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A NUMERICAL FUNCTION IN CONGRUENCE THEORY 
 

 In this article we define a function L  which will allow us to generalize 
(separately or simultaneously) some theorems from Numbers Theory obtained by Wilson, 
Fermat, Euler, Gauss, Lagrange, Leibnitz, Moser, Sierpinski. 
 

§1. Let A  be the set { ,  2m m p pβ β∈ = ± ±Z with p  an odd prime, *Nβ ∈ , or 

m = ±2α with α = 0,1,2 , or }0m = . 

Let’s consider m = ε p1
α1 ...ps

α s , with ε = ±1 , all *
i Nα ∈ , and p1,..., ps  distinct 

positive numbers. 
We construct the FUNCTION  L : Z → Z ,  

L(x, m) = (x + c1)...(x + cϕ (m ) )  
where c1,...,cϕ (m ) are all residues modulo m  relatively prime to m , and ϕ  is the Euler’s 
function. 
 If all distinct primes which divide x  and m simultaneously are pi1

...pir
then: 

L(x, m) ≡ ±1(mod pi1

αi1 ...pir

α ir ) ,  
when m ∈A respective by m ∉A , and  

L(x, m) ≡ 0(mod m / (pi1

α i1 ...pir

α ir )) . 

Noting d = pi1

α i1 ...pir

α ir  and m ' = m / d  we find: 

  L(x, m) ≡ ±1 + k1
0d ≡ k2

0m '(mod m)  
where k1

0 , k2
0  constitute a particular integer solution of the Diophantine equation 

k2m '− k1d = ±1  (the signs are chosen in accordance with the affiliation of m  to A ).  
This result generalizes the Gauss’ theorem (c1,...,cϕ (m ) ≡ ±1(mod m))  when m ∈A  

respectively m ∉A  (see [1]) which generalized in its turn the Wilson’s theorem (if p  is 
prime then ( p − 1)! ≡ −1(mod m) ). 
 Proof.  

The following two lemmas are trivial: 
 Lemma 1. If c1,...,cϕ ( pα )

 are all residues modulo pα  relatively prime to pα , with 

p  an integer and *Nα ∈ , then for k ∈Z and *Nβ ∈  we have also that 

1 ( )
,...,

p
kp c kp c α

β β
ϕ

+ +  constitute all residues modulo pα  relatively prime to it is 

sufficient to prove that for 1 ≤ i ≤ ϕ(pα )  we have that kpβ + ci  is relatively prime to pα , 
but this is obvious. 
 
 Lemma 2. If c1,...,cϕ (m )  are all residues modulo m  relatively prime to m , 

i
ipα divides m  and 1i

ipα +  does not divide m , then c1,...,cϕ (m )  constitute ϕ(m / pi
α i )  

systems of all residues modulo pi
αi  relatively prime to pi

αi . 
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 Lemma 3. If 1 ( ),..., mc cϕ  are all residues modulo q  relatively prime to q  and 

( , ) 1b q ∼  then b + c1,...,b + cϕ (q)  contain a representative of the class 0̂  modulo q . 
 Of course, because ( , ) 1b q b− ∼  there will be a ci0

= q − b  whence 
 
b + ci = Mq . 

 From this we have the following: 
 Theorem 1. If  ( )( )1

1
, / ... 1ii s

si ix m p pαα ∼ , 

 then 

( )( )1

11 ( )( )...( ) 0 mod / ...i ir

rm i ix c x c m p pα α
ϕ+ + ≡ . 

 
Lemma 4. Because c1,...,cϕ (m ) ≡ ±1(mod m)  it results that 

c1,...,cϕ (m) ≡ ±1(mod pi
αi ) , for all i , when m ∈A  respectively m ∉A . 

 
Lemma 5. If pi  divides x  and m  simultaneously then: 

(x + c1)...(x + cϕ (m) ) ≡ ±1(mod pi
αi ) ,  

when m ∈A  respectively m ∉A . Of course, from the lemmas 1 and 2, respectively 4 we 
have: 

(x + c1)...(x + cϕ (m) ) ≡ c1,...,cϕ (m) ≡ ±1(mod pi
αi ) . 

From the lemma 5 we obtain the following: 
 
Theorem 2. If 

1
,...,

ri ip p  are all primes which divide x and m simultaneously 
then: 

(x + c1)...(x + cϕ (m ) ) ≡ ±1(mod pi1

αi1 ...pir

αir ) ,  
when m ∈A  respectively m ∉A . 

From the theorems 1 and 2 it results:  
L(x,m) ≡ ±1 + k1 d = k2m ' ,  

where  k1, k2 ∈Z . Because ( , ') 1d m ∼  the Diophantine equation 2 1' 1k m k d− = ±  admits 
integer solutions (the unknowns being 1k  and 2k ). Hence 0

1 1'k m t k= +  and k2 = dt + k2
0 , 

with  t ∈Z , and 0 0
1 2,  k k  constitute a particular integer solution of our equation. Thus: 

L(x, m) ≡ ±1 + m 'dt + k1
0d = ±1 + k1

0 (mod m)  
or 

L(x, m) = k2
0m '(mod m) . 

 
§2. APPLICATIONS 
 
1) Lagrange extended Wilson’s theorem in the following way: “If p  is prime 

then  
1 1 ( 1)( 2)...( 1)(mod )px x x x p p− − ≡ + + + − ”.  
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We shall extend this result as follows: whichever are m ≠ 0,±4 , we have for 
x2 + s2 ≠ 0  that  

( ) ( 1)( 2)...( 1)(mod )sm s sx x x x x m mϕ + − ≡ + + + −  
where ms and s  are obtained from the algorithm: 
 

 (0) 0 0 0 0

0 0 0

;   ( , ) 1
;  1

x x d x m
m m d d

=⎧
⎨ = ≠⎩

∼
 

 (1) 
1 1

0 0 1 0 1

0 1 1 1

;   ( , ) 1
;  1

d d d d m
m m d d

⎧ =⎪
⎨

= ≠⎪⎩

∼
 

…………………………………….. 

(s-1) 
1 1

2 2 1 2 1

2 1 1 1

;   ( , ) 1
;  1

s s s s s

s s s s

d d d d m
m m d d

− − − − −

− − − −

⎧ =⎪
⎨

= ≠⎪⎩

∼
 

(s) 
1 1

1 1 1

1

;   ( , ) 1
;   1

s s s s s

s s s s

d d d d m
m m d d

− − −

−

⎧ =⎪
⎨

= ≠⎪⎩

∼
 

 
(see [3] or [4]). For m  positive prime we have ms = m , s = 0 , and ϕ(m) = m − 1 , that 
is Lagrange. 
 

2) L. Moser enunciated the following theorem: If p  is prime then 
( 1)!  ''pp a a p− + =M , and Sierpinski (see [2], p. 57): if p  is prime then 

( 1)!  ''pa p a p+ − =M  which merge the Wilson’s and Fermat’s theorems in a single 
one. 

 
The function L  and the algorithm from §2 will help us to generalize that if "a" 

and m  are integers m ≠ 0  and c1,...,cϕ (m )  are all residues modulo m  relatively prime to 
m  then  

( )
1 ( ),..., (0, )  sm s s

mc c a L m a mϕ
ϕ

+ − =M , 
respectively 

 ( )
1 ( )(0, ) ,...,  sm s s

mL m a c c a mϕ
ϕ

+− + =M  
or more: 

 ( )
1 ( )( )...( ) ( , )  sm s s

mx c x c a L x m a mϕ
ϕ

++ + − =M  
respectively 

( )
1 ( )( , ) ( )...( )  sm s s

mL x m a x c x c a mϕ
ϕ

+− + + + =M  
which reunite Fermat, Euler, Wilson, Lagrange and Moser (respectively Sierpinski). 
 

3) A partial spreading of Moser’s and Sierpinski’s results, the author also 
obtained (see [6], problem 7.140, pp. 173-174), the following: if m  is a positive integer, 
m ≠ 0 ,4. and "a" is an integer, then ( )( 1)!  ma a m m− − =M , reuniting Fermat and 
Wilson in another way. 
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4) Leibnitz enunciated that: ”If p  is prime then ( p − 2)! ≡ 1(mod p)"”; 
We consider ” ci < ci +1(mod m) ” if ci

' < ci+1
'  where 0 ≤ ci

' < m , 0 ≤ ci+1
' < m , and 

ci ≡ ci
' (mod m) , ci+1 ≡ ci+1

' (mod m)  it seems simply that c1,c2 ,...,cϕ (m )  are all residues 
modulo m  relatively prime to m(ci < ci+1(mod m))  for all i , m ≠ 0 , then 
c1,c2 ,...,cϕ (m )−1 ≡ ±(mod m)  if m ∈A  respectively m ∉A , because cϕ (m ) ≡ −1(mod m) . 
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A GENERAL THEOREM FOR THE 
CHARACTERIZATION OF N PRIME NUMBERS 

SIMULTANEOUSLY 
 
 §1. ABSTRACT. This article presents a necessary and sufficient theorem as 
N numbers, coprime two by two, to be prime simultaneously. 
 It generalizes V. Popa’s theorem [3], as well as I. Cucurezeanu’s theorem ([1], 
p.165), Clement’s theorem, S. Patrizio’s theorems [2], etc. 
 Particularly, this General Theorem offers different characterizations for twin 
primes, for quadruple primes, etc. 
 
 §2. INTRODUCTION. It is evident the following: 
 
 Lemma 1. Let A, B  be nonzero integers. Then: 

AB ≡ 0(mod pB) ⇔ A ≡ 0(mod p) ⇔ A / p  is an integer. 
 

Lemma 2.Let  ( , ) 1,  ( , ) 1,  ( , ) 1p q a p b q∼ ∼ ∼ .  
Then: 

A ≡ 0(mod p)  
 and  

B ≡ 0(mod q) ⇔ aAq + bBp ≡ 0(mod pq) ⇔ aA + bBp / q ≡ 0(mod p)  
aA / p + bB / q  is an integer. 

 Proof: 
 The first equivalence: 

We have A = K1 p  and B = K2q  with  K1, K2 ∈Z  hence 
 aAq + bBp = (aK1 + bK2 )pq . 

Reciprocal: aAq + bBp = Kpq , with  K ∈Z  it rezults that  aAq ≡ 0(mod p)  and 
bBp ≡ 0(mod q) , but from our assumption we find A ≡ 0(mod p)  and 
B ≡ 0(mod q) . 
The second and third equivalence results from lemma1. 
By induction we extend this lemma to the following: 
 
Lemma 3. Let p1,..., pn  be coprime integers two by two, and let  a1,...,an  be 

integer numbers such that  ( , ) 1i ia p ∼  for all i . Then  
 A1 ≡ 0(mod p1),..., An ≡ 0(mod pn ) ⇔  

 ⇔ ai Ai
i=1

n

∑ pj
j ≠ i
∏ ≡ 0(mod p1...pn ) ⇔  

 ⇔ (P / D) ⋅ (aiAi
i=1

n

∑ / pi ) ≡ 0(mod P / D) , 

where P = p1...pn  and D  is a divisor of p  ⇔ aiAi
i=1

n

∑ / pi  is an integer. 
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§3.  From this last lemma we can find immediately a GENERAL THEOREM: 
 
Let Pij ,1 ≤ i ≤ n,1 ≤ j ≤ mi , be coprime integers two by two, and let 

r1,...,rn ,a1,...,an  be integer numbers such that ai  be coprime with ri  for all i . 
The following conditions are considered: 
(i)  pi

1
,..., pin1

, are simultaneously prime if and only if  ci ≡ 0(mod ri ) , for all 
i .  

Then: 
The numbers pij ,1 ≤ i ≤ n,1 ≤ j ≤ mi , are simultaneously prime if and only if 

 (*) (R / D) (aici
i=1

n

∑ / ri ) ≡ 0(mod R / D) , 

where P = ri
i=1

n

∏  and D  is a divisor of R . 

 
Remark: 

Often in the conditions (i) the module ri  is equal to pij
j =1

mi

∏ , or to a divisor of it, 

and in this case the relation of the General Theorem becomes: 

(P / D) (aici
i=1

n

∑ / pij
j =1

mi

∏ ) ≡ 0(mod P / D)  

where 

  
,

, 1

in m

ij
i j

P p
=

= ∏  and D  is a divisor of P . 

 
 Corollaries: 
 We easily obtain that our last relation is equivalent with: 

  (aici
i=1

n

∑ (P / pij
j =1

mi

∏ ) ≡ 0(mod P) , 

and 

  (aici
i=1

n

∑ / pij
j =1

mi

∏ )  is an integer, 

  etc. 
 The imposed restrictions for the numbers pij  from the General Theorem are very 
wide, because if there would be two uncoprime distinct numbers, then at least one from 
these would not be prime, hence the m1 + ... + mn  numbers might not be prime. 
 The General Theorem has many variants in accordance with the assigned values 
for the parameters a1,...,an  and r1,...,rm , the parameter D , as well as in accordance with 
the congruences c1,...,cn  which characterize either a prime number or many other prime 
numbers simultaneously. We can start from the theorems (conditions ci ) which 



 
 

13

characterize a single prime number (see Wilson, Leibnitz, F. Smarandache [4], or 
Siminov ( p  is prime if and only if (p − k)!(k − 1)!− (−1)k ≡ 0(mod p) , when p ≥ k ≥ 1 ; 
here, it is preferable to take k = [( p + 1) / 2] , where [x]  represents the gratest integer 
number ≤ x , in order that the number ( p − k)!(k − 1)!  be the smallest possibly) for 
obtaining, by means of the General Theorem, conditions cj

' , which characterize many 

prime numbers simultaneously. Afterwards, from the conditions ci ,cj
' , using the General 

Theorem again, we find new conditions ch
"  which characterize prime numbers 

simultaneously. And this method can be continued analogically. 
 
 Remarks 
 
 Let mi = 1  and ci  represent the Simionov’s theorem for all i  

(a) If D = 1  it results in V. Popa’s theorem, which generalizes in the 
Cucurezeanu’s theorem and the last one generalizes in its turn Clement’s 
theorem! 

(b) If  D = P / p2  and choosing convenintly the parameters ai , ki  for i = 1,2,3 , 
it results in S. Patrizio’s theorem. 

 
Several Examples:  
 

1. Let p1, p2 ,..., pn  be positive integers >1, coprime integers two by two, and 
1 ≤ ki ≤ pi  for all i . Then p1, p2 ,..., pn  are simultaneously prime if and only if:  

(T) (pi − ki )!(ki − 1)!− (−1)ki⎡⎣ ⎤⎦
i=1

n

∑ ⋅ pi
j ≠ i
∏ ≡ 0(mod p1 p2 ...pn )  

or 

(U) (pi − ki )!(ki − 1)!− (−1)ki⎡⎣ ⎤⎦
i=1

n

∑ ⋅ pi
j ≠ i
∏ / (ps+1...pn ) ≡ 0(mod p1...ps )  

or  

(V) (pi − ki )!(ki − 1)!− (−1)ki⎡⎣ ⎤⎦
i=1

n

∑ ⋅ pj / pi ≡ 0(mod pj )  

or  

(W) (pi − ki )!(ki − 1)!− (−1)ki⎡⎣ ⎤⎦
i=1

n

∑ ⋅ pj / pi  is an integer. 

 
2. Another relation example (using the first theorem form [4]: p  is a prime 

positive integer if and only if (p − 3)!− (p − 1) / 2 ≡ 0(mod p)  

(pi − 3)!− (pi − 1) / 2[ ]
i=1

n

∑ ⋅ p1 / pi ≡ 0(mod p1)  
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3. The odd numbers … and … are twin prime if and only if: 
( p − 1)!(3p + 2) + 2 p + 2 ≡ 0(mod p( p + 2))  
or  
( p − 1)!( p + 2) − 2 ≡ 0(mod p( p + 2))  
or 
(p − 1)!+ 1[ ]/ p + (p − 1)!2 + 1[ ]/ (p + 2)  is an integer. 

These twin prime characterzations differ from Clement’s theorem 
((p − 1)!4 + p + 4 ≡ 0(mod p( p + 2)))  
 

4. Let ( , ) 1p p k+ ∼  then: p  and p + k  are prime simultaneously if and only  
if  

( p − 1)!( p + k) + (p + k − 1)! p + 2 p + k ≡ 0(mod p(p + k)) ,  
which differs from I. Cucurezeanu’s theorem ([1], p. 165): 

k ⋅ k! (p − 1)!+ 1[ ]+ K !− (−1)k⎡⎣ ⎤⎦ p ≡ 0(mod p(p + k))  
 

5. Look at a characterization of a quadruple of primes for  
p, p + 2, p + 6, p + 8 : 
(p − 1)!+ 1[ ]/ p + (p − 1)!2!+ 1[ ]/ (p + 2) + (p − 1)!6!+ 1[ ]/ (p + 6) + (p − 1)!8!+ 1[ ]/ (p + 8)

be an integer. 
 

6. For 2,  ,  4p p p− +  coprime integers tw by two, we find the relation: 
(p − 1)!+ p (p − 3)!+ 1[ ]/ (p − 2) + p (p + 3)!+ 1[ ]/ (p + 4) ≡ −1(mod p) , 

which differ from S. Patrizio’s theorem  
  8 (p + 3)!/ (p + 4)[ ]+ 4 (p − 3)!/ (p − 2)[ ]≡ −11(mod p)( ). 
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A METHOD TO SOLVE THE DIOPHANTINE EQUATION 
ax2 − by2 + c = 0  

 
 ABSTRACT  
 We consider the equation  
  (1) ax2 − by2 + c = 0 , with  a,b ∈N*  and  c ∈Z* . 
 It is a generalization of the Pell’s equation: x2 − Dy2 = 1 . Here, we show that: if 
the equation has an integer solution and a ⋅ b  is not a perfect square, then (1) has an 
infinitude of integer solutions; in this case we find a closed expression for (xn , yn ) , the 
general positive integer solution, by an original method. More, we generalize it for any 
Diophantine equation of second degree and with two unknowns. 
 
 INTRODUCTION 
 If ab = k 2  is a perfect square ( k ∈N ) the equation (1) has at most a finite number 
of integer solutions, because (1) become: 
  (2) (ax − ky)(ax + ky) = −ac  
 If (a,b)  does not divide c, the Diophantine equation does not have solutions. 
 
 METHOD TO SOLVE. Suppose that (1) has many integer solutions. Let 
(x0 , y0 ),   (x1, y1)  be the smallest positive integer solutions for (1), with 0 ≤ x0 < x1 . We 
construct the recurrent sequences: 

(3) 
xn+1 = α xn + βyn

yn+1 = γ xn + δ yn

⎧
⎨
⎩

 

making condition (3) verify (1). It results: 
aαβ = bγδ                 (4)

aα 2 − bγ 2 = a           (5)

aβ 2 − bδ 2 = −b         (6)

⎧

⎨
⎪

⎩
⎪

 

having the unknowns α ,  β,  γ ,  δ . 
 We pull out aα 2  and aβ 2  from (5), respectively (6), and replace them in (4) at 
the square; we obtain  

aδ 2 − bγ 2 = a   (7). 
 We subtract (7) from (5) and find: 
   α = ±δ   (8). 
 Replacing (8) in (4) we obtain: 

   β = ±
b

a
γ   (9). 

 Afterwards, replacing (8) in (5), and (9) in (6) we find the same equation:  
   aα 2 − bγ 2 = a    (10). 
 Because we work with positive solutions only, we take  
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xn+1 = a0xn +

b

a
γ 0yn

yn+1 = γ 0xn + α0yn

⎧
⎨
⎪

⎩⎪
 

where  (a0 ,γ 0 )  is the smallest, positive integer solution of (10) such that  a0γ 0 ≠ 0 . 

Let  

  

α0     
b

a
γ 0

γ 0         α0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∈M2 (Z) . It is evident that if (x ', y ')  is an integer solution for (1) then 

A
x '

y '

⎛
⎝⎜

⎞
⎠⎟

,  A−1 x '

y '

⎛
⎝⎜

⎞
⎠⎟

 is another one – where A−1  is the inverse matrix of A , i.e. 

A−1 ⋅ A = A ⋅ A−1 = I  (unit matrix). Hence, if (1) has an integer solution it has an infinity. 
(Clearly   A

−1 ∈M2 (Z) ). 
 The general positive integer solution of the equation (1) is:  

( )' '( , ) ,n n n nx y x y=  

  GS1( ) with 
xn

yn

⎛
⎝⎜

⎞
⎠⎟

= An ⋅
x0

y0

⎛
⎝⎜

⎞
⎠⎟

, for all  n ∈Z , 

where by convention A0 = I  and  A− k = A−1...A−1  of  k  times. 
 In problems it is better to write GS( ) as: 

  
 

xn
'

yn
'

⎛

⎝⎜
⎞

⎠⎟
= An ⋅

x0

y0

⎛
⎝⎜

⎞
⎠⎟

,   n ∈N  

 GS2( ) and 
 

xn
"

yn
"

⎛

⎝⎜
⎞

⎠⎟
= An ⋅

x1

y1

⎛
⎝⎜

⎞
⎠⎟

,   n ∈N*  

 We prove, by reduction at absurdum that GS2( ) is a general positive integer 
solution for (1). 
 Let (u,v)  be a positive integer particular solution for (1). If  

 
∃k0 ∈N : (u,v) = Ak0

x0

y0

⎛
⎝⎜

⎞
⎠⎟

,   or ∃k1 ∈N* : (u,v) = Ak1
x1

y1

⎛
⎝⎜

⎞
⎠⎟

 then (u,v) ∈ GS2( ). Contrary to 

this, we calculate (ui+1,vi+1) = A−1 ui

vi

⎛
⎝⎜

⎞
⎠⎟

,  for i = 0,1,2,...  where u0 = u,   v0 = v . Clearly 

ui+1 < ui  for all i . After a certain rank x0 < ui0
< x1  it finds either 0 < ui0

< x0 , but that is 
absurd. 
 It is clear that we can put 

 GS3( )  
 

xn

yn

⎛

⎝⎜
⎞

⎠⎟
= An ⋅

x0

εy0

⎛
⎝⎜

⎞
⎠⎟

,   n ∈N ,  where ε = ±1 . 

 Now we shall transform the general solution GS3( ) in a closed expression. 
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 Let λ  be a real number. Det(A − λ ⋅ I ) = 0  involves the solutions λ1,2  and the 

proper vectors V1,2  (i.e., Avi = λivi , { }1,2i ∈ ). Note 1
2

2

( )
iv

P
v

⎛ ⎞
= ∈⎜ ⎟

⎝ ⎠
M  

Then P−1AP =
λ1     0

0        λ2

⎛
⎝⎜

⎞
⎠⎟

, whence An = P
λ1

n     0

0        λ
2

n

⎛

⎝
⎜

⎞

⎠
⎟ P−1 , and replacing it in GS3( ) 

and doing the computations we find a closed expression for GS3( ). 
 
 EXAMPLES 
 

1. For the Diophantine equation 2x2 − 3y2 = 5  we obtain 

 

xn

yn

⎛

⎝⎜
⎞

⎠⎟
=

5    6

4    5

⎛
⎝⎜

⎞
⎠⎟

n

⋅
2 

ε
⎛
⎝⎜

⎞
⎠⎟

,   n ∈N  and λ1,2 = 5 ± 2 6 , v1,2 = ( 6, ±2) , 

whence a closed expression for xn  and yn : 

 

xn =
4 + ε 6

4
(5 + 2 6)n +

4 − ε 6

4
(5 − 2 6)n

yn =
3ε + 2 6

6
(5 + 2 6)n +

3ε − 2 6

6
(5 − 2 6)n

⎧

⎨
⎪⎪

⎩
⎪
⎪

  for all n ∈N  

2. For equation x2 − 3y2 − 4 = 0 the general solution in positive integer is: 

 

xn = (2 + 3)n + (2 − 3)n

yn =
1

3
(2 + 3)n + (2 − 3)n

⎧

⎨
⎪

⎩
⎪

   for all n ∈N ,  

that is (2,0), (4,2), (14,8), (52,30),… 
 

EXERCICES FOR RADERS:  
 

Solve the Diophantine equations: 
3. x2 − 12y2 + 3 = 0  

[Remark: 
 

xn

yn

⎛

⎝⎜
⎞

⎠⎟
=

7    24

2    7

⎛
⎝⎜

⎞
⎠⎟

n

⋅
3 

ε
⎛
⎝⎜

⎞
⎠⎟

= ?,   n ∈N ] 

4. x2 − 6y2 − 10 = 0  

[Remark: 
 

xn

yn

⎛

⎝⎜
⎞

⎠⎟
=

5    12

2    5

⎛
⎝⎜

⎞
⎠⎟

n

⋅
4 

ε
⎛
⎝⎜

⎞
⎠⎟

= ?,   n ∈N ] 

5. x2 − 12y2 − 9 = 0  

[Remark: 
 

xn

yn

⎛

⎝⎜
⎞

⎠⎟
=

7    24

2    7

⎛
⎝⎜

⎞
⎠⎟

n

⋅
3 

ε
⎛
⎝⎜

⎞
⎠⎟

= ?,   n ∈N ] 

6. 14x2 − 3y2 − 18 = 0  
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GENERALIZATIONS 
 
If f (x, y) = 0  is a Diophantine equation of second degree and with two 
unknowns, by linear transformation it becomes  

(12) ax2 + by2 + c = 0 , with  a,b,c ∈Z . 
If ab ≥ 0 the equation has at most a finite number of integer solutions which can 

be found by attempts. 
It is easier to present an example: 
7. The Diophantine equation 

(13)  9x2 + 6xy − 13y2 − 6x − 16y + 20 = 0  becomes 
(14) 2u2 − 7v2 + 45 = 0 , where 
(15) u = 3x + y − 1  and v = 2y + 1  

We solve (14). Thus: 

    (16) 
 

un+1 = 15un + 28vn

vn+1 = 8un + 15vn

⎧
⎨
⎩

 ,   n ∈N with (u0 ,v0 ) = (3, 3ε )  

First solution: 
By induction we prove that for all  n ∈N we have that vn is odd, and un  as well as 

vn are multiple of 3. Clearly v0 = 3ε,  u0 . For n + 1  we have: 
vn+1 = 8un + 15vn = even + odd = odd , and of course un+1,vn+1  are multiples of 3 because 
un ,vn are multiple of 3 too.  

Hence, there exist xn , yn  in positive integers for all  n ∈N : 

 (17) 
xn = (2un − vn + 3) / 6

yn =          (vn − 1) / 2

⎧
⎨
⎩

 

(from (15)). Now we’ll find the GS3( ) for (14) as closed expression, and by means of 
(17) it results the general integer solution of the equation (13). 
 Second solution: 

Another expression of the GS3( ) for (13) will be obtained if we transform (15) as  
un = 3xn + yn − 1  and vn = 2yn + 1  for all  n ∈N . Whence, using (16) and doing the 
computation, we find  

(18) 
xn+1 = 11xn + 11xn +

52

3
yn +

11

3
yn+1 = 12xn + 19yn + 3

⎧
⎨
⎪

⎩⎪
     n ∈N , with (x0 , y0 ) = (1,1) or (2,−2)  

(two infinitude of integer solutions). 

Let A =

11  
52

3
 
11

3
12  19   3

0     0    1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

, then 
1
1
11

n
n

n

x
y A

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 or  
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  (19)  
 2
2

 11

n
n

n

x
y A

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, always  n ∈N . 

 From (18) we have always 1 0... 1(mod 3)n ny y y+ ≡ ≡ ≡ ≡ , hence always  xn ∈Z . Of 
course, (19) and (17) are equivalent as general integer solution for (13). 
 [The reader can calculate An  (by the same method liable to the start on this note) 
and find a closed expression for (19).]. 
 
 More generally: 
 This method can be generalized for the Diophantine equations: 

  (20)   ai Xi
2

i=1

n

∑ = b , with all  ai ,b ∈Z . 

 If always aiaj ≥ 0,   1 ≤ i < j ≤ n , the equation (20) has at most a finite number of 
integer solutions. 
 Now, we suppose ∃i0 , j0 ∈ 1,...,n{ } for which ai0

aj0
< 0  (the equation presents at 

least a variation of sign). Analogously, for  n ∈N , we define the recurrent sequences: 

  (21) xh
(n+1) = α ihxi

(n)

i=1

n

∑  , 1 ≤ h ≤ n  

considering  (x1
0 ,..., xn

0 )  the smallest positive integer solution of (20). Replacing (21) in 
(20), it identifies the coefficients and it looks for n2  unknowns α ih ,   1 ≤,i,h ≤ n . (This 
calculation is very intricate, but it can be done by means of a computer.) The method 
goes on similarly, but the calculations become more and more intricate – for example to 
calculate An , one must use a computer. 
 (The reader will be able to try this for the Diophantine equation  
ax2 + by2 − cz2 + d = 0 , with  a,b,c ∈N*  and  d ∈Z ) 
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SOME STATIONARY SEQUENCES 
 
 §1. Define a sequence { }na  by a1 = a  and an+1 = P(an ) , where P  is a polynomial 
with real coefficients. For which a  values, and for which P  polynomials will this 
sequence be constant after a certain rank? 
 In this note, the author answers this question using as reference F. Lazebnik & Y. 
Pilipenko’s E 3036 problem from A. M. M., Vol. 91, No. 2/1984, p. 140. 
 An interesting property of functions admitting fixed points is obtained. 
 
 §2. Because { }na  is constant after a certain rank, it results that { }na  converges. 
Hence, ( ) :  ( )e e P e∃ ∈ = , that is the equation P(x) − x = 0  admits real solutions. Or P  
admits fixed points (( ) :  ( ) )x P x x∃ ∈ = . 
 Let e1,...,em be all real solutions of this equation. It constructs the recurrent set 
E as follows: 
 1) e1,...,em ∈E ; 
 2) if b ∈E  then all real solutions of the equation P(x) = b belong to E ; 
 3) no other element belongs to E , then the obtained elements from the rule 1) or 
2), applying for a finite number of times these rules. 
 We prove that this set E , and the set A of the "a" values for which { }na  
becomes constant after a certain rank are indistinct, "E ⊆ A" . 

1) If  a = ei ,  1 ≤ i ≤ m , then  (∀)n ∈N*    an = ei = constant . 
2) If for a = b  the sequence  1 2,  ( )a b a P b= =  becomes constant after a  

certain rank, let x0  be a real solution of the equation P(x) − b = 0 , the new formed 
sequence: a1

' = x0 ,   a2
' = P(x0 ) = b,   a3

' = P(b)...  is indistinct after a certain rank with the 
first one, hence it becomes constant too, having the same limit. 

3) Beginning from a certain rank, all these sequences converge towards the same 
limit e  (that is: they have the same e value from a certain rank) are indistinct, 
equal to e . 

"A ≤ E"  
Let "a" be a value such that: { }na  becomes constant (after a certain rank) equal 

to e . Of course { }1,..., me e e∈  because e1,...,em  are the single values towards these 
sequences can tend.  

If { }1,..., ma e e∈ , then  a ∈E . 

Let { }1,..., ma e e∉ , then  (∃)n0 ∈N :  an0 +1 = P(an0
) = e , hence we obtain a 

applying the rules 1) or 2) a finite number of times. Therefore, because { }1,..., me e e∈ and 
the equation  P(x) = e  admits real solutions we find an0

among the real solutions of this 
equation: knowing an0

we find an0 −1  because the equation P(an0 −1) = an0
 admits real 

solutions (because an0
∈E  and our method goes on until we find a1 = a  hence a ∈E . 

Remark. For P(x) = x2 − 2 we obtain the E 3036 Problem (A. M. M.). 
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Here, the set E becomes equal to  

{ }
0 0

*

  

1,0, 2 2 2 ... 2 ,   2 ... 2 3 ,   
n times n times

n n
⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪± ± ± ± ± ± ∈ ± ± ± ∈⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∪ ∪N N . 

Hence, for all a ∈E  the sequence  a1 = a,  an+1 = an
2 − 2  becomes constant after a 

certain rank, and it converges (of course) towards –1 or 2: 

 (∃)n0 ∈N* :  (∀)n ≥ n0       an = −1  
 or 
   (∃)n0 ∈N* :  (∀)n ≥ n0       an = 2 . 
 
 
 
 [Published in “Gamma”, Brasov, XXIII, Anul VIII, No. 1, October 1985, pp. 5-6.] 
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ON CARMICHAËL’S CONJECTURE 

 
 Carmichaël’s conjecture is the following: “the equation ϕ(x) = n  cannot have a 
unique solution,  (∀)n ∈N , where ϕ  is the Euler’s function”. R. K. Guy presented in [1] 
some results on this conjecture; Carmichaël himself proved that, if n0  does not verify his 
conjecture, then n0 > 1037 ; V. L. Klee [2] improved to n0 > 10400 , and P. Masai & A. 
Valette increased to n0 > 1010000 . C. Pomerance [4] wrote on this subject too. 
 In this article we prove that the equation ϕ(x) = n  admits a finite number of 
solutions, we find the general form of these solutions, also we prove that, if x0  is the 
unique solution of this equation (for a n∈N ), then x0  is a multiple of 22 ⋅ 32 ⋅ 72 ⋅ 432  
(and x0 > 1010000  from [3]). 
 
 §1. Let x0  be a solution of the equation ϕ(x) = n . We consider n  fixed. We’ll try 
to construct another solution y0 ≠ x0 . 
 The first method: 
 We decompose x0 = a ⋅ b  with ,  a b  integers such that (a, b) = 1. 

we look for an a ' ≠ a  such that ϕ(a ') = ϕ(a)  and (a’, b) = 1; it results that 
y0 = a '⋅ b . 
 The second method: 
 Let’s consider x0 = q1

β1 ...qr
βr , where all  βi ∈N* , and q1,...,qr are distinct primes 

two by two; we look for an integer q  such that (q, x0) = 1 and ϕ(q)  divides 
x0 / (q1,...,qr ) ; then y0 = x0q / ϕ(q) . 
 We immediately see that we can consider q  as prime. 
 The author conjectures that for any integer x0 ≥ 2  it is possible to find, by means 
of one of these methods, a y0 ≠ x0  such that ϕ(y0 ) = ϕ(x0 ) . 
 
 Lemma 1. The equation ϕ(x) = n  admits a finite number of solutions,  (∀)n ∈N . 
 Proof. The cases n = 0,1  are trivial. 
 Let’s consider n  to be fixed, 2n ≥ . Let p1 < p2 < ... < ps ≤ n + 1  be the sequence 
of prime numbers. If x0  is a solution of our equation (1) then 0x  has the form 
x0 = p1

α1 ...ps
α s , with all  α i ∈N . Each α i  is limited, because: 

 { }( ) 1,2,..., ,  ( ) :  i
i ii s a p nα∀ ∈ ∃ ∈ ≥N . 

Whence 0 ≤ α i ≤ ai + 1 , for all i . Thus, we find a wide limitation for the number of 

solutions: (ai + 2)
i=1

s

∏  

 
Lemma 2. Any solution of this equation has the form (1) and (2): 
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1
0

1

1

....
1 1

s

s

sppx n
p p

εε
⎛ ⎞⎛ ⎞

= ⋅ ∈⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠
Z  ,  

where, for 1 i s≤ ≤ , we have 0iε =  if 0iα = , or 1iε =  if 0iα ≠ . 

Of course, 1
0 0

1

1

( ) ....
1 1

s

s

sppn x x
p p

εε

ϕ
⎛ ⎞⎛ ⎞

= = ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠
,  

whence it results the second form of x0 . 
 From (2) we find another limitation for the number of the solutions: 2s − 1  
because each ε i  has only two values, and at least one is not equal to zero. 
 
 §2. We suppose that x0  is the unique solution of this equation. 
 
 Lemma 3. x0  is a multiple of 22 ⋅ 32 ⋅ 72 ⋅ 432 . 
 Proof. We apply our second method. 
 Because ϕ(0) = ϕ(3)  and ϕ(1) = ϕ(2)  we take x0 ≥ 4 . 
 If 2 /| x0  then there is y0 = 2x0 ≠ x0  such that ϕ(y0 ) = ϕ(x0 ) , hence 2 | x0 ; if 
4 /| x0 ,  then we can take y0 = x0 / 2 . 
 If 3 /| x0  then y0 = 3x0 / 2 , hence 3 | x0 ; if  9 /| x0  then y0 = 2x0 / 3 , hence 9 | x0 ; 
whence 4 ⋅ 9 | x0 . 
 If 7 /| x0  then 0 07 / 6y x= , hence 07 | x ; if 049 | x/  then 0 06 / 7y x= hence 049 | x ; 

whence 04 9 49 | x⋅ ⋅ . 

If 043 | x/  then 0 043 / 42y x= , hence 043 | x ; if  432  /| x0  then y0 = 42x0 / 43 , 
hence 432  | x0 ;  whence  22 ⋅ 32 ⋅ 72 ⋅ 432 | x0 . 
 Thus x0 = 2γ 1 ⋅ 3γ 2 ⋅ 7γ 3 ⋅ 43γ 4 ⋅ t , with all γ i ≥ 2  and (t, 2@3@7@43) = 1 and  
x0 > 1010000  because n0 > 1010000 . 
 
 §3. Let’s consider m1 ≥ 3. If 5 /| x0  then 5x0 / 4 = y0 , hence 5 | x0 ; if  25 /| x0  then 
y0 = 4x0 / 5 , whence 25 | x0 . 
 We construct the recurrent set M of prime numbers: 

a) the elements 2, 3,5 ∈M ; 
b) if the distinct odd elements e1,...,en ∈M  and bm = 1 + 2m ⋅ e1,...,en  is prime, 

with m = 1  or m = 2 , then bm ∈M ; 
c) any element belonging to M is obtained by the utilization (a finite number of 

times) of the rules a) or b) only. 
The author conjectures that M is infinite, which solves this case, because it results 

that there is an infinite number of primes which divide x0 . This is absurd. 
For example 2, 3, 5, 7, 11, 13, 23, 29, 31, 43, 47, 53, 61, … belong to M . 
 

* 
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 The method from §3 could be continued as a tree (for γ 2 ≥ 3  afterwards γ 3 ≥ 3 , 
etc.) but its ramifications are very complicated… 
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A PROPERTY FOR A COUNTEREXAMPLE TO 
CARMICHAËL’S CONJECTURE 

 
 Carmichaël has conjectured that:  
( ) ,   ( ) n m∀ ∈ ∃ ∈N N , with m ≠ n , for which ϕ(n) = ϕ(m) , where ϕ  is Euler’s totient 
function.  
 There are many papers on this subject, but the author cites the papers which have 
influenced him, especially Klee’s papers. 
 Let n  be a counterexample to Carmichaël’s conjecture.  
 Grosswald has proved that n  is a multiple of 32, Donnelly has pushed the result 
to a multiple of 214 , and Klee to a multiple of 242 ⋅ 347 , Smarandache has shown that n  is 
a multiple of 22 ⋅ 32 ⋅ 72 ⋅ 432 . Masai & Valette have bounded  1000010n > . 
 
 In this note we will extend these results to: n  is a multiple of a product of a very 
large number of primes. 
 We construct a recurrent set M such that: 

a) the elements 2,3 ∈M ; 
b) if the distinct elements 2, 3,q1,...,qr ∈M  and 11 2 3a b

rp q q= + ⋅ ⋅ ⋅ ⋅ ⋅  is a prime,  
where { }0,1,2,..., 41a ∈  and  { }0,1,2,..., 46b∈ , then p ∈M ; r ≥ 0 ; 

c) any element belonging to M  is obtained only by the utilization (a finite  
number of times) of the rules a) or b). 
 Of course, all elements from M  are primes. 
 Let n  be a multiple of 242 ⋅ 347 ;  

if  5 /| n  then there exists m = 5n/4 … n such that ϕ(n) = ϕ(m) ; hence 
 5 | n ; whence 5 ∈M ; 
 if  52  /| n  then there exists m = 4n/5 … n with our property; hence 52 | n ; 
 analogously, if  7 /| n  we can take 7 / 6m n n= ≠ , hence  7 | n ; if  72  /| n  we can  
 take m = 6n / 7 ≠ n ; whence  7 ∈M  and  72 | n ;  etc. 
 The method continues until it isn’t possible to add any other prime to M , by its 
construction. 
 For example, from the 168 primes smaller than 1000, only 17 of them do not 
belong to  M (namely: 101, 151, 197, 251, 401, 491, 503, 601, 607, 677, 701, 727, 751, 
809, 883, 907, 983); all other 151 primes belong to M . 
 Note { }1 22,3, , ,..., ,...sM p p p= , then n  is a multiple of 242 ⋅ 347 ⋅ p1

2 ⋅ p2
2 ⋅ ⋅ ⋅ ps

2 ⋅ ⋅ ⋅  
From our example, it results that M  contains at least 151 elements, hence s ≥ 149 . 
 If  M  is infinite then there is no counterexample n , whence Carmichaël’s 
conjecture is solved.  
 (The author conjectures M  is infinite.) 
 Using a computer it is possible to find a very large number of primes, which 
divide n , using the construction method of M , and trying to find a new prime p  if  
p − 1  is a product of primes only from M . 
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ON DIOPHANTINE EQUATION X 2 = 2Y 4 − 1  
 

 Abstract: In this note we present a method of solving this Diophantine 
equation, method which is different from Ljunggren’s, Mordell’s, and R.K.Guy’s. 
 
 In his book of unsolved problems Guy shows that the equation x2 = 2y4 − 1  has, 
in the set of positive integers, the only solutions (1,1)  and (239,13) ; (Ljunggren has 
proved it in a complicated way). But Mordell gave an easier proof. 
  
 We’ll note t = y2 . The general integer solution for 2 22 1 0x t− + =  is  

   
xn+1 = 3xn + 4tn

tn+1 = 2xn + 3tn

⎧
⎨
⎩

 

for all  n ∈N , where (x0 , y0 ) = (1,ε ) , with  ε = ±1  (see [6]) or 

3    4 1 
2    3

n
n

n

x

t ε
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
, for all  n ∈N , where a matrix to the power zero is 

equal to the unit matrix I . 

 Let’s consider A =
3    4

2    3

⎛
⎝⎜

⎞
⎠⎟

, and  λ ∈R . Then det(A − λ ⋅ I ) = 0  implies 

λ1,2 = 3 ± 2 , whence if v  is a vector of  dimension two, then: Av = λ1,2 ⋅ v . 

 Let’s consider P =
2         2

2    - 2

⎛

⎝⎜
⎞

⎠⎟
 and D =

3 + 2 2        0

    0         3 -2 2

⎛

⎝
⎜

⎞

⎠
⎟ . We have  

P−1 ⋅ A ⋅ P = D , or 

1

1 2 ( )       ( )
2 2
2 1( )      ( )

4 2

n n
a b a b

A P D P
a b a b

−

⎛ ⎞
+ −⎜ ⎟

⎜ ⎟= ⋅ ⋅ =
⎜ ⎟

− +⎜ ⎟
⎝ ⎠

,  

where ( )3 2 2
n

a = +  and  ( )3 2 2
n

b = − .  

Hence, we find:  

( ) ( )

( ) ( )

1 2 1 2 3 2 2  + 3 2 2
2 2

2 2 2 23 2 2  +   3 2 2
4 4

n n

n

n nn

x

t

ε ε

ε ε

⎛ ⎞+ −
+ −⎜ ⎟⎛ ⎞

⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ + −⎜ ⎟
⎝ ⎠

,   n ∈N . 

Or ( ) ( )2 2 2 2 23 2 2  + 3 2 2
4 4

n n

ny ε ε+ −
= + − ,   n ∈N . 

For 0,  1n ε= =   we obtain y0
2 = 1  (whence x0

2 = 1 ), and for 3,  1n ε= =  we 

obtain 2
3 169y =  (whence 3 239x = ). 
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(1) 

1
2 2

2 -2 3 -2 -1 3 1

0 0

      
3 2  + 3 2

2 2 1

n n

n k k n k k
n

k k

n n
y

k k
ε

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+

= =

⎛ ⎞ ⎛ ⎞
= ⋅ ⋅⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

∑ ∑  

We still must prove that yn
2  is a perfect square if and only if n = 0,3 . 

We can use a similar method for the Diophantine equation x2 = Dy4 ± 1 , or more 
generally: C ⋅ X 2a = DY 2b + E , with  a,b ∈N*  and  C, D,E ∈Z* ; denoting X a = U ,  
Y b = V , and applying the results from F.S. [6], the relation (1) becomes very 
complicated. 
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ON AN ERDÖS’ OPEN PROBLEMS 
 
 In one of his books (“Analysis…”) Mr. Paul Erdös proposed the following 
problem: 
 “The integer  n  is called a barrier for an arithmetic function f  if m + f (m) ≤ n  
for all  m < n .  

Question: Are there infinitely many barriers for  εv(n) , for some  ε > 0 ? Here 
v(n)  denotes the number of distinct prime factors of n .” 
 We found some results regarding this question, which results make us to 
conjecture that there is a finite number of barriers, for all ε > 0 . 
 Let  R(n)  be the relation:  m + εv(m) ≤ n,   ∀m < n . 
 
 Lemma 1. If ε > 1  there are two barriers only:  n = 1  and n = 2  (which we call 
trivial barriers). 
 Proof. It is clear for n = 1  and  , n = 2  because  (0) (1) 0v v= = . 
 Let’s consider n ≥ 3 . Then, if  m = n − 1 we have m + εv(m) ≥ n − 1 + ε > n , 
contradiction. 
 
 Lemma 2. There is an infinity of numbers which cannot be barriers for εv(n) ,  
∀ε > 0 . 
 Proof. Let’s consider  s,k ∈N*  such that s ⋅ ε > k . We write n  in the form 
n = pi1

α i1 ⋅ ⋅ ⋅ pis

α is + k , where for all  j ,   α i j
∈N*  and  pij

 are positive distinct primes. 
 Taking m = n − k  we have  m + εv(m) = n − k + ε ⋅ s > n .  
 But there exists an infinity of  n ’s because the parameters α i1

,...,α is
are arbitrary 

in   N
*  and  pi1

,..., pis
 are arbitrary positive distinct primes, also there is an infinity of 

couples (s, k)  for an  ε > 0 , fixed , with the property s ⋅ ε > k . 
 
 Lemma 3. For all  ε ∈(0,1]  there are nontrivial barriers for  εv(n) . 
 Proof. Let  t  be the greatest natural number such that  tε ≤ 1  (always there is 
such t ). 
 Let  n  be from 1 1[3,..., )t tp p p +⋅ ⋅⋅ , where  { }ip   is  the sequence of the positive 
primes.  Then 1 ≤ v(n) ≤ t . 
 All 1 1[1,..., ]t tn p p p +∈ ⋅⋅⋅  is a barrier, because: ∀ 1 ≤ k ≤ n − 1 , if  m = n − k  we 
have  m + εv(m) ≤ n − k + ε ⋅ t ≤ n . 
 Hence, there are at list 1 1t tp p p +⋅⋅⋅  barriers. 
 
 Corollary. If ε → 0  then  n  (the number of barriers) →∞. 
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 Lemma 4. Let’s consider 1 1[1,..., ]r rn p p p +∈ ⋅⋅⋅  and  ε ∈(0,1] . Then: n  is a 
barrier if and only if R(n)  is verified for { }1, 2,..., 1m n n n r∈ − − − + . 
 Proof. It is sufficient to prove that R(n)  is always verified for  m ≤ n − r . 
 Let’s consider m = n − r − u , u ≥ 0 . Then m + εv(m) ≤ n − r − u + ε ⋅ r ≤ n . 
 
 Conjecture. 
 We note Ir ∈[ p1 ⋅ ⋅ ⋅ pr ,...,⋅p1 ⋅ ⋅ ⋅ pr pr +1) . Of course 

 
Ir

r ≥1
U = N \ {0,1} , and  

Ir1
∩ Ir2

= Φ  for r1 ≠ r2 . 
 Let  Nr (1+ t)  be the number of all numbers n  from Ir  such  that 1 ≤ v(n) ≤ t . 

We conjecture that there is a finite number of barriers for εv(n) , ∀ε > 0 ; because  

 
 
lim
r→∞

N r (1+ t)

p1 ⋅ ⋅ ⋅ pr +1 − p1 ⋅ ⋅ ⋅ pr

= 0  

and the probability (of finding of r − 1  consecutive values for  m , which verify the 
relation  R(n) ) approaches zero. 
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ON ANOTHER ERDÖS’ OPEN PROBLEM  
 
 Paul Erdös has proposed the following problem: 

(1) “Is it true that lim
n→∞

max
m<n

(m + d(m)) − n = ∞ ?, where d(m)  represents the 

number of all positive divisors of m .” 
We clearly have : 
 
Lemma 1. { } *

1( ) \ 0,1,2 ,  ( )! ,  ( )! ,..., ,  0s sn s α α α∀ ∈ ∃ ∈ ∃ ∈ ≠N N N , such that 

n = p1
α1 ⋅ ⋅ ⋅ ps

α s + 1 , where p1, p2 ,...  constitute the increasing sequence of all 
positive primes. 
 
Lemma 2.  Let  s ∈N* . We define the subsequence  ns (i) = p1

α1 ⋅ ⋅ ⋅ ps
α s + 1 , where  

α1,...,α s  are arbitrary elements of  N , such that α s ≠ 0  and α1 + ... + α s → ∞  and we 
order it such that ns (1) < ns (2) < ...  (increasing sequence). 

We find an infinite number of subsequences  { }( )sn i , when s  traverses  N
* , with 

the properties:  
 a) lim

i→∞
ns (i) = ∞  for all   s ∈N* . 

 b) { } { }1 2

* *( ),  ( ),  s sn i i n j j∈ ∩ ∈ = ΦN N , for  s1 ≠ s2  (distinct subsequences). 

 c) { } { }
*

*\ 0,1,2 ( ),  s
s

n i i
∈

= ∈∪
N

N N  

Then: 
 Lemma 3. If  in (1) we calculate the limit for each  subsequence   { }( )sn i  we 
obtain: 

( )1 1 1

1
1

1 1 1 1lim max ( ( )) 1 lim ( 1)...( 1) 1s s s

s
s

s s s sn nm p p
m d m p p p p p p

α α

α α αα α αα α
→∞ →∞< ⋅⋅⋅

⎛ ⎞+ − ⋅⋅⋅ − ≥ ⋅⋅⋅ + + + − ⋅⋅⋅ − =⎜ ⎟
⎝ ⎠

= lim
n→∞

(α1 + 1)...(α s + 1) − 1( )> lim
n→∞

α1 + ... + α s( )= ∞  

From these lemmas it results the following: 
 
 Theorem: We have  lim

n→∞
max
m<n

(m + d(m)) − n = ∞ . 
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METHODS FOR SOLVING LETTER SERIES 
 

 Letter series problems occur in many American tests for measuring quantitative 
ability of supervisory personnel. 
 They are more difficult than number-series used for measuring mathematical 
ability because are unusual and complex. 
 According to the English alphabetic order: 
 
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
 
as well as to the a given sequence of letters, the equation consists of finding letters of the 
sequence which obey same rules. 
 For example, let b d  f  h j … be a given sequence; find the next two letters in this 
series. 
 Of course they are l  n  because the letters are taken two by two from the alphabet: 
b c  d  e  f  g  h i  j  k  l  m  n . 
 In order to solve easier letter –series we transform them into number-series, and in 
this case it’s simpler to use some well-known mathematical procedures. 
 
 Method I. 
 
 Associate to each letter from the alphabet a number in this way: 
 
A  B  C  D  E  F  G  H  I   J    K   L   M   N   O   P   Q   R   S   T   U  V   W   X   Y   Z 
1   2   3   4  5   6  7   8  9  10  11  12  13  14   15  16  17 18 19  20  21 22  23  24  25 26 
 
 Sample:  d c i h n m … becomes  14,3;  9,8;  14,13... , whence  the next two 

numbers will be 19, 18, i.e.  s r  
  
 Method II. 
 
 Let  O(L)  be the order of the letter  L  in the above succession. For example 
 O (F)=6,   O (S)=19,  etc.  
 According to the given sequence associate the number zero (0) to its first letter, 
for the second one the difference between second letter’s order and first letter’s order, 
 Sample: b f  e c g k  j  h … becomes  0,  4,  1, 2;  4,  1,  2;...,− − − −  whence the 

next numbers will be  4;  4, − 1, − 2 ; equivalent to l  p o m . 
 
 See the rule: 
 



 
 

35

 
 
 
 
            
            
            
            
            
            
            
            
            
            
            
            
            
            
  
 
 REFERENCE 
 
Passbooks for career opportunities, computer Aptitude Test (CAT), ew York, 1983, 
National Learning Corporation. 
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GENERALIZATION OF AN ER’S MATRIX METHOD FOR 
COMPUTING 

 
 Er’s matrix method for computing Fibonacci numbers and their sums can be 
extended to the s-additive sequence: 

g− s+1 = g− s+ 2 = ... = g−1 = 0 ,  g0 = 1 ,   
and    

gn = gn− i
i=1

s

∑  for n > 0 . 

 For example, if we note Sn = gj
j =1

n−1

∑ , we define two (s + 1) × (s + 1) matrixes such 

that: 
 

Bn =

1         0        0    ...  0          0

Sn              gn       gn−1  ... gn− s+2   gn− s+1

 :        :        :     ...  :          :

Sn− s+1  gn− s+1  gn− s  ... gn− 2s+ 3  gn−2s+2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, 

 
 

n ≥ 1, and  

  M =

1     0     0 ...  0

1     1     1  ...  0

:     :     :   ...  :

1     1    0  ...   1

1     1    0  ...   0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

,   

 
thus, we have analogously: 
 1

1 ,  n r c r c
nB M M M M+ +

+ = = ⋅ ,  
whence  
 Sr +c = Sr + grSc + gr −1Sc−1 + ... + gr − s+1Sc− s+1 ,   
 gr +c = grgc + gr −1gc−1 + ... + gr − s+1gc− s+1 ,  
 
and for r = c = n  it results:  
 S2n = Sn + gnSn + gn−1Sn−1 + ... + gn− s+1Sn− s+1 ,   
 g2n = g

n

2 + g
n−1

2 + ...+ g
n−s+1

2 ; 
for  r = n ,  c = n − 1 , we find: 
 g2n−1 = gngn−1 + gn−1gn− 2 + ... + gn− s+1gn− s , etc.  
 S2n−1 = Sn + gnSn−1 + gn−1Sn−2 + ... + gn− s+1Sn− s  
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 Whence we can construct a similar algorithm as M. C. Er for computing s-
additive numbers and their sums. 
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ON A THEOREM OF WILSON 
 

§1. In 1770 Wilson found the following result in the Number’s Theory: “If p  is 
prime, then p − 1( )! ≡ −1mod p( )”. 

Did you ever question yourself what happens if the module m  is not anymore 
prime? It’s simple, one answers, “if m  is not prime and m ≠ 4 then  

m − 1( )! ≡ 0 mod m( )”; for the proof see [4]. 
This is fine, I would continue, but if in the product from the left side of this 

congruence we consider only numbers that are prime with m ? 
For this reason we’ll address this case, and provide a generalization of Wilson’s 

theorem to any modulo, this will conduce to a nice result. 
 
§2. Let m  be a whole number. We note { ,  A x= ∈Z x  is of the form 

± pn ,  ± 2 pn ,  ± 2r ,  or 0 , where p  is odd prime,  n ∈N , and r = 0,1,2 } . 
 
Theorem*. Let c1,c2 ,...,cϕ (m )  a reduced system of residues modulo m . Then 

c1c2 . ⋅ ⋅ ⋅ cϕ (m ) ≡ −1(mod m)  if m ∈A , respectively +1 if m ∉A ; where ϕ  is Euler’s 
function. 

To prove this we’ll introduce some lemmas. 
 
Lemma 1. ϕ(m)  is a multiple of 2. 
 
Lemma 2. If c2 ≡ 1(mod m)  then (m − c)2 ≡ 1(mod m)  and c(m − c) ≡ −1(mod m) , 

and m − c /≡ c(mod m) . 
Indeed, if m − c ≡ c(mod m) , we obtain 2c ≡ 0(mod m) , that is (c, m) /≡ 1 . This is 

absurd. 
Therefore we proved that in any reduced system of residue modulo m  it exists an 

even number of elements c  with the property 
 P1 :  c2 ≡ 1(mod m) . 

If ci0
is part of the system, because ( )0

, 1ic m ≅ , it results that also 

c1ci0
,c2ci0

,...,cϕ (m )ci0
 constitutes a reduced system of residues m . Because 

(1,m) ≅ 1 results that for any c from c1,c2 ,...,cϕ (m )  it exist and it is unique c '  from 
c1,c2 ,...,cϕ (m )  such that  
  (1)  cc ' ≡ 1 mod m( ) 
and reciprocally: for any c '  from c1,c2 ,...,cϕ (m )  it exists an unique c such that  
  (2) c 'c ≡ 1 mod m( ). 

 By multiplying these two congruence for all the elements from the system and 
selecting one of them in the case in which c ≠ c '  it results that 
c1,c2 ,...,cϕ (m ) ⋅b ≡ 1 mod m( ), where b represents the product of all elements c  for which 
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c = c ' , because in this case c2 ≡ 1 mod m( ). These elements which verify the property P1  
can be grouped in pairs as follows: c  with m − c , and then c(m − c) ≡ −1 mod m( ).  
Therefore  

c1,c2 ,...,cϕ (m ) ≡ ±1 mod m( ), 
depending of the number of distinct c in the system that have the property P1  is or not a 
multiple of 4. 
 If m ∈A  the equation x2 ≡ 1 mod m( ) has two solutions (see [1], pp. 38-88), 
therefore we conclude that c1,c2 ,...,cϕ (m ) ≡ −1 mod m( ). 
 This first part of the theorem could have been proved also using the following 
reasoning: 

If m ∈A  then it exist primitive roots modulo m  (see [1], pp. 65-68-72); let d  be 
such a root; then we could represent the system reduced to residues modulo m , 
{ }1 2 ( ), ,..., mc c cϕ  as { }1 2 ( ), ,..., md d dϕ  after rearranging, from were 

 c1,c2 ,...,cϕ (m ) ≡ d
ϕ (m )

2
⎛
⎝⎜

⎞
⎠⎟

1+ϕ (m

≡ −1 mod m( ),  

because from dϕ (m ≡ 1 mod m( ) we have that  

d
ϕ (m)

2 − 1
⎛
⎝⎜

⎞
⎠⎟

d
ϕ (m)

2 + 1
⎛
⎝⎜

⎞
⎠⎟

≡ 0 mod m( )  

therefore  

d
ϕ (m )

2 ≡ −1 mod m( );  
contrary would have been implied that  d  is not a primitive root modulo m . 
 For the second part of the proof we shall present some other lemmas. 
 
 Lemma 3. Let’s consider the integer numbers nonzero, non-unitary m1  and m2  
with m1, m2( )≅ 1 . Then  
  (3) x2 ≡ 1(mod m1)  admits the solution x1  
and 
  (4) x2 ≡ 1(mod m2 )  admits the solution x2  
if and only if  
  (5) x2 ≡ 1(mod m1m2 )  admits the solution 
  (5’) x3 ≡ (x2 − x1)m1

' m1 + x1(mod m1m2 ) , 
where m1

'  is the inverse of m1  in rapport with modulo m2 . 
 Proof. 
 From (3) it results  

x = m1h + x1 ,  h ∈Z ,  
and from (4) we find  

x = m2k + x2 ,  k ∈Z .  
Therefore  
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  (6) m1h − m2k = x2 − x1  
this Diophantine equation has integer solutions because  
  (7) m1, m2( )≅ 1  
 From (6) results ( ) '

2 1 1 2(mod )h x x m m≡ − .  
Therefore  

( ) '
2 1 1 2 ,   h x x m m t t≡ − + ∈Z   

and  
( ) '

2 1 1 1 1 1 2x x x m m x m m t≡ − + +   
or  

x ≡ x2 − x1( )m1
' m1 + x1 mod(m1 m2 ) . 

(The rationale would have been analog if we would have determined k  by finding 
x ≡ x1 − x2( )m2

' m2 + x2 mod(m1 m2 ) ,  
but this solution is congruent modulo m1 m2  with the one found anterior; m2

'  being the  
reciprocal of m2  modulo m1 .) 
 
 Reciprocal. Immediately, results that  

x3 ≡ x1(mod m1)  and x3 ≡ x2 (mod m2 ) . 
 

 Lemma 4. Let x1,  x2 ,  x3 be the solutions for congruencies (3), (4) respective (5) 
such that  

x3 ≡ x2 − x1( )m1
' m1 + x1(mod m1 m2 )  

 Analogue for x1
' ,  x2

' ,  x3
' . 

(O) Will consider from now on every time the classes of residue modulo m that 
have represents in the system { }0,1, 2,..., 1m − . 

Then if x1,  x2( )≠ x1
' ,  x2

'( ) it results that x3 /≡ x3
' (mod m) . 

Proof. By absurd.  
Let x1 ≠ x1

'  (analogue it can be shown for x2 ≠ x2
' ).  

From x3 ≡ x3
' (mod m1m2 )  it would result that x3 ≡ x3

' (mod m1) ,  
that is 

  x2 − x1( )m1
' m1 + x1 ≡ (x2

' − x1
' )m1

' m1 + x1
' (mod m1) ,  

Thus 
  x1 ≡ x1

' (mod m1) .   
Since x1  and x1

'  are from { }0,1, 2,..., 1m −  it results that x1 = x1
' , which is absurd. 

 
Lemma 5. The congruence x2 ≡ 1 mod m( ) has an even number of distinct 

solutions. 
This results from  lemma 2. 
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Lemma 6. In the conditions of lemma 3 we have that the number of distinct 
solutions for congruence (5) is equal to the product between the number of congruencies’ 
solutions (3) and (4). And, all solutions for congruence (5) are obtained from the 
solutions of congruencies (3) and (4) by applying formula (5’). 

Indeed, from lemmas 3, 4 we obtain the assertion. 
 
Lemma 7. The congruence  
 (8) x2 /≡ 1 mod 2m( ), has only four distinct solutions: 

    ± 1,  ± (2n−1 − 1) modulo 2n . 
By direct verification it can be shown that these satisfy (8). 
Using induction we will show that there don’t exist others . 
For n = 3  it verifies, by tries, analog for n = 4 . 
We consider the affirmation true for values ≤ n − 1 . Let’s prove it for n . 
We retain observation (O) and the following remark: 
 (9) if x0  is solution for congruence (8) it will be solution also for 

congruence ( )2 1 mod 2ix ≡ , 3 ≤ i ≤ n − 1.  

By absurdum let a /≡ ±1,  ± (2n−1 − 1) be a solution for (8). We will show that 
(∃)i ∈ 3, 4,...,n − 1{ } such that a2 /≡ 1(mod 2i ) . 

We can consider 2
n

2 < a < 2n − 1 ; because a  is solution for (8) if and only if −a  
is solution for (8). 

We consider the case n = 2k,  k ≥ 2 , integer. (It will analogously be shown when 
n is odd). Let a = 2k + r , 1 ≤ r ≤ 22k − 2k − 2  

 (10) a2 = 22k + r ⋅ 2k +1 + r2 ≡ 1(mod 2n ) , 
from here r ≠ 1 ; it results that  

2 1(mod 2 ),  3 1ir i k≡ ≤ ≤ +  
 From the induction’s hypothesis, for k + 1  we find r ≡ 2k − 1(mod 2k +1)  and 
substituting in (10) we obtain:  

−2k +2 ≡ 0(mod 22k ) ,  
or k ≤ 2  thus n = 4 , which is a contradiction.  

Therefore, it results the lemma’s validity.  
 
Lemma 8. The congruence x2 ≡ 1 mod m( ) has  

 

2s−1,   if    α1 = 0,1;

2s ,     if    α1 = 2;

2s+1,   if    α1 ≥ 3

⎧

⎨
⎪

⎩
⎪

 

distinct solutions modulo m = ε2α1 p2
α2 ⋅ ⋅ ⋅ ps

α s , where ε = ±1 ,  α j ∈N*,  j = 2,3,..., s , and  
pj  are odd prime, different numbers two by two. 

 Indeed, the congruence x2 ≡ 1 mod 2α1( ) has   
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1,   if    α1 = 0,1;

2,   if    α1 = 2;

4,   if    α1 ≥ 3

⎧

⎨
⎪

⎩
⎪

 

 
distinct solutions, and congruence ( )2 1 mod ,  2j

jx p j sα≡ ≤ ≤  have each two distinct 

solutions (see [1], pp. 85-88). From lemma 6 and 7 it results this lemma too. 
* 

 With these lemmas, it results that the congruence c2 ≡ 1 mod m( ) with m ∈A  
admits a number of distinct solutions which is a multiple of 4. From where 
c1c2 . ⋅ ⋅ ⋅ cϕ (m ) ≡ 1(mod m) , that completely resolves the generalization of Wilson’s 
theorem. 
 The reader could generalize lemmas 2, 3, 4, 5, 6, 8 and utilize lemma 7 for the 
case in which we have the congruence x2 ≡ a mod m( ), with a, m( )≅ 1 . 
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by L. E. Dickson, Chelsea Publ. Hse., New York, 1992, that this theorem was also found 
by F. Gauss in 1801.]



 
 

43

 
A METHOD OF RESOLVING IN INTEGER NUMBERS OF 

CERTAIN NONLINEAR EQUATIONS 
 

 Let’s consider a polynomial with integer coefficients, of degree m  
  P(X1,..., Xn ) = ai1 ...in

0≤i1 +...+ in ≤m
0≤i j ≤m, j =1,n

∑ X1
i1 ...Xn

in  

 which can be decomposed in linear factors (which can eventually be established 
through the undetermined coefficients method): 
 P(X1,..., Xn ) = A1

(1)X1 + ... + An
(1)Xn + An+1

(1)( )⋅ ⋅ ⋅ A1
(m )X1 + ... + An

(m )Xn + An+1
(m )( )+ B  

with all Aj
(k ),  B  in  Q , but which by bringing to the same common denominator and by 

eliminating it from the equation P(X1,..., Xn ) = 0  they can be considered integers.. Thus 
the equation transforms in the following system: 

A1
(1)X1 + ... + An

(1)Xn + An+1
(1) = D1

................................................

A1
(m )X1 + ... + An

(m )Xn + An+1
(m ) = Dm

⎧

⎨
⎪

⎩
⎪

 

where D1,..., Dm  are the divisors for B  and D1 ⋅ ⋅ ⋅ Dm = B . 
 We resolve separately each linear Diophantine equation and then we intersect the 
equations. 
 
 Example. Resolve in integer numbers the equation:  
  −2x3 + 5x2y + 4xy2 − 3y3 − 3 = 0 . 
 We’ll write the equation in another format 
  (x + y)(2x − y)(−x + 3y) = 3 . 
 Let m,  n  and p  be the divisors of 3, m ⋅ n ⋅ p = 3 . Thus  

  
   x + y = m

2x − y  = n

−x + 3y = p

⎧

⎨
⎪

⎩
⎪

 

 For this system to be compatible it is necessary that  

   

 1      1   m

  2  − 1   n

−1     3   p

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= 0 ,  

or 
   5m − 4n − 3p = 0   (1) 
In this case  

  x =
m + n

3
 and  y =

2m − n

3
 (2) 

 Because  m,n, p ∈Z , from (1) it results – by resolving in integer numbers – that: 
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m = 3k1 − k2

n =           k2

p = 5k1 − 3k2

⎧

⎨
⎪

⎩
⎪

  k1, k2 ∈Z  

which substituted in (2) will give us x = k1  and y = 2k1 − k2 . But k2 ∈D(3) = ±1, ±3{ }; 
thus the only solution is obtained for k2 = 1 , k1 = 0  from where x = 0  and y = −1 . 
 Analogue it can be shown that, for example the equation: 
  −2x3 + 5x2y + 4xy2 − 3y3 = 6  
 does not have solutions in integer numbers. 
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A GENERALIZATION REGARDING THE EXTREMES OF 
A TRIGONOMETRIQUE FUNCTION 

 
 
 After a passionate lecture of this book [1] (Mathematics plus literature!) I stopped 
at one of the problems explained here: 

At page 121, the problem 2 asks to determine the maximum of expression:  
 E(x) = (9 + cos2 x)(6 + sin2 x) .  
Analogue, in G. M. 7/1981, page 280, problem 18820*. 

 Here, we’ll present a generalization of these problems, and we’ll give a simpler 
solving method, as follows: 
 Let 2 2

1 1 2 2: ,  ( ) ( sin )( cos )f f x a x b a x b→ = + + ; 
find the function’s extreme values. 
 To solve it, we’ll take into account that we have the following relation: 
  cos2 x = 1 − sin2 x ,  
and we’ll note sin2 x = y . Thus y ∈[0,1] . 
 The function becomes:  

f (y) − (a1y + b1)(−a2y + a2 + b2 ) = −a1a2y2 + (a1a2 + a1b2 − a2b1)y + b1a2 + b1b2 , 
where y ∈[0,1] . 
 Therefore f  is a parabola. 
 If a1a2 = 0 , the problem becomes banal. 

 If a1a2 > 0 , f (ymax ) =
−Δ
4a

,  ymax =
−b

2a
  (*) 

a) when −
b

2a
∈[0,1] , the values that we are looking for are those from 

(*), and  

ymin = max −
b

2a
− 0,1 +

b

2a
⎧
⎨
⎩

⎫
⎬
⎭

 

b) when −
b

2a
> 1 , we have ymax = 1 , ymin = 0 . (it is evident that  

fmax = f (ymax )  and  fmin = f (ymin ) ) 

c) when −
b

2a
< 0 , we have ymax = 0 , ymin = 1 . 

If a1a2 < 0 , the function admits a minimum for  

 ymin = −
b

2a
, fmin

−Δ
4a

 (on the real axes)  (**) 

a) when −
b

2a
∈[0,1] , the looked after solutions are those from (**). And  

 ymax = max −
b

2a
,1 +

b

2a
⎧
⎨
⎩

⎫
⎬
⎭
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b) when −
b

2a
> 1 , we have  ymax = 0 , ymin = 1  

c) when −
b

2a
< 0 , we have  ymax = 1 ,  ymin = 0 . 

Maybe the cases presented look complicated and unjustifiable, but if you plot the 
parabola (or the line), then the reasoning is evident. 
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[1] Viorel Gh. Vod  - Surprize în matematica elementar  - Editura Albatros, 

Bucure ti, 1981. 
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ON SOLVING HOMOGENE SYSTEMS 

 
 In the High School Algebra manual for grade IX (1981), pp. 103-104, is presented 
a method for solving systems of two homogenous equations of second degree, with two 
unknowns. In this article we’ll present another method of solving them. 
 Let’s have the homogenous system   

  
a1x

2 + b1xy + c1y
2 = d1

a2 x2 + b2xy + c2y2 = d2

⎧
⎨
⎪

⎩⎪
 

with real coefficients. 
 We will note x = ty , (or y = tx ), and by substitution, the system becomes: 

  
2 2

1 1 1 1
2 2

2 2 2 2

( )             (1)

( )             (2)

y a t b t c d

y a t b t c d

⎧ + + =⎪
⎨

+ + =⎪⎩
 

 Dividing (1) by (2) and grouping the terms, it results an equation of second degree 
of variable t :  

a1d2 − a2d1( )t 2 + b1d2 − b2d1( )t + c1d2 − c2d1( )= 0  
 If Δ t < 0 , the system doesn’t have solutions. 
 If Δ t ≥ 0 , the initial system becomes equivalent with the following systems: 
 

  (S1)
x = t1y

a1x
2 + b1xy + c1y

2 = d1

⎧
⎨
⎩

 

and 

  (S2 )
x = t2y

a1x
2 + b1xy + c1y

2 = d1

⎧
⎨
⎩

 

which can simply be resolved by substituting the value of x  from the first equation into 
the second. 
 Further we will provide an extension of this method. 
 Let have the homogeneous system: 

  ,
0

,     1,
n

n i i
i j

i
a x y j m−

=

=∑  

 To resolve this, we note  x = ty , it results: 

  yn ai, jt
n− i = bj

i=0

n

∑ ,     j = 1,m  

 By dividing in order the first equation to the rest of them, we obtain: 

  ,1 , 1
0 0

/  ,   2,
n n

n i n i
i i j j

i i
a t a t b b j m− −

= =

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

 or: 

ai,1bj − ai, jb1( )t n− i

i=0

n

∑ ,   j = 2,m  
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 We will find the real values t1,..., t p  from this system. 
 The initial system is equivalent with the following systems 

  1
,1 1

0

( )   
h

n
h n i

i
i

x t y
S

a x y b−

=

=⎧
⎪
⎨ =⎪⎩
∑

 where h = 1, p . 
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ABOUT SOME PROGRESSIONS 
 

In this article one builds sets which have the following property: for any division 
in two subsets, at least one of these subsets contains at least three elements in arithmetic 
(or geometrical) progression. 

Lemma 1. The set of natural numbers cannot be divided in two subsets not 
containing either one or the other 3 numbers in arithmetic progression. 

Let us suppose the opposite, and have M1  and M 2  two subsets. Let k ∈M1 : 
a)  If k + 1 ∈M1 , then k − 1  and k + 2  belong to M 2 , if not we can build an 

arithmetic progression in M1 . For the same reason, since k − 1  and k + 2  
belong to M 2 , then k − 4  and k + 5 are in M1 . Thus k + 1  and k + 5 are in 
M1  thus k + 3  is in M 2 ; k − 4  and k  are in M1  thus k + 4  is in M1 ; we have 
obtained that M 2  contains k + 2 , k + 3  and k + 4 , which is in contradiction 
with the hypothesis. 

b) If k + 1 ∈M1  then k + 1 ∈M 2 . We analyze the element k − 1 . If k − 1 ∈M1 , 
we are in the case a) where two consecutive elements belong to the same set. 
If k − 1 ∈M 2 , then, because k − 1  and k + 1  belong to  M 2 , it results that 
k − 3  and k + 3 ∈M 2 , then ∈M1 . But we obtained the arithmetic progression 
k − 3 , k ,  k + 3  in M1 , contradiction. 
 

Lemma 2. If one puts aside a finite number of terms of the natural integer set, the 
set obtained still satisfies the property of the lemma 1. 

 In the lemma 1, the choice of k was arbitrary, and for each k one obtains at least 
in one of the sets M1  or M 2  a triplet of elements in arithmetic progression:  thus at least 
one of these two sets contains an infinity of such triplets. 

If one takes a finite number of natural numbers, it takes also a finite number of 
triplets in arithmetic progression. But at least one of the sets M1  or M 2  will contain an 
infinite number of triplets in arithmetic progression. 
 Lemma 3. If i1,..., is  are natural numbers in arithmetic progression, and a1,a2 ,... is 
an arithmetic progression (respectively geometric), then ai1

,....,ais
 is also an arithmetic 

progression (respectively geometric). 
 Proof:  
 For every j  we have:  2i j = i j −1 + i j +1  

a) If  a1,a2 ,...  is an arithmetic progression of ratio r : 
2aij

= 2(a1 + (i j − 1)r) = (a1 + (i j −1 − 1)r) + (a1 + (i j +1 − 1)r) = aij−1
+ aij+1

 
b) If a1,a2 ,...  is a geometric progression of ratio  r : 

( ) ( ) ( ) ( )1 1

1 1

2 21 2 2 1 12j j j j

j j j

i i i i
i i ia a r a r a r a r a a− +

− +

− − − −= ⋅ = ⋅ = ⋅ ⋅ ⋅ = +  

 
Theorem 1.  
It does not matter the way in which one partitions the set of the terms of an 

arithmetic progression (respectively geometric) in subsets: in at least one of these subsets 
there will be at least 3 terms in arithmetic progression (respectively geometric). 
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Proof: 
According to lemma 3, it is enough to study the division of the set of the indices 

of the terms of the progression in 2 subsets, and to analyze the existence (or not) of at 
least 3 indices in arithmetic progression in one of these subsets. 
But the set of the indices of the terms of the progression is the set of the natural numbers, 
and we proved in lemma 1 that it cannot be division in 2 subsets without having at least 3 
numbers in arithmetic progression in one of these subsets: the theorem is proved. 
 

Theorem 2. 
A set M , which contains an arithmetic progression (respectively geometric) 

infinite, not constant, preserves the property of the theorem 1.  
Indeed, this directly results from the fact that any partition of M  implies the 

partition of the terms of the progression. 
 
Application: Whatever the way in which one partitions the set 

{ }1 ,2 ,3 ,... ,   ( )m m mA m= ∈  in subsets, at least one of these subsets contains 3 terms in 
geometric progression. 

(Generalization of the problem 0:255 from “Gazeta Matematică”, Bucharest, no. 
10/1981, p. 400). 

The solution naturally results from theorem 2, if it is noticed that A  contains the 
geometric progression an = (2m )n ,  ( n ∈N* ). 

Moreover one can prove that in at least one of the subsets there is an infinity of 
triplets in geometric progression, because A  contains an infinity of different geometric 
progressions: an

( p) = (pm )n  with p  prime and  n ∈N* , to which one can apply the 
theorems 1 and 2. 
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ON SOLVING GENERAL LINEAR EQUATIONS IN THE 

SET OF NATURAL NUMBERS 
 

The utility of this article is that it establishes if the number of the natural solutions 
of a general linear equation is limited or not. We will show also a method of solving, 
using integer numbers, the equation ax − by = c  (which represents a generalization of 
lemmas 1 and 2 of [4]), an example of solving a linear equation with 3 unknowns in N, 
and some considerations on solving, using natural numbers, equations with n  unknowns. 

Let’s consider the equation: 

(1) aixi = b
i=1

n

∑  with all  ai ,b ∈Z , ia ≠0, and the greatest common 

factor (a1,...,an ) = d. 
Lemma 1: The equation (1) admits at least a solution in the set of integers, if d  

divides b . 
This result is classic. 
In (1), one does not diminish the generality by considering (a1,...,an ) = 1 , because 

in the case when d ≠ 1 , one divides the equation by this number; if the division is not an 
integer, then the equation does not admit natural solutions. 

It is obvious that each homogeneous linear equation admits solutions in  N : at 
least the banal solution! 

 
PROPERTIES ON THE NUMBER OF NATURAL SOLUTIONS OF A 

GENERAL LINEAR EQUATION 
 
We will introduce the following definition: 
Definition 1: The equation (1) has variations of sign if there are at least two 

coefficients ai ,aj  with 1 ≤ i, j ≤ n , such that sign( ai ⋅ aj ) = -1 
Lemma 2: An equation (1) which has sign variations admits an infinity of natural 

solutions (generalization of lemma 1 of [4]). 
Proof: From the hypothesis of the lemma it results that the equation has h  no null 

positive terms, 1 ≤ h ≤ n , and k = n − h  non null negative terms. We have 1 ≤ k ≤ n ; it is 
supposed that the first h  terms are positive and the following k  terms are negative (if 
not, we rearrange the terms). 

We can then write: 
 
 

'

1 1

h n

t t j j
t j h

a x a x b
= = +

− =∑ ∑  where aj
' = −aj > 0 .  

Let’s consider [ ]10 ,..., nM a a< =  the least common multiple, and ci = M / ai ,  

{ }1,2,...,i n∈ . 
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Let’s also consider [ ]0 ,P h k< =  the least common multiple, and h1 = P / h  and 
k1 = P / k . 

Taking 
xt = h1ct ⋅ z + xt

0 ,              1 ≤ t ≤ h

xj = k1cj ⋅ z + xj
0 ,        h + 1 ≤ j ≤ n       

⎧
⎨
⎪

⎩⎪
 

where  z ∈N , z ≥ max
−xt

0

h1ct

⎡

⎣
⎢

⎤

⎦
⎥ ,

x j
0

k1cj

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+1 with [γ] meaning integer part of γ, i.e. 

the greatest integer less than or equal to γ, and { }0 ,  1,2,...,ix i n∈ , a particular integer 
solution (which exists according to lemma 1), we obtain an infinity of solutions in the set 
of natural numbers for the equation (1). 

Lemma 3: 
a) An equation (1) which does not have variations of sign has at maximum 

a limited number of natural solutions. 
b) In this case, for 0b ≠ , constant, the equation has the maximum number 

of solutions if and only if all 1ia =  for { }1,2,...,i n∈ . 
Proof: (see also [6]). 

a) One considers all ai > 0  (otherwise, multiply the equation by -1). 
If 0b < , it is obvious that the equation does not have any solution (in N ). 
If b = 0 , the equation admits only the trivial solution.  
If b > 0 , then each unknown xi  takes positive integer values between 0 and 

b / ai = di  (finite), and not necessarily all these values. Thus the maximum number of 

solutions is lower or equal to: (1 + di
i=1

n

∏ ) , which is finite. 

b) For b ≠ 0 , constant, (1 + di
i=1

n

∏ )  is maximum if and only if di  are  

maximum, i.e. iff ai = 1 for all i , where { }1,2,...,i n= . 
Theorem 1. The equation (1) admits an infinity of natural solutions if and 

only if it has variations of sign. 
This naturally follows from the previous results. 
 
Method of solving. 
 
Theorem 2. Let’s consider the equation with integer coefficients ax − by = c , 

where a  and b > 0  and a,b( )= 1 . Then the general solution in natural 
numbers of this equation is:  

x = bk + x0

y = ak + y0

⎧
⎨
⎩

 where ( )0 0,x y  is a particular integer solution of the equation, 

and [ ] [ ]{ }0 0max / , /k x b y a≥ − − is an integer parameter (generalization of lemma 2 of [4]). 
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Proof: It results from [1] that the general integer solution of the equation is 
x = bk + x0

y = ak + y0

⎧
⎨
⎩

 where x0 , y0( ) is a particular integer solution of the equation 

and 
 k ∈Z . Since x  and y  are natural integers, it is necessary for us to impose conditions for k such 

that x ≥ 0 and y ≥ 0, from which it results the theorem. 
WE CONCLUDE! 
To solve in the set of natural numbers a linear equation with n  unknowns we will 

use the previous results in the following way: 
a) If the equation does not have variations of sign, because it has a limited number 

of natural solutions, the solving is made by tests (see also [6]) 
b) If it has variations of sign and if b is divisible by d , then it admits an  

infinity of natural solutions. One finds its general integer solution (see [2], [5]); 
1

1

n

i ij j i
j

x kα β
−

=

= +∑ , 1 ≤ i ≤ n  where all the  α ij ,βi ∈Z  and the kj are integer 

parameters.  
By applying the restriction xi ≥ 0  for i  from { }1,2,...,n , one finds the conditions 

which must be satisfied by the integer parameters kj  for all j of { }1,2,..., 1n − .  (c) 
The case n = 2  and n = 3  can be done by this method, but when n  is bigger, the 

condition (c) become more and more difficult to find. 
Example: Solve in  N the equation 3x − 7y + 2z = −18 . 
Solution: In  Z  one obtains the general integer solution: 

1

1 2

1 2

2
2 7 9

x k
y k k
z k k

=⎧
⎪ = +⎨
⎪ = + −⎩

with k1  and k2  in  Z . 

From the conditions (c) result the inequalities x ≥ 0, y ≥ 0, z ≥ 0 . It results that 

1 0k ≥  and also:  
k2 ≥ −k1 / 2[ ]+ 1  if –k1 / 2 ó Z,  or k2 ≥ –k1 / 2 if –k1 / 2 0Z;  
and k2 ≥ (9 − 2k1) / 7[ ]+ 1  if (9–2k1)/7 ó Z,  or k2 ≥ (9–2k1) / 7 if (9–2k1) / 7 0Z; 
that is k2 ≥ (2 − 2k1) / 7[ ]+ 2  if (2–2k1)/7 ó Z,  or k2 ≥ (2–2k1)/7 + 1 if (2–2k1) / 7 

0Z. 
With these conditions on k1  and k2  we have the general solution in natural 

numbers of the equation. 
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EXISTENCE AND NUMBER OF SOLUTIONS OF 
DIOPHANTINE QUADRATIC EQUATIONS WITH TWO 

UNKNOWNS IN Z  AND  N  
 
Abstract: In this short note we study the existence and number of solutions in the 

set of integers (Z) and in the set of natural numbers (N) of Diophantine equations of 
second degree with two unknowns of the general form ax2 − by2 = c . 

 
Property 1: The equation x2 − y2 = c  admits integer solutions if and only if c  

belongs to 4Z or is odd. 
Proof: The equation (x − y)(x + y) = c  admits solutions in  Z  iff there exist c1  

and c2  in  Z  such that x − y = c1 , x + y = c2 , and c1c2 = c .  
Therefore  

x =
c1 + c2

2
 and y =

c2 − c1

2
. 

But x  and y  are integers if and only if  c1 + c2 ∈2Z , i.e.: 
1) or c1  and c2  are odd, then c  is odd (and reciprocally). 
2) or c1  and c2  are even, then  c ∈4Z . 

Reciprocally, if  c ∈4Z , then we can decompose up c  into two even factors c1  and c2 , 
such that c1c2 = c . 
 

Remark 1: 
Property 1 is true also for solving in  N , because we can suppose c ≥ 0  {in the 

contrary case, we can multiply the equation by (-1)}, and we can suppose c2 ≥ c1 ≥ 0 , 
from which x ≥ 0  and y ≥ 0 . 

 
Property 2: The equation x2 − dy2 = c2  (where d  is not a perfect square) admits 

an infinity of solutions in  N . 
Proof: Let’s consider x = ck1 ,  k1 ∈N  and y = ck2 ,  k2 ∈N ,  c ∈N . It results that 

k1
2 − dk2

2 = 1, which we can recognize as being the Pell-Fermat’s equation, which admits 
an infinity of solutions in  N , (un ,vn ) .  

Therefore  
xn = cun , yn = cvn   

constitute an infinity of natural solutions for our equation. 
 
Property 3: The equation ax2 − by2 = c , c ≠ 0 , where ab = k 2 , ( k ∈Z ), admits a 

finite number of natural solutions. 
Proof: We can consider a,  b,  c  as positive numbers, otherwise, we can multiply 

the equation by (-1) and we can rename the variables. 
Let us multiply the equation by a , then we will have: 
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z2 − t 2 = d  with  z = ax ∈N ,  t = ky ∈N  and d = ac > 0 .  (1) 
We will solve it as in property 1, which gives z  and t . 

But in (1) there is a finite number of natural solutions, because there is a finite number of 
integer divisors for a number in  N

* . Because the pairs (z,t)  are in a limited number, it 
results that the pairs (z / a, t / k)  also are in a limited number, and the same for the pairs 
(x, y) . 
 

Property 4: If ax2 − by2 = c , where ab ≠ k 2  ( k ∈Z ) admits a particular 
nontrivial solution in  N , then it admits an infinity of solutions in  N . 

Proof: Let’s consider: 

   
xn = x0un + by0vn

yn = y0un + ax0vn

⎧
⎨
⎩

   (n ∈N)                                    (2) 

where (x0 , y0 )  is the particular natural solution for the initial equation, and  (un ,vn )n∈N  is 
the general natural solution for the equation u2 − abv2 = 1 , called the solution Pell, which 
admits an infinity of solutions. 

Then axn
2 − byn

2 = (ax0
2 − by0

2 )(un
2 − abvn

2 ) = c . 
Therefore (2) verifies the initial equation. 

 
 

[1982] 
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CONVERGENCE OF A FAMILY OF SERIES 
 
 In this article we will construct a family of expressionsε (n) . For each element 

E(n)  from ε (n) , the convergence of the series ( )
En n

E n
=
∑  could be determined in 

accordance to the theorems from this article. 
 This article gives also applications. 
 

(1) Preliminary 
 

To render easier the expression, we will use the recursive functions. We will 
introduce some notations and notions to simplify and reduce the size of this article. 
 

(2) Definitions: lemmas. 
 

We will construct recursively a family of expressions ε (n) . 
For each expression E(n) ∈ε(n) , the degree of the expression is defined recursive and is 

denoted 0 ( )d E n , and its dominant coefficient is denoted c(E(n)) . 
1. If a  is a real constant, then a ∈ε (n) .  

d 0a = 0  and c(a) = a . 
2. The positive integer n ∈ε (n) .  

d 0n = 1  and c(n) = 1. 

3. If E1(n)  and E2 (n)  belong to ε (n)  with d 0E1(n) = r1  and 

d 0E2 (n) = r2 , c(E1(n)) = a1  and c(E2 (n)) = a2 , then: 

a) E1(n)E2 (n) ∈ε (n) ; d 0 (E1(n)E2 (n)) = r1 + r2 ; c(E1(n)E2 (n))   
 which is a1a2 . 

b) If  E2 (n) ≠ 0  ∀n ∈N(n ≥ nE2
) , then 

E1(n)

E2 (n)
∈ε(n)  and 

d0 E1(n)

E2 (n)

⎛
⎝⎜

⎞
⎠⎟

= r1 − r2 ,  c
E1(n)

E2 (n)

⎛
⎝⎜

⎞
⎠⎟

=
a1

a2

. 

c) If α  is a real constant and if the operation used has a sense 

E1(n)( )α
 (for all

1
 ,  En n n∈ ≥ ), then:  

( )1( ) ( )E n nα ε∈ , ( )( )0
1 1( )d E n rα α= ,  ( )( )1 1( )c E n aα α=  

d) If r1 ≠ r2 , then E1(n) ± E2 (n) ∈ε (n) , d 0 E1(n) ± E2 (n)( ) is the max 

of r1  and r2 , and c E1(n) ± E2 (n)( )= a1 , respectively a2  resulting 

that the grade is r1  and r2 . 
e) If r1 = r2  and a1 + a2 ≠ 0 , then E1(n) + E2 (n) ∈ε (n) , 

d 0 E1(n) + E2 (n)( )= r1  and c E1(n) + E2 (n)( )= a1 + a2 . 
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f) If r1 = r2  and a1 − a2 ≠ 0 , then E1(n) − E2 (n) ∈ε (n) , 

d 0 E1(n) − E2 (n)( )= r1  and c E1(n) − E2 (n)( )= a1 − a2 . 
4. All expressions obtained by applying a finite number of step 3 belong 

to ε (n) . 
 

Note 1. From the definition of ε (n)  it results that, if E(n) ∈ε (n)  then 

c E(n)( )≠ 0 , and that c E(n)( )= 0  if and only if E(n) = 0 . 
 
Lemma 1. If E(n) ∈ε(n)  and c E(n)( )> 0 , then there exists  n

' ∈N , such that for 

all n > n ' , E(n) > 0 . 

Proof: Let’s consider c E(n)( )= a1 > 0  and d 0 E(n)( )= r . 

If r > 0 , then 1
( )lim ( ) lim limr r

rn n n

E nE n n a n
n→∞ →∞ →∞

= = = +∞ , thus there exists 

 n
' ∈N  such that, qqst n > n '  we have E(n) > 0 . 

If r < 0 , then 
1

1 1lim lim lim( )( )

r
r

n n n

r

n nE nE n a
n

−
−

→∞ →∞ →∞
= = = +∞  thus there exists 

 n
' ∈N , such that for all n > n ' , 

1

E(n)
> 0  we have E(n) > 0 . 

If r = 0 , then E(n)  is a positive real constant, or 
E1(n)

E2 (n)
= E(n) , with 

d 0E1(n) = d 0E2 (n) = r1 ≠ 0 , according to what we have just seen, 

c
E1(n)

E2 (n)

⎛
⎝⎜

⎞
⎠⎟

=
c E1(n)( )
c E2 (n)( )= c E(n)( )> 0 .  

Then: c E1(n)( )> 0  and c E2 (n)( )< 0 : it results 

1 1

2 2

1

2

there exists ,   and ,  ( ) 0

there exists ,   and ,  ( ) 0
E E

E E

n n n n E n

n n n n E n

∈ ∀ ∈ ≥ > ⎫⎪ ⇒⎬∈ ∀ ∈ ≥ > ⎪⎭

N N
N N

 

1 2

1

2

( )there exists max( , ) ,  ,  ,  ( ) 0
( )E E E E

E nn n n n n n E n
E n

= ∈ ∀ ∈ ≥ >N N  

then ( )1( ) 0c E n <  and c E2 (n)( )< 0  and it results: 

E(n) =
E1(n)

E2 (n)
=

−E1(n)

−E2 (n)
 which brings us back to the precedent case. 

 
Lemma 2: If E(n) ∈ε(n)  and if c E(n)( )< 0 , then it exists  n

' ∈N , such that qqst 

n > n ' , E(n) < 0 . 
Proof:  



 
 

59

The expression −E(n)  has the propriety that c −E(n)( )> 0 , according to the 

recursive definition. According to lemma 1: there exists  n
' ∈N ,  n ≥ n ' ,   −E(n) > 0 , i.e. 

+E(n) < 0 , q.e.d. 
 
Note 2. To prove the following theorem, we suppose known the criterion of 

convergence of the series and certain of its properties  
 

(3) Theorem of convergence and applications. 
 
Theorem: Let’s consider ( ) ( )E n nε∈  with d 0 E(n)( )= r  having the series 

E(n)
n≥nε

∑ ,  E(n) /≡ 0 .  

Then:  
A) If r < −1 the series is absolutely convergent. 
B) If r ≥ −1 it is divergent where E(n)  has a sense  ∀n ≥ nE ,n ∈N . 

 
Proof: According to lemmas 1 and 2, and because: 

 the series ( )
En n

E n
≥
∑  converge ⇔  the series ( )

En n
E n

≥

−∑  converge,  

we can consider the series ( )
En n

E n
≥
∑  like a series with positive terms.  

We will prove that the series ( )
En n

E n
≥
∑  has the same nature as the series 

1

n−r
n≥1
∑ . 

Let us apply the second criterion of comparison:  

( )( ) ( )lim lim ( )1 rn n

r

E n E n c E n
n

n
→∞ →∞

−

= = ≠ ±∞ .  

According to the note 1 if E(n) /≡ 0  then c E(n)( )≠ 0  and then the series ( )
En n

E n
≥
∑  has 

the same nature as the series 
1

n−r
n≥1
∑ , i.e.: 

A) If r < −1 then the series is convergent; 
B) If r > −1 then the series is divergent; 
For r < −1 the series is absolute convergent because it is a series with 

positive terms. 
 

Applications:  
 
We can find many applications of these. Here is an interesting one: 
If Pq (n) , Rs (n)  are polynomials of n  of degree q, s , and that Pq (n)  and Rs (n)  

belong to ε (n) : 
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1)  
( )

( )PR

k
q

hn n s

P n

R n≥
∑  is  

convergent, if / / 1
divergent,   if / / 1

s h q k
s h q k

− >⎧
⎨ − ≤⎩

 

2) 
1

Rs (n)n≥nR

∑  is  
convergent, if 1
divergent,   if 1

s
s

>⎧
⎨ ≤⎩

 

 Example: The series 
n + 12 ⋅ n − 73 + 2

n25 − 17n≥2
∑  is divergent because 

2 1 1 1
5 2 3

⎛ ⎞− + <⎜ ⎟
⎝ ⎠

 

and if we call E(n)  each quotient of this series, E(n)  belongs to ε (n)  and it has a sense 
for n ≥ 2 . 
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ALGORITHMS FOR SOLVING LINEAR CONGRUENCES 
AND SYSTEMS OF LINEAR CONGRUENCES 

 
 In this article we determine several theorems and methods for solving linear 
congruences and systems of linear congruences and we find the number of distinct 
solutions. Many examples of solving congruences are given. 

 
§1. Properties for solving linear congruences. 
 
 Theorem 1. The linear congruence a1x1 + ... + anxn ≡ b(mod m)  has solutions if 
and only if (a1,...,an , m) | b . 
 Proof: 
 a1x1 + ... + anxn ≡ b(mod m) ⇔ a1x1 + ... + anxn − my = b  is a linear equation which 
has solutions in the set of integer numbers ⇔  (a1,...,an ,  − m) | b ⇔ (a1,...,an ,  m) | b .  
 If m = 0 , a1x1 + ... + anxn ≡ b(mod 0) ⇔  a1x1 + ... + anxn = b  has solutions in the 
set of integer numbers  ⇔  (a1,...,an ) | b ⇔  (a1,...,an ,0) | b . 
  
 Theorem 2. The congruence ax ≡ b(mod m) , m ≠ 0 , with (a, m) = d | b , has d  
distinct solutions. 
 The proof is different of that from the number’s theory courses: 
ax ≡ b(mod m) ⇔  ax − my = b  has solutions in the set of integer numbers; because 
(a, m) = d | b  it results: a = a1d , m = m1d , b = b1d  and (a1, m1) = 1, 
a1dx − m1dy = b1d  ⇔  a1x − m1y = b1 . Because (a1, m1) = 1 it results that the general 

solution of this equation is 
x = m1k1 + x0

y = a1k1 + y0

⎧
⎨
⎩

, where k1  is a parameter and  k1 ∈Z , and 

where (x0 , y0 )  constitutes a particular solution in the set of integer numbers of this 
equation;  x = m1k1 + x0 ,   k1 ∈Z,   m1, x0 ∈Z ⇒  x ≡ m1k1 + x0 (mod m) . We’ll assign 
values to k1  to find all the solutions of the congruence. 
It is evident that k1 ∈ 0,1,2,...,d − 1,d,d + 1,..., m − 1{ } which constitutes a complete 
system of residues modulo m .  
(Because ax ≡ b(mod m) ⇔  ax ≡ b(mod− m) , we suppose m > 0 .) 
 Let D = 0,1,2,...,d − 1{ }; D ⊆ M , ∀α ∈M , ∃β ∈D :  α ≡ β(mod d) | m1  
(because D  constitutes a complete system of residues modulo d ). 
  It results that αm1 = βm1(mod dm1) ; because x0 = x0 (mod dm1) , it results:  

m1α + x0 ≡ m1β + x0 (mod m) . 
 Therefore ∀α ∈M , ∃β ∈D :  m1α + x0 ≡ m1β + x0 (mod m) ; thus k1 ∈D .  
∀γ ,δ ∈D , γ /≡ δ (mod d) | m1  ⇒  γ m1 /≡ δm1(mod dm1) ; m1 ≠ 0 . It results that 
m1γ + x0 ≡ m1δ + x0 (mod m)  is false, that is, we have exactly cardD = d distinct 
solutions. 
 Remark 1. If m = 0 , the congruence ax ≡ b(mod 0)  has one solution if a | b ; 
otherwise it does not have solutions. 



 
 

62

 Proof: 
 ax ≡ b(mod 0) ⇔  ax = b  has a solution in the set of integer numbers ⇔ a | b . 
 
 Theorem 3. (A generalization of the previous theorem) 
 The congruence a1x1 + ... + an xn ≡ b(mod m) , m1 ≠ 0 , with (a1,...,an , m) = d | b  

has d ⋅ m
n−1  distinct solutions. 

 Proof: 
 Because a1x1 + ... + anxn ≡ b(mod m) ⇔  a1x1 + ... + anxn ≡ b(mod− m) , we 
 can consider m > 0 . 
 The proof is done by induction on n = the number of variables. 
 For n = 1 the affirmation is true in conformity with theorem 2. 
 Suppose that it is true for n − 1 . Let’s proof that it is true for n . 
 Let the congruence with n  variables a1x1 + ... + anxn ≡ b(mod m) , 
a1x1 + ... + an−1xn−1 ≡ b − anxn (mod m) . If we consider that xn  is fixed, the congruence 
a1x1 + ... + an−1xn−1 ≡ b − anxn (mod m)  is a congruence with n − 1  variables. To have 
solutions we must have (a1,...,an−1, m) = δ | b − anxn  ⇔  b − anxn ≡ 0(modδ ) . 

 Because δ | m  ⇒  
 
m

δ
∈Z , therefore we can multiply the previous congruence 

with m

δ
. It results that 

man

δ
xn ≡

mb

δ
(modδ ⋅

m

δ
)       (*) 

which has man

δ
,  δ

m

δ
⎛
⎝⎜

⎞
⎠⎟

=
m

δ
(an ,δ ) =

m

δ
an ,(a1,...,an−1, m)( )=

m

δ
(a1,...,an−1,an , m)

m

δ
⋅ d  

distinct solutions for xn . Let xn
0  be a particular solution of the congruence (*). It results 

that a1x1 + ... + an−1xn−1 ≡ b − anxn
0 (mod m)  has, conform to the induction’s hypothesis,  

δ ⋅ mn− 2 distinct solutions for   x1,..., xn−1  where δ = (a1,...,an−1, m) . 
 Therefore the congruence a1x1 + ... + an−1xn−1 + anxn ≡ b(mod m)  has 
m

δ
⋅ d ⋅δ ⋅ mn− 2 = d ⋅ mn−1  distinct solutions for x1,..., xn−1  and xn . 

 
 
§2. A METHOD FOR SOLVING LINEAR CONGRUENCES 
 

Let’s consider the congruence a1x1 + ... + an xn ≡ b(mod m) , m ≠ 0 , 
ai ≡ ai

' (mod m)  and ' (mod )b b m≡  with 0 ≤ ai
' , b ≤ m − 1  (we made the nonrestrictive 

hypothesis m > 0 ). We obtain: 
' ' '

1 1 1 1... (mod )  ... (mod )n n n na x a x b m a x a x b m+ + ≡ ⇔ + + ≡ , which is a linear 
equation; when it is resolved in   Z  it has the general solution: 
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x1 = α11k1 + ...+ α1nkn + γ 1

⋅
⋅
xn = αn1k1 + ...+ αnnkn + γ n

y = αn+1,1k1 + ...+ αn+1,nkn + γ n+1

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 

kj  being parameters ∈Z , j = 1,n ,  α ij ,γ i ∈Z , constants,  i = 1,n + 1 , j = 1,n . 

 Let’s consider ' (mod )ij ij mα α≡  and ' (mod )i i mγ γ≡  with '0 ijα≤ , 

γ ' ≤ m − 1;   i = 1,n + 1,   j = 1,n . 
 Therefore 

 

x1 = α11
' k1 + ... + α1n

' kn + γ
1

' (mod m)

⋅
⋅

xn = αn1
' k1 + ... + αnn

' kn + γ
n

' (mod m)

⎧

⎨

⎪
⎪

⎩

⎪
⎪

   ; k j =  parameters ∈Z,  j = 1,n ;  (**) 

Let’s consider (α1 j
' ,...,αnj

' ,m) = dj , j ∈1,n . We’ll prove that for kj  it would be sufficient 

to only give the values 0,  1,  2,..., 1
j

m
d

− ; for kj =
m

dj

− 1 + β '  with β ' ≥ 1  we obtain 

kj =
m

dj

+ β  with β ≥ 0 ;  β ',  β ∈Z . 

α
ij

' k j = α ij
'' d jk j = α ij

'' m + α ij
'' djβ ≡ α ij

'' d jβ(mod m) ; we denoted α
ij

' = α ij
'' dj  because dj | α

ij

' . 

We make the notation m = djmj ,  mj =
m

dj

. 

Let’s consider  η ∈Z , 0 ≤ η ≤ m − 1  such that η = α ij
'' djβ(moddjmj ) ; it results dj | η . 

 Therefore η = djγ  with 0 ≤ γ ≤ mj −1  because we have that 

djγ ≡ α ij
'' dj (moddjmj ) , which is equivalent to γ ≡ α ij

'' β(mod mj ) . 

 Therefore  ∀k j ∈N,   ∃γ ∈ 0,1,2,..., mj −1{ }:  α
ij

' k j ≡ d jγ (mod m) ; 
analogously, if the parameter  kj ∈Z . Therefore kj  takes values from 0,  1,  2,...  to at 

most mj − 1;   j ∈1,n . 
 Through this parameterization for each kj  in (**), we obtain the solutions of the 

linear congruence. We eliminate the repetitive solutions. We obtain exactly d ⋅ m
n−1  

distinct solutions. 
 Example 1. Let’s resolve the following linear congruence:  

2x + 7y − 6z ≡ −3(mod 4)  
 Solution: 7 ≡ 3(mod 4) ,  −6 ≡ 2(mod 4) ,  −3 ≡ 1(mod 4) . 
It results that 2x + 3y + 2z ≡ 1(mod 4) ; (2, 3,2, 4) = 1 |1 therefore the congruence has 
solutions and it has 1 ⋅ 43−1 = 16  distinct solutions. 
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 The equation 2x + 3y + 2z − 4t = 1  resolved in integer numbers, has the general 
solution: 

 
1 2 3 1 2 3

1 1

2 2

3 2 1 3 3 2 3(mod 4)
2              1 2                   1(mod 4)

                                              (mod 4)

x k k k k k k
y k k
z k k

= − − − ≡ + + +⎧
⎪ = − + ≡ +⎨
⎪ = ≡⎩

 

kj  are parameters  ∈Z , j = 1, 3 . 
(We did not write the expression for t , because it doesn’t interest us). 
 We assign values to the parameters. kj  takes values from 0  to at most mj − 1 ; 

k3 takes values from 0  to m3 − 1 =
m

d3

− 1 =
4

(2,0,0)
− 1 =

4

2
− 1 = 1 ; 

  
1 2

3 1

2

3 3 3(mod 4)
0 2         1(mod 4)

               (mod 4)

x k k
k y k

z k

≡ + +⎛ ⎞
⎜ ⎟= ⇒ ≡ +⎜ ⎟
⎜ ⎟≡⎝ ⎠

; 

 

  
1 2

3 1

2

3 3 1
1 2         1

          

k k
k k

k

+ +⎛ ⎞
⎜ ⎟= ⇒ +⎜ ⎟
⎜ ⎟
⎝ ⎠

  

k1  takes values from 0 to at most 3. 

2

1

2

3 3
0          1

  

k
k

k

+⎛ ⎞
⎜ ⎟= ⇒ ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
2

2

3 1
         1
 

k

k

+⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

;  
2

1

2

3 2
1           3

 

k
k

k

+⎛ ⎞
⎜ ⎟= ⇒ ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
2

2

3
3
k

k

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

; 

for k1 = 2  and 3 we obtain the same expressions as for k1 = 1  and 0. 
k2  takes values from 0 to at most 3. 
 

k2 = 0 ⇒  

3

1

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

1

1

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

2

3

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

0

3

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

;    k2 = 2 ⇒  

1

1

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

3

1

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

0

3

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

2

3

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

; 

k2 = 1 ⇒  

2

1

1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

0

1

1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

1

3

1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

3

3

1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

;  k2 = 3 ⇒  

0

1

3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

2

1

3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

3

3

3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

1

3

3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

; 

which represent all distinct solutions of the congruence. 
 
 Remark 2. By simplification or amplification of the congruence (the division or 
multiplication with a number ≠ 0, 1, −1), which affects also the module, we lose 
solutions, respectively foreign solutions are introduced. 
 
 Example 2. 
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 1) The congruence  2x − 2y ≡ 6(mod 4)  has the solutions  
3

0

⎛
⎝⎜

⎞
⎠⎟

,  
1

0

⎛
⎝⎜

⎞
⎠⎟

,  
0

1

⎛
⎝⎜

⎞
⎠⎟

,  
2

1

⎛
⎝⎜

⎞
⎠⎟

,  
1

2

⎛
⎝⎜

⎞
⎠⎟

,  
3

2

⎛
⎝⎜

⎞
⎠⎟

,  
2

3

⎛
⎝⎜

⎞
⎠⎟

,  
0

3

⎛
⎝⎜

⎞
⎠⎟

; 

2) If we would simplify by 2, we would obtain the congruence x − y ≡ 3(mod 2) , 

which has the solutions 
1

0

⎛
⎝⎜

⎞
⎠⎟

,  
0

1

⎛
⎝⎜

⎞
⎠⎟

; therefore we lose solutions. 

3) If we would amplify with 2, we would obtain the congruence 
4x − 4y ≡ 12(mod 4) , which has the solutions:  

3

0

⎛
⎝⎜

⎞
⎠⎟

,  
5

0

⎛
⎝⎜

⎞
⎠⎟

,  
7

0

⎛
⎝⎜

⎞
⎠⎟

,  
1

0

⎛
⎝⎜

⎞
⎠⎟

,  
4

1

⎛
⎝⎜

⎞
⎠⎟

,  
6

1

⎛
⎝⎜

⎞
⎠⎟

,  
0

1

⎛
⎝⎜

⎞
⎠⎟

,  
2

1

⎛
⎝⎜

⎞
⎠⎟

, 

5

2

⎛
⎝⎜

⎞
⎠⎟

,  
7

2

⎛
⎝⎜

⎞
⎠⎟

,  
1

2

⎛
⎝⎜

⎞
⎠⎟

,  
3

2

⎛
⎝⎜

⎞
⎠⎟

,  
6

3

⎛
⎝⎜

⎞
⎠⎟

,  
0

3

⎛
⎝⎜

⎞
⎠⎟

,  
2

3

⎛
⎝⎜

⎞
⎠⎟

,  
4

3

⎛
⎝⎜

⎞
⎠⎟

, 

7

4

⎛
⎝⎜

⎞
⎠⎟

,  
1

4

⎛
⎝⎜

⎞
⎠⎟

,  
3

4

⎛
⎝⎜

⎞
⎠⎟

,  
5

4

⎛
⎝⎜

⎞
⎠⎟

,  
0

5

⎛
⎝⎜

⎞
⎠⎟

,  
2

5

⎛
⎝⎜

⎞
⎠⎟

,  
4

5

⎛
⎝⎜

⎞
⎠⎟

,  
6

5

⎛
⎝⎜

⎞
⎠⎟

, 

1

6

⎛
⎝⎜

⎞
⎠⎟

,  
3

6

⎛
⎝⎜

⎞
⎠⎟

,  
5

6

⎛
⎝⎜

⎞
⎠⎟

,  
7

6

⎛
⎝⎜

⎞
⎠⎟

,  
2

7

⎛
⎝⎜

⎞
⎠⎟

,  
4

7

⎛
⎝⎜

⎞
⎠⎟

,  
6

7

⎛
⎝⎜

⎞
⎠⎟

,  
0

7

⎛
⎝⎜

⎞
⎠⎟

; 

therefore we introduce foreign solutions. 
 Remark 3. By the division or multiplication of a congruence with a number 
which is prime with the module, without dividing or multiplying the module, we obtain a 
congruence which has the same solutions with the initial one. 
 
 Example 3. The congruence 2x + 3y ≡ 2(mod 5)  has the same solutions as the 
congruence 6x + 9y ≡ 6(mod 5) as follows: 

 
0

1

⎛
⎝⎜

⎞
⎠⎟

,  
2

1

⎛
⎝⎜

⎞
⎠⎟

,  
3

2

⎛
⎝⎜

⎞
⎠⎟

,  
4

3

⎛
⎝⎜

⎞
⎠⎟

,  
0

4

⎛
⎝⎜

⎞
⎠⎟

. 

 
 
§2. PROPERTIES FOR SOLVING SYSTEMS OF LINEAR CONGRUENCES. 
 
 In this paragraph we will obtain some interesting theorems regarding the systems 
of congruences and then a method of solving them. 
 Theorem 1. The system of linear congruences:  

(1) 1 1 ... (mod )i in n ia x a x b m+ + ≡ , i = 1,r , has solutions if and only if the system of 
linear equations: 

(2) 1 1 ...i in n i ia x a x m y b+ + − = ,  yi  unknowns  ∈Z , i = 1,r , has solutions in the set 
of integer numbers. 

The proof is evident. 
Remark 1. From the anterior theorem it results that to solve the system of 

congruences (1) is equivalent with solving in integer numbers the system of linear 
equations (2). 



 
 

66

 
Theorem 2.  (A generalization of the theorem from p. 20, from [1]). 
The system of congruences aix ≡ bi (mod mi ) , mi ≠ 0 , i = 1,r  admits solutions if 

and only if: (ai , mi ) | bi , i = 1,r   and ( ,  )i j j ia m a m   divides aibj − ajbi , i, j = 1,r . 
Poof:  
∀i = 1,r , aix ≡ bi (mod mi )  ⇔  ∀i = 1,r , aix = bi + mi yi ,  yi  being unknowns 

 ∈Z ; these Diophantine equations, taken separately, have solutions if and only if 
ai , mi( )| bi ,  i = 1,r .  

∀i, j = 1,r , from: ai x = bi + yimi | aj  and aj ⋅ x = bj + yj ⋅ mj | ai  we obtain: 
aiaj ⋅ x = ajbi + aj ⋅ mi yi = aibj + ai ⋅ mj yj , Diophantine  equations which have solution if 

and only if ( ,  ) |i j j i i j j ia m a m a b a b− ,  i, j = 1,r . 
Consequence. (We obtain a simpler form for the theorem from p. 20 of [1]). The 

system of congruences x ≡ bi (mod mi ) , mi ≠ 0 , i = 1,r  has solutions if and only if 

( ), |i j i jm m b b− ,  i, j = 1,r . 
Proof: 
From theorem 2, ai = 1 , ∀i = 1,r  and 1, mi( )= 1 | bi ,  i = 1,r . 
 

 
§4. METHOD FOR SOLVING SYSTEMS OF LINEAR CONGRUENCES 
  
 Let’s consider the system of linear congruences: 
 (3) ai1x1 + ai2x2 +…+ ain ≡ bi (mod mi), i = 1,r , the system’s matrix rank being 
r < n , ,  ,  ij i ia b m ∈Z , mi ≠ 0,   i = 1,r ,  j = 1,n . 
According to §1 from this chapter, we can consider: 
 (*) 0 1ij ia m≤ ≤ − , 0 ≤ bi ≤ mi − 1, ∀i = 1,r , j = 1,n . From the theorem 1 and 
the remark 1 it results that, to solve this system of congruences is equivalent with solving 
in integer numbers the system of equations: 

(4) 1 1 ...i in n i i ia x a x m y b+ + − = , i = 1,r , the system’s matrix rank being r < n . 
Using the algorithm from [2], we obtain the general solution of this system: 

x1 = α11k1 + ...+ α1nkn + β1

.........................................

xn = αn1k1 + ...+ αnnkn + βn

y1 = αn+1,1k1 + ...+ αn+1,nkn + βn+1

...........................................

yr = αn+ r ,1k1 + ...+ αn+ r ,nkn + βn+ r

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

   

 αhj ,βh ∈Z  and kj  are parameters ∈Z . 
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Let’s consider m = [m1,..., mr ] > 0 ; because the variables y1,..., yr  don’t interest us, we’ll 
retain only the expressions of x1,..., xn . 
Therefore: 
 (5) 1 1 ...i i in n ix k kα α β= + + + ,  i = 1,n  and again we can suppose that  

(**)  0 ≤ αhj ≤ m − 1 , 0 ≤ βh ≤ m − 1 , h = 1,n , j = 1,n . 

We have: xi ≡ α i1k1 + ... + α inkn + βi (mod m) , i = 1,n . Evidently kj  takes the 
values of at most the integer numbers from 0 to m − 1 . Conform to the same observations 

from §1 from this chapter, for kj it is sufficient to give only the values 0,1,2,...,
m

dj

− 1 

where  
(***) ( )1 ,..., ,j j njd mα α= , for any j = 1,n . 

By the parameterization of  k1,..., kn  in (5) we obtain all the solutions of the system of 

linear congruence (1); kj takes at most the values 0,1,2,...,
m

dj

− 1; we eliminate the 

repeating solutions. 
Remark 2. The considerations (*), (**), and (***) have the roll of making the 

calculation easier, to reduce the computational volume. This algorithm of solving the 
linear congruence works also without these considerations, but it is more difficult. 

 
 Example. Let’s solve the following system of linear congruences: 

 (6)  
3 7 2(mod 2)
      5 2 1(mod 3)
x y z

y z
+ − ≡⎧

⎨ − ≡⎩
  

 Solution: The system of linear congruences (6) is equivalent with: 

 (7)  
0(mod 2)

   2 1(mod3)
x y z

y z
+ + ≡⎧

⎨ + ≡⎩
 

which is equivalent with the system of linear equations: 

 (8)  
x + y + z − 2t1 = 0

   2y + z − 3t2 = 1

⎧
⎨
⎩

 

1 2,  ,  ,  ,   unknownsx y z t t ∈Z  
 This has the general solution (see [2]): 

 

1 2 3

1 3

1

1 2

2 3

2 2 3 1
             3 1
      
             
                      

x k k k
y k k
z k
t k
t k

= − + + +⎧
⎪ = − −⎪⎪ =⎨
⎪ =⎪
⎪ =⎩

 

where k1,  k2 ,  k3  are parameters  ∈Z . 
 The values of t1  and t2  don’t interest us;  m = [2,3] = 6 . Therefore: 
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x ≡ 4k1 + 2k2 + 3k3 + 1(mod 6)

y ≡   k1           + 3k3 + 5(mod 6)

z ≡   k1                          (mod 6)

⎧

⎨
⎪

⎩
⎪

 

k3  takes values from 0 to 
6

(3,3,0,6)
− 1 = 1 ; k2  from 0 to 2; k1 from 0 to at most 5. 

k3 = 0 ⇒  

x ≡ 4k1 + 2k2 + 1(mod 6)

y ≡   k1          + 5(mod 6)

z ≡   k1                (mod 6)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

; 

k3 = 1 ⇒  

4k1 + 2k2 + 4

  k1          + 2

  k1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

; 

k2 = 0,1,2 ⇒  

4k1 + 1

  k1 + 5

  k1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

4k1 + 4

  k1 + 2

  k1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

4k1 + 3

  k1 + 5

  k1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, 
4k1

  k1 + 2

  k1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

4k1 + 5

  k1 + 5

  k1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

4k1 + 2

  k1 + 2

  k1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

; 

 
k1 = 0,1,2, 3, 4,5 ⇒  

  
1

5

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

4

2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

3

5

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

0

2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

5

5

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

2

2

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

5

0

1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

2

3

1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

1

0

1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

4

3

1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

3

0

1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

0

3

1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, 

  
3

1

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

0

4

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

5

1

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

2

4

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

1

1

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

4

4

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

1

2

3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

4

5

3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

3

2

3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

0

5

3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

5

2

3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

2

5

3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, 

  
5

3

4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

2

0

4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

1

3

4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

4

0

4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

3

3

4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

0

0

4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

3

4

5

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

0

1

5

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

5

4

5

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

2

1

5

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

1

4

5

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  

4

1

5

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

; 

 
which constitute the 36 distinct solutions of the system of linear congruences (6). 
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BASES OF SOLUTIONS FOR LINEAR CONGRUENCES 
 
 In this article we establish some properties regarding the solutions of a linear 
congruence, bases of solutions of a linear congruence, and the finding of other solutions 
starting from these bases. 
 This article is a continuation of my article “On linear congruences”. 
 
 §1. Introductory Notions 
 
 Definition 1. (linear congruence) 
 We call linear congruence with n  unknowns a congruence of the following form: 

a1x1 + ... + an xn ≡ b(mod m)   (1) 
where   a1,...,an ,  m ∈Z,  n ≥ 1,  and  xi ,  i = 1,n , are the unknowns. 
 The following theorems are known: 
 Theorem 1. The linear congruence (1) has solutions if and only if  
  (a1,...,an , m,b) | b . 
 
 Theorem 2. If the linear congruence (1) has solutions, then: d ⋅ m

n−1  is its 
number of distinct solutions. (See the article “On the linear congruences”.) 
 

Definition 2. Two solutions X = (x1,..., xn )  and Y = (y1,..., yn )  of the linear 
congruence (1) are distinct (different) if  ∃i ∈1,n  such that xi /≡ yi (mod m) . 

 
§2. Definitions and proprieties of congruences 
 
We’ll present some arithmetic properties, which will be used later. 
Lemma 1. If  a1,...,an ∈Z ,  m ∈Z , then:  

    
 

(a1,...,an , m) ⋅ mn−1

a1, m( )⋅ ... ⋅ an , m( ) ∈Z  

 The proof is done using complete induction for  n ∈N* . 
 When n = 1  it is evident. 
 Considering that it is true for values smaller or equal to n , let’s proof that it is 
true for n + 1 . 
 Let’s note x = a1,...,an( ). Then:  

(a1,...,an ,an+1, m) ⋅ mn = x,an+1, m( )⋅ m2−1⎡⎣ ⎤⎦ ⋅ mn−1 , which, in accordance to the 
induction hypothesis, is divisible by: 

( ) ( ) [ ]1 1 1
1 1 1 1 1, , ( ,..., , ) ( , ) ( ,..., , ) ( , )n n n

n n n n nx m a m m a a m a m m a a m m a m− − −
+ + +⎡ ⎤⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅⎡ ⎤⎣ ⎦ ⎣ ⎦ , 

which is divisible, also in accordance with the induction hypothesis, by 
a1, m( )⋅ ... ⋅ an , m( )⎡⎣ ⎤⎦ ⋅ (an+1, m) = a1, m( )⋅ ... ⋅ an , m( )⋅ (an+1, m) . 
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Theorem 3. If  X 0  constitutes a (particular) solution of the linear congruence  

(1), and p = (ai , m)
i=1

n

∏ , then: 

 
 
Xi ≡ xi

0 +
m

(ai , m)
ti ,  0 ≤ ti < (ai , m),   ti ∈N  (*) 

( i  taking values from 1 to n ) constitute p  distinct solutions of (1). 
 Proof: 
 Because the module of the congruence (m) is sub-understood, we omitted it, and 
we will continue to omit it. 

 
  

aixi
i=1

n

∑ = aixi
0

i=1

n

∑ +
aim

(ai ,m)
 

i=1

n

∑ ti ≡ b + 0 , therefore there are solutions. Let’s show 

that they are also distinct. 

 xi
0 +

m

(ai , m)
α /≡ xi

0 +
m

(ai , m)
β , for  α ,  β ∈N,  α ≠ β,  and 0 ≤ α ,β < (ai , m) , 

because the set: 

   

m
(ai ,m)

ti |  0 ≤ ti < (ai ,m),   ti ∈N
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
⊆ 0,1,...,n − 1{ }, which constitutes a complete 

system of residues modulo m , and  m

(ai , m)
α ≠

m

(ai , m)
β , for α  and β  previously 

defined . 
Therefore the theorem is proved. 
 

* 
*   * 

One considers the Z -module A  generated by the vectors Vi , where 

*

1  

0,...,0 ,  ,  0,...,0 ,  1, ,  from 
( , )

n
i

ii times n i times

mV i n
a m− −

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
Z . The module A  has the rank n,  (n ≥ 1) .   

We could note it A = v1,...,vn{ }. 
We’ll introduce a few new terms. 
 

 Definition 3. Two solutions (vectors solution) X  and Y  of congruence (1) are 
called independent if  X − Y ∉A .  Otherwise, they are called dependent solutions. 
 Remark 1. In other words, if  X  is a solution of the congruence (1), then the 
solution Y  of the same congruence is independent of X , if it was not obtained from X  
by applying the formula (*) for certain values of the parameters t1,..., tn . 
 
 Definition 4. The solutions X1,..., Xn  are called independent (all together) if they 
are independent two by two.  

Otherwise, they are called dependent solutions (all together). 
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 Definition 5.  The solutions X1,..., Xn  of the congruence (1) constitute a base for 
this congruence, if X1,..., Xn  are independent amongst them, and with their help one 
obtains all (distinct) solutions of the congruence with the procedure (*) using the 
parameters t1,..., tn .  
 
 Some proprieties of the linear congruences solutions: 

1) If the solution X1  is independent with the solution X 2  then X 2  is 
independent with X1  (the commutative property of the relation 
“independent”). 

2) X1  is not independent with X1 . 
3) If X1  is independent with X 2 , X 2 is independent with X 3 , it does not imply 

that X1  is independent with X 3  (the relation is not transitive). 
4) If X is independent with Y , then  X is independent with Y . 

 Indeed, if Y  is dependent with Y , then ( ) ( )1

A A

X Y X Y Y Y Z
∉ ∈

− = − + − = . 

If Z ∈A , it results that X − Y( )= Z − Y − Y1( )∈A  because A  is a Z - module. 
Absurdity. 

* 
*   * 

 Theorem 4.  Let’s note  P1 = (a1,...,an , m) ⋅ m
n−1  and P2 = a1, m( )⋅ ... ⋅ an , m( ) then 

the linear congruence (1) has the base formed of: P1

P2

 solutions. 

 Proof: 

  P1 > 0  and P2 > 0 , from Lemma 1 we have  
 

P1

P2

∈N* , therefore the theorem has 

sense (we consider LCD as a positive number). 
P1  represents the number of distinct solutions (in total) of congruence (1), in 
accordance to theorem 2. 
 P2  represents the number of distinct solutions obtained for congruence (1) by 
applying the procedure (*) (allocating to parameters t1,..., tn all possible values) to a 
single particular solution.  

 Therefore we must apply the procedure (*) P1

P2

 times to obtain all solutions of the 

congruence, that is, it is necessary of exact P1

P2

 independent particular solutions of the 

congruence. That is, the base has  P1

P2

 solutions. 

 Remark 2. Any base of solutions (for the same linear congruence) has the same 
number of vectors. 

 
 §3. Method of solving the linear congruences 
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 In this paragraph we will utilize the results obtained in the precedent paragraphs. 
 Let’s consider the linear congruence (1) with (a1,...,an , m) = d | b,  m ≠ 0 . 

- we determine the number of distinct solutions of the congruence: 
P1 = d ⋅ m

n−1 ; 

- we determine the number of solutions from the base: S =
P1

ai , m( )
i=1

n

∏
; 

- we construct the Z -module A = V1,...,Vn{ }, where  

1  

0,..., 0 ,  ,  0,..., 0 ,   1,
( , )

t
i

ii times n i times

mV i n
a m− −

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
; 

- we search to find s  independent (particular) solutions of the congruence; 
- we apply the procedure (*) as follows: 

if X j ,  j = 1, s , are the s  independent solutions from the base, it results that  

X j (t1 ,...,tn ) = xi
j +

m

(ai ,m)
ti

⎛
⎝⎜

⎞
⎠⎟

,    i = 1,n ,   (*)  

are all P1  solutions of the linear congruence (1),  
j = 1, s,   t1 × ...× tn ∈ 0,1,2,...,d1 − 1{ }× ...× 0,1,2,...,dn − 1{ }, 

where di = ai , m( ) ,   i = 1,n . 
 Remark 3. The correctness of this method results from the anterior paragraphs. 
 Application. Let’s consider the linear non-homogeneous 
congruence 2x − 6y ≡ 2(mod12) . It has (2,6,12) ⋅122−1 = 24  distinct solutions. Its base 
will have 24 : (2,12) ⋅ (6,12)[ ]= 2  solutions. 

  V1
t = (6,0),  V2

t = (0,2) and A = V1,V2{ }= (6t1,2t2 )t | t1, t2 ∈Z{ }. 
The solutions x ≡ 7(mod12) and y ≡ 4(mod12),  x ≡ 1 and y ≡ 0  are dependent because:  

 
7

0

⎛
⎝⎜

⎞
⎠⎟

−
1

0

⎛
⎝⎜

⎞
⎠⎟

=
6

4

⎛
⎝⎜

⎞
⎠⎟

= 1
6

0

⎛
⎝⎜

⎞
⎠⎟

+ 2
0

2

⎛
⎝⎜

⎞
⎠⎟

∈A . 

But 
4

1

⎛
⎝⎜

⎞
⎠⎟

is independent with 
0

1

⎛
⎝⎜

⎞
⎠⎟

 because 
4

1

⎛
⎝⎜

⎞
⎠⎟

−
0

1

⎛
⎝⎜

⎞
⎠⎟

∉A . 

Therefore, the 24 solutions of the congruence can be obtained from: 

 

x ≡ 1 + 6t1,   0 ≤ t1 < 2,   t1 ∈N
y ≡ 0 + 2t2 ,  0 ≤ t2 < 6,   t2 ∈N

⎧
⎨
⎩

 

and 

 

x ≡ 4 + 6t1,   0 ≤ t1 < 2,   t1 ∈N
y ≡ 1 + 2t2 ,   0 ≤ t2 < 6,   t2 ∈N

⎧
⎨
⎩

 

by the parameterization  t1, t2( )∈ 0,1{ }× 0,1,2, 3, 4,5{ }. 
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x ≡ 1 + 6t1

y ≡ 0 + 2t2

⎧
⎨
⎩

⇒
1

0

⎛
⎝⎜

⎞
⎠⎟

,  
1

2

⎛
⎝⎜

⎞
⎠⎟

,  
1

4

⎛
⎝⎜

⎞
⎠⎟

,  
1

6

⎛
⎝⎜

⎞
⎠⎟

,  
1

8

⎛
⎝⎜

⎞
⎠⎟

,  
1

10

⎛
⎝⎜

⎞
⎠⎟

,  
7

0

⎛
⎝⎜

⎞
⎠⎟

,  
7

2

⎛
⎝⎜

⎞
⎠⎟

,  
7

4

⎛
⎝⎜

⎞
⎠⎟

,  
7

6

⎛
⎝⎜

⎞
⎠⎟

,  
7

8

⎛
⎝⎜

⎞
⎠⎟

,  
7

10

⎛
⎝⎜

⎞
⎠⎟

. 

 
x ≡ 4 + 6t1

y ≡ 1 + 2t2

⎧
⎨
⎩

⇒
4

1

⎛
⎝⎜

⎞
⎠⎟

,
4

3

⎛
⎝⎜

⎞
⎠⎟

,
4

5

⎛
⎝⎜

⎞
⎠⎟

,
4

7

⎛
⎝⎜

⎞
⎠⎟

,
4

9

⎛
⎝⎜

⎞
⎠⎟

,
4

11

⎛
⎝⎜

⎞
⎠⎟

,
10

1

⎛
⎝⎜

⎞
⎠⎟

,
10

3

⎛
⎝⎜

⎞
⎠⎟

,
10

5

⎛
⎝⎜

⎞
⎠⎟

,
10

7

⎛
⎝⎜

⎞
⎠⎟

,
10

9

⎛
⎝⎜

⎞
⎠⎟

,
10

11

⎛
⎝⎜

⎞
⎠⎟

; 

which constitute all 24 distinct solutions of the given congruence; 
0

1

⎛
⎝⎜

⎞
⎠⎟

 means: 

x ≡ 1(mod12)  and y ≡ 0(mod12) ;  etc. 
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CRITERIA OF PRIMALITY  
  

Abstract: In this article we present four necessary and sufficient conditions for a 
natural number to be prime. 
  
 Theorem 1. Let p  be a natural number, p ≥ 3 : p  is prime if and only if 

p − 3( )! ≡
p − 1

2
(mod p) . 

 Proof: 
 Necessity: p  is prime ⇒ p − 1( )! ≡ −1(mod p)  conform to Wilson’s theorem. It 
results that (p − 1)(p − 2)(p − 3)! ≡ −1(mod p) , or 2(p − 3)! ≡ p − 1(mod p) . But p  being 

a prime number ≥ 3  it results that (2, p) = 1  and 
 
p − 1

2
∈Z . It has sense the division of 

the congruence by 2, and therefore we obtain the conclusion. 

 Sufficiency: We multiply the congruence ( p − 3)! ≡
p − 1

2
(mod p)  with 

( p − 1)( p − 2) ≡ 2(mod p)  (see [1], pp. 10-16) and it results that (p − 1)! ≡ −1(mod p) , 
from Wilson’s theorem, which makes us conclude that p is prime. 
 
 Lemma 1. Let m  be a natural number > 4 . Then m  is a composite number if and 
only if (m − 1)! ≡ 0(mod m) . 
 Proof: 
 The sufficiency is evident conform to Wilson’s theorem.  
 Necessity: m  can be written as m = a1

α1 ... as
α s , where ai are positive prime 

numbers, two by two distinct and   α i ∈N* , for any i , 1 ≤ i ≤ s . 
 If 1s ≠  then ai

αi < m , for any i , 1 ≤ i ≤ s . 
 Therefore a1

α1 ... as
α s  are distinct factors in the product (m − 1)!  thus 

(m − 1)! ≡ 0(mod m) . 
 If 1s =  then m = aα  with α ≥ 2  (because m  is non-prime). When α = 2  we have 
a < m  and 2a < m  because m > 4 . It results that a  and 2a  are different factors in 
(m − 1)!  and therefore (m − 1)! ≡ 0(mod m) . When α > 2 , we have a < m  and aα −1 < m , 
and a and aα −1 are different factors in the product (m − 1)! . 
 Therefore (m − 1)! ≡ 0(mod m) and the lemma is proved for all cases. 
 
 Theorem 2. Let p  be a natural number greater than 4. Then p  is prime if and 

only if 
1

3 1( 4)! ( 1) (mod )
6

p pp p
⎡ ⎤+⎢ ⎥⎣ ⎦ +⎡ ⎤− ≡ − ⋅ ⎢ ⎥⎣ ⎦

, where [x] is the integer part of x, i.e. the 

largest integer less than or equal to x. 
 Proof: 
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 Necessity: ( p − 4)!(p − 3)(p − 2)( p − 1) ≡ −1(mod p)  from Wilson’s theorem, or 
6( p − 4)! ≡ 1(mod p) ; p  being prime and greater than 4, it results that (6, p) = 1 . 
 It results that p = 6k ± 1,  k ∈N* . 

A) If p = 6k − 1 , then 6 | (p + 1)  and (6, p) = 1 , and dividing the  
congruence 6( p − 4)! ≡ p + 1(mod p) , which is equivalent with the initial one, by 6 we 
obtain: 

  
1

31 1( 4)! ( 1) (mod )
6 6

pp pp p
⎡ ⎤+⎢ ⎥⎣ ⎦+ +⎡ ⎤− ≡ ≡ − ⋅ ⎢ ⎥⎣ ⎦

. 

B) If p = 6k + 1 , then 6 | (1 − p)  and (6, p) = 1 , and dividing the congruence 
6( p − 4)! ≡ 1 − p(mod p) , which is equivalent to the initial one, by 6 it results: 

1
31 1( 4)! ( 1) (mod )

6 6

pp pp k p
⎡ ⎤+⎢ ⎥⎣ ⎦− +⎡ ⎤− ≡ ≡ − ≡ − ⋅ ⎢ ⎥⎣ ⎦

. 

 Sufficiency: We must prove that p  is prime. First of all we’ll show that  p ≠ M6 . 
 Let’s suppose by absurd that p = 6k ,  k ∈N* . By substituting in the congruence 
from hypothesis, it results (6k − 4)! ≡ −k(mod 6k) . From the inequality 6k − 5 ≥ k for 

 k ∈N* , it results that k | (6k − 5)!. From 22 | (6k − 4) , it results that 
2k | (6k − 5)!(6k − 4) . Therefore 2k | (6k − 4)! and 2k | 6k , it results (conform with the 
congruencies’ property) (see [1], pp. 9-26) that 2k | (−k) , which is not true; and therefore 

 p ≠ M6 . 
 From ( p − 1)( p − 2)( p − 3) ≡ −6(mod p)  by multiplying it with the initial 

congruence it results that: (p − 1)! ≡ (−1)
p

3
⎡
⎣⎢

⎤
⎦⎥ 6 ⋅

p + 1

6
⎡
⎣⎢

⎤
⎦⎥
(mod p) . 

 Let’s consider lemma 1; for p > 4  we have: 

 (p − 1)! ≡
0(mod p),  if p is not prime;

−1(mod p),  if p is prime;

⎧
⎨
⎩

 

a) If p = 6k + 2 ⇒ (p − 1)! ≡ 6k /≡ 0(mod p) . 
b) If p = 6k + 3 ⇒ (p − 1)! ≡ −6k /≡ 0(mod p) . 
c) If p = 6k + 4 ⇒ ( p − 1)! ≡ −6k /≡ 0(mod p) . 
Thus  p ≠ M6 + r with { }0,2,3,4r ∈ . 

It results that p  is of the form: p = 6k ± 1,  k ∈N*  and then we have: 
(p − 1)! ≡ −1(mod p) , which means that p  is prime. 

 
 Theorem 3. If p  is a natural number 5≥ , then p  is prime if and only if 

(p − 5)! ≡ rh +
r2 − 1

24
(mod p) , where h =

p

24
⎡
⎣⎢

⎤
⎦⎥

 and r = p − 24h . 

 Proof:  
Necessity: if p  is prime, it results that:  
( p − 5)!( p − 4)( p − 3)(p − 2)( p − 1) ≡ −1(mod p)  or  
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24(p − 5)! ≡ −1(mod p) . 
 But p  could be written as p = 24h + r , with { }1,  5,  7,  11,  13,  17,  19,  23r ∈ , 

because it is prime. It can be easily verified that 
 
r2 − 1

24
∈Z . 

24(p − 5)! ≡ −1 + r(24h + r) ≡ 24rh + r2 − 1(mod p) . 
 Because ( )24, 1p =  and 24 | (r2 − 1)  we can divide the congruence by 24, 

obtaining: (p − 5)! ≡ rh +
r2 − 1

24
(mod p) . 

 Sufficiency: p  can be written p = 24h + r ,  0 ≤ r < 24,   h ∈N . 
Multiplying the congruence ( p − 4)( p − 3)( p − 2)( p − 1) ≡ 24(mod p)  with the initial one, 
we obtain: ( p − 1)! ≡ r(24h + r) − 1 ≡ −1(mod p) . 
 
 Theorem 4. Let’s consider p = (k − 1)!h + 1,   k > 2  a natural number.  
Then: p  is prime if and only if  

( p − k)! ≡ (−1)
h+

p

h
⎡
⎣⎢

⎤
⎦⎥
+1

⋅ h(mod p) . 
 

 Proof: (p − 1)! ≡ −1(mod p) ⇔ (p − k)!(−1)k −1 (k-1)!≡ -1(mod p)  ]  (p-k)!(k-1)! 
≡ (-1)k(mod p) .       
 We have: ((k − 1)!, p) = 1   (1) 
 A) p = (k − 1)!h − 1 . 
 a) k  is an even number ⇒ (p − k)!(k − 1)! ≡ 1 + p(mod p) , and because of the 
relation (1) and (k − 1)! | (1 + p) , by dividing with (k − 1)!  we have: ( p − k)! ≡ h(mod p) . 
 b) k  is an odd number ⇒ ( p − k)!(k − 1)! ≡ −1 − p(mod p)  and because of the 
relation (1) and (k − 1)! | (−1 − p) , by dividing with (k − 1)!  we have: 
( p − k)! ≡ −h(mod p)  
 B) ( 1)! 1p k h= − +  
 a) k  is an even number ⇒ (p − k)!(k − 1)! ≡ 1 − p(mod p) , and because 
(k − 1)! | (1 − p)  and of the relation (1), by dividing with (k − 1)!  we have: 
( )! (mod )p k h p− ≡ − . 
 b) k  is an odd number ⇒ ( p − k)!(k − 1)! ≡ −1 + p(mod p) , and because 
(k − 1)! | (−1 + p)  and of the relation (1), by dividing with (k − 1)!  we have 
( p − k)! ≡ h(mod p) . 
 Putting together all these cases, we obtain: if p  is prime, p = (k − 1)!h ± 1 , with 
k > 2  and  h ∈N* , then  

  ( p − k)! ≡ (−1)
h+

p

h
⎡
⎣⎢

⎤
⎦⎥
+1

⋅ h(mod p) . 
 Sufficiency: Multiplying the initial congruence by (k − 1)!  it results that: 

( p − k)!(k − 1)! ≡ (k − 1)!h ⋅ (−1)
p

h
⎡
⎣⎢

⎤
⎦⎥
+1

⋅ (−1)k (mod p) . 
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 Analyzing separately each of these cases:  

A) p = (k − 1)!h − 1  and  
B) p = (k − 1)!h + 1 , we obtain for both, the congruence:  

(p − k)!(k − 1)! ≡ (−1)k (mod p)  
which is equivalent (as we showed it at the beginning of this proof) with 
(p − 1)! ≡ −1(mod p)  and it results that p  is prime. 
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INTEGER ALGORITHMS TO SOLVE DIOPHANTINE 

LINEAR EQUATIONS AND SYSTEMS 
 
Abstract: Two algorithms for solving Diophantine linear equations and five algorithms 
for solving Diophantine linear systems, together with many examples, are presented in 
this paper. 
 
Keywords: Diophantine equations, Diophantine systems, particular integer solutions, 
general integer solutions  
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Introduction: 
 
 The present work includes some of the author’s original researches on the integer 
solutions of equations and linear systems: 

1. The notion of “general integer solution” of a linear equation with two unknowns 
is extended to linear equations with n  unknowns and then, to linear systems. 

2. The properties of the general integer solution are determined (both of a linear 
equation and of a linear system). 

3. Seven original integer algorithms (two for linear equations and five for linear 
systems) are presented. The algorithms are carefully demonstrated and an 
example for each of them is presented. These algorithms can be easily introduced 
into computer. 
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INTEGER SOLUTIONS OF LINEAR EQUATIONS 

  
 Definitions and properties of the integer solutions of linear equations. 
 
 Consider the following linear equation: 

 (1)   aixi
i=1

n

∑ = b ,  

with all ai ≠ 0  and b  in  Z . 
 Again, let  h ∈N , and  fi :Zh → Z , i = 1,n . (1,n  means: all integers from 1 to n ). 
 
 Definition 1. 
 xi = xi

0 , i = 1,n , is a particular integer solution of equation (1), if all  xi
0 ∈Z  and 

ai xi
0

i=1

n

∑ = b . 

 
 Definition 2. 
 xi = fi (k1,..., kh ) , i = 1,n , is the general integer solution of equation (1) if: 

 a) 
 

ai fi (k1,..., kh )
i=1

n

∑ = b;   ∀(k1,...,kh ) ∈Zh , 

 b) For any particular integer solution of equation (1), xi = xi
0 , i = 1,n , there exist 

0 0
1( ,..., ) h

hk k ∈Z  such that xi
0 = fi (k1

0 ,..., kh
0 )  for all i = 1,n  {i. e. any particular integer 

solution can be extracted from the general integer solution by parameterization}. 
 We will further see that the general integer solution can be expressed by linear 
functions.  

 For 1 ≤ i ≤ n  we consider the functions fi = cijk j + di
j =1

h

∑  with all  cij ,  di ∈Z . 

  
Definition 3. 

 A = (cij )i, j  is the matrix associated with the general solution of equation (1). 
  

Definition 4. 
 The integers k1,..., ks ,  1 ≤ s ≤ h  are independent if all the corresponding column 
vectors of matrix A  are linearly independent. 
 
 Definition 5. 
 An integer solution is s -times undetermined if the maximal number of 
independent parameters is s . 
 
 Theorem 1. The general integer solution of equation (1) is n − 1( )-times 
undetermined. 
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 Proof: 
 We suppose that the particular integer solution is of the form:  

 (2) xi = uiePe + vi
e=1

r

∑ ,   i = 1,n , with all  uie,  vi ∈Z ,  

Pe  are parameters of  Z , while a ≤ r < n − 1 . 
Let (x1

0 ,..., xn
0 )  be a general integer solution of equation (1) (we are not interested in 

the case when the equation does not have an integer solution). The solution: 

 

xj = ank j + x j
0 ,            j = 1,n − 1

xn = − ajk j − xn
0

j =1

n−1

∑
⎛

⎝⎜
⎞

⎠⎟

⎧

⎨
⎪

⎩
⎪

 

is undetermined n − 1( )-times (it can be easily checked that the order of the associated 
matrix is n − 1 ). Hence, there are n − 1  undetermined solutions. Let’s consider, in the 
general case, a solution be undetermined n − 1( )-times: 

 xi = cijk j + di
j =1

n−1

∑ ,  i = 1,n  with all  cij ,  di ∈Z . 

 Consider the case when b = 0 . 
 Then  

  aixi = 0
i=1

n

∑ .  

 It follows:  

  ai xi = ai
i=1

n

∑ cijk j + di
j =1

n−1

∑
⎛

⎝⎜
⎞

⎠⎟
= ai

i=1

n

∑ cijk j +
j =1

n−1

∑ ai
i=1

n

∑ di = 0
i=1

n

∑ . 

 For k j = 0 ,  j = 1,n − 1  it follows that ai
i=1

n

∑ di = 0 . 

 For kj0
= 1  and k j = 0,   j ≠ j0 , it follows that ai

i=1

n

∑ cij0
= 0 . 

 Let’s consider the homogenous linear system of n  equations with n  unknowns: 

  
xi

i=1

n

∑ cij = 0,       j = 1,n − 1

 xi
i=1

n

∑ di = 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

which, obviously, has the solution xi = ai ,  i = 1,n  different from the trivial one. Hence 

the determinant of the system is zero, i.e., the vectors cj = c1 j ,...,cnj( )t
, j = 1,n − 1 , 

D = d1,...,dn( )t  are linearly dependent. 
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 But the solution being n − 1( )-times undetermined it shows that cj ,  j = 1,n − 1  are 

linearly independent. Then c1,...,cn−1( ) determines a free sub-module  Z  of order n − 1  in 

 Zn  of solutions for the given equation. 
Let’s see what can we obtain from (2). We have: 

0 = ai
i=1

n

∑ xi = ai
i=1

n

∑ uiePe + vi
e=1

r

∑⎛
⎝⎜

⎞
⎠⎟

.  

As above, we obtain: 

ai
i =1

n

∑ vi = 0  and aiuie0
= 0

e=1

r

∑   

similarly, the vectors Uh = u1h ,...,unh( ) are linearly independent, h = 1,r , Uh , h = 1,r  are 
V = v1,...,vn( ) particular integer solutions of the homogenous linear equation. 
 Sub-case (a1) 
 U,h = 1,r are linearly dependent. This gives { }1,..., rU U = the free sub-module of 

order r  in  Zn  of solutions of the equation. Hence, there are solutions from { }1 1,..., nV V −  

which are not from { }1,..., rU U ; this contradicts the fact that (2) is the general integer 
solution. 
 Sub-case (a2) 
 Uh ,  h = 1,r,  V  are linearly independent. Then { }1,..., rU U V+  is a linear variety 

of the dimension { }1 11 dim ,..., nn V V −< − =  and the conclusion can be similarly drawn. 

 Consider the case when b ≠ 0 . So, ai
i=1

n

∑ xi = b .  

Then: 

 
ai cijk j + di

j =1

n−1

∑
⎛

⎝⎜
⎞

⎠⎟
= aicij

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟j =1

n−1

∑ kj + ai
i=1

n

∑ di
i=1

n

∑ = b;   ∀(k1,...,kn−1) ∈Zn−1 .  

As in the previous case, we obtain ai
i=1

n

∑ di = b  and ai
i=1

n

∑ cij = 0,       ∀ j = 1,n − 1.  

The vectors ( ),...,
t

j ij njc c c= , j = 1,n − 1 , are linearly independent because the solution is 

undetermined n − 1( )-times. 

Conversely, if c1,...,cn−1,  D  (where D = d1,...,dn( )t ) were linearly dependent, it  

would mean that D = sjcj
j =1

n−1

∑ with all s j  scalar; it would also mean that 

b = ai
i=1

n

∑ di = ai
i=1

n

∑ s jcij
j =1

n−1

∑
⎛

⎝⎜
⎞

⎠⎟
= s j ai

i=1

n

∑ cij

⎛
⎝⎜

⎞
⎠⎟j =1

n−1

∑ = 0 . 

This is impossible. 
 
(3) Then { }1 1,..., nc c D− +  is a linear variety. 
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Let us see what we can obtain from (2). We have: 

b = ai
i=1

n

∑ xi = ai
i=1

n

∑ uiePe + vi
e=1

r

∑⎛
⎝⎜

⎞
⎠⎟

= ai
i=1

n

∑ uie

⎛
⎝⎜

⎞
⎠⎟

Pe + ai
i=1

n

∑ vi
e=1

r

∑  

and, similarly: ai
i =1

n

∑ vi = b  and ai
i=1

n

∑ uie = 0,       ∀ e = 1,r , respectively. The vectors 

( )1 ,..., t
e e neU u u= , e = 1,r  are linearly independent because the solution is undetermined 

r -times. 
 A procedure like that applied in (3) shows that U1,...,Ur ,  V  are linearly 

independent, where ( )1,...,
t

nV v v= . Then { }1,..., rU U V+  = a linear variety = free sub-

module of order r < n − 1. That is, we can find vectors from { }1 1,..., nc c D− +  which are 

not from { }1,..., rU U V+ , contradicting the “general” characteristic of the integer number 
solution. Hence, the general integer solution is undetermined n − 1( )-times. 
 
 Theorem 2. The general integer solution of the homogeneous linear equation 

aixi
i=1

n

∑ = 0  (all { }\ 0ia ∈Z ) can be written under the form: 

 (4)  xi = cijk j ,   
j =1

n−1

∑ i = 1,n   

(with d1 = ... = dn = 0 ). 
 Definition 6. This is called the standard form of the general integer solution of a 
homogeneous linear equation. 
 Proof: 

We consider the general integer solution under the form: 

xi = cijPj + di ,   
j =1

n−1

∑ i = 1,n  

with not all di = 0 . We’ll show that it can be written under the form (4). The 
homogeneous equation has the trivial solution xi = 0,   i = 1,n . There is 

 p1
0 ,..., pn−1

0( )∈Zn−1  such that cij pj
0 + di = 0,   ∀

j =1

n−1

∑ i = 1,n . 

 Substituting: Pj = k j + pj ,   j = 1,n − 1  in the form shown at the beginning of the 
demonstration, we will obtain form (4). We have to mention that the substitution does not 
diminish the degree of generality as  Pj ∈Z ⇔  k j ∈Z  because j = 1,n − 1 . 
 
 Theorem 3. The general integer solution of a non-homogeneous linear equation is 
equal to the general integer solution of its associated homogeneous linear equation plus 
any particular integer solution of the non-homogeneous linear equation. 
 Proof: 
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 Let’s consider that 
1

1

,     1,
n

i ij j
j

x c k i n
−

=

= =∑ , is the general integer solution of the 

associated homogeneous linear equation and, again, let xi = vi ,   i = 1,n , be a particular 

integer solution of the non-homogeneous linear equation. Then 
1

1

+ ,     1,
n

i ij j i
j

x c k v i n
−

=

= =∑ , 

is the general integer solution of the non-homogeneous linear equation. 

 Actually, 
1 1

1 1 1 1 1 1

n n n n n n

i i i ij j i i ij j i i
i i j i j i

a x a c k v a c k a v b
− −

= = = = = =

⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑ ; 

if xi = xi
0 ,   i = 1,n , is a particular integer solution of the non-homogeneous linear 

equation, then xi = xi − vi ,   i = 1,n , is a particular integer solution of the homogeneous 
linear equation: hence, there is  (k1

0 ,..., kn−1
0 ) ∈Zn−1  such that  

cij
j =1

n−1

∑ kj
0 = x

i

0 − vi ,   ∀ i = 1,n ,  

i.e.: 

cij
j =1

n−1

∑ kj
0 + vi = x

i

0 ,   ∀ i = 1,n ,  

which was to be proven. 
 

 Theorem 4. If 
1

1

,   1,
n

i ij j
j

x c k i n
−

=

= =∑  is the general integer solution of a 

homogeneous linear equation ( ),..., 1ij njc c ∼  1, 1j n∀ = − . 

The demonstration is done by reduction ad absurdum. If 0 0,  1 1j j n∃ ≤ ≤ −  such 

that ( )0 0 0
,..., 1ij nj jc c d ≠ ±∼ , then cij0

= cij0

' dij0
 with ( )0 0

' ',..., 1,     1,ij njc c i n∀ =∼ . 

But xi = cij0

' ,  i = 1,n , represents a particular integer solution as 

ai
i=1

n

∑ xi = ai
i=1

n

∑ cij0

' = 1 / dj0
⋅ aicij0

= 0
i=1

n

∑   

(because xi = cij0
,    i = 1,n  is a particular integer solution from the general integer 

solution by introducing kj0
= 1  and k j = 0 , j ≠ j0 . But the particular integer solution 

xi = cij0

' ,    i = 1,n , cannot be obtained by introducing integer number parameters (as it 
should) from the general integer solution, as from the linear system of n  equations and 
n − 1  unknowns, which is compatible. We obtain: 

  xi = cijk j
j =1
j ≠ j0

n

∑ +cij0

' dj0
kj0

=cij0

' ,     i = 1,n . 

 Leaving aside the last equation – which is a linear combination of other n − 1  
equations – a Kramerian system is obtained, as follows: 
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0

0

0

00 0

0 0

'
11 1, 1

'
1,1 1 1 1

'
11 1, 1

'
1,1 1 1 1

...... .......

:
... ... 1

....... ......

:
... ...

ij n

n n j n n
j

jij j n

n n j j n n

c c c

c c c
k

dc c d c

c c d c

−

− − − −

−

− − − −

= = ∉Z  

 
Therefore the assumption is false (end of demonstration). 

 
Theorem 5. Considering the equation (1) with ( )1,..., 1,   0na a b =∼  and the 

general integer solution xi = cijk j
j =1

n−1

∑ ,  i = 1,n , then  

 ( ) ( )1 1 1 1 1,..., , ,..., ,..., ,   1,i i n i ina a a a c c i n− + − ∀ =∼ .  
Proof: 
The demonstration is done by double divisibility. 

Let’s consider i0 ,   1 ≤ i0 ≤ n  arbitrary but fixed. xi0
= ci0 jk j

j =1

n−1

∑ . Consider the 

equation ai xi = −
i≠ i0

∑ ai0
xi0

  . We have shown that xi = cij ,   i = 1,n  is a particular integer 

solution irrespective of j,   a ≤ j ≤ n − 1 .  
The equation ai xi = −

i≠ i0

∑ ai0
ci0 j  obviously, has the integer solution xi = cij ,   i ≠ i0 . 

Then ( )0 01 1 1,..., , ,...,i i na a a a− +  divides − ai0
ci0 j  as we have assumed, it follows that 

( )1,..., 1na a ∼ , and it follows that ( )0 0 01 1 1,..., , ,..., |i i n i ja a a a c− +  irrespective of j . Hence 

( ) ( )0 0 0 01 1 1 1 1,..., , ,..., | ,..., ,   1,i i n i i na a a a c c i n− + − ∀ = , and the divisibility in one sense was 

proven. 
Inverse divisibility: 
Let us suppose the contrary and consider that ∃i1 ∈1,n  for which 

( ) ( )1 1 1 1 1 11 1 1 1 2 1 1,..., , ,..., ,...,i i n i i i i na a a a d d c c− + −≠∼ ∼ ; we have considered di11  and di1 2  
without restricting the generality. di11 | di1 2  according to the first part of the 

demonstration. Hence,  ∃d ∈Z  such that 
1 12 1,  1i id d d d= ⋅ ≠ .  

xi1
= ci1 jk j

j =1

n−1

∑ =d ⋅ di11 ci1 j
' kj

j =1

n−1

∑ ; 

ai xi
i=1

n

∑ = 0 ⇒ ai xi
i≠ i1

n

∑ = −ai1
xi1

ai xi = −ai1
d ⋅ di11

i≠ i1

∑ ci1 j
' k j

j =1

n−1

∑ , 
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where ( )1 11 1,..., 1i i nc c − ∼ . 

 The non-homogeneous linear equation ai xi = −ai1
di11

i≠ i1

∑ has the integer solution 

because ai1
di11  is divisible by ( )1 11 1 1,..., , ,...,i i na a a a− + . Let’s consider that xi = x

i

0 ,   i ≠ i1 , 

is its particular integer solution. It follows that the equation ai
i=1

n

∑ xi = 0  the particular 

solution xi = x
i

0 ,   i ≠ i1,    xi1
= di1

, which is written as (5). We’ll show that (5) cannot be 
obtained from the general solution by integer number parameters: 

(6) 
cij

j =1

n−1

∑ k j = x
i

0 ,    i ≠ i1

d ⋅ di11 cij
j =1

n−1

∑ k j = di11

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 

But the equation (6) does not have an integer solution because d ⋅ di11 | di11  thus, 
contradicting, the “general” characteristic of the integer solution. 
 As a conclusion we can write: 

 Theorem 6. Let’s consider the homogeneous linear equation ai
i=1

n

∑ xi = 0 , with all 

{ }\ 0ia ∈Z  and ( )1,..., 1na a ∼ . 

 Let 
1

,  1,
h

i ij j
j

x c k i n
=

= =∑ , with all  cij ∈Z , all kj  integer parameters and let’s 

consider  h ∈N  be a general integer solution of the equation. Then,  
1) the solution is undetermined n − 1( )-times; 

2) ∀ j = 1,n − 1  we have ( )1 ,..., 1j njc c ∼ ; 

3) ∀ i = 1,n  we have ( ) ( )1 1 1 1 1,..., ,..., , ,...,i in i i nc c a a a a− − +∼ . 
The proof results from theorems 1,4 and 5. 
 
Note 1. The only equation of the form (1) that is undetermined n -times is the 

trivial equation 0 ⋅ x1 + ...+ 0 ⋅ xn = 0 . 
 

 Note 2. The converse of theorem 6 is not true. 
  

Counterexample:  

(7) 
1 1 2

2 1 2

3 1 2 1 2

  
5 3
7  ;     ,

x k k
x k k
x k k k k

= − +⎧
⎪ = +⎨
⎪ = − ∈⎩ Z

 

is not the general integer solution of the equation 
(8) −13x1 + 3x2 − 4x3 = 0   
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although the solution (7) verifies the points 1), 2) and 3) of theorem 6. (1, 7, 2) is the 
particular integer solution of (8) but cannot be obtained by introducing integer number 
parameters in (7) because from  

  
1 2

1 2

1 2

 1
5 3 7
7   = 2     

k k
k k
k k

− + =⎧
⎪ + =⎨
⎪ −⎩

 

it follows that 1
2

k = ∉Z  and 3
2

k = ∉Z  (unique roots). 
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AN INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS 

 
 An algorithm is given that ascertains whether a linear equation has integer number 
solutions or not; if it does, the general integer solution is determined. 
 
 Input 
 A linear equation a1x1 + ... + anxn = b , with  ai ,b ∈Z , xi  being integer number 
unknowns, i = 1,n , and not all ai = 0 . 
 
 Output 
 Decision on the integer solution of this equation; and if the equation has solutions 
in  Z , its general solution is obtained. 
 
 Method 
 Step 1. Calculate ( )1,..., nd a a= . 
 Step 2. If d / b  then “the equation has integer solution”; go on to Step 3. If d / b  
then “the equation does not have integer solution”; stop. 
 Step 3. Consider h := 1 . If d ≠ 1 , divide the equation by d ; consider 

ai := ai / d,  i = 1,n,  b := b / d . 
 Step 4. Calculate a = min

as ≠0
as  and determine an i  such that ai = a . 

 Step 5. If a ≠ 1 then go to Step 7. 
 Step 6. If a = 1 , then: 
  (A) xi = −(a1x1 + ... + ai−1xi−1 + ai+1xi+1 + ... + anxn − b) ⋅ ai  

(B) Substitute the value of xi  in the values of the other determined 
unknowns. 

(C) Substitute integer number parameters for all the variables of the 
unknown values in the right term: k1, k2 ,..., kn− 2 , and kn−1  
respectively. 

(D) Write, for your records, the general solution thus determined; stop. 
Step7. Write down all aj ,  j ≠ i  and under the form:  

aj = aiqj + rj  

b = aiq + r  where qj =
aj

ai

⎡

⎣
⎢

⎤

⎦
⎥ , q =

b

ai

⎡

⎣
⎢

⎤

⎦
⎥ . 

 Step 8. Write xi = −q1x1 − ...− qi−1xi−1 − qi+1xi+1 − ... − qnxn + q − th . Substitute the 
value of xi  in the values of the other determined unknowns. 
 Step 9. Consider  
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a1 := r1
:

ai−1 := ri−1

ai+1 := ri+1

:

an := rn

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

  and  

ai := −ai

b := r

xi := th

h := h + 1

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

and go back to Step 4. 
 
 Lemma 1. The previous algorithm is finite. 
 Proof: 
 Let’s a1x1 + ... + anxn = b  be the initial linear equation, with not all ai = 0 ; check 
for min

as ≠0
as = a1 ≠ 1  (if not, it is renumbered). Following the algorithm, once we pass 

from this initial equation to a new equation: ' ' '
1 1 2 2 ... 'n na x a x a x b+ + + = , with '

1 ia a<  for 

i = 2,n , b ' < b  and '
1 1a a= − . 

 It follows that 
'

'

10
min min

ss
s saa

a a
≠≠

< . We continue similarly and after a finite number 

of steps we obtain, at Step 4, a := 1  (the actual a  is always smaller than the previous a , 
according to the previous note) and in this case the algorithm terminates.  
 
 Lemma 2. Let the linear equation be: 
 (25)  1 1 2 2 ... n na x a x a x b+ + + = , with 10

min
s

sa
a a

≠
=  and the equation 

 (26) 1 1 2 2 ... n na t r x r x r− + + + = , with t1 = −x1 − q2x2 − ... − qnxn + q , where  

ri = ai − aiqi , i = 2,n , r = b − a1q  while qi =
ai

a
⎡
⎣⎢

⎤
⎦⎥

, 
1

br
a

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. Then x1 = x1

0 , 

x2 = x2
0 ,…, xn = xn

0  is a particular solution of equation (25) if and only if  
t1 = t1

0 = −x1 − q2x2
0 − ... − qnxn

0 + q ,  x2 ,..., xn = xn
0  is a particular solution of equation 

(26). 
 Proof: 

x1 = x1
0 , x2 = x2

0 ,…, xn = xn
0 , is a particular solution of equation (25) ⇔   

a1x1
0 + a2x2

0 + ... + anxn
0 = b ⇔ a1x1

0 + (r2 + a1q2 )x2
0 + ... + (rn + a1qn )xn

0 = a1q + r ⇔   
r2x2

0 + ... + rnxn
0 − a1(−x1

0 − q2x2
0 − ... − qnxn

0 + q) = r ⇔ −a1t1
0 + r2x2

0 + ... + rnxn
0 = r ⇔

0 0 0
1 1 2 2, ,..., n nt t x x x x⇔ = = =  is a particular solution of equation (26). 

 
 Lemma 3. 1 1 1 1...i i in n ix c k c k d− −= + + + , i = 1,n , is the general solution of equation 
(25) if and only if 

(28)  t1 = −(c11 + q2c21 + ... + qncn1)k1 − ... − (c1n−1 + q2c2n−1 + ... + qncnn−1)kn −  
 1 2 2( ... )n nd q d q d q− + + + + , 

 1 1 1 1 1...j j jn n jx c k c k d− −= + + + ,   j = 2,n  
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is a general solution for equation (26). 
 Proof: 
 t1 = t1

0 = −x1
0 − q2x2

0 − ... − qnxn
0 + q,  x2 = x2

0 ,..., xn = xn
0  is a particular solution of 

the equation (25) ⇔  0 0 0
1 1 2 2,  ,..., n nx x x x x x= = =  is a particular solution of equation (26) 

0 0
1 1 ,..., n nk k k k⇔ ∃ = ∈ = ∈Z Z  such that 

0 0 0
1 1 1 1...i i in n i ix c k c k d x− −= + + + = , i = 1,n   ⇔ ∃k1 = k1

0 ∈Z,..., kn = kn
0 ∈Z ,  

such that   
0 0 0

1 1 1 1...i i in n i ix c k c k d x− −= + + + = ,  i = 2,n ,  
and  

t1 = −(c11 + q2c21 + ... + qncn1)k
1

0 − ... − (c1n−1 + q2c2n−1 + ... + qncnn−1)k
n−1

0 −

(d1 + q2d2 + ... + qndn ) + q = −x1
0 − q2x2

0 − ... − qnxn
0 + q = t1

0
 

  
 Lemma 4.  The linear equation  
 (29) 1 1 2 2 ... n na x a x a x b+ + + =  with a1 = 1 has the general solution: 

 (30) 

 

x1 = −(a2k2 + ...+ ankn − b)a1

xi = ki ∈Z
i = 2,n

⎧

⎨
⎪

⎩
⎪

 

 Proof: 
 Let’s consider x1 = x1

0 , x2 = x2
0 ,…, xn = xn

0 , a particular solution of equation (29). 
0 0

2 2 ,  n nk x k x∃ = = , such that ( )0 0 0 0 0
1 2 2 1 1 2 2... ,   ,...,n n n nx a x a x b a x x x x x= − + + − = = = . 

 Lemma 5. Let’s consider the linear equation 1 1 2 2 ... n na x a x a x b+ + + = , with 

1
0

min
s

s
a

a a
≠

=  and 1 ,   2,i ia a q i n= = . 

 Then, the general solution of the equation is: 

 
1 2 2( ... )

2,

n n

i i

x q k q k q
x k

i n

⎧ = − + + −
⎪

= ∈⎨
⎪ =⎩

Z  

 Proof: 
 Dividing the equation by a1  the conditions of Lemma 4 are met. 
 
 Theorem of Correctness. The preceding algorithm calculates correctly the 
general solution of the linear equation 1 1 ... n na x a x b+ + = , with not all ai = 0 . 
 Proof: 
 The algorithm is finite according to Lemma 1. The correctness of steps 1, 2, and 3 
is obvious. At step 4 there is always 

0
min

s
sa

a
≠

 as not all ai = 0 . The correctness of sub-

step 6 A) results from Lemmas 4 and 5, respectively. This algorithm represents a method 
of obtaining the general solution of the initial equation by means of the general solutions 
of the linear equation obtained after the algorithm was followed several times (according 
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to Lemmas 2 and 3); from Lemma 3, it follows that to obtain the general solution of the 
initial linear equation is equivalent to calculate the general solution of an equation at step 
6 A), equation whose general solution is given in algorithm (according to Lemmas 4 and 
5). The Theorem of correctness has been fully proven. 
 
 Note. At step 4 of the algorithm we consider 

0
: min

s
sa

a a
≠

=  such that the number of 

iterations is as small as possible. The algorithm works if we consider a := ai ≠ max
s=1,n

as  

but it takes longer. The algorithm can be introduced into a computer program. 
 
 Application  
 Calculate the integer solution of the equation: 

6x1 − 12x2 − 8x3 + 22x4 = 14 . 
 
Solution 

 The previous algorithm is applied. 
 1. (6,−12,−8,22) = 2  
 2. 2 |14  therefore the solution of the equation is in  Z . 

3. h := 1;  2 ≠ 1; dividing the equation by 2 we obtain: 

3x1 = 6x2 − 4x3 + 11x4 = 7 . 

 4. { }: min 3 ,  6 ,  4 ,  11 3,  1a i= − − = =  

 5. a ≠ 1  
 7. 6 3 ( 2) 0− = ⋅ − +  
  4 3 ( 2) 2− = ⋅ − +  
   11 3 3 2= ⋅ +  
    7 3 2 1= ⋅ +  
 8. x1 = 2x2 + 2x3 − 3x4 + 2 − t1  
 9. 

      

a2 := 0         a1 := −3

a3 := 2         b := 1

a4 := 2         x1 := t1

                    h := 2

 

 4. We have a new equation: 
  −3t1 − 0 ⋅ x2 + 2x3 + 2x4 = 1 

  { }: min 3 , 2 , 2a = −  and 

  i = 3  
 5. a ≠ 1  
 7. −3 = 2 ⋅ (−2) + 1 
      0 = 2 ⋅ 0 + 0  
      2 = 2 ⋅1+ 0  
      1 = 2 ⋅ 0 + 0  
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 8. x3 = 2t1 + 0 ⋅ x2 − x4 + 0 − t2 . Substituting the value of x3  in the value 

determined for x1  we obtain: 1 2 4 1 22 5 3 2 2x x x t t= − + − +  
 9. a1 := 1 a3 := −2  
     a2 := 0  b := 1 

    a4 := 0  x3 := t2  
  h := 3  

4. We have obtained the equation: 
   2 2 2 41 0 2 0 1t x t x⋅ + ⋅ − ⋅ + ⋅ = , a = 1 , and i = 1  
6. (A) t1 = −(0 ⋅ x2 − 2t2 + 0 ⋅ x4 − 1) ⋅1 = 2t2 + 1  
    (B) Substituting the value of t1  in the values of x1  and x3  previously 

determined, we obtain:  
 x1 = 2x2 − 5x4 + 4t2 + 5  and  
 x3 = −x4 + 3t2 + 2  
    (C) x2 := k1 , x4 := k2 ,  t2 := k3 ,   k1, k2 , k3 ∈Z  

(D)  The general solution of the initial equation is: 
x1 = 2k1 − 5k2 + 4k3 + 5  
x2 = k1   
x3 = −k2 + 3k3 + 2  
x4 = k2  
k1, k2 , k3  are parameters  ∈Z  

 
 
  REFERENCE 
 

[1] Smarandache, Florentin – Whole number solution of equations and 
systems of equations – part of the diploma thesis, University of Craiova, 
1979. 
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ANOTHER INTEGER ALGORITHM TO SOLVE LINEAR EQUATIONS 

(USING CONGRUENCES) 
 
 In this section is presented a new integer number algorithm for linear equation. 
This algorithm is more “rapid” than W. Sierpinski’s presented in [1] in the sense that it 
reaches the general solution after a smaller number of iterations. Its correctness will be 
thoroughly demonstrated. 
 
Another Integer Algorithm. 
 Let’s us consider the equation (1); (the case  ai ,b ∈Q,  i = 1,n  is reduced to the 
case (1) by reducing to the same denominator and eliminating the denominators). Let 
d = (a1,...,an ) . If d | b  then the equation does not have integer solutions, while if  |d b/  
the equation has integer solutions (according to a well-known theorem from the number 
theory).  
 If the equation has solutions and d ≠  we divide the equation by d . Then d = 1  
(we do not make any restriction if we consider the maximal co-divisor positive). 
 Also, 

(a) If all ai  the equation is trivial; it has the general integer solution 

 xi = ki ∈Z,  i = 1,n , when b = 0  (the only case when the general solution is 
n -times undetermined) and does not have solution whenb ≠ 0 . 

(b) If ∃i,  1 ≤ i ≤ n  such that ai = ±1 then the general integer solution is: 

xi = −ai ajk j − b
j =1
j ≠ i

n

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 and  { } { },  1,..., \s sx k s n i= ∈ ∈  

The proof of this assertion was given in [4]. All these cases are trivial, therefore 
we will leave them aside. The following algorithm can be written: 
  
 Input  
 A linear equation:  

(2)  
 

ai
i=1

n

∑ xi = b,  ai ,b ∈Z,   ai ≠ ±1,  i = 1,n ,  

with not all ai = 0  and (a1,...,an ) = 1. 
 
 Output 
 The integer general solution of the equation.  
 
 Method 
 1. h := 1,  p := 1  

 2. Calculate { }
1 ,
min ,  (mod ),  i j ji j n

r r a a r a
≤ ≤

≡ <  and determine r  and the pair 

(i, j)  for which this minimum can be obtained (when there are more possibilities we have 
to choose one of them). 
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 3. If r ≠  go to step 4. 
     If r = 1 , then  
 

{ }

{ }

   1
,

   1
,

:

:

n

i j h s s
s

s i j

n
i i

j i h s s
sj j

s i j

x r a t a x b

a r r ax r a t a x b
a a

=
∉

=
∉

⎧ ⎛ ⎞
⎪ ⎜ ⎟= − − +⎪ ⎜ ⎟

⎜ ⎟⎪⎪ ⎝ ⎠
⎨

⎛ ⎞⎪ − −⎜ ⎟⎪ = + ⋅ +⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

∑

∑

 

 
(A) Substitute the values thus determined of these unknowns in all the 

statements (p), p = 1,2,... (if possible). 
(B) From the last relation (p)  obtained in the algorithm substitute in all 

relations: p − 1( ), p − 2( ),...,(1)  
(C) Every statement, starting in order from p − 1( )  should be applied the 

same procedure as in (B): then p − 2( ),...,(3)  respectively. 

(D) Write the values of the unknowns xi ,  i = 1,n , from the initial 
equation (writing the corresponding integer number parameters from 
the right term of these unknowns with k1,..., kn−1 ), STOP. 

4. Write the statement (p) : xj = th −
ai − r

aj

xi  

5. Assign  x j := th   h := h + 1  
   ai := r  p := p + 1  
The other coefficients and variables remain unchanged go back to step 2. 

 
 The Correctness of the Algorithm 
 
 Let us consider linear equation (2). Under these conditions, the following 
properties exist: 

 
 Lemma 1. The set { } ,  (mod ),  0<i j jM r r a a r a= ≡ <  has a minimum. 

 Proof:  
 Obviously  M ⊂ N*  and M  is finite because the equation has a finite number of 
coefficients: n , and considering all the possible combinations of these, by twos, there is 
the maximum ARn

2  (arranged with repetition) = n2  elements. 
 Let us show, by reductio ad absurdum, that  M ≠ Ø . 
  M ≠ Ø  ⇔  ai ≡ 0(mod aj )  ∀i,  j = 1,n . Hence aj ≡ 0(mod ai )  ∀i,  j = 1,n . Or this 

is possible only when ai = aj ,  ∀i,  j = 1,n , which is equivalent to 
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(a1,..,an ) = ai ,  ∀i ∈1,n . But (a1,..,an ) = 1  are a restriction from the assumption. It 
follows that ai = 1,n,  ∀i ∈1,n  a fact which contradicts the other restrictions of the 
assumption. 

 M ≠ 0  and finite, it follows that M has a minimum. 
 
 Lemma 2. If r = min

1≤i, j ≤n
M , then r < ai ,  ∀i ∈1,n . 

 Proof: 
 We assume conversely, that ∃i0 ,  1 ≤ i0 ≤ n  such that r ≥ ai0

. 

Then { } 01
min  1j jj n

r a a
≤ ≤

≥ = ≠ ,  1 ≤ j0 ≤ n . Let ap0
,  1 ≤ p0 ≤ n , such that ap0

> aj0
 and 

ap0
 is not divided by aj

0 . 

There is a coefficient in the equation, aj0
 which is the minimum and the coefficients 

are not equal among themselves (conversely, it would mean that (a1,..,an ) = a1 = ±1  
which is against the hypothesis and, again, of the coefficients whose absolute value is 
greater that aij0

 not all can be divided by aj0
(conversely, it would similarly result in 

(a1,..,an ) = aj0
≠ ±1. 

 We write  ap0
/ aj0

⎡⎣ ⎤⎦ = q0 ∈Z  (integer portion), and  r = ap0
− q0aj0

∈Z . We have 

ap0
≡ r0 (mod aj0

)  and 0 < r0 < aj0
< ai0

≤ r . Thus, we have found an r0  which 

r0 < r  contradicts the definition of minimum given to r . 

Thus r < ai , ∀i ∈1,n . 
 
 Lemma 3. If r = min M = 1 for the pair of indices (i, j) , then: 
 

  

{ }

{ }

{ } { }

   1
,

   1
,

,  1,..., \ ,

n

i j h s s
s

s i j

n
i i

j i h s s
sj j

s i j

s s

x r a t a k b

a r r ax r a t a k b
a a

x k s n i j

=
∉

=
∉

⎧ ⎛ ⎞
⎪ ⎜ ⎟= − − +⎪ ⎜ ⎟

⎜ ⎟⎪ ⎝ ⎠⎪
⎛ ⎞⎪

− −⎪ ⎜ ⎟= + ⋅ +⎨ ⎜ ⎟
⎪ ⎜ ⎟

⎝ ⎠⎪
⎪ = ∈ ∈
⎪
⎪
⎪⎩

∑

∑

Z

 

is the general integer solution of equation (2). 
 Proof: 
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 Let xe = xe
0 ,  e = 1,n , be a particular integer solution of  equation (2). Then 

 ∃ks = xs
0 ∈Z,  s ∈ 1,...,n{ }\ i, j{ } and 

 
th = x j

0 +
ai − r

aj

xi
0 ∈Z  (because ai − r = Maj ) such 

that:   

{ }

0 0 0

   1
,

n
i

i j j i s s i
sj

s i j

a rx r a x x a x b x
a =

∉

⎛ ⎞−
= − + − + =⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

 
{ }

0 0 0 0

   1
,

n
i i i

j j j i s s i
sj j j

s i j

a r a r r ax r a x x a x b x
a a a=

∉

⎛ ⎞− − −
= − + + − + =⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

and { } { }0 ,  1,..., \ ,s s sx k x s n i j= = ∈ . 
 
 Lemma 4. Let r ≠  and i, j( ) be the pair of indices for which this minimum can 
be obtained. Again, let’s consider the system of linear equations: 
 

(3) { }
   1

,

n

j h i s s
s

s i j

i
h j i

j

a t rx a x b

a rt x x
a

=
∉

⎧ + + =⎪
⎪
⎨

−⎪ = +⎪
⎩

∑
 

 
Then xe = xe

0 ,  e = 1,n  is a particular integer solution for (2) if and only if xe = xe
0 , 

{ } { }1,..., \e n j∈  and th = th
0 = xj

0 +
ai − r

aj

xi  is the particular integer solution of (3). 

Proof: 
xe = xe

0 ,  e = 1,n  is a particular solution for (2) if and only if  

 
{ }

0 0 0 0 0

1    1
,

n n
i

e e s s j j i i
e s j

s i j

a ra x b a x a x x rx b
a= =

∉

⎛ ⎞−
= ⇔ + + + = ⇔⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  

{ }

0 0 0

   1
,

n

j h i s s
s

s i j

a t rx a x b
=

∉

⇔ + + =∑  and 
 
th

0 = xj
0 +

ai − r

aj

xi
0 ∈Z  ⇔ xe = xe

0 , 

{ } { }1,..., \e n j∈  and th = th
0  is a particular integer solution for (3). 

 
 Lemma 5.  The previous algorithm is finite. 
 Proof: 
 When r = 1  the algorithm stops at step 3. We will discuss the case when 
r ≠ 1 . According to the definition of  r,  r ∈N* . We will show that the row of 
r − s  successively obtained by following the algorithm several times is 
decreasing with cycle, and each cycle is not equal to the previous, by 1. Let r1  be 
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the first obtained by following the algorithm one time. r1 ≠ 1  then go to step 4, 

and then step 5. According to lemma 2, r1 < ai ,  ∀i = 1,n .  
Now we shall follow the algorithm a second time, but this time for an 

equation in which r1  (according to step 5) is substituted by ai . Again, according 
to lemma 2, the new r  written r2  will have the propriety: r2 < r1 . We will get 
to r = 1  because r ≥ 1  and r < ∞ , and if r ≠ 1 , following the algorithm once 
again we get r < r1  and so on. Hence, the algorithm has a finite number of 
repetitions. 
 
 Theorem of Correctness. The previous algorithm calculates the general 
solution of the linear equation correctly (2). 
 Proof: 
 According to lemma 5 the algorithm is finite. From lemma 1 it follows 
that the set M has a minimum, hence step 2 of the algorithm has meaning. When  
r = 1  it was shown in lemma 3 that step 3 of the algorithm calculates the general 

integer solution of the respective equation correctly the equation that appears at 
step 3). In lemma 4 it is shown that if r ≠ 1 the substitutions steps 4 and 5 
introduced in the initial equation, the general integer solution remains unchanged. 
That is, we pass from the initial equation to a linear system having the same 
general solution as the initial equation. The variable h  is a counter of the newly 
introduced variables, which are used to successively decompose the system in 
systems of two linear equations. The variable p is a counter of the substitutions of 
variables (the relations, at a given moment between certain variables). 
 When the initial equation was decomposed to r = 1 , we had to proceed in 
the reverse way, i.e. to compose its general integer solution. This reverse way is 
directed by the sub-steps 3(A), 3(B) and 3(C). The sub-step 3(D) has only an 
aesthetic role, i.e., to have the general solution under the form: xi = fi (k1 ,...,kn−1) , 
i = 1,n , fi  being linear functions with integer number of coefficients. This “if 
possible” shows that substitutions are not always possible. But when they are we 
must make all possible substitutions. 
 
 Note 1. The previous algorithm can be easily introduced into a computer 
program. 
 
 Note 2. The previous algorithm is more “rapid” than that of W. 
Sierpinski’s [1], i.e., the general integer solution is reached after a smaller number 
of iterations (or, at least, the same) for any linear equation (2).  

In the first place, both methods aim at obtaining the coefficient ±1  for at least 
one unknown variable. While Sierpinski started only by chance, decomposing the 
greatest coefficient in the module (writing it under the form of a sum between a 
multiple of the following smaller coefficient (in the module) and the rest), in our 
algorithm this decomposition is not accidental but always seeks the smallest r  
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and also choose the coefficients ai  and aj  for which this minimum is achieved. 
That is, we test from the beginning the shortest way to the general integer 
solution. Sierpinski does not attempt to find the shortest way; he knows that his 
method will take him to the general integer solution of the equation and is not 
interested in how long it will take. However, when an algorithm is introduced into 
a computer program it is preferable that the process time should be as short as 
possible. 
 

Example 1. 
Let us solve in  Z3  the equation 17x − 7y + 10z = −12 . 
We apply the former algorithm. 
1. h = 1, p = 1  
2. r = 3,  i = 3,  j = 2  
3. 3 ≠ 1  go on to step 4. 

4. (1) y = t1 −
10 − 3

−7
⋅ z = t1 + z  

5. Assign 

 1

3

:        : 2
: 3     : 2

y t h
a p

= =
= =

 

with the other coefficients and variables remaining unchanged, go back to  
step 2. 
2. 1,  1,  3r i j= − = =  
3. −1 = 1  

 
x = −1(−3t2 − (−7t1) − 12) = 3t2 − 7t1 − 12

z = −1 17t2 + (−7t1) ⋅
17 − (−1)

3
+

−1 − 17

3
(−12)

⎛
⎝⎜

⎞
⎠⎟

= 17t2 + 42t1 − 72
 

(A) We substitute the values of x  and z  thus determined into the only 
statement (p)  we have: 
(1) 1 2 117 43 72y t z t t= + = − − + −  

 
(B) The substitution is not possible. 
(C) The substitution is not possible. 
(D) The general integer solution of the equation is: 

 

 

x = 3k1 − 7k2 + 12

y = −17k1 + 43k2 − 72

z = −17k1 + 42k2 − 72;       k1, k2 ∈Z

⎧

⎨
⎪

⎩
⎪
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INTEGER NUMBER SOLUTIONS OF LINEAR SYSTEMS 

 
Definitions and Properties of the Integer Solution of a Linear System 

 
 Let’s consider  

(1)    aij
j =1

n

∑ xj = b
i
,    i = 1,m   

a linear system with all coefficients being integer numbers (the case with rational 
coefficients is reduced to the same). 
  
 Definition 1. x j = x j

0 ,   j = 1,n , is a particular integer solution of (1) if 

 x j
0 ∈Z,   j = 1,n  and aij x j

0

j =1

n

∑ = bi ,   i = 1,m . 

 Let’s consider the functions  f j :Zh → Z,   j = 1,n , where  h ∈N* . 
 
 Definition 2. x j = f j (k1,..., kh ),  j = 1,n , is the general integer solution for (1) if: 

 (a)   aij f j (k1,...,kh )
j =1

n

∑ = bi ,   i = 1,m , irrespective of ( )1,..., hk k ∈Z ; 

 (b)   Irrespective of xj = xj
0 , j = 1,n  a particular integer solution of (1) there is 

0 0
1( ,..., )hk k ∈Z such that f j (k1

0 ,..., kh
0 ) = x j ,  j = 1,n . (In other words the general solution 

that comprises all the other solutions.) 
 
 Property 1. 
 A general solution of a linear system of m  equations with n  unknowns, 
r(A) = m < n , is undetermined ( )n m− -times. 
 Proof: 
 We assume by reduction ad absurdum that it is of order r , 1 ≤ r ≤ n − m  (the case 
r = 0 , i.e., when the solution is particular, is trivial). It follows that the general solution is 
of the form: 

(S1)  

1 11 1 1 1

1 1

...
:

... ,    , 
parameters

r r

n n nr r n ih

h

x u p u p v

x u p u p v u i
p

= + + +⎧
⎪
⎪
⎨ = + + + ∀ ∈⎪
⎪ = ∈⎩

Z
Z

 

We prove that the solution is undetermined ( )n m− -times. 
The homogeneous linear system (1), resolved in r  has the solution:  
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x1 =
Dm+1

1

D
xm+1 + ...+

Dn
1

D
xn

:

xm =
Dm+1

m

D
xm+1 + ...+

Dn
m

D
xn

⎧

⎨

⎪
⎪

⎩

⎪
⎪
⎪

 

Let xi = xi
0 ,  i = 1,n , be a particular solution of the linear system (1).  

Considering 

   
xm+1 = D ⋅ km+1

:

xn = D ⋅ kn

⎧

⎨
⎪

⎩
⎪

 

we obtain the solution 

  

1 1 0
1 1 1 1

0
1 1

0
1 1 1

0

...
:

...

:
,                       parameters

m m n n

m m
m m m n n m

m m m

n n n j

x D k D k x

x D k D k x

x D k x

x D k x k

+ +

+ +

+ + +

⎧ = ⋅ + + ⋅ +
⎪
⎪
⎪ = ⋅ + + ⋅ +⎪
⎨

= ⋅ +⎪
⎪
⎪

= ⋅ + = ∈⎪⎩ Z

 

 
which depends on the n − m independent parameters, for the system (1). Let the solution 
be undetermined ( )n m− -times: 

(S2)  

1 11 1 1 1

1 1

...
:

...
,  ,  parameters

n m n m

n n nn m n m n

ij i j

x c k c k d

x c k u k d
c d k

− −

− −

= + + +⎧
⎪
⎪
⎨ = + + +⎪
⎪ ∈ = ∈⎩ Z Z

 

(There are such solutions, we have proved it before.) Let the system be: 

   
a11x1 + ... + a1nxn = b1

:

am1x1 + ... + amn xn = bm

⎧

⎨
⎪

⎩
⎪

 

xi  = unknowns ∈Z ,  ,  
iija b ∈Z . 

I. The case bi = 0,   i = 1, m  results in a homogenous linear system: 
 ai1xi + ... + ainxn = 0;  i = 1, m . 
(S2)  ⇒ ai1 ci1k1 + ... + c1n− mkn− m + d1( )+ ... + ain cn1k1 + ... + cnn− mkn− m + dn( )= 0  

0 = ai1c11 + ... + aincn1( )k1 + ... + ai1c1n− m + ... + aincnn− m( )kn− m + ai1d1 + ... + aindn( )
  ∀k j ∈Z  

 For 1 1 1... 0 ... 0n m i in nk k a d a d−= = = ⇒ + + = . 
 For k1 = ... = kh−1 = kh+1 = ... = kn− m = 0  and 1  hk = ⇒  
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 ⇒ ai1cih + ... + aincnh( )+ ai1d1 + ... + aindd
(n)( )= 0 ⇒

 ai1cih + ... + aincnh = 0,  ∀ i = 1, m,  ∀ h = 1,n − m . 
The vectors  

Vh =

c1h

:

:

cnh

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,   h = 1,n − m   

are the particular solutions of the system.  
 Vh ,   h = 1,n − m  also linearly independent because the solution is undetermined 
( )n m− -times { }1,..., n mV V d− +  is a linear variety that includes the solutions of the system 
obtained from (S2).  

Similarly for (S1) we deduce that  

Us =

U1s

:

:

Uns

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, s = 1,r   

are particular solutions of the given system and are linearly independent, because (S1) is 

undetermined ( )n m− -times, and V =

V1

:

:

Vn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 is a solution of the given system. 

 Case (a) U1,...,Ur , V = linearly dependent, it follows that { }1,..., rU U is a free 
sub-module of order  r < n - m  of solutions of the given system, then, it follows that there 
are solutions that belong to{ }1,..., n mV V d− +  and which do not belong to { }1,..., rU U , a fact 
which contradicts the assumption that (S1) is the general solution. 
 
 Case (b) U1,...,Ur , V = linearly independent.  
{ }1,..., +VrU U  is a linear variety that comprises the solutions of the given system, which 

were obtained from (S1). It follows that the solution belongs to { }1,..., n mV V d− + and does 

not belong to { }1,..., +VrU U , a fact which is a contradiction to the assumption that (S1) is 
the general solution. 

II. When there is an 1,i m∈  with bi ≠ 0 then non-homogeneous linear system 
ai1xi + ... + ainxn = b1,  i = 1, m  

(S2) ⇒ ai1 c11k1 + ... + c1n− mkn− m + d1( )+ ...+ ain cn1k1 + ... + cnn− mkn− m + dn( )= bi  
it follows that  
 ⇒ ai1c11 + ... + aincn1( )k1 + ... + ai1c1n− m + ... + aincnn− m( )kn− m + ai1d1 + ... + aindn( )= bi  
 For k1 = ... = kn− m = 0 1 1 1...i in na d a d b⇒ + + = ; 
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 For k1 = ... = kj −1 = kj +1 = ... = kn− m = 0  and 1jk = ⇒   

( ) ( )1 1 1... ...i j in nj in in n ia c a c a d a d b⇒ + + + + + =  it follows that  

1 1

1 1

... 0
;   1, ,  1,

...
i j in nj

i in n i

a c a c
i m j n m

a d a d b

+ + =⎧⎪ ∀ = ∀ = −⎨
+ + =⎪⎩

. 

Vj =

c1 j

:

cnj

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,  j = 1,n − m , are linearly independent because the solution (S2) is 

undetermined ( )n m− -times. 

(?!)  ,  1,jV j n m= − , and d =
d1

:

dn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

  

are linearly independent. 
We assume that they are not linearly independent. It follows that  

  d = s1V1 + ... + sn− mVn− m =
s1c11 + ... + sn− mc1n− m

:

s1cn1 + ... + sn− mcnn− m

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

. 

Irrespective of  i = 1, m : 
 b1 = ai1d1 + ... + aindn = ai1 s1c11 + ... + sn− mc1n− m( )+ ... + ain s1cn1 + ... + sn− mcnn− m( )=  

= ai1c11 + ... + aincn1( )s1 + .... + ai1c1n− m + ... + aincnn− m( )sn− m = 0 . 

Then, bi = 0 , irrespective of  i = 1, m , contradicts the hypothesis (that there is an i ∈1, m , 
bi ≠ 0 ). It follows that V1,...,Vn− m , d  are linearly independent. 
 { }1,..., n mV V d− +  is a linear variety that contains the solutions of the non-
homogeneous system, solutions obtained from (S2). Similarly it follows that 
{ }1,..., +rG G V  is a linear variety containing the solutions of the non-homogeneous 
system, obtained from (S1). 
 n - m > r  it follows that there are solutions of the system that belong to  
__________________________ 
“?!” means “to prove that” 
 
{ }1,..., n mV V d− +  and which do not belong to { }1,..., +rG G V , this contradicts the fact that  
(S1) is the general solution. Then, it shows that the general solution depends on the n − m  
independent parameters. 
 
 Theorem 1. The general solution of a non-homogeneous linear system is equal to 
the general solution of an associated linear system plus a particular solution of the non-
homogeneous system. 
 Proof: 
 Let’s consider the homogeneous linear solution: 



 
 

104

   
11 1 1

1 1

... 0
: ,    ( 0)

... 0

n n

m mn n

a x a x
AX

a x a x

+ + =⎧
⎪ =⎨
⎪ + + =⎩

 

with the general solution: 
x1 = c11k1 + ...+ c1n− mkn− m + d1

:

xn = cn1k1 + ... + cnn− mkn− m + dn

⎧

⎨
⎪

⎩
⎪

 

and  

   
x1 = x1

0

:

xn = xn
0

⎧

⎨
⎪

⎩
⎪

 

with the general solution a particular solution of the non-homogeneous linear system 
AX = b ; 
  

(?!)   

0
1 11 1 1 1

0
1 1

...
:

...

n m n m

n n nn m n m n n

x c k c k d x

x c k c k d x

− −

− −

⎧ = + + + +
⎪
⎨
⎪ = + + + +⎩

 

is a solution of the non-homogeneous linear system. 
 We note: 

  A =
a11... a1n

:

am1... amn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,   X =
x1

:

xn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,   b =
b1

:

bm

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  0 =
0

:

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

(vector of dimension m ), 

K =
k1

:

kn− m

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  C =
c11... c1n− m

:

cn1... cnn− m

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  d =
d1

:

dn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,  x0 =
x1

0

:

xn
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

; 

 
AX = A Ck + d + x0( )= A Ck + d( )+ AX 0 = b + 0 = b  
We will prove that irrespective of  

   
x1 = y1

0

:

xn = yn
0

 

there is a particular solution of the non-homogeneous system 
  

0
1 1

0

   
:

n m n m

k k

k k− −

⎧ = ∈
⎪
⎨
⎪ = ∈⎩

Z

Z
,  
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with the property: 
 

0 0 0 0
1 11 1 1 1 1 1

0 0 0 0
1 1 1

...
:

...

n n m

n n nn m n m n n

x c k c k d x y

x c k c k d x y

−

− −

⎧ = + + + + =
⎪
⎨
⎪ = + + + + =⎩

 

 We note Y 0 =
y1

0

:

yn
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

. 

We’ll prove that those  k j
0 ∈Z,  j = 1,n − m  are those for which A CX 0 + d( )= 0  

(there are such  X j
0 ∈Z  because  

x1 = 0

:

xn = 0

⎧

⎨
⎪

⎩
⎪

 

is a particular solution of the homogeneous linear system and X = CK + d  is a general 
solution of the non-homogeneous linear system)  

( ) ( )0 0 0 0 0 0 0 0  A CK d X Y A CK d AX AY b b+ + − = + + − = + − = . 
 

 Property 2 The general solution of the homogeneous linear system can be written 
under the form: 
 (SG) 

(2)  
x1 = c11k1 + ... + c1n− mkn− m

:

xn = cn1k1 + ... + cnn− mkn− m

⎧

⎨
⎪

⎩
⎪

 

kj  is a parameter that belongs to  Z  (with d1 = d2 = ... = dn = 0 ). 
 Poof: 
 (SG) = general solution. It results that (SG) is undetermined (n − m) -times. 
 Let’s consider that (SG) is of the form 

 (3)   
x1 = c11 p1 + ... + c1n− m pn− m + d1

:

xn = cn1 p1 + ... + cnn− m pn− m + dn

⎧

⎨
⎪

⎩
⎪

 

with not all di = 0 ; we’ll prove that it can be written under the form (2); the system has 
the trivial solution 

   

 

x1 = 0 ∈Z
:

xn = 0 ∈Z

⎧

⎨
⎪

⎩
⎪

; 

it results that there are  pj ∈Z,  j = 1,n − m , 
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 (4)  

0 0
1 11 1 1 1

0 0
1 1

... 0
:

... 0

n m n m

n n nn m n m n

x c p c p d

x c p c p d

− −

− −

⎧ = + + + =
⎪
⎨
⎪ = + + + =⎩

 

 Substituting pj = k j + pj
0 ,  j = 1,n − m  in (3) 

   
 

kj ∈Z

pj
0 ∈Z

⎫
⎬
⎪

⎭⎪
⇒ pj ∈Z , 

 

pj ∈Z

pj
0 ∈Z

⎫
⎬
⎪

⎭⎪
⇒ kj = pj − pj

0 ∈Z  

which means that that they do not make any restrictions. 
 It results that 

   

x1 = c11k1 + ...+ c1n− mkn− m + c11 p1
0 + ... + c1n− m pn− m

0 + d1( )
:

xn = cn1k1 + ... + cnn− mkn− m + cn1 p1
0 + ... + cnn− m pn− m

0 + dn( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

 But  
ch1 p1

0 + ... + chn− m pn− m
0 + dh = 0,  h = 1,n  (from (4)). 

 Then the general solution is of the form: 

   
x1 = c11k1 + ...+ c1n− mkn− m

:

xn = cn1k1 + ... + cnn− mkn− m

⎧

⎨
⎪

⎩
⎪

 

kj  = parameters  ∈Z , j = 1,n − m ; it results that d1 = d2 = ... = dn = 0 . 
 
 Theorem 2. Let’s consider the homogeneous linear system: 

a11x1 + ... + a1nxn = 0

:

am1x1 + ... + amnxn = 0

⎧

⎨
⎪

⎩
⎪

,   

r(A) = m , ah1,...,ahn( )= 1 , h = 1, m  and the general solution  

x1 = c11k1 + ...+ c1n− mkn− m

:

xn = cn1k1 + ... + cnn− mkn− m

⎧

⎨
⎪

⎩
⎪

 

then  
( ) ( )1 1 1 1,..., , ,..., ,...,h hi hi hn i in ma a a a c c− + −   

irrespective of h = 1, m  and i = 1,n . 
 Proof: 
 Let’s consider some arbitrary h ∈1, m  and some arbitrary i ∈1,n ; 
   ah1x1 + ... + ahi−1xi−1 + ahi+1xi+1 + ... + ahnxn = ahi xi .  
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Because  
( )1 1 1,..., , ,...,h hi hi hn hia a a a a− +   

it results that  
( )1 1 1,..., , ,...,h hi hi hn id a a a a x− +=   

irrespective of the value of xi  in the vector of particular solutions. 
 For k2 = k3 = ... = kn− m = 0  and k1 = 1  we obtain the particular solution: 

   

x1 = c11

:

xi = ci1

:

xn = cn1

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⇒ d | ci1  

 For k1 = k2 = ... = kn− m−1 = 0  and kn− m = 1  it results the following particular 
solution: 

   

x1 = c1n− m

:

xi = cin− m

:

xn = cnn− m

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⇒ d | cin− m ;  

hence 
d | cij ,  j = 1,n − m ⇒ d ci1,...,cin− m( ). 

 
 Theorem 3. 
 If  

   
x1 = c11k1 + ...+ c1n− mkn− m

:

xn = cn1k1 + ... + cnn− mkn− m

⎧

⎨
⎪

⎩
⎪

 

kj  = parameters  ∈Z ,  cij ∈Z  being given, is the general solution of the homogeneous 
linear system 

   
a11x1 + ... + a1nxn = 0

:

am1x1 + ... + amnxn = 0

⎧

⎨
⎪

⎩
⎪

,   r(A) = m < n  

then ( )1 ,..., 1j njc c = ,  ∀j = 1,n − m . 
 Proof: 
 We assume, by reduction ad absurdum, that there is ( )0 00 11, : ,...,j njj n m c c d∈ − =  

we consider the maximal co-divisor > 0 ; we reduce to the case when the maximal co-
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divisor is −d  to the case when it is equal to d  (non restrictive hypothesis); then the 
general solution can be written under the form: 

(5)  

x1 = c11k1 + ...+ c1 j0

' dkj0
+ ...+ c1n− mkn− m

:

xn = cn1k1 + ...+ cnj0

' dkj0
+ ...+ cnn− mkn− m

⎧

⎨
⎪

⎩
⎪

 

where ( )0 0 0 0

',.., ,  ij nj ij ijd c c c d c= = ⋅  and ( )0 0

' ',..., 1ij njc c = . 

 We prove that  

   

x1 = c1 j0

'

:

xn = cnj0

'

⎧

⎨
⎪

⎩
⎪

 

is a particular solution of the homogeneous linear system. 
 We’ll note: 

   C =

c11  ... cij0

'   d  ... c1n− m

:          :             :

cn1  ... cnj0

'   d  ... cnn− m

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,  k =

k1

:

kj0

:

kn− m

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

 

 x C k= ⋅  the general solution. 

 We know that AX = 0 ⇒ A(CK ) = 0 ,  A =
a11... a1n

:

an1... amn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

. 

 We assume that the principal variables are x1,..., xm  (if not, we have to renumber). 
It follows that xm +1,..., xn  are the secondary variables. 
 For k1 = ... = k j0 −1 = k j0 +1 = ... = kn− m = 0  and kj0

= 1  we obtain a particular 
solution of the system 

 

x1 = c1 j0

' d

:

xn = cnj0

' d

⎧

⎨
⎪

⎩
⎪

⇒ 0 = A

c1 j0

' d

:

cnj0

' d

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= d ⋅ A

c1 j0

'

:

cnj0

'

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⇒ A

c1 j0

'

:

cnj0

'

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= 0 ⇒

x1 = c1 j0

'

:

xn = cnj0

'

⎧

⎨
⎪

⎩
⎪

 

is the particular solution of the system. 
 We’ll prove that this particular solution cannot be obtained by  

 (6)  

x1 = c11k1 + ...+ c1 j0

' dkj0
+ ...+ c1n− mkn− m = c1 j0

'

:

xn = cn1k1 + ...+ cnj0

' dkj0
+ ...+ cnn− mkn− m = cnj0

'

⎧

⎨
⎪

⎩
⎪
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 (7)  
0 0

0 0 0

' '
1 1 1 1 1, 1

' '
1 1

... ...

:
... ...

m m m j m n m n m m j

n n nj j nn m n m nj

x c k c dk c k c

x c k c dk c k c

+ + + + − − +

− −

⎧ = + + + + =
⎪
⎨
⎪ = + + + + =⎩

 

 

   
0

0

1,1 1 1,

,1 ,

'
1,1 1 1,

'
,1 ,

 ...   ... 

   :             :      0.     :
    ...      ...   

  
 ...   ... 

   :             :      0.      :
    ...       ...   

m m j m n m

h nj n n m
j

m m j m n m

h nj n n

c c c

c c c
k

c c d c

c c d c

+ + + −

−

+ + + −

⇒ =
1

m

d

−

= ∉Z  

(because 1d ≠ ). 
 It is important to point out the fact that those kj = kj

0 , j = 1,n − m , that satisfy the 
system (7) also satisfy the system (6), because, otherwise (6) would not satisfy the 
definition of the solution of a linear system of equations (i.e., considering the system (7) 
the hypothesis was not restrictive). From  X j0

∈Z  follows that (6) is not the general 
solution of the homogeneous linear system contrary to the hypothesis); then 
( )1 ,..., 1j njc c = , irrespective of j = 1,n − m . 
 
 Property 3. Let’s consider the linear system 

   
a11x1 + ... + a1nxn = b1

:

am1x1 + ... + amn xn = bm

⎧

⎨
⎪

⎩
⎪

 

 aij ,bi ∈Z ,  r(A) = m < n , xj = unknowns  ∈Z  
 Resolved in  R , we obtain 

   
x1 = f1 xm+1,..., xn( )
:

xm = fm xm+1,..., xn( )

⎧

⎨
⎪

⎩
⎪

 ,  x1,..., xm  are the main variables, 

where fi  are linear functions of the form: 

   fi =
cm+1

i xm+1 + ...+ cn
i xn + ei

di

,  

where  cm+ j
i ,  di ,  ei ∈Z ;  i = 1, m,  j = 1,n − m . 

 If 
 

ei

di

∈Z  irrespective of i = 1,m  then the linear system has integer solution. 

 Proof: 
 For  1 ≤ i ≤ m,  xi ∈Z , then  f j ∈Z . Let’s consider 
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xm+1 = um+1km+1

:

xn = unkn

:

x1 = vm+1
1 km+1 + ...+ vn

1kn +
e1

d1

:

xm = vm+1
m km+1 + ...+ vn

mkn +
em

dm

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

 

a solution, where um +1  is the maximal co-divisor of the denominators of the fractions 
cm+ j

i

di

,  i = 1, m,  j = 1,n − m  calculated after their complete simplification.  

 
vm+ j

i =
cm+ j

i um+ j

di

∈Z  is a (n − m) -times undetermined solution which depends on 

n − m  independent parameters km +1,..., kn( ) but is not a general solution. 
 
Property 4. Under the conditions of property 3, if there is an 

i0 ∈1, m :  fi0
= um+1

i0 xm +1 + ... + un
i0 xn +

ei0

di0

 with  um+ j
i0 ∈Z , 1,j n m= − , and 

 

ei0

di0

∉Z  then the 

system does not have integer solution. 
Proof: 
∀xm+1,..., xn  in  Z , it results that  xi0

∉Z . 
 
Theorem 4. Let’s consider the linear system 

a11x1 + ... + a1nxn = b1

:

am1x1 + ... + amn xn = bm

⎧

⎨
⎪

⎩
⎪

 

 aij ,bi ∈Z , xj = unknowns  ∈Z , r(A) = m < n . If there are indices 1 ≤ i1 < ... < im ≤ n,  

{ }1,2,..,hi n∈ ,  h = 1, m , with the property: 

1

1

1 1 ... 

:          : 0
 ... 

m

m

i i

mi mi

a a

a a
Δ = ≠  and  
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2

1

2

1 1 1

 

  ... 

:     :        :
 ... 

m

m

i i

m mi mi

ix

b a a

b a a
Δ =  is divided by Δ  

  .  
  . 
  . 

1 1

1 1

1 1 1...  

:          :       :
...  

m

m

m

i i

mi mi m

ix

a a b

a a b

−

−

Δ =  is divided by Δ  

then the system has integer number solutions. 
Proof: 
We use property 3 

di = Δ,  i = 1,m;  eih
= Δxih

,  h = 1,m  

 
Note 1. It is not true in the reverse case. 
 
Consequence 1. Any homogeneous linear system has integer number solutions 

(besides the trivial one); r(A) = m < n . 
Proof: 

Δxih
= 0 : Δ , irrespective of h = 1, m . 

 
Consequence 2. If  Δ = ±1 , it follows that the linear system has integer number 

solutions. 
Proof: 
Δxih

: (±1) , irrespective of h = 1, m ; 

 
Δxih

∈Z . 
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FIVE INTEGER NUMBER ALGORITHMS TO SOLVE LINEAR SYSTEMS 

 
 This section further extends the results obtained in chapters 4 and 5 (from linear 
equation to linear systems). Each algorithm is thoroughly proved and then an example is 
given. 
 Five integer number algorithms to solve linear systems are further given. 
 
 Algorithm 1. (Method of Substitution) 
 (Although simple, this algorithm requires complex computations but is, 
nevertheless, easy to implement into a computer program). 
 Some integer number equation are initially solved (which is usually simpler) by 
means of one of the algorithms 4 or 5. (If there is an equation of the system which does 
not have integer systems, then the integer system does not have integer systems, then 
Stop.) The general integer solution of the equation will depend on n − 1 integer number 
parameters (see [5]): 

   (p1)  xi1
= fi1

(1) k1
(1),..., kn−1

(1)( ), i = 1,n ,  

where all functions fi1

(1)  are linear and have integer number coefficients. 
 This general integer number system (p1)  is introduced into the other m − 1  
equations of the system. We obtain a new system of m − 1  equations with n − 1  unknown 
variables: 
   

1

(1)
ik , i1 = 1,n − 1 ,  

which is also to be solved with integer numbers. The procedure is similar. Solving a new 
equation, we obtain its general integer solution: 

   ( p2 )  ki2

(1) = fi2

(2) k1
(2),..., kn−2

(2)( ), i2 = 1,n − 1 ,  

where all functions fi2

(2)  are linear, with integer number coefficients. (If, along this 
algorithm we come across an equation, which does not have integer solutions, then the 
initial system does not have integer solution. Stop.) 
 In the case that all solved equations had integer system at step ( ),  1j j r≤ ≤  
( r being of the same rank as the matrix associated to the system) then: 
   ( pj )  kij

( j −1) = fi j

( j ) k1
( j ),..., kn− j

( j )( ), i j = 1,n − j + 1 ,   

fi j

( j )  are linear functions and have integer number coefficients.  
 Finally, after r steps, and if all solved equations had integer solutions, we obtain 
the integer solution of one equation with n − r + 1 unknown variables. 
 The system will have integer solutions if and only if in this last equation has 
integer solutions.  
 If it does, let its general integer solution be: 

   ( pr )  ( )( 1) ( ) ( ) ( )
1 1,...,

r r

r r r r
i i nk f k k−

−= , ir = 1,n − r + 1 ,  

where all fir

(r )  are linear functions with integer number coefficients. 
 We’ll present now the reverse procedure as follows. 
 We introduce the values of kir

(r −1) , ir = 1,n − r + 1 , at step pr  in the values of  
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1

( 2)
r

r
ik

−

− , ir −1 = 1,n − r + 2  
from step (pr −1) . 
 It follows: 
 ( ) ( )( ) ( )

1 1 1

( 2) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( )
1 1 1 1 1,..., ,..., ,..., ,...,

r r r

r r r r r r r r r r r
i i n r n r n r i n rk f f k k f k k g k k

− − −

− − −
− − + − −= = , 

ir −1 = 1,n − r − 1 , from which it follows that gir

(r−1)  are linear functions with integer 
number coefficients. 
 Then follows those ( pr − 2 )  in (pr −e )  and so on, until we introduce the values 
obtained at step ( p2 )  in those from the step (p1) .  
 It will follow:   
   xij

= gi
1 k1

(r ),..., kn− r
(r )( )  

notation ( )
1 1 ,...,i n rg k k − , i = 1,n , with all 

1i
g  most obviously, linear functions with 

integer number coefficients (the notation was made for simplicity and aesthetical 
aspects). This is, thus, the general integer solution, of the initial system. 
 
 The correctness of Algorithm 1.  
 The algorithm is finite because it has r  steps on the forward way and r − 1steps 
on the reverse, (r < +∞) . Obviously, if one equation of one system does not have (integer 
number) solutions then the system does not have solutions either. 
 Writing S for the initial system and Sj  the system resulted from step ( pj ) , 
1 ≤ j ≤ r − 2 , it follows that passing from ( pj )  to (pj +1)  we pass from a system Sj  to a 
system Sj +1  equivalent from the point of view of the integer number solution, i.e.  

   kij

( j −1) = tij

0 ,  i j = 1,n − j + 1 , 
which is a particular integer solution of the system Sj  if and only if  

   kij+1

( j ) = hij+1

0 , i j +1 = 1,n − j ,  
is a particular integer solution of the system Sj +1  where  

   kij+1

0 = fi j+1

( j +1) t1
0 ,...,tn− j +1

0( ), i j +1 = 1,n − j .  
 Hence, their general integer solutions are also equivalent (considering these 
substitutions). Such that, in the end, resolving the initial system S  is equivalent with 
solving the equation (of the system consisting of one equation) Sr −1  with integer number 
coefficients. It follows that the system S  has integer number solution if and only if the 
systems Sj  have integer number solution, 1 ≤ j ≤ r − 1 . 
 
 Example 1. By means of algorithm 1, let us calculate the integer number solution 
of the following system: 

 (S)    
  5x − 7y − 2z + 6w = 6

−4x + 6y − 3z + 11w = 0

⎧
⎨
⎩

 

 Solution: We solve the first integer number equation. We obtain the general 
solution (see [4] or [5]): 
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(p1)    

x = t1 + 2t2

y = t1

z = −t1 + 5t2 + 3t3 − 3

w = t3

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

where  t1,  t2 ,  t3 ∈Z . 
 Substituting in the second, we obtain the system: 

 (S1)    5t1 − 23t2 + 2t3 + 9 = 0 . 
 Solving this integer equation we obtain its general integer solution: 

 ( p2 )    
t1 = k1

t2 = k1 + 2k2 + 1

t3 = 9k1 + 23k2 + 7

⎧

⎨
⎪

⎩
⎪

 

where  k1,  k2 ∈Z . 
 The reverse way. Substituting ( p2 )  in (p1)  we obtain: 

     

x = 3k1 + 4k2 + 2

y = k1

z = 31k1 + 79k2 + 23

w = 9k1 + 23k2 + 7

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

where  k1,  k2 ∈Z , which is the general integer solution of the initial system (S) . Stop. 
 
 Algorithm 2. 
 Input 
 A linear system (1) without all aij = 0 . 
 Output 
 We decide on the possibility of an integer solution of this system. If it is possible, 
we obtain its general integer solution. 
 
 Method 
 1. t = 1,  h = 1,  p = 1  
 2. (A) Divide each equation by the largest co-divisor of the coefficients of the 
unknown variables. If you do not obtain an integer quotient for at least one equation, then 
the system does not have integer solutions. Stop.  
     (B) If there is an inequality in the system, then the system does not have integer 
solutions. Stop. 
     (C) If repetition of more equations occurs, keep one and if an equation is an 
identity, remove it from the system. 
 3. If there is (i0 , j0 )  such that ai0 j0

= 1  then obtain the value of the variable 
x j0

from equation i0 ; statement (Tt ) . 
 Substitute this statement (where possible) in the other equations of the system and 
in the statement (Tt −1) , (H h )  and (Pp )  for all i,  h , and p . Consider t := t + 1 , remove 
equation (i0 )  from the system. If there is no such a pair, go to step 5. 



 
 

115

4. Does the system (left) have at least one unknown variable? If it does, consider  
the new data and go on to step 2. If it does not, write the general integer solution of the 
system substituting k1,  k2 ,...  for all variables from the right term of each expression 
which gives the value of the unknowns of the initial system. Stop. 

5. Calculate 
( ){ }1 2 2

1 2, ,
min mod ,  0ij ij iji j j

a r a r a r a= ≡ < <  

and determine the indices i,  j1,  j2  as well as the r  for which this minimum can be 
calculated. (If there are more variables, choose one arbitrarily.) 

6. Write: x j2
= th

aij1
− r

aij2

xij2
, statement (H h ) . Substitute this statement (where  

possible in all the equations of the system and in the statements (Tt ),  (Hh )  and (Pp )  for 
all t,  h , and p . 

7. (A) If a ≠ 1 , consider x j2
:= th ,  h := h + 1 , and go on to step 2. 

(B) If a = 1 , then obtain the value of xj1
 from the equation (i) ; statement 

(Pp ) . Substitute this statement (where possible in the other equations of the 
system and in the relations (Tt ),  (Hh )  and (Pp−1)  for all t,  h , and p . 

Remove the equation (i)  from the system. 
Consider h := h + 1,  p := p + 1 , and go back to step 4. 
 
The correctness of  algorithm 2. Let consider system (1). 
 
Lemma 1. We consider the algorithm at step 5. Also, let 

( ){ }1 2 2 1 2,  mod ,  0 ,  ,  ,  1, 2,3,...ij ij ijM r a r a r a i j j= ≡ < < = . 

Then  M ≠ Ø . 
Proof: 
Obviously, M is finite and  M ⊂ N* . Then, M  has a minimum if and only if  

 M ≠ Ø . We suppose, conversely, that  M = Ø . Then  
aij2

≡ 0(mod aij2
),  ∀ i,  j1,  j2 .  

It follows as well that  
aij2

≡ 0(mod aij1
),  ∀ i,  j1,  j2 .  

That is  
aij1

= aij2
,  ∀ i,  j1,  j2 . 

 We consider an i0  arbitrary but fixed. It is clear that  

 (ai0 1,...,ai0 n ) : ai0 j ≠ 0,  ∀j   
(because the algorithm has passed through the sub-steps 2(B) and 2(C). But, because it 
has also passed through step 3, it follows that  

ai0 j ≠ 1,  ∀j , 
but as it previously passed through step 2(A), it would result that  



 
 

116

ai0 j = 1,  ∀j . 
 This contradiction shows that the assumption is false. 
 
 Lemma 2.  Let’s consider 

0 1 2
(mod )i j ija r a≡ . Substitute  

x j2
= th −

ai0 j − r

ai0 j2

x j1
  

in system (A) obtaining system (B). Then  
x j = x j

0 ,  j = 1,n   
is the particular integer solution of (A) if and only if  

xj = xj
0,  j ≠ j2  and th = x j2

0 −
ai0 j1

− r

ai0 j2

  

is the particular integer solution of (B). 
 
 Lemma 3. Let a1 ≠  and a2  obtained at step 5. 
 Then 0 < a2 < a1  
 Proof: 
 It is sufficient to show that a1 < aij ,  ∀ i,  j because in order to get a2 , step 6 is 
obligatory, when the coefficients if the new system are calculated,  a1  being equal to a 
coefficient form the new system (equality of modules), the coefficient on 0 1 (  )i j . 

 Let ai0 j0
 with the property ai0 j0

≤ a1 .  

Hence, { }0 01 mini j i ja a a≥ = . Let ai0 js
 with ai0 js

> aijm
; there is such an element 

because ai0 jm
 is the minimum of the coefficients in the module and not all ai0 j , j = 1,n  

are equal (conversely, it would result that 
0 0 0

( ,...., ) ,  1,i j i n i ja a a j r∀ ∈∼ , the algorithm 
passed through sub-step 2(A) has simplified each equation by the maximal co-divisor of 
its coefficients; hence, it would follow that ai0 j = 1,  ∀j = 1,n , which, again, cannot be 
real because the algorithm also passed through step 3). Out of the coefficients ai0 jm

 we 
choose one with the property ai0 js0

≠ Mai0 jm
 there is such an element (contrary, it would 

result 
0 0 0

( ,..., )
mi j i n i ja a a∼  but the algorithm has also passed through step 2(A) and it 

would mean that ai0 jm
= 1  which contradicts step 3 through which the algorithm has also 

passed). 
 Considering 

 
q0 = ai0 js0

/ ai0 jm
⎡
⎣

⎤
⎦ ∈Z  and  r = ai0 js0

− q0ai0 jm
∈Z , we have 

ai0 js0

≡ r0 (mod ai0 jm
)  and 0 < r0 < ai0 jm

< ai0 j0
≤ a1 . We have, thus, obtained an r0  with 

r0 < a1 , which is in contradiction with the very definition of a1 . Thus a1 < aij ,  ∀i, j . 
 
 Lemma 4. Algorithm 2 is finite. 
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 Proof: 
 The functioning of the algorithm is meant to transform a linear system of m  
equations and n  unknowns into one of m1 × n1  with m1 < m , n1 < n , thus, successively 
into a final linear equation with n − r + 1 unknowns (where r  is the rank of the 
associated matrix). This equation is solved by means of the same algorithm (which works 
as [5]). The general integer solution of the system will depend on the n − 1  integer 
number independent parameters (see [6] – similar properties can be established also the 
general integer solution of the linear system). The reduction of equations occurs at steps 
2, 3 and sub-step 7(B). Step 2 and 3 are obvious and, hence, trivial; they can reduce the 
equation of the system (or even put an end to it) but only under particular conditions. The 
most important case finds its solution at step 7(B), which always reduces one equation of 
the system. As the number of equations is finite we come to solve a single integer number 
equation. We also have to show that the transfer from one system mi × ni  to another 
mi+1 × ni+1  is made in a finite interval of time: by steps 5 and 6 permanent substitution of 
variables are made until we to a = 1 (we to a = 1  because, according to lemma 3, all 
a − s are positive integer numbers and form a strictly decreasing row). 
 
 Theorem of correctness.  

Algorithm 2 correctly calculates the general integer solution of the linear system. 
 Proof: 
 Algorithm 2 is finite according to lemma 4. Steps 2 and 3 are obvious (see also 
[4], [5]). Their part is to simplify the calculations as much as possible. Step 4 tests the 
finality of the algorithm; the substitution with the parameters k1,  k2 ,...  has 
systematization and aesthetic reasons. The variables t,  h, p  are counter variables (started 
at step 1) and they are meant to count the statement of the type T , H ,P  (numbering 
required by the substitutions at steps 3, 6 and sub-step 7(B); h  also counts the new 
(auxiliary) variables introduced in the moment of decomposition of the system. The 
substitution from step 6 does not affect the general integer solution of the system (it 
follows from lemma 2). Lemma 1 shows that at step 5 there is always a , because 
  Ø ≠ M ⊂ N* . 
 The algorithm performs the transformation of a system mi × ni  into another 
mi +1 × ni +1 , equivalent to it, preserving the general solution (taking into account, 
however, the substitutions) (see also lemma 2). 
 
 Example 2. Calculate the integer solution of: 

   

12x − 7y + 9z          = 12

      − 5y + 8z + 10w = 0

                  0z +  0w = 0

15x       + 21z + 69w = 3

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

 Solution: 
 We apply algorithm 2 (we purposely selected an example to be passed through all 
the steps of this algorithm): 
 1. t = 1,  h = 1,  p = 1  
 2.  (A) The fourth equation becomes 5x + 7z + 23w = 1  
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       (B) – 
       (C) Equation 3 is removed.  
 3. No; go on to step5. 
 5. a = 2  and i = 1,  j1 = 2,  j2 = 3 , and r = 2 . 
 6. z = t1 + y , the statement (H1) . Substituting it in the  

   
1

1

1

12 2 9           12
         3 9 10  0
5  7 7 23  1

x y t
y t w

x y t w

− + =⎧
⎪ + + =⎨
⎪ + + + =⎩

 

 7. a ≠ 1  consider z = t1,h := 2 , and go back to step 2. 
 2. – 
 3. No. Step 5. 
 5. a = 1  and i = 2,  j1 = 4,  j2 = 2 , and r = 1 . 

6. y = t2 − 3w , the statement (H 2 ) . Substituting in the system: 

  
2 1

2 1

2 1

12 2 9 6 12
            3 8   0
   5  7 7 2 1

x t t w
t t w

x t t w

− + + − =⎧
⎪ + + =⎨
⎪ + + + =⎩

 

Substituting it in statement (H1) , we obtain: 
 z = t1 + t2 − 3w , statement  (H1)' . 
7. w = −3t2 − 8t1  statement (P1) .  
Substituting it in the system, we obtain: 

  2 1

2 1

12 20 57 12
   5        9 1

x t t
x t t

− − + =⎧
⎨ + − =⎩

 

Substituting it in the other statements, we obtain: 

  2 1 1

2 1 2

10 25 ,   ( ) ''
10 24 ,   ( ) ''

z t t H
y t t H

= +
= +

 

  : 3,  : 2h p= = , and go back to step 4. 
4. Yes. 
2. – 
3. t2 = 1 − 5x + 9t1 , statement (T1) . 
Substituting it (where possible) we obtain:  
  −112x + 237t1 = −8{  (the new system); 

  
1 1

1 2

1 1

 10 50 115 ,   ( ) '''
 10 50 114 ,  ( ) ''

3 15   35 ,   ( ) '

z x t H
y x t H
w x t P

= − +
= − +
= − + +

 

Consider t := 2  go on to step 4. 
4. Yes. Go back to step 2. (From now on algorithm 2 works similarly with that 
from [5], with the only difference that the substitution must also be made in the 
statements obtained up to this point). 
2. – 
3. No. Go on to step 5. 



 
 

119

5. a = 13  (one three) and i = 1,  j1 = 2,  j2 = 1 , and r = 13 . 
6. x = t3 + 2t1 , statement (H 3 ) . 
After substituting we obtain:  
  −112t3 + 13t1 = −8{  (the system) 

  

3 1 1

3 1 2

3 1 1

2 3 1,  1

10 50 15 ,   ( ) ;
10 50 14 ,  ( ) ''';

3 15  5 ,   ( ) '';
  1  5       ( ) ';

IVz t t H
y t t H
w t t P
t t t T

= − +

= − +
= − + −

= − −

 

7. x := t3,  h := 4  and go on to step 2. 
2. – 
3. No, go on to step 5. 
5. a = 5  and i = 1,  j1 = 1,  j2 = 2  and r = 5  
6. t1 = t4 + 9t3 , statement (H 4 ) . 
Substituting it, we obtain : 
  5t3 + 13t4 = −8  (the system). 

  

3 4 1

3 4 2

3 4 3

3 4 1

2 3 4,  1

 10 85 15 ,   ( ) ;

 10 76 14 ,  ( ) ;
        19  2 ,    ( ) ';

3 30  5 ,    ( ) ''';
  1 14       ( ) '';

V

IV

z t t H

y t t H
x t t H
w t t P
t t t T

= + +

= + +

= +

= − − −

= − −

 

7. t1 := t4;h := 5  and go back to step 2. 
2. – 
3. No. Step 5. 
5. a = 2  and i = 1,  j1 = 2,  j2 = 1  and r = −2 . 
6. t3 = t5 − 3t4  statement (H 5 ) . After substituting, we obtain: 
  5t5 − 2t4 = −8  (the system). 

  

5 4 1

5 4 2

5 4 3

5 4 1

2 5 4 1

1 5 4 4

10 85 240 ,     ( ) ;

10 76 214 ,    ( ) ;

        19 55 ,     ( ) ;

3 30 85 ,     ( ) ;
1 14 41 ,     ( ) ''';

          9 26 ,     ( ) ';

VI

V

IV

IV

z t t H

y t t H

x t t H

w t t P
t t t T
t t t H

= + −

= + −

= −

= − − +

= − − +

= +

 

 7. t3 := t6 ,h := 6  and go back to step 2. 
 2. –  
 3. No. Step 5. 
 5. a = 1  and i = 1,  j1 = 2,  j2 ,r = 1 . 
 6. t4 = t6 + 2t5  statement (H 6 ) . After substituting, we obtain: 
   t5 − 2t6 = −8  (the system) 
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5 6 1

5 6 2
'''

5 6 3

5 6 1

2 5 6 1

1 5 6 4

3 5 6

10 395 240 ,   ( ) ;

10 392 214 ,   ( ) ;

       91 55 ,     ( ) ;

3 140 85 ,      ( ) ;

   1 68 41 ,     ( ) ;
      43 26 ,     ( ) '';
        5 3 ,     

VII

IV

V

IV

z t t H

y t t H

x t t H

w t t P

t t t T
t t t H
t t t

= − −

= − −

= − −

= − + +

= + +

= − −
= − − 5 ( );H

 

 7. t5 = 2t6 − 8  statement (P2 ) . Substituting it in the system we obtain: 0=0. 
 Substituting it in the other statements, it follows: 

   

z = −1030t6 + 3170

y = −918t6 + 2826

x = −237t6 + 728

w =  365t6 − 1123

 

   

2 6

1 6

3 6

4 6

177 543
112 344
 13   40
  5   16

t t
t t
t t
t t

= − ⎫
⎪= + ⎪
⎬= + ⎪
⎪= − ⎭

 statements of no importance. 

 
 Consider h := 7, p := 3 , and go back to step 4.  t6 ∈Z  
 4. No. The general integer solution of the system is: 

    

1

1

1

1

237 728
918 2826

1030 3170
 365 1123

x k
y k
z k
w k

= − +⎧
⎪ = − +⎪
⎨ = +⎪
⎪ = −⎩

 

 where k1  is an integer number parameter. 
 Stop. 
 
 Algorithm 3. 
 Input 
 A linear system (1) 
 Output 
 We decide on the possibility of an integer solution of this system. If it is possible, 
we obtain its general integer solution. 
 
 Method 
  

1. Solve the system in  n . If it does not have solutions in n , it does not have 
solutions in  Zn  either. Stop. 

2. f = 1,  t = 1,  h = 1,  g = 1  
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3. Write the value of each main variable xi  under the form: 

E f ,  i( )
i
: xi = qij

j
∑ xj

' + qi + rij
j

∑ xj
' + ri

⎛

⎝⎜
⎞

⎠⎟
/ Δi   

with all qij ,  qi ,  rij ,  ri ,  Δ i in  Z  such that all rij < Δ i ,  Δ i ≠ 0,  ri < Δ i  (where all xj
'  of 

the right term are integer number variables: either of the secondary variables of the 
system or other new variables introduced with the algorithm). For all i , we write  
  rij f

≡ Δ i . 

4. E f ,  i( )
i
: rij

j
∑ xj

' − rij f
Yf ,  i + ri = 0  where Yf ,  i( )

i
 are auxiliary integer number 

variables. We remove all the equations Ff ,  i( ) which are identities. 

5. Does at least one equation Ff ,  i( ) exist?  If it does not, write the general  

integer solution of the system substituting k1 , k2 ,...  for all the variables from the right 
term of each expression representing the value of the initial unknowns of the system. 
Stop. 

6. (A) Divide each equation Ff ,  i( ) by the maximal co-divisor of the coefficients 
of their unknowns. If the quotient is not an integer number for at least one i0  the system 
does not have integer solutions. Stop. 

(B) Simplify –as in m - all the fractions from the statements E f ,  i( )
i
. 

7. Does ri0 j0
 exist having the absolute value 1? If it does not, go on to step 8. If it  

does, find the value of xj
'  from the equation Ff ,  i0( ); write Tt( ) for this statement, and 

substitute it (where it is possible) in the statements E f ,  i( ),  T t −1( ),  Hh( ),  Gg( ) for all 

i,  t,  h  and g . Remove the equation Ff ,  i0( ). Consider f := f + 1,  t := t + 1 , and go back 
to step3. 

8. Calculate  

{ }1 2 2
1 2, ,

min ,  (mod ),  0ij ij iji j j
a r r r r r r= ≡ < <   

and determine the indices 1 2,  ,  mi j j  as well as the r  for which this minimum can be 
obtained. (When there are more variables, choose only one). 

9. (A) Write x j2

' = zh −
aim j1

− r

ajm j2

x j1

' , where zh  is a new integer variable; statement 

Hh( ). 
(B) Substitute the letter (where possible) in the statements 

E f ,  i( ),  Ff ,  i( ),  Tt( ),  Hh−1( ),  Gg( ) for all i,  t,  h  and g . 
(C) Consider h := h + 1 . 

10. (A) If a ≠ 1  go back to step 4. 
(B) If a = 1  calculate the value of the variable xj

'  from the equation Ff ,  i( );  
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relation Gg
1( ). Substitute it (where possible) in the statements E f ,  i( ),  Tt( ),  Hh( ),  Gg−1( ) 

for all i,  t,  h , and g . Remove the equation Ff ,  i( ). Consider g := g + 1,  f := f + 1  and go 
back to step 3. 
 

The correctness of algorithm 3 

Lemma 5. Let i  be fixed. Then 
2

1

'
n

ij j i
j n

r x r
=

⎛ ⎞
+ Δ⎜ ⎟

⎝ ⎠
∑  (with all rij ,  ri ,  Δi ,  n1,  n2  being 

integers, n1 ≤  n2 , Δ i ≠ 0  and all xj
'  being integer variables) can have integer values if 

and only if ( )1 2
,..., , |in in i ir r rΔ . 

Proof: 
The fraction from the lemma can have integer values if and only if there is a  

 z ∈Z  such that  

  
2 2

1 1

' '| 0
n n

ij j i i ij j i i
j n j n

r x r z r x z r
= =

⎛ ⎞
+ Δ = ⇔ − Δ + =⎜ ⎟

⎝ ⎠
∑ ∑ , 

which is a linear equation. This equation has integer solution ⇔ ( )1 2
,..., , |in in i ir r rΔ . 

 
 Lemma 6. The algorithm is finite. It is true. The algorithm can stop at steps 1,5 or 
sub-steps 6(A). (It rarely stops at step 1). 
 One equation after another are gradually eliminated at step 4 and especially 7 and 
10(B) Ff ,  i( ) - the number of equation is finite.  
 If at steps 4 and 7 the elimination of equations may occur only in special cases 
elimination of equations at sub step 10 (B) is always true because, through steps 8 and 
9 we get to a = 1  (see [5]) or even lemma 4 (from the correctness of algorithm 2). 
Hence, the algorithm is finite. 
 
 Theorem of Correctness. 
 The algorithm 3 correctly calculates the general integer solution of the system (1). 
 Proof: 
 The algorithm if finite according to lemma 6. It is obvious that the system does 
not have solution in  n it does not have in  Zn  either, because n n⊂Z  (step 1). 
 The variables f ,  t,  h,  g  are counter variables and are meant to number the 
statements of the type E,  F, T , H and G , respectively. They are used to distinguish 
between the statements and make the necessary substitutions (step 2). 
 Step 3 is obvious. All coefficients of the unknowns being integers, each main 
variable xi  will be written: 

   ' |i ij j i i
j

x c x c
⎛ ⎞

= + Δ⎜ ⎟
⎝ ⎠
∑  

which can assume the form and conditions required in this step. 
 Step 4 is obtained from 3 by writing each fraction equal to an integer variable  
Yf ,  i  (this being  xi ∈Z ). 
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 Step 5 is very close to the end. If there is no fraction among all E f ,  i( ) it means 
that all main variables xi  already have values in  Z , while the secondary variables of 
the system can be arbitrary in  Z , or can be obtained from the statements T ,  H or G  
(but these have only integer expressions because of their definition and because only 
integer substitutions are made). The second assertion of this step is meant to 
systematize the parameters and renumber; it could be left out but aesthetic reasons 
dictate its presence. According to lemma 5 the step 6(A) is correct. (If a fraction 
depending on certain parameters (integer variables) cannot have values in  Z , then the 
main variable which has in the value of its expression such a fraction cannot have 
values in  Z  either; hence, the system does not have integer system). This 6(A) also 
has a simplifying role. The correctness of step 7, trivial as it is, also results from [4] 
and the steps 8-10 from [5] or even from algorithm 2 (lemma 4).  
 Ther initial system is equivalent to the “system” from step 3 (in fact, E f ,  i( ) as 
well, can be considered a system) Therefore, the general integer solution is preserved 
(the changes of variables do not prejudice it (see [4], [5], and also lemma 2 from the 
correctness of algorithm 2)). From a system mi × ni  we form an equivalent system 
mi+1 × ni+1  with mi+1 < mi  and ni+1 < ni . This algorithm works similarly to algorithm 
2. 
 
 Example 3. Employing algorithm 3, find an integer solution of the following 
system:  

   
3x1 + 4x2   + 22x4 − 8x5 = 25

6x1             + 46x4 − 12x5 = 2

        4x2 + 3x3 − x4 + 9x5 = 26

⎧

⎨
⎪

⎩
⎪

 

 Solution 
1. Common resolving in 3  it follows: 

x1 =
23x4 − 6x5 − 1

−3

x2 =
x4 + 2x5 + 24

4

x3 =
11x5 + 2

3

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

 
2. f = 1,  t = 1,  h = 1,  g = 1  

 

3.    

x1 = −7x4 + 2x5 +
2x4 − 1

−3
      E1,  1( )  

x2 =              6 +
x4 + 3x5

4
      E1,  2( )   

x3 =         − 4x5 +
x5 + 2

3
       E1,  3( )  

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪
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4.   

( )
( )
( )

4 11 1, 1

4 5 12 1, 2

5 13 1, 3

2          3 1 0    

  2 4     0    

           3 2 0    

x y F

x x y F

x y F

⎧ + − =
⎪⎪ + − =⎨
⎪

− + =⎪⎩

 

5. Yes. 
6. – 
7. Yes: r35 = 1 . Then 5 133 2x y= −  the statement T1( ). Substituting it in the  
others, we obtain: 

x1 = −7x4 + 6y13 − 4 +
2x4 − 1

−3
               E1,  1( )  

x2 =                        6 +
x4 + 6y13 − 4

4
     E1,  2( )   

x3 =         − 12y13 + 8 +
3y13 − 2 + 2

3
       E1,  3( )  

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

Remove the equation F1,  3( ). 
Consider f := 2,  t := 2 ; go back to step 3. 

3  

x1 = −7x4 + 6y13 − 4 +
2x4 − 1

−3
               E2,  1( )  

x2 =               y13+5 +
x4 + 2y13

4
              E2,  2( )   

x3 =         − 11y13 + 8                              E2,  3( )  

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

4.      
( )
( )

4 21 2, 1

4 13 22 2, 2

2          3 1 0    

  2 4     0    

x y F

x y y F

⎧ + − =⎪
⎨

+ − =⎪⎩
 

5. Yes. 
6. – 
7. Yes r24 = 1 . We obtain   x4 = −2y13 + 4y22 statement T2( ). Substituting it in  
the others we obtain: 

( )
( )
( )

13 22
1 22 13 2, 1

2 22 13 2, 2

3 13 2, 3

4 8 128 20   '  
3

        +5                             '   

          11 8                          '  

y yx y y E

x y y E

x y E

− + −⎧ = − + +⎪ −⎪⎪ = +⎨
⎪

= − +⎪
⎪⎩

 

Remove the equation  F2,  2( ) 
Consider f := 3,  t := 3  and go back to step 3. 

 3.   
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( )
( )
( )

13 22
1 13 22 3, 1

2 13 22 2, 2

3 13 3, 3

2 2 122 30     
3

       5                            

          11 8                          

y yx y y E

x y y E

x y E

+ −⎧ = − + +⎪ −⎪⎪ = + +⎨
⎪

= − +⎪
⎪⎩

 

4.  ( )13 22 31 3, 12 2  3 1 0    y y y F+ + − =  
5. Yes. 
6. – 
7. No. 
8. a = 1  and im = 1,  j1 = 31,  j2 = 22 , and r = 1 . 
9. (A)  y22 = z1 − y31  (statement H1( )). 

(B) Substituting it in the others we obtain: 

( )
( )

13 1 31
1 13 1 31 3, 1

2 13 1 31 3, 2

3 13 3,

2 2 2 122 30 30 4   '  
3

               5                                    '  

11                         8                                     

y z yx y z y E

x y z y E

x y E

+ − −
= − − + − +

−
= + − +

= − + ( ) 3 '  

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 

( )
( )

13 1 31 3, 1

4 13 1 13 2

 2 2 1 0    '

 2 4 4        '

y z y F

x y z y T

+ + − =

= − + −
 

 
(C) Consider h := 2  

10. (B) y13 = 1 − 2y13 − 2z1 , statement G1( ). 
Substituting it in the others we obtain: 

( )
( )
( )

( )
( )

1 13 1 3,1

2 13 1 3,2

3 13 3,3

4 13 1 2

22 13 1 1

 40 92 +27      ''  

  3   3 4          ''  

11         8          ''

6 12 4               ''

2 3   1             '

x y z E

x y z E

x y E

x y z T

y y z H

= − −

= + +

= − +

= + −

= + −

 

Remove equation F3,  1( ). 
Consider g := 2,  f := 4  and go back to step 3. 
3.   

       

( )
( )
( )

1 13 1 4,1

2 13 1 4,2

3 13 4,3

40 92 27          

    3    3 4            

11            8           

x y z E

x y z E

x y E

⎧ = − − +
⎪⎪ = + +⎨
⎪

= − +⎪⎩

 

4. - 
5. No. The general solution of the initial system is: 
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( )
( )
( )

( )

1 1 2 4,1

2 1 2 4,2

3 1 4,3

4 1 2 2

5 1

40 92 27,         from    

    3   3   4,         from    

11              8,          from   

   6 12   4,          from     ''

   3              2,          fro

x k k E

x k k E

x k E

x k k T

x k

= − − +

= + +

= − +

= + −

= − ( )1m        T

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

 

where  k1, k2 ∈Z . 
 
 Algorithm 4 
 Input 
 A linear system (1) with not all aij = 0 . 
 Output  

We decide on the possibility of integer solution of this system. If it is possible, we 
obtain its general integer solution. 

 
 Method 
 1. h = 1,  v = 1 . 

2. (A) Divide every equation i  by the largest co-divisor of the coefficients of the 
unknowns. If the quotient is not an integer for at least one i0  then the system 
does not have integer solutions. Stop. 
 
(B) If there is an inequality in the system, then it does not have integer 
solutions 
 
(C) In case of repetition, retain only one equation of that kind. 
 
(D) Remove all the equations which are identities. 

3. Calculate { }
,

min ,  0ij iji j
a a a= ≠  and determine the indices i0 , j0  for which this 

minimum can be obtained. (If there are more variables, choose one, at 
random.) 

4. If a ≠ 1  go on to step 6. 
If a = 1 , then: 
(A) Calculate the value of the variable x j0

 from the equation i0  note this 

statement Vv( ). 
 

(B) Substitute this statement (where possible) in all the equations of the 
system as well as in the statements Vv−1( ), Hh( ), for all v  and h . 

 
(C) Remove the equation i0  from the system. 

 
(D) Consider v := v + 1 . 
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5. Does at least one equation exist in the system? 
(A) If it does not, write the general integer solution of the system substituting 
k1,  k2 ,...  for all the variables from the right term of each expression 
representing the value of the initial unknowns of the system. 

     (B) If it does, considering the new data, go back to step 2. 
6. Write all ai0 j ,  j ≠ j0  and bi0

 under the form : 

ai0 j = ai0 j0
qi0 j + ri0 j , with ri0 j < ai0 j . 

0 0 0 0 0i j i j i ib a q r= + , with 
0 0 0i i jr a< . 

7. Write x j0
= − qi0 j

j ≠ j0

∑ x j + qi0
+ th , statement Hh( ). 

Substitute (where possible) this statement in all the equations of the system as 
well as in the statement Vv( ),  Hh( ), for all v  and h . 

8. Consider  
x j0

:= th ,  h := h + 1,

ai0 j := ri0 j ,  j ≠ j0 ,

ai0 j0
:= ±ai0 j0

,  bi0
:= +ri0

,

 

and go back to step 2 
 

The correctness of Algorithm 4 
This algorithm extends the algorithm from [4] (integer solutions of equations to 

integer solutions of linear systems). The algorithm was thoroughly proved in our previous 
article; the present one introduces a new cycle – having as cycling variable the number of 
equations of system – the rest remaining unchanged, hence, the correctness of algorithm 
4 is obvious. 

 
Discussion 
1. The counter variables h  and v  count the statements H  and V , respectively, 

differentiating them (to enable the substitutions); 
2. Step 2 ((A)+(B) + (C)) is trivial and is meant to simplify the calculations (as 

algorithm 2); 
3. Sub-step 5 (A) has aesthetic function (as all the algorithms described). 

Everything else has been proved in the previous chapters (see [4], [5], and 
algorithm 2). 
 

Example 4. Let us use algorithm 4 to calculate the integer solution of the following linear 
system: 

1 3 4

1 2 4 5

3       7 6         2
4 3      6 5  19
x x x
x x x x

− + = −⎧
⎨ + + − =⎩

 

 Solution 
 1.  h = 1,  v = 1 

2. – 
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3. a = 3  and i = 1,  j = 1  
4. 3 ≠ 1 . Go on to step 6. 

6.  Then, 
−7 = 3 ⋅ (−3) + 2

  6 = 3 ⋅ 2 + 0

−2 = 3 ⋅ 0 − 2

 

7.  x1  =3x3 − 2x4 + t1  statement H1( ). Substituting it in the second equation we obtain: 
4t1 + 3x2 + 12x3 − x4 − 5x5 = 19  

8.  x1 := t1,  h := 2,  a12 := 0,  a13 := +2,   a14 := 0,   a11 := +3,  b := −2 .  
Go back to step 2. 

2. The equivalent  system was written: 
1 3

1 2 3 4 5

3            3                2
4 3 12 5 19
t x
t x x x x

+ = −⎧
⎨ + + − − =⎩

 

3. a = 1,  i = 2,  j = 4  
4. 1=1 

(A) Then:  4 1 2 3 54 3 12 5 19x t x x x= + + − −  statement V1( ). 
(B) Substituting it in H1( ), we obtain:  
x1 = −7t1 − 6 x2 − 21x3 + 10x5 + 38,    H1( ) 
(C) Remove the second equation of the system. 
(D) Consider: v := 2 . 

5. Yes. Go back to step 2. 
 

2. The equation 1 33  2 2t x+ + = −  is left. 
3. a = 2  and i = 1,  j = 3  
4. 2 ≠ 2 , go to step 6. 

6.    
+3 = +2 ⋅ 2 − 1

−2 = +2(−1) + 0
 

7.  x3 = −2t1 + t2 − 1 statement H 2( ). 
     Substituting it in H1( )' ,  V1( ), we obtain: 

  
( )
( )

1 1 2 2 5 1

4 1 2 2 5 1

35 6 21 10 59   ''

20 3 12 5 31    '

x t x t x H

x t x t x V

= − − + +

= − + + − −
 

8.  x3 := t2 , h := 3,  a11:= − 1,   a13 := +2,  b1:=0  , (the others being all = 0). Go back to step 
2. 
2. The equation −5t1 + 2t2 = 0  was obtained. 
3.  a = 1 , and i = 1,  j = 1  
4.  1=1 

(A) Then t1 = 2t2  statement V2( ). 
(B) After substitution, we obtain: 
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( )
( )

( )

1 2 2 5 1

4 2 2 5 1

3 2 2

 49 6 10 +59     ''';  

28 3 5  31     '' ; 

3                                 ';

x t x x H

x t x x V

x t H

= − +

= − + − −

= −

 

(C) Remove the first equation from the system. 
(D)  v := 3  

5.  No. The general integer solution of the initial system is: 

 

x1 = 49k1 − 6k2 + 10k3 + 59 

x2 =              k2      

x3 = −3k1                       − 1       

x4 = −28k1 + 3k2 − 5k3 − 31         

x5 =                          k3       

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 

where  k1,  k2 , k3( )∈Z3 . 
Stop. 

 
 Algorithm 5 

Input 
A linear system (1) 
Output  
    We decide on the possibility of an integer solution of this system. If it is 

possible, we obtain its general integer solution. 
Method 
1. We solve the common system in n , then it does not have solutions in n , 

then it does not have solutions in  Zn  either. Stop. 
2. f = 1,  v = 1,  h = 1  
3. Write the value of each main variable xi  under the form: 

 ( ) ' '
, : /f i i ij j i ij j i ii

j j

E x q x q r x r
⎛ ⎞

= − + + Δ⎜ ⎟
⎝ ⎠

∑ ∑ ,  

with all qij ,  qi ,  rij ,  ri ,  Δi  from  Z  such that all rij < Δ i ,   ri < Δ i , Δ i ≠  

(where all '
jx S−  of the right term are integer variables: either from the 

secondary variables of the system or the new variables introduced with the 
algorithm). For all i , we write rij f

≡ Δ i  

4. Ef ,  i( )
i
: rij

j
∑ x j − ri, j f

y f ,i + ri = 0  where yf ,i( ) are auxiliary integer variables. 

Remove all the equations Ff ,  i( ) which are identities. 

5. Does at least one equation Ff ,  i( ) exist? If it does not, write the general integer 
solution of the system substituting k1,  k2 ,...  for all the variables of the right 
number of each expression representing the value of the initial unknowns of 
the system. Stop. 
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6. (A) Divide each equation Ff ,  i( ) by the largest co-divisor of the coefficients of 
their unknowns. If the quotient is an integer for at least one i0  then the system 
does not have integer solutions. Stop. 
(B) Simplify – as previously ((A)) all the functions in the relations E f ,  i( )

i
. 

7. Calculate { }
,

min ,  0ij iji j
a r r= ≠ , and determine the indices i0 ,  j0  for which this 

minimum is obtained. 
8. If a ≠ 1 , go on to step 9. 

If a = 1 , then: 
(A) Calculate the value of the variable x j0

'  from the equation Ff ,  i( ) write 

Vv( ) for this statement. 

(B) Substitute this statement (where possible) in the statement E f ,  i( ), 

Vv+1( ), Hh( ), for all i, v , and h . 

(C) Remove the equation E f ,  i( ). 
(D) Consider v := v + 1,  f := f + 1  and go back to step 3. 

9. Write all 
0 0,  i jr j j≠  and ri0

under the form: 

ri0 j = Δi0
⋅ qi0 j + ri0 j

' , with ri0 j
' < Δi ; 

ri0 j = Δi0
⋅ qi0

+ ri0

' , with ri0

' < Δi . 

10. (A) Write x j0

' = − qi0 j
j ≠ j0

∑ x j
' + qi0

+ th  statement ( )hH . 

(B) Substitute this statement (where possible) in all the statements E f ,  i( ), 

Ff ,  i( ), Vv( ), Hh−1( ). 
(C) Consider h := h + 1  and go back to step 4. 
 

The correctness of the algorithm is obvious. It consists of the first part of  
algorithm 3 and the end part of algorithm 4. Then, steps 1-6 and their correctness were 
discussed in the case of algorithm 3. The situation is similar with steps 7-10. (After 
calculating the real solution in order to calculate the integer solution, we resorted to the 
procedure from 5 and algorithm 5 was obtained). This means that all these insertions 
were proven previously. 
 
 Example 5 
 Using algorithm 5, let us obtain the general integer solution of the system: 

   
3x1       + 6x3 + 2x4         = 0

      4x2 − 2x3        − 7x5 = −1   

⎧
⎨
⎩

 

 Solution 
1. Solving in  5  we obtain: 
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3 4
1

3 5
2

6 2
3

2 7 1
4

x xx

x xx

− −⎧ =⎪⎪
⎨ − + −⎪ =
⎪⎩

 

2. f = 1,  v = 1,  h = 1  

3. E1,1( ): x1 = 2x3 +
−2x4

3
 

      E1,2( ): x2 =       x5 +
2x3 + 3x5 − 1

4
 

4. ( )1,1 4 11: 2 3 0F x y− − =  

F1,2( ): 2x3 + 3x5 − 4y12 − 1 = 0  
5. Yes 
6. – 
7. i = 2  and i0 = 2,  j0 = 3  
8. 2 ≠ 1  
9. 3 = 2 ⋅1+ 1  

               
−4 = 2 ⋅ (−2)

−1 = 2 ⋅ 0 − 1
 

10. x3 = −x5 + 2y12 + t1  statement H1( ). After substitution: 

( )

( )
( )

4
1,1 1 5 12 1

5 12 1
1,2 2 5

1,2 5 1

2' : 2 4 2
3

4 2 1' :                     
4

' : 2 1 0

xE x x y t

x y tE x x

F x t

−
= − − +

+ + −
= +

+ − =

 

Consider h := 2  and go back to step 4. 
4.  ( )1,1 4 11' : 2 3 0F x y− − =  

     ( )1,2 1 5' : 2 1 0F t x+ − =  
5.  Yes. 

6. – 
7. a = 1  and i0 = 2 , j0 = 5  

(A)  x5 = −2t1 + 1 statement V1( ) 
(B) Substituting it, we obtain: 

( )
( )
( )

4
1,1 1 1 12

1,2 2 1 12

1 3 1 12

2'' :  6 2 4
3

'' :  2 1   

' :  3 1 1 2  

xE x t y

E x t y

H x t y

−
= − + − +

= − + +

= + − +

 

(C) Remove the equation F1,2( ). 
(D) Consider 2,  2v f= =  and go back to step 3. 
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3.  ( ) 4
2,1 1 1 12

2:  6 4 2
3
xE x t y −

= − − + +  

      E2,2( ):  x2 = −2t1 + y12 + 1  

4.   ( )2,1 4 12:  2 3 0F x y− − =  
5. Yes. 
6. – 
7. a = 2  and  i0 = 1,  j0 = 4  
8. 2 ≠ 1  
9. − 3 = −2 ⋅ (1) − 1  
10. (A) x4 = −y21 + t2  statement H 2( ) 

(B) After substitution, we obtain: 

( )
( )

21 2
2,1 1 1 12

2,1 21 2

2 2' :  6 4 2
3

' :  2 0

y tE x t y

F y t

− −
= − − + +

− − =
 

Consider  h := 3,  and go back to step 4. 
4. ( )2,1 21 2' :  2 0F y t− − =  

5. Yes 
6. – 
7. a = 1  and i0 = 1,  j0 = 21 (two, one). 

(A) y21 = −2t2  statement V2( ). 
(B) After substitution, we obtain: 
  
(C) Remove the equation ( )2,1F . 
(D) Consider v = 3,  f = 3  and go back to step 3. 

3. E3,1( ):  x1 = −6t1 − 4y12 − 2t2 + 2  

    E3,2( ):  x2 = −2t1 + y12           + 1 
4. – 
5. No. The general integer solution of the system is: 

( )
( )
( )
( )

1 1 2 3 3,1

2 1 2 3,2

3 1 2 1

4 3 2

5 1

6 4 2 2 ,        from ;

2              1,        from ;  

3 2              1,        from  '; 

                   3         ,       from  ';      

2           

x k k k E

x k k E

x k k H

x k H

x k

= − − − +

= − + +

= + −

=

= − ( )1         1,        from  ;   V

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪ +⎪⎩

 

where  k1,  k2 ,k3( )∈Z . 
Stop. 
 



 
 

133

 Note 1. Algorithm 3, 4, and 5 can be applied in the calculation of the integer 
solution of a linear equation. 
 
 Note 2. The algorithms, because of their form, are easily adapted to a computer 
program. 
 
 Note 3. It is up to the reader to decide on which algorithm to use. Good luck! 
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A METHOD TO GENERALIZE BY RECURRENCE OF 

SOME KNOWN RESULTS 
 

A great number of articles widen known results, and this is due to a simple 
procedure, of which it is good to say a few words: 

Let say that one generalizes a known mathematical proposition P(a) , where a  is 
a constant, to the proposition P(n) , where n  is a variable which belongs to subset of N . 
To prove that P  is true for n  by recurrence means the following: the first step is banal, 
since it is about the known result P(a)  (and thus it was already verified before by other 
mathematicians!). To pass from P(n)  to P(n + 1) , one uses too P(a) : therefore one 
widens a proposition by using the proposition itself, in other words the found 
generalization will be paradoxically proved with the help of the particular case from 
which one started! (e. g. the generalizations of Hölder, Minkovski, Tchebychev, Euler). 
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A GENERALIZATION OF THE INEQUALITY OF 
HÖLDER 

 
One generalizes the inequality of Hödler thanks to a reasoning by recurrence. As 
particular cases, one obtains a generalization of the inequality of Cauchy-Buniakovski-
Scwartz, and some interesting applications. 
 
 Theorem: If ai

(k ) ∈R+  and pk ∈]1,+∞[ , i ∈{1,2,...,n} , k ∈{1,2,..., m} , such that:, 

1 2

1 1 1... 1
mp p p

+ + + = , then: 

ai
(k )

k =1

m

∏
i=1

n

∑ ≤
k =1

m

∏ ai
(k )( )pk

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

1

pk

 with m ≥ 2 . 

 
Proof: 
For m = 2 one obtains exactly the inequality of Hödler, which is true. One 

supposes that the inequality is true for the values which are strictly smaller than a 
certain m .  
Then:, 

( ) ( ) ( )
11

2 2
( ) ( 1) ( ) ( ) ( 1) ( )

1 1 1 11 1 1

p
k k

p pm m mn n n n pk k m m k m m
i i i i i i i

i i i ik k k

a a a a a a a
− −

− −

= = = == = =

⎛ ⎞
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= ⋅ ⋅ ≤ ⋅ ⋅⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

∑ ∑ ∑ ∑∏ ∏ ∏  

where  1

p1

+
1

p2

+ ... +
1

pm− 2

+
1

p
= 1  and  ph > 1 , 1 ≤ h ≤ m − 2 , p > 1 ; 

 
but 

( ) ( ) ( )( ) ( )( )
11

1 2
1 2

( 1) ( ) ( 1) ( )

1 1 1

t t
t tn n np p p pm m m m

i i i i
i i i

a a a a− −

= = =

⎛ ⎞ ⎛ ⎞
⋅ ≤ ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  

where 1

t1

+
1

t2

= 1  and t1 > 1 ,  t2 > 2 .  

From it results that: 

( ) ( ) ( ) ( )
1 1

1 2

1 2( 1) ( ) ( 1) ( )

1 1 1

pt pt
n n np p pt ptm m m m

i i i i
i i i

a a a a− −

= = =

⎛ ⎞ ⎛ ⎞
⋅ ≤ ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  

with  1

pt1

+
1

pt2

=
1

p
. 
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Let us note pt1 = pm−1  and pt2 = pm . Then  
1 2

1 1 1... 1
mp p p

+ + + =  is true and one has 

pj > 1  for 1 ≤ j ≤ m  and it results the inequality from the theorem. 
 

Note: If one poses pj = m  for 1 ≤ j ≤ m  and if one raises to the power m  this 
inequality, one obtains a generalization of the inequality of Cauchy-Buniakovski-
Scwartz: 

ai
(k )

k =1

m

∏
i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

m

≤ ai
(k )( )m

i=1

n

∑
k =1

m

∏ . 

 
Application:  
Let a1,a2 ,b1,b2 ,c1,c2 be positive real numbers. 

Show that: 
(a1b1c1 + a2b2c2 )6 ≤ 8(a1

6 + a2
6 )(b1

6 + b2
6 )(c1

6 + c2
6 )  

 
 Solution: 
We will use the previous theorem. Let us choose p1 = 2 ,  p2 = 3 ,  p3 = 6 ; we will obtain 
the following: 

a1b1c1 + a2b2c2 ≤ (a1
2 + a2

2 )
1

2 (b1
3 + b2

3)
1

3 (c1
6 + c2

6 )
1

6 , 
or more: 

(a1b1c1 + a2b2c2 )6 ≤ (a1
2 + a2

2 )3(b1
3 + b2

3 )2 (c1
6 + c2

6 ) ,  
and knowing that  

3 3 2 6 6
1 2 1 2( ) 2( )b b b b+ ≤ +  

and that  
(a1

2 + a2
2 )3 = a1

6 + a2
6 + 3(a1

4a2
2 + a1

2a2
4 ) ≤ 4(a1

6 + a2
6 )  

since 
 a1

4a2
2 + a1

2a2
4 ≤ a1

6 + a2
6   (because: − a2

2 − a1
2( )2

a1
2 + a2

2( )≤ 0 ) 
it results the exercise which was proposed. 
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A GENERALIZATION OF THE INEQUALITY OF 
MINKOWSKI 

 
Theorem : If p  is a real number ≥ 1 and ( )k

ia ∈R+ with i ∈{1,2,...,n}  and  
k ∈{1,2,..., m} , then: 
  

1 1/

( ) ( )

1 1 1 1

p pp pn m m n
k k

i i
i k k i

a a
= = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
≤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑  

 
 Demonstration by recurrence on m∈N*. 
 First of all one shows that: 
 

ai
(1)( )p

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

1 p

≤ ai
(1)( )p

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

1/ p

, which is obvious, and proves that the inequality  

 
is true for m = 1 . 
(The case m = 2  precisely constitutes the inequality of Minkowski, which is naturally 
true!). 

Let us suppose that the inequality is true for all the values less or equal to  m  
 

1 111 1
( ) (1) ( )

1 1 1 1 2

p

p pp p pn m n n m
k k

i i i
i k i i k

a a a
+ +

= = = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
≤ + ≤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ ∑  

 

≤ ai
(1)( )p

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

1 p

+ ai
(k )

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

p

k =2

m+1

∑
⎛

⎝
⎜

⎞

⎠
⎟

1 p

 

and this last sum  is  ai
(k )

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

p

k =1

m+1

∑
⎛

⎝
⎜

⎞

⎠
⎟

1 p

therefore the inequality is true for the level m + 1 . 
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A GENERALIZATION OF AN INEQUALITY OF 
TCHEBYCHEV 

 
 Statement: If  ai

(k ) ≥ ai+1
(k )  , i ∈{1,2,...,n − 1} , k ∈{1,2,..., m} , then: 

   
1

n
ai

(k )

k =1

m

∏
i=1

n

∑ ≥
1

nm
ai

(k )

i=1

n

∑
k =1

m

∏ . 

 
 Demonstration by recurrence on m . 
 

 Case m = 1  is obvious:  
1

n
ai

(1)

i=1

n

∑ ≥
1

n
ai

(1)

i=1

n

∑ . 

 
 In the case m = 2 , this is the inequality of Tchebychev itself:  
 
 If a1

(1) ≥ a2
(1) ≥ ... ≥ an

(1)  and a1
(2) ≥ a2

(2) ≥ ... ≥ an
(2) , then: 

 

  
(1) (2) (1) (2) (1) (2) (1) (1) (1) (2) (2)
1 1 2 2 1 2 1... ... ...n n n na a a a a a a a a a a

n n n
+ + + + + + + +

≥ ×  

 
One supposes that the inequality is true for all the values smaller or equal to m . It 

is necessary to prove for the rang m + 1 : 
 

  
1

n
ai

(k )

k =1

m+1

∏
i=1

n

∑ =
1

n
ai

(k )

k =1

m

∏⎛
⎝⎜

⎞
⎠⎟i=1

n

∑ ⋅ ai
(m+1) . 

 

This is  ≥
1

n
ai

(k )

k =1

m

∏
i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

⋅
1

n
ai

(m+1)

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

≥
1

nm
ai

(k )

i=1

n

∑
k =1

m

∏⎛
⎝⎜

⎞
⎠⎟

⋅
1

n
ai

(m+1)

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

 

 

and this is exactly  
1

nm+1 ai
(k )

i=1

n

∑
k =1

m+1

∏     (Quod Erat Demonstrandum). 
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A GENERALIZATION OF EULER’S THEOREM 
 
 In the paragraphs which follow we will prove a result which replaces the theorem 
of Euler: 
 “If (a,m) = 1 , then aϕ(m ) ≡ 1(mod m)" ,  
for the case when  a  and  m  are not relative prime. 
 
Introductory concepts.  
One supposes that m > 0 . This assumption will not affect the generalization, because 
Euler’s indicator satisfies the equality:  

( )m mϕ = ϕ(− ) (see [1]), and that the congruencies verify the following property: 
( )( )(mod ) moda b m a b m≡ ⇔ ≡ −  (see [1] pp 12-13). 

 In the case of congruence modulo 0, there is the relation of equality.  One denotes 
(a,b)  the greater common factor of the two integers a  and b , and one chooses 
(a,b) > 0 . 
 B -  Lemmas, theorem. 
 Lemma 1: Let be a  an integer and  m  a natural number > 0 . There exist d0 , m0  
from  N such that a = a0d0 , m = m0d0  and (a0 , m0 ) = 1 . 
 
 Proof:  
 It is sufficient to choose d0 = (a, m) . In accordance with the definition of the 
greatest common factor (GCF), the quotients of a0 and m0  and of a  and m  by their 
TGFC are relative prime (of [3] pp 25-26). 
 
 Lemma 2: With the notations of lemma 1, if d0 ≠ 1 and if: 
d0 = d0

1d1 , m0 = m1d1 , (d0
1, m1) = 1  and d1 ≠ 1 , then d0 > d1  and m0 > m1 , and if 

d0 = d1 , then after a limited number of steps  i  one has  d0 > di+1 = (di , mi ) . 
 
 Proof: 

(0)
a = a0d0 ; (a0 , m0 ) = 1

m = m0d0 ; d0 ≠ 1

⎧
⎨
⎪

⎩⎪
 

(1)
d0 = d0

1d1 ; (d0
1, m1) = 1

m0 = m1d1 ; d1 ≠ 1

⎧
⎨
⎪

⎩⎪
 

From (0) and from (1) it results that  a = a0d0 = a0d0
1d1  therefore d0 = d0

1d1  thus 
d0 > d1  if d0

1 ≠ 1. 
 

From m0 = m1d1  we deduct that m0 > m1 . 
If d0 = d1  then m0 = m1d0 = k ⋅ d0

z  ( z ∈N* and d0 | k ). 
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Therefore m1 = k ⋅ d0
z−1 ; d2 = (d1, m1) = (d0 , k ⋅ d0

z−1) . After the i = z  step, it 
results di+1 = (d0 ,k) < d0 . 

 
Lemma 3: For each integer a  and for each natural number  m > 0  one can build 

the following sequence of relations: 
 

  (0)
a = a0d0 ; (a0 , m0 ) = 1

m = m0d0 ; d0 ≠ 1

⎧
⎨
⎪

⎩⎪
 

  (1)
d0 = d0

1d1 ; (d0
1, m1) = 1

m0 = m1d1 ; d1 ≠ 1

⎧
⎨
⎪

⎩⎪
 

  ……………………………………. 

  (s − 1)
ds−2 = ds−2

1 ds−1 ; (ds−2
1 , ms−1) = 1

ms−2 = ms−1ds−1 ; ds−1 ≠ 1

⎧
⎨
⎪

⎩⎪
 

       (s)
ds−1 = ds−1

1 ds ; (ds−1
1 , ms ) = 1

ms−1 = msds ; ds ≠ 1

⎧
⎨
⎪

⎩⎪
 

 
  Proof: 
 One can build this sequence by applying lemma 1. The sequence is limited, 
according to lemma 2, because after  r1  steps, one has 

10 rd d>  and 
10 rm m> , and 

after  r2   steps,  one has 
1 1 2r r rd d +>  and  

1 1 2r r rm m +> , etc., and the mi  are natural 

numbers. One arrives at  ds = 1  because if  ds ≠ 1  one will construct again a limited 
number of relations  ( 1),..., ( )s s r+ +  with  ds+ r < ds . 
 
 Theorem:  Let us have ,a m ∈Z and  m ≠ 0 . Then  aϕ(ms ) + s ≡ as (mod m)  where s 
and ms  are the same ones as in the lemmas above. 
 
 Proof: 
 Similar with the method followed previously, one can suppose m > 0  without 
reducing the generality. From the sequence of relations from lemma 3, it results that:  
     (0)  (1)     (2)          (3)    (s)    
a = a0d0 = a0d0

1d1 = a0d0
1d1

1d2 = ... = a0d0
1d1

1...ds−1
1 ds  

and 
    (0)    (1)       (2)              (3)    (s)   
m = m0d0 = m1d1 d0 = m2d2d1 d0 = ... = msds ds−1...d1 d0  
and  
msds ds−1...d1 d0 = d0d1...ds−1ds ms . 
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From (0) it results that d0 = (a,m) , and of  (i)  that  di = (di−1, mi−1) , for all i  from 
1,2,..., s{ }. 

d0 = d0
1d1

1d2
1.......ds−1

1 ds  
1 1 1

1 1 2 1......... s sd d d d d−=  
……………………. 

1
1 1s s sd d d− −=  

ds = ds  

Therefore d0d1 d2 .......ds−1ds = (d0
1 )1(d1

1)2 (d2
1 )3...(ds−1

1 )s (ds
1)s+1 = (d0

1 )1(d1
1)2 (d2

1 )3...(ds−1
1 )s  

because  ds = 1 . 
Thus  m = (d0

1 )1(d1
1)2 (d2

1 )3...(ds−1
1 )s ⋅ ms ; 

therefore ms | m ; 
 (s)              (s) 
(ds , ms ) = (1, ms ) and 1

1( , ) 1s sd m− =  
 (s-1) 
1 = (ds−2

1 , ms−1) = (ds−2
1 , msds )  therefore 1

2( , ) 1s sd m− =   
(s-2) 

1 1 1
3 2 3 1 1 3 11 ( , ) ( , ) ( , )s s s s s s s s sd m d m d d m d d− − − − − − −= = =  therefore 1

3( , ) 1s sd m− =  
……….. 
(i+1) 
  1 = (di

1, mi+1) = (di
1, mi+1di+2 ) = (di

1, mi+ 3di+ 3di+2 ) = ... =   
  = (di

1, msdsds−1...di+2 )   thus (di
1, ms ) = 1 , and this is for all i  from 0,1,..., s − 2{ }. 

……….. 
   (0) 
1 = (a0 , m0 ) = (a0 ,d1...ds−1dsms )  thus  (a0 , ms ) = 1 . 
From the Euler’s theorem results that: 
(di

1)ϕ(ms ) ≡ 1(mod ms )  for all  i  from 0,1,..., s{ },  

0 1(mod )sm
sa mϕ( ) ≡  

but a0
ϕ(ms ) = a0

ϕ(ms ) (d0
1 )ϕ(ms ) (d1

1)ϕ(ms ) ...(ds−1
1 )ϕ(ms )  

therefore  
1

1........1(mod )sm
s

s times

a mϕ( ) 

+

≡  

1(mod )sm
sa mϕ( ) ≡ . 

a0
s (d0

1 )s−1(d1
1)s−2 (d2

1 )s− 3...(ds−2
1 )1 ⋅ a ϕ(ms ) ≡ a0

s (d0
1 )s−1(d1

1)s−2 ...(ds−2
1 )1 ⋅1(mod ms ) . 

Multiplying by: 
 
(d0

1 )1(d1
1)2 (d2

1 )3...(ds−2
1 )s−1(ds−1

1 )s  we obtain: 
1 1 1 1

0 0 1 2 1( ) ( ) ...( ) ( ) sms s s s s
s sa d d d d a ϕ( ) 
− − ≡  

1 1 1 1 1 1 1
0 0 1 2 1 0 1( ) ( ) ...( ) ( ) (mod( ) ...( ) )s s s s s s

s s s sa d d d d d d m− − −≡  
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but  a0
s (d0

1 )s (d1
1)s ...(ds−1

1 )s ⋅ a ϕ(ms ) = a ϕ(ms )+ s  and a0
s (d0

1 )s (d1
1)s ...(ds−1

1 )s = as  therefore 
(mod )sm s sa a mϕ( )+  ≡ , for all a, m  from Z (m 0)≠ . 

 
Observations:  
 
If (a,m) = 1  then d = 1 . Thus s = 0 , and according to the theorem one has  

0 0 0 (mod )ma a mϕ( )+  ≡ therefore a ϕ(m0 )+0 ≡ 1(mod m) . 
But m = m0d0 = m0 ⋅1 = m0 . Thus: 
a ϕ(m ) ≡ 1(mod m) , and one obtains Euler’s theorem. 
Let us have a  and m  two integers, m ≠ 0  and 0( , ) 1a m d= ≠ , and 0 0m m d= . If 
(d0 , m0 ) = 1 , then  a ϕ(m0 )+1 ≡ a(mod m) . 
Which, in fact, it results from the theorem with  s = 1  and  m1 = m0 . 
This relation has a similar form to Fermat’s theorem: 
a ϕ( p)+1 ≡ a(mod p) . 
 
C – AN ALGORITHM TO SOLVE CONGRUENCIES 
 One will construct an algorithm and will show the logic diagram allowing to 
calculate s  and ms  of the theorem. 
 Given as input: two integers a  and m ,  0m ≠ . 
 It results as output:  s  and ms  such that  
 aϕ(ms ) + s ≡ as (mod m) . 
Method:  
(1)  A := a  
M := m   
i := 0  
(2) Calculate d = (A, M )  and  M ' = M / d . 
(3) If d = 1  take S = i  and ms = M '  stop. 
 If d ≠ 1  take  A := d , M = M '  
 i := i + 1 , and go to (2). 
Remark: the accuracy of the algorithm results from lemma 3 end from the  theorem. 
See the flow chart on the following page. 
In this flow chart, the SUBROUTINE LCD calculates D = (A, M )  and 
chooses D > 0 . 
 
 Application: In the resolution of the exercises one uses the theorem and the 
algorithm to calculate s  and ms . 
 
 Example: 625604 ≡ ?(mod105765)  
One cannot apply Fermat or Euler because (6,105765)=3 ≠ 1 . One thus applies the 
algorithm to calculate s  and  ms  and then the previous theorem:  
d0 = (6,105765) = 3          m0 = 105765 / 3 = 35255  
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i = 0;3 ≠ 1 thus  i = 0 + 1 = 1, d1 = (3,35255) = 1 , m1 = 35255 /1 = 35255 . 
Therefore 6ϕ(35255)+1 ≡ 61(mod105765)  thus 625604 ≡ 64 (mod105765) . 
 
 
 

* 
*          * 

* 
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Flow chart: 
 
 
 
   
 
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
            

REFERENCES: 

     START 

READ A1, M1 

      A := A1 

      M := M1 

      I := 0 

SUBROUTINE  
LCD (A,M,D) 

NO

  D=1 

      I := I+1 

      M := M/D 

      A := D 

YES
      S = I 

      MS = M 

WRITE S, MS 

     STOP 
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A GENERALIZATION OF THE INEQUALITY CAUCHY-
BOUNIAKOVSKI-SCHWARZ 

 
Statement: Let us consider the real numbers ai

(k ) ,  i ∈ 1,2,...,n{ },  

k ∈ 1,2,..., m{ }, with  m ≥ 2 . Then: 
 

ai
(k )

k =1

m

∏
i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

2

≤ ai
(k )( )2

i=1

n

∑
k =1

m

∏ . 

 
Proof: 
One notes A  the left member of the inequality  and B  the right member.  One 

has: 

A = ai
(1)...ai

(m )( )
i=1

n

∑
2

+ 2 ai
(1)...ai

(m )( )
k = i+1

n

∑
i=1

n−1

∑ ak
(1)...ak

(m )( ) 

and 

B = ai1

(1)...aim

(m )( )
(i1 ,...,im )∈E

∑
2

, 

where 
E = (i1,...,im ) / ik ∈ 1,2,...,n{ },1 ≤ k ≤ m{ }.  

 
From where:  

 B = ai
(1)...ai

(m )( )
i=1

n

∑
2

+ ai
(1)...ai

(m−1)ak
(m )( )⎡⎣

k = i+1

n

∑
i=1

n−1

∑
2

+ ak
(1)...ak

(m−1)ai
(m )( )2 ⎤

⎦ +  

 ( )1

1

2
(1) ( )

( ,..., ) ( )

...
m

m
m E

m
i i

i i E L

a a
∈ − Δ ∪

+ ∑  

with  

{ }
m times

( /E n
⎧ ⎫⎪ ⎪Δ = γ,..., γ γ ∈ 1,2,...,⎨ ⎬
⎪ ⎪⎩ ⎭

 

and  

{ }2

m-1 times m-1 times

( , ), ( , ) /( 1,2,..., andL n
⎧ ⎫⎪ ⎪= α,...,α β β,...,β α α,β)∈ α < β⎨ ⎬
⎪ ⎪⎩ ⎭

 

 
Then 

A − B = − ai
(1)...ai

(m−1)ak
(m )( )⎡⎣

k = i+1

n

∑
i=1

n−1

∑
2

− ak
(1)...ak

(m−1)ai
(m )( )2 ⎤

⎦ −  

( )1

1

2
(1) ( )

( ,..., ) ( )
... 0

m

m E

m
i i

i i E L
a a

∈ − Δ ∪

− ≤∑  
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Note: for m = 2  one obtains the inequality of Cauchy-Bouniakovski-Schwarz. 
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GENERALIZATIONS OF THE THEOREM OF CEVA 
 

 In these paragraphs one presents three generalizations of the famous theorem of 
Céva, which states: 
 “If in a triangle ABC  one plots the convergent straight lines  

 AA1 , BB1 , CC1  then  
A1B

A1C
⋅

B1C

B1A
⋅
C1A

C1B
= −1“. 

 
 Theorem: Let us have the polygon 1 2... nA A A , a point M  in its plane, and a 
circular permutation  

p =
1 2 ... n − 1 n

2 3 ... n 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
. One notes M

ij
 the intersections of the line Ai M with the lines 

Ai + s Ai + s+1,..., Ai + s+ t −1Ai+ s+ t (for all i  and j , j ∈ i + s,..., i + s + t − 1{ }). 

 If ij nM A≠  for all the respective indices, and if 2s t n+ = , one has: 

 
, 1

, 1,

( 1)
( )

n i s t
ij j n

i j i s ij p

M A
M A j

+ + −

= +

= −∏  ( s  and t  are natural non zero numbers). 

 Analytical demonstration: Let M  be a point in the plain of the triangle ABC , 
such that it  satisfies the conditions of the theorem.  One chooses a Cartesian system of 
axes, such that the two parallels with the axes which pass through M  do not pass by any 
point Ai  (this is possible). 
 One considers M (a,b) , where a and  b  are real variables, and  Ai (Xi ,Yi )  where 

Xi  and  Yi  are known, i ∈ 1,2,...,n{ }. 
 The former choices ensure us the following relations: 
 Xi − a ≠ 0 and 0iY b− ≠   for all i ∈ 1,2,...,n{ }. 

 The equation of the line (1 )iA M i n≤ ≤  is:  

 
x − a

Xi − a
−

y − b

Yi − b
. One notes that  d(x, y; Xi ,Yi ) = 0 . 

One has  

 
( ) ( ) ( )( )

( , ) ( , ; , ) ( , )
( , ) ( , ; , ) ( ( ), )

ij j j i j j i i

p j i p j p j i iij p j

M A A A M d X Y X Y D j i
A A M d X Y X Y D p j iM A

δ
δ

= = =  

where δ (A,ST )  is the distance from A  to the line ST , and  where one notes with  
D(a,b)  for  d(Xa ,Ya; Xb ,Yb ) . 
 Let us calculate the product, where we will use the following convention:  a + b  
will mean  

 
p( p(...p

b times

(a)...)) , and  a − b  will  mean  p−1(p−1(...p−1

b times

(a)...))  

 
Mij Aj

Mij Aj +1j = i+ s

i+ s+ t −1

∏ =
D( j,i)

D( j + 1, i)j = i+ s

i+ s+ t −1

∏ =  
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( , ) ( 1, ) ( 1, )

( 1, ) ( 2, ) ( , )
D i s i D i s i D i s t i

D i s i D i s i D i s t i
+ + + + + −

= ⋅ ⋅⋅⋅ =
+ + + + + +

 

 

 =
D(i + s,i)

D(i + s + t, i)
=

D(i + s,i)

D(i − s,i)
 

 
 The initial product is equal to:   

D(i + s,i)

D(i − s,i)
=

i=1

n

∏ D(1 + s,1)

D(1 − s,1)
⋅

D(2 + s,2)

D(2 − s,2)
⋅ ⋅ ⋅

D(2s, s)

D(n, s)
⋅  

 

⋅
D(2s + 2, s + 2)

D(2, s + 2)
⋅ ⋅ ⋅

D(2s + t, s + t)

D(t, s + t)
⋅

D(2s + t + 1, s + t + 1)

D(t + 1, s + t + 1)
⋅  

 

⋅
D(2s + t + 2, s + t + 2)

D(t + 2, s + t + 2)
⋅ ⋅ ⋅

D(2s + t + s, s + t + s)

D(t + s, s + t + s)
=  

 

=
D(1+ s,1)

D(1,1+ s)
⋅

D(2 + s,2)

D(2,2 + s)
⋅ ⋅ ⋅

D(2s + t, s + t)

D(s + t,2s + t)
⋅ ⋅ ⋅

D(s,n)

D(n, s)
=  

 

=
D(i + s, i)

D(i,i + s)
=

i=1

n

∏ −
P(i + s)

P(i)

⎛
⎝⎜

⎞
⎠⎟i=1

n

∏ = (−1)n  

 
because: 

 
( )( )( , ) ( )

( , ) ( )( ) ( )

r r

p p r r

p p p p

r r

X a Y b
X a Y b X a Y bD r p P r
X a Y bD p r X a Y b P p
X a Y b

− −
−

− − − −
= = − = −

− − − −−
− −

, 

The last equality resulting from what one notes: (Xt − a)(Yt − b) = P(t) . From (1) 

it results that  P(t) ≠ 0  for all t  from { }1,2,...,n . The proof is completed. 

 
Comments regarding the theorem: 
t  represents the number of lines of a polygon which are intersected by a line 

Ai0
M ; if one notes the sides  AiAi+1  of the polygon, by ai , then  s + 1 represents the 

order of the first line intersected by the line A1M  (that is  as+1  the first line intersected by 
A1M ). 

 
Example:  If  s = 5  and  t = 3 , the theorem says that : 

- the line A1M  intersects the sides 6 7 7 8 8 9, ,A A A A A A . 

- the line A2M  intersects the sides 7 8 8 9 9 10, ,A A A A A A . 

- the line  A3M  intersects the sides  8 9 9 10 10 11, ,A A A A A A , etc. 
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Observation: The restrictive condition of the theorem is necessary for the 

existence of the ratios 
( )

ij j

ij p j

M A
M A

. 

 
Consequence 1:  Let us have a polygon A1A2 ...A2k +1  and a point M  in its plan. 

For all  i  from  1,2,...,2k + 1{ }, one notes  Mi  the intersection of the line  Ai Ap(i )  with 

the line which passes through  M  and by the vertex which is opposed to this line.  If  

Mi ∉ Ai , Ap(i ){ } then one has: 
Mi Ai

Mi Ap(i )i=1

n

∏ = −1. 

 The demonstration results immediately from the theorem, since one has s = k  and  
t = 1, that is  n = 2k + 1 . 
 The reciprocal of this consequence is not true. 

From where it results immediately that the reciprocal of the theorem is not true 
either. 
 Counterexample: 

Let us consider a polygon of 5 sides. One plottes the lines A1M 3, A2M 4  and A3M 5  
which intersect in M . 

 

Let us have K =
M 3A3

M 3A4

⋅
M 4 A4

M 4 A5

⋅
M 5A5

M 5A1

 

Then one plots the line A4 M1  such that it does not pass through M  and such that 
it forms the ratio: 

(2) 
M1A1

M1A2

= 1 / K  or 2 / K . (One chooses one of these values, for which 

A4 M1  does not pass through M ). 

 At the end one traces A5M 2  which forms the ratio  
M 2A2

M 2A3

= −1  or −
1

2
 in 

function of (2). Therefore the product: 
Mi Ai

Mi Ap(i )i=1

5

∏  without which the respective lines are concurrent. 

Consequence 2:  Under the conditions of the theorem, if for all i and  
j, j ∉ i, p−1(i){ }, one notes  Mij = Ai M ∩ Aj Ap( j ) and Mij ∉ Aj , Ap( j ){ } then one has: 

 
Mij Aj

Mij Ap( j )i, j =1

n

∏ = (−1)n . 

 
j ∉ i, p−1(i){ } 

In effect one has s = 1 ,  t = n − 2 , and therefore  2s + t = n . 
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Consequence 3:  For  n = 3, it comes s = 1  and  t = 1, therefore one obtains (as a 
particular case ) the theorem of Céva. 
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AN APPLICATION OF THE GENERALIZATION OF 
CEVA’S THEOREM 

 
 
 Theorem: Let us consider a polygon  A1A2 ...An  inserted in a circle.  Let s  and  t  
be two non zero natural numbers such that  2s + t = n . By each vertex Ai  passes a line di  
which intersects the lines Ai+ sAi+ s+1,...., Ai+ s+ t −1Ai+ s+ t  at the points Mi,i+ s ,..., Mi+ s+t −1  

respectively and the circle at the point Mi
' . Then one has: 

 
'1

'
1 11

n i s t n
ij j i i s

i j i s iij j i i s t

M A M A
M A M A

+ + −
+

= = + =+ + +

=∏ ∏ ∏ . 

 Proof: 
 Let i  be fixed. 

1) The case where the point  Mi,i+ s  is inside the circle. 

There are the triangles  AiMi,i+ sAi+ s  and  Mi
'Mi,i+ sAi+ s+1  similar, since the angles  

Mi,i+ sAiAi+ s  and Mi,i + s Ai+ s+1Mi
'  on one side, and AiMi,i+ sAi+ s  and Ai + s+1Mi,i + s Mi

'  are 
equal. It results from it that:  

(1)    
Mi ,i+ sAi

Mi,i+ sAi+ s+1

=
Ai Ai+ s

Mi
'Ai+ s+1

 

 
 

                                                                 Ai+s+1                                                                     
                                                                      
 
 
                        Ai 
 
    MMM      
          
          
          
               Mi

'     
               Ai+s       
        
 
 

In a similar manner, one shows that the triangles Mi,i+ sAiAi+ s+1  and Mi,i + s Ai + s Mi
'  

are similar, from which: 

(2)   
Mi,i+ sAi

Mi,i+ sAi+ s

=
Ai Ai+ s+1

Mi
'Ai+ s

. Dividing (1) by (2) we obtain: 

 

Mi,i+s 



 
 

154

(3) 
Mi,i+ sAi+ s

Mi,i+ sAi+ s+1

=
Mi

'Ai+ s

Mi
'Ai+ s+1

⋅
Ai Ai+ s

Ai Ai+ s+1

.      

   
 
 2) The case where Mi,i+ s  is exterior to the circle is similar to the first, because the 
triangles (notations as in 1) are similar also in this new case. There are the same 
interpretations and the same ratios; therefore one has also the relation (3). 
 
 
 
 
            
            
            
            
            
            
            
            
            
            
            
            

Let us calculate the product: 

   
Mij Aj

Mij Aj +1j = i+ s

i+ s+ t −1

∏ =
Mi

'Aj

Mi
'Aj +1

⋅
Ai Aj

Ai Aj +1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟j = i+ s

i+ s+ t −1

∏ =  

 

   =
Mi

'Ai+ s

Mi
'Ai+ s+1

⋅
Mi

'Ai+ s+1

Mi
'Ai+ s+2

⋅ ⋅ ⋅
Mi

'Ai+ s+ t −1

Mi
'Ai+ s+ t

⋅  

 

   ⋅
Ai Ai+ s

Ai Ai+ s+1

⋅
Ai Ai+ s+1

Ai Ai+ s+2

⋅ ⋅ ⋅
Ai Ai+ s+ t −1

Ai Ai+ s+ t

=
Mi

'Ai+ s

Mi
'Ai+ s+ t

⋅
Ai Ai+ s

Ai Ai+ s+ t

 

  
 Therefore the initial product is equal to: 
 

  
Mi

'Ai+ s

Mi
'Ai+ s+ t

⋅
Ai Ai+ s

Ai Ai+ s+ t

⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∏ =
Mi

'Ai+ s

Mi
'Ai+ s+ ti=1

n

∏  

  since: 
  

  
Ai Ai+ s

Ai Ai+ s+ ti=1

n

∏ =
A1A1+ s

A1A1+ s+ t

⋅
A2A2+ s

A2A2+ s+ t

⋅ ⋅ ⋅
AsA2 s

As+1A1

⋅  

Ai+s+1 

Ai+s 

Mi
'
 

Mi,i+s    Ai  



 
 

155

  

  ⋅
As+2A2s+2

As+2A2

⋅ ⋅ ⋅
As+ t An

As+ t At

⋅
As+ t +1A1

As+ t +1At +1

⋅
As+ t + 2A2

As+ t +2At +2

⋅ ⋅ ⋅
AnAs

AnAs+ t

= 1 

 
(by taking into account the fact that  2s + t = n ). 
 
 Consequence 1: If there is a polygon A1A2 ,...., A2 s−1  inscribed in a circle, and 
from each vertex Ai  one traces a line di  which intersects the opposite side Ai + s−1Ai+ s  in  

M i  and the circle in Mi
'  then: 

 

 
Mi Ai+ s−1

Mi Ai+ si=1

n

∏ =
Mi

'Ai+ s−1

Mi
'Ai+ si=1

n

∏  

 In fact for t = 1, one has n odd and s =
n + 1

2
. 

 If one makes s = 1  in this consequence, one finds the mathematical note from [1], 
pages 35-37. 
 Application:  If in the theorem, the lines di  are concurrent, one obtains: 

  
Mi

'Ai+ s

Mi
'Ai+ s+ ti=1

n

∏ = (−1)n  (For this, see [2]). 

 
 Bibliography: 
 [1]   Dan Barbilian (Ion Barbu) – “Pagini inedite”, Editura Albatros, Bucharest, 
1981 (Ediţie îngrijită de Gerda Barbilian, V. Protopopescu, Viorel Gh. Vodă). 
 [2] Florentin Smarandache – “Généralisation du théorème de Céva”. 
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A GENERALIZATION OF A THEOREM OF CARNOT 
 

 Theorem of Carnot: Let M be a point on the diagonal  AC of an arbitrary 
quadrilateral ABCD . Through M  one draws a line which intersects AB  in α  and BC  
in β . Let us draw another line, which intersects CD  in γ  and AD  in δ . Then one has: 

 
Aα
Bα

⋅
Bβ
Cβ

⋅
Cγ
Dγ

⋅
Dδ
Aδ

= 1. 

  
 Generalization: Let 1... nA A  be a polygon. On a diagonal A1Ak  of this polygon 
one takes a point M through which one draws a line d1  which intersects the lines 
A1A2 , A2 A3,..., Ak −1Ak  respectively in the points  P1, P2 ,..., Pk −1  and another line  d2  
intersects the other lines  Ak Ak +1,,..., An−1An , AnA1  respectively in the points Pk ,..., Pn−1, Pn . 
Then one has: 
  

  
1 ( )

1
n

i i

i i i

A P
A Pϕ=

=∏ ,  

where ϕ  is the circular permutation 
 

  
1 2 ... n − 1 n

2 3 ... n 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

. 

 Proof:  
 Let us have  1 ≤ j ≤ k − 1. One easily shows that: 

  
AjPj

Aj +1Pj

=
D(Aj ,d1)

D(Aj +1,d1)
 

 where D(A,d)  represents the distance from the point A  to the line d , since the 

triangles Pj Aj Aj
'  and Pj Aj +1Aj +1

'  are similar. (One notes with Aj
'  and Aj +1

'  the projections 

of the points Aj  and Aj +1  on the line d1 ). 

 It results from it that:  
  

 
A1P1

A2P1

⋅
A2P2

A3P2

⋅ ⋅ ⋅
Ak −1Pk −1

AkPk −1

=
D(A1,d1)

D(A2 ,d1)
⋅

D(A2 ,d1)

D(A3,d1)
⋅ ⋅ ⋅

D(Ak −1,d1)

D(Ak ,d1)
=

D(A1,d1)

D(Ak ,d1)
 

  
 In a similar way, for  k ≤ h ≤ n  one has: 
 

  
AhPh

Aϕ (h)Ph

=
D(Ah ,d2 )

D(Aϕ (h),d2 )
 

 and 
  

  
AhPh

Aϕ (h)Phh= k

n

∏ =
D(Ak ,d2 )

D(A1,d2 )
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 The product of the theorem is equal to: 
  

  
D(A1,d1)

D(Ak ,d1)
⋅

D(Ak ,d2 )

D(A1,d2 )
, 

 but  

  
D(A1,d1)

D(Ak ,d1)
=

A1M

Ak M
 

 since the triangles MA1A1
'  and MAk Ak

'  are similar. In the same way, because the 

triangles MA1A1
''  and MAk Ak

''  are similar (one notes with A1
''  and Ak

''  the respective 
projections of A1  and Ak  on the line d2 ), one has: 
   

  
D(Ak ,d2 )

D(A1,d2 )
=

Ak M

A1M
. 

The product from the statement is therefore equal to 1. 
 
 Remark: If one replaces n  by  4 in this theorem, one finds the theorem of Carnot. 
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SOME PROPERTIES OF NEDIANES 
 
 This article generalizes certain results on the nedianes (see [1] pp. 97-99). One 
calls nedianes the segments of a line that passes through a vertex of a triangle and 
partitions the opposite side in n  equal parts. A nediane is called to be of order i  if it 
partitions the opposite side in the rapport i / n . 
 For 1 ≤ i ≤ n − 1  the nedianes of order i  (that is AAi , BBi  and CCi ) have the 
following properties: 

1) With these 3 segments one can construct a triangle. 
 

                           A 
 
                  Ci 
 
 
 
 
 
                                                                       
  B                                                                     Bi 
             Ai 
                                     
          C 
2) AAi

2
+ BBi

2
+ CCi

2
=

i2 − i ⋅ n + n2

n2 (a2 + b2 + c2 ) . 

Proofs: 

i i
iAA AB BA AB BC
n

= + = +   (1) 

i i
iBB BC CB BC CA
n

= + = +    (2) 

i i
iCC CA AC CA AB
n

= + = +    (3) 

 By adding these 3 relations, we obtain: 

  ( ) 0i i i
i nAA BB CC AB BC CA

n
+

+ + = + + =  

 therefore the 3 nedianes can be the sides of a triangle. 
  (2) By raising to the square the relations and then adding them we obtain: 

 AAi

2
+ BBi

2
+ CCi

2
= a2 + b2 + c2 +

i2

n2 (a2 + b2 + c2 ) +  

+ (2 2 2 )i AB BC BC CA CA AB
n

⋅ + ⋅ + ⋅  (4) 
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Because 2 2 22 2 cosAB BC ca B b c a⋅ = − ⋅ = − − (the theorem of cosines), by 

substituting this in the relation (4), we obtain the requested relation. 
 
 
 REFERENCE: 
 
[1] Vodă, Dr. Viorel Gh. – “Surprize în matematica elementară”, Editura Albatros, 

Bucharest, 1981. 
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GENERALIZATIONS OF DEGARGUES THEOREM* 
 

 
 Let’s consider the points A1,..., An  situated on the same plane, and B1,..., Bn  
situated on another plane, such that the lines Ai Bi  are concurrent.  Let’s prove that if the 
lines Ai Aj  and BiBj  are concurrent, then their intersecting points are collinear. 
 
 Solution.  Let α  be the plane that contains the points A1,..., An  (in the case in 
which the points are non-collinear α  is unique), and analogously, let β = P(B1,..., Bn ) , 
and  consider α ∩ β = d . 
 Because the lines AiAj  and BiBj  are concurrent, Ai Aj ⊂ α , and Bi Bj ⊂ β , 
therefore their intersection belongs to line d . 
 
 Remark 1. 
 
 For n = 3  and A1, A2 , A3  non-collinear, B1, B2 , B3  non-collinear, and Ai ≠ Bj  we 
obtain Desargues theorem. 
 
 Remark 2. 
 
 An extension of this generalization is: If we consider A1,..., An  situated in a plane, 
and B1,..., Bm  situated on another plane, prove that if  Ai Aj  and Bk Br  are concurrent, then 
their intersection points are concurrent. 
  
 Remark 3. 
 
 For n = m , and Ai Bi   concurrent lines, we obtain the first generalization. 
 
 Remark 4. 
 
 If in addition we also have n = m = 3  along with the previous conditions, we 
obtain the Desargues theorem. 
 
 
 
 
 
* Gamma, Anul X, nr. 1-2, Oct. 1987. 
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K-NOMIAL COEFFICIENTS 
 

In this article we will widen the concepts of” binomial coefficients” and” 
trinomial coefficients” to the concept of ”k-nomial coefficients”, and one 
obtains some general properties of these. As an application, we will 
generalize the” triangle of Pascal”. 

 
 Let’s consider a natural number k ≥ 2 ; let P(x) = 1 + x + x2 + ... + xk −1  be the 
polynomial formed of k monomials of this type; we’ll call it ”k-nomial”. 
 We will call k-nomial coefficients the coefficients of the power of x  of 
(1 + x + x2 + ... + xk −1)n , for n  positive integer. We will note them Ckn

h  with 
h ∈ 0,1,2,...,2 pn{ }. 
 In continuation one will build by recurrence a triangle of numbers which will be 
called ” triangle of the numbers of order k”. 
 
 CASE 1: k = 2 p + 1. 
 
 On the first line of the triangle one writes 1 and one calls it ”line 0”. 

(1) It is agreed that all the cases which are to the left and to the right of the first 
(respectively of the last) number of each line will be consider like being 0. The lines 
which follow are called ”line 1”, ”line 2”, etc… Each line will contain 2 p  numbers to the 
left of the first number, p  numbers on the right of the last number of the preceding line. 
Numbers of the line i + 1  are obtained by using those of the line i  in the following way: 
 Cki+1

j  is equal to the addition of p  numbers which are to its left on the line i  and 
of p  numbers which are to the right on the line i , to the number which is above it (see. 
Fig. 1). One will take into account the convention 1. 
 

Fig. 1 
 

line i         
p numbers p numbers

⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ii i i i  

line i+1  ⋅Cki+1
j  
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 Example for k = 5 : 
 
 
 
 
 

 
………………..…………………………………………………………………… 

The number  
C51

0 = 0 + 0 + 0 + 0 + 1 = 1;

C51
3 = 0 + 1+ 0 + 0 + 0 = 1;

C52
3 = 0 + 1+ 1+ 1+ 1 = 4;

C53
7 = 4 + 5 + 4 + 3 + 2 = 18;

 

    etc. 
Properties of the triangle of numbers of order k: 

 
1) The line i  has 2 pi + 1  elements. 

2)  Ckn
h = Ckn−1

h− i

i=0

2 p

∑  where by convention Ckn
t = 0  for 

t < 0

t > 2 pr

⎧
⎨
⎩

 and 

      This is obvious taking into account the construction of the triangle. 
3) Each line is symmetrical relative to the central element. 
4) First elements of the line i  are 1 and i . 
5) The line i  of the triangle of numbers of order k  represent the k-nomial coefficients of 

(1 + x + x2 + ...+ xk −1)i . 
The demonstration is done by recurrence on i  of  

* : 
a) For i = 1  it is obvious; (in fact the property would be still true for 
i = 0 ). 
b) Let’s suppose the property true for n . Then 
(1 + x + x2 + ... + xk −1)n+1 = (1 + x + x2 + ... + xk −1)(1 + x + x2 + ... + xk −1)n =  

= (1+ x + x2 + ...+ x2 p ) ⋅ Ckn
j

j =0

2 pn

∑ ⋅ x j =  

= Ckn
i

i+ j = t
0≤ j ≤2 p
0≤i≤2 pn

∑
t = 0

2 p(n+1)

∑ ⋅ xi ⋅ x j =  

= Ckn
t − j

j =0

2 p

∑
⎛

⎝⎜
⎞

⎠⎟t =0

2 p(n+1)

∑ xt = Ckn+1
t

t =0

2 p(n+1)

∑ ⋅ xt . 

6) The sum of the elements locate on line n  is equal to kn . 

                                                      1 
                                        1     1     1    1    1 

 1      2     3     4     5    4     3     2     1 
           1     3     6    10    15   18   19  18   15   10    6     3     1 
1   4   10   20   35   52    68   80   85   80   68   52   35   20   10   4   1 
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The first method of demonstration uses the reasoning by recurrence. For n = 1   the 
assertion is obvious. One supposes the property truth for n , i.e. the sum of the elements 
located on the line n  is equal to kn . The line n + 1  is calculated using the elements of the 
line n . Each element of the line n  uses the sum which calculates each of p  elements 
locate to its left on the line n + 1 , each of p  elements locate to its right on the line n + 1  
and that which is located below: thus it is used to calculate k  numbers of the line n + 1 . 

Thus the sum of the elements of the line n + 1  is k  times larger than the sum of 
those of the line n , therefore it is equal to kn+1 . 
7) The difference between the sum of the k-nomial coefficients of an even rank and the 
sum of the k-nomial coefficients of an odd rank located on the same line 
Ckn

0 − Ckn
1 + Ckn

2 − Ckn
3 + ...( ) is equal to 1. 

One obtains it if in (1 + x + x2 + ... + xk −1)n  one takes x = −1. 
8) 0 1 1 0...h h h h

n m n m n m n mCk Ck Ck Ck Ck Ck Ck−
+⋅ + ⋅ + + ⋅ =  

This results from the fact that, in the identity 
(1 + x + x2 + ... + xk −1)n ⋅ (1 + x + x2 + ... + xk −1)m = (1 + x + x2 + ... + xk −1)n+ m  

the coefficient of xh  in the member from the left is Ckn
i

i=0

h

∑ ⋅Ckm
h− i  and that of xh  on the 

right is Ckn+ m
h . 

9) The sum of the squares of the k-nomial coefficients locate on the line n  is equal 
to the k-nomial coefficient located in the middle of the line 2n . 
For the proof one takes n = m = h  in the property 8. One can find many properties and 
applications of these k-nomial coefficients because they widen the binomial coefficients 
whose applications are known. 

 
  CASE 2: k = 2 p . 
 
 The construction of the triangle of numbers of order k  is similar: 
 On the first line one writes 1; it is called line 0  
 The lines which follow are called line 1, line 2, etc. Each line will have 2 p − 1 
elements more than the preceding one; because 2 p − 1 is an odd number, the elements of 
each line will be placed between the elements of the preceding line (which is different 
from the case 1 where they are placed below). 
 The elements locate on the line i + 1  are obtained by using those of the line i  in 
the following way: 
 Cki+1

j  is equal to the sum of p  elements located to its left on the line i  with p  
elements located to its right on the line i . 
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Fig. 2 
 

line i         
p numbers p numbers

⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ii i i i  

line i+1  ⋅Cki+1
j  

 
   
Example for k = 4 : 
 

 
 

 
    
 

……………………………………………………………. 

From the property 1': Ckn
h = Ckn−1

h− i

i=0

2 p−1

∑  

 By joining together properties 1 and 1': Ckn
h = Ckn−1

h− i

i=0

k −1

∑  

 The other properties of Case 1 are preserved in Case 2, with similar profs. 
However in the property 7, one sees that the difference between the sum of the k-nomial 
coefficients of even rank and that of the k-nomial coefficients of odd rank locate on the 
same line is equal to 0. 
 

                                       1 
                              1    1     1    1     
                   1     2     3    4     3     2     1 
        1     3     6    10   12   12   10    6     3    1 
1   4   10   20    31   40   44   40   31   20   10   4   1 



 
 

165

A CLASS OF RECURSIVE SETS 
 

In this article one builds a class of recursive sets, one establishes properties of 
these sets and one proposes applications. This article widens some results of [1]. 

 
1) Definitions, properties. 

One calls recursive sets the sets of elements which are built in a recursive manner: 
let T  be a set of elements and fi  for i  between 1  and s , of operations ni , such that  
fi :T ni → T . Let’s build by recurrence the set M  included in T  and such that: 

(Def. 1)  1o) certain elements a1,...,an  of T , belong to M . 
  2o) if (α i1

,...,α ini
)  belong to M , then fi (α i1

,...,α ini
)  belong to M for all 

i ∈ 1,2,..., s{ }. 
  3o) each element of M is obtained by applying a number finite of times the rules 
1o  or 2o . 

We will prove several proprieties of these sets M , which will result from the manner in 
which they were defined.  The set M is the representative of a class of recursive sets 
because in the rules 1o  and 2o, by particularizing the elements a1,...,an  respectively 
f1,..., fs  one obtains different sets. 

 
Remark 1 :  To obtain an element of M , it is necessary to apply initially the rule 

1. 
(Def. 2) The elements of M are called elements M -recursive. 
(Def. 3) One calls order of an element a  of M the smallest natural p ≥ 1which 

has the propriety that a  is obtained by applying p  times the rule 1o or 2o. 
One notes M p  the set which contains all the elements of order p  of M . It is 

obvious that M1 = a1,...,an{ }. 

 

M 2 = fi (α i1
,...,α ini

)
(α i1

,...,αini
)∈M1

ni

U
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

s

U \ M1 . 

One withdraws M1  because it is possible that 
1

( ,..., )
n jj j j if a a a=  which belongs 

to M1 ,  and thus does not belong to M 2 . 
One proves that for k ≥ 1  one has: 
 

 

M k +1 = fi (α i1
,...,α ini

)
(αi1

,...,αini
)∈

k

( i )∏
U

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

s

U \ Mh
h=1

k

U  

where each  
 
 = (α i1

,...,α ini
) /{k

(i )∏ α i j
∈M qj

 j ∈ 1,2,...,ni{ }; 1 ≤ qj ≤ k  and at least  an 

element  aijo
∈M k ,1 ≤ jo ≤ ni }. 



 
 

166

The sets M p ,   p ∈ * , form a partition  of the set M . 
  

Theorem 1: 
  
 

  
M = M p

p∈ *
U , where  

* = 1,2, 3,...{ }. 

Proof: 
From the rule 1o it results that M1 ⊆ M . 
One supposes that this propriety is true for values which are less than p . It results 

that M p ⊆ M , because M p  is obtained by applying the rule 2o to the elements of 
 

Mi
i=1

p−1

U . 

Thus 
  

M p
p∈ *
U ⊆ M . Reciprocally, one has the inclusion in the contrary sense in 

accordance with the rule 3o. 
 
Theorem 2: The set M is the smallest set, which has the properties 1o and 2o. 
Proof: 
Let R  be the smallest set having properties 1o and 2o. One will prove that this set 

is unique. 
Let’s suppose that there exists another set R ' having properties 1o and 2o, which is 

the smallest. Because R is the smallest set having these proprieties, and because R '  has 
these properties also, it results that R ⊆ R ' ; of an analogue manner, we have R ' ⊆ R :  
therefore R = R ' . 

It is evident that M ' ⊆ R . One supposes that M i ⊆ R  for 1 ≤ i < p . Then (rule 
3o), and taking in consideration the fact that each element of M p  is obtained by applying 
rule 2o to certain elements of Mi , 1 ≤ i < p , it results that pM R⊆ . Therefore 

*( )p
p

M R p⊆ ∈∪ , thus M ⊆ R . And because R  is unique, M = R . 

Remark 2. The theorem 2 replaces the rule 3o of the recursive definition of the set 
M  by: ” M is the smallest set that satisfies proprieties 1o and 2o”. 

 
Theorem 3: M is the intersection of all the sets of T which satisfy conditions 1o 

and 2o. 
Proof:  
Let T12  be the family of all sets of T satisfying the conditions 1o and 2o.  We note 

12A T

I A
∈

= ∩ . 

I  has the properties 1o  and 2o because:  
1) For all i ∈ 1,2,...,n{ }, ai ∈ I , because ai ∈A  for all A  of T12 . 
2) If α i1

,...,α ini
∈ I , it results that α i1

,...,α ini
belong to A  that is A  of T12 . 

Therefore,  
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∀i ∈ 1,2,..., s{ }, fi (α i1
,...,α ini

) ∈A  which is A of T12 , therefore fi (α i1
,...,α ini

) ∈ I  

for all i  from 1,2,..., s{ }. 
From theorem 2 it results that M ⊆ I . 
Because M satisfies the conditions 1o and 2o, it results that M ∈T12 , from which 

I ⊆ M . Therefore M = I  
(Def. 4) A set A ⊆ I is called closed for the operation fi0

if and only if for all 
α i0 1,...,α i0 n i0

 of A , one has fi0
(α i0 1,...,α i0 n i0

)  belong to A . 
(Def.  5) A set A ⊆ T is called M -recursively closed if and only if: 
1) a1,...,an{ }⊆ A . 
2) A is closed in respect to operations f1,..., fs . 
With these definitions, the precedent theorems become: 
 
Theorem 2’:  The set M is the smallest M - recursively closed set. 
 
Theorem 3’: M is the intersection of all M - recursively closed sets. 
(Def. 6) The system of elements α1,...,αm , m ≥ 1 and α i ∈T  for 

i ∈ 1,2,...,m{ }, constitute a M -recursive description for the element α , if α m = α  and 
that each α i  ( i ∈ 1,2,...,m{ }) satisfies at least one of the proprieties: 

1) α i ∈ a1,...,an{ }. 
2) α i  is obtained starting with the elements which precede it in the system by 

applying the functions f j ,  1 ≤ j ≤ s  defined by property 2o  of  (Def. 1). 
(Def. 7) The number m  of this system is called the length of the M -recursive 

description for the element α . 
 
Remark 3: If the element α  admits a M -recursive description, then it admits an 

infinity of such descriptions.  
Indeed, if α1,...,αm  is a M -recursive description of α  then 

1 1 1,..., , ,..., m

h times

a a α α  is also a M -recursive description for α ,  h  being able to take all 

values from . 
 

Theorem 4: The set M  is identical with the set of all elements of T  which admit 
a M -recursive description. 

Proof: Let D  be the set of all elements, which admit a M -recursive description. 
We will prove by recurrence that M p ⊆ D  for all p  of  

* . 

For  p = 1  we have:  M1 = a1,...,an{ }, and the aj , 1 ≤ j ≤ n , having as M -
recursive description: < aj > . Thus M1 ⊆ D . Let’s suppose that the property is true for 
the values smaller than p . M p  is obtained by applying the rule 2o to the elements of 
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1

1

;
p

i p
i

M Mα
−

=

∈∪  implies that 
1

( ,..., )
nij i ifα α α∈  and  α i j

∈M hj
 for  hj < p  and  

1 ≤ j ≤ ni . 
But aij

,  1 ≤ j ≤ ni , admits M -recursive descriptions according to the hypothesis of 

recurrence, let’s have 1,..., jj jsβ β . Then β11,...,β1s1
,β21,...,β2 s2

,...,βni 1,...,βni sni
,α  

constitute a M -recursive description for the element α . Therefore if α  belongs to D , 
then M p ⊆ D  which is 

  
M = M p

p∈ *
U ⊆ D . 

Reciprocally, let x  belong to D . It admits a M -recursive description b1,...,bt  with 
bt = x . It results by recurrence by the length of the M -recursive description of the 
element x , that x ∈M . For t = 1 we have b1 , b1 = x  and b1 ∈ a1,...,an{ }⊆ M . One 
supposes that all elements y  of D  which admit a M -recursive description of a length 
inferior to t  belong to M . Let x ∈D  be described by a system of length t : b1,...,bt , 
bt = x . Then x ∈ a1,...,an{ }⊆ M , where x  is obtained by applying the rule 2o to the 
elements which precede it in the system: b1,...,bt −1 . But these elements admit the M -
recursive descriptions of length which is smaller that t : b1 , b1,b2 ,..., b1,...,bt −1 . 
According to the hypothesis of the recurrence, b1,...,bt −1  belong to M . Therefore bt  
belongs also to M . It results that M ≡ D . 
 Theorem 5: Let b1,...,bq  be elements of T, which are obtained from the elements 
a1,...,an  by applying a finite number of times the operations 

,,...,o sfff
. Then M  

can be defined recursively in the following mode: 
1) Certain elements a1,...,an ,b1,...,bq  of T  belong to M . 
2) M  is closed for the applications fi , with i ∈ 1,2,..., s{ }. 
3) Each element of M  is obtained by applying a finite number of times the rules (1) or 
(2) which precede. 

Proof: evident. Because b1,...,bq  belong to T , and are obtained starting with the 
elements a1,...,an  of M  by applying a finite number of times the operations fi , it results 
that b1,...,bq  belong to M . 

Theorem 6: Let’s have gj ,  1 ≤ j ≤ r , of the operations nj , where gj :T nj → T  
such that M  to be closed in rapport to these operations. Then M  can be recursively 
defined in the following manner: 
1) Certain elements a1,...,an  de T  belong to M . 
2) M  is closed for the operations fi , i ∈ 1,2,..., s{ } and gj , j ∈ 1,2,...,r{ }. 
3) Each element of M  is obtained by applying a finite number of times the precedent 
rules. 
Proof is simple: Because M  is closed for the operations gj  (with j ∈ 1,2,...,r{ }), one 
has, that for any α j1,...,α j n j

 from M , gj (α j1,...,α j n j
) ∈M  for all j ∈ 1,2,...,r{ }. 

 From the theorems 5 and 6 it results: 
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Theorem 7: The set M can be recursively defined in the following manner: 
1) Certain elements a1,...,an ,b1,...,bq of T  belong to M . 
2) M  is closed for the operations fi  ( i ∈ 1,2,..., s{ }) and for the operations gj  
( j ∈ 1,2,...,r{ }) previously defined. 
3) Each element of  M is defined by applying a finite number of times the previous 2 
rules. 
(Def. 8) The operation fi  conserves the property P  iff for any elements α i1,...,α ini

 
having the property P , fi (α i1,...,α ini

)  has the property P . 
Theorem 8 : If a1,...,an  have the property P , and if the functions f1,..., fs  

preserve this property, then all elements of M  have the property P . 
Poof:  

 
  
M = M p

p∈ *
U . The elements of M1  have the property P .  

Let’s suppose that the elements of Mi  for i < p  have the property P . Then the 
elements of M p  also have this property because M p  is obtained by applying the 

operations f1, f2 ,..., fs  to the elements of: Mi
i=1
U , elements which have the property P . 

Therefore, for any p  of  , the elements of M p  have the property P .  
 Thus all elements of M  have it. 
 Corollary 1 : Let’s have the property P : ” x  can be represented in the form 
F(x) ”. 
 If a1,...,an  can be represented in the form F(a1),...,  respectively F(an ) , and if 

1,..., sf f  maintains the property P , then all elements α  of M  can be represented in the 
form F(α ) . 

Remark. One can find more other equivalent def. of M . 
 
 

2) APPLICATIONS, EXAMPLES. 
 
 In applications, certain general notions like: M - recursive element, M -recursive 
description, M - recursive closed set will be replaced by the attributes which characterize 
the set M .  For example in the theory of recursive functions, one finds notions like: 
recursive primitive functions, primitive recursive description, primitively recursive closed 
sets. In this case ” M ” has been replaced by the attribute ”primitive” which characterizes 
this class of functions, but it can be replaced by the attributes ”general”, ”partial”. 
 By particularizing the rules 1o and 2o of the def. 1, one obtains several interesting 
sets: 
 Example 1: (see [2], pp. 120-122, problem 7.97). 
 Example 2: The set of terms of a sequence defined by a recurring relation 
constitutes a recursive set. 
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 Let’s consider the sequence:  an+ k = f (an ,an+1,...,an+ k −1)  for all n  of  
* , with 

0 , 1i ia a i k= ≤ ≤ . One will recursively construct the set  A = am{ }m∈ *  and one will 

define in the same time the position of an element in the set A : 
 1°)  a1

0 ,...,ak
0  belong to A , and each ai

0  (1 ≤ i ≤ k ) occupies the position i  in the 
set A ; 
 2°) if an ,an+1,...,an+ k −1  belong to A , and each aj  for n ≤ j ≤ n + k − 1  occupies 
the position j  in the set A , then f (an ,an+1,...,an+ k −1)  belongs to A  and occupies the 
position n + k  in the set A . 
 3°) each element of B  is obtained by applying a finite number of times the rules 
1o  or 2o. 
 Example 3: Let G = e,a1,a2 ,...,a p{ } be a cyclic group generated by the element 

a  . Then ( ),G i  can be recursively defined in the following manner: 

 1°) a  belongs to G . 
 2°) if b  and c  belong to G  then b ci belongs to G . 
 3°) each element of G  is obtained by applying a finite number of times the rules 
1 or 2. 
 Example 4: Each finite set ML = x1, x2 ,..., xn{ } can be recursively defined (with 
ML ⊆ T ): 
 1°) The elements x1, x2 ,..., xn  of T  belong to ML . 
 2°) If a  belongs to ML , then f (a)  belongs to ML , where f :T → T  such that 
f (x) = x ; 

 3°) Each element of ML  is obtained by applying a finite number of times the 
rules 1° or 2°. 
 Example 5: Let L  be a vectorial space on the commutative corps K  and 

x1,..., xm{ } be a base of L . Then L , can be recursively defined in the following manner: 
 1°) x1,..., xm  belong to L ; 
 2°) if x, y  belong to L  and if a  belongs to K , then x ⊥ y  y  belong to L  and 
a ∗ x  belongs to  L ; 

3°) each element of L  is recursively obtained by applying a finite number of 
times the rules 1° or 2°. 

(The operators ⊥  and  ∗  are respectively the internal and external operators of 
the vectorial space L ). 

Example 6: Let X  be an A -module, and M ⊂ X  (M ≠ ∅) , with M = xi{ }i∈I
. 

The sub-module generated by M  is: 

{ }{ }1 1/ ... , , , 1,...,n n i iM x X x a x a x a A x M i n= ∈ = + + ∈ ∈ ∈  

can be recursively defined in the following way: 
 1°) for all i  of  1,2,...,n{ }, { }1,2,..., in x M∈i ; 
 2°) if x  and y  belong to M  and a  belongs to A , then x + y  belongs to M , 
and ax  also; 
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 3°) each element of M  is obtained by applying a finite number of times the 
rules 1° or 2°. 

In accordance to the paragraph 1 of this article, M  is the smallest sub-set of X 
that verifies the conditions 1° and 2°, that is M  is the smallest sub-module of X that 
includes M . M  is also the intersection of all the subsets of X  that verify the 
conditions 1° and 2°, that is M  is the intersection of all sub-modules of X  that contain 
M . One also directly refines some classic results from algebra.  

 One can also talk about sub-groups or ideal generated by a set: one also 
obtains some important applications in algebra. 

Example 7: One also obtains like an application the theory of formal languages, 
because, like it was mentioned, each regular language (linear at right) is a regular set and 
reciprocally. But a regular set on an alphabet  Σ = a1,...,an{ } can be recursively defined 
in the following way: 

1°) ∅, ε{ }, a1{ },..., an{ } belong to R . 
2°) if P  and Q  belong to R , then P ∪ Q , PQ , and P∗  belong to R , with 

{ }/  or P Q x x P x Q∪ = ∈ ∈ ; { }/  and PQ xy x P y Q= ∈ ∈ , and 
 
P∗ = Pn

n=0

∞

U  with 

 

n

n times

P P P P= ⋅ ⋅⋅⋅  and, by convention, P0 = ε{ }. 

3°) Nothing else belongs to R  other that those which are obtained by using 1° or 
2°. 

From which many properties of this class of languages with applications to the 
programming languages will result. 
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A GENERALIZATION IN SPACE OF JUNG’S THEOREM 

 
 In this short note we will prove a generalization of Joung’s theorem in space. 
 
 Theorem. Let us have  n   points in space such that the maximum distance 

between any two points is a .  Prove that there exists a sphere of radius r ≤ a
6

4
 that 

contains in its interior or on its surface all these points. 
 
 Proof:  
 Let P1,..., Pn . be the points. Let S1(O1,r1)  be a sphere of center O1  and radius r1 , 
which contains all these points. We note r2 = max

1≤i≤n
PiO1 = P1O1  and construct the sphere 

S2 (O1,r2 ) , r2 ≤ r1 , with P1 ∈Fr(S2 ) , where 2( )Fr S =  frontier (surface) of 2S  . 
 We apply a homothety H in space, of center P1 , such that the new sphere 
H (S2 ) = S3(O3,r3 )  has the property: Fr(S3 )  contains another point, for example P2 , and 
of course S3  contains all points Pi . 

1) If  P1, P2  are diametrically opposite in S3  then rmin =
a

2
. 

If no, we do a rotation R  so that  R(S3 ) = S4 (O4 ,r4 )  for which 
{P3, P2 , P1} ⊂ Fr(S4 )  and  S4  contains all points Pi . 

 
2) If  {P1, P2 , P3}  belong to a great circle of S4  and they are not included in 

an open semicircle, then rmin ≤
a

3
 (Jung’s theorem). 

If no, we consider the fascicule of spheres S   for which 1 2 3{ , , } ( )P P P Fr S⊂ and 

S  contains all points iP . We choose a sphere 5S  such that  1 2 3 4 5{ , , , } ( )P P P P Fr S⊂ . 
 
3) If  {P1, P2 , P3, P4 }  are not included in an open semisphere of 5S , then the 

tetrahedron {P1, P2 , P3, P4 }  can be included in a regulated tetrahedron of side a , whence 

we find that the radius of  S5  is ≤ a
6

4
. 

 If no, let’s note. 1 41 4
max i ji j

PP PP
≤ ≤ ≤

= . Does the sphere S6  of diameter P1P4  contain all 

points Pi ? 
 If yes, stop (we are in the case 1). 
 If no, we consider the fascicule of spheres 'S  such that 1 4{ , } ( ')P P Fr S⊂  and 

'S contains all the points Pi . We choose another sphere S7 , for which P5 ∉{P1, P2 , P3, P4 }  
and P5 ∈Fr(S7 ) . 
 With these new notations (the points P1, P4 ,P5  and the sphere S7 ) we return to the 
case 2. 
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 This algorithm is finite; therefore it constructs the required sphere. 
 
 
 
[Published in “GAZETA MATEMATICA”, Nr. 9-10-11-12, 1992, Bucharest, Romania, 
p. 352.] 
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MATHEMATICAL RESEARCH AND NATIONAL 
EDUCATION 

 
 In our days we focus strongly on the interrelation between research and 
production. Between these two fields there is actually a very tight relation (osmosis), a 
dialectical union, while each is maintaining its own identity. 
 
 Education has been developed in accordance to its needs and demands resulting 
from the technical and scientific revolution: the introduction of faculties in the fields of 
production, research and design areas, and vice versa, the necessity of introducing the 
process of production and research work in the school units. 
 Therefore, it should be emphasized, that the students’ dissertation projects be 
immediately applied in the production process. In this case, it is the school’s 
responsibility to train and shape the future specialists in all fields of activity. 
  
 In the light of the present reality, we are witnessing an informational burst in all 
domains, and we notice the sustained effort which is being made by the educational 
system to adapt itself to the over increasing exigencies of the society, to keep the pace 
with the techniques and science conquests. Within these science conquests, mathematics 
occupies a central place – “the queen of sciences”, as Gauss has said. 
 
 The Mathematics, for those who are studying it, confess to them, by the precision 
of the formulae and expressions on epoch, that there have been developed much, such a 
way that it was transformed from a science of numbers and of quantities (as it was called 
in ancient times), in a science of essential structures. New branches of mathematics have 
appeared, many of them due to its interpenetration with other sciences, and even branches 
such as: Mathematical Linguistics, Mathematical Poetics (in the latter a remarkable 
contribution is due to Prof. Solomon Marcus from Bucharest University). (The 
Mathematical Linguistics having as a starting point the topic models of the natural 
language and developing on algebraic grammar, by which are being studied the 
phenomenon of the natural languages). 
 

“(…) mathematics have no limits, and the space that it finds is, so far, too reduced 
for its aspirations. The possibilities in Mathematics are as unlimited as the ones of the 
worlds which ceaselessly grow and multiply under the scrutinizing gaze of the 
astronomers; the mathematics could not be reduced by limited, precise keys or to be 
reduced to valid definitions eternally, but as the conscience life, which seem dormant in 
every world, each stone, each leaf, each bloom of flower, and in each which it is 
permanently ready to burst in new forms of animal life and vegetal existence” (James – 
Joseoh Sylvester, English Mathematician). 

 
Mathematics in other sciences. 
 

We say that is about their mathematization. All these sciences could not progress 
if they were not mathematized.  Therefore, a whole group of discoveries wouldn’t have 
taken place had it not been for the knowledge of certain scientific procedures, if 
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mathematics had not possessed a certain quantity of knowledge (i.e., Einstein would not 
have discovered the theory of relativity and if before him the Tensorial Calculus would 
not have been discovered). Although other discoveries have been made before using 
math’s calculations, which afterwards experimentally have been proved (The physician 
Maxwell – has generalized the concept of the field of electromagnetic forces, 
emphasizing the fact that even reforming to an electric or magnetic field this is 
propagated in existence by waves with the speed of light.). 

Mathematics also offers its possibilities to the technical field, solving problems 
arising in the production process. 

 
The very high abstractness in Mathematics does not hinder under its immediate 

applicability in practical manner, therefore would be worthwhile mentioning a few 
examples: 

 
- The Romanian Geometer Gh. Ţiţeica made discoveries in the field of 

differential geometry- which led twenty years later to the conclusion that these 
could be applied in the theory of generalized relativity; 

 
- Cayley has discovered the notion of matrix, discovery which found its 

applicability eighty seven years later when Heisenberg used it in the quantum 
mechanics; 

 
- The English Mathematician George Boole, by the middle of XIX century, 

discovered the algebra which carries his name and which occupies the worthy 
place in the software – electronic computers. 

 
An interesting correlation exists between mathematics and arts: music, painting, 

sculpture, architecture, and poetry. 
Art is the pure expression of the “sentiment” while Mathematics is the crystalline 

expression of the pure “reasoning”. Art, gushing from a sentiment, is warmer and more 
human, while mathematics, springing out from reasoning, is colder, but glitters more. An 
interesting correlation between Arts (and Literature especially), has been made by 
Solomon Marcus, Professor in the Department of Mathematics and of Languages also, 
showing the superiority of the pure artistic language vis-à-vis of the scientific language. 

 
While the scientific language has a unique sense, the literary one has infinites. 

Therefore, in science the ambiguous language is eliminated. Recalling “this luminous 
point where geometry meets the poetry” as the mathematician and poet Dan Barbilian 
was saying, and we are reminded also the following idea: 

“The poem of the future, by excellence, the sublime poem, will be borrowed from 
science” (Piere-Jules-Cesar Jensen). 

 
Generally speaking about research, the risks that the scientist might run should be 

mentioned: 
- he may find results already known (this shouldn’t represent a disillusion, but 

even satisfaction); 
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- there could be a lead to suggestive results (one should have patience, and 

persevere); 
 

- one could have errors in his demonstrations (deductions) – (almost all 
mathematicians have committed errors). 
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JUBILEE OF “GAMMA” JOURNAL 
 
 This autumn will be a few years since the school journal “Gamma” was founded 
at Lyceum “Steagul Roşu” in Braşov, Romania, under the guidance of the good hearted 
professor MIHAIL BENCZE, who has not spared any effort for it. 
  
 In the 28 numbers issued up to present, the “Gamma” journal has encouraged over 
two thousands students in solving problems of mathematics, helping them prepare for 
scientific competitions, exams for grades and degrees for universities. Each year, the 
Editorial Office grants prizes and honorable mentions to the most hardworking pupils 
who solve problems. 
 
 The journal’s structure is classic. The wider space is dedicated to the original 
proposed problems of mathematics for grades 8-12 and college levels of computer 
science, up to present exceeding 7000, out of which we are sure that any time a bunch of 
very interesting problems, highly difficult, can be selected. We remember that some of 
those have already appeared in prestigious foreign journals – i.e. “American 
Mathematical Monthly”, “Mathematics Magazine”, etc. We also remember the over 80 
open problems. Among which some may constitute topics of research for the 
mathematicians of tomorrow. Some elegant and ingenious problems are solved/resolved 
in the pages of this journal. The journal also contains problems translated from foreign 
magazines (“Kvant”, A. M. M.) or foreign collections, problems given at Olympiads of 
mathematics from other countries (Spain, Belgium, Tunisia, Morocco, etc.) as well as 
from our country (GMB, RMT, Matematikai Lapok) some with solutions or even with 
generalizations of problems from the magazines mentioned above. Also, over one 
hundred “Where is the fault? (in demonstrations)” notes of mathematics. 
  
 There have been over 130 papers for popularization of mathematics or matters 
concerning inter disciplinary, mathematics and other domains (physics, philosophy, 
psychology, etc.) or even of creation. 
  
 The column “Mini Mathematical History”, sustained with regularity by Prof. M. 
Bencze, schematically presented approximately 150 Romanian and foreign biographies of 
mathematicians. 
 
 Among the journal’s collaborators included (other than the students, who are the 
most numerous, because, in fact, it is their journal) are professors, engineers, computer 
science specialists, and university faculty. Many are recognized in their field of specialty.  
The foreign collaborators Dr. E. Grosswald, Dr. Leroy F. Meyers (U. S. A.), Prof. 
Francisco Bellot (Spain), are famous in the world of Mathematics.  
 

Additionally, the Editorial Office sporadically published Mathematical Paradoxes, 
cross words, “Mathematical Poems”, and columns (such as “…did you know that…”), 
graphic themes and mottos (let us better call them, words of wisdom) of famous people. 
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 It remains Long Live Mathematics. 
 
 September 1987 
 
 [Published in “Gamma”, XXIX-XXX, Anul X, 1-2, October 1987, pp. 7-8.]    
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HAPPY NEW MATHEMATICAL YEARS! 
  

Due to professor Gane Policarp’s kindness, I have several issues of “Caietul de 
informare matematică” (“The Notebook of Mathematical Information”), which has been 
put together with attention to detail and skill, and which attracted and persuaded me, from 
the very beginning, to collaborate with small materials. 

 
 The redactor’s preoccupation to present the problems given at competitions and 
scholar Olympiads, at exams and baccalaureates, determined me to give it a special place 
in my modest bookcase, and to work with my students proposed problems, some of the 
students having their names included on the list of those who correctly solved the 
problems.  
 Now, I found out, with a pleasant surprise, that the Câmpina mathematicians’ 
journal celebrates its 10th anniversary of continuous publishing. 
 Long road and continuous success!  
 
 (January 1988) 
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DEDUCIBILITY THEOREMS IN BOOLEAN LOGIC 
 

 
ABSTRACT 
 In this paper we give two theorems from the Propositional Calculus of the 
Boolean Logic with their consequences and applications and we prove them 
axiomatically.  
 
§1. THEOREMS, CONSEQUENCES 

 In the beginning I shall put forward the axioms of the 
Propositional Calculus. 

 I.  a)    A ⊃ (B ⊃ A) , 
  b) A B C A B A C⊃ ⊃ ⊃ ⊃ ⊃ ⊃ ( ( )) (( ) ( )) . 

 II. a)    A ∧ B ⊃ A , 
  b)    A ∧ B ⊃ B , 

  c)    (A ⊃ B) ⊃ ((A ⊃ C) ⊃ (A ⊃ B ∧ C)) . 
 III. a)    A ⊃ A ∨ B , 
  b)    B ⊃ A ∨ B , 

  c) )A C B C A B C⊃ ⊃ ⊃ ⊃ ∨ ⊃ ( (( ) ( )) . 
 IV. a)    (A ⊃ B) ⊃ (B ⊃ A) , 

  b)    A ⊃ A , 
  c)    A ⊃ A . 

. 
 THEOREMS. If:    Aι ⊃ Bi , i = 1,n , then  
 1)    A1 ∧ A2 ∧ ... ∧ An ⊃ B1 ∧ B2 ∧ ... ∧ Bn , 
 2)   A1 ∨ A2 ∨ ... ∨ An ⊃ B1 ∨ B2 ∨ ... ∨ Bn . 

 Proof:  
 It is made by complete induction. For n = 1 :    A1 ⊃ B1 , which is true from the 
given hypothesis. For n = 2 : hypotheses    A1 ⊃ B1 ,    A2 ⊃ B2 ; let’s show that 

   A1 ∧ A2 ⊃ B1 ∧ B2 . We use the axiom II, c) replacing  A → A1 ∧ A2 , B → B1 ,  C → B2 , 
it results: 
(1)     (A1 ∧ A2 ⊃ B1) ⊃ ((A1 ∧ A2 ⊃ B2 ) ⊃ (A1 ∧ A2 ⊃ B1 ∧ B2 )) . 
 We use the axiom II, a) replacing A → A1 , B → A2 ; we have    A1 ∧ A2 ⊃ A1 . But  

   A1 ⊃ B1  (hypothesis) applying the syllogism rule, it results    A1 ∧ A2 ⊃ B1 . 
Analogously, using the axiom II, b), we have    A1 ∧ A2 ⊃ B2 . We know  that 

   A1 ∧ A2 ⊃ Bi ,  i = 1,2 ,  are deducible, then applying in (I) inference rule twice, we have 

   A1 ∧ A2 ⊃ B1 ∧ B2 . 
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 We suppose it’s true for n ; let’s prove that for n + 1  it is true. In 
   A1 ∧ A2 ⊃ B1 ∧ B2  replacing  A1 → A1 ∧ ... ∧ An , A2 → An+1 ,  B1 → B1 ∧ ... ∧ Bn ,  
B2 → Bn+1  and using induction hypothesis it results 

   A1 ∧ ... ∧ An ∧ An+1 ⊃ B1 ∧ ... ∧ Bn ∧ Bn+1  and item 1) from the Theorem is proved. 
 2) It is made by induction. For n = 1 ; if    A1 ⊃ B1 , then of course    A1 ⊃ B1 . For 
n = 2 : if    A1 ⊃ B1  and    A2 ⊃ B2 , then    A1 ∨ A2 ⊃ B1 ∨ B2 . 
 We use axiom III, c) replacing A → A1 , B → A2 , C → B1 ∨ B2  we get 
(2)  1 2 1 2 2 1 2) (( ) ( ))A B B A B B A A B B⊃ ∨ ⊃ ⊃ ∨ ⊃ ∨ ⊃ ∨1 2 1 ( .  
 Let’s show that    A1 ⊃ B1 ∨ B2 . We use the axiom III, a) replacing A → B1 , 
B → B2  we get    B1 ⊃ B1 ∨ B2  and we know from the hypothesis A1   B1 . Applying the 
syllogism we get    A1 ⊃ B1 ∨ B2 . 
 In the axiom III, b) replacing A → B1 , B → B2 , we get    B2 ⊃ B1 ∨ B2 . But  

   A2 ⊃ B2 (from the hypothesis), applying the syllogism we get    A2 ⊃ B1 ∨ B2 . Applying 
the inference rule twice in (2) we get 2 1 2A A B B∨ ⊃ ∨1 . 
 Suppose it’s true for n  and let’s show that for n + 1  it is true. Replace in 

2 1 2A A B B∨ ⊃ ∨1  (true formula if    A1 ⊃ B1  and    A2 ⊃ B2 ) 

1 2 1 1 1 2 1... ,  ,  ... ,  n n n nA A A A A B B B B B+ +→ ∨ ∨ → → ∨ ∨ →1 . From induction hypothesis it 
results    A1 ∨ ... ∨ An ∨ An+1 ⊃ B1 ∨ ... ∨ Bn ∨ Bn+1  and the theorem is proved. 
 
 CONSEQUENCES. 
 1°) If    Aι ⊃ B , i = 1,n  then    A1 ∧ ... ∧ An ⊃ B . 
 2°) If    Aι ⊃ B  , i = 1,n , then   A1 ∨ ... ∨ An ⊃ B  . 
 Proof: 1°) Using 1) from the theorem, we get  
(3) 1 ... ...nA A B B∧ ∧ ⊃ ∧ ∧  ( n  times). 
 In axiom II, a) we replace  A → B , B → B ∧ ...∧ B  ( n − 1  times), and we get 
(4)     B ∧ ... ∧ B ⊃ B  (n times). 

From (3) and (4) by means of the syllogism rule we get    A1 ∧ ... ∧ An ⊃ B . 
2°) Using 2) from theorem, we get    A1 ∨ ... ∨ An ⊃ B ∨ ... ∨ B  ( n  times). 
 

LEMMA. ...B B B∨ ∨ ⊃  ( n  times), n ≥ 1. 
Proof: 

 It is made by induction. For n = 1 , obvious. For n = 2 : in axiom III, c) we replace 
A → B , C → B  and we get   (B ⊃ B) ⊃ ((B ⊃ B) ⊃ (B ∨ B ⊃ B)) . Applying the 
inference rule twice we get B B B∨ ⊃ . 

Suppose for n  that the formula is deducible, let’s prove that is for n + 1 . 
We proved that  B ⊃ B . In axiom III, c) we replace A → B ∨ ...∨ B  ( n  times), 

C → B , and we get    (B ∨ ... ∨ B ⊃ B) ⊃ ((B ⊃ B) ⊃ (B ∨ ... ∨ B ⊃ B))  ( n  times). 
Applying two times the interference rule, we get    B ∨ ... ∨ B ⊃ B  ( n + 1  times) so 
lemma is proved. 

From    A1 ∨ ... ∨ An ⊃ B ∨ ... ∨ B  ( n  times) and applying the syllogism rule, from 
lemma we get    Α1 ∨ ... ∨ An ⊃ B . 
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3°)    A ∧ ... ∧ A ⊃ A  ( n  times) 
4°)    A ∨ ... ∨ A ⊃ A  ( n  times). 

Previously we proved, replacing in Consequence 1°) and 2°), B → A . Analogously, the 
consequences are proven: 

5°) If    A ⊃ Bi , i = 1,n , then    A ⊃ B1 ∧ ... ∧ Bn . 
6°) If    A ⊃ Bi , i = 1,n , then    A ⊃ B1 ∨ ... ∨ Bn . 
Analogously, 
7°)     A ⊃ A ∧ ... ∧ A ( n  times) 
8°)     A ⊃ A ∨ ... ∨ A  ( n  times) 
9°)    A1 ∧ ... ∧ An ⊃ A1 ∨ ... ∨ An . 
Proof: 

Method I. It is initially proved by induction:    A1 ∧ ... ∧ An ⊃ Ai , i = 1,n  and 2) is applied 
from the Theorem. 
Method II. It is proven by induction that:    Aι ⊃ A1 ∧ ... ∧ An , i = 1,n  and then 1) is 
applied from the Theorem. 

10°) If    Aι ⊃ Bi , i = 1,n , then    A1 ∧ ... ∧ An ⊃ B1 ∨ ... ∨ Bn . 
Proof: 

Method I. Using 1) from the Theorem, it results: 
(5)    A1 ∧ ... ∧ An ⊃ B1 ∧ ... ∧ Bn   
We apply the Consequence 9°) where we replace Ai → Bi , i = 1,n  and results:  
(6)  B1 ∧ ... ∧ Bn ⊃ B1 ∨ ... ∨ Bn . 
From (5) and (6), applying the syllogism rule we get 10°). 
Method II. We firstly use the Consequence 9°) and then 2) from the Theorem and so we 
obtain the Consequence 10°). 
 

§2. APPLICATIONS AND REMARKS ON THEOREMS 
 
The theorems are used in order to prove the formulae of the shape:  

   A1 ∧ ...∧ Ap ⊃ B1 ∧ ...∧ Br  

   A1 ∨ ...∨ Ap ⊃ B1 ∨ ...∨ Br , where  p,r ∈N∗  
It is proven that    Aι ⊃ Bj , i.e.   

∀i ∈1, p ,  ∃j0 ∈1,r , j0 = j0 (i) ,    Aι ⊃ Bj0
 

and 
  ∀j ∈1,r , ∃i0 ∈1, p , i0 = i0 ( j) ,    Aι0

⊃ Bj . 
 EXAMPLES: The following formulas are deducible: 
 (i)    A ⊃ (A ∨ B) ∧ (B ⊃ A) , 
 (ii)    (A ∧ B) ∨ C ⊃ A ∨ B ∨ C , 
 (iii)    A ∧ C ⊃ A ∨ C . 
 Solution: 

(i) We have    A ⊃ A ∨ B  and    A ⊃ (B ⊃ A)  (axiom III, a) and I, a)) and 
according to 1) from Theorem it results (i). 
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(ii) From    A ⊃ (B ⊃ A) ,    A ∧ B ⊃ B , C C⊃  and Theorem 1), we have 
(ii). 

(iii) Method I. From    A ∧ C ⊃ A ,    A ∧ C ⊃ C  and Theorem 2).  
Method II. From    A ⊃ A ∨ C , C A C⊃ ∨  and using Theorem 1). 

REMARKS. 1) The reciprocals of Theorem 1) and 2) are not always true. 
a) Counter-example for Theorem 1). The formula    A ∧ B ⊃ A ∧ A  is deducible 

from axiom II, a), A A A∧ ⊃  (Consequence 7°) and the syllogism rule. But    A ⊃ A  
for all A, that the formula B ⊃ A  is not deducible, so the reciprocal of the Theorem 1) is 
false.  
 Counter-example for Theorem 2). The formula     A ∨ A ⊃ A ∨ B  is deducible 
from Lemma, axiom III, a) and applying the syllogism rule. But    A ⊃ A  for all A, that 
the formula A ⊃ B  is not deducible, so the reciprocal of Theorem 2) is false.  
 2) The reciprocals of Theorem 1) and 2) are not always true. 
 Counter-examples: 

a) for Theorem 1):    A ⊃ A and B A⊃/  results that    A ∧ B ⊃ A ∧ A  so the 
reciprocal of Theorem 1) is false. 

b)  for Theorem 2):    A ⊃ A and A B⊃/  results that    A ∨ A ⊃ A ∨ B  so the 
reciprocal of Theorem 2) is false. 
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LINGUISTIC-MATHEMATICAL STATISTICS IN RECENT 

ROMANIAN POETRY 
 
 

 “Mathematics is logical enough to be able to detect the internal logics of poetry 
and crazy enough not to lag behind the poetic ineffable” (Solomon Marcus). 
 The author of this article aims a statistical investigation of a recently published 
volume of poetry [3], which will make possible some more general conclusions on the 
evolution of poetry in the XXth century (either the literary current hermetism, surrealism 
or any other). Certain modifications in the structure of poetry, occurred in its evolution 
from classicism to modernism, are also presented. Men of letters have never agreed with 
mathematics and, especially, with its interference in art. Let  us quote one of them: 
“Remarque que, a mon avis, tout literature est grotesque…(…) La seule excuse de 
l’écrivain c’est  de se rendre compte qu’il joue, que la littérature est un jeu” (Eugène 
Ionesco). Well, if literature is a game why could not be subjected to mathematical 
investigation? 
 The book chosen for this study (see [3]) contains 44 poems (from which the first 
and the last are sort of poems essays on Romanian poetry). It comprises over 250 
sentences, over 700 verses, over 2,500 words and over 11,700 letters (not sounds). 
 

MORPHOLOGICAL ASPECTS 
 
 1. The frequency of words depending on the grammatical category they belong to. 
 

1. Nouns 
2. Verbs (predicate moods) 
3. Adjectives 
4. Adverbs 

35.592% 
13.079% 
6.183% 
4.829% 

          “Full” words 59.729% 

 
“Empty” words 
40.271% 

  
1. The “full” words category includes – according to the author – nouns, verbs (predicative moods only), 
adjectives and adverbs. The “empty” words category includes verbs (i,e, infinitives, gerunds, poet 
participles, supines), numerals, articles, pronouns, conjunctions, prepositions and interjections. The same 
terminology was also used by Solomon Marcus in his “Poetica matematica” published by Ed. Academiei, 
Bucharest, 1970 (it was translated in German and published by Athenäum,  Frankfurt-am-Mein, 1973). 
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2. The average distribution of “full” words1 per verses (lines), sentences, poems 
 
 
 a) 1.255  nouns/line 
 b) 0.461  verbs (p.m)/line 

c) 0.218  adjectives/line 
 d) 0.172  adverbs/line 
  
 e) 3.464  nouns/sentence 
 f) 1.273  verbs (p.m)/sentence 
 g) 0.602  adjectives/sentence 
 h) 0.475  adverbs/sentence 
 
 i) 20.393  nouns/poem 
 j) 7.492  verbs (p.m)/poem 
 k) 3.543  adjectives/poem 
 l) 2.792  adverbs/poem 
 
We may conclude: 
 CONJECTURE 1. In the recent Romanian poetry the percentage of adjectives is, 
on average, under that of the total of words. 
 CONJECTURE 2. The percentage of verbs (predicative moods) is., on average, 
under 15% of the total of the total words. 

In support of conjectures 1 and 2 we also mention: 
- only one in six nouns is modified by an adjective, i.e. the role of the adjective 

diminishes and there are poems with no adjectives (see [3], pp. 9, 12, 20); 
- on average, there is one verb in a predicative mood in more than two lines, i.e. 

the role of the verbal predicate decreases and there are poems with no verbal predicates 
(see [3], p. 20); 

(From classicism to modernism both adjectives and verbal predicates gradually 
but constantly regressed). 

- the poetry of the young poets is characterized by  economy of words and, 
implicitly, by the avoidance of the overused words; the adjectives were favored by the 
romantics and the young poets feel the necessity to “renew” poetry; 

- this renewal and effort to avoid the trivial may be also  helped by elimination of 
adjectives. The strict use of adjectives or verbal predicates is also accounted for by the 
characteristics of the two main literary currents of our century. 

a) hermetism – appeared after World War I – consists, mainly in the hyper 
intellectualization of language and its codification; an adjective (i.e. an 
explanation concerning an object) or the predicative mood of a verb (strict 
definition of the grammatical tense) may diminish the degree of 
ambiguity, generalization or abstraction intended by the poet. 

b) Surrealism – literary of vanguard – aimed at detecting  the irrational, the 
unconscious, the dream; because of its precise definite character, the 
adjective makes the reader “plunge” into the so carefully avoided real 
world. 
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CONJECTURE 3. In the recent Romanian poetry percentage of “full” words is 
over 55% of the total words. 

Unlike in the spoken language in which the percentage of “full” and “empty” 
words is equal (see [1]) in poetry the percentage of “full” words is greater. This is due to 
the fact that poetry is essence, it is dense, concentrated. The percentage of “full” words 
and the “density” of a literary work are directly proportional. 

As a conclusion to the three conjectures we may say that: 
- in its evolution from classicism to modernism the percentage of nouns increased, 

while that of verbs decreased,  less adverbs are used, on the other hand, 
because of the smaller number of verbs. In all, however, the percentage of 
“full” words increased. 

 
3. The frequency of the nouns with and without an article.   
 

 
1. Percentage of nouns with an article  - 47.884% 
2. Percentage of nouns without an article - 52.116% 

 
 CONJECTURE 4. In the recent Romanian poetry the number of nouns with an 
article is, on an average, smaller than the number of those without an article. With an 
article the noun is more definite, specified which are characteristics undesirable from the 
same viewpoint as that mentioned above. That is why the indefinite article is favored in 
modern poetry. The consequence of this preferred indefinite character of the noun 
enlarges the abstraction, generalization, ambiguity and, hence, the “density “ of the poem. 
(See also the second part of assertions 1 and 2 and the statistical conjecture 3).  In its 
evolution from classicism to modernism the number of nouns without an article used in 
poetry also increased. 
 
 4. The frequency of nouns depending on the grammatical case they belong to. 
 

Nominative Genitive Dative Accusative Vocative 
29.497% 19.888% 0.335% 50.056% 0.224% 

2 3 4 1 5 
↑ C      L       A      S       S      I       F      I      C        A     T     I      O       N↑  

 
CONJECTURE 5. In the poems under study, over 75% of the nouns are 

accusative or nominative. 
 

 5. Sentences, lines, words, syllables, letters – average relationships 
   
  a) 2.402   letters/syllable 

 
  b) 1.933  syllables/word  

c) 4.643  letters/word 
  
  d) 3.528   words/line  
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  e) 6.820  syllables/line 
  f) 16.380  letters/line 
  
  g) 2.760  lines/sentence 

h) 9.737  words/sentence 
  
  i) 18.823  syllables/sentence 
  j) 45.208  letters/sentence  
  
  k) 5.887  sentences/poem 
  l) 16.250  lines/poem  
  m) 57.330   words/poem 
  n) 110.825  syllables/poem 
  o) 266.175  letters/poem 
  
  

Conclusion: the poems are of medium length; the lines are short while the 
sentences are, again, of medium length. 
 
 6. The frequency of words according to their length (in syllables) 
 

Syllables Percentages Order 
1 41.509% 1 
2 32.069% 2 
3 19.363% 3 
4 5.688% 4 
5 1.371% 5 
6 0.000% 6 

 
The total number of syllables in the volume is … 4,800.  The frequency of words and 
their length (in syllables are in inverse ratio. Long words seem “less poetical”. 
 CONJECTURE 6. In the recent Romanian poetry the percentage of words of one 
and two syllables is … 75%. Again, it seems that short and very short words (of one and 
two syllables) appear more adequate to satisfy the internal rhythm of the poem. Longer 
words already have their own rhythm dictated by the juxtaposition of the syllables; it is 
very probable that this rhythm comes into … with the rhythm imposed by the poem.  
Shorter words are more easily uttered; longer words seem to render the text more 
difficult. 
 7. The frequency of words according to their length (in letters) 
 

1 letter 2 3 4 5 6 7 8 9 10 11 12 13 14 

3 . 6 0 4 %
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26
%
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Order 8 1 6 5 3 4 2 7 9 10 11 12 13 14 
   
In the whole volume there are only two words of 13 letters and 6 of twelve. A 90% of the 
words consist of no more than 7 letters. 
 CONJECTURE 7. In the recent Romanian poetry the percentage of the two letter 
words is, on average, about 25% of the words. In fact, the same percentage, or even 
higher, is found in the ordinary language. Because of esthetic reasons in poetry there is a 
slight tendency of reducing the frequency of the two letter words – which are especially, 
prepositions and conjunctions.   
 8. The frequency of the letters 
  

The order of 
the letter 

Letter The average % 
of the 

frequency of 
the letter 

The average % 
of vowels 

The average % 
of cons 

1 E 11.994%   
2 I 10.166%   
3 A 8.406%   
4 R 7.680%   
5 N 6.407%   
6 U 6.347%   
7 T 5.792%   
8 L 5.237%   
9 C 5.143% 46.865%  
10 S 4.220%   
11 O 3.699%   
12 P 3.451%   
13 Ă 3.417%  53.135% 
14 M 3.178%   
15 D 2.981%   
16 Î 2.828%   
17 V 1.435%   
18 G 1.48%   
19 B 1.358%   
20 Ş 1.281%   
21 F 1.179%   
22 Z 0.846%   
23 Ţ 0.803%   
24 H 0.496%   
25 J 0.196%   
26 X 0.034%   
27 Ă 0.008%   

28-31 K 0.000%   
28-31 Q 0.000%   
28-31 Y 0.000%   
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28-31 W 0.000%   
 
 CONJECTURE 8. In the recent Romanian poetry the percentage of vowels is, on 
average, over 45% of the total of letters.  
 Explanation: in the ordinary language the percentage of vowels is 42.7% (see [1]). 
In poetry it is greater because: 

- vowels are more “musical” than consonants; therefore the words with more 
vowels “seem” more poetical; words with many vowels confer a special 
sonority to the text;  

- modern poets and poetry are more preoccupied by form than by content, so that 
more attention is given to expression; the form may prejudice the content, 
because, very often, the reader is “caught” by sonority and less by essence; 

- the internal rhythm of poetry, usually absent in the ordinary language, is also 
conditioned, partially, by a greater number of vowels; 

- rhyme, when used, also favors a greater percentage of vowels. The percentage of 
vowels was greater in the period of classicism of poetry when the rhythm and rhyme 
were more frequently used. The special requirements of poetry impose a thorough 
filtration of the ordinary language. 

Given the frequency of the letters in the Romanian language [1] in general: 
 

1. E 5. N  9. L 13. D   17. S    21. F     25. J 
2. I 6. T 10. S 14. P   18. B    22. T     26. X 
3. A 7.T 11. O 15. M   19. V     23. Z     27. K 
4. R 8. C 12. A 16. I   20. G    24. H 
 

we may calculate the deviation of this volume of verses from the  ordinary language: 

α 27

1

1( ) ( ) 0.741
27 i

i

v Aα
=

= ≈∑  

where α (Ai )  is the deviation of the letter Ai , 1 ≤ i ≤ 27 . 
The informational energy, according to O. Onicescu, is  

       ε 27
2

1
( ) 0.064i

i
v p

=

= ≈∑ , 

 where pi , 1 ≤ i ≤ 27 , is the probability that the letter pi  may appear in the volume (see 
[1]). 
 The first order entropy of the volume (according to Shannon) is: 
 

H1(v) = ∑
=

≈⋅−
27

110
222.4log

2log
1

10

i

ii pp . 

  
 9. The themes of the volume are studied by determining the recurrent elements, 
those that seem to obsess the poet. We will call these elements “key-words” and they are, 
in order: nouns, verbs, adjectives. Their frequency in the volume is studied. The more 
frequent words are all included in common notional spheres that will “decode” the 
themes dealt with by the poet in the volume under study, i.e.: 
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Elements of the Nature   Cosmological Elements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Existence Elements        Poet’s condition  
      
 
 
 
 
 
 
 
 
 
 

trees   leaves     water  
 
birds       
street           
wind         
soft-hearted  
to ripe  
         tender  
 

        sky 
Moon           
Sun  
stars   light   
night  evening    
hours 
          time 

life        
death  
        to live 
spirit    tears  
to put out     
to love  
to lower       
to deplore 
    not to be  

poem   
 
   to read     
to dream 
 
     to write    
verses         
words 



 
 

191

 
 These 33 key-words (together with their synonyms) confer certain pastoral note 
(this was noticed by Constantin Matei, the newspaper ”Înainte”, Craiova), cosmological 
(Constantin M. Popa), existentialist nuances (Aureliu Goci, “Luceafarul”, Bucharest); the 
preoccupation of the poet for the condition of the poet and society (Ion Pachia 
Tatomirescu, Craiova) is also revealed by the frequent use of certain suggestive words. 
 Of all the words, 33 key-words together with their synonyms have the greatest 
frequency in the volume. 
 10. The frequency of words and phrases strongly deviated from the “normal”, i.e. 
the rules of the literary language are about 1.980 of the total of words. (We mean 
expressions like: “state of self”, “very near myself”, “it is raining at plus infinite” or 
words like “nontime”, etc. (see [3], pp. 9, 29, 40, 31). 
 CONJECTURE 9. In the recent Romanian poetry the percentage of words and 
phrases that strongly deviated from the “normal” of the ordinary language, as well as the 
rules of the literary language, is slightly over 1. This fact may be accounted for by:  

- content seems less important; poets are more concerned with form; 
- poets invent words and expressions to be able to better reveal their feelings 

and emotions; 
- the association of antonyms may give birth to constructions that, somehow 

“violate” the normal; 
- poetry is, in fact, destined to break the rules and rebel against the ordinary fact 

(if, this right is denied, any newspaper article could be called poetry). 
“In art” said Voltaire, “rules are only meant to be broken”. 
In its evaluation from classicism to modernism the percentage of such abnormal 

words and constructions increased, starting, in fact from zero. Modern literary currents 
favor the appearance of them. 
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A MATHEMATICAL LINGUISTIC APPROACH TO 
REBUS 

 
INTRODUCTION 

 
 The aim of this paper is the investigation of some combinatorial aspects of written 
language, within the framework determined by the well-known game of crossword 
puzzles. Various types of probabilistic regularities appearing in such puzzles reveal some 
hidden, not well-known restrictions operating in the field of natural languages. Most of 
the restrictions of this type are similar in each natural language. Our direct concern will 
be the Romanian language. 
 Our research may have some relevance for the phono-statistics of Romanian. The 
distribution of phonemes and letters is established for a corpus of a deviant 
morphological structure with respect to the standard language. Another aspect of our 
research may be related to the so-called tabular reading in poetry. The correlation 
horizontal-vertical considered in the first part of the paper offers some suggestions 
concerning a bi-dimensional investigation of the poetic sing. 
 Our investigation is concerned with the Romanian crossword puzzles published in 
[4]. Various concepts concerning crossword puzzles are borrowed from N. Andrei [3]. 
Mathematical linguistic concepts are borrowed from S. Marcus [1], and S. Marcus, E. 
Nicolau, S. Stati [2]. 
 

SECTION 1. THE GRID 
 

§1. MATHEMATICAL RESEARCHES ON GRIDS 
 
 It is known that a word in a grid is limited on the left and right side either by a 
black point or by a grid final border. 
 We will take into account the words consisting of one letter (though they are not 
clued in the Rebus), and those of two (even they have no sense (e.g. NT, RU,…)), three 
or more letters – even they represent that category of rare words (foreign localities, rivers, 
etc., abbreviations, etc., which are not found in the Romanian Language Dictionary (see 
[3], pp. 82-307 (“Rebus glossary”)). 
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 The grids have both across and down words. 
 We divide the grid into 3 zones: 

a) the four peaks of the grid (zone A) 
b) grid border (without de four peaks) (zone B) 
c) grid middle zone (zone C) 
We assume that the grid has  n lines, m  columns, and p  black points.  
Then: 
Proposition 1. The words overall number (across and down) of the grid is equal 

to n + m + pNB + 2 ⋅ pNC , where  
pNB  = black points number in zone B , 

 pNC = black points number in zone C . 
 Proof: We consider initially the grid without any black points. Then it has 
n + m words. 

- If we put a black point in zone A , the words number is the same. (So it does not 
matter how many black points are found in zone A). 

- If we put a black point in zone B , e.g. on line 1 and column j , i < j < m , 
words number increases with one unit (because on line 1, two words were formed (before 
there was only one), and on column j  one word rests, too). The case is analog if we put a 
black point on column 1 and line i , 1 < i < n  (the grid may be reversed: the horizontal 
line becomes the vertical line and vice versa). Then, for each point in zone B a word is 
added to the grid words overall number. 

- If we put a black point in zone C , let us say i , 1 < i < n ,  and column j , 
1 < j < m , then the words number increases by two: both on line  i  and column j  two 
words appear now, different from the previous case, when only one word was there on 
each line. Thus, for each black point in zone C , two words are added at the grid words 
overall number. From this proof results: 

A             B              A
     
          
 
B            C        B

    
              
                 

A                B              A 



 
 

194

Corollary 1. Minimum number of words of grid n × m  is n + m . Actually, this 
statement is achieved when we do not have any black points in zones B and C . 

Corollary 2. Maximum number of words of a grid n × m  having p  black points 
is n + m + 2 p  and it is achieved when all p  black points are found in zone C . 

Corollary 3. A grid n × m  having p  black points will have a minimum number 
of words when we fix first the black points in zone A , then in zone B  (alternatively – 
because it is not allowed to have two or more black points juxtaposed), and the rest in 
zone C . 

 
Proposition 2. The difference between the number of words on the horizontal and 

on the vertical of a grid n × m  is n − m + pNBO − pNBV , where  
pNBO  = black points number in zone ,  

 pNBV = black points number in zone BV . 
We divide zone B  into two parts: 

- zone BO  = B  zone horizontal part (line 1 and n ) 
- zone BV  = B  zone vertical part (line 1 and m ). 
The proof of this proposition follows the previous one and uses its results.  
If we do not have any black points in the grid, the difference between the words 

on the horizontal and those on the vertical line is n − m . 
- If we have a black point in zone A , the difference does not change. The same 

for zone C . 
If we have a black point in zone BO , then the difference will be n − m − 1. From 

this proposition 2 results: 
Proposition 3. A grid n × m  has n + pNBO + pNC  words on the horizontal and 

m + pNBV + pNC  words on the vertical. 
The first solving method uses the results of propositions 1 and 2.  
The second method straightly calculates from propositions 1 and 2 the across and 

down words number (their sum (proposition 1) and difference (proposition 2) are 
known). 

Proposition 4. Words mean length (=letters number) of a grid n × m  with p  

black points is ≥
2(nm − p)

n + m + 2 p
. 

Actually, the maximum words number is n + m + 2 p , the letter number is 
nm − p , and each letter is included in two words: one across and another down. One grid 
is the more crossed, the smaller the number of the words consisting of one or two letters 
and of black points (assuming that it meets the other known restrictions). Because in the 
Romanian grids the black points percentage is max.  

15% out of the total (rounding off the value at the closer integer – e.g. 15% with a 
grid 13x13 equals 25.35  ≈  25; with a grid 12x12 is 21.6 ≈  22), so for the previous 

properties, for grids n × m  with p  black points we replace p  by  3

20
⎡
⎣⎢

⎤
⎦⎥

nm , where 

[ ] { }max  0.5x xα α= ∈ Ν, − ≤ . 
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§2. STATISTIC RESEARCHES ON GRIDS 
 
In [1] we find the notion “écart of a sound x”, denoted by α(x) , which equals the 

difference between the rank of  x  in Romanian and the rank of x  in the analyzed text. 
We will extend this notion to the notion of a text écart which will be denoted by: 

α(t) , and  

α(t) =
1

n
α(Ai )

i=1

n

∑  

where α (Ai )  is Ai  sound écart (in [1]) and n  represents distinct sounds number in text t . 
(If there are letters in the alphabet, which are not found in the analyzed text, these will be 
written in the frequency table giving them the biggest order.) 

Proposition 1.  We have a double inequality:  

0 ≤ α (t) ≤
n − 1

2
+

1

n

n

2
⎡
⎣⎢

⎤
⎦⎥

 where y[ ] represents the whole part of real number y . 

Actually, the first inequality is evident. 

Let  
1 2

1    2  ...  

  ...  n

n

j j j

⎛ ⎞
⎜ ⎟Φ =
⎜ ⎟
⎝ ⎠

. Then α(Ai )
i=1

n

∑ = i − ji
i=1

n

∑  

This permutation constitutes a mathematical pattern of the two frequency tables of 
sounds; in Romanian (the first line), in text t (the second line). 

For permutation 
1     2   ...   1  

  1 ...     2     1
n n

n n
ψ

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 we have  

i − ji
i=1

n

∑ = 2[(n − 1) + (n − 3) + (n − 5) + ...] = 2 (n − 2k + 1) =
k =1

n

2
⎡
⎣⎢

⎤
⎦⎥

∑

= 2
n

2
⎡
⎣⎢

⎤
⎦⎥

n −
n

2
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

=
n(n − 1)

2
+

n

2
⎡
⎣⎢

⎤
⎦⎥
, 

where α(t) =
n − 1

2
+

1

n
⋅

n

2
⎡
⎣⎢

⎤
⎦⎥

. 

By induction with respect to n ≥ 2 , we prove now the sum S = i − ji
i=1

n

∑  has max. 

value for permutation ψ .  
 For n = 2  and 3 it is easily checked directly. Let us suppose the assertion true for 
values < n + 2 . Let us show for n + 2 : 
 

  1       2   ...   1  2
2  1 ...     2       1

n n
n n

ψ
+ +⎛ ⎞

= ⎜ ⎟+ +⎝ ⎠
 

 Removing the first and last column, we obtain:   
 2   ...   1

'
1 ...     2 

n
n

ψ
+⎛ ⎞

= ⎜ ⎟+⎝ ⎠
, 
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which is a permutation of n  elements and for which S  will have the same value as for 
permutation 

1  ...  
"

 ...  1
n

n
ψ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 

i.e. max. value ( "ψ  was  obtained from ψ '  by diminishing each element by one). 

The permutation of 2 elements 
1         2

2      1
n

n
η

+⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 gives maximum value for S . 

But  ψ  is obtained from ψ '  and η ; 

{ }'( ),        if  1, 2
( )

( ),          otherwise 
i i n

i
i

ψ
ψ

η
∉ +⎧⎪= ⎨

⎪⎩
 

 Remark : The bigger one text écart, the bigger the “angle of deviation” from the 
usual language. 
 It would be interesting to calculate, for example, the écart of a poem. 
 Then the notion of écart could be extended even more: 

a) the écart of a word being equal to the difference between word order in 
language and word order in the text; 

b) the écart of a text (ref. words):  

 αc (t) =
1

n
αc (ai )

i=1

n

∑ , 

where  α c (ai )  is word ai  écart, and n  - distinct words number in the text  t . 
 

* 
 

 We give below some rebus statistic data. By examining 150 grids [4] we obtain 
the following results: 
 
 
 
 
 
 
 
 



 
 

197

Occurrence frequency of words in the grid, depending on their length (in letters) 
 

Letter order Letter Letter 
occurrence 

mean 
percentage 

Vowels mean 
percentage 

Consonants 
mean 

percentage 

1 A 15.741% 
2 I 12.849% 
3 T 9.731% 
4 R 9.411% 
5 E 8.981% 
6 O 5.537% 
7 N 5.053% 
8 U 4.354% 
9 S 4.352% 
10 C 4.249% 
11 L 4.248% 
12 M 4.010% 
13 P 3.689% 
14 D 1.723% 
15 B 1.344% 
16 G 1.290% 
17 F 0.860% 
18 V 0.806% 
19 Z 0.752% 
20 H 0.537% 
21 X 0.430% 
22 J 0.053% 
23 K 0.000% 

 
 
 
 
 
 
 

47.462% 

 
 
 
 
 
 
 

52.538% 

 
It is easy to see that a percentage of 49,035% consists of the words formed only of 1, 2 or 
3 letters; - of course, there are lots of incomplete words. 
 

* 
 
The study of 50 grids resulted in:  
 Occurrence frequency of words in a grid (see next page).  
It is noticed that vowels percentage in the grid (47.462%) exceeds the vowels percentage 
in language (42.7%).  
So, we can generalize the following: 
 Statistical proposition (1): In a grid, the vowels number tends to be almost equal 
to 47.5% of the total number of the letters. 
 Here is some evidence: one word with n  syllables has at least n  vowels (in 
Romanian there is no syllable without vowel (see [2]). 
 The vowels percentage in Romanian is 42.7%; because a grid is assumed to form 
words across and down, the vowels number will increase. Also, the last two lines and 
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columns are endings of other words in the grid; thus they will usually have more vowels. 
When black points number decreases, vowels number will increase (in order to have an 
easier crossing, you need either more black points or more vowels) (A vowel has a bigger 
probability to enter in the contents of a word than a consonant.) 
 Especially in “record grids” (see [3], pp. 33-48) the vowels and consonants 
alternation is noticed. Another criterion for estimating the grid value is the bigger 
deviation from this “statistical law” (the exception confirms the rule!): i.e. the smaller the 
vowel percentage in a grid, the bigger its value. 
 Statistical proposition (2): Generally, the horizontal words number 73 equals the 
vertical one.  
 Here is the following evidence: 100 classical grids were experimentally analyzed, 
in [4], getting the percentage of 49.932% horizontal words. Usually, the classical grids 
are square clues, the difference between the horizontal and vertical words being (see 
Proposition 2): 

n m pNBO pNBV pNBO pNBV− + − = − . 
 The difference between the black points number in zone BO  and zone BV  can 
not be too big ( 1,  2± ±  and rarely ± 3 ). (Usually, there are not many black points in 
zone B, because it is not economical in crossing (see proof of Proposition 1)). 
 Taking from [1] the following letters frequency in language: 

 
 1. E  5.N  9. L  13. P 17. G  21. J 

2. I  6.T  10. S  14. M 18. F  22. X 
3.A  7.U  11. O  15. B 19. Z   23. K 
4.R  8.C  12. D  16. V 20. H 
 

(because in the grid  Ă,  Â,  Î , Ş, Ţ: are replaced by A: I: S: T, respectively, in the above 
order they were cancelled) the écart of the 150 grids becomes  

 
23

1

1( ) ( ) 1.391
23 i

i

g Aα α
=

= ≈∑ ; 

the entropy is: 

 
23

1 10
110

1 3.865
2 i i

i

H p log p
log =

= − ≈∑  

and the informational energy (after O. Onicescu) is:  
23

2

1

( ) 0.084i
i

E g p
=

= ≈∑  

Examining 50 grids we obtain: 
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Words frequency in a grid with respect to the syllables number 

 
 
 

                         Mean percentage of occurrence of a word in a grid 

Mean 
length of 
a word 

in 
syllables 

1 
syllable 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 

35.588% 26.920% 21.765% 9.551% 5.294% 0.882% 0.000% 0.000% 2.246 

 
(in the category of the one syllable-words, the word of one, two or, three letters, without 
any sense – rare words – were also considered.) One can see that the percentage of words 
consisting of one and two syllables is 65.508% (high enough). 
 Another statistics (of 50 grids), concerning the predominant parts of speech in a 
grid has established the following first three places: 

1. nouns 45.441% 
2. verbs 6.029% 
3. adjectives 2.352% 
Notice the large number of nouns. 
 

* 
SECTION II. REBUS CLUES 

 
§1. STATISTICAL RESEARCHES ON REBUS CLUES 

 
 Studying the clues of 100 “clues grids”, the following statistical data resulted: 
 Rebus clues frequency according to their length (words number) 
 (see the next page)  

It is noticed that the predominant clues are formed of 2, 3, or 4 words. For results 
obtained by investigating 100 “clues grids”, see the next page. 

It is worth mentioning that vowels percentage (46.467%) from rebus clues 
exceeds vowels percentage in the language (42.7%).  

By calculating the clues écart (in accordance with the previous formula) it results: 
 

27

1

1( ) ( ) 1.185
27 i

i
dr Aα α

=

= ≈∑  
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(sound frequency used by Solomon Marcus in [1] was used here), the entropy (Shannon) 
is: 

27

1 10
110

1 4.226
2 i i

i

H p log p
log =

= − ≈∑  

and informational energy (O. Onicescu) is:  
27

2

1

( ) 0.062i
i

E dr p
=

= ≈∑ . 

(The calculations were done by means of a pocket calculator ). 
 

Letters occurrence frequency in the rebus clues 
 

Letter 
order 

Letter Mean 
percentage 

of letter 
occurrence 

in clues 

Vowels 
percentage

Conso- 
nants 
mean 

percentage

Letters no. 
(mean) 

necessary 
to clue a 

grid 

Mean 
length of a 
word (in 
letters) 
used in 
clues 

1 E 10.996% 
2 I 9.778% 
3 A 9.266% 
4 R 7.818% 
5 U 6.267% 
6 N 6.067% 
7 T 5.611% 
8 C 5.374% 
9 L 4.920% 
10 O 4.579% 
11 P 4.027% 
12 Ă 3.992% 
13 S 3.831% 
14  Î  3.309% 
15 D 3.079% 
16  Â 1.801% 
17 V 1.527% 
18 F 1.449% 
19 Ş 1.360% 
20 Ţ 1.338% 
21 G 1.330% 
22 B 1.238% 
23 H 0.532% 
24 J 0.358% 
25 Z 0.092% 
26 X 0.037% 
27 K 0.024% 

 
 

46.679% 

 
 

53.321% 

 
 

657.342 

 
 

4.374 
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HYPOTHESIS ON THE DETERMINATION OF A RULE 
FOR THE CROSS WORDS PUZZLES 

 
 The problems of cross words are composed, as we know, of grids and definitions. 
In the Romanian language one imposes the condition that the percentage of black boxes 
compared to the total number of boxes of the grid not to go over 15%. 
 Why 15%, and not more or less? This is the question to which this article tries to 
answer. (This question is due to Professor Solomon MARCUS - National Symposium of 
Mathematiques "Traian Lalesco", Craiova University, June 10, 1982). 
 First of all we present here a table which shows in a synthetic manner, a statistics 
on the grids containing a very small percentage of black boxes (of [2], pp. 27-29): 
 

THE GRIDS-RECORDS 
 

Grid dimension  Minimum number 
of registered black 

boxes  

Percentage of 
black boxes 

Number of grids-
records 

constructed until 
June 1, 1982 

8x8 0 0.000% 24 
9x9 0 0.000% 3 

10x10 3 3.000% 2 
11x11 4 3.305% 1 
12x12 8 5.555% 1 
13x13 12 7.100% 1 
14x14 14 7.142% 1 
15x15 17 7.555% 1 
16x16 20 7.812% 2 

  
 In this table, one can see that the larger the dimension of the grid, the larger is the 
percentage of black boxes, because the number of long words is reduced. 
 The current dimensions for grids go from 10x10 to 15x15. 
 One can notice that the number of the grids having a percentage of black boxes 
smaller than 8 is very reduced: the totals in the last column represent all the grids created 
in Romania since 1925 (the appearance of the first problems of cross words in Romania), 
until today. It is thus seen that the number of the grid-records is negligible when one 
compares it with the thousands of grids created. For this reason, the rule that imposed the 
percentage of the black boxes, should have established to be greater than 8%. But the 
cross words being puzzles, they must address to a large audience, thus one did not have to 
make these problems too difficult. 
 From which a percentage of black boxes at least equal to 10%. 
 They must be not too easy either, that is not to necessitate any effort from those 
who would compose them, from where a percentage of black boxes smaller than 20%. (If 
not, in effect, it becomes possible to compose grids wholly formed of words boxes of 2 or 
3 letters). 
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 To support the second assertion, one assumes that the average length of the words 

of a n × m  grid with p  black boxes is sensible equal to 
2(n ⋅ m − p)

n + m + 2 p
 (from [3]. § 1, Prop. 

4). For us, p  is 20% of n ⋅ m , therefore it results that  

 
2(n ⋅ m −

20
100

n ⋅ m)

n + m + 2
20

100
n ⋅ m

≤ 3 ⇔
1

n
+

1

m
≥

2

15
. 

 Thus, for current grids having 20% of black boxes, the average lengths of the 
words would be smaller than 3. 

Similarly at the beginnings of the puzzle of cross words the percentage of black 
boxes were not too large: thus in a grid from 1925 of 11x11, one counts 33 black boxes, 
therefore a percentage of 27.272% (from [2], p. 27). 

While being developed, for these puzzles were imposed "stronger" conditions – 
that is a reduction in the black boxes. 

For selecting a percentage between 10 and 20%, it is supposed that the peoples’ 
predilection for round numbers was essential (the cross words are puzzles, no need for 
mathematic precision of sciences). That’s why the rule of 15%. 

A statistic (from [3], § 2), shows that the percentage of black boxes in the current 
grids is approximately 13.591%. The rule is thus relatively easy to follow and it can only 
attract new crossword enthusiasts. 

To completely answer the proposed question, one would need to consider also 
some philosophical, psychological, and especially sociological aspects, especially those 
connected to the history of this puzzle, its ulterior development, and with its traditions. 
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THE LANGUAGE OF SPIRITUAL REBUS DEFINITIONS  
 
 “The rebus’ language” is somewhere at the border of the scientific language and, 
that, perhaps, having many common things with usual language too, and even with the 
musical one (the puzzles, because they have a certain acoustic resonance). 
 While the semantic deficiencies, having direct definitions (close to those from 
dictionary [3], pp. 50-56) of a language close to the scientific one (even to the usual one 
through the simple mode of expression) of “the grid’s definitions”. The language is close 
to the poetic one. There are even literary definitions (see [3], p. 57, [4]), which utilize 
literary stylistic procedures: like the metaphor, the comparison, the allegory, practice, etc. 
Later we will present a parallelism between the SCIENTIFIC LANGUAGE, POETIC 
LANGUAGE, REBUS’ LANGUAGE (“THE GRIDS’ DEFINITIONS”) closely 
following the rules from [1] (chap. “Oppositions between the scientific language and the 
poetic one”), results which we will limit to the rebus’ language. 
 
SCIENTIFIC LANGUAGE POETIC LANGUAGE REBUS’ LANGUAGE 
- rational hypothesis  - emotional hypothesis - rational + emotional 

hypothesis (reading the 
definition, you think for an 
instant, sometimes you go 
on a wrong road; when you 
err the answer (the 
corresponding word from 
the grid, you get 
enlightened and enthusiast). 

- logical density - density of suggestion - logical density + 
suggestion (the definition 
must use very few words to 
explain a lot – logical 
density); to be unpublished, 
enlightening, emotional 
(density of suggestion). 

- infinite synonymy  - absent synonymy - reduced synonymy (not 
truly infinite, but not 
absurd); (two identical 
words from the grid cannot 
have more than one rebus 
definition; but a definition 
will be almost uniquely 
expressed, therefore the 
synonymy is quasi absent).  

- absent anonymity - infinite anonymity  - large anonymity (neither 
absent, nor infinite) (in the 
case of the definition, the 
meaning is up to the author: 
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even if the reader 
understands something else, 
it will intervene the rational 
part, the word must fulfill 
the proper place in the grid, 
even the literary definitions, 
in the grids, don’t have 
anymore an infinite 
anonymity, because here 
intervene also the rational 
part: the finding by all 
means of an answer: in the 
case of the theme grids with 
direct definitions, the 
anonymity is almost 
absent). 

- artificial  - natural - natural and artificial (in 
general the definitions have 
a natural character; but the 
definitions based on letter’s 
puzzles (example, the 
definition “Night’s 
beginning” has the answer 
“NI” have an artificial 
character).  

- general - singular - singular and general (only 
the definitions based on the 
puzzles of letters may have 
a general character). 

- translatable - untranslatable  - translatable (in the sense 
that the definition has a 
logical meaning). 

- the presence of style 
problems 

- the absence of style 
problems 

- the absence of style 
problems (the same 
definition cannot be used 
without changing the 
nuance – while a word in 
the grid can be defined in 
multiple ways). 

- finitude in space, constant 
in time 

- variability in space and 
time 

- the variability in space and 
time, smaller variability 
than that from the poetic 
language. 

- numerable  - innumerable  - innumerable  
- transparent  - opaque  - semi-opaque (or 

semitransparent - at the 
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beginning the definition 
seems opaque, until one 
finds the answer). 

- transitive - reflexive - reflexive (except, again, 
the definitions based on 
games of letters, which 
have also a transitional 
character). 

- independency on 
expression 

- dependency on expression - dependency on expression.

- independency on musical 
structure 

- dependency on musical 
structure 

- dependency on musical 
structure. 

- paradigmatic - syntagmatic - syntagmatic 
- concordance between the 
paradigmatic and 
syntagmatic distance 

- non concordance between 
the paradigmatic and 
syntagmatic distance  

- the paradigmatic and 
syntagmatic distance (are 
pairs of different words, 
word games, methods used 
ass in poetry). 

- short contexts - long contexts - short contexts (1) (here it 
is closer to the scientific 
language, because it is 
taken into account the Latin 
proverb “Non multa sed 
multum”; from the anterior 
statistic investigations it 
resulted that the medium 
length of a (spiritual) rebus 
definition  is 4.192 words: 
the definitions with letter 
puzzles usually have very 
few words. 

- contextual dependency - it tends towards 
expression independency  

- contextual dependency (in 
the case of the theme grids 
it is also a small 
dependency; there exist also 
rare cases when a definition 
is dependent of an anterior 
definition (usually the 
definitions with letters or 
word games)). 

- logic - illogic  - logic 
- denotation  - annotation  - connotation (if a definition 

would reveal the direct 
meaning of an word, we 
would have direct 
definitions (like in a 
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dictionary)) and then we 
would totally loose “the 
surprise”, “the spirituality”, 
“the ingenious”, “the 
spontaneity” of thematic 
grids, the definitions with 
denotative character.  

- routine - creation - creation and … experience 
(not to call it routine!) 

-general stereotypes - personal stereotypes - personal stereotypes (it 
exists even the so called 
grids of “personal manner” 
– (see [3], pp. 56-58) 

- explicable - ineffable  - ineffable … which 
explains it! (Taken 
separately, the definition, 
not-seen as a question, is 
ineffable taken along, with 
the answer becomes 
explicable: in general, the 
definition presents also an 
ambiguity degree (more 
tracks for guidance) – 
otherwise it would be banal 
– a degree of 
indetermination: it is used 
many times the proper sense 
instead of the figurative 
one, or reciprocally defined 
it has also its own logic, 
which becomes tangible 
once one finds the answer).    

- lucidity  - magic - magic – lucidity (in 
accordance with those that 
are immediately anterior) 
(at the beginning the rebus 
language dominates the 
person, until he finds the 
“key” when he’ll become at 
his turn the dominant – the 
poetic language.  

- predictable - unpredictable - at the beginning is 
unpredictable, and becomes 
predictable after solving it: 
(unpredictable converted in 
predictable) . 
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CONSIDERATIONS REGARDING THE SCIENTIFIC LANGUAGE AND 

“LITERARY LANGUAGE” 
 
 As in nature nothing is absolute, evidently there will not exist a precise border 
between the scientific language and “the literary” one (the language used in literature): 
thus there will be zones where these two languages intersect. 
 In [1], chapter “Instances between the scientific and poetic languages”, Solomon 
Marcus presents the differences between these two, differences that make them closer. 
 We will skate a little on the edge of this material, presenting common parts of the 
scientific language and the literary language: 

-  both are geared to find the unpublished, the novelty  
- both suppose a creative process (finding the solution of a problem means 

creation: writing of a phrase the same). 
- both literature and science have an art of being taught, studied and learned (the 

methodology of teaching arithmetic, or Romanian language, etc.) . 
- in science too there is an esthetic (for example: “the mathematical esthetic”), the 

same in literature there exists a logic (even the absurd of Eugene Ionesco, the myths of 
Mircea Eliade have their own specific logic: analogously, we can extend the idea to 
Tristan Tzara’s Dadaism, which has a specific logic (of construction; one cuts words 
from newspapers, mix them, and then form verses). 

- the scientific development implies a literary development in a special sense: it 
appeared, thus, the science-fiction literature in literary writings which use informations 
obtained by science: contemporaneous literature treats also scientific problems (for 
example Augustin Buzura wrote the roman “The absents” describing the life of a medical 
researcher: the engineer poet George Stanca introduces technical terms in his poems; one 
verse from his volume “Maximum tenderness” sounds: “sin2 x + cos2 x = 1”!); 
analogously the engineer poet Gabriel Chifu (the volume “An interpretation of the 
Purgatory”) and mathematics professor Ovidiu Florentin, author of a volume even 
entitled “Formulas for the spirit” – each poem being considered as a momentous 
“formula” (depending of time, place, space, individual) for the spirit. 

- even the writing of some contemporary novels inspired from the worker’s and 
peasant’s life requires a scientific documentation from the writers’ part.  

The literature has an esthetic influence for science; there exist mathematical 
metaphors (see [1], [2]) and, in general, we can say “scientific metaphors”, one cannot 
know what ideas and relations will be discovered in science. The understanding degree 
(exegesis) of a poetry and of a literary text in general, depends also of the culture’s 
degree of each individual, of his initiation (the seniority in that domain), of his scientific 
knowledge. 

- there are many scientists who, besides their scientific works, write also literary 
works or related domains (for example, the memories book of the academician 
(mathematician) Octav Onicescu “On the life’s roads”, the renown Romanian physician 
Gheorghe Marinescu writes poems (using Dacic words), under the penname George 
Dinizvor, the great Ion Barbu – Dan Barbilian excelled as a poet and as a mathematician. 
The great poet Vasile Voiculescu was a good physician; and the mathematics professor 
Aurel M. Buricea writes poetry, analogously the mathematician Ovidiu Florentin – 
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Florentin Smarandache writes poems and mathematics articles; in the world literature we 
find the poet-mathematician Omar Khayyam and Lewis Caroll – Charles L. Dodgson), 
but writers that would do fundamental scientific or technical research don’t quite exist! 
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THE LETTERS’ FREQUENCY (BY EQUAL GROUPS) IN 
THE ROMANIAN JURIDICAL TEXTS 

 
 Analyzing the deterioration’s degree of the keys of a typing machine which 
functioned for more than 40 years at the clerk's office of a court of a Rumanian district 
(Vâlcea), one partitions them in the following groups: 

 
1) Letters completely deteriorated (one cannot read anything anymore on the 

typewriter). 
2) Letters from which one sees only one point, hardly perceptible. 
…………………….. 
10) Letters from which is missing only one point. 
11) Letters, which are seen perfectly, without anything missing. 
12) Letters which, almost have not been touched, being covered with dust. 
 
The following resultants were obtained: 
 

1) E, A  7)  O, C, U, D, Z 
2) I  8)  N 
3) R  9)  L 
4) T  10) V, M 
5) S  11) F, G, B, H, X, J, K 
6) P  12) W, Q, Y 
 

This classification is a little different of that of [1], because the letters A, Ă, Â are 
here counted as one letter: A, The same I and Î in I, S and Ş in S, T and Ţ in T. 

By studying the chart of this text (from [2]), we obtain: 
 

 
23

1

1( ) ( ) 2.348
23 i

i
j Aα α

=

= ≈∑  

 
thus the chart of the juridical language of current frequencies is much more larger than 
that of the cross words language: α(g) ≈ 1.391and α (dr ) ≈ 1.185 . 
 The letters P, Z and N realized the most spectacular jump: 
 
  α(P) = 6 , α(Z ) = 7 , ( ) 8Nα = . 
 
 Perhaps this article surprises by its banality. But, whereas other authors spent 
month of calculations using computers, choosing certain books and counting the letters 
(!) by the computer, I have deducted this frequency of the letters in a few minutes (!), by 
a simple observation. 
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MATHEMATICAL FANCIES AND PARADOXES 
 

MISCELLANEA 
 

1. Archimedes’ “fixed point theorem”: Give me a fixed point in space, and I 
shall lift the Earth”. 

 
2. MATHEMATICAL LINGUISTICS1 

Poem by Ovidiu Florentin2 

 
 Definition 
 A word’s sequence converges if it is found in a neighborhood of our heart. 

* 
 The hermetic verses are linear equations. 

* 
 Theorem 
 For any X there is no Y such that Y knows everything which X knows. And the 
reciprocal. 
 The proof is very intricate and long, and we will present it. We leave it to the 
readers to solve it! 
 

** 
Smarandache’s law: Give me a point in space and I shall write the proposition 

behind it. 
 
Final Motto 
- O, MATHEMATICS, YOU, EXPRESSION OF THE ESSENTIAL IN 

NATURE! 
 
1 Volume which includes this mathematical poem (pp. 39-41). 
2 (Translated from Romanian by the author.) It is the mathematician’s pen 

name. He wrote many poetical volumes (in Romanian and French), as 
“Legi de compoziţie internă. Poeme cu…probleme!” (Laws of internal 
composition. Poems with…problems!), Ed. El Kitab, Fès, Morocco, 1982.  
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AMUSING PROBLEMS 

 
1. Calculate the volume of a square. 

 (Solution: Volume = Area of the Base x Height = Side2 x 0 = 0! We look at the 
square as an extreme case of parallelepiped with the height null.)  

2. ? x 7 = 2? 

(Solution: of course 2

7
× 7 = 2 !) 

3. Ten birds are on a fence. A hunter shoots three of them.  
How many birds remain? 
 (Answer: none, because the three dead birds fell down from the fence and the 
other seven flew away!)  

4. Ten birds are in a meadow. A hunter shoots three of them. How many 
birds remain? 

(Answer: three birds, the dead birds, because the others flew away!) 
5. Ten birds are in a cage. A hunter shoots three of them. How many 

birds remain? 
(Answer: ten birds, dead and alive, because none could get out!) 
6. Ten birds are up in the sky. A hunter shoots three of them. How many 

birds remain? 
(Answer: seven birds, at last, those who are still flying and those that fell down!) 
7. Prove that the equation 2X X= +  has two distinct solutions. 
(Answer: X = ±∞ !) 
8. (Solving Fermat’s last theorem) Prove that for any non-null integer n, 

the equation Xn + Y n = Z n , XYZ ≠ , has at least one integer solution! 
(Answer: (a) n ≥ 1. Let Xk = Yk = Zk = 2k , 1, 2,3,...k = All Xk ∈N ,  K ≥ 1 . 

lim k Nk
L X ∈→∞

= . But L = ∞ ∈N , that is the integer infinite, and ∞n + ∞n = ∞n ! If n  is 

even, the equation has eight distinct integer solutions: X = Y = Z = ±∞ ! Similarly, we 
take the negative infinite integer: - ∞0Z] 

(b) n ≤ −1 . Clearly there are at last eight distinct integer solutions: 
X = Y = Z = ±∞ !) 
 

WHERE IS THE ERROR  
IN THE BELOW DIOPHANTINE EQUATIONS ? 

 
Statement: 
(1) To solve in  Z  the equation: 14 26 20x y+ = − . 
“Resolution”: The integer general solution is: 

x = −26k + 6

y = 14k − 4

⎧
⎨
⎩

     (k ∈Z)  

(2) To solve in  Z  the equation: 15 37 12 0x y z− + = . 
“Resolution” The integer general solution is: 
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4
15
45 5

x k
y k
z k

= +⎧
⎪ =⎨
⎪ = −⎩

  (k ∈Z)  

(3) To solve in  Z  the equation: 3x − 6y + 5z − 10w = 0 . 
“Resolution” the equation is written: 3(x − 2y) + 5z − 10w = 0 . 
Since ,  ,  ,  x y z w  are integer variables, it results that 3 divides z  and that 3 divides 

w . I. e: z = 3t1   (t1 ∈Z)  and w = 3t2   (t2 ∈Z) . 
Thus 3(x − 2y) + 3(5t1 − 10t2 ) = 0  where x − 2y + 5t1 − 10t2 = 0 . 

Then: 

x = 2k1 + 5k2 − 10k3

y = k1

z = 3k2

w = 3k3

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  with  (k1,k2 , k3 ∈Z3) ,  

constitute the integer general solution of the equation. 
Find the error of each “resolution”. 
 
SOLUTIONS. 
(1) x = −26k + 6  and y = 14k − 4  ( k ∈Z ) is an integer solution for the equation 

(because it verifies it), but it is not the general solution, because x = −7  and y = 3  verify 
the equation, they are a particular integer solution, but:  

−26k + 6 = −7

14k − 4 = 3

⎧
⎨
⎩

implies that k =
1

2
 (does not belong to  Z ). 

Thus one cannot obtain this particular from the previous general solution. 

The true general solution is: 
x = −13k + 6

y = 7k − 4

⎧
⎨
⎩

  (k ∈Z) . (from [1]) 

(2) In the same way, x = 5 , y = 3 , z = 3  is a particular solution of the equation, 
but which cannot be obtained from the  “general solution” because: 

4 5   1
115 3     
5
845 5 3
45

k k

k k

k k

⎧
⎪ + = ⇒ = −
⎪
⎪ = ⇒ =⎨
⎪
⎪ − = ⇒ =⎪⎩

  , 

contradictions. 

The integer general solution is: 
x = k1

y = 3k1 + 12k2

z = 8k1 + 37k2

⎧

⎨
⎪

⎩
⎪

 (with  (k1,k2 ) ∈Z2 , cf. [1]). 

(3) The error is that: “3 divides ( 5z − 10w )” does not imply that “3 divides z  and 
3 divides w ”. If one believes that one loses solutions, then this is true because 
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(x, y, z,w) = (−5,0,5,1)  constitutes a particular integer solution, which cannot be obtained 
from the “solution” of the statement. 

The correct resolution is: 3(x − 2y) + 5(z − 2w) = 0 , that is 3p1 + 5 p2 = 0 , with 
p1 = x − 2y  in  Z , and p2 = z − 2w  in  Z . 

It results that: 1

2

5 2
in

3 2
p k x y
p k z w

= − = −⎧
⎨ = = −⎩

 Z . 

From which one obtains the integer general solution: 
1 2

1

2 3

3

2 5

3 2

x k k
y k

z k k

w k

= −⎧
⎪ =⎪
⎨ = +⎪
⎪ =⎩

  with  (k1,k2 ,k3) ∈Z3  

 
[1] One can find these solutions using:  Florentin SMARANDACHE  - “Un 

algorithme de résolution dans l’ensemble des numbers entiers pour les équations 
linéaires”. 

 
 

WHERE IS THE ERROR ON THE BELOW INTEGRALS ? 
 

Let the function  f :R → R  be defined by ( ) 2sin  cosf x x x= . 
Let us calculate its primitive: 
(1) First method. 

2
2 22sin  cos  2  2 sin

2
ux x dx u du u x= = = =∫ ∫ , with u = sin x . 

One thus has F1(x) = sin2 x . 
(2) Second method: 

22sin  cos  2 cos ( sin ) 2  x x dx x x dx v dv v= − − = − = −∫ ∫ ∫ , 

thus F2 (x) = − cos2 x  
(3) Third method: 

1 1 12sin  cos  sin 2  (sin2 ) 2 sin  cos
2 2 2

x x dx x dx x dx t dt t= = = = −∫ ∫ ∫ ∫  

thus F3(x) = −
1

2
cos2x . 

One thus obtained 3 different primitives of the same function. 
How is this possible? 
Answer: There is no error! It is known that a function admits an infinity of 

primitives (if it admits one), which differ only by one constant. 
In our example we have: 

F2 (x) = F1(x) − 1  for any real x , and F3(x) = F1(x) −
1

2
 for any real x . 
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WHERE IS THE ERROR IN THE BELOW REASONING BY 

RECURRENCE ? 
 

 At an admission contest at an University, was given the following problem: 
 “Find the polynomials P(x)  with real coefficients such that 
xP(x − 1) = (x − 3)P(x) , for all x  real.” 
 Some candidates believed that they would be able to show by recurrence that the 
polynomials of the statement are those which verify the following property: P(x) = 0  for 
all natural values. 
 In fact, they said, if one puts x = 0  in this relation, it results that 
0 ⋅ P(−1) = −3 ⋅ P(0) , therefore P(0) = 0 . 
 Likewise, with x = 1 , one has: 1 ⋅ P(0) = −2 ⋅ P(1) , therefore P(1) = 0 , etc. 
 Let’s suppose that the property is true for ( n − 1 ), therefore P(n − 1) = 0 , and we 
are looking to prove it for n :  
 One has: n ⋅ P(n − 1) = (n − 3) ⋅ P(n) , and since P(n − 1) = 0 , it results that 
P(n) = 0 . 
 Where the proof failed? 
 Answer: If the candidates would have checked for the rank n = 3 , they would 
have found that: 3 ⋅ P(2) = 0 ⋅ P(3)  thus 0 = 0 ⋅ P(3) , which does not imply that P(3) , is 
null: in fact this equality is true for any real P(3) . 
 The error, therefore, is created by the fact that the implication: 
“ (n − 3) ⋅ P(n) = n ⋅ P(n − 1) = 0 ⇒ P(n) = 0 ” is not true. 
 One can find easily that P(x) = x(x − 1)(x − 2)k ,  k ∈R . 
 

WHERE IS THE ERROR? 
 
 Given the functions  f , g :R → R , defined as follows: 

,    3
( )

,   3

x

x

e x
f x

e x−

⎧ ≤⎪= ⎨
>⎪⎩

          and 
2   ,           0

( )
2 7,   3
x x

g x
x x

⎧ ≤
= ⎨

− + >⎩
 

Compute f g . 
 
“Solution”: We can write:  

,         0
( ) ,   0 3

,       0

x

x

x

e x
f x e x

e x−

⎧ ≤
⎪

= < ≤⎨
⎪ >⎩

 and 

2    ,             0
( ) 2 7,    0 3

2 7,          3

x x
g x x x

x x

⎧ ≤
⎪= − + < ≤⎨
⎪− + >⎩

 

from where 
2

2 7

2 7

,             0
( )( ) ( ( )) ,   0 3

,          3

x

x

x

e x
f g x f g x e x

e x

− +

−

⎧ ≤
⎪⎪= = < ≤⎨
⎪ >⎪⎩
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and :f g →R R . 
      
Correct solution: 

 
( )

( )

,   if  ( ) 3
( ( ))

,  if ( ) 3

g x

g x

e g x
f g f g x

e g x−

⎧ ≤⎪= = ⎨
>⎪⎩

         :f g →R R  

 

2    3    [ 3,0]
( ) 3

2 7 3 [2, )

x x
g x or

x x

⎧ ≤ ⇒ ∈ −
⎪

≤ ⇒ ⎨
⎪− + ≤ ⇒ ∈ +∞⎩

 

 

 

2   3      ( , 3)
( ) 3

2 7 3 (0,2)

x x
g x or

x x

⎧ > ⇒ ∈ −∞ −
⎪

> ⇒ ⎨
⎪− + > ⇒ ∈⎩

 

 
Therefore  

2

2

2 7

2 7

,    ( , 3)

,      [ 3,0))( )
,   (0, 2)
,   [2, )

x

x

x

x

e x

e xf g x
e x
e x

−

−

−

⎧ ∈ −∞ −
⎪
⎪ ∈ −= ⎨

∈⎪
⎪ ∈ +∞⎩

 

 
[Published in “Gazeta matematică”, nr.7/1981, Anul LXXXVI, pp. 282-283.] 

 
 

WHERE IS THE ERROR IN THE BELOW SYSTEM OF INEQUALITIES ? 
 

Solve the following inequalities system: 

  

0                     (1)
0                     (2)
2 3 0      (3)

3 4 4   (4)

x
y
x y z

x y z

≥⎧
⎪ ≥⎪
⎨ − + ≥⎪
⎪− − + ≥⎩

 

 “Solution”: Multiply the third inequality by 3 and add it to the fourth inequality. 
The sense will be conserved. It results:  

 −7y + 13z ≥ 4 , or z ≥
1

13
(7y + 4) . 

 Therefore, x ≥ 0  and y ≥ 0  (from the inequalities (1) and (2))  

and z ≥
1

13
(7y + 4)       (*).  
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But x = 13 ≥ 0 , y = 0 ≥ 0 , and z = 2 ≥
4

13
=

1

13
(7 ⋅ 0 + 4)  verifies (*). But we 

observe that it does not verify the inequalities system, because substituting in the fourth 
inequality we obtain: −3 ⋅13 − 0 + 4 ⋅ 2 ≥ 4  which is not true. 

Where is the contradiction? 
 
Solution. 
The previous solution is incomplete. We didn’t intersect all four inequalities. 

Giving a geometrical interpretation in  R3 , and writing the inequalities as equations, we 
have, in fact, four planes, each dividing the space in semi spaces. Therefore, the system’s 
solution will be formed by the points which belong to the intersection of those four semi 
spaces, (each inequality determines a semi space). The inequality obtained by adding the 
third inequality with the fourth represents, is, in fact, another semi space that includes the 
system’s solution, and it does not simplify the system (in the sense that we cannot 
eliminate any of the system’s inequalities).  

Therefore x = 0 , y = 3 , z =
5

13
 verifies (*) but it does not verify, this time, the 

third inequality (although the fourth one is verified). 
 

THE ILLOGICAL MATHEMATICS! 
 
 Find a “logic” for the following statements: 
 (1) 4 − 5 ≈ 5!  

(2) 8 divided by two is equal to zero! 
(3) 10 minus 1 equals 0. 
(4) f (x)∫ dx = f (x) ! 

(5) 8+8=8! 
 
Solutions: 

 These mathematical fantasies are entertainments, amusing problems; they 
disregard current logic, but having their own “logic”, fantasist logic: thus  

(1)  can be explained if one does not consider “4 - 5” as the writing of “4 minus 
5” but that of “from 4 to 5”; from which a reading of the statement 
“ 4 − 5 ≈ 5 ” should be: “between 4 and 5, but closer to 5”. 

(2) 8 can be divided by two … in the following way:…,  i. e. it will be cut into 
two equal parts, which are equal to “0” above and below the cutting line! 

(3)  “10 minus 1” can be treated as: the two typographical characters 1, 0 minus 
the 1, which justifies that there remains the character 0. 

(4) The sign will be considered as the opposite function of the integral. 
(5) The operation “ ∞ + ∞ = ∞ ” is true: writing it vertically: 
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∞
+
∞
=
∞

 

 
which, transposed horizontally (by a mechanic rotation of the graphic signs) will give us 
the statement: “ 8 + 8 = 8 ”. 

 
 
 

OPTICAL ILLUSION 
(Mathematical Psychology) 

 
 What digit is it, 8 or 3? 

 
 [Answer: Both of them!] 
 
 1. EPMEK    = Reverse of Kempe. 
 
 2. DEDE/KIND   = DedeKind’s cut. 
 
 3. 

B 
       R  
  O    = Angle of Brocard. 
       C 
   A 
          R 
      D 
 

 4.
    

BRIANCHON
•    = Point of Brianchon. 
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 5.  
SYL

VES

TER

    =  Determinant of Sylvester. 

 
 6. E A O T E E   = The Sieve of Eratosthenes. 
       r   t   s h  n  s  
 

7. A 
       R     C 
 T      S   =  Foliate curve of Descartes. 
     D      E       S 

 

8. 
MRX
R A I
X I T

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

    =  Symmetrical matrix. 

 
9. SHEFFER     = Bar of Sheffer. 
 
 
10.      = Method of the smallest squares. 
 
 

11.

J10000

001000

00R100

000D10

0000A1

00000N

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

    =  Matrix of Jordan. 

 
12. NOITCNUF    = Inverse function. 
 
13. SERUGIF     = Inverse figures. 
 
14.    R   V   R   V 

       M   K   M   K  = Markov Chains. 
 A   O   A   O 

  

15. USA

WEST EUROPE
   = Harmonious rapport. 
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 16. USA

USSR
    = Unharmonious rapport. 

 
 
 17.       = Tree. 
 
 
 
 
      = Convergent filter. 

18.   
 

 
 19.  A 

   P  S 
 
 O     U  = Apollonius’ circle. 
 
   L   I 

   O    N 
 
 20.     =  Fascicles of circles. 
 
 
 
  

 
 
     = Square root. 
21. 
 
 

 
 
  
 

22.      = Cubic root 
 
 
 
 
 23. X∞ + Y ∞ = Z ∞    = Fermat’s last theorem 
 
 24.  I-W-A-S-A-W-A   =  Iwasawa’s decomposition 
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 25.   R   E    = Latin square! 
  O  M 
  
 

26.     = The Pentagon! 
 

  
 27.  Ø    = Reductio ad absurdum. 
  
 28.         = Ring. 
  
 29.   F   N 
  U         O  =  Convex function. 
     N           I 
                    C  T 
  

30. P N S  = Non-collinear points. 
        I         T   

                          O 
  

31. G 
R        P   = Group of rotations. 

     O U 
  
 32.   ELEMENTS   =  Non-disjoint elements. 

 
33.    M 
       X        A   = Circular matrix. 
                  I       T 
                      R 
 
                    O  L 
34.     P           I   = 7-gon. 
               N 
                    O G 
 
35.                 SPA 

CE   = Compact space. 
  

36.             A 
                  L 
  G 
  E   =  Higher algebra 
  B 
  R 
  A 
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37.  
            
     =  Vicious circle 
          
 
38.                   A 

R 
 I 
T   =  The higher arithmetic. 
H 
M 
E 
T 
 I 
C 
 

 39.  
   = Square angle.  

 
40. SYMBOL OF (LEOPOLD) 

KRONECKER   = L.K. 
 

41. KOLMOGOROV’S  SPACE  = USSR. 
 

42. LANGUAGE OF CHOMSKY  = American. 
 

43. GRAMMAR OF KLEENE  = English. 
 
44. CATASTROPHIC POINT   = Atom bomb. 
 
45. MACHINE OF TURING   = Motor car. 
 
46. NUMBER OF GOLD       = 79 (Chemically). 
 
47. FLY OF LA HIRE       = Insect. 
 
48. MOMENT OF INERTIA       = Apathy. 
 
49. AXIOM OF SEPARATION  = Divorce. 
 
50. CLOSED SET        = Prisoners. 
 
51. RUSSIAN MULTIPLICATION   =  Conquest. 

 
 52. SLIPS OF MÖBUS       = Bathing trunks. 

  A 
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 53. SINGULAR CARDINAL      = Mazarin (1602-1661, France). 
  
 54. CLAN OF LEBESGUE       = His family. 
  
 55. SPHERE OF RIEMANN     =  Head. 
  
 56. MATHEMATICAL HOPE    = Fields prize. 
  
 57. CRITICAL WAY        = Slope. 
  
 58. BOTTLE OF KLEIN       =  Beer bottle. 
  
 59. CONSTANT OF EULER    = Mathematics. 
  
 60. CONTRACTING FUNCTION = Frost. 

 
61. BILINEAR COMBINATION  =   Concubine. 
 
62. HARDY SPACE        =  England. 
 
63. INTRODUCTION TO 
      ALGEBRA!         = AL. 
 
64. INTRODUCTORY 
      ECONOMETRICS        =  ECO. 
 
65. BOREL BODY         =  Corpse. 
 
66. CHOICE FUNCTION        = Marriage. 
 
67. GEOMETRICAL PLACES   = ATHENA, ERLANGEN, etc. 
 
   [Published in GAMMA, Year IX, Nr. 1, November 1986.] 

 
 

MATHEMATICAL LOGIC 
 
 How many propositions are true and which ones from the following: 

1. There exists one false proposition amongst those n propositions. 
2. There exist two false propositions amongst those n propositions. 
…………………………………………………………………….  
…  There exist i false propositions amongst those n propositions. 
……………………………………………………………………. 
n.   There exist n false propositions amongst those n propositions. 
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(This is a generalization of a problem proposed by professor FRANCISCO 
BELLOT ROSADO, in the journal NUMEROS, No. 9/1984, p. 69, Canary Island, 
Spain.) 

 
Comments: 

Let Pi  be the proposition i , 1 ≤ i ≤ n . If n  is even, then the propositions 1,2,...,
n

2
 

are true and the rest are false. (We start our reasoning from the end;  Pn  cannot be true, 
therefore P1  is true; then Pn−1  cannot be true, then P2  is true, etc.) 

Remark: If n  is odd we have a paradox, because if we follow the same solving 
method we find that Pn  is false, which implies that P1  is true; Pn−1  false, implies that P2  is 
true,…, Pn+1

2

 false implies P
n+1−

n+1

2

 true, that is Pn+1

2

 false implies Pn+1

2

 true, which is 

absurd. 
If n = 1 , we obtain a variant of liar’s paradox (“I lie” is true or false?) 

 

 
 

Which is obviously a paradox. 
 

 
PARADOX OF RADICAL AXES 

 
 Property: The radical axes of n  circles in the same plan, taken two by two, whose 
centers are not aligned, are convergent. 
 “Proof” by recurrence on n ≥ 3 . 
 For the case n = 3  it is known that 3 radical axes are concurrent in a point which 
is called the radical center. One supposes that the property is true for the values smaller 
or equal to a certain n . 
 To the n  circles one adds the (n + 1) -th circle. 
 One has (1): the radical axes of first n  circles are concurrent in M. 
 Let us take 4 arbitrary circles, among which is the (n + 1) -th. 
 Those have the radical axes convergent, in conformity with the recurrence 
hypothesis, in the point M (since the first 3 circles, which belong to n  circles of the 
recurrence hypothesis, have their radical axes concurrent in M). 
 Thus the radical axes of (n + 1)  circles are convergent, which shows that the 
property is true for all circles n ≥ 3  of N. 
 AND YET, one can build the following counterexample: 
 Consider the parallelogram ABCD  which does not have any right angle. 
 Then one builds 4 circles of centers A, B,C  and D  respectively, and of the same 
radius. Then the radical axes of the circles e(A)  and e(B) , respectively e(C)  and e(D) , 
are two lines, which are medians of the segments AB andCD  respectively. 
 Because AB( ) and CD( ) are parallel, and that the parallelogram does not have 
any right angle, it results that the two radical axes are parallel, i.e. they never intersect. 

1. There is a false proposition in this rectangle. 
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 Can we explain this (apparent!) contradiction with the previous property? 
 Response: The “property “is true only for n = 3 . However in the demonstration 
suggested one utilizes the premise (distorted) according to which for m + 4  the property 
would be true. To complete the proof by recurrence it would have been necessary to be 
able to prove that P(3) ⇒ P(4) , which is not possible since P(3)  is true but the 
counterexample proves that P(4)  is false. 
 
 

A CLASS OF PARADOXES 
 
 Let A be an attribute and non-A its negation. 
 
 P1. ALL IS ”A”, THE “NON-A” TOO. 
 Examples: 

 E11 : All is possible, the impossible too. 
 E12 : All are present, the absentee too. 
 E13 : All is finite, the infinite too. 
  
 P2. ALL IS “NON-A”, THE “A” TOO. 
 Examples: 

 E21 : All is impossible, the possible too. 
 E22 : All are absent, the present too.  

E23 : All is infinite, the finite too. 
 
P3. NOTHING IS “A” NOT EVEN THE “A”. 
Examples: 

 E31 : Nothing is perfect, not even the perfect. 
 E32 : Nothing is absolute, not even the absolute.  

 E33 : Nothing is finite, not even the finite. 
 

 Remark: P1 ⇔ P2 ⇔ P3 . 
 More generally: ALL (verb) “A”, the “NON-A” too. 
 Of course, from these appear unsuccessful paradoxes, but the proposed method 
obtains beautiful ones. 
 Look at a pun, which reminds you of Einstein: 
 All is relative, the (theory of) relativity too! So: 
 The shortest way between two pints is the meandering way! 
 The unexplainable is, however, explained by this word: “unexplainable”! 
 
 
 [Presented at “The Eugene Strens Memorial on Intuitive and Recreational 
Mathematics and its History”, University of Calgary, Alberta, Canada; July 27 – August 
2, 1986. 
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 Partially published in “Beta”, Craiova, 1987; “Gamma”, Braşov, 1987; and 
“Abracadabra”, Salinas (California), USA, 1993-4.]  
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