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Preface

In February of 2007, I converted my “What’s new” web page of re-

search updates into a blog at terrytao.wordpress.com. This blog

has since grown and evolved to cover a wide variety of mathematical

topics, ranging from my own research updates, to lectures and guest

posts by other mathematicians, to open problems, to class lecture

notes, to expository articles at both basic and advanced levels.

With the encouragement of my blog readers, and also of the AMS,

I published many of the mathematical articles from the first two years

of the blog as [Ta2008] and [Ta2009], which will henceforth be re-

ferred to as Structure and Randomness and Poincaré’s Legacies Vols.

I, II throughout this book. This gave me the opportunity to improve

and update these articles to a publishable (and citeable) standard,

and also to record some of the substantive feedback I had received on

these articles by the readers of the blog.

The current text contain many (though not all) of the posts for

the third year (2009) of the blog, focusing primarily on those posts

of a mathematical nature which were not contributed primarily by

other authors, and which are not published elsewhere.

This year, over half of the material consists of lecture notes from

my graduate real analysis courses that I taught at UCLA (Chapter

1), together with some related material in Chapter 2. These notes

cover the second part of the graduate real analysis sequence here,

xi



xii Preface

and therefore assume some familiarity with general measure theory

(in particular, the construction of Lebesgue measure and the Lebesgue

integral, and more generally the material reviewed in Section 1.1), as

well as undergraduate real analysis (e.g. various notions of limits

and convergence). The notes then cover more advanced topics in

measure theory (notably, the Lebesgue-Radon-Nikodym and Riesz

representation theorems), as well as a number of topics in functional

analysis, such as the theory of Hilbert and Banach spaces, and the

study of key function spaces such as the Lebesgue and Sobolev spaces,

or spaces of distributions. The general theory of the Fourier transform

is also discussed. In addition, a number of auxiliary (but optional)

topics, such as Zorn’s lemma, are discussed in Chapter 2. In my

own course, I covered the material in Chapter 1 only, and also used

Folland’s text [Fo2000] as a secondary source; but I hope that this

text may be useful in other graduate real analysis courses, particularly

in conjunction with a secondary text (in particular, one that covers

the prerequisite material on measure theory).

The rest of this text consists of sundry articles on a variety of

mathematical topics, which I have divided (somewhat arbitrarily) into

expository articles (Chapter 3) which are introductory articles on top-

ics of relatively broad interest, and more technical articles (Chapter

4) which are narrower in scope, and often related to one of my cur-

rent research interests. These can be read in any order, although they

often reference each other, as well as articles from previous volumes

in this series.

A remark on notation

For reasons of space, we will not be able to define every single math-

ematical term that we use in this book. If a term is italicised for

reasons other than emphasis or for definition, then it denotes a stan-

dard mathematical object, result, or concept, which can be easily

looked up in any number of references. (In the blog version of the

book, many of these terms were linked to their Wikipedia pages, or

other on-line reference pages.)

I will however mention a few notational conventions that I will

use throughout. The cardinality of a finite set E will be denoted
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|E|. We will use the asymptotic notation X = O(Y ), X � Y , or

Y � X to denote the estimate |X| ≤ CY for some absolute constant

C > 0. In some cases we will need this constant C to depend on a

parameter (e.g. d), in which case we shall indicate this dependence

by subscripts, e.g. X = Od(Y ) or X �d Y . We also sometimes use

X ∼ Y as a synonym for X � Y � X.

In many situations there will be a large parameter n that goes off

to infinity. When that occurs, we also use the notation on→∞(X) or

simply o(X) to denote any quantity bounded in magnitude by c(n)X,

where c(n) is a function depending only on n that goes to zero as n

goes to infinity. If we need c(n) to depend on another parameter, e.g.

d, we indicate this by further subscripts, e.g. on→∞;d(X).

We will occasionally use the averaging notation Ex∈Xf(x) :=
1
|X|
∑
x∈X f(x) to denote the average value of a function f : X → C

on a non-empty finite set X.
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2 1. Real analysis

1.1. A quick review of measure and integration
theory

In this section we quickly review the basics of abstract measure theory

and integration theory, which was covered in the previous course but

will of course be relied upon in the current course. This is only a

brief summary of the material; of course, one should consult a real

analysis text for the full details of the theory.

1.1.1. Measurable spaces. Ideally, measure theory on a space X

should be able to assign a measure (or “volume”, or “mass”, etc.) to

every set in X. Unfortunately, due to paradoxes such as the Banach-

Tarski paradox, many natural notions of measure (e.g. Lebesgue mea-

sure) cannot be applied to measure all subsets of X; instead, one must

restrict attention to certain measurable subsets of X. This turns out

to suffice for most applications; for instance, just about any “non-

pathological” subset of Euclidean space that one actually encounters

will be Lebesgue measurable (as a general rule of thumb, any set

which does not rely on the axiom of choice in its construction will be

measurable).

To formalise this abstractly, we use

Definition 1.1.1 (Measurable spaces). A measurable space (X,X )

is a set X, together with a collection X of subsets of X which form

a σ-algebra, thus X contains the empty set and X, and is closed

under countable intersections, countable unions, and complements. A

subset of X is said to be measurable with respect to the measurable

space if it lies in X .

A function f : X → Y from one measurable space (X,X ) to

another (Y,Y) is said to be measurable if f−1(E) ∈ X for all E ∈ Y.

Remark 1.1.2. The class of measurable spaces forms a category,

with the measurable functions being the morphisms. The symbol σ

stands for “countable union”; cf. σ-compact, σ-finite, Fσ set.

Remark 1.1.3. The notion of a measurable space (X,X ) (and of a

measurable function) is superficially similar to that of a topological

space (X,F) (and of a continuous function); the topology F contains
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∅ and X just as the σ-algebra X does, but is now closed under ar-

bitrary unions and finite intersections, rather than countable unions,

countable intersections, and complements. The two categories are

linked to each other by the Borel algebra construction, see Example

1.1.5 below.

Example 1.1.4. We say that one σ-algebra X on a set X is coarser

than another X ′ (or that X ′ is finer than X ) if X ⊂ X ′ (or equiv-

alently, if the identity map from (X,X ′) to (X,X ) is measurable);

thus every set which is measurable in the coarse space is also mea-

surable in the fine space. The coarsest σ-algebra on a set X is

the trivial σ-algebra {∅,X}, while the finest is the discrete σ-algebra

2X := {E : E ⊂X}.

Example 1.1.5. The intersection
∧
α∈A Xα :=

⋂
α∈A Xα of an arbi-

trary family (Xα)α∈A of σ-algebras on X is another σ-algebra on X.

Because of this, given any collection F of sets on X we can define the

σ-algebra B[F ] generated by F , defined to be the intersection of all

the σ-algebras containing F , or equivalently the coarsest algebra for

which all sets in F are measurable. (This intersection is non-vacuous,

since it will always involve the discrete σ-algebra 2X .) In particular,

the open sets F of a topological space (X,F) generate a σ-algebra,

known as the Borel σ-algebra of that space.

We can also define the join
∨
α∈A Xα of any family (Xα)α∈A of

σ-algebras on X by the formula

(1.1)
∨
α∈A
Xα := B[

⋃
α∈A
Xα].

For instance, the Lebesgue σ-algebra L of Lebesgue measurable sets

on a Euclidean space Rn is the join of the Borel σ-algebra B and

of the algebra of null sets and their complements (also called co-null

sets).

Exercise 1.1.1. A function f : X → Y from one topological space to

another is said to be Borel measurable if it is measurable onceX and Y

are equipped with their respective Borel σ-algebras. Show that every

continuous function is Borel measurable. (The converse statement, of

course, is very far from being true; for instance, the pointwise limit

of a sequence of measurable functions, if it exists, is also measurable,
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whereas the analogous claim for continuous functions is completely

false.)

Remark 1.1.6. A function f : Rn → C is said to be Lebesgue mea-

surable if it is measurable from Rn (with the Lebesgue σ-algebra) to

C (with the Borel σ-algebra), or equivalently if f−1(B) is Lebesgue

measurable for every open ball B in C. Note the asymmetry be-

tween Lebesgue and Borel here; in particular, the composition of two

Lebesgue measurable functions need not be Lebesgue measurable.

Example 1.1.7. Given a function f : X → Y from a set X to a

measurable space (Y,Y), we can define the pullback f−1(Y) of Y to

be the σ-algebra f−1(Y) := {f−1(E) : E ∈ Y}; this is the coarsest

structure on X that makes f measurable. For instance, the pullback

of the Borel σ-algebra from [0, 1] to [0, 1]2 under the map (x, y) 7→ x

consists of all sets of the form E × [0, 1], where E ⊂ [0, 1] is Borel-

measurable.

More generally, given a family (fα : X → Yα)α∈A of functions into

measurable spaces (Yα,Yα), we can form the σ-algebra
∨
α∈A f

−1
α (Yα)

generated by the fα; this is the coarsest structure on X that makes

all the fα simultaneously measurable.

Remark 1.1.8. In probability theory and information theory, the

functions fα : X → Yα in Example 1.1.7 can be interpreted as ob-

servables, and the σ-algebra generated by these observables thus cap-

tures mathematically the concept of observable information. For in-

stance, given a time parameter t, one might define the σ-algebra F≤t
generated by all observables for some random process (e.g. Brown-

ian motion) that can be made at time t or earlier; this endows the

underlying event space X with an uncountable increasing family of

σ-algebras.

Example 1.1.9. If E is a subset of a measurable space (Y,Y), the

pullback of Y under the inclusion map ι : E → Y is called the re-

striction of Y to E and is denoted Y �E . Thus, for instance, we can

restrict the Borel and Lebesgue σ-algebras on a Euclidean space Rn

to any subset of such a space.

Exercise 1.1.2. Let M be an n-dimensional manifold, and let (πα :

Uα → Vα) be an atlas of coordinate charts for M , where Uα is an
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open cover of M and Vα are open subsets of Rn. Show that the Borel

σ-algebra on M is the unique σ-algebra whose restriction to each Uα
is the pullback via πα of the restriction of the Borel σ-algebra of Rn

to Vα.

Example 1.1.10. A function f : X → A into some index set A

will partition X into level sets f−1({α}) for α ∈ A; conversely, every

partition X =
⋃
α∈AEα of X arises from at least one function f in

this manner (one can just take f to be the map from points in X to

the partition cell that that point lies in). Given such an f , we call the

σ-algebra f−1(2A) the σ-algebra generated by the partition; a set is

measurable with respect to this structure if and only if it is the union

of some sub-collection
⋃
α∈B Eα of cells of the partition.

Exercise 1.1.3. Show that a σ-algebra on a finite set X necessar-

ily arises from a partition X =
⋃
α∈AEα as in Example 1.1.10, and

furthermore the partition is unique (up to relabeling). Thus in the

finitary world, σ-algebras are essentially the same concept as parti-

tions.

Example 1.1.11. Let (Xα,Xα)α∈A be a family of measurable spaces,

then the Cartesian product
∏
α∈AXα has canonical projection maps

πβ :
∏
α∈AXα → Xβ for each β ∈ A. The product σ-algebra∏

α∈A Xα is defined as the σ-algebra on
∏
α∈AXα generated by the

πα as in Example 1.1.7.

Exercise 1.1.4. Let (Xα)α∈A be an at most countable family of sec-

ond countable topological spaces. Show that the Borel σ-algebra of

the product space (with the product topology) is equal to the product

of the Borel σ-algebras of the factor spaces. In particular, the Borel

σ-algebra on Rn is the product of n copies of the Borel σ-algebra on

R. (The claim can fail when the countability hypotheses are dropped,

though in most applications in analysis, these hypotheses are satis-

fied.) We caution however that the Lebesgue σ-algebra on Rn is not

the product of n copies of the one-dimensional Lebesgue σ-algebra,

as it contains some additional null sets; however, it is the completion

of that product.

Exercise 1.1.5. Let (X,X ) and (Y,Y) be measurable spaces. Show

that if E is measurable with respect to X ×Y, then for every x ∈ X,
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the set {y ∈ Y : (x, y) ∈ E} is measurable in Y, and similarly for

every y ∈ Y , the set {x ∈ X : (x, y) ∈ E} is measurable in X . Thus,

sections of Borel-measurable sets are again Borel-measurable. (The

same is not true for Lebesgue-measurable sets.)

1.1.2. Measure spaces. Now we endow measurable spaces with a

measure, turning them into measure spaces.

Definition 1.1.12 (Measures). A (non-negative) measure µ on a

measurable space (X,X ) is a function µ : X → [0,+∞] such that

µ(∅) = 0, and such that we have the countable additivity property

µ(
⋃∞
n=1En) =

∑∞
n=1 µ(En) whenever E1, E2, . . . are disjoint measur-

able sets. We refer to the triplet (X,X , µ) as a measure space.

A measure space (X,X , µ) is finite if µ(X) <∞; it is a probability

space if µ(X) = 1 (and then we call µ a probability measure). It is

σ-finite if X can be covered by countably many sets of finite measure.

A measurable set E is a null set if µ(E) = 0. A property on points

x in X is said to hold for almost every x ∈ X (or almost surely, for

probability spaces) if it holds outside of a null set. We abbreviate

almost every and almost surely as a.e. and a.s. respectively. The

complement of a null set is said to be a co-null set or to have full

measure.

Example 1.1.13 (Dirac measures). Given any measurable space

(X,X ) and a point x ∈ X, we can define the Dirac measure (or

Dirac mass) δx to be the measure such that δx(E) = 1 when x ∈ E
and δx(E) = 0 otherwise. This is a probability measure.

Example 1.1.14 (Counting measure). Given any measurable space

(X,X ), we define counting measure # by defining #(E) to be the

cardinality |E| of E when E is finite, or +∞ otherwise. This measure

is finite when X is finite, and σ-finite when X is at most countable. If

X is also finite, we can define normalised counting measure 1
|E|#; this

is a probability measure, also known as uniform probability measure

on X (especially if we give X the discrete σ-algebra).

Example 1.1.15. Any finite non-negative linear combination of mea-

sures is again a measure; any finite convex combination of probability

measures is again a probability measure.
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Example 1.1.16. If f : X → Y is a measurable map from one

measurable space (X,X ) to another (Y,Y), and µ is a measure on

X , we can define the push-forward f∗µ : Y → [0,+∞] by the formula

f∗µ(E) := µ(f−1(E)); this is a measure on (Y,Y). Thus, for instance,

f∗δx = δf(x) for all x ∈ X.

We record some basic properties of measures of sets:

Exercise 1.1.6. Let (X,X , µ) be a measure space. Show the follow-

ing statements:

(i) (Monotonicity) If E ⊂ F are measurable sets, then µ(E) ≤
µ(F ). (In particular, any measurable subset of a null set is

again a null set.)

(ii) (Countable subadditivity) If E1, E2, . . . are a countable se-

quence of measurable sets, then µ(
⋃∞
n=1En) ≤

∑∞
n=1 µ(En).

(Of course, one also has subadditivity for finite sequences.)

In particular, any countable union of null sets is again a null

set.

(iii) (Monotone convergence for sets) If E1 ⊂ E2 ⊂ . . . are mea-

surable, then µ(
⋃∞
n=1En) = limn→∞ µ(En).

(iv) (Dominated convergence for sets) If E1 ⊃ E2 ⊃ . . . are mea-

surable, and µ(E1) is finite, then µ(
⋂∞
n=1En) = limn→∞ µ(En).

Show that the claim can fail if µ(E1) is infinite.

Exercise 1.1.7. A measure space is said to be complete if every

subset of a null set is measurable (and is thus again a null set). Show

that every measure space (X,X , µ) has a unique minimal complete

refinement (X,X , µ), known as the completion of (X,X , µ), and that

a set is measurable in X if and only if it is equal almost everywhere to

a measurable set in X . (The completion of the Borel σ-algebra with

respect to Lebesgue measure is known as the Lebesgue σ-algebra.)

A powerful way to construct measures on σ-algebras X is to first

construct them on a smaller Boolean algebra A that generates X , and

then extend them via the following result:

Theorem 1.1.17 (Carathéodory’s extension theorem, special case).

Let (X,X ) be a measurable space, and let A be a Boolean algebra
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(i.e. closed under finite unions, intersections, and complements) that

generates X . Let µ : A → [0,+∞] be a function such that

(i) µ(∅) = 0;

(ii) If A1, A2, . . . ∈ A are disjoint and
⋃∞
n=1An ∈ A, then

µ(
⋃∞
n=1An) =

∑∞
n=1 µ(An).

Then µ can be extended to a measure µ : X → [0,+∞] on X , which

we shall also call µ.

Remark 1.1.18. The conditions (i), (ii) in the above theorem are

clearly necessary if µ has any hope to be extended to a measure on

X . Thus this theorem gives a necessary and sufficient condition for

a function on a Boolean algebra to be extended to a measure. The

extension can easily be shown to be unique when X is σ-finite.

Proof. (Sketch) Define the outer measure µ∗(E) of any set E ⊂ X as

the infimum of
∑∞
n=1 µ(An), where (An)∞n=1 ranges over all coverings

of E by elements in A. It is not hard to see that if µ∗ agrees with µ

on A, so it will suffice to show that it is a measure on X .

It is easy to check that µ∗ is monotone and countably subadditive

(as in parts (i), (ii) of Exercise 1.1.6) on all of 2X , and assigns zero to

∅; thus it is an outer measure in the abstract sense. But we need to

show countable additivity on X . The key is to first show the related

property

(1.2) µ∗(A) = µ∗(A ∩ E) + µ∗(A\E)

for all A ⊂ X and E ∈ X . This can first be shown for E ∈ A, and

then one observes that the class of E that obey (1.2) for all A is a

σ-algebra; we leave this as a (moderately lengthy) exercise.

The identity (1.2) already shows that µ∗ is finitely additive on

X ; combining this with countable subadditivity and monotonicity, we

conclude that µ∗ is countably additive, as required. �

Exercise 1.1.8. Let the notation and hypotheses be as in Theorem

1.1.17. Show that given any ε > 0 and any set E ∈ X of finite

measure, there exists a set F ∈ A which differs from E by a set of

measure at most ε. If X is σ-finite, show that the hypothesis that

E has finite measure can be removed. (Hint : first reduce to the
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case when X is finite, then show that the class of all E obeying this

property is a σ-algebra.) Thus sets in the σ-algebra X “almost” lie in

the algebra A; this is an example of Littlewood’s first principle. The

same statements of course apply for the completion X of X .

One can use Theorem 1.1.17 to construct Lebesgue measure on

R and on Rn (taking A to be, say, the algebra generated by half-

open intervals or boxes), although the verification of hypothesis (ii)

of Theorem 1.1.17 turns out to be somewhat delicate, even in the

one-dimensional case. But one can at least get the higher-dimensional

Lebesgue measure from the one-dimensional one by the product mea-

sure construction:

Exercise 1.1.9. Let (X1,X1, µ1), . . . , (Xn,Xn, µn) be a finite collec-

tion of measure spaces, and let (
∏n
i=1Xi,

∏n
i=1 Xi) be the product

measurable space . Show that there exists a unique measure µ on

this space such that µ(
∏n
i=1Ai) =

∏n
i=1 µ(Ai) for all Ai ∈ Xi. The

measure µ is referred to as the product measure of the µ1, . . . , µn and

is denoted
∏n
i=1 µi.

Exercise 1.1.10. Let E be a Lebesgue measurable subset of Rn. and

let m be Lebesgue measure. Establish the inner regularity property

(1.3) m(E) = sup{µ(K) : K ⊂ E, compact}

and the outer regularity property

(1.4) m(E) = inf{µ(U) : E ⊂ U, open}.

Combined with the fact that m is locally finite, this implies that m

is a Radon measure.

1.1.3. Integration. Now we define integration on a measure space

(X,X , µ).

Definition 1.1.19 (Integration). Let (X,X , µ) be a measure space.

(i) If f : X → [0,+∞] is a non-negative simple function (i.e.

a measurable function that only takes on finitely many val-

ues a1, . . . , an), we define the integral
∫
X
f dµ of f to be∫

X
f dµ =

∑n
i=1 aiµ(f−1({ai})) (with the convention that

∞· 0 = 0). In particular, if f = 1A is the indicator function

of a measurable set A, then
∫
X

1A dµ = µ(A).
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(ii) If f : X → [0,+∞] is a non-negative measurable func-

tion, we define the integral
∫
X
f dµ to be the supremum of∫

X
g dµ, where g ranges over all simple functions bounded

between 0 and f .

(iii) If f : X → [−∞,+∞] is a measurable function, whose pos-

itive and negative parts f+ := max(f, 0), f− := max(−f, 0)

have finite integral, we say that f is absolutely integrable and

define
∫
X
f dµ :=

∫
X
f+ dµ−

∫
X
f− dµ.

(iv) If f : X → C is a measurable function with real and imagi-

nary parts absolutely integrable, we say that f is absolutely

integrable and define
∫
X
f dµ :=

∫
X

Re f dµ+ i
∫
X

Im f dµ.

We will sometimes show the variable of integration, e.g. writing∫
X
f(x) dµ(x) for

∫
X
f dµ, for sake of clarity.

The following results are standard, and the proofs are omitted:

Theorem 1.1.20 (Standard facts about integration). Let (X,X , µ)

be a measure space.

• All the above integration notions are compatible with each

other; for instance, if f is both non-negative and absolutely

integrable, then the definitions (ii) and (iii) (and (iv)) agree.

• The functional f 7→
∫
X
f dµ is linear over R+ for sim-

ple functions or non-negative functions, is linear over R for

real-valued absolutely integrable functions, and linear over C

for complex-valued absolutely integrable functions. In partic-

ular, the set of (real or complex) absolutely integrable func-

tions on (X,X , µ) is a (real or complex) vector space.

• A complex-valued measurable function f : X → C is ab-

solutely integrable if and only if
∫
X
|f | dµ < ∞, in which

case we have the triangle inequality |
∫
X
f dµ| ≤

∫
X
|f | dµ.

Of course, the same claim holds for real-valued measurable

functions.

• If f : X → [0,+∞] is non-negative, then
∫
X
f dµ ≥ 0, with

equality holding if and only if f = 0 a.e..

• If one modifies an absolutely integrable function on a set

of measure zero, then the new function is also absolutely
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integrable, and has the same integral as the original function.

Similarly, two non-negative functions that agree a.e. have

the same integral. (Because of this, we can meaningfully

integrate functions that are only defined almost everywhere.)

• If f : X → C is absolutely integrable, then f is finite a.e.,

and vanishes outside of a σ-finite set.

• If f : X → C is absolutely integrable, and ε > 0 then there

exists a complex-valued simple function g : X → C such that∫
X
|f − g| dµ ≤ ε. (This is a manifestation of Littlewood’s

second principle.)

• (Change of variables formula) If φ : X → Y is a measurable

map to another measurable space (Y,Y), and g : Y → C,

then we have
∫
X
g ◦ φ dµ =

∫
Y
g dφ∗µ, in the sense that

whenever one of the integrals is well defined, then the other

is also, and equals the first.

• It is also important to note that the Lebesgue integral on Rn

extends the more classical Riemann integral. As a conse-

quence, many properties of the Riemann integral (e.g. change

of variables formula with respect to smooth diffeomorphisms)

are inherited by the Lebesgue integral, thanks to various lim-

iting arguments.

We now recall the fundamental convergence theorems relating

limits and integration: the first three are for non-negative functions,

the last three are for absolutely integrable functions. They are ul-

timately derived from their namesakes in Exercise 1.1.5 and an ap-

proximation argument by simple functions, and the proofs are again

omitted. (They are also closely related to each other, and are in fact

largely equivalent.)

Theorem 1.1.21 (Convergence theorems). Let (X,X , µ) be a mea-

sure space.

• (Monotone convergence for sequences) If 0 ≤ f1 ≤ f2 ≤ . . .

are measurable, then
∫
X

limn→∞ fn dµ = limn→∞
∫
X
fn dµ.

• (Monotone convergence for series) If fn : X → [0,+∞] are

measurable, then
∫
X

∑∞
n=1 fn dµ =

∑∞
n=1

∫
X
fn dµ.
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• (Fatou’s lemma) If fn : X → [0,+∞] are measurable, then∫
X

lim infn→∞ fn dµ ≤ lim infn→∞
∫
X
fn dµ.

• (Dominated convergence for sequences) If fn : X → C are

measurable functions converging pointwise a.e. to a limit f,

and |fn| ≤ g a.e. for some absolutely integrable g : X →
[0,+∞], then

∫
X

limn→∞ fn dµ = limn→∞
∫
X
fn dµ.

• (Dominated convergence for series) If fn : X → C are mea-

surable functions with
∑
n

∫
X
|fn| dµ < ∞, then

∑
n fn(x)

is absolutely convergent for a.e. x and
∫
X

∑∞
n=1 fn dµ =∑∞

n=1

∫
X
fn dµ.

• (Egorov’s theorem) If fn : X → C are measurable functions

converging pointwise a.e. to a limit f on a subset A of X of

finite measure, and ε > 0, then there exists a set of measure

at most ε, outside of which fn converges uniformly to f in

A. (This is a manifestation of Littlewood’s third principle.)

Remark 1.1.22. As a rule of thumb, if one does not have exact

or approximate monotonicity or domination (where “approximate”

means “up to an error e whose L1 norm
∫
X
|e| dµ goes to zero”), then

one should not expect the integral of a limit to equal the limit of the

integral in general; there is just too much room for oscillation.

Exercise 1.1.11. Let f : X → C be an absolutely integrable func-

tion on a measure space (X,X , µ). Show that f is uniformly inte-

grable, in the sense that for every ε > 0 there exists δ > 0 such that∫
E
|f | dµ ≤ ε whenever E is a measurable set of measure at most δ.

(The property of uniform integrability becomes more interesting, of

course when applied to a family of functions, rather than to a single

function.)

With regard to product measures and integration, the fundamen-

tal theorem in this subject is

Theorem 1.1.23 (Fubini-Tonelli theorem). Let (X,X , µ) and (Y,Y, ν)

be σ-finite measure spaces, with product space (X × Y,X ×Y, µ× ν).

• (Tonelli theorem) If f : X×Y → [0,+∞] is measurable, then∫
X×Y f dµ×ν =

∫
X

(
∫
Y
f(x, y) dν(y)) dµ(x) =

∫
Y

(
∫
X
f(x, y) dµ(x))dν(y).
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• (Fubini theorem) If f : X × Y → C is absolutely integrable,

then we also have
∫
X×Y f dµ×ν =

∫
X

(
∫
Y
f(x, y) dν(y)) dµ(x)

=
∫
Y

(
∫
X
f(x, y) dµ(x))dν(y), with the inner integrals being

absolutely integrable a.e. and the outer integrals all being

absolutely integrable.

If (X,X , µ) and (Y,Y, ν) are complete measure spaces, then the same

claims hold with the product σ-algebra X × Y replaced by its comple-

tion.

Remark 1.1.24. The theorem fails for non-σ-finite spaces, but vir-

tually every measure space actually encountered in “hard analysis”

applications will be σ-finite. (One should be cautious, however, with

any space constructed using ultrafilters or the first uncountable or-

dinal.) It is also important that f obey some measurability in the

product space; there exist non-measurable f for which the iterated

integrals exist (and may or may not be equal to each other, depending

on the properties of f and even on which axioms of set theory one

chooses), but the product integral (of course) does not.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/01/01.

Thanks to Andy, PDEBeginner, Phil, Sune Kristian Jacobsen, wangtwo,

and an anonymous commenter for corrections.

Several commenters noted Solovay’s theorem, which asserts that

there exist models of set theory without the axiom of choice in which

all sets are measurable. This led to some discussion of the extent

in which one could formalise the claim that any set which could be

defined without the axiom of choice was necessarily measurable, but

the discussion was inconclusive.

1.2. Signed measures and the
Radon-Nikodym-Lebesgue theorem

In this section, X = (X,X ) is a fixed measurable space. We shall

often omit the σ-algebra X , and simply refer to elements of X as

measurable sets. Unless otherwise indicated, all subsets of X appear-

ing below are restricted to be measurable, and all functions on X

appearing below are also restricted to be measurable.
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We letM+(X) denote the space of measures on X, i.e. functions

µ : X → [0,+∞] which are countably additive and send ∅ to 0. For

reasons that will be clearer later, we shall refer to such measures as

unsigned measures. In this section we investigate the structure of this

space, together with the closely related spaces of signed measures and

finite measures.

Suppose that we have already constructed one unsigned measure

m ∈ M+(X) on X (e.g. think of X as the real line with the Borel

σ-algebra, and let m be Lebesgue measure). Then we can obtain

many further unsigned measures on X by multiplying m by a function

f : X → [0,+∞], to obtain a new unsigned measure mf , defined by

the formula

(1.5) mf (E) :=

∫
X

1Ef dµ

If f = 1A is an indicator function, we write m �A for m1A , and

refer to this measure as the restriction of m to A.

Exercise 1.2.1. Show (using the monotone convergence theorem,

Theorem 1.1.21) that mf is indeed a unsigned measure, and for any

g : X → [0,+∞], we have
∫
X
g dmf =

∫
X
gf dm. We will express

this relationship symbolically as

(1.6) dmf = fdm.

Exercise 1.2.2. Let m be σ-finite. Given two functions f, g : X →
[0,+∞], show that mf = mg if and only if f(x) = g(x) for m-almost

every x. (Hint : as usual, first do the case when m is finite. The

key point is that if f and g are not equal m-almost everywhere, then

either f > g on a set of positive measure, or f < g on a set of positive

measure.) Give an example to show that this uniqueness statement

can fail if m is not σ-finite. (Hint : the space X can be very simple.)

In view of Exercises 1.2.1 and 1.2.2, let us temporarily call a

measure µ differentiable with respect to m if dµ = fdm (i.e. µ = mf )

for some f : X → [0,+∞], and call f the Radon-Nikodym derivative

of µ with respect to m, writing

(1.7) f =
dµ

dm
;
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by Exercise 1.2.2, we see if m is σ-finite that this derivative is defined

up to m-almost everywhere equivalence.

Exercise 1.2.3 (Relationship between Radon-Nikodym derivative

and classical derivative). Let m be Lebesgue measure on [0,+∞),

and let µ be an unsigned measure that is differentiable with respect

to m. If µ has a continuous Radon-Nikodym derivative dµ
dm , show that

the function x 7→ µ([0, x]) is differentiable, and d
dxµ([0, x]) = dµ

dm (x)

for all x.

Exercise 1.2.4. Let X be at most countable. Show that every mea-

sure on X is differentiable with respect to counting measure #.

If every measure was differentiable with respect to m (as is the

case in Exercise 1.2.4), then we would have completely described the

space of measures of X in terms of the non-negative functions of

X (modulo m-almost everywhere equivalence). Unfortunately, not

every measure is differentiable with respect to every other: for in-

stance, if x is a point in X, then the only measures that are differ-

entiable with respect to the Dirac measure δx are the scalar multi-

ples of that measure. We will explore the precise obstruction that

prevents all measures from being differentiable, culminating in the

Radon-Nikodym-Lebesgue theorem that gives a satisfactory under-

standing of the situation in the σ-finite case (which is the case of

interest for most applications).

In order to establish this theorem, it will be important to first

study some other basic operations on measures, notably the ability

to subtract one measure from another. This will necessitate the study

of signed measures, to which we now turn.

1.2.1. Signed measures. We have seen that if we fix a reference

measure m, then non-negative functions f : X → [0,+∞] (modulo

m-almost everywhere equivalence) can be identified with unsigned

measures mf : X → [0,+∞]. This motivates various operations on

measures that are analogous to operations on functions (indeed, one

could view measures as a kind of “generalised function” with respect

to a fixed reference measure m). For instance, we can define the sum
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of two unsigned measures µ, ν : X → [0,+∞] as

(1.8) (µ+ ν)(E) := µ(E) + ν(E)

and non-negative scalar multiples cµ for c > 0 by

(1.9) (cµ)(E) := c(µ(E)).

We can also say that one measure µ is less than another ν if

(1.10) µ(E) ≤ ν(E) for all E ∈ X .

These operations are all consistent with their functional counterparts,

e.g. mf+g = mf +mg, etc.

Next, we would like to define the difference µ−ν of two unsigned

measures. The obvious thing to do is to define

(1.11) (µ− ν)(E) := µ(E)− ν(E)

but we have a problem if µ(E) and ν(E) are both infinite: ∞−∞
is undefined! To fix this problem, we will only define the difference

of two unsigned measures µ, ν if at least one of them is a finite mea-

sure. Observe that in that case, µ − ν takes values in (−∞,+∞] or

[−∞,+∞), but not both.

Of course, we no longer expect µ−ν to be monotone. However, it

is still finitely additive, and even countably additive in the sense that

the sum
∑∞
n=1(µ− ν)(En) converges to (µ− ν)(

⋃∞
n=1En) whenever

E1, E2, . . . are disjoint sets, and furthermore that the sum is abso-

lutely convergent when (µ− ν)(
⋃∞
n=1En) is finite. This motivates

Definition 1.2.1 (Signed measure). A signed measure is a map µ :

X → [−∞,+∞] such that

(i) µ(∅) = 0;

(ii) µ can take either the value +∞ or −∞, but not both;

(iii) If E1, E2, . . . ⊂ X are disjoint, then
∑∞
n=1 µ(En) converges

to µ(
⋃∞
n=1En), with the former sum being absolutely con-

vergent1 if the latter expression is finite.

1Actually, the absolute convergence is automatic from the Riemann rearrange-
ment theorem. Another consequence of (iii) is that any subset of a finite measure
set is again finite measure, and the finite union of finite measure sets again has finite
measure.
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Thus every unsigned measure is a signed measure, and the differ-

ence of two unsigned measures is a signed measure if at least one of

the unsigned measures is finite; we will see shortly that the converse

statement is also true, i.e. every signed measure is the difference of

two unsigned measures (with one of the unsigned measures being fi-

nite). Another example of a signed measure are the measures mf

defined by (1.5), where f : X → [−∞,+∞] is now signed rather than

unsigned, but with the assumption that at least one of the signed parts

f+ := max(f, 0), f− := max(−f, 0) of f is absolutely integrable.

We also observe that a signed measure µ is unsigned if and only

if µ ≥ 0 (where we use (1.10) to define order on measures).

Given a function f : X → [−∞,+∞], we can partition X into

one set X+ := {x : f(x) ≥ 0} on which f is non-negative, and another

set X− := {x : f(x) < 0} on which f is negative; thus f �X+
≥ 0 and

f �X−≤ 0. It turns out that the same is true for signed measures:

Theorem 1.2.2 (Hahn decomposition theorem). Let µ be a signed

measure. Then one can find a partition X = X+ ∪ X− such that

µ �X+
≥ 0 and µ �X−≤ 0.

Proof. By replacing µ with −µ if necessary, we may assume that µ

avoids the value +∞.

Call a set E totally positive if µ �E≥ 0, and totally negative if

µ �E≤ 0. The idea is to pick X+ to be the totally positive set of

maximal measure - a kind of “greedy algorithm”, if you will. More

precisely, define m+ to be the supremum of µ(E), where E ranges

over all totally positive sets. (The supremum is non-vacuous, since

the empty set is totally positive.) We claim that the supremum is

actually attained. Indeed, we can always find a maximising sequence

E1, E2, . . . of totally positive sets with µ(En) → m+. It is not hard

to see that the union X+ :=
⋃∞
n=1En is also totally positive, and

µ(X+) = m+ as required. Since µ avoids +∞, we see in particular

that m+ is finite.

Set X− := X\X+. We claim that X− is totally negative. We

do this as follows. Suppose for contradiction that X− is not totally

negative, then there exists a set E1 in X− of strictly positive measure.

If E1 is totally positive, then X+ ∪E1 is a totally positive set having
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measure strictly greater than m+, a contradiction. Thus E1 must

contain a subset E2 of strictly larger measure. Let us pick E2 so that

µ(E2) ≥ µ(E1) + 1/n1, where n1 is the smallest integer for which

such an E2 exists. If E2 is totally positive, then we are again done, so

we can find a subset E3 with µ(E3) ≥ µ(E2) + 1/n2, where n2 is the

smallest integer for whch such a E3 exists. Continuing in this fashion,

we either stop and get a contradiction, or obtain a nested sequence

of sets E1 ⊃ E2 ⊃ . . . in X− of increasing positive measure (with

µ(Ej+1) ≥ µ(Ej) + 1/nj). The intersection E :=
⋂
j Ej then also

has positive measure, hence finite, which implies that the nj go to

infinity; it is then not difficult to see that E itself cannot contain any

subsets of strictly larger measure, and so E is a totally positive set of

positive measure in X−, and we again obtain a contradiction. �

Remark 1.2.3. A somewhat simpler proof of the Hahn decomposi-

tion theorem is available if we assume µ to be finite positive variation

(which means that µ(E) is bounded above as E varies). For each

positive n, let En be a set whose measure µ(En) is within 2−n of

sup{µ(E) : E ∈ X}. One can easily show that any subset of En\En−1

has measure O(2−n), and in particular that En\
⋃n−1
n′=n0

En−1 has

measure O(2−n) for any n0 ≤ n. This allows one to control the

unions
⋃∞
n=n0

En, and thence the lim sup X+ of the En, which one

can then show to have the required properties. One can in fact show

that any signed measure that avoids +∞ must have finite positive

variation, but this turns out to require a certain amount of work.

Let us say that a set E is null for a signed measure µ if µ �E= 0.

(This implies that µ(E) = 0, but the converse is not true, since a set E

of signed measure zero could contain subsets of non-zero measure.) It

is easy to see that the sets X−, X+ given by the Hahn decomposition

theorem are unique modulo null sets.

Let us say that a signed measure µ is supported on E if the

complement of E is null (or equivalently, if µ �E= µ. If two signed

measures µ, ν can be supported on disjoint sets, we say that they are

mutually singular (or that µ is singular with respect to ν) and write

µ ⊥ ν. If we write µ+ := µ �X+
and µ− := −µ �X− , we thus soon

establish
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Exercise 1.2.5 (Jordan decomposition theorem). Every signed mea-

sure µ an be uniquely decomposed as µ = µ+−µ−, where µ+, µ− are

mutually singular unsigned measures. (The only claim not already

established is the uniqueness.) We refer to µ+, µ− as the positive and

negative parts (or positive and negative variations) of µ.

This is of course analogous to the decomposition f = f+ − f−
of a function into positive and negative parts. Inspired by this, we

define the absolute value (or total variation) |µ| of a signed measure

to be |µ| := µ+ + µ−.

Exercise 1.2.6. Show that |µ| is the minimal unsigned measure such

that −|µ| ≤ µ ≤ |µ|. Furthermore, |µ|(E) is equal to the maximum

value of
∑∞
n=1 |µ(En)|, where (En)∞n=1 ranges over the partitions of

E. (This may help explain the terminology “total variation”.)

Exercise 1.2.7. Show that µ(E) is finite for every E if and only

if |µ| is a finite unsigned measure, if and only if µ+, µ− are finite

unsigned measures. If any of these properties hold, we call µ a finite

measure. (In a similar spirit, we call a signed measure µ σ-finite if

|µ| is σ-finite.)

The space of finite measures on X is clearly a real vector space,

and is denoted M(X).

1.2.2. The Lebesgue-Radon-Nikodym theorem. Let m be a

reference unsigned measure. We saw at the beginning of this sec-

tion that the map f 7→ mf is an embedding of the space L+(X, dm)

of non-negative functions (modulo m-almost everywhere equivalence)

into the space M+(X) of unsigned measures. The same map is also

an embedding of the space L1(X, dm) of absolutely integrable func-

tions (again modulo m-almost everywhere equivalence) into the space

M(X) of finite measures. (To verify this, one first makes the easy

observation that the Jordan decomposition of a measure mf given by

an absolutely integrable function f is simply mf = mf+ −mf− .)

In the converse direction, one can ask if every finite measure µ

in M(X) can be expressed as mf for some absolutely integrable f .

Unfortunately, there are some obstructions to this. Firstly, from (1.5)

we see that if µ = mf , then any set that has measure zero with respect
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to m, must also have measure zero with respect to µ. In particular,

this implies that a non-trivial measure that is singular with respect

to m cannot be expressed in the form mf .

In the σ-finite case, this turns out to be the only obstruction:

Theorem 1.2.4 (Lebesgue-Radon-Nikodym theorem). Let m be an

unsigned σ-finite measure, and let µ be a signed σ-finite measure.

Then there exists a unique decomposition µ = mf + µs, where f ∈
L1(X, dm) and µs ⊥ m. If µ is unsigned, then f and µs are also.

Proof. We prove this only for the case when µ, ν are finite rather than

σ-finite, and leave the general case as an exercise. The uniqueness

follows from Exercise 1.2.2 and the previous observation that mf

cannot be mutually singular with m for any non-zero f , so it suffices

to prove existence. By the Jordan decomposition theorem, we may

assume that µ is unsigned as well. (In this case, we expect f and µs
to be unsigned also.)

The idea is to select f “greedily”. More precisely, let M be the

supremum of the quantity
∫
X
f dm, where f ranges over all non-

negative functions such that mf ≤ µ. Since µ is finite, M is finite. We

claim that the supremum is actually attained for some f . Indeed, if we

let fn be a maximising sequence, thus mfn ≤ µ and
∫
X
fn dm→M ,

one easily checks that the function f = supn fn attains the supremum.

The measure µs := µ − mf is a non-negative finite measure by

construction. To finish the theorem, it suffices to show that µs ⊥ m.

It will suffice to show that (µs− εm)+ ⊥ m for all ε, as the claim

then easily follows by letting ε be a countable sequence going to zero.

But if (µs − εm)+ were not singular with respect to m, we see from

the Hahn decomposition theorem that there is a set E with m(E) > 0

such that (µs−εm) �E≥ 0, and thus µs ≥ εm �E . But then one could

add ε1E to f , contradicting the construction of f . �

Exercise 1.2.8. Complete the proof of Theorem 1.2.4 for the σ-finite

case.

We have the following corollary:
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Corollary 1.2.5 (Radon-Nikodym theorem). Let m be an unsigned

σ-finite measure, and let µ be a signed σ-finite measure. Then the

following are equivalent.

(i) µ = mf for some f ∈ L1(X, dm).

(ii) µ(E) = 0 whenever m(E) = 0.

(iii) For every ε > 0, there exists δ > 0 such that µ(E) < ε

whenever m(E) ≤ δ.

When any of these statements occur, we say that µ is absolutely

continuous with respect to m, and write µ � m. As in the start of

this section, we call f the Radon-Nikodym derivative of µ with respect

to m, and write f = dµ
dm .

Proof. The implication of (iii) from (i) is Exercise 1.1.11. The im-

plication of (ii) from (iii) is trivial. To deduce (i) from (ii), apply

Theorem 1.2.2 to µ and observe that µs is supported on a set of m-

measure zero E by hypothesis. Since E is null for m, it is null for mf

and µ also, and so µs is trivial, giving (i). �

Corollary 1.2.6 (Lebesgue decomposition theorem). Let m be an

unsigned σ-finite measure, and let µ be a signed σ-finite measure.

Then there is a unique decomposition µ = µac + µs, where µac � m

and µs ⊥ m. (We refer to µac and µs as the absolutely continuous

and singular components of µ with respect to m.) If µ is unsigned,

then µac and µs are also.

Exercise 1.2.9. If every point in X is measurable, we call a signed

measure µ continuous if µ({x}) = 0 for all x. Let the hypotheses be

as in Corollary 1.2.6, but suppose also that every point is measur-

able and m is continuous. Show that there is a unique decomposition

µ = µac + µsc + µpp, where µac � m, µpp is supported on an at most

countable set, and µsc is both singular with respect to m and contin-

uous. Furthermore, if µ is unsigned, then µac, µsc, µpp are also. We

call µsc and µpp the singular continuous and pure point components

of µ respectively.

Example 1.2.7. A Cantor measure is singular continuous with re-

spect to Lebesgue measure, while Dirac measures are pure point.
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Lebesgue measure on a line is singular continuous with respect to

Lebesgue measure on a plane containing that line.

Remark 1.2.8. Suppose one is decomposing a measure µ on a Eu-

clidean space Rd with respect to Lebesgue measure m on that space.

Very roughly speaking, a measure is pure point if it is supported

on a 0-dimensional subset of Rd, it is absolutely continuous if its

support is spread out on a full dimensional subset, and is singular

continuous if it is supported on some set of dimension intermediate

between 0 and d. For instance, if µ is the sum of a Dirac mass at

(0, 0) ∈ R2, one-dimensional Lebesgue measure on the x-axis, and

two-dimensional Lebesgue measure on R2, then these are the pure

point, singular continuous, and absolutely continuous components of

µ respectively. This heuristic is not completely accurate (in part be-

cause I have left the definition of “dimension” vague) but is not a

bad rule of thumb for a first approximation. We will study analytic

concepts of dimension in more detail in Section 1.15.

To motivate the terminology “continuous” and “singular contin-

uous”, we recall two definitions on an interval I ⊂ R, and make a

third:

• A function f : I → R is continuous if for every x ∈ I and

every ε > 0, there exists δ > 0 such that |f(y) − f(x)| ≤ ε

whenever y ∈ I is such that |y − x| ≤ δ.
• A function f : I → R is uniformly continuous if for every

ε > 0, there exists δ > 0 such that |f(y)−f(x)| ≤ ε whenever

[x, y] ⊂ I has length at most δ.

• A function f : I → R is absolutely continuous if for every

ε > 0, there exists δ > 0 such that
∑n
i=1 |f(yi)− f(xi)| ≤ ε

whenever [x1, y1], . . . , [xn, yn] are disjoint intervals in I of

total length at most δ.

Clearly, absolute continuity implies uniform continuity, which in turn

implies continuity. The significance of absolute continuity is that it

is the largest class of functions for which the fundamental theorem

of calculus holds (using the classical derivative, and the Lebesgue

integral), as can be seen in any introductory graduate real analysis

course.



1.2. Signed measures 23

Exercise 1.2.10. Letm be Lebesgue measure on the interval [0,+∞],

and let µ be a finite unsigned measure.

Show that µ is a continuous measure if and only if the function

x 7→ µ([0, x]) is continuous. Show that µ is an absolutely continuous

measure with respect to m if and only if the function x 7→ µ([0, x]) is

absolutely continuous.

1.2.3. A finitary analogue of the Lebesgue decomposition

(optional). At first glance, the above theory is only non-trivial when

the underlying set X is infinite. For instance, if X is finite, and m is

the uniform distribution on X, then every other measure on X will

be absolutely continuous with respect to m, making the Lebesgue

decomposition trivial. Nevertheless, there is a non-trivial version of

the above theory that can be applied to finite sets (cf. Section 1.3 of

Structure and Randomness). The cleanest formulation is to apply it

to a sequence of (increasingly large) sets, rather than to a single set:

Theorem 1.2.9 (Finitary analogue of the Lebesgue-Radon-Nikodym

theorem). Let Xn be a sequence of finite sets (and with the discrete

σ-algebra), and for each n, let mn be the uniform distribution on Xn,

and let µn be another probability measure on Xn. Then, after passing

to a subsequence, one has a decomposition

(1.12) µn = µn,ac + µn,sc + µn,pp

where

(i) (Uniform absolute continuity) For every ε > 0, there exists

δ > 0 (independent of n) such that µn,ac(E) ≤ ε whenever

mn(E) ≤ δ, for all n and all E ⊂ Xn.

(ii) (Asymptotic singular continuity) µn,sc is supported on a set

of mn-measure o(1), and we have µn,sc({x}) = o(1) uni-

formly for all x ∈ Xn, where o(1) denotes an error that goes

to zero as n→∞.

(iii) (Uniform pure point) For every ε > 0 there exists N > 0 (in-

dependent of n) such that for each n, there exists a set En ⊂
Xn of cardinality at most N such that µn,pp(Xn\En) ≤ ε.
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Proof. Using the Radon-Nikodym theorem (or just working by hand,

since everything is finite), we can write dµn = fn dmn for some

fn : Xn → [0,+∞) with average value 1.

For each positive integer k, the sequence µn({fn ≥ k}) is bounded

between 0 and 1, so by the Bolzano-Weierstrass theorem, it has a

convergent subsequence. Applying the usual diagonalisation argu-

ment (as in the proof of the Arzelá-Ascoli theorem, Theorem 1.8.23),

we may thus assume (after passing to a subsequence, and relabeling)

that µn({fn ≥ k}) converges for positive k to some limit ck.

Clearly, the ck are decreasing and range between 0 and 1, and so

converge as k →∞ to some limit 0 < c < 1.

Since limk→∞ limn→∞ µn({fn ≥ k}) = c, we can find a sequence

kn going to infinity such that µn({fn ≥ kn}) → c as n → ∞. We

now set µn,ac to be the restriction of µn to the set {fn < kn}. We

claim the absolute continuity property (i). Indeed, for any ε > 0, we

can find a k such that ck ≥ c− ε/10. For n sufficiently large, we thus

have

(1.13) µn({fn ≥ k}) ≥ c− ε/5

and

(1.14) µn({fn ≥ kn}) ≤ c+ ε/5

and hence

(1.15) µn,ac({fn ≥ k}) ≤ 2ε/5.

If we take δ < ε/5k, we thus see (for n sufficiently large) that (i) holds.

(For the remaining n, one simply shrinks δ as much as is necessary.)

Write µn,s := µn − µn,ac, thus µn,s is supported on a set of size

|Xn|/Kn = o(|Xn|) by Markov’s inequality. It remains to extract out

the pure point components. This we do by a similar procedure as

above. Indeed, by arguing as before we may assume (after passing

to a subsequence as necessary) that the quantities µn{x : µn({x}) ≥
1/j} converge to a limit dj for each positive integer j, that the dj
themselves converge to a limit d, and that there exists a sequence

jn →∞ such that µn{x : µn({x}) ≥ 1/jn} converges to d. If one sets

µsc and µpp to be the restrictions of µs to the sets {x : µn({x}) <
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1/jn} and {x : µn({x}) ≥ 1/jn} respectively, one can verify the

remaining claims by arguments similar to those already given. �

Exercise 1.2.11. Generalise Theorem 1.2.9 to the setting where the

Xn can be infinite and non-discrete (but we still require every point to

be measurable), the mn are arbitrary probability measures, and the

µn are arbitrary finite measures of uniformly bounded total variation.

Remark 1.2.10. This result is still not fully “finitary” because it

deals with a sequence of finite structures, rather than with a single

finite structure. It appears in fact to be quite difficult (and per-

haps even impossible) to make a fully finitary version of the Lebesgue

decomposition (in the same way that the finite convergence princi-

ple in Section 1.3 of Structure and Randomnessvwas a fully finitary

analogue of the infinite convergence principle), though one can cer-

tainly form some weaker finitary statements that capture a portion

of the strength of this theorem. For instance, one very cheap thing

to do, given two probability measures µ,m, is to introduce a thresh-

old parameter k, and partition µ = µ≤k + µ>k, where µ≤k ≤ km,

and µ>k is supported on a set of m-measure at most 1/k; such a

decomposition is automatic from Theorem 1.2.4 and Markov’s in-

equality, and has meaningful content even when the underlying space

X is finite, but this type of decomposition is not as powerful as the

full Lebesgue decompositions (mainly because the size of the sup-

port for µ>k is relatively large compared to the threshold k). Us-

ing the finite convergence principle, one can do a bit better, writing

µ = µ≤k+µk<·≤F (k)+µ≥F (k) for any function F and any ε > 0, where

k = OF,ε(1), µ≤k ≤ km, µ≥F (k) is supported on a set of m-measure

at most 1/F (k), and µk<·≤F (k) has total mass at most ε, but this is

still fails to capture the full strength of the infinitary decomposition,

because ε needs to be fixed in advance. I have not been able to find

a fully finitary statement that is equivalent to, say, Theorem 1.2.9; I

suspect that if it does exist, it will have quite a messy formulation.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/01/04.

The material here is largely based on Folland’s text [Fo2000], except

for the last section. Thanks to Ke, Max Baroi, Xiaochuan Liu, and

several anonymous commenters for corrections.
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1.3. Lp spaces

Now that we have reviewed the foundations of measure theory, let us

now put it to work to set up the basic theory of one of the fundamental

families of function spaces in analysis, namely the Lp spaces (also

known as Lebesgue spaces). These spaces serve as important model

examples for the general theory of topological and normed vector

spaces, which we will discuss a little bit in this lecture and then in

much greater detail in later lectures.

Just as scalar quantities live in the space of real or complex num-

bers, and vector quantities live in vector spaces, functions f : X → C

(or other objects closely related to functions, such as measures) live

in function spaces. Like other spaces in mathematics (e.g. vector

spaces, metric spaces, topological spaces, etc.) a function space V is

not just mere sets of objects (in this case, the objects are functions),

but they also come with various important structures that allow one

to do some useful operations inside these spaces, and from one space

to another. For example, function spaces tend to have several (though

usually not all) of the following types of structures, which are usually

related to each other by various compatibility conditions:

• Vector space structure. One can often add two func-

tions f, g in a function space V , and expect to get another

function f + g in that space V ; similarly, one can multiply

a function f in V by a scalar c and get another function

cf in V . Usually, these operations obey the axioms of a

vector space, though it is important to caution that the di-

mension of a function space is typically infinite. (In some

cases, the space of scalars is a more complicated ring than

the real or complex field, in which case we need the notion

of a module rather than a vector space, but we will not use

this more general notion in this course.) Virtually all of the

function spaces we shall encounter in this course will be vec-

tor spaces. Because the field of scalars is real or complex,

vector spaces also come with the notion of convexity, which

turns out to be crucial in many aspects of analysis. As a

consequence (and in marked contrast to algebra or number

theory), much of the theory in real analysis does not seem
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to extend to other fields of scalars (in particular, real anal-

ysis fails spectacularly in the finite characteristic setting).

Algebra structure. Sometimes (though not always), we also

wish to multiply two functions f , g in V and get another

function fg in V ; when combined with the vector space

structure and assuming some compatibility conditions (e.g.

the distributive law), this makes V an algebra. This mul-

tiplication operation is often just pointwise multiplication,

but there are other important multiplication operations on

function spaces too, such as2 convolution.

• Norm structure. We often want to distinguish “large”

functions in V from “small” ones, especially in analysis, in

which “small” terms in an expression are routinely discarded

or deemed to be acceptable errors. One way to do this is

to assign a magnitude or norm ‖f‖V to each function that

measures its size. Unlike the situation with scalars, where

there is basically a single notion of magnitude, functions

have a wide variety of useful notions of size, each measuring

a different aspect (or combination of aspects) of the function,

such as height, width, oscillation, regularity, decay, and so

forth. Typically, each such norm gives rise to a separate

function space (although sometimes it is useful to consider a

single function space with multiple norms on it). We usually

require the norm to be compatible with the vector space

structure (and algebra structure, if present), for instance by

demanding that the triangle inequality hold.

• Metric structure. We also want to tell whether two func-

tions f , g in a function space V are “near together” or “far

apart”. A typical way to do this is to impose a metric

d : V × V → R+ on the space V . If both a norm ‖‖V and a

vector space structure are available, there is an obvious way

to do this: define the distance between two functions f, g in

2One sometimes sees other algebraic structures than multiplication appear in
function spaces, such as commutators and derivations, but again we will not encounter
those in this course. Another common algebraic operation for function spaces is con-
jugation or adjoint, leading to the notion of a *-algebra.
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V to be3 d(f, g) := ‖f − g‖V . It is often important to know

if the vector space is complete4 with respect to the given

metric; this allows one to take limits of Cauchy sequences,

and (with a norm and vector space structure) sum abso-

lutely convergent series, as well as use some useful results

from point set topology such as the Baire category theorem,

see Section 1.7. All of these operations are of course vital in

analysis.

• Topological structure. It is often important to know

when a sequence (or, occasionally, nets) of functions fn in

V “converges” in some sense to a limit f (which, hopefully,

is still in V ); there are often many distinct modes of con-

vergence (e.g. pointwise convergence, uniform convergence,

etc.) that one wishes to carefully distinguish from each

other. Also, in order to apply various powerful topological

theorems (or to justify various formal operations involving

limits, suprema, etc.), it is important to know when certain

subsets of V enjoy key topological properties (most notably

compactness and connectedness), and to know which oper-

ations on V are continuous. For all of this, one needs a

topology on V . If one already has a metric, then one of

course has a topology generated by the open balls of that

metric; but there are many important topologies on function

spaces in analysis that do not arise from metrics. We also

often require the topology to be compatible with the other

structures on the function space; for instance, we usually

require the vector space operations of addition and scalar

multiplication to be continuous. In some cases, the topol-

ogy on V extends to some natural superspace W of more

general functions that contain V ; in such cases, it is often

3This will be the only type of metric on function spaces encountered in this course.
But there are some nonlinear function spaces of importance in nonlinear analysis (e.g.
spaces of maps from one manifold to another) which have no vector space structure or
norm, but still have a metric.

4Compactness would be an even better property than completeness to have, but
function spaces unfortunately tend be non-compact in various rather nasty ways, al-
though there are useful partial substitutes for compactness that are available, see e.g.
Section 1.6 of Poincaré’s Legacies, Vol. I.
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important to know whether V is closed in W , so that limits

of sequences in V stay in V .

• Functional structures. Since numbers are easier to un-

derstand and deal with than functions, it is not surprising

that we often study functions f in a function space V by

first applying some functional λ : V → C to V to identify

some key numerical quantity λ(f) associated to f . Norms

f 7→ ‖f‖V are of course one important example of a func-

tional; integration f 7→
∫
X
f dµ provides another; and eval-

uation f 7→ f(x) at a point x provides a third important

class. (Note, though, that while evaluation is the fundamen-

tal feature of a function in set theory, it is often a quite minor

operation in analysis; indeed, in many function spaces, eval-

uation is not even defined at all, for instance because the

functions in the space are only defined almost everywhere!)

An inner product 〈, 〉 on V (see below) also provides a large

family f 7→ 〈f, g〉 of useful functionals. It is of particular

interest to study functionals that are compatible with the

vector space structure (i.e. are linear) and with the topo-

logical structure (i.e. are continuous); this will give rise to

the important notion of duality on function spaces.

• Inner product structure. One often would like to pair

a function f in a function space V with another object g

(which is often, though not always, another function in the

same function space V ) and obtain a number 〈f, g〉, that typ-

ically measures the amount of “interaction” or “correlation”

between f and g. Typical examples include inner products

arising from integration, such as 〈f, g〉 :=
∫
X
fg dµ; integra-

tion itself can also be viewed as a pairing, 〈f, µ〉 :=
∫
X
f dµ.

Of course, we usually require such inner products to be com-

patible with the other structures present on the space (e.g.,

to be compatible with the vector space structure, we usu-

ally require the inner product to be bilinear or sesquilinear).

Inner products, when available, are incredibly useful in un-

derstanding the metric and norm geometry of a space, due
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to such fundamental facts as the Cauchy-Schwarz inequal-

ity and the parallelogram law. They also give rise to the

important notion of orthogonality between functions.

• Group actions. We often expect our function spaces to

enjoy various symmetries; we might wish to rotate, reflect,

translate, modulate, or dilate our functions and expect to

preserve most of the structure of the space when doing so.

In modern mathematics, symmetries are usually encoded

by group actions (or actions of other group-like objects,

such as semigroups or groupoids; one also often upgrades

groups to more structured objects such as Lie groups). As

usual, we typically require the group action to preserve the

other structures present on the space, e.g. one often restricts

attention to group actions that are linear (to preserve the

vector space structure), continuous (to preserve topological

structure), unitary (to preserve inner product structure),

isometric (to preserve metric structure), and so forth. Be-

sides giving us useful symmetries to spend, the presence of

such group actions allows one to apply the powerful tech-

niques of representation theory, Fourier analysis, and er-

godic theory. However, as this is a foundational real analysis

class, we will not discuss these important topics much here

(and in fact will not deal with group actions much at all).

• Order structure. In some cases, we want to utilise the

notion of a function f being “non-negative”, or “dominat-

ing” another function g. One might also want to take the

“max” or “supremum” of two or more functions in a function

space V , or split a function into “positive” and “negative”

components. Such order structures interact with the other

structures on a space in many useful ways (e.g. via the

Stone-Weierstrass theorem, Theorem 1.10.24). Much like

convexity, order structure is specific to the real line and is

another reason why much of real analysis breaks down over

other fields. (The complex plane is of course an extension
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of the real line and so is able to exploit the order struc-

ture of that line, usually by treating the real and imaginary

components separately.)

There are of course many ways to combine various flavours of

these structures together, and there are entire subfields of mathemat-

ics that are devoted to studying particularly common and useful cat-

egories of such combinations (e.g. topological vector spaces, normed

vector spaces, Banach spaces, Banach algebras, von Neumann alge-

bras, C∗ algebras, Frechet spaces, Hilbert spaces, group algebras,

etc.). The study of these sorts of spaces is known collectively as func-

tional analysis. We will study some (but certainly not all) of these

combinations in an abstract and general setting later in this course,

but to begin with we will focus on the Lp spaces, which are very good

model examples for many of the above general classes of spaces, and

also of importance in many applications of analysis (such as proba-

bility or PDE).

1.3.1. Lp spaces. In this section, (X,X , µ) will be a fixed mea-

sure space; notions such as “measurable”, “measure”, “almost every-

where”, etc. will always be with respect to this space, unless otherwise

specified. Similarly, unless otherwise specified, all subsets of X men-

tioned are restricted to be measurable, as are all scalar functions on

X.

For sake of concreteness, we shall select the field of scalars to

be the complex numbers C. The theory of real Lebesgue spaces is

virtually identical to that of complex Lebesgue spaces, and the former

can largely be deduced from the latter as a special case.

We already have the notion of an absolutely integrable function

on X, which is a function f : X → C such that
∫
X
|f | dµ is finite.

More generally, given any5 exponent 0 < p < ∞, we can define a

pth-power integrable function to be a function f : X → C such that∫
X
|f |p dµ is finite.

5Besides p = 1, the case of most interest is the case of square-integrable functions,
when p = 2. We will also extend this notion later to p =∞, which is also an important
special case.
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Remark 1.3.1. One can also extend these notions to functions that

take values in the extended complex plane C ∪ {∞}, but one easily

observes that pth power integrable functions must be finite almost ev-

erywhere, and so there is essentially no increase in generality afforded

by extending the range in this manner.

Following the “Lebesgue philosophy” that one should ignore what-

ever is going on on a set of measure zero, let us declare two measurable

functions to be equivalent if they agree almost everywhere. This is

easily checked to be an equivalence relation, which does not affect

the property of being pth-power integrable. Thus, we can define the

Lebesgue space Lp(X,X , µ) to be the space of pth-power integrable

functions, quotiented out by this equivalence relation. Thus, strictly

speaking, a typical element of Lp(X,X , µ) is not actually a specific

function f , but is instead an equivalence class [f ], consisting of all

functions equivalent to a single function f . However, we shall abuse

notation and speak loosely of a function f “belonging” to Lp(X,X , µ),

where it is understood that f is only defined up to equivalence, or

more imprecisely is “defined almost everywhere”. For the purposes

of integration, this equivalence is quite harmless, but this convention

does mean that we can no longer evaluate a function f in Lp(X,X , µ)

at a single point x if that point x has zero measure. It takes a little

bit of getting used to the idea of a function that cannot actually be

evaluated at any specific point, but with some practice you will find

that it will not cause6 any significant conceptual difficulty.

Exercise 1.3.1. If (X,X , µ) is a measure space, and X is the com-

pletion of X , show that the spaces Lp(X,X , µ) and Lp(X,X , µ) are

isomorphic using the obvious candidate for the isomorphism. Be-

cause of this, when dealing with Lp spaces, we will usually not be too

concerned with whether the underlying measure space is complete.

Remark 1.3.2. Depending on which of the three structures X,X , µ
of the measure space one wishes to emphasise, the space Lp(X,X , µ)

is often abbreviated Lp(X), Lp(X ), Lp(X,µ), or even just Lp. Since

6One could also take a more abstract view, dispensing with the set X altogether
and defining the Lebesgue space Lp(X , µ) on abstract measure spaces (X , µ), but
we will not do so here. Another way to think about elements of Lp is that they
are functions which are “unreliable” on an unknown set of measure zero, but remain
“reliable” almost everywhere.
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for this discussion the measure space (X,X , µ) will be fixed, we shall

usually use the Lp abbreviation in this section. When the space X is

discrete (i.e. X = 2X) and µ is counting measure, then Lp(X,X , µ)

is usually abbreviated `p(X) or just `p (and the almost everywhere

equivalence relation trivialises and can thus be completely ignored).

At present, the Lebesgue spaces Lp are just sets. We now begin

to place several of the structures mentioned in the introduction to

upgrade these sets to richer spaces.

We begin with vector space structure. Fix 0 < p < ∞, and

let f, g ∈ Lp be two pth-power integrable functions. From the crude

pointwise (or more precisely, “pointwise almost everywhere”) inequal-

ity

|f(x) + g(x)|p ≤ (2 max(|f(x)|, |g(x)|))p

= 2p max(|f(x)|p, |g(x)|p)
≤ 2p(|f(x)|p + |g(x)|p)

(1.16)

we see that the sum of two pth-power integrable functions is also

pth-power integrable. It is also easy to see that any scalar multiple

of a pth-power integrable function is also pth-power integrable. These

operations respect almost everywhere equivalence, and so Lp becomes

a (complex) vector space.

Next, we set up the norm structure. If f ∈ Lp, we define the Lp

norm ‖f‖Lp of f to be the number

(1.17) ‖f‖Lp := (

∫
X

|f |p dµ)1/p;

this is a finite non-negative number by definition of Lp; in particular,

we have the identity

(1.18) ‖fr‖Lp = ‖f‖rLpr

for all 0 < p, r <∞.

The Lp norm has the following three basic properties:

Lemma 1.3.3. Let 0 < p <∞ and f, g ∈ Lp.

(i) (Non-degeneracy) ‖f‖Lp = 0 if and only if f = 0.
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(ii) (Homogeneity) ‖cf‖Lp = |c|‖f‖Lp for all complex numbers

c.

(iii) ((Quasi-)triangle inequality) We have ‖f+g‖Lp ≤ C(‖f‖Lp+

‖g‖Lp) for some constant C depending on p. If p ≥ 1, then

we can take C = 1 (this fact is also known as Minkowski’s

inequality).

Proof. The claims (i), (ii) are obvious. (Note how important it is

that we equate functions that vanish almost everywhere in order to

get (i).) The quasi-triangle inequality follows from a variant of the

estimates in (1.16) and is left as an exercise. For the triangle in-

equality, we have to be more efficient than the crude estimate (1.16).

By the non-degeneracy property we may take ‖f‖Lp and ‖g‖Lp to be

non-zero. Using the homogeneity, we can normalise ‖f‖Lp +‖g‖Lp to

equal 1, thus (by homogeneity again) we can write f = (1− θ)F and

g = θG for some 0 < θ < 1 and F,G ∈ Lp with ‖F‖Lp = ‖G‖Lp = 1.

Our task is now to show that

(1.19)

∫
X

|(1− θ)F (x) + θG(x)|p dµ ≤ 1.

But observe that for 1 ≤ p < ∞, the function x 7→ |x|p is convex on

C, and in particular that

(1.20) |(1− θ)F (x) + θG(x)|p ≤ (1− θ)|F (x)|p + θ|G(x)|p.

(If one wishes, one can use the complex triangle inequality to first

reduce to the case when F , G are non-negative, in which case one

only needs convexity on [0,+∞) rather than all of C.) The claim

(1.19) then follows from (1.20) and the normalisations of F , G. �

Exercise 1.3.2. Let 0 < p ≤ 1 and f, g ∈ Lp.

(i) Establish the variant ‖f + g‖pLp ≤ ‖f‖
p
Lp + ‖g‖pLp of the

triangle inequality.

(ii) If furthermore f and g are non-negative (almost everywhere),

establish also the reverse triangle inequality ‖f + g‖Lp ≥
‖f‖Lp + ‖g‖Lp .

(iii) Show that the best constant C in the quasi-triangle inequal-

ity is 2
1
p−1. In particular, the triangle inequality is false for

p < 1.
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(iv) Now suppose instead that 1 < p < ∞ or 0 < p < 1. If

f, g ∈ Lp are such that ‖f+g‖Lp = ‖f‖Lp+‖g‖Lp , show that

one of the functions f , g is a non-negative scalar multiple

of the other (up to equivalence, of course). What happens

when p = 1?

A vector space V with a function ‖‖ : V → [0,+∞) obeying

the non-degeneracy, homogeneity, and (quasi-)triangle inequality is

known as a (quasi-)normed vector space, and the function f 7→ ‖f‖ is

then known as a (quasi-)norm; thus Lp is a normed vector space for

1 ≤ p < ∞ but only a quasi-normed vector space for 0 < p < 1. A

function ‖‖ : V → [0,+∞) obeying the homogeneity and triangle in-

equality, but not necessarily the non-degeneracy property, is known as

a seminorm; thus for instance the Lp norms for 1 ≤ p <∞ would have

been seminorms if we did not equate functions that agreed almost ev-

erywhere. (Conversely, given a seminormed vector space (V, ‖‖), one

can convert it into a normed vector space by quotienting out the sub-

space {f ∈ V : ‖f‖ = 0}; we leave the details as an exercise for the

reader.)

Exercise 1.3.3. Let ‖‖ : V → [0,+∞) be a function on a vector

space which obeys the non-degeneracy and homogeneity properties.

Show that ‖‖ is a norm if and only if the closed unit ball {x : ‖x‖ ≤ 1}
is convex; show that the same equivalence also holds for the open

unit ball. This fact emphasises the geometric nature of the triangle

inequality.

Exercise 1.3.4. If f ∈ Lp for some 0 < p < ∞, show that the

support {x ∈ X : f(x) 6= 0} of f (which is defined only up to sets of

measure zero) is a σ-finite set. (Because of this, we can often reduce

from the non-σ-finite case to the σ-finite case in many, though not

all, questions concerning Lp spaces.)

We now are able to define Lp norms and spaces in the limit p =∞.

We say that a function f : X → C is essentially bounded if there exists

an M such that |f(x)| ≤M for almost every x ∈ X, and define ‖f‖L∞
to be the least M that serves as such a bound. We let L∞ denote the

space of essentially bounded functions, quotiented out by equivalence,

and given the norm ‖ · ‖L∞ . It is not hard to see that this is also a
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normed vector space. Observe that a sequence fn ∈ L∞ converges to

a limit f ∈ L∞ if and only if fn converges essentially uniformly to

f , i.e. it converges uniformly to f outside of a set of measure zero.

(Compare with Egorov’s theorem (Theorem 1.1.21), which equates

pointwise convergence with uniform convergence outside of a set of

arbitrarily small measure.)

Now we explain why we call this norm the L∞ norm:

Example 1.3.4. Let f be a (generalised) step function, thus f =

A1E for some amplitude A > 0 and some set E; let us assume that E

has positive finite measure. Then ‖f‖Lp = Aµ(E)1/p for all 0 < p <

∞, and also ‖f‖L∞ = A. Thus in this case, at least, the L∞ norm is

the limit of the Lp norms. This example illustrates also that the Lp

norms behave like combinations of the “height” A of a function, and

the “width” µ(E) of such a function, though of course the concepts

of height and width are not formally defined for functions that are

not step functions.

Exercise 1.3.5. • If f ∈ L∞ ∩ Lp0 for some 0 < p0 < ∞,

show that ‖f‖Lp → ‖f‖L∞ as p → ∞. (Hint : use the

monotone convergence theorem, Theorem 1.1.21.)

• If f 6∈ L∞, show that ‖f‖Lp →∞ as p→∞.

Once one has a vector space structure and a (quasi-)norm struc-

ture, we immediately get a (quasi-)metric structure:

Exercise 1.3.6. Let (V, ‖‖) be a normed vector space. Show that

the function d : V × V → [0,+∞) defined by d(f, g) := ‖f − g‖
is a metric on V which is translation-invariant (thus d(f + h, g +

h) = d(f, g) for all f, g ∈ V ) and homogeneous (thus d(cf, cg) =

|c|d(f, g) for all f, g ∈ V and scalars c). Conversely, show that every

translation-invariant homogeneous metric on V arises from precisely

one norm in this manner. Establish a similar claim relating quasi-

norms with quasi-metrics (which are defined as metrics, but with the

triangle inequality replaced by a quasi-triangle inequality), or between

seminorms and semimetrics (which are defined as metrics, but where

distinct points are allowed to have a zero separation; these are also

known as pseudometrics).
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The (quasi-)metric structure in turn generates a topological struc-

ture in the usual manner using the (quasi-)metric balls as a base for

the topology. In particular, a sequence of functions fn ∈ Lp converges

to a limit f ∈ Lp if ‖fn − f‖Lp → 0 as n→∞. We refer to this type

of convergence as convergence in Lp norm, or strong convergence in

Lp (we will discuss other modes of convergence in later lectures).

As is usual in (quasi-)metric spaces (or more generally for Hausdorff

spaces), the limit, if it exists, is unique. (This is however not the

case for topological structures induced by seminorms or semimetrics,

though we can solve this problem by quotienting out the degenerate

elements as discussed earlier.)

Recall that any series
∑∞
n=1 an of scalars is convergent if it is

absolutely convergent (i.e. if
∑∞
n=1 |an| <∞. This fact turns out to

be closely related to the fact that the field of scalars C is complete.

This can be seen from the following result:

Exercise 1.3.7. Let (V, ‖‖) be a normed vector space (and hence

also a metric space and a topological space). Show that the following

are equivalent:

• V is a complete metric space (i.e. every Cauchy sequence

converges).

• Every sequence fn ∈ V which is absolutely convergent (i.e.∑∞
n=1 ‖fn‖ <∞), is also conditionally convergent (i.e.

∑N
n=1 fn

converges to a limit as N →∞.

Remark 1.3.5. The situation is more complicated for complete quasi-

normed vector spaces; not every absolutely convergent series is con-

ditionally convergent. On the other hand, if ‖fn‖ decays faster than

a sufficiently large negative power of n, one recovers conditional con-

vergence; see [Ta].

Remark 1.3.6. Let X be a topological space, and let BC(X) be the

space of bounded continuous functions on X; this is a vector space.

We can place the uniform norm ‖f‖u := supx∈X |f(x)| on this space;

this makes BC(X) into a normed vector space. It is not hard to verify

that this space is complete, and so every absolutely convergent series

in BC(X) is conditionally convergent. This fact is better known as

the Weierstrass M -test.
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A space obeying the properties in Exercise 1.3.5 (i.e. a complete

normed vector space) is known as a Banach space. We will study

Banach spaces in more detail later in this course. For now, we give

one of the fundamental examples of Banach spaces.

Proposition 1.3.7. Lp is a Banach space for every 1 ≤ p ≤ ∞.

Proof. By Exercise 1.3.7, it suffices to show that any series
∑∞
n=1 fn

of functions in Lp which is absolutely convergent, is also conditionally

convergent. This is easy in the case p =∞ and is left as an exercise.

In the case 1 ≤ p < ∞, we write M :=
∑∞
n=1 ‖fn‖Lp , which is a

finite quantity by hypothesis. By the triangle inequality, we have

‖
∑N
n=1 |fn|‖Lp ≤ M for all N . By monotone convergence (Theorem

1.1.21), we conclude ‖
∑∞
n=1 |fn|‖Lp ≤M . In particular,

∑∞
n=1 fn(x)

is absolutely convergent for almost every x. Write the limit of this

series as F (x). By dominated convergence (Theorem 1.1.21), we see

that
∑N
n=1 fn(x) converges in Lp norm to F , and we are done. �

An important fact is that functions in Lp can be approximated

by simple functions:

Proposition 1.3.8. If 0 < p <∞, then the space of simple functions

with finite measure support is a dense subspace of Lp.

Remark 1.3.9. The concept of a non-trivial dense subspace is one

which only comes up in infinite dimensions, and is hard to visualise

directly. Very roughly speaking, the infinite number of degrees of

freedom in an infinite dimensional space gives a subspace an infinite

number of “opportunities” to come as close as one desires to any given

point in that space, which is what allows such spaces to be dense.

Proof. The only non-trivial thing to show is the density. An appli-

cation of the monotone convergence theorem (Theorem 1.1.21) shows

that the space of bounded Lp functions are dense in Lp. Another

application of monotone convergence (and Exercise 1.3.4) then shows

that the space bounded Lp functions of finite measure support are

dense in the space of bounded Lp functions. Finally, by discretising

the range of bounded Lp functions, we see that the space of simple

functions with finite measure support is dense in the space of bounded

Lp functions with finite support. �
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Remark 1.3.10. Since not every function in Lp is a simple function

with finite measure support, we thus see that the space of simple

functions with finite measure support with the Lp norm is an example

of a normed vector space which is not complete.

Exercise 1.3.8. Show that the space of simple functions (not neces-

sarily with finite measure support) is a dense subspace of L∞. Is the

same true if one reinstates the finite measure support restriction?

Exercise 1.3.9. Suppose that µ is σ-finite and X is separable (i.e.

countably generated). Show that Lp is separable (i.e. has a countable

dense subset) for all 1 ≤ p < ∞. Give a counterexample that shows

that L∞ need not be separable. (Hint : try using counting measure.)

Next, we turn to algebra properties of Lp spaces. The key fact

here is

Proposition 1.3.11 (Hölder’s inequality). Let f ∈ Lp and g ∈ Lq
for some 0 < p, q ≤ ∞. Then fg ∈ Lr and ‖fg‖Lr ≤ ‖f‖Lp‖g‖Lq ,

where the exponent r is defined by the formula 1
r = 1

p + 1
q .

Proof. This will be a variant of the proof of the triangle inequality

in Lemma 1.3.3, again relying ultimately on convexity. The claim is

easy when p = ∞ or q = ∞ and is left as an exercise for the reader

in this case, so we assume p, q <∞. Raising f and g to the power r

using (1.17) we may assume r = 1, which makes 1 < p, q < ∞ dual

exponents in the sense that 1
p + 1

q = 1. The claim is obvious if either

‖f‖Lp or ‖g‖Lq are zero, so we may assume they are non-zero; by

homogeneity we may then normalise ‖f‖Lp = ‖g‖Lq = 1. Our task is

now to show that

(1.21)

∫
X

|fg| dµ ≤ 1.

Here, we use the convexity of the exponential function t 7→ et on

[0,+∞), which implies the convexity of the function t 7→ |f(x)|p(1−t)|g(x)|qt
for t ∈ [0, 1] for any x. In particular we have

(1.22) |f(x)g(x)| ≤ 1

p
|f(x)|p +

1

q
|g(x)|q

and the claim (1.21) follows from the normalisations on p, q, f , g. �
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Remark 1.3.12. For a different proof of this inequality (based on

the tensor power trick), see Section 1.9 of Structure and Randomness.

Remark 1.3.13. One can also use Hölder’s inequality to prove the

triangle inequality for Lp, 1 ≤ p < ∞ (i.e. Minkowski’s inequality).

From the complex triangle inequality |f + g| ≤ |f |+ |g|, it suffices to

check the case when f , g are non-negative. In this case we have the

identity

(1.23) ‖f + g‖pLp = ‖f |f + g|p−1‖L1 + ‖g|f + g|p−1‖L1

while Hölder’s inequality gives ‖f |f + g|p−1‖L1 ≤ ‖f‖Lp‖f + g‖p−1
Lp

and ‖g|f + g|p−1‖L1 ≤ ‖g‖Lp‖f + g‖p−1
Lp . The claim then follows

from some algebra (and checking the degenerate cases separately, e.g.

when ‖f + g‖Lp = 0).

Remark 1.3.14. The proofs of Hölder’s inequality and Minkowski’s

inequality both relied on convexity of various functions in C or [0,+∞).

One way to emphasise this is to deduce both inequalities from Jensen’s

inequality, which is an inequality which manifestly exploits this con-

vexity. We will not take this approach here, but see for instance

[LiLo2000] for a discussion.

Example 1.3.15. It is instructive to test Hölder’s inequality (and

also Exercises 1.3.10-1.3.14 below) in the special case when f , g are

generalised step functions, say f = A1E and g = B1F with A, B

non-zero. The inequality then simplifies to

(1.24) µ(E ∩ F )1/r ≤ µ(E)1/pµ(F )1/q

which can be easily deduced from the hypothesis 1
p + 1

q = 1
r and the

trivial inequalities µ(E ∩F ) ≤ µ(E) and µ(E ∩F ) ≤ µ(F ). One then

easily sees (when p, q are finite) that equality in (1.24) only holds

if µ(E ∩ F ) = µ(E) = µ(F ), or in other words if E and F agree

almost everywhere. Note the above computations also explain why

the condition 1
p + 1

q = 1
r is necessary.

Exercise 1.3.10. Let 0 < p, q < ∞, and let f ∈ Lp, g ∈ Lq be such

that Hölder’s inequality is obeyed with equality. Show that of the

functions fp, gq, one of them is a scalar multiple of the other (up to

equivalence, of course). What happens if p or q is infinite?
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An important corollary of Hölder’s inequality is the Cauchy-

Schwarz inequality

(1.25) |
∫
X

f(x)g(x) dµ| ≤ ‖f‖L2‖g‖L2

which can of course be proven by many other means.

Exercise 1.3.11. If f ∈ Lp for some 0 < p ≤ ∞, and is also sup-

ported on a set E of finite measure, show that f ∈ Lq for all 0 < q ≤ p,
with ‖f‖Lq ≤ µ(E)

1
q−

1
p ‖f‖Lp . When does equality occur?

Exercise 1.3.12. If f ∈ Lp for some 0 < p < ∞, and every set of

positive measure in X has measure at least m, show that f ∈ Lq

for all p < q ≤ ∞, with ‖f‖Lq ≤ m
1
q−

1
p ‖f‖Lp . When does equality

occur? (This result is especially useful for the `p spaces, in which µ

is counting measure and m can be taken to be 1.)

Exercise 1.3.13. If f ∈ Lp0 ∩ Lp1 for some 0 < p0 < p1 ≤ ∞, show

that f ∈ Lp for all p0 ≤ p ≤ p1, and that ‖f‖Lp ≤ ‖f‖1−θLp0 ‖f‖θLp1 ,

where 0 < θ < 1 is such that 1
p = 1−θ

p0
+ θ

p1
. Another way of saying

this is that the function 1
p 7→ log ‖f‖Lp is convex. When does equal-

ity occur? This convexity is a prototypical example of interpolation,

about which we shall say more in Section 1.11.

Exercise 1.3.14. If f ∈ Lp0 for some 0 < p0 ≤ ∞, and its support

E := {x ∈ X : f(x) 6= 0} has finite measure, show that f ∈ Lp for all

0 < p < p0, and that ‖f‖pLp → µ(E) as p → 0. (Because of this, the

measure of the support of f is sometimes known as the L0 norm of

f , or more precisely the L0 norm raised to the power 0.)

1.3.2. Linear functionals on Lp. Given an exponent 1 ≤ p ≤ ∞,

define the dual exponent 1 ≤ p′ ≤ ∞ by the formula 1
p + 1

p′ = 1 (thus

p′ = p/(p−1) for 1 < p <∞, while 1 and∞ are duals of each other).

From Hölder’s inequality, we see that for any g ∈ Lp′ , the functional

λg : Lp → C defined by

(1.26) λg(f) :=

∫
X

fg dµ

is well-defined on Lp; the functional is also clearly linear. Further-

more, Hölder’s inequality also tells us that this functional is continu-

ous.
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A deep and important fact about Lp spaces is that, in most cases,

the converse is true: the recipe (1.26) is the only way to create con-

tinuous linear functionals on Lp.

Theorem 1.3.16 (Dual of Lp). Let 1 ≤ p < ∞, and assume µ is

σ-finite. Let λ : Lp → C be a continuous linear functional. Then

there exists a unique g ∈ Lp′ such that λ = λg.

This result should be compared with the Radon-Nikodym theo-

rem (Corollary 1.2.5). Both theorems start with an abstract function

µ : X → R or λ : Lp → C, and create a function out of it. Indeed,

we shall see shortly that the two theorems are essentially equivalent

to each other. We will develop Theorem 1.3.16 further in Section 1.5,

once we introduce the notion of a dual space.

To prove Theorem 1.3.16, we first need a simple and useful lemma:

Lemma 1.3.17 (Continuity is equivalent to boundedness for linear

operators). Let T : X → Y be a linear transformation from one

normed vector space (X, ‖‖X) to another (Y, ‖‖Y ). Then the following

are equivalent:

(i) T is continuous.

(ii) T is continuous at 0.

(iii) There exists a constant C such that ‖Tx‖Y ≤ C‖x‖X for all

x ∈ X.

Proof. It is clear that (i) implies (ii), and that (iii) implies (ii). Next,

from linearity we have Tx = Tx0 +T (x−x0) for any x, x0 ∈ X, which

(together with the continuity of addition, which follows from the tri-

angle inequality) shows that continuity of T at 0 implies continuity

of T at any x0, so that (ii) implies (i). The only remaining task is

to show that (i) implies (iii). By continuity, the inverse image of the

unit ball in Y must be an open neighbourhood of 0 in X, thus there

exists some radius r > 0 such that ‖Tx‖Y < 1 whenever ‖x‖X < r.

The claim then follows (with C := 1/r) by homogeneity. (Alterna-

tively, one can deduce (iii) from (ii) by contradiction. If (iii) failed,

then there exists a sequence xn of non-zero elements of X such that

‖Txn‖Y /‖xn‖X goes to infinity. By homogeneity, we can arrange
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matters so that ‖xn‖X goes to zero, but ‖Txn‖Y stays away from

zero, thus contradicting continuity at 0.) �

Proof of Theorem 1.3.16. The uniqueness claim is similar to the

uniqueness claim in the Radon-Nikodym theorem (Exercise 1.2.2) and

is left as an exercise to the reader; the hard part is establishing exis-

tence.

Let us first consider the case when µ is finite. The linear func-

tional λ : Lp → C induces a functional ν : X → C on sets E by the

formula

(1.27) ν(E) := λ(1E).

Since λ is linear, ν is finitely additive (and sends the empty set to

zero). Also, if E1, E2, . . . are a sequence of disjoint sets, then 1⋃N
n=1 En

converges in Lp to 1⋃∞
n=1 En

as n→∞ (by the dominated convergence

theorem and the finiteness of µ), and thus (by continuity of λ and fi-

nite additivity of ν), ν is countably additive as well. Finally, from

(1.27) we also see that ν(E) = 0 whenever µ(E) = 0, thus ν is ab-

solutely continuous with respect to µ. Applying the Radon-Nikodym

theorem (Corollary 1.2.5) to both the real and imaginary components

of ν, we conclude that ν = µg for some g ∈ L1; thus by (1.27) we

have

(1.28) λ(1E) = λg(1E)

for all measurable E. By linearity, this implies that λ and λg agree

on simple functions. Taking uniform limits (using Exercise 1.3.8) and

using continuity (and the finite measure of µ) we conclude that λ and

λg agree on all bounded functions. Taking monotone limits (working

on the positive and negative supports of the real and imaginary parts

of g separately) we conclude that λ and λg agree on all functions in

Lp, and in particular that
∫
X
fg dµ is absolutely convergent for all

f ∈ Lp.
To finish the theorem in this case, we need to establish that g lies

in Lp
′
. By taking real and imaginary parts we may assume without

loss of generality that g is real; by splitting into the regions where g

is positive and negative we may assume that g is non-negative.



44 1. Real analysis

We already know that λg = λ is a continuous functional from Lp

to C. By Lemma 1.3.17, this implies a bound of the form |λg(f)| ≤
C‖f‖Lp for some C > 0.

Suppose first that p > 1. Heuristically, we would like to test this

inequality with f := gp
′−1, since we formally have λg(f) = ‖g‖p

′

Lp′

and ‖f‖Lp = ‖g‖p
′−1

Lp′
. (Not coincidentally, this is also the choice

that would make Hölder’s inequality an equality, see Exercise 1.3.10.)

Cancelling the ‖g‖Lp′ factors would then give the desired finiteness

of ‖g‖Lp′ .
We can’t quite make that argument work, because it is circu-

lar: it assumes ‖g‖Lp′ is finite in order to show that ‖g‖Lp′ is fi-

nite! But this can be easily remedied. We test the inequality with

fN := min(g,N)p
′−1 for some large N ; this lies in Lp. We have

λg(f) ≥ ‖min(g,N)‖p
′

Lp′
and ‖fN‖Lp = ‖min(g,N)‖p

′−1

Lp′
, and hence

‖min(g,N)‖Lp′ ≤ C for all N . Letting N go to infinity and using

monotone convergence (Theorem 1.1.21), we obtain the claim.

In the p = 1 case, we instead use f := 1g>N as the test functions,

to conclude that g is bounded almost everywhere by N ; we leave the

details to the reader.

This handles the case when µ is finite. When µ is σ-finite, we can

write X as the union of an increasing sequence En of sets of finite

measure. On each such set, the above arguments let us write λ = λgn
for some gn ∈ Lp

′
(En). The uniqueness arguments tell us that the

gn are all compatible with each other, in particular if n < m, then

gn and gm agree on En. Thus all the gn are in fact restrictions of a

single function g to En. The previous arguments also tell us that the

Lp
′

norm of gn is bounded by the same constant C uniformly in n, so

by monotone convergence (Theorem 1.1.21), g has bounded Lp
′

norm

also, and we are done. �

Remark 1.3.18. When 1 < p <∞, the hypothesis that µ is σ-finite

can be dropped, but not when p = 1; see e.g. [Fo2000, Section 6.2]

for further discussion. In these lectures, though, we will be content

with working in the σ-finite setting. On the other hand, the claim

fails when p =∞ (except when X is finite); we will see this in Section

1.5, when we discuss the Hahn-Banach theorem.
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Remark 1.3.19. We have seen how the Lebesgue-Radon-Nikodym

theorem can be used to establish Theorem 1.3.16. The converse is

also true: Theorem 1.3.16 can be used to deduce the Lebesgue-Radon-

Nikodym theorem (a fact essentially observed by von Neumann). For

simplicity, let us restrict attention to the unsigned finite case, thus

µ and m are unsigned and finite. This implies that the sum µ + m

is also unsigned and finite. We observe that the linear functional

λ : f 7→
∫
X
f dµ is continuous on L1(µ + m), hence by Theorem

1.3.16, there must exist a function g ∈ L∞(µ+m) such that

(1.29)

∫
X

f dµ =

∫
X

fg d(µ+m)

for all f ∈ L1(µ+m). It is easy to see that g must be real and non-

negative, and also at most 1 almost everywhere. If E is the set where

m = 1, we see by setting f = 1E in (1.29) that E has m-measure

zero, and so µ �E is singular. Outside of E, we see from (1.29) and

some rearrangement that

(1.30)

∫
X\E

(1− g)f dµ =

∫
X

fg dm

and one then easily verifies that µ agrees with m g
1−g

outside of E′.

This gives the desired Lebesgue-Radon-Nikodym decomposition µ =

m g
1−g

+ µ �E .

Remark 1.3.20. The argument used in Remark 1.3.19 also shows

that the Radon-Nikodym theorem implies the Lebesgue-Radon-Nikodym

theorem.

Remark 1.3.21. One can given an alternate proof of Theorem 1.3.16,

which relies on the geometry (and in particular, the uniform convex-

ity) of Lp spaces rather than on the Radon-Nikodym theorem, and

can thus be viewed as giving an independent proof of that theorem;

see Exercise 1.4.14.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/01/09.

Thanks to Xiaochuan Li for corrections.
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1.4. Hilbert spaces

In the next few lectures, we will be studying four major classes of

function spaces. In decreasing order of generality, these classes are

the topological vector spaces, the normed vector spaces, the Banach

spaces, and the Hilbert spaces. In order to motivate the discussion

of the more general classes of spaces, we will first focus on the most

special class - that of (real and complex) Hilbert spaces. These spaces

can be viewed as generalisations of (real and complex) Euclidean

spaces such as Rn and Cn to infinite-dimensional settings, and in-

deed much of one’s Euclidean geometry intuition concerning lengths,

angles, orthogonality, subspaces, etc. will transfer readily to arbitrary

Hilbert spaces; in contrast, this intuition is not always accurate in the

more general vector spaces mentioned above. In addition to Euclidean

spaces, another fundamental example7 of Hilbert spaces comes from

the Lebesgue spaces L2(X,X , µ) of a measure space (X,X , µ).

Hilbert spaces are the natural abstract framework in which to

study two important (and closely related) concepts: orthogonality

and unitarity, allowing us to generalise familiar concepts and facts

from Euclidean geometry such as the Cartesian coordinate system,

rotations and reflections, and the Pythagorean theorem to Hilbert

spaces. (For instance, the Fourier transform (Section 1.12) is a uni-

tary transformation and can thus be viewed as a kind of generalised

rotation.) Furthermore, the Hodge duality on Euclidean spaces has a

partial analogue for Hilbert spaces, namely the Riesz representation

theorem for Hilbert spaces, which makes the theory of duality and

adjoints for Hilbert spaces especially simple (when compared with

the more subtle theory of duality for, say, Banach spaces; see Section

1.5).

These notes are only the most basic introduction to the theory

of Hilbert spaces. In particular, the theory of linear transformations

7There are of course many other Hilbert spaces of importance in complex analysis,
harmonic analysis, and PDE, such as Hardy spaces H2, Sobolev spaces Hs = W s,2,
and the space HS of Hilbert-Schmidt operators; see for instance Section 1.14 for a
discussion of Sobolev spaces. Complex Hilbert spaces also play a fundamental role in
the foundations of quantum mechanics, being the natural space to hold all the possible
states of a quantum system (possibly after projectivising the Hilbert space), but we
will not discuss this subject here.
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between two Hilbert spaces, which is perhaps the most important

aspect of the subject, is not covered much at all here.

1.4.1. Inner product spaces. The Euclidean norm

(1.31) |(x1, . . . , xn)| :=
√
x2

1 + . . .+ x2
n

in real Euclidean space Rn can be expressed in terms of the dot

product · : Rn ×Rn → R, defined as

(1.32) (x1, . . . , xn) · (y1, . . . , yn) := x1y1 + . . .+ xnyn

by the well-known formula

(1.33) |x| = (x · x)1/2.

In particular, we have the positivity property

(1.34) x · x ≥ 0

with equality if and only if x = 0. One reason why it is more advan-

tageous to work with the dot product than the norm is that while the

norm function is only sublinear, the dot product is bilinear, thus

(1.35) (cx+dy)·z = c(x·z)+d(y ·z); z ·(cx+dy) = c(z ·x)+d(z ·y)

for all vectors x, y and scalars c, d, and also symmetric,

(1.36) x · y = y · x.

These properties make the inner product easier to manipulate

algebraically than the norm.

The above discussion was for the real vector space Rn, but one

can develop analogous statements for the complex vector space Cn,

in which the norm

(1.37) ‖(z1, . . . , zn)‖ :=
√
|z1|2 + . . .+ |zn|2

can be represented in terms of the complex inner product 〈, 〉 : Cn ×
Cn → C defined by the formula

(1.38) (z1, . . . , zn) · (w1, . . . , wn) := z1w1 + . . .+ znwn

by the analogue of (1.33), namely

(1.39) ‖x‖ = (〈x, x〉)1/2.
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In particular, as before with (1.34), we have the positivity property

(1.40) 〈x, x〉 ≥ 0,

with equality if and only if x = 0. The bilinearity property (1.35) is

modified to the sesquilinearity property

(1.41) 〈cx+dy, z〉 = c〈x, z〉+d〈y, z〉; 〈z, cx+dy〉 = c〈z, x〉+d〈z, y〉

while the symmetry property (1.36) needs to be replaced with

(1.42) 〈x, y〉 = 〈y, x〉

in order to be compatible with sesquilinearity.

We can formalise all these properties axiomatically as follows.

Definition 1.4.1 (Inner product space). A complex inner product

space (V, 〈, 〉) is a complex vector space V , together with an inner

product 〈, 〉 : V × V → C which is sesquilinear (i.e. (1.41) holds for

all x, y ∈ V and c, d ∈ C) and symmetric in the sesquilinear sense

(i.e. (1.42) holds for all x, y ∈ V ), and obeys the positivity property

(1.40) for all x ∈ V , with equality if and only if x = 0. We will usually

abbreviate (V, 〈, 〉) as V .

A real inner product space is defined similarly, but with all refer-

ences to C replaced by R (and all references to complex conjugation

dropped).

Example 1.4.2. Rn with the standard dot product (1.32) is a real

inner product space, and Cn with the complex inner product (1.38)

is a complex inner product space.

Example 1.4.3. If (X,X , µ) is a measure space, then the complex L2

space L2(X,X , µ) = L2(X,X , µ; C) with the complex inner product

(1.43) 〈f, g〉 :=

∫
X

fg dµ

(which is well defined, by the Cauchy-Schwarz inequality) is easily

verified to be a complex inner product space, and similarly for the

real L2 space (with the complex conjugate signs dropped, of course.

Note that the finite dimensional examples Rn,Cn can be viewed as

the special case of the L2 examples in which X is {1, . . . , n} with the

discrete σ-algebra and counting measure.
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Example 1.4.4. Any subspace of a (real or complex) inner product

space is again a (real or complex) inner product space, simply by

restricting the inner product to the subspace.

Example 1.4.5. Also, any real inner product space V can be com-

plexified into the complex inner product space VC, defined as the

space of formal combinations x + iy of vectors x, y ∈ V (with the

obvious complex vector space structure), and with inner product

(1.44) 〈a+ ib, c+ id〉 := 〈a, c〉+ i〈b, c〉 − i〈a, d〉+ 〈b, d〉.

Example 1.4.6. Fix a probability space (X,X , µ). The space of

square-integrable real-valued random variables of mean zero is an in-

ner product space if one uses covariance as the inner product. (What

goes wrong if one drops the mean zero assumption?)

Given a (real or complex) inner product space V , we can define

the norm ‖x‖ of any vector x ∈ V by the formula (1.39), which is

well defined thanks to the positivity property; in the case of the L2

spaces, this norm of course corresponds to the usual L2 norm. We

have the following basic facts:

Lemma 1.4.7. Let V be a real or complex inner product space.

(i) (Cauchy-Schwarz inequality) For any x, y ∈ V , we have

|〈x, y〉| ≤ ‖x‖‖y‖.
(ii) The function x 7→ ‖x‖ is a norm on V . (Thus every inner

product space is a normed vector space.)

Proof. We shall just verify the complex case, as the real case is

similar (and slightly easier). The positivity property tells us that

the quadratic form 〈ax+ by, ax+ by〉 is non-negative for all complex

numbers a, b. Using sesquilinearity and symmetry, we can expand

this form as

(1.45) |a|2‖x‖2 + 2 Re(ab〈x, y〉) + |b|‖y‖2.

Optimising in a, b (see also Section 1.10 of Structure and Random-

ness) we obtain the Cauchy-Schwarz inequality. To verify the norm

property, the only non-trivial verification is that of the triangle in-

equality ‖x+y‖ ≤ ‖x‖+‖y‖. But on expanding ‖x+y‖2 = 〈x+y, x+y〉
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we see that

(1.46) ‖x+ y‖2 = ‖x‖2 + 2 Re(〈x, y〉) + ‖y‖2

and the claim then follows from the Cauchy-Schwarz inequality. �

Observe from the Cauchy-Schwarz inequality that the inner prod-

uct 〈, 〉 : H ×H → C is continuous.

Exercise 1.4.1. Let T : V → W be a linear map from one (real or

complex) inner product space to another. Show that T preserves the

inner product structure (i.e. 〈Tx, Ty〉 = 〈x, y〉 for all x, y ∈ V ) if and

only if T is an isometry (i.e. ‖Tx‖ = ‖x‖ for all x ∈ V ). (Hint : in

the real case, express 〈x, y〉 in terms of ‖x+ y‖2 and ‖x− y‖2. In the

complex case, use x+ y, x− y, x+ iy, x− iy instead of x+ y, x− y.)

Inspired by the above exercise, we say that two inner product

spaces are isomorphic if there exists an invertible isometry from one

space to the other; such invertible isometries are known as isomor-

phisms.

Exercise 1.4.2. Let V be a real or complex inner product space. If

x1, . . . , xn are a finite collection of vectors in V , show that the Gram

matrix (〈xi, xj〉)1≤i,j≤n is Hermitian and positive semi-definite, and

is positive definite if and only if the x1, . . . , xn are linearly indepen-

dent. Conversely, given a Hermitian positive semi-definite matrix

(aij)1≤i,j≤n with real (resp. complex) entries, show that there exists

a real (resp. complex) inner product space V and vectors x1, . . . , xn
such that 〈xi, xj〉 = aij for all 1 ≤ i, j ≤ n.

In analogy with the Euclidean case, we say that two vectors x,

y in a (real or complex) vector space are orthogonal if 〈x, y〉 = 0.

(With this convention, we see in particular that 0 is orthogonal to

every vector, and is the only vector with this property.)

Exercise 1.4.3 (Pythagorean theorem). Let V be a real or complex

inner product space. If x1, . . . , xn are a finite set of pairwise orthogo-

nal vectors, then ‖x1 + . . .+xn‖2 = ‖x1‖2 + . . .+‖xn‖2. In particular,

we see that ‖x1 + x2‖ ≥ ‖x1‖ whenever x2 is orthogonal to x1.
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A (possibly infinite) collection (eα)α∈A of vectors in a (real or

complex) inner product space is said to be orthonormal if they are

pairwise orthogonal and all of unit length.

Exercise 1.4.4. Let (eα)α∈A be an orthonormal system of vectors

in a real or complex inner product space. Show that this system is

(algebraically) linearly independent (thus any non-trivial finite linear

combination of vectors in this system is non-zero). If x lies in the

algebraic span of this system (i.e. it is a finite linear combination of

vectors in the system), establish the inversion formula

(1.47) x =
∑
α∈A
〈x, eα〉eα

(with only finitely many of the terms non-zero) and the (finite) Plancherel

formula

(1.48) ‖x‖2 =
∑
α∈A
|〈x, eα〉|2.

Exercise 1.4.5 (Gram-Schmidt theorem). Let e1, . . . , en be a finite

orthonormal system in a real or complex inner product space, and let

v be a vector not in the span of e1, . . . , en. Show that there exists

a vector en+1 with span(e1, . . . , en, en+1) = span(e1, . . . , en, v) such

that e1, . . . , en+1 is an orthonormal system. Conclude that an n-

dimensional real or complex inner product space is isomorphic to Rn

or Cn respectively. Thus, any statement about inner product spaces

which only involves a finite-dimensional subspace of that space can

be verified just by checking it on Euclidean spaces.

Exercise 1.4.6 (Parallelogram law). For any inner product space V ,

establish the parallelogram law

(1.49) ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Show that this inequality fails for Lp(X,X , µ) for p 6= 2 as soon as X

contains at least two disjoint sets of non-empty finite measure. On

the other hand, establish the Hanner inequalities

(1.50) ‖f + g‖pp + ‖f − g‖pp ≥ (‖f‖p + ‖g‖p)p + |‖f‖p − ‖g‖p|p

and

(1.51) (‖f+g‖p+‖f−g‖p)p+|‖f+g‖p−‖f−g‖p|p ≤ 2p(‖f‖pp+‖g‖pp
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for 1 ≤ p ≤ 2, with the inequalities being reversed for 2 ≤ p < ∞.

(Hint : (1.51) can be deduced from (1.50) by a simple substitution.

For (1.50), reduce to the case when f , g are non-negative, and then

exploit the inequality

|x+ y|p + |x− y|p ≥ ((1 + r)p−1 + (1− r)p−1)xp

+ ((1 + r)p−1 − (1− r)p−1)r1−pyp
(1.52)

for all non-negative x, y, 0 < r < 1, and 1 ≤ p ≤ 2, with the inequality

being reversed for 2 ≤ p <∞, and with equality being attained when

y < x and r = y/x.

1.4.2. Hilbert spaces. Thus far, our discussion of inner product

spaces has been largely algebraic in nature; this is because we have

not been able to take limits inside these spaces and do some actual

analysis. This can be rectified by adding an additional axiom:

Definition 1.4.8 (Hilbert spaces). A (real or complex) Hilbert space

is a (real or complex) inner product space which is complete (or equiv-

alently, an inner product space which is also a Banach space).

Example 1.4.9. From Proposition 1.3.7, (real or complex) L2(X,X , µ)

is a Hilbert space for any measure space (X,X , µ). In particular, Rn

and Cn are Hilbert spaces.

Exercise 1.4.7. Show that a subspace of a Hilbert space H will itself

be a Hilbert space if and only if it is closed. (In particular, proper

dense subspaces of Hilbert spaces are not Hilbert spaces.)

Example 1.4.10. By Example 1.4.9, the space l2(Z) of doubly infi-

nite square-summable sequences is a Hilbert space. Inside this space,

the space cc(Z) of sequences of finite support is a proper dense sub-

space (as can be seen for instance by Proposition 1.3.8, though this

can also be seen much more directly), and so cannot be a Hilbert

space.

Exercise 1.4.8. Let V be an inner product space. Show that there

exists a Hilbert space V which contains a dense subspace isomorphic

to V ; we refer to V as a completion of V. Furthermore, this space is

essentially unique in the sense that if V , V
′

are two such completions,

then there exists an isomorphism from V to V
′
which is the identity on
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V (if one identifies V with the dense subspaces of V and V ′. Because

of this fact, inner product spaces are sometimes known as pre-Hilbert

spaces, and can always be identified with dense subspaces of actual

Hilbert spaces.

Exercise 1.4.9. Let H, H ′ be two Hilbert spaces. Define the direct

sum H ⊕ H ′ of the two spaces to be the vector space H × H ′ with

inner product 〈(x, x′), (y, y′)〉H⊕H′ := 〈x, x′〉H + 〈y, y′〉H′ . Show that

H ⊕H ′ is also a Hilbert space.

Example 1.4.11. If H is a complex Hilbert space, one can define the

complex conjugate H of that space to be the set of formal conjugates

{x : x ∈ H} of vectors in H, with complex vector space structure

x + y := x+ y and cx := cx, and inner product 〈x, y〉H := 〈y, x〉H .

One easily checks that H is again a complex Hilbert space. Note the

map x 7→ x is not a complex linear isometry; instead, it is a complex

antilinear isometry.

A key application of the completeness axiom is to be able to define

the “nearest point” from a vector to a closed convex body.

Proposition 1.4.12 (Existence of minimisers). Let H be a Hilbert

space, let K be a non-empty closed convex subset of H, and let x be

a point in H. Then there exists a unique y in K that minimises the

distance ‖y − x‖ to x. Furthermore, for any other z in K, we have

Re〈z − y, y − x〉 ≥ 0.

Recall that a subset K of a real or complex vector space is convex

if (1− t)v + tw ∈ K whenever v, w ∈ K and 0 ≤ t ≤ 1.

Proof. Observe from the parallelogram law (1.49) that we have the

(geometrically obvious) fact that if y and y′ are distinct and equidis-

tant from x, then their midpoint (y+y′)/2 is strictly closer to x than

either of y or y′. This (and convexity) ensures that the distance min-

imiser, if it exists, is unique. Also, if y is the distance minimiser and

z is in K, then (1−θ)y+θz is at least as distant from x as y is for any

0 < θ < 1, by convexity; squaring this and rearranging, we conclude

that

(1.53) 2 Re〈z − y, y − x〉+ θ‖z − y‖2 ≥ 0.
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Letting θ → 0 we obtain the final claim in the proposition.

It remains to show existence. Write D := infy∈K ‖x − y‖. It is

clear that D is finite and non-negative. If the infimum is attained

then we would be done. We cannot conclude immediately that this

is the case, but we can certainly find a sequence yn ∈ K such that

‖x − yn‖ → D. On the other hand, the midpoints yn+ym
2 lie in K

by convexity and so ‖x− yn+ym
2 ‖ ≥ D. Using the parallelogram law

(1.49) we deduce that ‖yn − ym‖ → 0 as n,m → ∞ and so yn is a

Cauchy sequence; by completeness, it converges to a limit y, which

lies in K since K is closed. From the triangle inequality we see that

‖x − yn‖ → ‖x − y‖, and thus ‖x − y‖ = D, and so y is a distance

minimiser. �

Exercise 1.4.10. Show by constructing counterexamples that the

existence of the distance minimiser y can fail if either the closure

or convexity hypothesis on K is dropped, or if H is merely an inner

product space rather than a Hilbert space. (Hint : for the last case, let

H be the inner product space C([0, 1]) ⊂ L2([0, 1]), and let K be the

subspace of continuous functions supported on [0, 1/2].) On the other

hand, show that existence (but not uniqueness) can be recovered if

K is assumed to be compact rather than convex.

Exercise 1.4.11. Using the Hanner inequalities (Exercise 1.4.6),

show that Proposition 1.4.12 also holds for the Lp spaces as long

as 1 < p <∞. (The specific feature of the Lp spaces that is allowing

this is known as uniform convexity.) Give counterexamples to show

that the propsition can fail for L1 and for L∞.

Proposition 1.4.12 has some importance in calculus of variations,

but we will not pursue those applications here.

Since every subspace is necessarily convex, we have a corollary:

Exercise 1.4.12 (Orthogonal projections). Let V be a closed sub-

space of a Hilbert space H. Then for every x ∈ H there exists a

unique decomposition x = xV + xV ⊥ , where xV ∈ V and xV ⊥ is

orthogonal to every element of V . Furthermore, xV is the closest

element of V to x.
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Let πV : H → V be the map πV : x 7→ xV , where xV is given

by the above exercise; we refer to πV as the orthogonal projection

from H onto V . It is not hard to see that πV is linear, and from the

Pythagorean theorem we see that πV is a contraction (thus ‖πV x‖ ≤
‖x‖ for all x ∈ V ). In particular, πV is continuous.

Exercise 1.4.13 (Orthogonal complement). Given a subspace V of

a Hilbert space H, define the orthogonal complement V ⊥ of V to be

the set of all vectors in H that are orthogonal to every element of V.

Establish the following claims:

• V ⊥ is a closed subspace of H, and that (V ⊥)⊥ is the closure

of V .

• V ⊥ is the trivial subspace {0} if and only if V is dense.

• If V is closed, then H is isomorphic to the direct sum of V

and V ⊥.

• If V , W are two closed subspaces of H, then (V + W )⊥ =

V ⊥ ∩W⊥ and (V ∩W )⊥ = V ⊥ +W⊥.

Every vector v in a Hilbert space gives rise to a continuous linear

functional λv : H → C, defined by the formula λv(w) := 〈w, v〉 (the

continuity follows from the Cauchy-Schwarz inequality). The Riesz

representation theorem for Hilbert spaces gives a converse:

Theorem 1.4.13 (Riesz representation theorem for Hilbert spaces).

Let H be a complex Hilbert space, and let λ : H → C be a continuous

linear functional on H. Then there exists a unique v in H such that

λ = λv. A similar claim holds for real Hilbert spaces (replacing C by

R throughout).

Proof. We just show the claim for complex Hilbert spaces, as the

claim for real Hilbert spaces is very similar. First, we show unique-

ness: if λv = λv′ , then λv−v′ = 0, and in particular 〈v−v′, v−v′〉 = 0,

and so v = v′.

Now we show existence. We may assume that λ is not identically

zero, since the claim is obvious otherwise. Observe that the kernel

V := {x ∈ H : λ(x) = 0} is then a proper subspace of H, which

is closed since λ is continuous. By Exercise 1.4.13, the orthogonal
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complement V ⊥ must contain at least one non-trivial vector w, which

we can normalise to have unit magnitude. Since w doesn’t lie in V ,

λ(w) is non-zero. Now observe that for any x in H, x− λ(x)
λ(w)w lies in

the kernel of λ, i.e. it lies in V . Taking inner products with w, we

conclude that

(1.54) 〈x,w〉 − λ(x)

λ(w)
= 0

and thus

(1.55) λ(x) = 〈x, λ(w)w〉

Thus we have λ = λ
λ(w)w

, and the claim follows. �

Remark 1.4.14. This result gives an alternate proof of the p = 2

case of Theorem 1.3.16, and by modifying Remark 1.26, can be used

to give an alternate proof of the Lebesgue-Radon-Nikodym theorem

(this proof is due to von Neumann).

Remark 1.4.15. In the next set of notes, when we define the notion

of a dual space, we can reinterpret the Riesz representation theorem

as providing a canonical isomorphism H∗ ≡ H.

Exercise 1.4.14. Using Exercise 1.4.11, give an alternate proof of

the 1 < p <∞ case of Theorem 1.3.16.

One important consequence of the Riesz representation theorem

is the existence of adjoints:

Exercise 1.4.15 (Existence of adjoints). Let T : H → H ′ be a con-

tinuous linear transformation. Show that that there exists a unique

continuous linear transformation T † : H ′ → H with the property that

〈Tx, y〉 = 〈x, T †y〉 for all x ∈ H and y ∈ H ′. The transformation T †

is called the (Hilbert space) adjoint of T ; it is of course compatible

with the notion of an adjoint matrix from linear algebra.

Exercise 1.4.16. Let T : H → H ′ be a continuous linear transfor-

mation.

• Show that (T †)† = T .

• Show that T is an isometry if and only if T †T= idH .
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• Show that T is an isomorphism if and only if T †T= idH and

TT † = idH′ .

• If S : H ′ → H ′′ is another continuous linear transformation,

show that (ST )† = T †S†.

Remark 1.4.16. An isomorphism of complex Hilbert spaces is also

known as a unitary transformation. (For real Hilbert spaces, the

term orthogonal transformation is used instead.) Note that unitary

and orthogonal n×n matrices generate unitary and orthogonal trans-

formations on Cn and Rn respectively.

Exercise 1.4.17. Show that the projection map πV : H → V from a

Hilbert space to a closed subspace is the adjoint of the inclusion map

ιV : V → H.

1.4.3. Orthonormal bases. In the section on inner product spaces,

we studied finite linear combinations of orthonormal systems. Now

that we have completeness, we turn to infinite linear combinations.

We begin with countable linear combinations:

Exercise 1.4.18. Suppose that e1, e2, e3, . . . is a countable orthonor-

mal system in a complex Hilbert space H, and c1, c2, . . . is a sequence

of complex numbers. (As usual, similar statements will hold here for

real Hilbert spaces and real numbers.)

(i) Show that the series
∑∞
n=1 cnen is conditionally convergent

in H if and only if cn is square-summable.

(ii) If cn is square-summable, show that
∑∞
n=1 cnen is uncondi-

tionally convergent in H, i.e. every permutation of the cnen
sums to the same value.

(iii) Show that the map (cn)∞n=1 7→
∑∞
n=1 cnen is an isometry

from the Hilbert space `2(N) to H. The image V of this

isometry is the smallest closed subspace of H that contains

e1, e2, . . ., and which we shall therefore call the (Hilbert

space) span of e1, e2, . . ..

(iv) Take adjoints of (ii) and conclude that for any x ∈ H, we

have πV (x) =
∑∞
n=1〈x, en〉en and ‖πV (x)‖ = (

∑∞
n=1 |〈x, en〉|2)1/2.

Conclude in particular the Bessel inequality
∑∞
n=1 |〈x, en〉|2 ≤

‖x‖2.
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Remark 1.4.17. Note the contrast here between conditional and un-

conditional summability (which needs only square-summability of the

coefficients cn) and absolute summability (which requires the stronger

condition that the cn are absolutely summable). In particular there

exist non-absolutely summable series that are still unconditionally

summable, in contrast to the situation for scalars, in which one has

the Riemann rearrangement theorem.

Now we can handle arbitrary orthonormal systems (eα)α∈A. If

(cα)α∈A is square-summable, then at most countably many of the

cα are non-zero (by Exercise 1.3.4). Using parts (i), (ii) of Exercise

1.4.18, we can then form the sum
∑
α∈A cαeα in an unambiguous

manner. It is not hard to use Exercise 1.4.18 to then conclude that

this gives an isometric embedding of `2(A) into H. The image of

this isometry is the smallest closed subspace of H that contains the

orthonormal system, which we call the (Hilbert space) span of that

system. (It is the closure of the algebraic span of the system.)

Exercise 1.4.19. Let (eα)α∈A be an orthonormal system in H. Show

that the following statements are equivalent:

(i) The Hilbert space span of (eα)α∈A is all of H.

(ii) The algebraic span of (eα)α∈A (i.e. the finite linear combi-

nations of the eα) is dense in H.

(iii) One has the Parseval identity ‖x‖2 =
∑
α∈A |〈x, eα〉|2 for

all x ∈ H.

(iv) One has the inversion formula x =
∑
α∈A〈x, eα〉eα for all

x ∈ H (in particular, the coefficients 〈x, eα〉 are square sum-

mable).

(v) The only vector that is orthogonal to all the eα is the zero

vector.

(vi) There is an isomorphism from `2(A) to H that maps δα to

eα for all α ∈ A (where δα is the Kronecker delta at α).

A system (eα)α∈A obeying any (and hence all) of the properties

in Exercise 1.4.19 is known as an orthonormal basis of the Hilbert

space H. All Hilbert spaces have such a basis:
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Proposition 1.4.18. Every Hilbert space has at least one orthonor-

mal basis.

Proof. We use the standard Zorn’s lemma argument (see Section

2.4). Every Hilbert space has at least one orthonormal system, namely

the empty system. We order the orthonormal systems by inclusion,

and observe that the union of any totally ordered set of orthonormal

systems is again an orthonormal system. By Zorn’s lemma, there

must exist a maximal orthonormal system (eα)α∈A. There cannot be

any unit vector orthogonal to all the elements of this system, since

otherwise one could add that vector to the system and contradict or-

thogonality. Applying Exercise 1.4.19 in the contrapositive, we obtain

an orthonormal basis as claimed. �

Exercise 1.4.20. Show that every vector space V has at least one

algebraic basis, i.e. a set of basis vectors such that every vector in

V can be expressed uniquely as a finite linear combination of basis

vectors. (Such bases are also known as Hamel bases.)

Corollary 1.4.19. Every Hilbert space is isomorphic to `2(A) for

some set A.

Exercise 1.4.21. Let A, B be sets. Show that `2(A) and `2(B) are

isomorphic iff A and B have the same cardinality. (Hint : the case

when A or B is finite is easy, so suppose A and B are both infinite.

If `2(A) and `2(B) are isomorphic, show that B can be covered by a

family of at most countable sets indexed by A, and vice versa. Then

apply the Schröder-Bernstein theorem (Section 3.13).

We can now classify Hilbert spaces up to isomorphism by a single

cardinal, the dimension of that space:

Exercise 1.4.22. Show that all orthonormal bases of a given Hilbert

space H have the same cardinality. This cardinality is called the

(Hilbert space) dimension of the Hilbert space.

Exercise 1.4.23. Show that a Hilbert space is separable (i.e. has a

countable dense subset) if and only if its dimension is at most count-

able. Conclude in particular that up to isomorphism, there is exactly

one separable infinite-dimensional Hilbert space.
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Exercise 1.4.24. Let H, H ′ be complex Hilbert spaces. Show that

there exists another Hilbert space H ⊗H ′, together with a map ⊗ :

H ×H ′ → H ⊗H ′ with the following properties:

(i) The map ⊗ is bilinear, thus (cx + dy) ⊗ x′ = c(x ⊗ x′) +

d(y ⊗ x′) and x⊗ (cx′ + dy′) = c(x⊗ x′) + d(x⊗ y′) for all

x, y ∈ H,x′, y′ ∈ H ′, c, d ∈ C;

(ii) We have 〈x⊗x′, y⊗y′〉H⊗H′ = 〈x, y〉H〈x′, y′〉H′ for all x, y ∈
H,x′, y′ ∈ H ′.

(iii) The (algebraic) span of {x⊗x′ : x ∈ H,x′ ∈ H ′} is dense in

H ⊗H ′.

Furthermore, show that H⊗H ′ and ⊗ are unique up to isomorphism

in the sense that if H⊗̃H ′ and ⊗̃ : H × H ′ → H⊗̃H ′ are another

pair of objects obeying the above properties, then there exists an

isomorphism Φ : H⊗H ′ → H⊗̃H ′ such that x⊗̃x′ = Φ(x⊗x′) for all

x ∈ H,x′ ∈ H ′. (Hint : to prove existence, create orthonormal bases

for H and H’ and take formal tensor products of these bases.) The

space H ⊗ H ′ is called the (Hilbert space) tensor product of H and

H ′, and x⊗ x′ is the tensor product of x and x′.

Exercise 1.4.25. Let (X,X , µ) and (Y,Y, ν) be measure spaces.

Show that L2(X×Y,X×Y, µ×ν) is the tensor product of L2(X,X , µ)

and L2(Y,Y, µ), if one defines the tensor product f⊗g of f ∈ L2(X,X , µ)

and g ∈ L2(Y,Y, µ) as f ⊗ g(x, y) := f(x)g(y).

We do not yet have enough theory in other areas to give the really

useful applications of Hilbert space theory yet, but let us just illus-

trate a simple one, namely the development of Fourier series on the

unit circle R/Z. We can give this space the usual Lebesgue measure

(identifying the unit circle with [0, 1), if one wishes), giving rise to the

complex Hilbert space L2(R/Z). On this space we can form the char-

acters en(x) := e2πinx for all integer n; one easily verifies that (en)n∈Z
is an orthonormal system. We claim that it is in fact an orthonor-

mal basis. By Exercise 1.4.19, it suffices to show that the algebraic

span of the en, i.e. the space of trigonometric polynomials, is dense

in L2(R/Z). But8 from an explicit computation (e.g. using Fejér

8One can also use the Stone-Weierstrass theorem here, see Theorem 1.10.24.
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kernels) one can show that the indicator function of any interval can

be approximated to arbitrary accuracy in L2 norm by trigonometric

polynomials, and is thus in the closure of the trigonometric polyno-

mials. By linearity, the same is then true of an indicator function of a

finite union of intervals; since Lebesgue measurable sets in R/Z can

be approximated to arbitrary accuracy by finite unions of intervals,

the same is true for indicators of measurable sets. By linearity, the

same is true for simple functions, and by density (Proposition 1.3.8)

the same is true for arbitrary L2 functions, and the claim follows.

The Fourier transform f̂ : Z → C of a function f ∈ L2(R/Z) is

defined as

(1.56) f̂(n) := 〈f, en〉 =

∫ 1

0

f(x)e−2πinx dx.

From Exercise 1.4.19, we obtain the Parseval identity∑
n∈Z

|f̂(n)|2 =

∫
R/Z

|f(x)|2 dx

(in particular, f̂ ∈ `2(Z)) and the inversion formula

f =
∑
n∈Z

f̂(n)en

where the right-hand side is unconditionally convergent. Indeed,

the Fourier transform f 7→ f̂ is a unitary transformation between

L2(R/Z) and `2(Z). (These facts are collectively referred to as Plancherel’s

theorem for the unit circle.) We will develop Fourier analysis on other

spaces than the unit circle in Section 1.12.

Remark 1.4.20. Of course, much of the theory here generalises the

corresponding theory in finite-dimensional linear algebra; we will con-

tinue this theme much later in the course when we turn to the spectral

theorem. However, not every aspect of finite-dimensional linear alge-

bra will carry over so easily. For instance, it turns out to be quite

difficult to take the determinant or trace of a linear transformation

from a Hilbert space to itself in general (unless the transformation

is particularly well behaved, e.g. of trace class). The Jordan nor-

mal form also does not translate to the infinite-dimensional setting,

leading to the notorious invariant subspace problem in the subject. It

is also worth cautioning that while the theory of orthonormal bases
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in finite-dimensional Euclidean spaces generalises very nicely to the

Hilbert space setting, the more general theory of bases in finite di-

mensions becomes much more subtle in infinite dimensional Hilbert

spaces, unless the basis is “almost orthonormal” in some sense (e.g.

if it forms a frame).

Notes. This lecture first appeared at terrytao.wordpress.com/2009/01/17.

Thanks to Américo Tavares, S, and Xiaochuan Liu for corrections.

Uhlrich Groh and Dmitriy raised the interesting open problem

of whether any closed subset K of H for which distance minimisers

to every point x existed and unique were necessarily convex, thus

providing a converse to Proposition 1.4.12. (Sets with this property

are known as Chebyshev sets.)

1.5. Duality and the Hahn-Banach theorem

When studying a mathematical space X (e.g. a vector space, a topo-

logical space, a manifold, a group, an algebraic variety etc.), there are

two fundamentally basic ways to try to understand the space:

(i) By looking at subobjects in X, or more generally maps f :

Y → X from some other space Y into X. For instance, a

point in a space X can be viewed as a map from pt to X; a

curve in a space X could be thought of as a map from [0, 1]

to X; a group G can be studied via its subgroups K, and so

forth.

(ii) By looking at objects on X, or more precisely maps f : X →
Y from X into some other space Y . For instance, one can

study a topological space X via the real- or complex-valued

continuous functions f ∈ C(X) on X; one can study a group

G via its quotient groups π : G → G/H; one can study an

algebraic variety V by studying the polynomials on V (and

in particular, the ideal of polynomials that vanish identically

on V ); and so forth.

(There are also more sophisticated ways to study an object via its

maps, e.g. by studying extensions, joinings, splittings, universal lifts,

etc. The general study of objects via the maps between them is



1.5. The Hahn-Banach theorem 63

formalised abstractly in modern mathematics as category theory, and

is also closely related to homological algebra.)

A remarkable phenomenon in many areas of mathematics is that

of (contravariant) duality : that the maps into and out of one type of

mathematical object X can be naturally associated to the maps out

of and into a dual object X∗ (note the reversal of arrows here!). In

some cases, the dual object X∗ looks quite different from the original

object X. (For instance, in Stone duality, discussed in Section 2.3, X

would be a Boolean algebra (or some other partially ordered set) and

X∗ would be a compact totally disconnected Hausdorff space (or some

other topological space).) In other cases, most notably with Hilbert

spaces as discussed in Section 1.4, the dual object X∗ is essentially

identical to X itself.

In these notes we discuss a third important case of duality, namely

duality of normed vector spaces, which is of an intermediate nature

to the previous two examples: the dual X∗ of a normed vector space

turns out to be another normed vector space, but generally one which

is not equivalent to X itself (except in the important special case when

X is a Hilbert space, as mentioned above). On the other hand, the

double dual (X∗)∗ turns out to be closely related to X, and in several

(but not all) important cases, is essentially identical to X. One of

the most important uses of dual spaces in functional analysis is that

it allows one to define the transpose T ∗ : Y ∗ → X∗ of a continuous

linear operator T : X → Y .

A fundamental tool in understanding duality of normed vector

spaces will be the Hahn-Banach theorem, which is an indispensable

tool for exploring the dual of a vector space. (Indeed, without this

theorem, it is not clear at all that the dual of a non-trivial normed

vector space is non-trivial!) Thus, we shall study this theorem in

detail in this section concurrently with our discussion of duality.

1.5.1. Duality. In the category of normed vector spaces, the natural

notion of a “map” (or morphism) between two such spaces is that of

a continuous linear transformation T : X → Y between two normed

vector spaces X, Y . By Lemma 1.3.17, any such linear transformation

is bounded, in the sense that there exists a constant C such that
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‖Tx‖Y ≤ C‖x‖X for all x ∈ X. The least such constant C is known

as the operator norm of T , and is denoted ‖T‖op or simply ‖T‖.
Two normed vector spaces X,Y are equivalent if there is an in-

vertible continuous linear transformation T : X → Y from X to

Y , thus T is bijective and there exist constants C, c > 0 such that

c‖x‖X ≤ ‖Tx‖Y ≤ C‖x‖X for all x ∈ X. If one can take C = c = 1,

then T is an isometry, and X and Y are called isomorphic. When one

has two norms ‖‖1, ‖‖2 on the same vector space X, we say that the

norms are equivalent if the identity from (X, ‖‖1) to (X, ‖‖2) is an

invertible continuous transformation, i.e. that there exist constants

C, c > 0 such that c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 for all x ∈ X.

Exercise 1.5.1. Show that all linear transformations from a finite-

dimensional space to a normed vector space are continuous. Conclude

that all norms on a finite-dimensional space are equivalent.

Let B(X → Y ) denote the space of all continuous linear trans-

formations from X to Y . (This space is also denoted by many other

names, e.g. L(X,Y ), Hom(X → Y ), etc.) This has the structure of a

vector space: the sum S + T : x 7→ Sx+ Tx of two continuous linear

transformations is another continuous linear transformation, as is the

scalar multiple cT : x 7→ cTx of a linear transformation.

Exercise 1.5.2. Show that B(X → Y ) with the operator norm is a

normed vector space. If Y is complete (i.e. is a Banach space), show

that B(X → Y ) is also complete (i.e. is also a Banach space).

Exercise 1.5.3. Let X, Y , Z be Banach spaces. Show that if T ∈
B(X → Y ) and S ∈ B(Y → Z), then the composition ST : X → Z

lies in B(X → Z) and ‖ST‖op ≤ ‖S‖op‖T‖op. (As a consequence of

this inequality, we see that B(X → X) is a Banach algebra.)

Now we can define the notion of a dual space.

Definition 1.5.1 (Dual space). Let X be a normed vector space.

The (continuous) dual space X∗ of X is defined to be X∗ := B(X→
R) if X is a real vector space, and X∗ := B(X → C) if X is a

complex vector space. Elements of X∗ are known as continuous linear

functionals (or bounded linear functionals) on X.
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Remark 1.5.2. If one drops the requirement that the linear func-

tionals be continuous, we obtain the algebraic dual space of linear

functionals on X. This space does not play a significant role in func-

tional analysis, though.

From Exercise 1.5.2, we see that the dual of any normed vector

space is a Banach space, and so duality is arguably a Banach space

notion rather than a normed vector space notion. The following ex-

ercise reinforces this:

Exercise 1.5.4. We say that a normed vector space X has a comple-

tion X if X is a Banach space and X can be identified with a dense

subspace of X (cf. Exercise 1.4.8).

(i) Show that every normed vector space X has at least one

completion X, and that any two completions X,X
′

are iso-

morphic in the sense that there exists an isomorphism from

X to X
′

which is the identity on X.

(ii) Show that the dual spaces X∗ and (X)∗ are isomorphic to

each other.

The next few exercises are designed to give some intuition as to

how dual spaces work.

Exercise 1.5.5. Let Rn be given the Euclidean metric. Show that

(Rn)∗ is isomorphic to Rn. Establish the corresponding result for the

complex spaces Cn.

Exercise 1.5.6. Let cc(N) be the vector space of sequences (an)n∈N
of real or complex numbers which are compactly supported (i.e. at

most finitely many of the an are non-zero). We give cc the uniform

norm ‖‖`∞ .

(i) Show that the dual space cc(N)∗ is isomorphic to `1(N).

(ii) Show that the completion of cc(N) is isomorphic to c0(N),

the space of sequences on N that go to zero at infinity (again

with the uniform norm); thus, by Exercise 1.5.4, the dual

space of c0(N) is isomorphic to `1(N) also.

(iii) On the other hand, show that the dual of `1(N) is isomorphic

to `∞(N), a space which is strictly larger than cc(N) or
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c0(N). Thus we see that the double dual of a Banach space

can be strictly larger than the space itself.

Exercise 1.5.7. Let H be a real or complex Hilbert space. Using

the Riesz representation theorem for Hilbert spaces (Theorem 1.4.13),

show that the dual space H∗ is isomorphic (as a normed vector space)

to the conjugate spaceH (see Example 1.4.11), with an element g ∈ H
being identified with the linear functional f 7→ 〈f, g〉. Thus we see

that Hilbert spaces are essentially self-dual (if we ignore the pesky

conjugation sign).

Exercise 1.5.8. Let (X,X , µ) be a σ-finite measure space, and let

1 ≤ p < ∞. Using Theorem 1.3.16, show that the dual space

of Lp(X,X , µ) is isomorphic to Lp
′
(X,X , µ), with an element g ∈

Lp
′
(X,X , µ) being identified with the linear functional f 7→

∫
X
fg dµ.

(The one tricky thing to verify is that the identification is an isometry,

but this can be seen by a closer inspection of the proof of Theorem

1.3.16.) For an additional challenge: remove the σ-finite hypothesis

when p > 1.

One of the key purposes of introducing the notion of a dual space

is that it allows one to define the notion of a transpose.

Definition 1.5.3 (Transpose). Let T : X → Y be a continuous

linear transformation from one normed vector space X to another

Y . The transpose T ∗ : Y ∗ → X∗ of T is defined to be the map that

sends any continuous linear functional λ ∈ Y ∗ to the linear functional

T ∗λ := λ◦T∈ X∗, thus (T ∗λ)(x) = λ(Tx) for all x ∈ X.

Exercise 1.5.9. Show that the transpose T ∗ of a continuous linear

transformation T between normed vector spaces is again a continu-

ous linear transformation with ‖T ∗‖op ≤ ‖T‖op, thus the transpose

operation is itself a linear map from B(X → Y ) to B(Y ∗ → X∗).

(We will improve this result in Theorem 1.5.13 below.)

Exercise 1.5.10. An n ×m matrix A with complex entries can be

identified with a linear transformation LA : Cn → Cm. Identifying

the dual space of Cn with itself as in Exercise 1.5.5, show that the

transpose L∗A : Cm → Cn is equal to LAt , where At is the transpose

matrix of A.
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Exercise 1.5.11. Show that the transpose of a surjective continuous

linear transformation between normed vector spaces is injective. Show

also that the condition of surjectivity can be relaxed to that of having

a dense image.

Remark 1.5.4. Observe that if T : X → Y and S : Y → Z are con-

tinuous linear transformations between normed vector spaces, then

(ST )∗ = T ∗S∗. In the language of category theory, this means that

duality X 7→ X∗ of normed vector spaces, and transpose T 7→ T ∗ of

continuous linear transformations, form a contravariant functor from

the category of normed vector spaces (or Banach spaces) to itself.

Remark 1.5.5. The transpose T ∗ : H ′ → H of a continuous linear

transformation T : H → H ′ between complex Hilbert spaces is closely

related to the adjoint T † : H ′ → H of that transformation, as defined

in Exercise 1.4.15, by using the obvious (antilinear) identifications

between H and H, and between H ′ and H ′. This is analogous to

the linear algebra fact that the adjoint matrix is the complex conju-

gate of the transpose matrix. One should note that in the literature,

the transpose operator T ∗ is also (somewhat confusingly) referred to

as the adjoint of T . Of course, for real vector spaces, there is no

distinction between transpose and adjoint.

1.5.2. The Hahn-Banach theorem. Thus far, we have defined the

dual space X∗, but apart from some concrete special cases (Hilbert

spaces, Lp spaces, etc.) we have not been able to say much about

what X∗ consists of - it is not even clear yet that if X is non-trivial

(i.e. not just {0}), that X∗ is also non-trivial - for all one knows,

there could be no non-trivial continuous linear functionals on X at

all! The Hahn-Banach theorem is used to resolve this, by providing a

powerful means to construct continuous linear functionals as needed.

Theorem 1.5.6 (Hahn-Banach theorem). Let X be a normed vector

space, and let Y be a subspace of X. Then any continuous linear

functional λ ∈ Y ∗ on Y can be extended to a continuous linear func-

tional λ̃ ∈ X∗ on X with the same operator norm; thus λ̃ agrees with

λ on Y and ‖λ̃‖X∗ = ‖λ‖Y ∗ . (Note: the extension λ̃ is, in general,

not unique.)
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We prove this important theorem in stages. We first handle the

codimension one real case:

Proposition 1.5.7. The Hahn-Banach theorem is true when X, Y

are real vector spaces, and X is spanned by Y and an additional vector

v.

Proof. We can assume that v lies outside Y , since the claim is trivial

otherwise. We can also normalise ‖λ‖Y ∗ = 1 (the claim is of course

trivial if ‖λ‖Y ∗ vanishes). To specify the extension λ̃ of λ, it suffices

by linearity to specify the value of λ̃(v). In order for the extension λ̃

to continue to have operator norm 1, we require that

|λ̃(y + tv)| ≤ ‖y + tv‖X

for all t ∈ R and y ∈ Y . This is automatic for t = 0, so by homo-

geneity it suffices to attain this bound for t = 1. We rearrange this a

bit as

sup
y′∈Y

λ(y′)− ‖y′ + v‖X ≤ λ̃(v) ≤ inf
y∈Y
‖y + v‖X − λ(y).

But as λ has operator norm 1, an application of the triangle inequality

shows that the infimum on the right-hand side is at least as large

as the supremum on the left-hand side, and so one can choose λ̃(v)

obeying the required properties. �

Corollary 1.5.8. The Hahn-Banach theorem is true when X, Y are

real normed vector spaces.

Proof. This is a standard “Zorn’s lemma” argument (see Section

2.4). Fix Y , X, λ. Define a partial extension of λ to be a pair

(Y ′, λ′), where Y ′ is an intermediate subspace between Y and X, and

λ′ is an extension of λ with the same operator norm as λ. The set of all

partial extensions is partially ordered by declaring (Y ′′, λ′′) ≥ (Y ′, λ′)

if Y ′′ contains Y ′ and λ′′ extends λ′. It is easy to see that every chain

of partial extensions has an upper bound; hence, by Zorn’s lemma,

there must be a maximal partial extension (Y∗, λ∗). If Y∗ = X, we

are done; otherwise, one can find v ∈ X\Y∗. By Proposition 1.5.7, we

can then extend λ∗ further to the larger space spanned by Y∗ and v,

a contradiction; and the claim follows. �
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Remark 1.5.9. Of course, this proof of the Hahn-Banach theorem

relied on the axiom of choice (via Zorn’s lemma) and is thus non-

constructive. It turns out that this is, to some extent, necessary: it

is not possible to prove the Hahn-Banach theorem if one deletes the

axiom of choice from the axioms of set theory (although it is possible

to deduce the theorem from slightly weaker versions of this axiom,

such as the ultrafilter lemma).

Finally, we establish the complex case by leveraging the real case.

Proof of Hahn-Banach theorem (complex case). Let λ : Y →
C be a continuous complex-linear functional, which we can normalise

to have operator norm 1. Then the real part ρ := Re(λ) : Y → R is a

continuous real-linear functional on Y (now viewed as a real normed

vector space rather than a complex one), which has operator norm

at most 1 (in fact, it is equal to 1, though we will not need this).

Applying Corollary 1.5.8, we can extend this real-linear functional ρ

to a continuous real-linear functional ρ̃ : X → R on X (again viewed

now just as a real normed vector space) of norm at most 1.

To finish the job, we have to somehow complexify ρ̃ to a complex-

linear functional λ̃ : X → R of norm at most 1 that agrees with λ on

Y. It is reasonable to expect that Re λ̃ = ρ̃; a bit of playing around

with complex linearity then forces

(1.57) λ̃(x) := ρ̃(x)− iρ̃(ix).

Accordingly, we shall use (1.57) to define λ̃. It is easy to see that λ̃ is

a continuous complex-linear functional agreeing with λ on Y . Since

ρ̃ has norm at most 1, we have |Re λ̃(x)| ≤ ‖x‖X for all x ∈ X.

We can amplify this (cf. Section 1.9 of Structure and Randomness)

by exploiting phase rotation symmetry, thus |Re λ̃(eiθx)| ≤ ‖x‖X for

all θ ∈ R. Optimising in θ we see that ρ̃ has norm at most 1, as

required. �

Exercise 1.5.12. In the special case when X is a Hilbert space, give

an alternate proof of the Hahn-Banach theorem, using the material

from Section 1.4, that avoids Zorn’s lemma or the axiom of choice.

Now we put this Hahn-Banach theorem to work in the study of

duality and transposes.
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Exercise 1.5.13. Let T : X → Y be a continuous linear transforma-

tion which is bounded from below (i.e. there exists c > 0 such that

‖Tx‖ ≥ c‖x‖ for all x ∈ X); note that this ensures that X is equiva-

lent to some subspace of Y . Show that the transpose T ∗ : Y ∗ → X∗ is

surjective. Give an example to show that the claim fails if T is merely

assumed to be injective rather than bounded from below. (Hint :

consider the map (an)∞n=1 → (an/n)∞n=1 on some suitable space of

sequences.) This should be compared with Exercise 1.5.11.

Exercise 1.5.14. Let x be an element of a normed vector space X.

Show that there exists λ ∈ X∗ such that ‖λ‖X∗ = 1 and λ(x) = ‖x‖X .

Conclude in particular that the dual of a non-trivial normed vector

space is again non-trivial.

Given a normed vector space X, we can form its double dual

(X∗)∗: the space of linear functionals on X∗. There is a very natural

map ι : X → (X∗)∗, defined as

(1.58) ι(x)(λ) := λ(x)

for all x ∈ X and λ ∈ X∗. (This map is closely related to the Gelfand

transform in the theory of operator algebras; see Section 1.10.4.) It is

easy to see that ι is a continuous linear transformation, with operator

norm at most 1. But the Hahn-Banach theorem gives a stronger

statement:

Theorem 1.5.10. ι is an isometry.

Proof. We need to show that ‖ι(x)‖X∗∗ = ‖x‖ for all x ∈ X. The

upper bound is clear; the lower bound follows from Exercise 1.5.14.

�

Exercise 1.5.15. Let Y be a subspace of a normed vector space X.

Define the complement Y ⊥ of Y to be the space of all λ ∈ X∗ which

vanish on Y .

(i) Show that Y ⊥ is a closed subspace of X∗, and that Y :=

{x ∈ X : λ(x) = 0 for all λ ∈ Y ⊥}; (Compare with Exercise

1.4.13.) In other words, ι(Y ) = ι(X) ∩ Y ⊥⊥.

(ii) Show that Y ⊥ is trivial if and only if Y is dense, and Y ⊥ =

X∗ if and only if Y is trivial.
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(iii) Show that Y ⊥ is isomorphic to the dual of the quotient space

X/Y (which has the norm ‖x+Y ‖X/Y := infy∈Y ‖x+y‖X).

(iv) Show that Y ∗ is isomorphic to X∗/Y ⊥.

From Theorem 1.5.10, every normed vector space can be identi-

fied with a subspace of its double dual (and every Banach space is

identified with a closed subspace of its double dual). If ι is surjec-

tive, then we have an isomorphism X ≡ X∗∗, and we say that X is

reflexive in this case; since X∗∗ is a Banach space, we conclude that

only Banach spaces can be reflexive. From linear algebra we see in

particular that any finite-dimensional normed vector space is reflex-

ive; from Exercises 1.5.7, 1.5.8 we see that any Hilbert space and any

Lp space with 1 < p < ∞ on a σ-finite space is also reflexive (and

the hypothesis of σ-finiteness can in fact be dropped). On the other

hand, from Exercise 1.5.6, we see that the Banach space c0(N) is not

reflexive.

An important fact is that l1(N) is also not reflexive: the dual of

l1(N) is equivalent to l∞(N), but the dual of l∞(N) is strictly larger

than that of l1(N). Indeed, consider the subspace c(N) of l∞(N)

consisting of bounded convergent sequences (equivalently, this is the

space spanned by c0(N) and the constant sequence (1)n∈N). The limit

functional (an)∞n=1 7→ limn→∞ an is a bounded linear functional on

c(N), with operator norm 1, and thus by the Hahn-Banach theorem

can be extended to a generalised limit functional λ : l∞(N) → C

which is a continuous linear functional of operator norm 1. As such

generalised limit functionals annihilate all of c0(N) but are still non-

trivial, they do not correspond to any element of `1(N) ≡ c0(N)∗.

Exercise 1.5.16. Let λ : l∞(N) → C be a generalised limit func-

tional (i.e. an extension of the limit functional of c(N) of operator

norm 1) which is also an algebra homomorphism, i.e. λ((xnyn)∞n=1) =

λ((xn)∞n=1)λ((yn)∞n=1) for all sequences (xn)∞n=1, (yn)∞n=1 ∈ `∞(N).

Show that there exists a unique non-principal ultrafilter p ∈ βN\N
(as defined for instance Section 1.5 of Structure and Randomness)

such that λ((xn)∞n=1) = limn→p xn for all sequences (xn)∞n=1 ∈ `∞(N).

Conversely, show that every non-principal ultrafilter generates a gen-

eralised limit functional that is also an algebra homomorphism. (This
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exercise may become easier once one is acquainted with the Stone-

Čech compactification, see Section 2.5. If the algebra homomorphism

property is dropped, one has to consider probability measures on the

space of non-principal ultrafilters instead.)

Exercise 1.5.17. Show that any closed subspace of a reflexive space

is again reflexive. Also show that a Banach space X is reflexive if and

only if its dual is reflexive. Conclude that if (X,X , µ) is a measure

space which contains a countably infinite sequence of disjoint sets of

positive measure, then L1(X,X , µ) and L∞(X,X , µ) are not reflexive.

(Hint : Reduce to the σ-finite case. L∞ will contain an isometric copy

of `∞(N).)

Theorem 1.5.10 gives a classification of sorts for normed vector

spaces:

Corollary 1.5.11. Every normed vector space X is isomorphic to

a subspace of BC(Y ), the space of bounded continuous functions on

some bounded complete metric space Y , with the uniform norm.

Proof. Take Y to be the unit ball in X∗, then the map ι identifies

X with a subspace of BC(Y ). �

Remark 1.5.12. If X is separable, it is known that one can take Y

to just be the unit interval [0, 1]; this is the Banach-Mazur theorem,

which we will not prove here.

Next, we apply the Hahn-Banach theorem to the transpose oper-

ation, improving Exercise 1.5.9:

Theorem 1.5.13. Let T : X → Y be a continuous linear transfor-

mation between normed vector spaces. Then ‖T ∗‖op = ‖T‖op; thus

the transpose operation is an isometric embedding of B(X → Y ) into

B(Y ∗ → X∗).

Proof. By Exercise 1.5.9, it suffices to show that ‖T ∗‖op ≥ ‖T‖op.

Accordingly, let α be any number strictly less than ‖T‖op, then we can

find x ∈ X such that ‖Tx‖Y ≥ α‖x‖. By Exercise 1.5.14 we can then

find λ ∈ Y ∗ such that ‖λ‖Y ∗ = 1 and λ(Tx) = T ∗λ(x) = ‖Tx‖Y ≥
α‖x‖, and thus ‖T ∗λ‖X∗ ≥ α. This implies that ‖T ∗‖op ≥ α; taking

suprema over all α strictly less than ‖T‖op we obtain the claim. �
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If we identify X and Y with subspaces of X∗∗ and Y ∗∗ respec-

tively, we thus see that T ∗∗ : X∗∗ → Y ∗∗ is an extension of T : X → Y

with the same operator norm. In particular, if X and Y are reflex-

ive, we see that T ∗∗ can be identified with T itself (exactly as in the

finite-dimensional linear algebra setting).

1.5.3. Variants of the Hahn-Banach theorem (optional). The

Hahn-Banach theorem has a number of essentially equivalent variants,

which also are of interest for the geometry of normed vector spaces.

Exercise 1.5.18 (Generalised Hahn-Banach theorem). Let Y be a

subspace of a real or complex vector space X, let ρ : X → R be a

sublinear functional on X (thus ρ(cx) = cρ(x) for all non-negative c

and all x ∈ X, and ρ(x + y) ≤ ρ(x) + ρ(y) for all x, y ∈ X), and let

λ : Y → R be a linear functional on Y such that λ(y) ≤ ρ(y) for

all y ∈ Y . Show that λ can be extended to a linear functional λ̃ on

X such that λ̃(x) ≤ ρ(x) for all x ∈ X. Show that this statement

implies the usual Hahn-Banach theorem. (Hint : adapt the proof of

the Hahn-Banach theorem.)

Call a subset A of a real vector space V algebraically open if the

sets {t : x + tv ∈ A} are open in R for all x, v ∈ V ; note that every

open set in a normed vector space is algebraically open.

Theorem 1.5.14 (Geometric Hahn-Banach theorem). Let A, B be

convex subsets of a real vector space V , with A algebraically open.

Then the following are equivalent:

(i) A and B are disjoint.

(ii) There exists a linear functional λ : V → R and a constant

c such that λ < c on A, and λ ≥ c on B. (Equivalently,

there is a hyperplane separating A and B, with A avoiding

the hyperplane entirely.)

If A and B are convex cones (i.e. tx ∈ A whenever x ∈ A and t > 0,

and similarly for B), we may take c = 0.

Remark 1.5.15. In finite dimensions, it is not difficult to drop the

algebraic openness hypothesis on A as long as one now replaces the

condition λ < c by λ ≤ c. However in infinite dimensions one cannot
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do this. Indeed, if we take V = cc(N), let A be the set of sequences

whose last non-zero element is strictly positive, and B = −A consist

of those sequences whose last non-zero element is strictly negative,

then one can verify that there is no hyperplane separating A from B.

Proof. Clearly (ii) implies (i); now we show that (i) implies (ii). We

first handle the case when A and B are convex cones.

Define a good pair to be a pair (A,B) where A and B are disjoint

convex cones, with A algebraically open, thus (A,B) is a good pair

by hypothesis. We can order (A,B) ≤ (A′, B′) if A′ contains A and

B′ contains B. A standard application of Zorn’s lemma (Section 2.4)

reveals that any good pair (A,B) is contained in a maximal good

pair, and so without loss of generality we may assume that (A,B) is

a maximal good pair.

We can of course assume that neither A nor B is empty. We now

claim that B is the complement of A. For if not, then there exists

v ∈ V which does not lie in either A or B. By the maximality of

(A,B), the convex cone generated by B ∪ {v} must intersect A at

some point, say w. By dilating w if necessary we may assume that w

lies on a line segment between v and some point b in B. By using the

convexity and disjointness of A and B one can then deduce that for

any a ∈ A, the ray {a+ t(w− b) : t > 0} is disjoint from B. Thus one

can enlarge A to the convex cone generated by A and w − b, which

is still algebraically open and now strictly larger than A (because it

contains v), a contradiction. Thus B is the complement of A.

Let us call a line in V monochromatic if it is entirely contained

in A or entirely contained in B. Note that if a line is not monochro-

matic, then (because A and B are convex and partition the line, and

A is algebraically open), the line splits into an open ray contained

in A, and a closed ray contained in B. From this we can conclude

that if a line is monochromatic, then all parallel lines must also be

monochromatic, because otherwise we look at the ray in the parallel

line which contains A and use convexity of both A and B to show

that this ray is adjacent to a halfplane contained in B, contradict-

ing algebraic openness. Now let W be the space of all vectors w for

which there exists a monochromatic line in the direction w (including
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0). Then W is easily seen to be a vector space; since A,B are non-

empty, W is a proper subspace of V . On the other hand, if w and

w′ are not in W , some playing around with the property that A and

B are convex sets partitioning V shows that the plane spanned by

w and w′ contains a monochromatic line, and hence some non-trivial

linear combination of w and w′ lies in W . Thus V/W is precisely

one-dimensional. Since every line with direction in w is monochro-

matic, A and B also have well-defined quotients A/W and B/W on

this one-dimensional subspace, which remain convex (with A/W still

algebraically open). But then it is clear that A/W and B/W are an

open and closed ray from the origin in V/W respectively. It is then a

routine matter to construct a linear functional λ : V → R (with null

space W ) such that A = {λ < 0} and B = {λ ≥ 0}, and the claim

follows.

To establish the general case when A, B are not convex cones, we

lift to one higher dimension and apply the previous result to convex

cones A′, B′ ∈ R × V defined by A′ := {(t, tx) : t > 0, x ∈ A},
B′ := {(t, tx) : t > 0, x ∈ B}; we leave the verification that this works

as an exercise. �

Exercise 1.5.19. Use the geometric Hahn-Banach theorem to re-

prove Exercise 1.5.18, thus providing a slightly different proof of

the Hahn-Banach theorem. (It is possible to reverse these implica-

tions and deduce the geometric Hahn-Banach theorem from the usual

Hahn-Banach theorem, but this is somewhat trickier, requiring one

to fashion a norm out of the difference A−B of two convex cones.)

Exercise 1.5.20 (Algebraic Hahn-Banach theorem). Let V be a vec-

tor space over a field F , let W be a subspace of V , and let λ : W → F

be a linear map. Show that there exists a linear map λ̃ : V → F which

extends λ.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/01/26.

Thanks to Eric, Xiaochuan Li, and an anonymous commenter for cor-

rections.

Some further discussion of variants of the Hahn-Banach theorem

(in the finite-dimensional setting) can be found in Section 1.16 of

Structure and Randomness.
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1.6. A quick review of point set topology

To progress further in our study of function spaces, we will need

to develop the standard theory of metric spaces, and of the closely

related theory of topological spaces (i.e. point-set topology). I will be

assuming that readers will already have encountered these concepts

in an undergraduate topology or real analysis course, but for sake of

completeness I will briefly review the basics of both spaces here.

1.6.1. Metric spaces. In many spaces, one wants a notion of when

two points in the space are “near” or “far”. A particularly quantita-

tive and intuitive way to formalise this notion is via the concept of a

metric space.

Definition 1.6.1 (Metric spaces). A metric space X = (X, d) is a

set X, together with a distance function d : X×X→ R+ which obeys

the following properties:

• (Non-degeneracy) For any x, y ∈ X, we have d(x, y) ≥ 0,

with equality if and only if x = y.

• (Symmetry) For any x, y ∈ X, we have d(x, y) = d(y, x).

• (Triangle inequality) For any x, y, z ∈ X, we have d(x, z) ≤
d(x, y) + d(y, z).

Example 1.6.2. Every normed vector space (X, ‖‖) is a metric space,

with distance function d(x, y) := ‖x− y‖.

Example 1.6.3. Any subset Y of a metric space X = (X, d) is also

a metric space Y = (Y, d �Y×Y ), where d �Y×Y : Y × Y → R+ is the

restriction of d to Y × Y . We call the metric space Y = (Y, d �Y×Y )

a subspace of the metric space X = (X, d).

Example 1.6.4. Given two metric spaces X = (X, dX) and Y =

(Y, dY ), we can define the product space X × Y = (X × Y, dX × dY )

to be the Cartesian product X × Y with the product metric

(1.59) dX × dY ((x, y), (x′, y′)) := max(dX(x, x′), dY (y, y′)).

(One can also pick slightly different metrics here, such as dX(x, x′) +

dY (y, y′), but this metric only differs from (1.59) by a factor of two,

and so they are equivalent (see Example 1.6.11 below).
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Example 1.6.5. Any set X can be turned into a metric space by

using the discrete metric d : X×X→ R+, defined by setting d(x, y) =

0 when x = y and d(x, y) = 1 otherwise.

Given a metric space, one can then define various useful topologi-

cal structures. There are two ways to do so. One is via the machinery

of convergent sequences:

Definition 1.6.6 (Topology of a metric space). Let (X, d) be a metric

space.

• A sequence xn of points in X is said to converge to a limit

x ∈ X if one has d(xn, x) → 0 as n → ∞. In this case,

we say that xn → x in the metric d as n → ∞, and that

limn→∞ xn = x in the metric space X. (It is easy to see

that any sequence of points in a metric space has at most

one limit.)

• A point x is an adherent point of a set E ⊂ X if it is the limit

of some sequence in E. (This is slightly different from being

a limit point of E, which is equivalent to being an adherent

point of E\{x}; every adherent point is either a limit point

or an isolated point of E.) The set of all adherent points

of E is called the closure E of X. A set E is closed if it

contains all its adherent points, i.e. if E = E. A set E is

dense if every point in X is adherent to E, or equivalently

if E = X.

• Given any x in X and r > 0, define the open ball B(x, r)

centred at x with radius r to be the set of all y in X such

that d(x, y) < r. Given a set E, we say that x is an interior

point of E if there is some open ball centred at x which is

contained in E. The set of all interior points is called the

interior E◦ of E. A set is open if every point is an interior

point, i.e. if E = E◦.

There is however an alternate approach to defining these con-

cepts, which takes the concept of an open set as a primitive, rather

than the distance function, and defines other terms in terms of open

sets. For instance:
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Exercise 1.6.1. Let (X, d) be a metric space.

(i) Show that a sequence xn of points in X converges to a limit

x ∈ X if and only if every open neighbourhood of x (i.e. an

open set containing x) contains xn for all sufficiently large

n.

(ii) Show that a point x is an adherent point of a set E if and

only if every open neighbourhood of x intersects E.

(iii) Show that a set E is closed if and only if its complement is

open.

(iv) Show that the closure of a set E is the intersection of all the

closed sets containing E.

(v) Show that a set E is dense if and only if every non-empty

open set intersects E.

(vi) Show that the interior of a set E is the union of all the open

sets contained in E, and that x is an interior point of E if

and only if some neighbourhood of x is contained in E.

In the next section we will adopt this “open sets first” perspective

when defining topological spaces.

On the other hand, there are some other properties of subsets

of a metric space which require the metric structure more fully, and

cannot be defined purely in terms of open sets (see e.g. Example

1.6.24), although some of these concepts can still be defined using a

structure intermediate to metric spaces and topological spaces, such

as uniform space. For instance:

Definition 1.6.7. Let (X, d) be a metric space.

• A sequence (xn)∞n=1 of points in X is a Cauchy sequence if

d(xn, xm) → 0 as n,m → ∞ (i.e. for every ε > 0 there

exists N > 0 such that d(xn, xm) ≤ ε for all n,m ≥ N).

• A space X is complete if every Cauchy sequence is conver-

gent.

• A set E in X is bounded if it is contained inside a ball.

• A set E is totally bounded in X if for every ε > 0, E can be

covered by finitely many balls of radius ε.
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Exercise 1.6.2. Show that any metric space X can be identified with

a dense subspace of a complete metric space X, known as a metric

completion or Cauchy completion of X. (For instance, R is a metric

completion of Q.) (Hint : one can define a real number to be an

equivalence class of Cauchy sequences of rationals. Once the reals are

defined, essentially the same construction works in arbitrary metric

spaces.) Furthermore, if X
′

is another metric completion of X, show

that there exists an isometry between X and X
′

which is the identity

on X. Thus, up to isometry, there is a unique metric completion to

any metric space.

Exercise 1.6.3. Show that a metric space X is complete if and only

if it is closed in every superspace Y of X (i.e. in every metric space

Y for which X is a subspace). Thus one can think of completeness as

being the property of being “absolutely closed”.

Exercise 1.6.4. Show that every totally bounded set is also bounded.

Conversely, in a Euclidean space Rn with the usual metric, show that

every bounded set is totally bounded. But give an example of a set

in a metric space which is bounded but not totally bounded. (Hint :

use Example 1.6.5.)

Now we come to an important concept.

Theorem 1.6.8 (Heine-Borel theorem for metric spaces). Let (X, d)

be a metric space. Then the following are equivalent:

(i) (Sequential compactness) Every sequence in X has a con-

vergent subsequence.

(ii) (Compactness) Every open cover (Vα)α∈A of X (i.e. a col-

lection of open sets Vα whose union contains X) has a finite

subcover.

(iii) (Finite intersection property) If (Fα)α∈A is a collection of

closed subsets of X such that any finite subcollection of sets

has non-empty intersection, then the entire collection has

non-empty intersection.

(iv) X is complete and totally bounded.

Proof. ((ii) =⇒ (i)) If there was an infinite sequence xn with no

convergent subsequence, then given any point x in X there must exist
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an open ball centred at x which contains xn for only finitely many

n (since otherwise one could easily construct a subsequence of xn
converging to n. By (ii), one can cover X with a finite number of

such balls. But then the sequence xn would be finite, a contradiction.

((i) =⇒ (iv)) If X was not complete, then there would exist a

Cauchy sequence which is not convergent; one easily shows that this

sequence cannot have any convergent subsequences either, contradict-

ing (i). If X was not totally bounded, then there exists ε > 0 such

that X cannot be covered by any finite collection of balls of radius ε;

a standard greedy algorithm argument then gives a sequence xn such

that d(xn, xm) ≥ ε for all distinct n, m. This sequence clearly has no

convergent subsequence, again a contradiction.

((ii) ⇐⇒ (iii)) This follows from de Morgan’s laws and Exercise

1.6.1(iii).

((iv) =⇒ (iii)) Let (Fα)α∈A be as in (iii). Call a set E in X

rich if it intersects all of the Fα. Observe that if one could cover

X by a finite number of non-rich sets, then (as each non-rich set is

disjoint from at least one of the Fα), there would be a finite number

of Fα whose intersection is empty, a contradiction. Thus, whenever

we cover X by finitely many sets, at least one of them must be rich.

As X is totally bounded, for each n ≥ 1 we can find a finite set

xn,1, . . . , xn,mn such that the balls B(xn,1, 2
−n), . . . , B(xn,mn , 2

−n)

cover X. By the previous discussion, we can then find 1 ≤ in ≤ mn

such that B(xn,in , 2
−n) is rich.

Call a ball B(xn,i, 2
−n) asymptotically rich if it contains infin-

itely many of the xj,ij . As these balls cover X, we see that for each

n, B(xn,i, 2
−n) is asymptotically rich for at least one i. Furthermore,

since each ball of radius 2−n can be covered by balls of radius 2−n−1,

we see that if B(xn,j , 2
−n) is asymptotically rich, then it must inter-

sect an asymptotically rich ball B(xn+1,j′ , 2
−n−1). Iterating this, we

can find a sequence B(xn,jn , 2
−n) of asymptotically rich balls, each

one of which intersects the next one. This implies that xn,jn is a

Cauchy sequence and hence (as X is assumed complete) converges to

a limit x. Observe that there exist arbitrarily small rich balls that are

arbitrarily close to x, and thus x is adherent to every Fα; since the

Fα are closed, we see that x lies in every Fα, and we are done. �
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Remark 1.6.9. The hard implication (iv) =⇒ (iii) of the Heine-

Borel theorem is noticeably more complicated than any of the others.

This turns out to be unavoidable; this component of the Heine-Borel

theorem turns out to be logically equivalent to König’s lemma in the

sense of reverse mathematics, and thus cannot be proven in sufficiently

weak systems of logical reasoning.

Any space that obeys one of the four equivalent properties in

Theorem 1.6.8 is called a compact space; a subset E of a metric space

X is said to be compact if it is a compact space when viewed as a

subspace of X. There are some variants of the notion of compactness

which are also of importance for us:

• A space is σ-compact if it can be expressed as the countable

union of compact sets. (For instance, the real line R with

the usual metric is σ-compact.)

• A space is locally compact if every point is contained in

the interior of a compact set. (For instance, R is locally

compact.)

• A subset of a space is precompact or relatively compact if

it is contained inside a compact set (or equivalently, if its

closure is compact).

Another fundamental notion in the subject is that of a continuous

map.

Exercise 1.6.5. Let f : X → Y be a map from one metric space

(X, dX) to another (Y, dY ). Then the following are equivalent:

• (Metric continuity) For every x ∈ X and ε > 0 there exists

δ > 0 such that dY (f(x), f(x′)) ≤ ε whenever dX(x, x′) ≤ δ.

• (Sequential continuity) For every sequence xn ∈ X that con-

verges to a limit x ∈ X, f(xn) converges to f(x).

• (Topological continuity) The inverse image f−1(V ) of every

open set V in Y , is an open set in X.

• The inverse image f−1(F ) of every closed set F in Y , is a

closed set in X.
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A function f obeying any one of the properties in Exercise 1.6.5

is known as a continuous map.

Exercise 1.6.6. Let X,Y, Z be metric spaces, and let f : X → Y

and g : X → Z be continuous maps. Show that the combined map

f ⊕ g : X → Y × Z defined by f ⊕ g(x) := (f(x), g(x)) is continuous

if and only if f and g are continuous. Show also that the projection

maps πY : Y × Z → Y , πZ : Y × Z → Z defined by πY (y, z) := y,

πZ(y, z) := z are continuous.

Exercise 1.6.7. Show that the image of a compact set under a con-

tinuous map is again compact.

1.6.2. Topological spaces. Metric spaces capture many of the no-

tions of convergence and continuity that one commonly uses in real

analysis, but there are several such notions (e.g. pointwise conver-

gence, semi-continuity, or weak convergence) in the subject that turn

out to not be modeled by metric spaces. A very useful framework

to handle these more general modes of convergence and continuity

is that of a topological space, which one can think of as an abstract

generalisation of a metric space in which the metric and balls are

forgotten, and the open sets become the central object9.

Definition 1.6.10 (Topological space). A topological space X =

(X,F) is a set X, together with a collection F of subsets of X, known

as open sets, which obey the following axioms:

• ∅ and X are open.

• The intersection of any finite number of open sets is open.

• The union of any arbitrary number of open sets is open.

The collection F is called a topology on X.

Given two topologies F ,F ′ on a space X, we say that F is a

coarser (or weaker) topology than F ′ (or equivalently, that F ′ is a

finer (or stronger) topology than F), if F ⊂ F ′ (informally, F ′ has

more open sets than F).

9There are even more abstract notions, such as pointless topological spaces, in
which the collection of open sets has become an abstract lattice, in the spirit of Section
2.3, but we will not need such notions in this course.
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Example 1.6.11. Every metric space (X, d) generates a topology Fd,
namely the space of sets which are open with respect to the metric

d. Observe that if two metrics d, d′ on X are equivalent in the sense

that

(1.60) cd(x, y) ≤ d′(x, y) ≤ Cd(x, y)

for all x, y in X and some constants c, C > 0, then they generate

identical topologies.

Example 1.6.12. The finest (or strongest) topology on any set X is

the discrete topology 2X = {E : E ⊂ X}, in which every set is open;

this is the topology generated by the discrete metric (Example 1.6.5).

The coarsest (or weakest) topology is the trivial topology {∅, X}, in

which only the empty set and the full set are open.

Example 1.6.13. Given any collection A of sets of X, we can define

the topology F [A] generated by A to be the intersection of all the

topologies that contain A; this is easily seen to be the coarsest topol-

ogy that makes all the sets in A open. For instance, the topology

generated by a metric space is the same as the topology generated by

its open balls.

Example 1.6.14. If (X,F) is a topological space, and Y is a subset

of X, then we can define the relative topology F �Y := {E∩Y : E ∈ F}
to be the collection of all open sets in X, restricted to Y , this makes

(Y,F �Y ) a topological space, known as a subspace of (X,F).

Any notion in metric space theory which can be defined purely in

terms of open sets, can now be defined for topological spaces. Thus

for instance:

Definition 1.6.15. Let (X,F) be a topological space.

• A sequence xn of points in X converges to a limit x ∈ X if

and only if every open neighbourhood of x (i.e. an open set

containing x) contains xn for all sufficiently large n. In this

case we write xn → x in the topological space (X,F), and

(if x is unique) we write x = limn→∞ xn.

• A point is a sequentially adherent point of a set E if it is the

limit of some sequence in E.
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• A point x is an adherent point of a set E if and only if every

open neighbourhood of x intersects E.

• The set of all adherent points of E is called the closure of

E and is denoted E.

• A set E is closed if and only if its complement is open, or

equivalently if it contains all its adherent points.

• A set E is dense if and only if every non-empty open set

intersects E, or equivalently if its closure is X.

• The interior of a set E is the union of all the open sets

contained in E, and x is called an interior point of E if and

only if some neighbourhood of x is contained in E.

• A space X is sequentially compact if every sequence has a

convergent subsequence.

• A space X is compact if every open cover has a finite sub-

cover.

• The concepts of being σ-compact, locally compact, and pre-

compact can be defined as before. (One could also define

sequential σ-compactness, etc., but these notions are rarely

used.)

• A map f : X → Y between topological spaces is sequentially

continuous if whenever xn converges to a limit x in X, f(xn)

converges to a limit f(x) in X.

• A map f : X → Y between topological spaces is continuous

if the inverse image of every open set is open.

Remark 1.6.16. The stronger a topology becomes, the more open

and closed sets it will have, but fewer sequences will converge, there

are fewer (sequentially) adherent points and (sequentially) compact

sets, closures become smaller, and interiors become larger. There will

be more (sequentially) continuous functions on this space, but fewer

(sequentially) continuous functions into the space. Note also that

the identity map from a space X with one topology F to the same

space X with a different topology F ′ is continuous precisely when F
is stronger than F ′.
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Example 1.6.17. In a metric space, these topological notions coin-

cide with their metric counterparts, and sequential compactness and

compactness are equivalent, as are sequential continuity and continu-

ity.

Exercise 1.6.8 (Urysohn’s subsequence principle). Let xn be a se-

quence in a topological space X, and let x be another point in X.

Show that the following are equivalent:

• xn converges to x.

• Every subsequence of xn converges to x.

• Every subsequence of xn has a further subsequence that con-

verges to x.

Exercise 1.6.9. Show that every sequentially adherent point is an

adherent point, and every continuous function is sequentially contin-

uous.

Remark 1.6.18. The converses to Exercise 1.6.9 are unfortunately

not always true in general topological spaces. For instance, if we en-

dow an uncountable set X with the cocountable topology (so that a

set is open if it is either empty, or its complement is at most count-

able) then we see that the only convergent sequences are those which

are eventually constant. Thus, every subset of X contains its se-

quentially adherent points, and every function from X to another

topological space is sequentially continuous, even though not every

set in X is closed and not every function on X is continuous. An ex-

ample of a set which is sequentially compact but not compact is the

first uncountable ordinal with the order topology (Exercise 1.6.10).

It is more tricky to give an example of a compact space which is

not sequentially compact; this will have to wait until we establish

Tychonoff’s theorem (Theorem 1.8.14). However one can “fix” this

discrepancy between the sequential and non-sequential concepts by

replacing sequences with the more general notion of nets, see Section

1.6.3.

Remark 1.6.19. Metric space concepts such as boundedness, com-

pleteness, Cauchy sequences, and uniform continuity do not have

counterparts for general topological spaces, because they cannot be
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defined purely in terms of open sets. (They can however be ex-

tended to some other types of spaces, such as uniform spaces or coarse

spaces.)

Now we give some important topologies that capture certain

modes of convergence or continuity that are difficult or impossible

to capture using metric spaces alone.

Example 1.6.20 (Zariski topology). This topology is important in

algebraic geometry, though it will not be used in this course. If F

is an algebraically closed field, we define the Zariski topology on the

vector space Fn to be the topology generated by the complements

of proper algebraic varieties in Fn; thus a set is Zariski open if it is

either empty, or is the complement of a finite union of proper algebraic

varieties. A set in Fn is then Zariski dense if it is not contained in

any proper subvariety, and the Zariski closure of a set is the smallest

algebraic variety that contains that set.

Example 1.6.21 (Order topology). Any totally ordered set (X,<)

generates the order topology, defined as the topology generated by the

sets {x ∈ X : x > a} and {x ∈ X : x < a} for all a ∈ X. In particular,

the extended real line [−∞,+∞] can be given the order topology,

and the notion of convergence of sequences in this topology to either

finite or infinite limits is identical to the notion one is accustomed

to in undergraduate real analysis. (On the real line, of course, the

order topology corresponds to the usual topology.) Also observe that

a function n 7→ xn from the extended natural numbers N ∪ {+∞}
(with the order topology) into a topological space X is continuous if

and only if xn → x+∞ as n → ∞, so one can interpret convergence

of sequences as a special case of continuity.

Exercise 1.6.10. Let ω be the first uncountable ordinal, endowed

with the order topology. Show that ω is sequentially compact (Hint :

every sequence has a lim sup), but not compact (Hint : every point

has a countable neighbourhood).

Example 1.6.22 (Half-open topology). The right half-open topology

Fr on the real line R is the topology generated by the right half-open

intervals [a, b) for −∞ < a < b <∞; this is a bit finer than the usual

topology on R. Observe that a sequence xn converges to a limit x in
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the right half-open topology if and only if it converges in the ordinary

topology F , and also if xn ≥ x for all sufficiently large x. Observe

that a map f : R → R is right-continuous iff it is a continuous map

from (R,Fr) to (R,F). One can of course model left-continuity via

a suitable left half-open topology in a similar fashion.

Example 1.6.23 (Upper topology). The upper topology Fu on the

real line is defined as the topology generated by the sets (a,+∞) for all

a ∈ R. Observe that (somewhat confusingly), a function f : R→ R

is lower semi-continuous iff it is continuous from (R,F) to (R,Fu).

One can of course model upper semi-continuity via a suitable lower

topology in a similar fashion.

Example 1.6.24 (Product topology). Let Y X be the space of all

functions f : X → Y from a set X to a topological space Y . We

define the product topology on Y X to be the topology generated by

the sets {f ∈ Y X : f(x) ∈ V } for all x ∈ X and all open V ⊂ Y .

Observe that a sequence of functions fn : X → Y converges pointwise

to a limit f : X → Y iff it converges in the product topology. We will

study the product topology in more depth in Section 1.8.3.

Example 1.6.25 (Product topology, again). If (X,FX) and (Y,FY )

are two topological spaces, we can define the product space (X ×
Y,FX × FY ) to be the Cartesian product X × Y with the topology

generated by the product sets U × V , where U and V are open in X

and Y respectively. Observe that two functions f : Z → X, g : Z → Y

from a topological space Z are continuous if and only if their direct

sum f : Z → X × Y is continuous in the product topology, and also

that the projection maps πX : X × Y → X and πY : X × Y → Y are

continuous (cf. Exercise 1.6.6).

We mention that not every topological space can be generated

from a metric (such topological spaces are called metrisable). One

important obstruction to this arises from the Hausdorff property:

Definition 1.6.26. A topological space X is said to be a Hausdorff

space if for any two distinct points x, y in X, there exist disjoint

neighbourhoods Vx, Vy of x and y respectively.
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Example 1.6.27. Every metric space is Hausdorff (one can use the

open balls B(x, d(x, y)/2) and B(y, d(x, y)/2) as the separating neigh-

bourhoods). On the other hand, the trivial topology (Example 1.6.13)

on two or more points is not Hausdorff, and neither is the cocount-

able topology (Remark 1.6.18) on an uncountable set, or the upper

topology (Example 1.6.23) on the real line. Thus, these topologies do

not arise from a metric.

Exercise 1.6.11. Show that the half-open topology (Example 1.6.22)

is Hausdorff, but does not arise from a metric. (Hint : assume for

contradiction that the half-open topology did arise from a metric;

then show that for every real number x there exists a rational number

q and a positive integer n such that the ball of radius 1/n centred at

q has infimum x.) Thus there are more obstructions to metrisability

than just the Hausdorff property; a more complete answer is provided

by Urysohn’s metrisation theorem (Theorem 2.5.7).

Exercise 1.6.12. Show that in a Hausdorff space, any sequence can

have at most one limit. (For a more precise statement, see Exercise

1.6.16 below.)

A homeomorphism (or topological isomorphism) between two topo-

logical spaces is a continuous invertible map f : X → Y whose inverse

f−1 : Y → X is also continuous. Such a map identifies the topology

on X with the topology on Y , and so any topological concept of X

will be preserved by f to the corresponding topological concept of

Y . For instance, X is compact if and only if Y is compact, X is

Hausdorff if and only if Y is Hausdorff, x is adherent to E if and only

if f(x) is adherent to f(E), and so forth. When there is a homeo-

morphism between two topological spaces, we say that X and Y are

homeomorphic (or topologically isomorphic).

Example 1.6.28. The tangent function is a homeomorphism be-

tween (−π/2, π/2) and R (with the usual topologies), and thus pre-

serves all topological structures on these two spaces. Note however

that the former space is bounded as a metric space while the latter is

not, and the latter is complete while the former is not. Thus metric

properties such as boundedness or completeness are not purely topo-

logical properties, since they are not preserved by homeomorphisms.
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1.6.3. Nets (optional). A sequence (xn)∞n=1 in a space X can be

viewed as a function from the natural numbers N to X. We can

generalise this concept as follows.

Definition 1.6.29 (Nets). A net in a space X is a tuple (xα)α∈A,

where A = (A,<) is a directed set (i.e. a partially ordered set such

that any two elements have at least one upper bound), and xα ∈ X
for each α ∈ A. We say that a statement P (α) holds for sufficiently

large α in a directed set A if there exists β ∈ A such that P (α) holds

for all α ≥ β. (Note in particular that if P (α) and Q(α) separately

hold for sufficiently large α, then their conjunction P (α) ∧Q(α) also

holds for sufficiently large α.)

A net (xα)α∈A in a topological space X is said to converge to a

limit x ∈ X if for every neighbourhood V of x, we have xα ∈ V for

all sufficiently large α.

A subnet of a net (xα)α∈A is a tuple of the form (xφ(β))β∈B , where

(B,<) is another directed set, and φ : B → A is a monotone map

(thus φ(β′) ≥ φ(β) whenever β′ ≥ β) which is also has cofinal image,

which means that for any α ∈ A there exists β ∈ B with φ(β) ≥ α

(in particular, if P (α) is true for sufficiently large α, then P (φ(β)) is

true for sufficiently large β).

Remark 1.6.30. Every sequence is a net, but one can create nets

that do not arise from sequences (in particular, one can take A to

be uncountable). Note a subtlety in the definition of a subnet - we

do not require φ to be injective, so B can in fact be larger than A!

Thus subnets differ a little bit from subsequences in that they “allow

repetitions”.

Remark 1.6.31. Given a directed set A, one can endow A ∪ {+∞}
with the upper topology (cf. Example 1.6.23) generated by the sets

[α,+∞] := {β ∈ A ∪ {+∞} : β ≥ α} for α ∈ A, with the convention

that +∞ > α for all α ∈ A. The property of being directed is

precisely saying that these sets form a base. A net (xα)α∈A converges

to a limit x+∞ if and only if the function α 7→ xα is continuous on

A ∪ {+∞} (cf. Example 1.6.21). Also, if (xφ(β))β∈B is a subnet of

(xα)α∈A, then φ is a continuous map from B∪{+∞} to A∪{+∞}, if
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we adopt the convention that φ(+∞) = +∞. In particular, a subnet

of a convergent net remains convergent to the same limit.

The point of working with nets instead of sequences is that one no

longer needs to worry about the distinction between sequential and

non-sequential concepts in topology, as the following exercises show:

Exercise 1.6.13. Let X be a topological space, let E be a subset of

X, and let x be an element of X. Show that x is an adherent point of

E if and only if there exists a net (xα)α∈A in E that converges to x.

(Hint : take A to be the directed set of neighbourhoods of x, ordered

by reverse set inclusion.)

Exercise 1.6.14. Let f : X → Y be a map between two topological

spaces. Show that f is continuous if and only if for every net (xα)α∈A
in X that converges to a limit x, the net (f(xα))α∈A converges in Y

to f(x).

Exercise 1.6.15. Let X be a topological space. Show that X is

compact if and only if every net has a convergent subnet. (Hint :

equate both properties of X with the finite intersection property, and

review the proof of Theorem 1.6.8.) Similarly, show that a subset E of

X is relatively compact if and only if every net in E has a subnet that

converges in X. (Note that as not every compact space is sequentially

compact, this exercise shows that we cannot enforce injectivity of φ

in the definition of a subnet.)

Exercise 1.6.16. Show that a space is Hausdorff if and only if every

net has at most one limit.

Exercise 1.6.17. In the product space Y X in Example 1.6.24, show

that a net (fα)α∈A converges in Y X to f ∈ Y X if and only if for every

x ∈ X, the net (fα(x))α∈A converges in Y to f(α).

Notes. This lecture first appeared at terrytao.wordpress.com/2009/01/30.

Thanks to Franciscus Rebro, johan, Josh Zahl, Xiaochuan Liu, and

anonymous commenters for corrections.

An anonymous commenter pointed out that while the real line can

be viewed very naturally as the metric completion of the rationals,

this cannot quite be used to give a definition of the real numbers,
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because the notion of a metric itself requires the real numbers in its

definition! However, K. P. Hart noted that Bourbaki resolves this

problem by defining the reals as the completion of the rationals as a

uniform space rather than as a metric space.

1.7. The Baire category theorem and its Banach
space consequences

The notion of what it means for a subset E of a space X to be “small”

varies from context to context. For instance, in measure theory, when

X = (X,X , µ) is a measure space, one useful notion of a “small” set

is that of a null set: a set E of measure zero (or at least contained in

a set of measure zero). By countable additivity, countable unions of

null sets are null. Taking contrapositives, we obtain

Lemma 1.7.1 (Pigeonhole principle for measure spaces). Let E1, E2, . . .

be an at most countable sequence of measurable subsets of a measure

space X. If
⋃
nEn has positive measure, then at least one of the En

has positive measure.

Now suppose that X was a Euclidean space Rd with Lebesgue

measure m. The Lebesgue differentiation theorem easily implies that

having positive measure is equivalent to being “dense” in certain balls:

Proposition 1.7.2. Let E be a measurable subset of Rd. Then the

following are equivalent:

• E has positive measure.

• For any ε > 0, there exists a ball B such that m(E ∩ B) ≥
(1− ε)m(B).

Thus one can think of a null set as a set which is “nowhere dense”

in some measure-theoretic sense.

It turns out that there are analogues of these results when the

measure space X = (X,X , µ) is replaced instead by a complete metric

space X = (X, d). Here, the appropriate notion of a “small” set is

not a null set, but rather that of a nowhere dense set : a set E which

is not dense in any ball, or equivalently a set whose closure has empty

interior. (A good example of a nowhere dense set would be a proper
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subspace, or smooth submanifold, of Rd, or a Cantor set; on the

other hand, the rationals are a dense subset of R and thus clearly not

nowhere dense.) We then have the following important result:

Theorem 1.7.3 (Baire category theorem). Let E1, E2, . . . be an at

most countable sequence of subsets of a complete metric space X. If⋃
nEn contains a ball B, then at least one of the En is dense in a

sub-ball B′ of B (and in particular is not nowhere dense). To put it in

the contrapositive: the countable union of nowhere dense sets cannot

contain a ball.

Exercise 1.7.1. Show that the Baire category theorem is equivalent

to the claim that in a complete metric space, the countable intersec-

tion of open dense sets remain dense.

Exercise 1.7.2. Using the Baire category theorem, show that any

non-empty complete metric space without isolated points is uncount-

able. (In particular, this shows that Baire category theorem can fail

for incomplete metric spaces such as the rationals Q.)

To quickly illustrate an application of the Baire category theorem,

observe that it implies that one cannot cover a finite-dimensional real

or complex vector space Rn,Cn by a countable number of proper sub-

spaces. One can of course also establish this fact by using Lebesgue

measure on this space. However, the advantage of the Baire cate-

gory approach is that it also works well in infinite dimensional com-

plete normed vector spaces, i.e. Banach spaces, whereas the measure-

theoretic approach runs into significant difficulties in infinite dimen-

sions. This leads to three fundamental equivalences between the qual-

itative theory of continuous linear operators on Banach spaces (e.g.

finiteness, surjectivity, etc.) to the quantitative theory (i.e. esti-

mates):

• The uniform boundedness principle, that equates the quali-

tative boundedness (or convergence) of a family of continu-

ous operators with their quantitative boundedness.

• The open mapping theorem, that equates the qualitative

solvability of a linear problem Lu = f with the quantita-

tive solvability.
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• The closed graph theorem, that equates the qualitative reg-

ularity of a (weakly continuous) operator T with the quan-

titative regularity of that operator.

Strictly speaking, these theorems are not used much directly in

practice, because one usually works in the reverse direction (i.e. first

proving quantitative bounds, and then deriving qualitative corollar-

ies); but the above three theorems help explain why we usually ap-

proach qualitative problems in functional analysis via their quantita-

tive counterparts.

Let us first prove the Baire category theorem:

Proof of Baire category theorem. Assume that the Baire cate-

gory theorem failed; then it would be possible to cover a ball B(x0, r0)

in a complete metric space by a countable family E1, E2, E3, . . . of

nowhere dense sets.

We now invoke the following easy observation: if E is nowhere

dense, then every ball B contains a subball B′ which is disjoint from

E. Indeed, this follows immediately from the definition of a nowhere

dense set.

Invoking this observation, we can find a ballB(x1, r1) inB(x0, r0/10)

(say) which is disjoint from E1; we may also assume that r1 ≤ r0/10

by shrinking r1 as necessary. Then, inside B(x1, r1/10), we can find

a ball B(x2, r2) which is also disjoint from E2, with r2 ≤ r1/10.

Continuing this process, we end up with a nested sequence of balls

B(xn, rn), each of which are disjoint from E1, . . . , En, and such that

B(xn, rn) ⊂ B(xn−1, rn−1/10) and rn ≤ rn−1/10 for all n = 1, 2, . . ..

From the triangle inequality we have d(xn, xn−1) ≤ 2rn−1/10 ≤
2 × 10−nr0, and so the sequence xn is a Cauchy sequence. As X

is complete, xn converges to a limit x. Summing the geometric se-

ries, one verifies that x ∈ B(xn−1, rn−1) for all n = 1, 2, . . ., and in

particular x is an element of B which avoids all of E1, E2, E3, . . ., a

contradiction. �

We can illustrate the analogy between the Baire category theo-

rem and the measure-theoretic analogs by introducing some further

definitions. Call a set E meager or of the first category if it can be
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expressed (or covered) by a countable union of nowhere dense sets,

and of the second category if it is not meager. Thus, the Baire cate-

gory theorem shows that any subset of a complete metric space with

non-empty interior is of the second category, which may help explain

the name for the property. Call a set co-meager or residual if its

complement is meager, and call a set Baire or almost open if it differs

from an open set by a meager set (note that a Baire set is unrelated

to the Baire σ-algebra). Then we have the following analogy between

complete metric space topology, and measure theory:

Complete non-empty metric space X Measure space X of positive measure

first category (meager) zero measure (null)

second category positive measure

residual (co-meager) full measure (co-null)

Baire measurable

Nowhere dense sets are meager, and meager sets have empty in-

terior. Contrapositively, sets with non-empty interior are residual,

and residual sets are somewhere dense. Taking complements instead

of contrapositives, we see that open dense sets are co-meager,and co-

meager sets are dense.

While there are certainly many analogies between meager sets and

null sets (for instance, both classes are closed under countable unions,

or under intersections with arbitrary sets), the two concepts can differ

in practice. For instance, in the real line R with the standard metric

and measure space structures, the set

(1.61)

∞⋃
n=1

(qn − 2−n, qn + 2−n),

where q1, q2, . . . is an enumeration of the rationals, is open and dense,

but has Lebesgue measure at most 2; thus its complement has infinite

measure in R but is nowhere dense (hence meager). As a variant of

this, the set

(1.62)

∞⋂
m=1

∞⋃
n=1

(qn − 2−n/m, qn + 2−n/m),

is a null set, but is the intersection of countably many open dense

sets and is thus co-meager.



1.7. The Baire category theorem 95

Exercise 1.7.3. A real number x is Diophantine if for every ε > 0

there exists c > 0 such that |x− a
q | ≥

cε
|q|2+ε for every rational number

a
q . Show that the set of Diophantine real numbers has full measure

but is meager.

Remark 1.7.4. If one assumes some additional axioms of set theory

(e.g. the continuum hypothesis), it is possible to show that the col-

lection of meager subsets of R and the collection of null subsets of R

(viewed as σ-ideals of the collection of all subsets of R) are isomor-

phic; this is the Sierpinski-Erdös theorem, which we will not prove

here. Roughly speaking, this theorem tells us that any “effective”

first-order statement which is true about meager sets will also be true

about null sets, and conversely.

1.7.1. The uniform boundedness principle. As mentioned in

the introduction, the Baire category theorem implies various equiva-

lences between qualitative and quantitative properties of linear trans-

formations between Banach spaces. Note that Lemma 1.16 already

gave a prototypical such equivalence between a qualitative property

(continuity) and a quantitative one (boundedness).

Theorem 1.7.5 (Uniform boundedness principle). Let X be a Ba-

nach space, let Y be a normed vector space, and let (Tα)α∈A be a

family of continuous linear operators Tα : X → Y . Then the follow-

ing are equivalent:

• (Pointwise boundedness) For every x ∈ X, the set {Tαx :

α ∈ A} is bounded.

• (Uniform boundedness) The operator norms {‖Tα‖op : α ∈
A} are bounded.

The uniform boundedness principle is also known as the Banach-

Steinhaus theorem.

Proof. It is clear that (ii) implies (i); now assume (i) holds and let

us obtain (ii).

For each n = 1, 2, . . ., let En be the set

(1.63) En := {x ∈ X : ‖Tαx‖Y ≤ n for all α ∈ A}.
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The hypothesis (i) is nothing more than the assertion that the En
cover X, and thus by the Baire category theorem must be dense in a

ball. Since the Tα are continuous, the En are closed, and so one of

the En contains a ball. Since En −En ⊂ E2n, we see that one of the

En contains a ball centred at the origin. Dilating n as necessary, we

see that one of the En contains the unit ball B(0, 1). But then all the

‖Tα‖op are bounded by n, and the claim follows. �

Exercise 1.7.4. Give counterexamples to show that the uniform

boundedness principle fails one relaxes the assumptions in any of the

following ways:

• X is merely a normed vector space rather than a Banach

space (i.e. completeness is dropped).

• The Tα are not assumed to be continuous.

• The Tα are allowed to be nonlinear rather than linear.

Thus completeness, continuity, and linearity are all essential for the

uniform boundedness principle to apply.

Remark 1.7.6. It is instructive to establish the uniform bounded-

ness principle more “constructively” without the Baire category the-

orem (though the proof of the Baire category theorem is still im-

plicitly present), as follows. Suppose that (ii) fails, then ‖Tα‖op

is unbounded. We can then find a sequence αn ∈ A such that

‖Tαn+1
‖op > 100n‖Tαn‖op (say) for all n. We can then find unit

vectors xn such that ‖Tαnxn‖Y ≥ 1
2‖Tαn‖op.

We can then form the absolutely convergent (and hence condi-

tionally convergent, by completeness) sum x =
∑∞
n=1 εn10−nxn for

some choice of signs εn = ±1 recursively as follows: once ε1, . . . , εn−1

have been chosen, choose the sign εn so that

(1.64) ‖
n∑

m=1

εn10−nTαnxn‖Y ≥ ‖10−nTαnxn‖Y ≥
1

2
10−n‖Tαn‖op.

From the triangle inequality we soon conclude that

(1.65) ‖Tαnx‖Y ≥
1

4
10−n‖Tαn‖op.

But by hypothesis, the right-hand side of (1.65) is unbounded in n,

contradicting (i).
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A common way to apply the uniform boundedness principle is via

the following corollary:

Corollary 1.7.7 (Uniform boundedness principle for norm conver-

gence). Let X be a Banach space, let Y be a normed vector space, and

let (Tn)∞n=1 be a family of continuous linear operators Tn : X → Y .

Then the following are equivalent:

(i) (Pointwise convergence) For every x ∈ X, Tnx converges

strongly in Y as n→∞.

(ii) (Pointwise convergence to a continuous limit) There exists

a continuous linear T : X → Y such that for every x ∈ X,

Tnx converges strongly in Y to Tx as n→∞.

(iii) (Uniform boundedness + dense subclass convergence) The

operator norms {‖Tn‖ : n = 1, 2, . . .} are bounded, and for a

dense set of x in X, Tnx converges strongly in Y as n→∞.

Proof. Clearly (ii) implies (i), and as convergent sequences are bounded,

we see from Theorem 1.7.3 that (i) implies (iii). The implication of

(ii) from (iii) follows by a standard limiting argument and is left as

an exercise. �

Remark 1.7.8. The same equivalences hold if one replaces the se-

quence (Tn)∞n=1 by a net (Tα)α∈A.

Example 1.7.9 (Fourier inversion formula). For any f ∈ L2(R) and

N > 0, define the Dirichlet summation operator

(1.66) SNf(x) :=

∫ N

−N
f̂(ξ)e2πixξ dξ

where f̂ is the Fourier transform of f, defined on smooth compactly

supported functions f ∈ C∞0 (R) by the formula f̂(ξ) :=
∫∞
−∞ f(x)e−2πixξ dx

and then extended to L2 by the Plancherel theorem (see Section 1.12).

Using the Plancherel identity, we can verify that the operator norms

‖SN‖op are uniformly bounded (indeed, they are all 1); also, one can

check that for f ∈ C∞0 (R), that SNf converges in L2 norm to f as

N →∞. As C∞0 (R) is known to be dense in L2(R), this implies that

SNf converges in L2 norm to f for every f ∈ L2(R).
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This argument only used the “easy” implication of Corollary

1.7.7, namely the deduction of (ii) from (iii). The “hard” implication

using the Baire category theorem was not directly utilised. However,

from a metamathematical standpoint, that implication is important

because it tells us that the above strategy to prove convergence in

norm of the Fourier inversion formula on L2 - i.e. to obtain uniform

operator norms on the partial sums, and to establish convergence on a

dense subclass of “nice” functions - is in some sense the only strategy

available to prove such a result.

Remark 1.7.10. There is a partial analogue of Corollary 1.7.7 for

the question of pointwise almost everywhere convergence rather than

norm convergence, known as Stein’s maximal principle (discussed for

instance in Section 1.9 of Structure and Randomness). For instance, it

reduces Carleson’s theorem on the pointwise almost everywhere con-

vergence of Fourier series to the boundedness of a certain maximal

function (the Carleson maximal operator) related to Fourier summa-

tion, although the latter task is again quite non-trivial. (As in Ex-

ample 1.7.9, the role of the maximal principle is meta-mathematical

rather than direct.)

Remark 1.7.11. Of course, if we omit some of the hypotheses, it is

no longer true that pointwise boundedness and uniform boundedness

are the same. For instance, if we let c0(N) be the space of complex

sequences with only finitely many non-zero entries and with the uni-

form topology, and let λn : c0(N)→ C be the map (am)∞m=1 → nan,

then the λn are pointwise bounded but not uniformly bounded; thus

completeness of X is important. Also, even in the one-dimensional

case X = Y = R, the uniform boundedness principle can easily be

seen to fail if the Tα are non-linear transformations rather than linear

ones.

1.7.2. The open mapping theorem. A map f : X → Y between

topological spaces X and Y is said to be open if it maps open sets to

open sets. This is similar to, but slightly different, from the more fa-

miliar property of being continuous, which is equivalent to the inverse

image of open sets being open. For instance, the map f : R → R

defined by f(x) := x2 is continuous but not open; conversely, the
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function g : R2 → R defined by g(x, y) := sgn(y) +x is discontinuous

but open.

We have just seen that it is quite possible for non-linear contin-

uous maps to fail to be open. But for linear maps between Banach

spaces, the situation is much better:

Theorem 1.7.12 (Open mapping theorem). Let L : X → Y be a

continuous linear transformation between two Banach spaces X and

Y . Then the following are equivalent:

(i) L is surjective.

(ii) L is open.

(iii) (Qualitative solvability) For every f ∈ Y there exists a so-

lution u ∈ X to the equation Lu = f .

(iv) (Quantitative solvability) There exists a constant C > 0 such

that for every f ∈ Y there exists a solution u ∈ X to the

equation Lu = f , which obeys the bound ‖u‖X ≤ C‖f‖Y .

(v) (Quantitative solvability for a dense subclass) There exists

a constant C > 0 such that for a dense set of f in Y , there

exists a solution u ∈ X to the equation Lu = f , which obeys

the bound ‖u‖X ≤ C‖f‖Y .

Proof. Clearly (iv) implies (iii), which is equivalent to (i), and it is

easy to see from linearity that (ii) and (iv) are equivalent (cf. the proof

of Lemma 1.3.17). (iv) trivially implies (v), while to conversely obtain

(iv) from (v), observe that if E is any dense subset of the Banach space

Y , then any f in Y can be expressed as an absolutely convergent series

f =
∑
n fn of elements in E (since one can iteratively approximate

the residual f −
∑N−1
n=1 fn to arbitrary accuracy by an element of E

for N = 1, 2, 3, . . .), and the claim easily follows. So it suffices to show

that (iii) implies (iv).

For each n, let En ⊂ Y be the set of all f ∈ Y for which there

exists a solution to Lu = f with ‖u‖X ≤ n‖f‖Y . From the hypothesis

(iii), we see that
⋃
nEn = Y . Since Y is complete, the Baire category

theorem implies that there is some En which is dense in some ball

B(f0, r) in Y . In other words, the problem Lu = f is approximately

quantitatively solvable in the ball B(f0, r) in the sense that for every
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ε > 0 and every f ∈ B(f0, r), there exists an approximate solution u

with ‖Lu− f‖Y ≤ ε and ‖u‖X ≤ n‖Lu‖Y , and thus ‖u‖X ≤ nr+nε.

By subtracting two such approximate solutions, we conclude that

for any f ∈ B(0, 2r) and any ε > 0, there exists u ∈ X with ‖Lu −
f‖Y ≤ 2ε and ‖u‖X ≤ 2nr + 2nε.

Since L is homogeneous, we can rescale and conclude that for any

f ∈ Y and any ε > 0 there exists u ∈ X with ‖Lu − f‖Y ≤ 2ε and

‖u‖X ≤ 2n‖f‖Y + 2nε.

In particular, setting ε = 1
4‖f‖Y (treating the case f = 0 sepa-

rately), we conclude that for any f ∈ Y , we may write f = Lu + f ′,

where ‖f ′‖Y ≤ 1
2‖f‖Y and ‖u‖X ≤ 5

2n‖f‖Y .

We can iterate this procedure and then take limits (now using

the completeness of X rather than Y ) to obtain a solution to Lu = f

for every f ∈ Y with ‖u‖X ≤ 5n‖f‖Y , and the claim follows. �

Remark 1.7.13. The open mapping theorem provides metamathe-

matical justification for the method of a priori estimates for solving

linear equations such as Lu = f for a given datum f ∈ Y and for an

unknown u ∈ X, which is of course a familiar problem in linear PDE.

The a priori method assumes that f is in some dense class of nice

functions (e.g. smooth functions) in which solvability of Lu = f is

presumably easy, and then proceeds to obtain the a priori estimate

‖u‖X ≤ C‖f‖Y for some constant Y. Theorem 1.7.12 then assures

that Lu = f is solvable for all f in Y (with a similar bound). As be-

fore, this implication does not directly use the Baire category theorem,

but that theorem helps explain why this method is “not wasteful”.

A pleasant corollary of the open mapping theorem is that, as with

ordinary linear algebra or with arbitrary functions, invertibility is the

same thing as bijectivity:

Corollary 1.7.14. Let T : X → Y be a continuous linear operator

between two Banach spaces X, Y . Then the following are equivalent:

• (Qualitative invertibility) T is bijective.

• (Quantitative invertibility) T is bijective, and T−1 : Y → X

is a continuous (hence bounded) linear transformation.
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Remark 1.7.15. The claim fails without the completeness hypothe-

ses on X and Y . For instance, consider the operator T : cc(N) →
cc(N) defined by T (an)∞n=1 := (ann )∞n=1, where we give cc(N) the

uniform norm. Then T is continuous and bijective, but T−1 is un-

bounded.

Exercise 1.7.5. Show that Corollary 1.7.14 can still fail if we drop

the completeness hypothesis on just X, or just Y .

Exercise 1.7.6. Suppose that L : X → Y is a surjective continu-

ous linear transformation between Banach spaces. By combining the

open mapping theorem with the Hahn-Banach theorem, show that

the transpose map L∗ : Y ∗ → X∗ is bounded from below, i.e. there

exists c > 0 such that ‖L∗λ‖X∗ ≥ c‖λ‖Y ∗ for all λ ∈ Y ∗. Conclude

that L∗ is an isomorphism between Y ∗ and L∗(Y ∗).

Let L be as in Theorem 1.7.12, so that the problem Lu = f is

both qualitatively and quantitatively solvable. A standard applica-

tion of Zorn’s lemma (similar to that used to prove the Hahn-Banach

theorem) shows that the problem Lu = f is also qualitatively lin-

early solvable, in the sense that there exists a linear transformation

S : Y → X such that LSf = f for all f ∈ Y (i.e. S is a right-inverse

of L). In view of the open mapping theorem, it is then tempting to

conjecture that L must also be quantitatively linearly solvable, in the

sense that there exists a continuous linear transformation S : Y → X

such that LSf = f for all f ∈ Y . By Corollary 1.7.14, we see that

this conjecture is true when the problem Lu = f is determined, i.e.

there is exactly one solution u for each datum f . Unfortunately, the

conjecture can fail when Lu = f is underdetermined (more than one

solution u for each f); we discuss this in Section 1.7.4. On the other

hand, the situation is much better for Hilbert spaces:

Exercise 1.7.7. Suppose that L : H → H ′ is a surjective continuous

linear transformation between Hilbert spaces. Show that there exists

a continuous linear transformation S : H ′ → H such that LS =

I. Furthermore, show that we can ensure that the range of S is

orthogonal to the kernel of L, and that this condition determines S

uniquely.
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Remark 1.7.16. In fact, Hilbert spaces are essentially the only type

of Banach space for which we have this nice property, due to the

Lindenstrauss-Tzafriri solution [LiTz1971] of the complemented sub-

spaces problem.

Exercise 1.7.8. Let M and N be closed subspaces of a Banach space

X. Show that the following statements are equivalent:

(i) (Qualitative complementation) Every x in X can be ex-

pressed in the form m + n for m ∈ M,n ∈ N in exactly

one way.

(ii) (Quantitative complementation) Every x in X can be ex-

pressed in the form m+ n for m ∈M,n ∈ N in exactly one

way. Furthermore there exists C > 0 such that ‖m‖X , ‖n‖X ≤
C‖x‖X for all x.

When either of these two properties hold, we say that M (or N) is

a complemented subspace, and that N is a complement of M (or vice

versa).

The property of being complemented is closely related to that of

quantitative linear solvability:

Exercise 1.7.9. Let L : X → Y be a surjective map between Banach

spaces. Show that there exists a bounded linear map S : Y → X such

that LSf = f for all f ∈ Y if and only if the kernel {u ∈ X : Lu = 0}
is a complemented subspace of X.

Exercise 1.7.10. Show that any finite-dimensional or finite co-dimensional

subspace of a Banach space is complemented.

Remark 1.7.17. The problem of determining whether a given closed

subspace of a Banach space is complemented or not is, in general,

quite difficult. However, non-complemented subspaces do exist in

abundance; some example are given in the apendix, and the Lindenstrauss-

Tzafriri theorem [LiTz1971] asserts that any Banach space not iso-

morphic to a Hilbert space contains at least one non-complemented

subspace. There is also a remarkable construction of Gowers and

Maurey [Go1993] of a Banach space such that every subspace, other

than those ruled out by Exercise 1.7.10, are uncomplemented.
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1.7.3. The closed graph theorem. Recall that a map T : X → Y

between two metric spaces is continuous if and only if, whenever xn
converges to x in X, Txn converges to Tx in Y . We can also define

the weaker property of being closed : an map T : X → Y is closed if

and only if whenever xn converges to x in X, and Txn converges to

a limit y in Y , then y is equal to Tx; equivalently, T is closed if its

graph {(x, Tx) : x ∈ X} is a closed subset of X × Y . This is weaker

than continuity because it has the additional requirement that the

sequence Txn is already convergent. the name, closed operators are

not directly related to open operators.)

Example 1.7.18. Let T : c0(N) → c0(N) be the transformation

T (am)∞m=1 := (mam)∞m=1. This transformation is unbounded and

hence discontinuous, but one easily verifies that it is closed.

As Example 1.7.18 shows, being closed is often a weaker property

than being continuous. However, the remarkable closed graph theorem

shows that as long as the domain and range of the operator are both

Banach spaces, the two statements are equivalent:

Theorem 1.7.19 (Closed graph theorem). Let T : X → Y be a

linear transformation between two Banach spaces. Then the following

are equivalent:

(i) T is continuous.

(ii) T is closed.

(iii) (Weak continuity) There exists some topology F on Y , weaker

than the norm topology (i.e. containing fewer open sets) but

still Hausdorff, for which T : X → (Y,F) is continuous.

Proof. It is clear that (i) implies (iii) (just take F to equal the norm

topology). To see why (iii) implies (ii), observe that if xn → x in

X and Txn → y in norm, then Txn → y in the weaker topology F
as well; but by weak continuity Txn → Tx in F . Since Hausdorff

topological spaces have unique limits, we have Tx = y and so T is

closed.

Now we show that (ii) implies (i). If T is closed, then the graph

Γ := {(x, Tx) : x ∈ X} is a closed linear subspace of the Banach

space X×Y and is thus also a Banach space. On the other hand, the
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projection map π : (x, Tx) 7→ x from Γ to X is clearly a continuous

linear bijection. By Corollary 1.7.14, its inverse x 7→ (x, Tx) is also

continuous, and so T is continuous as desired. �

We can reformulate the closed graph theorem in the following

fashion:

Corollary 1.7.20. Let X, Y be Banach spaces, and suppose we have

some continuous inclusion Y ⊂ Z of Y into a Hausdorff topological

vector space Z. Let T : X → Z be a continuous linear transformation.

Then the following are equivalent.

(i) (Qualitative regularity) For all x ∈ X, Tx ∈ Y .

(ii) (Quantitative regularity) For all x ∈ X, Tx ∈ Y , and fur-

thermore ‖Tx‖Y ≤ C‖x‖X for some C > 0 independent of

x.

(iii) (Quantitative regularity on a dense subclass) For all x in

a dense subset of X, Tx ∈ Y , and furthermore ‖Tx‖Y ≤
C‖x‖X for some C > 0 independent of x.

Proof. Clearly (ii) implies (iii) or (i). If we have (iii), then T extends

uniquely to a bounded linear map fromX to Y , which must agree with

the original continuous map from X to Z since limits in the Hausdorff

space Z are unique, and so (iii) implies (ii). Finally, if (i) holds, then

we can view T as a map from X to Y , which by Theorem 1.7.19 is

continuous, and the claim now follows from Lemma 1.3.17. �

In practice, one should think of Z as some sort of “low regularity”

space with a weak topology, and Y as a “high regularity” subspace

with a stronger topology. Corollary 1.7.20 motivates the method of a

priori estimates to establish the Y -regularity of some linear transform

Tx of an arbitrary element x in a Banach spaceX, by first establishing

the a priori estimate ‖Tx‖Y ≤ C‖x‖X for a dense subclass of “nice”

elements of X, and then using the above corollary (and some weak

continuity of T in a low regularity space) to conclude. The closed

graph theorem provides the metamathematical explanation as to why

this approach is at least as powerful as any other approach to proving

regularity.
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Example 1.7.21. Let 1 ≤ p ≤ 2, and let p′ be the dual exponent

of p. To prove that the Fourier transform f̂ of a function f ∈ Lp(R)

necessarily lies in Lp
′
(R), it suffices to prove the Hausdorff-Young

inequality

(1.67) ‖f̂‖Lp′ (R) ≤ Cp‖f‖Lp(R)

for some constant Cp and all f in some suitable dense subclass of

Lp(R) (e.g. the space C∞0 (R) of smooth functions of compact sup-

port), together with the “soft” observation that the Fourier trans-

form is continuous from Lp(R) to the space of tempered distribu-

tions, which is a Hausdorff space into which Lp
′
(R) embeds contin-

uously. (We will prove this inequality in (1.103).) One can replace

the Hausdorff-Young inequality here by countless other estimates in

harmonic analysis to obtain similar qualitative regularity conclusions.

1.7.4. Nonlinear solvability (optional). In this appendix we give

an example of a linear equations Lu = f which can only be quanti-

tatively solved in a nonlinear fashion. We will use a number of basic

tools which we will only cover later in this course, and so this material

is optional reading.

Let X = {0, 1}N be the infinite discrete cube with the product

topology; by Tychonoff’s theorem (Theorem 1.8.14), this is a compact

Hausdorff space. The Borel σ-algebra is generated by the cylinder sets

(1.68) En := {(xm)∞m=1 ∈ {0, 1}N : xn = 1}.

(From a probabilistic view point, one can think of X as the event

space for flipping a countably infinite number of coins, and En as the

event that the nth coin lands as heads.)

Let M(X) be the space of finite Borel measures on X; this can

be verified to be a Banach space. There is a map L : M(X)→ `∞(N)

defined by

(1.69) L(µ) := (µ(En))∞n=1.

This is a continuous linear transformation. The equation Lu = f

is quantitatively solvable for every f ∈ `∞(N). Indeed, if f is an

indicator function f = 1A, then f = LδxA , where xA ∈ {0, 1}Z is the

sequence that equals 1 on A and 0 outside of A, and δxA is the Dirac
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mass at A. The general case then follows by expressing a bounded

sequence as an integral of indicator functions (e.g. if f takes values

in [0,1], we can write f =
∫ 1

0
1{f>t} dt). Note however that this is

a nonlinear operation, since the indicator 1{f>t} depends nonlinearly

on f .

We now claim that the equation Lu = f is not quantitatively

linearly solvable, i.e. there is no bounded linear map S : `∞(N) →
M(X) such that LSf = f for all f ∈ `∞(N). This fact was first

observed by Banach and Mazur; we shall give two proofs, one of a

“soft analysis” flavour and one of a “hard analysis” flavour.

We begin with the “soft analysis” proof, starting with a measure-

theoretic result which is of independent interest.

Theorem 1.7.22 (Nikodym convergence theorem). Let (X,B) be a

measurable space, and let σn : B → R be a sequence of signed finite

measures which is weakly convergent in the sense that σn(E) converges

to some limit σ(E) for each E ∈ B.

• The σn are uniformly countably additive, which means that

for any sequence E1, E2, . . . of disjoint measurable sets, the

series
∑∞
m=1 |σn(Em)| converges uniformly in n.

• σ is a signed finite measure.

Proof. It suffices to prove the first claim, since this easily implies that

σ is also countably additive, and is thence a signed finite measure.

Suppose for contradiction that the claim failed, then one could find

disjoint E1, E2, . . . and ε > 0 such that one has lim supn→∞
∑∞
m=M |σn(Em)| >

ε for all M . We now construct disjoint sets A1, A2, . . ., each consisting

of the union of a finite collection of the Ej , and an increasing sequence

n1, n2, . . . of positive integers, by the following recursive procedure:

0. Initialise k = 0.

1. Suppose recursively that n1 < . . . < n2k and A1, . . . , Ak has

already been constructed for some k ≥ 0.

2. Choose n2k+1 > n2k so large that for all n ≥ n2k+1, µn(A1∪
. . . ∪Ak) differs from µ(A1 ∪ . . . ∪Ak) by at most ε/10.
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3. Choose Mk so large that Mk is larger than j for any Ej ⊂
A1 ∪ . . .∪Ak, and such that

∑∞
m=Mk

|µnj (Em)| ≤ ε/100k+1

for all 1 ≤ j ≤ 2k + 1.

4. Choose n2k+2 > n2k+1 so that
∑∞
m=Mk

|µn2k+2
(Em)| > ε.

5. Pick Ak+1 to be a finite union of the Ej with j ≥ Mk such

that |µn2k+2
(Ak+1)| > ε/2.

6. Increment k to k + 1 and then return to Step 2.

It is then a routine matter to show that if A :=
⋃∞
j=1Aj , then

|µ2k+2(A) − µ2k+1(A)| ≥ ε/10 for all j, contradicting the hypoth-

esis that µj is weakly convergent to µ. �

Exercise 1.7.11 (Schur’s property for `1). Show that if a sequence

in `1(N) is convergent in the weak topology, then it is convergent in

the strong topology.

We return now to the map S : `∞(N) → M(X). Consider the

sequence an ∈ c0(N) ⊂ `∞ defined by an := (1m≤n)∞m=1, i.e. each

an is the sequence consisting of n 1’s followed by an infinite number

of 0’s. As the dual of c0(N) is isomorphic to `1(N), we see from the

dominated convergence theorem that an is a weakly Cauchy sequence

in c0(N), in the sense that λ(an) is Cauchy for any λ ∈ c0(N)∗.

Applying S, we conclude that S(an) is weakly Cauchy in M(X).

In particular, using the bounded linear functionals µ 7→ µ(E) on

M(X), we see that S(an)(E) converges to some limit µ(E) for all

measurable sets E. Applying the Nikodym convergence theorem we

see that µ is also a signed finite measure. We then see that S(an)

converges in the weak topology to µ. (One way to see this is to

define ν :=
∑∞
n=1 2−n|S(an)|+ |µ|, then ν is finite and S(an), µ are all

absolutely continuous with respect to ν; now use the Radon-Nikodym

theorem (see Section 1.2) and the fact that L1(ν)∗ ≡ L∞(ν).) On the

other hand, as LS = I and L and S are both bounded, S is a Banach

space isomorphism between c0 and S(c0). Thus S(c0) is complete,

hence closed, hence weakly closed (by the Hahn-Banach theorem),

and so µ = S(a) for some a ∈ c0. By the Hahn-Banach theorem

again, this implies that an converges weakly to a ∈ c0. But this is

easily seen to be impossible, since the constant sequence (1)∞m=1 does

not lie in c0, and the claim follows.
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Now we give the “hard analysis” proof. Let e1, e2, . . . be the

standard basis for `∞(N), let N be a large number, and consider the

random sums

(1.70) S(ε1e1 + . . .+ εNeN )

where εn ∈ {−1, 1} are iid random signs. Since the `∞ norm of

ε1e1 + . . .+ εNeN is 1, we have

(1.71) ‖S(ε1e1 + . . .+ εNeN )‖M(X) ≤ C

for some constant C independent of N . On the other hand, we can

write S(en) = fnν for some finite measure ν and some fn ∈ L1(ν)

using Radon-Nikodym as in the previous proof, and then

(1.72) ‖ε1f1 + . . .+ εNfN‖L1(ν) ≤ C.

Taking expectations and applying Khintchine’s inequality we con-

clude

(1.73) ‖(
N∑
n=1

|fn|2)1/2‖L1(ν) ≤ C ′

for some constant C ′ independent of N . By Cauchy-Schwarz, this

implies that

(1.74) ‖
N∑
n=1

|fn|‖L1(ν) ≤ C ′
√
N.

But as ‖fn‖L1(ν) = ‖S(en)‖M(X) ≥ c for some constant c > 0

independent of N , we obtain a contradiction for N large enough, and

the claim follows.

Remark 1.7.23. The phenomenon of nonlinear quantitative solvabil-

ity actually comes up in many applications of interest. For instance,

consider the Fefferman-Stein decomposition theorem[FeSt1972], which

asserts that any f ∈ BMO(R) of bounded mean oscillation can be

decomposed as f = g + Hh for some g, h ∈ L∞(R), where H is the

Hilbert transform. This theorem was first proven by using the duality

of the Hardy space H1(R) and BMO (and by using Exercise 1.5.13),

and by using the fact that a function f is in H1(R) if and only if f

and Hf both lie in L1(R). From the open mapping theorem we know

that we can pick g, h so that the L∞ norms of g, h are bounded by a
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multiple of the BMO norm of f . But it turns out not to be possible

to pick g and h in a bounded linear manner in terms of f , although

this is a little tricky to prove. (Uchiyama[Uc1982] famously gave an

explicit construction of g, h in terms of f , but the construction was

highly nonlinear.)

An example in a similar spirit was given more recently by Bour-

gain and Brezis[BoBr2003], who considered the problem of solving

the equation div u = f on the d-dimensional torus Td for some func-

tion f : Td → C on the torus with mean zero, and with some unknown

vector field u : Td → Cd, where the derivatives are interpreted in the

weak sense. They showed that if d ≥ 2 and f ∈ Ld(Td), then there

existed a solution u to this problem with u ∈ W 1,d ∩ C0, despite

the failure of Sobolev embedding at this endpoint. Again, the open

mapping theorem allows one to choose u with norm bounded by a

multiple of the norm of f , but Bourgain and Brezis also show that

one cannot select u in a bounded linear fashion depending on f .

Notes. This lecture first appeared at terrytao.wordpress.com/2009/02/01.

Thanks to Achille Talon, Phi. Isett, Ulrich, Xiaochuan Liu, and

anonymous commenters for corrections.

Let me close with a question. All of the above constructions

of non-complemented closed subspaces, or of linear problems that

can only be quantitatively solved nonlinearly, were quite involved. Is

there a “soft” or “elementary” way to see that closed subspaces of

Banach spaces exist which are not complemented, or (equivalently)

that surjective continuous linear maps between Banach spaces do not

always enjoy a continuous linear right-inverse? I do not have a good

answer to this question.

1.8. Compactness in topological spaces

One of the most useful concepts for analysis that arise from topology

and metric spaces is the concept of compactness. Recall (from Section

1.6) that a space X is compact if every open cover of X has a finite

subcover, or equivalently if any collection of closed sets whose finite

subcollections have non-empty intersection), has overall non-empty
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intersection. (In other words, all families of closed sets obey the

finite intersection property.)

In these notes, we explore how compactness interacts with other

key topological concepts: the Hausdorff property, bases and sub-bases,

product spaces, and equicontinuity, in particular establishing the use-

ful Tychonoff and Arzelá-Ascoli theorems that give criteria for com-

pactness (or precompactness).

Exercise 1.8.1 (Basic properties of compact sets).

• Show that any finite set is compact.

• Show that any finite union of compact subsets of a topolog-

ical space is still compact.

• Show that any image of a compact space under a continuous

map is still compact.

Show that these three statements continue to hold if “compact” is

replaced by “sequentially compact”.

1.8.1. Compactness and the Hausdorff property. Recall from

Section 1.6 that a topological space is Hausdorff if every distinct pair

x, y of points can be separated by two disjoint open neighbourhoods

U, V of x, y respectively; every metric space is Hausdorff, but not

every topological space is.

At first glance, the Hausdorff property bears no resemblance to

the compactness property. However, they are in some sense “dual”

to each other, as the following two exercises show:

Exercise 1.8.2. Let X = (X,F) be a compact topological space.

• Show that every closed subset in X is compact.

• Show that any weaker topology F ′ ⊂ F on X also yields a

compact topological space (X,F ′).
• Show that the trivial topology on X is always compact.

Exercise 1.8.3. Let X be a Hausdorff topological space.

• Show that every compact subset of X is closed.

• Show that any stronger topology F ′ ⊃ F on X also yields a

Hausdorff topological space (X,F ′).
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• Show that the discrete topology on X is always Hausdorff.

The first exercise asserts that compact topologies tend to be weak,

while the second exercise asserts that Hausdorff topologies tend to be

strong. The next lemma asserts that the two concepts only barely

overlap:

Lemma 1.8.1. Let F ⊂ F ′ be a weak and strong topology respectively

on a space X. If F ′ is compact and F is Hausdorff, then F = F ′.
(In other words, a compact topology cannot be strictly stronger than

a Hausdorff one, and a Hausdorff topology cannot be strictly weaker

than a compact one.)

Proof. Since F ⊂ F ′, every set which is closed in (X,F) is closed

in (X,F ′), and every set which is compact in (X,F ′) is compact in

(X,F). But from Exercises 1.8.2, 1.8.3, every set which is closed

in (X,F ′) is compact in (X,F ′), and every set which is compact in

(X,F) is closed in (X,F). Putting all this together, we see that

(X,F) and (X,F ′) have exactly the same closed sets, and thus have

exactly the same open sets; in other words, F = F ′. �

Corollary 1.8.2. Any continuous bijection f : X → Y from a com-

pact topological space (X,FX) to a Hausdorff topological space (Y,FY )

is a homeomorphism.

Proof. Consider the pullback f#(FY ) := {f−1(U) : U ∈ FY } of the

topology on Y by f ; this is a topology on X. As f is continuous,

this topology is weaker than FX , and thus by Lemma 1.8.1 is equal

to FX . As f is a bijection, this implies that f−1 is continuous, and

the claim follows. �

One may wish to compare this corollary with Corollary 1.7.14.

Remark 1.8.3. Spaces which are both compact and Hausdorff (e.g.

the unit interval [0, 1] with the usual topology) have many nice prop-

erties and are moderately common, so much so that the two properties

are often concatenated as CH. Spaces that are locally compact and

Hausdorff (e.g. manifolds) are much more common and have nearly

as many nice properties, and so these two properties are often con-

catenated as LCH. One should caution that (somewhat confusingly)
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in some older literature (particularly those in the French tradition),

“compact” is used for “compact Hausdorff”.

(Optional) Another way to contrast compactness and the Haus-

dorff property is via the machinery of ultrafilters. Define an filter on

a space X to be a collection p of sets of 2X which is closed under finite

intersection, is also monotone (i.e. if E ∈ p and E ⊂ F ⊂ X, then

F ∈ p), and does not contain the empty set. Define an ultrafilter to

be a filter with the additional property that for any E ∈ X, exactly

one of E and X\E lies in p. (See also Section 1.5 of Structure and

Randomness.)

Exercise 1.8.4 (Ultrafilter lemma). Show that every filter is con-

tained in at least one ultrafilter. (Hint : use Zorn’s lemma, see Section

2.4.)

Exercise 1.8.5. A collection of subsets of X has the finite inter-

section property if every finite intersection of sets in the collection

has non-empty intersection. Show that every filter has the finite in-

tersection property, and that every collection of sets with the finite

intersection property is contained in a filter (and hence contained in

an ultrafilter, by the ultrafilter lemma).

Given a point x ∈ X and an ultrafilter p on X, we say that p

converges to x if every neighbourhood of x belongs to p.

Exercise 1.8.6. Show that a space X is Hausdorff if and only if every

ultrafilter has at most one limit. (Hint : For the “if” part, observe

that if x, y cannot be separated by disjoint neighbourhoods, then

the neighbourhoods of x and y together enjoy the finite intersection

property.)

Exercise 1.8.7. Show that a space X is compact if and only if every

ultrafilter has at least one limit. (Hint : use the finite intersection

property formulation of compactness and Exercise 1.8.5.)

1.8.2. Compactness and bases. Compactness is the property that

every open cover has a finite subcover. This property can be difficult

to verify in practice, in part because the class of open sets is very

large. However, in many cases one can replace the class of open sets
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with a much smaller class of sets. For instance, in metric spaces, a

set is open if and only if it is the union of open balls (note that the

union may be infinite or even uncountable). We can generalise this

notion as follows:

Definition 1.8.4 (Base). Let (X,F) be a topological space. A base

for this space is a collection B of open sets such that every open set

in X can be expressed as the union of sets in the base. The elements

of B are referred to as basic open sets.

Example 1.8.5. The collection of open balls B(x, r) in a metric

space forms a base for the topology of that space. As another (rather

trivial) example of a base: any topology F is a base for itself.

This concept should be compared with that of a basis of a vector

space: every vector in that space can be expressed as a linear combi-

nation of vectors in a basis. However, one difference between a base

and a basis is that the representation of an open set as the union of

basic open sets is almost certainly not unique.

Given a base B, define a basic open neighbourhood of a point

x ∈ X to be a basic open set that contains x. Observe that a set U is

open if and only if every point in U has a basic open neighbourhood

contained in U .

Exercise 1.8.8. Let B be a collection of subsets of a set X. Show

that B is a basis for some topology F if and only if it it covers X and

has the following additional property: given any x ∈ X and any two

basic open neighbourhoods U, V of x, there exists another basic open

neighbourhood W of x that is contained in U ∩ V . Furthermore, the

topology F is uniquely determined by B.

To verify the compactness property, it suffices to do so for basic

open covers (i.e. coverings of the whole space by basic open sets):

Exercise 1.8.9. Let (X,F) be a topological space with a base B.

Then the following are equivalent:

• Every open cover has a finite subcover (i.e. X is compact);

• Every basic open cover has a finite subcover.
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A useful fact about compact metric spaces is that they are in

some sense “countably generated”.

Lemma 1.8.6. Let X = (X, dX) be a compact metric space.

(i) X is separable (i.e. it has an at most countably infinite

dense subset).

(ii) X is second-countable (i.e. it has an at most countably

infinite base).

Proof. By Theorem 1.6.8, X is totally bounded. In particular, for ev-

ery n ≥ 1, one can coverX by a finite number of ballsB(xn,1,
1
n ), . . . , B(xn,kn ,

1
n )

of radius 1
n . The set of points {xn,i : n ≥ 1; 1 ≤ i ≤ kn} is then easily

verified to be dense and at most countable, giving (i). Similarly, the

set of balls {B(xn,i,
1
n ) : n ≥ 1; 1 ≤ i ≤ kn} can be easily verified to

be a base which is at most countable, giving (ii). �

Remark 1.8.7. One can easily generalise compactness here to σ-

compactness; thus for instance finite-dimensional vector spaces Rn

are separable and second-countable. The properties of separability

and second-countability are much weaker than σ-compactness in gen-

eral, but can still serve to provide some constraint as to the “size”

or “complexity” of a metric space or topological space in many situ-

ations.

We now weaken the notion of a base to that of a sub-base.

Definition 1.8.8 (Sub-base). Let (X,F) be a topological space. A

sub-base for this space is a collection B of subsets of X such that F is

the weakest topology that makes B open (i.e. F is generated by B).

Elements of B are referred to as sub-basic open sets.

Observe for instance that every base is a sub-base. The converse

is not true: for instance, the half-open intervals (−∞, a), (a,+∞) for

a ∈ R form a sub-base for the standard topology on R, but not

a base. In contrast to bases, which need to obey the property in

Exercise 1.8.8, no property is required on a collection B in order for it

to be a sub-base; every collection of sets generates a unique topology

with respect to which it is a sub-base.
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The precise relationship between sub-bases and bases is given by

the following exercise.

Exercise 1.8.10. Let (X,F) be a topological space, and let B be a

collection of subsets of X. Then the following are equivalent:

• B is a sub-base for (X,F).

• The space B∗ := {B1 ∩ . . . ∩ Bk : B1, . . . , Bk ∈ B} of fi-

nite intersections of B (including the whole space X, which

corresponds to the case k = 0) is a base for (X,F).

Thus a set is open iff it is the union of finite intersections of

sub-basic open sets.

Many topological facts involving open sets can often be reduced to

verifications on basic or sub-basic open sets, as the following exercise

illustrates:

Exercise 1.8.11. Let (X,F) be a topological space, and B be a

sub-base of X, and let B∗ be a base of X.

• Show that a sequence xn ∈ X converges to a limit x ∈
X if and only if every sub-basic open neighbourhood of x

contains xn for all sufficiently large xn. (Optional: show

that an analogous statement is also true for nets.)

• Show that a point x ∈ X is adherent to a set E if and only

if every basic open neighbourhood of x intersects E. Give

an example to show that the claim fails for sub-basic open

sets.

• Show that a point x ∈ X is in the interior of a set U if and

only if U contains a basic open neighbourhood of x. Give

an example to show that the claim fails for sub-basic open

sets.

• If Y is another topological space, show that a map f : Y →
X is continuous if and only if the inverse image of every

sub-basic open set is open.

There is a useful strengthening of Exercise 1.8.9 in the spirit of

the above exercise, namely the Alexander sub-base theorem:
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Theorem 1.8.9 (Alexander sub-base theorem). Let (X,F) be a topo-

logical space with a sub-base B. Then the following are equivalent:

• Every open cover has a finite subcover (i.e. X is compact);

• Every sub-basic open cover has a finite subcover.

Proof. Call an open cover bad if it had no finite subcover, and good

otherwise. In view of Exercise 1.8.9, it suffices to show that if every

sub-basic open cover is good, then every basic open cover is good also,

where we use the basis B∗ coming from Exercise 1.8.10.

Suppose for contradiction that every sub-basic open cover was

good, but at least one basic open cover was bad. If we order the

bad basic open covers by set inclusion, observe that every chain of

bad basic open covers has an upper bound that is also a bad basic

open cover, namely the union of all the covers in the chain. Thus, by

Zorn’s lemma (Section 2.4), there exists a maximal bad basic open

cover C = (Uα)α∈A. Thus this cover has no finite subcover, but if one

adds any new basic open set to this cover, then there must now be a

finite subcover.

Pick a basic open set Uα in this cover C. Then we can write

Uα = B1 ∩ . . . ∩ Bk for some sub-basic open sets B1, . . . , Bk. We

claim that at least one of the B1, . . . , Bk also lie in the cover C. To

see this, suppose for contradiction that none of the B1, . . . , Bk was in

C. Then adding any of the Bi to C enlarges the basic open cover and

thus creates a finite subcover; thus Bi together with finitely many sets

from C cover X, or equivalently that one can cover X\Bi with finitely

many sets from C. Thus one can also cover X\Uα =
⋃k
i=1(X\Bi) with

finitely many sets from C, and thus X itself can be covered by finitely

many sets from C, a contradiction.

From the above discussion and the axiom of choice, we see that for

each basic set Uα in C there exists a sub-basic set Bα containing Uα
that also lies in C. (Two different basic sets Uα, Uβ could lead to the

same sub-basic set Bα = Bβ , but this will not concern us.) Since the

Uα cover X, the Bα do also. By hypothesis, a finite number of Bα can

cover X, and so C is good, which gives the desired a contradiction. �

Exercise 1.8.12. (Optional) Use Exercise 1.8.7 to give another proof

of the Alexander sub-base theorem.
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Exercise 1.8.13. Use the Alexander sub-base theorem to show that

the unit interval [0, 1] (with the usual topology) is compact, without

recourse to the Heine-Borel or Bolzano-Weierstrass theorems.

Exercise 1.8.14. Let X be a well-ordered set, endowed with the

order topology (Exercise 1.6.10); such a space is known as an ordinal

space. Show that X is Hausdorff, and that X is compact if and only

if X has a maximal element.

One of the major applications of the sub-base theorem is to prove

Tychonoff’s theorem, which we turn to next.

1.8.3. Compactness and product spaces. Given two topological

spaces X = (X,FX) and Y = (Y,FY ), we can form the product

space X × Y , using the cylinder sets {U × Y : U ∈ FX} ∪ {X ×
V : V ∈ FY } as a sub-base, or equivalently using the open boxes

{U × V : U ∈ FX , V ∈ FY } as a base (cf. Example 1.6.25). One

easily verifies that the obvious projection maps πX : X × Y → X,

πY : X × Y → Y are continuous, and that these maps also provide

homeomorphisms between X × {y} and X, or between {x} × Y and

Y , for every x ∈ X, y ∈ Y . Also observe that a sequence (xn, yn)∞n=1

(or net (xα, yα)α∈A) converges to a limit (x, y) in X if and only if

(xn)∞n=1 and (yn)∞n=1 (or (xα)α∈A and (yα)α∈A) converge in X and Y

to x and y respectively.

This operation preserves a number of useful topological proper-

ties, for instance

Exercise 1.8.15. Prove that the product of two Hausdorff spaces is

still Hausdorff.

Exercise 1.8.16. Prove that the product of two sequentially compact

spaces is still sequentially compact.

Proposition 1.8.10. The product of two compact spaces is compact.

Proof. By Exercise 1.8.9 it suffices to show that any basic open cover

of X×Y by boxes (Uα×Vα)α∈A has a finite subcover. For any x ∈ X,

this open cover covers {x} × Y ; by the compactness of Y ≡ {x} × Y ,

we can thus cover {x}×Y by a finite number of open boxes Uα×Vα.

Intersecting the Uα together, we obtain a neighbourhood Ux of x
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such that Ux × Y is covered by a finite number of these boxes. But

by compactness of X, we can cover X by a finite number of Ux. Thus

all of X × Y can be covered by a finite number of boxes in the cover,

and the claim follows. �

Exercise 1.8.17. (Optional) Obtain an alternate proof of this propo-

sition using Exercise 1.6.15.

The above theory for products of two spaces extends without

difficulty to products of finitely many spaces. Now we consider infinite

products.

Definition 1.8.11 (Product spaces). Given a family (Xα,Fα)α∈A of

topological spaces, let X :=
∏
α∈AXα be the Cartesian product, i.e.

the space of tuples (xα)α∈A with xα ∈ Xα for all α ∈ A. For each

α ∈ A, we have the obvious projection map πα : X → Xα that maps

(xβ)β∈A to xα.

• We define the product topology on X to be the topology

generated by the cylinder sets π−1
α (Uα) for α ∈ A and Uα ∈

Fα as a sub-base, or equivalently the weakest topology that

makes all of the πα continuous.

• We define the box topology on X to be the topology gen-

erated by all the boxes
∏
α∈A Uα, where Uα ∈ Fα for all

α ∈ A.

Unless otherwise specified, we assume the product space to be en-

dowed with the product topology rather than the box topology.

When A is finite, the product topology and the box topology

coincide. When A is infinite, the two topologies are usually different

(as we shall see), but the box topology is always at least as strong as

the product topology. Actually, in practice the box topology is too

strong to be of much use - there are not enough convergent sequences

in it. For instance, in the space RN of real-valued sequences (xn)∞n=1,

even sequences such as ( 1
m!e
−nm)∞n=1 do not converge to the zero

sequence as m → ∞ (why?), despite converging in just about every

other sense.

Exercise 1.8.18. Show that the arbitrary product of Hausdorff spaces

remains Hausdorff in either the product or the box topology.
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Exercise 1.8.19. Let (Xn, dn) be a sequence of metric spaces. Show

that the the function d : X × X → R+ on the product space X :=∏
nXn defined by

d((xn)∞n=1, (yn)∞n=1) :=

∞∑
n=1

2−n
dn(xn, yn)

1 + dn(xn, yn)

is a metric on X which generates the product topology on X.

Exercise 1.8.20. Let X =
∏
α∈AXα be a product space with the

product topology. Show that a sequence xn in that space converges to

a limit x ∈ X if and only if πα(xn) converges in Xα to πα(x) for every

α ∈ A. (The same statement also holds for nets.) Thus convergence

in the product topology is essentially the same concept as pointwise

convergence (cf. Example 1.6.24).

The box topology usually does not preserve compactness. For

instance, one easily checks that the product of any number of discrete

spaces is still discrete in the box topology. On the other hand, a

discrete space is compact (or sequentially compact) if and only if it

is finite. Thus the infinite product of any number of non-trivial (i.e.

having at least two elements) compact discrete spaces will be non-

compact, and similarly for sequential compactness.

The situation improves significantly with the product topology,

however (which is weaker, and thus more likely to be compact). We

begin with the situation for sequential compactness.

Proposition 1.8.12 (Sequential Tychonoff theorem). Any at most

countable product of sequentially compact topological spaces is sequen-

tially compact.

Proof. We will use the “Arzelá-Ascoli diagonalisation argument”.

The finite case is already handled by Exercise 1.8.16 (and can in

any event be easily deduced from the countable case), so suppose

we have a countably infinite sequence (Xn,Fn)∞n=1 of sequentially

compact spaces, and consider the product space X =
∏∞
n=1Xn with

the product topology. Let x(1), x(2), . . . be a sequence in X, thus each

x(m) is itself a sequence x(m) = (x
(m)
n )∞n=1 with x

(m)
n ∈ Xn for all n.

Our objective is to find a subsequence x(mj) which converges to some

limit x = (xn)∞n=1 in the product topology, which by Exercise 1.8.20
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is the same as pointwise convergence (i.e. x
(mj)
n → xn as j → ∞ for

each n).

Consider the first coordinates x
(m)
1 ∈ X1 of the sequence x(m).

As X1 is sequentially compact, we can find a subsequence (x(m1,j))∞j=1

in X such that x
(m1,j)
1 converges in X1 to some limit x1 ∈ X1.

Now, in this subsequence, consider the second coordinates x
(m1,j)
2 ∈

X2. As X2 is sequentially compact, we can find a further subse-

quence (x(m2,j))∞j=1 in X such that x
(m2,j)
2 converges in X2 to some

limit x2 ∈ X1. Also, we inherit from the preceding subsequence that

x
(m2,j)
1 converges in X1 to x1.

We continue in this vein, creating nested subsequences (x(mi,j))∞j=1

for i = 1, 2, 3, . . . whose first i components x
(mi,j)
1 , . . . , x

(mi,j)
i converge

to x1 ∈ X1, . . . , xi ∈ Xi respectively.

None of these subsequences, by themselves are sufficient to finish

the problem. But now we use the diagonalisation trick: we consider

the diagonal sequence (x(mj,j))∞j=1. One easily verifies that x
(mj,j)
n

converges in Xn to xn as j →∞ for every n, and so we have extracted

a sequence that is convergent in the product topology. �

Remark 1.8.13. In the converse direction, if a product of spaces

is sequentially compact, then each of the factor spaces must also be

sequentially compact, since they are continuous images of the product

space and one can apply Exercise 1.8.1.

The sequential Tychonoff theorem breaks down for uncountable

products. Consider for instance the product space X := {0, 1}{0,1}N

of functions f : {0, 1}N → {0, 1}. As {0, 1} (with the discrete

topology) is sequentially compact, this is an (uncountable) prod-

uct of sequentially compact spaces. On the other hand, for each

n ∈ N we can define the evaluation function fn : {0, 1}N → {0, 1} by

fn : (am)∞m=1 7→ an. This is a sequence in X; we claim that it has

no convergent subsequence. Indeed, given any nj → ∞, we can find

x = (xm)∞m=1 ∈ {0, 1}∞ such that xnj = fnj (x) does not converge to

a limit as j → ∞, and so fnj does not converge pointwise (i.e. does

not converge in the product topology).
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However, we can recover the result for uncountable products as

long as we work with topological compactness rather than sequential

compactness, leading to Tychonoff’s theorem:

Theorem 1.8.14 (Tychonoff theorem). Any product of compact topo-

logical spaces is compact.

Proof. Write X =
∏
α∈AXα for this product of compact topological

spaces. By Theorem 1.8.9, it suffices to show that any open cover of

X by sub-basic open sets (π−1
αβ

(Uβ))β∈B has a finite sub-cover, where

B is some index set, and for each β ∈ B, αβ ∈ A and Uβ is open in

Xαβ .

For each α ∈ A, consider the sub-basic open sets π−1
α (Uβ) that are

associated to those β ∈ B with αβ = α. If the open sets Uβ here cover

Xα, then by compactness of Xα, a finite number of the Uβ already

suffice to cover Xα, and so a finite number of the π−1
α (Uβ) cover X,

and we are done. So we may assume that the Uβ do not cover Xα,

thus there exists xα ∈ Xα that avoids all the Uβ with αβ = α. One

then sees that the point (xα)α∈A in X avoids all of the π−1
α (Uβ), a

contradiction. The claim follows. �

Remark 1.8.15. The axiom of choice was used in several places in

the proof (in particular, via the Alexander sub-base theorem). This

turns out to be necessary, because one can use Tychonoff’s theorem

to establish the axiom of choice. This was first observed by Kelley,

and can be sketched as follows. It suffices to show that the prod-

uct
∏
α∈AXα of non-empty sets is again non-empty. We can make

each Xα compact (e.g. by using the trivial topology). We then ad-

join an isolated element ∞ to each Xα to obtain another compact

space Xα ∪ {∞}, with Xα closed in Xα ∪ {∞}. By Tychonoff’s theo-

rem, the product X :=
∏
α∈A(Xα ∪{∞}) is compact, and thus every

collection of closed sets with finite intersection property has non-

empty intersection. But observe that the sets π−1
α (Xα) in X, where

πα : X → Xα ∪{∞} is the obvious projection, are closed and has the

finite intersection property; thus the intersection of all of these sets

is non-empty, and the claim follows.
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Remark 1.8.16. From the above discussion, we see that the space

{0, 1}{0,1}Z is compact but not sequentially compact; thus compact-

ness does not necessarily imply sequential compactness.

Exercise 1.8.21. Let us call a topological space (X,F) first-countable

if, for every x ∈ X, there exists a countable family Bx,1, Bx,2, . . . of

open neighbourhoods of x such that every neighbourhood of x con-

tains at least one of the Bx,j .

• Show that every metric space is first-countable.

• Show that every second-countable space is first-countable

(see Lemma 1.8.6).

• Show that every separable metric space is second-countable.

• Show that every space which is second-countable, is separa-

ble.

• (Optional) Show that every net (xα)α∈A which converges

in X to x, has a convergent subsequence (xφ(n))
∞
n=1 (i.e. a

subnet whose index set is N).

• Show that any compact space which is first-countable, is also

sequentially compact. (The converse is not true: Exercise

1.6.10 provides a counterexample.)

(Optional) There is an alternate proof of the Tychonoff theorem

that uses the machinery of universal nets. We sketch this approach

in a series of exercises.

Definition 1.8.17. A net (xα)α∈A in a set X is universal if for every

function f : X → {0, 1}, the net (f(xα))α∈A converges to either 0 or

1.

Exercise 1.8.22. Show that a universal net (xα)α∈A in a compact

topological space is necessarily convergent. (Hint : show that the

collection of closed sets which contain xα for sufficiently large α enjoys

the finite intersection property.)

Exercise 1.8.23 (Kelley’s theorem). Every net (xα)α∈A in a set X

has a universal subnet (xφ(β))β∈B . (Hint : First use Exercise 1.8.5 to

find an ultrafilter p on A that contains the upsets {β ∈ A : β ≥ α}
for all α ∈ A. Now let B be the space of all pairs (U,α), where
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α ∈ U ∈ p, ordered by requiring (U,α) ≤ (U ′, α′) when U ⊃ U ′ and

α ≤ α′, and let φ : B → A be the map φ : (U,α) 7→ α.)

Exercise 1.8.24. Use the previous two exercises, together with Ex-

ercise 1.8.20, to establish an alternate proof of Tychonoff’s theorem.

Exercise 1.8.25. Establish yet another proof of Tychonoff’s theo-

rem using Exercise 1.8.7 directly (rather than proceeding via Exercise

1.8.12).

1.8.4. Compactness and equicontinuity. We now pause to give

an important application of the (sequential) Tychonoff theorem. We

begin with some definitions. If X = (X,FX) is a topological space

and Y = (Y, dY ) is a metric space, let BC(X → Y ) be the space of

bounded continuous functions from X to Y . (If X is compact, this is

the same space as C(X → Y ), the space of continuous functions from

X to Y .) We can give this space the uniform metric

d(f, g) := sup
x∈X

dY (f(x), g(x)).

Exercise 1.8.26. If Y is complete, show that BC(X → Y ) is a

complete metric space. (Note that this implies Exercise 1.5.2.)

Note that if f : X → Y is continuous if and only if, for every

x ∈ X and ε > 0, there exists a neighbourhood U of x such that

dY (f(x′), f(x)) ≤ ε for all x′ ∈ U . We now generalise this concept to

families.

Definition 1.8.18. Let X be a topological space, let Y be a metric

space, and Let (fα)α∈A be a family of functions fα ∈ BC(X → Y ).

• We say that this family fα is pointwise bounded if for every

x ∈ X, the set {fα(x) : α ∈ A} is bounded in Y .

• We say that this family fα is pointwise precompact if for

every x ∈ X, the set {fα(x) : α ∈ A} is precompact in Y .

• We say that this family fα is equicontinuous if for every

x ∈ X and ε > 0, there exists a neighbourhood U of x such

that dY (fα(x′), fα(x)) ≤ ε for all α ∈ A and x′ ∈ U .

• If X = (X, dX) is also a metric space, we say that the family

fα is uniformly equicontinuous if for every ε > 0 there exists
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a δ > 0 such that dY (fα(x′), fα(x)) ≤ ε for all α ∈ A and

x′, x ∈ x with dX(x, x′) ≤ δ.

Remark 1.8.19. From the Heine-Borel theorem, the pointwise bound-

edness and pointwise precompactness properties are equivalent if Y

is a subset of Rn for some n. Any finite collection of continuous

functions is automatically an equicontinuous family (why?), and any

finite collection of uniformly continuous functions is automatically a

uniformly equicontinuous family; the concept only acquires additional

meaning once one considers infinite families of continuous functions.

Example 1.8.20. With X = [0, 1] and Y = R, the family of func-

tions fn(x) := xn for n = 1, 2, 3, . . . are pointwise bounded (and thus

pointwise precompact), but not equicontinuous. The family of func-

tions gn(x) := n for n = 1, 2, 3, . . ., on the other hand, are equicon-

tinuous, but not pointwise bounded or pointwise precompact. The

family of functions hn(x) := sinnx for n = 1, 2, 3, . . . are pointwise

bounded (even uniformly bounded), but not equicontinuous.

Example 1.8.21. WithX = Y = R, the functions fn(x) = arctannx

are pointwise bounded (even uniformly bounded), are equicontinuous,

and are each individually uniformly continuous, but are not uniformly

equicontinuous.

Exercise 1.8.27. Show that the uniform boundedness principle (The-

orem 1.7.5) can be restated as the assertion that any family of bounded

linear operators from the unit ball of a Banach space to a normed vec-

tor space is pointwise bounded if and only if it is equicontinuous.

Example 1.8.22. A function f : X → Y between two metric spaces

is said to be Lipschitz (or Lipschitz continuous) if there exists a con-

stant C such that dY (f(x), f(x′)) ≤ CdX(x, x′) for all x, x′ ∈ X;

the smallest constant C one can take here is known as the Lipschitz

constant of f . Observe that Lipschitz functions are automatically

continuous, hence the name. Also observe that a family (fα)α∈A
of Lipschitz functions with uniformly bounded Lipschitz constant is

equicontinuous.

One nice consequence of equicontinuity is that it equates uniform

convergence with pointwise convergence, or even pointwise conver-

gence on a dense subset.
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Exercise 1.8.28. Let X be a topological space, let Y be a complete

metric space, let f1, f2, . . . ∈ BC(X → Y ) be an equicontinuous

family of functions. Show that the following are equivalent:

• The sequence fn is pointwise convergent.

• The sequence fn is pointwise convergent on some dense sub-

set of X.

If X is compact, show that the above two statements are also equiv-

alent to

• The sequence fn is uniformly convergent.

(Compare with Corollary 1.7.7.) Show that no two of the three

statements remain equivalent if the hypothesis of equicontinuity is

dropped.

We can now use Proposition 1.8.12 to give a useful characterisa-

tion of precompactness in C(X → Y ) when X is compact, known as

the Arzelá-Ascoli theorem:

Theorem 1.8.23 (Arzelá-Ascoli theorem). Let Y be a metric space,

X be a compact metric space, and let (fα)α∈A be a family of functions

fα ∈ BC(X → Y ). Then the following are equivalent:

(i) {fα : α ∈ A} is a precompact subset of BC(X → Y ).

(ii) (fα)α∈A is pointwise precompact and equicontinuous.

(iii) (fα)α∈A is pointwise precompact and uniformly equicontin-

uous.

Proof. We first show that (i) implies (ii). For any x ∈ X, the evalu-

ation map f 7→ f(x) is a continuous map from C(X → Y ) to Y , and

thus maps precompact sets to precompact sets. As a consequence, any

precompact family in C(X → Y ) is pointwise precompact. To show

equicontinuity, suppose for contradiction that equicontinuity failed

at some point x, thus there exists ε > 0, a sequence αn ∈ A, and

points xn → x such that dY (fαn(xn), fαn(x)) > ε for every n. One

then verifies that no subsequence of fαn can converge uniformly to

a continuous limit, contradicting precompactness. (Note that in the

metric space C(X → Y ), precompactness is equivalent to sequential

precompactness.)
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Now we show that (ii) implies (iii). It suffices to show that

equicontinuity implies uniform equicontinuity. This is a straightfor-

ward generalisation of the more familiar argument that continuity

implies uniform continuity on a compact domain, and we repeat it

here. Namely, fix ε > 0. For every x ∈ X, equicontinuity provides a

δx > 0 such that dY (fα(x), fα(x′)) ≤ ε whenever x′ ∈ B(x, δx) and

α ∈ A. The balls B(x, δx/2) cover X, thus by compactness some finite

subcollection B(xi, δxi/2), i = 1, . . . , n of these balls cover X. One

then easily verifies that dY (fα(x), fα(x′)) ≤ ε whenever x, x′ ∈ X

with dX(x, x′) ≤ min1≤i≤n δxi/2.

Finally, we show that (iii) implies (i). It suffices to show that any

sequence fn ∈ BC(X → Y ), n = 1, 2, . . ., which is pointwise precom-

pact and uniformly equicontinuous, has a convergent subsequence.

By embedding Y in its metric completion Y , we may assume without

loss of generality that Y is complete. (Note that for every x ∈ X, the

set {fn(x) : n = 1, 2, . . .} is precompact in Y , hence the closure in Y

is complete and thus closed in Y also. Thus any pointwise limit of the

fn in Y will take values in Y .) By Lemma 1.8.6, we can find a count-

able dense subset x1, x2, . . . of X. For each xm, we can use pointwise

precompactness to find a compact set Km ⊂ Y such that fα(xm)

takes values in Km. For each n, the tuple Fn := (fn(xm))∞m=1 can

then be viewed as a point in the product space
∏∞
n=1Kn. By Propo-

sition 1.8.12, this product space is sequentially compact, hence we

may find a subsequence nj → ∞ such that Fn is convergent in the

product topology, or equivalently that fn pointwise converges on the

countable dense set {x1, x2, . . .}. The claim now follows from Exercise

1.8.28. �

Remark 1.8.24. The above theorem characterises precompact sub-

sets of BC(X → Y ) when X is a compact metric space. One can also

characterise compact subsets by observing that a subset of a metric

space is compact if and only if it is both precompact and closed.

There are many variants of the Arzelá-Ascoli theorem with stronger

or weaker hypotheses or conclusions; for instance, we have

Corollary 1.8.25 (Arzelá-Ascoli theorem, special case). Let fn :

X → Rm be a sequence of functions from a compact metric space
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X to a finite-dimensional vector space Rm which are equicontinuous

and pointwise bounded. Then there is a subsequence fnj of fn which

converges uniformly to a limit (which is necessarily bounded and con-

tinuous).

Thus, for instance, any sequence of uniformly bounded and uni-

formly Lipschitz functions fn : [0, 1] → R will have a uniformly con-

vergent subsequence. This claim fails without the uniform Lipschitz

assumption (consider, for instance, the functions fn(x) := sin(nx)).

Thus one needs a “little bit extra” uniform regularity in addition

to uniform boundedness in order to force the existence of uniformly

convergent subsequences. This is a general phenomenon in infinite-

dimensional function spaces: compactness in a strong topology tends

to require some sort of uniform control on regularity or decay in ad-

dition to uniform bounds on the norm.

Exercise 1.8.29. Show that the equivalence of (i) and (ii) continues

to hold if X is assumed to be just a compact Hausdorff space rather

than a compact metric space (the statement (iii) no longer makes

sense in this setting). Hint : X need not be separable any more,

however one can still adapt the diagonalisation argument used to

prove Proposition 1.8.12. The starting point is the observation that

for every ε > 0 and every x ∈ X, one can find a neighbourhood U

of x and some subsequence fnj which only oscillates by at most ε (or

maybe 2ε) on U .

Exercise 1.8.30 (Locally compact Hausdorff version of Arzelá-Ascoli).

Let X be a locally compact Hausdorff space which is also σ-compact,

and let fn ∈ C(X → R) be an equicontinuous, pointwise bounded

sequence of functions. Then there exists a subsequence fnj ∈ C(X →
R) which converges uniformly on compact subsets of X to a limit

f ∈ C(X → R). (Hint : Express X as a countable union of com-

pact sets Kn, each one contained in the interior of the next. Apply

the compact Hausdorff Arzelá-Ascoli theorem on each compact set

(Exercise 1.8.29). Then apply the Arzelá-Ascoli argument one last

time.)

Remark 1.8.26. The Arzelá-Ascoli theorem (and other compactness

theorems of this type) are often used in partial differential equations,
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to demonstrate existence of solutions to various equations or varia-

tional problems. For instance, one may wish to solve some equation

F (u) = f , for some function u : X → Rm. One way to do this

is to first construct a sequence un of approximate solutions, so that

F (un) → f as n → ∞ in some suitable sense. If one can also ar-

range these un to be equicontinuous and pointwise bounded, then

the Arzelá-Ascoli theorem allows one to pass to a subsequence that

converges to a limit u. Given enough continuity (or semi-continuity)

properties on F , one can then show that F (u) = f as required.

More generally, the use of compactness theorems to demonstrate

existence of solutions in PDE is known as the compactness method.

It is applicable in a remarkably broad range of PDE problems, but

often has the drawback that it is difficult to establish uniqueness of the

solutions created by this method (compactness guarantees existence

of a limit point, but not uniqueness). Also, in many cases one can only

hope for compactness in rather weak topologies, and as a consequence

it is often difficult to establish regularity of the solutions obtained via

compactness methods.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/02/09.

Thanks to Nate Chandler, Emmanuel Kowalski, Eric, K. P. Hart, Ke,

Luca Trevisan, PDEBeginner, RR, Samir Chomsky, Xiaochuan Liu,

and anonymous commenters for corrections.

David Speyer and Eric pointed out that the axiom of choice was

used in two different ways in the proof of Tychonoff’s theorem; firstly

to prove the sub-base theorem, and secondly to select an element xα
from each Xα. Interestingly, it is the latter use which is the more

substantial one; the sub-base theorem can be shown to be equiva-

lent to the ultrafilter lemma, which is strictly weaker than the ax-

iom of choice. Furthermore, for Hausdorff spaces, one can establish

Tychonoff’s theorem purely using ultralimits, which shows that the

strange non-Hausdorff nature of the topology in Remark 1.8.15.

1.9. The strong and weak topologies

A normed vector space (X, ‖‖X) automatically generates a topology,

known as the norm topology or strong topology on X, generated by
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the open balls B(x, r) := {y ∈ X : ‖y − x‖X < r}. A sequence xn
in such a space converges strongly (or converges in norm) to a limit

x if and only if ‖xn − x‖X → 0 as n → ∞. This is the topology

we have implicitly been using in our previous discussion of normed

vector spaces.

However, in some cases it is useful to work in topologies on vector

spaces that are weaker than a norm topology. One reason for this is

that many important modes of convergence, such as pointwise con-

vergence, convergence in measure, smooth convergence, or convergence

on compact subsets, are not captured by a norm topology, and so it

is useful to have a more general theory of topological vector spaces

that contains these modes. Another reason (of particular importance

in PDE) is that the norm topology on infinite-dimensional spaces is

so strong that very few sets are compact or pre-compact in these

topologies, making it difficult to apply compactness methods in these

topologies (cf. Section 1.6 of Poincaré’s Legacies, Vol. II ). Instead,

one often first works in a weaker topology, in which compactness is

easier to establish, and then somehow upgrades any weakly conver-

gent sequences obtained via compactness to stronger modes of conver-

gence (or alternatively, one abandons strong convergence and exploits

the weak convergence directly). Two basic weak topologies for this

purpose are the weak topology on a normed vector space X, and the

weak* topology on a dual vector space X∗. Compactness in the latter

topology is usually obtained from the Banach-Alaoglu theorem (and

its sequential counterpart), which will be a quick consequence of the

Tychonoff theorem (and its sequential counterpart) from the previous

section.

The strong and weak topologies on normed vector spaces also

have analogues for the space B(X → Y ) of bounded linear operators

from X to Y , thus supplementing the operator norm topology on that

space with two weaker topologies, which (somewhat confusingly) are

named the strong operator topology and the weak operator topology.

1.9.1. Topological vector spaces. We begin with the definition of

a topological vector space, which is a space with suitably compatible

topological and vector space structures on it.
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Definition 1.9.1. A topological vector space V = (V,F) is a real

or complex vector space V , together with a topology F such that

the addition operation + : V × V → V and the scalar multiplication

operation · : R × V → V or · : C × V → V is jointly continuous in

both variables (thus, for instance, + is continuous from V × V with

the product topology to V ).

It is an easy consequence of the definitions that the translation

maps x 7→ x + x0 for x0 ∈ V and the dilation maps x 7→ λ · x for

non-zero scalars λ are homeomorphisms on V ; thus for instance the

translation or dilation of an open set (or a closed set, a compact set,

etc.) is open (resp. closed, compact, etc.). We also have the usual

limit laws: if xn → x and yn → y in a topological vector space, then

xn+yn → x+y, and if λn → λ in the field of scalars, then λnxn → λx.

(Note how we need joint continuity here; if we only had continuity in

the individual variables, we could only conclude that xn+yn → x+y

(for instance) if one of xn or yn was constant.)

We now give some basic examples of topological vector spaces.

Exercise 1.9.1. Show that every normed vector space is a topological

vector space, using the ballsB(x, r) as the base for the topology. Show

that the same statement holds if the vector space is quasi-normed

rather than normed.

Exercise 1.9.2. Every semi-normed vector space is a topological

vector space, again using the balls B(x, r) as a base for the topology.

This topology is Hausdorff if and only if the semi-norm is a norm.

Example 1.9.2. Any linear subspace of a topological vector space is

again a topological vector space (with the induced topology).

Exercise 1.9.3. Let V be a vector space, and let (Fα)α∈A be a

(possibly infinite) family of topologies on V , each of which turning V

into a topological vector space. Let F :=
∨
α∈A Fα be the topology

generated by
⋃
α∈A Fα (i.e. it is the weakest topology that contains

all of the Fα. Show that (V,F) is also a topological vector space.

Also show that a sequence xn ∈ V converges to a limit x in F if and

only if xn → x in Fα for all α ∈ A. (The same statement also holds if

sequences are replaced by nets.) In particular, by Exercise 1.9.2, we
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can talk about the topological vector space V generated by a family

of semi-norms (‖‖α)α∈A on V .

Exercise 1.9.4. Let T : V → W be a linear map between vector

spaces. Suppose that we give V the topology induced by a family of

semi-norms (‖‖Vα)α∈A, and W the topology induced by a family of

semi-norms (‖‖Wβ
)β∈B . Show that T is continuous if and only if, for

each β ∈ B, there exists a finite subset Aβ of A and a constant Cβ
such that ‖Tf‖Wβ

≤ Cβ
∑
α∈Aβ ‖f‖Vα for all f ∈ V .

Example 1.9.3 (Pointwise convergence). Let X be a set, and let

CX be the space of complex-valued functions f : X → C; this is a

complex vector space. Each point x ∈ X gives rise to a seminorm

‖f‖x := |f(x)|. The topology generated by all of these seminorms is

the topology of pointwise convergence on CX (and is also the product

topology on this space); a sequence fn ∈ CX converges to f in this

topology if and only if it converges pointwise. Note that if X has more

than one point, then none of the semi-norms individually generate a

Hausdorff topology, but when combined together, they do.

Example 1.9.4 (Uniform convergence). LetX be a topological space,

and let C(X) be the space of complex-valued continuous functions

f : X → C. If X is not compact, then one does not expect functions

in C(X) to be bounded in general, and so the sup norm does not nec-

essarily make C(X) into a normed vector space. Nevertheless, one

can still define “balls” B(f, r) in C(X) by

B(f, r) := {g ∈ C(X) : sup
x∈X
|f(x)− g(x)| ≤ r}

and verify that these form a base for a topological vector space. A

sequence fn ∈ C(X) converges in this topology to a limit f ∈ C(X)

if and only if fn converges uniformly to f , thus supx∈X |fn(x)−f(x)|
is finite for sufficiently large n and converges to zero as n→∞. More

generally, one can make a topological vector space out of any “norm”,

“quasi-norm”, or “semi-norm” which is infinite on some portion of the

vector space.

Example 1.9.5 (Uniform convergence on compact sets). Let X and

C(X) be as in the previous example. For every compact subset K

of X, we can define a seminorm ‖‖C(K) on C(X) by ‖f‖C(K) :=
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supx∈K |f(x)|. The topology generated by all of these seminorms

(as K ranges over all compact subsets of X) is called the topology of

uniform convergence on compact sets; it is stronger than the topology

of poitnwise convergence but weaker than the topology of uniform

convergence. Indeed, a sequence fn ∈ C(X) converges to f ∈ C(X)

in this topology if and only if fn converges uniformly to f on each

compact set.

Exercise 1.9.5. Show that an arbitrary product of topological vector

spaces (endowed with the product topology) is again a topological

vector space10.

Exercise 1.9.6. Show that a topological vector space is Hausdorff

if and only if the origin {0} is closed. (Hint : first use the continuity

of addition to prove the lemma that if V is an open neighbourhood

of 0, then there exists another open neighbourhood U of 0 such that

U + U ⊂ V , i.e. u+ u′ ∈ V for all u, u′ ∈ U .)

Example 1.9.6 (Smooth convergence). Let C∞([0, 1]) be the space

of smooth functions f : [0, 1] → C. One can define the Ck norm on

this space for any non-negative integer k by the formula

‖f‖Ck :=

k∑
j=0

sup
x∈[0,1]

|f (j)(x)|,

where f (j) is the jth derivative of f . The topology generated by all

the Ck norms for k = 0, 1, 2, . . . is the smooth topology : a sequence

fn converges in this topology to a limit f if f
(j)
n converges uniformly

to f (j) for each j ≥ 0.

Exercise 1.9.7 (Convergence in measure). Let (X,X , µ) be a mea-

sure space, and let L(X) be the space of measurable functions f :

X → C. Show that the sets

B(f, ε, r) := {g ∈ L(X) : µ({x : |f(x)− g(x)| ≥ r} < ε)}

for f ∈ L(X), ε > 0, r > 0 form the base for a topology that turns

L(X) into a topological vector space, and that a sequence fn ∈ L(X)

converges to a limit f in this topology if and only if it converges in

measure.

10I am not sure if the same statement is true for the box topology; I believe it is
false.
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Exercise 1.9.8. Let [0, 1] be given the usual Lebesgue measure.

Show that the vector space L∞([0, 1]) cannot be given a topological

vector space structure in which a sequence fn ∈ L∞([0, 1]) converges

to f in this topology if and only if it converges almost everywhere.

(Hint : construct a sequence fn in L∞([0, 1]) which does not converge

pointwise a.e. to zero, but such that every subsequence has a further

subsequence that converges a.e. to zero, and use Exercise 1.6.8.) Thus

almost everywhere convergence is not “topologisable” in general.

Exercise 1.9.9 (Algebraic topology). Recall that a subset U of a real

vector space V is algebraically open if the sets {t ∈ R : x + tv ∈ U}
are open for all x, v ∈ V .

(i) Show that any set which is open in a topological vector

space, is also algebraically open.

(ii) Give an example of a set in R2 which is algebraically open,

but not open in the usual topology. (Hint : a line intersects

the unit circle in at most two points.)

(iii) Show that the collection of algebraically open sets in V is a

topology.

(iv) Show that the collection of algebraically open sets in R2

does not give R2 the structure of a topological vector space.

Exercise 1.9.10 (Quotient topology). Let V be a topological vector

space, and let W be a subspace of V . Let V/W := {v +W : v ∈ V }
be the space of cosets of W ; this is a vector space. Let π : V → V/W

be the coset map π(v) := v + W . Show that the collection of sets

U ⊂ V/W such that π−1(U) is open gives V/W the structure of

a topological vector space. If V is Hausdorff, show that V/W is

Hausdorff if and only if W is closed in V .

Some (but not all) of the concepts that are definable for normed

vector spaces, are also definable for the more general category of topo-

logical vector spaces. For instance, even though there is no metric

structure, one can still define the notion of a Cauchy sequence xn ∈ V
in a topological vector space: this is a sequence such that xn−xm → 0

as n,m → ∞ (or more precisely, for any open neighbourhood U of

0, there exists N > 0 such that xn − xm ∈ U for all n,m ≥ N). It
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is then possible to talk about a topological vector space being com-

plete (i.e. every Cauchy sequence converges). (From a more abstract

perspective, the reason we can define notions such as completeness

is because a topological vector space has something better than a

topological structure, namely a uniform structure.)

Remark 1.9.7. As we have seen in previous lectures, complete normed

vector spaces (i.e. Banach spaces) enjoy some very nice properties.

Some of these properties (e.g. the uniform boundedness principle and

the open mapping theorem) extend to a slightly larger class of com-

plete topological vector spaces, namely the Fréchet spaces. A Fréchet

space is a complete Hausdorff topological vector space whose topology

is generated by an at most countable family of semi-norms; examples

include the space C∞([0, 1]) from Exercise 1.9.6 or the uniform con-

vergence on compacta topology from Exercise 1.9.5 in the case when

X is σ-compact. We will however not study Fréchet spaces systemat-

ically here.

One can also extend the notion of a dual space V ∗ from normed

vector spaces to topological vector spaces in the obvious manner: the

dual space V ∗ of a topological space is the space of continuous linear

functionals from V to the field of scalars (either R or C, depending on

whether V is a real or complex vector space). This is clearly a vector

space. Unfortunately, in the absence of a norm on V , one cannot

define the analogue of the norm topology on V ∗; but as we shall see

below, there are some weaker topologies that one can still place on

this dual space.

1.9.2. Compactness in the strong topology. We now return to

normed vector spaces, and briefly discuss compactness in the strong

(or norm) topology on such spaces. In finite dimensions, the Heine-

Borel theorem tells us that a set is compact if and only if it is closed

and bounded. In infinite dimensions, this is not enough, for two

reasons. Firstly, compact sets need to be complete, so we are only

likely to find many compact sets when the ambient normed vector

space is also complete (i.e. it is a Banach space). Secondly, compact

sets need to be totally bounded, rather than merely bounded, and
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this is quite a stringent condition. Indeed it forces compact sets to

be “almost finite-dimensional” in the following sense:

Exercise 1.9.11. Let K be a subset of a Banach space V . Show

that the following are equivalent:

(i) K is compact.

(ii) K is sequentially compact.

(iii) K is closed and bounded, and for every ε > 0, K lies in the

ε-neighbourhood {x ∈ V : ‖x − y‖ < ε for some y ∈ W} of

a finite-dimensional subspace W of V .

Suppose furthermore that there is a nested sequence V1 ⊂ V2 ⊂ . . . of

finite-dimensional subspaces of V such that
⋃∞
n=1 Vn is dense. Show

that the following statement is equivalent to the first three:

(iv) K is closed and bounded, and for every ε > 0 there exists

an n such that K lies in the ε-neighbourhood of Vn.

Example 1.9.8. Let 1 ≤ p <∞. In order for a set K ⊂ `p(N) to be

compact in the strong topology, it needs to be closed and bounded,

and also uniformly pth-power integrable at spatial infinity in the sense

that for every ε > 0 there exists n > 0 such that

(
∑
m>n

|f(m)|p)1/p ≤ ε

for all f ∈ K. Thus, for instance, the “moving bump” example

{e1, e2, e3, . . .}, where en is the sequence which equals 1 on n and

zero elsewhere, is not uniformly pth power integrable and thus not a

compact subset of `p(N), despite being closed and bounded.

For “continuous” Lp spaces, such as Lp(R), uniform integrability

at spatial infinity is not sufficient to force compactness in the strong

topology; one also needs some uniform integrability at very fine scales,

which can be described using harmonic analysis tools such as the

Fourier transform (Section 1.12). We will not discuss this topic here.

Exercise 1.9.12. Let V be a normed vector space.

• If W is a finite-dimensional subspace of V , and x ∈ V , show

that there exists y ∈W such that ‖x− y‖ ≤ ‖x− y′‖ for all
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y′ ∈ W . Give an example to show that y is not necessarily

unique (in contrast to the situation with Hilbert spaces).

• If W is a finite-dimensional proper subspace of V , show that

there exists x ∈ V with ‖x‖ = 1 such that ‖x − y‖ ≥ 1 for

all y ∈W . (cf. the Riesz lemma.)

• Show that the closed unit ball {x ∈ V : ‖x‖ ≤ 1} is compact

in the strong topology if and only if V is finite-dimensional.

1.9.3. The weak and weak* topologies. Let V be a topological

vector space. Then, as discussed above, we have the vector space V ∗

of continuous linear functionals on V . We can use this dual space to

create two useful topologies, the weak topology on V and the weak*

topology on V ∗:

Definition 1.9.9 (Weak and weak* topologies). Let V be a topolog-

ical vector space, and let V ∗ be its dual.

• The weak topology on V is the topology generated by the

seminorms ‖x‖λ := |λ(x)| for all λ ∈ V ∗.
• The weak* topology on V ∗ is the topology generated by the

seminorms ‖λ‖x := |λ(x)| for all x ∈ V .

Remark 1.9.10. It is possible for two non-isomorphic topological

vector spaces to have isomorphic duals, but with non-isomorphic

weak* topologies. (For instance, `1(N) has a very large number of

preduals, which can generate a number of different weak* topologies

on `1(N).) So, technically, one cannot talk about the weak* topol-

ogy on a dual space V ∗, without specifying exactly what the predual

space V is. However, in practice, the predual space is usually clear

from context.

Exercise 1.9.13. Show that the weak topology on V is a topological

vector space structure on V that is weaker than the strong topology on

V . Also, show that the weak* topology on V ∗ is a topological vector

space structure on V ∗ that is weaker than the weak topology on V ∗

(which is defined using the double dual (V ∗)∗. When V is reflexive,

show that the weak and weak* topologies on V ∗ are equivalent.

From the definition, we see that a sequence xn ∈ V converges in

the weak topology, or converges weakly for short, to a limit x ∈ V
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if and only if λ(xn) → λ(x) for all λ ∈ V ∗. This weak convergence

is often denoted xn ⇀ x, to distinguish it from strong convergence

xn → x. Similarly, a sequence λn ∈ V ∗ converges in the weak*

topology to λ ∈ V ∗ if λn(x)→ λ(x) for all x ∈ V (thus λn, viewed as

a function on V , converges pointwise to λ).

Remark 1.9.11. If V is a Hilbert space, then from the Riesz repre-

sentation theorem for Hilbert spaces (Theorem 1.4.13) we see that a

sequence xn ∈ V converges weakly (or in the weak* sense) to a limit

x ∈ V if and only if 〈xn, y〉 → 〈x, y〉 for all y ∈ V .

Exercise 1.9.14. Show that if V is a normed vector space, then

the weak topology on V and the weak* topology on V ∗ are both

Hausdorff. (Hint : You will need the Hahn-Banach theorem.) In par-

ticular, we conclude the important fact that weak and weak* limits,

when they exist, are unique.

The following exercise shows that the strong, weak, and weak*

topologies can all differ from each other.

Exercise 1.9.15. Let V := c0(N), thus V ∗ ≡ `1(N) and V ∗∗ ≡
`∞(N). Let e1, e2, . . . be the standard basis of either V , V ∗, or V ∗∗.

• Show that the sequence e1, e2, . . . converges weakly in V to

zero, but does not converge strongly in V .

• Show that the sequence e1, e2, . . . converges in the weak*

sense in V ∗ to zero, but does not converge in the weak or

strong senses in V ∗.

• Show that the sequence
∑∞
m=n em for n = 1, 2, . . . converges

in the weak* topology of V ∗∗ to zero, but does not converge

in the weak or strong senses. (Hint : use a generalised limit

functional).

Remark 1.9.12. Recall from Exercise 1.7.11 that sequences in V ∗ ≡
`1(N) which converge in the weak topology, also converge in the

strong topology. We caution however that the two topologies are

not quite equivalent; for instance, the open unit ball in `1(N) is open

in the strong topology, but not in the weak.

Exercise 1.9.16. Let V be a normed vector space, and let E be a

subset of V . Show that the following are equivalent:



138 1. Real analysis

• E is strongly bounded (i.e. E is contained in a ball).

• E is weakly bounded (i.e. λ(E) is bounded for all λ ∈ V ∗).

(Hint : use the Hahn-Banach theorem and the uniform boundedness

principle.) Similarly, if F is a subset of V ∗, and V is a Banach

space, show that F is strongly bounded if and only if F is weak*

bounded (i.e. {λ(x) : λ ∈ F} is bounded for each x ∈ V ).) Conclude

in particular that any sequence which is weakly convergent in V or

weak* convergent in V ∗ is necessarily bounded.

Exercise 1.9.17. Let V be a Banach space, and let xn ∈ V converge

weakly to a limit x ∈ V . Show that the sequence xn is bounded, and

‖x‖V ≤ lim inf
n→∞

‖xn‖V .

Observe from Exercise 1.9.15 that strict inequality can hold (cf. Fa-

tou’s lemma, Theorem 1.1.21). Similarly, if λn ∈ V ∗ converges in

the weak* topology to a limit λ ∈ V ∗, show that the sequence λn is

bounded and that

‖λ‖V ∗ ≤ lim inf
n→∞

‖λn‖V ∗ .

Again, construct an example to show that strict inequality can hold.

Thus we see that weak or weak* limits can lose mass in the limit, as

opposed to strong limits (note from the triangle inequality that if xn
converges strongly to x, then ‖xn‖V converges to ‖x‖V ).

Exercise 1.9.18. Let H be a Hilbert space, and let xn ∈ H converge

weakly to a limit x ∈ H. Show that the following statements are

equivalent:

• xn converges strongly to x.

• ‖xn‖ converges to ‖x‖.

Exercise 1.9.19. Let H be a separable Hilbert space. We say that

a sequence xn ∈ H converges in the Césaro sense to a limit x ∈ H if
1
N

∑N
n=1 xn converges strongly to x as n→∞.

• Show that if xn converges strongly to x, then it also con-

verges in the Césaro sense to x.

• Give examples to show that weak convergence does not im-

ply Césaro convergence, and vice versa. On the other hand,
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if a sequence xn converges both weakly and in the Césaro

sense, show that the weak limit is necessarily equal to the

Césaro limit.

• Show that if a bounded sequence converges in the Césaro

sense to a limit x, then some subsequence converges weakly

to x.

• Show that a sequence xn converges weakly to x if and only if

every subsequence has a further subsequence that converges

in the Césaro sense to x.

Exercise 1.9.20. Let V be a Banach space. Show that the closed

unit ball in V is also closed in the weak topology, and the closed unit

ball in V ∗ is closed in the weak* topology.

Exercise 1.9.21. Let V be a Banach space. Show that the weak*

topology on V ∗ is complete.

Exercise 1.9.22. Let V be a normed vector space, let W be a sub-

space of V which is closed in the strong topology of V .

• Show that W is closed in the weak topology of V .

• If wn ∈W is a sequence and w ∈W , show that wn converges

to w in the weak topology of W if and only if it converges

to w in the weak topology of V . (Because of this fact, we

can often refer to “the weak topology” without specifying

the ambient space precisely.)

Exercise 1.9.23. Let V := c0(N) with the uniform (i.e. `∞) norm,

and identify the dual space V ∗ with `1(N) in the usual manner.

• Show that a sequence xn ∈ c0(N) converges weakly to a

limit x ∈ c0(N) if and only if the xn are bounded in c0(N)

and converge pointwise to x.

• Show that a sequence λn ∈ `1(N) converges in the weak*

topology to a limit λ ∈ `1(N) if and only if the λn are

bounded in `1(N) and converge pointwise to λ.

• Show that the weak topology in c0(N) is not complete.

(More generally, it may help to think of the weak and weak* topologies

as being analogous to pointwise convergence topologies.)
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One of the main reasons why we use the weak and weak* topolo-

gies in the first place is that they have much better compactness

properties than the strong topology, thanks to the Banach-Alaoglu

theorem:

Theorem 1.9.13 (Banach-Alaoglu theorem). Let V be a normed

vector space. Then the closed unit ball of V ∗ is compact in the weak*

topology.

This result should be contrasted with Exercise 1.9.12.

Proof. Let’s say V is a complex vector space (the case of real vector

spaces is of course analogous). Let B∗ be the closed unit ball of V ∗,

then any linear functional λ ∈ B∗ maps the closed unit ball B of V

into the disk D := {z ∈ C : |z| ≤ 1}. Thus one can identify B∗ with a

subset of DB , the space of functions from B to D. One easily verifies

that the weak* topology on B∗ is nothing more than the product

topology of DB restricted to B∗. Also, one easily shows that B∗ is

closed in DB . But by Tychonoff’s theorem, DB is compact, and so

B∗ is compact also. �

One should caution that the Banach-Alaoglu theorem does not

imply that the space V ∗ is locally compact in the weak* topology,

because the norm ball in V has empty interior in the weak* topology

unless V is finite dimensional. In fact, we have the following result of

Riesz:

Exercise 1.9.24. Let V be a locally compact Hausdorff topological

vector space. Show that V is finite dimensional. (Hint : If V is locally

compact, then there exists an open neighbourhood U of the origin

whose closure is compact. Show that U ⊂ W + 1
2U for some finite-

dimensional subspace W , where W+ 1
2U := {w+ 1

2u : w ∈W,u ∈ U}.
Iterate this to conclude that U ⊂W +εU for any ε > 0. On the other

hand, use the compactness of U to show that for any point x ∈ V \W
there exists ε > 0 such that x−εU is disjoint from W . Conclude that

U ⊂W and thence that V = W .)

The sequential version of the Banach-Alaoglu theorem is also of

importance (particularly in PDE):
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Theorem 1.9.14 (Sequential Banach-Alaoglu theorem). Let V be

a separable normed vector space. Then the closed unit ball of V ∗ is

sequentially compact in the weak* topology.

Proof. The functionals in B∗ are uniformly bounded and uniformly

equicontinuous on B, which by hypothesis has a countable dense sub-

set Q. By the sequential Tychonoff theorem, any sequence in B∗

then has a subsequence which converges pointwise on Q, and thus

converges pointwise on B by Exercise 1.8.28, and thus converges in

the weak* topology. But as B∗ is closed in this topology, we conclude

that B∗ is sequentially compact as required. �

Remark 1.9.15. One can also deduce the sequential Banach-Alaoglu

theorem from the general Banach-Alaoglu theorem by observing that

the weak* topology on the dual of a separable space is metrisable. The

sequential Banach-Alaoglu theorem can break down for non-separable

spaces. For instance, the closed unit ball in `∞(N) is not sequentially

compact in the weak* topology, basically because the space βN of ul-

trafilters is not sequentially compact (see Exercise 2.3.12 of Poincaré’s

Legacies, Vol. I ).

If V is reflexive, then the weak topology on V is identical to the

weak* topology on (V ∗)∗. We thus have

Corollary 1.9.16. If V is a reflexive normed vector space, then the

closed unit ball in V is weakly compact, and (if V ∗ is separable) is

also sequentially weakly compact.

Remark 1.9.17. If V is a normed vector space that is not separa-

ble, then one can show that V ∗ is not separable either. Indeed, using

transfinite induction on first uncountable ordinal, one can construct

an uncountable proper chain of closed separable subspaces of the in-

separable space V , which by the Hahn-Banach theorem induces an

uncountable proper chain of closed subspaces on V ∗, which is not

compatible with separability. As a consequence, a reflexive space is

separable if and only if its dual is separable11.

11On the other hand, separable spaces can have non-separable duals; consider
`1(N), for instance.
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In particular, any bounded sequence in a reflexive separable normed

vector space has a weakly convergent subsequence. This fact leads

to the very useful weak compactness method in PDE and calculus of

variations, in which a solution to a PDE or variational problem is con-

structed by first constructing a bounded sequence of “near-solutions”

or “near-extremisers” to the PDE or variational problem, and then

extracting a weak limit. However, it is important to caution that

weak compactness can fail for non-reflexive spaces; indeed, for such

spaces the closed unit ball in V may not even be weakly complete, let

alone weakly compact, as already seen in Exercise 1.9.23. Thus, one

should be cautious when applying the weak compactness method to

a non-reflexive space such as L1 or L∞. (On the other hand, weak*

compactness does not need reflexivity, and is thus safer to use in such

cases.)

In later notes we will see that the (sequential) Banach-Alaoglu

theorem will combine very nicely with the Riesz representation theo-

rem for measures (Section 1.10.2), leading in particular to Prokhorov’s

theorem (Exercise 1.10.29).

1.9.4. The strong and weak operator topologies. Now we turn

our attention from function spaces to spaces of operators. Recall that

if X and Y are normed vector spaces, then B(X → Y ) is the space

of bounded linear transformations from X to Y . This is a normed

vector space with the operator norm

‖T‖op := sup{‖Tx‖Y : ‖x‖X ≤ 1}.

This norm induces the operator norm topology on B(X → Y ). Unfor-

tunately, this topology is so strong that it is difficult for a sequence

of operators Tn ∈ B(X → Y ) to converge to a limit; for this reason,

we introduce two weaker topologies.

Definition 1.9.18 (Strong and weak operator topologies). Let X,Y

be normed vector spaces. The strong operator topology on B(X → Y )

is the topology induced by the seminorms T 7→ ‖Tx‖Y for all x ∈ X.

The weak operator topology on B(X → Y ) is the topology induced by

the seminorms T 7→ |λ(Tx)| for all x ∈ X and λ ∈ Y ∗.
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Note that a sequence Tn ∈ B(X → Y ) converges in the strong

operator topology to a limit T ∈ B(X → Y ) if and only if Tnx→ Tx

strongly in Y for all x ∈ X, and Tn converges in the weak operator

topology. (In contrast, Tn converges to T in the operator norm topol-

ogy if and only if Tnx converges to Tx uniformly on bounded sets.)

One easily sees that the weak operator topology is weaker than the

strong operator topology, which in turn is (somewhat confusingly)

weaker than the operator norm topology.

Example 1.9.19. When X is the scalar field, then B(X → Y ) is

canonically isomorphic to Y . In this case, the operator norm and

strong operator topology coincide with the strong topology on Y , and

the weak operator norm topology coincides with the weak topology on

Y . Meanwhile, B(Y → X) coincides with Y ∗, and the operator norm

topology coincides with the strong topology on Y ∗, while the strong

and weak operator topologies correspond with the weak* topology on

Y ∗.

We can rephrase the uniform boundedness principle for conver-

gence (Corollary 1.7.7) as follows:

Proposition 1.9.20 (Uniform boundedness principle). Let Tn ∈
B(X → Y ) be a sequence of bounded linear operators from a Ba-

nach space X to a normed vector space Y , let T ∈ B(X → Y ) be

another bounded linear operator, and let D be a dense subspace of X.

Then the following are equivalent:

• Tn converges in the strong operator topology of B(X → Y )

to T .

• Tn is bounded in the operator norm (i.e. ‖Tn‖op is bounded),

and the restriction of Tn to D converges in the strong oper-

ator topology of B(D → Y ) to the restriction of T to D.

Exercise 1.9.25. Let the hypotheses be as in Proposition 1.9.20, but

now assume that Y is also a Banach space. Show that the conclusion

of Proposition 1.9.20 continues to hold if “strong operator topology”

is replaced by “weak operator topology”.

Exercise 1.9.26. Show that the operator norm topology, strong op-

erator topology, and weak operator topology, are all Hausdorff. As
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these topologies are nested, we thus conclude that it is not possible

for a sequence of operators to converge to one limit in one of these

topologies and to converge to a different limit in another.

Example 1.9.21. Let X = L2(R), and for each t ∈ R, let Tt :

X → X be the translation operator by t: Ttf(x) := f(x − t). If f

is continuous and compactly supported, then (e.g. from dominated

convergence) we see that Ttf → f in L2 as t→ 0. Since the space of

continuous and compactly supported functions is dense in L2(R), this

implies (from the above proposition, with some obvious modifications

to deal with the continuous parameter t instead of the discrete param-

eter n) that Tt converges in the strong operator topology (and hence

weak operator topology) to the identity. On the other hand, Tt does

not converge to the identity in the operator norm topology. Indeed,

observe for any t > 0 that ‖(Tt−I)1[0,t]‖L2(R) =
√

2‖1[0,t]‖L2(R), and

thus ‖Tt − I‖op ≥
√

2.

In a similar vein, Tt does not converge to anything in the strong

operator topology (and hence does not converge in the operator norm

topology either) in the limit t → ∞, since Tt1[0,1] (say) does not

converge strongly in L2. However, one easily verifies that 〈Ttf, g〉 → 0

as t→∞ for any compactly supported f, g ∈ L2(R), and hence for all

f, g ∈ L2(R) by the usual limiting argument, and hence Tt converges

in the weak operator topology to zero.

The following exercise may help clarify the relationship between

the operator norm, strong operator, and weak operator topologies.

Exercise 1.9.27. Let H be a Hilbert space, and let Tn ∈ B(H → H)

be a sequence of bounded linear operators.

• Show that Tn → 0 in the operator norm topology if and only

if 〈Tnxn, yn〉 → 0 for any bounded sequences xn, yn ∈ H.

• Show that Tn → 0 in the strong operator topology if and

only if 〈Tnxn, yn〉 → 0 for any convergent sequence xn ∈ H
and any bounded sequence yn ∈ H.

• Show that Tn → 0 in the weak operator topology if and only

if 〈Tnxn, yn〉 → 0 for any convergent sequences xn, yn ∈ H.



1.9. The strong and weak topologies 145

• Show that Tn → 0 in the operator norm (resp. weak oper-

ator) topology if and only if T †n → 0 in the operator norm

(resp. weak operator) topology. Give an example to show

that the corresponding claim for the strong operator topol-

ogy is false.

There is a counterpart of the Banach-Alaoglu theorem (and its

sequential analogue), at least in the case of Hilbert spaces:

Exercise 1.9.28. Let H,H ′ be Hilbert spaces. Show that the closed

unit ball (in the operator norm) in B(H → H ′) is compact in the weak

operator topology. If H and H ′ are separable, show that B(H → H ′)

is sequentially compact in the weak operator topology.

The behaviour of convergence in various topologies with respect

to composition is somewhat complicated, as the following exercise

shows.

Exercise 1.9.29. Let H be a Hilbert space, let Sn, Tn ∈ B(H →
H) be sequences of operators, and let S ∈ B(H → H) be another

operator.

• If Tn → 0 in the operator norm (resp. strong operator or

weak operator) topology, show that STn → 0 and TnS → 0

in the operator norm (resp. strong operator or weak opera-

tor) topology.

• If Tn → 0 in the operator norm topology, and Sn is bounded

in the operator norm topology, show that SnTn → 0 and

TnSn → 0 in the operator norm topology.

• If Tn → 0 in the strong operator topology, and Sn is bounded

in the operator norm topology, show that SnTn → 0 in the

strong operator norm topology.

• Give an example where Tn → 0 in the strong operator topol-

ogy, and Sn → 0 in the weak operator topology, but TnSn
does not converge to zero even in the weak operator topol-

ogy.

Exercise 1.9.30. Let H be a Hilbert space. An operator T ∈
B(H → H) is said to be finite rank if its image T (H) is finite di-

mensional. T is said to be compact if the image of the unit ball is
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precompact. Let K(H → H) denote the space of compact operators

on H.

• Show that T ∈ B(H → H) is compact if and only if it is the

limit of finite rank operators in the operator norm topology.

Conclude in particular that K(H → H) is a closed subset

of B(H → H) in the operator norm topology.

• Show that an operator T ∈ B(H → H) is compact if and

only if T † is compact.

• If H is separable, show that every T ∈ B(H → H) is the

limit of finite rank operators in the strong operator topology.

• If T ∈ K(H → H), show that T maps weakly convergent

sequences to strongly convergent sequences. (This property

is known as complete continuity.)

• Show that K(H → H) is a subspace of B(H → H), which

is closed with respect to left and right multiplication by ele-

ments of B(H → H). (In other words, the space of compact

operators is an two-ideal in the algebra of bounded opera-

tors.)

The weak operator topology plays a particularly important role

on the theory of von Neumann algebras, which we will not discuss

here.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/02/21.

Thanks to Eric, etale, less than epsilon, Matt Daws, PDEBeginner,

Sebastian Scholtes, Xiaochuan Liu, Yasser Taima, and anonymous

commenters for corrections.

1.10. Continuous functions on locally compact
Hausdorff spaces

A key theme in real analysis is that of studying general functions

f : X → R or f : X → C by first approximating them by “sim-

pler” or “nicer” functions. But the precise class of “simple” or “nice”

functions may vary from context to context. In measure theory, for

instance, it is common to approximate measurable functions by indi-

cator functions or simple functions. But in other parts of analysis, it
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is often more convenient to approximate rough functions by contin-

uous or smooth functions (perhaps with compact support, or some

other decay condition), or by functions in some algebraic class, such

as the class of polynomials or trigonometric polynomials.

In order to approximate rough functions by more continuous ones,

one of course needs tools that can generate continuous functions with

some specified behaviour. The two basic tools for this are Urysohn’s

lemma, which approximates indicator functions by continuous func-

tions, and the Tietze extension theorem, which extends continuous

functions on a subdomain to continuous functions on a larger do-

main. An important consequence of these theorems is the Riesz rep-

resentation theorem for linear functionals on the space of compactly

supported continuous functions, which describes such functionals in

terms of Radon measures.

Sometimes, approximation by continuous functions is not enough;

one must approximate continuous functions in turn by an even smoother

class of functions. A useful tool in this regard is the Stone-Weierstrass

theorem, that generalises the classical Weierstrass approximation the-

orem to more general algebras of functions.

As an application of this theory (and of many of the results accu-

mulated in previous lecture notes), we will present (in an optional sec-

tion) the commutative Gelfand-Neimark theorem classifying all com-

mutative unital C∗-algebras.

1.10.1. Urysohn’s lemma. Let X be a topological space. An in-

dicator function 1E in this space will not typically be a continuous

function (indeed, if X is connected, this only happens when E is

the empty set or the whole set). Nevertheless, for certain topologi-

cal spaces, it is possible to approximate an indicator function by a

continuous function, as follows.

Lemma 1.10.1 (Urysohn’s lemma). Let X be a topological space.

Then the following are equivalent:

(i) Every pair of disjoint closed sets K,L in X can be separated

by disjoint open neighbourhoods U ⊃ K, V ⊃ L.
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(ii) For every closed set K in X and every open neighbourhood

U of K, there exists an open set V and a closed set L such

that K ⊂ V ⊂ L ⊂ U .

(iii) For every pair of disjoint closed sets K,L in X, there exists

a continuous function f : X → [0, 1] which equals 1 on K

and 0 on L.

(iv) For every closed set K in X and every open neighbourhood

U of K, there exists a continuous function f : X → [0, 1]

such that 1K(x) ≤ f(x) ≤ 1U (x) for all x ∈ X.

A topological space which obeys any (and hence all) of (i-iv) is

known as a normal space; definition (i) is traditionally taken to be

the standard definition of normality. We will give some examples of

normal spaces shortly.

Proof. The equivalence of (iii) and (iv) is clear, as the complement

of a closed set is an open set and vice versa. The equivalence of (i)

and (ii) follows similarly.

To deduce (i) from (iii), let K,L be disjoint closed sets, let f be

as in (iii), and let U, V be the open sets U := {x ∈ X : f(x) > 2/3}
and V := {x ∈ X : f(x) < 1/3}.

The only remaining task is to deduce (iv) from (ii). Suppose we

have a closed set K = K1 and an open set U = U0 with K1 ⊂ U0.

Applying (ii), we can find an open set U1/2 and a closed set K1/2 such

that

K1 ⊂ U1/2 ⊂ K1/2 ⊂ U0.

Applying (ii) two more times, we can find more open sets U1/4, U3/4

and closed sets K1/4,K3/4 such that

K1 ⊂ U3/4 ⊂ K3/4 ⊂ U1/2 ⊂ K1/2 ⊂ U1/4 ⊂ K1/4 ⊂ U0.

Iterating this process, we can construct open sets Uq and closed sets

Kq for every dyadic rational q = a/2n in (0, 1) such that Uq ⊂ Kq for

all 0 < q < 1, and Kq′ ⊂ Uq for any 0 ≤ q < q′ ≤ 1.

If we now define f(x) := sup{q : x ∈ Uq} = inf{q : x ∈ Kq},
where q ranges over dyadic rationals between 0 and 1, and with the

convention that the empty set has sup 1 and inf 0, one easily verifies
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that the sets {f(x) > α} =
⋃
q>α Uq and {f(x) < α} =

⋃
q<αX\Kq

are open for every real number α, and so f is continuous as required.

�

The definition of normality is very similar to the Hausdorff prop-

erty, which separates pairs of points instead of closed sets. Indeed, if

every point in X is closed (a property known as the T1 property), then

normality clearly implies the Hausdorff property. The converse is not

always true, but (as the term suggests) in practice most topological

spaces one works with in real analysis are normal. For instance:

Exercise 1.10.1. Show that every metric space is normal.

Exercise 1.10.2. Let X be a Hausdorff space.

• Show that a compact subset of X and a point disjoint from

that set can always be separated by open neighbourhoods.

• Show that a pair of disjoint compact subsets of X can always

be separated by open neighbourhoods.

• Show that every compact Hausdorff space is normal.

Exercise 1.10.3. Let R be the real line with the usual topology F ,

and let F ′ be the topology on R generated by F and the rationals.

Show that (R,F ′) is Hausdorff, with every point closed, but is not

normal.

The above example was a simple but somewhat artificial example

of a non-normal space. One can create more “natural” examples of

non-normal Hausdorff spaces (with every point closed), but establish-

ing non-normality becomes more difficult. The following example is

due to Stone[St1948].

Exercise 1.10.4. Let NR be the space of natural number-valued

tuples (nx)x∈R, endowed with the product topology (i.e. the topology

of pointwise convergence).

• Show that NR is Hausdorff, and every point is closed.

• For j = 1, 2, let Kj be the set of all tuples (nx)x∈R such that

nx = j for all x outside of a countable set, and such that

x 7→ nx is injective on this finite set (i.e. there do not exist
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distinct x, x′ such that nx = nx′ 6= j). Show that K1,K2

are disjoint and closed.

• Show that given any open neighbourhood U of K1, there

exists disjoint finite subsets A1, A2, . . . of R and an injective

function f :
⋃∞
i=1Ai → N such that for any j ≥ 0, any

(mx)x∈R such that mx = f(x) for all x ∈ A1 ∪ . . . ∪Aj and

is identically 1 on Aj+1, lies in U .

• Show that any open neighbourhood of K1 and any open

neighbourhood of K2 necessarily intersect, and so NR is

not normal.

• Conclude that RR with the product topology is not normal.

The property of being normal is a topological one, thus if one

topological space is normal, then any other topological space home-

omorphic to it is also normal. However, (unlike, say, the Hausdorff

property), the property of being normal is not preserved under pas-

sage to subspaces:

Exercise 1.10.5. Given an example of a subspace of a normal space

which is not normal. (Hint : use Exercise 1.10.4, possibly after re-

placing R with a homeomorphic equivalent.)

Let Cc(X → R) be the space of real continuous compactly sup-

ported functions on X. Urysohn’s lemma generates a large number of

useful elements of Cc(X → R), in the case when X is locally compact

Hausdorff (LCH):

Exercise 1.10.6. Let X be a locally compact Hausdorff space, let

K be a compact set, and let U be an open neighbourhood of K.

Show that there exists f ∈ Cc(X → R) such that 1K(x) ≤ f(x) ≤
1U (x) for all x ∈ X. (Hint : First use the local compactness of X to

find a neighbourhood of K with compact closure; then restrict U to

this neighbourhood. The closure of U is now a compact set; restrict

everything to this set, at which point the space becomes normal.)

One consequence of this exercise is that Cc(X → R) tends to be

dense in many other function spaces. We give an important example

here:



1.10. LCH spaces 151

Definition 1.10.2 (Radon measure). Let X be a locally compact

Hausdorff space that is also σ-compact, and let B be the Borel σ-

algebra. An (unsigned) Radon measure is a unsigned measure µ :

B → R+ with the following properties:

• (Local finiteness) For any compact subset K of X, µ(K) is

finite.

• (Outer regularity) For any Borel set E ofX, µ(E) = inf{µ(U) :

U ⊃ E;U open}.
• (Inner regularity) For any Borel set E ofX, µ(E) = sup{µ(K) :

K ⊂ E;K compact}.

Example 1.10.3. Lebesgue measure m on Rn is a Radon measure,

as is any absolutely continuous unsigned measure mf , where f ∈
L1(Rn, dm). More generally, if µ is Radon and ν is a finite unsigned

measure which is absolutely continuous with respect to µ, then ν is

Radon. On the other hand, counting measure on Rn is not Radon

(it is not locally finite). It is possible to define Radon measures on

Hausdorff spaces that are not σ-compact or locally compact, but the

theory is more subtle and will not be considered here. We will study

Radon measures more thoroughly in the next section.

Proposition 1.10.4. Let X be a locally compact Hausdorff space

which is also σ-compact, and let µ be a Radon measure on X. Then

for any 0 < p < ∞, Cc(X → R) is a dense subset in (real-valued)

Lp(X,µ). In other words, every element of Lp(X,µ) can be expressed

as a limit (in Lp(X,µ)) of continuous functions of compact support.

Proof. Since continuous functions of compact support are bounded,

and compact sets have finite measure, we see that Cc(X) is a subspace

of Lp(X,µ). We need to show that the closure Cc(X) of this space

contains all of Lp(X,µ).

Let K be a compact set, and let E ⊂ K be a Borel set, then E

has finite measure. Applying inner and outer regularity, we can find

a sequence of compact sets Kn ⊂ E and open sets Un ⊃ E such that

µ(E\Kn), µ(Un\E)→ 0. Applying Exercise 1.10.6, we can then find

fn ∈ Cc(X → R) such that 1Kn(x) ≤ fn(x) ≤ 1Un(x). In particular,

this implies (by the squeeze theorem) that fn converges in Lp(X,µ)
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to 1E (here we use the finiteness of p); thus 1E lies in Cc(X → R)

for any measurable subset E of K. By linearity, all simple functions

supported on K also lie in Cc(X → R); taking closures, we see that

any Lp function supported in K also lies in Cc(X → R). As X is

σ-finite, one can express any non-negative Lp function as a monotone

limit of compactly supported functions, and thus every non-negative

Lp function lies in Cc(X → R), and thus all Lp functions lie in this

space, and the claim follows. �

Of course, the real-valued version of the above proposition imme-

diately implies a complex-valued analogue. On the other hand, the

claim fails when p =∞:

Exercise 1.10.7. Let X be a locally compact Hausdorff space that

is σ-compact, and let µ be a Radon measure. Show that the closure

of Cc(X → R) in L∞(X,µ) is C0(X → R), the space of continuous

real-valued functions which vanish at infinity (i.e. for every ε > 0

there exists a compact set K such that |f(x)| ≤ ε for all x ∈ K).

Thus, in general, Cc(X → R) is not dense in L∞(X,µ).

Thus we see that the L∞ norm is strong enough to preserve conti-

nuity in the limit, whereas the Lp norms are (locally) weaker and per-

mit discontinuous functions to be approximated by continuous ones.

Another important consequence of Urysohn’s lemma is the Tietze

extension theorem:

Theorem 1.10.5 (Tietze extension theorem). Let X be a normal

topological space, let [a, b] ⊂ R be a bounded interval, let K be a

closed subset of X, and let f : K → [a, b] be a continuous function.

Then there exists a continuous function f̃ : X → [a, b] which extends

f , i.e. f̃(x) = f(x) for all x ∈ K.

Proof. It suffices to find an continuous extension f̃ : X → R taking

values in the real line rather than in [a, b], since one can then re-

place f̃ by min(max(f̃ , a), b) (note that min and max are continuous

operations).

Let T : BC(X → R) → BC(K → R) be the restriction map

Tf := f �K . This is clearly a continuous linear map; our task is

to show that it is surjective, i.e. to find a solution to the equation
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Tg = f for each f ∈ BC(X → R). We do this by the standard

analysis trick of getting an approximate solution to Tg = f first, and

then using iteration to boost the approximate solution to an exact

solution.

Let f : K → R have sup norm 1, thus f takes values in [−1, 1]. To

solve the problem Tg = f , we approximate f by 1
31f≥1/3− 1

31f≤−1/3.

By Urysohn’s lemma, we can find a continuous function g : X →
[−1/3, 1/3] such that g = 1/3 on the closed set {x ∈ K : f ≥ 1/3}
and g = −1/3 on the closed set {x ∈ K : f ≤ −1/3}. Now, Tg is not

quite equal to f ; but observe from construction that f − Tg has sup

norm 2/3.

Scaling this fact, we conclude that, given any f ∈ BC(K → R),

we can find a decomposition f = Tg + f ′, where ‖g‖BC(X→R) ≤
1
3‖f‖BC(K→R) and ‖f ′‖BC(K→R) ≤ 2

3‖f‖BC(K→R).

Starting with any f = f0 ∈ BC(K → R), we can now iterate this

construction to express fn = Tgn + fn+1 for all n = 0, 1, 2, . . ., where

‖fn‖BC(K→R) ≤ ( 2
3 )n‖f‖BC(K→R) and ‖gn‖BC(X→R) ≤ 1

3 ( 2
3 )n‖f‖BC(K→R).

As BC(X → R) is a Banach space, we see that
∑∞
n=0 gn converges

absolutely to some limit g ∈ BC(X → R), and that Tg = f , as

desired. �

Remark 1.10.6. Observe that Urysohn’s lemma can be viewed the

special case of the Tietze extension theorem when K is the union of

two disjoint closed sets, and f is equal to 1 on one of these sets and

equal to 0 on the other.

Remark 1.10.7. One can extend the Tietze extension theorem to

finite-dimensional vector spaces: if K is a closed subset of a normal

vector space X and f : K → Rn is bounded and continuous, then

one has a bounded continuous extension f : K → Rn. Indeed, one

simply applies the Tietze extension theorem to each component of f

separately. However, if the range space is replaced by a space with

a non-trivial topology, then there can be topological obstructions to

continuous extension. For instance, a map f : {0, 1} → Y from a

two-point set into a topological space Y is always continuous, but

can be extended to a continuous map f̃ : R → Y if and only if f(0)

and f(1) lie in the same path-connected component of Y . Similarly, if

f : S1 → Y is a map from the unit circle into a topological space Y ,
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then a continuous extension from S1 to R2 exists if and only if the

closed curve f : S1 → Y is contractible to a point in Y . These sorts

of questions require the machinery of algebraic topology to answer

them properly, and are beyond the scope of this course.

There are analogues for the Tietze extension theorem in some

other categories of functions. For instance, in the Lipschitz category,

we have

Exercise 1.10.8. Let X be a metric space, let K be a subset of

X, and let f : K → R be a Lipschitz continuous map with some

Lipschitz constant A (thus |f(x)− f(y)| ≤ Ad(x, y) for all x, y ∈ K).

Show that there exists an extension f̃ : X → R of f which is Lipschitz

continuous with the same Lipschitz constant A. (Hint : A “greedy”

algorithm will work here: pick f̃ to be as large as one can get away

with (or as small as one can get away with).)

One can also remove the requirement that the function f be

bounded in the Tietze extension theorem:

Exercise 1.10.9. Let X be a normal topological space, let K be a

closed subset of X, and let f : K → R be a continuous map (not

necessarily bounded). Then there exists an extension f̃ : X → R of f

which is still continuous. (Hint : first “compress” f to be bounded by

working with, say, arctan(f) (other choices are possible), and apply

the usual Tietze extension theorem. There will be some sets in which

one cannot invert the compression function, but one can deal with

this by a further appeal to Urysohn’s lemma to damp the extension

out on such sets.)

There is also a locally compact Hausdorff version of the Tietze

extension theorem:

Exercise 1.10.10. Let X be locally compact Hausdorff, let K be

compact, and let f ∈ C(K → R). Then there exists f̃ ∈ Cc(X → R)

which extends f .

Proposition 1.10.4 shows that measurable functions in Lp can be

approximated by continuous functions of compact support (cf. Little-

wood’s second principle). Another approximation result in a similar

spirit is Lusin’s theorem:
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Theorem 1.10.8 (Lusin’s theorem). Let X be a locally compact

Hausdorff space that is σ-compact, and let µ be a Radon measure.

Let f : X → R be a measurable function supported on a set of finite

measure, and let ε > 0. Then there exists g ∈ Cc(X → R) which

agrees with f outside of a set of measure at most ε.

Proof. Observe that as f is finite everywhere, it is bounded outside

of a set of arbitrarily small measure. Thus we may assume without

loss of generality that f is bounded. Similarly, as X is σ-compact

(or by inner regularity), the support of f differs from a compact set

by a set of arbitrarily small measure; so we may assume that f is

also supported on a compact set K. By Theorem 1.10.5, it then

suffices to show that f is continuous on the complement of an open

set of arbitrarily small measure; by outer regularity, we may delete

the adjective “open” from the preceding sentence.

As f is bounded and compactly supported, f lies in Lp(X,µ)

for every 0 < p < ∞, and using Proposition 1.10.4 and Chebyshev’s

inequality, it is not hard to find, for each n = 1, 2, . . ., a function

fn ∈ Cc(X → R) which differs from f by at most 1/2n outside of

a set of measure at most ε/2n+2 (say). In particular, fn converges

uniformly to f outside of a set of measure at most ε/4, and f is

therefore continuous outside this set. The claim follows. �

Another very useful application of Urysohn’s lemma is to create

partitions of unity.

Lemma 1.10.9 (Partitions of unity). Let X be a normal topological

space, and let (Kα)α∈A be a collection of closed sets that cover X.

For each α ∈ A, let Uα be an open neighbourhood of Kα, which are

finitely overlapping in the sense that each x ∈ X belongs to at most

finitely many of the Uα. Then there exists a continuous function fα :

X → [0, 1] supported on Uα for each α ∈ A such that
∑
α∈A fα(x) = 1

for all x ∈ X.

If X is locally compact Hausdorff instead of normal, and the Kα

are compact, then one can take the fα to be compactly supported.

Proof. Suppose first that X is normal. By Urysohn’s lemma, one

can find a continuous function gα : X → [0, 1] for each α ∈ A which
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is supported on Uα and equals 1 on the closed set Kα. Observe that

the function g :=
∑
α∈A gα is well-defined, continuous and bounded

below by 1. The claim then follows by setting fα := gα/g.

The final claim follows by using Exercise 1.10.6 instead of Urysohn’s

lemma. �

Exercise 1.10.11. Let X be a topological space. A function f :

X → R is said to be upper semi-continuous if f−1((−∞, a)) is open

for all real a, and lower semi-continuous if f−1((a,+∞)) is open for

all real a.

• Show that an indicator function 1E is upper semi-continuous

if and only if E is closed, and lower semi-continuous if and

only if E is open.

• IfX is normal, show that a function f is upper semi-continuous

if and only if f(x) = inf{g(x) : g ∈ C(X → R), g ≥ f}
for all x ∈ X, and lower semi-continuous if and only if

f(x) = sup{g(x) : g ∈ C(X → R), g ≤ f} for all x ∈ X,

where we write f ≤ g if f(x) ≤ g(x) for all x ∈ X.

1.10.2. The Riesz representation theorem. Let X be a locally

compact Hausdorff space which is also σ-compact. In Definition 1.10.2

we defined the notion of a Radon measure. Such measures are quite

common in real analysis. For instance, we have the following result.

Theorem 1.10.10. Let µ be a non-negative finite Borel measure on

a compact metric space X. Then µ is a Radon measure.

Proof. As µ is finite, it is locally finite, so it suffices to show inner

and outer regularity. Let A be the collection of all Borel subsets E

of X such that

sup{µ(K) : K ⊂ E, closed} = inf{µ(U) : U ⊃ E, open} = µ(E),

It will then suffice to show that every Borel set lies in A (note that as

X is compact, a subset K of X is closed if and only if it is compact).

Clearly A contains the empty set and the whole set X, and is

closed under complements. It is also closed under finite unions and in-

tersections. Indeed, given two sets E,F ∈ A, we can find a sequences

Kn ⊂ E ⊂ Un, Ln ⊂ F ⊂ Vn of closed sets Kn, Ln and open sets
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Un, Vn such that µ(Kn), µ(Un) → µ(E) and µ(Ln), µ(Vn) → µ(F ).

Since

µ(Kn ∩ Ln) + µ(Kn ∪ Ln) = µ(Kn) + µ(Ln)

→ µ(E) + µ(F )

= µ(E ∩ F ) + µ(E ∪ F )

we have (by monotonicity of µ) that

µ(Kn ∩ Ln)→ µ(E ∩ F ); µ(Kn ∪ Ln)→ µ(E ∪ F )

and similarly

µ(Un ∩ Vn)→ µ(E ∩ F ); µ(Un ∪ Vn)→ µ(E ∪ F )

and so E ∩ F,E ∪ F ∈ A.

One can also show that A is closed under countable disjoint

unions and is thus a σ-algebra. Indeed, given disjoint sets En ∈ A
and ε > 0, pick a closed Kn ⊂ En and open Un ⊃ En such that

µ(En\Kn), µ(Un\En) ≤ ε/2n; then

µ(

∞⋃
n=1

En) ≤ µ(

∞⋃
n=1

Un) ≤
∞∑
n=1

µ(En) + ε

and

µ(

∞⋃
n=1

En) ≥ µ(

∞⋃
n=1

Kn) ≥
N∑
n=1

µ(En)− ε

for any N , and the claim follows from the squeeze test.

To finish the claim it suffices to show that every open set V lies

in A. For this it will suffice to show that V is a countable union

of closed sets. But as X is a compact metric space, it is separable

(Lemma 1.8.6), and so V has a countable dense subset x1, x2, . . .. One

then easily verifies that every point in the open set V is contained

in a closed ball of rational radius centred at one of the xi that is in

turn contained in V ; thus V is the countable union of closed sets as

desired. �

This result can be extended to more general spaces than com-

pact metric spaces, for instance to Polish spaces (provided that the

measure remains finite). For instance:
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Exercise 1.10.12. Let X be a locally compact metric space which

is σ-compact, and let µ be an unsigned Borel measure which is finite

on every compact set. Show that µ is a Radon measure.

When the assumptions of X are weakened, then it is possible to

find locally finite Borel measures that are not Radon measures, but

they are somewhat pathological in nature.

Exercise 1.10.13. LetX be a locally compact Hausdorff space which

is σ-compact, and let µ be a Radon measure. Define a Fσ set to be

a countable union of closed sets, and a Gδ set to be a countable

intersection of open sets. Show that every Borel set can be expressed

as the union of an Fσ set and a null set, and as a Gδ set with a null

subset removed.

If µ is a Radon measure on X, then we can define the integral

Iµ(f) :=
∫
X
f dµ for every f ∈ Cc(X → R), since µ assigns every

compact set a finite measure. Furthermore, Iµ is a linear functional

on Cc(X → R) which is positive in the sense that Iµ(f) ≥ 0 whenever

f is non-negative. If we place the uniform norm on Cc(X → R), then

Iµ is continuous if and only if µ is finite; but we will not use continuity

for now, relying instead on positivity.

The fundamentally important Riesz representation theorem for

such spaces asserts that this is the only way to generate such linear

functionals:

Theorem 1.10.11 (Riesz representation theorem for Cc(X → R),

unsigned version). Let X be a locally compact Hausdorff space which

is also σ-compact. Let I : Cc(X → R) → R be a positive linear

functional. Then there exists a unique Radon measure µ on X such

that I = Iµ.

Remark 1.10.12. The σ-compactness hypothesis can be dropped

(after relaxing the inner regularity condition to only apply to open

sets, rather than to all sets); but I will restrict attention here to the σ-

compact case (which already covers a large fraction of the applications

of this theorem) as the argument simplifies slightly.

Proof. We first prove the uniqueness, which is quite easy due to

all the properties that Radon measures enjoy. Suppose we had two
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Radon measures µ, µ′ such that I = Iµ = Iµ′ ; in particular, we have

(1.75)

∫
X

f dµ =

∫
X

f dµ′

for all f ∈ Cc(X → R). Now let K be a compact set, and let U

be an open neighbourhood of K. By Exercise 1.10.6, we can find

f ∈ Cc(X → R) with 1K ≤ f ≤ 1U ; applying this to (1.75), we

conclude that

µ(U) ≥ µ′(K).

Taking suprema in K and using inner regularity, we conclude that

µ(U) ≥ µ′(U); exchanging µ and µ′ we conclude that µ and µ′ agree

on open sets; by outer regularity we then conclude that µ and µ′ agree

on all Borel sets.

Now we prove existence, which is significantly trickier. We will

initially make the simplifying assumption that X is compact (so in

particular Cc(X → R) = C(X → R) = BC(X → R)), and remove

this assumption at the end of the proof.

Observe that I is monotone on C(X → R), thus I(f) ≤ I(g)

whenever f ≤ g.

We would like to define the measure µ on Borel sets E by defin-

ing µ(E) := I(1E). This does not work directly, because 1E is not

continuous. To get around this problem we shall begin by extending

the functional I to the class BClsc(X → R+) of bounded lower semi-

continuous non-negative functions. We define I(f) for such functions

by the formula

I(f) := sup{I(g) : g ∈ Cc(X → R); 0 ≤ g ≤ f}

(cf. Exercise 1.10.11). This definition agrees with the existing defi-

nition of I(f) in the case when f is continuous. Since I(1) is finite

and I is monotone, one sees that I(f) is finite (and non-negative) for

all f ∈ BClsc(X → R+). One also easily sees that I is monotone

on BClsc(X → R+): I(f) ≤ I(g) whenever f, g ∈ BClsc(X → R+)

and f ≤ g, and homogeneous in the sense that I(cf) = cI(f) for all

f ∈ BClsc(X → R+) and c > 0. It is also easy to verify the super-

additivity property I(f + f ′) ≥ I(f) + I(f ′) for f, f ′ ∈ BClsc(X →
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R+); this simply reflects the linearity of I on Cc(X → R), to-

gether with the fact that if 0 ≤ g ≤ f and 0 ≤ g′ ≤ f ′, then

0 ≤ g + g′ ≤ f + f ′.

We now complement the super-additivity property with a count-

ably sub-additive one: if fn ∈ BClsc(X → R+) is a sequence, and

f ∈ BClsc(X → R+) is such that f(x) ≤
∑∞
n=1 fn(x) for all x ∈ X,

then I(f) ≤
∑∞
n=1 I(fn).

Pick a small 0 < ε < 1. It will suffice to show that I(g) ≤∑∞
n=1 I(fn) + O(ε1/2) (say) whenever g ∈ Cc(X → R) is such that

0 ≤ g ≤ f , and O(ε1/2) denotes a quantity bounded in magnitude by

Cε1/2, where C is a quantity that is independent of ε.

Fix g. For every x ∈ X, we can find a neighbourhood Ux of x

such that |g(y) − g(x)| ≤ ε for all y ∈ Ux; we can also find Nx > 0

such that
∑Nx
n=1 fn(x) ≥ f(x) − ε. By shrinking Ux if necessary, we

see from the lower semicontinuity of the fn and f that we can also

ensure that fn(y) ≥ fn(x)− ε/2n for all 1 ≤ n ≤ Nx and y ∈ Ux.

By normality, we can find open neighbourhoods Vx of x whose clo-

sure lies in Ux. The Vx form an open cover of X. Since we are assum-

ing X to be compact, we can thus find a finite subcover Vx1 , . . . , Vxk
of X. Applying Lemma 1.10.9, we can thus find a partition of unity

1 =
∑k
j=1 ψj , where each ψj is supported on Uxj .

Let x ∈ X be such that g(x) ≥
√
ε. Then we can write g(x) =∑

j:x∈Uxj
g(x)ψj(x). If j is in this sum, then |g(xj)− g(x)| ≤ ε, and

thus (for ε small enough) g(xj) ≥
√
ε/2, and hence f(xj) ≥

√
ε/2.

We can then write

1 ≤
Nxj∑
n=1

fn(xj)

f(xj)
+O(

√
ε)

and thus

g(x) ≤
∞∑
n=1

∑
j:f(xj)≥

√
ε/2;Nxj≥n

fn(xj)

f(xj)
g(xj)ψj(x) +O(

√
ε)

(here we use the fact that
∑
j ψj(x) = 1 and that the continuous com-

pactly supported function g is bounded). Observe that only finitely
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many summands are non-zero. We conclude that

I(g) ≤
∞∑
n=1

I(
∑

j:f(xj)≥
√
ε/2;Nxj≥n

fn(xj)

f(xj)
g(xj)ψj) +O(

√
ε)

(here we use that 1 ∈ Cc(X) and so I(1) is finite). On the other hand,

for any x ∈ X and any n, the expression∑
j:f(xj)≥

√
ε/2;Nxj≥n

fn(xj)

f(xj)
g(xj)ψj(x)

is bounded from above by∑
j

fn(xj)ψj(x);

since fn(x) ≥ fn(xj)−ε/2n and
∑
j ψj(x) = 1, this is bounded above

in turn by

ε/2n + fn(x).

We conclude that

I(g) ≤
∞∑
n=1

[I(fn) +O(ε/2n)] +O(
√
ε)

and the sub-additivity claim follows.

Combining sub-additivity and super-additivity we see that I is

additive: I(f + g) = I(f) + I(g) for f, g ∈ BClsc(X → R+).

Now that we are able to integrate lower semi-continuous func-

tions, we can start defining the Radon measure µ. When U is open,

we define µ(U) by

µ(U) := I(1U ),

which is well-defined and non-negative since 1U is bounded, non-

negative and lower semi-continuous. When K is closed we define

µ(K) by complementation:

µ(K) := µ(X)− µ(X\K);

this is compatible with the definition of µ on open sets by additivity

of I, and is also non-negative. The monotonicity of I implies mono-

tonicity of µ: in particular, if a closed set K lies in an open set U ,

then µ(K) ≤ µ(U).
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Given any set E ⊂ X, define the outer measure

µ+(E) := inf{µ(U) : E ⊂ U, open}

and the inner measure

µ−(E) := sup{µ(K) : E ⊃ K, closed};

thus 0 ≤ µ−(E) ≤ µ+(E) ≤ µ(X). We call a set E measurable if

µ−(E) = µ+(E). By arguing as in the proof of Theorem 1.10.10, we

see that the class of measurable sets is a Boolean algebra. Next, we

claim that every open set U is measurable. Indeed, unwrapping all

the definitions we see that

µ(U) = sup{I(f) : f ∈ Cc(X → R); 0 ≤ f ≤ 1U}.

Each f in this supremum is supported in some closed subset K of

U , and from this one easily verifies that µ+(U) = µ(U) = µ−(U).

Similarly, every closed set K is measurable. We can now extend µ

to measurable sets by declaring µ(E) := µ+(E) = µ−(E) when E is

measurable; this is compatible with the previous definitions of µ.

Next, let E1, E2, . . . be a countable sequence of disjoint measur-

able sets. Then for any ε > 0, we can find open neighbourhoods Un of

En and closed sets Kn in En such that µ(En) ≤ µ(Un) ≤ µ(En)+ε/2n

and µ(En)−ε/2n ≤ µ(Kn) ≤ µ(En). Using the sub-additivity of I on

BC(X → R+), we have µ(
⋃∞
n=1 Un) ≤

∑∞
n=1 µ(Un) ≤

∑∞
n=1 µ(En)+

ε. Similarly, from the additivity of I we have µ(
∑N
n=1Kn) =

∑N
n=1 µ(Kn) ≥∑N

n=1 µ(En) − ε. Letting ε → 0, we conclude that
⋃∞
n=1En is mea-

surable with µ(
⋃∞
n=1En) =

∑∞
n=1 µ(En). Thus the Boolean alge-

bra of measurable sets is in fact a σ-algebra, and µ is a countably

additive measure on it. From construction we also see that it is fi-

nite, outer regular, and inner regular, and therefore is a Radon mea-

sure. The only remaining thing to check is that I(f) = Iµ(f) for all

f ∈ C(X → R). If f is a finite non-negative linear combination of in-

dicator functions of open sets, the claim is clear from the construction

of µ and the additivity of I on BC(X → R+); taking uniform limits,

we obtain the claim for non-negative continuous functions, and then

by linearity we obtain it for all functions.

This concludes the proof in the case when X is compact. Now

suppose that X is σ-compact. Then we can find a partition of unity
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1 =
∑∞
n=0 ψn into continuous compactly supported functions ψn ∈

Cc(X → R+), with each x ∈ X being contained in the support

of finitely many ψn. (Indeed, from σ-compactness and the locally

compact Hausdorff property one can find a nested sequence K1 ⊂
K2 ⊂ . . . of compact sets, with each Kn in the interior of Kn+1, such

that
⋃
nKn = X. Using Exercise 1.10.6, one can find functions ηn ∈

Cc(X → R+) that equal 1 on Kn and are supported on Kn+1; now

take ψn := ηn+1−ηn and ψ0 := η0.) Observe that I(f) =
∑
n I(ψnf)

for all f ∈ Cc(X → R). From the compact case we see that there

exists a finite Radon measure µn such that I(ψnf) = Iµn(f) for all

f ∈ Cc(X → R); setting µ :=
∑
n µn one can verify (using the

monotone convergence theorem, Theorem 1.1.21) that µ obeys the

required properties. �

Remark 1.10.13. One can also construct the Radon measure µ using

the Carátheodory extension theorem (Theorem 1.1.17); this proof of

the Riesz representation theorem can be found in many real analysis

texts. A third method is to first create the space L1 by taking the

completion of Cc(X → R) with respect to the L1 norm ‖f‖L1 :=

I(|f |), and then define µ(E) := ‖1E‖L1 . It seems to me that all three

proofs are about equally lengthy, and ultimately rely on the same

ingredients; they all seem to have their strengths and weaknesses,

and involve at least one tricky computation somewhere (in the above

argument, the most tricky thing is the countable subadditivity of I

on lower semicontinuous functions). I have yet to find a proof of this

theorem which is both clean and conceptual, and would be happy to

learn of other proofs of this theorem.

Remark 1.10.14. One can use the Riesz representation theorem

to provide an alternate construction of Lebesgue measure, say on

R. Indeed, the Riemann integral already provides a positive linear

functional on C0(R→ R), which by the Riesz representation theorem

must come from a Radon measure, which can be easily verified to

assign the value b − a to every interval [a, b] and thus must agree

with Lebesgue measure. The same approach lets one define volume

measures on manifolds with a volume form.

Exercise 1.10.14. LetX be a locally compact Hausdorff space which

is σ-compact, and let µ be a Radon measure. For any non-negative



164 1. Real analysis

Borel measurable function f , show that∫
X

f dµ = inf{
∫
X

g dµ : g ≥ f ; g lower semi-continuous}

and∫
X

f dµ = sup{
∫
X

g dµ : 0 ≤ g ≤ f ; g upper semi-continuous}.

Similarly, for any non-negative lower semi-continuous function g, show

that ∫
X

g dµ = sup{
∫
X

h dµ : 0 ≤ h ≤ g;h ∈ Cc(X → R)}.

Now we consider signed functionals on Cc(X → R), which we

now turn into a normed vector space using the uniform norm. The

key lemma here is the following variant of the Jordan decomposition

theorem (Exercise 1.2.5).

Lemma 1.10.15 (Jordan decomposition for functions). Let I ∈ Cc(X →
R)∗ be a (real) continuous linear functional. Then there exist positive

linear functions I+, I− ∈ Cc(X → R)∗ such that I = I+ − I−.

Proof. For f ∈ Cc(X → R+), we define

I+(f) := sup{I(g) : g ∈ Cc(X → R) : 0 ≤ g ≤ f}.

Clearly 0 ≤ I+(f) ≤ I(f) for f ∈ Cc(X → R+); one also easily veri-

fies the homogeneity property I+(cf) = cI+(f) and super-additivity

property I+(f1 + f2) ≥ I+(f1) + I+(f2) for c > 0 and f, f1, f2 ∈
Cc(X → R+). On the other hand, if g, f1, f2 ∈ Cc(X → R+) are

such that g ≤ f1 + f2, then we can decompose g = g1 + g2 for

some g1, g2 ∈ Cc(X → R+) with g1 ≤ f1 and g2 ≤ f2; for instance

we can take g1 := min(g, f1) and g2 := g − g1. From this we can

complement super-additivity with sub-additivity and conclude that

I+(f1 + f2) = I+(f1) + I+(f2).

Every function in Cc(X → R) can be expressed as the difference

of two functions in Cc(X → R+). From the additivity and homogene-

ity of I+ on Cc(X → R+) we may thus extend I+ uniquely to be a

linear functional on Cc(X → R). Since I is bounded on Cc(X → R),

we see that I+ is also. If we then define I− := I+ − I, one quickly

verifies all the required properties. �
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Exercise 1.10.15. Show that the functionals I+, I− appearing in

the above lemma are unique.

Define a signed Radon measure on a σ-compact, locally compact

Hausdorff space X to be a signed Borel measure µ whose positive and

negative variations are both Radon. It is easy to see that a signed

Radon measure µ generates a linear functional Iµ on Cc(X → R) as

before, and Iµ is continuous if µ is finite. We have a converse:

Exercise 1.10.16 (Riesz representation theorem, signed version).

Let X be a locally compact Hausdorff space which is also σ-compact,

and let I ∈ Cc(X → R)∗ be a continuous linear functional. Then

there exists a unique signed finite Radon measure µ such that I = Iµ.

(Hint : combine Theorem 1.10.11 with Lemma 1.10.15.)

The space of signed finite Radon measures onX is denotedM(X →
R), or M(X) for short.

Exercise 1.10.17. Show that the space M(X), with the total varia-

tion norm ‖µ‖M(X) := |µ|(X), is a real Banach space, which is isomor-

phic to the dual of both Cc(X → R) and its completion C0(X → R),

thus

Cc(X → R)∗ ≡ C0(X → R)∗ ≡M(X).

Remark 1.10.16. Note that the previous exercise generalises the

identifications cc(N)∗ ≡ c0(N)∗ ≡ `1(N) from previous notes. For

compact Hausdorff spaces X, we have C(X → R) = C0(X → R),

and thus C(X → R)∗ ≡M(X). For locally compact Hausdorff spaces

that are σ-compact but not compact, we instead have C(X → R)∗ ≡
M(βX), where βX is the Stone-Čech compactification of X, which

we will discuss in Section 2.5.

Remark 1.10.17. One can of course also define complex Radon mea-

sures to be those complex finite Borel measures whose real and imag-

inary parts are signed Radon measures, and define M(X → C) to be

the space of all such measures; then one has analogues of the above

identifications. We omit the details.

Exercise 1.10.18. Let X,Y be two locally compact Hausdorff spaces

that are also σ-compact, and let f : X → Y be a continuous map.
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If µ is an unsigned Radon measure on X, show that the pushforward

measure f#µ on Y , defined by f#µ(E) := µ(f−1(E)), is a Radon

measure on Y . Establish the same fact for signed Radon measures.

Let X be locally compact Hausdorff and σ-compact. As M(X)

is equivalent to the dual of the Banach space C0(X → R), it acquires

a weak* topology (see Section 1.9), known as the vague topology. A

sequence of Radon measures µn ∈ M(X) then converges vaguely to

a limit µ ∈ M(X) if and only if
∫
X
f dµn →

∫
X
f dµ for all f ∈

C0(X → R).

Exercise 1.10.19. Let m be Lebesgue measure on the real line (with

the usual topology).

• Show that the measures nm �[0,1/n] converge vaguely as n→
∞ to the Dirac mass δ0 at the origin 0.

• Show that the measures 1
n

∑n
i=1 δi/n converge vaguely as

n → ∞ to the measure m �[0,1]. (Hint : Continuous, com-

pactly supported functions are Riemann integrable.)

• Show that the measures δn converge vaguely as n → ∞ to

the zero measure 0.

Exercise 1.10.20. LetX be locally compact Hausdorff and σ-compact.

Show that for every unsigned Radon measure µ, the map ι : L1(µ)→
M(X) defined by sending f ∈ L1(µ) to the measure µf is an isometry,

thus L1(µ) can be identified with a subspace of M(X). Show that

this subspace is closed in the norm topology, but give an example

to show that it need not be closed in the vague topology. Show that

M(X) =
⋃
µ L

1(µ), where µ ranges over all unsigned Radon measures

on X; thus one can think of M(X) as many L1’s “glued together”.

Exercise 1.10.21. LetX be a locally compact Hausdorff space which

is σ-compact. Let fn ∈ C0(X → R) be a sequence of functions, and

let f ∈ C0(X → R) be another function. Show that fn converges

weakly to f in C0(X → R) if and only if the fn are uniformly bounded

and converge pointwise to f .

Exercise 1.10.22. Let X be a locally compact metric space which

is σ-compact.
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• Show that the space of finitely supported measures in M(X)

is a dense subset of M(X) in the vague topology.

• Show that a Radon probability measure in M(X) can be

expressed as the vague limit of a sequence of discrete (i.e.

finitely supported) probability measures.

1.10.3. The Stone-Weierstrass theorem. We have already seen

how rough functions (e.g. Lp functions) can be approximated by con-

tinuous functions. Now we study in turn how continuous functions

can be approximated by even more special functions, such as polyno-

mials. The natural topology to work with here is the uniform topology

(since uniform limits of continuous functions are continuous).

For non-compact spaces, such as R, it is usually not possible

to approximate continuous functions uniformly by a smaller class of

functions. For instance, the function sin(x) cannot be approximated

uniformly by polynomials on R, since sin(x) is bounded, the only

bounded polynomials are the constants, and constants cannot con-

verge to anything other than another constant. On the other hand, on

a compact domain such as [−1, 1], one can easily approximate sin(x)

uniformly by polynomials, for instance by using Taylor series. So we

will focus instead on compact Hausdorff spaces X such as [−1, 1], in

which continuous functions are automatically bounded.

The space P([−1, 1]) of (real-valued) polynomials is a subspace

of the Banach space C([−1, 1]). But it is also closed under point-

wise multiplication f, g 7→ fg, making P([−1, 1]) an algebra, and not

merely a vector space. We can then rephrase the classical Weierstrass

approximation theorem as the assertion that P([−1, 1]) is dense in

C([−1, 1]).

One can then ask the more general question of when a sub-algebra

A of C(X) - i.e. a subspace closed under pointwise multiplication - is

dense. Not every sub-algebra is dense: the algebra of constants, for

instance, will not be dense in C(X) when X has at least two points.

Another example in a similar spirit: given two distinct points x1, x2

in X, the space {f ∈ C(X) : f(x1) = f(x2)} is a sub-algebra of C(X),

but it is not dense, because it is already closed, and cannot separate
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x1 and x2 in the sense that it cannot produce a function that assigns

different values to x1 and x2.

The remarkable Stone-Weierstrass theorem shows that this in-

ability to separate points is the only obstruction to density, at least

for algebras with the identity.

Theorem 1.10.18 (Stone-Weierstrass theorem, real version). Let X

be a compact Hausdorff space, and let A be a sub-algebra of C(X →
R) which contains the constant function 1 and separates points (i.e.

for every distinct x1, x2 ∈ X, there exists at least one f in A such

that f(x1) 6= f(x2). Then A is dense in C(X → R).

Remark 1.10.19. Observe that this theorem contains the Weier-

strass approximation theorem as a special case, since the algebra of

polynomials clearly separates points. Indeed, we will use (a very spe-

cial case) of the Weierstrass approximation theorem in the proof.

Proof. It suffices to verify the claim for algebras A which are closed

in the C(X → R) topology, since the claim follows in the general case

by replacing A with its closure (note that the closure of an algebra is

still an algebra).

Observe from the Weierstrass approximation theorem that on any

bounded interval [−K,K], the function |x| can be expressed as the

uniform limit of polynomials Pn(x); one can even write down explicit

formulae for such a Pn, though we will not need such formulae here.

Since continuous functions on the compact space X are bounded, this

implies that for any f ∈ A, the function |f | is the uniform limit of

polynomial combinations Pn(f) of f . As A is an algebra, the Pn(f)

lie in A; as A is closed; we see that |f | lies in A.

Using the identities max(f, g) = f+g
2 + | f−g2 |, min(f, g) = f+g

2 −
| f−g2 |, we conclude that A is a lattice in the sense that one has

max(f, g),min(f, g) ∈ A whenever f, g ∈ A.

Now let f ∈ C(X → R) and ε > 0. We would like to find g ∈ A
such that |f(x)− g(x)| ≤ ε for all x ∈ X.

Given any two points x, y ∈ X, we can at least find a function

gxy ∈ A such that gxy(x) = f(x) and gxy(y) = f(y); this follows since

the vector space A separates points and also contains the identity
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function (the case x = y needs to be treated separately). We now use

these functions gxy to build the approximant g. First, observe from

continuity that for every x, y ∈ X there exists an open neighbourhood

Vxy of y such that gxy(y′) ≥ f(y′)−ε for all y′ ∈ Vxy. By compactness,

for any fixed x we can cover X by a finite number of these Vxy. Taking

the max of all the gxy associated to this finite subcover, we create

another function gx ∈ A such that gx(x) = f(x) and gx(y) ≥ f(y)− ε
for all y ∈ X. By continuity, we can find an open neighbourhood Ux
of x such that gx(x′) ≤ f(x′) + ε for all x′ ∈ Ux. Again applying

compactness, we can cover X by a finite number of the Ux; taking

the min of all the gx associated to this finite subcover we obtain

g ∈ A with f(x) − ε ≤ g(x) ≤ f(x) + ε for all x ∈ X, and the claim

follows. �

There is an analogue of the Stone-Weierstrass theorem for alge-

bras that do not contain the identity:

Exercise 1.10.23. Let X be a compact Hausdorff space, and let A
be a closed sub-algebra of C(X → R) which separates points but does

not contain the identity. Show that there exists a unique x0 ∈ X such

that A = {f ∈ C(X → R) : f(x0) = 0}.

The Stone-Weierstrass theorem is not true as stated in the com-

plex case. For instance, the space C(D → C) of complex-valued

functions on the closed unit disk D := {z ∈ C : |z| ≤ 1} has a closed

proper sub-algebra that separates points, namely the algebra H(D)

of functions in C(D→ C) that are holomorphic on the interior of this

disk. Indeed, by Cauchy’s theorem and its converse (Morera’s theo-

rem), a function f ∈ C(D → C) lies in H(D) if and only if
∫
γ
f = 0

for every closed contour γ in D, and one easily verifies that this im-

plies that H(D) is closed; meanwhile, the holomorphic function z 7→ z

separates all points. However, the Stone-Weierstrass theorem can be

recovered in the complex case by adding one further axiom, namely

that the algebra be closed under conjugation:

Exercise 1.10.24 (Stone-Weierstrass theorem, complex version). Let

X be a compact Hausdorff space, and let A be a complex sub-algebra

of C(X → C) which contains the constant function 1, separates
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points, and is closed under the conjugation operation f 7→ f . Then

A is dense in C(X → C).

Exercise 1.10.25. Let T ⊂ C([0, 1] → C) be the space of trigono-

metric polynomials x 7→
∑N
n=−N cne

2πinx, where N ≥ 0 and the cn
are complex numbers. Show that T is dense in C([0, 1] → C) (with

the uniform topology), and that T is dense in Lp([0, 1] → C) (with

the Lp topology) for all 0 < p <∞.

Exercise 1.10.26. Let X be a locally compact Hausdorff space that

is σ-compact, and let A be a sub-algebra of C(X → R) which sepa-

rates points and contains the identity function. Show that for every

function f ∈ C(X → R) there exists a sequence fn ∈ A which con-

verges to f uniformly on compact subsets of X.

Exercise 1.10.27. Let X,Y be compact Hausdorff spaces. Show

that every function f ∈ C(X × Y → R) can be expressed as the uni-

form limit of functions of the form (x, y) 7→
∑k
j=1 fj(x)gj(y), where

fj ∈ C(X → R) and gj ∈ C(Y → R).

Exercise 1.10.28. Let (Xα)α∈A be a family of compact Hausdorff

spaces, and let X :=
∏
α∈AXα be the product space (with the prod-

uct topology). Let f ∈ C(X → R). Show that f can be expressed as

the uniform limit of continuous functions fn, each of which only de-

pend on finitely many of the coordinates in A, thus there exists a finite

subset An of A and a continuous function gn ∈ C(
∏
α∈An Xα → R)

such that fn((xα)α∈A) = gn((xα)α∈An) for all (xα)α∈A ∈ X.

One useful application of the Stone-Weierstrass theorem is to

demonstrate separability of spaces such as C(X).

Proposition 1.10.20. Let X be a compact metric space. Then

C(X → C) and C(X → R) are separable.

Proof. It suffices to show that C(X → R) is separable. By Lemma

1.8.6, X has a countable dense subset x1, x2, . . .. By Urysohn’s lemma,

for each n,m ≥ 1 we can find a function ψn,m ∈ C(X → R) which

equals 1 on B(xn, 1/m) and is supported on B(xn, 2/m). The ψn,m
can then easily be verified to separate points, and so by the Stone-

Weierstrass theorem, the algebra of polynomial combinations of the
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ψn,m in C(X → R) are dense; this implies that the algebra of ra-

tional polynomial combinations of the ψn,m are dense, and the claim

follows. �

Combining this with the Riesz representation theorem and the

sequential Banach-Alaoglu theorem (Theorem 1.9.14), we obtain

Corollary 1.10.21. If X is a compact metric space, then M(X) is

sequentially compact.

Combining this with Theorem 1.10.10, we conclude a special case

of Prokhorov’s theorem:

Corollary 1.10.22 (Prokhorov’s theorem, compact case). Let X be

a compact metric space, and let µn be a sequence of Borel (hence

Radon) probability measures on X. Then there exists a subsequence

of µn which converge vaguely to another Borel probability measure µ.

Exercise 1.10.29 (Prokhorov’s theorem, non-compact case). Let X

be a locally compact metric space which is σ-compact, and let µn be a

sequence of Borel probability measures. We assume that the sequence

µn is tight, which means that for every ε > 0 there exists a compact set

K such that µn(X\K) ≤ ε for all n. Show that there is a subsequence

of µn which converges vaguely to another Borel probability measure µ.

If tightness is not assumed, show that there is a subsequence which

converges vaguely to a non-negative Borel measure µ, but give an

example to show that this measure need not be a probability measure.

This theorem can be used to establish Helly’s selection theorem:

Exercise 1.10.30 (Helly’s selection theorem). Let fn : R → R be

a sequence of functions whose total variation is uniformly bounded

in n, and which is bounded at one point x0 ∈ R (i.e. {fn(x0) : n =

1, 2, . . .} is bounded). Show that there exists a subsequence of fn
which converges uniformly on compact subsets of R. (Hint : one can

deduce this from Prokhorov’s theorem using the fundamental theorem

of calculus for functions of bounded variation.)

1.10.4. The commutative Gelfand-Naimark theorem (optional).

One particularly beautiful application of the machinery developed in
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the last few notes is the commutative Gelfand-Naimark theorem, that

classifies commutative C∗-algebras, and is of importance in spectral

theory, operator algebras, and quantum mechanics.

Definition 1.10.23. A complex Banach algebra is a complex Banach

space A which is also a complex algebra, such that ‖xy‖ ≤ ‖x‖‖y‖
for all x, y ∈ A. An algebra is unital if it contains a multiplicative

identity 1, and commutative if xy = yx for all x, y ∈ A. A C∗-algebra

is a complex Banach algebra with an anti-linear map x 7→ x∗ from

A to A which is an isometry (thus ‖x∗‖ = ‖x‖ for all x ∈ A), an

involution (thus (x∗)∗ = x for all x ∈ A), and obeys the C∗ identity

‖x∗x‖ = ‖x‖2 for all x ∈ A.

A homomorphism φ : A → B between two C∗-algebras is a

continuous algebra homomorphism such that φ(x∗) = φ(x)∗ for all

x ∈ X. An isomorphism is an homomorphism whose inverse exists

and is also a homomorphism; two C∗-algebras are isomorphic if there

exists an isomorphism between them.

Exercise 1.10.31. If H is a Hilbert space, and B(H → H) is the

algebra of bounded linear operators on this space, with the adjoint

map T 7→ T ∗ and the operator norm, show that B(H → H) is a

unital C∗-algebra (not necessarily commutative). Indeed, one can

think of C∗-algebras as an abstraction of a space of bounded linear

operators on a Hilbert space (this is basically the content of the non-

commutative Gelfand-Naimark theorem, which we will not discuss

here).

Exercise 1.10.32. If X is a compact Hausdorff space, show that

C(X → C) is a unital commutative C∗-algebra, with involution f∗ :=

f .

The remarkable (unital commutative) Gelfand-Naimark theorem

asserts the converse statement to Exercise 1.10.32:

Theorem 1.10.24 (Unital commutative Gelfand-Naimark theorem).

Every unital commutative C∗-algebra A is isomorphic to C(X → C)

for some compact Hausdorff space X.
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There are analogues of this theorem for non-unital or non-commutative

C∗-algebras, but for simplicity we shall restrict attention to the unital

commutative case. We first need some spectral theory.

Exercise 1.10.33. Let A be a unital Banach algebra. Show that

if x ∈ A is such that ‖x − 1‖ < 1, then x is invertible. (Hint : use

Neumann series.) Conclude that the space A× ⊂ A of invertible

elements of A is open.

Define the spectrum σ(x) of an element x ∈ A to be the set of all

z ∈ C such that x− z1 is not invertible.

Exercise 1.10.34. If A is a unital Banach algebra and x ∈ A, show

that σ(x) is a compact subset of C that is contained inside the disk

{z ∈ C : |z| ≤ ‖x‖}.

Exercise 1.10.35 (Beurling-Gelfand spectral radius formula). If A

is a unital Banach algebra and x ∈ A, show that σ(x) is non-empty

with sup{|z| : z ∈ σ(x)} = limn→∞ ‖xn‖1/n. (Hint : To get the upper

bound, observe that if xn − zn1 is invertible for some n ≥ 1, then

so is x− zI, then use Exercise 1.10.34. To get the lower bound, first

observe that for any λ ∈ A∗, the function fλ : z 7→ λ((x − zI)−1)

is holomorphic on the complement of σ(x), which is already enough

(with Liouville’s theorem) to show that σ is non-empty. Let r >

sup{|z| : z ∈ σ(x)} be arbitrary, then use Laurent series to show

that λ(xn) ≤ Cλ,rrn for all n and some Cλ,r independent of n. Then

divide by rn and use the uniform boundedness principle to conclude.)

Exercise 1.10.36 (C∗-algebra spectral radius formula). Let A be a

unital C∗-algebra. Show that

‖x‖ = ‖(x∗x)2n‖1/2
n+1

= ‖(xx∗)2n‖1/2
n+1

for all n ≥ 1 and x ∈ A. Conclude that any homomorphism between

C∗-algebras has operator norm at most 1. Also conclude that

sup{|z| : z ∈ σ(x)} = ‖x‖.

The next important concept is that of a character.

Definition 1.10.25. Let A be a unital commutative C∗-algebra. A

character of A is be an element λ ∈ A∗ in the dual Banach space such
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that λ(xy) = λ(x)λ(y), λ(1) = 1, and λ(x∗) = λ(x) for all x, y ∈ A;

equivalently, a character is a homomorphism from A to C (viewed as

a (unital) C∗ algebra). We let Â ⊂ A∗ be the space of all characters;

this space is known as the spectrum of A.

Exercise 1.10.37. If A is a unital commutative C∗-algebra, show

that Â is a compact Hausdorff subset of A∗ in the weak-* topology.

(Hint : first use the spectral radius formula to show that all characters

have operator norm 1, then use the Banach-Alaoglu theorem.)

Exercise 1.10.38. Define an ideal of a unital commutative C∗-

algebra A to be a proper subspace I of A such that xy, yx ∈ I for all

x ∈ I and y ∈ A. Show that if λ ∈ Â, then the kernel λ−1({0}) is a

maximal ideal in A; conversely, if I is a maximal ideal in A, show that

I is closed, and there is exactly one λ ∈ Â such that I = λ−1({0}).
Thus the spectrum of A can be canonically identified with the space

of maximal ideals in A.

Exercise 1.10.39. Let X be a compact Hausdorff space, and let A

be the C∗-algebra A := C(X → C). Show that for each x ∈ X, the

operation λx : f 7→ f(x) is a character of A. Show that the map

λ : x 7→ λx is a homeomorphism from X to Â; thus the spectrum

of C(X → C) can be canonically identified with X. (Hint : use

Exercise 1.10.23 to show the surjectivity of λ, Urysohn’s lemma to

show injectivity, and Corollary 1.8.2 to show the homeomorphism

property.)

Inspired by the above exercise, we define the Gelfand representa-

tion ˆ: A 7→ C(Â→ C), by the formula x̂(λ) := λ(x).

Exercise 1.10.40. Show that if A is a unital commutative C∗-

algebra, then the Gelfand representation is a homomorphism of C∗-

algebras.

Exercise 1.10.41. Let x be a non-invertible element of a unital com-

mutative C∗-algebra A. Show that x̂ vanishes at some λ ∈ Â. (Hint :

the set {xy : y ∈ A} is a proper ideal of A, and thus by Zorn’s lemma

(Section 2.4) is contained in a maximal ideal.)

Exercise 1.10.42. Show that if A is a unital commutative C∗-

algebra, then the Gelfand representation is an isometry. (Hint : use

Exercise 1.10.36 and Exercise 1.10.41.)
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Exercise 1.10.43. Use the complex Stone-Weierstrass theorem and

Exercises 1.10.40, 1.10.42 to conclude the proof of Theorem 1.10.24.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/03/02.

Thanks to Anush Tserunyan, Haokun Xu, Max Baroi, mmailliw/william,

PDEbeginner, and anonymous commenters for corrections.

Eric noted another example of a locally compact Hausdorff space

which was not normal, namely (ω + 1) × (ω1 + 1)\(ω, ω1), where ω

is the first infinite ordinal, and ω1 is the first uncountable ordinal

(endowed with the order topology, of course).

1.11. Interpolation of Lp spaces

In the previous sections, we have been focusing largely on the “soft”

side of real analysis, which is primarily concerned with “qualitative”

properties such as convergence, compactness, measurability, and so

forth. In contrast, we will now emphasise the “hard” side of real

analysis, in which we study estimates and upper and lower bounds

of various quantities, such as norms of functions or operators. (Of

course, the two sides of analysis are closely connected to each other; an

understanding of both sides and their interrelationships, are needed

in order to get the broadest and most complete perspective for this

subject; see Section 1.3 of Structure and Randomness for more dis-

cussion.)

One basic tool in hard analysis is that of interpolation, which al-

lows one to start with a hypothesis of two (or more) “upper bound”

estimates, e.g. A0 ≤ B0 and A1 ≤ B1, and conclude a family of

intermediate estimates Aθ ≤ Bθ (or maybe Aθ ≤ CθBθ, where Cθ
is a constant) for any choice of parameter 0 < θ < 1. Of course,

interpolation is not a magic wand; one needs various hypotheses

(e.g. linearity, sublinearity, convexity, or complexifiability) on Ai, Bi
in order for interpolation methods to be applicable. Nevertheless,

these techniques are available for many important classes of prob-

lems, most notably that of establishing boundedness estimates such

as ‖Tf‖Lq(Y,ν) ≤ C‖f‖Lp(X,µ) for linear (or “linear-like”) operators

T from one Lebesgue space Lp(X,µ) to another Lq(Y, ν). (Interpo-

lation can also be performed for many other normed vector spaces
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than the Lebesgue spaces, but we will just focus on Lebesgue spaces

in these notes to focus the discussion.) Using interpolation, it is pos-

sible to reduce the task of proving such estimates to that of proving

various “endpoint” versions of these estimates. In some cases, each

endpoint only faces a portion of the difficulty that the interpolated

estimate did, and so by using interpolation one has split the task of

proving the original estimate into two or more simpler subtasks. In

other cases, one of the endpoint estimates is very easy, and the other

one is significantly more difficult than the original estimate; thus in-

terpolation does not really simplify the task of proving estimates in

this case, but at least clarifies the relative difficulty between various

estimates in a given family.

As is the case with many other tools in analysis, interpolation

is not captured by a single “interpolation theorem”; instead, there

are a family of such theorems, which can be broadly divided into two

major categories, reflecting the two basic methods that underlie the

principle of interpolation. The real interpolation method is based on a

divide and conquer strategy: to understand how to obtain control on

some expression such as ‖Tf‖Lq(Y,ν) for some operator T and some

function f , one would divide f into two or more components, e.g.

into components where f is large and where f is small, or where f

is oscillating with high frequency or only varying with low frequency.

Each component would be estimated using a carefully chosen com-

bination of the extreme estimates available; optimising over these

choices and summing up (using whatever linearity-type properties on

T are available), one would hope to get a good estimate on the original

expression. The strengths of the real interpolation method are that

the linearity hypotheses on T can be relaxed to weaker hypotheses,

such as sublinearity or quasilinearity; also, the endpoint estimates are

allowed to be of a weaker “type” than the interpolated estimates. On

the other hand, the real interpolation often concedes a multiplicative

constant in the final estimates obtained, and one is usually obligated

to keep the operator T fixed throughout the interpolation process.

The proofs of real interpolation theorems are also a little bit messy,

though in many cases one can simply invoke a standard instance of

such theorems (e.g. the Marcinkiewicz interpolation theorem) as a

black box in applications.
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The complex interpolation method instead proceeds by exploit-

ing the powerful tools of complex analysis, in particular the max-

imum modulus principle and its relatives (such as the Phragmén-

Lindelöf principle). The idea is to rewrite the estimate to be proven

(e.g. ‖Tf‖Lq(Y,ν) ≤ C‖f‖Lp(X,µ)) in such a way that it can be

embedded into a family of such estimates which depend holomor-

phically on a complex parameter s in some domain (e.g. the strip

{σ+it : t ∈ R, σ ∈ [0, 1]}. One then exploits things like the maximum

modulus principle to bound an estimate corresponding to an interior

point of this domain by the estimates on the boundary of this do-

main. The strengths of the complex interpolation method are that it

typically gives cleaner constants than the real interpolation method,

and also allows the underlying operator T to vary holomorphically

with respect to the parameter s, which can significantly increase the

flexibility of the interpolation technique. The proofs of these meth-

ods are also very short (if one takes the maximum modulus principle

and its relatives as a black box), which make the method particularly

amenable for generalisation to more intricate settings (e.g. multilin-

ear operators, mixed Lebesgue norms, etc.). On the other hand, the

somewhat rigid requirement of holomorphicity makes it much more

difficult to apply this method to non-linear operators, such as sublin-

ear or quasilinear operators; also, the interpolated estimate tends to

be of the same “type” as the extreme ones, so that one does not enjoy

the upgrading of weak type estimates to strong type estimates that

the real interpolation method typically produces. Also, the complex

method runs into some minor technical problems when target space

Lq(Y, ν) ceases to be a Banach space (i.e. when q < 1) as this makes

it more difficult to exploit duality.

Despite these differences, the real and complex methods tend to

give broadly similar results in practice, especially if one is willing to

ignore constant losses in the estimates or epsilon losses in the expo-

nents.

The theory of both real and complex interpolation can be stud-

ied abstractly, in general normed or quasi-normed spaces; see e.g.

[BeLo1976] for a detailed treatment. However in these notes we

shall focus exclusively on interpolation for Lebesgue spaces Lp (and
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their cousins, such as the weak Lebesgue spaces Lp,∞ and the Lorentz

spaces Lp,r).

1.11.1. Interpolation of scalars. As discussed in the introduc-

tion, most of the interesting applications of interpolation occur when

the technique is applied to operators T . However, in order to gain

some intuition as to why interpolation works in the first place, let us

first consider the significantly simpler (though rather trivial) case of

interpolation in the case of scalars or functions.

We begin first with scalars. Suppose that A0, B0, A1, B1 are non-

negative real numbers such that

(1.76) A0 ≤ B0

and

(1.77) A1 ≤ B1.

Then clearly we will have

(1.78) Aθ ≤ Bθ

for every 0 ≤ θ ≤ 1, where we define

(1.79) Aθ := A1−θ
0 Aθ1

and

(1.80) Bθ := B1−θ
0 Bθ1 ;

indeed one simply raises (1.76) to the power 1−θ, (1.77) to the power

θ, and multiplies the two inequalities together. Thus for instance,

when θ = 1/2 one obtains the geometric mean of (1.76) and (1.77):

A
1/2
0 A

1/2
1 ≤ B1/2

0 B
1/2
1 .

One can view Aθ and Bθ as the unique log-linear functions of θ (i.e.

logAθ, logBθ are (affine-)linear functions of θ) which equal their

boundary values A0, A1 and B0, B1 respectively as θ = 0, 1.

Example 1.11.1. If A0 = AL1/p0 and A1 = AL1/p1 for some A,L >

0 and 0 < p0, p1 ≤ ∞, then the log-linear interpolant Aθ is given by

Aθ = AL1/pθ , where 0 < pθ ≤ ∞ is the quantity such that 1
pθ

=
1−θ
p0

+ θ
p1

.
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The deduction of (1.78) from (1.76), (1.77) is utterly trivial, but

there are still some useful lessons to be drawn from it. For instance,

let us take A0 = A1 = A for simplicity, so we are interpolating two

upper bounds A ≤ B0, A ≤ B1 on the same quantity A to give a new

bound A ≤ Bθ. But actually we have a refinement available to this

bound, namely

(1.81) Aθ ≤ Bθ min(
B0

B1
,
B1

B0
)ε

for any sufficiently small ε > 0 (indeed one can take any ε less than or

equal to min(θ, 1−θ)). Indeed one sees this simply by applying (1.78)

with θ with θ−ε and θ+ε and taking minima. Thus we see that (1.78)

is only sharp when the two original bounds B0, B1 are comparable;

if instead we have B1 ∼ 2nB0 for some integer n, then (1.81) tells

us that we can improve (1.78) by an exponentially decaying factor

of 2−ε|n|. The geometric series formula tells us that such factors are

absolutely summable, and so in practice it is often a useful heuristic

to pretend that the n = O(1) cases dominate so strongly that the

other cases can be viewed as negligible by comparison.

Also, one can trivially extend the deduction of (1.78) from (1.76),

(1.77) as follows: if θ → Aθ is a function from [0, 1] to R+ which is log-

convex (thus θ 7→ logAθ is a convex function of θ, and (1.76), (1.77)

hold for some B0, B1 > 0, then (1.78) holds for all intermediate θ

also, where Bθ is of course defined by (1.80). Thus one can interpolate

upper bounds on log-convex functions. However, one certainly cannot

interpolate lower bounds: lower bounds on a log-convex function θ →
Aθ at θ = 0 and θ = 1 yield no information about the value of, say,

A1/2. Similarly, one cannot extrapolate upper bounds on log-convex

functions: an upper bound on, say, A0 and A1/2 does not give any

information about A1. (However, an upper bound on A0 coupled

with a lower bound on A1/2 gives a lower bound on A1; this is the

contrapositive of an interpolation statement.)

Exercise 1.11.1. Show that the sum f+g, product fg, or pointwise

maximum max(f, g) of two log-convex functions f, g : [0, 1] → R+ is

log-convex.

Remark 1.11.2. Every non-negative log-convex function θ 7→ Aθ is

convex, thus in particular Aθ ≤ (1−θ)A0+θA1 for all 0 ≤ θ ≤ 1 (note
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that this generalises the arithmetic mean-geometric mean inequality).

Of course, the converse statement is not true.

Now we turn to the complex version of the interpolation of log-

convex functions, a result known as Lindelöf ’s theorem:

Theorem 1.11.3 (Lindelöf’s theorem). Let s 7→ f(s) be a holomor-

phic function on the strip S := {σ + it : 0 ≤ σ ≤ 1; t ∈ R}, which

obeys the bound

(1.82) |f(σ + it)| ≤ A exp(exp((π − δ)t))

for all σ + it ∈ S and some constants A, δ > 0. Suppose also that

|f(0 + it)| ≤ B0 and |f(1 + it)| ≤ B1 for all t ∈ R. Then we have

|f(θ + it)| ≤ Bθ for all 0 ≤ θ ≤ 1 and t ∈ R, where Bθ is of course

defined by (1.80).

Remark 1.11.4. The hypothesis (1.82) is a qualitative hypothesis

rather than a quantitative one, since the exact values of A, σ do not

show up in the conclusion. It is quite a mild condition; any function of

exponential growth in t, or even with such super-exponential growth

as O(|t||t|) or O(e|t|
O(1)

), will obey (1.82). The principle however fails

without this hypothesis, as one can see for instance by considering

the holomorphic function f(s) := exp(−i exp(πis)).

Proof. Observe that the function s 7→ B1−s
0 Bs1 is holomorphic and

non-zero on S, and has magnitude exactly Bθ on the line Re(s) = θ

for each 0 ≤ θ ≤ 1. Thus, by dividing f by this function (which

worsens the qualitative bound (1.82) slightly) we may reduce to the

case when Bθ = 1 for all 0 ≤ θ ≤ 1.

Suppose we temporarily assume that f(σ + it)→ 0 as |σ + it| →
∞. Then by the maximum modulus principle (applied to a sufficiently

large rectangular portion of the strip), it must then attain a maximum

on one of the two sides of the strip. But |f | ≤ 1 on these two sides,

and so |f | ≤ 1 on the interior as well.

To remove the assumption that f goes to zero at infinity, we use

the trick of giving ourselves an epsilon of room (Section 2.7). Namely,

we multiply f(s) by the holomorphic function gε(s) := exp(εi exp(i[(π−
δ/2)s + δ/4])) for some ε > 0. A little complex arithmetic shows
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that the function f(s)gε(s)gε(1 − s) goes to zero at infinity in S

(the gε(s) factor decays fast enough to damp out the growth of f

as Im(s) → −∞, while the gε(1 − s) damps out the growth as

Im(s) → +∞), and is bounded in magnitude by 1 on both sides of

the strip S. Applying the previous case to this function, then taking

limits as ε→ 0, we obtain the claim. �

Exercise 1.11.2. With the notation and hypotheses of Theorem

1.11.3, show that the function σ 7→ supt∈R |f(σ + it)| is log-convex

on [0, 1].

Exercise 1.11.3 (Hadamard three-circles theorem). Let f be a holo-

morphic function on an annulus {z ∈ C : R1 ≤ |z| ≤ R2}. Show that

the function r 7→ supθ∈[0,2π] |f(reiθ)| is log-convex on [R1, R2].

Exercise 1.11.4 (Phragmén-Lindelöf principle). Let f be as in The-

orem 1.11.3, but suppose that we have the bounds f(0 + it) ≤ C(1 +

|t|)a0 and f(1 + it) ≤ C(1 + |t|)a1 for all t ∈ R and some ex-

ponents a0, a1 ∈ R and a constant C > 0. Show that one has

f(σ + it) ≤ C ′(1 + |t|)(1−σ)a0+σa1 for all σ + it ∈ S and some

constant C ′ (which is allowed to depend on the constants A, δ in

(1.82)). (Hint : it is convenient to work first in a half-strip such as

{σ+ it ∈ S : t ≥ T} for some large T . Then multiply f by something

like exp(−((1− z)a0 + za1) log(−iz)) for some suitable branch of the

logarithm and apply a variant of Theorem 1.11.3 for the half-strip. A

more refined estimate in this regard is due to Rademacher [Ra1959].)

This particular version of the principle gives the convexity bound for

Dirichlet series such as the Riemann zeta function. Bounds which

exploit the deeper properties of these functions to improve upon the

convexity bound are known as subconvexity bounds and are of major

importance in analytic number theory, which is of course well outside

the scope of this course.

1.11.2. Interpolation of functions. We now turn to the interpo-

lation in function spaces, focusing particularly on the Lebesgue spaces

Lp(X) and the weak Lebesgue spaces Lp,∞(X). Here, X = (X,X , µ)

is a fixed measure space. It will not matter much whether we deal

with real or complex spaces; for sake of concretness we work with

complex spaces. Then for 0 < p < ∞, recall (see Section 1.3) that
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Lp(X) is the space of all functions f : X → C whose Lp norm

‖f‖Lp(X) := (

∫
X

|f |p dµ)1/p

is finite, modulo almost everywhere equivalence. The space L∞(X)

is defined similarly, but where ‖f‖L∞(X) is the essential supremum of

|f | on X.

A simple test case in which to understand the Lp norms better is

that of a step function f = A1E , where A is a non-negative number

and E a set of finite measure. Then one has ‖f‖Lp(X) = Aµ(E)1/p

for 0 < p ≤ ∞. Observe that this is a log-convex function of 1/p.

This is a general phenomenon:

Lemma 1.11.5 (Log-convexity of Lp norms). Let that 0 < p0 < p1 ≤
∞ and f ∈ Lp0(X) ∩ Lp1(X). Then f ∈ Lp(X) for all p0 ≤ p ≤ p1,

and furthermore we have

‖f‖Lpθ (X) ≤ ‖f‖1−θLp0 (X)‖f‖
θ
Lp1 (X)

for all 0 ≤ θ ≤ 1, where the exponent pθ is defined by 1/pθ := (1 −
θ)/p0 + θ/p1.

In particular, we see that the function 1/p 7→ ‖f‖Lp(X) is log-

convex whenever the right-hand side is finite (and is in fact log-convex

for all 0 ≤ 1/p < ∞, if one extends the definition of log-convexity

to functions that can take the value +∞). In other words, we can

interpolate any two bounds ‖f‖Lp0 (X) ≤ B0 and ‖f‖Lp1 (X) ≤ B1 to

obtain ‖f‖Lpθ (X) ≤ Bθ for all 0 ≤ θ ≤ 1.

Let us give several proofs of this lemma. We will focus on the

case p1 <∞; the endpoint case p1 =∞ can be proven directly, or by

modifying the arguments below, or by using an appropriate limiting

argument, and we leave the details to the reader.

The first proof is to use Hölder’s inequality

‖f‖pθLpθ (X) =

∫
X

|f |(1−θ)pθ |f |θpθ dµ ≤ ‖|f |(1−θ)pθ‖Lp0/((1−θ)pθ)‖|f |
θpθ‖Lp1/(θpθ)

when p1 is finite (with some minor modifications in the case p1 =∞).

Another (closely related) proof proceeds by using the log-convexity

inequality

|f(x)|pθ ≤ (1− α)|f(x)|p0 + α|f(x)|p1
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for all x, where 0 < α < 1 is the quantity such that pθ = (1 −
α)p0 +αp1. If one integrates this inequality in x, one already obtains

the claim in the normalised case when ‖f‖Lp0 (X) = ‖f‖Lp1 (X) = 1.

To obtain the general case, one can multiply the function f and the

measure µ by appropriately chosen constants to obtain the above

normalisation; we leave the details as an exercise to the reader. (The

case when ‖f‖Lp0 (X) or ‖f‖Lp1 (X) vanishes is of course easy to handle

separately.)

A third approach is more in the spirit of the real interpolation

method, avoiding the use of convexity arguments. As in the second

proof, we can reduce to the normalised case ‖f‖Lp0 (X) = ‖f‖Lp1 (X) =

1. We then split f = f1|f |≤1 + f1|f |>1, where 1|f |≤1 is the indicator

function to the set {x : |f(x)| ≤ 1}, and similarly for 1|f |>1. Observe

that

‖f1|f |≤1‖pθLpθ (X) =

∫
|f |≤1

|f |pθ dµ ≤
∫
X

|f |p0 dµ = 1

and similarly

‖f1|f |>1‖pθLpθ (X) =

∫
|f |>1

|f |pθ dµ ≤
∫
X

|f |p1 dµ = 1

and so by the quasi-triangle inequality (or triangle inequality, when

pθ ≥ 1)

‖f‖Lpθ (X) ≤ C

for some constant C depending on pθ. Note, by the way, that this

argument gives the inclusions

(1.83) Lp0(X) ∩ Lp1(X) ⊂ Lpθ (X) ⊂ Lp0(X) + Lp1(X).

This is off by a constant factor by what we want. But one can

eliminate this constant by using the tensor power trick (Section 1.9 of

Structure and Randomness). Indeed, if one replaces X with a Carte-

sian power XM (with the product σ-algebra XM and product mea-

sure µM ), and replace f by the tensor power f⊗M : (x1, . . . , xm) 7→
f(x1) . . . f(xm), we see from many applications of the Fubini-Tonelli

theorem that

‖f⊗M‖Lp(X) = ‖f‖MLp(X)
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for all p. In particular, f⊗M obeys the same normalisation hypotheses

as f , and thus by applying the previous inequality to f⊗M , we obtain

‖f‖MLpθ (X) ≤ C

for every M , where it is key to note that the constant C on the right

is independent of M . Taking M th roots and then sending M → ∞,

we obtain the claim.

Finally, we give a fourth proof in the spirit of the complex in-

terpolation method. By replacing f by |f | we may assume f is non-

negative. By expressing non-negative measurable functions as the

monotone limit of simple functions and using the monotone conver-

gence theorem (Theorem 1.1.21), we may assume that f is a simple

function, which is then necessarily of finite measure support from the

Lp finiteness hypotheses. Now consider the function s 7→
∫
X
|f |(1−s)p0+sp1 dµ.

Expanding f out in terms of step functions we see that this is an an-

alytic function of f which grows at most exponentially in s; also, by

the triangle inequality this function has magnitude at most
∫
X
|f |p0

when s = 0 + it and magnitude
∫
X
|f |p1 when s = 1 + it. Applying

Theorem 1.11.3 and specialising to s := θ we obtain the claim.

Exercise 1.11.5. If 0 < θ < 1, show that equality holds in Lemma

1.11.5 if and only if |f | is a step function.

Now we consider variants of interpolation in which the “strong”

Lp spaces are replaced by their “weak” counterparts Lp,∞. Given a

measurable function f : X → C, we define the distribution function

λf : R+ → [0,+∞] by the formula

λf (t) := µ({x ∈ X : |f(x)| ≥ t}) =

∫
X

1|f |≥t dµ.

This distribution function is closely connected to the Lp norms. In-

deed, from the calculus identity

|f(x)|p = p

∫ ∞
0

1|f |≥tt
p dt

t

and the Fubini-Tonelli theorem, we obtain the formula

(1.84) ‖f‖pLp(X) = p

∫ ∞
0

λf (t)tp
dt

t
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for all 0 < p < ∞, thus the Lp norms are essentially moments of

the distribution function. The L∞ norm is of course related to the

distribution function by the formula

‖f‖L∞(X) = inf{t ≥ 0 : λf (t) = 0}.

Exercise 1.11.6. Show that we have the relationship

‖f‖pLp(X) ∼p
∑
n∈Z

λf (2n)2np

for any measurable f : X → C and 0 < p < ∞, where we use

X ∼p Y to denote a pair of inequalities of the form cpY ≤ X ≤ CpY
for some constants cp, Cp > 0 depending only on p. (Hint : λf (t)

is non-increasing in t.) Thus we can relate the Lp norms of f to

the dyadic values λf (2n) of the distribution function; indeed, for any

0 < p ≤ ∞, ‖f‖Lp(X) is comparable (up to constant factors depending

on p) to the `p(Z) norm of the sequence n 7→ 2nλf (2n)1/p.

Another relationship between the Lp norms and the distribution

function is given by observing that

‖f‖pLp(X) =

∫
X

|f |p dµ ≥
∫
|f |≥t

tp dµ = tpλf (t)

for any t > 0, leading to Chebyshev’s inequality

λf (t) ≤ 1

tp
‖f‖pLp(X).

(The p = 1 version of this inequality is also known as Markov’s in-

equality. In probability theory, Chebyshev’s inequality is often spe-

cialised to the case p = 2, and with f replaced by a normalised func-

tion f − Ef . Note that, as with many other Cyrillic names, there

are also a large number of alternative spellings of Chebyshev in the

Roman alphabet.)

Chebyshev’s inequality motivates one to define the weak Lp norm

‖f‖Lp,∞(X) of a measurable function f : X → C for 0 < p < ∞ by

the formula

‖f‖Lp,∞(X) := sup
t>0

tλf (t)1/p,

thus Chebyshev’s inequality can be expressed succinctly as

‖f‖Lp,∞(X) ≤ ‖f‖Lp(X).
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It is also natural to adopt the convention that ‖f‖L∞,∞(X) = ‖f‖L∞(X).

If f, g : X → C are two functions, we have the inclusion

{|f + g| ≥ t} ⊂ {|f | ≥ t/2} ∪ {|g| ≥ t/2}

and hence

λf+g(t) ≤ λf (t/2) + λg(t/2);

this easily leads to the quasi-triangle inequality

‖f + g‖Lp,∞(X) .p ‖f‖Lp,∞(X) + ‖f‖Lp,∞(X)

where we use X .p Y as shorthand for the inequality X ≤ CpY for

some constant Cp depending only on p (it can be a different constant

at each use of the .p notation). [Note: in analytic number theory,

it is more customary to use �p instead of .p, following Vinogradov.

However, in analysis � is sometimes used instead to denote “much

smaller than”, e.g. X � Y denotes the assertion X ≤ cY for some

sufficiently small constant c.]

Let Lp,∞(X) be the space of all f : X → C which have fi-

nite Lp,∞(X), modulo almost everywhere equivalence; this space is

also known as weak Lp(X). The quasi-triangle inequality soon im-

plies that Lp,∞(X) is a quasi-normed vector space with the Lp,∞(X)

quasi-norm, and Chebyshev’s inequality asserts that Lp,∞(X) con-

tains Lp(X) as a subspace (though the Lp norm is not a restriction

of the Lp,∞(X) norm).

Example 1.11.6. If X = Rn with the usual measure, and 0 < p <

∞, then the function f(x) := |x|−n/p is in weak Lp, but not strong

Lp. It is also not in strong or weak Lq for any other q. But the “local”

component |x|−n/p1|x|≤1 of f is in strong and weak Lq for all q > p,

and the “global” component |x|−n/p1|x|>1 of f is in strong and weak

Lq for all q > p.

Exercise 1.11.7. For any 0 < p, q ≤ ∞ and f : X → C, define

the (dyadic) Lorentz norm ‖f‖Lp,q(X) to be `q(Z) norm of the se-

quence n 7→ 2nλf (2n)1/p, and define the Lorentz space Lp,q(X) be

the space of functions f with ‖f‖Lp,q(X) finite, modulo almost ev-

erywhere equivalence. Show that Lp,q(X) is a quasi-normed space,

which is equivalent to Lp,∞(X) when q = ∞ and to Lp(X) when

q = p. Lorentz spaces arise naturally in more refined applications of
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the real interpolation method, and are useful in certain “endpoint”

estimates that fail for Lebesgue spaces, but which can be rescued

by using Lorentz spaces instead. However, we will not pursue these

applications in detail here.

Exercise 1.11.8. Let X be a finite set with counting measure, and

let f : X → C be a function. For any 0 < p <∞, show that

‖f‖Lp,∞(X) ≤ ‖f‖Lp(X) .p log(1 + |X|)‖f‖Lp,∞(X).

(Hint : to prove the second inequality, normalise ‖f‖Lp,∞(X) = 1, and

then manually dispose of the regions of X where f is too large or too

small.) Thus, in some sense, weak Lp and strong Lp are equivalent

“up to logarithmic factors”.

One can interpolate weak Lp bounds just as one can strong Lp

bounds: if ‖f‖Lp0,∞(X) ≤ B0 and ‖f‖Lp1,∞(X) ≤ B1, then

(1.85) ‖f‖Lpθ,∞(X) ≤ Bθ

for all 0 ≤ θ ≤ 1. Indeed, from the hypotheses we have

λf (t) ≤ Bp00

tp0

and

λf (t) ≤ Bp11

tp1

for all t > 0, and hence by scalar interpolation (using an interpolation

parameter 0 < α < 1 defined by pθ = (1−α)p0 +αp1, and after doing

some algebra) we have

(1.86) λf (t) ≤
Bpθθ
tpθ

for all 0 < θ < 1.

As remarked in the previous section, we can improve upon (1.86);

indeed, if we define t0 to be the unique value of t where Bp00 /tp0 and

Bp11 /tp1 are equal, then we have

λf (t) ≤
Bpθθ
tpθ

min(t/t0, t0/t)
ε

for some ε > 0 depending on p0, p1, θ. Inserting this improved bound

into (1.84) we see that we can improve the weak-type bound (1.85)



188 1. Real analysis

to a strong-type bound

(1.87) ‖f‖Lpθ (X) ≤ Cp0,p1,θBθ
for some constant Cp0,p1,θ. Note that one cannot use the tensor power

trick this time to eliminate the constant Cp0,p1,θ as the weak Lp norms

do not behave well with respect to tensor product. Indeed, the con-

stant Cp0,p1,θ must diverge to infinity in the limit θ → 0 if p0 6= ∞,

otherwise it would imply that the Lp0 norm is controlled by the Lp0,∞

norm, which is false by Example 1.11.6; similarly one must have a di-

vergence as θ → 1 if p1 6=∞.

Exercise 1.11.9. Let 0 < p0 < p1 ≤ ∞ and 0 < θ < 1. Refine the

inclusions in (1.83) to

Lp0(X) ∩ Lp1(X) ⊂ Lp0,∞(X) ∩ Lp1,∞(X) ⊂ Lpθ (X) ⊂

⊂ Lpθ,∞(X) ⊂ Lp0(X) + Lp1(X) ⊂ Lp0,∞(X) + Lp1,∞(X).

Define the strong type diagram of a function f : X → C to be the

set of all 1/p for which f lies in strong Lp, and the weak type diagram

to be the set of all 1/p for which f lies in weak Lp. Then both the

strong and weak type diagrams are connected subsets of [0,+∞), and

the strong type diagram is contained in the weak type diagram, and

contains in turn the interior of the weak type diagram. By experi-

menting with linear combinations of the examples in Example 1.11.6

we see that this is basically everything one can say about the strong

and weak type diagrams, without further information on f or X.

Exercise 1.11.10. Let f : X → C be a measurable function which

is finite almost everywhere. Show that there exists a unique non-

increasing left-continuous function f∗ : R+ → R+ such that λf∗(t) =

λf (t) for all t ≥ 0, and in particular ‖f‖Lp(X) = ‖f∗‖Lp(R+) for all

0 < p ≤ ∞, and ‖f‖Lp,∞(X) = ‖f∗‖Lp,∞(R+). (Hint : first look for

the formula that describes f∗(x) for some x > 0 in terms of λf (t).)

The function f∗ is known as the non-increasing rearrangement of f ,

and the spaces Lp(X) and Lp,∞(X) are examples of rearrangement-

invariant spaces. There are a class of useful rearrangement inequal-

ities that relate f to its rearrangements, and which can be used to

clarify the structure of rearrangement-invariant spaces, but we will

not pursue this topic here.



1.11. Interpolation of Lp spaces 189

Exercise 1.11.11. Let (X,X , µ) be a σ-finite measure space, let

1 < p <∞, and f : X → C be a measurable function. Show that the

following are equivalent:

• f lies in Lp,∞(X), thus ‖f‖Lp,∞(X) ≤ C for some finite C.

• There exists a constant C ′ such that |
∫
X
f1E dµ| ≤ C ′µ(E)1/p′

for all sets E of finite measure.

Furthermore show that the best constants C,C ′ in the above state-

ments are equivalent up to multiplicative constants depending on p,

thus C ∼p C ′. Conclude that the modified weak Lp,∞(X) norm

‖f‖L̃p,∞(X) := supE µ(E)−1/p′ |
∫
X
f1E dµ|, where E ranges over all

sets of positive finite measure, is a genuine norm on Lp,∞(X) which

is equivalent to the Lp,∞(X) quasinorm.

Exercise 1.11.12. Let n > 1 be an integer. Find a probability space

(X,X , µ) and functions f1, . . . , fn : X → R with ‖fj‖L1,∞(X) ≤ 1 for

j = 1, . . . , n such that ‖
∑n
j=1 fj‖L1,∞(X) ≥ cn log n for some absolute

constant c > 0. (Hint : exploit the logarithmic divergence of the

harmonic series
∑∞
j=1

1
j .) Conclude that there exists a probability

space X such that the L1,∞(X) quasi-norm is not equivalent to an

actual norm.

Exercise 1.11.13. Let (X,X , µ) be a σ-finite measure space, let

0 < p <∞, and f : X → C be a measurable function. Show that the

following are equivalent:

• f lies in Lp,∞(X).

• There exists a constant C such that for every set E of finite

measure, there exists a subset E′ with µ(E′) ≥ 1
2µ(E) such

that |
∫
X
f1E′ dµ| ≤ Cµ(E)1/p′ .

Exercise 1.11.14. Let (X,X , µ) be a measure space of finite mea-

sure, and f : X → C be a measurable function. Show that the

following two statements are equivalent:

• There exists a constant C > 0 such that ‖f‖Lp(X) ≤ Cp for

all 1 ≤ p <∞.

• There exists a constant c > 0 such that
∫
X
ec|f | dµ <∞.
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1.11.3. Interpolation of operators. We turn at last to the cen-

tral topic of these notes, which is interpolation of operators T be-

tween functions on two fixed measure spaces X = (X,X , µ) and

Y = (Y,Y, ν). To avoid some (very minor) technicalities we will

make the mild assumption throughout that X and Y are both σ-

finite, although much of the theory here extends to the non-σ-finite

setting.

A typical situation is that of a linear operator T which maps one

Lp0(X) space to another Lq0(Y ), and also maps Lp1(X) to Lq1(Y )

for some exponents 0 < p0, p1, q0, q1 ≤ ∞; thus (by linearity) T will

map the larger vector space Lp0(X) + Lp1(X) to Lq0(Y ) + Lq1(Y ),

and one has some estimates of the form

(1.88) ‖Tf‖Lq0 (Y ) ≤ B0‖f‖Lp0 (X)

and

(1.89) ‖Tf‖Lq1 (Y ) ≤ B1‖f‖Lp1 (X)

for all f ∈ Lp0(X), f ∈ Lp1(X) respectively, and some B0, B1 > 0.

We would like to then interpolate to say something about how T maps

Lpθ (X) to Lqθ (Y ).

The complex interpolation method gives a satisfactory result as

long as the exponents allow one to use duality methods, a result

known as the Riesz-Thorin theorem:

Theorem 1.11.7 (Riesz-Thorin theorem). Let 0 < p0, p1 ≤ ∞ and

1 ≤ q0, q1 ≤ ∞. Let T : Lp0(X) + Lp1(X) → Lq0(Y ) + Lq1(Y )

be a linear operator obeying the bounds (1.88), (1.89) for all f ∈
Lp0(X), f ∈ Lp1(X) respectively, and some B0, B1 > 0. Then we

have

‖Tf‖Lqθ (Y ) ≤ Bθ‖f‖Lpθ (X)

for all 0 < θ < 1 and f ∈ Lpθ (X), where 1/pθ := 1 − θ/p0 + θ/p1,

1/qθ := 1− θ/q0 + θ/q1, and Bθ := B1−θ
0 Bθ1 .

Remark 1.11.8. When X is a point, this theorem essentially col-

lapses to Lemma 1.11.5 (and when Y is a point, this is a dual for-

mulation of that lemma); and when X and Y are both points; this

collapses to interpolation of scalars.
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Proof. If p0 = p1 then the claim follows from Lemma 1.11.5, so

we may assume p0 6= p1, which in particular forces pθ to be finite.

By symmetry we can take p0 < p1. By multiplying the measures µ

and ν (or the operator T ) by various constants, we can normalise

B0 = B1 = 1 (the case when B0 = 0 or B1 = 0 is trivial). Thus we

have Bθ = 1 also.

By Hölder’s inequality, the bound (1.88) implies that

(1.90) |
∫
Y

(Tf)g dν| ≤ ‖f‖Lp0 (X)‖g‖Lq′0 (Y )

for all f ∈ Lp0(X) and g ∈ Lq′0(Y ), where q′0 is the dual exponent of

q0. Similarly we have

(1.91) |
∫
Y

(Tf)g dν| ≤ ‖f‖Lp1 (X)‖g‖Lq′1 (Y )

for all f ∈ Lp1(X) and g ∈ Lq′1(Y ).

We now claim that

(1.92) |
∫
Y

(Tf)g dν| ≤ ‖f‖Lpθ (X)‖g‖Lq′θ (Y )

for all f , g that are simple functions with finite measure support.

To see this, we first normalise ‖f‖Lpθ (X) = ‖g‖
Lq
′
θ (Y )

= 1. Observe

that we can write f = |f | sgn(f), g = |g| sgn(g) for some functions

sgn(f), sgn(g) of magnitude at most 1. If we then introduce the quan-

tity

F (s) :=

∫
Y

(T [|f |(1−s)pθ/p0+spθ/p1 sgn(f)])[|g|(1−s)q
′
θ/q
′
0+sq′θ/q

′
1 sgn(g)] dν

(with the conventions that q′θ/q
′
0, q
′
θ/q
′
1 = 1 in the endpoint case q′0 =

q′1 = q′θ =∞) we see that F is a holomorphic function of s of at most

exponential growth which equals
∫
Y

(Tf)g dν when s = θ. When

instead s = 0 + it, an application of (1.90) shows that |F (s)| ≤ 1; a

similar claim obtains when s = 1 + it using (1.91). The claim now

follows from Theorem 1.11.3.

The estimate (1.92) has currently been established for simple

functions f, g with finite measure support. But one can extend the

claim to any f ∈ Lpθ (X) (keeping g simple with finite measure sup-

port) by decomposing f into a bounded function and a function of

finite measure support, approximating the former in Lpθ (X)∩Lp1(X)
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by simple functions of finite measure support, and approximating the

latter in Lpθ (X) ∩ Lp0(X) by simple functions of finite measure sup-

port, and taking limits using (1.90), (1.91) to justify the passage to

the limit. One can then also allow arbitrary g ∈ Lq′θ (Y ) by using the

monotone convergence theorem (Theorem 1.1.21). The claim now

follows from the duality between Lq1(Y ) and Lq
′
1(Y ). �

Suppose one has a linear operator T that maps simple functions

of finite measure support on X to measurable functions on Y (modulo

almost everywhere equivalence). We say that such an operator is of

strong type (p, q) if it can be extended in a continuous fashion to

an operator on Lp(X) to an operator on Lq(Y ); this is equivalent to

having an estimate of the form ‖Tf‖Lq(Y ) ≤ B‖f‖Lp(X) for all simple

functions f of finite measure support. (The extension is unique if p is

finite or if X has finite measure, due to the density of simple functions

of finite measure support in those cases. Annoyingly, uniqueness fails

for L∞ of an infinite measure space, though this turns out not to

cause much difficulty in practice, as the conclusions of interpolation

methods are usually for finite exponents p.) Define the strong type

diagram to be the set of all (1/p, 1/q) such that T is of strong type

(p, q). The Riesz-Thorin theorem tells us that if T is of strong type

(p0, q0) and (p1, q1) with 0 < p0, p1 ≤ ∞ and 1 ≤ q0, q1 ≤ ∞, then

T is also of strong type (pθ, qθ) for all 0 < θ < 1; thus the strong

type diagram contains the closed line segment connecting (1/p0, 1/q0)

with (1/p1, 1/q1). Thus the strong type diagram of T is convex in

[0,+∞)× [0, 1] at least. (As we shall see later, it is in fact convex in

all of [0,+∞)2.) Furthermore, on the intersection of the strong type

diagram with [0, 1] × [0,+∞), the operator norm ‖T‖Lp(X)→Lq(Y ) is

a log-convex function of (1/p, 1/q).

Exercise 1.11.15. If X = Y = [0, 1] with the usual measure, show

that the strong type diagram of the identity operator is the tri-

angle {(1/p, 1/q) ∈ [0,+∞) × [0,+∞) : 1/p ≤ 1/q}. If instead

X = Y = Z with the usual counting measure, show that the strong

type diagram of the identity operator is the triangle {(1/p, 1/q) ∈
[0,+∞)× [0,+∞) : 1/p ≥ 1/q}. What is the strong type diagram of

the identity when X = Y = R with the usual measure?
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Exercise 1.11.16. Let T (resp. T ∗) be a linear operator from simple

functions of finite measure support on Y (resp. X) to measurable

functions on Y (resp. X) modulo a.e. equivalence that are absolutely

integrable on finite measure sets. We say T, T ∗ are formally adjoint

if we have
∫
Y

(Tf)g dν =
∫
X
fT ∗g dµ for all simple functions f, g of

finite measure support on X,Y respectively. If 1 ≤ p, q ≤ ∞, show

that T is of strong type (p, q) if and only if T ∗ is of strong type (q′, p′).

Thus, taking formal adjoints reflects the strong type diagram around

the line of duality 1/p + 1/q = 1, at least inside the Banach space

region [0, 1]2.

Remark 1.11.9. There is a powerful extension of the Riesz-Thorin

theorem known as the Stein interpolation theorem, in which the single

operator T is replaced by a family of operators Ts for s ∈ S that vary

holomorphically in s in the sense that
∫
Y

(Ts1E)1F dν is a holomorphic

function of s for any sets E,F of finite measure. Roughly speaking,

the Stein interpolation theorem asserts that if Tj+it is of strong type

(pj , qj) for j = 0, 1 with a bound growing at most exponentially in

t, and Ts itself grows at most exponentially in t in some sense, then

Tθ will be of strong type (pθ, qθ). A precise statement of the theorem

and some applications can be found in [St1993].

Now we turn to the real interpolation method. Instead of lin-

ear operators, it is now convenient to consider sublinear operators T

mapping simple functions f : X → C of finite measure support in X

to [0,+∞]-valued measurable functions on Y (modulo almost every-

where equivalence, as usual), obeying the homogeneity relationship

|T (cf)| = |c||Tf |

and the pointwise bound

|T (f + g)| ≤ |Tf |+ |Tg|

for all c ∈ C, and all simple functions f, g of finite measure support.

Every linear operator is sublinear; also, the absolute value Tf :=

|Sf | of a linear (or sublinear) operator is also sublinear. More gen-

erally, any maximal operator of the form Tf := supα∈A |Sαf |, where

(Sα)α∈A is a family of linear operators, is also a non-negative sublin-

ear operator; note that one can also replace the supremum here by any
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other norm in α, e.g. one could take an `p norm (
∑
α∈A |Sαf |p)1/p

for any 1 ≤ p ≤ ∞. (After p =∞ and p = 1, a particularly common

case is when p = 2, in which case T is known as a square function.)

The basic theory of sublinear operators is similar to that of linear

operators in some respects. For instance, continuity is still equivalent

to boundedness:

Exercise 1.11.17. Let T be a sublinear operator, and let 0 < p, q ≤
∞. Then the following are equivalent:

• T can be extended to a continuous operator from Lp(X) to

Lq(Y ).

• There exists a constant B > 0 such that ‖Tf‖Lq(Y ) ≤
B‖f‖Lp(X) for all simple functions f of finite measure sup-

port.

• T can be extended to a operator from Lp(X) to Lq(Y ) such

that ‖Tf‖Lq(Y ) ≤ B‖f‖Lp(X) for all f ∈ Lp(X) and some

B > 0.

Show that the extension mentioned above is unique of p is finite, or if

X has finite measure. Finally, show that the same equivalences hold

if Lq(Y ) is replaced by Lq,∞(Y ) throughout.

We say that T is of strong type (p, q) if any of the above equiva-

lent statements (for Lq(Y )) hold, and of weak type (p, q) if any of the

above equivalent statements (for Lq,∞(Y )) hold. We say that a linear

operator S is of strong or weak type (p, q) if its non-negative counter-

part |S| is; note that this is compatible with our previous definition

of strong type for such operators. Also, Chebyshev’s inequality tells

us that strong type (p, q) implies weak type (p, q).

We now give the real interpolation counterpart of the Riesz-

Thorin theorem, namely the Marcinkeiwicz interpolation theorem:

Theorem 1.11.10 (Marcinkiewicz interpolation theorem). Let 0 <

p0, p1, q0, q1 ≤ ∞ and 0 < θ < 1 be such that q0 6= q1, and pi ≤ qi for

i = 0, 1. Let T be a sublinear operator which is of weak type (p0, q0)

and of weak type (p1, q1). Then T is of strong type (pθ, qθ).
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Remark 1.11.11. Of course, the same claim applies to linear opera-

tors S by setting T := |S|. One can also extend the argument to quasi-

linear operators, in which the pointwise bound |T (f+g)| ≤ |Tf |+|Tg|
is replaced by |T (f + g)| ≤ C(|Tf |+ |Tg|) for some constant C > 0,

but this generalisation only appears occasionally in applications. The

conditions p0 ≤ q0, p1 ≤ q1 can be replaced by the variant condition

pθ ≤ qθ (see Exercise 1.11.19, Exercise 1.11.21), but cannot be elimi-

nated entirely: see Exercise 1.11.20. The precise hypotheses required

on p0, p1, q0, q1, pθ, qθ are rather technical and I recommend that they

be ignored on a first reading.

Proof. For notational reasons it is convenient to take q0, q1 finite;

however the arguments below can be modified without much diffi-

culty to deal with the infinite case (or one can use a suitable limiting

argument); we leave this to the interested reader.

By hypothesis, there exist constants B0, B1 > 0 such that

(1.93) λTf (t) ≤ Bq00 ‖f‖
q0
Lp0 (X)/t

q0

and

(1.94) λTf (t) ≤ Bq11 ‖f‖
q1
Lp1 (X)/t

q1

for all simple functions f of finite measure support, and all t > 0. Let

us write A . B to denote A ≤ Cp0,p1,q0,q1,θ,B0,B1
B for some constant

Cp0,p1,q0,q1,θ,B0,B1 depending on the indicated parameters. By (1.84),

it will suffice to show that∫ ∞
0

λTf (t)tqθ
dt

t
. ‖f‖qθLpθ (X).

By homogeneity we can normalise ‖f‖Lpθ (X) = 1.

Actually, it will be more slightly convenient to work with the

dyadic version of the above estimate, namely

(1.95)
∑
n∈Z

λTf (2n)2qθn . 1;

see Exercise 1.11.6. The hypothesis ‖f‖Lpθ (X) = 1 similarly implies

that

(1.96)
∑
m∈Z

λf (2m)2pθm . 1.
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The basic idea is then to get enough control on the numbers λTf (2n)

in terms of the numbers λf (2m) that one can deduce (1.95) from

(1.96).

When p0 = p1, the claim follows from direct substitution of

(1.91), (1.94) (see also the discussion in the previous section about

interpolating strong Lp bounds from weak ones), so let us assume

p0 6= p1; by symmetry we may take p0 < p1, and thus p0 < pθ < p1.

In this case we cannot directly apply (1.91), (1.94) because we only

control f in Lpθ , not Lp0 or Lp1 . To get around this, we use the basic

real interpolation trick of decomposing f into pieces. There are two

basic choices for what decomposition to pick. On one hand, one could

adopt a “minimalistic” approach and just decompose into two pieces

f = f≥s + f<s

where f≥s := f1|f |≥s and f<s := f1|f |<s, and the threshold s is a

parameter (depending on n) to be optimised later. Or we could adopt

a “maximalistic” approach and perform the dyadic decomposition

f =
∑
m∈Z

fm

where fm = f12m≤|f |<2m+1 . (Note that only finitely many of the

fm are non-zero, as we are assuming f to be a simple function.)

We will adopt the latter approach, in order to illustrate the dyadic

decomposition method; the former approach also works, but we leave

it as an exercise to the interested reader.

From sublinearity we have the pointwise estimate

Tf ≤
∑
m

Tfm

which implies that

λTf (2n) ≤
∑
m

λTfm(cn,m2n)

whenever cn,m are positive constants such that
∑
m cn,m = 1, but for

which we are otherwise at liberty to choose. We will set aside the

problem of deciding what the optimal choice of cn,m is for now, and

continue with the proof.
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From (1.91), (1.94), we have two bounds for the quantity λTfm(cn,m2n),

namely

λTfm(cn,m2n) . c−q0n,m2−nq0‖fm‖q0Lp0 (X)

and

λTfm(cn,m2n) . c−q1n,m2−nq1‖fm‖q1Lp1 (X).

From construction of fm we can bound

‖fm‖Lp0 (X) . 2mλf (2m)1/p0

and similarly for p1, and thus we have

λTfm(cn,m2n) . c−qin,m2−nqi2mqiλf (2m)qi/pi .

for i = 0, 1. To prove (1.95), it thus suffices to show that∑
n

2nqθ
∑
m

min
i=0,1

c−qin,m2−nqi2mqiλf (2m)qi/pi . 1.

It is convenient to introduce the quantities am := λf (2m)2mpθ ap-

pearing in (1.96), thus ∑
m

am . 1

and our task is to show that∑
n

2nqθ
∑
m

min
i=0,1

c−qin,m2−nqi2mqi2−mqipθ/piaqi/pim . 1.

Since pi ≤ qi, we have a
qi/pi
m . am, and so we are reduced to the

purely numerical task of locating constants cn,m with
∑
m cn,m ≤ 1

for all n such that

(1.97)
∑
n

2nqθ
∑
m

min
i=0,1

c−qin,m2−nqi2mqi2−mqipθ/pi . 1

for all m.

We can simplify this expression a bit by collecting terms and mak-

ing some substitutions. The points (1/p0, 1/q0), (1/pθ, 1/qθ), (1/p1, 1/q1)

are collinear, and we can capture this by writing

1

pi
=

1

pθ
+ xi;

1

qi
=

1

qθ
+ αxi

for some x0 > 0 > x1 and some α ∈ R. We can then simplify the

left-hand side of (1.97) to∑
m

min
i=0,1

(c−1
n,m2nαqθ−mpθ )qixi .
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Note that q0x0 is positive and q1x1 is negative. If we then pick cn,m
to be a sufficiently small multiple of 2|nαqθ−mpθ|/2 (say), we obtain

the claim by summing geometric series. �

Remark 1.11.12. A closer inspection of the proof (or a rescaling ar-

gument to reduce to the normalised case B0 = B1 = 1, as in preceding

sections) reveals that one establishes the estimate

‖Tf‖Lqθ (Y ) ≤ Cp0,p1,q0,q1,θ,CB1−θ
0 Bθ1‖f‖Lpθ (X)

for all simple functions f of finite measure support (or for all f ∈
Lpθ (X), if one works with the continuous extension of T to such

functions), and some constant Cp0,p1,q0,q1,θ,C > 0. Thus the con-

clusion here is weaker by a multiplicative constant from that in the

Riesz-Thorin theorem, but the hypotheses are weaker too (weak-type

instead of strong-type). Indeed, we see that the constant Cp0,p1,q0,q1,θ
must blow up as θ → 0 or θ → 1.

The power of the Marcinkiewicz interpolation theorem, as com-

pared to the Riesz-Thorin theorem, is that it allows one to weaken

the hypotheses on T from strong type to weak type. Actually, it can

be weakened further. We say that a non-negative sublinear operator

T is restricted weak-type (p, q) for some 0 < p, q ≤ ∞ if there is a

constant B > 0 such that

‖Tf‖Lq,∞(Y ) ≤ Bµ(E)1/p

for all sets E of finite measure and all simple functions f with |f | ≤
1E . Clearly restricted weak-type (p, q) is implied by weak-type (p, q),

and thus by strong-type (p, q). (One can also define the notion of

restricted strong-type (p, q) by replacing Lq,∞(Y ) with Lq(Y ); this

is between strong-type (p, q) and restricted weak-type (p, q), but is

incomparable to weak-type (p, q).)

Exercise 1.11.18. Show that the Marcinkiewicz interpolation the-

orem continues to hold if the weak-type hypotheses are replaced by

restricted weak-type hypothesis. (Hint : where were the weak-type

hypotheses used in the proof?)

We thus see that the strong-type diagram of T contains the inte-

rior of the restricted weak-type or weak-type diagrams of T , at least

in the triangular region {(1/p, 1/q) ∈ [0,+∞)2 : p ≥ q}.
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Exercise 1.11.19. Suppose that T is a sublinear operator of re-

stricted weak-type (p0, q0) and (p1, q1) for some 0 < p0, p1, q0, q1 ≤ ∞.

Show that T is of restricted weak-type (pθ, qθ) for any 0 < θ < 1, or in

other words the restricted type diagram is convex in [0,+∞)2. (This

is an easy result requiring only interpolation of scalars.) Conclude

that the hypotheses p0 ≤ q0, p1 ≤ q1 in the Marcinkiewicz interpola-

tion theorem can be replaced by the variant pθ < qθ.

Exercise 1.11.20. For any α ∈ R, let Xα be the natural numbers

N with the weighted counting measure
∑
n∈N 2αnδn, thus each point

n has mass 2αn. Show that if α > β > 0, then the identity operator

from Xα to Xβ is of weak-type (p, q) but not strong-type (p, q) when

1 < p, q < ∞ and α/p = β/q. Conclude that the hypotheses p0 ≤
q0, p1 ≤ q1 cannot be dropped entirely.

Exercise 1.11.21. Suppose we are in the situation of the Marcinkiewicz

interpolation theorem, with the hypotheses p0 ≤ q0, p1 ≤ q1 replaced

by p0 6= p1. Show that for all 0 < θ < 1 and 1 ≤ r ≤ ∞ there exists

a B > 0 such that

‖Tf‖Lqθ,r(Y ) ≤ B‖f‖Lpθ,r(X)

for all simple functions f of finite measure support, where the Lorentz

norms Lp,q were defined in Exercise 1.11.7. (Hint : repeat the proof

of the Marcinkiewicz interpolation theorem, but partition the sum∑
n,m into regions of the form {nαqθ −mpθ = k + O(1)} for integer

k. Obtain a bound for each summand which decreases geometrically

as k → ±∞.) Conclude that the hypotheses p0 ≤ q0, p1 ≤ q1 in

the Marcinkiewicz interpolation theorem can be replaced by pθ ≤ qθ.
This Lorentz space version of the interpolation theorem is in some

sense the “right” version of the theorem, but the Lorentz spaces are

slightly more technical to deal with than the Lebesgue spaces, and

the Lebesgue space version of Marcinkiewicz interpolation is largely

sufficient for most applications.

Exercise 1.11.22. For i = 1, 2, let Xi = (Xi,Xi, µi), Yi = (Yi,Yi, νi)
be σ-finite measure spaces, and let Ti be a linear operator from simple

functions of finite measure support on Xi to measurable functions on

Yi (modulo almost everywhere equivalence, as always). Let X =

X1×X2, Y = Y1×Y2 be the product spaces (with product σ-algebra
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and product measure). Show that there exists a unique (modulo

a.e. equivalence) linear operator T defined on linear combinations of

indicator functions 1E1×E2 of product sets of sets E1 ⊂ X1, E2 ⊂ X2

of finite measure, such that

T1E1×E2
(y1, y2) := T11E1

(y1)T21E2
(y2)

for a.e. (y1, y2) ∈ Y ; we refer to T as the tensor product of T1 and T2

and write T = T1 ⊗ T2. Show that if T1, T2 are of strong-type (p, q)

for some 1 ≤ p, q <∞ with operator norms B1, B2 respectively, then

T can be extended to a bounded linear operator on Lp(X) to Lq(Y )

with operator norm exactly equal to B1B2, thus

‖T1⊗T2‖Lp(X1×X2)→Lq(Y1×Y2) = ‖T1‖Lp(X1)→Lq(Y1)‖T2‖Lp(X2)→Lq(Y2).

(Hint : for the lower bound, show that T1 ⊗ T2(f1 ⊗ f2) = (T1f1) ⊗
(T2f2) for all simple functions f1, f2. For the upper bound, express

T1×T2 as the composition of two other operators T1⊗I1 and I2⊗T2 for

some identity operators I1, I2, and establish operator norm bounds

on these two operators separately.) Use this and the tensor power

trick to deduce the Riesz-Thorin theorem (in the special case when

1 ≤ pi ≤ qi < ∞ for i = 0, 1, and q0 6= q1) from the Marcinkiewicz

interpolation theorem. Thus one can (with some effort) avoid the use

of complex variable methods to prove the Riesz-Thorin theorem, at

least in some cases.

Exercise 1.11.23 (Hölder’s inequality for Lorentz spaces). Let f ∈
Lp1,r1(X) and g ∈ Lp2,r2(X) for some 0 < p1, p2, r1, r2 ≤ ∞. Show

that fg ∈ Lp3,r3(X), where 1/p3 = 1/p1 + 1/p2 and 1/r3 = 1/r1 +

1/r2, with the estimate

‖fg‖Lp3,r3 (X) ≤ Cp1,p2,r1,r2‖f‖Lp1,r1 (X)‖g‖Lp2,r2 (X)

for some constant Cp1,p2,r1,r2 . (This estimate is due to O’Neil[ON1963].)

Remark 1.11.13. Just as interpolation of functions can be clarified

by using step functions f = A1E as a test case, it is instructive to use

rank one operators such as

Tf := A〈f, 1E〉1F = A(

∫
E

f dµ)1F

where E ⊂ X,F ⊂ Y are finite measure sets, as test cases for the

real and complex interpolation methods. (After understanding the
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rank one case, I then recommend looking at the rank two case, e.g.

Tf := A1〈f, 1E1
〉1F1

+ A2〈f, 1E2
〉1F2

, where E2, F2 could be very

different in size from E1, F1.)

1.11.4. Some examples of interpolation. Now we apply the in-

terpolation theorems to some classes of operators. An important such

class is given by the integral operators

Tf(y) :=

∫
X

K(x, y)f(x) dµ(x)

from functions f : X → C to functions Tf : Y → C, where K :

X × Y → C is a fixed measurable function, known as the kernel of

the integral operator T . Of course, this integral is not necessarily

convergent, so we will also need to study the sublinear analogue

|T |f(y) :=

∫
X

|K(x, y)||f(x)| dµ(x)

which is well-defined (though it may be infinite).

The following useful lemma gives us strong-type bounds on |T |
and hence T , assuming certain Lp type bounds on the rows and

columns of K.

Lemma 1.11.14 (Schur’s test). Let K : X×Y → C be a measurable

function obeying the bounds

‖K(x, ·)‖Lq0 (Y ) ≤ B0

for almost every x ∈ X, and

‖K(·, y)‖
Lp
′
1 (X)

≤ B1

for almost every y ∈ Y , where 1 ≤ p1, q0 ≤ ∞ and B0, B1 > 0.

Then for every 0 < θ < 1, |T | and T are of strong-type (pθ, qθ), with

Tf(y) well-defined for all f ∈ Lpθ (X) and almost every y ∈ Y , and

furthermore

‖Tf‖Lqθ (Y ) ≤ Bθ‖f‖Lpθ (X).

Here we adopt the convention that p0 := 1 and q1 := ∞, thus qθ =

q0/(1− θ) and p′θ = p′1/θ.
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Proof. The hypothesis ‖K(x, ·)‖Lq0 (Y ) ≤ B0, combined with Minkowski’s

integral inequality, shows us that

‖|T |f‖Lq0 (Y ) ≤ B0‖f‖L1(X)

for all f ∈ L1(X); in particular, for such f , Tf is well-defined almost

everywhere, and

‖Tf‖Lq0 (Y ) ≤ B0‖f‖L1(X).

Similarly, Hölder’s inequality tells us that for f ∈ Lp1(X), Tf is

well-defined everywhere, and

‖Tf‖L∞(Y ) ≤ B1‖f‖Lp1 (X).

Applying the Riesz-Thorin theorem we conclude that

‖Tf‖Lqθ (Y ) ≤ Bθ‖f‖Lpθ (X)

for all simple functions f with finite measure support; replacing K

with |K| we also see that

‖|T |f‖Lqθ (Y ) ≤ Bθ‖f‖Lpθ (X)

for all simple functions f with finite measure support, and thus (by

monotone convergence, Theorem 1.1.21) for all f ∈ Lpθ (X). The

claim then follows. �

Example 1.11.15. Let A = (aij)1≤i≤n,1≤j≤m be a matrix such that

the sum of the magnitudes of the entries in every row and column is

at most B, i.e.
∑n
i=1 |aij | ≤ B for all j and

∑m
j=1 |aij | ≤ B for all i.

Then one has the bound

‖Ax‖`pm ≤ B‖x‖`pn

for all vectors x ∈ Cn and all 1 ≤ p ≤ ∞. Note the extreme cases

p = 1, p = ∞ can be seen directly; the remaining cases then follow

from interpolation.

A useful special case arises when A is an S-sparse matrix, which

means that at most S entries in any row or column are non-zero (e.g.

permutation matrices are 1-sparse). We then conclude that the `p

operator norm of A is at most S supi,j |ai,j |.
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Exercise 1.11.24. Establish Schur’s test by more direct means, tak-

ing advantage of the duality relationship

‖g‖Lp(Y ) := sup{|
∫
Y

gh| : ‖h‖Lp′ (Y ) ≤ 1}

for 1 ≤ p ≤ ∞, as well as Young’s inequality xy ≤ 1
rx

r + 1
r′x

r′ for

1 < r < ∞. (You may wish to first work out Example 1.11.15, say

with p = 2, to figure out the logic.)

A useful corollary of Schur’s test is Young’s convolution inequality

for the convolution f ∗ g of two functions f : Rn → C, g : Rn → C,

defined as

f ∗ g(x) :=

∫
Rn

f(y)g(x− y) dy

provided of course that the integrand is absolutely convergent.

Exercise 1.11.25 (Young’s inequality). Let 1 ≤ p, q, r ≤ ∞ be such

that 1
p + 1

q = 1
r + 1. Show that if f ∈ Lp(Rn) and g ∈ Lq(Rn),

then f ∗ g is well-defined almost everywhere and lies in Lr(Rn), and

furthermore that

‖f ∗ g‖Lr(Rn) ≤ ‖f‖Lp(Rn)‖g‖Lq(Rn).

(Hint : Apply Schur’s test to the kernel K(x, y) := g(x− y).)

Remark 1.11.16. There is nothing special about Rn here; one could

in fact use any locally compact group G with a bi-invariant Haar

measure. On the other hand, if one specialises to Rn, then it is

possible to improve Young’s inequality slightly, to

‖f ∗ g‖Lr(Rn) ≤ (ApAqAr′)
n/2‖f‖Lp(Rn)‖g‖Lq(Rn).

where Ap := p1/p/(p′)1/p′ , a celebrated result of Beckner [Be1975];

the constant here is best possible, as can be seen by testing the in-

equality in the case when f, g are Gaussians.

Exercise 1.11.26. Let 1 ≤ p ≤ ∞, and let f ∈ Lp(Rn), g ∈ Lp′(Rn).

Young’s inequality tells us that f ∗ g ∈ L∞(Rn). Refine this further

by showing that f ∗ g ∈ C0(Rn), i.e. f ∗ g is continuous and goes to

zero at infinity. (Hint : first show this when f, g ∈ Cc(Rn), then use

a limiting argument.)
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We now give a variant of Schur’s test that allows for weak esti-

mates.

Lemma 1.11.17 (Weak-type Schur’s test). Let K : X × Y → C be

a measurable function obeying the bounds

‖K(x, ·)‖Lq0,∞(Y ) ≤ B0

for almost every x ∈ X, and

‖K(·, y)‖
Lp
′
1,∞(X)

≤ B1

for almost every y ∈ Y , where 1 < p1, q0 < ∞ and B0, B1 > 0

(note the endpoint exponents 1,∞ are now excluded). Then for every

0 < θ < 1, |T | and T are of strong-type (pθ, qθ), with Tf(y) well-

defined for all f ∈ Lpθ (X) and almost every y ∈ Y , and furthermore

‖Tf‖Lqθ (Y ) ≤ Cp1,q0,θBθ‖f‖Lpθ (X).

Here we again adopt the convention that p0 := 1 and q1 :=∞.

Proof. From Exercise 1.11.11 we see that∫
Y

|K(x, y)|1E(y) dν(y) . B0µ(E)1/q′0

for any measurable E ⊂ Y , where we use A . B to denote A ≤
Cp1,q0,θB for some Cp1,q0,θ depending on the indicated parameters.

By the Fubini-Tonelli theorem, we conclude that∫
Y

|T |f(y)1E(y) dν(y) . B0µ(E)1/q′0‖f‖L1(X)

for any f ∈ L1(X); by Exercise 1.11.11 again we conclude that

‖|T |f‖Lq0,∞(Y ) . B0‖f‖L1(X)

thus |T | is of weak-type (1, q0). In a similar vein, from yet another

application of Exercise 1.11.11 we see that

‖|T |f‖L∞(Y ) . B1µ(F )1/p1

whenever 0 ≤ f ≤ 1F and F ⊂ X has finite measure; thus |T | is of

restricted type (p1,∞). Applying Exercise 1.11.18 we conclude that

|T | is of strong type (pθ, qθ) (with operator norm . Bθ), and the

claim follows. �

This leads to a weak-type version of Young’s inequality:
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Exercise 1.11.27 (Weak-type Young’s inequality). Let 1 < p, q, r <

∞ be such that 1
p + 1

q = 1
r + 1. Show that if f ∈ Lp(Rn) and

g ∈ Lq,∞(Rn), then f ∗ g is well-defined almost everywhere and lies

in Lr(Rn), and furthermore that

‖f ∗ g‖Lr(Rn) ≤ Cp,q‖f‖Lp(Rn)‖g‖Lq,∞(Rn).

for some constant Cp,q > 0.

Exercise 1.11.28. Refine the previous exercise by replacing Lr(Rn)

with the Lorentz space Lr,p(Rn) throughout.

Recall that the function 1/|x|α will lie in Ln/α,∞(Rn) for α > 0.

We conclude

Corollary 1.11.18 (Hardy-Littlewood-Sobolev fractional integration

inequality). Let 1 < p, r < ∞ and 0 < α < n be such that 1
p + α

n =
1
r + 1. If f ∈ Lp(Rn), then the function Iαf , defined as

Iαf(x) :=

∫
Rn

f(y)

|x− y|α
dy

is well-defined almost everywhere and lies in Lr(Rn), and furthermore

that

‖Iαf‖Lr(Rn) ≤ Cp,α,n‖f‖Lp(Rn)

for some constant Cp,α,n > 0.

This inequality is of importance in the theory of Sobolev spaces,

which we will discuss in Section 1.14.

Exercise 1.11.29. Show that Corollary 1.11.18 can fail at the end-

points p = 1, r =∞, or α = n.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/03/30.

Thanks to PDEbeginner, Samir Chomsky, Spencer, Xiaochuan Liu

and anonymous commenters for corrections.

1.12. The Fourier transform

In these notes we lay out the basic theory of the Fourier transform,

which is of course the most fundamental tool in harmonic analysis

and also of major importance in related fields (functional analysis,
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complex analysis, PDE, number theory, additive combinatorics, rep-

resentation theory, signal processing, etc.). The Fourier transform, in

conjunction with the Fourier inversion formula, allows one to take es-

sentially arbitrary (complex-valued) functions on a group G (or more

generally, a space X that G acts on, e.g. a homogeneous space G/H),

and decompose them as a (discrete or continuous) superposition of

much more symmetric functions on the domain, such as characters

χ : G→ S1; the precise superposition is given by Fourier coefficients

f̂(ξ), which take values in some dual object such as the Pontryagin

dual Ĝ of G. Characters behave in a very simple manner with respect

to translation (indeed, they are eigenfunctions of the translation ac-

tion), and so the Fourier transform tends to simplify any mathemat-

ical problem which enjoys a translation invariance symmetry (or an

approximation to such a symmetry), and is somehow “linear” (i.e. it

interacts nicely with superpositions). In particular, Fourier analytic

methods are particularly useful for studying operations such as con-

volution f, g 7→ f ∗ g and set-theoretic addition A,B 7→ A + B, or

the closely related problem of counting solutions to additive problems

such as x = a1 + a2 + a3 or x = a1 − a2, where a1, a2, a3 are con-

strained to lie in specific sets A1, A2, A3. The Fourier transform is

also a particularly powerful tool for solving constant-coefficient linear

ODE and PDE (because of the translation invariance), and can also

approximately solve some variable-coefficient (or slightly non-linear)

equations if the coefficients vary smoothly enough and the nonlinear

terms are sufficiently tame.

The Fourier transform f̂(ξ) also provides an important new way

of looking at a function f(x), as it highlights the distribution of f

in frequency space (the domain of the frequency variable ξ) rather

than physical space (the domain of the physical variable x). A given

property of f in the physical domain may be transformed to a rather

different-looking property of f̂ in the frequency domain. For instance:

• Smoothness of f in the physical domain corresponds to de-

cay of f̂ in the Fourier domain, and conversely. (More gen-

erally, fine scale properties of f tend to manifest themselves

as coarse scale properties of f̂ , and conversely.)
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• Convolution in the physical domain corresponds to point-

wise multiplication in the Fourier domain, and conversely.

• Constant coefficient differential operators such as d/dx in

the physical domain corresponds to multiplication by poly-

nomials such as 2πiξ in the Fourier domain, and conversely.

• More generally, translation invariant operators in the phys-

ical domain correspond to multiplication by symbols in the

Fourier domain, and conversely.

• Rescaling in the physical domain by an invertible linear

transformation corresponds to an inverse (adjoint) rescal-

ing in the Fourier domain.

• Restriction to a subspace (or subgroup) in the physical do-

main corresponds to projection to the dual quotient space

(or quotient group) in the Fourier domain, and conversely.

• Frequency modulation in the physical domain corresponds

to translation in the frequency domain, and conversely.

(We will make these statements more precise below.)

On the other hand, some operations in the physical domain re-

main essentially unchanged in the Fourier domain. Most importantly,

the L2 norm (or energy) of a function f is the same as that of its

Fourier transform, and more generally the inner product 〈f, g〉 of two

functions f is the same as that of their Fourier transforms. Indeed,

the Fourier transform is a unitary operator on L2 (a fact which is vari-

ously known as the Plancherel theorem or the Parseval identity). This

makes it easier to pass back and forth between the physical domain

and frequency domain, so that one can combine techniques that are

easy to execute in the physical domain with other techniques that are

easy to execute in the frequency domain. (In fact, one can combine

the physical and frequency domains together into a product domain

known as phase space, and there are entire fields of mathematics (e.g.

microlocal analysis, geometric quantisation, time-frequency analysis)

devoted to performing analysis on these sorts of spaces directly, but

this is beyond the scope of this course.)

In these notes, we briefly discuss the general theory of the Fourier

transform, but will mainly focus on the two classical domains for
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Fourier analysis: the torus Td := (R/Z)d, and the Euclidean space

Rd. For these domains one has the advantage of being able to perform

very explicit algebraic calculations, involving concrete functions such

as plane waves x 7→ e2πix·ξ or Gaussians x 7→ Ad/2e−πA|x|
2

.

1.12.1. Generalities. Let us begin with some generalities. An abelian

topological group is an abelian group G = (G,+) with a topological

structure, such that the group operations of addition + : G×G→ G

and negation − : G → G are continuous. (One can of course also

consider abelian multiplicative groups G = (G, ·), but to fix the no-

tation we shall restrict attention to additive groups.) For technical

reasons (and in particular, in order to apply many of the results from

the previous sections) it is convenient to restrict attention to abelian

topological groups which are locally compact Hausdorff (LCH); these

are known as locally compact abelian (LCA) groups.

Some basic examples of locally compact abelian groups are:

• Finite additive groups (with the discrete topology), such as

cyclic groups Z/NZ.

• Finitely generated additive groups (with the discrete topol-

ogy), such as the standard lattice Zd.

• Tori, such as the standard d-dimensional torus Td := (R/Z)d

with the standard topology.

• Euclidean spaces, such the standard d-dimensional Euclidean

space Rd (with the standard topology, of course).

• The rationals Q are not locally compact with the usual

topology; but if one uses the discrete topology instead, one

recovers an LCA group.

• Another example of an LCA group, of importance in num-

ber theory, is the adele ring A, discussed in Section 1.5 of

Poincaré’s legacies, Vol. I.

Thus we see that locally compact abelian groups can be either

discrete or continuous, and either compact or non-compact; all four

combinations of these cases are of importance. The topology of course

generates a Borel σ-algebra in the usual fashion, as well as a space

Cc(G) of continuous, compactly supported complex-valued functions.
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There is a translation action x 7→ τx of G on Cc(G), where for every

x ∈ G, τx : Cc(G)→ Cc(G) is the translation operation

τxf(y) := f(y − x).

LCA groups need not be σ-compact (think of the free abelian

group on uncountably many generators, with the discrete topology),

but one has the following useful substitute:

Exercise 1.12.1. Show that every LCA groupG contains a σ-compact

open subgroup H, and in particular is the disjoint union of σ-compact

sets. (Hint : Take a compact symmetric neighbourhood K of the iden-

tity, and consider the group H generated by this neighbourhood.)

An important notion for us will be that of a Haar measure: a

Radon measure µ on G which is translation-invariant (i.e. µ(E+x) =

µ(E) for all Borel sets E ⊂ G and all x ∈ G, where E + x := {y+ x :

y ∈ E} is the translation of E by x). From this and the definition

of integration we see that integration f 7→
∫
G
f dµ against a Haar

measure (an operation known as the Haar integral) is also translation-

invariant, thus

(1.98)

∫
G

f(y − x) dµ(y) =

∫
G

f(y) dµ(y)

or equivalently

(1.99)

∫
G

τxf dµ =

∫
G

f dµ

for all f ∈ Cc(G) and x ∈ G. The trivial measure 0 is of course a

Haar measure; all other Haar measures are called non-trivial.

Let us note some non-trivial Haar measures in the four basic

examples of locally compact abelian groups:

• For a finite additive group G, one can take either counting

measure # or normalised counting measure #/#(G) as a

Haar measure. (The former measure emphasises the discrete

nature of G; the latter measure emphasises the compact

nature of G.)

• For finitely generated additive groups such as Zd, counting

measure # is a Haar measure.
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• For the standard torus (R/Z)d, one can obtain a Haar mea-

sure by identifying this torus with [0, 1)d in the usual manner

and then taking Lebesgue measure on the latter space. This

Haar measure is a probability measure.

• For the standard Euclidean space Rd, Lebesgue measure is

a Haar measure.

Of course, any non-negative constant multiple of a Haar measure

is again a Haar measure. The converse is also true:

Exercise 1.12.2 (Uniqueness of Haar measure up to scalars). Let

µ, ν be two non-trivial Haar measures on a locally compact abelian

group G. Show that µ, ν are scalar multiples of each other, i.e. there

exists a constant c > 0 such that ν = cµ. (Hint : for any f, g ∈ Cc(G),

compute the quantity
∫
G

∫
G
g(y)f(x+ y) dµ(x)dν(y) in two different

ways.)

The above argument also implies a useful symmetry property of

Haar measures:

Exercise 1.12.3 (Haar measures are symmetric). Let µ be a Haar

measure on a locally compact abelian groupG. Show that
∫
G
f(−x) dx =∫

G
f(x) dx for all f ∈ Cc(G). (Hint : expand

∫
G

∫
G
f(y)f(x+y) dµ(x)dµ(y)

in two different ways.) Conclude that Haar measures on LCA groups

are symmetric in the sense that µ(−E) = µ(E) for all measurable E,

where −E := {−x : x ∈ E} is the reflection of E.

Exercise 1.12.4 (Open sets have positive measure). Let µ be a non-

trivial Haar measure on a locally compact abelian group G. Show that

µ(U) > 0 for any non-empty open set U . Conclude that if f ∈ Cc(G)

is non-negative and not identically zero, then
∫
G
f dµ > 0.

Exercise 1.12.5. If G is an LCA group with non-trivial Haar mea-

sure µ, show that L1(G)∗ is identifiable with L∞(G). (Unfortunately,

G is not always σ-finite, and so the standard duality theorem from

Section 1.3 does not directly apply. However, one can get around this

using Exercise 1.12.1.)

It is a (not entirely trivial) theorem, due to André Weil, that all

LCA groups have a non-trivial Haar measure. For discrete groups, one
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can of course take counting measure as a Haar measure. For compact

groups, the result is due to Haar, and one can argue as follows:

Exercise 1.12.6 (Existence of Haar measure, compact case). Let

G be a compact metrisable abelian group. For any real-valued f ∈
Cc(G), and any Borel probability measure µ on G, define the oscil-

lation oscf (µ) of µ with respect to f to be the quantity oscf (µ) :=

supy∈G
∫
G
τyf dµ(x)− infy∈G

∫
G
τyf dµ(x).

• (a) Show that a Borel probability measure µ is a Haar mea-

sure if and only if oscf (µ) = 0 for all f ∈ Cc(G).

• (b) If a sequence µn of Borel probability measures converges

in the vague topology to another Borel probability measure

µ, show that oscf (µn)→ oscf (µ) for all f ∈ Cc(G).

• (c) If µ is a Borel probability measure and f ∈ Cc(G) is such

that oscf (µ) > 0, show that there exists a Borel probability

measure µ′ such that oscf (µ′) < oscf (µ) and oscg(µ
′) ≤

oscg(µ) for all g ∈ Cc(G). (Hint : take µ′ to be the an

average of certain translations of µ.)

• (d) Given any finite number of functions f1, . . . , fn ∈ Cc(G),

show that there exists a Borel probability measure µ such

that oscfi(µ) = 0 for all i = 1, . . . , n. (Hint : Use Prokhorov’s

theorem, see Corollary 1.10.22. Try the n = 1 case first.)

• (e) Show that there exists a unique Haar probability mea-

sure on G. (Hint : One can identify each probability measure

µ with the element (
∫
G
f dµ)f∈Cc(G) of the product space∏

f∈Cc(G)[− supx∈G |f(x)|, supx∈G |f(x)|], which is compact

by Tychonoff’s theorem. Now use (d) and the finite inter-

section property.)

(The argument can be adapted to the case when G is not metris-

able, but one has to replace the sequential compactness given by

Prokhorov’s theorem with the topological compactness given by the

Banach-Alaoglu theorem.)

For general LCA groups, the proof is more complicated:

Exercise 1.12.7 (Existence of Haar measure, general case). Let G

be an LCA group. Let Cc(G)+ denote the space of non-negative
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functions f ∈ Cc(G) that are not identically zero. Given two f, g ∈
Cc(G)+, define a g-cover of f to be an expression of the form a1τx1

g+

. . . + anτxng that pointwise dominates f , where a1, . . . , an are non-

negative numbers and x1, . . . , xn ∈ G. Let (f : g) denote the infimum

of the quantity a1 + . . .+ an for all g-covers of f .

• (a) (Finiteness) Show that 0 < (f : g) < +∞ for all f, g ∈
Cc(G)+.

• (b) Let µ is a Haar measure on G. Show that
∫
G
f dµ ≤

(f : g)(
∫
G
g dµ) for all f, g ∈ Cc(G)+. Conversely, for every

f ∈ Cc(G)+ and ε > 0, show that there exists g ∈ Cc(G)+

such that
∫
G
f dµ ≥ (f : g)(

∫
G
g dµ) − ε. (Hint : f is

uniformly continuous. Take g to be an approximation to

the identity.) Thus Haar integrals are related to certain

renormalised versions of the functionals f 7→ (f : g); this

observation underlies the strategy for construction of Haar

measure in the rest of this exercise.

• (c) (Transitivity) Show that (f : h) ≤ (f : g)(g : h) for all

f, g, h ∈ Cc(G)+.

• (d) (Translation invariance) Show that (τxf : g) = (f : g)

for all f, g ∈ Cc(G)+ and x ∈ G.

• (e) (Sublinearity) Show that (f + g : h) ≤ (f : h) + (g : h)

and (cf : g) = c(f : g) for all f, g, h ∈ Cc(G)+ and c > 0.

• (f) (Approximate superadditivity) If f, g ∈ Cc(G)+ and ε >

0, show that there exists a neighbourhood U of the identity

such that (f : h) + (g : h) ≤ (1 + ε)(f + g : h) whenever h ∈
Cc(G)+ is supported in U . (Hint : f, g, f+g are all uniformly

continuous. Take a h-cover of f +g and multiply the weight

ai at xi by weights such as f(xi)/(f(xi) + g(xi) − ε) and

g(xi)/(f(xi) + g(xi)− ε).)

Next, fix a reference function f0 ∈ Cc(G)+, and define the functional

Ig : Cc(G)+ → R+ for all g ∈ Cc(G)+ by the formula Ig(f) := (f :

g)/(f0 : g).

• (g) Show that for any fixed f , Ig(f) ranges in the compact

interval [(f0 : f)−1, (f : f0)]; thus Ig can be viewed as an
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element of the product space
∏
f∈Cc(G)+ [(f0 : f)−1, (f : f0)],

which is compact by Tychonoff’s theorem.

• (h) From (d), (e) we have the translation-invariance prop-

erty Ig(τxf) = Ig(f), the homogeneity property Ig(cf) =

cIg(f), and the sub-additivity property Ig(f+f ′) ≤ Ig(f)+

Ig(f
′) for all g, f, f ′ ∈ Cc(G)+, x ∈ G, and c > 0; we

also have the normalisation Ig(f0) = 1. Now show that for

all f1, . . . , fn, f
′
1, . . . , f

′
n ∈ Cc(G)+ and ε > 0, there exists

g ∈ Cc(G)+ such that Ig(fi + f ′i) ≥ Ig(fi) + Ig(f
′
i) − ε for

all i = 1, . . . , n.

• (i) Show that there exists a unique Haar measure µ on G

with µ(f0) = 1. (Hint : Use (h) and the finite intersec-

tion property to obtain a translation-invariant positive lin-

ear functional on Cc(G), then use the Riesz representation

theorem.)

Now we come to a fundamental notion, that of a character.

Definition 1.12.1 (Characters). Let G be a LCA group. A mul-

tiplicative character χ is a continuous function χ : G → S1 to the

unit circle S1 := {z ∈ C : |z| = 1} which is a homomorphism, i.e.

χ(x + y) = χ(x)χ(y) for all x, y ∈ G. An additive character or fre-

quency ξ : x 7→ ξ · x is a continuous function ξ : G→ R/Z which is a

homomorphism, thus ξ · (x+ y) = ξ ·x+ ξ · y for all x, y ∈ G. The set

of all frequencies ξ is called the Pontryagin dual of G and is denoted

Ĝ; it is clearly an abelian group. A multiplicative character is called

non-trivial if it is not the constant function 1; an additive character

is called non-trivial if it is not the constant function 0.

Multiplicative characters and additive characters are clearly re-

lated: if ξ ∈ Ĝ is an additive character, then the function x 7→ e2πiξ·x

is a multiplicative character, and conversely every multiplicative char-

acter arises uniquely from an additive character in this fashion.

Exercise 1.12.8. Let G be an LCA group. We give Ĝ the topology of

local uniform convergence on compact sets, thus the topology on Ĝ are

generated by sets of the form {ξ ∈ Ĝ : |ξ ·x−ξ0 ·x| < ε for all x ∈ K}
for compact K ⊂ G, ξ0 ∈ Ĝ, and ε > 0. Show that this turns Ĝ
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into an LCA group. (Hint : Show that for any neighbourhood U of

the identity in G, the sets {ξ ∈ Ĝ : ξ · x ∈ [−ε, ε] for all x ∈ U} for

0 < ε < 1/4 (say) are compact.) Furthermore, if G is discrete, show

that Ĝ is compact.

The Pontryagin dual can be computed easily for various classical

LCA groups:

Exercise 1.12.9. Let d ≥ 1 be an integer.

(a) Show that the Pontryagin dual Ẑd of Zd is identifiable as an

LCA group with (R/Z)d, by identifying each ξ ∈ (R/Z)d

with the frequency x 7→ ξ · x given by the dot product.

(b) Show that the Pontryagin dual R̂d of Rd is identifiable as

an LCA group with Rd, by identifying each ξ ∈ Rd with

the frequency x 7→ ξ · x given by the dot product.

(c) Show that the Pontryagin dual ̂(R/Z)d of (R/Z)d is identi-

fiable as an LCA group with Zd, by identifying each ξ ∈ Zd

with the frequency x 7→ ξ · x given by the dot product.

(d) (Contravariant functoriality) If φ : G → H is a continuous

homomorphism between LCA groups, show that there is

a continuous homomorphism φ∗ : Ĥ → Ĝ between their

Pontryagin duals, defined by φ∗(ξ) · x := ξ · φ(x) for ξ ∈ Ĥ
and x ∈ G.

(e) If H is a closed subgroup of an LCA group G (and is thus

also LCA), show that Ĥ is identifiable with Ĝ/H⊥, where

H⊥ is the space of all frequencies ξ ∈ Ĝ which annihilate H

(i.e. ξ · x = 0 for all x ∈ H).

(f) If G,H are LCA groups, show that Ĝ×H is identifiable as

an LCA group with Ĝ× Ĥ.

(g) Show that the Pontryagin dual of a finite abelian group G is

identifiable with itself. (Hint : first do this for cyclic groups

Z/NZ, identifying ξ ∈ Z/NZ with the additive character

x 7→ xξ/N), then use the classification of finite abelian

groups.) Note that this identification is not unique.

Exercise 1.12.10. Let G be an LCA group with non-trivial Haar

measure µ, and let χ : G → S1 be a measurable function such that
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χ(x)χ(y) = χ(x+ y) for almost every x, y ∈ G. Show that χ is equal

almost everywhere to a multiplicative character χ̃ of G. (Hint : on

the one hand, τxχ = χ(−x)χ a.e. for almost every x. On the other

hand, τxχ depends continuously on x in, say, the local L1 topology.)

In the remainder of this section, G is a fixed LCA group with a

non-trivial Haar measure µ.

Given an absolutely integrable function f ∈ L1(G), we define the

Fourier transform f̂ : Ĝ→ C by the formula

f̂(ξ) :=

∫
G

f(x)e−2πiξ·x dµ(x).

This is clearly a linear transformation, with the obvious bound

sup
ξ∈Ĝ
|f̂(ξ)| ≤ ‖f‖L1(G).

It converts translations into frequency modulations: indeed, one eas-

ily verifies that

(1.100) τ̂x0f(ξ) = e−2πiξ·x0 f̂(ξ)

for any f ∈ L1(G), x0 ∈ G, and ξ ∈ Ĝ. Conversely, it converts

frequency modulations to translations: one has

(1.101) χ̂ξ0f(ξ) = f̂(ξ − ξ0)

for any f ∈ L1(G) and ξ0, ξ ∈ Ĝ, where χξ0 is the multiplicative

character χξ0 : x 7→ e2πiξ0·x.

Exercise 1.12.11 (Riemann-Lebesgue lemma). If f ∈ L1(G), show

that f̂ : Ĝ→ C is continuous. Furthermore, show that f̂ goes to zero

at infinity in the sense that for every ε > 0 there exists a compact

subset K of Ĝ such that |f̂(ξ)| ≤ ε for ξ 6∈ K. (Hint : First show that

there exists a neighbourhood U of the identity in G such that ‖τxf −
f‖L1(G) ≤ ε2 (say) for all x ∈ U . Now take the Fourier transform

of this fact.) Thus the Fourier transform maps L1(G) continuously

to C0(Ĝ), the space of continuous functions on Ĝ which go to zero

at infinity; the decay at infinity is known as the Riemann-Lebesgue

lemma.
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Exercise 1.12.12. Let G be an LCA group with non-trivial Haar

measure µ. Show that the topology of Ĝ is the weakest topology such

that f̂ is continuous for every f ∈ L1(G).

Given two f, g ∈ L1(G), recall that the convolution f ∗g : G→ C

is defined as

f ∗ g(x) :=

∫
G

f(y)g(x− y) dµ(y).

From Young’s inequality (Exercise 1.11.25) we know that f ∗ g is

defined a.e., and lies in L1(G); indeed, we have

‖f ∗ g‖L1(G) ≤ ‖f‖L1(G)‖g‖L1(G).

Exercise 1.12.13. Show that the operation f, g 7→ f ∗g is a bilinear,

continuous, commutative, and associative operation on L1(G). As a

consequence, the Banach space L1(G) with the convolution operation

as “multiplication” operation becomes a commutative Banach algebra.

If we also define f∗(x) := f(−x) for all f ∈ L1(G), this turns L1(G)

into a B*-algebraBanach ∗-algebra.

For f, g ∈ L1(G), show that

(1.102) f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ)

for all ξ ∈ Ĝ; thus the Fourier transform converts convolution to

pointwise product.

Exercise 1.12.14. Let G,H be LCA groups with non-trivial Haar

measures µ, ν respectively, and let f ∈ L1(G), g ∈ L1(H). Show

that the tensor product f ⊗ g ∈ L1(G × H) (with product Haar

measure µ × ν) has a Fourier transform of f̂ ⊗ ĝ, where we identify

Ĝ×H with Ĝ× Ĥ as per Exercise 1.12.9(f). Informally, this exercise

asserts that the Fourier transform commutes with tensor products.

(Because of this fact, the tensor power trick (Section 1.9 of Structure

and Randomness) is often available when proving results about the

Fourier transform on general groups.)

Exercise 1.12.15 (Convolution and Fourier transform of measures).

If ν ∈M(G) is a finite Radon measure on an LCA group G with non-

trivial Haar measure µ, define the Fourier-Stieltjes transform ν̂ : Ĝ→
C by the formula ν̂(ξ) :=

∫
G
e−2πiξ·x dν(x) (thus for instance µ̂f = f̂

for any f ∈ L1(G)). Show that ν̂ is a bounded continuous function
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on Ĝ. Given any f ∈ L1(G), define the convolution f ∗ ν : G→ C to

be the function

f ∗ ν(x) :=

∫
G

f(x− y) dν(y)

and given any finite Radon measure ρ, let ν ∗ ρ : G → C be the

measure

ν ∗ ρ(E) :=

∫
G

∫
G

1E(x+ y) dν(x)dρ(y).

Show that f ∗ ν ∈ L1(G) and f̂ ∗ ν(ξ) = f̂(ξ)ν̂(ξ) for all ξ ∈ Ĝ, and

similarly that ν ∗ ρ is a finite measure and ν̂ ∗ ρ(ξ) = ν̂(ξ)ρ̂(ξ) for all

ξ ∈ Ĝ. Thus the convolution and Fourier structure on L1(G) can be

extended to the larger space M(G) of finite Radon measures.

1.12.2. The Fourier transform on compact abelian groups.

In this section we specialise the Fourier transform to the case when

the locally compact group G is in fact compact, thus we now have a

compact abelian group G with non-trivial Haar measure µ. This case

includes that of finite groups, together with that of the tori (R/Z)d.

As µ is a Radon measure, compact groups G have finite measure.

It is then convenient to normalise the Haar measure µ so that µ(G) =

1, thus µ is now a probability measure. For the remainder of this

section, we will assume that G is a compact abelian group and µ is

its (unique) Haar probability measure, as given by Exercise 1.12.6.

A key advantage of working in the compact setting is that mul-

tiplicative characters χ : G → S1 now lie in L2(G) and L1(G). In

particular, they can be integrated:

Lemma 1.12.2. Let χ be a multiplicative character. Then
∫
G
χ dµ

equals 1 when χ is trivial and 0 when χ is non-trivial. Equivalently,

for ξ ∈ Ĝ, we have
∫
G
e2πiξ·x dµ = δ0(ξ), where δ is the Kronecker

delta function at 0.

Proof. The claim is clear when χ is trivial. When χ is non-trivial,

there exists x ∈ G such that χ(x) 6= 1. If one then integrates the

identity τxχ = χ(−x)χ using (1.99) one obtains the claim. �

Exercise 1.12.16. Show that the Pontryagin dual Ĝ of a compact

abelian group G is discrete (compare with Exercise 1.12.8).
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Exercise 1.12.17. Show that the Fourier transform of the constant

function 1 is the Kronecker delta function δ0 at 0. More generally,

for any ξ0 ∈ Ĝ, show that the Fourier transform of the multiplicative

character x 7→ e2πiξ0·x is the Kronecker delta function δξ0 at ξ0.

Since the pointwise product of two multiplicative characters is

again a multiplicative character, and the conjugate of a multiplicative

character is also a multiplicative character, we obtain

Corollary 1.12.3. The space of multiplicative chararacters is an or-

thonormal set in the complex Hilbert space L2(G).

Actually, one can say more:

Theorem 1.12.4 (Plancherel theorem for compact abelian groups).

Let G be a compact abelian group with probability Haar measure µ.

Then the space of multiplicative characters is an orthonormal basis

for the complex Hilbert space L2(G).

The full proof of this theorem requires the spectral theorem and

is not given here, though see Exercise 1.12.43 below. However, we

can work out some important special cases here.

• When G is a torus G = Td = (R/Z)d, the multiplica-

tive characters x 7→ e2πiξ·x separate points (given any two

x, y ∈ G, there exists a character which takes different val-

ues at x and at y). The space of finite linear combinations

of multiplicative characters (i.e. the space of trigonometric

polynomials) is then an algebra closed under conjugation

that separates points and contains the unit 1, and thus by

the Stone-Weierstrass theorem, is dense in C(G) in the uni-

form (and hence in L2) topology, and is thus dense in L2(G)

(in the L2 topology) also.

• The same argument works when G is a cyclic group Z/NZ,

using the multiplicative characters x 7→ e2πiξx/N for ξ ∈
Z/NZ. As every finite abelian group is isomorphic to the

product of cyclic groups, we also obtain the claim for finite

abelian groups.

• Alternatively, when G is finite, one can argue by viewing the

linear operators τx : Cc(G) → Cc(G) as |G| × |G| unitary
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matrices (in fact, they are permutation matrices) for each

x ∈ G. The spectral theorem for unitary matrices allows

each of these matrices to be diagonalised; as G is abelian,

the matrices commute and so one can simultaneously di-

agonalise these matrices. It is not hard to see that each

simultaneous eigenvector of these matrices is a multiple of

a character, and so the characters span L2(G), yielding the

claim. (The same argument will in fact work for arbitrary

compact abelian groups, once we obtain the spectral theo-

rem for unitary operators.)

If f ∈ L2(G), the inner product 〈f, χξ〉L2(G) of f with any mul-

tiplicative character χξ : x 7→ e2πiξ·x is just the Fourier coefficient

f̂(ξ) of f at the corresponding frequency. Applying the general the-

ory of orthonormal bases (see Section 1.4), we obtain the following

consequences:

Corollary 1.12.5 (Plancherel theorem for compact abelian groups,

again). Let G be a compact abelian group with probability Haar mea-

sure µ.

• (Parseval identity) For any f ∈ L2(G), we have ‖f‖2L2(G) =∑
ξ∈Ĝ |f̂(ξ)|2.

• (Parseval identity, II) For any f, g ∈ L2(G), we have 〈f, g〉L2(G) =∑
ξ∈Ĝ f̂(ξ)ĝ(ξ).

• (Unitarity) Thus the Fourier transform is a unitary trans-

formation from L2(G) to `2(Ĝ).

• (Inversion formula) For any f ∈ L2(G), the series x 7→∑
ξ∈Ĝ f̂(ξ)e2πiξ·x converges unconditionally in L2(G) to f .

• (Inversion formula, II) For any sequence (cξ)ξ∈Ĝ in `2(Ĝ),

the series x 7→
∑
ξ∈Ĝ cξe

2πiξ·x converges unconditionally in

L2(G) to a function f with cξ as its Fourier coefficients.

We can record here a textbook application of the Riesz-Thorin

interpolation theorem from Section 1.11. Observe that the Fourier

transform map F : f 7→ f̂ maps L2(G) to `2(Ĝ) with norm 1, and
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also trivially maps L1(G) to `∞(Ĝ) with norm 1. Applying the inter-

polation theorem, we conclude the Hausdorff-Young inequality

(1.103) ‖f̂‖`p′ (Ĝ) ≤ ‖f‖Lp(G)

for all 1 ≤ p ≤ 2 and all f ∈ Lp(G); in particular, the Fourier trans-

form maps Lp(G) to `p
′
(Ĝ), where p′ is the dual exponent of p, thus

1/p + 1/p′ = 1. It is remarkably difficult (though not impossible) to

establish the inequality (1.103) without the aid of the Riesz-Thorin

theorem. (For instance, one could use the Marcinkiewicz interpola-

tion theorem combined with the tensor power trick.) The constant 1

cannot be improved, as can be seen by testing (1.103) with the func-

tion f = 1 and using Exercise 1.12.17. By combining (1.103) with

Hölder’s inequality, one concludes that

(1.104) ‖f̂‖`q(Ĝ) ≤ ‖f‖Lp(G)

whenever 2 ≤ q ≤ ∞ and 1
p+ 1

q ≤ 1. These are the optimal hypotheses

on p, q for which (1.104) holds, though we will not establish this fact

here.

Exercise 1.12.18. If f, g ∈ L2(G), show that the Fourier transform

of fg ∈ L1(G) is given by the formula

f̂g(ξ) =
∑
η∈Ĝ

f̂(η)ĝ(ξ − η).

Thus multiplication is converted via the Fourier transform to convo-

lution; compare this with (1.102).

Exercise 1.12.19 (Hardy-Littlewood majorant property). Let p ≥ 2

be an even integer. If f, g ∈ Lp(G) are such that |f̂(ξ)| ≤ ĝ(ξ) for

all ξ ∈ Ĝ (in particular, ĝ is non-negative), show that ‖f‖Lp(G) ≤
‖g‖Lp(G). (Hint : use Exercise 1.12.18 and the Plancherel identity.)

The claim fails for all other values of p, a result of Fournier[Fo1974].

Exercise 1.12.20. In this exercise and the next two, we will work

on the torus T = R/Z with the probability Haar measure µ. The

Pontryagin dual T̂ is identified with Z in the usual manner, thus

f̂(n) =
∫
R/Z

f(x)e−2πinx dx for all f ∈ L1(T). For every integer

N > 0 and f ∈ L1(T), define the partial Fourier series SNf to be
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the expression

SNf(x) :=

N∑
n=−N

f̂(n)e2πinx.

• Show that SNf = f ∗DN , where DN is the Dirichlet kernel

DN (x) := sin((N+1/2)x)
sin x/2 .

• Show that ‖DN‖L1(T) ≥ c logN for some absolute constant

c > 0. Conclude that the operator norm of SN on C(T)

(with the uniform norm) is at least c logN .

• Conclude that there exists a continuous function f such that

the partial Fourier series SNf does not converge uniformly.

(Hint : use the uniform boundedness principle.) This is de-

spite the fact that SNf must converge to f in L2 norm, by

the Plancherel theorem. (Another example of non-uniform

convergence of SNf is given by the Gibbs phenomenon.)

Exercise 1.12.21. We continue the notational conventions of the

preceding exercise. For every integer N > 0 and f ∈ L1(T), define

the Césaro-summed partial Fourier series CNf to be the expression

CNf(x) :=
1

N

N−1∑
n=0

Dnf(x).

• Show that CNf = f ∗ FN , where FN is the Fejér kernel

FN (x) := 1
n ( sin(nx/2)

sin(x/2) )2.

• Show that ‖FN‖L1(T) = 1. (Hint : what is the Fourier coef-

ficient of FN at zero?)

• Show that CNf converges uniformly to f for every f ∈
C(T). (Thus we see that Césaro averaging improves the

convergence properties of Fourier series.)

Exercise 1.12.22. Carleson’s inequality asserts that for any f ∈
L2(T), one has the weak-type inequality

‖ sup
N>0
|DNf(x)|‖L2,∞(T) ≤ C‖f‖L2(T)

for some absolute constant C. Assuming this (deep) inequality, estab-

lish Carleson’s theorem that for any f ∈ L2(T), the partial Fourier

series DNf(x) converge for almost every x to f(x). (Conversely, a
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general principle of Stein[St1961], analogous to the uniform bound-

edness principle, allows one to deduce Carleson’s inequality from Car-

leson’s theorem. A later result of Hunt[Hu1968] extends Carleson’s

theorem to Lp(T) for any p > 1, but a famous example of Kolmogorov

shows that almost everywhere convergence can fail for L1(T) func-

tions; in fact the series may diverge pointwise everywhere.)

1.12.3. The Fourier transform on Euclidean spaces. We now

turn to the Fourier transform on the Euclidean space Rd, where d ≥ 1

is a fixed integer. From Exercise 1.12.9 we can identify the Pontryagin

dual of Rd with itself, and then the Fourier transform f̂ : Rd → C of

a function f ∈ L1(Rd) is given by the formula

(1.105) f̂(ξ) :=

∫
Rd

f(x)e−2πiξ·x dx.

Remark 1.12.6. One needs the Euclidean inner product structure

on Rd in order to identify R̂d with Rd. Without this structure, it

is more natural to identify R̂d with the dual space (Rd)∗ of Rd. (In

the language of physics, one should interpret frequency as a covector

rather than a vector.) However, we will not need to consider such

subtleties here. In other areas of mathematics than harmonic anal-

ysis, the normalisation of the Fourier transform (particularly with

regard to the positioning of the sign − and the factor 2π) is some-

times slightly different from that presented here. For instance, in

PDE, the factor of 2π is often omitted from the exponent in order

to slightly simplify the behaviour of differential operators under the

Fourier transform (at the cost of introducing factors of 2π in various

identities, such as the Plancherel formula or inversion formula).

In Exercise 1.12.11 we saw that if f was in L1(Rd), then f̂ was

continuous and decayed to zero at infinity. One can improve both the

regularity and decay on f̂ by strengthening the hypotheses on f . We

need two basic facts:

Exercise 1.12.23 (Decay transforms to regularity). Let 1 ≤ j ≤
d, and suppose that f, xjf both lie in L1(Rd), where xj is the jth

coordinate function. Show that f̂ is continuously differentiable in the
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ξj variable, with
∂

∂ξj
f̂(ξ) = −2πix̂jf(ξ).

(Hint : The main difficulty is to justify differentiation under the in-

tegral sign. Use the fact that the function x 7→ eix has a derivative

of magnitude 1, and is hence Lipschitz by the fundamental theorem

of calculus. Alternatively, one can show first that f̂(ξ) is the indef-

inite integral of −2πix̂jf and then use the fundamental theorem of

calculus.)

Exercise 1.12.24 (Regularity transforms to decay). Let 1 ≤ j ≤ d,

and suppose that f ∈ L1(Rd) has a derivative ∂f
∂xj

in L1(Rd), for

which one has the fundamental theorem of calculus

f(x1, . . . , xn) =

∫ xj

−∞

∂f

∂xj
(x1, . . . , xj−1, t, xj+1, . . . , xn) dt

for almost every x1, . . . , xn. (This is equivalent to f being absolutely

continuous in xj for almost every x1, . . . , xj−1, xj+1, . . . , xn.) Show

that
∂̂f

∂xj
(ξ) = 2πiξj f̂(ξ).

In particular, conclude that |ξj |f̂(ξ) goes to zero as |ξ| → ∞.

Remark 1.12.7. Exercise 1.12.24 shows that Fourier transforms di-

agonalise differentiation: (constant-coefficient) differential operators

such as ∂
∂xj

, when viewed in frequency space, become nothing more

than multiplication operators f̂(ξ) 7→ 2πiξj f̂(ξ). (Multiplication op-

erators are the continuous analogue of diagonal matrices.) It is be-

cause of this fact that the Fourier transform is extremely useful in

PDE, particularly in constant-coefficient linear PDE, or perturba-

tions thereof.

It is now convenient to work with a class of functions which has

an infinite amount of both regularity and decay.

Definition 1.12.8 (Schwartz class). A rapidly decreasing function

is a measurable function f : Rd → C such that |x|nf(x) is bounded

for every non-negative integer n. A Schwartz function is a smooth

function f : Rd → C such that all derivatives ∂n1
x1
. . . ∂ndxd f are rapidly

decreasing. The space of all Schwartz functions is denoted S(Rd).
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Example 1.12.9. Any smooth, compactly supported function f :

Rd → C is a Schwartz function. The gaussian functions

(1.106) f(x) = Ae2πiθe2πiξ0·xe−π|x−x0|2/R2

for A ∈ R, θ ∈ R/Z, x0, ξ0 ∈ Rd are also Schwartz functions.

Exercise 1.12.25. Show that the seminorms

‖f‖k,n := sup
x∈Rn

|x|n|∇kf(x)|

for k, n ≥ 0, where we think of ∇kf(x) as a dk-dimensional vector

(or, if one wishes, a rank k d-dimensional tensor), give S(Rd) the

structure of a Fréchet space. In particular, S(Rd) is a topological

vector space.

Clearly, every Schwartz function is both smooth and rapidly de-

creasing. The following exercise explores the converse:

Exercise 1.12.26.

• Give an example to show that not all smooth, rapidly de-

creasing functions are Schwartz.

• Show that if f is a smooth, rapidly decreasing function, and

all derivatives of f are bounded, then f is Schwartz. (Hint :

use Taylor’s theorem with remainder.)

One of the reasons why the Schwartz space is convenient to work

with is that it is closed under a wide variety of operations. For in-

stance, the derivative of a Schwartz function is again a Schwartz func-

tion, and that the product of a Schwartz function with a polynomial

is again a Schwartz function. Here are some further such closure

properties:

Exercise 1.12.27. Show that the product of two Schwartz functions

is again a Schwartz function. Moreover, show that the product map

f, g 7→ fg is continuous from S(Rd)× S(Rd) to S(Rd).

Exercise 1.12.28. Show that the convolution of two Schwartz func-

tions is again a Schwartz function. Moreover, show that the convolu-

tion map f, g 7→ f ∗ g is continuous from S(Rd)× S(Rd) to S(Rd).
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Exercise 1.12.29. Show that the Fourier transform of a Schwartz

function is again a Schwartz function. Moreover, show that the

Fourier transform map F : f 7→ f̂ is continuous from S(Rd) to S(Rd).

The other important property of the Schwartz class is that it is

dense in many other spaces:

Exercise 1.12.30. Show that S(Rd) is dense in Lp(Rd) for every

1 ≤ p < ∞, and is also dense in C0(Rd) (with the uniform topol-

ogy). (Hint : one can either use the Stone-Weierstrass theorem, or

convolutions with approximations to the identity.)

Because of this density property, it becomes possible to establish

various estimates and identities in spaces of rough functions (e.g. Lp

functions) by first establishing these estimates on Schwartz functions

(where it is easy to justify operations such as differentiation under

the integral sign) and then taking limits.

Having defined the Fourier transform F : S(Rd) → S(Rd), we

now introduce the adjoint Fourier transform F∗ : S(Rd) → S(Rd)

by the formula

F∗F (x) :=

∫
Rd

e2πiξ·xF (ξ) dξ

(note the sign change from (1.105)). We will shortly demonstrate that

the adjoint Fourier transform is also the inverse Fourier transform:

F∗ = F−1.

From the identity

(1.107) F∗f = Ff

we see that F∗ obeys much the same propeties as F ; for instance, it

is also continuous from S(Rd) to S(Rd). It is also the adjoint to F
in the sense that

〈Ff, g〉L2(Rd) = 〈f,F∗g〉L2(Rd)

for all f, g ∈ S(Rd).

Now we show that F∗ inverts F . We begin with an easy prelim-

inary result:

Exercise 1.12.31. For any f, g ∈ S(Rd), establish the identity

F∗F(f ∗ g) = f ∗ F∗Fg.
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Next, we perform a computation:

Exercise 1.12.32 (Fourier transform of Gaussians). Let r > 0.

Show that the Fourier transform of the gaussian function gr(x) :=

r−de−π|x|
2/r2 is ĝr(ξ) = e−πr

2|ξ|2 . (Hint : Reduce to the case d = 1

and r = 1, then complete the square and use contour integration and

the classical identity
∫∞
−∞ e−πx

2

dx = 1.) Conclude that F∗Fgr = gr.

Exercise 1.12.33. With gr as in the previous exercise, show that

f ∗ gr converges in the Schwartz space topology to f as r → 0 for all

f ∈ S(Rd). (Hint : First show convergence in the uniform topology,

then use the identities ∂
∂xj

(f ∗ g) = ( ∂
∂xj

f) ∗ g and xj(f ∗ g) = (xjf) ∗
g + f(xjg) for f, g ∈ S(Rd).)

From Exercises 1.12.31, 1.12.32 we see that

F∗F(f ∗ gr) = f ∗ gr

for all r > 0 and f ∈ S(Rd). Taking limits as r → 0 using Exercises

1.12.29, 1.12.33 we conclude that

F∗Ff = f

for all f ∈ S(Rd), or in other words we have the Fourier inversion

formula

(1.108) f(x) =

∫
Rd

f̂(ξ)e2πiξ·x dξ

for all x ∈ Rd. From (1.107) we also have

FF∗f = f.

Taking inner products with another Schwartz function g, we obtain

Parseval’s identity

〈Ff,Fg〉L2(Rd) = 〈f, g〉L2(Rd)

for all f, g ∈ S(Rd), and similarly for F∗. In particular, we obtain

Plancherel’s identity

‖Ff‖L2(Rd) = ‖f‖L2(Rd) = ‖F∗f‖L2(Rd)

for all f ∈ S(Rd). We conclude that
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Theorem 1.12.10 (Plancherel’s theorem for Rd). The Fourier trans-

form operator F : S → S can be uniquely extended to a unitary trans-

formation F : L2(Rd)→ L2(Rd).

Exercise 1.12.34. Show that the Fourier transform on L2(Rd) given

by Plancherel’s theorem agrees with the Fourier transform on L1(Rd)

given by (1.105) on the common domain L2(Rd) ∩ L1(Rd). Thus we

may define f̂ for f ∈ L1(Rd) or f ∈ L2(Rd) (or even f ∈ L1(Rd) +

L2(Rd) without any ambiguity (other than the usual identification of

any two functions that agree almost everywhere).

Note that it is certainly possible for a function f to lie in L2(Rd)

but not in L1(Rd) (e.g. the function (1 + |x|)−d). In such cases, the

integrand in (1.105) is not absolutely integrable, and so this formula

does not define the Fourier transform of f directly. Nevertheless, one

can recover the Fourier transform via a limiting version of (1.105):

Exercise 1.12.35. Let f ∈ L2(Rd). Show that the partial Fourier

integrals ξ 7→
∫
|x|≤R f(x)e−2πiξ·x dx converge in L2(Rd) to f̂ as R→

∞.

Remark 1.12.11. It is a famous open question whether the partial

Fourier integrals of an L2(Rd) function also converge pointwise almost

everywhere for d ≥ 2. For d = 1, this is essentially the celebrated

theorem of Carleson mentioned in Exercise 1.12.22.

Exercise 1.12.36 (Heisenberg uncertainty principle). Let d = 1. De-

fine the position operator X : S(R)→ S(R) and momentum operator

D : S(R)→ S(R) by the formulae

Xf(x) := xf(x); Df(x) :=
−1

2πi

d

dx
f(x).

Establish the identities

(1.109) FD = XF ; FX = −FD; DX −XD =
−1

2πi
and the formal self-adjointness relationships

〈Xf, g〉L2(R) = 〈f,Xg〉L2(R); 〈Df, g〉L2(R) = 〈f,Dg〉L2(R)

and then establish the inequality

‖Xf‖L2(R)‖Df‖L2(R) ≥
1

4π
‖f‖2L2(R).
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(Hint : start with the obvious inequality 〈(aX+ibD)f, (aX+ibD)f〉L2(R) ≥
0 for real numbers a, b, and optimise in a and b.) If ‖f‖L2(R) = 1,

deduce the Heisenberg uncertainty principle

[

∫
R

(ξ − ξ0)|f̂(ξ)|2 dξ]1/2[

∫
R

(x− x0)|f(x)|2 dx]1/2 ≥ 1

4π

for any x0, ξ0 ∈ R. (Hint : one can use the translation and modulation

symmetries (1.100), (1.101) of the Fourier transform to reduce to the

case x0 = ξ0 = 0.) Classify precisely the f, x0, ξ0 for which equality

occurs.

Remark 1.12.12. For x0, ξ0 ∈ Rd and R > 0, define the gaussian

wave packet gx0,ξ0,R by the formula

gx0,ξ0,R(x) := 2d/2R−d/2e2πiξ0·xe−π|x−x0|2/R2

.

These wave packets are normalised to have L2 norm one, and their

Fourier transform is given by

(1.110) ĝx0,ξ0,R = e2πiξ0·x0gξ0,−x0,1/R.

Informally, gx0,ξ0,R is localised to the region x = x0+O(R) in physical

space, and to the region ξ = ξ0 +O(1/R) in frequency space; observe

that this is consistent with the uncertainty principle. These packets

“almost diagonalise” the position and momentum operators X,D in

the sense that (taking d = 1 for simplicity)

Xgx0,ξ0,R ≈ x0gx0,ξ0,R; Dgx0,ξ0,R ≈ ξ0gx0,ξ0,R

(where the errors terms are morally of the form O(Rgx0,ξ0,R) and

O(R−1gx0,ξ0,R) respectively). Of course, the non-commutativity of D

and X as evidenced by the last equation in (1.109) shows that exact

diagonalisation is impossible. Nevertheless it is useful, at an intuitive

level at least, to view these wave-packets as a sort of (overdeter-

mined) basis for L2(R) that approximately diagonalises X and D (as

well as other formal combinations a(X,D) of these operators, such

as differential operators or pseudodifferential operators). Meanwhile,

the Fourier transform morally maps the point (x0, ξ0) in phase space

to (ξ0,−x0), as evidenced by (1.110) or (1.109); it is the model ex-

ample of the more general class of Fourier integral operators, which

morally move points in phase space around by canonical transforma-

tions. The study of these types of objects (which are of importance in
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linear PDE) is known as microlocal analysis, and is beyond the scope

of this course.

The proof of the Hausdorff-Young inequality (1.103) carries over

to the Euclidean space setting, and gives

(1.111) ‖f̂‖Lp′ (Rd) ≤ ‖f‖Lp(Rd)

for all 1 ≤ p ≤ 2 and all f ∈ Lp(Rd); in particular the Fourier trans-

form is bounded from Lp(Rd) to Lp
′
(Rd). The constant of 1 on the

right-hand side of (1.111) turns out to not be optimal in the Euclidean

setting, in contrast to the compact setting; the sharp constant is in

fact (p1/p/(p′)1/p′)d/2, a result of Beckner[Be1975]. (The fact that

this constant cannot be improved can be seen by using the gaussians

from Exercise 1.12.32.)

Exercise 1.12.37 (Entropy uncertainty principle). For any f ∈
S(Rd) with ‖f‖L2(Rd) = 1, show that

−
∫
Rd

|f(x)|2 log
1

|f(x)|2
dx−

∫
Rd

|f̂(ξ)|2 log
1

|f̂(ξ)|2
dξ ≥ 0.

(Hint : differentiate (!) (1.104) in p at p = 2, where one has equality

in (1.104).) Using Beckner’s improvement to (1.103), improve the

right-hand side to the optimal value of d log(2e).

Exercise 1.12.38 (Fourier transform under linear changes of vari-

able). Let L : Rd → Rd be an invertible linear transformation. If

f ∈ S(Rd) and fL(x) := f(Lx), show that the Fourier transform of

fL is given by the formula

f̂L(ξ) =
1

|detL|
f̂((L∗)−1ξ)

where L∗ : Rd → Rd is the adjoint operator to L. Verify that this

transformation is consistent with (1.104), and indeed shows that the

exponent p′ on the left-hand side cannot be replaced by any other

exponent. (One can also establish this latter claim by dimensional

analysis.)

Remark 1.12.13. As a corollary of Exercise 1.12.38, observe that if

f ∈ S(Rd) is spherically symmetric (thus f = f ◦ L for all rotation

matrices L) then f̂ is spherically symmetric also.
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Exercise 1.12.39 (Fourier transform intertwines restriction and pro-

jection). Let 1 ≤ r ≤ d, and let f ∈ S(Rd). We express Rd as

Rr ×Rd−r in the obvious manner.

• (Restriction becomes projection) If g ∈ S(Rr) is the re-

striction g(x) := f(x, 0) of f to Rr ≡ Rr × {0}, show that

ĝ(ξ) =
∫
Rd−r f̂(ξ, η) dη for all ξ ∈ Rr.

• (Projection becomes restriction) If h ∈ S(Rr) is the projec-

tion h(x) :=
∫
Rd−r f(x, y) dy of f to Rr ≡ Rd/Rd−r, show

that ĥ(ξ) = f̂(ξ, 0) for all ξ ∈ Rr.

Exercise 1.12.40 (Fourier transform on large tori). Let L > 0, and

let (R/LZ)d be the torus of length L with Lebesgue measure dx (thus

the total measure of this torus is Ld. We identify the Pontryagin dual

of this torus with 1
L ·Z

d in the usual manner, thus we have the Fourier

coefficients

f̂(ξ) :=

∫
(R/LZ)d

f(x)e−2πiξ·x dx

for all f ∈ L1((R/LZ)d) and ξ ∈ 1
L · Z

d.

• Show that for any f ∈ L2((R/LZ)d), the Fourier series
1
Ld

∑
ξ∈ 1

L ·Zd
f̂(ξ)e2πiξ·x converges unconditionally in L2((R/LZ)d).

• Use this to give an alternate proof of the Fourier inversion

formula (1.108) in the case where f is smooth and compactly

supported.

Exercise 1.12.41 (Poisson summation formula). Let f ∈ S(Rd).

Show that the function F : (R/Z)d → C defined by F (x + Zd) :=∑
n∈Zd f(x + n) has Fourier transform F̂ (ξ) = f̂(ξ) for all ξ ∈ Zd ⊂

Rd (note the two different Fourier transforms in play here). Conclude

the Poisson summation formula∑
n∈Zd

f(n) =
∑
m∈Zd

f̂(m).

Exercise 1.12.42. Let f : Rd → C be a compactly supported, abso-

lutely integrable function. Show that the function f̂ is real-analytic.

Conclude that it is not possible to find a non-trivial f ∈ L1(Rd) such

that f and f̂ are both compactly supported.
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1.12.4. The Fourier transform on general groups (optional).

The field of abstract harmonic analysis is concerned, among other

things, with extensions of the above theory to more general groups,

for instance arbitrary LCA groups. One of the ways to proceed is

via Gelfand theory, which for instance can be used to show that the

Fourier transform is at least injective:

Exercise 1.12.43 (Fourier analysis via Gelfand theory). (Optional)

In this exercise we use the Gelfand theory of commutative Banach

*-algebras (see Section 1.10.4) to establish some basic facts of Fourier

analysis in general groups. Let G be an LCA group. We view L1(G)

as a commutative Banach *-algebra L1(G) (see Exercise 1.12.13).

(a) If f ∈ L1(G) is such that lim infn→∞ ‖f∗n‖1/nL1(G) > 0, where

f∗n = f ∗. . .∗f is the convolution of n copies of f , show that

there exists a non-zero complex number z such that the map

g 7→ f ∗ g − zg is not invertible on L1(G). (Hint : If L1(G)

contains a unit, one can use Exercise 1.10.36; otherwise,

adjoin a unit.)

(b) If f and z are as in (a), show that there exists a character

λ : L1(G) → C (in the sense of Banach *-algebras, see

Definition 1.10.25) such that f ∗ g − zg lies in the kernel

of λ for all g ∈ L1(G). Conclude in particular that λ(f) is

non-zero.

(c) If λ : L1(G) → C is a character, show that there exists

a multiplicative character χ : G → S1 such that λ(f) =

〈f, χ〉 for all f ∈ L1(G). (You will need Exercise 1.12.5 and

Exercise 1.12.10.)

(d) For any f ∈ L1(G) and g ∈ L2(G), show that |f ∗g∗g∗(0)| ≤
|f ∗ f∗ ∗ g ∗ g∗(0)|1/2|g ∗ g∗(0)|1/2, where 0 is the group iden-

tity and f∗(x) := f(−x) is the conjugate of f . (Hint : the

inner product 〈f1, f2〉g := f1 ∗ f∗2 ∗ g ∗ g∗(0) is positive semi-

definite.)

(e) Show that if f ∈ L1(G) is not identically zero, then there

exists ξ ∈ Ĝ such that f̂(ξ) 6= 0. (Hint : first find g ∈ L2(G)

such that f ∗ g ∗ g∗(0) 6= 0 and g ∗ g∗(0) 6= 0, and conclude

using (d) repeatedly that lim infn→∞ ‖(f ∗ f∗)∗n‖1/nL1(G) > 0.
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Then use (a), (b), (c).) Conclude that the Fourier trans-

form is injective on L1(G). (The image of L1(G) under the

Fourier transform is then a Banach *-algebra known as the

Wiener algebra, and is denoted A(Ĝ).)

(f) Prove Theorem 1.12.4.

It is possible to use arguments similar to those in Exercise 1.12.43

to characterise positive measures on Ĝ in terms of continuous func-

tions on G, leading to Bochner’s theorem:

Theorem 1.12.14 (Bochner’s theorem). Let φ ∈ C(G) be a continu-

ous function on an LCA group G. Then the following are equivalent:

(a)
∑N
n=1

∑N
m=1 cncmφ(xn − xm) ≥ 0 for all x1, . . . , xN ∈ G

and c1, . . . , cN ∈ C.

(b) There exists a non-negative finite Radon measure ν on Ĝ

such that φ(x) =
∫
Ĝ
e2πiξ·x dν(ξ).

Functions obeying either (a) or (b) are known as positive-definite

functions. The space of such functions is denoted B(G).

Exercise 1.12.44. Show that (b) implies (a) in Bochner’s theorem.

(The converse implication is significantly harder, reprising much of

the machinery in Exercise 1.12.43, but with φ taking the place of

g ∗ g∗: see [Ru1962] for details.)

Using Bochner’s theorem, it is possible to show

Theorem 1.12.15 (Plancherel’s theorem for LCA groups). Let G be

an LCA group with non-trivial Haar measure µ. Then there exists

a non-trivial Haar measure ν on Ĝ such that the Fourier transform

on L1(G)∩L2(G) can be extended continuously to a unitary transfor-

mation from L2(G) to L2(Ĝ). In particular we have the Plancherel

identity ∫
G

|f(x)|2 dµ(x) =

∫
Ĝ

|f̂(ξ)|2 dν(ξ)

for all f ∈ L2(G), and the Parseval identity∫
G

f(x)g(x) dµ(x) =

∫
Ĝ

f̂(ξ)ĝ(ξ) dν(ξ)
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for all f, g ∈ L2(G). Furthermore, the inversion formula

f(x) =

∫
Ĝ

f̂(ξ)e2πiξ·x dν(ξ)

is valid for f in a dense subclass of L2(G) (in particular, it is valid

for f ∈ L1(G) ∩B(G)).

Again, see [Ru1962] for details. A related result is that of Pon-

tryagin duality : if Ĝ is the Pontryagin dual of an LCA group G, then

G is the Pontryagin dual of Ĝ. (Certainly, every element x ∈ G de-

fines a character x̂ : ξ 7→ ξ · x on Ĝ, thus embedding G into
ˆ̂
G via

the Gelfand transform (see Section 1.10.4); the non-trivial fact is that

this embedding is in fact surjective.) One can use Pontryagin duality

to convert various properties of LCA groups into other properties on

LCA groups. For instance, we have already seen that Ĝ is compact

(resp. discrete) if G is discrete (resp. compact); with Pontryagin du-

ality, the implications can now also be reversed. As another example,

one can show that Ĝ is connected (resp. torsion-free) if and only if G

is torsion-free (resp. connected). We will not prove these assertions

here.

It is natural to ask what happens for non-abelian locally compact

groups G = (G, ·). One can still build non-trivial Haar measures (the

proof sketched out in Exercise 1.12.7 extends without difficulty to the

non-abelian setting), though one must now distinguish between left-

invariant and right-invariant Haar measures. (The two notions are

equivalent for some classes of groups, notably compact groups, but

not in general. Groups for which the two notions of Haar measures

coincide are called unimodular.) However, when G is non-abelian

then there are not enough multiplicative characters χ : G → S1 to

have a satisfactory Fourier analysis. (Indeed, such characters must

annihilate the commutator group [G,G], and it is entirely possible for

this commutator group to be all of G, e.g. if G is simple and non-

abelian.) Instead, one must generalise the notion of a multiplicative

character to that of a unitary representation ρ : G→ U(H) from G to

the group of unitary transformations on a complex Hilbert space H;

thus the Fourier coefficients f̂(ρ) of a function will now be operators

on thisl Hilbert space H, rather than complex numbers. When G
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is a compact group, it turns out to be possible to restrict attention

to finite-dimensional representations (thus one can replace U(H) by

the matrix group U(n) for some n). The analogue of the Pontryagin

dual Ĝ is then the collection of (irreducible) finite-dimensional unitary

representations of G, up to isomorphism. There is an analogue of the

Plancherel theorem in this setting, closely related to the Peter-Weyl

theorem in representation theory. We will not discuss these topics

here, but refer the reader instead to any representation theory text.

The situation for non-compact non-abelian groups (e.g. SL2(R))

is significantly more subtle, as one must now consider infinite-dimensional

representations as well as finite-dimensional ones, and the inversion

formula can become quite non-trivial (one has to decide what “weight”

each representation should be assigned in that formula). At this

point it seems unprofitable to work in the category of locally com-

pact groups, and specialise to a more structured class of groups, e.g.

algebraic groups. The representation theory of such groups is a mas-

sive subject and well beyond the scope of this course.

1.12.5. Relatives of the Fourier transform (optional). There

are a number of other Fourier-like transforms used in mathematics,

which we will briefly survey here. Firstly, there are some rather trivial

modifications one can make to the definition of Fourier transform, for

instance by replacing the complex exponential e2πix by trigonometric

functions such as sin(x) and cos(x), or moving around the various

factors of 2π, i, −1, etc. in the definition. In this spirit, we have the

Laplace transform

(1.112) Lf(t) :=

∫ ∞
0

f(s)e−st ds

of a measurable function f : [0,+∞) → R with some reasonable

growth at infinity, where t > 0. Roughly speaking, the Laplace trans-

form is “the Fourier transform without the i” (cf. Wick rotation),

and so has the (mild) advantage of being definable in the realm of

real-valued functions rather than complex-valued functions. It is par-

ticularly well suited for studying ODE on the half-line [0,+∞) (e.g.

initial value problems for a finite-dimensional system). The Laplace

transform and Fourier transform can be unified by allowing the t pa-

rameter in (1.112) to vary in the right-half plane {t ∈ C : Re(t) ≥ 0}.
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When the Fourier transform is applied to a spherically symmetric

function f(x) := F (|x|) on Rd, then the Fourier transform is also

spherically symmetric, given by the formula f̂(ξ) = G(|ξ|) where G is

the Fourier-Bessel transform (or Hankel transform)

G(r) := 2πr−(d−2)/2

∫ ∞
0

F (s)J(d−2)/2(2πrs)sd/2 ds

where Jν is the Bessel function of the first kind with index ν. In prac-

tice, one can then analyse the Fourier-analytic behaviour of spheri-

cally symmetric functions in terms of one-dimensional Fourier-like

integrals by using various asymptotic expansions of the Bessel func-

tion.

There is a relationship between the d-dimensional Fourier trans-

form and the one-dimensional Fourier transform, provided by the

Radon transform, defined for f ∈ S(Rd) (say) by the formula

Rf(ω, t) :=

∫
x·ω=t

f

where ω ∈ Sd−1, t ∈ R, and the integration is with respect to d −
1-dimensional measure. Indeed one checks that the d-dimensional

Fourier transform of f at rω for some r > 0 and ω ∈ Sd−1 is nothing

more than the one-dimensional Fourier coefficient of the function t 7→
Rf(ω, t) at r. The Radon transform is often used in scattering theory

and related areas of analysis, geometry, and physics.

In analytic number theory, a multiplicative version of the Fourier-

Laplace transform is often used, namely the Mellin transform

Mf(s) :=

∫ ∞
0

xsf(x)
dx

x
.

(Note that dx
x is a Haar measure for the multiplicative group R+ =

(0,+∞).) To see the relation with the Fourier-Laplace transform,

write f(x) = F (log x), then the Mellin transform becomes

Mf(s) =

∫
R

estf(t) dt.

Many functions of importance in analytic number theory, such as the

Gamma function or the zeta function, can be expressed neatly in

terms of Mellin transforms.
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In electrical engineering and signal processing, the z-transform

is often used, transforming a sequence c = (cn)∞n=−∞ of complex

numbers to a formal Laurent series

Zc(z) :=

∞∑
n=−∞

cnz
n

(some authors use z−n instead of zn here). If one makes the substitu-

tion z = e2πinx then this becomes a (formal) Fourier series expansion

on the unit circle. If the sequence cn is restricted to only be non-zero

for non-negative n, and does not grow too quickly as n→∞, then the

z-transform becomes holomorphic on the unit disk, thus providing a

link between Fourier analysis and complex analysis. For instance, the

standard formula

cn =
1

2πi

∫
|z|=1

f(z)

zn+1
dz

for the Taylor coefficients of a holomorphic function f(z) =
∑∞
n=0 cnz

n

at the origin can be viewed as a version of the Fourier inversion for-

mula for the torus R/Z. Just as the Fourier or Laplace transforms

are useful for analysing differential equations in continuous settings,

the z-transform is useful for analysing difference equations in discrete

settings. The z-transform is of course also very similar to the method

of generating functions in combinatorics and probability.

In probability theory one also considers the characteristic func-

tion E(eitX) of a real-valued random variable X; this is essentially

the Fourier transform of the probability distribution of X. Just as

the Fourier transform is useful for understanding convolutions f ∗ g,

the characteristic function is useful for understanding sums X1 +X2

of independent random variables.

We have briefly touched upon the role of Gelfand theory in the

general theory of the Fourier transform. Indeed, one can view the

Fourier transform as the special case of the Gelfand transform for

Banach *-algebras, which we already discussed in Section 1.10.4.

The Fast Fourier Transform (FFT) is not, strictly speaking, a

variant of the Fourier transform, but rather is an efficient algorithm
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for computing the Fourier transform

f̂(ξ) =
1

N

N−1∑
n=0

f(x)e−2πiξx/N

on a cyclic group Z/NZ ≡ {0, . . . , N − 1}, when N is large but com-

posite. Note that a brute force computation of this transform for all

N values of ξ would require about O(N2) addition and multiplication

operations. The FFT algorithm, in contrast, takes only O(N logN)

operations, and is based on reducing the FFT for a large N to FFT

for smaller N . For instance, suppose N is even, say N = 2M , then

observe that

f̂(ξ) =
1

2
(f̂0(ξ) + e−2πiξ/N f̂1(ξ))

where f0, f1 : Z/MZ→ C are the functions fj(x) := f(2x+ j). Thus

one can obtain the Fourier transform of the length N vector f from

the Fourier transforms of the two length M vectors f0, f1 after about

O(N) operations. Iterating this we see that we can indeed compute

f̂ in O(N logN) operations, at least in the model case when N is a

power of two; the general case has a similar but more complicated

analysis.

In many situations (particularly in ergodic theory), it is desirable

not to perform Fourier analysis on a group G directly, but instead

on another space X that G acts on. Suppose for instance that G is

a compact abelian group, with probability Haar measure dg, which

acts in a measure-preserving (and measurable) fashion on a probabil-

ity space (X,µ). Then one can decompose any f ∈ L2(X) into Fourier

components f =
∑
ξ∈Ĝ fξ, where fξ(x) :=

∫
G
e−2πiξ·gf(gx) dg, where

the series is unconditionally convergent in L2(X). The reason for

doing this is that each of the fξ behaves in a simple way with re-

spect to the group action, indeed one has fξ(gx) = e2πiξ·gfξ(x) for

(almost) all g ∈ G, x ∈ X. This decomposition is closely related to

the decomposition in representation theory of a given representation

into irreducible components. Perhaps the most basic example of this

type of operation is the decomposition of a function f : R→ R into

even and odd components f(x)+f(−x)
2 , f(x)−f(−x)

2 ; here the underlying

group is Z/2Z, which acts on R by reflections, gx := (−1)gx.
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The operation of converting a square matrix A = (aij)1≤i,j≤n of

numbers into eigenvalues λ1, . . . , λn or singular values σ1, . . . , σn can

be viewed as a sort of non-commutative generalisation of the Fourier

transform. (Note that the eigenvalues of a circulant matrix are es-

sentially the Fourier coefficients of the first row of that matrix.) For

instance, the identity
∑n
i=1

∑n
j=1 |aij |2 =

∑n
k=1 σ

2
k can be viewed as

a variant of the Plancherel identity. More generally, there are close

relationships between spectral theory and Fourier analysis (as one can

already see from the connection to Gelfand theory). For instance, in

Rd and Td, one can view Fourier analysis as the spectral theory of the

gradient operator ∇ (note that the characters e2πiξ·x are joint eigen-

functions of ∇). As the gradient operator is closely related to the

Laplacian ∆, it is not surprising that Fourier analysis is also closely

related to the spectral theory of the Laplacian, and in particular to

various operators built using the Laplacian (e.g. resolvents, heat ker-

nels, wave operators, Schrödinger operators, Littlewood-Paley projec-

tions, etc.). Indeed, the spectral theory of the Laplacian can serve as

a partial substitute for the Fourier transform in situations in which

there is not enough symmetry to exploit Fourier-analytic techniques

(e.g. on a manifold with no translation symmetries).

Finally, there is an analogue of the Fourier duality relationship

between an LCA group G and its Pontryagin dual Ĝ in algebraic

geometry, known as the Fourier-Mukai transform, which relates an

abelian variety X to its dual X̂, and transforms coherent sheaves on

the former to coherent sheaves on the latter. This transform obeys

many of the algebraic identities that the Fourier transform does, al-

though it does not seem to have much of the analytic structure.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/04/06.

Thanks to Hunter, Marco Frasca, Max Baroi, PDEbeginner, timur,

Xiaochuan Liu, and anonymous commenters for corrections.

1.13. Distributions

In set theory, a function f : X → Y is defined as an object that eval-

uates every input x to exactly one output f(x). However, in various

branches of mathematics, it has become convenient to generalise this
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classical concept of a function to a more abstract one. For instance, in

operator algebras, quantum mechanics, or non-commutative geometry,

one often replaces commutative algebras of (real or complex-valued)

functions on some space X, such as C(X) or L∞(X), with a more

general - and possibly non-commutative - algebra (e.g. a C∗-algebra

or a von Neumann algebra). Elements in this more abstract algebra

are no longer definable as functions in the classical sense of assigning

a single value f(x) to every point x ∈ X, but one can still define other

operations on these “generalised functions” (e.g. one can multiply or

take inner products between two such objects).

Generalisations of functions are also very useful in analysis. In

our study of Lp spaces, we have already seen one such generalisation,

namely the concept of a function defined up to almost everywhere

equivalence. Such a function f (or more precisely, an equivalence

class of classical functions) cannot be evaluated at any given point x,

if that point has measure zero. However, it is still possible to perform

algebraic operations on such functions (e.g. multiplying or adding

two functions together), and one can also integrate such functions

on measurable sets (provided, of course, that the function has some

suitable integrability condition). We also know that the Lp spaces

can usually be described via duality, as the dual space of Lp
′

(except

in some endpoint cases, namely when p =∞, or when p = 1 and the

underlying space is not σ-finite).

We have also seen (via the Lebesgue-Radon-Nikodym theorem)

that locally integrable functions f ∈ L1
loc(R) on, say, the real line R,

can be identified with locally finite absolutely continuous measures

mf on the line, by multiplying Lebesgue measure m by the function

f . So another way to generalise the concept of a function is to consider

arbitrary locally finite Radon measures µ (not necessarily absolutely

continuous), such as the Dirac measure δ0. With this concept of “gen-

eralised function”, one can still add and subtract two measures µ, ν,

and integrate any measure µ against a (bounded) measurable set E

to obtain a number µ(E), but one cannot evaluate a measure µ (or

more precisely, the Radon-Nikodym derivative dµ/dm of that mea-

sure) at a single point x, and one also cannot multiply two measures

together to obtain another measure. From the Riesz representation
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theorem, we also know that the space of (finite) Radon measures can

be described via duality, as linear functionals on Cc(R).

There is an even larger class of generalised functions that is very

useful, particularly in linear PDE, namely the space of distributions,

say on a Euclidean space Rd. In contrast to Radon measures µ,

which can be defined by how they “pair up” against continuous,

compactly supported test functions f ∈ Cc(R
d) to create numbers

〈f, µ〉 :=
∫
Rd f dµ, a distribution λ is defined by how it pairs up

against a smooth compactly supported function f ∈ C∞c (Rd) to cre-

ate a number 〈f, λ〉. As the space C∞c (Rd) of smooth compactly sup-

ported functions is smaller than (but dense in) the space Cc(R
d) of

continuous compactly supported functions (and has a stronger topol-

ogy), the space of distributions is larger than that of measures. But

the space C∞c (Rd) is closed under more operations than Cc(R
d), and

in particular is closed under differential operators (with smooth coef-

ficients). Because of this, the space of distributions is similarly closed

under such operations; in particular, one can differentiate a distri-

bution and get another distribution, which is something that is not

always possible with measures or Lp functions. But as measures or

functions can be interpreted as distributions, this leads to the notion

of a weak derivative for such objects, which makes sense (but only

as a distribution) even for functions that are not classically differen-

tiable. Thus the theory of distributions can allow one to rigorously

manipulate rough functions “as if” they were smooth, although one

must still be careful as some operations on distributions are not well-

defined, most notably the operation of multiplying two distributions

together. Nevertheless one can use this theory to justify many formal

computations involving derivatives, integrals, etc. (including several

computations used routinely in physics) that would be difficult to

formalise rigorously in a purely classical framework.

If one shrinks the space of distributions slightly, to the space

of tempered distributions (which is formed by enlarging dual class

C∞c (Rd) to the Schwartz class S(Rd)), then one obtains closure un-

der another important operation, namely the Fourier transform. This

allows one to define various Fourier-analytic operations (e.g. pseudo-

differential operators) on such distributions.
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Of course, at the end of the day, one is usually not all that in-

terested in distributions in their own right, but would like to be able

to use them as a tool to study more classical objects, such as smooth

functions. Fortunately, one can recover facts about smooth functions

from facts about the (far rougher) space of distributions in a number

of ways. For instance, if one convolves a distribution with a smooth,

compactly supported function, one gets back a smooth function. This

is a particularly useful fact in the theory of constant-coefficient lin-

ear partial differential equations such as Lu = f , as it allows one to

recover a smooth solution u from smooth, compactly supported data

f by convolving f with a specific distribution G, known as the fun-

damental solution of L. We will give some examples of this later in

this section.

It is this unusual and useful combination of both being able to

pass from classical functions to generalised functions (e.g. by dif-

ferentiation) and then back from generalised functions to classical

functions (e.g. by convolution) that sets the theory of distributions

apart from other competing theories of generalised functions, in par-

ticular allowing one to justify many formal calculations in PDE and

Fourier analysis rigorously with relatively little additional effort. On

the other hand, being defined by linear duality, the theory of distri-

butions becomes somewhat less useful when one moves to more non-

linear problems, such as nonlinear PDE. However, they still serve an

important supporting role in such problems as a “ambient space” of

functions, inside of which one carves out more useful function spaces,

such as Sobolev spaces, which we will discuss in the next set of notes.

1.13.1. Smooth functions with compact support. In the rest

of the notes we will work on a fixed Euclidean space Rd. (One can

also define distributions on other domains related to Rd, such as open

subsets of Rd, or d-dimensional manifolds, but for simplicity we shall

restrict attention to Euclidean spaces in these notes.)

A test function is any smooth, compactly supported function f :

Rd → C; the space of such functions is denoted C∞c (Rd). (In some

texts, this space is denoted C∞0 (Rd) instead.)
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From analytic continuation one sees that there are no real-analytic

test functions other than the zero function. Despite this negative re-

sult, test functions actually exist in abundance:

Exercise 1.13.1.

(i) Show that there exists at least one test function that is not

identically zero. (Hint : it suffices to do this for d = 1. One

starting point is to use the fact that the function f : R→ R

defined by f(x) := e−1/x for x > 0 and f(x) := 0 otherwise

is smooth, even at the origin 0.)

(ii) Show that if f ∈ C∞c (Rd) and g : Rd → R is absolutely

integrable and compactly supported, then the convolution

f ∗ g is also in C∞c (Rd). (Hint : first show that f ∗ g is

continuously differentiable with ∇(f ∗ g) = (∇f) ∗ g.)

(iii) (C∞ Urysohn lemma) Let K be a compact subset of Rd,

and let U be an open neighbourhood of K. Show that there

exists a function f : C∞c (Rd) supported in U which equals

1 on K. (Hint : use the ordinary Urysohn lemma to find a

function in Cc(R
d) that equals 1 on a neighbourhood of K

and is supported in a compact subset of U , then convolve

this function by a suitable test function.)

(iv) Show that C∞c (Rd) is dense in C0(Rd) (in the uniform topol-

ogy), and dense in Lp(Rd) (with the Lp topology) for all

0 < p <∞.

The space C∞c (Rd) is clearly a vector space. Now we place a (very

strong!) topology on it. We first observe that C∞c (Rd) =
⋃
K C

∞
c (K),

where K ranges over all compact subsets of Rd and C∞c (K) consists of

those functions f ∈ C∞c (Rd) which are supported in K. Each C∞c (K)

will be given a topology (called the smooth topology) generated by the

norms

‖f‖Ck := sup
x∈Rd

k∑
j=0

|∇jf(x)|

for k = 0, 1, . . ., where we view ∇jf(x) as a dj-dimensional vector

(or, if one wishes, a d-dimensional rank j tensor); thus a sequence

fn ∈ C∞c (K) converges to a limit f ∈ C∞c (K) if and only if ∇jfn



1.13. Distributions 243

converges uniformly to ∇jf for all j = 0, 1, . . .. (This gives C∞c (K)

the structure of a Fréchet space, though we will not use this fact here.)

We make the trivial remark that if K ⊂ K ′ are compact sets,

then C∞c (K) is a subspace of C∞c (K ′), and the topology on the former

space is the restriction of the topology of the latter space. Because

of this, we are able to give C∞c (Rd) the final topology induced by

the topologies on the C∞c (K), defined as the strongest topology on

C∞c (Rd) which restricts to the topologies on C∞c (K) for each K.

Equivalently, a set is open in C∞c (Rd) if and only if its restriction to

C∞c (K) is open for every compact K.

Exercise 1.13.2. Let fn be a sequence in C∞c (Rd), and let f be

another function in C∞c (Rd). Show that fn converges in the topology

of C∞c (Rd) to f if and only if there exists a compact set K such that

fn, f are all supported in K, and fn converges to f in the smooth

topology of C∞c (K).

Exercise 1.13.3.

(i) Show that the topology of C∞c (K) is first countable for every

compact K.

(ii) Show that the topology of C∞c (Rd) is not first countable.

(Hint : given any countable sequence of open neighbour-

hoods of 0, build a new open neighbourhood that does not

contain any of the previous ones, using the σ-compact na-

ture of Rd.)

(iii) Despite this, show that an element f ∈ C∞c (Rd) is an ad-

herent point of a set E ⊂ C∞c (Rd) if and only if there is a

sequence fn ∈ E that converges to f . (Hint : argue by con-

tradiction.) Conclude in particular that a subset of C∞c (Rd)

is closed if and only if it is sequentially closed. Thus while

first countability fails for C∞c (Rd), we have a serviceable

substitute for this property.

There are plenty of continuous operations on C∞c (Rd):

Exercise 1.13.4.
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(i) Let K be a compact set. Show that a linear map T :

C∞c (K) → X into a normed vector space X is continu-

ous if and only if there exists k ≥ 0 and C > 0 such that

‖Tf‖X ≤ C‖f‖Ck for all f ∈ C∞c (K).

(ii) Let K,K ′ be compact sets. Show that a linear map T :

C∞c (K) → C∞c (K ′) is continuous if and only if for every

k ≥ 0 there exists k′ ≥ 0 and a constant Ck > 0 such that

‖Tf‖Ck ≤ Ck‖f‖Ck′ for all f ∈ C∞c (K).

(iii) Show that a map T : C∞c (Rd) → X to a topological space

is continuous if and only if for every compact set K ⊂ Rd,

T maps C∞c (K) continuously to X.

(iv) Show that the inclusion map from C∞c (Rd) to Lp(Rd) is

continuous for every 0 < p ≤ ∞.

(v) Show that a map T : C∞c (Rd) → C∞c (Rd) is continuous if

and only if for every compact set K ⊂ Rd there exists a

compact set K ′ such that T maps C∞c (K) continuously to

C∞c (K ′).

(vi) Show that every linear differential operator with smooth co-

efficients is a continuous operation on C∞c (Rd).

(vii) Show that convolution with any absolutely integrable, com-

pactly supported function is a continuous operation on C∞c (Rd).

(viii) Show that C∞c (Rd) is a topological vector space.

(ix) Show that the product operation f, g 7→ fg is continuous

from C∞c (Rd)× C∞c (Rd) to C∞c (Rd).

A sequence φn ∈ Cc(R
d) of continuous, compactly supported

functions is said to be an approximation to the identity if the φn are

non-negative, have total mass
∫
Rn φn equal to 1, and converge uni-

formly to zero away from the origin, thus sup|x|≥r |φn(x)| → 0 for

all r > 0. One can generate such a sequence by starting with a sin-

gle non-negative continuous compactly supported function φ of total

mass 1, and then setting φn(x) := ndφ(nx); many other constructions

are possible also.

One has the following useful fact:
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Exercise 1.13.5. Let φn ∈ C∞c (Rd) be a sequence of approximations

to the identity.

(i) If f ∈ C(Rd) is continuous, show that f ∗ φn converges

uniformly on compact sets to f .

(ii) If f ∈ Lp(Rd) for some 1 ≤ p < ∞, show that f ∗ φn con-

verges in Lp(Rd) to f . (Hint : use (i), the density of C0(Rd)

in Lp(Rd), and Young’s inequality, Exercise 1.11.25.)

(iii) If f ∈ C∞c (Rd), show that f ∗φn converges in C∞c (Rd) to f .

(Hint : use the identity ∇(f ∗ φn) = (∇f) ∗ φn, cf. Exercise

1.13.1(ii).)

Exercise 1.13.6. Show that C∞c (Rd) is separable. (Hint : it suffices

to show that C∞c (K) is separable for each compact K. There are

several ways to accomplish this. One is to begin with the Stone-

Weierstrass theorem, which will give a countable set which is dense

in the uniform topology, then use the fundamental theorem of calculus

to strengthen the topology. Another is to use Exercise 1.13.5 and then

discretise the convolution. Another is to embed K into a torus and

use Fourier series, noting that the Fourier coefficients f̂ of a smooth

function f : Td → C decay faster than any power of |n|.)

1.13.2. Distributions. Now we can define the concept of a distri-

bution.

Definition 1.13.1 (Distribution). A distribution on Rd is a contin-

uous linear functional λ : f 7→ 〈f, λ〉 from C∞c (Rd) to C. The space

of such distributions is denoted C∞c (Rd)∗, and is given the weak-*

topology. In particular, a sequence of distributions λn converges (in

the sense of distributions) to a limit λ if one has 〈f, λn〉 → 〈f, λ〉 for

all f ∈ C∞c (Rd).

A technical point: we endow the space C∞c (Rd)∗ with the conju-

gate complex structure. Thus, if λ ∈ C∞c (Rd)∗, and c is a complex

number, then cλ is the distribution that maps a test function f to

c〈f, λ〉 rather than c〈f, λ〉; thus 〈f, cλ〉 = c〈f, λ〉. This is to keep the

analogy between the evaluation of a distribution against a function,

and the usual Hermitian inner product 〈f, g〉 =
∫
Rd fg of two test

functions.
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From Exercise 1.13.4, we see that a linear functional λ : C∞c (Rd)→
C is a distribution if, for every compact set K ⊂ Rd, there exists

k ≥ 0 and C > 0 such that

(1.113) |〈f, λ〉| ≤ C‖f‖Ck

for all f ∈ C∞c (K).

Exercise 1.13.7. Show that C∞c (Rd)∗ is a Hausdorff topological

vector space.

We note two basic examples of distributions:

• Any locally integrable function g ∈ L1
loc(Rd) can be viewed

as a distribution, by writing 〈f, g〉 :=
∫
Rd f(x)g(x) dx for

all test functions f .

• Any complex Radon measure µ can be viewed as a distribu-

tion, by writing 〈f, µ〉 :=
∫
Rd f(x) dµ, where µ is the com-

plex conjugate of µ (thus µ(E) := µ(E)). (Note that this

example generalises the preceding one, which corresponds

to the case when µ is absolutely continuous with respect to

Lebesgue measure.) Thus, for instance, the Dirac measure

δ at the origin is a distribution, with 〈f, δ〉 = f(0) for all

test functions f .

Exercise 1.13.8. Show that the above identifications of locally in-

tegrable functions or complex Radon measures with distributions are

injective. (Hint : use Exercise 1.13.1(iv).)

From the above exercise, we may view locally integrable func-

tions and locally finite measures as a special type of distribution. In

particular, C∞c (Rd) and Lp(Rd) are now contained in C∞c (Rd)∗ for

all 1 ≤ p ≤ ∞.

Exercise 1.13.9. Show that if a sequence of locally integrable func-

tions converge in L1
loc to a limit, then they also converge in the sense

of distributions; similarly, if a sequence of complex Radon measures

converge in the vague topology to a limit, then they also converge in

the sense of distributions.

Thus we see that convergence in the sense of distributions is

among the weakest of the notions of convergence used in analysis;
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however, from the Hausdorff property, distributional limits are still

unique.

Exercise 1.13.10. If φn is a sequence of approximations to the iden-

tity, show that φn converges in the sense of distributions to the Dirac

distribution δ.

More exotic examples of distributions can be given:

Exercise 1.13.11 (Derivative of the delta function). Let d = 1.

Show that the functional δ′ : f 7→ −f ′(0) for all test functions f

is a distribution which does not arise from either a locally integrable

function or a Radon measure. (Note how it is important here that f is

smooth (and in particular differentiable, and not merely continuous.)

The presence of the minus sign will be explained shortly.

Exercise 1.13.12 (Principal value of 1/x). Let d = 1. Show that

the functional p. v. 1/x defined by the formula

〈f, p. v. 1

x
〉 := lim

ε→0

∫
|x|>ε

f(x)

x
dx

is a distribution which does not arise from either a locally integrable

function or a Radon measure. (Note that 1/x is not a locally inte-

grable function!)

Exercise 1.13.13 (Distributional interpretations of 1/|x|). Let d =

1. For any r > 0, show that the functional λr defined by the formula

〈f, λr〉 :=

∫
|x|<r

f(x)− f(0)

|x|
dx+

∫
|x|≥r

f(x)

|x|
dx

is a distribution that does not arise from either a locally integrable

function or a Radon measure. Note that any two such functionals

λr, λr′ differ by a constant multiple of the Dirac delta distribution.

Exercise 1.13.14. A distribution λ is said to be real if 〈f, λ〉 is real

for every real-valued test function f . Show that every distribution λ

can be uniquely expressed as Re(λ) + i Im(λ) for some real distribu-

tions Re(λ), Im(λ).

Exercise 1.13.15. A distribution λ is said to be non-negative if

〈f, λ〉 is non-negative for every non-negative test function f . Show
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that a distribution is non-negative if and only if it is a non-negative

Radon measure. (Hint : use the Riesz representation theorem and

Exercise 1.13.1(iv).) Note that this implies that the analogue of the

Jordan decomposition fails for distributions; any distribution which

is not a Radon measure will not be the difference of non-negative

distributions.

We will now extend various operations on locally integrable func-

tions or Radon measures to distributions by arguing by analogy.

(Shortly we will give a more formal approach, based on density.)

We begin with the operation of multiplying a distribution λ by a

smooth function h : Rd → C. Observe that

〈f, gh〉 = 〈fh, g〉

for all test functions f, g, h. Inspired by this formula, we define the

product λh = hλ of a distribution with a smooth function by setting

〈f, λh〉 := 〈fh, λ〉

for all test functions f . It is easy to see (e.g. using Exercise 1.13.4(vi))

that this defines a distribution λh, and that this operation is compat-

ible with existing definitions of products between a locally integrable

function (or Radon measure) with a smooth function. It is important

that h is smooth (and not merely, say, continuous) because one needs

the product of a test function f with h to still be a test function.

Exercise 1.13.16. Let d = 1. Establish the identity

δf = f(0)δ

for any smooth function f . In particular,

δx = 0

where we abuse notation slightly and write x for the identity function

x 7→ x. Conversely, if λ is a distribution such that

λx = 0,

show that λ is a constant multiple of δ. (Hint : Use the identity

f(x) = f(0) + x
∫ 1

0
f ′(tx) dt to write f(x) as the sum of f(0)ψ and x

times a test function for any test function f , where ψ is a fixed test

function equalling 1 at the origin.)
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Remark 1.13.2. Even though distributions are not, strictly speak-

ing, functions, it is often useful heuristically to view them as such,

thus for instance one might write a distributional identity such as

δx = 0 suggestively as δ(x)x = 0. Another useful (and rigorous) way

to view such identities is to write distributions such as δ as a limit of

approximations to the identity ψn, and show that the relevant iden-

tity becomes true in the limit; thus, for instance, to show that δx = 0,

one can show that ψnx → 0 in the sense of distributions as n → ∞.

(In fact, ψnx converges to zero in the L1 norm.)

Exercise 1.13.17. Let d = 1. With the distribution p. v. 1
x from

Exercise 1.13.12, show that (p. v. 1
x )x is equal to 1. With the distri-

butions λr from Exercise 1.13.13, show that λrx = sgn, where sgn is

the signum function.

A distribution λ is said to be supported in a closed set K in

〈f, λ〉 = 0 for all f that vanish on an open neighbourhood of K. The

intersection of all K that λ is supported on is denoted supp(λ) and

is referred to as the support of the distribution; this is the smallest

closed set that λ is supported on. Thus, for instance, the Dirac delta

function is supported on {0}, as are all derivatives of that function.

(Note here that it is important that f vanish on a neighbourhood of

K, rather than merely vanishing on K itself; for instance, in one

dimension, there certainly exist test functions f that vanish at 0 but

nevertheless have a non-zero inner product with δ′.)

Exercise 1.13.18. Show that every distribution is the limit of a se-

quence of compactly supported distributions (using the weak-* topol-

ogy, of course). (Hint : Approximate a distribution λ by the truncated

distributions ληn for some smooth cutoff functions ηn constructed us-

ing Exercise 1.13.1(iii).)

In a similar spirit, we can convolve a distribution λ by an abso-

lutely integrable, compactly supported function h ∈ L1(Rd). From

Fubini’s theorem we observe the formula

〈f, g ∗ h〉 = 〈f ∗ h̃, g〉

for all test functions f, g, h, where h̃(x) := h(−x). Inspired by this

formula, we define the convolution λ ∗ h = h ∗ λ of a distribution



250 1. Real analysis

with an absolutely integrable, compactly supported function by the

formula

(1.114) 〈f, λ ∗ h〉 := 〈f ∗ h̃, λ〉

for all test functions f . This gives a well-defined distribution λh

(thanks to Exercise 1.13.4(vii)) which is compatible with previous

notions of convolution.

Example 1.13.3. One has δ ∗ f = f ∗ δ = f for all test functions f .

In one dimension, we have δ′ ∗f = f ′ (why?), thus differentiation can

be viewed as convolution with a distribution.

A remarkable fact about convolutions of two functions f ∗ g is

that they inherit the regularity of the smoother of the two factors

f, g (in contrast to products fg, which tend to inherit the regularity

of the rougher of the two factors). (This disparity can be also be

seen by contrasting the identity ∇(f ∗ g) = (∇f) ∗ g = f ∗ (∇g)

with the identity ∇(fg) = (∇f)g+ f(∇g).) In the case of convolving

distributions with test functions, this phenomenon is manifested as

follows:

Lemma 1.13.4. Let λ ∈ C∞c (Rd)∗ be a distribution, and let h ∈
C∞c (Rd) be a test function. Then λ ∗h is equal to a smooth function.

Proof. If λ were itself a smooth function, then one could easily verify

the identity

(1.115) λ ∗ h(x) = 〈hx, λ〉

where hx(y) := h(x − y). As h is a test function, it is easy to see

that hx varies smoothly in x in any Ck norm (indeed, it has Taylor

expansions to any order in such norms) and so the right-hand side is a

smooth function of x. So it suffices to verify the identity (1.115). As

distributions are defined against test functions f , it suffices to show

that

〈f, λ ∗ h〉 =

∫
Rd

f(x)〈hx, λ〉 dx.

On the other hand, we have from (1.114) that

〈f, λ ∗ h〉 = 〈f ∗ h̃, λ〉 = 〈
∫
Rd

f(x)hx dx, λ〉.
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So the only issue is to justify the interchange of integral and inner

product: ∫
Rd

f(x)〈hx, λ〉 dx = 〈
∫
Rd

f(x)hx dx, λ〉.

Certainly, (from the compact support of f) any Riemann sum can be

interchanged with the inner product:∑
n

f(xn)〈hxn , λ〉∆x = 〈
∑
n

f(xn)hxn∆x, λ〉,

where xn ranges over some lattice and ∆x is the volume of the fun-

damental domain. A modification of the argument that shows con-

vergence of the Riemann integral for smooth, compactly supported

functions then works here and allows one to take limits; we omit the

details. �

This has an important corollary:

Lemma 1.13.5. Every distribution is the limit of a sequence of test

functions. In particular, C∞c (Rd) is dense in C∞c (Rd)∗.

Proof. By Exercise 1.13.18, it suffices to verify this for compactly

supported distributions λ. We let φn be a sequence of approximations

to the identity. By Exercise 1.13.5(iii) and (1.114), we see that λ ∗φn
converges in the sense of distributions to λ. By Lemma 1.13.4, λ ∗φn
is a smooth function; as λ and φn are both compactly supported,

λ ∗ φn is compactly supported also. The claim follows. �

Because of this lemma, we can formalise the previous procedure of

extending operations that were previously defined on test functions,

to distributions, provided that these operations were continuous in

distributional topologies. However, we shall continue to proceed by

analogy as it requires fewer verifications in order to motivate the

definition.

Exercise 1.13.19. Another consequence of Lemma 1.13.4 is that

it allows one to extend the definition (1.114) of convolution to the

case when h is not an integrable function of compact support, but

is instead merely a distribution of compact support. Adopting this

convention, show that convolution of distributions of compact support
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is both commutative and associative. (Hint : this can either be done

directly, or by carefully taking limits using Lemma 1.13.5.)

The next operation we will introduce is that of differentiation.

An integration by parts reveals the identity

〈f, ∂

∂xj
g〉 = −〈 ∂

∂xj
f, g〉

for any test functions f, g and j = 1, . . . , d. Inspired by this, we define

the (distributional) partial derivative ∂
∂xj

λ of a distribution λ by the

formula

〈f, ∂

∂xj
λ〉 := −〈 ∂

∂xj
f, λ〉.

This can be verified to still be a distribution, and by Exercise 1.13.4(vi),

the operation of differentiation is a continuous one on distributions.

More generally, given any linear differential operator P with smooth

coefficients, one can define Pλ for a distribution λ by the formula

〈f, Pλ〉 := 〈P ∗f, λ〉

where P ∗ is the adjoint differential operator P , which can be defined

implicitly by the formula

〈f, Pg〉 = 〈P ∗f, g〉

for test functions f, g, or more explicitly by replacing all coefficients

with complex conjugates, replacing each partial derivative ∂
∂xj

with

its negative, and reversing the order of operations (thus for instance

the adjoint of the first-order operator a(x) d
dx : f 7→ af ′ would be

− d
dxa(x) : f 7→ −(af)′).

Example 1.13.6. The distribution δ′ defined in Exercise 1.13.11 is

the derivative d
dxδ of δ, as defined by the above formula.

Many of the identities one is used to in classical calculus extend to

the distributional setting (as one would already expect from Lemma

1.13.5). For instance:

Exercise 1.13.20 (Product rule). Let λ ∈ C∞c (Rd)∗ be a distribu-

tion, and let f : Rd → C be smooth. Show that

∂

∂xj
(λf) = (

∂

∂xj
λ)f + λ(

∂

∂xj
f)



1.13. Distributions 253

for all j = 1, . . . , d.

Exercise 1.13.21. Let d = 1. Show that δ′x = −δ in three different

ways:

• Directly from the definitions;

• using the product rule;

• Writing δ as the limit of approximations ψn to the identity.

Exercise 1.13.22. Let d = 1.

(i) Show that if λ is a distribution and n ≥ 1 is an integer, then

λxn = 0 if and only if is a linear combination of δ and its

first n− 1 derivatives δ′, δ′′, . . . , δ(n−1).

(ii) Show that a distribution λ is supported on {0} if and only

if it is a linear combination of δ and finitely many of its

derivatives.

(iii) Generalise (ii) to the case of general dimension d (where of

course one now uses partial derivatives instead of deriva-

tives).

Exercise 1.13.23. Let d = 1.

• Show that the derivative of the Heaviside function 1[0,+∞)

is equal to δ.

• Show that the derivative of the signum function sgn(x) is

equal to 2δ.

• Show that the derivative of the locally integrable function

log |x| is equal to p. v. 1
x .

• Show that the derivative of the locally integrable function

log |x| sgn(x) is equal to the distribution λ1 from Exercise

1.13.13.

• Show that the derivative of the locally integrable function

|x| is the locally integrable function sgn(x).

If a locally integrable function has a distributional derivative

which is also a locally integrable function, we refer to the latter as the

weak derivative of the former. Thus, for instance, the weak derivative

of |x| is sgn(x) (as one would expect), but sgn(x) does not have a



254 1. Real analysis

weak derivative (despite being (classically) differentiable almost ev-

erywhere), because the distributional derivative 2δ of this function is

not itself a locally integrable function. Thus weak derivatives differ

in some respects from their classical counterparts, though of course

the two concepts agree for smooth functions.

Exercise 1.13.24. Let d ≥ 1. Show that for any 1 ≤ i, j ≤ d, and

any distribution λ ∈ C∞c (Rd)∗, we have ∂
∂xi

∂
∂xj

λ = ∂
∂xj

∂
∂xi

λ, thus

weak derivatives commute with each other. (This is in contrast to

classical derivatives, which can fail to commute for non-smooth func-

tions; for instance, ∂
∂x

∂
∂y

xy3

x2+y2 6=
∂
∂y

∂
∂x

xy3

x2+y2 at the origin (x, y) = 0,

despite both derivatives being defined. More generally, weak deriva-

tives tend to be less pathological than classical derivatives, but of

course the downside is that weak derivatives do not always have a

classical interpretation as a limit of a Newton quotient.)

Exercise 1.13.25. Let d = 1, and let k ≥ 0 be an integer. Let us say

that a compactly supported distribution λ ∈ C∞c (R)∗ has of order

at most k if the functional f 7→ 〈f, λ〉 is continuous in the Ck norm.

Thus, for instance, δ has order at most 0, and δ′ has order at most 1,

and every compactly supported distribution is of order at most k for

some sufficiently large k.

• Show that if λ is a compactly supported distribution of order

at most 0, then it is a compactly supported Radon measure.

• Show that if λ is a compactly supported distribution of order

at most k, then λ′ has order at most k + 1.

• Conversely, if λ is a compactly supported distribution of or-

der k + 1, then we can write λ = ρ′ + ν for some compactly

supported distributions of order k. (Hint : one has to “du-

alise” the fundamental theorem of calculus, and then apply

smooth cutoffs to recover compact support.)

• Show that every compactly supported distribution can be

expressed as a finite linear combination of (distributional)

derivatives of compactly supported Radon measures.

• Show that every compactly supported distribution can be

expressed as a finite linear combination of (distributional)

derivatives of functions in Ck0 (R), for any fixed k.
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We now set out some other operations on distributions. If we

define the translation τxf of a test function f by a shift x ∈ Rd by

the formula τxf(y) := f(y − x), then we have

〈f, τxg〉 = 〈τ−xf, g〉

for all test functions f, g, so it is natural to define the translation τxλ

of a distribution λ by the formula

〈f, τxλ〉 := 〈τ−xf, λ〉.

Next, we consider linear changes of variable.

Exercise 1.13.26 (Linear changes of variable). Let d ≥ 1, and let

L : Rd → Rd be a linear transformation. Given a distribution λ ∈
C∞c (Rd)∗, let λ ◦ L be the distribution given by the formula

〈f, λ ◦ L〉 :=
1

|detL|
〈f ◦ L−1, λ〉

for all test functions f . (How would one motivate this formula?)

• Show that δ ◦ L = 1
| detL|δ for all linear transformations L.

• If d = 1, show that p. v. 1
x · L = 1

| detL| p. v.
1
x for all linear

transformations L.

• Conversely, if d = 1 and λ is a distribution such that λ ·L =
1

| detL|λ for all linear transformations L. (Hint : first show

that there exists a constant c such that 〈f, λ〉 = c
∫∞

0
f(x)
x dx

whenever f is a bump function supported in (0,+∞). To

show this, approximate f by the function∫ ∞
−∞

f(etx)ψn(t) dt =

∫ ∞
0

f(y)

y
ψn(log

x

y
)1x>0 dy

for ψn an approximation to the identity.)

Remark 1.13.7. One can also compose distributions with diffeo-

morphisms. However, things become much more delicate if the map

one is composing with contains stationary points; for instance, in one

dimension, one cannot meaningfully make sense of δ(x2) (the compo-

sition of the Dirac delta distribution with x 7→ x2); this can be seen

by first noting that for an approximation ψn to the identity, ψn(x2)

does not converge to a limit in the distributional sense.
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Exercise 1.13.27 (Tensor product of distributions). Let d, d′ ≥ 1

be integers. If λ ∈ C∞c (Rd)∗ and ρ ∈ C∞c (Rd′)∗ are distributions,

show that there is a unique distribution λ ⊗ ρ ∈ C∞c (Rd+d′)∗ with

the property that

(1.116) 〈f ⊗ g, λ⊗ ρ〉 = 〈f, λ〉〈g, ρ〉

for all test functions f ∈ C∞c (Rd), g ∈ C∞c (Rd′), where f ⊗ g :

C∞c (Rd+d′) is the tensor product f ⊗ g(x, x′) := f(x)g(x′) of f and

g. (Hint : like many other constructions of tensor products, this is

rather intricate. One way is to start by fixing two cutoff functions

ψ,ψ′ on Rd,Rd′ respectively, and define λ⊗ρ on modulated test func-

tions e2πiξ·xe2πiξ′·xψ(x)ψ′(x′) for various frequencies ξ, ξ′, and then

use Fourier series to define λ⊗ρ on F (x, x′)ψ(x)ψ′(x′) for smooth F .

Then show that these definitions of λ ⊗ ρ are compatible for differ-

ent choices of ψ,ψ′ and can be glued together to form a distribution;

finally, go back and verify (1.116).)

We close this section with one caveat. Despite the many opera-

tions that one can perform on distributions, there are two types of

operations which cannot, in general, be defined on arbitrary distribu-

tions (at least while remaining in the class of distributions):

• Nonlinear operations (e.g. taking the absolute value of a

distribution); or

• Multiplying a distribution by anything rougher than a smooth

function.

Thus, for instance, there is no meaningful way to interpret the

square δ2 of the Dirac delta function as a distribution. This is per-

haps easiest to see using an approximation ψn to the identity: ψn
converges to δ in the sense of distributions, but ψ2

n does not converge

to anything (the integral against a test function that does not vanish

at the origin will go to infinity as n → ∞). For similar reasons, one

cannot meaningfully interpret the absolute value |δ′| of the derivative

of the delta function. (One also cannot multiply δ by sgn(x) - why?)

Exercise 1.13.28. Let X be a normed vector space which contains

C∞c (Rd) as a dense subspace (and such that the inclusion of C∞c (Rd)

to X is continuous). The adjoint (or transpose) of this inclusion map
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is then an injection from X∗ to the space of distributions C∞c (Rd)∗;

thus X∗ can be viewed as a subspace of the space of distributions.

• Show that the closed unit ball in X∗ is also closed in the

space of distributions.

• Conclude that any distributional limit of a bounded se-

quence in Lp(Rd) for 1 < p ≤ ∞, is still in Lp(Rd).

• Show that the previous claim fails for L1(Rd), but holds for

the space M(Rd) of finite measures.

1.13.3. Tempered distributions. The list of operations one can

define on distributions has one major omission - the Fourier transform

F . Unfortunately, one cannot easily define the Fourier transform for

all distributions. One can see this as follows. From Plancherel’s

theorem one has the identity

〈f,Fg〉 = 〈F∗f, g〉

for test functions f, g, so one would like to define the Fourier transform

Fλ = λ̂ of a distribution λ by the formula

(1.117) 〈f,Fλ〉 := 〈F∗f, λ〉.

Unfortunately this does not quite work, because the adjoint Fourier

transform F∗ of a test function is not a test function, but is in-

stead just a Schwartz function. (Indeed, by Exercise 1.12.42, it is not

possible to find a non-trivial test function whose Fourier transform

is again a test function.) To address this, we need to work with a

slightly smaller space than that of all distributions, namely those of

tempered distributions:

Definition 1.13.8 (Tempered distributions). A tempered distribu-

tion is a continuous linear functional λ : f 7→ 〈f, λ〉 on the Schwartz

space S(Rd) (with the topology given by Exercise 1.12.25), i.e. an

element of S(Rd)∗.

Since C∞c (Rd) embeds continuously into S(Rd) (with a dense im-

age), we see that the space of tempered distributions can be embed-

ded into the space of distributions. However, not every distribution

is tempered:
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Example 1.13.9. The distribution ex is not tempered. Indeed, if ψ is

a bump function, observe that the sequence of functions e−nψ(x−n)

converges to zero in the Schwartz space topology, but 〈e−nψ(x −
n), ex〉 does not go to zero, and so this distribution does not corre-

spond to a tempered distribution.

On the other hand, distributions which avoid this sort of exponen-

tial growth, and instead only grow polynomially, tend to be tempered:

Exercise 1.13.29. Show that any Radon measure µ which is of poly-

nomial growth in the sense that |µ|(B(0, R)) ≤ CRk for all R ≥ 1 and

some constants C, k > 0, where B(0, R) is the ball of radius R centred

at the origin in Rd, is tempered.

Remark 1.13.10. As a zeroth approximation, one can roughly think

of “tempered” as being synonymous with “polynomial growth”. How-

ever, this is not strictly true: for instance, the (weak) derivative of a

function of polynomial growth will still be tempered, but need not be

of polynomial growth (for instance, the derivative ex cos(ex) of sin(ex)

is a tempered distribution, despite having exponential growth). While

one can eventually describe which distributions are tempered by mea-

suring their “growth” in both physical space and in frequency space,

we will not do so here.

Most of the operations that preserve the space of distributions,

also preserve the space of tempered distributions. For instance:

Exercise 1.13.30. • Show that any derivative of a tempered

distribution is again a tempered distribution.

• Show that and any convolution of a tempered distribution

with a compactly supported distribution is again a tempered

distribution.

• Show that if f is a measurable function which is rapidly

decreasing in the sense that |x|kf(x) is an L∞(Rd) function

for each k = 0, 1, 2, . . ., then a convolution of a tempered

distribution with f can be defined, and is again a tempered

distribution.

• Show that if f is a smooth function such that f and all its

derivatives have at most polynomial growth (thus for each
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j ≥ 0 there exists C, k ≥ 0 such that |∇jf(x)| ≤ C(1 + |x|)k
for all x ∈ Rd) then the product of a tempered distribution

with f is again a tempered distribution. Give a counterex-

ample to show that this statement fails if the polynomial

growth hypotheses are dropped.

• Show that the translate of a tempered distribution is again

a tempered distribution.

But we can now add a new operation to this list using (1.117):

as the Fourier transform F maps Schwartz functions continuously to

Schwartz functions, it also continuously maps the space of tempered

distributions to itself. One can also define the inverse Fourier trans-

form F∗ = F−1 on tempered distributions in a similar manner.

It is not difficult to extend many of the properties of the Fourier

transform from Schwartz functions to distributions. For instance:

Exercise 1.13.31. Let λ ∈ S(Rd)∗ be a tempered distribution, and

let f ∈ S(Rd) be a Schwartz function.

• (Inversion formula) Show that F∗Fλ = FF∗λ = λ.

• (Multiplication intertwines with convolution) Show that F(λf) =

(Fλ) ∗ (Ff) and F(λ ∗ f) = (Fλ)(Ff).

• (Translation intertwines with modulation) For any x0 ∈ Rd,

show that F(τx0
λ) = e−x0

Fλ, where e−x0
(ξ) := e−2πiξ·x0 .

Similarly, show that for any ξ0 ∈ Rd, one has F(eξ0λ) =

τξ0Fλ.

• (Linear transformations) For any invertible linear transfor-

mation L : Rd → Rd, show that F(λ ◦ L) = 1
| detL| (Fλ) ◦

(L∗)−1.

• (Differentiation intertwines with polynomial multiplication)

For any 1 ≤ j ≤ d, show that F( ∂
∂xj

λ) = 2πiξjFλ, where xj

and ξj is the jth coordinate function in physical space and

frequency space respectively, and similarly F(−2πixjλ) =
∂
∂ξj
Fλ.

Exercise 1.13.32. Let d ≥ 1.

• (Inversion formula) Show that Fδ = 1 and F1 = δ.
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• (Orthogonality) Let V be a subspace of Rd, and let µ be

Lebesgue measure on V . Show that Fµ is Lebesgue measure

on the orthogonal complement V ⊥ of V . (Note that this

generalises the previous exercise.)

• (Poisson summation formula) Let
∑
k∈Zd τkδ be the distri-

bution

〈f,
∑
k∈Zd

τkδ〉 :=
∑
k∈Zd

f(k).

Show that this is a tempered distribution which is equal to

its own Fourier transform.

One can use these properties of tempered distributions to start

solving constant-coefficient PDE. We first illustrate this by an ODE

example, showing how the formal symbolic calculus for solving such

ODE that you may have seen as an undergraduate, can now be (some-

times) justified using tempered distributions.

Exercise 1.13.33. Let d = 1, let a, b be real numbers, and let D be

the operator D = d
dx .

• If a 6= b, use the Fourier transform to show that all tempered

distribution solutions to the ODE (D− ia)(D− ib)λ = 0 are

of the form λ = Aeiax +Beibx for some constants A,B.

• If a = b, show that all tempered distribution solutions to

the ODE (D− ia)(D− ib)λ = 0 are of the form λ = Aeiax+

Bxeiax for some constants A,B.

Remark 1.13.11. More generally, one can solve any homogeneous

constant-coefficient ODE using tempered distributions and the Fourier

transform so long as the roots of the characteristic polynomial are

purely imaginary. In all other cases, solutions can grow exponentially

as x → +∞ or x → −∞ and so are not tempered. There are other

theories of generalised functions that can handle these objects (e.g.

hyperfunctions) but we will not discuss them here.

Now we turn to PDE. To illustrate the method, let us focus on

solving Poisson’s equation

(1.118) ∆u = f
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in Rd, where f is a Schwartz function and u is a distribution, where

∆ =
∑d
j=1

∂2

∂x2
j

is the Laplacian. (In some texts, particularly those

using spectral analysis, the Laplacian is occasionally defined instead

as −
∑d
j=1

∂2

∂x2
j
, to make it positive semi-definite, but we will eschew

that sign convention here, though of course the theory is only changed

in a trivial fashion if one adopts it.)

We first settle the question of uniqueness:

Exercise 1.13.34. Let d ≥ 1. Using the Fourier transform, show

that the only tempered distributions λ ∈ S(Rd)∗ which are harmonic

(by which we mean that ∆λ = 0 in the sense of distributions) are

the harmonic polynomials. (Hint : use Exercise 1.13.22.) Note that

this generalises Liouville’s theorem. There are of course many other

harmonic functions than the harmonic polynomials, e.g. ex cos(y),

but such functions are not tempered distributions.

From the above exercise, we know that the solution u to (1.118), if

tempered, is defined up to harmonic polynomials. To find a solution,

we observe that it is enough to find a fundamental solution, i.e. a

tempered distribution K solving the equation

∆K = δ.

Indeed, if one then convolves this equation with the Schwartz function

f , and uses the identity (∆K) ∗ f = ∆(K ∗ f) (which can either be

seen directly, or by using Exercise 1.13.31), we see that u = K ∗ f
will be a tempered distribution solution to (1.118) (and all the other

solutions will equal this solution plus a harmonic polynomial). So, it

is enough to locate a fundamental solution K. We can take Fourier

transforms and rewrite this equation as

−4π2|ξ|2K̂(ξ) = 1

(here we are treating the tempered distribution K̂ as a function to

emphasise that the dependent variable is now ξ). It is then natural

to propose to solve this equation as

(1.119) K̂(ξ) =
1

−4π2|ξ|2
,
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though this may not be the unique solution (for instance, one is free

to modify K by a multiple of the Dirac delta function, cf. Exercise

1.13.16).

A short computation in polar coordinates shows that 1
−4π2|ξ|2

is locally integrable in dimensions d ≥ 3, so the right-hand side of

(1.119) makes sense. To then compute K explicitly, we have from the

distributional inversion formula that

K =
−1

4π2
F∗|ξ|−2

so we now need to figure out what the Fourier transform of a negative

power of |x| (or the adjoint Fourier transform of a negative power of

|ξ|) is.

Let us work formally at first, and consider the problem of com-

puting the Fourier transform of the function |x|−α in Rd for some

exponent α. A direct attack, based on evaluating the (formal) Fourier

integral

(1.120) |̂x|−α(ξ) =

∫
Rd

|x|−αe−2πiξ·x dx

does not seem to make much sense (the integral is not absolutely

integrable), although a change of variables (or dimensional analysis)

heuristic can at least lead to the prediction that the integral (1.120)

should be some multiple of |ξ|α−d. But which multiple should it be?

To continue the formal calculation, we can write the non-integrable

function |x|−α as an average of integrable functions whose Fourier

transforms are already known. There are many such functions that

one could use here, but it is natural to use Gaussians, as they have a

particularly pleasant Fourier transform, namely

̂e−πt2|x|2(ξ) = tde−π|ξ|
2/t2

for t > 0 (see Exercise 1.12.32). To get from Gaussians to |x|−α, one

can observe that |x|−α is invariant under the scaling f(x) 7→ tαf(tx)

for t > 0. Thus, it is natural to average the standard Gaussian e−π|x|
2

with respect to this scaling, thus producing the function tαe−πt
2|x|2 ,

then integrate with respect to the multiplicative Haar measure dt
t . A
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straightforward change of variables then gives the identity∫ ∞
0

tαe−πt
2|x|2 dt

t
=

1

2
π−α/2|x|−αΓ(α/2)

where

Γ(s) :=

∫ ∞
0

tse−t
dt

t

is the Gamma function. If we formally take Fourier transforms of this

identity, we obtain∫ ∞
0

tαt−de−π|x|
2/t2 dt

t
=

1

2
π−α/2 |̂x|−α(ξ)Γ(α/2).

Another change of variables shows that∫ ∞
0

tαt−de−π|x|
2/t2 dt

t
=

1

2
π−(d−α)/2|ξ|−(d−α)Γ((d− α)/2)

and so we conclude (formally) that

(1.121) |̂x|−α(ξ) =
π−(d−α)/2Γ((d− α)/2)

π−α/2Γ(α/2)
|ξ|−(d−α)

thus solving the problem of what the constant multiple of |ξ|−(d−α)

should be.

Exercise 1.13.35. Give a rigorous proof of (1.121) for 0 < α < d

(when both sides are locally integrable) in the sense of distributions.

(Hint : basically, one needs to test the entire formal argument against

an arbitrary Schwartz function.) The identity (1.121) can in fact be

continued meromorphically in α, but the interpretation of distribu-

tions such as |x|−α when |x|−α is not locally integrable is somewhat

complicated (cf. Exercise 1.13.12) and will not be discussed here.

Specialising back to the current situation with d = 3, α = 2, and

using the standard identities

Γ(n) = (n− 1)!; Γ(
1

2
) =
√
π

we see that
1̂

|x|2
(ξ) = π|ξ|−1

and similarly

F∗ 1

|ξ|2
= π|x|−1
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and so from (1.119) we see that one choice of the fundamental solution

K is the Newton potential

K =
−1

4π|x|
,

leading to an explicit (and rigorously derived) solution

(1.122) u(x) := f ∗K(x) = − 1

4π

∫
R3

f(y)

|x− y|
dy

to the Poisson equation (1.118) in d = 3 for Schwartz functions f .

(This is not quite the only fundamental solution K available; one

can add a harmonic polynomial to K, which will end up adding a

harmonic polynomial to u, since the convolution of a harmonic poly-

nomial with a Schwartz function is easily seen to still be harmonic.)

Exercise 1.13.36. Without using the theory of distributions, give

an alternate (and still rigorous) proof that the function u defined in

(1.122) solves (1.118) in d = 3.

Exercise 1.13.37. • Show that for any d ≥ 3, a fundamental

solution K to the Poisson equation is given by the locally

integrable function

K(x) =
1

d(d− 2)ωd

1

|x|d−2
,

where ωd = πd/2/Γ(d2 + 1) is the volume of the unit ball in

d dimensions.

• Show that for d = 1, a fundamental solution is given by the

locally integrable function K(x) = |x|/2.

• Show that for d = 2, a fundamental solution is given by the

locally integrable function K(x) = 1
2π log |x|.

This we see that for the Poisson equation, d = 2 is a “critical”

dimension, requiring a logarithmic correction to the usual formula.

Similar methods can solve other constant coefficient linear PDE.

We give some standard examples in the exercises below.

Exercise 1.13.38. Let d ≥ 1. Show that a smooth solution u :

R+ × Rd → C to the heat equation ∂tu = ∆u with initial data
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u(0, x) = f(x) for some Schwartz function f is given by u(t) = f ∗Kt

for t > 0, where Kt is the heat kernel

Kt(x) =
1

(4πt)d/2
e−|x−y|

2/4t.

(This solution is unique assuming certain smoothness and decay con-

ditions at infinity, but we will not pursue this issue here.)

Exercise 1.13.39. Let d ≥ 1. Show that a smooth solution u :

R×Rd → C to the Schrödinger equation ∂tu = i∆u with initial data

u(0, x) = f(x) for some Schwartz function f is given by u(t) = f ∗Kt

for t 6= 0, where Kt is the Schrödinger kernel12

Kt(x) =
1

(4πit)d/2
ei|x−y|

2/4t

and we use the standard branch of the complex logarithm (with cut

on the negative real axis) to define (4πit)d/2. (Hint : You may wish

to investigate the Fourier transform of e−z|ξ|
2

, where z is a complex

number with positive real part, and then let z approach the imaginary

axis.)

Exercise 1.13.40. Let d = 3. Show that a smooth solution u :

R × R3 → C to the wave equation −∂ttu + ∆u with initial data

u(0, x) = f(x), ∂tu(0, x) = g(x) for some Schwartz functions f is

given by the formula

u(t) = f ∗ ∂tKt + g ∗Kt

for t 6= 0, where Kt is the distribution

〈f,Kt〉 :=
t

4π

∫
S2

f(tω) dω

where ω is Lebesgue measure on the sphere S2, and the derivative

∂tKt is defined in the Newtonian sense limdt→0
Kt+dt−Kt

dt , with the

limit taken in the sense of distributions.

12The close similarity here with the heat kernel is a manifestation of Wick ro-
tation in action. However, from an analytical viewpoint, the two kernels are very
different. For instance, the convergence of f ∗ Kt to f as t → 0 follows in the heat
kernel case by the theory of approximations to the identity, whereas the convergence
in the Schrödinger case is much more subtle, and is best seen via Fourier analysis.
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Remark 1.13.12. The theory of (tempered) distributions is also

highly effective for studying variable coefficient linear PDE, especially

if the coefficients are fairly smooth, and particularly if one is primarily

interested in the singularities of solutions to such PDE and how they

propagate; here the Fourier transform must be augmented with more

general transforms of this type, such as Fourier integral operators.

A classic reference for this topic is [Ho1990]. For nonlinear PDE,

subspaces of the space of distributions, such as Sobolev spaces, tend

to be more useful; we will discuss these in the next section.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/04/19.

Thanks to Dale Roberts, Max Baroi, and an anonymous commenter

for corrections.

1.14. Sobolev spaces

As discussed in previous sections, a function space norm can be viewed

as a means to rigorously quantify various statistics of a function f :

X → C. For instance, the “height” and “width” can be quantified via

the Lp(X,µ) norms (and their relatives, such as the Lorentz norms

‖f‖Lp,q(X,µ)). Indeed, if f is a step function f = A1E , then the Lp

norm of f is a combination ‖f‖Lp(X,µ) = |A|µ(E)1/p of the height (or

amplitude) A and the width µ(E).

However, there are more features of a function f of interest than

just its width and height. When the domain X is a Euclidean space

Rd (or domains related to Euclidean spaces, such as open subsets of

Rd, or manifolds), then another important feature of such functions

(especially in PDE) is the regularity of a function, as well as the

related concept of the frequency scale of a function. These terms

are not rigorously defined; but roughly speaking, regularity measures

how smooth a function is (or how many times one can differentiate the

function before it ceases to be a function), while the frequency scale

of a function measures how quickly the function oscillates (and would

be inversely proportional to the wavelength). One can illustrate this

informal concept with some examples:

• Let φ ∈ C∞c (R) be a test function that equals 1 near the

origin, and N be a large number. Then the function f(x) :=



1.14. Sobolev spaces 267

φ(x) sin(Nx) oscillates at a wavelength of about 1/N , and

a frequency scale of about N . While f is, strictly speak-

ing, a smooth function, it becomes increasingly less smooth

in the limit N → ∞; for instance, the derivative f ′(x) =

φ′(x) sin(Nx) + Nφ(x) cos(Nx) grows at a roughly linear

rate as N → ∞, and the higher derivatives grow at even

faster rates. So this function does not really have any reg-

ularity in the limit N → ∞. Note however that the height

and width of this function is bounded uniformly in N ; so

regularity and frequency scale are independent of height and

width.

• Continuing the previous example, now consider the function

g(x) := N−sφ(x) sin(Nx), where s ≥ 0 is some parameter.

This function also has a frequency scale of about N . But

now it has a certain amount of regularity, even in the limit

N →∞; indeed, one easily checks that the kth derivative of

g stays bounded in N as long as k ≤ s. So one could view

this function as having “s degrees of regularity” in the limit

N →∞.

• In a similar vein, the function N−sφ(Nx) also has a fre-

quency scale of about N , and can be viewed as having s

degrees of regularity in the limit N →∞.

• The function φ(x)|x|s1x>0 also has about s degrees of reg-

ularity, in the sense that it can be differentiated up to s

times before becoming unbounded. By performing a dyadic

decomposition of the x variable, one can also decompose

this function into components ψ(2nx)|x|s for n ≥ 0, where

ψ(x) := (φ(x) − φ(2x))1x>0 is a bump function supported

away from the origin; each such component has frequency

scale about 2n and s degrees of regularity. Thus we see that

the original function φ(x)|x|s1x>0 has a range of frequency

scales, ranging from about 1 all the way to +∞.

• One can of course concoct higher-dimensional analogues of

these examples. For instance, the localised plane wave φ(x) sin(ξ·
x) in Rd, where φ ∈ C∞c (Rd) is a test function, would have

a frequency scale of about |ξ|.
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There are a variety of function space norms that can be used

to capture frequency scale (or regularity) in addition to height and

width. The most common and well-known examples of such spaces

are the Sobolev space norms ‖f‖W s,p(Rd), although there are a num-

ber of other norms with similar features (such as Hölder norms, Besov

norms, and Triebel-Lizorkin norms). Very roughly speaking, theW s,p

norm is like the Lp norm, but with “s additional degrees of regular-

ity”. For instance, in one dimension, the function Aφ(x/R) sin(Nx),

where φ is a fixed test function and R,N are large, will have a

W s,p norm of about |A|R1/pNs, thus combining the “height” |A|,
the “width” R, and the “frequency scale” N of this function together.

(Compare this with the Lp norm of the same function, which is about

|A|R1/p.)

To a large extent, the theory of the Sobolev spaces W s,p(Rd) re-

sembles their Lebesgue counterparts Lp(Rd) (which are as the special

case of Sobolev spaces when s = 0), but with the additional benefit

of being able to interact very nicely with (weak) derivatives: a first

derivative ∂f
∂xj

of a function in an Lp space usually leaves all Lebesgue

spaces, but a first derivative of a function in the Sobolev space W s,p

will end up in another Sobolev space W s−1,p. This compatibility with

the differentiation operation begins to explain why Sobolev spaces are

so useful in the theory of partial differential equations. Furthermore,

the regularity parameter s in Sobolev spaces is not restricted to be

a natural number; it can be any real number, and one can use frac-

tional derivative or integration operators to move from one regularity

to another. Despite the fact that most partial differential equations

involve differential operators of integer order, fractional spaces are

still of importance; for instance it often turns out that the Sobolev

spaces which are critical (scale-invariant) for a certain PDE are of

fractional order.

The uncertainty principle in Fourier analysis places a constraint

between the width and frequency scale of a function; roughly speaking

(and in one dimension for simplicity), the product of the two quanti-

ties has to be bounded away from zero (or to put it another way, a

wave is always at least as wide as its wavelength). This constraint can
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be quantified as the very useful Sobolev embedding theorem, which al-

lows one to trade regularity for integrability: a function in a Sobolev

space W s,p will automatically lie in a number of other Sobolev spaces

W s̃,p̃ with s̃ < s and p̃ > p; in particular, one can often embed Sobolev

spaces into Lebesgue spaces. The trade is not reversible: one cannot

start with a function with a lot of integrability and no regularity, and

expect to recover regularity in a space of lower integrability. (One can

already see this with the most basic example of Sobolev embedding,

coming from the fundamental theorem of calculus. If a (continuously

differentiable) function f : R→ R has f ′ in L1(R), then we of course

have f ∈ L∞(R); but the converse is far from true.)

Plancherel’s theorem reveals that Fourier-analytic tools are par-

ticularly powerful when applied to L2 spaces. Because of this, the

Fourier transform is very effective at dealing with the L2-based Sobolev

spaces W s,2(Rd), often abbreviated Hs(Rd). Indeed, using the fact

that the Fourier transform converts regularity to decay, we will see

that the Hs(Rd) spaces are nothing more than Fourier transforms of

weighted L2 spaces, and in particular enjoy a Hilbert space structure.

These Sobolev spaces, and in particular the energy space H1(Rd),

are of particular importance in any PDE that involves some sort of

energy functional (this includes large classes of elliptic, parabolic, dis-

persive, and wave equations, and especially those equations connected

to physics and/or geometry).

We will not fully develop the theory of Sobolev spaces here, as

this would require the theory of singular integrals, which is beyond

the scope of this course. There are of course many references for

further reading, such as [St1970].

1.14.1. Hölder spaces. Throughout these notes, d ≥ 1 is a fixed

dimension.

Before we study Sobolev spaces, let us first look at the more

elementary theory of Hölder spaces Ck,α(Rd), which resemble Sobolev

spaces but with the aspect of width removed (thus Hölder norms only

measure a combination of height and frequency scale). One can define

these spaces on many domains (for instance, the C0,α norm can be
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defined on any metric space) but we shall largely restrict attention to

Euclidean spaces Rd for sake of concreteness.

We first recall the Ck(Rd) spaces, which we have already been

implicitly using in previous lectures. The space C0(Rd) = BC(Rd) is

the space of bounded continuous functions f : Rd → C on Rd, with

norm

‖f‖C0(Rd) := sup
x∈Rd

|f(x)| = ‖f‖L∞(Rd).

This norm gives C0 the structure of a Banach space. More generally,

one can then define the spaces Ck(Rd) for any non-negative integer

k as the space of all functions which are k times continuously differ-

entiable, with all derivatives of order k bounded, and whose norm is

given by the formula

‖f‖Ck(Rd) :=

k∑
j=0

sup
x∈Rd

|∇jf(x)| =
k∑
j=0

‖∇jf‖L∞(Rd),

where we view ∇jf as a rank j, dimension d tensor with complex

coefficients (or equivalently, as a vector of dimension dj with complex

coefficients), thus

|∇jf(x)| = (
∑

i1,...,ij=1,...d

| ∂j

∂xi1 . . . ∂xij
f(x)|2)1/2.

(One does not have to use the `2 norm here, actually; since all norms

on a finite-dimensional space are equivalent, any other means of tak-

ing norms here will lead to an equivalent definition of the Ck norm.

More generally, all the norms discussed here tend to have several def-

initions which are equivalent up to constants, and in most cases the

exact choice of norm one uses is just a matter of personal taste.)

Remark 1.14.1. In some texts, Ck(Rd) is used to denote the func-

tions which are k times continuously differentiable, but whose deriva-

tives up to kth order are allowed to be unbounded, so for instance ex

would lie in Ck(R) for every k under this definition. Here, we will refer

to such functions (with unbounded derivatives) as lying in Ckloc(Rd)

(i.e. they are locally in Ck), rather than Ck(Rd). Similarly, we make

a distinction between C∞loc(Rd) =
⋂∞
k=1 C

k
loc(Rd) (smooth functions,

with no bounds on derivatives) and C∞(Rd) =
⋂∞
k=1 C

k(Rd) (smooth
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functions, all of whose derivatives are bounded). Thus, for instance,

ex lies in C∞loc(R) but not C∞(R).

Exercise 1.14.1. Show that Ck(Rd) is a Banach space.

Exercise 1.14.2. Show that for every d ≥ 1 and k ≥ 0, the Ck(Rd)

norm is equivalent to the modified norm

‖f‖C̃k(Rd) := ‖f‖L∞(Rd) + ‖∇kf‖L∞(Rd)

in the sense that there exists a constant C (depending on k and d)

such that

C−1‖f‖Ck(Rd) ≤ ‖f‖C̃k(Rd) ≤ ‖f‖Ck(Rd)

for all f ∈ Ck(Rd). (Hint : use Taylor series with remainder.) Thus

when defining the Ck norms, one does not really need to bound all the

intermediate derivatives ∇jf for 0 < j < k; the two extreme terms

j = 0, j = k suffice. (This is part of a more general interpolation

phenomenon; the extreme terms in a sum often already suffice to

control the intermediate terms.)

Exercise 1.14.3. Let φ ∈ C∞c (Rd) be a bump function, and k ≥ 0.

Show that if ξ ∈ Rd with |ξ| ≥ 1, R ≥ 1/|ξ|, and A > 0, then the

function Aφ(x/R) sin(ξ · x) has a Ck norm of at most CA|ξ|k, where

C is a constant depending only on φ, d and k. Thus we see how the

C∞c norm relates to the height A, width Rd, and frequency scale N of

the function, and in particular how the width R is largely irrelevant.

What happens when the condition R ≥ 1/|ξ| is dropped?

We clearly have the inclusions

C0(Rd) ⊃ C1(Rd) ⊃ C2(Rd) ⊃ . . .

and for any constant-coefficient partial differential operator

L =
∑

i1,...,id≥0:i1+...+id≤m

ci1,...,id
∂i1+...+id

∂
x
i1
1
. . . ∂

x
id
d

of some order m ≥ 0, it is easy to see that L is a bounded linear

operator from Ck+m(Rd) to Ck(Rd) for any k ≥ 0.

The Hölder spaces Ck,α(Rd) are designed to “fill up the gaps”

between the discrete spectrum Ck(Rd) of the continuously differen-

tiable spaces. For k = 0 and 0 ≤ α ≤ 1, these spaces are defined as
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the subspace of functions f ∈ C0(Rd) whose norm

‖f‖C0,α(Rd) := ‖f‖C0(Rd) + sup
x,y∈Rd:x 6=y

|f(x)− f(y)|
|x− y|α

is finite. To put it another way, f ∈ C0,α(Rd) if f is bounded and

continuous, and furthermore obeys the Hölder continuity bound

|f(x)− f(y)| ≤ C|x− y|α

for some constant C > 0 and all x, y ∈ Rd.

The space C0,0(Rd) is easily seen to be just C0(Rd) (with an

equivalent norm). At the other extreme, C0,1(Rd) is the class of

Lipschitz functions, and is also denoted Lip(Rd) (and the C0,1 norm

is also known as the Lipschitz norm).

Exercise 1.14.4. Show that C0,α(Rd) is a Banach space for every

0 ≤ α ≤ 1.

Exercise 1.14.5. Show that C0,α(Rd) ⊃ C0,β(Rd) for every 0 ≤
α ≤ β ≤ 1, and that the inclusion map is continuous.

Exercise 1.14.6. If α > 1, show that the C0,α(Rd) norm of a func-

tion f is finite if and only if f is constant. This explains why we

generally restrict the Hölder index α to be less than or equal to 1.

Exercise 1.14.7. Show that C1(Rd) is a proper subspace of C0,1(Rd),

and that the restriction of the C0,1(Rd) norm to C1(Rd) is equivalent

to the C1 norm. (The relationship between C1(Rd) and C0,1(Rd) is

in fact closely analogous to that between C0(Rd) and L∞(Rd), as

can be seen from the fundamental theorem of calculus.)

Exercise 1.14.8. Let f ∈ (C∞c (R))∗ be a distribution. Show that

f ∈ C0,1(R) if and only if f ∈ L∞(R), and the distributional deriva-

tive f ′ of f also lies in L∞(R). Furthermore, for f ∈ C0,1(R), show

that ‖f‖C0,1(R) is comparable to ‖f‖L∞(R) + ‖f ′‖L∞(R).

We can then define the Ck,α(Rd) spaces for natural numbers

k ≥ 0 and 0 ≤ α ≤ 1 to be the subspace of Ck(Rd) whose norm

‖f‖Ck,α(Rd) :=

k∑
j=0

‖∇jf‖C0,α(Rd)
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is finite. (As before, there are a variety of ways to define the C0,α

norm of the tensor-valued quantity ∇jf , but they are all equivalent

to each other.)

Exercise 1.14.9. Show that Ck,α(Rd) is a Banach space which con-

tains Ck+1(Rd), and is contained in turn in Ck(Rd).

As before, Ck,0(Rd) is equal to Ck(Rd), and Ck,α(Rd) is con-

tained in Ck,β(Rd). The space Ck,1(Rd) is slightly larger than Ck+1,

but is fairly close to it, thus providing a near-continuum of spaces

between the sequence of spaces Ck(Rd). The following examples il-

lustrates this:

Exercise 1.14.10. Let φ ∈ C∞c (R) be a test function, let k ≥ 0 be

a natural number, and let 0 ≤ α ≤ 1.

• Show that the function |x|sφ(x) lies in Ck,α(R) whenever

s ≥ k + α.

• Conversely, if s is not an integer, φ(0) 6= 0, and s < k + α,

show that |x|sφ(x) does not lie in Ck,α(R).

• Show that |x|k+1φ(x)1x>0 lies in Ck,1(R), but not in Ck+1(R).

This example illustrates that the quantity k+α can be viewed as mea-

suring the total amount of regularity held by functions in Ck,α(R):

k full derivatives, plus an additional α amount of Hölder continuity.

Exercise 1.14.11. Let φ ∈ C∞c (Rd) be a test function, let k ≥ 0 be

a natural number, and let 0 ≤ α ≤ 1. Show that for ξ ∈ Rd with

|ξ| ≥ 1, the function φ(x) sin(ξ · x) has a Ck,α(R) norm of at most

C|ξ|k+α, for some C depending on φ, d, k, α.

By construction, it is clear that continuously differential operators

L of order m will map Ck+m,α(Rd) continuously to Ck,α(Rd).

Now we consider what happens with products.

Exercise 1.14.12. Let k, l ≥ 0 be natural numbers, and 0 ≤ α, β ≤
1.

• If f ∈ Ck(Rd) and g ∈ Cl(Rd), show that fg ∈ Cmin(k,l)(Rd),

and that the multiplication map is continuous from Ck(Rd)×
Cl(Rd) to Cmin(k,l)(Rd). (Hint : reduce to the case k = l

and use induction.)
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• If f ∈ Ck,α(Rd) and g ∈ Cl,β(Rd), and k + α ≤ l + β,

show that fg ∈ Ck,α(Rd), and that the multiplication map

is continuous from Ck,α(Rd)× Cl,β(Rd) to Ck,α(Rd).

It is easy to see that the regularity in these results cannot be improved

(just take g = 1). This illustrates a general principle, namely that a

pointwise product fg tends to acquire the lower of the regularities of

the two factors f, g.

As one consequence of this exercise, we see that any variable-

coefficient differential operator L of order m with C∞(R) coefficients

will map Cm+k,α(Rd) to Ck,α(Rd) for any k ≥ 0 and 0 ≤ α ≤ 1.

We now briefly remark on Hölder spaces on open domains Ω in

Euclidean space Rd. Here, a new subtlety emerges; instead of having

just one space Ck,α for each choice of exponents k, α, one actually

has a range of spaces to choose from, depending on what kind of

behaviour one wants to impose at the boundary of the domain. At

one extreme, one has the space Ck,α(Ω), defined as the space of k

times continuously differentiable functions f : Ω → C whose Hölder

norm

‖f‖Ck,α(Ω) :=

k∑
j=0

sup
x∈Ω
|∇jf(x)|+ sup

x,y∈Ω:x 6=y

|∇jf(x)−∇jf(y)|
|x− y|α

is finite; this is the “maximal” choice for the Ck,α(Ω). At the other

extreme, one has the space Ck,α0 (Ω), defined as the closure of the

compactly supported functions in Ck,α(Ω). This space is smaller than

Ck,α(Ω); for instance, functions in C0,α
0 ((0, 1)) must converge to zero

at the endpoints 0, 1, while functions in Ck,α((0, 1)) do not need to

do so. An intermediate space is Ck,α(Rd) �Ω, defined as the space of

restrictions of functions in Ck,α(Rd) to Ω. For instance, the restric-

tion of |x|ψ(x) to R\{0}, where ψ is a cutoff function non-vanishing

at the origin, lies in C1,0(R\{0}), but is not in C1,0(R) �R\{0} or

C1,0
0 (R\{0}) (note that |x|ψ(x) itself is not in C1,0(R), as it is not

continuously differentiable at the origin). It is possible to clarify the

exact relationships between the various flavours of Hölder spaces on

domains (and similarly for the Sobolev spaces discussed below), but

we will not discuss these topics here.
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Exercise 1.14.13. Show that C∞c (Rd) is a dense subset of Ck,α(Rd)

for any k ≥ 0 and 0 ≤ α ≤ 1. (Hint : To approximate a Ck,α

function by a C∞c one, first smoothly truncate the function at a large

spatial scale to be compactly supported, then convolve with a smooth,

compactly supported approximation to the identity.)

Hölder spaces are particularly useful in elliptic PDE, because

tools such as the maximum principle lend themselves well to the

suprema that appear inside the definition of the Ck,α norms; see

[GiTr1998] for a thorough treatment. For simple examples of ellip-

tic PDE, such as the Poisson equation ∆u = f , one can also use the

explicit fundamental solution, through lengthy but straightforward

computations. We give a typical example here:

Exercise 1.14.14 (Schauder estimate). Let 0 < α < 1, and let

f ∈ C0,α(R3) be a function supported on the unit ball B(0, 1). Let

u be the unique bounded solution to the Poisson equation ∆u = f

(where ∆ =
∑3
j=1

∂2

∂x2
j

is the Laplacian), given by convolution with

the Newton kernel:

u(x) :=
1

4π

∫
R3

f(y)

|x− y|
dy.

(i) Show that u ∈ C0(R3).

(ii) Show that u ∈ C1(R3), and rigorously establish the formula

∂u

∂xj
(x) = − 1

4π

∫
R3

(xj − yj)
f(y)

|x− y|3
dy

for j = 1, 2, 3.

(iii) Show that u ∈ C2(R3), and rigorously establish the formula

∂2u

∂xi∂xj
(x) =

1

4π
lim
ε→0

∫
|x−y|≥ε

[
3(xi − yi)(xj − yj)

|x− y|5
− δij
|x− y|3

]f(y) dy

for i, j = 1, 2, 3, where δij is the Kronecker delta. (Hint :

first establish this in the two model cases when f(x) = 0,

and when f is constant near x.)

(iv) Show that u ∈ C2,α(R3), and establish the Schauder esti-

mate

‖u‖C2,α(R3) ≤ Cα‖f‖C0,α(R3)

where Cα depends only on α.
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(v) Show that the Schauder estimate fails when α = 0. Using

this, conclude that there eixsts f ∈ C0(R3) supported in the

unit ball such that the function u defined above fails to be

in C2(R3). (Hint : use the closed graph theorem, Theorem

1.7.19.) This failure helps explain why it is necessary to

introduce Hölder spaces into elliptic theory in the first place

(as opposed to the more intuitive Ck spaces).

Remark 1.14.2. Roughly speaking, the Schauder estimate asserts

that if ∆u has C0,α regularity, then all other second derivatives of

u have C0,α regularity as well. This phenomenon - that control of

a special derivative of u at some order implies control of all other

derivatives of u at that order - is known as elliptic regularity, and

relies crucially on ∆ being an elliptic differential operator. We will

discus ellipticity a little bit more later in Exercise 1.14.36. The theory

of Schauder estimates is by now extremely well developed, and applies

to large classes of elliptic operators on quite general domains, but we

will not discuss these estimates and their applications to various linear

and nonlinear elliptic PDE here.

Exercise 1.14.15 (Rellich-Kondrakov type embedding theorem for

Hölder spaces). Let 0 ≤ α < β ≤ 1. Show that any bounded sequence

of functions fn ∈ C0,β(Rd) that are all supported in the same compact

subset of Rn will have a subsequence that converges in C0,α(Rd).

(Hint : use the Arzelá-Ascoli theorem (Theorem 1.8.23) to first obtain

uniform convergence, then upgrade this convergence.) This is part of

a more general phenomenon: sequences bounded in a high regularity

space, and constrained to lie in a compact domain, will tend to have

convergent subsequences in low regularity spaces.

1.14.2. Classical Sobolev spaces. We now turn to the “classical”

Sobolev spaces W k,p(Rd), which involve only an integral amount k

of regularity.

Definition 1.14.3. Let 1 ≤ p ≤ ∞, and let k ≥ 0 be a natural

number. A function f is said to lie in W k,p(Rd) if its weak derivatives

∇jf exist and lie in Lp(Rd) for all j = 0, . . . , k. If f lies in W k,p(Rd),



1.14. Sobolev spaces 277

we define the W k,p norm of f by the formula

‖f‖Wk,p(Rd) :=

k∑
j=0

‖∇jf‖Lp(Rd).

(As before, the exact choice of convention in which one measures the

Lp norm of ∇j is not particularly relevant for most applications, as

all such conventions are equivalent up to multiplicative constants.)

The space W k,p(Rd) is also denoted Lpk(Rd) in some texts.

Example 1.14.4. W 0,p(Rd) is of course the same space as Lp(Rd),

thus the Sobolev spaces generalise the Lebesgue spaces. From Exer-

cise 1.14.8 we see that W 1,∞(R) is the same space as C0,1(R), with

an equivalent norm. More generally, one can see from induction that

W k+1,∞(R) is the same space as Ck,1(R) for k ≥ 0, with an equiv-

alent norm. It is also clear that W k,p(Rd) contains W k+1,p(Rd) for

any k, p.

Example 1.14.5. The function | sinx| lies in W 1,∞(R), but is not

everywhere differentiable in the classical sense; nevertheless, it has

a bounded weak derivative of cosx sgn(sin(x)). On the other hand,

the Cantor function (aka the “Devil’s staircase”) is not in W 1,∞(R),

despite having a classical derivative of zero at almost every point;

the weak derivative is a Cantor measure, which does not lie in any

Lp space. Thus one really does need to work with weak derivatives

rather than classical derivatives to define Sobolev spaces properly (in

contrast to the Ck,α spaces).

Exercise 1.14.16. Let φ ∈ C∞c (Rd) be a bump function, k ≥ 0,

and 1 ≤ p ≤ ∞. Show that if ξ ∈ Rd with |ξ| ≥ 1, R ≥ 1/|ξ|, and

A > 0, then the function φ(x/R) sin(ξx) has a W k,p(R) norm of at

most CA|ξ|kRd/p, where C is a constant depending only on φ, p and

k. (Compare this with Exercise 1.14.3 and Exercise 1.14.11.) What

happens when the condition R ≥ 1/|ξ| is dropped?

Exercise 1.14.17. Show that W k,p(Rd) is a Banach space for any

1 ≤ p ≤ ∞ and k ≥ 0.

The fact that Sobolev spaces are defined using weak derivatives

is a technical nuisance, but in practice one can often end up working

with classical derivatives anyway by means of the following lemma:
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Lemma 1.14.6. Let 1 ≤ p <∞ and k ≥ 0. Then the space C∞c (Rd)

of test functions is a dense subspace of W k,p(Rd).

Proof. It is clear that C∞c (Rd) is a subspace of W k,p(Rd). We first

show that the smooth functions C∞loc(Rd)∩W k,p(Rd) is a dense sub-

space ofW k,p(Rd), and then show that C∞c (Rd) is dense in C∞loc(Rd)∩
W k,p(Rd).

We begin with the former claim. Let f ∈ W k,p(Rd), and let φn
be a sequence of smooth, compactly supported approximations to the

identity. Since f ∈ Lp(Rd), we see that f ∗ φn converges to f in

Lp(Rd). More generally, since ∇jf is in Lp(Rd) for 0 ≤ j ≤ k, we

see that (∇jf) ∗ φn = ∇j(f ∗ φn) converges to ∇jf in Lp(Rd). Thus

we see that f ∗ φn converges to f in W k,p(Rd). On the other hand,

as φn is smooth, f ∗ φn is smooth; and the claim follows.

Now we prove the latter claim. Let f be a smooth function in

W k,p(Rd), thus ∇jf ∈ Lp(Rd) for all 0 ≤ j ≤ k. We let η ∈ C∞c (Rd)

be a compactly supported function which equals 1 near the origin,

and consider the functions fR(x) := f(x)η(x/R) for R > 0. Clearly,

each fR lies in C∞c (Rd). As R → ∞, dominated convergence shows

that fR converges to f in Lp(Rd). An application of the product

rule then lets us write ∇fR(x) = (∇f)(x)η(x/R)+ 1
Rf(x)(∇η)(x/R).

The first term converges to ∇f in Lp(Rd) by dominated convergence,

while the second term goes to zero in the same topology; thus ∇fR
converges to ∇f in Lp(Rd). A similar argument shows that ∇jfR
converges to ∇jf in Lp(Rd) for all 0 ≤ j ≤ k, and so fR converges to

f in W k,p(Rd), and the claim follows. �

As a corollary of this lemma we also see that the space S(Rd) of

Schwartz functions is dense in W k,p(Rd).

Exercise 1.14.18. Let k ≥ 0. Show that the closure of C∞c (Rd)

in W k,∞(Rd) is Ck+1(Rd), thus Lemma 1.14.6 fails at the endpoint

p =∞.

Now we come to the important Sobolev embedding theorem, which

allows one to trade regularity for integrability. We illustrate this

phenomenon first with some very simple cases. First, we claim that

the space W 1,1(R) embeds continuously into W 0,∞(R) = L∞(R),
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thus trading in one degree of regularity to upgrade L1 integrability

to L∞ integrability. To prove this claim, it suffices to establish the

bound

(1.123) ‖f‖L∞(R) ≤ C‖f‖W 1,1(R)

for all test functions f ∈ C∞c (R) and some constant C, as the claim

then follows by taking limits using Lemma 1.14.6. (Note that any

limit in either the L∞ or W 1,1 topologies, is also a limit in the sense

of distributions, and such limits are necessarily unique. Also, since

L∞(R) is the dual space of L1(R), the distributional limit of any

sequence bounded in L∞(R) remains in L∞(R), by Exercise 1.13.28.)

To prove (1.123), observe from the fundamental theorem of calculus

that

|f(x)− f(0)| = |
∫ x

0

f ′(t) dt| ≤ ‖f ′‖L1(R) ≤ ‖f‖W 1,1(R)

for all x; in particular, from the triangle inequality

‖f‖L∞(R) ≤ |f(0)|+ ‖f‖W 1,1(R).

Also, taking x to be sufficiently large, we see (from the compact sup-

port of f) that

|f(0)| ≤ ‖f‖W 1,1(R)

and (1.123) follows.

Since the closure of C∞c (R) in L∞(R) is C0(R), we actually ob-

tain the stronger embedding, that W 1,1(R) embeds continuously into

C0(R).

Exercise 1.14.19. Show that W d,1(Rd) embeds continuously into

C0(Rd), thus there exists a constant C (depending only on d) such

that

‖f‖C0(Rd) ≤ C‖f‖Wd,1(Rd)

for all f ∈W d,1(Rd).

Now we turn to Sobolev embedding for exponents other than

p = 1 and p =∞.

Theorem 1.14.7 (Sobolev embedding theorem for one derivative).

Let 1 ≤ p ≤ q ≤ ∞ be such that d
p − 1 ≤ d

q ≤
d
p , but that one is not in
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the endpoint cases (p, q) = (d,∞), (1, d
d−1 ). Then W 1,p(Rd) embeds

continuously into Lq(Rd).

Proof. By Lemma 1.14.6 and the same limiting argument as before,

it suffices to establish the Sobolev embedding inequality

‖f‖Lq(Rd) ≤ Cp,q,d‖f‖W 1,p(Rd)

for all test functions f ∈ C∞c (Rd), and some constant Cp,q,d de-

pending only on p, q, d, as the inequality will then extend to all

f ∈ W 1,p(Rd). To simplify the notation we shall use X . Y to

denote an estimate of the form X ≤ Cp,q,dY , where Cp,q,d is a con-

stant depending on p, q, d (the exact value of this constant may vary

from instance to instance).

The case p = q is trivial. Now let us look at another extreme case,

namely when d
p − 1 = d

q ; by our hypotheses, this forces 1 < p < d.

Here, we use the fundamental theorem of calculus (and the compact

support of f) to write

f(x) = −
∫ ∞

0

ω · ∇f(x+ rω) dr

for any x ∈ Rd and any direction ω ∈ Sd−1. Taking absolute values,

we conclude in particular that

|f(x)| .
∫ ∞

0

|∇f(x+ rω)| dr.

We can average this over all directions ω:

|f(x)| .
∫
Sd−1

∫ ∞
0

|∇f(x+ rω) drdω.

Switching from polar coordinates back to Cartesian (multiplying and

dividing by rd−1) we conclude that

|f(x)| .
∫
Rd

1

|y|d−1
|∇f(x− y)| dy,

thus f is pointwise controlled by the convolution of |∇f | with the frac-

tional integration 1
|x|d−1 . By the Hardy-Littlewood-Sobolev theorem

on fractional integration (Corollary 1.11.18) we conclude that

‖f‖Lq(Rd) . ‖∇f‖Lp(Rd)
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and the claim follows. (Note that the hypotheses 1 < p < d are

needed here in order to be able to invoke this theorem.)

Now we handle intermediate cases, when d
p − 1 < d

q <
d
p . (Many

of these cases can be obtained from the endpoints already established

by interpolation, but unfortunately not all such cases can be, so we

will treat this case separately.) Here, the trick is not to integrate out

to infinity, but instead to integrate out to a bounded distance. For

instance, the fundamental theorem of calculus gives

f(x) = f(x+Rω)−
∫ R

0

ω · ∇f(x+ rω) dr

for any R > 0, hence

|f(x)| . |f(x+Rω)|+
∫ R

0

|∇f(x+ rω)| dr

What value of R should one pick? If one picks any specific value of

R, one would end up with an average of f over spheres, which looks

somewhat unpleasant. But what one can do here is average over a

range of R’s, for instance between 1 and 2. This leads to

|f(x)| .
∫ 2

1

|f(x+Rω)| dR+

∫ 2

0

|∇f(x+ rω)| dr;

averaging over all directions ω and converting back to Cartesian co-

ordinates, we see that

|f(x)| .
∫

1≤|y|≤2

|f(x− y)| dy +

∫
|y|≤2

1

|y|d−1
|∇f(x− y)| dy.

Thus one is bounding |f | pointwise (up to constants) by the convo-

lution of |f | with the kernel K1(y) := 11≤|y|≤2, plus the convolution

of |∇f | with the kernel K2(y) := 1|y|≤2
1

|y|d−1 . A short computation

shows that both kernels lie in Lr(Rd), where r is the exponent in

Young’s inequality, and more specifically that 1
q + 1 = 1

p + 1
r (and

in particular 1 < r < d
d−1 ). Applying Young’s inequality (Exercise

1.11.25), we conclude that

‖f‖Lq(Rd) . ‖f‖Lp(Rd) + ‖∇f‖Lp(Rd)

and the claim follows. �
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Remark 1.14.8. It is instructive to insert the example in Exer-

cise 1.14.16 into the Sobolev embedding theorem. By replacing the

W 1,p(Rd) norm with the Lq(Rd) norm, one trades one factor of the

frequency scale |ξ| for 1
q−

1
p powers of the width Rd. This is consistent

with the Sobolev embedding theorem so long as Rd & 1/|ξ|d, which is

essentially one of the hypotheses in that exercise. Thus, one can view

Sobolev embedding as an assertion that the width of a function must

always be greater than or comparable to the wavelength scale (the

reciprocal of the frequency scale), raised to the power of the dimen-

sion; this is a manifestation of the uncertainty principle (see Section

2.6 for further discussion).

Exercise 1.14.20. Let d ≥ 2. Show that the Sobolev endpoint esti-

mate fails in the case (p, q) = (d,∞). (Hint : experiment with func-

tions f of the form f(x) :=
∑N
n=1 φ(2nx), where φ is a test function

supported on the annulus {1 ≤ |x| ≤ 2}.) Conclude in particular that

W 1,d(Rd) is not a subset of L∞(Rd). (Hint : Either use the closed

graph theorem, or use some variant of the function f used in the first

part of this exercise.) Note that when d = 1, the Sobolev endpoint

theorem for (p, q) = (1,∞) follows from the fundamental theorem of

calculus, as mentioned earlier. There are substitutes known for the

endpoint Sobolev embedding theorem, but they involve more sophis-

ticated function spaces, such as the space BMO of spaces of bounded

mean oscillation, which we will not discuss here.

The p = 1 case of the Sobolev inequality cannot be proven via the

Hardy-Littlewood-Sobolev inequality; however, there are other proofs

available. One of these (due to Gagliardo and Nirenberg) is based on

Exercise 1.14.21 (Loomis-Whitney inequality). Let d ≥ 1, let f1, . . . , fd ∈
Lp(Rd−1) for some 0 < p ≤ ∞, and let F : Rd → C be the function

F (x1, . . . , xd) :=

d∏
i=1

fi(x1, . . . , xi−1, xi+1, . . . , xd).

Show that

‖F‖Lp/(d−1)(Rd) ≤
d∏
i=1

‖fi‖Lp(Rd).

(Hint : induct on d, using Hölder’s inequality and Fubini’s theorem.)
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Lemma 1.14.9 (Endpoint Sobolev inequality). W 1,1(Rd) embeds

continuously into Ld/(d−1)(Rd).

Proof. It will suffice to show that

‖f‖Ld/(d−1)(Rd) ≤ ‖∇f‖L1(Rd)

for all test functions f ∈ C∞c (Rd). From the fundamental theorem of

calculus we see that

|f(x1, . . . , xd)| ≤
∫
R

| ∂f
∂xi

(x1, . . . , xi−1, t, xi+1, . . . , xd)| dt

and thus

|f(x1, . . . , xd)| ≤ fi(x1, . . . , xi−1, xi+1, . . . , xd)

where

fi(x1, . . . , xi−1, xi+1, . . . , xd) :=

∫
R

|∇f(x1, . . . , xi−1, t, xi+1, . . . , xd)| dt.

From Fubini’s theorem we have

‖fi‖L1(Rd) = ‖∇f‖L1(Rd)

and hence by the Loomis-Whitney inequality

‖f1 . . . fd‖L1/(d−1)(Rd) ≤ ‖∇f‖dL1(Rd),

and the claim follows. �

Exercise 1.14.22 (Connection between Sobolev embedding and isoperi-

metric inequality). Let d ≥ 2, and let Ω be an open subset of Rd

whose boundary ∂Ω is a smooth d − 1-dimensional manifold. Show

that the surface area |∂Ω| of Ω is related to the volume |Ω| of Ω by

the isoperimetric inequality

|Ω| ≤ Cd|∂Ω|d/(d−1)

for some constant Cd depending only on d. (Hint : Apply the endpoint

Sobolev theorem to a suitably smoothed out version of 1Ω.) It is also

possible to reverse this implication and deduce the endpoint Sobolev

embedding theorem from the isoperimetric inequality and the coarea

formula, which we will do in later notes.

Exercise 1.14.23. Use dimensional analysis to argue why the Sobolev

embedding theorem should fail when d
q <

d
p − 1. Then create a rigor-

ous counterexample to that theorem in this case.
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Exercise 1.14.24. Show thatW k,p(Rd) embeds intoW l,q(Rd) when-

ever k ≥ l ≥ 0 and 1 < p < q ≤ ∞ are such that d
p − k ≤

d
q − l, and

such that at least one of the two inequalities q ≤ ∞, dp − k ≤
d
q − l is

strict.

Exercise 1.14.25. Show that the Sobolev embedding theorem fails

whenever q < p. (Hint : experiment with functions of the form f(x) =∑n
j=1 φ(x − xj), where φ is a test function and the xj are widely

separated points in space.)

Exercise 1.14.26 (Hölder-Sobolev embedding). Let d < p < ∞.

Show that W 1,p(Rd) embeds continuously into C0,α(Rd), where 0 <

α < 1 is defined by the scaling relationship d
p − 1 = −α. Use dimen-

sional analysis to justify why one would expect this scaling relation-

ship to arise naturally, and give an example to show that α cannot

be improved to any higher exponent.

More generally, with the same assumptions on p, α, show that

W k+1,p(Rd) embeds continuously into Ck,α(Rd) for all natural num-

bers k ≥ 0.

Exercise 1.14.27 (Sobolev product theorem, special case). Let k ≥
1, 1 < p, q < d/k, and 1 < r < ∞ be such that 1

p + 1
q −

k
d = 1

r .

Show that whenever f ∈ W k,p(Rd) and g ∈ W k,q(Rd), then fg ∈
W k,r(Rd), and that

‖fg‖Wk,r(Rd) ≤ Cp,q,k,d,r‖f‖Wk,p(Rd)‖g‖Wk,q(Rd)

for some constant Cp,q,k,d,r depending only on the subscripted param-

eters. (This is not the most general range of parameters for which

this sort of product theorem holds, but it is an instructive special

case.)

Exercise 1.14.28. Let L be a differential operator of order m whose

coefficients lie in C∞(Rd). Show that L maps W k+m,p(Rd) continu-

ously to W k,p(Rd) for all 1 ≤ p ≤ ∞ and all integers k ≥ 0.

1.14.3. L2-based Sobolev spaces. It is possible to develop more

general Sobolev spaces W s,p(Rd) than the integer-regularity spaces

W k,p(Rd) defined above, in which s is allowed to take any real number

(including negative numbers) as a value, although the theory becomes
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somewhat pathological unless one restricts attention to the range 1 <

p <∞, for reasons having to do with the theory of singular integrals.

As the theory of singular integrals is beyond the scope of this

course, we will illustrate this theory only in the model case p = 2,

in which Plancherel’s theorem is available, which allows one to avoid

dealing with singular integrals by working purely on the frequency

space side.

To explain this, we begin with the Plancherel identity∫
Rd

|f(x)|2 dx =

∫
Rd

|f̂(ξ)|2 dξ,

which is valid for all L2(Rd) functions and in particular for Schwartz

functions f ∈ S(Rd). Also, we know that the Fourier transform of

any derivative ∂f
∂xj

f of f is −2πiξj f̂(ξ). From this we see that∫
Rd

| ∂f
∂xj

(x)|2 dx =

∫
Rd

(2π|ξj |)2|f̂(ξ)|2 dξ,

for all f ∈ S(Rd) and so on summing in j we have∫
Rd

|∇f(x)|2 dx =

∫
Rd

(2π|ξ|)2|f̂(ξ)|2 dξ.

A similar argument then gives∫
Rd

|∇jf(x)|2 dx =

∫
Rd

(2π|ξ|)2j |f̂(ξ)|2 dξ

and so on summing in j we have

‖f‖2Wk,2(Rd) =

∫
Rd

k∑
j=0

(2π|ξ|)2j |f̂(ξ)|2 dξ

for all k ≥ 0 and all Schwartz functions f ∈ S(Rd). Since the

Schwartz functions are dense in W k,2(Rd), a limiting argument (us-

ing the fact that L2 is complete) then shows that the above formula

also holds for all f ∈W k,2(Rd).

Now observe that the quantity
∑k
j=0(2π|ξ|)2j is comparable (up

to constants depending on k, d) to the expression 〈ξ〉2k, where 〈x〉 :=

(1 + |x|2)1/2 (this quantity is sometimes known as the “Japanese

bracket” of x). We thus conclude that

‖f‖Wk,2(Rd) ∼ ‖〈ξ〉kf̂(ξ)‖L2(Rd),
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where we use x ∼ y here to denote the fact that x and y are compa-

rable up to constants depending on d, k, and ξ denotes the variable

of independent variable on the right-hand side. If we then define, for

any real number s, the space Hs(Rd) to be the space of all tempered

distributions f such that the distribution 〈ξ〉sf̂(ξ) lies in L2, and give

this space the norm

‖f‖Hs(Rd) := ‖〈ξ〉sf̂(ξ)‖L2(Rd),

then we see that W k,2(Rd) embeds into Hk(Rd), and that the norms

are equivalent.

Actually, the two spaces are equal:

Exercise 1.14.29. For any s ∈ R, show that S(Rd) is a dense sub-

space of Hs(Rd). Use this to conclude that W k,2(Rd) = Hk(Rd) for

all non-negative integers k.

It is clear that H0(Rd) ≡ L2(Rd), and that Hs(Rd) ⊂ Hs′(Rd)

whenever s > s′. The spaces Hs(Rd) are also (complex) Hilbert

spaces, with the Hilbert space inner product

〈f, g〉Hs(Rd) :=

∫
Rd

〈ξ〉2sf(ξ)g(ξ) dξ.

It is not hard to verify that this inner product does indeed give

Hs(Rd) the structure of a Hilbert space (indeed, it is isomorphic

under the Fourier transform to the Hilbert space L2(〈ξ〉2sdξ) which is

isomorphic in turn under the map F (ξ) 7→ 〈ξ〉sF (ξ) to the standard

Hilbert space L2(Rd)).

Being a Hilbert space, Hs(Rd) is isomorphic to its dual Hs(Rd)∗

(or more precisely, to the complex conjugate of this dual). There is

another duality relationship which is also useful:

Exercise 1.14.30 (Duality between Hs and H−s). Let s ∈ R, and

f ∈ Hs(Rd). Show also for any continuous linear functional λ :

Hs(Rd)→ C there exists a unique g ∈ H−s(Rd) such that

λ(f) = 〈f, g〉L2(Rd)

for all f ∈ Hs(Rd), where the inner product 〈f, g〉L2(Rd) is defined

via the Fourier transform as

〈f, g〉L2(Rd) :=

∫
Rd

f̂(ξ)ĝ(ξ) dξ.
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Also show that

‖f‖Hs(Rd) := sup{|〈f, g〉L2(Rd) : g ∈ S(Rd); ‖g‖H−s(Rd) ≤ 1}

for all f ∈ Hs(Rd).

The Hs Sobolev spaces also enjoy the same type of embedding

estimates as their classical counterparts:

Exercise 1.14.31 (Sobolev embedding for Hs, I). If s > d/2, show

that Hs(Rd) embeds continuously into C0,α(Rd) whenever 0 < α ≤
min(s − d

2 , 1). (Hint : use the Fourier inversion formula and the

Cauchy-Schwarz inequality.)

Exercise 1.14.32 (Sobolev embedding for Hs, II). If 0 < s < d/2,

show that Hs(Rd) embeds continuously into Lq(Rd) whenever d
2−s ≤

d
q ≤

d
2 . (Hint : it suffices to handle the extreme case d

q = d
2 − s. For

this, first reduce to establishing the bound ‖f‖Lq(Rd) ≤ C‖f‖Hs(Rd)

to the case when f ∈ Hs(Rd) is a Schwartz function whose Fourier

transform vanishes near the origin (and C depends on s, d, q), and

write f̂(ξ) = ĝ(ξ)/|ξ|s for some g which is bounded in L2(Rd). Then

use Exercise 1.13.35 and Corollary 1.11.18.

Exercise 1.14.33. In this exercise we develop a more elementary

variant of Sobolev spaces, the Lp Hölder spaces. For any 1 ≤ p ≤ ∞
and 0 < α < 1, let Λpα(Rd) be the space of functions f whose norm

‖f‖Λpα(Rd) := ‖f‖Lp(Rd) + sup
x∈Rd\{0}

‖τxf − f‖Lp(Rd)

|x|α

is finite, where τx(y) := f(y − x) is the translation of f by x. Note

that Λ∞α (Rd) = C0,α(Rd) (with equivalent norms).

(i) For any 0 < α < 1, establish the inclusions Λ2
α+ε(R

d) ⊂
Hα(Rd) ⊂ Λ2

α(Rd) for any 0 < ε < 1 − α. (Hint : take

Fourier transforms and work in frequency space.)

(ii) Let φ ∈ C∞c (Rd) be a bump function, and let φn be the

approximations to the identity φn(x) := 2dnφ(2nx). If f ∈
Λpα(Rd), show that one has the equivalence

‖f‖Λpα(Rd) ∼ ‖f‖Lp(Rd) + sup
n≥0

2αn‖f ∗ φn+1 − f ∗ φn‖Lp(Rd)
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where we use x ∼ y to denote the assertion that x and y

are comparable up to constants depending on p, d, α. (Hint :

To upper bound ‖τxf − f‖Lp(Rd) for |x| ≤ 1, express f as

a telescoping sum of f ∗ φn+1 − f ∗ φn for 2−n ≤ x, plus a

final term f ∗ φn0
where 2−n0 is comparable to x.)

(iii) If 1 ≤ p ≤ q ≤ ∞ and 0 < α < 1 are such that d
p − α <

d
q ,

show that Λpα(Rd) embeds continuously into Lq(Rd). (Hint :

express f(x) as f ∗ φ1 ∗ φ0 plus a telescoping series of f ∗
φn+1 ∗ φn − f ∗ φn ∗ φn−1, where φn is as in the previous

exercise. The additional convolution is in place in order to

apply Young’s inequality.)

The functions f ∗φn+1−f ∗φn are crude versions of Littlewood-Paley

projections, which play an important role in harmonic analysis and

nonlinear wave and dispersive equations.

Exercise 1.14.34 (Sobolev trace theorem, special case). Let s > 1/2.

For any f ∈ C∞c (Rd), establish the Sobolev trace inequality

‖f �Rd−1 ‖Hs−1/2(Rd) ≤ C‖f‖Hs(Rd)

where C depends only on d and s, and f �Rd−1 is the restriction of f to

the standard hyperplane Rd−1 ≡ Rd−1 × {0} ⊂ Rd. (Hint : Convert

everything to L2-based statements involving the Fourier transform of

f , and use Schur’s test, see Lemma 1.11.14.)

Exercise 1.14.35. (i) Show that if f ∈ Hs(Rd) for some s ∈
R, and g ∈ C∞(Rd), then fg ∈ Hs(Rd) (note that this

product has to be defined in the sense of tempered distri-

butions if s is negative), and the map f 7→ fg is continuous

from Hs(Rd) to Hs(Rd). (Hint : As with the previous ex-

ercise, convert everything to L2-based statements involving

the Fourier transform of f , and use Schur’s test.)

(ii) Let L be a partial differential operator of order m with co-

efficients in C∞(Rd) for some m ≥ 0. Show that L maps

Hs(Rd) continuously to Hs−m(Rd) for all s ∈ R.

Now we consider a partial converse to Exercise 1.14.35.
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Exercise 1.14.36 (Elliptic regularity). Let m ≥ 0, and let

L =
∑

j1,...,jd≥0;j1+...+jd=m

cj1,...,jd
∂d

∂xj1 . . . ∂xjd

be a constant-coefficient homogeneous differential operator of order

m. Define the symbol l : Rd → C of L to be the homogeneous

polynomial of degree m, defined by the formula

L(ξ1, . . . , ξd) :=
∑

j1,...,jd≥0;j1+...+jd=m

cj1,...,jdξj1 . . . ξjd .

We say that L is elliptic if one has the lower bound

l(ξ) ≥ c|ξ|m

for all ξ ∈ Rd and some constant c > 0. Thus, for instance, the

Laplacian is elliptic. Another example of an elliptic operator is the

Cauchy-Riemann operator ∂
∂x1
− i ∂

∂x2
in R2. On the other hand, the

heat operator ∂
∂t−∆, the Schrödinger operator i ∂∂t +∆, and the wave

operator − ∂2

∂t2 + ∆ are not elliptic on R1+d.

(i) Show that if L is elliptic of order m, and f is a tempered dis-

tribution such that f, Lf ∈ Hs(Rd), then f ∈ Hs+m(Rd),

and that one has the bound

(1.124) ‖f‖Hs+m(Rd) ≤ C(‖f‖Hs(Rd) + ‖Lf‖Hs(Rd))

for some C depending on s,m, d, L. (Hint : Once again,

rewrite everything in terms of the Fourier transform f̂ of

f .)

(ii) Show that if L is a constant-coefficient differential operator

of m which is not elliptic, then the estimate (1.124) fails.

(iii) Let f ∈ L2
loc(Rd) be a function which is locally in L2, and let

L be an elliptic operator of order m. Show that if Lf = 0,

then f is smooth. (Hint : First show inductively that fφ ∈
Hk(Rd) for every test function φ and every natural number

k ≥ 0.)

Remark 1.14.10. The symbol l of an elliptic operator (with real

coefficients) tends to have level sets that resemble ellipsoids, hence

the name. In contrast, the symbol of parabolic operators such as the

heat operator ∂
∂t −∆ has level sets resembling paraboloids, and the
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symbol of hyperbolic operators such as the wave operator − ∂2

∂t2 + ∆

has level sets resembling hyperboloids. The symbol in fact encodes

many important features of linear differential operators, in particular

controlling whether singularities can form, and how they must prop-

agate in space and/or time; but this topic is beyond the scope of this

course.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/04/30.

Thanks to Antonio, bk, lutfu, PDEbeginner, Polam, timur, and anony-

mous commenters for corrections.

1.15. Hausdorff dimension

A fundamental characteristic of many mathematical spaces (e.g. vec-

tor spaces, metric spaces, topological spaces, etc.) is their dimension,

which measures the “complexity” or “degrees of freedom” inherent in

the space. There is no single notion of dimension; instead, there are

a variety of different versions of this concept, with different versions

being suitable for different classes of mathematical spaces. Typically,

a single mathematical object may have several subtly different no-

tions of dimension that one can place on it, which will be related

to each other, and which will often agree with each other in “non-

pathological” cases, but can also deviate from each other in many

other situations. For instance:

• One can define the dimension of a space X by seeing how

it compares to some standard reference spaces, such as Rn

or Cn; one may view a space as having dimension n if it

can be (locally or globally) identified with a standard n-

dimensional space. The dimension of a vector space or a

manifold can be defined in this fashion.

• Another way to define dimension of a space X is as the

largest number of “independent” objects one can place in-

side that space; this can be used to give an alternate notion

of dimension for a vector space, or of an algebraic variety, as

well as the closely related notion of the transcendence degree

of a field. The concept of VC dimension in machine learning

also broadly falls into this category.
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• One can also try to define dimension inductively, for in-

stance declaring a space X to be n-dimensional if it can be

“separated” somehow by an n− 1-dimensional object; thus

an n-dimensional object will tend to have “maximal chains”

of sub-objects of length n (or n+ 1, depending on how one

initialises the chain and how one defines length). This can

give a notion of dimension for a topological space or of a

commutative ring (Krull dimension).

The notions of dimension as defined above tend to necessarily

take values in the natural numbers (or the cardinal numbers); there

is no such space as R
√

2, for instance, nor can one talk about a basis

consisting of π linearly independent elements, or a chain of maximal

ideals of length e. There is however a somewhat different approach

to the concept of dimension which makes no distinction between inte-

ger and non-integer dimensions, and is suitable for studying “rough”

sets such as fractals. The starting point is to observe that in the d-

dimensional space Rd, the volume V of a ball of radius R grows like

Rd, thus giving the following heuristic relationship

(1.125)
log V

logR
≈ d

between volume, scale, and dimension. Formalising this heuristic

leads to a number of useful notions of dimension for subsets of Rn

(or more generally, for metric spaces), including (upper and lower)

Minkowski dimension (also known as box-packing dimension or Minkowski-

Bougliand dimension), and Hausdorff dimension.

Remark 1.15.1. In K-theory, it is also convenient to work with

“virtual” vector spaces or vector bundles, such as formal differences

of such spaces, and which may therefore have a negative dimension;

but as far as I am aware there is no connection between this notion

of dimension and the metric ones given here.

Minkowski dimension can either be defined externally (relating

the external volume of δ-neighbourhoods of a set E to the scale

δ) or internally (relating the internal δ-entropy of E to the scale).

Hausdorff dimension is defined internally by first introducing the d-

dimensional Hausdorff measure of a set E for any parameter 0 ≤ d <
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∞, which generalises the familiar notions of length, area, and vol-

ume to non-integer dimensions, or to rough sets, and is of interest in

its own right. Hausdorff dimension has a lengthier definition than its

Minkowski counterpart, but is more robust with respect to operations

such as countable unions, and is generally accepted as the “standard”

notion of dimension in metric spaces. We will compare these concepts

against each other later in these notes.

One use of the notion of dimension is to create finer distinctions

between various types of “small” subsets of spaces such as Rn, be-

yond what can be achieved by the usual Lebesgue measure (or Baire

category). For instance, a point, line, and plane in R3 all have zero

measure with respect to three-dimensional Lebesgue measure (and are

nowhere dense), but of course have different dimensions (0, 1, and 2

respectively). (Another good example is provided by Kakeya sets.)

This can be used to clarify the nature of various singularities, such as

that arising from non-smooth solutions to PDE; a function which is

non-smooth on a set of large Hausdorff dimension can be considered

less smooth than one which is non-smooth on a set of small Hausdorff

dimension, even if both are smooth almost everywhere. While many

properties of the singular set of such a function are worth studying

(e.g. their rectifiability), understanding their dimension is often an

important starting point. The interplay between these types of con-

cepts is the subject of geometric measure theory.

1.15.1. Minkowski dimension. Before we study the more stan-

dard notion of Hausdorff dimension, we begin with the more ele-

mentary concept of the (upper and lower) Minkowski dimension of a

subset E of a Euclidean space Rn.

There are several equivalent ways to approach Minkowski dimen-

sion. We begin with an “external” approach, based on a study of

the δ-neighbourhoods Eδ := {x ∈ Rn : dist(x,E) < δ} of E, where

dist(x,E) := inf{|x− y| : y ∈ E} and we use the Euclidean metric on

Rn. These are open sets in Rn and therefore have a d-dimensional

volume (or Lebesgue measure) vold(Eδ). To avoid divergences, let us

assume for now that E is bounded, so that the Eδ have finite volume.
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Let 0 ≤ d ≤ n. Suppose E is a bounded portion of a k-dimensional

subspace, e.g. E = Bd(0, 1) × {0}n−d, where Bd(0, 1) ⊂ Rd is the

unit ball in Rd and we identify Rn with Rd × Rn−d in the usual

manner. Then we see from the triangle inequality that

Bd(0, 1)×Bn−d(0, δ) ⊂ Eδ ⊂ Bd(0, 2)×Bn−d(0, δ)

for all 0 < δ < 1, which implies that

cδn−d ≤ voln(Eδ) ≤ Cδn−d

for some constants c, C > 0 depending only on n, d. In particular, we

have

lim
δ→0

n− log voln(Eδ)

log δ
= d

(compare with (1.125)). This motivates our first definition of Minkowski

dimension:

Definition 1.15.2. Let E be a bounded subset of Rn. The upper

Minkowski dimension dimM (E) is defined as

dimM (E) := lim sup
δ→0

n− log voln(Eδ)

log δ

and the lower Minkowski dimension dimM (E) is defined as

dimM (E) := lim inf
δ→0

n− log voln(Eδ)

log δ
.

If the upper and lower Minkowski dimensions match, we refer to

dimM (E) := dimM (E) = dimM (E) as the Minkowski dimension of

E. In particular, the empty set has a Minkowski dimension of −∞.

Unwrapping all the definitions, we have the following equivalent

formulation, where E is a bounded subset of Rn and α ∈ R:

• We have dimM (E) < α iff for every ε > 0, one has vold(Eδ) ≤
Cδn−d−ε for all sufficiently small δ > 0 and some C > 0.

• We have dimM (E) < α iff for every ε > 0, one has vold(Eδ) ≤
Cδn−d−ε for arbitrarily small δ > 0 and some C > 0.

• We have dimM (E) > α iff for every ε > 0, one has vold(Eδ) ≥
cδn−d−ε for arbitrarily small δ > 0 and some c > 0.

• We have dimM (E) > α iff for every ε > 0, one has vold(Eδ) ≥
cδn−d−ε for all sufficiently small δ > 0 and some c > 0.
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Exercise 1.15.1. (i) Let C ⊂ R be the Cantor set consisting

of all base 4 strings
∑∞
i=1 ai4

−i, where each ai takes values

in {0, 3}. Show that C has Minkowski dimension 1/2. (Hint :

approximate any small δ by a negative power of 4.)

(ii) Let C ′ ⊂ R be the Cantor set consisting of all base 4

strings
∑∞
i=1 ai4

−i, where each ai takes values in {0, 3} when

(2k)! ≤ i < (2k + 1)! for some integer k ≥ 0, and ai is ar-

bitrary for the other values of i. Show that C ′ has a lower

Minkowski dimension of 1/2 and an upper Minkowski di-

mension of 1.

Exercise 1.15.2. Suppose that E ⊂ Rn is a compact set with the

property that there exist 0 < r < 1 and an integer k > 1 such that E

is equal to the union of k disjoint translates of r ·E := {rx : x ∈ E}.
(This is a special case of a self-similar fractal ; the Cantor set is a

typical example.) Show that E has Minkowski dimension log k
log 1/r .

If the k translates of r · E are allowed to overlap, establish the

upper bound dimM (E) ≤ log k
log 1/r .

It is clear that we have the inequalities

0 ≤ dimM (E) ≤ dimM (E) ≤ n

for non-empty bounded E ⊂ Rn, and the monotonicity properties

dimM (E) ≤ dimM (F ); dimM (E) ≤ dimM (F )

whenever E ⊂ F ⊂ Rn are bounded sets. It is thus natural to extend

the definitions of lower and upper Minkowski dimension to unbounded

sets E by defining

(1.126) dimM (E) := sup
F⊂E, bounded

dimM (F )

and

(1.127) dimM (E) := sup
F⊂E, bounded

dimM (F ).

In particular, we easily verify that d-dimensional subspaces of Rn

have Minkowski dimension d.

Exercise 1.15.3. Show that any subset of Rn with lower Minkowski

dimension less than n has Lebesgue measure zero. In particular,
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any subset E ⊂ Rn of positive Lebesgue measure must have full

Minkowski dimension dimM (E) = n.

Now we turn to other formulations of Minkowski dimension. Given

a bounded set E and δ > 0, we make the following definitions:

• N ext
δ (E) (the external δ-covering number of E) is the fewest

number of open balls of radius δ with centres in Rn needed

to cover E.

• N int
δ (E) (the internal δ-covering number of E) is the fewest

number of open balls of radius δ with centres in E needed

to cover E.

• N net
δ (E) (the δ-metric entropy) is the cardinality of the

largest δ-net in E, i.e. the largest set x1, . . . , xk in E such

that |xi − xj | ≥ δ for every 1 ≤ i < j ≤ k.

• N pack
δ (E) (the δ-packing number of E) is the largest number

of disjoint open balls one can find of radius δ with centres

in E.

These three quantities are closely related to each other, and to

the volumes voln(Eδ):

Exercise 1.15.4. For any bounded set E ⊂ Rn and any δ > 0, show

that

N net
2δ (E) = N pack

δ (E) ≤ voln(Eδ)

voln(Bn(0, δ))
≤

≤ N ext
δ (E) ≤ N int

δ (E) ≤ N net
δ (E).

As a consequence of this exercise, we see that

(1.128) dimM (E) = lim sup
δ→0

N ∗δ (E)

log 1/δ

and

(1.129) dimM (E) = lim inf
δ→0

N ∗δ (E)

log 1/δ
.

where ∗ is any of ext, int,net,pack.

One can now take the formulae (1.128), (1.129) as the definition of

Minkowski dimension for bounded sets (and then use (1.126), (1.127)

to extend to unbounded sets). The formulations (1.128), (1.129) for
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∗ = int,net,pack have the advantage of being intrinsic - they only

involve E, rather than the ambient space Rn. For metric spaces, one

still has a partial analogue of Exercise 1.15.4, namely

N net
2δ (E) ≤ N pack

δ (E) ≤ N int
δ (E) ≤ N net

δ (E).

As such, these formulations of Minkowski dimension extend without

any difficulty to arbitrary bounded metric spaces (E, d) (at least when

the spaces are locally compact), and then to unbounded metric spaces

by (1.126), (1.127).

Exercise 1.15.5. If φ : (X, dX) → (Y, dY ) is a Lipschitz map be-

tween metric spaces, show that dimM (φ(E)) ≤ dimM (E) and dimM (φ(E)) ≤
dimM (E) for all E ⊂ X. Conclude in particular that the graph

{(x, φ(x)) : x ∈ Rd} of any Lipschitz function φ : Rd → Rn−d has

Minkowski dimension d, and the graph of any measurable function

φ : Rd → Rn−d has Minkowski dimension at least d.

Note however that the dimension of graphs can become larger

than that of the base in the non-Lipschitz case:

Exercise 1.15.6. Show that the graph {(x, sin 1
x ) : 0 < x < 1} has

Minkowski dimension 3/2.

Exercise 1.15.7. Let (X, d) be a bounded metric space. For each

n ≥ 0, let En be a maximal 2−n-net of X (thus the cardinality of En
is Nnet

2−n(X)). Show that for any continuous function f : X → R and

any x0 ∈ X, one has the inequality

sup
x∈X

f(x) ≤ sup
x0∈E0

f(x0)+

+

∞∑
n=0

sup
xn∈En,xn+1∈En+1:|xn−xn+1|≤ 3

2 2−n
(f(xn)− f(xn+1)).

(Hint : For any x ∈ X, define xn ∈ En to be the nearest point in

En to x, and use a telescoping series.) This inequality (and variants

thereof), which replaces a continuous supremum of a function f(x)

by a sum of discrete suprema of differences f(xn) − f(xn+1) of that

function, is the basis of the generic chaining technique in probability,

used to estimate the supremum of a continuous family of random

processes. It is particularly effective when combined with bounds on
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the metric entropy Nnet
2−n(X), which of course is closely related to the

Minkowski dimension of X, and with large deviation bounds on the

differences f(xn)− f(xn+1). A good reference for generic chaining is

[Ta2005].

Exercise 1.15.8. If E ⊂ Rn and F ⊂ Rm are bounded sets, show

that

dimM (E) + dimM (F ) ≤ dimM (E × F )

and

dimM (E × F ) ≤ dimM (E) + dimM (F ).

Give a counterexample that shows that either of the inequalities here

can be strict. (Hint : There are many possible constructions; one of

them is a modification of Exercise 1.15.1(ii).)

It is easy to see that Minkowski dimension reacts well to finite

unions, and more precisely that

dimM (E ∪ F ) = max(dimM (E),dimM (F ))

and

dimM (E ∪ F ) = max(dimM (E),dimM (F ))

for any E,F ⊂ Rn. However, it does not respect countable unions.

For instance, the rationals Q have Minkowski dimension 1, despite

being the countable union of points, which of course have Minkowski

dimension 0. More generally, it is not difficult to see that any set

E ⊂ Rn has the same upper or lower Minkowski dimension as its topo-

logical closure E, since both sets have the same δ-neighbourhoods.

Thus we see that the notion of Minkowski dimension misses some of

the fine structure of a set E, in particular the presence of “holes”

within the set. We now turn to the notion of Hausdorff dimension,

which rectifies some of these defects.

1.15.2. Hausdorff measure. The Hausdorff approach to dimen-

sion begins by noting that d-dimensional objects in Rn tend to have

a meaningful d-dimensional measure to assign to them. For instance,
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the 1-dimensional boundary of a polygon has a perimeter, the 0-

dimensional vertices of that polygon have a cardinality, and the poly-

gon itself has an area. So to define the notion of a d-Hausdorff di-

mensional set, we will first define the notion of the d-dimensional

Hausdorff measure Hd(E) of a set E.

To do this, let us quickly review one of the (many) constructions

of n-dimensional Lebesgue measure, which we are denoting here by

voln. One way to build this measure is to work with half-open boxes

B =
∏n
i=1[ai, bi) in Rn, which we assign a volume of |B| :=

∏n
i=1(bi−

ai). Given this notion of volume for boxes, we can then define the

outer Lebesgue measure (voln)∗(E) of any set E ⊂ Rn by the formula

(voln)∗(E) := inf{
∞∑
k=1

|Bk| : Bk covers E}

where the infimum ranges over all at most countable collectionsB1, B2, . . .

of boxes that cover E. One easily verifies that (voln)∗ is indeed an

outer measure (i.e. it is monotone, countably subadditive, and as-

signs zero to the empty set). We then define a set A ⊂ Rn to be

(voln)∗-measurable if one has the additivity property

(voln)∗(E) = (voln)∗(E ∩A) + (voln)∗(E\A)

for all E ⊂ Rn. By Carathéodory’s theorem, the space of (voln)∗-

measurable sets is a σ-algebra, and outer Lebesgue measure is a count-

ably additive measure on this σ-algebra, which we denote voln. Fur-

thermore, one easily verifies that every box B is (voln)∗-measurable,

which soon implies that every Borel set is also; thus Lebesgue measure

is a Borel measure (though it can of course measure some non-Borel

sets also).

Finally, one needs to verify that the Lebesgue measure voln(B)

of a box is equal to its classical volume |B|; the above construc-

tion trivially gives voln(B) ≤ |B| but the converse is not as obvious.

This is in fact a rather delicate matter, relying in particular on the

completeness of the reals; if one replaced R by the rationals Q, for

instance, then all the above constructions go through but now boxes

have Lebesgue measure zero (why?). See [Fo2000, Chapter 1], for

instance, for details.
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Anyway, we can use this construction of Lebesgue measure as a

model for building d-dimensional Hausdorff measure. Instead of using

half-open boxes as the building blocks, we will instead work with the

open balls B(x, r). For d-dimensional measure, we will assign each

ball B(x, r) a measure rd (cf. (1.125)). We can then define the

unlimited Hausdorff content hd,∞(E) of a set E ⊂ Rn by the formula

hd,∞(E) := inf{
∞∑
k=1

rdk : B(xk, rk) covers E}

where the infimum ranges over all at most countable families of balls

that cover E. (Note that if E is compact, then it would suffice to

use finite coverings, since every open cover of E has a finite subcover.

But in general, for non-compact E we must allow the use of infinitely

many balls.)

As with Lebesgue measure, hd,∞ is easily seen to be an outer

measure, and one could define the notion of a hd,∞-measurable set on

which Carathéodory’s theorem applies to build a countably additive

measre. Unfortunately, a key problem arises: once d is less than n,

most sets cease to be hd,∞-measurable! We illustrate this in the one-

dimensional case with n = 1 and d = 1/2, and consider the problem

of computing the unlimited Hausdorff content h1/2,∞([a, b]). On the

one hand, this content is at most | b−a2 |
1/2, since one can cover [a, b] by

the ball of radius b−a
2 + ε centred at a+b

2 for any ε > 0. On the other

hand, the content is also at least | b−a2 |
1/2. To see this, suppose we

cover [a, b] by a finite or countable family of balls B(xk, rk) (one can

reduce to the finite case by compactness, though it isn’t necessary to

do so here). The total one-dimensional Lebesgue measure
∑
k 2rk of

these balls must equal or exceed the Lebesgue measure of the entire

interval |b− a|, thus ∑
k

rk ≥
|b− a|

2
.

From the inequality
∑
k rk ≤ (

∑
k r

1/2
k )2 (which is obvious after ex-

panding the RHS and discarding cross-terms) we see that∑
k

r
1/2
k ≥ (

|b− a|
2

)1/2

and the claim follows.
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We now see some serious breakdown of additivity: for instance,

the unlimited 1/2-dimensional content of [0, 2] is 1, despite being the

disjoint union of [0, 1] and (1, 2], which each have an unlimited content

of 1/
√

2. In particular, this shows that [0, 1] (for instance) is not

measurable with respect to the unlimited content. The basic problem

here is that the most efficient cover of a union such as [0, 1] ∪ (1, 2]

for the purposes of unlimited 1/2-dimensional content is not coming

from covers of the separate components [0, 1] and (1, 2] of that union,

but is instead coming from one giant ball that covers [0, 2] directly.

To fix this, we will limit the Hausdorff content by working only

with small balls. More precisely, for any r > 0, we define the Haus-

dorff content hd,r(E) of a set E ⊂ Rn by the formula

hd,r(E) := inf{
∞∑
k=1

rdk : B(xk, rk) covers E; rk ≤ r}

where the balls B(xk, rk) are now restricted to be less than or equal

to r in radius. This quantity is increasing in r, and we then define

the Hausdorff outer measure (Hd)∗(E) by the formula

(Hd)∗(E) := lim
r→0

hd,r(E).

(This is analogous to the Riemann integral approach to volume of

sets, covering them by balls, boxes, or rectangles of increasingly small

size; this latter approach is also closely connected to the Minkowski

dimension concept studied earlier. The key difference between the

Lebesgue/Hausdorff approach and the Riemann/Minkowski approach

is that in the former approach one allows the balls or boxes to be

countable in number, and to be variable in size, whereas in the latter

approach the cover is finite and uniform in size.)

Exercise 1.15.9. Show that if d > n, then (Hd)∗(E) = 0 for all

E ⊂ Rn. Thus d-dimensional Hausdorff measure is only a non-trivial

concept for subsets of Rn in the regime 0 ≤ d ≤ n.

Since each of the hd,r are outer measures, (Hd)∗ is also. But the

key advantage of moving to the Hausdorff measure rather than Haus-

dorff content is that we obtain a lot more additivity. For instance:

Exercise 1.15.10. Let E,F be subsets of Rn which have a non-zero

separation, i.e. the quantity dist(E,F ) = inf{|x− y| : x ∈ E, y ∈ F}
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is strictly positive. Show that (Hd)∗(E ∪F ) = (Hd)∗(E) + (Hd)∗(F ).

(Hint : one inequality is easy. For the other, observe that any small

ball can intersect E or intersect F , but not both.)

One consequence of this is that there is a large class of measurable

sets:

Proposition 1.15.3. Let d ≥ 0. Then every Borel subset of Rn is

(Hd)∗-measurable.

Proof. Since the collection of (Hd)∗-measurable sets is a σ-algebra,

it suffices to show the claim for closed sets A. (It will be slightly more

convenient technically to work with closed sets rather than open ones

here.) Thus, we take an arbitrary set E ⊂ Rn and seek to show that

(Hd)∗(E) = (Hd)∗(E ∩A) + (Hd)∗(E\A).

We may assume that (Hd)∗(E ∩A) and (Hd)∗(E\A) are both finite,

since the claim is obvious otherwise from monotonicity.

From Exercise 1.15.10 and the fact that (Hd)∗ is an outer mea-

sure, we already have

(Hd)∗(E∩A)+(Hd)∗(E\A1/m) ≤ (Hd)∗(E) ≤ (Hd)∗(E∩A)+(Hd)∗(E\A),

where A1/m is the 1/m-neighbourhood of A. So it suffices to show

that

lim
m→∞

(Hd)∗(E\A1/m) = (Hd)∗(E\A).

For any m, we have the telescoping sum E\A = (E\A1/m)∪
⋃
l>m Fl,

where Fl := (E\A1/(l+1)) ∩ Al, and thus by countable subadditivity

and monotonicity

(Hd)∗(E\A1/m) ≤ (Hd)∗(E\A) ≤ (Hd)∗(E\A1/m) +
∑
l>m

(Hd)∗(Fl)

so it suffices to show that the sum
∑∞
l=1(Hd)∗(Fl) is absolutely con-

vergent.

Consider the even-indexed sets F2, F4, F6, . . .. These sets are sep-

arated from each other, so by many applications of Exercise 1.15.10

followed by monotonicity we have

L∑
l=1

(Hd)∗(F2l) = (Hd)∗(
L⋃
l=1

F2l) ≤ (Hd)∗(E\A) <∞
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for all L, and thus
∑∞
l=1(Hd)∗(F2l) is absolutely convergent. Similarly

for
∑∞
l=1(Hd)∗(F2l−1), and the claim follows. �

On the (Hd)∗-measurable sets E, we write Hd(E) for (Hd)∗(E),

thus Hd is a Borel measure on Rn. We now study what this measure

looks like for various values of d. The case d = 0 is easy:

Exercise 1.15.11. Show that every subset of Rn is (H0)∗-measurable,

and that H0 is counting measure.

Now we look at the opposite case d = n. It is easy to see that any

Lebesgue-null set of Rn has n-dimensional Hausdorff measure zero

(since it may be covered by balls of arbitrarily small total content).

Thus n-dimensional Hausdorff measure is absolutely continuous with

respect to Lebesgue measure, and we thus have dHn
d voln = c for some

locally integrable function c. As Hausdorff measure and Lebesgue

measure are clearly translation-invariant, c must also be translation-

invariant and thus constant. We therefore have

Hn = c voln

for some constant c ≥ 0.

We now compute what this constant is. If ωn denotes the volume

of the unit ball B(0, 1), then we have∑
k

rnk =
1

ωn

∑
k

voln(B(xk, rk)) ≥ 1

ωn
voln(

⋃
k

B(xk, rk))

for any at most countable collection of balls B(xk, rk). Taking infima,

we conclude that

Hn ≥ 1

ωn
voln

and so c ≥ 1
ωn

.

In the opposite direction, observe from Exercise 1.15.4 that given

any 0 < r < 1, one can cover the unit cube [0, 1]n by at most Cnr
−n

balls of radius r, where Cn depends only on n; thus

Hn([0, 1]n) ≤ Cn
and so c ≤ Cn; in particular, c is finite.

We can in fact compute c explicitly (although knowing that c is

finite and non-zero already suffices for many applications):
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Lemma 1.15.4. We have c = 1
ωn

, or in other words Hn = 1
ωn

voln.

(In particular, a ball Bn(x, r) has n-dimensional Hausdorff measure

rn.)

Proof. Let us consider the Hausdorff measure Hn([0, 1]n) of the unit

cube. By definition, for any ε > 0 one can find an 0 < r < 1/2 such

that

hn,r([0, 1]n) ≥ Hn([0, 1]n)− ε.

Observe (using Exercise 1.15.4) that we can find at least cnr
−n dis-

joint balls B(x1, r), . . . , B(xk, r) of radius r inside the unit cube. We

then observe that

hn,r([0, 1]n) ≤ krn +Hn([0, 1]n\
k⋃
i=1

B(xk, r)).

On the other hand,

Hn([0, 1]n\
k⋃
i=1

B(xk, r)) = c voln([0, 1]n\
k⋃
i=1

B(xk, r)) = c(1−kωnrn);

putting all this together, we obtain

c = Hn([0, 1]n) ≤ krn + c(1− kωnrn) + ε

which rearranges as

1− cωn ≥
ε

krn
.

Since krn is bounded below by cn, we can then send ε → 0 and

conclude that c ≥ 1
ωn

; since we already showed c ≤ 1
ωn

, the claim

follows. �

Thus n-dimensional Hausdorff measure is an explicit constant

multiple of n-dimensional Lebesgue measure. The same argument

shows that for integers 0 < d < n, the restriction of d-dimensional

Hausdorff measure to any d-dimensional linear subspace (or affine

subspace) V is equal to the constant 1
ωd

times d-dimensional Lebesgue

measure on V . (This shows, by the way, that Hd is not a σ-finite mea-

sure on Rn in general, since one can partition Rn into uncountably

many d-dimensional affine subspaces. In particular, it is not a Radon

measure in general).
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One can then compute d-dimensional Hausdorff measure for other

sets than subsets of d-dimensional affine subspaces by changes of vari-

able. For instance:

Exercise 1.15.12. Let 0 ≤ d ≤ n be an integer, let Ω be an open

subset of Rd, and let φ : Ω → Rn be a smooth injective map which

is non-degenerate in the sense that the Hessian Dφ (which is a d× n
matrix) has full rank at every point of Ω. For any compact subset E

of Ω, establish the formula

Hd(φ(E)) =

∫
E

J dHd =
1

ωd

∫
E

J d vold

where the Jacobian J is the square root of the sum of squares of all

the determinants of the d× d minors of the d× n matrix Dφ. (Hint :

By working locally, one can assume that φ is the graph of some map

from Ω to Rn−d, and so can be inverted by the projection function;

by working even more locally, one can assume that the Jacobian is

within an epsilon of being constant. The image of a small ball in Ω

then resembles a small ellipsoid in φ(Ω), and conversely the projection

of a small ball in φ(Ω) is a small ellipsoid in Ω. Use some linear algebra

and several variable calculus to relate the content of these ellipsoids

to the radius of the ball.) It is possible to extend this formula to

Lipschitz maps φ : Ω→ Rn that are not necessarily injective, leading

to the area formula∫
φ(E)

#(φ−1(y)) dHd(y) =
1

ωd

∫
E

J d vold

for such maps, but we will not prove this formula here.

From this exercise we see that d-dimensional Hausdorff measure

does coincide to a large extent with the d-dimensional notion of sur-

face area; for instance, for a simple smooth curve γ : [a, b]→ Rn with

everywhere non-vanishing derivative, the H1 measure of γ([a, b]) is

equal to its classical length |γ| =
∫ b
a
|γ′(t)| dt. One can also handle a

certain amount of singularity (e.g. piecewise smooth non-degenerate

curves rather than everywhere smooth non-degenerate curves) by ex-

ploiting the countable additivity of H1 measure, or by using the area

formula alluded to earlier.

Now we see how the Hausdorff dimension varies in d.
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Exercise 1.15.13. Let 0 ≤ d < d′, and let E ⊂ Rn be a Borel

set. Show that if Hd′(E) is finite, then Hd(E) is zero; equivalently, if

Hd(E) is positive, then Hd′ is infinite.

Example 1.15.5. Let 0 ≤ d ≤ n be integers. The unit ballBd(0, 1) ⊂
Rd ⊂ Rn has a d-dimensional Hausdorff measure of 1 (by Lemma

1.15.4), and so it has zero d′-dimensional Hausdorff dimensional mea-

sure for d′ > d and infinite d′-dimensional measure for d′ < d.

On the other hand, we know from Exercise 1.15.11 that H0(E)

is positive for any non-empty set E, and that Hd(E) = 0 for every

d > n. We conclude (from the least upper bound property of the reals)

that for any Borel set E ⊂ Rn, there exists a unique number in [0, n],

called the Hausdorff dimension dimH(E) of E, such that Hd(E) = 0

for all d > dimH(E) and Hd(E) = ∞ for all d < dimH(E). Note

that at the critical dimension d = dimH itself, we allow Hd(E) to

be zero, finite, or infinite, and we shall shortly see in fact that all

three possibilities can occur. By convention, we give the empty set a

Hausdorff dimension of −∞. One can also assign Hausdorff dimension

to non-Borel sets, but we shall not do so to avoid some (very minor)

technicalities.

Example 1.15.6. The unit ball Bd(0, 1) ⊂ Rd ⊂ Rn has Hausdorff

dimension d, as does Rd itself. Note that the former set has finite

d-dimensional Hausdorff measure, while the latter has an infinite mea-

sure. More generally, any d-dimensional smooth manifold in Rn has

Hausdorff dimension d.

Exercise 1.15.14. Show that the graph {(x, sin 1
x ) : 0 < x < 1} has

Hausdorff dimension 1; compare this with Exercise 1.15.6.

It is clear that Hausdorff dimension is monotone: if E ⊂ F are

Borel sets, then dimH(E) ≤ dimH(F ). Since Hausdorff measure is

countably additive, it is also not hard to see that Hausdorff dimension

interacts well with countable unions:

dimH(

∞⋃
i=1

Ei) = sup
1≤i≤∞

dimH(Ei).

Thus for instance the rationals, being a countable union of 0-dimensional

points, have Hausdorff dimension 0, in contrast to their Minkowski
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dimension of 1. On the other hand, we at least have an inequality

between Hausdorff and Minkowski dimension:

Exercise 1.15.15. For any Borel set E ⊂ Rn, show that dimH(E) ≤
dimM (E) ≤ dimM (E). (Hint : use (1.129). Which of the choices of ∗
is most convenient to use here?)

It is instructive to compare Hausdorff dimension and Minkowski

dimension as follows.

Exercise 1.15.16. Let E be a bounded Borel subset of Rn, and let

d ≥ 0.

• Show that dimM (E) ≤ d if and only if, for every ε > 0 and

arbitrarily small r > 0, one can cover E by finitely many

balls B(x1, r1), . . . , B(xk, rk) of radii ri = r equal to r such

that
∑k
i=1 r

d+ε
i ≤ ε.

• Show that dimM (E) ≤ d if and only if, for every ε > 0 and

all sufficiently small r > 0, one can cover E by finitely many

balls B(x1, r1), . . . , B(xk, rk) of radii ri = r equal to r such

that
∑k
i=1 r

d+ε
i ≤ ε.

• Show that dimH(E) ≤ d if and only if, for every ε >

0 and r > 0, one can cover E by countably many balls

B(x1, r1), . . . of radii ri ≤ r at most r such that
∑k
i=1 r

d+ε
i ≤

ε.

The previous two exercises give ways to upper-bound the Haus-

dorff dimension; for instance, we see from Exercise 1.15.2 that self-

similar fractals E of the type in that exercise (i.e. E is k translates

of r · E) have Hausdorff dimension at most log k
log 1/r . To lower bound

the Hausdorff dimension of a set E, one convenient way to do so is

to find a measure with a certain “dimension” property (analogous to

(1.125)) that assigns a positive mass to E:

Exercise 1.15.17. Let d ≥ 0. A Borel measure µ on Rn is said

to be a Frostman measure of dimension at most d if it is compactly

supported there exists a constant C such that µ(B(x, r)) ≤ Crd for

all balls B(x, r) of radius 0 < r < 1. Show that if µ has dimen-

sion at most d, then any Borel set E with µ(E) > 0 has positive

d-dimensional Hausdorff content; in particular, dimH(E) ≥ d.
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Note that this gives an alternate way to justify the fact that

smooth d-dimensional manifolds have Hausdorff dimension d, since on

the one hand they have Minkowski dimension d, and on the other hand

they support a non-trivial d-dimensional measure, namely Lebesgue

measure.

Exercise 1.15.18. Show that the Cantor set in Exercise 1.15.1(i)

has Hausdorff dimension 1/2. More generally, establish the analogue

of the first part of Exercise 1.15.2 for Hausdorff measure.

Exercise 1.15.19. Construct a subset of R of Hausdorff dimension

1 that has zero Lebesgue measure. (Hint : A modified Cantor set,

vaguely reminiscent of Exercise 1.15.1(ii), can work here.)

A useful fact is that Exercise 1.15.17 can be reversed:

Lemma 1.15.7 (Frostman’s lemma). Let d ≥ 0, and let E ⊂ Rn be a

compact set with Hd(E) > 0. Then there exists a non-trivial Frostman

measure of dimension at least d supported on E (thus µ(E) > 0 and

µ(Rd\E) = 0).

Proof. Without loss of generality we may place the compact set E

in the half-open unit cube [0, 1)n. It is convenient to work dyadically.

For each integer k ≥ 0, we subdivide [0, 1)n into 2kn half-open cubes

Qk,1, . . . , Qk,2nk of sidelength `(Qk,i) = 2−k in the usual manner, and

refer to such cubes as dyadic cubes. For each k and any F ⊂ [0, 1)n,

we can define the dyadic Hausdorff content h∆
d,k(F ) to be the quantity

h∆
d,2−k(F ) := inf{

∑
j

`(Qkj ,ij )
d : Qkj ,ij cover F ; kj ≥ k}

where the Qkj ,ij range over all at most countable families of dyadic

cubes of sidelength at most 2−k that cover F . By covering cubes by

balls and vice versa, it is not hard to see that

chd,C2−k(F ) ≤ h∆
d,2−k(F ) ≤ Chd,c2−k(F )

for some absolute constants c, C depending only on d, n. Thus, if we

define the dyadic Hausdorff measure

(Hd)∆(F ) := lim
k→∞

h∆
d,2−k(F )
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then we see that the dyadic and non-dyadic Huausdorff measures are

comparable:

cHd(F ) ≤ (Hd)∆(F ) ≤ C(Hd)∆(F ).

In particular, the quantity σ := (Hd)∆(E) is strictly positive.

Given any dyadic cube Q of length `(Q) = 2−k, define the upper

Frostman content µ+(Q) to be the quantity

µ+(Q) := h∆
d,k(E ∩Q).

Then µ+([0, 1)n) ≥ σ. By covering E ∩ Q by Q, we also have the

bound

µ+(Q) ≤ `(Q)d.

Finally, by the subadditivity property of Hausdorff content, if we

decompose Q into 2n cubes Q′ of sidelength `(Q′) = 2−k−1, we have

µ+(Q) ≤
∑
Q′

µ+(Q′).

The quantity µ+ behaves like a measure, but is subadditive rather

than additive. Nevertheless, one can easily find another quantity µ(Q)

to assign to each dyadic cube such that

µ([0, 1)n) = µ+([0, 1)n)

and

µ(Q) ≤ µ+(Q)

for all dyadic cubes, and such that

µ(Q) =
∑
Q′

µ(Q′)

whenever a dyadic cube is decomposed into 2n sub-cubes of half the

sidelength. Indeed, such a µ can be constructed by a greedy algo-

rithms starting at the largest cube [0, 1)n and working downward; we

omit the details. One can then use this “measure” µ to integrate any

continuous compactly supported function on Rn (by approximating

such a function by one which is constant on dyadic cubes of a certain

scale), and so by the Riesz representation theorem, it extends to a

Radon measure µ supported on [0, 1]n. (One could also have used the

Caratheódory extension theorem at this point.) Since µ([0, 1)n) ≥ σ,

µ is non-trivial; since µ(Q) ≤ µ+(Q) ≤ `(Q)d for all dyadic cubes Q,
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it is not hard to see that µ is a Frostman measure of dimension at

most d, as desired. �

The study of Hausdorff dimension is then intimately tied to the

study of the dimensional properties of various measures. We give

some examples in the next few exercises.

Exercise 1.15.20. Let 0 < d ≤ n, and let E ⊂ Rn be a compact

set. Show that dimH(E) ≥ d if and only if, for every 0 < ε < d, there

exists a compactly supported probability Borel measure µ with∫
Rd

∫
Rd

1

|x− y|d−ε
dµ(x)dµ(y) <∞.

Show that this condition is also equivalent to µ lying in the Sobolev

space H−(n−d+ε)/2(Rn). Thus we see a link here between Hausdorff

dimension and Sobolev norms: the lower the dimension of a set, the

rougher the measures that it can support, where the Sobolev scale is

used to measure roughness.

Exercise 1.15.21. Let E be a compact subset of Rn, and let µ be

a Borel probability measure supported on E. Let 0 ≤ d ≤ n.

• Suppose that for every ε > 0, every 0 < δ < 1/10, and

every subset E′ of E with µ(E′) ≥ 1
log2(1/δ)

, one could es-

tablish the bound N ∗δ (E′) ≥ cε(
1
δ )d−ε for ∗ equal to any of

ext, int,net,pack (the exact choice of ∗ is irrelevant thanks

to Exercise 1.15.4). Show that E has Hausdorff dimension

at least d. (Hint : cover E by small balls, then round the

radius of each ball to the nearest power of 2. Now use count-

able additivity and the observation that sum
∑
δ

1
log2(1/δ)

is

small when δ ranges over sufficiently small powers of 2.)

• Show that one can replace µ(E′) ≥ 1
log2(1/δ)

with µ(E′) ≥
1

log log2(1/δ)
in the previous statement. (Hint : instead of

rounding the radius to the nearest power of 2, round instead

to radii of the form 1/22εn for integers n.) This trick of using

a hyper-dyadic range of scales rather than a dyadic range

of scales is due to Bourgain[Bo1999]. The exponent 2 in

the double logarithm can be replaced by any other exponent

strictly greater than 1.
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This should be compared with the task of lower bounding the lower

Minkowski dimension, which only requires control on the entropy of E

itself, rather than of large subsets E′ of E. The results of this exercise

are exploited to establish lower bounds on the Hausdorff dimension

of Kakeya sets (and in particular, to conclude such bounds from the

Kakeya maximal function conjecture).

Exercise 1.15.22. Let E ⊂ Rn be a Borel set, and let φ : E → Rm

be a locally Lipschitz map. Show that dimH(φ(E)) ≤ dimH(E), and

that if E has zero d-dimensional Hausdorff measure then so does φ(E).

Exercise 1.15.23. Let φ : Rn → R be a smooth function, and let

g : Rn → R be a test function such that |∇φ| > 0 on the support of

g. Establish the co-area formula

(1.130)

∫
Rn

g(x)|∇φ(x)| dx =

∫
R

(

∫
φ−1(t)

g(x) dHn−1(x)) dt.

(Hint : Subdivide the support of g to be small, and then apply a

change of variables to make φ linear, e.g. φ(x) = x1.) This formula

is in fact valid for all absolutely integrable g and Lipschitz φ, but

is difficult to prove for this level of generality, requiring a version of

Sard’s theorem.

The coarea formula (1.130) can be used to link geometric inequal-

ities to analytic ones. For instance, the sharp isoperimetric inequality

voln(Ω)
n−1
n ≤ 1

nω
1/n
n

Hn−1(∂Ω),

valid for bounded open sets Ω in Rn, can be combined with the coarea

formula (with g := 1) to give the sharp Sobolev inequality

‖φ‖
L

n
n−1 (Rn)

≤ 1

nω
1/n
n

∫
Rn

|∇φ(x)| dx

for any test function φ, the main point being that φ−1(t)∪φ−1(−t) is

the boundary of {|φ| ≥ t} (one also needs to do some manipulations

relating the volume of those level sets to ‖φ‖
L

n
n−1 (Rn)

). We omit the

details.
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Notes. This lecture first appeared at terrytao.wordpress.com/2009/05/19.

Thanks to Vicky for corrections.

Further discussion of Hausdorff dimension can be found in [Fa2003],

[Ma1995], [Wo2003], as well as in many other places.

There was some interesting discussion online as to whether there

could be an analogue of K-theory for Hausdorff dimension, although

the results of the discussion were inconclusive.
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2.1. An alternate approach to the Carathéodory
extension theorem

In this section, I would like to give an alternate proof of a (weak form

of the) Carathéodory extension theorem (Theorem 1.1.17). This ar-

gument is restricted to the σ-finite case, and does not extend the

measure to quite as large a σ-algebra as is provided by the standard

proof of this theorem, but I find it conceptually clearer (in particu-

lar, hewing quite closely to Littlewood’s principles, and the general

Lebesgue philosophy of treating sets of small measure as negligible),

and suffices for many standard applications of this theorem, in par-

ticular the construction of Lebesgue measure.

Let us first state the precise statement of the theorem:

Theorem 2.1.1 (Weak Carathéodory extension theorem). Let A be

a Boolean algebra of subsets of a set X, and let µ : A → [0,+∞] be a

function obeying the following three properties:

(i) µ(∅) = 0.

(ii) (Pre-countable additivity) If A1, A2, . . . ∈ A are disjoint

and such that
⋃∞
n=1An also lies in A, then µ(

⋃∞
n=1An) =∑∞

n=1 µ(An).

(iii) (σ-finiteness) X can be covered by at most countably many

sets in A, each of which has finite µ-measure.

Let X be the σ-algebra generated by A. Then µ can be uniquely ex-

tended to a countably additive measure on X .

We will refer to sets in A as elementary sets and sets in X as

measurable sets. A typical example is when X = [0, 1] and A is the

collection of all sets that are unions of finitely many intervals; in this

case, X are the Borel-measurable sets.

2.1.1. Some basics. Let us first observe that the hypotheses on the

premeasure µ imply some other basic and useful properties:

From properties (i) and (ii) we see that µ is finitely additive (thus

µ(A1∪. . .∪An) = µ(A1)+. . .+µ(An) whenever A1, . . . , An are disjoint

elementary sets).
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As particular consequences of finite additivity, we have mono-

tonicity (µ(A) ≤ µ(B) whenever A ⊂ B are elementary sets) and

finite subadditivity (µ(A1 ∪ . . . ∪ An) ≤ µ(A1) + . . . + µ(An) for all

elementary A1, . . . , An, not necessarily disjoint).

We also have pre-countable subadditivity: µ(A) ≤
∑∞
n=1 µ(An)

whenever the elementary sets A1, A2, . . . cover the elementary set A.

To see this, first observe by replacing An with An\
⋃n−1
i=1 Ai and us-

ing monotonicity that we may take the Ai to be disjoint; next, by

restricting all the Ai to A and using monotonicity we may assume

that A is the union of the Ai, and now the claim is immediate from

pre-countable additivity.

2.1.2. Existence. Let us first verify existence. As is standard in

measure-theoretic proofs for σ-finite spaces, we first handle the finite

case (when µ(X) < ∞), and then rely on countable additivity or

sub-additivity to recover the σ-finite case.

The basic idea, following Littlewood’s principles, is to view the

measurable sets as lying in the “completion” of the elementary sets,

or in other words to exploit the fact that measurable sets can be

approximated to arbitrarily high accuracy by elementary sets.

Define the outer measure µ∗(A) of a set A ⊂ X to be the infimum

of
∑∞
n=1 µ(An), where A1, A2, . . . range over all at most countable col-

lections of elementary sets that cover A. It is clear that outer measure

is monotone and countably subadditive. Also, since µ is pre-countably

subadditive, we see that µ∗(A) ≥ µ(A) for all elementary A. Since we

also have the trivial inequality µ∗(A) ≤ µ(A), we conclude that µ∗
and µ agree on elementary sets.

The outer measure naturally defines a pseudometric1 (and thus

a topology) on the space of subsets of X, with the distance between

A and B being defined as µ∗(A∆B), where ∆ denotes symmetric

difference. (The subadditivity of µ∗ ensures the triangle inequality;

furthermore, we see that the Boolean operations (union, intersection,

complement, etc.) are all continuous with respect to this pseudomet-

ric.) With this pseudometric, we claim that the measurable sets lie in

1A pseudometric is a metric in which distinct objects are allowed to be separated
by a zero distance.
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the closure of the elementary sets. Indeed, it is not difficult to see (us-

ing subadditivity and monotonicity properties of µ∗) that the closure

of the elementary sets are closed under finite unions, under comple-

ments, and under countable disjoint unions (here we need finiteness

of µ(X) to keep the measure of all the pieces absolutely summable),

and thus form a σ-algebra. Since this σ-algebra clearly contains the

elementary sets, it must contain the measurable sets also.

By subadditivity of µ∗, the function A 7→ µ∗(A) is Lipschitz

continuous. Since this function is finitely additive on elementary sets,

we see on taking limits (using subadditivity to control error terms)

that it must be finitely additive on measurable sets also. Since µ∗
is finitely additive, monotone, and countably sub-additive, it must

be countably additive, and so µ∗ is the desired extension of µ to the

measurable sets. This completes the proof of the theorem in the finite

measure case.

To handle the σ-finite case, we partition X into countably many

elementary sets of finite measure, and use the above argument to

extend µ to measurable subsets of each such elementary set. It is then

a routine matter to sum together these localised measures to recover a

measure on all measurable sets; the pre-countable additivity property

ensures that this sum still agrees with µ on elementary sets.

2.1.3. Uniqueness. Now we verify uniqueness. Again, we begin

with the finite measure case.

Suppose first that µ(X) < ∞, and that we have two different

extensions µ1, µ2 : X → [0,+∞] of µ to X that are countably addi-

tive. Observe that µ1, µ2 must both be continuous with respect to

the µ∗ pseudometric used in the existence argument, from countable

subadditivity; since every measurable set is a limit of elementary sets

in this pseudometric, we obtain uniqueness in the finite measure case.

When instead X is σ-finite, we cover X by elementary sets of

finite measure. The previous argument shows that any two extensions

µ1, µ2 of µ agree when restricted to each of these sets, and the claim

then follows by countable additivity. This proves Theorem 2.1.1.

Remark 2.1.2. The uniqueness claim fails when the σ-finiteness con-

dition is dropped. Consider for instance the rational numbers X = Q,
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and let the elementary sets be the finite unions of intervals [a, b)∩Q.

Define the measure µ(A) of an elementary set to be zero if A is empty,

and +∞ otherwise. As the rationals are countable, we easily see

that every set of rationals is measurable. One easily verifies the pre-

countable additivity condition (though the σ-finiteness condition fails

horribly). However, µ has multiple extensions to the measurable sets;

for instance, any positive scalar multiple of counting measure is such

an extension.

Remark 2.1.3. It is not difficult to show that the measure comple-

tion X of X with respect to µ is the same as the topological closure

of X (or of A) with respect to the above pseudometric. Thus, for in-

stance, a subset of [0, 1] is Lebesgue measurable if and only if it can be

approximated to arbitrary accuracy (with respect to outer measure)

by a finite union of intervals.

A particularly simple case of Theorem 2.1.1 occurs when X is a

compact Hausdorff totally disconnected space (i.e. a Stone space),

such as the infinite discrete cube {0, 1}N or any other Cantor space.

Then (see forthcoming lecture notes) the Borel σ-algebra X is gen-

erated by the Boolean algebra A of clopen sets. Also, as clopen sets

here are simultaneously compact and open, we see that any infinite

cover of one clopen set by others automatically has a finite subcover.

From this, we conclude

Corollary 2.1.4. Let X be a compact Hausdorff totally disconnected

space. Then any finitely additive σ-finite measure on the clopen sets

uniquely extends to a countably additive measure on the Borel sets.

By identifying {0, 1}N with [0, 1] up to a countable set, this pro-

vides one means to construct Lebesgue measure on [0, 1]; similar con-

structions are available for R or Rn.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/01/03.

Thanks to Américo Tavares, JB, Max Menzies, and mmailliw/william

for corrections.
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2.2. Amenability, the ping-pong lemma, and the
Banach-Tarski paradox

Notational convention: In this section (and in Section 2.4) only,

I will colour a statement red if it assumes the axiom of choice. (For

the rest of this text, the axiom of choice will be implicitly assumed

throughout.)

The famous Banach-Tarski paradox asserts that one can take the

unit ball in three dimensions, divide it up into finitely many pieces,

and then translate and rotate each piece so that their union is now

two disjoint unit balls. As a consequence of this paradox, it is not

possible to create a finitely additive measure on R3 that is both trans-

lation and rotation invariant, which can measure every subset of R3,

and which gives the unit ball a non-zero measure. This paradox helps

explain why Lebesgue measure (which is countably additive and both

translation and rotation invariant, and gives the unit ball a non-zero

measure) cannot measure every set, instead being restricted to mea-

suring sets that are Lebesgue measurable.

On the other hand, it is not possible to replicate the Banach-

Tarski paradox in one or two dimensions; the unit interval in R or

unit disk in R2 cannot be rearranged into two unit intervals or two

unit disks using only finitely many pieces, translations, and rota-

tions, and indeed there do exist non-trivial finitely additive measures

on these spaces. However, it is possible to obtain a Banach-Tarski

type paradox in one or two dimensions using countably many such

pieces; this rules out the possibility of extending Lebesgue measure

to a countably additive translation invariant measure on all subsets

of R (or any higher-dimensional space).

In this section we will establish all of the above results, and tie

them in with some important concepts and tools in modern group

theory, most notably amenability and the ping-pong lemma.

2.2.1. One-dimensional equidecomposability. Before we study

the three-dimensional situation, let us first review the simpler one-

dimensional situation. To avoid having to say “X can be cut up into

finitely many pieces, which can then be moved around to create Y”

all the time, let us make a convenient definition:
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Definition 2.2.1 (Equidecomposability). Let G = (G, ·) be a group

acting on a space X, and let A, B be subsets of X.

• We say that A, B are finitely G-equidecomposable if there

exist finite partitions A =
⋃n
i=1Ai and B =

⋃n
i=1Bi and

group elements g1, . . . , gn ∈ G such that Bi = giAi for all

1 ≤ i ≤ n.

• We say that A, B are countably G-equidecomposable if there

exist countable partitions A =
⋃∞
i=1Ai and B =

⋃∞
i=1Bi

and group elements g1, g2, . . . ∈ G such that Bi = giAi for

all i.

• We say that A is finitely G-paradoxical if it can be parti-

tioned into two subsets, each of which is finitelyG-equidecomposable

with A.

• We say that A is countably G-paradoxical if it can be par-

titioned into two subsets, each of which is countably G-

equidecomposable with A.

One can of course make similar definitions when G = (G,+) is

an additive group rather than a multiplicative one.

Clearly, finiteG-equidecomposability implies countableG-equidecomposability,

but the converse is not true. Observe that any finitely (resp. count-

ably) additive and G-invariant measure on X that measures every

single subset of X, must give either a zero measure or an infinite

measure to a finitely (resp. countably) G-paradoxical set. Thus,

paradoxical sets provide significant obstructions to constructing ad-

ditive measures that can measure all sets.

Example 2.2.2. If R acts on itself by translation, then [0, 2] is

finitely R-equidecomposable with [10, 11) ∪ [21, 22], and R is finitely

R-equidecomposable with (−∞,−10] ∪ (10,+∞).

Example 2.2.3. If G acts transitively on X, then any two finite

subsets of X are finitely G-equidecomposable iff they have the same

cardinality, and any two countably infinite sets of X are countably

G-equidecomposable. In particular, any countably infinite subset of

X is countably G-paradoxical.



320 2. Related articles

Exercise 2.2.1. Show that finite G-equidecomposability and count-

able G-equidecomposability are both equivalence relations.

Exercise 2.2.2 (Banach-Schröder-Bernstein theorem). Let G act on

X, and let A, B be subsets of X.

(i) If A is finitely G-equidecomposable with a subset of B, and

B is finitely G-equidecomposable with a subset of A, show

that A and B are finitely G-equidecomposable with each

other. (Hint : adapt the proof of the Schröder-Bernstein

theorem, see Section 3.13.)

(ii) If A is finitely G-equidecomposable with a superset of B,

and B is finitely G-equidecomposable with a superset of A,

show that A and B are finitely G-equidecomposable with

each other. (Hint : use part (i).)

Show that claims (i) and (ii) also hold when “finitely” is replaced by

“countably”.

Exercise 2.2.3. Show that if G acts on X, A is a subset of X which

is finitely (resp. countably) G-paradoxical, and x ∈ X, then the

recurrence set {g ∈ G : gx ∈ A} is also finitely (resp. countably)

G-paradoxical (where G acts on itself by translation).

Let us first establish countable equidecomposability paradoxes in

the reals.

Proposition 2.2.4. Let R act on itself by translations. Then [0, 1]

and R are countably R-equidecomposable.

Proof. By Exercise 2.2.2, it will suffice to show that some set con-

tained in [0, 1] is countably R-equidecomposable with R. Consider

the space R/Q of all cosets x+ Q of the rationals. By the axiom of

choice, we can express each such coset as x+ Q for some x ∈ [0, 1/2],

thus we can partition R =
⋃
x∈E x + Q for some E ⊂ [0, 1/2]. By

Example 2.2.3, Q∩ [0, 1/2] is countably Q-equidecomposable with Q,

which implies that
⋃
x∈E x+(Q∩[0, 1/2]) is countably R-equidecomposable

with
⋃
x∈E x+Q. Since latter set is R and the former set is contained

in [0, 1], the claim follows. �
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Of course, the same proposition holds if [0, 1] is replaced by any

other interval. As a quick consequence of this proposition and Ex-

ercise 2.2.2, we see that any subset of R containing an interval is

R-equidecomposable with R. In particular, we have

Corollary 2.2.5. Any subset of R containing an interval is countably

R-paradoxical.

In particular, we see that any countably additive translation-

invariant measure that measures every subset of R, must assign a

zero or infinite measure to any set containing an interval. In par-

ticular, it is not possible to extend Lebesgue measure to measure all

subsets of R.

We now turn from countably paradoxical sets to finitely paradox-

ical sets. Here, the situation is quite different: we can rule out many

sets from being finitely paradoxical. The simplest example is that of

a finite set:

Proposition 2.2.6. If G acts on X, and A is a non-empty finite

subset of X, then A is not finitely (or countably) G-paradoxical.

Proof. One easily sees that any two sets that are finitely or count-

ably G-equidecomposable must have the same cardinality. The claim

follows. �

Now we consider the integers.

Proposition 2.2.7. Let the integers Z act on themselves by transla-

tion. Then Z is not finitely Z-paradoxical.

Proof. The integers are of course infinite, and so Proposition 2.2.6

does not apply directly. However, the key point is that the integers

can be efficiently truncated to be finite, and so we will be able to

adapt the argument used to prove Proposition 2.2.6 to this setting.

Let’s see how. Suppose for contradiction that we could partition

Z into two sets A and B, which are in turn partitioned into finitely

many pieces A =
⋃n
i=1Ai and B =

⋃m
j=1Bj , such that Z can be

partitioned as Z =
⋃n
i=1Ai + ai and Z =

⋃m
j=1Bj + bj for some

integers a1, . . . , an, b1, . . . , bm.
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Now letN be a large integer (much larger than n,m, a1, . . . , an, b1, . . . , bm).

We truncate Z to the interval [−N,N ] := {−N, . . . , N}. Clearly

(2.1) A ∩ [−N,N ] =

n⋃
i=1

Ai ∩ [−N,N ]

and

(2.2) [−N,N ] =

n⋃
i=1

(Ai + ai) ∩ [−N,N ].

From (2.2) we see that the set
⋃n
i=1(Ai ∩ [−N,N ]) + ai differs from

[−N,N ] by only O(1) elements, where the bound in the O(1) expres-

sion can depend on n, a1, . . . , an but does not depend on N . (The

point here is that [−N,N ] is “almost” translation-invariant in some

sense.) Comparing this with (2.1) we see that

(2.3) |[−N,N ]| ≤ |A ∩ [−N,N ]|+O(1).

Similarly with A replaced by B. Summing, we obtain

(2.4) 2|[−N,N ]| ≤ |[−N,N ]|+O(1),

but this is absurd for N sufficiently large, and the claim follows. �

Exercise 2.2.4. Use the above argument to show that in fact no

infinite subset of Z is finitely Z-paradoxical; combining this with Ex-

ample 2.2.3, we see that the only finitely Z-paradoxical set of integers

is the empty set.

The above argument can be generalised to an important class of

groups:

Definition 2.2.8 (Amenability). Let G = (G, ·) be a discrete, at

most countable, group. A Følner sequence is a sequence F1, F2, F3, . . .

of finite subsets of G with
⋃∞
N=1 FN = G with the property that

limN→∞
|gFN∆FN |
|FN | = 0 for all g ∈ G, where ∆ denotes symmetric

difference. A discrete, at most countable, group G is amenable if it

contains at least one Følner sequence. Of course, one can define the

same concept for additive groups G = (G,+).

Remark 2.2.9. One can define amenability for uncountable groups

by replacing the notion of a Følner sequence with a Følner net. Simi-

larly, one can define amenability for locally compact Hausdorff groups
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equipped with a Haar measure by using that measure in place of car-

dinality in the above definition. However, we will not need these more

general notions of amenability here. The notion of amenability was

first introduced (though not by this name, or by this definition) by

von Neumann, precisely in order to study these sorts of decomposition

paradoxes. We discuss amenability further in Section 2.8.

Example 2.2.10. The sequence [−N,N ] for N = 1, 2, 3, . . . is a

Følner sequence for the integers Z, which are hence an amenable

group.

Exercise 2.2.5. Show that any abelian discrete group that is at most

countable, is amenable.

Exercise 2.2.6. Show that any amenable discrete group G that is

at most countable is not finitely G-paradoxical, when acting on itself.

Combined with Exercise 2.2.3, we see that if such a group G acts on

a non-empty space X, then X is not finitely G-paradoxical.

Remark 2.2.11. Exercise 2.2.6 suggests that an amenable group G

hould be able to support a non-trivial finitely additive measure which

is invariant under left-translations, and can measure all subsets of G.

Indeed, one can even create a finitely additive probability measure,

for instance by selecting a non-principal ultrafilter p ∈ βN and a

Følner sequence (Fn)∞n=1 and defining µ(A) := limn→p |A ∩ Fn|/|Fn|
for all A ∈ G.

The reals R = (R,+) (which we will give the discrete topology!)

are uncountable, and thus not amenable by the narrow definition

of Definition 2.2.8. However, observe from Exercise 2.2.5 that any

finitely generated subgroup of the reals is amenable (or equivalently,

that the reals themselves with the discrete topology are amenable,

using the Følner net generalisation of Definition 2.2.8. Also, we have

the following easy observation:

Exercise 2.2.7. Let G act on X, and let A be a subset of X which

is finitely G-paradoxical. Show that there exists a finitely generated

subgroup H of G such that A is finitely H-paradoxical.

From this, we see that R is not finitely R-paradoxical. But we

can in fact say much more:
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Proposition 2.2.12. Let A be a non-empty subset of R. Then A is

not finitely R-paradoxical.

Proof. Suppose for contradiction that we can partition A into two

sets A = A1 ∪ A2 which are both finitely R-equidecomposable with

A. This gives us two maps f1 : A → A1, f2 : A → A2 which are

piecewise given by a finite number of translations; thus there exists

a finite set g1, . . . , gd ∈ R such that fi(x) ∈ x + {g1, . . . , gd} for all

x ∈ A and i = 1, 2.

For any integer N ≥ 1, consider the 2N composition maps fi1 ◦
. . . ◦ fiN : A → A for i1, . . . , iN ∈ {1, 2}. From the disjointness of

A1, A2 and an easy induction we see that the ranges of all these maps

are disjoint, and so for any x ∈ A the 2N quantities fi1 ◦ . . . ◦ fiN (x)

are distinct. On the other hand, we have

(2.5) fi1 ◦ . . . ◦ fiN (x) ∈ x+ {g1, . . . , gd}+ . . .+ {g1, . . . , gd}.

Simple combinatorics (relying primarily on the abelian nature of (R,+)

shows that the number of values on the right-hand side of (2.5) is at

most Nd. But for sufficiently large N , we have 2N > Nd, giving the

desired contradiction. �

Let us call a group G supramenable if every non-empty subset

of G is not finitely G-paradoxical; thus R is supramenable. From

Exercise 2.2.3 we see that if a supramenable group acts on any space

X, then the only finitely G-paradoxical subset of X is the empty set.

Exercise 2.2.8. We say that a group G = (G, ·) has subexponential

growth if for any finite subset S of G, we have limn→∞ |Sn|1/n = 1,

where Sn = S · . . . · S is the set of n-fold products of elements of S.

Show that every group of subexponential growth is supramenable.

Exercise 2.2.9. Show that every abelian group has subexponential

growth (and is thus supramenable). More generally, show that every

nilpotent group has subexponential growth and is thus also supra-

menable.

Exercise 2.2.10. Show that if two finite unions of intervals in R

are finitely R-equidecomposable, then they must have the same total

length. (Hint : reduce to the case when both sets consist of a single
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interval. First show that the lengths of these intervals cannot differ

by more than a factor of two, and then amplify this fact by iteration

to conclude the result.)

Remark 2.2.13. We already saw that amenable groups G admit

finitely additive translation-invariant probability measures that mea-

sure all subsets of G (Remarkk 2.2.11 can be extended to the un-

countable case); in fact, this turns out to be an equivalent defini-

tion of amenability. It turns out that supramenable groups G enjoy

a stronger property, namely that given any non-empty set A on G,

there exists a finitely additive translation-invariant measure on G that

assigns the measure 1 to A; this is basically a deep result of Tarski.

2.2.2. Two-dimensional equidecomposability. Now we turn to

equidecomposability on the plane R2. The nature of equidecompos-

ability depends on what group G of symmetries we wish to act on the

plane.

Suppose first that we only allow ourselves to translate various sets

in the planes, but not to rotate them; thus G = R2. As this group is

abelian, it is supramenable by Exercise 2.2.9, and so any non-empty

subset A of the plane will not be finitely R2-paradoxical; indeed, by

Remark 2.2.13, there exists a finitely additive translation-invariant

measure that gives A the measure 1. On the other hand, it is easy to

adapt Corollary 2.2.5 to see that any subset of the plane containing

a ball will be countably R2-paradoxical.

Now suppose we allow both translations and rotations, thus G

is now the group SO(2) n R2 of (orientation-preserving) isometries

x 7→ eiθx+ v for v ∈ R2 and θ ∈ R/2πZ, where eiθ denotes the anti-

clockwise rotation by θ around the origin. This group is no longer

abelian, or even nilpotent, so Exercise 2.2.9 no longer applies. Indeed,

it turns out that G is no longer supramenable. This is a consequence

of the following three lemmas:

Lemma 2.2.14. Let G be a group which contains a free semigroup on

two generators (in other words, there exist group elements g, h ∈ G
such that all the words involving g and h (but not g−1 or h−1) are

distinct). Then G contains a non-empty finitely G-paradoxical set.

In other words, G is not supramenable.
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Proof. Let S be the semigroup generated by g and h (i.e. the set of

all words formed by g and h, including the empty word (i.e. group

identity). Observe that gS and hS are disjoint subsets of S that

are clearly G-equidecomposable with S. The claim then follows from

Exercise 2.2.2. �

Lemma 2.2.15 (Semigroup ping-pong lemma). Let G act on a space

X, let g, h be elements of G, and suppose that there exists a non-

empty subset A of X such that gA and hA are disjoint subsets of A.

Then g, h generate a free semigroup.

Proof. As in the proof of Proposition 2.2.12, we see from induction

that for two different words w, w′ generated by g, h, the sets wA and

w′A are disjoint, and the claim follows. �

Lemma 2.2.16. . The group G = SO(2)nR2 contains a free semi-

group on two generators.

Proof. It is convenient to identify R2 with the complex plane C.

We set g to be the rotation gx := ωx for some transcendental phase

ω = e2πiθ be such that ω := e2πiθ is transcendental (such a phase

must exist, since the set of algebraic complex numbers is countable),

and let h be the translation hx := x+ 1. Observe that g and h act on

the set A of polynomials in ω with non-negative integer coefficients,

and that gA and hA are disjoint. The claim now follows from Lemma

2.2.15. �

Combining Lemma 2.2.14 and Lemma 2.2.16 to create a count-

able, finitely paradoxical subset of SO(2)nR2, and then letting that

set act on a generic point in the plane (noting that each group element

in SO(2) n R2 has at most one fixed point), we obtain

Corollary 2.2.17 (Sierpinski-Mazurkiewicz paradox). There exist

non-empty finitely SO(2) n R2-paradoxical subsets of the plane.

We have seen that the group of rigid motions is not supramenable.

Nevertheless, it is still amenable, thanks to the following lemma:

Lemma 2.2.18. Suppose one has a short exact sequence 0 → H →
G → K → 0 of discrete, at most countable, groups, and suppose one
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has a choice function φ : K → G that inverts the projection of G

to K (the existence of which is automatic, from the axiom of choice,

and also follows if G is finitely generated). If H and K are amenable,

then so is G.

Proof. Let (An)∞n=1 and (Bn)∞n=1 be Følner sequences for H and K

respectively. Let f : N → N be a rapidly growing function, and let

(Fn)∞n=1 be the set Fn :=
⋃
x∈Bn φ(x) ·Af(n). One easily verifies that

this is a Følner sequence for G if f is sufficiently rapidly growing. �

Exercise 2.2.11. Show that any finitely generated solvable group is

amenable. More generally, show that any discrete, at most countable,

solvable group is amenable.

Exercise 2.2.12. Show that any finitely generated subgroup of SO(2)n
R2 is amenable. (Hint : use the short exact sequence 0 → R2 →
SO(2) n R2 → SO(2) → 0, which shows that SO(2) n R2 is solv-

able (in fact it is metabelian)). Conclude that R2 is not finitely

SO(2) n R2-paradoxical.

Finally, we show a result of Banach.

Proposition 2.2.19. The unit disk D in R2 is not finitely SO(2) n
R2-paradoxical.

Proof. If the claim failed, then D would be finitely SO(2) n R2-

equidecomposable with a disjoint union of two copies of D, say D

and D + v for some vector v of length greater than 2. By Exercise

2.2.7, we can then find a subgroup G of SO(2) ×R2 generated by a

finite number of rotations x 7→ eiθjx for j = 1, . . . , J and translations

x 7→ x + vk for k = 1, . . . ,K such that D and D ∪ (D + v) are

finitely G-equidecomposable. Indeed, we may assume that the rigid

motions that move pieces of D to pieces of D ∪ (D + v) are of the

form x 7→ eiθjx+ vk for some 1 ≤ j ≤ J, 1 ≤ k ≤ K, thus

(2.6) D ∪ (D + v) =

J⋃
j=1

K∑
k=1

eiθjDj,k + vk

for some partition D =
⋃J
j=1

∑K
k=1Dj,k of the disk.
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By amenability of the rotation group SO(2), one can find a finite

set Φ ⊂ SO(2) of rotations such that eiθjΦ differs from Φ by at most

0.01|Φ| elements for all 1 ≤ j ≤ J . Let N be a large integer, and let

ΓN ⊂ R2 be the set of all linear combinations of eiθvk for θ ∈ Φ and

1 ≤ k ≤ K with coefficients in {−N, . . . , N}. Observe that ΓN is a

finite set whose cardinality grows at most polynomially in N . Thus,

by the pigeonhole principle, one can find arbitrarily large N such that

(2.7) |D ∩ ΓN+10| ≤ 1.01|D ∩ ΓN |.

On the other hand, from (2.6) and the rotation-invariance of the disk

we have

2|D ∩ ΓN | = 2|eiθ(D) ∩ ΓN |

≤ |eiθ(D ∪ (D + v)) ∩ ΓN+5|

≤
J∑
j=1

K∑
k=1

|ei(θ+θj)Dj,k ∩ ΓN+10|

(2.8)

for all θ ∈ Φ. Averaging this over all θ ∈ Φ we conclude

(2.9) 2|D ∩ ΓN | ≤ 1.01|D ∩ ΓN+10|,

contradicting (2.7). �

Remark 2.2.20. Banach in fact showed the slightly stronger state-

ment that any two finite unions of polygons of differing area were not

finitely SO(2) × R2-equidecomposable. (The converse is also true,

and is known as the Bolyai-Gerwien theorem.)

Exercise 2.2.13. Show that all the claims in this section continue to

hold if we replace SO(2)nR2 by the slightly larger group Isom(R)2 =

O(2) n R2 of isometries (not necessarily orientation-preserving.

Remark 2.2.21. As a consequence of Remark 2.2.20, the unit square

is not SO(2)×R2-paradoxical. However, it is SL(2)×R2-paradoxical;

this is known as the von Neumann paradox.

2.2.3. Three-dimensional equidecomposability. We now turn

to the three-dimensional setting. The new feature here is that the

group SO(3) × R3 of rigid motions is no longer abelian (as in one

dimension) or solvable (as in two dimensions), but now contains a free
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group on two generators (not just a free semigroup, as per Lemma

2.2.16. The significance of this fact comes from

Lemma 2.2.22. The free group F2 on two generators is finitely F2-

paradoxical.

Proof. Let a, b be the two generators of F2. We can partition F2 =

{1} ∪Wa ∪Wb ∪Wa−1 ∪Wb−1 , where Wc is the collection of reduced

words of F2 that begin with c. From the identities

(2.10) Wa−1 = a−1 · (F2\Wa); Wb−1 = b−1 · (F2\Wb)

we see that F2 is finitely F2-equidecomposable with both Wa ∪Wa−1

and Wc ∪Wc−1 , and the claim now follows from Exercise 2.2.2. �

Corollary 2.2.23. Suppose that F2 acts freely on a space X (i.e.

gx 6= x whenever x ∈ X and g ∈ F2 is not the identity). Then X is

finitely F2-paradoxical.

Proof. Using the axiom of choice, we can partitionX asX =
⋃
x∈Γ F2x

for some subset Γ of X. The claim now follows from Lemma 2.2.22.

�

Next, we embed the free group inside the rotation group SO(3)

using the following useful lemma (cf. Lemma 2.2.15).

Exercise 2.2.14 (Ping-pong lemma). Let G be a group acting on a

set X. Suppose that there exist disjoint subsets A+, A−, B+, B− of

X, whose union is not all of X, and elements a, b ∈ G, such that2

(2.11)

a(X\A−) ⊂ A+; a−1(X\A+) ⊂ A−; b(X\B−) ⊂ B+; b−1(X\B+) ⊂ B−.

Show that a, b generate a free group.

Proposition 2.2.24. SO(3) contains a copy of the free group on two

generators.

Proof. It suffices to find a space X that two elements of SO(3) act on

in a way that Exercise 2.2.14 applies. There are many such construc-

tions. One such construction3, based on passing from the reals to the

2If drawn correctly, a diagram of the inclusions in (2.11) resembles a game of
doubles ping-pong of A+, A− versus B+, B−, hence the name.

3See http://sbseminar.wordpress.com/2007/09/17/ for more details and motiva-
tion for this construction.
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5-adics, where −1 is a square root and so SO(3) becomes isomorphic

to PSL(2). At the end of the day, one takes

(2.12) a =

 3/5 4/5 0

−4/5 3/5 0

0 0 1

 ; b =

1 0 0

0 3/5 −4/5

0 4/5 3/5


and

A± := 5Z · {

xy
z

 : x, y, z ∈ Z, x = ±3y mod 5, z = 0 mod 5}

B± := 5Z · {

xy
z

 : x, y, z ∈ Z, z = ±3y mod 5, x = 0 mod 5}

X := A− ∪A+ ∪B− ∪B+ ∪ {
(
0 1 0

)
},

(2.13)

where 5Z denotes the integer powers of 5 (which act on column vectors

in the obvious manner). The verification of the ping-pong inclusions

(2.11) is a routine application of modular arithmetic. �

Remark 2.2.25. This is a special case of the Tits alternative.

Corollary 2.2.26 (Hausdorff paradox). There exists a countable sub-

set E of the sphere S2 such that S2\E is finitely SO(3)-paradoxical,

where SO(3) of course acts on S2 by rotations.

Proof. Let F2 ⊂ SO(3) be a copy of the free group on two generators,

as given by Proposition 2.2.24. Each rotation in F2 fixes exactly two

points on the sphere. Let E be the union of all these points; this is

countable since F2 is countable. The action of F2 on SO(3)\E is free,

and the claim now follows from Corollary 2.2.23. �

Corollary 2.2.27 (Banach-Tarski paradox on the sphere). S2 is

finitely SO(3)-paradoxical.

Proof. (Sketch) Iterating the Hausdorff paradox, we see that S2\E
is finitely SO(3)-equidecomposable to four copies of S2\E, which can

easily be used to cover two copies of S2 (with some room to spare),

by randomly rotating each of the copies. The claim now follows from

Exercise 2.2.2. �
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Exercise 2.2.15 (Banach-Tarski paradox on R3). Show that the

unit ball in R3 is finitely SO(3) n R3-paradoxical.

Exercise 2.2.16. Extend these three-dimensional paradoxes to higher

dimensions.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/01/08.

Thanks to Harald Helfgott for corrections.

2.3. The Stone and Loomis-Sikorski
representation theorems

A (concrete) Boolean algebra is a pair (X,B), where X is a set, and

B is a collection of subsets of X which contain the empty set ∅, and

which is closed under unions A,B 7→ A ∪ B, intersections A,B 7→
A ∩ B, and complements A 7→ Ac := X\A. The subset relation ⊂
also gives a relation on B. Because the B is concretely represented

as subsets of a space X, these relations automatically obey various

axioms, in particular, for any A,B,C ∈ B,

(i) ⊂ is a partial ordering on B, and A and B have join A ∪ B
and meet A ∩B.

(ii) We have the distributive laws A∪(B∩C) = (A∪B)∩(A∪C)

and A ∩ (B ∪ C) = A ∪ (B ∩ C).

(iii) ∅ is the minimal element of the partial ordering ⊂, and ∅c
is the maximal element.

(iv) A ∩Ac = ∅ and A ∪Ac = ∅c.

(More succinctly: B is a lattice which is distributive, bounded, and

complemented.)

We can then define an abstract Boolean algebra B = (B, ∅, ·c,∪,∩,⊂
) to be an abstract set B with the specified objects, operations, and

relations that obey the axioms (i)-(iv). Of course, some of these op-

erations are redundant; for instance, intersection can be defined in

terms of complement and union by de Morgan’s laws. In the liter-

ature, different authors select different initial operations and axioms

when defining an abstract Boolean algebra, but they are all easily seen

to be equivalent to each other. To emphasise the abstract nature of
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these algebras, the symbols ∅, ·c,∪,∩,⊂ are often replaced with other

symbols such as 0, ·,∨,∧, <.

Clearly, every concrete Boolean algebra is an abstract Boolean

algebra. In the converse direction, we have Stone’s representation

theorem (see below), which asserts (among other things) that every

abstract Boolean algebra is isomorphic to a concrete one (and even

constructs this concrete representation of the abstract Boolean alge-

bra canonically). So, up to (abstract) isomorphism, there is really no

difference between a concrete Boolean algebra and an abstract one.

Now let us turn from Boolean algebras to σ-algebras.

A concrete σ-algebra (also known as a measurable space) is a

pair (X,B), where X is a set, and B is a collection of subsets of X

which contains ∅ and are closed under countable unions, countable

intersections, and complements; thus every concrete σ-algebra is a

concrete Boolean algebra, but not conversely. As before, concrete σ-

algebras come equipped with the structures ∅, ·c,∪,∩,⊂ which obey

axioms (i)-(iv), but they also come with the operations of countable

union (An)∞n=1 7→
⋃∞
n=1An and countable intersection (An)∞n=1 7→⋂∞

n=1An, which obey an additional axiom:

(v) Any countable family A1, A2, . . . of elements of B has supre-

mum
⋃∞
n=1An and infimum

⋂∞
n=1An.

As with Boolean algebras, one can now define an abstract σ-

algebra to be a set B = (B, ∅, ·c,∪,∩,⊂,
⋃∞
n=1,

⋂∞
n=1) with the indi-

cated objects, operations, and relations, which obeys axioms (i)-(v).

Again, every concrete σ-algebra is an abstract one; but is it still true

that every abstract σ-algebra is representable as a concrete one?

The answer turns out to be no, but the obstruction can be de-

scribed precisely (namely, one needs to quotient out an ideal of “null

sets” from the concrete σ-algebra), and there is a satisfactory repre-

sentation theorem, namely the Loomis-Sikorski representation theo-

rem (see below). As a corollary of this representation theorem, one

can also represent abstract measure spaces (B, µ) (also known as mea-

sure algebras) by concrete measure spaces, (X,B, µ), after quotienting

out by null sets.
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In the rest of this section, I will state and prove these representa-

tion theorems. These theorems help explain why it is “safe” to focus

attention primarily on concrete σ-algebras and measure spaces when

doing measure theory, since the abstract analogues of these mathe-

matical concepts are largely equivalent to their concrete counterparts.

(The situation is quite different for non-commutative measure theo-

ries, such as quantum probability, in which there is basically no good

representation theorem available to equate the abstract with the clas-

sically concrete, but I will not discuss these theories here.)

2.3.1. Stone’s representation theorem. We first give the class

of Boolean algebras the structure of a category :

Definition 2.3.1 (Boolean algebra morphism). A morphism φ : A →
B from one abstract Boolean algebra to another is a map which pre-

serves the empty set, complements, unions, intersections, and the

subset relation (e.g. φ(A ∪ B) = φ(A) ∪ φ(B) for all A,B ∈ A. An

isomorphism is an morphism φ : A → B which has an inverse mor-

phism φ−1 : B → A. Two Boolean algebras are isomorphic if there is

an isomorphism between them.

Note that if (X,A), (Y,B) are concrete Boolean algebras, and if

f : X → Y is a map which is measurable in the sense that f−1(B) ∈ A
for all B ∈ B, then the inverse of f is a Boolean algebra morphism

f−1 : B → A which goes in the reverse (i.e. contravariant) direction

to that of f. To state Stone’s representation theorem we need another

definition.

Definition 2.3.2 (Stone space). A Stone space is a topological space

X = (X,F) which is compact, Hausdorff, and totally disconnected.

Given a Stone space, define the clopen algebra Cl(X) of X to be the

concrete Boolean algebra on X consisting of the clopen sets (i.e. sets

that are both closed and open).

It is easy to see that Cl(X) is indeed a concrete Boolean alge-

bra for any topological space X. The additional properties of being

compact, Hausdorff, and totally disconnected are needed in order to

recover the topology F of X uniquely from the clopen algebra. In-

deed, we have
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Lemma 2.3.3. If X is a Stone space, then the topology F of X

is generated by the clopen algebra Cl(X). Equivalently, the clopen

algebra forms an open base for the topology.

Proof. Let x ∈ X be a point, and let K be the intersection of all

the clopen sets containing x. Clearly, K is closed. We claim that

K = {x}. If this is not the case, then (since X is totally disconnected)

K must be disconnected, thus K can be separated non-trivially into

two closed sets K = K1 ∪ K2. Since compact Hausdorff spaces are

normal, we can write K1 = K ∩ U1 and K2 = K ∩ U2 for some

disjoint open U1, U2. Since the intersection of all the clopen sets

containing x with the closed set (U1 ∪U2)c is empty, we see from the

finite intersection property that there must be a finite intersection

K ′ of clopen sets containing x that is contained inside U1 ∪ U2. In

particular, K ′ ∩ U1 and K ′ ∩ U2 are clopen and do not contain K.

But this contradicts the definition of K (since x is contained in one

of K ′ ∩ U1 and K ′ ∩ U2). Thus K = {x}.
Another application of the finite intersection property then re-

veals that every open neighbourhood of x contains at least one clopen

set containing x, and so the clopen sets form a base as required. �

Exercise 2.3.1. Show that two Stone spaces have isomorphic clopen

algebras if and only if they are homeomorphic.

Now we turn to the representation theorem.

Theorem 2.3.4 (Stone representation theorem). Every abstract Boolean

algebra B is equivalent to the clopen algebra Cl(X) of a Stone space

X.

Proof. We will need the binary abstract Boolean algebra {0, 1}, with

the usual Boolean logic operations. We define X := Hom(B, {0, 1}) be

the space of all morphisms from B to {0,1}. Observe that each point

x ∈ X can be viewed as a finitely additive measure µx : B → {0, 1}
that takes values in {0, 1}. In particular, this makes X a closed subset

of {0, 1}B (endowed with the product topology). The space {0, 1}B is

Hausdorff, totally disconnected, and (by Tychonoff’s theorem, Theo-

rem 1.8.14) compact, and so X is also; in other words, X is a Stone

space. Every B ∈ B induces a cylinder set CB ⊂ {0, 1}B, consisting of
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all maps µ : B → {0, 1} that map B to 1. If we define φ(B) := CB∩X,

it is not hard to see that φ is a morphism from B to Cl(X). Since

the cylinder sets are clopen and generate the topology of {0, 1}B, we

see that φ(B) of clopen sets generates the topology of X. Using com-

pactness, we then conclude that every clopen set is the finite union of

finite intersections of elements of φ(B); since φ(B) is an algebra, we

thus see that φ is surjective.

The only remaining task is to check that φ is injective. It is

sufficient to show that φ(A) is non-empty whenever A ∈ B is not

equal to ∅. But by Zorn’s lemma (Section 2.4), we can place A inside

a maximal proper filter (i.e. an ultrafilter) p. The indictator 1p :

B → {0, 1} of p can then be verified to be an element of φ(A), and

the claim follows. �

Remark 2.3.5. If B = 2Y is the power set of some set Y , then the

Stone space given by Theorem 2.3.4 is the Stone-Čech compactifica-

tion of Y (which we give the discrete topology); see Section 2.5.

Remark 2.3.6. Lemma 2.3.3 and Theorem 2.3.4 can be interpreted

as giving a duality between the category of Boolean algebras and

the category of Stone spaces, with the duality maps being B 7→
Hom(B, {0, 1}) and X 7→ Cl(X). (The duality maps are (contravari-

ant) functors which are inverses up to natural transformations.) It

is the model example of the more general Stone duality between cer-

tain partially ordered sets and certain topological spaces. The idea

of dualising a space X by considering the space of its morphisms to

a fundamental space (in this case, {0, 1}) is a common one in math-

ematics; for instance, Pontryagin duality in the context of Fourier

analysis on locally compact abelian groups provides another exam-

ple (with the fundamental space in this case being the unit circle

R/Z); see Section 1.12. Other examples include the Gelfand repre-

sentation of C∗ algebras (here the fundamental space is the complex

numbers C; see Section 1.10.4) and the ideal-variety correspondence

that provides the duality between algebraic geometry and commuta-

tive algebra (here the fundamental space is the base field k). In fact

there are various connections between all of the dualities mentioned

above.
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Exercise 2.3.2. Show that any finite Boolean algebra is isomorphic

to the power set of a finite set. (This is a special case of Birkhoff’s

representation theorem.)

2.3.2. The Loomis-Sikorski representation theorem. Now we

turn to abstract σ-algebras. We can of course adapt Definition 2.3.1 to

define the notion of a morphism or isomorphism between abstract σ-

algebras, and to define when two abstract σ-algebras are isomorphic.

Another important notion for us will be that of a quotient σ-algebra.

Definition 2.3.7 (Quotient σ-algebras). Let B be an abstract σ-

algebra. A σ-ideal in B is a subset N of B which contains ∅, is closed

under countable unions, and is downwardly closed (thus if N ∈ N
and A ∈ B is such that A ⊂ N , then A ∈ N ). If N is a σ-ideal,

then we say that two elements of B are equivalent modulo N if their

symmetric difference lies in N . The quotient of B by this equivalence

relation is denoted B/N , and can be given the structure of an abstract

σ-algebra in a straightforward manner.

Example 2.3.8. If (X,B, µ) is a measure space, then the collection

N of sets of measure zero is a σ-ideal, so that we can form the ab-

stract σ-algebra B/N . This freedom to quotient out the null sets is

only available in the abstract setting, not the concrete one, and is

perhaps the primary motivation for introducing abstract σ-algebras

into measure theory in the first place.

One might hope that there is an analogue of Stone’s represen-

tation theorem holds for σ-algebras. Unfortunately, this is not the

case:

Proposition 2.3.9. Let B be the Borel σ-algebra on [0, 1], and let

N be the σ-ideal consisting of those sets with Lebesgue measure zero.

Then the abstract σ-algebra B/N is not isomorphic to a concrete σ-

algebra.

Proof. Suppose for contradiction that we had an isomorphism φ :

B/N → A to some concrete σ-algebra (X,A); this induces a map

φ : B → A which sends null sets to the empty set. Let x be a point

in X. (It is clear that X must be non-empty.) Observe that any

Borel set E in [0, 1] can be partitioned into two Borel subsets whose



2.3. Stone and Loomis-Sikorski 337

Lebesgue measure is exactly half that of E. As a consequence, we see

that if there exists a Borel set B such that φ(B) contains x, then there

exists another Borel set B′ of half the measure with φ(B′) contains

x. Iterating this (starting with [0, 1]) we see that there exist Borel

sets B of arbitrarily small measure with φ(B) containing x. Taking

countable intersections, we conclude that there exists a null set N

whose image φ(N) contains x; but φ(N) is empty, a contradiction. �

However, it turns out that quotienting out by ideals is the only

obstruction to having a Stone-type representation theorem. Namely,

we have

Theorem 2.3.10 (Loomis-Sikorski representation theorem). Let B
be an abstract σ-algebra. Then there exists a concrete σ-algebra (X,A)

and a σ-ideal N of A such that B is isomorphic to A/N .

Proof. We use the argument of Loomis[Lo1946]. Applying Stone’s

representation theorem, we can find a Stone space X such that there

is a Boolean algebra isomorphism φ : B → Cl(X) from B (viewed

now only as a Boolean algebra rather than a σ-algebra to the clopen

algebra of X. Let A be the Baire σ-algebra of X, i.e. the σ-algebra

generated by Cl(X). The map φ need not be a σ-algebra isomor-

phism, being merely a Boolean algebra isomorphism one instead; it

preserves finite unions and intersections, but need not preserve count-

able ones. In particular, if B1, B2, . . . ∈ B are such that
⋂∞
n=1Bn = ∅,

then
⋂∞
n=1 φ(Bn) ∈ A need not be empty.

Let us call sets
⋂∞
n=1 φ(Bn) of this form basic null sets, and let

N be the collection of sets in A which can be covered by at most

countably many basic null sets.

It is not hard to see that N is a σ-ideal in A. The map φ then

descends to a map φ : B → A/N . It is not hard to see that φ

is a Boolean algebra morphism. Also, if B1, B2, . . . ∈ B are such

that
⋂∞
n=1Bn = ∅, then from construction we have

⋂∞
n=1 φ(Bn) = ∅.

From these two facts one can easily show that φ is in fact a σ-algebra

morphism. Since φ(B) = Cl(X) generates A, φ(B) must generate

A/N , and so φ is surjective.
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The only remaining task is to show that φ is injective. As before,

it suffices to show that φ(A) 6= ∅ when A 6= ∅. Suppose for contra-

diction that A 6= ∅ and φ(A) = ∅; then φ(A) can be covered by a

countable family
⋂∞
n=1 φ(A

(i)
n ) of basic null sets, where

⋂∞
n=1A

(i)
n = ∅

for each i. Since A 6= ∅ and
⋂∞
n=1A

(1)
n = ∅, we can find n1 such that

A\A(1)
n1 6= ∅ (where of course A\B := A ∩Bc). Iterating this, we can

find n2, n3, n4, . . . such that A\(A(1)
n1 ∪ . . .∪A

(k)
nk ) 6= ∅ for allk. Since φ

is a Boolean space isomorphism, we conclude that φ(A) is not covered

by any finite subcollection of the φ(A
(1)
n1 ), φ(A

(2)
n2 ), . . .. But all of these

sets are clopen, so by compactness, φ(A) is not covered by the en-

tire collection φ(A
(1)
n1 ), φ(A

(2)
n2 ), . . .. But this contradicts the fact that

φ(A) is covered by the
⋂∞
n=1 φ(A

(i)
n ). �

’

Remark 2.3.11. The proof above actually gives a little bit more

structure on X,A, namely it gives X the structure of a Stone space,

with A being its Baire σ-algebra. Furthermore, the ideal N con-

structed in the proof is in fact the ideal of meager Baire sets. The

only difficult step is to show that every closed Baire set S with empty

interior is in N , i.e. is a countable intersection of clopen sets. To see

this, note that S is generated by a countable subalgebra of B which

corresponds to a continuous map f from X to the Cantor set K (since

K is dual to the free Boolean algebra on countably many generators).

Then f(S) is closed in K and is hence a countable intersection of

clopen sets in K, which pull back to countably many clopen sets on

X whose intersection is f−1(f(S)). But the fact that S is gener-

ated by the subalgebra defining f can easily be seen to imply that

f−1(f(S)) = S.

Remark 2.3.12. The Stone representation theorem relies in an es-

sential way on the axiom of choice (or at least the boolean prime ideal

theorem, which is slightly weaker than this axiom). However, it is

possible to prove the Loomis-Sikorski representation theorem with-

out choice; see for instance [BudePvaR2008].

Remark 2.3.13. The construction of X,A,N in the above proof was

canonical, but it is not unique (in contrast to the situation with the
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Stone representation theorem, where Lemma 2.3.3 provides unique-

ness up to homeomorphisms). Nevertheless, using Remark 2.3.11,

one can make the Loomis-Sikorski representation functorial. Let A

and B be σ-algebras with Stone spaces X and Y . A map Y → X in-

duces a σ-homomorphism Bor(X)→ Bor(Y ), and if the inverse image

of a Borel meager set is meager then it induces a σ-homomorphism

A → B. Conversely a σ-homomorphism A → B induces a map

Y → X under which the inverse image of a Borel meager set is mea-

ger (using the fact above that Borel meager sets are generated by

countable intersections of clopen sets). The correspondence is bijec-

tive since it is just a restriction of the correspondence for ordinary

Boolean algebras. This gives a duality between the category of σ-

algebras and σ-homomorphisms and the category of “σ-Stone spaces”

and continuous maps such that the inverse image of a Borel meager

set is meager. In fact, “σ-Stone spaces” can be abstractly charac-

terized as Stone spaces such that the closure of a countable union of

clopen sets is clopen.

A (concrete) measure space (X,B, µ) is a concrete σ-algebra (X,B)

together with a countably additive measure µ : B → [0,+∞]. One can

similarly define an abstract measure space (B, µ) (or measure alge-

bra) to be an abstract σ-algebra B with a countably additive measure

mu : B → [0,+∞]. (Note that one does not need the concrete space

X in order to define the notion of a countably additive measure.)

One can obtain an abstract measure space from a concrete one

by deleting X and then quotienting out by some σ-ideal of null sets

- sets of measure zero with respect to mu. (For instance, one could

quotient out the space of all null sets, which is automatically a σ-

ideal.) Thanks to the Loomis-Sikorski representation theorem, we

have a converse:

Exercise 2.3.3. Show that every abstract measure space is isomor-

phic to a concrete measure space after quotieting out by a σ-ideal

of null sets (where the notion of morphism, isomorphism, etc. on

abstract measure spaces is defined in the obvious manner.)
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Notes. This lecture first appeared at terrytao.wordpress.com/2009/01/12.

Thanks to Eric for Remark 2.3.11, and for the functoriality remark

in Remark 2.3.13.

Eric and Tom Leinster pointed out a subtlety that two concrete

Boolean algebras which are abstractly isomorphic need not be con-

cretely isomorphic. In particular, the modifier “abstract” is essential

in the statement that “up to (abstract) isomorphism, there is no dif-

ference between a concrete Boolean algebra and an abstract one”.

2.4. Well-ordered sets, ordinals, and Zorn’s
lemma

Notational convention: As in Section 2.2, I will colour a statement

red in this post if it assumes the axiom of choice. We will, of course,

rely on every other axiom of Zermelo-Frankel set theory here (and in

the rest of the course).

In analysis, one often needs to iterate some sort of operation

“infinitely many times” (e.g. to create a infinite basis by choosing

one basis element at a time). In order to do this rigorously, we will

rely on Zorn’s lemma:

Lemma 2.4.1 (Zorn’s Lemma). Let (X,≤) be a non-empty partially

ordered set, with the property that every chain (i.e. a totally ordered

set) in X has an upper bound. Then X contains a maximal element

(i.e. an element with no larger element).

Indeed, we have used this lemma several times already in previous

sections. Given the other standard axioms of set theory, this lemma

is logically equivalent to

Axiom 2.4.2 (Axiom of choice). Let X be a set, and let F be a col-

lection of non-empty subsets of X. Then there exists a choice function

f : F → X, i.e. a function such that f(A) ∈ A for all A ∈ F .

One implication is easy:

Proof of axiom of choice using Zorn’s lemma. Define a partial

choice function to be a pair (F ′, f ′), where F ′ is a subset of F and

f ′ : F ′ → X is a choice function for F ′. We can partially order the
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collection of partial choice functions by writing (F ′, f ′) ≤ (F ′′, f ′′) if

F ′ ⊂ F ′′ and f ′′ extends f ′. The collection of partial choice functions

is non-empty (since it contains the pair (∅, ()) consisting of the empty

set and the empty function), and it is easy to see that any chain of

partial choice functions has an upper bound (formed by gluing all the

partial choices together). Hence, by Zorn’s lemma, there is a maximal

partial choice function (F∗, f∗). But the domain F∗ of this function

must be all of F , since otherwise one could enlarge F∗ by a single

set A and extend f∗ to A by choosing a single element of A. (One

does not need the axiom of choice to make a single choice, or finitely

many choices; it is only when making infinitely many choices that the

axiom becomes necessary.) The claim follows. �

In the rest of this section I would like to supply the reverse impli-

cation, using the machinery of well-ordered sets. Instead of giving the

shortest or slickest proof of Zorn’s lemma here, I would like to take

the opportunity to place the lemma in the context of several related

topics, such as ordinals and transfinite induction, noting that much

of this material is in fact independent of the axiom of choice. The

material here is standard, but for the purposes of real analysis, one

may simply take Zorn’s lemma as a “black box” and not worry about

the proof.

2.4.1. Well-ordered sets. To prove Zorn’s lemma, we first need to

strengthen the notion of a totally ordered set.

Definition 2.4.3. A well-ordered set is a totally ordered set X =

(X,≤) such that every non-empty subset A of X has a minimal ele-

ment min(A) ∈ A. Two well-ordered sets X, Y are isomorphic if there

is an order isomorphism φ : X → Y between them, i.e. a bijection φ

which is monotone (φ(x) < φ(x′) whenever x < x′).

Example 2.4.4. The natural numbers are well-ordered (this is the

well-ordering principle), as is any finite totally ordered set (includ-

ing the empty set), but the integers, rationals, or reals are not well-

ordered.

Example 2.4.5. Any subset of a well-ordered set is again well-

ordered. In particular, if a, b are two elements of a well-ordered
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set, then intervals such as [a, b] := {c ∈ X : a ≤ c ≤ b}, [a, b) := {c ∈
X : a ≤ c < b}, etc. are also well-ordered.

Example 2.4.6. If X is a well-ordered set, then the ordered set X⊕
{+∞}, defined by adjoining a new element +∞ to X and declaring

it to be larger than all the elements of X, is also well-ordered. More

generally, ifX and Y are well-ordered sets, then the ordered setX⊕Y ,

defined as the disjoint union of X and Y , with any element of Y

declared to be larger than any element of X, is also well-ordered.

Observe that the operation ⊕ is associative (up to isomorphism), but

not commutative in general: for instance, N⊕{∞} is not isomorphic

to {∞} ⊕N.

Example 2.4.7. If X, Y are well-ordered sets, then the ordered set

X⊗Y , defined as the Cartesian product X×Y with the lexicograph-

ical ordering (thus (x, y) ≤ (x′, y′) if x < x′, or if x = x′ and y ≤ y′),
is again a well-ordered set. Again, this operation is associative (up

to isomorphism) but not commutative. Note that we have one-sided

distributivity: (X ⊕ Y )⊗Z is isomorphic to (X ⊗Z)⊕ (Y ⊗Z), but

Z ⊗ (X ⊕ Y ) is not isomorphic to (Z ⊗X)⊕ (Z ⊗ Y ) in general.

Remark 2.4.8. The axiom of choice is trivially true in the case when

X is well-ordered, since one can take min to be the choice function.

Thus, the axiom of choice follows from the well-ordering theorem

(every set has at least one well-ordering). Conversely, we will be able

to deduce the well-ordering theorem from Zorn’s lemma (and hence

from the axiom of choice): see Exercise 2.4.11 below.

One of the reasons that well-ordered sets are useful is that one

can perform induction on them. This is easiest to describe for the

principle of strong induction:

Exercise 2.4.1 (Strong induction on well-ordered sets). Let X be

a well-ordered set, and let P : X 7→ {true, false} be a property of

elements of X. Suppose that whenever x ∈ X is such that P (y) is

true for all y < x, then P (x) is true. Then P (x) is true for every

x ∈ X. This is called the principle of strong induction. Conversely,

show that a totally ordered set X enjoys the principle of strong in-

duction if and only if it is well-ordered. (For partially ordered sets,

the corresponding notion is that of being well-founded.)
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To describe the analogue of the ordinary principle of induction

for well-ordered sets, we need some more notation. Given a subset A

of a non-empty well-ordered set X, we define the supremum sup(A) ∈
X ⊕ {+∞} of A to be the least upper bound

(2.14) sup(A) := min({y ∈ X ⊕ {+∞} : x ≤ y for all x ∈ X}

of A (thus for instance the supremum of the empty set is min(X)).

If x ∈ X, we define the successor succ(x) ∈ X ⊕ {+∞} of x by the

formula

(2.15) succ(x) := min((x,+∞]).

We have the following Peano-type axioms:

Exercise 2.4.2. If x is an element of a non-empty well-ordered set

X, show that exactly one of the following statements hold:

• (Limit case) x = sup([min(X), x)).

• (Successor case) x = succ(y) for some Y .

In particular, min(X) is not the successor of any element in X.

Exercise 2.4.3. Show that if x, y are elements of a well-ordered set

such that succ(x) = succ(y), then x = y.

Exercise 2.4.4 (Transfinite induction for well-ordered sets). Let X

be a non-empty well-ordered set, and let P : X 7→ {true, false} be a

property of elements of X. Suppose that

• (Base case) P (min(X)) is true.

• (Successor case) If x ∈ X and P (x) is true, then P (succ(x))

is true.

• (Limit case) If x = sup([min(X), x)) and P (y) is true for all

y < x, then P (x) is true. [Note that this subsumes the base

case.]

Then P (x) is true for all x ∈ X.

Remark 2.4.9. The usual Peano axioms for succession are the spe-

cial case of Exercises 2.4.2-2.4.4 in which the limit case of Exercise

2.4.2 only occurs for min(X) (which is denoted 0), and the succes-

sor function never attains +∞. With these additional axioms, X is

necessarily isomorphic to N.
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Now we introduce two more key concepts.

Definition 2.4.10. An initial segment of a well-ordered set X is a

subset Y of X such that [min(X), y] ⊂ Y for all y ∈ Y (i.e. whenever

y lies in Y , all elements of X that are less than y also lie in Y ).

A morphism from one well-ordered set X to another Y is a map

φ : X → Y which is strictly monotone (thus φ(x) < φ(x′) whenever

x < x′) and such that φ(X) is an initial segment of Y .

Example 2.4.11. The only morphism from {1, 2, 3} to {1, 2, 3, 4, 5}
is the inclusion map. There is no morphism from {1, 2, 3, 4, 5} to

{1, 2, 3}.

Remark 2.4.12. With this notion of a morphism, the class of well-

ordered sets becomes a category.

We can identify the initial segments of X with elements of X ∪
{+∞}:

Exercise 2.4.5. Let X be a non-empty well-ordered set. Show that

every initial segment I of X is of the form I = [min(X), a) for exactly

one a ∈ X ∪ {+∞}.

Exercise 2.4.6. Show that an arbitrary union or arbitrary intersec-

tion of initial segments is again an initial segment.

Exercise 2.4.7. Let φ : X → Y be a morphism. Show that φ maps

initial segments of X to initial segments of Y . If x, x′ ∈ X is such

that x′ is the successor of x, show that φ(x′) is the successor of φ(x).

As Example 2.4.11 suggests, there are very few morphisms be-

tween well-ordered sets. Indeed, we have

Proposition 2.4.13 (Uniqueness of morphisms). Given two well-

ordered sets X and Y , there is at most one morphism from X and

Y .

Proof. Suppose we have two morphisms φ : X → Y , ψ : X → Y .

By using transfinite induction (Exercise 2.4.4 and Exercise 2.4.7), we

see that φ, ψ agree on [min(X), a) for every a ∈ X ⊕ {+∞}; setting

a = +∞ gives the claim. �
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Exercise 2.4.8 (Schroder-Bernstein theorem for well-ordered sets).

Show that two well-ordered sets X, Y are isomorphic if and only if

there is a morphism from X to Y , and a morphism from Y to X.

We can complement the uniqueness in Proposition 2.4.13 with

existence:

Proposition 2.4.14 (Existence of morphisms). Given two well-ordered

sets X and Y , there is either a morphism from X to Y or a morphism

from Y to X.

Proof. Call an element a ∈ X ⊕ {+∞} good if there is a morphism

φa from [min(X), a) to Y , thus min(X) is good. If +∞ is good, then

we are done. From uniqueness we see that if every element in a set A

is good, then the supremum sup(A) is also good. Applying transfinite

induction (Exercise 2.4.5), we thus see that we are done unless there

exists a good a ∈ X such that succ(a) is not good. By Exercise 2.4.5,

φa([min(X), a)) = [min(Y ), b) for some b ∈ Y ⊕{+∞}. If b ∈ Y then

we could extend the morphism φa to [min(X), a] = [min(X), succ(a))

by mapping a to b, contradicting the fact that succ(a) is not good;

thus b = +∞ and so φa is surjective. It is then easy to check that φ−1
a

exists and is a morphism from Y to X, and the claim follows. �

Remark 2.4.15. Formally, Proposition 2.4.13, Exercise 2.4.8, and

Proposition 2.4.14 tell us that the collection of all well-ordered sets,

modulo isomorphism, is totally ordered by declaring one well-ordered

set X to be at least as large as another Y when there is a morphism

from Y to X. However, this is not quite the case, because the col-

lection of well-ordered sets is only a class rather than a set. Indeed,

as we shall soon see, this is not a technicality, but is in fact a fun-

damental fact about well-ordered sets that lies at the heart of Zorn’s

lemma. (From Russell’s paradox we know that the notions of class

and set are necessarily distinct; see Section 3.15.)

2.4.2. Ordinals. As we learn very early on in our mathematics ed-

ucation, a finite set of a certain cardinality (e.g. a set {a, b, c, d, e})
can be put in one-to-one correspondence with a “standard” set of the

same cardinality (e.g. the set {1, 2, 3, 4, 5}); two finite sets have the

same cardinality if and only if they correspond to the same “standard”
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set {1, . . . , N}). (The same fact is true for infinite sets; see Exercise

2.4.12 below.) Similarly, we would like to place every well-ordered set

in a “standard” form. This motivates

Definition 2.4.16. A representation ρ of the well-ordered sets is an

assignment of a well-ordered set ρ(X) to every well-ordered set X

such that

• ρ(X) is isomorphic to X for every well-ordered set X. (In

particular, if ρ(X) and ρ(Y ) are equal, then X and Y are

isomorphic.)

• If there exists a morphism from X to Y , then ρ(X) is a

subset of ρ(Y ) (and the order structure on ρ(X) is induced

from that on ρ(Y ). (In particular, if X and Y are isomor-

phic, then ρ(X) and ρ(Y ) are equal.)

Remark 2.4.17. In the language of category theory, a representation

is a covariant functor from the category of well-ordered sets to itself

which turns all morphisms into inclusions, and which is naturally

isomorphic to the identity functor.

Remark 2.4.18. Because the collection of all well-ordered sets is a

class rather than a set, ρ is not actually a function (it is sometimes

referred to as a class function).

It turns out that several representations of the well-ordered sets

exist. The most commonly used one is that of the ordinals, defined

by von Neumann as follows.

Definition 2.4.19 (Ordinals). An ordinal is a well-ordered set α with

the property that x = {y ∈ α : y < x} for all x ∈ α. (In particular,

each element of α is also a subset of α, and the strict order relation

< on α is identical to the set membership relation ∈.)

Example 2.4.20. For each natural number n = 0, 1, 2, . . ., define

the ordinal number nth recursively by setting 0th := ∅ and nth :=
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{0th, 1th, . . . , (n− 1)th} for all n ≥ 1, thus for instance

0th := ∅

1th := {0th} = {∅}

2th := {0th, 1th} = {∅, {∅}}

3th := {0th, 1th, 2th} = {∅, {∅}, {∅, {∅}}},

(2.16)

and so forth. (Of course, to be compatible with the English language

conventions for ordinals, we should write 1st instead of 1th, etc., but

let us ignore this discrepancy.) One can easily check by induction

that nth is an ordinal for every n. Furthermore, if we define ω :=

{nth : n ∈ N}, then ω is also an ordinal. (In the foundations of

set theory, this construction, together with the axiom of infinity, is

sometimes used to define the natural numbers (so that n = nth for

all natural numbers n), although this construction can lead to some

conceptually strange-looking consequences that blur the distinction

between numbers and sets, such as 3 ∈ 5 and 4 = {0, 1, 2, 3}.)

The fundamental theorem about ordinals is

Theorem 2.4.21. (i) Given any two ordinals α, β, one is a

subset of the other (and the order structure on α is induced

from that on β).

(ii) Every well-ordered set X is isomorphic to exactly one ordi-

nal ord(X).

In particular, ord is a representation of the well-ordered sets.

Proof. We first prove (i). From Proposition 2.4.14 and symmetry,

we may assume that there is a morphism φ from α to β. By strong

induction (Exercise 2.4.1) and Definition 2.4.19, we see that φ(x) = x

for all x ∈ α, and so φ is the inclusion map from α into β. The claim

follows.

Now we prove (ii). If uniqueness failed, then we would have two

distinct ordinals that are isomorphic to each other, but as one ordinal

is a subset of the other, this would contradict Proposition 2.4.13 (the

inclusion morphism is not an isomorphism); so it suffices to prove

existence.
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We use transfinite induction. It suffices to show that for every

a ∈ X ⊕ {+∞}, that [min(X), a) is isomorphic to an ordinal α(a)

(which we know to be unique). This is of course true in the base case

a = min(X). To handle the successor case a = succ(b), we set α(a) :=

α(b) ∪ {α(b)}, which is easily verified to be an ordinal isomorphic to

[min(X).a). To handle the limit case a = sup([min(X), a)), we take

all the ordinals associated to elements in [min(X), a) and take their

union (here we rely crucially on the axiom schema of replacement and

the axiom of union); by use of (i) one can show that this union is an

ordinal isomorphic to a as required. �

Remark 2.4.22. Operations on well-ordered sets, such as the sum ⊕
and product ⊗ defined in Exercises 2.4.3, 2.4.4, induce corresponding

operations on ordinals, leading to ordinal arithmetic, which we will

not discuss here. (Note that the convention for which order multi-

plication proceeds in is swapped in some of the literature, thus αβ

would be the ordinal of β ⊗ α rather than α⊗ β.)

Exercise 2.4.9 (Ordinals are themselves well-ordered). Let F be a

non-empty class of ordinals. Show that there is a least ordinal min(F)

in this class, which is a subset of all the other ordinals in this class.

In particular, this shows that any set of ordinals is well-ordered by

set inclusion.

Remark 2.4.23. Because of Exercise 2.4.9, we can meaningfully talk

about “the least ordinal obeying property P”, as soon as we can

exhibit at least one ordinal with that property P . For instance, once

one can demonstrate the existence of an uncountable ordinal (which

follows from Exercise 2.4.11 below4), one can talk about the least

uncountable ordinal.

Exercise 2.4.10 (Transfinite induction for ordinals). Let P (α) be a

property pertaining to ordinals α. Suppose that

• (Base case) P (∅) is true.

• (Successor case) If α = {β, {β}} for some ordinal β, and

P (β) is true, then P (α) is true.

4One can also create an uncountable ordinal without the axiom of choice by taking
starting with all the well-orderings of subsets of the natural numbers, and taking the
union of their associated ordinals; this construction is due to Hartogs.
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• (Limit case) If α =
⋃
β∈α β, and P (β) is true for all β ∈ α,

then P (α) is true.

Show that P (α) is true for every ordinal α.

Now we show a fundamental fact, that the well-ordered sets are

just too “numerous” to all fit inside a single set, even modulo isomor-

phism.

Theorem 2.4.24. There does not exist a set A and a representation

ρ of the well-ordered sets such that ρ(X) ∈ A for all well-ordered sets

X.

Proof. By Theorem 2.4.21, any two distinct ordinals are non-isomorphic,

and so get mapped under ρ to a different element of A. Thus we can

identify the class of ordinals with a subset of A, and so the class of

ordinals is in fact a set. In particular, by the axiom of union, we may

take the union of all the ordinals, which one can verify to be another

ordinal ε0. But then ε0 ∪ {ε0} is another ordinal, which implies that

ε0 ∈ ε0, which contradicts the axiom of foundation. �

Remark 2.4.25. It is also possible to prove Theorem 2.4.24 without

the theory of ordinals, or the axiom of foundation. One first observes

(by transfinite induction) that given two well-ordered sets X, X ′, one

of the sets ρ(X), ρ(X ′) is a subset of the other. Because of this, one

can show that the union S of all the ρ(X) (where X ranges over all

well-ordered sets) is well-defined (because the ρ(X) form a subset of

A) and well-ordered. Now we look at the well-ordered set S ∪{+∞};
by Proposition 2.4.13, it is not isomorphic to any subset of S, but

ρ(S ∪ {+∞}) is necessarily contained in S, a contradiction. See also

Section 3.15 for some related results and arguments in this spirit.

Remark 2.4.26. The same argument also shows that there is no

representation of the ordinals inside a given set; the ordinals are “too

big” to be placed in anything other than a class.

2.4.3. Zorn’s lemma. Now we can prove Zorn’s lemma. The key

proposition is

Proposition 2.4.27. Let X be a partially ordered set, and let C be

the set of all well-ordered sets in X. Then there does not exist a



350 2. Related articles

function g : C → X such that g(C) is a strict upper bound for C (i.e.

g(C) > x for all x ∈ C) for all well-ordered C ∈ C.

Proof. Suppose for contradiction that there existed X and g with

the above properties. Then, given any well-ordered set Y , we claim

that there exists exactly one isomorphism φY : Y → ρ(Y ) from Y to

a well-ordered set ρ(Y ) in X such that φY (y) = g(φY ([min(Y ), y)))

for all y ∈ Y . Indeed, the uniqueness and existence can both be

established by a transfinite induction that we leave as an exercise.

(Informally, φY is what one gets by “applying g Y times, starting

with the empty set”.) From uniqueness we see that ρ(Y ) = ρ(Y ′)

whenever Y and Y ′ are isomorphic, and another transfinite induction

shows that ρ(Y ) ⊂ ρ(Y ′) whenever Y is a subset of Y ′. Thus ρ

is a representation of the ordinals. But this contradicts Theorem

2.4.24. �

Remark 2.4.28. One can use transfinite induction on ordinals rather

than well-ordered sets if one wishes here, using Remark 2.4.26 in place

of Theorem 2.4.24.

Proof of Zorn’s lemma. Suppose for contradiction that one had a

non-empty partially ordered set X without maximal elements, such

that every chain had an upper bound. As there are no maximal

elements, every element in X must be bounded by a strictly larger

element in X, and so every chain in fact has a strict upper bound; in

particular every well-ordered set has a strict upper bound. Applying

the axiom of choice, we may thus find a choice function g : C →
X from the space of well-ordered sets in X to X, that maps every

such set to a strict upper bound. But this contradicts Proposition

2.4.27. �

Remark 2.4.29. It is important for Zorn’s lemma that X is a set,

rather than a class. Consider for instance the class of all ordinals.

Every chain of ordinals has an upper bound (namely, the union of the

ordinals in that chain), and the class is certainly non-empty, but there

is no maximal ordinal. (Compare also Theorem 2.4.21 and Theorem

2.4.24.)

Remark 2.4.30. It is also important that every chain have an up-

per bound, and not just countable chains. Indeed, the collection of



2.4. Zorn’s lemma 351

countable subsets of an uncountable set (such as R) is non-empty, and

every countable chain has an upper bound, but there is no maximal

element.

Remark 2.4.31. The above argument shows that the hypothesis of

Zorn’s lemma can be relaxed slightly; one does not need every chain

to have an upper bound, merely every well-ordered set needs to have

one. But I do not know of any application in which this apparently

stronger version of Zorn’s lemma dramatically simplifies an argument.

(In practice, either Zorn’s lemma can be applied routinely, or it fails

utterly to be applicable at all.)

Exercise 2.4.11. Use Zorn’s lemma to establish the well-ordering

theorem (every set has at least one well-ordering).

Remark 2.4.32. By the above exercise, R can be well-ordered. How-

ever, if one drops the axiom of choice from the axioms of set theory,

one can no longer prove that R is well-ordered. Indeed, given a well-

ordering of R, it is not difficult (using Remark 2.4.8) to remove the

axiom of choice from the Banach-Tarski constructions in Section 2.2,

and thus obtain constructions of non-measurable subsets of R. But

a deep theorem of Solovay gives a model of set theory (without the

axiom of choice) in which every set of reals is measurable.

Exercise 2.4.12. Define a (von Neumann) cardinal to be an ordinal

α with the property that all smaller ordinals have strictly lesser car-

dinality (i.e. cannot be placed in one-to-one correspondence with α).

Show that every set can be placed in one-to-one correspondence with

exactly one cardinal. (This gives a representation of the category of

sets, similar to how ord gives a representation of well-ordered sets.)

It seems appropriate to close these notes with a quote from Jerry

Bona:

“The Axiom of Choice is obviously true, the well-ordering principle

obviously false, and who can tell about Zorn’s Lemma?”

Notes. This lecture first appeared at terrytao.wordpress.com/2009/01/28.

Thanks to an anonymous commenter for corrections.
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Eric remarked that any application of Zorn’s lemma can be equiv-

alently rephrased as a transfinite induction, after using a choice func-

tion to decide where to go at each limit ordinal.

2.5. Compactification and metrisation

One way to study a general class of mathematical objects is to embed

them into a more structured class of mathematical objects; for in-

stance, one could study manifolds by embedding them into Euclidean

spaces. In these notes we study two (related) embedding theorems

for topological spaces:

• The Stone-Čech compactification, which embeds locally com-

pact Hausdorff spaces into compact Hausdorff spaces in a

“universal” fashion; and

• The Urysohn metrization theorem, that shows that every

second-countable normal Hausdorff space is metrizable.

2.5.1. The Stone-Čech compactification. Observe that any dense

open subset of a compact Hausdorff space is automatically a locally

compact Hausdorff space. We now study the reverse concept:

Definition 2.5.1. A compactification of a locally compact Hausdorff

space X is an embedding ι : X → X (i.e. a homeomorphism between

X and ι(X)) into a compact Hausdorff space X such that the image

ι(X) of X is an open dense subset of X. We will often abuse notation

and refer to X as the compactification rather than the embedding

ι : X → X, when the embedding is obvious from context.

One compactification ι : X → X is finer than another ι′ : X →
X
′

(or ι′ : X → X
′

is coarser than ι : X → X) if there exists a

continuous map π : X
′ → X such that ι = π ◦ ι′; notice that this map

must be surjective and unique, by the open dense nature of ι(X).

Two compactifications are equivalent if they are both finer than each

other.

Example 2.5.2. Any compact set can be its own compactification.

The real line R can be compactified into [−π/2, π/2] by using the

arctan function as the embedding, or (equivalently) by embedding it

into the extended real line [−∞,∞]. It can also be compactified into
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the unit circle {(x, y) ∈ R2 : x2 + y2 = 1} by using the stereographic

projection x 7→ ( 2x
1+x2 ,

x2−1
1+x2 ). Notice that the former embedding is

finer than the latter. The plane R2 can similarly be compactified into

the unit sphere {(x, y, z) ∈ R2 : x2+y2+z2 = 1} by the stereographic

projection (x, y) 7→ ( 2x
1+x2+y2 ,

2y
1+x2+y2 ,

x2+y2−1
1+x2+y2 ).

Exercise 2.5.1. Let X be a locally compact Hausdorff space X that

is not compact. Define the one-point compactification X ∪ {∞} by

adjoining one point ∞ to X, with the topology generated by the

open sets of X, and the complement (in X ∪ {∞}) of the compact

sets in X. Show that X ∪ {∞} (with the obvious embedding map) is

a compactification of X. Show that the one-point compactification is

coarser than any other compactification of X.

We now consider the opposite extreme to the one-point compact-

ification:

Definition 2.5.3. Let X be a locally compact Hausdorff space. A

Stone-Čech compactification βX of X is defined as the finest com-

pactification of X, i.e. the compactification of X which is finer than

every other compactification of X.

It is clear that the Stone-Čech compactification, if it exists, is

unique up to isomorphism, and so one often abuses notation by refer-

ring to the Stone-Čech compactification. The existence of the com-

pactification can be established by Zorn’s lemma (see Section 2.3 of

Poincaré’s legacies, Vol. I ). We shall shortly give several other con-

structions of the compactification. (All constructions, however, rely

at some point on the axiom of choice, or a related axiom.)

The Stone-Čech compactification obeys a useful functorial prop-

erty:

Exercise 2.5.2. Let X,Y be locally compact Hausdorff spaces, with

Stone-Čech compactifications βX, βY . Show that every continuous

map f : X → Y has a unique continuous extension βf : βX → βY .

(Hint : uniqueness is easy; for existence, look at the closure of the

graph {(x, f(x)) : x ∈ X} in βX × βY , which compactifies X and

thus cannot be strictly finer than βX.) In the converse direction, if X

is a compactification of X such that every continuous map f : X → K
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into a compact space can be extended continuously to X, show that

X is the Stone-Čech compactification.

Example 2.5.4. From the above exercise, we can define limits limx→p f(x) :=

βf(p) for any bounded continuous function on X and any p ∈ βX.

But one for coarser compactifications, one can only take limits for

special types of bounded continuous functions; for instance, using

the one-point compactification of R, limx→∞ f(x) need not exist for

a bounded continuous function f : R → R, e.g. limx→∞ sin(x) or

limx→∞ arctan(x) do not exist. The finer the compactification, the

more limits can be defined; for instance the two point compactifica-

tion [−∞,+∞] of R allows one to define the limits limx→+∞ f(x) and

limx→−∞ f(x) for some additional functions f (e.g. limx→±∞ arctan(x)

is well-defined); and the Stone-Čech compactification is the only com-

pactification which allows one to take limits for any bounded contin-

uous function (e.g. limx→p sin(x) is well-defined for all p ∈ βR).

Now we turn to the issue of actually constructing the Stone-Čech

compactifications.

Exercise 2.5.3. Let X be a locally compact Hausdorff space. Let

C(X → [0, 1]) be the space of continuous functions from X to the unit

interval, letQ := [0, 1]C(X→[0,1]) be the space of tuples (yf )f∈C(X→[0,1])

taking values in the unit interval, with the product topology, and let

ι : X → Q be the Gelfand transform ι(x) := (f(x))f∈C(X→[0,1]), and

let βX be the closure of ιX in Q.

• Show that βX is a compactification of X. (Hint : Use

Urysohn’s lemma and Tychonoff’s theorem.)

• Show that βX is the Stone-Čech compactification of X.

(Hint : If X is any other compactification of X, we can iden-

tify C(X → [0, 1]) as a subset of C(X → [0, 1]), and then

project Q to [0, 1]C(X→[0,1]). Meanwhile, we can embed X

inside [0, 1]C(X→[0,1]) by the Gelfand transform.)

Exercise 2.5.4. Let X be a discrete topological space, let 2X be

the Boolean algebra of all subsets of X. By Stone’s representation

theorem (Theorem 1.2.2), 2X is isomorphic to the clopen algebra of

a Stone space βX.
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• Show that βX is a compactification of X.

• Show that βX is the Stone-Čech compactification of X.

• Identify βX with the space of ultrafilters on X. (See Section

1.5 of Structure and randomness for further discussion of

ultrafilters, and Section 2.3 of Poincaré’s legacies, Vol. I

for further discussion of the relationship of ultrafilters to

the Stone-Čech compactification.)

Exercise 2.5.5. Let X be a locally compact Hausdorff space, and

let BC(X → C) be the space of bounded continuous complex-valued

functions on X.

• Show that BC(X → C) is a unital commutative C∗-algebra

(see Section 1.10.4).

• By the commutative Gelfand-Naimark theorem (Theorem

1.10.24), BC(X → C) is isomorphic as a unital C∗-algebra

to C(βX → C) for some compact Hausdorff space βX

(which is in fact the spectrum of BC(X → C). Show that

βX is the Stone-Čech compactification of X.

• More generally, show that given any other compactifica-

tion X of X, that C(X → C) is isomorphic as a unital

C∗-algebra to a subalgebra of BC(X → C) that contains

C ⊕ C0(X → C) (the space of continuous functions from

X to C that converge to a limit at ∞), with X as the

spectrum of this algebra; thus we have a canonical identifi-

cation between compactifications and C∗-algebras between

BC(X → C) and C⊕C0(X → C), which correspond to the

Stone-Čech compactification and one-point compactification

respectively.

Exercise 2.5.6. Let X be a locally compact Hausdorff space. Show

that the dual BC(X → R)∗ of BC(X → R) is isomorphic as a

Banach space to the space M(βX) of real signed Radon measures on

the Stone-Čech compactification βX, and similarly in the complex

case. In particular, conclude that `∞(N)∗ ≡M(βN).

Remark 2.5.5. The Stone-Čech compactification can be extended

from locally compact Hausdorff spaces to the slightly larger class of
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Tychonoff spaces, which are those Hausdorff spaces X with the prop-

erty that any closed set K ⊂ X and point x not in K can be separated

by a continuous function f ∈ C(X → R) which equals 1 on K and

zero on x. This compactification can be constructed by a modifica-

tion of the argument used to establish Exercise 2.5.3. However, in this

case the space X is merely dense in its compactification βX, rather

than open and dense.

Remark 2.5.6. A cautionary note: in general, the Stone-Čech com-

pactification is almost never sequentially compact. For instance, it is

not hard to show that N is sequentially closed in βN. In particular,

these compactifications are usually not metrisable.

2.5.2. Urysohn’s metrisation theorem. Recall that a topologi-

cal space is metrisable if there exists a metric on that space which

generates the topology. There are various necessary conditions for

metrisability. For instance, we have already seen that metric spaces

must be normal and Hausdorff. In the converse direction, we have

Theorem 2.5.7 (Urysohn’s metrisation theorem). Let X be a normal

Hausdorff space which is second countable. Then X is metrisable.

Proof. (Sketch) This will be a variant of the argument in Exercise

2.5.3, but with a countable family of continuous functions in place of

C(X → [0, 1]).

Let U1, U2, . . . be a countable base for X. If Ui, Uj are in this

base with Ui ⊂ Uj , we can apply Urysohn’s lemma and find a con-

tinuous function fij : X → [0, 1] which equals 1 on Ui and vanishes

outside of Uj . Let F be the collection of all such functions; this

is a countable family. We can then embed X in [0, 1]F using the

Gelfand transform x 7→ (f(x))f∈F . By modifying the proof of Exer-

cise 2.5.3 one can show that this is an embedding. On the other

hand, [0, 1]F is a countable product of metric spaces and is thus

metrisable (e.g. by enumerating F as f1, f2, . . . and using the metric

d((xn)fn∈F , (yn)fn∈F ) :=
∑∞
n=1 2−n|xn − yn|). Since a subspace of a

metrisable space is clearly also metrisable, the claim follows. �

Recalling that compact metric spaces are second countable (Lemma

1.8.6), thus we have
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Corollary 2.5.8. A compact Hausdorff space is metrisable if and

only if it is second countable.

Of course, non-metrisable compact Hausdorff spaces exist; βN is

a standard example. Uncountable products of non-trivial compact

metric spaces, such as {0, 1}, are always non-metrisable. Indeed, we

already saw in Section 1.8 that {0, 1}X is compact but not sequen-

tially compact (and thus not metrisable) when X has the cardinal-

ity of the continuum; one can use the first uncountable ordinal to

achieve a similar result for any uncountable X, and then by embed-

ding one can obtain non-metrisability for any uncountable product

of non-trivial compact metric spaces, thus complementing the metris-

ability of countable products of such spaces. Conversely, there also

exist metrisable spaces which are not second countable (e.g. uncount-

able discrete spaces). So Urysohn’s metrisation theorem does not

completely classify the metrisable spaces, however it already covers a

large number of interesting cases.

Notes. This lecture first appeared at terrytao.wordpress.com/2009/03/02.

Thanks to Eric, Javier Lopez, Mark Meckes, Max Baroi, Paul Leop-

ardi, Pete L. Clark, and anonymous commenters for corrections.

2.6. Hardy’s uncertainty principle

Many properties of a (sufficiently nice) function f : R → C are

reflected in its Fourier transform f̂ : R→ C, defined by the formula

(2.17) f̂(ξ) :=

∫ ∞
−∞

f(x)e−2πixξ dx.

For instance, decay properties of f are reflected in smoothness prop-

erties of f̂ , as the following table shows:

If f is... then f̂ is... and this relates to...

Square-integrable square-integrable Plancherel’s theorem

Absolutely integrable continuous Riemann-Lebesgue lemma

Rapidly decreasing smooth theory of Schwartz functions

Exponentially decreasing analytic in a strip

Compactly supported entire, exponential growth Paley-Wiener theorem

(See Section 1.12 for further discussion of the Fourier transform.)



358 2. Related articles

Another important relationship between a function f and its

Fourier transform f̂ is the uncertainty principle, which roughly as-

serts that if a function f is highly localised in space, then its Fourier

transform f̂ must be widely dispersed in space, or to put it another

way, f and f̂ cannot both decay too strongly at infinity (except of

course in the degenerate case f = 0). There are many ways to make

this intuition precise. One of them is the Heisenberg uncertainty prin-

ciple, which asserts that if we normalise∫
R

|f(x)|2 dx =

∫
R

|f̂(ξ)|2 dξ = 1

then we must have

(

∫
R

|x|2|f(x)|2 dx) · (
∫
R

|ξ|2|f̂(ξ)|2 dx) ≥ 1

(4π)2

thus forcing at least one of f or f̂ to not be too concentrated near the

origin. This principle can be proven (for sufficiently nice f , initially)

by observing the integration by parts identity

〈xf, f ′〉 =

∫
R

xf(x)f ′(x) dx = −1

2

∫
R

|f(x)|2 dx

and then using Cauchy-Schwarz and the Plancherel identity.

Another well known manifestation of the uncertainty principle

is the fact that it is not possible for f and f̂ to both be compactly

supported (unless of course they vanish entirely). This can be in fact

be seen from the above table: if f is compactly supported, then f̂

is an entire function; but the zeroes of a non-zero entire function are

isolated, yielding a contradiction unless f vanishes. (Indeed, the table

also shows that if one of f and f̂ is compactly supported, then the

other cannot have exponential decay.)

On the other hand, we have the example of the Gaussian func-

tions f(x) = e−πax
2

, f̂(ξ) = 1√
a
e−πξ

2/a, which both decay faster

than exponentially. The classical Hardy uncertainty principle asserts,

roughly speaking, that this is the fastest that f and f̂ can simultane-

ously decay:

Theorem 2.6.1 (Hardy uncertainty principle). Suppose that f is

a (measurable) function such that |f(x)| ≤ Ce−πax
2

and |f̂(ξ)| ≤
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C ′e−πξ
2/a for all x, ξ and some C,C ′, a > 0. Then f(x) is a scalar

multiple of the gaussian e−πax
2

.

This theorem is proven by complex-analytic methods, in particu-

lar the Phragmén-Lindelöf principle; for sake of completeness we give

that proof below. But I was curious to see if there was a real-variable

proof of the same theorem, avoiding the use of complex analysis. I

was able to find the proof of a slightly weaker theorem:

Theorem 2.6.2 (Weak Hardy uncertainty principle). Suppose that f

is a non-zero (measurable) function such that |f(x)| ≤ Ce−πax
2

and

|f̂(ξ)| ≤ C ′e−πbξ2 for all x, ξ and some C,C ′, a, b > 0. Then ab ≤ C0

for some absolute constant C0.

Note that the correct value of C0 should be 1, as is implied by

the true Hardy uncertainty principle. Despite the weaker statement,

I thought the proof might still might be of interest as it is a little

less “magical” than the complex-variable one, and so I am giving it

below.

2.6.1. The complex-variable proof. We first give the complex-

variable proof. By dilating f by
√
a (and contracting f̂ by 1/

√
a) we

may normalise a = 1. By multiplying f by a small constant we may

also normalise C = C ′ = 1.

The super-exponential decay of f allows us to extend the Fourier

transform f̂ to the complex plane, thus

f̂(ξ + iη) =

∫
R

f(x)e−2πixξe2πηx dx

for all ξ, η ∈ R. We may differentiate under the integral sign and

verify that f̂ is entire. Taking absolute values, we obtain the upper

bound

|f̂(ξ + iη)| ≤
∫
R

e−πx
2

e2πηx dx;

completing the square, we obtain

(2.18) |f̂(ξ + iη)| ≤ eπη
2

for all ξ, η. We conclude that the entire function

F (z) := eπz
2

f̂(z)
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is bounded in magnitude by 1 on the imaginary axis; also, by hy-

pothesis on f̂ , we also know that F is bounded in magnitude by 1 on

the real axis. Formally applying the Phragmen-Lindelöf principle (or

maximum modulus principle), we conclude that F is bounded on the

entire complex plane, which by Liouville’s theorem implies that F is

constant, and the claim follows.

Now let’s go back and justify the Phragmén-Lindelöf argument.

Strictly speaking, Phragmén-Lindelöf does not apply, since it requires

exponential growth on the function F , whereas we have quadratic-

exponential growth here. But we can tweak F a bit to solve this

problem. Firstly, we pick 0 < θ < π/2 and work on the sector

Γθ := {reiα : r > 0, 0 ≤ α ≤ θ}.

Using (2.18) we have

|F (ξ + iη)| ≤ eπξ
2

.

Thus, if δ > 0, and θ is sufficiently close to π/2 depending on δ, the

function eiδz
2

F (z) is bounded in magnitude by 1 on the boundary of

Γθ. Then, for any sufficiently small ε > 0, e−iεe
iεz2+εeiδz

2

F (z) (using

the standard branch of z2+ε on Γθ) is also bounded in magnitude by 1

on this boundary, and goes to zero at infinity in the interior of Γθ, so

is bounded by 1 in that interior by the maximum modulus principle.

Sending ε → 0, and then θ → π/2, and then δ → 0, we obtain F

bounded in magnitude by 1 on the upper right quadrant. Similar

arguments work for the other quadrants, and the claim follows.

2.6.2. The real-variable proof. Now we turn to the real-variable

proof of Theorem 2.6.2, which is based on the fact that polynomials

of controlled degree do not resemble rapidly decreasing functions.

Rather than use complex analyticity f̂ , we will rely instead on a

different relationship between the decay of f and the regularity of f̂ ,

as follows:

Lemma 2.6.3 (Derivative bound). Suppose that |f(x)| ≤ Ce−πax
2

for all x ∈ R, and some C, a > 0. Then f̂ is smooth, and furthermore

one has the bound |∂kξ f̂(ξ)| ≤ C√
a

k!πk/2

(k/2)!a(k+1)/2 for all ξ ∈ R and every

even integer k.
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Proof. The smoothness of f̂ follows from the rapid decrease of f . To

get the bound, we differentiate under the integral sign (one can easily

check that this is justified) to obtain

∂kξ f̂(ξ) =

∫
R

(−2πix)kf(x)e−2πixξ dx

and thus by the triangle inequality for integrals (and the hypothesis

that k is even)

|∂kξ f̂(ξ)| ≤ C
∫
R

e−πax
2

(2πx)k dx.

On the other hand, by differentiating the Fourier analytic identity

1√
a
e−πξ

2/a =

∫
R

e−πax
2

e−2πixξ dx

k times at ξ = 0, we obtain

dk

dξk
(

1√
a
e−πξ

2/a)|ξ=0 =

∫
R

e−πax
2

(2πix)k dx;

expanding out 1√
a
e−πξ

2/a using Taylor series we conclude that

k!√
a

(−π/a)k/2

(k/2)!
=

∫
R

e−πax
2

(2πix)k dx

�

Using Stirling’s formula k! = kk(e + o(1))−k, we conclude in

particular that

(2.19) |∂kξ f̂(ξ)| ≤ (
πe

a
+ o(1))k/2kk/2

for all large even integers k (where the decay of o(1) can depend on

a,C).

We can combine (2.19) with Taylor’s theorem with remainder, to

conclude that on any interval I ⊂ R, we have an approximation

f̂(ξ) = PI(ξ) +O(
1

k!
(
πe

a
+ o(1))k/2kk/2|I|k)

where |I| is the length of I and PI is a polynomial of degree less than

k. Using Stirling’s formula again, we obtain

(2.20) f̂(ξ) = PI(ξ) +O((
π

ea
+ o(1))k/2k−k/2|I|k)
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Now we apply a useful bound.

Lemma 2.6.4 (Doubling bound). Let P be a polynomial of degree

at most k for some k ≥ 1, let I = [x0 − r, x0 + r] be an interval, and

suppose that |P (x)| ≤ A for all x ∈ I and some A > 0. Then for

any N ≥ 1 we have the bound |P (x)| ≤ (CN)kA for all x ∈ NI :=

[x0 −Nr, x0 +Nr] and for some absolute constant C.

Proof. By translating we may take x0 = 0; by dilating we may take

r = 1. By dividing P by A, we may normalise A = 1. Thus we have

|P (x)| ≤ 1 for all −1 ≤ x ≤ 1, and the aim is now to show that

|P (x)| ≤ (CN)k for all −N ≤ x ≤ N .

Consider the trigonometric polynomial P (cos θ). By de Moivre’s

formula, this function is a linear combination of cos(jθ) for 0 ≤ j ≤ k.

By Fourier analysis, we can thus write P (cos θ) =
∑k
j=0 cj cos(jθ),

where

cj =
1

π

∫ π

−π
P (cos θ) cos(jθ) dθ.

Since P (cos θ) is bounded in magnitude by 1, we conclude that cj is

bounded in magnitude by 2. Next, we use de Moivre’s formula again

to expand cos(jθ) as a linear combination of cos(θ) and sin2(θ), with

coefficients of size O(1)k; expanding sin2(θ) further as 1 − cos2(θ),

we see that cos(jθ) is a polynomial in cos(θ) with coefficients O(1)k.

Putting all this together, we conclude that the coefficients of P are

all of size O(1)k, and the claim follows. �

Remark 2.6.5. One can get slightly sharper results by using the

theory of Chebyshev polynomials. (Is the best bound for C known?

I do not know the recent literature on this subject. I think though

that even the sharpest bound for C would not fully recover the sharp

Hardy uncertainty principle, at least with the argument given here.)

We return to the proof of Theorem 2.6.2. We pick a large integer

k and a parameter r > 0 to be chosen later. From (2.20) we have

f̂(ξ) = Pr(ξ) +O(
r2

ak
)k/2
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for ξ ∈ [−r, 2r], and some polynomial Pr of degree k. In particular,

we have

Pr(ξ) = O(e−br
2

) +O(
r2

ak
)k/2

for ξ ∈ [r, 2r]. Applying Lemma 2.6.4, we conclude that

Pr(ξ) = O(1)ke−br
2

+O(
r2

ak
)k/2

for ξ ∈ [−r, r]. Applying (2.20) again we conclude that

f̂(ξ) = O(1)ke−br
2

+O(
r2

ak
)k/2

for ξ ∈ [−r, r]. If we pick r :=
√

k
cb for a sufficiently small absolute

constant c, we conclude that

|f̂(ξ)| ≤ 2−k +O(
1

ab
)k/2

(say) for ξ ∈ [−r, r]. If ab ≥ C0 for large enough C0, the right-hand

side goes to zero as k → ∞ (which also implies r → ∞), and we

conclude that f̂ (and hence f) vanishes identically.

Notes. This article first appeared at terrytao.wordpress.com/2009/02/18.

Pedro Lauridsen Ribiero noted an old result of Schrödinger, that

the only minimisers of the Heisenberg uncertainty principle were the

gaussians (up to scaling, translation, and modulation symmetries).

Fabrice Planchon and Phillipe Jaming mentioned several related

results and generalisations, including a recent PDE-based proof of the

Hardy uncertainty principle (with the sharp constant) in [EsKePoVe2008].

2.7. Create an epsilon of room

In this article I would like to discuss a fundamental trick in “soft”

analysis, sometimes known as the “limiting argument” or “epsilon

regularisation argument”.

A quick description of the trick is as follows. Suppose one wants

to prove some statement S0 about some object x0 (which could be

a number, a point, a function, a set, etc.). To do so, pick a small

ε > 0, and first prove a weaker statement Sε (which allows for “losses”

which go to zero as ε → 0) about some perturbed object xε. Then,
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take limits ε → 0. Provided that the dependency and continuity of

the weaker conclusion Sε on ε are sufficiently controlled, and xε is

converging to x0 in an appropriately strong sense, you will recover

the original statement.

One can of course play a similar game when proving a statement

S∞ about some object X∞, by first proving a weaker statement SN
on some approximation XN to X∞ for some large parameter N , and

then send N →∞ at the end.

Here are some typical examples of a target statement S0, and the

approximating statements Sε that would converge to S:

S0 Sε
f(x0) = g(x0) f(xε) = g(xε) + o(1)

f(x0) ≤ g(x0) f(xε) ≤ g(xε) + o(1)

f(x0) > 0 f(xε) ≥ c− o(1) for some c > 0 independent of ε

f(x0) is finite f(xε) is bounded uniformly in ε

f(x0) ≥ f(x) for all x ∈ X f(xε) ≥ f(x)− o(1) for all x ∈ X
(i.e. x0 maximises f) (i.e. xε nearly maximises f)

fn(x0) converges as n→∞ fn(xε) fluctuates by at most o(1) for suff. large n

f0 is a measurable function fε is a measurable function converging

pointwise to f0

f0 is a continuous function fε is an equicts. family of functions converging

pointwise to f0

OR fε is continuous and converges

(locally) uniformly to f0

The event E0 holds a.s. The event Eε holds with probability 1− o(1)

The statement P0(x) holds for a.e. x The statement Pε(x) holds for x outside of

a set of measure o(1)

Of course, to justify the convergence of Sε to S0, it is necessary

that xε converge to x0 (or fε converge to f0, etc.) in a suitably

strong sense. (But for the purposes of proving just upper bounds,

such as f(x0) ≤ M , one can often get by with quite weak forms of

convergence, thanks to tools such as Fatou’s lemma or the weak clo-

sure of the unit ball.) Similarly, we need some continuity (or at least

semi-continuity) hypotheses on the functions f , g appearing above.
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It is also necessary in many cases that the control Sε on the

approximating object xε is somehow “uniform in ε”, although for

“σ-closed” conclusions, such as measurability, this is not required5.

By giving oneself an epsilon of room, one can evade a lot of fa-

miliar issues in soft analysis. For instance, by replacing “rough”,

“infinite-complexity”, “continuous”, “global”, or otherwise “infini-

tary” objects x0 with “smooth”, “finite-complexity”, “discrete”, “lo-

cal”, or otherwise “finitary” approximants xε, one can finesse most

issues regarding the justification of various formal operations (e.g. ex-

changing limits, sums, derivatives, and integrals)6. Similarly, issues

such as whether the supremum M := sup{f(x) : x ∈ X} of a function

on a set is actually attained by some maximiser x0 become moot if one

is willing to settle instead for an almost-maximiser xε, e.g. one which

comes within an epsilon of that supremum M (or which is larger than

1/ε, if M turns out to be infinite). Last, but not least, one can use

the epsilon room to avoid degenerate solutions, for instance by per-

turbing a non-negative function to be strictly positive, perturbing a

non-strictly monotone function to be strictly monotone, and so forth.

To summarise: one can view the epsilon regularisation argument

as a “loan” in which one borrows an epsilon here and there in order

to be able to ignore soft analysis difficulties, and can temporarily be

able to utilise estimates which are non-uniform in epsilon, but at the

end of the day one needs to “pay back” the loan by establishing a

final “hard analysis” estimate which is uniform in epsilon (or whose

error terms decay to zero as epsilon goes to zero).

A variant: It may seem that the epsilon regularisation trick is use-

less if one is already in “hard analysis” situations when all objects are

already “finitary”, and all formal computations easily justified. How-

ever, there is an important variant of this trick which applies in this

case: namely, instead of sending the epsilon parameter to zero, choose

5It is important to note that it is only the final conclusion Sε on xε that needs
to have this uniformity in ε; one is permitted to have some intermediate stages in the
derivation of Sε that depend on ε in a non-uniform manner, so long as these non-
uniformities cancel out or otherwise disappear at the end of the argument.

6It is important to be aware, though, that any quantitative measure on how
smooth, discrete, finite, etc. xε should be expected to degrade in the limit ε → 0,
and so one should take extreme caution in using such quantitative measures to derive
estimates that are uniform in ε.
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epsilon to be a sufficiently small (but not infinitesimally small) quan-

tity, depending on other parameters in the problem, so that one can

eventually neglect various error terms and to obtain a useful bound

at the end of the day. (For instance, any result proven using the Sze-

merédi regularity lemma is likely to be of this type.) Since one is not

sending epsilon to zero, not every term in the final bound needs to

be uniform in epsilon, though for quantitative applications one still

would like the dependencies on such parameters to be as favourable

as possible.

2.7.1. Examples. The “soft analysis” components of any real anal-

ysis textbook will contain a large number of examples of this trick in

action. In particular, any argument which exploits Littlewood’s three

principles of real analysis is likely to utilise this trick. Of course, this

trick also occurs repeatedly in Chapter 1, and thus was chosen as the

title of this book.

Example 2.7.1 (Riemann-Lebesgue lemma). Given any absolutely

integrable function f ∈ L1(R), the Fourier transform f̂ : R → C is

defined by the formula

f̂(ξ) :=

∫
R

f(x)e−2πixξ dx.

The Riemann-Lebesgue lemma asserts that f̂(ξ) → 0 as ξ → ∞. It

is difficult to prove this estimate for f directly, because this function

is too “rough”: it is absolutely integrable (which is enough to ensure

that f̂ exists and is bounded), but need not be continuous, differ-

entiable, compactly supported, bounded, or otherwise “nice”. But

suppose we give ourselves an epsilon of room. Then, as the space C∞0
of test functions is dense in L1(R) (Exercise 1.13.5), we can approx-

imate f to any desired accuracy ε > 0 in the L1 norm by a smooth,

compactly supported function fε : R→ C, thus

(2.21)

∫
R

|f(x)− fε(x)| dx ≤ ε.

The point is that fε is much better behaved than f , and it is not

difficult to show the analogue of the Riemann-Lebesgue lemma for

fε. Indeed, being smooth and compactly supported, we can now
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justifiably integrate by parts to obtain

f̂ε(ξ) =
1

2πiξ

∫
R

f ′ε(x)e−2πixξ dx

for any non-zero ξ, and it is now clear (since f ′ is bounded and com-

pactly supported) that f̂ε(ξ)→ 0 as ξ →∞.

Now we need to take limits as ε → 0. It will be enough to have

f̂ε converge uniformly to f̂ . But from (2.21) and the basic estimate

(2.22) sup
ξ
|ĝ(ξ)| ≤

∫
R

|g(x)| dx

(which is the single “hard analysis” ingredient in the proof of the

lemma) applied to g := f − fε, we see (by the linearity of the Fourier

transform) that

sup
ξ
|f̂(ξ)− f̂ε(ξ)| ≤ ε

and we obtain the desired uniform convergence.

Remark 2.7.2. The same argument also shows that f̂ is continuous;

we leave this as an exercise to the reader. See also Exercise 1.12.11

for the generalisation of this lemma to other locally compact abelian

groups.

Remark 2.7.3. Example 2.7.1 is a model case of a much more gen-

eral instance of the limiting argument: in order to prove a convergence

or continuity theorem for all “rough” functions in a function space, it

suffices to first prove convergence or continuity for a dense subclass

of “smooth” functions, and combine that with some quantitative es-

timate in the function space (in this case, (2.22)) in order to justify

the limiting argument. See Corollary 1.7.7 for an important example

of this principle.

Example 2.7.4. The limiting argument in Example 2.7.1 relied on

the linearity of the Fourier transform f 7→ f̂ . But, with more effort,

it is also possible to extend this type of argument to nonlinear set-

tings. We will sketch (omitting several technical details, which can be

found for instance in my PDE book [Ta2006]) a very typical instance.

Consider a nonlinear PDE, e.g. the cubic nonlinear wave equation

(2.23) −utt + uxx = u3
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where u : R×R→ R is some scalar field, and the t and x subscripts

denote differentiation of the field u(t, x). If u is sufficiently smooth,

and sufficiently decaying at spatial infinity, one can show that the

energy

(2.24) E(u)(t) :=

∫
R

1

2
|ut(t, x)|2 +

1

2
|ux(t, x)|2 +

1

4
|u(t, x)|4 dx

is conserved, thus E(u)(t) = E(u)(0) for all t. Indeed, this can be

formally justified by computing the derivative ∂tE(u)(t) by differenti-

ating under the integral sign, integrating by parts, and then applying

the PDE (2.23); we leave this as an exercise for the reader7. How-

ever, these justifications do require a fair amount of regularity on

the solution u; for instance, requiring u to be three-times continu-

ously differentiable in space and time, and compactly supported in

space on each bounded time interval, would be sufficient to make the

computations rigorous by applying “off the shelf” theorems about

differentiation under the integration sign, etc.

But suppose one only has a much rougher solution, for instance

an energy class solution which has finite energy (2.24), but for which

higher derivatives of u need not exist in the classical sense8. Then

it is difficult to justify the energy conservation law directly. How-

ever, it is still possible to obtain energy conservation by the limiting

argument. Namely, one takes the energy class solution u at some ini-

tial time (e.g. t = 0) and approximates that initial data (the initial

position u(0) and initial data ut(0)) by a much smoother (and com-

pactly supported) choice (u(ε)(0), u
(ε)
t (0)) of initial data, which con-

verges back to (u(0), ut(0)) in a suitable “energy topology” related to

(2.24), which we will not define here (it is based on Sobolev spaces,

which are discussed in Section 1.14). It then turns out (from the

existence theory of the PDE (2.23)) that one can extend the smooth

7There are also more fancy ways to see why the energy is conserved, using Hamil-
tonian or Lagrangian mechanics or by the more general theory of stress-energy tensors,
but we will not discuss these here.

8There is a non-trivial issue regarding how to make sense of the PDE (2.23) when
u is only in the energy class, since the terms utt and uxx do not then make sense
classically, but there are standard ways to deal with this, e.g. using weak derivatives,
see Section 1.13.
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initial data (u(ε)(0), u
(ε)
t (0)) to other times t, providing a smooth so-

lution u(ε) to that data. For this solution, the energy conservation

law E(u(ε))(t) = E(u(ε))(0) can be justified.

Now we take limits as ε→ 0 (keeping t fixed). Since (u(ε)(0), u
(ε)
t (0))

converges in the energy topology to (u(0), ut(0)), and the energy

functional E is continuous in this topology, E(u(ε))(0) converges to

E(u)(0). To conclude the argument, we will also need E(u(ε))(t) to

converge to E(u)(t), which will be possible if (u(ε)(t), u
(ε)
t (t)) con-

verges in the energy topology to (u(t), ut(t)). Thus in turn follows

from a fundamental fact (which requires a certain amount of effort

to prove) about the PDE to (2.24), namely that it is well-posed in

the energy class. This means that not only do solutions exist and are

unique for initial data in the energy class, but they depend continu-

ously on the initial data in the energy topology; small perturbations

in the data lead to small perturbations in the solution, or more for-

mally that the map (u(0), ut(0))→ (u(t), ut(t)) from data to solution

(say, at some fixed time t) is continuous in the energy topology. This

final fact concludes the limiting argument and gives us the desired

conservation law E(u(t)) = E(u(0)).

Remark 2.7.5. It is important that one have a suitable well-posedness

theory in order to make the limiting argument work for rough solu-

tions to a PDE; without such a well-posedness theory, it is possible

for quantities which are formally conserved to cease being conserved

when the solutions become too rough or otherwise “weak”; energy,

for instance, could disappear into a singularity and not come back.

Example 2.7.6 (Maximum principle). The maximum principle is a

fundamental tool in elliptic and parabolic PDE (for example, it is used

heavily in the proof of the Poincaré conjecture, discussed extensively

in Poincaré’s legacies, Vol. II ). Here is a model example of this

principle:

Proposition 2.7.7. Let u : D → R be a smooth harmonic function

on the closed unit disk D := {(x, y) : x2 + y2 ≤ 1}. If M is a bound

such that u(x, y) ≤M on the boundary ∂D := {(x, y) : x2 + y2 = 1}.
Then u(x, y) ≤M on the interior as well.
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A naive attempt to prove Proposition 2.7.7 comes very close to

working, and goes like this: suppose for contradiction that the propo-

sition failed, thus u exceeds M somewhere in the interior of the disk.

Since u is continuous, and the disk is compact, there must then be

a point (x0, y0) in the interior of the disk where the maximum is

attained. Undergraduate calculus then tells us that uxx(x0, y0) and

uyy(x0, y0) are non-positive, which almost contradicts the harmonic-

ity hypothesis uxx + uyy = 0. However, it is still possible that uxx
and uyy both vanish at (x0, y0), so we don’t yet get a contradiction.

But we can finish the proof by giving ourselves an epsilon of

room. The trick is to work not with the function u directly, but with

the modified function u(ε)(x, y) := u(x, y) + ε(x2 + y2), to boost the

harmonicity into subharmonicity. Indeed, we have u
(ε)
xx + u

(ε)
yy = 4ε >

0. The preceding argument now shows that u(ε) cannot attain its

maximum in the interior of the disk; since it is bounded by M + ε

on the boundary of the disk, we we conclude that u(ε) is bounded by

M + ε on the interior of the disk as well. Sending ε → 0 we obtain

the claim.

Remark 2.7.8. Of course, Proposition 2.7.7 can also be proven by

much more direct means, for instance via the Green’s function for the

disk. However, the argument given is extremely robust and applies

to a large class of both linear and nonlinear elliptic and parabolic

equations, including those with rough variable coefficients.

Exercise 2.7.1. Use the maximum modulus principle to prove the

Phragmén-Lindelöf principle: if f is complex analytic on the strip

{z : 0 ≤ Re(z) ≤ 1}, is bounded in magnitude by 1 on the boundary

of this strip, and obeys a growth condition |f(z)| ≤ Ce|z|
C

on the

interior of the strip, then show that f is bounded in magnitude by

1 throughout the strip. (Hint : multiply f by e−εz
m

for some even

integer m.) See Section 1.11 for some applications of this principle to

interpolation theory.

Example 2.7.9 (Manipulating generalised functions). In PDE one

is primarily interested in smooth (classical) solutions; but for a vari-

ety of reasons it is useful to also consider rougher solutions. Some-

times, these solutions are so rough that they are no longer functions,
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but are measures, distributions (see Section 1.13), or some other con-

cept of “generalised function” or “generalised solution”. For instance,

the fundamental solution to a PDE is typically just a distribution

or measure, rather than a classical function. A typical example: a

(sufficiently smooth) solution to the three-dimensional wave equation

−utt + ∆u = 0 with initial position u(0, x) = 0 and initial velocity

ut(0, x) = g(x) is given by the classical formula

u(t) = tg ∗ σt

for t > 0, where σt is the unique rotation-invariant probability mea-

sure on the sphere St := {(x, y, z) ∈ R3 : x2 + y2 + z2 = t2} of radius

t, or equivalently, the area element dS on that sphere divided by the

surface area 4πt2 of that sphere. (The convolution f ∗ µ of a smooth

function f and a (compactly supported) finite measure µ is defined

by f ∗ µ(x) :=
∫
f(x − y) dµ(y); one can also use the distributional

convolution defined in Section 1.13.)

For this and many other reasons, it is important to manipulate

measures and distributions in various ways. For instance, in addition

to convolving functions with measures, it is also useful to convolve

measures with measures; the convolution µ ∗ ν of two finite measures

on Rn is defined as the measure which assigns to each measurable set

E in Rn, the measure

(2.25) µ ∗ ν(E) :=

∫ ∫
1E(x+ y) dµ(x)dν(y).

For sake of concreteness, let’s focus on a specific question, namely

to compute (or at least estimate) the measure σ∗σ, where σ is the nor-

malised rotation-invariant measure on the unit circle {x ∈ R2 : |x| =
1}. It turns out that while σ is not absolutely continuous with respect

to Lebesgue measure m, the convolution is: d(σ ∗ σ) = fdm for some

absolutely integrable function f on R2. But what is this function f?

It certainly is possible to compute it from the definition (2.25), or

by other methods (e.g. the Fourier transform), but I would like to

give one approach to computing these sorts of expressions involving

measures (or other generalised functions) based on epsilon regularisa-

tion, which requires a certain amount of geometric computation but

which I find to be rather visual and conceptual, compared to more
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algebraic approaches (e.g. based on Fourier transforms). The idea is

to approximate a singular object, such as the singular measure σ, by

a smoother object σε, such as an absolutely continuous measure. For

instance, one can approximate σ by

dσε :=
1

m(Aε)
1Aε dm

where Aε := {x ∈ R2 : 1 − ε ≤ |x| ≤ 1 + ε} is a thin annular

neighbourhood of the unit circle. It is clear that σε converges to σ in

the vague topology, which implies that σε ∗ σε converges to σ ∗ σ in

the vague topology also. Since

σε ∗ σε =
1

m(Aε)2
1Aε ∗ 1Aε dm,

we will be able to understand the limit f by first considering the

function

fε(x) :=
1

m(Aε)2
1Aε ∗ 1Aε(x) =

m(Aε ∩ (x−Aε))
m(Aε)2

and then taking (weak) limits as ε→ 0 to recover f .

Up to constants, one can compute from elementary geometry that

m(Aε) is comparable to ε, and m(Aε ∩ (x − Aε)) vanishes for |x| ≥
2+2ε, and is comparable to ε2(2−|x|)−1/2 for 1 ≤ |x| ≤ 2−2ε (and of

size O(ε3/2) in the transition region |x| = 2+O(ε)) and is comparable

to ε2|x|−1 for ε ≤ |x| ≤ 1 (and of size about O(ε) when |x| ≤ ε. (This

is a good exercise for anyone who wants practice in quickly computing

the orders of magnitude of geometric quantities such as areas; for such

order of magnitude calculations, quick and dirty geometric methods

tend to work better here than the more algebraic calculus methods

you would have learned as an undergraduate.) The bounds here are

strong enough to allow one to take limits and conclude what f looks

like: it is comparable to |x|−1(2− |x|)−1/21|x|≤2. And by being more

careful with the computations of area, one can compute the exact

formula for f(x), though I will not do so here.

Remark 2.7.10. Epsilon regularisation also sheds light on why cer-

tain operations on measures or distributions are not permissible. For

instance, squaring the Dirac delta function δ will not give a measure or

distribution, because if one looks at the squares δ2
ε of some smoothed
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out approximations δε to the Dirac function (i.e. approximations to

the identity), one sees that their masses go to infinity in the limit

ε → 0, and so cannot be integrated against test functions uniformly

in ε. On the other hand, derivatives of the delta function, while no

longer measures (the total variation of derivatives of δε become un-

bounded), are at least still distributions (the integrals of derivatives

of δε against test functions remain convergent).

Notes. This article first appeared at terrytao.wordpress.com/2009/02/28.

Thanks to Harald, nicolaennio, and RK for corrections.

The article was a submission to the Tricki (www.tricki.org), an

online repository of mathematical tricks. A version of this article ap-

pears on that site at www.tricki.org/article/Create an epsilon of room.

Dima pointed out that a variant of the epsilon regularisation ar-

gument is used routinely in real algebraic geometry, when the un-

derlying field R is extended to the field of real Puiseaux series in a

parameter ε. After performing computations in this extension, one

eventually sets ε to zero to recover results in the original real field.

2.8. Amenability

Recently, I have been studying the concept of amenability on groups.

This concept can be defined in a “combinatorial” or “finitary” fashion,

using Følner sequences, and also in a more “functional-analytic” or

“infinitary” fashion, using invariant means. I wanted to get some

practice passing back and forth between these two definitions, so I

wrote down some notes on how to do this, and also how to take some

facts about amenability that are usually proven in one setting, and

prove them instead in the other.

2.8.1. Equivalent definitions of amenability. For simplicity I

will restrict attention to countable groups G. Given any f : G →
R and x ∈ G, I define the left-translation τxf : G → R by the

formula τxf(y) := f(x−1y). Given g : G → R as well, I define the

inner product 〈f, g〉 :=
∑
x∈G f(x)g(x) whenever the right-hand side

is convergent.
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All `p spaces are real-valued. The cardinality of a finite set A is

denoted |A|. The symmetric difference of two sets A,B is denoted

A∆B.

A finite mean is a non-negative, finitely supported function µ :

G → R+ such that ‖µ‖`1(G) = 1. A mean is a non-negative linear

functional λ : `∞(G)→ R such that λ(1) = 1. Note that every finite

mean µ can be viewed as a mean λµ by the formula λµ(f) := 〈f, µ〉.
The following equivalences were established by Følner[Fo1955]:

Theorem 2.8.1. Let G be a countable group. Then the following are

equivalent:

(i) There exists a left-invariant mean λ : `∞(G) → R, i.e.

mean such that λ(τxf) = λ(f) for all f ∈ `∞(G) and x ∈ G.

(ii) For every finite set S ⊂ G and every ε > 0, there exists a

finite mean ν such that ‖ν − τxν‖`1(G) ≤ ε for all x ∈ S.

(iii) For every finite set S ⊂ G and every ε > 0, there exists a

non-empty finite set A ⊂ G such that |(x · A)∆A|/|A| ≤ ε

for all x ∈ S.

(iv) There exists a sequence An of non-empty finite sets such that

|x · An∆An|/|An| → 0 as n → ∞ for each x ∈ G. (Such a

sequence is called a Følner sequence.)

Proof. We shall use an argument of Namioka[Na1964].

(i) implies (ii): Suppose for contradiction that (ii) failed, then

there exists S, ε such that ‖ν − τxν‖`1(G) > ε for all means ν and

all x ∈ S. The set {(ν − τxν)x∈S : ν ∈ `1(G)} is then a convex set

of (`1(G))S that is bounded away from zero. Applying the Hahn-

Banach separation theorem (Theorem 1.5.14), there thus exists a lin-

ear functional ρ ∈ (`1(G)S)∗ such that ρ((ν − τxν)x∈S) ≥ 1 for all

means ν. Since (`1(G)S)∗ ≡ `∞(G)S , there thus exist mx ∈ `∞(G)

for x ∈ S such that
∑
x∈S〈ν − δx ∗ ν,mx〉 ≥ 1 for all means ν, thus

〈ν,
∑
x∈Smx−τx−1mx〉 ≥ 1. Specialising ν to the Kronecker means δy

we see that
∑
x∈Smx− τx−1mx ≥ 1 pointwise. Applying the mean λ,

we conclude that
∑
x∈S λ(mx)−λ(τx−1mx) ≥ 1. But this contradicts

the left-invariance of λ.
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(ii) implies (iii): Fix S (which we can take to be non-empty), and

let ε > 0 be a small quantity to be chosen later. By (ii) we can find

a finite mean ν such that

‖ν − τxν‖`1(G) < ε/|S|

for all x ∈ S.

Using the layer-cake decomposition, we can write ν =
∑k
i=1 ci1Ei

for some nested non-empty sets E1 ⊃ E2 ⊃ . . . ⊃ Ek and some

positive constants ci. As ν is a mean, we have
∑k
i=1 ci|Ei| = 1. On

the other hand, observe that |ν − τxν| is at least ci on (x · Ei)∆Ei.
We conclude that

k∑
i=1

ci|(x · Ei)∆Ei| ≤
ε

|S|

k∑
i=1

ci|Ei|

for all x ∈ S, and thus

k∑
i=1

ci
∑
x∈S
|(x · Ei)∆Ei| ≤ ε

k∑
i=1

ci|Ei|.

By the pigeonhole principle, there thus exists i such that∑
x∈S
|(x · Ei)∆Ei| ≤ ε|Ei|

and the claim follows.

(iii) implies (iv): Write the countable group G as the increasing

union of finite sets Sn and apply (iii) with ε := 1/n and S := Sn to

create the set An.

(iv) implies (i): Use the Hahn-Banach theorem to select an infi-

nite mean ρ ∈ `∞(N)∗\`1(N), and define λ(m) = ρ((〈m, 1
|An|1An〉)n∈N).

(Alternatively, one can define λ(m) to be an ultralimit of the 〈m, 1
|An|1An〉.)
�

Any countable group obeying any (and hence all) of (i)-(iv) is

called amenable.

Remark 2.8.2. The above equivalences are proven in a non-constructive

manner, due to the use of the Hahn-Banach theorem (as well as the

contradiction argument). Thus, for instance, it is not immediately
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obvious how to convert an invariant mean into a Følner sequence,

despite the above equivalences.

2.8.2. Examples of amenable groups. We give some model ex-

amples of amenable and non-amenable groups:

Proposition 2.8.3. Every finite group is amenable.

Proof. Trivial (either using invariant means or Følner sequences).

�

Proposition 2.8.4. The integers Z = (Z,+) are are amenable.

Proof. One can take the sets AN = {1, . . . , N} as the Følner se-

quence, or an ultralimit as an invariant mean. �

Proposition 2.8.5. The free group F2 on two generators e1, e2 is

not amenable.

Proof. We first argue using invariant means. Suppose for contradic-

tion that one had an invariant mean λ. Let E1, E2, E−1, E−2 ⊂ F2

be the set of all words beginning with e1, e2, e−1
1 , e−1

2 respectively.

Observe that E2 ⊂ (e−1
1 ·E1)\E1, thus λ(1E2

) ≤ λ(τe−1
1

1E1
)−λ(1E1

).

By invariance we conclude that λ(1E2) = 0; similarly for 1E1 , 1E−1 ,

1E−2
. Since the identity element clearly must have mean zero, we

conclude that the mean λ is identically zero, which is absurd.

Now we argue using Følner sequences. If F2 were amenable, then

for any ε > 0 we could find a finite non-empty set A such that x · A
differs from A by at most ε|A| points for x = e1, e2, e

−1
1 , e−1

2 . The set

e1 · (A ∩ (E2 ∪ E−1 ∪ E−2)) is contained in e1 ·A and in E1, and so

|e1 · (A\E−1)| ≤ |A ∩ E1|+ ε|A|,

and thus

|A| − |A ∩ E−1| ≤ |A ∩ E1|+ ε|A|.
Similarly for permutations. Summing up over all four permutations,

we obtain

4|A| − |A| ≤ |A|+ 4ε|A|,
leading to a contradiction for ε small enough (any ε < 1/2 will do).

�
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Remark 2.8.6. The non-amenability of the free group is related to

the Banach-Tarski paradox (see Section 2.2).

Now we generate some more amenable groups.

Proposition 2.8.7. Let 0 → H → G → K → 0 be a short exact

sequence of countable groups (thus H can be identified with a normal

subgroup of G, and K can be identified with G/H). If H and K are

amenable, then G is amenable also.

Proof. Using invariant means, there is a very short proof: given

invariant means λH , λK for H,K, we can build an invariant mean λG
for G by the formula

λG(f) := λK(F )

for any f ∈ `∞(G), where F : K → R is the function defined as

F (xH) := λH(f(x·)) for all cosets xH (note that the left-invariance of

λH shows that the exact choice of coset representative x is irrelevant).

(One can view λG as sort of a “product measure” of the λH and λK .)

Now we argue using Følner sequences instead. Let En, Fn be

Følner sequences for H,K respectively. Let S be a finite subset of

G, and let ε > 0. We would like to find a finite non-empty subset

A ⊂ G such that |(x·A)\A| ≤ ε|A| for all x ∈ S; this will demonstrate

amenability. (Note that by taking S to be symmetric, we can replace

|(x ·A)\A| with |(x ·A)∆A| without difficulty.)

By taking n large enough, we can find Fn such that π(x) · Fn
differs from Fn by at most ε|Fn|/2 elements for all x ∈ S, where

π : G → K is the projection map. Now, let F ′n be a preimage of Fn
in G. Let T be the set of all group elements t ∈ K such that S · F ′n
intersects F ′n · t. Observe that T is finite. Thus, by taking m large

enough, we can find Em such that t ·Em differs from Em by at most

ε|Em|/2|T | points for all t ∈ T .

Now set A := F ′n · Em = {zy : y ∈ Em, z ∈ F ′n}. Observe that

the sets z · Em for z ∈ F ′n lie in disjoint cosets of H and so |A| =

|Em||F ′n| = |Em||Fn|. Now take x ∈ S, and consider an element of

(x ·A)\A. This element must take the form xzy for some y ∈ Em and

z ∈ F ′n. The coset of H that xzy lies in is given by π(x)π(z). Suppose

first that π(x)π(z) lies outside of Fn. By construction, this occurs for
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at most ε|Fn|/2 choices of z, leading to at most ε|Em||Fn|/2 = ε|A|/2
elements in (x ·A)\A.

Now suppose instead that π(x)π(z) lies in Fn. Then we have

xz = z′t for some z′ ∈ F ′n and t ∈ T , by construction of T , and

so xzy = z′ty. But as xzy lies outside of A, ty must lie outside

of Em. But by construction of Em, there are at most ε|Em|/2|T |
possible choices of y that do this for each fixed x, t, leading to at

most ε|Em||Fn|/2 = ε|A|/2. We thus have |(x · A)\A| ≤ ε|A| as

required. �

Proposition 2.8.8. Let G1 ⊂ G2 ⊂ . . . be a sequence of countable

amenable groups. Then G :=
⋃
nGn is amenable.

Proof. We first use invariant means. An invariant mean on `∞(Gn)

induces a mean on `∞(G) which is invariant with respect to trans-

lations by Gn. Taking an ultralimit of these means, we obtain the

claim.

Now we use Følner sequences. Given any finite set S ⊂ G and

ε > 0, we have S ⊂ Gn for some n. As Gn is amenable, we can find

A ⊂ Gn such that |(x · A)∆A| ≤ ε|A| for all x ∈ S, and the claim

follows. �

Proposition 2.8.9. Every countable virtually solvable group G is

amenable.

Proof. By definition, every virtually solvable group contains a solv-

able group of finite index, and thus contains a normal solvable sub-

group of finite index. (Note that every subgroup H of G of index

I contains a normal subgroup of index at most I!, namely the sta-

biliser of the G action on G/H.) By Proposition 2.8.7 and Proposition

2.8.3, we may thus reduce to the case when G is solvable. By induct-

ing on the derived length of this solvable group using Proposition

2.8.7 again, it suffices to verify this when the group is abelian. By

Proposition 2.8.8, it suffices to verify this when the group is abelian

and finitely generated. By Proposition 2.8.7 again, it suffices to verify

this when the group is cyclic. But this follows from Proposition 2.8.3

and Proposition 2.8.4. �
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Notes. This article first appeared at terrytao.wordpress.com/2009/04/14.

Thanks to Orr for corrections.

Danny Calegari noted the application of amenability to that of

obtaining asymptotic limit objects in dynamics (e.g. via the ergodic

theorem for amenable groups). Jason Behrstock mentioned an amus-

ing characterisation of amenability, as those groups which do not

admit successful “Ponzi schemes” - schemes in which each group ele-

ment passes on a bounded amount of money to its neighbours (in a

Cayley graph) in such a way that everyone profits. There was some

ensuing discussion as to the related question of whether amenable and

non-amenable groups admit nontrivial bounded harmonic functions.
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3.1. An explicitly solvable nonlinear wave
equation

As is well known, the linear one-dimensional wave equation

(3.1) −φtt + φxx = 0,

where φ : R×R→ R is the unknown field (which, for simplicity, we

assume to be smooth), can be solved explicitly; indeed, the general

solution to (3.1) takes the form

(3.2) φ(t, x) = f(t+ x) + g(t− x)

for some arbitrary (smooth) functions f, g : R → R. (One can of

course determine f and g once one specifies enough initial data or

other boundary conditions, but this is not the focus of my post today.)

When one moves from linear wave equations to nonlinear wave

equations, then in general one does not expect to have a closed-form

solution such as (3.2). So I was pleasantly surprised recently while

playing with the nonlinear wave equation

(3.3) −φtt + φxx = eφ,

to discover that this equation can also be explicitly solved in closed

form. (For the reason why I was interested in this equation, see

[Ta2010].)

A posteriori, I now know the reason for this explicit solvability;

(3.3) is the limiting case a = 0, b→ −∞ of the more general equation

−φtt + φxx = eφ+a − e−φ+b

which (after applying the simple transformation φ = b−a
2 +ψ(

√
2e

a+b
4 t,
√

2e
a+b
4 x))

becomes the sinh-Gordon equation

−ψtt + ψxx = sinh(ψ)

(a close cousin of the more famous sine-Gordon equation −φtt+φxx =

sin(φ)), which is known to be completely integrable, and exactly solv-

able. However, I only realised this after the fact, and stumbled upon

the explicit solution to (3.3) by much more classical and elementary

means. I thought I might share the computations here, as I found

them somewhat cute, and seem to serve as an example of how one
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might go about finding explicit solutions to PDE in general; accord-

ingly, I will take a rather pedestrian approach to describing the hunt

for the solution, rather than presenting the shortest or slickest route

to the answer.

After the initial publishing of this post, Patrick Dorey pointed

out to me that (3.3) is extremely classical; it is known as Liouville’s

equation and was solved by Liouville [Li1853], with essentially the

same solution as presented here.

3.1.1. Symmetries. To simplify the discussion let us ignore all is-

sues of regularity, division by zero, taking square roots and logarithms

of negative numbers, etc., and proceed for now in a purely formal fash-

ion, pretending that all functions are smooth and lie in the domain of

whatever algebraic operations are being performed. (It is not too dif-

ficult to go back after the fact and justify these formal computations,

but I do not wish to focus on that aspect of the problem here.)

Although not strictly necessary for solving the equation (3.3), I

find it convenient to bear in mind the various symmetries that (3.3)

enjoys, as this provides a useful “reality check” to guard against errors

(e.g. arriving at a class of solutions which is not invariant under

the symmetries of the original equation). These symmetries are also

useful to normalise various special families of solutions.

One easily sees that solutions to (3.3) are invariant under space-

time translations

(3.4) φ(t, x) 7→ φ(t− t0, x− x0)

and also spacetime reflections

(3.5) φ(t, x) 7→ φ(±t,±x).

Being relativistic, the equation is also invariant under Lorentz trans-

formations

(3.6) φ(t, x) 7→ φ(
t− vx√
1− v2

,
x− vt√
1− v2

).

Finally, one has the scaling symmetry

(3.7) φ(t, x) 7→ φ(λt, λx) + 2 log λ.
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3.1.2. Solution. Henceforth φ will be a solution to (3.3). In view

of the linear explicit solution (3.2), it is natural to move to null coor-

dinates

u = t+ x, v = t− x,
thus

∂u =
1

2
(∂t + ∂x); ∂v =

1

2
(∂t − ∂x)

and (3.3) becomes

(3.8) φuv = −1

4
eφ.

The various symmetries (3.4)-(3.7) can of course be rephrased in terms

of null coordinates in a straightforward manner. The Lorentz sym-

metry (3.6) simplifies particularly nicely in null coordinates, to

(3.9) φ(u, v) 7→ φ(λu, λ−1v).

Motivated by the general theory of stress-energy tensors of relativistic

wave equations (of which (3.3) is a very simple example), we now look

at the null energy densities φ2
u, φ

2
v. For the linear wave equation (3.1)

(or equivalently φuv = 0), these null energy densities are transported

in null directions:

(3.10) ∂vφ
2
u = 0; ∂uφ

2
v = 0.

(One can also see this from the explicit solution (3.2).)

The above transport law isn’t quite true for the nonlinear wave

equation, of course, but we can hope to get some usable substitute.

Let us just look at the first null energy φ2
u for now. By two applica-

tions of (3.10), this density obeys the transport equation

∂vφ
2
u = 2φuφuv

= −1

2
φue

φ

= −1

2
∂u(eφ)

= 2∂uφuv

= ∂v(2φuu)

and thus we have the pointwise conservation law

∂v(φ
2
u − 2φuu) = 0
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which implies that

(3.11) −1

2
φuu +

1

4
φ2
u = U(u)

for some function U : R→ R depending only on u. Similarly we have

−1

2
φvv +

1

4
φ2
v = V (v)

for some function V : R→ R depending only on v.

For any fixed v, (11) is a nonlinear ODE in u. To solve it, we can

first look at the homogeneous ODE

(3.12) −1

2
φuu +

1

4
φ2
u = 0.

Undergraduate ODE methods (e.g. separation of variables, after sub-

stituting ψ := φu) soon reveal that the general solution to this ODE

is given by φ(u) = −2 log(u + C) + D for arbitrary constants C, D

(ignoring the issue of singularities or degeneracies for now). Equiva-

lently, (3.12) is obeyed if and only if e−φ/2 is linear in u. Motivated

by this, we become tempted to rewrite (3.11) in terms of Φ := e−φ/2.

One soon realises that

∂uuΦ = (−1

2
φuu +

1

4
φ2
u)Φ

and hence (3.11) becomes

(3.13) (−∂uu + U(u))Φ = 0,

thus Φ is a null (generalised) eigenfunction of the Schrodinger oper-

ator (or Hill operator) −∂uu + U(u). If we let a(u) and b(u) be two

linearly independent solutions to the ODE

(3.14) −fuu + Uf = 0,

we thus have

(3.15) Φ = a(u)c(v) + b(u)d(v)

for some functions c, d (which one easily verifies to be smooth, since

φ, a, b are smooth and a, b are linearly independent). Meanwhile,

by playing around with the second null energy density we have the

counterpart to (3.14),

(−∂vv + V (v))Φ = 0,
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and hence (by linear independence of a, b) c, d must be solutions to

the ODE

−gvv + V g = 0.

This would be a good time to pause and see whether our implications

are reversible, i.e. whether any φ that obeys the relation (3.15) will

solve (3.3) or (3.10). It is of course natural to first write (3.10) in

terms of Φ. Since

Φu = −1

2
φuΦ; Φv = −1

2
φvΦ; Φuv = (

1

4
φuφv −

1

2
φuv)Φ

one soon sees that (3.10) is equivalent to

(3.16) ΦΦuv = ΦuΦv +
1

8
.

If we then insert the ansatz (3.15), we soon reformulate the above

equation as

(a(u)b′(u)− b(u)a′(u))(c(v)d′(v)− d(v)c′(v)) =
1

8
.

It is at this time that one should remember the classical fact that if a,

u are two solutions to the ODE (3.11), then the Wronskian ab′ − ba′
is constant; similarly cd′ − dc′ is constant. Putting this all together,

we see that

Theorem 3.1.1. A smooth function φ solves (3.3) if and only if

we have the relation (3.13) for some functions a, b, c, d obeying the

Wronskian conditions ab′− ba′ = α, cd′− dc′ = β for some constants

α, β multiplying to 1
8 .

Note that one can generate solutions to the Wronskian equation

ab′ − ba′ = α by a variety of means, for instance by first choosing

a arbitrarily and then rewriting the equation as (b/a)′ = α/a2 to

recover b. (This doesn’t quite work at the locations when a vanishes,

but there are a variety of ways to resolve that; as I said above, we are

ignoring this issue for the purposes of this discussion.)

This is not the only way to express solutions. Factoring a(u)d(v)

(say) from (3.13), we see that Φ is the product of a solution c(v)/d(v)+

b(u)/a(u) to the linear wave equation, plus the exponential of a so-

lution log a(u) + log d(u) to the linear wave equation. Thus we may
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write φ = F −2 logG, where F and G solve the linear wave equation.

Inserting this back ansatz into (3.1) we obtain

2(−G2
t +G2

x)/G2 = eF /G2

and so we see that

(3.17) φ = log
2(−G2

t +G2
x)

G2
= log

−8GuGv
G2

for some solution G to the free wave equation, and conversely every

expression of the form (3.17) can be verified to solve (3.1) (since

log 2(−G2
t +G2

x) does indeed solve the free wave equation, thanks to

(3.2)). Inserting (3.2) into (3.17) we thus obtain the explicit solution

(3.18) φ = log
−8f ′(t+ x)g′(t− x)

(f(t+ x) + g(t− x))2

to (3.1), where f and g are arbitrary functions (recall that we are

neglecting issues such as whether the quotient and the logarithm are

well-defined).

I, for one, would not have expected the solution to take this form.

But it is instructive to check that (3.18) does at least respect all the

symmetries (3.4)-(3.7).

3.1.3. Some special solutions. If we set U = V = 0, then a, b, c, d

are linear functions, and so Φ is affine-linear in u, v. One also checks

that the uv term in Φ cannot vanish. After translating in u and v, we

end up with the ansatz Φ(u, v) = c1 + c2uv for some constants c1, c2;

applying (3.16) we see that c1c2 = 1/8, and by using the scaling

symmetry (3.7) we may normalise e.g. c1 = 8, c2 = 1, and so we

arrive at the (singular) solution

(3.19) φ = −2 log(8 + uv) = log
1

(8 + t2 − x2)2
.

To express this solution in the form (3.18), one can take f(u) = 8
u and

g(v) = v; some other choices of f , g are also possible. (Determining

the extent to which f , g are uniquely determined by φ in general can

be established from a closer inspection of the previous arguments,

and is left as an exercise.)

We can also look at what happens when φ is constant in space,

i.e. it solves the ODE −φtt = eφ. It is not hard to see that U and



388 3. Expository articles

V must be constant in this case, leading to a, b, c, d which are either

trigonometric or exponential functions. This soon leads to the ansatz

Φ = c1e
αt + c2e

−αt for some (possibly complex) constants c1, c2, α,

thus φ = −2 log(c1e
αt+c2e

−αt). By using the symmetries (3.4), (3.7)

we can make c1 = c2 and specify α to be whatever we please, thus

leading to the solutions φ = −2 log coshαt + c3. Applying (3.1) we

see that this is a solution as long as ec3 = 2α2. For instance, we may

fix c3 = 0 and α = 1/
√

2, leading to the solution

(3.20) φ = −2 log cosh
t√
2
.

To express this solution in the form (3.18), one can take for instance

f(u) = eu/
√

2 and g(v) = e−v/
√

2.

One can of course push around (3.19), (3.20) by the symmetries

(3.4)-(3.7) to generate a few more special solutions.

Notes. This article first appeared at terrytao.wordpress.com/2009/01/22.

Thanks to Jake K. for corrections.

There was some interesting discussion online regarding whether

the heat equation had a natural relativistic counterpart, and more

generally whether it was profitable to study non-relativistic equations

via relativistic approximations.

3.2. Infinite fields, finite fields, and the
Ax-Grothendieck theorem

Jean-Pierre Serre (whose papers are, of course, always worth reading)

recently wrote a lovely article[Se2009] in which he describes several

ways in which algebraic statements over fields of zero characteristic,

such as C, can be deduced from their positive characteristic counter-

parts such as Fpm , despite the fact that there is no non-trivial field

homomorphism between the two types of fields. In particular finitary

tools, including such basic concepts as cardinality, can now be de-

ployed to establish infinitary results. This leads to some simple and

elegant proofs of non-trivial algebraic results which are not easy to

establish by other means.
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One deduction of this type is based on the idea that positive

characteristic fields can partially model zero characteristic fields, and

proceeds like this: if a certain algebraic statement failed over (say)

C, then there should be a “finitary algebraic” obstruction that “wit-

nesses” this failure over C. Because this obstruction is both finitary

and algebraic, it must also be definable in some (large) finite charac-

teristic, thus leading to a comparable failure over a finite character-

istic field. Taking contrapositives, one obtains the claim.

Algebra is definitely not my own field of expertise, but it is inter-

esting to note that similar themes have also come up in my own area

of additive combinatorics (and more generally arithmetic combina-

torics), because the combinatorics of addition and multiplication on

finite sets is definitely of a “finitary algebraic” nature. For instance,

a recent paper of Vu, Wood, and Wood[VuWoWo2010] establishes

a finitary “Freiman-type” homomorphism from (finite subsets of) the

complex numbers to large finite fields that allows them to pull back

many results in arithmetic combinatorics in finite fields (e.g. the sum-

product theorem) to the complex plane. Van Vu and I also used a

similar trick in [TaVu2007] to control the singularity property of ran-

dom sign matrices by first mapping them into finite fields in which

cardinality arguments became available.) And I have a particular

fondness for correspondences between finitary and infinitary mathe-

matics; the correspondence Serre discusses is slightly different from

the one I discuss for instance in Section 1.3 of Structure and Random-

ness, although there seems to be a common theme of “compactness”

(or of model theory) tying these correspondences together.

As one of his examples, Serre cites one of my own favourite re-

sults in algebra, discovered independently by Ax[Ax1968] and by

Grothendieck[Gr1966] (and then rediscovered many times since).

Here is a special case of that theorem:

Theorem 3.2.1 (Ax-Grothendieck theorem, special case). Let P :

Cn → Cn be a polynomial map from a complex vector space to itself.

If P is injective, then P is bijective.

The full version of the theorem allows one to replace Cn by an

algebraic variety X over any algebraically closed field, and for P to be

an morphism from the algebraic variety X to itself, but for simplicity
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I will just discuss the above special case. This theorem is not at all

obvious; it is not too difficult (see Lemma 3.2.6 below) to show that

the Jacobian of P is non-degenerate, but this does not come close to

solving the problem since one would then be faced with the notorious

Jacobian conjecture. Also, the claim fails if “polynomial” is replaced

by “holomorphic”, due to the existence of Fatou-Bieberbach domains.

In this post I would like to give the proof of Theorem 3.2.1 based

on finite fields as mentioned by Serre, as well as another elegant

proof of Rudin[Ru1995] that combines algebra with some elemen-

tary complex variable methods. (There are several other proofs of

this theorem and its generalisations, for instance a topological proof

by Borel[Bo1969], which I will not discuss here.)

3.2.1. Proof via finite fields. The first observation is that the

theorem is utterly trivial in the finite field case:

Theorem 3.2.2 (Ax-Grothendieck theorem in F ). Let F be a finite

field, and let P : Fn → Fn be a polynomial. If P is injective, then P

is bijective.

Proof. Any injection from a finite set to itself is necessarily bijective.

(The hypothesis that P is a polynomial is not needed at this stage,

but becomes crucial later on.) �

Next, we pass from a finite field F to its algebraic closure F .

Theorem 3.2.3 (Ax-Grothendieck theorem in F ). Let F be a fi-

nite field, let F be its algebraic closure, and let P : F
n → F

n
be a

polynomial. If P is injective, then P is bijective.

Proof. Our main tool here is Hilbert’s nullstellensatz, which we in-

terpret here as an assertion that if an algebraic problem is insoluble,

then there exists a finitary algebraic obstruction that witnesses this

lack of solution (see also Section 1.15 of Structure and Randomness).

Specifically, suppose for contradiction that we can find a polynomial

P : F
n → F

n
which is injective but not surjective. Injectivity of P

means that the algebraic system

P (x) = P (y); x 6= y
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has no solution over the algebraically closed field F ; by the nullstel-

lensatz, this implies that there must exist an algebraic identity of the

form

(3.21) (P (x)− P (y)) ·Q(x, y) = (x− y)r

for some r ≥ 1 and some polynomial Q : F
n × Fn → F

n
that specif-

ically witnesses this lack of solvability. Similarly, lack of surjectivity

means the existence of an z0 ∈ F
n

such that the algebraic system

P (x) = z0

has no solution over the algebraically closed field F ; by another ap-

plication of the nullstellensatz, there must exist an algebraic identity

of the form

(3.22) (P (x)− z0) ·R(x) = 1

for some polynomial R : F
n → F

n
that specifically witnesses this

lack of solvability.

Fix Q, z0, R as above, and let k be the subfield of F generated by

F and the coefficients of P,Q, z0, R. Then we observe (thanks to our

explicit witnesses (3.21), (3.22)) that the counterexample P descends

from F to k; P is a polynomial from kn to kn which is injective but

not surjective.

But k is finitely generated, and every element of k is algebraic

over the finite field F , thus k is finite. But this contradicts Theorem

3.2.2. �

Remark 3.2.4. As pointed out to me by L. Spice, there is a simpler

proof of Theorem 3.2.3 that avoids the nullstellensatz: one observes

from Theorem 3.2.2 that P is bijective over any finite extension of F

that contains all of the coefficients of P , and the claim then follows

by taking limits.

The complex case C follows by a slight extension of the argu-

ment used to prove Theorem 3.2.3. Indeed, suppose for contradiction

that there is a polynomial P : Cn → Cn which is injective but not

surjective. As C is algebraically closed (the fundamental theorem of

algebra), we may invoke the nullstellensatz as before and find wit-

nesses (3.21), (3.22) for some Q, z0, R.
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Now let k = Q[C] be the subfield of C generated by the ratio-

nals Q and the coefficients C of P,Q, z0, R. Then we can descend

the counterexample to k. This time, k is not finite, but we can de-

scend it to a finite field (and obtain the desired contradiction) by a

number of methods. One approach, which is the one taken by Serre,

is to quotient the ring Z[C] generated by the above coefficients by

a maximal ideal, observing that this quotient is necessarily a finite

field. Another is to use a general mapping theorem of Vu, Wood, and

Wood[VuWoWo2010]. We sketch the latter approach as follows.

Being finitely generated, we know that k has a finite transcendence

basis α1, . . . , αm over Q. Applying the primitive element theorem,

we can then express k as the finite extension of Q[α1, . . . , αm] by an

element β which is algebraic over Q[α1, . . . , αm]; all the coefficients

C are thus rational combinations of α1, . . . , αm, β. By rationalising,

we can ensure that the denominators of the expressions of these co-

efficients are integers in Z[α1, . . . , αm]; dividing β by an appropriate

power of the product of these denominators we may assume that

the coefficients in C all lie in the commutative ring Z[α1, . . . , αm, β],

which can be identified with the commutative ring Z[a1, . . . , am, b]

generated by formal indeterminates a1, . . . , am, b, quotiented by the

ideal generated by the minimal polynomial f ∈ Z[a1, . . . , am, b] of

β; the algebraic identities (3.21), (3.22) then transfer to this ring.

Now pick a large prime p, and map a1, . . . , am to random elements of

Fp. With high probability, the image of f (which is now in Fp[b]) is

non-degenerate; we can then map b to a root of this image in a finite

extension of Fp. (In fact, by using the Chebotarev density theorem (or

Frobenius density theorem), we can place b back in Fp for infinitely

many primes p.) This descends the identities (3.21), (3.22) to this

finite extension, as desired.

Remark 3.2.5. This argument can be generalised substantially; it

can be used to show that any first-order sentence in the language of

fields is true in all algebraically closed fields of characteristic zero

if and only if it is true for all algebraically closed fields of suffi-

ciently large characteristic. This result can be deduced from the

famous result (proved by Tarski[Ta1951], and independently, in an

equivalent formulation, by Chevalley) that the theory of algebraically
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closed fields (in the language of rings) admits elimination of quan-

tifiers. See for instance [PCM, Section IV.23.4]. There are also

analogues for real closed fields, starting with the paper of Bialynicki-

Birula and Rosenlicht[BiRo1962], with a general result established

by Kurdyka[Ku1999]. Ax-Grothendieck type properties in other cat-

egories have been studied by Gromov[Gr1999], who calls this prop-

erty “surjunctivity”.

3.2.2. Rudin’s proof. Now we give Rudin’s proof, which does not

use the nullstellensatz, instead relying on some Galois theory and the

topological structure of C. We first need a basic fact:

Lemma 3.2.6. Let Ω ⊂ Cn be an open set, and let f : Ω→ Cn be an

injective holomorphic map. Then the Jacobian of f is non-degenerate,

i.e. detDf(z) 6= 0 for all z ∈ Ω.

Actually, we only need the special case of this lemma when f is

a polynomial.

Proof. We use an argument of Rosay[Ro1982]. For n = 1 the claim

follows from Taylor expansion. Now suppose n > 1 and the claim is

proven for n − 1. Suppose for contradiction that detDf(z0) = 0 for

some z0 ∈ Ω. We claim that Df(z0) in fact vanishes entirely. If not,

then we can find 1 ≤ i, j ≤ n such that ∂
∂zj

fi(z0) 6= 0; by permuting

we may take i = j = 1. We can also normalise z0 = f(z0) = 0.

Then the map h : z 7→ (f1(z), z2, . . . , zn) is holomorphic with non-

degenerate Jacobian at 0 and is thus locally invertible at 0. The map

f ◦h−1 is then holomorphic at 0 and preserves the z1 coordinate, and

thus descends to an injective holomorphic map on a neighbourhood of

the origin Cn−1, and so its Jacobian is non-degenerate by induction

hypothesis, a contradiction.

We have just shown that the gradient of f vanishes on the zero

set {detDf = 0}, which is an analytic variety of codimension 1 (if f

is polynomial, it is of course an algebraic variety). Thus f is locally

constant on this variety, which contradicts injectivity and we are done.

�

From this lemma and the inverse function theorem we have
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Corollary 3.2.7. Injective holomorphic maps from Cn to Cn are

open (i.e. they map open sets to open sets).

Now we can give Rudin’s proof. Let P : Cn → Cn be an injective

polynomial. We let k be the field generated by Q and the coefficients

of P ; thus P is definable over k. Let k[z] = k[z1, . . . , zn] be the

extension of k by n indeterminates z1, . . . , zn. Inside k[z] we have the

subfield k[P (z)] generated by k and the components of P (z).

We claim that k[P (z)] is all of k[z]. For if this were not the

case, we see from Galois theory that there is a non-trivial automor-

phism φ : k[z] → k[z] that fixes k[P (z)]; in particular, there exists

a non-trivial rational (over k) combination Q(z)/R(z) of z such that

P (Q(z)/R(z)) = P (z). Now map z to a random complex number in

C, which will almost surely be transcendental over the countable field

k; this explicitly demonstrates non-injectivity of P , a contradiction.

Since k[P (z)] = k[z], there exists a rational function Qj(z)/Rj(z)

over k for each j = 1, . . . , n such that zj = Qj(P (z))/Rj(P (z)). We

may of course assume that Qj , Rj have no common factors.

We have the polynomial identity Qj(P (z)) = zjRj(P (z)). In

particular, this implies that on the domain P (Cn) ⊂ Cn (which is

open by Corollary 3.2.7), the zero set of Rj is contained in the zero set

ofQj . But asQj andRj have no common factors, this is impossible by

elementary algebraic geometry; thus Rj is non-vanishing on P (Cn).

Thus the polynomial Rj ·P has no zeroes and is thus constant; we may

then normalise so that Rj · P = 1. Thus we now have z = Q(P (z))

for some polynomial Q, which implies that w = P (Q(w)) for all w in

the open set P (Cn). But w and P (Q(w)) are both polynomials, and

thus must agree on all of Cn. Thus P is bijective as required.

Remark 3.2.8. Note that Rudin’s proof gives the stronger statement

that if a polynomial map from Cn to Cn is injective, then it is bijective

and its inverse is also a polynomial.

Notes. This article first appeared at terrytao.wordpress.com/2009/03/07.

Thanks to fdreher and Ricardo Menares for corrections.

Ricardo Menares and Terry Hughes also mentioned some alter-

nate proofs and generalisations of the Ax-Grothendieck theorem.
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3.3. Sailing into the wind, or faster than the
wind

One of the more unintuitive facts about sailing is that it is possible

to harness the power of the wind to sail in a direction against that of

the wind or to sail with a speed faster than the wind itself, even when

the water itself is calm. It is somewhat less known, but nevertheless

true, that one can (in principle) do both at the same time - sail

against the wind (even directly against the wind!) at speeds faster

than the wind. This does not contradict any laws of physics, such as

conservation of momentum or energy (basically because the reservoir

of momentum and energy in the wind far outweighs the portion that

will be transmitted to the sailboat), but it is certainly not obvious at

first sight how it is to be done.

The key is to exploit all three dimensions of space when sailing.

The most obvious dimension to exploit is the windward/leeward di-

mension - the direction that the wind velocity v0 is oriented in. But

if this is the only dimension one exploits, one can only sail up to the

wind speed |v0| and no faster, and it is not possible to sail in the

direction opposite to the wind.

Things get more interesting when one also exploits the crosswind

dimension perpendicular to the wind velocity, in particular by tacking

the sail. If one does this, then (in principle) it becomes possible to

travel up to double the speed |v0| of wind, as we shall see below.

However, one still cannot sail against to the wind purely by tack-

ing the sail. To do this, one needs to not just harness the power of the

wind, but also that of the water beneath the sailboat, thus exploiting

(barely) the third available dimension. By combining the use of a

sail in the air with the use of sails in the water - better known as

keels, rudders, and hydrofoils - one can now sail in certain directions

against the wind, and at certain speeds. In most sailboats, one relies

primarily on the keel, which lets one sail against the wind but not

directly opposite it. But if one tacks the rudder or other hydrofoils

as well as the sail, then in fact one can (in principle) sail in arbitrary

directions (including those directly opposite to v0), and in arbitrary

speeds (even those much larger than |v0|), although it is quite difficult
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to actually achieve this in practice. It may seem odd that the water,

which we are assuming to be calm (i.e. traveling at zero velocity) can

be used to increase the range of available velocities and speeds for the

sailboat, but we shall see shortly why this is the case.

If one makes several simplifying and idealised (and, admittedly,

rather unrealistic in practice) assumptions in the underlying physics,

then sailing can in fact be analysed by a simple two-dimensional geo-

metric model which explains all of the above statements. In this post,

I would like to describe this mathematical model and how it gives the

conclusions stated above.

3.3.1. One-dimensional sailing. Let us first begin with the sim-

plest case of one-dimensional sailing, in which the sailboat lies in a

one-dimensional universe (which we describe mathematically by the

real line R). To begin with, we will ignore the friction effects of the

water (one might imagine sailing on an iceboat rather than a sail-

ing boat). We assume that the air is blowing at a constant velocity

v0 ∈ R, which for sake of discussion we shall take to be positive. We

also assume that one can do precisely two things with a sailboat: one

can either furl the sail, in which case the wind does not propel the

sailboat at all, or one can unfurl the sail, in order to exploit the force

of the wind.

When the sail is furled, then (ignoring friction), the velocity v of

the boat stays constant, as per Newton’s first law. When instead the

sail is unfurled, the motion is instead governed by Newton’s second

law, which among other things asserts that the velocity v of the boat

will be altered in the direction of the net force exerted by the sail.

This net force (which, in one dimension, is purely a drag force) is

determined not by the true wind speed v0 as measured by an observer

at rest, but by the apparent wind speed v0 − v as experienced by the

boat, as per the (Galilean) principle of relativity. (Indeed, Galileo

himself supported this principle with a famous thought-experiment

on a ship.) Thus, the sail can increase the velocity v when v0 − v is

positive, and decrease it when v0 − v is negative. We can illustrate

the effect of an unfurled sail by a vector field in velocity space (Figure

1).
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Figure 1. The effect of a sail in one dimension.

Figure 2. The effects of a sail and an anchor in one dimension.

The line here represents the space of all possible velocities v of

a boat in this one-dimensional universe, including the rest velocity

0 and the wind velocity v0. The vector field at any given velocity v

represents the direction the velocity will move in if the sail is unfurled.

We thus see that the effect of unfurling the sail will be to move the

velocity of the sail towards v. Once one is at that speed, one is stuck

there; neither furling nor unfurling the sail will affect one’s velocity

again in this frictionless model.

Now let’s reinstate the role of the water. Let us use the crudest

example of a water sail, namely an anchor. When the anchor is raised,

we assume that we are back in the frictionless situation above; but

when the anchor is dropped (so that it is dragging in the water), it

exerts a force on the boat which is in the direction of the apparent

velocity 0−v of the water with respect to the boat, and which (ideally)

has a magnitude proportional to square of the apparent speed |0 −
v|, thanks to the drag equation. This gives a second vector field in

velocity space that one is able to effect on the boat (displayed here

as thick blue arrows); see Figure 2.

It is now apparent that by using either the sail or the anchor, one

can reach any given velocity between 0 and v0. However, once one is

in this range, one cannot use the sail and anchor to move faster than

v0, or to move at a negative velocity.
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Figure 3. The effects of a pure-drag sail (black) and an an-
chor (blue) in two dimensions.

3.3.2. Two-dimensional sailing. Now let us sail in a two-dimensional

plane R2, thus the wind velocity v0 is now a vector in that plane. To

begin with, let us again ignore the friction effects of the water (e.g.

imagine one is ice yachting on a two-dimensional frozen lake).

With the square-rigged sails of the ancient era, which could only

exploit drag, the net force exerted by an unfurled sail in two dimen-

sions followed essentially the same law as in the one-dimensional case,

i.e. the force was always proportional to the relative velocity v0−v of

the wind and the ship, thus leading to the black vector field in Figure

3.

We thus see that, starting from rest v = 0, the only thing one

can do with such a sail is move the velocity v along the line segment

from 0 to v0, at which point one is stuck (unless one can exploit water

friction, e.g. via an anchor, to move back down that line segment to

0). No crosswind velocity is possible at all with this type of sail.
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With the invention of the curved sail, which redirects the (appar-

ent) wind velocity v0 − v to another direction rather than stalling it

to zero, it became possible for sails to provide a lift force1 which is

essentially perpendicular to the (apparent) wind velocity, in contrast

to the drag force that is parallel to that velocity. (Not co-incidentally,

such a sail has essentially the same aerofoil shape as an airplane wing,

and one can also explain the lift force via Bernoulli’s principle.)

By setting the sail in an appropriate direction, one can now use

the lift force to adjust the velocity v of a sailboat in directions perpen-

dicular to the apparent wind velocity v0−v, while using the drag force

to adjust v in directions parallel to this apparent velocity; of course,

one can also adjust the velocity in all intermediate directions by com-

bining both drag and lift. This leads to the vector fields displayed in

red in Figure 4.

Note that no matter how one orients the sail, the apparent wind

speed |v0−v| will decrease (or at best stay constant); this can also be

seen from the law of conservation of energy in the reference frame of

the wind. Thus, starting from rest, and using only the sail, one can

only reach speeds in the circle centred at v0 with radius |v0| (i.e. the

circle in Figure 4); thus one cannot sail against the wind, but one can

at least reach speeds of twice the wind speed, at least in principle2.

Remark 3.3.1. If all one has to work with is the air sail(s), then one

cannot do any better than what is depicted in Figure 4, no matter

how complicated the rigging. This can be seen by looking at the

law of conservation of energy in the reference frame of the wind. In

that frame, the air is at rest and thus has zero kinetic energy, while

the sailboat has kinetic energy 1
2m|v0|2. The water in this frame has

an enormous reservoir of kinetic energy, but if one is not allowed to

interact with this water, then the kinetic energy of the boat cannot

exceed 1
2m|v0|2 in this frame, and so the boat velocity is limited to

1Despite the name, the lift force is not a vertical force in this context, but instead
a horizontal one; in general, lift forces are basically perpendicular to the orientation of
the aerofoil providing the lift. Unlike airplane wings, sails are vertically oriented, so
the lift will be horizontal in this case.

2In practice, friction effects of air and water, such as wave making resistance,
and the difficulty in forcing the sail to provide purely lift and no drag, mean that one
cannot quite reach this limit, but it has still been possible to exceed the wind speed
with this type of technique.
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Figure 4. The effect of a pure-drag sail (black) and a pure-lift

sail (red) in two dimensions. The disk enclosed by the dotted

circle represents the velocities one can reach from these sails
starting from the rest velocity v = 0.

the region inside the dotted circle. In particular, no arrangement of

sails can give a negative drag force.

3.3.3. Three-dimensional sailing. Now we can turn to three-dimensional

sailing, in which the sailboat is still largely confined to R2 but one can

use both air sails and water sails as necessary to control the velocity

v of the boat3.

3Some boats do in fact exploit the third dimension more substantially than this,
e.g. using sails to vertically lift the boat to reduce water drag, but we will not discuss
these more advanced sailing techniques here.
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As mentioned earlier, the crudest example of a water sail is an

anchor, which, when dropped, exerts a pure drag force in the direction

of 0−v on the boat; this is displayed as the blue vector field in Figure

3. Comparing this with Figure 4 (which is describing all the forces

available from using the air sail) we see that such a device does not

increase the range of velocities attainable from a boat starting at rest

(although it does allow a boat moving with the wind to return to rest,

as in the one-dimensional setting). Unsurprisingly, anchors are not

used all that much for sailing in practice.

However, we can do better by using other water sails. For in-

stance, the keel of a boat is essentially a water sail oriented in the

direction of the boat (which in practice is kept close to parallel to v,

e.g. by use of the rudder, else one would encounter substantial (and

presumably unwanted) water drag and torque effects). The effect of

the keel is to introduce significant resistance to any lateral movement

of the boat. Ideally, the effect this has on the net force acting on the

boat is that it should orthogonally project that force to be parallel to

the direction of the boat (which, as stated before, is usually parallel

to v). Applying this projection to the vector fields arising from the

air sail, we obtain some new vector fields along which we can modify

the boat’s velocity; see Figure 5.

In particular, it becomes possible to sail against the wind, or

faster than the wind, so long as one is moving at a non-trivial angle

to the wind (i.e. v is not parallel to v0 or −v0).

What is going on here is as follows. By using lift instead of drag,

and tacking the sail appropriately, one can make the force exerted

by the sail be at any angle of up to 90◦ from the actual direction of

apparent wind. By then using the keel, one can make the net force

on the boat be at any angle up to 90◦ from the force exerted by the

sail. Putting the two together, one can create a force on the boat

at any angle up to 180◦ from the apparent wind speed - i.e. in any

direction other than directly against the wind. (In practice, because

it is impossible have a pure lift force free of drag, and because the

keel does not perfectly eliminate all lateral forces, most sailboats can

only move at angles up to about 135◦ or so from the apparent wind

direction, though one can then create a net movement at larger angles
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Figure 5. The effect of a pure-drag sail (black), a pure-lift

sail (red), and a pure-lift sail combined with a keel (green).

Note that one now has the ability to shift the velocity v away
from both 0 and v0 no matter how fast one is already traveling,

so long as v is not collinear with 0 and v0.

by tacking and beating. For similar reasons, water drag prevents one

from using these methods to move too much faster than the wind

speed.)

In theory, one can also sail at any desired speed and direction by

combining the use of an air sail (or aerofoil) with the use of a water sail

(or hydrofoil). While water is a rather different fluid from air in many

respects (it is far denser, and virtually incompressible), one could in

principle deploy hydrofoils to exert lift forces on a boat perpendicular

to the apparent water velocity 0− v, much as an aerofoil can be used

to exert lift forces on the boat perpendicular to the apparent wind
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velocity v0 − v. We saw in the previous section that if the effects of

air resistance somehow be ignored, then one could use lift to alter the

velocity v along a circle centred at the true wind speed v0; similarly, if

the effects of water resistance could also be ignored (e.g. by planing,

which reduces, but does not completely eliminate, these effects), then

one could alter the velocity v along a circle centred at the true water

speed 0. By alternately using the aerofoil and hydrofoil, one could in

principle reach arbitrarily large speeds and directions, as illustrated

in Figure 6.

I do not know however if one could actually implement such a

strategy with a physical sailing vessel. (Iceboats, however, have been

known to reach speeds of up to six times the wind speed or more,

though not exactly by the technique indicated in Figure 6. Thanks

to kanyonman for this fact.)

It is reasonable (in light of results such as the Kutta-Joukowski

theorem) to assume that the amount of lift provided by an aerofoil

or hydrofoil is linearly proportional to the apparent wind speed or

water speed. If so, then some basic trigonometry then reveals that

(assuming negligible drag) one can use either of the above techniques

to increase one’s speed at what is essentially a constant rate; in par-

ticular, one can reach speeds of n|v0| for any n > 0 in time O(n). On

the other hand, as drag forces are quadratically proportional to ap-

parent wind or water speed, one can decrease one’s speed at an very

rapid rate simply by dropping anchor; in fact one can drop speed from

n|v0| to |v0| in bounded time O(1) no matter how large n is! (This

fact is the time-reversal of the well-known fact that the Riccati ODE

u′ = u2 blows up in finite time.) These appear to be the best possible

rates for acceleration or deceleration using only air and water sails,

though I do not have a formal proof of this fact.

Notes. This article first appeared at terrytao.wordpress.com/2009/03/23.

Izabella  Laba pointed out several real-world sailing features not

covered by the above simplified model, notably the interaction be-

tween multiple sails, and noted that the model was closer in many

ways to windsurfing (or ice-sailing) than to traditional sailing.

Meichenl pointed out the relevance of the drag equation.
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Figure 6. By alternating between a pure-lift aerofoil (red)
and a pure-lift hydrofoil (purple), one can in principle reach

arbitrarily large speeds in any direction.

3.4. The completeness and compactness
theorems of first-order logic

The famous Gödel completeness theorem in logic (not to be confused

with the even more famous Gödel incompleteness theorem) roughly

states the following:
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Theorem 3.4.1 (Gödel completeness theorem, informal statement).

Let Γ be a theory (a formal language L, together with a set of ax-

ioms, i.e. sentences assumed to be true), and let φ be a sentence in

the formal language. Assume also that the language L has at most

countably many symbols. Then the following are equivalent:

(i) (Syntactic consequence) φ can be deduced from the axioms in

Γ by a finite number of applications of the laws of deduction

in first order logic. (This property is abbreviated as Γ ` φ.)

(ii) (Semantic consequence) Every structure U which satisfies

or models Γ, also satisfies φ. (This property is abbreviated

as Γ |= φ.)

(iii) (Semantic consequence for at most countable models) Every

structure U which is at most countable, and which models Γ,

also satisfies φ.

One can also formulate versions of the completeness theorem for

languages with uncountably many symbols, but I will not do so here.

One can also force other cardinalities on the model U by using the

Löwenheim-Skolem theorem.

To state this theorem even more informally, any (first-order) re-

sult which is true in all models of a theory, must be logically deducible

from that theory, and vice versa. (For instance, any result which is

true for all groups, must be deducible from the group axioms; any

result which is true for all systems obeying Peano arithmetic, must

be deducible from the Peano axioms; and so forth.) In fact, it suffices

to check countable and finite models only; for instance, any first-order

statement which is true for all finite or countable groups, is in fact true

for all groups! Informally, a first-order language with only countably

many symbols cannot “detect” whether a given structure is countably

or uncountably infinite. Thus for instance even the Zermelo-Frankel-

Choice (ZFC) axioms of set theory must have some at most countable

model, even though one can use ZFC to prove the existence of un-

countable sets; this is known as Skolem’s paradox. (To resolve the

paradox, one needs to carefully distinguish between an object in a

set theory being “externally” countable in the structure that models

that theory, and being “internally” countable within that theory.)
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Of course, a theory Γ may contain undecidable statements φ -

sentences which are neither provable nor disprovable in the theory.

By the completeness theorem, this is equivalent to saying that φ is

satisfied by some models of Γ but not by other models. Thus the

completeness theorem is compatible with the incompleteness theorem:

recursively enumerable theories such as Peano arithmetic are modeled

by the natural numbers N, but are also modeled by other structures

also, and there are sentences satisfied by N which are not satisfied by

other models of Peano arithmetic, and are thus undecidable within

that arithmetic.

An important corollary of the completeness theorem is the com-

pactness theorem:

Corollary 3.4.2 (Compactness theorem, informal statement). Let

Γ be a first-order theory whose language has at most countably many

symbols. Then the following are equivalent:

(i) Γ is consistent, i.e. it is not possible to logically deduce a

contradiction from the axioms in Γ.

(ii) Γ is satisfiable, i.e. there exists a structure U that models

Γ.

(iii) There exists a structure U which is at most countable, that

models Γ.

(iv) Every finite subset Γ′ of Γ is consistent.

(v) Every finite subset Γ′ of Γ is satisfiable.

(vi) Every finite subset Γ′ of Γ is satisfiable with an at most

countable model.

Indeed, the equivalence of (i)-(iii), or (iv)-(vi), follows directly

from the completeness theorem, while the equivalence of (i) and (iv)

follows from the fact that any logical deduction has finite length and

so can involve at most finitely many of the axioms in Γ. (Again, the

theorem can be generalised to uncountable languages, but the models

become uncountable also.)

There is a consequence of the compactness theorem which more

closely resembles the sequential concept of compactness. Given a

sequence U1,U2, . . . be a sequence of structures for L, and another
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structure U for L, let us say that Un converges elementarily to U if

every sentence φ which is satisfied by U, is also satisfied by Un for

sufficiently large n. (Replacing φ by its negation ¬φ, we also see

that every sentence that is not satisfied by U, is not satisfied by Un
for sufficiently large n.) Note that the limit U is only unique up to

elementary equivalence. Clearly, if each of the Un models some theory

Γ, then the limit U will also; thus for instance the elementary limit

of a sequence of groups is still a group, the elementary limit of a

sequence of rings is still a ring, etc.

Corollary 3.4.3 (Sequential compactness theorem). Let L be a lan-

guage with at most countably many symbols, and let U1,U2, . . . be a

sequence of structures for L. Then there exists a subsequence Unj
which converges elementarily to a limit U which is at most countable.

Proof. For each structure Un, let Th(Un) be the theory of that struc-

ture, i.e. the set of all sentences that are satisfied by that structure.

One can view that theory as a point in {0, 1}S , where S is the set

of all sentences in the language L. Since L has at most countably

many symbols, S is at most countable, and so (by the sequential

Tychonoff theorem) {0, 1}S is sequentially compact in the product

topology. (This can also be seen directly by the usual Arzelá-Ascoli

diagonalisation argument.) Thus we can find a subsequence Th(Unj )

which converges in the product topology to a limit theory Γ ∈ {0, 1}S ,

thus every sentence in Γ is satisfied by Unj for sufficiently large j (and

every sentence not in Γ is not satisfied by Unj for sufficiently large j).

In particular, any finite subset of Γ is satisfiable, hence consistent;

by the compactness theorem, Γ itself is therefore consistent, and has

an at most countable model U. Also, each of the theories Th(Unj ) is

clearly complete (given any sentence φ, either φ or ¬φ is in the the-

ory), and so Γ is complete as well. One concludes that Γ is the theory

of U, and hence U is the elementary limit of the Unj as claimed. �

Remark 3.4.4. It is also possible to state the compactness theorem

using the topological notion of compactness, as follows: let X be the

space of all structures of a given language L, quotiented by elementary

equivalence. One can define a topology on X by taking the sets

{U ∈ X : U |= φ} as a sub-base, where φ ranges over all sentences.
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Then the compactness theorem is equivalent to the assertion that X

is topologically compact.

One can use the sequential compactness theorem to build a num-

ber of interesting “non-standard” models to various theories. For

instance, consider the language L used by Peano arithmetic (which

contains the operations +,× and the successor operation S, the rela-

tion =, and the constant 0), and adjoint a new constant N to create

an expanded language L ∪ {N}. For each natural number n ∈ N, let

Nn be a structure for L∪{N} which consists of the natural numbers

N (with the usual interpretations of +, ×, etc.) and interprets the

symbol N as the natural number n. By the compactness theorem,

some subsequence of Nn must converge elementarily to a new struc-

ture ∗N of L ∪ {N}, which still models Peano arithmetic, but now

has the additional property that N > n for every (standard) natural

number n; thus we have managed to create a non-standard model of

Peano arithmetic which contains a non-standardly large number (one

which is larger than every standard natural number).

The sequential compactness theorem also lets us construct infini-

tary limits of various sequences of finitary objects; for instance, one

can construct infinite pseudo-finite fields as the elementary limits of

sequences of finite fields. It also apepars to be related to a number

of correspondence principles between finitary and infinitary objects,

such as the Furstenberg correspondence principle between sets of in-

tegers and dynamical systems, or the more recent correspondence

principles concerning graph limits.

In this article, I will review the proof of the completeness (and

hence compactness) theorem. The material here is quite standard (I

basically follow the usual proof of Henkin, and taking advantage of

Skolemisation), but I wish to popularise the notion of an elementary

limit, which is not particularly well-known4.

4The closely related concept of an ultraproduct is better known, and can be used
to prove most of the compactness theorem already, thanks to  Los’s theorem, but I
do not know how to use ultraproducts to ensure that the limiting model is countable.
However, one can think (intuitively, at least), of the limit model U in the above theorem
as being the set of “constructible” elements of an ultraproduct of the Un.
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In order to emphasise the main ideas in the proof, I will gloss

over some of the more technical details in the proofs, relying instead

on informal arguments and examples at various points.

3.4.1. Completeness and compactness in propositional logic.

The completeness and compactness theorems are results in first-order

logic. But to motivate some of the ideas in proving these theorems, let

us first consider the simpler case of propositional logic. The language

L of a propositional logic consists of the following:

• A finite or infinite collection A1, A2, A3, . . . of propositional

variables - atomic formulae which could be true or false,

depending on the interpretation;

• A collection of logical connectives, such as conjunction ∧,

disjunction ∨, negation ¬, or implication =⇒ . (The exact

choice of which logical connectives to include in the language

is to some extent a matter of taste.)

• Parentheses (in order to indicate the order of operations).

Of course, we assume that the symbols used for atomic formulae

are distinct from those used for logical connectives, or for parenthe-

ses; we will implicitly make similar assumptions of this type in later

sections without further comment.

Using this language, one can form sentences (or formulae) by

some standard formal rules which I will not write down here. Typical

examples of sentences in propositional logic are A1 =⇒ (A2 ∨ A3),

(A1 ∧ ¬A1) =⇒ A2, and (A1 ∧ A2) ∨ (A1 ∧ A3). Each sentence

is of finite length, and thus involves at most finitely many of the

propositional variables. Observe that if L is at most countable, then

there are at most countably many sentences.

The analogue of a structure in propositional logic is a truth as-

signment. A truth assignment U for a propositional language L con-

sists of a truth value AU
n ∈ {true, false} assigned to each propositional

variable An. (Thus, for instance, if there are N propositional vari-

ables in the language, then there are 2N possible truth assignments.)

Once a truth assignment U has assigned a truth value AU
n to each

propositional variable An, it can then assign a truth value φU to any
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other sentence φ in the language L by using the usual truth tables

for conjunction, negation, etc.; we write U |= φ if U assigns a true

value to φ (and say that φ is satisfied by U), and U 6|= φ otherwise.

Thus, for instance, if AU
1 = false and AU

2 = true, then U |= A1 ∨ A2

and U |= A1 =⇒ A2, but U 6|= A2 =⇒ A1. Some sentences, e.g.

A1∨¬A1, are true in every truth assignment; these are the (semantic)

tautologies. At the other extreme, the negation of a tautology will of

course be false in every truth assignment.

A theory Γ is a language L, together with a (finite or infinite)

collection of sentences (also called Γ) in that language. A truth as-

signment U satisfies (or models) the theory Γ, and we write U |= Γ,

if we have U |= φ for all φ ∈ Γ. Thus, for instance, if U is as in the

preceding example and Γ := {A1, A1 =⇒ A2}, then U |= Γ.

The analogue of the Gödel completeness theorem is then

Theorem 3.4.5 (Completeness theorem for propositional logic). Let

Γ be a theory for a propositional language L, and let φ be a sentence

in L. Then the following are equivalent:

(i) (Syntactic consequence) φ can be deduced from the axioms

in Γ by a finite number of applications of the laws of propo-

sitional logic.

(ii) (Semantic consequence) Every truth assignment U which sat-

isfies (or models) Γ, also satisfies φ.

One can list a complete set of laws of propositional logic used in

(i), but we will not do so here.

To prove the completeness theorem, it suffices to show the fol-

lowing equivalent version.

Theorem 3.4.6 (Completeness theorem for propositional logic, again).

Let Γ be a theory for a propositional language L. Then the following

are equivalent:

(i) Γ is consistent, i.e. it is not possible to logically deduce a

contradiction from the axioms in Γ.

(ii) Γ is satisfiable, i.e. there exists a truth assignment U that

models Γ.
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Indeed, Theorem 3.4.5 follows from Theorem 3.4.6 by applying

Theorem 3.4.6 to the theory Γ ∪ {¬φ} and taking contrapositives.

It remains to prove Theorem 3.4.6. It is easy to deduce (i) from

(ii), because the laws of propositional logic are sound : given any truth

assignment, it is easy to verify that these laws can only produce true

conclusions given true hypotheses. The more interesting implication

is to obtain (ii) from (i) - given a consistent theory Γ, one needs to

produce a truth assignment that models that theory.

Let’s first consider the case when the propositional language L
is finite, so that there are only finitely many propositional variables

A1, . . . , AN . Then we can argue using the following “greedy algo-

rithm”.

• We begin with a consistent theory Γ.

• Observe that at least one of Γ ∪ {A1} or Γ ∪ {¬A1} must

be consistent. For if both Γ ∪ {A1} and Γ ∪ {¬A1} led to a

logical contradiction, then by the laws of logic one can show

that Γ must also lead to a logical contradiction.

• If Γ ∪ {A1} is consistent, we set AU
1 := true and Γ1 :=

Γ∪{A1}; otherwise, we set AU
1 := false and Γ1 := Γ∪{¬A1}.

• Γ1 is consistent, so arguing as before we know that at least

one of Γ1 ∪ {A2} or Γ1 ∪ {¬A2} must be consistent. If the

former is consistent, we set AU
2 := true and Γ2 := Γ1∪{A2};

otherwise set AU
2 := false and Γ2 := Γ1 ∪ {¬A2}.

• We continue in this fashion, eventually ending up with a

consistent theory ΓN containing Γ, and a complete truth

assignment U such that An ∈ ΓN whenever 1 ≤ n ≤ N is

such that AU
n = true, and such that ¬An ∈ ΓN whenever

1 ≤ n ≤ N is such that AU
n = false.

• From the laws of logic and an induction argument, one then

sees that if φ is any sentence with φU = true, then φ is a

logical consequence of ΓN , and hence (since ΓN is consistent)

¬φ is not a consequence of ΓN . Taking contrapositives, we

see that φU = false whenever ¬φ is a consequence of ΓN ;

replacing φ by ¬φ we conclude that U satisfies every sentence

in ΓN , and the claim follows.
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Remark 3.4.7. The above argument shows in particular that any

finite theory either has a model or a proof of a contradictory statement

(such as A ∧ ¬A). Actually producing a model if it exists, though, is

essentially the infamous satisfiability problem, which is known to be

NP-complete, and thus (if P 6= NP ) would require super-polynomial

time to execute.

The case of an infinite language can be obtained by combining

the above argument with Zorn’s lemma (or transfinite induction and

the axiom of choice, if the set of propositional variables happens to

be well-ordered). Alternatively, one can proceed by establishing

Theorem 3.4.8 (Compactness theorem for propositional logic). Let

Γ be a theory for a propositional language L. Then the following are

equivalent:

(i) Γ is satisfiable.

(ii) Every finite subset Γ′ of Γ is satisfiable.

It is easy to see that Theorem 3.4.8 will allow us to use the finite

case of Theorem 3.4.6 to deduce the infinite case, so it remains to

prove Theorem 3.4.8. The implication of (ii) from (i) is trivial; the

interesting implication is the converse.

Observe that there is a one-to-one correspondence between truth

assignments U and elements of the product space {0, 1}A, where

A is the set of propositional variables. For every sentence φ, let

Fφ ⊂ {0, 1}A be the collection of all truth assignments that satisfy

φ; observe that this is a closed (and open) subset of {0, 1}A in the

product topology (basically because φ only involves finitely many of

the propositional variables). If every finite subset Γ′ of Γ is satisfi-

able, then
⋃
φ∈Γ′ Fφ is non-empty; thus the family (Fφ)φ∈Γ of closed

sets enjoys the finite intersection property. On the other hand, from

Tychonoff’s theorem, {0, 1}A is compact. We conclude that
⋂
φ∈Γ Fφ

is non-empty, and the claim follows.

Remark 3.4.9. While Tychonoff’s theorem in full generality is equiv-

alent to the axiom of choice, it is possible to prove the compactness

theorem using a weaker version of this axiom, namely the ultrafilter
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lemma. In fact, the compactness theorem is logically equivalent to

this lemma.

3.4.2. Zeroth-order logic. Propositional logic is far too limited

a language to do much mathematics. Let’s make the language a

bit more expressive, by adding constants, operations, relations, and

(optionally) the equals sign; however, we refrain at this stage from

adding variables or quantifiers, making this a zeroth-order logic rather

than a first-order one.

A zeroth-order language L consists of the following objects:

• A (finite or infinite) collection A1, A2, A3, . . . of proposi-

tional variables;

• A collection R1, R2, R3, . . . of relations (or predicates), with

each Ri having an arity (or valence) a[Ri] (e.g. unary rela-

tion, binary relation, etc.);

• A collection c1, c2, c3, . . . of constants;

• A collection f1, f2, f3, . . . of operators (or functions), with

each operator fi having an arity a[fi] (e.g. unary operator,

binary operator, etc.);

• Logical connectives;

• Parentheses;

• Optionally, the equals sign =.

For instance, a zeroth-order language for arithmetic on the nat-

ural numbers might include the constants 0, 1, 2, . . ., the binary re-

lations <,≤, >,≥, the binary operations +,×, the unary successor

operation S, and the equals sign =. A zeroth-order language for

studying all groups generated by six elements might include six gen-

erators a1, . . . , a6 and the identity element e as constants, as well as

the binary operation · of group multiplication and the unary opera-

tion ()−1 of group inversion, together with the equals sign =. And so

forth.

Note that one could shorten the description of such languages by

viewing propositional variables as relations of arity zero, and similarly

viewing constants as operators of arity zero, but I find it conceptually

clearer to leave these two operations separate, at least initially. As
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we shall see shortly, one can also essentially eliminate the privileged

role of the equals sign = by treating it as just another binary relation,

which happens to have some standard axioms5 attached to it.

By combining constants and operators together in the usual fash-

ion one can create terms; for instance, in the zeroth-order language

for arithmetic, 3+(4×5) is a term. By inserting terms into a predicate

or relation (or the equals sign =), or using a propositional variable,

one obtains an atomic formula; thus for instance 3 + (4 × 5) > 25

is an atomic formula. By combining atomic formulae using logical

connectives, one obtains a sentence (or formula); thus for instance

((4× 5) > 22) =⇒ (3 + (4× 5) > 25) is a sentence.

In order to assign meaning to sentences, we need the notion of a

structure U for a zeroth-order language L. A structure consists of the

following objects:

• A domain of discourse (or universe of discourse) Dom(U);

• An assignment of a value cUn ∈ Dom(U) to every constant

cn;

• An assignment of a function fUn : Dom(U)a[fn] → Dom(U)

to every operation fn;

• An assignment of a truth value AU
n ∈ {true, false} to every

propositional variable An;

• An assignment of a function RU
n : Dom(U)a[Rn]{true, false}

to every relation Rn.

For instance, if L is the language of groups with six generators dis-

cussed above, then a structure U would consist of a set G = Dom(U),

seven elements aU1 , . . . , a
U
6 , e

U ∈ G in that set, a binary operation

·U : G × G → G, and a unary operation (()−1)U : G → G. At

present, no group-type properties are assumed on these operations;

the structure here is little more than a magma at this point.

Every sentence φ in a zeroth-order language L can be inter-

preted in a structure U for that language to give a truth value φU ∈
{true, false}, simply by substituting all symbols α in the language

5Namely, that equality is reflexive, transitive, and symmetric, and can be substi-
tuted in any expression to create an equal expression, or in any formula to create an
equivalent formula.
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with their interpreted counterparts αU (note that the equals sign =

does not need any additional data in order to be interpreted). For

instance, the sentence a1 · a2 = a3 is true in U if aU1 ·U aU2 = aU3 . Simi-

larly, every term t in the language can be interpreted to give a value

tU in the domain of discourse Dom(U).

As before, a theory is a collection of sentences; we can define

satisfiability U |= φ, U |= Γ of a sentence φ or a theory Γ by a structure

U just as in the previous section. For instance, to describe groups with

at most six generators in the language L, one might use the theory

Γ which consists of all the group axioms, specialised to terms, e.g.

Γ would contain the associativity axioms t1 · (t2 · t3) = (t1 · t2) · t3
for all choices of terms t1, t2, t3. (Note that this theory is not quite

strong enough to capture the concept of a structure U being a group

generated by six elements, because the domain of U may contain some

“inaccessible” elements which are not the interpretation of any term

in L, but without the universal quantifier, there is not much we can

do in zeroth-order logic to say anything about those elements, and so

this is pretty much the best we can do with this limited logic.)

Now we can state the completeness theorem:

Theorem 3.4.10 (Completeness theorem for zeroth-order logic). Let

Γ be a theory for a zeroth-order language L, and let φ be a sentence

in L. Then the following are equivalent:

(i) (Syntactic consequence) φ can be deduced from the axioms

in Γ by a finite number of applications of the laws of zeroth-

order logic (i.e. all the laws of first-order logic that do not

involve variables or quantifiers).

(ii) (Semantic consequence) Every truth assignment U which sat-

isfies (or models) Γ, also satisfies φ.

To prove this theorem, it suffices as before to show that every con-

sistent theory Γ in a zeroth-order logic is satisfiable, and conversely.

The converse implication is again straightforward (the laws of zeroth-

order logic are easily seen to be sound); the main task is to show the

forward direction, i.e.

Proposition 3.4.11. Let Γ be a consistent zeroth-order theory. Then

Γ has at least one model.
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Proof. It is convenient to begin by eliminating the equality sym-

bol from the language. Suppose we have already proven Proposition

3.4.11 has already been shown for languages without the equality

symbol. Then we claim that the proposition also holds for languages

with the equality symbol. Indeed, given a consistent theory Γ in a

language L with equality, we can form a companion theory Γ′ in the

language L′ formed by removing the equality symbol from L and re-

placing it with a new binary relation =′, by taking all the sentences

in Γ and replacing = by =′, and then adding in all the axioms of

equality (with = replaced by =′) to Γ′. Thus, for instance, one would

add the transitivity axioms (x =′ y) ∧ (y =′ z) =⇒ (x =′ z) to Γ

for each triple of terms x, y, z, as well as substitution axioms such as

(x =′ y) =⇒ (B(x, z) =′ B(y, z)) for any terms x, y, z and binary

functions B. It is straightforward to verify that if Γ is consistent,

then Γ′ is also consistent, because any contradiction derived in Γ′ can

be translated to a contradiction derived in Γ simply by replacing =′

with = throughout and using the axioms of equality. By hypothesis,

we conclude that Γ′ has some model U′. By the axioms of equality,

the interpretation (=′)U
′

of =′ in this model is then an equivalence

relation on the domain Dom(U′) of U′. One can also remove from the

domain of U′ any element which is not of the form tU
′

for some term

t, as such “inaccessible” elements will not influence the satisfiability

of Γ′. We can then define a structure U for the original language L by

quotienting the domain of U′ by the equivalence relation =′, and also

quotienting all the interpretations of the relations and operations of

L; the axioms of equality ensure that this quotienting is possible, and

that the quotiented structure U satisfies L; we omit the details.

Henceforth we assume that L does not contain the equality sign.

We will then choose a “tautological” domain of discourse Dom(U),

by setting this domain to be nothing more than the collection of all

terms in the language L. For instance, in the language of groups

on six generators, the domain Dom(U) is basically the free magma

(with “inverse”) on six generators plus an “identity”, consisting of

terms such as (a1 · a2)−1 · a1, (e · a3) · ((a4)−1)−1, etc. With this

choice of domain, there is an obvious “tautological” interpretation of

constants (cU := c) and operations (e.g. BU(t1, t2) := B(t1, t2)U for
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binary operations B and terms t1, t2), which leads to every term t

being interpreted as itself: tU = t.

It remains to figure out how to interpret the propositional vari-

ables A1, A2, . . . and relations R1, R2, . . .. Actually, one can replace

each relation with an equivalent collection of new propositional vari-

ables by substituting in all possible terms in the relation. For instance,

if one has a binary relation R(, ), one can replace this single relation

symbol in the language by a (possibly infinite) collection of proposi-

tional variables R(t1, t2), one for each pair of terms t1, t2, leading to

a new (and probably much larger) language L̃ without any relation

symbols. It is not hard to see that if theory Γ is consistent in L, then

the theory Γ̃ in L̃ formed by interpreting all atomic formulae such as

R(t1, t2) as propositional variables is also consistent. If Γ̃ has a model

Ũ with the tautological domain of discourse, it is not hard to see that

this can be converted to a model U of Γ with the same domain by

defining the interpretation RU of relations R in the obvious manner.

So now we may assume that there are no relation symbols, so that

Γ now consists entirely of propositional sentences involving the propo-

sitional variables. But the claim now follows from the completeness

theorem in propositional logic. �

Remark 3.4.12. The above proof can be viewed as a combination

of the completeness theorem in propositional logic and the familiar

procedure in algebra of constructing an algebraic object (e.g. a group)

that obeys various relations, by starting with the free version of that

object (e.g. a free group) and then quotienting out by the equivalence

relation generated by those relations.

Remark 3.4.13. Observe that if L is at most countable, then the

structures U constructed by the above procedure are at most count-

able (because the set of terms is at most countable, and quotienting

by an equivalence relation cannot increase the cardinality). Thus we

see (as in Theorem 3.4.1 or Corollary 3.4.2) that if a zeroth-order

theory in an at most countable language is satisfiable, then it is in

fact satisfiable with an at most countable model.
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From the completeness theorem for zeroth-order logic and the

above remark we obtain the compactness theorem for zeroth-order

logic, which is formulated exactly as in Corollary 3.4.2.

3.4.3. First-order logic. We are now ready to study languages

which are expressive enough to do some serious mathematics, namely

the languages of first-order logic, which are formed from zeroth-order

logics by adding variables and quantifiers. (There are higher-order

logics as well, but unfortunately the completeness and compactness

theorems typically fail for these, and they will not be discussed here.)

A language L for a first-order logic consists of the following:

• A (finite or infinite) collection A1, A2, A3, . . . of proposi-

tional variables;

• A collection R1, R2, R3, . . . of relations, with each Ri having

an arity a[Ri];

• A collection c1, c2, c3, . . . of constants;

• A collection f1, f2, f3, . . . of operators, with each fi having

an arity a[fi];

• A collection x1, x2, x3, . . . of variables;

• Logical connectives;

• The quantifiers ∀,∃;
• Parentheses;

• Optionally, the equals sign =.

For instance, the language for Peano arithmetic includes a con-

stant 0, a unary operator S, binary operators +,×, the equals sign

=, and a countably infinite number of variables x1, x2, . . ..

By combining constants, variables and operators together one cre-

ates terms; by inserting terms into predicates or relations, or using

propositional variables, one obtains atomic formulae. These atomic

formulae can contain a number of free variables. Using logical con-

nectives as well as quantifiers to bind any or all of these variables, one

obtains well-formed formulae; a formula with no free variables is a

sentence. Thus, for instance, ∀x2 : x1 +x2 = x2 +x1 is a well-formed

formula, and ∀x1∀x2 : x1 + x2 = x2 + x1 is a sentence.
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A structure U for a first-order language L is exactly the same con-

cept as for a zeroth-order language: a domain of discourse, together

with an interpretation of all the constants, operators, propositional

variables, and relations in the language. Given a structure U, one can

interpret terms t with no free variables as elements tU of Dom(U),

and interpret sentences φ as truth values φU ∈ {true, false}, in the

standard fashion.

A theory is, once again, a collection of sentences in the first-order

language L; one can define what it means for a structure to satisfy a

sentence or a theory just as before.

Remark 3.4.14. In most fields of mathematics, one wishes to dis-

cuss several types of objects (e.g. numbers, sets, points, group el-

ements, etc.) at once. For this, one would prefer to use a typed

language, in which variables, constants, and functions take values

in one type of object, and relations and functions take only certain

types of objects as input. However, one can easily model a typed

theory using a typeless theory by the trick of adding some additional

unary predicates to capture type (e.g. N(x) to indicate the asser-

tion “x is a natural number”, S(x) to indicate the assertion “x is a

set”, etc.) and modifying the axioms of the theory being considered

accordingly. (For instance, in a language involving both natural num-

bers and other mathematical objects, one might impose a new closure

axiom ∀x∀y : N(x) ∧ N(y) =⇒ N(x + y), and axioms such as the

commutativity axiom ∀x∀y : x+y = y+x would need to be modified

to ∀x∀y : N(x)∧N(y) =⇒ x+y = y+x.) It is a tedious but routine

matter to show that the completeness and compactness theorems for

typeless first-order logic imply analogous results for typed first-order

logic; we omit the details.

To prove the completeness (and hence compactness) theorem, it

suffices as before to show that

Proposition 3.4.15. Let Γ be a consistent first-order theory, with

an at most countable language L. Then Γ has at least one model U ,

which is also at most countable.

We shall prove this result using a series of reductions. Firstly, we

can mimic the arguments in the zeroth-order case and reduce to the
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case when L does not contain the equality symbol. (We no longer

need to restrict the domain of discourse to those elements which can

be interpreted by terms, because the universal quantifier ∀ is now

available for use when stating the axioms of equality.) Henceforth we

shall assume that the equality symbol is not present in the language.

Next, by using the laws of first-order logic to push all quantifiers

in the sentences in Γ to the beginning (e.g. replacing (∀x : P (x)) ∧
(∀y : Q(y)) with ∀x∀y : P (x) ∧ Q(y)) one may assume that all sen-

tences in Γ are in prenex normal form, i.e. they consist of a “matrix”

of quantifiers, followed by an quantifier-free formula - a well-formed

formula with no quantifiers. For instance, ∀x∃y∀z∃w : P (x, y, z, w)

is in prenex normal form, where P (x, y, z, w) is an quantifier-free for-

mula with four free variables x, y, z, w.

Now we will start removing the existential quantifiers ∃ from the

sentences in Γ. Let’s begin with a simple case, when Γ contains a

sentence of the form ∃x : P (x) for some quantifier-free formula of one

free variable x. Then one can eliminate the existential quantifier by

introducing a witness, or more precisely adjoining a new constant c

to the language L and replacing the statement ∃x : P (x) with the

statement P (c), giving rise to a new theory Γ′ in a new language

Λ′. The consistency of Γ easily implies the consistency of Γ′, while

any at most countable model for Γ′ can be easily converted to an at

most countable model for Γ (by “forgetting” the symbol c). (In fact,

Γ′ is a conservative extension of Γ.) We can apply this reduction

simultaneously to all sentences of the form ∃x : P (x) in Γ (thus

potentially expanding the collection of constants in the language by

a countable amount).

The same argument works for any sentence in prenex normal form

in which all the existential quantifiers are to the left of the universal

quantifiers, e.g. ∃x∃y∀z∀w : P (x, y, z, w); this statement requires two

constants to separately witness x and y, but otherwise one proceeds

much as in the previous paragraph. But what about if one or more

of the existential quantifiers is buried behind a universal quantifier?

The trick is then to use Skolemisation. We illustrate this with the

simplest case of this type, namely that of a sentence ∀x∃y : P (x, y).

Here, one cannot use a constant witness for y. But this is no problem:
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one simply introduces a witness that depends on x. More precisely,

one adjoins a new unary operator c to the language L and replaces the

statement ∀x∃y : P (x, y) by ∀x : P (x, c(x)), creating a new theory

Γ′ in a new language Λ′. One can again show (though this is not

entirely trivial) that the consistency of Γ implies the consistency of

Γ′, and that every countable model for Γ′ can be converted to a

countable model for Γ (again by “forgetting” c). So one can eliminate

the existential quantifier from this sentence also. Similar methods

work for any other prenex normal form; for instance with the sentence

∀x∃y∀z∃w : P (x, y, z, w)

one can obtain a conservative extension of that theory by introducing

a unary operator c and a binary operator d and replacing the above

sentence with

∀x∀z : P (x, c(x), z, d(x, z)).

One can show that one can perform Skolemisation on all the sentences

in Γ simultaneously, which has the effect of eliminating all existential

quantifiers from Γ while still keeping the language L at most countable

(since Γ is at most countable). (Intuitively, what is going on here

is that we are interpreting all existential axioms in the theory as

implicitly defining functions, which we then explicitly formalise as a

new symbol in the language. For instance, if we had some theory of

sets which contained the axiom of choice (every family of non-empty

sets (Xα)α∈A admits a choice function f : A →
⋃
α∈AXα), then we

can Skolemise this by introducing a “choice function function” F :

(Xα)α∈A 7→ F((Xα)α∈A) that witnessed this axiom to the language.

Note that we do not need uniqueness in the existential claim in order

to be able to perform Skolemisation.)

After performing Skolemisation and adding all the witnesses to

the language, we are reduced to the case in which all the sentences

in Γ are in fact universal statements, i.e. of the form ∀x1 . . . ∀xk :

P (x1, . . . , xk), where P (x1, . . . , xk) is an quantifier-free formula of k

free variables. In this case one can repeat the zeroth-order arguments,

selecting a structure U whose domain of discourse is the tautological

one, indexed by all the terms with no free variables (in particular, this

structure will be countable). One can then replace each first-order
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statement ∀x1 . . . ∀xk : P (x1, . . . , xk) in Γ by the family of zeroth-

order statements P (t1, . . . , tk), where t1, . . . , tk ranges over all terms

with no free variables, thus creating a zeroth-order theory Γ0. As Γ

is consistent, Γ0 is also, so by the zeroth-order theory, we can find a

model U for Γ0 with the tautological domain of discourse, and it is

clear that this structure will also be a model for the original theory

Γ. The proof of the completeness theorem (and thus the compactness

theorem) is now complete.

In summary: to create a countable model from a consistent first-

order theory, one first replaces the equality sign = (if any) by a binary

relation =′, then uses Skolemisation to make all implied functions and

operations explicit elements of the language. Next, one makes the

zeroth-order terms of the new language the domain of discourse, ap-

plies a greedy algorithm to decide the truth assignment of all zeroth-

order sentences, and then finally quotients out by the equivalence

relation given by =′ to recover the countable model.

Remark 3.4.16. I find the use of Skolemisation to greatly clarify,

at a conceptual level, the proof of the completeness theorem. How-

ever, at a technical level it does make things more complicated: in

particular, showing that the Skolemisation of a consistent theory is

still consistent does require some non-trivial effort (one has to take

all arguments involving the Skolem function c(), and replace every

occurence of c() by a “virtual” function, defined implicitly using ex-

istential quantifiers). On the other hand, this fact is easy to prove

once one already has the completeness theorem, though we of course

cannot formally take advantage of this while trying to prove that

theorem!

The more traditional Henkin approach is based instead on adding

a large number of constant witnesses, one for every existential state-

ment: roughly speaking, for each existential sentence ∃x : P (x) in the

language, one adds a new constant c to the language and inserts an

axiom (∃x : P (x)) =⇒ P (c) to the theory; it is easier to show that

this preserves consistency than it is with a more general Skolemisa-

tion. Unfortunately, every time one adds a constant to the language,

one increases the number of existential sentences for which one needs

to perform this type of witnessing, but it turns out that after applying
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this procedure a countable number of times, one can get to the point

where every existential sentence is automatically witnessed by some

constant. This has the same ultimate effect as Skolemisation, namely

one can convert sentences containing existential quantifiers to ones

which are purely universal, and so the rest of the proof is much the

same as the proof described above. On the other hand, the Henkin

approach avoids the axiom of choice (though one still must use the

ultrafilter lemma, of course).

Notes. This article first appeared at terrytao.wordpress.com/2009/04/10.

Thanks to Carson Chow, Ernie Cohen, Eric, John Goodrick, and

anonymous commenters for corrections.

3.5. Talagrand’s concentration inequality

In the theory of discrete random matrices (e.g. matrices whose entries

are random signs ±1), one often encounters the problem of under-

standing the distribution of the random variable dist(X,V ), where

X = (x1, . . . , xn) ∈ {−1,+1}n is an n-dimensional random sign vec-

tor (so X is uniformly distributed in the discrete cube {−1,+1}n),

and V is some d-dimensional subspace of Rn for some 0 ≤ d ≤ n.

It is not hard to compute the second moment of this random vari-

able. Indeed, if P = (pij)1≤i,j≤n denotes the orthogonal projection

matrix from Rn to the orthogonal complement V ⊥ of V , then one

observes that

dist(X,V )2 = X · PX =

n∑
i=1

n∑
j=1

xixjpij

and so upon taking expectations we see that

(3.23) E dist(X,V )2 =

n∑
i=1

pii = trP = n− d

since P is a rank n−d orthogonal projection. So we expect dist(X,V )

to be about
√
n− d on the average.

In fact, one has sharp concentration around this value, in the

sense that dist(X,V ) =
√
n− d + O(1) with high probability. More

precisely, we have
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Proposition 3.5.1 (Large deviation inequality). For any t > 0, one

has

P(|dist(X,V )−
√
n− d| ≥ t) ≤ C exp(−ct2)

for some absolute constants C, c > 0.

In fact the constants C, c are very civilised; for large t one can

basically take C = 4 and c = 1/16, for instance. This type of con-

centration, particularly for subspaces V of moderately large codimen-

sion6 n− d, is fundamental to much of my work on random matrices

with Van Vu, starting with our first paper[TaVu2006] (in which this

proposition first appears).

Proposition 3.5.1 is an easy consequence of the second moment

computation and Talagrand’s inequality [Ta1996], which among other

things provides a sharp concentration result for convex Lipschitz func-

tions on the cube {−1,+1}n; since dist(x, V ) is indeed a convex Lips-

chitz function, this inequality can be applied immediately. The proof

of Talagrand’s inequality is short and can be found in several text-

books (e.g. [AlSp2008]), but I thought I would reproduce the argu-

ment here (specialised to the convex case), mostly to force myself to

learn the proof properly. Note the concentration of O(1) obtained by

Talagrand’s inequality is much stronger than what one would get from

more elementary tools such as Azuma’s inequality or McDiarmid’s in-

equality, which would only give concentration of about O(
√
n) or so

(which is in fact trivial, since the cube {−1,+1}n has diameter 2
√
n);

the point is that Talagrand’s inequality is very effective at exploiting

the convexity of the problem, as well as the Lipschitz nature of the

function in all directions, whereas Azuma’s inequality can only easily

take advantage of the Lipschitz nature of the function in coordinate

directions. On the other hand, Azuma’s inequality works just as well

if the `2 metric is replaced with the larger `1 metric, and one can con-

clude that the `1 distance between X and V concentrates around its

median to a width O(
√
n), which is a more non-trivial fact than the

`2 concentration bound given by that inequality. (The computation

6For subspaces of small codimension (such as hyperplanes) one has to use other
tools to get good results, such as inverse Littlewood-Offord theory or the Berry-Esséen
central limit theorem, but that is another story.
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of the median of the `1 distance is more complicated than for the `2

distance, though, and depends on the orientation of V .)

Remark 3.5.2. If one makes the coordinates of X iid Gaussian vari-

ables xi ≡ N(0, 1) rather than random signs, then Proposition 3.5.1 is

much easier to prove; the probability distribution of a Gaussian vec-

tor is rotation-invariant, so one can rotate V to be, say, Rd, at which

point dist(X,V )2 is clearly the sum of n − d independent squares of

Gaussians (i.e. a chi-square distribution), and the claim follows from

direct computation (or one can use the Chernoff inequality). The

gaussian counterpart of Talagrand’s inequality is more classical, be-

ing essentially due to Lévy, and will also be discussed later in this

post.

3.5.1. Concentration on the cube. Proposition 3.5.1 follows eas-

ily from the following statement, that asserts that if a convex set

A ⊂ Rn occupies a non-trivial fraction of the cube {−1,+1}n, then

the neighbourhood At := {x ∈ Rn : dist(x,A) ≤ t} will occupy

almost all of the cube for t� 1:

Proposition 3.5.3 (Talagrand’s concentration inequality). Let A be

a convex set in Rd. Then

P(X ∈ A)P(X 6∈ At) ≤ exp(−ct2)

for all t > 0 and some absolute constant c > 0, where X ∈ {−1,+1}n
is chosen uniformly from {−1,+1}n.

Remark 3.5.4. It is crucial that A is convex here. If instead A

is, say, the set of all points in {−1,+1}n with fewer than n/2 −
√
n

+1’s, then P(X ∈ A) is comparable to 1, but P(X 6∈ At) only starts

decaying once t �
√
n, rather than t � 1. Indeed, it is not hard to

show that Proposition 3.5.3 implies the variant

P(X ∈ A)P(X 6∈ At) ≤ exp(−ct2/n)

for non-convex A (by restricting A to {−1,+1}n and then passing

from A to the convex hull, noting that distances to A on {−1,+1}n
may be contracted by a factor of O(

√
n) by this latter process); this

inequality can also be easily deduced from Azuma’s inequality.
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To apply this proposition to the situation at hand, observe that

if A is the cylindrical region {x ∈ Rn : dist(x, V ) ≤ r} for some r,

then A is convex and At is contained in {x ∈ Rn : dist(x, V ) ≤ r+ t}.
Thus

P(dist(X,V ) ≤ r)P(dist(X,V ) > r + t) ≤ exp(−ct2).

Applying this with r := M or r := M−t, where M is the median value

of dist(X,V ), one soon obtains concentration around the median:

P(|dist(X,V )−M | > t) ≤ 4 exp(−ct2).

This is only compatible with (3.23) if M =
√
n− d + O(1), and the

claim follows.

To prove Proposition 3.5.3, we use the exponential moment method.

Indeed, it suffices by Markov’s inequality to show that

(3.24) P(X ∈ A)E exp(cdist(X,A)2) ≤ 1

for a sufficiently small absolute constant c > 0 (in fact one can take

c = 1/16).

We prove (3.24) by an induction on the dimension n. The claim

is trivial for n = 0, so suppose n ≥ 1 and the claim has already been

proven for n− 1.

Let us write X = (X ′, xn) for xn = ±1. For each t ∈ R, we

introduce the slice At := {x′ ∈ Rn−1 : (x′, t) ∈ A}, then At is convex.

We now try to bound the left-hand side of (3.24) in terms of X ′, At
rather than X,A. Clearly

P(X ∈ A) =
1

2
[P(X ′ ∈ A−1) + P(X ′ ∈ A+1)].

By symmetry we may assume that P(X ′ ∈ A+1) ≥ P(X ′ ∈ A−1),

thus we may write

(3.25) P(X ′ ∈ A±1) = p(1± q)

where p := P(X ∈ A) and 0 ≤ q ≤ 1.

Now we look at dist(X,A)2. For t = ±1, let Yt ∈ Rn−1 be the

closest point of (the closure of) At to X ′, thus

(3.26) |X ′ − Yt| = dist(X ′, At).
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Let 0 ≤ λ ≤ 1 be chosen later; then the point (1 − λ)(Yxn , xn) +

λ(Y−xn ,−xn) lies in A by convexity, and so

dist(X,A) ≤ |(1− λ)(Yxn , xn) + λ(Y−xn ,−xn)− (X ′, xn)|.

Squaring this and using Pythagoras, one obtains

dist(X,A)2 ≤ 4λ2 + |(1− λ)(X ′ − Yxn) + λ(X ′ − Y−xn)|2.

As we will shortly be exponentiating the left-hand side, we need to lin-

earise the right-hand side. Accordingly, we will exploit the convexity

of the function x 7→ |x|2 to bound

|(1− λ)(X − Yxn) + λ(X − Y−xn)|2 ≤

(1− λ)|X ′ − Yxn |2 + λ|X ′ − Y−xn |2

and thus by (3.26)

dist(X,A)2 ≤ 4λ2 + (1− λ) dist(X ′, Axn)2 + λ dist(X ′, A−xn)2.

We exponentiate this and take expectations in X ′ (holding xn fixed

for now) to get

EX′e
c dist(X,A)2 ≤ e4cλ2

EX′(e
c dist(X′,Axn )2)1−λ(ec dist(X′,A−xn )2)λ.

Meanwhile, from the induction hypothesis and (3.25) we have

EX′e
c dist(X′,Axn )2 ≤ 1

p(1 + xnq)

and similarly for A−xn . By Hölder’s inequality, we conclude

EX′e
c dist(X,A)2 ≤ e4cλ2 1

p(1 + xnq)1−λ(1− xnq)λ
.

For xn = +1, the optimal choice of λ here is 0, obtaining

EX′e
c dist(X,A)2 =

1

p(1 + q)
;

for xn = −1, the optimal choice of λ is to be determined. Averaging,

we obtain

EXe
c dist(X,A)2 =

1

2
[

1

p(1 + q)
+ e4cλ2 1

p(1− q)1−λ(1 + q)λ
]

so to establish (3.24), it suffices to pick 0 ≤ λ ≤ 1 such that

1

1 + q
+ e4cλ2 1

(1− q)1−λ(1 + q)λ
≤ 2.
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If q is bounded away from zero, then by choosing λ = 1 we would

obtain the claim if c is small enough, so we may take q to be small.

But then a Taylor expansion allows us to conclude if we take λ to be

a constant multiple of q, and again pick c to be small enough. The

point is that λ = 0 already almost works up to errors of O(q2), and

increasing λ from zero to a small non-zero quantity will decrease the

LHS by about O(λq)−O(cλ2).

By optimising everything using first-year calculus, one eventually

gets the constant c = 1/16 claimed earlier.

Remark 3.5.5. Talagrand’s inequality is in fact far more general

than this; it applies to arbitrary products of probability spaces, rather

than just to {−1,+1}n, and to non-convex A, but the notion of dis-

tance needed to define At becomes more complicated; the proof of

the inequality, though, is essentially the same. Besides its applicabil-

ity to convex Lipschitz functions, Talagrand’s inequality is also very

useful for controlling combinatorial Lipschitz functions F which are

“locally certifiable” in the sense that whenever F (x) is larger than

some threshold t, then there exist some bounded number f(t) of co-

efficients of x which “certify” this fact (in the sense that F (y) ≥ t

for any other y which agrees with x on these coefficients). See e.g.

[AlSp2008] for a more precise statement and some applications.

3.5.2. Gaussian concentration. As mentioned earlier, there are

analogous results when the uniform distribution on the cube {−1,+1}n
are replaced by other distributions, such as the n-dimensional Gauss-

ian distribution. In fact, in this case convexity is not needed:

Proposition 3.5.6 (Gaussian concentration inequality). Let A be a

measurable set in Rd. Then

P(X ∈ A)P(X 6∈ At) ≤ exp(−ct2)

for all t > 0 and some absolute constant c > 0, where X ≡ N(0, 1)n

is a random Gaussian vector.

This inequality can be deduced from Lévy’s classical concentra-

tion of measure inequality for the sphere (with the optimal constant),

but we will give an alternate proof due to Maurey and Pisier. It

suffices to prove the following variant of Proposition 3.5.6:
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Proposition 3.5.7 (Gaussian concentration inequality for Lipschitz

functions). Let f : Rd → R be a function which is Lipschitz with

constant 1 (i.e. |f(x) − f(y)| ≤ |x − y| for all x, y ∈ Rd). Then for

any t we have

P(|f(X)−Ef(X)| ≥ t) ≤ exp(−ct2)

for all t > 0 and some absolute constant c > 0, where X ≡ N(0, 1)n

is a random variable.

Indeed, if one sets f(x) := dist(x,A) one can soon deduce Propo-

sition 3.5.6 from Proposition 3.5.7.

Informally, Proposition 3.5.7 asserts that Lipschitz functions of

Gaussian variables concentrate as if they were Gaussian themselves;

for comparison, Talagrand’s inequality implies that convex Lipschitz

functions of Bernoulli variables concentrate as if they were Gaussian.

Now we prove Proposition 3.5.7. By the epsilon regularisation

argument (Section 2.7) we may take f to be smooth, and so by the

Lipschitz property we have

(3.27) |∇f(x)| ≤ 1

for all x. By subtracting off the mean we may assume Ef = 0. By

replacing f with −f if necessary it suffices to control the upper tail

probability P(f(X) ≥ t) for t > 0.

We again use the exponential moment method. It suffices to show

that

E exp(tf(X)) ≤ exp(Ct2)

for some absolute constant C.

Now we use a variant of the square and rearrange trick. Let Y be

an independent copy of X. Since Ef(Y ) = 0, we see from Jensen’s

inequality that E exp(−tf(Y )) ≥ 1, and so

E exp(tf(X)) ≤ E exp(t(f(X)− f(Y ))).

With an eye to exploiting (3.27), one might seek to use the funda-

mental theorem of calculus to write

f(X)− f(Y ) =

∫ 1

0

d

dλ
f((1− λ)Y + λX) dλ.
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But actually it turns out to be smarter to use a circular arc of inte-

gration, rather than a line segment:

f(X)− f(Y ) =

∫ π/2

0

d

dθ
f(Y cos θ +X sin θ) dθ.

The reason for this is that Xθ := Y cos θ + X sin θ is another gauss-

ian random variable equivalent to N(0, 1)n, as is its derivative X ′θ :=

−Y sin θ+X cos θ; furthermore, and crucially, these two random vari-

ables are independent.

To exploit this, we first use Jensen’s inequality to bound

exp(t(f(X)− f(Y ))) ≤ π

2

∫ π/2

0

exp(
2t

π

d

dθ
f(Xθ)) dθ.

Applying the chain rule and taking expectations, we have

E exp(t(f(X)− f(Y ))) ≤ π

2

∫ π/2

0

E exp(
2t

π
∇f(Xθ) ·X ′θ) dθ.

Let us condition Xθ to be fixed, then X ′θ ≡ N(0, 1)n; applying (3.27),

we conclude that 2t
π∇f(Xθ)·X ′θ is normally distributed with standard

deviation at most 2t
π . As such we have

E exp(
2t

π
∇f(Xθ) ·X ′θ) ≤ exp(Ct)

for some absolute constant C; integrating out the conditioning on Xθ

we obtain the claim.

Notes. This article first appeared at terrytao.wordpress.com/2009/06/09.

Thanks to Oded and vedadi for corrections.

3.6. The Szemerédi-Trotter theorem and the cell
decomposition

The celebrated Szemerédi-Trotter theorem gives a bound for the set

of incidences I(P,L) := {(p, `) ∈ P × L : p ∈ `} between a finite

set of points P and a finite set of lines L in the Euclidean plane R2.

Specifically, the bound is

(3.28) |I(P,L)| � |P |2/3|L|2/3 + |P |+ |L|

where we use the asymptotic notation X � Y or X = O(Y ) to

denote the statement that X ≤ CY for some absolute constant C.
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In particular, the number of incidences between n points and n lines

is O(n4/3). This bound is sharp; consider for instance the discrete

box P := {(a, b) ∈ Z2 : 1 ≤ a ≤ N ; 1 ≤ b ≤ 2N2} with L being the

collection of lines {(x,mx + b) : m, b ∈ Z, 1 ≤ m ≤ N, 1 ≤ b ≤ N2}.
One easily verifies that |P | = 2N3, |L| = N3, and |I(P,L)| = N4,

showing that (3.28) is essentially sharp in the case |P | ∼ |L|; one can

concoct similar examples for other regimes of |P | and |L|.
On the other hand, if one replaces the Euclidean plane R2 by a

finite field geometry F 2, where F is a finite field, then the estimate

(3.28) is false. For instance, if P is the entire plane F 2, and L is

the set of all lines in F 2, then |P |, |L| are both comparable to |F |2,

but |I(P,L)| is comparable to |F |3, thus violating (3.28) when |F | is

large. Thus any proof of the Szemerédi-Trotter theorem must use a

special property of the Euclidean plane which is not enjoyed by finite

field geometries. In particular, this strongly suggests that one cannot

rely purely on algebra and combinatorics to prove (3.28); one must

also use some Euclidean geometry or topology as well.

Nowadays, the slickest proof of the Szemerédi-Trotter theorem is

via the crossing number inequality (as discussed in Section 1.10 of

Structure and Randomness), which ultimately relies on Euler’s fa-

mous formula |V |− |E|+ |F | = 2; thus in this argument it is topology

which is the feature of Euclidean space which one is exploiting, and

which is not present in the finite field setting. In this article, though, I

would like to mention a different proof (closer in spirit to the original

proof of Szemerédi-Trotter [SzTr1983], and closer still to the later

paper [ClEdGuShWe1990]), based on the method of cell decompo-

sition, which has proven to be a very flexible method in combinatorial

incidence geometry. Here, the distinctive feature of Euclidean geom-

etry one is exploiting is convexity, which again has no finite field

analogue.

Roughly speaking, the idea is this. Using nothing more than the

axiom that two points determine at most one line, one can obtain the

bound

(3.29) |I(P,L)| � |P ||L|1/2 + |L|,
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which is inferior to (3.28). (On the other hand, this estimate works in

both Euclidean and finite field geometries, and is sharp in the latter

case, as shown by the example given earlier.) Dually, the axiom that

two lines determine at most one point gives the bound

(3.30) |I(P,L)| � |L||P |1/2 + |P |

(or alternatively, one can use projective duality to interchange points

and lines and deduce (3.30) from (3.29)).

An inspection of the proof of (3.29) shows that it is only expected

to be sharp when the bushes Lp := {` ∈ L : ` 3 p} associated to each

point p ∈ P behave like “independent” subsets of L, so that there is

no significant correlation between the bush Lp of one point and the

bush of another point Lq.

However, in Euclidean space, we have the phenomenon that the

bush of a point Lp is influenced by the region of space that p lies in.

Clearly, if p lies in a set Ω (e.g. a convex polygon), then the only lines

` ∈ L that can contribute to Lp are those lines which pass through

Ω. If Ω is a small convex region of space, one expects only a fraction

of the lines in L to actually pass through Ω. As such, if p and q

both lie in Ω, then Lp and Lq are compressed inside a smaller subset

of L, namely the set of lines passing through Ω, and so should be

more likely to intersect than if they were independent. This should

lead to an improvement to (3.29) (and indeed, as we shall see below,

ultimately leads to (3.28)).

More formally, the argument proceeds by applying the following

lemma:

Lemma 3.6.1 (Cell decomposition). Let L be a finite collection of

lines in R2, and let r ≥ 1. Then it is possible to find a set R of O(r)

lines in the plane (which may or may not be in L), which subdivide

R2 into O(r2) convex regions (or cells), such that the interior of each

such cell is incident to at most O(|L|/r) lines.

The deduction of (3.28) from (3.29), (3.30) and Lemma 3.6.1 is

very quick. Firstly we may assume we are in the range

(3.31) |L|1/2 � |P | � |L|2



3.6. The cell decomposition 433

otherwise the bound (3.28) follows already from either (3.29) or (3.30)

and some high-school algebra.

Let r ≥ 1 be a parameter to be optimised later. We apply the

cell decomposition to subdivide R2 into O(r2) open convex regions,

plus a family R of O(r) lines. Each of the O(r2) convex regions

Ω has only O(|L|/r) lines through it, and so by (3.29) contributes

O(|P ∩ Ω||L|1/2/r1/2 + |L|/r) incidences. Meanwhile, on each of the

lines ` in R used to perform this decomposition, there are at most

|L| transverse incidences (because each line in L distinct from ` can

intersect ` at most once), plus all the incidences along ` itself. Putting

all this together, one obtains

|I(P,L)| ≤ |I(P,L ∩R)|+O(|P ||L|1/2/r1/2 + |L|r).

We optimise this by selecting r ∼ |P |2/3/|L|1/3; from (3.31) we can

ensure that r ≤ |L|/2, so that |L ∩R| ≤ |L|/2. One then obtains

|I(P,L)| ≤ |I(P,L ∩R)|+O(|P |2/3|L|2/3).

We can iterate away the L∩R error (halving the number of lines each

time) and sum the resulting geometric series to obtain (3.28).

It remains to prove (3.6.1). If one subdivides R2 using r arbitrary

lines, one creates at most O(r2) cells (because each new line intersects

the existing lines at most once, and so can create at most O(r) distinct

cells), and for a similar reason, every line in L visits at most r of

these regions, and so by double counting one expects O(|L|/r) lines

per cell “on the average”. The key difficulty is then to get O(|L|/r)
lines through every cell, not just on the average. It turns out that a

probabilistic argument will almost work, but with a logarithmic loss

(thus having O(|L| log |L|/r) lines per cell rather than O(|L|/r)); but

with a little more work one can then iterate away this loss also. The

arguments here are loosely based on those of [ClEdGuShWe1990];

a related (deterministic) decomposition also appears in [SzTr1983].

But I wish to focus here on the probabilistic approach.

It is also worth noting that the original (somewhat complicated)

argument of Szemerédi-Trotter has been adapted to establish the ana-

logue of (3.28) in the complex plane C2 by Toth[To2005], while the

other known proofs of Szemerédi-Trotter, so far, have not been able to

be extended to this setting (the Euler characteristic argument clearly
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breaks down, as does any proof based on using lines to divide planes

into half-spaces). So all three proofs have their advantages and dis-

advantages.

3.6.1. The trivial incidence estimate. We first give a quick proof

of the trivial incidence bound (3.29). We have

|I(P,L)| =
∑
`∈L

|P ∩ `|

and thus by Cauchy-Schwarz∑
`∈L

|P ∩ `|2 ≥ |I(P,L)|2

|L|
.

On the other hand, observe that∑
`∈L

|P ∩ `|2 − |P ∩ `| = |{(p, q, `) ∈ P × P × L : p 6= q; p, q ∈ `}.

Because two distinct points p, q are incident to at most one line, the

right-hand side is at most |P |2, thus∑
`∈L

|P ∩ `|2 ≤ |I(P,L)|+ |P |2.

Comparing this with the Cauchy-Schwarz bound and using a little

high-school algebra we obtain (3.29). A dual argument (swapping

the role of lines and points) give (3.30).

A more informal proof of (3.29) can be given as follows. Suppose

for contradiction that |I(P,L)| was much larger than |P ||L|1/2 + |L|.
Since |I(P,L)| =

∑
p∈P |Lp|, this implies that that the |Lp| are much

larger than |L|1/2 on the average. By the birthday paradox, one then

expects two randomly chosen Lp, Lq to intersect in at least two places

`, `′; but this would mean that two lines intersect in two points, a con-

tradiction. The use of Cauchy-Schwarz in the rigorous argument given

above can thus be viewed as an assertion that the average intersection

of Lp and Lq is at least as large as what random chance predicts.

As mentioned in the introduction, we now see (intuitively, at

least) that if nearby p, q are such that Lp, Lq are drawn from a smaller

pool of lines than L, then their intersection is likely to be higher, and

so one should be able to improve upon (3.29).
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3.6.2. The probabilistic bound. Now we start proving Lemma

3.6.1. We can assume that r < |L|, since the claim is trivial otherwise

(we just use all the lines in L to subdivide the plane, and there are

no lines left in L to intersect any of the cells). Similarly we may

assume that r > 1, and that |L| is large. We can also perturb all

the lines slightly and assume that the lines are in general position

(no three are concurrent), as the general claim then follows from

a limiting argument (note that this may send some of the cells to

become empty). (Of course, the Szemerédi-Trotter theorem is quite

easy under the assumption of general position, but this theorem is

not our current objective right now.)

We use the probabilistic method, i.e. we construct R by some

random recipe and aim to show that the conclusion of the lemma

holds with positive probaility.

The most obvious approach would be to choose the r lines R

at random from L, thus each line ` ∈ L has a probability of r/|L|
of lying in R. Actually, for technical reasons it is slightly better

to use a Bernoulli process to select R, thus each line ` ∈ L lies in

R with an independent probability of r/|L|. This can cause R to

occasionally have size much larger than r, but this probability can be

easily controlled (e.g. using the Chernoff inequality). So with high

probability, R consists of O(r) lines, which therefore carve out O(r2)

cell. The remaining task is to show that each cell is incident to at

most O(|L|/r) lines from L.

Observe that each cell is a (possibly unbounded) polygon, whose

edges come from lines in R. Note that (except in the degenerate case

when R consists of at most one line, which we can ignore) any line `

which meets a cell in R, must intersect at least one of the edges of R.

If we pretend for the moment that all cells have a bounded number

of edges, it would then suffice to show that each edge of each cell was

incident to O(|L|/r) lines.

Let’s see how this would go. Suppose that one line ` ∈ L was

picked for the set R, and consider all the other lines in L that inter-

sect `; there are O(|L|) of these lines `′, which (by the general position

hypothesis) intersect ` at distinct points ` ∩ `′ on the line. If one of
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these lines `′ intersecting ` is also selected for R, then the correspond-

ing point `∩ `′ will become a vertex of one of the cells (indeed, it will

be the vertex of four cells). Thus each of these points on ` has an

independent probability of r/|L| of becoming a vertex for a cell.

Now consider m consecutive such points on `. The probabil-

ity that they all fail to be chosen as cell vertices is (1 − r/|L|)m; if

m = k|L|/r, then this probability is O(exp(−k)). Thus runs of much

more than |L|/r points without vertices are unlikely. In particular,

setting k = 100 log |L|, we see that the probability that any given

100|L| log |L|/r consecutive points on any given line ` are skipped is

O(|L|−100). By the union bound, we thus see that with probability

1 − O(|L|−98), that every line ` has at most O(|L| log |L|/r) points

between any two adjacent vertices. Or in other words, the edge of

every cell is incident to at most O(|L| log |L|/r) lines from L. This

yields Lemma 3.6.1 except for two things: firstly, the logarthmic loss

of O(log |L|), and secondly, the assumption that each cell had only a

bounded number of edges.

To fix the latter problem, we will have to modify the construction

of R, allowing the use of some lines outside of L. First, we randomly

rotate the plane so that none of the lines in L are vertical. Then we

do the following modified construction: we select O(r) lines from L

as before, creating O(r2) cells, some of which may have a very large

number of edges. But then for each cell, and each vertex in that cell,

we draw a vertical line segment from that vertex (in either the up or

down direction) to bisect the cell into two pieces. (If the vertex is on

the far left or far right of the cell, we do nothing.) Doing this once

for each vertex, we see that we have subdivided each of the old cells

into a number of new cells, each of which have at most four sides (two

vertical sides, and two non-vertical sides). So we have now achieved

a bounded number of sides per cell. But what about the number of

such cells? Well, each vertex of each cell is responsible for at most

two subdivisions of one cell into two, and the number of such vertices

is at most O(r2) (as they are formed by intersecting two lines from

the original selection of O(r) lines together), so the total number of

cells is still O(r2).
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Is it still true that each edge of each cell is incident toO(|L| log |L|/r)
lines in L? We have already proven this (with high probability) for

all the old edges - the ones that were formed from lines in L. But

there are now some new edges, caused by dropping a vertical line seg-

ment from the intersection of two lines in L. But it is not hard to see

that one can use much the same argument as before to see that with

high probability, each of these line segments is incident to at most

O(|L| log |L|/r) lines in L as desired.

Finally, we have to get rid of the logarithm. An inspection of the

above arguments (and a use of the first moment method) reveals the

following refinement: for any k ≥ 1, there are expected to be at most

O(exp(−k)r2) cells which are incident to more than Ck|L|/r lines,

where C is an absolute constant. This is already enough to improve

the O(|L| log |L|/r) bound slightly to O(|L| log r/r). But one can

do even better by using Lemma 3.6.1 as an induction hypothesis, i.e.

assume that for any smaller set L′ of lines with |L′| < |L|, and any r′ ≥
1, one can partition L′ into at most C1(r′)2 cells using at most C0r

′

lines such that each cell is incident to at most C2|L′|/r′ lines, where

C1, C2, C3 are absolute constants. (When using induction, asymptotic

notation becomes quite dangerous to use, and it is much safer to start

writing out the constants explicitly. To close the induction, one has

to end up with the same constants C0, C1, C2 as one started with.)

For each k between C2/C and O(log r) which is a power of two, one

can apply the induction hypothesis to all the cells which are incident

to between Ck|L|/r and 2Ck|L|/r (with L′ set equal to the lines in L

incident to this cell, and r′ set comparable to 2Ck), and sum up (using

the fact that
∑
k k

2 exp(−k) converges, especially if k is restricted to

powers of two) to close the induction if the constants C0, C1, C2 are

chosen properly; we leave the details as an exercise.

Notes. This article first appeared at terrytao.wordpress.com/2009/06/12.

Thanks to Oded and vedadi for corrections.

Jozsef Solymosi noted that there is still no good characterisa-

tion of the point-line configurations for which the Szemerédi-Trotter

theorem is close to sharp; such a characterisation may well lead to

improvements to a variety of bounds which are currently proven using

this theorem.
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Jordan Ellenberg raised the interesting possibility of using alge-

braic methods to attack the finite field analogue of this problem.

3.7. Benford’s law, Zipf’s law, and the Pareto
distribution

A remarkable phenomenon in probability theory is that of universal-

ity - that many seemingly unrelated probability distributions, which

ostensibly involve large numbers of unknown parameters, can end up

converging to a universal law that may only depend on a small handful

of parameters. One of the most famous examples of the universality

phenomenon is the central limit theorem; another rich source of ex-

amples comes from random matrix theory, which is one of the areas

of my own research.

Analogous universality phenomena also show up in empirical dis-

tributions - the distributions of a statistic X from a large population

of “real-world” objects. Examples include Benford’s law, Zipf’s law,

and the Pareto distribution (of which the Pareto principle or 80-20

law is a special case). These laws govern the asymptotic distribution

of many statistics X which

(i) take values as positive numbers;

(ii) range over many different orders of magnitude;

(iii) arise from a complicated combination of largely independent

factors (with different samples of X arising from different

independent factors); and

(iv) have not been artificially rounded, truncated, or otherwise

constrained in size.

Examples here include the population of countries or cities, the

frequency of occurrence of words in a language, the mass of astro-

nomical objects, or the net worth of individuals or corporations. The

laws are then as follows:

• Benford’s law: For k = 1, . . . , 9, the proportion of X

whose first digit is k is approximately log10
k+1
k . Thus, for

instance, X should have a first digit of 1 about 30% of the

time, but a first digit of 9 only about 5% of the time.
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• Zipf’s law: The nth largest value of X should obey an

approximate power law, i.e. it should be approximately

Cn−α for the first few n = 1, 2, 3, . . . and some parameters

C,α > 0. In many cases, α is close to 1.

• Pareto distribution: The proportion of X with at least

m digits (before the decimal point), where m is above the

median number of digits, should obey an approximate ex-

ponential law, i.e. be approximately of the form c10−m/α

for some c, α > 0. Again, in many cases α is close to 1.

Benford’s law and Pareto distribution are stated here for base 10,

which is what we are most familiar with, but the laws hold for any base

(after replacing all the occurrences of 10 in the above laws with the

new base, of course). The laws tend to break down if the hypotheses

(i)-(iv) are dropped. For instance, if the statistic X concentrates

around its mean (as opposed to being spread over many orders of

magnitude), then the normal distribution tends to be a much better

model (as indicated by such results as the central limit theorem). If

instead the various samples of the statistics are highly correlated with

each other, then other laws can arise (for instance, the eigenvalues of

a random matrix, as well as many empirically observed matrices, are

correlated to each other, with the behaviour of the largest eigenvalues

being governed by laws such as the Tracy-Widom law rather than

Zipf’s law, and the bulk distribution being governed by laws such as

the semicircular law rather than the normal or Pareto distributions).

To illustrate these laws, let us take as a data set the populations

of 235 countries and regions of the world in 20077. This is a rela-

tively small sample (cf. Section 1.9 of Poincaré’s Legacies, Vol. I ),

but is already enough to discern these laws in action. For instance,

here is how the data set tracks with Benford’s law (rounded to three

significant figures):

7This data was taken from the CIA world factbook at
http://www.umsl.edu/services/govdocs/wofact2007/index.html; I have put the raw data
at http://spreadsheets.google.com/pub?key=rj 3TkLJrrVuvOXkijCHelQ&output=html.
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k Countries Number Benford

1 Angola, Anguilla, Aruba, Bangladesh, Belgium, Botswana, 59 (25.1%) 71 (30.1%)
Brazil, Burkina Faso, Cambodia, Cameroon, Chad, Chile, China,
Christmas Island, Cook Islands, Cuba, Czech Republic, Ecuador,
Estonia, Gabon, (The) Gambia, Greece, Guam, Guatemala,
Guinea-Bissau, India, Japan, Kazakhstan, Kiribati, Malawi,
Mali, Mauritius, Mexico, (Federated States of) Micronesia,
Nauru, Netherlands, Niger, Nigeria, Niue, Pakistan, Portugal,
Russia, Rwanda, Saint Lucia, Saint Vincent and the Grenadines,
Senegal, Serbia, Swaziland, Syria, Timor-Leste (East-Timor),
Tokelau, Tonga, Trinidad and Tobago, Tunisia, Tuvalu,
(U.S.) Virgin Islands, Wallis and Futuna, Zambia, Zimbabwe

2 Armenia, Australia, Barbados, British Virgin Islands, 44 (18.7%) 41 (17.6%)
Cote d’Ivoire, French Polynesia, Ghana, Gibraltar, Indonesia,
Iraq, Jamaica, (North) Korea, Kosovo, Kuwait, Latvia,
Lesotho, Macedonia, Madagascar, Malaysia, Mayotte, Mongolia,
Mozambique, Namibia, Nepal, Netherlands Antilles, New Caledonia,
Norfolk Island, Palau, Peru, Romania, Saint Martin, Samoa,
San Marino, Sao Tome and Principe, Saudi Arabia, Slovenia,
Sri Lanka, Svalbard, Taiwan, Turks and Caicos Islands,
Uzbekistan, Vanuatu, Venezuela, Yemen

3 Afghanistan, Albania, Algeria, (The) Bahamas, Belize, 29 (12.3%) 29 (12.5%)
Brunei, Canada, (Rep. of the) Congo, Falkland Islands,
Iceland, Kenya, Lebanon, Liberia, Liechtenstein, Lithuania,
Maldives, Mauritania, Monaco, Morocco, Oman,
(Occupied) Palestinian Territory, Panama, Poland, Puerto Rico,
Saint Kitts and Nevis, Uganda, United States of America,
Uruguay, Western Sahara

4 Argentina, Bosnia and Herzegovina, Burma (Myanmar), 27 (11.4%) 22 (9.7%)
Cape Verde, Cayman Islands, Central African Republic, Colombia,
Costa Rica, Croatia, Faroe Islands, Georgia, Ireland,
(South) Korea, Luxembourg, Malta, Moldova, New Zealand,
Norway, Pitcairn Islands, Singapore, South Africa, Spain,
Sudan, Suriname, Tanzania, Ukraine, United Arab Emirates

5 (Macao SAR) China, Cocos Islands, Denmark, Djibouti, 16 (6.8%) 19 (7.9%)
Eritrea, Finland, Greenland, Italy, Kyrgyzstan, Montserrat,
Nicaragua, Papua New Guinea, Slovakia, Solomon Islands,
Togo, Turkmenistan

6 American Samoa, Bermuda, Bhutan, (Dem. Rep. of the) Congo, 17 (7.2%) 16 (6.7%)
Equatorial Guinea, France, Guernsey, Iran, Jordan, Laos,
Libya, Marshall Islands, Montenegro, Paraguay, Sierra Leone,
Thailand, United Kingdom

7 Bahrain, Bulgaria, (Hong Kong SAR) China, Comoros, Cyprus, 17 (7.2%) 14 (5.8%)
Dominica, El Salvador, Guyana, Honduras, Israel, (Isle of) Man,
Saint Barthelemy, Saint Helena, Saint Pierre and Miquelon,
Switzerland, Tajikistan, Turkey

8 Andorra, Antigua and Barbuda, Austria, Azerbaijan, Benin, 15 (6.4%) 12 (5.1%)
Burundi, Egypt, Ethiopia, Germany, Haiti, Holy See (Vatican City),
Northern Mariana Islands, Qatar, Seychelles, Vietnam

9 Belarus, Bolivia, Dominican Republic, Fiji, Grenada, 11 (4.5%) 11 (4.6%)
Guinea, Hungary, Jersey, Philippines, Somalia, Sweden
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Here is how the same data tracks Zipf’s law for the first twenty

values of n, with the parameters C ≈ 1.28×109 and α ≈ 1.03 (selected

by log-linear regression), again rounding to three significant figures:

n Country Population Zipf prediction Error

1 China 1,330,000,000 1,280,000,000 +4.1%

2 India 1,150,000,000 626,000,000 +83.5%

3 USA 304,000,000 412,000,000 −26.3%

4 Indonesia 238,000,000 307,000,000 −22.5%

5 Brazil 196,000,000 244,000,000 −19.4%

6 Pakistan 173,000,000 202,000,000 −14.4%

7 Bangladesh 154,000,000 172,000,000 −10.9%

8 Nigeria 146,000,000 150,000,000 −2.6%

9 Russia 141,000,000 133,000,000 +5.8%

10 Japan 128,000,000 120,000,000 +6.7%

11 Mexico 110,000,000 108,000,000 +1.7%

12 Philippines 96,100,000 98,900,000 −2.9%

13 Vietnam 86,100,000 91,100,000 −5.4%

14 Ethiopia 82,600,000 84,400,000 −2.1%

15 Germany 82,400,000 78,600,000 +4.8%

16 Egypt 81,700,000 73,500,000 +11.1%

17 Turkey 71,900,000 69,100,000 +4.1%

18 Congo 66,500,000 65,100,000 +2.2%

19 Iran 65,900,000 61,600,000 +6.9%

20 Thailand 65,500,000 58,400,000 +12.1%

As one sees, Zipf’s law is not particularly precise at the extreme

edge of the statistics (when n is very small), but becomes reasonably

accurate (given the small sample size, and given that we are fitting

twenty data points using only two parameters) for moderate sizes of

n.

This data set has too few scales in base 10 to illustrate the Pareto

distribution effectively - over half of the country populations are either

seven or eight digits in that base. But if we instead work in base 2,

then country populations range in a decent number of scales (the

majority of countries have population between 223 and 232), and we

begin to see the law emerge, where m is now the number of digits in

binary, the best-fit parameters are α ≈ 1.18 and c ≈ 1.7× 226/235:
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m Countries with m-binary-digit populations Number Pareto

31 China, India 2 1

30 2 2

29 United States of America 3 5

28 Indonesia, Brazil, Pakistan, Bangladesh, Nigeria, Russia 9 8

27 Japan, Mexico, Philippines, Vietnam, Ethiopia, Germany 17 15

, Egypt, Turkey

26 (Dem. Rep. of the) Congo, Iran, Thailand, France, 36 27

United Kingdom, Italy, South Africa, (South) Korea,

Burma (Myanmar), Ukraine, Colombia, Spain, Argentina,

Sudan, Tanzania, Poland, Kenya, Morocco, Algeria

25 Canada, Afghanistan, Uganda, Nepal, Peru, Iraq, 58 49

Saudi Arabia, Uzbekistan, Venezuela, Malaysia, (North) Korea,

Ghana, Yemen, Taiwan, Romania, Mozambique, Sri Lanka,

Australia, Cote d’Ivoire, Madagascar, Syria, Cameroon

24 Netherlands, Chile, Kazakhstan, Burkina Faso, 91 88

Cambodia, Malawi, Ecuador, Niger, Guatemala, Senegal,

Angola, Mali, Zambia, Cuba, Zimbabwe, Greece, Portugal,

Belgium, Tunisia, Czech Republic, Rwanda, Serbia, Chad,

Hungary, Guinea, Belarus, Somalia, Dominican Republic,

Bolivia, Sweden, Haiti, Burundi, Benin

23 Austria, Azerbaijan, Honduras, Switzerland, 123 159

Bulgaria, Tajikistan, Israel, El Salvador,

(Hong Kong SAR) China, Paraguay, Laos, Sierra Leone,

Jordan, Libya, Papua New Guinea, Togo, Nicaragua,

Eritrea, Denmark, Slovakia, Kyrgyzstan, Finland,

Turkmenistan, Norway, Georgia, United Arab Emirates,

Singapore, Bosnia and Herzegovina, Croatia,

Central African Republic, Moldova, Costa Rica

Thus, with each new scale, the number of countries introduced

increases by a factor of a little less than 2, on the average. This

approximate doubling of countries with each new scale begins to falter

at about the population 223 (i.e. at around 4 million), for the simple

reason that one has begun to run out of countries. (Note that the

median-population country in this set, Singapore, has a population

with 23 binary digits.)
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These laws are not merely interesting statistical curiosities; for

instance, Benford’s law is often used to help detect fraudulent sta-

tistics (such as those arising from accounting fraud), as many such

statistics are invented by choosing digits at random, and will there-

fore deviate significantly from Benford’s law. (This is nicely discussed

in [Ma1999].) In a somewhat analogous spirit, Zipf’s law and the

Pareto distribution can be used to mathematically test various models

of real-world systems (e.g. formation of astronomical objects, accu-

mulation of wealth, population growth of countries, etc.), without

necessarily having to fit all the parameters of that model with the

actual data.

Being empirically observed phenomena rather than abstract math-

ematical facts, Benford’s law, Zipf’s law, and the Pareto distribution

cannot be “proved” the same way a mathematical theorem can be

proved. However, one can still support these laws mathematically in

a number of ways, for instance showing how these laws are compatible

with each other, and with other plausible hypotheses on the source

of the data. In this post I would like to describe a number of ways

(both technical and non-technical) in which one can do this; these ar-

guments do not fully explain these laws (in particular, the empirical

fact that the exponent α in Zipf’s law or the Pareto distribution is

often close to 1 is still quite a mysterious phenomenon), and do not

always have the same universal range of applicability as these laws

seem to have, but I hope that they do demonstrate that these laws

are not completely arbitrary, and ought to have a satisfactory basis

of mathematical support.

3.7.1. Scale invariance. One consistency check that is enjoyed by

all of these laws is that of scale invariance - they are invariant under

rescalings of the data (for instance, by changing the units).

For example, suppose for sake of argument that the country pop-

ulations X of the world in 2007 obey Benford’s law, thus for instance

about 30.7% of the countries have population with first digit 1, 17.6%

have population with first digit 2, and so forth. Now, imagine that

several decades in the future, say in 2067, all of the countries in the

world double their population, from X to a new population X̃ := 2X.

(This makes the somewhat implausible assumption that growth rates
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are uniform across all countries; I will talk about what happens when

one omits this hypothesis later.) To further simplify the experiment,

suppose that no countries are created or dissolved during this time

period. What happens to Benford’s law when passing from X to X̃?

The key observation here, of course, is that the first digit of X is

linked to the first digit of X̃ = 2X. If, for instance, the first digit of

X is 1, then the first digit of X̃ is either 2 or 3; conversely, if the first

digit of X̃ is 2 or 3, then the first digit of X is 1. As a consequence,

the proportion of X’s with first digit 1 is equal to the proportion of

X̃’s with first digit 2, plus the proportion of X̃’s with first digit 3.

This is consistent with Benford’s law holding for both X and X̃, since

log10

2

1
= log10

3

2
+ log10

4

3
(= log10

4

2
)

(or numerically, 30.7% = 17.6% + 12.5% after rounding). Indeed one

can check the other digit ranges also and that conclude that Benford’s

law forX is compatible with Benford’s law for X̃; to pick a contrasting

example, a uniformly distributed model in which each digit from 1 to

9 is the first digit of X occurs with probability 1/9 totally fails to be

preserved under doubling.

One can be even more precise. Observe (through telescoping

series) that Benford’s law implies that

(3.32) P(α10n ≤ X < β10n for some integer n) = log10

β

α

for all integers 1 ≤ α ≤ β < 10, where the left-hand side denotes

the proportion of data for which X lies between α10n and β10n for

some integer n. Suppose now that we generalise Benford’s law to the

continuous Benford’s law, which asserts that (3.32) is true for all real

numbers 1 ≤ α ≤ β < 10. Then it is not hard to show that a statistic

X obeys the continuous Benford’s law if and only if its dilate X̃ = 2X

does, and similarly with 2 replaced by any other constant growth

factor. (This is easiest seen by observing that (3.32) is equivalent to

asserting that the fractional part of log10X is uniformly distributed.)

In fact, the continuous Benford law is the only distribution for the

quantities on the left-hand side of (3.32) with this scale-invariance

property; this fact is a special case of the general fact that Haar

measures are unique (see Section 1.12).
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It is also easy to see that Zipf’s law and the Pareto distribu-

tion also enjoy this sort of scale-invariance property, as long as one

generalises the Pareto distribution

(3.33) P(X ≥ 10m) = c10−m/α

from integer m to real m, just as with Benford’s law. Once one does

that, one can phrase the Pareto distribution law independently of any

base as

(3.34) P(X ≥ x) = cx−1/α

for any x much larger than the median value of X, at which point the

scale-invariance is easily seen.

One may object that the above thought-experiment was too ide-

alised, because it assumed uniform growth rates for all the statistics

at once. What happens if there are non-uniform growth rates? To

keep the computations simple, let us consider the following toy model,

where we take the same 2007 population statistics X as before, and

assume that half of the countries (the “high-growth” countries) will

experience a population doubling by 2067, while the other half (the

“zero-growth” countries) will keep their population constant, thus the

2067 population statistic X̃ is equal to 2X half the time and X half

the time. (We will assume that our sample sizes are large enough that

the law of large numbers kicks in, and we will therefore ignore issues

such as what happens to this “half the time” if the number of samples

is odd.) Furthermore, we make the plausible but crucial assumption

that the event that a country is a high-growth or a zero-growth coun-

try is independent of the first digit of the 2007 population; thus, for

instance, a country whose population begins with 3 is assumed to be

just as likely to be high-growth as one whose population begins with

7.

Now let’s have a look again at the proportion of countries whose

2067 population X̃ begins with either 2 or 3. There are exactly two

ways in which a country can fall into this category: either it is a zero-

growth country whose 2007 population X also began with either 2 or

3, or ot was a high-growth country whose population in 2007 began

with 1. Since all countries have a probability 1/2 of being high-

growth regardless of the first digit of their population, we conclude
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the identity

(3.35) P(X̃ has first digit 2, 3) =
1

2
P(X has first digit 2, 3)

+
1

2
P(X has first digit 1)

which is once again compatible with Benford’s law for X̃ since

log10

4

2
=

1

2
log10

4

2
+

1

2
log

2

1
.

More generally, it is not hard to show that if X obeys the continuous

Benford’s law (3.32), and one multiplies X by some positive multi-

plier Y which is independent of the first digit of X (and, a fortiori,

is independent of the fractional part of log10X), one obtains another

quantity X̃ = XY which also obeys the continuous Benford’s law.

(Indeed, we have already seen this to be the case when Y is a deter-

ministic constant, and the case when Y is random then follows simply

by conditioning Y to be fixed.)

In particular, we see an absorptive property of Benford’s law: if

X obeys Benford’s law, and Y is any positive statistic independent

of X, then the product X̃ = XY also obeys Benford’s law - even

if Y did not obey this law. Thus, if a statistic is the product of

many independent factors, then it only requires a single factor to

obey Benford’s law in order for the whole product to obey the law

also. For instance, the population of a country is the product of

its area and its population density. Assuming that the population

density of a country is independent of the area of that country (which

is not a completely reasonable assumption, but let us take it for the

sake of argument), then we see that Benford’s law for the population

would follow if just one of the area or population density obeyed this

law. It is also clear that Benford’s law is the only distribution with

this absorptive property (if there was another law with this property,

what would happen if one multiplied a statistic with that law with

an independent statistic with Benford’s law?). Thus we begin to get

a glimpse as to why Benford’s law is universal for quantities which

are the product of many separate factors, in a manner that no other

law could be.
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As an example: for any given number N , the uniform distribution

from 1 to N does not obey Benford’s law; for instance, if one picks a

random number from 1 to 999, 999 then each digit from 1 to 9 appears

as the first digit with an equal probability of 1/9 each. However, if N

is not fixed, but instead obeys Benford’s law, then a random number

selected from 1 to N also obeys Benford’s law (ignoring for now the

distinction between continuous and discrete distributions), as it can

be viewed as the product of N with an independent random number

selected from between 0 and 1.

Actually, one can say something even stronger than the absorp-

tion property. Suppose that the continuous Benford’s law (3.32) for a

statistic X did not hold exactly, but instead held with some accuracy

ε > 0, thus

log10

β

α
− ε ≤ P(α10n ≤ X < β10n for some integer n)

≤ log10

β

α
+ ε

(3.36)

for all 1 ≤ α ≤ β < 10. Then it is not hard to see that any dilated

statistic, such as X̃ = 2X, or more generally X̃ = XY for any fixed

deterministic Y , also obeys (3.36) with exactly the same accuracy ε.

But now suppose one uses a variable multiplier; for instance, suppose

one uses the model discussed earlier in which X̃ is equal to 2X half

the time and X half the time. Then the relationship between the

distribution of the first digit of X̃ and the first digit of X is given by

formulae such as (3.35). Now, in the right-hand side of (3.35), each of

the two terms P(X has first digit 2, 3) and P(X has first digit 1) dif-

fers from the Benford’s law predictions of log10
4
2 and log10

2
1 respec-

tively by at most ε. Since the left-hand side of (3.35) is the average

of these two terms, it also differs from the Benford law prediction by

at most ε. But the averaging opens up an opportunity for cancelling;

for instance, an overestimate of +ε for P(X has first digit 2, 3) could

cancel an underestimate of −ε for P(X has first digit 1) to produce

a spot-on prediction for X̃. Thus we see that variable multipliers

(or variable growth rates) not only preserve Benford’s law, but in

fact stabilise it by averaging out the errors. In fact, if one started

with a distribution which did not initially obey Benford’s law, and

then started applying some variable (and independent) growth rates
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to the various samples in the distribution, then under reasonable as-

sumptions one can show that the resulting distribution will converge

to Benford’s law over time. This helps explain the universality of

Benford’s law for statistics such as populations, for which the inde-

pendent variable growth law is not so unreasonable (at least, until

the population hits some maximum capacity threshold).

Note that the independence property is crucial; if for instance

population growth always slowed down for some inexplicable reason

to a crawl whenever the first digit of the population was 6, then there

would be a noticeable deviation from Benford’s law, particularly in

digits 6 and 7, due to this growth bottleneck. But this is not a par-

ticularly plausible scenario (being somewhat analogous to Maxwell’s

demon in thermodynamics).

The above analysis can also be carried over to some extent to the

Pareto distribution and Zipf’s law; if a statistic X obeys these laws

approximately, then after multiplying by an independent variable Y ,

the product X̃ = XY will obey the same laws with equal or higher

accuracy, so long as Y is small compared to the number of scales that

X typically ranges over. (One needs a restriction such as this be-

cause the Pareto distribution and Zipf’s law must break down below

the median. Also, Zipf’s law loses its stability at the very extreme

end of the distribution, because there are no longer enough samples

for the law of large numbers to kick in; this is consistent with the em-

pirical observation that Zipf’s law tends to break down in extremis.)

These laws are also stable under other multiplicative processes, for

instance if some fraction of the samples in X spontaneously split into

two smaller pieces, or conversely if two samples in X spontaneously

merge into one; as before, the key is that the occurrence of these

events should be independent of the actual size of the objects being

split. If one considers a generalisation of the Pareto or Zipf law in

which the exponent α is not fixed, but varies with n or k, then the

effect of these sorts of multiplicative changes is to blur and average to-

gether the various values of α, thus “flattening” the α curve over time

and making the distribution approach Zipf’s law and/or the Pareto

distribution. This helps explain why α eventually becomes constant;
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however, I do not have a good explanation as to why α is often close

to 1.

3.7.2. Compatibility between laws. Another mathematical line

of support for Benford’s law, Zipf’s law, and the Pareto distribution

are that the laws are highly compatible with each other. For instance,

Zipf’s law and the Pareto distribution are formally equivalent: if there

are N samples of X, then applying (3.34) with x equal to the nth

largest value Xn of X gives

n

N
= P(X ≥ Xn) = cX−1/α

n

which implies Zipf’s law Xn = Cn−α with C := (Nc)α. Conversely

one can deduce the Pareto distribution from Zipf’s law. These de-

ductions are only formal in nature, because the Pareto distribution

can only hold exactly for continuous distributions, whereas Zipf’s law

only makes sense for discrete distributions, but one can generate more

rigorous variants of these deductions without much difficulty.

In some literature, Zipf’s law is applied primarily near the ex-

treme edge of the distribution (e.g. the top 0.1% of the sample space),

whereas the Pareto distribution in regions closer to the bulk (e.g. be-

tween the top 0.1% and and top 50%). But this is mostly a difference

of degree rather than of kind, though in some cases (such as with

the example of the 2007 country populations data set) the exponent

α for the Pareto distribtion in the bulk can differ slightly from the

exponent for Zipf’s law at the extreme edge.

The relationship between Zipf’s law or the Pareto distribution

and Benford’s law is more subtle. For instance Benford’s law pre-

dicts that the proportion of X with initial digit 1 should equal the

proportion of X with initial digit 2 or 3. But if one formally uses

the Pareto distribution (3.34) to compare those X between 10m and

2 × 10m, and those X between 2 × 10m and 4 × 10m, it seems that

the former is larger by a factor of 21/α, which upon summing by m

appears inconsistent with Benford’s law (unless α is extremely large).

A similar inconsistency is revealed if one uses Zipf’s law instead.

However, the fallacy here is that the Pareto distribution (or Zipf’s

law) does not apply on the entire range of X, but only on the upper
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tail region when X is significantly higher than the median; it is a law

for the outliers of X only. In contrast, Benford’s law concerns the

behaviour of typical values of X; the behaviour of the top 0.1% is of

negligible significance to Benford’s law, though it is of prime impor-

tance for Zipf’s law and the Pareto distribution. Thus the two laws

describe different components of the distribution and thus comple-

ment each other. Roughly speaking, Benford’s law asserts that the

bulk distribution of log10X is locally uniform at unit scales, while the

Pareto distribution (or Zipf’s law) asserts that the tail distribution of

log10X decays exponentially. Note that Benford’s law only describes

the fine-scale behaviour of the bulk distribution; the coarse-scale dis-

tribution can be a variety of distributions (e.g. log-gaussian).

Notes. This article first appeared at terrytao.wordpress.com/2009/07/03.

Thanks to Kevin O’Bryant for corrections. Several other derivations

of Benford’s law and the Pareto distribution, such as those relying on

max-entropy principles, were also discussed in the comments.

3.8. Selberg’s limit theorem for the Riemann
zeta function on the critical line

The Riemann zeta function ζ(s), defined for Re(s) > 1 by

(3.37) ζ(s) :=

∞∑
n=1

1

ns

and then continued meromorphically to other values of s by analytic

continuation, is a fundamentally important function in analytic num-

ber theory, as it is connected to the primes p = 2, 3, 5, . . . via the

Euler product formula

(3.38) ζ(s) =
∏
p

(1− 1

ps
)−1

(for Re(s) > 1, at least), where p ranges over primes. (The equiva-

lence between (3.37) and (3.38) is essentially the generating function

version of the fundamental theorem of arithmetic.) The function ζ

has a pole at 1 and a number of zeroes ρ. A formal application of the
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factor theorem gives

(3.39) ζ(s) =
1

s− 1

∏
ρ

(s− ρ)× . . .

where ρ ranges over zeroes of ζ, and we will be vague about what the

. . . factor is, how to make sense of the infinite product, and exactly

which zeroes of ζ are involved in the product. Equating (3.38) and

(3.39) and taking logarithms gives the formal identity

(3.40) − log ζ(s) =
∑
p

log(1− 1

ps
) = log(s−1)−

∑
ρ

log(s−ρ)+ . . . ;

using the Taylor expansion

(3.41) log(1− 1

ps
) = − 1

ps
− 1

2p2s
− 1

3p3s
− . . .

and differentiating the above identity in s yields the formal identity

(3.42) −ζ
′(s)

ζ(s)
=
∑
n

Λ(n)

ns
=

1

s− 1
−
∑
ρ

1

s− ρ
+ . . .

where Λ(n) is the von Mangoldt function, defined to be log p when n

is a power of a prime p, and zero otherwise. Thus we see that the

behaviour of the primes (as encoded by the von Mangoldt function)

is intimately tied to the distribution of the zeroes ρ. For instance, if

we knew that the zeroes were far away from the axis Re(s) = 1, then

we would heuristically have∑
n

Λ(n)

n1+it
≈ 1

it

for real t. On the other hand, the integral test suggests that∑
n

1

n1+it
≈ 1

it

and thus we see that Λ(n)
n and 1

n have essentially the same (multi-

plicative) Fourier transform:∑
n

Λ(n)

n1+it
≈
∑
n

1

n1+it
.
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Inverting the Fourier transform (or performing a contour integral

closely related to the inverse Fourier transform), one is led to the

prime number theorem ∑
n≤x

Λ(n) ≈
∑
n≤x

1.

In fact, the standard proof of the prime number theorem basically

proceeds by making all of the above formal arguments precise and

rigorous.

Unfortunately, we don’t know as much about the zeroes ρ of the

zeta function (and hence, about the ζ function itself) as we would

like. The Riemann hypothesis (RH) asserts that all the zeroes (ex-

cept for the “trivial” zeroes at the negative even numbers) lie on the

critical line Re(s) = 1/2; this hypothesis would make the error terms

in the above proof of the prime number theorem significantly more

accurate. Furthermore, the stronger GUE hypothesis asserts in addi-

tion to RH that the local distribution of these zeroes on the critical

line should behave like the local distribution of the eigenvalues of a

random matrix drawn from the gaussian unitary ensemble (GUE). I

will not give a precise formulation of this hypothesis here, except to

say that the adjective “local” in the context of distribution of zeroes

ρ means something like “at scale O(1/ log T ) when Im(s) = O(T )”.

Nevertheless, we do know some reasonably non-trivial facts about

the zeroes ρ and the zeta function ζ, either unconditionally, or assum-

ing RH (or GUE). Firstly, there are no zeroes for Re(s) > 1 (as one

can already see from the convergence of the Euler product (3.38) in

this case) or for Re(s) = 1 (this is trickier, relying on (3.42) and the

elementary observation that

Re(3
Λ(n)

nσ
+ 4

Λ(n)

nσ+it
+

Λ(n)

nσ+2it
) = 2

Λ(n)

nσ
(1 + cos(t log n))2

is non-negative for σ > 1 and t ∈ R); from the functional equation

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1− s)/2)ζ(1− s)

(which can be viewed as a consequence of the Poisson summation

formula, see e.g. Section 1.5 of Poincaré’s Legacies, Vol. I ) we know

that there are no zeroes for Re(s) ≤ 0 either (except for the trivial

zeroes at negative even integers, corresponding to the poles of the
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Gamma function). Thus all the non-trivial zeroes lie in the critical

strip 0 < Re(s) < 1.

We also know that there are infinitely many non-trivial zeroes,

and can approximately count how many zeroes there are in any large

bounded region of the critical strip. For instance, for large T , the

number of zeroes ρ in this strip with Im(ρ) = T + O(1) is O(log T ).

This can be seen by applying (3.42) to s = 2+ iT (say); the trivial ze-

roes at the negative integers end up giving a contribution of O(log T )

to this sum (this is a heavily disguised variant of Stirling’s formula,

as one can view the trivial zeroes as essentially being poles of the

Gamma function), while the 1
s−1 and . . . terms end up being negli-

gible (of size O(1)), while each non-trivial zero ρ contributes a term

which has a non-negative real part, and furthermore has size compa-

rable to 1 if Im(ρ) = T + O(1). (Here I am glossing over a technical

renormalisation needed to make the infinite series in (3.42) converge

properly.) Meanwhile, the left-hand side of (3.42) is absolutely con-

vergent for s = 2+iT and of size O(1), and the claim follows. A more

refined version of this argument shows that the number of non-trivial

zeroes with 0 ≤ Im(ρ) ≤ T is T
2π log T

2π −
T
2π + O(log T ), but we will

not need this more precise formula here. (A fair fraction - at least

40%, in fact - of these zeroes are known to lie on the critical line; see

[Co1989].)

Another thing that we happen to know is how the magnitude

|ζ(1/2 + it)| of the zeta function is distributed as t → ∞; it turns

out to be log-normally distributed with log-variance about 1
2 log log t.

More precisely, we have the following result of Selberg:

Theorem 3.8.1. Let T be a large number, and let t be chosen uni-

formly at random from between T and 2T (say). Then the distribution

of 1√
1
2 log log T

log |ζ(1/2 + it)| converges ( in distribution) to the nor-

mal distribution N(0, 1).

To put it more informally, log |ζ(1/2+it)| behaves like
√

1
2 log log t×

N(0, 1) plus lower order terms for “typical” large values of t. (Zeroes

ρ of ζ are, of course, certainly not typical, but one can show that one

can usually stay away from these zeroes.) In fact, Selberg showed a

slightly more precise result, namely that for any fixed k ≥ 1, the kth
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moment of 1√
1
2 log log T

log |ζ(1/2 + it)| converges to the kth moment

of N(0, 1).

Remarkably, Selberg’s result does not need RH or GUE, though it

is certainly consistent with such hypotheses. (For instance, the deter-

minant of a GUE matrix asymptotically obeys a remarkably similar

log-normal law to that given by Selberg’s theorem.) Indeed, the net

effect of these hypotheses only affects some error terms in log |ζ(1/2+

it)| of magnitude O(1), and are thus asymptotically negligible com-

pared to the main term, which has magnitude about O(
√

log log T ).

So Selberg’s result, while very pretty, manages to finesse the question

of what the zeroes ρ of ζ are actually doing - he makes the primes do

most of the work, rather than the zeroes.

Selberg never actually published the above result, but it is repro-

duced in a number of places (e.g. in [Jo1986] or [La1996]). As with

many other results in analytic number theory, the actual details of

the proof can get somewhat technical; but I would like to record here

(partly for my own benefit) an informal sketch of some of the main

ideas in the argument.

3.8.1. Informal overview of argument. The first step is to get a

usable (approximate) formula for log |ζ(s)|. On the one hand, from

the second part of (3.40) one has

(3.43) − log |ζ(s)| = log |s− 1| −
∑
ρ

log |s− ρ|+ . . . .

This formula turns out not to be directly useful because it requires

one to know much more about the distribution of the zeroes ρ than

we currently possess. On the other hand, from the first part of (3.40)

and (3.41) one also has the formula

(3.44) log |ζ(s)| =
∑
p

Re
1

ps
+ . . . .

This formula also turns out not to be directly useful, because it re-

quires one to know much more about the distribution of the primes

p than we currently possess.

However, it turns out that we can “split the difference” between

(3.43), (3.44), and get a formula for log |ζ(s)| which involves some
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zeroes ρ and some primes p, in a manner that one can control them

both. Roughly speaking, the formula looks like this8:

(3.45)

log |ζ(s)| =
∑
p≤T ε

Re
1

ps
+O(

∑
ρ=s+O(1/ log T )

1 + | log
|s− ρ|

1/ log T
|) + . . .

for s = 1/2 + it and t = O(T ), where ε is a small parameter that we

can choose (e.g. ε = 0.01); thus we have localised the prime sum to

the primes p of size O(TO(1)), and the zero sum to those zeroes at a

distance O(1/ log T ) from s.

It turns out that all of these expressions can be controlled. The

error term coming from the zeroes (as well as the . . . error term)

turn out to be of size O(1) for most values of t, so are a lower order

term. (As mentioned before, it is this error term that would be better

controlled if one had RH or GUE, but this is not necessary to establish

Selberg’s result.) The main term is the one coming from the primes.

We can heuristically argue as follows. The expression Xp :=

Re 1
ps = 1√

p cos(t log p), for t ranging between T and 2T , is a random

variable of mean zero and variance approximately 1
2p (if p ≤ T ε and

ε is small). Making the heuristic assumption that the Xp behave as if

they were independent, the central limit theorem then suggests that

the sum
∑
p≤T ε Xp should behave like a normal distribution of mean

zero and variance
∑
p≤T ε

1
2p . But the claim now follows from the

classical estimate ∑
p≤x

1

p
= log log x+O(1)

(which follows from the prime number theorem, but can also be de-

duced from the formula (3.44) for s = 1 +O(1/ log x), using the fact

that ζ has a simple pole at 1).

To summarise, there are three main tasks to establish Selberg’s

theorem:

(1) Establish a formula along the lines of (3.45);

8This is an oversimplification; there is a “tail” coming from those zeroes that are
more distant from s than O(1/ log T ), and also one has to smooth out the sum in p a
little bit, and allow the implied constants in the O() notation to depend on ε, but let
us ignore these technical issues here, as well as the issue of what exactly is hiding in
the . . . error.
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(2) Show that the error terms arising from zeroes are O(1) on

the average;

(3) Justify the central limit calculation for
∑
pXp.

I’ll now briefly talk (informally) about each of the three steps in

turn.

3.8.2. The explicit formula. To get a formula such as (3.45), the

basic strategy is to take a suitable average of the formula (3.43) and

the formula (3.44). Traditionally, this is done by contour integration;

however, I prefer (perhaps idiosyncratically) to take a more Fourier-

analytic perspective, using convolutions rather than contour integrals.

(The two approaches are largely equivalent, though.) The basic point

is that the imaginary part Im(ρ) of the zeroes inhabits the same space

as the imaginary part t = Im(s) of the s variable, which in turn is the

Fourier analytic dual of the variable that the logarithm log p of the

primes p live in; this can be seen by writing (3.43), (3.44) in a more

Fourier-like manner9 as∑
ρ

log |1/2 + it− ρ|+ . . . = Re
∑
p

1
√
p
e−it log p + . . . .

The uncertainty principle then predicts that localising log p to the

scale O(log T ε) should result in blurring out the zeroes ρ at scale

O(1/ log T ε), which is where (3.45) is going to come from.

Let’s see how this idea works in practice. We consider a convo-

lution of the form

(3.46)

∫
R

log |ζ(s+
iy

log T ε
)|ψ(y) dy

where ψ is some bump function with total mass 1; informally, this is

log |ζ(s)| averaged out in the vertical direction at scale O(1/ log T ε) =

O(1/ log T ) (we allow implied constants to depend on ε).

We can express (3.46) in two different ways, one using (3.43),

and one using (3.44). Let’s look at (3.43) first. If one modifies s by

O(1/ log T ), then the quantity log |s−ρ| doesn’t fluctuate very much,

9These sorts of Fourier-analytic connections are often summarised by the slogan
“the zeroes of the zeta function are the music of the primes”.
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unless ρ is within O(1/ log T ) of s, in which case it can move by about

O(1 + log |s−ρ|
1/ log T ). As a consequence, we see that∫

R

log |s+
iy

log T ε
− ρ|ψ(y) dy ≈ log |s− ρ|

when |ρ− s| � 1/ log T , and∫
R

log |s+
iy

log T ε
− ρ|ψ(y) dy = log |s− ρ|+O(1 + log

|s− ρ|
1/ log T

).

The quantity log |s−1| also doesn’t move very much by this shift (we

are assuming the imaginary part of s to be large). Inserting these

facts into (3.43), we thus see that (3.46) is (heuristically) equal to

(3.47) log |ζ(s)|+
∑

ρ=s+O(1/ log T )

O(1 + log
|s− ρ|

1/ log T
) + . . . .

Now let’s compute (3.46) using (3.44) instead. Writing s = 1/2+

it, we express (3.46) as∑
p

Re
1

ps

∫
R

e−iy log p/ log T εψ(y) dy + . . . .

Introducing the Fourier transform ψ̂(ξ) :=
∫
R
e−iyξψ(y) dy of ψ, one

can write this as ∑
p

Re
1

ps
ψ̂(log p/ log T ε) + . . . .

Now we took ψ to be a bump function, so its Fourier transform should

also be like a bump function (or perhaps a Schwartz function). As a

first approximation, one can thus think of ψ̂ as a smoothed truncation

to the region {ξ : ξ = O(1)}, thus the ψ̂(log p/ log T ε) weight is

morally restricting p to the region p ≤ T ε. Thus we (morally) can

express (3.46) as ∑
p≤T ε

Re
1

ps
+ . . . .

Comparing this with the other formula (3.47) we have for (3.46), we

obtain (3.45) as required (formally, at least).
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3.8.3. Controlling the zeroes. Next, we want to show that the

quantity ∑
ρ=s+O(1/ log T )

1 + | log
|s− ρ|

1/ log T
|

is O(1) on the average, when s = 1/2 + it and t is chosen uniformly

at random from T to 2T .

For this, we can use the first moment method. For each zero

ρ, let Iρ be the random variable which equals 1 + | log |s−ρ|
1/ log T | when

ρ = s+O(1/ log T ) and zero otherwise, thus we are trying to control

the expectation of
∑
ρ Iρ. The only zeroes which are relevant are

those which are of size O(T ), and we know that there are O(T log T )

of these (indeed, we have an even more precise formula, as remarked

earlier). On the other hand, a randomly chosen s has a probability of

O(1/T log T ) of falling within O(1/ log T ) of ρ, and so we expect each

Iρ to have an expected value of O(1/T log T ). (The logarithmic factor

in the definition of Iρ turns out not to be an issue, basically because

log x is locally integrable.) By linearity of expectation, we conclude

that
∑
ρ Iρ has expectation O(T log T ) × O(1/T log T ) = O(1), and

the claim follows.

Remark 3.8.2. One can actually do a bit better than this, showing

that higher order moments of
∑
ρ Iρ are also O(1), by using a variant

of (3.45) together with the moment bounds in the next section; but

we will not need that refinement here.

3.8.4. The central limit theorem. Finally, we have to show that∑
p≤T ε Xp behaves like a normal distribution, as predicted by the

central limit theorem heuristic. The key is to show that the Xp behave

“as if” they were jointly independent. In particular, as the Xp all have

mean zero, one would like to show that products such as

(3.48) Xp1 . . . Xpk

have a negligible expectation as long as at least one of the primes

in p1, . . . , pk occurs at most once. Once one has this (as well as a

similar formula for the case when all primes appear at least twice),

one can then do a standard moment computation of the kth moment

(
∑
p≤T ε Xp)

k and verify that this moment then matches the answer
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predicted by the central limit theorem, which by standard arguments

(involving the Weierstrass approximation theorem) is enough to es-

tablish the distributional law. Note that to get close to the normal

distribution by a fixed amount of accuracy, it suffices to control a

bounded number of moments, which ultimately means that we can

treat k as being bounded, k = O(1).

If we expand out the product (3.48), we get

1
√
p1 . . .

√
pk

cos(t log p1) . . . cos(t log pk).

Using the product formula for cosines (or Euler’s formula), the prod-

uct of cosines here can be expressed as a linear combination of cosines

cos(tξ), where the frequency ξ takes the form

ξ = ± log p1 ± log p2 . . .± log pk.

Thus, ξ is the logarithm of a rational number, whose numerator and

denominator are the product of some of the p1, . . . , pk. Since all the

pj are at most T ε, we see that the numerator and denominator here

are at most T kε.

Now for the punchline. If there is a prime in p1, . . . , pk that

appears only once, then the numerator and denominator cannot fully

cancel, by the fundamental theorem of arithmetic. Thus ξ cannot be 0.

Furthermore, since the denominator is at most T kε, we see that ξ must

stay away from 0 by a distance of about 1/T kε or more, and so cos(tξ)

has a wavelength of at most O(T kε). On the other hand, t ranges

between T and 2T . If k is fixed and ε is small enough (much smaller

than 1/k), we thus see that the average value of cos(tξ) between T

and 2T is close to zero, and so (3.48) does indeed have negligible

expectation as claimed. (A similar argument lets one compute the

expectation of (3.48) when all primes appear at least twice.)

Remark 3.8.3. A famous theorem of Erdös and Kac[ErKa1940]

gives a normal distribution for the number of prime factors of a large

number n, with mean log log n and variance log log n. One can view

Selberg’s theorem as a sort of Fourier-analytic variant of the Erdös-

Kac theorem.

Remark 3.8.4. The Fourier-like correspondence between zeroes of

the zeta function and primes can be used to convert statements about
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zeroes, such as the Riemann hypothesis and the GUE hypothesis,

into equivalent statements about primes. For instance, the Riemann

hypothesis is equivalent to having the square root error term∑
x≤n≤x+y

Λ(n) = y +Oε(y
1/2+ε)

in the prime number theorem holding asymptotically as x → ∞ for

all ε > 0 and all intervals [x, x+ y] which are large in the sense that

y is comparable to x. Meanwhile, the pair correlation conjecture (the

simplest component of the GUE hypothesis) is equivalent (on RH)

to the square root error term holding (with the expected variance)

for all ε > 0 and almost all intervals [x, x + y] which are short in

the sense that y = xθ for some small (fixed) θ > 0. (This is a rough

statement; a more precise formulation can be found in [GoMo1987].)

It seems to me that reformulation of the full GUE hypothesis in terms

of primes should be similar, but would assert that the error term in the

prime number theorem (as well as variants of this theorem for almost

primes) in short intervals enjoys the expected normal distribution; I

don’t know of a precise formulation of this assertion, but calculations

in this direction lie in [BoKe1996].)

Notes. This article first appeared at terrytao.wordpress.com/2009/07/12.

Thanks to anonymous commenters for corrections.

Emmanuel Kowalski discusses the relationship between Selberg’s

limit theorem and the Erdös-Kac theorem further at

http://blogs.ethz.ch/kowalski/2009/02/28/a-beautiful-analogy-2/

3.9. P = NP , relativisation, and multiple choice
exams

The most fundamental unsolved problem in complexity theory is un-

doubtedly the P=NP problem, which asks (roughly speaking) whether

a problem which can be solved by a non-deterministic polynomial-

time (NP) algorithm, can also be solved by a deterministic polynomial-

time (P) algorithm. The general belief is that P 6= NP , i.e. there

exist problems which can be solved by non-deterministic polynomial-

time algorithms but not by deterministic polynomial-time algorithms.
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One reason why the P 6= NP question is so difficult to resolve is

that a certain generalisation of this question has an affirmative answer

in some cases, and a negative answer in other cases. More precisely,

if we give all the algorithms access to an oracle, then for one choice A

of this oracle, all the problems that are solvable by non-deterministic

polynomial-time algorithms that calls A (NPA), can also be solved

by a deterministic polynomial-time algorithm algorithm that calls A

(PA), thus PA = NPA; but for another choice B of this oracle,

there exist problems solvable by non-deterministic polynomial-time

algorithms that call B, which cannot be solved by a deterministic

polynomial-time algorithm that calls B, thus PB 6= NPB . One

particular consequence of this result (which is due to Baker, Gill,

and Solovay [BaGiSo1975]) is that there cannot be any relativisable

proof of either P = NP or P 6= NP , where “relativisable” means

that the proof would also work without any changes in the presence

of an oracle.

The Baker-Gill-Solovay result was quite surprising, but the idea

of the proof turns out to be rather simple. To get an oracle A such

that PA = NPA, one basically sets A to be a powerful simulator that

can simulate non-deterministic machines (and, furthermore, can also

simulate itself ); it turns out that any PSPACE-complete oracle would

suffice for this task. To get an oracle B for which PB 6= NPB , one

has to be a bit sneakier, setting B to be a query device for a sparse

set of random (or high-complexity) strings, which are too complex to

be guessed at by any deterministic polynomial-time algorithm.

Unfortunately, the simple idea of the proof can be obscured by

various technical details (e.g. using Turing machines to define P

and NP precisely), which require a certain amount of time to prop-

erly absorb. To help myself try to understand this result better, I

have decided to give a sort of “allegory” of the proof, based around a

(rather contrived) story about various students trying to pass a multi-

ple choice test, which avoids all the technical details but still conveys

the basic ideas of the argument.

3.9.1. P and NP students. In this story, two students, named P

and NP (and which for sake of grammar, I will arbitrarily assume to

be male), are preparing for their final exam in a maths course, which
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will consist of a long, tedious sequence of multiple-choice questions,

or more precisely true-false questions. The exam has a reasonable

but fixed time limit (e.g. three hours), and unlimited scratch paper

is available during the exam. Students are allowed to bring one small

index card into the exam. Other than scratch paper, an index card,

and a pencil, no other materials are allowed. Students cannot leave

questions blank; they must answer each question true or false. The

professor for this course is dull and predictable; everyone knows in

advance the type of questions that will be on the final, the only issue

being the precise numerical values that will be used in the actual

questions.

For each student response to a question, there are three possible

outcomes:

• Correct answer. The student answers the question cor-

rectly.

• False negative. The student answers “false”, but the ac-

tual answer is “true”.

• False positive. The student answers “true”, but the actual

answer is “false”.

We will assume a certain asymmetry in the grading: a few points

are deducted for false negatives, but a large number of points are

deducted for false positives. (There are many real-life situations in

which one type of error is considered less desirable than another; for

instance, when deciding on guilt in a capital crime, a false positive

is generally considered a much worse mistake than a false negative.)

So, while students would naturally like to ace the exam by answering

all questions correctly, they would tend to err on the side of caution

and put down “false” when in doubt.

Student P is hard working and careful, but unimaginative and

with a poor memory. His exam strategy is to put all the techniques

needed to solve the exam problems on the index card, so that they

can be applied by rote during the exam. If the nature of the exam

is such that P can be guaranteed to ace it by this method, we say

that the exam is in class P . For instance, if the exam will consist

of verifying various multiplication problems (e.g. “Is 231 ∗ 136 =
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31516?”), then this exam is in class P , since P can put the algorithm

for long multiplication, together with a multiplication table, on the

index card, and perform these computations during the exam. A

more non-trivial example of an exam in class P would be an exam

consisting solely of determining whether various large numbers are

prime; here P could be guaranteed to ace the test by writing down

on his index card the details of the AKS primality test.

Student NP is similar to P , but is substantially less scrupulous;

he has bribed the proctor of the exam to supply him with a full

solution key, containing not only the answers, but also the worked

computations that lead to that answer (when the answer is “true”).

The reason he has asked (and paid) for the latter is that he does not

fully trust the proctor to give reliable answers, and is terrified of the

impact to his grades if he makes a false positive. Thus, if the answer

key asserts that the answer to a question is “true”, he plans to check

the computations given to the proctor himself before putting down

“true”; if he cannot follow these computations, and cannot work out

the problem himself, he will play it safe and put down “false” instead.

We will say that the exam is in class NP if

• NP is guaranteed to ace the exam if the information given

to him by the proctor is reliable;

• NP is guaranteed not to make a false positive, even if the

proctor has given him unreliable information.

For instance, imagine an exam consisting of questions such as “Is

Fermat’s last theorem provable in ten pages or less?”. Such an exam

is in the class NP , as the student can bribe the proctor to ask for

a ten-page proof of FLT, if such exists, and then would check that

proof carefully before putting down “True”. This way, the student

is guaranteed not to make a false positive (which, in this context,

would be a severe embarrassment to any reputable mathematician),

and will ace the exam if the proctor actually does happen to have all

the relevant proofs available.

It is clear that NP is always going to do at least as well as P ,

since NP always has the option of ignoring whatever the proctor

gives him, and copying P ’s strategy instead. But how much of an
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advantage does NP have over P? In particular, if we give P a little

bit more time (and a somewhat larger index card), could every exam

that is in class NP , also be in class P? This, roughly speaking, is

the P = NP problem. It is believed that P 6= NP , thus there are

exams which NP will ace (with reliable information) and will at least

not make a false positive (even with unreliable information), but for

which P is not guaranteed to ace, even with a little extra time and

space.

3.9.2. Oracles. Now let’s modify the exams a bit by allowing a lim-

ited amount of computer equipment in the exam. In addition to the

scratch paper, pencil, and index card, every student in the exam is

now also given access to a computer A which can perform a carefully

limited set of tasks that are intended to assist the student. Examples

of tasks permitted by A could include a scientific calculator, a math-

ematics package such as Matlab or SAGE, or access to Wikipedia or

Google. We say that an exam is in class PA if it can be guaranteed to

be aced by P if he has access to A, and similarly the exam is in class

NPA if it can be guaranteed to be aced by NP if he has access to A

and the information obtained from the proctor was reliable, and if he

is at least guaranteed not to make a false positive with access to A if

the information from the proctor turned out to be unreliable. Again,

it is clear that NP will have the advantage over P , in the sense that

every exam in class PA will also be in class NPA. (In other words,

the proof that P ⊂ NP relativises.) But what about the converse - is

every exam in class NPA, also in class PA (if we give P a little more

time and space, and perhaps also a slightly larger and faster version

of A)?

We now give an example of a computer A with the property

that PA = NPA, i.e. that every exam in class NPA, is also in

class PA. Here, A is an extremely fast computer with reasonable

amount of memory and a compiler for a general-purpose programming

language, but with no additional capabilities. (More precisely, A

should be a PSPACE-complete language, but let me gloss over the

precise definition of this term here.)

Suppose that an exam is in class NPA, thus NP will ace the exam

if he can access A and has reliable information, and will not give any
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false positive if he can access A and has unreliable information. We

now claim that P can also ace this exam, if given a little bit more time

and a slightly larger version of A. The way he does it is to program

his version of A to simulate NP ’s strategy, by looping through all

possible values of the solution key that NP might be given, and also

simulating NP ’s copy of A as well. (The latter task is possible as long

as P ’s version of A is slightly larger and faster than NP ’s version.)

There are of course an extremely large number of combinations of

solution key to loop over (for instance, consider how many possible

proofs of Fermat’s last theorem under ten pages there could be), but

we assume that the computer is so fast that it can handle all these

combinations without difficulty. If at least one of the possible choices

for a solution key causes the simulation of NP to answer “true”, then

P will answer “true” also; if instead none of the solution keys cause

NP to answer “true”, then P will answer “false” instead. If the exam

is in class NPA, it is then clear that P will ace the exam.

Now we give an example of a computer B with the property that

PB 6= NPB , i.e. there exists an exam which is in class NPB , but

for which P is not guaranteed to ace even with the assistance of B.

The only software loaded on B is a web browser, which can fetch any

web page desired after typing in the correct URL. However, rather

than being connected to the internet, the browser can only access a

local file system of pages. Furthermore, there is no directory or search

feature in this file system; the only way to find a page is to type in

its URL, and if you can’t guess the URL correctly, there is no way to

access that page. (In particular, there are no links between pages.)

Furthermore, to make matters worse, the URLs are not designed

according to any simple scheme, but have in fact been generated

randomly, by the following procedure. For each positive integer n,

flip a coin. If the coin is heads, then create a URL of n random

characters and place a web page at that URL. Otherwise, if the coin

is tails, do nothing. Thus, for each n, there will either be one web page

with a URL of length n, or there will be no web pages of this length;

but in the former case, the web page will have an address consisting of

complete gibberish, and there will be no means to obtain this address

other than by guessing.
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The exam will consist of a long series of questions such as “Is

there a web page on B with a URL of 1254 characters in length?”.

It is clear that this exam is in class NPB . Indeed, for NP to ace

this exam, he just needs to bribe the proctor for the URLs of all the

relevant web pages (if they exist). He can then confirm their existence

by typing them into B, and then answer “true” if he finds the page,

and “false” otherwise. It is clear that NP will ace the exam if the

proctor information is reliable, and will avoid false positives otherwise.

On the other hand, poor P will have no chance to ace this exam

if the length of the URLs are long enough, for two reasons. Firstly,

the browser B is useless to him: any URL he can guess will have al-

most no chance of being the correct one, and so the only thing he can

generate on the browser is an endless stream of “404 Not Found” mes-

sages. (Indeed, these URLs are very likely to have a high Kolmogorov

complexity, and thus cannot be guessed by P . Admittedly, P does

have B available, but one can show by induction on the number of

queries that B is useless to P . We also make the idealised assumption

that side-channel attacks are not available.) As B is useless, the only

hope P has is to guess the sequence of coin flips that were used to

determine the set of n for which URLs exist of that length. But the

random sequence of coin flips is also likely to have high Kolmogorov

complexity, and thus cannot be guaranteed to be guessed by P either.

Thus PB 6= NPB .

Remark 3.9.1. Note how the existence of long random strings could

be used to make an oracle that separates P from NP . In the absence

of oracles, it appears that separation of P from NP is closely con-

nected to the existence of long pseudorandom strings - strings of num-

bers which can be deterministically generated (perhaps from a given

seed) in a reasonable amount of time, but are difficult to distinguish

from genuinely random strings by any quick tests.

Notes. This article first appeared at terrytao.wordpress.com/2009/08/01.

Thanks to Tom for corrections.

There was some discussion on the relationship between P = NP

and P = BPP . Greg Kuperberg gave some further examples of

oracles that shed some light on this:
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• Consider as an oracle an extremely large book of randomly

generated numbers. This oracle could be used to simulate

any probabilistic algorithm, so P = BPP relative to this

oracle. On the other hand, if one assigns the task to deter-

mine whether a given string of numbers exists in some range

in the book, this question is in NP but not in P .

• Another example of an oracle would be an extremely large

book, in which most of the pages contained the answer to

the problem at hand, but for which the nth page was blank

for every natural number n that could be quickly created

by any short deterministic algorithm. This type of oracle

could be used to create a scenario in which P 6= BPP and

P 6= NP .

• A third example, this time of an advice function rather than

an oracle, would be if the proctor wrote a long random string

on the board before starting the exam (with the length of

the string depending on the length of the exam). This can

be used to show the inclusion BPP ⊂ P/poly.

By using written oracles instead of computer oracles, it also became

more obvious that the oracles were non-interactive (i.e. subsequent

responses by the oracle did not depend on earlier queries).

3.10. Moser’s entropy compression argument

There are many situations in combinatorics in which one is running

some sort of iteration algorithm to continually “improve” some object

A; each loop of the algorithm replaces A with some better version A′

of itself, until some desired property of A is attained and the algorithm

halts. In order for such arguments to yield a useful conclusion, it is

often necessary that the algorithm halts in a finite amount of time,

or (even better), in a bounded amount of time10.

10In general, one cannot use infinitary iteration tools, such as transfinite induc-
tion or Zorn’s lemma (Section 2.4), in combinatorial settings, because the iteration
processes used to improve some target object A often degrade some other finitary quan-
tity B in the process, and an infinite iteration would then have the undesirable effect
of making B infinite.
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A basic strategy to ensure termination of an algorithm is to ex-

ploit a monotonicity property, or more precisely to show that some

key quantity keeps increasing (or keeps decreasing) with each loop

of the algorithm, while simultaneously staying bounded. (Or, as the

economist Herbert Stein was fond of saying, “If something cannot go

on forever, it must stop.”)

Here are four common flavours of this monotonicity strategy:

• The mass increment argument. This is perhaps the most

familiar way to ensure termination: make each improved

object A′ “heavier” than the previous one A by some non-

trivial amount (e.g. by ensuring that the cardinality of A′

is strictly greater than that of A, thus |A′| ≥ |A|+ 1). Du-

ally, one can try to force the amount of “mass” remaining

“outside” of A in some sense to decrease at every stage of

the iteration. If there is a good upper bound on the “mass”

of A that stays essentially fixed throughout the iteration

process, and a lower bound on the mass increment at each

stage, then the argument terminates. Many “greedy algo-

rithm” arguments are of this type. The proof of the Hahn

decomposition theorem (Theorem 1.2.2) also falls into this

category. The general strategy here is to keep looking for

useful pieces of mass outside of A, and add them to A to

form A′, thus exploiting the additivity properties of mass.

Eventually no further usable mass remains to be added (i.e.

A is maximal in some L1 sense), and this should force some

desirable property on A.

• The density increment argument. This is a variant of the

mass increment argument, in which one increments the “den-

sity” of A rather than the “mass”. For instance, A might

be contained in some ambient space P , and one seeks to im-

prove A to A′ (and P to P ′) in such a way that the density

of the new object in the new ambient space is better than

that of the previous object (e.g. |A′|/|P ′| ≥ |A|/|P |+ c for

some c > 0). On the other hand, the density of A is clearly

bounded above by 1. As long as one has a sufficiently good

lower bound on the density increment at each stage, one
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can conclude an upper bound on the number of iterations

in the algorithm. The prototypical example of this is Roth’s

proof of his theorem[Ro1953] that every set of integers of

positive upper density contains an arithmetic progression of

length three. The general strategy here is to keep looking

for useful density fluctuations inside A, and then “zoom in”

to a region of increased density by reducing A and P appro-

priately. Eventually no further usable density fluctuation

remains (i.e. A is uniformly distributed), and this should

force some desirable property on A.

• The energy increment argument. This is an “L2” analogue

of the “L1”-based mass increment argument (or the “L∞”-

based density increment argument), in which one seeks to

increments the amount of “energy” that A captures from

some reference object X, or (equivalently) to decrement the

amount of energy of X which is still “orthogonal” to A. Here

A and X are related somehow to a Hilbert space, and the

energy involves the norm on that space. A classic example

of this type of argument is the existence of orthogonal pro-

jections onto closed subspaces of a Hilbert space; this leads

among other things to the construction of conditional ex-

pectation in measure theory, which then underlies a number

of arguments in ergodic theory, as discussed for instance in

Section 2.8 of Poincaré’s Legacies, Vol. I. Another basic

example is the standard proof of the Szemerédi regularity

lemma (where the “energy” is often referred to as the “in-

dex”). These examples are related; see Section 4.2 for fur-

ther discussion. The general strategy here is to keep looking

for useful pieces of energy orthogonal to A, and add them

to A to form A′, thus exploiting square-additivity proper-

ties of energy, such as Pythagoras’ theorem. Eventually, no

further usable energy outside of A remains to be added (i.e.

A is maximal in some L2 sense), and this should force some

desirable property on A.
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• The rank reduction argument. Here, one seeks to make each

new object A′ to have a lower “rank”, “dimension”, or “or-

der” than the previous one. A classic example here is the

proof of the linear algebra fact that given any finite set of

vectors, there exists a linearly independent subset which

spans the same subspace; the proof of the more general

Steinitz exchange lemma is in the same spirit. The general

strategy here is to keep looking for “collisions” or “depen-

dencies” within A, and use them to collapse A to an object

A′ of lower rank. Eventually, no further usable collisions

within A remain, and this should force some desirable prop-

erty on A.

Much of my own work in additive combinatorics relies heavily

on at least one of these types of arguments (and, in some cases, on

a nested combination of two or more of them). Many arguments

in nonlinear partial differential equations also have a similar flavour,

relying on various monotonicity formulae for solutions to such equa-

tions, though the objective in PDE is usually slightly different, in that

one wants to keep control of a solution as one approaches a singular-

ity (or as some time or space coordinate goes off to infinity), rather

than to ensure termination of an algorithm. (On the other hand,

many arguments in the theory of concentration compactness, which

is used heavily in PDE, does have the same algorithm-terminating

flavour as the combinatorial arguments; see Section 2.1 of Structure

and Randomness for more discussion.)

Recently, a new species of monotonicity argument was introduced

by Moser[Mo2009], as the primary tool in his elegant new proof of

the Lovász local lemma. This argument could be dubbed an entropy

compression argument, and only applies to probabilistic algorithms

which require a certain collection R of random “bits” or other random

choices as part of the input, thus each loop of the algorithm takes an

object A (which may also have been generated randomly) and some

portion of the random string R to (deterministically) create a better

object A′ (and a shorter random string R′, formed by throwing away

those bits of R that were used in the loop). The key point is to design

the algorithm to be partially reversible, in the sense that given A′ and
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R′ and some additional data H ′ that logs the cumulative history of

the algorithm up to this point, one can reconstruct A together with

the remaining portion R not already contained in R′. Thus, each

stage of the argument compresses the information-theoretic content

of the string A+R into the string A′ +R′ +H ′ in a lossless fashion.

However, a random variable such as A + R cannot be compressed

losslessly into a string of expected size smaller than the Shannon

entropy of that variable. Thus, if one has a good lower bound on the

entropy of A + R, and if the length of A′ + R′ + H ′ is significantly

less than that of A + R (i.e. we need the marginal growth in the

length of the history file H ′ per iteration to be less than the marginal

amount of randomness used per iteration), then there is a limit as to

how many times the algorithm can be run, much as there is a limit

as to how many times a random data file can be compressed before

no further length reduction occurs.

It is interesting to compare this method with the ones discussed

earlier. In the previous methods, the failure of the algorithm to halt

led to a new iteration of the object A which was “heavier”, “denser”,

captured more “energy”, or “lower rank” than the previous instance of

A. Here, the failure of the algorithm to halt leads to new information

that can be used to “compress” A (or more precisely, the full state

A + R) into a smaller amount of space. I don’t know yet of any

application of this new type of termination strategy to the fields I

work in, but one could imagine that it could eventually be of use

(perhaps to show that solutions to PDE with sufficiently “random”

initial data can avoid singularity formation?), so I thought I would

discuss (a special case of) it here.

Rather than deal with the Lovász local lemma in full general-

ity, I will work with a special case of this lemma involving the k-

satisfiability problem (in conjunctive normal form). Here, one is given

a set of boolean variables x1, . . . , xn together with their negations

¬x1, . . . ,¬xn; we refer to the 2n variables and their negations collec-

tively as literals. We fix an integer k ≥ 2, and define a (length k)

clause to be a disjunction of k literals, for instance

x3 ∨ ¬x5 ∨ x9
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is a clause of length three, which is true unless x3 is false, x5 is

true, and x9 is false. We define the support of a clause to be the set

of variables that are involved in the clause, thus for instance x3 ∨
¬x5 ∨ x9 has support {x3, x5, x9}. To avoid degeneracy we assume

that no clause uses a variable more than once (or equivalently, all

supports have cardinality exactly k), thus for instance we do not

consider x3 ∨ x3 ∨ x9 or x3 ∨ ¬x3 ∨ x9 to be clauses.

Note that the failure of a clause reveals complete information

about all k of the boolean variables in the support; this will be an

important fact later on.

The k-satisfiability problem is the following: given a set S of

clauses of length k involving n boolean variables x1, . . . , xn, is there

a way to assign truth values to each of the x1, . . . , xn, so that all of

the clauses are simultaneously satisfied?

For general S, this problem is easy for k = 2 (essentially equiv-

alent to the problem of 2-colouring a graph), but NP-complete for

k ≥ 3 (this is the famous Cook-Levin theorem). But the problem

becomes simpler if one makes some more assumptions on the set S

of clauses. For instance, if the clauses in S have disjoint supports,

then they can be satisfied independently of each other, and so one

easily has a positive answer to the satisfiability problem in this case.

(Indeed, one only needs each clause in S to have one variable in its

support that is disjoint from all the other supports in order to make

this argument work.)

Now suppose that the clauses S are not completely disjoint, but

have a limited amount of overlap; thus most clauses in S have disjoint

supports, but not all. With too much overlap, of course, one expects

satisfability to fail (e.g. if S is the set of all length k clauses). But

with a sufficiently small amount of overlap, one still has satisfiability:

Theorem 3.10.1 (Lovász local lemma, special case). Suppose that S

is a set of length k clauses, such that the support of each clause s in S

intersects at most 2k−C supports of clauses in S (including s itself),

where C is a sufficiently large absolute constant. Then the clauses in

S are simultaneously satisfiable.
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One of the reasons that this result is powerful is that the bounds

here are uniform in the number n of variables. Apart from the loss of

C, this result is sharp; consider for instance the set S of all 2k clauses

with support {x1, . . . , xk}, which is clearly unsatisfiable.

The standard proof of this theorem proceeds by assigning each of

the n boolean variables x1, . . . , xn a truth value a1, . . . , an ∈ {true, false}
independently at random (with each truth value occurring with an

equal probability of 1/2); then each of the clauses in S has a positive

zero probability of holding (in fact, the probability is 1− 2−k). Fur-

thermore, if Es denotes the event that a clause s ∈ S is satisfied, then

the Es are mostly independent of each other; indeed, each event Es
is independent of all but most 2k−C other events Es′ . Applying the

Lovász local lemma, one concludes that the Es simultaneously hold

with positive probability (if C is a little bit larger than log2 e), and

the claim follows.

The textbook proof of the Lovász local lemma is short but non-

constructive; in particular, it does not easily offer any quick way to

compute an actual satisfying assignment for x1, . . . , xn, only saying

that such an assignment exists. Moser’s argument, by contrast, gives

a simple and natural algorithm to locate such an assignment (and

thus prove Theorem 3.10.1). (The constant C becomes 3 rather than

log2 e, although the log2 e bound has since been recovered in a paper

of Moser and Tardos.)

As with the usual proof, one begins by randomly assigning truth

values a1, . . . , an ∈ {true, false} to x1, . . . , xn; call this random assign-

ment A = (a1, . . . , an). If A satisfied all the clauses in S, we would be

done. However, it is likely that there will be some non-empty subset

T of clauses in S which are not satisfied by A.

We would now like to modify A in such a manner to reduce the

number |T | of violated clauses. If, for instance, we could always find

a modification A′ of A whose set T ′ of violated clauses was strictly

smaller than T (assuming of course that T is non-empty), then we

could iterate and be done (this is basically a mass decrement argu-

ment). One obvious way to try to achieve this is to pick a clause s in

T that is violated by A, and modify the values of A on the support
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of s to create a modified set A′ that satisfies s, which is easily ac-

complished; in fact, any non-trivial modification of A on the support

will work here. In order to maximize the amount of entropy in the

system (which is what one wants to do for an entropy compression

argument), we will choose this modification of A′ randomly ; in par-

ticular, we will use k fresh random bits to replace the k bits of A in

the support of s. (By doing so, there is a small probability (2−k) that

we in fact do not change A at all, but the argument is (very) slightly

simpler if we do not bother to try to eliminate this case.)

If all the clauses had disjoint supports, then this strategy would

work without difficulty. But when the supports are not disjoint, one

has a problem: every time one modifies A to “fix” a clause s by

modifying the variables on the support of s, one may cause other

clauses s′ whose supports overlap those of s to fail, thus potentially

increasing the size of T by as much as 2k−C − 1. One could then try

fixing all the clauses which were broken by the first fix, but it appears

that the number of clauses needed to repair could grow indefinitely

with this procedure, and one might never terminate in a state in which

all clauses are simultaneously satisfied.

The key observation of Moser, as alluded earlier, is that each fail-

ure of a clause s for an assignment A reveals k bits of information

about A, namely that the exact values that A assigns to the support

of s. The plan is then to use each failure of a clause as a part of a com-

pression protocol that compresses A (plus some other data) losslessly

into a smaller amount of space. A crucial point is that at each stage

of the process, the clause one is trying to fix is almost always going

to be one that overlapped the clause that one had just previously

fixed. Thus the total number of possibilities for each clause, given

the previous clauses, is basically 2k−C , which requires only k − C

bits of storage, compared with the k bits of entropy that have been

eliminated. This is what is going to force the algorithm to terminate

in finite time (with positive probability).

Let’s make the details more precise. We will need the following

objects:
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• A truth assignment A of n truth values a1, . . . , an, which is

initially assigned randomly, but which will be modified as

the algorithm progresses;

• A long random string R of bits, from which we will make

future random choices, with each random bit being removed

from R as it is read.

We also need a recursive algorithm Fix(s), which modifies the

string A to satisfy a clause s in S (and, as a bonus, may also make A

obey some other clauses in S that it did not previously satisfy). It is

defined recursively:

• Step 1. If A already satisfies s, do nothing (i.e. leave A

unchanged).

• Step 2. Otherwise, read off k random bits from R (thus

shortening R by k bits), and use these to replace the k bits

of A on the support of s in the obvious manner (ordering the

support of s by some fixed ordering, and assigning the jth

bit from R to the jth variable in the support for 1 ≤ j ≤ k).

• Step 3. Next, find all the clauses s′ in S whose supports

intersect s, and which A now violates; this is a collection of

at most 2k−C clauses, possibly including s itself. Order these

clauses s′ in some arbitrary fashion, and then apply Fix(s′)

to each such clause in turn. (Thus the original algorithm

Fix(s) is put “on hold” on some CPU stack while all the

child processes Fix(s′) are executed; once all of the child

processes are complete, Fix(s) then terminates also.)

An easy induction shows that if Fix(s) terminates, then the re-

sulting modification of A will satisfy s; and furthermore, any other

clause s′ in S which was already satisfied by A before Fix(s) was

called, will continue to be satisfied by A after Fix(s) is called. Thus,

Fix(s) can only serve to decrease the number of unsatisfied clauses T

in S, and so one can fix all the clauses by calling Fix(s) once for each

clause in T - provided that these algorithms all terminate.

Each time Step 2 of the Fix algorithm is called, the assignment A

changes to a new assignment A′, and the random string R changes to

a shorter string R′. Is this process reversible? Yes - provided that one
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knows what clause s was being fixed by this instance of the algorithm.

Indeed, if s,A′, R′ are known, then A can be recovered by changing

the assignment of A′ on the support of s to the only set of choices

that violates s, while R can be recovered from R′ by appending to R′

the bits of A on the support of s.

This type of reversibility does not seem very useful for an entropy

compression argument, because while R′ is shorter than R by k bits,

it requires about log |S| bits to store the clause s. So the map A+R 7→
A′ +R′ + s is only a compression if log |S| < k, which is not what is

being assumed here (and in any case the satisfiability of S in the case

log |S| < k is trivial from the union bound).

The key trick is that while it does indeed take log |S| bits to store

any given clause s, there is an economy of scale: after many recursive

applications of the fix algorithm, the marginal amount of bits needed

to store s drops to merely k − C + O(1), which is less than k if C is

large enough, and which will therefore make the entropy compression

argument work.

Let’s see why this is the case. Observe that the clauses s for

which the above algorithm Fix(s) is called come in two categories.

Firstly, there are those s which came from the original list T of failed

clauses. Each of these will require O(log |S|) bits to store - but there

are only |T | of them. Since |T | ≤ |S|, the net amount of storage space

required for these clauses is O(|S| log |S|) at most. Actually, one can

just store the subset T of S using |S| bits (one for each element of S,

to record whether it lies in T or not).

Of more interest is the other category of clauses s, in which Fix(s)

is called recursively from some previously invoked call Fix(s′) to the

fix algorithm. But then s is one of the at most 2k−C clauses in S

whose support intersects that of s′. Thus one can encode s using s′

and a number between 1 and 2k−C , representing the position of s

(with respect to some arbitrarily chosen fixed ordering of S) in the

list of all clauses in S whose supports intersect that of s′. Let us call

this number the index of the call Fix(s).

Now imagine that while the Fix routine is called, a running log

file (or history) H of the routine is kept, which records s each time

one of the original |T | calls Fix(s) with s ∈ T is invoked, and also
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records the index of any other call Fix(s) made during the recursive

procedure. Finally, we assume that this log file records a termination

symbol whenever a Fix routine terminates. By performing a stack

trace, one sees that whenever a Fix routine is called, the clause s that

is being repaired by that routine can be deduced from an inspection

of the log file H up to that point.

As a consequence, at any intermediate stage in the process of all

these fix calls, the original state A + R of the assignment and the

random string of bits can be deduced from the current state A′ +R′

of these objects, plus the history H ′ up to that point.

Now suppose for contradiction that S is not satisfiable; thus the

stack of fix calls can never completely terminate. We trace through

this stack for M steps, where M is some large number to be chosen

later. After these steps, the random string R has shortened by an

amount of Mk; if we set R to initially have length Mk, then the string

is now completely empty, R′ = ∅. On the other hand, the history H ′

has size at most O(|S|) + M(k − C + O(1)), since it takes |S| bits

to store the initial clauses in T , O(|S|) + O(M) bits to record all

the instances when Step 1 occurs, and every subsequent call to Fix

generates a k − C-bit number, plus possibly a termination symbol

of size O(1). Thus we have a lossless compression algorithm A +

R 7→ A′ + H ′ from n + Mk completely random bits to n + O(|S|) +

M(k−C+O(1)) bits (recall that A and R were chosen randomly, and

independently of each other). But since n+Mk random bits cannot

be compressed losslessly into any smaller space, we have the entropy

bound

(3.49) n+O(|S|) +M(k − C +O(1)) ≥ n+Mk

which leads to a contradiction if M is large enough (and if C is larger

than an absolute constant). This proves Theorem 3.10.1.

Remark 3.10.2. Observe that the above argument in fact gives an

explicit bound on M , and with a small bit of additional effort, it can

be converted into a probabilistic algorithm that (with high probabil-

ity) computes a satisfying assignment for S in time polynomial in |S|
and n.
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Remark 3.10.3. One can replace the usage of randomness and Shan-

non entropy in the above argument with Kolmogorov complexity in-

stead; thus, one sets A+R to be a string of n+Mk bits which cannot

be computed by any algorithm of length n + O(|S| log |S|) + M(k −
C + O(1)), the existence of which is guaranteed as soon as (3.49) is

violated; the proof now becomes deterministic, except of course for

the problem of building the high-complexity string, which by their

definition can only be constructed quickly by probabilistic methods.

Notes. This article first appeared at terrytao.wordpress.com/2009/08/05,

but is based on an earlier blog post by Lance Fortnow at

blog.computationalcomplexity.org/2009/06.

Thanks to harrison, Heinrich, nh, and anonymous commenters

for corrections.

There was some discussion online about the tightness of bounds

in the argument.

3.11. The AKS primality test

The Agrawal-Kayal-Saxena (AKS) primality test, discovered in 2002,

is the first provably deterministic algorithm to determine the primal-

ity of a given number with a run time which is guaranteed to be

polynomial in the number of digits, thus, given a large number n,

the algorithm will correctly determine whether that number is prime

or not in time O(logO(1) n). (Many previous primality testing algo-

rithms existed, but they were either probabilistic in nature, had a

running time slower than polynomial, or the correctness could not be

guaranteed without additional hypotheses such as GRH.)

In this article I sketch the details of the test (and the proof that

it works) here. (Of course, full details can be found in the original

paper[AgKaSa2004], which is nine pages in length and almost en-

tirely elementary in nature.) It relies on polynomial identities that

are true modulo n when n is prime, but cannot hold for n non-prime

as they would generate a large number of additional polynomial iden-

tities, eventually violating the factor theorem (which asserts that a

polynomial identity of degree at most d can be obeyed by at most d
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values of the unknown). To remove some clutter in the notation, I

have relied (somewhat loosely) on asymptotic notation in this article.

Our starting point is Fermat’s little theorem, which asserts that

(3.50) ap = a mod p

for every prime p and every a. This theorem suggests an obvious

primality test: to test whether a number n is prime, pick a few values

of a and see whether an = a mod n. (Note that an can be computed

in time O(logO(1) n) for any fixed a by expressing n in binary, and re-

peatedly squaring a.) If the statement an = a mod n fails for some a,

then n would be composite. Unfortunately, the converse is not true:

there exist non-prime numbers n, known as Carmichael numbers, for

which an = a mod n for all a coprime to n (561 is the first example).

So Fermat’s little theorem cannot be used, by itself, to establish pri-

mality for general n, because it is too weak to eliminate all non-prime

numbers. (The situation improves though for more special types of

n, such as Mersenne numbers; see Section 1.7 of Poincaré’s Legacies,

Vol. I for more discussion.)

However, there is a stronger version of Fermat’s little theorem

which does eliminate all non-prime numbers. Specifically, if p is prime

and a is arbitrary, then one has the polynomial identity

(3.51) (X + a)p = Xp + a mod p

where X is an indeterminate variable. (More formally, we have the

identity (X + a)p = Xp + a in the ring Fp[X] of polynomials of one

variable X over the finite field Fp of p elements.) This identity (a

manifestation of the Frobenius endomorphism) clearly implies (3.50)

by setting X = 0; conversely, one can easily deduce (3.51) from (3.50)

by expanding out (X + a)p using the binomial theorem and the ob-

servation that the binomial coefficients
(
p
i

)
= p·...·(p−i+1)

i! are divisible

by p for all 1 ≤ i < p. Conversely, if

(3.52) (X + a)n = Xn + a mod n

(i.e. (X+a)n = Xn+a in (Z/nZ)[X]) for some a coprime to n, then

by comparing coefficients using the binomial theorem we see that
(
n
i

)
is divisible by n for all 1 ≤ i < n. But if n is divisible by some

smaller prime p, then by setting i equal to the largest power of p that
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divides n, one sees that
(
n
i

)
is not divisible by enough powers of p

to be divisible by n, a contradiction. Thus one can use (3.52) (for a

single value of a coprime to n) to decide whether n is prime or not.

Unfortunately, this algorithm, while deterministic, is not polynomial-

time, because the polynomial (X + a)n has n+ 1 coefficients and will

therefore take at least O(n) time to compute. However, one can speed

up the process by descending to a quotient ring of (Z/nZ)[X], such as

Fp[X]/(Xr−1) for some r. Clearly, if the identity (X+a)n = Xn+a

holds in (Z/nZ)[X], then it will also hold in (Z/nZ)[X]/(Xr − 1),

thus

(3.53) (X + a)n = Xn + a mod n,Xr − 1.

The point of doing this is that (if r is not too large) the left-hand

side of (3.53) can now be computed quickly (again by expanding n

in binary and performing repeated squaring), because all polynomials

can be reduced to be of degree less than r, rather than being as large

as n. Indeed, if r = O(logO(1) n), then one can test (3.53) in time

O(logO(1) n).

We are not done yet, because it could happen that (3.53) holds

but (3.52) fails. But we have the following key theorem:

Theorem 3.11.1 (AKS theorem). Suppose that for all 1 ≤ a, r ≤
O(logO(1) n), (3.53) holds, and a is coprime to n. Then n is either a

prime, or a power of a prime.

Of course, coprimality of a and n can be quickly tested using

the Euclidean algorithm, and if coprimality fails then n is of course

composite. Also, it is easy to quickly test for the property that n is a

power of an integer (just compute the roots n1/k for 1 ≤ k ≤ log2 n),

and such powers are clearly composite. From all this (and (3.51), one

soon sees that theorem gives rise to a deterministic polynomial-time

test for primality. One can optimise the powers of log n in the bounds

for a, r (as is done in [AgKaSa2004]), but we will not do so here to

keep the exposition uncluttered.

Actually, we don’t need (3.53) satisfied for all that many expo-

nents r to make the theorem work; just one well-chosen r will do.

More precisely, we have
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Theorem 3.11.2 (AKS theorem, key step). Let r be coprime to n,

and such that n has order greater than log2
2 n in the multiplicative

group (Z/rZ)× (i.e. the residues ni mod r for 1 ≤ i ≤ log2 n are

distinct). Suppose that for all 1 ≤ a ≤ O(r logO(1) n), (3.53) holds,

and a is coprime to n. Then n is either a prime, or a power of a

prime.

To find an r with the above properties we have

Lemma 3.11.3 (Existence of good r). There exists r = O(logO(1) n)

coprime to n, such that n has order greater than log2
2 n in (Z/rZ)×.

Proof. For each 1 ≤ i ≤ log2
2 n, the number ni − 1 has at most

O(logO(1) n) prime divisors (by the fundamental theorem of arith-

metic). If one picks r to be the first prime not equal to any of these

prime divisors, one obtains the claim. (One can use a crude version

of the prime number theorem to get the upper bound on r.) �

It is clear that Theorem 3.11.1 follows from Theorem 3.11.2 and

Lemma 3.11.3, so it suffices now to prove Theorem 3.11.2.

Suppose for contradiction that Theorem 3.11.2 fails. Then n is

divisible by some smaller prime p, but is not a power of p. Since n

is coprime to all numbers of size O(logO(1) n) we know that p is not

of polylogarithmic size, thus we may assume p ≥ logC n for any fixed

C. As r is coprime to n, we see that r is not a multiple of p (indeed,

one should view p as being much larger than r).

Let F be a field extension of Fp by a primitive rth root of unity

X, thus F = Fp[X]/h(X) for some factor h(X) (in Fp[X]) of the rth

cyclotomic polynomial Φr(X). From the hypothesis (3.53), we see

that

(X + a)n = Xn + a

in F for all 1 ≤ a ≤ A, where A = O(r logO(1) n). Note that n is

coprime to every integer less than A, and thus A < p.

Meanwhile, from (3.51) one has

(X + a)p = Xp + a

in F for all such a. The two equations give

(Xp + a)n/p = (Xp)n/p + a.
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Note that the pth power Xp of a primitive rth root of unity X is again

a primitive rth root of unity (and conversely, every primitive rth root

arises in this fashion) and hence we also have

(X + a)n/p = Xn/p + a

in F for all 1 ≤ a ≤ A.

Inspired by this, we define a key concept: a positive integer m is

said to be introspective if one has

(X + a)m = Xm + a

in F for all 1 ≤ a ≤ A, or equivalently if (X + a)m = φm(X + a),

where φm : F → F is the ring homomorphism that sends X to Xm.

We have just shown that p, n, n/p are all introspective; 1 is also

trivially introspective. Furthermore, if m and m′ are introspective,

it is not hard to see that mm′ is also introspective. Thus we in fact

have a lot of introspective integers: any number of the form pi(n/p)j

for i, j ≥ 0 is introspective.

It turns out in fact that it is not possible to create so many differ-

ent introspective numbers, basically the presence of so many polyno-

mial identities in the field would eventually violate the factor theorem.

To see this, let G ⊂ F× be the multiplicative group generated by the

quantities X + a for 1 ≤ a ≤ A. Observe that zm = φm(z) for all

z ∈ G. We now show that this places incompatible lower and upper

bounds on G. We begin with the lower bound:

Proposition 3.11.4 (Lower bound on G). |G| ≥ 2t.

Proof. Let P (X) be a product of less than t of the quantities X +

1, . . . , X + A (allowing repetitions), then P (X) lies in G. Since A ≥
2r ≥ 2t, there are certainly at least 2t ways to pick such a product. So

to establish the proposition it suffices to show that all these products

are distinct.

Suppose for contradiction that P (X) = Q(X), where P,Q are

different products of less than t of the X + 1, . . . , X + A. Then, for

every introspective m, P (Xm) = Q(Xm) as well (note that P (Xm) =

φm(P (X))). In particular, this shows that Xm1 , . . . , Xmt are all roots

of the polynomial P −Q. But this polynomial has degree less than t,
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and the Xm1 , . . . , Xmt are distinct by hypothesis, and we obtain the

desired contradiction by the factor theorem. �

Proposition 3.11.5 (Upper bound on G). Suppose that there are

exactly t residue classes modulo r of the form pi(n/p)j mod r for

i, j ≥ 0. Then |G| ≤ n
√
t.

Proof. By the pigeonhole principle, we must have a collision

pi(n/p)j = pi
′
(n/p)j

′
mod r

for some 0 ≤ i, j, i′, j′ ≤
√
t with (i, j) 6= (i′, j′). Setting m :=

pi(n/p)j and m′ := pi
′
(n/p)j

′
, we thus see that there are two distinct

introspective numbers m,m′ of size most n
√
t which are equal modulo

r. (To ensure that m,m′ are distinct, we use the hypothesis that n is

not a power of p.) This implies that φm = φm′ , and thus zm = zm
′

for all z ∈ G. But the polynomial zm − zm′ has degree at most n
√
t,

and the claim now follows from the factor theorem. �

Since n has order greater than log2 n in (Z/rZ)×, we see that

the number t of residue classes r of the form pi(n/p)j is at least

log2 n. But then 2t > n
√
t, and so Propositions 3.11.4, 3.11.5 are

incompatible.

Notes. This article first appeared at terrytao.wordpress.com/2009/08/11.

Thanks to Leandro, theoreticalminimum and windfarmmusic for cor-

rections.

A thorough discussion of the AKS algorithm can be found at

[Gr2005].

3.12. The prime number theorem in arithmetic
progressions, and dueling conspiracies

A fundamental problem in analytic number theory is to understand

the distribution of the prime numbers {2, 3, 5, . . .}. For technical rea-

sons, it is convenient not to study the primes directly, but a proxy for

the primes known as the von Mangoldt function Λ : N→ R, defined

by setting Λ(n) to equal log p when n is a prime p (or a power of that

prime) and zero otherwise. The basic reason why the von Mangoldt
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function is useful is that it encodes the fundamental theorem of arith-

metic (which in turn can be viewed as the defining property of the

primes) very neatly via the identity

(3.54) log n =
∑
d|n

Λ(d)

for every natural number n.

The most important result in this subject is the prime number

theorem, which asserts that the number of prime numbers less than a

large number x is equal to (1 + o(1)) x
log x :∑

p≤x

1 = (1 + o(1))
x

log x
.

Here, of course, o(1) denotes a quantity that goes to zero as x→∞.

It is not hard to see (e.g. by summation by parts) that this is

equivalent to the asymptotic

(3.55)
∑
n≤x

Λ(n) = (1 + o(1))x

for the von Mangoldt function (the key point being that the squares,

cubes, etc. of primes give a negligible contribution, so
∑
n≤x Λ(n)

is essentially the same quantity as
∑
p≤x log p). Understanding the

nature of the o(1) term is a very important problem, with the con-

jectured optimal decay rate of O(
√
x log x) being equivalent to the

Riemann hypothesis, but this will not be our concern here.

The prime number theorem has several important generalisations

(for instance, there are analogues for other number fields such as

the Chebotarev density theorem). One of the more elementary such

generalisations is the prime number theorem in arithmetic progres-

sions, which asserts that for fixed a and q with a coprime to q (thus

(a, q) = 1), the number of primes less than x equal to a mod q is

equal to (1 + oq(1)) 1
φ(q)

x
log x , where φ(q) := #{1 ≤ a ≤ q : (a, q) = 1}

is the Euler totient function:∑
p≤x:p=a mod q

1 = (1 + oq(1))
1

φ(q)

x

log x
.
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(Of course, if a is not coprime to q, the number of primes less than x

equal to a mod q is O(1). The subscript q in the o() and O() notation

denotes that the implied constants in that notation is allowed to de-

pend on q.) This is a more quantitative version of Dirichlet’s theorem,

which asserts the weaker statement that the number of primes equal

to a mod q is infinite. This theorem is important in many applications

in analytic number theory, for instance in Vinogradov’s theorem that

every sufficiently large odd number is the sum of three odd primes.

(Imagine for instance if almost all of the primes were clustered in the

residue class 2 mod 3, rather than 1 mod 3. Then almost all sums

of three odd primes would be divisible by 3, leaving dangerously few

sums left to cover the remaining two residue classes. Similarly for

other moduli than 3. This does not fully rule out the possibility that

Vinogradov’s theorem could still be true, but it does indicate why the

prime number theorem in arithmetic progressions is a relevant tool in

the proof of that theorem.)

As before, one can rewrite the prime number theorem in arith-

metic progressions in terms of the von Mangoldt function as the equiv-

alent form ∑
n≤x:n=a mod q

Λ(n) = (1 + oq(1))
1

φ(q)
x.

Philosophically, one of the main reasons why it is so hard to con-

trol the distribution of the primes is that we do not currently have too

many tools with which one can rule out “conspiracies” between the

primes, in which the primes (or the von Mangoldt function) decide

to correlate with some structured object (and in particular, with a

totally multiplicative function) which then visibly distorts the distri-

bution of the primes. For instance, one could imagine a scenario in

which the probability that a randomly chosen large integer n is prime

is not asymptotic to 1
logn (as is given by the prime number theorem),

but instead to fluctuate depending on the phase of the complex num-

ber nit for some fixed real number t, thus for instance the probability

might be significantly less than 1/ log n when t log n is close to an

integer, and significantly more than 1/ log n when t log n is close to a

half-integer. This would contradict the prime number theorem, and

so this scenario would have to be somehow eradicated in the course
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of proving that theorem. In the language of Dirichlet series, this

conspiracy is more commonly known as a zero of the Riemann zeta

function at 1 + it.

In the above scenario, the primality of a large integer n was some-

how sensitive to asymptotic or “Archimedean” information about n,

namely the approximate value of its logarithm. In modern terminol-

ogy, this information reflects the local behaviour of n at the infinite

place ∞. There are also potential consipracies in which the primality

of n is sensitive to the local behaviour of n at finite places, and in

particular to the residue class of n mod q for some fixed modulus q.

For instance, given a Dirichlet character χ : Z→ C of modulus q, i.e.

a completely multiplicative function on the integers which is periodic

of period q (and vanishes on those integers not coprime to q), one

could imagine a scenario in which the probability that a randomly

chosen large integer n is prime is large when χ(n) is close to +1, and

small when χ(n) is close to −1, which would contradict the prime

number theorem in arithmetic progressions. (Note the similarity be-

tween this scenario at q and the previous scenario at∞; in particular,

observe that the functions n → χ(n) and n → nit are both totally

multiplicative.) In the language of Dirichlet series, this conspiracy is

more commonly known as a zero of the L-function of χ at 1.

An especially difficult scenario to eliminate is that of real char-

acters, such as the Kronecker symbol χ(n) =
(
n
q

)
, in which numbers

n which are quadratic nonresidues mod q are very likely to be prime,

and quadratic residues mod q are unlikely to be prime. Indeed, there

is a scenario of this form - the Siegel zero scenario - which we are still

not able to eradicate (without assuming powerful conjectures such

as the Generalised Riemann Hypothesis (GRH)), though fortunately

Siegel zeroes are not quite strong enough to destroy the prime number

theorem in arithmetic progressions.

It is difficult to prove that no conspiracy between the primes ex-

ist. However, it is not entirely impossible, because we have been able

to exploit two important phenomena. The first is that there is often a

“all or nothing dichotomy” (somewhat resembling the zero-one laws

in probability) regarding conspiracies: in the asymptotic limit, the

primes can either conspire totally (or more precisely, anti-conspire
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totally) with a multiplicative function, or fail to conspire at all, but

there is no middle ground. (In the language of Dirichlet series, this is

reflected in the fact that zeroes of a meromorphic function can have

order 1, or order 0 (i.e. are not zeroes after all), but cannot have an

intermediate order between 0 and 1.) As a corollary of this fact, the

prime numbers cannot conspire with two distinct multiplicative func-

tions at once (by having a partial correlation with one and another

partial correlation with another); thus one can use the existence of

one conspiracy to exclude all the others. In other words, there is at

most one conspiracy that can significantly distort the distribution of

the primes. Unfortunately, this argument is ineffective, because it

doesn’t give any control at all on what that conspiracy is, or even if

it exists in the first place!

But now one can use the second important phenomenon, which

is that because of symmetries, one type of conspiracy can lead to

another. For instance, because the von Mangoldt function is real-

valued rather than complex-valued, we have conjugation symmetry; if

the primes correlate with, say, nit, then they must also correlate with

n−it. (In the language of Dirichlet series, this reflects the fact that

the zeta function and L-functions enjoy symmetries with respect to

reflection across the real axis (i.e. complex conjugation).) Combining

this observation with the all-or-nothing dichotomy, we conclude that

the primes cannot correlate with nit for any non-zero t, which in fact

leads directly to the prime number theorem (3.55), as we shall discuss

below. Similarly, if the primes correlated with a Dirichlet character

χ(n), then they would also correlate with the conjugate χ(n), which

also is inconsistent with the all-or-nothing dichotomy, except in the

exceptional case when χ is real - which essentially means that χ is a

quadratic character. In this one case (which is the only scenario which

comes close to threatening the truth of the prime number theorem in

arithmetic progressions), the above tricks fail and one has to instead

exploit the algebraic number theory properties of these characters

instead, which has so far led to weaker results than in the non-real

case.

As mentioned previously in passing, these phenomena are usually

presented using the language of Dirichlet series and complex analysis.
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This is a very slick and powerful way to do things, but I would like

here to present the elementary approach to the same topics, which is

slightly weaker but which I find to also be very instructive. (However,

I will not be too dogmatic about keeping things elementary, if this

comes at the expense of obscuring the key ideas; in particular, I will

rely on multiplicative Fourier analysis (both at∞ and at finite places)

as a substitute for complex analysis in order to expedite various parts

of the argument. Also, the emphasis here will be more on heuristics

and intuition than on rigour.)

The material here is closely related to the theory of pretentious

characters developed in [GrSo2007], as well as the earlier paper

[Gr1992].

3.12.1. A heuristic elementary proof of the prime number

theorem. To motivate some of the later discussion, let us first give a

highly non-rigorous heuristic elementary “proof” of the prime number

theorem (3.55). Since we clearly have∑
n≤x

1 = x+O(1)

one can view the prime number theorem as an assertion that the von

Mangoldt function Λ “behaves like 1 on the average”,

(3.56) Λ(n) ≈ 1,

where we will be deliberately vague as to what the “≈” symbol means.

(One can think of this symbol as denoting some sort of proximity in

the weak topology or vague topology, after suitable normalisation.)

To see why one would expect (3.56) to be true, we take divisor

sums of (3.56) to heuristically obtain

(3.57)
∑
d|n

Λ(d) ≈
∑
d|n

1.

By (3.54), the left-hand side is log n; meanwhile, the right-hand side

is the divisor function τ(n) of n, by definition. So we have a heuristic

relationship between (3.56) and the informal approximation

(3.58) τ(n) ≈ log n.
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In particular, we expect

(3.59)
∑
n≤x

τ(n) ≈
∑
n≤x

log n.

The right-hand side of (3.59) can be approximated using the in-

tegral test as

(3.60)
∑
n≤x

log n =

∫ x

1

log t dt+O(log x) = x log x− x+O(log x)

(one can also use Stirling’s formula to obtain a similar asymptotic).

As for the left-hand side, we write τ(n) =
∑
d|n 1 and then make the

substitution n = dm to obtain∑
n≤x

τ(n) =
∑

d,m:dm≤x

1.

The right-hand side is the number of lattice points underneath the

hyperbola dm = x, and can be counted using the Dirichlet hyperbola

method :∑
d,m:dm≤x

1 =
∑
d≤
√
x

∑
m≤x/d

1 +
∑
m≤
√
x

∑
d≤x/m

1−
∑
d≤
√
x

∑
m≤
√
x

1.

The third sum is equal to (
√
x + O(1))2 = x + O(

√
x). The second

sum is equal to the first. The first sum can be computed as∑
d≤
√
x

∑
m≤x/d

1 =
∑
d≤
√
x

(
x

d
+O(1)) = x

∑
d≤
√
x

1

d
+O(1);

meanwhile, from the integral test and the definition of Euler’s con-

stant γ = 0.577 . . . one has

(3.61)
∑
d≤y

1

d
= log y + γ +O(1/y)

for any y ≥ 1; combining all these estimates one obtains

(3.62)
∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O(
√
x).

Comparing this with (3.60) we do see that τ(n) and log n are roughly

equal “to top order” on average, thus giving some form of (3.58) and

hence (3.57); if one could somehow invert the divisor sum operation,

one could hope to get (3.56) and thus the prime number theorem.
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(Looking at the next highest order terms in (3.60), (3.62), we see

that we expect τ(n) to in fact be slightly larger than log n on the

average, and so Λ(n) should be slightly less than 1 on the average.

There is indeed a slight effect of this form; for instance, it is possible

(using the prime number theorem) to prove∑
d≤y

Λ(d)

d
= log y − γ + o(1),

which should be compared with (3.61).)

One can partially translate the above discussion into the lan-

guage of Dirichlet series, by transforming various arithmetical func-

tions f(n) to their associated Dirichlet series

F (s) :=

∞∑
n=1

f(n)

ns
,

ignoring for now the issue of convergence of this series. By definition,

the constant function 1 transforms to the Riemann zeta function ζ(s).

Taking derivatives in s, we see (formally, at least) that if f(n) has

Dirichlet series F (s), then f(n) log n has Dirichlet series −F ′(s); thus,

for instance, log n has Dirichlet series −ζ ′(s).
Most importantly, though, if f(n), g(n) have Dirichlet series F (s), G(s)

respectively, then their Dirichlet convolution f∗g(n) :=
∑
d|n f(d)g(nd )

has Dirichlet series F (s)G(s); this is closely related to the well-known

ability of the Fourier transform to convert convolutions to pointwise

multiplication. Thus, for instance, τ(n) has Dirichlet series ζ(s)2.

Also, from (3.54) and the preceding discussion, we see that Λ(n) has

Dirichlet series −ζ ′(s)/ζ(s) (formally, at least). This already suggests

that the von Mangoldt function will be sensitive to the zeroes of the

zeta function.

An integral test computation closely related to (3.61) gives the

asymptotic

ζ(s) =
1

s− 1
+ γ +O(s− 1)

for s close to one (and Re(s) > 1, to avoid issues of convergence). This

implies that the Dirichlet series −ζ ′(s)/ζ(s) for Λ(n) has asymptotic

−ζ ′(s)
ζ(s)

=
1

s− 1
− γ +O(s− 1)
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thus giving support to (3.56); similarly, the Dirichlet series for log n

and τ(n) have asymptotic

−ζ ′(s) =
1

(s− 1)2
+O(1)

and

ζ(s)2 =
1

(s− 1)2
+

2γ

s− 1
+O(1)

which gives support to (3.58) (and is also consistent with (3.60),

(3.62)).

Remark 3.12.1. One can connect the properties of Dirichlet series

F (s) more rigorously to asymptotics of partial sums
∑
n≤x f(n) by

means of various transforms in Fourier analysis and complex analysis,

in particular contour integration or the Hilbert transform, but this

becomes somewhat technical and we will not do so here. I will remark,

though, that asymptotics of F (s) for s close to 1 are not enough, by

themselves, to get really precise asymptotics for the sharply truncated

partial sums
∑
n≤x f(n), for reasons related to the uncertainty prin-

ciple; in order to control such sums one also needs to understand the

behaviour of F far away from s = 1, and in particular for s = 1 + it

for large real t. On the other hand, the asymptotics for F (s) for

s near 1 are just about all one needs to control smoothly truncated

partial sums such as
∑
n f(n)η(n/x) for suitable cutoff functions η.

Also, while Dirichlet series are very powerful tools, particularly with

regards to understanding Dirichlet convolution identities, and control-

ling everything in terms of the zeroes and poles of such series, they do

have the drawback that they do not easily encode such fundamental

“physical space” facts as the pointwise inequalities |µ(n)| ≤ 1 and

Λ(n) ≥ 0, which are also an important aspect of the theory.

3.12.2. Almost primes. One can hope to make the above heuristics

precise by applying the Möbius inversion formula

1n=1 =
∑
d|n

µ(d)

where µ(d) is the Möbius function, defined as (−1)k when d is the

product of k distinct primes for some k ≥ 0, and zero otherwise. In

terms of Dirichlet series, we thus see that µ has the Dirichlet series of
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1/ζ(s), and so can invert the divisor sum operation f(n) 7→
∑
d|n f(d)

(which corresponds to multiplication by ζ(s)):

f(n) =
∑
m|n

µ(m)(
∑
d|n/m

f(d)).

From (3.54) we then conclude

(3.63) Λ(n) =
∑
d|n

µ(d) log
n

d

while from τ(n) =
∑
d|n 1 we have

(3.64) 1 =
∑
d|n

µ(d)τ(
n

d
).

One can now hope to derive the prime number theorem (3.55) from

the formulae (3.60), (3.62). Unfortunately, this doesn’t quite work:

the prime number theorem is equivalent to the assertion

(3.65)
∑
n≤x

(Λ(n)− 1) = o(x),

but if one inserts (3.63), (3.64) into the left-hand side of (3.65), one

obtains ∑
d≤x

µ(d)
∑

m≤x/d

(logm− τ(m)),

which if one then inserts (3.60), (3.62) and the trivial bound µ(d) =

O(1), leads to

2Cx
∑
d≤x

µ(d)

d
+O(x).

Using the elementary inequality

(3.66) |
∑
d≤x

µ(d)

d
| ≤ 1,

(see [Ta2010b]), we only obtain a bound of O(x) for (3.65) instead of

o(x). (A refinement of this argument, though, shows that the prime

number theorem would follow if one had the asymptotic
∑
n≤x µ(n) =

o(x), which is in fact equivalent to the prime number theorem.)
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We remark that if one computed
∑
n≤x τ(n) or

∑
n≤x Λ(n) by the

above methods, one would eventually be led to a variant of (3.66),

namely

(3.67)
∑
d≤x

µ(d)

d
log

x

d
= O(1),

which is an estimate which will be useful later.

So we see that when trying to sum the von Mangoldt function Λ

by elementary means, the error term O(x) overwhelms the main term

x. But there is a slight tweaking of the von Mangoldt function, the

second von Mangoldt function Λ2, that increases the size of the main

term to 2x log x while keeping the error term at O(x), thus leading

to a useful estimate; the price one pays for this is that this function

is now a proxy for the almost primes rather than the primes. This

function is defined by a variant of (3.63), namely

(3.68) Λ2(n) =
∑
d|n

µ(d) log2 n

d
.

It is not hard to see that Λ2(n) vanishes once n has at least three

distinct prime factors (basically because the quadratic function x 7→
x2 vanishes after being differentiated three or more times). Indeed,

one can easily verify the identity

(3.69) Λ2(n) = Λ(n) log n+ Λ ∗ Λ(n)

(which corresponds to the Dirichlet series identity ζ ′′(s)/ζ(s) = −(−ζ ′(s)/ζ(s))′+

(−ζ ′(s)/ζ(s))2); the first term Λ(n) log n is mostly concentrated on

primes, while the second term Λ ∗ Λ(n) is mostly concentrated on

semiprimes (products of two distinct primes).

Now let us sum Λ2(n). In analogy with the previous discussion,

we will do so by comparing the function log2 n with something in-

volving the divisor function. In view of (3.58), it is reasonable to try

the approximation

log2 n ≈ τ(n) log n;

from the identity

(3.70) 2 log n =
∑
d|n

µ(d)τ(
n

d
) log

n

d
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(which corresponds to the Dirichlet series identity −2ζ ′(s) = 1
ζ(s) −

(ζ2(s))′) we thus expect

(3.71) Λ2(n) ≈ 2 log n.

Now we make these heuristics more precise. From the integral

test we have∑
n≤x

log2 n = x log2 x+ C1x log x+ C2x+O(log2 x)

while from (3.62) and summation by parts one has∑
n≤x

τ(n) log n = x log2 x+ C3x log x+ C4x+O(
√
x log x)

where C1, C2, C3, C4 are explicit absolute constants whose exact value

is not important here. Thus

(3.72)
∑
n≤x

(log2 n− τ(n) log n) = C5x log x+ C6x+O(
√
x log x)

for some other constants C5, C6.

Meanwhile, from (3.68), (3.70) one has∑
n≤x

(Λ2(n)− 2 log(n)) =
∑
d≤x

µ(d)
∑

m≤x/d

log2 n− τ(n) log n;

applying (3.72), (3.66), (3.67) we see that the right-hand side is O(x).

Computing
∑
n≤x log n by the integral test, we deduce the Selberg

symmetry formula

(3.73)
∑
n≤x

Λ2(n) = 2x log x+O(x).

One can view (3.73) as the “almost prime number theorem” - the

analogue of the prime number theorem for almost primes.

The fact that the almost primes have a relatively easy asymptotic,

while the genuine primes do not, is a reflection of the parity problem

in sieve theory; see Section 3.10 of Structure and Randomness for

further discussion. The symmetry formula is however enough to get

“within a factor of two” of the prime number theorem: if we discard
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the semiprimes Λ∗Λ from (3.69), we see that Λ(n) log n ≤ Λ2(n), and

thus ∑
n≤x

Λ(n) log n ≤ 2x log x+O(x)

which by a summation by parts argument leads to

0 ≤
∑
n≤x

Λ(n) ≤ 2x+O(
x

log x
),

which is within a factor of 2 of (3.55) in some sense.

One can “twist” all of the above arguments by a Dirichlet char-

acter χ. For instance, (3.68) twists to

Λ2(n)χ(n) =
∑
d|n

µ(d)χ(d) log2 n

d
χ(
n

d
).

On the other hand, if χ is a non-principal character of modulus q,

then it has mean zero on any interval with length q, and it is then

not hard to establish the asymptotic∑
n≤y

log2 nχ(n) = Oq(log2 y).

This soon leads to the twisted version of (3.73):

(3.74)
∑
n≤x

Λ2(n)χ(n) = Oq(x),

thus almost primes are asymptotically unbiased with respect to non-

principal characters.

From the multiplicative Fourier analysis of Dirichlet characters

modulo q (and the observation that Λ2 is quite small on residue classes

not coprime to q) one then has an “almost prime number theorem in

arithmetic progressions”:∑
n≤x:n=a mod q

Λ2(n) =
2

φ(q)
x log x+Oq(x).

As before, this lets us come within a factor of two of the actual prime

number theorem in arithmetic progressions:∑
n≤x:n=a mod q

Λ(n) ≤ 2

φ(q)
x+Oq(

x

log x
).
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One can also twist things by the completely multiplicative func-

tion n 7→ nit, but with the caveat that the approximation 2 log n to

Λ2(n) can locally correlate with nit. Thus for instance one has∑
n≤x

(Λ2(n)− 2 log n)χ(n)nit = Oq(x)

for any fixed t and χ; in particular, if χ is non-principal, one has∑
n≤x

Λ2(n)χ(n)nit = Oq(x).

3.12.3. The all-or-nothing dichotomy. To summarise so far, the

almost primes (as represented by Λ2) are quite uniformly distributed.

These almost primes can be split up into the primes (as represented

by Λ(n) log n) and the semiprimes (as represented by Λ∗Λ(n)), thanks

to (3.69).

One can rewrite (3.69) as a recursive formula for Λ:

(3.75) Λ(n) =
1

log n
Λ2(n)− 1

log n
Λ ∗ Λ(n).

One can also twist this formula by a character χ and/or a completely

multiplicative function n 7→ nit, thus for instance

(3.76) Λχ(n) =
1

log n
Λ2χ(n)− 1

log n
Λχ ∗ Λχ(n).

This recursion, combined with the uniform distribution properties on

Λ2, lead to various all-or-nothing dichotomies for Λ. Suppose, for

instance, that Λχ behaves like a constant c on the average for some

non-principal character χ:

Λχ(n) ≈ c.

Then (from (3.58)) we expect Λχ ∗ Λχ to behave like c2 log n, thus

1

log n
Λχ ∗ Λχ(n) ≈ c2.

On the other hand, from (3.74), 1
lognΛ2(n) is asymptotically uncor-

related with χ:
1

log n
Λ2χ ≈ 0.

Putting all this together, one obtains

c ≈ −c2
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which suggests that c must be either close to 0, or close to −1.

Basically, the point is that there are only two equilibria for the

recursion (3.76). One equilibrium occurs when Λ is asymptotically

uncorrelated with χ; the other is when it is completely anti-correlated

with χ, so that Λ(n) is supported primarily on those n for which χ(n)

is close to −1. Note in the latter case χ(n) ≈ −1 for most primes

n, and thus χ(n) ≈ +1 for most semiprimes n, thus leading to an

equidistribution of χ(n) for almost primes (weighted by Λ2). Any

intermediate distribution of Λχ would be inconsistent with the distri-

bution of Λ2χ. (In terms of Dirichlet series, this assertion corresponds

to the fact that the L-function of χ either has a zero of order 1, or a

zero of order 0 (i.e. not a zero at all) at s = 1.)

A similar phenomenon occurs when twisting Λ by nit; basically,

the average value of (Λ(n)−1)nit must asymptotically either be close

to 0, or close to −1; no other asymptotic ends up being compatible

with the distribution of (Λ2(n)−2 log n)nit. (Again, this corresponds

to the fact that the Riemann zeta function has a zero of order 1 or

0 at 1 + it.) More generally, the average value of (Λ(n) − 1)χ(n)nit

must asymptotically approach either 0 or −1.

Remark 3.12.2. One can make the above heuristics precise either

by using Dirichlet series (and analytic continuation, and the theory

of zeroes of meromorphic functions), or by smoothing out arithmetic

functions such as Λχ by a suitable multiplicative convolution with

a mollifier (as is basically done in elementary proofs of the prime

number theorem); see also [GrSo2007] for a closely related theory.

We will not pursue these details here, however.

3.12.4. Dueling conspiracies. In the previous section we have seen

(heuristically, at least), that the von Mangoldt function Λ(n) (or more

precisely, Λ(n) − 1) will either have no correlation, or a maximal

amount of anti-correlation, with a completely multiplicative function

such as χ(n), nit, or χ(n)nit. On the other hand, it is not possible

for this function to maximally anti-correlate (or to conspire) with

two such functions; thus the presence of one conspiracy excludes the

presence of all others.



498 3. Expository articles

Suppose for instance that we had two distinct non-principal char-

acters χ, χ′ for which one had maximal anti-correlation:

Λ(n)χ(n),Λ(n)χ′(n) ≈ −1.

One could then combine the two statements to obtain

Λ(n)(χ(n) + χ′(n)) ≈ −2.

Meanwhile, 1
lognΛ2(n) doesn’t correlate with either χ or χ′. It will

be convenient to exploit this to normalise Λ, obtaining

(Λ(n)− 1

2 log n
Λ2(n))(χ(n) + χ′(n)) ≈ −2.

(Note from (3.56), (3.71) that we expect Λ(n) − 1
2 lognΛ2(n) to have

mean zero.)

On the other hand, since 0 ≤ Λ(n) log n ≤ Λ2(n), one has

|Λ(n)− 1

2 log n
Λ2(n)| ≤ 1

2 log n
Λ2(n)

and hence by the triangle inequality

Λ2(n)|χ(n) + χ′(n)| ' 4 log n

in the sense that averages of the left-hand side should be at least

as large as averages of the right-hand side. From this, (3.71), and

Cauchy-Schwarz, one thus expects

Λ2(n)|χ(n) + χ′(n)|2 ' 8 log n.

But if one expands out the left-hand side using (3.71), (3.74), one

only ends up with 4 log n+Oq(1) on the average, a contradiction for

n sufficiently large.

Remark 3.12.3. The above argument belongs to a family of L2-

based arguments which go by various names (almost orthogonality,

TT ∗, large sieve, etc.). The L2 argument can more generally be

used to establish square-summability estimates on averages such as
1
x

∑
n≤x Λ(n)χ(n) as χ varies, but we will not make this precise here.

As one consequence of the above arguments, one can show that

Λ(n) cannot maximally anti-correlate with any non-real character χ,

since (by the reality of Λ) it would then also maximally anti-correlate

with the complex conjugate χ, which is distinct from χ. A similar
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argument shows that Λ(n) cannot maximally anti-correlate with nit

for any non-zero t, a fact which can soon lead to the prime num-

ber theorem, either by Dirichlet series methods, by Fourier-analytic

means, or by elementary means. (Sketch of Fourier-analytic proof:

L2 methods provide L2-type bounds on the averages of Λ(n)nit in t,

while the above arguments show that these averages are also small in

L∞. Applying (3.75) a few times to take advantage of the smoothing

effects of convolution, one eventually concludes that these averages

can be made arbitrarily small in L1 asymptotically, at which point

the prime number theorem follows from Fourier inversion.)

Remark 3.12.4. There is a slightly different argument of an L1

nature rather than an L2 nature (i.e. using tools such as the triangle

inequality, union bound, etc.) that can also achieve similar results.

For instance, suppose that Λ(n) maximally anti-correlates with χ

and χ′. Then χ(n), χ′(n) ≈ −1 for most primes n, which implies that

χχ′(n) ≈ +1 for most primes n, which is incompatible with the all-or-

nothing dichotomy unless χχ′ is principal. This is an alternate way to

exclude correlation with non-real characters. Similarly, if Λ(n)nit ≈
−1, then Λ(n)n2it ≈ +1, which is also incompatible with the zero-one

law; this is essentially the method underlying the standard proof of

the prime number theorem (which relates ζ(1 + it) with ζ(1 + 2it)).

3.12.5. Quadratic characters. The one difficult scenario to elimi-

nate is that of maximal anti-correlation with a real non-principal (i.e.

quadratic) character χ, thus

Λ(n)χ(n) ≈ −1.

This scenario implies that the quantity

L(1, χ) :=

∞∑
n=1

χ(n)

n

vanishes. Indeed, if one starts with the identity

log nχ(n) =
∑
d|n

Λχ(d)χ(
n

d
)

and sums in n, one sees that∑
n≤x

log nχ(n) =
∑

d,m:dm≤x

Λχ(d)χ(m).
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The left-hand side is Oq(log x) by the mean zero and periodicity prop-

erties of χ. To estimate the right-hand side, we use the hyperbola

method and rewrite it as∑
m≤M

χ(m)
∑

d≤x/m

Λχ(d) +
∑

d≤x/M

Λχ(d)
∑

M<m≤x/d

χ(m)

for some parameter M (sufficiently slowly growing in x) to be opti-

mised later. Writing
∑
d≤x/m Λχ(d) = (−1+oq(1))x/m and

∑
M<m≤x/d χ(m) =

Oq(1), we can express this as

x(
∑
m≤M

χ(m)

m
+ oq(1)) +Oq(x/M);

sending x→∞ (and M →∞ at a slower rate) we conclude L(1, χ) =

0 as required.

It is remarkably difficult to show that L(1, χ) does not, in fact,

vanish. One way to do this is to use the class number formula, that

relates this quantity to the class number of the quadratic number

field Q(
√
−d) associated to the conductor d of χ, together with some

related number-theoretic quantities. A more elementary (but signifi-

cantly weaker) method proceeds by using the easily verified fact that

the convolution 1∗χ is non-negative, and is at least 1 on the squares;

this should be interpreted as a fact from algebraic number theory, and

basically corresponds to the fact that the number of representations

of an integer n as the norm x2 + dy2 of an integer in Z(
√
d) (or more

generally, as the norm of an ideal in that ring) is non-negative, and

is at least 1 on the squares. In particular we have∑
n≤x

1 ∗ χ(n)√
n

≥ 1

2
log x+O(1).

On the other hand, from the hyperbola method we can express the

left-hand side as

(3.77)
∑
d≤
√
x

χ(d)√
d

∑
m≤x/d

1√
m

+
∑
m<
√
x

1√
m

∑
√
x<d≤x/m

χ(d)√
d
.

From the mean zero and periodicity properties of χ we have
∑
√
x<d≤x/m

χ(d)√
d

=

Oq(x
−1/4), so the second term in (3.77) is Oq(1). Meanwhile, from
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the midpoint rule,
∑
m≤y

1√
m

= 2
√
y− 3

2 +O(1/
√
y), and so the first

term in (3.77) is

2
√
x
∑
d≤
√
x

χ(d)

d
+O(|

∑
d≤
√
x

χ(d)√
d
|) +O(1) = 2

√
xL(1, χ) +O(1).

Putting all this together we have

1

2
log x+O(1) ≤ 2

√
xL(1, χ) +Oq(1),

which leads to a contradiction as x→∞ if L(1, χ) vanishes.

Note in fact that the above argument shows that L(1, χ) is pos-

itive. If one carefully computes the dependence of the above ar-

gument on the modulus q, one obtains a lower bound of the form

L(1, χ) ≥ exp(−q1/2+o(1)), which is quite poor. Using a non-trivial

improvement on the error term in counting lattice points under the

hyperbola (or better still, by smoothing the sum
∑
n≤x), one can im-

prove this a bit, to L(1, χ) ≥ q−O(1). In contrast, the class number

method gives a bound L(1, χ) ≥ q−1/2+o(1).

We can improve this even further for all but at most one real

primitive character χ:

Theorem 3.12.5 (Siegel’s theorem). For every ε > 0, one has

L(1, χ) �ε q
−ε for all but at most one real primitive character χ,

where the implied constant is effective, and q is the modulus of χ.

Throwing in this (hypothetical) one exceptional character, we

conclude that L(1, χ)�ε q
−ε for all real primitive characters χ, but

now the implied constant is ineffective, which is the usual way in

which Siegel’s theorem is formulated (but the above nearly effective

refinement can be obtained by the same methods). It is a major open

problem in the subject to eliminate this exceptional character and

recover an effective estimate for some ε < 1/2.

Proof. Let ε > 0 (which we can assume to be small), and let c > 0

be a small number depending (effectively) on ε to be chosen later.

Our task is to show that L(1, χ) ≥ cq−ε for all but at most one

primitive real character χ. Note we may assume q is large (effectively)

depending on ε, as the claim follows from the previous bounds on

L(1, χ) otherwise.
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Suppose then for contradiction that L(1, χ) < cq−ε and L(1, χ′) <

c(q′)−ε for two distinct primitive real characters χ, χ′ of (large) mod-

ulus q, q′ respectively.

We begin by modifying the proof that L(1, χ) was positive, which

relied (among other things) on the observation that 1 ∗χ, and equals

1 at 1. In particular, one has

(3.78)
∑
n≤x

1 ∗ χ(n)

ns
≥ 1

for any x ≥ 1 and any real s. (One can get slightly better bounds by

exploiting that 1 ∗ χ is also at least 1 on square numbers, as before,

but this is really only useful for s ≤ 1/2, and we are now going to

take s much closer to 1.)

On the other hand, one has the asymptotics∑
n≤x

1

ns
= ζ(s) +

x1−s

1− s
+O(x−s)

for any real s close (but not equal) to 1, and similarly∑
n≤x

χ(n)

ns
= L(s, χ) +O(qO(1)x−s)

for any real s close to 1; similarly for χ′, χχ′. From the hyperbola

method, we can then conclude

(3.79)
∑
n≤x

1 ∗ χ(n)

ns
= ζ(s)L(s, χ) +

x1−s

1− s
L(1, χ) +O(qO(1)x0.5−s)

for all real s sufficiently close to 1. Indeed, one can expand the left-

hand side of (3.79) as∑
d≤
√
x

χ(d)

ds

∑
m≤x/d

1

ms
+
∑
m<
√
x

1

ms

∑
√
x<d≤x/m

χ(d)

ds

and the claim then follows from the previous asymptotics. (One can

improve the error term by smoothing the summation, but we will not

need to do so here.)

Now set x = CqC for a large absolute constant C. If 0.99 ≤ s < 1,

then the error term in O(qO(1)x0.5−s) is then at most 1/2 (say) if C
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is large enough. We conclude from (3.78) that

ζ(s)L(s, χ) ≥ 1

2
−O(

qO(1−s)

1− s
L(1, χ))

for 0.99 ≤ s < 1. Since L(1, χ) ≤ cq−ε and c is assumed small

(depending on ε), this implies that ζ(s)L(s, χ) is positive in the range

L(1, χ)� 1− s� ε

(this can be seen by checking the cases 1 − s ≤ 1/ log q and 1 − s >
1/ log q separately). On the other hand, ζ(s)L(s, χ) has a simple pole

at s = 1 with positive residue, and is thus negative for s < 1 extremely

close to 1. By the intermediate value theorem, we conclude that

L(s, χ) has a zero for some s = 1 − O(L(1, χ)). Conversely, it is not

difficult (using summation by parts) to show that L′(s, χ) = O(log2 q)

for s = 1−O(1/ log q), and so by the mean value theorem we see that

the zero of L(s, χ) must also obey 1 − s � L(1, χ)/ log2 q. Thus

L(s, χ) has a zero for some s < 1 with

(3.80) L(1, χ)/ log2 q � 1− s� L(1, χ).

Similarly, L(s′, χ′) has a zero for some s′ < 1 with

(3.81) L(1, χ′)/ log2 q′ � 1− s′ � L(1, χ′).

Now, we consider the function

f := 1 ∗ χ ∗ χ′ ∗ χχ′.

One can also show that f is non-negative and equals 1 at 1, thus∑
n≤x

f(n)

ns
≥ 1.

(The algebraic number theory interpretation of this positivity is that

f(n) is the number of representations of n as the norm of an ideal in

the biquadratic field generated by
√
q and

√
q′.)

Also, by (a more complicated version of) the derivation of (3.79),

one has∑
n≤x

f(n)

ns
= ζ(s)L(s, χ)L(s, χ′)L(s, χχ′)+

x1−s

1− s
L(1, χ)L(1, χ′)L(1, χχ′)+O((qq′)O(1)x0.9−s)
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(say). Arguing as before, we conclude that

ζ(s)L(s, χ)L(s, χ′)L(s, χχ′) ≥ 1

2
−O(

(qq′)O(1−s)

1− s
L(1, χ)L(1, χ′)L(1, χχ′))

for 0.99 ≤ s < 1. Using the bound L(1, χχ′)� log(qq′) (which can be

established by summation by parts), we conclude that ζ(s)L(s, χ)L(s, χ′)L(s, χχ′)

is positive in the range

L(1, χ)L(1, χ′) log(qq′)� 1− s� ε.

Since we already know L(s, χ) and L(s′, χ′) have zeroes for some s, s′

obeying (3.80), (3.81)

L(1, χ)

log2 q
,
L(1, χ′)

log2 q′
� L(1, χ)L(1, χ′) log(qq′);

taking geometric means and rearranging we obtain

L(1, χ)L(1, χ′)� log(qq′)−O(1).

But this contradicts the hypotheses L(1, χ) ≤ cq−ε, L(1, χ′) ≤ c(q′)−ε
if c is small enough. �

Remark 3.12.6. Siegel’s theorem leads to a version of the prime

number theorem in arithmetic progressions known as the Siegel-Walfisz

theorem. As with Siegel’s theorem, the bounds are ineffective unless

one is allowed to exclude a single exceptional modulus q (and its mul-

tiples), in which case one has a modified prime number theorem which

favours the quadratic nonresidues mod q; see [Gr1992].

Remark 3.12.7. One can improve the effective bounds in Siegel’s

theorem if one is allowed to exclude a larger set of bad moduli. For

instance, the arguments in Section 3.12.4 allow one to establish a

bound of the form L(1, χ) � log−O(1) q after excluding at most one

q in each hyper-dyadic range 2100k ≤ q ≤ 2100k+1

for each k; one

can of course replace 100 by other exponents here, but at the cost

of worsening the O(1) term. (This is essentially an observation of

Landau.)

Notes. This article first appeared at terrytao.wordpress.com/2009/09/24.

Thanks to anonymous commenters for corrections.
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David Speyer noted the connection between Siegel’s theorem and

the classification of imaginary quadratic fields with unique factorisa-

tion.

3.13. Mazur’s swindle

Let d be a natural number. A basic operation in the topology of ori-

ented, connected, compact, d-dimensional manifolds (hereby referred

to simply as manifolds for short) is that of connected sum: given two

manifolds M,N , the connected sum M#N is formed by removing a

small ball from each manifold and then gluing the boundary together

(in the orientation-preserving manner). This gives another oriented,

connected, compact manifold, and the exact nature of the balls re-

moved and their gluing is not relevant for topological purposes (any

two such procedures give homeomorphic manifolds). It is easy to see

that this operation is associative and commutative up to homeomor-

phism, thus M#N ∼= N#M and (M#N)#O ∼= M#(N#O), where

we use M ∼= N to denote the assertion that M is homeomorphic to

N .

(It is important that the orientation is preserved; if, for instance,

d = 3, and M is a chiral 3-manifold which is chiral (thus M 6∼= −M ,

where −M is the orientation reversal of M), then the connect sum

M#M of M with itself is also chiral (by the prime decomposition;

in fact one does not even need the irreducibility hypothesis for this

claim), but M# − M is not. A typical example of an irreducible

chiral manifold is the complement of a trefoil knot. Thanks to Danny

Calegari for this example.)

The d-dimensional sphere Sd is an identity (up to homeomor-

phism) of connect sum: M#Sd ∼= M for any M . A basic result in

the subject is that the sphere is itself irreducible:

Theorem 3.13.1 (Irreducibility of the sphere). If Sd ∼= M#N , then

M,N ∼= Sd.

For d = 1 (curves), this theorem is trivial because the only con-

nected 1-manifolds are homeomorphic to circles. For d = 2 (surfaces),

the theorem is also easy by considering the genus of M,N,M#N . For

d = 3 the result follows from the prime decomposition. But for higher
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d, these ad hoc methods no longer work. Nevertheless, there is an

elegant proof of Theorem 3.13.1, due to Mazur[Ma1959], and known

as Mazur’s swindle. The reason for this name should become clear

when one sees the proof, which I reproduce below.

Suppose M#N ∼= Sd. Now consider the infinite connected sum

(M#N)#(M#N)#(M#N)# . . . .

This is an infinite connected sum of spheres, and can thus be viewed as

a half-open cylinder, which is topologically equivalent to a sphere with

a small ball removed; alternatively, one can contract the boundary at

infinity to a point to recover the sphere Sd. On the other hand, by

using the associativity of connected sum (which will still work for the

infinite connected sum, if one thinks about it carefully), the above

manifold is also homeomorphic to

M#(N#M)#(N#M)# . . .

which is the connected sum of M with an infinite sequence of spheres,

or equivalently M with a small ball removed. Contracting the small

balls to a point, we conclude that M ∼= Sd, and a similar argument

gives N ∼= Sd.

A typical corollary of Theorem 3.13.1 is a generalisation of the

Jordan curve theorem: any locally flat embedded copy of Sd−1 in

Sd divides the sphere Sd into two regions homeomorphic to balls Bd.

(Some sort of regularity hypothesis, such as local flatness, is essential,

thanks to the counterexample of the Alexander horned sphere. If one

assumes smoothness instead of local flatness, the problem is known

as the Schönflies problem, and is apparently quite subtle, especially

in the four-dimensional case d = 4.)

One can ask whether there is a way to prove Theorem 3.13.1 for

general d without recourse to the infinite sum swindle. I do not know

the complete answer to this, but some evidence against this hope can

be seen by noting that if one works in the smooth category instead

of the topological category (i.e. working with smooth manifolds, and

only equating manifolds that are diffeomorphic, and not merely home-

omorphic), then the exotic spheres in five and higher dimensions pro-

vide a counterexample to the smooth version of Theorem 3.13.1: it is
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possible to find two exotic spheres whose connected sum is diffeomor-

phic to the standard sphere. (Indeed, in five and higher dimensions,

the exotic sphere structures on Sd form a finite abelian group under

connect sum, with the standard sphere being the identity element.

The situation in four dimensions is much less well understood.) The

problem with the swindle here is that the homeomorphism generated

by the infinite number of applications of the associativity law is not

smooth when one identifies the boundary with a point.

The basic idea of the swindle - grouping an alternating infinite

sum in two different ways - also appears in a few other contexts. Most

classically, it is used to show that the sum 1− 1 + 1− 1 + . . . does not

converge in any sense which is consistent with the infinite associative

law, since this would then imply that 1 = 0; indeed, one can view

the swindle as a dichotomy between the infinite associative law and

the presence of non-trivial cancellation. (In the topological manifold

category, one has the former but not the latter, whereas in the case

of 1 − 1 + 1 − 1 + . . ., one has the latter but not the former.) The

alternating series test can also be viewed as a variant of the swindle.

Another variant of the swindle arises in the proof of the Cantor-

BernsteinSchröder theorem. Suppose one has two sets A,B, together

with injections from A to B and from B to A. The first injection

leads to an identification B ∼= C ]A for some set C, while the second

injection leads to an identification A ∼= D ]B. Iterating this leads to

identifications

A ∼= (D ] C ]D ] . . .) ]X
and

B ∼= (C ]D ] C ] . . .) ]X
for some additional set X. Using the identification D ] C ∼= C ] D
then yields an explicit bijection between A and B.

Notes. This article first appeared at terrytao.wordpress.com/2009/10/05.

Thanks to Jan, Peter, and an anonymous commenter for corrections.

Thanks to Danny Calegari for telling me about the swindle, while

we were both waiting to catch an airplane.

Several commenters provided further examples of swindle-type

arguments. Scott Morrison noted that Mazur’s argument also shows
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that non-trivial knots do not have inverses: one cannot untie a knot

by tying another one. Qiaochu Yuan provided a swindle argument

that showed that GL(H) is contractible for any infinite-dimensional

Hilbert space H. In a similar spirit, Pace Nielsen recalled the Eilen-

berg swindle that shows that for every projective module P , there

exists a free module F with P ⊕F ≡ F . Tim Gowers also mentioned

Pelczynski’s decomposition method in the theory of Banach spaces as

a similar argument.

3.14. Grothendieck’s definition of a group

In his wonderful article [Th1994],, Bill Thurston describes (among

many other topics) how one’s understanding of given concept in math-

ematics (such as that of the derivative) can be vastly enriched by

viewing it simultaneously from many subtly different perspectives; in

the case of the derivative, he gives seven standard such perspectives

(infinitesimal, symbolic, logical, geometric, rate, approximation, mi-

croscopic) and then mentions a much later perspective in the sequence

(as describing a flat connection for a graph).

One can of course do something similar for many other funda-

mental notions in mathematics. For instance, the notion of a group

G can be thought of in a number of (closely related) ways, such as

the following:

(0) Motivating examples: A group is an abstraction of the

operations of addition/subtraction or multiplication/division

in arithmetic or linear algebra, or of composition/inversion

of transformations.

(1) Universal algebraic: A group is a set G with an identity

element e, a unary inverse operation ·−1 : G → G, and a

binary multiplication operation · : G×G → G obeying the

relations (or axioms) e · x = x · e = x, x · x−1 = x−1 · x = e,

(x · y) · z = x · (y · z) for all x, y, z ∈ G.

(2) Symmetric: A group is all the ways in which one can trans-

form a space V to itself while preserving some object or

structure O on this space.
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(3) Representation theoretic: A group is identifiable with a

collection of transformations on a space V which is closed

under composition and inverse, and contains the identity

transformation.

(4) Presentation theoretic: A group can be generated by a

collection of generators subject to some number of relations.

(5) Topological: A group is the fundamental group π1(X) of

a connected topological space X.

(6) Dynamic: A group represents the passage of time (or of

some other variable(s) of motion or action) on a (reversible)

dynamical system.

(7) Category theoretic: A group is a category with one ob-

ject, in which all morphisms have inverses.

(8) Quantum: A group is the classical limit q → 0 of a quan-

tum group.

• etc.

One can view a large part of group theory (and related subjects,

such as representation theory) as exploring the interconnections be-

tween various of these perspectives. As one’s understanding of the

subject matures, many of these formerly distinct perspectives slowly

merge into a single unified perspective.

From a recent talk by Ezra Getzler, I learned a more sophisticated

perspective on a group, somewhat analogous to Thurston’s example

of a sophisticated perspective on a derivative (and coincidentally, flat

connections play a central role in both):

(37) Sheaf theoretic: A group is identifiable with a (set-valued)

sheaf on the category of simplicial complexes such that the

morphisms associated to collapses of d-simplices are bijec-

tive for d > 1 (and merely surjective for d ≤ 1).

This interpretation of the group concept is apparently due to

Grothendieck, though it is motivated also by homotopy theory. One

of the key advantages of this interpretation is that it generalises eas-

ily to the notion of an n-group (simply by replacing 1 with n in

(37)), whereas the other interpretations listed earlier require a certain
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amount of subtlety in order to generalise correctly (in particular, they

usually themselves require higher-order notions, such as n-categories).

The connection of (37) with any of the other perspectives of a

group is elementary, but not immediately obvious; I enjoyed working

out exactly what the connection was, and thought it might be of

interest to some readers here, so I reproduce it below the fold.

3.14.1. Flat connections. To see the relationship between (37) and

more traditional concepts of a group, such as (1), we will begin by

recalling the machinery of flat connections.

Let G be a group, X be a topological space. A principal G-

connection ω on X can be thought of as an assignment of a group

element ω(γ) ∈ G to every path γ in X which obey the following four

properties:

• Invariance under reparameterisation: if γ′ is a reparameter-

isation of γ, then ω(γ) = ω(γ′).

• Identity: If γ is a constant path, then ω(γ) is the identity

element.

• Inverse: If −γ is the reversal of a path γ, then ω(−γ) is the

inverse of ω(γ).

• Groupoid homomorphism: If γ2 starts where γ1 ends (so

that one can define the concatenation γ1 + γ2), then ω(γ1 +

γ2) = ω(γ2)ω(γ1). (Depending on one’s conventions, one

may wish to reverse the order of the group multiplication

on the right-hand side.)

Intuitively, ω(γ) represents a way to use the group G to connect

(or “parallel transport”) the fibre at the initial point of γ to the fibre

at the final point; see Section 1.4 of Poincaré’s Legacies, Vol. II for

more discussion. Note that the identity property is redundant, being

implied by the other three properties.

We say that a connection ω is flat if ω(γ) is the identity ele-

ment for every “short” closed loop γ, thus strengthening the identity

property. One could define “short” rigorously (e.g. one could use

“contractible” as a substitute), but we will prefer here to leave the

concept intentionally vague.
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Typically, one studies connections when the structure group G

and the base space X are continuous rather than discrete. However,

there is a combinatorial model for connections which is suitable for

discrete groups, in which the base space X is now an (abstract) simpli-

cial complex ∆ - a vertex set V , together with a number of simplices

in V , by which we mean ordered d+ 1-tuples (x0, . . . , xd) of distinct

vertices in V for various integers d (with d being the dimension of

the simplex (x0, . . . , xd)). In our definition of a simplicial complex,

we add the requirement that if a simplex lies in the complex, then

all faces of that simplex (formed by removing one of the vertices, but

leaving the order of the remaining vertices unchanged) also lie in the

complex. We also assume a well defined orientation, in the sense that

every d+ 1-tuple {x0, . . . , xd} is represented by at most one simplex

(thus, for instance, a complex cannot contain both an edge (0, 1) and

its reversal (1, 0)). Though it will not matter too much here, one can

think of the vertex set V here as being restricted to be finite.

A path γ in a simplicial complex ∆ is then a sequence of 1-

simplices (xi, xi+1) or their formal reverses −(xi, xi+1), with the final

point of each 1-simplex being the initial point of the next. If G is

a (discrete) group, a principal G-connection ω on ∆ is then an as-

signment of a group element ω(γ) ∈ G to each such path γ, obeying

the groupoid homomorphism property and the inverse property (and

hence the identity property). Note that the reparameterisation prop-

erty is no longer needed in this abstract combinatorial model. Note

that a connection can be determined by the group elements ω(b← a)

it assigns to each 1-simplex (a, b). (I have written the simplex b← a

from right to left, as this makes the composition law cleaner.)

So far, only the 1-skeleton (i.e. the simplices of dimension at most

1) of the complex have been used. But one can use the 2-skeleton to

define the notion of a flat connection: we say that a principal G-

connection ω on ∆ is flat if the boundary of every 2-simplex (a, b, c),

oriented appropriately, is assigned the identity element, or more pre-

cisely that ω(c← a)−1ω(c← b)ω(b← a) = e, or in other words that

ω(c ← a) = ω(c ← b)ω(b ← a); thus, in this context, a “short loop”
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means a loop that is the boundary of a 2-simplex. Note that this cor-

responds closely to the topological concept of a flat connection when

applied to, say, a triangulated manifold.

Fix a group G. Given any simplicial complex ∆, let O(∆) be the

set of flat connections on ∆. One can get some feeling for this set by

considering some basic examples:

• If ∆ is a single 0-dimensional simplex (i.e. a point), then

there is only the trivial path, which must be assigned the

identity element e of the group. Thus, in this case, O(∆)

can be identified with {e}.

• If ∆ is a 1-dimensional simplex, say (0, 1), then the path

from 0 to 1 can be assigned an arbitrary group element

ω(1 ← 0) ∈ G, and this is the only degree of freedom in

the connection. So in this case, O(∆) can be identified with

G.

• Now suppose ∆ is a 2-dimensional simplex, say (0, 1, 2).

Then the group elements ω(1 ← 0) and ω(2 ← 1) are arbi-

trary elements of G, but ω(2 ← 0) is constrained to equal

ω(2 ← 1)ω(1 ← 0). This determines the entire flat connec-

tion, so O(∆) can be identified with G2.

• Generalising this example, if ∆ is a k-dimensional simplex,

then O(∆) can be identified with Gk.

An important operation one can do on flat connections is that of

pullback. Let φ : ∆→ ∆′ be a morphism from one simplicial complex

∆ to another ∆′; by this, we mean a map from the vertex set of

∆ to the vertex set of ∆′ such that every simplex in ∆ maps to a

simplex in ∆′ in an order preserving manner (though note that φ is

allowed to be non-injective, so that the dimension of the simplex can

decrease by mapping adjacent vertices to the same vertex). Given

such a morphism, and given a flat connection ω′ on ∆′, one can then

pull back that connection to yield a flat connection φ∗ω′ on ∆, defined

by the formula

φ∗ω′(w ← v) := ω′(φ(w)← φ(v))
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for any 1-simplex (v, w) in ∆, with the convention that ω′(u ← u)

is the identity for any u. It is easy to see that this is still a flat

connection. Also, if φ : ∆ → ∆′ and ψ : ∆′ → ∆′′ are morphisms,

then the operations of pullback by ψ and then by φ compose to equal

the operation of pullback by ψ◦φ: φ∗ψ∗ = (ψ◦φ)∗. In the language of

category theory, pullback is a contravariant functor from the category

of simplicial complexes to the category of sets (with each simplicial

complex being mapped to its set of flat connections).

A special case of a morphism is an inclusion morphism ι : ∆→ ∆′

to a simplicial complex ∆′ from a subcomplex ∆. The associated

pullback operation is the restriction operation, that maps a flat con-

nection ω′ on ∆′ to its restriction ω′ �∆ to ∆.

3.14.2. Sheaves. We currently have a set O(∆) of flat connections

assigned to each simplicial complex ∆, together with pullback maps

(and in particular, restriction maps) connecting these sets to each

other. One can easily observe that this system of structures obeys

the following axioms:

• (Identity) There is only one flat connection on a point.

• (Locality) If ∆ = ∆1 ∪ ∆2 is the union of two simplicial

complexes, then a flat connection on ∆ is determined by its

restrictions to ∆1 and ∆2. In other words, the map ω 7→
(ω �∆1 , ω �∆2) is an injection from O(∆) to O(∆1)×O(∆2).

• (Gluing) If ∆ = ∆1 ∪∆2, and ω1, ω2 are flat connections on

∆1,∆2 which agree when restricted to ∆1 ∩∆2, (and if the

orientations of ∆1,∆2 on the intersection ∆1 ∩ ∆2 agree)

then there exists a flat connection ω on ∆ which agrees

with ω1, ω2 on ∆1,∆2. (Note that this gluing of ω1 and

ω2 is unique, by the previous axiom. It is important that

the orientations match; we cannot glue (0, 1) to (1, 0), for

instance.)

One can consider more abstract assignments of sets to simpli-

cial complexes, together with pullback maps, which obey these three

axioms. A system which obeys the first two axioms is known as a pre-

sheaf, while a system that obeys all three is known as a sheaf. (One

can also consider pre-sheaves and sheaves on more general topological
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spaces than simplicial complexes, for instance the spaces of smooth

(or continuous, or holomorphic, etc.) functions (or forms, sections,

etc.) on open subsets of a manifold form a sheaf.)

Thus, flat connections associated to a group G form a sheaf. But

flat connections form a special type of sheaf that obeys an additional

property (listed above as (37)). To explain this property, we first

consider a key example when ∆ = (0, 1, 2) is the standard 2-simplex

(together with subsimplices), and ∆′ is the subcomplex formed by

removing the 2-face (0, 1, 2) and the 1-face (0, 2), leaving only the

1-faces (0, 1), (1, 2) and the 0-faces 0, 1, 2. Then of course every flat

connection on ∆ restricts to a flat connection on ∆′. But the flatness

property ensures that this restriction is invertible: given a flat connec-

tion on ∆′, there exists a unique extension of this connection back to

∆. This is nothing more than the property, remarked earlier, that to

specify a flat connection on the 2-simplex (0, 1, 2), it suffices to know

what the connection is doing on (0, 1) and (1, 2), as the behaviour

on the remaining edge can then be deduced from the group law; con-

versely, any specification of the connection on those two 1-simplices

determines a connection on the remainder of the 2-simplex.

This observation can be generalised. Given any simplicial com-

plex ∆, define a k-dimensional collapse ∆′ of ∆ to be a simplicial

complex obtained from ∆ by removing the interior of a k-simplex, to-

gether with one of its faces; thus for instance the complex consisting

of (0, 1), (1, 2) (and subsimplices) is a 2-dimensional collapse of the

2-simplex (0, 1, 2) (and subsimplices). We then see that the sheaf of

flat connections obeys an additional axiom:

• (Grothendieck’s axiom) If ∆′ is a k-dimensional collapse of

∆, then the restriction map from O(∆) to O(∆′) is surjec-

tive for all k, and bijective for k ≥ 2.

This axiom is trivial for k = 0. For k = 1, it is true because

if an edge (and one of its vertices) can be removed from a complex,

then it is not the boundary of any 2-simplex, and the value of a

flat connection on that edge is thus completely unconstrained. (In

any event, the k = 1 case of this axiom can be deduced from the

sheaf axioms.) For k = 2, it follows because if one can remove a

2-simplex and one of its edges from a complex, then the edge is not
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the boundary of any other 2-simplex and thus the connection on that

edge only constrained to precisely be the product of the connection on

the other two edges of the 2-simplex. For k = 3, it follows because if

oen removes a 3-simplex and one of its 2-simplex faces, the constraint

associated to that 2-simplex is implied by the constraints coming

from the other three faces of the 3-simplex (I recommend drawing

a tetrahedron and chasing some loops around to see this), and so

one retains bijectivity. For k ≥ 4, the axiom becomes trivial again

because the k-simplices and k − 1-simplices have no impact on the

definition of a flat connection.

Grothendieck’s beautiful observation is that the converse holds:

if a (concrete) sheaf ∆ 7→ O(∆) obeys Grothendieck’s axiom, then it

is equivalent to the sheaf of flat connections of some group G defined

canonically from the sheaf. Let’s see how this works. Suppose we

have a sheaf ∆ 7→ O(∆), which is concrete in the sense that O(∆) is

a set, and the morphisms between these sets are given by functions. In

analogy with the preceding discussion, we’ll refer to elements of O(∆)

as (abstract) flat connections, though a priori we do not assume there

is a group structure behind these connections.

By the sheaf axioms, there is only one flat connection on a point,

which we will call the trivial connection. Now consider the space

O(0, 1) of flat connections on the standard 1-simplex (0, 1). If the

sheaf was indeed the sheaf of flat connections on a group G, then

O(0, 1) is canonically identifiable with G. Inspired by this, we will

define G to equal the space O(0, 1) of flat connections on (0, 1). The

flat connections on any other 1-simplex (u, v) can then be placed

in one-to-one correspondence with elements of G by the morphism

u 7→ 0, v 7→ 1, so flat connections on (u, v) can be viewed as being

equivalent to an element of G.

At present, G is merely a set, not a group. To make it into a

group, we need to introduce an identity element, an inverse operation,

and a multiplication operation, and verify the group axioms.

To obtain an identity element, we look at the morphism from

(0, 1) to a point, and pull back the trivial connection on that point to

obtain a flat connection e on (0, 1), which we will declare to be the
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identity element. (Note from the functorial nature of pullback that it

does not matter which point we choose for this.)

Now we define the multiplication operation. Let g, h ∈ G, then g

and h are flat connections on (0, 1). By using the morphism i 7→ i−1

from (1, 2) to (0, 1), we can pull back h to (1, 2) to create a flat

connection h̃ on (1, 2) that is equivalent to h. The restriction of g and

h̃ to the point 1 is trivial, so by the gluing axiom we can glue g and h̃

to a flat connection on the complex (0, 1), (1, 2). By Grothendieck’s

axiom, one can then uniquely extend this connection to the 2-simplex

(0, 1, 2), which can then be restricted to the edge (0, 2). Mapping this

edge back to (0, 1), we obtain an element of G, which we will define

to be hg.

This operation is closed. To verify the identity property, observe

that if g ∈ G, then by starting with the simplex (0, 1, 2) and pulling

back g under the morphism that sends 2 to 1 but is the identity on

0, 1, we obtain a flat connection on (0, 1, 2) which is equal to g on

(0, 1), equivalent to the identity on (1, 2), and is equivalent to g on

(0, 2) (after identifying (0, 2) with (0, 1)). From the definition of group

multiplication, this shows that eg = g; a similar argument (using a

slightly different morphism from (0, 1, 2) to (0, 1)) gives ge = g.

Now we establish associativity. Let f, g, h ∈ G. Using the def-

inition of multiplication, we can create a flat connection on the 2-

simplex (0, 1, 2) which equals h on (0, 1), is equivalent to g on (1, 2),

and is equivalent to gh on (0, 2). We then glue on the edge (2, 3)

and extend the flat connection to be equivalent to f on (2, 3). Us-

ing Grothendieck’s axiom and the definition of multiplication, we can

then extend the flat connection to the 2-simplex (0, 2, 3) to be equiv-

alent to f(gh) on (0, 3). By another use of that axiom, we can also

extend the flat connection to the 2-simplex (1, 2, 3), to be equivalent

to fg on (1, 3). Now that we have three of the four faces of the 3-

simplex (0, 1, 2, 3), we can now apply the k = 3 case of Grothendieck’s

axiom and extend the flat connection to the entire 3-simplex, and in

particular to the 2-simplex (0, 1, 3). Using the definition of multipli-

cation again, we thus see that f(gh) = (fg)h, giving associativity.
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Next, we establish the inverse property. It will suffice to establish

the existence of a left-inverse and a right-inverse for each group ele-

ment, since the associativity property will then guarantee that these

two inverses equal each other. We shall just establish the left-inverse

property, as the right-inverse is analogous. Let g ∈ G be arbitrary.

By the gluing axiom, one can form a flat connection on the complex

(0, 1), (0, 2) which equals g on (0, 1) and is equivalent to the identity

on (0, 2). By Grothendieck’s axiom, this can be extended to a flat

connection on (0, 1, 2); the restriction of this connection to (1, 2) is

equivalent to some element of G, which we define to be g−1. By

construction, g−1g = e as required.

We have just shown that G is a group. The last thing to do is to

show that this abstract sheaf O can be indeed identified with the sheaf

of G-flat connections. This is fairly straightforward: given an abstract

flat connection on a complex, the restriction of that connection to any

edge is equivalent to an element of G. To verify that this genuinely

determines a G-connection on that complex, we need to verify that

if (u, v) and (v, u) are both in the complex, that the group elements

g, h assigned to these edges invert each other. But we can pullback

(u, v), (v, u) to the 2-simplex (0, 1, 2) by mapping 0, 2 to u and 1 to

v, creating a flat connection that is equal to g on (0, 1), equivalent

to h on (1, 2), and equivalent to the identity on (0, 2); by definition

of multiplication or inverse we conclude that g, h invert each other as

desired.

Thus the abstract connection defines a G-connection. From the

definition of multiplication it is also clear that every 2-simplex in

the complex imposes the right relation on the three elements of G

associated to the edges of that simplex that makes the G-connection

flat. Thus we have a canonical way to associate a G-flat connection

to each abstract flat connection; the only remaining things to do are

verify that this association is bijective.

We induct on the size of the complex. If the complex is not a sin-

gle simplex, the claim follows from the induction hypothesis by view-

ing the complex as the union of two (possibly overlapping) smaller

complexes, and using the gluing and locality axioms. So we may as-

sume that the complex consists of a single simplex. If the simplex
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is 0 or 1-dimensional the claim is easy; for k ≥ 2 the claim follows

from Grothendieck’s axiom (which applies both for the abstract flat

connections (by hypothesis) and for G-flat connections (as verified

earlier)) and the induction hypothesis.

Notes. This article first appeared at terrytao.wordpress.com/2009/10/19.

Thanks to Lior, Raj, and anonymous commenters for corrections.

Raj and Ben Wieland noted the close connection to the Kan

extension property.

3.15. The “no self-defeating object” argument

A fundamental tool in any mathematician’s toolkit is that of reductio

ad absurdum: showing that a statement X is false by assuming first

that X is true, and showing that this leads to a logical contradiction.

A particulary pure example of reductio ad absurdum occurs when

establishing the non-existence of a hypothetically overpowered object

or structure X, by showing that X’s powers are “self-defeating”: the

very existence of X and its powers can be used (by some clever trick)

to construct a counterexample to that power. Perhaps the most well-

known example of a self-defeating object comes from the omnipotence

paradox in philosophy (“Can an omnipotent being create a rock so

heavy that He cannot lift it?”); more generally, a large number of

other paradoxes in logic or philosophy can be reinterpreted as a proof

that a certain overpowered object or structure does not exist.

In mathematics, perhaps the first example of a self-defeating ob-

ject one encounters is that of a largest natural number:

Proposition 3.15.1 (No largest natural number). There does not

exist a natural number N which is larger than all other natural num-

bers.

Proof. Suppose for contradiction that there was such a largest natu-

ral number N . Then N + 1 is also a natural number which is strictly

larger than N , contradicting the hypothesis that N is the largest

natural number. �
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Note the argument does not apply to the extended natural num-

ber system in which one adjoins an additional object ∞ beyond the

natural numbers, because ∞+ 1 is defined equal to ∞. However, the

above argument does show that the existence of a largest number is

not compatible with the Peano axioms.

This argument, by the way, is perhaps the only mathematical

argument I know of which is routinely taught to primary school chil-

dren by other primary school children, thanks to the schoolyard game

of naming the largest number. It is arguably one’s first exposure to

a mathematical non-existence result, which seems innocuous at first

but can be surprisingly deep, as such results preclude in advance all

future attempts to establish existence of that object, no matter how

much effort or ingenuity is poured into this task. One sees this in a

typical instance of the above schoolyard game; one player tries furi-

ously to cleverly construct some impressively huge number N , but no

matter how much effort is expended in doing so, the player is defeated

by the simple response “... plus one!” (unless, of course, N is infinite,

ill-defined, or otherwise not a natural number).

It is not only individual objects (such as natural numbers) which

can be self-defeating; structures (such as orderings or enumerations)

can also be self-defeating. (In modern set theory, one considers struc-

tures to themselves be a kind of object, and so the distinction between

the two concepts is often blurred.) Here is one example (related to,

but subtly different from, the previous one):

Proposition 3.15.2 (The natural numbers cannot be finitely enu-

merated). The natural numbers N = {0, 1, 2, 3, . . .} cannot be written

as {a1, . . . , an} for any finite collection a1, . . . , an of natural numbers.

Proof. Suppose for contradiction that such an enumeration N =

{a1, . . . , an} existed. Then consider the number a1 + . . .+an+1; this

is a natural number, but is larger than (and hence not equal to) any

of the natural numbers a1, . . . , an, contradicting the hypothesis that

N is enumerated by a1, . . . , an. �

Here it is the enumeration which is self-defeating, rather than

any individual natural number such as a1 or an. (For this post, we

allow enumerations to contain repetitions.)
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The above argument may seem trivial, but a slight modification

of it already gives an important result, namely Euclid’s theorem:

Proposition 3.15.3 (The primes cannot be finitely enumerated).

The prime numbers P = {2, 3, 5, 7, . . .} cannot be written as {p1, . . . , pn}
for any finite collection of prime numbers.

Proof. Suppose for contradiction that such an enumeration P =

{p1, . . . , pn} existed. Then consider the natural number p1 × . . . ×
pn + 1; this is a natural number larger than 1 which is not divisible

by any of the primes p1, . . . , pn. But, by the fundamental theorem

of arithmetic (or by the method of Infinite descent, which is another

classic application of reductio ad absurdum), every natural number

larger than 1 must be divisible by some prime, contradicting the hy-

pothesis that P is enumerated by p1, . . . , pn. �

Remark 3.15.4. Continuing the number-theoretic theme, the “du-

eling conspiracies” arguments in Section 3.12.4 can also be viewed as

an instance of this type of “no-self-defeating-object”; for instance, a

zero of the Riemann zeta function at 1 + it implies that the primes

anti-correlate almost completely with the multiplicative function nit,

which is self-defeating because it also implies complete anti-correlation

with n−it, and the two are incompatible. Thus we see that the prime

number theorem (a much stronger version of Proposition 3.15.3) also

emerges from this type of argument.

In this post I would like to collect several other well-known exam-

ples of this type of “no self-defeating object” argument. Each of these

is well studied, and probably quite familiar to many of you, but I feel

that by collecting them all in one place, the commonality of theme

between these arguments becomes more apparent. (For instance, as

we shall see, many well-known “paradoxes” in logic and philosophy

can be interpreted mathematically as a rigorous “no self-defeating

object” argument.)

3.15.1. Set theory. Many famous foundational results in set the-

ory come from a “no self-defeating object” argument. (Here, we shall
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be implicitly be using a standard axiomatic framework for set the-

ory, such as Zermelo-Frankel set theory ; the situation becomes differ-

ent for other set theories, much as results such as Proposition 3.15.1

changes if one uses other number systems such as the extended natu-

ral numbers.) The basic idea here is that any sufficiently overpowered

set-theoretic object is capable of encoding a version of the liar para-

dox (“this sentence is false”, or more generally a statement which can

be shown to be logically equivalent to its negation) and thus lead to a

contradiction. Consider for instance this variant of Russell’s paradox :

Proposition 3.15.5 (No universal set). There does not exist a set

which contains all sets (including itself).

Proof. Suppose for contradiction that there existed a universal set

X which contained all sets. Using the axiom schema of specification,

one can then construct the set

Y := {A ∈ X : A 6∈ A}

of all sets in the universe which did not contain themselves. As X is

universal, Y is contained in X. But then, by definition of Y , one sees

that Y ∈ Y if and only if Y 6∈ Y , a contradiction. �

Remark 3.15.6. As a corollary, there also does not exist any set Z

which contains all other sets (not including itself), because the set

X := Z ∪ {Z} would then be universal.

One can “localise” the above argument to a smaller domain than

the entire universe, leading to the important

Proposition 3.15.7 (Cantor’s theorem). Let X be a set. Then the

power set 2X := {A : A ⊂ X} of X cannot be enumerated by X, i.e.

one cannot write 2X := {Ax : x ∈ X} for some collection (Ax)x∈X of

subsets of X.

Proof. Suppose for contradiction that there existed a set X whose

power set 2X could be enumerated as {Ax : x ∈ X} for some (Ax)x∈X .

Using the axiom schema of specification, one can then construct the

set

Y := {x ∈ X : x 6∈ Ax}.
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The set Y is an element of the power set 2X . As 2X is enumerated

by {Ax : x ∈ X}, we have Y = Ay for some y ∈ X. But then by

the definition of Y , one sees that y ∈ Ay if and only if y 6∈ Ay, a

contradiction. �

As is well-known, one can adapt Cantor’s argument to the real

line, showing that the reals are uncountable:

Proposition 3.15.8 (The real numbers cannot be countably enu-

merated). The real numbers R cannot be written as {xn : n ∈ N} for

any countable collection x1, x2, . . . of real numbers.

Proof. Suppose for contradiction that there existed a countable enu-

meration of R by a sequence x1, x2, . . . of real numbers. Consider the

decimal expansion of each of these numbers. Note that, due to the

well-known “0.999 . . . = 1.000 . . .” issue, the decimal expansion may

be non-unique, but each real number xn has at most two decimal

expansions. For each n, let an ∈ {0, 1, . . . , 9} be a digit which is not

equal to the nth digit of any of the decimal expansions of xn; this

is always possible because there are ten digits to choose from and at

most two decimal expansions of xn. (One can avoid any implicit invo-

cation of the axiom of choice here by setting an to be (say) the least

digit which is not equal to the nth digit of any of the decimal expan-

sions of xn.) Then the real number given by the decimal expansion

0.a1a2a3 . . . differs in the nth digit from any of the decimal expansions

of xn for each n, and so is distinct from every xn, a contradiction. �

Remark 3.15.9. One can of course deduce Proposition 3.15.8 di-

rectly from Proposition 3.15.7, by using the decimal representation

to embed 2N into R. But notice how the two arguments have a

slightly different (though closely related) basis; the former argument

proceeds by encoding the liar paradox, while the second proceeds by

exploiting Cantor’s diagonal argument. The two perspectives are in-

deed a little different: for instance, Cantor’s diagonal argument can

also be modified to establish the Arzela-Ascoĺı theorem, whereas I do

not see any obvious way to prove that theorem by encoding the liar

paradox.

Remark 3.15.10. It is an interesting psychological phenomenon that

Proposition 3.15.8 is often considered far more unintuitive than any
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of the other propositions here, despite being in the same family of

arguments; most people have no objection to the fact that every effort

to finitely enumerate the natural numbers, for instance, is doomed to

failure, but for some reason it is much harder to let go of the belief

that, at some point, some sufficiently ingenious person will work out

a way to countably enumerate the real numbers. I am not exactly

sure why this disparity exists, but I suspect it is at least partly due

to the fact that the rigorous construction of the real numbers is quite

sophisticated and often not presented properly until the advanced

undergraduate level. (Or perhaps it is because we do not play the

game “enumerate the real numbers” often enough in schoolyards.)

Remark 3.15.11. One can also use the diagonal argument to show

that any reasonable notion of a “constructible real number” must

itself be non-constructive (this is related to the interesting number

paradox ). Part of the problem is that the question of determining

whether a proposed construction of a real number is actually well-

defined is a variant of the halting problem, which we will discuss below.

While a genuinely universal set is not possible in standard set

theory, one at least has the notion of an ordinal, which contains all the

ordinals less than it. (In the discussion below, we assume familiarity

with the theory of ordinals.) One can modify the above arguments

concerning sets to give analogous results about the ordinals. For

instance:

Proposition 3.15.12 (Ordinals do not form a set). There does not

exist a set that contains all the ordinals.

Proof. Suppose for contradiction that such a set existed. By the

axiom schema of specification, one can then find a set Ω which consists

precisely of all the ordinals and nothing else. But then Ω∪ {Ω} is an

ordinal which is not contained in Ω (by the axiom of foundation, also

known as the axiom of regularity), a contradiction. �

Remark 3.15.13. This proposition(together with the theory of or-

dinals) can be used to give a quick proof of Zorn’s lemma: see Section

2.4 for further discussion. Notice the similarity between this argument

and the proof of Proposition 3.15.1.
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Remark 3.15.14. Once one has Zorn’s lemma, one can show that

various other classes of mathematical objects do not form sets. Con-

sider for instance the class of all vector spaces. Observe that any chain

of (real) vector spaces (ordered by inclusion) has an upper bound

(namely the union or limit of these spaces); thus, if the class of all

vector spaces was a set, then Zorn’s lemma would imply the exis-

tence of a maximal vector space V . But one can simply adjoin an

additional element not already in V (e.g. {V }) to V , and contradict

this maximality. (An alternate proof: every object is an element of

some vector space, and in particular every set is an element of some

vector space. If the class of all vector spaces formed a set, then by the

axiom of union, we see that union of all vector spaces is a set also,

contradicting Proposition 3.15.5.)

One can localise the above argument to smaller cardinalities, for

instance:

Proposition 3.15.15 (Countable ordinals are uncountable). There

does not exist a countable enumeration ω1, ω2, . . . of the countable

ordinals. (Here we consider finite sets and countably infinite sets to

both be countable.)

Proof. Suppose for contradiction that there exists a countable enu-

meration ω1, ω2, . . . of the countable ordinals. Then the set Ω :=⋃
n ωn is also a countable ordinal, as is the set Ω∪ {Ω}. But Ω∪ {Ω}

is not equal to any of the ωn (by the axiom of foundation), a contra-

diction. �

Remark 3.15.16. One can show the existence of uncountable or-

dinals (e.g. by considering all the well-orderings of subsets of the

natural numbers, up to isomorphism), and then there exists a least

uncountable ordinal Ω. By construction, this ordinal consists pre-

cisely of all the countable ordinals, but is itself uncountable, much

as N consists precisely of all the finite natural numbers, but is itself

infinite (Proposition 3.15.2). The least uncountable ordinal is noto-

rious, among other things, for providing a host of counterexamples

to various intuitively plausible assertions in point set topology, and

in particular in showing that the topology of sufficiently uncountable
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spaces cannot always be adequately explored by countable objects

such as sequences.

Remark 3.15.17. The existence of the least uncountable ordinal

can explain why one cannot contradict Cantor’s theorem on the un-

countability of the reals simply by iterating the diagonal argument

(or any other algorithm) in an attempt to “exhaust” the reals. From

transfinite induction we see that the diagonal argument allows one to

assign a different real number to each countable ordinal, but this does

not establish countability of the reals, because the set of all countable

ordinals is itself uncountable. (This is similar to how one cannot con-

tradict Proposition 3.15.5 by iterating the N → N + 1 map, as the

set of all finite natural numbers is itself infinite.) In any event, even

once one reaches the first uncountable ordinal, one may not yet have

completely exhausted the reals; for instance, using the diagonal argu-

ment given in the proof of Proposition 3.15.8, only the real numbers

in the interval [0, 1] will ever be enumerated by this procedure. (Also,

the question of whether all real numbers in [0, 1] can be enumerated

by the iterated diagonal algorithm requires the continuum hypothesis,

and even with this hypothesis I am not sure whether the statement

is decidable.)

3.15.2. Logic. The “no self-defeating object” argument leads to a

number of important non-existence results in logic. Again, the basic

idea is to show that a sufficiently overpowered logical structure will

eventually lead to the existence of a self-contradictory statement, such

as the liar paradox. To state examples of this properly, one unfortu-

nately has to invest a fair amount of time in first carefully setting up

the language and theory of logic. I will not do so here, and instead use

informal English sentences as a proxy for precise logical statements

to convey a taste (but not a completely rigorous description) of these

logical results here.

The liar paradox itself - the inability to assign a consistent truth

value to “this sentence is false” - can be viewed as an argument

demonstrating that there is no consistent way to interpret (i.e. assign

a truth value to) sentences, when the sentences are (a) allowed to

be self-referential, and (b) allowed to invoke the very notion of truth

given by this interpretation. One’s first impulse is to say that the
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difficulty here lies more with (a) than with (b), but there is a clever

trick, known as Quining (or indirect self-reference), which allows one

to modify the liar paradox to produce a non-self-referential statement

to which one still cannot assign a consistent truth value. The idea is

to work not with fully formed sentences S, which have a single truth

value, but instead with predicates S, whose truth value depends on

a variable x in some range. For instance, S may be “x is thirty-two

characters long.”, and the range of x may be the set of strings (i.e.

finite sequences of characters); then for every string T , the statement

S(T ) (formed by replacing every appearance of x in S with T ) is ei-

ther true or false. For instance, S(“a′′) is true, but S(“ab′′) is false.

Crucially, predicates are themselves strings, and can thus be fed into

themselves as input; for instance, S(S) is false. If however U is the

predicate “x is sixty-five characters long.”, observe that U(U) is true.

Now consider the Quine predicate Q given by

“x is a predicate whose range is the set of strings, and x(x) is false.”

whose range is the set of strings. Thus, for any string T , Q(T ) is

the sentence

“T is a predicate whose range is the set of strings, and T (T ) is false.”

This predicate is defined non-recursively, but the sentence Q(Q)

captures the essence of the liar paradox: it is true if and only if

it is false. This shows that there is no consistent way to interpret

sentences in which the sentences are allowed to come from predicates,

are allowed to use the concept of a string, and also allowed to use the

concept of truth as given by that interpretation.

Note that the proof of Proposition 3.15.5 is basically the set-

theoretic analogue of the above argument, with the connection being

that one can identify a predicate T (x) with the set {x : T (x) true}.
By making one small modification to the above argument - re-

placing the notion of truth with the related notion of provability -

one obtains the celebrated Gödel’s (second) incompleteness theorem:

Theorem 3.15.18 (Gödel’s incompleteness theorem). (Informal state-

ment) No consistent logical system which has the notion of a string,

can provide a proof of its own logical consistency. (Note that a proof

can be viewed as a certain type of string.)
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Remark 3.15.19. Because one can encode strings in numerical form

(e.g. using the ASCII code), it is also true (informally speaking) that

no consistent logical system which has the notion of a natural number,

can provide a proof of its own logical consistency.

Proof. (Informal sketch only) Suppose for contradiction that one

had a consistent logical system inside of which its consistency could

be proven. Now let Q be the predicate given by

“x is a predicate whose range is the set of strings, and x(x) is not provable”

and whose range is the set of strings. Define the Gödel sentence

G to be the string G := Q(Q). Then G is logically equivalent to the

assertion “G is not provable”. Thus, if G were false, then G would

be provable, which (by the consistency of the system) implies that G

is true, a contradiction; thus, G must be true. Because the system

is provably consistent, the above argument can be placed inside the

system itself, to prove inside that system that G must be true; thus

G is provable and G is then false, a contradiction. (It becomes quite

necessary to carefully distinguish the notions of truth and provability

(both inside a system and externally to that system) in order to get

this argument straight!) �

Remark 3.15.20. It is not hard to show that a consistent logical

system which can model the standard natural numbers cannot dis-

prove its own consistency either (i.e. it cannot establish the state-

ment that one can deduce a contradiction from the axioms in the

systems in n steps for some natural number n); thus the consistency

of such a system is undecidable within that system. Thus this the-

orem strengthens the (more well known) first Gödel incompleteness

theory, which asserts the existence of undecidable statements inside

a consistent logical system which contains the concept of a string (or

a natural number). On the other hand, the incompleteness theorem

does not preclude the possibility that the consistency of a weak the-

ory could be proven in a strictly stronger theory (e.g. the consistency

of Peano arithmetic is provable in Zermelo-Frankel set theory).

Remark 3.15.21. One can use the incompleteness theorem to estab-

lish the undecidability of other overpowered problems. For instance,
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Matiyasevich’s theorem demonstrates that the problem of determin-

ing the solvability of a system of Diophantine equations is, in general,

undecidable, because one can encode statements such as the consis-

tency of set theory inside such a system.

3.15.3. Computability. One can adapt these arguments in logic

to analogous arguments in the theory of computation; the basic idea

here is to show that a sufficiently overpowered computer program

cannot exist, by feeding the source code for that program into the

program itself (or some slight modification thereof) to create a con-

tradiction. As with logic, a properly rigorous formalisation of the

theory of computation would require a fair amount of preliminary

machinery, for instance to define the concept of Turing machine (or

some other universal computer), and so I will once again use informal

English sentences as an informal substitute for a precise programming

language.

A fundamental “no self-defeating object” argument in the sub-

ject, analogous to the other liar paradox type arguments encountered

previously, is the Turing halting theorem:

Theorem 3.15.22 (Turing halting theorem). There does not exist a

program P which takes a string S as input, and determines in finite

time whether S is a program (with no input) that halts in finite time.

Proof. Suppose for contradiction that such a program P existed.

Then one could easily modify P to create a variant program Q, which

takes a string S as input, and halts if and only if S is a program (with

S itself as input) that does not halts in finite time. Indeed, all Q has

to do is call P with the string S(S), defined as the program (with no

input) formed by declaring S to be the input string for the program

S. If P determines that S(S) does not halt, then Q halts; otherwise,

if P determines that S(S) does halt, then Q performs an infinite loop

and does not halt. Then observe that Q(Q) will halt if and only if it

does not halt, a contradiction. �

Remark 3.15.23. As one can imagine from the proofs, this result

is closely related to, but not quite identical with, the Gödel incom-

pleteness theorem. That latter theorem implies that the question of
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whether a given program halts or not in general is undecidable (con-

sider a program designed to search for proofs of the inconsistency

of set theory). By contrast, the halting theorem (roughly speaking)

shows that this question is uncomputable (i.e. there is no algorithm

to decide halting in general) rather than undecidable (i.e. there are

programs whose halting can neither be proven nor disproven).

On the other hand, the halting theorem can be used to establish

the incompleteness theorem. Indeed, suppose that all statements in

a suitably strong and consistent logical system were either provable

or disprovable. Then one could build a program that determined

whether an input string S, when run as a program, halts in finite

time, simply by searching for all proofs or disproofs of the statement

“S halts in finite time”; this program is guaranteed to terminate with

a correct answer by hypothesis.

Remark 3.15.24. While it is not possible for the halting problem

for a given computing language to be computable in that language,

it is certainly possible that it is computable in a strictly stronger

language. When that is the case, one can then invoke Newcomb’s

paradox to argue that the weaker language does not have unlimited

“free will” in some sense.

Remark 3.15.25. In the language of recursion theory, the halting

theorem asserts that the set of programs that do not halt is not a

decidable set (or a recursive set). In fact, one can make the slightly

stronger assertion that the set of programs that do not halt is not

even a semi-decidable set (or a recursively enumerable set), i.e. there

is no algorithm which takes a program as input and halts in finite time

if and only if the input program does not halt. This is because the

complementary set of programs that do halt is clearly semi-decidable

(one simply runs the program until it halts, running forever if it does

not), and so if the set of programs that do not halt is also semi-

decidable, then it is decidable (by running both algorithms in parallel;

this observation is a special case of Post’s theorem).

Remark 3.15.26. One can use the halting theorem to exclude overly

general theories for certain types of mathematical objects. For in-

stance, one cannot hope to find an algorithm to determine the ex-

istence of smooth solutions to arbitrary nonlinear partial differential
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equations, because it is possible to simulate a Turing machine using

the laws of classical physics, which in turn can be modeled using (a

moderately complicated system of) nonlinear PDE. Instead, progress

in nonlinear PDE has instead proceeded by focusing on much more

specific classes of such PDE (e.g. elliptic PDE, parabolic PDE, hy-

perbolic PDE, gauge theories, etc.).

One can place the halting theorem in a more “quantitative” form.

Call a function f : N → N computable if there exists a computer

program which, when given a natural number n as input, returns

f(n) as output in finite time. Define the Busy Beaver function BB :

N→ N by setting BB(n) to equal the largest output of any program

of at most n characters in length (and taking no input), which halts

in finite time. Note that there are only finitely many such programs

for any given n, so BB(n) is well-defined. On the other hand, it is

uncomputable, even to upper bound:

Proposition 3.15.27. There does not exist a computable function f

such that one has BB(n) ≤ f(n) for all n.

Proof. Suppose for contradiction that there existed a computable

function f(n) such that BB(n) ≤ f(n) for all n. We can use this to

contradict the halting theorem, as follows. First observe that once

the Busy Beaver function can be upper bounded by a computable

function, then for any n, the run time of any halting program of

length at most n can also be upper bounded by a computable function.

This is because if a program of length n halts in finite time, then a

trivial modification of that program (of length larger than n, but

by a computable factor) is capable of outputting the run time of that

program (by keeping track of a suitable “clock” variable, for instance).

Applying the upper bound for Busy Beaver to that increased length,

one obtains the bound on run time.

Now, to determine whether a given program S halts in finite time

or not, one simply simulates (runs) that program for time up to the

computable upper bound of the possible running time of S, given

by the length of S. If the program has not halted by then, then it

never will. This provides a program P obeying the hypotheses of the

halting theorem, a contradiction. �
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Remark 3.15.28. A variant of the argument shows that BB(n)

grows faster than any computable function: thus if f is computable,

then BB(n) > f(n) for all sufficiently large n. We leave the proof of

this result as an exercise to the reader.

Remark 3.15.29. Sadly, the most important unsolved problem in

complexity theory, namely the P 6= NP problem, does not seem to

be susceptible to the no-self-defeating-object argument, basically be-

cause such arguments tend to be relativisable whereas the P 6= NP

problem is not; see Section 3.9 for more discussion. On the other

hand, one has the curious feature that many proposed proofs that

P 6= NP appear to be self-defeating; this is most strikingly captured

in the celebrated work of Razborov and Rudich[RaRu1997], who

showed (very roughly speaking) that any sufficiently “natural” proof

that P 6= NP could be used to disprove the existence of an object

closely related to the belief that P 6= NP , namely the existence of

pseudorandom number generators. (I am told, though, that diago-

nalisation arguments can be used to prove some other inclusions or

non-inclusions in complexity theory that are not subject to the rela-

tivisation barrier, though I do not know the details.)

3.15.4. Game theory. Another basic example of the no-self-defeating-

objects argument arises from game theory, namely the strategy steal-

ing argument. Consider for instance a generalised version of naughts

and crosses (tic-tac-toe), in which two players take turns placing

naughts and crosses on some game board (not necessarily square,

and not necessarily two-dimensional), with the naughts player going

first, until a certain pattern of all naughts or all crosses is obtained

as a subpattern, with the naughts player winning if the pattern is all

naughts, and the crosses player winning if the pattern is all crosses.

(If all positions are filled without either pattern occurring, the game

is a draw.) We assume that the winning patterns for the cross player

are exactly the same as the winning patterns for the naughts player

(but with naughts replaced by crosses, of course).

Proposition 3.15.30. In any generalised version of naughts and

crosses, there is no strategy for the second player (i.e. the crosses

player) which is guaranteed to ensure victory.
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Proof. Suppose for contradiction that the second player had such a

winning strategy W . The first player can then steal that strategy by

placing a naught arbitrarily on the board, and then pretending to be

the second player and using W accordingly. Note that occasionally,

the W strategy will compel the naughts player to place a naught on

the square that he or she has already occupied, but in such cases the

naughts player may simply place the naught somewhere else instead.

(It is not possible that the naughts player would run out of places,

thus forcing a draw, because this would imply that W could lead to

a draw as well, a contradiction.) If we denote this stolen strategy by

W ′, then W ′ guarantees a win for the naughts player; playing the W ′

strategy for the naughts player against the W strategy for the crosses

player, we obtain a contradiction. �

Remark 3.15.31. The key point here is that in naughts and crosses

games, it is possible to play a harmless move - a move which gives

up the turn of play, but does not actually decrease one’s chance of

winning. In games such as chess, there does not appear to be any

analogue of the harmless move, and so it is not known whether black

actually has a strategy guaranteed to win or not in chess, though it

is suspected that this is not the case.

Remark 3.15.32. The Hales-Jewett theorem shows that for any fixed

board length, an n-dimensional game of naughts and crosses is un-

able to end in a draw if n is sufficiently large. An induction argument

shows that for any two-player game that terminates in bounded time

in which draws are impossible, one player must have a guaranteed

winning strategy; by the above proposition, this strategy must be a

win for the naughts player. Note, however, that Proposition 3.15.30

provides no information as to how to locate this winning strategy,

other than that this strategy belongs to the naughts player. Never-

theless, this gives a second example in which the no-self-defeating-

object argument can be used to ensure the existence of some object,

rather than the non-existence of an object. (The first example was

the prime number theorem, discussed earlier.)
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The strategy-stealing argument can be applied to real-world eco-

nomics and finance, though as with any other application of mathe-

matics to the real world, one has to be careful as to the implicit as-

sumptions one is making about reality and how it conforms to one’s

mathematical model when doing so. For instance, one can argue that

in any market or other economic system in which the net amount of

money is approximately constant, it is not possible to locate a uni-

versal trading strategy which is guaranteed to make money for the

user of that strategy, since if everyone applied that strategy then the

net amount of money in the system would increase, a contradiction.

Note however that there are many loopholes here; it may be that the

strategy is difficult to copy, or relies on exploiting some other group

of participants who are unaware or unable to use the strategy, and

would then lose money (though in such a case, the strategy is not

truly universal as it would stop working once enough people used

it). Unfortunately, there can be strong psychological factors that can

cause people to override the conclusions of such strategy-stealing ar-

guments with their own rationalisations, as can be seen, for instance,

in the perennial popularity of pyramid schemes, or to a lesser extent,

market bubbles (though one has to be careful about applying the

strategy-stealing argument in the latter case, since it is possible to

have net wealth creation through external factors such as advances in

technology).

Note also that the strategy-stealing argument also limits the uni-

versal predictive power of technical analysis to provide predictions

other than that the prices obey a martingale, though again there are

loopholes in the case of markets that are illiquid or highly volatile.

3.15.5. Physics. In a similar vein, one can try to adapt the no-self-

defeating-object argument from mathematics to physics, but again

one has to be much more careful with various physical and meta-

physical assumptions that may be implicit in one’s argument. For

instance, one can argue that under the laws of special relativity, it is

not possible to construct a totally immovable object. The argument

would be that if one could construct an immovable object O in one

inertial reference frame, then by the principle of relativity it should

be possible to construct an object O′ which is immovable in another
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inertial reference frame which is moving with respect to the first; set-

ting the two on a collision course, we obtain the classic contradiction

between an irresistible force and an immovable object. Note however

that there are several loopholes here which allow one to avoid contra-

diction; for instance, the two objects O,O′ could simply pass through

each other without interacting.

In a somewhat similar vein, using the laws of special relativity

one can argue that it is not possible to systematically generate and

detect tachyon particles - particles traveling faster than the speed of

light - because these could be used to transmit localised information

faster than the speed of light, and then (by the principle of relativity)

to send localised information back into the past, from one location

to a distant one. Setting up a second tachyon beam to reflect this

information back to the original location, one could then send lo-

calised information back to one’s own past (rather than to the past

of an observer at a distant location), allowing one to set up a classic

grandfather paradox. However, as before, there are a large number of

loopholes in this argument which could let one avoid contradiction;

for instance, if the apparatus needed to set up the tachyon beam may

be larger than the distance the beam travels (as is for instance the

case in Mexican wave-type tachyon beams) then there is no causality

paradox; another loophole is if the tachyon beam is not fully localised,

but propagates in spacetime in a manner to interfere with the sec-

ond tachyon beam. A third loophole occurs if the universe exhibits

quantum behaviour (in particular, the ability to exist in entangled

states) instead of non-quantum behaviour, which allows for such su-

perluminal mechanisms as wave function collapse to occur without

any threat to causality or the principle of relativity. A fourth loop-

hole occurs if the effects of relativistic gravity (i.e. general relativity)

become significant. Nevertheless, the paradoxical effect of time travel

is so strong that this physical argument is a fairly convincing way to

rule out many commonly imagined types of faster-than-light travel or

communication (and we have a number of other arguments too that

exclude more modes of faster-than-light behaviour, though this is an

entire blog post topic in its own right).
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Notes. This article first appeared at terrytao.wordpress.com/2009/10/27.

Thanks to Seva Lev and an anonymous commenter for corrections.

3.16. From Bose-Einstein condensates to the
nonlinear Schrödinger equation

The Schrödinger equation

i~∂t|ψ〉 = H|ψ〉

is the fundamental equation of motion for (non-relativistic) quan-

tum mechanics, modeling both one-particle systems and N -particle

systems for N > 1. Remarkably, despite being a linear equation, so-

lutions |ψ〉 to this equation can be governed by a non-linear equation

in the large particle limit N → ∞. In particular, when modeling a

Bose-Einstein condensate with a suitably scaled interaction potential

V in the large particle limit, the solution can be governed by the cubic

nonlinear Schrödinger equation

(3.82) i∂tφ = ∆φ+ λ|φ|2φ.

I recently attended a talk by Natasa Pavlovic on the rigorous

derivation of this type of limiting behaviour, which was initiated by

the pioneering work of Hepp and Spohn, and has now attracted a vast

recent literature. The rigorous details here are rather sophisticated;

but the heuristic explanation of the phenomenon is fairly simple, and

actually rather pretty in my opinion, involving the foundational quan-

tum mechanics of N -particle systems. I am recording this heuristic

derivation here, partly for my own benefit, but perhaps it will be of

interest to some readers.

This discussion will be purely formal, in the sense that (impor-

tant) analytic issues such as differentiability, existence and unique-

ness, etc. will be largely ignored.

3.16.1. A quick review of classical mechanics. The phenomena

discussed here are purely quantum mechanical in nature, but to mo-

tivate the quantum mechanical discussion, it is helpful to first quickly

review the more familiar (and more conceptually intuitive) classical

situation.



536 3. Expository articles

Classical mechanics can be formulated in a number of essentially

equivalent ways: Newtonian, Hamiltonian, and Lagrangian. The for-

malism of Hamiltonian mechanics for a given physical system can be

summarised briefly as follows:

• The physical system has a phase space Ω of states ~x (which

is often parameterised by position variables q and momen-

tum variables p). Mathematically, it has the structure of

a symplectic manifold, with some symplectic form ω (which

would be ω = dp ∧ dq if one had position and momentum

coordinates available).

• The complete state of the system at any given time t is given

(in the case of pure states) by a point ~x(t) in the phase space

Ω.

• Every physical observable (e.g., energy, momentum, posi-

tion, etc.) A is associated to a function (also called A)

mapping the phase space Ω to the range of the observable

(e.g. for real observables, A would be a function from Ω to

R). If one measures the observable A at time t, one will

obtain the measurement A(x(t)).

• There is a special observable, the Hamiltonian H : Ω →
R, which governs the evolution of the state ~x(t) through

time, via Hamilton’s equations of motion. If one has position

and momentum coordinates ~x(t) = (qi(t), pi(t))
n
i=1, these

equations are given by the formulae

∂tpi = −∂H
∂qi

; ∂tqi =
∂H

∂pi
;

more abstractly, just from the symplectic form ω on the

phase space, the equations of motion can be written as

(3.83) ∂t~x(t) = −∇ωH(~x(t)),

where ∇ωH is the symplectic gradient of H.

Hamilton’s equation of motion can also be expressed in a dual

form in terms of observables A, as Poisson’s equation of motion

∂tA(~x(t)) = −{H,A}(~x(t))
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for any observable A, where {H,A} := ∇ωH · ∇A is the Poisson

bracket. One can express Poisson’s equation more abstractly as

(3.84) ∂tA = −{H,A}.

In the above formalism, we are assuming that the system is in a

pure state at each time t, which means that it only occupies a single

point ~x(t) in phase space. One can also consider mixed states in which

the state of the system at a time t is not fully known, but is instead

given by a probability distribution ρ(t, ~x) dx on phase space. The

act of measuring an observable A at a time t will thus no longer be

deterministic, but will itself be a random variable, whose expectation

〈A〉 is given by

(3.85) 〈A〉(t) =

∫
Ω

A(~x)ρ(t, ~x) d~x.

The equation of motion of a mixed state ρ is given by the advection

equation

∂tρ = div(ρ∇ωH)

using the same vector field −∇ωH that appears in (3.83); this equa-

tion can also be derived from (3.84), (3.85), and a duality argument.

Pure states can be viewed as the special case of mixed states

in which the probability distribution ρ(t, ~x) d~x is a Dirac mass11

δ~x(t)(~x). One can thus think of mixed states as continuous averages

of pure states, or equivalently the space of mixed states is the convex

hull of the space of pure states.

Suppose one had a 2-particle system, in which the joint phase

space Ω = Ω1 × Ω2 is the product of the two one-particle phase

spaces. A pure joint state is then a point x = (~x1, ~x2) in Ω, where

~x1 represents the state of the first particle, and ~x2 is the state of the

second particle. If the joint Hamiltonian H : Ω→ R split as

H(~x1, ~x2) = H1(~x1) +H2(~x2)

11We ignore for now the formal issues of how to perform operations such as
derivatives on Dirac masses; this can be accomplished using the theory of distributions
in Section 1.13 (or, equivalently, by working in the dual setting of observables) but this
is not our concern here.
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then the equations of motion for the first and second particles would

be completely decoupled, with no interactions between the two par-

ticles. However, in practice, the joint Hamiltonian contains coupling

terms between ~x1, ~x2 that prevents one from totally decoupling the

system; for instance, one may have

H(~x1, ~x2) =
|p1|2

2m1
+
|p2|2

2m2
+ V (q1 − q2),

where ~x1 = (q1, p1), ~x2 = (q2, p2) are written using position coor-

dinates qi and momentum coordinates pi, m1,m2 > 0 are constants

(representing mass), and V (q1−q2) is some interaction potential that

depends on the spatial separation q1 − q2 between the two particles.

In a similar spirit, a mixed joint state is a joint probability dis-

tribution ρ(~x1, ~x2) d~x1d~x2 on the product state space. To recover the

(mixed) state of an individual particle, one must consider a marginal

distribution such as

ρ1(~x1) :=

∫
Ω2

ρ(~x1, ~x2) d~x2

(for the first particle) or

ρ2(~x2) :=

∫
Ω1

ρ(~x1, ~x2) d~x1

(for the second particle). Similarly for N -particle systems: if the joint

distribution ofN distinct particles is given by ρ(~x1, . . . , ~xN ) ~dx1 . . . ~dxN ,

then the distribution of the first particle (say) is given by

ρ1(~x1) =

∫
Ω2×...×ΩN

ρ(~x1, ~x2, . . . , ~xN ) d~x2 . . . d~xN ,

the distribution of the first two particles is given by

ρ12(~x1, ~x2) =

∫
Ω3×...×ΩN

ρ(~x1, ~x2, . . . , ~xN ) d~x3 . . . d~xN ,

and so forth.

A typical Hamiltonian in this case may take the form

H(~x1, . . . , ~xn) =

N∑
j=1

|pj |2

2mj
+

∑
1≤j<k≤N

Vjk(qj − qk)
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which is a combination of single-particle HamiltoniansHj and interac-

tion perturbations. If the momenta pj and masses mj are normalised

to be of size O(1), and the potential Vjk has an average value (i.e.

an L1 norm) of O(1) also, then the former sum has size O(N) and

the latter sum has size O(N2), so the latter will dominate. In order

to balance the two components and get a more interesting limiting

dynamics when N →∞, we shall therefore insert a normalising factor

of 1
N on the right-hand side, giving a Hamiltonian

H(~x1, . . . , ~xn) =

N∑
j=1

|pj |2

2mj
+

1

N

∑
1≤j<k≤N

Vjk(qj − qk).

Now imagine a system of N indistinguishable particles. By this,

we mean that all the state spaces Ω1 = . . . = ΩN are identical, and

all observables (including the Hamiltonian) are symmetric functions

of the product space Ω = ΩN1 (i.e. invariant under the action of the

symmetric group SN ). In such a case, one may as well average over

this group (since this does not affect any physical observable), and

assume that all mixed states ρ are also symmetric. (One cost of doing

this, though, is one has to largely give up pure states (~x1, . . . , ~xN ),

since such states will not be symmetric except in the very exceptional

case ~x1 = . . . = ~xN .)

A typical example of a symmetric Hamiltonian is

H(~x1, . . . , ~xn) =

N∑
j=1

|pj |2

2m
+

1

N

∑
1≤j<k≤N

V (qj − qk)

where V is even (thus all particles have the same individual Hamilton-

ian, and interact with the other particles using the same interaction

potential). In many physical systems, it is natural to consider only

short-range interaction potentials, in which the interaction between

qj and qk is localised to the region qj − qk = O(r) for some small r.

We model this by considering Hamiltonians of the form

H(~x1, . . . , ~xn) =

N∑
j=1

H(~xj) +
1

N

∑
1≤j<k≤N

1

rd
V (
~xj − ~xk

r
)

where d is the ambient dimension of each particle (thus in physical

models, d would usually be 3); the factor of 1
rd

is a normalisation
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factor designed to keep the L1 norm of the interaction potential of

size O(1). It turns out that an interesting limit occurs when r goes to

zero as N goes to infinity by some power law r = N−β ; imagine for

instance N particles of “radius” r bouncing around in a box, which

is a basic model for classical gases.

An important example of a symmetric mixed state is a factored

state

ρ(~x1, . . . , ~xN ) = ρ1(~x1) . . . ρ1(~xN )

where ρ1 is a single-particle probability density function; thus ρ is the

tensor product of N copies of ρ1. If there are no interaction terms in

the Hamiltonian, then Hamiltonian’s equation of motion will preserve

the property of being a factored state (with ρ1 evolving according to

the one-particle equation); but with interactions, the factored nature

may be lost over time.

3.16.2. A quick review of quantum mechanics. Now we turn

to quantum mechanics. This theory is fundamentally rather differ-

ent in nature than classical mechanics (in the sense that the basic

objects, such as states and observables, are a different type of math-

ematical object than in the classical case), but shares many features

in common also, particularly those relating to the Hamiltonian and

other observables. (This relationship is made more precise via the

correspondence principle, and more precise still using semi-classical

analysis.)

The formalism of quantum mechanics for a given physical system

can be summarised briefly as follows:

• The physical system has a phase space H of states |ψ〉 (which

is often parameterised as a complex-valued function of the

position space). Mathematically, it has the structure of a

complex Hilbert space, which is traditionally manipulated

using bra-ket notation.

• The complete state of the system at any given time t is

given (in the case of pure states) by a unit vector |ψ(t)〉 in

the phase space H.
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• Every physical observable A is associated to a linear oper-

ator on H; real-valued observables are associated to self-

adjoint linear operators. If one measures the observable A

at time t, one will obtain the random variable whose expec-

tation 〈A〉 is given by 〈ψ(t)|A|ψ(t)〉. (The full distribution

of A is given by the spectral measure of A relative to |ψ(t)〉.)
• There is a special observable, the Hamiltonian H : H→ H,

which governs the evolution of the state |ψ(t)〉 through time,

via Schrödinger’s equations of motion

(3.86) i~∂t|ψ(t)〉 = H|ψ(t)〉.

Schrödinger’s equation of motion can also be expressed in a dual

form in terms of observables A, as Heisenberg’s equation of motion

∂t〈ψ|A|ψ〉 =
i

~
〈ψ|[H,A]|ψ〉

or more abstractly as

(3.87) ∂tA =
i

~
[H,A]

where [, ] is the commutator or Lie bracket (compare with (3.84)).

The states |ψ〉 are pure states, analogous to the pure states x

in Hamiltonian mechanics. One also has mixed states ρ in quantum

mechanics. Whereas in classical mechanics, a mixed state ρ is a prob-

ability distribution (a non-negative function of total mass
∫

Ω
ρ = 1),

in quantum mechanics a mixed state is a non-negative (i.e. positive

semi-definite) operator ρ on H of total trace tr ρ = 1. If one measures

an observable A at a mixed state ρ, one obtains a random variable

with expectation trAρ. From (3.87) and duality, one can infer that

the correct equation of motion for mixed states must be given by

(3.88) ∂tρ =
i

~
[H, ρ].

One can view pure states as the special case of mixed states which

are rank one projections,

ρ = |ψ〉〈ψ|.

Morally speaking, the space of mixed states is the convex hull of the

space of pure states (just as in the classical case), though things are a
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little trickier than this when the phase space H is infinite dimensional,

due to the presence of continuous spectrum in the spectral theorem.

Pure states suffer from a phase ambiguity : a phase rotation eiθ|ψ〉
of a pure state |ψ〉 leads to the same mixed state, and the two states

cannot be distinguished by any physical observable.

In a single particle system, modeling a (scalar) quantum particle

in a d-dimensional position space Rd, one can identify the Hilbert

space H with L2(Rd → C), and describe the pure state |ψ〉 as a wave

function ψ : Rd → C, which is normalised as∫
Rd

|ψ(x)|2 dx = 1

as |ψ〉 has to be a unit vector. (If the quantum particle has additional

features such as spin, then one needs a fancier wave function, but let’s

ignore this for now.) A mixed state is then a function ρ : Rd×Rd → C

which is Hermitian (i.e. ρ(x, x′) = ρ(x′, x)) and positive definite, with

unit trace
∫
Rd ρ(x, x) dx = 1; a pure state ψ corresponds to the mixed

state ρ(x, x′) = ψ(x)ψ(x′).

A typical Hamiltonian in this setting is given by the operator

Hψ(x) :=
|p|2

2m
ψ(x) + V (x)ψ(x)

where m > 0 is a constant, p is the momentum operator p := −i~∇x,

and ∇x is the gradient in the x variable (so |p|2 = −~2∆x, where

∆x is the Laplacian; note that ∇x is skew-adjoint and should thus

be thought of as being imaginary rather than real), and V : Rd → R

is some potential. Physically, this depicts a particle of mass m in a

potential well given by the potential V .

Now suppose one has an N -particle system of scalar particles. A

pure state of such a system can then be given by an N -particle wave

function ψ : (Rd)N → C, normalised so that∫
(Rd)N

|ψ(x1, . . . , xN )|2 dx1 . . . dxN = 1

and a mixed state is a Hermitian positive semi-definite function ρ :

(Rd)N × (Rd)N → C with trace∫
(Rd)N

ρ(x1, . . . , xN ;x1, . . . , xN ) dx1 . . . dxN = 1,



3.16. Bose-Einstein condensates 543

with a pure state ψ being identified with the mixed state

ρ(x1, . . . , xN ;x′1, . . . , x
′
N ) := ψ(x1, . . . , xN )ψ(x′1, . . . , x

′
N ).

In classical mechanics, the state of a single particle was the marginal

distribution of the joint state. In quantum mechanics, the state of

a single particle is instead obtained as the partial trace of the joint

state. For instance, the state of the first particle is given as

ρ1(x1;x′1) :=

∫
(Rd)N−1

ρ(x1, x2, . . . , xN ;x′1, x2, . . . , xN ) dx2 . . . dxN ,

the state of the first two particles is given as

ρ12(x1, x2;x′1, x
′
2) :=

∫
(Rd)N−2

ρ(x1, x2, x3, . . . , xN ;

x′1, x
′
2, x3, . . . , xN ) dx3 . . . dxN ,

and so forth. (These formulae can be justified by considering observ-

ables of the joint state that only affect, say, the first two position

coordinates x1, x2 and using duality.)

A typical Hamiltonian in this setting is given by the operator

Hψ(x1, . . . , xN ) =

N∑
j=1

|pj |2

2mj
ψ(x1, . . . , xN )

+
1

N

∑
1≤j<k≤N

Vjk(xj − xk)ψ(x1, . . . , xN )

where we normalise just as in the classical case, and pj := −i~∇xj .
An interesting feature of quantum mechanics - not present in the

classical world - is that even if the N -particle system is in a pure state,

individual particles may be in a mixed state: the partial trace of a

pure state need not remain pure. Because of this, when considering

a subsystem of a larger system, one cannot always assume that the

subsystem is in a pure state, but must work instead with mixed states

throughout, unless there is some reason (e.g. a lack of coupling) to

assume that pure states are somehow preserved.

Now consider a system of N indistinguishable quantum particles.

As in the classical case, this means that all observables (including the

Hamiltonian) for the joint system are invariant with respect to the

action of the symmetric group SN . Because of this, one may as well
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assume that the (mixed) state of the joint system is also symmetric

with respect to this action. In the special case when the particles are

bosons, one can also assume that pure states |ψ〉 are also symmetric

with respect to this action (in contrast to fermions, where the ac-

tion on pure states is anti-symmetric). A typical Hamiltonian in this

setting is given by the operator

Hψ(x1, . . . , xN ) =

N∑
j=1

|pj |2

2m
ψ(x1, . . . , xN )

+
1

N

∑
1≤j<k≤N

V (xj − xk)ψ(x1, . . . , xN )

for some even potential V ; if one wants to model short-range interac-

tions, one might instead pick the variant

(3.89)

Hψ(x1, . . . , xN ) =

N∑
j=1

|pj |2

2m
ψ(x1, . . . , xN )+

1

N

∑
1≤j<k≤N

rdV (
xj − xk

r
)ψ(x1, . . . , xN )

for some r > 0. This is a typical model for an N -particle Bose-

Einstein condensate. (Longer-range models can lead to more non-

local variants of NLS for the limiting equation, such as the Hartree

equation.)

3.16.3. NLS. Suppose we have a Bose-Einstein condensate given by

a (symmetric) mixed state

ρ(t, x1, . . . , xN ;x′1, . . . , x
′
N )

evolving according to the equation of motion (3.88) using the Hamil-

tonian (3.89). One can take a partial trace of the equation of motion

(3.88) to obtain an equation for the state ρ1(t, x1;x′1) of the first par-

ticle (note from symmetry that all the other particles will have the

same state function). If one does take this trace, one soon finds that

the equation of motion becomes

∂tρ1(t, x1;x′1) =
i

~
[(
|p1|2

2m
− |p

′
1|2

2m
)ρ1(t, x1;x′1)

+
1

N

N∑
j=2

∫
Rd

1

rd
[V (

x1 − xj
r

)− V (
x′1 − xj

r
)]ρ1j(t, x1, xj ;x

′
1, xj) dxj
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where ρ1j is the partial trace to the 1, j particles. Using symmetry,

we see that all the summands in the j summation are identical, so we

can simplify this as

∂tρ1(t, x1;x′1) =
i

~
[(
|p1|2

2m
− |p

′
1|2

2m
)ρ1(t, x1;x′1)

+
N − 1

N

∫
Rd

1

rd
[V (

x1 − x2

r
)− V (

x′1 − x2

r
)]ρ12(t, x1, x2;x′1, x2) dx2.

This does not completely describe the dynamics of ρ1, as one also

needs an equation for ρ12. But one can repeat the same argument to

get an equation for ρ12 involving ρ123, and so forth, leading to a sys-

tem of equations known as the BBGKY hierarchy. But for simplicity

we shall just look at the first equation in this hierarchy.

Let us now formally take two limits in the above equation, sending

the number of particles N to infinity and the interaction scale r to

zero. The effect of sending N to infinity should simply be to eliminate

the N−1
N factor. The effect of sending r to zero should be to send

1
rd
V (xr ) to the Dirac mass λδ(x), where λ :=

∫
Rd V is the total mass

of V . Formally performing these two limits, one is led to the equation

∂tρ1(t, x1;x′1) =
i

~
[(
|p1|2

2m
− |p

′
1|2

2m
)ρ1(t, x1;x′1)

+λ(ρ12(t, x1, x1;x′1, x1)− ρ12(t, x1, x
′
1;x′1, x

′
1))].

One can perform a similar formal limiting procedure for the other

equations in the BBGKY hierarchy, obtaining a system of equations

known as the Gross-Pitaevskii hierarchy.

We next make an important simplifying assumption, which is

that in the limit N → ∞ any two particles in this system become

decoupled, which means that the two-particle mixed state factors as

the tensor product of two one-particle states:

ρ12(t, x1, x2;x′1, x2) ≈ ρ1(t, x1;x′1)ρ1(t, x2;x′2).

One can view this as a mean field approximation, modeling the inter-

action of one particle x1 with all the other particles by the mean field

ρ1.

Making this assumption, the previous equation simplifies to

∂tρ1(t, x1;x′1) =
i

~
[(
|p1|2

2m
− |p

′
1|2

2m
)
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+λ(ρ1(t, x1;x1)− ρ1(t, x′1;x′1))]ρ1(t, x1;x′1).

If we assume furthermore that ρ1 is a pure state, thus

ρ1(t, x1;x′1) = ψ(t, x1)ψ(t, x′1)

then (up to the phase ambiguity mentioned earlier), ψ(t, x) obeys the

Gross-Pitaevskii equation

∂tψ(t, x) =
i

~
[(
|p|2

2m
+ λ|ψ(t, x)|2]ψ(t, x)

which (up to some factors of ~ and m, which can be renormalised

away) is essentially (3.82).

An alternate derivation of (3.82), using a slight variant of the

above mean field approximation, comes from studying the Hamilton-

ian (3.89). Let us make the (very strong) assumption that at some

fixed time t, one is in a completely factored pure state

ψ(x1, . . . , xN ) = ψ1(x1) . . . ψ1(xN ),

where ψ1 is a one-particle wave function, in particular obeying the

normalisation ∫
Rd

|ψ1(x)|2 dx = 1.

(This is an unrealistically strong version of the mean field approxi-

mation. In practice, one only needs the two-particle partial traces to

be completely factored for the discussion below.) The expected value

of the Hamiltonian,

〈ψ|H|ψ〉 =

∫
(Rd)N

ψ(x1, . . . , xN )Hψ(x1, . . . , xN ) dx1 . . . dxN ,

can then be simplified as

N

∫
Rd

ψ1(x)
|p1|2
2m

ψ1(x) dx

+
N − 1

2

∫
Rd×Rd

r−dV (
x1 − x2

r
)|ψ1(x1)|2|ψ1(x2)| dx1dx2.

Again sending r → 0, this formally becomes

N

∫
Rd

ψ1(x)
|p1|2
2m

ψ1(x) dx+
N − 1

2
λ

∫
Rd×Rd

|ψ1(x1)|4 dx1



3.16. Bose-Einstein condensates 547

which in the limit N →∞ is asymptotically

N

∫
Rd

ψ1(x)
|p1|2
2m

ψ1(x) +
λ

2
|ψ1(x1)|4 dx1.

Up to some normalisations, this is the Hamiltonian for the NLS equa-

tion (3.82).

There has been much progress recently in making the above deriva-

tions precise, see e.g. [Sc2006], [KlMa2008], [KiScSt2008], [ChPa2009].

A key step is to show that the Gross-Pitaevskii hierarchy necessar-

ily preserves the property of being a completely factored state. This

requires a uniqueness theory for this hierarchy, which is surprisingly

delicate, due to the fact that it is a system of infinitely many coupled

equations over an unbounded number of variables.

Remark 3.16.1. Interestingly, the above heuristic derivation only

works when the interaction scale r is much larger than N−1. For

r ∼ N−1, the coupling constant λ acquires a nonlinear correction,

becoming essentially the scattering length of the potential rather than

its mean. (Thanks to Bob Jerrard for pointing out this subtlety.)

Notes. This article first appeared at terrytao.wordpress.com/2009/11/26.

Thanks to CJ, liuyao, Mio and M.S. for corrections.

Bob Jerrard provided a heuristic argument as to why the coupling

constant becomes nonlinear in the regime r ∼ N−1.
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4.1. Polymath1 and three new proofs of the
density Hales-Jewett theorem

During the first few months of 2009, I was involved in the Polymath1

project, a massively collaborative mathematical project whose pur-

pose was to investigate the viability of various approaches to proving

the density Hales-Jewett theorem. For simplicity I will focus attention

here on the model case k = 3 of a three-letter alphabet, in which case

the theorem reads as follows:

Theorem 4.1.1 (k = 3 density Hales-Jewett theorem). Let 0 < δ ≤
1. Then if n is a sufficiently large integer, any subset A of the cube

[3]n = {1, 2, 3}n of density |A|/3n at least δ contains at least one

combinatorial line {`(1), `(2), `(3)}, where ` ∈ {1, 2, 3, x}n\[3]n is a

string of 1s, 2s, 3s, and x’s containing at least one “wildcard” x, and

`(i) is the string formed from ` by replacing all x’s with i’s.

The full density Hales-Jewett theorem is the same statement, but

with [3] replaced by [k] for some k ≥ 1. (The case k = 1 is trivial,

and the case k = 2 follows from Sperner’s theorem.) As a result of the

project, three new proofs of this theorem were established, at least

one of which has extended[Po2009] to cover the case of general k.

This theorem was first proven by Furstenberg and Katznelson[FuKa1989],

by first converting it to a statement in ergodic theory; the original

paper of Furstenberg-Katznelson argument was for the k = 3 case

only, and gave only part of the proof in detail, but in a subsequent

paper[FuKa1991] a full proof in general k was provided. The remain-

ing components of the original k = 3 argument were later completed

in unpublished notes of McCutcheon1. One of the new proofs is es-

sentially a finitary translation of this k = 3 argument; in principle

one could also finitise the significantly more complicated argument

of Furstenberg and Katznelson for general k, but this has not been

properly carried out yet (the other two proofs are likely to generalise

much more easily to higher k). The result is considered quite deep;

for instance, the general k case of the density Hales-Jewett theorem

already implies Szemerédi’s theorem, which is a highly non-trivial

theorem in its own right, as a special case.

1http://www.msci.memphis.edu/ randall/preprints/HJk3.pdf
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Another of the proofs is based primarily on the density increment

method that goes back to Roth, and also incorporates some ideas from

a paper of Ajtai and Szemerédi[AjSz1974] establishing what we have

called the corners theorem (and which is also implied by the k = 3

case of the density Hales-Jewett theorem). A key new idea involved

studying the correlations of the original set A with special subsets of

[3]n, such as ij-insensitive sets, or intersections of ij-insensitive and

ik-insensitive sets.

This correlations idea inspired a new ergodic proof of the density

Hales-Jewett theorem for all values of k by Austin[Au2009b], which

is in the spirit of the triangle removal lemma (or hypergraph removal

lemma) proofs of Roth’s theorem (or the multidimensional Szemerédi

theorem). A finitary translation of this argument in the k = 3 case

has been sketched out; I believe it also extends in a relatively straight-

forward manner to the higher k case (in analogy with some proofs of

the hypergraph removal lemma).

4.1.1. Simpler cases of density Hales-Jewett. In order to mo-

tivate the known proofs of the density Hales-Jewett theorem, it is

instructive to consider some simpler theorems which are implied by

this theorem. The first is the corners theorem of Ajtai and Szemerédi:

Theorem 4.1.2 (Corners theorem). Let 0 < δ ≤ 1. Then if n is

a sufficiently large integer, any subset A of the square [n]2 of den-

sity |A|/n2 at least δ contains at least one right-angled triangle (or

“corner”) {(x, y), (x+ r, y), (x, y + r)} with r 6= 0.

The k = 3 density Hales-Jewett theorem implies the corners the-

orem; this is proven by utilising the map φ : [3]n → [n]2 from the cube

to the square, defined by mapping a string x ∈ [3]n to a pair (a, b),

where a, b are the number of 1s and 2s respectively in x. The key point

is that φ maps combinatorial lines to corners. (Strictly speaking, this

mapping only establishes the corners theorem for dense subsets of

[n/3 −
√
n, n/3 +

√
n]2, but it is not difficult to obtain the general

case from this by replacing n by n2 and using translation-invariance.)

The corners theorem is also closely related to the problem of

finding dense sets of points in a triangular grid without any equilateral

triangles, a problem which we have called Fujimura’s problem.
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The corners theorem in turn implies

Theorem 4.1.3 (Roth’s theorem). Let 0 < δ ≤ 1. Then if n is a

sufficiently large integer, any subset A of the interval [n] of density

|A|/n at least δ contains at least one arithmetic progression a, a +

r, a+ 2r of length three.

Roth’s theorem can be deduced from the corners theorem by con-

sidering the map ψ : [n]2 → [3n] defined by ψ(a, b) := a+ 2b; the key

point is that ψ maps corners to arithmetic progressions of length

three.

There are higher k analogues of these implications; the general k

version of the density Hales-Jewett theorem implies a general k ver-

sion of the corners theorem known as the multidimensional Szemerédi

theorem, which in term implies a general version of Roth’s theorem

known as Szemerédi’s theorem.

4.1.2. The density increment argument. The strategy of the

density increment argument, which goes back to Roth’s proof[Ro1953]

of Theorem 4.1.3, is to perform a downward induction on the density

δ. Indeed, the theorem is obvious for high enough values of δ; for

instance, if δ > 2/3, then partitioning the cube [3]n into lines and

applying the pigeonhole principle will already give a combinatorial

line. So the idea is to deduce the claim for a fixed density δ from that

of a higher density δ.

A key concept here is that of an m-dimensional combinatorial sub-

space of [3]n - a set of the form φ([3]m), where φ ∈ {1, 2, 3, ∗1, . . . , ∗m}n
is a string formed using the base alphabet and m wildcards ∗1, . . . , ∗m
(with each wildcard appearing at least opnce), and φ(a1 . . . am) is the

string formed by substituting ai for ∗i for each i. (Thus, for in-

stance, a combinatorial line is a combinatorial subspace of dimension

1.) The identification φ between [3]m and the combinatorial space

φ([3]m) maps combinatorial lines to combinatorial lines. Thus, to

prove Theorem 4.1.1, it suffices to show

Proposition 4.1.4 (Lack of lines implies density increment). Let

0 < δ ≤ 1. Then if n is a sufficiently large integer, and A ⊂ [3]n has

density at least δ and has no combinatorial lines, then there exists
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an m-dimensional subspace φ([3]m) of [3]n on which A has density at

least δ+ c(δ), where c(δ) > 0 depends only on δ (and is bounded away

from zero on any compact range of δ), and m ≥ m0(n, δ) for some

function m0(n, δ) that goes to infinity as n→∞ for fixed δ.

It is easy to see that Proposition 4.1.4 implies Theorem 4.1.1

(for instance, one could consider the infimum of all δ for which the

theorem holds, and show that having this infimum non-zero would

lead to a contradiction).

Now we have to figure out how to get that density increment. The

original argument of Roth relied on Fourier analysis, which in turn

relies on an underlying translation-invariant structure which is not

present in the density Hales-Jewett setting. (Arithmetic progressions

are translation-invariant, but combinatorial lines are not.) It turns

out that one can proceed instead by adapting a (modification of)

an argument of Ajtai and Szemerédi, which gave the first proof of

Theorem 4.1.2.

The (modified) Ajtai-Szemerédi argument uses the density in-

crement method, assuming that A has no right-angled triangles and

showing that A has an increased density on a subgrid - a product

P × Q of fairly long arithmetic progressions with the same spacing.

The argument proceeds in two stages, which we describe slightly in-

formally (in particular, glossing over some technical details regarding

quantitative parameters such as ε) as follows:

• Step 1. If A ⊂ [n]2 is dense but has no right-angled triangles,

then A has an increased density on a cartesian product U×V
of dense sets U, V ⊂ [n] (which are not necessarily arithmetic

progressions).

• Step 2. Any Cartesian product U × V in [n]2 can be parti-

tioned into reasonably large grids P ×Q, plus a remainder

term of small density.

From Step 1, Step 2 and the pigeonhole principle we obtain the

desired density increment of A on a grid P ×Q, and then the density

increment argument gives us the corners theorem.

Step 1 is actually quite easy. If A is dense, then it must also

be dense on some diagonal D = {(x, y) : x + y = const}, by the
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pigeonhole principle. Let U and V denote the rows and columns that

A ∩D occupies. Every pair of points in A ∩D forms the hypotenuse

of some corner, whose third vertex lies in U × V . Thus, if A has no

corners, then A must avoid all the points formed by U×V (except for

those of the diagonal D). Thus A has a significant density decrease

on the Cartesian product U × V . Dividing the remainder [n]2\(U ×
V ) into three further Cartesian products U × ([n]\V ), ([n]\U) × V ,

([n]\U) × ([n]\V ) and using the pigeonhole principle we obtain the

claim (after redefining U, V appropriately).

Step 2 can be obtained by iterating a one-dimensional version:

• Step 2a. Any set U ⊂ [n] can be partitioned into reasonably

long arithmetic progressions P , plus a remainder term of

small density.

Indeed, from Step 2a, one can partition U × [n] into products

P × [n] (plus a small remainder), which can be easily repartitioned

into grids P ×Q (plus small remainder). This partitions U × V into

sets P × (V ∩ Q) (plus small remainder). Applying Step 2a again,

each V ∩Q can be partitioned further into progressions Q′ (plus small

remainder), which allows us to partition each P × (V ∩Q) into grids

P ′ ×Q′ (plus small remainder).

So all one has left to do is establish Step 2a. But this can be done

by the greedy algorithm: locate one long arithmetic progression P in

U and remove it from U , then locate another to remove, and so forth

until no further long progressions remain in the set. But Szemerédi’s

theorem then tells us the remaining set has low density, and one is

done!

This argument has the apparent disadvantage of requiring a deep

theorem (Szemerédi’s theorem) in order to complete the proof. How-

ever, interestingly enough, when one adapts the argument to the den-

sity Hales-Jewett theorem, one gets to replace Szemerédi’s theorem by

a more elementary result - one which in fact follows from the (easy)

k = 2 version of the density Hales-Jewett theorem, i.e. Sperner’s

theorem.

We first need to understand the analogue of the Cartesian prod-

ucts U × V . Note that U × V is the intersection of a “vertically
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insensitive set” U × [n] and a “horizontally insensitive set” [n] × V .

By “vertically insensitive” we mean that membership of a point (x, y)

in that set is unaffected if one moves that point in a vertical direction,

and similarly for “horizontally insensitive”. In a similar fashion, de-

fine a “12-insensitive set” to be a subset of [3]n, membership in which

is unaffected if one flips a coordinate from a 1 to a 2 or vice versa (e.g.

if 1223 lies in the set, then so must 1213, 1113, 2113, etc.). Similarly

define the notion of a “13-insensitive set”. We then define a “com-

plexity 1 set” to be the intersection E12 ∩ E13 of a 12-insensitive set

E12 and a 13-insensitive set E13; these are analogous to the Cartesian

products U × V .

(For technical reasons, one actually has to deal with local versions

of insensitive sets and complexity 1 sets, in which one is only allowed

to flip a moderately small number of the n coordinates rather than all

of them. But to simplify the discussion let me ignore this (important)

detail, which is also a major issue to address in the other two proofs

of this theorem.)

The analogues of Steps 1, 2 for the density Hales-Jewett theorem

are then

• Step 1. If A ⊂ [3]n is dense but has no combinatorial lines,

then A has an increased density on a (local) complexity 1

set E12 ∩ E13.

• Step 2. Any (local) complexity 1 set E12∩E13 ⊂ [3]n can be

partitioned into moderately large combinatorial subspaces

(plus a small remainder).

We can sketch how Step 1 works as follows. Given any x ∈ [3]n,

let π1→2(x) denote the string formed by replacing all 1s with 2s,

e.g. π1→2(1321) = 2322. Similarly define π1→3(x). Observe that

x, π1→2(x), π1→3(x) forms a combinatorial line (except in the rare case

when x doesn’t contain any 1s). Thus if we let E12 := {x : π1→2(x) ∈
A}, E13 := {x : π1→3(x) ∈ A}, we see that A must avoid essentially

all of E12∩E13. On the other hand, observe that E12 and E13 are 12-

insensitive and 13-insensitive sets respectively. Taking complements

and using the same sort of pigeonhole argument as before, we obtain

the claim. (Actually, this argument doesn’t quite work because E12,
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E13 could be very sparse; this problem can be fixed, but requires

one to use local complexity 1 sets rather than global ones, and also

to introduce the concept of “equal-slices measure”; I will not discuss

these issues here.)

Step 2 can be reduced, much as before, to the following analogue

of Step 2a:

• Step 2a. Any 12-insensitive set E12 ⊂ [3]n can be parti-

tioned into moderately large combinatorial subspaces (plus

a small remainder).

Identifying the letters 1 and 2 together, one can quotient [3]n

down to [2]n; the preimages of this projection are precisely the 12-

insensitive sets. Because of this, Step 2a is basically equivalent (mod-

ulo some technicalities about measure) to

• Step 2a’. Any E ⊂ [2]n can be partitioned into moderately

large combinatorial subspaces (plus a small remainder).

By the greedy algorithm, we will be able to accomplish this step

if we can show that every dense subset of [2]n contains moderately

large subspaces. But this turns out to be possible by carefully iter-

ating Sperner’s theorem (which shows that every dense subset of [2]n

contains combinatorial lines).

This proof of Theorem 4.1.1 extends without major difficulty to

the case of higher k; see [Po2009].

4.1.3. The triangle removal argument. The triangle removal

lemma of Ruzsa and Szemerédi[RuSz1978] is a graph-theoretic re-

sult which implies the corners theorem (and hence Roth’s theorem).

It asserts the following:

Lemma 4.1.5 (Triangle removal lemma). For every ε > 0 there

exists δ > 0 such that if a graph G on n vertices has fewer than δn3

triangles, then the triangles can be deleted entirely by removing at

most εn2 edges.

Let’s see how the triangle removal lemma implies the corners

theorem. A corner is, of course, already a triangle in the geometric

sense, but we need to convert it to a triangle in the graph-theoretic
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sense, as follows. Let A be a subset of [n]2 with no corners; the aim is

to show that A has small density. Let Vh be the set of all horizontal

lines in [n]2, Vv the set of vertical lines, and Vd the set of diagonal lines

(thus all three sets have size about n). We create a tripartite graph

G on the vertex sets Vh ∪ Vv ∪ Vd by joining a horizontal line h ∈ Vh
to a vertical line v ∈ Vv whenever h and v intersect at a point in A,

and similarly connecting Vh or Vv to Vd. Observe that a triangle in

G corresponds either to a corner in A, or to a “degenerate” corner in

which the horizontal, vertical, and diagonal line are all concurrent. In

particular, there are very few triangle in G, which can then be deleted

by removing a small number of edges from G by the triangle removal

lemma. But each edge removed can delete at most one degenerate

corner, and the number of degenerate corners is |A|, and so |A| is

small as required.

All known proofs of the triangle removal lemma proceed by some

version of the following three steps:

• “Regularity lemma step”: Applying tools such as the Sze-

merédi regularity lemma, one can partition the graph G into

components Gij between cells Vi, Vj of vertices, such that

most of the Gij are “pseudorandom”. One way to define

what pseudorandom means is to view each graph compo-

nent Gij as a subset of the Cartesian product Vi × Vj , in

which case Gij is pseudorandom if it does not have a sig-

nificant density increment on any smaller Cartesian product

V ′i × V ′j of non-trivial size.

• ”Counting lemma step”: By exploiting the pseudorandom-

ness property, one shows that if G has a triple Gij , Gjk, Gki
of dense pseudorandom graphs between cells Vi, Vj , Vk of

non-trivial size, then this triple must generate a large num-

ber of triangles; hence, if G has very few triangles, then one

cannot find such a triple of dense pseudorandom graphs.

• ”Cleaning step”: If one then removes all components of G

which are too sparse or insufficiently pseudorandom, one can

thus eliminate all triangles.
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Pulling this argument back to the corners theorem, we see that

cells such as Vi, Vj , Vk will correspond either to horizontally insen-

sitive sets, vertically insensitive sets, or diagonally insensitive sets.

Thus this proof of the corners theorem proceeds by partitioning [n]2

in three different ways into insensitive sets in such a way that A is

pseudorandom with respect to many of the cells created by any two

of these partitions, counting the corners generated by any triple of

large cells in which A is pseudorandom and dense, and cleaning out

all the other cells.

It turns out that a variant of this argument can give Theorem

4.1.1; this was in fact the original approach studied by the polymath1

project, though it was only after a detour through ergodic theory

(as well as the development of the density-increment argument dis-

cussed above) that the triangle-removal approach could be properly

executed. In particular, an ergodic argument based on the infinitary

analogue of the triangle removal lemma (and its hypergraph gener-

alisations) was developed by Austin[Au2009b], which then inspired

the combinatorial version sketched here.

The analogue of the vertex cells Vi are given by certain 12-insensitive

sets Ea12, 13-insensitive sets Eb13, and 23-insensitive sets Ec23. Roughly

speaking, a set A ⊂ [3]n would be said to be pseudorandom with re-

spect to a cell Ea12∩Eb13 if A∩Ea12∩Eb13 has no further density incre-

ment on any smaller cell E′12 ∩ E′13 with E′12 a 12-insensitive subset

of Ea12, and E′13 a 13-insensitive subset of Eb13. (This is an oversim-

plification, glossing over an important refinement of the concept of

pseudorandomness involving the discrepancy between global densi-

ties in [3]n and local densities in subspaces of [3]n.) There is a similar

notion of A being pseudorandom with respect to a cell Eb13 ∩ Ec23 or

Ec23 ∩ Ea12.

We briefly describe the “regularity lemma” step. By modifying

the proof of the regularity lemma, one can obtain three partitions

[3]n = E1
12 ∪ . . . ∪ E

M12
12 = E1

13 ∪ . . . ∪ E
M13
13 = E1

23 ∪ . . . ∪ E
M23
23

into 12-insensitive, 13-insensitive, and 23-insensitive components re-

spectively, where M12,M13,M23 are not too large, and A is pseudo-

random with respect to most cells Ea12∩Eb13, Eb13∩Ec23, and Ec23∩Ea12.
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In order for the counting step to work, one also needs an addi-

tional “stationarity” reduction, which is difficult to state precisely,

but roughly speaking asserts that the “local” statistics of sets such as

Ea12 on medium-dimensional subspaces are close to the corresponding

“global” statistics of such sets; this can be achieved by an additional

pigeonholing argument. We will gloss over this issue, pretending that

there is no distinction between local statistics and global statistics.

(Thus, for instance, if Ea12 has large global density in [3]n, we shall as-

sume that Ea12 also has large density on most medium-sized subspaces

of [3]n.)

Now for the “counting lemma” step. Suppose we can find a, b, c

such that the cells Ea12, E
b
13, E

c
23 are large, and that A intersects Ea12∩

Eb13, Eb13 ∩Ec23, and Ec23 ∩Ea12 in a dense pseudorandom manner. We

claim that this will force A to have a large number of combinatorial

lines `, with `(1) in A ∩ Ea12 ∩ Eb13, `(2) in A ∩ Ec23 ∩ Ea12, and `(3)

in A ∩ Eb13 ∩ Ec23. Because of the dense pseudorandom nature of

A in these cells, it turns out that it will suffice to show that there

are a lot of lines `(1) with `(1) ∈ Ea12 ∩ Eb13, `(2) ∈ Ec23 ∩ Ea12, and

`(3) ∈ Eb13 ∩ Ec23.

One way to generate a line ` is by taking the triple {x, π1→2(x), π1→3(x)},
where x ∈ [3]n is a generic point. (Actually, as we will see below, we

would have to to a subspace of [3]n before using this recipe to generate

lines.) Then we need to find many x obeying the constraints

x ∈ Ea12 ∩ Eb13; π1→2(x) ∈ Ec23 ∩ Ea12; π1→3(x) ∈ Eb13 ∩ Ec23.

Because of the various insensitivity properties, many of these condi-

tions are redundant, and we can simplify to

x ∈ Ea12 ∩ Eb13; π1→2(x) ∈ Ec23.

Now note that the property “π1→2(x) ∈ Ec23” is 123-insensitive; it is

simultaneously 12-insensitive, 23-insensitive, and 13-insensitive. As

Ec23 is assumed to be large, there will be large combinatorial subspaces

on which (a suitably localised version of) this property “π1→2(x) ∈
Ec23” will be always true. Localising to this space (taking advantage

of the stationarity properties alluded to earlier), we are now looking

for solutions to

x ∈ Ea12 ∩ Eb13.
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We’ll pick x to be of the form π2→1(y) for some y. We can then

rewrite the constraints on y as

y ∈ Ea12; π2→1(y) ∈ Eb13.

The property “π2→1(y) ∈ Eb13” is 123-invariant, and Eb13 is large,

so by arguing as before we can pass to a large subspace where this

property is always true. The largeness of Ea12 then gives us a large

number of solutions.

Taking contrapositives, we conclude that if A in fact has no com-

binatorial lines, then there do not exist any triple Ea12, E
b
13, E

c
23 of

large cells with respect to which A is dense and pseudorandom. This

forces A to be confined either to very small cells, or to very sparse

subsets of cells, or to the rare cells which fail to be pseudorandom.

None of these cases can contribute much to the density of A, and

so A itself is very sparse - contradicting the hypothesis in Theorem

4.1.1 that A is dense (this is the “cleaning step”). This concludes the

sketch of the triangle-removal proof of this theorem.

The ergodic version of this argument in [Au2009b] works for all

values of k, so I expect the combinatorial version to do so as well.

4.1.4. The finitary Furstenberg-Katznelson argument. In [FuKa1989],

Furstenberg and Katznelson gave the first proof of Theorem 4.1.1, by

translating it into a recurrence statement about a certain type of sta-

tionary process indexed by an infinite cube [3]ω :=
⋃∞
n=1[3]n. This

argument was inspired by a long string of other successful proofs of

density Ramsey theorems via ergodic means, starting with the ini-

tial paper of Furstenberg[Fu1977] giving an ergodic theory proof of

Szemerédi’s theorem. The latter proof was transcribed into a fini-

tary language in [Ta2006b], so it was reasonable to expect that the

Furstenberg-Katznelson argument could similarly be translated into

a combinatorial framework.

Let us first briefly describe the original strategy of Furstenberg

to establish Roth’s theorem, but phrased in an informal, and vaguely

combinatorial, language. The basic task is to get a non-trivial lower

bound on averages of the form

(4.1) Ea,rf(a)f(a+ r)f(a+ 2r)
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where we will be a bit vague about what a, r are ranging over, and

where f is some non-negative function of positive mean. It is then

natural to study more general averages of the form

(4.2) Ea,rf(a)g(a+ r)h(a+ 2r).

Now, it turns out that certain types of functions f, g, h give a negli-

gible contribution to expressions such as (4.2). In particular, if f is

weakly mixing, which roughly means that the pair correlations

Eaf(a)f(a+ r)

are small for most r, then the average (4.2) is small no matter what

g, h are (so long as they are bounded). This can be established

by some applications of the Cauchy-Schwarz inequality (or its close

cousin, the van der Corput lemma). As a consequence of this, all

weakly mixing components of f can essentially be discarded when

considering an average such as (4.1).

After getting rid of the weakly mixing components, what is left?

Being weakly mixing is like saying that almost all the shifts f(·+ r)

of f are close to orthogonal to each other. At the other extreme is

that of periodicity - the shifts f(· + r) periodically recur to become

equal to f again. There is a slightly more general notion of almost

periodicity - roughly, this means that the shifts f(·+ r) don’t have to

recur exactly to f again, but they are forced to range in a precompact

set, which basically means that for every ε > 0, that f(· + r) lies

within ε (in some suitable norm) of some finite-dimensional space. A

good example of an almost periodic function is an eigenfunction, in

which we have f(a + r) = λrf(a) for each r and some quantity λr
independent of a (e.g. one can take f(a) = e2πiαa for some α ∈ R).

In this case, the finite-dimensional space is simply the scalar multiples

of f(a) (and one can even take ε = 0 in this special case).

It is easy to see that non-trivial almost periodic functions are not

weakly mixing; more generally, any function which correlates non-

trivially with an almost periodic function can also be seen to not

be weakly mixing. In the converse direction, it is also fairly easy to

show that any function which is not weakly mixing must have non-

trivial correlation with an almost periodic function. Because of this, it

turns out that one can basically decompose any function into almost



562 4. Technical articles

periodic and weakly mixing components. For the purposes of getting

lower bounds on (4.1), this allows us to essentially reduce matters

to the special case when f is almost periodic. But then the shifts

f(· + r) are almost ranging in a finite-dimensional set, which allows

one to essentially assign each shift r a colour from a finite range of

colours. If one then applies the van der Waerden theorem, one can

find many arithmetic progressions a, a+r, a+2r which have the same

colour, and this can be used to give a non-trivial lower bound on (4.1).

(Thus we see that the role of a compactness property such as almost

periodicity is to reduce density Ramsey theorems to colouring Ramsey

theorems.)

This type of argument can be extended to more advanced recur-

rence theorems, but certain things become more complicated. For

instance, suppose one wanted to count progressions of length 4; this

amounts to lower bounding expressions such as

(4.3) Ea,rf(a)f(a+ r)f(a+ 2r)f(a+ 3r).

It turns out that f being weakly mixing is no longer enough to give

a negligible contribution to expressions such as (4.3). For that, one

needs the stronger property of being weakly mixing relative to almost

periodic functions; roughly speaking, this means that for most r, the

expression f(·)f(·+r) is not merely of small mean (which is what weak

mixing would mean), but that this expression furthermore does not

correlate strongly with any almost periodic function (i.e. Eaf(a)f(a+

r)g(a) is small for any almost periodic g). Once one has this stronger

weak mixing property, then one can discard all components of f which

are weakly mixing relative to almost periodic functions.

One then has to figure out what is left after all these components

are discarded. Because we strengthened the notion of weak mixing, we

have to weaken the notion of almost periodicity to compensate. The

correct notion is no longer that of almost periodicity - in which the

shifts f(·+r) almost take values in a finite-dimensional vector space -

but that of almost periodicity relative to almost periodic functions, in

which the shifts almost take values in a finite-dimensional module over

the algebra of almost periodic functions. A good example of such a

beast is that of a quadratic eigenfunction, in which we have f(a+r) =

λr(a)f(a) where λr(a) is itself an ordinary eigenfunction, and thus
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almost periodic in the ordinary sense; here, the relative module is

the one-dimensional module formed by almost periodic multiples of

f . (A typical example of a quadratic eigenfunction is f(a) = e2πiαa2

for some α ∈ R.)

It turns out that one can “relativise” all of the previous argu-

ments to the almost periodic “factor”, and decompose an arbitrary f

into a component which is weakly mixing relative to almost periodic

functions, and another component which is almost periodic relative

to almost periodic functions. The former type of components can

be discarded. For the latter, we can once again start colouring the

shifts f(· + r) with a finite number of colours, but with the caveat

that the colour assigned is no longer independent of a, but depends

in an almost periodic fashion on a. Nevertheless, it is still possible

to combine the van der Waerden colouring Ramsey theorem with the

theory of recurrence for ordinary almost periodic functions to get a

lower bound on (4.3) in this case. One can then iterate this argument

to deal with arithmetic progressions of longer length, but one now

needs to consider even more intricate notions of almost periodicity,

e.g. almost periodicity relative to (almost periodic functions relative

to almost periodic functions), etc.

It turns out that these types of ideas can be adapted (with some

effort) to the density Hales-Jewett setting. It’s simplest to begin

with the k = 2 situation rather than the k = 3 situation. Here, we

are trying to obtain non-trivial lower bounds for averages of the form

(4.4) E`f(`(1))f(`(2))

where ` ranges in some fashion over combinatorial lines in [2]n, and

f is some non-negative function with large mean.

The analogues of weakly mixing and almost periodic in this set-

ting are the 12-uniform and 12-low influence functions respectively.

Roughly speaking, a function is 12-low influence if its value usually

doesn’t change much if a 1 is flipped to a 2 or vice versa (e.g. the indi-

cator function of a 12-insensitive set is 12-low influence); conversely,

a 12-uniform function is a function g such that E`f(`(1))g(`(2)) is

small for all (bounded) f . One can show that any function can be

decomposed, more or less orthogonally, into a 12-uniform function
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and a 12-low influence function, with the upshot being that one can

basically reduce the task of lower bounding (4.4) to the case when f

is 12-low influence. But then f(`(1)) and f(`(2)) are approximately

equal to each other, and it is straightforward to get a lower-bound in

this case.

Now we turn to the k = 3 setting, where we are looking at lower-

bounding expressions such as

(4.5) E`f(`(1))g(`(2))h(`(3))

with f = g = h.

It turns out that g (say) being 12-uniform is no longer enough

to give a negligible contribution to the average (4.5). Instead, one

needs the more complicated notion of g being 12-uniform relative

to 23-low influence functions; this means that not only are the av-

erages E`f(`(1))g(`(2)) small for all bounded f , but furthermore

E`f(`(1))g(`(2))h(`) is small for all bounded f and all 23-low in-

fluence h (there is a minor technical point here that h is a function of

a line rather than of a point, but this should be ignored). Any com-

ponent of g in (4.5) which is 12-uniform relative to 23-low influence

functions are negligible and so can be removed.

One then needs to figure out what is left in g when these compo-

nents are removed. The answer turns out to be functions g that are

12-almost periodic relative to 23-low influence. The precise definition

of this concept is technical, but very roughly speaking it means that

if one flips a digit from a 1 to a 2, then the value of g changes in a

manner which is controlled by 23-low influence functions. Anyway,

the upshot is that one can reduce g in (4.5) from f to the compo-

nents of f which are 12-almost periodic relative to 23-low influence.

Similarly, one can reduce h in (4.5) from f to the components of f

which are 13-almost periodic relative to 23-low influence.

At this point, one has to use a colouring Ramsey theorem - in

this case, the Graham-Rothschild theorem - in conjunction with the

relative almost periodicity to locate lots of places in which g(`(2)) is

close to g(`(1)) while h(`(3)) is simultaneously close to h(`(1)). This

turns (4.5) into an expression of the form Exf(x)g(x)h(x), which
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turns out to be relatively easy to lower bound (because g, h, being

projections of f , tend to be large wherever f is large).

Notes. This article first appeared at terrytao.wordpress.com/2009/04/02.

Thanks to Ben, Daniel, Kevin O’Bryant, Sune Kristian Jakobsen, and

anonymous commenters for corrections.

More information about the Polymath1 project can be found at

http://michaelnielsen.org/polymath1/index.php?title=Main Page.

4.2. Szemerédi’s regularity lemma via random
partitions

In the theory of dense graphs on n vertices, where n is large, a fun-

damental role is played by the Szemerédi regularity lemma:

Lemma 4.2.1 (Regularity lemma, standard version). Let G = (V,E)

be a graph on n vertices, and let ε > 0 and k0 ≥ 0. Then there exists

a partition of the vertices V = V1 ∪ . . . ∪ Vk, with k0 ≤ k ≤ C(k0, ε)

bounded below by k0 and above by a quantity C(k0, ε) depending only

on k0, ε, obeying the following properties:

• (Equitable partition) For any 1 ≤ i, j ≤ k, the cardinalities

|Vi|, |Vj | of Vi and Vj differ by at most 1.

• (Regularity) For all but at most εk2 pairs 1 ≤ i < j ≤ k, the

portion of the graph G between Vi and Vj is ε-regular in the

sense that one has

|d(A,B)− d(Vi, Vj)| ≤ ε

for any A ⊂ Vi and B ⊂ Vj with |A| ≥ ε|Vi|, |B| ≥ ε|Vj |,
where d(A,B) := |E∩(A×B)|/|A||B| is the density of edges

between A and B.

This lemma becomes useful in the regime when n is very large

compared to k0 or 1/ε, because all the conclusions of the lemma are

uniform in n. Very roughly speaking, it says that “up to errors of

size ε”, a large graph can be more or less described completely by

a bounded number of quantities d(Vi, Vj). This can be interpreted

as saying that the space of all graphs is totally bounded (and hence

precompact) in a suitable metric space, thus allowing one to take
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formal limits of sequences (or subsequences) of graphs; see for instance

[LoSz2007] for a discussion.

For various technical reasons it is easier to work with a slightly

weaker version of the lemma, which allows for the cells V1, . . . , Vk to

have unequal sizes:

Lemma 4.2.2 (Regularity lemma, weighted version). Let G = (V,E)

be a graph on n vertices, and let ε > 0. Then there exists a partition

of the vertices V = V1 ∪ . . .∪Vk, with 1 ≤ k ≤ C(ε) bounded above by

a quantity C(ε) depending only on ε, obeying the following properties:

• (Regularity) One has

(4.6)
∑

(Vi,Vj) not ε−regular

|Vi||Vj | = O(ε|V |2)

where the sum is over all pairs 1 ≤ i ≤ j ≤ k for which G

is not ε-regular between Vi and Vj.

While Lemma 4.2.2 is, strictly speaking, weaker than Lemma

4.2.1 in that it does not enforce the equitable size property between

the atoms, in practice it seems that the two lemmas are roughly of

equal utility; most of the combinatorial consequences of Lemma 4.2.1

can also be proven using Lemma 4.2.2. The point is that one always

has to remember to weight each cell Vi by its density |Vi|/|V |, rather

than by giving each cell an equal weight as in Lemma 4.2.1. Lemma

4.2.2 also has the advantage that one can easily generalise the result

from finite vertex sets V to other probability spaces (for instance, one

could weight V with something other than the uniform distribution).

For applications to hypergraph regularity, it turns out to be slightly

more convenient to have two partitions (coarse and fine) rather than

just one; see for instance [Ta2006c]. In any event the arguments

below that we give to prove Lemma 4.2.2 can be modified to give a

proof of Lemma 4.2.1 also.

The proof of the regularity lemma is usually conducted by a greedy

algorithm. Very roughly speaking, one starts with the trivial partition

of V . If this partition already regularises the graph, we are done; if

not, this means that there are some sets A and B in which there is a

significant density fluctuation beyond what has already been detected
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by the original partition. One then adds these sets to the partition

and iterates the argument. Every time a new density fluctuation is

incorporated into the partition that models the original graph, this

increases a certain “index” or “energy” of the partition. On the other

hand, this energy remains bounded no matter how complex the par-

tition, so eventually one must reach a long “energy plateau” in which

no further refinement is possible, at which point one can find the

regular partition.

One disadvantage of the greedy algorithm is that it is not effi-

cient in the limit n → ∞, as it requires one to search over all pairs

of subsets A,B of a given pair Vi, Vj of cells, which is an exponen-

tially long search. There are more algorithmically efficient ways to

regularise, for instance a polynomial time algorithm was given in

[AlDuLeRoYu1994]. However, one can do even better, if one is

willing to (a) allow cells of unequal size, (b) allow a small probability

of failure, (c) have the ability to sample vertices from G at random,

and (d) allow for the cells to be defined “implicitly” (via their rela-

tionships with a fixed set of reference vertices) rather than “explicitly”

(as a list of vertices). In that case, one can regularise a graph in a

number of operations bounded in n. Indeed, one has

Lemma 4.2.3 (Regularity lemma via random neighbourhoods). Let

ε > 0. Then there exists integers M1, . . . ,Mm with the following

property: whenever G = (V,E) be a graph on finitely many vertices,

if one selects one of the integers Mr at random from M1, . . . ,Mm,

then selects Mr vertices v1, . . . , vMr
∈ V uniformly from V at random,

then the 2Mr vertex cells VMr
1 , . . . , VMr

2Mr
(some of which can be empty)

generated by the vertex neighbourhoods At := {v ∈ V : (v, vt) ∈ E} for

1 ≤ t ≤Mr, will obey the conclusions of Lemma 4.2.2 with probability

at least 1−O(ε).

Thus, roughly speaking, one can regularise a graph simply by

taking a large number of random vertex neighbourhoods, and using

the partition (or Venn diagram) generated by these neighbourhoods

as the partition. The intuition is that if there is any non-uniformity

in the graph (e.g. if the graph exhibits bipartite behaviour), this will

bias the random neighbourhoods to seek out the partitions that would
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regularise that non-uniformity (e.g. vertex neighbourhoods would be-

gin to fill out the two vertex cells associated to the bipartite property);

if one takes sufficiently many such random neighbourhoods, the prob-

ability that all detectable non-uniformity is captured by the partition

should converge to 1. (It is more complicated than this, because the

finer one makes the partition, the finer the types of non-uniformity

one can begin to detect, but this is the basic idea.)

This fact seems to be reasonably well-known folklore, discovered

independently by many authors; it is for instance quite close to the

graph property testing results in [AlSh2008], and also appears in

[Is2006] and [Au2008] (and implicitly in [Ta2007]); I will present

a proof of the lemma below.

4.2.1. Warmup: a weak regularity lemma. To motivate the

idea, let’s first prove a weaker but simpler (and more quantitatively

effective) regularity lemma, analogous to that established by Frieze

and Kannan:

Lemma 4.2.4 (Weak regularity lemma via random neighbourhoods).

Let ε > 0. Then there exists an integer M with the following property:

whenever G = (V,E) be a graph on finitely many vertices, if one

selects 1 ≤ t ≤ M at random, then selects t vertices v1, . . . , vt ∈
V uniformly from V at random, then the 2t vertex cells V t1 , . . . , V

t
2t

(some of which can be empty) generated by the vertex neighbourhoods

At′ := {v ∈ V : (v, vt′) ∈ E} for 1 ≤ t′ ≤ t, obey the following

property with probability at least 1−O(ε): for any vertex sets A,B ⊂
V , the number of edges |E ∩ (A × B)| connecting A and B can be

approximated by the formula

(4.7) |E ∩ (A×B)| =
2t∑
i=1

2t∑
j=1

d(V ti , V
t
j )|A∩ V ti ||B ∩ V tj |+O(ε|V |2).

This weaker lemma only lets us count “macroscopic” edge den-

sities d(A,B), when A,B are dense subsets of V , whereas the full

regularity lemma is stronger in that it also controls “microscopic”

edge densities d(A,B) where A,B are now dense subsets of the cells

VMr
i , VMr

j . Nevertheless this weaker lemma is easier to prove and

already illustrates many of the ideas.
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Let’s now prove this lemma. Fix ε > 0, let M be chosen later,

let G = (V,E) be a graph, and select v1, . . . , vM at random. (There

can of course be many vertices selected more than once; this will not

bother us.) Let At and V t1 , . . . , V
t
2t be as in the above lemma. For

notational purposes it is more convenient to work with the (random)

σ-algebra Bt generated by the A1, . . . , At (i.e. the collection of all

sets that can be formed from A1, . . . , At by boolean operations); this

is an atomic σ-algebra whose atoms are precisely the (non-empty)

cells V t1 , . . . , V
t
2t in the partition. Observe that these σ-algebras are

nested: Bt ⊂ Bt+1.

We will use the trick of turning sets into functions, and view

the graph as a function 1E : V × V → R. One can then form the

conditional expectation E(1E |Bt × Bt) : V × V → R of this function

to the product σ-algebra Bt × Bt, whose value on V ti × V tj is simply

the average value of 1E on the product set V ti × V tj . (When i and

j are different, this is simply the edge density d(V ti , V
t
j )). One can

view E(1E |Bt × Bt) more combinatorially, as a weighted graph on V

such that all edges between two distinct cells V ti , V tj have the same

constant weight of d(V ti , V
t
j ).

We give V (and V × V ) the uniform probability measure, and

define the energy et at time t to be the (random) quantity

et := ‖E(1E |Bt × Bt)‖2L2(V×V ) =
1

|V |2
∑
v,w∈V

E(1E |Bt × Bt)2.

one can interpret this as the mean square of the edge densities d(V ti , V
t
j ),

weighted by the size of the cells V ti , V
t
j . From Pythagoras’ theorem

we have the identity

et′ = et + ‖E(1E |Bt′ × Bt′)−E(1E |Bt × Bt)‖2L2(V×V )

for all t′ > t; in particular, the et are increasing in t. This implies

that the expectations Eet are also increasing in t. On the other hand,

these expectations are bounded between 0 and 1. Thus, if we select

1 ≤ t ≤M at random, expectation of

E(et+2 − et)
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telescopes to be O(1/M). Thus, by Markov’s inequality, with proba-

bility 1 − O(ε) we can freeze v1, . . . , vt such that we have the condi-

tional expectation bound

(4.8) E(et+2 − et|v1, . . . , vt) = O(
1

Mε
).

Suppose v1, . . . , vt have this property. We split

1E = fU⊥ + fU

where

fU⊥ := E(1E |Bt × Bt)
and

fU := 1E −E(1E |Bt × Bt).

We now assert that the partition V t1 , . . . , V
t
2t induced by Bt obeys

the conclusions of Lemma 4.2.3. For this, we observe various proper-

ties on the two components of 1E :

Lemma 4.2.5 (fU⊥ is structured). fU⊥ is constant on each product

set V ti × V tj .

Proof. This is clear from construction. �

Lemma 4.2.6 (fU is pseudorandom). The expression

1

|V |4
∑

v,w,v′,w′∈V
fU (v, w)fU (v, w′)fU (v′, w)fU (v′, w′)

is of size O( 1√
Mε

).

Proof. The left-hand side can be rewritten as

E
1

|V |2
∑
v,w∈V

fU (v, w)fU (v, vt+2)fU (vt+1, w)fU (vt+1, vt+2).

Observe that the function (v, w) 7→ fU (v, vt+2)fU (vt+1, w)fU (v, w)

is measurable with respect to Bt+2 × Bt+2, so we can rewrite this

expression as

E
1

|V |2
∑
v,w∈V

E(fU |Bt+2×Bt+2)(v, w)fU (v, vt+2)fU (vt+1, w)fU (vt+1, vt+2).

Applying Cauchy-Schwarz, one can bound this by

E‖E(fU |Bt+2 × Bt+2)‖L2(V×V ).
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But from Pythagoras we have

E(fU |Bt+2 × Bt+2)2 = et+2 − et

and so the claim follows from (4.8) and another application of Cauchy-

Schwarz. �

Now we can prove Lemma 4.2.4. Observe that

|E ∩ (A×B)| −
2t∑
i=1

2t∑
j=1

d(V ti , V
t
j )|A ∩ V ti ||B ∩ V tj |

=
∑
v,w∈V

1A(v)1B(w)fU (v, w).

Applying Cauchy-Schwarz twice in v, w and using Lemma 4.2.6, we

see that the RHS is O((Mε)−1/8); choosing M � ε−9 we obtain the

claim.

4.2.2. Strong regularity via random neighbourhoods. We now

prove Lemma 4.2.3, which of course implies Lemma 4.2.2.

Fix ε > 0 and a graph G = (V,E) on n vertices. We randomly

select an infinite sequence v1, v2, . . . ∈ V of vertices in V , drawn

uniformly and independently at random. We define At, V
t
i ,Bt, et, as

before.

Now let m be a large number depending on ε > 0 to be chosen

later, let F : Z+ → Z+ be a rapidly growing function (also to be

chosen later), and set M1 := F (1) and Mr := 2(Mr−1 + F (Mr−1))

for all 1 ≤ r ≤ m, thus M1 < M2 < . . . < Mm+1 grows rapidly to

infinity. The expected energies EeMr
are increasing from 0 to 1, thus

if we pick 1 ≤ r ≤ m uniformly at random, the expectation of

EeMr+1
− eMr

telescopes to be O(1/m). Thus, by Markov’s inequality, with proba-

bility 1−O(ε) we will have

EeMr+1
− eMr

= O(
1

mε
).

Assume that r is chosen to obey this. Then, by another application

of the pigeonhole principle, we can find Mr+1/2 ≤ t < Mr+1 such
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that

E(et+2 − et) = O(
1

mεMr+1
) = O(

1

mεF (Mr)
).

Fix this t. We have

E(et − eMr
) = O(

1

mε
),

so by Markov’s inequality, with probability 1 − O(ε), v1, . . . , vt are

such that

(4.9) et − eMr = O(
1

mε2
)

and also obey the conditional expectation bound

(4.10) E(et+2 − et|v1, . . . , vt) = O(
1

mεF (Mr)
).

Assume that this is the case. We split

1E = fU⊥ + ferr + fU

where

fU⊥ := E(1E |BMr
× BMr

)

ferr := E(1E |Bt × Bt)−E(1E |BMr
× BMr

)

fU := 1E −E(1E |Bt × Bt).

We now assert that the partition VMr
1 , . . . , VMr

2Mr
induced by BMr

obeys the conclusions of Lemma 4.2.2. For this, we observe various

properties on the three components of 1E :

Lemma 4.2.7 (fU⊥ locally constant). fU⊥ is constant on each prod-

uct set VMr
i × VMr

j .

Proof. This is clear from construction. �

Lemma 4.2.8 (ferr small). We have ‖ferr‖2L2(V×V ) = O( 1
mε2 ).

Proof. This follows from (4.9) and Pythagoras’ theorem. �

Lemma 4.2.9 (fU uniform). The expression

1

|V |4
∑

v,w,v′,w′∈V
fU (v, w)fU (v, w′)fU (v′, w)fU (v′, w′)

is of size O( 1√
mεF (Mr)

).
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Proof. This follows by repeating the proof of Lemma 4.2.6, but using

(4.10) instead of (4.8). �

Now we verify the regularity.

First, we eliminate small atoms: the pairs (Vi, Vj) for which

|VMr
i | ≤ ε|V |/2Mr clearly give a net contribution of at most O(ε|V |2)

and are acceptable; similarly for those pairs for which |VMr
j | ≤ ε|V |/2Mr .

So we may henceforth assume that

(4.11) |VMr
i |, |VMr

j | ≤ ε|V |/2Mr .

Now, let A ⊂ VMr
i , B ⊂ VMr

i have densities

α := |A|/|VMr
i | ≥ ε;β := |B|/|VMr

j | ≥ ε,

then

αβd(A,B) =
1

|VMr
i ||VMr

j |

∑
v∈VMri

∑
w∈VMri

1A(v)1B(w)1E(v, w).

We divide 1E into the three pieces fU⊥ , ferr, fU .

The contribution of fU⊥ is exactly αβd(VMr
i , VMr

j ).

The contribution of ferr can be bounded using Cauchy-Schwarz

as

O(
1

|VMr
i ||VMr

j |

∑
v∈VMri

∑
w∈VMri

|ferr(v, w)|2)1/2.

Using Lemma 4.2.8 and Chebyshev’s inequality, we see that the pairs

(Vi, Vj) for which this quantity exceeds ε3 will contribute at most

ε−8/m to (4.6), which is acceptable if we choose m so that m� ε−9.

Let us now discard these bad pairs.

Finally, the contribution of fU can be bounded by two applica-

tions of Cauchy-Schwarz and (4.2.9) as

O(
|V |2

|VMr
i ||VMr

j |
1

(mεF (Mr))1/8
)

which by (4.11) is bounded by

O(22Mrε−2/(mεF (Mr))
1/8).
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This can be made O(ε3) by selecting F sufficiently rapidly growing

depending on ε. Putting this all together we see that

αβd(A,B) = αβd(VMr
i , VMr

j ) +O(ε3)

which (since α, β ≥ ε) gives the desired regularity.

Remark 4.2.10. Of course, this argument gives tower-exponential

bounds (as F is exponential and needs to be iterated m times), which

will be familiar to any reader already acquainted with the regularity

lemma.

Remark 4.2.11. One can take the partition induced by random

neighbourhoods here and carve it up further to be both equitable

and (mostly) regular, thus recovering a proof of Lemma 1, by follow-

ing the arguments in [Ta2006c]. Of course, when one does so, one no

longer has a partition created purely from random neighbourhoods,

but it is pretty clear that one is not going to be able to make an equi-

table partition just from boolean operations applied to a few random

neighbourhoods.

Notes. This article first appeared at terrytao.wordpress.com/2009/04/26.

Thanks to Anup for corrections.

Asaf Shapira noted that in [FiMaSh2007] a similar (though not

identical) regularisation algorithm was given which explicitly regu-

larises a graph or hypergraph in linear time.

4.3. Szemerédi’s regularity lemma via the
correspondence principle

In the previous section, we discussed the Szemerédi regularity lemma,

and how a given graph could be regularised by partitioning the vertex

set into random neighbourhoods. More precisely, we gave a proof of

Lemma 4.3.1 (Regularity lemma via random neighbourhoods). Let

ε > 0. Then there exists integers M1, . . . ,Mm with the following

property: whenever G = (V,E) be a graph on finitely many vertices,

if one selects one of the integers Mr at random from M1, . . . ,Mm,

then selects Mr vertices v1, . . . , vMr
∈ V uniformly from V at random,

then the 2Mr vertex cells VMr
1 , . . . , VMr

2Mr
(some of which can be empty)
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generated by the vertex neighbourhoods At := {v ∈ V : (v, vt) ∈ E}
for 1 ≤ t ≤Mr, will obey the regularity property

(4.12)
∑

(Vi,Vj) not ε−regular

|Vi||Vj | ≤ ε|V |2

with probability at least 1 − O(ε), where the sum is over all pairs

1 ≤ i ≤ j ≤ k for which G is not ε-regular between Vi and Vj. [Recall

that a pair (Vi, Vj) is ε-regular for G if one has

|d(A,B)− d(Vi, Vj)| ≤ ε

for any A ⊂ Vi and B ⊂ Vj with |A| ≥ ε|Vi|, |B| ≥ ε|Vj |, where

d(A,B) := |E∩ (A×B)|/|A||B| is the density of edges between A and

B.]

The proof was a combinatorial one, based on the standard energy

increment argument.

In this article I would like to discuss an alternate approach to the

regularity lemma, which is an infinitary approach passing through

a graph-theoretic version of the Furstenberg correspondence princi-

ple. While this approach superficially looks quite different from the

combinatorial approach, it in fact uses many of the same ingredi-

ents, most notably a reliance on random neighbourhoods to regu-

larise the graph. This approach was introduced in [Ta2007], and

used in [Au2008, AuTa2010] to establish some property testing

results for hypergraphs; more recently, a closely related infinitary

hypergraph removal lemma developed in [Ta2007] was also used in

[Au2009, Au2009b] to give new proofs of the multidimensional Sze-

meredi theorem and of the density Hales-Jewett theorem (the latter

being a spinoff of the polymath1 project, see Section 4.1).

For various technical reasons we will not be able to use the cor-

respondence principle to recover Lemma 4.3.1 in its full strength;

instead, we will establish the following slightly weaker variant.

Lemma 4.3.2 (Regularity lemma via random neighbourhoods, weak

version). Let ε > 0. Then there exist an integer M∗ with the fol-

lowing property: whenever G = (V,E) be a graph on finitely many

vertices, there exists 1 ≤M ≤M∗ such that if one selects M vertices

v1, . . . , vM ∈ V uniformly from V at random, then the 2M vertex cells
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VM1 , . . . , VM2M generated by the vertex neighbourhoods At := {v ∈ V :

(v, vt) ∈ E} for 1 ≤ t ≤ M , will obey the regularity property (4.12)

with probability at least 1− ε.

Roughly speaking, Lemma 4.3.1 asserts that one can regularise a

large graph G with high probability by using Mr random neighbour-

hoods, where Mr is chosen at random from one of a number of choices

M1, . . . ,Mm; in contrast, the weaker Lemma 4.3.2 asserts that one

can regularise a large graph G with high probability by using some

integer M from 1, . . . ,M∗, but the exact choice of M depends on G,

and it is not guaranteed that a randomly chosen M will be likely to

work. While Lemma 4.3.2 is strictly weaker than Lemma 4.3.1, it still

implies the (weighted) Szemerédi regularity lemma (Lemma 4.2.2).

4.3.1. The graph correspondence principle. The first key tool

in this argument is the graph correspondence principle, which takes

a sequence of (increasingly large) graphs and uses random sampling

to extract an infinitary limit object, which will turn out to be an

infinite but random (and, crucially, exchangeable) graph. This con-

cept of a graph limit is related to (though slightly different from) the

“graphons” used as graph limits in [LoSz2007], or the ultraprod-

ucts used in [ElSz2008]. It also seems to be related to the concept

of an elementary limit that I discussed in Section 3.4, though this

connection is still rather tentative.

The correspondence works as follows. We start with a finite, de-

terministic graph G = (V,E). We can then form an infinite, random

graph Ĝ = (Z, Ê) from this graph by the following recipe:

• The vertex set of Ĝ will be the integers Z = {−2,−1, 0, 1, 2, . . .}.
• For every integer n, we randomly select a vertex vn in V ,

uniformly and independently at random. (Note that there

will be many collisions, i.e. integers n,m for which vn = vm,

but these collisions will become asymptotically negligible in

the limit |V | → ∞.)

• We then define the edge set Ê of Ĝ by declaring (n,m) to be

an edge on Ê if and only if (vn, vm) is an edge in E (which

in particular requires vn 6= vm).
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More succinctly, Ĝ is the pullback of G under a random map from

Z to V .

The random graph Ĝ captures all the “local” information of G,

while obscuring all the “global” information. For instance, the edge

density of G is essentially just the probability that a given edge, say

(1, 2), lies in Ĝ. (There is a small error term due to the presence

of collisions, but this goes away in the limit |V | → ∞.) Similarly,

the triangle density of G is essentially the probability that a given

triangle, say {(1, 2), (2, 3), (3, 1)}, lies in Ĝ. On the other hand, it is

difficult to read off global properties of G, such as being connected or

4-colourable, just from Ĝ.

At first glance, it may seem a poor bargain to trade in a finite

deterministic graph G for an infinite random graph Ĝ, which is a

more complicated and less elementary object. However, there are

three major advantages of working with Ĝ rather than G:

• Exchangeability. The probability distribution of Ĝ has a

powerful symmetry or exchangeability property: if one takes

the random graph Ĝ and interchanges any two vertices in Z,

e.g. 3 and 5, one obtains a new graph which is not equal to

Ĝ, but nevertheless has the same probability distribution as

Ĝ, basically because the vn were selected in an iid (indepen-

dent and identically distributed) manner. More generally,

given any permutation σ : Z → Z, the pullback σ∗(Ĝ) of

Ĝ by σ has the same probability distribution as Ĝ; thus we

have a measure-preserving action of the symmetric group

S∞, which places us in the general framework of ergodic

theory.

• Limits. The space of probability measures on the space

2(Z
2) of infinite graphs is sequentially compact; given any

sequence Ĝn = (Z, Ên) of infinite random graphs, one can

find a subsequence Ĝnj which converges in the vague topol-

ogy to another infinite random graph. What this means is

that given any event E on infinite graphs that involve only

finitely many of the edges, the probability that Ĝnj obeys

E converges to the probability that Ĝ obeys E. (Thus,

for instance, the probability that Ĝnj contains the triangle



578 4. Technical articles

{(1, 2), (2, 3), (3, 1)} will converge to the probability that Ĝ

contains the same triangle.) Note that properties that in-

volve infinitely many edges (e.g. connectedness) need not

be preserved under vague limits.

• Factors. The underlying probability space for the random

variable Ĝ is the space 2(Z
2) of infinite graphs, and it is nat-

ural to give this space the Borel σ-algebra BZ, which is the

σ-algebra generated by the cylinder events “(i, j) ∈ Ĝ” for

i, j ∈ Z. But this σ-algebra also has a number of useful

sub-σ-algebras or factors, representing various partial infor-

mation on the graph Ĝ. In particular, given any subset I

of Z, one can create the factor BI , defined as the σ-algebra

generated by the events “(i, j) ∈ Ĝ” for i, j ∈ I. Thus for in-

stance, the event that Ĝ contains the triangle is measurable

in B{1,2,3}, but not in B{1,2}. One can also look at com-

pound factors such as BI ∧ BJ , the factor generated by the

union of BI and BJ . For instance, the event that Ĝ contains

the edges (1, 2), (1, 3) is measurable in B{1,2} ∨ B{1,3}, but

the event that Ĝ contains the triangle {(1, 2), (2, 3), (3, 1)}
is not.

The connection between the infinite random graph Ĝ and par-

titioning through random neighbourhoods comes when contemplat-

ing the relative difference between a factor such as B{−n,...,−1} and

B{−n,...,−1}∪{1} (say). The latter factor is generated by the former

factor, together with the events “(1,−i) ∈ Ê” for i = 1, . . . , n. But

observe if Ĝ = (Z, Ê) is generated from a finite deterministic graph

G = (V,E), then (1,−i) lies in Ê if and only if v1 lies in the vertex

neighbourhood of v−i. Thus, if one uses the vertex neighbourhoods

of v−1, . . . , v−n to subdivide the original vertex set V into 2n cells of

varying sizes, the factor B{−n,...,−1}∪{1} is generated from B{−n,...,−1},

together with the random variable that computes which of these 2n

cells the random vertex v1 falls into. We will see this connection

in more detail later in this post, when we use the correspondence

principle to prove Lemma 4.3.2.



4.3. Regularity via correspondence 579

Combining the exchangeability and limit properties (and noting

that the vague limit of exchangeable random graphs is still exchange-

able), we obtain

Lemma 4.3.3 (Graph correspondence principle). Let Gn = (Vn, En)

be a sequence of finite deterministic graphs, and let Ĝn = (Z, Ên) be

their infinite random counterparts. Then there exists a subsequence

nj such that Ĝnj converges in the vague topology to an exchangeable

infinite random graph Ĝ = (Z, Ê).

We can illustrate this principle with three main examples, two

from opposing extremes of the “dichotomy between structure and

randomness”, and one intermediate one.

Example 4.3.4 (Random example). Let Gn = (Vn, En) be a se-

quence of εn-regular graphs of edge density pn, where |Vn| → ∞,

εn → 0, and pn → p as n→∞. Then any graph limit Ĝ = (Z, Ĝ) of

this sequence will be an Erdös-Rényi graph Ĝ = G(∞, p), where each

edge (i, j) lies in Ĝ with an independent probability of p.

Example 4.3.5 (Structured example). Let Gn = (Vn, En) be a se-

quence of complete bipartite graphs, where the two cells of the bi-

partite graph have vertex density qn and 1 − qn respectively, with

|Vn| → ∞ and qn → q. Then any graph limit Ĝ = (Z, Ê) of this

sequence will be a random complete bipartite graph, constructed as

follows: first, randomly colour each vertex n of Z red with probabil-

ity q and blue with probability 1− q, independently for each vertex.

Then define Ĝ to be the complete bipartite graph between the red

vertices and the blue vertices.

Example 4.3.6 (Random+structured example). Let Gn = (Vn, En)

be a sequence of incomplete bipartite graphs, where the two cells of

the bipartite graph have vertex density pn and 1−pn respectively, and

the graph Gn is εn-regular between these two cells with edge density

pn, with |Vn| → ∞, εn → 0, pn → p, and qn → q. Then any graph

limit Ĝ = (Z, Ê) of this sequence will be a random bipartite graph,

constructed as follows: first, randomly colour each vertex n of Z red

with probability q and blue with probability 1− q, independently for

each vertex. Then define Ĝ to be the bipartite graph between the red
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vertices and the blue vertices, with each edge between red and blue

having an independent probability of p of lying in Ê.

One can use the graph correspondence principle to prove state-

ments about finite deterministic graphs, by the usual compactness and

contradiction approach: argue by contradiction, create a sequence of

finite deterministic graph counterexamples, use the correspondence

principle to pass to an infinite random exchangeable limit, and ob-

tain the desired contradiction in the infinitary setting. This will be

how we shall approach the proof of Lemma 4.3.2.

4.3.2. The infinitary regularity lemma. To prove the finitary

regularity lemma via the correspondence principle, one must first de-

velop an infinitary counterpart. We will present this infinitary regu-

larity lemma (first introduced in this paper) shortly, but let us moti-

vate it by a discussion based on the three model examples of infinite

exchangeable graphs Ĝ = (Z, Ê) from the previous section.

First, consider the “random” graph Ĝ from Example 4.3.4. Here,

we observe that the events “(i, j) ∈ Ê” are jointly independent of

each other, thus for instance

P((1, 2), (2, 3), (3, 1) ∈ Ê) =
∏

(i,j)=(1,2),(2,3),(3,1)

P((i, j) ∈ Ê).

More generally, we see that the factors B{i,j} for all distinct i, j ∈ Z

are independent, which means that

P(E1 ∧ . . . ∧ En) = P(E1) . . .P(En)

whenever E1 ∈ B{i1,j1}, . . . , En ∈ B{in,jn} and the {i1, j1}, . . . , {in, jn}
are distinct.

Next, we consider the “structured” graph Ĝ from Example 4.3.5,

where we take 0 < p < 1 to avoid degeneracies. In contrast to the

preceding example, the events “(i, j) ∈ Ê” are now highly dependent;

for instance, if (1, 2) ∈ Ê and (1, 3) ∈ Ê, then this forces (2, 3) to lie

outside of Ê, despite the fact that the events “(i, j) ∈ Ê” each occur

with a non-zero probability of p(1 − p). In particular, the factors

B{1,2},B{1,3},B{2,3} are not jointly independent.

However, one can recover a conditional independence by intro-

ducing some new factors. Specifically, let Bi be the factor generated
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by the event that the vertex i is coloured red. Then we see that

the factors B{1,2},B{1,3},B{2,3} now become conditionally jointly in-

dependent, relative to the base factor B1∨B2∨B3, which means that

we have conditional independence identities such as

P((1, 2), (2, 3), (3, 1) ∈ Ê|B1∨B2∨B3) =
∏

(i,j)=(1,2),(2,3),(3,1)

P((i, j) ∈ Ê|B1∨B2∨B3).

Indeed, once one fixes (conditions) the information in B1 ∨ B2 ∨ B3

(i.e. once one knows what colour the vertices 1, 2, 3 are), the events

“(i, j) ∈ Ê” for (i, j) = (1, 2), (2, 3), (3, 1) either occur with proba-

bility 1 (if i, j have distinct colours) or probability 0 (if i, j have the

same colour), and so the conditional independence is trivially true.

A similar phenomenon holds for the “random+structured” graph

Ĝ from Example 4.3.6, with 0 < p, q < 1. Again, the factors B{i,j} are

not jointly independent in an absolute sense, but once one introduces

the factors Bi based on the colour of the vertex i, we see once again

that the B{i,j} become conditionally jointly independent relative to

the Bi.
These examples suggest, more generally, that we should be able to

regularise the graph Ĝ (or more precisely, the system of edge factors

B{i,j}) by introducing some single-vertex factors Bi, with respect to

which the edge factors become conditionally independent; this is the

infinitary analogue of a finite graph becoming ε-regular relative to a

suitably chosen partition of the vertex set into cells.

Now, in Examples 4.3.5, 4.3.6 we were able to obtain this regular-

isation because the vertices of the graph were conveniently coloured

for us (red or blue). But for general infinite exchangeable graphs Ĝ,

such a vertex colouring is not provided to us, so how is one to generate

the vertex factors Bi?
The key trick - which is the infinitary analogue of using random

neighbourhoods to regularise a finitary graph - is to sequester half

of the infinite vertices in Z - e.g. the negative vertices −1,−2, . . .

- away as “reference” or “training” vertices, and then and colorise

the remaining vertices i of the graph based on how that vertex in-

teracts with the reference vertices. More formally, we define Bi for
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i = 0, 1, 2, . . . by the formula

Bi := B{−1,−2,...}∪{i}.

We then have

Lemma 4.3.7 (Infinitary regularity lemma). Let Ĝ = (Z, Ê) be a

infinite exchangeable random graph. Then the B{i,j} ∨ Bi ∨ Bj for

natural numbers i, j are conditinally jointly independent relative to

the Bi. More precisely, if I is a set of natural numbers, E is a subset

of
(
I
2

)
, and Ee is a Be ∧

∧
i∈e Bi-measurable event for all e ∈ E, then

P(
∧
e∈E

Ee|
∧
i∈I
Bi) =

∏
e∈E

P(Ee|
∧
i∈I
Bi).

Proof. By induction on E, it suffices to show that for any e0 ∈ E,

the event Ee0 and the event
∧
e∈E\{e0}Ee are independent relative to∧

i∈I Bi.
By relabeling we may take I = {1, . . . , n} and e0 = {1, 2} for

some n ≥ 2. We use the exchangeability of Ĝ (and Hilbert’s hotel) to

observe that the random variables

E(1Ee0 |B{−1,−2,...}∪{1} ∨ B{−1,−2,...}∪{2})

and

E(1Ee0 |B{−1,−2,...}∪{1}∪{3,...,n} ∨ B{−1,−2,...}∪{2}∪{3,...,n})

have the same distribution; in particular, they have the same L2

norm. By Pythagoras’ theorem, they must therefore be equal al-

most surely; furthermore, for any intermediate σ-algebra B between

B{−1,−2,...}∪{1}∨B{−1,−2,...}∪{2} and B{−1,−2,...}∪{1}∪{3,...,n}∨B{−1,−2,...}∪{2}∪{3,...,n},

E(1Ee0 |B) is also equal almost surely to the above two expressions.

(The astute reader will observe that we have just run the “energy

increment argument”; in the infinitary world, it is somewhat slicker

than in the finitary world, due to the convenience of the Hilbert’s

hotel trick, and the fact that the existence of orthogonal projections

(and in particular, conditional expectation) is itself encoding an en-

ergy increment argument.)

As a special case of the above observation, we see that

E(1Ee0 |
∧
i∈I
Bi) = E(1Ee0 |

∧
i∈I
Bi ∧

∧
e∈E\{e0}

Be).



4.3. Regularity via correspondence 583

In particular, this implies that E0 is conditionally independent of

every event measurable in
∧
i∈I Bi∧

∧
e∈E\{e0} Be, relative to

∧
i∈I Bi,

and the claim follows. �

Remark 4.3.8. The same argument also allows one to easily regu-

larise infinite exchangeable hypergraphs; see [Ta2007]. In fact one

can go further and obtain a structural theorem for these hypergraphs

generalising de Finetti’s theorem, and also closely related to the graphons

of Lovasz and Szegedy; see [Au2008] for details.

4.3.3. Proof of finitary regularity lemma. Having proven the

infinitary regularity lemma, we now use the correspondence princi-

ple and the compactness and contradiction argument to recover the

finitary regularity lemma, Lemma 4.3.2.

Suppose this lemma failed. Carefully negating all the quantifiers,

this means that there exists ε > 0, a sequence Mn going to infinity,

and a sequence of finite deterministic graphs Gn = (Vn, En) such

that for every 1 ≤ M ≤ Mn, if one selects vertices v1, . . . , vM ∈ Vn
uniformly from Vn, then the 2M vertex cells VM1 , . . . , VM2M generated

by the vertex neighbourhoods At := {v ∈ V : (v, vt) ∈ E} for 1 ≤
t ≤ M , will obey the regularity property (4.12) with probability less

than 1− ε.
We convert each of the finite deterministic graphs Gn = (Vn, En)

to an infinite random exchangeable graph Ĝn = (Z, Ên); invoking the

ocrrespondence principle and passing to a subsequence if necessary,

we can assume that this graph converges in the vague topology to

an exchangeable limit Ĝ = (Z, Ê). Applying the infinitary regularity

lemma to this graph, we see that the edge factors B{i,j} ∧Bi ∧Bj for

natural numbers i, j are conditionally jointly independent relative to

the vertex factors Bi.
Now for any distinct natural numbers i, j, let f(i, j) be the in-

dicator of the event “(i, j) lies in Ê”, thus f = 1 when (i, j) lies in

Ê and f(i, j) = 0 otherwise. Clearly f(i, j) is B{i,j}-measurable. We

can write

f(i, j) = fU⊥(i, j) + fU (i, j)

where

fU⊥(i, j) := E(f(i, j)|Bi ∧ Bj)



584 4. Technical articles

and

fU (i, j) := f(i, j)− fU⊥(i, j).

The exchangeability of Ĝ ensures that f, fU , fU⊥ are exchange-

able with respect to permutations of the natural numbers, in partic-

ular fU (i, j) = fU (j, i) and fU⊥(i, j) = fU⊥(j, i).

By the infinitary regularity lemma, the fU (i, j) are jointly inde-

pendent relative to the Bi, and also have mean zero relative to these

factors, so in particular they are infinitely pseudorandom in the sense

that

EfU (1, 2)fU (3, 2)fU (1, 4)fU (3, 4) = 0.

Meanwhile, the random variable fU⊥(1, 2) is measurable with respect

to the factor B1∨B2, which is the limit of the factors B{−1,−2,...,−M}∪{1}∨
B{−1,−2,...,−M}∪{2} as M increases. Thus, given any ε̃ > 0 (to be

chosen later), one can find an approximation f̃U⊥(1, 2) to fU⊥(1, 2),

bounded between 0 and 1, which is B{−1,−2,...,−M}∪{1}∨B{−1,−2,...,−M}∪{2}-

measurable for some M , and such that

E|f̃U⊥(1, 2)− fU⊥(1, 2)| ≤ ε̃.

We can also impose the symmetry condition f̃U⊥(1, 2) = f̃U⊥(2, 1).

Now let ε̃′ > 0 be an extremely small number (depending on ε̃, n)

to be chosen later. Then one can find an approximation f̃U (1, 2) to

fU (1, 2), bounded between −1 and 1, which is B{−1,−2,...,−M ′}∪{1} ∨
B{−1,−2,...,−M ′}∪{2}-measurable for some M ′, and such that

E|f̃U (1, 2)− fU (1, 2)| ≤ ε̃′.

Again we can impose the symmetry condition f̃U (1, 2) = f̃U (2, 1). We

can then extend f̃U by exchangeability, so that

E|f̃U (i, j)− fU (i, j)| ≤ ε̃′.

for all distinct natural numbers i, j. By the triangle inequality we

then have

(4.13) Ef̃U (1, 2)f̃U (3, 2)f̃U (1, 4)f̃U (3, 4) = O(ε̃′)

and by a separate application of the triangle inequality

(4.14) E|f(i, j)− f̃U⊥(i, j)− f̃U (i, j)| = O(ε̃).
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The bounds (4.13), (4.14) apply to the limiting infinite random

graph Ĝ = (Z, Ê). On the other hand, all the random variables

appearing in (4.13), (4.14) involve at most finitely many of the edges

of the graph. Thus, by vague convergence, the bounds (4.13), (4.14)

also apply to the graph Ĝn = (Z, Ên) for sufficiently large n.

Now we unwind the definitions to move back to the finite graphs

Gn = (Vn, En). Observe that, when applied to the graph Ĝn, one has

f̃U⊥(1, 2) = FU⊥,n(v1, v2)

where FU,n : Vn × Vn → [0, 1] is a symmetric function which is con-

stant on the pairs of cells VM1 , . . . , VM2M generated the vertex neigh-

bourhoods of v−1, . . . , v−M . Similarly,

f̃U (1, 2) = FU,n(v1, v2)

for some symmetric function FU,n : Vn × Vn → [−1, 1]. The estimate

(4.13) can then be converted to a uniformity estimate on FU,n

EFU,n(v1, v2)FU,n(v3, v2)FU,n(v1, v4)FU,n(v3, v4) = O(ε̃′)

while the estimate (4.14) can be similarly converted to

E|1En(v1, v2)− FU⊥,n(v1, v2)− FU,n(v1, v2)| = O(ε̃).

If one then repeats the arguments in the preceding blog post, we

conclude (if ε̃ is sufficiently small depending on ε, and ε̃′ is suffi-

ciently small depending on ε, ẽps, M) that for 1− ε of the choices for

v−1, . . . , v−M , the partition VM1 , . . . , VM2M induced by the correspond-

ing vertex neighbourhoods will obey (4.12). But this contradicts the

construction of the Gn, and the claim follows.

Notes. This article first appeared at terrytao.wordpress.com/2009/05/08.

4.4. The two-ends reduction for the Kakeya
maximal conjecture

In this articleI would like to make some technical notes on a standard

reduction used in the (Euclidean, maximal) Kakeya problem, known

as the two ends reduction. This reduction (which takes advantage

of the approximate scale-invariance of the Kakeya problem) was in-

troduced by Wolff[Wo1995], and has since been used many times,
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both for the Kakeya problem and in other similar problems (e.g. in

[TaWr2003] to study curved Radon-like transforms). I was asked

about it recently, so I thought I would describe the trick here. As an

application I give a proof of the d = n+1
2 case of the Kakeya maximal

conjecture.

The Kakeya maximal function conjecture in Rn can be formu-

lated as follows:

Conjecture 4.4.1 (Kakeya maximal function conjecture). If 0 < δ <

1, 1 ≤ d ≤ n, and T1, . . . , TN is a collection of δ× 1 tubes oriented in

a δ-separated set of directions, then

(4.15) ‖
N∑
i=1

1Ti‖Ld/(d−1)(Rn) �ε (
1

δ
)
n
d−1+ε

for any ε > 0.

A standard duality argument shows that (4.15) is equivalent to

the estimate
N∑
i=1

∫
Ti

F �ε (
1

δ
)
n
d−1+ε‖F‖Ld(Rn)

for arbitrary non-negative measurable functions F ; breaking F up into

level sets via dyadic decomposition, this estimate is in turn equivalent

to the estimate

(4.16)

N∑
i=1

|E ∩ Ti| �ε (
1

δ
)
n
d−1+ε|E|1/d

for arbitrary measurable sets E. This estimate is then equivalent to

the following:

Conjecture 4.4.2 (Kakeya maximal function conjecture, second ver-

sion). If 0 < δ, λ < 1, 1 ≤ d ≤ n, T1, . . . , TN is a collection of δ × 1

tubes oriented in a δ-separated set of directions, and E is a measurable

set such that |E ∩ Ti| ≥ λ|Ti| for all i, then

|E| �ε (Nδn−1)λdδn−d+ε

for all ε > 0.

Indeed, to deduce (4.16) from Conjecture 4.4.2 one can perform

another dyadic decomposition, this time based on the dyadic range of
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the densities |E∩Ti|/|Ti|. Conversely, (4.16) implies Conjecture 4.4.2

in the case Nδn−1 ∼ 1, and the remaining case Nδn−1 � 1 can then

be deduced by the random rotations trick (see e.g. [ElObTa2009]).

We can reformulate the conjecture again slightly:

Conjecture 4.4.3 (Kakeya maximal function conjecture, third ver-

sion). Let 0 < δ, λ < 1, 1 ≤ d ≤ n, and T1, . . . , TN is a collection of

δ× 1 tubes oriented in a δ-separated set of directions with N ∼ δ1−n.

For each 1 ≤ i ≤ N , let Ei ⊂ Ti be a set with |Ei| ≥ λ|Ti|. Then

|
N⋃
i=1

Ei| �ε λ
dδn−d+ε

for all ε > 0.

We remark that (the Minkowski dimension version of) the Kakeya

set conjecture essentially corresponds to the λ = 1 case of Conjecture

4.4.3, while the Hausdorff dimension can be shown to be implied by

the case where λ � 1
log2 1/δ

(actually any lower bound here which

is dyadically summable in δ would suffice). Thus, while the Kakeya

set conjecture is concerned with how small one can make unions of

tubes Ti, the Kakeya maximal function conjecture is concerned with

how small one can make unions of portions Ei of tubes Ti, where the

density λ of the tubes are fixed.

A key technical problem in the Euclidean setting (which is not

present in the finite field case), is that the portions Ei of Ti may be

concentrated in only a small portion of the tube, e.g. they could fill up

a δ × λ subtube, rather than being dispersed uniformly throughout

the tube. Because of this, the set
⋃N
i=1Ei could be crammed into

a far tighter space than one would ideally like. Fortunately, the two

ends reduction allows one to eliminate this possibility, letting one only

consider portions Ei which are not concentrated on just one end of

the tube or another, but occupy both ends of the tube in some sense.

A more precise version of this is as follows.

Definition 4.4.4 (Two ends condition). Let E be a subset of Rn,

and let ε > 0. We say that E obeys the two ends condition with

exponent ε if one has the bound

|E ∩B(x, r)| �ε r
ε|E|
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for all balls B(x, r) in Rn (note that the bound is only nontrivial

when r � 1).

Informally, the two ends condition asserts that E cannot concen-

trate in a small ball; it implies for instance that the diameter of E is

�ε 1.

We now have

Proposition 4.4.5 (Two ends reduction). To prove Conjecture 4.4.3

for a fixed value of d and n, it suffices to prove it under the assumption

that the sets Ei all obey the two ends condition with exponent ε, for

any fixed value of ε > 0.

The key tool used to prove this proposition is

Lemma 4.4.6 (Every set has a large rescaled two-ends piece). Let

E ⊂ Rn be a set of positive measure and diameter O(1), and let

0 < ε < n. Then there exists a ball B(x, r) of radius r = O(1) such

that

|E ∩B(x, r)| � rε|E|
and

|E ∩B(x′, r′)| � (r′/r)ε|E ∩B(x, r)|
for all other balls B(x′, r′).

Proof. Consider the problem of maximising the quantity |E∩B(x, r)|/rε
among al balls B(x, r) of radius at most the diameter of E. On the

one hand, this quantity can be at least � |E|, simply by taking

B(x, r) equal to the smallest ball containing E. On the other hand,

using the trivial bound |E ∩ B(x, r)| ≤ |B(x, r)| � rn we see that

the quantity |E ∩B(x, r)|/rε is bounded. Thus the supremum of the

|E∩B(x, r)|/rε is finite. If we pick a ball B(x, r) which comes within

a factor of 2 (say) of realising this supremum then the claim easily

follows. (Actually one can even attain the supremum exactly by a

compactness argument, though this is not necessary for our applica-

tions.) �

One can view the quantity r in the above lemma as describing

the “width” of the set E; this is the viewpoint taken for instance in

[TaWr2003].
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Now we prove Proposition 4.4.5.

Proof. Suppose Conjecture 4.4.3 has already been proven (assuming

the two ends condition with exponent ε) for some value of d, n, and

some small value of ε. Now suppose we have the setup of Conjecture

4.4.3 without the two-ends condition.

The first observation is that the claim is easy when λ � δ. In-

deed, in this case we can just bound |
⋃N
i=1Ei| from below the volume

λ|Ti| ∼ λδn−1 of a single tube. So we may assume that λ is much

greater than δ.

Let ε > 0 be arbitrary. We apply Lemma 4.4.6 to each Ei, to

find a ball B(xi, ri) such that

(4.17) |Ei ∩B(xi, ri)| � rεi |Ei|

and

|Ei ∩B(x′, r′)| � (r′/ri)
ε|Ei ∩B(xi, ri)|

for all B(x′, r′). From (4.17) and the fact that |Ei| = λ|Ti| �
λδn−1 � δn, as well as the trivial bound |Ei∩B(xi, ri)| ≤ |B(xi, ri)| �
rni , we obtain the lower bound ri � δ1+O(ε). Thus there are only

about O(log 1
δ ) possible dyadic ranges ρ ≤ ri ≤ 2ρ. Using the pigeon-

hole principle (refining the number N of tubes by a factor of log 1
δ ),

we may assume that there is a single δ1+O(ε) ≤ ρ � 1 such that all

of the ri lie in the same dyadic range [ρ, 2ρ].

The intersection of Ti with B(xi, ri) is then contained in a δ×O(ρ)

tube T̃i, and Ẽi := Ei ∩ T̃i occupies a fraction

|Ẽi|/|T̃i| � rεi |Ei|/|T̃i| � δO(ε)λ/ρ

of T̃i. If we then rescale each of the Ẽi and T̃i by O(1/ρ), we can

locate subsets E′i of O(δ/ρ)×1-tubes T ′i of density� δO(ε)λ/ρ. These

tubes T ′i have cardinality δ1−n+O(ε) (the loss here is due to the use

of the pigeonhole principle earlier) and occupy a δ-separated set of

directions, but after refining these tubes a bit we may assume that

they instead occupy a δ/ρ-separated set of directions, at the expense

of cutting the cardinality down to δO(ε)(δ/ρ)1−n or so. Furthermore,

by construction the E′i obey the two-ends condition at exponent ε.

Applying the hypothesis that Conjecture 4.4.3 holds for such sets, we
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conclude that

|
⋃
i

E′i| �ε δ
O(ε)[λ/ρ]d[δ/ρ]n−d,

which on undoing the rescaling by 1/ρ gives

|
⋃
i

Ẽi| �ε δ
O(ε)λdδn−d.

Since ε > 0 was arbitrary, the claim follows. �

To give an idea of how this two-ends reduction is used, we give a

quick application of it:

Proposition 4.4.7. The Kakeya maximal function conjecture is true

for d ≤ n+1
2 .

Proof. We use the “bush” argument of Bourgain. By the above

reductions, it suffices to establish the bound

|
N⋃
i=1

Ei| �ε λ
n+1
2 δ

n−1
2 −ε

whenever N ∼ δ1−n, and Ei ⊂ Ti are subsets of δ × 1 tubes Ti
in δ-separated directions with density λ and obeying the two-ends

condition with exponent ε.

Let µ be the maximum multiplicity of the Ei, i.e. µ := ‖
∑N
i=1 1Ei‖L∞(Rn).

On the one hand, we clearly have

|
N⋃
i=1

Ei| ≥
1

µ
‖
N∑
i=1

1Ei‖L1(Rn) �
1

µ
λNδn−1 � λ

µ
.

This bound is good when µ is small. What if µ is large? Then there

exists a point x0 which is contained in µ of the Ei, and hence also

contained in (at least) µ of the tubes Ti. These tubes form a “bush”

centred at x0, but the portions of that tube near the centre x0 of the

bush have high overlap. However, the two-ends condition can be used

to finesse this issue. Indeed, that condition ensures that for each Ei
involved in this bush, we have

|Ei ∩B(x0, r)| ≤
1

2
|Ei|
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for some r ∼ 1, and thus

|Ei\B(x0, r)| ≥
1

2
|Ei| � λδn−1.

The δ-separated nature of the tubes Ti implies that the maximum

overlap of the portion Ti\B(x0, r) of the µ tubes in the bush away

from the origin is O(1), and so

|
⋃
i

Ei\B(x0, r)| � µλδn−1.

Thus we have two different lower bounds for
⋃
iEi, namely λ

µ and

µλδn−1. Taking the geometric mean of these bounds to eliminate the

unknown multiplicity µ, we obtain

|
⋃
i

Ei| � λδ(n−1)/2,

which certainly implies the desired bound since λ ≤ 1. �

Remark 4.4.8. Note that the two-ends condition actually proved

a better bound than what was actually needed for the Kakeya con-

jecture, in that the power of λ was more favourable than necessary.

However, this gain disappears under the rescaling argument used in

the proof of Proposition 4.4.5. Nevertheless, this does illustrate one

of the advantages of employing the two-ends reduction; the bounds

one gets upon doing so tend to be better (especially for small values

of λ) than what one would have had without it, and so getting the

right bound tends to be a bit easier in such cases. Note though that

for the Kakeya set problem, where λ is essentially 1, the two-ends

reduction is basically redundant.

Remark 4.4.9. One technical drawback to using the two-ends re-

duction is that if at some later stage one needs to refine the sets Ei to

smaller sets, then one may lose the two-ends property. However, one

could invoke the arguments used in Proposition 4.4.5 to recover this

property again by refining Ei further. One may then lose some other

property by this further refinement, but one convenient trick that al-

lows one to take advantage of multiple refinements simultaneously is

to iteratively refine the various sets involved and use the pigeonhole

principle to find some place along this iteration where all relevant

statistics of the system (e.g. the “width” r of the Ei) stabilise (here
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one needs some sort of monotonicity property to obtain this stabili-

sation). This type of trick was introduced in [Wo1998] and has been

used in several subsequent papers, for instance in [LaTa2001].

Notes. This article first appeared at terrytao.wordpress.com/2009/05/15.

Thanks to Arie Israel, Josh Zahl, Shuanglin Shao and an anonymous

commenter for corrections.

4.5. The least quadratic nonresidue, and the
square root barrier

A large portion of analytic number theory is concerned with the dis-

tribution of number-theoretic sets such as the primes, or quadratic

residues in a certain modulus. At a local level (e.g. on a short in-

terval [x, x + y]), the behaviour of these sets may be quite irregular.

However, in many cases one can understand the global behaviour of

such sets on very large intervals, (e.g. [1, x]), with reasonable accuracy

(particularly if one assumes powerful additional conjectures, such as

the Riemann hypothesis and its generalisations). For instance, in the

case of the primes, we have the prime number theorem, which asserts

that the number of primes in a large interval [1, x] is asymptotically

equal to x/ log x; in the case of quadratic residues modulo a prime

p, it is clear that there are exactly (p − 1)/2 such residues in [1, p].

With elementary arguments, one can also count statistics such as the

number of pairs of consecutive quadratic residues; and with the aid

of deeper tools such as the Weil sum estimates, one can count more

complex patterns in these residues also (e.g. k-point correlations).

One is often interested in converting this sort of “global” infor-

mation on long intervals into “local” information on short intervals.

If one is interested in the behaviour on a generic or average short

interval, then the question is still essentially a global one, basically

because one can view a long interval as an average of a long sequence

of short intervals. (This does not mean that the problem is automati-

cally easy, because not every global statistic about, say, the primes is

understood. For instance, we do not know how to rigorously establish

the conjectured asymptotic for the number of twin primes n, n + 2
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in a long interval [1, N ], and so we do not fully understand the local

distribution of the primes in a typical short interval [n, n+ 2].)

However, suppose that instead of understanding the average-case

behaviour of short intervals, one wants to control the worst-case be-

haviour of such intervals (i.e. to establish bounds that hold for all

short intervals, rather than most short intervals). Then it becomes

substantially harder to convert global information to local informa-

tion. In many cases one encounters a “square root barrier”, in which

global information at scale x (e.g. statistics on [1, x]) cannot be used

to say anything non-trivial about a fixed (and possibly worst-case)

short interval at scales x1/2 or below. (Here we ignore factors of log x

for simplicity.) The basic reason for this is that even randomly dis-

tributed sets in [1, x] (which are basically the most uniform type of

global distribution one could hope for) exhibit random fluctuations

of size x1/2 or so in their global statistics (as can be seen for in-

stance from the central limit theorem). Because of this, one could

take a random (or pseudorandom) subset of [1, x] and delete all the

elements in a short interval of length o(x1/2), without anything sus-

picious showing up on the global statistics level; the edited set still

has essentially the same global statistics as the original set. On the

other hand, the worst-case behaviour of this set on a short interval

has been drastically altered.

One stark example of this arises when trying to control the largest

gap between consecutive prime numbers in a large interval [x, 2x].

There are convincing heuristics that suggest that this largest gap

is of size O(log2 x) (Cramér’s conjecture). But even assuming the

Riemann hypothesis, the best upper bound on this gap is only of size

O(x1/2 log x), basically because of this square root barrier.

On the other hand, in some cases one can use additional tricks to

get past the square root barrier. The key point is that many number-

theoretic sequences have special structure that distinguish them from

being exactly like random sets. For instance, quadratic residues have

the basic but fundamental property that the product of two quadratic

residues is again a quadratic residue. One way to use this sort of

structure to amplify bad behaviour in a single short interval into bad

behaviour across many short intervals (cf. Section 1.9 of Structure
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and Randomness). Because of this amplification, one can sometimes

get new worst-case bounds by tapping the average-case bounds.

In this post I would like to indicate a classical example of this

type of amplification trick, namely Burgess’s bound on short character

sums. To narrow the discussion, I would like to focus primarily on

the following classical problem:

Problem 4.5.1. What are the best bounds one can place on the first

quadratic non-residue np in the interval [1, p− 1] for a large prime p?

(The first quadratic residue is, of course, 1; the more interesting

problem is the first quadratic non-residue.)

Probabilistic heuristics (presuming that each non-square integer

has a 50-50 chance of being a quadratic residue) suggests that np
should have size O(log p), and indeed Vinogradov conjectured that

np = Oε(p
ε) for any ε > 0. Using the Pólya-Vinogradov inequal-

ity, one can get the bound np = O(
√
p log p) (and can improve it to

np = O(
√
p) using smoothed sums); combining this with a sieve theory

argument (exploiting the multiplicative nature of quadratic residues)

one can boost this to np = O(p
1

2
√
e log2 p). Inserting Burgess’s ampli-

fication trick one can boost this to np = Oε(p
1

4
√
e

+ε
) for any ε > 0.

Apart from refinements to the ε factor, this bound has stood for five

decades as the “world record” for this problem, which is a testament

to the difficulty in breaching the square root barrier.

Note: in order not to obscure the presentation with technical de-

tails, I will be using asymptotic notation O() in a somewhat informal

manner.

4.5.1. Character sums. To approach the problem, we begin by

fixing the large prime p and introducing the Legendre symbol χ(n) =(
n
p

)
, defined to equal 0 when n is divisible by p, +1 when n is an

invertible quadratic residue modulo p, and −1 when n is an invertible

quadratic non-residue modulo p. Thus, for instance, χ(n) = +1 for

all 1 ≤ n < np. One of the main reasons one wants to work with the

function χ is that it enjoys two easily verified properties:

• χ is periodic with period p.
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• One has the total multiplicativity property χ(nm) = χ(n)χ(m)

for all integers n,m.

In the jargon of number theory, χ is a Dirichlet character with

conductor p. Another important property of this character is of course

the law of quadratic reciprocity, but this law is more important for

the average-case behaviour in p, whereas we are concerned here with

the worst-case behaviour in p, and so we will not actually use this

law here.

An obvious way to control np is via the character sum

(4.18)
∑

1≤n≤x

χ(n).

From the triangle inequality, we see that this sum has magnitude at

most x. If we can then obtain a non-trivial bound of the form

(4.19)
∑

1≤n≤x

χ(n) = o(x)

for some x, this forces the existence of a quadratic residue less than

or equal to x, thus np ≤ x. So one approach to the problem is to

bound the character sum (4.18).

As there are just as many residues as non-residues, the sum (4.18)

is periodic with period p and we obtain a trivial bound of p for the

magnitude of the sum. One can achieve a non-trivial bound by Fourier

analysis. One can expand

χ(n) =

p−1∑
a=0

χ̂(a)e2πian/p

where χ̂(a) are the Fourier coefficients of χ:

χ̂(a) :=
1

p

p−1∑
n=0

χ(n)e−2πian/p.

As there are just as many quadratic residues as non-residues, χ̂(0) =

0, so we may drop the a = 0 term. From summing the geometric

series we see that

(4.20)
∑

1≤n≤x

e2πian/p = O(1/‖a/p‖),
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where ‖a/p‖ is the distance from a/p to the nearest integer (0 or 1);

inserting these bounds into (4.18) and summing what is essentially a

harmonic series in a we obtain∑
1≤n≤x

χ(n) = O(p log p sup
a 6=0
|χ̂(a)|).

Now, how big is χ̂(a)? Taking absolute values, we get a bound of

1, but this gives us something worse than the trivial bound. To do

better, we use the Plancherel identity

p−1∑
a=0

|χ̂(a)|2 =
1

p

p−1∑
n=0

|χ(n)|2

which tells us that
p−1∑
a=0

|χ̂(a)|2 = O(1).

This tells us that χ̂ is small on the average, but does not immediately

tell us anything new about the worst-case behaviour of χ, which is

what we need here. But now we use the multiplicative structure of χ

to relate average-case and worst-case behaviour. Note that if b is co-

prime to p, then χ(bn) is a scalar multiple of χ(n) by a quantity χ(b) of

magnitude 1; taking Fourier transforms, this implies that χ̂(a/b) and

χ̂(a) also differ by this factor. In particular, |χ̂(a/b)| = |χ̂(a)|. As b

was arbitrary, we thus see that |χ̂(a)| is constant for all a coprime to p;

in other words, the worst case is the same as the average case. Com-

bining this with the Plancherel bound one obtains |χ̂(a)| = O(1/
√
p),

leading to the Pólya-Vinogradov inequality∑
1≤n≤x

χ(n) = O(
√
p log p).

(In fact, a more careful computation reveals the slightly sharper

bound |
∑

1≤n≤x χ(n)| ≤ √p log p; this is non-trivial for x >
√
p log p.)

Remark 4.5.2. Up to logarithmic factors, this is consistent with

what one would expect if χ fluctuated like a random sign pattern

(at least for x comparable to p; for smaller values of x, one expects

instead a bound of the form O(
√
x), up to logarithmic factors). It is

conjectured that the log p factor can be replaced with a O(log log p)

factor, which would be consistent with the random fluctuation model
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and is best possible; this is known for GRH, but unconditionally

the Pólya-Vinogradov inequality is still the best known. (See how-

ever http://arxiv.org/abs/math/0503113 this paper of Granville and

Soundararajan for an improvement for non-quadratic characters χ.)

A direct application of the Pólya-Vinogradov inequality gives the

bound np ≤
√
p log p. One can get rid of the logarithmic factor (which

comes from the harmonic series arising from (4.20)) by replacing the

sharp cutoff 11≤n≤x by a smoother sum, which has a better behaved

Fourier transform. But one can do better still by exploiting the multi-

plicativity of χ again, by the following trick of Vinogradov. Observe

that not only does one have χ(n) = +1 for all n ≤ np, but also

χ(n) = +1 for any n which is np − 1-smooth, i.e. is the product of

integers less than np. So even if np is significantly less than x, one

can show that the sum (4.18) is large if the majority of integers less

than x are np − 1-smooth.

Since every integer n less than x is either np-smooth (in which

case χ(n) = +1), or divisible by a prime q between np and x (in which

case χ(n) is at least −1), we obtain the lower bound∑
1≤n≤x

χ(n) ≥
∑

1≤n≤x

1−
∑

np<q≤x

∑
1≤n≤x:q|n

2.

Clearly,
∑

1≤n≤x 1 = x + O(1) and
∑

1≤n≤x:q|n 2 = 2xq + O(1). The

total number of primes less than x is O( x
log x ) = o(x) by the prime

number theorem, thus∑
1≤n≤x

χ(n) ≥ x−
∑

np<q≤x

2
x

q
+ o(x).

Using the classical asymptotic
∑
q≤y

1
q = log log y+C+o(1) for some

absolute constant C (which basically follows from the prime number

theorem, but also has an elementary proof), we conclude that∑
1≤n≤x

χ(n) ≥ x[1− 2 log
log x

log np
+ o(1)].

If np ≥ x
1√
e

+ε
for some fixed ε > 0, then the expression in brackets is

bounded away from zero for x large; in particular, this is incompatible

with (4.19) for x large enough. As a consequence, we see that if

we have a bound of the form (4.19), then we can conclude np =
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Oε(x
1√
e

+ε
) for all ε > 0; in particular, from the Pólya-Vinogradov

inequality one has

np = Oε(p
1

2
√
e

+ε
)

for all ε > 0, or equivalently that np ≤ p
1

2
√
e

+o(1)
. (By being a bit

more careful, one can refine this to np = O(p
1

2
√
e log2/

√
e p).)

Remark 4.5.3. The estimates on the Gauss-type sums χ̂(a) :=
1
p

∑p−1
n=0 χ(n)e−2πian/p are sharp; nevertheless, they fail to penetrate

the square root barrier in the sense that no non-trivial estimates are

provided below the scale
√
p. One can also see this barrier using the

Poisson summation formula (Exercise 1.12.41), which basically gives

a formula that (very roughly) takes the form∑
n=O(x)

χ(n) ∼ x
√
p

∑
n=O(p/x)

χ(n)

for any 1 < x < p, and is basically the limit of what one can say

about character sums using Fourier analysis alone. In particular, we

see that the Pólya-Vinogradov bound is basically the Poisson dual

of the trivial bound. The scale x =
√
p is the crossing point where

Poisson summation does not achieve any non-trivial modification of

the scale parameter.

4.5.2. Average-case bounds. The Pólya-Vinogradov bound estab-

lishes a non-trivial estimate (4.18) for x significantly larger than√
p log p. We are interested in extending (4.18) to shorter intervals.

Before we address this issue for a fixed interval [1, x], we first

study the average-case bound on short character sums. Fix a short

length y, and consider the shifted sum

(4.21)
∑

a≤n≤a+y

χ(n),

where a is a parameter. The analogue of (4.18) for such intervals

would be

(4.22)
∑

a≤n≤a+y

χ(n) = o(y).

For y very small (e.g. y = pε for some small ε > 0), we do not know

how to establish (4.22) for all a; but we can at least establish (4.22)
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for almost all a, with only about O(
√
p) exceptions (here we see the

square root barrier again!).

More precisely, we will establish the moment estimates

(4.23)
1

p

p−1∑
a=0

|
∑

a≤n≤a+y

χ(n)|k = Ok(yk/2 + ykp−1/2)

for any positive even integer k = 2, 4, . . .. If y is not too tiny, say

y ≥ pε for some ε > 0, then by applying (4.23) for a sufficiently large

k and using Chebyshev’s inequality (or Markov’s inequality), we see

(for any given δ > 0) that one has the non-trivial bound

|
∑

a≤n≤a+y

χ(n)| ≤ δy

for all but at most Oδ,ε(
√
p) values of a ∈ [1, p].

To see why (4.23) is true, let us just consider the easiest case

k = 2. Squaring both sides, we expand (4.23) as

1

p

p−1∑
a=0

∑
a≤n,m≤a+y

χ(n)χ(m) = O(y) +O(y2p−1/2).

We can write χ(n)χ(m) as χ(nm). Writing m = n+h, and using the

periodicity of χ, we can rewrite the left-hand side as

y∑
h=−y

(y − |h|)[1
p

∑
n∈Fp

χ(n(n+ h))]

where we have abused notation and identified the finite field Fp with

{0, 1, . . . , p− 1}.
For h = 0, the inner average is O(1). For h non-zero, we claim

the bound

(4.24)
∑
n∈Fp

χ(n(n+ h)) = O(
√
p)

which is consistent with (and is in fact slightly stronger than) what

one would get if χ was a random sign pattern; assuming this bound

gives (4.23) for k = 2 as required.

The bound (4.24) can be established by quite elementary means

(as it comes down to counting points on the hyperbola y2 = x(x+h),
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which can be done by transforming the hyperbola to be rectangular),

but for larger values of k we will need the more general estimate

(4.25)
∑
n∈Fp

χ(P (n)) = Ok(
√
p)

whenever P is a polynomial over F of degree k which is not a constant

multiple of a perfect square; this can be easily seen to give (4.23) for

general k.

An equivalent form of (4.25) is that the hyperelliptic curve

(4.26) {(x, y) ∈ Fp × Fp : y2 = P (x)}

contains p+Ok(
√
p) points. This fact follows from a general theorem

of Weil establishing the Riemann hypothesis for curves over function

fields, but can also be deduced by a more elementary argument of

Stepanov[St1969], using the polynomial method, which we now give

here. (This arrangement of the argument is based on the exposition

in [IwKo2004].)

By translating the x variable we may assume that P (0) is non-

zero. The key lemma is the following. Assume p large, and take l to

be an integer comparable to
√
p (other values of this parameter are

possible, but this is the optimal choice). All polynomials Q(x) are

understood to be over the field Fp (i.e. they lie in the polynomial ring

Fp[X]), although indeterminate variables x need not lie in this field.

Lemma 4.5.4. There exists a non-zero polynomial Q(x) of one in-

determinate variable x over Fp of degree at most lp/2 +Ok(p) which

vanishes to order at least l at every point x ∈ Fp for which P (x) is a

quadratic residue.

Note from the factor theorem that Q can vanish to order at least

l at at most deg(Q)/l ≤ p/2+Ok(
√
p) points, and so we see that P (x)

is an invertible quadratic residue for at most p/2 +Ok(
√
p) values of

Fp. Multiplying P by a quadratic non-residue and running the same

argument, we also see that P (x) is an invertible quadratic non-residue

for at most p/2 +Ok(
√
p) values of Fp, and (4.25) (or the asymptotic

for the number of points in (4.26)) follows.
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We now prove the lemma. The polynomial Q will be chosen to

be of the form

Q(x) = P l(x)(R(x, xp) + P
p−1
2 (x)S(x, xp))

where R(x, z), S(x, z) are polynomials of degree at most p−k−1
2 in x,

and degree at most l
2 +C in z, where C is a large constant (depending

on k) to be chosen later (these parameters have been optimised for

the argument that follows). Since P has degree at most k, such a Q

will have degree

≤ kl +
p− k − 1

2
+
p− 1

2
k + p(

l

2
+ C ′) =

lp

2
+Ok(p)

as required. We claim (for suitable choices of C,C ′) that

(a) The degrees are small enough that Q(x) is a non-zero poly-

nomial whenever R(x, z), S(x, z) are non-zero polynomials;

and

(b) The degrees are large enough that there exists a non-trivial

choice of R(x, z) and S(x, z) that Q(x) vanishes to order at

least l whenever x ∈ Fp is such that P (x) is a quadratic

residue.

Claims (a) and (b) together establish the lemma.

We first verify (a). We can cancel off the initial P l factor, so that

we need to show thatR(x, xp)+P
p−1
2 (x)S(x, xp) does not vanish when

at least one of R(x, z), Q(x, z) is not vanishing. We may assume that

R,Q are not both divisible by z, since we could cancel out a common

factor of xp otherwise.

Suppose for contradiction that the polynomialR(x, xp)+P
p−1
2 S(x, xp)

vanished, which implies that R(x, 0) = −P
p−1
2 (x)S(x, 0) modulo xp.

Squaring and multiplying by P , we see that

R(x, 0)2P (x) = P (x)pS(x, 0)2 mod xp.

But over Fp and modulo xp, P (x)p = P (0) by Fermat’s little theo-

rem. Observe that R(x, 0)2P (x) and P (0)S(x, 0)2 both have degree

at most p − 1, and so we can remove the xp modulus and conclude

that R(x, 0)2P (x) = P (0)S(x, 0)2 over Fp. But this implies (by the

fundamental theorem of arithmetic for Fp[X]) that P is a constant
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multiple of a square, a contradiction. (Recall that P (0) is non-zero,

and that R(x, 0) and S(x, 0) are not both zero.)

Now we prove (b). Let x ∈ Fp be such that P (x) is a quadratic

residue, thus P (x)
p−1
2 = +1 by Fermat’s little theorem. To get van-

ishing to order l, we need

(4.27)
dj

dxj
[P l(x)(R(x, xp) + P

p−1
2 (x)S(x, xp))] = 0

for all 0 ≤ j < l. (Of course, we cannot define derivatives using lim-

its and Newton quotients in this finite characteristic setting, but we

can still define derivatives of polynomials formally, thus for instance
d
dxx

n := nxn−1, and enjoy all the usual rules of calculus, such as the

product rule and chain rule.)

Over Fp, the polynomial xp has derivative zero. If we then com-

pute the derivative in (4.27) using many applications of the product

and chain rule, we see that the left-hand side of (4.27) can be ex-

pressed in the form

P l−j(x)[Rj(x, x
p) + P

p−1
2 (x)Sj(x, x

p))]

where Rj(x, z), Sj(x, z) are polynomials of degree at most p−k−1
2 +

Ok(j) in x and at most l
2 +C in z, whose coefficients depend in some

linear fashion on the coefficients of R and S. (The exact nature of this

linear relationship will depend on k, p, P , but this will not concern us.)

Since we only need to evaluate this expression when P (x)
p−1
2 = +1

and xp = p (by Fermat’s little theorem), we thus see that we can

verify (4.27) provided that the polynomial

P l−j(x)[Rj(x, x) + Sj(x, x))]

vanishes identically. This is a polynomial of degree at most

O(l − j) +
p− k − 1

2
+Ok(j) +

l

2
+ C =

p

2
+Ok(p1/2) + C,

and there are l + 1 possible values of j, so this leads to

lp

2
+Ok(p) +O(C

√
p)
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linear constraints on the coefficients of R and S to satisfy. On the

other hand, the total number of these coefficients is

2× (
p− k − 1

2
+O(1))× (

l

2
+ C +O(1)) =

lp

2
+ Cp+Ok(p).

For C large enough, there are more coefficients than constraints, and

so one can find a non-trivial choice of coefficients obeying the con-

straints (4.27), and (b) follows.

Remark 4.5.5. If one optimises all the constants here, one gets an

upper bound of basically 8k
√
p for the deviation in the number of

points in (4.26). This is only a little worse than the sharp bound

of 2g
√
p given from Weil’s theorem, where g = bk−1

2 c is the genus;

however, it is possible to boost the former bound to the latter by

using a version of the tensor power trick (generalising Fp to Fpm and

then letting m→∞) combined with the theory of Artin L-functions

and the Riemann-Roch theorem. This is (very briefly!) sketched in

Section 1.9 of Structure and Randomness.

Remark 4.5.6. Once again, the global estimate (4.25) is very sharp,

but cannot penetrate below the square root barrier, in that one is

allowed to have about O(
√
p) exceptional values of a for which no

cancellation exists. One expects that these exceptional values of a in

fact do not exist, but we do not know how to do this unless y is larger

than x1/4 (so that the Burgess bounds apply).

4.5.3. The Burgess bound. The average case bounds in the previ-

ous section give an alternate demonstration of a non-trivial estimate

(4.18) for x > p1/2+ε, which is just a bit weaker than what the Pólya-

Vinogradov inequality gives. Indeed, if (4.18) failed for such an x,

thus

|
∑

n∈[1,x]

χ(n)| � x,

then by taking a small y (e.g. y = pε/2) and covering [1, x] by intervals

of length y, we see (from a first moment method argument) that

|
∑

a≤n≤a+y

χ(n)| � y

for a positive fraction of the a in [1, x]. But this contradicts the results

of the previous section.
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Burgess observed that by exploiting the multiplicativity of χ one

last time to amplify the above argument, one can extend the range

for which (4.18) can be proved from x > p1/2+ε to also cover the

range p1/4+ε < x < p1/2. The idea is not to cover [1, x] by intervals of

length y, but rather by arithmetic progressions {a, a+ r, . . . , a+ yr}
of length y, where a = O(x) and r = O(x/y). Another application of

the first moment method then shows that

|
∑

0≤j≤y

χ(a+ jr)| � y

for a positive fraction of the a in [1, x] and r in [1, x/y] (i.e. � x2/y

such pairs (a, r)).

For technical reasons, it will be inconvenient if a and r have too

large of a common factor, so we pause to remove this possibility.

Observe that for any d ≥ 1, the number of pairs (a, r) which have d

as a common factor is O( 1
d2x

2/y). As
∑∞
d=1

1
d2 is convergent, we may

thus remove those pairs which have too large of a common factor, and

assume that all pairs (a, r) have common factor O(1) at most (so are

“almost coprime”).

Now we exploit the multiplicativity of χ to write χ(a + jr) as

χ(r)χ(b+j), where b is a residue which is equal to a/r mod q. Dividing

out by χ(r), we conclude that

(4.28) |
∑

0≤j≤y

χ(b+ j)| � y

for � x2/y pairs (a, r).

Now for a key observation: the � x2/y values of b arising from

the pairs (a, r) are mostly disjoint. Indeed, suppose that two pairs

(a, r), (a′, r′) generated the same value of b, thus a/r = a′/r′ mod p.

This implies that ar′ = a′r mod p. Since x < p1/2, we see that ar′, a′r

do not exceed p, so we may remove the modulus and conclude that

ar′ = a′r. But since we are assuming that a, r and a′, r′ are almost

coprime, we see that for each (a, r) there are at most O(1) values of

a′, r′ for which ar′ = a′r. So the b’s here only overlap with multiplicity

O(1), and we conclude that (4.28) holds for � x2/y values of b. But

comparing this with the previous section, we obtain a contradiction

unless x2/y � √p. Setting y to be a sufficiently small power of p, we
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obtain Burgess’s result that (4.18) holds for x > p1/4+ε for any fixed

ε > 0.

Combining Burgess’s estimate with Vinogradov’s sieving trick we

conclude the bound np = Oε(p
1/4
√
e+ε) for all ε > 0, which is the

best bound known today on the least quadratic non-residue except

for refinements of the pε error term.

Remark 4.5.7. There are many generalisations of this result, for

instance to more general characters (with possibly composite conduc-

tor), or to shifted sums (4.21). However, the p1/4 type exponent has

not been improved except with the assistance of powerful conjectures

such as the generalised Riemann hypothesis.

Notes. This article first appeared at terrytao.wordpress.com/2009/08/18.

Thanks to Efthymios Sofos, Joshua Zelinsky, K, and Seva Lev for cor-

rections.

Boris noted the similarity between the use of the Frobenius map

x 7→ xp in Stepanov’s argument and Thues trick from the proof of

his famous result on the Diophantine approximations to algebraic

numbers, where instead of the exact equality x = xp that is used

here, he used two very good approximations to the same algebraic

number.

4.6. Determinantal processes

Given a set S, a (simple) point process is a random subset A of S.

(A non-simple point process would allow multiplicity; more formally,

A is no longer a subset of S, but is a Radon measure on S, where we

give S the structure of a locally compact Polish space, but I do not

wish to dwell on these sorts of technical issues here.) Typically, A will

be finite or countable, even when S is uncountable. Basic examples

of point processes include

• (Bernoulli point process) S is an at most countable set,

0 ≤ p ≤ 1 is a parameter, and A a random set such that

the events x ∈ A for each x ∈ S are jointly independent and

occur with a probability of p each. This process is automat-

ically simple.
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• (Discrete Poisson point process) S is an at most countable

space, λ is a measure on S (i.e. an assignment of a non-

negative number λ({x}) to each x ∈ S), and A is a multiset

where the multiplicity of x in A is a Poisson random variable

with intensity λ({x}), and the multiplicities of x ∈ A as x

varies in S are jointly independent. This process is usually

not simple.

• (Continuous Poisson point process) S is a locally compact

Polish space with a Radon measure λ, and for each Ω ⊂ S of

finite measure, the number of points |A∩Ω| that A contains

inside Ω is a Poisson random variable with intensity λ(Ω).

Furthermore, if Ω1, . . . ,Ωn are disjoint sets, then the ran-

dom variables |A∩Ω1|, . . . , |A∩Ωn| are jointly independent.

(The fact that Poisson processes exist at all requires a non-

trivial amount of measure theory, and will not be discussed

here.) This process is almost surely simple iff all points in

S have measure zero.

• (Spectral point processes) The spectrum of a random matrix

is a point process in C (or in R, if the random matrix is

Hermitian). If the spectrum is almost surely simple, then

the point process is almost surely simple. In a similar spirit,

the zeroes of a random polynomial are also a point process.

A remarkable fact is that many natural (simple) point processes

are determinantal processes. Very roughly speaking, this means that

there exists a positive semi-definite kernel K : S × S → R such that,

for any x1, . . . , xn ∈ S, the probability that x1, . . . , xn all lie in the

random setA is proportional to the determinant det((K(xi, xj))1≤i,j≤n).

Examples of processes known to be determinantal include non-intersecting

random walks, spectra of random matrix ensembles such as GUE, and

zeroes of polynomials with gaussian coefficients.

I would be interested in finding a good explanation (even at the

heuristic level) as to why determinantal processes are so prevalent

in practice. I do have a very weak explanation, namely that deter-

minantal processes obey a large number of rather pretty algebraic

identities, and so it is plausible that any other process which has a
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very algebraic structure (in particular, any process involving gaus-

sians, characteristic polynomials, etc.) would be connected in some

way with determinantal processes. I’m not particularly satisfied with

this explanation, but I thought I would at least describe some of these

identities below to support this case. (This is partly for my own ben-

efit, as I am trying to learn about these processes, particularly in

connection with the spectral distribution of random matrices.) The

material here is partly based on [HoKrPeVi2006].

4.6.1. Discrete determinantal processes. In order to ignore all

measure-theoretic distractions and focus on the algebraic structure of

determinantal processes, we will first consider the discrete case when

the space S is just a finite set S = {1, . . . , N} of cardinality |S| = N .

We say that a process A ⊂ S is a determinantal process with kernel

K, where K is an k × k symmetric real matrix, if one has

(4.29) P({i1, . . . , ik} ⊂ A) = det(K(ia, ib))1≤a,b≤k

for all distinct i1, . . . , ik ∈ S.

To build determinantal processes, let us first consider point pro-

cesses of a fixed cardinality n, thus 0 ≤ n ≤ N and A is a random

subset of S of size n, or in other words a random variable taking

values in the set
(
S
n

)
:= {B ⊂ S : |B| = n}.

In this simple model, an n-element point processes is basically

just a collection of
(
N
n

)
probabilities pB = P(A = B), one for each

B ∈
(
S
n

)
, which are non-negative numbers which add up to 1. For

instance, in the uniform point process where A is drawn uniformly at

random from
(
S
n

)
, each of these probabilities pB would equal 1/

(
N
n

)
.

How would one generate other interesting examples of n-element point

processes?

For this, we can borrow the idea from quantum mechanics that

probabilities can arise as the square of coefficients of unit vectors,

though unlike quantum mechanics it will be slightly more convenient

here to work with real vectors rather than complex ones. To formalise

this, we work with the nth exterior power
∧n

RN of the Euclidean

space RN ; this space is sort of a “quantisation” of
(
S
n

)
, and is anal-

ogous to the space of quantum states of n identical fermions, if each

fermion can exist classically in one of N states (or “spins”). (The
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requirement that the process be simple is then analogous to the Pauli

exclusion principle.)

This space of n-vectors in RN is spanned by the wedge products

ei1 ∧ . . . ∧ ein with 1 ≤ i1 < . . . < in ≤ N , where e1, . . . , eN is the

standard basis of RN . There is a natural inner product to place on∧n
RN by declaring all the ei1 ∧ . . . ∧ ein to be orthonormal.

Lemma 4.6.1. If f1, . . . , fN is any orthonormal basis of RN , then

the fi1 ∧ . . .∧ fin for 1 ≤ i1 < . . . < in ≤ N are an orthonormal basis

for
∧n

RN .

Proof. By definition, this is true when (f1, . . . , fN ) = (e1, . . . , eN ).

If the claim is true for some orthonormal basis f1, . . . , fN , it is not

hard to see that the claim also holds if one rotates fi and fj in the

plane that they span by some angle θ, where 1 ≤ i < j ≤ n are

arbitrary. But any orthonormal basis can be rotated into any other

by a sequence of such rotations (e.g. by using Euler angles), and the

claim follows. �

Corollary 4.6.2. If v1, . . . , vn are vectors in RN , then the magnitude

of v1∧ . . .∧ vn is equal to the n-dimensional volume of the parallelop-

iped spanned by v1, . . . , vn.

Proof. Observe that applying row operations to vi (i.e. modifying

one vi by a scalar multiple of another vj) does not affect either the

wedge product or the volume of the parallelopiped. Thus by using the

Gram-Schmidt process, we may assume that the vi are orthogonal; by

normalising we may assume they are orthonormal. The claim now

follows from the preceding lemma. �

From this and the ordinary Pythagorean theorem in the inner

product space
∧n

RN , we conclude the multidimensional Pythagorean

theorem: the square of the n-dimensional volume of a parallelopiped

in RN is the sum of squares of the n-dimensional volumes of the pro-

jection of that parallelopiped to each of the
(
N
n

)
coordinate subspaces

span(ei1 , . . . , ein). (I believe this theorem was first observed in this

generality by Donchian and Coxeter.) We also note another related

fact:
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Lemma 4.6.3 (Gram identity). If v1, . . . , vn are vectors in RN , then

the square of the magnitude of v1∧ . . .∧vn is equal to the determinant

of the Gram matrix (vi · vj)1≤i,j≤n.

Proof. Again, the statement is invariant under row operations, and

one can reduce as before to the case of an orthonormal set, in which

case the claim is clear. (Alternatively, one can proceed via the Cauchy-

Binet formula.) �

If we define e{i1,...,in} := ei1 ∧ . . . ∧ ein , then we have identified

the standard basis of
∧n

RN with
(
S
n

)
by identifying eB with B. As a

consequence of this and the multidimensional Pythagorean theorem,

every unit n-vector ω in
∧n

RN determines an n-element point pro-

cess A on S, by declaring the probability pB of A taking the value B

to equal |ω · eB |2 for each B ∈
(
S
n

)
. Note that multiple n-vectors can

generate the same point process, because only the magnitude of the

coefficients ω ·eB are of interest; in particular, ω and −ω generate the

same point process. (This is analogous to how multiplying the wave

function in quantum mechanics by a complex phase has no effect on

any physical observable.)

Now we can introduce determinantal processes. If V is an n-

dimensional subspace of RN , we can define the (projection) deter-

minantal process A = AV associated to V to be the point process

associated to the volume form of V , i.e. to the wedge product of an

orthonormal basis of V . (This volume form is only determined up to

sign, because the orientation of V has not been fixed, but as observed

previously, the sign of the form has no impact on the resulting point

process.)

By construction, the probability that the point process A is equal

to a set {i1, . . . , in} is equal to the square of the determinant of the

n × n matrix consisting of the i1, . . . , in coordinates of an arbitrary

orthonormal basis of V . By extending such an orthonormal basis to

the rest of RN , and representing ei1 , . . . , ein in this basis, it is not

hard to see that P(A = {i1, . . . , in}) can be interpreted geometri-

cally as the square of the volume of the parallelopiped generated by

Pei1 , . . . , P ein , where P is the orthogonal projection onto V .

In fact we have the more general fact:
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Lemma 4.6.4. If k ≥ 1 and i1, . . . , ik are distinct elements of S,

then P({i1, . . . , ik} ⊂ A) is equal to the square of the k-dimensional

volume of the parallelopiped generated by the orthogonal projections

of Pei1 , . . . , P eik to V .

Proof. We can assume that k ≤ n, since both expressions in the

lemma vanish otherwise.

By (anti-)symmetry we may assume that {i1, . . . , ik} = {1, . . . , k}.
By the Gram-Schmidt process we can find an orthonormal basis v1, . . . , vn
of V such that each vi is orthogonal to e1, . . . , ei−1.

Now consider the n × N matrix M with rows v1, . . . , vn, thus

M vanishes below the diagonal. The probability P({1, . . . , k} ∈ A) is

equal to the sum of squares of the determinants of all the n×n minors

of M that contain the first k rows. As M vanishes below the diagonal,

we see from cofactor expansion that this is equal to the product of

the squares of the first k diagonal entries, times the sum of squares

of the determinants of all the n − k × n − k minors of the bottom

n− k rows. But by the generalised Pythagorean theorem, this latter

factor is the square of the volume of the parallelopiped generated by

vk+1, . . . , vn, which is 1. Meanwhile, by the base times height formula,

we see that the product of the first k diagonal entries of M is equal in

magnitude to the k-dimensional volume of the orthogonal projections

of e1, . . . , ek to V . The claim follows. �

As a special case of Lemma 4.6.4, we have P(i ∈ A) = ‖Pei‖2 for

any i. In particular, if ei lies in V , then i almost surely lies in A, and

when ei is orthogonal to V , i almost surely is disjoint from A.

Let K(i, j) = Pei · ej = Pei · Pej denote the matrix coefficients

of the orthogonal projection P . From Lemma 4.6.4 and the Gram

identity, we conclude that A is a determinantal process (see (4.29))

with kernel K. Also, by combining Lemma 4.6.4 with the generalised

Pythagorean theorem, we conclude a monotonicity property:

Lemma 4.6.5 (Monotonicity property). If V ⊂ W are nested sub-

spaces of RN , then P(B ⊂ AV ) ≤ P(B ⊂ AW ) for every B ⊂ S.

This seems to suggest that there is some way of representing AW
as the union of AV with another process coupled with AV , but I was
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not able to build a non-artificial example of such a representation.

On the other hand, if V ⊂ RN and V ′ ⊂ RN ′ , then the process

AV⊕V ′ associated with the direct sum V ⊕V ′ ⊂ RN+N ′ has the same

distribution of the disjoint union of AV with an independent copy of

AV ′ .

The determinantal process interacts nicely with complements:

Lemma 4.6.6 (Hodge duality). Let V be an n-dimensional subspace

of RN . The N − n-element determinantal process AV ⊥ associated

to the orthogonal complement V ⊥ of V has the same distribution as

the complement S\AV of the n-element determinantal process AV
associated to V .

Proof. We need to show that P(AV = B) = P(AV ⊥ = S\B) for all

B ∈
(
N
n

)
. By symmetry we can take B = {1, . . . , n}. Let v1, . . . , vn

and vn+1, . . . , vN be an orthonormal basis for V and V ⊥ respectively,

and let M be the resulting N ×N orthogonal matrix; then the task is

to show that the top n× n minor X of M has the same determinant

squared as the bottom N−n×N−n minor Y . But if one splits M =(
X Z

W Y

)
, we see from the orthogonality property that XX∗ = In −

ZZ∗ and Y ∗Y = IN−n−Z∗Z, where In is the n× n identity matrix.

But from the singular value decomposition we see that In−ZZ∗ and

IN−n−Z∗Z have the same determinant, and the claim follows. (One

can also establish this lemma using the Hodge star operation.) �

From this lemma we see that S\A is a determinantal process with

kernel IN −K. In particular, we have

(4.30) P({i1, . . . , ik} ∩A = ∅) = det(Ik − (K(ia, ib))1≤a,b≤k).

The construction of the determinantal process given above is

somewhat indirect. A more direct way to build the process exploits

the following lemma:

Lemma 4.6.7. Let V be an n-dimensional subspace of RN , let AV be

the corresponding n-element determinantal process, and let 1 ≤ i1 <

. . . < ik ≤ N for some 1 ≤ k ≤ n. Then the if one conditions on

the event that {i1, . . . , ik} ∈ AV (assuming this event has non-zero

probability), the resulting n − k-element process AV \{i1, . . . , ik} has
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the same distribution as the n−k-element determinantal process AW
associated to the n−k-dimensional subspace W of V that is orthogonal

to ei1 , . . . , eik .

Proof. By symmetry it suffices to consider the case {i1, . . . , ik} =

{1, . . . , k}. By a further application of symmetry it suffices to show

that

P(AV = {1, . . . , n}) = P({1, . . . , k} ⊂ AV )P(AW = {k + 1, . . . , n}).

By the Gram-Schmidt process, we can find an orthonormal basis

v1, . . . , vn of V whose n×N matrix of coefficients vanishes below the

diagonal. One then easily verifies (using Lemma 4.6.4) that P(AV =

{1, . . . , n}) is the product of the n diagonal entries, P({1, . . . , k} ⊂
AV ) is the product of the first k, and P(AW = {k + 1, . . . , n}) is the

product of the last n− k, and the claim follows. �

Remark 4.6.8. There is a dual version of this lemma: if one con-

ditions on the event that {i1, . . . , ik} is disjoint from AV , then the

resulting process is the determinantal process associated to the or-

thogonal projection of V to the orthogonal complement of ei1 , . . . , eik .

From this lemma, it is not difficult to see that one can build AV
recursively as AV = {a} ∪ AVa , where a is a random variable drawn

from S with a P(a = i) = ‖Pei‖2/ dim(V ) for each i, and Va is the

subspace of V orthogonal to ea. Another consequence of this lemma

and the monotonicity property is the negative dependence inequality

P(B1 ∪B2 ⊂ A) ≤ P(B1 ⊂ A)P(B2 ⊂ A)

for any disjoint B1, B2 ⊂ S; thus the presence of A on one set B1

reduces the chance of A being present on a disjoint set B2 (not sur-

prising, since A has fixed size).

Thus far, we have only considered point processes with a fixed

number n of points. As a consequence, the determinantal kernel K

involved here is of a special form, namely the coefficients of an orthog-

onal projection matrix to an n-dimensional space (or equivalently, a

symmetric matrix whose eigenvalues consist of n ones and N − n ze-

roes). But one can create more general point processes by taking a

mixture of the fixed-number processes, e.g. first picking a projection
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kernel K (or a subspace V ) by some random process, and then sam-

pling A from the point process associated to that kernel or subspace.

For instance, let φ1, . . . , φN be an orthonormal basis of RN , and

let 0 ≤ λ1, . . . , λN ≤ 1 be weights. Then we can create a random

subspace V of RN by setting V equal to the span VJ of some random

subset {φj : j ∈ J} of the basis v1, . . . , vN , where each j lies in J

with an independent probability of λj , and then sampling A from

AV . Then A will be a point process whose cardinality can range from

0 to N . Given any set {i1, . . . , ik} ⊂ S, we can then compute the

probability P({i1, . . . , ik} ⊂ A) as

P({i1, . . . , ik} ⊂ A) = EJP({i1, . . . , ik} ⊂ AVJ )

where J is selected as above. Using (4.29), we have

P({i1, . . . , ik} ⊂ AVJ ) = det(KVJ (ia, ib))1≤a,b≤k.

But KVJ (ia, ib) =
∑
j∈J φj(ia)φj(ib), where φj(i) is the ith coordinate

of φj . Thus we can write

(KVJ (ia, ib))1≤a,b≤k =

N∑
j=1

I(j ∈ J)Rj

where I(j ∈ J) is the indicator of the event j ∈ J , and Rj is the

rank one matrix (φj(ia)φj(ib))1≤a,b≤k. Using multilinearity of the

determinant, and the fact that any determinant involving two or more

rows of the same rank one matrix automatically vanishes, we see that

we can express

det((KVJ (ia, ib))1≤a,b≤k) =
∑

1≤j1,...,jk≤N,distinct

I(j1, . . . , jk ∈ J) det(Rj1,...,jk)

wheree Rj1,...,jk is the matrix whose first row is the same as that of

Rj1 , the second row is the same as that of Rj2 , and so forth. Taking

expectations in J , the quantity I(j1, . . . , jk ∈ J) becomes λj1 . . . λjk .

Undoing the multilinearity step, we conclude that

EJ det(KVJ (ia, ib))1≤a,b≤k = det(

N∑
j=1

λjRj)
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and thus A is a determinantal process with kernel

K(x, y) :=

N∑
j=1

λjφj(x)φj(y).

To summarise, we have created a determinantal process A whose

kernel K is now an arbitrary symmetric matrix with eigenvalues

λ1, . . . , λn ∈ [0, 1], and it is a mixture of constant-size processes AVJ .

In particular, the cardinality |A| of this process has the same distri-

bution as the cardinality |J | of the random subset of {1, . . . , N}, or in

other words |A| ≡ Iλ1 + . . .+ Iλk , where Iλ1 , . . . , Iλk are independent

Bernoulli variables with expectation λ1, . . . , λk respectively.

Observe that if one takes a determinantal process A ⊂ S with

kernel K, and restricts it to a subset S′ of S, then the resulting

process A ∩ S′ ⊂ S′ is a determinantal process whose kernel K ′ is

simply the restriction of K to the S′×S′ block of S×S. Applying the

previous observation, we conclude that the random variable |A ∩ S′|
has the same distribution as the sum of |S′| independent Bernoulli

variables, whose expectations are the eigenvalues of the restriction of

K to S′. (Compare this to the Poisson point process A with some

intensity measure λ, where the distribution of |A ∩ Ω| is a Poisson

process with intensity λ(Ω).) Note that most point processes do not

obey this property (e.g. the uniform distribution on
(
S
n

)
does not

unless n = 0, 1 or n = N,N − 1), and so most point processes are not

determinantal.

It is known that increasing a positive semi-definite matrix by an-

other positive semi-definite matrix does not decrease the determinant

(indeed, it does not decrease any eigenvalue, by the minimax charac-

terisation of those eigenvalues). As a consequence, if the kernelK ′ of a

determinantal process A′ is larger than the kernel K of another deter-

minantal process A in the sense that K−K ′ is positive semi-definite,

then A′ is “larger” than A in the sense that P(B ⊂ A′) ≥ P(B ⊂ A)

for all B ⊂ S. A particularly nice special case is when K = cK ′ for

some 0 ≤ c ≤ 1, then P(B ⊂ A) = c|B|P(B ⊂ A′) for all B, and

one can interpret A as the process obtained from A′ by deleting each

element of A′ independently at random with probability 1 − c (i.e.

keeping that element independently at random with probability c).
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As a consequence of this, one can obtain a converse to our pre-

vious construction of determinantal processes, and conclude that a

determinantal process can be associated to a symmetric kernel K

only if the eigenvalues of K lie between zero and one. The fact that

K is positive semi-definite follows from the fact that all symmet-

ric minors of K have non-negative determinant (thanks to (4.29)).

Now suppose for contradiction that K has an eigenvalue larger than

1, then one can find 0 ≤ c < 1 such that the largest eigenvalue of

cK is exactly 1. By our previous discussion, the process AcK asso-

ciated to cK is then formed from the process AK by deleting each

element of A with non-zero probability; in particular, AK is empty

with non-zero probability. On the other hand, we know that |AK |
has the distribution of the sum of independent Bernoulli variables, at

least one of which is 1 with probability one, a contradiction. (This

proof is due to [HoKrPeVi2006], though the result is originally due

to Soshnikov[So2000]. An alternate proof is to extend the identity

(4.30) to all determinantal processes and conclude that I −K is nec-

essarily positive definite.)

4.6.2. Continuous determinantal processes. One can extend the

theory of discrete determinantal processes to the continuous setting.

For simplicity we restrict attention to (simple) point processes A ⊂ R

on the real line. A process A is said to have correlation functions

ρk : Rk → R for k ≥ 1 if the ρk are symmetric, non-negative, and

locally integrable, and one has the formula

E
∑

x1,...,xk∈A,distinct

f(x1, . . . , xk) =

∫
Rk

f(x1, . . . , xk)ρk(x1, . . . , xk) dx1 . . . dxk

for any bounded measurable symmetric f with compact support,

where the left-hand side is summed over all k-tuples of distinct points

in A (this sum is of course empty if |A| ≤ k). Intuitively, the

probability that A contains an element in the infinitesimal interval

[xi, xi + dxi] for all 1 ≤ i ≤ k and distinct x1, . . . , xk is equal to

ρk(x1, . . . , xk)dx1 . . . dxk. The ρk are not quite probability distribu-

tions; instead, the integral
∫
Rk ρk is equal to k!E

(|A|
k

)
. Thus, for

instance, if A is a constant-size process of cardinality n, then ρk has

integral n!
(n−k)! on Rn for 1 ≤ k ≤ n and vanishes for k > n.
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If the correlation functions exist, it is easy to see that they are

unique (up to almost everywhere equivalence), and can be used to

compute various statistics of the process. For instance, an applica-

tion of the inclusion-exclusion principle shows that for any bounded

measurable set Ω, the probability that A ∩ Ω = ∅ is (formally) equal

to
∞∑
k=0

(−1)k

k!

∫
(R\Ω)k

ρk(x1, . . . , xk) dx1 . . . dxk.

A process is determinantal with some symmetric measurable ker-

nel K : R × R → R if it has correlation functions ρk given by the

formula

(4.31) ρk(x1, . . . , xk) = det(K(xi, xj))1≤i,j≤k.

Informally, the probability that A intersects the infinitesimal intervals

[xi, xi+dxi] for distinct x1, . . . , xk is det(K(xi, xj)dx
1/2
i dx

1/2
j )1≤i,j≤k.

(Thus, K is most naturally interpreted as a half-density, or as an

integral operator from L2(R) to L2(R).)

There are analogues of the discrete theory in this continuous set-

ting. For instance, one can show that a symmetric measurable kernel

K generates a determinantal process if and only if the associated inte-

gral operator K has spectrum lies in the interval [0, 1]. The analogue

of (4.30) is the formula

P(A ∩ Ω = ∅) = det(I −K|Ω);

more generally, the distribution of |A ∩Ω| is the sum of independent

Bernoulli variables, whose expectations are the eigenvalues of K|Ω.

Finally, if K is an orthogonal projection onto an n-dimensional space,

then the process has a constant size of n. Conversely, if A is a pro-

cess of constant size n, whose nth correlation function ρn(x1, . . . , xn)

is given by (4.31), where K is an orthogonal projection onto an n-

dimensional space, then (4.31) holds for all other values of k as well,

and so A is a determinantal process with kernel K. (This is roughly

the analogue of Lemma 4.6.4.)

These facts can be established either by approximating a contin-

uous process as the limit of discrete ones, or by obtaining alternate

proofs of several of the facts in the previous section which do not
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rely as heavily on the discrete hypotheses. See [HoKrPeVi2006] for

details.

A Poisson process can be viewed as the limiting case of a deter-

minantal process in which K degenerates to a (normalisation of) a

multiplication operator f 7→ λf , where λ is the intensity function.

4.6.3. The spectrum of GUE. Now we turn to a specific example

of a continuous point process, namely the spectrumA = {λ1, . . . , λn} ⊂
R of the Gaussian unitary ensemble Mn = (ζij)1≤i,j≤n, where the ζij
are independent for 1 ≤ i ≤ j ≤ n with mean zero and variance 1,

with ζij being the standard complex gaussian for i < j and the stan-

dard real gaussian N(0, 1) for i = j. The probability distribution of

Mn can be expressed as

cn exp(−1

2
trace(M2

n)) dMn

where dMn is Lebesgue measure on the space of Hermitian n × n

matrices, and cn > 0 is some explicit normalising constant.

The n-point correlation function of A can be computed explicitly:

Lemma 4.6.9 (Ginibre formula). The n-point correlation function

ρn(x1, . . . , xn) of the GUE spectrum A is given by

(4.32) ρn(x1, . . . , xn) = c′n(
∏

1≤i<j≤n

|xi − xj |2) exp(−
n∑
i=1

x2
i /2)

where the normalising constant c′n is chosen so that ρn has integral 1.

The constant c′n > 0 is essentially the reciprocal of the partition

function for this ensemble, and can be computed explicitly, but we

will not do so here.

Proof. Let D be a diagonal random matrix D = diag(x1, . . . , xn)

whose entries are drawn using the distribution ρn(x1, . . . , xn) defined

by (4.32), and let U ∈ U(n) be a unitary matrix drawn uniformly at

random (with respect to Haar measure on U(n)) and independently

of D. It will suffice to show that the GUE Mn has the same prob-

ability distribution as U∗DU . Since probability distributions have

total mass one, it suffices to show that their distributions differ up to

multiplicative constants.
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The distributions of Mn and U∗DU are easily seen to be con-

tinuous and invariant under unitary rotations. Thus, it will suffice

to show that their probability density at a given diagonal matrix

D0 = diag(x0
1, . . . , x

0
n) are the same up to multiplicative constants.

We may assume that the x0
i are distinct, since this occurs for almost

every choice of D0.

On the one hand, the probability density of Mn at D0 is propor-

tional to exp(−
∑n
i=1(x0

i )
2/2). On the other hand, a short compu-

tation shows that if U∗DU is within a distance O(ε) of D0 for some

infinitesimal ε > 0, then (up to permutations) D must be a distance

O(ε) from D0, and the ij entry of U must be a complex number of size

O(ε/|x0
i − x0

j |) for 1 ≤ i < j ≤ n, while the diagonal entries of U can

be arbitrary phases. Pursuing this computation more rigorously (e.g.

using the Harish-Chandra formula) and sending ε→ 0, one can show

that the probability density of U∗DU at D0 is a constant multiple of

ρn(x1, . . . , xn)
∏

1≤i<j≤n

1

|x0
i − x0

j |2

(the square here arising because of the complex nature of the ij co-

efficient of U) and the claim follows. �

One can also represent the k-point correlation functions as a de-

terminant:

Lemma 4.6.10 (Gaudin-Mehta formula). The k-point correlation

function ρk(x1, . . . , xn) of the GUE spectrum A is given by

(4.33) ρk(x1, . . . , xk) = det(Kn(xi, xj))1≤i<j≤k

where Kn(x, y) is the kernel of the orthogonal projection K in L2(R)

to the space spanned by the polynomials xie−x
2/4 for i = 0, . . . , n− 1.

In other words, A is the n-point determinantal process with kernel

Kn.

Proof. By the material in the preceding section, it suffices to estab-

lish this for k = n. As K is the kernel of an orthogonal projection to

an n-dimensional space, it generates an n-point determinantal pro-

cess and so det(Kn(xi, xj))1≤i<j≤n has integral
(
n
n

)
= 1. Thus it
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will suffice to show that ρn and det(Kn(xi, xj))1≤i<j≤n agree up to

multiplicative constants.

By Gram-Schmidt, one can find an orthonormal basis φi(x)e−x
2/4,

i = 0, . . . , n−1 for the range of K, with each φi a polynomial of degree

i (these are essentially the Hermite polynomials). Then we can write

Kn(xi, xj) =

n−1∑
k=0

φk(xi)φk(xj)e
−(x2

i+x
2
j )/4.

Cofactor expansion then shows that det(Kn(xi, xj))1≤i<j≤n is equal

to exp(−
∑n
i=1 x

2
i /2) times a polynomial P (x1, . . . , xn) in x1, . . . , xn

of degree at most 2
∑n−1
k=0 k = n(n − 1). On the other hand, this

determinant is always non-negative, and vanishes whenever xi = xj
for any 1 ≤ i < j ≤ n, and so must contain (xi − xj)2 as a factor for

all 1 ≤ i < j ≤ n. As the total degree of all these (relatively prime)

factors is n(n− 1), the claim follows. �

This formula can be used to obtain asymptotics for the (renor-

malised) GUE eigenvalue spacings in the limit n → ∞, by using

asymptotics for (renormalised) Hermite polynomials; this was first

established by Dyson[Dy1970].

Notes. This article first appeared at terrytao.wordpress.com/2009/08/23.

Thanks to anonymous commenters for corrections.

Craig Tracy noted that some non-determinantal processes, such

as TASEP, still enjoy many of the spacing distributions as their de-

terminantal counterparts.

Manju Krishnapur raised the relevant question of how one could

determine quickly whether a given process is determinantal.

Russell Lyons noted the open problem on coupling determinan-

tal processes together was also raised in Question 10.1 of [Ly2003]

(which also covers most of the other material in this article).

4.7. The Cohen-Lenstra distribution

At a conference recently, I learned of the recent work of Ellenberg,

Venkatesh, and Westerland[ElVeWe2009], which concerned the con-

jectural behaviour of class groups of quadratic fields, and in particular
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to explain the numerically observed phenomenon that about 75.4%

of all quadratic fields Q[
√
d] (with d prime) enjoy unique factorisa-

tion (i.e. have trivial class group). (Class groups, as I learned at this

conference, are arithmetic analogues of the (abelianised) fundamen-

tal groups in topology, with Galois groups serving as the analogue

of the full fundamental group.) One thing I learned here was that

there was a canonical way to randomly generate a (profinite) abelian

group, by taking the product of randomly generated finite abelian p-

groups for each prime p. The way to canonically randomly generate

a finite abelian p-group is to take large integers n, d, and look at the

cokernel of a random homomorphism from (Z/pnZ)d to (Z/pnZ)d.

In the limit n, d → ∞ (or by replacing Z/pnZ with the p-adics and

just sending d→∞), this stabilises and generates any given p-group

G with probability

(4.34)
1

|Aut(G)|

∞∏
j=1

(1− 1

pj
),

where Aut(G) is the group of automorphisms of G. In particular this

leads to the strange identity

(4.35)
∑
G

1

|Aut(G)|
=

∞∏
j=1

(1− 1

pj
)−1

where G ranges over all p-groups; I do not know how to prove this

identity other than via the above probability computation, the proof

of which I give below.

Based on the heuristic that the class group should behave “ran-

domly” subject to some “obvious” constraints, it is expected that a

randomly chosen real quadratic field Q[
√
d] has unique factorisation

(i.e. the class group has trivial p-group component for every p) with

probability ∏
p odd

∞∏
j=2

(1− 1

pj
) ≈ 0.754,

whereas a randomly chosen imaginary quadratic field Q[
√
−d] has

unique factorisation with probability∏
p odd

∞∏
j=1

(1− 1

pj
) = 0.
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The former claim is conjectural, whereas the latter claim follows from

(for instance) Siegel’s theorem on the size of the class group, as dis-

cussed in Section 3.12.4. The work in [ElVeWe2009] establishes

some partial results towards the function field analogues of these

heuristics.

4.7.1. p-groups. Henceforth the prime p will be fixed. We will ab-

breviate “finite abelian p-group” as “p-group” for brevity. Thanks to

the classification of finite abelian groups, the p-groups are all isomor-

phic to the products

(Z/pn1Z)× . . .× (Z/pndZ)

of cyclic p-groups.

The cokernel of a random homomorphism from (Z/pnZ)d to (Z/pnZ)d

can be written as the quotient of the p-group (Z/pnZ)d by the sub-

group generated by d randomly chosen elements x1, . . . , xd from that

p-group. One can view this quotient as a d-fold iterative process, in

which one starts with the p-group (Z/pnZ)d, and then one iterates d

times the process of starting with a p-group G, and quotienting out

by a randomly chosen element x of that group G. From induction,

one sees that at the jth stage of this process (0 ≤ j ≤ d), one ends up

with a p-group isomorphic to (Z/pnZ)d−j ×Gj for some p-group Gj .

Let’s see how the group (Z/pnZ)d−j × Gj transforms to the

next group (Z/pnZ)d−j−1 × Gj+1. We write a random element of

(Z/pnZ)d−j × Gj as (x, y), where x ∈ (Z/pnZ)d−j and y ∈ Gj . Ob-

serve that for any 0 ≤ i < n, x is a multiple of pi (but not pi+1)

with probability (1− p−(d−j))p−i(d−j). (The remaining possibility is

that x is zero, but this event will have negligible probability in the

limit n→∞.) If x is indeed divisible by pi but not pi+1, and i is not

too close to n, a little thought will then reveal that |Gj+1| = pi|Gj |.
Thus the size of the p-groups Gj only grow as j increases. (Things

go wrong when i gets close to n, e.g. pi ≥ pn/|Gj |, but the total

size of this event as j ranges from 0 to d sums to be o(1) as n → ∞
(uniformly in d), by using the tightness bounds on |Gj | mentioned

below. Alternatively, one can avoid a lot of technicalities by taking

the limit n→∞ before taking the limit d→∞ (instead of studying
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the double limit n, d → ∞), or equivalently by replacing the cyclic

group Z/pnZ with the p-adics Zp.)

The exponentially decreasing nature of the probability (1−p−(d−j))p−i(d−j)

in i (and in d − j) furthermore implies that the distribution of |Gj |
forms a tight sequence in n, j, d: for every ε > 0, one has an R > 0

such that the probability that |Gj | ≥ R is less than ε for all choices

of n, j, d. (This tightness is necessary to prove the equality in (4.35)

rather than just an inequality (from Fatou’s lemma).) Indeed, the

probability that |Gj | = pm converges as n, d → ∞ to the tm coeffi-

cient in the generating function

(4.36)

∞∏
k=1

∞∑
i=0

ti(1− p−k)p−ik =

∞∏
k=1

1− p−k

1− tp−k
.

In particular, this claim is true for the final cokernel Gd. Note that

this (and the geometric series formula) already yields (4.34) in the case

of the trivial group G = {0} and the order p group G = Z/pZ (note

that Aut(G) has order 1 and p in these respective cases). But it is not

enough to deal with higher groups. For instance, up to isomorphism

there are two p-groups of order p2, namely Z/p2Z and (Z/pZ)2, whose

automorphism group has order p2−p and (p2−1)(p2−p) respectively.

Summing up the corresponding two expressions (4.34) one can observe

that this matches the t2 coefficient of (4.36) (after some applications

of the geometric series formula). Thus we see that (4.36) is consistent

with the claim (4.34), but does not fully imply that claim.

To get the full asymptotic (4.34) we try a slightly different tack.

Fix a p-group G, and consider the event that the cokernel of a random

map T : (Z/pnZ)d → (Z/pnZ)d is isomorphic to G. We assume n so

large that all elements in G have order at most pn. If this is the case,

then there must be a surjective homomorphism φ : (Z/pnZ)d → G

such that the range of T is equal to the kernel of φ. The number

of homomorphisms from (Z/pnZ)d to G is |G|d (one has to pick d

generators in G). If d is large, it is easy to see that most of these ho-

momorphisms are surjective (the proportion of such homomorphisms

is 1− o(1) as d→∞). On the other hand, there is some multiplicity;

the range of T can emerge as the kernel of φ in |Aut(G)| different

ways (since any two surjective homomorphisms φ, φ′ : (Z/pnZ)d → G

with the same kernel arise from an automorphism of G). So to
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prove (4.34), it suffices to show that for any surjective homomor-

phism φ : (Z/pnZ)d → G, the probability that the range of T equals

the kernel of φ is

(1 + o(1))|G|−d
∞∏
j=1

(1− 1

pj
).

The range of T is the same thing as the subgroup of (Z/pnZ)d gen-

erated by d random elements x1, . . . , xd of that group. The kernel of

φ has index |G| inside (Z/pnZ)d, so the probability that all of those

random elements lie in the kernel of φ is |G|−d. So it suffices to prove

the following claim: if φ is a fixed surjective homomorphism from

(Z/pnZ)d to G, and x1, . . . , xd are chosen randomly from the kernel

of φ, then x1, . . . , xd will generate that kernel with probability

(4.37) (1 + o(1))

∞∏
j=1

(1− 1

pj
).

But from the classification of p-groups, the kernel of φ (which has

bounded index inside (Z/pnZ)d) is isomorphic to

(4.38) (Z/pn−O(1)Z)× . . .× (Z/pn−O(1)Z)

where O(1) means “bounded uniformly in n”, and there are d factors

here. As in the previous argument, one can now imagine starting

with the group (4.38), and then iterating d times the operation of

quotienting out by the group generated by a randomly chosen element;

our task is to compute the probability that one ends up with the trivial

group by applying this process.

As before, at the jth stage of the iteration, one ends up with a

group of the form

(4.39) (Z/pn−O(1)Z)× . . .× (Z/pn−O(1)Z)×Gj

where there are d − j factors of (Z/pn−O(1)Z). The group Gj is in-

creasing in size, so the only way in which one ends up with the trivial

group is if all the Gj are trivial. But if Gj is trivial, the only way

that Gj+1 is trivial is if the randomly chosen element from (4.39) has

a (Z/pn−O(1)Z) × . . . × (Z/pn−O(1)Z) component which is invertible

(i.e. not a multiple of p), which occurs with probability 1 − p−(d−j)
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(assuming n is large enough). Multiplying all these probabilities to-

gether gives (4.37).

Notes. This article first appeared at terrytao.wordpress.com/2009/10/02.

Thanks to David Speyer and an anonymous commenter for correc-

tions.

4.8. An entropy Plünnecke-Ruzsa inequality

A handy inequality in additive combinatorics is the Plünnecke-Ruzsa

inequality [Ru1989]:

Theorem 4.8.1 (Plünnecke-Ruzsa inequality). Let A,B1, . . . , Bm be

finite non-empty subsets of an additive group G, such that |A+Bi| ≤
Ki|A| for all 1 ≤ i ≤ m and some scalars K1, . . . ,Km ≥ 1. Then

there exists a subset A′ of A such that |A′ + B1 + . . . + Bm| ≤
K1 . . .Km|A′|.

The proof uses graph-theoretic techniques. Setting A = B1 =

. . . = Bm, we obtain a useful corollary: if A has small doubling in

the sense that |A + A| ≤ K|A|, then we have |mA| ≤ Km|A| for all

m ≥ 1, where mA = A+ . . .+A is the sum of m copies of A.

In a recent paper[Ta2010c], I adapted a number of sum set esti-

mates to the entropy setting, in which finite sets such as A in G are

replaced with discrete random variables X taking values in G, and

(the logarithm of) cardinality |A| of a set A is replaced by Shannon

entropy H(X) of a random variable X. (Throughout this note I as-

sume all entropies to be finite.) However, at the time, I was unable to

find an entropy analogue of the Plünnecke-Ruzsa inequality, because I

did not know how to adapt the graph theory argument to the entropy

setting.

I recently discovered, however, that buried in a classic paper[KaVe1983]

of Kaimonovich and Vershik (implicitly in Proposition 1.3, to be pre-

cise) there was the following analogue of Theorem 4.8.1:

Theorem 4.8.2 (Entropy Plünnecke-Ruzsa inequality). Let X,Y1, . . . , Ym
be independent random variables of finite entropy taking values in an

additive group G, such that H(X+Yi) ≤ H(X)+logKi for all 1 ≤ i ≤
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m and some scalars K1, . . . ,Km ≥ 1. Then H(X + Y1 + . . .+ Ym) ≤
H(X) + logK1 . . .Km.

In fact Theorem 4.8.2 is a bit “better” than Theorem 4.8.1 in

the sense that Theorem 4.8.1 needed to refine the original set A to a

subset A′, but no such refinement is needed in Theorem 4.8.2. One

corollary of Theorem 4.8.2 is that if H(X1 + X2) ≤ H(X) + logK,

then H(X1 + . . . + Xm) ≤ H(X) + (m − 1) logK for all m ≥ 1,

where X1, . . . , Xm are independent copies of X; this improves slightly

over the analogous combinatorial inequality. Indeed, the function

m 7→ H(X1 + . . . + Xm) is concave (this can be seen by using the

m = 2 version of Theorem 4.8.2 (or (4.41) below) to show that the

quantity H(X1 + . . . + Xm+1) −H(X1 + . . . + Xm) is decreasing in

m).

Theorem 4.8.2 is actually a quick consequence of the submodu-

larity inequality

(4.40) H(W ) + H(X) ≤ H(Y ) + H(Z)

in information theory, which is valid whenever X,Y, Z,W are discrete

random variables such that Y and Z each determine X (i.e. X is

a function of Y , and also a function of Z), and Y and Z jointly

determine W (i.e W is a function of Y and Z). To apply this, let

X,Y, Z be independent discrete random variables taking values in G.

Observe that the pairs (X,Y + Z) and (X + Y, Z) each determine

X + Y + Z, and jointly determine (X,Y, Z). Applying (4.40) we

conclude that

H(X,Y, Z) + H(X + Y + Z) ≤ H(X,Y + Z) + H(X + Y,Z)

which after using the independence of X,Y, Z simplifies to the sumset

submodularity inequality

(4.41) H(X + Y + Z) + H(Y ) ≤ H(X + Y ) + H(Y + Z)

(this inequality was also recently observed http://www.stat.yale.edu/ mm888/Pubs/2008/ITW-

sums08.pdf by Madiman; it is the m = 2 case of Theorem 4.8.2). As a

corollary of this inequality, we see that if H(X+Yi) ≤ H(X)+logKi,

then

H(X + Y1 + . . .+ Yi) ≤ H(X + Y1 + . . .+ Yi−1) + logKi,
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and Theorem 4.8.2 follows by telescoping series.

The proof of Theorem 4.8.2 seems to be genuinely different from

the graph-theoretic proof of Theorem 4.8.1. It would be interest-

ing to see if the above argument can be somehow adapted to give a

stronger version of Theorem 4.8.1. Note also that both Theorem 4.8.1

and Theorem 4.8.2 have extensions to more general combinations of

X,Y1, . . . , Ym than X + Yi; see [GyMaRu2008] and and madiman

respectively.

It is also worth remarking that the above inequalities largely carry

over to the non-abelian setting. For instance, if X1, X2, . . . are iid

copies of a discrete random variable in a multiplicative group G, the

above arguments show that the function m 7→ H(X1 . . . Xm) is con-

cave. In particular, the expression 1
mH(X1 . . . Xm) decreases mono-

tonically to a limit, the asymptotic entropy H(G,X). This quantity

plays an important role in the theory of bounded harmonic functions

on G, as observed by [KaVe1983]:

Proposition 4.8.3. Let G be a discrete group, and let X be a discrete

random variable in G with finite entropy, whose support generates G.

Then there exists a non-constant bounded function f : G→ R which

is harmonic with respect to X (which means that Ef(Xx) = f(x) for

all x ∈ G) if and only if H(G,X) 6= 0.

Proof. (Sketch) Suppose first that H(G,X) = 0, then we see from

concavity that the successive differences H(X1 . . . Xm)−H(X1 . . . Xm−1)

converge to zero. From this it is not hard to see that the mutual in-

formation

I(Xm, X1 . . . Xm) := H(Xm) + H(X1 . . . Xm)−H(Xm|X1 . . . Xm)

goes to zero as m→∞. Informally, knowing the value of Xm reveals

very little about the value of X1 . . . Xm when m is large.

Now let f : G → R be a bounded harmonic function, and let m

be large. For any x ∈ G and any value s in the support of Xm, we

observe from harmonicity that

f(sx) = E(f(X1 . . . Xmx)|Xm = s).

But from the asymptotic vanishing of mutual information and the

boundedness of f , one can show that the right-hand side will converge
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to E(f(X1 . . . Xmx)), which by harmonicity is equal to f(x). Thus

f is invariant with respect to the support of X, and is thus constant

since this support generates G.

Conversely, if H(G,X) is non-zero, then the above arguments

show that I(Xm, X1 . . . Xm) stays bounded away from zero as m →
∞, thus X1 . . . Xm reveals a non-trivial amount of information about

Xm. This turns out to be true even if m is not deterministic, but is

itself random, varying over some medium-sized range. From this, one

can find a bounded function F such that the conditional expectation

E(F (X1 . . . Xm)|Xm = s) varies non-trivially with s. On the other

hand, the bounded function x 7→ EF (X1 . . . Xm−1x) is approximately

harmonic (because we are varying m), and has some non-trivial fluc-

tuation near the identity (by the preceding sentence). Taking a limit

as m → ∞ (using Arzelá-Ascoli) we obtain a non-constant bounded

harmonic function as desired. �

Notes. This article first appeared at terrytao.wordpress.com/2009/10/27.

Thanks to Seva Lev and an anonymous commenter for corrections.

4.9. An elementary noncommutative Freiman
theorem

Let X be a finite subset of a non-commutative group G. As mentioned

in Section 3.2 of Structure and Randomness,, there is some interest

in classifying those X which obey small doubling conditions such as

|X · X| = O(|X|) or |X · X−1| = O(|X|). A full classification here

has still not been established. However, I wanted to record here an

elementary argument of Freiman [Fr1973] (see also [TaVu2006b,

Exercise 2.6.5], which in turn is based on an argument in [La2001])

that handles the case when |X ·X| is very close to |X|:

Proposition 4.9.1. If |X−1 ·X| < 3
2 |X|, then X ·X−1 and X−1 ·X

are both finite groups, which are conjugate to each other. In partic-

ular, X is contained in the right-coset (or left-coset) of a group of

order less than 3
2 |X|.

Remark 4.9.2. The constant 3
2 is completely sharp; consider the

case when X = {e, x} where e is the identity and x is an element of
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order larger than 2. This is a small example, but one can make it as

large as one pleases by taking the direct product of X and G with

any finite group. In the converse direction, we see that whenever X

is contained in the right-coset S · x (resp. left-coset x · S) of a group

of order less than 2|X|, then X ·X−1 (resp. X−1 ·X) is necessarily

equal to all of S, by the inclusion-exclusion principle (see the proof

below for a related argument).

Proof. We begin by showing that S := X ·X−1 is a group. As S is

symmetric and contains the identity, it suffices to show that this set

is closed under addition.

Let a, b ∈ S. Then we can write a = xy−1 and b = zw−1 for

x, y, z, w ∈ X. If y were equal to z, then ab = xw−1 ∈ X ·X−1 and

we would be done. Of course, there is no reason why y should equal

z; but we can use the hypothesis |X−1 ·X| < 3
2 |X| to boost this as

follows. Observe that x−1 ·X and y−1 ·X both have cardinality |X|
and lie inside X−1 ·X, which has cardinality strictly less than 3

2 |X|.
By the inclusion-exclusion principle, this forces x−1·X∩y−1·X to have

cardinality greater than 1
2 |X|. In other words, there exist more than

1
2 |X| pairs x′, y′ ∈ X such that x−1x′ = y−1y′, which implies that

a = x′(y′)−1. Thus there are more than 1
2 |X| elements y′ ∈ X such

that a = x′(y′)−1 for some x′ ∈ X (since x′ is uniquely determined by

y′); similarly, there exists more than 1
2 |X| elements z′ ∈ X such that

b = z′(w′)−1 for some w′ ∈ X. Again by inclusion-exclusion, we can

thus find y′ = z′ in X for which one has simultaneous representations

a = x′(y′)−1 and b = y′(z′)−1, and so ab = x′(z′)−1 ∈ X ·X−1, and

the claim follows.

In the course of the above argument we showed that every element

of the group S has more than 1
2 |X| representations of the form xy−1

for x, y ∈ X. But there are only |X|2 pairs (x, y) available, and thus

|S| < 2|X|.
Now let x be any element of X. Since X · x−1 ⊂ S, we have

X ⊂ S · x, and so X−1 ·X ⊂ x−1 · S · x. Conversely, every element

of x−1 · S · x has exactly |S| representations of the form z−1w where

z, w ∈ S · x. Since X occupies more than half of S · x, we thus

see from the inclusion-exclusion principle, there is thus at least one
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representation z−1w for which z, w both lie in X. In other words,

x−1 · S · x = X−1 ·X, and the claim follows. �

To relate this to the classical doubling constants |X ·X|/|X|, we

first make an easy observation:

Lemma 4.9.3. If |X ·X| < 2|X|, then X ·X−1 = X−1 ·X.

Again, this is sharp; consider X equal to {x, y} where x, y gener-

ate a free group.

Proof. Suppose that xy−1 is an element of X ·X−1 for some x, y ∈ X.

Then the sets X ·x and X ·y have cardinality |X| and lie in X ·X, so by

the inclusion-exclusion principle, the two sets intersect. Thus there

exist z, w ∈ X such that zx = wy, thus xy−1 = z−1w ∈ X−1 ·X. This

shows that X ·X−1 is contained in X−1 ·X. The converse inclusion

is proven similarly. �

Proposition 4.9.4. If |X ·X| < 3
2 |X|, then S := X ·X−1 is a finite

group of order |X · X|, and X ⊂ S · x = x · S for some x in the

normaliser of S.

The factor 3
2 is sharp, by the same example used to show sharp-

ness of Proposition 4.9.1. However, there seems to be some room for

further improvement if one weakens the conclusion a bit; see below

the fold.

Proof. Let S = X−1 · X = X · X−1 (the two sets being equal by

Lemma 4.9.3). By the argument used to prove Lemma 4.9.3, every

element of S has more than 1
2 |X| representations of the form xy−1

for x, y ∈ X. By the argument used to prove Proposition 4.9.1, this

shows that S is a group; also, since there are only |X|2 pairs (x, y),

we also see that |S| < 2|X|.
Pick any x ∈ X; then x−1 ·X,X ·x−1 ⊂ S, and so X ⊂ x ·S, S ·x.

Because every element of x · S · x has |S| representations of the form

yz with y ∈ x · S, z ∈ S · x, and X occupies more than half of x · S
and of S · x, we conclude that each element of x · S · x lies in X ·X,

and so X ·X = x · S · x and |S| = |X ·X|.
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The intersection of the groups S and x ·S · x−1 contains X · x−1,

which is more than half the size of S, and so we must have S =

x · S · x−1, i.e. x normalises S, and the proposition follows. �

Because the arguments here are so elementary, they extend easily

to the infinitary setting in whichX is now an infinite set, but has finite

measure with respect to some translation-invariant Kiesler measure

µ. We omit the details. (I am hoping that this observation may help

simplify some of the theory in that setting.)

4.9.1. Beyond the 3/2 barrier. It appears that one can push the

arguments a bit beyond the 3/2 barrier, though of course one has

to weaken the conclusion in view of the counterexample in Remark

4.9.2. Here I give a result that increases 3/2 = 1.5 to the golden ratio

φ := (1 +
√

5)/2 = 1.618 . . .:

Proposition 4.9.5 (Weak non-commutative Kneser theorem). If

|X−1 ·X|, |X ·X−1| ≤ K|X| for some 1 < K < φ, then X ·X−1 = H ·Z
for some finite subgroup H, and some finite set Z with |Z| ≤ C(K)

for some C(K) depending only on K.

Proof. Write S := X · X−1. Let us say that h symmetrises S if

h · S = S, and let H be the set of all h that symmetrise S. It is clear

that H is a finite group with H · S = S and thus S ·H = S also.

For each z ∈ S, let r(z) be the number of representations of z

of the form z = xy−1 with x, y ∈ X. Double counting shows that∑
z∈S r(z) = |X|2, while by hypothesis |S| ≤ K|X|; thus the average

value of r(z) is at least |X|/K. Since 1 < K < φ, 1/K > K−1. Since

r(z) ≤ |X| for all z, we conclude that r(z) > (K − 1)|X| for at least

c(K)|X| values of z ∈ S, for some explicitly computable c(K) > 0.

Suppose z, w ∈ S is such that r(z) > (K−1)|X|, thus z has more

than (K − 1)|X| representations of the form xy−1 with x, y ∈ X. On

the other hand, the argument used to prove Proposition 4.9.1 shows

that w has at least (2 −K)|X| representations of the form x′(y′)−1

with x′, y′ ∈ X. By the inclusion-exclusion formula, we can thus find

representations for which y = x′, which implies that zw ∈ S. Since

w ∈ S was arbitrary, this implies that z ∈ H. Thus |H| ≥ c(K)|X|.
Since S = H · S and |S| ≤ K|X|, this implies that S can be covered
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by at most C(K) right-cosets of S for some C(K) depending only on

K, and the claim follows. �

This result appears in [Fr1973], and a related argument also

appears in [Le2000].

It looks like one should be able to get a bit more structural in-

formation on X than is given by the above conclusion, and I doubt

the golden ratio is sharp either (the correct threshold should be 2, in

analogy with the commutative Kneser theorem; after that, the con-

clusion will fail, as can be seen by taking X to be a long geometric

progression). Readers here are welcome to look for improvements to

these results, of course.

Notes. This article first appeared at terrytao.wordpress.com/2009/11/10.

Thanks to Miguel Lacruz for corrections, and Ben Green and Seva

Lev for references.

4.10. Nonstandard analogues of energy and
density increment arguments

This article assumes some familiarity with nonstandard analysis (see

e.g. Section 1.5 of Structure and Randomness).

Let us call a model M of a language L weakly countably satu-

rated2 if, every countable sequence P1(x), P2(x), . . . of formulae in L

(involving countably many constants in M) which is finitely satisfi-

able in M (i.e. any finite collection P1(x), . . . , Pn(x) in the sequence

has a solution x in M), is automatically satisfiable in M (i.e. there

is a solution x to all Pn(x) simultaneously). Equivalently, a model is

weakly countably saturated if the topology generated by the definable

sets is countably compact.

Most models are not (weakly) countably saturated. Consider for

instance the standard natural numbers N as a model for arithmetic.

2The stronger property of being countably saturated asserts that if an arbitrary
sequence of formulae involving countably many constants is finitely satisfiable, then
it is satisfiable; the relation between the two concepts is thus analogous to compact-
ness and countable compactness. If one chooses a special type of ultrafilter, namely
a “countably incomplete” ultrafilter, one can recover the full strength of countable
saturation, though it is not needed for the remarks here.
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Then the sequence of formulae “x > n” for n = 1, 2, 3, . . . is finitely

satisfiable in N, but not satisfiable.

However, if one takes a model M of L and passes to an ultrapower

∗M , whose elements x consist of sequences (xn)n∈N in M , modulo

equivalence with respect to some fixed non-principal ultrafilter p, then

it turns out that such models are automatically weakly countably

saturated. Indeed, if P1(x), P2(x), . . . are finitely satisfiable in ∗M ,

then they are also finitely satisfiable in M (either by inspection, or by

appeal to  Los’s theorem and/or the transfer principle in non-standard

analysis), so for each n there exists xn ∈M which satisfies P1, . . . , Pn.

Letting x = (xn)n∈N ∈ ∗M be the ultralimit of the xn, we see that x

satisfies all of the Pn at once.

In particular, non-standard models of mathematics, such as the

non-standard model ∗N of the natural numbers, are automatically

countably saturated. (This fact is closely related to the idealisation

axiom in internal set theory.)

This has some cute consequences. For instance, suppose one has

a non-standard metric space ∗X (an ultralimit of standard metric

spaces), and suppose one has a standard sequence (xn)n∈N of ele-

ments of ∗X which are standard-Cauchy, in the sense that for any

standard ε > 0 one has d(xn, xm) < ε for all sufficiently large n,m.

Then there exists a non-standard element x ∈ ∗X such that xn
standard-converges to x in the sense that for every standard ε > 0

one has d(xn, x) < ε for all sufficiently large n. Indeed, from the

standard-Cauchy hypothesis, one can find a standard ε(n) > 0 for

each standard n that goes to zero (in the standard sense), such that

the formulae “d(xn, x) < ε(n)” are finitely satisfiable, and hence satis-

fiable by countable saturation. Thus we see that non-standard metric

spaces are automatically “standardly complete” in some sense.

This leads to a non-standard structure theorem for Hilbert spaces,

analogous to the orthogonal decomposition in Hilbert spaces:

Theorem 4.10.1 (Non-standard structure theorem for Hilbert spaces).

Let ∗H be a non-standard Hilbert space, let S be a bounded (exter-

nal) subset of ∗H, and let x ∈ H. Then there exists a decomposition

x = xS + xS⊥ , where xS ∈ ∗H is “almost standard-generated by
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S” in the sense that for every standard ε > 0, there exists a stan-

dard finite linear combination of elements of S which is within ε of

S, and xS⊥ ∈ ∗H is “standard-orthogonal to S” in the sense that

〈xS⊥ , s〉 = o(1) for all s ∈ S.

Proof. Let d be the infimum of all the (standard) distances from

x to a standard linear combination of elements of S, then for every

standard n one can find a standard linear combination xn of elements

of S which lie within d + 1/n of x. From the parallelogram law

we see that xn is standard-Cauchy, and thus standard-converges to

some limit xS ∈ ∗H, which is then almost standard-generated by

S by construction. An application of Pythagoras then shows that

xS⊥ := x− xS is standard-orthogonal to every element of S. �

This is the non-standard analogue of a combinatorial structure

theorem for Hilbert spaces (see e.g. [Ta2007b, Theorem 2.6]). There

is an analogous non-standard structure theorem for σ-algebras (the

counterpart of [Ta2007b, Theorem 3.6]) which I will not discuss here,

but I will give just one sample corollary:

Theorem 4.10.2 (Non-standard arithmetic regularity lemma). Let

∗G be a non-standardly finite abelian group, and let f : ∗G→ [0, 1] be

a function. Then one can split f = fU⊥+fU , where fU : ∗G→ [−1, 1]

is standard-uniform in the sense that all Fourier coefficients are (uni-

formly) o(1), and fU⊥ : ∗G→ [0, 1] is standard-almost periodic in the

sense that for every standard ε > 0, one can approximate fU⊥ to er-

ror ε in L1(∗G) norm by a standard linear combination of characters

(which is also bounded).

This can be used for instance to give a non-standard proof of

Roth’s theorem (which is not much different from the “finitary er-

godic” proof of Roth’s theorem, given for instance in [TaVu2006b,

Section 10.5]). There is also a non-standard version of the Szemerédi

regularity lemma which can be used, among other things, to prove the

hypergraph removal lemma (the proof then becomes rather close to

the infinitary proof of this lemma in [Ta2007]). More generally, the

above structure theorem can be used as a substitute for various “en-

ergy increment arguments” in the combinatorial literature, though it
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does not seem that there is a significant saving in complexity in doing

so unless one is performing quite a large number of these arguments.

One can also cast density increment arguments in a nonstandard

framework. Here is a typical example. Call a non-standard subset X

of a non-standard finite set Y dense if one has |X| ≥ ε|Y | for some

standard ε > 0.

Theorem 4.10.3. Suppose Szemerédi’s theorem (every set of inte-

gers of positive upper density contains an arithmetic progression of

length k) fails for some k. Then there exists an unbounded non-

standard integer N , a dense subset A of [N ] := {1, . . . , N} with no

progressions of length k, and with the additional property that

|A ∩ P |
|P |

≤ |A ∩ [N ]|
N

+ o(1)

for any subprogression P of [N ] of unbounded size (thus there is no

sizeable density increment on any large progression).

Proof. Let B ⊂ N be a (standard) set of positive upper density

which contains no progression of length k. Let δ := lim sup|P |→∞ |B∩
P |/|P | be the asymptotic maximal density of B inside a long progres-

sion, thus δ > 0. For any n > 0, one can then find a standard integer

Nn ≥ n and a standard subset An of [Nn] of density at least δ − 1/n

such that An can be embedded (after a linear transformation) inside

B, so in particular An has no progressions of length k. Applying the

saturation property, one can then find an unbounded N and a set A

of [N ] of density at least δ− 1/n for every standard n (i.e. of density

at least δ − o(1)) with no progressions of length k. By construction,

we also see that for any subprogression P of [N ] of unbounded size,

A hs density at most δ+ 1/n for any standard n, thus has density at

most δ + o(1), and the claim follows. �

This can be used as the starting point for any density-increment

based proof of Szemerédi’s theorem for a fixed k, e.g. Roth’s proof for

k = 3, Gowers’ proof for arbitrary k, or Szemerédi’s proof for arbitrary

k. (It is likely that Szemerédi’s proof, in particular, simplifies a little

bit when translated to the non-standard setting, though the savings

are likely to be modest.)



4.11. Sunflowers 635

I’m also hoping that the recent results of Hrushovski[Hr2009]

on the noncommutative Freiman problem require only countable sat-

uration, as this makes it more likely that they can be translated to a

non-standard setting and thence to a purely finitary framework.

Notes. This article first appeared at terrytao.wordpress.com/2009/11/10.

Balazs Szegedy noted the connection to his recent work [Sz2009] on

higher order Fourier analysis from a nonstandard perspective.

4.11. Approximate bases, sunflowers, and
nonstandard analysis

One of the most basic theorems in linear algebra is that every finite-

dimensional vector space has a finite basis. Let us give a statement

of this theorem in the case when the underlying field is the rationals:

Theorem 4.11.1 (Finite generation implies finite basis, infinitary

version). Let V be a vector space over the rationals Q, and let v1, . . . , vn
be a finite collection of vectors in V . Then there exists a collection

w1, . . . , wk of vectors in V , with 1 ≤ k ≤ n, such that

• (w generates v) Every vj can be expressed as a rational lin-

ear combination of the w1, . . . , wk.

• (w independent) There is no non-trivial linear relation a1w1+

. . .+akwk = 0, a1, . . . , ak ∈ Q among the w1, . . . , wm (where

non-trivial means that the ai are not all zero).

In fact, one can take w1, . . . , wm to be a subset of the v1, . . . , vn.

Proof. We perform the following “rank reduction argument”. Start

with w1, . . . , wk initialised to v1, . . . , vn (so initially we have k = n).

Clearly w generates v. If the wi are linearly independent then we are

done. Otherwise, there is a non-trivial linear relation between them;

after shuffling things around, we see that one of the wi, say wk, is

a rational linear combination of the w1, . . . , wk−1. In such a case,

wk becomes redundant, and we may delete it (reducing the rank k

by one). We repeat this procedure; it can only run for at most n

steps and so terminates with w1, . . . , wm obeying both of the desired

properties. �
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In additive combinatorics, one often wants to use results like this

in finitary settings, such as that of a cyclic group Z/pZ where p is a

large prime. Now, technically speaking, Z/pZ is not a vector space

over Q, because one only multiply an element of Z/pZ by a rational

number if the denominator of that rational does not divide p. But for

p very large, Z/pZ “behaves” like a vector space over Q, at least if

one restricts attention to the rationals of “bounded height” - where

the numerator and denominator of the rationals are bounded. Thus

we shall refer to elements of Z/pZ as “vectors” over Q, even though

strictly speaking this is not quite the case.

On the other hand, saying that one element of Z/pZ is a rational

linear combination of another set of elements is not a very interesting

statement: any non-zero element of Z/pZ already generates the entire

space! However, if one again restricts attention to rational linear

combinations of bounded height, then things become interesting again.

For instance, the vector 1 can generate elements such as 37 or p−1
2

using rational linear combinations of bounded height, but will not

be able to generate such elements of Z/pZ as b√pc without using

rational numbers of unbounded height.

For similar reasons, the notion of linear independence over the

rationals doesn’t initially look very interesting over Z/pZ: any two

non-zero elements of Z/pZ are of course rationally dependent. But

again, if one restricts attention to rational numbers of bounded height,

then independence begins to emerge: for instance, 1 and b√pc are

independent in this sense.

Thus, it becomes natural to ask whether there is a “quantita-

tive” analogue of Theorem 4.11.1, with non-trivial content in the

case of “vector spaces over the bounded height rationals” such as

Z/pZ, which asserts that given any bounded collection v1, . . . , vn
of elements, one can find another set w1, . . . , wk which is linearly

independent “over the rationals up to some height”, such that the

v1, . . . , vn can be generated by the w1, . . . , wk “over the rationals up

to some height”. Of course to make this rigorous, one needs to quan-

tify the two heights here, the one giving the independence, and the

one giving the generation. In order to be useful for applications, it

turns out that one often needs the former height to be much larger
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than the latter; exponentially larger, for instance, is not an uncom-

mon request. Fortunately, one can accomplish this, at the cost of

making the height somewhat large:

Theorem 4.11.2 (Finite generation implies finite basis, finitary ver-

sion). Let n ≥ 1 be an integer, and let F : N → N be a function.

Let V be an abelian group which admits a well-defined division opera-

tion by any natural number of size at most C(F, n) for some constant

C(F, n) depending only on F, n; for instance one can take V = Z/pZ

for p a prime larger than C(F, n). Let v1, . . . , vn be a finite collection

of “vectors” in V . Then there exists a collection w1, . . . , wk of vectors

in V , with 1 ≤ k ≤ n, as well an integer M ≥ 1, such that

• (Complexity bound) M ≤ C(F, n) for some C(F, n) depend-

ing only on F, n.

• (w generates v) Every vj can be expressed as a rational lin-

ear combination of the w1, . . . , wk of height at most M (i.e.

the numerator and denominator of the coefficients are at

most M).

• (w independent) There is no non-trivial linear relation a1w1+

. . .+akwk = 0 among the w1, . . . , wk in which the a1, . . . , ak
are rational numbers of height at most F (M).

In fact, one can take w1, . . . , wk to be a subset of the v1, . . . , vn.

Proof. We perform the same “rank reduction argument” as before,

but translated to the finitary setting. Start with w1, . . . , wk initialised

to v1, . . . , vn (so initially we have k = n), and initialise M = 1.

Clearly w generates v at this height. If the wi are linearly indepen-

dent up to rationals of height F (M) then we are done. Otherwise,

there is a non-trivial linear relation between them; after shuffling

things around, we see that one of the wi, say wk, is a rational linear

combination of the w1, . . . , wk−1, whose height is bounded by some

function depending on F (M) and k. In such a case, wk becomes re-

dundant, and we may delete it (reducing the rank k by one), but note

that in order for the remaining w1, . . . , wk−1 to generate v1, . . . , vn we

need to raise the height upper bound for the rationals involved from

M to some quantity M ′ depending on M,F (M), k. We then replace

M by M ′ and continue the process. We repeat this procedure; it can
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only run for at most n steps and so terminates with w1, . . . , wm and

M obeying all of the desired properties. (Note that the bound on M

is quite poor, being essentially an n-fold iteration of F ! Thus, for in-

stance, if F is exponential, then the bound on M is tower-exponential

in nature.) �

Remark 4.11.3. A variant of this type of approximate basis lemma

was used in [TaVu2007].

Looking at the statements and proofs of these two theorems it

is clear that the two results are in some sense the “same” result, ex-

cept that the latter has been made sufficiently quantitative that it

is meaningful in such finitary settings as Z/pZ. In this note I will

show how this equivalence can be made formal using the language of

non-standard analysis (see Section 1.9 of Structure and Randomness).

This is not a particularly deep (or new) observation, but it is perhaps

the simplest example I know of that illustrates how nonstandard anal-

ysis can be used to transfer a quantifier-heavy finitary statement, such

as Theorem 4.11.2, into a quantifier-light infinitary statement, such as

Theorem 4.11.1, thus lessening the need to perform “epsilon manage-

ment” duties, such as keeping track of unspecified growth functions

such as F . This type of transference is discussed at length in Section

1.3 of Structure and Randomness.

In this particular case, the amount of effort needed to set up

the nonstandard machinery in order to reduce Theorem 4.11.2 from

Theorem 4.11.1 is too great for this transference to be particularly

worthwhile, especially given that Theorem 4.11.2 has such a short

proof. However, when performing a particularly intricate argument

in additive combinatorics, in which one is performing a number of

“rank reduction arguments”, “energy increment arguments”, “regu-

larity lemmas”, “structure theorems”, and so forth, the purely finitary

approach can become bogged down with all the epsilon management

one needs to do to organise all the parameters that are flying around.

The nonstandard approach can efficiently hide a large number of these

parameters from view, and it can then become worthwhile to invest in

the nonstandard framework in order to clean up the rest of a lengthy

argument. Furthermore, an advantage of moving up to the infinitary
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setting is that one can then deploy all the firepower of an existing well-

developed infinitary theory of mathematics (in this particular case,

this would be the theory of linear algebra) out of the box, whereas

in the finitary setting one would have to painstakingly finitise each

aspect of such a theory that one wished to use (imagine for instance

trying to finitise the rank-nullity theorem for rationals of bounded

height).

The nonstandard approach is very closely related to use of com-

pactness arguments, or of the technique of taking ultralimits and

ultraproducts; indeed we will use an ultrafilter in order to create the

nonstandard model in the first place.

I will also discuss a two variants of both Theorem 4.11.1 and

Theorem 4.11.2 which have actually shown up in my research. The

first is that of the regularity lemma for polynomials over finite fields,

which came up when studying the equidistribution of such polynomi-

als in [GrTa2007]. The second comes up when is dealing not with a

single finite collection v1, . . . , vn of vectors, but rather with a family

(vh,1, . . . , vh,n)h∈H of such vectors, where H ranges over a large set;

this gives rise to what we call the sunflower lemma, and came up in

[GrTaZi2009].

This post is mostly concerned with nonstandard translations of

the “rank reduction argument”. Nonstandard translations of the “en-

ergy increment argument” and “density increment argument” were

briefly discussed in Section 4.10.

4.11.1. Equivalence of Theorems 4.11.1 and 4.11.2. Both The-

orem 4.11.1 and Theorem 4.11.2 are easy enough to prove. But we

will now spend a certain amount of effort in showing that one can

deduce each theorem from the other without actually going through

the proof of either. This may not seem particularly worthwhile (or

to be serious overkill) in the case of these two particular theorems,

but the method of deduction is extremely general, and can be used to

relate much more deep and difficult infinitary and finitary theorems

to each other without a significant increase in effort3.

3This is closely related to various correspondence principles between combina-
torics and parts of infinitary mathematics, such as ergodic theory; see also Section 1.3
of Structure and Randomness for a closely related equivalence.
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Let’s first show why the finitary theorem, Theorem 4.11.2, im-

plies Theorem 4.11.1. We argue by contradiction. If Theorem 4.11.1

failed, then we could find a vector space V over the rationals, and a

finite collection v1, . . . , vn of vectors, for which no finite subcollection

w1, . . . , wk of the v1, . . . , vn obeyed both the generation property and

the linear independence property. In other words, whenever a subcol-

lection w1, . . . , wk happened to generate v1, . . . , vn by rationals, then

it must necessarily contain a linear dependence.

We use this to create a function F : N→ N as follows. Given any

natural number M , consider all the finite subcollections w1, . . . , wk of

v1, . . . , vn which can generate the v1, . . . , vn using rationals of height

at most M . By the above hypothesis, all such subcollections contain

a linear dependence involving rationals of some finite height. There

may be many such dependences; we pick one arbitrarily. We then

choose F (M) to be any natural number larger than the heights of

all the rationals involved in all the linear dependencies thus chosen.

(Here we implicitly use the fact that there are only finitely many

subcollections of the v1, . . . , vn to search through.)

Having chosen this function F , we then apply Theorem 4.11.2 to

the vectors v1, . . . , vn and this choice of function F , to obtain a sub-

collection w1, . . . , wk which generate the v1, . . . , vn using rationals of

height at most M , and have no linear dependence involving rationals

of height at most F (M). But this contradicts the construction of F ,

and gives the claim.

Remark 4.11.4. Note how important it is here that the growth func-

tion F in Theorem 4.11.2 is not specified in advance, but is instead

a parameter that can be set to be as “large” as needed. Indeed, for

Theorem 4.11.2 for any fixed F (e.g. exponential, tower-exponential,

Ackermann, etc.) gives a statement which is strictly “weaker” than

Theorem 4.11.1 in a sense that I will not try to make precise here; it

is only the union of all these statements for all conceivable F that

gives the full strength of Theorem 4.11.1. A similar phenomenon

occurs with the finite convergence principle (Section 1.3 of Struc-

ture and Randomness). It is this “second order” nature of infinitary

statements (they quantify not just over numerical parameters such

as N or ε, but also over functional parameters such as F ) that make
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such statements appear deeper than finitary ones, but the distinc-

tion largely disappears if one is willing to perform such second-order

quantifications.

Now we turn to the more interesting deduction, which is to ob-

tain Theorem 4.11.2 from Theorem 4.11.1. Again, one argues by

contradiction. Suppose that Theorem 4.11.2 failed. Carefully negat-

ing all the quantifiers (and using the axiom of choice), we conclude

that there exists a function F : N → N and a natural number n

with the following property: given any natural number K, there

exists an abelian group VK which is divisible up to height K, and

elements v1,K , . . . , vn,K in VK such that there is no subcollection

w1,K , . . . , wk,K of the v1,K , . . . , vn,K , together with an integer M ≤
K, such that w1,K , . . . , wk,K generate v1,K , . . . , vn,K using rationals

of height at most M , and such that the w1,K , . . . , wk,K have no linear

dependence using rationals of height at most F (M).

We now perform an ultralimit as K →∞. We will not pause here

to recall the machinery of ultrafilters, ultralimits, and ultraproducts,

but refer the reader instead to Section 1.5 of Structure and Random-

ness for discussion.

We pick a non-principal ultrafilter p of the natural numbers.

Starting with the “standard” abelian groups VK , we then form their

ultraproduct V =
∏
K VK/p, defined as the space of sequences v =

(vK)K∈N with vK ∈ VK for each K, modulo equivalence by p; thus

two sequences v = (vK)K∈N and v′ = (v′K)K∈N are considered equal

if vK = v′K for a p-large set of K (i.e. for a set of K that lies in p).

Now that non-standard objects are in play, we will need to take

some care to distinguish between standard objects (e.g. standard

natural numbers) and their nonstandard counterparts.

Since each of the VK are an abelian group, V is also an abelian

group (an easy special case of the transfer principle). Since each VK is

divisible up to height K, V is divisible up to all (standard) heights; in

other words, V is actually a vector space over the (standard) rational

numbers Q. The point is that while none of the VK are, strictly

speaking, vector spaces over Q, they increasingly behave as if they
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were such spaces, and in the limit one recovers genuine vector space

structure.

For each 1 ≤ i ≤ n, one can take an ultralimit of the elements

vi,K ∈ VK to generate an element vi := (vi,K)K∈N of the ultraproduct

V . So now we have n vectors v1, . . . , vn of a vector space V over Q

- precisely the setting of Theorem 4.11.1! So we apply that theorem

and obtain a subcollection w1, . . . , wk ∈ V of the v1, . . . , vn, such

that each vi can be generated from the w1, . . . , wk using (standard)

rationals, and such that the w1, . . . , wk are linearly independent over

the (standard) rationals.

Since all (standard) rationals have a finite height, one can find a

(standard) natural number M such that each of the vi can be gener-

ated from the w1, . . . , wk using (standard) rationals of height at most

M . Undoing the ultralimit, we conclude that for a p-large set of K’s,

all of the vi,K can be generated from the w1,K , . . . , wk,K using ra-

tionals of height at most M . But by hypothesis, this implies for all

sufficiently large K in this p-large set, the w1,K , . . . , wk,K contain a

non-trivial rational dependence of height at most F (M), thus

a1,K

q1,K
w1,K + . . .+

ak,K
qk,K

wk,K = 0

for some integers ai,K , qi,K of magnitude at most F (M), with the

ak,K not all zero.

By the pigeonhole principle (and the finiteness of F (M)), each of

the ai,K , qi,K is constant in K on a p-large set of K. So if we take an

ultralimit again to go back to the nonstandard world, the quantities

ai := (ai,K)K∈N, qi := (qi,K)K∈N are standard integers (rather than

merely nonstandard integers). Thus we have

a1

q1
w1 + . . .+

ak
qk
wk = 0

with the ai not all zero, i.e. we have a linear dependence amongst the

w1, . . . , wk. But this contradicts Theorem 4.11.1.

4.11.2. Polynomials over finite fields. Let F a fixed finite field

(e.g. the field F2 of two elements), and consider a high-dimensional

finite vector space V over F. A polynomial P : Fn → F of degree ≤ d
can then be defined as a combination of monomials each of degree at
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most d, or alternatively as a function whose d+1th derivative vanishes;

see Section 1.12 of Poincaré’s Legacies, Vol. I for some discussion of

this equivalence.

We define the rank rank≤d−1(P ) of a degree ≤ d polynomial P to

be the least number k of degree ≤ d−1 polynomials Q1, . . . , Qk, such

that P is completely determined byQ1, . . . , Qk, i.e. P = f(Q1, . . . , Qk)

for some function f : Fk → F. In the case when P has degree ≤ 2,

this concept is very close to the familiar rank of a quadratic form or

matrix.

A generalisation of the notion of linear independence is that of lin-

ear independence modulo low rank. Let us call a collection P1, . . . , Pn
of degree ≤ d polynomials M -linearly independent if every non-trivial

linear combination a1P1 + . . .+anPn with a1, . . . , an ∈ F not all zero,

has rank at least M :

rank≤d−1(a1P1 + . . .+ anPn) ≤M.

There is then the following analogue of Theorem 4.11.2:

Theorem 4.11.5 (Polynomial regularity lemma at one degree, fini-

tary version). Let n, d ≥ 1 be integers, let F be a finite field and let

F : N → N be a function. Let V be a vector space over F, and let

P1, . . . , Pn : V → F be polynomials of degree ≤ d. Then there exists

a collection Q1, . . . , Qk : V → F of polynomials of degree ≤ d, with

1 ≤ k ≤ n, as well an integer M ≥ 1, such that

• (Complexity bound) M ≤ C(F, n, d,F) for some C(F, n, d,F)

depending only on F, n, d,F.

• (Q generates P ) Every Pj can be expressed as a F-linear

combination of the Q1, . . . , Qk, plus an error E which has

rank rank≤d−1(E) at most M .

• (P independent) There is no non-trivial linear relation a1Q1+

. . .+ akQk = E among the w1, . . . , wm in which E has rank

rank≤d−1(E) at most F (M).

In fact, one can take Q1, . . . , Qk to be a subset of the P1, . . . , Pn.

This theorem can be proven in much the same way as Theorem

4.11.2, and the reader is invited to do so as an exercise. The constant
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C(F, n, d,F) can in fact be taken to be independent of d and F, but

this is not important to us here.

Roughly speaking, Theorem 4.11.5 asserts that a finite family of

degree ≤ d polynomials can be expressed as a linear combination of

degree ≤ d polynomials which are “linearly independent modulo low

rank errors”, plus some lower rank objects. One can think of this

as regularising the degree ≤ d polynomials, modulo combinations of

lower degree polynomials. For applications (and in particular, for

understanding the equidistribution) one also needs to regularise the

degree ≤ d − 1 polynomials that arise this way, and so forth for

increasingly lower degrees until all polynomials are regularised. (A

similar phenomenon occurs for the hypergraph regularity lemma.)

When working with theorems like this, it is helpful to think con-

ceptually of “quotienting out” by all polynomials of low rank. Unfor-

tunately, in the finitary setting, the polynomials of low rank do not

form a group, and so the quotient is ill-defined. However, this can be

rectified by passing to the infinitary setting. Indeed, once one does so,

one can quotient out the low rank polynomials, and Theorem 4.11.5

follows directly from Theorem 4.11.1 (or more precisely, the analogue

of that theorem in which the field of rationals Q is replaced by the

finite field F).

Let’s see how this works. To prove Theorem 4.11.5, suppose for

contradiction that the theorem failed. Then one can find F, n, d,F,

such that for every natural K, one can find a vector space VK and

polynomials P1,K , . . . , Pn,K : VK → F of degree ≤ d, for which there

do not exist polynomials Q1,K , . . . , Qk,K with k ≤ n and an integer

M ≤ K such that each Pj,K can be expressed as a linear combination

of the Qi,K modulo an error of rank at most M , and such that there

are no nontrivial linear relations amongst the Qi,K modulo errors of

rank at most F (M).

Taking an ultralimit as before, we end up with a (nonstandard)

vector space V over F (which is likely to be infinite), and (nonstan-

dard) polynomials P1, . . . , Pn : V → F of degree ≤ d (here it is best

to use the “local” definition of a polynomial of degree ≤ d, as a (non-

standard) function whose d + 1th derivative, but one can also view

this as a (nonstandard) sum of monomials if one is careful).
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The space Poly≤d(V ) of (nonstandard) degree ≤ d polynomials

on V is a (nonstandard) vector space over F. Inside this vector space,

one has the subspace Lowrank≤d(V ) consisting of all polynomials P ∈
Poly≤d(V ) whose rank rank≤d−1(V ) is a standard integer (as opposed

to a nonstandard integer); call these the bounded rank polynomials.

This is easily seen to be a subspace of Poly≤d(V ) (although it is not

a nonstandard or internal subspace, i.e. the ultralimit of subspaces

of the Poly≤d(VK)). As such, one can rigorously form the quotient

space Poly≤d(V )/Lowrank≤d(V ) of degree ≤ d polynomials, modulo

bounded rank ≤ d polynomials.

The polynomials P1, . . . , Pn then have representatives P1, . . . , Pn mod Lowrank≤d(V )

in this quotient space. Applying Theorem 4.11.1 (for the field F), one

can then find a subcollection Q1, . . . , Qk mod Lowrank≤d(V ) which

are linearly independent in this space, which generate P1, . . . , Pn. Un-

doing the quotient, we see that the P1, . . . , Pn are linear combinations

of the Q1, . . . , Qk plus a bounded rank error, while no nontrivial linear

combination of Q1, . . . , Qk has bounded rank. Undoing the ultralimit

as in the previous section, we obtain the desired contradiction.

We thus see that in the nonstandard world, the somewhat non-

rigorous concepts of “low rank” and “high rank” can be formalised

as that of “bounded rank” and “unbounded rank”. Furthermore, the

former space forms a subspace, so in the nonstandard world one can

rigorously talk about “quotienting out by bounded rank errors”. Thus

we see that the algebraic machinery of quotient spaces can be applied

in the nonstandard world directly, whereas in the finitary world it

can only be applied heuristically. In principle, one could also start

deploying more advanced tools of abstract algebra (e.g. exact se-

quences, cohomology, etc.) in the nonstandard setting, although this

has not yet seriously begun to happen in additive combinatorics (al-

though there are strong hints of some sort of “additive cohomology”

emerging in the body of work surrounding the inverse conjecture for

the Gowers norm, especially on the ergodic theory side of things).

4.11.3. Sunflowers. Now we return to vector spaces (or approx-

imate vector spaces) V over the rationals, such as V = Z/pZ for a

large prime p. Instead of working with a single (small) tuple v1, . . . , vn
of vectors in V , we now consider a family (v1,h, . . . , vn,h)h∈H of such
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vectors in V , where H ranges over a large set, for instance a dense

subset of the interval X := [−N,N ] = {−N, . . . , N} for some large

N . This situation happens to show up in our recent work on the

inverse conjecture for the Gowers norm, where the v1,h, . . . , vn,h rep-

resent the various “frequencies” that arise in a derivative ∆hf of a

function f with respect to the shift h. (This need to consider families

is an issue that also comes up in the finite field ergodic theory ana-

logue [BeTaZi2009] of the inverse conjectures, due to the unbounded

number of generators in that case, but interestingly can be avoided

in the ergodic theory over Z.)

In Theorem 4.11.2, the main distinction was between linear de-

pendence and linear independence of the tuple v1, . . . , vn (or some

reduction of this tuple, such as w1, . . . , wk). We will continue to

be interested in the linear dependence or independence of the tuples

v1,h, . . . , vn,h for various h. But we also wish to understand how the

vi,h vary with h as well. At one extreme (the “structured” case), there

is no dependence on h: vi,h = vi for all i and all h. At the other ex-

treme (the “pseudorandom” case), the vi,h are basically independent

as h varies; in particular, for (almost) all of the pairs h, h′ ∈ H, the tu-

ples v1,h, . . . , vn,h and v1,h′ , . . . , vn,h′ are not just separately indepen-

dent, but are jointly independent. One can think of v1,h, . . . , vn,h and

v1,h′ , . . . , vn,h′ as being in “general position” relative to each other.

The sunflower lemma asserts that any family (v1,h, . . . , vn,h)h∈H
is basically a combination of the above scenarios, thus one can di-

vide the family into a linearly independent core collection of vec-

tors (w1, . . . , wm) that do not depend on h, together with petals

(v′1,h, . . . , v
′
k,h)h∈H′ , which are in “general position” in the above

sense, relative to the core. However, as a price one pays for this,

one has to refine H to a dense subset H ′ of H. This lemma, which

significantly generalises Theorem 4.11.2, is formalised as follows:

Theorem 4.11.6 (Sunflower lemma, finitary version). Let n ≥ 1 be

an integer, and let F : N → N be a function. Let V be an abelian

group which admits a well-defined division operation by any natural

number of size at most C(F, n) for some constant C(F, n) depending

only on F, n. Let H be a finite set, and let (v1,h, . . . , vn,h)h∈H be a

collection of n-tuples of vectors in V indexed by H. Then there exists
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a subset H ′ of H, integers k,m ≥ 0 with m + k ≤ n, a collection

w1, . . . , wm of “core” vectors in V for some m, a collection of “petal”

vectors (v′1,h, . . . , v
′
k,h)h∈H′ for each h ∈ H ′, as well an integer M ≥ 1,

such that

• (Complexity bound) M ≤ C(F, n) for some C(F, n) depend-

ing only on F, n.

• (H ′ dense) one has |H ′| ≥ c(F, n)|H| for some c(F, n) > 0

depending only on F, n.

• (w, v′ generates v) Every vj,h with 1 ≤ j ≤ n and h ∈
H ′ can be expressed as a rational linear combination of the

w1, . . . , wm and v′1,h, . . . , v
′
k,h of height at most M .

• (w independent) There is no non-trivial rational linear re-

lation among the w1, . . . , wm of height at most F (M).

• (v′ in general position relative to w) More generally, for

1− 1
F (M) of the pairs (h, h′) ∈ H ′×H ′, there is no non-trivial

linear relation among w1, . . . , wm, v
′
1,h, . . . , v

′
k,h, v

′
1,h′ , . . . , v

′
k,h′

of height at most F (M).

One can take the v′1,h, . . . , v
′
k,h to be a subcollection of the v1,h, . . . , vn,h,

though this is not particularly useful in applications.

Proof. We perform a two-parameter “rank reduction argument”,

where the rank is indexed by the pair (k,m) (ordered lexicographi-

cally). We initially set m = 0, k = n, H ′ = H, M = 1, and v′i,h = vi,h
for h ∈ H.

At each stage of the iteration, w, v′ will generate v (at height M),

and we will have some complexity bound on M,m and some density

bound on H ′. So one needs to check the independence of w and the

general position of v′ relative to w.

If there is a linear relation of w at height F (M), then one can

use this to reduce the size m of the core by one, leaving the petal size

k unchanged, just as in the proof of Theorem 4.11.2. So let us move

on, and suppose that there is no linear relation of w at height F (M),

but instead there is a failure of the general position hypothesis. In

other words, for at least |H ′|2/F (M) pairs (h, h′) ∈ H ′×H ′, one can
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find a relation of the form

a1,h,h′w1+. . .+am,h,h′wm+b1,h,h′v
′
1,h+. . .+bk,h,h′v

′
k,h+c1,h,h′v

′
1,h′+. . .+ck,h,h′v

′
k,h′ = 0

where the ai,h,h′ , bi,h,h′ , ci,h,h′ are rationals of height at most F (M),

not all zero. The number of possible values for such rationals is

bounded by some quantity depending on m, k, F (M). Thus, by the

pigeonhole principle, we can find �F (M),m,k |H ′|2 pairs (i.e. at least

c(F (M),m, k)|H ′|2 pairs for some c(F (M),m, k) > 0 depending only

on F (M),m, k) such that

a1w1 + . . .+ amwm + b1v
′
1,h + . . .+ bkv

′
k,h + c1v

′
1,h′ + . . .+ ckv

′
k,h′ = 0

for some fixed rationals ai, bi, ci of height at most F (M). By the

pigeonhole principle again, we can then find a fixed h0 ∈ H ′ such

that

a1w1 + . . .+ amwm + b1v
′
1,h + . . .+ bkv

′
k,h = uh0

for all h in some subset H ′′ of H ′ with |H ′′| �F (M),m,k |H ′|, where

uh0
:= −c1v′1,h0

− . . .− ckv′k,h0
.

If the bi and ci all vanished then we would have a linear depen-

dence amongst the core vectors, which we already know how to deal

with. So suppose that we have at least one active petal coefficient,

say bk. Then upon rearranging, we can express v′k,h as some ratio-

nal linear combination of the original core vectors w1, . . . , wm, a new

core vector uh0 , and the other petals v′1,h, . . . , v
′
k−1,h, with heights

bounded by �F (M),k,m 1. We may thus refine H ′ to H ′′, delete the

petal vector v′k,h, and add the vector u to the core, thus decreas-

ing k by one and increasing m by one. One still has the generation

property so long as one replaces M with a larger M ′ depending on

M,F (M), k,m.

Since each iteration of this process either reduces m by one keep-

ing k fixed, or reduces k by one increasing m, we see that after at

most 2n steps, the process must terminate, when we have both the

linear independence of the w property and the general position of

the v′ property. (Note here that we are basically performing a proof

by infinite descent.) At that stage, one easily verifies that we have

obtained all the required conclusions of the theorem. �
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As one can see, this result is a little bit trickier to prove than The-

orem 4.11.2. Let us now see how it will translate to the nonstandard

setting, and see what the nonstandard analogue of Theorem 4.11.6 is.

We will skip some details, and get to the point where we can motivate

and prove this nonstandard analogue; this analogue does in fact imply

Theorem 4.11.6 by repeating the arguments from previous sections,

but we will leave this as an exercise for the interested reader.

As before, the starting point is to introduce a parameter K, so

that the approximate vector space VK now depends on K (and be-

comes an actual vector space in the ultralimit V ), and the parameter

set HK now also depends on K. We will think of |HK | as going to

infinity as K →∞, as this is the most interesting case (for bounded

HK , the result basically collapses back to Theorem 4.11.2). In that

case, the ultralimit H of the HK is a nonstandard finite set (i.e. an

ultralimit of finite sets) whose (nonstandard) cardinality |H| is an

unbounded nonstandard integer: it is a nonstandard integer (indeed,

it is the ultralimit of the |HK |) which is larger than any standard

integer. On the other hand, n and F remain standard (i.e. they do

not involve K).

For each K, one starts with a family (v1,h,K , . . . , vn,h,K)h∈HK of

n-tuples of vectors in VK . Taking ultralimits, one ends up with a

family (v1,h, . . . , vn,h)h∈H of n-tuples of vectors in V . Furthermore,

for each 1 ≤ i ≤ n, the maps h 7→ vi,h are nonstandard (or internal)

functions from H to V , i.e. they are ultralimits of maps from HK

to VK . The internal nature of these maps (which is a kind of “mea-

surability” condition on these functions) will be important later. Of

course, H and V are also internal (being ultralimits of HK and VK
respectively).

We say that a subset H ′ of H is dense if it is an internal subset

(i.e. it is the ultralimit of some subsets H ′K of HK), and if |H ′| ≥ ε|H|
for some standard ε > 0 (recall that |H ′|, |H| are nonstandard inte-

gers). If an internal subset is not dense, we say that it is sparse, which

in nonstandard asymptotic notation (see Section 1.3 of Structure and

Randomness) is equivalent to |H ′| = o(|H|). If a statement P (h)

holds on all h in dense set of H, we say that it holds for many h; if

it holds for all h outside of a sparse set, we say it holds for almost
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all h. These are analogous to the more familiar concepts of “holding

with positive probability” and “holding almost surely” in probability

theory. For instance, if P (h) holds for many h in H, and Q(h) holds

for almost all h in H, then P (h) and Q(h) jointly hold for many h in

H. Note how all the epsilons have been neatly hidden away in this

nonstandard framework.

Now we state the nonstandard analogue of Theorem 4.11.6.

Theorem 4.11.7 (Sunflower lemma, nonstandard version). Let n ≥
1 be a (standard) integer, let V be a (nonstandard) vector space over

the standard rationals Q, and let H be a (nonstandard) set. Let

(v1,h, . . . , vn,h)h∈H be a collection of n-tuples of vectors in V indexed

by H, such that all the maps h 7→ vi,h for 1 ≤ i ≤ n are internal. Then

there exists a dense subset H ′ of H, a bounded-dimensional subspace

W of V , a (standard) integer k ≥ 0 with dim(W ) + k ≤ n, and a

collection of “petal” vectors (v′1,h, . . . , v
′
k,h)h∈H′ for each h ∈ H ′, with

the maps h 7→ v′i,h being internal for all 1 ≤ i ≤ k, such that

• (W, v′ generates v) Every vj,h with 1 ≤ j ≤ n and h ∈ H ′
lies in the span of W and the v′1,h, . . . , v

′
k,h.

• (v′ in general position relative to W ) For almost all of the

pairs (h, h′) ∈ H ′×H ′, the vectors v′1,h, . . . , v
′
k,h, v

′
1,h′ , . . . , v

′
k,h′

are linearly independent modulo W over Q.

Of course, using Theorem 4.11.1 one could obtain a basis w1, . . . , wm
for W with m = dim(W ), at which point the theorem more closely

resembles Theorem 4.11.6.

Proof. Define a partial representation of the family (v1,h, . . . , vn,h)

to be a dense subset H ′ of H, a bounded dimensional space W ,

a standard integer k with dim(W ) + k ≤ n, and a collection of

(v′1,h, . . . , v
′
k,h)h∈H′ depending internally on h that obeys the gen-

eration property (but not necessarily the general position property).

Clearly we have at least one partial representation, namely the trivial

one where W is empty, k = n, H ′ := H, and v′i,h := vi,h. Now, among

all such partial representations, let us take a representation with the

minimal value of k. (Here we are of course using the well-ordering
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property of the standard natural numbers.) We claim that this rep-

resentation enjoys the general position property, which will give the

claim.

Indeed, suppose this was not the case. Then, for many pairs

(h, h′) ∈ H ′×H ′, the vectors v′1,h, . . . , v
′
k,h, v

′
1,h′ , . . . , v

′
k,h′ have a lin-

ear dependence modulo W over Q. (Actually, there is a technical

“measurability” issue to address here, which I will return to later.)

By symmetry and pigeonholing, we may assume that the v′k,h coef-

ficient of (say) of this dependence is non-zero. (Again, there is a

measurability issue here.) Applying the pigeonhole principle, one can

find h0 ∈ H ′ such that

v′1,h, . . . , v
′
k,h, v

′
1,h0

, . . . , v′k,h0

have a linear dependence over Q modulo W for many h. (Again,

there is a measurability issue here.)

Fix h0. The number of possible linear combinations of v′1,h0
, . . . , v′k,h0

is countable. Because of this (and using a “countable pigeonhole prin-

ciple”) that I will address below, we can find a fixed rational linear

combination uh0 of the v′1,h0
, . . . , v′k,h0

such that

v′1,h, . . . , v
′
k,h, uh0

have a linear dependence over Q modulo W for all h in some dense

subset H ′′ of H ′. But now one can pass from H ′ to the dense subset

H ′′, delete the petal v′k,h, and add the vector uh0
to the core space

W , thus creating a partial representation with a smaller value of k,

contradicting minimality, and we are done. �

We remark here that whereas the finitary analogue of this result

was proven using the method of infinite descent, the nonstandard

version could instead be proven using the (equivalent) well-ordering

principle. One could easily recast the nonstandard version in descent

form also, but it is somewhat more difficult to cast the finitary argu-

ment using well-ordering due to the extra parameters and quantifiers

in play.

Let us now address the measurability issues. The main prob-

lem here is that the property of having a linear dependence over the

standard rationals Q is not an internal property, because it requires
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knowledge of what the standard rationals are, which is not an in-

ternal concept in the language of vector spaces. However, for each

fixed choice of rational coefficients, the property of having a specific

linear dependence with those selected coefficients is an internal con-

cept (here we crucially rely on the hypothesis that the maps h 7→ vi,h
were internal), so really what we have here is a sort of “σ-internal”

property (a countable union of internal properties). But this is good

enough for many purposes. In particular, we have

Lemma 4.11.8 (Countable pigeonhole principle). Let H be a non-

standardly finite set (i.e. the ultralimit of finite sets HK), and for

each standard natural number n, let En be an internal subset of H.

Then one of the following holds:

• (Positive density) There exists a natural number n such that

h ∈ En for many h ∈ H (i.e. En is a dense subset of H).

• (Zero density) For almost all h ∈ H, one has h 6∈ En for

all n. (In other words, the (external) set
⋃
n∈NEn in is

contained in a sparse subset of H.)

This lemma is sufficient to resolve all the measurability issues

raised in the previous proof. It is analogous to the trivial statement

in measure theory that given a countable collection of measurable

subsets of a space of positive measure, either one of the measurable

sets has positive measure, or else their union has measure zero (i.e.

the sets fail to cover almost all of the space).

Proof. If any of the En are dense, we are done. So suppose this is

not the case. Since En is a definable subset of H which is not dense,

it is sparse, thus |En| = o(|H|). Now it is convenient to undo the

ultralimit and work in the finite sets HK that H is the ultralimit of.

Note that each En, being internal, is also an ultralimit of some finite

subsets En,K of HK .

For each standard integer M > 0, the set E1 ∪ . . .∪EM is sparse

in H, and in particular has density less than 1/M . Thus, one can

find a p-large set SM ⊂ N such that

|E1,K ∪ . . . ∪ EM,K | ≤ |HK |/M
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for all K ∈ SM . One can arrange matters so that the SM are decreas-

ing in M . One then sets the set EK to equal E1,K∪ . . .∪EM,K , where

M is the smallest integer for which K ∈ SM (or EK is empty if K

lies in all the SM , or in none), and let E be the ultralimit of the EK .

Then we see that |E| ≤ |H|/M for every standard M , and so E is a

sparse subset of H. Furthermore, E contains EM for every standard

M , and so we are in the zero density conclusion of the argument. �

Remark 4.11.9. Curiously, I don’t see how to prove this lemma

without unpacking the limit; it doesn’t seem to follow just from, say,

the overspill principle. Instead, it seems to be exploiting the weak

countable saturation property I mentioned in Section 4.10. But per-

haps I missed a simple argument.

4.11.4. Summary. Let me summarise with a brief list of pros and

cons of switching to a nonstandard framework. First, the pros:

• Many “first-order” parameters such as ε or N disappear

from view, as do various “negligible” errors. More impor-

tantly, “second-order” parameters, such as the function F

appearing in Theorem 4.11.2, also disappear from view. (In

principle, third-order and higher parameters would also dis-

appear, though I do not yet know of an actual finitary ar-

gument in my fields of study which would have used such

parameters (with the exception of Ramsey theory, where

such parameters must come into play in order to generate

such enormous quantities as Graham’s number).) As such,

a lot of tedious “epsilon management” disappears.

• Iterative (and often parameter-heavy) arguments can often

be replaced by minimisation (or more generally, extremi-

sation) arguments, taking advantage of such properties as

the well-ordering principle, the least upper bound axiom, or

compactness.

• The transfer principle lets one use “for free” any (first-order)

statement about standard mathematics in the non-standard

setting (provided that all objects involved are internal ; see

below).
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• Mature and powerful theories from infinitary mathematics

(e.g. linear algebra, real analysis, representation theory,

topology, functional analysis, measure theory, Lie theory,

ergodic theory, model theory, etc.) can be used rigorously

in a nonstandard setting (as long as one is aware of the usual

infinitary pitfalls, of course; see below).

• One can formally define terms that correspond to what would

otherwise only be heuristic (or heavily parameterised and

quantified) concepts such as “small”, “large”, “low rank”,

“independent”, “uniformly distributed”, etc.

• The conversion from a standard result to its nonstandard

counterpart, or vice versa, is fairly quick (but see below),

and generally only needs to be done only once or twice per

paper.

Next, the cons:

• Often requires the axiom of choice, as well as a certain

amount of set theory. (There are however weakened ver-

sions of nonstandard analysis that can avoid choice that are

still suitable for many applications.)

• One needs the machinery of ultralimits and ultraproducts to

set up the conversion from standard to nonstandard struc-

tures.

• The conversion usually proceeds by a proof by contradiction,

which (in conjunction with the use of ultralimits) may not

be particularly intuitive.

• One cannot efficiently discern what quantitative bounds emerge

from a nonstandard argument (other than by painstakingly

converting it back to a standard one, or by applying the

tools of proof mining). (On the other hand, in particularly

convoluted standard arguments, the quantitative bounds are

already so poor - e.g. of iterated tower-exponential type -

that letting go of these bounds is no great loss.)

• One has to take some care to distinguish between standard

and nonstandard objects (and also between internal and

external sets and functions, which are concepts somewhat
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analogous to measurable and non-measurable sets and func-

tions in measurable theory). More generally, all the usual

pitfalls of infinitary analysis (e.g. interchanging limits, or

the need to ensure measurability or continuity) emerge in

this setting, in contrast to the finitary setting where they

are usually completely trivial.

• It can be difficult at first to conceptually visualise what

nonstandard objects look like (although this becomes easier

once one maps nonstandard analysis concepts to heuristic

concepts such as “small” and “large” as mentioned earlier,

thus for instance one can think of an unbounded nonstan-

dard natural number as being like an incredibly large stan-

dard natural number).

• It is inefficient for both nonstandard and standard argu-

ments to coexist within a paper; this makes things a little

awkward if one for instance has to cite a result from a stan-

dard mathematics paper in a nonstandard mathematics one.

• There are philosophical objections to using mathematical

structures that only exist abstractly, rather than correspond-

ing to the “real world”. (Note though that similar objections

were also raised in the past with regard to the use of, say,

complex numbers, non-Euclidean geometries, or even nega-

tive numbers.)

• Formally, there is no increase in logical power gained by

using nonstandard analysis (at least if one accepts the axiom

of choice); anything which can be proven by nonstandard

methods can also be proven by standard ones. In practice,

though, the length and clarity of the nonstandard proof may

be substantially better than the standard one.

In view of the pros and cons, I would not say that nonstandard

analysis is suitable in all situations, nor is it unsuitable in all situ-

ations, but one needs to carefully evaluate the costs and benefits in

a given setting; also, in some cases having both a finitary and in-

finitary proof side by side for the same result may be more valuable

than just having one of the two proofs. My rule of thumb is that if

a finitary argument is already spitting out iterated tower-exponential
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type bounds or worse in an argument, this is a sign that the argument

“wants” to be infinitary, and it may be simpler to move over to an

infinitary setting (such as the nonstandard setting).

Notes. This article first appeared at terrytao.wordpress.com/2009/12/13.

4.12. The double Duhamel trick and the in/out
decomposition

This is a technical post inspired by separate conversations with Jim

Colliander and with Soonsik Kwon on the relationship between two

techniques used to control non-radiating solutions to dispersive non-

linear equations, namely the “double Duhamel trick” and the “in/out

decomposition”. See for instance [KiVi2009] for a survey of these

two techniques and other related methods in the subject. (I should

caution that this article is likely to be unintelligible to anyone not

already working in this area.)

For sake of discussion we shall focus on solutions to a nonlinear

Schrödinger equation

iut + ∆u = F (u)

and we will not concern ourselves with the specific regularity of the so-

lution u, or the specific properties of the nonlinearity F here. We will

also not address the issue of how to justify the formal computations

being performed here.

Solutions to this equation enjoy the forward Duhamel formula

u(t) = ei(t−t0)∆u(t0)− i
∫ t

t0

ei(t−t
′)∆F (u(t′)) dt′

for times t to the future of t0 in the lifespan of the solution, as well

as the backward Duhamel formula

u(t) = ei(t−t1)∆u(t1) + i

∫ t1

t

ei(t−t
′)∆F (u(t′)) dt′

for all times t to the past of t1 in the lifespan of the solution. The first

formula asserts that the solution at a given time is determined by the

initial state and by the immediate past, while the second formula is

the time reversal of the first, asserting that the solution at a given

time is determined by the final state and the immediate future. These
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basic causal formulae are the foundation of the local theory of these

equations, and in particular play an instrumental role in establishing

local well-posedness for these equations. In this local theory, the main

philosophy is to treat the homogeneous (or linear) term ei(t−t0)∆u(t0)

or ei(t−t1)∆u(t1) as the main term, and the inhomogeneous (or non-

linear, or forcing) integral term as an error term.

The situation is reversed when one turns to the global theory, and

looks at the asymptotic behaviour of a solution as one approaches a

limiting time T (which can be infinite if one has global existence, or

finite if one has finite time blowup). After a suitable rescaling, the

linear portion of the solution often disappears from view, leaving one

with an asymptotic blowup profile solution which is non-radiating in

the sense that the linear components of the Duhamel formulae vanish,

thus

(4.42) u(t) = −i
∫ t

t0

ei(t−t
′)∆F (u(t′)) dt′

and

(4.43) u(t) = i

∫ t1

t

ei(t−t
′)∆F (u(t′)) dt′

where t0, t1 are the endpoint times of existence. (This type of situa-

tion comes up for instance in the Kenig-Merle approach to critical reg-

ularity problems, by reducing to a minimal blowup solution which is

almost periodic modulo symmetries, and hence non-radiating.) These

types of non-radiating solutions are propelled solely by their own non-

linear self-interactions from the immediate past or immediate future;

they are generalisations of “nonlinear bound states” such as solitons.

A key task is then to somehow combine the forward represen-

tation (4.42) and the backward representation (4.43) to obtain new

information on u(t) itself, that cannot be obtained from either rep-

resentation alone; it seems that the immediate past and immediate

future can collectively exert more control on the present than they

each do separately. This type of problem can be abstracted as fol-

lows. Let ‖u(t)‖Y+
be the infimal value of ‖F+‖N over all forward
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representations of u(t) of the form

(4.44) u(t) =

∫ t

t0

ei(t−t
′)∆F+(t′) dt′

where N is some suitable spacetime norm (e.g. a Strichartz-type

norm), and similarly let ‖u(t)‖Y− be the infimal value of ‖F−‖N over

all backward representations of u(t) of the form

(4.45) u(t) =

∫ t1

t

ei(t−t
′)∆F−(t′) dt′.

Typically, one already has (or is willing to assume as a bootstrap

hypothesis) control on F (u) in the norm N , which gives control of

u(t) in the norms Y+, Y−. The task is then to use the control of

both the Y+ and Y− norm of u(t) to gain control of u(t) in a more

conventional Hilbert space norm X, which is typically a Sobolev space

such as Hs or L2.

One can use some classical functional analysis to clarify this sit-

uation. By the closed graph theorem, the above task is (morally, at

least) equivalent to establishing an a priori bound of the form

(4.46) ‖u‖X . ‖u‖Y+
+ ‖u‖Y−

for all reasonable u (e.g. test functions). The double Duhamel trick

accomplishes this by establishing the stronger estimate

(4.47) |〈u, v〉X | . ‖u‖Y+‖v‖Y−
for all reasonable u, v; note that setting u = v and applying the

arithmetic-geometric inequality then gives (4.46). The point is that

if u has a forward representation (4.44) and v has a backward rep-

resentation (4.45), then the inner product 〈u, v〉X can (formally, at

least) be expanded as a double integral∫ t

t0

∫ t1

t

〈ei(t
′′−t′)∆F+(t′), ei(t

′′−t′)∆F−(t′)〉X dt′′dt′.

The dispersive nature of the linear Schrödinger equation often causes

〈ei(t′′−t′)∆F+(t′), ei(t
′′−t′)∆F−(t′)〉X to decay, especially in high di-

mensions. In high enough dimension (typically one needs five or

higher dimensions, unless one already has some spacetime control

on the solution), the decay is stronger than 1/|t′ − t′′|2, so that the

integrand becomes absolutely integrable and one recovers (4.47).
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Unfortunately it appears that estimates of the form (4.47) fail

in low dimensions (for the type of norms N that actually show up

in applications); there is just too much interaction between past and

future to hope for any reasonable control of this inner product. But

one can try to obtain (4.46) by other means. By the Hahn-Banach

theorem (and ignoring various issues related to reflexivity), (4.46) is

equivalent to the assertion that every u ∈ X can be decomposed as

u = u+ + u−, where ‖u+‖Y ∗+ . ‖u‖X and ‖u−‖Y ∗− . ‖v‖X . Indeed

once one has such a decomposition, one obtains (4.46) by computing

the inner product of u with u = u+ + u− in X in two different ways.

One can also (morally at least) write ‖u+‖Y ∗+ as ‖ei(·−t)∆u+‖N∗([t0,t])
and similarly write ‖u−‖Y ∗− as ‖ei(·−t)∆u−‖N∗([t,t1])

So one can dualise the task of proving (4.46) as that of obtaining

a decomposition of an arbitrary initial state u into two components

u+ and u−, where the former disperses into the past and the latter

disperses into the future under the linear evolution. We do not know

how to achieve this type of task efficiently in general - and doing

so would likely lead to a significant advance in the subject (perhaps

one of the main areas in this topic where serious harmonic analysis

is likely to play a major role). But in the model case of spherically

symmetric data u, one can perform such a decomposition quite easily:

one uses microlocal projections to set u+ to be the “inward” pointing

component of u, which propagates towards the origin in the future

and away from the origin in the past, and u− to simimlarly be the

“outward” component of u. As spherical symmetry significantly di-

lutes the amplitude of the solution (and hence the strength of the

nonlinearity) away from the origin, this decomposition tends to work

quite well for applications, and is one of the main reasons (though

not the only one) why we have a global theory for low-dimensional

nonlinear Schrödinger equations in the radial case, but not in general.

The in/out decomposition is a linear one, but the Hahn-Banach

argument gives no reason why the decomposition needs to be linear.

(Note that other well-known decompositions in analysis, such as the

Fefferman-Stein decomposition of BMO, are necessarily nonlinear, a

fact which is ultimately equivalent to the non-complemented nature

of a certain subspace of a Banach space; see Section 1.7.) So one could
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imagine a sophisticated nonlinear decomposition as a general substi-

tute for the in/out decomposition. See for instance [BoBr2003] for

some of the subtleties of decomposition even in very classical func-

tion spaces such as H1/2(R). Alternatively, there may well be a third

way to obtain estimates of the form (4.46) that do not require either

decomposition or the double Duhamel trick; such a method may well

clarify the relative relationship between past, present, and future for

critical nonlinear dispersive equations, which seems to be a key aspect

of the theory that is still only partially understood. (In particular, it

seems that one needs a fairly strong decoupling of the present from

both the past and the future to get the sort of elliptic-like regularity

results that allow us to make further progress with such equations.)

Notes. This article first appeared at terrytao.wordpress.com/2009/12/17.

Thanks to Kareem Carr, hezhigang, and anonymous commenters for

corrections.

4.13. The free nilpotent group

In a multiplicative group G, the commutator of two group elements

g, h is defined as [g, h] := g−1h−1gh (other conventions are also in use,

though they are largely equivalent for the purposes of this discussion).

A group is said to be nilpotent of step s (or more precisely, step ≤ s),
if all iterated commutators of order s+1 or higher necessarily vanish.

For instance, a group is nilpotent of order 1 if and only if it is abelian,

and it is nilpotent of order 2 if and only if [[g1, g2], g3] = id for all

g1, g2, g3 (i.e. all commutator elements [g1, g2] are central), and so

forth. A good example of an s-step nilpotent group is the group of

s+ 1× s+ 1 upper-triangular unipotent matrices (i.e. matrices with

1s on the diagonal and zero below the diagonal), and taking values in

some ring (e.g. reals, integers, complex numbers, etc.).

Another important example of nilpotent groups arise from op-

erations on polynomials. For instance, if V≤s is the vector space of

real polynomials of one variable of degree at most s, then there are

two natural affine actions on V≤s. Firstly, every polynomial Q in

V≤s gives rise to an “vertical” shift P 7→ P + Q. Secondly, every

h ∈ R gives rise to a “horizontal” shift P 7→ P (· + h). The group



4.13. The free nilpotent group 661

generated by these two shifts is a nilpotent group of step ≤ s; this

reflects the well-known fact that a polynomial of degree ≤ s vanishes

once one differentiates more than s times. Because of this link be-

tween nilpotentcy and polynomials, one can view nilpotent algebra as

a generalisation of polynomial algebra.

Suppose one has a finite number g1, . . . , gn of generators. Us-

ing abstract algebra, one can then construct the free nilpotent group

F≤s(g1, . . . , gn) of step ≤ s, defined as the group generated by the

g1, . . . , gn subject to the relations that all commutators of order s+ 1

involving the generators are trivial. This is the universal object in

the category of nilpotent groups of step ≤ s with n marked elements

g1, . . . , gn. In other words, given any other ≤ s-step nilpotent group

G′ with n marked elements g′1, . . . , g
′
n, there is a unique homomor-

phism from the free nilpotent group to G′ that maps each gj to g′j for

1 ≤ j ≤ n. In particular, the free nilpotent group is well-defined up

to isomorphism in this category.

In many applications, one wants to have a more concrete descrip-

tion of the free nilpotent group, so that one can perform computations

more easily (and in particular, be able to tell when two words in the

group are equal or not). This is easy for small values of s. For in-

stance, when s = 1, F≤1(g1, . . . , gn) is simply the free abelian group

generated by g1, . . . , gn, and so every element g of F≤1(g1, . . . , gn)

can be described uniquely as

(4.48) g =

n∏
j=1

g
mj
j := gm1

1 . . . gmnn

for some integers m1, . . . ,mn, with the obvious group law. Indeed,

to obtain existence of this representation, one starts with any rep-

resentation of g in terms of the generators g1, . . . , gn, and then uses

the abelian property to push the g1 factors to the far left, followed

by the g2 factors, and so forth. To show uniqueness, we observe that

the group G of formal abelian products {gm1
1 . . . gmnn : m1, . . . ,mn ∈

Z} ≡ Zk is already a ≤ 1-step nilpotent group with marked elements

g1, . . . , gn, and so there must be a homomorphism from the free group

to G. Since G distinguishes all the products gm1
1 . . . gmnn from each

other, the free group must also.
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It is only slightly more tricky to describe the free nilpotent group

F≤2(g1, . . . , gn) of step ≤ 2. Using the identities

gh = hg[g, h]; gh−1 = ([g, h]−1)g
−1

h−1g; g−1h = h[g, h]−1g−1; g−1h−1 := [g, h]g−1h−1

(where gh := h−1gh is the conjugate of g by h) we see that whenever

1 ≤ i < j ≤ n, one can push a positive or negative power of gi past

a positive or negative power of gj , at the cost of creating a positive

or negative power of [gi, gj ], or one of its conjugates. Meanwhile,

in a ≤ 2-step nilpotent group, all the commutators are central, and

one can pull all the commutators out of a word and collect them as

in the abelian case. Doing all this, we see that every element g of

F≤2(g1, . . . , gn) has a representation of the form

(4.49) g = (

n∏
j=1

g
mj
j )(

∏
1≤i<j≤n

[gi, gj ]
m[i,j])

for some integers mj for 1 ≤ j ≤ n and m[i,j] for 1 ≤ i < j ≤ n. Note

that we don’t need to consider commutators [gi, gj ] for i ≥ j, since

[gi, gi] = id

and

[gi, gj ] = [gj , gi]
−1.

It is possible to show also that this representation is unique, by re-

peating the previous argument, i.e. by showing that the set of formal

products

G := {(
k∏
j=1

g
mj
j )(

∏
1≤i<j≤n

[gi, gj ]
m[i,j]) : mj ,m[i,j] ∈ Z}

forms a ≤ 2-step nilpotent group, after using the above rules to define

the group operations. This can be done, but verifying the group

axioms (particularly the associative law) forG is unpleasantly tedious.

Once one sees this, one rapidly loses an appetite for trying to

obtain a similar explicit description for free nilpotent groups for higher

step, especially once one starts seeing that higher commutators obey

some non-obvious identities such as the Hall-Witt identity

(4.50) [[g, h−1], k]h · [[h, k−1], g]k · [[k, g−1], h]g = 1
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(a nonlinear version of the Jacobi identity in the theory of Lie alge-

bras), which make one less certain as to the existence or uniqueness

of various proposed generalisations of the representations (4.48) or

(4.49). For instance, in the free ≤ 3-step nilpotent group, it turns out

that for representations of the form

g = (

n∏
j=1

g
mj
j )(

∏
1≤i<j≤n

[gi, gj ]
m[i,j])(

∏
1≤i<j<k≤n

[[gi, gj ], gk]n[[i,j],k])

one has uniqueness but not existence (e.g. even in the simplest case

n = 3, there is no place in this representation for, say, [[g1, g3], g2]

or [[g1, g2], g2]), but if one tries to insert more triple commutators

into the representation to make up for this, one has to be careful not

to lose uniqueness due to identities such as (4.50). One can paste

these in by ad hoc means in the s = 3 case, but the s = 4 case

looks more fearsome still, especially now that the quadruple commu-

tators split into several distinct-looking species such as [[gi, gj ], [gk, gl]]

and [[[gi, gj ], gk], gl] which are nevertheless still related to each other

by identities such as (4.50). While one can eventually disentangle

this mess for any fixed n and s by a finite amount of combinatorial

computation, it is not immediately obvious how to give an explicit

description of F≤s(g1, . . . , gn) uniformly in n and s.

Nevertheless, it turns out that one can give a reasonably tractable

description of this group if one takes a polycyclic perspective rather

than a nilpotent one - i.e. one views the free nilpotent group as a

tower of group extensions of the trivial group by the cyclic group Z.

This seems to be a fairly standard observation in group theory - I

found it in [MaKaSo2004] and [Le2009] - but seems not to be so

widely known outside of that field, so I wanted to record it here.

4.13.1. Generalisation. The first step is to generalise the concept

of a free nilpotent group to one where the generators have different

“degrees”. Define a graded sequence to be a finite ordered sequence

(gα)α∈A of formal group elements gα, indexed by a finite, totally or-

dered set A, where each gα is assigned a positive integer deg(gα),

which we call the degree of gα. We then define the degree of any for-

mal iterated commutator of the gα by declaring the degree of [g, h] to

be the sum of the degrees of g and h. Thus for instance [[gα1
, gα2

], gα3
]
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has degree deg(gα1) + deg(gα2) + deg(gα3). (The ordering on A is not

presently important, but will become useful for the polycyclic repre-

sentation; note that such ordering has already appeared implicitly in

(4.48) and (4.49).)

Define the free ≤ s-step nilpotent group F≤s((gα)α∈A) generated

by a graded sequence (gα)α∈A to be the group generated by the gα,

subject to the constraint that any iterated commutator of the gα of

degree greater than s is trivial. Thus the free group F≤s(g1, . . . , gk)

corresponds to the case when all the gi are assigned a degree of 1.

Note that any element of a graded sequence of degree greater

than s is automatically trivial (we view it as a 0-fold commutator of

itself) and so can be automatically discarded from that sequence.

We will recursively define the free ≤ s-step nilpotent group of

some graded sequence (gα)α∈A in terms of simpler sequences, which

have fewer low-degree terms at the expense of introducing higher-

degree terms, though as mentioned earlier there is no need to intro-

duce terms of degree larger than s. Eventually this process exhausts

the sequence, and at that point the free nilpotent group will be com-

pletely described.

4.13.2. Shift. It is convenient to introduce the iterated commuta-

tors [g,mh] for m = 0, 1, 2, . . . by declaring [g, 0h] := g and [g, (m +

1)h] := [[g,mh], h], thus for instance [g, 3h] = [[[g, h], h], h].

Definition 4.13.1 (Shift). Let s ≥ 1 be an integer, let (gα)α∈A be

a non-empty graded sequence, and let α0 be the minimal element of

A. We define the (degree ≤ s) shift (gα)α∈A′ of (gα)α∈A by defin-

ing A′ to be formed from A by removing α0, and then adding at

the end of A all commutators [β,mα0] of degree at most s, where

β ∈ A\{α0} and m ≥ 1. For sake of concreteness we order these com-

mutators lexicographically, so that [β,mα0] ≥ [β′,m′α0] if β > β′, or

if β = β′ and m > m′. (These commutators are also considered to be

larger than any element of A\{α0}). We give each [β,mα0] a degree

of deg(β) + m deg(α0), and define the group element g[β,mα0] to be

[gβ ,mgα0
].

Example 4.13.2. If s ≤ 3, and the graded sequence ga, gb, gc consists

entirely of elements of degree 1, then the shift of this sequence is given
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by

gb, gc, g[b,a], g[b,2a], g[c,a], g[c,2a]

where [b, a], [c, a] have degree 2, and [b, 2a], [c, 2a] have degree 3, and

g[b,a] = [gb, ga], g[b,2a] = [gb, 2ga], etc.

The key lemma is then

Lemma 4.13.3 (Recursive description of free group). Let s ≥ 1 be

an integer, let (gα)α∈A be a non-empty graded sequence, and let α0

be the minimal element of A. Let (gα)α∈A′ be the shift of of (gα)α∈A.

Then F≤s((gα)α∈A) is generated by gα0
and F≤s((gα)α∈A′), and fur-

thermore the latter group is a normal subgroup of F≤s((gα)α∈A) that

does not contain gα0
. In other words, we have a semi-direct product

representation

F≤s((gα)α∈A) = Z n F≤s((gα)α∈A′)

with gα0
being identified with (1, id) and the action of Z being given

by the conjugation action of gα0 . In particular, every element g in

F≤s((gα)α∈A) can be uniquely expressed as g = gnαα g′, where g′ ∈
F≤s((gα)α∈A′).

Proof. It is clear that F≤s((gα)α∈A′) is a subgroup of F≤s((gα)α∈A),

and that it together with gα0
generates F≤s((gα)α∈A). To show that

this subgroup is normal, it thus suffices to show that the conjugation

action of gα0 and g−1
α0

preserve F≤s((gα)α∈A′). It suffices to check

this on generators. But this is clear from the identity

g−1
α0

[gβ ,mgα0 ]gα0 = [gβ ,mgα0 ][gβ , (m+ 1)gα0 ]

and its inverse

gα0
[gβ ,mgα0

]g−1
α0

= [gβ ,mgα0
][gβ , (m+ 1)gα0

]−1[gβ , (m+ 2)gα0
] . . .

(note that the product terminates in finite time due to nilpotency).

Finally, we need to show that gα0
is not contained in F≤s((gα)α∈A′).

But because the conjugation action of gα0
preserves the latter group,

we can form the semidirect product G := ZnF≤s((gα)α∈A′). By the

universal nature of the free group, there must thus be a homomor-

phism from F≤s((gα)α∈A) to G which maps gα0 to (1, id) and maps

F≤s((gα)α∈A′) to 0 × F≤s((gα)α∈A′). This implies that gα0
cannot

lie in F≤s((gα)α∈A′), and the claim follows. �
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We can now iterate this. Observe that every time one shifts a

non-empty graded sequence, one removes one element (the minimal

element gα0) but replaces it with zero or more elements of higher

degree. Iterating this process, we eventually run out of elements of

degree one, then degree two, and so forth, until the sequence becomes

completely empty. We glue together all the elements encountered this

way and refer to the full sequence as the completion (gα)α∈A of the

original sequence (gα)α∈A. As a corollary of the above lemma we thus

have

Corollary 4.13.4 (Explicit description of free nilpotent group). Let

s ≥ 1 be an integer, and let (gα)α∈A be a graded sequence. Then every

element g of F≤s((gα)α∈A) can be represented uniquely as∏
α∈A

gnαα

where nα is an integer, and A is the completion of A.

Example 4.13.5. We continue with the sequence ga, gb, gc from Ex-

ample 4.13.2, with s = 3. We already saw that shifting once yielded

the sequence

gb, gc, g[b,a], g[b,2a], g[c,a], g[c,2a].

Another shift gives

gc, g[b,a], g[b,2a], g[c,a], g[c,2a], g[c,b], g[c,2b], g[[b,a],b], g[[c,a],b],

and shifting again gives

g[b,a], g[b,2a], g[c,a], g[c,2a], g[c,b], g[c,2b], g[[b,a],b], g[[c,a],b], g[[b,a],c], g[[c,a],c].

At this point, all remaining terms in the sequence have degree at least

two, and further shifting simply removes the first element without

adding any new elements. Thus the completion is

ga, gb, gc, g[b,a], g[b,2a], g[c,a], g[c,2a],

g[c,b], g[c,2b], g[[b,a],b], g[[c,a],b], g[[b,a],c], g[[c,a],c]

and every element of F≤3(ga, gb, gc) can be uniquely expressed as

gnaa gnbb gbcc [gb, ga]n[b,a] [gb, 2ga]n[b,2a]

[gc, ga]n[c,a] [gc, 2ga]n[c,2a] [gc, gb]
n[c,b] [gc, 2gb]

n[c,2b]

[[gb, ga], gb]
n[[b,a],b] [[gc, ga], gb]

n[[c,a],b] [[gb, ga], gc]
n[[b,a],c] [[gc, ga], gc]

n[[c,a],c] .
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In [Le2009], a related argument was used to expand bracket

polynomials (a generalisation of ordinary polynomials in which the

integer part operation x 7→ bxc is introduced) of degree ≤ s in several

variables (xα)α∈A into a canonical basis (xα)α∈A, where A is the same

completion of A that was encountered here. This was used to show

a close connection between such bracket polynomials and nilpotent

groups (or more precisely, nilsequences).

Notes. This article first appeared at terrytao.wordpress.com/2009/12/21.

Thanks to Dylan Thurston for corrections.
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applications, Math. Z 72 (1959/1960), 192–204.

[RaRu1997] A. Razborov, S. Rudich, Natural proofs, 26th Annual ACM
Symposium on the Theory of Computing (STOC ’94) (Montreal, PQ,
1994). J. Comput. System Sci. 55 (1997), no. 1, part 1, 24–35.

[Ro1982] J.-P. Rosay, Injective holomorphic mappings, Amer. Math.
Monthly 89 (1982), no. 8, 587–588.

[Ro1953] K. Roth, On certain sets of integers, I, Journal of the London
Mathematical Society 28 (1953), 104-109.

[Ru1962] W. Rudin, Fourier analysis on groups. Reprint of the 1962 orig-
inal. Wiley Classics Library. A Wiley-Interscience Publication. John
Wiley & Sons, Inc., New York, 1990. x+285 pp

[Ru1995] W. Rudin, Injective polynomial maps are automorphisms, Amer.
Math. Monthly 102 (1995), no. 6, 540–543.

[Ru1989] I. Ruzsa, An application of graph theory to additive number the-
ory, Sci. Ser. A Math. Sci. (N.S.) 3 (1989), 97–109.
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[Ta2006c] T. Tao, Szemerédi’s regularity lemma revisited, Contrib. Discrete
Math. 1 (2006), no. 1, 8–28



676 Bibliography

[Ta2007] T. Tao, A correspondence principle between (hyper)graph theory
and probability theory, and the (hyper)graph removal lemma, J. Anal.
Math. 103 (2007), 1–45

[Ta2007b] T. Tao, Structure and randomness in combinatorics, Proceed-
ings of the 48th annual symposium on Foundations of Computer Sci-
ence (FOCS) 2007, 3-18.

[Ta2008] T. Tao, Structure and Randomness: pages from year one of a
mathematical blog, American Mathematical Society, Providence RI,
2008.
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