ergodic with respect to SL2(R), then it is also ergodic
with respect to U .

Proof. Apply Lemma 2.17.5 to L2(X,X , µ). �

2.17.2. Proof of Theorem 2.17.1. Having completed our representation-
theoretic preliminaries, we are now ready to begin the proof of The-
orem 2.17.1. The key is to prove the following dichotomy:

Proposition 2.17.8 (Lack of concentration implies additional sym-
metry). Let G,H, µ,Γ be as in Theorem 2.17.1. Suppose there exists
a closed connected subgroup H ≤ L ≤ G such that µ is L-invariant.
Then exactly one of the following statements hold:

(1) (Concentration) µ is supported on a closed orbit Lx of L.

(2) (Additional symmetry) There exists a closed connected sub-
group L < L′ ≤ G such that µ is L′-invariant.

Iterating this proposition (noting that the dimension of L′ is
strictly greater than that of L) we will obtain Theorem 2.17.1. So
it suffices to establish the proposition.

We first observe that the ergodicity allows us to obtain the con-
centration conclusion (2.206) as soon as µ assigns any non-zero mass
to an orbit of L:

Lemma 2.17.9. Let the notation and assumptions be as in Propo-
sition 2.17.8. Suppose that µ(Lx0) > 0 for some x0. Then Lx0 is
closed and µ is supported on Lx0.

Proof. Since Lx0 is H-invariant and µ is H-ergodic, the set Lx0

must either have full measure or zero measure. It cannot have zero
measure by hypothesis, thus µ(Lx0) = 1. Thus, if we show that
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Lx0 is closed, we automatically have that µ is supported on Lx0.
As G/Γ is a homogeneous space, we may assume without loss of
generality (conjugating L if necessary) that x0 is at the origin, then
Lx0 ≡ L/(Γ∩L). The measure µ on this set can then be pulled back
to a measure m on L by the formula

(2.217)
∫
L

f(g) dm(g) =
∫
L/(Γ∩L)

∑
g∈x(Γ∩L)

f(g) dµ(x).

By construction, m is left L-invariant (i.e. a left Haar measure) and
right (Γ ∩ L)-invariant. From uniqueness of left Haar measure up to
constants, we see that for any g in L there is a constant c(g) > 0
such that m(Eg) = c(g)m(E) for all measurable E. It is not hard
to see that c : L → R+ is a character, i.e. it is continuous and
multiplicative, thus c(gh) = c(g)c(h) for all g, h in L. Also, it is the
identity on (Γ ∩ L) and thus descends to a continuous function on
L/(Γ ∩ L). Since µ is L-invariant, we have
(2.218)∫
L/(Γ∩L)

c(g) dµ(g) =
∫
L/(Γ∩L)

c(hg) dµ(g) =
∫
L/(Γ∩L)

c(h)c(g) dµ(g)

for all h in L, and thus c is identically 1 (i.e. L is unimodular). Thus
m is right-invariant, which implies that µ obeys the right-invariance
property µ(Kx0) = µ(Kgx0) for any g in L and any sufficiently small
compact set K ⊂ L (small enough to fit inside a single fundamental
domain of L/(Γ ∩ L)).

Recall that µ(Lx0) = 1. By partitioning L into countably many
small sets as above, we can thus find a small compact set K ⊂ L such
that µ(Kx0) > 0. Now consider a maximal set of disjoint translates
Kg1x0,Kg2x0, . . . ,Kgkx0 ofKx0; since all of these sets have the same
positive measure, such a maximal set exists and is finite. Then for
any g in L, Kgx0 must intersect one of the sets Kgix0, which implies
that Lx0 =

⋃k
i=1K

−1Kgix0. But the right-hand side is compact, and
so Lx0 is closed as desired. �

We return to the proof of Proposition 2.17.8. In view of Lemma
2.17.9, we may assume that µ is totally non-concentrated on L-orbits
in the sense that

(2.219) µ(Lx) = 0 for allx ∈ G/Γ.
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In particular, for µ-almost every x and y, y does not lie in the orbit
Lx of x and vice versa; informally, the group elements in G that are
used to move from x to y should be somehow “transverse” to L. On
the other hand, we are given that µ is ergodic with respect to H, and
thus (by Corollary 2.17.7) ergodic with respect to U . This implies
(cf. Proposition 2.9.13) that µ-almost every point x in G/Γ is generic
(with respect to U) in the sense that

(2.220)
∫
G/Γ

f dµ = lim
T→+∞

1
T

∫ T

0

f(utx) dt.

for all continuous compactly supported f : G/Γ→ R.

Exercise 2.17.2. Prove this claim. Hint : obtain continuous ana-
logues of the theory from Sections 2.8, 2.9.

The equation (2.220) (and the Riesz representation theorem) lets
us describe the measure µ in terms of the U -orbit of a generic point.
On the other hand, from (2.219) and the ensuing discussion we see
that any two generic points are likely to be separated from each other
by some group element “transverse” to L. It is the interaction be-
tween these two facts which is going to generate the additional sym-
metry needed for Proposition 2.17.8. We illustrate this with a model
case, in which the group element centralises U :

Proposition 2.17.10. (central case). Let the notation and assump-
tions be as in Proposition 2.17.8. Suppose that x, y are generic points
such that y = gx for some g ∈ G that centralises U (i.e. it commutes
with every element of u). Then µ is invariant under the action of g.

Proof. Let f : G/Γ → R be continuous and compactly supported.
Applying (2.220) with x replaced by y = gx we obtain

(2.221)
∫
G/Γ

f dµ = lim
T→+∞

1
T

∫ T

0

f(utgx) dt.

Commuting g with ut and using (2.220) again, we conclude

(2.222)
∫
G/Γ

f dµ =
∫
G/Γ

f(gy) dµ(y)

and the claim follows from the Riesz representation theorem. �
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Of course, we don’t just want invariance under one group element
g; we want a whole group L′ of symmetries for which one has invari-
ance. But it is not hard to leverage the former to the latter, provided
one has enough group elements:

Lemma 2.17.11. Let the notation and assumptions be as in Proposi-
tion 2.17.8. Suppose one has a sequence gn of group elements tending
to the identity, such that the action of each of the gn preserve µ, and
such that none of the gn lie in L. Then there exists a closed connected
subgroup L < L′ ≤ G such that µ is L-invariant.

Proof. Let S be the stabiliser of µ, i.e. the set of all group elements
g whose action preserves µ. This is clearly a closed subgroup of G
which contains L. If we let L′ be the identity connected component
of S, then L′ is a closed connected subgroup containing L which will
contain gn for all sufficiently large n, and in particular is not equal to
L. The claim follows. �

From Proposition 2.17.10 and Lemma 2.17.11 we see that we are
done if we can find pairs xn, yn = gnxn of nearby generic points with
gn going to the identity such that gn 6∈ L and that gn centralises
U . Now we need to consider the non-central case; thus suppose for
instance that we have two generic points x, y = gx in which g is
close to the identity but does not centralise U . The key observation
here is that we can use the U -invariance of the situation to pull x
and y slowly apart from each other. More precisely, since x and y

are generic, we observe that utx and uty are also generic for any
t, and that these two points differ by the conjugated group element
gt := utgu−t. Taking logarithms (which are well-defined as long as gt

stays close to the identity), we can write

(2.223) log(gt) = ut log(g)u−t = exp(tad(log u)) log(g)

where ad is the adjoint representation. From Lemma 2.17.4, we know
that ad(log u) : g → g is nilpotent, and so (by Taylor expansion of
the exponential) log(gt) depends polynomially on t. In particular, if
g does not centralise U , then log(gt) is non-constant and thus must
diverge to infinity as t → +∞. In particular, given some small ball
B around the origin in g (with respect to some arbitrary norm), then
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whenever log g lies inside B around the origin and is not central, there
must be a first time t = tg such that log gtg reaches the boundary ∂B
of this ball. We write g∗ := gtg ∈ ∂B for the location of g when it
escapes. We now have the following variant of Proposition 2.17.10:

Proposition 2.17.12 (Non-central case). Let the notation and as-
sumptions be as in Proposition 2.17.8. Suppose that xn, yn ∈ G are
generic points such that yn = gnxn for some gn ∈ G which do not
centralise u, but such that gn converge to the identity (in particular,
gn ∈ B for all sufficiently large n). Suppose furthermore that xn, yn
are uniformly generic in the sense that for any continuous compactly
supported f : G/Γ → R, the convergence of (2.220) (with x replaced
by xn or yn) is uniform in n. Then µ is invariant under the action
of any limit point g∗ ∈ ∂B of the g∗n.

Proof. By passing to a subsequence if necessary we may assume
that g∗n converges to g∗. For each sufficiently large n, we write Tn :=
tgn , thus gtn ∈ B for all 0 ≤ t ≤ Tn, and gTnn = g∗n. We rescale
this by defining the functions hn : [0, 1] → B by hn(s) := gsTnn .
From the unipotent nature of U, these functions are polynomial (with
bounded degree), and also bounded (as they live in B), and are thus
equicontinuous (since all norms are equivalent on finite dimensional
spaces). Thus, by the Arzelá-Ascoli theorem, we can assume (after
passing to another subsequence) that hn is uniformly convergent to
some limit f , which is another polynomial. Since we already have
hn(2.206) = g∗n converging to g∗, this implies that for any ε > 0 there
exists δ > 0 such that hn(s) = g∗ +O(ε) for all 1− δ ≤ s ≤ 1 and all
sufficiently large n. In other words, we have

(2.224) utgnu
−t = g∗ +O(ε)

for sufficiently large n, whenever (1− δ)Tn ≤ t ≤ Tn.

This is good enough to apply a variant of the Proposition 2.17.10
argument. Namely, if f : G/Γ → R is continuous and compactly
supported, then by uniform genericity we have for T sufficiently large
that

(2.225)
∫
G/Γ

f dµ =
1
δT

∫ T

(1−δ)T
f(utyn) dt+O(ε)
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for all n. Applying (2.224) we can write utyn = g∗u
txn+O(ε) on the

support of f , and so by uniform continuity of f

(2.226)
∫
G/Γ

f dµ =
1
δT

∫ T

(1−δ)T
f(g∗utxn) dt+ o(1)

where o(1) goes to zero as ε → 0, uniformly in n. Using (2.220)
again and then letting ε → 0, we obtain the g∗-invariance of µ as
desired. �

Now we have all the ingredients to prove Proposition 2.17.8, and
thus Theorem 2.17.1.

Proof of Proposition 2.17.8. We know that µ-almost every point
is generic. Applying Egorov’s theorem, we can find sets E ⊂ G/Γ of
measure arbitrarily close to 1 (e.g. µ(E) ≥ 0.9) on which the points
are uniformly generic.

Now let V be a small neighbourhood the origin in L. Observe
from the Fubini-Tonelli theorem that

(2.227)
∫
X

1
m(V )

∫
V

1E(x)1E(gx) dm(g)dµ(x) ≥ 2µ(E)− 1 ≥ 0.8

where m is the Haar measure on the unimodular group L, from which
one can find a set E′ ⊂ E of positive measure such that m({g ∈ V :
gx ∈ E}) = 0.7m(V ) for all x ∈ E′; one can view E′ as “points of
density” of E in some approximate sense (and with regard to the L
action).

Since E′ has positive measure, and using (2.219), it is not hard
to find sequences xn, yn ∈ E′ with yn 6∈ Lxn for any n and with
dist(xn, yn)→ 0 (using some reasonable metric on G/Γ).

Exercise 2.17.3. Verify this. Hint : G/Γ can be covered by countably
many balls of a fixed radius.

Next, recall that H ≡ SL2(R) acts by conjugation on the Lie
algebra g of G, and also leaves the Lie algebra l ⊂ g of L invariant. By
Lemma 2.17.2, this implies there is a complementary subspace W of l

in g which is also H-invariant (and in particular, U -invariant). From
the inverse function theorem, we conclude that for any group element
g in G sufficiently close to the identity, we can factor g = exp(w)l



2.17. A Ratner-type theorem for SL2(R) orbits 355

where l ∈ L is also close to the identity, and w ∈ W is small (in fact
this factorisation is unique). We let πL : g 7→ l be the map from g to
l; this is well-defined and smooth near the identity.

Let n be sufficiently large, and write yn = gnxn where gn goes to
the identity as n goes to infinity. Pick ln ∈ V at random (using the
measure m conditioned to V). Using the inverse function theorem and
continuity, we see that the random variable πL(lngn) is supported in
a small neighbourhood of V, and that its distribution converges to the
uniform distribution of V (in, say, total variation norm) as n → ∞.
In particular, we see that y′n := lnyn ∈ E with probability at least
0.7 and x′n := πL(lngn)xn ∈ E with probability at least 0.6 (say) if n
is large enough. In particular we can find an ln ∈ V such that y′n, x

′
n

both lie in E. Also by construction we see that y′n = exp(wn)x′n for
some wn ∈ W ; since yn 6∈Lxn, we see that wn is non-zero. On the
other hand, since W is transverse to l and the distance between xn, yn
go to zero, we see that wn goes to zero.

There are now two cases. If exp(wn) centralises U for infinitely
many n, then from Proposition 2.17.10 followed by Lemma 2.17.11
we obtain conclusion 2 of Proposition 2.17.8 as required. Otherwise,
we may pass to a subsequence and assume that none of the exp(wn)
centralise U . Since W is preserved by U , we see that the group
elements exp(wn)∗ also lie in exp(K) for some compact set K in
W , and also on the boundary of B. This space is compact, and so
by Proposition 2.17.12 we see that µ is invariant under some group
element g ∈ exp(K) ∩ ∂B, which cannot lie in L. Since the ball B
can be chosen arbitrarily small, we can thus apply Lemma 2.17.11 to
again obtain conclusion 2 of Proposition 2.17.8 as required. �

Notes. This lecture first appeared at terrytao.wordpress.com/2008/03/15.
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3.1. Riemannian manifolds and curvature

In this preliminary section, I will quickly review the basic notions
of infinitesimal1 Riemannian geometry, and in particular defining the
Riemann, Ricci, and scalar curvatures of a Riemannian manifold.
This is a review only, in particular omitting any leisurely discussion
of examples or motivation for Riemannian geometry; I will have to
refer you to a textbook on the subject for a more complete treatment.

3.1.1. Smooth manifolds. Riemannian geometry takes place on
smooth manifolds2 M of some dimension d = 0, 1, 2, . . .. Recall that
a d-dimensional manifold (or d-manifold for short) M consists of the
following structures3:

• A topological space M (which for technical reasons we as-
sume to be Hausdorff and second countable);

• An atlas of charts φα : Uα → Vα, which are homeomor-
phisms from open sets Uα in M to open sets Vα in Rd, such
that the Uα cover M .

We say that the manifold M is smooth if the charts φα define a
consistent smooth structure, in the sense that the maps φα ◦ φ−1

β is
smooth (i.e. infinitely differentiable) on φβ(Uα ∩ Uβ) for every α, β.
One can then assert that a function f : M → X from M to another
space with a smooth structure (e.g. R or C) is smooth if f ◦ φ−1

α is
smooth on Vα for every α; a smooth map with an inverse which is
also smooth is known as a diffeomorphism. The space of all smooth
functions f : M → R is denoted C∞(M); this is a topological algebra
over the reals. More generally, we have the algebra C∞(U) for any
open subset of M .

Remark 3.1.1. The most intuitive way to view manifolds is from
an extrinsic viewpoint: as subsets of some larger-dimensional space

1The more “global” aspects of Riemannian geometry, for instance concerning
the relationship between distance, curvature, injectivity radius, and volume, will be
discussed later in this chapter.

2Unless otherwise stated, all manifolds are assumed to be without boundary.
3It is possible to view smooth manifolds more abstractly (and in a fully

coordinate-independent fashion) by using the structure sheaf of algebras C∞(U) to
define the smooth structure, rather than the atlas of charts, but we will not need to
take this perspective here.
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(e.g. viewing curves as subsets of the plane, surfaces as subsets of a
Euclidean space such as R3). While every smooth manifold can be
viewed this way (thanks to the Whitney embedding theorem), we will
in fact not use the extrinsic perspective at all in this course! Instead,
we will rely exclusively on the intrinsic perspective - by studying the
various structures on a smooth manifold M purely in terms of objects
that can be defined in terms of the atlas. In fact, once we set up the
most basic such structure - the tangent bundle - we will often not use
the atlas directly at all (thus working in a “coordinate-free” fashion).
However, the “local coordinates” provided by the charts in an atlas
will be useful for computations at various junctures.

Remark 3.1.2. It is a surprising and unintuitive fact that a single
topological manifold can have two distinct smooth structures which
are not diffeomorphic to each other! This is most famously the case for
7-spheres S7, giving rise to exotic spheres. However, in the case of 3-
manifolds - which is the focus of this course - all smooth structures are
diffeomorphic (a result of Munkres[Mu1960] and Whitehead[Wh1961];
see also Smale[Sm1961] for higher-dimensional variants), and so this
subtlety need not concern us.

Remark 3.1.3. As C∞(M) is commutative, we will multiply by
functions in this space on the left or on the right interchangeably. In
noncommutative geometry, this algebra is replaced by a noncommu-
tative algebra, and one has to take substantially more care with the
order of multiplication, but we will not use noncommutative geometry
here.

We will be interested in various vector bundles over a smooth
manifold M . A vector bundle V is a collection of (real) vector spaces
Vx of a fixed dimension k (the fibres of the bundle) associated to
each point x ∈ M , whose disjoint union V =

⊎
x∈M Vx can itself

be given the structure of a smooth (d + k-dimensional) manifold, in
such a way that for all sufficiently small neighbourhoods U of any
given point x, the set

⊎
x∈U Vx has a trivialisation, i.e. there is a

diffeomorphism between
⊎
x∈U Vx and U × Rk, with each fibre Vx

being identified in a linearly isomorphic way with the vector space
{x} ×Rk ≡ Rk. A (global) section of a vector bundle V is a smooth
map f : M → V such that f(x) ∈ Vx for every x ∈ V . The space of all
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sections is denoted Γ(V ); it is a vector space over R, and furthermore
is a module over C∞(M). We will sometimes also be interested in
local sections f : U → V on some open subset U of M ; the space
of such sections (which form a module over C∞(U)) will be denoted
Γ(U → V ). All of the discussion below on the global manifold M can
be easily adapted to local open sets U in this manifold (indeed, one
can interpret U itself as a manifold); as all our computations will be
entirely local (and because of the ready availability of smooth cutoff
functions), the theory on M and the theory on U will be completely
compatible.

Example 3.1.4. The space C∞(M) can be canonically identified
with the space of sections Γ(M ×R) of the trivial line bundle M ×R.

In Riemannian geometry, the most fundamental vector bundle
over a manifold M is the tangent bundle TM, defined by letting the
tangent space TxM at a point x ∈ M be the space of all tangent
vectors in M at x. A tangent vector v ∈ TxM can be defined as a
vector which can be expressed as the (formal) derivative v = γ′(0) of
some smooth curve γ : (−ε, ε) → M which passes through x at time
zero, thus γ(0) = x. One can express these tangent vectors concretely
by using any chart that covers x.

To be somewhat informal, given any point x ∈ M and tangent
vector v ∈ TxM , one can define a trajectory of points x+ tv+O(t2) ∈
M for all “infinitesimal” t, which is only defined up to an error ofO(t2)
(as measured, for instance, in some coordinate chart), but whose de-
rivative at t = 0 is equal to v. Thus, while the global manifold M

need not have any reasonable notion of vector addition, we do have
this infinitesimal notion of translation by a tangent vector which is
well-defined up to second-order errors.

Given a tangent vector v ∈ TxM and a smooth function f ∈
C∞(M), we can define the directional derivative ∇vf(x) by the for-
mula

(3.1) ∇vf(x) := lim
t→0

f(x+ vt+O(t2))− f(x)
t

(or, a bit more formally, ∇vf(x) = d
dtf(γ(t)) for any curve γ :

(−ε, ε)→M with γ(0) = x and γ′(0) = v). This is a linear functional
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on C∞(M) which annihilates constants and obeys the Leibniz rule

(3.2) ∇v(fg)(x) = f(x)∇vg(x) +∇vf(x)g(x).

Conversely, one can define the tangent space TxV to be the space
of all linear functionals on C∞(M) with the above two properties,
though we will not need to do so here.

A section X ∈ Γ(TM) of M is known as a vector field ; it assigns a
tangent vectorX(x) ∈ TxM to each point x ∈M . A vector fieldX de-
termines a first-order differential operator ∇X : C∞(M)→ C∞(M),
defined by setting ∇Xf(x) := ∇X(x)f(x). From (3.2), we see that
∇X is a derivation, i.e. it is linear over R and obeys the Leibniz rule

(3.3) ∇X(fg) = f∇Xg + (∇Xf)g.

Conversely, one can easily show that every derivation on C∞(M)
arises uniquely in this manner. This provides a convenient means
to define new types of vector fields. For example, if X and Y are
two vector fields, one can easily see (from (3.3)) that the commutator
[∇X ,∇Y ] := ∇X∇Y −∇Y∇X is also a derivation, and must thus be
given by another vector field [X,Y ], thus

(3.4) ∇X∇Y f −∇Y∇Xf −∇[X,Y ]f = 0

for all vector fields X, Y and all scalar fields f .

Example 3.1.5. Suppose we have a local coordinate chart φ : U →
V ⊂ Rd. The standard first-order differential operators d

dx1 , . . . ,
d
dxd

induced by the coordinates x1, . . . , xd on Rd can be viewed as vec-
tor fields, and pulled back via φ to vector fields φ∗ d

dx1 , . . . , φ
∗ d
dxd

on
U . These in fact form a frame for U since they span the tangent
space at every point. Since d

dxi and d
dxj commute in Rd, we see that

[φ∗ d
dxi , φ

∗ d
dxj ] = 0.

Exercise 3.1.1. Show that the map (X,Y ) 7→ [X,Y ] endows the
space Γ(TM) of vector fields with the structure of an abstract Lie
algebra. Also establish the Leibniz rule

(3.5) [X, fY ] = (∇Xf)Y + f [X,Y ]

for all X,Y ∈ Γ(TM) and f ∈ C∞(M).
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Various operations on finite-dimensional vector spaces generalise
easily to vector bundles. For instance, every finite-dimensional vector
space V has a dual V ∗, and similarly every vector bundle V also has
a dual bundle V ∗, whose fibres V ∗x are the dual to the fibres Vx of
V ; one can also view V ∗ as the space of C∞(M)-linear functionals
from V to C∞(M). Similarly, given two vector bundles V,W over
M , one can define the direct sum V ⊕W , the tensor product V ⊗W ,
the space Hom(V,W ) of fibre-wise linear transformations from V to
W , the symmetric powers Symk(V ) and exterior powers

∧k(V ), and
so forth. The construction of all of these concepts is straightforward
but rather tedious, and will be omitted here.

Applying these constructions to the tangent bundle TM , one gets
a variety of useful bundles for doing Riemannian geometry:

• The bundle T ∗M := (TM)∗ is the cotangent bundle; ele-
ments of T ∗xM are cotangent vectors.

• Sections of
∧k(T ∗M) are known as k-forms.

• Sections of (TM)⊗k⊗(T ∗M)⊗l are known as rank (k, l) ten-
sor fields, and individual elements of this bundle are rank
(k, l) tensors. Many tensors of interest obey various sym-
metry or antisymmetry properties4, for instance k-forms are
totally anti-symmetric rank (0, k) tensors.

It is convenient to use abstract index notation, denoting rank (k, l)
tensor fields using k superscripted Greek indices and l subscripted
Greek indices, thus for instance Riem = Riemδ

αβγ denotes a rank
(1, 3) tensor. One should think of these indices as placeholders; if one
chooses a frame (ea)a∈A for the tangent bundle (i.e. a collection of
vector fields which form a basis for the tangent space at every point),
which induces the associated dual frame (ea)a∈A for the cotangent
bundle, then this notation can be viewed as describing the coefficients
of the tensor in terms of the basis generated by such frames, thus for

4To fully enumerate the various symmetry properties available to tensors is a task
essentially equivalent to understanding the finite-dimensional representation theory of
the permutation group; this is a beautiful and important subject, but will not be
discussed here.
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instance

(3.6) Riem =
∑

a,b,c,d∈A

Riemd
abce

a ⊗ eb ⊗ ec ⊗ ed.

But it is perhaps better to view a tensor such as Riemδ
αβγ as existing

independently of any choice of frame, in which case the labels α, β, γ, δ
are abstract placeholders.

Example 3.1.6. We continue Example 3.1.5. A local coordinate
chart φ : U → Rd generates a (local) frame ea := φ∗ d

dxa with an asso-
ciated dual frame ea := φ∗(dxa). These frames can be slightly easier
to work with for computations than general frames, because we auto-
matically have [ea, eb] = 0 as already noted in Example 3.1.5. On the
other hand, it is often convenient to work in frames that don’t come
from coordinate charts in order to obtain other good properties; in
particular, it is very convenient to work in orthonormal frames, which
are usually unavailable if one restricts attention to frames arising from
coordinate charts.

We use the usual (and very handy) Einstein summation conven-
tion: repeated indices (with each repeated index appearing exactly
once as a superscript and once as a subscript) are implicitly summed
over a choice of frame (the exact choice is not important). For in-
stance, the rank (0, 4) tensor Xαβσµ := Riemδ

αβγRiemγ
δσµ is defined

to be the tensor which is given by the formula

(3.7) Xabsm =
∑
g,d∈A

Riemd
abgRiemg

dsm

for any choice of frame (ea)a∈A (one can easily verify that this def-
inition is independent of the choice of frame). We will also apply
this summation convention when the Greek labels are replaced with
concrete counterparts arising from a frame, thus for instance we can
now abbreviate (3.6) as

(3.8) Riem = Riemd
abce

a ⊗ eb ⊗ ec ⊗ ed

3.1.2. Connections. We have seen that vector fields X ∈ Γ(TM)
allow us to differentiate scalar functions f ∈ C∞(M) to obtain a
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differentiated function ∇Xf . Furthermore, this concept obeys the
Leibniz rule (3.3), and is linear over C∞(M) in X, or in other words

(3.9) ∇gX+Y f = g∇Xf +∇Y f

for all g ∈ C∞(M) and X,Y ∈ Γ(TM). As a consequence, one can
interpret X 7→ ∇Xf as a C∞(M)-linear functional on Γ(TM), which
is identified with a section df ∈ Γ(T ∗M) of the cotangent bundle,
thus ∇Xf = df(X).

Now suppose one wants to differentiate ∇Xf , where f ∈ Γ(V )
is now a section of a bundle V . It turns out that there is now more
than one good notion of differentiation. Each such notion can be
formalised by the concept of an (linear) connection:

Definition 3.1.7. A connection ∇ on a bundle V is an assignment of
a section ∇Xf ∈ Γ(V ) (the covariant derivative of f in the direction
X via the connection ∇) to each vector field X ∈ Γ(TM) and section
f ∈ Γ(V ), in such a way that (f,X) 7→ ∇Xf is bilinear in f and X,
that the Leibniz rule (3.3) is obeyed for f ∈ C∞(M) and g ∈ Γ(V ) (or
vice versa), and the linearity rule (3.9) is obeyed for all g ∈ C∞(M)
and X,Y ∈ Γ(TM).

If f ∈ Γ(V ) is such that ∇Xf = 0 for all vector fields X, we say
that f is parallel to the connection ∇.

A connection on the tangent bundle TM is known as an affine
connection.

Remark 3.1.8. Informally, a connection assigns an infinitesimal lin-
ear isomorphism φv : Vx → Vx+v (the parallel transport map) to
each infinitesimal tangent vector v ∈ V , in a manner which is lin-
ear in v for fixed x. The connection between this informal defini-
tion and the above formal one is given by the formula ∇Xf(x) =

limt→0
φ−1
tX(x)(f(x+tX(x)))−f(x)

t . One can make this informal definition
more precise (e.g. using non-standard analysis, as in Section 1.5 of
Structure and Randomness) but we will not do so here. An alter-
nate definition of a connection is as a complementary subbundle to
the vertical bundle

⊎
x∈M TVx in TV , known as a horizontal bundle,

obeying some additional linearity conditions in the vertical variable.
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Once one has a connection on a bundle V , one automatically can
define a connection on the dual bundle V ∗ and more generally on
tensor powers V ⊗k ⊗ (V ∗)⊗l, by enforcing all possible instances of
the Leibniz rule5, e.g.

(3.10) ∇X(fαβγ gγδ ) = (∇Xfαβγ )gγδ + fαβγ ∇Xg
γ
δ

for all rank (2, 1) tensors f and rank (1,1) tensors g. In particular,
any connection on the tangent bundle (which is the case of impor-
tance in Riemannian geometry) naturally induces a connection on
the cotangent bundle and the bundle of rank (k, l) tensors.

Here it is important to note that the indices are abstract, rather
than corresponding to some frame: for instance, if ∇ is a connection
on the tangent bundle TM , then after choosing a frame (ea)a∈A, it
is usually not the case that the coefficient (∇Xf)a of a vector field
f ∈ Γ(M) at a is equal to the derivative ∇X(fa) of that component
of f . Instead, one has a relationship of the form

(3.11) (∇Xf)a = ∇X(fa) + ΓabcX
bf c

where for each a, b, c, the Christoffel symbol Γabc := ea(∇ebec) of the
connection relative to the frame (ea)a∈A is a smooth function onM . It
is important to note that Christoffel symbols are not tensors, because
the expression Γabcea ⊗ eb ⊗ ec turns out to depend on the choice of
frame.

Using the Leibnitz rule repeatedly, it is not hard to use (3.11) to
give a formula for the components of derivatives of other tensors, e.g.

(3.12) (∇Xω)a = ∇X(ωa)− ΓcbaX
bωc

for any 1-form ω,

(3.13) (∇Xg)ab = ∇X(gab)− ΓcdaX
dgcb − ΓcdbX

dgac

for any rank (0, 2) tensor g, and so forth.

We have remarked that Christoffel symbols are not tensors. On
the other hand, because∇Xf is linear in X, we can legitimately define
a tensor field ∇αf , which is a section of T ∗M ⊗ V ≡ Hom(TM, V ),

5It is a straightforward but tedious task to verify that all the Leibniz rules are
consistent with each other, and that (3.10) and its relatives uniquely define a connection
on every tensor power of V .
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thus ∇Xf = Xα∇αf . It is also possible to express the difference of
two connections as a tensor:

Exercise 3.1.2. Let ∇,∇′ be two connections on TM . Show that
there exists a unique rank (1, 2) tensor Γαβγ = ∇′ −∇ such that

(3.14) ∇′βfα −∇βfα = Γαβγf
γ

for all vector fields fα. Now interpret the Christoffel symbol Γabc of a
connection ∇ on TM relative to a frame e = (ea)a∈A as the difference
∇−∇(e) of that connection with the flat connection ∇(e) induced by
the trivialisation of the tangent bundle induced by that frame.

Let ∇ be a connection on TM . We say that this connection is
torsion-free if we have the pleasant identity

(3.15) ∇α∇βf = ∇β∇αf

(cf. Clairaut’s theorem from several variable calculus) for all scalar
fields f ∈ C∞(M), or in other words that the Hessian Hess(f)αβ :=
∇α∇βf of f is a symmetric rank (0, 2) tensor.

Exercise 3.1.3. Show that ∇ is torsion-free if and only if

(3.16) [X,Y ]α = Xβ∇βY α − Y β∇βXα

for all vector fields X, Y (or in coordinate-free notation, [X,Y ] =
∇XY −∇YX).

Remark 3.1.9. Roughly speaking, the torsion-free connections are
those which have a good notion of an infinitesimal parallelogram with
corners x, x+ tv+O(t2), x+ tw+O(t2), x+ tv+ tw+O(t2) for some
infinitesimal t, such that each edge is the parallel transport of the
opposing edge to error6 O(t3).

It would be nice if (3.15) extended to tensor fields f . This is true
for flat connections, but false in general. The defect in (3.15) for such
fields is measured by the curvature tensor R ∈ Γ(Hom(

∧2
TM,Hom(TM, TM)))

of the connection ∇, defined by the formula

(3.17) ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z =: R(X,Y )Z

6Without the torsion-free hypothesis, the error is merely O(t2).
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for all vector fields X, Y , Z (cf. (3.4)). One easily sees that R is
indeed a section of Hom(

∧2
TM,Hom(TM, TM)) and can thus be

viewed as a rank (1, 3) tensor.

Exercise 3.1.4. If ∇ is a torsion-free connection on TM , and Rδαβγ
is the tensor form of the curvature R, defined by requiring that

(3.18) (R(X,Y )Z)δ = RδαβγX
αY βZγ ,

then show that

(3.19) ∇α∇βXδ −∇β∇αXδ = RδαβγX
γ

for all vector fields Xδ. What is the analogue of (3.19) if Xδ is
replaced by a rank (k, l) tensor?

Connections describe a way to transport tensors as one moves
from point to point in the manifold. There is another way to trans-
port tensors, which is induced by diffeomorphisms φ : M →M of the
base manifold; this transportation procedure maps points x ∈ M

to points φ(x) ∈ M , maps tangent vectors v ∈ TxM to tangent
vectors φ∗(v) ∈ Tφ(x)M (defined by requiring that the chain rule
d
dt (γ ◦ φ) = φ∗( ddtγ) hold for all curves γ) and then maps other ten-
sors in the unique manner consistent with the tensor operations (e.g.
φ∗(v ⊗ w) = φ∗(v) ⊗ φ∗(w)). This procedure is important for de-
scribing symmetries of tensor fields (consider, for instance, what it
means for the vector field (y,−x) in R2 to be invariant under ro-
tations around the origin). To relate this diffeomorphism transport
to infinitesimal differential geometry, though, we have to look at an
infinitesimal diffeomorphism, which we can view as the derivative
d
dtφt|t=0 of a smoothly varying family φt of diffeomorphisms, with
φ0 equal to the identity. By chasing all the definitions we see that
d
dtφt|t=0 is just a vector field X. The infinitesimal rate of change
d
dtφ∗(v)|t=0 of a tensor field v under this diffeomorphism is known
as the Lie derivative LXv of v with respect to the vector field X (it
does not depend on any aspect of φ other than its infinitesimal vector
field). On scalars f , it agrees with directional derivative

(3.20) LXf = ∇Xf,
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while on vector fields Y , it agrees with the commutator:

(3.21) LXY = [X,Y ],

and its action on all other tensors can be given by the Leibniz rule (as
is the case for connections). It should be emphasised, though, that
the Lie derivative is not a connection, because it is not linear (over
C∞(M)) in X; LfXw 6= fLXw in general.

3.1.3. Riemannian manifolds and curvature tensors. We now
specialise our attention from smooth manifolds to our main topic of
interest, namely Riemannian manifolds. Informally, a Riemannian
manifold is a manifold equipped with notions of length, angle, area,
etc. which are infinitesimally isomorphic at every point to the cor-
responding notions in Euclidean space. In Euclidean space, all these
geometric notions can be defined in terms of a positive definite in-
ner product, and Riemannian manifolds are similarly founded on a
positive definite Riemannian metric.

Definition 3.1.10. A Riemannian manifold (M, g) is a smooth man-
ifold M , together with a Riemannian metric g = gαβ on M, i.e. a
section of Sym2(T ∗M) which is positive definite in the sense that
g(v, w) := 〈v, w〉g(x) := gαβ(x)vαwβ is a positive-definite inner prod-
uct on TxM for every point x.

We now use the metric g to build several other tensors of interest.
Firstly, we have the inverse metric g−1 = gαβ , which is the unique
rank (2, 0) tensor that inverts the (0, 2) tensor g in the sense that
gαβgβγ = gγβg

βα = δαγ is the identity section of Hom(TM, TM);
this tensor is also symmetric and positive-definite. One can use these
tensors to raise and lower the indices of other tensors; for instance,
given a rank (0, 2) tensor παβ , one can define the rank (1, 1) tensors
π β
α = gβγπαγ and πβα = gβγπγα and the rank (2, 0) tensor παβ :=
gαγgβδπγδ. We will generally only use these conventions when there
is enough symmetry that there is no danger of ambiguity.

Remark 3.1.11. All Riemannian manifolds can be viewed extrinsi-
cally (locally, at least) as subsets of a Euclidean space, thanks to the
famous Nash embedding theorem. But we will not need this extrinsic
viewpoint in this course.
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After the metric, the next fundamental object in Riemannian
geometry is the Levi-Civita connection.

Theorem 3.1.12 (Fundamental theorem of Riemannian geometry).
Let (M, g) be a Riemannian manifold. Then there exists a unique
affine connection ∇ (which is known as the Levi-Civita connection)
which is torsion-free and respects the metric g in the sense that ∇g =
0.

Exercise 3.1.5. Prove this theorem. Hint : one can either

• Use abstract index notation and study expressions such as
∇αXβ ;

• Use coordinate-free notation and study expressions such as
g(∇XY,Z); or

• Use local coordinates (e.g. use a frame ea := φ∗ d
dxa arising

from a chart φ as in Example 3.1.5) and work with the
Christoffel symbols Γabc.

It is instructive to do this exercise in all three possible ways in order
to appreciate the equivalence (and relative advantages and disadvan-
tages) between these three perspectives.

Geometrically, the condition ∇g = 0 asserts that parallel trans-
port by the Levi-Civita connection is an isometry. At a computational
level, it means (in conjunction with the Leibnitz rule) that covariant
differentiation using the Levi-Civita connection commutes with the
raising and lowering operations, for instance given a vector field Xα

we have

(3.22) (∇αX)β = gβγ∇αXγ = ∇α(gβγXγ) = ∇α(Xβ)

and so we may safely use raising and lowering operations in the pres-
ence of Levi-Civita covariant derivatives without much risk of serious
error. We can also raise and lower the covariant derivative itself,
defining

(3.23) ∇α := gαβ∇β = ∇βgαβ .

This leads to the covariant Laplacian (or Bochner Laplacian)

(3.24) ∆ := ∇α∇α = ∇α∇α = gαβ∇α∇β
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defined on all tensor fields (for instance, when applied to scalar fields
it becomes the trace of the Hessian, and is known as the Laplace-
Beltrami operator). When applied to non-scalar fields, the covariant
Laplacian differs slightly from the Hodge Laplacian (or Laplace-de
Rham operator) d∗d + dd∗ by a lower order term which is given by
the Weitzenböck identity.

As discussed earlier, all connections on TM have a curvature
tensor in Hom(

∧2
TM,Hom(TM, TM)). The curvature of the Levi-

Civita connection is known as the Riemann curvature tensor Riem =
Riemδ

αβγ , thus

(3.25) ∇α∇βXδ −∇β∇αXδ = Riemδ
αβγX

γ .

One can also write Riem in co-ordinate free notation by defining
Riem(X,Y )Z for vector fields X, Y , Z by the formula

(3.26) ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z = Riem(X,Y )Z

or equivalently as (Riem(X,Y )Z)δ = Riemδ
αβγX

αY βZγ .

Because ∇ respects g, one eventually deduces from (3.25) and the
Leibniz rule that Riemδ

αβγ is skew-adjoint in the γ, δ indices:

(3.27) Riemδ
αβγ = −gγµgδσRiemµ

αβσ.

It is also clearly skew-symmetric in the α, β indices. Also, from the
analogue of (3.25) for 1-forms, i.e.

(3.28) ∇α∇βωδ −∇β∇αωδ = −Riemγ
αβδωγ

and the torsion-free nature of the connection, we have

(3.29) ∇α∇β∇δf −∇β∇α∇δf = −Riemγ
αβδ∇γf

for all scalar fields f . Cyclically summing this in α, β, δ we obtain the
first Bianchi identity

(3.30) Riemγ
αβδ + Riemγ

βδα + Riemγ
δαβ = 0.

Exercise 3.1.6. Show that the above three symmetries of Riem im-
ply that Riem is a self-adjoint section of Hom(

∧2
TM,

∧2
TM), and

that these conditions are in fact equivalent in three and fewer dimen-
sions. What happens in four dimensions?
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Exercise 3.1.7. By differentiating (3.25) and cyclically summing,
establish the second Bianchi identity

(3.31) ∇µRiemγ
αβδ +∇βRiemγ

µαδ +∇αRiemγ
βµδ = 0.

Exercise 3.1.8. Show that a Riemannian manifold (M, g) is locally
isomorphic (as Riemannian manifolds) to Euclidean space if and only
if the Riemann curvature tensor vanishes. Hint : one direction is easy.
For the other direction, the quickest way is to apply the Frobenius
theorem to obtain a local trivialisation of the tangent bundle which
is flat with respect to the Levi-Civita connection.

This illustrates the point that the Riemann curvature captures all
the local obstructions that prevent a Riemannian manifold from being
flat. (Compare this situation with the superficially similar subject of
symplectic geometry, in which Darboux’s theorem guarantees that
there are no local obstructions whatsoever to a symplectic manifold
(M,ω) being flat.)

The Riemann curvature measures the “infinitesimal monodromy”
of parallel transport. For our applications we will need to study a
slightly different curvature, the Ricci curvature Ricαβ , which mea-
sures how much the volume-radius relationship on infinitesimal sec-
tors has been distorted from the Euclidean one7. It is defined as the
trace of the Riemannian tensor, or more precisely as8

(3.32) Ricαβ := Riemγ
γαβ .

We also write Ric(X,Y ) for RicαβXαY β when X, Y are vector fields.
The symmetries of Riem easily imply that Ric is a symmetric rank
(2, 0) tensor - just like the metric g! This observation9 will of course
be vital for defining Ricci flow later.

7This will not be obvious presently, as we have not yet defined the volume measure
dg on a Riemannian manifold, but will be made clearer later.

8One could also contract other indices than these, but due to the various symmetry
properties of the Riemann tensor, one ends up with essentially the same tensor as a
consequence.

9This observation, as well as a similar observation for the stress-energy tensor,
was also decisive in leading Einstein to the equations of general relativity, but that’s a
whole other story.
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We can take the trace of the Ricci tensor to form the scalar cur-
vature

(3.33) R := gαβRicαβ = gαβRiemγ
γαβ ;

up to normalisations, R can also be viewed as the trace of the Riemann
tensor (viewed as a section of Hom(

∧2
TM,

∧2
TM)). The scalar

curvature measures how the relationship of volume of infinitesimal
balls to their radius is distorted by the geometry.

The relationship between the Riemannian, Ricci, and scalar cur-
vatures depends on the dimension:

(1) In one dimension, all three curvatures vanish; there are no
degrees of freedom.

(2) In two dimensions, the Riemannian and Ricci curvatures
are just multiples of the scalar curvature (by some tensor
depending algebraically on the metric); there is only one
degree of freedom.

(3) In three dimensions, the Riemann tensor is a linear combina-
tion of the Ricci curvature (see also Exercise 3.1.8 below).
On the other hand, the scalar curvature does not control
Ricci (or Riemann); the Ricci tensor contains an additional
trace-free component. (However, once we start evolving by
Ricci flow, we shall see that the Hamilton-Ivey pinching phe-
nomenon will allow us to use the scalar curvature to mostly
control Ricci and hence Riemann near singularities; see Sec-
tion ???.)

(4) In four and higher dimensions, the Riemann tensor is not
fully controlled by the Ricci curvature; there is an additional
component to the Riemann tensor, namely the Weyl tensor.
Similarly, the Ricci curvature is not fully controlled by the
scalar curvature.

Exercise 3.1.9. (Ricci controls Riemann in three dimensions) In
three dimensions, suppose that the (necessarily real) eigenvalues of
the Riemann curvature at a point x (viewed as an element of Hom(

∧2
TM,

∧2
TM))

are λ, µ, ν. Show that the eigenvalues of the Ricci curvature at x
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(viewed as an element of Hom(TM, TM) are λ+µ, µ+ν, ν+λ. Con-
clude in particular that

(3.34) ‖Riem‖g = O(‖Ric‖g)

where we endow the (fibres of the) spaces Hom(
∧2

TM,
∧2

TM) and
Hom(TM, TM) with the Hilbert (or Hilbert-Schmidt) structure in-
duced by the metric g.

Remark 3.1.13. The fact that Ricci controls Riemann in three di-
mensions, without itself degenerating into scalar curvature or zero,
seems to explain why Ricci flow is especially powerful in three dimen-
sions; it is still useful, but harder to work with, in two dimensions,
useless in one dimension, and too weak to fully control the geometry
in four and higher dimensions. It seems to me that the special nature
of three dimensions stems from the fact that it is the unique number
of dimensions in which 2-forms (which are naturally associated with
curvature) are Hodge dual to vector fields (as opposed to scalars, or
to higher-rank tensors); this is the same special feature of three di-
mensions which gives us the cross product (as opposed to the more
general wedge product).

Because of the variety of curvatures, there are various notions of
what it means for a manifold to have “non-negative curvature” at
some point.

Definition 3.1.14. Let x be a point on a Riemannian manifold
(M,g). We say that x has

(I) non-negative scalar curvature if R(x) ≥ 0;

(II) non-negative Ricci curvature if Ric(x) ≥ 0 as a quadratic
form on TM, i.e. Ricαβ(x)vαvβ ≥ 0 for all vectors v ∈ TxM ;

(III) non-negative sectional curvature if g(Riem(x)(X,Y )X,Y )(x) =
Riemδ

αβγ(x)XαYβX
γYδ ≥ 0 for all vectors X,Y ∈ TxM ;

(IV) non-negative Riemann curvature if Riem(x) ≥ 0 as a qua-
dratic form on

∧2
TM , thus Riemδ

αβγ(x)ωαβ(x)ωγδ(x) ≥ 0
for all two-forms ω.

It is not hard to show that, in arbitrary dimension, (IV) implies
(III) implies (II) implies (I). In one dimension, these conditions are
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vacuously true; in two dimensions; these conditions are all equivalent;
and in three dimensions, non-negative Riemann curvature is equiva-
lent to non-negative sectional curvature (because every 2-form is the
wedge product of two one-forms in this case) but these conditions
are otherwise distinct. In four and higher dimensions all of these
conditions are distinct. One can also define the analogous notions of
positive curvature (or negative curvature, or non-positive curvature)
in the usual manner.

Remark 3.1.15. Geometrically, positive scalar curvature means that
infinitesimal balls have slightly less volume than in the Euclidean case;
positive Ricci curvature means that infinitesimal sectors have slightly
less volume than in the Euclidean case; and positive sectional curva-
ture means that all infinitesimally geodesic two-dimensional surfaces
have positive mean curvature. I don’t know of a geometrically simple
way to describe positive Riemann curvature.

We now give a “cartoon” or “schematic” description of these cur-
vatures when viewed in some local coordinate system φ, using the
associated frame ea := φ∗ d

dxa as in Example 3.1.5 to express all ten-
sors as arrays of numbers. Writing gab = O(g), we thus schematically
have the following relationships:

(1) The Christoffel symbols Γabc are schematically of the form
O(g−1∂g). Thus a covariant derivative ∇aw of a tensor w
looks schematically like O(∂w + g−1(∂g)w), and the Lapla-
cian ∆w looks like O(g−1∂2w + g−2(∂g)∂w + g−2(∂2g)w +
g−3(∂g)2w).

(2) The Riemann curvature tensor Riemd
abc and the Ricci cur-

vature tensor Ricab schematically take the form O(g−1∂2g+
g−2(∂g)2).

(3) The scalar curvatureR schematically takes the formO(g−2∂2g+
g−3(∂g)2). (Thus the scalar curvature has the same scaling
as the Laplacian.)

Remark 3.1.16. Note how in all of these expressions, the “number of
derivatives” and “number of g’s” stays fixed among all terms in a given
expression. This can be viewed as an example of dimensional analysis
in action, and is useful for catching errors in manipulations with these
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sorts of expressions. From a more representation-theoretic viewpoint,
what is going on is that all of the above expressions have constant
weight with respect to the joint (commuting) actions of the dilation
operation xi 7→ λxi on the underlying coordinate chart (which es-
sentially controls the number of derivatives ∂ that appear) and the
homogeneity operation g 7→ cg (which, naturally enough, controls the
number of g’s that appear).

Notes. This lecture first appeared at terrytao.wordpress.com/2008/03/26.
Thanks to Pedro Lauridsen Ribeiro, David Speyer, Kestutis Cesnavi-
cius, dsilvestre, Michael Kinyon, Arbieto, Weiqi Gao, Mohammad,
JC, BD, “nobody”, and anonymous commenters for corrections.

3.2. Flows on Riemannian manifolds

In this section, we introduce flows t 7→ (M(t), g(t)) on Riemannian
manifolds (M, g), which are recipes for describing smooth deforma-
tions of such manifolds over time, and derive the basic first variation
formulae for how various structures on such manifolds (e.g. curva-
ture, length, volume) change10 by such flows. We then specialise to
the case of Ricci flow (together with some close relatives of this flow,
such as renormalised Ricci flow, or Ricci flow composed with a diffeo-
morphism flow). We also discuss the “de Turck trick” that modifies
the Ricci flow into a nonlinear parabolic equation, for the purposes
of establishing local existence and uniqueness of that flow.

For the purposes of this chapter, we are not interested in just
a single Riemannian manifold (M, g), but rather a one-parameter
family of such manifolds t 7→ (M(t), g(t)), parameterised by a “time”
parameter t. The manifold (M(t), g(t)) at time t is going to determine
the manifold (M(t+dt), g(t+dt)) at an infinitesimal time t+dt into the
future, according to some prescribed evolution equation (e.g. Ricci
flow). In order to do this rigorously, we will need to “differentiate” a
manifold flow t 7→ (M(t), g(t)) with respect to time.

There are at least two ways to do this. The simplest is to restrict
to the case in which the underlying manifold M = M(t) is fixed (as a

10One can view these formulae as describing the relationship between two “in-
finitesimally close” Riemannian manifolds.
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smooth manifold), so that only the metric g = g(t) varies in time. As
g takes values as sections in a vector bundle, there is then no difficulty
in defining time derivatives ġ(t) = d

dtg(t) in the usual manner:

(3.35)
d

dt
g(t) := lim

dt→0

g(t+ dt)− g(t)
dt

.

We can of course similarly define the time derivative of any other
tensor field by the same formula.

The one drawback of the above simple approach is that it forces
the topology of the underlying manifold M to stay constant. A more
general approach is to view each d-dimensional manifold M(t) as a
slice of a d + 1-dimensional “spacetime” manifold M (possibly with
boundary or singularities). This spacetime is (usually) equipped with
a time coordinate t : M → R, as well as a time vector field ∂t ∈
Γ(TM) which obeys the transversality condition ∂tt = 1. The level
sets of the time coordinate t then determine the sets M(t), which
(assuming non-degeneracy of t) are smooth d-dimensional manifolds
which collectively have a tangent bundle ker(dt) ⊂ TM which is a d-
dimensional subbundle of the d+ 1-dimensional tangent bundle TM
of M. The metrics g(t) can then be viewed collectively as a section g
of (ker(dt)∗)⊗2. The analogue of the time derivative d

dtg(t) is then the
Lie derivative L∂tg. One can then define other Riemannian structures
(e.g. Levi-Civita connections, curvatures, etc.) and differentiate those
in a similar manner.

The former approach is of course a special case of the latter, in
which M = M × I for some time interval I ⊂ R with the obvious
time coordinate and time vector field. The advantage of the latter
approach is that it can be extended (with some technicalities) into
situations in which the topology changes (though this may cause the
time coordinate to become degenerate at some point, thus forcing the
time vector field to develop a singularity). This leads to concepts
such as generalised Ricci flow, which we will not discuss here, though
it is an important part of the definition of Ricci flow with surgery (see
Chapters 3.8 and 14 of [MoTi2007]). Instead, we focus exclusively
for now on the former viewpoint, in which M = M(t) does not depend
on time.
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Suppose we have a smooth flow (M, g(t)) of metrics on a fixed
background manifold M . The rate of change of the metric gαβ(t) is
given by ġαβ(t). By the chain rule, this implies that any other expres-
sion that depends on this metric, such as the curvatures Riemδ

αβγ(t),
Ricαβ(t), R(t), should have a rate of change that depends linearly on
ġαβ(t). We now compute exactly what these rates of change are. In
principle, this can be done by writing everything explicitly using local
coordinates and applying the chain rule, but we will try to keep things
as coordinate-free as possible as it seems to cut down the computation
slightly.

To abbreviate notation, we shall omit the explicit time depen-
dence in what follows, e.g. abbreviating g(t) to just g. We shall call
a tensor field w time-independent or static if it does not depend on t,
or equivalently that ẇ = 0.

From differentiating the identity

(3.36) gαβgβγ = δαγ

we obtain the variation formula11

(3.37)
d

dt
gαβ = −gαγgβδ ġγδ.

Next, we compute how covariant differentiation deforms with re-
spect to time. For a scalar function f, the derivative ∇αf ≡ df does
not involve the metric, and so the rate of change formula is simple:

(3.38)
d

dt
∇αf = ∇αḟ .

In particular, if f is static, then so is ∇αf .

Now we take a static vector field Xβ . From (3.38) and the prod-
uct rule we see that the expression d

dt∇αX
β is linear over C∞(M)

(interpreted as the space of static scalar fields). Thus we must have

(3.39)
d

dt
∇αXβ = Γ̇βαγX

γ

11Here is a place where the raising and lowering conventions can be confusing if
applied blindly!
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for some rank (1, 2) tensor Γ̇βαγ . From the Leibnitz rule and (3.38) we
can obtain similar formulae for other tensors, e.g.

(3.40)
d

dt
∇αωβ = −Γ̇γαβωγ

for any static one-form ωβ .

What is Γ̇γαβ? Well, we can work it out from the properties of the
Levi-Civita connection. Differentiating the torsion-free identity

(3.41) ∇α∇βf = ∇β∇αf

for static scalar fields f using (3.38), (3.40), we conclude the sym-
metry Γ̇γαβ = Γ̇γβα. Similarly, differentiating the respect-of-metric
identity ∇αgβγ = 0 we conclude that

(3.42) −Γ̇δαβgδγ − Γ̇δαγgβδ +∇αġβγ = 0.

These two facts allow us to solve for Γ̇γαβ :

(3.43) Γ̇γαβ =
1
2
gγδ(∇αġβδ +∇β ġαδ −∇δ ġαβ)

(compare with the usual formula for the Christoffel symbols in local
coordinates, see e.g. (3.287)).

Now we turn to curvature tensors. We have the identity

(3.44) ∇α∇βXγ −∇β∇αXγ = Riemγ
αβδX

δ

for any static vector field X. Taking the time derivative of this using
(3.39), (3.40), etc. we obtain

− Γ̇δαβ∇δXγ + Γ̇γαδ∇βX
δ +∇αΓ̇γβδX

δ

− Γ̇δβα∇δXγ − Γ̇γβδ∇αX
δ +∇βΓ̇γαδX

δ

= ˙Riem
γ

αβδX
δ

(3.45)

which eventually simplifies to

(3.46) ˙Riem
γ

αβδ = ∇αΓ̇γβδ −∇βΓ̇γαδ.

(one can view this as a linearisation of the usual formula for the Rie-
mann curvature tensor in terms of Christoffel symbols). Combining
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(3.43) and (3.46), and using the fact that the Levi-Civita connection
respects the metric, we thus have

˙Riem
γ

αβδ =
1
2
gγσ(∇α∇δ ġβσ −∇α∇σ ġδβ −∇β∇δ ġασ +∇β∇σ ġδα

− Riemµ
αβδ ġµσ − Riemµ

αβσ ġδµ).

(3.47)

Exercise 3.2.1. Show that (3.47) is consistent with the antisymme-
try properties of the Riemann tensor, and with the Bianchi identities,
as presented in Section 3.1.

Taking traces, we obtain a variation formula for the Ricci tensor,
(3.48)

Ṙicαβ = −1
2

∆Lġαβ −
1
2
∇α∇βtr(ġ)− 1

2
∇α∇γ ġβγ −

1
2
∇β∇γ ġαγ ,

where tr(π) := gαβπαβ is the trace, and the Lichnerowicz Laplacian
(or Hodge-de Rham Laplacian) ∆L on symmetric rank (0, 2) tensors
παβ is defined by the formula

(3.49) ∆Lπαβ := ∆παβ + 2Riemδ
αγβπγδ − Ricγαπγβ − Ricγβπγα

and ∆παβ = ∇γ∇γπαβ is the usual connection Laplacian. Taking
traces once again, one obtains a variation formula for the scalar cur-
vature:

(3.50) Ṙ = −Ricαβ ġαβ −∆tr(ġ) +∇α∇β ġαβ .

Exercise 3.2.2. Verify the derivation12 of (3.48) and (3.50).

We will also need to understand how deformation of the metric
affects two other quantities, length and volume. The length L(γ) of
a curve γ : [a, b] → M in a Riemannian manifold (M, g) is given by
the formula

(3.51) L(γ) :=
∫ b

a

g(γ′(u), γ′(u))1/2 du =:
∫
γ

ds.

where ds = γ∗g(γ′(u), γ′(u))1/2 du is the measure on the curve γ

induced by the metric.

12I wonder if there are more direct derivations of (3.48) and (3.50) that do not
require one to go through so many computations. One can use (3.58) and (3.2.2) below
as consistency checks for these formulae, but this does not quite seem sufficient.
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Exercise 3.2.3. If γ varies smoothly in time (but with static end-
points γ(a), γ(b), show that

(3.52)
d

dt
L(γ) =

1
2

∫
γ

ġ(S, S) ds−
∫
γ

g(∇SS, V ) ds

where at every point x = γ(u) of the curve, S = γ′(u)/g(γ′(u), γ′(u))1/2

is the unit tangent, and V = γ̇(u) is the variation field13.

The distance between two points x, y on a manifold is defined as
d(x, y) := inf L(γ), where γ ranges over all curves from x to y. For
smooth connected manifolds, it is not hard to show (e.g. by using a
reduction to the unit speed case, followed by a minimising sequence
argument and the Arzelá-Ascoli theorem, combined with some local
theory of short geodesics to ensure C1 regularity of the limiting curve)
that this infimum is actually attained14 for some minimising geodesic
γ, which is then a critical point for L(γ). From (3.52) we conclude
that such geodesics must obey the equation ∇SS = 0 (thus the unit
tangent vector parallel transports itself). We also conclude that

(3.53)
d

dt
d(x, y) = inf

1
2

∫
γ

ġ(S, S) ds

where the infimum is over all the minimising geodesics from x to
y. Thus, a positive ġ (in the sense of quadratic forms) will increase
distances between two marked points, while a negative ġ will decrease
it.

Next, we look at the evolution of the volume measure dµ = dµ(t).
This measure is defined using any frame (ea)1≤a≤d and dual frame
(ea)1≤a≤d as

(3.54) dµ :=
√

det g
∣∣e1 ∧ . . . ∧ ed

∣∣
where det g is the determinant of the matrix with components gab =
g(ea, eb) (one can check that this measure is defined independently of
the choice of frame). Intuitively, this measure is the unique measure
such that an infinitesimal cube whose sides are orthogonal vectors of
infinitesimal length r, will have volume rd + O(rd+1). It is not hard

13Strictly speaking, one needs to work on the pullback tensor bundles on [a, b]
rather than M in order to make the formulae in (3.52) well defined.

14However, this infimum need not be unique if x, y are far apart.
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to show (using coordinates, and the variation formula d
dt det(A) =

tr(A−1Ȧ) det(A) for the determinant) that one has

(3.55)
d

dt
dµ =

1
2

tr(ġ) dµ.

Thus, a positive trace for ġ implies volume expansion, and a negative
trace implies volume contraction. This is broadly consistent with how
length is affected by metric distortion, as discussed previously.

3.2.1. Dilations. Now we specialise to some specific flows (M, g(t))
of a Riemannian metric on a fixed background manifold M . The
simplest such flow (besides the trivial flow g(t) = g(0), of course) is
that of a dilation

(3.56) g(t) := A(t)g(0)

where A(t) > 0 is a positive scalar with A(0) = 1. The flow here is
given by

(3.57) ġ(t) = a(t)g(t)

where a(t) := Ȧ(t)
A(t) = d

dt logA(t) is the logarithmic derivative of A

(or equivalently, A(t) = exp(
∫ t

0
a(t′) dt′)). In this case our variation

formulas become very simple:

d

dt
gαβ = −agαβ

Γ̇γαβ = 0

˙Riem
δ

αβγ = 0

Ṙicαβ = 0

Ṙ = −aR
d

dt
d(x, y) =

1
2
ad(x, y)

d

dt
dµ =

d

2
a dµ;

(3.58)

note that these formulae are consistent with (3.56) and the scaling
heuristics at the end of the Section 3.1. In particular, a positive value
of a means that length and volume are increasing, and a negative
value means that length and volume are decreasing.
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3.2.2. Diffeomorphisms. Another basic flow comes from smoothly
varying one-parameter families of diffeomorphisms φ(t) : M → M

with φ(0) equal to the identity. This induces a flow

(3.59) g(t) := φ(t)∗g(0)

Infinitesimally, this flow is given by the Lie derivative

(3.60) ġ(t) = LX(t)g(t)

where X(t) := φ∗(t)φ̇(t) is the vector field representing the infin-
itesimal15 diffeomorphism at time t. The quantity παβ := LXgαβ is
known as the deformation tensor16 of X, and it is a short exercise to
verify the identity

(3.61) παβ = ∇αXβ +∇βXα.

It is clear from diffeomorphism invariance that all tensors17 de-
form via the Lie derivative:

d

dt
gαβ = LXgαβ

˙Riem
δ

αβγ = LXRiemδ
αβγ

Ṙicαβ = LXRicαβ

Ṙ = LXR.

(3.62)

Exercise 3.2.4. Establish the first variation formula d
dtd(x, y) =

inf g(X(y), S(y))− g(X(x), S(x)), where the infimum ranges over all
minimal geodesics from x to y (which in particular determine the unit
tangent vector S at x and at y).

Remark 3.2.1. As observed by Kazdan[Ka1981], one can compare
the identities (3.2.2) with the variation formulae (3.46), (3.48), (3.50)
to provide an alternate derivation of the Bianchi identities.

15(One can use Picard’s existence theorem to recover φ from X, though one has
to solve an ODE for this and so the formula is not fully explicit.

16Informally, this tensor measures the obstruction to K being an infinitesimal
symmetry, or Killing vector field.

17The formula for Γ̇γαβ does not have such a nice representation, since Γγαβ is not

a tensor.
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Applying (3.55), (3.61) we see that variation of the volume mea-
sure dµ is given by

(3.63)
d

dt
dµ = div(X) dµ

where div(X) := ∇αXα is the divergence of X. On the other
hand, for compact manifolds M at least, diffeomorphisms preserve the
total volume Vol(M) :=

∫
M

dµ. We thus conclude Stokes’ theorem

(3.64)
∫
M

div(X) dµ = 0

on compact manifolds for arbitrary smooth vector fields X. It is not
difficult to extend this to non-compact manifolds in the case when X
is compactly supported. From (3.64) and the product rule we also
obtain the integration by parts formula

(3.65)
∫
M

f∇αXα dµ = −
∫
M

(∇αf)Xα dµ.

As one particular special case of (3.65), we observe that the Laplacian
on C∞(M) is formally self-adjoint.

3.2.3. Ricci flow. Finally, we come to the main focus of this entire
course, namely Ricci flow. A one-parameter family of metrics g(t) on
a smooth manifold M for all time t in an interval I is said to obey
Ricci flow if we have

(3.66)
d

dt
g(t) = −2Ric(t).

Note that this equation makes tensorial sense since g and Ric are both
symmetric rank 2 tensors. The factor of 2 here is just a notational
convenience and is not terribly important, but the minus sign − is
crucial (at least, if one wants to solve Ricci flow forwards18 in time).

In the preceding examples of dilation flow and diffeomorphism
flow, it was easy to get from the infinitesimal evolution to the global
evolution, either by using an integrating factor or by solving some
ODEs. The situation for Ricci flow turns out to be significantly less
trivial (and indeed, resolving the global existence problem properly

18Note that Ricci flow, like all other parabolic flows (of which the heat equation
is the model example), is not time-reversible - solvability forwards in time does not
imply solvability backwards in time!
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is a large part of the proof of the Poincaré conjecture). Nevertheless,
we do have the following relatively easy result:

Theorem 3.2.2 (Local existence). If M is compact and g(0) is a
smooth Riemannian metric on M , then there exists a time T > 0,
and a unique Ricci flow t 7→ g(t) with initial metric g(0) on the time
interval t ∈ [0, T ).

This theorem was first proven by Hamilton[Ha1982] using the
Nash-Moser iteration method, and then a simplified proof given by de
Turck[DeT1983]. We will not prove Theorem 3.2.2 here, but we will
shortly indicate the main trick of de Turck used to reduce the problem
to a standard local existence problem for nonlinear parabolic PDE.

Solutions have various names depending on their interval I of
existence (or lifespan):

(1) A solution is ancient if I has −∞ as a left endpoint.

(2) A solution is immortal if I has +∞ as a right-endpoint.

(3) A solution is global if it is both ancient and immortal, thus
I = R.

The ancient solutions will play a particularly important role in our
analysis later in this course, when we rescale (or blow up) the time
variable (and the metric) as we approach a singularity of the Ricci
flow, and then look at the asymptotic limiting profile of these rescaled
solutions. It is a routine matter to compute the variations of various
tensors under the Ricci flow:

d

dt
gαβ = 2Ricαβ

Ṙ = ∆R+ 2|Ric|2

Ṙicαβ = ∆LRicαβ

= ∆Ricαβ + 2RicγδRiemδ
αγβ − 2RicαγRicγβ

˙Riem = ∆Riem +O(g−1Riem2)

(3.67)

where O(g−1Riem2) is a moderately complicated combination of the
tensors g−1, Riem, and Riem that I will not write down explicitly here.
In particular, we see that all of the curvature tensors obey some sort
of tensor nonlinear heat equation. Parabolic theory then suggests
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that these tensors will behave for short times much like solutions to
the linear heat equation (for instance, they should become smoother
over time, and they should obey various maximum principles). We
will see various manifestations of this principle later in this course.

We also have variation formulae for length and volume:
d

dt
d(x, y) = − sup

∫
γ

Ric(S, S) ds(3.68)

d

dt
dµ = −R dµ.(3.69)

Thus Ricci flow tends to enlarge length and volume in regions of neg-
ative curvature, and reduce length and volume in regions of positive
curvature.

3.2.4. Modifying Ricci flow. Ricci flow (3.66) combines well with
the dilation flows (3.57) and diffeomorphism flows (3.2.2), thanks to
the dilation symmetry and diffeomorphism invariance of Ricci flow19.
For instance, if g(t) solves Ricci flow and we set g̃(s) := A(s)g(t(s)) for
some reparameterised time s = s(t) and some scalar A = A(s) > 0,
then the Ricci curvature here is R̃ic(s) = Ric(t(s)). We then see from
the chain rule that g̃ obeys the equation

(3.70)
d

ds
g̃(s) = −2A(s)

dt

ds
R̃ic(s) + a(s)g̃(s)

where a is the logarithmic derivative of A. If we normalise the time
reparameterisation by requiring dt

ds = 1/A(s), we thus see that g̃ obeys
normalised Ricci flow

(3.71)
d

ds
g̃ = −2R̃ic + ag̃(s)

which can be viewed as a combination of (3.66) and (3.57). Con-
versely, it is not difficult to reverse these steps and transform a so-
lution to (3.71) for some a into a solution of Ricci flow by reparam-
eterising time and renormalising the metric by a scalar. Normalised
Ricci flow is useful for studying singularities, as it can “blow up” the
interesting portion of the dynamics to keep it at unit scale, instead
of cascading to finer and finer scales as is usual when approaching a

19It can even be combined with these two flows simultaneously, although we will
not need such a unified flow here.
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singularity. The parameter a is at one’s disposal to set; for instance,
one could choose a to normalise the volume of M to be constant,
or perhaps to normalise the maximum scalar curvature ‖R‖∞ to be
constant20. Setting a = 0, we observe in particular that the solution
space to Ricci flow enjoys the scaling symmetry

(3.72) g(t) 7→ λg(
t

λ
)

for any λ > 0. Thus, if we enlarge a manifold M by
√
λ (or equiva-

lently, if we fix M but make the metric g λ times as large), then Ricci
flow will become slower by a factor of λ, and conversely if we shrink
a manifold by

√
λ then Ricci flow speeds up by λ. Thus, as a first

approximation, big manifolds tend to evolve slowly under Ricci flow,
and small ones tend to evolve quickly. Similarly, Ricci flow combines
well with diffeomorphisms. If g(t) solves Ricci flow and φ(t) : M →M

is a smoothly varying family of diffeomorphisms, then we can define a
modified Ricci flow g̃(t) := φ(t)∗g(t) (cf. (3.59)). As Ricci curvature
is intrinsic, this new metric has curvature R̃ic(t) = φ(t)∗Ric(t). It is
then not hard to see that g̃ evolves by the flow

(3.73)
d

dt
g̃ = −2R̃ic + LX g̃

where X(t) := φ∗(t)φ̇(t) are the vector fields that direct the flow φ

as before. Note that (3.73) is a combination of (3.66) and (3.2.2).
Conversely, given a solution to a modified Ricci flow (3.73) for some
smoothly time-varying vector field X, one can convert it back to a
Ricci flow by solving for the diffeomorphisms φ and then using them
as a change of variables. The modified flows (3.73) (with various
choices of vector field X) arise in a number of contexts. For instance,
they are useful for studying gradient Ricci solitons, which will be an
important special solution to Ricci flow that we will encounter later.
Also, modified Ricci flow is an excellent tool for assisting the proof of
local existence (Theorem 3.2.2), because it can be used (via the “de
Turck trick”) to “gauge away” some nasty non-parabolic components
in Ricci flow, leaving behind a nicely parabolic non-linear PDE known
as Ricci-de Turck flow which is straightforward to solve.

20Of course, only one quantity at a time can be normalised to be constant, since
one only has one free parameter to set.
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To explain this, let us first write the Ricci flow equation (3.66)
“in coordinates” in order to attempt to solve it as a nonlinear PDE21.

The traditional way to express Ricci flow in coordinates is, of
course, to use local coordinate charts, but let us present a slightly
different way to do this, relying on an arbitrarily chosen background
metric g on M which does not depend on time22. This gives us a back-
ground connection ∇, background curvature tensors Riem,Ric, R,
and so forth. One can then express the evolving metric in terms of
the background by a variety of formulae. For instance, the evolving
connection ∇ can be expressed in terms of the background connection
∇ by the formula

(3.74) ∇αXβ = ∇αXβ + ΓβαγX
γ

where the Christoffel symbol Γβαγ is given by

(3.75) Γβαγ =
1
2
gβδ(∇αgγδ +∇γgαδ −∇δgαγ).

Exercise 3.2.5. Verify (3.74) and (3.75). Then use these formulae
to give an alternate derivation of (3.39) and (3.43).

From (3.74) and the definition of Riemann curvature one con-
cludes that

Riemδ
αβγ = Riem

δ

αβγ +∇αΓδβγ −∇βΓδαγ
+ ΓδαµΓµβγ − ΓδβµΓµαγ .

(3.76)

Contracting this, we conclude

(3.77) Ricαβ = Ricαβ +∇δΓδαβ −∇αΓδδβ +O(Γ2).

Inserting (3.75) and only keeping careful track of the top order terms,
we can eventually rewrite (3.77) as

(3.78) Ricαβ −
1
2
gγδ∇γ∇δgαβ +

1
2
LXgαβ +O(g−2∇g∇g)

21The current state of the art of PDE existence theory does not cope all that
well with the coordinate-independent frameworks which are embraced by differential
geometers; in order to demonstrate existence of just about any equation, one usually
has to break the covariance of the situation, and pick some coordinate system to work
with. On the other hand, for particularly geometric equations, such as Ricci flow, there
are often some special coordinate systems that one can pick that will simplify the PDE
analysis enormously. See Section 1.10 for further discussion.

22For instance, one could pick g = g(0) to be the initial metric, although we do
not need to do so.
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where X is the vector field

(3.79) Xα := gβγΓαβγ .

Exercise 3.2.6. Show that the expression (3.78) for the Ricci cur-
vature can be used to imply (3.48). Conversely, use (3.48) to recover
(3.78) without performing an excessive amount of explicit computa-
tion. Hint : first show that the Ricci tensor can be crudely expressed
as Ric +O(g−1∇2

g) +O(g−2∇g∇g).

Thus, if we happen to have a solution g to modified Ricci flow
(3.73) with the vector field X given by (3.79), then (3.73) simplifies
to the Ricci-de Turck flow

(3.80)
d

dt
g = gγδ∇γ∇δg − 2Ric +O(g−2∇g∇g).

Conversely, it is not too difficult to reverse these steps and convert
a solution to Ricci-de Turck flow to a solution to Ricci flow.

The equation (3.80) is a quasilinear parabolic evolution equation
on g (which we think of now as evolving on a fixed background Rie-
mannian manifold (M, g), and one can establish local existence for
(3.80) by a variety of methods. From this and the preceding remarks
one can eventually establish Theorem 3.2.2, although we will not do
so in detail here.

Remark 3.2.3. One particular way to establish existence for Ricci-
de Turck flow (and probably not the most efficient) is sketched as
follows. If one writes g = g + h, then one can recast (3.80) as a heat
equation against the fixed background metric that takes the form

(3.81)
d

dt
h−∆h = O(h∇2

h) + F (h,∇h)

for some smooth function F depending on the background (assuming
that h is small in L∞ norm so that one can compute the inverse
g−1 = (g+h)−1 smoothly). The essentially semilinear equation (3.81)
can be solved (for initial data small and smooth, and on small time
intervals) on a compact manifold M by, say, the Picard iteration
method, based on estimates such as the energy inequality
(3.82)
‖u‖L∞t Hkx (I×M)+‖u‖L2

tH
k+1
x (I×M) �I,k ‖u(0)‖Hkx (M)+‖F‖L2

tH
k−1
x (I×M)
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for some suitably large integer k (k > d/2 + 1 will do), and with
implied constants depending on the background metric, whenever u
is a tensor that solves the heat equation d

dtu+ ∆u = F . This energy
estimate can be easily established by integration by parts. To expand
in a little more detail: the Picard iteration method proceeds by con-
structing iterative approximations h(n) to a solution h of (3.81) by
solving a sequence of inhomogeneous heat equations

(3.83)
d

dt
h(n) −∆h(n) = O(h(n−1)∇2

h(n−1)) + F (h(n−1),∇h(n−1))

starting from h(0) = 0 (say). The main task is to show that the
sequence h(n)−h(n−1) converges rapidly to zero in a suitable function
space, such as C0

tH
k
x ∩L2

tH
k+1
x . This can be done by applying (3.82)

with u = h(n) − h(n−1) or u = h(n), and also using some product
estimates in Sobolev spaces that are ultimately based on the Sobolev
embedding theorem.

There is the still the issue of how to establish existence for the
linear heat equation on tensors, but this can be done by functional
calculus (once one establishes that ∆ is a genuinely self-adjoint op-
erator), or by making a reasonably accurate parametrix for the heat
kernel. One (minor) advantage of this Picard iteration based ap-
proach is that it allows one to establish uniqueness and continuous
dependence on initial data as well as just existence, and to show that
the nonlinear solution obeys similar estimates (locally in time) to that
of the linear heat equation. But uniqueness and continuity will not be
necessary for the arguments in this course, and the estimates we need
can always be established a posteriori by energy inequalities anyway.

Remark 3.2.4. The diffeomorphisms needed to convert solutions
to Ricci-de Turck flow (3.80) back to solutions of Ricci flow (3.66)
themselves obey a pleasant evolution equation; in fact, they evolve
by harmonic map heat flow from the fixed domain (M, g) to the tar-
get (M, g(t)). See [ChKn2004, Chapter 3.4] for further discussion.
More generally, it seems that harmonic maps (and harmonic map heat
flow, and harmonic coordinates) often provide natural coordinate sys-
tems that make various geometric PDE analytically tractable. On the
other hand, for geometric arguments it seems better to work with the
original Ricci flow; the de Turck diffeomorphisms seem to obscure
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many of the delicate monotonicity properties that are essential to
the deeper understanding of Ricci flow, and are also not completely
covariant as they rely on an arbitrary choice of background metric g.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/03/28.
Thanks to Dylan Thurston, Stefan, Dan, and Mohammad for correc-
tions.

3.3. The Ricci flow approach to the Poincaré
conjecture

In order to motivate the lengthy and detailed analysis of Ricci flow
that will occupy the rest of this chapter, I will spend this section giv-
ing a high-level overview of Perelman’s Ricci flow-based proof of the
Poincaré conjecture, and in particular how that conjecture is reduced
to verifying a number of (highly non-trivial) facts about Ricci flow.

At the risk of belaboring the obvious, here is the statement of
that conjecture:

Theorem 3.3.1. (Poincaré conjecture) Let M be a compact 3-manifold
which is simply connected (i.e. it is connected, and every loop is con-
tractible to a point). Then M is homeomorphic to a 3-sphere S3.

I will take it for granted that this result is of interest; see e.g.
[Mi2003], [Mo2007], [Mi2006] for background and motivation for
this conjecture. Perelman’s methods also extend to establish further
generalisations of the Poincaré conjecture, most notably Thurston’s
geometrisation conjecture, but I will focus this chapter just on the
Poincaré conjecture. (On the other hand, the geometrisation conjec-
ture will be rather visibly lurking beneath the surface in the discussion
of this section.)

3.3.1. Examples of compact 3-manifolds. Before we get to the
Ricci flow approach to the Poincaré conjecture, we will need to discuss
some examples of compact 3-manifolds. Here (as in the statement of
the Poincaré conjecture) we will work in the topological category, so
our manifolds are a priori not endowed with a smooth structure or
a Riemannian structure, and with two manifolds considered equiva-
lent if they are homeomorphic. As mentioned in Section 3.1, in three
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dimensions it is not difficult (once one has the triangulation theo-
rem of Whitehead[Wh1961] and Munkres[Mu1960]) to move from
the topological category back to the smooth or Riemannian category
or vice versa, so one should not be too concerned about changes in
category here.

The most basic example of a compact 3-manifold is the sphere S3,
which is easiest to define extrinsically as the unit sphere in R4, but
can also be defined intrinsically as the one-point compactification of
R3 (via the stereographic projection, for instance). Using the latter
description, it is easy to see that the sphere is simply connected (note
that in two and higher dimensions one can always perturb a loop to
avoid a specific point, such as the point at infinity).

When we view S3 as the unit sphere in R4, it acquires a transi-
tive action of the special orthogonal group SO(4), whose stabiliser is
equivalent to SO(3), thus we have a third important description of
S3, namely as the homogeneous space SO(4)/SO(3). Now suppose
one has a finite subgroup Γ of SO(4) whose action on S3 is free. Then
one can quotient S3 by Γ to create a new space

(3.84) Γ\S3 ≡ Γ\SO(4)/SO(3) ≡ {Γx : x ∈ S3},

which remains a manifold since the action is free23. Such manifolds are
known as spherical 3-manifolds. If the action of Γ is not completely
trivial, then this new manifold Γ\S3 is topologically inequivalent to
the original sphere S3. The easiest way to see this is to observe that
Γ\S3 is not simply connected. Indeed, as the action is not trivial,
we can find g ∈ Γ and x ∈ S3 such that gx 6= x. Then a path from
x to gx in S3 descends to a closed loop on Γ\S3 which cannot be
contracted to a point (basically because the orbit Γx of x in S3 is
discrete), and so Γ\S3 cannot be simply connected.

Remark 3.3.2. The above argument in fact shows that the funda-
mental group π1(Γ\S3) of Γ\S3 is just Γ; this is ultimately because
S3 is the universal covering space for Γ\S3. Conversely, Perelman’s
arguments can be used to show that spherical 3-manifolds are the

23If the action had some isolated fixed points, then the quotient space would
merely be an orbifold.
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only compact 3-manifolds with finite fundamental group (this conjec-
ture, known as the elliptisation conjecture, is also a corollary of the
geometrisation conjecture).

The most well-known example of a spherical 3-manifold (other
than S3 itself) is real projective space RP3, which is equivalent to
the quotient Γ\S3 of S3 by the two-element group {+1,−1} ⊂ SO(4).
Other examples of spherical space forms include lens spaces (in which
Γ is a cyclic group), as well as a handful of other spaces in which Γ
is essentially the symmetry group of a regular polytope (the four-
dimensional analogue of the classical Platonic solids). An interesting
example of the latter is the Poincaré homology sphere, which has the
same homology groups as the sphere but is not homeomorphic to it.

The unit sphere S3 (with the usual smooth structure) has a nat-
ural Riemannian metric g on it, which can be viewed either as the
one induced from the Euclidean metric on the ambient space R4 (by
restricting the tangent spaces of the latter to the former), or the one
induced from the Lie group SO(4), which is in turn induced by the
Killing form on the Lie algebra so(4). This metric has constant sec-
tional curvature +1, which means that24

(3.85) g(Riem(u, v)u, v) = +1

whenever x ∈ S3 and u, v ∈ TxM are orthonormal vectors.

The metric g is invariant under the action of the rotation group
SO(4), and so it also descends to provide a Riemannian metric on
every spherical 3-manifold of constant curvature +1 (and thus also
constant positive Ricci and scalar curvature). Such Riemannian man-
ifolds are known as spherical space forms. Conversely, it is not dif-
ficult to show that any compact connected 3-manifold M of con-
stant curvature +1 arises in this manner; this is basically because
(3.85) ensures that there is an infinitesimal action of the Lie algebra
so(4) on the orthonormal frame bundle of M , which then extends
to an action of SO(4) which is transitive (thanks to the connected-
ness of M) and has stabiliser equal to some finite extension of SO(3)

24To put it another way, Riem is +1 times the identity section of
Hom(

∧2 TM,
∧2 TM).
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(which is the structure group of the orthonormal frame bundle). Since
S3 ≡ SO(4)/SO(3), the claim follows.

Remark 3.3.3. The spherical space forms are one of the eight Thurston
geometries (or model geometries) that arise in the geometrisation con-
jecture, namely the spherical or elliptic geometries. (These eight ge-
ometries are also closely related, though not identical to, the clsasical
classification of Bianchi of three-dimensional Lie algebras into nine
families.)

Two more examples of 3-manifolds arise by considering S2-bundles
over S1, or equivalently, S2× [0, 1] with the two spheres S2×{0} and
S2 × {1} identified. Some basic degree theory (or even just winding
number theory) shows that up to continuous deformation, there are
only two such identifications; the orientation-preserving one (which is
equivalent to the identity map, or a rotation map) and the orientation-
reversing one (which is equivalent to a reflection map). The first such
identification leads to the orientable S2-bundle S2 × S1, and the sec-
ond identification leads to the non-orientable S2-bundle (which is a
3-manifold analogue of the Klein bottle). Both of these manifolds
can be viewed as quotients of the cylinder S2 ×R by an action of Z.
More precisely, S2 ×R has an obvious transitive action of O(3)×R
on it given by the formula (U, s)(ω, t) := (Uω, s + t); the stabiliser
subgroup is O(2)× {0}, thus

(3.86) S2 ×R ≡ (O(3)×R)/(O(2)× {0})

Every group element (U, s) ∈ O(3)×R with s 6= 0 generates a discrete
subgroup Γ = {(Un, ns) : n ∈ Z}, and the quotient space

(3.87) Γ\S2 ×R ≡ Γ\(O(3)×R)/(O(2)× {0})

is homeomorphic to either the orientable or non-orientable S2-bundle
over S1, depending whether det(U) is equal to +1 (i.e. U ∈ SO(3) is
rotation) or to −1 (i.e. U 6∈ SO(3) is a reflection).

Let M be one of the above S2-bundles over S1. The projection
map from M to S1 induces a homomorphism from the fundamental
group π1(M) to the fundamental group π1(S1) ≡ Z.
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Exercise 3.3.1. Show that this map is in fact bijective, thus π1(M) ≡
Z. In particular these manifolds are not homeomorphic to the spher-
ical 3-manifolds.

There is an obvious Riemannian metric g to place on S2×R, being
the direct sum of the standard metrics on S2 and R respectively; it
can also be defined in terms of the Killing form on the Lie algebra
so(3)×R. As this metric is O(3)×R-invariant, it descends to both
the oriented and non-oriented S2-bundles over S1. This metric is not
of constant sectional curvature (the sectional curvature is positive on
planes transverse to the axis of the cylinder, but vanish on planes
parallel to that axis). But it has non-negative Riemann, sectional,
Ricci curvature and positive scalar curvature.

Remark 3.3.4. The geometries coming from S2 ×R are another of
the eight Thurston geometries. These are the only two of the eight
geometries that have some positive curvature in them; it is because of
this that these two geometries can get extinguished in finite time by
Ricci flow (remember, this flow compresses positively curved geome-
tries and expands negatively curved ones). Very roughly speaking,
it is these two geometries that show up in the finite time analysis
of Ricci flow (in which the time variable t is bounded), whereas the
other six geometries (being flat or negatively curved) only show up
in the asymptotic analysis of Ricci flow (in the limit t→∞).

One can form further 3-manifolds out of the ones already dis-
cussed by the procedure of taking connected sums. Recall that the
connected sum M#M ′ of two connected 3-manifolds M , M ′ is formed
by choosing small 3-balls B, B′ in M and M ′ respectively; if these
balls are small enough, they are homeomorphic to the Euclidean ball
B3. Remove the interior of these two balls, leaving behind two bound-
aries ∂B and ∂B′ which are homeomorphic to S2, and then identify
these two boundaries together to create a new connected 3-manifold.

Remark 3.3.5. It is not hard to see that the location of the small
balls B, B′ is not relevant, since the connectedness of M and M ′ eas-
ily allows one to “slide” these balls around. There is however a subtle
technicality regarding the identification map between ∂B and ∂B′. A
bit of degree theory shows that up to homotopy, there are only two
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possible identifications, one of which reverses the orientation of the
other; for instance, any homeomorphism of the unit sphere S2 to itself
can be continuously deformed (while remaining a homeomorphism)
to either a rotation or a reflection. If one of the manifolds M , M ′ is
non-orientable then either choice of identification gives an equivalent
connected sum up to homeomorphism, as one can slide one of the
balls around the non-orientable manifold to return to the original lo-
cation with the reversed orientation. Similarly, if both manifolds M ,
M ′ are orientable and one of them has an orientation-reversing home-
omorphism, then again the two connected sums are homeomorphic.
But there are some orientable 3-manifolds which lack orientation-
reversing homeomorphisms (e.g. some lens spaces are of this type),
and so there are cases in which the connected sum operation of two
orientable manifolds M , M ′ is ambiguous. However, if one selects one
of the two available orientations on M and M ′ (thus upgrading these
orientable manifolds to oriented manifolds), then one can define an
oriented connected sum by asking that the oriented structures on M

and M’ are compatible upon gluing, thus yielding an oriented con-
nected manifold M#M ′. This operation is then unambiguous up to
homeomorphism. So, if we adopt the convention that all manifolds
are equipped with an orientation if they are orientable, and are (of
course) not equipped with an orientation if they are non-orientable,
then we have a well-defined connected sum25.

Once one addresses the technical issues raised in Remark 3.3.5,
one can show that the connected sum operation is well-defined, com-
mutative, and associative up to homeomorphism. There is also a
strong relationship between the topology of a connected sum and
that of its components:

Exercise 3.3.2. Let M , M ′ be connected manifolds of the same
dimension.

(1) Show that M#M ′ is compact if and only if M and M ′ are
both compact.

25Another way to avoid this issue is to lift non-oriented manifolds up to their
oriented double cover whenever necessary.
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(2) Show that M#M ′ is orientable if and only if M and M ′ are
both orientable.

(3) Show that M#M ′ is simply connected if and only if M and
M ′ are both simply connected.

The sphere also plays a special role, as the identity for the con-
nected sum operation:

Exercise 3.3.3. Let M be a connected manifold, and let S be a
sphere of the same dimension. Show that M#S (or S#M) is home-
omorphic to M .

This property uniquely defines the sphere topologically; if there
was another connected manifold S′ of the same dimension as a sphere
S which was also an identity for the connected sum, then a considera-
tion of S#S′ shows that these two manifolds must be homeomorphic.

Exercise 3.3.4. Let M be a connected manifold. Suppose one con-
nects M to itself by taking two small disjoint balls B and B′ inside M ,
removing the interiors of these balls, and identifying the boundaries
∂B and ∂B′. Show that the resulting manifold is homeomorphic to
the connected sum of M with an S2 bundle over S1.

Remark 3.3.6. For this remark, let us restrict attention to com-
pact connected oriented 3-manifolds; modulo homeomorphisms, this
is a commutative associative monoid with respect to connected sum,
with identity S3. A manifold is said to non-trivial if it is not the
identity, and prime if it is non-trivial but not representable as the
sum of two non-trivial manifolds. It then turns out that there is a
prime decomposition theorem for such manifolds, analogous to the
fundamental theorem of arithmetic: every such manifold is express-
ible as the connected sum of finitely many prime manifolds, and that
this decomposition is unique up to rearrangement. However, useful
as this decomposition is, it turns out that one does not actually need
the prime decomposition theorem to prove the Poincaré conjecture26.

26In fact, it is remarkable how little actual topology is needed to prove what is
manifestly a topological conjecture; almost the entire proof of Perelman is conducted
instead in the arena of differential geometry (and more specifically, Riemannian geom-
etry) and partial differential equations.
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Recall that of the spherical space forms and S2-bundles over S1

mentioned above, the sphere S3 was the only one which was simply
connected. From Exercises 3.3.2 and 3.3.3 we thus have

Corollary 3.3.7 (Poincaré conjecture for positively curved Thurston
geometries). Let M be a simply connected 3-manifold which is the
connected sum of finitely many spherical space forms and S2-bundles
over S1. Then M is homeomorphic to the sphere S3.

Remark 3.3.8. One can establish similar results for combinations of
any of the eight Thurston geometries (where we now allow “combi-
nation” to not just include the connected sum operation which glues
along spheres S2, but also more complicated joining operations which
glue along tori T 2). Because of this, it is not difficult to show that
the geometrisation conjecture implies the Poincaré conjecture. But
the former conjecture is a significantly stronger and richer conjec-
ture than the latter; it classifies all compact 3-manifolds, not just the
simply connected ones.

3.3.2. Perelman’s theorems and the Poincaré conjecture. We
now have enough background to state the main results of Perelman;
the rest of the chapter will be devoted to proving as much of these
results as possible.

In [Ha1982], Hamilton realised that Ricci flow was an exception-
ally promising tool for uniformising the geometry of a Riemmanian
manifold, to the point where its topology became recognisable. The
first evidence he established towards this phenomenon is the follow-
ing rounding theorem: if a compact 3-manifold (M, g) has everywhere
positive Ricci curvature, then the Ricci flow (M(t), g(t)) with this ini-
tial data develops a singularity in finite time t∗. Furthermore, as one
approaches this singularity, the Ricci curvature becomes increasingly
uniform, and more precisely that 3

R(t)
Ricαβ(t, x) converges uniformly

to the metric gαβ(t, x) as t → t∗, where R(t) is the average scalar
curvature on (M(t), g(t)). (One can also show that R(t) → +∞ as
t → t∗.) Once the Ricci curvature is sufficiently uniform, one can
apply tools from Riemannian geometry such as the sphere theorem to
deduce that the original manifold M was in fact homeomorphic to a
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spherical space form (and in particular, if M is simply connected, is
homeomorphic to a sphere S3).

Unfortunately, for more general Riemannian 3-manifolds, Ricci
flow was only able to partially uniformise27 the geometry before the
appearance of the first singularity. In order to address this issue,
Hamilton[Ha1997] introduced (in the context of 4-manifolds) a no-
tion of surgery on manifolds at each development of a singularity in
order to continue the Ricci flow (but possibly with a topology change
after each surgery). These and other results then led to Hamilton’s
program to develop a systematic theory of Ricci flow with surgery
that would be able to uniformise and then recognise the topology
of various Riemannian manifolds, particularly 3-manifolds. However,
prior to Perelman’s work, there was insufficient understanding of even
the first singularity of Ricci flow to carry out this program, unless ad-
ditional curvature assumptions were placed on the initial manifold.

The most important of Perelman’s results in this direction is the
following global existence result for a certain modification of Ricci
flow.

Theorem 3.3.9 (Global existence of Ricci flow with surgery). [Pe2002],
[Pe2003] Let (M, g) be a compact Riemannian 3-manifold, such that
M does not contain any embedded copy of the real projective plane
RP2 with trivial normal bundle. Then there exists a Ricci flow with
surgery t 7→ (M(t), g(t)) which assigns a compact Riemannian man-
ifold (M(t), g(t)) to each time t ∈ [0,+∞), as well as a closed set
T ⊂ (0,+∞) of surgery times, with the following properties:

(1) (Initial data) M(0) = M and g(0) = g.

(2) (Ricci flow) If I is any connected component of [0,+∞)\T
(and is therefore an interval), and tI is the left-endpoint of I,
then t 7→ (M(t), g(t)) is a Ricci flow on {tI} ∪ I, as defined
in the Section 3.2 (in particular, M(t) is constant on this
interval).

27However, work of Hamilton[Ha1988] and Chow[Ch1991] did show that Ricci
flow does accomplish this task for 2-manifolds. These methods can give a new proof
of the classical uniformisation theorem: see [ChLuTi2006].
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(3) (Topological compatibility) If t ∈ T , and ε > 0 is sufficiently
small, then each connected component of Mt−ε is homeo-
morphic to the connected sum of finitely many connected
components of Mt, together with a finite number of spheri-
cal space-forms, RP3#RP3, and S2 bundle over S1. Fur-
thermore, each connected component of Mt is used in the
connected sum decomposition of exactly one component of
Mt−ε.

(4) (Geometric compatibility) For each t ∈ T , the metric g(t)
on M(t) is related to a certain limit of the metrics g(t − ε)
on M(t− ε) as ε→ 0 by a certain surgery procedure which
we will state precisely much later, see Section ???.

The key here is item 3, which depends crucially on the structural
analysis of Ricci flow as it approaches a singularity. The precise defi-
nition of surgery in item 4 is highly technical (and differs in a number
of ways from Hamilton’s version of the concept), but fortunately we
do not need to know exactly what it is for topological applications
such as the Poincaré conjecture, which only require item 3. (We do
need to understand surgery in order to prove Theorems 3.3.12 and
3.3.13 below, though.)

The condition that M does not contain any embedded copy of
RP2 with trivial normal bundle is a technical one, but is not a sig-
nificant obstacle for proving the Poincaré conjecture, thanks to the
following topological lemma:

Lemma 3.3.10. Let M be a simply connected 3-manifold. Then
M does not contain any embedded copy of RP2 with trivial normal
bundle.

Proof. Suppose for contradiction that M contained an embedded
copy Σ of RP2 with trivial normal bundle. Then one can find a loop
γ in Σ whose normal bundle in Σ is non-trivial28. Since Σ has trivial

28Indeed, one can find a loop whose neighbourhood is a Möbius strip; this is eas-
iest seen by viewing RP2 topologically as the unit square with diametrically opposing
points identified, and then taking γ to be a horizontal or vertical line through the
centre of this square.



400 3. The Poincaré conjecture

normal bundle in M , we conclude that γ has non-trivial normal bun-
dle in M . But then γ cannot be contracted to a point, contradicting
the hypothesis that M is simply connected. �

Remark 3.3.11. The above argument in fact shows that no ori-
entable manifold can contain an embedded RP2 with trivial normal
bundle; note that all simply connected manifolds are automatically
orientable. The argument can also be modified to show that a simply
connected manifold cannot contain any embedded copy of RP2 at all
(regardless of whether the normal bundle is trivial).

To prove the Poincaré conjecture, we need to combine Theorem
3.3.9 with two other results about Ricci flow with surgery. The first
is relatively easy:

Theorem 3.3.12 (Discrete surgery times). Let t → (M(t), g(t)) be
a Ricci flow with surgery with no embedded RP2 with trivial normal
bundle. Then the set T of surgery times is discrete. In particular,
any compact time interval only contains a finite number of surgeries.

This theorem is basically proven by obtaining a lower bound on
how much volume is removed by each surgery, combined with an up-
per bound on how much the volume can grow during the Ricci flow
stage of the process. We have isolated Theorem 3.3.12 from Theorem
3.3.9 to highlight the importance of the former, but in practice the
two results are proven simultaneously (since the geometric and topo-
logical compatibility in Theorem 3.3.9 would become more difficult to
formulate properly if the surgery times were allowed to accumulate).

The second result is more non-trivial, though it is still signifi-
cantly easier to prove than Theorem 3.3.9:

Theorem 3.3.13. (Finite time extinction) Let (M, g) be a compact
3-manifold which is simply connected, and let t 7→ (M(t), g(t)) be
an associated Ricci flow with surgery. Then M(t) is empty for all
sufficiently large times t.

This result is analogous to finite time blowup results in nonlin-
ear evolution equations. It is established by constructing a non-
negative quantity W(t) depending on the geometry (M(t), g(t)) at
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time t, which decreases in such a manner that it must vanish in fi-
nite time, at which point one can show that the manifold becomes
empty29. There are two known candidates for this quantity, one due
to Perelman[Pe2003b] (based on a min-max functional over loops),
and one due to Colding and Minicozzi[CoMi2005] (based on minimal
spheres). Both quantities are known to be strong enough to establish
Theorem 3.3.13.

Once one has Theorems 3.3.9, 3.3.12, and 3.3.13 in hand, the
proof of the Poincaré conjecture is easy:

Proof of Theorem 3.3.1. Let M be a compact, simply connected
3-manifold. By an old result of Moise[Mo1952], every 3-manifold
can be triangulated and so can easily be endowed with a smooth
structure30 Using a standard partition of unity argument, one can
then create a smooth Riemannian metric g on M .

Theorem 3.3.9 (and Lemma 3.3.10) gives us a Ricci flow with
surgery t 7→ (M(t), g(t)) with surgery with initial data (M, g). By
Theorem 3.3.13, there is some finite time t∗ after which the manifolds
M(t) are empty. By Theorem 3.3.12, the number of surgeries up
to that time are finite. By item 3. of Theorem 3.3.9 and working
backwards from time t∗ to time 0, we conclude that M(0) = M is
the connected sum of finitely many spherical space forms, copies of
RP3#RP3, and S2 bundles over S1. Actually, since RP3 is already
a spherical space form, we can absorb the second case into the first.
The claim now follows from Corollary 3.3.7. �

Remark 3.3.14. Perelman’s arguments in fact show a stronger ver-
sion of Theorem 3.3.13: the finite time extinction occurs not only
for simply connected manifolds, but more generally for any compact
3-manifold M whose fundamental group π1(M) is a free product of
finite groups and infinite cyclic groups. The above argument then
shows that any such manifold is diffeomorphic to the connected sum
of finitely many space forms and S2 bundles over S1 (i.e. it is made
up of the positively curved Thurston geometries). Conversely, it can

29From topological compatibility it is clear that if the manifold is empty at time
t, it is empty for all subsequent times.

30In the converse direction, the results of Munkres[Mu1960] and
Whitehead[Wh1961], show that this smooth structure is unique.
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be shown that any such connected sum has a fundamental group of
the above form. In particular this gives a topological necessary and
sufficient condition for finite time extinction. One corollary of this is
the spherical space form conjecture (or elliptisation conjecture): any
compact 3-manifold with finite fundamental group is diffeomorphic
to a spherical space form. See [MoTi2007] for details.

Remark 3.3.15. Theorems 3.3.9 and 3.3.12 also form the basis of
the proof of the geometrisation conjecture. However, an additional
ingredient is also needed, namely an analysis of the behaviour of the
solutions to Ricci flow with surgery in the asymptotic limit t → ∞.
Also, in order to avoid dealing with all of the other Thurston geome-
tries , a substantial amount of existing theory concerning geometrisa-
tion is first used to topologically simplify the manifold before applying
Ricci flow (for instance, one works only with prime manifolds); see
[KlLo2006], [CaZh2006], [MoTi2008] for details.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/04/01.
Thanks to Richard Kent, and anonymous commenters for corrections
and references.

Richard Borcherds pointed out that in the smooth category, the
connected sum (of two spheres, say) can have a rather large number of
inequivalent realisations, due to the presence of exotic diffeomorphism
classes on the sphere, although this issue only arises in dimensions
larger than three.

3.4. The maximum principle, and the pinching
phenomenon

We now begin the study of (smooth) solutions t 7→ (M(t), g(t)) to the
Ricci flow equation

(3.88)
d

dt
gαβ = −2Ricαβ ,

particularly for compact manifolds in three dimensions. Our first
basic tool will be the maximum principle for parabolic equations,
which we will use to bound (sub-)solutions to nonlinear parabolic
PDE by (super-)solutions, and vice versa. Because the various cur-
vatures Riemδ

αβγ , Ricαβ , R of a manifold undergoing Ricci flow do
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indeed obey nonlinear parabolic PDE (see (3.2.3)), we will be able
to obtain some important lower bounds on curvature, and in partic-
ular establishes that the curvature is either bounded, or else that the
positive components of the curvature dominate the negative compo-
nents. This latter phenomenon, known as the Hamilton-Ivey pinching
phenomenon, is particularly important when studying singularities of
Ricci flow, as it means that the geometry of such singularities is al-
most completely dominated by regions of non-negative (and often
quite high) curvature.

3.4.1. The maximum principle. In freshman calculus, one learns
that if a smooth function u : [a, b] → R has a local minimum at
an interior point x0, then the first derivative u′(x0) vanishes and
the second derivative u′′(x0) is non-negative. This implies a higher-
dimensional version: if U is an open domain in Rd and u : U → R has
a local minimum at some x0 ∈ U , then ∇u(x0) = 0 and ∆u(x0) ≥ 0.
Geometrically, the Laplacian ∆u(x0) measures the extent to which u
at x0 dips below the average value of u near x0, which explains why
the Laplacian is non-negative at local minima.

The same phenomenon occurs on Riemannian manifolds:

Lemma 3.4.1. Let (M, g) be a d-dimensional Riemannian manifold,
and let u : M → R be a C2 function that has a local minimum at a
point x0 ∈M . Then ∇αu(x0) = 0 and ∆u(x0) ≥ 0.

Proof. The vanishing ∇αu(x0) = 0 of the first derivative is clear,
so we turn to the second derivative estimate. We let e1, . . . , ed be a
(local) orthonormal frame of M . Then (by the Leibniz rule)

(3.89) ∆u = eαae
β
a∇α∇βu = ∇ea∇eau−∇∇eaeau.

Since u has vanishing first derivative at x0, we conclude that

(3.90) ∆u(x0) = ∇ea∇eau(x0).

But as u has a local minimum at x0, it also has a local minimum
on the geodesic through x0 with velocity ea. From one-dimensional
calculus we conclude that ∇ea∇eau(x0) is non-negative for each a,
and the claim follows. �
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For applications to nonlinear parabolic PDE, we need a time-
dependent version of this fact, in which the function u and the metric
g also vary with time. It is also convenient to consider work not with
one function u, but with a pair u, v, and to consider relative local
minima of u with respect to v (i.e. local minima of u− v).

Lemma 3.4.2 (Dichotomy). Let t 7→ (M, g(t)) be a smooth flow of
compact Riemannian manifolds on a time interval [0, T ]. Let u, v :
[0, T ] ×M → R be C2 functions such that u(0, x) ≥ v(0, x) for all
x ∈M . Let A ∈ R. Then exactly one of the following is true:

(1) u(t, x) ≥ v(t, x) for all (t, x) ∈ [0, T ]×M .

(2) There exists (t, x) ∈ (0, T ]×M such that

u(t, x) < v(t, x)

∇αu(t, x) = ∇αv(t, x)

∆g(t)u(t, x) ≥ ∆g(t)v(t, x)

d

dt
u(t, x) ≤ d

dt
v(t, x)−A(v(t, x)− u(t, x))

(3.91)

where ∆g(t) is the Laplacian with respect to the metric g(t).

Proof. By replacing u, v with u − v, 0 respectively we may assume
that v = 0. If we then replace u(t, x) by eAtu(t, x) we may also assume
that A = 0.

Clearly 1. and 2. cannot both hold. If 1. fails, then there exists
ε > 0 such that u(t, x) ≤ −ε for some (t, x) ∈ [0, T ] ×M . Let t be
the first time for which this occurs, and let x ∈ M be a point such
that u(t, x) = −ε. Then t > 0. Also x is a local minimum of u(t)
and thus ∇αu(t, x) = 0 and ∆g(t)u(t, x) ≥ 0 by Lemma 3.4.1. Also,
since u(t′, x) > −ε for all t′ < t we have d

dtu(t, x) ≤ 0. The claim
follows. �

This gives us our first version of the parabolic maximum principle.

Corollary 3.4.3 (Supersolutions dominate subsolutions). Let the as-
sumptions be as in Lemma 3.4.2. Suppose also that we have the su-
persolution property

(3.92)
d

dt
u(t, x) ≥ ∆g(t)u(t, x) +∇X(t)u(t, x) + F (t, u(t, x))
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and the subsolution property

(3.93)
d

dt
v(t, x) ≤ ∆g(t)v(t, x) +∇X(t)v(t, x) + F (t, v(t, x))

for all (t, x) ∈ [0, T ]×M where for each time t, X(t) is a vector field,
and F (t) : R → R is a Lipschitz function of constant less than A.
Then u(t, x) ≥ v(t, x) for all 0 ≤ t ≤ T .

Proof. If we subtract (3.92) from (3.93) and use the Lipschitz nature
of F we obtain
(3.94)
d

dt
(u−v)(t, x) ≥ ∆g(t)(u−v)(t, x)+∇X(t)(u−v)(t, x)−A′|u(t, x)−v(t, x)|

for some A′ < A. But this is inconsistent with the set of equations
(3.91). The claim then follows immediately from Lemma 3.4.2. �

In our applications, the subsolution v(t, x) = v(t) will in fact be
independent of x, and so is really an ODE subsolution rather than a
PDE subsolution:

(3.95)
d

dt
v(t) ≤ F (t, v(t))

Thus the parabolic maximum principle allows us to lower bound
PDE supersolutions by ODE subsolutions, as long as we have a bound
at time zero.

The above maximum principle is already very useful for scalar
solutions (or supersolutions) u : [0, T ] ×M → R to scalar nonlinear
parabolic PDE, but we will in fact need a more general version of this
principle for vector-valued solutions u : [0, T ] 7→ Γ(V ) to nonlinear
parabolic PDE, where V is a vector bundle31 over M , equipped with
some connection ∇.

We will need some more notation. Let us say that a subset K of
a tensor bundle V is fibrewise convex if the fiber Kx := K ∩ Vx over
each point x ∈ M is a convex subset of the vector space Vx. We say
that a subset K of a vector bundle V is parallel to the connection ∇

31In practice, V will be derived from the tangent bundle, and ∇ will be derived
from the Levi-Civita connection.
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if for any vector field X on M , the induced vector field ∇X preserves
K (i.e. K is preserved by parallel transport).

We have a tensor variant of Lemma 3.4.1:

Lemma 3.4.4. Let (M, g) be a d-dimensional Riemannian manifold,
let V be a vector bundle over M with a connection ∇, and let K be
a closed, fibrewise convex subset of V which is parallel with respect to
the connection. Let u ∈ Γ(V ) be a section such that u(x) ∈ ∂Kx at
some point x ∈ M , and u(y) ∈ Ky for all y in a neighbourhood of x
(thus u in some sense “attains a local maximum” at x with respect to
K). Then every directional derivative ∇Xu(x) ∈ TxM of u at x is a
tangent vector32 to Kx at u(x), and the Laplacian ∇α∇αu(x) ∈ TxM
is an inward or tangential pointing vector to Kx at u(x) (i.e. it lives
in the closed convex cone of Kx−u(x)). Here the space T ∗M×V that
∇u is a section of is equipped with the direct sum of the Levi-Civita
connection and the connection on V ; by abuse of notation, we refer
to all of these connections as ∇.

Note that Lemma 3.4.1 corresponds to the special case when V =
M ×R and K = M × [a,+∞) for some a.

Proof. We begin with the claim concerning the first derivatives∇Xu(x).
One can restrict attention from M to (a local piece of) the one-
dimensional geodesic through x with velocity X(x), thus essentially
reducing matters to the case d = 1. Any one-dimensional connection
can be locally trivialised (this is essentially the Picard existence the-
orem for ODE) and so we may take M to be a small interval (−ε, ε)
(with x now being identified with 0), take V to be the trivial bundle
M ×V0, and take ∇ to be the trivial connection. The set K can then
be identified with M ×K0, and u can be viewed as a smooth function
from (−ε, ε) to K0 that attains the boundary of K0 at 0. It is then
clear that the first derivative of u at 0 is tangent to K0 at u(0).

32A vector v is said to be an inward pointing vector at the boundary x of some
convex set B if there is some conic neighbourhood of the ray of direction v emenating
from x that is contained in B, and an outward pointing vector if there is a conic
neighbourhood that lies outside of B. It is a tangent vector if it is neither inward
pointing or outward pointing.
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Now we turn to the second derivatives. As in the proof of Lemma
3.4.1, we introduce an orthonormal frame ea and express the Lapla-
cian in terms of this frame via the Leibniz rule as in (3.89). The
first derivative terms are already tangential, so it suffices by con-
vexity to show that ∇ea∇eau(x) is tangential or inward pointing for
each a = 1, . . . , d separately. But for fixed a, we can reduce to the
one-dimensional setting considered previously by restricting to the ge-
odesic through x with velocity ea(x) as before, so that once again u is
now a smooth function from (−ε, ε) to K0 which attains a boundary
value of K0 at 0. In particular, if {v ∈ V0 : λ(v) ≤ c} is a supporting
halfspace for K0 at u(0) for some linear functional λ : V0 → R, then
the scalar function x 7→ λ(u(x)) ·w attains a maximum at 0 and thus
has non-negative second derivative. The claim follows. �

As a consequence we can establish a rather general and powerful
tensor maximum principle of Hamilton [Ha1997]:

Proposition 3.4.5 (Hamilton’s maximum principle). [Ha1997] Let
t 7→ (M, g(t)) be a smooth flow of compact Riemannian manifolds on a
time interval [0, T ]. Let V be a vector bundle over M with connection
∇, and let u : [0, T ] 7→ Γ(V ) be a smoothly varying family of sections
that obeys the nonlinear PDE

(3.96)
d

dt
u(t, x) = ∇α∇αu+ F (t, x, u)

where for each (t, x) ∈ [0, T ] × M , F (t, x) : Vx → Vx is a locally
Lipschitz function (using the metric on Vx induced by g) which is
continuous in t,x with uniformly bounded Lipschitz constant in the
1-neighbourhood (say) of Kx. For each time t ∈ [0, T ], let K(t) ⊂ V

a closed fibrewise convex parallel set varying continuously in t. We
assume that K is preserved by F in the sense that for each (t, x) ∈
[0, T ) ×M and each boundary point v ∈ ∂Kx(t) ⊂ Vx, the spacetime
vector (1, F (t, x, v)) ∈ R × Vx is an inward or tangential vector to
the spacetime body Kx := {(t′, v′) : t′ ∈ [0, T ], v′ ∈ Kx(t′)} at the
boundary point (t, v). Suppose also that u(0, x) ∈ Kx(0) for all x ∈
M . Then u(t, x) ∈ Kx(t) for all (t, x) ∈ [0, T ]×M .

Proof. By continuity in time, it suffices to prove the claim in [0, T )×
M rather than [0, T ]×M .
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Let us first give an “almost proof” of the claim, and then explain
how to modify this to an actual proof. Suppose the claim failed;
then u(t, x) must exit Kx(t) for some (t, x) ∈ [0, T ) × M . If we
let t be the first time at which this occurs, then t > 0 and there
exists x ∈ M such that u(t, x) ∈ ∂Kx(t), and u(t, y) ∈ Ky(t) for
all other y ∈ M . By Lemma 3.4.4, this implies that ∇α∇αu(t, x)
is a tangential or inward pointing vector to Kx(t) at u(t, x). Also,
since u(t′, x) ∈ Kx(t′) for all t′ < t, we see that (1, ddtu(t, x)) is a
tangential or outward pointing vector ofKx at (t, u(t, x)). From (3.96)
we conclude that (1, F (u, t, x)) is also a tangential or outward pointing
vector. This almost contradicts the hypothesis, except that it is still
possible that (1, F (u, t, x)) is tangential.

To modify this, what we do is that we enlarge the set K slightly.
Let A be a large number (essentially this is the bound on the local
Lipschitz constant on F ) ε > 0 be small. For each (t, x) ∈ [0, T ]×M ,
let K

(ε,A)
x (t) be the εeAt-neighbourhood of Kx(t) in Vx. If ε is

small enough compared to A, this new set K(ε,A)
x (t) lives in the 1-

neighbourhood of the old set Kx(t). If A is sufficiently large com-
pared to the local Lipschitz constant of F , then (by the growth of
the exponential function eAt, and the hypotheses on F ) the vector
(1, F (t, x, u)) will now always be inward pointing, and not just tan-
gential or inward pointing, to the spacetime body K(ε,A) whenever
(t, x, u) is at a boundary point of this body. This allows us to use
the previous arguments with Kx(t) replaced by K(ε,A) throughout, to
show that u(t, x) cannot escape K(ε,A) if A is large enough. Sending
ε→ 0 we obtain the claim. �

Remark 3.4.6. One can easily also add a drift term ∇X(t)u(t, x) to
(3.96), as in Corollary 3.4.3, though we will not need to do so here.
With some more effort, one could start defining notions of “tensor
supersolutions” and “tensor subsolutions”, which take values as fibre-
wise convex sets rather than sections, to try to obtain a true tensor
generalisation of Corollary 3.4.3, but this becomes very technical and
we will not need to use such generalisations here.

Remark 3.4.7. The above maximum principles are known as weak
maximum principles: starting from an assumption of non-negativity
(or similar closed bounds) at time zero, they ensure non-negativity
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(or closed bounds) at later times. Later on we shall also need strong
maximum principles, in which one additionally assumes positivity at
some initial point at time zero, and that the manifold is connected,
and concludes positivity everywhere at later times33. Actually, it is
the contrapositive of these strong maximum principles which will be
of use to us, as they allow one to use vanishing of some key curvature
at one point in spacetime to deduce vanishing of curvatures at many
other points in spacetime also, which in particular will lead to some
very important splitting theorems that will arise in the arguments
later.

3.4.2. Applications of the maximum principle. We now apply
the maximum principle (in both its scalar and tensor forms) to solu-
tions of the Ricci flow (3.88) on some time interval [0, T ]. The simplest
application of these principles arises from exploiting the equation

(3.97)
d

dt
R = ∆R+ 2|Ric|2

for the scalar curvature (see (3.2.3)).

Remark 3.4.8. Intuitively, the two components on the RHS of (3.97)
can be interpreted as follows. The dissipative term ∆R reflects the
fact that a point in M with much higher (resp. lower) curvature than
its neighbours (or more precisely, than the average curvature of its
neighbours) will tend to revert to the mean, because the Ricci flow
(3.88) will strongly contract the metric at regions of particularly high
curvature (resp. strongly expand the metric at regions of particularly
low curvature); one may visualise Ricci flow on a very pointed cigar, or
a highly curved saddle, to try to see what is going on. The nonlinear
term 2|Ric|2 reflects the fact that if one is in a positive curvature
region (e.g. a region behaving like a sphere), then the metric will
contract under Ricci flow, thus increasing the curvature to be even
more positive; conversely, if one is in a negative curvature region
(such as a region behaving like a saddle), then the metric will expand,
thus weakening the negativity of curvature. Note that in both cases

33This can be viewed as a substantial generalisation of the fact that the heat
kernel on a connected manifold is everywhere strictly positive, or more informally that
Brownian motion has a positive probability of hitting any given non-empty open region
of the manifold.
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the curvature is trending upwards, which is consistent with the non-
negativity of 2|Ric|2.

Remark 3.4.9. Another source of intuition can come from Einstein
metrics, which are those metrics with the property that Ricαβ = kgαβ
for some constant k; in particular we have constant scalar curvature
R = kd, where d is the dimension. It is not hard to show (using
(3.58)) that the Ricci flow for such metrics is given explicitly by the
formulae

gαβ(t) = (1− 2kt)gαβ(0)

gαβ(t) =
1

1− 2kt
gαβ(0)

Ricαβ(t) = Ricαβ(0)

R(t) =
1

1− 2kt
R(0) =

1
1− 2kt

kd.

(3.98)

Of course, this is completely consistent with (3.97). Note that if k is
positive (which occurs for instance in manifolds of constant positive
sectional curvature, such as the sphere and its quotients) then a sin-
gularity develops at time 1/2k, in which the diameter of the manifold
has shrunk to zero and the curvature has become infinitely positive.
In contrast, if k is negative (which occurs for manifolds of constant
negative sectional curvature, such as hyperbolic space) the metric
expands, becomes increasingly flat over time and does not develop
singularities.

Since R is the trace of the self-adjoint tensor Ricαβ , one has the
decomposition

(3.99) |Ric|2 =
1
d
R2 + |Ric0|2,

where Ric0
αβ := Ricαβ − 1

dRgαβ is the traceless component of the
Ricci tensor. We conclude that R is a supersolution to a nonlinear
parabolic PDE:

(3.100)
d

dt
R ≥ ∆R+

2
d
R2.

For each time t, let Rmin(t) denote the minimum value of the scalar
curvature. We thus conclude
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Proposition 3.4.10. (Lower bounds on scalar curvature). Let (M, g(t))
be a Ricci flow on a compact d-dimensional manifold on some time
interval [0, T ]. Then for every t ∈ [0, T ], we have

(3.101) Rmin(t) ≥ Rmin(0)
1− 2t

d Rmin(0)
.

In particular, if R ≥ c at time zero for some c ∈ R, then R ≥ c for
all subsequent times for which the flow exists; and if furthermore c is
positive, then the flow cannot be extended beyond time d

2c .

From Remark 3.4.1 we see that for Einstein metrics, (3.101) is
obeyed with equality, so that (3.101) can be quite sharp.

Exercise 3.4.1. Use Corollary 3.4.3 to deduce Proposition 3.4.10.

Proposition 3.4.10 asserts that while the scalar curvature can be-
come extremely large and positive as time increases, it cannot become
extremely large and negative. One quick corollary of this is

Corollary 3.4.11 (Upper bound on volume growth). Let (M, g(t))
be a Ricci flow on a compact d-dimensional manifold on some time
interval [0, T ], such that we have the pointwise lower bound R ≥ c at
time zero. Then we have

(3.102) Vol(M, g(t)) ≤ e−2ctVol(M, g(0))

for all 0 ≤ t ≤ T .

Proof. From the variation formula (3.69) for the volume measure dµ
we have

(3.103)
d

dt
Vol(M, g(t)) = −

∫
M

2R(t, x) dµg(t)(x).

By Proposition 3.4.10, R is bounded from below by c, leading to the
inequality d

dtVol(M, g(t)) ≤ −2cVol(M, g(t)). The claim now follows
from Gronwall’s inequality. �

Exercise 3.4.2. Strengthen the bound (3.4.11) to

(3.104) Vol(M, g(t)) ≤ (1− 2ct
d

)dVol(M, g(0))

and show that this inequality is sharp for Einstein metrics. Note that
this improved bound demonstrates rather visibly that when c > 0,
some singularity must develop at or before time d/2c.
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We now turn to applications of the tensor maximum principle.
It is natural to apply this principle to the equation for the Riemann
tensor,

(3.105)
d

dt
Riemαβ = ∆Riemαβ +O(Riem2)

(see (3.2.3)). In principle, this expression is of the required form
(3.96), but the nonlinearity O(Riem2), while explicit, is rather messy
to work with. It is convenient to simplify (3.105) further by viewing
things in a certain evolving orthonormal frame. For ease of notation,
let us assume that the compact manifold M = M(0) is parallelis-
able34, so that it enjoys a global orthonormal frame e1(0), . . . , ed(0) ∈
Γ(TM(0)) for the metric g(0). This orthonormal frame induces a lin-
ear identification between the tangent bundle TM(0) and the trivial
bundle M ×Rd, with e1(0), . . . , ed(0) being identified with the stan-
dard basis sections of the trivial bundle. The metric gαβ(0) is then
identified with the Euclidean section ηαβ := eaαe

a
β ∈ Sym2(M ×Rd)

(which is giving the fibres of M ×Rd a Euclidean structure). Note
that this is NOT directly a metric on M , since M × Rd is distinct
from the tangent bundle TM , but the orthonormal frame provides
an identification between the section η and the metric g(0). Now we
start the Ricci flow, creating a family of new metrics g(t) for t ∈ [0, T ].
There is no reason why the frame e1(0), . . . , ed(0) should remain or-
thonormal in these new metrics. However, if we evolve the frame by
the equation

(3.106)
d

dt
eαa := Ricαβ(ea)β

(which, by Picard’s existence theorem for ODE, exists for all t ∈
[0, T ]) then an easy computation using (3.88) (and Gronwall’s inequal-
ity) reveals that e1(t), . . . , ed(t) remain orthonormal with respect to
g(t).

Exercise 3.4.3. Prove this. Hint : differentiate gαβeαae
α
b in time and

use (3.88), (3.4.2).

34To handle the general case, one could work locally, or pass to a covering space,

and/or replace the trivial bundle M×Rd appearing below by a non-trivial bundle and
eliminate explicit mention of the orthonormal frame altogether; we leave the details to
the interested reader. In three dimensions, every orientable manifold is parallelisable,
so it is even easier to reduce to the parallelisable case in that setting.
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The frame e1(t), . . . , ed(t) can be used to identify the tangent
manifold TM(t) at time t with the trivial bundle M×Rd, which iden-
tifies g(t) with η. In particular, the Levi-Civita connection ∇g(t) can
be identified with a connection ∇(t) on M ×Rd to which η is parallel
(thus parallel transport by ∇(t) proceeds by rotations). Similarly, we
can identify the Riemann tensor Riem(t) ∈ Hom(

∧2
T ∗M,

∧2
T ∗M)

at that time with a tensor T (t) ∈ M × Hom(
∧2 Rd,

∧2 Rd). Using
the natural identification between

∧2 Rd and the Lie algebra so(d),
one can thus view T (t) as a section of M ×Hom(so(d), so(d)). Actu-
ally, since the Riemann tensor is self-adjoint, T (t, x) : so(d) → so(d)
is self-adjoint also (using the Killing form on so(d)).

After some significant algebraic computation, the equation (3.105)
can be revealed to take the form

(3.107)
d

dt
T = ∇γ∇γT + T 2 + T #

where the connection ∇ = ∇(t) has been extended from M ×Rd to
M × Hom(so(d), so(d)) in the usual manner, T 2 is the usual square
of T (viewed as a linear operator from so(d) to itself), and T # is the
Lie algebra square of T , defined by the formula

(3.108) 〈T #X,Y 〉 := tr(T (adX)T (adY ))

for all X,Y ∈ so(d) where adX : Y → [X,Y ] is the usual adjoint
operator and 〈X,Y 〉 = tr(adXadY ) is the Killing form. One easily
verifies that if T is self-adjoint, then so35 are T 2 and T #.

Exercise 3.4.4. Show that (3.108) implies (3.97).

If T is positive semi-definite (which is equivalent to the Riemann
tensor being non-negative), then it is easy to see that T 2+T # are also.
Since the space P of positive semi-definite self-adjoint elements of
Hom(so(d), so(d)) forms a closed convex cone which is invariant under
the action of SO(d) (and in particular, M ×P is parallel with respect
to the connections ∇g(t)), one can then apply the tensor maximum
principle to conclude

35Curiously, in four and higher dimensions the Bianchi identity that T will satisfy

if it comes from the Riemann tensor is not preserved by either T 2 or T #, but it is

preserved by their sum T 2 + T #.
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Proposition 3.4.12 (Non-negative Riemann curvature is preserved).
Let (M, g(t)) be a Ricci flow on a compact d-dimensional manifold on
some time interval [0, T ]. Suppose that the Riemann curvature is
everywhere non-negative at time zero. Then the Riemann curvature
is everywhere non-negative for all times t ∈ [0, T ].

Remark 3.4.13. Strictly speaking, there is an issue because the non-
linearity T 7→ T 2 + T # is only locally Lipschitz rather than globally
Lipschitz. But as we are assuming that the manifold is compact and
the metrics vary smoothly, T is already bounded, and so one can
truncate the nonlinearity by brute force outside of these bounds to
ensure global Lipschitz bounds. We shall take advantage of this trick
again below without further comment.

Now we specialise to three dimensions, in which the situation
simplifies substantially, because so(3) ≡

∧2 R3 can be identified with
R3 by Hodge duality. If the self-adjoint map T : R3 → R3 is di-
agonalised as diag(λ, µ, ν) in some orthonormal frame, then we have
T 2 = diag(λ2, µ2, ν2) and T # = diag(µν, λν, λµ). Also, if T was rep-
resenting the Riemann tensor, then the Ricci curvature in the same
frame can be computed to be diag(µ + ν, λ + ν, λ + µ), and so the
scalar curvature is 2(λ+ µ+ ν).

Heuristically, the tensor maximum principle predicts that the evo-
lution of the equation (3.107) should be somehow “controlled” by the
evolution of the ODE

(3.109)
d

dt
(λ, µ, ν) = F (λ, µ, ν)

where F (λ, µ, ν) := (λ2 + µν, µ2 + λν, ν2 + λµ). It seems difficult to
formulate this heuristic rigorously in complete generality (the main
problem being that the convexity requirements of the maximum prin-
ciple ultimately translate to rather significant constraints on what
types of properties of the eigenvalues λ, µ, ν one can study with this
principle). However, we can do so in two important special cases. We
begin with the simpler one.

Proposition 3.4.14 (Non-negative Ricci curvature is preserved in
three dimensions). Let (M, g(t)) be a Ricci flow on a compact 3-
dimensional manifold on some time interval [0, T ]. Suppose that the
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Ricci curvature is everywhere non-negative at time zero. Then the
Ricci curvature is everywhere non-negative for all times t ∈ [0, T ].

Proof. By the previous discussion, having non-negative Ricci curva-
ture is equivalent to having all sums of pairs λ + µ, µ + ν, ν + λ of
T non-negative. Equivalently, this is asserting that the partial traces
tr(T |V ) of T on any two-dimensional subspace of V is non-negative.
If we let K = K(t) ⊂M×Hom(R3,R3) denote all the pairs (x, T ) for
which this is true, we see that K is closed, convex, and parallel with
respect to the connections ∇(t), since parallel transport by these con-
nections acts on Hom(R3,R3) by orthogonal conjugation. Elemen-
tary algebraic computation also reveals that if the triplet (λ, µ, ν) has
the property that the sum of any two elements is non-negative, then
the same is true of F (λ, µ, ν). From this we see that the hypotheses
of Proposition 3.4.5 are satisfied, and the claim follows. �

Remark 3.4.15. This claim is special to three (and lower) dimen-
sions; it fails for four and higher dimensions. Similarly, in three di-
mensions, since non-negative Riemann curvature is equivalent to non-
negative sectional curvature, we see from Proposition 3.4.12 that the
latter is also preserved by three-dimensional Ricci flow. However, this
claim also fails in four and higher dimensions.

Results such as Proposition 3.4.12 and Proposition 3.4.14 are of
course useful if one has an initial assumption of non-negative curva-
ture. But for our applications, we need to understand what is going
on for manifolds which may have combinations of both positive and
negative curvature at various points and in various directions. The
bound on scalar curvature given by Proposition 3.4.10 is helpful in
this regard, but it only partially controls the situation (in terms of
the eigenvalues λ, µ, ν, it offers a lower bound on λ+µ+ν, but not on
λ, µ, ν individually). It turns out that one cannot completely estab-
lish a unilateral lower bound on the individual curvatures λ, µ, ν, but
one can at least show that if one of these curvatures is large and neg-
ative, then one of the others must be extremely large and positive,
and so in regions of high curvature, the positive curvature compo-
nents dominate. This important phenomenon for Ricci flow is known
as Hamilton-Ivey pinching, and is formalised as follows:
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Theorem 3.4.16 (Hamilton-Ivey pinching phenomenon). Let (M, g(t))
be a Ricci flow on a compact 3-dimensional manifold on some time
interval [0, T ]. Suppose that the least eigenvalue ν(t, x) of the Rie-
mann curvature tensor is bounded below by −1 at times t = 0 and all
x ∈M . Then, at all spacetime points (t, x) ∈ [0, T ]×M , we have the
scalar curvature bound

(3.110) R ≥ −6
4t+ 1

and furthermore whenever one has negative curvature in the sense
that ν(t, x) < 0, then one also has the pinching bound

(3.111) R ≥ 2|ν|(log |ν|+ log(1 + t)− 3).

Exercise 3.4.5. With the assumptions of Theorem 3.4.16, use (3.110)
and (3.111) to establish the lower bound

(3.112) (1 + t)ν ≥ −C 100 + (1 + t)R
log(100 + (1 + t)R)

for all (t, x) ∈ [0, T ] ×M and some absolute constant C (note that
100+(1+ t)R > 1, thanks to (3.110). Conclude in particular that the
scalar curvature controls the Riemann and Ricci tensors in the sense
that we have the pointwise bounds

(3.113) |Ric|g, |Riem|g ≤ C(100 + (1 + t)R)

for another absolute constant C.

Proof of Theorem 3.4.16. Since R = 2(λ + µ + ν) and the least
eigenvalue ν is at least -1 at time zero, we have R ≥ −6 at time zero.
The claim (3.110) then follows immediately from Proposition 3.4.10.

The proof of (3.111) requires more work. Starting with the tensor
T and its eigenvalues λ ≥ µ ≥ ν, we define the trace S := λ+µ+ν =
1
2R and the quantity X := max(−ν, 0). We write ft(x) := x(log x +
log(1+t)−3) and let Ωt be the set of all pairs (x, s) such that s ≥ −3

1+t

and such that s ≥ ft(x) if x > 1
1+t . (For x < 1

1+t , the only constraint
we place on s is that s ≥ −3

1+t . Elementary calculus shows that Ωt
is a convex set, and furthermore is left-monotone in the sense that
if (x, s) ∈ Ωt and x′ < x, then (x′, s) ∈ Ωt. Because trace is a
linear functional and the least eigenvalue ν is a convex functional, it
is not hard to then see that the set K(t) := {(x, T ) : (X,S) ∈ Ωt} ⊂
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M ×Hom(R3,R3) is closed and fibrewise convex. Also, since parallel
transport on the connections ∇(t) acts by orthogonal conjugation,
K(t) is also parallel.

The initial conditions easily ensure that T lies in K(0) at time
zero (since X ≤ 1 and S ≥ −3 in this case). Similarly, the conclu-
sion (3.111) follows easily from the claim that T lies in K(t) at all
later times t (note that in the case X ≤ 1

1+t , one can use the trivial
bound S ≥ −3X to establish the claim, rather than by exploiting the
inclusion T ∈ K(t)). So to finish the proof, it suffices by Proposition
3.4.5 to show that K is preserved by the ODE (3.109). This can be
accomplished by a (rather tedious) elementary calculation, the key
point being that if (λ, µ, ν) solve (3.109) with λ ≥ µ ≥ ν and X, S
are defined as before, then one has the inequality

(3.114)
d

dt
(
S

X
− logX) ≥ X

whenever X > 0.

The set K(t) can be viewed as the region in which either X ≤ 1
1+t ,

or X > 1
1+t and S

X − logX ≥ log(1 + t)− 3, and then (3.114) implies
that this region is preserved by the ODE. �

Remark 3.4.17. One can informally see how (3.109) is forcing some
sort of pinching towards positive curvature as follows. In order for
pinching not to occur, one needs ν to be large and negative, and λ

to be of order O(|ν|) in magnitude. Given the lower bounds on the
scalar curvature, this in fact forces λ to be positive and comparable
to |ν| in magnitude. Now if µ is also positive, then the equation
d
dtν = ν2 +λµ rapidly causes ν to be less negative, while the equation
d
dtλ = λ2 + µν can cause λ to decrease, but not as rapidly as ν
is increasing, thus the geometry does not become more pinched. If
instead µ is negative, then ν can become more negative, but now λ

will increase faster than ν is decreasing, thus increasing the pinching
towards positive (consider e.g. the case when ν = µ = −λ/2).

Remark 3.4.18. There are further applications of the tensor maxi-
mum principle to Ricci flow. One notable one is Hamilton’s rounding
theorem[Ha1982], which asserts that if the Ricci curvature of a com-
pact 3-manifold is strictly positive at time zero, then not only does
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a singularity develop in finite time (by Proposition 3.4.10), but the
geometry becomes increasingly round in the sense that the ratio be-
tween the largest and smallest eigenvalues of this curvature go to 1
as one approaches the singularity. In fact, the rescaled limit of the
geometry here has constant positive sectional curvature and is thus
either a sphere or a spherical space form.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/04/04.
Thanks to Paul Smith, Danny Calegari, Dan, Muhammad, and an
anonymous commenter for corrections and references.

3.5. Finite time extinction of the second
homotopy group

Recall from Section 3.3 that one of the key pillars of the proof of that
conjecture is the finite time extinction result (see Theorem 3.3.13),
which asserted that if a compact Riemannian 3-manifold (M, g) was
initially simply connected, then after a finite amount of time evolving
via Ricci flow with surgery, the manifold will be empty.

In this lecture and the next few, we will describe some of the
key ideas used to prove this theorem. We will not be able to com-
pletely establish this theorem at present, because we do not have a
full definition of “surgery”, but we will be able to establish some par-
tial results, and indicate (in informal terms) how to cope with the
additional technicalities caused by the surgery procedure. (See also
Section 3.19 for further discussion.)

The proof of finite time extinction proceeds in several stages. The
first stage, which was already accomplished in the previous lecture (in
the absence of surgery, at least), is to establish lower bounds on the
least scalar curvature Rmin. The next stage, which we discuss in
this lecture, is to show that the second homotopy group π2(M) of the
manifold must become extinct in finite time, thus all immersed copies
of the 2-sphere S2 in M(t) for sufficiently large t must be contractible
to a point. The third stage is to show that the third homotopy group
π3(M) also becomes extinct so that all immersed copies of the 3-
sphere S3 in M are similarly contractible. The final stage, which uses
homology theory, is to show that a non-empty 3-manifold cannot



3.5. Extinction of second homotopy 419

have π1(M), π2(M), π3(M) simultaneously trivial, thus yielding the
desired claim36.

More precisely, in this section we will discuss (most of) the proof
of

Theorem 3.5.1 (Finite time extinction of π2(M)). Let t 7→ (M(t), g(t))
be a Ricci flow with surgery on compact 3-manifolds with t ∈ [0,+∞),
with M(0) containing no embedded copy of RP2 with trivial normal
bundle. Then for all sufficiently large t, π2(M(t)) is trivial (or more
precisely, every connected component of M(t) has trivial π2).

The technical assumption about having no copy of RP2 with
trivial normal bundle is needed solely in order to apply the known
existence theory for Ricci flow with surgery (see Theorem 3.3.9).

The intuition for this result is as follows. From the Gauss-Bonnet
theorem (and the fact that the Euler characteristic χ(S2) = V −
E + F = 2 of the sphere is positive), we know that 2-spheres tend
to have positive (Gaussian) curvature on the average, which should
make them shrink under Ricci flow37. On the other hand, the presence
of negative scalar curvature can counteract this by expanding these
spheres. But the lower bounds on scalar curvature tell us that the
negativity of scalar curvature becomes weakened over time, and it
turns out that the shrinkage caused by the Gauss-Bonnet theorem
eventually dominates and sends the area of all minimal immersed
2-spheres into zero, at which point one can conclude the triviality
of π2(M) by the Sacks-Uhlenbeck theory[SaUh1981] of minimal 2-
spheres.

The arguments here are drawn from [MoTi2007] and [CoMi2005].
The idea of using minimal surfaces to force disappearance of various
topological structures under Ricci flow originates with Hamilton[Ha1999]
(who used 2-torii instead of 2-spheres, but the idea is broadly the
same).

36Note that a simply connected manifold has trivial π1(M) by definition; also,
from Exercise 3.3.2 we see that all components of M remain simply connected even
after surgery.

37Here I am conflating Gaussian curvature with Ricci curvature; however, by
restricting to a special class of 2-spheres, namely minimal surfaces, one can connect
the two notions of curvature to each other (and to scalar curvature) quite nicely, as we
shall see.
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3.5.1. Curvature on surfaces. We have seen how Riemannian
manifolds (M, g) have various notions of curvature: Riemannian cur-
vature Riem, Ricci curvature Ric, and scalar curvature R. These are
intrinsic notions of curvature: they depend only on the manifold M

(and its metric g), and not how this manifold is embedded (if it is
embedded at all) in some larger space. However, there are some im-
portant extrinsic notions of curvature as well, which describe how
an immersed manifold Σ is curved inside its ambient space M . In
particular, we will recall the Gauss curvature K, principal curvatures
λ1, λ2, and mean curvature H of a surface (i.e. a 2-dimensional man-
ifold) Σ inside a 3-manifold38 (M, g). We will also recall the standard
fact that the mean curvature H vanishes whenever the surface is a
minimal surface.

Let Σ be an immersed 2-surface in a Riemannian 3-manifold
(M, g). All our computations here will be local, in the neighbour-
hood of some point x0 in Σ (and thus in M ; in particular we can
pretend that the immersed manifold Σ is in fact embedded as a sub-
manifold of M . If we let h be the restriction of the metric g to Σ
(restricting TM to TΣ, etc.) then of course (Σ, h) is a Riemannian
2-manifold.

It is convenient to pick a unit normal vector field n ∈ Γ(TM),
thus n has norm 1 and is orthogonal to TΣ at every point in Σ. It
is only the value of n on the submanifold Σ which is important, but
we will arbitrarily extend n smoothly to all of M so that we can take
advantage of vector field operations on the ambient space. There is
a choice of sign for n (e.g. if Σ bounded a three-dimensional region,
we could pick either the outward or inward normal), which can lead
to an ambiguity in sign in the principal and mean curvatures, but it
will not affect the sign of the Gauss curvature.

Let ∇ = ∇(M) be the Levi-Civita connection on M , and let X, Y
be two vector fields which are tangential to Σ, thus X(x), Y (x) ∈ TxΣ
for all x ∈ Σ. Then the covariant derivative ∇(M)

X Y need not be
tangential to Σ, but we can decompose

(3.115) ∇(M)
X Y = ∇(Σ)

X Y + Π(X,Y )n,

38These notions can also be defined for other dimensions, but we will focus ex-
clusively on the case of surfaces inside 3-manifolds.
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where Π(X,Y )n is the component of ∇(M)
X Y parallel to n, and ∇(Σ)

X Y

is the component which is orthogonal to n (and in particular lies in
TΣ) on Σ.

Exercise 3.5.1. Show that ∇(Σ) is the Levi-Civita connection on
(Σ, h), and that

(3.116) Π(X,Y ) = −g(∇(M)
X n, Y )

on Σ. Hint : for the latter, compute the quantity ∇Xg(n, Y ) in two
different ways. Conclude that Π can be identified with a symmetric
rank (0, 2) tensor (known as the second fundamental form) on Σ,
which (up to sign) is independent of the choice of normal n.

Exercise 3.5.2. Using (3.115), deduce the Gauss equation39

(3.117)
g(Riem(M)(X,Y )Z,W ) = g(Riem(Σ)(X,Y )Z,W )+Π(X,W )Π(Y,Z)−Π(X,Z)Π(Y,W )

on Σ, whenever X, Y , Z, W are vector fields that are tangent to
Σ, and Riem(M) and Riem(Σ) are the Riemann curvature tensors of
(M, g) and (Σ, h) respectively.

At any point x ∈ Σ, the second fundamental form Π(x) can be
viewed as a symmetric bilinear form on the two-dimensional space
TxΣ, which thus has two real eigenvalues λ1 ≥ λ2, known as the
principal curvatures of Σ (as embedded in M) in x. The normalised
trace H := 1

2 tr(Π) = 1
2 (λ1 + λ2) of the second fundamental form

is known as the mean curvature. Meanwhile, the Gauss curvature
K = K(x) at a point x ∈ Σ is defined40 as equal to half the scalar
curvature of Σ: K = 1

2R
(Σ).

Exercise 3.5.3. Using Exercise 3.5.2, establish the identity

(3.118) K = det(Π) +KM = λ1λ2 +KM

where KM is the sectional curvature of TΣ in M, defined at a point
x by the formula KM = g(Riem(M)(X,Y )X,Y ) where X,Y are an

39One could of course write (3.117) in abstract index notation, but we have chosen
not to do so to avoid confusion between the two bundles TM and TΣ that are implicitly
in play here.

40In particular, this manifestly demonstrates that the Gauss curvatureK is intrin-
sic; this fact, combined with Exercise 3.5.3 below, is essentially the famous theorema
egregium of Gauss.
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orthonormal basis of TΣ at x. In particular, if M = (R3, η) is Eu-
clidean space, then the Gauss curvature is just the product of the two
principal curvatures (or equivalently, the determinant of the second
fundamental form).

From (3.118) and the arithmetic mean-geometric mean inequal-
ity, we obtain in particular the following relationship between Gauss,
mean, and sectional curvature:

(3.119) K ≤ H2 +KM .

Next, we now recall a special case of the Gauss-Bonnet theorem.

Proposition 3.5.2 (Gauss-Bonnet theorem for S2). Let (Σ, h) be an
immersion of the sphere S2, and let K := 1

2R be the Gauss curvature.
Then

∫
Σ
K dµ = 4π, where µ is the volume measure (or area measure)

associated to h.

Proof. We use a flow-based argument. Since Gauss curvature is
intrinsic, we may pull back and assume that Σ is in fact equal to
S2, but with some generic Riemannian metric which we shall call
h0, which may differ from the standard Riemannian metric on S2,
which we shall call h1. We can flow from h0 to h1 by the linear
flow h(t) := (1− t)h0 + th1 (say); note that this is a smooth flow on
Riemannian metrics. Our task is to show that

∫
S2 R dµ = 8π at time

zero. By equations (3.50), (3.55), we have
(3.120)
d

dt

∫
S2
R dµ =

∫
S2

(−Ricαβḣαβ−∆tr(ḣαβ)+∇α∇βḣαβ+
1
2
Rtr(ḣαβ)) dµ.

The contribution of the second and third terms vanish thanks to
Stokes’ theorem (3.64). And in two dimensions, the Bianchi iden-
tities force the Ricci curvature Ricαβ to be conformal, i.e. it is equal
to 1

2Rh
αβ . Thus the right-hand side of (3.120) vanishes completely,

and so by the fundamental theorem of calculus, the value of
∫
S2 R dµ

at time 0 is equal to that at time 1. The claim then follows from the
standard facts that S2 with the usual metric has area 4π and constant
scalar curvature +2 (or Gauss curvature +1). �



3.5. Extinction of second homotopy 423

From this and (3.119) we conclude that

(3.121)
∫

Σ

KM +H2 dµ ≥ 4π

for any immersed copy of S2. Thus we can start lower bounding
sectional curvatures on the average, as soon as we figure out how to
deal with the mean curvature H.

To do this, we now specialise to immersed spheres Σ which are
minimal ; they have minimal area

∫
Σ
dµ with respect to smooth de-

formations. The following proposition is very well known:

Proposition 3.5.3. Let Σ be a minimal immersed surface. Then the
mean curvature H of Σ is identically zero.

Proof. Let us consider a local perturbation of Σ. Working in local
coordinates as before, we choose a unit normal field n, and flow Σ
using the velocity field Z := fn, where f is a localised scalar function.
This has the effect of deforming the metric h on Σ at the rate ḣ = LZg,
where LZ is the Lie derivative along the vector field Z. By (3.55),
the area of Σ will thus change under this deformation at the rate

(3.122)
d

dt

∫
Σ

dµ =
∫

Σ

1
2

trh(LZg) dµ.

On the other hand, as Σ is minimal, the left-hand side vanishes. Also,
using (3.61), we have

(3.123) trh(LZg) = 2∇αZβ(XαXβ + Y αY β)

where X, Y is an orthonormal frame of Σ (we can work locally, so
as to avoid the topological obstruction of the hairy ball theorem).
Expanding out Zβ = fnβ and recalling that n is orthogonal to X and
Y , some calculation using (3.116) allows us to express (3.123) as

(3.124) −2f(Π(X,X) + Π(Y, Y )) = −4fH.

Putting all this together, we conclude that
∫

Σ
fH dµ = 0 for all local

perturbations f , which implies that H vanishes identically. �

It is an instructive exercise to try to convince oneself of the va-
lidity of Proposition 3.5.3 by pure geometric intuition regarding cur-
vature and area.
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From (3.121) and Proposition 3.5.3 we conclude a lower bound

(3.125)
∫

Σ

KΣ dµ ≥ 4π

for the integrated sectional curvature of a minimal immersed 2-sphere
Σ in a 3-manifold M .

3.5.2. Minimal immersed spheres and Ricci flow. Now let (M, g)
be a compact 3-manifold with a non-trivial second homotopy group
π2(M). Thus there exist immersions f : S2 → M which cannot be
contracted to a point. It is a theorem of Sacks and Uhlenbeck[SaUh1981]
that the area of such incontractible immersions cannot be arbitrarily
small (for fixed M , g), and so if one defines W2(M) to be the infi-
mum of the areas of all incontractible immersed spheres, then W2(M)
is strictly positive.

It is a result of Meeks and Yau[MeYa1980] that the infimum
here is actually attained, which would mean that there is a incon-
tractible minimal immersed 2-sphere f : S2 → M which has area
exactly W2(M). However, it suffices for our purposes to use a simpler
result that an incontractible minimal 2-sphere f : S2 → M of area
exactly W2(M) exists which is a branched immersion rather than an
immersion, which roughly speaking means that there are a finite num-
ber of points in S2 where the function f behaves like an embedding
of the power function z 7→ zn in the neighbourhood of the complex
origin. See [MoTi2007, Lemma 18.10] for details41. For simplicity
we shall ignore the effects of branching here; basically, branch points
increase the integrated Gauss curvature in the Gauss-Bonnet theo-
rem, but this effect turns out to have a favourable sign and is thus
ultimately harmless.

Now suppose that t 7→ (M, g(t)) is a Ricci flow for t in some time
interval I. Suppose that t lies in I but is not the right endpoint of I.
Then we have an incontractible minimal 2-sphere f : S2 →M of area
W2(M(t)) which is a branched immersion; we will suppose that it is
an immersion for simplicity. Let us now see how the area

∫
f(S2)

dµ

41Roughly, one needs to regularise the energy functional to obtain the Palais-
Smale condition, then take limits to obtain a weak harmonic map, using a somewhat
crude surgery argument to show that bubbling does not occur in the minimum area
limit.
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of f(S2) changes under Ricci flow. Using the variation formula (3.55)
for the 2-dimensional measure dµ, specialised to Ricci flow, we have

(3.126)
d

dt

∫
f(S2)

dµ = −
∫
f(S2)

trh(Ric(M))dµ

where Ric(M) is the Ricci curvature of the 3-manifold M , and h is
the 2-dimensional metric formed by restricting g to f(S2). We now
apply the following identity:

Exercise 3.5.4. Show that trh(Ric(M)) = Kf(S2)+ 1
2R, where Kf(S2)

is the sectional curvature of f(S2) and R is the scalar curvature of
M . Hint : use two tangent vectors of f(S2) and one normal vector to
build an orthonormal basis, and write the Ricci and scalar curvatures
in terms of sectional curvatures.

Inserting this identity into (3.126) and using (3.125), as well as
the lower bound R ≥ Rmin, we conclude that

(3.127)
d

dt

∫
f(S2)

dµ ≤ −4π − 1
2
Rmin

∫
f(S2)

dµ;

by definition of W2(M(t)), we thus conclude the ordinary differential
inequality

(3.128)
d

dt
W2(M(t)) ≤ −4π − 1

2
RminW2(M(t))

in the sense of forward difference quotients.

This is already enough to obtain a weak version of Theorem 3.5.1:

Theorem 3.5.4 (Non-trivial π2(M) implies finite time singularity).
Let t 7→ (M, g(t)) be a Ricci flow on a time interval [0, T ) for a
compact 3-manifold with π2(M) non-trivial. Then T must be finite.

Proof. At time zero, the minimal scalar curvature Rmin(0) is of
course finite. By rescaling if necessary we may assume Rmin(0) ≥ −1
(say). Then Proposition 3.4.10 implies that Rmin(t) ≥ −3/(3 + 2t),
and so from (3.128) we have

(3.129)
d

dt
W2(M(t)) ≤ −4π +

3
6 + 4t

W2(M(t)).
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This can be rewritten (by the usual method of integrating factors) as

(3.130)
d

dt

(
(6 + 4t)−3/4W2(M(t))

)
≤ −4π(6 + 4t)−3/4.

Now, the expression 4π(6+4t)−3/4 is divergent when integrated from
zero to infinity, while the expression (6+4t)−3/4W2(M(t)) is finite and
non-negative. These two facts contradict each other if T is infinite,
and so T is finite as claimed. �

Remark 3.5.5. This argument in fact gives an explicit upper bound
for the time of development of the first singularity, in terms of the
minimal Ricci curvature at time zero and minimal area of an immersed
sphere at time zero.

We now briefly discuss how the same arguments can be extended
to tackle Ricci flow with surgery, though this discussion will have to be
somewhat informal since we have not yet fully defined what surgery
is. The basic idea is to ensure that the inequality (3.128) persists
through surgery. In a little more detail, the argument proceeds as
follows:

(1) The first step is to clarify the topological nature of the
surgery. It turns out that at each surgery time t, the mani-
fold M(t) can be obtained (in the topological category) from
M(t−) by finding a collection of disjoint 2-spheres in M(t−),
performing surgery on each 2-sphere to replace it with a
pair of disks, then removing all but finitely many of the
connected components that are created as a consequence.

(2) At any given time t, let s(t) denote the maximal number of
embedded 2-spheres one can place in M(t) which are homo-
topically essential in the sense that none of these spheres can
be contracted to a point, or deformed to any other sphere. It
is possible to use homological arguments and van Kampen’s
theorem[vKa1933] to show that s(t) is always finite.

(3) By homotopy theory, one can show that every time a surgery
involves at least one homotopically essential sphere, the quan-
tity s(t) decreases by at least one. Thus, after a finite
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number of surgeries, all spheres involved in surgery are con-
tractible to a point. By shifting the time variable if neces-
sary, we may thus assume that the above claim is true for
all times t ≥ 0.

(4) Once all spheres involved in surgery are contractible, one
can show that whenever surgery is applied to a connected
manifold, either the manifold is removed completely, or one
of the post-surgery components is homotopy equivalent to
the original manifold, and the rest are homotopy spheres.
In particular, if a connected manifold has non-trivial π2 be-
fore surgery, then it is either removed by surgery, or one
of the post-surgery components has the same π2; and if a
connected manifold has trivial π2 then all post-surgery com-
ponents do also. Thus if Theorem 3.5.1 fails, one can find a
“path of components” through the Ricci flow with surgery
with non-trivial π2 for all time. We now restrict attention
to this path of components, which by abuse of notation we
shall continue to call M(t) at each time t.

(5) Using the geometric properties of the surgery and standard
limiting arguments, we can show that if Rmin is non-positive
before surgery, then it cannot decrease as a consequence
of surgery (thus Rmin(t) ≥ limt′→t− Rmin(t′), and similarly
if Rmin is non-negative before surgery, then it stays non-
negative after surgery (here we adopt the convention that
Rmin = +∞ when the manifold is empty). These facts are
ultimately because surgery is only performed in regions of
high positive curvature. From this, one can conclude (as-
suming the initial normalisation Rmin(0) ≥ −1 that the
bound Rmin(t) ≥ −3/(3 + 2t) persists even after surgery.

(6) Finally, using the geometric properties of the surgery and
standard limiting arguments, one can show that W2(M(t))
has no upward jump discontinuity at surgery times t in the
sense that W2(M(t)) ≤ lim inft′→t−W2(M(t′)). This allows
us to repeat the proof of Theorem 3.5.4 and obtain the de-
sired contradiction to prove Theorem 3.5.1.

Further details can be found in [MoTi2007, Section 18.12].
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Notes. This lecture first appeared at terrytao.wordpress.com/2008/04/11.
Thanks to wenwen, and Andy Sanders for corrections and references.

3.6. Finite time extinction of the third
homotopy group, I

In Section 3.5, we saw that Ricci flow with surgery ensures that the
second homotopy group π2(M) became extinct in finite time (assum-
ing, as stated in the above erratum, that there is no embedded RP2

with trivial normal bundle). It turns out that the same assertion is
true for the third homotopy group, at least in the simply connected
case42:

Theorem 3.6.1 (Finite time extinction of π3(M)). Let t 7→ (M(t), g(t))
be a Ricci flow with surgery on compact 3-manifolds with t ∈ [0,+∞),
with M(0) simply connected. Then for all sufficiently large t, π3(M(t))
is trivial (or more precisely, every connected component of M(t) has
trivial π3).

Suppose we apply Ricci flow with surgery to a compact simply
connected Riemannian 3-manifold (M, g) (which, by Lemma 3.3.10,
has no embedded RP2 with trivial normal bundle). From the above
theorem, as well as Theorem 3.5.1, we know that all components of
M(t) eventually have trivial π2 and π3 for all sufficiently large t. Also,
since M is initially simply connected, we see from Exercise 3.3.2, as
well as Theorem 3.3.9.1, that all components of M(t) also have trivial
π1. The finite time extinction result (Theorem 3.3.13) then follows
immediately from Theorem 3.6.1 and the following topological result,
combined with the following topological observation:

Lemma 3.6.2. Let M be a compact non-empty connected 3-manifold.
Then it is not possible for π1(M), π2(M), and π3(M) to simultane-
ously be trivial.

This lemma follows immediately from the Hurewicz theorem, but
for sake of self-containedness we shall give a proof of it in this section.

42It seems likely that this theorem should also be true if one merely assumes that
M(0) contains no embedded copy ofRP2 with trivial bundle, as opposed to M(0) being
simply connected, but I will be conservative and only state Theorem 3.6.1 with this
stronger hypothesis, as this is all that is necessary for proving the Poincaré conjecture.
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There are two known approaches to establishing Theorem 3.6.1;
one due to Colding and Minicozzi[CoMi2005], and one due to Perelman[Pe2003b].
The former is conceptually simpler, but requires a certain technical
concentration-compactness type property for a min-max functional
which has only been established recently[CoMi2007]. This approach
will be the focus of this section, while the latter approach of Perelman,
which has also been rigorously shown to imply finite time extinction,
will be the focus of the next section.

3.6.1. A little algebraic topology. We begin by proving Lemma
3.6.2. We need to recall some (very basic) singular homology theory
(over the integers Z). Fix a compact manifold M , and let k be a
non-negative integer. Recall that a singular k-chain (or k-chain for
short) is a formal integer-linear combination of k-dimensional singu-
lar simplices σ(∆k) in M, where ∆k is the standard k-simplex and
σ : ∆k →M is a continuous map. There is a boundary map ∂ taking
k-chains to (k − 1)-chains, defined by mapping σ(∆k) to an alter-
nating sum of restrictions of σ to the (k − 1)-dimensional boundary
simplices of ∆k, and then extending by linearity. A k-chain is said
to be a k-cycle if its boundary vanishes, and is a k-boundary if it
is the boundary of a (k + 1)-chain. One easily verifies that ∂2 = 0,
and so every k-boundary is a k-cycle. We say that M has trivial kth

homology group Hk(M) if the converse is true, i.e. every k-cycle is a
k-boundary.

Our main tool for proving Lemma 3.6.2 is

Proposition 3.6.3 (Baby Hurewicz theorem). Let M be a triangu-
lated connected compact manifold such that the fundamental groups
π1(M), . . . , πk(M) all vanish for some k ≥ 1. Then M has trivial jth

homology group Hj(M) for every 1 ≤ j ≤ k.

Proof. Because of all the vanishing fundamental groups, one can
show by induction on j that for any integer 1 ≤ j ≤ k, any singular
complex in M involving singular simplices of dimension at most j can
be continuously deformed to a point (while preserving all boundary
relationships between the singular simplices in that complex). As a
consequence, every j-cycle, being the combination of singular sim-
plices in a singular complex involving singular simplices of dimension
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at most j, can be expressed as the boundary of a (j + 1)-chain, and
the claim follows. �

Remark 3.6.4. The full Hurewicz theorem asserts some further rela-
tionships between homotopy groups and homology groups, in particu-
lar that under the assumptions of Proposition 3.6.3, that the Hurewicz
homomorphism from πk+1(M) to Hk+1(M) is in fact an isomorphism
(and, in the k = 0 case, that H1(M) is canonically isomorphic to the
abelianisation of π1(M)). However, we do not need this slightly more
advanced result here.

Now we can quickly prove Lemma 3.6.2.

Proof of Lemma 3.6.2. Suppose for contradiction that we have a
non-empty connected compact 3-manifoldM with π1(M), π2(M), π3(M)
all trivial. Since M is simply connected, it is orientable (as all loops
are contractible, there can be no obstruction to extending an orien-
tation at one point to the rest of the manifold). Also, it is a classical
result43 of Moise[Mo1952] that every 3-manifold can be triangulated.
Using a consistent orientation on M, we may therefore build a 3-cycle
on M consisting of the sum of oriented 3-simplices with disjoint interi-
ors that cover M (i.e. a fundamental class), thus the net multiplicity
of this cycle at any point in M is odd. On the other hand, the net
multiplicity of any 3-boundary at any point can be seen to necessarily
be even. Thus we have found a 3-cycle which is not a 3-boundary,
which contradicts Proposition 3.6.3. �

Remark 3.6.5. Using (slightly) more advanced tools from algebraic
topology, one can in fact say a lot more about the homology and
homotopy groups of connected and simply connected compact 3-
manifolds M . Firstly, since π1(M) is trivial, one sees from the full
Hurewicz theorem that H1(M) is also trivial. Also, as M is con-
nected, H0(M) ≡ Z. From orientability (which comes from sim-
ple connectedness) and triangularisability we have Poincaré dual-
ity, which implies that the cohomology group H2(M) is trivial and

43One can avoid the use of Moise’s theorem here by working in the category of
smooth manifolds, or by using more of the basic theory of singular homology. Also,
the use of orientability can be avoided by working with homologies over Z/2Z rather
than over Z.
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H3(M) ≡ Z, which by the universal coefficient theorem for cohomol-
ogy implies that H2(M) is trivial and H3(M) ≡ Z. Of course, being
3-dimensional, all higher homology groups vanish, and so M is a ho-
mology sphere. On the other hand, by orientability, we can find a map
from M to S3 that takes a fundamental class of M to a fundamental
class of S3, by taking a small ball inM and contracting everything else
to a point; this map is thus an isomorphism on each homology group.
Using the relative Hurewicz theorem (and the simply connected na-
ture of M and S3) we conclude that this map is also an isomorphism
on each homotopy group, and thus by Whitehead’s theorem, the map
is a homotopy equivalence, thus M is a homotopy sphere. Thus, to
complete the proof of the Poincaré conjecture, it suffices to show that
every compact 3-manifold which is a homotopy sphere is also homeo-
morphic to a sphere. Unfortunately this observation does not seem to
significantly simplify the proof of that conjecture44, although it does
allow one at least to get the extinction of π2 from the previous lecture
“for free” in the simply connected case.

3.6.2. The Colding-Minicozzi approach to π3 extinction. We
now sketch the Colding-Minicozzi approach towards proving Theorem
3.6.1. Our discussion here will not be fully rigorous; further details
can be found in [CoMi2005], [CoMi2007].

In the previous lecture, we obtained the differential inequality

(3.131)
d

dt

∫
f(S2)

dµ ≤ −4π − 1
2
Rmin

∫
f(S2)

dµ;

for any minimal immersed 2-sphere f(S2) in a Ricci flow t 7→ (M(t), g(t)).
The inequality also holds for the slightly larger class of minimal 2-
spheres that are branched immersions rather than just immersions;
furthermore, an inspection of the proof reveals that the surface does
not actually have to be a local area minimiser, but merely needs to
have zero mean curvature (i.e. to be a critical point for the area
functional, rather than a local minimum). The inequality (3.131) was
a key ingredient in the proof of finite time extinction of the second
homotopy group π2(M(t)).

44Note also that there are homology 3-spheres that are not homeomorphic to the
3-sphere, such as the Poincaré homology sphere; thus homology theory is not sufficient
by itself to resolve this conjecture.
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The Colding-Minicozzi approach seeks to exploit the same in-
equality (3.131) to also prove finite time extinction of π3(M(t)). It is
not immediately obvious how to do this, since π3() involves immersed
3-spheres f(S3) in M, whereas (3.131) involves immersed 2-spheres
f(S2). However, one can view the 3-sphere as a loop of 2-spheres
with fixed base point; indeed if one starts with the cylinder [0, 1]×S2

and identifies {0, 1} × S2 ∪ [0, 1] × {N} to a single point, where N
is a single point in S2, one obtains a (topological) 3-sphere. Because
of this, any immersed 3-sphere f(S3) is swept out by a loop s 7→ fs
of immersed 2-spheres fs(S2) for 0 < s < 1 with fixed base point
fs(N) = p, with fs varying continuously in t for 0 ≤ s ≤ 1, and
f0 = f1 ≡ p being the trivial map.

Suppose that we have a Ricci flow in which M is connected and
π3(M) is non-trivial; then we have at least one immersed 3-sphere
f(S3) which is not contractible to a point. We then define the func-
tional W3(t) by the min-max formula

(3.132) W3(t) := inf
f

sup
0≤s≤1

∫
fs(S2)

dµ

where f ranges over all incontractible immersed 3-spheres, and µ is
the volume element of fs(S2) with respect to the restriction of the
ambient metric g(t).

It can be shown (see e.g. [Jo1991, page 125]) that W3(t) is
strictly positive; in other words, if the area of each 2-sphere in a loop
of immersed 2-spheres is sufficiently small, then the whole loop is
contractible to a point.

Suppose for the moment that the infimum in (3.132) was actu-
ally attained, thus there exists an incontractible immersed 3-sphere
f whose maximum value of

∫
fs(S2)

dµ is exactly W3(t). Applying
mean curvature flow for a short time45 to reduce the area of any
sphere which does not already have vanishing mean curvature, we
may assume without loss of generality that the maximum value is
only attained when fs(S2) has zero mean curvature. If we then use

45To make this rigorous, one either has to prove a local well-posedness result for
mean curvature flow, or else to use a cruder version of this flow, for instance deforming
f a small amount along a vector field which points in the same direction as the mean
curvature. We omit the details.
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(3.131), we thus (formally, at least) obtain the differential inequality

(3.133)
d

dt
W3(t) ≤ −4π − 1

2
RminW3(t)

much as in Section 3.5. Arguing as in that lecture, we obtain a
contradiction if the Ricci flow persists without developing singularities
for a sufficiently long time.

A similar analysis can also be performed when the infimum in
(3.132) is not actually attained, in which case one has a minimising
sequence of loops of 2-spheres whose width approaches W3(t). This
sequence can be analysed by Sacks-Uhlenbeck theory (together with
some later analysis of bubbling due to Siu and Yau) and a finite num-
ber of minimal 2-spheres extracted as a certain “limit” of the above
sequence, although as in the previous lecture, these 2-spheres need
only branched immersions rather than immersions. From this one
can establish (3.133) (in a suitably weak sense) in the general case
in which the infimum in (3.132) is not necessarily attained, assuming
that one can show that all the 2-spheres with area close to W3(t)
that appear in a loop in the minimising sequence are close to the
union of the limiting minimal 2-spheres in a certain technical sense;
see [CoMi2005] (and the references therein) for details. This prop-
erty (which is a sort of concentration-compactness type property for
the min-max functional (3.132), which is a partial substitute for the
failure of the Palais-Smale condition for this functional) was recently
established [CoMi2007], using the theory of harmonic maps.

There is also the issue of how to deal with surgery. This follows
the same lines that were briefly (and incompletely) sketched out in
the previous lecture. Namely, one first observes that after finitely
many surgeries, all remaining surgeries are along 2-spheres that are
homotopically trivial (i.e. contractible to a point). Because of this,
one can show that any incontractible 3-sphere will, after surgery, lead
to at least one incontractible 3-sphere on one of the components of
the post-surgery manifold. Furthermore, it turns out that there is a
distance-decreasing property of surgery which can be used to show
that W3(t) does not increase at any surgery time. We will discuss
these sorts of issues in a bit more detail in the next section, when we
turn to the Perelman approach to π3 extinction.
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Notes. This lecture first appeared at terrytao.wordpress.com/2008/04/15.
Thanks to Greg Kuperberg, Reid Barton for corrections and refer-
ences.

Greg Kuperberg pointed out a more elementary proof of Lemma
3.6.2 in the category of triangulated 3-dimensional manifolds; in fact
one can show the slightly stronger statement that if π1(M) and π2(M)
both vanish, then M is homotopy equivalent to S3. To see this,
consider the more general method of building a manifold by gluing
together polyhedra face to face. Then one can always reduce the
number of 3-cells to 1 by knocking out walls; ultimately, one ends
up with a single polyhedron to itself. Since π1(M) and π2(M) both
vanish, you can homotope the identity map on M to collapse its 2-
skeleton to a point. This collapse of M is plainly homeomorphic to
S3. So you immediately get pair of maps f : M → S3 and g : S3 →M

such that the composition gf is homotopic to the identity. The other
composition is also homotopic to the identity because it has degree
1, and the claim follows.

3.7. Finite time extinction of the third
homotopy group, II

In this section we discuss Perelman’s original approach to finite time
extinction of the third homotopy group (Theorem 3.6.1), which, as
previously discussed, can be combined with the finite time extinc-
tion of the second homotopy group to imply finite time extinction of
the entire Ricci flow with surgery for any compact simply connected
Riemannian 3-manifold, i.e. Theorem 3.3.13.

3.7.1. Minimal disks. In Section 3.5, we studied minimal immersed
spheres f : S2 →M into a three-manifold, and how their area varied
with respect to Ricci flow. This area variation formula was used to
establish π2 extinction, and was also used in the Colding-Minicozzi
approach to π3 extinction (see Section 3.6). The Perelman approach
is similar, but is based upon minimal disks rather than minimal 2-
spheres, which we will define as Lipschitz immersed maps f : D2 →M

from the unit disk D to M which are smooth on the interior of the
disk, and with mean curvature zero on the interior of the disk.
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For simplicity let us restrict attention to 3-manifolds (M, g) which
are simply connected (this case is, of course, our main concern in this
course). Then every loop γ : S1 → M spans at least one disk. Let
A(γ, g) denote the minimal area of all such spanning disks. From
the work of Morrey[Mo1948] and Hildebrandt[Hi1969] on Plateau’s
problem in Riemannian manifolds, it is known that this area is in fact
attained by a minimal disk46 whose boundary traces out γ. One can
think of A(γ, g) as the two-dimensional generalisation of the distance
function d(x, y) between two points x, y (which one can think of a map
from S0 to M). For instance, we have the following first variation
formula for A(γ, g) analogous to that for the distance function.

Lemma 3.7.1. (First variation formula) Let γ : S1 → M be a loop
in a 3-manifold (M, g), and let f : D2 → M be a minimal-area disk
spanning γ, thus

∫
f(D2)

dµ = A(γ, g). Let t 7→ γt be a smooth defor-
mation of γ with γ0 = γ. Then we have

(3.134)
d

dt
A(γt, g)|t=0 ≤

∫
γ

g(N,
d

dt
γt|t=0) ds

where ds is the length element and n is the outward normal vector to
f(D2) on the boundary γ.

Proof. First suppose that d
dtγt|t=0 is orthogonal to the disk f(D2).

Then one can deform the disk f(D2) to span γt for infinitesimally
non-zero times t by flowing the disk along a vector field normal to
that disk. Since f(D2) is minimal, it has mean curvature zero, and
so the first variation of the area in this case is zero by the calculation
used to prove Proposition 3.5.3. Since the area of this deformed disk
is an upper bound for A(γt, g), this proves (3.134) in this case.

In the case when d
dtγt|t=0 is tangential to f(D2), the claim is clear

simply by modifying the disk f(D2) at the boundary to accommodate
the change in γt with respect to the time parameter t. The general
case then follows by combining the above two arguments. �

Now we let the manifold evolve by Ricci flow, and obtain a similar
variation formula:

46The fact that this disk is immersed was established in [GuLe1973],
[HaSi1985].
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Corollary 3.7.2 (First variation formula with Ricci flow). Let t 7→
(M, g(t)) be a Ricci flow, and for each time t let γt : S1 →M be a loop
in a 3-manifold (M, g) smoothly varying in t, and let ft : D2 →M be
a minimal-area disk spanning γt. Then we have

d

dt
A(γt, g(t)) ≤ −

∫
ft(D2)

Kft(D2) dµ−
1
2
RminA(γt, g(t))

+
∫
γt

g(Nt,
d

dt
γt) ds

(3.135)

where Kft(D2) is the Gauss curvature of ft(D2).

Proof. This follows from the chain rule and the computations used
to derive (3.127). �

To deal with the Gauss curvature term, we need an analogue of
the Gauss-Bonnet theorem for disks. Fortunately, we have such a
result:

Proposition 3.7.3 (Gauss-Bonnet for disks). Let f : D2 → M be
an immersed disk with boundary γ. Then we have

(3.136)
∫
f(D2)

Kf(D2) dµ+
∫
γ

kγ,f(D2) ds = 2π

where47 kγ,f(D2) = −g(∇TT,N) is the signed curvature of the curve
γ relative to the disk f(D2).

Proof. We use another flow argument. All quantities here are intrin-
sic and so we may pull back to the unit disk D2. Our task is now to
show that

(3.137)
∫
D2
K dµ−

∫
S1
g(∇TT,N) ds = 2π

for all metrics (D2, g) on the unit disk. (Note that the vectors T ,
N will depend on g.) By the argument used to prove Proposition
3.5.2, the left-hand side is invariant under any compactly supported
perturbation of the metric g, so we may assume that the metric is
Euclidean on some neighbourhood of the origin.

47Here T is the unit tangent vector to γ, oriented in either direction; we are also
abusing notation slightly by pulling back the Levi-Civita connection on TM to the
pullback bundle S1 in order to define ∇TT properly.
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We express D2 in polar coordinates (r, θ). It will then suffice to
establish the R = 1 case of the identity
(3.138)∫ R

0

∫ 2π

0

K(r, θ)(∂r ∧ ∂θ) dθdr −
∫ 2π

0

(∇∂θT ∧ T )(R, θ) dθ = 2π

where we use the metric g to identify the 2-form ∂r∧∂θ with a scalar,
and T and N on (R, θ) are the tangent and outward normal vectors
to the circle {r = R} (the orientation of T is not relevant, but let
us fix it as anticlockwise for sake of discussion, with the orientation
chosen so that N ∧ T is positive). Note that we are heavily relying
here on the two-dimensionality of the situation!

Because the metric is Euclidean near the origin, (3.138) is true
for R close to zero. Thus by the fundamental theorem of calculus, it
suffices to verify the identity

(3.139)
∫ 2π

0

K(r, θ)(∂r ∧ ∂θ) dθ −
∫ 2π

0

∂r(∇∂θT ∧ T )(R, θ) dθ = 0.

for all 0 < r < 1. But as the Levi-Civita connection respects the
metric (and all constructions arising from that metric, such as the
identification of 2-forms with scalars) we have

(3.140) ∂r(∇∂θT ∧ T ) = (∇∂r∇∂θT ∧ T ) + (∇∂θT ∧∇∂rT ).

Since T is always a unit vector, ∇∂θT and ∇∂rT must be orthogonal
to T and thus (in this two-dimensional setting) must be parallel, so
the last term in (3.140) vanishes. An integration by parts then shows
that (∇∂θ∇∂rT ∧ T has vanishing integral. Finally, from the Bianchi
identities that allow one to express Riemann curvature of 2-manifolds
in terms of Gauss curvature, we have

(3.141) (∇∂r∇∂θ −∇∂θ∇∂r)T ∧ T = K(∂r ∧ ∂θ)

and the claim follows. �

Exercise 3.7.1. Use Proposition 3.7.3 to reprove Proposition 3.5.2.

We can now combine Corollary 3.7.2 and Proposition 3.7.3 as
follows. We say that a family of curves γt : S1 → M is undergoing
curve-shortening flow if we have

(3.142)
∂

∂t
γt = ∇TT
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where T is the tangent vector to γt.

Exercise 3.7.2. If γt undergoes curve-shortening flow, show that

(3.143)
d

dt

∫
γt

ds = −1
2

∫
γt

|∇TT |2g ds

which may help explain the terminology “curve-shortening flow”.

Corollary 3.7.4 (First variation formula with Ricci flow and curve
shortening flow). Let t 7→ (M, g(t)) be a Ricci flow, and for each time
t let γt : S1 → M be a loop in a 3-manifold (M, g) undergoing curve
shortening flow, and let ft : D2 →M be a minimal-area disk spanning
γt. Then we have

(3.144)
d

dt
A(γt, g(t)) ≤ −2π +

1
2
RminA(γt, g(t)).

3.7.2. Perelman’s width functional. We now begin a non-rigorous
discussion of Perelman’s width functional, and how it is used to derive
finite time π3 extinction. There is a significant analytical difficulty
regarding singularities in curve shortening flow, but we will address
this issue later.

To simplify the exposition slightly, we will restrict attention to
compact 3-manifolds whose components are all simply connected, and
take advantage of Remark 3.6.5, although one can avoid use of this
remark (and extend the analysis here to slightly more general man-
ifolds, namely those with fundamental group a direct sum of cyclic
groups and finite groups, and which contain no embedded RP2 with
trivial normal bundle) by using the π2 extinction theory from Section
3.5.

By this remark, all connected components of such manifolds are
homotopy spheres, and in particular have trivial π2 and π3 isomorphic
to the integers; thus every map f : S3 →M has a degree deg(f) ∈ Z.
This degree only fixed up to sign, so we shall work primarily with the
magnitude |deg(f)| of this degree.

Let M be one of these connected components, and fix a base point
x0 ∈M .
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We can identify48 S3 with the space S2×S1/({p2}×S1)∪ (S2×
{p1}), where p1, p2 are base points of S1, S2 respectively, thus we
contract {p2}×S1 and S2×{p1} to a single point p3. Thus, any map
f : S3 →M with f(p3) = x0 can be viewed as a family γω : S1 →M

of loops with fixed base point γω(p1) = x0 for ω ∈ S2, such that γω
varies continuously in ω and is identically equal to x0 when ω = p2.

A little more generally, define a loop family γ = (γω)ω∈S2 to
be a family49 γω : S1 → M of loops parameterised continuously by
ω ∈ S2, such that γp2 ≡ x0. Thus we see that every map f : S3 →M

with f(p3) = x0 generates a loop family. The converse is not quite
true, because we are not requiring the loops γω in a loop family to
have fixed base point (i.e. we do not require γω(p1) = x0 for all
ω, only for ω = p2). However, as π2(M) is trivial, the 2-sphere
ω 7→ γω(p1) is contractible, and so every loop family is homotopic to
a loop family associated to a map f : S3 → M , and so in particular
can be assigned a degree |deg(γ)|. This degree is well-defined and
stable under deformations:

Exercise 3.7.3. Show that each loop family γ is associated to a
unique degree magnitude, no matter how one chooses to contract the
2-sphere ω 7→ γω(p1). Also, show that if a loop family γ can be
continuously deformed to another loop family γ̃ while staying within
the class of loop families, then both loop families have the same degree
. Conclude that the space of homotopy classes π2(ΛM,x0) of loop
families can be canonically identified with π3(M) ≡ Z.

Exercise 3.7.4. Show that for any d ≥ 1, the quotient Sd×S1/pt×S1

is homotopy equivalent to the wedge sum Sd∨Sd+1, and then use this
to give another proof of Exercise 3.7.3. Hint : 50 first show that both
spaces are homotopy equivalent to a sphere Sd+1 with a disk Dd

glued to it (identifying the boundary ∂Dd of the disk with some copy
of Sd−1 in Sd+1. The case d = 1 might be easiest to visualise.

48To see why these spaces are topologically isomorphic, use the standard identi-
fication of n-sphere Sn with an n-cube [0, 1]n with the entire boundary identified with
a point pn.

49To put it another way, a loop family is a continuous map from S2 to the loop
space ΛM which has the constant loop x0 as base point; equivalently, a loop family is
a continuous map from S2 × S1/{p2} × S1 which maps {p2} × S1 to x0.

50Thanks to Kenny Maples, Peter Petersen, and Paul Smith for this hint.
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Given a loop family γ = (γω)ω∈S2 , define the width W̃3(γ) of this
family to be the quantity

(3.145) W̃3(γ) := sup
ω∈S2

A(γω)

and then for every non-negative ξ ∈ Z+, define the width W̃3(ξ) to
be the quantity

(3.146) W̃3(ξ) := inf
γ:|deg(γ)|=ξ

W̃3(γ)

(this is an inf of a sup of an inf!). We can define this concept for non-
empty disconnected manifolds M also, by taking the infimum across
all components and all choices of base point.

I do not know if W̃3(ξ) is always positive when M is non-empty
and ξ is positive (or equivalently, that if one has a loop family in
which each loop is spanned by a disk of small area, that the entire
loop family is contractible to a point). However, one can at least say
that if γ is a loop family associated to a non-trivial degree ξ, then the
length

∫
γω
ds of at least one of the loops γω is bounded away from

zero by some constant depending only on M = (M, g), because if
instead all loops had small length, then they could be contracted to
a point, thus degenerating the loop family to an image of S2, which
is contractible since we are assuming π2(M) to be trivial. This lower
bound on length is important for technical reasons (which we are
mostly suppressing here).

Let us temporarily pretend, though, that at some point in time
during a Ricci flow t 7→ (M, g(t)), that W̃3(ξ) = W̃3(ξ, t) is positive
for some positive ξ, and that the infimum in (3.146) is attained by a
smooth loop family γ, thus A(γω, g(t)) attains a maximum value of
W̃3(ξ, t) for some ω ∈ S2.

We now run the Ricci flow, while simultaneously deforming each
loop γω in the loop family by curve-shortening flow (local existence
for the latter flow is a result of Gage and Hamilton[GaHa1986]).
Applying (3.144), we conclude that

(3.147)
d

dt
W̃3(γ) ≤ −2π − 1

2
RminW̃3(γ)
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(in the sense of forward difference quotients), and thus by assumption
on γ that

(3.148)
d

dt
W̃3(ξ) ≤ −2π − 1

2
RminW̃3(ξ).

Now we investigate what happens when a surgery occurs. It turns
out that whenever a component of a pre-surgery manifold is discon-
nected into components of a post-surgery manifold, that there ex-
ist degree 1 (or −1) maps from the pre-surgery components to each
of the post-surgery components (recall that all components are ho-
motopy spheres, and in particular the 2-spheres that one performs
surgery on are automatically contractible). Furthermore, these maps
can be chosen to have Lipschitz constant less than 1 + η for any fixed
η > 0, thus they are almost contractions. (We will discuss this fact
later in this course, when we define surgery properly.) Because of
this, we can convert any loop family on the pre-surgery component
to a loop family on the post-surgery component which has the same
degree magnitude and which has only slightly larger width at worst.
Because of this, we can conclude that W̃3(ξ) does not increase during
surgery.

By arguing as in Section 3.5 we now conclude (using (3.148) and
lower bounds in Rmin) that either the manifold becomes totally ex-
tinct or that W̃3(ξ) becomes negative. The latter is absurd, and so
we obtain the required finite time extinction (indeed, we have shown
extinction not just of π3 here, but of the entire manifold).

3.7.3. Ramps. The above argument had one significant gap in it; it
assumed that the infimum in (3.146) was always attained. In practice,
this is not necessarily the case, and so the best one can do is find loop
families γ for each time t with homotopy class ξ whose width is within
ε of the minimal width W̃3(ξ, t), for any small ε > 0. One can try
to run the above arguments with this near-minimiser γ in place of an
exact minimiser, but in order to do so, it is necessary to ensure that
the curve-shortening flow, when applied to γ, exists for a period of
time that is bounded from below uniformly in ε.

Unfortunately, the local existence theory of [GaHa1986] (see
also [AlGr1992]) only guarantees such a uniform lower bound on
time of existence when the curvature magnitude κ := |∇TT |g of these
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curves is uniformly bounded from above51. And, in general, such
curvature bounds are not available52.

To resolve this moderately serious technical obstacle, Perelman
employed the use of ramps, following the work of [AlGr1992] (see
also a related argument in [EcHu1991]). The basic idea is to give all
the loops an upward “slope” that is bounded from below, which (in
conjunction with the maximum principle) will prevent singularities
from forming. In order to create this upward slope, it is necessary to
increase the dimension of the ambient manifold M by one, working
with53 M ×S1

λ instead of M , where S1
λ = R/λZ is the circle of length

λ for some small λ > 0.

We now turn to the details. We first develop some general vari-
ation formulae and estimates for a curve-shortening flow t 7→ γt in a
time-varying Riemannian manifold (M, g(t)) of arbitrary dimension.
As before, we let T denote the unit tangent vector along γt. We write
H := ∇TT = ∂

∂tγ for the curvature vector, which is of course also the
rate of change of the curve under curve shortening flow, and write
k := |H|g for the curvature.

Write x for the variable parameterising the loop γt : S1 → M ,
and write X := ∂

∂xγt for the spatial velocity vector for this loop, thus
X is a scalar multiple of the tangent vector T . Here and in the sequel
we abuse notation by identifying connections on the tangent bundle
TM with connections on pullback bundles.

Exercise 3.7.5 (Commutativity of X and H). Show that ∇XH =
∇HX. Hint : first show that ∇H∇XF = Hess(F )(H,X) + dF (∇HX)
for any scalar function F : M → R, and similarly with the roles of H
and X reversed. Now use the torsion-free nature of the Levi-Civita
connection and duality.

We now record a variation formula for the squared speed g(X,X).

51Indeed, by considering what curve-shortening flow does to small circles in Eu-
clidean space, it is clear that one cannot hope to obtain uniform lifespan bounds with-
out such a curvature bound.

52For instance, as one approaches the minimal value of W̃3(ξ, t), the curves may
begin to develop cusps or folds (i.e. they cease to be immersed).

53Amusingly, this idea of attaching some tightly rolled up dimensions to space
also appears in string theory, though I doubt that there is any connection here.
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Lemma 3.7.5. For fixed x, we have

(3.149)
∂

∂t
g(X,X) = −2Ric(X,X)− 2k2g(X,X).

Proof. From the chain rule we have

(3.150)
∂

∂t
g(X,X) = (

∂

∂t
g)(X,X) + 2g(∇HX,X).

The first term on the right-hand side of (3.150) is −2Ric(X,X) by
the Ricci flow equation. On the other hand, H is orthogonal to T (as
T is a unit vector), and so g(X,H) = 0. From this and Exercise 3.7.5
we have

(3.151) g(∇HX,X) = g(∇XH,X) = −g(H,∇XX).

Writing X = g(X,X)1/2T , and again using that H is orthogonal to
T , we have

(3.152) g(H,∇XX) = g(X,X)g(H,∇TT ) = g(X,X)g(H,H).

Since g(H,H) = k2, the claim follows. �

Corollary 3.7.6. We have [H,T ] = (k2 + Ric(T, T ))T .

Proof. We already know that [H,X] vanishes. Expressing X =
g(X,X)1/2T and using the previous lemma (writing ∂

∂tg(X,X) as
∇Hg(X,X)), the corollary follows after a brief computation. �

We can now derive a heat equation for the curvature (vaguely
reminiscent of a Bochner-type identity):

Lemma 3.7.7 (First variation of squared curvature). We have

(3.153)
∂

∂t
k2 = ∇T∇T (k2)− 2g(π(∇TH), π(∇TH)) + 2k4 +O(k2)

where π is the projection to the orthogonal complement of X, and
the implied constants in the O() terms depend only on the Riemann-
ian manifold (M,g(t)) (and in particular on bounds on the Riemann
curvature tensor).

Proof. We write k2 = g(H,H). By the chain rule and the Ricci flow
equation we have

(3.154)
∂

∂t
g(H,H) = −2Ric(H,H) + 2g(∇HH,H).
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The first term on the right-hand side is O(k2) which is acceptable.
As for the second term, we expand

(3.155) ∇HH = ∇H∇TT = ∇T∇HT +∇[H,T ]T +O(k).

The O(k) term gives a contribution of O(k2) to (3.154) which is ac-
ceptable. By Corollary 3.7.6, we have

(3.156) ∇[H,T ]T = (k2 +O(1))∇TT = k2H +O(k)

which gives a contribution of 2k4 +O(k2) to (3.154). Finally, we deal
with the top-order term ∇T∇HT . We express ∇HT = ∇TH+[H,T ].
Applying Corollary 3.7.6 (and the orthogonality of T and H), we have

(3.157) g(∇T [H,T ], H) = (k2 +O(1))g(∇TT,H) = k4 +O(k2)

whereas from the Leibniz rule we have

(3.158) g(∇T∇TH,H) =
1
2
∇T∇T g(H,H)− g(∇TH,∇TH).

Since H is orthogonal to T , we have

(3.159) g(∇TH,T ) = −g(H,∇TT ) = −g(H,H) = −k2

and so by Pythagoras

(3.160) g(∇TH,∇TH) = g(π(∇TH), π(∇TH))− k4.

Substituting (3.160) into (3.7.3), and combining this with (3.157)
to calculate the net contribution of ∇T∇HT , we obtain (3.153) as
desired. �

Corollary 3.7.8 (First variation of curvature). We have

(3.161)
∂

∂t
k ≤ ∇T∇T k + k3 +O(k)

Proof. Expanding out (3.153) using the product rule and comparing
with (3.161), we see that it suffices to show that

(3.162) (∇T∇T k)2 ≤ g(π(∇TH), π(∇TH)).

But if we differentiate the identity k2 = g(H,H) along T , we obtain

(3.163) k∇T k = g(∇TH,H) = g(π(∇TH), H)

(since H is orthogonal to T ) and the claim now follows from Cauchy-
Schwarz. �
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Note that by combining this corollary with the maximum princi-
ple (Corollary 3.4.3) we can get upper bounds54 on k for short times
based on upper bounds for k at time zero. Unfortunately, the non-
linear term k3 on the right-hand side has an unfavourable sign and
can generate finite time blowup.

The situation is much improved, however, for a special class of
loops known as ramps. These curves take values not in an arbitrary
manifold M , but in a product manifold M × S1

λ (with the product
Riemannian metric). The point here is that we have a vertical unit
vector field U on this manifold (corresponding to infinitesimal rota-
tion of the S1

λ factor) which is completely parallel to the Levi-Civita
connection: ∇αU = 0. Define a ramp to be a curve γ : S1 →M ×S1

λ

whose unit tangent vector T is always upward sloping in the sense
that g(T,U) > 0 on all of γ (thus the ramp must “wrap around”
the vertical fibre S1

λ at least once, in order to return to its starting
point). In particular, since γ is compact, we have a uniform lower
bound g(T,U) ≥ c for some c > 0. Write u := g(T,U) for the evolu-
tion of such a ramp under curve shortening flow, thus one can view
u as a function of t and x. On the one hand, we have the trivial
pointwise bound

(3.164) |u| ≤ 1

from Cauchy-Schwarz. On the other hand, we have an evolution
equation for u:

Proposition 3.7.9 (First variation of u). We have

(3.165)
∂

∂t
u = ∇T∇Tu+ (k2 +O(1))u

Proof. Differentiating u = g(T,U) by the chain rule as before (using
the fact that U is parallel to the connection, as well as the Ricci flow
equation) we have

(3.166)
∂

∂t
u = −2Ric(T,U) + g(∇HT,U).

54By using energy estimates, one can also control higher derivatives of k, obtain-
ing the usual parabolic type estimates as a consequence; such estimates are important
for the analysis here but we will omit them.
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Since U is parallel to the connection, it is annihilated by any com-
mutator Riem(X,Y ) = [∇X ,∇Y ] and thus Ric(T,U) = 0. Writing
∇HT = [H,T ] +∇TH = [H,T ] +∇T∇TT and using Corollary 3.7.6,
we conclude

(3.167)
∂

∂t
u = (k2 +O(1))u+ g(∇T∇TT,U).

Since U is parallel to the connection, we can write g(∇T∇TT,U) =
∇T∇T g(T,U), and the claim follows from the definition of u. �

As a particular corollary of (3.165), we have the inequality

(3.168)
∂

∂t
u ≥ ∇T∇Tu−O(|u|).

Using the maximum principle (Corollary 3.4.3), and the assumption
that u is initially bounded away from zero, we conclude that u con-
tinues to be bounded away from zero for all time t for which the
curve-shortening flow exists (though this bound can deteriorate ex-
ponentially fast in t). In particular, u is positive and the curve con-
tinues to be a ramp. Furthermore, by applying the quotient rule to
(3.161) and (3.165), one obtains after some calculation the differential
inequality

(3.169)
∂

∂t
f ≤ ∇T∇T f +

2∇Tu
u
∇T f +O(f)

for the quantity f := k/u. Applying the maximum principle again,
and noting that f is initially bounded at time zero, we conclude that
f is bounded for all time for which the solution exists (though again,
the bound can deteriorate exponentially in t). Combining this with
the trivial bound (3.164), we conclude that the curvature k is bounded
for any period of time on which the solution exists, with the bound
deteriorating exponentially in t. Combining this with the local exis-
tence theory (see [AlGr1992]), which asserts that the curve shorten-
ing flow can be continued whenever the curvature remains bounded,
we conclude that curve shortening flows for ramps persist globally in
time.

Of course, in our applications to Ricci flow, the curves γω that we
are applying curve shortening flow to are not ramps; they live in M

rather than M ×S1
λ. To address this, one has to embed M in M ×S1

λ

for some small λ and approximate each γω by a ramp that wraps
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around M × S1
λ exactly once. One then flows the ramps by curve

shortening flow, and works with the minimal spanning areas A(γ) of
these evolved ramps (rather than working with the curve shortening
flow applied directly to the original curves).

There are of course many technical obstacles to this strategy. One
of them is that one needs to show that small changes in the ramp γ

do not significantly affect the area A(γ) of the minimal spanning
disk. To achieve this, one needs to show that if two ramps γ1, γ2 are
initially close in the sense that there is an annulus connecting them of
small area, then they stay close (in the same sense) for any bounded
period of time under curve shortening flow. This can be accomplished
by using a first variation formula for area of minimal annuli which is
similar to Corollary 3.7.4. There are several other technical difficulties
of an analytical nature to resolve; see [MoTi2007, Chapter 19] for
full details.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/04/18.

3.8. Rescaling of Ricci flows and κ-noncollapsing

We now set aside our discussion of the finite time extinction results
for Ricci flow with surgery (Theorem 3.3.13), and turn instead to the
main portion of Perelman’s argument, which is to establish the global
existence result for Ricci flow with surgery (Theorem 3.3.9), as well
as the discreteness of the surgery times (Theorem 3.3.12).

As mentioned in Section 3.2, local existence of the Ricci flow is
a fairly standard application of nonlinear parabolic theory, once one
uses de Turck’s trick to transform Ricci flow into an explicitly para-
bolic equation. The trouble is, of course, that Ricci flow can and does
develop singularities (indeed, we have just spent several sectionsshow-
ing that singularities must inevitably develop when certain topological
hypotheses (e.g. simple connectedness) or geometric hypotheses (e.g.
positive scalar curvature) occur). In principle, one can use surgery to
remove the most singular parts of the manifold at every singularity
time and then restart the Ricci flow, but in order to do this one needs



448 3. The Poincaré conjecture

some rather precise55 control on the geometry and topology of these
singular regions.

In order to analyse these singularities, Hamilton and then Perel-
man employed the standard nonlinear PDE technique56 of “blowing
up” the singularity using the scaling symmetry, and then exploiting as
much “compactness” as is available in order to extract an “asymptotic
profile” of that singularity from a sequence of such blowups, which
had better properties than the original Ricci flow. A sufficiently good
classification of all the possible asymptotic profiles will, in principle,
lead to enough structural properties on general singularities to Ricci
flow that one can see how to perform surgery in a manner which
controls both the geometry and the topology.

However, in order to carry out this program it is necessary to
obtain geometric control on the Ricci flow which does not deteriorate
when one blows up the solution; in the jargon of nonlinear PDE, we
need to obtain bounds on some quantity which is both coercive (it
bounds the geometry) and either critical (it is essentially invariant
under rescaling) or subcritical (it becomes more powerful when one
blows up the solution) with respect to the scaling symmetry. The
discovery of controlled quantities for Ricci flow which were simulta-
neously coercive and critical was Perelman’s first major breakthrough
in the subject (previously known controlled quantities were either su-
percritical or only partially coercive); it made it possible57, at least
in principle, to analyse general singularities of Ricci flow and thus to
begin the surgery program discussed above. The mere existence of
such a quantity does not by any means establish global existence of
Ricci flow with surgery immediately, but it does give one a non-trivial
starting point from which one can hope to make progress.

55In particular, there are some hypothetical bad singularity scenarios which can-
not be easily removed by surgery, due to topological obstructions; a major difficulty in
the Perelman program is to show that such scenarios in fact cannot occur in a Ricci
flow.

56The PDE notion of a blowing up a solution around a singularity, by the way,
is vaguely analogous to the algebraic geometry notion of blowing up a variety around
a singularity, though the two notions are certainly not identical.

57In contrast, the main reason why questions such as Navier-Stokes global regu-
larity are so difficult is that no controlled quantity which is both coercive and critical
or subcritical is known; see Section 3.4 of Structure and Randomness.
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To be a more precise, recall from Section 3.2 that the Ricci flow
equation d

dtg = −2Ric, in any spatial dimension d, has two basic sym-
metries (besides the geometric symmetry of diffeomorphism invari-
ance); it has the obvious time-translation symmetry g(t) 7→ g(t− t0)
(keeping the manifold M fixed), but it also has the scaling symmetry

(3.170) g(t) 7→ λ2g(
t

λ2
)

for any λ > 0 (again keeping M fixed as a topological manifold).
When applied with λ < 1, this scaling shrinks all lengths on the
manifold M by a factor λ (recall that the length |v|g of a tangent
vector v is given by the square root of g(v, v)), and also speeds up the
flow of time by a factor 1/λ2; conversely, when applied with λ > 0,
the scaling expands all lengths by a factor λ, and slows down the flow
of time by 1/λ.

Suppose now that one has a Ricci flow t 7→ (M, g(t)) which be-
comes singular at some time T > 0. To analyse the behaviour of
the flow as one approaches the singular time T , one picks a sequence
of times tn → T− approaching T from below, a sequence of marked
points xn ∈ M(tn) = M on the manifold, and a sequence of length
scales Ln > 0 which go to zero as n → ∞. One then considers the
blown up Ricci flows t 7→ (M (n), g(n)(t)), where M (n) is equal to M
as a topological manifold (with xn as a marked point or “origin” O),
and g(n)(t) is the flow of metrics given by the formula

(3.171) g(n)(t) :=
1
L2
n

g(tn + L2
nt).

Thus the flow t 7→ (M (n), g(n)(t)) represents a renormalised flow in
which the time tn has been redesignated as the temporal origin 0,
the point xn has been redesignated as the spatial origin O, and the
length scale Ln has been redesignated as the unit length scale (and
the time scale L2

n has been redesignated as the unit time scale). Thus
the behaviour of the rescaled flow t 7→ (M (n), g(n)(t))at unit scales
of space and time around the spacetime origin (thus t = O(1) and
x ∈ B(O,O(1))) correspond to the behaviour of the original flow
t 7→ (M, g(T )) at spatial scale Ln and time scale L2

n around the
spacetime point (tn, xn), thus t = tn +O(L2

n) and x ∈ B(xn, O(Ln)).
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Because the original Ricci flow existed on the time interval 0 ≤
t < T , the rescaled Ricci flow will exist on the time interval − tn

L2
n
≤

t < T−tn
L2
n

. In particular, in the limit n → ∞ (leaving aside for
the moment the question of what “limit” means precisely here), these
Ricci flows become increasingly ancient, in that they will have existed
on the entire past time interval −∞ < t ≤ 0 in the limit.

The strategy is now to show that these renormalised Ricci flows
t 7→ (M (n), g(n)) (with the marked origin O) exhibit enough “com-
pactness” that there exists a subsequence of such flows which converge
to some asymptotic limiting profile t 7→ (M (∞), g(∞)) in some sense58.
If the notion of convergence is strong enough, then we will be able
to conclude that this limiting profile of Ricci flows is also a Ricci
flow59. This limiting Ricci flow has better properties than the renor-
malised flows; for instance, while the renormalised flows are almost
ancient, the limiting flow actually is an ancient solution. Also, while
the Hamilton-Ivey pinching phenomenon from Section 3.4 suggests
that the renormalised flows have mostly non-negative curvature, the
limiting flow will have everywhere non-negative curvature (provided
that the points (tn, xn) and scales Ln are chosen properly; we will
return to this “point-picking” issue later in this chapter).

If one was able to classify all possible asymptotic profiles to Ricci
flow, this would yield quite a bit of information on singularities to
such flows, by the standard and general nonlinear PDE method of
compactness and contradiction. This method, roughly speaking, runs
as follows. Suppose we want to claim that whenever one is sufficiently
close to a singularity, some scale-invariant property P eventually oc-
curs60. To prove this, we argue by contradiction, assuming we can
find a Ricci flow t 7→ (M, g(t)) in which P fails on a sequence of points
in spacetime that approach the singularity, and on some sequence of

58We will define the precise notion of convergence of such flows later, in Section
???, but pointed Gromov-Hausdorff convergence is a good first approximation of the
convergence concept to keep in mind for now.

59Actually, due to the parabolic smoothing effects of Ricci flow, we will be able
to automatically upgrade weak notions of convergence to strong ones, and so this step
is in fact rather easy.

60In our specific application, P is roughly speaking going to assert that the ge-
ometry and topology of high-curvature regions can be classified as belonging to one of
a short list of possible “canonical neighbourhood” types, all of which turn out to be
amenable to surgery.
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scales going to zero. We then rescale the flow to create a sequence
of rescaled Ricci flows t 7→ (M (n), g(n)(t)) as discussed above, each of
which exhibits failure of P at unit scales near the origin (here we use
the hypothesis that P is scale-invariant). Now, we use compactness
to find a subsequence of flows converging to an asymptotic profile
t 7→ (M (∞), g(∞)(t)). If the convergence is strong enough, the as-
ymptotic profile will also exhibit failure of P . But now one simply
goes through the list of all possible profiles in one’s classification and
verifies that each of them obeys P ; and one is done.

Unfortunately, just knowing that a Ricci flow is ancient and has
everywhere non-negative curvature does not seem enough, by itself,
to obtain a full classification of asymptotic profiles (though one can
definitely say some non-trivial statements about ancient Ricci flows
with non-negative curvature, most notably the Li-Yau-Hamilton in-
equality, which we will discuss in Section ???). To proceed further,
one needs further control on asymptotic profiles t 7→ (M (∞), g(∞)(t)).
The only reasonable way to obtain such control is to obtain control
on the rescaled flows t 7→ (M (n), g(n)(t)) which is uniform in n. While
some control of this sort can be established merely by choosing the
points (tn, xn) and scales Ln in a clever manner, there is a limit as to
what one can accomplish just by point-picking alone (especially if one
is interested in establishing properties P that apply to quite general
regions of spacetime and general scales, rather than specific, hand-
picked regions and scales). To really get good control on the rescaled
flows t 7→ (M (n), g(n)(t)), one needs to obtain control on the original
flow t 7→ (M, g(t)) which does not deteriorate when one passes from
the original flow to the rescaled flow.

One can express what “does not deteriorate” means more pre-
cisely using the language of dimensional analysis, or more precisely us-
ing the concepts of subcriticality, criticality, and supercriticality from
nonlinear PDE. Suppose we have some (non-negative) scalar61 quan-
tity F (M, g(·)) that measures some aspect of a flow t 7→ (M, g(t)). In
many situations, this quantity has some specific dimension k, in the

61Dimensional analysis becomes trickier when considering tensor-valued quanti-
ties, though in practice one can use the magnitude of such quantities as a scalar-valued
proxy for these tensor-valued objects; see [Ta2] for some further discussion.
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sense that one has a scaling relationship

(3.172) F (M,λ2g(
·
λ2

)) = λkF (M, g(·))

that measures how that quantity changes under the rescaling (3.170).
In dimensional analysis language, (3.172) asserts that F has the units
lengthk.

Assuming that F is also invariant under time translation (and
under changes of spatial origin), (3.172) implies that

(3.173) F (M (n), g(n)(·)) = L−kn F (M, g(·)).

Thus, if F is critical or dimensionless (which means that k = 0) or
subcritical (which means that k < 0), any upper bound on F for the
original Ricci flow t 7→ (M, g(t)) will imply uniform bounds on the
rescaled flows t 7→ (M (n), g(n)(t)), and thus (assuming the conver-
gence is strong enough, and F has some good continuity properties)
on the asymptotic profile t 7→ (M (∞), g(∞)(t)). In the subcritical
case, F should in fact now vanish in the limit. On the other hand,
if F is supercritical (which means that k > 0) then no information
about the asymptotic profile t 7→ (M (∞), g(∞)(t)) is obtained.

In order for control of F (M (∞), g(∞)(·)) to be truly useful, we
would like the quantity F to be coercive. This term is not precisely
defined (though it is somewhat analogous to the notion of a proper
map), but coercivity basically means that upper bounds on F (M, g(·))
translate to some upper bounds on various norms or similar quanti-
ties measuring the “size” of (M, g(·)), and (hopefully) to then obtain
useful bounds on the topology and geometry of (M, g(·)).

Let us give some examples of various such quantities F for Ricci
flow. We begin with some supercritical quantities:

(1) Any length-type quantity, e.g. the diameter diam(M) of the
manifold, or the injectivity radius, has dimension 1 and is
thus supercritical.

(2) The various widthsW2(t),W3(t), W̃3(t) of 3-dimensional Ricci
flows from the previous lectures, which were based on areas
of minimal surfaces, have dimension 2 and are also supercrit-
ical. Thus the various bounds we have on these quantities
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from Sections 3.5, 3.6, 3.7 do not directly tell us anything
about asymptotic profiles.

(3) The volume
∫
M

dµ of 3-manifolds has dimension 3 and is
thus also supercritical. Thus upper bounds on volume, such
as Corollary 3.4.11, do not directly tell us anything about
asymptotic profiles (though they are useful for other tasks,
most notably for ensuring that surgery times are discrete,
see Theorem 3.3.12).

As for subcritical quantities, one notable one is the minimal scalar
curvature Rmin. One can check (cf. the dimensional analysis at the
end of Section 3.1) that scalar curvature has dimension −2 and is thus
subcritical. The quantity F (M, g(·)) := supt max(−Rmin, 0), that
measures the maximal amount of negative scalar curvature present
in a Ricci flow, is then bounded (by the maximum principle, see
Proposition 3.4.10), and so by the previous discussion will vanish
for asymptotic profiles; in other words, asymptotic profiles always
have non-negative scalar curvature. Unfortunately, this quantity is
only partially coercive; it prevents scalar curvature from becoming
arbitrarily large and negative, but does not prevent scalar curvature
from becoming arbitrarily large and positive62. So this quantity does
say something non-trivial about asymptotic profiles, but is insufficient
by itself to fully control such profiles.

In the next lecture we shall see that the least eigenvalue λ1(−4∆+
R) of the modified Laplace-Beltrami operator, which can be viewed
as an analytic analogue of the geometric quantity Rmin related to
Poincaré inequalities, also enjoys a monotonicity property (which is
connected to a certain gradient flow interpretation of (modified) Ricci
flow); like Rmin, the least eigenvalue has dimension −2 and is thus
also subcritical, but again it is not fully coercive, as it only prevents
scalar curvature from becoming too negative.

62Also, it is possible for other curvatures, such as Ricci and Riemann curvatures,
to be large even while the scalar curvature is small or even zero.
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So far we have not discussed any critical quantities63. One way
to create critical quantities is to somehow combine subcritical and
supercritical examples together. Here is one simple example, due to
Hamilton[Ha1999]:

Exercise 3.8.1. Show that the quantity64 max(−Rmin(t)V (t)2/d, 0)
is critical (scale-invariant) and monotone non-increasing in time under
d-dimensional Ricci flow, where V =

∫
M

dµ(t) denotes the volume of
(M, g(t)) at time t.

In the next few lectures, we will see two more advanced versions of
critical controlled quantities of an analytic nature, the Perelman en-
tropy (a scale-invariant version of the minimal eigenvalue λ1(−4∆ +
R), which is to log-Sobolev inequalities as the latter quantity is to
Poincaré inequalities) and the Perelman reduced volume (which mea-
sures how heat-type kernels on Ricci flows compare against heat ker-
nels on Euclidean space). These quantities were both introduced in
[Pe2002]. The key feature of these new critical quantities, which
distinguishes them from previously known examples, is that they are
now coercive: they provide a crucial scale-invariant geometric con-
trol on a flow t 7→ (M, g(t)), which is now known as κ-noncollapsing.
This control, which describes a relationship between the supercriti-
cal quantities of length and volume and the subcritical quantities of
curvature, will be discussed next.

3.8.1. Length, volume, curvature, and collapsing. Let p be a
point in a d-dimensional complete Riemannian manifold (M, g) (we
make no assumptions on the dimension d here). We will establish65

here some basic results in comparison geometry, which seeks to un-
derstand the relationship between the Riemann curvature Riem of
the manifold M , and various geometric quantities of M such as the

63One can create some trivial examples of critical quantities, such as the dimen-
sion dim(M) or topological quantities such as π1(M), but these are not obviously
coercive (the topological coercivity of the latter quantity being, of course, precisely
the Poincaré conjecture that we are trying to prove!).

64This quantity can be used, for instance, to show that Ricci flow admits
no “breather” solutions, i.e. non-constant periodic solutions; see the discussion in
[Pe2002]. Unfortunately, as with previous examples, it is not fully coercive.

65This is only a brief introduction; see e.g. [Pe2006, Chapters 6, 9, 10] for a
detiled treatment.
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volume of balls and the injectivity radius, especially when compared
against model geometries such as the sphere and hyperbolic space.

Of course, in the case of Euclidean space Rd with the Euclidean
metric, the Riemann curvature is identically zero, and the volume of
B(p, r) is cdrd for some explicit constant cd := πd/2

Γ( d2 +1)
> 0 depending

only on dimension. For Riemannian manifolds, it is easy to see that
the volume of B(p, r) is (1 + o(1))cdrd in the limit r → 0; for more
precise asymptotics, see Exercises 3.8.7, 3.8.8 below. One of the most
effective tools to study these questions comes from normal coordi-
nates, or more precisely from the exponential map expp : TpM → M

from the tangent space TpM to M, defined by setting expp(v) to be
the value of γ(1), where γ : [0, 1] → M is the unique constant-speed
geodesic with γ(0) = p and γ′(0) = v. By the Hopf-Rinow theorem,
M is complete (in the metric sense) if and only if the exponential map
is defined on all of TpM . Henceforth we will always assume M to be
complete. The ball B(p, r) of radius r > 0 in M centred at p is then
the image under the exponential map of the ball BTpM (0, r) of the
tangent space of the same radius (using the metric g(p), of course):

(3.174) B(p, r) = expp(BTpM (0, r)).

Thus we can study the balls centred at p by using the exponential map
to pull back to the tangent space TpM and analysing the geometry
there. Two radii become relevant for this approach:

(1) The injectivity radius at p is the supremum of all radii r
such that expp is injective on BTpM (0, r).

(2) The conjugate radius at p is the supremum of all radii r such
that expp is an immersion on BTpM (0, r) (i.e. its gradient
has full rank at every point in BTpM (0, r)).

In many situations, these two radii are equal, but there are cases in
which the injectivity radius is smaller. In fact the injectivity radius is
always less than or equal to the conjugate radius; see Exercise 3.8.4
below.

Example 3.8.1 (Sphere). Let K > 0, and let M = 1√
K
Sd :=

{(x1, . . . , xd+1) ∈ Rd+1 : x2
1 + . . . + x2

d+1 = 1/K} be the sphere
of radius 1/

√
K, with the metric induced from the metric ds2 =
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dx2
1 + . . . + dx2

d+1 of Euclidean space Rd+1. Then at every point p
of M , the injectivity radius and conjugate radius are both equal to
π/
√
K, which is also the diameter of the manifold. Note also that

this manifold has constant sectional curvature K.

Example 3.8.2 (Hyperbolic space). LetK > 0, and letM = 1√
K
Hd :=

{(t, x1, . . . , xd) ∈ R1+d : x2
1 + . . . xd − t2 = 1/K; t > 0} ⊂ R1+d be

hyperbolic space of hyperbolic radius 1/
√
K, with the metric induced

from the metric ds2 = dx2
1 + . . . + dx2

d − dt2 of Minkowski space.
Then at any point p in M , e.g. p = (1, 0), the injectivity radius, con-
jugate radius, and diameter are infinite. This manifold has constant
sectional curvature −K.

Example 3.8.3 (Torus). Let r > 0, and let M = (R/rZ)d be the
d-torus which is the product of d circles of length r. Then for any
point p in M , the injectivity radius is r/2 and the conjugate radius
is infinite. Here the sectional curvature is of course 0 everywhere.

The metric g on M induces a pullback metric on TpM , which by
abuse of notation we shall also call g. This metric can degenerate
once one passes the conjugate radius, but let us ignore this issue for
the time being. On TpM , we have the radial variable r (defined as
the magnitude of a tangent vector with respect to g(p)), and the
radial vector field ∂r (defined as the dual vector field to r using polar
coordinates), which is smooth away from the origin.

In Euclidean space, the vector field ∂r is the gradient of r. Hap-
pily, the same fact is true for more general Riemannian manifolds:

Lemma 3.8.4 (Gauss lemma). (1) Away from the origin, we
have |∂r|g = 1 and ∇∂r∂r = 0.

(2) Away from the origin, ∂r is the gradient gradr of r with
respect to the metric g, thus (∂r)α = ∇αr.

Exercise 3.8.2. Prove Lemma 3.8.4. Hint : part 1 follows from the
geodesic flow equation ∇γ̇ γ̇ = 0. For part 2, one way to proceed is to
establish the ODE

(3.175) ∇∂r (∂r − gradr)α = (∇α(∂r)β)(∂r − gradr)β

and then apply Gronwall’s inequality.
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Lemma 3.8.4 gives some important relationships between the ra-
dial vector field ∂r and the Hessian Hess(r)αβ := ∇α∇βr = ∇α(∂r)β
(which can be viewed as the second fundamental form of the spheres
centred at p):

Exercise 3.8.3. Away from the origin, obtain the deformation for-
mula

(3.176) L∂rg = 2Hess(r)

and the Riccati-type equation

(3.177) ∇∂rHessαβ + HessαβHessβγ = Riemδ
αγβ(∂r)γ(∂r)δ.

Also, show that Hessαβ has ∂r as a null eigenvector.

Exercise 3.8.4. Show that the injectivity radius ri of a point p

cannot exceed the conjugacy radius rc. Hint : there are several ways
to establish this. Here is one: suppose for contradiction that ri > rc,
thus ri > (1 + ε)rc for some small ε > 0. Let v ∈ TpM be a vector of
magnitude at most rc. Observe that the function d(p, x)+d(expp((1+
ε)v), x) achieves a global minimum at expp(v) whenever and so has
non-negative Hessian. Use this to obtain a lower bound on Hess(r)
on B(p, rc), and combine this with Exercise 3.8.3 to show that the
exponential map is in fact immersed on a neighbourhood of B(p, rc), a
contradiction. Another approach is based on Klingenberg’s inequality
(see Lemma 3.8.11 below), while a third approach is based on the
second variation formula for the energy of a geodesic.

Let us now impose the bound that all sectional curvatures are
bounded by some K > 0 on a ball B(p, r0), thus

(3.178) |g(Riem(X,Y )X,Y )| ≤ K

for all orthonormal tangent vectors X, Y at any point in B(p, r0).
From Example 3.8.1 we know that the exponential map can become
singular past the radius π/

√
K, so let us also assume that

(3.179) r0 ≤ π/
√
K.

Note that the sectional curvature bound also implies a Ricci curvature
bound |Ric(X,X)| ≤ (d − 1)K for all unit tangent vectors based in
B(p, r0).
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From (3.178) and (3.179) we see that |Riem|g = Od(r−2
0 ) on the

ball B(p, r0). When this latter property occurs, let us informally
say that M has bounded normalised curvature at scale r0 at p. Our
analysis here can thus be interpreted as a study of the volume of
balls (and of related quantities, such as the injectivity radius) under
assumptions of bounded normalised curvature.

Remark 3.8.5. If one wishes, one can rescale to normalise K (or r0)
to equal 1, although this does not significantly simplify the computa-
tions that follow below.

Using (3.177), one can obtain sharp upper and lower bounds for
Hess(r):

Exercise 3.8.5 (Comparison estimates for Hess(r)). Assume that
(3.178) and (3.179) hold. At any non-zero point in BTpM (0, r0), let
λmin ≤ λmax be the least and greatest eigenvalues of Hess(r) on the
orthogonal complement of ∂r. Use (3.177) to establish the differential
inequalities

(3.180) ∇∂rλmax + λ2
max ≤ K

and

(3.181) ∇∂rλmin + λ2
min ≥ −K

for 0 < r < r0 and also establish the infinitesimal bound

(3.182) λmin, λmax =
1
r

+O(r)

for all sufficiently small positive r. From (3.180), (3.181), (3.182),
conclude the bounds

(3.183)
√
K coth(

√
Kr) ≤ λmin ≤ λmax ≤

√
K cot(

√
Kr)

and in particular that

(3.184) (d− 1)
√
K coth(

√
Kr) ≤ ∆r ≤ (d− 1)

√
K cot(

√
Kr).

Using (3.176) and (3.183), deduce the bound

(3.185) dr2 +
sin2(

√
Kr)

K
dθ2 ≤ dg2 ≤ dr2 +

sinh2(
√
Kr)

K
dθ2

where (r, θ) are the usual Euclidean polar coordinates on TpM , thus
the Euclidean metric (induced by g(p)) is given by ds2 = dr2+r2dθ2).
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Remark 3.8.6. Each of the above bounds are attained by either
the sphere of constant sectional curvature +K (Example 3.8.1) or
the hyperbolic space of constant sectional curvature −K (Example
3.8.2). More generally, one should think of these two examples as the
two extreme geometries obeying the assumption (3.178). In the limit
K = 0 one recovers the formulae for Euclidean space Rd or for the
torus (Example 3.8.3).

Exercise 3.8.6 (Bounded curvature implies lower bound on conju-
gacy radius). Using Exercise 3.8.3, show that if (3.178) and (3.179)
hold, then the conjugacy radius of p is at least r0.

Remark 3.8.7. A converse of sorts to Exercise 3.8.6 is provided by
Myers’ theorem (Exercise 3.10.2), which asserts that if Ric ≥ (d −
1)K, then the diameter of M is at most π/

√
K. Another result in

a somewhat similar spirit is the 1/4-pinched sphere theorem. The
Ricatti-type equations and inequalities developed above play a key
role in the proof of such theorems.

Now we relate the Hessian of r to the volume metric dµ and the
Laplacian ∆r:

Exercise 3.8.7. Away from the origin, obtain the deformation for-
mula

(3.186) L∂rdµ = (∆r)dµ

and the Riccati-type inequality

(3.187) ∇∂r∆r+
1

d− 1
(∆r)2 ≤ ∇∂r∆r+ |Hess(r)|2 = −Ric(∂r, ∂r).

Exercise 3.8.8 (Absolute volume comparison). Assume (3.178) and
(3.179). Using Exercises 5 and 7, show that the volume of BTpM (0, r0)
is maximised in the case of hyperbolic space (Example 3.8.2) and
minimised in the case of the sphere (Example 3.8.1). In particular, if
r0 �

√
K, conclude that the volume of BTpM (0, r0) is comparable to

rd0 , with the comparability constants depending only on d and on the
implied constant in the O() notation.
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Remark 3.8.8. In later sections we will need a relative variant of
this comparison inequality, known as the Bishop-Gromov compari-
son inequality (Lemma 3.10.1), which will assert that certain ratios
between volumes of balls are monotone in the radius r0.

Exercise 3.8.9. Show that the volume of B(p, r) is (cd− R(p)
6(d+2)r

2 +
O(r4))rd for sufficiently small r, where R(p) is the scalar curvature
at p. Thus we see that scalar curvature distorts the infinitesimal
volume growth of balls. Develop a similar interpretation of the Ricci
curvature Ric(p)(v, v) as the volume distortion of infinitesimal sectors
with apex p and direction v.

If r0 is less than the injectivity radius, we see from (3.174) that
B(p, r0) has the same volume as BTpM (0, r0). From Exercise 3.8.8,
we thus conclude that

(3.188) Vol(B(p, r0)) ∼d rd0
whenever (3.178) holds, and r0 is less than both O(1/

√
K) and the

injectivity radius of p.

What happens if r0 exceeds the injectivity radius? We still obtain
the upper bound in (3.187), but can lose the lower bound, as can al-
ready be seen by considering the torus example (Example 3.8.3) with
the injectivity radius r small. Thus we see that failure of injectivity
can lead to collapse in the volume of balls.

A deep result of Cheeger[Ch1970] shows that in fact injectivity
failure always collapses the volume of balls (assuming bounded nor-
malised curvature), or equivalently that non-collapsing of volume is
equivalent to a lower bound on the injectivity radius:

Theorem 3.8.9 (Cheeger’s lemma). Suppose that |Riem|g ≤ Cr−2
0

on B(p, r0) and that Vol(B(p, r0)) ≥ δrd0 for some δ > 0. Then the
injectivity radius of p is at least c(C, δ, d)r0 for some c(C, δ, d) > 0
depending only on C, δ, d.

Remark 3.8.10. This lemma is closely related to the Cheeger finite-
ness theorem, which asserts that the number of possible topologies for
the ball B(p, r0) under the assumptions of Theorem 3.8.9 is finite, as
well as Gromov’s compactness theorem, which essentially asserts that
the metrics on these balls form a compact set in a certain topology.
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We will not discuss the proof of Cheeger’s lemma here. Cheeger’s
original proof relies on the following inequality which is also of inter-
est:

Lemma 3.8.11 (Klingenberg’s inequality). Assume the conjugacy
radius is at least r0. Then exactly one of the following holds:

(1) The injectivity radius of p is at least r0.

(2) There exists a non-trivial geodesic starting and ending at p
of length less than 2r0.

Proof. (Sketch) It is clear that 1. and 2. cannot both be true. Now
suppose that the injectivity radius r is strictly less than r0, then
there exist two distinct geodesic rays γ1, γ2 from p to another point
q, one of length r and the other of length at most r. On the other
hand, by hypothesis the exponential map is an immersion on B(x, r0).
From the inverse function theorem (and Lemma 3.8.4) we can then
perturb the rays γ1, γ2 from p to have lengths slightly less than r but
still ending up at the same point (thus contradicting the definition of
r), unless γ1, γ2 have length exactly r and have equal and opposite
tangent vectors at q. But then we have formed a geodesic path from
p to p of length 2r, and the claim follows. �

Exercise 3.8.10. Show that the injectivity radius of p is equal to
the minimum of the conjugacy radius of p, and half the length of the
shortest non-trivial geodesic path from p to itself (or +∞ if no such
path exists).

Exercise 3.8.11. Let M be a compact manifold whose sectional
curvatures are all bounded in magnitude by K. Show that if the
injectivity radius r of M (defined as the infimum of the injectivity
radii of every point p in M) is less than π/

√
K, then there exists a

closed geodesic loop of length exactly 2r.

Let us informally say that a Riemannian manifold M is non-
collapsed at scale r0 at a point p if B(p, r0) has volume &d rd0 . The
above discussion then says that, under the assumption of bounded
normalised curvature at scale r0 at p, that non-collapsing is equivalent
to a lower bound of &d r0 on the injectivity radius, which is in turn
equivalent to a lower bound of &d r0 on the length of any non-trivial
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geodesic paths from p to itself. Thus we see that the non-collapsing
property is quite coercive; it implies some important control on the
local geometry of the Riemannian manifold.

Example 3.8.12. The sphere (Example 3.8.1) of dimension 2 and
higher and hyperbolic space (Example 3.8.2) are non-collapsed at ev-
ery point and scale for which one has bounded normalised curvature.
(For the sphere, volume collapses at scales bigger than the diameter
of the sphere, but one no longer has bounded normalised curvature
in this regime.) Similarly for Euclidean space, or for products of any
of these three examples. On the other hand, the torus (Example
3.8.3) (or the sphere of dimension 1) is collapsed at large scales even
though one still retains normalised bounded curvature. Similarly for
the cylinder S1 ×R.

Now we adapt this concept to Ricci flows. The following definition
is fundamental to Perelman’s arguments:

Definition 3.8.13 (κ-collapsing). Let t 7→ (M, g(t)) be a d-dimensional
Ricci flow, and let κ > 0. We say that the Ricci flow is κ-collapsed
at a point (t0, x0) in spacetime at scale r0 if the following statements
hold:

(1) (Bounded normalised curvature) We have |Riem(t, x)|g ≤
r−2
0 for all (t, x) the spacetime cylinder [t0−r2

0, t0]×Bg(t0)(x0, r0)
(in particular, we assume that the lifespan of the Ricci flow
includes the time interval [t0 − r2

0, t0]);

(2) (Collapsed volume) At time t0, the ball Bg(t0)(x0, r0) has
volume at most κrd0 .

Otherwise, we say that the Ricci flow is κ-noncollapsed at this point
and scale.

Remark 3.8.14. One should view κ here as a small dimension-
less quantity, in order to make the notion of κ-noncollapsing scale-
invariant.

It turns out that Perelman’s critical quantities are controlled
enough, and coercive enough, to establish κ-noncollapsing at non-
zero times assuming some noncollapsing at time zero. There are
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many ways to formulate this important non-collapsing result; here
is one typical phrasing.

Theorem 3.8.15 (Perelman’s non-collapsing theorem, first version).
Let t 7→ (M, g(t)) be a Ricci flow on compact 3-manifolds on a time
interval [0, T0] such that at time zero, we have the normalised non-
collapsing hypotheses |Riem(p)|g ≤ 1 and Vol(B(p, 1)) ≥ ω for all
p ∈ M , where ω > 0 is fixed. Then the Ricci flow is κ-noncollapsed
for all (t0, x0) ∈ [0, T0]×M and all scales 0 < r0 <

√
t0, where κ > 0

depends only on ω and T0.

Note that the conclusion here is scale-invariant and will there-
fore persist to asymptotic profiles (M (∞), g(∞)) as discussed in the
beginning of this section.

Remark 3.8.16. Actually, to establish the global existence results
for Ricci flow with surgery, we will need to extend Definition 3.8.13
and Theorem 3.8.15 to Ricci flows with surgery; we shall return to
this point later in this chapter.

Remark 3.8.17. This non-collapsing theorem in fact holds in all di-
mensions, not just 3, but of course many other aspects of our analysis
will only work in three dimensions.

The next few sections will be devoted to the proof of Theorem
3.8.15, and then we will discuss how Theorem 3.8.15 can be used to
analyse asymptotic profiles near a Ricci flow singularity.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/04/20.
Thanks to Pedro Lauridsen Ribiero and Dan for corrections.

3.9. Ricci flow as a gradient flow, log-Sobolev
inequalities, and Perelman entropy

It is well known that the heat equation

(3.189) ḟ = ∆f

on a compact Riemannian manifold (M, g) (with metric g static, i.e.
independent of time), where f : [0, T ]×M → R is a scalar field, can
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be interpreted as the gradient flow for the Dirichlet energy functional

(3.190) E(f) :=
1
2

∫
M

|∇f |2g dµ

using the inner product 〈f1, f2〉µ :=
∫
M
f1f2 dµ associated to the

volume measure dµ. Indeed, if we evolve f in time at some arbitrary
rate ḟ , a simple application of integration by parts (equation (3.65))
gives

(3.191)
d

dt
E(f) = −

∫
M

(∆f)ḟ dµ = 〈−∆f, ḟ〉µ

from which we see that (3.189) is indeed the gradient flow for (3.191)
with respect to the inner product. In particular, if f solves the heat
equation (3.189), we see that the Dirichlet energy is decreasing in
time:

(3.192)
d

dt
E(f) = −

∫
M

|∆f |2 dµ.

Thus we see that by representing the PDE (3.189) as a gradient flow,
we automatically gain a controlled quantity of the evolution, namely
the energy functional that is generating the gradient flow. This rep-
resentation also strongly suggests (though does not quite prove) that
solutions of (3.189) should eventually converge to stationary points of
the Dirichlet energy (3.190), which by (3.191) are just the harmonic
functions (i.e. the functions f with ∆f = 0).

As one very quick application of the gradient flow interpretation,
we can assert that the only periodic (or “breather”) solutions to the
heat equation (3.189) are the harmonic functions (which, in fact, must
be constant if M is compact, thanks to the maximum principle).
Indeed, if a solution f was periodic, then the monotone functional
E must be constant, which by (3.192) implies that f is harmonic as
claimed.

It would therefore be desirable to represent Ricci flow as a gradi-
ent flow also, in order to gain a new controlled quantity, and also to
gain some hints as to what the asymptotic behaviour of Ricci flows
should be. It turns out that one cannot quite do this directly (there
is an obstruction caused by gradient steady solitons, of which we shall
say more later); but Perelman nevertheless observed that one can
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interpret Ricci flow as gradient flow if one first quotients out the dif-
feomorphism invariance of the flow. In fact, there are infinitely many
such gradient flow interpretations available. This fact already allows
one to rule out “breather” solutions to Ricci flow, and also reveals
some information about how Poincaré’s inequality deforms under this
flow.

The energy functionals associated to the above interpretations are
subcritical (in fact, they are much like Rmin) but they are not coer-
cive; Poincaré’s inequality holds both in collapsed and non-collapsed
geometries, and so these functionals are not excluding the former.
However, Perelman discovered a perturbation of these functionals as-
sociated to a deeper inequality, the log-Sobolev inequality (first in-
troduced by Gross[Gr1975] in Euclidean space). This inequality is
sensitive to volume collapsing at a given scale. Furthermore, by opti-
mising over the scale parameter, the controlled quantity (now known
as the Perelman entropy) becomes scale-invariant and prevents col-
lapsing at any scale - precisely what is needed to carry out the first
phase of the strategy outlined in Section 3.8 to establish global exis-
tence of Ricci flow with surgery.

The material here is loosely based on [Pe2002], [KlLo2006], and
[Mu2006].

3.9.1. Ricci flow as gradient flow. We would like to represent
Ricci flow

(3.193) ġ = −2Ric

as a gradient flow of some functional (with respect to some inner
product, or at least with respect to some Riemannian metric on the
space of all metrics g). We will assume that all quantities are smooth
and that the manifold is either compact or that all expressions being
integrated are rapidly decreasing at infinity (so no boundary terms
etc. arise from integration by parts).

To do this, our starting point will be the first variation formula
(3.50) for the scalar curvature R for an arbitrary instantaneous de-
formation ġ of the metric g:

(3.194) Ṙ = −Ricαβ ġαβ −∆tr(ġ) +∇α∇β ġαβ .
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We can integrate in M to eliminate the latter two terms on the right-
hand side (by Stokes theorem (3.64)) to get

(3.195)
∫
M

Ṙ dµ = −
∫
M

Ricαβ ġαβ dµ.

This looks rather promising; it suggests that if we introduce the
Einstein-Hilbert functional

(3.196) H(M, g) :=
∫
M

R dµ

then the Ricci flow (3.193) might be interpretable as a gradient flow
for −2H.

Unfortunately, there is a problem because R is not the only time-
dependent quantity in the right-hand side of (3.196); the volume mea-
sure dµ also evolves in time by the formula

(3.197)
d

dt
dµ =

1
2

tr(ġ) dµ

(see (3.55)). Thus, from the product rule, the true variation of the
Einstein-Hilbert functional is given by the formula

(3.198)
d

dt
H(M, g) =

∫
M

(−Ricαβ +
1
2
Rgαβ)ġαβ dµ.

So the gradient flow of -2H (using the inner product associated to dµ)
is not Ricci flow, but is instead a rather strange flow

(3.199) ġ = −2Ric +Rg = −2G

where G := Ric − 1
2R is the Einstein tensor. This flow does not

have any particularly nice properties in general (it is not parabolic in
three and higher dimensions, even after applying the de Turck trick
from Section 3.2). On the other hand, in two dimensions the right-
hand side of (3.198) vanishes and H(M, g) becomes invariant under
deformations (we have already exploited this fact to prove Proposition
3.5.2). More generally, we recover see from (3.198) the fact (well
known in general relativity) that the (formal) stationary points of the
Einstein-Hilbert functional are precisely the solutions of the vacuum
Einstein equations G = 0 (or equivalently, Ric = 0 in any dimension
other than 2).
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We see that the variation of the measure dµ in time is causing
us some difficulty. To fix this problem, let us take the (rather non-
geometric looking) step of replacing this evolving measure dµ by some
static measure dm which we select in advance, and consider instead
the variation of the functional

∫
M
R dm with respect to some arbitrary

perturbation ġ. Now that m is static, we can apply (3.194) to get

(3.200)
d

dt

∫
M

R dm =
∫
M

(−Ricαβ ġαβ −∆tr(ġ) +∇α∇β ġαβ) dm.

Previously, we used Stokes’ theorem to eliminate the latter two terms
on the right-hand side to leave us with the one term

∫
M

Ricαβ ġαβ dm
that we do want. Unfortunately, Stokes’ theorem only applies for the
volume measure dµ, not for our static measure dm! In order to apply
Stokes’ theorem, we must therefore convert the static measure back
to volume measure. The Radon-Nikodym derivative dµ

dm of the two
measures should be some positive function, which we shall denote by
ef for some scalar (and time-varying) function f : M → R, thus

(3.201) dm = e−fdµ.

Inserting (3.201) into (3.200), integrating by parts using the volume
measure dµ, and then using (3.201) again to convert back to the static
measure dm, we see after a little calculation that

(3.202)
∫
M

∆tr(ġ) dm =
∫
M

(|∇f |2g −∆f)tr(ġ) dm

and similarly

(3.203)
∫
M

∇α∇β ġαβ dm =
∫
M

((∇αf)(∇βg)−∇α∇βf)ġαβ dm

and so we can express the right-hand side of (3.200) as

(3.204) 〈−Ricαβ−(|∇f |2g−∆f)gαβ+(∇αf)(∇βf)−∇α∇βf, ġαβ〉m.

This looks rather unpleasant; we managed to eradicate the scalar
curvature term 1

2R that was present in the variation in (3.198), but
at the cost of introducing four new terms involving f . But to deal
with this, first observe from differentiating (3.201) and using (3.197)
and the static nature of dm that we know the first variation of f :

(3.205) ḟ =
1
2

tr(ġ).
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So the term 〈∆fgαβ , ġαβ〉m that appears in (3.204) can be rewritten
as 2

∫
M

(∆f)ḟ dm. Now this term looks familiar... in fact, it essen-
tially the variation (3.191) of the Dirichlet energy functional for the
measure dm! This suggests that we may be able to simplify (3.204)
if we modify our functional

∫
M
R dm by adding some multiple of the

Dirichlet functional E := 1
2

∫
M
|∇f |2g dm.

One cannot apply (3.191) directly, though, because (a) g is evolv-
ing in time, rather than static, and also (b) dm is not the volume
measure for g. But we have all the equations to deal with this, and
one can compute the first variation of E:

Exercise 3.9.1. Show that

(3.206)
d

dt
E = −1

2
〈∆fgαβ − |∇f |2ggαβ + (∇f)α(∇f)β , ġαβ〉m.

Hint : expand out |∇f |2g = gαβ(∇αf)(∇βf) and use (3.37).

If we thus define the functional

(3.207) Fm(M, g) :=
∫
M

(R+ |∇f |2) dm

we see from (3.204), (3.206) that we get a lot of cancellation, ending
up with

(3.208)
d

dt
Fm(M, g) = −〈Ricαβ +∇α∇βf, ġαβ〉m.

Thus the gradient flow of −2Fm(M, g) with respect to the inner prod-
uct 〈h, k〉m :=

∫
M
hαβkαβ dm on symmetric two-forms (or more pre-

cisely, on the tangent space of such forms at g) is given by

(3.209) ġαβ = −2Ricαβ − 2∇α∇βf.

From (3.205) we see that f now evolves by a backward heat equation

(3.210) ḟ = −∆f −R.

With this flow, we see that Fm is monotone increasing, with

(3.211)
d

dt
Fm = 2

∫
M

|Ric + Hess(f)|2 dm.

The equation (3.209) is almost Ricci flow (3.193), but with one addi-
tional term associated with f . But we can observe (using (3.61)) that
2∇α∇βf = L∇fgαβ is just the Lie derivative of g in the direction of
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the gradient vector field ∇γf . Thus we see that (3.211) is a modi-
fied Ricci flow (3.72), which is conjugate to genuine Ricci flow by a
diffeomorphism as discussed in that lecture. Thus while we have not
established Ricci flow as a gradient flow directly, we have managed
to find a whole family of gradient flows (parameterised by a choice of
static measure dm, or equivalently by a choice of potential function
f evolving by (3.205)) which are equivalent to Ricci flow modulo dif-
feomorphism66. As remarked in [Pe2002], one can view f as a kind
of gauge function for the Ricci flow.

Example 3.9.1. If (M, g) is a Euclidean space M = Rd with the
contracted Euclidean metric g = τ

t0
η for times 0 ≤ t < t0, where

τ := t0−t and η is the standard metric, with dm equal to the Gaussian
measure 1

(4πt0)d/2 e
−|x|2/4t0 dx (thus f(t, x) = |x|2

4t0
+ d

2 log(4πτ)), then
g, f solve (3.209), (3.210). (One has to be a bit careful here because
M is non-compact, of course.)

We can of course conjugate away the infinitesimal diffeomorphism
given by the vector field ∇f , which converts the system (3.209),
(3.210) to the system

(3.212) ġ = −2Ric; ḟ = −∆f + |∇f |2g −R

(here we use the fact that L∇ff = |∇f |2g), which is Ricci flow coupled
with a nonlinear backwards heat equation67 for the potential f). The
non-linear backwards heat equation equation for f can be linearised
by setting u := e−f , in which case it becomes the adjoint heat equation

(3.213) u̇ = −∆u+Ru.

Exercise 3.9.2. Writing dm := udµ, show that (3.213) is equivalent
to the equation

(3.214)
d

dt
dm = −∆dm

66Indeed, by placing an appropriate Riemannian structure on the moduli space
of metrics modulo diffeomorphism, one can express Ricci flow modulo diffeomorphism
as a true (formal) gradient flow; see [KlLo2006, Section 9].

67Note that the equation for f is not always solvable forwards in time for any
non-zero amount of time, but we can always solve it instantaneously at any fixed time,
which is good enough for first variation analysis.
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where dm is viewed as a d-form for the purposes of applying the
Laplacian. Thus the adjoint heat equation can be viewed as the
backwards heat equation for d-forms.

Example 3.9.2. If (M, g) is a static Euclidean space M = Rd and
f(t, x) = |x|2

4τ + d
2 log(4πτ) with τ = t0 − t and the time variable t

is restricted to be less than t0, then g, f solve (3.212), and dm =
e−fdµ is the Gaussian measure 1

(4πτ)d/2 e
−|x|2/4τ dx, which solves the

backwards heat equation. Note that this is the conjugated version
of Example 3.9.1. Again, one needs to take care because M is non-
compact.

By performing this conjugation, the measurem is no longer static,
and we reflect this by changing the notation a little to

(3.215) F(M, g, f) := Fe−fµ(M, g) =
∫
M

(|∇f |2 +R)e−f dµ.

The relationship between F and the flow (3.212) is analogous to that
between Fm and (3.209), (3.210). For instance, we have the following
analogue of (3.211):

Exercise 3.9.3. If g, f solve (3.212), show that

(3.216)
d

dt
F(M, g, f) = 2

∫
M

|Ric + Hess(f)|2e−f dµ.

Thus F(M, g, f) is monotone non-decreasing in time. We would
like to use this to develop a controlled quantity for Ricci flow, but we
need to eliminate f . This can be accomplished by taking an infimum,
defining

(3.217) λ(M, g) := inf
f :
∫
M
e−f dµ=1

F(M, g, f).

The normalisation
∫
M
e−f dµ = 1 (which makes dm a probability

measure) is needed to ensure a meaningful infimum; note that this
normalisation is preserved by the flow (3.212) since dm is only moved
around by diffeomorphisms. This quantity has an interpretation as
the best constant in a Poincaré inequality:
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Exercise 3.9.4. Show that λ(M, g) is the least number for which
one has the inequality

(3.218)
∫
M

4|∇u|2g +R|u|2 dµ ≥ λ(M, g)
∫
M

|u|2 dµ

for all u in the Sobolev space H1(M). Hint : reduce to the case when
u is positive and smooth and then make the substitution u = e−f/2.
Conclude in particular that λ(M, g) is finite, that it is the least eigen-
value of the self-adjoint modified Laplacian −4∆ + 4R, and lies be-
tween Rmin and the average scalar curvature R :=

∫
M
R dµ/

∫
M

dµ.

A variational argument (using the standard fact that H1(M) em-
beds compactly into L2(M)) shows that equality in (3.218) is attained
by some strictly positive u = e−f/2 with norm

∫
M
|u|2 dµ = 1, and so

the infimum in (3.217) is also attained for some f . Applying the flow
(3.212) instantaneously at a given time, we conclude (formally68, at
least) that we have the monotonicity formula

(3.219)
d

dt
λ(M, g) = 2

∫
M

|Ric + Hess(f)|2e−f dµ

for any solution to Ricci flow (3.193), where f is the extremiser for
(3.217) (note that this extremiser f need not evolve via (3.215)).

This monotonicity is similar to the monotonicity of Rmin. For
instance, the functional λ(M, g) has a dimension of −2 in the sense of
the previous lecture, which is the same as Rmin. As further evidence
of similarity, we have:

Exercise 3.9.5. Show that d
dtλ(M, g) ≥ 2

dλ(M, g)2, and use this to
conclude an analogue of Proposition 3.4.5 for λ(M, g). In particu-
lar conclude that Ricci flow must develop a finite time singularity if
λ(M, g) is positive.

Exercise 3.9.6. If (M, g) is a Ricci flow which is a steady breather
in the sense that it is periodic modulo isometries (thus (M, g(t)) is
isometries to (M, g(0)) for some t > 0), show that at time zero we
have

(3.220) Ric = −Hess(f) = −1
2
L∇fg

68One can in fact make this formula rigorous whenever the Ricci flow is smooth
and M is compact, but we will not detail this here.
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for some f : M → R. Conclude that g(t) = exp(t∇f)∗g(0), thus
(M, g(t)) simply evolves by diffeomorphism by the gradient field f .
(For this you may need to use the uniqueness of the initial value
problem for Ricci flow.) In other words, all steady breathers are
gradient steady solitons.

Remark 3.9.3. One can apply a similar argument to deal with com-
pact expanding breathers (in which (M, g(t)) is isometric to a larger
dilate of (M, g(0)) for some t > 0 by normalising λ(M, g) by a power
of the volume as in Exercise 3.8.1, concluding that such breathers are
necessarily gradient expanding solitons with

(3.221) Ric = −Hess(f)− g

2σ

at time zero for some potential f and some σ > 0; see [Pe2002] or
[KlLo2006, Section 7] for details. With a little more work69 (using
the maximum principle) one can in fact show that f is constant,
and so the only compact expanding breathers are Einstein manifolds.
This normalisation of λ(M, g) is also closely related to the Yamabe
invariant of M ; see [Ko2006] for further discussion.

Example 3.9.4. Any Ricci-flat manifold (i.e. Ric = 0) is of course
a gradient steady soliton with f = 0. A more non-trivial example is
given by Hamilton’s cigar soliton (also known as Witten’s black hole),
which is the two-dimensional manifold M = R2 with the conformal
metric dg2 = dx2+dy2

1+x2+y2 and gradient function f := log
√

1 + x2 + y2;
we leave the verification of the gradient shrinking property (3.220) as
an exercise.

Remark 3.9.5. If Ricci flow was a gradient flow for a functional
which was geometric (or more precisely, invariant under diffeomor-
phism), then this flow could not deform a metric by any non-trivial
diffeomorphism (since this is a stationary direction for this functional,
rather than a steepest descent). Thus the existence of non-trivial gra-
dient steady solitons, such as the cigar soliton, explains why Ricci flow

69This result can also be established using Exercise 3.8.1 directly, as follows from
work of Hamilton[Ha1999].
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cannot be directly expressed70 as a gradient flow without introduc-
ing a non-geometric object such as the reference measure dm or the
potential function f .

Exercise 3.9.7. If (M, g) is a gradient steady soliton with potential
f , show that R + ∆f = 0, |∇f |2 + R = const, and ḟ = |∇f |2.
Hint : to prove the second identity, differentiate (3.220) and use the
second Bianchi identity (Exercise 3.1.7.) Use the maximum principle
to then conclude that the only compact gradient steady solitons are
the Ricci-flat manifolds.

3.9.2. Nash entropy. Let us return to our analysis of the functional
Fm(M, g), in which dm = e−f dµ was fixed and g evolved by the
modified Ricci flow (3.209) (which forced f to evolve by the backwards
heat equation (3.210)). We then obtained the monotonicity formula
(3.211). We shall normalise dm to be a probability measure.

We can squeeze a little bit more out of this formula - in particular,
making it scale invariant - by introducing the Nash entropy

(3.222) Nm(M, g) :=
∫

log
dm

dµ
dm = −

∫
f dm

which is the relative entropy71 of dµ with respect to the background
measure dm. From (3.210) and one integration by parts (using (3.201),
of course) we know how this entropy changes with time:

(3.223)
d

dt
Nm(M, g) =

∫
(|∇f |2 +R) dm = Fm(M, g).

To exploit this identity, let us first consider the case of gradient
shrinking solitons:

Exercise 3.9.8. Suppose that a Riemannian manifold (M, g) = (M, g(0))
verifies an equation of the form

(3.224) Ric = −Hess(f) +
1
2τ
g

for some function f and some τ > 0. Show that this equation is
preserved for times 0 ≤ t < τ(0) if g evolves by Ricci flow, if τ

70See also [Mu2006, Proposition 1.7] for a different way of seeing that Ricci flow
is not a pure gradient flow.

71Some further relations and analogies between the functionals described here
and notions of entropy from statistical mechanics are discussed in [Pe2002].
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evolves by τ̇ = −1 (i.e. τ(t) = τ(0) − t), and ∂tf = |∇f |2g, and
that g(t) = τ(t)

τ(0) exp(t∇f)g(0) for all 0 ≤ t < τ(0). Such solutions
are known as gradient shrinking solitons; they combine Ricci flow
with the diffeomorphism and scaling flows from Section 3.2. Note
that any positively curved Einstein manifold, such as the sphere, will
be a gradient shrinking soliton (with f = 0). Example 3.9.1 also
shows that Euclidean space can also be viewed as a gradient shrinking
soliton.

If we are to find a scale-invariant (and diffeomorphism-invariant)
monotone quantity for Ricci flow, it had better be constant on the
gradient shrinking solitons. In analogy with (3.211), we would there-
fore like the variation of this monotone quantity with respect to Ricci
flow to look something like

(3.225) 2
∫
M

|Ric + Hess(f)− 1
2τ
g|2g dm

where τ is a backwards time variable, i.e. some quantity decreasing
at the constant rate

(3.226) τ̇ = −1.

But the scaling is wrong; time has dimension 2 with respect to the
Ricci flow scaling (3.170), and so the dimension of a variation of a
scale-invariant quantity should be −2, while the expression (3.225)
has dimension72 −4. So actually we should be looking at

(3.227) 2τ
∫
M

|Ric + Hess(f)− 1
2τ
g|2g dm.

To find a functional whose derivative is (3.227), we expand the inte-
grand as

(3.228) |Ric+Hess(f)− 1
2τ
g|2g = |Ric+Hess(f)|2g−

1
τ

(R+∆f)+
d

4τ2
.

Using (3.223) and the normalisation
∫
M

dg = 1, we can thus express
(3.227) as

(3.229) τ
d

dt
Fm(M, g)− 2Fm(M, g) +

d

2τ
.

72Note that f should be dimensionless (up to logarithms), τ has the same dimen-
sion of time, i.e. 2, and

∫
M
dm = 1 is of course dimensionless.
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Using (3.223) and (3.226), we can express this as a total derivative:

(3.230)
d

dt
(τFm(M, g)−Nm(M, g) +

d

2
log τ).

Thus the quantity in parentheses is monotone increasing in time under
Ricci flow (and with f , τ evolving by (3.210), (3.226)). In analogy
with Example 3.9.1, we rewrite the potential function f as

(3.231) f = f̃ +
d

2
log(4πτ)

then f̃ obeys a slight variant of (3.210), namely

(3.232)
d

dt
f̃ = −∆f −R+

d

2τ
and is related to the fixed measure m by the formula

(3.233) dm = (4πτ)−d/2e−f̃ dµ.

The equality between (3.227) and (3.230) now becomes

(3.234)
d

dt
Wm(M, g, τ) = 2τ

∫
M

|Ric + Hess(f̃)− 1
2τ
g|2g dm

where

(3.235) Wm(M, g, τ) :=
∫
M

[τ(R+ |∇f̃ |2) + f̃ − d] dm.

The −d term here is harmless (since m is fixed), and is in place to
normalise this expression to vanish in the Euclidean case (Example
3.9.1, where now f̃(t, x) = |x|2/4t0).

As before, it is convenient to conjugate away the diffeomorphism
by ∇f to recover a pure Ricci flow. Define the Perelman entropy
W(M, g, f, τ) of a manifold (M, g), a scalar function f : M → R, and
a positive real τ > 0, by

(3.236) W(M, g, f, τ) =
∫
M

[τ(R+ |∇f |2) + f − d](4πτ)−d/2e−f dµ.

Note that this quantity has dimension 0 (if f is viewed as dimension-
less, and τ given the dimension 2).

Exercise 3.9.9. Suppose that g evolves by Ricci flow (3.193), f
evolves by the nonlinear backward heat equation

(3.237) ḟ = −∆f + |∇f |2 −R+
d

2τ
,
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and τ evolves by (3.226). Show that
(3.238)
d

dt
W(M, g, f, τ) = 2τ

∫
M

|Ric + Hess(f)− 1
2τ
g|2g(4πτ)−d/2e−f dµ.

If we write u := (4πτ)−d/2e−f , show that (3.237) is also equivalent
to the adjoint heat equation

(3.239) u̇ = −∆u+Ru.

We have thus obtained a scale-invariant monotonicity formula,
albeit one which depends on two additional time-varying parameters,
f and τ . To eliminate them, the obvious thing to do is to just take
the infimum over all f and τ ; but we need to be sure that the infimum
exists at all. This will be studied next.

3.9.3. Connection to the log-Sobolev inequality. We have just
established the monotonicity formula (3.238) whenever g evolves by
Ricci flow (3.193) and f , τ evolve by (3.237), (3.226). Let us now
temporarily specialise to the case when (M, g) is a static Euclidean
space Rd (which of course obeys Ricci flow), and τ = −t (which of
course obeys (3.226)), and now restrict to negative times t < 0. Now
all curvatures R,Ric vanish, thus for instance by (3.239) we see that
u = (4πτ)−d/2e−f obeys the free backwards heat equation u̇ = −∆u.
We will normalise dm = u dµ to be a probability measure, thus∫
Rd u dx = 1.

Example 3.9.6. The key example to keep in mind here is f(t, x) =
|x|2/4τ , in which case u becomes the backwards heat kernel u(t, x) =
(4πτ)−d/2e−|x|

2/4τ .

We can now re-express the functional (3.236) in terms of u as

(3.240) W(M, g, f, τ) =
∫
Rd

(τ
|∇u|2

u
− u log u) dx− d

2
log(4πτ)− d.

One easily verifies by direct calculation that this expression van-
ishes in the model case of Example 3.9.6. For more general u, we
know that this quantity is monotone increasing in time, and so

(3.241) W(M, g, f, τ)(t) ≥ lim
t→−∞

W(M, g, f, τ)(t).
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Now suppose u is some non-negative test function u0(x) at time zero
with total mass 1, then from the fundamental solution for the back-
wards heat equation we have
(3.242)

u(t, x) =
1

(4πτ)d/2

∫
Rd

e−|x−y|
2/4τu0(y) dy =

1
(4πτ)d/2

ũ(t, x/
√
τ)

where ũ is the renormalised solution

(3.243) ũ(t, x) :=
∫
Rd

e−|x−(y/
√
τ)|2/4u0(y) dy.

Observe that ũ(t, x) converges pointwise to e−|x|
2/4 as t → −∞

for fixed x. Thus in some renormalised sense this general solution
is converging to the model solution in Example 3.9.4 in the limit
t→ −∞.

We can rewrite the functional (3.240) after some calculation as

(3.244) W(M, g, f, τ) =
∫
Rd

[τ
|∇ũ|2

ũ2
− log ũ](−4π)−d/2ũ dx− d.

One can check that ∇ũ is converging pointwise to ∇e−|x|2/4. A
careful application of dominated convergence then shows that in the
limit t → −∞, (3.244) converges to the value attained in Example
3.9.4, i.e. zero. By the monotonicity formula, we have thus demon-
strated that

(3.245) W(M, g, f, τ) ≥ 0

for all times −∞ < t < 0. Writing u = φ2 and rearranging (3.240),
we conclude the log-Sobolev inequality

(3.246) 2
∫
Rd

φ2 log φ dx ≤ 4τ
∫
Rd

|∇φ|2 dx− d

2
log(4πτ)− d

valid whenever τ > 0 and
∫
Rd φ

2 dx = 1.

Exercise 3.9.10. By letting dm := (4πτ)−d/2e−|x|
2/4τdx be stan-

dard Gaussian measure and writing udx = F 2dm, deduce the original
log-Sobolev inequality73

(3.247)
∫
Rd

F 2 logF 2 dm ≤ 1
τ

∫
Rd

|∇F |2dm

73One key feature of this inequality, as compared to more traditional Sobolev
inequalities, is that it is almost completely independent of the dimension d.
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of Gross[Gr1975], valid whenever τ > 0 and
∫
Rd F

2 dm = 1.

Remark 3.9.7. We have seen how knowledge of the heat kernel can
lead to log-Sobolev inequalities, by evolving by the (backwards) heat
flow (this is an example of the semigroup method for proving inequal-
ities). This connection can in fact be reversed, using log-Sobolev
inequalities to deduce information about heat kernels. Heat kernels
can in turn be used to deduce ordinary Sobolev estimates, which then
imply log-Sobolev estimates by convexity inequalities such as Hölder’s
inequality, thus showing that all these phenomena are morally equiv-
alent. There is a vast literature on these subjects (and other related
topics, such as hypercontractivity); so much so that there are not
only multiple surveys on the subject, but even a survey of all the
surveys[Gr2006]!

We now return to the case of general Ricci flows (not just the
Euclidean one).

Exercise 3.9.11. Let (M, g) be a compact Riemannian manifold,
and let τ > 0. Using the Euclidean log-Sobolev inequality (3.239),
show that we have a lower bound of the formW(M, g, f, τ) ≥ −C(M, g, τ)
for all functions f with

∫
(4πτ)−d/2e−f dµ = 1. Show in fact that

C(M, g, τ) can be chosen to depend only on τ , the dimension, an up-
per bound for the magnitude of the Riemann curvature, and a lower
bound for the injectivity radius. Using a rescaling and compactness
argument, show also that we can take C(M, g, τ) → 0 as τ → 0;
details can be found in [Pe2002, Section 3.1].

We can now define the quantity µ(M, g, τ) to be the infimum of
W(M, g, f, τ) for all functions f with

∫
(4πτ)−d/2e−f dµ = 1; thus

µ(M, g, τ) is non-decreasing if we evolve τ by (3.226). Thus we have
obtained a one-parameter family of dimensionless monotone quanti-
ties (recalling that τ has dimension 2 with respect to scaling).

Remark 3.9.8. One can interpret µ(M, g, τ) as a nonlinear analogue
of the eigenvalue λ(M, g). Indeed, just as λ(M, g) is the least number
λ for which one can solve the linear eigenfunction equation

(3.248) (4∆ +R)Φ = λΦ
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subject to the constraint
∫
M

Φ2 = 1, µ(M, g, τ) is the least number
µ for which one can solve the nonlinear eigenfunction equation

(3.249) τ(4∆ +R)Φ = 2Φ log Φ + (µ+ d)Φ

subject to the constraints Φ > 0 and
∫
M

(4πτ)−d/2Φ2 dµ = 1. In
particular we expect µ(M, g, τ) to behave roughly like τλ(M, g) in
the limit τ →∞.

Exercise 3.9.12. Show that the only shrinking breathers (those in
which (M, g(t)) is isometric to a contraction of (M, g(0)) for some
t > 0) are the gradient shrinking solitons.

3.9.4. Non-collapsing. We now relate log-Sobolev inequalities (i.e.
lower bounds on µ(M, g, τ)) to non-collapsing. We first note that by
substituting (4πτ)−d/2e−f = φ2 into (3.236) as in the Euclidean case,
that we have the log-Sobolev inequality∫

M

φ2 log φ2 dµ ≤ 4τ
∫
M

|∇φ|2g dµ

+ τ

∫
M

R|φ|2 dµ− d

2
log(4πτ)− d− µ(M, g, τ)

(3.250)

whenever φ is non-negative with
∫
M
φ2 dµ = 1.

To use this, suppose we have a ball B = B(p,
√
τ) which has

bounded normalised curvature, so in particular R = O(τ−1) on this
ball. On the other hand, if φ is supported on B with L2 mass 1, then
from Jensen’s inequality we have

(3.251)
∫
M

φ2 log φ2 dµ ≥ log
1

Vol(B)

and we thus conclude from (3.9.4) that

(3.252) log
τd/2

Vol
≤ 4τ

∫
M

|∇φ|2g +O(1)− µ(M, g, τ).

If we let φ(x) := cψ(d(x, p)/
√
τ), where ψ is a bump function that

equals 1 on [−1/2, 1/2] and is supported on [−1, 1] (thus φ = c on
the ball B1/2 := B(p,

√
τ/2), and c ≤ 1/Vol(B1/2)1/2 is the nor-

malisation constant needed to ensure that φ has L2 mass one, then
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∇φ = O(c/
√
τ) on this ball, and so we conclude

(3.253) log
τd/2

Vol(B)
≤ O(Vol(B)/Vol(B1/2))− µ(M, g, τ).

At this point we need to invoke the relative Bishop-Gromov inequality
(see Lemma 3.10.1 below) from comparison geometry, which among
other things ensures that Vol(B) = O(Vol(B1/2) under the assump-
tion of bounded normalised curvature. Indeed, from equations (3.203)
and (3.205) from the previous lecture we see that L∂r dµ = O(1/r) dµ
inside the ball of radius 1/

√
τ , from which the claim easily follows

within74 the radius of injectivity.

Using this inequality, we thus conclude that

(3.254) Vol(B)� τd/2 exp(µ(M, g, τ)).

Thus a lower bound on µ(M, g, τ) enforces non-collapsing of volume
at scale τ .

Exercise 3.9.13. Use (3.254), Exercise 3.9.11 and the monotonicity
properties of µ(M, g, τ) to establish κ-noncollapsing of Ricci flows
(Theorem 3.8.15).

Remark 3.9.9. This argument in fact establishes a stronger form
of non-collapsing, in which in order to get non-collapsing at time t0
and scale r0, one only needs bounded normalised curvature at time t0
(instead of on the time interval [t0−r2

0, t0]). It also works in arbitrary
dimension. The second proof of non-collapsing that we will give,
based on the Perelman reduced volume instead of Perelman entropy,
needs the spacetime bounded normalised curvature assumption but
also works in arbitrary dimension.

Remark 3.9.10. The parameter κ in the above result, which mea-
sures the quality of the non-collapsing, will deteriorate with time T .
This is because the decay of τ from (3.226) entails that in order to
get non-collapsing of the manifold at time t0 and scale r0, one needs
some non-collapsing at time zero and scale

√
r0 + t20. Of course, since

the manifold is initially compact, one always has some non-collapsing

74To generalise the inequality beyond this region, one simply works on the region
inside the cut locus, which is star-shaped around the origin in TpM .
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at each scale, but the quantitative constants associated to this non-
collapsing will deteriorate as the scale increases, which will happen
when T increases. Fortunately (and especially in view of our finite
time extinction results) we only need to analyse Ricci flow on compact
(though potentially rather large) time intervals [0, T ].

Remark 3.9.11. It was recently shown[Zh2007] that the mono-
tonicity properties of the quantities µ(M, g, τ) also hold for Ricci flows
with surgery. This can be used to replace all applications of Perelman
reduced volume in the existing proof of the Poincaré conjecture in the
literature by Perelman (as well as in the expositions of [KlLo2006],
[CaZh2006], and [MoTi2007]) by Perelman entropy; see [Zh2008].
However, we shall mostly follow the original arguments of Perelman
in this course.

Remark 3.9.12. The above entropy functionals are also useful for
studying the forward or backward heat equation on a static Riemann-
ian manifold (M, g) (basically, one keeps the heat-type equations for
u or f but now replace Ricci flow by the trivial flow ġ = 0). However,
some sign assumptions on curvature are now needed to recover the
same type of monotonicity results. See [Ni2004] for details.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/04/24.
Thanks to Américo Tavares, and Dan for corrections.

3.10. Comparison geometry, the
high-dimensional limit, and Perelman
reduced volume

We now turn to Perelman’s second scale-invariant monotone quantity
for Ricci flow, now known as the Perelman reduced volume. We saw
in the previous lecture that the monotonicity for Perelman entropy
was ultimately derived (after some twists and turns) from the mono-
tonicity of a potential under gradient flow. In this lecture, we will
show (at a heuristic level only) how the monotonicity of Perelman’s
reduced volume can also be “derived”, in a formal sense, from another
source of monotonicity, namely the relative Bishop-Gromov inequal-
ity (Lemma 3.10.1) in comparison geometry, which has already been
mentioned in previous lectures. Interestingly, in order to obtain this
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connection, one must first reinterpret parabolic flows such as Ricci
flow as the limit of a certain high-dimensional Riemannian manifold
as the dimension becomes infinite; this is part of a more general phi-
losophy that parabolic theory is in some sense an infinite-dimensional
limit of elliptic theory. Our treatment here is a (liberally reinter-
preted) version of [Pe2002, Section 6].

In the next few lectures we shall give a rigorous proof of this
monotonicity, without using the infinite-dimensional limit and in-
stead75 using results related to the Li-Yau-Hamilton Harnack inequal-
ity.

3.10.1. The Bishop-Gromov inequality. Let p be a point in a
complete d-dimensional Riemannian manifold (M, g). As noted in
Section 3.8, we can use the exponential map to pull back M and g

to the tangent space TpM , which is also equipped with the radial
variable r and the radial vector field ∂r = grad(r). From Exercise
3.8.7, we have the transport equation

(3.255) L∂rdµ = (∆r) dµ

for the volume measure dµ, and a transport inequality

(3.256) ∇∂r∆r +
1

d− 1
(∆r)2 ≤ ∇∂r∆r + |Hess(r)|2 = −Ric(∂r, ∂r)

for the Laplcian ∆r which appears in (3.255). In particular, if we
assume the lower bound

(3.257) Ric ≥ (d− 1)Kg

for Ricci curvature in a ball B(p, r0) for some real number K, then
from the Gauss lemma (Lemma 3.8.4) we have

(3.258) ∇∂r∆r +
1

d− 1
(∆r)2 ≤ −(d− 1)K.

Also, from an expansion around the origin (see e.g. (3.182) or (3.184))
we have

(3.259) ∆r =
d− 1
r

+O(r)

75There are several other approaches to understanding Perelman’s reduced vol-
ume, such as Lott’s formulation[Lo2008] based on optimal transport, but we will
restrict attention in this chapter to the methods that are in [Pe2002].
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for small r. In principle, (3.258) and (3.259) lead to upper bounds on
∆r, which when combined with (3.255) lead to upper bounds on dµ,
which in turn lead to upper bounds on B(p, r0). One can of course
just go ahead and compute these bounds, but one computation-free
way to proceed is to introduce the model geometry (MK , gK), defined
as

(1) the standard round sphere
√
K ·Sd of radius

√
K (and thus

constant sectional curvature K) if K > 0 (Example 3.8.1);

(2) the standard hyperbolic space
√
−K · Hd of constant sec-

tional curvature K if K < 0 (Example 3.8.2); or

(3) the standard Euclidean space Rd if K = 0.

As all of these spaces are homogeneous (in fact, they are symmetric
spaces), the choice of origin p in this model geometry is irrelevant.
Observe that the orthogonal group O(d) acts isometrically on each
of these spaces, with the orbits being the spheres centred at p. This
implies that at any point q not equal to p, Hess(r) is invariant under
conjugation by the stabiliser of that group on q, which easily implies
that it is diagonal on the tangent space to the sphere (i.e. to the
orthogonal complement of ∂r). From this we see that for this model
geometry, the inequality in (3.256) is in fact an equality. Since the
model geometry also has constant sectional curvature K (which im-
plies equality in (3.257)), we thus see that one has equality in (3.258)
for this model geometry as well. From this we can conclude:

Lemma 3.10.1 (Relative Bishop-Gromov inequality). With the as-
sumptions as above, the volume ratio VolM,g(BM,g(p, r))/VolMK ,gK (BMK ,gK (p, r))
is a non-increasing function of r as 0 < r < r0.

Exercise 3.10.1. Prove Lemma 3.10.1. Hint : One can avoid all
issues with non-injectivity by working inside the cut locus of p, which
determines a star-shaped region in TpM . In the positive curvature
case K > 0, the model geometry MK has a finite radius of injectivity,
but observe that we may without loss of generality reduce to the case
when r0 is less than or equal to that radius (or one can invoke Myers’
theorem, see Exercise 3.10.2 below). To prove the monotonicity of
ratios of volumes of balls, it may be convenient to first achieve the
analogous claim for ratios of volumes of spheres, and then use the
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Gauss lemma (Lemma 3.8.4) and the fundamental theorem of calculus
to pass from spheres to balls.

Exercise 3.10.2. Prove Myers’ theorem: if a Riemannian manifold
obeys (3.257) everywhere for some K > 0, then the diameter of the
manifold is at most π/

√
K. Hint : in the model geometry, the sphere

of radius r collapses to a point when r approaches π/
√
K.

Remark 3.10.2. Lemma 3.10.1 implies the volume comparison re-
sult Vol(B(p, r))/Vol(B(p, r/2)) = O(1) whenever one has bounded
normalised curvature, which was used in Section 3.9; indeed, thanks
to the above inequality, it suffices to prove the claim for model ge-
ometries.

Setting K = 0, we obtain

Corollary 3.10.3. Let (M, g) be a complete d-dimensional Riemann-
ian manifold of non-negative Ricci curvature, and let p be a point in
M . Then Vol(B(p, r))/rd is a non-increasing function of r.

Let us refer to the quantity Vol(B(p, r))/rd as the Bishop-Gromov
reduced volume at the point p and the scale r; thus we see that this
quantity is dimensionless (i.e. invariant under scaling of the manifold
and of r), and non-increasing in r when one has non-negative Ricci
curvature (and in particular, for Ricci-flat manifolds).

Exercise 3.10.3. Use the Bishop-Gromov inequality to state and
prove a rigorous version of the following informal claim: if a Rie-
mannian manifold is non-collapsed at a point p at one scale r0 > 0
(as defined in Section 3.8), then it is also non-collapsed at all larger
scales r1 > r0.

3.10.2. Parabolic theory as infinite-dimensional elliptic the-
ory. We now come to an interesting (but still mostly heuristic) cor-
respondence principle between elliptic theory and parabolic theory,
with the latter being viewed as an infinite-dimensional limit of the
former, in a manner somewhat analogous to that of the central limit
theorem in probability. To get some idea of what I mean by this
correspondence, consider the following (extremely incomplete, non-
rigorous, inaccurate, and imprecise) dictionary:
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Elliptic Parabolic
Riemannian manifold (M, g) Riemannian flow t 7→ (M, g(t))
Complete manifold Ancient flow of complete manifolds
Spatial origin 0 Spacetime origin (0, 0)
Elliptic scaling x 7→ λx Parabolic scaling (t, x) 7→ (λ2t, λx)
Laplace equation ∆u = 0 Heat equation −∂tu+ ∆u = 0
Ricci flat manifold Ric = 0 Ricci flow ∂tg = −2Ric
Mean value principle Fundamental solution
u(0) =

∫
Sd−1 u(rω) dµ(ω) u(0, 0) = 1

(4πτ)d/2

∫
Rd e

−|x|2/4τu(−τ, x) dx

Normalised measure on the sphere r · Sd−1 Heat kernel 1
(4πτ)d/2 e

−|x|2/4τ dx

Maximum principle Maximum principle
Ball of radius O(r) around spatial origin Cylinder of radius O(r) and height O(r2)

extending backwards in time from spacetime origin
Radial variable r = |x| |x| or

√
−t =

√
τ

Bishop-Gromov reduced volume Perelman reduced volume

Remark 3.10.4. Of course, we have not defined Perelman reduced
volume yet, but the point is that the monotonicity of Perelman re-
duced volume for Ricci flow is supposed to be the parabolic analogue
of the monotonicity of Bishop-Gromov reduced volume for Ricci-flat
manifolds. Note that one has two competing notions of the parabolic
radial variable, —x— and

√
τ , where τ := −t is the backwards time

variable; the ratio between these two competitors is essentially the
Perelman reduced length, which does not really have a good analogue
in the elliptic theory (except perhaps in the “latitude” variable one
gets when decomposing a sphere into cylindrical coordinates).

It is well known that elliptic theory can be viewed as the static
(i.e. steady state) special case of parabolic theory, but here we want
to discuss a rather different connection between the two theories that
goes in the opposite direction, in which we view parabolic theory as
a limiting case of elliptic theory as the dimension d goes to infinity.

To motivate how this works, let us begin with a smooth ancient
solution u : (−∞, 0]×Rd → R to the Euclidean heat equation

(3.260) −∂tu+ ∆xu = 0



486 3. The Poincaré conjecture

and ask how to convert it to a high-dimensional solution to the
Laplace equation. At first glance this looks unreasonable: the Lapla-
cian only contains second order derivative terms, but we have to some-
how generate the first-order derivative ∂t out of this. The trick is to
use polar coordinates. Recall that if we parameterise a Euclidean
variable y ∈ RN away from the origin as y = rω for r > 0 and
ω ∈ SN−1, then the Laplacian ∆yf of a function f : RN → R can be
expressed by the classical formula

(3.261) ∆yf = ∂rrf +
N − 1
r

∂rf +
1
r2

∆ωf

where ∆ω is the Laplace-Beltrami operator on the sphere. In partic-
ular, if f is a radial or spherically symmetric function (so by abuse of
notation we write f(y) = f(r)), we have

(3.262) ∆yf = ∂rrf +
N − 1
r

∂rf.

Now if we look at the high-dimensional limit N →∞ (noting that f ,
being radial, is well defined in every dimension), we see that the first
order term N−1

r ∂rf dominates, despite the fact that ∆y is a second
order operator. To clarify this domination (and to bring into view
the operator −∂t appearing in (3.260)), let us make the change of
variables

(3.263) t = −τ = − r2

2N
= −y

2
1 + . . .+ y2

N

2N

(thus τ = −t is the average of the squared coordinates y2
1 , . . . , y

2
N ).

A quick application of the chain rule then yields

(3.264) ∆yf = − t

2N
∂ttf − ∂tf

(one can also see this by writing f(y) = f̃(t) = f̃(−(y2
1+. . .+y2

N )/2N)
and applying the Laplacian operator ∆y directly). If we restrict at-
tention to the region of RN where all the coordinates yi are O(1), so
r2 = O(N) and τ = −t = O(1), and fix f̃ while letting N go off to
infinity, we thus see that ∆yf converges to −∂tf (with errors that are
O(1/N)).

Returning back to our ancient solution u : (−∞, 0]×Rd → R to
the heat equation (3.260), it is now clear how to express this solution
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as a high-dimensional nearly harmonic function: if we define the high-
dimensional lift u(N) : RN ×Rd → R of u to the N + d-dimensional
Euclidean space RN × Rd := {(y, x) : y ∈ RN , x ∈ Rd} for some
large N by using the change of variables (3.263), i.e.

(3.265) u(N)(y, x) := u(t, x) = u

(
−y

2
1 + . . .+ y2

N

2N
, x

)
then we see from (3.264) and (3.260) that u(N) is nearly harmonic as
claimed; indeed we have

(3.266) ∆y,xu
(N) =

r2

4N2
∂ttu− ∂tu+ ∆xu = O(1/N)

in the region yi = O(1), x = O(1), which implies as before that

(3.267) yi = O(1), x = O(1), r2 = O(N), τ = −t = O(1).

Remark 3.10.5. Writing y in polar coordinates as y = rω, the metric
ds2 on RN ×Rd can be expressed as

(3.268) ds2 = dr2 + r2dω2 + dx2 =
N

2τ
dτ2 + τdω2

1/2N + dx2

where dω2
1/2N is the metric on the sphere SN of constant curvature

1/2N . This polar coordinate expression is essentially the first equa-
tion in [Pe2002, Section 6] (in the Euclidean case), but I have found
that the Cartesian coordinate approach can be more illuminating at
times.

Remark 3.10.6. The formula (3.263) seems closely related to Itô’s
formula dt = (dB)2 from stochastic calculus, combined perhaps with
the central limit theorem, though I was not able to make this connec-
tion absolutely precise. Note that for reasons of duality, stochastic
calculus tends to involve the backwards heat equation rather than the
forwards heat equation (see e.g. the Black-Scholes formula, Section
1.6), which seems to explain why the minus sign in (3.263) is not
present in Itô’s formula.

To illustrate how this correspondence could be used, let us heuris-
tically derive the classical formula

(3.269) u(0, 0) =
1

(4πτ)d/2

∫
Rd

e−|x|
2/4τu(−τ, x) dx
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for solutions u : (−∞, 0]×Rd → R to the heat equation (3.260) from
the classical mean value principle

(3.270) u(N)(0, 0) =
1

mes(r · SN+d−1)

∫
SN+d−1

u(N)(rω) dω

for harmonic functions u(N) : RN × Rd → R. Actually, it will be
slightly simpler to use the mean value principle for balls rather than
spheres,

(3.271) u(N)(0, 0) =
1

Vol(BN+d(0, r0))

∫
|y|2+|x|2≤r2

0

u(N)(y, x) dydx,

though in high dimensions there is actually very little difference be-
tween balls and spheres (the bulk of the volume of a high-dimensional
ball is concentrated near its boundary, which is a sphere).

Let u and u(N) be as in (3.260) and (3.265). From (3.266) we see
that u(N) is almost harmonic; let us be non-rigorous and pretend that
u(N) is close enough to harmonic that the formula (3.271) remains ac-
curate for this function. We write the volume of the ball BN+d(0, r0)
as CN,drN+d

0 for some constant CN,d. As for the integrand in (3.271),
we use polar coordinates y = rω, dy = rN−1drdω and rewrite (3.271)
as

(3.272) cN,dr
−N−d
0

∫
Rd

∫
0≤r≤

√
r2
0−|x|2

u(−r2/2N, x)rN−1drdx

for some other constant cN,d > 0. In view of (3.263), it is natural to
write r2

0 = 2Nτ for some τ > 0, and in view of (3.267) it is natural
to work in the regime in which x = O(1), τ = O(1), and r2

0 = O(N).
Because rN−1 is so rapidly increasing when N is large, the bulk of the
inner integral is concentrated at its endpoint (cf. our previous remark
about high-dimensional balls concentrating near their boundary), and
so we expect ∫

0≤r≤
√
r2
0−|x|2

u(−r2/2N, x)rN−1dr

≈ 1
N

(
√
r2
0 − |x|2)Nu(−(r2

0 − |x|2)/2N, x).

(3.273)

Since r0 is so much larger than |x| in our regime of interest, we can
heuristically approximate u(−(r2

0 − |x|2)/2N, x) by u(−r2
0/2N, x) =
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u(−τ, x). Also, by Taylor approximation we have

(3.274) (
√
r2
0 − |x|2)N ≈ rN/20 exp(−N |x|

2

2r2
0

).

Putting all this together, and substituting r2
0 = 2Nτ , we heuris-

tically conclude

(3.275) u(0, 0) ≈ c̃N,d
τd/2

∫
Rd

e−|x|
2/4τu(−τ, x) dx

for some other constant c̃N,d > 0. Taking limits as N → ∞ we
heuristically obtain (3.269) up to a constant.

Exercise 3.10.4. Work through the calculations more carefully (but
still heuristically), using Stirling’s approximation Γ(n+1) ≈ (2πn)1/2nne−n

to the Gamma function, together with the classical formulae mes(Sn−1) =
2πn/2/Γ(n/2), Vol(Bn) = mes(Sn−1)/n for the volume of balls and
spheres, to verify that one does indeed get the right constant of 1

(4π)d/2

in (3.269) at the end of the day (as one must).

Now let us perform a variant of the above computations which
is more closely related to the monotonicity of Perelman’s reduced
volume. The Euclidean space RN × Rd is of course Ricci-flat, and
so from Corollary 3.10.3 we know that the Bishop-Gromov reduced
volume

(3.276) r−N−d0

∫
|y|2+|x|2≤r2

0

dydx

is non-decreasing76 in r0 (and thus non-decreasing in τ). Repeating
all the above computations (but with u and u(N) replaced by 1) we
thus heuristically conclude that the quantity

(3.277)
1

τd/2

∫
Rd

e−|x|
2/4τ dx

is also non-decreasing77 in τ . The quantity (3.10.2) is precisely the
Perelman reduced volume of Euclidean space Rd (which we view as a

76Of course, being Euclidean, (3.276) is equal to a constant CN,d; but let us
ignore this fact (which we have already used in our heuristic derivation of (3.269)) for
now.

77Indeed, this quantity is equal to (4π)d/2 for all τ .
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trivial example of an ancient Ricci flow) at the spacetime origin (0,0)
and backwards time parameter τ .

3.10.3. From Ricci flow to Ricci flat manifolds. We have seen
how ancient solutions to the heat equation on a Euclidean space-
time can be viewed as (approximately) harmonic functions on an
“infinitely high dimensional” Euclidean space. Now we would like
to analogously view ancient solutions to a heat equation on a flow
t 7→ (M, g(t)) of Riemannian manifolds as harmonic functions on an
“infinitely high dimensional” Riemannian manifold, and similarly to
view ancient Ricci flows as infinite dimensional infinitely high dimen-
sional Ricci-flat manifolds.

Let’s begin with the former task. Starting with an ancient flow
t 7→ (M, g(t)) of d-dimensional Riemannian metrics for t ∈ (−∞, 0]
(which we will not assume to be a Ricci flow just yet) and a large
integer N , we can consider the N + d-dimesional manifold M (N) :=
RN ×M = {(y, x) : y ∈ RN , x ∈ M}. As a first attempt to mimic
the situation in the Euclidean case, it is natural to endow M (N) with
the Riemannian metric g(N) given by the formula

(3.278) (dg(N))2 = dy2 + dg(t)2

where t is given by the formula (3.263). In terms of local coordinates,
if we use the indices a, b, c to denote the d indices for the x variable
and i, j, k to denote the N indices for the y variable, we have

(3.279) g
(N)
ab = gab(t); g

(N)
ai = g

(N)
ia = 0; g(N)

ij = δij

where δ is the Kronecker delta. From this we see that the volume
measure dµ(N) on M (N) is given by

(3.280) dµ(N) = dµ(t)dy

and the Dirichlet form

E(N)(u, v) :=
∫
M(N)

g(N)(∇(N)u,∇(N)v) dµ(N)

= −
∫
M(N)

∆(N)uv dµ(N)

= −
∫
M(N)

u∆(N)v dµ(N)

(3.281)
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for this Riemannian manifold is given by
(3.282)

E(N)(u, v) =
∫
RN

∫
M(t)

∇yu · ∇yv + g(t)(∇x,g(t)u,∇x,g(t)v) dµ(t)dy,

where ∇x,g(t)u is the gradient of u in the x variable using the metric
g(t). We can then integrate by parts to compute the Laplacian ∆(N)u.
Recalling from (3.55) that dµ(t) varies in t by the formula

(3.283)
d

dt
dµ(t) =

1
2

tr(ġ)dµ(t)

and using (3.263) and the chain rule, we see that

(3.284) ∆(N)u(N) = ∆yu
(N) + ∆x,g(t)u

(N) − r

2N
tr(ġ)∂ru(N)

where ∆x,g(t) is the Laplace-Beltrami operator in the x variable using
the metric g(t). If we specialise to radial functions

(3.285) u(N)(y, x) = u(t, x)

and use (3.264) and the chain rule, we can rewrite (3.283) as

(3.286) − t

2N
∂ttu− ∂tu+ ∆x,g(t)u+

t

N
tr(ġ)∂tu

Thus we see that if u solves the heat equation ut = ∆g(t)u, then its
lift u(N) : M (N) → R is approximately harmonic in the sense that
∆(N)u(N) = O(1/N) in the region where −t = τ = O(1) and x is
confined to a compact region of space.

Remark 3.10.7. The t
N tr(ġ)∂tu term in (3.286) is somewhat annoy-

ing; we will later tweak the metric (3.278) in order to remove it (at
the cost of other, more acceptable, terms.

Now let us see whether Ricci flows t 7→ (M, g(t)) lift to ap-
proximately Ricci-flat manifolds M (N). We begin by computing the
Christoffel symbols (Γ(N))γαβ in local coordinates, where α, β, γ refer
to the N + d combined indices coming from the indices a on M and
the indices i on RN . We recall the standard formula

(3.287) Γγαβ =
1
2
gγδ(∂αgβδ + ∂βgαδ − ∂δgαβ)

for the Christoffel symbols of a general Riemannian manifold in local
coordinates. Specialising to the metric (3.10.3), some computation
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reveals that

(Γ(N))ijk = 0

(Γ(N))ija = (Γ(N))iaj = (Γ(N))aij = 0

(Γ(N))iab =
yi

2N
ġab

(Γ(N))aib = (Γ(N))abi = − yi
2N

gacġcb

(Γ(N))abc = Γabc.

(3.288)

Now the Ricci curvature Ricαβ can be computed from the Christoffel
symbols by the standard formula

(3.289) Ricαβ = ∂γΓγαβ − ∂βΓγαγ + ΓγαβΓµγµ − ΓµαγΓγβµ.

If we apply this formula we obtain (after some computation)

Ric(N)
ij =

δij
2N

tr(ġ) +O(1/N2)

Ric(N)
ia = O(1/N)

Ric(N)
ab = Ricab +

1
2
ġab +O(1/N).

(3.290)

We thus see that if the original flow t 7→ (M, g(t)) obeys the Ricci flow
equation ġ = −2Ric, then the lifted manifold (M (N), µ(N)) is nearly
Ricci flat in the sense that all components of the Ricci curvature ten-
sor are O(1/N) (in the region t = O(1)). In fact the above estimates
show that the Ricci curvature tensor is also O(1/N) in the opera-
tor norm sense and O(1/

√
N) in the Hilbert-Schmidt (or Frobenius)

sense.

It turns out that this approximation is not quite good enough for
applications to Ricci flow, mainly because the δij

2N tr(ġ) = −Rδij/N
term in (3.290) gives a significant contribution to the trace of the
Ricci tensor Ric(N) (i.e. the scalar curvature R(N)), even in the limit
N → ∞. It turns out however that one can eliminate this problem
by adding a correction term to the metric (3.278) involving the scalar
curvature. More precisely, given an ancient Ricci flow t 7→ (M, g(t)),
define the modified metric g̃(N) by the formula

(3.291) (dg̃(N))2 = dy2 +
r2

N2
R(t)dr2 + dg(t)2
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where of course dr =
∑N
i=1

yi
r dyi is the derivative of the radial variable

r, and R(t, x) is the scalar curvature of g(t) at x. In coordinates, we
have

(3.292) g̃
(N)
ij = δij +

yiyj
N2

R(t); g̃
(N)
ia = 0; g̃

(N)
ab = gab.

Exercise 3.10.5. Let t 7→ (M, g(t)) be a smooth ancient Ricci flow on
(−∞, 0], and let g̃(N) be defined by (3.291). Show that in the region
where yi = O(1) (so −t = τ = O(1)) and x ranges in a compact set,
the Christoffel symbols (Γ̃(N))γαβ take the form

(Γ̃(N))ijk =
δjk
N2

Ryi +O(1/N3)

(Γ̃(N))ija, (Γ̃
(N))iaj , (Γ̃

(N))aij = O(1/N2)

(Γ̃(N))iab =
yi

2N
ġab +O(1/N2)

(Γ̃(N))aib = (Γ̃(N))abi = − yi
2N

gacġcb +O(1/N2)

(Γ̃(N))abc = Γabc.

(3.293)

and the Ricci curvature R̃ic
(N)

αβ takes the form

R̃ic
(N)

ij = O(1/N2)

R̃ic
(N)

ia = O(1/N)

R̃ic
(N)

ab = O(1/N).

(3.294)

In particular, R̃ic
(N)

has norm O(1/
√
N) in the trace (or nuclear)

norm (and hence in the Hilbert-Schmidt/Frobenius and operator norms).

Exercise 3.10.6. Let the assumptions and notation be as in Exercise
3.10.5, let u : (−∞, 0]×M → R be a smooth function, and let u(N)

be as in (3.285). Show that the Laplacian ∆̃(N) associated to g̃(N)

obeys a similar formula to (3.286), but with the r
2N tr(ġ)∂ru(N) term

replaced by terms which are O(1/N2) when t, x are bounded.

3.10.4. Perelman’s reduced length and reduced volume. In
the previous discussion, we have converted a Ricci flow t 7→ (M, g(t))
to a Riemannian manifold (M (N), g̃(N)) of much higher dimension
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which is almost Ricci flat. Let us adopt the heuristic that this lat-
ter manifold is sufficiently close to being Ricci flat that the Bishop-
Gromov inequality (Corollary 3.10.3) holds (at least in the asymptotic
limitN →∞), thus the Bishop-Gromov reduced volume r−N−d0 Bg̃(N)((0, x0), r0)
should heuristically be non-increasing in r0, where we fix a spa-
tial origin x0 ∈ M . In order to exploit the above heuristic, we
first need to understand the distance function on (M̃, g(t)). Let
(y1, x1) = (r1ω1, x1) be a point in M̃ = RN × M , and consider
a length-minimising geodesic γ(N) : [0, τ1] → M̃ from (0, x0) to
(r1ω1, x1), where we have normalised the length τ1 of the param-
eter interval by the formula τ1 = r2

1/2N . Observe that the met-
ric (3.291) can be rewritten in polar coordinates (after substituting
−t = τ = r2/2N) as

(3.295) (dg̃(N))2 = (
N

2τ
+R)dτ2 + 2Nτdω2 + dg(−τ)2

(which is essentially the first formula in [Pe2002, Section 6]). Note
that the angular variable ω only influences the second term in this
metric and not the other two. Because of this, one sees that the
geodesic γ(N) must keep ω constant in order to be length-minimising
(i.e. ω = ω1 for the duration of the geodesic). Turning next to the
τ variable, we then see that for N large enough, the geodesic γ(N)

should increase τ continuously from 0 to τ1 (as the N
2τ term in (3.295)

will severely penalise any backtracking. After a reparameterisation
we may in fact assume that τ increases at constant speed, thus we
have

(3.296) γ(N)(τ) = (
√

2Nτω1, γ(τ))

for some path γ : [0, τ1]→M from x0 to x1. Using (3.295), the length
of this geodesic is

(3.297)
∫ τ1

0

√
N

2τ
+R+ |γ′(τ)|2g(−τ) dτ

which by Taylor expansion is equal to

(3.298)
√

2Nτ1 +
1√
2N
L(γ) +O(N−3/2)
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where the L-length of γ is defined as

(3.299) L(γ) :=
∫ τ1

0

√
τ(R+ |γ′(τ)|2g(−τ)) dτ.

Note that this quantity is independent of N . Thus, heuristically,
geodesics inM from (0, x0) to (r1ω1, x1) should (approximately) min-
imise the L-length. If we define L(0,x0)(−τ1, x1) to be the infimum of
L(γ) over all paths γ : [0, τ1]→M from x0 to x1, we thus obtain the
heuristic approximation

(3.300) dg̃(N)((0, x0), (r1ω1, x1)) =
√

2Nτ1 +
1√
2N

L(0,x0)(−τ1, x1).

Exercise 3.10.7. When M is the Euclidean space Rd (with the triv-
ial Ricci flow, of course), show that L(0,x0)(−τ1, x1) = |x1−x0|2/2

√
τ1,

and the minimiser is given by γ(τ) = x0 +
√

τ
τ1

(x1 − x0).

From (3.300) we see that the ball in (M (N), g̃(N)) of radius r0 =√
2Nτ0 centred at (0, x0) (where, as always, we are in the regime

τ0 = O(1), so r2
0 = O(N)) should heuristically take the form

(3.301) {(r1ω1, x1) : L(0,x0)(−τ1, x1) ≤ 2N(
√
τ0 −

√
τ1)}.

If we make the plausible assumption that L(0,x0)(−τ, x) varies smoothly
in τ , then (3.301) is heuristically close (when N is large) to

(3.302) {(r1ω1, x1) : L(0,x0)(−τ0, x1) ≤ 2N(
√
τ0 −

√
τ1)}

or equivalently

(3.303) {(r1ω1, x1) : r1 ≤ r0 −
√

2NL(0,x0)(−τ0, x1)}.

Now, the volume measure of (3.291) is of the form (1+O(1/N))dydµ(t),
and so the volume of (3.303) is approximately

(3.304) CN

∫
M

∫ r0−
√

2NL(0,x0)(−τ0,x1)

0

rN−1
1 dr1dµ(t1)(x1).

(Note there is a slight abuse of notation since t1 depends on r1, but
it will soon be clear that this abuse is harmless.) When N is large,
the inner integral is dominated by its right endpoint as before, and
so (3.304) is approximately

(3.305)
1
N
CN

∫
M

(r0 −
√

2NL(0,x0)(−τ0, x))Ndµ(t0)(x).
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We can Taylor expand this to be approximately

(3.306)
1
N
CNr

N
0

∫
M

exp(−l(0,x0)(−τ0, x)) dµ(t0)(x)

where the Perelman reduced length l(0,x0)(−τ0, x) is defined as

(3.307) l(0,x0)(−τ, x) :=
L(0,x0)(−τ, x)

2
√
τ

=

√
2NL(0,x0)(−τ, x)

2r0

Example 3.10.8. Continuing the Euclidean example of Exercise
3.10.7, we have l(0,x0)(−τ, x) = |x − x0|2/4τ , which is the familiar
exponent in the fundamental solution (3.269). This is, of course, not
a coincidence.

From (3.306) we thus heuristically conclude that the Bishop-
Gromov reduced volume of (M (N), g̃(N)) at (0, x0) and at radius r0 =√

2Nτ0 is approximately equal to a constant multiple of Ṽ(0,x0)(−τ),
where the Perelman reduced volume Ṽ(0,x0)(−τ) is defined as

(3.308) Ṽ(0,x0)(−τ) :=
∫
M

τ−d/2 exp(−l(0,x0)(−τ, x)) dµ(−τ)(x).

Example 3.10.9. Again continuing the Euclidean example, the re-
duced volume in Euclidean space (with the trivial Ricci flow) is always
(4π)d/2.

Formally applying Corollary 3.10.3, we are thus led to

Conjecture 3.10.10 (Monotonicity of Perelman reduced volume).
Let t 7→ (M, g(t)) be a Ricci flow on [−T, 0], and let x0 ∈ M0. Then
the quantity Ṽ(0,x0)(−τ) for 0 < τ ≤ T is monotone non-increasing
in τ .

Remark 3.10.11. Note here we are not taking the Ricci flow to be
ancient; this would correspond to the manifold M (N) being replaced
by an incomplete manifold, of radius about

√
2NT . However, be-

cause of the restriction τ ≤ T , the above heuristic arguments never
“encounter” the lack of completeness, and so it is reasonable to ex-
pect that the conjecture will continue to hold in the non-ancient case.
This is of course an essential point for our applications, since the Ricci
flows we study are not assumed to be ancient.
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Remark 3.10.12. At an crude heuristic level, the Perelman reduced
volume Ṽ(0,x0)(−τ) is roughly like Volg(−τ)(−τ,O(

√
τ))/τd/2 (since,

in view of Exercise 3.10.7, we expect l(0,x0)(−τ, x) to behave like
d(x0, x)2/τ , especially in regions of bounded normalised curvature,
where we are deliberately vague about exactly what metric we using
to define d). This heuristic suggests that Conjecture 3.10.10 should be
able to establish the non-collapsing result we want (Theorem 3.8.15).
This will be made more rigorous in subsequent lectures. For now, we
observe that the Perelman reduced length and reduced volume are
dimensionless (just as the Bishop-Gromov reduced volume is), which
as discussed in Section 3.8 is basically a necessary condition in order
for this quantity to force non-collapsing of the geometry.

A rigorous proof of Conjecture 3.10.10 that follows the above
high-dimensional comparison geometry heuristic argument was only
recently obtained78, in [CaTo2008]. Nevertheless, it is possible to
prove Conjecture 3.10.10 by other means, and in particular by devel-
oping parabolic analogues of all the comparison geometry machinery
that is used to prove the Bishop-Gromov inequality (and in partic-
ular, developing a theory of L-geodesics analogous to the “elliptic”
theory of geodesics on a Riemannian manifold. This will be the focus
of the next few sections.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/04/20.
Pedro Lauridsen Ribiero pointed out the intriguing similarity between
the ideas of treating parabolic equations as the high-dimensional limit
of an elliptic equation, and treating the fundamental solution to a
parabolic equation as the scaling limit of random walks.

3.11. Variation of L-geodesics, and monotonicity
of Perelman reduced volume

Having completed a heuristic derivation of the monotonicity of Perel-
man reduced volume (Conjecture 3.10.10), we now turn to a rigor-
ous proof. Whereas in Section 3.10 we derived this monotonicity

78For further results in the direction of formalising the dictionary between el-
liptic and parabolic equations, see [Pe2002, Section 6], [CaZh2006, Section 3.1],
[ChCh1995], [ChCh1996].
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by converting a parabolic spacetime to a high-dimensional Riemann-
ian manifold, and then formally applying tools such as the Bishop-
Gromov inequality (Corollary 3.10.3) to that setting, our approach
here shall take the opposite tack, finding parabolic analogues of the
proof of the elliptic Bishop-Gromov inequality, in particular obtain-
ing analogues of the classical first and second variation formulae for
geodesics, in which the notion of length is replaced by the notion of
L-length introduced in Section 3.10. The material here is primarily
based on [Pe2002], [Mu2006], but detailed treatments also appear
in [Ye2008], [KlLo2006], [MoTi2007], [CaZh2006].

3.11.1. Reduction to a pointwise inequality. Recall that the
Bishop-Gromov inequality (Corollary 3.10.3) states (among other things)
that if a d-dimensional complete Riemannian manifold (M, g) is Ricci-
flat (or more generally, has non-negative Ricci curvature), and x0 is
any point inM , then the Bishop-Gromov reduced volume Vol(B(x0, r))/rd

is a non-increasing function of r. In fact one can obtain the slightly
sharper result that Area(S(x0, r))/rd−1 is a non-increasing function
of r, where S(x0, r) is the sphere of radius r centred at x0. From the
basic formula L∂rdµ = (∆r) dµ (see (3.255)) and the Gauss lemma
(Lemma 3.8.4), one readily obtains the identity

(3.309)
d

dr
Area(S(x0, r)) =

∫
S(x0,r)

∆r dS

where dS is the area element. The monotonicity of Area(S(x0, r))/rd−1

then follows (formally, at least) from the pointwise inequality

(3.310) ∆r ≤ d− 1
r

which we will derive shortly (at least for the portion of the manifold
inside the cut locus) as a consequence of the first and second vari-
ation formulae for geodesics79. Observe that (3.310) is an equality
when (M, g) is a Euclidean space Rd. It turns out that the mono-
tonicity of Perelman reduced volume for Ricci flows can similarly be
reduced to a pointwise inequality, in which the Laplacian ∆ is re-
placed by a heat operator, and the radial variable r is replaced by the

79In Section 3.10, the inequality (3.310) was derived from a transport inequality
for ∆r, but we will take a slightly different tack here.
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Perelman reduced length. More precisely, given an ancient Ricci flow
t 7→ (M, g(t)) for t ∈ (−∞, 0], a time −τ , and two points x0, x ∈ M ,
recall that the reduced length l(0,x0)(−τ, x) is defined as

(3.311) l(0,x0)(−τ, x) :=
1

2
√
τ

inf
γ
L(γ)

where the L-length L(γ) of a curve γ : [0, τ1] → M from x0 to x1 is
defined as

(3.312) L(γ) =
∫ τ1

0

√
τ(R+ |X|2g(−τ)) dτ,

where we adopt the shorthand X := ∂τγ, and that Conjecture 3.10.10
asserts that the Perelman reduced volume

(3.313) Ṽ(0,x0)(−τ) =
∫
M

τ−d/2 exp(−l(0,x0)(−τ, x)) dµg(−τ)(x)

is non-increasing in τ for Ricci flows. If we differentiate (3.313) in
τ , using the variation formula d

dτ dµ = R dµ, we easily verify that
the monotonicity of (3.313) will follow (assuming l(0,x0) is sufficiently
smooth, and that either M is compact, or l(0,x0) grows sufficiently
quickly at infinity) from the pointwise inequality

(3.314) ∂τ l(0,x0) −∆g(−τ)l(0,x0) + |∇l|2g(−τ) −R+
d

2τ
≥ 0

which should be viewed as a parabolic analogue to (3.310).

Exercise 3.11.1. Verify that (3.314) is an equality in the case of the
(trivial) Ricci flow on Euclidean space, using Example 3.10.8. (This
is of course consistent with Example 3.10.9.)

Exercise 3.11.2. Show that (3.314) is equivalent to the assertion80

that the function v(−τ, x) := (4πτ)−d/2 exp(−l(0,x0)(−τ, x)) is a sub-
solution of the adjoint heat equation, or more precisely that ∂tv −
∆v + Rv ≤ 0. Note that this fact implies the monotonicity of Perel-
man reduced volume (cf. Exercise 3.9.2).

80It seems that the elliptic analogue of this fact is the assertion that the Newton-

type potential 1/rd−2 is subharmonic away from the origin for Ricci flat manifolds of
dimension three or larger , which is a claim which is easily seen to be equivalent to
(3.310) thanks to the Gauss lemma, Lemma 3.8.4.
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So to prove monotonicity of the Perelman reduced volume, the
main task81 will be to establish the pointwise inequality (3.314).

We will perform a minor simplification: by using the rescaling
symmetry g(t, x) 7→ λ2g( t

λ2 ) (and noting the unsurprising fact that
(3.314) is dimensionally consistent) we can normalise τ1 = 1.

3.11.2. First and second variation formulae for L-geodesics.
To establish (3.314), we of course need some variation formulae that
compute the first and second derivatives of the reduced length func-
tion l(0,x0). To motivate these formulae, let us first recall the more
classical variation formulae that give the first and second derivatives
of the metric function d(x0, x) on a Riemannian manifold (M, g),
which in particular can be used to derive (3.310) when the Ricci cur-
vature is non-negative.

We recall that the distance d(x0, x) can be defined by the energy-
minimisation formula

(3.315)
1
2
d(x0, x)2 = inf

γ
E(γ)

where γ : [0, 1]→M ranges over all C1 curves from x0 to x, and the
Dirichlet energy E(γ) of the curve is given by the formula

(3.316) E(γ) =
1
2

∫ 1

0

|X|2g dt

where we write X := ∂tγ. It is known that this infimum is always
attained by some geodesic γ; we shall assume this implicitly in the
computations which follow.

Now suppose that we deform such a curve γ with respect to a real
parameter s ∈ (−ε, ε), thus γ : (s, t) 7→ γ(s, t) is now a function on
the two-dimensional parameter space (ε, ε)× [0, 1]. The first variation
here can be computed as

(3.317)
d

ds
E(γ) =

∫ 1

0

g(∇XX,X) dt

where ∇X is the pullback of the Levi-Civita connection on M with
respect to γ applied in the direction ∂t; here we of course use that g

81There are some additional technical issues, mainly concerning the parabolic
counterpart of the cut locus, which we will also have to address, but we will work
formally for now, and deal with these analytical matters later.
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is parallel with respect to this connection. The torsion-free nature of
this connection gives us the identity

(3.318) ∇YX = ∇XY

where Y = ∂sγ is the infinitesimal variation, and ∇Y is the pullback
of the Levi-Civita connection applied in the direction ∂s (cf. Exercise
3.7.5). An integration by parts (again using the parallel nature of g)
then gives the first variation formula

(3.319)
d

ds
E(γ) = g(Y,X)|1t=0 −

∫ 1

0

g(Y,∇XX) dt.

If we fix the endpoints of γ to be γ(s, 0) = x0 and γ(s, 1) = x1,
then the first term on the right-hand side of (3.319) vanishes. If we
consider arbitrary infinitesimal variations Y of γ with fixed endpoints,
we thus conclude that in order to be a minimiser for (3.315), that γ
must obey the geodesic flow equation

(3.320) ∇XX = 0.

One consequence of this is that the speed |X|g of such a minimiser
must be constant, and from (3.315) we then conclude

(3.321) |X|g = d(x0, x).

If we then vary a geodesic γ(0, ·) with the initial endpoint γ(s, 0) fixed
at x0 and the final endpoint γ(s, 1) = x(s) variable, the variation
formula (3.319) gives

(3.322)
d

ds
E(γ) = g(x′(s), X(s, 1))

which, if we insert this back into (3.315) and use (3.321), gives

(3.323)
d

ds
d(x0, x) ≤ g(x′(s), X(s, 1)/|X(s, 1)|g)

which is a (one-sided) version of the Gauss lemma (Lemma 3.8.4). If
one is inside the cut locus, then the metric function is smooth, and
one can then replace the inequality with an equality by considering
variations both forwards and backwards in the s variable, recovering
the full Gauss lemma. In particular, we conclude in this case that
∇d(x0, x) is a unit vector.
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Now we consider the second variation d2

ds2E(γ) of the energy, when
γ is already a geodesic. For simplicity we assume that γ evolves
geodesically in the s direction, thus82

(3.324) ∇Y Y = 0.

Differentiating (3.317) once more we obtain

(3.325)
d2

ds2
E(γ) =

∫ 1

0

g(∇Y∇YX,X) + |∇YX|2g dt.

Using (3.318), (3.324), and the definition of curvature, we have

∇Y∇YX = ∇Y∇XY
= ∇X∇Y Y + Riem(Y,X)Y

= −Riem(X,Y )Y

(3.326)

and thus (by one further application of (3.318))

(3.327)
d2

ds2
E(γ) =

∫ 1

0

|∇XY |2g − g(Riem(X,Y )Y,X) dt.

Now let us fix the initial endpoint γ(s, 0) = x0 and let the other
endpoint γ(s, 1) = x(s) vary, thus ∂sγ equals 0 at time t = 0 and
equals x′(s) at time t = 1. From Cauchy-Schwarz we conclude
(3.328)∫ 1

0

|∇XY |2g dt ≤
∫ 1

0

(∂t|Y |g)2 dt ≤ (
∫ 1

0

∂t|Y |g dt)2 = |x′(s)|2.

Actually, we can attain equality here by choosing the vector field
Y appropriately:

Exercise 3.11.3. If we set Y := tv, where v is the parallel transport
of x′(s) along X, or more precisely the vector field that solves the
ODE

(3.329) ∇Xv = 0; v(s, 1) = x′(s)

show that all the inequalities in (3.328) are obeyed with equality.

82Actually, since γ is already a geodesic and thus is stationary with respect to
perturbations that respect the endpoints, the values of ∇Y Y away from endpoints -
which represents a second-order perturbation respecting the endpoints - will have no
ultimate effect on the second variation of E(γ). Nevertheless it is convenient to assume
(3.324) to avoid a few routine additional calculations.
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For such a vector field, we conclude that

(3.330)
d2

ds2
E(γ) = |x′(s)|2 −

∫ 1

0

−t2g(Riem(X, v)v,X) dt.

From this formula (and the first variation formula) we conclude that

(3.331)
d2

ds2

1
2
d(x0, x)2 ≤ |x′(s)|2 −

∫ 1

0

t2g(Riem(X, v)v,X) dt.

Now let x′(0) vary over an orthonormal basis of the tangent space of
x(0); by (3.329) we see that v determines an orthonormal frame for
s = 0 and 0 ≤ t ≤ 1. Summing (3.331) over this basis (and using the
formula for the Laplacian in normal coordinates) we conclude that

(3.332) ∆
1
2
d(x0, x)2 ≤ d−

∫ 1

0

t2Ric(X,X) dt.

In particular, for manifolds of non-negative Ricci curvature we have

(3.333) ∆
1
2
d(x0, x)2 ≤ d

from which (3.310) easily follows from the Gauss lemma, Lemma
3.8.4. (Observe that (3.333) is obeyed with equality in the Euclidean
case.)

Now we develop analogous variational formulae for L-length (and
reduced length) on a Ricci flow. We shall work formally for now,
assuming that all infima are actually attained and that all quantities
are as smooth as necessary for the analysis that follows to work;
we then discuss later how to justify all of these assumptions. As
mentioned earlier, we normalise τ1 = 1.

Let us take a path γ : [0, 1]→M and vary it with respect to some
additional parameter s as before. Differentiating (3.312), we obtain

(3.334)
d

ds
L(γ) =

∫ 1

0

√
τ(∇YR+ 2g(X,∇YX)) dτ

where X := ∂τγ and Y := ∂sγ. On the other hand, if we have a Ricci
flow ∂τg = 2Ric, we see that

(3.335) ∂τg(X,Y ) = g(∇XX,Y ) + g(X,∇XY ) + 2Ric(X,Y );
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placing this into (3.334) and using the fundamental theorem of cal-
culus, we can express the right-hand side of (3.334) as

(3.336) 2g(X,Y )(τ1)− 2
∫ 1

0

√
τg(Y,G(X)) dτ

where G(X) is the vector field

(3.337) G := ∇XX −
1
2
∇R+

1
2τ
X + 2Ric(X, ·)∗.

Here Ric(X, ·)∗ is the vector field (Ric(X, ·)∗)α = gαβRicγβXγ , or
equivalently it is the vector field Z such that Ric(X,W ) = g(Z,W )
for all vector fields W .

Note that G does not depend on Y . From this we see that in
order for γ to be a minimiser of L(γ) with the endpoints fixed, we
must have G(X) = 0, which is the parabolic analogue of the geodesic
flow equation (3.324).

Example 3.11.1. In the case of the trivial Euclidean flow, the min-
imal L-path from (0, x0) to (−1, x1) takes the form γ(τ) = x0 + v

√
τ

where v := x1 − x0, in which case X = v
2
√
τ

. It is not hard to verify
that G = 0 in this case.

Arguing as in the elliptic case, we conclude (assuming the ex-
istence of a unique minimiser, and the local smoothness of reduced
length) the first variation formula

(3.338) ∂sl(0,x0)(−1, x1) = g(X, ∂sx1)(1)

or equivalently

(3.339) ∇l(0,x0)(−1, x1) = X(1).

Example 3.11.2. Continuing Example 3.10.13, note that l(0,x0)(−1, x1) =
|x1−x0|2/4 and ∂τγ = (x1−x0)/2, which is of course consistent with
(3.338).

Having computed the spatial derivative of the reduced length, we
turn to the time derivative. The simplest way to compute this is to
observe that any partial segment of an L-minimising path must again
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be a L-minimising path. From (3.312) and the fundamental theorem
of calculus we have

(3.340)
d

dτ1
L(γ)|τ1=1 = R+ |X|2g

where we vary γ in τ1 by truncation; by (3.311) and the above dis-
cussion we conclude

(3.341)
d

dτ1
(2
√
τ1l(0,x0)(−τ1, x1))|τ1=1 = (R+ |X|2g)

where (τ1, x1) varies along γ (in particular, ∂τ1x1 = X). Applying the
product and chain rules, we can expand the left-hand side of (3.341)
as
(3.342)
l(0,x0)(−1, x1) + 2∂τ1 l(0,x0)(−τ1, x1)|τ1=−1 + 2g(∇l(0,x0)(−1, x1), X);

using (3.339), we conclude that
(3.343)

∂τ1 l(0,x0)(−τ1, x1)|τ1=1 =
1
2

(R+ |X|2g)−
1
2
l(0,x0)(−1, x1)− |X|2g.

Now we turn to the second spatial variation of the reduced length.
Let γ be a L-minimiser, so that G = 0. Differentiating (3.334) again,
we obtain
(3.344)

d2

ds2
L(γ) =

∫ 1

0

√
τ(∇Y∇YR+ 2|∇YX|2 + 2g(X,∇Y∇YX)) dτ.

As in the elliptic case, it is convenient to assume that we have a
geodesic variation (3.324). In that case, we again have (3.326), and we
also have ∇Y∇YR = Hess(R)(Y, Y ). Using (3.318), we thus express
(3.344) as

(3.345)
∫ 1

0

√
τ(Hess(R)(Y, Y )+2|∇XY |2−2g(Riem(X,Y )Y,X)) dτ.

As before, we optimise this in Y . Because the metric g now changes
in time by Ricci flow, one has to modify the prescription in Exercise
3.10.10 slightly. More precisely, we now set Y :=

√
τv, where v solves

the following variant of (3.329),

(3.346) ∇Xv = −Ric(v, ·)∗; v(s, 1) = x′(s).
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The point of doing this is that the ODE is orthogonal; the length of
v is preserved along X, as is the inner product between any two such
v’s (cf. (3.4.2)). A brief computation then shows that

(3.347) ∇XY =
1

2
√
τ
v −
√
τRic(v, ·)∗

and hence

(3.348) |∇XY |2g =
1
4τ
|x′(s)|2g + τ |Ric(v, ·)|2 − Ric(v, v).

Putting all of this into (3.345), we now see that the second variation
(3.344) is equal to∫ 1

0

τ3/2Hess(R)(v, v) +
1

2τ1/2
|x′(s)|2g + 2τ3/2|Ric(v, ·)|2

− 2τ1/2Ric(v, v)− 2τ3/2g(Riem(X, v)v,X) dτ.
(3.349)

We now let x′(0) range over an orthonormal basis of x(0), which leads
to v being an orthonormal frame at every point (0,t). Summing over
(3.349) and also using (3.311), we conclude that
(3.350)

∆l(0,x0)(−1, x1) ≤
∫ 1

0

τ3/2

2
∆R+

d

4τ1/2
+τ3/2|Ric|2g−τ1/2R−τ3/2Ric(X,X) dτ.

Now we simplify the right-hand side of (3.350). The second term is
of course elementary:

(3.351)
∫ 1

0

d

4τ1/2
dτ =

d

2

and this is consistent with the Euclidean case (in which ∆l(0,x0) is
exactly d

2 when τ1 = 1, and all curvature terms vanish). To simplify
the remaining terms, we recall the variation formula

(3.352) −∂τR = ∆R+ 2|Ric|2g

for the scalar curvature (see (3.2.3)); by the chain rule, we thus have
the total derivative formula

(3.353)
d

dτ
R = −∆R− 2|Ric|2g +∇XR.
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Inserting (3.351), (3.353) into (3.350) and integrating by parts, we
express the right-hand side of (3.350) as

(3.354)
d

2
− 1

2
R+

∫ 1

0

τ3/2

2
∇XR−

τ1/2

4
R− τ3/2Ric(X,X) dτ.

To simplify this further, recall that the quantity G defined in (3.337)
vanishes. This (and the fact that g evolves by Ricci flow ∂τg = 2Ric)
allows one to compute the variation of τ |X|2g:

(3.355) ∂τ (τ |X|2g) = τ∂XR− 2τRic(X,X).

Inserting this into (3.354) and integrating by parts, one can rewrite
(3.354) as

(3.356)
d

2
− 1

2
R+

1
2
|X|2g −

1
4

∫ 1

0

√
τ(R+ |X|2) dτ

and so by (3.311) we obtain the inequality

(3.357) ∆l(0,x0)(−1, x1) ≤ d

2
− 1

2
R+

1
2
|X|2g −

1
2
l(0,x0)(−1, x1).

Combining (3.339), (3.343), and (3.357) we obtain (3.314) as desired.

3.11.3. Analytical issues. We now discuss in broad terms the an-
alytical issues that one must address in order to make the above
arguments rigorous. We first review the classical elliptic theory (i.e.
the theory of geodesics in a Riemannian manifold) before turning to
Perelman’s parabolic theory of L-geodesics in a flow of Riemannian
metrics.

In a complete Riemannian manifold, a geodesic γ : [0, 1] → M

from a fixed point γ(0) = x0 to some other point γ(1) = x1 has a
well-defined initial velocity vector γ′(0) = X(0), and conversely each
initial velocity vector v = X(0) ∈ Tx0M determines a unique geodesic
with an endpoint x1 = expx0

(v), thus defining the exponential map
based at x0. One can show (from standard ODE theory) that this
exponential map is smooth (with the derivative of this map controlled
by Jacobi fields). Also, if M is connected, then any two points can be
joined by a geodesic, and the exponential map is onto. However, there
can be vectors v for which this map degenerates (i.e. its derivative
ceases to be invertible) - these correspond to the conjugate points of
x0 in M .
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Define the injectivity region of x0 to be the set of all x1 for which
there is a unique minimising geodesic from x0 to x1, and that the
exponential map is not degenerate along this geodesic (in particular,
x0 and x1 are not conjugate points). An analysis of Jacobi fields re-
veals that the injectivity region is open, that the distance function
is smooth in this region (except at the origin), and that all the com-
putations given above for the distance function can be justified. So
it remains to understand what happens on the complement of the
injectivity region, known as the cut locus. Points on the cut locus
are either conjugate points to x0, or are else places where minimising
geodesics are not unique, which (by a variant of the Gauss lemma)
forces the distance function to be non-differentiable at these points.
The former type of points form a set of measure zero, thanks to Sard’s
theorem, whereas the latter set of points also form a set of measure
zero, thanks to Radamacher’s differentiation theorem and the Lip-
schitz nature of the distance function (i.e. the triangle inequality).
Thus the injectivity region has full measure. While this does mean
that pointwise inequalities such as (3.310) now hold almost every-
where, this is unfortunately not quite enough83 to ensure that (3.310)
holds in the sense of distributions, which is what one really needs
in order to fully justify results such as the Bishop-Gromov inequal-
ity. Fortunately, one can address this technical issue by constructing
barrier functions to the radius function r at every point x1, i.e. C2

functions u = uε for each ε > 0 which upper bound r near x1 (and
match r exactly at x1, and which obeys the inequality (3.310) at x1

up to a loss of ε. Such functions can be constructed at any x1, even
those in the cut locus, by perturbing the origin x0 by an epsilon, and
then one can use these barrier functions84 to justify (3.310) in the
sense of distributions.

83Indeed, by considering simple examples such as the unit circle, we see that
the distribution ∆r can in fact contain some negative singular measures, although one
should note that this does not actually contradict (3.310) due to the favourable sign
of these singular components.

84As far as I can tell, these arguments controlling the distance function outside
of the injectivity region originate with a paper of Calabi[Ca1958].
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From this one can rigorously justify the Bishop-Gromov inequal-
ity for all radii, even those exceeding the radius of injectivity. Ana-
logues of the above assertions hold for the monotonicity of Perel-
man reduced volume on flows on compact Ricci flows (and more gen-
erally for Ricci flows of complete manifolds of bounded curvature).
For instance, one can show (using compactness arguments in various
weighted Sobolev spaces) that, as long as the manifold M is con-
nected85, a minimiser to (3.311) always exists, and is attained by an
L-geodesic (defined as a curve γ : [0, τ1]→M for which the G quan-
tity defined in (3.337) vanishes). Such geodesics turn out to have a
well-defined “initial velocity” v := limτ→0

√
τX(τ), as can be seen by

working out the ODE for the quantity
√
τX(τ) (it is also convenient

to reparameterise in terms of the variable r :=
√
τ to remove any

apparent singularity at τ = 0). This leads to an L-exponential map
L exp(0,x0),τ1 : Tx0M → M for any fixed time −τ1, which is smooth.
The derivative of this map is controlled by L-Jacobi fields, which are
close analogues of their elliptic counterparts, and which lead to the
notion of a L-conjugate point x1 to (0, x0) at the fixed time −τ1.
One can then define the injectivity domain and cut locus as before
(again for a fixed time −τ1), and show as before that the former re-
gion has full measure. This lets one rigorously derive (3.314) almost
everywhere (especially after noting that any segment of a minimising
L-geodesic without conjugate points is again a minimising L-geodesic
without conjugate points, thus establishing that the injectivity region
is in some sense “star-shaped”), but again one needs to justify (3.314)
in the sense of distributions in order to derive the monotonicity of
Perelman reduced volume. This can again be done by use of barrier
functions, perturbing the base point (0, x0) both spatially and also
backwards in time by an epsilon. The details of this become rather
technical; see for instance [Ye2008], [KlLo2006], for details.

Thus far we have only discussed how reduced length and re-
duced volume behave on smooth Ricci flows of compact manifolds.
Of course, to fully establish the global existence of Ricci flow with
surgery, one also needs to build an analogous theory for Ricci flows
with surgery. Here there turns out to be significant new technical

85One can easily reduce to the connected case, since the reduced length is clearly
infinite when x0 and x1 lie on distinct connected components.
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difficulties, basically because one has to restrict attention to paths γ
which avoid all regions in which surgery is taking place. This creates
some “holes” in the region of integration for the reduced volume, as
in some cases the minimising path between two points in spacetime
goes through a surgery region. Fortunately it turns out that (very
roughly speaking) these holes only occur when the reduced length
(or a somewhat technical modification thereof) is rather large, which
means that the holes do not significantly impact lower bounds on this
reduced volume, which is what is needed to establish κ-noncollapsing.
We will discuss these points in Section ???.

In order to control ancient κ-noncollapsing solutions, which are
complete but not necessarily compact, one also needs to extend the
above theory to complete non-compact manifolds. It turns out that
this can be done as long as one has uniform bounds on curvature; a
key task here is to establish that the reduced length l(0,x0)(−τ1, x1)
behaves roughly like d(x0, x1)2/4τ1 (which is basically what it is in
the Euclidean case) as x1 goes to infinity, which allows the integrand
in the definition of reduced volume to have enough decay to justify
all computations. The technical details here can be found in several
places [Ye2008], [KlLo2006], [MoTi2007], [CaZh2006].

Remark 3.11.3. A theory analogous to Perelman’s theory above was
worked out earlier by Li and Yau[LiYa1986], but with the Ricci flow
replaced by a static manifold with a lower bound on Ricci curvature,
and with a time-dependent potential attached to the Laplacian.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/05/09.
Thanks to Richard Borcherds for corrections.

3.12. κ-noncollapsing via Perelman reduced
volume

Having established the monotonicity of the Perelman reduced vol-
ume in Section ?? (after first heuristically justifying this monotonic-
ity in Section 3.10), we now show how this can be used to establish
κ-noncollapsing of Ricci flows, thus giving a second proof of The-
orem 3.8.15. Of course, we already proved (a stronger version) of
this theorem already in Section 3.9, using the Perelman entropy, but
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this second proof is also important, because the reduced volume is a
more localised quantity (due to the weight e−l(0,x0) in its definition
and so one can in fact establish local versions of the non-collapsing
theorem which turn out to be important when we study ancient κ-
noncollapsing solutions later in Perelman’s proof, because such so-
lutions need not be compact and so cannot be controlled by global
quantities (such as the Perelman entropy).

The route to κ-noncollapsing via reduced volume proceeds by the
following scheme:

Non-collapsing at time t = 0(3.358)

⇓
Large reduced volume at time t = 0(3.359)

⇓
Large reduced volume at later times t(3.360)

⇓
Non-collapsing at later times t.(3.361)

The implication (3.359) =⇒ (3.360) is the monotonicity of Perelman
reduced volume. In this lecture we discuss the other two implications
(3.358) =⇒ (3.359), and (3.360) =⇒ (3.361)). Our arguments
here are based on [Pe2002], [KlLo2006], [MoTi2007], though the
material in [MoTi2007] differs in some key respects from the other
two texts. A closely related presentation of these topics also appears
in the paper of [CaZh2006].

3.12.1. Definitions. Let us first recall our definitions. Previously
we defined Perelman reduced length and reduced volume for ancient
flows t 7→ (M, g(t)) for t ∈ (−∞, 0], centred at a point (0, x0) on the
final time slice t = 0, but one can also define these quantities for
flows on the time interval [0, T ] and for points (t0, x0) ∈ [0, T ]×M as
follows. We introduce the backward time variable τ := t0 − t. Given
any path γ : [0, τ1]→M , we define its length

(3.362) L(γ) :=
∫ τ1

0

√
τ(R+ |γ̇(τ)|2g) dτ
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and for any (t1, x1) with 0 ≤ t1 < t0, with τ1 := t0− t1, we define the
reduced length

(3.363) l(t0,x0)(t1, x1) :=
1

2
√
τ1

inf
γ
L(γ)

where γ : [0, τ1]→ M ranges over all C1 paths from x0 to x1 (which
can also be viewed as trajectories in the spacetime manifold [0, T ]×M
from (t0, x0) to (t1, x1)). The reduced volume86 is then defined as

(3.364) Ṽ(t0,x0)(τ1) :=
1

τ
d/2
1

∫
M

e−l(t0,x0)(t1,x1) dµt1(x1).

The arguments of Section ?? show that if t 7→ (M, g(t)) is a Ricci
flow, then the reduced volume is a non-increasing function of τ1 for
fixed (t0, x0). In particular, the reduced volume at later times t1 is
bounded from below by the reduced volume at time 0 (which is the
implication (3.359) =⇒ (3.360)).

3.12.2. Heuristic analysis. In the case of the trivial Euclidean
flow, the reduced length is given by the formula

(3.365) l(t0,x0)(t1, x1) =
|x1 − x0|2

4τ1
=
|x1 − x0|2

4(t1 − t0)
with the minimising geodesic given by the formula

(3.366) γ(τ) = x0 + 2v
√
τ with v :=

x1 − x0

2
√
τ1

Here, we briefly argue why we expect heuristically to have a similar
relationship

(3.367) l(t0,x0)(t1, x1) ≈
dg(t1)(x0, x1)2

τ1
+O(1)

for the reduced length on more general Ricci flows, under an assump-
tion of bounded normalised curvature.

Specifically, suppose that we have a normalised curvature bound
|Riem|g = O(1/τ1). Then we have ġ = −2Ric = O(g/τ1), and so
over the time scale τ1, we see that the metric only changes by a
multiplicative constant. If we ignore such constants for now, we see

86Note: some authors normalise the reduced volume by using (4πτ1)d/2 instead

of τ
d/2
1 , in order to give Euclidean space a reduced volume of 1, but this makes no

essential difference to the analysis.
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that the distance function dg(t)(x, y) does not change much over the
time interval of interest.

Let γ be a minimising L-geodesic from (t0, x0) to (t1, x1). This
path has to traverse a distance roughly dg(t1)(x0, x1) in time τ1, and
so its speed |γ̇|g should be at least dg(t1)(x0, x1)/τ1. Also, the scalar
curvature R should be O(1/τ1) by the bounded normalised curvature
assumption. Putting all this into (3.362) and (3.363) we heuristically
obtain (3.367).

From (3.367), we expect the expression e−l(t0,x0)(t1,x1) to be com-
parable to 1 when x1 is inside the ball Bg(t1)(x0, O(

√
t1)), and to be

exponentially small outside of this ball. Using (3.364), we thus obtain
a heuristic approximation for the Perelman reduced volume:

(3.368) Ṽ(t0,x0)(τ1) ≈ Volg(t1)(x0,
√
τ1)/τd/21 .

Thus the Perelman reduced volume Ṽ(t0,x0)(τ1) is heuristically equiv-
alent to the Bishop-Gromov reduced volume at (x1, t1) at scale τ1.
Since the latter measures non-collapsing, we heuristically obtain the
implications (3.358) =⇒ (3.359) and (3.360) =⇒ (3.361).

3.12.3. From non-collapsing to lower bounds on reduced vol-
ume. Now we discuss implications of the form (3.358) =⇒ (3.359)
in more detail. Specifically, we show

Proposition 3.12.1. Let t 7→ (M, g(t)) be a d-dimensional Ricci flow
on a complete manifold M for t ∈ [0, T ] such that we have the nor-
malised initial conditions |Riem(0, x)|g ≤ 1 and Volg(0)(Bg(0)(x, 1)) ≥
ω at time t=0 for some ω > 0 and all x (so in particular, the geom-
etry is non-collapsed at scale 1 at all points at time zero). Then we
have Ṽ(t0,x0)(t0) ≥ c for some c = c(d, ω, T ) > 0 and all (t0, x0) ∈
(0, T )×M .

The main task in proving implications of the form (3.358) =⇒
(3.359) is to show the existence of some large ball at time zero on
which l = l(t0,x0) is bounded from above.

Turning to the specific proposition above, we first observe that we
can reduce to the large time case t0 ≥ 1. Indeed, if 0 < t0 < 1, then
we can rescale the Ricci flow until t0 = 1 (this increases T , but we can
simply truncate T to compensate for this). This rescaling reduces the
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size of the initial Riemann curvature, and the volume of balls of unit
radius are still bounded from below thanks to the Bishop-Gromov
inequality (Corollary 3.10.3).

The next observation we need is that the control on the geometry
at time zero persists for a short amount of additional time:

Lemma 3.12.2 (Local persistence of controlled geometry). Let the
hypotheses be as in Proposition 3.11.1. Then there exists an absolute
constant c > 0 (depending only on d) such that |Riem(t, x)|g ≤ 2 for
all times 0 ≤ t ≤ c and x ∈M . Also we have Volg(t)(Bg(t)(x, 1)) ≥ ω′
for all 0 ≤ t ≤ c and x ∈ M , and some ω′ > 0 depending only on
ω, d.

Proof. We recall from (3.2.3) the nonlinear heat equation

(3.369) ∂tRiem = ∆Riem +O(g−1Riem2)

for the Riemann curvature tensor Riem under Ricci flow. The bound
on Riemann curvature can then obtained by an application of Hamil-
ton’s maximum principle (Proposition 3.4.5); we leave this as an ex-
ercise to the reader87. As in the heuristic discussion, the bounds on
the Riemann curvature (and hence the Ricci curvature) show that the
metric g and the distance function dg(t)(x, y) only change by at most
a multiplicative constant; this also implies that the volume measure
only changes by a multiplicative constant as well. From this we see
that the lower bound on the volume of unit balls at time zero im-
plies a lower bound on the volume of balls of radius O(1) at times
0 ≤ t ≤ c; one can then get back to balls of radius 1 by invoking the
Bishop-Gromov inequality (Corollary 3.10.3). �

The next task is to find a point y ∈ M such that the reduced
length from (t0, x0) to (0, y) is small, since this should force y (and
the points close to y) to give a large contribution to the reduced
volume. In the Euclidean case, one would just take y = x0 (see
(3.365)), but this does not necessarily work for general Ricci flows:

87Technically, one needs to first generalise the maximum principle from compact
manifolds to complete manifolds of bounded curvature. This can be done using barrier
functions, but it is somewhat technically involved: see [CCGGIIKLLN2008, Chapter
12].
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note from (3.362), (3.363) that the reduced length from (t0, x0) to
(t1, x0) could in principle be as large as

(3.370)
1

2
√
t0 − t1

∫ t0−t1

0

√
τR(t0 − τ, x0) dτ,

which could be quite large if the scalar curvature becomes large and
positive (which is certainly within the realm of possibility, especially
if one is approaching a singularity).

Fortunately, we can use the parabolic properties of the reduced
length l = l(t0,x0), combined with the maximum principle, to locate
a good point y with the required properties. From (3.339), (3.343),
(3.357), and some rescaling and time translation, we obtain88 the
identities and inequalities

∇l = X(3.371)

∂τ l =
1
2
R− 1

2
|X|2g −

1
2τ
l(3.372)

∆l ≤ d

2τ
+

1
2
|X|2g −

1
2
R− 1

2τ
l,(3.373)

where X = γ′(τ) is the final velocity vector of the minimising L-
geodesic from (t0, x0) to (t1, x1). From (3.372), (3.373) we obtain in
particular that l is a supersolution of a heat equation:

(3.374) ∂tl ≥ ∆l +
l − (d/2)

τ
.

Note that (3.374) holds with equality in the Euclidean case (3.365).

From the maximum principle (Corollary 3.4.3), we see that if we
have the uniform lower bound l ≥ d/2 at some time 0 ≤ t < t0, then
this bound will persist for all times between t and t0. On the other
hand, by using the upper bound (3.369) for l(t1, x0) we see that the
bound l ≥ d/2 breaks down for times t sufficiently close to t0. We
therefore conclude that infx∈M l(t, x) < d/2 for all 0 ≤ t < t0. In
particular we can find a point y such that

(3.375) l(c, y) < d/2,

88We only derived (3.371)-(3.373) rigorously inside the domain of injectivity, but
as discussed in Section ??, one can establish the above inequalities in the sense of
distributions on the whole manifold M .
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where c is the small constant in Lemma 3.11.2. Given the bounded
geometry control in Lemma 3.11.2 (and in particular the fact that
g(t) is comparable to g(0) for 0 ≤ t ≤ c), it is thus not hard to see
(by concatenating the minimising path from (0, x0) to (c, y) with a
geodesic segment (in the g(0) metric) from (c, y) to (0, y′)) that

(3.376) l(0, y′) ≤ C for y′ ∈ Bg(0)(y, c′)

for some C, c′ > 0 depending only on d. The hypotheses on the geom-
etry of g(0), combined with the Bishop-Gromov inequality (Corollary
3.10.3), give a uniform lower bound for the volume of Bg(0)(y, c′), and
Proposition 3.11.1 now follows directly from the definition (3.364) of
reduced volume.

3.12.4. From lower bounds on reduced volume to non-collapsing.
Now we consider the reverse type of implication (3.360) =⇒ (3.361)
from those just discussed. Here, the task is reversed; rather than es-
tablishing upper bounds on l on a ball of radius comparable to one,
the main challenge is now to establish lower bounds (of the form
l ≥ −O(1)) on l on such a ball, as well as some growth bounds on l

away from this ball.

We begin by formally stating the result of the form (3.360) =⇒
(3.361) that we shall establish.

Proposition 3.12.3. Let t 7→ (M, g(t)) be a d-dimensional Ricci flow
on a complete manifold M for t ∈ [0, T ], and let 0 ≤ t0− r2

0 ≤ t0 ≤ T
and x0 ∈ M be such that |Riem(t, x)|g ≤ r−2

0 for x ∈ Bg(t0)(x0, r0)
and t ∈ [t0 − r2

0, t0], and such that Ṽ(t0,x0)(τ) ≥ δ for some δ > 0 and
all 0 < τ < r2

0. Then one has Volg(t0)(Bg(t0)(x0, r0)) ≥ c for some c
depending only on d and δ.

Exercise 3.12.1. Use Proposition 3.11.1, Proposition 3.11.3, and the
monotonicity of Perelman reduced volume to deduce Theorem 3.8.15.

We now prove Proposition 3.11.3. We first observe by time trans-
lation (and by removing the portion of the Ricci flow below t0−r2

0 that
we may normalise t0 − r2

0 = 0, and then by scaling we may normalise
t0 = 1. Thus we now have a Ricci flow on [0, 1] with |Riem(t, x)|g ≤ 1
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on [0, 1]×Bg(1)(x0, 1) and

(3.377) Ṽ(1,x0)(τ) =
∫
M

e−l(τ,x) dµg(τ)(x) ≥ δ

for all 0 < τ ≤ 1, where l = l(1,x0) is the reduced length function.
Our task is to show that Volg(1)(Bg(1)(x0, 1)) is bounded away from
zero.

We first observe (as in Lemma 3.11.2) that the metrics g(t) for
0 ≤ t ≤ 1 are all comparable to each other up to multiplicative
constants on Bg(1)(x0, 1), and so the balls in these metrics also differ
only up to multiplicative constants.

Next, we would like to localise the reduced volume (3.377) to
the ball Bg(1)(x0, 1) (since this is the only place where we really con-
trol the geometry). To do this it is convenient to work in the par-
abolic counterpart of normal coordinates around (1, x0) and exploit
the pointwise version of the Perelman reduced volume monotonicity.
To motivate this, recall from the pointwise inequality

(3.378) L∂rdµ ≤
d− 1
r

dµ

that we had the Bishop-Gromov inequality

(3.379) ∂rr
−(d−1)

∫
S(x0,r)

dS ≤ 0

where S(x0, r) is the sphere of radius r centred at x0 with area element
dS. Indeed, we can89 rewrite the left-hand side of (21’) as

(3.380) ∂rr
−(d−1)

∫
Sd−1

Jr(ω) dω

where Sd−1 is the standard sphere with the standard area element
dω, and Jr is the Jacobian of the exponential map ω 7→ expx0

(rω);
in the Euclidean case, Jr(ω) = rd−1. The inequality (3.378) (when
combined with the Gauss lemma, Lemma 3.8.4) is equivalent to the
pointwise inequality

(3.381) ∂rr
−(d−1)Jr(ω) ≤ 0

89Actually, once the radius r exceeds the injectivity radius, one has to restrict to

the portion of Sd−1 that has not yet encountered the cut locus, but let us ignore this
technical issue for now.
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which certainly implies (3.380), but also implies the stronger fact that
the Bishop-Gromov inequality can be localised to arbitrary sectors
in the sense that r−(d−1)

∫
Ω
Jr(ω) dω (which can be viewed as the

Bishop-Gromov reduced volume of the sector {expx0
(rω) : ω ∈ Ω}) is

non-increasing in r.

Now we develop parabolic analogues of the above observations.
Recall from Section ?? that we have an L-exponential map L exp(1,x0),τ1 :
Tx0M → M for 0 ≤ τ1 ≤ 1 that sends a tangent vector v to γ(τ1),
where γ : [0, τ ] → M is the unique L-geodesic starting at x0 with
initial condition v = limτ→0

√
τX(τ) = limτ→0

√
τγ′(τ). In the Eu-

clidean case, this map is given by the formula

(3.382) L exp(1,x0),τ1(v) = x0 + 2(x1 − x0)
√
τ1

as can be seen from (3.366). We can90 then rewrite the reduced
volume Ṽ(1,x0)(τ) in terms of “normal coordinates” as

(3.383) Ṽ(1,x0)(τ) = τ−d/2
∫
Rd

e−l(L exp(1,x0),τ (v))Jτ (v) dv

where Jτ is the Jacobian of the map v 7→ L exp(1,x0),τ1(v).

In Section ?? we saw that the monotonicity of Perelman reduced
volume followed from the pointwise inequality

(3.384) ∂τ l −∆l + |∇l|2g −R+
d

2τ
≥ 0

which of course also follows from (3.371)-(3.373).

Exercise 3.12.2. Use (3.371), (3.384), and the identity

(3.385) ∂τL exp(1,x0),τ (v) = X

(which basically follows from the fact that any segment of a minimis-
ing L-geodesic is again a L-geodesic) to derive the pointwise inequality

(3.386) ∂ττ
−d/2e−l(L exp(1,x0),τ (v))Jτ (v) ≤ 0.

Remark 3.12.4. Exercise 3.11.2 reproves the monotonicity of Perel-
man reduced volume (3.383), but also proves a stronger local version
of this monotonicity in which the region of integration Rd is replaced

90Again, one has to restrict Rd to the portion of the tangent manifold lies inside
the injectivity domain, but this domain turns out to be non-increasing in τ (for much
the same reason that the region inside the cut locus of a point in a Riemannian manifold
is star-shaped) and so this effect works in our favour as far as monotonicity is concerned.
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by an arbitrary region Ω (intersected with the injectivity region, as
mentioned earlier).

In the Euclidean case, a computation using (3.365) and (3.382)
shows that l(L exp(1,x0),τ (v)) = |v|2 and Jτ (v) = 2nτd/2. Also, one
can use some basic analysis arguments to show that in the limit τ →
0, the expressions in (3.383) converge pointwise to their Euclidean
counterparts. As a consequence we obtain the pointwise domination

(3.387) τ−d/2e−l(L exp(1,x0),τ (v))Jτ (v) ≤ 2n/2e−|v|
2

for any v and any 0 < τ < 1. As a consequence, the far part of
(3.383) (corresponding to “fast” geodesics) is negligible: we have

(3.388) τ−d/2
∫
|v|>C

e−l(L exp(1,x0),τ (v))Jτ (v) dv ≤ δ/2

for some C depending only on d and δ. From this and the hypoth-
esis (3.376) we thus obtain lower bounds on local Perelman reduced
volume, or more precisely that

(3.389) τ−d/2
∫
|v|≤C

e−l(L exp(1,x0),τ (v))Jτ (v) dv ≥ δ/2

for all 0 < τ ≤ 1. Now, we have bounded curvature on the cylinder
[0, 1]×Bg(1)(x0, 1). Using the heat equation (3.369) and standard par-
abolic regularity estimates, we thus conclude that any first91 deriva-
tives of the curvature are also bounded on the cylinder [1/2, 1] ×
Bg(1)(x0, 1/2). In particular we have ∇R = O(1) in this cylinder.
Thus the equation G = 0 for an L-geodesic (where G was defined in
(3.337)) becomes

(3.390) ∇τX +
1
2τ
X = O(1) +O(|X|)

or equivalently that

(3.391) ∇τ (
√
τX) = O(

√
τ) +O(

√
τ |X|)

as long as the geodesic stays inside this smaller cylinder. From this
and Gronwall’s inequality one easily verifies that for sufficiently small
0 < τ < 1/2 (depending on C, d), the exponential map L exp(1,x0),τ (v)
does not exit the cylinder [1/2, 1]×Bg(1)(x0, 1/2) for |v| ≤ C. On the

91In fact, all higher derivatives are controlled as well; see [Sh1989] for full details.
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other hand, at time τ , we see from (3.362), (3.363) and the bounds on
curvature in this cylinder that the reduced length l of the associated
L-geodesic is bounded below by some constant depending on τ, C, d.
We thus see (from the change of variables formula) that the left-hand
side of (3.389) is bounded above by Oτ,C,d(Volg(1−τ)(Bg(1)(x0, 1/2))).
Choosing τ to be a small number depending on C, d, we thus conclude
from (3.389) that the volume of Bg(1)(x0, 1) with respect to g(1− τ)
(and hence g(1), by comparability of metrics) is bounded from below
by some constant depending on C and d, and thus ultimately on δ

and d, giving Proposition 3.11.3 as desired.

3.12.5. Extensions. The pointwise nature of the monotonicity of
Perelman reduced volume allows one to derive local versions of the
non-collapsing result, in which one only needs a portion of the geom-
etry to be non-collapsed at the initial time. A typical version of such
a local noncollapsing result reads as follows.

Theorem 3.12.5 (Perelman’s non-collapsing theorem, second ver-
sion). Let t 7→ (M, g(t)) be a d-dimensional Ricci flow on the time
interval [0, r2

0], and suppose that one has the bounded normalised cur-
vature condition |Riem|g ≤ r−2

0 on a cylinder [0, r2
0] × Bg(0)(x0, r0)

for some x0 ∈M . Suppose also that we have the volume lower bound
Volg(0)(Bg(0)(x0, r0)) ≥crd0 for some c > 0. Then for any A > 0, the
Ricci flow is κ-noncollapsed at (r2

0, x) for any x ∈ Bg(r2
0)(x0, Ar0) and

at any scale 0 < r < r0, for some κ depending only on d, c, A.

The novelty here is that the geometry is controlled in a cylinder,
rather than on the initial time slice, but one gets to conclude κ-
noncollapsing at points some distance away from the cylinder. In view
of Lemma 3.11.2, we see that this result is more or less a strengthening
of the previous κ-noncollapsing theorem.

This theorem (or more precisely, a generalisation of it involving
Ricci flow with surgery) is used in the original argument of Perelman[Pe2002]
(and then in the later treatments by [KlLo2006] and [CaZh2006]) in
order to deal with the long-time behaviour of Ricci flow with surgery,
which is needed for the geometrisation conjecture. For proving the
Poincaré conjecture, though, one has finite time extinction, and it
turns out that the above theorem is not needed for the proof of that
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conjecture (for instance, it does not appear in [MoTi2007]). Nev-
ertheless I will sketch how the above theorem is proven below, since
there are one or two interesting technical tricks that get used in the
argument.

The proof of Theorem 3.11.5 is, unsurprisingly, a modification
of the previous arguments. The implications (3.359) =⇒ (3.360)
and (3.360) =⇒ (3.361) are basically unchanged, but one needs to
replace Proposition 3.11.1 by the following variant.

Proposition 3.12.6. Let the hypotheses be as in Theorem 3.11.5.
Then for any x ∈ Bg(r2

0)(x0, Ar0) one has Ṽ(r2
0 ,x)(r2

0) ≥ c′ for some
c′ > 0 depending on A, c, d.

We sketch the proof of Proposition 3.11.6. It is convenient to
rescale so that r0 = 1. In view of the non-collapsed nature of the
geometry in Bg(0)(x0, 1), it suffices to establish a lower bound of the
form l(1,x)(0, z) ≥ −C for all z ∈ Bg(0)(x0, 1/2) for some C > 0
depending on A, c, d. Actually, because of the bounded geometry in
the cylinder, it suffices to show that l(1,x)(1/2, y) ≥ −C ′ for just one
point z ∈ Bg(1/2)(x0, 1/10) for some C ′ > 0 depending on A, c, d,
since one can join (1/2, y) by a geodesic to (1, z) much as in the proof
of Proposition 3.11.1.

The task is now analogous to that of finding a point y that obeyed
the relation (3.375), so we expect the heat equation (3.374) to again
play a role. We do not need the sharp bound of d/2 which occurs
in (3.375); on the other hand, y is now constrained to lie in a ball,
which defeats a direct application of the maximum principle. To fix
this one has to multiply the reduced length l by a penalising weight
to force the minimum to lie in the desired ball at time 1/2, and
then rapidly relax this weight as one moves from time 1/2 to time
1 so that it incorporates the point x at time 1. It turns out the
maximum principle can then be applied with a suitable choice of
weights, as long as one knows that the distance function r(t, y) =
dg(t)(x0, y) is a supersolution to a heat equation, and more precisely
that ∂tr − ∆r ≥ −C when r is bounded away from the origin. But
this can be established by the first and second variation formulae for
the distance function, and in particular using the non-negativity of
the second variation for minimising geodesics. Details can be found
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in [Pe2002, Section 8], [KlLo2006, Sections 26-27], or [CaZh2006,
Section 3.4].

Remark 3.12.7. One can also interpret the above analysis in terms
of heat kernels, and using (3.384) instead of (3.374). The former in-
equality is equivalent to the assertion that the function v := (4πτ)−d/2e−l

is a subsolution of the adjoint heat equation: ∂tv + ∆v − Rv ≤ 0.
As t → 1, v approaches a Dirac mass at x (indeed, v asymptot-
ically resembles the Euclidean backwards heat kernel from (1, x0))
and the task is to obtain upper bounds on v at some point on a ball
Bg(1/2)(x0, 1/10) at time 1/2. This is basically equivalent to estab-
lishing lower bounds of Gaussian type for the fundamental solution
of the adjoint heat equation at some point in Bg(1/2)(x0, 1/10). Sim-
ilar analysis in the case of a static manifold with potential (and a
lower bound on Ricci curvature) was carried out somewhat earlier in
[LiYa1986].

As mentioned previously, in order to apply the non-collapsing re-
sult beyond the first surgery time, it is necessary to develop analogues
of the above theory for Ricci flows with surgery. This turns out to
be remarkably technical, but the main ideas at least are fairly clear.
Firstly, one has to delete all L-geodesics which pass through surgery
regions when defining the Perelman reduced volume; such curves are
called “inadmissible”. Note that if (1, x0) is in a surgery region to
begin with, then every curve is inadmissible but in this case the ge-
ometry can be controlled directly from the surgery theory. As it turns
out, one can similarly deal with the case when (1, x0) has extremely
high curvature because one can control the geometry of such regions.
So we can easily eliminate these bad cases.

Because of the pointwise nature of the monotonicity formula for
reduced volume, this restriction of admissibility does not affect the
“(3.359) =⇒ (3.360)” stage of the argument. The “(3.360) =⇒
(3.361)” step is also largely unaffected, since removing inadmissible
components of the reduced volume only serves to strengthen the hy-
pothesis (3.360). But significant new technical difficulties arise in the
“(3.358) =⇒ (3.359)” portion of the argument, when one has to
argue that not too much of the reduced volume has been deleted by
all the various surgeries that take place between time t = 0 and time
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t = 1. In particular, we still need to find a point y obeying (3.375)
(or something very much like (3.375)) which is admissible. To do
this, the basic idea is to establish that inadmissible curves have large
reduced length (and so removing them will not impact the search for
a solution to (3.375)). For technical reasons it is better to restrict
attention to barely admissible curves - curves which just touch the
border of the surgery region, but do not actually enter it. In this
case it is possible to use the geometric control of the surgery regions
to give some non-trivial lower bounds on the reduced length of such
curves, although there are still significant technical issues to resolve
beyond this. We will return to this point in Section ???.

3.12.6. Epilogue: a connection between Perelman entropy
and Perelman reduced volume. We have shown two routes to-
wards establishing κ-non-collapsing of Ricci flows, one using the (pa-
rameterised) Perelman entropies

µ(g(t), τ) := inf{
∫
M

(τ(|∇f |2 +R) + f − d)(4πτ)−d/2e−f dµ :∫
M

(4πτ)−d/2e−f dµ = 1}

(3.392)

and one using the reduced volumes Ṽ(0,x0) mentioned above. Actu-
ally, the two quantities are related to each other (this is hinted at
in [Pe2002, Section 9]); very roughly speaking, the potential func-
tion f in the theory of Perelman entropy plays the same role that
reduced length l does in the theory of Perelman volume. Indeed, us-
ing (3.11.6) and shifting f by a constant if necessary, we have the
log-Sobolev inequality

∫
M

(τ(|∇f |2 +R) + f − d)(4πτ)−d/2e−f dµ

≥ [µ(g(t), τ)− log
∫
M

(4πτ)−d/2e−f dµ]
∫
M

(4πτ)−d/2e−f dµ.

(3.393)

An integration by parts reveals that we can replace the |∇f |2 on the
left-hand side by ∆f , and hence one can also replace this quantity by
2∆f − |∇f |2.
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We now apply this inequality with τ := t0− t and f = l(t0,x0) for
some spacetime point (t0, x0) in the Ricci flow. Using (3.371), (3.373)
we see that

(3.394) 2∆f − |∇f |2 ≤ d

2τ
−R− 1

τ
f

and thus the left-hand side of (3.393) is non-positive. Using (3.364)
we thus conclude a simple relationship between entropy and reduced
volume92:

(3.395) µ(g(t0 − τ), τ) ≤ log
Ṽ(t0,x0)(τ)

(4π)d/2
.

Thus the Perelman entropy can be viewed as a global analogue of
the Perelman reduced volume, in which we allow the base point x0

to vary;thus it measures the global non-collapsing nature of the man-
ifold, as opposed to the local nature; we already saw this in Section
3.9. Compare in particular (3.254) with the heuristic (3.368) using
(3.395).

There are other connections between entropy and reduced vol-
ume; compare for instance the flow equation (3.237) for the potential
f with (3.384). The adjoint heat equation ∂tu + ∆u − Ru = 0 also
makes essentially the same appearance in both theories. See [Pe2002,
Section 9] for further discussion.

Remark 3.12.8. As remarked above, the flow equation for f can be
viewed as a pointwise versions of the entropy monotonicity formula,
which in principle leads to localised monotonicity formulae for the
Perelman entropy; some analysis in this direction appears in [Pe2002,
Section 9]. But I do not know if these localised entropy formulae can
substitute to give a different proof of Theorem 3.11.5.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/05/14.
Thanks to Sylvain Maillot and Dan for corrections.

92As usual, we have equality in physical space; this inequality also reinforces the

suggestion that one normalise the reduced volume by an additional factor of 1/(4π)d/2.
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3.13. High curvature regions of Ricci flow and
κ-solutions

In previous sections, we have established (modulo some technical de-
tails) two significant components of the proof of the Poincaré con-
jecture: finite time extinction of Ricci flow with surgery (Theorem
3.3.13), and a κ-noncollapsing of Ricci flows with surgery (which, ex-
cept for the surgery part, is Theorem 3.8.15). Now we come to the
heart of the entire argument: the topological and geometric control
of the high curvature regions of a Ricci flow, which is absolutely es-
sential93 in order for one to define surgery on these regions in order
to move the flow past singularities. This control is intimately tied to
the study of a special type of Ricci flow, the κ-solutions to the Ricci
flow equation; we will be able to use compactness arguments (as well
as the κ-noncollapsing results already obtained) to deduce control of
high curvature regions of arbitrary Ricci flows from similar control of
κ-solutions. A secondary compactness argument lets us obtain that
control of κ-solutions from control of an even more special type of
solution, the gradient shrinking solitons that we already encountered
in Section 3.9.

The next few sections will be devoted to the analysis of κ-solutions,
culminating in Perelman’s topological and geometric classification (or
near-classification) of such solutions (which in particular leads to the
canonical neighbourhood theorem for these solutions, which we will
briefly discuss below). In this lecture we shall formally define the
notion of a κ-solution, and indicate informally why control of such
solutions should lead to control of high curvature regions of Ricci
flows. We’ll also outline the various types of results that we will
prove about κ-solutions.

Our treatment here is based primarily on [MoTi2007].

93Even once one has this control of high curvature regions, the proof of the
Poincaré conjecture is still not finished; there is significant work required to properly
define the surgery procedure, and then one has to show that the surgeries do not
accumulate in time, and also do not disrupt the various monotonicity formulae that
we are using to deduce finite time extinction, κ-noncollapsing, etc. But the control of
high curvature regions is arguably the largest single task one has to establish in the
entire proof.
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3.13.1. Definition of a κ-solution. We fix a small number κ > 0
(basically the parameter that comes out of the non-collapsing theo-
rem). Here is the formal definition of a κ-solution:

Definition 3.13.1 (κ-solutions). A κ-solution is a Ricci flow t 7→
(M, g(t)) which is

(1) Ancient, in the sense that t ranges on the interval (−∞, 0];

(2) Complete and connected (i.e. (M,g(t)) is complete and con-
nected for every t);

(3) Non-negative Riemann curvature, i.e. Riem :
∧2

TM →∧2
TM is positive semidefinite at all points in spacetime;

(4) Bounded curvature, thus sup(t,x)∈(−∞,0]×M |Riem|g < +∞;

(5) κ-noncollapsed (see Definition 3.8.13) at every point (t0, x0)
in spacetime and at every scale r0 > 0;

(6) Non-flat, i.e. the curvature is non-zero at at least one point
in spacetime.

This laundry list of properties arises because they are the prop-
erties that we are able to directly establish on limits of rescaled Ricci
flows; see below.

Remark 3.13.2. If a d-dimensional Riemann manifold is both flat
(thus Riem = 0) and non-collapsed at every scale, then (by Cheeger’s
lemma, Theorem 3.8.9) its injectivity radius is infinite, and by normal
coordinates the manifold is isometric to Euclidean space Rd. Thus
the non-flat condition is only excluding the trivial Ricci flow M = Rd

with the standard (and static) metric. The non-flat condition tells
us that the (scalar, say) curvature is positive in at least one point
of spacetime, but we will shortly be able to use the strong maximum
principle to conclude in fact that the curvature is positive everywhere.

Remark 3.13.3. In three dimensions, the condition of non-negative
RIemann curvature is equivalent to that of non-negative sectional
curvature; see the discussion in Section 3.1. In any dimension, the
conditions of non-negative bounded Riemann curvature imply that
R and Ric are non-negative, and that |Riem|g, |Ric|g = O(R) and
R = Od(1). Thus as far as magnitude is concerned, the Riemann and
Ricci curvatures of κ-solutions are controlled by the scalar curvature.
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Now we discuss examples (and non-examples) of κ-solutions.

Example 3.13.4. Every gradient shrinking soliton or gradient steady
soliton (M, g) (see Section 3.9) gives an ancient flow. This flow will
be a κ-solution for sufficiently small κ if the Einstein manifold (M, g)
is complete, connected, non-collapsed at every scale, and is not Eu-
clidean space. For instance, the round sphere Sd with the standard
metric is a gradient shrinking solution and will generate a κ-solution
for any d ≥ 2 and sufficiently small κ > 0, which we will refer to as
the shrinking round sphere κ-solution.

Exercise 3.13.1. Show that the Cartesian product of two κ-solutions
is again a κ-solution (with a smaller value of κ), as is the Cartesian
product of a κ-solution. Thus for instance the product S2 × R of
the shrinking round 2-sphere and the Euclidean line is a κ-solution,
which we refer to as the shrinking round 3-cylinder S2 ×R.

Example 3.13.5. In one dimension, there are no κ-solutions, as
every manifold is flat; in particular, the 1-sphere (i.e. a circle) is
not a κ-solution (it is flat and also collapsed at large scales). In
two dimensions, the shrinking round 2-sphere S2 is κ-solution, as
discussed above. We can quotient this by the obvious Z/2 action to
also get a shrinking round projective plane RP2 as a κ-solution. But
we shall show in later lectures that if we restrict attention to oriented
manifolds, then the shrinking round 2-sphere is the only 2-dimensional
κ-solutions; this result is due to Hamilton, see e.g. [ChKn2004,
Chapter 5]. For instance, the 2-cylinder S1×R is not a κ-solution (it
is both flat and collapsed at large scales). The cigar soliton (Example
3.9.4) also fails to be a κ-solution due to it being collapsed at large
scales.

Example 3.13.6. In three dimensions, we begin to get significantly
more variety amongst κ-solutions. We have the round shrinking 3-
sphere S3, but also all the quotients S3/Γ of such round spheres by
free finite group actions (including the projective space RP3, but
with many other examples. We refer to these examples as round
shrinking 3-spherical space forms. We have also seen the shrinking
round cylinder S2×R; there are also finite quotients of this example
such as shrinking round projective cylinder RP2×R, or the quotient
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of the cylinder by the orientation-preserving free involution (ω, z) 7→
(−ω,−z). We refer to these examples as the unoriented and oriented
quotients of the shrinking round 3-cylinder respectively. The oriented
quotient can be viewed as a half-cylinder S2×[1,+∞) capped off with
a punctured RP3 (and the whole manifold is in fact homeomorphic
to a punctured RP3).

Example 3.13.7. One can also imagine perturbations of the shrink-
ing solutions mentioned above. For instance, one could imagine non-
round versions of the shrinking S2 or shrinking RP3 example, in
which the manifold has sectional curvature which is still positive
but not constant. We shall informally refer to such solutions as C-
components (we will define this term formally later, and explain the
role of the parameter C). Similarly one could imagine variants of the
oriented quotient of the shrinking round cylinder, which are approx-
imately round half-cylinders S2 × [1,+∞) capped off with what is
topologically either a punctured RP3 or punctured S3 (i.e. with
something homeomorphic to a ball); a 3-dimensional variant of a
cigar soliton would fall into this category (such solitons have been
constructed in [Br2004], [Ca1996]). We informally refer to such so-
lutions as C-capped strong ε-tubes (we will define this term precisely
later). One can also consider doubly C-capped strong ε-tubes, in which
an approximately round finite cylinder S2 × [−T, T ] is capped off at
both ends by either a punctured RP3 or punctured S3; such man-
ifolds then become homeomorphic to either S3 or RP3. (Note we
need to cap off any ends that show up in order to keep the manifold
M complete.)

An important theorem of Perelman shows that these examples of
κ-solutions are in fact the only ones:

Theorem 3.13.8 (Perelman classification theorem, imprecise ver-
sion). Every 3-dimensional κ-solution takes on one of the following
forms at time zero (after isometry and rescaling, if necessary):

(1) A shrinking round 3-sphere S3 (or shrinking round spherical
space form S3/Γ);

(2) A shrinking round 3-cylinder S2×R, the quotient RP2×R,
or one of its quotients (either oriented or unoriented);
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(3) A C-component;

(4) A C-capped strong ε-tube;

(5) A doubly C-capped strong ε-tube.

We will make this theorem more precise in later sections (see also
[MoTi2007, Chapter 9]).

Remark 3.13.9. At very large scales, Theorem 3.12.8 implies that an
ancient solution at time zero either looks 0-dimensional (because the
manifold was compact, as in the case of a sphere, spherical space form,
C-component, or doubly C-capped strong ε-tube) or 1-dimensional,
resembling a line (in the case of the cylinder) or half-line (for C-
capped strong ε-tube). Oversimplifying somewhat, this 0- or 1-dimensionality
of the three-dimensional κ-solutions is the main reason why surgery
is even possible; if Ricci flow singularities could look 2-dimensional
(such as S1 ×R2, or as the product of the cigar soliton and a line)
or 3-dimensional (as in R3) then it is not clear at all how to define
a surgery procedure to excise the singularity. The point is that all
the potential candidates for singularity that look 2-dimensional or
3-dimensional at large scales (after rescaling) are either flat or col-
lapsed (or do not have bounded nonnegative curvature), and so are
not κ-solutions. The unoriented quotiented cylinder RP2 × R also
causes difficulties with surgery (despite being only one-dimensional
at large scales), because it is hard to cap off such a cylinder in a
manner which is well-behaved with respect to Ricci flow; however if
we assume that the original manifold M contains no embedded copy
of RP2×R (which is for instance the case if the manifold is oriented,
and in particular if it is simply connected) then this case does not
occur.

Remark 3.13.10. In four and higher dimensions, things look much
worse; consider for instance the product of a shrinking round S2 with
the trivial plane R2. This is a κ-solution but has a two-dimensional
large-scale structure, and so there is no obvious way to remove sin-
gularities of this shape by surgery. It may be that in order to have
analogues of Perelman’s theory in higher dimensions one has to make
much stronger topological or geometric assumptions on the manifold.
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Note however that four-dimensional Ricci flows with surgery were al-
ready considered in [Ha1986] (with a rather different definition of
surgery, however).

The classification theorem lets one understand the geometry of
neighbourhoods of any given point in a κ-solution. Let us make the
following imprecise definitions (which, again, will be made precise in
later lectures):

Definition 3.13.11 (Canonical neighbourhoods, informal version).
Let (M, g) be a complete connected 3-manifold, let x be a point in M ,
and let U be an open neighbourhood of x. We normalise the scalar
curvature at x to be 1.

(1) We say that U is an ε-neck if it is close (in a smooth topol-
ogy) to a round cylinder S2 × (−R,R), with x well in the
middle of of this cylinder;

(2) We say that U is a C-component if U is diffeomorphic to S3

or RP3 (in particular, it must be all of M) with sectional
curvatures bounded above and below by positive constants,
and with diameter comparable to 1.

(3) We say that U is ε-round if it is close (in a smooth topology)
to a round sphere S3 or spherical space form S3/Γ (i.e. it
is close to a constant curvature manifold).

(4) We say that U is a (C, ε)-cap if it consists of an ε-neck
together with a cap at one end, where the cap is homeomor-
phic to either an open 3-ball or a punctured RP3 and obeys
similar bounds as a C-component, and that x is contained
inside the cap. (For technical reasons one also needs some
derivative bounds on curvature, but we omit them here.)

(5) We say that U is a canonical neighbourhood of x if it is one
of the above four types.

When the scalar curvature is some other positive number than 1, we
can generalise the above definition by rescaling the metric to have
curvature 1.

Using Theorem 3.12.8 (and defining all terms precisely), one can
easily show the following important statement:
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Corollary 3.13.12 (Canonical neighbourhood theorem for κ-solitons,
informal version). Every point in a 3-dimensional κ-solution that does
not contain an embedded copy of RP2 with trivial normal bundle is
contained in a canonical neighbourhood.

The next few sections will be devoted to establishing precise ver-
sions of Theorem 3.12.8, Definition 3.12.11, and Corollary 3.12.12.

3.13.2. High curvature regions of Ricci flows. Corollary 3.12.12
is an assertion about κ-solutions only, but it implies an important
property about more general94 Ricci flows:

Theorem 3.13.13 (Canonical neighbourhood for Ricci flows, infor-
mal version). Let t 7→ (M, g) be a Ricci flow of compact 3-manifolds
on a time interval [0, T ), without any embedded copy of RP2 with
trivial normal bundle. Then every point (t, x) ∈ [0, T ) × M with
sufficiently large scalar curvature is contained in a canonical neigh-
bourhood.

The importance of this theorem lies in the fact that all the sin-
gular regions that need surgery will have large scalar curvature, and
Theorem 3.12.13 provides the crucial topological and geometric con-
trol in order to perform surgery on these regions95.

Theorem 3.12.13 is deduced from Corollary 3.12.12 and a sig-
nificant number of additional arguments. The strategy is to use a
compactness-and-contradiction argument. As a very crude first ap-
proximation, the proof goes as follows:

(1) Suppose for contradiction that Theorem 3.12.13 failed. Then
one could find a sequence (tn, xn) ∈ [0, T ) ×M of points
with R(tn, xn) → +∞ which were not contained in canoni-
cal neighbourhoods.

94Actually, as with many other components of this proof, we actually need a
generalisation of this result for Ricci flow with surgery, but we will address this (non-
trivial) complication later.

95This is a significant oversimplification, as one has to also study certain “horns”
that appear at the singular time in order to find a particularly good place to perform
surgery, but we will postpone discussion of this major additional issue later in this
chapter.
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(2) M, being compact, has finitely many components; by re-
stricting attention to a subsequence of points if necessary,
we can take M to be connected.

(3) On any compact time interval [0, t]×M , the scalar curvature
is necessarily bounded, and thus tn → T . As a consequence,
if we define the rescaled Ricci flows g(n)(t) = 1

L2
n
g(tn+L2

nt),

where Ln := R(tn, xn)−1/2 is the natural length scale asso-
ciated to the scalar curvature at (tn, xn), then these flows
will become increasingly ancient. Note that in the limit
(which we will not define rigorously yet, but think of a
pointed Gromov-Hausdorff limit for now), the increasingly
large manifolds (M, g(n)(t)) may cease to be compact, but
will remain complete.

(4) Because of the Hamilton-Ivey pinching phenomenon (The-
orem 3.4.16), we expect the rescaled flows t 7→ (M, g(n)(t))
to have non-negative Ricci curvature in the limit (and hence
non-negative Riemann curvature also, as we are in three di-
mensions).

(5) If we can pick the points (tn, xn) suitably (so that the scalar
curvatureR(tn, xn) is larger than or comparable to the scalar
curvatures at other nearby points), then we should be able to
ensure that the rescaled flows t 7→ (M, g(n)(t)) have bounded
curvature in the limit.

(6) Since κ-noncollapsing is invariant under rescaling, the non-
collapsing theorem (Theorem 3.8.15) should ensure that the
rescaled flows remain κ-noncollapsed in the limit.

(7) Since the rescaled scalar curvature at the base point xn of
(M, g(n)) is equal to 1 by construction, any limiting flow will
be non-flat.

(8) Various compactness theorems (of Gromov, Hamilton, and
Perelman) exploiting the non-collapsed, bounded curvature,
and parabolic nature of the rescaled Ricci flows now allows
one to extract a limiting flow (M (∞), g(∞)). This limit is
initially in a fairly weak sense, but one can use parabolic
theory to upgrade the convergence to quite a strong (and
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smooth) convergence. In particular, the limit of the Ricci
flows will remain a Ricci flow.

(9) Applying Steps 2-8, we see that the limiting flow (M (∞), g(∞))
is a κ-solution.

(10) Applying Corollary 3.12.12, we conclude that every point
in the limiting flow lies inside a canonical neighbourhood.
Using the strong nature of the convergence (and the scale-
invariant nature of canonical neighbourhoods), we deduce
that the points (tn, xn) also lie in canonical neighbourhoods
for sufficiently large n, a contradiction.

There are some non-trivial technical difficulties in executing the
above scheme, especially in Step 5 and Step 8. Step 8 will require
some compactness theorems for κ-solutions which we will deduce in
later lectures. For Step 5, the problem is that the points (tn, xn) that
we are trying to place inside canonical neighbourhoods have large
curvature, but they may be adjacent to other points of significantly
higher curvature, so that the limiting flow (M (∞), g(∞)) ends up hav-
ing unbounded curvature. To get around this, Perelman established
Theorem 3.12.13 by a downwards induction argument on the curva-
ture, first establishing the result for extremely high curvature, then for
slightly less extreme curvature, and so forth. The point is that with
such an induction hypothesis, any potentially bad adjacent points of
really high curvature will be safely tucked away in a canonical neigh-
bourhood of high curvature, which in turn is connected to another
canonical neighbourhood of high curvature, and so forth; some basic
topological and geometric analysis then eventually lets us conclude
that this bad point must in fact be quite far from the base point
(tn, xn) (much further away than the natural length scale Ln, in par-
ticular), so that it does not show up in the limiting flow (M (∞), g(∞)).
We will discuss these issues in more detail in later lectures.

3.13.3. Benchmarks in controlling κ-solutions. As mentioned
earlier, the next few lectures will be focused on controlling κ-solutions.
It turns out that the various properties in Definition 3.12.1 interact
very well with each other, and give remarkably precise control on
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these solutions. In this section we state (without proofs) some of the
results we will establish concerning such solutions.

Proposition 3.13.14 (Consequences of Hamilton’s Harnack inequal-
ity). Let t 7→ (M, g(t)) be a κ-solution. Then R(t, x) is a non-
decreasing function of time. Furthermore, for any (t0, x0) ∈ (−∞, 0]×
M , we have the pointwise inequalities

(3.396) |∇l(t0,x0)|2 +R ≤
3l(t0,x0)

τ
and

(3.397) −2
l(t0,x0)

τ
≤
∂l(t0,x0)

∂τ
≤
l(t0,x0)

τ

on (−∞, t0) ×M , where of course τ := t0 − t is the backwards time
variable.

These inequalities follow from an important Harnack inequality[Ha1993]
of Hamilton (also related to the earlier paper [LiYa1986]) that we
will discuss in the next lecture. These results rely primarily on the
ancient and non-negatively curved nature of κ-solutions, as well as
the Ricci flow equation ġ = −2Ric of course.

Now one can handle the two-dimensional case:

Proposition 3.13.15 (Classification of 2-dimensional κ-solutions).
The only two-dimensional κ-solutions are the round shrinking 2-spheres.

This proposition relies on first studying a certain asymptotic limit
of the κ-solution, known as the asymptotic soliton, to be defined
later. One shows that this asymptotic limit is a round shrinking
2-sphere, which implies that the original κ-solution is asymptotically
a round shrinking 2-sphere. One can then invoke Hamilton’s rounding
theorem[Ha1982] to finish the claim.

Turning now to three dimensions, the first important result that
the curvature R decays slower at infinity than what scaling naively
predicts.

Proposition 3.13.16 (Asymptotic curvature). Let t 7→ (M, g(t)) be
a 3-dimensional κ solution which is not compact. Then for any time
t ∈ (−∞, 0) and any base point p ∈M , we have lim supx→∞R(t, x)dg(t)(x, p)2 =
+∞.
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The proof of Proposition 3.12.16 is based on another compactness-
and-contradiction argument which also heavily exploits some splitting
theorems in Riemannian geometry, as well as the following version of
the soul theorem of Cheeger and Gromoll [ChGr1972], first proven
by Perelman:

Theorem 3.13.17 (Perelman’s soul theorem). [Pe1994] Every com-
plete non-compact d-dimensional manifold with non-negative sectional
curvatures, and with strictly positive curvatures at at least one point,
is diffeomorphic to Rd.

The increasing curvature at infinity can be used to show that the
volume does not grow as fast at infinity as scaling predicts:

Proposition 3.13.18 (Asymptotic volume collapse). Let t 7→ (M, g(t))
be a 3-dimensional κ solution which is not compact. Then for any
time t ∈ (−∞, 0) and any base point p ∈M , we have lim supr→+∞Volg(t)(Bg(t))(p, r))/r3 =
0.

Note that Proposition 3.12.18 does not contradict the non-collapsed
nature of the flow, since one does not expect bounded normalised cur-
vature at extremely large scales. Proposition 3.12.18 morally follows
from Bishop-Gromov comparison geometry theory, but its proof in
fact uses yet another compactness-and-contradiction argument com-
bined with splitting theory.

An important variant of Proposition 3.12.18 and Proposition 3.12.16
(and yet another compactness-and-contradiction argument) states that
on any ball Bg(0)(p, r) at time zero on which the volume is large (e.g.
larger than νr3 for some ν > 0), one has bounded normalised curva-
ture, thus R = Oν(1/r2) on this ball. This fact helps us deduce

Theorem 3.13.19 (Perelman compactness theorem, informal ver-
sion). The space of all pointed κ-solutions (allowing κ > 0 to range
over the positive real numbers) is compact (in a suitable topology)
after normalising the scalar curvature at the base point to be 1.

One corollary of this compactness is that there is in fact a uni-
versal κ0 > 0 such that every κ-solution is a κ0-solution. (Indeed, the
proof of this universality is one of the key steps in the proof of the
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above theorem.) This theorem is proven by establishing some uni-
form curvature bounds on κ-solutions which come from the previous
volume analysis.

The proof of Theorem 3.12.8 (and thus Corollary 3.12.12) follows
from this compactness once one can classify the asymptotic solitons
mentioned earlier. This task in turn requires many of the techniques
already mentioned, together with some variational analysis of the
gradient curves of the potential function f that controls the geometry
of the soliton.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/05/16.
Thanks to Anton Fonarev for corrections.

3.14. Li-Yau-Hamilton Harnack inequalities and
κ-solutions

We now turn to the theory of parabolic Harnack inequalities, which
control the variation over space and time of solutions to the scalar
heat equation

(3.398) ut = ∆u

which are bounded and non-negative, and (more pertinently to
our applications) of the curvature of Ricci flows

(3.399) gt = −2Ric

whose Riemann curvature Riem or Ricci curvature Ric is bounded
and non-negative. For instance, the classical96 parabolic Harnack
inequality of Moser[Mo1964] asserts, among other things, that one
has a bound of the form

(3.400) u(t1, x1) ≤ C(t1, x1, t0, x0, T−, T+,M)u(t0, x0)

whenever u : [T−, T+]×M → R+ is a bounded non-negative solution
to (3.398) on a complete static Riemannian manifold M of bounded
curvature, (t1, x1), (t0, x0) ∈ [T−, T+]×M are spacetime points with
t1 < t0, and C(t1, x1, t0, x0, T−, T+,M) is a constant which is uni-
formly bounded for fixed t1, t0, T−, T+,M when x1, x0 range over a

96The even more classical elliptic Harnack inequality gives (3.398) in the steady
state case, i.e. for bounded non-negative harmonic functions.
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compact set. In terms of heat kernels, one can view (3.398) as an
assertion that the heat kernel associated to (t0, x0) dominates (up to
multiplicative constants) the heat kernel at (t1, x1).

The classical proofs of the parabolic Harnack inequality do not
give particularly sharp bounds on the constant C(t1, x1, t0, x0, T−, T+,M).
Such sharp bounds were obtained in [LiYa1986], especially in the
case of the scalar heat equation (3.398) in the case of static manifolds
of non-negative Ricci curvature, using Bochner-type identities and
the scalar maximum principle. In fact, a stronger differential version
of (3.400) was obtained which implied (3.400) by an integration along
spacetime curves (closely analogous to the L-geodesics considered in
earlier lectures). These bounds were particularly strong in the case of
ancient solutions (in which one can send T− → −∞). Subsequently,
Hamilton[Ha1993] applied his tensor-valued maximum principle to-
gether with some remarkably delicate tensor algebra manipulations
to obtain Harnack inequalities of Li-Yau type for solutions to the
Ricci flow (3.399) with bounded non-negative Riemannian curvature.
In particular, this inequality applies to the κ-solutions introduced in
Section 3.12.

In this section, we shall discuss all of these inequalities (although
we will not give the full details for the proof of Hamilton’s Harnack
inequality, as the computations are quite involved), and derive several
important consequences of that inequality for κ-solutions. The mate-
rial here is based on several sources, including [Ev1998], [Mu2006],
[MoTi2007], [CaZh2006], and of course the primary source papers
mentioned in this section.

3.14.1. Scalar parabolic Harnack inequalities. Before we turn
to the inequalities for Ricci flows (which are our main interest), we
first consider the simpler case of scalar non-negative bounded solu-
tions u : [T−, T+]×M → R+ to the heat equation (3.398) on a static
complete smooth Riemannian manifold (M, g). This case will not
actually be used in our applications but serve as an important mo-
tivating example of the method. Our basic tools will be the scalar
maximum principle and the following identity.
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Exercise 3.14.1. Let f : M → R be a smooth function. Establish
the Bochner formula

(3.401) ∆|∇f |2g = 2∇∇f∆f + 2|Hess(f)|2g + 2Ric(∇f,∇f).

Hint : use abstract index notation, and use the torsion-free nature of
the connection, combined with the definitions of Riemann and Ricci
curvature.

This leads to the following consequence:

Exercise 3.14.2. Let u : [T−, T+] ×M → R+ be a strictly positive
solution to (3.398), and let f := log u. Establish the nonlinear heat
equation identities

ft = ∆f +∇∇ff = ∆f + |∇f |2g(3.402)

∂t(∆f) = ∆(∆f) +∇∇f∆f + 2|Hessf |2g + 2Ric(∇f,∇f)
(3.403)

∂t(|∇f |2) = ∆(|∇f |2) +∇∇f (|∇f |2)− 2|Hessf |2g + 2Ric(∇f,∇f)
(3.404)

Now we can state the Li-Yau Harnack inequality.

Proposition 3.14.1 (Li-Yau Harnack inequality). Let M be a smooth
compact d-dimensional Riemannian manifold with non-negative Ricci
curvature, and let u : [T−, T+]×M → R+ be a strictly positive smooth
solution to (3.398). Then for every (t, x) ∈ (T−, T+]×M , we have

(3.405)
∂tu

u
− |∇u|

2

u2
+

d

2(t− T−)
≥ 0.

Proof. By adding an epsilon to u if necessary (and then sending
epsilon back to zero at the end of the argument) we may assume97

that u ≥ ε for some ε > 0. Write f := log u and F := ∆f . From
Cauchy-Schwarz we have |Hessf |2g ≥ 1

dF
2, and so from (3.403) we see

that F is a supersolution to a nonlinear heat equation:

(3.406) Ft ≥ ∆F +∇∇fF +
2
d
|F |2.

97We shall use this trick frequently in the sequel and refer to it as the epsilon-
regularisation trick.
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On the other hand, − d
2(t−T−) is a sub-solution to the same equation,

and the hypothesis that u is smooth and bounded below by ε (together
with the compactness of M) implies that F dominates − d

2(t−T−) at
times close to T−. Applying the scalar maximum principle (Corollary
3.4.3) we conclude that F ≥ − d

2(t−T−) . The claim (3.405) now follows
from (3.402) and the chain rule. �

Remark 3.14.2. One can extend this inequality to the case when
M is not compact, but is instead complete with bounded curvature,
as long as one now adds the hypothesis that u is bounded (which
was automatic in the compact case). The basic idea used to modify
the proof is to multiply u by a suitable weight that grows at infinity
to force the minimum value of F to lie in a compact set so that
the maximum principle arguments can still be applied; we omit the
standard details.

Remark 3.14.3. Observe that when M = Rd is Euclidean and u is
the fundamental solution u(t, x) = 1

(4π(t−T−))d/2 e
−|x−x0|2/4(t−T−) for

some x0 ∈ Rd, that (3.405) becomes an equality.

For strictly positive ancient solutions u : (−∞, 0]×M → R+ to
(3.398) on a compact manifold of non-negative Ricci curvature, one
can send T− to negative infinity, we conclude from (3.405) that

(3.407)
∂tu

u
≥ |∇u|

2

u2
.

In particular we see that ∂tu ≥ 0; thus non-negative ancient solutions
to the linear heat equation on compact manifolds of non-negative
Ricci curvature are non-decreasing98 in time.

One can linearise the inequality (3.407) in u, obtaining the asser-
tion that

(3.408) ∂tu−∇Xu+
1
4
|X|2gu ≥ 0

for any vector field X. Indeed (3.407) and (3.408) are easily seen to
be equivalent by the Cauchy-Schwarz inequality. One advantage of

98Actually, it turns out that the only such solutions are in fact constant, but we
will shortly generalise this assertion to less trivial situations.
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the formulation (3.408) is that it also holds true when u is merely non-
negative, as opposed to strictly positive u, by the epsilon-regularisation
trick. In terms of f = log u, (3.408) can also be expressed as

(3.409) ∂tf −∇Xf +
1
4
|X|2g ≥ 0

although now one needs u to be strictly positive for (3.13.1) to make
sense.

Now let (t0, x0), (t1, x1) ∈ (−∞, 0] ×M be points in spacetime
with t1 < t0, let τ1 := t0 − t1, and let γ : [0, τ1]→M be a path from
x0 to x1. From the fundamental theorem of calculus and the chain
rule we have

(3.410) f(t1, x1)− f(t0, x0) =
∫ τ1

0

−∂tf +∇Xf dτ

where X := γ′(τ) and the integrand is evaluated at (t0 − τ, γ(τ)).
Applying (3.13.1) and then exponentiating we obtain the Harnack
inequality

(3.411) u(t1, x1) ≤ exp(
1
4

∫ τ1

0

|X|2 dτ)u(t0, x0)

which can be extended from strictly positive solutions u to non-
negative solutions u by the epsilon-regularisation trick99. By choosing
γ to be the constant-speed minimising geodesic from x0 to x1, we thus
conclude that

(3.412) u(t1, x1) ≤ exp(d(x0, x1)2/4τ1)u(t0, x0).

Remark 3.14.4. Specialising to the case when u is a static harmonic
function and sending τ1 →∞ (and using Remark 3.13.2), we recover
a variant of Liouville’s theorem: a bounded harmonic function on a
Riemannian manifold of bounded non-negative curvature is constant.

Exercise 3.14.3. If the non-negative solution u to (3.398) is not
ancient, but is only restricted to a time interval [T−, T+], show that
one still has the variant

(3.413) u(t1, x1) ≤ (
t2 − T−
t1 − T−

)d/2 exp(d(x0, x1)2/4τ1)u(t0, x0).

99Observe the similarity here with the L-geodesic theory from Section ??.
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Exercise 3.14.4. If the non-negative solution u to (3.398) is re-
stricted to a time interval [T−, T+], and one no longer assumes that
the Ricci curvature is non-negative (but it will still be bounded, since
M is compact), establish the Harnack inequality (3.400) for some
C(t1, x1, t0, x0, T−, T+,M). Hint : repeat the above arguments but
with F replaced by Fκ := ∆f+κ|∇f |2 for some small κ. Show (using
(3.403), (3.404)) that if κ is small enough, then Fκ obeys an inequal-
ity similar to (3.13.1) but with an additional factor of −Oκ(|Fκ|) on
the right-hand side.

Exercise 3.14.5. Establish the strong maximum principle: if M is
compact and u : [T−, T+] ×M → R+ is a non-negative solution to
(3.398) which is not identically zero, then it is strictly positive for
times t ∈ (T−, T+] (or equivalently, if u vanishes at even one point in
(T−, T+]×M , then it is identically zero).

Exercise 3.14.6. Generalise the strong maximum principle to the
case when u is a supersolution ut ≥ ∆u to the heat equation rather
than a solution. Also generalise it to the case when the metric g is
not static, but instead varies smoothly in time. (For an additional
challenge, generalise further to the case when M is complete, the
metric has uniformly bounded Riemann curvature, u is bounded, and
one also has a drift term ∇Xu on the right-hand side of the equation
for some bounded X.)

Exercise 3.14.7. Using the final generalisation of Exercise 3.13.6,
as well as the evolution equation (3.2.3) for scalar curvature, show
that the scalar curvature of a κ solution is strictly positive at every
point in spacetime. (We will prove stronger versions of this fact later
in this section.)

Further variants and applications of these scalar Harnack inequal-
ities can be found in [LiYa1986].

3.14.2. Parabolic Harnack inequalities for the Ricci flow.
Now we turn from the scalar equation (3.398) to the Ricci flow equa-
tion (3.399), which one could think of as a kind of tensor-valued quasi-
linear heat equation (by de Turck’s trick, see Section 3.2). To begin
with let us first consider the simple two-dimensional case d = 2. In
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this case the Bianchi identities make the Riemann, Ricci, and scalar
curvatures are all essentially equivalent (see Section 3.1); in particular
one has the identity

(3.414) Ric =
1
2
Rg

in the two-dimensional case. In particular, the heat equation (3.2.3)
for scalar curvature simplifies to

(3.415) ∂tR = ∆R+R2

in this case; compare this with (3.398).

Suppose that the scalar curvature R is strictly positive. Setting
f := logR, one has an analogue of (3.402):

(3.416) ∂tf = ∆f +∇ff +R.

Exercise 3.14.8. If we set F := ∂tf − ∇ff = ∆f + R, show the
following analogue of (3.13.1):

(3.417) ∂tF ≥ ∆F + 2∇∇fF + F 2.

Hint : you will need to first derive the identity ∂t∆v = ∆∂tv+R∆v for
arbitrary smooth v. Conclude that if M is compact and R is strictly
positive on the time interval [T−, T+], then F ≥ −1/(t − T−), and
thus conclude Hamilton’s Harnack inequality for surfaces:

(3.418) ∂tR−
|∇R|2g
R

+
R

t− T−
≥ 0.

Extend this inequality to the case when R is merely non-negative
rather than strictly positive by setting f equal to log(R + ε) rather
than logR and then setting ε to zero100.

For ancient two-dimensional solutions with non-negative curva-
ture, we thus conclude from the Harnack inequality (3.418) that R
(and f = logR) obeys the same bounds (3.407), (3.408), (3.13.1) that
scalar solutions u did previously. In particular R is non-decreasing in
time, and more generally

(3.419) ∂tR−∇XR+
1
4
|X|2gR ≥ 0

100This is how one performs the epsilon regularisation trick for Ricci flow: by
modifying the logarithm function by an epsilon, rather than the solution.
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for any X. We can also obtain an analogue of (3.13.1). Also, observe
from the assumption of non-negative curvature and (3.399) that the
metric is non-increasing with time, and so we can also deduce an
analogue of (3.412):

(3.420) R(t1, x1) ≤ exp(dg(t1)(x0, x1)2/4τ1)R(t0, x0).

With a non-trivial amount of effort, one can extend Hamilton’s
Harnack inequality to higher dimensions. One cannot argue solely
using the scalar curvatureR, because the equation ∂tR = ∆R+2|Ric|2
for that curvature also involves the Ricci tensor, which thus also needs
to be controlled. What is worse, one cannot argue solely using the
Ricci tensor either, because the equation

(3.421) ∂tRicαβ = ∆Ricαβ + 2RicγδRiemδ
αγβ − 2RicαγRicγβ

for the evolution of that curvature involves the Riemann tensor. To
proceed, one in fact has to deal with the equation for the full Riemann
tensor,

(3.422) ∂tRiem = ∆Riem +O(g−1Riem2)

where O(g−1Riem2) is an explicit but rather complicated quadratic
expression in the Riemann curvature. This expression simplifies when
using a moving orthonormal frame, as was done in Section 3.4, to the
form

(3.423) ∂tT = ∆T + T 2 + T #.

By using (3.423) and many tensor calculations, one can (eventually)
establish a (rather complicated) analogue of the (3.419) for T , and
hence for Riem and then (after taking some traces) to R. In particu-
lar, we have

Theorem 3.14.5 (Hamilton’s Harnack inequality for ancient Ricci
flows). Let t 7→ (M, g(t)) be a complete ancient Ricci flow with non-
negative bounded Riemann curvature101. Then we have the pointwise
inequality

(3.424) ∂tR−∇XR+
1
2

Ric(X,X) ≥ 0

for any vector field X.

101Note in particular that all κ-solutions are of this form.
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Note that in the two-dimensional case, (3.424) collapses to (3.13.2)
thanks to (3.414).

The proof of (3.424) is remarkably delicate (in particular, go-
ing through the tensor curvature equation (3.423)), but ultimately
follows broadly similar lines to the previous arguments (i.e. Bochner-
type identities, Cauchy-Schwarz type inequalities, and tensor maxi-
mum principles). For technical reasons it is also convenient to carry
auxiliary tensor fields such as the vector field X appearing in (3.424)
throughout the argument. We refer the reader to [Ha1993] for de-
tails102.

Exercise 3.14.9. Suppose that (M, g) solves the gradient steady
soliton equation Ric + Hess(f) = 0 for some smooth f . Using the
Bianchi identity ∇αR = 2∇βRicαβ , establish the identity

(3.425) ∇αR = 2Ricαβ∇βf

(note this identity also holds for gradient shrinking or expanding soli-
tons) and then by taking divergences and using the Bianchi identity
again, establish that

(3.426) ∆R+ 2|Ric|2 = ∇αR∇αf.

Conclude that (3.424) is an identity in this case when one sets Xα :=
2∇αf .

3.14.3. Applications of the Harnack inequality. Now we de-
velop some applications of the Harnack inequality for κ-solutions.
One easy application follows by setting X equal to 0, giving the point-
wise monotonicity of the scalar curvature in time:

(3.427) ∂tR ≥ 0.

Another application is to obtain a slightly weakened version of
(3.420) (with the 4 in the denominator replaced by 2):

Exercise 3.14.10. Show that one has Ric(X,X) ≤ 1
2R|X|

2 when-
ever one has non-negative Riemann curvature. Using this and (3.424),

102There are alternate proofs, such as the one in [ChCh1995] using a metric
closely related to the high-dimensional metrics considered in Section 3.10, but all of
the proofs I know of require a significant amount of calculation.
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show that

(3.428) R(t1, x1) ≤ exp(dg(t1)(x0, x1)2/2τ1)R(t0, x0).

for all κ-solutions and all spacetime points (t0, x0), (t1, x1) with t1 <

t0.

Now we use the Harnack inequality to obtain some further con-
trol on the reduced length function l(t0,x0)(t1, x1). Recall that this
quantity takes the form

(3.429) l(t0,x0)(t1, x1) =
1√
2τ1

∫ τ1

0

√
τ(|X|2g +R) dτ

where X := γ′ and γ : [0, τ1]→M is a minimising L-geodesic, which
in particular means that it obeys the L-geodesic equation

(3.430) ∇XX −
1
2
∇XR+

1
2τ
X + 2Ric(X, ·)∗ = 0

(see (3.337)). Using (3.430) and the chain rule, we can compute the
total derivative d

dτ |X|
2 along the path γ as

(3.431)
d

dτ
|X|2 = ∇XR−

1
τ
|X|2 − 2Ric(X,X).

On the other hand, the Harnack inequality (3.424) (with X re-
placed by 2X) lets us bound the total derivative of R:

(3.432)
d

dτ
R ≤ −∇XR+ 2Ric(X,X).

We add (3.431) and (3.432) and rearrange to obtain

(3.433)
d

dτ
[τ3/2(|X|2 +R)] ≤ 3

2
√
τ(|X|2 +R)− τ1/2|X|2.

We (somewhat crudely) discard the non-negative τ1/2|X|2 term
and integrate in τ using (3.429) to obtain

(3.434) τ
3/2
1 (|X(τ1)|2 +R) ≤ 3

2
2τ1/2l(t1, x1)

where we abbreviate l(t0,x0) as l. Using the first variation formulae
for reduced length (see equations (3.371), (3.372)), as well as the
nonnegativity of R (and hence of l), we obtain the useful inequalities

(3.435) 0 ≤ |∇l|2 +R ≤ 3l
τ
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and

(3.436) −2l
τ
≤ ∂τ l ≤

l

τ
.

Informally, this means that at any given point (t1, x1) to the past
of (t0, x0), l is roughly constant at spatial scales

√
τ and at tempo-

ral scales τ . Furthermore, if l is bounded, then one has bounded
normalised curvature at such scales.

3.14.4. A splitting theorem. Our final application of these ideas
(or more precisely, of the strong maximum principle) will be to estab-
lish a dichotomy[Ha1986] for 3-dimensional κ-solutions: either their
Ricci curvature is strictly positive, or the solution splits locally as the
product of a line with a two-dimensional solution.

Proposition 3.14.6. [Ha1986] Let t 7→ (M, g(t)) be a three-dimensional
κ-solution. Suppose that the Ricci tensor has a zero eigenvalue at
some point (t0, x0). Then on the slab (−∞, t0) ×M , the Ricci flow
locally splits as the product of a two-dimensional Ricci flow and a
line.

Proof. The first stage is to show that the Ricci tensor has a zero
eigenvalue on all of (−∞, t0)×M . Let 0 ≤ ν ≤ µ ≤ λ denote the three
eigenvalues of the Riemann tensor T as viewed in an orthonormal
frame (as in Section 3.4), thus a zero eigenvalue of the Ricci tensor
is equivalent to ν + µ = 0. Suppose for contradiction that at some
time t1 < t0, this quantity is not identically zero, thus we can find
some non-negative scalar function h(t1, ·) : M → R+, not identically
zero, such that ν + µ ≥ h at time t1. We then extend h by the heat
equation, so by the strong maximum principle h is strictly positive
for all times after t1. From the convexity of the functional ν + µ

(which one can view as the minimal trace of T over two-dimensional
subspaces), we see that the set {(T , h) : ν+µ ≥ h} cuts out a fibrewise
convex parallel subset of a suitable vector bundle over [t1, t0]×M (in
the sense of the tensor maximum principle, Proposition 3.4.5), which
one can easily check to be preserved under the ODE associated to the
simultaneous evolution of (3.423) and the scalar heat equation for h.

Applying the tensor maximum principle we conclude that ν+µ ≥
h for all times in [t1, t0], and in particular that ν + µ is non-zero at
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(t0, x0), a contradiction. Thus the Ricci curvature must have a zero
eigenvalue on all of (−∞, t0) ×M , thus ν = µ = 0 on this slab. On
the other hand, from Exercise 3.13.7 we must have λ > 0 throughout
this slab.

The symmetric rank 2 tensor T thus has rank 1 at every point,
and thus locally can be expressed in the form T = av ⊗ v for some
smooth non-zero scalar a and a unit vector field v. (If M was ori-
entable, one could extend this vector field to be global). The equation
(3.423) then becomes

atv ⊗ v + av ⊗ vt + avt ⊗ v = (∆a+ a2)v ⊗ v
+ (∇αa)(v ⊗∇αv +∇αv ⊗ v) + 2a∇αv ⊗∇αv.

(3.437)

Since v is a unit vector field, the vector fields ∇Xv are orthogonal
to v for every v. Thus we can restrict to the component of (3.437) that
is completely orthogonal to v, and conclude (since a is nonzero) that
∇αv ⊗∇αv = 0. If we then inspect the component of (3.437) which
is partially orthogonal to v, we also learn that vt = 0. Expressing
the left-hand side in an orthonormal basis as the sum of rank one
positive semi-definite matrices, we easily conclude that ∇αv = 0, i.e.
v is parallel to the connection. This implies that the dual one-form
v∗ ∈ Γ(T ∗M) is closed and hence locally exact; thus v is locally the
gradient of some potential function f . From this we easily see that
the flow locally splits as the product of a two-dimensional flow (on a
level set of f) and a line (the flow lines of v), and then it is easy to
verify that the two-dimensional flow is a Ricci flow, as claimed. �

Remark 3.14.7. One cannot always extend this local splitting to a
global one, due to topological obstructions; consider for instance the
oriented round shrinking cylinder quotient (Example 3.12.6). One
could also imagine the product of a round shrinking S2 and a static
circle S1, in which the null eigenvector of the Ricci tensor splits off
as a circle rather than a line; but this is not a κ-solution because it
becomes collapsed at large scales in the distant past.

Remark 3.14.8. The above splitting analysis can be carried out
in any dimension; for instance, one can show that the rank of the
Riemann tensor is a constant for any ancient solution with bounded
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non-negative Riemann curvature. For this and further splitting re-
sults in this case, see [Ha1986].

Notes. This lecture first appeared at terrytao.wordpress.com/2008/05/19.

3.15. Stationary points of Perelman entropy or
reduced volume are gradient shrinking
solitons

We continue our study of κ-solutions. In Section 3.13 we primarily
exploited the non-negative curvature of such solutions; in this lec-
ture and the next, we primarily exploit the ancient nature of these
solutions, together with the finer analysis of the two scale-invariant
monotone quantities we possess (Perelman entropy and Perelman re-
duced volume) to obtain a important scaling limit of κ-solutions, the
asymptotic gradient shrinking soliton of such a solution.

The main idea here is to exploit what I have called the infinite
convergence principle (Section 1.3 of Structure and Randomness):
that every bounded monotone sequence converges. In the context
of κ-solutions, we can apply this principle to either of our monotone
quantities: the Perelman entropy
(3.438)

µ(g(t), τ) := inf{W(M, g(t), f, τ) :
∫
M

(4πτ)−d/2e−f dµ = 1}

where τ := −t is the backwards time variable and
(3.439)

W(M, g(t), f, τ) :=
∫
M

(τ(|∇f |2 +R) + f − d)(4πτ)−d/2e−f dµ,

or thePerelman reduced volume

(3.440) Ṽ(0,x0)(−τ) := τ−d/2
∫
M

e−l(0,x0)(−τ,x) dµ(x)

where x0 ∈ M is a fixed base point. As pointed out in Section 3.11,
these quantities are related, and both are non-increasing in τ . The
reduced volume starts off at (4π)d/2 when τ = 0, and so it must
it approach some asymptotic limit103 0 ≤ Ṽ(0,x0)(−∞) ≤ (4π)d/2 as

103We will later see that this limit is strictly between 0 and (4π)d/2.
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τ → −∞. On the other hand, the reduced volume is invariant under
the scaling

(3.441) g(λ)(t) :=
1
λ2
g(λ2t),

in the sense that

(3.442) Ṽ
(λ)
(0,x0)(−τ) = Ṽ(0,x0)(−λ2τ).

Thus, as we send λ → ∞, the reduced volumes of the rescaled flows
t 7→ (M, g(λ)(t)) (which are also κ-solutions) converge pointwise to a
constant Ṽ(0,x0)(−∞).

Suppose that we could somehow “take a limit” of the flows t 7→
(M, g(λ)(t)) (or perhaps a subsequence of such flows) and obtain some
limiting flow t 7→ (M (∞), g(∞)(t)). Formally, such a flow would then
have a constant reduced volume of Ṽ(0,x0)(−∞). On the other hand,
the reduced volume is monotone. If we could have a criterion as to
when the reduced volume became stationary, we could thus classify
all possible limiting flows t 7→ (M (∞), g(∞)(t)), and thus obtain infor-
mation about the asymptotic behaviour of κ-solutions (at least along
a subsequence of scales going to infinity).

We will carry out this program more formally in the next lecture,
in which we define the concept of an asymptotic gradient-shrinking
soliton of a κ-solution.

In this section, we content ourselves with a key step in this pro-
gram, namely to characterise when the Perelman entropy or Perelman
reduced volume becomes stationary; this requires us to revisit the the-
ory we have built up in the last few section. It turns out that, roughly
speaking, this only happens when the solution is a gradient shrinking
soliton, thus at any given time −τ one has an equation of the form
Ric + Hess(f) = λg for some f : M → R and λ > 0. Our compu-
tations here will be somewhat formal in nature; we will make them
more rigorous in the next lecture. The material here is largely based
on [MoTi2007], [Pe2002]. Closely related treatments also appear
in [KlLo2006], [CaZh2006].

3.15.1. Stationarity of the Perelman entropy. We begin with a
discussion of the Perelman entropy, which is simpler than the Perel-
man reduced volume but which will serve as a model for the latter.
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To simplify the exposition we shall argue at a formal level, assuming
all integrals converge, that all functions are smooth, all infima are
actually attained, etc.

In Exercise 3.9.9, we already saw that if f : (−∞, 0] ×M → R
solves the nonlinear backwards heat equation

(3.443) fτ = ∆f − |∇f |2g +R− d

2τ
then the quantity W(M, g(t), f, τ) obeyed the monotonicity formula

(3.444)
d

dτ
W(M, g(t), f, τ) = −

∫
M

H dµ

where H is the non-negative quantity

(3.445) H := 2τ |Ric + Hess(f)− 1
2τ
g|2(4πτ)−d/2e−f .

In terms of the function u := (4πτ)−d/2e−f , we also recall that (3.443)
can be rewritten as the adjoint heat equation uτ = ∆u + Ru. In
particular, we see that if W(M, g(t), f, τ) is ever stationary at some
time τ , then the solution must obey the gradient shrinking soliton
equation

(3.446) Ric + Hess(f) =
1
2τ
g

at that time τ . Using the uniqueness properties of Ricci flow (and of
the backwards heat equation), one can then show that (3.446) persists
for all subsequent times. Formally at least, this argument also shows
that the Perelman reduced entropy µ(M, g, τ) can only be stationary
on gradient shrinking solitons.

Let us analyse the monotonicity formula (3.444) further. If we
write
(3.447)
v := (τ(|∇f |2 +R) + f − d)(4πτ)−d/2e−f = (τ(|∇f |2 +R) + f − d)u

then (3.444) asserts that

(3.448)
d

dτ

∫
M

v dµ = −
∫
M

H dµ.

Since d
dτ dµ = R dµ, we thus see that ∂τv must equal −H−Rv plus a

quantity which integrates to zero (i.e. a divergence). Given this, and
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given the fact that u (which is a close relative to v) obeys the adjoint
heat equation), the following fact is then not so surprising:

Exercise 3.15.1. With the above assumptions, show that v obeys
the forced adjoint heat equation

(3.449) vτ = ∆v −Rv −H.

3.15.2. Stationarity in the Bishop-Gromov reduced volume.
Before we turn to the monotonicity of the Perelman reduced volume,
we first consider the simpler model case of the Bishop-Gromov re-
duced volume (Corollary 3.10.3). An inspection of the proof of that
result reveals that the key point was to establish the pointwise in-
equality

(3.450) ∆r ≤ d− 1
r

on a manifold (M, g) of non-negative Ricci curvature Ric ≥ 0, where
r := d(x, x0) for some fixed origin x0. To simplify the exposition let
us assume we are inside the injectivity radius, and away from the
origin, to avoid any issues with lack of smoothness. We gave a proof
of (3.450) using the second variation formula

(3.451)
d2

ds2
E(γ)|s=0 =

∫ 1

0

|∇XY |2g − g(Riem(X,Y )Y,X) dt

whenever γ : (−ε, ε) × [0, 1] → M is a geodesic at s = 0, with X =
∂tγ and Y := ∂sγ; (see (3.327)). From this (and the first variation
formula) we obtain the inequality

(3.452) Hess(r)(v, v) ≤
∫ 1

0

|∇XY |2g − g(Riem(X,Y )Y,X) dt

for any vector field Y along the minimising geodesic from x0 to x that
equals 0 at t = 0 and equals v at t = 1.

Of course, the only way that (3.452) can be an equality is if Y min-
imises the right-hand side subject to the constraints just mentioned.
A standard calculus of variations computation lets one extract the
Euler-Lagrange equation for this variational problem:
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Exercise 3.15.2. Show that if (3.452) is obeyed with equality, then
Y must obey the Jacobi equation

(3.453) ∇X∇XY + Riem(Y,X)X = 0.

Vector fields obeying (3.453) are known as Jacobi fields.

Recall from Section ?? that the inequality (3.450) was derived by
applying (3.452) for v in an arbitrary orthonormal frame, and with
Y (t) := tv, where v was extended by parallel transport along γ (thus
∇Xv = 0). Thus, in order for (3.450) to be obeyed with equality, the
fields Y (t) = tv must be a Jacobi field for each v. Applying (3.453),
and noting that X = ∂r, we conclude that we must have

(3.454) Riem(·, ∂r)∂r = 0

along γ in order for (3.450) to be obeyed with equality. The converse
is also true:

Exercise 3.15.3. Establish the identity

(3.455) ∇∂rHess(r)αβ + Hess(r)αγHess(r)γβ = −Riemαγδβ(∂r)γ(∂r)δ

in the injectivity region, and conclude (3.450) is true with equality
whenever (3.454) holds along the minimising geodesic γ.

As a consequence of the above analysis, we see that the Bishop-
Gromov reduced volume can only be stationary on a sphere when
(3.454) holds on the ball within that sphere.

We can also use the theory of Jacobi fields to get a more precise
formula for Hess(r) (and hence ∆r). The key observation is that the
Jacobi equation (3.453) can be written as the linearisation

(3.456) ∇Y (∇XX) = 0

of the geodesic equation ∇XX = 0. This is ultimately unsurprising,
since the geodesic equation and the Jacobi equation come from the
Euler-Lagrange equations for the energy functional and a quantity
related to a variation of the energy functional. But it allows us (at
least inside the injectivity region, which also turns out (again, unsur-
prisingly) to be the region where the boundary value problem for the
Jacobi equation always has unique solutions), to view Jacobi fields as
the infinitesimal deformation field of geodesics.
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Now let γ : (−ε, ε) × [0, 1] → M be a family of geodesics γs :
[0, 1]→M from x0 to x(s), so that ∇XX = 0 and so (by (3.456)) Y
is a Jacobi field104 for each s with Y (s, 0) = 0 and Y (s, 1) = v(s) :=
x′(s). The first variation formula (i.e. the Gauss lemma ∇r = X(1),
see Lemma 3.8.4) then gives

(3.457) ∇vr = g(X(·, 1), v)

and differentiating this again gives

(3.458) ∇v∇vr = g(∇vX(·, 1), v) + g(X(·, 1),∇vv).

Expanding out the left-hand side by the product rule and using (3.457)
and the torsion-free identity ∇YX = ∇XY we conclude the second
variation formula

(3.459) Hess(r)(v, v) = g(∇XY (1), v)

whenever Y is a Jacobi field along the minimal geodesic γ from x0

to x with Y (0) = 0 and Y (1) = v, and whenever one is inside the
injectivity region.

Exercise 3.15.4. Let Y be a Jacobi field with Y (0) = 0 and Y (1) =
v, and suppose one is inside the injectivity region. Use (3.459) and
(3.453) to show that (3.452) in fact holds with equality, thus providing
a converse to Exercise 3.14.2. Hint : apply the fundamental theorem
of calculus to the right-hand side of (3.459).

3.15.3. Constancy of the Perelman reduced volume. We can
obtain parabolic analogues of the above elliptic arguments to conclude
when the Perelman reduced volume is stationary. Again, let us argue
formally and assume that we are working inside the injectivity domain
from a point (0, x0).

Write l = l(0,x0). Recall from Section ?? that the proof of mono-
tonicity of reduced volume relied on the inequality

(3.460) ∂τ l −∆l + |∇l|2 −R+
d

2τ
≥ 0

104In general one no longer expects to have Y be geodesic in the s direction, i.e.
∇Y Y need not be zero, but this will not concern us.
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x which in turn followed from the three equalities and estimates

∇l = X(3.461)

∂τ l =
1
2
R− 1

2
|X|2g −

1
2τ
l(3.462)

∆l ≤ d

2τ
+

1
2
|X|2g −

1
2
R− 1

2τ
l.(3.463)

Thus, in order for the reduced volume to be stationary at some time
t = −τ1, one must have (3.460) (or equivalently, (3.463)) holding with
equality throughout M at this time.

It is convenient to normalise τ1 = 1. Recall from Section ?? that
the proof of (3.463) proceeded via the second variation formula

d2

ds2
L(γ) =

∫ 1

0

√
τ(Hess(R)(Y, Y )

+ 2|∇XY |2 − 2g(Riem(X,Y )Y,X)) dτ
(3.464)

applied to the vector field Y :=
√
τv, where v obeys the ODE

(3.465) ∇Xv = −Ric(v, ·)∗; v(s, 1) = x′(s).

As in the elliptic case, equality in (3.463) can only hold if Y obeys
the Euler-Lagrange equation for the right-hand side of (3.460), which
can be computed to be

∇X∇XY + Riem(Y,X)X − 1
2
∇Y (∇R)

+
1
2τ
∇XY + 2(∇Y Ric)(X, ·)∗ + 2Ric(∇XY, ·)∗ = 0.

(3.466)

Solutions of (3.466) are known as L-Jacobi fields. As in the elliptic
case, this equation can be rewritten as the linearisation

(3.467) ∇YG(X) = 0

of the L-geodesic equation G(X) = 0, where

(3.468) G(X) := ∇XX −
1
2
∇R+

1
2τ
X + 2Ric(X, ·)∗

was introduced in Section ??.

Exercise 3.15.5. Verify (3.466) and (3.467).
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If γ : (−ε, ε) × [0, τ1] → M is now a smooth family of minimis-
ing L-geodesics from (0, x0) to (−τ1, x1(s)), then the variation field
Y = ∂sX is an L-Jacobi field by (3.467) (and conversely, inside the
region of injectivity, any Jacobi field on a minimising geodesic can be
extended locally to such a smooth family. The first variation formula
(3.461) gives

(3.469) ∇vl = g(X, v)

where v(s) := x′1(s) = Y (s, 1), and so on differentiating again and
arguing as in the elliptic case we obtain

(3.470) Hess(l)(v, v) = g(∇XY (1), v)

whenever Y is an L-Jacobi field with Y (0) = 0 and Y (1) = v.

Exercise 3.15.6. Show (using (3.468) and the fundamental theorem
of calculus, as in Exercise 3.14.4) that (3.470) is equal to (3.464).

Now we return to our analysis of when the reduced volume is
stationary at τ = 1. We had found in that case that the vector field
Y :=

√
τv, where v solved (3.465), must be a Jacobi field. Combining

this with (3.470) we conclude that

(3.471) Hess(l)(v, v) =
1
2
|v|2 − Ric(v, v)

for any v, or in other words that

(3.472) Ric + Hess(l) =
1
2
g.

This is for time τ = 1; rescaling the above analysis gives more
generally that

(3.473) Ric + Hess(l) =
1
2τ
g.

We thus conclude (formally105, at least) that whenever the reduced
volume is stationary, then the manifold is a gradient shrinking soliton
(at that instant in time, at least) with potential function given by the
reduced length.

105The computation is only formal at present, because we have not addressed the
issue of what to do on the L-cut locus.
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Exercise 3.15.7. If (3.463) is obeyed with equality, show that the
function f := l obeys (3.443) and that W(M, g(t), f, τ) = 0 (cf. the
computations in Section 3.11.6). From this and (3.444), deduce an-
other (formal) proof of (3.473) whenever the reduced volume is sta-
tionary on an open time interval.

Remark 3.15.1. We have just seen that in the case of stationary
reduced volume, the function f that appears in the entropy functional
can be taken to be equal to the reduced length l. In general, one can
take f to be a function bounded from above by the reduced length;
see [Pe2002, Corollary 9.5].

3.15.4. Ricci flows of maximal reduced volume. Recall that
the reduced volume Ṽ(0,x0)(−τ) is equal to (4π)d/2 in the case of
Euclidean space, and converges to this value in the limit τ → 0 in
the case of complete Ricci flows of bounded curvature (this can be
shown by an analysis of the L-exponential map for small values of
τ , as discussed in Section 3.11). From this and the monotonicity of
reduced volume we conclude that

(3.474) Ṽ(0,x0)(−τ) ≤ (4π)d/2

for all such flows. We now characterise when equality occurs:

Theorem 3.15.2. Suppose that t 7→ (M, g(t)) is a connected Ricci
flow of bounded curvature on [−τ1, 0] for some τ1 > 0, such that
(3.474) is obeyed with equality at the initial time −τ1 for some point
x0 ∈M . Then M is Euclidean.

Proof. We give a sketch here only; full details can be found in
[MoTi2007, Proposition 7.27]. An inspection of the proof of mono-
tonicity of reduced volume (especially as viewed through the L-exponential
map, as in Section 3.11) reveals that the domain of injectivity Ω ⊂
Tx0M of the exponential map must have full measure, otherwise there
will be a loss of reduced volume. The previous analysis then reveals
that the equation (3.469) must hold outside of the cut locus; as l
is Lipschitz and the manifold is smooth, one can then take limits
and conclude that (3.469) holds globally (and so l is in fact smooth).
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Combining (3.469) with the Ricci flow equation we obtain

(3.475)
d

dt
g = L∇lg −

1
τ
g,

thus the metric is shrinking and also deforming by a vector field. In
particular this gives an analogous equation for the magnitude |Riem|2g
of curvature (see equations (3.459), (3.463)):

(3.476)
d

dt
|Riem|2g = ∇∇l|Riem|2g +

1
τ
|Riem|2g.

A maximum principle argument (which of course works in the absence
of the dissipation term) then shows that if supx |Riem|2g is strictly
positive at one time, then it blows up as τ → 0 (like 1/τ , in fact),
which is absurd; and so this supremum must always be zero. In other
words, the manifold is flat, and is therefore the quotient of Rd by some
discrete subgroup. But as the exponential map is almost always in
the injectivity domain, this subgroup must be trivial, and the claim
follows. �

Notes. This lecture first appeared at terrytao.wordpress.com/2008/05/21.

3.16. Geometric limits of Ricci flows, and
asymptotic gradient shrinking solitons

We now begin using the theory established in the last two lectures
to rigorously extract an asymptotic gradient shrinking soliton from
the scaling limit of any given κ-solution. This will require a num-
ber of new tools, including the notion of a geometric limit of pointed
Ricci flows t 7→ (M, g(t), p), which can be viewed as the analogue of
the Gromov-Hausdorff limit in the category of smooth Riemannian
flows. A key result here is Hamilton’s compactness theorem[Ha1995]:
a sequence of complete pointed non-collapsed Ricci flows with uniform
bounds on curvature will have a subsequence which converges geomet-
rically to another Ricci flow. This result, which one can view as an
analogue of the Arzelá-Ascoli theorem for Ricci flows, relies on some
parabolic regularity estimates for Ricci flow due to Shi[Sh1989].

Next, we use the estimates on reduced length from the Harnack
inequality analysis in Section 3.13 to locate some good regions of
spacetime of a κ-solution in which to do the asymptotic analysis.
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Rescaling these regions and applying Hamilton’s compactness theo-
rem (relying heavily here on the κ-noncollapsed nature of such so-
lutions) we extract a limit. Formally, the reduced volume is now
constant and so Section 3.14 suggests that this limit is a gradient
soliton; however, some care is required to make this argument rigor-
ous. In the next section we shall study such solitons, which will then
reveal important information about the original κ-solution.

Our treatment here is primarily based on [MoTi2007], [Ye2008];
other treatments can be found in [Pe2002], [KlLo2006], [CaZh2006],
[ChLuNi2006]. See also the foundational papers of [Sh1989], [Ha1995].

3.16.1. Geometric limits. To develop the theory of geometric lim-
its for pointed Ricci flows t 7→ (M, g(t), p), we begin by studying
such limits in the simpler context of pointed Riemannian manifolds
(M, g, p), i.e. a Riemannian manifold (M, g) together with a point
p ∈ M , which we shall call the origin or distinguished point of the
manifold. To simplify the discussion, let us restrict attention to com-
plete Riemannian manifolds (though for later analysis we will even-
tually have to deal with incomplete manifolds).

Definition 3.16.1 (Geometric limits). A sequence (Mn, gn, pn) of
pointed d-dimensional connected complete Riemannian manifolds is
said to converge geometrically to another pointed d-dimensional con-
nected complete Riemannian manifold (M∞, g∞, p∞) if there exists a
sequence V1 ⊂ V2 ⊂ . . . of connected neighbourhoods of p∞ increas-
ing to M∞ (i.e.

⋃
n Vn = M∞) and a sequence of smooth embeddings

φn : Vn →Mn mapping p∞ to pn such that

(1) The closure of each Vn is compact and contained in Vn+1

(note that this implies that every compact subset of M∞
will be contained in Vn for sufficiently large n);

(2) The pullback metric φ∗ngn converges in the C∞loc(M∞) topol-
ogy to g∞ (i.e. all derivatives of the metric converge uni-
formly on compact sets).

Example 3.16.2. The pointed round d-sphere of radius R converges
geometrically to the pointed Euclidean space Rd as R → ∞. Note
how this example shows that the geometric limit of compact manifolds
can be non-compact.
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Example 3.16.3. If (M, g) is Hamilton’s cigar (Example 3.9.4), and
pn is a sequence on M tending to infinity, then (M, g, pn) converges
geometrically to the pointed round 2-cylinder.

Example 3.16.4. The d-torus of length 1/n does not converge to
a geometric limit as n → ∞, despite being flat. More generally, the
sequence needs to be locally uniformly non-collapsed in order to have
a geometric limit.

Exercise 3.16.1. Show that the geometric limit (M∞, g∞, p∞) of a
sequence (Mn, gn, pn), if it exists, is unique up to (pointed) isometry.

Geometric limits, as their name suggests, tend to preserve all
(local) “geometric” or “intrinsic” information about the manifold,
although global information of this type can be lost. Here is a typical
example:

Exercise 3.16.2. Suppose that (Mn, gn, pn) converges geometrically
to (M∞, g∞, p∞). Show that Volg∞(Bg∞(p∞, r)) = limn→∞Volgn(Bgn(pn, r))
for every 0 < r < ∞, and that we have the Fatou-type inequality
Volg∞(M∞) ≤ lim infn→∞Volgn(Mn). Give an example to show that
the latter inequality can be strict.

Here is the basic compactness theorem for such limits.

Theorem 3.16.5 (Compactness theorem). Let (Mn, gn, pn) be a se-
quence of connected complete Riemannian d-dimensional manifolds.
Assume that

(1) (Uniform bounds on curvature and derivatives) For all k, r0 ≥
0, one has the pointwise bound |∇kRiemn|gn ≤ Ck,r0 on the
ball Bn(pn, r0) for all sufficiently large n and some constant
Ck,r0 .

(2) (Uniform non-collapsing) For every r0 > 0 there exists δ, κ >
0 such that Voln(x, r) ≥ κrd for all x ∈ Bn(pn, r0) and
0 < r ≤ δ, and all sufficiently large n.

Then, after passing to a subsequence if necessary, the sequence (Mn, gn, pn)
has a geometric limit.
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Proof. (Sketch) Let r0 > 0 be an arbitrary radius. From Cheeger’s
lemma (Theorem 3.8.9) and hypothesis 2, we know that the injec-
tivity radius on Bn(pn, 2r0) is bounded from below by some small
δ > 0 for sufficiently large n. Also, from the curvature bounds and
Bishop-Gromov comparison geometry (Lemma 3.10.1) we know that
the volume of Bn(pn, 2r0) is uniformly bounded from above for suffi-
ciently large n.

Now find a maximal δ/4-net xn,1, . . . , xn,k of Bn(pn, r0), thus
the balls Bn(xn,1, δ/8), . . . , Bn(xn,k, δ/8) are disjoint and the balls
Bn(xn,1, δ/4), . . . , Bn(xn,k, δ/4) cover Bn(pn, r0). Volume counting
shows that k is bounded for all sufficiently large n; by passing to a
subsequence we may assume that it is constant. Similarly we may
assume that all the distances dn(xn,i, xn,j) converge to a limit. Us-
ing the exponential map and some arbitrary identification of tangent
spaces with Rd, we can identify each ball Bn(xn,i, δ/2) with the stan-
dard Euclidean ball of radius δ/2. Any pair xn,i, xn,j of separation
less than δ/2 induces a smooth transition map from the Euclidean
ball of radius δ/2 into some subset of Rd, which can be shown by
comparison geometry to be uniformly bounded in C∞ norms; apply-
ing the (C∞ version of the) Arzelá-Ascoli theorem we may thus pass
to a subsequence and assume that all these transition maps converge
in C∞ to a limit. It is then a routine matter to glue together all
the limit transition maps to fashion an incomplete manifold to which
the balls Bn(p0, r0) converge geometrically (up to errors of O(δ) at
the boundary). Furthermore, as one increases r0, one can show (by a
modification of Exercise 3.15.1) that these limits are compatible. Now
letting r0 go to infinity (and using the usual diagonalisation trick on
all the subsequences obtained), and then gluing together all the in-
complete limits obtained, one can create the full geometric limit. �

Remark 3.16.6. One could use ultrafilters here in place of subse-
quences (cf. Section 1.5 of Structure and Randomness), but this does
not significantly affect any of the arguments.

Now we turn to geometric limits of pointed Ricci flows (Ricci
flows t 7→ (M, g(t)) with a specified origin p ∈M).
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Definition 3.16.7. Let t 7→ (Mn, gn(t), pn) be a sequence of pointed
d-dimensional complete connected Ricci flows, each on its own time
interval In. We say that a pointed d-dimensional complete connected
Ricci flow t 7→ (M∞, g∞(t), p∞) on a time interval I is a geometric
limit of this sequence if

(1) Every compact subinterval of I is contained in In for all
sufficiently large n.

(2) There exists neighbourhoods Vn of p∞ as in Definition 3.15.1,
compact time intervals Jn ⊂ I increasing to I, and smooth
embeddings φn : Vn → Mn preserving the origin such that
the pullback of the flow gn to Jn×Vn converges in spacetime
C∞loc to g∞.

Exercise 3.16.3. Show that if a sequence of κ-noncollapsed Ricci
flows (with a uniform value of κ) converges geometrically to another
Ricci flow, then the limit flow is also κ-noncollapsed.

Now we present Hamilton’s compactness theorem for Ricci flows,
which requires less regularity hypotheses than Theorem 3.15.5 due to
the parabolic smoothing effects of Ricci flow (as captured by Shi’s
estimates, see Theorem 3.15.13).

Theorem 3.16.8 (Hamilton compactness theorem). [Ha1995] Let
t 7→ (Mn, gn(t), pn) and In be as in Definition 3.15.7, and let I be an
open interval obeying hypothesis 1 of that definition. Let t0 ∈ I be a
time. Suppose that

(1) For every compact subinterval J of I containing t0 and every
r > 0, one has the curvature bound |Riemn|gn ≤ K on the
cylinder J × Bgn(t0)(pn, r) for some K = K(J, r) and all
sufficiently large n; and

(2) One has the non-collapsing bound Volgn(t0)(Bgn(t0)(pn, r)) ≥
κrd for some r > 0 and κ > 0, and all sufficiently large n.

Then some subsequence of t 7→ (Mn, gn(t), pn) converges geometri-
cally to a limit t 7→ (M∞, g∞(t), p∞) on I.
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Proof. By Shi’s estimates (Theorem 3.15.13) we can upgrade the
bound on curvature in hypothesis 1 to bounds on derivatives of cur-
vature. Indeed, these estimates imply that for any J , r as in that
hypothesis, and any k ≥ 0, we have |∇kRiemn|gn ≤ K for some
K = K(J, r, k) and sufficiently large n.

Now we restrict to the time slice t = t0 and apply Theorem
3.15.5. Passing to a subsequence, we can assume that (Mn, gn(t0), pn)
converges geometrically to a limit (M∞, g∞(t0), p∞).

For any radius r and any compact J in I containing t0, we can pull
back the flow t 7→ (Mn, gn(t), pn) to a (spatially incomplete) flow t 7→
(Bg∞(t0)(p∞, r), g̃n(t), p∞) on the cylinder J×Bg∞(t0)(p∞, r) for suffi-
ciently large n. By construction, g̃n(t0) converges in C∞loc(Bg∞(t0)(p∞, r))
norm to g∞(t0); in particular, it is uniformly bounded in each of the
seminorms of this space. Also, each t 7→ g̃n(t) is a Ricci flow with
uniform bounds on any derivative of curvature for sufficiently large
n.

Exercise 3.16.4. Using these facts, show that the sequence of flows
t 7→ g̃n is uniformly bounded in each of the seminorms of C∞loc(J ×
Bg∞(t0)(p∞, r)) for each fixed J, r, and for n sufficiently large.

By using the Arzelá-Ascoli theorem as before, we may thus pass
to a further subsequence and assume that t 7→ g̃n(t) converges in
C∞loc(J × Bg∞(t0)(p∞, r)) to a limiting flow t 7→ g∞(t). Clearly this
limit is a Ricci flow. Letting r →∞ and pasting together the resulting
limits one obtains106 the desired geometric limit. �

3.16.2. Locating an asymptotic gradient shrinking soliton.
We now return to the study of κ-solutions t 7→ (M, g(t)). We pick
an arbitrary point x0 ∈ M and consider the reduced length function
l = l(0,x0). Recall107 from (3.375) that we had

(3.477) inf
x∈M

l(t, x) < d/2

106One has to verify that every geodesic in (M∞, g∞(t), p∞) starting from p∞
can be extended to any desired length, thus establishing completeness by the Hopf-
Rinow theorem, but this is easy to establish given all the uniform bounds on the metric
and curvature, and their derivatives.

107This bound was obtained from the parabolic inequality ∂τ l ≥ ∆l +
l−(d/2)

τ

and the maximum principle.
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for every t < 0. Thus we can find a sequence (−τn, xn) ∈ (−∞, 0]×M
with τn →∞ such that

(3.478) l(−τn, xn) = O(1).

Now recall that as a consequence of Hamilton’s Harnack inequal-
ity, we have the pointwise estimates

(3.479) 0 ≤ |∇l|2 +R ≤ 3l
τ

and

(3.480) −2l
τ
≤ ∂tl ≤

l

τ

(see equations (3.435), (3.436)). From these bounds and Gronwall’s
inequality, one easily sees that we can extend (3.478) to say that

(3.481) l(−τ, x) = Or(1)

for any (−τ, x) in the cylinder [−τn/r,−rτn]×Bg(−τ ′)(xn, r
√
τn) and

any r ≥ 1 and τn/r ≤ τ ′ ≤ rτn. Applying (3.479) once more, together
with the hypothesis of non-negative curvature more, we also obtain
bounded normalised curvature on this cylinder:

(3.482) |Riem(−τ, x)|g = Or(τ−1).

If we thus introduce the rescaled flow t 7→ (Mn, gn(t), pn) by set-
ting Mn := M , pn := xn, and gn(t) := tng(ttn), we see that these
flows obey hypothesis 1 of Theorem 3.15.8. Also, since the origi-
nal κ-solutions are κ-noncollapsed, so are their rescalings, which (in
conjunction with hypothesis 1) gives us hypothesis 2. We can thus
invoke Theorem 3.15.8 and assume (after passing to a subsequence)
that the rescaled flows converge geometrically to an ancient Ricci flow
t 7→ (M∞, g∞(t), p∞) on the time interval t ∈ (−∞, 0). From Exercise
3.15.3 we see that this limit is also κ-noncollapsed. Since the rescaled
flows have non-negative curvature, the limit flow has non-negative
curvature also108.

Let ln : (−∞, 0)×Mn → R be the rescaled length function, thus
ln(t, x) := l(ttn, x). From (3.481) we see that ln is uniformly bounded

108Note however that we do not expect in general that (M∞, g∞(t)) has bounded
curvature (for instance, if the original κ-solution was a round shrinking sphere termi-
nating at the unit radius sphere, the limit object would be a round shrinking sphere
terminating at a point). In particular we do not expect (M∞, g∞) to be a κ-solution.
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on compact subsets of (−∞, 0) ×M∞ for n sufficiently large (where
we identify compact subsets of M∞ with subsets of Mn for n large
enough). By the rescaled versions of (3.480) and (3.481) we also see
that |∇ln|g∞ , |∂tln| is also uniformly bounded on such compact sets
for sufficiently large n; thus the ln are uniformly Lipschitz on each
compact set. Applying the Arzelá-Ascoli theorem and passing to a
subsequence, we may thus assume that the ln converge uniformly on
compact sets to some limit l∞, which is then locally Lipschitz.

Remark 3.16.9. We do not attempt to interpret l∞ as a reduced
length function arising from some point at time t = 0; indeed we
expect the limiting flow to develop a singularity at this time.

We know that the reduced volume
∫
M
τ−d/2e−l dµ is non-increasing

in τ and ranges between 0 and (4π)d/2, and so converges to a limit
Ṽ (−∞) between 0 and (4π)d/2. This limit cannot equal (4π)d/2 since
this would mean that the κ-solution is flat (by Theorem 3.14.2), which
is absurd. The limit cannot be zero either, since the bounds (3.481)
and the non-collapsing ensure a uniform lower bound on the reduced
volume. By rescaling, we conclude that

(3.483)
∫
Mn

τ−d/2e−ln dµn → Ṽ (−∞)

for each fixed τ > 0.

Let us now argue informally, and then return to make the argu-
ment rigorous later. Formally taking limits in (3.483), we conclude
that

(3.484)
∫
M∞

τ−d/2e−l∞ dµ∞ = Ṽ (−∞).

On the other hand, from the proof of the monotonicity of reduced
volume from Section ?? we have (formally, at least)

(3.485) ∂τ l −∆l + |∇l|2g −R+
d

2τ
≥ 0

and hence by rescaling

(3.486) ∂τ ln −∆ln + |∇ln|2gn −R+
d

2τ
≥ 0.
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Formally taking limits, we obtain

(3.487) ∂τ l∞ −∆l∞ + |∇l∞|2g∞ −R∞ +
d

2τ
≥ 0.

We can rewrite this as the assertion that τ−d/2e−l∞ is a subsolu-
tion of the backwards heat equation:

(3.488) (∂τ −∆g∞ −R∞)(τ−d/2e−l∞) ≤ 0.

This (formally) implies that the left-hand side of (3.484) is non-
increasing in τ . On the other hand, this quantity is constant in τ ;
and so (3.488) must be obeyed with equality, and thus

(3.489) ∂τ l∞ −∆l∞ + |∇l∞|2 −R∞ +
d

2τ
= 0.

Also, recall from Section ?? that

(3.490) ∂τ l =
1
2
R− 1

2
|∇l|2g −

1
2τ
l.

Rescaling and taking limits, we formally conclude that the same
is true for l∞;

(3.491) ∂τ l∞ =
1
2
R∞ −

1
2
|∇l∞|2g∞ −

1
2τ
l∞.

From (3.490) and (3.491) we obtain that the PerelmanW-functional

W(M∞, g∞(t), l∞, τ) =∫
M∞

(τ(|∇l∞|2 +R∞) + l∞ − d)(4πτ)−d/2e−l∞ dµ∞
(3.492)

vanishes (cf. Section 3.11.6). In particular, it is constant. On the
other hand, by (3.489) and the monotonicity formula for this func-
tional (see Exercise 3.9.9) we have

∂

∂τ
W(M∞, g∞(t), l∞, τ) =

−
∫
M

2τ |Ric∞ + Hess(l∞)− 1
2τ
g∞|2g∞(4πτ)−d/2e−l∞ dµ∞.

(3.493)

Combining this with the vanishing of (3.492) we thus conclude that

(3.494) Ric∞ + Hess(l∞)− 1
2τ
g∞ = 0
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and thus t 7→ (M∞, g∞(t)) is a gradient shrinking soliton as desired.

3.16.3. Making the argument rigorous I. Spatial localisation.
Now we turn to the (surprisingly delicate) task of justifying the steps
from (3.483) to (3.494).

The first task is to deduce (3.484) from (3.483). From the domi-
nated convergence theorem it is not difficult to show that

(3.495)
∫
Bn(pn,r)

τ−d/2e−ln dµn →
∫
B∞(p∞,r)

τ−d/2e−l∞ dµ∞

for any fixed τ and r; the difficulty is to prevent the escape of
mass109 of e−ln to spatial infinity.

In order to prevent such an escape, one needs a lower bound110

on ln(−τ, x) when dgn(−τ)(xn, x) is large. The problem is equivalent
to that of upper bounding dgn(−τ)(xn, x) in terms of ln(−τ, x). To
do this we need some control on quantities related to the distance
function at extremely large distances. Remarkably, such bounds are
possible. We begin with a lemma from [Pe2002] (related to an earlier
argument in [Ha1993b]).

Lemma 3.16.10. Let (M, g) be a d-dimensional Riemannian mani-
fold, let x, y ∈ M , and let r > 0. Suppose that Ric ≤ K on the balls
B(x, r) and B(y, r). Then for any minimising geodesic γ connecting
x and y, we have

∫
γ

Ric(X,X) �d Kr + r−1, where X := γ′ is the
velocity field.

Proof. We may assume that d(x, y) ≥ 2r, since the claim is trivial
otherwise. We recall from (3.327) the second variation formula

(3.496)
d2

ds2
E(γ) =

∫
γ

|∇XY |2 − g(Riem(X,Y )X,Y )

whenever one deforms a geodesic γ along a vector field Y . Since γ
is minimising, the left-hand side of (3.496) is non-negative when Y

vanishes at the endpoints of γ. Now let v be any unit vector at x,
transported by parallel transport along γ. Setting Y (t) to equal tv/r

109Fatou’s lemma will tell us that the left-hand side of (3.484) is less than or
equal to the right, but this is not enough for our application.

110Note that estimates such as (3.479), (3.480) only provide upper bounds on
ln(−τ, x).
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when 0 ≤ t ≤ r, equal to v when r ≤ t ≤ d(x, y) − r, and equal to
(d(x, y)− t)v/r when d(x, y)− r ≤ t ≤ d(x, y), we conclude that

(3.497)
∫
γ

g(Riem(X,Y )X,Y )� r−1.

Letting v vary over an orthonormal frame and summing, we soon
obtain the claim. �

The above lemma, combined with the Ricci flow equation, gives
an upper bound as to how rapidly the distance function can grow as
one goes backwards in time.

Corollary 3.16.11. Let t 7→ (M, g(t)) be a d-dimensional Ricci flow,
let x, y ∈M , let t be a time, and let r > 0. Suppose that Ric ≤ K on
Bg(t)(x, r) and on Bg(t)(y, r). Then d

dτ dg(t)(x, y) �d Kr + r−1 (in
the sense of forward difference quotients).

Using this estimate, we can now obtain a bound on distance in
terms of reduced length.

Proposition 3.16.12. Let t 7→ (M, g(t)) be a d-dimensional κ-solution,
let x0, p, p

′ ∈M , and τ1 > 0. Then

(3.498)
dg(−τ1)(p, p′)2

τ1
�d 1 + l(0,x0)(−τ1, p) + l(0,x0)(−τ1, p′).

Proof. We use an argument of Ye[Ye2008]. Write A for the expres-
sion inside the Od() on the right-hand side, and let γ, γ′ : [0, τ1]→M

be minimising L-geodesics from x0 to p, p′ respectively. By the fun-
damental theorem of calculus, we have

(3.499) dg(−τ1)(p, p′) =
∫ τ1

0

d

dτ
dg(−τ)(γ(−τ), γ′(−τ)) dτ.

Using (3.479) and the L-Gauss lemma ∇l = X we see that γ, γ′ move
at speed O(A1/2/τ1/2), and that all curvature tensors are O(A/τ)
in a O(τ1/2/A1/2)-neighbourhood of either curve. Applying Corol-
lary 3.15.11, the chain rule, and the Gauss lemma (Lemma 3.8.4) we
conclude that

(3.500)
d

dτ
dg(−τ)(γ(−τ), γ′(−τ))�d A

1/2/τ1/2;
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inserting this into (3.499) we obtain the claim. �

Combining this proposition with (3.481) and rescaling we see that
we have a bound of the form

(3.501) ln(−τ, x) ≥ cdgn(−τ)(pn, x)2/τ −Od(1)

for all x and some c = cd > 0; taking limits we also obtain

(3.502) l∞(−τ, x) ≥ cdg∞(−τ)(p∞, x)2/τ −Od(1).

On the other hand, from the Bishop-Gromov inequality we know
that balls of radius r in either (Mn, gn(−τ)) or (M∞, g∞(−τ)) have
volume Od(rd). These facts are enough to establish that the portion of
(3.483) or (3.484) outside of the ball of radius r decays exponentially
fast in r, uniformly in n, and this allows us to take limits in (3.495)
as r →∞ to deduce (3.484) from (3.483).

3.16.4. Making the argument rigorous II. Parabolic inequal-
ity for l∞. The next major task in making the previous arguments
rigorous is to justify the passage from (3.486) to (3.487). First of
all, because of the L-cut locus, (3.486) is only valid in the sense of
distributions. We would like to take limits and conclude that (3.487)
holds in the sense of distributions as well. There is no difficulty taking
limits with the linear terms ∂τ ln − ∆ln in (3.486), or in the zeroth
order terms −Rn + d

τ ; the only problem is in justifying the limit
from |∇ln|2gn to |∇l∞|2gn . We know that the ln are uniformly locally
Lipschitz, and converge locally uniformly to l∞; but this is unfortu-
nately not enough to ensure that |∇ln|2gn converges in the sense of
distributions to |∇l∞|2gn , due to possible high frequency oscillations
in ln. To give a toy counterexample, the one-dimensional functions
ln(x) := 1

n sin(nx) are uniformly Lipschitz and converge uniformly to
zero, but | ddx ln|

2 = cos2(nx) converges in the distributional sense to
1
2 rather than zero.

Since ∇ln − ∇l∞ is bounded and converges distributionally to
zero, it will be locally asymptotically orthogonal l∞. From this and
Pythagoras’ theorem we obtain

(3.503) lim
n→∞

|∇ln|2gn = |∇l∞|2g + lim
n→∞

|∇l∞ −∇ln|2gn
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in the sense of distributions, where we pass to a subsequence in order
to make the limits on both sides exist111. The task is now to show
that there is not enough oscillation to cause the second term on the
right-hand side to be non-vanishing.

To do this, we observe that (3.486) provides an upper bound on
∆gn ln; indeed on any fixed compact set in (−∞, 0) ×M∞, we have
∆gn ln ≤ O(1). This one-sided bound on the Laplacian is enough
to rule out the oscillation problem. Indeed, as ln converges locally
uniformly to l∞, we see that

(3.504) lim sup
n→∞

∫
M∞

φ(l∞ − ln + εn)∆gn ln dµn ≤ 0

for any non-negative bump function φ and εn → 0 chosen so that
l∞ − ln + εn ≥ 0 on the support of φ. Integrating by parts and
disposing of a lower order term, we conclude that

(3.505) lim sup
n→∞

∫
M∞

φ〈∇(ln − l∞),∇ln〉gn dµn ≤ 0.

On the other hand, since ∇(ln − l∞) is bounded converges weakly to
zero, one has

(3.506) lim sup
n→∞

∫
M

φ〈∇(ln − l∞),∇l∞〉g∞ dµ∞ → 0.

One can easily replace g∞ and µ∞ here by gn and µn. Combining
(3.505) and (3.506) we conclude that the second term on the RHS of
(3.503) is non-positive in the sense of distributions. But it is clearly
also non-negative, and so it vanishes as required.

This gives (3.487); as a by-product of the argument we have also
established the useful fact

(3.507) lim
n→∞

|∇ln|2gn = |∇l∞|2g

in the sense of distributions. Combining this with the growth bounds
(3.501), (3.502) on ln and l∞ from the previous section (which give
exponential decay bounds on e−ln , e−l∞ and their first derivatives),

111Note that gn converges locally uniformly to g and so there is no difficulty
passing back and forth between those metrics.
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it is not too difficult112 to then justify the remaining steps (3.488)-
(3.494) of the argument rigorously; see [MoTi2007, Section 9.2] for
full details.

3.16.5. The asymptotic gradient shrinking soliton is not flat.
Finally, we show that the asymptotic gradient shrinking soliton t 7→
(M∞, g∞(t)) is non-trivial in the sense that its curvature is not iden-
tically zero at some time. For if the curvature did vanish everywhere
at time t, then the equation (3.494) simplifies to Hess(l∞) = 1

2τ g∞.
On the other hand, being flat, (M∞, g∞(t)) is the quotient of Eu-
clidean space Rd by some discrete subgroup. Lifting l∞ up to this
space, we thus see that f is quadratic, and more precisely is equal
to |x|2/4τ plus an affine-linear function. Thus f has no periodicity
whatsoever and so the above-mentioned discrete subgroup is trivial.
If we now apply (3.484) we see that Ṽ (−τ) = (4π)d/2. But on the
other hand, as the original κ-solution was not flat, its reduced vol-
ume was strictly less than (4π)d/2 by Theorem 3.14.2, a contradiction.
Thus the asymptotic gradient soliton is not flat.

3.16.6. Appendix: Shi’s derivative estimates. The purpose of
this appendix is to prove the following estimate of Shi[Sh1989].

Theorem 3.16.13. [Sh1989] Suppose that t 7→ (M, g(t)) is a com-
plete d-dimensional Ricci flow on the time interval [0, T ], and that
on the cylinder [0, T ] × Bg(0)(x0, r0) one has the pointwise curva-
ture bound |Riem|g ≤ K. Then on any slightly smaller cylinder
(0, T ]×Bg(0)(x0, (1−ε)r0) one has the curvature bounds |∇kRiem|g =
O(t−k/2) for any k ≥ 0, where the implied constant depends on
d, T, r0,K, ε, k.

Proof. (Sketch) We induct on k. The case k = 0 is trivial, so sup-
pose that k ≥ 1 and that the claim has already been proven for all
smaller values of k. We allow all implied constants in the O() nota-
tion to depend on d, T, r0,K, ε, k. We refer to [0, T ] × Bg(0)(x0, r0)
and (0, T ] × Bg(0)(x0, (1 − ε)r0) as the “large cylinder” and “small
cylinder” respectively.

112Note that once one reaches (3.489), one has a nonlinear heat equation for l∞,
and it is not difficult to use the smoothing effects of the heat kernel to then show that
the locally Lipschitz function l∞ is in fact smooth.
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We make some reductions. It is easy to see that we can take r0

and T to be small.

Since |ġ|g = 2|Ric| = O(1) on the cylinder, we see that the
metric at later times of the large cylinder is comparable to the ini-
tial metric up to multiplicative constants. The curvature bound
tells us that if r0 is small, then we are inside the conjugacy radius;
pulling back under the exponential map, we may thus assume that
the exponential map from x0 is injective on the large cylinder. Let
r = dg(t)(x0, x) be the time-varying radial coordinate; observe that
the annulus {(1 − 2ε/3)r0 ≤ r ≤ (1 − ε/3)r0} will be contained be-
tween the large cylinder and small cylinder for T small enough.

Exercise 3.16.5. Show that if r0 and T are small enough, then
|Hess(r)|g = O(1/r) on the large cylinder.

Let η = η(r) be a smooth non-negative radial cutoff to the large
cylinder that equals 1 on the small cylinder. From the above exercise,
the Gauss lemma (Lemma 3.8.4), and the chain rule, we see that
|∇η|g, |∂tη|, |Hessη|g,∆η = O(1).

Now we study the heat equation obeyed by the “energy densities”
|∇mRiem|2g for various m.

Exercise 3.16.6 (Bochner-Weitzenböck type estimate). For anym ≥
0, show that

(∂t −∆)|∇mRiem|2g �
m∑
j=0

|∇jRiem|g|∇m−jRiem|g|∇mRiem|g

− 2|∇m+1Riem|2g.

(3.508)

Hint : start with the equation ∂tRiem = ∆Riem + O(g−1Riem2)
and use the product rule and the definition of curvature repeatedly.

From this exercise and the induction hypothesis we see that

(∂t −∆)[η2m+2tm|∇mRiem|2g] ≤ O(1) +O(η2mtm−1|∇mRiem|2g)

− 2η2m+2tm|∇m+1Riem|2g

(3.509)
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for all 0 ≤ m ≤ k, with the understanding that the second term on
the right-hand side is absent when m = 0. Telescoping this, we can
thus find an expression

(3.510) E :=
k∑

m=0

C−mη2m+2tm|∇mRiem|2g

for some sufficiently large positive constant C, which obeys the heat
equation (∂t −∆)E ≤ O(1). Also, by hypothesis we have E=O(1) at
time zero. Applying the maximum principle, we obtain the claim. �

Exercise 3.16.7. Suppose that in the hypotheses of Shi’s theorem
that we also have |∇jRiem| = O(1) for 0 ≤ j ≤ m on the large
cylinder at time zero. Conclude that we have |∇jRiem| = O(1 +
t−(j−m)/2) on the small cylinder for all j.

Exercise 3.16.8. Let (M, g) be a smooth compact manifold, and
let u : [0, T ] ×M → R be a bounded solution to the heat equation
∂tu = ∆u which obeys a pointwise bound |u(0)| ≤ K at time zero.
Establish the bounds |∇ku|g = O(t−k/2) on the spacetime [0, T ]×M
and all k ≥ 0, where the implied constant depends on (M, g), K, T ,
and k.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/05/27.
Thanks to Paul Smith and Dan for corrections.

3.17. Classification of asymptotic gradient
shrinking solitons

In Section 3.15, we showed that every κ-solution generated at least
one asymptotic gradient shrinking soliton t 7→ (M, g(t)). This soliton
is known to have the following properties:

(1) It is ancient: t ranges over (−∞, 0).

(2) It is a Ricci flow.

(3) M is complete and connected.

(4) The Riemann curvature is non-negative (though it could
theoretically be unbounded).

(5) dR
dt is non-negative.
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(6) M is κ-noncollapsed.

(7) M is not flat.

(8) It obeys the gradient shrinking soliton equation

(3.511) Ric + Hess(f) =
1
2τ
g

for some smooth f .

The main result of this section is to classify all such solutions in
low dimension:

Theorem 3.17.1 (Classification of asymptotic gradient shrinking
solitons). Let t 7→ (M, g(t)) be as above, and suppose that the dimen-
sion d is at most 3. Then one of the following is true (up to isometry
and rescaling):

(1) d = 2, 3 and M is a round shrinking spherical space form
(i.e. a round shrinking S2, S3, RP2, or S3/Γ for some
finite group Γ acting freely on S3).

(2) d = 3 and M is the round shrinking cylinder S2 × R or
the oriented or unoriented quotient of this cylinder by an
involution.

The case d = 2 of this theorem is due to [Ha1988]; the compact
d = 3 case is due to [Iv1993]; and the full d = 3 case was sketched
out in [Pe2002]. In higher dimension, partial results towards the full
classification (and also relaxing many of the hypotheses 1-8) have been
established in [PeWy2007], [NiWa2007], [Na2007]; these papers
also give alternate proofs of Perelman’s classification.

To prove this theorem, we induct on dimension. In 1 dimension,
all manifolds are flat and so the claim is trivial. We will thus take d =
2 or d = 3, and assume that the result has already been established
for dimension d− 1. We will then split into several cases:

(1) Case 1: Ricci curvature has a zero eigenvector at some point.
In this case we can use Hamilton’s splitting theorem to re-
duce the dimension by one, at which point we can use the
induction hypothesis.
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(2) Case 2: Manifold noncompact, and Ricci curvature is posi-
tive and unbounded. In this case we can take a further geo-
metric limit (using some Toponogov theory on the asymp-
totics of rays in a positively curved manifold) which is a
round cylinder (or quotient thereof), and also a gradient
steady soliton. One can easily rule out such an object by
studying the potential function of that soliton on a closed
loop.

(3) Case 3: Manifold noncompact, and Ricci curvature is posi-
tive and bounded. Here we shall follow the gradient curves
of f using some identities arising from the gradient shrinking
soliton equation to get a contradiction.

(4) Case 4: Manifold compact, and curvature positive. Here
we shall use Hamilton’s rounding theorem[Ha1982] to show
that one is a round shrinking sphere or spherical space form.

We will follow the treatment in [MoTi2007] of Perelman’s argument[Pe2002];
see also [KlLo2006], [CaZh2006], [ChLuNi2006] for other treat-
ments of this argument.

3.17.1. Case 1: Ricci curvature degenerates at some point.
This case cannot happen in two dimensions. Indeed, since the Ricci
curvature is conformal in this case, the only way that the Ricci curva-
ture can degenerate is if the scalar curvature vanishes also. But then
the strong maximum principle (Exercise 3.13.7) forces the gradient
shrinking soliton to be flat at all sufficiently early times (and hence
at all times), a contradiction113.

So now suppose that we are in three dimensions with bounded
Ricci curvature, and a point where the Ricci curvature vanishes. Then
by Hamilton’s splitting theorem (Proposition 3.13.6) the gradient
shrinking soliton locally splits into the product of a two-dimensional
flow and a line (for sufficiently early times, at least), with the Ricci
curvature being degenerate along these lines that foliate the flow114.
In particular, from (3.511) we see that Hess(f) is constant and strictly

113It turns out that this application of strong maximum principle can be extended
to cover the case in which one does not have bounded curvature.

114Again, one has to extend the strong maximum principle argument to cover
the case of unbounded curvature, but this can be done.
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positive along these lines; in other words, f is strictly convex (and
quadratic) along these lines. As a consequence, the lines cannot loop
back upon themselves.

By lifting to a double cover if necessary, we can find a global unit
vector field X along these lines, thus Ric(X, ·) = 0 and ∇X = 0. If
we set F := ∇Xf , we conclude from (3.511) that ∇F = X/2τ , thus
the level sets of F have X as a unit normal. Thus, at any fixed time,
we use F to globally split the manifold M (or a double cover thereof)
as the product of a line and a two-dimensional manifold (given by the
level sets of F ). Applying the induction hypothesis, we conclude that
M (or a double cover) is a product of a line and a round shrinking S2

or RP2 (as these are the only two-dimensional spherical space forms),
at which point we end up in alternative 2 of Theorem 3.16.1. (We
initially establish this fact only for sufficiently early times, but then
by uniqueness of Ricci flow one obtains it for late times also.)

Remark 3.17.2. We can also proceed here using the global splitting
theorem from [Ha1986, Lemma 9.1].

3.17.2. Case 2: Manifold non-compact, curvature positive
and unbounded. Now we handle the case in whichM is non-compact
(and in particular has a meaningful notion of convergence to spatial
infinity) with Ricci curvature strictly positive and unbounded. In
particular one has a sequence of points xn →∞ in M such that

(3.512) R(xn)d(x0, xn)2 →∞

at some time (which we can normalise to t = −1), where we arbitrar-
ily pick an origin x0 ∈M . Thus the curvature is not decaying as fast
as 1/d(x0, ·)2 at infinity, and may even be unbounded. Henceforth we
normalise t as t = −1 and write g for g(−1).

The basic idea here is to look at the rescaled pointed manifolds
(Mn, gn, pn) := (M,R(xn)1/2g, xn) and extract a limit in which the
original base point x0 has now been sent off to infinity (thanks to
(3.16.2)). There is a technical obstacle to doing this, though, which
is that the rescaled manifolds have bounded curvature at xn (indeed,
it has been normalised to equal 1) but might have unbounded cur-
vature at nearby points yn with respect to the rescaled metric (i.e.
points yn within distance O(R(xn)−1/2) = o(d(xn, x0)) in the original
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metric) because such points may have significantly higher curvature
than xn (e.g. R(yn) ≥ 4R(xn)). But it is easy to resolve this: simply
pick yn instead of xn. Now yn may itself be close to another point of
even higher curvature, but we can then move that point instead. We
can continue in this manner, moving in a geometrically decreasing se-
quence of distances, until we stop (which we must, since the manifold
is smooth and so curvature is locally bounded). The precise result of
this “point-picking argument”, originally due to Hamilton, that we
will need is as follows:

Exercise 3.17.1 (Point picking lemma). Assuming that (3.16.2)
holds for some sequence xn → ∞, show that there exists another
sequence yn →∞ also obeying (3.16.2), and such that for any A > 1,
and for all n sufficiently large depending on A, we have R(zn) ≤
4R(yn) for all zn ∈ B(yn, AR(yn)−1/2). If the original manifold had
unbounded curvature, show that we can also ensure that R(yn)→∞.

We now let yn be as above, and consider the rescaled manifolds
(Mn, gn, pn) := (M,R(yn)1/2g, yn). Using Hamilton’s compactness
theorem (Theorem 3.15.8) we may assume that these manifolds con-
verge geometrically to a limit (M∞, g∞, p∞) of nonnegative Riemann
curvature whose scalar curvature is at most 4 (and is equal to 1 at
p∞); in particular the limit has bounded curvature. From the ana-
logue of (3.16.2) for yn we have dgn(x0, pn) → ∞, and so x0 has
“escaped to infinity” in the limit M∞ (this shows in particular that
M∞ is non-compact).

Let rn := d(x0, yn), thus rn → ∞. By refining this sequence we
may assume that we have rapid growth in the sense that rn = o(rn+1).
Let x0yn be a minimising geodesic from x0 to yn; by compactness
we may assume that the direction of x0yn at x0 is convergent. In
particular, the angle subtended between x0yn and x0yn+1 is o(1). If
we let ynyn+1 be a minimising geodesic from yn to yn+1, we thus see
from the triangle inequality and the cosine rule (Lemma 3.16.6) that

(3.513) d(yn, yn+1) = rn+1 − rn + o(rn).

Using the cosine rule again, we see that the angle subtended between
x0yn and ynyn+1 is π − o(1). Using relative Toponogov comparison
(Exercise 3.16.3) we see that the rays x0yn and ynyn+1 asymptotically
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form a minimising geodesic, in the sense that d(z, yn) + d(yn, w) =
d(z, w)+o(1) for any z, w at a bounded distance away from yn on x0yn
and ynyn+1 respectively. From this, we see in the limit (M∞, g∞, p∞)
that there exists a minimising geodesic line through p∞. But by the
Cheeger-Gromoll splitting theorem (Theorem 3.16.8) we see that M∞
splits into the product of a line and a manifold Σ of one dimension less.
This cannot happen in the two-dimensional case d=2, since Σ becomes
one-dimensional and thus flat, and M∞ has non-zero curvature at p∞
(indeed, its scalar curvature is equal to 1). So we can now assume
d = 3.

We have only taken limits at time t = −1. But we can use
Hamilton’s compactness theorem (Theorem 3.15.8) again (using the
property ∂tR ≥ 0) and extend M∞ to a Ricci flow backwards in
time from t = −1; this is a limit of rescaled versions of (M, g, yn) by
R(yn)1/2. Since M was originally a gradient shrinking soliton, and
R(yn) is going to infinity, the limit (M∞, g∞, p∞) can be shown to be
a gradient steady soliton: Ric∞ + Hess(f∞) = 0 for some f∞.

Since M∞ had bounded curvature at time t = −1, it had bounded
curvature for all previous times also. Since the Ricci curvature is
vanishing along one direction, we can now apply the Case 1 argument
and show that M∞ is the product of a line and a round shrinking S2

or RP2. In particular, M∞ contains closed geodesic loops γ on which
the Ricci curvature Ric(X,X) is strictly positive. From the gradient
steady equation, this means that f∞ is strictly concave on this loop,
which is absurd. Thus this situation does not occur.

Remark 3.17.3. In [MoTi2007], the contradiction was obtained
using the soul theorem (Theorem 3.12.17), and a rather non-trivial
result asserting that complete manifolds of non-negative sectional cur-
vature cannot contain arbitrarily small necks, but the above argument
seems to be somewhat shorter. An even simpler argument (avoiding
the use of the splitting theorem altogether) was given in [Na2007],
based on the observation (from (3.511)) that the normalised gradient
vector field ∇f/|∇f | of the potential function becomes increasingly
parallel to the connection if |∇f | goes to infinity. We thank Peter
Petersen for pointing out Naber’s argument to us.
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3.17.3. Case 3: M noncompact, curvature positive and bounded.
Now we assume that M is compact, with Ricci curvature strictly pos-
itive but also bounded. By Lemma 3.15.10, we conclude in particular
that

(3.514)
∫
γ

Ric(X,X) ds ≤ C

for some C and all minimising geodesics (thus the Ricci curvature
must decay along long geodesics). On the other hand, along such a
geodesic, we see from (3.511) that

(3.515)
d2

ds2
f(γ(s)) =

1
2
− Ric(X,X).

From (3.16.3) and (3.515) we see that ∇Xf(γ(s)) increases like s/2
as s → ∞. Similarly, if E is any vector field orthogonal to X and
transported by parallel transport along γ, an application of Cauchy-
Schwarz, (3.16.3), and the bounded curvature hypothesis gives

(3.516) |
∫
γ

Ric(X,E)| ds ≤ C ′|γ|1/2

while (3.511) gives

(3.517)
d

ds
∇Ef(γs)) = −Ric(X,E)

and so ∇Ef(γ(s)) grows like at most O(s1/2) as s → ∞. These
bounds ensure that f goes to +∞ at infinity (in particular, it is a
proper function), and that there exist curves following the gradient
∇f of f which go to infinity.

On the other hand, using the identity

(3.518) ∇αR = 2Ricαβ∇βf

(see (3.425)) we see that ∇∇fR > 0, thus R is increasing along gra-
dient flow curves. In particular, R(∞) := lim supx→∞R(x) is strictly
positive (and finite, since curvature is bounded).

As a consequence, we can repeat the point-picking arguments
from Case 2 and extract a sequence of points yn → ∞ for which
(M, g, xn) converges geometrically to a limit (M∞, g∞, p∞), which
has scalar curvature R(∞) at p∞. Since M is a gradient shrinking
soliton on (−∞, 0), one can show that M∞ is also. By repeating
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the Case 2 analysis one can show that M∞ is also a round shrinking
R× S2 or R×RP2. Since these solitons have scalar curvature 1 at
time −1, we thus have R(∞) = 1.

For sake of argument let us take M to be the round shrinking
cylinder R × S2; the other case is similar but with all areas divided
by a factor of two115.

Now we return to the original gradient shrinking soliton M . Since
R is strictly increasing along gradient flow curves, we conclude that
R < 1 near infinity. Since M has non-negative Riemann curvature,
this implies Ric < 1

2g near infinity. From (3.511) this implies that f
is strictly convex (i.e. Hess(f) > 0) near infinity. Thus the level sets
of f have increasing area. On the other hand, on any region of M
that approaches M∞ (e.g. in the neighbourhoods of yn) one easily
sees (e.g. from (3.511), or from the analysis from Case 2) that the
level sets of f converge to the sections S2 of the cylinder, which have
area 8π (note we are normalising the scalar curvature here to be 1,
rather than the sectional curvature, which is 1/2). Thus the level sets
Σ of f have area strictly less than 8π.

On the other hand, from the Gauss-Codazzi formula (3.118), the
Gaussian curvature K of Σ is given by the formula

(3.519) K = KM + det(Π)

where KM is the sectional curvature of Σ, and Π = Hess(f)|Σ
|∇f | is the

second fundamental form. Applying (3.511) we eventually compute

(3.520) 2K ≤ R− 2Ric(n, n)− (1−R+ Ric(n, n))2

2|∇f |2
.

Following the gradient flow lines of f , we see from previous analysis
that |∇f | goes to infinity (while curvature stays bounded and strictly
positive), and so it is not hard to see that the right-hand side must
be strictly less than 1 near infinity. But this means that

∫
Σ
K < 4π,

contradicting the Gauss-Bonnet formula (Proposition 3.5.2). Thus
Case 3 cannot in fact occur.

115One can also eliminate this case by appealing to the soul theorem (Theorem
3.12.17), or by adding an additional hypothesis throughout the argument that the

manifolds being studied do not contain embedded RP2’s with trivial normal bundle.
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3.17.4. Case 4: M compact, strictly positive curvature. Let
us first deal with the two-dimensional case. Here one could use Hamil-
ton’s results[Ha1988] on Ricci flow for surfaces to show that this gra-
dient shrinking soliton must be a round shrinking S2 or RP2, but we
give here an argument adapted from [ChKn2004]. It relies on the
following identity, that provides an additional global constraint on
the curvature R beyond that provided by the Gauss-Bonnet theorem:

Lemma 3.17.4 (Kazhdan-Warner type identity). Let (M, g) be a
compact surface, and let X be a conformal Killing vector field (thus
LXg is a scalar multiple of g). Then

∫
M
RdivX dµ = 0.

Proof. When M has constant curvature, the claim is clear by inte-
gration by parts. On the other hand, by the uniformisation theorem,
any metric g can be conformally deformed to a constant curvature
metric. Note also from definition that a conformal Killing vector field
remains conformal after any conformal change of metric. Thus it
suffices to show that

∫
M
RdivX dµ is constant under any conformal

change ġ = ug of g, keeping X static.

From the variation formulae from Section 3.2, we have Ṙ =
−Ru−∆u and ḋµ = u dµ. Inserting these formulae and integrating
by parts to isolate u, we see that it suffices to show that ∇α(XαR) +
∆(∇αXα) = 0. On the other hand, since LXgαβ = ∇αXβ +∇βXα

is conformal, we have the identity ∇αXβ + ∇βXα = (∇γXγ)gαβ .
Taking divergences of this identity twice and rearranging derivatives
repeatedly, we eventually obtain this claim. �

Remark 3.17.5. This identity is closely related to one in [KaWa1974].
I do not know of any proof of the Kazhdan-Warner identity that does
not require the uniformisation theorem; the result seems to have an
irreducibly “global” nature to it.

Now we apply this lemma to the vector field ∇f , which is con-
formal thanks to (3.511). We conclude that

∫
M
R∆f dµ = 0. On

the other hand, from the trace of (3.511) we have R − 1/τ = ∆f .
Integrating this against ∆f we conclude that

∫
M
|∆f |2 dµ = 0, thus

f is harmonic; and so R = 1/τ . M is now constant curvature and is
therefore either a round shrinking S2 or RP2 as required.
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Now we turn to three dimensions. The result in this case follows
immediately from Hamilton’s rounding theorem[Ha1982], but we will
take advantage of the gradient shrinking soliton structure to extract
just the key components of that theorem here. Let λ ≥ µ ≥ ν ≥ 0
denote the eigenvalues of the Riemann curvature. Note that as the
Ricci curvature is positive, µ+ ν is strictly greater than zero.

The quantity (µ + ν)/λ ranges between 0 and 2 and reaches a
minimum value δ at some point x. If we rewrite things in terms of
the tensor T from Section 3.4, the gradient shrinking soliton structure
means that

(3.521)
1
τ
T = ∆T + L∇fT + T 2 + T #.

But the region {T : ν ≥ 0;µ+ν ≥ δλ} is fibrewise convex and parallel,
and at x, 1

τ T and L∇fT are tangential to this region and ∆T is
tangential or inward. On the other hand, a computation shows that
T 2 +T # is strictly inward unless δ = 2, in which case it is tangential.
So we must have δ = 2, which implies that λ = µ = ν. In other
words, the Ricci tensor is conformal: Ric = 1

3Rg. Comparing this
with the Bianchi identity ∇αR = 2∇βRicαβ (see (3.31)) we conclude
that ∇R = 0, and thus ∇Ric = 0. Thus M has constant sectional
curvature and is therefore a round shrinking spherical space form, as
required.

The proof of Theorem 3.16.1 is now complete.

3.17.5. Appendix: Toponogov theory. Roughly speaking, To-
ponogov comparison theory[To1959] is to triangle geometry as Bishop-
Gromov theory is to volumes of balls: in both cases, lower bounds
on curvature are used to bound the geometry of Riemannian mani-
folds by model geometries such as Euclidean space. This theory links
modern Riemannian geometry with the more classical approach to
curved space (or non-Euclidean geometries) which often proceeded
via analysing the angles formed by a triangle. The material here is
loosely drawn from [Pe2006].

Lemma 3.17.6 (Toponogov cosine rule). Let (M, g) be a complete
Riemannian manifold of non-negative sectional curvature, and let
x0, x1, x2 be three distinct points in M . Let θ be the angle formed
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at x1 by the minimising geodesics from x0, x2 to x1. Then
(3.522)

d(x2, x0)2 ≤ d(x1, x0)2 + d(x2, x1)2 − 2d(x1, x0)d(x2, x1) cos θ.

Of course, when M is flat we have equality in (3.522), by the
classical cosine rule.

Proof. Let f be the function f(x) := 1
2d(x, x0)2, and let γ : [0, d(x2, x1)]→

M be the unit speed geodesic from x1 to x2. Our task is to show that

(3.523) f(γ(t)) ≤ f(γ(0)) +
1
2
t2 − td(x1, x0) cos θ

for t = d(x2, x1). From the Gauss lemma (Lemma 3.8.4) we know
that d

dtf(γ(t))|t=0 ≤ −d(x1, x0) cos θ. On the other hand, from the
second variation formula (3.331) for distance and the non-negative
sectional curvature assumption we have116 d2

dt2 f(γ(t)) ≤ 1. The claim
follows. �

There is an appealing reformulation of this lemma. Define a tri-
angle to be three points A, B, C connected by three minimising
geodesics AB, BC, CA.

Exercise 3.17.2 (Positive curvature increases angles). Let ABC be
a triangle in a Riemannian manifold of non-negative sectional curva-
ture, and let A′B′C ′ be a triangle in Euclidean space with the same
side lengths as ABC. Show that the angle subtended at A is larger
than or equal to that subtended at A′ (and similarly of course for B
and B′, and C and C ′). In particular, the sum of the angles of ABC
is at least π.

There is also a relative version of this result:

Exercise 3.17.3 (Relative Toponogov comparison). Let the notation
and assumptions be as in the previous exercise. Let X, Y be points
on AB, AC respectively, and let X ′, Y ′ be the corresponding points
on A′B′ and A′C ′. Show that the length of XY is greater than or
equal to the length of X ′Y ′. Hint : it suffices to do this in the case
X = B (or Y = C), since the general case follows by two applications

116Actually one has to justify this in a suitable barrier sense when one is in the
cut locus, but let us ignore this issue here for simplicity.
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of this special case. Now repeat the argument used to prove Lemma
3.16.6.

Remark 3.17.7. Similar statements hold when one assumes that
the sectional curvatures are bounded below by some number K other
than zero. In this case, one replaces Euclidean space with the model
geometry of constant curvature K, much as in the discussion of the
Bishop-Gromov inequality in Section 3.10. See [Pe2006] for details.

3.17.6. The Cheeger-Gromoll splitting theorem. When a man-
ifold has positive curvature, it is difficult for long geodesics to be
minimising; see for example Myers’ theorem (Exercise 3.10.2) for one
instance of this phenomenon. Another important example of this is
the Cheeger-Gromoll splitting theorem:

Theorem 3.17.8 (Splitting theorem). [ChGr1971] Let (M, g) be
a complete Riemannian manifold of nonnegative Ricci curvature that
contains a minimising geodesic line γ : R → M . Then M splits as
the product of R with a manifold of one lower dimension.

Remark 3.17.9. If one strengthens the non-negative Ricci curva-
ture assumption to non-negative sectional curvature, this follows from
[To1964]; if one strengthens further to have a uniform positive lower
bound on sectional curvature, then this follows from Myers’ theorem
(Exercise 3.10.2).

Proof. We can parameterise γ to be unit speed. Consider the Buse-
mann functions B+, B− : M → R defined by

(3.524) B±(x) := lim
t→±∞

d(γ(t), x)− t.

One can show that the limits exist (because, by the triangle inequality,
the expressions in the limits are bounded and monotone), and that
B+, B− are both Lipschitz. From the non-negative curvature we have
the upper bound Hess(r)(v, v) ≤ 1/r for any distance function r =
d(x, x0) (see (3.331)); applying this with x0 = γ(t) and letting t →
±∞ we obtain the concavity Hess(B±) ≤ 0. In particular, B+ +B− is
concave. On the other hand, from the triangle inequality we see that
B+ + B− is non-negative and vanishes on γ. Applying the (elliptic)
strong maximum principle (which can be viewed as the static case
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of the parabolic strong maximum principle, Exercise 3.13.5, though
in the static case the bounded curvature hypothesis is not needed)
we conclude that B+ + B− vanishes identically. Since B+ and B−
were both concave, they now must flat in the sense that Hess(B+) =
Hess(B−) = 0. In particular they are smooth, and the gradient vector
field X := ∇B+ is parallel to the Levi-Civita connection. On the
other hand, by applying the Gauss lemma (Lemma 3.8.4) carefully
we see that X is a unit vector field. Thus X splits M into a line and
the level sets of B+ (cf. Proposition 3.13.6) as desired. �

Notes. This lecture first appeared at terrytao.wordpress.com/2008/05/30.

3.18. The structure of κ-solutions

Having classified all asymptotic gradient shrinking solitons in three
and fewer dimensions in Section 3.16, we now use this classification,
combined with extensive use of compactness and contradiction argu-
ments, as well as the comparison geometry of complete Riemannian
manifolds of non-negative curvature, to understand the structure of
κ-solutions in these dimensions, with the aim being to state and prove
precise versions of Theorem 3.12.8 and Corollary 3.12.12.

The arguments are particularly simple when the asymptotic gra-
dient shrinking soliton is compact; in this case, the rounding the-
orems of Hamilton[Ha1982] show that the κ-solution is a (time-
shifted) round shrinking spherical space form. This already classifies
κ-solutions completely in two dimensions; the only remaining case is
the three-dimensional case when the asymptotic gradient soliton is
a round shrinking cylinder (or a quotient thereof by an involution).
To proceed further, one has to show that the κ-solution exhibits sig-
nificant amounts of curvature, and in particular that one does not
have bounded normalised curvature at infinity. This curvature (com-
bined with comparison geometry tools such as the Bishop-Gromov
inequality) will cause asymptotic volume collapse of the κ-solution at
infinity. These facts lead to the fundamental Perelman compactness
theorem for κ-solutions, which then provides enough geometric con-
trol on such solutions that one can establish the structural theorems
mentioned earlier.
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The treatment here is a (slightly simplified) version of the ar-
guments in [MoTi2007], which is based in turn on [Pe2002] and
[KlLo2006] (see also [CaZh2006] for a slightly different treatment
of this theory).

3.18.1. The compact soliton case. As we saw in Section 3.15,
every κ-solution t 7→ (M, g(t)) has at least one asymptotic gradient
shrinking soliton t 7→ (M∞, g∞(t)) associated to it. Suppose we are in
the case in which at least one of these asymptotic gradient shrinking
solitons is compact; by Theorem 3.16.1, this means that this soliton
is a round shrinking spherical space form. Since this soliton is the
geometric limit of a rescaled sequence of M, this implies that M is
homeomorphic to M∞ and, along a sequence of times tn → ∞, con-
verges geometrically after rescaling to a round spherical space form.
Thus M is asymptotically round as t→ −∞.

One can now apply Hamilton’s rounding theorems in two[Ha1988]
and three[Ha1982] dimensions to conclude that M is in fact perfectly
round. In the case of two dimensions this can be done by a variety of
methods; let me sketch one way, using Perelman entropy; this is not
the most elementary way to proceed but allows us to quickly utilise a
lot of the theory we have built up. First we can lift M up to be S2 in-
stead of the quotient RP2. Then we observe from the Gauss-Bonnet
theorem (Proposition 3.5.2) that

∫
M
R dµ = 4π, and hence by the

volume variation formula (3.69) the volume
∫
M

dµ is decreasing in
time at a constant rate −4π. Let us shift time so that the volume is
in fact equal to 4πτ , and consider the Perelman entropy µ(M, g(t), τ)
defined in Section 3.9. Testing this entropy with f := 0) we obtain
an upper bound µ(M, g(t), τ) ≤ −4π. On the other hand, on the
sequence of times tn → −∞, (M, g(t)) is smoothly approaching a
round sphere, on which the entropy can be shown to be exactly −4π
by the log-Sobolev inequality for the sphere (which can be proven in a
similar way to the log-Sobolev inequality for Euclidean space in Sec-
tion 3.9). Thus one can soon show that µ(M, g(tn), τn) → −4π. On
the other hand, this entropy is non-increasing in τ ; thus µ(M, g(t), τ)
is constant. Applying the results from Section 3.14 we conclude that
this time-shifted manifold M is itself a gradient shrinking soliton, and
thus is round by the results of Section 3.15.
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Exercise 3.18.1. In this exercise we give an alternate way to estab-
lish the roundness of M in two dimensions, using a slightly different
notion of “entropy”. Firstly, observe that under conformal change
of metric g = ah on a surface, one has dµg = adµh, ∆g = 1

a∆h,
and Rg = 1

a (Rh − ∆h log a). If we then express g = ah where h is
the metric on S2 of constant curvature +1, show that the Ricci flow
equation becomes ∂ta = ∆ log a − 1, and in particular that the vol-
ume

∫
M
a dµh is decreasing at constant rate 4π. If we time shift so

that
∫
M
a dµh = 4πτ , show that the relative entropy

∫
M

a
τ log a

τ dµh
is non-decreasing in τ , and converges to 0 along τn (here one needs
a stability result for the uniformisation theorem). From this and the
converse to Jensen’s inequality, conclude that a is constant at every
time, which gives the rounding117.

In two dimensions, we saw in Section 3.16 that the only gradient
shrinking soliton was the round shrinking sphere. We have thus shown
the following classification of κ-solutions in two dimensions:

Proposition 3.18.1. The only two-dimensional κ-solutions are time
translates of the round shrinking S2 and RP2.

For three dimensions, we can argue as in Case 4 of Section 3.16.
Write λ ≥ µ ≥ ν for the eigenvalues of the curvature tensor. At the
times tn, we have (µ + ν)/λ ≥2−δn for some δn → 0. Applying the
tensor maximum principle (Proposition 3.4.5) and the analysis from
Case 4 of Section 3.16, we thus see that (µ + ν)/λ ≥ 2 − δn for all
times t ≥ tn; sending n to infinity we conclude that (µ+ ν)/λ ≥ 2 for
all times, and so curvature is conformal. Using the Bianchi identity
as in Case 4 of Section 3.16, we conclude that the manifold is round.

3.18.2. The case of a vanishing curvature. Now we deal with
the case in which there is a vanishing curvature:

Proposition 3.18.2. Let t 7→ (M, g(t)) be a 3-dimensional κ-solution
for which the Ricci curvature has a null eigenvector at some point in
spacetime. Then M is a time-shifted round shrinking cylinder, or the
oriented or unoriented quotient of that cylinder by an involution.

117For more proofs of the rounding theorem, for instance using the Hamilton
entropy

∫
M
R logR dµ, see [ChKn2004].
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Proof. If the Ricci curvature vanishes at any point, then by Hamil-
ton’s splitting theorem (Proposition 3.13.6) the flow splits (locally, at
least) as a line and a two-dimensional flow. Passing to a double cover
if necessary, we see that the flow is the product of a two-dimensional
Ricci flow and either a line or a circle. The two-dimensional flow is
itself a κ-solution and is thus a round shrinking S2 or RP2. Checking
all the cases and eliminating those which are not κ-noncollapsed we
obtain the claim. �

3.18.3. Asymptotic volume collapse. Our next structural result
on κ-solutions is

Proposition 3.18.3 (Asymptotic collapse of Bishop-Gromov reduced
volume). Let (M, g(t)) be a κ-solution of dimension 3. Then for any
time t and r ∈M , limr→∞Vol(Bg(t)(p, r))/r3 → 0.

Proof. We first observe, by inspecting all the possibilities from The-
orem 3.16.1, that the claim is already true of all 3-dimensional as-
ymptotic gradient shrinking solitons. We apply this to a gradient
shrinking soliton for M and conclude that for any ε > 0 there ex-
ists arbitrarily negative times tn, points xn and radii rn such that
Bg(tn)(xn, rn)/r3

n ≤ ε. Applying the Bishop-Gromov comparison in-
equality (Lemma 3.10.1) we conclude that limr→∞Bg(tn)(xn, r)/r3 ≤
ε. By the triangle inequality this implies that limr→∞Bg(tn)(p, r)/r3 ≤
ε.

Now we need to move from time tn to time t; since tn is arbi-
trarily negative we can assume t ≥ tn. Recall from Lemma 3.15.10
and the bounded curvature hypothesis that

∫
γ

Ric(X,X) is bounded
for all times and all geodesics γ. Plugging this into the Ricci flow
equation, we see that d

dtdg(t)(x, y) is also bounded (in the sense of
forward difference quotients) for all times and all geodesics. In par-
ticular we have the additive distance fluctuation estimate dg(t)(p, x) =
dg(tn)(p, x)+O(|tn−t|), where the error is bounded even as dg(tn)(p, x)
or dg(t)(p, x) goes to infinity. Also, from equation (3.69) we know that
the volume measure dµ is decreasing over time. From this we con-
clude that limr→∞Bg(t)(p, r)/r3 ≤ ε. Since ε is arbitrary, the claim
follows. �
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We have a corollary:

Corollary 3.18.4. Let (M, g(t)) be a non-compact118 κ-solution of
dimension 3. Then for any time t and point p ∈M we have lim supx→∞R(x)d(p, x)2 =
+∞.

Proof. By time shifting we may take t = 0. Suppose for contradic-
tion that lim supx→∞R(x)d(p, x)2 is finite, thus R(x) = O(1/d(p, x)2)
at time t = 0, and thus at all previous times since ∂tR ≥ 0 (see
(3.427)). From the non-negativity of the curvature we obtain the simi-
lar upper bounds on the Riemann curvature. From the κ-noncollapsed
nature of M we may thus conclude that VolB(x, cd(p, x))/d(p, x)3 is
bounded away from zero for some small c > 0. But this contradicts
Proposition 3.17.3. �

Remark 3.18.5. In other treatments of this argument (e.g. in
[MoTi2007]), Corollary 3.17.4 is established first (using the To-
pogonov theory from Section 3.16) and then used to derive Propo-
sition 3.17.3. The two approaches are essentially just permutations
of each other, but the arguments above seem to be slightly simpler
(in particular, the theory of the Tits cone is avoided).

By combining Proposition 3.17.3 with another compactness ar-
gument, we obtain an important relationship:

Corollary 3.18.6 (Volume noncollapsing implies curvature bound).
Let t 7→ (M, g(t)) be a 3-dimensional κ-solution, and let B(x0, r) be
a ball at time zero with volume at least νr3. Then for every A > 0
we have a bound R(x) = Oκ,ν,A(r−2) for all x in B(x0, Ar).

This result can be viewed as a converse to the κ-noncollapsing
property (bounded curvature implies volume noncollapsing). A key
point here is that the bound depends only on κ, ν,A and not on the
κ-solution itself; this uniformity will be a crucial ingredient in the
Perelman compactness theorem below.

Proof. Since B(x0, r) is contained in B(x, (A + 1)r), it suffices to
establish the claim when x = x0. By replacing r with Ar if necessary
we may normalise A = 1; we may also rescale R(x0) = 1. Suppose

118Of course, the claim is vacuous for compact solutions.
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the claim failed, then there exists a sequence of pointed κ-solutions
t 7→ (Mn, gn(t), xn) with Rn(0, xn) = 1 and balls Bgn(0)(xn, rn) with
rn →∞ whose volume is bounded below by νr3

n for some ν > 0. Us-
ing the point picking argument (Exercise 3.16.1) we can also ensure
that for each r, we have Rn(0, x) ≤ 4 on Bgn(0)(0, r) if n is sufficiently
large depending on r. Using the monotonicity ∂tR ≥ 0 and Hamil-
ton’s compactness theorem (Theorem 3.15.8) we may may thus pass
to a subsequence and assume that the flows t 7→ (Mn, gn(t), xn) con-
verge geometrically to a limit t 7→ (M∞, g∞(t), x∞), which one easily
verifies to be a κ-solution whose asymptotic volume at time zero is
bounded below by ν. But this contradicts Proposition 3.17.3. �

3.18.4. The Perelman compactness theorem. Corollary 3.17.6
leads to another important bound:

Proposition 3.18.7 (Bounded curvature at bounded distance). Let
κ > 0, and let t 7→ (M, g(t)) be a three-dimensional κ-solution.
Then at time zero, for every x0 ∈ M and A > 0 we have R(x) =
Oκ,A(R(x0)) on B(x0, AR(x0)−1/2).

Proof. If the claim failed, then there will be an A > 0 sequence t 7→
(Mn, gn(t), xn) of pointed κ-solutions and yn ∈ Bgn(0)(xn, Rn(xn)−1/2)
and Rn(yn)/Rn(xn) → ∞. Applying Corollary 3.17.6 in the contra-
positive we conclude that Volgn(0)(Bgn(0)(xn, Rn(xn)−1/2)/Rn(xn)−3/2 =
o(1). By the Bishop-Gromov inequality (Lemma 3.10.1), we can thus
find a radius rn = o(Rn(xn)−1/2) such that Volgn(0)(Bgn(0)(xn, rn)/r3

n =
ω3/2 (say), where ω3 := 4

3π is the volume of the Euclidean 3-ball. By
rescaling we may normalise rn = 1, thus Rn(xn) = o(1). By Corol-
lary 3.17.6 we now have Rn(x) = Oκ,A(1) on Bgn(0)(xn, A) for every
A > 0. We may thus use monotonicity ∂tRn ≥ 0 and Hamilton com-
pactness as before to extract a limiting solution t 7→ (M∞, g∞(t), x∞)
with R∞(0, x∞) = 0 and with Bg∞(0)(x∞, 1) = ω3/2. But then by
the strong maximum principle (see Exercise 3.13.7), M∞ must be
flat; since it is κ-non-collapsed, it must be R3. But then we have
Bg∞(0)(x∞, 1) = ω3, a contradiction. �

Exercise 3.18.2. Use Proposition 3.17.7 to improve the lim sup in
Corollary 3.17.4 to a lim inf.
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This in turn gives a fundamental compactness theorem.

Theorem 3.18.8 (Perelman compactness theorem). Let κ > 0, and
let t 7→ (Mn, gn(t), pn) be a sequence of three-dimensional κ-solutions,
normalised so that Rn(0, pn) = 1. Then after passing to a subse-
quence, these solutions converge geometrically to another κ-solution
t 7→ (M∞, g∞(t), p∞).

Proof. By Proposition 3.17.7, we haveRn(0, x) = OA(1) onBgn(0)(pn, A)
for every A > 0. Using monotonicity ∂tRn ≥ 0 and Hamilton com-
pactness as before, the claim follows. �

3.18.5. Universal noncollapsing. The Perelman compactness the-
orem requires κ to be fixed. However, the theorem can be largely
extended to allow for variable κ by the following proposition.

Proposition 3.18.9 (Universal κ). There exists a universal κ0 > 0
such that every 3-dimensional κ-solution which is not round, is in
fact a κ0-solution (no matter how small κ > 0 is).

The reason one needs to exclude the round case is that sphere
quotients S3/Γ can be arbitrarily collapsed if one takes Γ to be large
(e.g. consider the action of the nth roots of unity on the unit ball of
C2 (which is of course identifiable with S3) for n large).

Proof. By time shifting it suffices to show κ0-noncollapsing at time
zero at at some spatial origin x0, which we now fix.

Let t 7→ (M, g(t)) be a κ-solution. By Proposition 3.17.1, M
is non-compact, which means that any asymptotic gradient shrinking
soliton must also be non-compact. By Theorem 3.16.1, all asymptotic
gradient shrinking solitons are thus round shrinking cylinders, or the
oriented or unoriented quotient of such a cylinder.

Let l = l(0,x0) be the reduced length function from (0, x0). Re-
call from Section 3.15 that one can find a sequence of points (tn, xn)
with tn → −∞ with l = OA(1) and R = OA(t−1

n ) on any cylinder
[Atn, tn/A]× Bg(tn)(xn, At

1/2
n ), whose rescalings by tn converge geo-

metrically to an asymptotic gradient shrinking soliton (and thus to a
round cylinder or quotient thereof), and the bound OA(1) does not
depend on κ. A computation shows that these round cylinders or
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quotients are κ′0-noncollapsed for some universal κ′0 > 0, and so the
cylinders [Atn, tn/A]×Bg(tn)(xn, At

1/2
n ) are similarly κ′′0 -noncollapsed

(for some slightly smaller but universal κ′′0). From the bounds on l

and R, this implies that reduced volume at time tn is bounded from
below by a constant independent of κ. Using monotonicity of reduced
volume, we thus have this lower bound for all times. The arguments
in Section 3.11 then give κ0-noncollapsing for some other universal
κ0 > 0. �

Here is one useful corollary of Perelman compactness and univer-
sality:

Corollary 3.18.10 (Universal derivative bounds). Let t 7→ (M, g(t))
be a three-dimensional κ-solution. Then we have the pointwise bounds
|∂kt∇mRiem| = Ok,m(R1+m/2+k) for all m, k ≥ 0. In particular we
have |∂kt∇mR| = Ok,m(R1+m/2+k).

Proof. The claim is clear for the round shrinking solitons (which we
can lift up to live on the sphere S3), so we may assume that the κ-
solution is not round. By Proposition 3.17.9, we may then replace κ
by a universal κ0. We may then time shift so that t = 0 and rescale
so that R(0, x) = 1. If the claim failed, then we could find a sequence
t 7→ (Mn, gn(t), xn) of pointed κ-solutions with Rn(0, xn) = 1, but
such that some derivative of the curvature goes to infinity at this
point. But this contradicts Theorem 3.17.8. �

Here is another useful consequence:

Exercise 3.18.3. Let t 7→ (Mn, gn(t)) be a sequence of three-dimensional
κn-solutions, and let xn, yn ∈Mn and tn ≤ 0. IfRn(tn, xn)dg(tn)(xn, yn)2 →
∞, show that Rn(tn, yn)dg(tn)(xn, yn)2 → ∞. (Note that this gener-
alises Corollary 3.17.4 or Exercise 3.17.2.) Hint : the claim is trivial
in the round case, so assume non-roundness; then apply universality
and compactness.

3.18.6. Global structure of κ-solutions. Roughly speaking, the
above theory tells us that the geometry around any point (t, x) in
a 3-dimensional κ-solutions has only bounded complexity if we only
move O(R(t, x)−1/2) in space and O(R(t, x)−1) in time. This is about
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as good a control on the local geometry of such solutions as we can
hope for119; we now turn to the global geometry.

Let us begin with non-compact 3-dimensional κ-solutions. A key
point is that if such solutions are not already round cylinders (or
quotients thereof), they must mostly resemble such cylinders.

Definition 3.18.11 (Necks). Let ε > 0. An ε-neck in a Riemannian
3-manifold (M, g) centred at a point x ∈ M is a diffeomorphism
φ : S2 × (− 1

ε ,
1
ε ) → M from a long cylinder to M, such that the

normalised pullback metric R(x)φ∗g lies within ε of the standard
round metric on the cylinder in the Cb1/εc topology, where we require
of course that R(x) ¿ 0. The number R(x)−1/2 is called the width scale
of the neck, and R(x)−1/2/ε is the length scale.

Clearly, the notion of a ε-neck is a scale-invariant concept. Note
that if a sequence of pointed manifolds (Mn, gn, xn) is converging
geometrically (after rescaling) to a round cylinder S2 ×R, then for
any ε > 0, xn will be in the centre of an ε-neck for sufficiently large
n. Since round cylinders appear prominently as geometric limits, it is
then not surprising that κ-solutions, particularly non-compact ones,
tend to be awash in ε-necks. For instance, we have

Proposition 3.18.12. For every ε > 0 there exists an A > 0 such
that whenever (t, x) is a point in a 3-dimensional non-compact κ-
solution of strictly positive curvature and γ : [0,+∞) → M is a unit
speed minimising geodesic from x to infinity (such things can easily be
shown to exist by compactness arguments) at time t, then every point
in γ([AR(x)−1/2,+∞)) lies in the centre of an ε-neck at time t.

Proof. By time shifting we can take t = 0. Suppose the claim
is not the case, then we have a sequence t 7→ (Mn, gn(t), xn) of
pointed 3-dimensional non-compact κ-solutions of strictly positive
curvature and yn on a minimising geodesic from xn to infinity such
that dn(xn, yn)2Rn(xn)→∞ and yn is not the centre of a ε-neck at
time zero. By Exercise 3.17.3 we thus have dn(xn, yn)2Rn(yn)→∞.
Let us now rescale so that R(yn) = 1. Since the Mn are non-compact,

119It is unlikely that the space of 3-dimensional κ-solutions is finite dimensional,
as it is in the 2-dimensional case; see for instance [Pe2003, Example 1.4] for what is
probably an infinite-dimensional family of κ-solutions.
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they are non-round and so by Proposition 3.17.9 we can take κ to be
universal, at which point by Perelman compactness (Theorem 3.17.8)
we can pass to a subsequence and assume that t 7→ (Mn, gn(t), yn) is
converging to a limit t 7→ (M∞, g∞(t), y∞), which is also a κ-solution.
Since dn(xn, yn)→∞, we see that the limit manifold contains a min-
imising geodesic line through y∞, and hence by the Cheeger-Gromoll
splitting theorem (Theorem 3.16.8) M∞ must split into the product
of a line and a positively curved manifold. By Proposition 3.17.2, we
conclude that M∞ is either a cylinder S2×R or a projective cylinder
RP2 ×R.

The latter can be ruled out by topological considerations; a posi-
tively curved complete non-compact 3-manifold Mn is homeomorphic
to R3 by the soul theorem ((Theorem 3.12.17), and so does not con-
tain any embedded RP2 with trivial normal bundle120. So M∞ is a
round cylinder, and thus yn is the centre of an ε-neck, a contradiction,
and the claim follows. �

There is a variant of Proposition 3.17.12 that works in the com-
pact case also:

Proposition 3.18.13. For every ε > 0 there exists an A > 0 such
that whenever (t, x), (t, y) are points in a 3-dimensional κ-solution (ei-
ther compact or noncompact) then at time t, any point on the min-
imising geodesic between x and y at a distance at least AR(x)−1/2

from x and AR(y)−1/2 from y, lies in the centre of an ε-neck at time
t.

Proof. We can repeat the proof of Proposition 3.17.12. The one non-
trivial task is the topological one, namely to show that M does not
contain an embedded RP2 with trivial normal bundle in the com-
pact case (the non-compact case already being covered in Proposi-
tion 3.17.12). But M is compact and has strictly positive curva-
ture (thanks to Proposition 3.17.2) and so by Hamilton’s rounding
theorem[Ha1982], is diffeomorphic to a spherical space form S3/Γ
for some finite Γ; in particular the fundamental group π1(M) ≡ Γ
is finite. On the other hand, an embedded RP2 with trivial normal

120In any event, for applications to the Poincaré conjecture one can always assume
that no such embedded projective plane exists in any manifold being studied.
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bundle cannot separate M (as its Euler characteristic is 1) and so
a closed loop in M can have a non-trivial intersection number with
such a projective plane (using the normal bundle to give a sign to each
intersection), leading to a non-trivial homomorphism from π1(M) to
Z, contradicting the finiteness of the fundamental group121. �

Informally, the above proposition shows that any two sufficiently
far apart points in a compact κ-solution will be separated almost en-
tirely by ε-necks. Since the only way that necks can be glued together
is by forming a tube, one can then show the following two corollaries:

Corollary 3.18.14 (Description of non-compact positively curved
κ-solutions). For every ε > 0 there exists A > 0 such that for every
non-compact 3-dimensional positively curved κ-solution t 7→ (M, g(t))
and time t there exists a point p ∈M such that at time t

(1) Every point outside of B(p,AR(p)−1/2) lies in an ε-neck
(and in particular, the exterior of this ball is topologically a
half-infinite cylinder S2 × [0,+∞)); and

(2) Inside the ball B(p,AR(p)−1/2) (which is topologically a stan-
dard 3-ball by a version of the soul theorem, Theorem 3.12.17)
all sectional curvatures are comparable to R(p) modulo con-
stants C depending only on ε, and the volume of the ball is
comparable to R(p)−3/2 modulo similar constants C.

(The control inside the ball is coming from results such as Corol-
lary 3.17.10, as well as the non-collapsed nature of M .)

In the language of [MoTi2007]122, we have described non-compact
positively curved 3-dimensional κ-solutions as C-capped ε-tubes. Com-
bined with Proposition 3.17.2, we now have a satisfactory description
of non-compact κ-solutions: they are either round cylinders (and thus
doubly infinite ε-tubes), oriented quotients of round cylinders (and

121An alternate argument would be to use Perelman compactness to extract a
non-compact (but positively curved) limiting κ-solution from a sequence of increasingly
long compact κ-solutions. Proposition 3.17.12 prohibits the limiting solutions from
asymptotically looking like RP2 ×R, and so the long compact solutions cannot have
such projective necks either.

122Actually, more is proven in [MoTi2007]; one controls the time evolution of
the necks and not just individual time slices, leading to the notion of a strong ε-neck.
See [MoTi2007, Section 9.8] for details, as well as a precise definition of the C-capped
ε-tubes.
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thus a half-infinite ε-tube capped off by a punctured RP3), oriented
quotients of round cylinders (and thus containing an RP2 with trivial
normal bundle), or a half-infinite ε-tube capped off by a 3-ball.

For compact κ-solutions, we have something similar:

Proposition 3.18.15 (Characterisation of large compact κ-solutions).
For every ε > 0 there exists A,A′ > 0 such that if t 7→ (M, g) is a
compact 3-dimensional κ-solution with diam(M) ≥ A′(supR)−1/2 at
some time t, then (M, g(t)) can be partitioned into an ε-tube (roughly
speaking, a region in which every point lies in the middle of an ε-neck,
and bordered on both ends by an S2) and two (C, ε)-caps (roughly
speaking, two regions diffeomorphic to either a 3-ball or punctured
RP3, bounded by an S2, in which the sectional curvatures are compa-
rable to a scalar R, the diameter is comparable to R−1/2, and volume
comparable to R−3/2). See [MoTi2007, Section 9.8] for precise defi-
nitions.

The topological characterisation of the caps (that they are either
3-balls or punctured RP3s) follows from the corresponding charac-
terisations of the caps in the non-compact case, followed by a com-
pactness argument. Note that the round compact manifolds have
diameter O(R−1/2), where R is the constant curvature, and thus are
not covered by the above Proposition.

By considering the various topologies for the caps, we see from
basic topology then tells us that the manifolds in this case are home-
omorphic to either S3 or RP3, or RP3#RP3. The latter has infinite
fundamental group, though, and thus not homeomorphic to a spheri-
cal space form; thus it cannot actually arise since Hamilton’s round-
ing theorem[Ha1982] asserts that all compact manifolds of positive
curvature are homeomorphic to spherical space forms.

Finally, we turn to small compact non-round κ-solutions.

Proposition 3.18.16 (Characterisation of small compact κ-solutions).
Let C > 0, and let t 7→ (M, g) be a compact 3-dimensional κ-solution
with diam(M) ≤ C(supR)−1/2 at some time t which is not round,
then all sectional curvatures are comparable up to constants depend-
ing on C, the diameter is comparable to (supR)−1/2 up to similar



596 3. The Poincaré conjecture

constants, the volume is comparable to (supR)−3/2, and the manifold
is topologically either S3 or RP3.

Proof. The diameter, curvature, and volume bounds follow from the
compactness theory. To get the topological type, observe from the
treatment of the compact soliton case that as M is not round, the
asymptotic gradient shrinking soliton is non-compact, and thus must
be a cylinder or one of its quotients. In particular this implies that
as one goes back in time, the manifold M must eventually become
large in the sense of Proposition 3.17.15. Since the manifolds in that
proposition were topologically either S3 or RP3, the same is true
here. �

Putting all of the above results together, we obtain Proposition
3.12.14 (modulo some imprecision in the definitions which I have de-
cided not to detail here).

Notes. This lecture first appeared at terrytao.wordpress.com/2008/06/02.

3.19. The structure of high-curvature regions of
Ricci flow

Having characterised the structure of κ-solutions, we now use them
to describe the structure of high curvature regions of Ricci flow, as
promised back in Section 3.12, in particular controlling their geometry
and topology to the extent that surgery will be applied, which we will
discuss in the next (and final) section of this chapter.

The material here is drawn largely from [MoTi2007], [Pe2002],
[Pe2003]; see also [KlLo2006], [CaZh2006] for closely related ma-
terial.

3.19.1. Canonical neighbourhoods. Let us formally define the
notions of a canonical neighbourhood that were introduced in Sec-
tion 3.12. They are associated with the various local geometries that
are possible for three-dimensional κ-solutions. The first type of neigh-
bourhood is related to the round spherical space forms S3/Γ.

Definition 3.19.1 (ε-round). Let ε > 0. A compact connected 3-
manifold (M, g) is ε-round if one can identify M with a spherical
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space form S3/Γ with the constant curvature metric h such that some
multiple of g lies within ε of h in the Cb1/εc topology.

Note that if a sequence of manifolds (Mn, gn, pn), after rescaling,
is converging geometrically to a spherical space form, then for any
ε > 0 such manifolds will be ε-round for sufficiently large n.

The next type of canonical neighbourhood is associated to the
small compact manifolds from Proposition 3.17.16.

Definition 3.19.2 (C-component). Let C > 0. A C-component is123

a connected 3-manifold (M, g) homeomorphic to S3 or RP3, such
that after rescaling the metric by a constant, the sectional curvatures,
diameter, and volume are bounded between 1/C and C, and first and
second derivatives of the curvature are also bounded by C.

Thus, for instance, every compact κ-solution which is small but
not round in the sense of Proposition 3.17.16 will be a C-component
for some C. Also observe that if a sequence of manifolds converge
geometrically to a C-component, then these manifolds will be (say)
2C-components once one is sufficiently far along the sequence.

The remaining canonical neighbourhoods are incomplete, cor-
responding to portions of non-compact (or compact but large) κ-
solutions. One of them is the ε-neck defined in Definition 3.17.11.
The other is that of a cap.

Definition 3.19.3 ((C, ε)-cap). Let C, ε > 0. A (C, ε)-cap (N ∪Y, g)
is an incomplete 3-manifold that is the union of an ε-neck N with an
incomplete core Y along one of the boundaries S2 of the neck N . The
core is homeomorphic to R3 or a punctured RP3, and has boundary
S2 equal to the above boundary of N . Furthermore, after rescaling g
by a constant, the sectional curvatures, diameter, volume in the core
are bounded between 1/C and C, and the zeroth, first and second
derivatives of curvature in the cap are bounded above by C.

Definition 3.19.4 (Canonical neighbourhood). Let C, ε > 0. We
say that a point x in a 3-manifold (M, g) (possibly disconnected) has
a (C, ε)-canonical neighbourhood if one of the following is true:

123We have deviated slightly here from the definition in [MoTi2007] by adding
control of first and second derivatives for minor technical reasons.
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(1) x lies in an ε-round component of M .

(2) x lies in a C-component of M .

(3) x is the centre of an ε-neck in M .

(4) x lies in the core of a (C, ε)-cap in M .

We remark that if a sequence of pointed manifolds (Mn, gn, xn)
converges to a limit (M∞, g∞, x∞), and x∞ has a (C, ε)-neighbourhood
of M∞, then for sufficiently large n, xn has a (2C, 2ε)-neighbourhood
(say) of Mn. Also observe from construction that the property of
having a canonical neighbourhood is scale-invariant.

Exercise 3.19.1 (First derivatives of curvature). Show that if ε is
sufficiently small, and x has a (C, ε)-canonical neighbourhood, then
R(x) is positive, ∇R(x) = OC(R(x)3/2), and ∂tR(x) = OC(R(x)2).

From the theory in Section 3.17 we have

Proposition 3.19.5. For every ε > 0 there exists C > 0 such that
every point in a 3-dimensional κ-solution at any given time will have
a (C, ε)-canonical neighbourhood, unless it is a round shrinking R ×
RP2.

Note that C and ε are independent of κ; this is thanks to the
universality property (Proposition 3.17.9).

Remark 3.19.6. For technical reasons, one actually needs a slightly
stronger version of this proposition, in which any canonical neigh-
bourhood which is an ε-neck is extended backwards to some extent
in time in a manner that preserves the neck structure (leading to
the notion of a strong ε-neck and strong canonical neighbourhood);
see [MoTi2007, Chapter 9.8]. For similar reasons, the results below
actually need to be stated for strong canonical neighbourhoods. We
will ignore these minor technicalities.

The objective of this section is to establish the analogue of Propo-
sition 3.18.5 for high-curvature regions of arbitrary Ricci flows:

Theorem 3.19.7 (Structure of high-curvature regions). For every
ε > 0 there exists C > 0 such that the following holds. Let t 7→ (M, g)
be a three-dimensional compact Ricci flow on some time interval [0, T )
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with no embedded RP2 with trivial normal bundle. Then there exists
K > 0 such for every time t ∈ [0, T ), every x ∈ (M, g(t)) with R(x) ≥
K has a (C, ε)-canonical neighbourhood.

This theorem will then allow us to perform surgery on Ricci flows,
as we will discuss in Section 3.19.

Morally speaking, Theorem 3.18.7 follows from Proposition 3.18.5
by rescaling and compactness arguments, but there is a rather delicate
issue involved, namely to gain enough control on curvature at points
in spacetime both near (and far) from the chosen point (t, x) that the
Hamilton compactness theorem can be applied.

3.19.2. Overview of proof. We begin with some reductions. We
can of course take M to be connected. Fix ε, and take C sufficiently
large depending on ε (but not depending on any other parameters).
We first observe that it suffices to prove the theorem for closed in-
tervals [0, T ] rather than half-open ones, as long as the bounds on K
depend only on an upper bound T0 on T and the initial metric g(0)
and not on T itself (in particular, one cannot just use the trivial fact
that R will be bounded on any compact subset of spacetime such as
[0, T ]×M .) Once one does this, one sees that Theorem 3.18.7 is now
true for some enormous K that depends on T ; the task is to get a
uniform K that depends only on the initial metric g(0) and on an
upper bound T0 for T .

Perelman’s argument proceeds by a downward induction on K;
assume that K is large (depending on g(0) and T0), and that Theorem
3.18.7 has already been established for 4K (say); and then establish
the claim for K. By the previous discussion, this conditional result
will in fact imply the full theorem.

By rescaling we may assume that g(0) has normalised initial con-
ditions (curvature bounded in magnitude by 1, volume of unit balls
bounded below by some positive constant ω). We will now show that
the conditional version of Theorem 3.18.7 holds for K sufficiently
large depending only on ω and T0.

Suppose this were not the case. Then there would be a ω and a T0,
and a sequence t 7→ (Mn, gn(t), xn) of pointed Ricci flows on [0, Tn]
(not containing any embedded RP2 with trivial normal bundle) for
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some 0 ≤ Tn ≤ T0 with normalised initial conditions with constant
ω, times tn ∈ [0, Tn], and scalars Kn → ∞ such that every point in
[0, Tn] ×Mn of scalar curvature at least 4Kn has a (C, ε)-canonical
neighbourhood, but that Rn(tn, xn) ≥ Kn but does not have a (C, ε)-
canonical neighbourhood (in particular, Rn(tn, xn) < 4Kn). We want
to extract a contradiction from this.

From the local theory (Lemma 3.11.2) we know that the curvature
is bounded for short times (t less than a universal constant depending
only on ω), so tn must be bounded uniformly from below.

As usual, we define the rescaled pointed flows t 7→ (M̃n, g̃n(t), x̃n)
by M̃n := Mn, x̃n := xn, and g̃n(t) := K2

ngn(tn +K−2
n t). Thus these

flows are increasingly ancient and have scalar curvature between 1
and 4 at the origin (0, x̃n). Also, any point in these flows of curvature
at least 4 is contained in a canonical neighbourhood.

By Perelman’s non-collapsing theorem (Theorem 3.8.15), we know
that the flows t 7→ (Mn, gn(t)) flow is κ-noncollapsed at all scales less
than 1 (say) for some κ depending only on ω; by rescaling, the rescaled
flows t 7→ (M̃n, g̃n(t)) are then κ-noncollapsed at all scales less than
1/o(1).

Meanwhile, from the Hamilton-Ivey pinching theorem (Theorem
3.4.16) we have Rn ≥ −O(1) and Riemn ≥ −o(Rn) whenever Rn →
∞. Rescaling this, we obtain R̃n ≥ −o(1) and R̃iemn ≥ −o(1+ |R̃n|).

Suppose we were able to prove the following statement.

Proposition 3.19.8 (Asymptotically globally bounded normalised
curvature). For any A, τ > 0 we have a bound R̃n(t, x) = OC,ε(1)
for all x ∈ Bg̃n(0)(x̃n, A) and t ∈ [−τ, 0], if n is sufficiently large
depending on A, τ .

From this and the κ-noncollapsing, we see that the Hamilton
compactness theorem (Theorem 3.15.8) applies, and after passing to
a subsequence we see that the pointed flows t 7→ (M̃n, g̃n(t), x̃n) con-
verges geometrically to a Ricci flow t 7→ (M∞, g∞, x∞) which has
bounded scalar curvature on [−τ, 0]×M∞ for each τ > 0, and is au-
tomatically connected, complete, and ancient, and without an embed-
ded RP2 with trivial normal bundle. From pinching we also see that
we have non-negative sectional curvature; from the κ-noncollapsing of
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the flows t 7→ (M̃n, g̃n(t), x̃n) we have κ-noncollapsing of the limiting
flow t 7→ (M∞, g∞, x∞). From Hamilton’s Harnack inequality (cf.
Section 3.13) we can show ∂tR ≥ 0, and so we in fact have globally
bounded curvature. Finally, since R̃n(0, x̃n) is bounded between 1 and
4, so is R∞(0, x∞); thus the flow is not flat. Putting all this together,
we conclude that t 7→ (M∞, g∞, x∞) is a κ-solution (see Definition
3.12.1). From Proposition 3.18.5, (0, x∞) has a (C/2, ε/2)-canonical
neighbourhood in M∞ (if C is chosen large enough depending on
ε); thus (0, x̃n) will have a (C, ε)-canonical neighbourhood in M̃n

for large enough n, and so by rescaling (0, xn) has a (C, ε)-canonical
neighbourhood in Mn, contradicting the hypothesis, and we are done.

So it remains to prove Proposition 3.18.8. If we had the luxury of
picking (tn, xn) to be a point which had maximal curvature amongst
all other points in [0, tn] ×M , then this proposition would be auto-
matic. However, we do not have this luxury (roughly speaking, this
would only let us get canonical neighbourhoods for the “highest cur-
vature region” of the Ricci flow, leaving aside the “second highest
curvature region”, “third highest curvature region”, etc., unprepared
for surgery). So one has to work significantly harder to achieve this
aim.

3.19.3. Bounded curvature at bounded distance. A key step
in the execution of Proposition 3.18.8 is the following partial result,
in which the bound on curvature is allowed to depend on A, and for
which one cannot go backwards in time.

Proposition 3.19.9. (Bounded curvature at bounded distance) For
any A > 0 we have a bound R̃n(0, x) = OC,ε,A(1) for all x ∈ Bg̃n(0)(x̃n, A),
if n is large enough depending on A.

This partial result is already rather tricky; we sketch the proof
as follows (full details can be found in [MoTi2007, Chapter 10],
[KlLo2006, Section 51], or [CaZh2006, Section 7.1]). If this re-
sult failed, then we have a sequence ỹn with dg̃n(0)(xn, yn) bounded
and R̃n(0, ỹn) → ∞, thus one can move a bounded distance along a
minimising geodesic from x̃n (which has curvature between 1 and 4)
to ỹn and reach a point of arbitrarily high curvature. On the other
hand, we know that every point of curvature at least 4 has a canonical
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neighbourhood. Thus there is a bounded length minimising geodesic
in (M̃n, g̃n(0)) that goes entirely through canonical neighbourhoods,
starts with scalar curvature 4, and ends up with arbitrarily high cur-
vature, with curvature staying 4 or greater throughout this process.
This cannot happen if the canonical neighbourhoods are ε-round or
C-components (since these neighhourhoods are already complete and
curvatures are comparable to each other on the entire neighbour-
hood), so this geodesic can only go through ε-necks and (C, ε)-caps.
One can also rule out the latter possibility (a long geodesic path that
goes through the core of a (C, ε)-cap can easily be shown to not be
minimising); thus the geodesic is simply going through a tube of ε-
necks, with the width of these necks starting off being comparable
to 1 and ending up being arbitrarily small. It turns out that by us-
ing a version of Hamilton’s compactness theorem for incomplete Ricci
flows, one can take a limit, which at time zero is a tube (topologi-
cally [0, 1]×S2) of non-negative curvature in which the curvature has
become infinite at one end. Also, thanks to time derivative control
on the curvature (see Exercise 3.18.1), the tube can be extended a
little bit backwards in time as an incomplete Ricci flow (though the
amount to which one can do this shrinks to zero as one approaches
the infinite curvature end of the tube).

One can show that as one approaches the infinite curvature end
of the cylinder and rescales, the cylinder increasingly resembles a
cone. (For instance, one can use the bound

∫
γ

Ric(X,X) = O(1) from
Lemma 3.15.10, where γ are geodesics emanating from the infinite
curvature end, to establish this sort of thing.) By taking another limit
one can then get an incomplete Ricci flow which at time zero is a cone.
Because curvature is bounded away from zero, this cone is not flat.
At this point, a version of Hamilton’s splitting theorem (Proposition
3.13.6) for incomplete flows asserts that the manifold locally splits
as the product of a line and a two-dimensional manifold. But non-
flat cones cannot split like this, a contradiction. This establishes
Proposition 3.18.9.

Remark 3.19.10. More generally, this argument can be used to show
that if R̃n(t, x) is bounded by some L ≥ 1, then R̃n(t, y) is bounded
by OA,C,ε(L) for all y ∈ Bg̃n(t)(x,AL−1/2).
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3.19.4. Bounded curvature at all distances. Now we extend
Proposition 3.18.9 by making the bound global in A:

Proposition 3.19.11 (Bounded curvature at all distances). For any
A > 0 we have a bound R̃n(0, x) = OC,ε(1) for all x ∈ Bg̃n(0)(x̃n, A),
if n is large enough depending on A.

We sketch a proof as follows. From Proposition 3.18.9 and com-
pactness (taking advantage of non-collapsing, of course) we already
know (passing to a subsequence if necessary) that (M̃n, g̃n(0), xn) con-
verges to some limit (M̃∞, g̃∞(0), x∞) which has non-negative curva-
ture; it can also be extended a little bit backwards in time as an
incomplete Ricci flow. Also, every point in this limit of curvature
greater than 4 has a canonical neighbourhood. Our task is to basi-
cally to show that (M̃∞, g̃∞(0)) has bounded curvature. If this is not
the case, then there are points of arbitrarily high curvature, which
must be contained in either ε-necks or (C, ε)-caps. We conclude that
there exist arbitrarily narrow ε-necks. One can then show that the
manifold had strictly positive curvature, since otherwise by Hamil-
ton’s splitting theorem the manifold would split locally into a product
of a two-dimensional manifold and a line, which can be shown to be
incompatible with having arbitrarily narrow necks.

At this point one uses a general result that complete manifolds of
strictly positive curvature cannot have arbitrarily narrow necks. We
sketch the proof as follows. Clearly we may assume the manifold is
non-compact, and hence by the soul theorem ((Theorem 3.12.17) is
diffeomorphic to R3. This implies that every neck in fact separates
the manifold into a compact part and a non-compact part. In fact,
one can show that if p is a soul for the manifold (see [Pe1994]),
then there is a minimising geodesic γ : [0,+∞) → M from p to
infinity that passes through all the necks. But if one then considers
the Busemann function B(y) := lims→∞ d(y, γ(s))− s, one can show
that the gradient field ∇B is a unit vector which is within O(ε) to
parallel to the necks. This, combined with Stokes theorem, tells us
that the area of the level sets of B inside a neck (which, up to errors
of O(ε), are basically slices of that neck) does not fluctuate by more
than ε, even as one compares very distant necks together. But this
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contradicts the assumption that there are arbitrarily small necks. (For
full details see [MoTi2007, Proposition 2.19].)

3.19.5. Bounded curvature at all times. Now we need to extend
Proposition 3.18.11 backwards in time. The time derivative bound on
curvature (Exercise 3.18.1) lets us extend backwards by some fixed
amount of time, but at the cost of potentially increasing the curvature,
and we cannot simply iterate this (much as one cannot iterate a local
existence result for a PDE to obtain a global one without some sort of
a priori bound on whatever is controlling the time of existence). But
what Exercise 3.18.1 does let us do, is reduce matters to establishing
an a priori bound:

Proposition 3.19.12 (A priori bound). Let τ > 0, and suppose R̃n
is uniformly bounded on [−τ, 0]×M̃n for all sufficiently large n. Then
in fact we can bound R̃n on these slabs by a universal bound OC,ε,τ (1)
(not depending on the previous universal bound).

Indeed, Exercise 3.18.1 then lets us extend the uniform bounds
a little bit to the past of τ , and one can continue this procedure
indefinitely to establish Proposition 3.18.8.

We sketch the proof as follows. We allow all implied constants to
depend on C, ε, τ for brevity. The bounds are already enough to give
a non-ancient limiting flow t 7→ (M∞, g∞(t), x∞) on [−τ, 0] which is
complete, connected, and non-negative curvature which is bounded at
all times (but with an unspecified bound), and bounded at time zero
by O(1). Also, every point with curvature greater than 4 is known to
have a canonical neighbourhood. The challenge is now to propagate
the quantitative curvature bounds backwards in time, to replace the
qualitative bound.

In the case of an ancient flow of non-negative curvature, Hamil-
ton’s Harnack inequality (3.427) gives ∂tR ≥ 0, which automatically
does this propagation for us. We are however non-ancient here, and
the Harnack inequality in this setting only gives a bound of the form
∂tR ≥ R/(t+τ). This can be integrated to give R(t, x) = O(1/(t+τ)),
thus our bounds blow up as we approach τ . However, this is at least
enough to get good control on distances; in particular, using Corollary
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3.15.11 we see that

(3.525) −O(
1√
t+ τ

) ≤ d

dt
dg(t)(x, y) ≤ 0

for all x, y ∈ M∞. Fortunately, the left-hand side here is absolutely
integrable, and so we obtain a useful global distance comparison es-
timate:

(3.526) dg(0)(x, y)−O(1) ≤ dg(t)(x, y) ≤ dg(0)(x, y).

To use this, pick a large curvature L ≥ 1, then a much larger
radius r, then an extremely large curvature L′. Now suppose for
contradiction that we have a point (t, x) in [τ, 0] ×M of curvature
larger than L′. This point is then contained in a canonical neigh-
bourhood. This neighbourhood cannot be compact (i.e. an ε-round
or C-component), since that would mean that the minimal scalar cur-
vature Rmin was comparable to L′ at time t, which by monotonicity
of Rmin (Proposition 3.4.10) would mean that the scalar curvature is
comparable to L′ at time 0, contradicting the boundedness of cur-
vature there. This argument in fact shows that all large curvature
regions are contained in either ε-necks or (C, ε)-caps.

Consider the ball Bg(t)(x, r). From Remark 3.18.10 we see (if
L′ is large enough) that the curvature is larger than L on this ball,
and so this ball consists entirely of necks and caps of width at most
O(L−1/2). From this it is not hard to see that the volume of this ball
at time t is O(L−1/2r). On the other hand, there must be at least
one point y on the boundary of this ball, since otherwise Rmin would
be at least L, which as noted before is not possible.

Applying (3.526) (and noting that Ricci flow reduces volume
when there is non-negative curvature, by (3.69)) we conclude that
Bg(t)(x, r−O(1)) also has volume O(L−1/2r). On the other hand, we
know that there is a point y at distance r from x at time t, thus y at
distance r−O(1) from x at time 0. Thus (by the triangle inequality,
and dividing the geodesic from x to y at time zero into unit length
segments) Bg(0)(x, r) contains ∼ r disjoint balls of radius 1/2 (say).
By the non-collapsing and curvature bounds at time zero, this forces
Bg(0)(x, r) to have volume at least comparable to r, a contradiction.
This proves Proposition 3.18.12 and thus Theorem 3.18.7.
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Remark 3.19.13. Perelman (and the authors who follow him) uses
a slight variant of this argument, using the soul theorem (Theorem
3.12.17) to fashion a small S2 in a narrow neck that separates two
widely distant points at time t, which then evolves to a small S2 sep-
arating two widely distant points at time zero (here we use (3.526)).
But this leads to the desired contradiction due to the bounded cur-
vature at that time.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/06/04.

3.20. The structure of Ricci flow at the singular
time, surgery, and the Poincaré conjecture

In the previous lecture, we studied high curvature regions of Ricci
flows t 7→ (M, g(t)) on some time interval [0, T ), and concluded that
(as long as a mild topological condition was obeyed) they all had
canonical neighbourhoods. This is enough control to now study the
limits of such flows as one approaches the singularity time T . It
turns out that one can subdivide the manifold M into a continuing
region C in which the geometry remains well behaved (for instance,
the curvature does not blow up, and in fact converges smoothly to an
(incomplete) limit), and a disappearing region D, whose topology is
well controlled124. This allows one (at the topological level, at least)
to perform surgery on the interface Σ, removing the disappearing
region D and replacing them with a finite number of “caps” homeo-
morphic to the 3-ball B3. The relationship between the topology of
the post-surgery manifold and pre-surgery manifold is as is described
way back in Section 3.3.

However, once surgery is completed, one needs to restart the Ricci
flow process, at which point further singularities can occur. In order
to apply surgery to these further singularities, we need to check that
all the properties we have been exploiting about Ricci flows - notably
the Hamilton-Ivey pinching property, the κ-noncollapsing property,
and the existence of canonical neighbourhoods for every point of high
curvature - persist even in the presence of a large number of surgeries

124For instance, the interface Σ between C and D will be a finite union of disjoint
surfaces homeomorphic to S2.
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(indeed, with the way the constants are structured, all quantitative
bounds on a fixed time interval [0, T ] have to be uniform in the num-
ber of surgery times, although we will of course need the set of such
times to be discrete). To ensure that surgeries do not disrupt any of
these properties, it turns out that one has to perform these surgeries
deep in certain ε-horns of the Ricci flow at the singular time, in which
the geometry is extremely close to being cylindrical (in particular, it
should be a δ-neck and not just a ε-neck, where the surgery control
parameter δ is much smaller than ε; selection of this parameter can
get a little tricky if one wants to evolve Ricci flow with surgery in-
definitely, although for the purposes of the Poincaré conjecture the
situation is simpler as there is a fixed upper bound on the time for
which one needs to evolve the flow). Furthermore, the geometry of the
manifolds one glues in to replace the disappearing regions has to be
carefully chosen (in particular, it has to not disrupt the pinching con-
dition, and the geometry of these glued in regions has to resemble a
(C, ε)-cap for a significant amount of (rescaled) time). The construc-
tion of the “standard solution” needed to achieve all these properties
is somewhat delicate, although we will not discuss this issue much
here.

In this section we shall present these issues from a high-level
perspective; due to lack of space we will not cover the finer details
of the surgery procedure. More detailed versions of the material here
can be found in [Pe2003], [KlLo2006], [MoTi2007], [CaZh2006],
[BeBeBoMaPo2008].

3.20.1. Ricci flow at the singular time. Suppose we have a com-
pact 3-dimensional Ricci flow t 7→ (M, g(t)) on the time interval [0, T )
without any embeddedRP2 with trivial normal bundle; for simplicity
we can take M to be connected (otherwise we simply treat each of
the finite number of connected components of M separately). We are
interested in the extent to which we can define a limiting geometry
g(T ) on M (or on some subset of M) at the final time T , and to work
out the topological structure of the portions of M for which such a
limit cannot be defined.

From Theorem 3.18.7, we know that any point (t, x) ∈ [0, T )×M
for which the curvature R(t, x) exceeds a certain threshold K, will lie
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in a canonical neighbourhood125. One consequence of this is that one
has the pointwise bounds

(3.527) ∇R = O(R3/2); Rt = O(R2)

whenever R ≥ K. Also recall from the maximum principle that we
have R ≥ −O(1) throughout.

These simple regularity properties of the scalar curvature R are
already enough to classify the limiting behaviour of R(t, x) as t→ T

for each fixed x:

Exercise 3.20.1. Using (3.527), show that for every x ∈ M there
are either two possibilities: either R(t, x) remains bounded as t→ T

(with a bound that can depend on x), or that R(t, x) goes to infinity
as t→ T , and in the latter case we even have the stronger statement
limt→T (T − t)R(t, x) > c for some c depending only on the implied
constant in (3.527). If we let Ω ⊂ M be the set of x for which
R(t, x) remains bounded, show that Ω is open, and R(t, ·) converges
uniformly on compact subsets of Ω to some limit R(T, ·) as t→ T .

The pinching property also lets us establish bounds of the form
Riem = O(1 + |R|). Using this and Shi’s regularity estimates (The-
orem 3.15.13) and the non-collapsing property, one can show that
(Ω, g(t)) converges in C∞ on compact subsets of Ω to an incomplete
limit (Ω, g(T )).

Our main tasks here are to understand the geometry of the limit
(Ω, g(T )), and the topology of the remaining region M\Ω (and how
the two regions connect to each other).

If Ω is all of M, then the Ricci flow continues smoothly to time T ,
and we can continue onwards beyond T by the local existence theory
for that flow. Now let us instead consider the other extreme case in
which Ω is empty. In this case, from Exercise 3.19.1 we see that we
have R(t, x) ≥ K for all x ∈M , if t is sufficiently close to T . In partic-
ular, this means that every point in M lies in a canonical neighbour-
hood: an ε-round component (topologically S3/Γ), a C-component
(topologically S3 or RP3), a ε-neck (topologically [−1, 1]× S2), or a
(C, ε)-cap (topologically a 3-ball or punctured RP3). If any point lies

125For sake of discussion we shall suppress the constants C and ε, as they will
not play a major role in what follows
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in the first type of canonical neighbourhoods, then M is topologically
a spherical space form S3/Γ. Similarly, if any point lies in the second
type, M is either an S3 or RP3 this way. So the only remaining
case left is when every point lies in a neck or a cap. Since each cap
contains at least one neck in it, we have at least one neck; following
this neck in both directions, we either must end up with a doubly
capped tube, or the tube must eventually connect back to itself. In
the former case we obtain an S3, RP3, or RP3#RP3 (depending on
whether zero, one, or two of the caps are punctured RP3’s rather
than 3-balls); in the latter case, we get an S2 bundle over S1, which
as discussed back in Section 3.3 comes in only two topological types,
oriented and unoriented.

To summarise, if Ω is empty, then M is either a spherical space
form, RP3#RP3, or an S2 bundle over S1. In this case, the surgery
procedure is simply to delete the entire manifold; this respects the
topological compatibility condition required for Theorem 3.3.9. (The
geometric compatibility condition is moot in this case.) In this case,
the disappearing region is the whole manifold M , and the continuing
region is empty.

Similar considerations occur if Ω is non-empty, but that R(T, x) ≥
2K (say) for all x ∈ Ω. So we may assume that there is at least one
x for which R(T, x) < 2K, and thus R(t, x) < 2K for all t sufficiently
close to T . Thus we are guaranteed at least one point of bounded
curvature in M , even at times close to the singular time. We can
also assume that no canonical neighbourhood in M is an ε-round
or C-component, since again in this case we could delete the entire
manifold by surgery. Thus every point of curvature greater than K

lies in a neck or a cap.

Because of this, it is not hard to show that every boundary point
of Ω (where R(T, x) becomes infinite) lies at the end of an ε-horn:a
tube of ε-necks of curvature at least 4K (say) throughout, with the
curvature becoming infinite at one or both ends126 (thus the width
of the necks go to infinity as one approaches the boundary of Ω). If
the curvature goes to infinity at both ends, we have a double ε-horn;

126Note that if the tube is ever capped off by a (C, ε)-cap, then the curvature
does not go to infinity in this tube.
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otherwise, we have a single ε-horn will have one infinite curvature
end and one end with bounded curvature.

The single ε-horns are all disjoint from each other, and their
volume is bounded from below, and so they are finite in number.
So the geometric picture of (Ω, g(T )) is that of a (possibly infinite)
number of double ε-horns, together with a finite number of additional
connected incomplete manifolds, with boundary consisting of a finite
number of disjoint spheres S2, with a single ε-horn glued on to each
one of these spheres.

Suppose one performs a topological surgery on each single ε-horn,
by taking a sphere S2 somewhere in the middle of each horn, remov-
ing the portion between that S2 and the boundary, and replacing it
by a 3-ball. We also remove all the double ε-horns; all the removed
regions form the disappearing region of M , and the remainder is the
continuing region. This creates a new compact (but possibly discon-
nected) manifold M(T ), formed by gluing finitely many 3-balls to the
continuing region. To see the topological relationship between this
new manifold and the previous manifold M , we move backwards in
time a slight amount to an earlier time t, so that the horn is no longer
singular at its boundary and instead connects to the remainder M\Ω
of the manifold. If t is close enough to T , then (by (3.527)), the
portion of the horn between the S2 and the boundary of the horn
will still have curvature at least K, and thus every point here will
lie in a neck or cap. Also, all the points in M\Ω, and in particular
the portion of the manifold beyond the boundary of the horn, will
also have curvature at least K and thus lie in a neck or cap if t is
close enough to T . If we then follow this desingularised horn from the
surgery sphere S2 towards its boundary and beyond (possibly passing
through any number of double ε-horns in the process), we will either
discover a capped tube (which is thus topologically either a 3-ball or
a punctured RP3), or else the tube will eventually connect to another
surgery sphere, which may or may not lie in the same connected com-
ponent of M(T ). Topologically, the first case corresponds to taking
a connected sum of (one component of) M(T ) with either a sphere
S3 or a projective space RP3; the second case corresponds to tak-
ing a connected sum of one component of M(T ) with either another
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component of M(T ), or with an S2-bundle over S1. Putting all this
together we see that M is the connected sum of the components of
M(T ), together with finitely many S3’s, RP3’s, and S2-bundles over
S1, which again gives the topological compatibility condition required
for Theorem 3.3.9.

We have thus successfully performed a single (topological) surgery.
However, in doing so we have lost a lot of quantitative properties of
the geometry, such as Hamilton-Ivey pinching, κ-noncollapsing, and
the canonical neighbourhood property, which means that we cannot
yet ensure that we can perform any further surgeries. To resolve this
problem, we need to be more precise about the surgery process, in
particular using our freedom to choose the surgery sphere as deep
inside the ε-horn as we please, and to prescribe the metric on the cap
that we attach to that sphere.

3.20.2. Surgery. To do surgery, a key observation of Perelman is
that the geometry of the horn becomes increasingly cylindrical as one
goes deeper into the horn:

Lemma 3.20.1. Let H be a single ε-horn which has width scale com-
parable to r at the finite curvature end, and let δ > 0. Then there
exists a δ-neck of width scale comparable to h inside the horn H,
where h = h(r, δ) > 0 is a small quantity depending only on r and δ.

Proof. (Sketch) Suppose this was not the case; then one could find
a sequence of horns Hn of this type, and a sequence of points xn
inside these horns inside ε-necks of width scale comparable to hn
which are not inside δ-necks of this scale, where hn → 0. We can find
a minimising geodesic from the finite curvature end to the infinite
curvature end that goes through the neck near xn. We then rescale
(Hn, xn) to have width 1 at xn, and then apply the machinery from
Section 3.18 to obtain a limit (H∞, x∞); the bounded curvature at
bounded distance property (Proposition 3.18.9) shows that both the
bounded curvature end and the infinite curvature end of the horn
must recede to be infinitely far away from xn in the limit, and so H∞
becomes complete; it also has non-negative curvature, by pinching.
The minimising geodesic becomes a minimising line in H∞, and so by
the Cheeger-Gromoll theorem it splits H∞ into the product of a line
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and a two-dimensional manifold (which is ε-close to a sphere). It turns
out that we can continue all these manifolds backwards in time and
repeat these arguments (much as in Section 3.18) to eventually give
H∞ the structure of a κ-solution; but then the vanishing curvature
forces it to be a round cylinder, by Proposition 3.17.2. This implies
that the rescaled Hn are eventually δ-necks, a contradiction. �

In order to successfully perform Ricci flow with surgery up to
some specified time T (starting from controlled initial conditions, and
as always assuming that no embeddedRP2 with trivial normal bundle
is present), we shall pick δ to be a very small number depending
on T and the initial condition parameters, and perform our surgery
on the δ-necks the scale h provided by Lemma 3.19.1, where r−2

is (essentially) the curvature threshold beyond which the canonical
neighbourhood condition holds127.

Remark 3.20.2. Thanks to finite time extinction in the simply con-
nected case, being able to perform Ricci flow with surgery up to a
preassigned finite time T is sufficient for proving the Poincaré con-
jecture (cf. [Pe2003b, Remark 1.4]). For the full geometrisation
conjecture, however, one needs to perform Ricci flow with surgery
for an infinite amount of time. For this, one cannot pick a single δ;
instead, one has to divide the time interval into bounded intervals
(e.g. dyadic intervals), and pick a different δ for each one (which de-
pends on a number of parameters, including the curvature threshold
for the canonical neighbourhbood property on the previous dyadic
interval). This selection of constants becomes a little subtle; see e.g.
[KlLo2006] for further discussion.

Having located a δ-neck inside each single ε-horn, we remove the
half of the neck from the centre sphere to the infinite curvature re-
gion, and smoothly interpolate in its place a copy of an (appropriately
rescaled) standard solution. There is some choice as to how to set up
this solution (much as there is some freedom when selecting a cut-
off function), but roughly speaking this solution should resemble the

127In order to avoid a circular dependence of constants, one needs to check that
even after surgery, that the curvature threshold for the canonical neighbourhood con-
dition remains bounded even after arbitrarily many surgeries, as long as δ is chosen
sufficiently small depending on this scale, on T , and on the initial conditions.
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manifold formed by attaching a hemispherical cap to a round unit
cylinder, except that one needs to smooth out the transition between
the two portions of this solution; also, one needs to ensure that one
has positive curvature throughout the standard solution in order not
to disrupt the Hamilton-Ivey pinching property. It is also technically
convenient to demand that this solution is spherically symmetric (at
which point Ricci flow collapses to a system of two scalar equations in
one spatial dimension). One can show that such standard solutions
exist for unit time (just as the round unit cylinder does), and asymp-
totically matches the round shrinking solution at spatial infinity. As
one consequence of this, one can check that all points in spacetime on
the standard solution have canonical neighbourhoods; and, with some
effort, one can also show that the same will be true in the spacetime
vicinity of the region in which a standard solution has been inserted
via surgery into a Ricci flow, as long as δ is sufficiently small. This is
an essential tool to ensure that the canonical neighbourhood solution
persists after multiple surgeries.

Remark 3.20.3. Suppose that M is irreducible with respect to
connected sum (one can easily reduce to this case for the purposes
of the Poincaré conjecture, thanks to Kneser’s theorem [Kn1929],
[Mi1962] on the existence of the prime decomposition). Then all
surgeries must be topologically trivial, which means that every ε-horn,
when viewed just before the singular time, only connects to a tube
capped off with a ball. Then one can show that the surgery procedure
is almost distance decreasing in the sense that for any η > 0, there
exists a 1 + η-Lipschitz diffeomorphism from the pre-surgery mani-
fold to the post-surgery manifold. This property is useful for ensuring
that various arguments for establishing finite time extinction for Ricci
flows, also work for Ricci flows with surgery, as discussed for in Sec-
tions 3.6, 3.7. Even if the manifold is not irreducible, one can show
that there are only finitely many surgeries that change the topology
of the manifold; this can be established either using the prime decom-
position, or by constructing a topological invariant (namely, the max-
imal number of homotopically non-trivial and homotopiclly distinct
embedded 2-spheres in M) which is finite, non-negative, decreases by
at least one with non-trivial surgery; see [MoTi2007, Section 18.2]
for details.
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Remark 3.20.4. The various properties listed above of the standard
solution and its insertion into surgery regions are the “geometric com-
patibility conditions” alluded to in Section 3.3.

3.20.3. Controlling the geometry after multiple surgeries.
Suppose that we have already performed a large (but finite) number
of surgeries. In order to be able to continue Ricci flow with surgery,
it is necessary that we maintain quantitative control on the geometry
of the manifold which is uniform in the number of surgeries. Specifi-
cally, we need to extend the following existing controls on Ricci flow,
to Ricci flow with surgery:

(1) Lower bounds on Rmin.

(2) Hamilton-Ivey pinching type bounds that lower bound Riem
in terms of R.

(3) κ-noncollapsing of the manifold.

(4) Canonical neighbourhoods for all high curvature points in
the flow.

The first two controls are quite easy to establish, because they are
propagated by Ricci flow (thanks to the maximum principle), and are
easily preserved by surgery (basically because 1. and 2. are primarily
concerned with negative curvature, and surgery is only performed in
regions of high positive curvature by construction). It is significantly
trickier however to preserve 3., because the proof of κ-noncollapsing
is more global, requiring the use of L-geodesics through spacetime.
The key new difficulty is that thanks to the presence of surgery, the
manifold can become “parabolically disconnected”; not every point in
the initial manifold (M, g(0)) can be reached from a future point in a
later manifold (M(t), g(t)) by an L-geodesic, because an intervening
surgery could have removed the region of spacetime that the geodesic
ought to have passed through. This forces one to introduce the notion
of an admissible curve - curves that avoid the surgery regions com-
pletely - and barely admissible curves, which are admissible curves
which touch the boundary of the surgery regions. Roughly speaking,
the monotonicity of reduced volume now controls the κ-noncollapsing
at future times in terms of the non-collapsing of the portion of the
initial manifold (M, g(0)) which can be reached by admissible curves;
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this region is bordered by points which can be reached by barely
admissible curves.

Now suppose we knew that all barely admissible curves had large
reduced length. Then the maximum principle argument that located
points of small reduced length for Ricci flows (cf. (3.375)), would
continue to work for Ricci flows with surgery, with the points located
being inside the admissible region. It turns out that the arguments
of Section 3.11 could then be adapted to this setting without much
difficulty to establish the desired κ-noncollapsing.

It is not too difficult to show that if a path did pass through a
δ-neck inside an ε-horn in which surgery was taking place, then the
portion of the path near to that surgery region would have a large
contribution to the reduced length (unless the starting point of the
path was very close to the surgery region, but then one could verify the
non-collapsing property directly, essentially due to the non-collapsed
nature of the standard solution). This almost settles the problem
immediately, except for the technical issue that there might be regions
of negative curvature elsewhere in spacetime which could drag the
reduced length back down again (note that the reduced length is not
guaranteed to be non-negative!). There is a technical fix for this,
defining a modified reduced length in which the curvature term R

is replaced by max(R, 0) (and using the lower bounds on Rmin to
measure the discrepancy between the two notions), but we will not
discuss the details here; see [Pe2003, Lemma 5.2] (and [MoTi2007,
Chapter 16] for a very detailed treatment).

Remark 3.20.5. In [Zh2007], [Zh2008], Perelman’s entropy is used
(as in Section 3.9) to establish κ-noncollapsing for Ricci flow with
surgery, using the distance-decreasing property to keep control of the
entropy functional after each (topologically trivial) surgery. This sim-
plifies this part of the argument, at least in the case of irreducible
manifolds M .

Finally, one has to check that all high-curvature points of Ricci
flows with surgery lie in canonical neighbourhoods, where the thresh-
old for “high curvature” is uniform in the number of surgeries per-
formed. Very roughly speaking, there are two cases, depending on
whether there was a surgery performed near (in the spacetime sense)
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such a region or not. If there was no nearby surgery, then the ar-
guments in Section 3.18 (which are local in nature) essentially go
through, exploiting heavily the κ-noncollapsing and pinching prop-
erties that we have just established. If instead there was a nearby
surgery in the recent past, then one needs to approximate the ge-
ometry here by the geometry of the standard solution, for which all
points have canonical neighbourhoods. See for instance [MoTi2007,
Section 17.1] for details.

3.20.4. Surgery times do not accumulate. The very last thing
one needs to do to establish the Poincaré conjecture is to establish
Theorem 3.3.12, which asserts that the set of surgery times is discrete.
It turns out that this is in fact rather easy to establish. One first
observes that each surgery removes at least some constant amount of
c(h) > 0 of volume from the manifold (as can be seen by looking at
what happens to a single δ-neck of width roughly h under surgery;
all other removals under surgery of course only decrease the volume
further). On the other hand, using the volume variation formula
(3.69) we have an upper bound on the growth of volume during non-
surgery times:

(3.528)
d

dt
Vol(M(t)) ≤ −Rmin(t)Vol(M(t)).

Since we have a uniform lower bound on Rmin, this implies that
volume can grow at most exponentially, and in particular can only
grow by a bounded amount on any fixed time interval. Hence there
can be at most finitely many surgeries on each such time interval, and
we are done!

Remark 3.20.6. The number of surgeries performed in a given time
interval, while finite, could be incredibly large; it depends on the
length scale h of the surgery, which in turn depends on the param-
eter δ, which needs to be very small in order not to disrupt the κ-
noncollapsing or canonical neighbourhood properties of the flow. This
is why it is essential that our control of such properties is uniform with
respect to the number of surgeries.
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Remark 3.20.7. Note also that there is no lower bound as to how
close two surgery times could be to each other; indeed, there is noth-
ing preventing two completely unrelated surgeries from being instan-
taneous. However, if there are an infinite number of singularities
occurring at (or very close to) a single time, what tends to happen is
that the earliest surgeries Knwill not only remove the immediate sin-
gularities being formed, but will also pre-emptively eradicate a large
number of potential future singularities (in particular, due to the re-
moval of all the double ε-horns, which were not immediately singular
but were threatening to become singular very shortly), thus keeping
the surgery times discrete.

Notes. This lecture first appeared at terrytao.wordpress.com/2008/06/06.
Thanks to Américo Tavares for corrections.
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4.1. Structure and randomness in the prime
numbers

This talk concerns the subject of additive prime number theory -
which, roughly speaking, is the theory of additive patterns contained
inside the prime numbers P = {2, 3, 5, 7, 11, . . .}. This is a very old
subject in mathematics; for instance, the twin prime conjecture, which
asserts that there are infinitely many patterns of the form n, n + 2
in the primes, may have been considered in one form or another by
Euclid (although the modern version of the conjecture probably dates
to [Br1915], which showed the first non-trivial progress towards the
problem). It remains open today, although there are some important
partial results. Another well-known conjecture in the subject is the
odd Goldbach conjecture (dating from 1742), which asserts that every
odd number n greater than 5 is the sum of three primes. A famous
theorem of Vinogradov[Vi1937] asserts that this conjecture is true
for all sufficiently large n; Vinogradov’s original argument did not
explicitly say how large is “sufficiently large”, but later authors did
quantify the argument; currently, it is known[LiWa2002] that the
odd Goldbach conjecture is true for all odd n > 101346. The conjec-
ture is also known[Sa1998] for all odd 5 < n < 1020, by a completely
different method.

In this lecture, I will present the following result of myself and
Ben Green in this subject:

Theorem 4.1.1 (Green-Tao Theorem). [GrTa2008] The prime num-
bers P = {2, 3, 5, 7, . . .} contain arbitrarily long arithmetic progres-
sions.

More specifically, I want to talk about three basic ingredients in
the proof, and how they come together to prove the theorem:

(1) Random models for the primes;

(2) Sieve theory and almost primes;

(3) Szemerédi’s theorem on arithmetic progressions.

4.1.1. Random models for the primes. One of the most funda-
mental results in this field is the prime number theorem, which asserts
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that the number of primes less than any large integer N is asymptot-
ically equal to (1 + o(1)) N

logN as N goes to infinity. This theorem is
proven by using the Euler product formula1

ζ(s) =
∞∑
n=1

1
ns

=
∏
p

(1− 1
ps

)−1

which relates the primes to the Riemann zeta function ζ(s). By com-
bining this formula with some non-trivial facts about the Riemann
zeta function (and in particular, in the zeroes of that function), one
can eventually obtain the prime number theorem.

One way to view the prime number theorem is as follows: if one
picks an integer n from 1 to N at random, then that number n has a
probability of 1+o(1)

logN of being prime.

With this in mind, one can propose the following heuristic “proof”
of the twin prime conjecture:

(1) Take a large number N , and let n be a randomly chosen in-
teger from 1 to N . By the prime number theorem, the event
that n is prime has probability P(n is prime) = 1+o(1)

logN .

(2) By another application of the prime number theorem, the
event that n+2 is prime also has probability P(n+2 is prime) =
1+o(1)
logN . (The shift by 2 causes some additional correction

terms, but these can be easily absorbed into the o(1) term.)

(3) Assuming these two events are independent, we conclude
P(n, n + 2 both prime) = ( 1+o(1)

logN )2. In other words, the
number of twin primes less than N is (1 + o(1)) N

log2 N
.

(4) Since (1 + o(1)) N
log2 N

goes to infinity as N goes to infinity,
there are infinitely many twin primes.

1Incidentally, this formula, if rewritten using the geometric series formula as

∞∑
n=1

1

ns
=
∏
p

(1 +
1

ps
+

1

p2s
+ . . .)

is a restatement (via generating functions) of the fundamental theorem of arithmetic;
if instead one rewrites it as

(1−
1

2s
)(1−

1

3s
)(1−

1

5s
) . . .×

∞∑
n=1

1

ns
= 1

one can view this as a restatement of (a variant of) the sieve of Eratosthenes.
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Unfortunately, this argument doesn’t work. One way to see this is to
observe that the same argument could be trivially modified to imply
that there are infinitely many pairs of adjacent primes n, n+1, which
is clearly absurd.

OK, so the above argument is broken; can we fix it? Well, we
can try to accomodate the above objection. Why is it absurd to have
infinitely many pairs of adjacent primes? Ultimately, it is because
of the obvious fact that the prime numbers are all odd (with one
exception). In contrast, the above argument was implicitly using a
random model for the primes (first proposed by Cramer[Cr1936])
in which every integer from 1 to N - odd or even - had an equal
chance of 1+o(1)

logN of being prime; this model is clearly at odds with the
parity structure of the primes. But we can repair this by replacing the
above random model with a more sophisticated model in which parity
is taken into account. More precisely, we observe that a randomly
chosen odd number from 1 to N has a probability of 2+o(1)

logN of being
prime, while a randomly chosen even number has a probability of
0+o(1)
logN (one can be more precise than this, of course). In the language

of probability theory, we have the conditional probabilities

P(n is prime|n is odd) =
2 + o(1)

logN

P(n is prime|n is even) =
0 + o(1)

logN

and similarly

P(n+ 2 is prime|n is odd) =
2 + o(1)

logN

P(n+ 2 is prime|n is even) =
0 + o(1)

logN
.

Now, instead of assuming that the events “n is prime” and “n+2 is
prime” are absolutely independent, let us assume that they are con-
ditionally independent, relative to the parity of n. Then we conclude
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that

P(n, n+ 2 both prime|n is odd) =
4 + o(1)
log2N

P(n, n+ 2 both prime|n is even) =
0 + o(1)
log2N

and a little computation (using the law of total probability) then shows
that the number of twin primes less than N is now (2 + o(1)) N

log2 N
,

which still goes to infinity, and so we recover the twin prime conjecture
again. Or do we?

Well, the above random model is still flawed. It now correctly
asserts that there are extremely few pairs n, n+1 of adjacent primes,
but it also erroneously predicts that there are infinitely many triplets
of primes of the form n, n+2, n+4, when in fact there is only one - 3,
5, 7 - since exactly one of n, n+ 2, n+ 4 must be divisible by 3. But
we can refine the random model further by taking mod 3 structures
into account as well as mod 2 structures. Indeed, if we partition the
integers from 1 to N using both the mod 2 partition and the mod 3
partition, we obtain the six residue classes {1 ≤ n ≤ N : n = i mod 6}
for i = 0, 1, 2, 3, 4, 5. From the prime number theorem in arithmetic
progressions (a common generalisation of the prime number theorem
and Dirichlet’s theorem) one can show that

P(n is prime|n = i mod 6) =
3 + o(1)

logN

for i = 1, 5, and

P(n is prime|n = i mod 6) =
0 + o(1)

logN

for i = 0, 2, 3, 4. By repeating the previous analysis, the predicted
count of twin primes less than N now drops from (2 + o(1)) N

log2 N
to

(1.5 + o(1)) N
log2 N

.

Now, it turns out that this model is still not correct - it fails to
account for the mod 5 structure of the primes. But it is not hard to
incorporate that structure into this model also, which revises the twin
prime count downward a bit to (1.40625 + o(1)) N

log2 N
. And then the

mod 7 structure also changes the predicted number of twin primes
a little bit more, and so on and so forth. But one notices that as
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one continues to input in all this structural information about the
primes, the predicted count of twin primes begins to converge to a
limit, namely (2Π2 + o(1)) N

log2 N
≈ 1.32 N

log2 N
, where

Π2 :=
∏

p≥3, prime
(1− 1

(p− 1)2
) = 0.66016 . . .

is known as the twin prime constant. More generally, Hardy and
Littlewood proposed a general conjecture[HaLi1923], now known as
the Hardy-Littlewood prime k-tuples conjecture, that predicted as-
ymptotic counts for a general class of additive patterns in the primes;
this conjecture (and further refinements) would imply the twin prime
conjecture, Vinogradov’s theorem, my theorem with Ben Green, and
many other results and conjectures in the subject also.

Roughly speaking, these conjectures assert that apart from the
“obvious” structure in the primes, arising from the prime number
theorem and from the local behaviour of the primes mod 2, mod 3,
etc., there are no other structural patterns in the primes, and so the
primes behave “pseudorandomly” once all the obvious structures are
taken into account. The conjectures are plausible, and backed up
by a significant amount of numerical evidence; unfortunately, nobody
knows how to enforce enough pseudorandomness in the primes to
make the conjectures rigorously proven. (One cannot simply take
limits of the above random models as one inputs more and more
mod p information, because the o(1) error terms grow rapidly and
soon overwhelm the main term that one is trying to understand.)
The problem is that the primes may well contain “exotic structures”
or “conspiracies”, beyond the obvious structures listed above, which
could further distort things like the twin prime count, perhaps so
much so that only finitely many twin primes remain. This seems
extremely unlikely, but we can’t rule it out completely yet; how can
one disprove a conspiracy?

Some numerics may help illustrate what I mean by the primes
becoming random after the mod 2, mod 3, etc. structures are “taken
into account” (though I should caution against reading too much into
such small-scale computations, as there are many opportunities in
small data sets for random coincidences or transient phenomena to
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create misleading artefacts, cf. the “law of small numbers”[Gu1988]).
Here are the first few natural numbers, with the primes in red, the
odd numbers in the starred columns, and the even numbers in dotted
columns:

* . * . * . * . * . * . * .
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56

It is then clear that the primes have mod 2 structure; they clus-
ter in the odd numbers (the starred columns) rather than the even
numbers (the dotted columns), and are thus distributed quite non-
randomly. But suppose we “zoom in” on the odd numbers, discarding
the even numbers:

* . * . * . * . * . * . * . * .
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

Then it seems that there is no further parity structure; the starred
columns (which have numbers which are 1 mod 4) and the dotted
columns (which have numbers which are 3 mod 4), seem equally likely
to contain primes. (Indeed, this is a proven fact, being a special case
of the prime number theorem in arithmetic progressions.) But look
what happens if we highlight the mod 3 structure instead:

* . * . * . * .
1 3 5 7 9 11 13 15 17 19 21 23
25 27 29 31 33 35 37 39 41 43 45 47
49 51 53 55 57 59 61 63 65 67 69 71
73 75 77 79 81 83 85 87 89 91 93 95

Then the dotted columns (whose entries are 0 mod 3) are devoid
of primes other than 3 itself. But if we instead zoom into (say) the
starred columns (whose entries are 1 mod 3), we eliminate the mod 3
structure, making the remaining primes more randomly distributed:
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* . * .
1 7 13 19 25 31 37 43 49 55
61 67 73 79 85 91 97 103 109 115
121 127 133 139 145 151 157 163 169 175

Now the primes exhibit obvious mod 5 structure (the dotted
columns, whose entries are 0 mod 5, have no primes) but look fairly
randomly distributed otherwise. Indeed, if we zoom in to (say) the
1 mod 5 residue class, which are the starred columns above, there
seems to be very little structure at all:

.
1 31 61 91 121 151 181
211 241 271 301 331 361 391
421 451 481 511 541 571 601
631 661 691 721 751 781 811

Apart from the dotted column, which has all entries divisible by
7 and thus not prime, the primes seem fairly randomly distributed.
In the above examples I always zoomed into the residue class 1 mod p

for p = 2, 3, 5, . . ., but if one picks other residue classes (other than
0 mod p, of course), one also sees the primes become increasingly
randomly distributed, with no obvious pattern within each class (and
no obvious relation between pairs of classes, triplets of classes, etc.).
One can view the prime k-tuples conjecture as a precise formalisation
of this assertion of increasing random distribution2.

4.1.2. Sieve theory and almost primes. We have talked about
random models for the primes, which seem to be very accurate, but
difficult to rigorously justify. However, there is a closely related con-
cept to a prime, namely an almost prime, for which we can show the
corresponding random models to be accurate, by the elementary yet
surprisingly useful technique of sieve theory.

The most elementary sieve of all is the sieve of Eratosthenes. This
sieve uncovers (or “sifts out”) all the prime numbers in a given range,
say between N/2 and N for some large number N , by starting with
all the integers in this range, and then discarding all the multiples of
2, then the multiples of 3, the multiples of 5 and so forth. After all

2In [GrTa2008], we rely quite crucially on this zooming in trick to improve the
pseudorandomness of the almost primes, referring to it as the “W-trick”.
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multiples of prime numbers less than
√
N are discarded, the remaining

set is precisely the set of primes between N/2 and N .

It is tempting to use this sieve to count patterns in primes, such as
twin primes. After all, it is easy to count how many twins there are in
the integers from N/2 to N ; if one then throws out all the multiples of
2, it is still straightforward to count the number of twins remaining.
Similarly if one then throws out multiples of 3, of 5, and so forth;
not surprisingly, the computations here bear some resemblance to
those used to predict twin prime counts from the random models just
mentioned. However, as with the random models, the error terms
begin to accumulate rapidly, and one loses control of these counts
long before one reaches the end of the sieve. More advanced sieves
(in which one does not totally exclude the multiples of small numbers,
but instead adjusts the “weight” or “score” of a number upward or
downward depending on its factors) can improve matters significantly,
but even the best sieves still only work if one stops sieving well before
the
√
N mark (sieve levels such as N1/4 are typical). (The reason for

this has to do with the parity problem, which I will not discuss further
here, but see Section 3.10 of Structure and Randomness.)

I like to think of the sieving process as being analogous to carv-
ing out a sculpture (analogous to the primes) from a block of granite
(analogous to the integers). To begin with, one uses crude tools (such
as a mallet) to remove large, simple pieces from the block; but after
a while, one has to make finer and finer adjustments, replacing the
mallet by a chisel, and then by a pick, removing lots and lots of very
small pieces, until the final sculpture is complete. Initially, the struc-
ture is simple enough that one can easily pick out patterns (such as
twins, or arithmetic progressions); but there is the (highly unlikely)
possibility that the many small sets removed at the end are just dis-
tributed perversely enough to knock out all the patterns one discerns
in the initial stage of the process.

Because we cannot exclude this possibility, sieve theory alone
does not seem to able to count patterns in primes. However, we can
stop the sieve at an earlier level. If we do so, we obtain good counts
of patterns, not in primes, but in the larger set of almost primes -
which, for the purposes of this talk, one can think of as being defined



628 4. Lectures in additive prime number theory

as those numbers with no small factors (e.g. no factors less than Nε

for some ε > 0). (This is an oversimplification - one needs to use the
weights mentioned above - but it will suffice for this discussion.) Then
it turns out that (to oversimplify some more), everything we want to
show about the primes, we can show about the almost primes. For
instance, it was shown by Chen that there are infinitely many twins
n, n+2, one of which is a prime and the other is the product of at most
two primes. Similarly, given any k, one can show using sieve theory
that there are infinitely many arithmetic progressions of length k, each
element of which has at most Ok(1) prime factors. More generally, the
almost primes behave the way we expect the primes to; distributed
pseudorandomly, after taking into account the obvious structures (for
instance, almost primes, like the primes, tend to be almost all coprime
to 2, coprime to 3, etc.)

Unfortunately, there is still a gap between finding patterns in the
almost primes and finding patterns in the primes themselves, because
the primes are only a subset of the almost primes. For instance, while
the number of primes less than N is roughly N/ logN , the number of
numbers less than N with no factors less than (say) N1/100 is (very)
roughly 100N/ logN . Thus the primes only form a small fraction of
the almost primes.

4.1.3. Szemerédi’s theorem on arithmetic progressions. Thus
far, we have discussed the general problem of how to find patterns
in sets such as the primes or almost primes. This problem in general
seems to be very difficult, because we do not know how structured or
pseudorandom the primes are. There is however one type of pattern
which is special - it necessarily shows up in just about any kind of set
- structured or random. This type of set is an arithmetic progression.
In fact, we have the following important theorem:

Theorem 4.1.2 (Szemerédi’s theorem). [Sz1975] Let A ⊂ Z be a set
of integers of positive upper density (which means that lim supN→∞

1
2N+1 |A∩

{−N, . . . , N}| > 0). Then A contains arbitrarily long arithmetic pro-
gressions.

This is a remarkable theorem: it says that if one picks any set
of integers at all, so long as it is large enough to occupy a positive
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fraction of all integers, that is enough to guarantee the existence of
arithmetic progressions of any length inside that set. This is in con-
trast with just about any other pattern, such as twins: for instance,
the multiples of three have positive density, but contain no twins.

There are several proofs of this difficult theorem known. It would
be too technical to discuss any of them here in detail, but very roughly
speaking, all the proofs proceed by dividing the set A into “struc-
tured” components (such as sets which are periodic) and “pseudoran-
dom” components (which, roughly, are those components for which
the random model gives accurate predictions). One can show that the
structured components always generate a lot of arithmetic progres-
sions, and that the pseudorandom components do not significantly
disrupt this number of progressions.

Unfortunately, Szemerédi’s theorem does not apply to the primes,
because they have zero density. (There are some quantitative versions
of that theorem that apply to some sets of zero density, but they are
not yet strong enough to directly deal with sets as sparse as the
primes.)

4.1.4. Putting it all together. To summarise: random models
predict arbitrarily long progressions in the primes, but we cannot
verify these models. Sieve theory does let us establish long progres-
sions in the almost primes, but the primes are only a fraction of the
almost primes. Szemerédi’s theorem gives progressions, but only for
sets of positive density within the integers.

To proceed, we exploit the fact that the primes have positive rel-
ative density inside the almost primes, by the following argument (in-
spired, incidentally, by Furstenberg’s ergodic-theoretic proof[Fu1977]
of Szemerédi’s theorem, see Sections 2.10-2.15). We conjecture that
the primes obey a certain random model, in which the only structure
present being mod p structure for small p. If this is the case, then
we are done. If not, it means that there is some specific obstruction
to pseudorandomness in the primes, much as the mod 2 or mod 3
obstructions we discussed earlier prevented the most naive random
models of the primes from being accurate. We don’t know exactly
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what that obstruction is, but it turns out that it is possible never-
theless to use that obstruction to modify the random model for the
primes to be more accurate, much as we used the mod 2 and mod 3
information previously. We then repeat this process, locating obstruc-
tions to pseudorandomness and incorporating them into our random
model, until no major obstructions remain. (This can be done after
only a bounded number of steps, because one can show (with some
effort) that each addition to the random model increases its “energy”
by a certain amount, and one can show that the total amount of en-
ergy in the model must stay bounded.) As a consequence we know
that we can model the primes accurately (at least for the purposes of
counting arithmetic progressions) by some random model3.

The above procedure does not give a very tractable formula for
what this model is. However, because the primes are a dense subset
of the almost primes, which behave like a random subset of the inte-
gers, one can show (by a “comparison principle”, and oversimplifying
somewhat) that the primes must then behave like a random subset
of a dense subset B of the integers. But then Szemerédi’s theorem
applies, and shows that this set B contains plenty of progressions; a
random subset of B will then also contain many progressions, and
thus the primes will also.

Remark 4.1.3. A simplified version of the above argument, using
game theory instead of the above ergodic theory-motivated approach,
was recently obtained in [ReTrTuVa2008], [Go2008].

Notes. This talk first appeared at terrytao.wordpress.com/2008/01/07,
and was given in the annual joint meeting of the American Mathemat-
ical Society and Mathematical Association of America in San Diego
in January of 2008. A similar talk also formed the first in my series of
four Marker Lectures in Penn State University in November of 2008.

3I have not precisely defined what I mean here by “random model”, but very
roughly speaking, any such model consists of a partition (or σ-algebra) of the integers
from 1 to N into a bounded number of sets, a specified density for the primes on each
such set, and an assumption that the primes behave on each set like a random set with
the specified density. Readers familiar with the Szemerédi regularity lemma may see
a parallel here.
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4.2. Linear equations in primes

In the previous lecture, I focused on finding a specific type of pattern
inside the prime numbers, namely that of an arithmetic progression
n, n+r, . . . , n+(k−1)r. The main reason why the analysis there is spe-
cific to progressions is because of its reliance on Szemerédi’s theorem,
which shows that arithmetic progressions are necessarily abundant
in sufficiently “large” sets of integers. There are several other vari-
ants and generalisations of this theorem known to a few other types
of patterns (e.g. polynomial progressions n + P1(r), . . . , n + Pk(r),
where P1, . . . , Pk are polynomials from the integers to the integers
with P1(0) = . . . = Pk(0) = 0 and r 6= 0), and in some cases the
analogous results about primes are known (e.g. in [TaZi2008] we
showed that for any given P1, . . . , Pk as above, there are infinitely
many polynomial progressions of primes).

However, for most patterns, there is no analogue of Szemerédi’s
theorem, and the strategy used in the previous lecture cannot be
directly applied. For instance, it is certainly not true that any subset
of integers with positive upper density contains any twins n, n + 2;
the multiples of three, for instance, form a counterexample, among
many others4.

Furthermore, even in the cases when these methods do work, for
instance in demonstrating for each k that there are infinitely many
progressions of length k inside the primes, they do not settle the more
quantitative problem of how many progressions of length k there are
asymptotically in any given finite range of primes, e.g. the primes
less than a number N in the asymptotic limit N → ∞. This is
because Szemerédi’s theorem provides a lower bound for the number
of progressions in a large finite set, but not a matching upper bound.
(For instance, given a subset A of {1, . . . , N} of density 1/2, the
number of progressions of length 3 in A can be as large as (1/4 +
o(1))N2 (if A consists of the even integers from 1 to N , for instance)
and as small as (1/8 + o(1))N2 (if A is a randomly chosen set of

4In fact, there are so many counterexamples here, that it looks unlikely that the
twin prime conjecture can be attacked by this method without a significant new idea;
see Section 2.1 of Structure of Randomness for further discussion.
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density 1/2), and can even be a little bit smaller by perturbing this
example slightly.)

On the other hand, as discussed in the previous lecture, one can
use standard random models for the primes to predict what the cor-
rect asymptotic for these questions should be. For instance, the num-
ber of arithmetic progressions n, n+r, . . . , n+(k−1)r of a fixed length
k consisting of primes less than N should be asymptotically

(4.1) (
1

2(k − 1)
(
∏
p

βp) + o(1))
N2

logkN

where the product is over all primes p, and the quantity βp is defined
as

βp :=
1
p

(
p

p− 1
)k−1

for p ≤ k, and

βp := (1− k − 1
p

)(
p

p− 1
)k−1

for p ≥ k.

The various terms in this complicated-looking formula can be
explained as follows. The “Archimedean” factors 1

2(k−1) and N2

come from the fact that the number of arithmetic progressions n, n+
r, . . . , n+(k−1)r of natural numbers less than N is ( 1

2(k−1) +o(1))N2.
The “density” factor 1

logk N
comes from the prime number theorem,

which roughly speaking asserts that each of the k elements n, n +
r, . . . , n + (k − 1)r in a typical arithmetic progression has a (1 +
o(1)) 1

logN “probability” of being prime. The “local” factors βp mea-
sures how much bias arithmetic progressions with respect to being co-
prime to a fixed prime p, which is relevant for progressions of primes,
since primes of course tend to be coprime to p. More precisely, βp can
be defined as the probability that a random arithmetic progression of
length k has all entries coprime to p, divided by the probability that
a random collection of k independent numbers are all coprime to p.
It is not difficult to show that the product

∏
p βp converges to some

finite non-zero number for each k.

Similar heuristic asymptotic formulae exist for the number of
many other patterns of primes; for instance, the number of repre-
sentations N = p1 + p2 of a large integer N as the sum of two primes



4.2. Linear equations in primes 633

should be equal to (
∏
p βp,N + o(1))N , where βp,N is5 the probability

that two randomly chosen numbers conditioned to be coprime to p

sum to N modulo p, divided by the probability that two randomly
chosen numbers sum to N modulo p. A more general prediction for
counting linear patterns inside primes exists, and is essentially the
Hardy-Littlewood prime tuples conjecture[HaLi1923]. This conjec-
ture, which is widely believed to be true, would imply many other
conjectures in the subject, such as the twin primes conjecture and
the Goldbach conjecture (for sufficiently large even numbers). Unfor-
tunately, the cases of the prime tuples conjecture which would have
these consequences remain out of reach of current technology.

Using some elementary linear algebra, one can recast the prime
tuples conjecture not as a question of finding linear patterns inside
primes, but rather that of solving linear equations in which all the
unknowns are required to be prime, subject to some additional linear
inequalities. For instance, finding progressions of length k consisting
entirely of primes less than N is essentially the same as asking for
solutions to the system of equations

p2 − p1 = p3 − p2 = . . . = pk − pk−1

and inequalities

0 ≤ p1, . . . , pk ≤ N

where the unknowns p1, . . . , pk are required to be primes. More gener-
ally, one could imagine the question of asking the number of k-tuples
(p1, . . . , pk) consisting entirely of primes which is contained in some
convex set B in Rk of some intermediate dimension6 1 ≤ d ≤ k, which
is contained in a ball of radius O(N) around the origin. For instance,
in the above example B is the 2-dimensional set

{(x1, . . . , xk) ∈ Rk : x2 − x1 = . . . = xk − xk−1; 0 ≤ x1, . . . , xk ≤ N}.

5In particular, β2,N = 0 for odd N , reflecting the fact that it is very difficult for
an odd number to be representable as the sum of two primes. More generally, one can
compute that βp,N = 1 + 1

p−1 when p divides N, and βp,N = 1− 1
(p−1)2

otherwise.

6We make the technical assumption that the linear coefficients of the equations
defining the d-dimensional subspace that B lives in are independent of N; k and d are
of course also assumed to be independent of N . The constant coefficients, however, are
allowed to vary with N; this is the situation that comes up for instance in the Goldbach
conjectures.
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One can think of the problem of finding points in B as that of solving
k− d equations in k unknowns. One can also generalise this problem
slightly by enforcing some residue constraints xj = aj mod qj on the
unknowns, but we will ignore this minor extension to simplify the
discussion.

The prime tuples conjecture for this problem can roughly speak-
ing be phrased as follows. Suppose that the number if k-tuples
(n1, . . . , nk) in B consisting of natural numbers is known to be

(β∞ + o(1))Nd

for some constant β∞ independent of N (one can think of this con-
stant as the normalised volume of B). Suppose also that for any fixed
prime p, the number of k-tuples in B consisting of natural numbers
coprime to p is known to be7

(β∞βp + o(1))(1− 1
p

)kNd

for some constant latex betap independent of n. Then the prime
tuples conjecture asserts that the number of k-tuples in B consisting
of primes should be

(4.2) (β∞
∏
p

βp + o(1))
Nd

logkN
.

In particular, this can be shown to imply that if β∞ > 0 (thus there
are no obstructions to solving the system of equations at infinity) and
if βp > 0 for all p (thus there are no obstructions to solvability mod
p for any p) then there will exist many solutions to the system of
equations in primes when N is large enough.

As mentioned earlier, this conjecture remains open in several im-
portant cases, most particularly in the one-dimensional case d = 1.
For instance, the twin prime conjecture would follow from the case
B := {(x1, x2) : x2 − x1 = 2, 0 ≤ x1, x2 ≤ N}, but this case remains
open. However, there has now been significant progress in the higher
dimensional cases d ≥ 2, especially when the codimension k− d (rep-
resenting the number of equations in the system) is low. Firstly, the
prime number theorem settles the zero codimension case d = k (and

7The factor (1 − 1
p )k is natural, as it represents the proportion of tuples of k

natural numbers in which all the entries are coprime to p.
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is pretty much the only situation in which we can handle a d = 1
case). The Hardy-Littlewood circle method, based on Fourier analy-
sis, settles all “non-degenerate” cases when d ≥ max(k − 1, 2), where
“non-degenerate” roughly speaking means that the problem does not
secretly contain a d = 1 problem inside it as a lower-dimensional pro-
jection (e.g. B := {(x1, x2, x3) : x2 − x1 = 2, 0 ≤ x1, x2, x3 ≤ N}
would be degenerate; more generally, B is non-degenerate if it is not
contained in any hyperplane that can be defined using at most two
of the unknowns). It can also handle some cases in which the codi-
mension k−d exceeds 1 (e.g. one could take the Cartesian product of
some codimension 1 examples); the precise description of what prob-
lems are within reach of this method is a little technical to state and
will not be given here.

Ben Green and I were able to establish the following partial result
towards this conjecture:

Theorem 4.2.1. [GrTa2009], [GrTa2009c], [GrTa2009d], [GrTa2009e],
[GrTa2009f] The prime tuples conjecture is true in all non-degenerate
situations in which d ≥ max(k − 2, 2). If the inverse conjecture for
the Gowers norms over the integers is true, then the prime tuples
conjecture is true in all non-degenerate situations in which d ≥ 2.

I will say a little bit more about what the inverse conjecture
for the Gowers norms is later. This theorem unfortunately does not
touch the most interesting case d = 1 (when the patterns one is
seeking only have one degree of freedom), but it does largely settle
all the other cases. For instance, this theorem implies the asymptotic
(4.1) for prime progressions of length k for k ≤ 4 (the cases k ≤ 3
were established earlier by van der Corput using the circle method),
and the case of higher k would also follow from the theorem once the
inverse conjecture is proven. As with the circle method, we can also
unconditionally handle some cases in which d is less than max(k −
2, 2), but the precise statement here is technical and will be omitted.
(Details and further examples can be found in [GrTa2009].)

Now I would like to turn to the proof of this theorem. At first
glance, the result looks like it is going to be quite complicated, due to
the presence of all the different factors in the asymptotic (4.2) that
one is trying to prove. However, most of the factors can be dealt
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with by various standard tricks. The Archimedean factor β∞ can be
eliminated from the problem by working locally (with respect to the
infinite place), covering B by cubes of sidelength o(N). For similar
reasons, the local factors βp can be eliminated by working locally mod
p (i.e. restricting to a single residue class mod p for various small p).
The factors 1

logk N
, which come from the density 1

logN of primes in the
region of interest (i.e. from the prime number theorem), can largely
be compensated for (with some effort) from the transference principle
technology developed in our earlier paper on long progressions in the
primes, which was discussed in the previous lecture. After all this,
the problem basically boils down to the following. We have a certain
subset A of the integers {1, . . . , N} with some density 0 < δ < 1 (one
should think of A as being a “model” for the primes, after all the
distorting structure coming from local obstructions has been stripped
out; in actuality, one has to replace the set A by a weight function
f : {1, . . . , N} → [0, 1] of mean value δ, but let us ignore this tech-
nicality to simplify the discussion). We pick a random instance of
some linear pattern inside {1, . . . , N} (for sake of concreteness, let us
pick a random arithmetic progression n, n+ r, . . . , n+ (k − 1)r) and
ask what is the probability that all the elements of this pattern lie
in A. Since A has density δ, we expect each element n + jr of our
random progression to have a probability8 δ + o(1) to lie in A. Since
our pattern consists of k elements, we thus expect

(4.3) P(n, n+ r, . . . , n+ (k − 1)r ∈ A) = δk + o(1).

Roughly speaking, the key issue in proving the theorem is to work out
some “easily checkable” conditions on A that would guarantee that
the heuristic (4.3) is in fact valid. One then verifies that these “easily
checkable” conditions do indeed hold for the set A of interest (which
is a proxy for the set of primes).

As stated before, we expect P(n + jr ∈ A) = δ + o(1) for each
0 ≤ j < k. Thus (4.3) is asserting in some sense that the events
n + jr ∈ A are “approximately independent”. This would be a rea-
sonable assertion if A was pseudorandom (i.e. it behaved like a ran-
dom subset of {1, . . . , N} of the given density δ), and is consistent

8This is not quite the case if A is biased to lie on one side of {1, . . . , N} than on
the other, but it turns out that one can ignore this possibility.
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with the general heuristic from number theory that we expect the
prime numbers to behave randomly once all the “obvious” irregu-
larities in distribution (in particular, irregularity modulo p for small
p) has been dealt with. But if A exhibits certain types of structure
(or at least some bias towards structure), then (4.3) can fail. For
instance, suppose that A consists entirely of odd numbers. Then, if
the first two elements n, n + r of an arithmetic progression lie in A,
they are necessarily odd, which then forces the rest of the elements
of this progression to be odd. As A is concentrated entirely in these
odd numbers, these elements of the progression are thus expected to
have an elevated probability of lying in A, and so the left-hand side of
(4.3) would be expected to significantly exceed the former once k ≥ 3.
(The asymptotic (4.3) becomes trivially true for k < 3.) A similar
distorting effect occurs if A is not entirely contained in the odd num-
bers, but is merely biased towards them, in that odd numbers are
more likely to lie in A than even numbers. In this example, the bias
in A caused the number of progressions to go up from the expected
number predicted by (4.3); it is also possible (but more tricky) to con-
coct examples in which bias in A forces the number of progressions
to go down somewhat, though Szemerédi’s theorem does prevent one
from extinguishing these progressions completely when N is large.

Bias towards odd or even numbers is equivalent to a correlation
between A and the linear character χ(n) := (−1)n; the algebraic
constraints between the χ(n+ jr), and in particular the relationship

(4.4) χ(n+ 2r)χ(n+ r)−2χ(n) = 1

can be viewed as the underlying source of the distorting effect that
can prevent (4.3) from holding for k ≥ 3. The same algebraic con-
straint holds for any other linear character, e.g. the Fourier character
χ(n) := e(ξn) (where e(x) := e2πix) for some fixed frequency ξ ∈ R,
for much the same reason that two points on a line determine the
rest of the line (it is also closely related to the fact that the second
derivative of a linear function vanishes). Because of this, we expect
(4.3) to be distorted when A correlates with such a character (which
means that the Fourier coefficient

∑
n∈A χ(n) is unexpectedly large

in magnitude).
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It turns out that in the case k = 3 of progressions of length three,
correlation with a linear character is the only source of distortion in
the count (4.3). A sign of this can be seen from the identity

#{(n, r) : n, n+r, n+2r ∈ A} =
∫ 1

0

(
∑
n1∈A

e(ξn1)(
∑
n2∈A

e(−2ξn2))(
∑
n3∈A

e(ξn3)) dξ

which can be viewed as a “Fourier transform” of the algebraic iden-
tity (4.4). One can formalise this using (a slight variant of) the
above identity and some other Fourier-analytic tools (in particular,
the Plancherel identity) to conclude

Theorem 4.2.2 (Inverse theorem for length three progressions). (In-
formal) Let k = 3. Suppose that A is a subset of {1, . . . , N} of density
δ for which (4.3) fails. Then A correlates with a non-trivial linear
character χ(n) = e(ξn). (”Non-trivial” basically means that χ oscil-
lates at least once on the interval {1, . . . , N}.)

Applying this theorem in the contrapositive, we conclude that we
can justify the asymptotic (4.3) in the k = 3 case as long as we can
show that A does not correlate with a linear character. In the case
when A is a proxy for the primes, this task essentially boils down to
that of establishing non-trivial estimates for exponential sums over
primes, such as ∑

p<N

e(ξp);

for technical reasons it is more convenient to deal with slight variants9

of this sum such as

(4.5)
N∑
n=1

Λ(n)e(ξn)

where Λ is the von Mangoldt function, or

(4.6)
N∑
n=1

µ(n)e(ξn)

9There are various elementary identities, such as summation by parts, that allow
one to express one of these sums in terms of the others. One has a lot of flexibility in
here as long as one retains a factor in the sum, such as Λ(n) or µ(n), which is somehow
sensitive to the prime factorisation of n.
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where µ is the Möbius function. The reason for using these functions
instead is that they enjoy a number of very useful identities, such as

(4.7)
∞∑
n=1

Λ(n)χ(n)
ns

= −L
′(s, χ)
L(s, χ)

and

(4.8)
∞∑
n=1

µ(n)χ(n)
ns

=
1

L(s, χ)

for any Dirichlet character χ (where L(s, χ) is the Dirichlet L-function),
and also multiplicative identities such as

(4.9) Λ(n) =
∑
d|n

µ(d) log
n

d

and

(4.10) µ(n) =
∑
n=abc

µ(a)µ(b)

To cut a long story very short, identities such as (4.7), (4.8) are
useful for estimating (4.5), (4.6) respectively in the major arc case
when ξ is rational or close to rational (with small denominator), while
(variants of) identities such as (4.9) or (4.10) (in particular, certain
truncated versions of (4.9) and (4.10) such as Vaughan’s identity)
are useful for estimating (4.5), (4.6) respectively in the minor arc
case when ξ is far from a rational with small denominator (or close
to a rational with large denominator). This theory was pioneered by
Vinogradov (and also Hardy and Littlewood), and refined and simpli-
fied over the years with many contributions by Vaughan, Davenport,
Heath-Brown, and others, with the upshot being that we now have a
fairly good understanding of sums such as (4.5) and (4.6), and in par-
ticular that the sum (4.6) exhibits a strong cancellation (by a factor
of OA(log−AN) for any fixed A) uniformly in ξ (i.e. we can handle
both major and minor arcs with a uniform estimate). Combining
this with the inverse theorem and the previous reductions, one can
eventually establish the asymptotic (4.1) in the k = 3 case10.

10This is not exactly how the original proof of (4.1) by van der Corput in this
case proceeded, but both proofs use the same general ingredients and method, i.e. the
Hardy-Littlewood circle method and the Vinogradov method for estimating exponential
sums.
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Now we turn to progressions of longer length, such as the case k =
4. Here, linear characters χ(n) = e(ξn) continue to cause bias that
distorts the expected asymptotic (4.3), and so it is still necessary to
control sums such as (4.5) or (4.6) to prevent such bias from occuring.
However, a major new difficulty arises that new sources of bias also
arise. For instance, if one takes a quadratic character χ(n) := e(ξn2)
for some ξ, then one easily verifies the identity

(4.11) χ(n)χ(n+ r)−3χ(n+ 2r)3χ(n+ 3r)−1 = 1

which reflects the fact that the third derivative of a quadratic function
(such as n 7→ ξn2) is zero (it also reflects the fact that three points
on the graph of a quadratic (i.e. a parabola) determine the entire
parabola). One consequence of this is that if χ(n), χ(n+ r), χ(n+2r)
are all close to 1 (say), then χ(n + 3r) will be also. This constraint
between the four values of χ along an arithmetic progression sug-
gests that if A exhibits significant correlation with χ, then the event
that n+3r lies in A will be influenced in some non-trivial manner by
whether n, n+ r, and n+ 2r already lie in A, which will lead to some
distortion in (4.3). Thus one will need to update the inverse theorem
by taking quadratic characters into account11. The most optimistic
conjecture in this regard would be

Theorem 4.2.3 (Proposed inverse theorem for length four progres-
sions). (Informal) Let k = 4. Suppose that A is a subset of {1, . . . , N}
of density δ for which (4.3) fails. Then A correlates with a non-trivial
quadratic character χ(n) = e(ξ2n2 + ξ1n).

Unfortunately, this conjecture fails. The easiest way to see this is
to consider a bracket quadratic character, such as χ(n) = e(b

√
2nc
√

3n),
where bc is the greatest integer function. This is not quite a qua-
dratic character, because bc is not quite a linear function. However,
this function is linear “a positive fraction of the time”; if one picks x
and y to be some generic real numbers, one expects bx+ yc to equal
bxc + byc about half of the time. Because of this, we see that while
the identity (4.11) certainly doesn’t hold all the time for χ(n), it does
hold a positive fraction of the time, and this is enough to still cause

11Easy examples show that it is possible for a set to correlate with a quadratic
character without exhibiting any correlation with linear characters, by choosing a qua-
dratic character with irrational coefficients.
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significant bias to disrupt (4.3) if A correlates with this object. It
is furthermore possible to concoct examples of sets A that correlate
with bracket quadratic characters such as e(b

√
2nc
√

3n) but not any
linear or quadratic characters12. Once one throws in these bracket
quadratics, it turns out that these do in fact constitute all the pos-
sible obstructions to (4.3) holding in the k = 4 case, as shown in
[GrTa2009d]:

Theorem 4.2.4 (Inverse theorem for length four progressions). (In-
formal) Let k = 4. Suppose that A is a subset of {1, . . . , N} of density
δ for which (4.3) fails. Then A correlates with a non-trivial bracket
quadratic character χ(n) = e(

∑J
j=1bαjncβnj + ξ2n

2 + ξ1n) for some
real numbers αj , βj , ξ1, ξ2 and bounded J .

The proof of this result involves both Fourier analysis and addi-
tive combinatorics, relying heavily on ideas from a paper of Gowers[Go1998]
on Szemerédi’s theorem for progressions of length 4. It will not be
discussed here.

In view of the inverse theorem, the problem of establishing the
asymptotic (4.1) for length 4 progressions then reduces (by suitable
generalisations of the various methods discussed previously) to that
of estimating exponential sums of which

N∑
n=1

µ(n)e(b
√

2nc
√

3n)

is a typical example. One can begin to apply the methods of
Vinogradov and Vaughan to control this type of expression. But one
is soon faced with the problem of understanding the distribution of
quadratic phases such as b

√
2nc
√

3n, and in particular to estimate
exponential sums such as

N∑
n=1

e(b
√

2nc
√

3n).

12The same phenomenon is not visible at the linear level; a bracket linear phase

such as e(b
√

2nc
√

3) can be rewritten as e(
√

6n)e(−
√

3{
√

2n}), which by Fourier series

can be expressed as a linear combination of linear characters e((
√

6+k
√

2)n) for integer

k. Note that the same trick does not work for e(b
√

2nc
√

3n).
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This turns out to be somewhat unpleasant; the standard tech-
nology of Weyl differencing and the van der Corput lemma (see Sec-
tion 1.4) eventually works[GrTa2009e], but does not scale well to
bracket polynomials of higher degree such as e(bb

√
2nc
√

3nc
√

5n),
which would be necessary if one were to extend (4.1) to k beyond 4.

To resolve this, and inspired by the work in ergodic theory by
[FuWe1996], [HoKr2005], [BeLe2007], and others, we re-interpreted
bracket polynomials from a more dynamical systems perspective. To
motivate this, observe that the linear character χ(n) = e(αn) is
closely tied to the circle rotation T : x 7→ x + α on the unit cir-
cle R/Z, in that the character χ can be described as a function
χ(n) = F (Tnx0) of an orbit (Tnx0)n∈Z on this system, where x0 = 0
is the origin and F (x) := e(x) is the exponential function. In a similar
spirit, a quadratic character such as χ(n) = e(αn(n−1)

2 ) can be ex-
pressed in terms of the skew shift system (x, y) 7→ (x + α, y + x)
on the torus (R/Z)2, being of the form χ(n) = F (Tnx0) where
x0 := (0, 0) and F (x, y) := e(y). More generally, one can also ex-
press bracket quadratic polynomials such as e(c

√
2nc
√

3n) in the
form χ(n) = F (Tnx0), where T is now the action of a group ele-
ment x 7→ gx on a 2-step nilmanifold G/Γ, and F is some reasonable
(e.g. piecewise smooth) function on this nilmanifold. (See Section
2.16 or [BeLe2007], [GrTa2009c] for details.) The relevance of 2-
step nilpotent groups and nilmanifolds to length 4 progressions can
be glimpsed in the identity

(gnx)(gn+rx)−3(gn+2rx)3(gn+3rx)−1 = 1

which is valid for all g, x in a 2-step nilpotent group G (compare this
with (4.11)); it is an instructive exercise to prove this identity and to
see how the 2-step nilpotency is used13. Indeed, one can reformulate
the inverse theorem for length 4 progressions in an equivalent form:

Theorem 4.2.5 (Inverse theorem for length four progressions, again).
(Informal) Let k = 4. Suppose that A is a subset of {1, . . . , N} of
density δ for which (4.3) fails. Then A correlates with a non-trivial
2-step nilsequence χ(n) = F (Tnx0) for some 2-step nilmanifold G/Γ

13To make the connection more precise, one needs a variant of this constraint in
which x lies in G/Γ rather than G, which is harder to state; see [Zi2007], [GrTa2009d]
for details.
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(of bounded “complexity”), some group rotation T : x 7→ gx, some
starting point x ∈ G/Γ, and some function F : G/Γ → C (also of
“bounded complexity”; e.g. bounded Lipschitz norm will do).

The precise formulation of the theorem is a little technical; see
[GrTa2009d] for details. Using this theorem and all the standard
machinery, the task of establishing asymptotics such as (4.1) in the
k = 4 case now reduces to that of understanding sums such as

N∑
n=1

F (Tnx0).

At this point, one can start using the existing theory of equidistribu-
tion of orbits on homogeneous spaces G/Γ (of which nilmanifolds are
an important example). It turns out that the existing theory is not
quite quantitative enough for our purposes, and we had to develop a
quantitative analogue of this theory; see [GrTa2009c], [GrTa2009f]
for more discussion. Anyway, it all works, and gives asymptotics for
progressions of length 4 in the primes, as well as other linear pat-
terns of similar “complexity” (e.g. any non-degenerate system of two
equations in four prime unknowns is OK). To handle higher patterns,
what we need is

Conjecture 4.2.6 (Inverse conjecture for arithmetic progressions).
(Informal) Let k ≥ 3. Suppose that A is a subset of {1, . . . , N} of
density δ for which (4.3) fails. Then A correlates with a non-trivial
k − 2-step nilsequence χ(n) = F (Tnx0) for some (k-2)-step nilmani-
fold G/Γ (of bounded “complexity”), some group rotation T : x 7→ gx,
some starting point x ∈ G/Γ, and some function F : G/Γ→ C (also
of “bounded complexity”).

This is a consequence of (and very closely related to) the inverse
conjecture for the Gowers norm. It is already known for k = 3 and k =
4, and hopefully the higher k cases will be resolved in the near future,
presumably using a mix of techniques from Fourier analysis, additive
combinatorics, and ergodic theory. At this time of writing, this is the
only remaining obstacle before we can understand the asymptotics of
linear patterns in primes which genuinely involve two or more free
parameters (as mentioned earlier, one-parameter problems such as
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the twin prime conjecture seem well out of reach of these methods
for a number of reasons, one of which is that there is definitely no
analogue of the inverse conjecture for such one-parameter patterns).

Notes. This talk first appeared at terrytao.wordpress.com/2008/11/18,
and was given as the second talk in my series of four Marker Lectures
in Penn State University in November of 2008.

4.3. Small gaps between primes

In this lecture, I would like to discuss the recent progress, particularly
by Goldston, Pintz, and Yıldırım, on finding small gaps pn+1 − pn
between consecutive primes. (See also the surveys [GoPoYi2005],
[Gr2006], [So2006]; the material here is based to some extent on
these prior surveys.)

The twin prime conjecture can be rephrased as the assertion
that pn+1 − pn attains the value of 2 infinitely often, where p1 =
2, p2 = 3, p3 = 5, . . . are the primes. As discussed in previous lec-
tures, this conjecture remains out of reach at present, at least with
the techniques centred around counting solutions to linear equations
in primes. However, there is another direction to pursue towards the
twin prime conjecture which has shown significant progress recently
(though, again, there appears to be a significant difficulty in pushing
it all the way to the full conjecture). This is to try to show that
pn+1 − pn is unexpectedly small for many n. Let us make this a bit
more quantitative by posing the following question:

Question 4.3.1. Let N be a large number. What is the smallest
value of pn+1 − pn, where pn is a prime between N and 2N?

The twin prime conjecture (or more precisely, the quantitative
form of this conjecture coming from the prime tuples conjecture)
would assert that the answer to this question is 2 for all sufficiently
large N .

There are various ways to get upper bounds on this question. For
instance, from Bertrand’s postulate (which can be proven by elemen-
tary means) we know that pn+1 − pn = O(N) for all N ≤ pn ≤ 2N .
The prime number theorem asserts that pn = (1 + o(1))n log n, which
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gives pn+1 − pn = o(N); using various non-trivial facts known about
the zeroes of the zeta function, one can improve this to O(N c) for
various c (the best value of c known unconditionally is 0.525, see
[BaHaPi2001]). The Riemann hypothesis gives a significantly more
precise asymptotic formula for pn, which ultimately leads to the
bound pn+1 − pn = O(

√
N logN). These bounds hold for all n in

the given range, and so in fact bound the largest value of pn+1 − pn,
not just the smallest. As far as I know, the O(

√
N logN) bound for

the largest prime gap has not been improved even after one assumes
the Riemann hypothesis, though this gap is generally expected to be
much smaller than this14 In the converse direction, the best result is
due to Rankin[Ra1962], who showed the somewhat unusual bound

pn+1 − pn ≥ c logN
(log logN)(log log log logN)

(log log logN)2

for some n and some absolute constant c > 0 (in fact one can take
c arbitrarily close to 2eγ). Remarkably, this type of right-hand side
appears to be a genuine limit of what current methods can achieve
(Paul Erdős in fact offered $10, 000 to anyone who could improve the
rate of growth of the right-hand side in N).

But for the smallest value of pn+1−pn, much more is known. The
prime number theorem already tells us that there are (1+o(1))N/ logN
primes between N and 2N , so from the pigeonhole principle we have

(4.12) pn+1 − pn ≤ (1 + o(1)) logN

for some n.

This bound should not be sharp, since this would imply that the
primes are almost equally spaced by logN , which is suspiciously regu-
lar behaviour for a sequence as irregular as the primes. To get some in-
tuition as to what to expect, we turn to random models of the primes.
In particular, we begin with Cramér’s random model [Cr1936] for
the primes, which asserts that the primes between N and 2N behave
as if each integer in this range had an independent chance of about

14In particular, the old conjecture that there always exists at least one prime
between two consecutive square numbers remains open, even assuming RH. Cramér
conjectured[Cr1936] a bound of (1 + o(1)) log2 N , though it is possible that the con-
stant 1 here may need to be revised upwards to 2eγ ≈ 1.1229 where γ is the Euler-
Mascheroni constant; see [Gr1995] for details.
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1/ logN of being prime. Standard probability theory then shows that
the primes are distributed like a Poisson process of intensity 1/ logN .
In particular, if one takes an random interval Iλ in [N, 2N ] of length
λ logN for some λ > 0, the number of primes |Iλ∩P| that Iλ captures
is expected to behave like a Poisson random variable of mean λ; in
other words, we expect

(4.13) P(|Iλ ∩ P| = k) ≈ e−λλk

k!
for k = 0, 1, 2, . . .. (In contrast, the prime number theorem only gives
the much weaker statement E|Iλ ∩ P| = λ+ o(1).)

Now, as discussed in previous lectures, Cramér’s random model
is not a completely accurate model for the primes, because it does not
reflect the fact that primes very strongly favour the odd numbers, the
numbers coprime to 3, and so forth. However, it turns out that even
after one corrects for these local irregularities, the predicted Poisson
random variable behaviour (4.13) does not change significantly for any
fixed λ (e.g. a Poisson process of intensity 2/ logN on the odd num-
bers looks much the same as a Poisson process of intensity 1/ logN
on the natural numbers, when viewed at scales comparable to logN).
This computation was worked out fully by Gallagher[Ga1976] as a
rigorous consequence of the Hardy-Littlewood prime tuples conjec-
ture15.

Applying (4.13) for small values of λ (but still independent of N),
we see that intervals of length λ logN are still expected to contain two
or more primes with non-zero probability, which in particular would
imply that pn+1 − pn ≤ λ logN for at least one value of n. So one
path to creating small gaps between primes is to show that |Iλ ∩ P|
can exceed 1 for as small a value of λ as one can manage.

One approach to this proceeds by controlling the second moment

(4.14) E|Iλ ∩ P|2;

the heuristic (4.13) predicts that this second moment should be λ2 +
λ + o(1) (reflecting the fact that the Poisson distribution has both
mean and variance equal to λ). On the other hand, the prime number

15On the other hand, these corrections to the Cramér model do disrupt (4.13)
for very large values of λ; see [So2007] for more discussion.
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theorem gives the first moment estimate E|Iλ ∩ P| = λ+ o(1). Also,
if |Iλ ∩ P| never exceeds 1, then the first and second moments are
equal. Thus if one could get the right bound for the second moment,
one would be able to show that pn+1 − pn ≤ λ logN is possible for
arbitrarily small λ.

Second moments such as (4.14) are very amenable to tools from
Fourier analysis or complex analysis; applying such tools, we soon
see that (4.14) can be re-expressed easily in terms of zeroes to the
Riemann zeta function, and one can use various standard facts (or
hypotheses) about these zeroes to gain enough control on (4.14) to
obtain non-trivial improvements to (4.12). This approach was pur-
sued by many authors [Ra1937], [Er1940], [BoDa1966], leading
to non-trivial unconditional results for any λ ≥ 1/2, but it seems
difficult to push the method much beyond this. It was later shown
in [GoMo1987] that the correct asymptotic for (4.14) is essentially
equivalent to the Riemann hypothesis combined with a certain state-
ment on pair correlations between zeroes, and thus well out of reach
of current technology.

Another method, introduced by Maier[Ma1985], is based on
finding some (rare) intervals Iλ of numbers of length λ logN for some
moderately large λ which contain significantly more primes than av-
erage value of λ; if for instance one can find such an interval with over
(k+ 1)λ primes in it, then from the pigeonhole principle one must be
able to find a prime gap of size at most 1

k logN . The ability to do
this stems from the remarkable and unintuitive fact that the regularly
distributed nature of primes in long arithmetic progressions, together
with the tendency of primes to avoid certain residue classes, forces the
primes to be irregularly distributed in short intervals. This phenom-
enon (which has now been systematically studied as an “uncertainty
principle” for equidistribution[GrSo2007]), is related to the follow-
ing curious failure of naive probabilistic heuristics to correctly predict
the prime number theorem. Indeed, consider the question of asking
how likely it is that a randomly chosen number n between N and
2N is to be prime. Well, n will have about a 1 − 1

2 chance of being
coprime to 2, a 1− 1

3 chance of being coprime to 3, and so forth; the
Chinese remainder theorem also suggests that these events behave
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independently. Thus one might expect that the probability would be
something like ∏

p<N

(1− 1
p

).

We then invoke Mertens’ theorem, which provides the asymptotic

(4.15)
∏
p<N

(1− 1
p

) = (e−γ + o(1))
1

logN
.

But this is off by a factor of eγ from what the prime number theorem
says the true probability of being prime is, which is (1 + o(1)) 1

logN .
This discrepancy reflects the difficulty in cutting off the product in
primes (4.15) at the right place (for instance, the sieve of Eratosthenes
suggests that one might want to cut off at

√
N instead). At any rate,

this eγ discrepancy can be exploited to find intervals with an above-
average number of primes by a “first moment” argument (known as
the Maier matrix method) that we sketch as follows. Let w be a
moderately large number, and let W be the product of all the primes
less than w. If we pick a random number n between N and 2N , then
as mentioned before, the prime number theorem says that this number
will be prime with probability about 1

logN . But if in addition we know
that the number is coprime to W , then by the prime number theorem
in arithmetic progressions this information boosts the probability of
being prime to about

∏
p<w(1− 1

p )−1 1
logN , which by (4.15) is about

eγ logw
logN .

Now we restrict attention to numbers n which are equal to a mod
W for some 1 ≤ a ≤ w. By the prime number theorem, about w

logw

of the a are prime and thus coprime to W . Combining this with
the previous discussion, we see that the total probability that such a
number n is prime is about 1

logw × e
γ logw

logN = eγ 1
logN .

On the other hand, the set of numbers n which are equal to a
mod W for some 1 ≤ a ≤ w is given by a sequence of intervals of
length w. By the pigeonhole principle, we must therefore have an
interval of length w on which the density of primes is at least eγ 1

logN

- which is greater than the expected density by a factor of eγ .

One can make the above arguments rigorous for certain ranges of
interval length, and by combining this with the pigeonhole principle
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one can eventually improve (4.12) by a factor of eγ :

pn+1 − pn ≤ (e−γ + o(1)) logN.

This is better than the bound of ( 1
2 + o(1)) logN obtained by the

second moment method, but on the other hand the latter method es-
tablishes that a positive proportion of primes have small gaps; Maier’s
method, by its very nature, is restricted to a very sparse set of primes
(note that w is much smaller than W ).

In a series of papers, Goldston and Yıldırım improved the numer-
ical constants in these results by a variety of methods including those
mentioned above, as well as replacing some of the reliance on infor-
mation on zeroes of the zeta function with tools from sieve theory
instead. To oversimplify substantially, the latter idea is to try to con-
trol the set of primes P in terms of a larger set AP of almost primes -
numbers with few prime factors16. For instance, to control the second
moment E|Iλ ∩ P|2, one can take advantage of the Cauchy-Schwarz
inequality

E|Iλ ∩ P|2 ≥
E|Iλ ∩ P||Iλ ∩ AP |
|Iλ ∩ AP |2

.

The denominator on the right-hand side involves only almost
primes and can be computed easily by sieve theory methods. The
numerator involves primes, but only one prime at a time; note that
this quantity is roughly counting the set of pairs p, q where p is prime,
q is almost prime, and p and q differ by at most λ logN . This is in
contrast to the left-hand side, which is counting pairs p, q that are
both prime and differ by at most λ logN . We do not know how to
use sieve theory to count the latter type of pattern (involving more
than one prime); but sieve theory is perfectly capable of counting the
former type of pattern, so long as we understand the distribution of
primes in relatively sparse arithmetic progressions. The standard tool
for this is the Bombieri-Vinogradov theorem[Bo1987], which roughly
speaking asserts that the primes from N to 2N are well distributed in
“most” residue classes q, as long as q stays significantly smaller than

16Strictly speaking, one does not actually work with a set of almost primes, but
rather with a weight function or sieve which is large on almost primes and small for
non-almost primes, but let us ignore this important technical detail to simplify the
exposition.
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√
N ; it can be viewed as an averaged version of the generalised Rie-

mann hypothesis that can be proven unconditionally17. Using such
tools, various improvements to (4.12) were established. Finally, in
[GoPoYi2005a] it was shown that

(4.16) pn+1 − pn ≤ λ logN

held for some n and any λ > 0 (provided N was large enough depend-
ing on λ), or equivalently that pn+1 − pn = o(logN); this was later
improved in [GoPoYi2007], to pn+1 − pn = O(

√
logN(log logN)2).

Assuming a strong version of the Bombieri-Vinogradov theorem (in
which q is allowed now to get close to N rather than to

√
N), known

as the Elliott-Halberstam conjecture, this was improved further to the
striking result

pn+1 − pn ≤ 16,

thus there are infinitely many pairs of primes which differ by at most
16. This is a remarkable “near miss” to the twin prime conjecture,
though it seems clear that substantial new ideas would be needed to
reduce 16 all the way to 2.

Let’s now discuss some of the ideas involved. As with the previous
arguments, the key idea is to find groups of integers which tend to
contain more primes than average. Suppose for instance one could
find a certain random distribution of integers n where18 n, n+ 2, and
n+ 6 each had a probability strictly greater than 1/3 of being prime.
By linearity of expectation, we thus see that the expected number
of primes in the set {n, n + 2, n + 6} exceeds 1; thus, with positive
probability, there will be at least two primes in this set, which then
necessarily differ by at most 6.

Now, of course, the prime number theorem tells us that for n
chosen uniformly at random from N to 2N , the probability that n,
n + 2, or n + 6 are prime is only about 1/ logN . So for this type
of strategy to work, one would have to pick a highly non-uniform

17The key point here is that while it is possible for the primes to be irregular with
respect to a few such small moduli, the “orthogonality” of these moduli with respect
to each other makes it impossible for the primes to be simultaneously irregular with
respect to many of these moduli at once.

18We choose these separations for our discussion because it is not possible to
make three large prime numbers bunch up any closer than this; for instance, n, n+ 2,
n + 4 cannot be all be prime for n > 3, since at least one of these numbers must be
divisible by 3.



4.3. Small gaps between primes 651

distribution for n, in which n, n + 2, and n + 6 are already close to
being prime already. The extreme choice would be to pick n uniformly
among all choices for which n, n + 2, and n + 6 are simultaneously
prime, but we of course don’t even know that any such primes exist
(this is strictly harder than the twin prime conjecture!) But what
we can do instead is pick n uniformly among all choices such that
n, n + 2, and n + 6 are almost prime (where we shall be vague for
now about what “almost prime” means). Thanks to sieve theory, we
can assert the existence of many numbers n of this form, and get a
good count as to how many there are. Also, since the primes have
positive density inside the almost primes, it is quite reasonable that
the conditional probabilities

P(n prime|n, n+ 2, n+ 6 almost prime),

P(n+ 2 prime|n, n+ 2, n+ 6 almost prime),

P(n+ 6 prime|n, n+ 2, n+ 6 almost prime),

are large. Indeed, using sieve theory techniques (and the Bombieri-
Vinogradov theorem), we can bound each of these probabilities from
below by a positive constant (plus a o(1) error). Unfortunately, even
if we optimise the sieve that produces the almost primes, this constant
is too small (typically one gets numbers of the order of 1/20 or so,
rather than 1/3). Assuming the Elliot-Halberstam conjecture (which
allows us to raise the level of sieving substantially) yields a significant
improvement, but one that still falls short of the desired goal. One can
of course also add more numbers to the mix than just n, n+ 2, n+ 6,
e.g. looking at those n for which n+h1, . . . , n+hk are simultaneously
almost prime, for some suitably chosen h1, . . . , hk; on the one hand
this lowers the threshold of probability (currently at 1/3) that one
needs to obtain, but unfortunately this is more than canceled out by
the multidimensional sieving one needs to do when restricting all of
these numbers to be almost prime.

To get around this, a new idea was introduced: instead of requir-
ing numbers such as n, n+2, and n+6 to separately be almost prime,
ask instead for the product n(n+ 2)(n+ 6) to be almost prime (for a
somewhat more relaxed notion of “almost prime”). This turns out to
be more efficient, as it lowers the number of summations involved in
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the sieve. One has to carefully select how one defines almost prime
here (it is roughly like asking for the product (n + h1) . . . (n + hk)
to have at most 2k + o(k) prime factors, with the o(k) factor being
remarkably crucial to the delicate analysis); but to cut a long story
short, one can establish probability bounds of the form19

(4.17) P(n+hj prime|(n+h1) . . . (n+hk) almost prime) ≥ c− o(1)
k

for all 1 ≤ j ≤ k and some absolute constant c > 0.

As soon as one assumes any non-trivial portion of the Elliott-
Halberstam conjecture, the quantity c in the above inequality can
be made to exceed 1 (for k large enough), leading to the conclusion
that there exist infinitely many bounded prime gaps, pn+1 − pn =
O(1); pushing the machinery to their limit (taking {h1, . . . , hk} =
{7, 11, 13, 17, 19, 23} to be the first six primes larger than 6), one ob-
tains the bound of 16. But without this conjecture, and just using
Bombieri-Vinogradov, then after optimising everything in sight, one
can get c arbitrarily close to 1, but not quite exceeding 1. To compen-
sate for this, the authors also started looking at the nearby numbers
n+h where h was not equal to h1, . . . , hk. Here, of course, there is no
particularly good reason for n+h to be prime, since it is not involved
as a factor to the almost prime quantity (n+h1) . . . (n+hk); but one
can show that, for generic values of h, one has

P(n+ h prime|(n+ h1) . . . (n+ hk) almost prime) ≥ c′ + o(1)
logN

for some c′ > 0 (there is an additional singular series factor involving
the prime factors of h− hj which can be easily dealt with, that I am
suppressing here.) Thus, for any λ > 0, we expect (from linearity of
expectation) that for (n+h1) . . . (n+hk) almost prime, the expected
number of h = O(λ logN) (including the k values h1, . . . , hk) for
which n+ h is prime is at least

k(
c

k
+ o(1)) + λ logN

c′ + o(1)
logN

= c+ c′λ+ o(1).

19More precisely, one needs to compute sums such as
∑N
n=1 Λ(n + hj)ΛR((n +

h1) . . . (n+hk))2, where Λ is the von Mangoldt function and ΛR is a Selberg sieve-type
approximation to that function.
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Since we can make c arbitrarily close to 1, the extra term c′λ can
push this expectation to exceed 1 for any choice of λ, and this leads
to the desired bound20 (4.16) for any λ > 0.

It is tempting to continue to optimise these methods to improve
the various constants, and I would imagine that the bound of 16,
in particular, can be lowered somewhat (still assuming the Elliott-
Halberstam conjecture). But there seems to be a significant obsta-
cle to pushing things all the way to 2. Indeed, the parity problem
(see Section 3.10 of Structure and Randomness) tells us that for any
reasonable definition of “almost prime” which is amenable to sieve
theory, the primes themselves can have density at most 1/2 in these
almost primes. Since we need the density to exceed 1/k in order for
the above argument to work, it is necessary to play with at least three
numbers (e.g. n, n+ 2, n+ 6), which forces the bound on the prime
gaps to be at least21 6. But it may be that a combination of these
techniques with some substantially new ideas may push things even
further.

Notes. This talk first appeared at terrytao.wordpress.com/2008/11/19,
and was given as the third talk in my series of four Marker Lectures
in Penn State University in November of 2008.

Emmanuel Kowalski pointed out that Gallagher’s conditional argument[Ga1976]
can in fact be extended to give Poisson-type statistics for (say) twin
primes in intervals of size O(log2N) in [N, 2N ], and also mentioned
his Bourbaki exposé [Kow2006] on the above work.

4.4. Sieving for almost primes and expanders

In this final lecture, I discuss the recent work of Bourgain, Gamburd,
and Sarnak on how arithmetic combinatorics and expander graphs
were used to sieve for almost primes in various algebraic sets.

20The subsequent improvement to (4.16) proceeds by enlarging k substantially,
and by a preliminary sieving of the small primes, but we will not discuss these technical
details here.

21Indeed, this bound has been obtained for semiprimes (products of two primes)
- which are subject to the same parity problem restriction as primes, but are slightly
better distributed; see [GrRoSp1980].
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In previous lectures, we considered the problem of detecting tu-
ples of primes in various linear or convex sets; in particular, we con-
sidered the size of sets of the form V ∩Pk, where P = {2, 3, 5, . . .} is
the set of primes, and V is some affine subspace of Rk. For instance,
the twin prime conjecture would correspond to the case when k = 2
and V = {(x, x+ 2) : x ∈ R}, while Theorem 4.1.1 would correspond
to the case V = {(x, x+ r, . . . , x+ (k − 1)r) : x, r ∈ R}.

We refer to elements of Pk as prime points. The prime tuples
conjecture[HaLi1923] implies the following qualitative criterion for
when such a set of prime points should be “large”:

Conjecture 4.4.1 (Qualitative prime tuples conjecture). Let V be
an affine subspace of Rk. Suppose that

(1) (No obstructions at infinity) For any N , V ∩ Zk>N affinely
spans all of V , where Z>N := {n ∈ Z : n > N}. (In
particular, V ∩ Zk>N is non-empty.)

(2) (No obstructions at q) For any q > 1, V ∩ (Z∗q)
k affinely

spans all of V , where Z∗q := {n ∈ Z : (n, q) = 1}. (In
particular,V ∩ (Z∗q)

k is non-empty.)

Then V ∩ Pk affinely spans all of V . (In particular, V contains at
least one prime point.)

Both of the hypotheses in this conjecture are easily verified for
any given V , the first by (integer) linear programming and the second
by modular arithmetic. This conjecture would imply several other
results and conjectures in number theory, including the twin prime
conjecture and Theorem 4.1.1. Needless to say, it remains open in
general (though the results mentioned in the previous lecture give
partial results in the case when V is at least two-dimensional and
non-degenerate).

Now we attempt to generalise the above conjecture to the setting
in which V is an algebraic variety rather than an affine subspace.
(This would cover some famous open problems in number theory,
for instance the Landau problem that asks whether there are infin-
itely many primes of the form n2 + 1.) The notion of a set affinely
spanning V is then naturally replaced by the notion of a set being
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Zariski dense in V , which means that the set is not contained in any
strictly smaller subvariety of V . One could then formulate a naive
generalisation of the above conjecture by replacing “affine space” and
“affinely spans all of” with “algebraic variety” and “is Zariski dense
in” respectively. However, the hypotheses are now no longer easy to
verify; indeed, just the problem of determining whether V contains
an integer point Zk is essentially Hilbert’s tenth problem, which by
Matiyasevich’s theorem[Ma1970] is known to be undecidable22 for
general V . Indeed, since one can encode any computable set in terms
of the integer points of a variety V , it is not too difficult to see that
this conjecture fails in general.

Since arbitrary algebraic varieties are far too general to have any
hope of a reasonable theory, one should look for prime points in much
more special sets. An important class23 here is that of an orbit Λb
in Zk, where b is some vector in Zk and Λ is some finitely generated
subgroup of SLk(Z). Of course one should take b to be primitive (not
a multiple of any smaller vector), since one clearly will have a difficult
time finding prime points in Λb otherwise.

The orbit Λb will be Zariski dense in some algebraic variety V ,
and is clearly a collection of integer points (though it may not cover
all of V ∩ Zk). Assuming no local obstructions at infinity or at q
(which means that Λb ∩ Zk>N and Λb ∩ (Z∗q)

k) are Zariski dense in
V ), one could then conjecture that Λb ∩ Pk is also Zariski dense in
V (which, if V is infinite, would in particular imply that the orbit Λb
contains infinitely many prime points).

For simplicity let us restrict attention to the two-dimensional case
k = 2, which is already highly non-trivial; Bourgain, Gamburd and
Sarnak have recently begun to get some preliminary results in k = 3
but I will not discuss them here. Thus Λ is now a finitely generated
subgroup of SL2(Z). If this subgroup is elementary - e.g. if it is
cyclic - then the orbit Λb can be exponentially sparse (a ball of radius

22An amusing historical connection here: one of the first
demonstrations[DaPuRo1961] of the undecidability of Hilbert’s tenth problem
was conditional on the existence of arbitrarily long progressions of primes (i.e.
Theorem 4.1.1), although subsequent proofs did not need this fact.

23One can also consider the slightly more general set of images F (Λb) under a
polynomial map, but for simplicity let us stick to just orbits.
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R may only contain O(logR) points), and it becomes extremely dif-
ficult to do any sieving or primality detection24. It thus makes sense
to restrict attention to non-elementary subgroups of SL2(Z) - groups
which contain a copy of the free non-abelian group on two genera-
tors, or equivalently any group whose Zariski closure is all of SL2

(or equivalently yet again, a group whose limit set consists of more
than one point). In this situation, Bourgain, Gamburd, and Sarnak
conjectured:

Conjecture 4.4.2. [BoGaSa2006] Let Λ be a non-elementary sub-
group of SL2(Z), and let b be a primitive element of Z2. Suppose
that there are no local obstructions at infinity or at finite places q.
Then Λb∩P2 is Zariski dense in the plane (in particular, Λb∩P2 is
infinite).

This conjecture remains open. However, as in the linear situation,
one can make progress25 if one replaces primes with almost primes -
products of at most r primes for some bounded r. In particular,
Bourgain, Gamburd, and Sarnak were able to show

Theorem 4.4.3. [BoGaSa2006] Let Λ, b be as in Conjecture 4.4.2.
Then there exists an r such that Λb ∩ P2

r is Zariski dense in the
plane, where Pr is the set of numbers that are the product of at most
r primes.

Several further generalisations and extensions of this result, with
a similar flavour, are known, but will not be discussed here. There are
a number of amusing special cases of these results, for instance one can
show that there exist infinitely many Appollonian circle packings of
the unit circle by four other mutually tangent circles, all of whose radii
is the reciprocal of an almost prime, or infinitely many Pythagorean
triples whose area is an almost prime (for a sufficiently large r in the
definition of “almost prime”).

24In this case, the problem becomes comparable to such notoriously difficult ques-
tions as whether there are infinitely many Mersenne primes.

25There are certainly prior results for nonlinear patterns in the almost primes;
for instance, it is a famous result of Iwaniec[Iw1978] that there are infinitely many

numbers of the form n2 + 1 that are the product of at most two primes.
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Let me now discuss some of the key ideas in the proof of this
theorem. One begins by rephrasing the question in a more quantita-
tive (or finitary) manner. In the linear case, this would be done by
counting the number of points in Λb ∩ P2

r that lie inside some large
Euclidean ball, thus using the Euclidean (or Archimedean) notion of
distance to localise the problem. This can also be done here, but it
turns out to be more convenient to instead use the word metric in-
duced by the finite generating set S of Λ (which we can take to be
symmetric for convenience, thus S = S−1). One thus looks at sets
of the form BRb ∩ P2

r , where BR ⊂ Λ consists of all words formed
by products of at most R elements of S. A major new difficulty here
compared to the linear theory is the exponential growth26 of BR (a
consequence of the non-elementary nature of Λ).

The next step is to use sieve theory. Recall the sieve of Eratos-
thenes, which expresses the set of all (large) primes as the integers,
minus the multiples of two, minus the multiples of three, and so forth.
Using the inclusion-exclusion principle, we can thus view the indica-
tor function 1P of the primes, when restricted to an interval such as
[N, 2N ], as equal to 1, minus the indicator function 12Z of the even
numbers, minus the indicator function 13Z of the multiples of three,
plus the indicator function 16Z of the multiples of six, and so forth.
This leads to the Legendre sieve

(4.18) 1P =
∑
d

µ(d)1dZ,

valid in an interval [N, 2N ] as long as one restricts d to those integers
which are products of primes less than N . Here µ(d) is the Möbius
function.

The basic idea of sieve theory is to replace the indicator function
of the primes (or almost primes) by a more general divisor sum∑

d

cd1dZ,

where the sieve weights cd are chosen in order to optimise the final
bounds in the sieve (they typically resemble “smoothed out” versions

26Though it is not immediately apparent, the same problem also arises if one
uses Euclidean balls instead of word metric balls, due to the multiplicative rather than
additive nature of the group Λ.



658 4. Lectures in additive prime number theory

of the Möbius function in order that these sieves be large on the almost
primes and small elsewhere). In order for the sieve to be practical,
one wants to restrict d in this sum to be relatively small, for instance
d ≤ Nθ for some absolute constant 0 < θ < 1 (values such as θ = 1/4
are fairly typical). The selection of the sieve weights cd is now a well-
developed science (see Section 3.10 of Structure and Randomness for
further discussion), and Bourgain, Gamburd and Sarnak basically use
off-the-shelf sieves (in particular, combinatorial sieves and the Selberg
sieve) in their work. Inserting these standard sieves into the problem
at hand, the task of counting almost primes in the finite set BRb then
quickly reduces to the question of getting good estimates on sets such
as BRb ∩ (qZ)2 for various q. This amounts to much the same thing
as asking for good equidistribution bounds for BR modulo q, thus
we project the generating set S, and the ball BR it produces, from
SL2(Z) to SL2(Zq). For sieving purposes it turns out to be necessary
to consider all squarefree moduli q, but for simplicity we shall only
discuss the (massively easier) case when q is prime.

The reduction to an equidistribution problem converts the origi-
nal sieving problem to a more combinatorial one, involving the Cay-
ley graph G on SL2(Zq) induced by the set S, thus two vertices
x, y ∈ SL2(Zq) are connected by an edge in G if yx−1 lie in S (mod-
ulo q). The image of the ball BR in SL2(Zq) is then the set of points
one can reach in the graph G from the origin by walking on a path
of length at most R. The desired equidistribution result one needs
can then be viewed as a mixing result for the random walk along the
graph G.

Standard graph theory then tells us that the task reduces to show-
ing that the graphs G form a family of expander graphs as q → ∞
(recall we are restricting q to be prime for simplicity). There are
many equivalent definitions of what an expander graph is, but let us
give a spectral definition that is specialised to Cayley graphs. The
symmetric generating set S induces a natural measure

µ :=
1
|S|
∑
s∈S

δs

that is the uniform distribution on S, which controls the random
walk along G; note that if f : SL2(Zq) → C is a function, then the
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convolution f ∗ µ : SL2(Zq)→ C is another function, whose value at
any vertex is the average value of f at all the neighbours of x. The
operation f 7→ f ∗µ is then a self-adjoint contraction on l2(SL2(Zq))
which leaves the function 1 invariant, so its largest eigenvalue λ1 is
equal to 1. The expander graph condition is then equivalent to the
existence of a spectral gap λ2 ≤ 1−c for the second largest eigenvalue,
where c > 0 is a constant independent of q.

Of course, to have a spectral gap, one necessary condition is that
λ2 be strictly less than 1. This can be easily seen to be equivalent
to the statement that G is connected, which in turn is equivalent
to the statement that the projection of S to SL2(Zq) generates all
of SL2(Zq). This statement can be verified to be true, either by
direct consideration of all possible subgroups of SL2(Zq), or by the
strong approximation property. However, mere connectedness is not
enough to ensure that a Cayley graph is an expander family (which
can be viewed as a sort of “robust” version of connectedness, which
can survive the deletion of large numbers of edges). For instance, the
Cayley graph of the generating set {−1,+1} in Z/NZ is connected,
but does not form an expander family as N →∞; the second largest
eigenvalue27 is about 1−O(1/N2) only.

Obtaining the spectral gap property requires more work. When
the original subgroup Λ of SL2(Z) is as large as a finite index sub-
group (in particular, if it is a congruence subgroup), this gap fol-
lows from a celebrated theorem of Selberg[Se1965] providing a sim-
ilar spectral gap for arithmetic quotients of the upper half-plane.
Smaller examples (in which the index is now infinite) were first con-
structed in [Sh1997], [Ga2002], with the latter following the method
of [SaXu1991]. Then in [BoGa2008], this method was extended
using additional tools from additive combinatorics to handle all non-
elementary subgroups in the case of prime q.

Let us now describe the method of proof. As mentioned briefly
earlier, the existence of a spectral gap implies a strong mixing prop-
erty: the iterated convolutions µ(n) := µ ∗ . . . ∗ µ of the probability

27One can also see that the random walk on this Cayley graph takes a long
time (about O(N2) steps) before it mixes to be close to the uniform distribution; with
expander graphs on a set of N vertices, mixing instead occurs in time O(logN), thanks
to the spectral gap.
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measure µ (which can be interpreted as the probability distribution
of a random walk on n steps) converges exponentially fast to the con-
stant distribution on SL2(Zq). Since the latter distribution has an l2

norm of O(q−3/2), we see in particular that for any fixed ε > 0, we
will have

(4.19) ‖µ(n)‖l2(SL2(Zq)) = O(q−3/2+ε)

once n is a sufficiently large multiple of log q. This can also be seen
explicitly from the trace formula

(4.20) ‖µ(n)‖2l2(SL2(Zq))
=

1
|SL2(Zq)|

∑
j

λnj .

In general, this implication between spectral gap and rapid mix-
ing (4.19) cannot be reversed; the problem is that λ2 only directly
influences one term in the summation on the right-hand side of (4.20),
and so upper bounds on the left-hand side do not translate efficiently
to upper bounds on λ2. However, there is an algebraic miracle that
happens in the case of groups such as SL2(Zq) that allows one to
reverse the implication:

Lemma 4.4.4 (Frobenius lemma). Let q be prime. Then every non-
trivial finite-dimensional unitary representation of SL2(Zq) has di-
mension at least (q-1)/2.

Proof. Observe that SL2(Zq) can be generated by parabolic ele-
ments, so given a non-trivial representation ρ : SL2(Zq) → U(V ),
there exists a parabolic element a whose representation ρ(a) is non-
trivial. By a change of basis we may take

a =
(

1 1
0 1

)
.

On the one hand, we have aq = 1 and hence ρ(a)q = 1; thus
all eigenvalues of ρ(a) are qth roots of unity. On another hand, ρ(a)
is non-trivial, so at least one of the eigenvalues of ρ(a) differs from
1. Thirdly, conjugating a by diagonal matrices in SL2(Zq), we see
that a is conjugate to am whenever m is a quadratic residue mod q,
and so the eigenvalues of ρ(a) must be stable under the operation of
taking mth powers. On the other hand, there are (q− 1)/2 quadratic
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residues. Putting all this together we see that ρ(a) must take at least
(q − 1)/2 distinct eigenvalues, and the claim follows. �

Remark 4.4.5. For our purposes, the exact value of (q − 1)/2 is
irrelevant; any multiplicity which grows like a power of q would suffice.

Applying this lemma to the eigenspace of λ2, we obtain

Corollary 4.4.6. The second eigenvalue λ2 of the operation f 7→ f∗µ
appears with multiplicity at least (q − 1)/2.

Combining this corollary with (4.20), one can now reverse the
previous implication and obtain a spectral gap λ2 ≤ 1− c as soon as
one gets a mixing estimate (4.19) for some n = O(log q) and some
sufficiently small ε.

The task is now to obtain the mixing estimate (4.19). The quan-
tity ‖µ(n)‖l2(SL2(Zq)) starts at 1 when n = 0 and decreases with n.
If we assume (as we may) that S generates a free group, then it is
not hard to see that µ(n) expands rapidly for n � log q (because all
the words generated by S will be distinct until one encounters the
“wrap-around” effect of taking residues modulo q). Using this one
can get a preliminary mixing bound

‖µ(n)‖l2(SL2(Zq)) ≤ q
−δ

for some absolute constant δ > 0 and some n = O(log q). Also, since
S modulo q generates all of SL2(Zq), we know that the probability
measure µ(n) is not trapped inside any proper subgroupH of SL2(Zq);
indeed, using the classification of subgroups of SL2(Zq) (or some gen-
eral “escape from subvarieties” machinery of [EsMoOh2005]) one
can show that

µ(n)(H) ≤ q−δ

for any such subgroup, and some n = O(log q). The result now fol-
lows from iterating the following lemma, which is the heart of the
argument:

Lemma 4.4.7 (l2 flattening lemma). Let ν be a symmetric probability
measure on SL2(Zq) which is a little bit dispersed in the sense that

‖ν‖l2(SL2(Zq)) ≤ q
−δ
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for some δ > 0, and is not concentrated in a subvariety in the sense
that ν ∗ ν(H) ≤ q−δ for any proper subgroup H of SL2(Zq). Suppose
also that ν is not entirely flat in the sense that

‖ν‖l2(SL2(Zq)) ≥ q
−3/2+δ

(note that the minimal l2 norm for a probability measure is comparable
to q−3/2, attained for the uniform distribution). Then ν∗ν is “flatter”
than ν in the sense that

‖ν ∗ ν‖l2(SL2(Zq)) ≤ q
−ε‖ν‖l2(SL2(Zq))

for some ε > 0 depending on δ.

In the special case when ν is the uniform distribution on some
set A, the flattening lemma is very close to the following theorem of
Helfgott [He2008]:

Theorem 4.4.8 (Product theorem). Let q be a prime. Let A be a
subset of SL2(Zq) which is not too big in the sense that |A| ≤ q3−δ

for some δ > 0, and which is not contained in any proper subgroup H
of SL2(Zq). Then |A · A · A| ≥ |A|1+ε for some ε > 0 depending on
δ.

Indeed, by using some standard additive combinatorics, in par-
ticular a (non-commutative version of) the Balog-Szemerédi-Gowers
lemma (which can be found for instance in [TaVu2006]), which con-
nects “statistical” multiplication, such as that provided by convolu-
tion µ, ν 7→ µ ∗ ν, with “combinatorial” multiplication, coming from
the product set operation A,B 7→ A ·B, one can show that these two
statements are in fact equivalent to each other.

The product theorem is a manifestation of certain “nonlinear” or
“noncommutative” behaviour in the group SL2(Zp); see Section 2.3
of Structure and Randomness for a bit more discussion on this. For
now, let me just say that Helfgott’s proof on this uses a variety of alge-
braic and combinatorial computations exploiting the special structure
of SL2(Zp) (especially how commutativity or non-commutativity of
various elements in this group interact with the trace of various com-
binations of these elements), as well as the following sum-product
estimate:
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Theorem 4.4.9 (Sum-product theorem). [BoKaTa2004], [BoKo2003]
Let q be prime. Let A be a subset of Zq which is not too big in the
sense that |A| ≤ q1−δ for some δ > 0. Then |A+A|+ |A ·A| ≥ |A|1+ε

for some ε > 0 depending only on δ.

There are now some quite elementary proofs of this theorem, but I
will not discuss them here (see e.g. [Ta2008c] for further discussion).
I should note, though, that the bulk of the Bourgain-Gamburd-Sarnak
work is preoccupied with establishing a suitable extension of this sum-
product theorem to the case when q is not prime, in a manner which
is uniform in the number of prime factors; this turns out to be a
surprisingly difficult task.

Notes. This talk first appeared at terrytao.wordpress.com/2008/11/20,
and was given as the final talk in my series of four Marker Lectures in
Penn State University in November of 2008. Thanks to Luca Trevisan
and Jonathan vos Post for corrections.
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[ErTu1936] P. Erdős, P. Turán, On some sequences of integers, J. London
Math. Soc. 11 (1936), 261–264.

[EsMoOh2005] A. Eskin, S. Mozes, H. Oh, On uniform exponential growth
for linear groups, Invent. Math. 160 (2005), no. 1, 1–30.

[Ev1998] L. C. Evans, Partial differential equations. Graduate Studies in
Mathematics, 19. American Mathematical Society, Providence, RI,
1998.

[Fa2000] I. Farah, Approximate homomorphisms. II. Group homomor-
phisms, Combinatorica 20 (2000), no. 1, 47–60.

[FiMa2005] D. Fisher, G. Margulis, Almost isometric actions, property (T),
and local rigidity, Invent. Math. 162 (2005), no. 1, 19–80.

[Fo1970] J. Folkman, Graphs with monochromatic complete subgraphs in
every edge coloring, SIAM J. Appl. Math. 18 (1970), 115-124.

[Fr1973] G. Freiman, Foundations of a structural theory of set addition.
Translated from the Russian. Translations of Mathematical Mono-
graphs, Vol 37. American Mathematical Society, Providence, R. I.,
1973.

[Fu1961] H. Furstenberg, Strict ergodicity and transformation of the torus,
Amer. J. Math. 83 (1961) 573–601.

[Fu1963] H. Furstenberg, The structure of distal flows, Amer. J. Math. 85
(1963) 477–515.

[Fu1977] H. Furstenberg, Ergodic behavior of diagonal measures and a the-
orem of Szemerédi on arithmetic progressions, J. Analyse Math. 31
(1977), 204–256.

[Fu1981] H. Furstenberg, Recurrence in Ergodic theory and Combinatorial
Number Theory, Princeton University Press, Princeton NJ 1981.

[FuKa1979] H. Furstenberg, Y. Katznelson, An ergodic Szemerédi theorem
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[Mu1960] J. Munkres, Obstructions to the smoothing of piecewise-
differentiable homeomorphisms, Ann. of Math. (2) 72 (1960) 521–554.



678 Bibliography

[Na2007] A. Naber, Noncompact Shrinking 4-Solitons with Nonnegative
Curvature, preprint.

[NaStWa1978] A. Nagel, E. Stein, S. Wainger, Differentiation in lacunary
directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 3, 1060–1062.

[Ne1954] B. H. Neumann, An essay on free products of groups with amalga-
mations, Philos. Trans. Roy. Soc. London. Ser. A. 246, (1954). 503–554.

[Ni2004] L. Ni, The entropy formula for linear heat equation, J. Geom.
Anal. 14 (2004), no. 1, 87–100.

[NiWa2007] L. Ni, N. Wollach, On a classification of the gradient shrinking
solitons, preprint.

[Pa1969] W. Parry, Ergodic properties of affine transformations and flows
on nilmanifolds, Amer. J. Math. 91 (1969) 757–771.

[Pe1994] G. Perelman, Proof of the soul conjecture of Cheeger and Gromoll,
J. Differential Geom. 40 (1994), 209–212.

[Pe2002] G. Perelman, The entropy formula for the Ricci flow and its geo-
metric applications, preprint, math.DG/0211159.

[Pe2003] G. Perelman, Ricci flow with surgery on three-manifolds, preprint,
math.DG/0303109.

[Pe2003b] G. Perelman, Finite extinction time for the solutions to the Ricci
flow on certain three-manifolds, preprint, math.DG/0307245.

[Pe2006] P. Petersen, Riemannian geometry. Second edition. Graduate
Texts in Mathematics, 171. Springer, New York, 2006.

[PeWy2007] P. Petersen, W. Wylie, On the classification of gradient Ricci
solitons, preprint.

[Ra1937] R. A. Rankin, The difference between consecutive primes, J. Lond.
Math. Soc. 13 (1938), 242–247.

[Ra1962] R. A. Rankin, The difference between consecutive prime numbers.
V, Proc. Edinburgh Math. Soc. 13 (1962/1963) 331–332.

[ReTrTuVa2008] O. Reingold, L. Trevisan, M. Tulsiani, S. Vadhan, New
Proofs of the Green-Tao-Ziegler Dense Model Theorem: An Exposition,
preprint.
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