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v

PREFACE

This volume is based on selected talks — invited, thematic and con-

tributory — delivered during the Satellite Conference of the International

Congress of Mathematicians 2010 on Mathematics in Science and Tech-

nology, held in New Delhi, India, 14–17 August 2010, sponsored by ICM

2010; Department of Science and Technology (DST); National Board of

Higher Mathematics (NBHM); Council of Scientific and Industrial Research

(CSIR); Defense Research and Development organization (DRDO), Govern-

ment of India; Sharda University, Greater Noida, India; Abdus Salam Inter-

national Centre for Theoretical Physics, Trieste, Italy (a UNESCO centre);

International Council of Industrial and Applied Mathematics (ICIAM);

Commission of Development and Exchanges (CDE-IMU), and the Indian

Society of Industrial and Applied Mathematics (ISIAM). The volume is di-

vided into three parts; Part A contains Chaps. 1–8 based on invited talks by

international experts, who have made valuable contributions in their fields

of research. Part B, comprising of Chaps. 9–16, is based on thematic review

papers by scholars actively engaged in the study of related areas. Four peer

reviewed contributory talks are included as Chaps. 17–20 forming Part C.

Chapter 1 is the Dr. Zakir Husain award lecture by the recipient of the

Dr. Zakir Husain award 2010, Prof. M. Zuhair Nashed, University of Central

Florida, USA. In the technical part of his chapter, he presents the common

thread among inverse problems, signal analysis and moment problems. This

effort is related to the recovery of an object (function, signal or picture)

from partial or indirect information about the object. He has provided a

broad prospective on some aspects of this interaction with emphasis on

ill-posed problems in signal processing.

In Chap. 2, Prof. Phoolan Prasad, along with one of his research

collaborator, K. R. Arun, has presented a beautiful account of Kinetic

Conservation Laws (KCL), or equations of evolutions for curves and sur-

faces with their application to a nonlinear wave front giving numerical

simulation. In Chap. 3, Prof. V. Mehrmann, jointly with his co-workers

J. Heiland and M. Schmidt has presented an interesting framework for the
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direct discretization of the input/output map of dynamical systems gov-

erned by linear partial differential equations with distributed inputs and

outputs. Global error estimates and applications to the optimal control of

partial differential equations, particularly for the 2D heat equation, are dis-

cussed. In Chap. 4, Prof. Pavel Exner has given a delightful description of

the physical meaning of quantum graph models through analysis of their

vertex coupling approximations.

Prof. R. Lozi of France, known for the strange attractor as the Lozi

map, has given a lucid presentation on “Complexity Leads to Randomness

in Chaotic Systems” in Chap. 5. In Chap. 6, Prof. N. Rudraiah has drawn

the attention to certain important real world problems, where mathemat-

ical concepts can play important role. He highlights, among other topics,

the role of mathematical modeling in nanotechnology. Prof. O. P. Bhutani,

jointly with Lipika Chowdhary, presents a study on equivalence transfor-

mations of a Helmholtz-type equation in Chap. 7.

In Chap. 8, Prof. U. B. Desai and his research associates have focused

on emerging areas of communication technology and the challenging math-

ematical problems in the area. Cognitive Radio (CR) is a challenging field

of wireless communication. In this chapter, the authors have investigated

the optimal power allocation problem for an orthogonal frequency division

multiplexing based CR.

Part B comprises of eight thematic reviews, Chaps. 9–16. These are:

1. Inverse Problems of Parameter Identification in Partial Differential Equa-

tions (B. Jadamba, A. A. Khan and M. Sama); 2. Finite Element Methods

for HJB Equations (M. Boulbrachene); 3. Dynamics and Control of Under-

actuated Space Systems (K. D. Kumar and Godard); 4. Some New Classes

of Inverse Coefficient Problems in Engineering Mechanics and Computa-

tional Material Science Based on Boundary Measured Data (A. Hasanov);

5. Some Recent Developments on Mathematical Aspects of Wavelets

(P. Manchanda and Meenakshi); 6. Relevance of Wavelets and Inverse Prob-

lems to Brain (A. H. Siddiqi, H. K. Sevindir, Z. Aslan and C. Yazici);

7. Wavelets and Inverse Problems (K. Goyal and M. Mehra); 8. Opti-

mization Models for a Class of Structured Stochastic Games (S. K. Neogy,

S. Sinha, A. K. Das and A. Gupta).

Chapter 9 deals with inverse problems which is a vibrant and fast pro-

gressing theme that has found numerous significant applications. Twelve

methods to solve a class of inverse problems along with applications are

discussed. New avenues of research in this field are indicated. The theme is

quite relevant to emerging problems of science and technology. In Chap. 10,
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recent progress in the finite element approximation of HJB (Hamilton–

Jacobi–Bellman) equations are reviewed and open problems are mentioned.

Chapter 11 is devoted to the feasibility of achieving reliable formation con-

trol without the need for thrust in the radical or along-track direction. The

advantages of the control method considered in this paper are validated

via numerical simulations. Updated results are reviewed on the theme of

relative motion control of multiple space craft formations using thrusters

in fully actuated configuration.

In Chap. 12, three classes of inverse coefficient problems arising in engi-

neering mechanics and computational material science are considered. The

first problem is related to the determination of unknown elasto-plastic prop-

erties of a beam from limited number of torsional experiments. The second

problem is related to the identification of elasto-plastic properties of a 3D

body from spherical identification test while the third one relates to identi-

fication of unknown coefficient in the nonlinear bending equation. Besides

the solutions of these problems, their applications are also discussed.

In Chap. 13, three theoretical aspects of wavelets are considered. These

are (i) The effect of replacing the set of integers of translation parame-

ters by its subset that is not a group in the definition of scaling function,

an important ingredient of multi-resolution analysis known as the heart of

wavelet theory. (ii) Consequences of replacing the set of real numbers by the

set of positive real numbers in the definition of multi-resolution analysis.

(iii) Properties of wavelets obtained by vector-valued multi-resolution anal-

ysis. Results obtained by these modifications are reviewed. Applications

of wavelets and inverse problems, particularly to EEG (signal representing

functioning of brain) are reviewed in Chap. 14. In Chap. 15, certain as-

pects of inverse problems and wavelets are discussed. Chapter 16 presents

an updated description of optimization models for a class of Structured

Stochastic Games.

Part C consists of four peer reviewed contributory chapters, 17–20.

Chapter 17 by Q. J. Khan and M. Al-Lawatia develops a mathematical

model of an interesting real world problem, namely Predator-Prey rela-

tions for mammals in a special situation. Chapter 18 by G. Röst deals with

SEI model with varying transmission and mortality rate. Chapter 19 by

B. S. Kushvah presents the study of Trajectories and Stability Regions. In

Chap. 20, Wasu and Rajvanshi present their study of MHD flow past an

infinite plate under the effect of gravity modulation.

A complete list of dignitaries and persons who participated actively in

the conference is given at the end of this volume.
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FOREWORD

As scientific disciplines go, Physics, Chemistry, Biology and Mathemat-

ics are reasonably well-organized in India. Applied Mathematics, on the

other hand, has not yet received its share of recognition. The reason is

partly that it continues to be seen as watered down version of Mathe-

matics, or outdated Theoretical Physics, or a somewhat distant — and

sometimes irrelevant — cousin of Engineering and Technology. This should

change: as the need for modeling and understanding of the increasingly

complex phenomena of our times becomes more pressing, so should the

role of Applied Mathematics expand. Applied Mathematics as a discipline

includes the application of known mathematics to practical and scientific

problems as well as the invention of new mathematics with applications

in mind.

Applied Mathematics often feeds Mathematics proper, and, indeed,

many first-rate mathematics departments and research institutes in the

world have begun to appreciate this fact. Indeed, some never wavered in

this belief. Needless to say, Applied Mathematics has a vital role to play in

diverse areas of engineering, energy, material science, geological and geo-

physical sciences, biological sciences including medicine, social sciences in-

cluding economics, and so forth. This is why the work of the Indian Society

of Industrial and Applied Mathematics (ISIAM), is very important — espe-

cially at a time when the country is engaged in technological rejuvenation.

This is indeed why the Society deserves, and needs, your support.

Thanks to Professor Siddiqi, I got involved in this society a few years

ago, and wish to take this opportunity to say a few words on the progress

made and the work that still remains to be done.

We greatly appreciate the support of the International Mathematical

Union, whose main Congress was held in Hyderabad and whose satellite

conference was held in Delhi. This volume is the result of the latter. The

collection of articles presented in this volume is a measure of the vitality

of the community, and of the standard of this conference in particular.

We also thank Sharda University, various government agencies which have
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supported this meeting, the constant background support of ICIAM, the

support of the international and national communities of mathematicians,

and the support of the community as a whole.

Owing to the efforts of the office bearers of this Society, which includes

Professors Siddiqi, Gupta, Dikshit, Manchanda and others from the past,

the scientific meetings of ISIAM are constantly improving: the invited talks

are usually first-rate, Zakir Husain awardees are of high caliber, the fund-

raising has become less stochastic, ISIAM’s reach and scope have been

expanding, and so forth. I congratulate the Society on its emergence as an

increasingly professional organization which has been forging ever strength-

ening links within India and internationally. Let us not forget, however,

that there are many aspects which need improvement. It is these aspects to

which I will now draw attention, while being fully aware that the outlook

towards reaching these goals appears good.

The following aspects have not changed much. Applied Mathematics

is still not yet a well-organized and well-knit community within the coun-

try, in comparison with its importance. The participation of the members

of this community in the technological development within the country is

yet to reach a critical level; and applied mathematics graduate students,

whose numbers seem to have increased recently, do not find satisfying jobs

quickly enough. Applied Mathematics in India has not yet made central

contributions to the grand challenges of our times: climate change, new

materials, energy, problems of megacities, ground water depletion, spread

of infectious diseases, ever-changing economic environment, security, etc.

The overall quality of research in Applied Mathematics, whether on the

applications front or in feeding mathematics proper, has not yet reached

the high level that it should. The connection between the methods of Ap-

plied Mathematics and the advances on the computational front is still not

strong. There is a real opportunity here for the Applied Mathematics com-

munity because of the confluence of the importance of the subject and the

timeliness and availability of resources. We could make this an exciting time

for us and for the subject.

Please don’t get me wrong or think of me as being overly critical. I be-

lieve that there are accomplished applied mathematicians in this country.

Indeed, ISIAM has itself honored a number of them — including some at

this meeting. There are also some first-rate students in applied mathemat-

ics. My point is simply that the quality is not sufficiently uniform, that

the average level is not sufficiently high, the numbers too small and the

visibility too low. We should strive to improve the situation on all fronts.
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In this task, the role of senior mathematicians is to open up new av-

enues, inspire younger people and mentor them well, in both their research

and careers, and eventually build groups in which rigor, accomplishment,

creativity and quality are valued above all, and the potential of the younger

people can be explored fully and without hurdles. There are some wonderful

people of this sort in the country but there are not enough of them. The role

of young mathematicians is to take serious interest in their subject, develop

technical skills of high order, and do competitive mathematics. They should

understand that mathematics is not a local activity in which to dabble, but

is an international arena in which one has to play and excel. Recognition

will come in due course: as in other arenas of human activity, there are

many quirks that may seem discouraging, but one has to look past them.

There is no ready-made recipe for this situation to work itself out; it

requires hard and dedicated work. The first important need, however, is the

spirit of learning, of placing one’s own work as part of a bigger landscape,

and the willingness to work single-mindedly towards creating one’s own

landscape. Hardly are great things possible without this spirit and hard

work — especially in mathematics. While it is not possible to do good

Applied Mathematics without knowing Mathematics, it is not enough to

know good Mathematics; one has to move in circles where applications

present themselves as opportunities.

The second important element is to ensure that there is adequate sup-

port for younger researchers. This is where ISIAM can and should do more.

It ought to build not only the spirit of doing Applied Mathematics and

create a culture in which ideas and their interplay with applications are

valued, but also enable better support structure for the discipline. It will

have done very well then. I have no doubt that its work will be amply

rewarded.

K. R. Sreenivasan

New York University

December 31, 2010
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IN APPRECIATION OF DR ZAKIR HUSAIN AWARD

M. ZUHAIR NASHED

Department of Mathematics, University of Central Florida, Orlando, FL 32816

During 21–25 January 2001, an International Conference combined with

the 6th biennial meeting of the Indian Society of Industrial and Applied

Mathemaitcs (ISIAM) was organized at Guru Nanak Dev University, Am-

ritsar, India. The conference was very well organized, thanks to the superb

organizational skills and generous hospitality of Professors A. H. Siddiqi

and P. Manchanda. I had the pleasure of being one of the invited speakers

from outside India. At that meeting, the first Dr. Zakir Husain award was

given to Professor Jagat Narain Kapur. I was sitting in the audience when

tribute was paid to the late Dr. Zakir Husain, the third President of the

Republic of India, a distinguished scholar, and great humanitarian. It never

occurred to me while listening to the citation for Dr. Zakir Husain Award

to Professor Kapur that one day I might be a recipient of this award. But

here I am 10 years later: honored and delighted! On such occasion, one is

tempted to look up the roster of previous recipients of the award:

• Professor Jagat Narain Kapur, Indian Institute of Technology Kan-

pur, India

• Professor Helmut Neunzert, University of Kaiserslautern, Germany

• Professor Katepalli R. Sreenivasan, Director of Abdus Salam In-

ternational Centre of Theoretical Physics, Italy

• Professor Roddam Narasimha, FRS, Indian Institute of Sciences

Banglore, India

• Professor Hanuman Prasad Dikshit, Good Governance & Planning,

Government of MP, India

I am grateful to the distinguished members of the Selection Committee

comprising of Professor K. R. Sreenivasan (Courant Institute, New York

University), Professor H. P. Dikshit (Ex-President of ISIAM), Professor N.

K. Gupta (Vice President of the Indian National Science Academy and cur-
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rent President of ISIAM), Professor P. Manchanda (Joint Secretary, ISIAM)
for their recommendation.

Over the past three decades, it has been my pleasure to interact and col-
laborate with many Indian mathematicians at major institutions in India.
I served as mentor or external examiner of the Ph. D. dissertations of sev-
eral young mathematicians at various IITs and other universities in India.
I encouraged them to explore modern areas of applied and computational
mathematics, including inverse and ill-posed problems, integral equations,
optimization theory, and various applications of functional analysis. I have
visited India many times. I gave invited/plenary lectures at seven inter-
national conferences, and delivered lectures at IIT Bombay, IIT Kanpur,
Guru Nanak Dev University Amritsar, JMI New Delhi, University of Delhi,
and Goa University.

I have co-edited a volume of invited papers dedicated to the memory of
Arum Kumar Varma (1934–1994), and a volume dedicated to the memory
of Ambikeshwar Sharma (1920–2003). I have collaborated with K. M. Furati
and A. H. Siddiqi in editing a volume on mathematical models for real world
systems.

It has been a privilege for me to make contributions to promote the aims
and objectives of the Indian Society of Industrial and Applied Mathematics
since its inception.

I am very grateful to ISIAM for the Dr. Zakir Husain award. It is a
great honor for me. Thank you.

Technical Lecture

Inverse Problems, Moment Problems, Signal Processing:
Un Menage a Trois

Keywords: Inverse Problems; Moment Problems; Signal Processing.

1. Introduction

Inverse problems deal with determining, for a given input-output system,
an input that produces an observed output, or determining an input that
produces a desired output (or comes as close to it as possible), often in
the presence of noise. Most inverse problems are ill-posed. Signal analy-
sis/processing deals with digital representations of signals and their analog

50777_8063 -insTexts#150Q.indd   250777_8063 -insTexts#150Q.indd   2 6/8/11   7:33 PM6/8/11   7:33 PM



3

reconstructions from digital representations. Sampling expansions, filters,
reproducing kernel spaces, various function spaces, and techniques of func-
tional analysis, computational and harmonic analysis play pivotal roles in
this area.

Moment problems deal with recovery of a function or signal from its mo-
ments, and the construction of efficient stable algorithms for determining
or approximating the function. Again this is an ill-posed problem. Interre-
lated applications of inverse problems, signal analysis and moment problems
arise, in particular, in image analysis and recovery, and in many areas of
science and technology. Several decades ago the connections among these ar-
eas (inverse problems, signal processing, and moment problems) was rather
tenuous. Researchers in one of these areas were often unfamiliar with the
techniques and relevance of the other two areas.

The situation has changed drastically in the last 25 years. The common
thread among inverse problems, signal analysis, and moment problems is
a canonical problem: recovering an object (function, signal, picture) from
partial or indirect information about the object. In this talk, we will pro-
vide perspectives on some aspects of this interaction with emphasis on ill-
posed problems in signal processing. We will show that function spaces, in
particular reproducing kernel spaces, shift-invariant spaces and translation-
invariant spaces, play a pivotal role in sampling expansions.

2. Inverse Problems

Given two normed spaces X, Y and a mapping A : X �−→ Y , we consider
three problems:

(1) Direct problem: Given x ∈ X, find Ax ∈ Y .
(2) Inverse problem: Given an observed output y, find an input x that

produces it (i.e., y = Ax), or that produces an output as “close” to the
output y as possible (i.e., x = argminu∈X‖Au − y‖2).

(3) Identification or modelling problem: Determine or estimate the
mapping A from a collection of input-output information.

We consider next the notion of a well-posed problem

A : X ∈ x �−→ Ax = y ∈ Y. (1)

The problem (1) is said to be well-posed if for each “data” y in the data
space Y , the above equation (1) has one and only one solution, and the
solution depends continuously on y. A well-posed problem is also known as
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a properly-posed problem. Pillars of well-posedness of an inverse problem
include existence, uniqueness and continuous dependence.

The ill-posed problems, or improperly-posed problems, violate one of
the three requirements of existence, uniqueness or continuous dependence.
Many ill-posed problems arise in partial differential equations and integral
equations of the first kind.

The definition of ill-posed problems is due to Jacques Hadamard (1865–
1963). He dismissed improperly-posed problems as irrelevant to physics or
real world applications, but he was proven to be wrong four decades after
his declaration. Once called “the living legend of mathematics”, Jacques
Hadamard had a tremendous influence on the development of mathematics,
see Jacques Hadamard, A Universal Mathematician by Vladimir Mazya and
Tatyana Shaposhnikova for a fascinating biography on his life and legendary
contributions.

Fig. 1. The cover page of the book Jacques Hadamard, A Universal Mathemati-
cian by Vladimir Mazya and Tatyana Shaposhnikova, American Mathematical So-
ciety and London Mathematical Society, 1998. The cover page is downloaded from
http://www.maa.org/reviews/hadamard.html

The following example dramatizes the difference between direct and
inverse problems.

(1) Direct problem: You ask a question and hear an answer.
(2) Inverse problem: You heard an answer. What is the question?
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J. G. Keller in the interesting paper∗ published in the American Math-
ematical Monthly gave the following example of this dramatization: You
heard the answer “Washington, George”.

What is the question?
If you know the history of the United States, you will definitely say

“Who was the first president of the United States?”
In this case as Keller writes, the question is different. President George

Bush (Senior), during his term as Vice President, asked Nancy Reagan,
“What is the capitol of the USA? Nancy.”

This example also illustrates the importance of using a priori informa-
tion in the possible resolution of ill-posed inverse problems.

Here is a serious example of an interesting inverse problem. In 1966,
Marc Kac posed the question “Can you hear the shape of a drum?”† More
precisely, can you deduce the shape of a plane region by knowing the fre-
quencies at which it resonates (where, as in a physical drum, the boundary
is assumed to be held fixed)? Long before Kac posed this question, math-
ematicians had been investigating the analogous question in higher dimen-
sions: Is a Riemannian manifold (possibly with boundary) determined by
its spectrum?

The problem was first settled, in the negative, in higher dimensions. In
1964, John Milnor found two distinct 16-dimensional manifolds with the
same spectrum (Milnor received the Field medal for his contributions). But
the problem for plane regions remained open until 1991, when Carolyn
Gordon, David Webb, and Scott Wolpert found examples of distinct plane
“drums” which “sound” the same, see Figure 2. The story of the problem
and its solution can be found in the article You Can’t Always Hear the Shape
of a Drum by Barry Cipra, which appeared in Volume 1 of What’s Happen-
ing in the Mathematical Sciences, http://www.ams.org/samplings/math-
history/happening-series.

Marc Kac received the Lester Ford Award and the Chauvenet Prize
from the Mathematical Association of America in 1967 and 1968 respec-
tively. He gave lectures at many universities on the theme “Can you hear
the shape of a drum?” At one lecture he gave in Amsterdam, there were
many psychologists in the audience, who never attended mathematical col-
loquia. The colloquium chair mathematician approached the psychologists

∗J. G. Keller, Inverse problems, The American Mathematical Monthly, Vol. 83, 1976,
107–118.
†M. Kac, Can one hear the shape of a drum? The American Mathematical Monthly, Vol.
73, 1966, pp. 1–23.
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Fig. 2. David Webb (left) and Carolyn Gordon (right) hold paper models of a pair of
“sound-alike” drums. The picture is downloaded from http://www.ams.org/ samplings
/feature-column/fcarc-199706

and asked “How are you interested in this talk?” They replied that the title
of the talk in the announcement they received is “Can you hear the shape
of a dream?”

3. Recovery problems from partial or indirect information

Let f be a signal belonging to an n-dimensional Hilbert space H of functions
on a domain Ω,

f(x) =
n∑

i=1

ciui(x), x ∈ Ω (1)

where {u1, . . . , un} is a basis for H.
Consider two simple recovery problems. The first problem is the recovery

of a signal f from its moments. Suppose we know the moments

αj = 〈f, wj〉, j = 1, 2, . . . , n. (2)

Then it follows from (1) and (2) that
n∑

i=1

ci〈ui, wj〉 = αj , j = 1, . . . , n,

where {w1, . . . , wn} is a given linear independent set. In particular, if the
two systems {ui}n

i=1 and {wj}n
j=1 are bi-orthogonal, or if we assume that

wi = ui, 1 ≤ i ≤ n, and {u1, . . . , un} is orthonormal, then ci = 〈f, ui〉. This
leads to the Fourier expansion

f(x) =
n∑

i=1

〈f, ui〉ui(x). (3)
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The second problem is the recovery of a signal f from its evaluations.
Suppose that {f(xj)}m

j=1 are given. Note that

f(xj) =
n∑

i=1

ciui(xj), j = 1, . . . , n

by (1). If we assume that {ui}n
i=1 is a discrete orthonormal sequence; i.e.,

ui(xj) = δij where δij stands for the Kronecker symbol, then we have the
sampling expansion

f(x) =
n∑

i=1

f(xi)ui(x). (4)

We notice that both the Fourier expansion (3) and the sampling expan-
sion (4) are of the form

f(x) =
n∑

i=1

li(f)ui(x), (5)

where li, 1 ≤ i ≤ n, are continuous linear functions.
These two problems take markedly different generalizations for infinite

dimensional spaces. In the next section, we consider such a generalization
for the sampling expansion of band-limited functions on the real line.

4. Whittaker-Shannon-Kotelnikov sampling theorem

Consider the problem of ideal sampling

f �−→ (f(γ))γ∈Γ,

where Γ is a set at which the signal f is sampled. A special case is the
uniform sampling on the real line:

f �−→ (· · · , f(−2), f(−1), f(0), f(1), f(2), · · · ).

Denote the space of square-integrable functions band-limited to [−π, π] by
Bπ; i.e.,

Bπ := {f ∈ L2(R) : suppf̂ ⊂ [−π, π]}

=
{∫ π

−π

e−ixtg(x)dx : g ∈ L2(−π, π)
}

,

where f̂ denotes the Fourier transform of f . The linear space Bπ is
also known as the Paley-Wiener space. The following classical Whittaker-
Shannon-Kotelnikov sampling theorem says that any signal band-limited
to [−π, π] can be stably recovered from its samples on integers.
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Theorem 4.1. If a square-integrable function f is bandlimited to [−π, π],
then f can be reconstructed from its samples, f(k), that are taken at the
equally spaced nodes k on the time axis R. Moreover,

‖f‖2
2 =

∑
k∈Z

|f(k)|2, (1)

and

f(t) =
∞∑

k=−∞
f(k)

sin(t − k)π
(t − k)π

, t ∈ R, (2)

where the series is absolutely and uniformly convergent on any compact set
of the real line.

Proof. The following proof is very elementary but does not reveal the core
of sampling theory. Let f ∈ Bπ. Then

f(t) =
1
2π

∫
R

F (w)e−iwtdω =
1
2π

∫ π

−π

F (w)e−iwtdω

for some square-integrable function F supported on [−π, π]. Extending F

periodically to (−∞,∞) and then using the complex Fourier expansion of
the extension lead to

f(t) =
1
2π

∫ π

−π

( ∞∑
n=−∞

c(n)eiωn
)
e−iωtdω,

where

cn =
1
2π

∫ π

−π

F (ω)e−iωndω = f(n), n ∈ Z.

Interchanging the summation and the integral then gives

f(t) =
1
2π

∞∑
n=−∞

f(n)
∫ π

−π

eiωne−iωtdω

=
∞∑

n=−∞
f(n)

sin(t − k)π
(t − k)π

.

This proves the reconstruction formula (2).

Harry Nyquist, Arne Beurling and Paul Butzer have also made funda-
mental contributions to sampling theory and applications.
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Fig. 3. Edmund Taylor Whittaker (left, 1873–1956) Claude Elwood Shannon (middle,
1916-2001), and and Vladimir Aleksandrovich Kotelnikov (right, 1908–2005). The pic-
tures are downloaded from http://www-history.mcs.st-and.ac.uk/Ledermann/Ch5.html;
http://en.wikipedia.org/wiki/Claude Shannon; and http://www.mentallandscape.com/
V Biographies.htm respectively.

Fig. 4. Harry Nyquist (left, 1889–1976), Arne Carl-August Beurling (middle, 1905-
1986) and Paul Butzer (right). The pictures are downloaded from http://www.s9.com/
Biography/Nyquist-Harry, http://www-history.mcs.st-and.ac.uk/Mathematicians/
Beurling.html and http://versita.com/butzer/ respectively

5. Engineering approach to Whittaker-Shannon-Kotelnikov
sampling theorem

Engineers look at the Whittaker-Shannon-Kotelnikov sampling theorem by
using two operations: the sampler S : f(t) �−→ f∗(t) and the low-pass filter
P : f∗(t) �−→ f(t), where

f∗(t) =
∞∑

n=−∞
f(n)δ(t − n) (1)
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and δ is the delta distribution (or impulse function at the origin). A low-
pass filter passes all frequencies of absolute value less than π and stops all
others, which converts f∗ back into f .

This approach has mathematical difficulties which are not resolved in
formal engineering approach.

(1) The sampler S takes f into f∗ which is out of the space of band-limited
functions, indeed, f∗ is not a signal with finite energy.

(2) In what sense does the above series (1) for f∗ converge? The series (1)
has the convergence in S ′, the space of all tempered distributions.

(3) The map P , which corresponds to passing the “signal” f∗ through a
low-pass filter, recovers f at least formally since

P (δ(t − n)) =
1
2π

∫ π

−π

e−iωteiωndω =
sin π(t − n)

π(t − n)
,

and if P is continuous, then

(Pf∗)(t) =
∞∑

n=−∞
f(n)P (δ(t − n)) =

∞∑
n=−∞

f(n)
sinπ(t − n)

π(t − n)
.

However, since S ′ is not a Hilbert space, we do not know if P is a
continuous projector.

(4) Still another difficulty! P is not well-defined on S ′. Indeed,

Pg = F−1(χ[−π,π]ĝ), g ∈ S ′,

where F−1 is the inverse Fourier transform. So P corresponds under
the Fourier transform to the multiplication of the Fourier transform
ĝ in S ′ by the characteristic function of [−π, π]. Unfortunately, such
functions are not multipliers in S ′. Hence we need to restrict ourselves
to a subspace of S ′ in which the characteristic function is a multiplier.

These issues have been resolved in my joint work with Gilbert Wal-
ter.‡ We obtain a rigorous proof of the engineering approach in appropriate
function spaces. This actually leads to a more general unifying approach
for sampling theorems in reproducing kernel Hilbert spaces, that will be
discussed in the next section.

‡M. Z. Nashed, and G. G. Walter, General sampling theorems for functions in reproduc-
ing kernel Hilbert spaces, Math. Control Signals Systems, Vol. 4, 1991, pp. 363–390.
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6. Sampling in reproducing kernel Hilbert spaces

Before we state one of those theorems, we recall the definitions of two
function spaces.

The Sobolev space Hr, r ∈ R, is the set of all tempered distributions
f(t) whose Fourier transform f̂(ω) are square-integrable with respect to
the weight function (1 + |ω|)r; i.e.,∫

R

|f̂(ω)|2(1 + |ω|2)rdω < ∞.

One may show that the delta “function” δ belongs to Hr for r < −1/2,
and that if {f(n)}∞n=−∞ converges to zero as n tends to infinity sufficiently
rapidly, then the series

∑∞
n=−∞ f(n)δ(t − n) converges in H−1.

Fig. 5. Sergei L. Sobolev (1908-1989). The picture is downloaded from
http://en.wikipedia.org/wiki/Sergei Sobolev

Let F be a family of functions with domain S and t be a given point in
S. The linear map Et : f �−→ f(t) is called the evaluation functional at t.
For computing and numerical analysis it is important that the evaluation
functional is also continuous, but this is not always the case, for instance,
F = L2(S).

A reproducing kernel Hilbert space, or RKHS for short, is a Hilbert space
H of functions on a set S in which all the evaluation functionals Et, for
each fixed t in S, are continuous; i.e.,

|f(t)| ≤ Ct‖f‖

where the constant Ct is independent on f ∈ H. From the Riesz represen-
tation theorem, there exists kt ∈ H such that f(t) = 〈f, kt〉. Define the
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reproducing kernel (RK) by

k(t, s) = 〈kt, ks〉.

Now we state a representative sampling theorem for signals in a repro-
ducing kernel Hilbert space.

Theorem 6.1. Let HQ be a reproducing kernel Hilbert space that is a sub-
space of L2(R) and is closed in the Sobolev space H−1 and under differ-
entiation. Let the reproducing kernel k(s, t) of the space HQ be continuous
and have the zero sequence {tk} which is a set of uniqueness for HQ, and
assume that {tn} tends to infinity as n tends to infinity. If f ∈ HQ satisfies
f(t)/k(t, t) = O(t−2), then the sampled sequence

f∗(t) =
∑

n

f(tn)δ(t − tn)/k(tn, tn)

converges in the sense of H−1 and its orthogonal projection onto HQ equals
to f(t), and the series

f(t) =
∑

n

f(tn)k(tn, t)/k(tn, tn)

converges uniformly on sets for which k(t, t) is bounded.

Fig. 6. M. Zuhair Nashed (left) and Gilbert G. Walter (right). The pictures are down-
loaded from http://www.math.ucf.edu/ znashed/ and https://pantherfile.uwm.edu/
ggw/www/ respectively.

The Paley-Wiener space Bπ of functions has many interesting properties
which are not exploited or even used in the classical proof the Whittaker-
Shannon-Kotelnikov sampling theorem. Among those properties, we men-
tion that
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(1) Bπ is a reproducing kernel Hilbert space with the reproducing kernel
k(t, s) = sin π(t−s)

π(t−s) .
(2) The sequence {Sn}n∈Z where Sn = k(t, n) constitutes an orthonormal

basis for Bπ.
(3) The sequence {Sn}n∈Z has the discrete orthogonality property:

Sn(m) = δnm for all m,n ∈ Z.
(4) f(· − c) ∈ Bπ and ‖f(· − c)‖2 = ‖f‖2 for any f ∈ Bπ and c ∈ R. Hence

Bπ is a unitarily translation-invariant subspace of L2(R).

Abstraction of some of these properties are used as pivotal elements in
general approaches to nonuniform sampling, as we shall see in the following
section.

7. Sampling in unitarily translation-invariant spaces

We describe another approach of sampling theorem, where the unitary
translation-invariance property of the space plays a pivotal role.

Within this framework we are able to exploit Gershgorin’s theorem and
results on Toeplitz matrices. To be more specific, we study sampling prob-
lems on reproducing kernel Hilbert spaces with reproducing kernel

k(t, u) =
∫ ∞

−∞
φ(x − t)φ(x − u)dx,

where φ is integrable and square-integrable and its Fourier transform φ̂ does
not have real zeros.

Given a function f from a reproducing kernel Hilbert space H with
kernel k(t, u) and an infinite set S of distinct sampling points {tj}j∈J , under
mild conditions, the sampling map f �−→ {f(tj)}j∈J and the recovery map
{f(tj)}j∈J �−→ f are both continuous. Hence there are positive constants
C1 and C2 such that

C1‖f‖ ≤
(∑

j∈J

|f(tj)|2
)1/2

≤ C2‖f‖ for all f ∈ H. (1)

The preservation of the above inequalities (1) is essential to the derivation
of a sampling expansion. The requirement that f belongs to a reproducing
kernel Hilbert space H allows us to state the inequalities in terms of the
boundedness and strict positivity of the so-called symbol function.

A sequence {fj}j∈J of a separable Hilbert space H is said to be a Riesz
basis in H if it is obtained from an orthonormal basis in H by applying a
boundedly invertible linear operator. Note that for a Riesz basis {fj}j∈J
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of a separable Hilbert space H there are positive constants A and B such
that

A
∑
j∈J

|cj |2 ≤
∥∥∑

j∈J

cjfj

∥∥2 ≤ B
∑
j∈J

|cj |2 for all (cj)j∈J ∈ 	2(J).

Given a reproducing kernel Hilbert space H with reproducing kernel
k(·, ·) and an infinite set S of distinct sampling points {tj}j∈J , define the
Gram matrix G := (〈kti

, ktj
〉)i,j∈J = (k(ti, tj))i,j∈J . Then one may ver-

ify that the Gram matrix G is a positive semi-definite linear operator on
	2(J). We state a representative sampling theorem for translation-invariant
reproducing kernel Hilbert spaces.

Theorem 7.1. Let {tj}j∈J be infinite many sampling points in S, H be a
reproducing kernel Hilbert space of functions on S with reproducing kernel
k(·, ·), and let kt(·) = k(t, ·). Then the following statements are equivalent:

(i) There exist positive constants A and B such that the inequalities (1)
hold and no such relation holds for any proper subset of the sampling
points.

(ii) {ktj
}j∈J is a Riesz basis for H.

(iii) The sequence of functions {ktj
}j∈J is complete and the Gram matrix

(k(ti, tj))i,j∈J is a bounded self-adjoint operator and strictly positive.

If any one of the above three conditions holds, we have the following sam-
pling expansion

f(t) =
∑
j∈J

f(tj)
k(tj , t)
k(tj , tj)

.

8. Other extensions

There are various extensions of the Whittaker-Shannon-Kotelnikov sam-
pling theorem. In the following, we consider the sampling expansion for
signals in a shift-invariant space and for signals with finite rate of innova-
tion.

8.1. Sampling in shift-invariant spaces

First we recall the definition of a shift-invariant space,

V2(φ) :=
{∑

n∈Z

c(n)φ(· − n) :
∑
n∈Z

|c(n)|2 < ∞
}

,
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generated by a square-integrable function φ. Usually we assume that {φ(·−
n) : n ∈ Z} is a Riesz basis for V2(φ); i.e., there exist positive constants A

and B such that

A
∑
n∈Z

|c(n)|2 ≤
∥∥∥∑

n∈Z

c(n)φ(· − n)
∥∥∥2

2
≤ B

∑
n∈Z

|c(n)|2.

The Paley-Wiener space Bπ is a shift-invariant space generated by the sinc
function,

Bπ = V2(sinc) =
{∑

n∈Z

c(n)sinc(· − n) :
∑
n∈Z

|c(n)|2 < ∞
}

,

where sinc(t) = sin πt
πt . The following is a sampling theorem for signals in a

shift-invariant space V2(φ):

f(t) =
∑
n∈Z

f(n)φ̃(t − n), f ∈ V2(φ)

where φ̃ ∈ V2(φ).§ Some fundamental contributions to sampling theory
in shift-invariant spaces have been made by Akram Aldroubi, Karlheinz
Gröchenig, Michael Unser and others.

Fig. 7. Akram Aldroubi (left), Karlheinz Gröchenig (middle) and Michael Unser (right).
The pictures are downloaded from http://www.math.vanderbilt.edu/people/aldroubi,
http://www.univie.ac.at/nuhag-php/eucetifa/members.php and http://sti.epfl.ch/page-
1698.html respectively.

§G. G. Walter, A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory,
Vol. 38, 1992, pp. 881–884.
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8.2. Sampling signals with finite rate of innovation

A signal is said to be have finite rate of innovation if it has finite number
of degrees of freedom per unit of time, the number of samples per unit of
time to specify it.¶

Prototypical examples of signal with finite rate of innovation include
delta pulses, non-uniform splines, narrow pulses in ultrawide band commu-
nication, mass spectrometry data in medical diagnosis etc. It also includes
band-limited signals in the Paley-Wiener space and time signals in shift-
invariant spaces.

Signals with finite rate of innovation have a parametric representation
with a finite number of degrees of freedom per unit time. A function space
modeling signals with finite rate of innovation is the following:

V2(Φ) =
{∑

λ∈Λ

c(λ)φλ :
∑
λ∈Λ

|c(λ)|2 < ∞
}

,

where φλ is the response of the impulse at the location λ ∈ Λ.‖ The vector
Φ = (φλ)λ∈Λ is known as the freedom generator, and the rate of innovation
on a ball B is given by the cardinality #(Λ∩B) of the set Λ in the ball B.

The following is a sampling theorem for signals with finite rate of inno-
vation:

f =
∑
γ∈Γ

f(γ)ψ̃γ for all f ∈ V2(Φ)

where for each γ ∈ Γ, the function ψ̃γ reflects the characteristic of the
displayer device at the sampling location γ.∗∗ The concept of signals with
finite rate of innovation is introduced and studied by Martin Vetterli and
his school.
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KINEMATICAL CONSERVATION LAWS (KCL):

EQUATIONS OF EVOLUTION OF CURVES AND

SURFACES
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The d-dimensional (d-D) kinematical conservation laws (KCL) are the equa-

tions of evolution of a moving surface Ωt in R
d
. The KCL are derived in a

specially defined ray coordinates (ξ1, ξ2, . . . , ξd−1, t), where ξ1, ξ2, . . . , ξd−1 are

surface coordinates on Ωt and t > 0 is time. We discuss various properties of

2-D and 3-D KCL systems. We first review the important properties of 2-D

KCL and some of its applications. The KCL are the most general equations in

conservation form, governing the evolution of Ωt with special type of singular-

ities, which we call kinks. The kinks are points on Ωt when Ωt is a curve in R
2

and curves on Ωt when it is a surface in R
3
. Across a kink the normal n to Ωt

and amplitude w on Ωt are discontinuous. From 3-D KCL we derive a system

of six differential equations and show that the KCL system is equivalent to the

ray equations for Ωt. The six independent equations and an energy transport

equation for small amplitude waves in a polytropic gas involving an amplitude

w (related to the normal velocity m of Ωt) forms a completely determined

system of seven equations. We have determined eigenvalues of the system by

a novel method and find that the system has two distinct nonzero eigenvalues

and five zero eigenvalues and the dimension of the eigenspace associated with

the multiple eigenvalue zero is only four. For an appropriately defined m, the

two nonzero eigenvalues are real when m > 1 and pure imaginary when m < 1.

Finally, we have presented an an application of the theory to get evolution of

a nonlinear wavefront by solving the conservation laws numerically.

Keywords: ray theory; kinematical conservation laws; nonlinear waves; con-

servation laws; shock propagation; hyperbolic and elliptic systems; Fermat’s

principle
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1. Introduction

Geometrical features of a curved nonlinear wavefront or a shock front differ

significantly from those of a linear wavefront. Difference is not only in the

nature of singularities which appear on the fronts but also in the shapes

of the fronts topologically. In two-dimensional space, when a linear wave-

front moving with a constant normal velocity is concave to the direction

of motion, a caustic is formed and the wavefront folds as seen in Fig. 1. A

moderately weak converging nonlinear wavefront or a shock front ultimately

takes a topologically different shape without any fold but with special sin-

gularities such that when we move on the front, the normal direction suffers

jump discontinuity across each of these singularities as seen in Fig. 2. The

wave amplitude w of a linear front tends to infinity at a cusp but that of a

nonlinear front or a shock front remains finite everywhere and jumps across

the special singularity, see1 for more details.

Fig. 1. Linear wavefront is shown by broken line, continuous line is the caustic and

dotted lines are rays. Central part of the initial wavefront is a parabola extended on two

sides by tangents. The caustic is of finite extent.

The geometrical features of a nonlinear wavefront and a shock front in

three-dimensional space will be far more complex than what we observe

in Fig. 2 and both fronts will possess curves of discontinuities (what we

called special singularities) across which the normal direction to the fronts

and the amplitude distribution on them will suffer discontinuities. These

are discontinuities of the first kind, i.e. the limiting values of the discontin-

uous functions and their derivatives on the front as we approach a curve
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Fig. 2. Difference in geometrical features of a linear and moderately weak nonlinear

wavefront in 2-D. Broken lines: linear wavefront and rays, continuous lines: nonlinear

wavefronts and rays.

of discontinuity from either side are finite. Such a discontinuity was first

analysed by Whitham2 in 1957, who called it shock-shock, meaning shock

on a shock front. However, as we shall see later that a discontinuity of this

type is geometric in nature and can arise on any propagating surface Ωt,

and we give it a general name kink.

The linear theory of wavefront propagation governed by a linear hyper-

bolic system, say the wave equation is well known, where small amplitude

and high frequency approximations are made. To trace the successive posi-

tions of a nonlinear wavefront governed by a quasi-linear hyperbolic system

we still make the above two approximations to get a tractable system of

approximate equations. In addition, in to order to get the equations which

take into account nonlinear diffraction of rays due to a nonzero gradient of

the wave amplitude w along the front, we need to construct a special pertur-

bation scheme. This method, different from that of Choquet-Bruhat,3 cap-

tures the wave amplitude in the eikonal equation itself. Following Gubkin,4

derivation of such approximate equation for a general hyperbolic system

was given by Prasad.5,6 We quote here 2-D equations of this weakly non-

linear ray theory (WNLRT) for a polytropic gas initially in uniform state
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and at rest in non-dimensionala variables

dx1

dt
= mn1,

dx2

dt
= mn2,

dθ

dt
= −

(
−n2

∂

∂x1
+ n1

∂

∂x2

)
m,

dm

dt
= −

1

2

(
∂n1

∂x1
+

∂n2

∂x2

)
m,

(1)

where n = (cos θ, sin θ) is the the unit normal to the nonlinear wavefront Ωt

and m = 1+ γ+1
2 w its velocity of propagation. Given initial position Ω0 of

the wavefront and a suitable amplitude distribution w0 on it, the successive

positions of the wavefront Ωt can be obtained by numerically solving the

system of equations (1). The extensive numerical results of Ramanathan7

shows a strong diffraction of the nonlinear rays due to non-zero gradient

of the wave amplitude along Ωt in the caustic region and possibility of

formation of kinks. It is to be pointed out that the numerical computation

with (1) cannot be continued when a kink starts appearing on Ωt since

these equations in differential form are not valid at a point of discontinuity.

However, it is possible to follow the computation for some more time and

trace the path of a kink by a bit cumbersome procedure as done by Henshaw

et. al, Kevlahan.8,9 But in order to follow the formation and propagation of

kinks automatically for a very long time, we need a new formulation of the

equations (1). This was the situation when Morton, Prasad and Ravindran

were looking for physically realistic conservation form of equations of (1).

They derived such conservation laws in a specially defined ray coordinates

(ξ, t) and since the conservation laws are derived purely on geometrical

consideration, we call them 2-D kinematical conservation laws or simply 2-

D KCL.10 The mapping from (ξ, t)-plane to (x1, x2)-plane is continuous, a

ξ = const line maps onto a ray and a t = const line onto the front Ωt. When

a discontinuous solution of the 2-D KCL system in the ray coordinates has

a shock satisfying Rankine-Hugoniot conditions, the image of the shock in

(x1, x2)-plane is a point singularity on Ωt, which we call, kink. We derive

2-D KCL in the next paragraph.

Consider a one parameter family of curves Ωt in (x1, x2)-plane, where

the subscript t is the parameter whose different values give different posi-

tions of a moving curve. We assume that successive positions of the curve

a
We assume that all variables, both dependent and independent, used in this paper are

non-dimensional. There is one exception, the dependent variables in the first paragraph

in section 4 are dimensional.
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has been obtained by motion of its points in a velocity field. Let us call

the associated velocity χ = (χ1, χ2) of a point in this field as ray velocity,

which depends not only on x, t and n but also on a function w(x, t). We

assume that motion of this curve Ωt is isotropic so that we take the ray

velocity χ in the direction of n and write it as

χ = mn. (2)

We further assume that the scalar function m depends on x and t but is

independent of n. The normal velocity m of Ωt is non-dimensionalised with

respect to a characteristic velocity, say the sound velocity a0 in a uniform

ambient medium, in the case Ωt is a wavefront in such a medium.

Ωt

wavefront

ray

θ

gdξ

mdt

x

Fig. 3. 2-D ray coordinate system (ξ, t) associated with Ωt. Continuous lines are suc-

cessive positions of Ωt and broken lines are rays. Ray direction makes an angle θ to the

x-axis so that n = (cos θ, sin θ).

With the help of the velocity field, we introduce a ray coordinate system

(ξ, t) such that t = const represents the curve Ωt and ξ = const represents

a ray,11 see Fig. 3 for a schematic representation of a ray coordinate system

in 2-D. Then mdt is an element of distance along a ray, i.e. m is the met-

ric associated with the variable t. Let g be the metric associated with the

variable ξ. We assume for the derivation of KCL that this gives a mapping:

(ξ, t) → (x1, x2) which is smooth. Let (dξ, dt) be an arbitrary displace-

ment of a point (ξ, t) in the ray coordinate plane, then the corresponding

displacement dx in (x1, x2)-plane is given by

dx = (gu)dξ + (mn)dt, (3)
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where u is the tangent vector to Ωt, i.e. u = (−n2, n1). Equating (x1)ξt =

(x1)tξ and (x2)ξt = (x2)tξ, we get the 2-D KCLb

(gn2)t + (mn1)ξ = 0, (gn1)t − (mn2)ξ = 0. (4)

From the conservation laws (4), we can derive the jump relations across a

shock ξ = ξs(t) in (ξ, t)-plane. This leads to the shock velocity K = dξs/dt

as

K = ±

(
m2
−
−m2

+

g2+ − g2
−

)1/2

, (5)

where the symbols + and − refer to the states on the two sides. Fig. 4

shows the geometry of rays and Ωt on two sides of a kink path which is the

image in (x1, x2)-plane of a shock path in (ξ, t)-plane.

ξ + dξ

-ve side

ξ

kink path

m−dt

g−dξ

P

m+dt

Q′

g+dξ

P ′

Ωt

+ve side

rays

Ωt′=t+dt

Q

Fig. 4. Kink phenomenon in (x1, x2)-plane

Using Pythagoras theorem on two right angle triangles in Fig. 4 we

derive

m2
+(dt)

2 + g2+(dξ)
2 = (PQ′)2 = m2

−
(dt)2 + g2

−
(dξ)2, (6)

which immediately gives the expression (5) for K. This result is intimately

related to the theorem 2.1 in section 2 saying that KCL is physically realistic

as it implies conservation of distance.

b
We observe that the derivation of KCL remains valid even if m depends on n or the

curvature or some more properties of Ωt.
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The 2-D KCL system (4) is under-determined since it contains only two

equations in three variables θ,m and g. It is possible to close it in many

ways. One possible way is to close it by a single conservation law

(gG−1(m))t = 0, (7)

where G is a given function of m. Baskar and Prasad12 have studied the

Riemann problem for the system (4) with the closure (7) assuming some

physically realistic conditions on G(m). For a weakly nonlinear wavefront1

in a polytropic gas, the third equation in (1) can be used to derive conser-

vation of energy along a ray tube with an appropriate choice of ξ,

G = Gp(m) := (m− 1)−2e−2(m−1). (8)

Thus, the complete set of conservation laws governing the evolution of a

weakly nonlinear wavefront is given by

(g sin θ)t + (m cos θ)ξ = 0, (g cos θ)t − (m sin θ)ξ = 0, (9)(
(m− 1)2e2(m−1)g

)
t
= 0. (10)

The system of conservation laws (9)-(10) is very interesting. Its eigenvalues

are

λ
(2−D)
1 =

√
m− 1

2G2
p

, λ
(2−D)
2 = −

√
m− 1

2G2
p

, λ
(2−D)
3 = 0. (11)

Hence, the system (9)-(10) is hyperbolic for m > 1 and has elliptic nature

for m < 1. Prasad and his collaborators have used the 2-D KCL with

suitable closure relations to solve several interesting problems and obtained

many new results.12–16 We shall discuss some results below, which contain

an essence of their results.

We present two solutions arising out of the following Riemann problem

for the system of conservation laws (9)-(10) with the initial data

m(ξ, 0) = m0 > 1,

g(ξ, 0) = (m0 − 1)−2e−2(m0−1),

θ(ξ, 0) =

{
θ0, ξ < 0,

−θ0 ξ > 0,

(12)

where θ0 is constant. We take g(ξ, t) = Gp(m). The coordinate ξ on Ω0 is

chosen in such a way that when the initial wavefront Ω0 has a wedge shaped

geometry convex to the x-direction θ0 < 0, and when it is concave to the

x-direction θ0 > 0, as seen in Fig. 5. In linear propagation of a wavefront,
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the ray equations and amplitude equation decouple. The ray equations (1)

with m = 1 simply become

dx

dt
= n1,

dy

dt
= n2,

dθ

dt
= 0 (13)

and the position and geometry of Ωt is not affected by the amplitude vari-

ation along the rays given by (13). The linear wavefronts for θ0 < 0 and

θ0 > 0 are depicted in Fig. 5, where the circular arcs in the central parts of

Ωt are obtained by Huygens method.

Ω0 Ωt(t > 0) Ω0 Ωt(t > 0)

(a) (b)

Fig. 5. (a): Linear wavefront produced by a convex wedged shaped piston. The wave-

front from the corner is a circle and and the rays from there are straight radial lines. (b):

Linear wavefront produced by a concave wedged shaped piston. The wavefront from the

corner is a circle and and the rays from there are straight radial lines.

The solution of the Riemann problem for (9)-(10) with (12) for θ0 < 0

can be easily obtained by the procedure given in.12 First we notice that

g = Gp. The solution for (m, θ) is given by

(m, θ)(ξ, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(m0, θ0), ξ < tλ
(2−D)
2 (m0),

(m, θ)
(

ξ
t

)
, tλ

(2−D)
2 (m0) < ξ < tλ

(2−D)
2 (mi),

(mi, 0), tλ
(2−D)
2 (mi) < ξ < tλ

(2−D)
1 (mi),

(m, θ)
(

ξ
t

)
, tλ

(2−D)
1 (mi), < ξ < tλ

(2−D)
1 (m0),

(m0,−θ0), ξ > tλ
(2−D)
1 (m0),

(14)

where

mi =
1

8
{1 + (θ0 + 8(m0 − 1))

2
} (15)

and the expressions for the centred simple waves in tλ
(2−D)
2 (m0) < ξ <

tλ
(2−D)
2 (mi) and tλ

(2−D)
1 (mi) < ξ < tλ

(2−D)
1 (m0) can be easily written
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down. Note that the solution (14) consists of three constant states separated

by two centred rarefaction waves symmetrically situated about the t-axis.

The solution, when mapped onto the (x1, x2)-plane with the help of first

two equations in (1), gives Fig. 6.

x

y

0 1 2 3 4 5 6
-1.5
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0

0.5
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.
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D

E

F

θ0)

Fig. 6. Nonlinear wavefront (continuous lines) and rays (broken lines) produced by a

convex wedged shaped piston. All rays ultimately tend to become parallel to the x-axis.

When θ0 > 0 and m0 − 1 is not too small, the solution of the Riemann

problem consists of three constant states separated by two shocks

(m, θ)(ξ, t) =

⎧⎪⎪⎨⎪⎪⎩
(m0, θ0), ξ < st

(mi, 0), −st < ξ < st

(m0,−θ0), ξ > st,

(16)

where mi and s can be easily determined, see.1 This solution when mapped

onto the (x1, x2)-plane is shown in the Fig. 7 and represents resolution of

the caustic of the Fig. 5.

We have just presented the essence of the effect of genuinely nonlinearity

in multi-dimensions, namely nonlinear diffraction of rays due to a nonzero

gradient of the wave amplitude along Ωt and its interplay with the curvature

of Ωt. In the above Riemann problem, there was a discontinuity on Ω0 at

ξ = 0, which implied infinite curvature at that point. This resulted in

instantaneous resolution of the discontinuity in Fig. 6 and instantaneous

breaking of the initial discontinuity into two kinks in Fig. 7. We take help of

the results given in above examples to describe the corrugational stability of

a nonlinear wavefront,16 see also15 for a discussion of corrugational stability

of a shock front. Suppose we have a periodic wavefront Ωt with initial shape

Ω0 : x = sin y. The part of Ωt concave to positive x-direction, will have a
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Fig. 7. Nonlinear wavefront and rays produced by a concave wedged shaped piston. All

rays ultimately tend to become parallel to the x-axis. K1 and K2 are kinks.

tendency to bulge out with two kinks as in the Fig. 7 and the part convex to

the positive x-direction will flatten as in the Fig. 6. The rays will ultimately

become parallel to the x-axis. This implies that Ωt will ultimately become

plane leading to corrugational stability.

Baskar and Prasad13 have used KCL to get the geometry and successive

positions of the crest line of a curved solitary wave on the surface of a shal-

low water. Out of many closure equations for this case, the the physically

realistic one is again (7) but now G = (m−1)−
3

2 e−
3

2
(m−1) which is different

from that given in (8).

To close the KCL for a shock front, we need an infinite system of equa-

tions.17,18 This being too complex to handle mathematically, Prasad and

Ravindran proposed in 1990 a new theory of shock dynamics19 in which the

infinite system is truncated to get a finite system of closure equations. The

same closure relations for a weak shock can be obtained in a very simple

manner from the WNLRT equations (1), see.14,15 For a shock front we de-

note m, θ and g by M,Θ and G. Now, the complete system of approximate

equations governing the evolution of a shock front moving in to a polytropic

gas in uniform state at rest Ωt is
14

(G sinΘ)t + (M cosΘ)ξ = 0, (G cosΘ)t − (M sinΘ)ξ = 0, (17)

(G(M − 1)2e2(M−1))t + 2M(M − 1)2e2(M−1)GV = 0, (18)

(GV 2e2(M−1))t +GV 3(M + 1)e2(M−1) = 0, (19)

where one more variable, V representing the gradient of the state of the
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flow in the normal direction n, appears.

The WNLRT equations (9)-(10) and the shock ray theory (SRT) equa-

tions (17)-(19) have been used together to give a new formulation of the

sonic boom problem20 in terms of a one parameter family of Cauchy prob-

lems. In this interesting formulation, nonlinear wavefronts in the front part

of the sonic boom and the leading shock are given by solutions of Cauchy

problems for hyperbolic systems and nonlinear wavefronts in the rear part

and the trailing shock are given by those of elliptic systems. This helps to

show an important property that the leading shock in a sonic boom may

develop kinks but the trailing shock would remain smooth. Finding succes-

sive positions of nonlinear wavefronts in the rear part of the sonic boom

and the trailing shock now requires solution of an ill-posed Cauchy problem

for an elliptic system.

The KCL is widely applicable to research problems in many areas: from

propagation of various types of wavefronts to motion of interfaces appearing

in crystal growth and oil extraction industry. In the case of the motion of

an interface separating a crystal from its surrounding medium, the velocity

of the interface may depend only on n and in this case it may be simple to

deal with KCL (4). However when m depends on the curvature, i.e. − 1
g
∂θ
∂ξ ,

the flux functions in (4) depend also on the first derivatives of θ. This

would require some new mathematical development and a new numerical

method. One of many advantages of 2-D KCL theory is that the number

of independent variables is reduced from three (namely, x, y and t) of the

original problem to two (namely, ξ and t) in KCL. This reduction of one

independent variable will be seen in 3-D KCL also.

2. Kinematics of a propagating surface and 3-D KCL

As in the last section, we assume that the successive positions of a moving

surface Ωt in x = (x1, x2, x3)-space is given by rays with ray velocity χ =

mn, where n is the unit normal to Ωt. The initial position Ω0 of the surface

Ωt can be parametrically represented in terms of two parameters ξ1 and ξ2.

The position of Ωt at any time t can be obtained by solving the ray equation

dx

dt
= mn (20)

with appropriate initial conditions, see also Prasad.21 Thus, we have intro-

duced a ray coordinate system (ξ1, ξ2, t) in x-space such that t = const

represents the surface Ωt. The surface Ωt in x-space is now generated by

a one parameter family of curves such that along each of these curves ξ1
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varies and the parameter ξ2 is constant. Similarly Ωt is generated by an-

other one parameter family of curves along each of these ξ2 varies and ξ1
is constant. Through each point (ξ1, ξ2) of Ωt there passes a ray orthog-

onal to the successive positions of Ωt. Thus, rays form a two parameter

family. Given ξ1, ξ2 and t, we uniquely identify a point P in x-space. For

the derivation of KCL, we assume that the mapping from (ξ1, ξ2, t)-space

to (x1, x2, x3)-space is one to one and smooth. On Ωt let u and v be unit

tangent vectors of the curves ξ2 = const and ξ1 = const respectively and n

be unit normal to Ωt. We take (u,v,n) to be a right handed set of vectors,

then

n =
u× v

‖u× v‖
. (21)

Let an element of length along a curve ξ2 = const, t = const be g1dξ1 and

that along a curve ξ1 = const, t = const be g2dξ2. The element of length

along a ray ξ1 = const, ξ2 = const is mdt. A displacement dx in x-space

due to arbitrary increments dξ1, dξ2 and dt is given by (this is an extension

of the result (3))

dx = (g1u)dξ1 + (g2v)dξ2 + (mn)dt. (22)

This gives the Jacobian

J :=
∂(x1, x2, x3)

∂(ξ1, ξ2, t)
= g1g2m sinχ, 0 < χ < π, (23)

where χ(ξ1, ξ2, t) is the angle between the u and v, i.e.

cosχ = 〈u,v〉. (24)

As explained after (44) in section 4, we shall like to choose sinχ = ‖u× v‖

which requires the restriction 0 < χ < π on χ. For a smooth moving surface

Ωt, we equate xξ1t = xtξ1 and xξ2t = xtξ2 , and get the 3-D KCL of Giles,

Prasad and Ravindran22

(g1u)t − (mn)ξ1 = 0, (25)

(g2v)t − (mn)ξ2 = 0. (26)

We also equate xξ1ξ2 = xξ2ξ1 and derive 3 more scalar equations contained

in

(g2v)ξ1 − (g1u)ξ2 = 0. (27)

Equations (25)-(27) are necessary and sufficient conditions for the integra-

bility of the equation (22), see Courant and John.23 When we have con-

structed coordinates (ξ1, ξ2) on Ωt at any time t they would satisfy (27).
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These coordinates dynamically evolve in time according to (25)-(26) in such

a way that they continue to remain coordinates on Ωt when t changes.

From the equations (25)-(26) we can show that (g2v)ξ1 − (g1u)ξ2 does

not depend on t. If any choice of coordinates ξ1 and ξ2 on Ω0 implies that

the condition (27) is satisfied at t = 0 then it follows from (25)-(26) that

(27) is automatically satisfied for all t > 0. It is very interesting to note that

the constraint (27) is analogous to the solenoidal condition in the equations

of ideal magnetohydrodynamics. To see this, let us introduce three vectors

Bk, k = 1, 2, 3, in R
2 via

Bk := (g2vk,−g1uk). (28)

Using this definition of Bk, (27) can be recast in an equivalent form

div(Bk) = 0, k = 1, 2, 3. (29)

Therefore, we infer that all the three vectors Bk are divergence-free at

any time t if they are so at time t = 0. Note that there are three scalar

constraints in (29) analogous to the solenoidal condition in the equations

of two-dimensional ideal magnetohydrodynamics. We shall refer to (27) (or

(29)), as ‘geometric solenoidal constraint’.

The 3-D KCL is a system of six scalar evolution equations (25) and

(26). However, since ‖u‖ = ‖v‖ = 1, there are seven dependent variables

in (25)-(26): two independent components of each of u and v, the front

velocity m of Ωt, g1 and g2. Thus, KCL is an under-determined system and

can be closed only with the help of additional relations or equations, which

would follow from the nature of the surface Ωt and the dynamics of the

medium in which it propagates.

The system (25)-(26) consists of equations which are conservation laws,

so its weak solution may contain shocks which are surfaces in (ξ1, ξ2, t)-

space. Across these shock surfaces m, g1, g2 and vectors u,v and n will be

discontinuous. The image of a shock surface into x-space will be another

surface, let us call it a kink surface, which will intersect Ωt in a curve,

say kink curve Kt. Across this kink curve or simply the kink, the normal

direction n of Ωt will be discontinuous as shown in Figure 8. As time t

evolves, Kt will generate the kink surface. We assume that the mapping

between (ξ1, ξ2, t)-space and (x1, x2, x3)-space continues to be one to one

even when a kink appears.

The plane t = const is mapped onto Ωt with kinks, see Figure 8. It

has been shown in24 that the 3-D KCL (25)-(26) is physically realistic in

the sense that they give kinks across which distance in three independent

directions are preserved. We now state a theorem of22,24 without proof.
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Theorem 2.1. The jump relations of the 3-D KCL (25)-(26) imply con-

servation of distance in x1, x2 and x3 directions and hence in any arbitrary

direction in x-space in the sense that the expressions for a vector displace-

ment (dx)Kt
of a point of the kink line Kt in an infinitesimal time interval

dt, when computed in terms of variables on the two sides of a kink surface,

have the same value. This displacement of the point is assumed to take place

on the kink surface and that of its image in (ξ1, ξ2, t)-space takes place on

the shock surface such that the corresponding displacement in (ξ1, ξ2)-plane

is with the shock front.

�

�

�

Kt

Ωt+

Ωt−

x1

x2

x3

Fig. 8. Kink curve Kt (shown with dotted lines) on Ωt = Ωt+ ∪ Ωt−

3. Explicit differential form of KCL and equivalence to the

ray equations

The eikonal equation governing the propagation of a front in an isotropic

media is

ϕt +m‖∇ϕ‖ = 0. (30)
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For m as a given function of x and t, bicharacteristic equations or the ray

equations of (30),1,21 are

dx

dt
= mn, ‖n‖ = 1, (31)

dn

dt
= −Lm := − (∇− n〈n,∇〉)m. (32)

Here, d/dt denotes the convective derivative

d

dt
=

∂

∂t
+m〈n,∇〉 (33)

which is the time rate of change along a ray. It is to be noted that the

bicharacteristic equations in the above form are obtained from the Charpit’s

equations of (30) and then using

n =
∇ϕ

‖∇ϕ‖
. (34)

Carrying out the differentiations in (25)-(26) and simplifying the resulting

expressions yields the differential form of 3-D KCL, which is the following

system of quasilinear equations

g1t = −m〈n,uξ1〉, (35)

g2t = −m〈n,vξ2〉, (36)

g1ut = mξ1n+m〈n,uξ1〉u+
m

‖u× v‖

{
(u× v)ξ1 +

n〈u× v〉

‖u× v‖
〈u,v〉ξ1

}
,

(37)

g1vt = mξ2n+m〈n,vξ2〉v +
m

‖u× v‖

{
(u× v)ξ2 +

n〈u× v〉

‖u× v‖
〈u,v〉ξ2

}
.

(38)

It is to be noted that since ‖u‖ = ‖v‖ = 1, there are only two independent

equations in each of (37) and (38). We require another set of long calcula-

tions to show that the expressions on the right hand sides of (35)-(38) are

equal to those of (31)-(32). This establishes the equivalence of the differen-

tial forms (35)-(38) of the 3-D KCL to the equations of the ray theory. We

state this important result as a theorem and refer to24 for more details.

Theorem 3.1. For a given smooth function m of x and t, the ray equa-

tions (31)-(32) are equivalent to the 3-D KCL as long as their solutions are

smooth.
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4. Energy transport equation from WNLRT and the

complete set of equations

In this section we shall derive a closure relation in conservation form for the

3-D KCL so that we get a completely determined system of conservation

laws. Let the mass density, fluid velocity and gas pressure in a polytropic gas

be denoted by �, q and p. Consider now a forward facing small amplitude

curved wavefront Ωt running into the gas in a uniform state and at rest

�0 = const, q = 0 and p0 = const. A perturbation in the state of the gas

on Ωt can be expressed in terms of an amplitude w and is given by1

�− �0 =

(
�0
a0

)
w, q = nw, p− p0 = �0a0w. (39)

where a0 is the sound velocity in the undisturbed medium =
√

γp0/�0 and

w is a quantity of small order, say O(ε). Let us remind, what we stated in

the section 1, all dependent variables are dimensional in this (and only in

this) paragraph. Note that w here has the dimension of velocity.

The amplitude w is related to the non-dimensional normal velocity m

of Ωt by

m = 1 +
γ + 1

2

w

a0
. (40)

Note that the operator d/dt defined in (33) in space-time becomes simply

the partial derivative ∂/∂t in the ray coordinate system (ξ1, ξ2, t). Hence,

the energy transport equation of the WNLRT1 in non-dimensional coordi-

nates becomes

mt = (m− 1)Ω = −
1

2
(m− 1)〈∇,n〉, (41)

where the italic symbol Ω is the mean curvature of the wavefront Ωt. The

ray tube area A of any ray system1,25 is related to the mean curvature Ω

(we write here in non-dimensional variables) by

1

A

∂A

∂l
= −2Ω ,

∂

∂l
in ray coordinates, (42)

where l is the arc length along a ray. In non-dimensional variables dl = mdt.

From (41)-(42) we get

2mt

m− 1
= −

1

mA
At. (43)

This leads to a conservation law, which we accept to be physically realistic,{
(m− 1)2e2(m−1)A

}
t
= 0. (44)
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Integration gives (m − 1)2e2(m−1)A = F (ξ1, ξ2), where F is an arbitrary

function of ξ1 and ξ2. The ray tube area A is given by A = g1g2 sinχ, where

χ is the angle between the vectors u and v. In order that A is positive, we

need to choose 0 < χ < π. Now the energy conservation equation becomes{
(m− 1)2e2(m−1)g1g2 sinχ

}
t
= 0. (45)

To readers used to linear ray theory, appearance of the factor e2(m−1) in

the above equation may look a little unfamiliar. This term appears here

due to nonlinear stretching of the rays. Though the term (m−1)2e2(m−1) is

approximately equal to (m−1)2 for small m−1, we need the factor e2(m−1)

for consistency of the equations.

Hence, the complete set of conservation laws for the weakly nonlinear

ray theory (WNLRT) for a polytropic gas are: the six equations in (25)-

(26) and the equation (45). The equations (27) need to be satisfied at any

fixed t, say at t = 0. Moreover, the complete set of equations of WNLRT

in a differential form for the unknown V = (u1, u2, v1, v2,m, g1, g2)
T can be

derived from (35)-(38) and (45) and are written in the usual matrix form

as

AVt +B(1)Vξ1 +B(2)Vξ2 = 0, (46)

where the expressions for the matrices A, B(1) and B(2) are given in.24

The hyperbolicity of (46) will depend on its eigen-structure. Arun and

Prasad24,26 have studied the eigenvalues and eigenvectors of (46) in de-

tail. In what follows we briefly sketch their final result in the form of a

theorem

Theorem 4.1 (Theorem 8.2 of
24
). The system (46) has seven eigen-

values λ1, λ2(= −λ1), λ3 = λ4 = . . . = λ7 = 0, where λ1 is given by

λ1 =

[
m− 1

2

{
(γ2

1 + γ2
2)

e21
g21

+ 2(γ1δ1 + γ2δ2)
e1
g1

e2
g2

+ (δ21 + δ22)
e22
g22

}]1/2
.

(47)

The eigenvalues λ1 and λ2 are real for m > 1 and purely imaginary for m <

1. Further, the dimension of the eigenspace corresponding to the multiple

eigenvalue zero is four.

5. Numerical approximation and further remarks

The aim of this section is to set up an initial value problem for the conser-

vation laws of 3-D WNLRT, i.e. (25)-(26) and energy conservation equation
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(45). We notice that the set of equations can be recast in the divergence

form

Wt + F1(W )ξ1 + F2(W )ξ2 = 0, (48)

with the conserved variables W and the fluxes Fi(W ) given as

W =
(
g1u, g2v, (m− 1)2e2(m−1)g1g2 sinχ

)T
,

F1(W ) = (mn,0, 0)T ,

F2(W ) = (0,mn, 0)T .

(49)

In order to formulate an initial value problem for (48) we take the initial

position of a weakly nonlinear wavefront Ωt as

Ω0 : x3 = f(x1, x2). (50)

On Ω0, we choose ξ1 = x1, ξ2 = x2, then

Ω0 : x10 = ξ1, x20 = ξ2, x30 = f(ξ1, ξ2). (51)

Therefore,

g10 =
√
1 + f2

ξ1
, g20 =

√
1 + f2

ξ2
, (52)

u0 =
(1, 0, fξ1)√
1 + f2

ξ1

, v0 =
(0, 1, fξ2)√
1 + f2

ξ2

. (53)

We can easily check that the geometric solenoidal constraint (29) is satisfied

by this choice of the initial values. The unit normal n0 of Ω0 is given by

n0 = −
(fξ1 , fξ2 ,−1)√
1 + f2

ξ1
+ f2

ξ2

(54)

in which the sign is so chosen that (u0,v0,n0) form a right handed system.

Let the distribution of the front velocity be given by

m = m0(ξ1, ξ2). (55)

We have now completed formulation of the initial data for the system of

conservation laws (48). The problem is to find a solution of (48) satisfying

the above initial data. Having solved these equations, we can get Ωt by

solving the first part of the ray equations, namely (31) at least numerically

for a number of values of ξ1 and ξ2.

Since we have an incomplete set of eigenvectors for the system of con-

servation laws of 3-D WNLRT, an initial value problem is not well-posed in

the strong hyperbolic sense and is likely to be more sensitive than regular
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hyperbolic systems from computational point of view. Numerical as well as

theoretical analysis indicates that the solution may not belong to BV spaces

and can only be measure valued. Despite theoretical difficulties, we have

been able to develop numerical codes for 3-D WNLRT using simple but ro-

bust central schemes. For a weakly hyperbolic system the central schemes

are much easily applicable than any characteristic-based scheme. Moreover,

the simplicity of central finite volume schemes makes it convenient to em-

ploy them for the numerical solution of the complex system of conservation

laws of WNLRT. In27,28 we have presented a numerical approximation of the

balance laws using a Kurganov-Tadmor type semi-discrete central scheme.29

In order to get second order accuracy we use standard MUSCL type recon-

structions and TVD Runge-Kutta time stepping procedures. However, the

high resolution central scheme need not respect the geometric solenoidal

constraint (29) and hence we use a constrained transport technique to en-

force it. Note that the equation (29) implies the existence of three potentials

A1,A2,A3 so that the components of the vectors g1u and g2v are derivable

from the potentials.27 With the aid of the 3-D KCL system (25)-(26) we

obtain the evolution equations for the potentials. These equations form a

coupled system of three nonlinear equations of the Hamilton-Jacobi type.

The evolution equations for the potentials are discretised on a staggered

grid. The updated values of the potentials are used to get the corrected

values of g1u and g2v at the next time step, which satisfy a discrete ver-

sion of the constraint (29). In each time step, after solving the conservation

laws we update the ray equations using a second order Runge-Kutta scheme

which gives the successive positions of the front Ωt.

It well known from the literature that the solution to the Cauchy prob-

lem for a weakly hyperbolic system contains a Jordan which grows polyno-

mially in time. However, the numerical solutions of the conservation laws

of 3-D WNLRT do not exhibit any such component. The reason for dis-

appearance of the Jordan mode is the constraint (29) which is preserved

by system as well as the numerical scheme. Due to the complexity of the

equations of 3-D KCL we have not been able to establish this result for the

full nonlinear system. In order to justify our assertion we first linearise the

system of conservation laws of 3-D WNLRT about a constant state, viz.

a planar wavefront. We solve the linearised system analytically and show

that for the linearised system the Jordan mode does not appear when the

geometric solenoidal constraint is satisfied. We strongly believe the same

result to hold true also for the full nonlinear system.
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6. An example of propagation of a nonlinear wavefront in

three dimensions

We give in this section the results of a numerical experiment from27 showing

the time evolution of a nonlinear wavefront in three dimensions. We choose

initial wavefront Ω0 in a such a way that it is not axisymmetric. The front

Ω0 has a single smooth dip. The initial shape of the wavefront is given by

Ω0 : x3 =
−κ

1 +
x2

1

α2 +
x2

2

β2

, (56)

where the parameter values are set to be κ = 1/2, α = 3/2, β = 3. The ray

coordinates (ξ1, ξ2) are chosen initially as ξ1 = x1 and ξ2 = x2. Therefore,

using (56), the initial wavefront can be represented in a parametric form

x1 = ξ1, x2 = ξ2, x3 =
−κ

1 +
ξ2
1

α2 +
ξ2
2

β2

. (57)

With the aid of (57) the initial values g1, g2,u and v are calculated, cf. sec-

tion 5. The normal velocity is prescribed as a constant m0 = 1.2 everywhere

on the initial wavefront Ω0.

The computational domain [−20, 20]×[−20, 20] is divided into 401×401

mesh points. The simulations are done up to t = 2.0, 6.0, 10.0. We have set

non-reflecting boundary conditions everywhere.

In Figure 9 we plot the initial wavefront Ω0 and the successive positions

of the wavefront Ωt at times t = 2.0, 6.0, 10.0. It can be seen that the

wavefront has moved up in the x3-direction and the dip has spread over a

larger area in x1- and x2-directions. The lower part of the front moves up

leading to a change in shape of the initial front Ω0. It is very interesting to

note that two dips appear at the centre of the wavefront, which are clearly

visible at t = 6.0 and t = 10.0. These two dips are separated by an elevation

almost like a wall parallel to the x2-axis. There is a pair of kink lines, which

are also parallel to the x2-axis and are more clearly seen in Figure 10.

To explain the results of convergence of the rays we also give in Figure 10

the slices of the wavefront in x2 = 0 section and x1 = 0 section from time

t = 0.0 to t = 10.0. Due to the particular choice of the parameters α and

β in the initial data (56), the section of the front Ω0 in x2 = 0 plane has a

smaller radius of curvature than that of the section in x1 = 0 plane. This

results in a stronger convergence of the rays in x2 = 0 plane compared to

those in x1 = 0 plane as evident from Figure 10. In the diagram on the top

in Figure 10, we clearly note a pair of kinks at times t = 3.0 onwards in
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Fig. 9. The successive positions of the nonlinear wavefront Ωt with an initial smooth

dip which is not axisymmetric.

the x2 = 0 section. However, there are no kinks in the bottom diagram in

Figure 10 in x1 = 0 section.

We give now the plots of the normal velocity m in (ξ1, ξ2) plane along

ξ1- and ξ2-directions in Figure 11. It is observed that m has two shocks in

the ξ1-direction which correspond to the two kinks in the x1-direction.

We plot the divergence of B1 at time t = 10.0 in Figure 12. It is evident

that the geometric solenoidal condition is satisfied with an error of 10−15.

The divergences of B2 and B3 also show the same trend.

7. Comparison of 2-D and 3-D KCL results

In this section we present a comparison of the 2-D and 3-D KCL results.

Let us consider the 3-D axi-symmetric initial wavefront Ω0 with a single

smooth dip given by

Ω0 : x3 = κ
(
1− e−

r
2

a2

)
, (58)

where r =
√
x2
1 + x2

2 is the distance from the x3-axis. The propagation of

this 3-D nonlinear wavefront Ωt is axi-symmetric and hence the problem
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Fig. 10. The sections of the nonlinear wavefront at times t = 0.0, . . . , 10.0 with a time

step 0.5. On the top: along x2 = 0 plane. Bottom: in x1 = 0 plane.
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Fig. 11. The time evolution of the normal velocity m. (a): along ξ1-direction in the

section ξ2 = 0. (b): along ξ2-direction in the section ξ1 = 0.

reduces to essentially 2-D. We have used the 2-D KCL to study the time

evolution of this 2-D wavefront Ωt. In order to illustrate the genuinely 3-

dimensional effects of geometrical convergence, we plot the corresponding

results obtained from the 2-D KCL and the 3-D KCL in Figure 13. In this

figure, the solid lines represent the successive positions of the nonlinear

wavefront obtained by the 3-D KCL whereas the dotted lines represents

the corresponding 2-D wavefront obtained using 2-D KCL simulations. It

can be observed that both the results agree qualitatively. But the 2-D and
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Fig. 12. The divergence of B1 at t = 10.0. The error is of the order of 10
−15

. The

vertical axis is magnified 10
15

times.

3-D wavefronts coincide only for small times, the 3-D wavefronts moves

faster than the 2-D ones. This shows the effect of truly three dimensional

geometrical convergence.

10

5

0

5

10
0 5 10 15 20 25 30

x
ax

is

z axis

Fig. 13. Comparison of 3-D KCL and 2-D KCL: the solid lines represents the slices of

3-D wavefronts and the dotted lines are the 2-D wavefronts at times t = 0.0 to t = 6.0.

The parameter a = 4.

8. Concluding Remarks

The 3-D KCL is a quite complex system of conservation laws. But as far

as we know this is the only system which gives correct location and geom-

etry of a moving surface - which has singularities and topologically correct

shapes.24,27,28 This article following the original results in references,24,27

puts the theory of KCL in firm formulation. There is a lot of scope for doing

theoretical investigation on KCL systems and particularly, it is very chal-

lenging to get good numerical approximations for 3-D KCL. Attempts in

this direction will be fruitful as the results will be applicable also to moving
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interfaces in chemical and biological systems, where the theory may reveal

many physically realistic results.
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We present a framework for the direct discretization of the input/output map

of dynamical systems governed by linear partial differential equations with

distributed inputs and outputs. The approximation consists of two steps. First,

the input and output signals are discretized in space and time, resulting in

finite dimensional spaces for the input and output signals. These are then

used to approximate the dynamics of the system. The approximation errors

in both steps are balanced and a matrix representation of an approximate

input/output map is constructed which can be further reduced using singular

value decompositions. We present the discretization framework, corresponding

error estimates, and the SVD-based system reduction method. The theoretical

results are illustrated with some applications in the optimal control of partial

differential equations.

Keywords: input/output maps, discretization, control of partial differential

equations

1. Introduction

The real-time control of complex physical systems is a major challenge in

many engineering applications as well as in mathematical research. Typi-

cally, these control systems are modeled by infinite-dimensional state space

systems on the basis of (instationary and nonlinear) partial differential

equations (PDEs). The challenge arises from the fact that on the one hand,

space-discretizations resolving most of the state information typically lead

to very large semi-discrete systems, on the other hand, popular design tech-
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niques for real-time controllers like optimal and robust control techniques
require models of very moderate size.

Numerous approaches to bridge this gap are proposed in the litera-
ture.1,2 In many applications it is sufficient to approximate the high-order
model by a low-order model that captures the essential state dynamics. To
determine such low-order models one can use physical insight3–5 and/or
mathematical methods like proper orthogonal decomposition6 or balanced
truncation.1,7 In this paper we focus on the situation, where for the design
of appropriate controllers it is sufficient to approximate the input/output
(I/O) map of the system, schematically illustrated in Figure 1.

For such configurations, empirical or simulation-based black-box sys-
tem identification,8,9 and mathematical model reduction techniques like
balanced truncation,10 moment matching11 or recent variants of proper
orthogonal decomposition12 are common tools to extract appropriate low-
order models. Typically, the bottleneck in these methods is the computa-
tional effort to compute the reduced order model from the semi-discretized
model which often is of very high order.

In contrast to this, we present a new approach to construct low-order
I/O maps (with error estimates) directly from the I/O map

G : U → Y, u = u(t, θ) �→ y = y(t, ξ)

of original infinite-dimensional system. We suggest a new framework for the
direct discretization of G for a general class of infinite dimensional linear
time-invariant state space systems (introduced in Section 2). Here u and
y are input and output signals from Hilbert spaces U and Y, respectively,
which may vary in time t and space θ ∈ Θ and ξ ∈ Ξ, with appropriate
spatial domains Θ and Ξ. The framework consists of two steps.

(1) Approximation of signals (cf. Section 3). We choose finite-dimensional

u actuators ��

��
��

��
��

��
��

��
�

Physical
System

��

sensors ��

����
��

��
��

��
��

�
y

G : u �→ y

Fig. 1. Schematic illustration of the I/O map corresponding to a physical system.
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subspaces Ū ⊂ U and Ȳ ⊂ Y with bases {u1, . . . , up̄} ⊂ Ū and
{y1, . . . , yq̄} ⊂ Ȳ, and denote the corresponding orthogonal projections
onto these subspaces by PŪ and PȲ , respectively. Then, the approxi-
mation

GS = PȲGPŪ

has a matrix representation G ∈ Rq̄×p̄.
(2) Approximation of the system dynamics (cf. Section 4). Since G arises

from a linear state space model, the components Gij = (yi, Guj)Y
can be approximated by numerically simulating the state space model
successively for inputs uj , j = 1, . . . , p̄ and by testing the resulting
outputs against all y1, . . . , yq̄.

We discuss several features of this framework.
Error estimation (cf. Section 5). The total error εDS of the approxima-

tion can be estimated by combining the signal approximation error εS and
the dynamical approximation error εD, i.e.,

‖G − GDS‖︸ ︷︷ ︸
=:εDS

≤ ‖G − GS‖︸ ︷︷ ︸
=:εS

+ ‖GS − GDS‖︸ ︷︷ ︸
=:εD

,

where the norms still have to be specified. Here GDS denotes the numer-
ically estimated approximation of GS . Theorem 5.1 shows how to choose
Ū and Ȳ and the accuracy tolerances for the numerical solutions of the
underlying PDEs such that εS and εD are balanced and that εS + εD < tol

for a given tolerance tol. Choosing hierarchical bases in Ū and Ȳ, the
error εS can be progressively reduced by adding further basis functions
up̄+1, up̄+2, . . . and yq̄+1, yq̄+2, . . . resulting in additional columns and rows
of the matrix representation.

Applications and examples in control design (cf. Section 6). We explic-
itly construct the error estimates for the control problem associated with
a 2D heat equation. Furthermore, we show how the matrix representation
G = [Gij ] may directly be used in control design, or a state realization of
the I/O model GDS can be used as basis for many classical control design
algorithms.

Notation

For Ω ⊂ Rd, d ∈ N, L2(Ω) denotes the usual Lebesgue space of square-
integrable functions, and Hα(Ω), α ∈ N0 denotes the corresponding Sobolev
spaces of α-times weakly differentiable functions. We interpret functions v,
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which vary in space and time, optionally as classical functions v : [0, T ] ×
Ω → R with values v(t; x) ∈ R, or as abstract functions v : [0, T ] → X

with values in a function space X such as X = Hα(Ω). Correspondingly,
Hα(0, T ; Hβ(Ω)), with α, β ∈ N0, denotes the space of equivalence classes
of functions v : [0, T ] → Hβ(Ω) with t �→ ‖v‖Hβ(Ω) being α-times weakly
differentiable.13 We introduce Hilbert spaces14

Hα,β((0, T ) × Ω) := Hα(0, T ; L2(Ω)) ∩ L2(0, T ; Hβ(Ω)),

‖v‖Hα,β((0,T )×Ω) := ‖v‖Hα(0,T ;L2(Ω)) + ‖v‖L2(0,T ;Hβ(Ω)).

By C([0, T ];X) and Cα([0, T ];X) we denote the space of functions v :
[0, T ] → X which are continuous or α-times continuously differentiable.
For two normed spaces X and Y , L (X, Y ) denotes the set of bounded
linear operators X → Y , and we abbreviate L (X) := L (X, X). For α ∈
N, Lα(0, T ; L (X, Y )) denotes the space of operator-valued functions K :
[0, T ] → L (X, Y ) with t �→ ‖K(t)‖L (X,Y ) = supx�=0‖K(t)x‖Y /‖x‖X lying
in Lα(0, T ). Vectors, often representing a discretization of a function v,
are written in corresponding small bold letters v, whereas matrices, often
representing a discrete version of an operator like G or G, are written in
bold capital letters G. By Rα×β we denote the set of real α × β matrices,
and A ⊗ B denotes the Kronecker product of matrices A and B.

2. I/O maps of ∞-dimensional LTI state space systems

We consider infinite-dimensional, linear, time-invariant systems of first or-
der

∂tz(t) = Az(t) + Bu(t), t ∈ (0, T ], (1a)

z(0) = z0, (1b)

y(t) = Cz(t), t ∈ [0, T ]. (1c)

Here for every time t ∈ [0, T ], the state z(t) is supposed to belong to a
Hilbert space Z like Z = L2(Ω), where Ω is a subset of RdΩ with dΩ ∈ N. A is
a densely defined unbounded operator A : Z ⊃ D(A) → Z, generating a C0-
semigroup (S(t))t≥0 on Z. The control operator B belongs to L (U,Z) and
the observation operator C to L (Z, Y ), where U = L2(Θ) and Y = L2(Ξ)
with subsets Θ ⊂ Rd1 and Ξ ⊂ Rd2 , d1, d2 ∈ N.

Let us recall how a linear bounded I/O-map G ∈ L (U ,Y) with

U = L2(0, T ; U) and Y = L2(0, T ; Y )

can be associated15 to (1). It is well-known that for initial values z0 ∈ D(A)
and controls u ∈ C1([0, T ];Z), a unique classical solution z ∈ C([0, T ];Z)∩
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C1((0, T );Z) of (1) exists. For z0 ∈ Z and u ∈ U , the well-defined function

z(t) = S(t)z0 +
∫ t

0

S(t − s)Bu(s) ds, t ∈ [0, T ], (2)

is called a mild solution of (1). A mild solution of (1) is unique, belongs
to C([0, T ];Z), and is the uniform limit of classical solutions.15 Hence, the
output signal y(t) = Cz(t) is well-defined and belongs to Y∩C([0, T ];Y ). In
particular, the output signals y(u) ∈ Y arising from input signals u ∈ U and
zero initial conditions z0 ≡ 0 allow to define the linear I/O-map G : U → Y
of the system (1) by u �→ y(u). It is possible to represent G as a convolution
with the kernel function K ∈ L2(−T, T ; L (U, Y )),

K(t) =

{
CS(t)B, t ≥ 0

0, t < 0
.

Lemma 2.1. The I/O-map G of (1) has the representation

(Gu)(t) =
∫ T

0

K(t − s)u(s) ds, t ∈ [0, T ], (3)

belongs to L (U ,Y) ∩ L (U , C([0, T ],Y)), and satisfies

‖G‖L (U,Y) ≤
√

T‖K‖L2(0,T ;L (U,Y )). (4)

Proof. Since C is bounded, the representation of y = Cz based on (2)
can be reformulated as in (3), calling on the theory of Bochner integrals.13

For general K ∈ L2(−T, T ; L (U, Y )), using a generalized Hölder inequality
implies that for fixed t ∈ [0, T ] the function s → K(t − s)u(s) belongs to
L1(0, T ; L (U, Y )) with

‖(Gu)(t)‖Y ≤ ‖u‖U‖K(t − ·)‖L2(0,T ;L (U,Y ),

and by integrating over [0, T ] we obtain (4).

Remark 2.1. The I/O-map G is causal in the sense that y(t) only depends
on u|[0,t) for all t ∈ [0, T ], and G is time-invariant in the sense that if y = Gu

then στy = G(στu) for all τ ∈ [0, T ]. Here στ is a time-shift operator with
(στu)(t) = u(t − τ) for t ∈ [τ, T ] and (στu)(t) = 0 for t ∈ [0, τ).

Example 2.1. As prototypical system, we consider the heat equation with
homogeneous Dirichlet boundary conditions and assume that Ω has a C2-
boundary. In this case, Z = L2(Ω) and the operator A in (1) coincides with
the Laplace operator

A = � : D(A) = H2(Ω) ∩ H1
0 (Ω) ⊂ Z → Z.
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Since A is the infinitesimal generator of an analytic C0-semigroup of
contractions (S(t))t≥0, the mild solution z of (1) exhibits the following
stability and regularity properties.15,16

(i) If z0 = 0 and u ∈ U , then z ∈ H1,2((0, T ) × Ω) with

‖z‖H1,2((0,T )×Ω) ≤ c‖u‖U . (5)

(ii) Assume that u ≡ 0. For z0 ∈ D(A) we have z ∈ C1([0, T ];D(A)), but
for z0 ∈ Z we only have z ∈ C1((0, T ];D(A)).

We will consider concrete choices of Ω, B and C in Section 6. We note that
if the observation preserves the inherent state regularity in the sense that

C|H2(Ω) ∈ L (H2(Ω),H2(Ξ)),

then G ∈ L (U ,Ys) and also

G|Us
∈ L (Us,Ys), with Us = H1,2((0, T ) × Θ), Ys = H1,2((0, T ) × Ξ).

(6)
In fact, for u ∈ Us, we have ‖u‖U ≤ ‖u‖Us

, and for u ∈ U we have

‖Gu‖Ys
≤ c′‖z‖H1,2((0,T )×Ω) ≤ c c′‖u‖U ,

where c′ = max{‖C‖L (L2(Ω),L2(Ξ)), ‖C‖L (H2(Ω),H2(Ξ))} and c is the con-
stant in (5).

Remark 2.2. Many other linear time-invariant systems with distributed
controls and observations admit a representation of the I/O map via (3) and
exhibit properties similar to (6). This is, for instance, the case for the heat
equation with homogeneous Neumann boundary conditions, and also for
more general parabolic equations.14,17 Wave equations with second order
time derivatives can be represented in the form of (1) and (3) by means of
an order reduction. Though hyperbolic systems do not have the smoothing
properties of parabolic systems, they preserve the regularity of the data
and results similar to (6) can be obtained by restricting the input signals
to be of higher regularity in time.14

The presented framework can also be used for linearized flow systems.
For the Stokes equation, results similar to (3) and (6) are obtained by
working with appropriate subspaces of divergence-free functions18 and for
the spatially discretized Oseen equations, which arise as linearizations of
the Navier-Stokes equations, it has been shown in19,20 how the framework
can be extended to linear time invariant descriptor systems.

Note, however, that systems with boundary control or pointwise obser-
vations do not fit directly into the setting (1).
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3. Discretization of Signals

In order to discretize the input signals u ∈ U and y ∈ Y in space and time,
we choose four families {Uh1}h1>0, {Yh2}h2>0, {Rτ1}τ1>0 and {Sτ2}τ2>0 of
subspaces Uh1 ⊂ U , Yh2 ⊂ Y , Rτ1 ⊂ L2(0, T ), and Sτ2 ⊂ L2(0, T ) of finite
dimensions p(h1) = dim(Uh1), q(h2) = dim(Yh2), r(τ1) = dim(Rτ1) and
s(τ2) = dim(Sτ2). We then define

Uh1,τ1 = {u ∈ U : u(t; ·) ∈ Uh1 , u(·; θ) ∈ Rτ1 , t ∈ [0, T ] a.e. , θ ∈ Θ},
Yh2,τ2 = {y ∈ Y : y(t; ·) ∈ Yh2 , y(·; ξ) ∈ Sτ2 , t ∈ [0, T ] a.e. , ξ ∈ Ξ}.

We denote the orthogonal projections onto these subspaces by PS,τ2 ∈
L (L2(0, T )), PU,h1,τ1 ∈ L (U), and PY,h2,τ2 ∈ L (Y). As first step of the
approximation of G, we define

GS = GS(h1, τ1, h2, τ2) = PY,h2,τ2GPU,h1,τ1 ∈ L (U ,Y).

In order to obtain a matrix representation of GS , we introduce fami-
lies of bases {μ1, . . . , μp} of Uh1 , {ν1, . . . , νq} of Yh2 , {φ1, . . . , φr} of Rτ1 ,
and {ψ1, . . . , ψs} of Sτ2 and corresponding mass matrices MU,h1 ∈ Rp×p,
MY,h2 ∈ Rq×q, MR,τ1 ∈ Rr×r and MS,τ2 ∈ Rs×s, for instance via

[MU,h1 ]ij = (μj , μi)U , i, j = 1, . . . , p.

These mass matrices induce, via

(v,w)Rp;w = vT MU,h1w for all v,w ∈ R
p,

weighted scalar products and corresponding norms in the respective spaces,
which we indicate by a subscript w, like Rp

w with (·, ·)Rp;w and ‖·‖Rp;w, in
contrast to the canonical spaces like Rp, with (·, ·)Rp and ‖·‖Rp . We represent
signals u ∈ Uh1,τ1 and y ∈ Yh2,τ2 as

u(t; θ) =
p∑

k=1

r∑
i=1

uk
i φi(t)μk(θ), y(t; ξ) =

q∑
l=1

s∑
j=1

yl
jψj(t)νk(ξ),

where uk
i are the elements of a block-structured vector u ∈ Rpr with p

blocks uk ∈ Rr, and the vector y ∈ Rqs is defined similarly. Then

‖u‖U = ‖u‖Rpr;w, and ‖y‖Y = ‖y‖Rqs;w,

where ‖·‖Rpr;w and ‖·‖Rqs;w denote the weighted norms with respect to the
mass matrices

MU,h1,τ1 = MU,h1⊗MR,τ1 ∈ R
pr×pr, MY,h2,τ2 = MY,h2⊗MS,τ2 ∈ R

qs×qs,

50777_8063 -insTexts#150Q.indd   5150777_8063 -insTexts#150Q.indd   51 6/8/11   7:33 PM6/8/11   7:33 PM



52

i.e., the corresponding coordinate isomorphisms κU,h1,τ1 ∈ L (Uh1,τ1 , R
pr
w )

and κY,h2,τ2 ∈ L (Yh2,τ2 , R
qs
w ) are unitary.

Finally, we obtain a matrix representation G of GS by setting

G = G(h1, τ1, h2, τ2) = κYPYGPUκ−1
U ∈ R

qs×pr, (7)

where the dependencies on h1, τ1, h2, τ2 have been partially omitted. Con-
sidering

H = H(h1, τ1, h2, τ2) := MY,h2,τ2G ∈ R
qs×pr

as a block-structured matrix with q × p blocks Hkl ∈ Rs×r and block
elements Hkl

ij ∈ R, we obtain the representation

Hkl
ij = [MYκYPYG(μlφj)]ki = (νkψi, G(μlφj))Y . (8)

To have a discrete analogon of the L (U ,Y)-norm, for given Uh1,τ1 and
Yh2,τ2 , we introduce the weighted matrix norm

‖G(h1, τ1, h2, τ2)‖Rqs×Rpr;w := sup
u∈Rpr

‖Gu‖Rqs;w

‖u‖Rpr;w

= ‖M1/2
Y,h2,τ2

GM−1/2
U,h1,τ1

‖Rqs×Rpr ,

and we write (h′
1, τ

′
1, h

′
2, τ

′
2) ≤ (h1, τ1, h2, τ2) if the inequality holds compo-

nentwise.

Lemma 3.1. For all (h1, τ1, h2, τ2) ∈ R4
+, we have

‖G(h1, τ1, h2, τ2)‖Rqs×Rpr;w = ‖GS(h1, τ1, h2, τ2)‖L (U,Y) ≤ ‖G‖L (U,Y).

(9)
If the subspaces {Uh1,τ1}h1,τ1>0 and {Yh2,τ2}h2,τ2>0 are nested, in the sense
that

Uh1,τ1 ⊂ Uh′
1,τ ′

1
, Yh2,τ2 ⊂ Yh′

2,τ ′
2

for (h′
1, τ

′
1, h

′
2, τ

′
2) ≤ (h1, τ1, h2, τ2),

(10)
then ‖G(h1, τ1, h2, τ2)‖Rqs×Rpr;w is monotonically increasing for decreas-
ing (h1, τ1, h2, τ2) ∈ R4

+, and ‖G(h1, τ1, h2, τ2)‖Rqs×Rpr;w is convergent for
(h1, τ1, h2, τ2) ↘ 0.

Proof. In order to show (9), we calculate

‖GS‖L (U ,Y)= sup
u∈Uh1,τ1

‖PY,h2,τ2Gu‖Y
‖u‖U

≤ sup
u∈Uh1,τ1

‖Gu‖Y
‖u‖U

≤ ‖G‖L (U,Y),
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and observe that for u ∈ Uh1,τ1 and u = κU,h1,τ1u ∈ Rpr, we have

‖GSu‖Y = ‖Gu‖Rqs;w ≤ ‖G‖Rqs×Rpr;w‖u‖U and

‖GSu‖Y ≤ ‖GS‖L (U,Y‖u‖Rpr;w.

If (10) holds, then since ‖PY,h2,τ2y‖Y ≤ ‖PY,h′
2,τ ′

2
y‖Y for all y ∈ Y, we have

‖GS(h1, τ1, h2, τ2)‖Rqs×Rpr;w ≤ sup
u∈Uh′

1,τ′
1

‖PY,h′
2,τ ′

2
Gu‖Y

‖u‖U
= ‖GS(h′

1, τ
′
1, h

′
2, τ

′
2)‖Rq′s′×Rp′r′ ;w.

Hence, (9) ensures the convergence of ‖GS(h)‖Rqs×Rpr;w.

3.1. Signal discretization via finite elements

There are many possibilities to choose the finite dimensional subspaces in
U, Y . As an example, consider the case U = Y = L2(0, 1), choose Uh1 and
Yh2 as spaces of continuous, piecewise linear functions and Rτ1 and Sτ2 as
spaces of piecewise constant functions, all with respect to equidistant grids.

For p ∈ N, p ≥ 2 and h1(p) = 1/(p − 1), let Th1 = {Ik}1≤k≤p−1 be
the equidistant partition of (0, 1] into intervals Ik = ((k − 1)h1, kh1]. The
corresponding space Uh1 is spanned by the nodal basis

{μ(h1)
1 , . . . , μ

(h1)
p(h1)

} ⊂ Uh1 , with μ
(h1)
l (kh1) = δl−1(k), k = 0, . . . , p.

The subspaces {Uh1} are nested if the choice is restricted to h1 ∈ {2−n}n∈N0

and p ∈ {2n + 1}n∈N0 . Since the nodal bases of Uh1 and Uh′
1

do not
have any common element for h1 �= h′

1, one may prefer to choose a hi-
erarchical basis of finite element functions21,22 μ̂l, as in Fig. 2. Then,
Uh1 = span{μ̂1, . . . , μ̂p(h1)} for all h1 ∈ {2−n}n∈N0 with basis functions
μ̂k independent of h1. For r ∈ N and τ1 = T/r, let Γτ1 = {Ij}1≤j≤r be
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ξ

Fig. 2. Hierarchical basis for L2(0, 1)-subspaces of piecewise linear functions: (a) μ1

and μ2 (b) μ3 (c) μ4 and μ5 (d) μ6, . . . , μ9.
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Fig. 3. Haar wavelet basis for L2(0, 1)-subspaces of piecewise constant functions: (a)
φ1 (b) φ2 (c) φ3 and φ4 (d) φ5, . . . , φ8.

the equidistant partition of (0, T ] into intervals Ij = ((j − 1)τ1, jτ1]. The
corresponding space Rτ1 of piecewise constant functions is, for instance,
spanned by the nodal and orthogonal basis

{φ(τ1)
1 (t), . . . , φ(τ1)

r (t)}, with φ
(τ1)
j (t) = χIj

(t), j = 1, . . . , r, (11)

with χIj
denoting the characteristic function on Ij . The spaces are nested

by requiring τ1 ∈ {2−nT}n∈N0 . An orthonormal hierarchical basis for Rτ1

is obtained by choosing φj as Haar-wavelets, cf. Fig. 3 and.23

Denoting the orthogonal projections onto Uh1 and Rτ1 by PU,h1 and
PR,τ1 , respectively, the Poincaré-Friedrich inequality shows that there exist
constants cU = 1/2 and cR = 1/

√
2, independent of h1, τ1 and T , such

that24,25

‖u − PUh1
u‖L2(0,1) ≤ cUh2

1‖∂2
ξu‖L2(0,1) for u ∈ H2(0, 1),

‖v − PRτ1
v‖L2(0,T ) ≤ cRτ1‖∂tv‖L2(0,T ) for v ∈ H1(0, T ).

By the Fubini theorem, it follows that the corresponding projection PU,h1,τ1

onto Uh1,τ1 = {u ∈ U , u|Ij
≡ u(j), u(j) ∈ Uh1 , j = 1, . . . , r} satisfies

‖u−PU,h1,τ1u‖U ≤ (cUh2
1+cRτ1)‖u‖Us

for all u ∈ Us = H1,2((0, T )×(0, 1)).
(13)

We define Yh2 ,Rτ2 and Yh2,τ2 accordingly and a corresponding estimate as
(13) holds for the projection PY,h2,τ2y of elements y ∈ Ys.

Remark 3.1. Estimates similar to (13) also exist for domains Θ ⊂ Rd

with d > 1 and are classical results from the interpolation theory in Sobolev
spaces.24 Note that the interpolation constants then often have to be esti-
mated numerically. Estimates with higher approximation order can be ob-
tained, if ansatz functions of higher polynomial degree are used and if the
input and output signals exhibit corresponding higher regularity in space
and time.
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4. Approximation of the system dynamics

Let us now discuss the efficient approximation of GS and its matrix rep-
resentation G = M−1

Y H, respectively. For time-invariant systems with dis-
tributed control and observation, this task reduces to the approximation of
the convolution kernel K ∈ L2(0, T ; L (U, Y )).

4.1. Kernel function approximation

Inserting (3) in (8), by a change of variables we obtain

Hkl
ij =

∫ T

0

∫ T

0

ψi(t)φj(s)(νk,K(t − s)μl)Y ds dt =
∫ T

0

Wij(t)Kkl(t) dt,

with matrix-valued functions W : [0, T ] → Rs×r and K : [0, T ] → Rq×p,

Wij(t) =
∫ T−t

0

ψi(t + s)φj(s) ds, Kkl(t) = (νk,K(t)μl)Y ,

and thus

H = MYG =
∫ T

0

K(t) ⊗ W(t) dt. (15)

Remark 4.1. W(t) can be exactly calculated if piecewise polynomial
ansatz functions ψi(t) and φj(t) are chosen. For the special choice (11),
we see in this way that W(t) ∈ Rr×r is a lower triangular Toeplitz matrix
for all t ∈ [0, T ], and hence the matrices Hij =

∫ T

0
Wij(t)K(t) dt ∈ Rq×p

satisfy Hij = Hi−j for 1 ≤ i, j ≤ r and Hij = 0 for 1 ≤ i < j ≤ r.

For systems of the form (1), the matrix-valued function K is given by

Kkl(t) = (νk, CS(t)Bμl)Y = (c∗k, S(t)bl)Z ,

where c∗k = C∗νk ∈ Z and bl = Bμl for k = 1, . . . , q and l = 1, . . . , p. Hence,
the entries of K can be calculated by solving the homogeneous systems

żl(t) = Azl(t), t ∈ (0, T ], (16a)

zl(0) = bl, l = 1, . . . , p, (16b)

since (16) has the mild solution zl(t) = S(t)bl ∈ C([0, T ];L2(Ω)). We obtain
an approximation H̃ of H by replacing zl(t) by numerical approximations
zl,tol(t), i.e.,

H̃ =
∫ T

0

K̃(t) ⊗ W(t) dt, (17)
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with K̃kl(t) = (νk, Czl,tol(t))Y = (c∗k, zl,tol(t))Z . Here the subscript tol

indicates that the error zl − zl,tol is assumed to satisfy some tolerance
criterion which will be specified later. The corresponding approximation
GDS of GS is given by

GDS = κ−1
Y G̃κUPU , with G̃ = M−1

Y H̃, (18)

and depends on h1, h2, τ1, τ2 and tol.

Remark 4.2. The matrix function K is approximated columnwise. The
kernel may also be calculated rowwise by solving an adjoint autonomous
system, which may be preferable if q < p or if the output approximation is
successively improved by adding further basis functions νq+1, νq+2, . . . .

Remark 4.3. The calculation of H̃ can be parallelized in an obvious way
by calculating the p solutions zl,tol in parallel and we note that no state
trajectories have to be stored. In general, the matrix H̃ is not sparse,
such that the memory requirements become significant if a high resolu-
tion of the signals in space and time is required, and the question of a
data-sparse representation arises. Recalling Remark 4.1, the blocks H̃kl

are lower triangular Toeplitz matrices for the special choice of time basis
funtions (11) and thus only q · p · r elements have to be stored. Another
approach to obtain data-sparse representations uses approximate factoriza-
tions Ǩkl(t − s) =

∑M
m,n=1 αmnLm(t)Ln(s) for s, t ∈ [0, T ] with suitable

ansatz functions26 Ln(t) .

4.2. The approximation error for the dynamics

The following proposition relates the error εD in the system dynamics to
the errors made in solving the PDE (16) for l = 1, . . . , p.

Prop 4.1. The error εD := ‖GS − GDS‖L (U,Y) in the system dynamics
satisfies

εD ≤
√

T‖K − K̃‖L2(0,T ;Rq×p
w )

≤ p
√

T

√
λmax(MY,h2)
λmin(MU,h1)

max
1≤l≤p

‖K:,l − K̃:,l‖L2(0,T ;Rq). (19)

Here K:,l and K̃:,l denote the l-th column of K(t) and K̃(t), respec-
tively, λmax(MY,h2) is the largest eigenvalue of MY,h2 and λmin(MU,h1)
the smallest eigenvalue of MU,h1 . Similar as before, Rq×p

w denotes the
space of real q × p matrices equipped with the weighted matrix norm
‖M‖Rq×p;w = supu �=0‖Mu‖Rq ;w/‖u‖Rp;w.
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Proof. The matrix K is the representation of the space-projected ker-

nel function Km : [−T, T ] → L (U, Y ) with Km(t) = PY,h2
K(t)PU,h1

,

where PY,h2
and PU,h1

are the orthogonal projections onto the subspaces

Yh2
and Uh1

, respectively. Introducing the corresponding I/O-map Gm =

Gm(h1, h2),

(Gmu)(t) =

∫ T

0

Km(t− s)u(s) ds, t ∈ [0, T ]. (20)

we note that GS = PY,h2,τ2GmPU,h1,τ1 . Similarly, we associate with

K̃(t) the kernel function K̃ : [−T, T ] → L (U, Y ) with K̃(t) =

κ−1
Y,h2

K̃(t)κU,h1
PU,h1

, and with corresponding I/O-map

(GDu)(t) =

∫ T

0

K̃(t− s)u(s) ds, t ∈ [0, T ].

We observe that GDS as defined in (18) satisfies GDS =

PY,h2,τ2GDPU,h1,τ1 by showing via (7)-(15) that the matrix representa-

tion of PY,h2,τ2GDPU,h1,τ1 coincides with (17). Then ‖Km(t)‖L (U,Y ) =

‖K(t)‖Rq×p;w and ‖K̃(t)‖L (U,Y ) = ‖K̃(t)‖Rq×p;w for all t ∈ [0, T ]. Lemma

2.1 yields

‖Gm−GD‖L (U,Y) ≤
√
T‖Km−K̃‖L2(0,T ;L (U,Y )) =

√
T‖K−K̃‖L2(0,T ;Rq×p

w ).

Defining E(t) = K(t)− K̃(t), for u ∈ R
p with ‖u‖Rp = 1 and t ∈ [0, T ], by

using the equivalence vector norms in R
p we have that

‖E(t)u‖Rq ≤
p∑

l=1

|ul|‖E:,l(t)‖Rq ≤ √p

(
p∑

l=1

‖E:,l(t)‖2Rq

)1/2

,

and hence

‖E‖2L2(0,T ;Rq×p) ≤ p

p∑
l=1

∫ T

0

‖E:,l(t)‖2Rq dt ≤ p2 max
l=1,...,p

∫ T

0

‖E:,l(t)‖2Rq dt,

which concludes the proof.

Remark 4.4. Calculating the columns of K directly and estimating εD via

(19), the quotient of the eigenvalues of the mass matrices MU,h1
and MY,h2

has to be compensated by the approximation accuracy of K:,l. This may

be problematic if hierarchical basis functions are chosen, since the quotient

grows unboundedly with decreasing h1 and h2. One may circumvent this

problem by calculating K with respect to different bases. Approximating

the columns of Kw(t) = M
1/2
Y K(t)M

−1/2
U via an adapted problem (16), we

have εD ≤ p
√
T max1≤l≤p‖Kw

:,l − K̃w
:,l‖L2(0,T ;Rq). Note that the necessary

back transformations have to be carried out with sufficient accuracy.
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4.3. Error estimation for the homogeneous PDE

In order to approximate the system dynamics, the homogeneous PDE (16)
has to be solved via a fully-discrete numerical scheme for p different initial
values. A first goal in error control is to choose the time and space grids
(and possibly other discretization parameters) such that

‖K:,l − K̃:,l‖L2(0,T ;Rq) < tol resp. ‖Kw
:,l − K̃w

:,l‖L2(0,T ;Rq) < tol (21)

is guaranteed for a given tol > 0 by means of reliable error estimators. A
second goal is to achieve this accuracy in a cost-economic way. A special
difficulty in solving (16) numerically is the handling of initial values bl,
which, in general, only belong to Z but not necessarily to D(A). Considering
the example heat equation, this means that the space and time derivatives
of the exact solution zl ∈ C1((0, T ],H2(Ω)∩H1

0 (Ω)) may become very large
for small t, but decay quickly for t > 0. In fact, in general we only have the
analytic bound

‖∂tz(t)‖L2(Ω) = ‖�z(t)‖L2(Ω) ≤
c

t
‖z0‖L2(Ω) for all t ∈ (0, T ],

with some constant c > 0 independent of z0 and T , cf. [27, p. 148]. Adaptive
space and time discretizations on the basis of a posteriori error estimates
are the method of choice to deal with these difficulties.28 Discontinuous
Galerkin time discretizations in combination with standard Galerkin space
discretizations provide an appropriate framework to derive corresponding (a
priori and a posteriori) error estimates, also for the case of adaptively refined
grids which are in general no longer quasi-uniform.27,29,30 We distinguish
two types of error estimates.

Global state error estimates measure the error (zl−zl,tol) in some global
norm. For parabolic problems, a priori and a posteriori estimates for the
error in L∞(0, T ; L2(Ω)) and L∞(0, T ; L∞(Ω)) can be found in.29 Such
results permit to guarantee (21) in view of

‖K:,l − K̃:,l‖L2(0,T ;Rq) ≤ ‖C‖L (Z,Y )

(
q∑

i=1

‖νi‖2
Y

)1/2

‖z − z
(l)
tol‖L2(0,T ;Z).

(22)
Goal-oriented error estimates can be used to measure the error ‖K:,l −
K̃:,l‖L2(0,T ;Rq) directly. This may be advantageous, since (22) may be very
conservative: the error in the observations K:,l can be small even if some
norm of the state error is large. The core of these error estimation tech-
niques is an exact error representation formula, which can be evaluated if
one knows the residual and the solution of an auxiliary dual PDE. This
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leads to the dual-weighted residuals (DWR) approach, see e.g.31–39 and the
references therein.

The previous discussion justifies the following assumption.

Assumption 4.1. Given a tolerance tol > 0, we can ensure (by using
appropriate error estimators and mesh refinements) that the solutions zl of
(16) and the solutions zl,tol calculated by means of an appropriate fully-
discrete numerical scheme satisfy

‖K:,l − K̃:,l‖L2(0,T ;Rq) < tol, l = 1, . . . , p. (23)

5. Total Error Estimates

We present estimates for the total error in the approximation of G. Using
general-purpose ansatz spaces Uh1,τ1 and Yh2,τ2 for the signal approxima-
tion, we only obtain error results in a weaker L (Us,Y)-norm.

Theorem 5.1. Consider the I/O map G ∈ L (U ,Y) of the infinite-
dimensional linear time-invariant system (3) and assume that

(i) G|Us
∈ L (Us,Ys) with spaces of higher regularity in space and time

Us = Hα1,β1((0, T )×Θ), Ys = Hα2,β2((0, T )×Ξ), α1, β1, α2, β2 ∈ N.

(ii) The families of subspaces {Uh1,τ1}h1,τ1 and {Yh2,τ2}h2,τ2 satisfy

‖u − PU,h1,τ1u‖U ≤ (cRτα1
1 + cUhβ1

1 )‖u‖Us , u ∈ Us,

‖y − PY,h2,τ2y‖Y ≤ (cSτα2
2 + cY hβ2

2 )‖y‖Ys , y ∈ Ys,

with positive constants cR, cS , cU and cY .
(iii) The error in solving for the state dynamics can be made arbitrarily

small, i.e., Assumption 4.1 holds.

Let δ > 0 be given. Then one can choose subspaces Uh∗
1 ,τ∗

1
and Yh∗

2 ,τ∗
2

such
that

τ∗
1 <

(
δ

8cR‖G‖L (U,Y)

)1/α1

, h∗
1 <

(
δ

8cU‖G‖L (U,Y)

)1/β1

, (24a)

τ∗
2 <

(
δ

8cS‖G‖L (Us,Ys)

)1/α2

, h∗
2 <

(
δ

8cY ‖G‖L (Us,Ys)

)1/β2

, (24b)
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and one can solve the PDEs (16) numerically for l = 1, . . . , p(h1) such that
one of the following conditions holds.

(i) ‖Kw
:,l − K̃w

:,l‖L2(0,T ;Rq) <
δ

2
√

Tp(h∗
1)

, (25a)

(ii) ‖K:,l − K̃:,l‖L2(0,T ;Rq) <
δ

2
√

Tp(h∗
1)

√
λmin(MU,h∗

1
)

λmax(MY,h∗
2
)
, (25b)

(iii) ‖zl − zl,tol‖L2(0,T ;Z) <

δ

2
√

Tp(h∗
1)

√
λmin(MU,h∗

1
)

λmax(MY,h∗
2
)
‖C‖−1

L (Z,Y )

⎛⎝q(h∗
2)∑

i=1

‖νi‖2
Y

⎞⎠−1/2

.

(25c)

In this case,

‖G − GDS‖L (Us,Y) < δ.

Moreover, the signal error ε′S := ‖G−GS‖L (Us,Y) and the system dynamics
error εD := ‖GS −GDS‖L (U,Y) are balanced in the sense that ε′S , εD < δ/2.

Proof. For u ∈ Us, we have

‖Gu − GSu‖Y ≤‖Gu − PY,h2,τ2Gu‖Y + ‖PY,h2,τ2Gu − PY,h2,τ2GPU,h1,τ1u‖Y ,

≤(cSτα2
2 + cY hβ2

2 )‖Gu‖Ys

+ (cRτα1
1 + cUhβ1

1 )‖PY‖L (Y)‖G‖L (U,Y)‖u‖Us ,

≤
{

(cSτα2
2 + cY hβ2

2 )‖G‖L (Urs,Ys)

+ (cRτα1
1 + cUhβ1

1 )‖G‖L (U,Y)

}
‖u‖Us ,

and thus (24) ensures that ε′S = ‖G − GS‖L (Us,Y) < δ/2. Proposition 4.1
in combination with (25) and in view of (22) ensures that εD = ‖GS −
GDS‖L (U,Y) < δ/2, which concludes the proof.

6. Applications and numerical results

6.1. Test problems

As test cases, we consider two heat equations on different domains Ω ⊂ R2

as depicted in Fig. 4. In both cases the control and observation operators are
defined on rectangular subsets of Ω Ωc = (ac,1, ac,2)× (bc,1, bc,2) and Ωm =
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(am,1, am,2) × (bm,1, bm,2), where the control is active and the observation
takes place, respectively.

Test case 6.1. Setting U = Y = L2(0, 1), we define C ∈ L (L2(Ω), Y ) and
B ∈ L (U,L2(Ω)) by

(Bu)(x1, x2) =

{
u(θ1(x1))ωc(x2), (x1, x2) ∈ Ωc

0, (x1, x2) /∈ Ωc

and

(Cz)(ξ) =
∫ bm,1

am,1

z(x1, θ2(ξ))
bm,1 − am,1

dx1,

where ωc ∈ L2(ac,2, bc,2) is a weight function and θ1 : [ac,1, bc,1] → [0, 1]
and θ2 : [0, 1] → [am,1, bm,1] are affine-linear transformations.

Note that C preserves an inherent spatial state regularity, i.e., C|H2(Ω) ∈
L (H2(Ω),H2(0, 1)).

For the state equation we consider a heat equation with homogeneous
Dirichlet boundary conditions on (0, T ] × Ω with T = 1 and Ω = (0, 1)2.
We choose Ωc = Ω, Ωm = (0.1, 0.2) × (0.1, 0.9) and ωc(x2) = sin(πx2).
In this case, the output obtained by inputs of the special form u(t; θ) =
sin(ωT πt) sin(mπθ) with ωT ,m ∈ N can be explicitly computed in terms of
the eigenfunctions of the Laplace operator.

Test case 6.2. As second test case, we consider two infinitely long plates
of width 5 and height 0.2, which are connected by two rectangular bars
as shown in the cross section in Fig. 4. We assume that the plates are
surrounded by an insulating material and that we can heat the bottom
plate and measure the temperature distribution in the upper plate.

The input operator is chosen as in Test case 6.1 for the output operator,
we just switch the variables in the definition of C.

As state equation we consider a heat equation with homogeneous Neu-
mann boundary conditions on (0, T ] × Ω with T = 1 and Ω as in Fig. 4,
and choose Ωc = (0.05, 4.95) × (0.05, 0.15), Ωm = (0.05, 4.95) × (0.85, 0.95)
and ωc(x2) = sin(π(x2 − 0.05)/0.1).

The matrix approximations G̃ of the I/O-maps G corresponding to the
test cases have been calculated by means of a heat equation solver, which
is based on the C++ FEM software library deal.ii.40 It realizes a discon-
tinuous Galerkin scheme with adaptive space and time grids and applies
goal-oriented DWR-based error control to ensure (21).
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Ω

x1

x2

1

1

y(
t, 

. )

B

C Ωm

θ
u(t, . )

ξ
(a) Test case 6.1

y(t, . )

ξ
C

θ

u(t, . )

Ω

x1

x2

5

1

(b) Test case 6.2

Fig. 4. Test cases heat equation: (a) with homogeneous Dirichlet boundary conditions,
(b) with homogeneous Neumann boundary conditions.

6.2. Tests of convergence

The following numerical convergence tests have all been carried out with
approximations GDS(h1, τ1, h2, τ2, tol) of the I/O-map G corresponding to
Test case 6.1. Hierarchical linear finite elements in Uh1 and Yh2 and Haar
wavelets in Rτ1 and Sτ2 have been chosen. The tolerance tol refers to the
estimate (23).

Convergence of single outputs. Considering Test case 6.1 with inputs
u(t; θ) = sin(ωT πt) sin(mπθ), and exactly known outputs y = Gu, we inves-
tigate the relative error ‖y− ỹ‖Y/‖u‖Us , with ỹ = GDS(h1, τ1, h2, τ2, tol)u,
for varying discretization parameters h1, τ1, h2, τ2 and tol. Choosing, e.g.,
m = 5 and ωT = 10, we observe a quadratic convergence in h1 = h2 (cf.
Fig. 6.2-a) and a linear convergence in τ1 = τ2 (cf. Fig. 6.2-b) in corre-
spondence to Thm. 5.1. However, the error does not converge to zero but
to a positive plateau value, which is due to the system dynamics error
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and which becomes smaller for lower tolerances tol. For input signals with
m > 5 and ωT > 10 the convergence order can only be observed for smaller
discretization parameters h1, h2, τ1 and τ2.
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Fig. 5. (a) Relative output errors for input u(t; θ) = sin(10πt) sin(5πθ), vary-
ing h1 = h2 and fixed τ1 = τ2 = 1/64. (b) Relative output errors for input
u(t; θ) = sin(10πt) sin(5πθ), varying τ1 = τ2 and fixed h1 = h2 = 1/17. (c) Norm
‖GDS(h)‖L (U,Y) for synchronously increasing approximation space dimensions p = q =
r + 1 = s + 1 and fixed tolerance tol = 4.0e− 5.

Convergence of the norm ‖GS(h1, τ1, h2, τ2)‖L (U,Y) for nested sub-
spaces. Successively improving the signal approximation by adding addi-
tional basis functions, the norm ‖GS(h1, τ1, h2, τ2)‖L (U,Y) converges, cf.
Lemma 3.1. We approximate ‖GS‖L (U,Y) by ‖GDS‖L (U,Y), where GDS

has been calculated with tol = 4.0e − 5. In Fig. 6.2-c, the approximations
‖GS(h1, τ1, h2, τ2)‖L (U,Y) = ‖GS( 1

p−1 , 1
r , 1

q−1 , 1
s )‖L (U,Y) are plotted for in-
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creasing subspace dimensions p = q = r + 1 = s + 1 = 2, 3, . . . , 65.

6.3. Matrix reduction on the basis of SVDs

In order to resolve the input and output signal spaces accurately by means
of general purpose basis functions, a large number of basis functions is
needed in general. In order to reduce the large size of the resulting I/O-
matrices G̃, we apply a reduction method known as Tucker decomposition
or higher order singular value decomposition (HOSVD).41 It is based on
singular value decompositions (SVDs) and preserves the space-time tensor
structure of the input and output signal bases.

Considering G̃ ∈ Rqs×pr as a fourth-order tensor G̃ ∈ Rs×r×q×p with
G̃ijkl = G̃kl

ij , it is shown in41 that there exists a HOSVD

G̃ = S ×1 U(ψ) ×2 U(φ) ×3 U(ν) ×4 U(μ). (26)

Here S ∈ Rs×r×q×p is a so-called core tensor, satisfying some orthogonality
properties, U(ψ) ∈ Rs×s, U(φ) ∈ Rr×r, U(ν) ∈ Rq×q, U(μ) ∈ Rp×p are
unitary matrices and ×1, . . . ,×4 denote tensor-matrix multiplications. We
define a so-called matrix unfolding G̃(ψ) ∈ Rs×rqp of the tensor G̃ by

G̃(ψ)
im = Gijkl, m = (k − 1)ps + (l − 1)s + i,

i.e., we put all elements belonging to ψ1, ψ2, . . . , ψs into one respective row,
and we define the unfoldings G̃(φ) ∈ Rr×qps, G̃(ν) ∈ Rq×psr and G̃(μ) ∈
Rp×srq in a similar cyclic way. Then, U(ψ), U(φ), U(ν) and U(μ) in (26) can
be calculated by means of four SVDs of the respective form

G̃(ψ) = U(ψ)Σ(ψ)(V(ψ))T ,

where Σ(ψ) is diagonal with entries σ
(ψ)
1 ≥ σ

(ψ)
2 ≥ . . . σ

(ψ)
s ≥ 0 and V(ψ)

is columnwise orthonormal. The σ
(ψ)
i are so-called n-mode singular values

(or in our case ψ-mode singular values) of the tensor G̃ and correspond to
the Frobenius norms of certain subtensors of the core tensor S.

On the basis of (26) we can define an approximation Ĝ ∈ Rs×r×q×p

of G̃ by discarding the smallest n-mode singular values {σ(ψ)
ŝ+1, . . . , σ

(ψ)
s },

{σ(φ)
r̂+1, . . . , σ

(ψ)
r }, {σ(ν)

q̂+1, . . . , σ
(ν)
q } and {σ(μ)

p̂+1, . . . , σ
(μ)
p }, i.e., we set the cor-

responding parts of S to zero. Then we have41

‖G̃ − Ĝ‖2
F ≤

s∑
i=ŝ+1

σ
(ψ)
i +

r∑
j=r̂+1

σ
(φ)
j +

q∑
k=q̂+1

σ
(ν)
k +

p∑
l=p̂+1

σ
(μ)
l .
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The truncation of Ĝ ∈ Rqr×ps after a basis transformation correspond-
ing to U(ψ), U(φ), U(ν) and U(μ) yields a low-dimensional representation
Ḡ ∈ Rq̂r̂×p̂ŝ.

In Figure 6 the HOSVD has been applied to a matrix G̃ ∈ Rqs×pr for the
Test case 6.2 with p = 17, q = 65 and r = s = 64. The first row shows the
respective n-mode singular values. Underneath the first and most relevant
two transformed/new basis functions μ̂i, ν̂i, φ̂i and ψ̂i, are plotted. It is
not surprising that the positions of the connections between the plates can
be recovered as large values of the corresponding spatial input and output
basis functions.

Remark 6.1. The application of a HOSVD is useful in two ways. First,
it delivers a low-dimensional matrix-representation of the system, which is
small enough to be used for real-time feedback control design. Second, it
allows to identify relevant input and output signals, which can be exploited
in actuator and sensor design, i.e., to decide where actuators and sensors
have to be placed and which resolution in time and space they should have.
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Fig. 6. HOSVD applied to the I/O map of Test case 6.2. First row: n-mode singular
values in semilogarithmic scales. 2nd and 3rd row: Respective two most relevant basis
functions.
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6.4. Application in optimization problems

We investigate the use of the I/O-map approximation in optimization prob-
lems

min J(u, y) subject to y = Gu, u ∈ Uad. (27)

Here Uad ⊂ U is the subset of admissible controls, J : U × Y → R is a
quadratic cost functional J(u, y) = 1

2‖y − yD‖2
Y + α‖u‖2

U , yD ∈ Y is a
desired output signal, and α > 0 is a regularization parameter. We define
the discretized cost functional

J̄h : R
pr × R

qs → R, J̄h(u,y) =
1
2
‖y − yD‖2

qs;w + α‖u‖2
pr;w,

with yD = κY,h2,τ2PY,h2,τ2yD, and instead of (27) we solve

min J̄h(u,y) subject to y = G̃u, u ∈ Ūad, (28)

with Ūad = {u ∈ Rpr : u = κU,h1,τ1PU,h1,τ1u, u ∈ Uad}. Considering opti-
mization problems without control constraints, i.e., Uad = U and Ūad = Rpr,
the solution ū of (28) is characterized by

(G̃T MYG̃ + αMU )ū = G̃T MYyD. (29)

As concrete example, we consider Test case 6.2 and choose yD = Gu0 to
be the output for an input u0 ≡ 1 which is equal to 1 on all of [0, T ]×(0, 1).
We then try to find an optimal input u∗ that minimizes the cost functional
(27).

First we solve (29) with an approximated I/O map G̃ ∈ R17·64×65·64

and α = 10−4, yielding an approximation ū ≈ u∗.
The solution takes 0.33 seconds on a normal desktop PC. The u-norm is

reduced by 27.9% and the relative deviation of Gū from yD is 9.4%. In Fig.
7 the same calculations have been carried out with Ĝ ∈ R3·5×3·5, where Ĝ
arises from a HOSVD-based matrix reduction of G̃ ∈ R17·64×65·64, where all
but the 3 most relevant spatial and the 5 most relevant temporal input and
output basis functions have been truncated. Using this approximation, the
norm of u is reduced by 27.4%, whereas the relative deviation of Gū from yD

is 9.5%. The cost functional has been reduced by 44.5%, and the calculation
of ū took less than 0.0004 seconds. The outputs resulting from u0 and ū

have been calculated in simulations independent from the calculation of the
I/O-matrix.
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Fig. 7. Application of the SVD-reduced approximated I/O map Ĝ ∈ R3·5×3·5 in an
optimization problem. From top left to bottom right: optimized control ū, original output
yD = Gu0, optimized output Gū and their difference.

7. Final remarks and outlook

We have presented a systematic framework for the discretization of I/O-
maps of linear infinite-dimensional control systems with spatially distributed
inputs and outputs. Global error estimates have been provided, which allow
to choose the involved discretization parameters in such a way that a desired
overall accuracy is achieved and that the signal and the system dynamics
approximation errors are balanced. Moreover, the error results are capable
to take into account many practical and technical restrictions in sensor and
actuator design, like limited spatial and temporal resolutions or the use of
piecewise constant controls and observations due to digital devices.

The numerical costs of the approach are primarily governed by the nu-
merical calculation of p underlying homogeneous PDEs, where p is the
number of input basis functions in space. This, however can be done be-
forehand, and in parallel, provided there is enough storage available that
allows to store these solutions. This, however, can become problematic when
the spatial resolution of the input signal space has to be very accurate. In
this case, code-optimization, e.g. due to parallelization and appropriate up-
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dating of mass and stiffness matrices from prior calculations, promises to
have a large potential for speed-up.

The SVD-based dimension reduction for the matrix representation can
be considered as an alternative model reduction approach, and the resulting
reduced I/O-models proved to be successful in first numerical optimization
applications. Moreover, the SVD-based reduction may be able to provide
useful insight for efficient actuator and sensor design by filtering out relevant
input and output signals.
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We review recent progress in understanding the physical meaning of quantum
graph models through analysis of their vertex coupling approximations.

Keywords: Quantum graphs; Vertex coupling; Tube networks; Approximations.

1. Introduction

Quantum graphs attracted a lot of interest recently. There are several rea-
sons for that. On one hand these models are useful as descriptions of vari-
ous structures prepared from semiconductor wires, carbon nanotubes, and
other substances. On the other hand they provide a tool to study proper-
ties of quantum dynamics in situations when the system has a nontrivial
geometrical or topological structure.

Quantum graph models contain typically free parameters related to cou-
pling of the wave functions at the graph vertices, and to get full grasp of the
theory one has to understand their physical meaning. A natural approach
to this question is to investigate “fat graphs”, that is, systems of thin tubes
built over the skeleton of a given graph, and to analyze its limit as the tube
thickness tends to zero.

While simple at a glance, the problem is in fact rather difficult and its
understanding is being reached through a long series of works. The aim of
the present paper is to review some recent achievements in this area. We
present this survey in a non-technical way referring for detailed proofs and
a wider background to the literature, in particular, to our recent papers
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[7,19]. Having said that it is important to stress that we will formulate the
problem and the results in a fully rigorous way.

2. Quantum graphs

2.1. A bit of history

The quantum graph concept was born in early days of quantum mechanics
being first suggested in the 1930’s by Linus Pauling as a model of aromatic
hydrocarbons, and worked out later by Ruedenberg and Scherr [37]. Then,
as it sometimes happen in the history of science, it was happily forgotten.

In a sense it might be surprising because the idea of a quantum particle
living on a graph is theoretically attractive, however, it was not enough
and for three decades quantum graph models enjoyed the status of an ob-
scure textbook example. This changed in the eighties, when the diminishing
size of structures produced in solid-state-physics laboratories reached the
state when the electron transport in them became dominantly ballistic and
quantum graphs suddenly reemerged as a useful model.

The list of physical system to which these methods can be applied kept
expanding. At the beginning it included microstructures fabricated from
semiconductor or metallic materials, later carbon nanotubes were added.
It is worth mentioning, however, that the same technique can be used also
to investigation of electromagnetic phenomena in large network-type struc-
tures [27], at least as long stationary situation is considered.

Quantum dynamics of a particle confined to a graph can mean var-
ious things, of course. Typically one considers a nonrelativistic situation
described by a Schrödinger operator supported by the graph. Often the
motion is free but in other situations one adds potentials corresponding to
external electric or magnetic fields, spin degrees of freedom, etc. Graphs
can support also Dirac operators. Such a model, too, was for a long time
regarded as a theoretician toy and attracted a limited attention only [3,4].
The situation changed dramatically two or three years ago with the discov-
ery of graphene in which electron behave effectively as relativistic particles
which triggered a wave of papers of the subject.

The literature on quantum graphs is nowadays immense; we are not
going to try to give a bibliographical review and refer instead to the pro-
ceedings volume of a recent Isaac Newton Institute programme [15] where
one can find an extensive guide to further reading.
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2.2. Vertex coupling

For simplicity let us consider a graph having a single vertex in form of a
star, i.e. n halflines with the endpoint connected. The state Hilbert space
H of such a system is =

⊕n
j=1 L2(R+) and the particle Hamiltonian acts

on H as ψj �→ −ψ′′
j ; the values of physical constants are irrelevant for our

discussion and we put conventionally � = 2m = 1.
The Hamiltonian domain consists of W 2,2 functions; in order to make it

self-adjoint we need to impose suitable boundary conditions at the vertex.
Since we deal with a second-order operator, the latter involve boundary
value Ψ(0) := {ψj(0)} and Ψ′(0) := {ψ′

j(0)}; conventionally they are writ-
ten in the form

AΨ(0) + BΨ′(0) = 0 (1)

proposed by Kostrykin and Schrader [28], where the n × n matrices A,B

give rise to a self-adjoint operator iff they satisfy the conditions

• rank (A|B) = n

• AB∗ is self-adjoint

The obvious drawback of (1) is that the pair A,B is not unique. The com-
mon way to remove the non-uniqueness [24,26,29] is to choose

A = U − I , B = i(U + I) , (2)

where U is an n × n unitary matrix; there are also other unique forms
more suitable for some purposes [7,8,30]; one of them we will need in Sec. 6
below. It is obvious from (2) that the coupling of n edges is characterized
in general by n2 real parameters.

There is a simple way to derive the boundary conditions with which
can be traced to [23] where it was used for n = 2. Self-adjointness requires
vanishing of the boundary form,

n∑
j=1

(ψ̄jψ
′
j − ψ̄′

jψj)(0) = 0 ,

which occurs iff the norms ‖Ψ(0)± i�Ψ′(0)‖Cn with a fixed � �= 0 coincide,
since the difference of the squared norms is just the lhs of the displayed rela-
tion. Consequently, the vectors must be related by an n×n unitary matrix,
which yields immediately (U − I)Ψ(0) + i�(U + I)Ψ′(0) = 0. It may seem
that we have an extra parameter here, however, matrices corresponding to
two different values of � are related by

U ′ =
(� + �′)U + � − �′

(� − �′)U + � + �′
,
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so it just fixes the length scale of the problem and we can put � = 1
without loss of generality. Note also that the parameter matrix is closely
related to the scattering at the vertex, specifically, it coincides with the
on-shell scattering matrix at the momentum k = 1.

2.3. Examples of vertex coupling

Denote by J the n × n matrix whose all entries are equal to one; then
the unitary matrix U = 2

n+iαJ − I corresponds to the standard δ coupling
characterized by the conditions

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,

n∑
j=1

ψ′
j(0) = αψ(0) (3)

of “coupling strength” α ∈ R; we include also the case α = ∞, or U = −I,
when the edges are decoupled with Dirichlet conditions at the endpoints.
Another particular case of interest is α = 0 corresponding to the “free
motion”. It would be natural to call then (3) free boundary conditions,
however, they are mostly called Kirchhoff in the literaturea. Note that the
δ-couplings are the only ones with wave functions continuous at the vertex.

The second example to mention is the δ′s coupling, a counterpart to the
above one with the roles of functions and derivatives interchanged. The
corresponding unitary matrix is U = I − 2

n−iβJ giving

ψ′
j(0) = ψ′

k(0) =: ψ′(0) , j, k = 1, . . . , n ,

n∑
j=1

ψj(0) = βψ′(0) (4)

with β ∈ R; for β = ∞ we get decoupled edges with Neumann conditions.

3. Vertex understanding through approximations

3.1. Statement of the problem

The first question to pose is why we should be interested in quantum graph
vertex couplings. There are several reasons for that:

• One is mathematical. Different couplings define different Hamilto-
nians which have different spectral properties. Sometimes they can
be quite involved; as an example let us number theoretic properties
of rectangular lattice-graph spectra [13].

aThe name is generally accepted but unfortunate because in electricity it is associated
with current conservation at the junction, and in the quantum case any self-adjoint
coupling preserves probability current.
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• On a more practical side, the conductivity of nanostructures is
controlled typically by application of external fields. Understanding
of vertex coupling would give us an alternative mean to this goal.

• As a specific example, the authors of Ref. 10 used the generalized
point interaction on line as a model of a qubit; in a similar way
star graphs with n > 2 edges can similarly model qudits.

At a glance the vertex parameters can be interpreted easily. One should
replace the graph in question by a family of “fat graphs”, i.e. a tube net-
work built around the graph skeleton, with appropriate Laplacian as the
Hamiltonian. Such a system has no free parameters, so it would be enough
to inspect the squeezing limit with the tube diameter tends to zero and to
see which graph Hamiltonian we obtain. Unfortunately, as it is often the
case with simple answers, the problem is in reality rather complicated:

• The answer depends substantially on the type of the Laplacian sup-
ported by the tube network. The Neumann case is easier and after
an effort more than a decade long an understanding was reached
[17,18,22,31,34,36,38]. The drawback was that the limit gave the
free (Kirchhoff) boundary conditions only.

• the Dirichlet case is more difficult and only recently some substan-
tial results were obtained [1,5,12,25,32,33], nevertheless, a lot of
work remains to be done

Before proceeding to our main topic, let us review briefly the existing results
we have mentioned above.

3.2. Briefly on Dirichlet networks

The distinctive feature of the Dirichlet case is the energy blow-up associ-
ated with the fact that the transverse part of the Dirichlet Laplacian has
lowest eigenvalue proportional to d−2 where d is the tube diameter. To get
a meaningful result we have thus to use an energy renormalization which
can be done in different ways. Molchanov and Vainberg [32] chose the en-

� � �
��
�� �

0 λ1 λ λ2

Fig. 1. Energy renormalization
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ergy λ to be subtracted between the first and second transverse eigenvalue,
cf. Fig. 1, and obtained a nontrivial limit determined by scattering prop-
erties of the corresponding “fat star”. A drawback of this approach is that
leads to energy spectrum unbounded from below which is a feature one tries
to avoid in meaningful nonrelativistic models.

Most authors choose therefore the transverse threshold λ1 as the energy
to subtract. In such a case the limit is generically trivial giving disconnected
edges with Dirichlet endpoints [32,33]. However, the limit can be nontrivial
provided the tube system we start with has a threshold resonance [1,5,25];
a similar, closely related effect using finite star graphs was proposed in [12].

3.3. A survey on Neumann network results

Consider first for simplicity a finite connected graph M0 with vertices vk,
k ∈ K and edges ej � Ij := [0, �j ], j ∈ J ; the corresponding Hilbert space is
thus L2(M0) :=

⊕
j∈J L2(Ij). The form u �→ ‖u′‖2

M0
:=
∑

j∈J ‖u′‖2
Ij

with
u ∈ W 2,1(M0) is associated with the operator which acts as −ΔM0u = −u′′

j

and satisfies the free boundary conditions.

M0 Mε

ej

vk

Uε,j

Vε,k

Fig. 2. Graph M0 and fat graph Mε

On the other hand, consider a Riemannian manifold X of dimension
d ≥ 2 and the corresponding space L2(X) w.r.t. volume dX equal to
(det g)1/2dx in a fixed chart. For u ∈ C∞

comp(X) we set

qX(u) := ‖du‖2
X =

∫
X

|du|2dX , |du|2 =
∑
i,j

gij∂iu ∂ju ; (5)

the closure of this form is associated with the self-adjoint Neumann Lapla-
cian ΔX on the X. Let us stress that within this framework we can treat
both “solid” tubes with the boundary at which Neumann condition is im-
posed, as well as “sleeve-type” manifolds without a boundary when the
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particle is supposed to live on the surface – cf. Fig. 2. This is made possible
by the similarity of the transverse ground-state eigenfunction in both cases.

The “fat graphs” Mε associated with the graph M0 are all constructed
from X by taking a suitable ε-dependent family of metrics. This the ap-
proach was used in [17]; in contrast to earlier work such as [31] one also
need not assume that the network is embedded in a Euclidean space since
only intrinsic geometrical properties are involved.

The analysis requires dissection of Mε into a union of edge and vertex
components, Uε,j and Vε,k, respectively, with appropriate scaling properties,

• for edge regions we assume that Uε,j is diffeomorphic to Ij × F

where F is a compact and connected manifold (with or without a
boundary) of dimension m := d − 1

• for vertex regions we assume that the manifold Vε,k is diffeomorphic
to an ε-independent manifold Vk

In this setting one can prove the following result [17]:

Theorem 3.1. Under the stated assumptions we have eigenvalue conver-
gence, λk(Mε) → λk(M0) , k = 1, 2, . . . , as ε → 0.

The shrinking limit thus leads to free boundary conditions only, but also
in other respects the stated result is not particularly strong, for instance,
in that it concerns the eigenvalue convergence in finite graphs only. One
can do better: in Ref. 34 Olaf Post proved a norm-resolvent convergence
ΔMε

→ ΔM0 as ε → 0+ on generally infinite graphs under natural uni-
formity conditions analogous to those of used in Theorem 4.3, namely (i)
existence of nontrivial bounds on vertex degrees and volumes, edge lengths,
and the second Neumann eigenvalues at vertices, (ii) appropriate scaling
(analogous to the described above) of the metrics at the edges and ver-
tices. The involved operators act on different Hilbert spaces, of course, and
the stated limiting relation makes sense with a suitable identification map
which we will describe below.

Other extensions are possible. For graphs with semi-infinite “outer”
edges, e.g., the problem typically exhibits series of resonances, and one
may ask what happens with them if the graph is replaced by a family of
“fat” graphs. Using exterior complex scaling in the “longitudinal” variable
one can prove a convergence result for resonances as ε → 0 [18]; the same
is true for embedded eigenvalues of the graph Laplacian which may remain
embedded or become resonances for ε > 0.

Hence we have a number of convergence results is available for squeez-
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ing limit of Neumann-type thin tube networks, however, the limiting oper-
ator corresponds always to free boundary conditions only. The question is
whether one can do better.

4. Beyond the free coupling

4.1. A graph inspiration

It is obvious that one has to add a new feature to the approximating family
to get more general results. Let us look how one can approximate δ coupling
on graphs using families of scaled potentials. For simplicity we will consider
again the n-edge star graph as in Sec. 2.2, however, we replace the Laplacian
at the edges by a Schrödinger operator, ψj �→ −ψ′′

j +Vjψj . In order make the
problem well-defined we have to impose requirement on the potential; we
suppose that Vj ∈ L1

loc(R+) , j = 1, . . . , n. If the boundary conditions at the
vertex are (3) with the parameter α ∈ R we get a self-adjoint operator which
we denote as Hα(V ). Let now the potential contain a scaled component,

Wε,j :=
1
ε

Wj

(x

ε

)
, j = 1, . . . , n , (6)

then we have the following result [14]:

Theorem 4.1. Suppose that the potentials Vj ∈ L1
loc(R+) are below

bounded and Wj ∈ L1(R+) for j = 1, . . . , n . Then

H0(V + Wε) −→ Hα(V )

as ε → 0+ in the norm resolvent sense, with the coupling parameter defined
as α :=

∑n
j=1

∫∞
0

Wj(x) dx.

Our aim is to “lift” this result to tube networks.

4.2. Single vertex networks

Consider first a star graph again. Let G have one vertex v and deg v

adjacent edges of lengths �e ∈ (0,∞]. The corresponding Hilbert space
is L2(G) :=

⊕
e∈E L2(Ie), the decoupled Sobolev space of order k is

W 2,k
max(G) :=

⊕
e∈E W 2,k(Ie) together with its natural norm.

Let p = {pe} have components pe > 0 for e ∈ E; we introduce it because
we want to consider squeezing limits also in the situation when the tubes
have different cross sections. The Sobolev space associated with weight p is

W 2,k
p (G) :=

{
f ∈ W 2,k

max(G) : f ∈ Cp
}

,
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where f := {fe(0)}, in particular, if all the components are equal, p =
(1, . . . , 1), we arrive at the continuous Sobolev space W 2,1(G) := W 2,1

p (G).
Next we have to introduce operators on the graph. We start with the

(weighted) free Hamiltonian ΔG defined via the quadratic form d = dG,

d(f) := ‖f ′‖2
G =

∑
e

‖e′‖2
Ie

and dom d := W 2,1
p (G)

for a fixed p (we drop the index p); the form is a closed as related to the
Sobolev norm ‖f‖2

W 2,1(G) = ‖f ′‖2
G+‖f‖2

G. The Hamiltonian with δ-coupling
of strength q is defined via the quadratic form h = h(G,q) given by

h(f) := ‖f ′‖2
G + q(v)|f(v)|2 and dom h := W 2,1

p (G)

Using standard Sobolev arguments one can show [19] that the δ-coupling
is a “small” perturbation of ΔG by estimating the difference h(f) − d(f).

The manifold model of the “fat” graph is constructed as in the previous
section. Given ε ∈ (0, ε0] we associate a d-dimensional manifold Xε to the
graph G in the following way: to the edge e ∈ E and the vertex v we ascribe
the Riemannian manifolds

Xε,e := Ie × εYe and Xε,v := εXv ,

respectively, where εYe is a manifold Ye equipped with metric hε,e := ε2he

and εXε,v carries the metric gε,v = ε2gv . As before, we use the ε-
independent coordinates (s, y) ∈ Xe = Ie × Ye and x ∈ Xv, so the radius-
type parameter ε only enters via the Riemannian metric. Let us stress this
includes the case of the ε-neighborhood of an embedded graph G ⊂ Rd, but
only up to a longitudinal error of order of ε; this problem can be dealt with
again using an ε-dependence of the metric in the longitudinal direction.

The Hilbert space of the manifold model L2(Xε) can be decomposed as

L2(Xε) =
⊕

e

(
L2(Ie) ⊗ L2(εYe)

)
⊕ L2(εXv)

with the norm given accordingly by

‖u‖2
Xε

=
∑
e∈E

εd−1

∫
Xe

|u|2dyeds + εd

∫
Xv

|u|2dxv ,

where dxe = dyeds and dxv denote the Riemannian volume measures asso-
ciated to the (unscaled) manifolds Xe = Ie × Ye and Xv, respectively. We
also introduce the Sobolev space W 2,1(Xε) of order one defined conven-
tionally as the completion of the space of smooth functions with compact
support under the norm ‖u‖2

W 2,1(Xε) = ‖du‖2
Xε

+ ‖u‖2
Xε

.
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Next we pass to operators on the manifold. The Laplacian ΔXε
on Xε

is given via its quadratic form dε(u) equal to

‖du‖2
Xε

=
∑
e∈E

εd−1

∫
Xe

(
|u′(s, y)|2+

1
ε2

|dYeu|2he

)
dyeds+εd−2

∫
Xv

|du|2gv
dxv

where u′ is the longitudinal derivative, u′ = ∂su, and du is the exterior
derivative of u. Again, dε is closed by definition. Adding a potential, we
define the Hamiltonian Hε as the operator associated with the form hε =
h(Xε,Qε) given by

hε = ‖du‖2
Xε

+ 〈u, Qεu〉Xε ,

where the potential Qε is supported in the vertex region Xv only. Now we
use graph result mentioned as an inspiration and choose

Qε(x) =
1
ε
Q(x) ,

where Q = Q1 is a fixed bounded and measurable function on Xv. The
reader may wonder that in comparison to (6) the factor ε−1 is missing in
the argument, however, this is due to our choice to perform the squeezing
by the change of the metric only.

One can establish the relative (form-)boundedness of Hε with respect
to the free operator ΔXε

: to a given η ∈ (0, 1) there is εη > 0 such that the
form hε is relatively form-bounded with respect to the free form dε, that is,
there is C̃η > 0 such that

|hε(u) − dε(u)| ≤ η dε(u) + C̃η‖u‖2
Xε

whenever 0 < ε ≤ εη with explicit constants εη and C̃η. The latter are given
explicitly in [19]; what is important that they are expressed in terms of the
parameters of the model which we give below.

We have mentioned above that our operators acts in different spaces,
namely the Hilbert spaces H = L2(G) and H̃ε = L2(Xε) and their Sobolev
counterparts, hence we need to define quasi-unitary operators to relate the
graph and manifold Hamiltonians. For further purposes we denote

pe := (vold−1Ye)1/2 and q(v) =
∫

Xv

Qdxv ;

recall that we introduced the weights pe to be able to treat situations when
the tube cross sections Ye are mutually different.

First we define the graph-to-manifold map, J : H → H̃ε, by

Jf := ε−(d−1)/2
⊕
e∈E

(fe ⊗ 1−e) ⊕ 0 , (7)
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where 1−e is the normalized eigenfunction of Ye associated to the lowest
(zero) eigenvalue, i.e. 1−e(y) = p−1

e . Next introduce the following averaging
operators ∫

−
v
u :=

∫
−

Xv

udxv and
∫
−

e
u(s) :=

∫
−

Ye

u(s, ·)dye

The map in the opposite direction, J ′ : H̃ε → H, is given by the adjoint,

(J ′u)e(s) = ε(d−1)/2〈1−e, ue(s, ·)〉Ye
= ε(d−1)/2pe

∫
−

e
u(s) .

In an analogous way one can construct identification maps between the
Sobolev spaces. They are need in the proofs but not for stating the result,
hence we refer the reader to [19] for their explicit forms.

Using these notions in combination with an abstract convergence result
of [34] one can then arrive at the following conclusions [19]:

Theorem 4.2. As ε → 0, we have

‖J(H − z)−1 − (Hε − z)−1J‖ = O(ε1/2),

‖J(H − z)−1J ′ − (Hε − z)−1‖ = O(ε1/2)

for z /∈ [λ0,∞). Moreover, φ(λ) = (λ − z)−1 can be replaced by any mea-
surable, bounded function converging to a constant as λ → ∞ and being
continuous in a neighborhood of σ(H).

Corollary 4.1. The spectrum of Hε converges to σ(H) uniformly on any
finite energy interval, and the same is true for the essential spectra.

Corollary 4.2. For any λ ∈ σdisc(H) there exists a family {λε} with λε ∈
disc(Hε) such that λε → λ as ε → 0, and moreover, the multiplicity is
preserved. If λ is a simple eigenvalue with normalized eigenfunction φ, then
there exists a family of simple normalized eigenfunctions {φε}ε of Hε such
that ‖Jφ − φε‖Xε

→ 0 holds as ε → 0.

4.3. The general case

So far we have talked for simplicity about the star-shaped graphs only. The
same technique of “cutting” the graph and the corresponding manifold into
edge and vertex regions works also in the general case. As a result of the
analysis performed in Ref. 19 we get

Theorem 4.3. Assume that G is a metric graph and Xε the corresponding
approximating manifold. If

sup
v∈V

volXv

vol ∂Xv
< ∞ , sup

v∈V
‖Q�Xv‖∞ < ∞ , inf

e∈E
�e > 0
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and

inf
v∈V

λ2(v) > 0 , inf
e∈E

λ2(e) > 0 ,

where λ2 denotes the second Neumann eigenvalue in the appropriate mani-
fold region, then the corresponding Hamiltonians H = ΔG +

∑
v q(v)δv and

Hε = ΔXε
+
∑

v ε−1Qv are O(ε1/2)-close with the error depending only on
the above indicated global constants.

In this way we have managed to solve the problem for quantum graphs with
δ-couplings under mild uniformity conditions.

5. Discontinuity at the vertex: the example of δ′
s

While the above results break the Kirchhoff restriction of the previous stud-
ies, they do not give a full answer; recall that the δ-couplings at a vertex v

represent a one-parameter subfamily in the n2 parameter family, n = deg v,
of all self-adjoint couplings. Let us now investigate the case of δ′s as a prime
example of coupling with functions discontinuous at the vertex.

5.1. The idea of Cheon and Shigehara

Our strategy will be the same as before, first we will construct an approx-
imation on the graph itself and then we we will lift it to the manifold.
The problem is not easy and its core is the question whether one can ap-
proximate the δ′-interaction on the line by means of (regular or singular)
potentials. It was believed for a considerable time that this problem has
no solution, until Cheon and Shigehara in the seminal paper [9] demon-
strated a formal approximation by means of of three δ-interaction; a sub-
sequent mathematical analysis [2,16] showed that it converges in fact in
norm-resolvent sense.
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�−→
a → 0

βa

b(a)

c(a)

HβHb,c

Fig. 3. CS approximation scheme on a graph
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The idea can be extended to δ′s-coupling on a graph. A scheme of the
approximation is given on Fig. 3. One starts with a δ-coupling of strength
b(a) and adds δ-interactions of strength c(a) at the graph edges; the param-
eter a is the distance of the additional interactions from the vertex. Core of
the approximation lies in a suitable, a-dependent choice of the interaction
strengths: we put

Hβ,a := ΔG + b(a)δv0 +
∑

e

c(a)δve
, b(a) = − β

a2
, c(a) = −1

a

which corresponds to the quadratic form

hβ,a(f) :=
∑

e

‖f ′
e‖2 − β

a2
|f(0)|2 − 1

a

∑
e

|fe(a)|2, dom ha = W 2,1(G) .

Then we have the following result [6]:

Theorem 5.1. ‖(Hβ,a − z)−1 − (Hβ − z)−1‖ = O(a) holds as a → 0 for
z /∈ R, where ‖ · ‖ is the operator norm on L2(G).

Proof is by a direct computation. We note that the result is highly non-
generic, both resolvents are strongly singular as a → 0 but in the difference
those singularities cancel.

5.2. The convergence result

XεG

aε = εα

v0 veea e1

ε

εα

ε ε

Xε,ve
Xε,eε

Xε,e1

Xε,v0

Fig. 4. Scheme of the lifting

Now we will lift the above graph approximation result to the manifold
according to the scheme depicted on Fig. 4. For simplicity assume that
the star graph in question is finite with all edges having the same length;
without loss of generality we may put it equal to one. In contrast to the
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previous section we have two parameters to deal with, the tube width ε and
the distance of the additional potentials; we choose a = aε = εα with α ∈
(0, 1) to be specified later. The crucial point is the choice of the additional
potentials. The simplest option is to assume that they are constant,

Qε,v(x) :=
1
ε
· qε(v)
volXv

, x ∈ Xv

so that
∫

Xv
Qε,vdx = ε−1qε(v), where we put

qε(v0) := b(εα) = −βε−2α and qε(ve) := c(εα) = −ε−α .

The corresponding manifold Hamiltonian and the respective quadratic form
are then given by

Hβ
ε = ΔXε

− ε−1−2α β

volXv0

χXv0
− ε−1−α

∑
e∈E

χXve
,

where χX is the indicator function of the set X, and

hβ
ε (u) = ‖du‖2

Xε
− ε−1−2α β

volXv0

‖u‖2
Xε,v0

− ε−1−α
∑
e∈E

‖u‖2
Xε,ve

,

respectively. Note that the unscaled vertex neighborhood Xve
of each of the

added vertices ve has volume one by construction.
We employ again the identification operator (7). Using the same tech-

nique as in the δ case, one can prove the following result [19]:

Theorem 5.2. Assume that 0 < α < 1/13, then∥∥(Hβ
ε − i)−1J − J(Hβ − i)−1

∥∥→ 0

holds as the radius parameter ε → 0.

Remark 5.1. The theorem has analogous corollaries as the δ-coupling
result of the previous section, however, a caveat is due. If β < 0 the the
spectrum of Hβ,a is uniformly bounded from below as a → 0. If β ≥ 0, on
the other hand, the spectrum of Hβ,a is asymptotically unbounded from
below, inf σ(Hβ,a) → −∞ as a → 0. At the same time, for β ≥ 0 the
spectrum of the approximating operator Hβ

ε is asymptotically unbounded
from below, inf σ(Hβ

ε ) → −∞ as ε → 0. This fact, existence of eigenvalues
which escape to −∞ in the limit does not contradict the fact that the limit
operator Hβ is non-negative. Recall that the spectral convergence holds
only for compact intervals I ⊂ R, in particular, σ(Hβ)∩ I = ∅ implies that
σ(Hβ

ε ) ∩ I = ∅ and σHβ,ε ∩ I = ∅ for ε > 0 small enough.

Remark 5.2. While it is easy to see that the parameter α in the approx-
imation must less than one, the value 1

13 is certainly not optimal.
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6. Full solution on the graph level

6.1. Going beyond δ and δ′
s

The network approximations of the δ and δ′s-couplings described in the
two previous sections represent the present state of art in this question.
One naturally asks whether one can extend the technique to other vertex
couplings. Following the philosophy used here we should look first whether
such approximations exist on the graph level.

The simplest extension covers the class of couplings invariant w.r.t. per-
mutations of edges. It is a two-parameter family containing δ and δ′s as
particular cases; in the parametrization (2) its elements are characterized
by matrices U = aJ + bI with |b| = 1 and |b + adeg v| = 1. The appropri-
ate approximation in the spirit of Theorem 5.1 was worked out in Ref. 20;
note that, as with δ and δ′s, the problem again splits into a one-dimensional
component in the subspace symmetric over the edges and its complement
which is trivial from the coupling point of view.

If we relax the symmetry requirement things become more complicated.
The first question is what we can achieve by modifications of the original
Cheon and Shigehara idea, placing a finite number of properly scaled δ-
interactions on each edge. The answer is given by the following claim [21]:

Proposition 6.1. Let G be an n-edged star graph and G(d) obtained by
adding a finite number of δs at each edge, uniformly in d, at the distances
O(d) as d → 0+. Suppose that these approximations yield conditions (1)
with some A, B as d → 0. The family which can be obtained in this way
depends on 2n parameters if n > 2, and on three parameters for n = 2.

It was demonstrated in Ref. 21 that a family with the maximum number
of parameters given in the proposition can be indeed constructed.

In order to get a wider class one has to pass to a more general approx-
imation. The idea put forward in Ref. 21 was to change locally the graph
topology by adding new edges in the vicinity of the vertex whose lengths
shrink to zero in the approximation. This yielded a family of couplings with(
n+1

2

)
parameters and real matrices A,B. To get a better result which will

be described below one has to do two more things:

• together with adding edges in the vicinity of the vertex one has also
to remove parts of the graph to optimize locally the approximating
graph topology,

• furthermore, one has to add local magnetic fields described by suit-
able vector potentials to be able to get couplings which are not
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invariant w.r.t. time reversion.

6.2. An alternative unique parametrization

In order to present the indicated approximation result we have to first
introduce another form of the boundary conditions (1) derived in Ref. 7.

Theorem 6.1. Consider a quantum graph vertex of degree n. If m ≤ n,
S ∈ Cm,m is a self-adjoint matrix and T ∈ Cm,n−m, then the relation(

I(m) T

0 0

)
Ψ′ =

(
S 0

−T ∗ I(n−m)

)
Ψ (8)

expresses self-adjoint boundary conditions of the type (1). Conversely, for
any self-adjoint vertex coupling there is an m ≤ n and a numbering of the
edges such that the coupling is described by the boundary conditions (8) with
uniquely given matrices T ∈ Cm,n−m and self-adjoint S ∈ Cm,m.

Remark 6.1. As we have mentioned there are several unique forms of
the conditions (1). Kuchment [30] splits the boundary value space using
projections P,Q corresponding to Dirichlet, PΨ = 0, and Neumann, QΨ′ =
0, parts and the mixed conditions in the complement. It is easy to see
that parts singled out correspond to eigenspaces of U corresponding to
eigenvalues ∓1, respectively. The conditions (8) which one call the ST-form
single out the eigenspace corresponding to −1. There is also an analogue of
(8) symmetric w.r.t. the two singular parts, called PQRS-form, cf. Ref. 8.

6.3. A general graph approximation

In view of the above result one can put general self-adjoint boundary con-
ditions into the form (8) renumbering the edges if necessary. We will now
describe how those can be approximated by a family of graphs with locally
changed topology and added magnetic fields. For notational purposes we
adopt the following convention: the lines of the matrix T are indexed from
1 to m, the columns are indexed from m + 1 to n.

The general vertex-coupling approximation, schematically depicted in
Fig. 5, consists of the following sequence of steps:

• Take n halflines, each parametrized by x ∈ R+, with the endpoints
denoted as Vj , and put a δ-coupling to the edges specified below
with the parameter vj(d) at the point Vj for all j = 1, . . . , n.

• Some pairs Vj , Vk, j �= k, of halfline endpoints are connected by
edges of length 2d, and the center of each such joining segment is
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Fig. 5. The scheme of the approximation. All the inner links are of length 2d, some
may be missing. The grey line symbolizes the vector potential A(j,k)(d).

denoted as W{j,k}. This happens if one of the following conditions
is satisfied:

(a) j = 1, . . . , m, k ≥ m + 1, and Tjk �= 0 (or j ≥ m + 1,
k = 1, . . . , m, and Tkj �= 0),

(b) j, k = 1, . . . , m, and Sjk �= 0 or (∃l ≥ m + 1 )
( Tjl �= 0 ∧ Tkl �= 0 ).

• At each middle-segment point W{j,k} we place a δ interaction with
a parameter w{j,k}(d). The connecting edges of length 2d are con-
sidered as consisting of two segments of length d, and on each of
them the variable runs from zero at W{j,k} to d at the points Vj , Vk.

• On each connecting segment we put a vector potential of constant
value between the points Vj and Vk. We denote its strength between
the points W{j,k} and Vj as A(j,k)(d), and between the points W{j,k}
and Vk as A(k,j)(d). It follows from the continuity that A(k,j)(d) =
−A(j,k)(d) for any pair {j, k}.

The choice of the dependence of vj(d), w{j,k}(d) and A(j,k)(d) on the param-
eter d is crucial for the approximation. In order to describe it we introduce
the set Nj ⊂ {1, . . . , n} containing indices of all the edges that are joined
to the j-th one by a connecting segment, i.e.

Nj ={k ≤ m|Sjk �= 0} ∪ {k ≤ m| (∃l ≥ m + 1)(Tjl �= 0 ∧ Tkl �= 0)}
∪ {k ≥ m + 1|Tjk �= 0} for j ≤ m (9)

Nj ={k ≤ m|Tkj �= 0} for j ≥ m + 1
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We distinguish two cases regarding the indices involved:

Case I. First we suppose that j = 1, . . . , m and l ∈ Nj\{1, . . . , m}. Then
the vector potential strength may be chosen as follows,

A(j,l)(d) =

{
1
2d arg Tjl if Re Tjl ≥ 0 ,

1
2d (arg Tjl − π) if Re Tjl < 0

while for vl and w{j,l} with l ≥ m + 1 we put

vl(d) =
1 − #Nl +

∑m
h=1〈Thl〉

d
∀l ≥ m + 1 ,

w{j,l}(d) =
1
d

(
−2 +

1
〈Tjl〉

)
∀j, l indicated above ,

where the symbol 〈·〉 here has the following meaning: if c ∈ C, then

〈c〉 =
{

|c| if Re c ≥ 0 ,

−|c| if Re c < 0 .

We remark that the choice of vl(d) is not unique. This is related to the
fact that for m = rankB < n the number of parameters of the coupling is
reduced from n2 to at most n2 − (n − m)2.

Case II. Suppose next that j = 1, . . . , m and k ∈ Nj ∩ {1, . . . , m}.

A(j,k)(d) =
1
2d

arg

(
d · Sjk +

n∑
l=m+1

TjlTkl − μπ

)
,

where μ = 0 if

Re

(
d · Sjk +

n∑
l=m+1

TjlTkl

)
≥ 0

and μ = 1 otherwise. The functions w{j,k} are given by

w{j,k} = −1
d

⎛⎝2 +

〈
d · Sjk +

n∑
l=m+1

TjlTkl

〉−1
⎞⎠

and vj(d) for j = 1, . . . , m by

vj(d) = Sjj−
#Nj

d
−

m∑
k=1

〈
Sjk +

1
d

n∑
l=m+1

TjlTkl

〉
+

1
d

n∑
l=m+1

(1+〈Tjl〉)〈Tjl〉 .

Having constructed the approximating graph we may now investigate
how the corresponding Hamiltonian behaves in the limit d → 0. We denote
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the Hamiltonian of the star graph G with the coupling (8) at the vertex as
Hstar and Happrox

d will stand for the approximating operators constructed
above; the symbols Rstar(z) and Rapprox

d (z), respectively, will denote the
corresponding resolvents. Needless to say, the operators act on different
spaces: Rstar(z) on L2(G), while Rapprox

d (k2) acts on L2(Gd), where Gd is
the Cartesian sum G⊕(0, d)

∑n
j=1 Nj . To compare the resolvents, we identify

Rstar(z) with the orthogonal sum

Rstar
d (z) = Rstar(z) ⊕ 0 ,

which acts as zero on the added edges. Comparing the resolvents is in prin-
ciple a straightforward task, however, computationally rather demanding.
Performing it we arrive at the following conclusion [7] which provides us
with the full answer to our problem on the graph level:

Theorem 6.2. In the described setting, the operator family Happrox
d con-

verges to Hstar in the norm-resolvent sense as d → 0.

Remark 6.2. There are various modifications of the approximation de-
scribed above. In Ref. 11, for instance, the δ-interactions on the connecting
segments have been replaced by varying lengths of those segments; the con-
struction is there performed for scale-invariant vertex couplings, i.e. the
conditions (8) with S = 0 and any T .

7. Concluding remarks

We have demonstrated how one can use scaled Schrödinger operators to
approximate quantum graph Hamiltonians with different vertex couplings.
We have worked out the argument for the δ and δ′s-couplings. On the graph
level we have provided a full solution of the problem.

This suggests how one could proceed further. The approximating graph
of the previous section has to be replaced by a network with a fat edge
width ε and the δ-couplings by constant potentials of the appropriated
strength at the segment of fat edge of length ε. Similarly the Laplacian is
to be replaced by magnetic Laplacian on the added edges, the halflength
of which is set to be d = εα. We call the resulting magnetic Schrödinger
operator Hω

ε , where ω stands now for the appropriate family of parameters,
and by Hω the corresponding limiting operator on the graph itself.

Conjecture 7.1. If α > 0 is sufficiently small the approximation result
analogous to Theorem 5.2 is valid in the described setting for any vertex
coupling (8) with the same identification operator J .
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Scaled potentials are not the only way how approximations of nontrivial
vertex couplings can be constructed. There are other possibilities such as
replacement of Neumann by suitable position dependent boundary condi-
tions – for a survey of fresh results we recommend Ref. 35. A more difficult
question is whether one can accomplish the goal by geometric means. A
naive inclusion of curvature-induced potentials does not give the answer
[19] a more elaborate approach has to be sought.

Let us finally comment on possible physical application of the results
surveyed here. Thinking of the network as of a model of a semiconductor
system, one can certainly vary the material parameters. Doping the network
locally changes the Fermi energy at the spot creating effectively a potential
well or barrier. From the practical point of view, however, this does not
help much because our approximations need potentials which get stronger
with the diminishing tube width ε.

A more promising alternative is to use external fields. In experiment
with nanosystems one often adds “gates”, or local electrodes, to which a
voltage can be applied. In this way one can produce local potentials fitting
into our approximation scheme, without material restrictions. This opens
an rather intriguing possibility of creating quantum graphs with the vertex
coupling controllable by an experimentalist.
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Abstract— Complexity of a particular coordinated system is the degree of difficulty in 
predicting the properties of the system if the properties of the system's correlated parts are 
given. The coordinated system manifests properties not carried by individual parts. The 
subject system can be said to emerge without any “guiding hand”. In systems theory and 
science, emergence is the way complex systems and patterns arise out of a multiplicity of 
relatively simple interactions. Emergence is central to the theories of integrative levels and 
of complex systems. The emergent property of the ultra weak multidimensional coupling of 
p 1-dimensional dynamical chaotic systems for which complexity leads from chaos to 
randomness has been recently pointed out. 
Pseudorandom or chaotic numbers are nowadays used in many areas of contemporary 
technology such as modern communication systems and engineering applications. 
Efficient Chaotic Pseudo Random Number Generators (CPRNG) have been recently 
introduced. They use the ultra weak multidimensional coupling of p 1-dimensional 
dynamical systems which preserves the chaotic properties of the continuous models in 
numerical experiments. Together with chaotic sampling and mixing processes, the 
complexity of ultra weak coupling leads to families of CPRNG which are noteworthy. In 
this paper we improve again these families using a double threshold chaotic sampling 
instead of a single one. A window of emergence of randomness for some parameter value is 
numerically displayed. Moreover we emphasize that a determining property of such 
improved CPRNG is the high number of parameters used and the high sensitivity to the 
parameters value which allows choosing it as cipher-keys. 

1. Introduction 

Characterizing complexity is not easy and there are in science a number of 
approaches to do it. Many definitions tend to postulate or assume that complexity 
expresses a condition of numerous elements in a system and numerous forms of 
relationships among the elements. Some others definitions relate to the algorithmic 
basis for the expression of a complex phenomenon or model or mathematical 
expression. Warren Weaver [1] has posited that the (organized) complexity of a 
particular system is the degree of difficulty in predicting the properties of the 
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system if the properties of the system's parts are given. In Weaver's view organized 
complexity, resides in nothing else than the non-random, or correlated, interaction 
between the parts. These correlated relationships create a differentiated structure 
which can, as a system, interact with other systems. The coordinated system 
manifests properties not carried by individual parts. The organized aspect of this 
form of complexity versus other systems than the subject system can be said to 
emerge without any “guiding hand”. The number of parts does not have to be very 
large for a particular system to have emergent properties. 

In systems theory and science, emergence is the way complex systems and 
patterns arise out of a multiplicity of relatively simple interactions. Emergence is 
central to the theories of integrative levels and of complex systems (M. A. 
Aziz-Alaoui et al. [2]). 

In this paper we use the emergent property of the ultra weak multidimensional 
coupling of p 1-dimensional dynamical chaotic systems for which complexity 
leads from chaos to randomness. Efficient Chaotic Pseudo Random Number 
Generators (CPRNG) have been recently introduced (Lozi [3, 4, 5, 6]) and their 
properties analyzed (Hénaff et al. [7, 8, 9, 10]). The idea of applying discrete 
chaotic dynamical systems, intrinsically, exploits the property of extreme 
sensitivity of trajectories to small changes of initial conditions. The ultra weak 
multidimensional coupling of p 1-dimensional dynamical systems preserves the 
chaotic properties of the continuous models in numerical experiments. The 
process of chaotic sampling and mixing of chaotic sequences, which is pivotal for 
these families, works perfectly in numerical simulation when floating point (or any 
multi-precision) numbers are handled by a computer. 

It is noteworthy that these families of ultra weakly coupled maps are more 
powerful than the usual formulas used to generate chaotic sequences mainly 
because only additions and multiplications are used in the computation process; no 
division being required. Moreover the computations are done using floating point 
or double precision numbers, allowing the use of the powerful Floating Point Unit 
(FPU) of the modern microprocessors (built by both Intel and Advanced Micro 
Devices (AMD)). In addition, a large part of the computations can be parallelized 
taking advantage of the multicore microprocessors which appear on the market of 
laptop computers. 

In this paper we improve the properties of these families using a double 
threshold chaotic sampling instead of a single one. The genuine map f used as 
one-dimensional dynamical systems to generate them is henceforth perfectly 
hidden. A window of emergence of randomness for some parameter value is 
numerically displayed. 

A determining property of such improved CPRNG is the high number of 
parameters used ( ( 1)p p× − for p coupled equations) which allows to choose it as 

cipher-keys due to the high sensitivity to the parameters values. We call these 
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families multi-parameter chaotic pseudo-random number generators (M-p 
CPRNG). 

Several applications can be found for these families as for example producing 
Gaussian noise, computing hash function or in chaotic cryptography. 

In Sec. 2 we review some of the most popular chaotic mappings in low 
dimension in the scope of their use in numerical algorithms and PRNG. 

In Sec. 3 we improve the properties of ultra weak multidimensional coupled of p 
1-dimensional dynamical chaotic systems using a double threshold chaotic 
sampling instead of a single one.  

In Sec. 4 we describe the emergence of randomness from complexity in a 
particular window of parameter value. We point out the parameter sensitivity in 
Sec. 5, with some applications of the M-p CPRNG and we give a conclusion in 
Sec. 6. 

2. Discrete Dynamical Systems in Low Dimension 

Chaotic dynamical systems in low dimension are often used since their 
discovery in the 70’ in order to generate chaotic numbers, because they are very 
easy to implement in numerical algorithms [11]. However, as we point out in this 
section the computation of numerical approximation of their periodic orbits leads 
to very different results from the theoretical ones. Then they are unable to generate 
Pseudo Random Numbers (PRN). We review some of the most used maps in 
dimension from 1 to 3 in this scope. 

2.1. 1-Dimensional Chaotic Dynamical Systems 

2.1.1. Logistic map 
The very well known logistic map [[[[ ]]]] [[[[ ]]]]ag : 0,1 0,1→→→→  is simply defined as 

 (((( )))) (((( ))))ag x ax 1 x= −= −= −= −  (1) 

and generally considered for [[[[ ]]]]a 0,4∈∈∈∈  (see Fig. 1). It is associated to the 

discrete dynamical system [12] 

 (((( ))))n 1 a nx g x++++ ====  (2) 
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Figure 1. Graph of the logistic map for a 4==== . 
 

This dynamical system which has excellent ergodic properties on the real 

interval [[[[ ]]]]0,1  has been extensively studied especially by R. M. May [13], and J. 

Feigenbaum [14] who introduced what is now called the Feigenbaum’s 
constant 4.66920160910299067185320382...δ ====  explaining by a new 
theory (period doubling bifurcation) the onset of chaos. 

For every value of a  there exist two fixed points: x 0====  which is always 

unstable and 
a 1

x
a

−−−−==== which is stable for ]]]] [[[[a 1,3∈∈∈∈ and unstable for 

]]]] [[[[ ]]]] [[[[a 0,1 1,4∈ ∪∈ ∪∈ ∪∈ ∪ . 

When a 4==== , the system is chaotic. The set 

{{{{ }}}}5 5 5 5
, 0.3454915028,0.9045084972

8 8

− +− +− +− + ==== is the period-2 

orbit. In fact there exist infinity of periodic orbits and infinity of periods. This 

dynamical system possesses an invariant measure 
1

P( x )
x(1 x )π

====
−−−−

 (see 

Fig. 2). 
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Figure 2. Graph of the invariant measure P( x )  of the logistic map for a 4==== . 

 
2.1.2. Numerical approximation of the logistic map 

In order to compute longer periodic orbits the use of computer is required, as 
it is equivalent to find roots of polynomial equation of degree greater than 4 for 
which Galois theory teaches that no closed formula is available. However, 
numerical computation uses ordinarily double precision numbers (IEEE-754) so 
that the working interval contains roughly 1016 representable points. Doing such a 
computation in Eq. (2) with 1,000 randomly chosen initial guesses, 596, i.e., the 
majority, converge to the unstable fixed point x 0==== , and 404 converge to a cycle 
of period 15,784,521. (see Table 1) [15]. 
 

Table 1. Coexisting periodic orbits found using 1,000 random initial 
points for double precision numbers 

 
Period Orbit Relative Basin size 

1 x 0==== unstable fixed point 596 over 1,000 

15,784,521 Scattered over the interval 404 over 1,000 
 

Thus, in this case at least, the very long-term behaviour of numerical orbits is, 
for a substantial fraction of initial points, in flagrant disagreement with the true 
behaviour of typical orbits of the original smooth logistic map. 

In others numerical experiments we have performed, the computer working 
with fixed finite precision is able to represent finitely many points in the interval in 
question. It is probably good, for purposes of orientation, to think of the case 
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where the representable points are uniformly spaced in the interval. The true 
logistic map is then approximated by a discretized map, sending the finite set of 
representable points in the interval to itself. 

Describing the discretized mapping exactly is usually complicated, but it is 
roughly the mapping obtained by applying the exact smooth mapping to each of 
the discrete representable points and "rounding" the result to the nearest 
representable point. In our experiments [16, 17], uniformly spaced points in the 
interval with several order of discretization (ranging from 9 to 2,001 points) are 
involved, the results for 2,000 and 2,001 points are displayed in Table 2. In each 
experiment the questions addressed are: 
• how many periodic cycles are there and what are their periods ? 
• how large are their respective basins of attraction, i.e. , for each periodic cycle, 
how many initial points give orbits with eventually land on the cycle in question ? 
 

Table 2. Coexisting periodic orbits for the discretization with regular 
meshes of N 2,000 and 2,001====  points. 

 
N Period Orbit Relative Basin Size

2,000 1 {0} 2 over 2,000 
2,000 2 {1,499} 14 over 2,000 
2,000 2 {691;1,808} 138 over 2,000 
2,000 3 {276;1,221;1,900} 6 over 2,000 
2,000 8 {3;11;43;168;615;1,703.1,008.1,998} 1,840 over 2,000 
2,001 1 {0} 5 over 2,001 
2,001 1 {1500} 34 over 2,001 
2,001 2 {91; 1809} 92 over 2,001 
2,001 8 {3;11;43;168;615;1,703;1,011;1,999} 608 over 2,001 
2,001 18 {35;137;510;1,519;1,461;1,574;…} 263 over 2,001 
2,001 25 {27;106;401;1,282;1,840;588;…} 1,262 over 2,001 

 
The existence of very short periodic orbit (see Table 1), the existence of a non 

constant invariant measure (see Fig. 2) and the easily recognized shape of the 
function in the phase space (((( ))))n n 1x ,x ++++  avoid the use of the logistic map as a PRN 
generator. However, its very simple implementation in computer program led 
some authors to use it as a base of cryptosytem [18, 19]. 
 

2.1.3. Symmetric tent map 
Another often studied dynamical system is defined by the symmetric tent map 

on the interval [[[[ ]]]] aJ 1,1 , f : J J= − →= − →= − →= − →  

 af ( x ) 1 a x= −= −= −= −  (3) 
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 (((( ))))n 1 a nx f x++++ ====  (4) 

Despite its simple shape (see Fig. 3), it has several interesting properties. First, 
when the parameter value a 2==== , the system possesses chaotic orbits. Because of 
its piecewise-linear structure, it is easy to find those orbits explicitly. More, owing 
to its simple definition, the symmetric tent map’s shape under iteration is very well 
understood. The invariant measure is the Lebesgue measure. Finally, and perhaps 
the most important, the tent map is conjugate to the logistic map, which in turn is 
conjugate to the Hénon map for small values of b [12]. 

-1

-0,5

0

0,5

1

-1,0 -0,5 0,0 0,5 1,0

  
Figure 3. Graph of the symmetric tent map on J  for a 2==== . 

 
However the symmetric tent map is dramatically numerically instable: 

Sharkovski ’s theorem applies for it [20]. When a 2==== there exists a period three 
orbit, which implies that there is infinity of periodic orbits. Nevertheless the orbit 
of almost every point of the interval J  of the discretized tent map converges to 
the (unstable) fixed point x 1= −= −= −= −  (this is due to the binary structure of floating 
points) and there is no numerical attracting periodic orbit [11]. 

The numerical behaviour of iterates with respect to chaos is worse than the 
numerical behaviour of iterates of the approximated logistic map. This is why the 
tent map is never used to generate numerically chaotic numbers. However in Sec. 
3 we will show that it is possible to preserve its chaotic properties when several 
logistic maps are ultra weakly coupled. 

2.2. 2-Dimensional System Chaotic Dynamical Systems 

2.2.1. Hénon map 
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In order to study numerically the properties of the Lorenz attractor [11], M. 

Hénon in 1976 [21] introduced a simplified model of the Poincaré map [12] of this 
attractor. The Lorenz attractor being in dimension 3, the corresponding Poincaré 

map is a map from 2  to 2 . The Hénon map is then also defined in dimension 
2 as 

 
2x y 1 ax

F :
y bx

+ −+ −+ −+ −
→→→→  (5) 

It is associated to the dynamical system 

 
2

n 1 n n

n 1 n

x y 1 ax

y bx
++++

++++

= + −= + −= + −= + −
====

 (6) 

 
For the parameter value a 1.4====  , b 0.3====  Hénon pointed out numerically 

that there exists an attractor with fractal structure (see Fig. 4). This was the first 
example of strange attractor (previously introduced by D. Ruelle and F. Takens 
[22]) for a mapping defined by an analytic formula. 
 

 
Figure 4. The strange attractor of the Hénon map for a 1.4====  and b 0.3==== . 

 
Nowadays hundreds of research papers have been published on this prototypical 

map in order to fully understand its innermost structure. However as in dimension 
1, there is a discrepancy between the mathematical properties of this map in the 

plane 2 and the numerical computations done using (IEEE-754) double 
precision numbers. 
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If we call Megaperiodic orbits [23], those whose length of the period belongs 

to the interval of natural numbers 6 910 ,10  and Gigaperiodic orbits, those 

whose length of the period belongs to the interval 9 1210 ,10 , Hénon map 

possesses  Gigaperiodic orbits. On a Dell computer with a Pentium IV 
microprocessor running at the frequency of 1.5 Gigahertz, using a Borland C 
compiler and computing with ordinary (IEEE-754) double precision numbers, one 
can find for a 1.4====  and b 0.3==== one attracting period of length 3,800,716,788  
i.e. two hundred forty times longer than the longest period of the one-dimensional 
logistic map (see Table 1). This periodic orbit (we call it here Orbit 1) is 
numerically slowly attracting. Starting with the initial value  

(x0 , y0)1 = (-0.35766, 0.14722356) one obtains: 
(x11,574,730,767 , y11,574,730,767)1 = (x15,375,447,555 , y15,375,447,555)1 
= (1.27297361350955662, – 0.0115735710153616837) 

The length of the period is obtained subtracting  
15,375,447,555 – 11,574,730,767 = 3,800,716,788. 

However this periodic orbit is not unique: starting with the initial value 
(x0 , y0)2 = (0.4725166, 0.25112222222356) the following periodic orbit (which is 
a Megaperiodic orbit of period 310,946,608 (Orbit 2)) is computed. 

(x12,935,492,515, y12,935,492,515)2 = (x13,246,439,123, y13,246,439,123)2 
= (1.27297361350865113, – 0.0115734779561870744) 

This orbit can be reached more rapidly starting form the other initial value  
(x0, y0) = (0.881877775591, 0.0000322222356), then 

(x4,459,790,707, y4,459,790,707) = (1.27297361350865113, – 0.0115734779561870744). 

It is possible that some others periodic orbits coexist with both Orbit 1 and Orbit 2.  
The comparison between Orbit 1 and Orbit 2 gives a perfect idea of the 

sensitive dependence on initial conditions of chaotic attractors: Orbit 1 passes 
through the point (1.27297361350955662, – 0.0115735710153616837) and Orbit 
2 passes through the point (1.27297361350865113, – 0.0115734779561870744). 
The same digits of these points are bold printed, they are very close. 

Nevertheless, as displayed in Fig. 4 the orbit are not uniformly distributed on 
the phase space, then it is not possible to use this map as a PRN generator.  

Beside the problem of PRN generator, logistic and Hénon maps are recently 
used together with a secret key, by N. Pareek et al. [24], in order to build a chaotic 
block cipher which is extremely robust, due to the excellent confusion and 
diffusion properties of these maps. The results of the statistical analysis show that 
the chaotic cipher possesses all features needed for a secure system and useable for 
the security of communication system. 

L. dos Santos Coelho et al. [25], introduced a chaotic particle swarm 
optimisation (PSO) which is a population-based swarm intelligence algorithm 
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driven by the stimulation of a social psychological metaphor instead of the 
survival of the fittest individual. Based on the chaotic systems theory (using Hénon 
map sequences which increase its convergence rate and resulting precision) the 
novel PSO combined with an implicit filtering allows solving economic dispatch 
problems. 

 
2.2.2. Lozi map 
The Lozi map [26] is a linearized version of the Hénon map, built in order to 

simplify the computations, mainly because it is possible to compute explicitly any 
periodic orbits solving a linear system. It is defined as 

 

 n 1 n n

n 1 n

x y 1 a x

y bx
++++

++++

= + −= + −= + −= + −
====

 (7) 

or equivalently 

 n 1 n n 1x 1 a x bx+ −+ −+ −+ −= − += − += − += − +  (8) 

For a 1.7====  and b 0.5====  there exists a strange attractor. The particularity of 
this strange attractor is that it has been rigorously proved by Misiurewicz in 1980 
[27]. 

In the same conditions of computation as for Hénon map, running the 
computation during nineteen hours, one can find a Gigaperiodic attracting orbit of 
period 436,170,188,959 more than one hundred times longer than the period of 
Orbit 1 found for the Hénon map. 

Starting with (x0, y0) = (0.88187777591, 0.0000322222356) one obtains 
(x686,295,403,186 , y686,295,403,186) = (x250,125,214,227 , y250,125,214,227) 

= (1.34348444450739479, -2.07670041497986548. 10-7). 
There is a transient regime before the orbit is reached. It seems that there is no 

periodic orbit with a smaller length. This could be due to the quasihyperbolic 
nature of the attractor. However, the orbit-shifted shadowing property of  Lozi 
map (and generalized Lozi map), which is the property which ensures that 
pseudo-orbits of a homeomorphism f can be traceable by actual orbits even if 
rounding errors in computing are not inevitable has been recently proved [28]. 

Hence this attractor is very efficient, in order to generate chaotic numbers 
without repetition for standard simulation using either the first or the second 
component. However they are not equally distributed on the plane (see Fig. 5). The 
non constant density forbids its direct use as a PRN generator. Nevertheless there 
are some U.S. patents for “method of generating pseudo-random numbers in an 
electronic device, and a method of encrypting and decrypting electronic data” in 
which the Lozi map is involved [29, 30]. 
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Figure 5. Invariant density of the second component y  of Eq. (7) computed 

using 1010 iterations. 
 

Nevertheless Lozi map is now widely used in chaotic optimisation which 
belongs to a new class of algorithms: the evolutionary algorithms (EA). In a 
founding paper, R. Caponetto et al. [31] propose an experimental analysis on the 
convergence of EA. The effect of introducing chaotic sequences instead of random 
ones during all the phases of the evolution process is investigated. The approach is 
based on the substitution of the PRNG with chaotic sequences. Several numerical 
examples are reported in order to compare the performance of the EA using 
random and chaotic generators as regards to both the results and the convergence 
speed. The results obtained show that chaotic sequences obtained from Lozi map 
are always able to increase the value of some measured algorithm-performance 
indexes with respect to random sequences. 

Several authors following this idea use Lozi map in chaotic optimization in 
order to avoid local optima stagnation and embed a superior search strategy [32 – 
40]. 

2.3. 3-Dimensional System Chaotic Dynamical Systems 

In order to generalize in higher dimension the tent map, G. Manjunath et al. [41] 

introduce a three-dimensional map 3 3F : I I→→→→ where [[[[ ]]]]I 0,1====  (see Fig. 6) 

which is continuous in the Euclidian topology and prove its chaotic properties: 
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y z
1 2x 1

2

x z
F( x, y,z ) 1 2 y 1

2

x y
1 2z 1

2

++++− + −− + −− + −− + −

++++= − + −= − + −= − + −= − + −

++++− + −− + −− + −− + −

 (9) 

 
The related dynamical system is 
 

 (((( )))) (((( ))))n 1 n 1 n 1 n n nx , y ,z , F x , y ,z ,+ + ++ + ++ + ++ + + ====  (10) 

They emphasize that most of the well known examples of higher dimensional 
chaotic dynamical systems belong to the class of hyperbolic diffeomorphisms on a 
n-torus. These higher dimensional maps on the torus are not continuous on the 
standard topology of the Euclidean space since they exhibit jump discontinuities. 
The realization of such jump discontinuities in an electronic circuit 
implementation is not reliable. They prove the following theorem: 

Theorem (G. Manjunath et al.) The map defined in (9) is topologically 
transitive and exhibits sensitive dependence on initial conditions with any real 

number 
3

0,
2

δ ∈∈∈∈  as sensitivity constant. 

 

 
Figure 6. Tessellation of 3I  into 33 regions by parallel set of critical planes 

y ,zT ( z ) 0 and 1==== , x ,zT ( y ) 0 and 1==== , x ,zT ( z ) 0 and 1====  , pertaining 

to the map (9). 
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Once again the sequence of iterated points (((( ))))n n nx , y ,z obtained from the 

dynamical system (10) is not equally distributed on the volume 3I . The invariant 
density of the first component nx  is displayed in Fig. 7. The relative discrepancy 
of this invariant density versus the uniform one lies between 4% and 5%. 

0,95
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0,99

1,01

1,03

1,05

0 0,2 0,4 0,6 0,8 1

 
Figure 7. Invariant density of the first component x  of Eq. (10) computed using 

1011 iterations. 
 

To allow the generation of PRN using complexity and emergence theory we 
consider in the next section how to generate these numbers with uniform 
repartition on a given interval, or on a given square of the plane or more generally 
in a given hypercube of n  involving the ultra weak multidimensional coupling 
of p 1-dimensional chaotic dynamical systems. 

3. Multi-parameter Chaotic Pseudo-Random Number Generator (M-p 
CPRNG) 

As previously seen, when a dynamical system is realized on a computer using 
floating point or double precision numbers, the computation is of a discretization, 
where finite machine arithmetic replaces continuum state space. For chaotic 
dynamical systems, the discretization often has collapsing effects to a fixed point 
or to short cycles [15, 42]. In order to preserve the chaotic properties of the 
continuous models in numerical experiments we consider an ultra weak 
multidimensional coupling of p one-dimensional dynamical systems. 
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3.1. System of p-Coupled Symmetric Tent Map 

In order to simplify the presentation of the M-p CPRNG we introduce, we use 
as an example the symmetric tent map previously defined (3), even though others 
chaotic map of the interval (as the logistic map, the baker transform, …) can be 
used for the same purpose (as a matter of course, the invariant measure of the 
chaotic map chosen is preserved). 

The considered system of the p-coupled dynamical systems is described by 

 (((( )))) (((( ))))n 1 n nX F X A f ( X )++++ = = ⋅= = ⋅= = ⋅= = ⋅  (11) 

with 

 

1 1( )

, ( )

( )

n n

n n

p p
n n

x f x

X f X

x f x

= =  (12) 

and 

1,1 1,
2

2,2 2,
1, 2

1

, ,
1

j p

j 1,2 1,p-1 1,p
j

j p

2,1 j 2,p-1 2,p
j j

j p

p,1 p,p-1 p p p j
j

=1-

=1-

A

=1-

ε

ε

ε

=

=

=

= ≠

= −

=

=

 (13) 
 

F is a map of [ ]1,1
pp pJ = − ⊂  into itself. 

Considering 
j p

i , i i , j
j 1, j i

= 1-ε ε
=

= ≠

, the matrix A is always a stochastic matrix 

iff the coupling constants verify 0i , jε >   for every i and j. 

If i, j
i j

i,j 0
≠

∀ =  the maps are totally decoupled, instead they are fully 

crisscross coupled when for example i, j
i j

1

p 1≠

=
−

. Generally, researchers do 
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not consider very small values of ,i jε  because it seems that the maps are 

quasi-decoupled with those values and no special effect of the coupling is 
expected. In fact it is not the case and ultra small coupling constants (as small as 
10-7 for floating point numbers or 10-16 for double precision numbers), allows the 
construction of very long periodic orbits, leading to sterling chaotic generators. 
This is the way in complexity leads to randomness from chaos. 

Moreover each component of these numbers belonging to p  is equally 
distributed over the finite interval J ⊂ , when one chooses a function f with 
uniform invariant measure. Numerical computations (up to 1013 numbers) show 
that this distribution is obtained with a very good approximation. They have also 
the property that the length of the periods of the numerically observed orbits is 
very large [23]. 

3.2. Chaotic Sampling and Mixing 

 

However chaotic numbers are not pseudo-random numbers because the plot 

of the couples of any component (((( ))))l l
n n 1x , x ++++  of iterated points ( )1,n nX X +  in 

the corresponding phase plane reveals the map f used as one-dimensional 
dynamical systems to generate them via Eq. (11). 

Nevertheless we have recently introduced a family of enhanced Chaotic 
Pseudo Random Number Generators (CPRNG) in order to compute very fast long 
series of pseudorandom numbers with desktop computer [3, 4, 5]. This family is 
based on the previous ultra weak coupling which is improved in order to conceal 
the chaotic genuine function. 

In order to hide f in the phase space ( )l l
n n 1x , x +  two mechanisms are used. 

The pivotal idea of the first one mechanism is to sample chaotically the sequence 

(((( ))))l l l l l
0 1 2 n n 1x , x , x , , x , x ,++++  generated by the l-th component lx , selecting  

l
nx every time the value m

nx  of the m-th component mx , is strictly greater (or 

smaller) than a threshold T J∈ , with l ≠ m, for 1 ≤ l, m ≤ p. 
That is to say to extract the subsequence 

( )(0) (1) ( 2) ( ) ( 1)
, , , , , ,

q q

l l l l l
n n n n nx x x x x

+
denoted here 

(((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++  of the original one, in the following way 

 
Given 1 , ,l m p l m≤ ≤ ≠  
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{ }( )

( 1)

( ) ( 1)

1

,
q

l m
q n q q r

r

n

x x with n Min r n x T

−

−∈

= −

= = > >

 (14) 

 

The sequence (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++  is then the sequence of 

chaotic pseudo-random numbers. 
The mathematical formula (14) can be best understood in algorithmic way. The 
pseudo-code, for computing iterates of (14) corresponding to N iterates of (11) is: 

( )1 2 p 1 p
0 0 0 0 0X x , x , , x , x seed−= =  

n 0; q 0= =  

do { while n < N 

        do { while ( )m
nx T≤  

           compute ( )1 2 p 1 p
n n n nx , x , , x , x− ; n + +} 

        compute ( )1 2 p 1 p
n n n nx , x , , x , x− ; 

    then 
( )q

l
q nn( q ) n ; x x ;= = n + +; q + +} 

This chaotic sampling is possible due to the independence of each component 
of the iterated points nX  vs. the others [3]. 

Remark 1: Albeit the number iterNSampl  of pseudo-random numbers 

qx corresponding to the computation of N iterates is not known a priori, 

considering that the selecting process is again linked to the uniform distribution of 

the iterates of the tent map on J , this number is equivalent to 
2

1

N

T−
. 

 
A second mechanism can improve the unpredictability of the pseudo-random 

sequence generated as above, using synergistically all the components of the 

vector nX , instead of two. Given p - 1 thresholds  

 1 2 1pT T T J−< < < ∈  (15) 

and the corresponding partition of J  

 
1

0

p

k
k

J J
−

=

=  (16) 
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with [ ]0 1J 1,T= − , ] [1 1 2J T ,T= , [ [1 1 1k k kJ T ,T for k p+= < < −  and 

1 1 1p pJ T ,− −− −− −− −==== , this simple mechanism is based on the chaotic mixing of the 

p-1 sequences 

(((( ))))1 1 1 1 1
0 1 2 n n 1x , x , x , , x , x ,++++ ,             (((( ))))2 2 2 2 2

0 1 2 n n 1x , x , x , , x , x ,++++ ,…, 

                            (((( ))))p 1 p 1 p 1 p 1 p 1
0 1 2 n n 1x , x , x , , x , x ,− − − − −− − − − −− − − − −− − − − −

++++ ,… 

using the last one (((( ))))p p p p p
0 1 2 n n 1x , x , x , , x , x ,++++  in order to distribute the 

iterated points with respect to this given partition defining the subsequence 

( )(0) (1) ( 2) ( ) ( 1)
, , , , , ,

q q

l l l l l
n n n n nx x x x x

+
here denoted 

(((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++  by 

 

 

{ }{ }( q ) k
k

( 1 )

k p
q n ( q ) k k ( q 1 ) r k

1 k p 1 r

n 1

x x , with n Min s ( q ) Min r n x J

−

−≤ ≤ − ∈

= −

= = = > ∈

(17) 

 
The pseudo-code, for computing the iterates of (17) corresponding to N 

iterates of (11) is: 
 

( )1 2 p 1 p
0 0 0 0 0X x , x , , x , x seed−= =  

n 0; q 0= =  

do { while n < N 

       do {while ( )p
n 0x J∈  compute 

            ( )1 2 p 1 p
n n n nx , x , , x , x− ; n + +} 

       compute ( )1 2 p 1 p
n n n nx , x , , x , x−  

     let k be such that p
n kx J∈  

then 
( )q

k
q nn( q ) n ; x x= = ; n + +; q + +}  
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Remark 2: In this case also, iterNSampl  is not known a priori, however, 

considering that the selecting process is linked to the uniform distribution of the 

iterates of the tent map on J , one has 
1

2

1iter

N
NSampl

T
≈

−
. 

Remark 3: This second mechanism is more or less linked to the whitening 
process [43, 44]. 

Remark 4: Actually, one can choose any of the components in order to 
sample and mix the sequence, not only the last one. 

3.3. Double Threshold Chaotic Sampling 

 
On can eventually improve the CPRNG previously introduced with respect to the 

infinity norm instead of the 1L  or 2L  norms because the L∞ norm is more 

sensitive than the others ones to reveal the concealed function f [5]. For this 
purpose we introduce a second kind of threshold 'T ∈ , together with 

1 1, , pT T J− ∈ such that the subsequence (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++  is 

defined by 
 

{ }{ }( q ) k
k

( 1 )

k p
q n ( q ) k k ( q 1 ) r k

1 k p 1 r

n 1

x x , with n Min s ( q ) Min r n T ' x J

−

−≤ ≤ − ∈

= −

= = = > + ∈

 (18) 
 
In pseudo-code Eq. (18) is then: 

( )1 2 p 1 p
0 0 0 0 0X x , x , , x , x seed−= =  

n 0, q 0= =  

do { while n < N 

         do {while ( )p
( q 1 ) n 0n n T ' and x J−≤ + ∈  

             compute ( )1 2 p 1 p
n n n nx , x , , x , x− ; n + +} 

          compute ( )1 2 p 1 p
n n n nx , x , , x , x−  

          let k be such that p
n kx J∈  

      then 
( )q

k
q nn( q ) n ; x x= = ; n + +; q + +} 
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Remark 5: In this case also, iterNSampl  is not known a priori, it is more 

complicated to give an equivalent to it. However, considering that the selecting 
process is linked to the uniform distribution of the iterates of the tent map on J , 

and to the second threshold T’, it comes that 
1

2
,

1iter

N N
NSampl Min

T T
≤

′−
. 

Remark 6: the second kind of threshold 'T  can also be used with only the 
chaotic sampling, without the chaotic mixing. 

4.  Emergence of Randomness 

Numerical results about chaotic numbers produced by (11) — (17) show that 
they are equally distributed over the interval J with a very good precision [3, 4]. 

In this section we emphasize that when the parameters ,i jε  belong to a 

special window (called the window of emergence) the M-p CPRNG defined above 
behaves well. 

4.1. Approximated Invariant Measures 

In order to perform numerical computation, we have to define some numerical 
tools: the approximated invariant measures. 

First we define an approximation , ( )M NP x of the invariant measure also called 

the probability distribution function linked to the 1-dimensional map f when 
computed with floating numbers (or numbers in double precision). In this scope 
we consider a regular partition of M small intervals (boxes) ri of J  defined by: 

 i

2i
s 1 , i 0, M  

M
= − + =  

 i i i 1r   s  ,  s   ,  i  0, M - 2+= =  

 [ ]M 1 M 1r   s  , 1− −=  

 
1

0

M

iJ r
−

=  

the length of each box is 

 i 1 i

2
s s

M++++ − =− =− =− =  

(note that this regular partition of J is different from the previous one linked to 

the threshold values iT  (16)). 
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All iterates f (n)(x) belonging to these boxes are collected (after a transient 

regime of Q iterations decided a priori, i.e. the first Q iterates are neglected). Once 
the computation of N + Q iterates is completed, the relative number of iterates with 

respect to N/M in each box ri represents the value ( )N iP s . The approximated 

( )NP x  defined in this article is then a step function, with M steps. As M may vary, 

we define 

 ( ), ( ) #M N i i

1 M
P s r

2 N
=  

where #ri is the number of iterates belonging to the interval ri and the constant 1/2 

allows the normalisation of M ,NP ( x )  on the interval J . 

 M ,N M ,N i iP ( x ) P ( s ) x r= ∀ ∈= ∀ ∈= ∀ ∈= ∀ ∈  

In the case of p-coupled maps, we are more interested by the distribution of 

each component ( ), , , ,1 2 1 p
2x x x x  of X rather than the distribution of the 

variable X itself in pJ . We then consider the approximated probability 

distribution function , ( )j
M NP x  associated to one among several components of 

F(X) defined by (11) which are one-dimensional maps. In this paper we use 

equally discN  for M and iterN  for N when they are more explicit. 

The discrepancies 1E  (in norm 1L ), 2E  (in norm 2L ) and E∞   (in norm 

L∞ ) between 
disc iterN , NP ( x )  and the Lebesgue measure which is the invariant 

measure associated to the symmetric tent map, are defined by 

 
1

1, , ,( ) ( ) 0.5
disc iter disc iterN N N N L

E x P x= −  

 
2

2, , ,( ) ( ) 0.5
disc iter disc iterN N N N L

E x P x= −  

 , , ,( ) ( ) 0.5
disc iter disc iterN N N N L

E x P x
∞

∞ = −  

In the same way an approximation of the correlation distribution function 

, ( , )M NC x y  is obtained numerically building a regular partition of 2M  small 

squares (boxes) of 2J  imbedded in the phase subspace (xl, xm) 

 , , , ,i j

2i 2 j
s 1 t 1 i  j  0 M  

M M
= − + = − + =  

 i , j i i 1 j j 1 0, M-2r   s  , s  t  , t  , i, j   + ++ ++ ++ += × == × == × == × =  

 [ [ [ ]i ,M 1 i i 1 M 1r   s  , s t  , 1  , j   0, M-2− + −= × =  
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 [ ] [ ]M 1,M 1 M 1 M 1r   s  , 1 t  , 1  − − − −= ×  

the measure of the area of each box is 

 (((( )))) (((( ))))
2

i 1 i i 1 i

2
s s t t

M+ ++ ++ ++ +− × − =− × − =− × − =− × − =  

Once N + Q iterated points (((( ))))l m
n nx , x  belonging to these boxes are collected 

the relative number of iterates with respect to N/M 2 in each box ri,j represents the 
value CN (si, tj). The approximated probability distribution function CN (x, y) 
defined here is then a 2-dimensional step function, with M 2 steps. As M can take 
several values in the next sections, we define 

 (((( ))))
2

M ,N i j i , j

1 M
C ( s , t ) # r

4 N
====  (19) 

where #ri,j is the number of iterates belonging to the square ri,j and the constant 1/4 

allows the normalisation of M ,NC ( x, y )  on the square 2J  

 M ,N M ,N i j i , jC ( x, y ) C ( s ,t ) ( x, y ) r= ∀ ∈= ∀ ∈= ∀ ∈= ∀ ∈  (20) 

The discrepancies 
1CE  (in norm 1L ), 

2CE  (in norm 2L ) and CE
∞

  (in norm 

L∞ ) between 
disc iterN , NC ( x, y )  and the uniform distribution on the square, are 

defined by 

 
1

1
, , ,( , ) ( , ) 0.25

disc iter disc iterC N N N N L
E x y C x y= −  

 
2

2
, , ,( , ) ( , ) 0.25

disc iter disc iterC N N N N L
E x y C x y= −  

 , , ,( , ) ( , ) 0.25
disc iter disc iterC N N N N L

E x y C x y
∞

∞
= −  

 

Finally let 
disc iterN , NAC ( x, y )  be the autocorrelation distribution function 

which is the correlation function 
disc iterN , NC ( x, y )  of (20) defined in the phase 

space (((( ))))l l
n n 1x , x ++++  instead of the phase space ( ),l mx x . In order to control that the 

enhanced chaotic numbers (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++  are uncorrelated, we 

plot them in the phase subspace (((( ))))q q 1x , x ++++  and we check if they are uniformly 

distributed in the square 2J  and if f is concealed (i.e. 

1 2, , 1 , , 1( , ), ( , ),
disc iter disc iterAC N N q q AC N N q qE x x E x x+ + , , 1( , )

disc iterAC N N q qE x x∞ +  

vanish). 
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4.2. A window of Emergence of Randomness 

 
In order to point out the usefulness of  the double threshold chaotic sampling 

with simply consider the case of only 4 coupled equations, and such 

that i , j i= i jε ε ∀ ≠  and i , i i= 1-3ε ε . Eq. (11) becomes 

 

 

1 1 2 3 4
n 1 1 n 1 n 1 n 1 n
2 1 2 3 4
n 1 2 n 2 n 2 n 2 n
3 1 2 3 4
n 1 3 n 3 n 3 n 3 n
4 1 2 3 4
n 1 4 n 4 n 4 n 4 n

x (1 3 ) f ( x ) f ( x ) f ( x ) f ( x )

x f ( x ) ( 1 3 ) f ( x ) f ( x ) f ( x )

x f ( x ) f ( x ) ( 1 3 ) f ( x ) f ( x )

x f ( x ) f ( x ) f ( x ) ( 1 3 ) f ( x )

++++

++++

++++

++++

= − + + += − + + += − + + += − + + +
= + − + += + − + += + − + += + − + +
= + + − += + + − += + + − += + + − +
= + + + −= + + + −= + + + −= + + + −

 (21) 

 

Moreover we assume that i 1i====  

For the shake of simplicity we consider only the chaotic sampling method (i.e. 
we use only one threshold T ), without the chaotic mixing. We then compute 

1, , 2, , , ,( ), ( ), ( )
disc iter disc iter disc iterN N N N N NE x E x E x∞  and , , 1( , )

disc iterAC N N q qE x x∞ +  

1 2, , 1 , , 1( , ), ( , ),
disc iter disc iterAC N N q q AC N N q qE x x E x x+ + for 1,024discN =  and 

1110iterN = . We choose, 0.9T =  and ' 20T = . We display on Fig. 8 the 

values of the six computed error when 17 1
1 10 ,10− −− −− −− −∈∈∈∈ . The seed (initial 

values) being 
1 2 3
0 0 0x 0.330000, x 0.338756,x 0.504923,= = = 4

0x 0.324082.=  

A window of emergence comes clearly into sight for the values 
15 7

1 10 ,10− −− −− −− −∈∈∈∈  if one considers all together the six errors. 

The errors , , ( ),
disc iterN NE x∞  , , 1( , )

disc iterAC N N q qE x x∞ +   narrowing this window 

in which 340,753,095 340,768,513iterNSampl≤ ≤  out of 1110iterN = . 
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Figure 8. The window of emergence of randomness 
 

4.3. The Underneath of Randomness 

The double threshold chaotic sampling is very efficient because its aim is 
mainly to conceal f in the most drastic way. In order to understand the underneath 

mechanism consider first that in the phase space ( )l l
n n 1x , x +  the graph of the 

chaotically sampled chaotic numbers is a mix of the graphs of  the f (r) for all 
r ∈∈∈∈  (see Fig. 9). 
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50777_8063 -insTexts#150Q.indd   11550777_8063 -insTexts#150Q.indd   115 6/8/11   7:33 PM6/8/11   7:33 PM



116

 

It is obvious as showed on Fig. 10 that for r = 1 if M = 1 or 2, , ( , )M NAC x y   

is constant and normalized on the square hence 

1 2, , , , , ,( , ) ( , ) ( , ) 0
disc iter disc iter disc iterAC N N AC N N AC N NE x y E x y E x y∞= = =   

 
Figure 9. Graphs of the symmetric tent map f, f (2) and f (3) on the interval [-1, 1]. 

 
Figure 10. In shaded regions the autocorrelation distribution , ( , )M NAC x y  is 

constant for the symmetric tent map f on the interval [-1, 1] for M = 1 or 2. 
 
The autocorrelation function is different from zero only if M > 2 (see Fig. 11). 

In the same way as displayed on Fig. 12, 13 and 14, 

1 2, , , , , ,( , ) ( , ) ( , ) 0
disc iter disc iter disc iterAC N N AC N N AC N NE x y E x y E x y∞= = =  for f (i) 

iff iM 2<<<< . Hence for a given M , if we cancel the contribution of all the f (i) for 
i2 M<<<< , it is not possible to identify the genuine function f. 
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Figure 11. Regions where the autocorrelation distribution , ( , )M NAC x y  is 

constant for the symmetric tent map f are shaded, for M = 4. (The square on the 

bottom left  hand side of the graph shows the size of the ri,j box). , ( , )M NAC x y  

vanishes on the white regions. 

 
Figure 12. In shaded regions the autocorrelation distribution , ( , )M NAC x y  is 

constant for the symmetric tent map f (2) on the interval [-1, 1] for M = 1, 2 and 4. 

 
Figure 13. Regions where the autocorrelation distribution , ( , )M NAC x y  is 

constant for the symmetric tent map f (2) are shaded for M = 8. 
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Figure 14. Regions where the autocorrelation distribution , ( , )M NAC x y  is 

constant for the symmetric tent map f (3) are shaded for M = 16. 

4.4. Testing the Randomness 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Error of , , 1( , )
disc iterAC N N q qE x x∞ + , 1 102 2discN to= , 

910iterN = , thresholds 0.9T =  and ' 20T = , i 1i==== , 14
i 10−−−−==== . 

Computations are done using double precision numbers (~14-15 digits). 
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As shown previously [3] the errors in 1L  or 2L  norms decrease with the 

number of chaotic points (as in the law of large numbers) and conversely increase 

with the number M of boxes used to define , ( , )M NAC x y . It is the same for the 

error in L∞  norm. Fig. 15 shows that when M is greater than 25, the sequence 

defined by (18) behaves better than the one defined by (14) or (17) when applied to 
Eq. (21). 

Fig. 16 shows that when the number of chaotic points increases the error 

, , 1( , )
disc iterAC N N q qE x x∞ + decreases drastically. If for example T ' 100>>>> , it is 

necessary to use a huge grid of 2100x2100 boxes splitting the square 2J  in order to 
find a trace of the genuine function f. This is numerically impossible with double 
precision numbers. Then the chaotic numbers emerge as random numbers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Error of , , 1( , )
disc iterAC N N q qE x x∞ +  1 102 2discN to= , 

9 1110 10iterN to= , thresholds 0.9T =  and ' 20T = , i 1i==== , 
14

i 10−−−−==== . Computations are done using double precision numbers (~14-15 

digits). 
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5.  Applications 

Generation of random or pseudorandom numbers, nowadays, is a key feature 
of industrial mathematics. Pseudorandom or chaotic numbers are used in many 
areas of contemporary technology such as modern communication systems and 
engineering applications. 

More and more European or US patents using discrete mappings for this 
purpose are obtained by researchers of discrete dynamical systems [29, 30]. 

When an efficient M-p CPRNG is defined, there exists a huge number of 
applications for the pseudo-random numbers it can generate, as for example 
chaotic masking, chaotic modulation or chaotic shift keying in the fields of secure 
communications [7, 8, 9, 10]. 

5.1. Parameter sensitivity 

 

A determining property of the M-p CPRNG we have improved in this paper 
via Eq. (21) and double threshold chaotic sampling (18) is the high number of 
parameters used ( ( 1)p p× − for p coupled equations) which allows to choose it as 
cipher-keys however this achievement is possible only if there is a high sensitivity 
to the parameters values. 

In order to point up this sensitivity, it is enough to consider the simplest case 

of 2-coupled equations with two sets of slightly different parameters ( )1 2,ε ε  

and ( )*
1 2,ε ε 1 0.000,001ε = , *

1 0.000,001,000,000,000,000,3ε = , 

and 2 0.000,002ε = . 

 

 

1 1 2
n 1 1 n 1 n
2 1 2
n 1 2 n 2 n

x ( 1 ) f ( x ) f ( x )

x f ( x ) (1 ) f ( x )
++++

++++

= − += − += − += − +
= + −= + −= + −= + −

 (22) 

 

*1 *1 * *2
n 1 1 n 1 n

*2 *1 *2
n 1 2 n 2 n

x ( 1 ) f ( x ) f ( x )

x f ( x ) (1 ) f ( x )
++++

++++

= − += − += − += − +
= + −= + −= + −= + −

 (23) 

The double threshold sampling is done using 0.9T =  and ' 20T =  and the 
same seed is taken 

 ( ) ( )1 2 * *1 *2
0 0 0 0 0 0X x , x X x , x= = =  

50777_8063 -insTexts#150Q.indd   12050777_8063 -insTexts#150Q.indd   120 6/8/11   7:33 PM6/8/11   7:33 PM



121

 

Despite the fact that the difference between 1ε  and *
1ε  is tiny: 

*
1 1 13

1

3 10
ε ε

ε
−

−
= ×  the sequences (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++  and 

(((( ))))* * * * *
0 1 2 q q 1x , x , x , ,x , x ,++++  differ completely as displayed in Table 3 (In fact 

all the components ( )( q ) ( q )

1 2
n nx , x  and ( )( q ) ( q )

*1 *2
n nx , x  are different). 

Then rather than a unique CPRNG which is introduced here, there is a 
quasi-infinite family of CPRNG that the M-p CPRNG define allowing several 
possibilities of applications. 

5.2. Gaussian Noise 

As an example of such application, the generation of Gaussian noise from the 

sequences (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++  is very easy when a Box-Muller 

transform is applied. 
A Box–Muller transform [45] is a method of generating pairs of independent 

standard normally distributed (zero expectation, unit variance) random numbers, 
given a source of uniformly distributed random numbers. The polar form [46] of 

such a transform takes two samples from a different interval, [ ]1,1−  and maps 

them to two normally distributed samples without the use of sine or cosine 
functions. This form of the polar transform is widely used, in part due to its 
inclusion in Numerical Recipes. 
 

1ε  0.000,001  *
1ε  

0.000,001,000,

000,000,000,3
 

1
0x

0.330,000,013,

113,021,851
*1
0x  

0.330,000,013,

113,021,851
 

( 0 )

1
nx

0.959,214,817,

207,605,153

−
( 0 )

*1
nx  

-0.058,536,729,

173,974,455,5  

( 1 )

1
nx

0.657,775,688,

600,752,417 ( 1 )

*1
nx  

0.386,129,403,

866,398,935
 

( 2 )

1
nx

-0.784,600,935,

471,051,031 ( 2 )

*1
nx  

0.471,824,729,

381,262,631
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1ε  0.000,001  *
1ε  

0.000,001,000,

000,000,000,3
 

2
0x  

0.338,756,413,

113,021,848
 *2

0x  
0.338,756,413,

113,021,848
 

( 0 )

2
nx  

0.914,472,270,

898,123,885
 

( 0 )

*2
nx  

-0.646,249,812,

458,326,023
 

( 1 )

2
nx  

0.915,684,412,

995,676,6
 

( 1 )

*2
nx  

0.894,262,910,

879,751,405
 

( 2 )

3
nx  

0.910,813,705,

361,448,345
 

( 2 )

*2
nx  

0.820,811,987,

022,524,114
 

 

Table 3. Sequences ( )( q ) ( q )

1 *1
n nx , x  and ( )( q ) ( q )

2 *2
n nx , x of Eq. (22) and (23) with 

1 0.000,001ε = , *
1 0.000,001,000,000,000,000,3ε =  and 

2 0.000,002ε = . ( ) ( )1 2 * *1 *2
0 0 0 0 0 0X x , x X x , x= = =  

As the sequences (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++  are uniformly distributed in 

[ ]1,1J = − ⊂ , the application is straightforward. 

5.3. Hash Function 

Another example of application could be the computation of hash function. A 
hash function is any well-defined procedure or mathematical function that 
converts a large, possibly variable-sized amount of data into a small one. The 
values returned by a hash function are called hash values, hash codes, hash sums, 
checksums or simply hashes. 

Hash functions are mostly used to speed up table lookup or data comparison 
tasks — such as finding items in a database, detecting duplicated or similar records 
in a large file, finding similar stretches in DNA sequences, and so on. 

A hash function may map two or more keys to the same hash value. In many 
applications, it is desirable to minimize the occurrence of such collisions, which 
means that the hash function must map the keys to the hash values as evenly as 
possible. Depending on the application, other properties may be required as well. 
Although the idea was conceived in the 1950s, the design of good hash functions is 
still a topic of active research. 
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Although hash function generally involve integers, on can consider that the 

application which maps the initial seed ( )1 2 p 1 p
0 0 0 0 0X x , x , , x , x−=   into any 

predetermined term of the sequence (((( ))))0 1 2 q q 1x , x , x , ,x , x ,++++   is a hash 

function working on floating point numbers. 
We will explore this application in a forthcoming paper. 
Others applications show the high-potency of such M-p CPRNG. Due to 

limitation of this article, they will be published elsewhere. 

6. Conclusion 

Using a double threshold in order to sample a chaotic sequence, we have 
improved with respect to the infinity norm the M-p CPRNG previously 
introduced. When the value of the second threshold T '  is greater than 100, it is 
impossible to find the genuine function used to generate the chaotic numbers. The 
new M-p CPRNG family is robust versus the choice of the weak parameter of the 
system for 10-14 < ε < 10-5, allowing the use of this family in several applications as 
for example producing Gaussian noise, computing hash function or in chaotic 
cryptography. 
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This paper reviews the basic concepts of Mathematical Modeling, different ana-

lytical techniques to solve nonlinear differential equations and their advantages

before resorting to find numerical solutions. It explains how mathematics uni-

fies different branches of science, engineering and technology. This paper also

provides a mathematical model to show that a problem in science, engineering

and technology belongs to one of the physical phenomena of the oscillations,

diffusion and potential governed, by hyperbolic, parabolic and elliptic partial

differential equations respectively.

1. Introduction

There are many distinguished Applied Mathematicians in the country and

my appeal to them is, in addition to their own work, try to propose suit-

able and efficient Mathematical Models to find solutions to the following

ten challenging problems faced by the people of our country and become

one of the contributors in improving the quality of living of people in rural

area on par with those living in an urban area.

1. Health services for every citizen of our country which are economically

within their reach.

2. Technologies to take care of health problems of mothers in our country.

(According to a report released by UNO and published through the columns

of the press reveals that every day about 1000 pregnant mothers die during

their delivery.)

3. Efficient and potential solar technologies.
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4. Methods to save electricity in the prevailing system.

5. Adequate pure and clean potable water.

6. Quality education system.

7. Methods to eliminate different types of waste materials.

8. Suitable information technology to ensure internal security.

9. To protect and preserve food.

10. Efficient and transparency in the administration for rural development.

Suitable solutions to these challenging problems may improve the qual-

ity of living of people in rural area in our country. If Q is the quality of life,

N the natural resource, E the energy, I the ingenuity of an individual, P the

population and n is the index, then the quality of living can be quantified

through the following formula

Q =
NEI

Pn

The index n depends on the population of a country. For a thickly pop-

ulated countries like India, China and so on, n = 1 and for a sparsely

populated countries n < 1 on suitable indexes for the conditions prevailing

in their countries. It is belived that the quality of life is one of the factors to

access a country to be a developed country. At our Center, we motivate our

teachers and research students to think and work hard to provide suitable

solutions for the above ten challenging problems.

At our Center, we motivate our teachers and research students to think

and work hard to provide suitable solutions for the above ten challenging

problems

(1) A possible solution to the problem 1 listed above: One of our PhD

students who worked on biomedical engineering problems developed

a mathematical model to design artificial organs, with maximum effi-

ciency and minimum weight, like endothelium in coronary artery dis-

eases (CAD), cartilages in synovial joints (SJ), angiograph and so on

using a Smart material of Nano structure, as explained below.

(2) A mathematical model to design a Smart material of Nano structure:

We consider poorly conducting alloys like Nickel-Titanium (Ni-Ti), Alu-

minum Oxides and so on which have very poor electrical conductivity

σ � 1, increasing with temperature like

σ = σ0(1 + αh(T − T0)) (1)
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where αh is the volumetric expansion co-efficient for conductivity, T0 is

the room temperature and σ0 is that of σ at T = T0. Since we deal with

a poorly conducting fluid, any fluctuation on it is negligible compared

to its basic state. If T = T ′ + Tb, where T ′ is a perturbation on and

Tb is the conduction temperature obtained by solving pure conduction

equation

d2Tb

dy2
= 0 (2)

satisfying the conductions

Tb = T1 at y = h and Tb = T0 at y = 0 (3)

Then the solution of Eqn. (2), satisfying the conditions (3) is

Tb =
y

h
�T + T0 (4)

Equation (1), with T = Tb and using Eqn. (4), becomes

σ = σ0 (5)

Making it dimensionless using σ∗ =
σ

σ0
, α∗ = αh�T, y∗ =

y

h
and for

simplicity neglecting the asterisks (∗) we get

σ = (1 + αy) = eαy (6)

1.1. Nano Materials:

Nano comes from the Greek word ”nanos” means dwarf. Scientist, Engineer

and Technologists use prefix 10−9 or one- billionth of a meter to indicate it.

The emergence of nano technology in atomic assembly was first announced

in public in 1959, by a physicist Rechard Feryman. The fundamentals of

nano technology lies in the fact that properties of substances drastically

change when their size is reduced to nano meter range (for details see

[1]). For example, ceramics which are normally brittle can easily be made

deformable when their grain size is reduced to the nano meter range.

1.2. Smart Materials:

Smart materials are those materials which have the properties of sensing

as well as actuation. We have developed a smart material of nano struc-

ture by solidifying the Ni-Ti alloy by cooling from below and heating from
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above. The difference in temperature produces the difference in electrical

conductivity, �σ. This �σ releases the charges from the nuclei forming

the distribution of charge density, ρe. These charges produce an electric

field, �Ei, called the induced electric field. If high strength of electric field

is needed we can generate it by embedding the electrodes of different po-

tentials. This difference in potential produces an electric field, �Ea, called

the applied electric field. The total electric field �E = �Ea + �Ei produces

the current density, �J , according to the Ohm’s law, �J = σ �E. This electric

field, �E, together withρe, produces a force ρe �E. This current acts as sensor

and force acts as actuation. These are the properties to make a material

to be a smart material. In addition, the solidification process explained

above produces a mushy layer also called dendtrites which are the mixture

of solids and poorly conducting fluid. The solid particles have the structure

of nano crystals (see Srirammurthy and Arunachalam [2]). Therefore, this

solidification process in a poorly conducting fluid produces a smart material

of nano structure.

Fig. 1. The Synovial Joints

One of our PhD students at UGC-CAS in Fluid Mechanics used this

smart material of nano structure to synthesize cartilage in synolial joints

as explained below.
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In joints, there are three types, namely freely movable joints called

diorthoidal joints and also called Synovial joints (SJ), slowly movable joints

called Amphorthroidal and immovable joints called synorthroidal. Synovial

joints are important because they involve lubrication and have two impor-

tant parts - Synovial fluid (SF) and articulate cartilages (AC). Synovial

fluid in the cavity between the two bones (see Fig.1) has high viscosity of

about 1000 times higher than that of water. This high viscosity is due to

Hyaluronic acid (HA) in SF. The quantity of synovial fluid gradually re-

duces with age. The SF can be synthesized in the laboratory because HA

is easily available and can be injected into the joints if need be.

The cartilage is a sponge type of porous material covering the ends

of the bones (see Fig.1) through which nutrients and other substances re-

quired for the survival of the joints will be transported. If the cartilage is

damaged then it can not be recouped by any kind of medicine and surgery.

In that case, it has to be replaced by artificial cartilages. At present they

are made up of metals. This type of artificial cartilage made up of metal

lacks biocompatibility resulting in either rough or smooth surfaces. Both of

them are dangerous because they produce stresses which in turn generate

a force. This force drives the RBC’s to a particular region. The accumula-

tion of RBC’s in that region will be bursted, letting loose the haemoglobins

causing loss of haemoglobin. It is a disease known as ’Haemolysis.’ We have

suggested [3] a mechanism, using electrohydrodynamic aspect, to synthe-

size a cartilage using a Smart material of Nano structure. The artificial

cartilages made up of metals are expensive in addition to causing side ef-

fects of Haemolysis. We have shown [3] that if a cartilage is made up of

smart material of nano structure it will not only reduces the side effect of

haemolysis but also reduces the cost. This is within the means of a com-

mon man and hence may be a possible solution for the problem 1 out of

ten cited above. A possible solution to the problem 3 mentioned above. In

a residential area, we often come across the flat plate solar concentrators

on the roof top. Its efficiency is believed to be about 59%. In contrast to

this, we [4] have designed a solar concentrator (see Fig.2) of the shape in

between parabolic and elliptic using geometry and found a suitable focal

point using optimization technique and showed mathematically that it has

82% efficiency. This theoretical efficiency has been confirmed by conduct-

ing experiments and considered to be one of the possible solutions for the

problem 3 out of 10 problems mentioned above.
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Fig. 2. Solar Concentrator

1.3. Solar Technology:

The depletion of fossil fuel and vagaries of monsoon have tremendous strain

on providing required power supply in the country, in general, and in our

state, in particular. To provide adequate power supply to the exponential

growth of population, industries and for the overall development of our

country, we have to resort to alternative unconventional methods of power

generation. One of the effective, efficient and everlasting sources is the solar

energy. Although, most of the days in a year we have blue sky with bright

sun, it is not economically feasible to generate solar energy, because of

the large scale. Therefore, it is our opinion that it is economically feasible

to combine solar energy with magnetohydrodynamics (MHD) principles

because of the following regions:

(1) Our model, called poor man generator [see Fig.3], works at a place

where it is needed and save the cost and loss involved in transmiting

electricity.

(2) Environmental friendly, because we use a new solar concentrator ex-

plained in section 1.2.

(3) It has no mechanical moving part and hence works even at higher alti-

tudes.

(4) Our model works as a generator or a pump depending on the value of

load factor.
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Our generator is based on the combined solar energy and MHD principles.

The usual MHD generator uses either ionized gas or liquid metal. Both of

them are not economically feasible for rural areas in our country. However,

in our model, we develop an indigenous and economically feasible model

which suits conditions of rural area. For this purpose, we use a stratified

fluid like alkali content bore well water mixed with municipal waste to

achieve higher conversion efficiency by increasing the stratification factor

β. We have found that the efficiency, ηg, of our generator as

ηg = [1−
a∗K

(f(β)−K)
] (7)

where K =
2Qw

UB − 0h
is the load factor, Qw is the flux, a∗ =

ah

l
is the

aspect ratio and a =
2

π
log2 the end losses in the channel and f(β) =

2

βh

(
e

βh

2 − 1
)
, h is the width and l is the length of the generator. From

this we have found that

(ηg)max = f(β)

√
1 + a∗ −

√
a∗

√
1 + a∗ +

√
a∗

(8)

This (ηg)max is computed for different values of, K, β, a and found that

(ηg)max lies above 0.6 even for small values of aspect ratio a∗. The computed

values are experimentally verified by designing a suitable model as shown

in the following Fig.3. Further, our model works as a generator for K < 1

and as a pump for K > 1.

We have also achieved a desired stratification by mixing in proper pro-

portion of alkaline water and municipal water to achieve the higher effi-

ciency of the generator. We have taken patent for it. This is one of the

possible solutions for the problem 3 out of 10 mentioned above.

1.4. To save electricity in the existing system:

We have developed [3] a mathematical model based on numerical analysis

to isolate the eddy current losses from the stray losses in a transformer.

We have shown that a suitable tank material and proper dimensions of the

tank will reduce the eddy current losses considerably. This is one of the

possible solutions for the problem 4 in the above list of ten problems.
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Fig. 3. The Poorman Generator

1.5. Potable water:

At present, considerable amount of waste water from municipalities, hospi-

tals, industries and so on have been discharged into drainage. This waste

water involves organic and inorganic substances dissolving in water making

it a poorly conducting liquid. In this, the conductivity increases with tem-

perature and concentration of substance. In the process of solidifying this

waste water by heating from above and cooling from below, the electrical

conductivity varies with difference in temperature. This variation of con-

ductivity releases the charges from the nuclei forming the distribution of

density of charges, ρe. These charges produce an electric field called induced

electric field, �Ei. If high strength of electric field is needed we can gener-

ate it, called applied electric field, �Ea, by embedding electrodes of different

potentials at the bottom and top surfaces. This electric field, �E = �Ea + �Ei

not only produces a current according to Ohm’s law but also produces an

electric force. This current acts as sensing and force acts as actuation which

are the two required properties to form a material as a smart material. We

[5,6] have shown that, this property of smart material purifies waste water

more effectively than any other methods. This method can be used as an

effective method to purify waste water and make it potable water. This is

one of the possible solutions for the problem 5 out of ten listed above.
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1.6. Possible solution to control waste materials:

In these days of liberalization, modernization and arbitrary use of auto-

mobiles produce waste material when released to the atmosphere called

suspended particulate matter (SPM). If these SPMs are retained in the at-

mosphere, they are called aerosols. The coagulation in the atmosphere hit

these aerosols and sometimes sticks to each other forming aerosol of larger

sizes. Sometimes the coagulation splits aerosols forming tiny particles. We

[7] have shown that large size aerosols are advantages for the formation

of clouds and tiny aerosols are disadvantageous when inhaled through the

nasals blocking the trachea (wind pipe) causing breathing problem. The

process of forming large size aerosols using waste materials is advantageous

in the formation of clouds. This is one of the possible solution to get rid of

waste materials posed under problem 7 out of ten listed above.

2. Mathematical Modeling

To solve some of the problems posed above we need Mathematical models.

In this section we briefly explain it and its importance in science, engineer-

ing and technology.

2.1. Need for Mathematical Modeling

A single experiment covering all aspects of a problem is not possible to find

all the parameters involved in it. Only the behavior of certain aspects can

be directly observed. Also, it is difficult to measure, simultaneously through

an experiment, more than one aspect of the several problems. A mathemat-

ical model in which all the parameters can be controlled may be a valuable

tool for a better understanding of the problems to be investigated. This is

because if one aspect of the parameters in a mathematical model is mea-

sured and verified it experimentally, then the other remaining parameters

in the modeling can easily be computed from the mathematical model and

can be used if needed in the practical problem.

2.2. Flow Chart for Mathematical Modeling

The processes involved in a mathematical modeling are:

Step1: State the problem to be solved in such a way that even a layman

can understand it. We should also explain why we need it, where to

apply, when to apply and how to apply.
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Step2: Develop the equations required using the physical phenomena. In

civil and mechanical engineering, problems like vibrations, bending of

beams and so on, one usually uses Newton’s second law to derive the re-

quired equations. The electrical and electronics engineers dealing with

circuit theory use Kirchoff’s second law. One has to stress that Kir-

choff’s second law is analogous to Newton’s second law.

Step3: Solve these equations using mathematical tools. It is known that

nonlinear equations cannot be solved analytically in all cases except

in some trivial cases. Therefore, often engineers resort to a numerical

solution. A numerical method gives only numbers and fails to give a

physical insight. Therefore, a scientist or an engineer, before resorting

to a numerical method it is always beneficial to use the following ana-

lytical techniques to find the solutions to understand the physics of the

problem.

i) Method of characteristics

ii) Truncated representation of Fourier series.

iii) Lyapanov technique

iv) Energy method

v) Moment method

vi) Galerkin method

vii) Regular and singular perturbation techniques.

viii) Computer extended series solution (CESS).

In the remaining part of this section, I will discuss the following two

biomedical problems to illustrate the use of mathematical models.

2.3. Spreading of a Contagious Disease - AIDS

Human immunodeficiency virus (HIV) is the causative agent for Acquired

Immune Deficiency Syndrome (AIDS), which is proving fatal to millions of

Indians. HIV depends on many specific proteins from the virus as well as

the host. Many of the drugs prescribed for treatment of this disease are

inhibitors of the viral enzymes. At present, the following two approaches to

control this disease are proposed:

1. Development of vaccines

2. Development of antiviral drugs

In addition to these we have shown that awareness factor of this disease

prevents spreading of the disease as explained below.
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Consider a residential area having the population n, out of which let

P(t), be the number of people who are prone to this disease and Q(t) be

the number of people, who are not prone to this disease. It is reasonable,

from phenomenological point of view, to assume that the rate of P at which

the disease will spread is given by

dp

dt
= kPQ (9)

where k is the constant of proportionality attributed to awareness factor of

AIDS. Let one infected person be introduced into a fixed population of n

people, then P and Q are related by

P +Q = n+ 1 (10)

Eliminating Q in (9), using (10), we get,

dp

dt
= kP (n+ 1− P ) (11)

This is a non-linear differential equation of Riccati type which has to be

solved using the initial condition

P = 1 at t = 0 (12)

Analytical solution of this equation is possible using a mathematical model

based on a suitable transformation. For example, consider a transformation

P =
1

V
(13)

Then

dp

dt
=
−1

V 2

dV

dt
(14)

Substituting Eqn. (14) into Eqn.(11), we get

−1

V 2

dV

dt
=

k

V
(n+ 1−

1

V
)

That is,

dV

dt
+ k(n+ 1)V = k (15)

The advantage of the transformation (13) is to transform the nonlinear

ordinary differential Eqn. (11) to a linear Eqn. (15). Its integrating factor

is ek(n+1)t. Then the above equation can be written as

d
(
ek(n+1)tV

)
dt

= kek(n+1)t (16)
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Integrating it and rearranging it, we get

V =
1

n+ 1
+Ae−k(n+1)t (17)

where A is a constant of integration to be determined using the initial

condition (12). This condition yields

A =
n

n+ 1
(18)

Then,

V =
1

n+ 1
+

n

n+ 1
e−k(n+1)t (19)

From Eqn. (13), using Eqn. (18), we get

P =
n+ 1

1 + ne−k(n+1)t
(20)

This equation predicts the spread of the disease over the time, t, for a

particular population. This solution reveals that if the awareness factor k

increases the spreading of this disease decreases. Hence we conclude that

the increase in awareness is one of the possible solutions in the control of

spreading of AID.

2.4. A Couple Stress Model Of Blood Flow In

Microcirculation

Microcirculation is the study of blood flow in small blood vessels, particu-

larly in the capillaries. In physiology the most important functions of the

circulation of blood through capillaries are to supply nutrients to every liv-

ing cell of the organisms and also to remove various waste products from

every cell. The capillaries are bounded by endothelial cells which have ul-

tra microscopic pores through which substances of various molecular size

can penetrate the surrounding tissue and also the capillary. One of the

important features of the capillary geometry which distinguishes from the

arteries is the permeability of the wall. The deposition of the cholesterol

is believed to increase the permeability of the wall. Such, an increase in

permeability also result from dilated damaged or inflamed capillary walls.

Thus, it is worthwhile to study the effect of wall permeability of the blood

vessel from a Fluid Mechanics point of view. Most of the available works

on blood flow are concerned with the assumption of Newtonian Fluid. The

available experimental works (see Dulal Pal et al [8]) on blood flows indi-

cate that under certain flow conditions, blood flow exhibit strong deviation
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from Newtonian flow behavior. This deviation mainly occurs, in the form

of non-parabolic velocity profile, for flow through tubes of small diameter.

This is because of the presence of non-uniform red blood cells (RBC) in the

blood and hence spins with certain angular velocity �Ω. When this angular

velocity balances with the natural vorticity of the blood producing a couple

stress in the blood which is called a Couple Stress Fluid (see Stokes [9]).

The study of blood flow with couple stress may play a vital role in un-

derstanding Rheological anomalies associated with the blood flows. In this

section, we study the combined effect of the couple stress and the exchange

of fluids across the capillary walls on the flow of blood in microcirculation.

For this purpose we consider a simplified model for a capillary flow and the

blood flow and solve the basic equations using Starling’s hypothesis of fluid

exchange which states that the difference in hydraulic pressure between the

blood and tissue fluid is not only responsible for the process of filtration

but also depends on the difference in colloidal pressure between the blood

and tissue fluid.

2.4.1. Formulation of the Problem

Fig. 4. The Synovial Joints

We consider a physical configuration as shown in Fig.4. Following Lighthill

[10], we use the assumption that the effect of curvature can be neglected in
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the case of creeping flow. This implies that the capillary between an arteriole

and a venule is a tube of uniform circular cross-section with permeable wall

as shown in Fig.4. In addition, we assume the steady flow of couple stress

fluid in the capillary tube. The cylindrical co-ordinates (r, θ, z) are chosen

with z-axis coinciding with the axis of the tube. The flow is assumed to

be axisymmetric implying all the physical quantities are independent of θ(
i.e. ∂

∂θ = 0
)
. The permeability of the wall is governed by Starling’s law,

defined above, which is a modification of Fick’s law and states that the

net filtration pressure is given by the difference between hydrostatic and

osmotic pressure between the blood and tissue fluid. The filtered water

which passes into the tissue is either reabsorbed into the capillary blood or

returned to the blood via the Lymphatic systems. Starlings hypothesis is

usually expressed in the form

M = k(Pc − Pi −Πc +Πi) (21)

where M is the flow rate per unit area of wall surface, the constant k is

the measure of the permeability of the capillary wall to water and is called

the filtration constant,Pc the hydrostatic capillary blood pressure,Pi the

interstitial fluid pressure,Πc the osmotic pressure of the plasma and Πi is

the pressure of the proteins in the interstitial fluid. Here M is positive

when hydrostatic pressure difference is greater than the osmotic pressure

difference and it implies the filtration of fluid out of the capillary. If M is

negative implies reabsorption of fluid from the interstitial space into the

capillary takes place. If M is as defined above then Pc cannot vary along

the length of the capillary and it has to be replaced by an appropriate value.

2.4.2. Equations of motion, Constitutive Equations and

Boundary Conditions

The constitutive equations and equations of motion for a couple stress fluid

flows, in the absence of body moment and body couple, are

τij,j = ρ
dvi
dt

(22)

eijkT
A
jk +Mji,i = 0 (23)

τij = −pδij + 2μαij (24)

μij = 4ηωj,i + 4η′ωi,j (25)
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where ρ is the density,τij and TA
ij are respectively the symmetrical and

antisymmetrical parts of the stress tensor, vi is the velocity vector, Mij

the couple stress tensor, μij the deviotoric part of Mij , ωi is the vorticity

vector, δij is the symmetric part of velocity gradient, η and η′ are constants

associated with the couple stress, p the pressure and other terms have their

usual meanings in tensor analysis. Following Skalak [11], we neglect the

inertial term in the basic equations because the rate of inertia is not so

significant in microcirculation. These basic equations of motion (22) and

(23), using (24) and (25) and the assumption stated above take the form

∇p = ∇2
(
μ�q − η∇2�q

)
(26)

where

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
(27)

The two-dimensional form of equation (26), using �q = (u, v), is The conser-

vation of momentum:

∂p

∂r
=μ

(
∂2v

∂r2
+

1

r

∂v

∂r
−

v

r2
+

∂2v

∂z2

)
− l2μ

(
∂4v

∂r4
+

∂4v

∂z4
+ 2

∂4v

∂r2∂z2

)
− l2μ

(
2

r

∂3v

∂r3
+

2

r

∂3v

∂r∂z2
−

3

r2
∂2v

∂r2
+

3

r3
∂v

∂r
−

3

r4
v

) (28)

∂p

∂z
=μ

(
∂2u

∂r2
+

1

r

∂u

∂r
−

u

r2
+

∂2u

∂z2

)
− l2μ

(
∂4u

∂r4
+

∂4u

∂z4
(2

∂4u

∂r2∂z2

)
− l2μ

(
2

r

∂3u

∂r3
+

2

r

∂3u

∂r∂z2
−

3

r2
∂2u

∂r2
+

3

r3
∂u

∂r
−

3

r4
u

) (29)

The conservation of mass for incompressible fluid :

1

r

∂

∂r
(rv) +

∂u

∂z
= 0 (30)

where μ is the coefficient of viscosity of the fluid and η is the couple stress

parameter of the fluid and both μ and η have the dimensions of MLT

and l2 = η
μ has the dimensions of length squared. The required boundary

conditions are

v = 0,
∂u

∂r
at r = 0 (31)

v = k (p− α) u = 0 at r = R (32)

p = pa at z = 0 (33)
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p = pv at z = L (34)

where R is the radius and L is the length of the capillary, p is the aver-

age of the pressure p over the cross-section of the capillary, pa and pv are

respectively the arterial and venous end pressures, which are taken to be

the constants. The coefficient k in equation (31) is a measure of the perme-

ability of the wall and α = πc + pi − πi is assumed to be a constant. The

boundary condition (31) is the no slip condition. Note that this no slip con-

dition, instead of slip condition proposed by Beavers and Joseph [12] or by

Rudraiah [13] at the interface between fluids in a capillary and the porous

boundary is assumed to be valid because the permeability of the porous

wall of the capillary is very small. Further, in a couple stress fluid both a

yield stress and shear dependent viscosity exist so that the fluid element in

contact with the boundary adheres to it and hence has the same velocity as

the boundary. The boundary condition (31) is Starling’s hypothesis which

takes care of the smooth transfer of mass across the porous wall.

2.4.3. Mathematical Model for the Solution of Flow Field

To solve for the flow field, we introduce the dimensionless parameter

ε =
μk

R
(35)

where μ is the coefficient of viscosity and the filtration constant, k, varies

widely for capillaries. The average value of muscle capillaries of dog and

cat is 2.5 × 10−8cm/ (sec.cmH2o). If we take η = kp and R = 5μm then

we getε = 1 × 10−7. Hence ε can be regarded as very small. The order of

u, v and p may be estimated respectively as 1, ε, ε2. The derivatives and

with respect to z will be of higher order of than that of the derivatives with

respect to r.

In view of the mathematical model of the order analysis, a rough estimate

of the orders of magnitude of the various terms in equations (28)-(30) is

given below:

O(1) :
∂p

∂z
,
∂u

∂r
,
∂2u

∂r2
,
∂3

u
∂r3,

∂4u

∂r4

O(ε) :
∂p

∂r
,
∂u

∂z
,
∂2u

∂r2
,
∂v

∂r
,
∂2v

∂r2
,
∂3v

∂r3
,
∂4v

∂r4

∂4u

∂r4
,

∂4u

∂r2∂z2
,

∂4u

∂r∂z3
,

∂v

∂r∂z2
,
1

r

∂ (rv)

∂r
,
v

r2

O(ε2) :
∂2v

∂z2
,

∂4u

∂r2∂z2
,
∂4v

∂z4

(36)
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A mathematical model to find solutions for the basic equations (28)-(30) is

to split into two parts, the first and second order in the form

u(r, z) = u1(r, z) + u2(r, z)

v(r, z) = v1(r, z) + v2(r, z)

p1(r, z) + p2(r, z)

(37)

where u1,p1 ∼ O(1),u2,p2,v1 ∼ O(ε),v2 ∼ O(ε2). Substituting (37) into

(28)-(30), using the order of analysis of the terms, we obtain the following

simplified version for the first and second approximation. (i) First approx-

imation:

∂p1
∂r

= 0 (38)

∂p1
∂z

= μD(1 − l2D)u1 (39)

1

r

∂(rv1)

∂r
+

∂u1

∂z
= 0 (40)

where

D =
1

r

∂

∂r

(
r
∂

∂r

)
(41)

with the boundary conditions

∂u1

∂r
= 0 and v1 = 0 at r = 0 (42)

u1 = 0 and v1 = k(p1 − α) at r = R (43)

p1 = pu at z = 0 (44)

p1 = pv at z = L (45)

(ii) Second approximation:

∂pz
∂r

= μ

(
D − l2D2

1 −
1

r2
∂2

∂r2
−

3

r3
∂

∂r

)
v2 (46)

∂pz
∂z

= μ

[
∂2u2

∂r2
+

1

r

∂u2

∂r
+

∂2u1

∂z2
− l2 (D2u1 +D3u2)

]
(47)

1

r

∂(rv2)

∂r
+

∂u2

∂z
= 0 (48)
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where

D1 =
∂2

∂r2
+

1

r

∂

∂r
−

1

r2
(49)

D2 =
∂4

∂r4
+ 2

∂4

∂r2∂z2
+

2

r

∂3

∂r∂z2
(50)

D3 =
∂4

∂r4
+

2

r

∂3

∂r3
−

1

r2
∂2

∂r2
+

1

r3
∂

∂r
(51)

with the boundary conditions

∂u2

∂r
= 0 and v2 = 0 at r = 0 (52)

u2 = 0 and v2 = kp2 at r = R (53)

p2 = 0 at z = 0 (54)

p2 = 0 at z = L (55)

2.4.4. Solution for small permeability

According to the physiological data (see Dulal pal et al[8]) the permeability

of the porous capillary is very small, of the order of 10−6. Hence, without

giving the details (interested reader may refer to the work of Oka and

Murata [14] for details), we directly write, as given below, the solutions for

first and second order velocity and pressure for small permeability, obtained

for first and second approximations:

u1 (ζ, ξ) =
R2

4μ

(
Δp

L

)[
(1− ζ2) +

4

a2
(g0(ζ)− 1)

]
[
1−

8ε

3β2λ0

(
1− 3

Δα

Δp
+ 6

Δα

Δp
ξ − 3ξ2

)] (56)

v1 (ζ, ξ) =
εRΔp

μλ0

(
Δα

Δp
− ξ

)[
2ζ − ζ3 +

16

a3
(g1(ζ)−

1

2
ζa)

]
(57)

p1 (ζ, ξ) = pa − ξΔp+
8εΔp

3λ0β2

[(
1− 3

Δα

Δp

)
ξ
Δα

Δp
+ 3ξ2 − ξ3

]
(58)
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u2 (ζ, ξ) =
8εΔpR2

4λ0μL

[(
1−

8ε

a2λ0

)
ζ4 +

8

a2

(
2s1 +

ε

λ0

)
g0(ζ)

]
−

8εΔpR2

4λ0μL

[(
16

s1
a2

+
m1

3β1
+ β2

)
ζ2
]

−
8εΔpR2

4λ0μL

[
4

a2

(
m1

3β1
+ β2

)
(1− g0(ζ))

]
+

8εΔpR2

4λ0μL

[
−
64δ7(ζ)

a4
+

m1β2

3β1
− 1

]
(59)

v2 (ζ, ξ) = 0 (60)

p2 (ζ, ξ) = −
4εΔp

λ0

(
Δα

Δp
− ξ

)[
ξ2 −

β2(1 + 2β1)

6I0(a)
h1(ζ) + h2(ζ) + β3

]
(61)

where ξ =
z

L
is the normalized axial distance from the arteriolar end of

the capillary,ζ =
r

R
, a =

R

l
is the couple stress parameter,δp = p0 − pv,

δα = pa − α, β =
R

L

λ0 = 1 +
16

a3

[
I1(a)

I0(a)
−

a

2

]
(62)

where g0(ζ) =
I0(ζa)

I0(a)
, g1(ζ) =

I1(ζa)

I0(a)
, I is the modified Bessel function

and other constants appearing in the equations (59) - (61) are defined in

the appendix.

Finally, combining the first and second approximations for the velocity and

pressure fields we obtain the solution in the form

U (ζ, ξ) =
u(ζ, ξ)

(R
2Δp
4μL )

=

[
(1− ζ2) +

4(g0(ζ)− 1)

a2

]
[1 + εf1(0, ξ)] + εf2(ζ, 0)

(63)

V (ζ, ξ) =
v(ζ, ξ)
R2Δp
4μL

=
4ε

βλ0

(
Δα

Δp
− ξ

)⎡⎣2ζ − ζ3 +
16
(
g0(ζ) −

ζa
2

)
a3

⎤⎦ (64)

P (ζ, ξ) = pa − ξΔp+ εg2 (ζ, ξ)Δp (65)
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where f0(ζ, ξ), f1(0, ξ) and g2(ζ, ξ) are given in the appendix. To know the

accuracy of the solutions given by the equation (63) to (65) we can reduce

them to the available solutions in the literature for Poiseuille flow in the

limit of ε→ 0and a →∞ (Newtonian flow). In these limits equations (63)

to (65) reduce to the solutions

u =
R2Δp(1− ζ2)

4μL
, v = 0, p = pa − ξΔp (66)

which is available in the literature. We also note that our solutions (63)-

(65) reduce to those given by Oka and Murata [13] as a →∞ (Newtonian

fluid).

2.4.5. Solutions for Streamlines

To understand the nature of the streamlines, they are determined using the

equation

dr

v
=

dz

u
(67)

Integrating Eqn. (67), using Eqns. (63) and (64), we get

δ1(ζ) [1 + εf1(0, ξ)] + δ2(ζ) = C (68)

where δ1(ζ) and δ2(ζ) are given in the appendix and C is an arbitrary

constant.

Volume of flow Q per Unit Time

It is of practical importance to calculate the volume of flow of fluid per unit

time across the cross-section. It is at a point, z,is given by

Q∗ =

∫ R

0

2πur dr (69)

Using Eqn. (63), Q is obtained from Eqn. (69) as

Q =
Q∗(ξ)(
R4Δp
4μL

) =
πλ0

2

[
(1 + εf1(0, ξ)) +

4εA0

λ2
0

]
(70)

where λ0 is given in Eqn. (62) and A0 is given in the appendix.

The net outflow, M , of water into the tissue per unit time across the cap-

illary wall can be calculated using

M = Q∗(0)−Q∗(1) (71)
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This, using Eqn. (70), becomes

M =
2πεR4

μβ2

Δp

L

(
ΔαΔp−

1

2

)
= ks

(
Δα

Δp
−

1

2

)
(72)

∴ m′ =
M

S
= k

(
Δα

Δp
−

1

2

)
= k(pm − α) (73)

or m′ = k(pm − pi − πc + πi) (74)

where pm is the arithmetical mean of pa and pv. It is to noted that pc in

equation (1) is replaced by pm.

From Eqn. (72) it is clear that M = 0 when
Δα

Δp
=

1

2
that is outflow and

inflow are balanced across the wall. Only outflow i.e.,M > 0 if
Δα

Δp
>

1

2

and there is no outflow i.e.,M < 0 for the case where
Δα

Δp
<

1

2
.

2.4.6. Discussion and Conclusions

Fig. 5. Profiles of longitudinal velocity component u for Newtonian and couple stress

fluids for a =
R

l
= 3.0, ε = 4.9× 10

−
6,

Δα

Δp
= 0.7.

A mathematical model describing blood flow through a capillary with per-

meability of the vessel has been investigated and analytical solutions have
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Fig. 6. Comparison of profiles of longitudinal velocity u for Newtonian and couple stress

fluids for
Δα

Δp
= 0.7, ε = 4.9× 10

−6
.

been obtained. Although several assumptions have been made in our math-

ematical model the results obtained agree fairly well with the experimental

results obtained by Oka and Murata [14]. Both the longitudinal and ra-

dial velocities, stream functions and the volume of fluid Q are numerically

computed for Newtonian as well as couple stress fluids and the results are

depicted graphically in Fig.5-Fig.9. From Fig5 it is clear that the axial ve-

locity attains a minimum value at the point ξ =
Δα

Δp
and it decreases or

increases in the region ξ >
Δα

Δp
or ξ <

Δα

Δp
respectively. From this we

conclude that the axial velocity has a decreasing tendency in blood flow

as compared to a Newtonian fluid. On the other hand the axial velocity

increases with an increase in a =
R

L
and coincides with a Newtonian profile

for very large a (Fig.6). The stream line patterns shown in Fig.7 reveals

that some of them are clustered along the central part while others are

directed towards the wall. From this we conclude that the red cells in the

blood accumulate near the axis of the capillary in conformity with the real

situation. Similarly the plasma tends towards the wall.

The radial velocity is shown in Fig.8 which shows that it is zero at

ξ =
Δα

Δp
whereas it is positive or negative depending on ξ <

Δα

Δp
or ξ >

Δα

Δp
or respectively. Further we see that there appears outflow and inflow at the
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wall in the region ξ <
Δα

Δp
and ξ <

Δα

Δp
. Further, we observe that radial

velocity decreases with an increase in a and coincides with the Newtonian

profile for large a. We also note that as in the axial velocity, the radial

velocity also decreases in the blood flow. The volumetric rate Q is depicted

in the Figure 9. This Figure reveals that Q is minimum at ξ =
Δα

Δp
and the

effect of couple stress is to decrease Q. It is also clear that an increase in a

increases Q and finally tends to the constant value for a Newtonian fluid.

Physically a decrease in Q with an increase in ξ in the region 0 < ξ <
Δα

Δp
is attributed to filtration. Further, an increase in Q with ξ in the region
Δα

Δp
< ξ < 1 is due to absorption. The net flow will cause the edema.

Finally we conclude that lymphatic will pay a role in protecting the tissues

against edema.

Fig. 7. Streamlines for couple stress fluid.
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Fig. 8. Radial velocity profiles for Newtonian and couple stress fluids for
Δα

Δp
= 0.7

Fig. 9. Relationship between Q and ξ for Newtonian and couple stress fluids for
Δα

Δp
=

4.9× 10
−6

.

3. Mathematics concerned with ODE unifies Different

Branches of Science, Engineering and Technology

This is illustrated, first, by considering practical problems in section (3.1)

to (3.4), dealing with ordinary differential equations and then explains it in
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section 3.5 by considering partial differential equation. In ordinary differ-

ential equation (ODE) we usually teach students an equation of the form

a
d2y

dt2
+ b

dy

dt
+ cy = f(t) (75)

where y is a dependent variable (i.e. an unknown) t is an independent vari-

able (i.e. known) f(t) is a known function, a, b, and c are the coefficients of

ODE. Here a, b and c may be constants, function of t only and they may be

functions of y and t. In the first two cases Eqn. (75) is a linear ODE and in

the third case it is a nonlinear ODE. Equation of the type (75) appears in

many branches of science, engineering and technology, as explained below.

3.1. Mechanical Oscillations

Fig. 10. Displacement in a Spring

Consider a spring of length l suspended vertically from a fixed support

with a body of mass m attached to the lower end of the spring as shown

in Fig.10. In deriving the required equation, we make use of the following

assumptions:

m is assumed to be so large that the mass of the spring can be neglected

compared to m. Let δl be the elongation when a mass m is attached to
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it which is small compared to l and leads to Static equilibrium, namely

where k is the Young’s modulus obtained by applying Hook’s law to the

spring and g is the acceleration due to gravity. Let y(t), measured positive

downwards, be the displacement of the mass from the equilibrium position.

y(t) is related to forces acting on the system through Newton’s second law.

According to convention, the force in the down ward direction is taken as

positive while upward direction as negative. The following forces act on the

mass m:

(1) Force F1 due to gravity, acting downwards, is

F1 = mg (76)

(2) The force F2, exerted by the spring when it is stretched, acting upwards,

according to Hooke’s Law, is

F2 = −kδl (77)

where k is a spring constant, called Young’s modulus.

(3) The force F3, due to spring which according to Hooke’s law acts upward

is

F3 = −ky (78)

(4) Let F4 be the damping force due to dash pot which acts upwards is

F4 = −c
dy

dt
(79)

where (c > 0) is the damping constant.

(5) Let f(t) be the external force acting on the system. Then according to

Newton’s second law

m
d2y

dt2
= mg − kδl − ky − c

dy

dt
+ f(t) (80)

This equation, using Eqns. (76) to (80) for F1, F2, F3 and F4, becomes

m
d2y

dt2
= F1 + F2 + F3 + F4 = f(t) (81)

In the equilibrium state,F1 + F2 = 0 i.e.,

mg − kδl = 0 (82)

Then Eqn. (81), using Eqn. (82) becomes

m
d2y

dt2
+ c

dy

dt
+ ky = f(t) (83)
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If the damping is small (i.e., c→ 0) then Eqn. (83) becomes

m
d2y

dt2
+ ky = f(t) (84)

In the absence of external force f(t), Eqn. (84) becomes

m
d2y

dt2
+ ky = 0 (85)

This is the equation for simple harmonic oscillations, with internal fre-

quency we =
√

k
m

3.2. Electrical Circuits

Fig. 11. RLC Circuit

Consider a RLC circuit as shown in Figure 11. In this electrical circuit,

R is the resistance (Ohms), L is the inductance (Henries), and c is the

capacitance (Farad), and E(t) be an applied voltage (Volts). Let I (Amps)

be the current in the circuit. To derive the required equation for the current

I or charge Q, we use the Kirchoff ′s second law, which states that, the

sum of the voltage drops in the circuit is equal to the applied voltage in a

closed circuit. This law is analogous to Newton’s second law. The following

voltage drops exist.

The voltage drop across a resistance, ER, is

ER = RI (86)
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The voltage drop across the capacitor, Ec, is

Ec =
Q

c
=

1

c

∫
I dt (87)

where Q is the charge in the capacitor such that

I =
dQ

dt
(88)

the Voltage drop across an inductor, EL, is

EL = L
dI

dt
(89)

Then from Kirchoff’s second law we have

L
dI

dt
+RI +

1

c

∫
I dt = E(t) (90)

Differentiating this w.r.t t we get

L
d2I

dt2
+R

dI

dt
+

I

c
=

dE

dt
(91)

Equation (90), interms of Q, using Eqn. (88), becomes

L
d2Q

dt2
+R

dQ

dt
+

Q

c
= E(t) (92)

Note that Eqn. (83) for mechanical vibration and Eqn. (91) or (92) for

RLC circuit are analogous to the general Eqn. (76) of this section, although

they belong to entirely different physical entities. This analysis shows that

mathematical model plays an important role in unifying various phenomena

of entirely different physical nature.

3.3. Deflection of a Beam

Consider the deflection, y(x) as shown in Fig.12 of a beam of rectangular

cross-section which is subjected to uniform loading, while the ends of the

beam are supported so that they under go no reflection. This situation is

governed by the ODE of the form.

EI
d2y

dx2
− Sy =

qx(x − l)

2
(93)

Satisfying the conditions

y(0) = y(l) = 0 (94)

where y = y(x) is the deflection, l the length of the beam, q the uniform

load, E the modulus of elasticity, S the stress at the end points, I the
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Fig. 12. Deflection of a Beam

central moment of inertia. No deflection occurs at the ends of the beam,

implies, y(0) = y(l) = 0. When the beam is of uniform thickness, the

product EI will be a constant and the exact solutions can be obtained. In

many applications, however, the thickness is not uniform, so the moment

of inertia I is a function of x only and approximate techniques are required

to find analytical solution.

3.4. Simple Pendulum

In some situations one can proceed part of the way with the analytical solu-

tion and the final answer needs a numerical method. For example, consider

the case of a simple pendulum. The governing differential equation is

d2θ

dt2
+

gsinθ

l
= 0 (95)

where g is the angular displacement and θ is the deflection.

Multiplying this by 2
dθ

dt
we get 2

dθ

dt

d2θ

dt2
+

2gsinθ

l

dθ

dt
= 0

Integrating this once and using
dθ

dt
= θ when θ = α, the maximum

displacement, we get dt =
dθ√

2g(cosθ−cosα)
l

This has to be integrated numerically.

3.5. Mathematics, Concerned with PDE, Unifies Different

Branches of Science, Engineering and Technology

The model, discussed in the section 3.4, is concerned with ODE where the

unknown is a function of only one known variable t. In the case of partial
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differential equations (PDE) the unknown θ is a function of more than one

variable. The problems in Science, Engineering and Technology belong to

one of the following phenomena

(1) Oscillatory Phenomenon

(2) Diffusion Phenomenon

(3) Potential Phenomenon

The oscillatory phenomenon is governed by the wave equation of the

form

∂2u

∂t2
= c2∇2u (96)

where c is the velocity of the wave and u is a physical quantity like velocity

of propagation. In the case of electric or magnetic fields, Eqn. (96) is called

electro magnetic wave equation. This can be obtained using the Maxwell’s

equations, in a general media, given by

∇ ·
−→
E =

ρe
ε

(97)

∇×
−→
E = −μ

∂
−→
H

∂t
(98)

∇×
−→
H =

−→
J + ε

∂
−→
E

∂t
(99)

∇ ·
−→
H = 0 (100)

−→
J = σ

−→
E (101)

where
−→
E is the electric field,

−→
H the magnetic field,

−→
J the conduction current

density, ε
∂ �E

∂t
the displacement current, ρe the distribution of charge density,

μ the magnetic permeability, ε the dielectric constant and σ is the electrical

conductivity. Eqn. (97) is called Gauss law, Eqn. (98) the Faradays law,

Eqn. (99) the Amperes law, Eqn. (100) the solenoidal property of magnetic

field and Eqn. (101) is the Ohm’s law. Operating Curl on Eqn. (98), we get

∇×∇×
−→
E = −μ

∂(∇×
−→
H )

∂t
(102)
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But, from vector identity, we have

∇×∇×
−→
E = ∇(∇ ·

−→
E )−∇2−→E =

∇ρ

ε
−∇2−→E

using Eqn. (97) From Eqn. (99), using (101), we get

∇×
−→
H = σ

−→
E + ε

∂ �E

∂t

Differentiating this with respect to t, we get

∂

∂t
(∇×

−→
H ) = σ

−→
E + ε

∂2−→E

∂t2

Then using above Eqns becomes

∂2−→E

∂t2
+R

∂
−→
E

∂t
= c2∇2−→E −

c2∇ρ

ε
(103)

where c =
1
√
με

is the velocity of light, R =
σ

ε
is the Relaxation frequency

and the last term on the R.H.S of Eqn. (103) is the source term. Eqn. (103)

is called the non-homogeneous telegraphic equation. In free space ρ = 0

and if σ → 0 i.e., R = 0 we have

∂2−→E

∂t2
= c2∇2−→E (104)

This is the equation for electromagnetic wave in free space and is analogous

to Eqn. (96). In mathematics, this wave equation is called hyperbolic partial

differential equation. In a conducting material the displacement current

ε∂
−→
E
∂t , in Eqn. (99), is negligible compared to conduction current, σ

−→
E , and

we have

∇×
−→
H =

−→
J = σ

−→
E

Operating curl on this, we get

∇×∇×
−→
H = σ∇×

−→
E

This, using Eqn.(98), becomes

∇×∇×
−→
H = −μσ ∂

−→
H
∂t

From the Vector Identities, ∇×∇× = ∇(∇ ·
−→
H )−∇2−→H

This, using Eqn. (100), becomes

∇×∇× �H = −∇2−→H

Then,

−∇2−→H = −μσ
∂
−→
H

∂t
(105)
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∂
−→
H

∂t
=
∇2−→H

μσ
= γm∇

2−→H (106)

where γm = 1
μa

is the magnetic viscosity. This is a diffusion equation in

electromagnetic fields. In the conduction of heat, the energy equation, in

the absence of heat source and radiation, is

∂T

∂t
= k∇2T (107)

where T is the temperature, k is the thermal diffusivity and

∇2 =
∂2

∂y2
+

∂2

∂y2
+

∂2

∂z2
(108)

equations (105) and (106), represent diffusion of magnetic field and heat

respectively. In mathematics, this diffusion equation, is called parabolic

PDE. The potential phenomena is governed by the equation of the form

∇2u = 0 (109)

This equatuion can be obtained from Eqns. (96), (104), (105) or (106) for

steady flow
(

∂
∂t = 0

)
Eqn. (109) in mathematics is called the elliptic PDE.

In other words a conservative field in science, engineering and technology

represents potential phenomena and is governed by the elliptic partial dif-

ferential equation. A conservative field means the work done by that field

is independent of the path and represents the form given Eqn. (109). The

electrical engineers usually deal with electro magnetic waves given by Eqn.

(104). The mechanical engineers deal with elastic and acoustic waves, civil

engineers deal with water waves. However, for a mathematician, all these

waves are governed by one single hyperbolic PDE of the form given by Eqn.

(96). This implies that even PDEs in mathematics unify different branches

of Science, Engineering and Technology.
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Appendix

a1 =R2

(
1 +

4

a2

)(
1 +

3

16I0(a)

)

+R2

[
(1 + λ2l2)(a2 + 8)

2a2I0(a)

λ2R2(a4 + 16a2 + 64)

32a4

]

a2 =
1 + λ2l2

2I0(a)

a3 =
3l2

4I0(a)

b1 =
a1l

2

I0(a)

b2 =
l2(16I0(a)(1 + a2) + 3)

16I0(a)

b3 = l2(4l2 − 2λ2l2 + a3)

b4 =
2(a1 + 2l2(1 + λ2l2))

I0(a)

b5 =
l2(11 + 8λ2l2 + 8I0(a)(λ

2l2 + 1))

I0(a)

b6 =
I1(a)

I0(a)

d1 = 1−
12b2
R2

+
λ2l2(a2 + 24)

4a2
−

24b3
R4

+ 48l2a1b6

d2 = 1−
8

a2
+

16b6
a3

d3 =1−
b1(2aI0()a)(a

2 + 1)− I1(a)(a
2 + 4)

2R2l2a3

−
2b2
R2a

−
b4I0(a)

2R2
+

b5
2R2

−
λ2l2

2

50777_8063 -insTexts#150Q.indd   15850777_8063 -insTexts#150Q.indd   158 6/8/11   7:33 PM6/8/11   7:33 PM



159

d4 =
2(a2 + 1)

a2
−

b6(a
2 + 4)

a3

β1 =

√(
d4λ0

d2

)

β2 =
3λ0d3 − d1

β2
1d2

β3 = 1−
β2

6
−

β1β2

3

β4 =
l2(I1(a)(a

2 + 2)− aI0(a))

a

β5 =
R2

2

[
b5 −R2λ2l2

2b4I1(a)

a

]
+

2b1β4

l2

β6 = 2β3 −
2β2β4(1 + 2β1)

3R2I0(a)
+

4β5

R4

β7 =
2β4

R2I0(a)

β8 = β1β2β7

g1 =
I1(ζa)

I0(a)

m1 =
β1(1 + β6)

1 + β7

m2 =
β2
1β2(1 + β8)

1 + β7

m3 = 1 +
11

16I0(a)
−

8ε

a2λ0

(
1−

1

I0(a)

)

λ1 = b6
a

2
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A0 =
16ε

a3λ0
+

32

a3

[
m3

(
b6 −

a

4

)
+

8λ1

a2

(
1−

8ε

a2λ0
+

3

16I0(a)

)]
+

1

2a3

(
m1

β1
−

β2

3

)
+ (16λ1 + a3)−

(
b6 −

a

5
+

2

3

)

h1(ζ) = I0(ζa)

(
1 +

2

ζ2a2
−

I1(ζa)(ζ
2a2 − 4)

ζ3a3

)

h2(ζ) =
2b1h1

l2
−

4b2
ζ2a2

−
I0(ζa)(b4l

2 − 2b1)

l2
− λ2l2R2 + b5

δ1(ζ) =
g1(ζ)

ζa
−

1

2

δ2 =
g1(ζ)

ζa
−

ζ3

5

δ3 =

(
1−

8ε

a2λ0
+

3

16I0(a)

)
(1− g0(ζ))

f0(ζ, 0) =
4(g1(ζ)− 1

a2

f1(0, ξ) =
8

λ0β2

(
Δα

Δp
−

2Δαξ

Δp
+ ξ2 −

1

3

)

f3(ζ, 0) =
1

λ0

[
16ε(g0(ζ)) − ζ4

a2λ0
− 2(1− ζ4) +

32(g0(ζ)− ζ2)m3

a2

]
−

1

λ0

[
256δ3(ζ)

a4
+

2β2(4(1− g0(ζ))− a2(1− ζ2))

3a2

]
−

1

λ0

[
8m1(1− g0(ζ) −

a2(1−ζ2)
4 )

β1a2

]

g2(ζ, 0) =
8

λ0β2

[(
1

3
−

Δα

Δp

)
ξ +

Δα

Δp
ξ2 −

ξ3

3

]
−

8

λ0β2

[
β2

2

(
Δα

Δp
− ξ

)
(ξ2 + β3 + h2(ξ))

]
−

8

λ0β2

[
β2

2

(
Δα

Δp
− ξ

)(
−
β2(1 + 2β1)h1(ξ)

6I0(a)

)]
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ON EQUIVALENCE TRANSFORMATIONS AND EXACT
SOLUTIONS OF A HELMHOLTZ TYPE EQUATION
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We have herein utilized equivalence transformation approach to seek similarity

reduction and exact solutions of the entitled class of equations and deduce

as special cases the solutions to Klein-Gordon and Liouville equations in n-
dimensional Euclidean space. Further, the sine-Gordon and Poisson-Boltzmann

equations have been reduced, for the n-dimensional Euclidean space, to nlodes

which for the case n=3 assume the form of Painleve third transcendent. Beside
two more examples are provided wherein f depends on new independent variable

s1, s2(that are symmetric functions of n Euclidean coordinates x1, x2, . . . xn),

ϕs1 and ϕs2 .

1. Introduction

Differential equations as mathematical models for a wide spectrum of natu-
ral phenomena involve parameters, known as the arbitrary elements in the
literature, which are determined experimentally or simplified under cer-
tain assumptions. Akhatov, Gazizov and Ibragimov 1, Ibragimov, Torrisi
and Valenti2, Torrissi, Tracina and Valenti3, used these arbitrary elements
for the classification of equations into equivalent classes, by observing that
the results obtained through experimental determination of these can be
achieved by requiring the corresponding differential equation to satisfy some
additional symmetry groups, so that the equations from class under consid-
eration permute amongst each other under an equivalence transformation.
In this paper, we use the equivalence transformation approach for the simi-
larity reduction4 and hence exact solutions of the following Helmholtz type
equation in n-Euclidean dimension:
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�nΦ + f(x1, x2, . . . xn, Φ, Φx1 , Φx2 , . . . ,Φxn
) = 0 (1)

where hn denotes the n-dimensional Laplace operator and is given by

�n =
n∑

i=1

∂2

∂x2
i

Notable examples of Eq.(1) are those of Sine-Gordon, Liouville, Poisson-
Botzmann equations etc. which, via the dependent variable transformation,
assume a particular form of (1).
The paper is planned as follows. Following Akhtov et al1, we treat the arbi-
trary function f in Eq(1) as a dependent variable to calculate the equivalence
generators in section II. In section III, we tabulate the similarity transfor-
mations and the corresponding reductions of partial differential equation
under consideration to ordinary differential equations. The main result of
investigations is a theorem which when utilized can yield(i) the form of f
for a given transformation and (ii) the transformation when f is known.
The significance of these results is illustrated through handling of certain
well known equations in n-dimensional Euclidean space in section iv. More
specifically, it is shown through examples, how for a given f, the correspond-
ing infinitesimal transformation can be found, it may be remarked that the
study carried out here is, in some sense, a sequel to the one dealt in5 via
the iso vector approach.
Introducing the following elementary symmetric functions of the n-
Euclidean coordinates x1, x2, . . . , xn as new independent variables6:

s1 = x1 + x2 + . . . + xn

s2 = x1x2 + x1x3 + . . . + xn1xn

s3 = x1x2 . . . xn (2)

equation (1) can be expressed as:

n∑
i=1

[
n∑

k=1

(sk−1)xi=0{
n∑

j=1

(sj−1)xi=0
∂2

∂sj∂sk
}]Φ + f(s,Φ, Φs) = 0 (3)

where s0 = 1.
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2. The Equivalence Generator

Considering ϕ to be a function of s1 and s2 only, Eq.(3) assume the follow-
ing form:

nΦs1s2 +2(n−1)s1Φs1s2 +{(n−1)s2
1−2s2}Φs1s2 +f(s1, s2, Φ, Φs1 , Φs2) = 0

(4)
Following3 we assume the generator of the equivalence group in the form

V = ξ
∂

∂s1
+ τ

∂

∂s2
+ ψ

∂

∂φ
+ μ

∂

∂f
+ ζ1

∂

∂φs1

+ ζ2
∂

∂φs2

(5)

where the coordinates ξ, τ, ψ are the functions of s1, s2 and φ while
the coordinate μ depends on all the six variables s1, s2, φ, φs1, φs2 and f .
Further, ζ1 and ζ2, are given by,

ζ1 = Ds1(ψ) − φs1Ds1(ξ) − φs2Ds1(τ)

ζ2 = Ds2(ψ) − φs1Ds2(ξ) − φs2Ds2(τ) (6)

where Ds1 and Ds2 denote the total derivative with respect to s1 and s2

and are computed using the following formulae:

Ds1 =
∂

∂s1
+ ϕs1

∂

∂ϕ
+ ϕs1,s1

∂

∂ϕs1

+ ϕs1s2

∂

∂ϕs2

Ds2 =
∂

∂s2
+ ϕs2

∂

∂ϕ
+ ϕs1,s2

∂

∂ϕs1

+ ϕs1s2

∂

∂ϕs2

The prolongation of operator (5) that we need for the second order pde (4)
is:

PrV = V + ψ11 ∂

∂φs1s1

+ ψ12 ∂

∂φs1s2

+ ψ22 ∂

∂φs2s2

(7)

where

φ11 = Ds1(ζ1) − φs1s1Ds1(ξ) − φs1s2Ds1(τ)

φ12 = Ds1(ζ2) − φs1s2Ds1(ξ) − φs2s2Ds1(τ)

φ22 = Ds2(ζ2) − φs1s2Ds2(ξ) − φs2s2Ds2(τ) (8)
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Applying operator (7) to Eq.(4), we get,

nψ11 + 2(n− 1)s1ψ
12 + {(n− 1)s21 − 2s2}φ

22 + μ

+ 2(n− 1)(φs1s2 + s1φs2s2)ξ − 2τφs2s2 = 0 (9)

n[ψs1s1 + (2ψs1φ − ξs1s1)φs1 − τs1s1φs2 + (ψφφ − 2ξs1φ)φ
2
s1−

2τs1φφs1φs2 − ξφφφ
3
s1 − τφφφ

2
s1φs2 + (ψφ − 2ξs1)φs1s1−

2τs1φs1s2 − 3ξφφs1φs1s1 − τφφs2φs1s1 − 2τφφs1φs1s2 ]+

2(n− 1)s1[ψs1s2 + (ψφs2 − ξs1s2)φs1 + (ψs1φ − τs1s2)φs2 − ξφs2φ
2
s1+

(ψφφ − ξs1φ − τφs2)φs1φs2 − τs1φφ
2
s2 − ξφφφ

2
s1φs2 − τφφφs1φ

2
s2 − ξs2φs1s1+

(ψφ − ξs1 − τs2)φs1s2 − τs1φs2s2 − ξφφs2φs1s1 − 2τφφs2φs1s2 − 2ξφφs1φs1s2−

τφφs1φs2s2+{(n−1)s
2
1−2s2}ψs2s2+(2ψs2φ−τs2s2)φs2−ξs2s2φs1−2ξφs2φs1φs2+

(ψφφ − 2τφs2)φ
2
s2 − ξφφφs1φ

2
s2 − τφφφ

3
s2 − 2ξs2φs1s2 + (ψφ − 2τs2)φs2s2−

2ξφφs2φs1s2 − ξφφs1φs2s2 − 3τφφs2φs2s2+

μ+ 2(n− 1)ξ(φs1s2 + s1φs2s2)− 2τφs2s2 = 0 (10)

Using Eq.(4) in (10) and then collecting coefficients of various second order

derivative terms, we arrive at the following system of pde determining ξ,τ

and μ:

(n− 1)s1ξφ − nτφ = 0 (11)

{
(n− 1)(n− 2)

n
s21 + 2s2}ξφ − (n− 1)s1τφ = 0 (12)

(n−1)ξ+(n−1)s1ξs1+{
(n− 1)(n− 2)

n
s21+2s2}ξs2−nτs1−(n−1)s1τs2 = 0

(13)

(n− 1)s1ξ + {(n− 1)s21 − 2s2}ξs1 +
(n− 1)

n
s1{(n− 1)s21}ξs2

= τ + (n− 1)s1τs1 + {(n− 1)s21 − 2s2}τs2 (14)

μ = −nψs1s1 + (2ψs1φ − ξs1s1)φs1 − τs1s1φs2 + ψφφφ
2
s1−

2(n− 1)s1ψs1s2 + (ψs2φ − ξs1s2)φs1 + (ψs1φ − τs1s2)φs2 + ψφφφs1φs2−
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{(n − 1)s2
1 − 2s2}ψs2s2 + (2ψs2φ − τs2s2)φs2 − ξs2s2φs1 + ψφφφ2

s2
+

1
n

f{n(ψφ − 2ξs1) − 2(n − 1)s1ξs2} (15)

Eqs.(11) imply,

ξφ = 0 = τφ

Assuming

ξs2 = 0

and

τ = ξ + a0s1 + b0s2 + c0, (16)

Eqs.(13)-(14), yield

ξ = as1 +
n

n − 1
b (17)

τ = bs1 + 2as2 (18)

where 2a = b0 andb = a0 + a

Using Eqs.(17) and (18) in Eq.(16), we get,

μ = −n[ψs1s1 +2ψs1φφs1 +ψφφφ2
s1

]−2(n−1)s1[ψs1s2 +ψs2φφs1 +ψs1φφs2+

ψφφφs1φs2 ]−{(n−1)s2
1−2s2}[ψs2s2 +2ψs2φφs2 +ψφφφ2

s2
]+f(ψφ−2a) (19)

In expression (19) ψ is an arbitrary function. This implies that the operator
(5) depends upon two arbitrary constant a and b and one arbitrary function
ψ. However, to find out an equivalent transformation when ξ and τ are as
in Eqs.(17)-(18), the function ψ can depend upon s1 and s2 in a particular
form which is consistent with the relation obtained by solving.

ds1

as1 + n
n−1b

=
ds2

bs1 + 2as2
(20)

The following three possibilities arise due to the arbitrary nature of the
constants a and b:
i) a = 0, b �= 0
The solution of Eq.(20) is

q01 =
n − 1

2
s2
1 − ns2 (21)
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ii) a �= 0, b = 0
In this case, the solution of Eq.(20) is

q02 = s2
1s

−1
2 (22)

and finally, for the case
iii) a �= 0, b �= 0
the solution of Eqn.(20) is,

q03 = {s2 +
b

a
s1 +

nb2

2(n − 1)a2
}(s1 +

n

n − 1
b

a
)
−2

(23)

Hence,

ψ = ψ(φ, q0i), i = 1, 2, 3 (24)

Even though, we know the form of ψ from Eq.(24) we still cannot derive an
equivalence transformation as the solutions to the auxiliary equations(for
i=1,2,3)

ds1

as1 + n
n−1b

=
ds2

bs1 + 2as2
=

dφ

ψ(φ, q0i)
(25)

still maintain a certain degree of arbitrariness.Consequently, the need to
put some restriction(s) on ψ arises. But before choosing ψ we find it essen-
tial to summarize the results obtained above in the form of the following
theorem.

Theorem A
The following equivalence generator of Eq.(4) act as the symmetry operator
of this equation:

V1 =
n

n − 1
b

∂

∂s1
+bs1

∂

∂s2
+ψ(φ,

n − 1
2

s2
1−ns2)

∂

∂φ
+μ

∂

∂f
+ζ1

∂

∂φs1
+ζ2

∂

∂φs2

(26)

V2 = as1
∂

∂s1
+ 2as2

∂

∂s2
+ ϕ(φ,

s2
1

s2
)

∂

∂φ
+ μ

∂

∂f
+ ζ1

∂

∂φs1

+ ζ2
∂

∂φs2

(27)

V3 = (as1 +
n

n − 1
b)

∂

∂s1
+ (bs1 + 2as2)

∂

∂s2
+
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ψ(φ, (s2+
b

a
s1+

b2n

a22(n − 1)
)(s1 +

nb

(n − 1)a
)
−2

)
∂

∂φ
+μ

∂

∂f
+ζ1

∂

∂φs1

+ζ2
∂

∂φs2

(28)
where the explicit expressions of μ, ζ1 and ζ2 are to be calculated from
Eqs.(19), (6) and (7), using the values of ξ, τ and ψ.

3. Application of Theorem A

We can apply the theorem given above to determine the form of that f

assumes in different cases and eventually arrive at the equivalence trans-
formation which reduces the pde to an ordinary differential equation.
If f̂ is the form that f assumes, then

Vi(f − fi)|f=f̂i
= 0 i = 1, 2, 3 (29)

where Vi
′
s are defined in Theorem A

Case 1: Determination of f̂i.

For the case under consideration Eq.(29) assumes the following form
(dropping the subscript 1):

n

n − 1
b

∂f̂

∂s1
+bs1

∂f̂

∂s2
+ψ(φ,

n − 1
2

s2
1−ns2)

∂f̂

∂φ
+ζ1

∂f̂

∂φs1

+C
∂f̂

∂φs2

= μ (30)

On account of the arbitrary nature of ψ the expression forζ1, ζ2 and hence,
for μ are still too general. As a particular form of ψ shall serve the purpose
we, therefore, choose

ψ = kφ + δ(
n − 1

2
s2
2 − ns2) + γ (31)

In Eq.(31), k, δ and γ are arbitrary constants.
Eqs.(6),(19) and (31) when combined yield:

ζ1 = (n − 1)δs1 + kφs1 − bφs2

ζ2 = −nδ + kφs2

μ = −n(n − 1)δ + kf̂ (32)

50777_8063 -insTexts#150Q.indd   16850777_8063 -insTexts#150Q.indd   168 6/8/11   7:33 PM6/8/11   7:33 PM



169

Next, we consider two special cases of Eq.(31) giving zero or nonzero values
to the arbitrary constants.

Subcase 1: k=0=γ

We need to solve the following equation to find f̂ :

ds1
n

n−1b
=

ds2

bs1
=

dφ

δ( (n−1)
2 s2

1 − ns2)

=
dφs1

δ(n − 1)s1 − bφs2

=
dφs2

−nδ
=

df̂

−n(n − 1)δ
(33)

The first and second terms of the above set has the integral

y1 =
(n − 1)

2
s2
1 − ns2. (34)

Similarly, the second and fourth terms of the set (33) have the internal

y2 =
−(n − 1)

n

δ

b
s1y1 + φ, (35)

and the first and fifth terms of the set (33) yield

y3 = φs2 +
δ(n − 1)

b
s1 (36)

Further, the combination of fourth and first terms with the fifth term of
the set yield respectively, the following solutions:

y4 = φs1 +
(n − 1)

n
s1φs2 (37)

and

f̂ =
−(n − 1)2δ

b
s1 + F (y1, y2, y3, y4) (38)

Nothing that

y3 = −ny′
2(y1) (39)

y4 =
(n − 1)δ

nb
y1 (40)

we can write (38) in the following form (putting back subscript 1, for f̂):

f̂1 =
−(n − 1)2

b
δs1 + F (y1, y2, y

′
2) (41)
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We take the following as the similarity transformation

y = y1

Y (y) = y2 (42)

Consequently Eqs.(4), (41) and (42) together yield

2nyY ′′ + n(n − 1)Y ′ + F (y, Y, Y ′) = 0 (43)

Subcase 2: k �= 0, γ = 0.δ = 1

For the case under consideration Eq.(30) takes the form:

ds1
n

(n−1)b
=

ds2

bs1
=

dφ

kφ + n−1
2 s1

2 − ns2

=
dφs1

kφs1 − bφs2 + (n − 1)s1

=
dφs2

kφs2 − n
=

df̂

kf̂ − n(n − 1)
(44)

Solving Eqs.(44), we get the form of f̂ (on putting back the subscript 1,f̂)
as:

f̂ =
n(n − 1)

k
+ F (y1, y2, y3, y4) exp (

(n − 1)
n

k

b
s1) (45)

where

y1 =
n − 1

2
s2
1 − ns2 (46)

y2 = (φ +
1
k

y1) exp (
−(n − 1)

n

k

b
s1 (47)

y3 = (φs2 +
n

k
) exp (

−(n − 1)
n

k

b
s1 (48)

y4 = {φs1 + (
n − 1

n
)s1φs2} exp (

−(n − 1)
n

k

b
s1 (49)

The similarity transformation is taken to be

y = y1

Y (y) = y2 (50)
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Using Eqs.(45) and (50), Eq.(4) transforms to

2nyY ′′ + n(n − 1)Y ′ +
k2(n − 1)2

nb2
Y + F (y, Y, Y ′) = 0 (51)

Case 2:Determination of f̂2

For this case Eq.(29) with (28) assumes the following form:

as1
∂f̂2

∂s1
+ 2as2

∂f̂2

∂s2
+ ψ(φ,

s2
1

s2
)
∂f̂2

∂φ
+ ζ1

∂f̂

∂φs1

+ ζ2
∂f̂

∂φs2

= μ (52)

Choosing ψ in the following form

ψ = kφ + γ (53)

Eqs.(6) and (19) yield

ζ1 = (k − a)φs1 ,

ζ2 = (k − 2a)φs2

μ = (k − 2a)f̂2 (54)

Solving Eq.(52), we get

f̂2 = s1
k
a−2F (y1, y2, y3, y4) (55)

where

y1 = s2
1s

−1
2 ,

y2 = s1
−k
a (φ +

γ

k
),

y3 = s1
(1− k

a )φs1 ,

y4 = s1
(2− k

a )φs2 (56)

Thus, the similarity transformation is taken as

y = y1,

Y (y) = y2 (57)

implying

y3 =
k

a
Y + 2yY ′,
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y4 = −y2Y ′. (58)

Using this transformation pde (4) reduces to

[(n−1)y4 +2(1−2n)y3 +4ny2]Y ′′ +[2(n−1)y3−2{(n−1)(
k

a
+2)+2}y2+

2n(2
k

a
+ 1)y]Y ′ +

nk

a
(
k

a
− 1)Y + F (y, Y, Y ′) = 0 (59)

Case 3: Determination of f̂3

In this case, Eq.(29) yields the following expression for f̂3

f̂3 = (s1 +
n

n − 1
b

a
)

k
a−2

F (y1, y2, y3, y4), (60)

where

y1 = (s2 +
b

a
s1 +

b2

2a2

n

(n − 1)
)(s1 +

n

(n − 1)
b

a
)
−2

(61)

y2 = (φ +
γ

k
)(s1 +

n

n − 1
b

a
)

−k
a (62)

y3 = φs2(s1 +
n

n − 1
b

a
)2−

k
a (63)

y4 = (φs1 −
b

a
φs2)

−k−a
k−2a φs2 (64)

As in Case 2, ψ is chosen to be

ψ = kφ + γ (65)

The similarity transformation is taken as

y = y1

Y (y) = y2 (66)

which implies

y3 = Y ′

y4 = (
k

a
Y − 2yY ′)

−k−a
k−2a Y ′
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Consequently Eq.(4) assumes the following form:

[4ny2 − 2(2n − 1)y + (n − 1)]Y ′′ − 2[n(
2k

a
− 3)y − (n − 1)(

k

a
− 2)]Y ′+

n(
k

a
− 1)

K

a
Y + F (y, Y, Y ′) = 0 (67)

It may be mentioned here that these are only few of the possible ode re-
ductions with the chosen pair of ξ and τ . For some other choices of ψ one
can arrive at other possibilities. Further, some other possible choices of ξ

and τ can give rise to alternative choices of similarity transformations.
In the following section, we confine our attention to the determination of ex-
act solutions of the odes obtained above for particular choices of F (y, Y, Y ′)
occuring in them.

4. Examples

As mentioned in section I, the emphasis here is on the dependency of the
arbitrary function f occurring in Eq.(1), on first order partial derivatives of
the dependent variable. But the results for the case when f depends upon
the independent and dependent variables only, should also be deducible as
special case of this more general case, for this purpose, we have first of all
taken up the Klein-gordon type equation in5 and have shown that similar
results can still be obtained. Next we give some examples in which f de-
pends upon the first order partial derivatives too. To this effect we deduced
the results obtained for the Liouvile type equation in5. In addition to these,
the Sine-Gordon equation in n-Euclidean dimensions and the n-dimensional
Poisson-Boltzmann equations are reduced to nlpdes. Two more equations
with explicit occurrence of the first order partial derivatives are solved to
get exact solutions.

Example 4.1: The Klein-Gordon Type Equation
The equation under considerations

Lφ + f(s1, s2, φ) = 0 (68)

where

L = n
∂2

∂s1
2

+ 2(n − 1)s1
∂2

∂s1∂s2
+ {(n − 1)s2

1 − 2s2}
∂2

∂s2
2

(69)
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Eq.(68) is a special case of Eq.(4).
Torrisi et al(1992) treated a similar case by adding the following two equa-
tions to Eq.(68).

T
r
a
n
sf

o
r
m

a
ti
o
n

F
o
r
m

‘f
’

R
e
d
u
c
e
d

o
d
e

y
=
( s 2

+
b a
s 1

+
b
2
n

2
a
2
(n

−
1
)

)( s 1
+

n
n
−

1
b a

) −2
( s 1

+
n

n
−

1
b a

)k a
−

2
F

(y
,Y

)
[4

n
y
2
−

2
(2

n
−

1
)y

+
(n
−

1
)]

Y
′′

−2
[ n
( 2

k a
−

3
) y
−

(n
−

1
)
( k a

−
2
)]

Y
(y

)
=
( φ

+
y k

)( s 1
+

n
n
−

1
b a

) −k
/
a

+
n
( k a

−
1
) k a

Y
+

F
(y

,Y
)

=
0

y
=

1 2
(n
−

1
)s

2 1
−

n
s 2

−
(n

−
1
)2

b
s 1

+
F

(y
,Y

)
2
n
y
Y

′′
+

n
(n
−

1
)Y

′ +
F

(y
,Y

)
=

0

Y
(y

)
=

φ
−

(n
−

1
)

n
b

s 1
y

y
=

s2 1
s−

1
2

s
k a
−

2

1
F

(y
,Y

)
[(

n
−

1
)y

4
+

2
(1
−

2
n
)y

3
+

4
n
y
2
]Y

′′

Y
(y

)
=

s
−

k
a

1

( φ
+

y k

)
[ 2

(n
−

1
)y

3
−

2
{ (n

−
1
)
( k a

+
2
) +

2
} y

2

+
2
n
( 2

k a
+

1
) y
] Y

′ +
n

k a

( k a
−

1
) Y

+
F

(y
,Y

)
=

0

y
=

n
−

1
2

s2 1
−

n
s 2

n
(n

−
1
)

k
+

F
(y

,Y
)e

(n
−

1
)

n
k b

s
1

2
n
Y

′′
+

n
(n
−

1
)Y

′ +
k
2
(n

−
1
)2

n
b
2

Y

Y
(y

)
=
( φ

+
1 k
y
) e−

(n
−

1
)

n
k b

s
1

+
F

(y
,Y

)
=

0

T
a
b
le

3
.1
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∂f

∂φs1

= 0,
∂f

∂φs2

= 0 (70)

and calculated the equivalence algebra under these conditions which re-
quired additional processing. Here, we simply add the following conditions

∂f̂i

∂φsj

= 0, i = 1, 2, 3; j = 1, 2 (71)

to Eq.(29), which rather simplifies the process of determination of ˆfi′s. The
three cases, studied in Section III, give similar results. These are listed in
Table 3.1.
Choosing F (y, Y ), we seek solutions of the nlode by known techniques,
which are then transformed via the equivalence transformations(in reverse
direction i.e.) to yield solutions of the pdes. Further, the forms of ′f ′ also get
specified. More specifically, we would like to mention here that the results
listed in Table 2.1 of5 are obtained for row-1 of Table 3.1. As mentioned
in5, other odes listed in Table 3.1 can be solved using this or other known
techniques. As shown in5, Matsuno’s results can easily be deduced here as
special cases.

Example 4.2: The Liouville Type Equation

The equation under consideration is

�ng + h(xi) exp (λg) = 0 (72)

Substituting g = 1
λ lnφ, we get

φ�nφ −
n∑

i=1

(φxi)
2 + λh(xi)φ3 = 0 (73)

On switching over to {si} coordinates, Eq.(32) is transformed to

Lφ− 1
φ

[nφ2
s1

+2(n−1)s1φs1φs2+{(n−1)s2
1−2s2}φ2

s2
+λφ2h(s1, s2) = 0 (74)

Knowing the form of ′f ′ our next step is to find out what constraints
it puts on the arbitrary constants or functions, involved in the equivalence
generator. For this purpose, we take up Case 3 of Section III. The function

f =
−1
φ

[nφ2
s1

+2(n−1)s1φs1φs2 +{(n−1)s2
1−2s2}φ2

s2
]+λφ2h(s1, s2) (75)
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must satisfy Eq.(60) for f̂3. With a particular choice of ψ taken as

ψ = kφ + γ (76)

we have

ζ1 = (k − a)φs1 − bφs2

ζ2 = (k − 2a)φs2

μ = (k − 2a)f (77)

Eqs.(75)(77) and Eq.(60) when combined, yield

γ = 0 (78)

and an equation for h(s1, S2)

(as1 +
n

(n − 1)
b)hs1 + (bs1 + 2as2)hs2 = −(k + 2a)h (79)

whose solution, can be expressed as

h(s1, s2) = (s1 +
n

n − 1
b

a
)

k
a +2F (y) (80)

where

y = (s2 +
b

a
s1 +

n

2(n − 1)
b2

a2
)(s1 +

n

n − 1
b

a
)
2

(81)

Eq.(81) along with

Y (y) = (s1 +
n

n − 1
b

a
)

−k
a φ (82)

reduces the pde (74) to the following nlode:

[4ny2 − 2(2n− 1)y + (n− 1)][Y Y ′′ − Y ′2] + [6ny − 4(n− 1)]Y Y ′ − nk

a
Y 2+

λF (Y )Y 3(y) = 0 (83)

Solution to Eq.(83) for a particular form of F (y) were listed in Table
2.2[5]. Solution for the pde are obtained from the solutions of the ode using
Eqs.(81)-(82). As mentioned there, Matsuno’s (1987) results can be recov-
ered easily.

It is worth mentioning here that other such reductions to nlodes are
possible via the transformations given in cases 1 and 2 in Section 3.3.
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Example 4.3: The Sine-Gordon Type Equations
Here we consider the equation

�ng = h(x)sing (84)

which is the generalization of the Sine-Gordon equation in n-Euclidean
dimensions.The sine-Gordon equation has many applications in physics,
a particular one is the description of the movement of the vectors of
the magnetization at the weakly excited states of exchanged ferromag-
netic[Martinov and Vitanov(1992)]. The classical sine-Gordon equation has
been studied in connection with the transformation of surfaces of constants
negative curvature.

Putting

φ = tan
g

4
, (85)

Eq.(84) is transformed to
n∑

i=1

φxixi
=

2φ

1 + φ2

n∑
i=1

φ2
xi

+ h(x)
φ(1 − φ2)
(1 + φ2)2

(86)

Proceeding as in previous examples we find that this equation is equivalent
to

Lφ − 2φ

1 + φ2
[nφ2

s1
+ 2(n − 1)s1φs1φs2 + {(n − 1)s2

1 − 2s1}φ2
s2

−h(s1, s2)
φ(1 − φ2)
(1 + φ2)

= 0, (87)

and h(s1, s2) satisfies the following pde:

[as1 +
n

n − 1
b]hs1 + (bs1 + 2as2)hs2 = 2ah (88)

On solving Eq.(88), we get

h(s1, s2) = (s1 +
n

n − 1
b

a
)
2

H(y) (89)

where

y = (s2 +
b

a
s1 +

n

n − 1
b2

a2
)(s1 +

n

n − 1
b

a
)
2

(90)

The transformation

φ(s1, s2) = φ(y) (91)
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reduces the pde (87) to the following ode:

[4ny2 − 2(2n − 1)y + (n − 1)](φ′′ − 2φ

1 + φ2
φ′2) + [4(n − 1) + 6ny]φ′

−H(y)
φ(1 + φ2)
(1 + φ2)

= 0 (92)

Alternative Reduction
On using the transformation

φ = exp ig (93)

Eq.(84) reduces to

�n − 1
φ

n∑
i=1

φ2
xi

+ h(x)
1 − φ2

2
= 0, (94)

which under the transformation of coordinates {xi} to {si} is equivalent to

Lφ − 1
φ

[nφ2
s1

+ 2(n − 1)s1φs1φs2 + {(n − 1)s2
2 − 2s2}φ2

s2
]

−1
2
h(s)(φ2 − 1) = 0 (95)

Following the same procedure as for the previous transformation this equa-
tion can be reduced via (92) to

[4ny2−2(2n−1)y+(n−1)][φ′′−φ′2

φ
] = [6ny+4(n−1)]φ′−1

2
H(y)(φ2−1) = 0

(96)
For the particular case

h(x) = 1, (97)

Eq.(88) implies a = 0. Hence, with the transformation

ξ = (n − 1)s2
1 − 2ns2

φ(s1, s2) = φξ (98)

Eq.(95) with h(x) = 1 transforms to

4nξφφ′′ − 4nξφ′2 − 2n(n − 1φφ′ +
1
2
(φ − φ3) = 0 (99)

For the case n = 3 this is Painleve III transcendent which suggests complete
integrability.
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Example 4.4: The Generalized n-Dimensional Poisson-Boltzmann
Equation
The equation under consideration here is

�ng = h(x) sinh g (100)

The solution of th two dimensional Poisson-Boltzmann equation de-
scribe the plane distribution of the particles in two component Coulomb
gas[Martinov and Vitanov(1992)].

On replaying the transformation (85) and (93) respectively by

φ = tanh
g

4
,

and

φ = exp g (101)

We find that Eq.(100) is transformed to Eq.(86) and (94) of Example 4.3.
Consequently, the results turn out to ne identical with that of the previous
example. However, the difference lies in the solution to Eq.(84) and(100)
which are being handled via different transformations for ode-reductions.

Example 4.5
Let us suppose

f =
n(n − 1)

k
+(2m+n−3)(φs2−

n

k
)−k2(n − 1)2

nb2
(φ+

n − 1
2k

s2
1−

n

k
s2) (102)

This is special case of f̂1 in Eq.(45). Using the transformation (50) the
pde (4) with f given by Eq.(102) transform to

2nY ′′ + n(3 − n − 2m)Y ′ = 0 (103)

A general solution of Eq.(4) can be expressed as

φ =
−1
k

(
n − 1

2
s2
1 − ns2) + u0(

n − 1
2

s2
1 − ns2)m exp

k(n − 1)
bn

s1 (104)

where u0 is an arbitrary constant.
Example 4.6

A similar result can be obtained via Case 3 of Section 3.3 for

f = A(φ+
γ

k
)(s1 + c)−2 +Bφs2 +C(φs1 −

b

a
φs2)(s1 + c)

k
a−2

φs2

a−k
k−2a (105)

where c,A,B and C are given by

c =
n

n − 1
b

a
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A = −n[
8(3k − 5a)(k − 2a)

(k − a)2
− 2(2k − 3a)(3k − 5a)

a(k − a)
+

(k − a)k
a2

]

B = 4(2n − 1)(
k − 2a

k − a
) − 2(n − 1)(

k − 2a

a
)

C = −n(n − 1)u0

k−a
k−2a

(k − a)
3a−k
k−2a (3k − 5a)

3k−3a
k−2a (k − 2a)

k
a − 2(3k−5a)

k−a

(106)

It can be easily seen that f given in Eq.(105) is equivalent to

F = AY + BY ′ + C(
k

a
Y − 2yY ′)(Y ′)

−(k−a)
k−2a (107)

which yield the following solution of the equation under consideration:

φ =
−γ

a
+ u0(s2 +

b

a
s1 +

n

2(n − 1)
b2

a2
)

3k−5a
k−a

(s1 +
nb

(n − 1)a
)

k
a− 2(3k−5a)

(k−a)

(108)
Concluding Remarks

In this paper we have been able to determine an equivalence transfor-
mation that reduced a class of nlpdes to nlodes. Some physically interesting
special cases that have been taken up are of Klein-Gordon, Liouville, sine-
Gordon and Poisson-Boltzmann type equations in n-Euclidean dimensions.
Exact solutions are reported for some special choices. It may be worth
mentioning here that the results are quite general, but are not exhaustive.
That it, to say, for different choices of ξ and τ and hence other quantities
depending on these two, other such transformations can be found.

Further, following the procedure given in Ibraginov et al2 and Torrisi
et al3 different equivalence algebras can be calculated from the different
equivalent generators given in Theorem A. Preliminary group classification
is also possible using these. As shown in these papers, the principal Lie
Algebra can be extended.
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In the last few years, a new paradigm has emerged in the field of wireless com-

munication, called Cognitive Radio (CR). CR attempts to alleviate the imbal-

ance created by a fixed spectrum allocation policy and the irregular usage of

the frequency bands. Since its inception, as an intelligent and reconfigurable

radio, CR has evolved into a multi-disciplinary technology, and has invoked

the interest of engineers, economists, scientists and mathematicians alike. A

vast amount of literature has stemmed from this revolutionary paradigm, with

varied focuses and perspectives. The goal of this paper is two-fold: (i) First,

we catalogue the myriad aspects which encompass the CR technology, and on

most issues, we highlight the open research problems and challenges faced.

Though cursorily, the multiple facets of CR have been addressed, to invoke

the interest of readers across disciplines. (ii) An interesting approach to doc-

ument the plethora of research activities pertaining to CR, is to cast them in

the framework of enabling tools, viz. optimization, game theory, fuzzy logic,

genetic algorithms and neural networks, and to provide a state-of-the-art of

the research contributions therein.

An important research area in CR is power allocation; the optimum power

allocation problem for an Orthogonal Frequency Division Multiplexing-based

CR is investigated, and relevant simulation results are provided to demonstrate

the effectiveness of the technique.

Keywords: Cognitive Radio; Optimization; Game theory, Fuzzy logic, Genetic

algorithms; Neural networks
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1. Introduction

Extensive measurements of the radio spectrum usage has revealed its under-
utilization; a fact, which is attributed to a fixed spectrum assignment pol-
icy 1 . This discovery has triggered exciting activities in the engineering,
economics and regulation fraternities in searching for better spectrum man-
agement policies. To alleviate the imbalance between spectrum allocation
and its use, opportunistic spectrum access has been proposed; many schools
of thought have emerged from this innovative concept, all of which mani-
fest themselves in the technology solution called Dynamic Spectrum Access
(DSA), also referred to as Cognitive Radio (CR). Opportunistic spectrum
access entails the temporary usage of unused portions of the spectrum (spec-
trum holes or white spaces), owned by the licensed users (Primary Users or
PUs) to be accessed by unlicensed users (Secondary Users or SUs). CR is
characterized by an adaptive, multi-dimensionally aware, autonomous ra-
dio system empowered by advanced intelligent functionality, which interacts
with its operating environment and learns from its experiences to reason,
plan, and decide future actions to meet various needs. This approach can
lead to a significant increase in spectrum efficiency, networking efficiency as
well as energy efficiency 2 . Due to the phenomenal advances in digital sig-
nal processing, computer software and hardware, networking, and machine
learning, the implementation of this far-reaching combination of cognition
and reconfigurability has become practically achievable 3 .

Since its introduction in the seminal paper by Joseph Mitola (1999) in
the context of radio knowledge representation language for flexible personal
wireless services 4 , CR has evolved into a multidisciplinary research topic.
The CR technology is projected to make a significant and lasting impact on
wireless communication, and form the basis of Next-Generation networks.
The visionary work of Mitola, substantiated by Federal Communications
Commission’s (FCC’s) report (2002) on spectrum utilization 1 , was built
upon by two more comprehensive papers by Haykin 3 (2005) and Akyldiz
5 (2006).

Standardization efforts of the working groups IEEE 802.22 6 (wireless
regional area network for secondary use); 802.11h 7 (dynamic frequency
selection for wireless local area networks); P1900/SCC41 8 (technologies
and techniques for Next-Generation radio and advanced spectrum manage-
ment); and IEEE 802.11y 7 (shared 802.11 operation with other users),
evince the great interest surrounding the CR paradigm.

To achieve a two-fold objective of cataloguing the multiple facets of
the CR technology, and providing a state-of-the-art of the research contri-
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butions within the framework of some generic enabling tools, the rest of
the paper is organized as follows: Section 2 describes the CR technology.
Section 3 emphasizes the role of CR in Next-Generation networks, and the
associated functionalities. Section 4 explains cross-layer design for CR. Sec-
tion 5 outlines the application of cooperative technology in CR. Section 6
is dedicated to the tools which enable the various functionalities of CR,
viz. optimization, game theory, fuzzy logic, genetic algorithms and neural
networks. Section 7 presents the fundamental research in CR from an in-
formation theoretic perspective. In Section 8, we detail a specific problem,
that of power allocation for CR. Section 9 concludes the paper.

2. Cognitive Radio Technology

With the primary objective of efficient opportunistic utilization of the ra-
dio spectrum while achieving highly reliable communications, CR has the
potential for making a significant difference to the way in which the radio
spectrum can be accessed. The cognitive capability of a CR node refers to
its ability to interact with its environment in real-time, to determine ap-
propriate communication parameters, and dynamically adapt to the radio
environment 3,5 . In this section, we describe the key concepts of CR, and
the physical architecture which makes the aforementioned tasks possible.

2.1. The Cognitive Cycle

The cognitive process starts with the sensing of Radio Frequency (RF)
stimuli and culminates with action. Each cognitive transceiver (the SU)
needs to implement a cognitive cycle 3 , which is depicted in Figure 1. The
three main steps of a cognitive cycle are as follows:

• Radio scene analysis, which encompasses estimation of the inter-
ference temperature, and detection of spectrum holes.

The interference temperature has been recommended by the FCC
as a measure of the acceptable level of RF interference in the fre-
quency band of interest. It serves as a threshold on the potential
RF energy that can be introduced in the PU band by the unli-
censed users.

• Channel identification, which involves estimation of the channel
state information (CSI), and analyzing the characteristics of the
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spectrum holes detected. It may also involve prediction of the chan-
nel and PU traffic.

The goal of traffic prediction is to forecast future traffic variations,
as well as the idle times of the PU, as precisely as possible, based
on the measurement history 9 . This knowledge will enable the SUs
in a CR system, to efficiently utilize the spectrum opportunity.
Each PU channel should be sampled to determine its ON/OFF
state and additional traffic information such as periodicity, distri-
bution of idle and busy times and the utilization percentage of the
channel. Traffic patterns may change over time, and thus, a limited
timescale, in terms of some kind of moving time-window, should be
used for measurement and estimation.

• Spectrum decision and adaptive communication, in which the CR
node chooses a spectrum band for usage and reconfigures its trans-
mission parameters such as operating frequency, modulation type
and transmit power, based on the input from the radio-scene anal-
ysis and channel identification modules.

Radio-
Scene

analysis

Radio
environment

(Outside world)

Transmit-power
control, and

spectrum
management

Channel-state
estimation, and

predictive
modeling

Quantized
channel capacity

Spectrum holes
Noise-floor statistics

Traffic statistic

Action transmitted
signal

Interference
temperature

RF-
stimuli

Transmitter Receiver

Fig. 1. Cognitive cycle (adapted from 3)
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2.2. Physical Architecture

The SU should have the capability of detecting the temporarily unused
spectrum of the PU, and rapidly jumping in and out of it, without in-
terfering with the transmission of the licensed user. A generic physical
architecture, that makes this possible, is depicted in Figure 2. It mainly
consists of two chains: the transceiver chain, and the monitoring chain 10 .
The transceiver chain comprises the data antenna, the RF front-end (where
the signal is amplified, mixed, analog-to-digital converted) and baseband
processing (where modulation/demodulation and encoding/decoding takes
place) on a software-defined radio (SDR) platform. The SDR allows the
operating parameters such as frequency range, modulation type or out-
put power to be reconfigured in software, without making any alteration
in the hardware 5 . The monitoring chain includes a sensing antenna to
detect the presence of a PU in a specific frequency range and a spectrum
database which is continuously updated. Connecting the two chains is a
spectrum switching unit; when the PU occurs, the data transceiver discon-
tinues transmission on the current working spectrum and searches for an
available channel from the spectrum database. This process can guarantee
an efficient utilization of the PU’s idle time. The main challenge in the
hardware implementation is in developing the wide-band RF front-end for
spectrum sensing, which should be able to detect the weak signals from the
licensed users over a wide spectrum range.

RF
Frontend

Baseband
processing on SDR 

platform

Spectrum
monitoring Spectrum

database

Spectrum
switching

PU detected

Update

search

Data antenna

Sensing antenna

Update

Update

User data

Fig. 2. Physical architecture
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3. Cognitive Radio and Next-generation networks

It is anticipated that the Next-Generation (xG) communication networks
will be based on CR 5 . These networks will provide high bandwidth to
mobile users via heterogenous wireless architectures and dynamic spectrum
access techniques. The main functions for CR nodes to meet the challenges
of spectrum aware xG networks, such as wide spectrum range, Quality-
of-Service (QoS) requirements of diverse applications, user mobility across
wireless architectures, are summarized as under:

• Spectrum sensing: Detecting unused spectrum so that communica-
tion is achieved without causing harmful interference to the licensed
user.

• Spectrum allocation: Capturing the best available spectrum to
meet user communication requirements.

• Spectrum utilization: Exploiting the allocated spectrum in the most
efficient manner within the limited resources and QoS constraints.

• Spectrum sharing: Providing fair scheduling among contending
users.

• Spectrum mobility: Maintaining seamless communication during
transition to a better spectrum.

In the subsequent sub-sections, each of these functions are elaborated.
Most of the details of spectrum allocation, spectrum sharing and spectrum
mobility have been compiled from the work of Akyildiz et al. 5 .

3.1. Spectrum sensing

Spectrum sensing is a very challenging task for cognitive users, and has
been pursued as an active research area over recent years. Quite a few
sensing techniques have been proposed in literature, viz. energy detection
(ED), matched filtering detection (MD), cyclostationary detection (CSD),
eigenvalue-based sensing, wavelet-based sensing, classic likelihood ratio test
(LRT), covariance-based sensing and blindly combined energy detection.
These techniques can be classified into three general categories based on
different requirements for their implementation: (i) Techniques requiring
both source signal and noise power information; (ii) Techniques requiring
only noise power information; and (iii) Techniques requiring no information
of source signal or noise power (blind detection) 11 .

From among the above techniques, LRT, MD and CSD belong to cate-
gory 1; ED and wavelet-based belong to category 2, while blindly combined
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energy detection belongs to category 3. In this section we describe some of
the aforementioned spectrum sensing techniques.

3.1.1. Energy Detection

Energy detection is a popular technique to detect the presence of the PU
because of its low computational and implementation complexity 12,13 . In
this technique, the energy of an unknown signal is measured in the presence
of noise.

Let us assume that the received signal has the following form:

y(n) = x(n) + w(n) (1)

where x(n) is the signal to be detected, w(n) is the additive white Gaussian
noise (AWGN), and n is the sample index. The decision matrix for this
detector can be represented as

M =
N−1∑
n=0

|y(n)|2, (2)

where N is the size of the observation vector. The decision matrix M is
compared with a fixed threshold λ to decide the PU signal’s presence. The
energy detector is a simple and efficient technique, however, it does not
work well when detecting spread spectrum signals.

3.1.2. Matched Filter Detection

In matched filter-based detection prior knowledge of the PU’s signal (x(n))
is necessary. The decision metric for a matched filter-based sensing can be
represented as 12,13

M = �
[N−1∑

n=0

y(n)x∗(n)
]
, (3)

where ∗ denotes conjugation operation, and � denotes the real part of the
signal. In the presence of the PU, the decision metric M can be calculated
as

M =
N−1∑
n=0

|x(n)|2 + �
[N−1∑

n=0

w(n)x∗(n)
]
. (4)
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Similarly, in the absence of the PU the decision metric M can be calculated
as (the second term of Eqn. 4)

M = �
[N−1∑

n=0

w(n)x∗(n)
]
. (5)

Similar to the ED technique, the decision metric M is compared with a
fixed threshold λ to decide the PU signal’s presence.

The main advantage of matched filter-based detection is that it requires
less time for detection because of coherency. However, a significant draw-
back is the need for a dedicated receiver for every signal it may have to
detect 13 .

3.1.3. Cyclostationary Detection

Cyclostationary detection technique uses periodicity property or the mo-
ments (mean, autocorrelation,etc.) of the PU’s transmitted signal 11,13 . In
this approach, noise is differentiated from the PU’s signal because noise is
wide sense stationary (WSS), with no correlation with the PU signal.

If x(t) is a zero-mean cyclostationary signal, the autocorrelation function
of x(t) is periodic in time t, and is given by

Rx(t, τ) = E(x(t)x(t + τ)) = Rx(t + T, τ), (6)

where T represents the cyclic period. Due to its periodicity, Rx(t, τ) can be
represented as a Fourier series

Rx(t, τ) =
∑
α

Rα
x (τ)ej2παt (7)

where α is called the cyclic frequency, and Rα
x (τ) is the cyclic autocorrela-

tion, defined as

Rα
x (τ) =

1
T

T
2∑

t=−T
2

Rx(t, τ)e−j2παt, (8)

The cyclic features of the signal may, alternatively, be represented by the
cyclic power spectral density (PSD) function Sα

x (f) which is the Fourier
transform of Rα

x (τ). The presence or absence of the PU signal is determined
by evaluating the spectral component corresponding to the cyclic frequency
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α, as follows:

Sα
x (f) =

⎧⎪⎪⎨⎪⎪⎩
S0
n(f), α = 0, signal absent

|H(f)|2S0
x(f) + S0

n(f), α = 0, signal present

0, α 
= 0, signal absent

H(f + α
2 )H

∗(f − α
2 )S

α
x (f), α 
= 0, signal present

where H(f) is the channel gain and S0
n(f) is noise PSD at α = 0. A PSD

threshold detection may be used to determine the presence of the PU. The

major advantage of this technique is its robustness to the uncertainty noise

power and channel conditions11 . However, it also has some disadvantages: it

needs very high sampling rate and high computational complexity; sampling

time error and frequency offset may affect the cyclic frequencies11,13 .

3.1.4. Wavelet-based Detection

Wavelet transform techniques are well known for signal discontinuity detec-

tion14 . In wavelet-based sensing, the spectrum hole identification depends

on the detection of edges of the received PSD. Generally, PSD is smooth

within each sub-band but exhibits discontinuities at its edges. A spectrum

sensing technique has been proposed based on this fact14,15 .

If φ(f) is a wavelet smoothing function, then its dilation by a scale

factor s is given by

φs(f) =
1

s
φ

(
f

s

)
(9)

If the Continuous Wavelet Transform (CWT) of the received PSD is ex-

pressed as Sy(f), then WsSy(f) represents a measure of the correlation

between the dilated wavelet function at one specific scale s, and Sy(f), and

is given by

WsSy(f) = Sy � φs(f) (10)

where (�) denotes the convolution operation. At fine scales WsSy(f) pro-

vides a localized information of Sy(f), and the edges and irregularities in

Sy(f) are obtained by using derivatives.

The advantage of wavelet-based sensing is high-speed sensing over a

wide spectrum bandwidth, with low power consumption. Also, by virtue of

the scalable feature of the wavelet transform, multi-resolution is achieved

without any additional hardware burden16 .
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3.1.5. Cooperative Detection

If there are multiple users located in different geographical locations, then
it is possible for them to cooperate to achieve higher spectrum sensing
reliability 11,17–20 . Each user sends its observed data or processed data to
a centralized controller to make a final decision about the presence of the
PU. The decision-making can be of two types, viz. data fusion and decision
fusion.
Data Fusion
In this method each user sends its observed data to a specific user or central-
ized controller, where it is jointly processed to make a final decision about
spectrum sensing. In energy-based cooperative sensing, each user computes
its received signal energy in the presence of noise and sends it to centralized
controller 11,18 . The centralized controller sums the collected energy values
using a linear combiner (LC) to obtain the following test statistic:

ELC =
M∑
i=1

giEED,i (11)

where EED,i is the ith user’s detected energy, and gi (≥ 0) is the combining
coefficient, such that

∑M
i=1 gi = 1. If signal power received by each user is

known, then optimal combining coefficients can be obtained as

gi =
μ2

i∑M
k=1 μ2

k

, (12)

where μ2
i is the received signal power (excluding the noise) for user i.

Decision Fusion
In this method each user processes its observed data independently and
sends its decision to the centralized controller. The centralized controller
takes the final decision based on the deployed fusion rules, some of which
are as follows 11,19,20 :

(1) “OR” fusion Rule: If one of the decisions is “1”, then the final deci-
sion declares the PU’s presence. The probability of detection Pd and
probability of false detection Pfd are given by Eqns. (13) and (14) re-
spectively, where Pd,i and Pfd,i represent the probability of detection
and probability of false detection of the ith user among a set of M
users.

Pd = 1 −
M∏
i=1

(1 − Pd,i) (13)

Pfd = 1 −
M∏
i=1

(1 − Pfd,i) (14)
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(2) “AND” fusion rule: If and only if all the decisions are “1”, then the
final decision declares the PU’s presence. The probability of detection
Pd and probability of false detection Pfd of the final decision are given
by Eqns. (15) and (16) respectively.

Pd =

M∏
i=1

Pd,i (15)

Pfd =
M∏
i=1

Pfd,i (16)

(3) “K out of M” rule: If and only if, K or more decisions are “1”s, then the
final decision declares the PU’s presence. The probability of detection
Pd and probability of false detection Pfd of the final decision are given
by Eqns. (17) and (18) respectively.

Pd =

M−K∑
i=0

(
M

K + i

)
(Pd,i)

M−K−i × (1 − Pd,i)
K+i (17)

Pfd =

M−K∑
i=0

(
M

K + i

)
(Pfd,i)

M−K−i × (1 − Pfd,i)
K+i (18)

For higher reliability, the centralized controller requires more informa-
tion (multiple-bit decision) from the SUs, at the cost of increased commu-
nication overheads.

3.1.6. Other Sensing Techniques

Other spectrum sensing techniques include covariance detector, eigenvalue-
based spectrum sensing and blind spectrum sensing. Zeng et al. 21 and Kim
et al. 22 have proposed a spectral covariance-based sensing algorithm that
exploits different statistical correlations of the PU signal and noise in the
frequency domain. Sensing methods based on the eigenvalues of the covari-
ance matrix of signals received at the SUs have been proposed 23,24 . Zayen
et al. have suggested a blind detection technique, which exploits model se-
lection tools like Akaike information criterion and Akaike weights 15 .

Some of the open research challenges in spectrum sensing include de-
tection of the PU in a very short time, and the complexity that arises in
sensing in a multi-user environment. Another crucial issue in sensing the
presence of the PU is the hidden terminal problem 25 that arises because
of shadowing; the SU cannot reliably detect the presence of the PU if it is
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shadowed from the PU transmitter due to some physical obstacle opaque
to radio signals (Figure 3).

PU Rx 

PU Rx SU- Base
station

SU

SU

PU Tx 

Interference

PU Rx 

The SU cannot
 detect the PU
 signal due to the
hidden terminal

Interference

PU Rx 

X

Obstacle

Fig. 3. Hidden terminal problem

3.2. Spectrum allocation

This function entails analyzing the quality of the spectrum for its suitability
of usage by the SUs. The spectrum band has to be characterized consid-
ering the time-varying nature of the channel, activity of the PU, and also
its parameters such as operating frequency, bandwidth and channel state.
Moreover, the band selected need not be contiguous; CR allows data to
be sent over multiple non-contiguous spectrum bands. Transmission over
non-contiguous spectrum shows less performance degradation as compared
to conventional transmission on a single band during spectrum hand-off 5

(to be defined later).
The main challenge in spectrum allocation is to arrive at an appropriate

model, which will combine the various decision parameters to effectively
characterize the quality of the spectrum.

3.3. Spectrum utilization

The spectrum allocated to an SU should be optimally used to meet its
requirements, without degrading the performance of the licensed user. This
entails efficient Radio Resource Management (RRM) implemented at the
Media Access Control (MAC) sub-layer of the network protocol stack 26 .
The aim of RRM is to evaluate the available resources (power, time slots,
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bandwidth, etc) and assign them to meet the QoS objectives of the SU,
within some constraints on factors (typically interference) which limit the
performance of the PU.

Furthermore, for optimum spectrum utilization it is necessary to be
adaptive to, one or more, time-varying characteristics of the system, such
as the wireless channel state, number of users, QoS requirements, etc. Adap-
tive Radio Resource Management (ARRM) is an important feature of the
spectrum utilization task, which seeks to harmonize two contradictory con-
cepts of limited resources and strict QoS requirements, depending on the
instantaneous state of the system, and suitably reconfigure after having
detected the new state. Adaptiveness may be achieved in the transmission
scheme through a variation of coding schemes, constellation size, power
level, symbol transmission rate, etc., or any combination of these parame-
ters. However, ARRM requires awareness and continuous monitoring of the
operating environment, and information exchange between the receiver and
transmitter, which increases system complexity and overheads.

Orthogonal Frequency Division Multiplexing (OFDM) is the most popu-
lar choice of communication technology for CR. OFDM presents a promis-
ing solution to enable opportunistic spectrum access in CR networks by
dynamically nulling those sub-carriers where the PU claims its spectrum.
This variant of OFDM is called dis-contiguous OFDM (D-OFDM). Besides
its ability to handle multi-path fading and inter-symbol interference, it of-
fers flexibility of resource allocation on its individual sub-carriers. When
OFDM is used in CR transmission, the power, modulation and bandwidth
of the sub-carrier, are parameters which may be reconfigured to improve
the performance and achieve the desired system goals 27 . Power allocation
may be done with various objectives: to maximize the overall throughput
within a power budget; to minimize the total energy consumption while
transmitting a fixed number of bits per symbol; to transmit at the lowest
possible bit error rate (BER). In OFDM-based CR, the side-lobe interfer-
ence may hamper the PU communication; thereby posing an additional
important constraint in the power allocation problem (discussed in Section
8).

The complexity of RRM, for efficient spectrum utilization in CR, in-
creases with the number of constraints and their stringency, and is ex-
acerbated in a multi-user scenario. The challenge is in developing low-
complexity algorithms for practical deployment of RRM in a channel-
adaptive manner.

50777_8063 -insTexts#150Q.indd   19450777_8063 -insTexts#150Q.indd   194 6/8/11   7:33 PM6/8/11   7:33 PM



195

3.4. Spectrum sharing

Spectrum sharing is analogous to MAC scheduling in conventional (non-
cognitive) wireless systems. Since multiple SUs are trying to access the same
spectrum, the access should be coordinated to prevent collisions. Besides,
the sharing technique should ensure fairness in meeting the individual users’
QoS requirements. If the users forward their measurements and information
(global information) to a central entity, which is responsible for executing
the sharing algorithm, it is known as centralized spectrum sharing. On the
other hand, if the construction of such an infrastructure is not feasible, and
each user decides on its own spectrum allocation based on local information,
it is called distributed spectrum sharing. Distributed techniques introduce
a tradeoff between efficient spectrum sharing and practical solutions having
minimal communication overheads.

Spectrum sharing techniques are classified based on the access technol-
ogy as

• Overlay spectrum sharing: It refers to a Frequency Division Multiplexed
(FDM) spectrum access technique, in which each user uses that por-
tion of the spectrum which is not being used by any other user. This
approach is used to share spectrum between the PU and SU, and also
among the multiple contending SUs.

• Underlay spectrum sharing: This method exploits the spread spectrum
techniques 28 used in wireless communication. Every user occupies the
complete available bandwidth, but transmits at a power level that is
regarded as noise by the other users.

The challenge is in executing efficient spectrum sharing among multiple
SUs given the dis-contiguity of the available spectrum and the heterogeneity
of the wireless environment. Besides, an open research area can be identified
as the implementation of a suitable control channel. However, this challenge
is not exclusive to spectrum sharing; the allocation of a control channel is
necessitated whenever there is an exchange of transmitter-receiver hand-
shaking signals, sensing information exchange, cooperation among multiple
users, as well as communication with a central entity.

3.5. Spectrum mobility

Spectrum mobility is defined as the process of the SU changing its frequency
of operation. The need for it arises when current channel conditions worsen
or a PU appears. Spectrum mobility leads to a new type of hand-off called
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a spectrum hand-off. The information about the change of spectrum should
percolate through the layers of the protocol stack with minimum latency.
The Spectrum Mobility Management (SMM) function should ensure that
transition to a new spectrum is smooth, and with almost imperceivable
performance degradation of the application running on the SU.

Spectrum hand-off may also be triggered due to reasons other than the
detection of a PU; mobility of the SU, due to which the available bands
may change, is termed as an inter-cell hand-off, and in case of transition
between different networks, it is known as vertical hand-off.

The main challenge in SMM is in ensuring minimum delays and loss, and
the consequent performance degradation, in the event a hand-off occurs.

4. Cross-layer design in Cognitive Radio

Computer networks follow a layered protocol approach, so network func-
tionalities are designed in isolation from each other. Each layer uses the
services provided by the layer below it and provides services to the layer
above it. Inter-layer communication happens only between adjacent layers
and is limited to procedure calls and responses, as seen in the Open Systems
Interconnection (OSI) and the TCP/IP models. In CR networks, there is
a need for greater interaction between the different layers of the protocol
stack in order to achieve the end-to-end goals and desired performance 29 .
Cross-layer design refers to the protocol design done by actively exploiting
the dependence between the protocol layers to obtain performance gains.

To substantiate the need for a cross-layer design in CR networks, the
following examples can be cited 5 :

• The dynamic nature of the underlying spectrum in CR networks ne-
cessitates communication protocols to adapt to the wireless channel
parameters. Moreover, the behavior of each protocol affects the per-
formance of other protocols. For example, when re-routing is done be-
cause of link failures arising from spectrum mobility, the round trip
time (RTT) and error probability in the communication change ac-
cordingly. The change in error probability also affects the performance
of the MAC protocols. Consequently, all these changes affect the overall
quality of the SU application. These interdependencies among function-
alities of the communication stack, and their close coupling with the
PHY (physical) layer necessitate a cross-layer spectrum management
function which considers medium access, routing, transport, and ap-
plication requirements, in addition to the available spectrum, in the
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selection of the operating spectrum.
• Spectrum hand-off results in latency, which affects the performance of

the communication protocols. Moreover, during spectrum hand-off, the
channel parameters such as path loss, interference, wireless link error,
and link layer delay are influenced by the dynamic use of the spectrum.
On the other hand, the changes in the PHY and MAC channel pa-
rameters can initiate spectrum hand-off. In order to estimate the effect
of the spectrum hand-off latency, information about the link layer and
sensing delays are required. Transport and application layer should also
be aware of the latency to reduce the abrupt quality degradation. In
addition, the routing information is also important for the route recov-
ery using spectrum hand-off. For these reasons, the spectrum hand-off
is closely related to the operations in all communication layers.

• Spectrum sensing is primarily a PHY layer function. However, in the
case of cooperative detection, the multiple SUs exchange sensing infor-
mation. Cooperative techniques require transmitters to consider their
interference to other users, and the interference at their receivers from
other users. Such a collaboration increases the communication overhead
and may lead to overall system performance degradation in terms of
effective channel capacity or energy consumption. The other challenge
about spectrum sensing is the huge range of spectrum that has to be
sensed, and the amount of time that is required for it. Since sensing
consumes energy, this process has to be carefully scheduled and requires
cross-layer interaction between the PHY and the upper layers.

Motivated by the aforementioned needs, Slavik et al. have proposed a cross-
layer design for CR that has two main data flows in the network stack
30 . The first, like any network stack, is the flow of user data vertically
(Figure 4). This data originates at one application, flows down through its
node’s network stack, up through a receiving node’s network stack, and
terminates at the receiving node’s application. The second data flow is that
of control data, which represents the current state of the network stack.
This flow originates in the layer(s) of the stack, flows to the controller, is
processed by it, and then flows into the control points of the layer(s) in the
stack. The data processing at the controller may involve optimization, and
application of artificial intelligence (AI) to make important decisions which
enable the vertical user data flow to achieve some performance objective.
The controller may also be referred to as the cognitive engine. Such a cross-
layer design requires that existing stack components be modified to interact
with the controller.
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Fig. 4. Cross-layer design (adapted from 30)

A vast amount of literature is available on implementation of specific
cross-layer problems for CR, and these have been described in Section 6,
in the context of the tools (optimization, fuzzy logic, genetic algorithms,
neural networks, etc.) used by them to obtain the solution.

Architecture violations introduced by cross-layer design, clearly under-
mine the significance of the original layered architecture, and can have a
detrimental impact on system longevity. Besides, unintended cross-layer in-
teractions can have undesirable consequences on overall system performance
31 .

5. Cooperative Technology and Cognitive Radio

To satiate the ever increasing demand for high data rate wireless services,
cooperative communication has evolved. Parallel to the developments in
the field of CR, research in cooperative technologies has progressed signif-
icantly. In its basic definition, cooperative transmission refers to the in-
formation theoretic model of a three terminal relay channel in which the
relay forwards the transmission from the source towards the destination.
The processing at the relay may simply involve forwarding an amplified
version of the received signal to the destination i.e. amplify-and-forward
(AF), or decoding the received signal completely and re-encoding it to for-
ward it to the destination i.e. decode-and-forward (DF) 32 . Performance
advantages achievable from collaborating relays arise in two forms, both
of which translate into enhancing overall network capacity: (i) power gains
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which can be achieved if the relay is suitable located, typically half way
between the source and destination; (ii) diversity gains which arise due to
the multiple paths taken by the signal to reach the destination 33 .

The incorporation of cooperative communication in CR networks i.e.
cognitive cooperative communication, creates a promising solution to ef-
ficient radio resource utilization. Varied forms of cooperation have been
investigated to suit different topologies and to meet various requirements
of the CR network. Strategies that provide efficient usage of the spectrum
opportunity and guarantee QoS constraints for both PU and SU have been
suggested 34–36. Cooperation in terms of a symbiotic architecture between
the PU and SU has also also been investigated 37,38 . Cooperative sensing
is an important area where cooperative technology can be deployed for ro-
bust detection of spectrum holes and estimation of channel conditions11.
Cooperation among the PUs and SUs can be achieved in the following for-
mats: (i) No Relay Aided- in which the SUs simply relay the CSI among
themselves for improved spectrum sharing; (ii) Secondary Relay Aided- in
which SUs assist each other in forwarding data to the intended destination;
and (iii) Primary Relay Aided- the SUs relay the PU’s data to reduce its
power consumption 39 .

Multiple-input multiple-output (MIMO) wireless communication sys-
tems employ multiple antennas at the transmitter and the receiver. Intro-
ducing MIMO in CR communication, increases the scope for cooperation
and enhances the system capacity by mitigating the impairments of a wire-
less environment such as multi-path fading, delay-spread and co-channel
interference 40,41 . In this regard, CR MIMO channel capacity under dif-
ferent assumptions regarding the knowledge of CSI at the transmitter and
receiver has been analyzed 40 , which brings out the benefit of MIMO CR.
Cooperative spectrum sensing in OFDM-based MIMO CR sensor networks
demonstrates that it gives a better detection performance compared to
spectrum sensing without MIMO 42 .

6. Enabling Tools for Cognitive Radio

After having provided a detailed account of the CR technology, its fun-
damental components, and essential functionalities in the context of Next-
Generation networks, in this section we review CR from the perspective
of its enabling tools, and provide an extensive literature survey in each
category.
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6.1. Optimization

The main goal of an optimization problem is “to find the best solution
among the available set of solutions under limited resources” 43 . A well-
known example to visualize this definition is the “0-1 knapsack problem”,
according to which a hiker wants to put several items into his bag, but
has a constraint on the weight, maxwt, he can carry. He needs to find the
“best combination” of items which weigh as close as possible to the maxwt,
according to the relative value of each item determined by himself.

The formal model of any optimization problem depends on its variables,
objective function and constraints. In general , it can be written as 44

Find x∗ which
minimizes f(x)
subject to ci(x) ≤ 0, i=1,2,....,r
with mj(x) = 0, j=1,2,....,h

where x∗ = [x1, x2, ...., xn]T , (.)T denotes transpose operation. f represents
the objective function, ci and mj denote the constraints.

If the optimization objective, the inequality constraints, and the equal-
ity constraints are all linear in the parameter function, the problem is called
a linear program. If either the optimization goal or the constraint functions
are nonlinear, the problem is called nonlinear program. One special kind of
nonlinear program is the convex optimization problem, where the feasible
set, the optimization goal, and the inequality constraints are all convex,
while the equality constraints are affine 44 . In this case, any locally opti-
mal point is also globally optimal. If all of the optimization variables are
integers, the problem is called an integer program. If there is a combination
of real and integer variables, it is called a mixed integer program. To find
closed-form solutions, one of the most important methods for constrained
optimization is the Lagrangian method 44 . However, in case of non-linear
and non-convex constraints and optimization goal, the Lagrangian multi-
plier function is difficult to handle and the optimal points are hard to obtain
44,26 . Convex optimization problems can be solved globally and efficiently
through the interior point primal dual method, with polynomial running
times that are O(

√
N), where N is the size of the problem 43 . Most of the

time, integer/combinatorial optimization problems are Non-deterministic-
Polynomial-hard (NP-hard) and unsolvable in polynomial time. In prac-
tice, many parameters can have only integer values, like modulation level,
route selection, etc. Moreover, even for some continuous parameters such as

50777_8063 -insTexts#150Q.indd   20050777_8063 -insTexts#150Q.indd   200 6/8/11   7:33 PM6/8/11   7:33 PM



201

transmission power, the real implementation has finite granularity, leading
to limited integer values as choices. To solve integer/combinatorial prob-
lems one can resort to relaxation and decomposition, brand-and-bound, and
cutting-plane techniques 43 . The performance of these is largely problem-
oriented.

Adaptive Radio Resource Management (ARRM) problems in CR can
be formulated as constrained optimization problems, from a network or
individual viewpoint. The primary objective of these problems is maximiz-
ing the SU throughput, where the transmit power, constellation size, and
bandwidth should be dynamically allocated, and/or the antenna beam be
adjusted, within constraints on battery level, interference temperature of
the PU, target BER, etc., assuming that the CSI of the PU and SU net-
works is available. Some of the ARRM problems that have been cast in the
framework of optimization in a CR scenario are as follows: power alloca-
tion for an OFDM-based single SU transceiver 45–47 , power allocation for
a multi-user case 48–50 , adaptive modulation 51–54 , and beam-forming, in
which the direction of the antenna beam is adaptively adjust to maximize
the capacity of the cognitive link 55,56 . Optimization framework is also use-
ful in spectrum sharing (sharing of sub-carriers among frequency division
multiplexed SUs 48–50 ). Another application of optimization is mitigating
interference to the PU, created by the side-lobes of OFDM-based SUs, by
using techniques like sub-carrier weighting 57 and introduction of cancela-
tion carriers 58 .

Cross-layer optimization manifests itself in a more complicated way for
CR networks. It considers the optimization variables across multiple layers
of the network protocol stack to achieve one, or most of the times, multiple
objectives. A multi-objective optimization, in general, is represented as 44

Minimize F (x) = [F1(x), F2(x), ...., Fn(x)]T

subject to ci(x) ≤ 0, i=1,2,....,r
with mj(x) = 0, j=1,2,....,h

In multi-objective optimization it is extremely difficult to find a so-
lution that can maximize (or minimize) each objective; instead, the term
solution corresponds to a set which represents a trade-off between objective
functions.

Wang et al. have proposed a joint cross-layer scheduling and sensing
design, and studied its performance advantages over the traditional decou-
pled approaches 59 . Cross-layer optimization problems for routing, MAC
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scheduling and power allocation in a multi-hop multi-channel network are
formulated as mixed integer nonlinear programs, and solved by branch-and-
bound techniques 60,61 .

6.2. Game Theory

Game theory is an analytical tool designed to help us understand the phe-
nomena that is observed when decision-makers (players) interact 62 . The
fundamental assumptions that govern the use of game theory are,

• The players are rational i.e. they pursue well-defined exogenous objec-
tives

• The players reason strategically i.e. they take into account their knowl-
edge or expectations of other players

Definition 6.1. (Game theory) Game theory is a formal way to analyze
interactions among a group of rational decision-makers called players who
reason and act strategically.

A game requires the specification of the three parameters: the set of
players in the game, the exhaustive strategy set available to each player,
and the payoffs or utility functions associated with any strategy combina-
tion of each player. Equipped with the knowledge of these parameters, any
decision-making problem can be solved using the well-established concepts
of game theory, provided the solution exists. We present some definitions
and basic theorems in game theory and use an illustrative example to better
understand these concepts. Some commonly used notations in game theory
are tabulated below (Table 1).

6.2.1. Fundamental Lessons

The ideas in game theory have a very interesting flow. We build these
leading towards the more general situations that occur in any competition.

Definition 6.2. (Dominated Strategy) The strategy s
′
i of player i is strictly

dominated by the strategy si of player i if,

ui(si, s−i) ≥ ui(s
′
i, s−i) ∀ s−i ∈ S−i

The idea here is that if a game has a dominated strategy it is never to be
played, as doing so will always yield a lower payoff. However, in most games
there are seldom any dominated strategies, and hence, there is very little
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Table 1. Standard Notations in Game theory
No Entity Notation

1 Player i

2 Strategy of player i si

3 Set of all strategies of player i Si

4 Strategies of all players except player i s−i

5 Strategy profile of a game wrt player i (si, s−i)

Payoff of player i for strategy si

6
against strategies s−i of other players

ui(si, s−i)

use of this idea. A more general concept is to look at one particular strategy
of the opponent and then decide what is the best response (BR) strategy
that one could play.

Definition 6.3. (Best Response) The strategy ŝi of the player i is best
response to the strategy s−i of the other players if

ui(ŝi, s−i) ≥ ui(s
′
i, s−i) ∀ s

′
i ∈ {Si − ŝi} and s−i ∈ S−i

Analysis of the definition reveals that a strategy which is never a best re-
sponse should be avoided. However, what strategy is to be played when one
is oblivious to the strategy set of the opponent is yet unknown. Further
analysis shows that when these strategies are deleted from the strategy set,
there will be new strategies that now come in the category of being never a
best response. This when done continuously for all players leads us to what
is known as the famous Nash Equilibrium (NE).

Definition 6.4. (Nash Equilibrium) In an N player game, a strategy pro-
file (s

1, s

2, . . . , s


N ) is a Nash Equilibrium, if for each player i the choice of

the strategy s
i is a best response to the opponents choices s

−i.

A game may or may not have a NE. Moreover, if it has a NE then it may
not be unique. We look at an example to understand the above ideas.
The Investment Game
Consider a game in which two people (players 1 and 2) run a company,
share equal profits, and the strategy of these players (S1, S2) is to put an
effort on a scale of [0, 4] (a real number which is proportional to both the
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quality and quantity of the work the players put). The payoffs are defined
as follows:

U1(s1, s2) = s1 + s2 + bs1s2 − s2
1 (19)

U2(s2, s1) = s1 + s2 + bs1s2 − s2
2 (20)

where s1 ∈ S1, s2 ∈ S2, b ∈ [0, 1/4], and the factor bs1s2 represents the
profit obtained when working in a team (synergy). The negative term con-
tribution is due to the cost incurred by each player due the effort they
put.

The best response curves of player 1 and 2 are obtained by differentiating
each of the above two functions to get ∂U1(s1,s2)

∂s1
and ∂U2(s2,s1)

∂s2
. We equate

these to zero and get BR of player 1 as a function of s2 and BR of player
2 as a function of s1. We have

BR1(s2) = 1 + bs2 (21)

BR2(s1) = 1 + bs1 (22)

From Figure 5 it is easy to see that those strategies that are never a best
response are not considered (shaded). Once we remove those strategies that
are never a best response we can repeat the process over and over again. In
the limiting case, we can see that we are left with only one strategy profile
for the entire game, and such a strategy profile is the NE of the game.

An extension of this 2-player game is the N -player game in which the
Nash Equilibrium is the intersection of N curves, each of which is a function
of the other N − 1 opponents’ strategies in the N -dimensional space. We
note the following two important points regarding existence and uniqueness
of NE, for strategy sets continuous over a finite interval:

• the NE exists if all these curves intersect at-least at one common point
• and it is unique if they intersect in one and only one point

The following theorem formally states the conditions in which the NE exists
uniquely.

Theorem 6.1. 63 A game modeled with finite number of players N , an ex-
haustive strategy set Si and a well-defined utility function ui(si, s−i) for
each player i ∈ N , has a unique Nash Equilibrium iff there exist one
and only one strategy profile S = (s

1, s

2, . . . , s


N ) such that ui(s

i , s

−i) ≥

ui(si, s

−i) ∀si ∈ {Si − s

i } and i ∈ N.

This strategy profile can be viewed as being the only N dimensional strategy
profile present in each of the N − 1 dimensional best response curves. In

50777_8063 -insTexts#150Q.indd   20450777_8063 -insTexts#150Q.indd   204 6/8/11   7:33 PM6/8/11   7:33 PM



205

s
2

0 1

BR
1
( s 

2
)

s
1

s
2

1

5/4

6/4

7/4

2

5/4 6/4 7/4 2

s
1

s
2

5/4

21/16

22/16

23/16

6/4

6/4

BR
1
( s 

2
)

BR
2
( s 

1
)

s
1

s
2

21/16

87/64

22/16

22/16

BR
1
( s 

2
)

BR
2
( s 

1
)

23/1622/1621/16

85/64

86/64

85/64 86/64 87/64

NE = (4/3, 4/3)

(i) (iii)

(ii) (iv)

. . . . .

. . . . . . . .

.

.

.

BR
2
( s 

1
)

BR
1
( s 

2
)

BR
2
( s 

1
)

2
.. . 

2

1

3

3

4

4 s
1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 5. Nash Equilibrium

some cases, the utility function will be defined such that the best response
functions will be a linear combination of the opponents strategies. In such
situations, one can conveniently represent these linear equations in the form
of a matrix equation, and use the well-established concepts of linear algebra
to get the solution. The matrix equation can be written as follows

AS = B (23)

where A is a square matrix of size N × N in which the diagonal elements
are equal. The vector S, with N elements is the strategy profile vector. B is
a constant vector. We state a corollary of the above theorem for the special
case of linear best response functions.

Corollary 6.1. The necessary and sufficient condition for a unique Nash
equilibrium to exist when the best response functions are linear in the oppo-
nents strategies is that the representing matrix A has only the 0V (the zero
vector) in its kernel or null space.

This implies that for the Nash Equilibrium to exist uniquely, the matrix
A is necessarily a full rank matrix, i.e. the matrix A−1 exists and is well-
defined. We also note that there are infinite Nash equilibria when the system
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of equations in Eqn. 23 is consistent but incomplete. Moreover, the Nash
equilibrium does not exist if this system of equations is inconsistent.

6.2.2. Game theory for Cognitive Radio

CR instills completion not only between the PU and the SU, but also
amongst the SUs themselves. As a result, game theory is a natural tool
in resolving the conflicting interests. Game theory is applied to CR net-
works to find optimum strategies of the PU or SU or both, given a set of
network assumptions, such as communication technology, CSI, power levels
etc.

A well-established game model is the Stackelberg game, wherein a leader
first chooses a strategy, and the follower’s strategy depends on the leader’s
strategy. Such models are adopted for CR, where in general, the PU enjoys
more privileges than the SU, and hence is deemed as a leader. Some other
game theory models like the Bertrand and Cournot are also used where the
players have equal rights 64 .

Stanojev et al. have proposed a symbiotic cooperative architecture for
CR, whereby a PU leases its bandwidth for a fraction of time to a net-
work of SUs in exchange for cooperation 38 . On one hand, the PU decides
whether to exploit the cooperation from the SUs in order to enhance its own
transmission rate, while the SUs decide to participate only if compensated
with a large enough fraction of time for their own transmission, with the
objective of maximizing their rate discounted by the overall cost of trans-
mitted power. The problem is cast in the framework of Stackelberg games.
Another example of symbiotic cooperative architecture is: when the PU in-
frastructure (bandwidth and relay nodes) is not utilized, it is leased to the
SUs, in return for payments made by SUs for the service they receive 65 .
The interactions between the PU and SU are considered as a buyer/seller
model to determine the price which maximizes the PU’s revenue. Further,
within the SU network, given the specified price, the users compete to ac-
cess the PU infrastructure, which is modeled as a non-cooperative game. In
a similar architecture, albeit with multiple PUs competing with each other
in the pricing process to get higher revenues, the game has been modeled
as a Bertrand game 66 .

A static game is one in which all players make decisions simultaneously,
without knowledge of the strategies of other players. In dynamic games,
however, there is an explicit time-schedule that describes when the individ-
ual players make their decisions 64 . In a Time Division Multiple Access
(TDMA) CR system model, which schedules one SU per spectrum hole in
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each time slot according to a predefined decentralized scheduling policy,
the transmission rate adaptation problem for each SU is formulated as a
dynamic game with a latency constraint 67 . A stochastic game is a dynamic
game with probabilistic transitions played by one or more players 64 . Such
games have been widely used in addressing security issues in CR. Malicious
SUs and PU emulation are some of the attacks that can take place in a
CR system. In a PU emulation attack, the attacker sends signals having
the same features as the PU, during spectrum sensing, and can claim the
whole frequency band or interrupt the operation of SUs. It is similar to jam-
ming in traditional wireless communication systems. A stochastic zero-sum
(one participant’s gains result only from another’s equivalent losses) game
model is used to study the strategies of an attacker and an SU, in a jam-
ming and anti-jamming scenario 68 . The PUs dictate the system states and
their transitions, while the SUs and jammers behave non-cooperatively to
achieve their goals independently. The results indicate that the SUs should
enhance their security levels, or increase their pay-offs by either improving
their sensing capabilities or choosing to communicate under states where
the available channels are less prone to jamming.

6.3. Fuzzy logic

Fuzzy logic is a framework, which aims at modeling the vagueness that ex-
ists in real world problems, which cannot be efficiently expressed by means
of mathematical models. According to fuzzy set theory 69,70,26 when A is
a fuzzy set and x a relevant object, the proposition x is a member of A is
not necessarily true or false, but it may be true or false only to some de-
gree. Fuzzy logic provides an inference morphology enabling approximate
reasoning capabilities applicable to knowledge based systems. To imple-
ment decision making processes, it makes use of Fuzzy Logic Controllers
(FLCs), whose essential part is a set of linguistic control rules based on
expert knowledge, in the form:
IF (a set of conditions are satisfied) THEN (a set of consequences can be
inferred).

An FLC operates by repeating a cycle of the following steps: First,
measurements are taken of all variables that represent relevant conditions of
the process. Next, these measurements are converted into appropriate fuzzy
sets (fuzzification). The fuzzified measurements are used by the inference
engine to evaluate control rules stored in the fuzzy rule base. The result
of this evaluation is a fuzzy set(s) defined on the universe of discourse of
possible actions. This fuzzy set is finally converted into a crisp value(s)
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(defuzzification).
In essence, the FLC provides an algorithm which can convert the lin-

guistic control strategy based on expert knowledge into an automatic con-
trol strategy; this appears very useful when processes are too complex for
analysis through conventional quantitative techniques, or when the avail-
able sources of information are interpreted qualitatively, inexactly or un-
certainly, which may be the case in a CR network. The main weakness of
FLCs is the dependability of their decisions on the way the membership
functions and fuzzy inference rules are formulated. To overcome this limit,
fuzzy logic is often combined with learning algorithms based on neural net-
works or genetic algorithms 26 .

A fuzzy-based spectrum hand-off is proposed for the SU, so that it is able
to make the hand-off decision in a decentralized fashion without causing any
interference to the PU receiver 71 . Considering the uncertainty that arises
due to the characteristics of the wireless channel, the interference caused
by multiple SUs, the decentralization of the decision etc., the estimations
are realized by means of FLCs. Two FLCs are implemented: (i) the first
is used to qualitatively determine the distance between a SU and a PU,
which depends on the transmission power at which the SU should transmit
without interfering with the PU (PSU ), the signal-to-noise ratio at the PU
(SNRPU ), and the signal strength at the SU from the PU (SSPU ). Each
input linguistic variable is characterized by a set T of three attributes, as
follows:

T (SSPU ) = T (SNRPU ) = T (PSU ) = {Low Medium High} (24)

(ii) the second FLC has been designed to qualitatively determine whether
a spectrum hand-off should be realized or not. It consists of three input
linguistic variables: the SU transmission power (PSU ), the signal strength
received at the SU (SSPU ), the bit rate of the SU (RSU ); which are also
characterized as follows:

T (SSPU ) = T (RSU ) = T (PSU ) = {Low Medium High} (25)

There are two output linguistic variables: HO decides whether the hand-off
has to be realized or not, MODPSU indicates whether the SU transmission
power should be modified and how.

The fuzzy-based approach when compared with a fixed-strategy hand-
off indicates a reduced hand-off rate, thus guaranteeing a better perception
of the service and a reduced signalling cost for the SUs, and a higher per-
centage reduction of interference temperature at the PU receiver.
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Baldo et al. have proposed fuzzy cross-layering for the enhancement of
TCP performance over 802.11 72 . The FLC is either embedded into a layer
or implemented as a centralized cognitive engine. In 802.11, the link reliabil-
ity is represented by the fuzzy variable linkErrors, which is characterized by
two attributes low and high. In TCP, the fuzzy variable used is networkCon-
gestion having attributes low, mid and high. Moreover, two fuzzy output
variables cwndIncrement and cwndReduction are defined, each having the
attributes small, average and strong. cwnd represents the congestion win-
dow, which determines the number of bytes that can be outstanding at any
time, and limits throughput in the face of loss. cwnd gets larger after every
new acknowledgement (ACK) and cwnd get smaller when loss is detected.
It is shown that fuzzy logic-based cross-layering provides significant perfor-
mance gains, while being much more modular and reusable than traditional
cross-layer solutions.

A fuzzy logic system can also give solutions for the opportunistic spec-
trum access problem 73 . The most suitable SU, having the rights to access
the spectrum, is chosen based on three descriptors: spectrum usage effi-
ciency of the SU, its degree of mobility, and its distance to the PU. The
linguistic variables used to represent the spectrum utilization efficiency and
degree of mobility are divided into three levels: low, moderate, and high;
while three levels: near, moderate, and far are used to represent the dis-
tance. The consequence, i.e., the possibility that the SU is chosen to access
the spectrum is divided into five levels which are very low, low, medium,
high and very high. From simulation results, it is proved that the spectrum
access decision is a trade-off among the three descriptors chosen to design
the FLC.

6.4. Genetic Algorithms

Genetic Algorithms (GA) are search startegies based on the principal of
evolution 74 . They are based on the following main principles:

• Selection: Selection is a procedure for selecting individuals for repro-
duction according to their fitness function.

• Crossover : Crossover is a recombination operator that combines the
genetic information of two individuals.

• Mutation: Mutation is an operator that introduces variations into the
the genetic material.

• Sampling : Sampling is a procedure which computes a new generation
from the previous one and its off-springs.

50777_8063 -insTexts#150Q.indd   20950777_8063 -insTexts#150Q.indd   209 6/8/11   7:33 PM6/8/11   7:33 PM



210

The basic structure of a GA is given by 74 :

Algorithm 6.1.
t:=0
Compute the initial population Xo;
WHILE stopping condition not fulfilled DO

BEGIN

Select individual for reproduction;
Create offspring’s by crossing individuals;
Eventually mutate some individuals;
Compute new generation
END

In general, the solution to a problem set is represented by binary strings.
These strings are allowed to grow in a genetic manner. Strings which are
considered good, combine with other good strings and form a new solution,
while poor strings are discarded from the solution set. This decision is
taken by the fitness function based on an output score for specific input
parameters.

Newman et al. have derived fitness functions for power consumption
minimization, BER minimization and throughput maximization 75 . For
an optimal decision, the individual fitness functions have been combined
using the weighted sum approach. The combined weighted fitness function
is given by

f = w1fmin power + w2fmin BER + w3fmax throughput (26)

where fmin power, fmin BER and fmax throughput are the individual fitness
functions corresponding to power consumption, BER and throughput re-
spectively, while w1, w2 and w3 are the weights which depend on the im-
portance of each of these performance objectives, respectively.

Chen et al. have proposed a cross-layer design, with a GA-based opti-
mization engine, to simultaneously minimize the BER, minimize the out-of-
band interference and maximize the throughput for an OFDM-based CR
76,77 . Yuan et al. have suggested a fast GA for bit-allocation in OFDM
sub-carriers in a CR system 78 . The bit-allocation is modeled as a binary
sequences search problem, which executes iteratively, and terminates when
the power consumed is equal to the power budget or the interference to the
PU is greater then a specified threshold. Gelenbe et al. have proposed a
routing algorithm for CR packet networks 79 . A GA is implemented at the
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source routers of each connection, to compose new routes from the existing
ones and to select which routes to use, based on their fitness functions,
which are estimated from the QoS.

GAs are designed to search highly non-linear spaces for global optima,
whilst traditional optimization techniques are likely to converge to local
optima once they are in its vicinity.

6.5. Neural Networks

Biological neural networks are made up of biological neurons that are physi-
cally connected and functionally-related to the human brain. Artificial Neu-
ral Networks (ANN) on the other hand, are made up of artificial neurons
interconnected to each other to form a programming structure that mimics
the behavior and processing (organization and learning) of biological neu-
rons, and can be applied for solving problems with an associative or cogni-
tive tinge 80 . In ANN, neurons are arranged in three layers: neurons which
receive data from outside are organized in the input layer; neurons which
send data out of the ANN comprise the output layer; and neurons whose
input and output signals remain within the ANN, form hidden layer(s).
Neurons communicate with each other by sending signals over a large num-
ber of weighted connections, thus creating a network with a high degree of
interconnection. Generally each connection (j to k) is defined by a weight,
wjk, which determines the effect that the neuron j has on neuron k. Ev-
ery neuron has a state of activation, which is equivalent to the output of
the neuron. During processing, each neuron receives input from neighbors
belonging to different layers, as well as from external sources, and uses
them to compute the updated level of activation. For this purpose activa-
tion functions (such as the step function, sigmoid function, piecewise-linear
function) are used 80 .

The topology of a ANN plays an important role for its achievable per-
formance. Depending on the pattern of connections that an ANN uses to
propagate data among the neurons, it can be classified into two basic cate-
gories: (i) Feed-forward ANNs, where data enters at the inputs and passes
through the network, layer by layer, until it arrives at the outputs; (ii)
Recurrent ANNs that contain feedback connections, which are connections
extending from outputs of neurons to inputs of neurons in the same layer
or previous layers. In contrast with feed-forward networks, the recurrent
network has a sense of history.

Many problems in CR can easily accommodate ANNs. In particular,
ANNs can be used in any of the phases of the cognition cycle (described in
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Section 2.1). For instance, during the radio-scene analysis, temporal statis-
tics of a radio environment can be used to isolate its distinct characteristics,
which in turn correspond to different modulations. These statistics can then
feed an ANN in order to classify a signal’s modulation type 81 .

The work of Liu et al. focuses on the channel estimation and predictive
modeling phases of the cognition cycle; the proposed ANN, implemented in
the learning module of the cognitive engine, assists in the optimum decision
regarding the radio-configuration settings (mainly PHY and MAC layer)
that will provide the best QoS for the given problem and user/application
needs 82 . The ANN is designed to learn from the information measured by
the CR node during the radio-scene analysis, and to provide the data rate in
the output, that is most anticipated to be obtained per radio configuration,
thus behaving as a predictor of the next expected data rate.

Spectrum sensing is an important function for the SUs to determine the
availability of a frequency band in the PUs spectrum. However, it consumes
considerable energy, which can be reduced by employing predictive methods
for discovering spectrum holes. Tumuluru et al. have proposed the deploy-
ment of an ANN-based prediction scheme, by which the SUs will sense only
those frequency bands which are predicted to be idle 83 . Reliable predic-
tion will significantly improve the spectrum utilization, besides conserving
energy. Since the traffic characteristics of most PU systems encountered
in real life are not known apriori, ANNs give an advantage over statistical
models.

Zhang et al. have proposed a cognitive engine based on ANN 84 . The
decision of the engine considers changeable factors (bandwidth, data rate,
BER), as well as unchangeable factors (infrastructure cost, licensed user)
to make the best decision, viz. adjusting its resources and performing the
appropriate signaling.
General Remarks
A CR should be adaptive to the channels time-varying nature. In a fully re-
configurable real-time CR, methods such as optimization and game theory
are not the best solutions for resource allocation due to high complexity
and the associated high computational time and cost. So, algorithm de-
sign should be based on heuristic methods for more practical solutions in
realistic scenarios. Besides, the mathematical complexity of optimization
increases with the number of parameters used to characterize the system.
However, optimal solutions are still useful as a benchmark. Simplified sub-
optimal algorithms may compete with heuristic algorithms. One cannot
refute the usefulness of game theoretic approaches in pricing and revenue
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models for the PU and SU. Most such models can be conveniently cast
in the framework of existing games, and well-established principles therein
can be applied to resolve the conflicting interests of the players.

Perceiving and learning from the RF stimuli are the two essential mod-
ules of the cognitive engine, which enable enhanced responses and adapta-
tion to a changing environment. Learning algorithms such as neural net-
works and genetic algorithms have significant applicability in these modules,
for increased reliability and robustness of the decisions of the engine. Be-
sides, they are effective techniques for predictive estimations of the channel
and PU traffic, which can dramatically improve the efficiency of the overall
system. Genetic algorithms have established themselves as vital tools for
cross-layer optimizations, specially those which are multi-objective in na-
ture. Fuzzy logic is a convenient tool for decision-making in complex pro-
cesses where there is vagueness in the available information, but its accuracy
is largely dominated by the manner in which the membership functions and
fuzzy inference rules are formulated. They are reasonable when qualitative
results suffice, rather than precise numerical values.

A CR system is a juxtaposition of various functionalities, each of which
may demand a specific tool for its optimum performance. Based on our
analysis of the various enabling tools provided above, we conjecture that
many a times, it may be a good idea to use diverse tools in different modules
of the same CR system. However, caution should be exercised, in that all the
modules should be inter-operable, and should have no conflict-of-interest,
so that it results in an overall optimized system performance.

7. Fundamental Research in CR: An information theoretic
perspective

How cognitive radios may be best employed for efficient spectrum usage
by the SUs can be investigated from a number of aspects, one of them
being information theory. An information theoretic framework is ideal for
analyzing the fundamental limits on capacity, rate regions achieved in a
network, and scaling laws for a network.

An example that offers some insights, is the Gaussian cognitive chan-
nel, which is a 2 transmitter 2 receiver channel. Tx1, Rx1 represent the PU
transceiver, while Tx2, Rx2 represent the SU transceiver (Figure 6). The
SU transmitter has full knowledge of the message that the PU is trans-
mitting, but not vice versa. This is called asymmetric noncausal message
knowledge, and it has been used to obtain better achievable rates than
what time sharing schemes for SU spectrum access yield 85 . The reasons
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for choosing Gaussian channels is that they are the most commonly con-
sidered continuous alphabet channels and are often used to model noisy
channels; more importantly, their analysis is computationally tractable. As
an additional point, the Shannon’s Channel Capacity theorem 86 assumes
that the noise is an additive white Gaussian process. An illustration of how
asymmetric noncausal message knowledge obtains better achievable rates
is given by Dirty Paper Coding.

Tx  1 

Tx  2 

Primary

Secondary
(cognitive)

X
1

X
2

Y
1

Y
2

Rx  1 

Rx  2 

Rate R1

Rate R2

Fig. 6. Cognitive Channel

Dirty Paper Coding was first considered by Costa 87 . It is motivated
by the following theorem:

Theorem 7.1. Consider the following channel:

Y = X + S + N, E [|X|]2 ≤ P, N ∼ N(0, Q)

Where N is the noise distributed as a Gaussian random variable, Q is
the power/variance of the noise. Input X is subject to a power constraint
as indicated, S is an additive interference whose value is known to the
transmitter but not the receiver. Y is the received output of the channel.
This channel has the same capacity as that of an interference free channel
and the capacity is given by:

C =
1

2
log2

(
1 +

P

Q

)

According to this theorem, even in the presence of interference, provided
it is known at the transmitter (the SU transmitter, Tx2, in the CR scenario),
the channel behaves like an interference free channel, and is capable of
achieving high rates.

7.1. Multiplexing gains of Cognitive channels

It has been shown that when two interfering point-to-point links employ
asymmetric noncausal side information, it allows for higher spectral ef-
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ficiency. It helps to analyze the performance of cognitive channels when
noise power is minimal, or is not an obstacle. For Gaussian noise channels,
multiplexing gain(MUXg) is defined as 85

MUXg = lim
SNR→∞

R(SNR)
log(SNR)

(27)

where R is the maximal achieved sum rate. Multiplexing gain is a measure
of how well a MIMO channel can avoid self-interference. When multiple
transmitters and receivers wish to share the same medium, they may be
thought of as a number of parallel point-to-point links captured by MIMO
channels. In this context, the following propositions are stated 85 :

Proposition 7.1. For a single user point-to-point MIMO channel with
MT transmit and NR receive antennas, the maximum multiplexing gain is
min(MT , NR).

Proposition 7.2. For a two user MIMO multiple access channel with MT1

transmit antennas for user 1, MT2 transmit antennas for user 2 and NR

receive antennas; the maximum multiplexing gain is given by min(MT1 +
MT2 , NR).

Proposition 7.3. As a dual result, for a two user MIMO broadcast channel
with NR1 receive antennas for user 1, NR2 receive antennas for user 2
and MT transmit antennas; the maximum multiplexing gain is given by
min(NR1 + NR2 ,MT ).

From these propositions, it is deduced that when joint signal processing
is available at either transmit or receive sides, the multiplexing gain is
significant.

7.2. Scaling Laws in Cognitive Radio

In this section, it is discussed how the total throughput, achieved by cog-
nitive users, scales with the number of users. The communication scenario
is as follows 85 : Let the PU transmitter have fixed power P0 and mini-
mum distance R0 from any cognitive receiver. Assume that each cognitive
user transmits with the same power P . A lower bound on the network sum
capacity can be derived by upper bounding the interference to a cognitive
receiver. An interference upper bound is obtained by, first, filling the pri-
mary exclusive region with cognitive users. The primary exclusive region is
that in which the outage probability is constrained. Next, consider a uni-
form network of n cognitive users. The worst-case interference, then, is to
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the user with the receiver at the center of the network. Let Rc be the radius
of the circle centered at the considered receiver that covers all other cog-
nitive transmitters. With constant user density (λ users per unit area), R2

c

grows linearly with n. Furthermore, any interfering cognitive transmitter
must be at least a distance ε away from the interfered receiver, for some
ε > 0, and α is the path loss exponent.

Proposition 7.4. The average worst-case interference caused by n =
λπ(R2

c − ε2) cognitive users is given by 85

Iavg,n =
2πλP

α − 1

(
1

εα−2
− 1

Rα−2
c

)
(28)

From Eqn. (28), as n → ∞ and for α > 2, the following relation is obtained:

I∞ =
2πλP

(α − 1)εα−2
(29)

I∞ is a constant. This is used to show the following result wherein the
expected capacity of each user Ci is bounded by a constant as n → ∞.

E[Ci] ≥ log

(
1 +

Pr,min

σ2
0,max + I∞

)
= C̄1 (30)

where Pr,min = P/Dα
max and σ2

0,max = σ2
n + P0/Rα

0 , Dmax being the maxi-
mum distance between a cognitive transmitter-receiver pair, and σ2

n being
the thermal noise power of each.

Thus C̄1 is the achievable average rate of a single cognitive user under
constant noise and interference power.
For the upper bound, the interference from all other cognitive users is re-
moved. Assuming that the capacity of a single cognitive user under noise
alone is bounded by a constant, then the total network capacity grows at
most linearly with the number of users. From these lower and upper bounds,
it is concluded that the sum capacity of the cognitive network grows linearly
in the number of users 85 , i.e.

E[Cn] = nKC̄1 (31)

For some constant K.

8. Power allocation in OFDM-based CR

In this section, we present a power allocation algorithm for an OFDM-
based CR 47 , in the context of Radio Resource Management (RRM). The
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objective of the algorithm is to maximize the throughput of the SU, under
a power budget, while ensuring that the side-lobe interference to the PU
band is under a specified threshold. However, for interference mitigation,
a threshold is defined for each PU sub-band, which is more practical and
effective.

The system model is described as follows (Figure 7):
An SU transceiver is considered, and a PU exists in its radio range. OFDM is
the communication technology of the PU as well as the SU, the use of which
divides the available bandwidth into N frequency-flat sub-carriers. When
the PU claims a portion of the spectrum, the SU nulls the corresponding
sub-carriers. If the PU requires bandwidth equivalent to Np sub-carriers,
then there are Ns=N -Np active sub-carriers for the SU. The spectrum
hole is detected by the SU in the spectrum sensing phase of its cognitive
cycle. The channel power gain of the ith sub-carrier on the link between the
secondary source (S) and destination (D) is denoted by hi, and that of the
jth sub-carrier on the S to PU link is given by gj . It is assumed that the
channel state information (CSI) is available with the source.

SU Tx SU Rx

PU

SU - SU link 

SU

Ith

g1 g2 g3

h1 h2 h3

…

…

PU - SU link 

SU PU

Fig. 7. System model

The maximum achievable throughput of the SU is given by

C =
Ns∑
i=1

log2(1 +
Pihi

σ2
) (32)

where Pi is the power allocated to the ith SU sub-carrier and σ2 is the
AWGN variance. We have neglected the interference that the PU may cause
to the SU, as well as the effect of inter-carrier interference (ICI).

The interference on the jth PU sub-band is formulated as

Ij = gj

Ns∑
i=1

Pi

∫
jthPUband

(
sin πfTs

πfTs
)2 (33)
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Our objective is to maximize the SU throughput under a total node
power constraint Pt, in such a way that the interference to each PU sub-
band is less than a threshold Ith.

The optimization problem can stated as

obj = max

Ns∑
i=1

log2(1 +
Pihi

σ2
) (34)

subject to
Ij ≤ Ith ∀j (35)

and
Ns∑
i=1

Pi ≤ Pt (36)

Pi ≥ 0 (37)

The Lagrangian for the above is formulated as

L(Pi, λj , μ) =

Ns∑
i=1

log2(1 +
Pihi

σ2
) −

Np∑
j=1

λj(Ij − Ith) − μ(

Ns∑
i=1

Pi − Pt) +

Ns∑
i=1

γiPi

where λj , μ and γi are the Lagrangian multipliers. The problem is a convex
optimization problem, and KKT conditions are applied for the optimum
solution. The optimum power allocation is given by

P ∗
i = max(

1∑Np

j=1 λjgjQj,i + μ
− σ2

hi
, 0) (38)

where

Qj,i =
∫

jthPUband

(
sin πfTs

πfTs
)2 (39)

and
λj ≥ 0, μ ≥ 0, γi ≥ 0 (40)

Though the above solution looks like water-filling, it is different from
the conventional water-filling technique in the fact that each SU sub-carrier
has a different water level.

As the problem is convex optimization with linear constraints, at the
optimum point some constraints are binding, while the others are non-
binding. If the power budget of the SU (Pt) is too small, then that will be
a binding constraint and all interference constraints are non-binding; the
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corresponding Lagrange multipliers (λj) are zero and the solution looks like
that of conventional water-filling with a constant water level:

P ∗
i = max(

1

μ
− σ2

hi
, 0) (41)

If the power budget is very high, then only the interference constraint
will be binding. Generally, the PU sub-carrier which receives the maximum
interference will be responsible for the binding constraint; and the solution
looks like

P ∗
i = max(

1

λjgjQj,i
− σ2

hi
, 0) (42)

To make it a general water-filling solution with a constant water-level,
we can multiply by Qj,i, to get

ϑi = max(
1

λjgj
− Qj,iσ

2

hi
, 0) (43)

and the power allocation is
P ∗

i =
ϑi

Qj,i
(44)

If we consider the above solution as the peak power on each SU sub-
carrier i.e. Pmax

i , under the PU interference constraint, and then execute
water-filling, it is referred to as cap-limited water-filling 49 . The solution
takes the form

P ∗
i = min(max(

1

μ
− σ2

hi
, 0), Pmax

i ) (45)

If the power budget is neither too high nor too low, the solution will
take the form given by Eqn. 38. On substituting P ∗

i in the constraint of
Eqn. 35, we get Np equations of the form

gj

Np∑
k=1

P ∗
i Qj,i = Ith (46)

The solution to the above cannot be obtained directly, and we have
proposed an iterative algorithm to achieve the objective of Eqn. 34, for
which we would like to refer the readers to our previous work 47 .

8.1. Simulation Results and Discussion

An SU transceiver is considered which uses 32 sub-carrier OFDM for com-
munication. The PU in its radio range occupies a bandwidth correspond-
ing to 8 sub-carriers, leaving 24 active sub-carriers for the SU. The chan-
nels undergo Rayleigh multi-path fading, defined in the time domain by
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∑L−1
l=0 hlδ(t− lT ) where hl is the complex amplitude of path l and L is the

number of channel taps. The lth channel coefficient is distributed as N(0,σ2),
and the frequency domain channel is given by its Fourier Transform. σ2 =
1e-4 and Ts=1.

4 8 12 16 20 24 28 32
Subcarrier Index

Power Allocation Profile (50mW)

Primary Band

(a)

5 10 15 20 25 30
Subcarrier Index

Power Allocation Profile (500 mW)

Primary Band

(b)

5 10 15 20 25 30
Subcarrier Index

Power Allocation Profile (500 mW)

Primary Band

(c)

Fig. 8. Power Allocation Profile : (a) Pt=50 mW (b) Pt=100 mW (c) Pt=500 mW

26 27 28 29 30 31 32
Primary Subcarrier Index

Cap Limited Scheme
Proposed Scheme
Uniform Power Allocation
Water Filling Based Allocation

Ith

Fig. 9 Interference Profile of the PU

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Power in Watts

Secondary User Throughput 

Proposed Scheme
Water Filling Algorithm
Uniform Power Allocation
Cap Limited Scheme

Fig. 10 SU Throughput vs. Power budget

The results of the SU power allocation, for the PU occupying sub-carrier
numbers 24-32, are shown in Figure 8. We set Ith= 1e-5 W for each PU
sub-band. For the result of Figure 8(a), the power budget Pt=50 mW. This
value being very small, the interference constraints are non-binding, and
it is observed (though the channel gains have not been plotted) that the
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solution closely resembles that of conventional water-filling: better channels
are allocated higher powers as compared to the poorer ones.

As the power budget is increased (Figures 8(b) and 8(c)), the inter-
ference constraint becomes binding. Lesser power is allocated in the SU
sub-carriers closer to the PU as they contribute more interference to it,
and hence the graph tapers towards the PU band for Pt=100 mW, and
even more steeply for Pt=500 mW.

In Figure 9, we have plotted the interference profile to the 8 PU sub-
bands on execution of the various power allocation schemes. The proposed
algorithm maintains the interference to each PU sub-band under the thresh-
old. For comparison, a uniform power allocation and conventional water-
filling are also executed on the SU sub-carriers; these techniques do nothing
to mitigate the interference to the PU. We also include for comparison, the
cap-limited water-filling that has been proposed in literature 49 . Its per-
formance is better than uniform allocation and water-filling, but poorer
than the proposed algorithm, since it is successful in keeping only the in-
terference to the closest PU sub-band under the threshold. These results
are reported for a power budget Pt=500 mW.

The SU throughput vs. power budget is plotted in Figure 10. Con-
ventional water-filling gives the highest SU throughput, since it is uncon-
strained by the PU interference threshold. It is closely followed by the
uniform power allocation. The cap-limited water-filling, is only partially
interference constrained by the closest PU sub-band, on the other hand the
proposed scheme considers the interference threshold to each PU sub-band.
The SU throughput achieved is the optimum result with the given power
budget and interference constraints. Furthermore, after a certain power
budget (Pt=350 mW), the throughput hardly increases, since only the in-
terference constraint is now binding. Any further increase in the power
budget, cannot increase the SU sub-carrier power allocation without vio-
lating the interference constraint.

9. Conclusion

The irrefutable verity of the fact that Next-Generation wireless networks
will be spectrum-aware, has kindled the interest of researchers from diverse
disciplines. Consequently, a vast amount of literature has emerged on the
CR paradigm. In this piece of work, we have provided an account of the
intrinsic functionalities of a CR node, such as spectrum sensing, spectrum
allocation, spectrum utilization, spectrum sharing and spectrum mobility,
highlighting the main open issues therein. Another, interesting feature of
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this document is the survey of the technologies or tools that enable the CR
system to perceive, think, decide, learn and adapt to the changing environ-
mental conditions, in order to achieve reliable and efficient opportunistic
access to the radio spectrum. In the end, we have also presented the op-
timum power allocation problem for an OFDM-based CR, which aims at
maximizing the SU throughput, while mitigating interference to the PU
spectrum.
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Inverse problems is a vibrant and expanding branch of mathematics that has

found numerous applications. In this work, we will survey some of the main

techniques available in the literature to solve the inverse problem of identifying

variable parameters in partial differential equations. Besides carefully defining

the problem, we give simple examples to depict some of the difficulties as-

sociated with the study of this inverse problem. We will discuss in sufficient

detail twelve different methods available to solve this particular class of inverse

problems. We also analyze some of their most exciting applications. We will

also point out some of the research directions which can be pursued in this

fascinating branch of applied and industrial mathematics.

Keywords: Parameter identification, inverse problems, ill-posed problems, error

estimates, output least squares, Lagrange multipliers, equation error approach,

elasticity imaging, total variational regularization, Tikhonov regularization,

asymptotic regularization, variational and quasi-variational inequalities.

1. Inverse problems

In inverse problems the objective is to seek unknown causes from the obser-

vation of their effects. On the other hand, for the associated direct problem,

one seeks effects based on sufficient knowledge concerning the causes.

It is often required to relate physical parameters x that characterizes

a model to acquired observations making up some set of data y. Having a

clear understanding of the underlying model, an operator can be specified
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relating x to y through the equation

F (x) = y,

formulated in some appropriate vector space setting. The problem of esti-

mating x from a measurement of y is a prototype of an inverse problem.

If the operator F is linear, the inverse problem is termed to be linear;

otherwise it is a nonlinear inverse problem. It turns out that nonlinear

inverse problems are considerably harder to solve than the linear ones. One

crucial aspect of data collection is that the data y is often corrupted by

some amount of noise.

Due to their special characteristics most inverse problems are ill-posed.

In 1932 Hadamard attempted to describe the generic properties of problems.

In the sense of Hadamard, a mathematical problem is termed to be well-

posed if it has the following features:

1. Existence: For a suitable data set, the problem has a solution.

2. Uniqueness: The solution is unique.

3. Stability: The solution depends continuously on the observations.

A problem is ill-posed if it fails to respect any of the above three condi-

tions. The main concern in the study of inverse problems is the violation of

the third condition, that is, the case in which the solution does not depend

continuously on the data.

In this survey we focus our attention to the study of inverse problems of

determining variable parameters which appear in various partial differential

equations. These inverse problems are also known as distributed parameter

identification problems. For more details on the fast and rapidly growing

field of inverse problems the reader is referred to excellent books6,7,25 .

2. Ill-posed is real: A few examples

One characteristic of ill-posed problems is that the error between the exact

and the noisy solution can be arbitrarily large even for the case when the

error in the data can be kept arbitrarily small. The following example taken

from13 depicts this phenomenon.

Example 1. Differentiation of noisy functions. Assume that we wish

to compute the derivative of a noisy function. That is, instead of a function

f, the noisy function fδ is available and we wish to compute the derivative
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dfδ
dx . Assume that

fδ(x) = f(x) + eδ(x), x ∈ S := [0, 1]

fδ(0) = f(0) = 0

fδ(1) = f(1) = 0

where eδ(x) represents the data noise.

We choose

eδ =
√
2δ sin(2πnx)

for n ∈ N. Notice that, for all n,∫ 1

0

|eδ(x)|2dx = δ2.

Moreover,

dfδ
dx

(x) =
df

dx
(x) + 2

√
2πδn cos(2nπx).

Consequently, the L2(S) and the L∞(S) errors, given by∥∥∥∥dfδdx
(x)− df

dx
(x)

∥∥∥∥
L2(S)

= 2πδn,

∥∥∥∥dfδdx
(x)− df

dx
(x)

∥∥∥∥
L∞(S)

= 2
√
2πδn,

can be made arbitrarily large by taking n lare enough.

A similar behavior is shown by the numerical differentiation in the fol-

lowing example.

Example 2. Numerical differentiation. Consider the following bound-

ary value problem: Find y : [0, 1] → R to solve

d2y

dx2
= f(x), 0 < x < 1,

y(0) = 0,

y(1) = 0.

The inverse problem we are interested in is:

Given y : [0, 1] → R such that y(0) = y(1) = 1, compute f(x) = −y′′(x).
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To solve the above inverse problem, we discretize the above BVP by using

a finite difference scheme. We establish a regular grid on the interval [0, 1]

by defining xi = iΔx, i = 0, 1, . . . , n, Δx = 1/n. Then, restricting the

differential equation −y′′ = f(x) to the grid points, we obtain

−y′′(xi) =
−y(xi −Δx) + 2y(xi)− y(xi +Δx)

Δx2
+O(Δx2), i = 1, . . . , n−1.

In the above, we have employed the central difference scheme and assumed

that y ∈ C4[0, 1].

The above equations can also be represented in a matrix-vector form,

Ly = f,

where

L =
1

Δx2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1

−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

y =

⎡⎢⎢⎢⎣
y1
y2
...

yn−1

⎤⎥⎥⎥⎦ ∈ R
n−1, f =

⎡⎢⎢⎢⎣
f1
f2
...

fn−1

⎤⎥⎥⎥⎦ ∈ R
n−1.

To depict the ill-posedness, we choose (discrete versions of)

y(x) = x cos
(πx

2

)
f(x) = π sin

(πx
2

)
+

π2

4
x cos

(πx
2

)
.

For n = 50, we solve both the forward and the inverse problems. In each

case, we add normally and independently distributed errors to the compo-

nents of the data, (amounting to 0.5% in the Euclidean norm) and then

compute the solution. The results are shown in Figure 1. As the graphs

show, the noisy data does not affect the computed solution to the forward

problem in any great degree. On the other hand, the computed solution to

the inverse problem is essentially useless.

We conclude this section with the following example taken from66 show-

ing the ill-posedness of the inverse problem of identifying parameters in
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Fig. 1. Exact and the computed solution for forward problem (left) and the inverse

problem (right).

boundary value problems. This example also introduces the type of prob-

lems this review will be focusing on.

Example 3. Coefficient identification in BVPs. Consider the following

one-dimensional BVP: Find u(x) such that

− d

dx

(
a
du

dx

)
= f on (0, 1),

a(0)
du

dx
(0) = g0,

a(1)
du

dx
(1) = g1.

For a ∈ H1(0, 1) with k0 ≤ a ≤ k1, f ∈ L2(0, 1), a solution to the above

direct problem exists if the compatibility condition
∫ 1

0
f dx = g0−g1 holds.

We are interested in the following inverse problem:

G iven z, a measurement of u, find a which together with z makes the BVP

true.

Assume that z = u+ δ where δ(x) ∈ L2(0, 1) is a noisy data. We choose

f = 0, g0 = g1 = 1. Then for the noise-free data u(x) = x + 1, the unique

solution is a(x) = 1. Assume that the noisy data are given by

zn(x) = u(x) + ε
cos(2nπx)

2nπ
, 0 < ε < 1.

Then the solution which corresponds to this data is

an =
1

1− ε sin(2nπx)
.
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Clearly, zn converges uniformly to u, whereas, we have

‖an − a‖L∞(S) =
ε

1− ε

‖an − a‖2L2(S) = 1− 1− 2ε2

(1− ε2)
√
1− ε2

.

In conclusion, zn → u but an �→ a and hence a is not a continuous function

of the data with respect to the L∞ or L2 norm.

3. Prototypical elliptic inverse problems

3.1. Scalar elliptic BVP

Consider the following BVP

−∇ · (a∇u) = f, in Ω (1)

where Ω ⊂ R
2 is an open bounded domain. Given a and f, the direct

problem in this setting is to find u provided that the suitable boundary

conditions augment the BVP. On the other hand the corresponding inverse

problem is to find a, given some measurement of u.

This problem is a particular case of the more general following BVP

∇ · (a∇u(x, t)) = B(x)
∂u

∂t
+ C(x, t)

which models a confined inhomogeneous isotropic aquifer. Here u represents

the piezometric head, a the transmissivity, C(x, t) the recharge, and B(x)

the stroativity of the acquifer. It is commonly observed that aquifers tend

to be thin relative to their horizontal extent and thus a natural simplifica-

tion is the assumption that the transmissivity varies little with depth, so

that the ground water flow in these cases can be viewed as essentially two

dimensional, and we can take x = (x1, x2) in a two dimensional space. If the

flow of the water has reached a steady state and we assume for simplicity

that C = 0, then one recovers (1).

Numerous researchers have focused on above inverse problem. An inter-

esting survey article by Yeh72 presents an overview of the approaches used

in ground water modeling. As early as in 1972, Pinder and Frind61 weighed

the efficiency of Galerkin method against the efficiency of finite difference

scheme for a variant of (1).

3.2. Isotropic linear elasticity

Let Ω ⊂ R
2 be a bounded open set representing the area occupied by an

elastic membrane. Let ∂Ω, boundary of Ω, be partitioned into two parts
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Γ1 and Γ2, with the measure of Γ1 being strictly positive. Assume that the

body is fixed along Γ1. Assume that a body force f = (f1, f2), acts on the

body and that a surface force g = (g1, g2) acts on Γ2. Let u = (u1, u2) be

the displacement vector. The linear isotropic elasticity system consists of

the following BVP:

−∇ · σ = f in Ω, (2a)

σ = 2μεu + λtr (εu) I, (2b)

u = 0 on Γ1, (2c)

σn = h on Γ2. (2d)

In the above, the strain tensor εu is given by

εu =
1

2

(
∇u+∇uT

)
,

σ is the corresponding stress tensor and n is the outward-pointing unit

normal to ∂Ω.

The inverse problem in this setting is to estimate μ and λ, the Lamé

moduli. In recent years, this problem has been studied in the context of

applications in biomedical imaging. The technical setup of these problems

and a brief account of the most relevant works will be presented in the later

part of this paper.

3.3. Helmholtz equations

Consider the inhomogeneous Helmholtz equation

(Δ + k2n2)u = f in Ω,

where Ω is a domain in R
3 and k > 0 is given.

The inverse problem here is to identify the coefficient n(x), the index of

refraction. This inverse problem has been discussed in.5

A similar model BVP is the following

−∇ · (a∇u) + ku = f in Ω,

where Ω is open bounded domain and the constant K is known. One in-

stance of the appearance of the above BVP is the standing waves on a

bounded shallow body of water with

k =
4π2

gT 2
,

where a is the water depth at the quiescent state, u is the elevation of the

free surface above the quiescent level, g acceleration of gravity and T period
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of oscillation. The above equation then holds under some simplifications

and Neumann boundary conditions augment it. The direct problem in this

setting is to find u. On the other hand, the corresponding inverse problem

is to find a, given some measurement of u. From a computational stand

point this inverse problem has been studied in44 .

3.4. Other classes of BVPs

Other elliptic inverse problems arise when more complicated physical mod-

els are assumed. For example, the scalar a in the BVP could be replaced by

a matrix A, introducing anisotropy in the model. Similarly, an anisotropic

stress-strain law could be assumed for the elasticity problem. However,

these more complicated problems have received relatively little attention in

the literature.

4. Inverse problems with boundary measurements

In this work we are dealing with elliptic inverse problems where the mea-

surements of u is available in the whole interior of the underlying domain.

There is another type of inverse problem in which only the boundary data

is available. A well-known example is of impedance tomography. The tech-

nical setup of this inverse problem is as follows: At the boundary of an

object, say Ω, different electrical voltages are applied, and the arising elec-

trical currents are measured on the boundary. The inverse problem is then

to reconstruct the conductivity as a function of space, which gives infor-

mation about different materials inside the object. A simple version of this

model can be represented by the BVP

−∇ · (a∇u) = 0 in Ω,

u = g on ∂Ω,

The measured currents over the boundary for a specific voltage g are given

by

fg = a
∂u

∂n
on ∂Ω.

In the present setting the data consists of Dirichlet-to-Neumann-map Pa :

g �→ fg which in this case is a linear operator. The inverse problem of

impedance tomography or inverse conductivity problem of reconstructing

the conductivity a from a measurement of the Dirichlet-to-Neumann map

Pa.
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5. An overview of existing methodologies

In recent years, the field of inverse problems has certainly been one of

the fastest growing fields in applied mathematics (see7,25). This growth

has largely been driven by ever-growing applications in engineering and

industry. New development in solution methods for optimization problems

or partial differential equations has also motivated researchers to improve

already-existing methods.

In the following we will give a brief overview of the main techniques

being considered for solving inverse problems of identifying parameters in

partial differential equations. Our discussion of the available methods is by

no means complete. For more details the interested reader can refer to the

relatively large bibliography, which also does not claim of any completeness.

Most of the work on elliptic inverse problems has been in the context

of the scalar elliptic problem

−∇ · (a∇u) = f in Ω, (3a)

u = 0 on ∂Ω, (3b)

where Ω is a bounded domain with boundary ∂Ω. The Dirichlet boundary

condition is only for simplicity, either Neumann boundary condition or a

combination of both can be made. Here the inverse problem is to identify

the parameter a.

In the context of (3), there have been two primary approaches for at-

tacking the corresponding inverse problem of finding a. The first approach

reformulates the inverse problem as an optimization problem and then em-

ploys some suitable method for the solution. The second approach treats

(3) as a hyperbolic partial differential equation in a.

As is well-known, the inverse problem is ill-posed, and some type of

regularization is necessary. Since this is more easily accomplished in the

optimization setting, this class of methods has been the subject of most of

the research, and will be the focus of this work. However, viewing (3) as

a hyperbolic PDE in a does produce certain insights, such as uniqueness

results. Moreover, the hyperbolic viewpoint is the basis for some analysis

even when the problem is approached via optimization.

There are two basic approaches to posing the inverse problem as an

optimization problem. In one approach, the PDE is treated as an explicit

constraint and constrained optimization algorithms are employed. In such

an approach, both a and u are regarded as independent variables and they

may not satisfy the PDE (although they should in the limit, as the op-

timization algorithm converges to a solution). In the other approach, the
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PDE implicitly defines u as a function of a, so that a is the only variable and

unconstrained optimization techniques may be used (although constrained

optimization methods may be needed to treat other constraints, such as

bounds on a).

In the following we briefly outline some of the main approaches available

in the literature for the inverse problems.

5.1. Output least-squares

A common approach for solving parameter identification problems is the

output least-squares (OLS) approach. Applied to the elliptic inverse prob-

lem of finding a in (3), the OLS approach minimizes the functional

J1(a) = ‖u(a)− z‖2, (4)

where z is the data (the measurement of u), ‖ · ‖ is a suitable norm and u

solves the BVP or its variational form: Find u ∈ H1
0 (Ω) such that∫

Ω

a∇u∇v =

∫
Ω

fv for all v ∈ H1
0 (Ω). (5)

In order to handle the ill-posedness of the inverse problems, a regularized

analogue of J1 needs to be considered. More precisely, one minimizes the

regularized OLS functional

Jε
1(a) = ‖u(a)− z‖2 + ε‖u‖2. (6)

Here ε > 0 is the regularization parameter and the term ‖u‖2 is the regular-

izing functional. In the literature, a wide variety of norms and semi-norms

have been used as a regularizer.

Falk27 considered (3a) with Neumann boundary conditions and analyzed

the situation in which the L2(Ω) norm is used in (4). In Falk’s approach, the

coefficient a is approximated by piecewise polynomials of degree r defined

on a family {Th} of meshes, and the solution u by degree r + 1 piecewise

polynomials uh on the same meshes. He then proved that any minimizer

ah of (the discrete version of) J1 satisfies

‖a− ah‖L2(Ω) ≤ C

[
hr +

‖u− zh‖L2(Ω)

h2

]
,

where a is the true coefficient, u is the solution of (5) corresponding to a,

zh is the measurement of u, and C is a constant independent of h. This

result proves convergence of ah to a if, for example,

‖u− zh‖L2(Ω) = O(h3).
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In particular, if zh is the degree r + 1 piecewise polynomial interpolant of

u, then

‖a− ah‖L2(Ω) = O(hr).

The key assumptions needed for Falk’s analysis are

(1) a ∈ Hr+1(Ω); and

(2) there exists a constant vector �ν and a constant σ > 0 such that ∇u ·ν ≥
σ throughout Ω.

The second assumption is a physical hypothesis stating that there is always

some flow in the �ν direction. It implies, in particular, that the PDE (3)

is truly hyperbolic with respect to a, a point that makes Falk’s analysis

possible. Under sufficient smoothness on u, it is shown that there is a unique

coefficient a which satisfies the variational problem.

Recently, by using an OLS formulation Gockenbach28 obtained useful

error estimates for the system of isotropic elasticity (2) (with f = 0, Γ1 = ∅

and hence Γ1 = Ω).

The OLS functional considered in Gockenbach’s approach reads as fol-

lows

Jh(m) = ‖uh(m)− z‖2L2(Ω) + h3‖σ(m), uh(m)− h‖2L2(∂Ω), (7)

where m = (μ, σ) with σ = μ + λ and the discretization was made over

a triangulation Th. To have more control over the term h3‖σ(m), uh(m)−
h‖2L(∂Ω) it was necessary to have it incorporated in the objective functional.

In Gockenbach’s approach, the Lamé moluli are approximated by piece-

wise polynomials of degree r defined on a family Th of meshes, and each

component of the solution u by degree r + 1 piecewise polynomials uh on

the same meshes. Gockenbach28 showed that that there exists a constant

C which is independent of h such that, with z = u∗

inf
m∈Kh

Jm(m) ≤ Ch2r+4.

Here Kh is the discretized set of admissible coefficients.

The above estimate, which holds for z = u∗, is easily turned into an

estimate for inexact data. In fact, for a minimizer mh, it holds:

‖uh(mh)− z‖L2(Ω) ≤ C(hr+2 + ‖z − u∗‖L2(Ω))

‖ρ(mh, uh(mh))n− h‖L2(∂Ω) ≤ C

(
hr+1/2 +

‖z − u∗‖L2(Ω)

h3/2

)
.

The reader is referred to the bibliography of this paper for numerous

papers which rely on the OLS approach.
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5.2. Modified or energy-norm based output least-squares

A variation on the OLS approach was proposed independently by Tucciarelli

and Ahlfeld,68 Zou75 and Knowles;50 in their approach, the L2 norm is

replaced by the coefficient-dependent energy norm:

J2(a) =
1

2

∫
Ω

a∇ (u(a)− z) · ∇ (u(a)− z) . (8)

Zou showed how to combine the OLS approach with total variation regu-

larization to allow the estimation of discontinuous coefficients, a point that

will be discussed further below. On the other hand, although Knowles50

also aimed to relax the smoothness hypothesis on a, the main contribution

was an elegant proof of the convexity of the OLS functional, a rare prop-

erty in a nonlinear inverse problems. Knowles and his coworkers extended

the convexity proof and its usefulness to a variety of problems (see48,49).

Although Tucciarelli and Ahlfeld68 also proved the convexity, their work

was confined only to the discrete version of (8). None of the authors gave

an error analysis comparable to Falk’s results.

In a recent contribution by Jadamba and Khan,42 an error analysis of

the OLS approach based on the functional (8) has been carried out. Under

hypotheses similar to those assumed by Falk, it is shown that any minimizer

ah of (the discrete version) of (8) satisfies

‖a− ah‖L2(Ω) ≤ C

[
hr +

‖u− zh‖a
h

]
, (9)

where

‖v‖a =

√∫
Ω

a∇v · ∇v.

This result is entirely comparable to Falk’s; a stronger norm is used to

measure the error in the data, but this is compensated by one less factor

of h in the denominator. Once again, if zh is the degree r + 1 piecewise

polynomial interpolant of the exact data u, then convergence is guaranteed.

Preliminary numerical experiments suggest that (8) can be minimized much

more efficiently than the OLS functional based on the L2 norm, presumably

because of the convexity of (8).

Incidentally, the error estimates of27 and42 suggest that it may be prefer-

able to use different finite element spaces for a and u, such as piecewise

linear functions for a and piecewise quadratic functions for u. This is in

contrast to Zou75 and Knowles,50 which suggest the use of piecewise linear

functions for both spaces.
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An extension of the above function from an abstract point of view was

given by Gockenbach and Khan33 . In this work, the author also proved the

convexity of the abstract functional and applied it to the identification of

Lame parameters in the system of isotropic elasticity43 .

5.3. Equation error approach

A shortcoming of OLS approaches is that each iteration of the optimiza-

tion algorithm requires at least one solution of (5), often several, making

these methods relatively expensive. Another general technique for param-

eter identification problems is the method of equation error, in which the

unknown parameter is chosen to minimize the residual error.

To describe this method, we will use the approach presented by Acar.1

In his work the BVP (3a) was augmented by Neumann type boundary

condition of the type

a
∂u

∂n
= g

where n is an outward normal derivative and g is a given function. The

underlying variational form of the BVP is then: Find u ∈ H1(Ω) such that∫
Ω

a∇u∇v =

∫
Ω

fv +

∫
∂Ω

gv for all v ∈ H1(Ω).

For a fixed (a, u) ∈ V ×H1(Ω), (V is the parameter space) the functional

v �→ −
∫
Ω

a∇u∇v +

∫
Ω

fv +

∫
∂Ω

gv

is linear and continuous and hence the Riesz representation theorem ensures

that there exists e = e(u, a) ∈ H1(Ω) such that

〈e, v〉H1(Ω) = −
∫
Ω

a∇u∇v +

∫
Ω

fv +

∫
∂Ω

gv for all v ∈ H1(Ω).

If z is a measurement of u, then the equation error approach chooses a to

minimize

J3(a) = ‖e(z, a)‖2H1(Ω).

The functional J3 is quadratic in a, so that (after discretization) min-

imizing J3 reduces to solving a symmetric positive (semi)definite linear

system. Acar1 has regularized the above functional to obtain a unique and

stable solution. Under suitable conditions, he has shown that a solution

aε,δ of the regularized problem converges to a solution a, if the regular-

ization parameter ε and the error δ go to zero. He also demands that the
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regularization parameter ε should not go to 0 faster than
√
δ. Kärkkäinen44

also considers an equation error approach, similar to,1 and derives an error

estimate that appears to be stronger than those given by Falk,27 Jadamba

and Khan,42 and also by Kohn and Lowe51 (see below). In an interest-

ing paper,67 Tautenhahn and Muhs presented a regularized equation error

method with data smoothing and gave general stability estimates.

The equation error approach from an abstract point of view is proposed

by Gockenbach, Jadamba and Khan32 .

5.4. Kohn and Lowe’s approach

Kohn and Lowe51 proposed a variant of the equation error method, in which

the constitutive and balance laws are separated in the physical model. The

PDE (3a) is written as the pair of equations

−∇ · σ = f,

σ = a∇u.

The following objective functional is then minimized over both σ and a:

J4(a, σ) =

∫
Ω

|σ − a∇z|2 + γ1

∫
Ω

(∇ · σ + f)
2
+ γ2

∫
∂Ω

(σ · n− g)
2
.

Here the boundary conditions are

a
∂u

∂n
= g on ∂Ω

and γ1, γ2 are positive weights. The functional J4 is a convex quadratic in

(σ, a) and, as in the equation error method, a minimizer can be found by

solving a symmetric positive (semi)definite system. Assuming the forcing

function f and the Neumann data g are known exactly, then Kohn and

Lowe prove that any minimizer of J4 satisfies

‖a− ah‖L2(Ω) ≤ C

[
h+

‖u− z‖H1(Ω)

h

]
.

This estimate assumes that piecewise linear functions are used to represent

the coefficient ah and piecewise quadratic functions for uh. Moreover, these

results are derived under the assumption

min
Ω

max{|∇u|,Δu} > 0,

which is considerably weaker than the assumption used in27 and.42 Another

detailed treatment of the above approach was given by Lin and Ramirez56

where the authors considered a one dimensional BVP augmented with
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mixed boundary conditions and gave error estimates and detailed numerical

results.

5.5. Lagrange multiplier methods

The PDE governing the inverse problem is a constraint relating the coeffi-

cient(s) and the solution of the PDE. In the OLS method, this constraint

is used implicitly to define the solution as a function of the coefficient. A

different approach is to regard the coefficient and the solution as indepen-

dent variables which are to be chosen to jointly satisfy the constraint. Since

the PDE appears as an explicit constraint in the optimization problem,

this approach requires the use of a constrained optimization algorithm, and

therefore involves Lagrange multipliers, at least indirectly. The following

discussion will refer to the scalar problem (3). Ito and Kunisch41 applied

the augmented Lagrangian algorithm to minimize

J5(a, u) =
1

2
‖u− z‖2 + 1

2
ρ‖a‖2

subject to (3a) as the constraint. Here ρ is the regularization parameter.

They proved convergence of the algorithm in its infinite dimensional version

and present numerical results for the discretized problem.

The work of Ito and Kunisch was generalized by Chen and Zou21 to

allow the use of total variation regularization together with an objective

functional similar to J2 (but with a and u as independent variables). They

proved existence of a solution to the constrained optimization problem and

convergence of the augmented Lagrangian method; since the total variation

functional is not differentiable, their results are novel. However, neither Ito

and Kunisch or Chen and Zou have developed error estimates comparable

to those described above for other methods. The main results of Chen and

Zou were extended in31 .

5.6. Luce and Perez’s approach

Luce and Perez57 proposed to minimize

1

2
‖a‖2H1(Ω)

subject to the constraints

−∇ · (a∇z) = f,

a ≥ γ > 0,

‖u− z‖L2(Ω) ≤ δ‖z‖,
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where δ > 0 is an estimate of the error in the data. This is an alternative

to the usual Tikhonov regularization, in which one minimizes

1

2
‖u− z‖2 + ρ

2
‖a‖2H1(Ω).

In the Tikhonov approach, it is necessary to choose the regularization

weight ρ; in the Luce-Perez approach, the level of error δ must be chosen

instead. Since it may be possible to choose δ based on scientific grounds,

the Luce-Perez approach is an attractive alternative.

Luce and Perez employed a penalty method to treat the constraints

on the sign of a and the error in u = u(a) and treat the PDE constraint

implicitly, as in the OLS method. To estimate discontinuous coefficients,

they replace theH1 norm in their objective function with the total variation

seminorm.

5.7. Variational inequality approach

Variational inequality theory is a powerful tool of the current mathematical

technology and has applications in many branches of science, engineering,

optimization, economics, equilibrium theory, etc. We briefly discuss its for-

mulation before relating it to inverse problems. Let H be a Hilbert space,

H∗ be the topological dual of H and let K ⊂ H be a nonempty closed and

convex subset. Given a mapping T : H → H∗, the variational inequality

seeks u ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K.

If T is a potential operator, that is, there is a functional g : H → R such

that Dg(·) = T (·), where Dg(·) is the Gateaux derivative of g, then the

variational inequality is a necessary condition to the minimization problem:

Find u ∈ K such that

g(u) ≤ g(v) ∀ v ∈ K.

In particular, if g is convex then the above two problems are equivalent.

In view of this observation, Kluge47 considered the output least-squares

functional

J1(a) =
1

2
‖u(a)− z‖2

and studied the variational inequality involving the directional derivative

of J1. In this setting the set K consists of all admissible coefficients. He
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proposed the following fixed point type algorithm to compute a numerical

solution: Find an+1 ∈ K such that

an+1 = PK [an + α(DJ1(an) + ρR(an))]

where PK is the projection operator on K, R is a regularizing operator and

ρ is a regularization parameter. Kluge47 proved that a sequence {an} gen-

erated by the above algorithm converges strongly to an optimal coefficient.

Since then this approach has been followed by many authors. One main dis-

advantage of Kluge’s approach is that the output-least squares functional

is in general nonconvex and for the strong convergence of {an} the regular-

ization parameter cannot be chosen arbitrary small. An extension of Kluge

approach, using modified OLS, is reported in29 .

5.8. Asymptotic regularization

Asymptotic regularization is an interesting approach for parameter identifi-

cation in which the original set of equations is embedded into a sequence of

regularizing equations. Hoffmann and Sprekels39 give a very detailed treat-

ment of the approach to identify parameters in multi-valued variational

inequalities. In the following, we discuss the basic ideas of asymptotic reg-

ularization and some of its extensions where we follow the work of Ang and

Vy.5

Let Ω be a sufficiently smooth domain with ∂Ω = Γ0∩Γ1. The objective

is to identify the coefficient a in the following BVP:

Δu+ au = f1 in Ω, (10a)

u = ϕ on Γ0 (10b)

∂u

∂n
= g on Γ1. (10c)

Let V be a finite dimensional subspace of H1(Ω) and let K := {v ∈ H1(Ω) :

v = ϕ on Γ0}. The following finite dimensional variational inequality can

be considered as a discretized analogue of (10):∫
Ω

∇ū∇(v − ū)−
∫
Ω

a(v − ū) ≥ 〈f, v − ū〉, ∀v ∈ K ∩ V, (11)

where 〈f, v − ū〉 = ∫
Γ1

gv − ∫
Ω
f1v.

Let W be a finite dimensional subspace of L∞(Ω) and let K̄ = {a ∈
L∞ : 0 ≤ a ≤ λ} be the set of admissible coefficient where λ > is a

suitable constant.
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Given (a0, u0) ∈ (K ∩V )× (K̄ ∩W ), construct a sequence {(an, un)} by

solving the following system of finite dimensional variational inequalities:

find (an+1, un+1) ∈ (K ∩ V )× (K̄ ∩W ) such that∫
Ω

[
h−1(un+1 − un)(v − un+1) + un+1∇(v − un+1)

−an+1un+1(v − un+1)] ≥ 〈f, v − un+1〉, v ∈ K ∩ V (12a)∫
Ω

[
h−1(an+1 − an)(w − an+1) + un+1(un+1 − ū)(v − an+1)

]
≥ 0, v ∈ K̄ ∩W. (12b)

It can be shown that for every h > 0, the above system of variational

inequalities is solvable. Furthermore, there exists h0 > 0 such that the

solution is unique for every 0 < h ≤ h0, the sequence{∫
Ω

[
(un − ū)2 + (an − ā)2

]}
is decreasing and

∞∑
n=0

∫
Ω

|∇(un − ū)|2 < ∞.

Under suitable assumptions, it holds that un → ū in H1(Ω) and an → ā

in L∞ where the pair (ā, ū satisfies the variational inequality (11). Results

concerning the convergence of solutions of the approximate variational in-

equalities when the finite dimensional subspaces converge are also known

to hold.

The proofs of the above result strongly rely on the specific techniques

developed for variational inequalities. To explain the basic idea, we define

an inner product on the space H = V ×W

〈(a, u), (b, v)〉 =
∫
Ω

(uv + ab),

and set H = (K ∩ V )× (K̄ ∩W ). For n ≥ 0, define a map A, : H → H∗ by

〈An(a, u), (b, v)〉 =
∫
Ω

[
(u− un)v + (a− an)b

h
+∇u∇v − auv + u(u− ū)b

]
−〈f, v〉.

It turns out that the system (12) is equivalent to finding (un+1, an+1) ∈
K such that

〈An(an+1, un+1), (b, v)− (an+1, un+1)〉 ≥ 0, ∀(v, b) ∈ H.
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The existence results can now obtained by exploring properties of An

and invoking some known results for variational inequalities.

As an interesting generalization of the above approach Chen, Han, and

Schultz20 proposed a modified asymptotic regularization approach. In their

approach, given (a0, u0) ∈ (K ∩ V ) × (K̄ × W ), a sequence {(an, un)}

is constructed by solving the system of variational inequalities of finding

(an+1, un+1) ∈ (K ∩ V )× (K̄1 ∩W ) such that∫
Ω

[
h−1(un+1 − un)(v − un+1) + un+1∇(v − un+1)

−an+1ū(v − un+1)] ≥ 〈f, v − un+1〉, v ∈ K ∩ V (13a)∫
Ω

[
h−1(an+1 − an)(w − an+1) + ū(un+1 − ū)(v − an+1)

]
≥ 0, v ∈ K̄1 ∩W, (13b)

where K̄1 = {a ∈ L2Ω : a ≥ 0, a.e. in Ω} is the set of admissible coeffi-

cients.

Notice that the term un+1 in (12) has been replaced by the data ū in

(13). This change brings significant simplification to the analysis and give

a form that is easier to implement.

The authors proved results analogous to Anh-Vy.5 We remark that in5

the authors proved the convergence in L∞. This is mainly due to the se-

lection of the set of admissible coefficients K̄ which is a priori uniformly

bounded, and hence admits a weak* L∞ convergent subsequence. On the

other hand for K1 no a priori boundedness for the coefficient is assumed.

We conclude this subsection by noticing that although asymptotic regu-

larization seems very promising approach, its numerical applicability is yet

to be seen.

5.9. Method of characteristics

If u is known in the equation (3a), then this equation can be viewed as a

first-order hyperbolic equation in a, which reads:

−∇a · ∇u− a∇u = f.

A natural idea then is to solve the above equation by using the method

of characteristics. This approach has been studied in details by Richter.63

In the following we briefly discuss the idea. Our discussion is on the lines

of Richter.63 The basic assumption in pursuing this approach is

inf
p∈Ω

[max{|∇u(p)|,Δu(p)}] > 0.
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Richter first studied the case infΩ |∇u| > 0. Under this condition, the char-

acteristics are always nondegenerate and integration along the character-

istics can be performed. Moreover, each characteristic originates from the

inflow. For the condition inf Δu > 0 Richter performed a coordinate change

along the characteristics

t ≡
∫ s

0

Δu

∇u
ds′.

Thus, along the characteristics, (3a) becomes

da

dt
+ a =

f

Δu
.

Then any characteristics originate from the inflow boundary or at a point

where ∇u = 0. Combining the above two cases, Richter obtained his main

result: Suppose Ω can be divided into two subregions Ω1 and Ω2 such that

|∇u| ≥ k1 x ∈ Ω1 Δu ≥ k2 x ∈ Ω2

where k1 and k2 are two arbitrary constant. Then (3a) has a unique solution

a assuming prescribed values along the inflow boundary Γ1 and

‖a‖L∞ ≤ C(u)

[
max{sup

Γ
|a|, ‖f‖L∞

k2
}+ [u]‖f‖L∞

k21

]
where

[u] = sup
Ω

u− inf
Ω

u,

q1 = sup
Ω1

{
−Δu

k1

}
C(u) = max{a, exp

(
q1[u]

k1

)
}.

A few results related to this approach are available in22 and the cited ref-

erences therein.

5.10. Vainikko’s approach

A general approach for solving inverse problems was proposed and analyzed

by Vainikko.69 In the following we discuss briefly the main ideas of this

approach. We will follow the description by Bruckner et al.11 For Ω ⊂ R
d

(d ≥ 2), we consider the following problem

−∇ · (a∇u) = f, in Ω

u = 0, on Γ1,

a∇u · ν = g, on Γ2,
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where Ω = Γ1∪Γ2. It is assumed that u ∈ H1,∞(Ω), f ∈ L2(Ω, ) g ∈ L2(Γ2)

and a ∈ L2(Ω) is sought. The above BVP can be represented as the following

variational problem∫
Ω

a∇u · ∇w =

∫
Ω

fw +

∫
∂Ω

gw ∀w ∈ H1(Ω, ∂Ω), (14)

where H1(Ω, ∂Ω) := {w ∈ H1(Ω) : w(x) = 0 for x ∈ Γ1} ⊂ H1(Ω).

The idea is to introduce an auxiliary problem: Find Ψ(x) such that

−ΔΨ = f in Ω

Ψ = 0 in Γ1

∇Ψ · ν = g in Γ2.

By writing the above BVP into a variational form and comparing it with

(14), we get ∫
Ω

a∇u · ∇wdx =

∫
Ω

∇Ψ · ∇wdx.

Let G be the space of gradients of functions w ∈ H1(Ω, ∂Ω) defined by

G = G(Ω, ∂Ω) = {∇w : w ∈ H1(Ω, ∂Ω) ⊂ (L2(Ω))d}
and let PG : (L2(Ω))d → G be the orthogonal projection operator. The main

problem is: For T ∈ L(L2(Ω), G), solve the following operator equation

T (a) = ∇Φ(a)

where Φ ∈ H1(Ω, ∂Ω) is the solution to the direct problem.

Several features of the above operator equation are given in.69 The equa-

tion is discretized by choosing finite dimensional subspaces and the follow-

ing minimization problem is solved:

‖ah − a‖L2 = min
vh∈Sh

‖∇u · ∇vh − a‖.

Numerical implementation of this approach is given in11 .

5.11. Singular perturbation

A singular perturbation method was proposed by Alessandrini.4 The basic

idea is to solve the following elliptic BVP for aε :

εΔaε +∇ · (aε∇u) = 0 in Ω

aε = a in ∂Ω.
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Under the assumption that g has a finite number, say N, of relative maxima

and minima on ∂Ω, Alessandrini obtained the estimate(∫
Ωd

|a− aε|q
)1/q

≤ Cε
1

2qN

where q ∈ [1,∞), Ωd = {x ∈ Ω : d(x, ∂Ω > d)} and C is a constant

independent of ε. Thus, aε converges to a on Ωd in Lq norm as ε → 0.

5.12. Mollification methods

In the following we briefly discuss the mollification approach for parameter

identification. We follow the presentation of Hinestroza and Murio38 and

concentrate on the following one-dimensional problem:

d

dx

(
a
du

dx

)
= f, 0 < x < 1 (15)

a(0)
du

dx
(0) = 0

a(1)
du

dx
(1) = 0. (16)

Given functions u and f on the interval I = [0, 1], the coefficient a is

identified in some suitable compact set K ⊂ I. If δ > 0 is smaller than the

distance from K to the boundary of I, then the functional is introduced

jδu = (ρδ ∗ u)(x) =
∫ ∞

−∞
ρδ(x− s)u(s)ds,

where

ρδ(x) =
1

δ
√
π
e

−x2

δ2 .

The value x is chosen in a suitable compact set Kδ ⊂ I. Under certain

assumptions, close to those made by Richter, it is shown that

‖a− aεδ‖∞,Kδ
≤ C

(
δ +

δ

λ(λδ − 8ε)

(
8ε

δ
+ λε

))
for some constant C = C(λ, ‖u′‖∞,Kδ

, ‖f‖∞) and an approximate coeffi-

cient aεδ.

Notice that by picking δ suitably we get ‖a− aεδ‖∞,Kδ
→ 0 as ε → 0.
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6. Estimating discontinuous coefficients

Although most of the early approaches mentioned above required some

kind of smoothness assumption on the coefficient to be recovered, current

research focuses more and more on the recovery of discontinuous coefficients

and most recent papers have employed total variation regularization in the

context of an optimization problem. Literature on the use of BV regular-

ization has seen a high growth. In the following, we briefly mention a few

relevant papers.

The use of BV regularization was promoted by the image processing

community. The technical setup is as follows: The classical image problem

is to find the original image x in a real Hilbert spaceH, from the observation

of a degraded image

y = Lx+ δ

where L : H → H is a bounded linear operator modeling the blurring

process and δ ∈ H models an additive noise component. This problem is

typically formulated as an optimization problem and a regularized version

is solved. To capture the sharp edges of the blurred images, Rudin, Osher

and Fatemi64 suggested the use of total variation regularization. Perhaps

it was Gutman35 who initiated the use of BV regularization in connection

with parameter identification in a parabolic PDE. An interesting extension

of this idea is given by Nashed and Scherzer59 .

Since then TV regularization has been used extensively in many works.

Dobson and Santosa24 used BV regularization for the reconstruction of

”blocky” conductivity profiles. An influential paper by Acar and Vogel2

studies a general minimization problem in BV setting.

In addition to the papers mentioned above, Chan and Tai17 presented

augmented Lagrangian algorithms for recovering a in (3), with variations

depending on the nature of the available data. They used total variation

regularization, along with pre-filtering of the (noisy) data, and reported

good numerical results even when the data contain a certain degree of

noise. In a recent paper, Chan and Tai18 used the level set methods and

BV-regularization for the inverse problems in PDEs.

In an interesting paper, Chen and Zou21 presented a detailed analysis

of a similar algorithm, proving the existence of a solution, convergence of

the augmented Lagrangian algorithm, and convergence of the sequence of

discretized solutions. The main difference between the Chan-Tai and Chen-

Zou results lies in the choice of objective function; Chan and Tai base their

work on the L2 misfit functional, while Chen and Zou use the coefficient-
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dependent energy norm. Since, as mentioned above, the second functional

seems to be much more efficient in the context of output least-squares, it

may also be that the Chen-Zou approach has advantages in the constrained

optimization setting.

7. Applications to Elasticity Imaging

In recent years elasticity imaging inverse problem emerged as one of the

most promising techniques to detect small as well as large cancers. The

primary idea behind elasticity imaging is to translate the intuitive notions

of palpation into a quantitative form that is amenable to mathematical ma-

nipulation. More precisely it can be explained as follows: Using ultrasound

it is possible to measure interior displacements in human tissue (for ex-

ample, breast tissue). Since cancerous tumors are markedly stiffer (around

5−10 times) in their elastic properties from the surrounding healthy tissue,

these tumors can be located by solving an inverse problem of identifying the

Lame parameters that describes the elastic properties of the tissue. Due to

the need of detecting cancer as early as possible and due to the deadliness

of the disease, the elasticity imaging inverse problem has attracted a great

deal of attention.

Recall that the system of isotropic elasticity is

−∇ · (2μεu + λtr(εu)I) = 0 in Ω, (17)

where εu =
(∇u+∇uT

)
/2 is the (linearized) strain tensor and u is the

displacement of the elastic body in two or three dimensions.

The technical setup for the elasticity imaging is given through a slightly

different formulation which we discuss below.

We also recall that the Lame module are related to the Young’s modulus

E and Poisson’s ration ν through the relationship

μ =
E

2(1 + ν)

λ =
νE

(1 + ν)(1− 2ν)

Since human tissue is modeled as an incompressible material, we are inter-

ested when ν is close enough to 0.5 and hence when λ → ∞. However, in

this setting the problem suffers from the so-called locking effect. One rem-

edy for this is to alter the formulation by introducing the pressure function

p = −λ(∇ · u). This new equation is added to the system, the resulting
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system then reads as follows:

∇ · (−pI + 0.5μεu) = 0 in Ω

∇ · u+
p

λ
= 0 in Ω

(−pI + 0.5μεu) · n = h on Γ1

u = g on Γ2.

Oberai, Gokhale and Feijóo60 studied the above system and approximated

the limit λ → ∞ by replacing λ by λ(x) = βμ(x) with β chosen to be a

large constant (≈ 106). Therefore, the corresponding inverse problem was

only of identifying μ. The authors used L2-norm based OLS approach and

gave numerical examples. Convergence analysis was not given in this work.

In a very interesting paper,9 Barbone and Bamber discussed many the-

oretical issues such a uniqueness for the above inverse problem.

Most of the above papers do not deal with theoretical issues such as error

estimates and existence results. As far as error estimates are concerned,

one of the earliest work on error estimates for any numerical method for

the system of isotropic elasticity is by Chen and Gockenbach,19 where the

authors have generalized the method of Kohn and Lowe to the system of

isotropic elasticity, proving a similar error bound:{‖μ− μh‖L2(Ω), ‖λ− λh‖L2(Ω)

} ≤ C

[
h+

‖u− z‖H1(Ω)

h

]
.

The fundamental assumption is the following non-degeneracy condition (see

Cox and Gockenbach23) on the strain ε = (∇u+∇uT )/2:

min
Ω

min{|ε11 + ε22|, |ε12|} > 0.

8. Other methods and applications

The approaches and the applications mentioned above are only a few main

directions which have been pursued by many researchers. There are many

other approaches which are not discussed here. In the following we collect

a few relevant works.

Essaouini, Nachaoui and Hajji26 studied a nonlinear inverse problem (cf.

(3)) with Cauchy conditions on a part of the boundary and no condition

at all on the other part. They propose the use of an iterative boundary

element procedure. Baumeister and Kunisch10 studied a stable method to

identify two parameters in a Helmholtz equation. Burger12 used an iterative

regularization scheme for an inverse problem in connection with polymer
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crystallization. The use of sequential quadratic programming methods for

inverse problems is given in papers.14,15,45,54 Interesting inverse problems

in semiconductor devices are studied in.16 Various optimization techniques

were used in36 to solve nonlinear inverse problems. Hinze37 proposed a new

concept for discretization which seems very promising for the inverse prob-

lems. Hsiao and Sprekels40 studied the elliptic inverse problems from and

abstract point of view. Interesting application in car windscreen design is

given in.53 In an interesting paper Manservsi and Gunzburger58 used a vari-

ational inequality formulation to study a inverse problem in elasticity. Yu73

used a separation argument to obtain necessary optimality conditions for in-

verse problems. Continuity properties of the regularized solutions are given

in.71 Much recently, Achdou3 studied an inverse problem for a parabolic

variational inequality emerging in connections with American options.

9. Some research directions

In the following we will discuss a few research topics we think deserve special

attention.

9.1. Error estimates

A critical issue for applications of elliptic inverse problems is the degree of

smoothness assumed of the coefficient to be identified. In many cases, the

true coefficient may vary sharply, even discontinuously, and the ability to

estimate discontinuous coefficients is desirable. On the other hand, error

analysis of existing methods tend to assume that the true coefficient has

some degree of smoothness. As we evaluate various methods, one concern

should be their ability to identify sharply-varying coefficients. A relevant

observation is that although a majority of error estimates have been de-

rived for concrete BVPs, there is also plentiful literature devoted to error

estimates from an abstract view point,62 Therefore, it is desirable to obtain

error estimates for the methods which are successful in identifying discon-

tinuous coefficients.

9.2. Optimization methods

Newton type methods for large, for example in 3D, are too expensive. There-

fore, it is natural to compare the performance of other algorithms gaining

popularity in optimization communities. A list of these methods will natu-

rally include interior point methods, trust region methods, limited memory

BFG etc.
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9.3. Parameter identification for variational and

quasi-variational inequality

Since quasi variational inequality includes variational inequalities and PDEs

as a particular cases, it is natural to study identification of coefficients in

elliptic and parabolic quasi variational inequalities. It should be mentioned

that in context of quasi variational inequalities, the differentiability of the

solution operator is more complex and the optimality conditions will require

some nontrivial generalizations.

9.4. Parabolic IBVP

The inverse problem of identifying the coefficient in parabolic BVP is

equally important and hence there is plenty of work available in this direc-

tion (see74). Kravaris and Seinfeld52 have studied, in a abstract framework,

an output least-squares approach which covered the parameter identifica-

tion for both parabolic and elliptic IBVPs. Recently, Keung and Zou46

considered the modified OLS for parabolic problems which included BV-

regularization. Theoretical work of Chen and Zou21 was also extended in34

to parabolic problems (only for smooth regularization). It will be interest-

ing to extend the convex (energy-norm) OLS, for parabolic problems. Basic

ideas given by52 for OLS seems to be useful.

9.5. Adaptive methods for inverse problems

Perhaps one of the most important research directions is a detailed study of

various aspects of inverse problems in an adaptive finite element framework.

Recently, Bangerth8 . has shown the usefulness of the adaptive methods in

the study of inverse problems.

9.6. Selection of an optimal regularization parameter

The overall success of the regularization process depends on the right choice

of the regularization parameter. There are many useful results available in

the literature (see55,65). It will be useful to extend these methods to the se-

lection of the optimal regularization parameter and the optimal smoothing

parameter for BV-seminorm regularization.
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parameters, Inverse Problems in Science and Engineering, 16 ( 2008) 349-
367.

33. M.S. Gockenbach, B. Jadamba and A. A. Khan: Identification of discon-
tinuous parameters with equation error method, International Journal of
Mathematics and Computer Science, 1 (2006) 343–359.

34. B. Guo, and J. Zou, An augmented Lagrangian method for parameter iden-
tifications in parabolic systems. J. Math. Anal. Appl. 263 (2001), no. 1,
49–68.

35. S. Gutman, Identification of discontinuous parameters in flow equations,
SIAM J. Control Optim., 28 (1990), 1049–1060.

36. E. Haber, U. Ascher and D. Oldenburg, On optimization techniques for
solving nonlinear inverse problems. Electromagnetic imaging and inversion
of the Earth’s subsurface, Inverse Problems, 16 (2000), 1263–1280.

37. M. Hinze, A variational discretization concept in control constrained opti-
mization: the linear-quadratic case, Comput. Optim. Appl., 30 (2005), no.
1, 45–61.

50777_8063 -insTexts#150Q.indd   25650777_8063 -insTexts#150Q.indd   256 6/8/11   7:33 PM6/8/11   7:33 PM



257

38. D. Hinestroza and D. A. Murio, Identification of transmissivity coefficients
by mollification techniques. I. One-dimensional elliptic and parabolic prob-
lems, Comput. Math. Appl., 25 (1993) 59–79.

39. K.-H. Hoffmann and J. Sprekels, On the identification of parameters in
general variational inequalities by asymptotic regularization. SIAM J. Math.
Anal. 17 (1986), no. 5, 1198–1217.

40. G.C. Hsiao and J.A. Sprekels, A stability result for distributed parameter
identification in bilinear systems, Math. Methods Appl. Sci. 10 (1988), no.
4, 447–456.

41. K. Ito and K. Kunisch, The augmented Lagrangian method for parameter
estimation in elliptic systems, SIAM J. Control Optim., 28 (1990), 113–136.

42. B. Jadamba and A.A. Khan, Error estimates for the inverse problem of
identifying variable coefficients by the modified least-squares, Indian J. In-
dustrial and Applied Mathematics, 1 (2008), 1–9.

43. B. Jadamba, A.A. Khan and F. Raciti, On the inverse problem of identify-
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The paper surveys recent results on the finite element approximation of

Hamilton-Jacobi-Bellman equations. Various methods are analyzed and error

estimates in the maximum norm are derived. Also, a finite element monotone

iterative scheme for the computation of the approximate solution is given and

its geometrical convergence proved.
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1. Introduction

This paper is concerned with the finite element approximation of the

Hamilton-Jacobi-Bellman equation (HJB)⎧⎪⎨⎪⎩
max

1≤i≤M
(Aiu− f i) = 0 in Ω

∂u

∂n
= 0 on ∂Ω

(1)

where Ω is a bounded open domain of RN , N ≥ 1 , with boundary ∂Ω

sufficiently smooth, the f is are given smooth functions and the Ais are

second order uniformly elliptic operators.

Note that we consider the Neumann problem as the constants belong

to H1(Ω), the space of trial functions. The Dirichlet case follows the same

way with a technical adaptation.

HJB equations are encountered in several applications, for example in

stochastic control the solution of (1) characterizes the infimum of the cost

function associated to an optimally controlled stochastic switching process

without costs for switching. (cf e.g.1 ).

The mathematical analysis of HJB equation has witnessed an intensive
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activity in the eighties and significant results have been obtained (see 2 , 3,
5, 6, 8, 7).

However, as far as numerical analysis is concerned, very few works are
known in the literature.

Indeed, Cortey Dumont 9 studied the finite element approximation, for
the first time, for problem (1) but no error estimate was given.

In the last few years, significant results on the finite element approxi-
mation have been obtained: Boulbrachene and Haiour 13, derived the first
quasi-optimal L∞ error estimate, by means of an algorithmic approach,
then very recently, Boulbrachene and Cortey Dumont established the opti-
mal order making use of the concept of subsolutions and discrete regularity.
The noncoercive case has also been investigated in 14, 16 by a contraction
fixed point approach.

On the computational side, some numerical algorithms have been de-
veloped and analyzed (cf.4, 17, 13, 18, 19, 20).

In this article we shall survey recent finite element approximation works
carried out for HJB equation (1).

The article is organized as follows: In section 2, we review some fun-
damental results on elliptic variational inequalities. In section 3, we study
the continuous HJB equation and the associated system of quasivariational
inequalities. In section 4, as in the continuous case, we carry out the same
study for the discrete HJB equation and the associated system of quasi-
variational inequalities. In section 5, we introduce a monotone iterative
scheme and prove its geometric convergence. Section 6 is devoted to the
finite element error analysis. In section 7, we conclude the paper with some
interesting open problems.

2. Preliminaries

2.1. Continuous variational inequalities

In this section, we shall recall some necessary results related to elliptic
variational inequalities (VI) problems. Let K =

{
v ∈ H1(Ω) : v ≤ ψ

}
. We

denote by ζ = σ(g, ψ) the solution of the VI: Find ζ ∈ K such that

a(ζ, v − ζ) � (g, v − ζ) ∀v ∈ K (2)

Theorem 2.1. (cf.23, 24) Let A be a linear second order elliptic operator
associated with the bilinear form a(. , .). Then (2) has one and only one
solution. Moreover, ζ ∈ W 2, p(Ω), 1 ≤ p < ∞ and

‖Aζ‖L∞(Ω) ≤ C (Levy-Stampachia estimate) (3)
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Definition 2.1. z ∈ K is said to be a subsolution for VI (2) if

a(z, v) ≤ (f, v) ∀v ≥ 0, v ∈ H1(Ω)

Theorem 2.2. ( cf 23, 24) Let X be the set of such subsolutions. The solu-
tion of VI (2) is the maximum element of X.

Theorem 2.3. The mapping σ is monotone, Lipschitz continuous and con-
cave with respect to ψ

Proof. 1. σ is increasing.

Let ψ and ψ̃ in L∞ (Ω) such that ψ ≤ ψ̃. Then

σ(ψ) ≤ ψ ≤ ψ̃

so σ(ψ) is a subsolution for the V.I with obstacle ψ̃. Then, using Theorem

2.2, we get the desired result.

2. σ is Lipschitz continuous. Let ψ, ψ̃ in L∞ (Ω) and ζ = σ(ψ) ; ζ̃ =
σ(ψ̃) . Set

Φ =‖ ψ − ψ̃ ‖∞

Then

ζ − Φ ≤ ψ − Φ ≤ ψ̃

So, ζ − Φ is a subsolution for the VI with obstacle ψ̃ . It follows that

ζ − Φ ≤ ζ̃ or ζ ≤ ζ̃ + Φ.

Now, interchanging the roles of ψ and ψ̃ , we also get

ζ̃ ≤ ζ + Φ.

This completes the proof.

3. σ is concave. Let ψ, ψ̃ in L∞ (Ω) and θ ∈ [0; 1] and set

σθ = σ(θψ + (1 − θ)ψ̃)

Since σ(ψ) ≤ ψ and σ(ψ̃) ≤ ψ̃, it follows that θσ(ψ) + (1 − θ)σ(ψ̃) is a
subsolution for the V.I with obstacle θψ +(1− θ)ψ̃. So, using Theorem 2.2,
we get the concavity of σ.
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2.2. Discrete variational inequalities

Let Ω be decomposed into triangles and let τh denote the set of all those
elements; h > 0 is the mesh size. We assume that the family τh is regular
and quasi-uniform.

Let Vh denote the standard piecewise linear finite element space, and
{ϕs}, s = 1, 2, ...m(h) the basis of Vh.

Under a discrete maximum principle assumption d.m.p (the matrix
discretization matrix is an M-Matrix) the above qualitative properties of
the continuous VI (2) transfers to the discrete case. Their respective proofs
will be omitted as they are identical to their continuous analogous ones.

Let Kh = {v ∈ Vh such that v ≤ rhψ} and ζh ∈ Kh be the finite element
approximation of ζ defined in (2):

a(ζh , v − ζh) � (f, v − ζh) ∀v ∈ Kh (4)

Definition 2.2. zh ∈ Kh is said to be a subsolution for VI (4) if

a(zh, v) ≤ (f, v)∀v ≥ 0, v ∈ H1(Ω)

Theorem 2.4. Let Xh be the set of discrete subsolutions of ζh . Then, ζh

is the maximum element of Xh.

Theorem 2.5. Under the d.m.p, the mapping σh is increasing, concave
and Lipschitz continuous with respect to ψ.

2.2.1. L∞- Error Estimate

Theorem 2.6. ( cf 12 ) There exists a constant C independent of h such
that

‖ζ − ζh ‖L∞(Ω) ≤ Ch2 |log h|2 (5)

3. The Continuous Problem

3.1. Assumptions, Notations

We are given functions

ai
jk(x), bi

k(x), ai
0(x) ∈ C2(Ω̄), x ∈ Ω̄ (6)

such that ∑
1≤ j, k≤ N

ai
jk(x)ξjξk � α | ξ |2; (x ∈ Ω̄, ξ ∈ RN , α > 0) (7)
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ai
0(x) � c0 ≥ 0 (x ∈ Ω̄; c0 > 0) (8)

We define the second order uniformly elliptic operators of the form

Ai =
∑

1≤ j,k≤N

ai
jk(x)

∂2

∂xj∂xk
+

N∑
k=1

bi
k(x)

∂

∂xk
+ ai

0(x) (9)

and the associated bilinear forms: ∀u, v ∈ H1(Ω)

ai(u , v) =
∫

Ω

(
∑

1≤j,k≤kai
jk(x)

∂u

∂xj

∂v

∂xk
+
∑N

k=1b
i
k(x)

∂u

∂xk
v + ai

0(x)uv)dx

(10)
such that:

ai(v , v) ≥ δ ‖ v ‖2
H1(Ω), δ > 0, ∀v ∈ H1(Ω) (11)

Let (., .) denote the scalar product in L2(Ω) and f is be nonnegative

right-hand sides in W 2,∞(Ω). Let W = (w1, ..., wM ) ∈ (L∞(Ω))M , and
‖ . ‖L∞(Ω)denote the L∞ norm.We denote by

‖W‖∞ = max
1 ≤ i≤ M

∥∥wi
∥∥

L∞(Ω)

3.2. A System of quasivariational inequalities associated

with the HJB Equation

P.L.Lions and J.L.Menaldi 6 proved that the solution of HJB equation
(1) can be approximated by the weakly coupled system of quasivariational
inequalities (QVIs): Find U = (u1, ..., uM ) ∈

(
H1(Ω)

)M such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
ai(ui, v − ui) � (f i, v − ui) ∀v ∈ H1(Ω)

ui ≤ k + ui+1 , v ≤ k + ui+1

with uM+1 = u1

(12)

where k is a positive number.

Naturally, the structure of problem (12) is analogous to that of the
classical obstacle problem where the obstacle function is replaced by an
implicit one, depending upon the solution. The terminology quasivariational
inequality 25 being chosen is a result of this remark.

Theorem 3.1. (cf.6) There exists a unique solution U = (u1, ..., uM ) with
ui ∈ W 2,p(Ω), 1 ≤ p < ∞.Moreover, as k → 0, each component of U

converges in C(Ω̄)to the solution u of HJB equation (1), and u ∈ W 2,∞(Ω).
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3.3. Qualitative Properties

3.3.1. Monotonicity

Lemma 3.1. (cf.9.) If k ≥ k̃ then ui ≥ ũi.

3.3.2. Lipschitz continuity

Let k, k̃ be two positive parameters and ui = σ(f i, k + ui+1), ũi =
σ(f i, k̃ + ũi+1) be the corresponding solutions to system (12), respectively.

Theorem 3.2. Under conditions of lemma 3.1,we have

max
1≤i≤M

‖ ui − ũi ‖L∞(Ω)≤
∣∣∣k − k̃

∣∣∣
Proof.

Set Φ =
∣∣∣k − k̃

∣∣∣. For sake of simplicity, we will write ui = σ(f i, k)

instead of σ(f i, k + ui+1). Then, thanks to lemma 3.1, we have

k ≤ k̃ + Φ

implies

σ(f i, k) ≤ σ(f i, k̃ + Φ)

But

σ(f i, k̃) + Φ = ũi + Φ = σ(f i + ai
0Φ, k̃ + Φ)

and

f i ≤ f i + ai
0Φ ; (ai

0(x) > 0)

So, applying standard comparison results in VIs, we get

σ(f i, k̃ + Φ) ≤ σ(f i + ai
0Φ, k̃ + Φ) = σ(f i, k̃) + Φ

Hence,

σ(f i, k) ≤ σ(f i, k̃ + Φ) ≤ σ(f i, k̃) + Φ

or

σ(f i, k) ≤ σ(f i, k̃) + Φ

As the roles of k and k̃ are symmetric, we also have

σ(f i, k̃) ≤ σ(f i, k) + Φ
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Thus

‖ ui − ũi ‖∞≤
∣∣∣k − k̃

∣∣∣ ∀i = 1, 2, ...,M

As a consequence of the above result, we have the following convergence
rate.

Corollary 3.1.

max
1≤i≤M

‖ ui − u ‖L∞(Ω)≤ k

3.3.3. Subsolutions

Definition 3.1. W = (w1, .., wM ) ∈ (H1(Ω))M is said to be a subsolution
for the system of QVIs (12) if⎧⎪⎪⎪⎨⎪⎪⎪⎩

ai(wi, v) ≤ (f i, v) ∀v ∈ H1(Ω), v ≥ 0

wi ≤ k + wi+1

wM+1 = w1

(13)

Theorem 3.3. (cf. 9) Let X denote the set of such subsolutions. The so-
lution of system of QVIs (12) is the maximum element of the set X.

4. The Discrete Problem

Let Ai be the matrices with generic coefficients

(Ai)ls = ai(ϕl, ϕs), 1 ≤ i ≤ M ; 1 ≤ l, s ≤ m(h)

where, {ϕl}, l = 1, 2, ...m(h) is the basis of Vh. Let F i be the approximation

of f i:

F i
l = (f i, ϕs), s = 1, ...,m(h)

Let rh be the usual restriction operator defined by

∀v ∈ C(Ω) ∩ H1(Ω) , rhv =
∑m(h

i=1 vlϕl

In the sequel of the paper, we shall make use of the discrete maximum
assumption (d.m.p). In other words, we shall assume that the matrices
Ai are M-Matrices.
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The d.m.p which has been previously proved in specific cases in 21, has
witnessed significant developments since then (see, e.g., 22 and the reference
therein).

Under the d.m.p, we shall achieve a similar study to that devoted to
the continuous problem. More precisely, we shall show that the qualitative
properties and results stated in the previous section are conserved in the
discrete case. Their respective proofs will be omitted as they are identical
to their continuous analog ones.

The discrete HJB equation consists of finding uh ∈ Vh such that:

max
1≤i≤M

(Aiuh − F i) = 0 (14)

4.1. A system of quasivariational inequalities associated

with the discrete HJB equation

It is shown in 9 that problem (14) can be approximated by the following
system of discrete quasi-variational inequalities (QVIs):

Find Uh = (u1
h, ..., uM

h ) ∈ (Vh)M such that:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ai(ui

h, v − ui
h) � (f i, v − ui

h) ∀v ∈ Vh

ui
h ≤ k + ui+1

h , v ≤ k + ui+1
h

with uM+1
h = u1

h

(15)

Theorem 4.1. (cf. 9) Under the d.m.p, there exists a unique solution to
the system of QVIs (15). Moreover, each component of Uh converges in
C(Ω̄) to the solution of the discrete HJB equation (14).

4.1.1. Monotonicity

Let k, k̃ be two positive parameters and ui
h = σh(f i, k), ũi

h = σh(f i, k̃)
be the corresponding solutions to system (15), respectively.

Lemma 4.1. (cf. 9) If k ≥ k̃ then ui
h ≥ ũi

h.

4.1.2. Lipschitz continuity

Theorem 4.2. Under conditions of lemma 4.1, we have

max
1≤i≤M

∥∥ui
h − ũi

h

∥∥
L∞(Ω)

≤
∣∣∣k − k̃

∣∣∣
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Proof.
Similar to that of Theorem 3.2.

As a direct consequence of the above result, we have the following con-
vergence rate.

Corollary 4.1.

max
1≤i≤M

∥∥ui
h − uh

∥∥
L∞(Ω)

≤ k

4.1.3. The discrete regularity

The discrete regularity plays an important role in the regularization of the
obstacles appearing in the discrete system of QVIs (15) as it permits to
replace the irregular obstacles ”k + ui+1

h ” with W 2,p(Ω) regular ones, and
hence preserves the optimal convergence order.

Theorem 4.3. (cf. 9) There exists a constant C independent of k and h

such that ∣∣a(ui
h, ϕs)

∣∣ ≤ C ‖ϕs‖L1(Ω) ∀i = 1, 2, ...,M (16)

Moreover, there exists a family of right-hands side
{
g1,(h), ..., gM ,(h)

}
h>0

bounded in L∞(Ω) such that each component ui
h of the solution of the dis-

crete system (15) satisfies the equation

ai(ui
h, v) = (gi,(h), v) ∀v ∈ Vh (17)

Remark 4.1. The estimate (16) can be regarded as the discrete counter-
part of the Levy-Stampacchia estimate (3) extended to the variational form
through the L1 − L∞ duality.

Theorem 4.4. (cf.9) Let ui,(h) be the the corresponding continuous coun-
terpart of (17), that is,

a(ui,(h), v) = (gi,(h), v) ∀v ∈ H1(Ω) (18)

Then there exists a constant independent of both k and h∥∥∥ui,(h)
∥∥∥

W 2,p(Ω)
≤ C (19)

and ∥∥∥ui,(h) − ui
h

∥∥∥
L∞(Ω)

≤ Ch2 |log h| (20)
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Notation 4.1. From now onward, we will denote by

ui,(h) = σ(gi,(h), +∞)

the solution of equation (18) and by

u
i,(h)
h = σh(gi,(h), +∞)

the approximation of ui,(h) as solution of an equation.

4.1.4. Discrete subsolution

Definition 4.1. W = (w1
h, .., wM

h ) ∈ (Vh)M is said to be a subsolution for
the system of QVIs (15) if⎧⎪⎪⎪⎨⎪⎪⎪⎩

ai(wi
h, ϕs) ≤ (f i, ϕs) ∀ϕs; s = 1, ...,m(h)

wi
h ≤ k + wi+1

h

wM+1
h = w1

h

(21)

Theorem 4.5. (cf. 9) Let Xh be the set of discrete subsolutions. Under the
d.m.p, the solution of system of QVIs (15) is the maximum element of the
set Xh.

5. Algorithm

Next, we shall construct a monotone iterative scheme and prove its geo-
metrical convergence to the unique solution of this system of QVIs (12).

Let H+ =
(
L∞

+ (Ω)
)M where L∞

+ (Ω) denotes the positive cone of L∞(Ω).
We define the mapping

T : H
+ −→ H

+ (22)

W −→ TW = (ζ1, ..., ζM )

such that ∀i = 1, ...,M, ζi is the solution of the following VI:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ai(ζi, v − ζi) � (f i, v − ζi) ∀v ∈ H1(Ω)

ζi ≤ k + wi+1 , v ≤ k + wi+1

with wM+1 = w1

(23)

So, if we denote ζi by σ(k + wi+1), we clearly have

TW = [σ(k + w2), σ(k + w3), ..., σ(k + wi), ..., σ(k + w1)]
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Let U0 = (u1,0, ..., uM,0) be solution to the following equation:

ai(ui,0, v) = (f i, v) ∀ v ∈ H1(Ω) ; 1 ≤ i ≤ M (24)

Then, there exists a unique positive solution to problem (24),
(
25
)
. More-

over, ui,0 ∈ W 2,,∞(Ω) .

5.1. A continuous monotone iterative scheme

Now, starting from U0 solution of (24), we define

Un+1 = TUn ; n = 0, 1, .. (25)

In view of (22), (23), it is clear that Un+1 = (u1,n, ..., un,M ) solves the
following independent variational inequalities⎧⎪⎪⎪⎨⎪⎪⎪⎩

ai(ui,n+1, v − ui,n+1) � (f i, v − ui,n+1)∀v ∈ H1(Ω)

ui,n+1 ≤ k + ui+1,n , v ≤ k + ui+1,n

uM+1,n = u1,n; i = 1, 2, ...M

(26)

which can be solved in parallel.

The convergence of this algorithm stands on some properties of the
mapping T .

Proposition 5.1. The mapping T satisfies

TV ≤ TW ∀V ≤ W

TW ≥ 0 ∀ W ∈ H
+

TW ≤ Û0 ∀ W ∈ H
+

Proof.

1. TV ≤ TW ∀V ≤ W . Let V = (v1, ..., vM ), W = (w1, , ..., wM ) in
H+ such that vi ≤ wi , ∀ i = 1, , ..., M .

Then since σ is increasing, it follows that σ(k + vi) ≤ σ(k + wi).

2. TW ≥ 0, ∀W ∈ H+. This follows directly from the fact that f i ≥ 0
and classical comparison results in elliptic variational inequalities.

3. TW ≤ Û0 ∀ W ∈ H+.
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Let’s denote by ϕ+ = max(ϕ , 0) and ϕ− = max(−ϕ , 0). Then, since
ζi is solution to (23) and ui,0 of (24) belong to H1(Ω), we readily have

ζi − (ζi − ui,0)+ ∈ H1(Ω)

Moreover, as (ζi − ui,0)+ ≥ 0, it follows that

ζi − (ζi − ui,0)+ ≤ ζi ≤ k + wi+1

Therefore, we can take v = ζi − (ζi − ui,0)+ as a trial function in (23),
which yields

ai(ζi,−(ζi − ui,0)+) � (f i,−(ζi − ui,0)+)

Also, for v = (ζi − ûi,0)+ equation (24) becomes

a(ui,0, (ζi − ui,0)+) = (f i, (ζi − ui,0)+)

so, by addition, we obtain

−ai((ζi − ui,0)+, (ζi − ui,0)+ ) � 0

which, by (11), yields

(ζi − ui,0)+ = 0

Thus

ζi ≤ ui,0 ∀ i = 1, 2, ...,M

i.e.,

TW ≤ U0

Proposition 5.2. The mapping T is concave on H+.

Proof.
Let θ ∈ [0, 1]. Then we have

T (θV + (1 − θ)W ) =

(σ(k + θv2 + (1 − θ)w2), ..., σ(k + θvi + (1 − θ)wi), ..., σ(k + θv1 + (1 − θ)w1))

(σ(θ(k + v2) + (1 − θ)(k + w2)), ..., σ(θ(k + vi) + (1 − θ)(k + wi)), ...,

σ(θ(k + v1) + (1 − θ)(k + w1))
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Then using the concavity of σ, we get

T (θV + (1 − θ)W )

≥ θ.(σ(k + v2), ..., σ(k + vi), ..., σ(k + v1))

+(1 − θ)(σ(k + v2), ..., σ(k + vi), ..., σ(k + v1))

� θTV + (1 − θ)TW

Lemma 5.1. Let 0 < λ < min
(

k
‖U0‖∞

, 1
)

. Then we have T (0) � λU0.

Proof.
Let Ǔ = (ǔ1, ..., ǔM ) be such that ǔi, 1 ≤ i ≤ M is the solution of the

following variational inequality{
ai(ǔi, v − ǔi) � (f i, v − ǔi) ∀v ∈ H1(Ω)

ǔi ≤ k, v ≤ k
(27)

Then it is clear that

v = (ǔi − λui,0)− + ǔi

can be taken as a trial function in the VI (27) . So taking

v = −(ǔi − λui,0)−

as a trial function in (24) and using the fact that f i ≥ 0 , we get by

addition

ai(ǔi − λui,0, (ǔi − λui,0)−) � (f i − λf i, (ǔi − λui,0)−)

� ((1 − λ)f i, (ǔi − λui,0)−) ≥ 0

Thus, by (11)

(ǔi − λui,0)− = 0

i.e.,

ǔi � λui,0 ∀ i = 1, 2, ...,M
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which completes the proof.

Let

C = { W ∈ H
+ : 0 ≤ W ≤ U0 }

Proposition 5.3. Let γ ∈ [0 ; 1] such that

W − W̃ ≤ γW ∀W, W̃ ∈ C (28)

Then combining proposition 5.2. and Lemma 5.1, the following holds

TW − TW̃ ≤ γ(1 − λ)TW (29)

Proof.
By (28), we have (1 − γ) W ≤ W̃ . Then, using the fact that T is

increasing and concave, it follows that

(1 − γ)TW + γT (0)

≤ T [(1 − γ)W + γ.0]

≤ TW̃

Finally, using lemma 5.1, we get (29).

Theorem 5.1. The sequences (Un) converges decreasingly to the unique
solution of system of QVIs (12).

Proof. The proof will be carried out in four steps.

Step 1. The sequence (Un) stays in C and is monotone decreasing.
We know that Un = (u1,n, ..., un,M ) is such that⎧⎪⎪⎨⎪⎪⎩

ai(ui,n, v − ui,n) � (f i, v − ui,n) ∀v ∈ H1(Ω)

ui,n ≤ k + ui+1,n−1 ;v ≤ k + ui+1,n−1

uM+1,n = u1,n

(30)

Since f i ≥ 0 and ûi,0 ≥ 0, combining comparison results in variational
inequalities with a simple induction, it follows that ûi,n ≥ 0 i.e.,

Un ≥ 0 ∀n ≥ 0 (31)
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Furthermore, we have

U1 = TU0 ≤ U0

Thus, inductively

0 ≤ Un+1 = TUn ≤ Un ≤ ... ≤ U0 ∀n ≥ 0 (32)

Step 2. (Ûn) converges to the solution of the system (12).

From (31), (32), it is clear that

lim
n→∞

ui,n(x) = ūi(x) , x ∈ Ω and ūi ∈ C (33)

Moreover, from (31) we have k+ ûi+1,n−1 ≥ 0 . Then we can take v = 0
as a trial function in (30), which yields

δ
∥∥ui,n

∥∥2

H1(Ω)
≤ ai(ui,n, ui,n) ≤

∥∥f i
∥∥

L2(Ω)

∥∥ui,n
∥∥

H1(Ω)

or more simply ∥∥ui,n
∥∥

H1(Ω)
≤ C

where C is a constant independent of n.Hence ûi,n stays bounded in H1(Ω)

and consequently we can complete (33) by

lim
n→∞

ui,n = ui weakly in H1(Ω) (34)

Step 3. Ū = (ū1, ..., ūM ) coincides with the solution of system (12). Indeed,

since

u i,n(x) ≤ k + u i,n−1(x)

then (33) implies

ūi(x) ≤ k + ūi+1(x)

Now let v ≤ k + ūi+1 then v ≤ k + ui,n−1, ∀n ≥ 0. We can therefore
take v as a trial function for the VI (30). Consequently, combining (33), (34)
with the weak lower semi continuity of ai(v, v) and passing to the limit in
problem (30), we obtain

ai(ūi, v − ūi) � (f i, v − ūi) ∀v ∈ H1(Ω), v ≤ k + ūi+1
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Finally, since U = (u1, ..., uM ) is the unique solution of (12) , we clearly
have

U = Ū = (ū1, ..., ūM )

Remark 5.1. From the above proposition, one can observe that the solu-
tion of system QVI (12) is a fixed point of T i.e.,

U = TU (35)

Next, we shall prove that the convergence of the proposed iterative
scheme is geometrical.

Theorem 5.2. There exists a positive constant 0 < μ < 1 such that

‖Un − U‖∞ ≤ μn
∥∥U0

∥∥
∞ (36)

Proof.
We have

0 ≤ U ≤ U0

so

Then, applying (28) with γ = 1, we get

0 ≤ TU0 − TU ≤ (1 − λ)TU0

and by (25), (35)

0 ≤ U1 − U ≤ (1 − λ)U1

Now, using (28) again with γ = 1 − λ it follows that

0 ≤ TU1 − TU ≤ (1 − λ)(1 − λ)TU1

i.e.,

0 ≤ U2 − U ≤ (1 − λ)2U2

and inductively

0 ≤ Un − U ≤ (1 − λ)Un

≤ (1 − λ)nU0
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As a consequence of the above theorem, we have the following conver-
gence rate for the solution of the HJB equation.

Corollary 5.1.

max
1≤i≤M

∥∥u − ui,n
∥∥

L∞(Ω)
≤ μn

∥∥U0
∥∥
∞ + k

Proof. ∥∥u − ui,n
∥∥

L∞(Ω)
≤
∥∥u − ui

∥∥
L∞(Ω)

+
∥∥ui − ui,n

∥∥
L∞(Ω)

≤ k + max
1≤i≤M

∥∥u − ui,n
∥∥

L∞(Ω)

≤ k + ‖Un − U‖∞

≤ k + μn
∥∥U0

∥∥
∞

5.2. A discrete monotone iterative scheme

Next, we shall define a discrete iterative scheme. The proof of its conver-
gence is very similar to that of the continous one (25) and therefore will be
omitted. Let’s consider the following mapping

Th :H+ −→ (Vh)M (37)

W −→ ThW = (ζ1
h, ..., ζM

h )

where ζi
h = σh(k+wi+1) is the unique solution of the following discrete VI:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ai(ζi

h, v − ζi
h) � (f i, v − ζi

h) ∀v ∈ Vh

ζi
h ≤ rh(k + wi+1) ; v ≤ rh(k + wi+1)

ζM+1
h = ζ1

h

(38)

So, we clearly have

ThW = [σh(k + w2), σh(k + w3), ..., σh(k + wi), ...σh(k + w1)]

Let U0
h = (u1,0

h , ..., uM,0
h ) be the finite element approximation of U0

defined in (2.20):

ai(ui,0
h , v) = (f i , v) ∀v ∈ Vh ; 1 ≤ i ≤ M (39)
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By the d.m.p and the positivity of f i, we have Û0
h ≥ 0. Now, starting

from U0
h , we define

Un+1
h = ThUn

h , n = 0, 1, ... (40)

where Un+1
h = (u1,n

h , ..., uM,n
h ) ∈

(
H1(Ω)

)M solves the following indepen-
dent variational inequalities⎧⎪⎪⎪⎨⎪⎪⎪⎩

ai(ui,n+1
h , v − ui,n+1

h ) � (f i, v − ui,n+1
h )∀v ∈ H1(Ω)

ui,n+1
h ≤ k + ui+1,n

h , v ≤ k + ui+1,n
h

uM+1,n
h = u1,n

h

Proposition 5.4. Th is concave on H+ and possesses the following prop-
erties

ThV ≤ ThW ∀V ≤ W

ThW ≥ 0 ∀ W ∈ H
+

ThW ≤ U0
h ∀W ∈ H

+

Let

Ch = { W ∈ H
+ : 0 ≤ W ≤ U0

h }

Lemma 5.2. Let 0 < λ < min(k/
∥∥U0

h

∥∥
∞ ; 1).Then Th(0) � λU0

h .

Proposition 5.5. Let γ ∈ [0; 1] such that

W − W̃ ≤ γW ∀ W, W̃ ∈ Ch

Then we have

ThW − ThW̃ ≤ γ(1 − λ)ThW

Then similarly to Theorem 5.1, we have the following convergence result.

Proposition 5.6. The sequences (Un
h ) converges decreasingly to the unique

solution of system (15).

Remark 5.2. In view of the above proposition, it is easy to see that the
solution of system (15) is a fixed point of Th i.e.,

Uh = ThUh (41)
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Theorem 5.3. There exists a positive constant 0 < μ < 1 such that:

‖Un
h − Uh‖∞ ≤ μn

∥∥U0
h

∥∥
∞ (42)

6. The Finite Element Error Analysis

This section is devoted to derive error estimates in the L∞- norm for both
the system of QVIs and HJB equations. For that we shall develop three
different methods: The Subsolutiom Method, The Algorithmic Method, and
the Fixed Point Method (for the noncoercive problem).

6.1. The Subsolution Method

This method consists of constructing a continuous subsolution denoted

β(h) = (β1,(h), ..., βM,(h))

such that:

βi,(h) ≤ ui and
∥∥∥βi,(h) − ui

h

∥∥∥
L∞(Ω)

≤ Ch2 |log h|2 , ∀i = 1, 2, ...,M

and a discrete subsolution αh = (α1
h, ..., αM

h ) such that:

αi
h ≤ ui

h and
∥∥αi

h − ui
∥∥

L∞(Ω)
≤ Ch2 |log h|2 , ∀i = 1, 2, ...,M

The discrete regularity plays a crucial role as it permits to replace the ir-
regular obstacles ”k+ui+1

h ” with W 2,p(Ω) regular ones, and hence preserves
the optimal convergence order.

Let us begin with the discrete subsolution, the continuous one will follow
the same way but is some how more delicate as it requires the smoothing
of the obstacles.

6.1.1. Construction of a discrete subsolution

From now on C will denote a constant independent of both h and k. Let
us now introduce the following discrete VI:⎧⎪⎪⎨⎪⎪⎩

ai(ūi
h, v − ūi

h) � (f i, v − ūi
h) ∀v ∈ Vh

ūi
h ≤ k + ui+1 , v ≤ k + ui+1

uM+1 = u1

(43)

where ui is the solution of (12), i = 1, 2, ...,M . So, ūi
h = σh(f i, k + ui+1) is
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nothing but the approximation of ui = σ(f i, k + ui+1) as a solution of an
elliptic (VI). Therefore, thanks to Theorem 2.6, we have∥∥ui − ūi

h

∥∥
L∞(Ω)

≤ Ch2 |log h|2 (44)

Theorem 6.1. There exists a vector function αh = (α1
h, ..., αM

h ) such that

αi
h ≤ ui

h and
∥∥αi

h − ui
∥∥

L∞(Ω)
≤ Ch2 |log h|2

Proof. Indeed, ūi
h being solution to the discrete VI (43), it is also a sub-

solution, that is,⎧⎪⎪⎨⎪⎪⎩
ai(ūi

h, ϕs) ≤ (f i, ϕs) ∀ϕs, s = 1, 2, ...,m(h)

ūi
h ≤ k + ui+1

uM+1
h = u1

Then ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ai(ūi

h, ϕs) ≤ (f i, ϕs) ∀ϕs, s = 1, 2, ...,m(h)

ūi
h ≤ k +

∥∥ui+1 − ūi+1
h

∥∥
L∞(Ω)

+ ūi+1
h

ūM+1
h = u1

h

that is, (ū1
h, ..., ūM

h ) is a subsolution for the system of QVIs (15) with right-

hand side (f1, ..., fM ) and parameter k̃ = k +
∥∥ui+1 − ūi+1

h

∥∥
L∞(Ω)

.

Let Ūh = (Ū1
h , ..., ŪM

h ) be the solution of such a system and Ū i
h = σh(f i,

k̃). Then, making use of theorem 4.2, we have∥∥ui
h − Ū i

h

∥∥
L∞(Ω)

≤
∣∣∣k − k̃

∣∣∣ ≤ ∥∥ui+1 − ūi+1
h

∥∥
L∞(Ω)

and, due to theorem 4.5,

ūi
h ≤ Ū i

h ≤ ui
h +
∥∥ui+1 − ūi+1

h

∥∥
L∞(Ω)

Now putting

αi
h = ūi

h −
∥∥ui+1 − ūi+1

h

∥∥
L∞(Ω)

we clearly have

αi
h ≤ ui

h

and using (44), we get∥∥αi
h − ui

∥∥
L∞(Ω)

≤
∥∥ūi

h − ui
∥∥

L∞(Ω)
+
∥∥ui+1 − ūi+1

h

∥∥
L∞(Ω)

≤ Ch2 |log h|2
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6.1.2. Construction of a continuous subsolution

Let ūi = σ(f i, k + ui+1,(h)) be the solution of the following continuous VI:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ai(ūi, v − ūi) � (f i, v − ūi) ∀v ∈ H1(Ω)

ūi ≤ k + ui+1,(h) , v ≤ k + ui+1(h)

uM+1,(h) = u1,(h)

(45)

where ui,(h) is the solution of equation (18).Thanks to (19), the obstacles
appearing in (45) are in W 2,p(Ω),which will enable us to conserve the op-
timal convergence order for the above VI as it is shown in the following
lemma.

Lemma 6.1. ∥∥ūi − uih

∥∥
L∞(Ω)

≤ Ch2 |log h|2 (46)

Proof.
Denote by ω̄ih = σh(f i, k+ui+1,(h)) the approximation of ūi = σ(f i, k+

ui+1,(h)).Then, using (5), we have∥∥ūi − ω̄ih

∥∥
L∞(Ω)

≤ Ch2 |log h|2

On the other hand, combining this with Lipschitz continuity of VI with
respect to the obstacle, we get∥∥ω̄ih − ui

h

∥∥
L∞(Ω)

≤
∥∥∥k + ui+1,(h) − (k + ui+1

h )
∥∥∥

L∞(Ω)
≤ Ch2 |log h|2

Hence∥∥ūi − ui
h

∥∥
L∞(Ω)

≤
∥∥ūi − ω̄ih

∥∥
L∞(Ω)

+
∥∥ω̄ih − ui

h

∥∥
L∞(Ω)

≤ Ch2 |log h|2

Theorem 6.2. There exists a vector function β(h) = (β1,(h), ..., βM,(h))
such that:

βi,(h) ≤ ui and
∥∥∥βi,(h) − ui

h

∥∥∥
L∞(Ω)

≤ Ch2 |log h|2 , i = 1, 2, ...,M

Proof. Indeed, ūi being the solution of the VI (45), it is also a subsolution
for the same VI, that is⎧⎪⎪⎨⎪⎪⎩

ai(ūi, v) ≤ (f i, v) ∀v ∈ H1(Ω), v ≥ 0

ūi ≤ k + ui+1,(h)

uM+1,(h) = u1,(h)
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Then ⎧⎪⎪⎨⎪⎪⎩
ai(ūi, v) ≤ (f i, v) ∀v ∈ H1(Ω), v ≥ 0

ūi ≤ k +
∥∥ui+1,(h) − ūi+1

∥∥
L∞(Ω)

+ ūi+1

uM+1 = u1

that is, (ū1, ..., ūM ) is a subsolution for the system of QVIs with right-hand

side (f1, ..., fM ) and parameter k̃ = k +
∥∥ui+1,(h) − ūi+1

∥∥
L∞(Ω)

.

Let Ū = (Ū1, ..., ŪM ) be the solution of such a system. Then, we have

ūi ≤ Ū i = σ(f i, k̃) ∀i = 1, 2, ...,M

On the other hand, due to Theorem 3.2, we have∥∥ui − Ū i
∥∥
∞
≤
∣∣∣k − k̃

∣∣∣
≤
∥∥∥ui+1,(h) − ūi+1

∥∥∥
L∞(Ω)

≤
∥∥∥ui+1,(h) − ui+1

h

∥∥∥
L∞(Ω)

+
∥∥ui+1

h − ūi+1
∥∥
L∞(Ω)

So, making use of Theorem 3.3, we get

ūi ≤ Ū i ≤ ui +
∥∥∥ui+1,(h) − ui+1

h

∥∥∥
L∞(Ω)

+
∥∥ui+1

h − ūi+1
∥∥
L∞(Ω)

and putting

βi,(h) = ūi −
∥∥∥ui+1,(h) − ui+1

h

∥∥∥
L∞(Ω)

+
∥∥ui+1

h − ūi+1
∥∥
L∞(Ω)

we clearly have

βi,(h) ≤ ui

Finally, using to (20) and (46), we obtain∥∥∥βi,(h) − ui
h

∥∥∥
L∞(Ω)

≤
∥∥ūi − ui

h

∥∥
L∞(Ω)

+
∥∥∥ui+1,(h) − ui+1

h

∥∥∥
L∞(Ω)

+
∥∥ui+1

h − ūi+1
∥∥
L∞(Ω)

≤ Ch2 |log h|
2
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6.1.3. Optimal L∞ error estimate

Now, combining Theorems 6.1 and 6.2, we are in position to derive the
optimal L∞ error estimate for both the system (12) and the HJB equation
(1).

Theorem 6.3.

‖U − Uh‖∞ ≤ Ch2 |log h|2

Proof. Indeed, making use of both Theorems 6.1 and 6.2, we have

ui
h ≤ β(h) + Ch2 |log h|2

≤ ui + Ch2 |log h|2

≤ αi
h + Ch2 |log h|2

Thus ∥∥ui − ui
h

∥∥
L∞(Ω)

≤ Ch2 |log h|2 , ∀i = 1, 2, ..

which completes the proof.

Theorem 6.4.

‖u − uh‖L∞(Ω) ≤ Ch2 |log h|2

Proof. Indeed,

‖u − uh‖L∞(Ω) ≤
∥∥u − ui

∥∥
L∞(Ω)

+
∥∥ui − ui

h

∥∥
L∞(Ω)

+
∥∥ui

h − uh

∥∥
L∞(Ω)

≤
∥∥u − ui

∥∥
L∞(Ω)

+
∥∥ui − ui

h

∥∥
L∞(Ω)

+ Ch2 |log h|2

so due to Theorems 3.1 and 4.1, we obtain

‖u − uh‖∞ ≤ lim
k→0

∥∥u − ui
∥∥

L∞(Ω)
+ lim

k→0

∥∥ui − ui
h

∥∥
L∞(Ω)

+ Ch2 |log h|2

≤ Ch2 |log h|2

which is the desired result.
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6.2. The Algorithmic Approach

The algorithmic approach rests on the geometrical convergence of both the
continuous and discrete iterative scheme as well a fundamental lemma which
consists of estimating in the L∞ norm the error between the continuous
iterate and the discrete iterate of the iterative scheme.

Let Un = (u1,n, ..., uM,n) be the n-th iterate defined by (25). We intro-
duce a sequence which consists of finding Ũn

h = (ũ1,n
h , ..., ũM,n

h ) such that
∀n ≥ 1 , ũi,n

h is the unique solution of the following VI:⎧⎪⎨⎪⎩
ai(ũi,n, v − ũi,n) � (f i, v − ũi,n) ∀v ∈ H1(Ω)

ũi,n ≤ k + ui+1,n−1 ; v ≤ k + ui+1,n−1

uM+1,n = u1,n and ui,0
h = ui,0

h

(47)

where Ũ0
h = U0

h . So, Ũn
h = ThUn and, due to standard uniform estimates

for linear equation, we have∥∥∥U0 − Ũ0
h

∥∥∥
∞

=
∥∥U0 − U0

h

∥∥
∞ ≤ Ch2 |log h| (48)

Note also that ∀i = 1, 2, ...,M , ũi,n
h is the finite element approximation

of ûi,n. So, making use of estimate (5), the following error estimate holds:∥∥∥Un − Ũn
h

∥∥∥
∞

≤ Ch2 |log h|2 (49)

Lemma 6.2. Th is Lipschitz continuous on H+.

Proof.
Let V = (v1, ..., vM ) ; W = (w1, ..., wM ) in H+. Then

ThV = [σh(k + v2), ..., σh(k + vi), ..., σh(k + v1)]

ThW = [σh(k + w2), ..., σh(k + wi), ..., σh(k + w1)]

and

‖ThV − ThW‖∞ = max
1 ≤ i≤ M

∥∥(ThV )i − (ThW )i
∥∥

L∞(Ω)

= max
1 ≤ i≤ M

∥∥σh(k + vi) − σh(k + wi)
∥∥

L∞(Ω)

where (ThV )i and (ThW )i denote the i-th components of the vectors V
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and W , respectively. So, since the mapping σ is Lipschitz continuous, it
follows that∥∥σh(k + vi) − σh(k + wi)

∥∥
L∞(Ω)

≤
∥∥(k + vi) − (k + wi)

∥∥
L∞(Ω)

≤
∥∥vi − wi

∥∥
L∞(Ω)

Thus

‖ThV − ThW‖∞ ≤ max
1 ≤ i≤ M

∥∥vi − wi
∥∥

L∞(Ω)
= ‖V − W‖∞

Lemma 6.3.

‖Un − Un
h ‖∞ ≤

∑N
p=0

∥∥∥Up − Ũp
h

∥∥∥
∞

Proof.
The proof will be carried out by induction .

Step1.We know that U1
h = ThU0

h ; Ũ1
h = ThU0.Then, using Lipschitz

continuity of Th, we get∥∥U1 − U1
h

∥∥
∞ ≤

∥∥∥U1 − Ũ1
h

∥∥∥
∞

+
∥∥∥Ũ1 − U1

h

∥∥∥
∞

∥∥∥U1 − Ũ1
h

∥∥∥
∞

+
∥∥ThU0 − ThU0

h

∥∥
∞

∥∥∥U1 − Ũ1
h

∥∥∥
∞

+
∥∥U0 − U0

h

∥∥
∞

≤
∑1

p=0

∥∥∥Up − Ũp
h

∥∥∥
∞

step n. Assume that∥∥Un−1 − Un−1
h

∥∥
∞ ≤

∑N−1
p=0 ‖Up − Up

h‖∞
Then, since

Ũn
h = ThU n−1 ; Un

h = ThUn−1
h

applying Lipschitz continuity of Th again, we obtain
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‖Un − Un
h ‖∞ ≤

∥∥∥Un − Ũn
h

∥∥∥
∞

+
∥∥∥Ũn

h − Un
h

∥∥∥
∞

≤
∥∥∥Un − Ũn

h

∥∥∥
∞

+
∥∥ThUn−1 − ThUn−1

h

∥∥
∞

≤
∥∥∥Un − Ũn

h

∥∥∥
∞

+
∥∥Un−1 − Un−1

h

∥∥
∞

≤
∥∥∥Un − Ũn

h

∥∥∥
∞

+
∑N−1

p=0

∥∥∥Up − Ũp
h

∥∥∥
∞

≤
∑N

p=0

∥∥∥Up − Ũp
h

∥∥∥
∞

This completes the proof.

6.2.1. Quasi-optimal L∞- Error Estimates

Theorem 6.5.

‖U − Uh‖∞ ≤ Ch2 |log h|3

Proof.
Making use of Theorems 5.2, 5.3 and lemma 6.3, we get

‖U − Uh‖∞ ≤ ‖U − Un‖∞ + ‖Un − Un
h ‖∞ + ‖Un

h − Uh‖∞

≤ μn
∥∥U0

∥∥
∞ + μn

∥∥U0
h

∥∥
∞ +

∥∥U0 − U0
h

∥∥
∞ +

∑N
p=1

∥∥∥Up − Ũp
h

∥∥∥
∞

≤ μn
∥∥U0

∥∥
∞ + μn

∥∥U0
h

∥∥
∞ + Ch2 |log h| + n. Ch2 |log h|2

Finally taking μn = h2, the desired result follows.

6.2.2. Quasi-optimal L∞- Error Estimates

Theorem 6.6.

‖u − uh‖L∞(Ω) ≤ Ch2 |log h|3
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Proof. It is exactly the same as that of Theorem 6.4.

7. The Noncoercive Case

7.1. The continuous problem

Let F i(u) = f i +λu and Bi = Ai +λI (I is the identity operator). One can
observe that the noncoercive HJB equation can be solved by considering
the following equivalent formulation:⎧⎨

⎩
max

1≤i≤M
(Biu −F i(u)) = 0 in Ω

u = 0 on Γ
(50)

where λ is positive number large enough such that the operators Bi are
strongly coercive.

7.1.1. Existence and uniqueness

This can be achieved by characterizing the solution of HJB equation (1)
as the unique fixed point of a contraction. Indeed, denoting by F i(w) =
f i + λw, we introduce the mapping

S :L∞(Ω) → L∞(Ω) (51)

w → Sw = ζ

where ζ is the unique solution of the coercive HJB equations⎧⎨
⎩

max
1≤i≤M

(Biζ −F i(w)) = 0 in Ω

ξ = 0 on Γ
(52)

Note that the F i(w)′s play the role of the f i’s in (12). Then, (52) can
be approximated by the following system of QVIs: find (ζ1, ..., ζM ) solution
to ⎧⎪⎪⎨⎪⎪⎩

bi(ζi, v − ζi) ≥ (F i(w), v − ζi)∀v ∈ H1(Ω)

ζi ≤ k + ζi+1, v ≤ k + ζi+1 , i = 1, ...,M

ζM+1 = ξ1

(53)

where

bi(u, v) = ai(u, v) + λ(u, v)
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So, thanks to Theorem 3.1, (52) has a unique solution and we have

lim
k→0

∥∥ζi − ζ
∥∥
L∞(Ω)

= 0, ∀i = 1, 2, ...M

Lemma 7.1. Let w,w̃ in L∞(Ω), (ζ1, ..., ζM ) and (ζ̃1, ..., ζ̃M ) be the cor-

responding solutions to system (53) with right-hand sides F i(w) = f i +λw

and F i(w̃) = f i + λw̃, respectively. Then we have

max
1≤ i ≤ M

∥∥∥ζi − ζ̃i
∥∥∥
L∞(Ω)

≤ λ/ (λ+ β) ‖w − w̃‖L∞(Ω)

Theorem 7.1. Under conditions of lemma 7.1, the mapping S is a con-

traction.

Proof. Indeed, Let ζ = Sw and ζ̃ = Sw̃ be solutions to HJB equation (52)

with right-hand sides F i(w) = f i+λw and F i(w̃) = f i+λw̃, respectively.

Then

‖Sw − Sw̃‖
∞

=
∥∥∥ζ − ζ̃

∥∥∥
∞

≤
∥∥ζ − ζi

∥∥
L∞(Ω)

+
∥∥∥ζi − ζ̃i

∥∥∥
∞

+
∥∥∥ζ̃i − ζ̃

∥∥∥
∞

≤
∥∥ζ − ζi

∥∥
L∞(Ω)

+ max
1≤ i ≤ M

∥∥∥ζi − ζ̃i
∥∥∥
L∞(Ω)

+
∥∥∥ζ̃i − ζ̃

∥∥∥
L∞(Ω)

≤ lim
k→0

∥∥ζ − ζi
∥∥
L∞(Ω)

+ max
1≤ i ≤ M

∥∥∥ζi − ζ̃i
∥∥∥
L∞(Ω)

+ lim
k→0

∥∥∥ζ̃i − ζ̃
∥∥∥
L∞(Ω)

≤ λ/ (λ+ β) ‖w − w̃‖L∞(Ω)

Thus, S is a contraction, and therefore, the solution of HJB equation (1) is

its unique fixed point.

7.2. The discrete problem

As in the continuous case, we shall handle the discrete noncoercive problem

by transforming (14) into:

max
1≤i≤M

(Biuh − G
i(uh) = 0 (54)
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where

(Gi(uh))l = (f i + λuh, ϕl), l = 1, ...,m(h), 1 ≤ i ≤M,

and Bi are the matrices by

(Bi)ls = bi(ϕl, ϕs), l = 1, ...,m(h), 1 ≤ i ≤M (55)

7.2.1. Existence and uniqueness

As in the continuous case, this can be achieved by characterizing the solu-

tion of HJB equation (14) as the unique fixed point of a contraction. Indeed,

let us introduce the mapping

Sh : L∞(Ω) → Vh (56)

w → Shw = ζh

where ζh is the unique solution of the coercive HJB equations

max
1≤i≤M

(Biζh − G
i(w) = 0

which, thanks to Theorem 4.1, can be approximated by the following system

of QVIs : find (ζ1h, ..., ζ
M
h ) solution to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
bi(ζih, v − ζih) � (F i(w), v − ζih) ∀v ∈ Vh

ζih ≤ k + ζi+1
h , v ≤ k + ζi+1

h , i = 1, ...,M

ζiM+1
h = ζ1h

(57)

and

lim
k→0

∥∥ζh − ζih
∥∥
L∞(Ω)

= 0

Lemma 7.2. Let the dmp hold. Then, we have

max
1≤ i ≤ M

∥∥∥ξih − ξ̃ih

∥∥∥
L∞(Ω)

≤ λ/(λ+ β) ‖w − w̃‖L∞(Ω) ∀w, w̃ ∈ L∞(Ω)

Proof. Exactly the same as that of lemma 7.1.

Theorem 7.2. Under conditions of lemma 7.1, the mapping Sh is a con-

traction.

Proof. Exactly the same as that of Theorem 7.1.
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7.3. Optimal L∞- Error estimate

Next, we will show that the fixed point approach developped above leads
to an L∞ optimal convergence of the approximation.

Let us first introduce the following coercive discrete HJB equation

max
1≤i≤M

(Biζ̄h − Gi(u)) = 0 (58)

where u is the solution of (1). So, in view of (56), we clearly have

ζ̄h = Shu (59)

Therefore, as problem (58) is the discrete counterpart of problem (50),
making use of Theorem 6.4, we have the following error estimate.

‖ ζ̄h − u ‖L∞(Ω) ≤ Ch2 |log h|2 (60)

Theorem 7.3. Let u and uh be the solutions of HJB equations (1) and
(14), respectively. Then

‖ u − uh ‖L∞(Ω)≤ Ch2 |log h|2

where C is a constant independent of h.

Proof.
Since ζ̄h = Shu and uh = Shuh making use of Theorems 7.1, 7.2, and

estimate (60), we obtain

‖ u − uh ‖L∞(Ω) ≤ ‖ u − ζ̄h ‖L∞(Ω) + ‖ ζ̄h − uh ‖L∞(Ω)

≤‖ u − ζ̄h ‖L∞(Ω) + ‖ Shu − Shuh ‖L∞(Ω)

≤ Ch2 |log h|2 +
λ

λ + β
‖ u − uh ‖L∞(Ω)

Thus,

‖ u − uh ‖L∞(Ω)≤
Ch2 |log h|2

λ/(λ + β)
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8. Open Problems

We would like to conclude this article with some interesting open questions
on (1):

• The finite element approximation with zero order terms ai
0(x) equal

to zero.

• Error estimates in Lp norms, 2 ≤ p < ∞.

• Parallel algorithms for the parabolic HJB equation.

• The finite element approximation of the Parabolic HJB equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u

∂t
+ max

1≤i≤M
(Aiu − f i) = 0 a.e. in Ω

u(0, x) = u0(x) in Ω

u(t, x) = 0 on ∂Ω ∀t ∈ [0, T ]
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Feasibility of achieving precise formation or attitude control of space systems in

underactuated configurations is explored. Conditions for robustness against un-

matched uncertainties and disturbances are derived to establish the regions of

asymptotic stabilization. Nonlinear control laws are designed and their perfor-

mances are validated via numerical simulations to show that precise formation

maintenance or attitude stabilization can be achieved in presence of system

nonlinearities, variations in initial conditions, and external disturbances, con-

currently.

Keywords: Underactuated systems; satellite formation control; satellite atti-

tude control.

1. Introduction

A space system may experience failures of onboard sensors and/or actua-

tors during its operation.1–4 The present papers examines two underactu-

ated problems. The first problem deals with the satellite formation flying

(SFF)5 while the second problem is on satellite attitude control. The fea-

sibility of achieving precise formation maintenance and efficient formation

maneuvering without the need for thrust in the radial or along-track di-

rection is investigated.6 Next, we examine 3-axis attitude stabilization of

a spacecraft orbiting the Earth under arbitrary single-actuation failures. A

time-invariant smooth control law is proposed to accommodate single-axis

failure cases where there is no control available on either roll or yaw axis.

The paper is organized as follows: Section 2 introduces the system model

and equations of motion for spacecraft formation while Section 3 presents

system model and equations of motion for spacecraft attitude. Control laws

for spacecraft formation and spacecraft attitude are described in Section

4 and Section 5, respectively. For a detailed assessment of the proposed
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control strategy, the results of numerical simulations incorporating different

mission scenarios are presented in Section 6 and Section 7. Finally, the

conclusions of the present study are stated in Section 8.

2. Spacecraft Formation Flying Model and Equations of

Motion

The system comprises of a leader spacecraft in circular orbit around the

Earth and a follower spacecraft moving in a relative trajectory about the

leader spacecraft. The spacecraft are modeled as point masses. An Earth

centered inertial (ECI) frame denoted by I−XY Z, has its origin located

at the center of the Earth, with ZI -axis passing through the celestial North

pole, XI -axis directed towards the vernal equinox, and YI -axis completes

the right-handed triad (Fig. 1). The orbital motion of the leader spacecraft

is defined by 	rl ∈ R
3, 	rl

Δ
= [ rl 0 0 ]T , and true anomaly θ. The motion of

the follower spacecraft is described relative to the leader spacecraft using

a relative local vertical local horizontal (LVLH) frame B − xyz fixed at

the center of the leader spacecraft with the x-axis pointing along the local

vertical, the z-axis taken along normal to the orbital plane, and the y-axis

representing the third axis of the right-handed S − xyz frame. 	ρ ∈ R
3,

	ρ
Δ
= [x y z ]T , defines the relative position vector of the follower spacecraft.

The motion along x, y, and z will be referred to as radial, along-track, and

cross-track motion, respectively.

2.1. Equations of Motion

The equations of motion for the leader spacecraft and the relative equations

motion of the follower spacecraft with respect to the leader spacecraft can

be written as:

r̈l − rlθ̇
2 +

μ

r2l
= 0, rlθ̈ + 2θ̇ṙl = 0 (1)

mf ẍ− 2mf θ̇ẏ −mf

(
θ̇2x+ θ̈y

)
+mfμ

(
rl + x

r3f
−

1

r2l

)
= ufx + Fdx (2)

mf ÿ + 2mf θ̇ẋ+mf

(
θ̈x− θ̇2y

)
+mf

μ

r3f
y = ufy + Fdy (3)

mf z̈ +mf
μ

r3f
z = ufz + Fdz (4)

where rf = [(rl +x)2 + y2+ z2]1/2 is the position of the follower spacecraft,

μ is the Earth’s gravitational parameter, θ refers to the true anomaly, Fdj
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Fig. 1. Geometry of orbit motion of leader and follower spacecraft.

is the net relative perturbations acting on the system, and ufj are the

components of the control input vector.

2.2. Desired Formation Geometry

Two formation flying designs are considered: (1) circular, and (2) projected

circular formations. The desired or commanded states (xd, ẋd, yd, ẏd, zd, żd)

are taken as the solution of the linearized form of the relative equations of

motion when Fdj = 0, j = x, y, z. The following trajectories are considered:

(1) Circular Formation: In this formation, the leader and the follower

spacecraft maintain a constant separation from each other in three-

dimensional space and the formation is mathematically defined as

x2 + y2 + z2 = r2dc. The equations of desired trajectory are⎧⎨⎩
xd

yd
zd

⎫⎬⎭ =
rdc
2

⎡⎣ sin (nt+ φ)

2 cos (nt+ φ)√
3 sin (nt+ φ)

⎤⎦ (5)

(2) Projected Circular Formation: In this formation, the formation is is

mathematically defined as y2 + z2 = r2dpc. The equations of desired

trajectory are

50777_8063 -insTexts#150Q.indd   29350777_8063 -insTexts#150Q.indd   293 6/8/11   7:33 PM6/8/11   7:33 PM



294

⎧⎨⎩
xd

yd
zd

⎫⎬⎭ =
rdpc
2

⎡⎣ sin (nt+ φ)

2 cos (nt+ φ)

2 sin (nt+ φ)

⎤⎦ (6)

where rdc and rdpc are the circular and projected circular formation sizes

(radius) respectively, φ is the in-plane phase angle between the leader and

the follower spacecraft (the initial phase angle is defined, at the time of

equator crossing of the leader spacecraft, in the local horizon y − z plane),

and n is the mean angular velocity and equals to
√
μ/a3c (μe is the grav-

itational parameter of the Earth; ac is the semi-major axis of the leader

spacecraft).

2.3. External Disturbances

The disturbances in Eqs. (2-4) are time-varying quantities attributed to

gravitational field, solar radiation pressure, and third body perturbations.

The external disturbance components due to J2 perturbation are derived

as

	Fd = T−1
IR [ 	J2f − 	J2l] (7)

where

TIR =

⎡⎣ cos(Ωl) − sin(Ωl) 0

sin(Ωl) cos(Ωl) 0

0 0 1

⎤⎦⎡⎣ 1 0 0

0 cos(il) − sin(il)

0 sin(il) cos(il)

⎤⎦⎡⎣ cos(ωl + θ) − sin(ωl + θ) 0

sin(ωl + θ) cos(ωl + θ) 0

0 0 1

⎤⎦
(8)

	J2l = −
3μJ2R⊕

2

2‖ 	Rl‖5

⎡⎢⎢⎣
{1− 5Zl

2

‖�RL‖
2
}Xl

{1− 5Zl

2

‖�RL‖
2
}Yl

{3− 5Zl

2

‖�RL‖
2
}Zl

⎤⎥⎥⎦ and 	J2f = −
3μJ2R⊕

2

2‖ 	Rf‖5

⎡⎢⎢⎢⎣
{1−

5Zf

2

‖�Rf‖
2
}Xf

{1−
5Zf

2

‖�Rf‖
2
}Yf

{3−
5Zf

2

‖�Rf‖
2
}Zf

⎤⎥⎥⎥⎦
(9)

where Ωl, il, ωl, and θ denote the right ascension of the ascending node,

orbit inclination, argument of perigee, and true anomaly of the leader

spacecraft, respectively. μ is the Earth’s gravitational parameter, R⊕ is

the radius of the Earth, and J2 is second zonal gravitational coefficient,

J2 = 1.08263× 10−3.

Remark 1 : In this study the following assumptions are made, (1) the leader

spacecraft remains in an unperturbed elliptical orbit subject to its own

controller, (2) all spacecraft in formation have the same ballistic coefficients
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and area-to-mass ratio and therefore the perturbing accelerations due to

aerodynamic drag and solar radiation pressure have negligible effects on

the relative motion, and (3) the differential J2 are perturbing accelerations

on the follower spacecraft relative to the leader spacecraft orbit.

3. Spacecraft Attitude Model and Equations of Motion

The system comprises of a rigid spacecraft in an elliptical planar trajectory

with the Earth’s center at one of its foci (Figure 2). We define a local

vertical local horizontal (LVLH) orbital reference frame L − x0 y0 z0 with

its origin always at the center of mass of the spacecraft (Figure 2). The

nodal line represents the reference line in orbit for the measurement of the

true anomaly (eccentric orbit) or angle θ (circular orbit). Here the x0-axis

points along the local vertical, the z0-axis is taken normal to the orbital

plane, and the y0-axis along the orbit direction. The attitude orientation of

the body-fixed reference frame, B− x y z, relative to the LVLH reference

frame, L − x0 y0 z0, is denoted by a set of three successive rotations: α

(pitch) about the z-axis, φ (roll) about the new y-axis, and finally γ (yaw)

about the resulting x-axis.

O
rb

it

R
r

IX

IY

IZ

0,x x

0,y y

0,z zEarth
θ

Perigee

( )yawγ

( )rollφ

( )pitchα

Local V
ertic

al

Fig. 2. Geometry of attitude motion of spacecraft.
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3.1. Equations of Motion

The Lagrangian equations of motion corresponding to the generalized co-

ordinates (q = [α, φ, γ]T ) are obtained using the general relation

d

dt

(
∂Te

∂q̇

)
−

∂Te

∂q
+

∂Up

∂q
= Qq (10)

where Qq is the generalized force corresponding to the generalized coordi-

nate q while Te and Up are the kinetic and potential energies, respectively.

The variable of integration t (time) is changed to θ (true anomaly) and

the resulting governing nonlinear, coupled ordinary differential equations

of motion of the system, after carrying out algebraic operations and nondi-

mensionalization, can be expressed in a general form as follows:

q′′ = N(q)[F (q, q′) + Ufa + τe] (11)

where N(q) ∈ R
3×3 and F (q, q′) ∈ R

3×1 are matrices containing nonlinear

functions, q ∈ R
3 = [α, φ, γ]T , Ufa ∈ R

3 = [Uα, Uφ, Uγ ]
T is the control

torque, and τe ∈ R
3 = [τα,e, τφ,e, τγ,e]

T represent the external disturbance

torques acting on the spacecraft. (·)′ and (·)′′ denote d(·)/dθ and d2(·)/dθ2,

respectively.

We define the following dimensionless parameters:

k1 =
Iz − Ix

Iy
, k2 =

Iz − Iy
Ix

(12)

kxz =
Ix
Iz

=
1− k1
1− k1k2

, kyz =
Iy
Iz

=
1− k2
1− k1k2

(13)

The equations of motion derived from the Lagrangian relation are given by⎡⎣α′′φ′′

γ′′

⎤⎦ =

⎡⎣N11 N12 N13

N21 N22 N23

N31 N32 N33

⎤⎦
⎧⎨⎩
⎡⎣Fα

Fφ

Fγ

⎤⎦+

⎡⎣Uα

Uφ

Uγ

⎤⎦+

⎡⎣ τα,eτφ,e
τγ,e

⎤⎦
⎫⎬⎭ (14)

where Fα, Fφ, Fγ , and the elements Nij (for i, j = 1, 2, 3) are provided in

the Appendix for brevity.

3.2. Underactuated System

Let the state vector of the system be X ∈ R
6x1 = [α, α′, φ, φ′, γ, γ′]T .

The state vector can be split into two parts as X = [x1, x2]
T where x1

and x2 represents the unactuated and actuated states, respectively. The

unactuated states can be further transformed to x1 = [x10, x11]
T , where
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x10 ∈ R
3×1 = [α, φ, γ]T always. Based on the axis of failure, the nonlinear

equation of motion in Eq. (14) can be transformed to[
x11

′

x2
′

]
=

[
Ā11 Ā12

Ā21 Ā22

]{[
F1

F2

]
+

[
0

Uua

]
+

[
τ1,e
τ2,e

]}
(15)

We now consider the cases of actuation failure to specify state x11 as follows:

Case I : (Uφ = 0) No control authority on roll -axis (φ) and full control

actuation available on pitch (α) and yaw (γ) axes. For this case x11 =

φ′, x2 = [α′, γ′)], and Uua ∈ R
2×1 = [Uα, Uγ ]

T . Similarly, F (q, q′) =

[F1, F2]
T where F1 = Fφ and F2 = [Fα, Fγ ]

T . The external disturbance

torque components are given by τ1,e = τφ,e and τ2,e = [τα,e, τγ,e]
T . The

elements of Ā matrix are shown below.

Ā11 = N22; Ā12 =
[
N21 N23

]
; Ā21 = ĀT

12; Ā22 =

[
N11 N13

N31 N33

]
(16)

Case II : (Uγ = 0) No control authority on yaw -axis (γ) and full control

actuation available on pitch (α) and roll (φ) axes. For this case x11 =

γ′, x2 = [α′, φ′)], and Uua ∈ R
2×1 = [Uα, Uφ]

T . Similarly, F (q, q′) =

[F1, F2]
T where F1 = Fγ and F2 = [Fα, Fφ]

T . The external disturbance

torque components are given by τ1,e = τγ,e and τ2,e = [τα,e, τφ,e]
T . The

elements of Ā matrix are shown below.

Ā11 = N33; Ā12 =
[
N31 N32

]
; Ā21 = ĀT

12; Ā22 =

[
N11 N12

N21 N22

]
(17)

4. Design of Control Laws for Spacecraft Formation Flying

A linear system model is derived from the given nonlinear system equations

of motion (Eqs. 2-4) assuming the leader spacecraft in a circular orbit as

follows:⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

ż

ẍ

ÿ

z̈

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x

y

z

ẋ

ẏ

ż

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

1

mf

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ufx

ufy

ufz

⎤⎦ (18)

In general the above representation is expressed as Ẋ = AX+BUF , where

X ∈ R
6×1 is the state vector, A ∈ R

6×6, B ∈ R
6×3, and UF ∈ R

3 =
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[ufx, ufy, ufz]
T is the vector of actual control inputs generated by the

thrusters. In the case no control force available in the along-track direc-

tion (ufy = 0), evaluation of the Kalman rank condition for controllability

shows that the system is not fully state controllable (rank = 5 < 6). Before

concluding that the linear approximation is not stabilizable, it is important

to determine the eigenvalue associated with the uncontrollable mode. Re-

arranging terms in Eq. (18) to represent the in-plane dynamics of the SFF

system with only radial-axis input gives,

⎡⎢⎢⎣
ẋ

ẏ

ÿ

ẍ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 0 0 1

0 0 1 0

0 0 0 −2n

3n2 0 2n 0

⎤⎥⎥⎦
⎡⎢⎢⎣
x

y

ẏ

ẋ

⎤⎥⎥⎦+
1

mf

⎡⎢⎢⎣
0

0

0

1

⎤⎥⎥⎦ufx (19)

Since the pair (Ab, Bb) is not completely state controllable, the nominal

system in Eq. (19) can be decomposed into controllable and uncontrollable

parts using a transformation matrix, T . The new state vector is given by

Zb = T Xb and the open-loop system in the new coordinates has the form,

Żb = Āb Zb + B̄b ufx (20)

where

Āb = T Ab T
−1 =

[
Āuc 0

Ā21 Āc

]
and B̄b = T Bb =

[
0

B̄c

]
(21)

The pair (Āc, B̄c) are controllable and all the eigenvalues of Āuc are uncon-

trollable. Based on Eq. (21), consider an orthogonal transformation matrix

given by

T =

⎡⎢⎢⎣
2n 0 1 0

0 1 0 0

1 0 −2n 0

0 0 0 −1

⎤⎥⎥⎦ (22)

Since the rank of Cx = 3 < 4 = n, the system given by Eq. (19) has

3 controllable modes and 1 uncontrollable mode. Thus Eq. (20) can be
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written in the form:

⎡⎢⎢⎢⎢⎣
żb1
· · ·

żb2
żb3
żb4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
... 0 0 0

· · ·
... · · · · · · · · ·

1
4n2+1

... 0 − 2n
4n2+1 0

0
... 0 0 −4n2 + 1

− 2n(1+3n2)
4n2+1

... 0 n2

4n2+1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
zb1
· · ·

zb2
zb3
zb4

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0

· · ·

0

0

−1

⎤⎥⎥⎥⎥⎦ufx (23)

where the open-loop eigenvalues of Āb are {0, 0, ±j n}. Based on the def-

initions provided in Eq. (21), the uncontrollable mode is given by żb1 = 0

and the eigenvalue associated with the uncontrollable mode is 0. Therefore,

if the system is formulated with no along-track input, the linearized SFF

dynamics possesses one uncontrollable critical mode.

4.1. Control Objective

The equations of motion are rewritten in state space form as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

ż

ẍ

ÿ

z̈

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x

y

z

ẋ

ẏ

ż

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

μ( 1
r2
l

− (rl+x)
r3
f

)− 2n2x

n2y − μy
r3
f

n2z − μz
r3
f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

+
1

mf

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

b1 0 0

0 b2 0

0 0 b3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ufx

ufy

ufz

⎤⎦+
1

mf

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣Fdx

Fdy

Fdz

⎤⎦

In general form Ẋ = AX + E(X) + BUf + DFd, the nonlinear terms in

the equation of motion are lumped into E(X), and Fd represent the differ-

ential perturbation forces. Now, state vector of the system X ∈ R
6x1 =

[x, y, z, ẋ, ẏ, ż]T can be split into two parts as X = [x1, x2]
T where x1

and x2 represents the unactuated and actuated states, respectively. The

unactuated states can be further transformed to x1 = [x10, x11]
T , where

x10 ∈ R
3×1 = [x, y, z]T . Two main cases of actuation failure to determine

the state x11 is considered as follows:
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Case I : (ufx = 0, b1 = 0, b2, b3 = 1) No control force available in the

radial direction (x) and complete control authority available in the

along-track (y) and cross-track (z) direction. For this case x11 = ẋ,

x2 = [ẏ, ż], and U ∈ R
2×1 = [ufy, ufz]

T .

Case II : (ufy = 0, b2 = 0, b1, b3 = 1) No control force available in the

along-track direction (y) and complete control authority available in

the radial (x) and cross-track (z) direction. For this case x11 = ẏ,

x2 = [ẋ, ż], and U ∈ R
2×1 = [ufx, ufz]

T .

Based on the leader-follower SFF mathematical model developed in the

previous section, the relative state vector and the desired relative trajecto-

ries are defined as X(t), Xd(t) ∈ R
6, respectively. The performance measure

is defined as the tracking error e(t) ∈ R
6,

e(t)
Δ
= X(t)−Xd(t) (25)

The controller is derived for circular orbits and therefore, any parameters

associated with the elliptic orbit of the leader spacecraft are not considered.

For deriving the control laws, the following simplifications to Eqs. (1-4)

are made which pertains to the leader in circular orbit, (1) θ̈ = 0, (2)

θ̇ = n =
√
μe/rp3, where rp is the orbit radius of the leader spacecraft, and

(3) rl is replaced with rp. The objective is to develop a control algorithm for

the SFF mathematical model, Eqs. (2-4), using either radial or along-track

thrust combined with cross-track input to drive the relative states of the

system to its desired relative trajectories as t → ∞, so that the tracking

errors, Eq.(25), converges to zero.

lim
t→∞

X(t) = Xd(t) (26)

4.2. Design of Sliding Manifold

The sliding surfaces for the SFF are designed for two cases as follows.

4.2.1. Case I - Complete failure of radial axis thruster

The linearized HCW model (Eq. 18) in the previous section can be repre-

sented in terms of new coordinates x1 ∈ R
4 and x2 ∈ R

2 as follows[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
0

B2

]
U (27)

where x1 and x2 are as defined in Case I, B2 ∈ R
2×2 = I2×2, and the

complete forms of Aij , (i, j = 1, 2) are given in the Appendix. Carrying
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out a similar transformation on the desired trajectory equations (Eqs. 5-6),

Xd = [xd
1, x

d
2]

T gives [
ẋd
1

ẋd
2

]
=

[
Ad

11 Ad
12

Ad
21 Ad

22

] [
xd
1

xd
2

]
(28)

Based on Eq. (27) and Eq. (28) the following error dynamics can be formu-

lated:

ė1 = A11e1 +A12e2 + Ā11x
d
1 + Ā12x

d
2

ė2 = A21e1 +A22e2 +B2U + Ā21x
d
1 + Ā22x

d
2

(29)

where Āij = Aij + Ad
ij for i, j = 1, 2, and ei = xi − xd

i . By exploiting

the coupling between directly actuated and unactuated states, the sliding

surface, S, is defined as a function of the tracking errors and desired states.

S = {e1 ∈ R
4×1, e2 ∈ R

2×1 : e2 +K e1 = 0} (30)

where K ∈ R
2×4 is the weighting matrix. When the system reaches the

sliding surface, S = 0 ∀ t > tr, where tr is the reaching time after which

sliding motion starts,

e2 = −K e1 (31)

It is important to note that Eq. (31) holds only on the sliding surface

and substituting this relation to the reduced order system in Eq. (29) gives

ė1 = (A11 −A12K)e1 + Ā11x
d
1 + Ā12x

d
2 (32)

Since (A,B) is, by definition a controllable pair it follows directly that

the matrix pair (A11, A12) is also controllable. To facilitate the stability

analysis, the sliding surface is expressed as:

S = {e ∈ R
6×1 : Λ e = 0} (33)

where

Λ = [K I2×2] =

[
K11 K12 K13 K14 1 0

K21 K22 K23 K24 0 1

]
(34)

4.2.2. Case II - Complete failure of along-track thruster

Based on the error dynamics in Eq. (29) and the complete linear model (Eq.

18), the reduced order system for Case II (excluding the desired trajectory

terms - Ā11x
d
1 + Ā12x

d
2) is given by⎡⎢⎢⎣

ėx
ėy
ėz
ëy

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
ex
ey
ez
ėy

⎤⎥⎥⎦+

⎡⎢⎢⎣
1 0

0 0

0 1

−2n 0

⎤⎥⎥⎦[ ėxėz
]

(35)
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The uncontrollable mode is extracted by representing the reduced order

system with a new set of coordinates. In order to facilitate the analysis,

linear change of coordinates for Eq. (35) can be obtained using the following

transformation matrix

T1 =

⎡⎢⎢⎣
2n 0 0 1

0 −1 0 0

0 0 −1 0

−1 0 0 2n

⎤⎥⎥⎦ (36)

By a change of basis using, (1) z = T1 e1, (2) Ā = T1A11 T
−1
1 , and (3)

B̄ = T1A12, Eq. (35) is transformed into the following lower order system[
ż1
ż2

]
=

[
Āuc 0

Ā21 Āc

] [
z1
z2

]
+

[
0

Bc

] [
ėx
ėz

]
(37)

where

Āuc = 0; Ā21 =

⎡⎣−10
0

⎤⎦ ; Āc =

⎡⎣ 0 0 −2n

0 0 0

0 0 0

⎤⎦ ; Bc =

⎡⎣ 0 0

0 −1

−1 0

⎤⎦
with (Āc, Bc) a controllable pair. The uncontrollable mode is given by ż1 =

0 which implies z1 is a constant. Based on the transformation matrix given

by Eq. (36), z1 = ėy + 2n ex. The objective is to develop a sliding surface

that can eliminate the effect of this uncontrollable mode. Hence, using the

properties of linear state-space theory, there exists a linear feedback control

with the gain matrix K ∈ R
2×3 such that Ac −BcW is Hurwitz.

e2 = −K z2 = −K T̂1e1 (38)

where T̂1 = T1(2 : 4, :). This result can be utilized to define a sliding

surface based on the pair (Ac, Bc) which is stable as opposed to a manifold

designed based on (A11, A12). The time-invariant switching function for

Case II with a robust component added to alleviate the effect of matched

part of the reduced order system and the uncontrollable mode is defined

as,

S = {e1 ∈ R
4×1, e2 ∈ R

2×1 : e2 +K T̂1e1 = 0} (39)

Therefore, asymptotic stabilization of the tracking errors can be guaranteed

if the weighting matrix W is appropriately chosen to suppress the influence

of the uncontrollable mode. Sufficiently fast error decay when sliding can

be ensured by placing the closed-loop eigenvalues of (Ac −BcK) in the far

left-hand half of the complex plane. The error dynamics are represented in
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the exact same manner as Eq. (29) with e1 = [ex, ey, ez, ėy]
T and e2 =

[ėx, ėz]
T . To facilitate the stability analysis, the sliding surface is expressed

as:

S = {e ∈ R
6×1 : Γ e = 0} (40)

where

Γ = [K T̂1 I2×2] =

[
−K13 −K11 −K12 2nK13 1 0

−K23 −K21 −K22 2nK23 0 1

]
(41)

4.3. Nonlinear Control Formulation

The nonlinear equations of motion can be represented in terms of trans-

formed coordinates as follows:[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
E1(X)

E2(X)

]
+

[
04×2

I2×2

]
Uf +

[
Fd1

Fd2

]
(42)

where E1(X) and E2(X) are the nonlinear terms decomposed from E(X)

in Eq. 24, Uf ∈ R
2×1 = [ufi, ufz]

T is the vector of control inputs, and

Fd1 ∈ R
4×1 = [0, 0, 0, Fdi]

T , Fd2 ∈ R
2×1 = [Fdj , Fdz]

T , ∀ i, j = x or y

(depending on Case I or Case II), are the differential perturbations.

Next, we assume that the desired reference trajectory, Xd, and the non-

linear component, E(X), in the equations of motion are bounded as

‖Xd‖ ≤ ρ1 and ‖E(X)‖ ≤ ρ2‖X‖ (43)

where ρ1 > 0, and ρ2 is the Lipschitz constant of the nonlinear vector field

associated with E(X). Vaddi8 showed that the Lipschitz constant can be

determined by computing the ratio ‖E(X)‖
‖X‖ for a particular region of inter-

est (varying formation disc size 1 km− 150 km) and choosing its maximum

value. The uncertainties such as relative J2, magnetic forces, luni-solar per-

turbations, dynamics of thrusters, perturbations due to thruster misalign-

ment, etc. are assumed to be included in the following chosen uncertainty

bound (ρ3, ρ4 > 0).

‖Fd‖ ≤ ρ3‖X‖+ ρ4 (44)

Next, the control scheme is developed to ensure that the sliding man-

ifold is reached and sliding on the manifold occurs. Based on the sliding

manifolds given by Eqs. (33) and (40), the general structure of the surfaces

are identical for cases I and II, and therefore the formulation of control

scheme will be the same. Then, considering Eq. (33), one can obtain

Ṡ = Λ ė = Uf + ΛAX + Λ(E(X) +DFd)− ΛẊd (45)
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Due to the form of the aforementioned uncertainties given by Eqs. (43)

and (44), a second order polynomial function that bounds the lumped term

containing nonlinearities and disturbances in the system can be expressed

as follows:

γ(t,X,Xd) = Λ
[
E(X) +DFd − Ẋd

]
‖γ(t,X,Xd)‖ ≤ ‖Λ‖ [(ρ1 + ρ4) + (ρ2 + ρ3)‖X‖] ≤ ρ‖Λ‖Φ = ϕ3

Φ = 1 + ‖X‖

(46)

Carrying out some algebraic manipulations based on Eqs. (45) and (46),

the nonlinear control law capable of precise formation-keeping and recon-

figuration is given by

Uf = −

[
η

ϕ2S

‖S‖+ δ
+ ΛAX

]
(47)

where δ is a small positive scalar specifying the boundary layer thickness

that will eliminate chatter if appropriately chosen so that the unmodeled

high frequency dynamics are not excited. This choice has no effect on the

closed-loop trajectories, except when sliding along the sliding surface Su, in

which case the deadband will strongly influence the high frequency chatter

in the control input. The scalar function η depends on the magnitude of

the disturbances and uncertainties,

η =
ϕ1

ϕ2
(ϕ3 + ϕ4) ∀ [ϕ1 > 1 and ϕ2, ϕ3, ϕ4 ≥ 0] (48)

for some positive constants ϕ1, ϕ2, ϕ3, and ϕ4.

4.4. Stability Analysis

Theorem 1: For the underactuated spacecraft formation flying mathemat-

ical model in Eq. (42) if, the sliding manifold is chosen as Eq. (33) or Eq.

(40), the control law is defined as Eq. (47), and the bounds on the external

disturbances and uncertainties on the system is assumed as given by Eq.

(46) then the system reaches the sliding surface in finite time for a suffi-

ciently small δ > 0.

Proof : Consider the Lyapunov function

V (S) =
1

2
STS (49)

Taking the first derivative of V (S) along the trajectory of the closed-loop

system,

V̇ (S) = ST
[
Λ (Ẋ − Ẋd) + K̄Ẋd

]
(50)
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Substituting the nonlinear relative equations of motion, and the control law

given by Eq. (47), the following relation can be obtained

V̇ (S) = ST
[
Λ (AX + E(X) +DFd) + Uf + (K̄ − Λ) Ẋd

]
= ST

[
−η

ϕ2S

‖S‖+ δ
+ γ(t,X,Xd)

]
(51)

Based on Eq. (46), the first derivative of V (S) can be expressed as

V̇ (S) ≤ −η
ϕ2‖S‖

2

‖S‖+ δ
+ ‖γ(t,X,Xd)‖‖S‖

≤ −η
ϕ2‖S‖

2

‖S‖+ δ
+ ϕ3‖S‖ (52)

Expressing ϕ3 in terms of η, ϕ1, ϕ2, and ϕ4 from Eq. (48) and substituting

in Eq. (52),

V̇ (S) ≤ −‖S‖

[
η ϕ2

‖S‖

‖S‖+ δ
−

η ϕ2

ϕ1
+ ϕ4

]
≤ −ϕ4‖S‖ − η ϕ2 ‖S‖

[
‖S‖

‖S‖+ δ
−

1

ϕ1

]
(53)

It is readily obtained from Eq. (53) that, if:

‖S‖

‖S‖+ δ
−

1

ϕ1
≥ 0

‖S‖ ≥
δ

ϕ1 − 1
(54)

then V̇ (S) < 0. The condition in Eq. (54) is only satisfied if

V (S) >
1

2

(
δ

ϕ1 − 1

)2

= ε1 (55)

Based on Eq. (52), where ‖Su‖

‖Su‖+δ ≤ 1 (∀ δ ≥ 0), a condition for selecting

the gains can be derived as follows:

η ϕ2 − ϕ3 > 0, ϕ1 >
ϕ3

ϕ3 + ϕ4
(56)

Using this fact it can be shown that V ′(Su) ≤ −ε2
√
2V (Su) for some ε2 > 0.

This implies that the sliding boundary layer is reached in finite time. For

the case where a small (δ) is chosen, then every solution will eventually

enter the set 
 = {Su : V (Su) ≤ ε1} and will be globally uniformly ul-

timately bounded with respect to the ellipsoid ε1. Thus, it is shown that

the continuous control input given by Eq. (47) forces the solutions of the

50777_8063 -insTexts#150Q.indd   30550777_8063 -insTexts#150Q.indd   305 6/8/11   7:33 PM6/8/11   7:33 PM



306

system towards a boundary layer surrounding the sliding surface S in the

state space, and the system remains in it thereafter. �

Next we evaluate the properties of the system once the closed-loop er-

ror dynamics are constrained to S. To this end, Shyu’s stability criterion9

of the reduced-order system with unmatched uncertainties is introduced in

Lemma 1.

Lemma 1: Consider the reduced order system with uncertainty described

by

ẋ1 = (A11 −A12K)x1 + f̄(x1) (57)

where f̄(x1) is the unmatched uncertainty. Then, if f̄(x1) satisfies the uni-

form Lipschitz condition ‖f̄(x1
1) − f̄(x2

1)‖ ≤ b‖x1
1 − x2

1‖ where 0 ≤ b ≤

0.5λmin(Q̄)/‖P̄‖ with P̄ , Q̄ ∈ R
(n−m)×(n−m) which are symmetric, positive-

definite matrices satisfying the Lyapunov equation (A11 − A12K)T P̄ +

P̄ (A11 −A12K) = −Q̄, then the uncertain system, Eq. (57), on the sliding

surface is asymptotically stable.

The nonlinear error dynamics of relative motion between a leader space-

craft in circular reference orbit and a follower is rewritten as:

ė1 = A11e1 +A12e2 + f̄ru(X)

ė2 = A21e1 +A22e2 +B2U + f̄rm(X)
(58)

where f̄ru(X) ∈ R
4 and f̄rm(X) ∈ R

2 are the lumped terms containing the

unmatched and matched components of uncertainties (E(X), Fd) in the

system, respectively. When in sliding mode the system is insensitive to the

matched uncertainty,f̄rm(X). The unmatched uncertainties are assumed to

be unknown but bounded and satisfies, ‖f̄ru(X)‖ ≤ w1 + w2‖X‖. During

the sliding motion e2 = −K e1 − K̄ Xd (from Eq. 30), and therefore

e =

[
e1

−K e1 − K̄ Xd

]
⇒ X =

[
1

−K

]
e1 +

[
0

−K̄

]
Xd +Xd

‖X‖ ≤
√
1 + ‖K‖2‖e1‖+ (1 + ‖K̄‖)‖Xd‖

(59)

Consequently the bound on the unmatched uncertainty can be written as

‖f̄ru(X)‖ ≤ ϕ2 + w̄2‖e1‖ (60)

where ϕ2 = ρ1(1 + ‖K̄‖) (from Eq. 43) and w̄2 = w2

√
1 + ‖K‖2. The

equation representing the error dynamics confined to the sliding surface is
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obtained by substituting S = 0 in Eq. (58), giving

ė1 = (A11 −A12K)e1 + f̄ru(X) (61)

In the following theorem, based on the sliding surface defined by Eq. (30), a

stability criterion for the reduced order system (Eq. 61) is presented. Sev-

eral cases of asymptotic stabilization of the reduced order system in the

presence of unmatched uncertainties, where the vector fields have a spe-

cial form, have been studied in the literature. The procedure outlined in

the book by10 and Shyu’s stability criterion (see Lemma 1) is utilized to

present Theorem 2.

Theorem 2: For the motion constrained to the sliding surface, the tra-

jectory of the reduced-order system (Eq. 61) starting from any initial con-

dition will enter a compact set � containing the origin in finite time and

the tracking error e1 will be uniformly ultimately bounded with respect to

the ellipsoid

� =

{
e1 ∈ R

4 : ‖e1‖ ≤
2ϕ2

ξ − 2w̄1

}
(62)

Then, the reduced-order system is globally asymptotically stable if ξ > 2w̄1,

with ξ � λmin(Q̄)/λmax(P̄ ), where P̄ , Q̄ ∈ R
4×4 are positive-definite ma-

trices satisfying the Lyapunov equation

(A11 −A12K)T P̄ + P̄ (A11 −A12K) = −Q̄ (63)

Proof : Consider the Lyapunov function

V (e1) = e1
T P̄ e1 (64)

The first derivative of V (e1) along the motion of Eq. (61) is given by

V̇ (e1) = e1
T P̄ ė1 + ėT1 P̄ e1

= e1
T P̄

[
(A11 −A12K)e1 + f̄ru(X)

]
+
[
(A11 −A12K)e1 + f̄ru(X)

]T
P̄ e1

= e1
T
[
P̄ (A11 −A12K) + (A11 −A12K)T P̄

]
e1 + 2eT1 P̄ f̄ru(X)

≤ −e1
T Q̄ e1 + 2‖P̄ e1‖ ‖f̄ru(X)‖ (65)

Using the Rayleigh principle, the following inequality can be derived:

λmin(Q̄)‖e1‖
2 ≤ e1

T Q̄ e1 ≤ λmax(Q̄)‖e1‖
2 (66)
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In particular, if λmin(Q̄) ≥ 0 then it follows that e1
T Q̄ e1 ≥ 0 for all e1.

Using Eq. (66) and Eq. (60), Eq. (65) can be expressed as

V̇ (e1) ≤ −λmin(Q)‖e1‖
2 + 2λmax(P̄ )‖e1‖ ‖f̄ru(X)‖

≤ −λmax(P̄ )
[
ξ‖e1‖ − 2‖f̄ru(X)‖

]
‖e1‖

≤ −λmax(P̄ ) [ξ‖e1‖ − 2 w̄1‖e1‖ − 2ϕ2] ‖e1‖ (67)

Therefore, it is clearly evident from Eq. (67) that V̇ (e1) < 0 when e1 is

outside of the set

� =

{
e1 ∈ R

4 : ‖e1‖ ≤
2ϕ2

ξ − 2w̄1

}
(68)

Analytical estimate of λmin(Q) is not needed for numerical simulations be-

cause the proposed control law is independent of this parameter. When

norm of the unactuated states, ‖e1‖ > 2ϕ2

ξ−2w̄1

, then V̇ (e1) decreases; but

once the states (e1) enters the set �, the states cannot go out of it and hence

the unactuated states will be confined to the set �. For every e1(t0) ∈ �

then e1(t) ∈ � for all t ≥ t0. Since V̇ (e1) < 0, it also follows that if

e1(t0) /∈ � then the trajectory will reach � in finite time tr. The system is

therefore uniformly ultimately bounded with respect to the ellipsoid �. �

5. Design of Control Laws for Spacecraft Attitude

We present the procedures for designing the proposed control laws as fol-

lows.

5.1. Design of Sliding Manifold

Using Eq. (14), we get the equilibrium state vector Xe = 0, i.e., (αe =

φe = γe = αe
′ = φe

′ = γe
′ = 0). Considering first order approximation for

the system state, we have the linearized equations of motion in state space

form as follows:

X ′ = AX +BU (69)
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where X ∈ R
6x1 = [α, α′, φ, φ′, γ, γ′]T , and the matrices A ∈ R

6x6, B ∈

R
6x3 are described in Eq. (70) with k1 = (Iz−Ix)/Iy and k2 = (Iz−Iy)/Ix.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

3 k2−k1

1−k1k2

0 0 0 0 0

0 0 0 1 0 0

0 0 −4k1 0 0 k1 − 1

0 0 0 0 0 1

0 0 0 1− k2 −k2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

b1 0 0

0 0 0

0 b2 0

0 0 0

0 0 b3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(70)

When all actuators are healthy, b1, b2, b3 = 1, the controllability matrix

C = [B
...AB

... · · ·
...A5B] is of rank 6. The matrix pair (A,B) defining the

nominal linear system is also fully state controllable when b2 = 0 (i.e.b1 = 1

and b3 = 1) or b3 = 0 (i.e.b1 = 1 and b2 = 1). Therefore, the linear system

is controllable even if the actuation on the roll -axis (φ) or the yaw -axis (γ)

fails. If no actuation is available for the decoupled pitch dynamics (b1 = 0),

then the system is not fully state controllable. We can now transform the

linear system in terms of new coordinates x1 ∈ R
4 and x2 ∈ R

2, so that

Eq. (69) can be transformed to the form given by[
x1
′

x2
′

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
0

B2

]
U (71)

This representation separates the actuated and unactuated states based on

the failed axis (roll or yaw). By exploiting the coupling between the directly

actuated and unactuated states, we define the sliding surface, Su as a linear

combination of the states.

Su = {x1 ∈ R
4×1, x2 ∈ R

2×1 : Λ1x1 + Λ2x2 = 0} (72)

where Λ1 ∈ R
2×4 and Λ2 ∈ R

2×2 are weights on the states x1 and x2

respectively. When the system reaches the sliding surface, Su = 0 ∀ t > tr,

where tr is the reaching time after which sliding motion starts,

x2 = −Λ2
−1Λ1 x1 (73)

It is important to note that Eq. (73) holds only on the sliding surface

and substituting this relation to the reduced order system in Eq. (71) gives

x1
′ = (A11 −A12K)x1 (74)

where K = −Λ2
−1Λ1 = [K1 K2].

K1 ∈ R
2×3 =

[
K11 K12 K13

K21 K22 K23

]
and K2 ∈ R

2×1 =

[
K14

K24

]
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During an ideal sliding mode behavior, x2 can be considered as a control

signal to stabilize x1. Therefore, the choice of sliding surface, Su, clearly

affects the dynamics of the reduced order system through the selection of

weighting matrix K.

Su = {x1 ∈ R
4×1, x2 ∈ R

2×1 : x2 +Kx1 = 0} (75)

Remark 1 : The weighting matrix K prescribes a desired closed loop be-

havior of the system [Eq. (74)] and can be determined using any classical

approaches which provides a full state feedback control scheme for a system

represented in state-space form. Since (A,B) is, by definition a controllable

pair it follows directly that the matrix pair (A11, A12) is also controllable.

5.2. Nonlinear Control Formulation

The lumped term containing the nonlinearities, uncertainties, and distur-

bances is given by

ξ(x1, x2) =
[
Ā21 +K2Ā11

]
[F1 + d1] +

[
Ā22 +K2Ā12

]
[F2 + d2] +K1x10

′

(76)

A feasible and practical control scheme should not be designed by in-

cluding the term ξ(x1, x2) directly. One way to account for this in the

controller is to assume that the lumped disturbances are bounded and then

use the upper bound in the control algorithm design.

‖ξ(q, q′, q′′)‖ ≤ ρ1 + ρ2‖x1‖+ ρ3‖x2‖ = ϕ3 (77)

In order to ensure that the sliding manifold is reached and sliding on the

manifold occurs, the continuous nonlinear control law is chosen as

Uua = −(Ā22 +K2Ā12)
−1

[
η

ϕ2Su

‖Su‖+ δ

]
(78)

where δ is a small positive scalar specifying the boundary layer thickness

that will eliminate chatter if appropriately chosen so that the unmodeled

high frequency dynamics are not excited.10 This choice has no effect on

the closed-loop trajectories, except when sliding along the sliding surface

Su, in which case details of the dead-band will strongly influence the high

frequency chatter in the control input. The nonnegative constant η depends

on the magnitude of the disturbances and uncertainties,

η =
ϕ1

ϕ2
(ϕ3 + ϕ4) (79)
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for some positive constants ϕ1, ϕ2, ϕ3, and ϕ4. The steps involved in ad-

equately determining these nonnegative constants are detailed in the next

section.

5.3. Stability Analysis

Theorem 3: For the spacecraft mathematical model in Eq. (15) if, the

sliding manifold is chosen as Eq. (75), the control law is defined as Eq.

(78), and the bounds on the external disturbances, parameter uncertainties,

and system nonlinearities are assumed to be governed by Eq. (77), then

the closed-loop trajectories of the system will converge in finite time to a

neighborhood area of the equilibrium set F.

F �

[
Su : ‖Su‖ ≤

δ

ϕ1 − 1

]
(80)

Proof : Consider the Lyapunov function

V (Su) =
1

2
Su

TSu (81)

Taking the first derivative of V (Su) along the trajectory of the closed-loop

system,

V ′(Su) = Su
TSu

′ = Su
T [x2

′ +K1x10
′ +K2x11

′] (82)

Substituting the mathematical model, Eq. (15), and the control law, Eq.

(78), we get

V ′(Su) = Su
T
[ (

Ā21 +K2Ā11

)
(F1 + d1)

+
(
Ā22 +K2Ā12

)
(F2 + d2 + Uua) +K1x10

′

]
= Su

T

[
−η

ϕ2Su

‖Su‖+ δ
+ ξ(x1, x2)

]
(83)

Using the property defined based on Eq. (77) and expressing ϕ3 in terms

of η, ϕ1, ϕ2, and ϕ4 from Eq. (79), we get

V ′(Su) ≤ ‖Su‖

[
−η

ϕ2‖Su‖

‖Su‖+ δ
+ ‖ξ‖

]
≤ ‖Su‖

[
−η

ϕ2‖Su‖

‖Su‖+ δ
+ ϕ3

]
≤ ‖Su‖

[
−η

ϕ2‖Su‖

‖Su‖+ δ
−

ηϕ2

ϕ1
+ ϕ4

]
≤ −ϕ4‖Su‖ − ηϕ2‖Su‖

[
‖Su‖

‖Su‖+ δ
−

1

ϕ1

]
(84)
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It is readily obtained from Eq. (84) that, if:

‖Su‖

‖Su‖+ δ
−

1

ϕ1
≥ 0

‖Su‖ ≥
δ

ϕ1 − 1
(85)

then V ′(Su) < 0 when Su is outside of the set

F �

[
Su : ‖Su‖ ≤

δ

ϕ1 − 1

]
(86)

The condition in Eq. (85) is only satisfied if

V (Su) >
1

2

(
δ

ϕ1 − 1

)2

= ε1 (87)

Based on the second line Eq. (84), where
‖Su‖

‖Su‖+ δ
≤ 1 (∀ δ ≥ 0), a

condition for selecting the gain ϕ3 in relation to ϕ1 and ϕ4, can be derived

such that:

ηϕ2 − ϕ3 > 0, ϕ1 >
ϕ3

ϕ3 + ϕ4
(88)

Using this fact it can be shown that V ′(Su) ≤ −ε2
√
2V (Su) for some ε2 > 0.

This implies that the sliding boundary layer is reached in finite time. For

the case where a small (δ) is chosen, then every solution will eventually

enter the set F = {Su : V (Su) ≤ ε1}. �

Next we evaluate the properties of the spacecraft motion constrained to

Su. The linear system can be expressed in the general form as

x1
′ = A11x1 +A12x2 +D1

x2
′ = A21x1 +A22x2 +B2U + d2

(89)

where x1 ∈ R
4×1 and x2 ∈ R

2×1 are the actuated and unactuated

states, respectively, A11 ∈ R
4×4, A12 ∈ R

4×2, A21 ∈ R
2×4, A22 ∈ R

2×2,

B2 ∈ R
2×2, U ∈ R

2×1 is the control input, D1 ∈ R
4×1 = [0, 0, 0, d1]

T and

d2 ∈ R
2×1 = [d21, d22]

T are the unmatched and matched components of

nonlinear uncertainties and disturbances.

We now study the effect of unmatched component (D1) of the distur-

bances when the dynamics of the system represents the dynamics of an ideal

sliding mode. For convenience we set δ = 0. To determine the spacecraft

dynamics on the sliding surface, we can solve Su = 0 for x2 using Eq. (75)

which yields x2 = −Kx1. We have shown in Theorem 5.1 that a control

law exists such that the spacecraft motion can be constrained to Su. This
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result can be substituted into Eq. (89) to obtain the following reduced order

system

x1
′ = (A11 −A12K)x1 +D1 (90)

Let Ac = A11 − A12K. We can ensure that Ac is a stable matrix with

eigenvalues containing negative real parts by appropriately choosing K.

For asymptotic stability we require that, if P and Q are positive definite

matrices, then the solution to the Lyapunov equation [Eq. (91)] will exist

because the matrix Ac is stable.

PAc +Ac
TP = −Q (91)

Theorem 4: For the motion constrained to the sliding surface, the trajec-

tory of the reduced order system [Eq. (90)] starting from any initial con-

dition will enter a compact set containing the origin in finite time and the

states will be uniformly ultimately bounded with respect to the ellipsoid

� =

⎧⎨⎩x1 : ‖x1‖ ≤ 2

sup
D1∈ ε3

‖PD1‖

λmin(Q)

⎫⎬⎭ (92)

Proof : Consider the Lyapunov function

V (x1) = x1
TPx1 (93)

The first derivative of V (x1) along the motion of Eq. (90) is given by

V ′(x1) = x1
T (PAc +Ac

TP )x1 + 2xT
1 P D1 = −x1

TQx1 + 2xT
1 P D1 (94)

Using the Rayleigh principle we know that

λmin(Q)‖x1‖
2 ≤ x1

TQx1 ≤ λmax‖x1‖
2 (95)

In particular, if λmin(Q) ≥ 0 then it follows that x1
TQx1 ≥ 0 for all x1.

Based on these conditions, Eq. (94) can be expressed as

V ′(x1) ≤ −λmin(Q)‖x1‖
2 + 2‖x1‖ · ‖PD1‖

≤ −(λmin(Q)‖x1‖ − 2‖PD1‖)‖x1‖ (96)

It is clearly evident from Eq. (96) that V ′(x1) < 0 when x1 is outside of

the set

� �

⎧⎨⎩x1 : ‖x1‖ ≤ 2

sup
D1∈ ε3

‖PD1‖

λmin(Q)

⎫⎬⎭ (97)
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Analytical estimate of λmin(Q) is not required for numerical simulations

because the proposed control law is independent of this parameter. For ev-

ery x1(t0) ∈ � then x1(t) ∈ � for all t ≥ t0. Since V
′(x1) < 0, it also follows

that if x1(t0) /∈ � then the trajectory will reach � in finite time tr. The

system is therefore uniformly ultimately bounded with respect to the el-

lipsoid �. Explicit consideration of the actuated states (x2) is not required

because it is a well known fact that when in the sliding mode the system

is totally insensitive to matched disturbances. This completes the proof. �

Remark 1 : The upper bound on the nonlinearities and disturbances, ϕ3,

for cases I and II were determined from numerical simulations by prop-

agating the nonlinear dynamics along with external disturbances based

on the following initial conditions: [α0, φ0, γ0] = [80◦, 80◦, 80◦], and

[α0
′, φ0

′, γ0
′] = [0.01, 0.01, 0.01]. The largest value of 1 + ‖x1‖ + ‖x2‖

was chosen. For Case I - ϕ3 = 1.5, and for Case II - ϕ3 = 2.0. The value of

universal gain η is determined based on Eq. (79) using this value of ϕ3 and

the constraint specified in Eq. (88).

6. Numerical Results for Spacecraft Formation Flying

To study the effectiveness and performance of the proposed formation con-

trol strategies, the detailed response is numerically simulated using the set

of governing equations of motion (Eqs. 2-4) in conjunction with the pro-

posed control law (Eqs. 47). The desired states of the system are given by

Eqs. (5) or (6) for circular formation and projected circular formation re-

spectively. The SFF system parameters and the orbital parameters for the

leader spacecraft used in the numerical simulations are shown in Table 1.

Table 1. Orbital parameters

Parameters Values

μ (km
3
s
−2

) 398600

rp (km) 6878

Ωl, il, ωl (deg) 0, 45, 0

For all numerical examples presented in this section, the net disturbance

force, Fd(t), acting on the system is considered to be differential J2 based on

the formulation presented in Section II(C). The leader spacecraft is assumed

to be in an unperturbed circular reference orbit and the differential force on

the follower is calculated relative to the leader spacecraft orbit. The control
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gains (K ϕi) and the boundary layer (δ) used in all simulations for Cases I

and II are shown in Table 2.

Table 2. Controller parameters

Control Gains Case I Case II

[ϕ1, ϕ2, ϕ3, ϕ4] [2.0, 4.0, 1.0, 0.5] [1.5, 1.5, 0.5, 0.2]

[K11, K12, K13, K14] [4, −2, 0, 18] [−0.0013, 0, 0.0028, −]

[K21, K22, K23, K24] [0, 0, 2, 0] [0, 0.0013, 0, −]

δ 10
−5

10
−5

The total control force is assumed to be subjected to saturation limit

defined by

Uf =

⎧⎨⎩
N

Uf

−N

if

if

if

Uf > N

−N < Uf < N

Uf < −N

(98)

where N = 10mN for a 10 kg follower spacecraft. The desired relative mo-

tion considered for ideal formation keeping is a projected circular formation

(PCF) described by Eq. (6), with rdpc = 1 km formation radius. The in-

plane phase angle (φ) between the leader and follower spacecraft is assumed

to be zero degree. The initial relative positions for the numerical simulation

are computed by substituting t = 0 in Eq. (6). The initial velocity compo-

nents for all states are calculated by taking the time derivative of Eq. (6)

and substituting t = 0. The initial state vector is given by:

X(0) = [ 0, rdpc, 0, 0.5n rdpc, 0, n rdpc]
T

(99)

6.1. Formation-keeping and Formation Reconfiguration

Figure 3 shows relative position errors and thrust demand for formation

keeping with no control available in the radial direction in the presence

of relative J2 perturbations. Next, the effectiveness of the proposed control

strategies is demonstrated for multiple formation maneuvers.With the same

initial conditions as given by Eq. (99), the follower spacecraft moves from

a 0.5 km to a 1.5 km (radius) projected circular formation after 5 orbits

(Fig. 4). Also, a scenario where the desired geometry is changed from a 0.5

km projected circular formation to a 2 km circular formation is illustrated

(Fig. 5). The simulation of extreme cases of initial errors and formation re-

configuration clearly indicate the proposed control scheme is indeed robust

to changing operating conditions and ensures precise formation acquisition

during reconfiguration maneuvers.
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Fig. 3. System response under relative J2 disturbance.

6.2. Quantitative Analysis

Based on the simulation results presented above, the control precision and

fuel consumption properties of the proposed control scheme are examined

( Table 3 and Table 4 ). The following scenario is simulated where, (1) the

desired reference orbit is a projected circular formation with rdpc = 1km,

(2) the leader spacecraft is in an unperturbed circular reference orbit, and

(3) the follower spacecraft is positioned correctly into the desired orbit (Eq.

99).

Table 3. Formation-keeping steady-state errors

No Disturbance Differential J2
Errors, m Case I Case II Case I Case II

|ex|max 1.8× 10
−3

7.2× 10
−3

2.2× 10
−2

2.0× 10
−1

|ey|max 5.0× 10
−3

5.0× 10
−4

5.0× 10
−2

1.8× 10
−2

|ez|max 2.0× 10
−10

1.2× 10
−9

8.0× 10
−6

5.0× 10
−8
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Fig. 4. Case I - Formation reconfiguration from Rd = 0.5km to Rd = 1.5km.

Table 4. Fuel-consumption per orbit

Fuel Cost No Disturbance Differential J2
m/s (per orbit) Case I Case II Case I Case II

ΔVx · · · 4.3× 10
−4

· · · 8.6× 10
−3

ΔVy 6.1× 10
−5

· · · 8.5× 10
−3

· · ·

ΔVz 1.9× 10
−4

1.9× 10
−4

5.5× 10
−3

5.5× 10
−3

The proposed control scheme is capable of accomplishing sub-millimeter

tracking precision when no external disturbances are considered, while the

tracking capability reduces to the order of 10−2m in the presence of differ-

ential J2 perturbations. Note that ΔV is calculated based on the average

budget obtained over a period of 10 orbits. For the case of no disturbance,

eliminating radial-axis input (Case I) seems to be beneficial in terms of fuel

cost when compared to eliminating along-track input (Case II). In the pres-

ence of differential J2 perturbations relative to the leader spacecraft orbit,

cases I and II provide similar results as seen in Table 4. The cost required
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Fig. 5. Case II - Formation reconfiguration from projected circular formation (Rd =

0.5km) to circular formation (Rd = 2.0km).

for formation keeping is calculated as the result of the integral

J =

τ∫
0

(u2
fx + u2

fy + u2
fz)dτ (100)

where τ = 10 is the number of orbits of the leader spacecraft.

7. Numerical Results for Spacecraft Attitude

To study the effectiveness and performance of the proposed nonlinear con-

trol strategies for rigid spacecraft in the event of unexpected actuator fail-

ures, the detailed response of the system is numerically simulated using

the set of governing equations of motion [Eq. (15] in conjunction with the

proposed control law [Eq. (78)]. The system and orbital parameters for the

spacecraft along with the initial conditions used in the numerical simula-

tions are shown in Table 5. Unless otherwise stated explicitly, all numerical

simulations are based on the parameters stated in Table 5 without con-
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sidering the product of inertia terms, Ixy = Ixz = Iyz = 0, in the inertia

matrix.

Table 5. Simulation parameters

Parameters Values

Orbit

rp (km) 6878

μe (km
3
s
−2

) 398600

Spacecraft MOI

Ixx, Iyy, Izz (kgm
2
) 15, 17, 20

Initial Conditions

[α0, φ0, γ0] [80
◦, −40◦, 40◦]

[α0
′, φ0

′, γ0
′
] [0.001, 0.001, 0.001]

Based on values of the spacecraft moment of inertia we can calculate

nondimensional parameters k1 = (Iz−Ix)/Iy = 0.3 and k2 = (Iz−Iy)/Ix =

0.2. These values of moment of inertia are considered for the design of

control algorithms. Any change in the moment of inertia of the spacecraft is

unknown to the control algorithm. The control gains (ϕi) and the boundary

layer (δ) used in all simulations for Cases I and II are shown in Table 6.

Table 6. Controller parameters used for numerical analysis

Control Gains Case I Case II

[ϕ1, ϕ2, ϕ3, ϕ4] [0.40, 0.60, 1.50, 0.40] [0.15, 0.40, 2.00, 0.15]

η, δ 1.3, 0.0001 0.8, 0.0001

[K11, K12, K13, K14] [4, 0, 0, 0] [0.5, 0, 0, 0]

[K21, K22, K23, K24] [0, −2, 2, −1] [0, 2, 2, 1]

It is important to note that a universal gain (η) is calculated based on

all ϕi using the formula given by Eq. (79). The sliding plane is given by

Su = x2 +K x1, where K = [K1, K2] is determined using LQR10 applied

to the reduced order system in Eq. (71). K can be considered as a ’pseudo’

feedback matrix that prescribes the required performance of the reduced

order system (A11, A12).

Case I: For no actuation available on roll (φ) axis, the closed-loop eigen-

values of the reduced order system [A11 −A12K] based on values of K

in Table 6, are:

λ1,2 = −0.4± 1.0i ; λ3 = −2 ; λ4 = −4 (101)
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Case II: For no actuation available on yaw (γ) axis, the closed-loop eigen-

values of the reduced order system [A11 −A12K] based on values of K

in Table 6, are:

λ1,2 = −0.4± 0.2i ; λ3 = −2 ; λ4 = −4 (102)

Figure 6 shows the attitude response of the spacecraft in the presence of

initial attitude disturbances (Table 5) for Case I when the control law given

by (78) are used to stabilize the system. The nonnegative constants in the

control law for the case of no actuator failure are chosen as Λα = Λφ = Λγ =

4 and ηc = 0.01. With no control authority available on the φ-axis, a control

algorithm specifically designed for a spacecraft with healthy actuators fails

to stabilize the roll motion. The proposed control law (Eq. 78) successfully

stabilizes 3-axis attitude of the spacecraft using only two control torques

(Uα and Uγ). The driving control torque required for 3-axis stabilization

is also presented in Fig. 6. With no external disturbances acting on the

spacecraft, motion of the system reaches the sliding surface Su = 0 in finite

time which can be analytically determined using the relation

tr ≤
‖Su(t0)‖

2πη
orbits ≤ 0.5 orbit (103)

where η = 1.3 from Table 6. The angular velocity of the spacecraft is sta-

bilized to ωx = ωy = 0 and ωz = 0.0011 rad/s. According to the coordinate

frames selected as shown in Fig. 2 the spacecraft z-axis is normal to the

orbit plane and therefore ωz would be equal to the orbital rate (when e = 0).

Next we consider the case where there is no actuation available on the

yaw axis (Case II). It is clearly evident in Fig. 7 that the conventional

control algorithm fails to stabilize the yaw motion motion of the spacecraft

with Uγ = 0. The reason for uncontrollable rotation of the spacecraft about

its x-axis can be analytically determined from the zero-dynamics of the yaw

equation of motion. When α = α′ = φ = φ′ = 0 the yaw equation of motion

is given by

γ′′ + k2 sin γ cos γ = 0 (104)

where k2 = (Iz − Iy)/Ix. From the solution of Eq. (104) and taking γ0 and

γ0
′ as the initial values, the minimum value of γ′ is given by

γ ′min =

√
γ0′

2 + k2 sin2 γ0 − k2 (105)

Therefore the initial spin rate to avoid uncontrolled motion of the spacecraft

about x-axis can be obtained from Eq. (105) as

γ0
′ < | cos γ0|

√
k2 (106)
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With respect to the uncontrollable motion of γ in Fig. 7, determining the

spin rate (γ′) at the time when pitch and roll axes stabilize, helps us verify

that γ′ > | cos γ0|
√
k2. Therefore, the initial attitude disturbances and the

moment of inertias have a significant effect on the uncontrolled response of

the system.

The proposed control law explicitly designed to accommodate actuator

failure (Eq. 78) successfully stabilizes 3-axis attitude of the spacecraft using

only two control torques (Uα and Uφ). Although the attitude responses in

Fig. 6 and Fig. 7 are simulated with the same initial conditions (Table 6),

it is interesting to note the variation in the stabilized responses of the two

cases.
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Fig. 6. Comparison between the performance of (a) conventional control algorithm and

(b) proposed controller for case I (roll actuator failure).
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Fig. 7. Comparison between the performance of (a) conventional control algorithm and

(b) proposed controller for case II (yaw actuator failure).

8. Conclusions

In this paper, a nonlinear control strategy capable of precision formation

control is developed to study two configurations of reduced inputs, where

no control force is available in the (1) radial direction, and (2) along-track

direction. External disturbances due to differential J2 is effectively attenu-

ated using the proposed technique. Quantitative analysis of the simulation

results show that eliminating the radial axis thrust reduces the fuel cost for

formation maintenance. A nonlinear sliding mode control algorithm is de-

veloped to stabilize the 3-axis attitude of a spacecraft subject to actuator

failures. The numerical simulation results along with the stability analy-

sis establish the robustness of the proposed control scheme in stabilizing

the attitude of a spacecraft by dealing with the presence of model uncer-

tainties, time-varying external disturbances, and complete thruster failures

simultaneously.
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Appendix I

The nonlinear equations of motion represented in terms of transformed

coordinates is given by[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
E1(X)

E2(X)

]
+

[
04×2

I2×2

]
Uf (107)

Case I - No control in the radial direction

x1 = [x, y, z, ẋ]T and x2 = [ẏ, ż]T (108)

A11 =

⎡⎢⎢⎣
0 0 0 1

0 0 0 0

0 0 0 0

3n2 0 0 0

⎤⎥⎥⎦ ; A12 =

⎡⎢⎢⎣
0 0

1 0

0 1

2n 0

⎤⎥⎥⎦ ; A21 =

[
0 0 0 −2n

0 0 −n2 0

]
(109)

A22 =

[
0 0

0 0

]
; E1(X) =

⎡⎢⎢⎢⎣
0

0

0

μ( 1
r2
l

− (rl+x)
r3
f

)− 2n2x

⎤⎥⎥⎥⎦ ; E2(X) =

[
n2y − μy

r3
f

n2z − μz
r3
f

]

(110)

Case II - No control in the along-track direction

x1 = [x, y, z, ẏ]T and x2 = [ẋ, ż]T (111)

A11 =

⎡⎢⎢⎣
0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤⎥⎥⎦ ; A12 =

⎡⎢⎢⎣
1 0

0 0

0 1

−2n 0

⎤⎥⎥⎦ ; A21 =

[
3n2 0 0 2n

0 0 −n2 0

]
(112)

A22 =

[
0 0

0 0

]
; E1(X) =

⎡⎢⎢⎢⎣
0

0

0

n2y − μy
r3
f

⎤⎥⎥⎥⎦ ; E2(X) =

⎡⎣μ( 1
r2
l

− (rl+x)
r3
f

)− 2n2x

n2z − μz
r3
f

⎤⎦
(113)
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Appendix II

In this section, we provide the nonlinear terms in the equation of motion

of a rigid body spacecraft orbiting the Earth. The mathematical model

of the spacecraft is formulated by considering eccentricity and product of

inertia terms in the kinetic energy (Te) and potential energy (Up), and

subsequently substituting them in the Lagrangian relation (Eq. 10). The

proposed control algorithm is designed to accommodate eccentricity and

product of inertia terms as uncertainties in the system model. Therefore,

the control law is developed based on a simplified spacecraft model with

null orbital eccentricity and spacecraft products of inertia (i.e., e = 0,

Ixy = Ixz = Iyz = 0). The nonlinear terms in Eq. (14): Fα, Fφ, and Fγ are

given by

Fα = pα cosφ cos γ + pφ cosφ sin γ − pγ sin γ

Fφ = −pα sin γ + pφ cos γ, Fγ = pγ (114)

The coefficients pα, pφ, and pγ in Eq. (114) are

pα = [(1− kxz + kyz)(1 + α′)φ′ sinφ cos γ]− (kxz − kyz)(1 + α′)2 sinφ

cosφ sin γ + (1 + kxz − kyz)[(1 + α′)γ′ cosφ sin γ + φ′γ′ cos γ]

− 3(kxz − kyz)(cosα sinφ sin γ − sinα cos γ) cosα cosφ

pφ = [(1− kxz + kyz)(1 + α′)γ′ sinφ sin γ]− (1− kxz)(1 + α′)2 sinφ

cosφ cos γ + (1− kxz − kyz)[(1 + α′)γ′ cosφ cos γ − φ′γ′ sin γ]

+ 3(1− kxz)(cosα sinφ cos γ + sinα sin γ) cosα cosφ

pγ = [kxz − (1− kyz) cos 2γ](1 + α′)φ′ cosφ− (1− kyz)[(1 + α′)2 cos2 φ

−φ′2] sin γ cos γ + 3(1− kyz)(cosα sinφ cos γ + sinα sin γ)

(cosα sinφ sin γ − sinα cos γ)

The elements of the matrix N in Eq. (14) are given by⎡⎣N11 N12 N13

N21 N22 N23

N31 N32 N33

⎤⎦
where N11 =

sin2 γ + kyz cos2 γ

kyz cos2 φ
, N12 =

(1 − kyz) sin γ cos γ
kyz cosφ

,

N13 =
sinφ(sin2 γ + kyz cos2 γ)

kyz cos2 φ
, N21 =

(1 − kyz) sin γ cos γ
kyz cosφ

,
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N22 =
cos2 γ + kyz sin2 γ

kyz
, N23 =

(1− kyz) sin γ cos γ sinφ
kyz cosφ

,

N31 =
sinφ(sin2 γ + kyz cos2 γ)

kyz cos2 φ
, N32 =

(1− kyz) sin γ cos γ sinφ
kyz cosφ

,

N33 =
sin2 φ(sin2 γ + kyz cos2 γ)

kyz cos2 φ
+ 1

kxz
.
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PROBLEMS IN ENGINEERING MECHANICS AND

COMPUTATIONAL MATERIAL SCIENCE BASED ON
BOUNDARY MEASURED DATA ∗
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Abstract. Three classes of inverse coefficient problems arising in engineering mechanics

and computational material science are considered. Mathematical models of all considered

problems are proposed within the J2-deformation theory of plasticity. The first class is

related to determination of unknown elastoplastic properties of a beam from a limited

number of torsional experiments. The inverse problem here consists of identifying the un-

known coefficient g(ξ2) (plasticity function) in the nonlinear differential equation of torsional

creep−(g(|∇u|2)ux1 )x1 − (g(|∇u|2)ux2 )x2 = 2ϕ, x ∈ Ω ⊂ R2, from the torque (or torsional

rigidity) T (ϕ), given experimentally. The second class of inverse problems is related to identi-

fication of elastoplastic properties of a 3D body from spherical indentation tests. In this case

one needs to determine unknown Lame coefficients in the system of PDEs of nonlinear elas-

ticity, from the measured spherical indentation loading curve P = P(α), obtained during the

quasi-static indentation test. The third model an inverse problem of identifying the unknown

coefficient g(ξ2(u)) in the nonlinear bending equation is analyzed. The boundary measured

data here is assumed to be the deflections wi[τk] := w(λi; τk), measured during the quasi-

static bending process, given by the parameter τk, k = 1, K, at some points λi = (x
(i)
1 , x

(i)
2 ),

i = 1, M of a plate. An existence of weak solutions of all direct problems are derived in appro-

priate Sobolev spaces, by using monotone potential operator theory. Then monotone iteration

schemes for all the linearized direct problems are proposed. Strong convergence of solutions of

the linearized problems, as well as rates of convergence are proved. Based on obtained continu-

ity property of the direct problem solution with respect to coefficients, and compactness of the

∗The results has been announced at the Satellite Conference of International Congress
of Mathematicians, 14-17 August, 2010, Delhi - India.

50777_8063 -insTexts#150Q.indd   32650777_8063 -insTexts#150Q.indd   326 6/8/11   7:33 PM6/8/11   7:33 PM



327

set of admissible coefficients, an existence of quasi-solutions of all considered inverse problems

are proved. Some numerical results, useful from the poins of view engineering mechanics and

computational material science, are demonstrated.

Key words. inverse coefficient problem, nonlinear monotone potential operator, torsional

rigidity, plasticity function, indentation test, bending plate, monotone iteration scheme, con-

vergence, existence of a quasisolution

AMS(MOS) subject classifications. 35R30, 47H50, 74B20

1. Introduction
Determination of unknown materials properties of based on bound-

ary/surface measured data is one of central and actual problems of compu-
tational material sciences (see, [4], [10], [18], [25-26] and references therein).
Mathematical modeling of these problems leads to inverse coefficient prob-
lems for nonlinear PDEs of various types ([9-10], [15], [17-18], [27]]). It is
known from inverse problems theory that inverse coefficient problems are
most difficult in comparison with all other types inverse problems. More-
over, these problems are severely ill-posed even when the governing equa-
tions are linear one ([12], [15]) which means that very close measured output
data may correspond to quite different materials (i.e. coefficients).

The present study deals with the following three types of inverse prob-
lems governed by nonlinear PDEs, and related to determination of unknown
properties of engineering materials based on boundary/surface measured
data:
(ICP1): determination of unknown elastoplastic properties of power hard-
ening materials from limited torsional experiment;
(ICP2): identification of unknown elastoplastic properties of engineering
materials from indentation tests;
(ICP3): identification of the unknown parameters of an incompressible
bending plate from deflections measured at some points.

In view of Materials Theory and Computational Materials Science all
these classes of problems can be defined as a problem of determination
of unknown material properties from boundary/surface measured data. In
pactice, these measured data can be given in the forms of additional Diriclet
or Neumann types of boundary conditions, or nonlocal additional conditions
(i.e. integral operator). From the mathematical theory of inverse problems
all the three classes of problems are defined to be as inverse coefficient
problems based on boundary measured output data [15]. An unknown coeffi-
cient is defined to be an input data. Introducing the input-output mapping
Φ : K �→ Π, Φ(K) ⊂ Π, from the class of admissible coefficients K to the
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class of admissible measured output data P, we may formulate all the above
problems in the form of the operator equation as follows:

Φk = P, k ∈ K, P ∈ Π. (1)

The inverse operator Φ−1 : Φ(K) ⊂ Π �→ K is not continuous which means
ill-posedness of inverse problems, according to [32]. Moreover, it is known
that inverse coefficient problems are severely ill-posed [12, 15, 18].

In the first class of problems (defined to be as (ICP1)) one needs to
identify elastoplastic properties of a bar (or beam), from limited number
of torsional experiments. In elastic behavior case, many analytical, compu-
tational and experimental studies has already been presented in scientific
literature, especially when small amounts of twisting are reversible, and
the beam will return to its original shape after releasing the twisting force.
Numerical study of elastoplastic torsion based on finite difference and finite
element approaches have been presented in [2-3]. The theory of space curved
beams with arbitrary cross-sections with associated finite element formu-
lation is implemented in [8] for three-dimensional beams with elastoplastic
material behaviour. A rigid-plastic finite element analysis for torsions of
circular, square and rectangular beam sections, related to metal forming,
has been presented in [29]. However inverse problems related to determina-
tion of elastoplastic properties of a beam during torsional creep is less well
known and has received relatively little attention in mathematical as well as
engineering literature. A first attempt to study the elastoplastic properties
of a bar during quasistatic has been given in [27], and then developed in
[16-18].

The second class of inverse problems (defined to be as (ICP2)) is related
to determination of unknown elastiplastic properties of materials during
spherical indentation testing. Note that the spherical indentation testing is
one of extensively used experimental methods to measure the hardness of
metal and polymer materials (see, [4], [15], [24], [26], [33] and references
therein). The objective here is usually to analyze the indentation curve as
dependent on the size of the sample (indent) and indenter relative to the
material length parameters, strain hardening, and yield stress to modulus
ratio. The idea of relating the mechanical properties of deformable materials
to their hardness has first been given in [20]. By using the method of char-
acteristics for hyperbolic equations, the relationship σ0 = 0.383H̃B between
the Brinell hardness H̃B = P/(2πRα), and the yield stress σ0 > 0 has been
established for a spherically symmetric indentation hardness test. Here and
below P > 0, R > 0 and α > 0 are assumed to be the measured loading
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force, radius of a spherical indenter and the indentation depth, accordingly.
However in the model proposed in [20], the curvature of a contactable sur-
face was ignored, and the problem was considered for a perfectly plastic
material. Within the framework of the J2-deformation theory of plastic-
ity, which is most siutable in the case of small deformations, the inverse
problem of identification of unknown elastoplastic properties of engineer-
ing materials from an indentation loading curve has been proposed in [10],
and then developed in [12, 15]. An experimantal and numerical analysis of
ill-conditionedness of this problem has been given in [25].

The third class of inverse problems (defined to be as (ICP3)) is related to
determination of unknown elastiplastic properties of a bending plate under
the action of normal loads. The mathematical model of this problem leads
to the problem of identification of the unknown coefficient in the nonlinear
biharmonic (bending) equation from deflections measured at some points on
the middle surface of a plate. This inverse problem has first been formulated
in [9]. An analysis of the corresponding nonlinear direct problem, based on
J2-deformation theory of plasticity, is given in [14].

The aim of this work is to generalize various studies, related to deter-
mination of unknown properties of engineering materials, from mathemat-
ical and engineering literatute in order to show that, all the above defined
classes of inverse/identification problems can be studied from a common
point mathematical and computational poits of view, since they have sim-
ilar/common distingushed features. Our methodology is based on the vari-
ational approach with the monotone potential operator and weak solution
theory for PDEs for corresponding nonlinear direct problems. For all in-
verse problems the quasisolution method is applied to obtain an existence
of a quasisolution in appropriate class of admissible coefficients.

The paper is organized as follows. In Section 2 physical and mathe-
matical models for each inverse problems are proposed. In Section 3 we
prove that the set of admissible coefficients is compact in the Sobolev space
H1 under the natural conditions of the J2-deformation theory of plastic-
ity. Mathematical frameworks of the problems (ICP1), (ICP2) and (ICP3)
are given Section 4, Section 5 and Section 6, accordingly. In Section 7
parametrization of unknown coefficient and the regularization algorithm
are described. Computational results with noise free and noisy data are
presented in Section 8. Some concluding remarks are given in the final Sec-
tion 9.
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2. Physical and mathematical models of the inverse problems
2.1. Determination of elastoplastic properties of a beam from limited tor-
sional experiment

Let us consider the torsion of a homogeneous isotropic beam, which
cross section occupies the domain Ω := (0, l1) × (0, l2), li > 0, under the
load (torque) applied. Torsional rigidity is defined as the torque required for
per unit angle of twist ϕ > 0 per unit length, when the Young’s modulus of
the material is set equal to one [22]. Specifically, if u = u(x), x = (x1, x2) ∈
Ω ⊂ R2, denotes Prandtl stress function, then the torque (or torsional
rigidity) is defined to be as the integral of u = u(x) over the domain Ω:

T [g](ϕ) = 2
∫

Ω

u(x; g; ϕ)dx. (2)

The boundary value problem{
−∇(g(|∇u|2)∇u) = 2ϕ, x ∈ Ω ⊂ R2,

u(x) = 0, x ∈ ∂Ω,
(3)

represents an elastoplastic torsion of a strain hardening beam, which lower
end is fixed, i.e. rigid clamped [24]. The symmetricity axis of the beam is
assumed to be parallel to the axix Ox1 (Figure 1 (left figure)). The torque
T = T (ϕ), corresponding to the angle of twist ϕ > 0 per unit length, is
applied to the upper end of the beam.

The function g = g(ξ2) defined to be the plasticity function, describes
elastoplastic properties of a homogeneous isotropic material, and ξ(u) =
[(∂u/∂x1)2 + (∂u/∂x2)2]1/2 is the stress intensity,

In view of J2-deformation theory of plasticity, this function describes
elastoplastic properties of a homogeneous isotropic beam, and satisfies the
following conditions [18]⎧⎪⎪⎨⎪⎪⎩

(i) 0 ≤ c0 ≤ g(ξ2) ≤ c1,

(ii) g′(ξ2) ≤ 0,

(iii) g(ξ2) + 2ξ2g′(ξ2) ≥ γ0 > 0, ξ ∈ [ξ∗, ξ∗]
(iv) g(ξ2) = g0, ξ ∈ [ξ∗, ξ0], ξ0 ∈ (ξ∗, ξ∗).

(4)

Here g0 = 1/G is defined to be the shear compliance, G = E/(2(1 + ν)) is
the elastic shear modulus, E > 0 is the Young’s modulus and ν ∈ (0, 0.5)
is the Poisson coefficient. The value ξ2

0 = maxx∈Ω |∇u(x)|2 is assumed to
be the elasticity limit of a material. Here and below the Poisson coefficient
ν > 0 is assumed to be known.

In the considered physical model the quasistatic process of torsion is
simulated by the monotone increasing values 0 < ϕ∗ = ϕ1 < ϕ2 < ... <
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ϕm = ϕ∗ of the angle of twist ϕ ∈ [ϕ∗, ϕ
∗], ϕ∗ > 0. Hence the torque

T := T (ϕ), which theoretical value is defined by (1), will be considered
as a function of the angle ϕ > 0. For a given material, i.e. for the given
plasticity function g = g(ξ2), the solution of the nonlinear boundary value
problem (3), corresponding to a given value ϕ ∈ [ϕ∗, ϕ

∗] of the angle of
twist, will be defined to be as u(x) := u(x; g; ϕ).

The inverse coefficient problem (the problem (ICP1)) here consists of
determining the unknown coefficient g = g(ξ2) in the nonlinear elliptic
equation (4), from the experimentally given values T (ϕ) of the torque:⎧⎨

⎩
−∇(g(|∇u|2)∇u) = 2ϕ, x ∈ Ω ⊂ R2,

u(x) = 0, x ∈ ∂Ω,

2
∫
Ω

u(x; g;ϕ)dx = T (ϕ).
(5)

In this contex, for a given angle ϕ ∈ [ϕ∗, ϕ
∗] and g(ξ2), the nonlinear

boundary value problem (4) will be defined to be as the direct (forward)
problem. The functions g = g(ξ2) and T (ϕ) will be defined to be input data
and measured output data, respectively.
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1

x
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y
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Fig. 1. Geometry of the torsion (left figure) and the spherical indentation (right figure)
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2.2. Identification of elastoplastic properties of metallic materials from
spherical indentation tests

Let the rigid spherical indenter be loaded with a normal loading force
P, into an axially symmetric homogeneous body (sample) occupying the
domain Ω × [0, 2π], in the negative y-axis direction, as shown in (Figure
1 (right figure)). The uniaxial quasi-static indentation testing is simulated
by the monotonically increasing value α > 0 of the indentation depth. It
is assumed that the indentation process is carried out without unloading,
moment and friction. For a given value α ∈ (0, α∗) of the indentation depth
the quasi-static axisymmetric indentation process can be modeled by the
following contact problem.

The mathematical model of the problem of identification of elastoplastic
properties from indentation tests is as follows [10]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
− ∂

∂x (xσ11(u)) − ∂
∂y (xσ12(u)) + σ33(u) = F1(x, y),

− ∂
∂x (xσ12(u)) − ∂

∂y (xσ22(u)) = F2(x, y), (x, y) ∈ Ω ⊂ R2;

{
u2(x, ly) ≤ −α + ϕ(x), σ22(u) ≤ 0, [u2(x, y) + α − ϕ(x)]σ22(u) = 0,

σ12(u) = 0, (x, y) ∈ Γ0;

σ11(u) = 0, σ12(u) = 0, (x, y) ∈ Γσ;
u1(0, y) = 0, σ12(u) = 0, (x, y) ∈ Γ1;
σ12(u) = 0, u2(x, 0) = 0, (x, y) ∈ Γu;

(6)

−2π

∫
Γc(α)

σ22(u[σi])xdx = P(α). (7)

Here u(x, y) = (u1(x, y), u1(x, y)) is the displacement vector, Ω = {(x, y) ∈
R2 : 0 < x < lx, 0 < y < ly}, lx, ly > 0 is the cross section of the domain
occupied by the sample. Γσ = {(lx, y) : 0 < y < ly}, Γ0 = {(x, ly) : 0 ≤
x ≤ lx} is the part of the boundary ∂Ω of the sample beyond on the
contact, where the ”free boundary conditions” are given. The symmetry of
the sample implies the boundary conditions on Γ1 = {(0, y) : 0 < y < ly}. It
is assumed that an axisymmetric sample lies on a substrate without friction,
as conditions on Γu = {(x, 0) : 0 ≤ x ≤ lx} show. Here ϕ(x) =

√
r2
0 − x2

is the surface of the spherical indenter, with the radius r0. The contact
conditions in (6), in the form of inequality, means that the contact domain
Γc(α) = {(x, ly) ∈ Γ0 : u2(x, ly) = −α + ϕ(x), x ∈ (0, ac(α))}, ac(α) :=
∂Γc(α), depending on the value α ∈ [0, α∗] of the indentation depth, is also
unknown and need to be defined.

The relationship between the components of strain and stress tensors is
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as follows:

σii(u) = λ̃θ(u) + 2μ̃εii(u), i = 1, 2, 3; σ12(u) = 2μ̃ε12(u), (8)

where ε11(u) = ∂u1/∂x, ε22(u) = ∂u2/∂y, ε33(u) = u1/x, ε12(u) =
0.5(∂u1/∂y +∂u2/∂x), θ(u) = (ε11(u)+ε22(u)+ε33(u))/3 the components
of deformation, and

λ̃ = λ +
2μg(e2

i )

3
, μ̃ = μ(1 − g(e2

i )), λ =
Eν

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
.(9)

λ, μ > 0 are Lame constants, E > 0 is an elasticity modulus, ν is the
Poisson coeficient and G = μ is the modulus of rigidity.

According to the J2-deformation theory the stress-strain relationship
here is assumed to be in the following form:

σi(ei) = 3G[1 − g(e2
i )]ei, ei ∈ (0, e∗i ), (10)

where ei(u) = (2/3){
∑3

i,j=1,3[εii(u) − εjj(u)]2 + 3ε2
12(u)}1/2, is the strain

intensity. The function σi = σi(ei), given by (10), describes the elasto-
plastic behaviour of a wide range of engineering materials, and is assumed
to be smooth, monotone increasing and concave one (Figure 2 (left figure)):⎧⎪⎪⎨⎪⎪⎩

σi(ei) ∈ C2(0, e∗i );
dσi
dei

> 0 (monotonicity), ei ∈ (0, e∗i );
dσi
dei

−
σi
ei

< 0, ei ∈ (0, e∗i ) (concavity);

σi = 3μei, ei ∈ (0, e0) (pure elastic deformations).

(11)

As a particular case of the stress-strain relationship (10), the power law
description

g(ξ) = 1 − (ξ/ξ0)0.5(κ−1), κ ∈ [0, 1] (12)

is also widely used to approximate the plastic behaviour of metal materials
(see, [4], [25-26] and references therein), corresponds to the power harden-
ing materials for which the stress-strain relation is given by the Ramberg-
Osgood curve σi = σ0(ei/e0)κ. Here κ ∈ [0, 1] is a strain hardening expo-
nent. The cases g(ξ) = 0 and g(ξ) = 1 −

√
ξ0/ξ in (8) correspond to pure

elastic (κ = 1) and perfectly plastic (κ = 0) materials, respectively.
The inverse coefficient problem (the problem (ICP2)) consists of identi-

fying the stress-strain curve σi = σi(ei), given by (10), from the measured
spherical indentation loading curve P = P(α), α ∈ (0, αK), obtained dur-
ing the quasi-static indentation process. Accordingly, for a given function
σi(ei), the unilateral boundary value problem (6) is defined to be the direct
problem.
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Fig. 2. The function σi = σi(ei) (left figure); Geometry of the bending plate under the
normal load applied to some points (right figure)

In pure elastic deformations case (ei ∈ (0, e0)), only the elasticity modu-
lus E > 0 needs to be defined, since the Poisson coefficient ν > 0 is assumed
to be known. In plastic deformations case (ei > e0) the plasticity function
g(e2

i ) needs to be reconstructed, as formula (10) shows.
As the problem the problem (ICP1), this inverse problem also is defined

to be the inverse coefficient problem with nonlocal (integral form) measured
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output data, according to inverse problems terminology.
Note that indeed the indentation curve P = P(α) consists of loading

and unloading parts. In the considered model we use only the loading part
of this curve, and is assumed that the indentation process is carried out
without unloading. Hovewer even in this simplest from the point of view
physical model, the inverse coefficient problem (6)-(7) is quite difficult, due
to nonlinearity of the differential operator and unilateral boundary condi-
tions (6). Moreover, the problem is severely ill-posed due to the nonlocal
additional condition (7).

2.3. Identification of elastoplastic properties of an incompressible bending
plate from measured deflections

Let us assume that the coordinate plane Ox1x2 is the middle surface
of an isotropic homogeneous incompressible plate with thichness h > 0.
According to occupying the square Ω = {(x1, x2) ∈ R2 : −l < x1, x2 <

l, l > 0}. Suppose that the measured values wi[τk] := w(λi; τk), k = 1,K,
of deflections at the points λi = (x1i, x2i), i = 1,M , correspond to the given
values of the external normal load q(x; T ) > 0 to the middle surface of the
plate (Figure 2 (right figure)). The loading is assumed to be quasistatic,
generating by the increasing values 0 < τ1 < τ2 < ... < τK of the loading
parameter T . Finally, without loss of generality, assume that an experiment
is realized under the rigid clamped boundary conditions u(x) = ∂u/∂n = 0,
where n is a unit outward normal to the boundary ∂Ω of a plate.

Under these conditions the problem of identification of elastoplastic
properties, given by the function g(ξ2(u)), of an incompressible bending
plate from measured deflections (the problem (ICP3)) can be modeled as
follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Au ≡ ∂2

∂x2
1

[
g(ξ2(u))

(
∂2u
∂x2

1
+ 1

2
∂2u
∂x2

2

)]
+ ∂2

∂x1∂x2

[
g(ξ2(u))

(
∂2u

∂x1∂x2

)]
+ ∂2

∂x2
2

[
g(ξ2(u))

(
∂2u
∂x2

2
+ 1

2
∂2u
∂x2

1

)]
= F (x) , x ∈ Ω ⊂ R2,

u(x) = 0, ∂u
∂n (x) = 0, x ∈ ∂Ω,

(13)

wi[τk] := w(λi; τk), i = 1, M, k = 1, K.(14)

Here F (x) = 3q(x; T )/h3, q(x; T ) is the intensity (per unit area) of the
load.

The process of bending is assumed to be quasistatic, generating by the
increasing values of the normal load q(x; T ), corresponding to the values 0 <

τ1 < τ2 < ... < τK of the loading parameter T . According to J2-deformation
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theory of plasticity the coefficient g(ξ2(u)) of the nonlinear biharmonic
equation (11) depends on the effective value of the plate curvature [14]

ξ2(u) =
(

∂2u

∂x2
1

)2

+
(

∂2u

∂x2
2

)2

+
(

∂2u

∂x1∂x2

)2

+
∂2u

∂x2
1

∂2u

∂x2
2

, (15)

which in turns, depends on the deflection function u(x), i.e. on the solution
of problem (11). The coefficient g(ξ2(u)), defined to be as the plasticity
function, describes the elastoplasticitic properties of an increasingly hard-
ening plate and also satisfy conditions (4).

Thus the problem (ICP3) is the coefficient identification problem for
the nonlinear fourth order (biharmonic) equation.

3. Compactness of the set of admissible coefficients
Let us analyze the compactness of the set of coefficients {g(ξ2)} in the

Sobolev space in H1[ξ∗, ξ∗] [1]. We consider this function in the interval
[ξ0, ξ

∗], since in [ξ∗, ξ0], ξ∗ > 0, the function g(ξ2) is a constant. Denote by
G := {g(ξ2) : ξ ∈ [ξ∗, ξ0]}, the set of admissible coefficients, satisfying the
first three conditions of (4).
Lemma 3.1. Let the set of admissible coefficients G, in addition to condi-
tions (i)-(iii) of (4), satisfies also the condition

g′(ξ2)is a monotone decreasing (or increasing) function. (16)

Then this set is compact in the Sobolev space in H1[ξ∗, ξ∗].
Proof. Let us first define the set of coefficients G1 := {g(ξ2)} satisfying only
the first (boundedness) and second (monotonicity) conditions (i) and (ii)
of (4). In it well known that the class of monotone increasing and uniformly
bounded functions is compact in L2 ≡ H0, according to Tikhonov’s lemma
[32]. Hence the set G1 is compact in H0[ξ∗, ξ∗]. Now we use the condition
(iii) to show the uniform boundedness of the set {g′(ξ2)}. We have

g(ξ2) + 2g′(ξ2)ξ2
0 ≥ g(ξ2) + 2g′(ξ2)ξ2 ≥ γ0 > 0, ∀ξ ∈ [ξ∗, ξ∗],

due to g′(ξ2) ≤ 0, and since ξ ≥ ξ0 > 0. This inequality implies:

0 ≥ g′(ξ2) ≥ −c1 − γ0

2ξ2
0

, ξ0 > 0. (17)

Evidently c1 > γ0, due to 0 < γ0 ≤ g(ξ2) + 2g′(ξ2)ξ2 ≤ c1.
Estimate (18) show that the set {g′(ξ2)} is uniform bounded, in partic-

ular in H0[ξ∗, ξ∗]. Now we use condition (17) and apply again Tikhonov’s
lemma to the set of uniform bounded and monotone decreasing (or increas-
ing) functions {g′(ξ2)}. We conclude that this set is compact in H0[ξ∗, ξ∗].
This implies the proof. �
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Note that this approach of constructon the compact class of admissible
coefficients in the Sobolev space H1[ξ∗, ξ∗] has been proposed in [12].

The set of coefficients defined by the conditions of Lemma 3.1 will de-
fined as the compact set of admissible coefficients Gc.

4. An analysis of the problem (ICP1)
Let Gc be the above defined compact set of admissible coefficients.

Assume that the monotone increasing continuous function T = T (ϕ),
ϕ ∈ [ϕ∗, ϕ

∗], ϕ∗ > 0, represents an experimentally given torque. Then the
inverse problem (5) (the problem (ICP1)) can be formulated as a solution
of the following nonlinear functional equation:

T [g](ϕ) := 2
∫

Ω

u(x; g; ϕ)dx = T (ϕ), g ∈ G. (18)

Here the function u(x) := u(x; g; ϕ) ∈ H̊1(Ω) is defined to be the weak
solution of the direct problem (3), for the given function g ∈ Gc, and satisfies
the following integral identity:∫

Ω

g(|∇u|2)∇u∇vdx = 2ϕ

∫
Ω

vdx, ∀v ∈ H̊1(Ω). (19)

We define (2) (or the left hand side of (18)) as an input-output map T [·] :
G �→ T from the class of admissible coefficients Gc to the class T of output
functions T [g] ∈ T. Then the the problem (ICP1) with the given measured
output data T = T (ϕ) can be reduced to the solution of the nonlinear
operator equation (19) or to inverting the input-output map T [·] : G �→ T.

Using the integral identity (19) we may derive some useful properties of
a solution of the problem (ICP1). Specifically, substituting here v = u and
then using the nonlocal additional condition (5) we obtain the following
characterization of a solution of this inverse problem.
Lemma 4.1. If the function g ∈ Gc is a solution of the problem (ICP1),
then it satisfies the following energy identity:∫

Ω

g(|∇u|2)|∇u|2dx = ϕT (ϕ), u ∈ H̊1(Ω), ϕ ∈ [ϕ∗, ϕ
∗].

Since g(ξ2) ≥ c0 ≥ 0, the above identity implies, in particular, that the
following boundedness of H0-norm ‖∇u‖0 of the solution u ∈ H̊1(Ω) via
the measured output data T (ϕ):

‖∇u‖2
0 ≤ c−1

0 ϕ∗T (ϕ∗).

Here ‖∇u‖0 is the norm of the Sobolev space H0(Ω) which is equivalent
to the norm ‖u‖1 of the Sobolev space H1(Ω), due to the homogeneous
Dirichlet condition (4) [1].
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To analyze the input-output map T [·] : G → T, first consider the the

problem (ICP1) for pure elastic torsion. In this case g(ξ2) = 1/G, and we

may apply the maximum principle to the linear direct problem{
−Δu = 2Gϕ, x ∈ Ω,

u(s) = 0, s ∈ Γ = ∂Ω.

Since the right hand side 2Gϕ is positive, we conclude u(x;G;ϕ) > 0, ∀x ∈

Ω. Let us now assume that G1 > G2 > 0 and denote by ui(x) := u(x;Gi;ϕ),

i = 1, 2, the corresponding solutions of the boundary value problems:{
−Δui = 2Giϕ, x ∈ Ω; i = 1, 2;

ui(s) = 0, s ∈ Γ = ∂Ω.

where ui(x) = u(x;Gi;ϕ), i = 1, 2. Denoting by v(x) = u1(x) − u2(x) we

conclude that the function v(x) is the solution of the following problem{
−Δv = F̃ (x), x ∈ Ω

v(s) = 0, s ∈ Γ,

where F̃ (x) = 2G1ϕ − 2G2ϕ > 0. By the maximum principle we conclude

that v(x) > 0, ∀x ∈ Ω which means u1(x) > u2(x), ∀x ∈ Ω. Taking into

account the definition of the torque we obtain:

T [G1](ϕ) := 2

∫
Ω

u(x;G1;ϕ)dx > 2

∫
Ω

u(x;G2;ϕ)dx := T [G2](ϕ), (20)

for G1 > G2.

Thus we get the following lemma.

Lemma 4.2. For pure elastic torsion the input-output map T [·] : G → T

is an isotone one, i.e. monotone increasing and therefore order preserving:

∀G1, G2 ∈ G, G1 > G2 implies T [G1](ϕ) > T [G2](ϕ), ∀ϕ ∈ [ϕ∗, ϕ
∗].

This result (the inequality (20)) has a precise physical meaning: for a

fixed angle of twist ϕ ∈ [ϕ∗, ϕ
∗], an increase of the shear modulus G > 0

leads to an increase of the rigidity of a material, and as a result, leads to

increase of the torque.

In addition to the above monotonicity property, one can prove that the

input-output map T [·] : G → T is also continuous. To show this we need

the following estimate:

Lemma 4.3. Let u1(x) := u[x; g1;ϕ], u2(x) = u[x; g2;ϕ] ∈ H̊1(Ω) be

solutions of the direct problem (3), corresponding to the given functions

g1, g2 ∈ G. Then for the input-output map T [·] : G → T the following

estimate holds for α, cΩ > 0:

‖T [g1]−T [g2]‖C[ξ∗,ξ∗]≤2α−1cΩ (meas Ω)1/2‖∇u2‖0‖g1−g2‖C[ξ∗,ξ∗]. (21)
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Proof. First we estimate the difference |T (g1)−T (g2)| by using the Poincare
inequality ‖u‖0 ≤ cΩ‖∇u‖0, cΩ ≥ 0:

|T [g1] − T [g2]| ≤ 2
∣∣∣∣∫

Ω

[u(x; g1) − u(x; g2)]dx

∣∣∣∣
≤ 2 (meas Ω)1/2‖u1 − u2‖0 ≤ 2(meas Ω)1/2 cΩ‖∇(u1 − u2)‖0. (22)

On the other hand, the weak solutions u1, u2 ∈ H̊1(Ω) of the direct
problem (3) satisfy the following integral identities:∫

Ω

g1(|∇u1|2)∇u1∇vdx = 2ϕ

∫
Ω

vdx,∫
Ω

g2(|∇u2|2)∇u2∇vdx = 2ϕ

∫
Ω

vdx,

for all v ∈ H̊1(Ω). Substituting in the first integral identity v = u2 − u1,
and in the second one v = u1 − u2 we get:⎧⎨

⎩
∫
Ω

g1(|∇u1|2)∇u1∇(u2 − u1)dx = 2ϕ
∫
Ω
(u2 − u1)dx,∫

Ω
g2(|∇u2|2)∇u2∇(u1 − u2)dx = 2ϕ

∫
Ω
(u1 − u2)dx.

These identities imply∫
Ω

g1(|∇u1|2)∇u1∇(u1 − u2)dx =
∫

Ω

g2(|∇u2|2)∇u2∇(u1 − u2)dx.

Adding to the both sides the term −
∫
Ω

g1(|∇u2|2)∇u2∇(u1 − u2) we get:∫
Ω

[g1(|∇u1|2)∇u1 − g1(|∇u2|2)∇u2]∇(u1 − u2)dx =∫
Ω

[g2(|∇u2|2)∇u2 − g1(|∇u2|2)∇u2]∇(u1 − u2)dx.

On the left hand side of this identity we use the inequality [g(ξ2
1)ξ1 −

g(ξ2
2)ξ2](ξ1 − ξ2) ≥ α‖ξ1 − ξ2‖2 for the function g1(ξ2), satisfying condi-

tions (4) (see, [16]). On the right hand side we use the Cauchy inequality
|(p, q)| ≤ ‖p‖0‖q‖0. Then we have, for α > 0 :

α‖∇(u1 − u2)‖0 ≤
(∫

Ω

[g2(|∇u2|2) − g1(|∇u2|2)]2|∇u2|2dx

)1/2

. (23)

Taking into account this inequality on the right hand side of (22) we have
the proof. �

Continuity, given by (21), and monotonicity of the input-output map
T [·] : G �→ T implies that this mapping is invertible. Therefore, the problem
(ICP1) has a solution, at least for pure-elastic torsion case.
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To prove a srtong existence result for the problem (ICP1) let us use a
quasisolution approach [21]. For this aim we introduce the cost functional

I1(g) :=
∣∣∣∣2∫

Ω

u(x; g;ϕ)dx − T (ϕ)
∣∣∣∣ , ϕ ∈ [ϕ∗, ϕ

∗]. (24)

and consider the following minimization problem:

I1(g∗) := min
g∈Gc

I1(g). (25)

Theorem 4.1. Let conditions of Lemma 3.1 hold, and Gc be the compact
set of admissible coefficients. Then minimization problem (25) for the func-
tional (24) has at least one solution.
Proof. We first use the estimate ‖∇u‖C := maxΩ |∇u| ≤ η∗, η∗ > 0, (see,
[16], Lemma 3.1) on the right hand side of (23). Then we have:

α‖∇(u1 − u2)‖0 ≤ η∗‖g1 − g2‖0, η∗, α > 0. (26)

Now we estimate the difference |I1(gm)− I1(g∗)|, assuming that {gm} ⊂ Gc

is the sequence of coefficients converging to g∗ ∈ Gc in H1-norm. We have:

|I1(gm) − I1(g∗)| =
∣∣∣∣ ∣∣∣∣2∫

Ω

u(x; gm;ϕ)dx − T (ϕ)
∣∣∣∣− ∣∣∣∣2∫

Ω

u(x; g∗; ϕ)dx − T (ϕ)
∣∣∣∣ ∣∣∣∣

≤ 2
∣∣∣∣∫

Ω

u(x; gm;ϕ)dx −
∫

Ω

u(x; g∗; ϕ)dx

∣∣∣∣ = 2
∣∣∣∣∫

Ω

[u(x; gm;ϕ) − u(x; g∗; ϕ)]dx

∣∣∣∣ .
Applying to the right hand side the Poincare inequality we obtain:

|I1(gm) − I1(g∗)| ≤ 2(meas Ω)1/2‖∇(u(·; gm; ϕ) − u(·; g∗;ϕ))‖0.

This, with (26), implies:

|I1(gm) − I1(g∗)| ≤ 2α−1η∗(meas Ω)1/2)‖gm − g∗‖0, η∗, α > 0,

∀ϕ ∈ [ϕ∗, ϕ
∗]. Thus, if the sequence of coefficients {gm} ⊂ Gc converges to

g∗ ∈ Gc in H1-norm, then the numerical sequence {I1(gm)} converges to
I1(g∗). By the Weierstrass’s theorem this implies the proof. �

Although the above results assert strict monotonicity and continuity
of the input-output map T [·] : G → T, this mapping is not continuously
invertible. To show this let us assume that g(ξ2) is given by the formula

g(ξ2) =

{
1/G, ξ2 ≤ ξ2

0 ,

1/G
(
ξ2/ξ2

0

)0.5(κ−1)
, ξ2

0 < ξ2, κ ∈ (0, 1],
(27)

which corresponds to the well-known Ramberg-Osgood curve σi =
σ0(ei/e0)κ with the strain hardening exponent κ ∈ [0, 1]. Evidently, this
function satisfies all conditions (4).
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Example 4.1. Ill-conditionedness of the problem (ICP1)
Two class of (stiff and soft) materials described by (27), with elastic

parameters 〈E = 210(GPa); ξ2
0 = 0.027〉 and 〈E = 110(GPa); ξ2

0 = 0.020〉,
are considered. For each class of materials the following two values κ1 = 0.2
and κ2 = 0.7 of the hardening parameter κ ∈ [0, 1] are taken in the con-
sidered example. The plasticity functions gr = gr(κi), gs = gs(κi), i = 1, 2,
for these materials, with the above data, are shown in the left Figure 3.
In order to generate the synthetic data T [gr], T [gs], the nonlinear direct
problem (3) is numerically solved for the above given plasticity functions.
Then approximate values of the corresponding synthetic data T [gr], T [gs]
are obtained by applying to (3) the numerical integration trapezoidal for-
mula. Results obtained for the two stiff and two soft materials are plotted
in the right Figure 3.

These figures show that, for each class of materials the outputs T [gr(κ1)]
and T [gr(κ2)] (as well as the outputs T [gs(κ1)] and T [gs(κ2)]) are close
enough, although the plasticity functions of these materials, corresponding
to each class, are quite different (κ1 = 0.2 and κ2 = 0.7). For the values
κ1 = 0.2 and κ2 = 0.3 the corresponding the outputs are close enough,
especially in the begining plastic deformations. This means ill-posedness of
the problem (ICP1). �

The above example show that even for noise free measured output data
the problem (ICP1) is ill-conditioned, although, in practice the output data
T = T (ϕ) can only be given with some measurement error. Thus, the exact
fulfillment of the equality in (18) is not possible, and use of the quasisolution
approach by introducing the auxiliary functional (24) is necessary.

5. An analysis of the problem (ICP2)
Let us first analyse the direct problem (6). Multiplying the first equation

by u1(x, y) and the second one by u2(x, y), applying then the Green formula
and using the boundary conditions, we define the weak u ∈ V solution of the
nonlinear direct problem (6) as a solution u ∈ V of the following variational
inequality

(Au, v − u) ≥ (F, v − u), ∀v ∈ V. (28)

Here

(Au, v) :=
∫ ∫

Ω

{λθ(u)θ(v) + 2μεij(u)εij(v)

− 2μg(ei(u))eij(u)eij(v)
}

xdxdy. (29)

is the nonlinear form, (F, u) is the linear form, eij(u) = εij(u) − θ(u)δij/3
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Fig. 3. Plasticity functions for stiff and soft steel materials (left figure) and the corre-
sponding outputs (torques) (right figure)

and V = {v ∈ H̊1(Ω) : u2(x, ly) ≤ −α + ϕ(x), (x, y) ∈ Γ0} is the closed
convex set of admissible displacements, H̊1(Ω) = {v ∈ H1(Ω) : v(x, y) =
0, (x, y) ∈ Γu; v1(x, y) = 0, (x, y) ∈ Γ1} is the subspace of the Sobolev
space H1(Ω) of vector functions u(x, y) [1], with the norm

‖u‖1 :=
{∫ ∫

Ω

[
|u|2 + |∇u|2

]
xdxdy

}1/2

,

taking into account the axially symmetricity of the problem.
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Now introduce the nonlinear functional

J(u)=
1

2

∫ ∫
Ω

{
λθ(u)2+2μεij(u)εij(u)−3μ

∫ ei(u)

0

g(ξ)dξ

}
xdxdy, (30)

where u, v ∈ V . Calculating the first Gateaux derivative of this functional

we get:

J ′(u; v) :=

∫ ∫
Ω

{
λθ(u)θ(v)+2μεij(u)εij(v)−2μg(e2i (u))eij(u)eij(v)

}
xdxdy,

where u, v ∈ V .

This shows that the nonlinear operator A, defined by (29), is a potential

operator with the potential J(u) defined by (30).

Calculating the second Gateaux derivative and using the relation

eij(u) = εij(u)− θ(u)δij/3 we obtain:

J ′′(u; v, h) :=

∫ ∫
Ω

{λθ(v)θ(h) + 2μεij(v)εij(h)

−2 μ[g(e2i (u)) + 2g′(e2i (u))e
2
i (u)]eij(v)eij(h)

}
xdxdy

=

∫ ∫
Ω

{[
λ+

2

3
μQ(e2i (u))

]
θ(v)θ(h)

+2μ
[
1−Q(e2i (u))

]
εij(v)εij(h)

}
xdxdy, u, v, h ∈ V.

Substituting here h = v and using Korn’s inequality we conclude that

J ′′(u; v, v) ≥ γ1‖v‖
2
1, ∀h ∈ V.

This means the nonlinear operator A is strong monotone one, i.e.

〈Au−Av, u − v〉γ1 ≥ ‖u− v‖21, u, v ∈ V.

This implies an existence and unequeness of the weak solution u ∈ V of the

direct problem.

Note that the direct problem (6) is nonlinear not only due to the pres-

ence of the plasticity function g(e2i (u)). For each value α > 0 of the pene-

tration depth, the contact zone

Γc(α) = {(x, ly) ∈ Γ0 : u2(x, ly) = −α+ ϕ(x), x ∈ (0, ac(α))},

ac(α) := ∂Γc(α),

is also unknown, and needs to be also determined. For this reason two

iteration procedures for linearization of the nonlinear direct problem (6)

need to be organized: first, with respect to the unknown contact zone, and

the second one, with respect to the plasticity function g = g(e2i ). This

processes are described in [15].
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Consider now the problem (ICP2). Let Gc be the compact set of
admissible coefficients defined in Section 3. Denote by u(x; g) ≡ u[σi],
g := g(e2

i (u)) ∈ Gc, the corresponding solution of the direct problem (28)-
(29). To use the quasisolution approach, we introduce the cost functional

I2(g) := max
α∈[0,α∗]

∣∣∣∣∣2π

∫
Γc(α)

σ22(u(x; g))xdx + P(α)

∣∣∣∣∣ , (31)

taking into account the additional condition (7), and consider the following
minimization problem:

I2(g∗) := min
g∈Gc

I2(g). (32)

To obtain an existence of the quasisolution we use the following coeffi-
cient continuity result [12].
Theorem 5.1. Let {gm} ⊂ Gc, gm := gm(ξ2), ξ2 = e2

i (u), be a sequence of
coefficients from the compact set of admissible coefficients Gc, and {um} ⊂
V , um := u(x, y; gm) be the corresponding sequence of solutions of the direct
problem (28)-(29). Assume that the sequence of coefficients {gm}, m =
1, 2, 3, ..., converges to the function g := g(e2

i (u)) ⊂ Gc in the norm of
the Sobolev space H1[ξ∗, ξ∗], as m → ∞. Then the sequence of solutions
{um} ⊂ V converges weakly in H1(Ω) to the solution u(x; g) ∈ V of the
direct problem (28)-(29) which corresponds to the coefficient g(e2

i (u)) ⊂ Gc.
Consider the layer Ωδ(Γ0) := {(x, y) ∈ Ω : ly − δ < y < ly, δ > 0}. The

weak convergence of the sequence of solutions {u(x; gm)} ⊂ V in H1(Ω)
implies the weak convergence of sequence {σ22(u(x; gm))} in H0(Ω), in
particular in H0(Ωδ(Γ0)). On the other hand, is known that for a function
v(x, y) ∈ H0(Ω) satisfying the condition vy ∈ H0(Ω) the trace u(x, ly; g)
on Γ0 ⊂ ∂Ω exists as an element of H0(Γ0), and continuously depends on
δ > 0 (see, [24], Theorem 6.3), i.e.:∫

Γ0

v2(x, ly)dy ≤ 2
δ

∫
Ωδ(Γ0)

v2(x, y)dxdy + δ

∫
Ωδ(Γ0)

v2
y(x, y)dxdy.

Assuming v(x, y) = σ22(u(x; g)) we can apply the above assertion to the
function σ22(u(x; g)), requiring

∂

∂y
σ22(u(x; g)) ∈ H0(Ωδ(Γ0)). (33)

Theorem 5.2. Let condition (33) holds, and Gc be the compact set of ad-
missible coefficients. Then minimization problem (32) for the functional
(31) has at least one solution.
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Proof. Consider the difference |I2(gm) − I2(g)|:

|I2(gm) − I2(g)| =

∣∣∣∣∣ max
α∈[0,α∗]

∣∣∣∣∣2π

∫
Γc(α)

σ22(u(x; gm))xdx + P(α)

∣∣∣∣∣
− max

α∈[0,α∗]

∣∣∣∣∣2π

∫
Γc(α)

σ22(u(x; g))xdx + P(α)

∣∣∣∣∣
∣∣∣∣∣

≤ 2π max
α∈[0,α∗]

∫
Γc(α)

|σ22(u(x; gm))xdx − σ22(u(x; g))|xdx.

Due to the above trace theorem the right hand side integral tends to zero,
as m → ∞. This means that the functional I2(g) is continuous. Since Gc is
compact we obtain the proof. �

Thus we obtain the main result related to solvability of the problem
(ICP2).
Theorem 5.3. Let condition (33) holds. Then the problem (ICP2) has at
least one solution g(ξ2) ∈ Gc in the set of admissible coefficients Gc.

6. An analysis of the problem (ICP3)
6.1. Solvability of the direct problem (13)

Let us define the weak solution of the direct problem (13) in the Sobolev
space of functions H2(Ω) [1]. For this aim we define the subspace

H̊2(Ω) =
{

v ∈ H2(Ω) : u(x) =
∂u(x)
∂n

= 0, x ∈ ∂Ω
}

,

taking into account the homogeneous Dirichlet conditions. Then multiply-
ing the both sides of the biharmonic equation (13) by v ∈ H̊2(Ω), inte-
grating on Ω and using the Diirichlet conditions we obtain the following
integral identity∫

Ω

g(ξ2(u))H(u, v)dx =
∫

Ω

F (x)v(x)dx, ∀v ∈ H̊2(Ω). (34)

Here

H(u, v) =
∂2u

∂x2
1

∂2v

∂x2
1

+
∂2u

∂x2
2

∂2v

∂x2
2

+
∂2u

∂x1∂x2

∂2v

∂x1∂x2

+
1
2

(
∂2u

∂x2
1

∂2v

∂x2
2

+
∂2u

∂x2
2

∂2v

∂x2
1

)
(35)

is a bilinear differential form defined on H2(Ω) × H2(Ω). Evidently
H(v, v) = ξ2(v) as formula (15) shows.

The function u ∈ H̊2(Ω) satifying the integral identity (34) for all v ∈
H̊2(Ω) is defined to be a weak solution of the direct problem (13).
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We introduce the nonlinear and linear functionals

〈Au, v〉 =
∫

Ω

g(ξ2(u))H(u, v)dx, l(v) =
∫

Ω

F (x)v(x)dx∀v ∈ H̊2(Ω),(36)

to rewrite the variational problem (34) in the standard form:

〈Au, v〉 = l(v), ∀v ∈ H̊2(Ω). (37)

Here and below we assume that the source function satisfies the condition
F ∈ H0(Ω).
Lemma 6.1. The nonlinear functional

J(u) =
1
2

∫
Ω

{∫ ξ2(u)

0

g(τ)dτ

}
dx, u ∈ H̊2(Ω). (38)

is a potential of nonlinear operator A, defined by (13).
Proof. Calculating the first Gateaux derivative of the functional J(u) we
get:

J ′(u; v) =
1
2

∫
Ω

{
d

dt

[∫ ξ2(u+tv)

0

g(τ)dτ

]
t=0

}
dx

=
1
2

∫
Ω

{
g(ξ2(u + tv))

d

dt
ξ2(u + tv)

}
t=0

dx,

u, v ∈ H̊2(Ω). On the other hand, due to definitions (15) and (35) we
conclude

d

dt

[
ξ2(u + tv)

]
t=0

= 2
[
∂2u

∂x2
1

∂2v

∂x2
1

+
∂2u

∂x2
2

∂2v

∂x2
2

+
∂2u

∂x1∂x2

∂2v

∂x1∂x2

+
1
2

(
∂2u

∂x2
1

∂2v

∂x2
2

+
∂2u

∂x2
2

∂2v

∂x2
1

)]
= 2H(u, v).

Hence

〈J ′(u), v〉 =
∫

Ω

g(ξ2(u))H(u, v)dx,

and we obtain the proof. �

To derive a solvability result for the variational problem (37), let us
analyse monotonicity of the nonlinear biharmonic operator A defined by
(13). For this aim we define the energy norm ‖v‖E and the seminorm |v|2
in H2(Ω), accordingly:

‖v‖E : =
{∫

Ω

H(v, v)dx

}1/2

,

|v|2 : =

{∫
Ω

[(
∂2v

∂x2
1

)2

+
(

∂2v

∂x2
2

)2

+
(

∂2v

∂x1∂x2

)2
]

dx

}1/2

.
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The following lemma shows that these norms are equivalent.
Lemma 6.2. If v ∈ H̊2(Ω), then |v|22 ≤ ‖v‖2

E ≤ 2|v|22.
Proof. It is known that for all v ∈ H̊2(Ω) the following formula holds (see,
[28]): ∫

Ω

[(
∂2v

∂x1∂x2

)2

− ∂2v

∂x2
1

∂2v

∂x2
2

]
dx = 0,

Then taking into account (35) we get

‖v‖2
E =

∫
Ω

H(v, v)dx =
∫

Ω

[(
∂2v

∂x2
1

)2

+
(

∂2v

∂x2
2

)2

+
(

∂2v

∂x1∂x2

)2

+
∂2v

∂x2
1

∂2v

∂x2
2

]
dx

=
∫

Ω

[(
∂2v

∂x2
1

)2

+
(

∂2v

∂x2
2

)2

+ 2
(

∂2v

∂x1∂x2

)2
]

dx

≥
∫

Ω

[(
∂2v

∂x2
1

)2

+
(

∂2v

∂x2
2

)2

+
(

∂2v

∂x1∂x2

)2
]

dx := |v|22.

On the other hand,∫
Ω

H(v, v)dx ≤ 2
∫

Ω

[(
∂2v

∂x2
1

)2

+
(

∂2v

∂x2
2

)2

+
(

∂2v

∂x1∂x2

)2
]

dx = |v|22.

These two estimates imply the proof. �

By using the equivalence of the norm ‖ · ‖2 and the seminorm | · |2 in
H̊2(Ω), we obtain the following
Corollary 6.1. If v ∈ H̊2(Ω), then

∃α1, α2 > 0, α1‖v‖2 ≤ ‖v‖E ≤ α2‖v‖2,

i.e. the H2-norm and the energy norm are equivalent.
The lemma permits one to obtain also the following upper estimate

Corollary 6.2. If u, v ∈ H̊2(Ω), then∫
Ω

|H(u, v)|dx ≤ α2
2‖u‖2‖v‖2.

Proof. We use the Schwartz inequality for the bilinear form H(u, v):

(H(u, v))2 ≤ H(u, u) · H(v, v).

This implies: ∫
Ω

|H(u, v)|dx ≤
∫

Ω

(H(u, u))1/2 (H(v, v))1/2

≤
(∫

Ω

|H(u, u)|dx

)1/2(∫
Ω

|H(v, v)|dx

)1/2

≤ α2
2‖u‖2‖v‖2,
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and we obtain the proof. �

By using these auxiliary results we can prove strong convexity of the
potential J(u) of the nonlinear operator A in H̊2(Ω).
Lemma 6.3. Let the coefficient g = g(ξ2) of the nonlinear biharmonic
equation (13) satisfies the conditions (i1)-(i3). Then the potential of the
biharmonic operator A is strongly convex in H̊2(Ω), i.e.

∀u, v ∈ H̊2(Ω), 〈J ′′(u), v, v〉 ≥ γ1‖v‖2
2, γ1 > 0. (39)

Proof. Calculating the second Gateaux derivative of the functional J(u),
defined by (38), we have:

〈J ′′(u), v, w〉 :=
d

dt
〈J ′(u + tw), v〉|t=0 =

d

dt

{∫
Ω

g(ξ2(u + tw))H(u + tw, v)dx

}
t=0

=
{∫

Ω

[
2g′(ξ2(u + tw))H(u,w)H(u + tw, v) + g(ξ2(u + tw))H(w, v)

]
dx

}
t=0

=
∫

Ω

[
2g′(ξ2(u))H(u,w)H(u, v) + g(ξ2(u))H(w, v)

]
dx.

Substituting here w = v and using H(v, v) = ξ2(v) we find

〈J ′′(u), v, v〉 :=
∫

Ω

[
g(ξ2(u))ξ2(v) + 2g′(ξ2(u))H2(u, v)

]
dx, u, v ∈ H̊2(Ω).

Condition (i2) and the inequality H(u, v) ≤ H(u, u)H(v, v) with the rela-
tionship H(v, v) = ξ2(v) between the differential form H(v, v) and the ef-
fective curvature ξ2(v) imply that g′(ξ2(u))H2(u, v) ≥ g′(ξ2(u))ξ2(u)ξ2(v).
Hence

〈J ′′(u), v, v〉 ≥
∫

Ω

[
g(ξ2(u))ξ2(v) + 2g′(ξ2(u))ξ2(u)ξ2(v)

]
dx

=
∫

Ω

[g(ξ2(u)) + 2g′(ξ2(u))ξ2(u)]ξ2(v)dx.

By using the condition (i3) on the right hand side and applying Corollary
6.1 finally we get

〈J ′′(u), v, v〉 ≥ γ0

∫
Ω

ξ2(v)dx = γ0

∫
Ω

H(v, v)dx ≥ γ1‖v‖2
2, γ1 = α2

1γ0 > 0.

This implies the proof. �

Corollary 6.3. Let the coefficient g = g(ξ2) of equation (13) satisfies the
conditions (i1)-(i3). Then the nonlinear biharmonic operator A defined by
(13) is strongly monotone in H̊2(Ω), i.e.

∀u, v ∈ H̊2(Ω), 〈Au − Av, u − v〉 ≥ γ1‖u − v‖2
2, γ1 > 0. (40)
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Corollary 6.4. Since AΘ = Θ, where Θ ∈ H̊2(Ω) is a zero element, mono-
tonicity (40) of the nonlinear operator A also means its coercivity

〈Av, v〉 ≥ γ1‖v‖2
2, γ1 > 0.

Lemma 6.4. The nonlinear biharmonic operator A is radially continuous
(hemicontinuous), i.e. the real valued function t → 〈A(u + tv), v〉, for fixed
u, v ∈ H̊2(Ω), is continuous.
Proof. Since the both t �→ g(ξ2(u + tw), t �→ H((u + tw), v) mappings are
continuous, proof follows immediately from (36). �

Thus, the potential operator A is radially continuous, strongly monotone
and coercive. Applying Browder-Minty theorem [7] we obtain the solvability
of the direct problem.
Theorem 6.1. Let conditions (i1)-(i3) hold. Then the variational problem
(37) has a unique solution in H̊2(Ω).

6.2. Linearization of the nonlinear direct problem: the monotone iteration
scheme and convergence of the approximate solution

To study the inverse coefficient problem, as well as to apply any nu-
merical method for solution of the direct problem, one needs to perform a
linearization of the nonlinear problem (36)-(37), and then prove the conver-
gence of the sequence approximate solutions in appropriate Sobolev norm.
For this aim we will use so-called convexity argument for nonlinear mono-
tone potential operators, introduced in [13]. For clarity we will explain here
the convexity argument in its abstract form.

Let A : H �→ H∗ be a strongly monotone potential operator de-
fined on the abstract Hilbert space H, and a(u; ·, ·) be the correspond-
ing bounded, symmetric continuous and coercive the tri-linear form (func-
tional): a(u; u, v) := 〈Au, v〉, u, v ∈ H, and{

〈Au − Av, u − v〉 ≥ γ1‖u − v‖H , γ1 > 0;
|a(u; u, v)| ≤ γ2‖u‖H‖v‖H , γ2 > 0, ∀u, v ∈ H.

(41)

Here ‖ · ‖H is the norm of the space H.
Assume that the functional J(u), u ∈ H is the potential of the operator

A. Then we have 〈J ′(u), v〉 = a(u;u, v).
Definition 6.1. The monotone potential operator A : H → H∗ defined on
the abstract Hilbert space H is said to be satisfy the convexity argument, if
the following inequality holds:

1
2
a(u; v, v) − 1

2
a(u; u, u) − J(v) + J(u) ≥ 0, ∀u, v ∈ H. (42)
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Consider the following variational problem

a(u; u, v) = l(v), v ∈ H, (43)

which defines the weak solution u ∈ H of the abstract operator equation
Au = F , where l(v) is the linear functional defined by the element F ∈ H∗.
Denote by Π(u) the potential of the operator equation Au = F .

Let us linearize the nonlinear variational problem (43) as follows:

a(u(n−1);u(n), v) = l(v), ∀v ∈ H, n = 1, 2, 3, ..., (44)

where u(0) ∈ H is an initial iteration. The function u(n) ⊂ H is defined
to be an approximate solution of the abstract variational problem (43).
Evidently, at each nth iteration the variational problem (44) is a linear one,
since u(n−1) is known from previous iteration. The iteration scheme (44)
is defined to be the abstract iteration scheme for the monotone potential
operator A.
Theorem 6.2. [13] Let A : H �→ H∗ be a strongly monotone potential
operator defined on the abstract Hilbert space H, and a(u; ·, ·) be the corre-
sponding bounded, symmetric continuous and coercive the tri-linear form.
If the convexity argument (42) holds, then
(a1) the sequence of potentials {Π(u(n))} ⊂ R, corresponding to the se-
quence of solutions {u(n)} ⊂ H, n = 1, 2, 3, .., of the linearized problem
(44), is a monotone decreasing one;
(a2) the sequence of approximate solutions {u(n)} ⊂ H defined by the ab-
stract iteration scheme (44) converges to the solution u ∈ H of the nonlinear
problem (43) in the norm of the space H;
(a3) for the rate of convergence the following estimate holds: .

‖u − u(n)‖ ≤
√

2γ2

γ
3/2
1

[
Π(u(n−1)) − Π(u(n))

]1/2

, (45)

where γ1, γ2 > 0 are the constants defined in (41).
To apply the above results to the variational problem (36)-(37) let us

introduce the nonlinear functional v ∈ H̊2(Ω)

Π(u) := J(u) − l(u) =
1
2

∫
Ω

{∫ ξ2(u)

0

g(τ)dτ − 2F (x)u(x)

}
dx, (46)

following Lemma 6.1. The functional Π(u) is defined to be as the potential of
the variational problem (36)-(37). Consider now the following minimization
problem.
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Find such a function u ∈ H̊2(Ω) that

Π(u) = min Π(v), v ∈ H̊2(Ω). (47)

Evidently this problem is equivalent to the variational problem (37).
Let us linearize now the nonlinear variational problem (36)-(37), ac-

cording to the linearization scheme (44). The solution u(n) ∈ H̊2(Ω) of the
linearized variational problem

a(u(n−1);u(n), v) :=
∫

Ω

g(ξ2(u(n−1)))H(u(n), v)dx =
∫

Ω

F (x)v(x)dx,(48)

where n = 1, 2, 3, . . . is defined to be an appoximate solution nonlinear
variational problem (36)-(37). Here u(0) ∈ H̊2(Ω) is an initial iteration.
Different from the potential J(u), defined by (38), the potential of the
linearized operator, defined to be as J0(u(n)), is a quadratic functional,
since the left hand side of (48) is a bilinear functional. Thus the potentials
of the linearized operator and the linearized problem (48) are defined as
follows: {

J0(u(n)) = 1
2

∫
Ω

g(ξ2(u(n−1)))H(u(n), u(n))dx;
Π0(u(n)) = J0(u(n)) − l(u(n)), u(n) ∈ H̊2(Ω).

(49)

To apply the above theorem we need, first of all, to the analyze fulfil-
ment of the convexity argument (42) for the nonlinear biharmonic operator
defined by (13).
Lemma 6.5. If the coefficient g = g(ξ2) satisfies the condition (i2), then
the convexity argument holds for the nonlinear biharmonic operator A, de-
fined by (13).
Proof. Based on definitions of the potentials J(u) and Π(u) we calculate
the left hand side of inequality (42):

1
2
a(u; v, v) − 1

2
a(u;u, u) − J(v) + J(u)

=
1
2

∫
Ω

g(ξ2(u))H(v, v)dx − 1
2

∫
Ω

g(ξ2(u))H(u, u)dx

−1
2

∫
Ω

{∫ ξ2(v)

0

g(τ)dτ

}
dx +

1
2

∫
Ω

{∫ ξ2(u)

0

g(τ)dτ

}
dx

=
1
2

∫
Ω

{
g(ξ2(u))[ξ2(v) − ξ2(u)] −

∫ ξ2(v)

0

g(τ)dτ +
∫ ξ2(u)

0

g(τ)dτ

}
dx.

Now introduce the function

Q(t) =
∫ t

0

g(τ)dτ.
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Due to the condition (i2) we conclude Q′′(t) = g′(t) ≤ 0, and hence Q =
Q(t) is a concave function:

Q′(t1)(t2 − t1) − Q(t2) + Q(t1) ≥ 0, ∀t2 > t1 > 0.

Using this inequality on the right hand side of the above integral expression,
assuming ξ2(u) and ξ2(v) instead of t1, t2, respectively, we get

g(ξ2(u))[g(ξ2(v)) − g(ξ2(u))] −
∫ ξ2(v)

0

g(τ)dτ +
∫ ξ2(u)

0

g(τ)dτ ≥ 0.

This implies the proof. �

Evidently the functional

a(u; v, w) =
∫

Ω

g(ξ2(u))H(v, w)dx, u, v, w ∈ H̊2(Ω).

satisfies the boundedness condition (41), due to the condition (i1). Then
by Corollary 6.2:

|a(u; u, v)| ≤ c1

∫
Ω

|H(u, v)|dx ≤ c2α
2
2‖u‖2‖v‖2 .

Thus all conditions of Theorem 6.2 hold, and we may apply it to the
nonlinear direct problem (36)-(37).
Theorem 6.3. Let u ∈ H̊2(Ω) and u(n) ∈ H̊2(Ω) be the solutions of the
nonlinear direct problem (36)-(37), and linearized problem (48), respec-
tively. If the function g(ξ2(u)) satisfies the conditions (i1)-(i3) hold, then
(b1) the sequence of potentials {Π0(u(n))} ⊂ R, defined by (49) and corre-
sponding to the sequence of solutions {u(n)} ⊂ H̊2(Ω), n = 1, 2, 3, .., of the
linearized problem (48), is a monotone decreasing one:

Π(u(n)) ≤ Π(u(n−1)), ∀u(n−1), u(n) ∈ H̊2(Ω).

(b2) the sequence of approximate solutions {u(n)} ⊂ H̊2(Ω) defined by the
iteration scheme (48) converges to the solution u ∈ H̊2(Ω) of the nonlinear
problem (36)-(37) in the norm of the Sobolev space H̊2(Ω);
(b3) for the rate of convergence the following estimate holds:

‖u − u(n)‖ ≤
√

2γ2

γ
3/2
1

[
Π0(u(n−1)) − Π0(u(n))

]1/2

, (50)

6.2. Existence of a quasisolution of the problem (ICP3)
Let us denote by Gc be the set of admissible coefficients g(ξ2), defined

in Section 3. For a given coefficient g(ξ2) ∈ Gc denote by u(x; g) the corre-
sponding solution of nonlinear direct problem (36)-(37). Then for each step
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of the quasistatic prosess of bending, given by the parameter τk, k = 1,K,

the inverse coefficient problem can be reformulated as the following nonlin-

ear functional equation:

u(x; g) = wi(λi; τk), g ∈ G. (51)

The mapping Φ[g] := u(x; g)|x=λi
, Φ : G → wi(λi; τk), is defined to be the

input-output mapping. In practice an exact equality in (52) is not possible

due to measurements errors. For this reason we will introduce the auxiliary

functional

I(g) =

K∑
k=1

M∑
i=1

[u(x; g)− wi(λi; τk)]
2, g ∈ G, (52)

and consider the following minimization problem:

J(g∗) = inf
g∈G

J(g). (53)

A solution of this minimization problem will be defined to be as a quasiso-

lution of the problem (ICP3), i.e. the inverse coefficient problem (13)-(14).

To prove an existence of a quasisolution first of all we need analyze con-

tinuity of the solution u(x; g) ∈ H̊2(Ω) of the nonlinear variational problem

(36)-(37) with respect to the coefficient g ∈ Gc.

Lemma 6.6. Let {gm(ξ2)} ⊂ Gc be a sequence of coefficients from the

compact set of admissible coefficients Gc, and F ∈ H0(Ω). Denote by

{um(x; g)} ⊂ H̊2(Ω) the corresponding sequence of solutions of the vari-

ational problem (36)-(37). Assume that the sequence {gm(ξ2)} converges to

the function g ∈ G0 in H1-norm, as m → ∞. Then the sequence of solu-

tions {u(x; gm)} converges to the solution u(x; g) ∈ H̊2(Ω) of the variational

problem (36)-(37) corresponding to the limit function g ∈ Gc.

Proof. Let us denote by u
(n)
m ∈ H̊2(Ω), u

(n)
m = u(n)(x; gm), the sequence

solutions of the linearized problem (48) corresponding to the sequence of

coefficients {gm} ⊂ Gc:

am(u(n−1);u(n)
m , v) :=

∫
Ω

gm(ξ2(u(n−1)))H(u(n)
m , v)dx=

∫
Ω

F (x)v(x)dx, (54)

∀v ∈ H̊2(Ω). Note that the index m in the above bilinear form

am(u
(n−1)
m ; ·, ·) means that in the right hand side integral there is the func-

tion gm(ξ2(u(n−1))), instead of g(ξ2(u(n−1))).

Substituting v = u
(n)
m in (54) we get:

|am(u(n−1)
m ;u(n)

m , u(n)
m )| ≤ ‖F‖0‖u

(n)
m ‖0 ≤ ‖F‖0‖u

(n)
m ‖2, u(n)

m ∈ H̊2(Ω).
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On the other hand, due to coercitiveness of the bilinear form am(u
(n−1)
m ; ·, ·)

we conclude

|am(u(n−1)
m ;u(n)

m , u(n)
m )| ≥ γ1‖u

(n)
m ‖22, γ1 > 0.

These two inequalities imply the uniform boundedness of the sequence

{u
(n)
m }:

‖u(n)
m ‖2 ≤ ‖F‖0/γ1, γ1 > 0

in H2-norm. This implies the weak convergence of the sequence {u
(n)
m } in

H2(Ω). Hence there exists such an element ũ(n) ∈ H̊2(Ω), that u
(n)
m ⇀ ũ(n)

weakly in H2(Ω). We need to prove that ũ(n) = u(n)(x; g), where g ∈ Gc
is the limit of the sequence {gm} ⊂ G0. For this aim let us estimate the

difference |a(u(n−1); ũ(n), v)− am(u(n−1);u
(n)
m , v)|:

|a(u(n−1); ũ(n), v)− am(u(n−1);u(n)
m , v)|

=

∣∣∣∣∫
Ω

[g(ξ2(u(n−1)))H(ũ(n), v)− gm(ξ2(u(n−1)))H(u(n)
m , v)]dx

∣∣∣∣
≤

∣∣∣∣∫
Ω

[g(ξ2(u(n−1)))H(ũ(n), v)− gm(ξ2(u(n−1)))H(ũ(n), v)]dx

∣∣∣∣
+

∣∣∣∣∫
Ω

[gm(ξ2(u(n−1)))H(u(n), v)− gm(ξ2(u(n−1)))H(u(n)
m , v)]dx

∣∣∣∣
≤ max

[ξ∗,ξ∗]
|g(ξ2(u(n−1)))− gm(ξ2(u(n−1)))|

∫
Ω

H(ũ(n), v)dx

+c1

∫
Ω

H(ũ(n) − u(n)
m , v)dx.

The first right hand side term tends to zero, max[ξ∗,ξ∗] |g(ξ
2(u(n−1)))−

gm(ξ2(u(n−1)))| → 0, since gm → g ∈ Gc in H1-norm, as m→ ∞. Further,

by the weak convergence u
(n)
m ⇀ ũ(n), as m → ∞, in H2(Ω), we conclude

that the second right hand side also tends to zero. Thus, going to the limit

in (54), as m→∞, we obtain

a(u(n−1); ũ(n), v) :=

∫
Ω

gm(ξ2(u(n−1)))H(ũ(n), v)dx =

∫
Ω

F (x)v(x)dx,

∀v ∈ H̊2(Ω), i.e. the limit function ũ(n) is the solution of the linerized

variational problem (48). By the uniqueness of the solution of this problem

we conclude ũ(n) = u(n)(x; g).

Thus the convergence gm → g of the sequence of coefficients {gm} ⊂ G0
in H1-norm, implies the weak convergence u

(n)
m := u(n)(x; gm) ⇀ u(n) :=
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u(n)(x; g), m → ∞, in H2(Ω) of the approximate solutions u(n) ∈ H̊2(Ω),
defined by (48), of the nonlinear variational problem (36)-(37):

|a(u(n−1); u(n), v) − am(u(n−1); u(n)
m , v)| → 0, n → ∞. (55)

The above
results permit to conclude that |a(u; u, v) − am(u(n−1); u(n)

m , v)| → 0, as
m,n → ∞. Indeed,

|a(u; u, v) − am(u(n−1);u(n)
m , v)|

≤ |a(u; u, v) − a(u(n−1); u(n), v)| + |a(u(n−1); u(n), v) − am(u(n−1); u(n)
m , v)|.

The first and second right hand side terms tend to zero, due to Theorem
6.3 and (55), accordingly. This completes the proof. �

Taking into account the compact embedding H2(Ω) ↪→ C0(Ω), Ω ⊂ R2

[5], we conclude that the sequence solutions {u(x; gm)} ⊂ H̊2(Ω) converges
to the solution u(x; g) ∈ H̊2(Ω) of the variational problem (36)-(37) in
C0(Ω). This means the continuity of the cost functional (52).
Theorem 6.4. Let conditions of Lemma 6.6 hold. Then the problem (ICP)
has at least one solution g∗ ∈ Gc defined as a solution of the minimization
problem (53).

7. Parametrization of the unknown coefficient g(ξ2), inversion al-
gorithm and its regularization

The feasibility of the approach given here is that the proposed inversion
method is based on a finite number of output measured data, since in engi-
neering practice a limited number of discrete values of the torque T [g](ϕ),
indentation curve P(α) or deflections w(λi; τk) can only be given. There-
fore all these data can only be given as a finite dimensional vectors during
a quasistatic process of loading, given by the increasing values of the load-
ing/deflection parameters. For example, in the problem (ICP2), one needs
to assume the indentation data P = P(α), as a finite dimensional vectors
α = (α0, α1, ..., αK), P = (P0,P1, ...,PK) in RK+1. The monotone increas-
ing values 0 < α0 < α1 < ... < αK of the penetration depth generate
the quasi-static indentation. For each αk, the maximal value of the strain
intensity e

(k)

i (u) for all finite elements or grids will be denoted by ek. Due
to the piecewise linear approximation of the function u(x), in each finite
elements or grids the parameter ek is a constant.

In view of the problem (ICP1), the limited number of discrete values
T0, T1, ..., TM of the torque T = T (ϕ), corresponding to the monotone in-
creasing values ϕ0, ϕ1, ..., ϕM of the angle of twist can only be given. Here
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the values T0 and Tm, m = 1,M , of the measured torque correspond to
pure elastic and mth plastic torsional deformation cases. Note that the
elasticity limit (yield stress) ξ2

0 = e2
0 is assumed to be also unknown, and

need to be determined from the above given measured data. For each ϕm,
m = 1,M , the torsional state of a material is characterized by the stress
intensity ξm := maxΩ |∇u|. As noted above, this parameter is a constant
in each finite elements or grid, due to the piecewise linear approximation.
This situation naturally leads to necessity of piecewise-linear approximation
of the unknown function g(ξ2) (Figure 4, left figure). The piecewise-linear
approximation gh(ξ2) of the plasticity function has the form:

gh(ξ2) =

⎧⎨
⎩

β0 = 1/G, ξ ∈ (0, ξ0];
β0 − β1(ξ2 − ξ2

0), ξ ∈ (ξ0, ξ1];
β0 −

∑M−1
m=1 βm(ξ2

m − ξ2
m−1) − βM (ξ2 − ξ2

M−1), ξ ∈ (ξM−1, ξM ].
(56)

The unknown parameters (slopes) βm > 0 need to be determined step
by step, begining from the paramater β0 = 1/G. At each mth state, one
needs to determine the parameter βm, by using the measured output data
Tm, which corresponds to the value ϕm of the angle of twist. The parameter
Δξm = ξ2

m−ξ2
m−1 is defined to be the state discretization parameter for the

mth state, according to [12, 15].
Thus the pairs (outputs) 〈ϕm, Tm〉 on the plane Oϕ, T correspond to the

pairs 〈ξm, g
(m)
h 〉, g

(m)
h = gh(ξ2

m), on the plane Oξg. Therefore, introducing
the (M + 1)-dimensional vectors T := (T0, T1, ..., TM ) ∈ RM+1 and β =
(β0, β1, ..., βM ) ∈ RM+1, and the set of unknown parameters

B := {β ∈ RM+1 : β = (β0, ..., βM ), β0 = 1/G, β1 > ... > βM > 0}, (57)

we can formulate the disctere (or parametrized) inverse problem as follows:

Th(β) = T , β ∈ B. (58)

We assume that an appropriate numerical integration formula is applied
to the left hand side integral in (18). Hence the operator Th : B �→ {T }
is a discrete analogue of the input-output map T [·] : G �→ T. Evidently a
solution of the discrete inverse problem (58) may not exists, even in the
case of noise free measured output data, due to computational noise factor.
We define a weak solution of this problem as a solution of the following
minimization problem

Ih(β
∗
) = min

β∈B
Ih(β

∗
), (59)
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Fig. 4. The plasticity function and its parametrization gh(ξ2) (left figure); the plasticity
functions g(ξ2) and the corresponding synthetic noise free data gh(ξ2) (κ = 0.2) for the
rigid and sort engineering materials (right figure)

where

Ih(β
∗
) = ‖Th(β) − T ‖∞ . (60)

Now let us derive algorithms for determination of the unknown parame-
ters β0 = 1/G, ξ2

0 and βm, 1,M . In the pure elastic torsion case one needs to
determine the shift modulus G = E/2((1+ν)), since the Poisson coefficient
is assumed to be known (ν = 0.3).

In the pure elastic case we will use Lemma 4.2. Thus, the algorithm of
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determining the unknown parameter G is as follows.
Algorithm 1:
(i1) Choose iterations β

(1)
0 , β

(2)
0 , satisfying the conditions:

Th[β(1)
0 ] > T0 > Th[β(2)

0 ]; (61)

(i2) Use next iteration β
(3)
0 = (β(1)

0 + β
(2)
0 )/2, and calculate the theoretical

value of the torque Th[β(3)
0 ];

(i3) Determine the next iteration by using conditions (25):
if Th[β(3)

0 ] < T0, then β
(4)
0 = (β(3)

0 + β
(2)
0 )/2;

if Th[G(3)] > T0, then β
(4)
0 = (β(3)

0 + β
(1)
0 )/2;

(i4) Calculate |Th[G(3)] − T0|;
(i5) If |Th[β(3)

0 ] − T0| < εT , then β0 = β
(3)
0 . Otherwise, continue the steps

(i2)-(i4);
(i6) Repeat the process until the fulfilment of the stopping condition

|Th[β(n)
0 ] − T0| < εT . (62)

The parameter εT > 0 is defined to be a given accuracy for an ap-
proximate solution of the inverse discrete problem (59)-(60), in pure elastic
torsion.

For each plastic torsion case, we can derive the similar algorithm for
determination of the slopes −βm, m = 1,M (see, (56)). In this case the
folowing argument is taken into account: an increase of the slope βm corre-
sponds to an increase of rigidity of a material, and, as a result, to increase
of the corresponding theoretical value Th[βm] of the torque. This means
that β

(1)
m > β

(2)
m implies Th[β(1)

m ] > Th[β(2)
m ]. Hence for the determination of

the unknown parameters βm similar algorithm can be used (one needs only
to write β

(n)
m instead of β

(n)
0 in the above algorithm). Further, the same

stopping condition

|Th[β(n)
m ] − Tm| < εT (63)

will be used at each mth plastic torsional state.
The found values Gh (β0h = 1/Gh and βmh are assumed to be ap-

proximate values of the shear modulus β0 = 1/G and the parameters βm,
m = 0,M , respectively.

For determination of the unknown elasticity limit ξ0 the linearity, in
pure elastic case, of the direct problem (3) (as well as the functional equa-
tion (18)),corresponding to the parameter ϕ > 0 are used. Specifically, let
Gh > 0 be a given (already determined) parameter, and 〈ϕ0, T0〉 is the
corresponding output measured data. Denote by u0 = u0(x;Gh;ϕ0) the
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solution of the corresponding linear direct problem (3). We define the new
angle of twist as follows: ϕ̃0 = δ0ϕ0, where δ0 ∈ (0, 1). Then the function
ũ0 = ũ0(x; Gh; ϕ̃0) will be solution of the direct problem (3), corresponding
to the given parameter Gh > 0, and the new angle ϕ̃0. Due to the linear-
ity of problem (3), ũ0 = δ0u0. Further, it follows from definition (2) that
the synthetic output measured data T̃0 = T [Gh](ϕ̃0) corresponding to the
parameter ϕ̃0 can be defined via the output masured data T0 as follows:
T̃0 = δ0T0. Thus, in pure elastic torsional case, the synthetic output data
T̃0 = T [Gh](ϕ̃0) can be explicitely obtained from the output measured data
T0 by the formula T̃0 = δ0T0.

This property will be used in the following algorithm of determining of
the unknown elasticity limit ξ2

0 .
Algorithm 2:
(i1) Choose the iteration ϕ

(1)
0 , satisfying the condition ϕ

(1)
0 > ϕ0;

(i2) Use the synthetic output data T
(1)
0 = δ1T0, δ1 = ϕ0/ϕ

(1)
0 , and apply

Algorithm 1 to find β
(1)
0 = 3G(1);

(i3) Calculate the relative error

δG(1) = |Gh − G(1)|/Gh; (64)

(i4) (a) If δG(1) < εG, use the next iteration ϕ
(2)
0 > ϕ

(1)
0 ;

(b) If δG(1) > εG, use the next iteration ϕ
(2)
0 = 0.5[ϕ(1)

0 + ϕ0];
(i5) Use the synthetic output data T

(2)
0 = δ2T0, δ2 = ϕ0/ϕ

(2)
0 , and repeat

the items (i2)-(i3);
(i6) Repeat the process until the fulfilment of the following conditions

δG(n) < εG, δG(n+1) > εG, Δξ
(n)
0 :=

∣∣∣∣∣ ξ
(n)
0 − ξ

(n+1)
0

0.5[ξ(n)
0 − ξ

(n+1)
0 ]

∣∣∣∣∣ < εξ. (65)

Here ξ
(n)
0 = maxΩ |∇u(n)(x)|, ξ

(n+1)
0 = maxΩ |∇u(n+1)(x)|, and the func-

tions

u(n)(x) = u(x;G(n); ϕ(n)
0 ), u(n+1)(x) = u(x;G(n+1);ϕ(n+1)

0 )

are the solutions of corresponding direct problems.
The found value ξ0h = 0.5[ξ(n)

0 +ξ
(n+1)
0 ] is assumed to be an approximate

value of the the elasticity limit ξ0.
The above algorithms hold true for the problems (ICP2) and (ICP3)

as well (one needs to use the output measured data, P(α) and w(λi; τk),
accordingly, instead of T [g](ϕ)).
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6.2. Generating noise free synthetic output data and reconstruction of the
parameters β0 and β1: the problem (ICP1)

In all the numerical examples below two types of engineering materials
defined to be as rigid (E = 210(GPa)) and soft (E = 110(GPa)), are used.
The plasticity function for these materials and its piecewise-linear approx-
imation are given by formulas (56) and (27), correspondingly. To generate
the noise free synthetic output data 〈ϕm, Tm〉, the direct problem (3) was
solved by the variational finite-difference scheme using the given function
gh(ξ2), given by (56), and the input data ϕm, given in Table 1. Here m = 0
correspond to pure elastic state, and the numbers m = 1, 2, 3, 4 corre-
spond to plastic ones. Then the values T [g](ϕm) are calculated by applying
numerical integration formula to the integral (2). These the values are then
assumed to be the noise free synthetic data in subsequent computational
experiments.

The first series of numerical examples are related to implementation of
Algorithm 1 for finding the shift modulus G = E/2((1+ν)) (Here and in all
computational experiments below the Poisson coefficient is taken to be ν =
0.3). For different values of the stopping parameter εT = 10−2, 10−3, 10−4,
the corresponding relative errors in the found values of the shift modulus
Gh was between δGh = 10−2 and δGh = 10−3. The number of iterations
was n = 4÷ 7. Numerical resuts show that the relative error δGh decreases
proportionally by decreasing the stopping parameter εT , due to linearity
of the problem in pure elastic case. Thus for εT = 10−4 the relative errors
δGh for the both materials are of same order 10−4.

In the second numerical example, the above found values Gh separately
have been used as an input data in Algorithm 2, for determination of the
unknown elasticity limit ξ2

0 for the rigid material. With the first input data
Gh,1 = 76.50 the found elasticity limit is ξ2

0h,1 = 0.022, while computed
from the direct problem solution, with the same input data, elasticity limit
is ξ2

0,1 = 0.024. Hence the relative error is δξ2
0h,1 = 1.9 × 10−1. Further, in

the case of the second input data Gh,2 = 78.75, which corresponds to the
stopping parameter εT = 10−3, the found elasticity limit is ξ2

0h,2 = 0.023,
while computed from the direct problem solution elasticity limit is ξ2

0,2 =
0.025. The relative error is δξ2

0h,2 = 1.4 × 10−1. Although further increase
of the stopping parameter improve the reconstructed value of the elasticity
limit ξ2

0 , the order of the relative error δξ2
0h,3 remains the same. Specifically,

in the third case, which corresponds to the stopping parameter εT = 10−4,
the found by Algorithm 2 value of the elasticity limit and the relative error
are ξ2

0,3 = 0.026 and δξ2
0h,3 = 3.7 × 10−2, respectively. Similar results are
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obtained for the soft material.
The above numerical results permit to conclude that the relative er-

rors δGh = 3.3 × 10−3 and δξ2
0h = 3.7 × 10−2 in the reconstructed values

of the shear modulus G and elasticity limit ξ2
0 , correspond to the value

εT = 10−4 of the stopping parameter. This value will be used in subsequent
computational experiments. From the point of view natural experiments,
it is interesting to define also the level of accuracy in the measured values
ϕi, corresponding to the value εT = 10−4 of the stopping parameter. For
this aim the linear direct problem (g(ξ2) = 1/G, G = 80.77) was solved
for a given two values ϕ1, ϕ2, with |ϕ1 − ϕ2| = 3.5 × 10−3. The absolute
error was found εT := |T [g](ϕ1) − T [g](ϕ2)| = 6.5 × 10−3. Therefore in the
case of pure elastic deformations, the accepted below value εT = 10−4 of
the stopping parameter corresponds to the absolute error δϕ = 10−3 in the
measured values of the angle of twist, which can be defined as an accu-
racy of the torsional experiment for pure elastic case. Almost same result
were obtained for the soft material G = 42.30. Specifically, the above value
εT = 6.5× 10−3 correspond to the absolute error |ϕ1 −ϕ2| = 5.2× 10−3 in
the measured values of the angle of twist.

Table 1. Synthetic noise free data for rigid and soft materials (κ = 0.2 )
(E = 210(GPa), ξ2

0 = 0.027) (E = 110(GPa), ξ2
0 = 0.02)

m = 0 1 2 3 4 0 1 2 3 4
ϕm × 103 2.0 3.5 3.6 3.7 3.8 4.0 6.0 6.3 6.5 6.6

T [g](ϕm) × 102 2.26 4.05 4.22 4.41 4.61 2.36 3.71 4.03 4.27 4.39
ξmh × 102 1.0 5.7 6.6 8.0 9.3 1.22 5.40 7.33 9.01 9.80

g(ξ2
mh) × 102 1.24 9.2 8.7 8.0 7.5 2.36 1.59 1.41 1.29 1.25

Consider now the problem identification of the unknown parameter β1

in (56), by using the synthetic noise free data given in Table 1. In the
case of rigid material, the first plastic state (m = 1) is generated by the
value ϕ1 = 3.5 × 10−3 of the angle of twist. Algorithm 1 is implemented
for determination of the unknown parameter (slope) β1. The reconstructed
values, corresponding to the stopping parameters εT = 10−2; 10−3; 10−4,
are found to be β1h = 0.131; 0.120; 0.104, respectively. The relative errors
(δβ1h = |β1 − β1h|/β1) are δβ1h = 1.8 × 10−1; 1.6 × 10−1; 2.8 × 10−2.
Evidently, these errors decrease by decreasing the stopping parameter εT .
In the case of the soft material, with the same κ = 0.2, the reconstructed
parameters and the relative errors, corresponding to the above values of the
stopping parameter, are β1h = 0.240; 0.233; 0.228, and δβ1h = 2.6 × 10−2;
4.4 × 10−2; 1.3 × 10−2, respectively. The similar decrease of the relative
error is observed in this case. Further, in the case of first plastic state,
one also needs to define the level of accuracy δϕ in the measured values
of the angle of twist, corresponding to the given value of the stopping
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parameter εT . As the computational experiments show, the absolute error
εT := |T [g](ϕ1)−T [g](ϕ2)| = 6.5× 10−3 corresponds to the absolute errors
|ϕ1 − ϕ2| = 4.5 × 10−3 and |ϕ1 − ϕ2| = 2.4 × 10−3, for the rigid and soft
materials, respectively.

6.3. Ill-posedness of the problems: regularization of the inversion algorithm
Consider first the numerical examples related to reconstruction of the

unknown coeficient gh(ξ2) for rigid and soft materials in the problem
(ICP1). The reconstructed coeficients plotted in Figure 4 (right figure),
correspond to the synthetic noise free data 〈ϕm, Tm〉, m = 0, 4, given in
Table 1 for the rigid and soft materials, with κ = 0.2. Note that the values
of the angles of twist ϕm in Table 1 are choosen so that to guarantee the
uniformness of the state discretization parameters Δξmh = ξ2

mh−ξ2
m−1h for

m = 2, 3, 4. As the results plotted in the figure show, the reconstructions
for the both materials are satisfactory, due to noise free data. Specifically,
the relative errors, defined by δgh = ‖(g− gh)/g‖∞,h, are δgh = 7.0×10−2,
δgh = 4.2×10−2, for the rigid and soft materials, correspondingly. However,
the relative error δβm = |βm−βmh|/βm increases by increasing the number
of states, i.e. by increasing the values ϕm of the angle of twist. This can
precisely be observed from Table 2. In the case of small values of the state
discretization parameter Δξmh these errors can lead to the divergence of
the iteration algorithm. Thus, for Δξmh = 0.4× 10−2 divergence arises im-
mediately at the first plastic state. This situation is illustrated in Figure 5
(left figure, the first �- point). Two times increase of the state discretization
step (Δξ

(1)
h,m = 2Δξmh) also leads to divergence of the iteration algorithm.

Only the three times increase (Δξ
(3)
mh = 3Δξmh) of the state discretization

step leads to the convergence of the iteration algorithm (the first ◦-point in
the left Figure 5).

Similar situation arises in the case of the problem (ICP2). Reconstruc-
tion of the stress-strain curve σi = σi(ei), given by (10) and (56) is illus-
trated in the right Figure 5, which again shows that, the inversion algo-
rithm may not converge for arbitrary values of the state discretization step
Δξmh = ξ2

mh − ξ2
m−1h, if the stopping parameter εT > 0, defined in (63),

is choosen to be small enough and given in advance. To guarantee the con-
vergence of the algorithm one needs to increase either the parameter εT or
the step Δξmh. The both situations evidently will lead to loss of accuracy.

Table 2. Relative errors δβm corresponding to the increasing values ϕm from Table 1
(a) Rigid material (b) Soft material

(E = 210(GPa); κ = 0.2) (E = 110(GPa) κ = 0.2)
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m βm βmh δβm βm βmh δβm

1 0.107 0.104 2.8 × 10−2 0.228 0.225 1.3 × 10−2

2 0.058 0.052 1.0 × 10−1 0.095 0.090 5.2 × 10−2

3 0.046 0.040 1.3 × 10−1 0.066 0.058 1.2 × 10−1

4 0.036 0.028 2.2 × 10−1 0.054 0.044 1.8 × 10−1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
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Fig. 5. Divergence of the inversion algorithm in small values of the state discretization
parameter Δξmh: the problem (ICP1) (left figure) and the problem (ICP2) (right figure)

To analyze this situation, first of all one needs to emphasize two distin-
guished features of all the three inverse problem. First, solvability of the
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inverse problem is a result of monotonicity of the plasticity function g(ξ2),
which for disrete model (58) means fufilment of the monotonicity condition
(57) for slopes βk, during the iteration process. Due to closeness of neigh-
bouring slopes for the developed plasticity states, and due to computational
errors in βk, in pactice this condition may not be fulfilled. Second, all pre-
viously determined parameters ξ2

mh are included, as formulas (56) shows,
in the next state. Subsequently computational errors are compounded, and
as a result, the second noise factor - computational noise factor arises. By
increasing the number of states the influence of this factor will be increased.
Hence for small values of state discretization parameters the inverse prob-
lem may become unstable after some m-th state. The left and right figures 5
is an illustration of this phenomenon, when the above algorithm is directly
applied to the inverse problems. These results show that the inversion al-
gorithm may not converge for arbitrary values of the state discretization
parameters and within the strong fulflment of the monotonicity condition
(57).

In order to guarantee stability and convergence of the inversion method
two regularization schemes - relaxation of the monotonicity condition for
slopes βk, and optimization of the state discretization parameters Δξmh =
ξ2
mh − ξ2

m−1h - have been added to proposed inversion algorithm. Intro-
ducing the relaxation parameter δβ > 0 we will require that the unknown
parameters βk satisfy the following relaxed monotonicity condition

βk + δβ ≥ βk−1 ≥ βk − δβ , k = 1,K, δβ > 0. (66)

Hence we define the new set of admissible unknown parameters will be
defined as follows:

Bδ := {βδ ∈ RK+1 : β0 > 0, βk + δβ ≥ βk−1 ≥ βk − δβ , k = 1,K, δβ > 0}.

the instead of B, defined by (57).
An optimal choice of the state discretization parameters has been re-

alized as follows. Let us assume that the inversion algorithm converges at
(k − 1)-th plastic state, but diverges at k-th plastic state, i.e. neither con-
dition (57) nor the condition (63) hold. In this case the parameter Δξmh is
eliminated from the consideration and taking the new state discretization
parameter Δ̃ξmh = Δξm+1,h − Δξm−1,h instead of the parameter Δξmh.
Then the iteration process is repeated anew from the (m−1)-th state. This
process is repeated until the fulfilment of conditions (62) and (66) and the
found step Δ̃ξk+1,h = Δξm+ms,h − Δξm−1,h is assumed to be a new state
discretization parameter for the m-th state. This modification leads to the
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natural selection of the state discretization parameters, also allows us to
minimize the number of measurements.

To illustrate an effectiveness of the inversion algoritm with the above
regularization consider the problem (ICP1).

Let {Δξmh}, m = 1,M , be an initial set of state discretization pa-
rameters corresponding to an experimentally given set {ϕm} of angles of
twist. Assume that the iteration algirithm converges at the (m − 1)th tor-
sional state, but diverges at the mth state (1 < m < M), which means
condition (63) does not hold. In this case the parameter Δξmh is elimi-
nated from the consideration, and the new state discretization parameter
Δξ

(1)
mh = Δξmh + Δξm+1h is defined. Then the inversion Algoritm 2 is ap-

plied with the new parameter Δξ
(1)
mh. In the case of divergence, again the

new state discretization parameter Δξ
(2)
mh = Δξmh + Δξm+1h + Δξm+2h is

defined, and the process is repearted. In the case of convergence, the value
Δ̃ξmh = Δξ

(1)
mh is defined to be an optimal state discretization parameter for

the mth state. At the next (m + 1)th state the same procedure is applied.
This natural selection of the state discretization parameters is illustrated
in Table 3. The input data here are taken from Table 1 and corresponds to
the scheme given in Figure 5. As Table 3 shows, the found new values of
the state discretization parameters are as follows:

Δ̃ξ1h = Δξ1h + Δξ2h + Δξ3h,

Δ̃ξ2h = Δξ4h + Δξ5h + Δξ6h,

Δ̃ξ3h = Δξ7h + Δξ8h + Δξ9h + Δξ10h,

Δ̃ξ4h = Δξ11h + Δξ12h + Δξ13h + Δξ14h.

The above natural selection of the state discretization parameters guar-
antees convergence of the inversion algorithm for each initially given set of
output measured data {〈ϕm, Tm〉}.

Table 3. (a) Regularization of the inversion algorithm applied to the example

illustrated in the left Figure 5

m 1∗ 2∗ 3 4∗ 5∗ 6 7∗

ξi × 102 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Δξi × 102 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Divergence � � � � �

Convergence ◦ ◦

Table 3. (b) Regularization of the inversion algorithm applied to the example

illustrated in the left Figure 5
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m 8∗ 9∗ 10 11∗ 12∗ 13∗ 14
ξi × 102 6.5 7.0 7.5 8.0 8.5 9.0 9.5

Δξi × 102 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Divergence � � � � �

Convergence ◦ ◦

8. An implementation of the inversion algorithm to the problems
(ICP1) and (ICP2) with noisy output data

Let us consider the problem (ICP1). Since in practice a finite number of
measured values of the torque T can only be given with some measurement
error: Tγ = T + γ T , where γ ∈ R is the noise level. In this computational
experiment the following noisy levels are used: γ = 0.03,−0.05,±0.07.

For the exact and noisy (synthetic) output data shown in the left Figure
6, for the rigid and soft materials, the reconstructed coefficients are plotted
in the right Figure 6. In all cases the relative errors, defined to be as δgh =
‖ (g−gh)/g‖∞,h, were obtained as δgh = 6.5÷8.0×10−3. This show that the
proposed algorithm allows to identify the unknown coefficient with enough
high accuracy, not only for the noisy free, but also for the noisy data.

Consider now the problem (ICP2). In experiments the indentation curve
can only be given with some measurement error γ = 1 ÷ 5% [4,6, 26], as
the finite number of measured data Pγ

m = Pm ± γPm, m = 1,M . Here
Pm = P(αm) is an exact data corresponding to m-th indentation step. In
this case, in addition to the parameters εP > 0 and δβ > 0, the stability of
the inversion algorithm with respect to the noise factor γ > 0 also arises.
Two types of power hardening materials (with elasticity parameters E =
110GPa, e0 = 0.020 and E = 210GPa, e0 = 0.027) are selected to examine
the proposed inversion method. The indentation curves for these materials,
obtained by from the numerical solution of the direct problem (6) with
r0 = 0.5, κ = 0.5, are shown in Fig. 7. The noisy data Pγ

m have been
generated by taking γ = 0.05 and γ = −0.1. All these data have been then
used as a synthetic data for identification of the curve σ

(m)

i,h = σ
(k)

i,h (ei), by
using the piecewice approximation (56) in formula (10). The results are
shown in the Figures 8.

For noise free data Pm the reconstructions of the stress-strain curve have
enough accuracy, in the both cases. Thus, the relative error εσ = (|(σ(m) −
σ

(m)
h )/σ(m)|) × 100% in the reconstructed curve, for the soft material, is

about εσ = 3%, except the fifth plastic state (the last �-point in the left
Figure 8). At this state the relative error was εσ = 10%. This is due to the
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Fig. 6. (The exact and noisy output data (left figure) and the reconstructed coefficients
(right figure): the problem (ICP2)

compounded errors in (56) from previous states, as was suggested above.
For the rigid power hardening material the reconstructed of the stress-

strain curves are plotted the right in Figure 8. In the case of the noisy data,
an accuracy of the reconstructed curve for the first to fourth plastic states is
about εσ = 1%, and εσ = 6%, for the fifth plastic state. For the noisy data
Pγ

m accuracy of the reconstruction decreases, in particular in the begining
plastic states. For the noise factors γ = 0.05;−0, 1 the relative errors rise
up to εσ = 12% and εσ = 7%, for the both types of materials, respectively.
Note that, the noisy data also can change the optimal selection of the state
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discretization parameters, as shows the examples.
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Fig. 7. (Noise free and noisy indentation curves for power hardening materials

The obtained results show that the presented inversion algorithm ap-
plied to the problem (ICP2) is also feasible in the presence of a noise factor
γ = 5 ÷ 10%.

9. Conclusions
The new inversion method for identifying the elastoplastic properties of

a strain hardening materials within the range of J2-deformation theory is
proposed. Three types of inverse problems, with different governing equa-
tions and different measured output data, arising in engineering mechan-
ics and computational material science are analyzed. Mathematical models
of these inverse problems lead to inverse coefficient problem for nonlinear
steady-state equations. An analysis of the corresponding direct problems, as
well as all the three the inverse problems are proposed. Ill-conditionedness
of the considered inverse problem has been carried out theoretically, as well
as computationally. The compact set of admissible coefficients constructed
here consistent with the assumptions of the physical model.

The presented inversion algorithm using the optimal selection of state
discretization parameters is a new and natural regularization algorithm
for such a class of inverse (or computational material diagnostics) prob-
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Fig. 8. The the reconstructed stress-strain curves for soft (E = 110GPa, e0 = 0.020)
(left figure) and rigid (E = 210GPa, e0 = 0.027) (right figure) materials from the noise
free and noisy data given in Figure 7

lems. The inversion method with this regularization algorithm permit one
not only to determine effectively the elastoplastic properties from the the
measured loading curve, but also suggests how one needs to simulate and
select the limited number of experimental data (torque, loading curve, etc.).
The demonstrated numerical results for different engineering materials show
that the presented inversion method allows to determine the plasticity func-
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tion with enough high accuracy from the noise free as well as noisy measured
output data.

Finally, it should be emphasized that this study mainly focuses on the
theoretical and computational aspects of the inverson method for considered
here indentation problems. Further applications of the method, by taking
into account such a physical and engineering aspects as geometrical non-
linearity, elastic deformations of the indenter, use of the unloading part of
the indentation curve, will be especially useful and will be essential part of
the future research.
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Wavelet theory is a refinement of Fourier analysis. Replacement of Fourier
analysis by this theory very often yield much better results. The basic theory

of wavelets has been invented between 1983 and 1995. Applications of wavelets
have been studied in diverse fields such as numerical simulation of partial dif-

ferential equations, modeling real world problems, signal and image processing

specially more accurate understanding of medical signals such as EEG and
ECG. This theory has been also used in oil exploration, analyzing meteoro-

logical data and prediction of financial time series. In the recent past, three

mathematical aspects of this theory have been investigated namely: nonuni-
form multiresolution analysis, where Z the set of translation parameters in

scaling function is replaced by its subset which is not a group 6; effect of the

replacement of whole real line R by half positive line R+ in the definition of
multiresolution analysis 5 and vector valued wavelet and multiresolution analy-

sis, where scalar scaling function in the classical definition is replaced by vector

valued function 1,15.
In the review article we present a resume of the results obtained by the above

authors and our own results obtained recently and presented in the conferences:

sattelite conference of ICM 2010 held in Delhi and ICM 201012,14.

Keywords: multiresolution analysis, non-uniform multiresolution analysis,

Walsh-Fourier transform

1. Introduction

The multiresolution analysis is known as the heart of the wavelet theory.
The concept of multiresolution analysis provides a very elegant tool for
the construction of wavelets i.e. the functions ψ ∈ L2(R) having the prop-
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erty that the collection of functions {2j/2ψ(2jx − n)}j,n∈Z forms a com-
plete orthonormal system for L2(R) where Z denote the set of all integers
3. A multiresolution analysis on the real line R, introduced by Mallat 10

is an increasing sequence of closed subspaces {Vj}j∈Z of L2(R) such that
∩j∈ZVj = {0}, ∪j∈ZVj is dense in L2(R), and which satisfies f(x) ∈ Vj

if and only if f(2x) ∈ Vj+1. Furthermore, there should exist an element
φ ∈ V0 such that the collection of integer translates of φ, {φ(x − n)}n∈Z is
a complete orthonormal system for V0.

In the definition of multiresolution analysis the dilation factor of 2 can
be replaced by an integer N ≥ 2 and one can construct N − 1 wavelets
to generate the whole space L2(R). A similar generalization of multires-
olution analysis can be made in higher dimensions by considering matrix
dilations 9. Gabardo and Nashed 6 considered a generalization of the no-
tion of multiresolution analysis, which is called nonuniform multiresolution
analysis(NUMRA) and is based on the theory of spectral pairs. Farkov
5 has extended the notion of multiresolution analysis on locally compact
abelian groups and has constructed orthogonal wavelets with compact sup-
port on locally compact abelian groups by the scaling function associated
with this multiresolution analysis. The approach adopted by Farkov is con-
nected with Walsh-Fourier transform and the elements of M-band wavelet
theory. Chen and Cheng 1 introduced vector-valued multiresolution anal-
ysis and orthogonal vector-valued wavelets. They find the necessary and
sufficient condition for the existence of orthogonal vector-valued wavelets.

A basic technique in the standard theory of wavelets is to construct a
multiresolution analysis based on a scaling function φ whose Fourier trans-
form is defined by

φ̂(ξ) =
∞∏

k=1

m0(
ξ

2k
) (1)

where m0(ξ) =
∑

|k|≤M ake−2πiξk is a trigonometric polynomial satisfying
the conditions m0(0) = 1 and 3,4,17

|m0(ξ +
1
2
)|2 + |m0(ξ)|2 = 1.

The scaling relation φ̂(2ξ) = m0(ξ)φ̂(ξ) is then automatically satisfied. If
the orthonormality of the system of functions {φ(x − n)}n∈Z in L2(R) is
satisfied then V0 can be defined as a closed linear span of the collection
{φ(x − n)}n∈Z. The subspaces Vj for j ∈ Z can be defined as

f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1.
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It can be shown that the collection {Vj}j∈Z satisfies all the properties of a
multiresolution analysis and the scaling function and wavelet function have
compact support.
Cohen’s condition provide the necessary and sufficient condition for the
orthonormality of the collection {φ(x − n)}n∈Z.

Theorem 1.1. 2 Let m0 be a 1-periodic trigonometric polynomial satisfy-
ing m0(0) = 1 as well as |m0(ξ + 1

2 )|2 + |m0(ξ)|2 = 1 and φ is defined by
(1). Then the collection {φ(x−n)}n∈Z is orthonormal in L2(R) if and only
if there exists a compact set K ⊂ R containing a neighborhood of 0 and a
constant c > 0 such that ∑

k∈Z

δk ∗ ψK = 1 and

|m0(
ξ

2k
)| ≥ c, ∀ξ ∈ K ∀k ≥ 1.

In the above theorem δk and ∗ denote the Dirac mass at k and ∗ the usual
convolution product respectively.

This paper is organized as follows: In section 2 we review the main re-
sults obtained by Gabardo and Nashed in 6,7, the definition of NUMRA, the
necessary and sufficient condition for the existence of associated wavelets
and the analogue of Cohen’s condition. In section 3 we explain certain re-
sults of Walsh-Fourier analysis. We present a brief review of generalized
Walsh functions, Walsh-Fourier transforms and its various properties, mul-
tiresolution p-analysis in L2(R+) introduced by Farkov 5. In section 4 we
present a review of results obtained in 1,15 on vector-valued multiresolution
analysis and present an algorithm for constructing a class of compactly
supported orthogonal vector-valued wavelets. Nonuniform multiresolution
analysis on positive half line is defined in section 5 and a necessary and
sufficient condition for the existence of associated wavelet is given. In sec-
tion 6 we construct nonuniform multiresolution analysis on positive half
line starting from a Walsh polynomial m0 satisfying appropriate conditions
and showing that the scaling function ϕ defined, via the Fourier transform,
by the corresponding infinite product

ϕ̃(ξ) =
∞∏

k=1

m0

( ξ

Nk

)
belong to L2(R+). We construct a nonuniform multiresolution analysis on
positive half line with a compactly supported scaling function ϕ. We find the
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analogue of Cohen’s condition for nonuniform multiresolution on positive
half line which gives necessary and sufficient condition for the orthonormal-
ity of the system {ϕ(x" λ)}λ∈Λ+ where Λ+ = {0, r/N}+ Z+, N > 1 is an
integer and r is an odd integer with 1 ≤ r ≤ 2N − 1 such that r and N are
relatively prime.

2. Nonuniform Multiresolution analysis

Gabardo and Nashed 6 considered a generalization of the notion of mul-
tiresolution analysis, which is called nonuniform multiresolution analysis
(NUMRA) and is based on the theory of spectral pairs. In this set up, the
associated subspace V0 of L2(R) has, as an orthonormal basis, a collection
of translates of the scaling function φ of the form {φ(x − λ)}λ∈Λ where
Λ = {0, r/N} + 2Z, N ≥ 1 is an integer and r is an odd integer with
1 ≤ r ≤ 2N − 1 such that r and N are relatively prime and Z is the set
of all integers. The main results of Gabardo and Nashed deal with neces-
sary and sufficient condition for the existence of associated wavelets 6 and
extension of Cohen’s theorem 7.

Let us recall the definitions of NUMRA and associated set of wavelets:

Definition 2.1. Given an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤
2N − 1 such that r and N are relatively prime, an associated nonuniform
multiresolution analysis (abbreviated NUMRA) is a collection {Vj}j∈Z of
closed subspaces of L2(R) satisfying the following properties:

(a) Vj ⊂ Vj+1 ∀ j ∈ Z,
(b) ∪j∈ZVj is dense in L2(R),
(c) ∩j∈ZVj = {0},
(d) f(x) ∈ Vj if and only if f(2Nx) ∈ Vj+1,
(e) There exists a function φ ∈ V0, called a scaling function such that the

collection {φ(x − λ)}λ∈Λ where Λ = {0, r/N} + 2Z is a complete or-
thonormal system for V0.

It is worth noticing that when N = 1, one recovers from definition above the
standard definition of a one-dimensional MRA with dyadic dilation. When
N > 1, the dilation factor of 2N ensures that 2NΛ ⊂ 2Z ⊂ Λ. However,
the existence of associated wavelets with the dilation 2N and translation
set Λ is no longer guaranteed as is the case in the standard setting.

Given a NUMRA, we denote by Wm the orthogonal complement of Vm

in Vm+1, for any integer m. It is clear from (a), (b) and (c) of Definition
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2.1 that

L2(R) = ⊕m∈ZWm.

As is the case in the standard situation, the main purpose of NUMRA is to
construct orthonormal basis of L2(R) given by appropriate translates and
dilates of a finite collection of functions, called the associated wavelets.

Definition 2.2. A collection {ψk}k=1,2,...,2N−1 of functions in V1 will be
called a set of wavelets associated with a given NUMRA if the family of
functions {ψk(x − λ)}k=1,...,2N−1,λ∈Λ is an orthonormal system for W0.

It is shown in 6 that given a set of wavelets {ψk}k=1,2,...,2N−1 as-
sociated with a given NUMRA, the collection {(2N)m/2ψk((2N)mx −
λ)}λ∈Λ,m∈Z,k=1,2,...,2N−1 forms a complete orthonormal system for L2(R).

The following result proved in 6 provides the simple necessary and suf-
ficient conditions for the existence of the associated set of wavelets:

Theorem 2.1. Consider a NUMRA with associated parameters N and r,
as in Definition 1.1, such that the corresponding space V0 has an orthonor-
mal system of the form {φ(x−λ)}λ∈Λ, where Λ = {0, r/N}+2Z, φ̂ satisfies
the scaling relation

φ̂(2Nξ) = m0(ξ)φ̂(ξ),

where φ̂ denotes the Fourier transform of a function φ and m0 has the form

m0(ξ) = m1
0(ξ) + e−2πiξr/Nm2

0(ξ),

for some locally L2, 1/2-periodic functions m1
0 and m2

0. Define M0 by

M0(ξ) = |m1
0(ξ)|2 + |m2

0(ξ)|2.

Then, each of the following conditions is necessary and sufficient for the
existence of associated wavelets ψ1, . . . , ψ2N−1:

(a) M0 is 1/4-periodic.
(b)

∑N−1
k=0 δk/2 ∗

∑
j∈Z

δjN ∗ |φ̂|2 = 1.
(c) For any odd integer m, we have∫

R

φ(x)φ(x − m/N) dx = 0.

Gabardo and Nashed 7 provides an extension to the setting of NUMRAs
of the standard construction of wavelet analysis which consists in construct-
ing a multiresolution analysis starting from a trigonometric polynomial m0

of the form
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m0(ξ) = m1
0(ξ) + e−2πiξr/Nm2

0(ξ), (2)

where the integers r and N satisfy N ≥ 1, 1 ≤ r ≤ 2N − 1, r is odd, r and
N are relatively prime and m1

0(ξ) and m2
0(ξ) are 1

2 -periodic trigonometric
polynomials. The polynomial m0 satisfies m0(0) = 1 and the following
conditions:

2N−1∑
p=0

M0(ξ + p/4N) = 1, (3)

2N−1∑
p=0

αpM0(ξ + p/4N) = 0, (4)

where α = e−πir/N and M0(ξ) = |m1
0(ξ)|2 + |m2

0(ξ)|2.
Then a compactly supported function φ ∈ L2(R) is obtained which

satisfies the scaling relation

φ̂(2Nξ) = m0(ξ)φ̂(ξ). (5)

Now, it is necessary to determine the orthonormality of the system of
functions {φ(x − λ)}λ∈Λ where λ = {0, r/N} + 2Z. If the orthonormality
requirement is satisfied, one can define V0 as the closed linear span of the
collection {φ(x − λ)}λ∈Λ and Vj for j ∈ Z is defined as

f(x) ∈ Vj ⇔ f(x/(2N)j) ∈ V0 (6)

so that the conditions (d) and (e) of Definition 2.1 hold. Also the equation
5 implies that (a) holds. The remaining two conditions (b) and (c) follow
from the Proposition 3.3 and 3.4 proved in 7.

The remaining issue is to prove the orthonormality of the family {φ(x−
λ)}λ∈Λ. Gabardo and Nashed proved the analogue of Cohen’s result for
NUMRAs, which gives a sufficient condition for the orthonormality of the
collection {φ(x − λ)}λ∈Λ.

The following theorem by Gabardo and Nashed 7 generalizes Cohen’s
result:

Theorem 2.2. Let m0 be a trigonometric polynomial of the form (2) which
satisfies m0(0) = 1 together with the conditions (3) and (4). Let φ be defined
by the formula (5) and let Λ = 0, r/N + 2Z. Then a sufficient condition for
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the collection {φ(x−λ)}λ∈Λ to be orthonormal in L2(R) is the existence of
a constant c > 0 and of a compact set K ⊂ R that contains a neighborhood
of the origin and satisfies

N−1∑
k=0

δk/2 ∗
∑
j∈Z

δNj ∗ χK = 1,

such that

|m0(ξ/(2N)k)| ≥ c ∀ξ ∈ K, ∀k ≥ 1.

Furthermore, if the function M0 defined by M0(ξ) = |m1
0(ξ)|2 + |m2

0(ξ)|2 is
1/4- periodic, the condition is also necessary.

3. Multiresolution p-analysis on R+

Let p be a fixed natural number greater than 1. As usual, let R+ = [0, +∞)
and Z+ = {0, 1, . . .}. Denote by [x] the integer part of x. For x ∈ R+ and
for any integer j

xj = [pjx](mod p), x−j = [p1−jx](mod p), (7)

where xj , x−j ∈ {0, 1, . . . , p−1}. It is clear that for each x ∈ R+, ∃k = k(x)
in N such that x−j = 0 ∀ j > k.

Consider on R+ the addition defined as follows:

x ⊕ y =
∑
j<0

ξjp
−j−1 +

∑
j>0

ξjp
−j

with

ξj = xj + yj(mod p), j ∈ Z\{0},

where ξj ∈ {0, 1, 2, . . . , p − 1} and xj , yj are calculated by (7).
For p = 2, ⊕ was introduced by N.J.Fine, see for example 13. For x ∈ R+

and j ∈ N we define the numbers xj , x−j ∈ {0, 1} as follows:

xj = [2jx](mod 2), x−j = [21−jx](mod 2), (8)

where [.] denotes the integral part of x ∈ R+.
xj and x−j are the digits of the binary expansion

x =
∑
j<0

xj2−j−1 +
∑
j=0

xj2−j . (9)
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(For dyadic x, we obtain an expansion with finitely many non-zero terms)
For fixed x, y ∈ R+, we set

x ⊕ y =
∑
j<0

|xj − yj |2−j−1 +
∑
j>0

|xj − yj |2−j ,

where xj , yj are defined in (8). By definition
x " y = x ⊕ y (because x ⊕ x = 0).

The binary operation ⊕ identifies R+ with the group G2 (dyadic group
with addition modulo 2) and is useful in the study of dyadic Hardy classes
and image processing, see for example 8,13.
For x ∈ [0, 1), let r0(x) is given by

r0(x) =
{

1 x ∈ [0, 1/p)
εj

p x ∈ [jp−1, (j + 1)p−1), j = 1, 2, . . . , p − 1
(10)

where εp = exp
(

2πi
p

)
.

The extension of the function r0 to R+ is defined by the equality r0(x +
1) = r0(x), x ∈ R+. Then the generalized Walsh functions {wm(x)}
(m ∈ Z+) are defined by

w0(x) ≡ 1 and wm(x) =
k∏

j=0

(r0(pjx))μj ,

where

m =
k∑

j=0

μjp
j , μj ∈ {0, 1, . . . , p − 1}, μk �= 0.

(The classical Walsh system corresponds for the case p = 2)
For x, w ∈ R+, let

χ(x, w) = exp

⎛⎝2πi

p

∞∑
j=1

(xjw−j + x−jwj)

⎞⎠ , (11)

where xj and wj are given by (7).
We observe that

χ(x,
m

pn−1
) = χ(

x

pn−1
,m) = wm(

x

pn−1
) ∀ x ∈ [0, pn−1), m ∈ Z.

The Walsh-Fourier transform of a function f ∈ L1(R+) is defined by
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f̃(w) =
∫

R+

f(x)χ(x,w) dx, (12)

where χ(x,w) is given by (11).
If f ∈ L2(R+) and

Jaf(w) =
∫ a

0

f(x)χ(x, w) dx (a > 0), (13)

then f̃ is defined as limit of Jaf in L2(R+) as a → ∞.

Properties of Walsh-Fourier transform
If f ∈ L2(R+), then f̃ ∈ L2(R+) and

‖f̃‖L2(R+) = ‖f‖L2(R+).

If x, y, w ∈ R+ and x ⊕ y is p-adic irrational, then

χ(x ⊕ y, w) = χ(x, w)χ(y, w), (14)

see 8. Thus for fixed x and w, the equality (14) holds for all y ∈ R+

except for countably many. It is well known that systems {χ(α, .)}∞α=0 and
{χ(., α)}∞α=0 are orthonormal bases in L2[0, 1].
Let {w} denotes the fractional part of w. For any ϕ ∈ L2(R+) and k ∈ Z+,
we have

∫
R+

ϕ(x)ϕ(x " k) dx =
∞∑

l=0

∫ l+1

l

|ϕ̃(w)|2χ(k, {w}) dw

=
∫ 1

0

⎛⎝∑
l∈Z+

|ϕ̃(w + l)|2
⎞⎠χ(k, w) dw. (15)

Therefore, a necessary and sufficient condition for a system {ϕ(. " k)/k ∈
Z+} to be orthonormal in L2(R+) is

∑
l∈Z+

|ϕ̃(w + l)|2 = 1 a.e. (16)

Multiresolution p-analysis in L2(R+) defined by Farkov 5 is as follows:

Definition 3.1. A multiresolution p-analysis in L2(R+) is a sequence of
closed subspaces Vj ⊂ L2(R+) (j ∈ Z) such that the following hold:
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(i) Vj ⊂ Vj+1 for all j ∈ Z.
(ii) ∪Vj is dense in L2(R+) and ∩Vj = {0}.
(iii) f(.) ∈ Vj ⇔ f(p.) ∈ Vj+1 for all j ∈ Z.
(iv) f(.) ∈ V0 ⇔ f(. ⊕ k) ∈ V0 for all k ∈ Z+.
(v) There is a function ϕ ∈ L2(R+) such that {ϕ(. " k)/k ∈ Z+} is an

orthonormal basis of V0.

The function ϕ is called a scaling function in L2(R+).

Farkov has given a general construction of compactly supported orthogonal
p-wavelets in L2(R+) arising from scaling filters with pn many terms. For
all integer p ≥ 2 these wavelets are identified with certain lacunary Walsh
series on R+.

Let ϕ ∈ L2(R+) satisfies the refinement equation

ϕ(x) = p

pn−1∑
α=0

aαϕ(px " α). (17)

We get

ϕ̃(w) = m0(p−1w)ϕ̃(p−1w), (18)

where

m0(w) =
pn−1∑
α=0

aαχ(α, w). (19)

Suppose that

m0(0) = 1.

Put

Δ(n)
s = [sp−n, (s + 1)p−n) for s ∈ Z+.

Then m0(w) is constant on Δ(n)
s for each s and m0(w) = 1 on Δ(n)

0 . It
follows from equation (18) that

ϕ̃(w) =
∞∏

j=1

m0(p−jw), w ∈ R+. (20)

We note that m0(p−jw) = 1 as p−jw ∈ Δ(n)
0 .

We say that a function f : R+ → C is W - continuous at a point x ∈ R+,
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if for each ε > 0 there exists δ > 0 such that |f(x ⊕ y) − f(x)| < ε for
0 < y < δ.
Suppose that E is a W - compact set in R+. The notion E ≡ [0, 1)(mod Z+)
means that for each x ∈ [0, 1) there exists k ∈ Z+ such that x⊕ k ∈ E. Let
μ denotes the Lebesgue measure on R+.

The following theorem by Farkov generalizes A.Cohen’s result:

Theorem 3.1. Let

m0(w) =
pn−1∑
α=0

aαχ(α, w)

be a polynomial satisfying the following conditions:

(a) m0(0) = 1.
(b)

∑pn−1
j=0 |m0(sp−n ⊕ jp−1)|2 = 1 for s = 0, 1, . . . , pn−1 − 1.

(c) There exists a W -compact set E such that 0 ∈ int(E), μ(E) = 1,
E ≡ [0, 1)(mod Z+) and

inf
j∈N

inf
w∈E

|m0(p−jw)| > 0.

If the Walsh-Fourier transform of ϕ ∈ L2(R+) can be written as

ϕ̃(w) =
∞∏

j=1

m0(p−jw),

then ϕ is a scaling function in L2(R+).

4. Vector-valued multiresolution analysis

Chen and Cheng 1 introduced the concept of vector-valued multiresolution
analysis and orthogonal vector-valued wavelets. They derive a necessary and
sufficient condition on the existence of orthogonal vector-valued wavelets
and also presented the construction of a compactly supported orthogonal
vector-valued wavelets.

Let s be a constant such that 2 ≤ s ∈ Z. Is and O stand for the s × s

identity matrix and zero matrix respectively. L2(R, Cs) denote the set of
all vector-valued functions h(t) defined as:

L2(R, Cs) =
{
h(t) = (h1(t), h2(t), . . . , hs(t))T : hν(t) ∈ L2(R), ν = 1, 2, . . . , s

}
where T denotes the transpose.
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For h ∈ L2(R, Cs), ‖h‖ is the norm of the operator h, i.e. ‖h‖ =(
s∑

ν=1

∫
R

|hν(t)|2 dt

)1/2

, and the integration of h(t) is defined by ĥ(η) =∫
R
h(t).e−itη dt.
For two vector-valued functions h,η ∈ L2(R, Cs), their symbolic inner

product is defined by

< h(.),η(.) >=
∫

R

h(t)η(t)∗ dt, (21)

where ∗ means the complex conjugate and the transpose.
A sequence {hk(t)} ⊂ X ⊂ L2(R, Cs) is called an orthogonal set of X,

if it satisfies

< hk(.),hn(.) >= δk,nIs, k, n ∈ Z, (22)

where δk,n is the Kronecker symbol such that δk,n = 1 when k = n and
δK,n = 0 when k �= n.

Definition 4.1. A function h(t) ∈ X ⊂ L2(R, Cs) is an orthogonal vector-
valued function in X if its translations {h(t− k)}k∈Z is an orthonormal set
in X, i.e.

< h(. − k),h(. − n) >= δk,nIs, k, n ∈ Z. (23)

Definition 4.2. A sequence {hk(t)}k∈Z ⊂ X ⊂ L2(R, Cs) is called an
orthonormal basis of X if it satisfies (22), and for any Λ(t) ∈ X, there
exists a unique sequence of s × s constant matrices {Ak}k∈Z such that

Λ(t) =
∑
k∈Z

Akhk(t). (24)

The expansion (24) is also called the Fourier series expansion of Λ(t).

Let φ(t) = (φ1(t), φ2(t), . . . , φs(t))T ∈ L2(R, Cs) satisfy the following
refinement equation:

φ(t) =
∑
k∈Z

Pkφ(2t − k), (25)

where {Pk}k∈Z is a s × s constant matrix sequence that has only finite
terms.
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Define a closed subspace Vj ⊂ L2(R, Cs) by

Vj = closL2(R,Cs)(span{φ(2jt − k) : k ∈ Z}), j ∈ Z. (26)

Vector-valued multiresolution analysis defined by Chen and Cheng is as
follows:

Definition 4.3. φ(t) defined by (25) generates a vector-valued multires-
olution analysis {Vj}j∈Z of L2(R, Cs), if the sequence {Vj}j∈Z defined in
(26) satisfies:

(a) . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .,
(b) ∩j∈ZVj = {0}, ∪j∈ZVj is dense in L2(R, Cs), where 0 is the zero vector

of L2(R, Cs),
(c) h(t) ∈ V0 if and only if h(2jt) ∈ Vj ∀j ∈ Z,
(d) there exists φ(t) ∈ V0 such that the sequence {φ(t − k), k ∈ Z} is an

orthonormal basis of V0. The vector-valued function φ(t) is called a
scaling function of the vector-valued multiresolution analysis.

On taking the Fourier transform on both sides of (25), and assuming that
φ̂(η) is continuous at zero, we have

φ̂(η) = α(η/2)φ̂(η/2), η ∈ R, (27)

where

α(η) =
1
2
.
∑
k∈Z

Pk. exp{−ikη}. (28)

Let Wj , j ∈ Z denote the orthogonal complement of Vj in Vj+1 and there
exists a vector-valued function ψ(t) ∈ L2(R, Cs) such that the translations
and dilations of ψ(t) form a Riesz basis of Wj i.e.

Wj = closL2(R,Cs)(span{ψ(2jt − k) : k ∈ Z}), j ∈ Z. (29)

Since ψ(t) ∈ W0 ⊂ V1, there exists a unique finitely supported sequence
{Bk}k∈Z of s × s constant matrices such that

ψ(t) =
∑
k∈Z

Bkφ(2t − k). (30)

Let

β(η) =
1
2

∑
k∈Z

Bk.exp {−ikη}. (31)

Then the equation (30) becomes

ψ̂(η) = β(η/2) ˆφ(η/2), η ∈ R. (32)
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The following theorem proves the existence of orthogonal vector-valued
wavelets:

Theorem 4.1. Let φ(t) defined in (25) is an orthogonal vector-valued scal-
ing function. Assume that ψ(t) ∈ L2(R, Cs) and α(η) and β(η) are defined
respectively by (28) and (31). Then ψ(t) is an orthogonal vector-valued
wavelet function associated with φ(t) if and only if

α(η)β(η)∗ + α(η + π)β(η + π)∗ = O, η ∈ R.

β(η)β(η)∗ + β(η + π)β(η + π)∗ = Is, η ∈ R.

The following theorem proved in1 present an algorithm for the construc-
tion of compactly supported orthogonal vector-valued wavelets:

Theorem 4.2. Let φ(t) ∈ L2(R, Cs) be a 3-coefficient compactly supported
orthogonal vector-valued scaling functions satisfying the following refine-
ment equation:

φ(t) = P0φ(2t) + P1φ(2t − 1) + P2φ(2t − 2).

Assume that there exists an integer n, 0 ≤ n ≤ 2, such that the matrix A

defined in the following equation , is not only an invertible matrix but also
an Hermitian matrix:

A2 = (2Is − PnP ∗
n)−1PnP ∗

n .

Define {
Bj = APj , j �= n,

Bj = −A−1Pj , j = n, j, n ∈ {0, 1, 2}

and

ψ(t) = B0φ(2t) + B1φ(2t − 1) + B2φ(2t − 2).

Then ψ(t) is an orthogonal vector-valued function associated with φ(t).

5. Nonuniform multiresolution analysis on positive half line

Definition 5.1. For an integer N > 1 and an odd integer r with 1 ≤
r ≤ 2N − 1 such that r and N are relatively prime, an associated nonuni-
form multiresolution analysis on positive half line is a sequence of closed
subspaces Vj ⊂ L2(R+), j ∈ Z such that the following properties hold:

(i) Vj ⊂ Vj+1 ∀j ∈ Z,
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(ii) ∪j∈Z is dense in L2(R+),
(iii) ∩j∈ZVj = {0},
(iv) f(.) ∈ Vj ⇔ f(N.) ∈ Vj+1 ∀j ∈ Z,
(v) There exists a function ϕ ∈ V0 such that {ϕ(x " λ), λ ∈ Λ+} where

Λ+ = {0, r/N} + Z+, is a complete orthonormal system for V0.

The function ϕ is called a scaling function in L2(R+).

When N > 1, the dilation factor of N ensures that

NΛ+ ⊂ Z+ ⊂ Λ+.

By the conditions (iv) and (v) of the Definition 5.1

ϕ1,λ(x) = N1/2ϕ(Nx " λ), λ ∈ Λ+

constitute an orthonormal basis in V0.
Since V0 ⊂ V1, the function ϕ ∈ V1 and has the Fourier expansion

ϕ(x) =
∑

λ∈Λ+

hλ(N)1/2ϕ(Nx " λ)

where hλ =
∫

R+

ϕ(x)ϕ1,λ(x) dx.

This implies that

ϕ(x) = N
∑

λ∈Λ+

aλϕ(Nx " λ),
∑

λ∈Λ+

|aλ|2 < ∞

where aλ = (N)−1/2hλ.

Lemma 5.1. Consider a nonuniform multiresolution analysis on positive
half line as in Definition 5.1. Let ψ0 = ϕ and suppose ∃ N − 1 functions
ψk, k = 1, 2, . . . , N − 1 in V1 such that the family of functions {ψk(x "
λ)}λ∈Λ+,k=0,1,...,N−1 forms an orthonormal system in V1. Then the system
is complete in V1.

Proof. Since ψk ∈ V1, k = 0, 1, . . . , N − 1 there exists the sequences
{hk

λ}λ∈Λ+ satisfying
∑

λ∈Λ+
|hk

λ|2 < ∞ such that

ψk(x) =
∑

λ∈Λ+

hk
λN1/2ϕ(Nx " λ).

This implies that

ψk(x) = N
∑

λ∈Λ+

ak
λϕ(Nx " λ),

∑
λ∈Λ+

|ak
λ|2 < ∞
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where ak
λ = (N)−1/2hk

λ.
On taking the Walsh-Fourier transform, we have

ψ̃k(ξ) = mk

( ξ

N

)
ϕ̃
( ξ

N

)
, (33)

where mk(ξ) =
∑

λ∈λ+
ak

λχ(λ, ξ).
Since Λ+ = {0, r/N} + Z+, we can write

mk(ξ) = m1
k(ξ) + χ

( r

N
, ξ
)
m2

k(ξ), k = 0, 1, . . . , N − 1 (34)

where m1
k and m2

k are locally L2 functions.
According to 8 for λ ∈ Λ+, where Λ+ = {0, r/N} + Z+ and by assumption
we have ∫

R+

ψk(x)ψl(x " λ) dx =
∫

R+

ψ̃k(ξ)ψ̃l(ξ)χ(λ, ξ) dξ

= δklδ0λ,

where δkl denotes the Kronecker delta.
Define

hkl(ξ) =
∑

j∈Z+

ψ̃k(ξ + Nj)ψ̃l(ξ + Nj), 0 ≤ k, l ≤ N − 1.

If λ ∈ Z+, we have∫
R+

ψk(x)ψl(x " λ) dx =
∫

[0,N ]

hkl(ξ)χ(λ, ξ) dξ

=
∫

[0,1]

[N−1∑
p=0

hkl(ξ + p)
]
χ(λ, ξ) dξ.

On taking λ = r
N + n where n ∈ Z+, we obtain∫

R+

ψk(x)ψl(x " λ) dx =
∫

[0,N ]

χ
(
n +

r

N
, ξ
)
hkl(ξ) dξ

=
∫

[0,N ]

χ(n, ξ) χ(r/N, ξ)hkl(ξ) dξ

=
∫

[0,N ]

χ(n, ξ) χ(r/N, ξ)
[N−1∑

p=0

χ(r/N, p)hkl(ξ + p)
]
dξ.
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By the orthonormality of the system {ψk(x" λ)}λ∈Λ+,k=0,1,...,N−1 we con-
clude that

N−1∑
p=0

hkl(ξ + p) = δkl, (35)

and
N−1∑
p=0

χ(r/N, p)hkl(ξ + p) = 0

i.e.
N−1∑
p=0

αphkl(ξ + p) = 0, (36)

where α = χ(r/N, 1), since χ(r/N, p) =
[
χ(r/N, 1)

]p for p = 0, 1, . . . , N−1.

Now we will express the conditions (35) and (36) in terms of mk as
follows

hkl(Nξ) =
∑

j∈Z+

ψ̃k(Nξ + Nj)ψ̃l(Nξ + Nj)

=
∑

j∈Z+

ψ̃k[N(ξ + j)]ψ̃l[N(ξ + j)]

=
∑

j∈Z+

mk(ξ + j)ml(ξ + j)|ϕ̃(ξ + j)|2

= [m1
k(ξ)m1

l (ξ) + m2
k(ξ)m2

l (ξ)]
∑

j∈Z+

|ϕ̃(ξ + j)|2

+
[
m1

k(ξ)m2
l (ξ)

∑
j∈Z+

χ(r/N, ξ + j)|ϕ̃(ξ + j)|2
]

+
[
m2

k(ξ)m1
l (ξ)

∑
j∈Z+

χ(r/N, ξ + j)|ϕ̃(ξ + j)|2
]
.

Therefore,

hkl(Nξ) = [m1
k(ξ)m1

l (ξ) + m2
k(ξ)m2

l (ξ)]
N−1∑
j=0

h00(ξ + j)

+
[
m1

k(ξ)m2
l (ξ)χ(r/N, ξ)

N−1∑
j=0

χ(r/N, j)h00(ξ + j)
]

+
[
m2

k(ξ)m1
l (ξ)χ(r/N, ξ)

N−1∑
j=0

χ(r/N, j)h00(ξ + j)
]

= m1
k(ξ)m1

l (ξ) + m2
k(ξ)m2

l (ξ).
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By using the last identity and the equations (35) and (36), we obtain

N−1∑
p=0

[
m1

k

(ξ + p

N

)
m1

l

(ξ + p

N

)
+ m2

k

(ξ + p

N

)
m2

l

(ξ + p

N

)]
= δkl, (37)

and

N−1∑
p=0

αp
[
m1

k

(ξ + p

N

)
m1

l

(ξ + p

N

)
+ m2

k

(ξ + p

N

)
m2

l

(ξ + p

N

)]
= 0, (38)

0 ≤ k, l ≤ N − 1.
Both of these conditions together are equivalent to the orthonormality of
the system {ψk(x " λ)}λ∈Λ+,k=0,1,...,N−1.

The completeness of the system {ψk(x " λ)}λ∈Λ+,k=0,1,...,N−1 in V1 is
equivalent to the completeness of the system{

1
N

ψk(
x

N
" λ)}λ∈Λ+,k=0,1,...,N−1

}
in V0. For a given arbitrary function

f ∈ V0, by assumption ∃ a unique function m(ξ) of the form
∑

λ∈Λ+

bλχ(λ, ξ)

where
∑

λ∈Λ+
|bλ|2 < ∞ such that f̃(ξ) = m(ξ)ϕ̃(ξ).

Hence, in order to prove the claim, it is enough to show that the system of
functions

S = {χ(Nλ, ξ)mk(ξ)}λ∈Λ+,k=0,1,...,N−1

is complete in L2[0, 1].
Let g ∈ L2[0, 1], therefore ∃ locally L2 functions g1 and g2 such that

g(ξ) = g1(ξ) + χ(r/N, ξ)g2(ξ).

Assuming that g is orthogonal to all functions in S, we then have for any
λ ∈ Λ+ and k ∈ {0, 1, . . . , N − 1} that

0 =
∫

[0,1]

χ(ξ, Nλ)mk(ξ)g(ξ) dξ

=
∫

[0,1]

χ(ξ, Nλ)[m1
k(ξ)g1(ξ) + m2

k(ξ)g2(ξ)] dξ (39)

Taking λ = m where m ∈ Z+ and defining

wk(ξ) = m1
k(ξ)g1(ξ) + m2

k(ξ)g2(ξ), k = 0, 1, . . . , N − 1,
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we obtain

0 =
∫

[0,1]

χ(ξ, Nm)wk(ξ) dξ

=
∫

[0, 1
N ]

χ(ξ,Nm)
N−1∑
j=0

wk(ξ + j/N) dξ.

Since this equality holds for all m ∈ Z+, therefore

N−1∑
j=0

wk(ξ + j/N) = 0 for a.e. ξ. (40)

Similarly, on taking λ = m + r
N where m ∈ Z+, we obtain

0 =
∫

[0,1]

χ(ξ,Nm) χ(ξ, r)wk(ξ) dξ

=
∫

[0, 1
N ]

χ(ξ, Nm) χ(ξ, r)
N−1∑
j=0

αjwk(ξ + j/N) dξ.

Hence we deduce that
N−1∑
j=0

αjwk(ξ + j/N) = 0 for a.e. ξ,

which proves our claim.

If ψ0, ψ1, . . . , ψN−1 ∈ V1 are as in Lemma 5.1, one can obtain from them
an orthonormal basis for L2(R+) by following the standard procedure for
construction of wavelets from a given MRA 4,9,16,17. It can be easily checked
that for every m ∈ Z, the collection {Nm/2ψk(Nmx"λ)}λ∈Λ+,k=0,1,...,N−1

is a complete orthonormal system for Vm+1.
Given a NUMRA on positive half line, we denote by Wm the orthogonal

complement of Vm in Vm+1, m ∈ Z. It is clear from (i), (ii) and (iii) of
Definition 5.1 that

L2(R+) = ⊕m∈ZWm

where ⊕ denotes the orthogonal direct sum with the inner product of
L2(R+).

From this it follows immediately that the collection {Nm/2ψk(Nmx "
λ)}λ∈Λ+,m∈Z,k=1,2,...,N−1 forms a complete orthonormal system for L2(R+).
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Definition 5.2. A collection {ψk}k=1,2,...,N−1 of functions in V1 will be
called a set of wavelets associated with a given nonuniform multireso-
lution analysis on positive half line if the family of functions {ψk(x "
λ)}k=1,2,...,N−1,λ∈Λ+ is an orthonormal system for W0.

The following theorem proves the necessary and sufficient condition for
the existence of associated set of wavelets to nonuniform multiresolution
analysis on positive half line.

Theorem 5.1. Consider a nonuniform multiresolution analysis on a pos-
itive half line with associated parameters N and r, as in Definition 5.1,
such that the corresponding space V0 has an orthonormal system of the
form {ϕ(x " λ)}λ∈Λ+ where Λ+ = {0, r/N} + Z+, ϕ̃ satisfies

ϕ̃(ξ) = m0(ξ/N)ϕ̃(ξ/N), (41)

and m0 has the form

m0(ξ) = m1
0(ξ) + χ(r/N, ξ)m2

0(ξ), (42)

for some locally L2 functions m1
0 and m2

0. M0 is defined as

M0(ξ) = |m1
0(ξ)|2 + |m2

0(ξ)|2. (43)

Then a necessary and sufficient condition for the existence of associated
wavelets ψ1, ψ2, . . . , ψN−1 is that M0 satisfies the identity

M0(ξ + 1) = M0(ξ). (44)

We refer to11 for the proof of this theorem. The main purpose in the next

section is to construct Nonuniform multiresolution analysis on positive half
line starting from a Walsh polynomial m0 satisfying appropriate conditions
and finding suitable analogue of Cohen’s conditions.

6. Construction of Nonuniform multiresolution analysis on
positive half line

Our goal in this section is to construct nonuniform multiresolution analysis
on a positive half line starting from a polynomial m0 of the form

m0(ξ) = m1
0(ξ) + χ(r/N, ξ)m2

0(ξ), (45)

where N > 1 is an integer and r is an odd integer with 1 ≤ r ≤ 2N − 1
such that r and N are relatively prime and m1

0(ξ) and m2
0(ξ) are locally L2
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Walsh polynomials. The scaling function ϕ associated with given nonuni-
form multiresolution analysis on positive half line should satisfy the scaling
relation

ϕ̃(ξ) = m0(ξ/N)ϕ̃(ξ/N). (46)

Define

M0(ξ) = |m1
0(ξ)|2 + |m2

0(ξ)|2,

and suppose

N−1∑
p=0

M0(ξ + p/N) = 1 (47)

and
N−1∑
p=0

αpM0(ξ + p/N) = 0 (48)

where α = χ(r/N, 1). It follows from (46) that

ϕ̃(ξ) =
∞∏

k=1

m0

( ξ

Nk

)
. (49)

Also assume that m0(0) = 1 in order for the infinite product
∞∏

k=1

m0

( ξ

Nk

)
to converge pointwise. For an arbitrary function m0 of the form (45) the
conditions (47) and (48) imply that |m0| ≤ 1 a.e. Since if |m0(ξ)| > 1 for a
fixed ξ, then |m1

0(ξ)| + |m2
0(ξ)| > 1 and thus |M0(ξ)| > 1

2 .
We obtain the inequalities

N−1∑
p=1

M0(ξ + p/N) <
1
2

and

|
N−1∑
p=1

M0(ξ + p/N)| = |M0(ξ)| >
1
2
.

which yields to a contradiction.

Theorem 6.1. Let m0 be a polynomial of the form (45) where m1
0 and m2

0

are locally square integrable functions and M0 satisfy (47) and (48). Let ϕ

be defined by (49) and assume that the infinite product defining ϕ̃ converges
a.e. on R+. Then the function ϕ ∈ L2(R+).
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Proof. Consider the integrals

A1 =
∫ N

0

M0(ξ/N) dξ,

and

Ak =
∫ Nk

0

M0

( ξ

Nk

) k−1∏
j=1

∣∣m0

( ξ

N j

)∣∣2 dξ for k ≥ 2.

A1 =
∫ N

0

M0(ξ/N) dξ =
∫ 1

0

N−1∑
p=0

M0

( ξ

N
+

p

N

)
dξ = 1,

and

Ak =
∫ Nk

0

M0

( ξ

Nk

) k−1∏
j=1

∣∣m0

( ξ

N j

)∣∣2 dξ

=
∫ Nk−1

0

N−1∑
p=0

∣∣m0

( ξ

Nk−1
+ p
)∣∣2M0

( ξ

Nk
+

p

N

) k−2∏
j=1

∣∣m0

( ξ

N j

)∣∣2 dξ.

We find that

∑N−1
p=0

∣∣m0

( ξ

Nk
+ p
)∣∣2M0

( ξ

Nk
+

p

N

)
=

[∣∣m1
0

( ξ

Nk−1

)∣∣2 +
∣∣m2

0

( ξ

Nk−1

)∣∣2]N−1∑
p=0

M0

( ξ

Nk
+

p

N

)
+m1

0

( ξ

Nk−1

)
m2

0

( ξ

Nk−1

)
χ
( r

N
,

ξ

Nk−1

)N−1∑
p=0

αpM0

( ξ

Nk
+

p

N

)
+m1

0

( ξ

Nk−1

)
m2

0

( ξ

Nk−1

)
χ
( r

N
,

ξ

Nk−1

)N−1∑
p=0

α−pM0

( ξ

Nk
+

p

N

)
=

∣∣m1
0

( ξ

Nk−1

)∣∣2 +
∣∣m2

0

( ξ

Nk−1

)∣∣2
= M0

( ξ

Nk−1

)
.

This shows that

Ak =
∫ Nk−1

0

M0

( ξ

Nk−1

) k−2∏
j=1

∣∣m0

( ξ

N j

)∣∣2 dξ = Ak−1.
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It follows that, for all k

Ak = Ak−1 = Ak−2 = . . . = A1 = 1.

Hence ∫ Nk

0

|ϕ̃(ξ)|2 dξ ≤
∫ Nk

0

k−1∏
j=1

∣∣m0

( ξ

N j

)∣∣2 dξ

≤
∫ Nk

0

2M0

( ξ

Nk

) k−1∏
j=1

∣∣m0

( ξ

N j

)∣∣2 dξ

= 2Ak = 2.

Since k is arbitrary, it follows that ϕ ∈ L2(R+).

We will construct nonuniform multiresolution analysis on a positive half
line from a polynomial m0 of the form (45) which satisfies (47) and (48)
and also the condition m0(0) = 1.
By Theorem 6.1 we obtain a compactly supported function ϕ ∈ L2(R+) 4

which satisfies

ϕ̃(Nξ) = m0(ξ)ϕ̃(ξ). (50)

Now, it is necessary to determine the orthonormality of the system of func-
tions {ϕ(x " λ)}λ∈Λ+ in L2(R+) where Λ+ = {0, r/N} + Z+.
If the orthonormality condition is satisfied, we can define

V0 = span{ϕ(x " λ)}λ∈Λ+

and Vj for j ∈ Z is defined as

f(x) ∈ Vj ⇔ f
( x

N j

)
∈ V0 (51)

so that (iv) and (v) of Definition 5.1 hold.
Also equation (50) implies that (i) also holds. The remaining two conditions
(ii) and (iii) follow from the results of the Theorems 6.2 and 6.3 which are
analogues of results in standard theory 4,9.

For an integer m, let εm(R+) denotes the collection of all functions f on
R+ which are constant on [sN−m, (s + 1)N−m) for each s ∈ Z+. Further
we set,

ε̃m(R+) = {f : f is W-continuous and f̃ ∈ εm(R+)}
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and

ε(R+) = ∪∞
m=1εm(R+), ε̃(R+) = ∪∞

m=1ε̃m(R+).

The following properties are true:

(1) εm(R+) and ε̃m(R+) are dense in Lq(R+) for 1 ≤ q ≤ ∞.
(2) If f ∈ L1(R+) ∪ εm(R+), then supp f̃ ⊂ [0, Nm].
(3) If f ∈ L1(R+) ∪ ε̃m(R+), then supp f ⊂ [0, Nm].

For ϕ ∈ L2(R+), we put

ϕj,λ(x) = N j/2ϕ(N jx " λ), j ∈ Z, λ ∈ Λ+.

Let Pj be the orthogonal projection of L2(R+) to Vj .

Theorem 6.2. Let Λ+ = {0, r/N}+Z+. Suppose that ϕ ∈ L2(R+) is such
that the collection {ϕ(x " λ)}λ∈Λ+ is an orthonormal system in L2(R+)
with closed linear span V0 and Vj is defined by (51) then ∩j∈ZVj = {0}.

Proof. Let f ∈ ∩j∈ZVj . Given an ε > 0 and a continuous function u

which is compactly supported in some interval [0, R], R > 0 and satisfies
‖f − u‖2 < ε. Then we have

‖f − Pju‖2 ≤ ‖Pj(f − u)‖2 ≤ ‖f − u‖2 < ε,

so that

‖f‖2 < ‖Pju‖2 + ε.

Using the fact that the collection {N j/2ϕ(N jx"λ)}λ∈Λ+ is an orthonormal
bases for Vj .

‖Pju‖2
2 =

∑
λ∈Λ+

∣∣ < Pju, ϕj,λ >
∣∣2

= (N)j
∑

λ∈Λ+

∣∣ ∫ R

0

u(x)ϕ(N jx " λ) dx
∣∣2

≤ (N)j‖u‖2
∞R

∑
λ∈Λ+

∫ R

0

|ϕ(N jx " λ)|2 dx,

where ‖u‖∞ denotes the supremum norm of u. If j is chosen small enough
so that RN j ≤ 1, then

‖Pju‖2
2 ≤ ‖u‖2

∞

∫
SR,j

|ϕ(x)|2 dx

= ‖u‖2
∞

∫
R+

ISr,j
(x)|ϕ(x)|2 dx, (52)
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where SR,j = ∪λ∈Λ+{y " λ/y ∈ [0, RN j ]} and ISr,j
denotes the character-

istic function of Sr,j .
It can be easily checked that

lim
j→−∞

ISR,j
(x) = 0 ∀x /∈ Λ+.

Thus from equation (52) by using the dominated convergence theorem, we
get

lim
j→−∞

‖Pju‖2 = 0.

Therefore, we conclude that ‖f‖2 < ε and since ε is arbitrary f = 0 and
thus ∩j∈ZVj = {0}.

Theorem 6.3. Let ϕ ∈ L2(R+) is such that the collection {ϕ(x"λ)}λ∈Λ+

is an orthonormal system in L2(R+) with closed linear span V0 and Vj is
defined by (51) and assume that ϕ̃(ξ) is bounded for all ξ and continuous
near ξ = 0 with |ϕ̃(0)| = 1, then ∪j∈ZVj = L2(R+).

Proof. Let f ∈
(
∪j∈Z Vj

)⊥.
Given an ε > 0 we choose u ∈ L1(R+) ∩ ε(R+) such that ‖f − u‖2 < ε.
Then for any j ∈ Z+, we have

‖Pjf‖2
2 =

〈
Pjf, Pjf

〉
=
〈
f, Pjf

〉
= 0,

and so

‖Pju‖2 = ‖Pj(f − u)‖2 ≤ ‖f − u‖2 < ε.

Then we put g(ξ) = ũ(ξ)ϕ̃(N−jξ) for some function g of the form

g(ξ) = g1(ξ) + χ
(
ξ,

r

N

)
g2(ξ),

where g1 and g2 are locally square integrable, 1/2-periodic functions.
If g(ξ) has the expansion of the form

∑
λ∈Λ+

cλχ(ξ, λ) on the set [0, 1],
then

cλ =
∫ 1

0

g(ξ)χ(ξ, λ) dξ

=
∫

R+

ũ(ξ)ϕ̃(N−jξ)χ(ξ, λ) dξ, λ ∈ Λ+.

If λ ∈ Z+, we have∫ 1

0

2g1(ξ)χ(ξ, λ) dξ =
∫ 1

0

∑
k∈Z+

ũ(ξ + k)ϕ̃
( ξ

N j
+

k

N j

)
χ(ξ, λ) dξ.
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Therefore

g1(ξ) =
1
2

∑
k∈Z+

ũ(ξ + k)ϕ̃
( ξ

N j
+

k

N j

)
.

On taking λ = r
N + m where m ∈ Z+, we obtain

g2(ξ) =
1
2

∑
k∈Z+

ũ(ξ + k)ϕ̃
( ξ

N j
+

k

N j

)
χ
(
ξ + k,

r

N

)
.

Therefore

g(ξ) =
1
2

∑
k∈Z+

ũ(ξ + k)ϕ̃
( ξ

N j
+

k

N j

)
(1 + αk),

where α = χ(r/N, 1).
Since the collection {N j/2ϕ(N jx"λ)}λ∈Λ+ is an orthonormal basis for Vj ,
if in addition ũ has compact support, for large values of j

‖Pju‖2
2 =

∑
λ∈Λ+

∣∣〈u, ϕj,λ

〉∣∣2 =
∫

R+

|u(ξ)|2|ϕ̃(N−jξ)|2 dξ.

By Lebesgue dominated convergence theorem as j → ∞, the expression on
R.H.S converges to |ϕ̃(0)|2‖ũ‖2

2. Therefore

ε > ‖Pju‖2 = ‖ũ‖2 = ‖u‖.

Consequently

‖f‖2 < ε + ‖u‖2 < 2ε.

Since ε is arbitrary, therefore f = 0.

The analogue of Cohen’s condition

On the basis of above construction it is necessary to determine the or-
thonormality of the system of functions {ϕ(x " λ)}λ∈Λ+ . We are going to
consider the analogue of Cohen’s condition for nonuniform multiresolution
analysis on positive half line.

Theorem 6.4. Let m0 be a polynomial of the form (45) which satisfies
m0(0) = 1 together with the conditions (47) and (48). Let ϕ be defined by the
formula (49) and Λ+ = {0, r/N} + Z+. Then the following are equivalent:

(1) ∃ a W -compact set E such that 0 ∈ int(E), μ(E) = 1, E ≡
[0, 1](mod Z+) and

infj∈N infw∈E |m0(N−jw)| > 0.
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(2) The system {ϕ(x " λ)}λ∈Λ+ is orthonormal in L2(R+).

We refer to 11 for the proof of this theorem.

7. Nonuniform vector-valued multiresolution analysis

The concept of nonuniform vector-valued multiresolution analysis intro-
duced by A.H.Siddiqi and P.Manchanda14 is defined as follows:

Given integers N ≥ 1 and r odd with 1 ≤ r ≤ 2N −1 such that r and N

are relatively prime Λ = {0, r/N}+2Z where Z denotes the set of integers.
Let φ(t) = (φ1(t), φ2(t), . . . , φs(t))T ∈ L2(R, Cs) where L2(R, Cs) is as in
section 4 satisfy the following refinement equation :

φ(t) =
∑
λ∈Λ

Aλφ(2t − λ), (53)

where {Aλ}λ∈Λ is a s × s constant matrix sequence that has only finite
terms.

Define a closed subspace Vj ⊂ L2(R, Cs) by

Vj = closL2(R,Cs)(span{φ(2jt − λ) : λ ∈ Λ}), j ∈ Z. (54)

Definition 7.1. We say that φ(t) defined by (53) generates a nonuniform
vector-valued multiresolution analysis {Vj}j∈Z of L2(R, Cs), if the sequence
{Vj}j∈Z defined in (54) satisfies:

(a) . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .,
(b) ∩j∈ZVj = {0}, ∪j∈ZVj is dense in L2(R, Cs), where 0 is the zero vector

of L2(R, Cs),
(c) h(t) ∈ Vj if and only if h(2Nt) ∈ Vj+1 ∀j ∈ Z,
(d) there exists φ(t) ∈ V0 such that the sequence {φ(t − λ), λ ∈ Λ} is an

orthonormal basis of V0. The vector-valued function φ(t) is called a
scaling function of the vector-valued multiresolution analysis.

Note that when N = 1, one recovers from the above definition the defi-
nition of vector-valued multiresolution analysis with dilation factor equals
to 2.

Given a nonuniform vector-valued multiresolution analysis let Wm de-
notes the orthogonal complement of Vm in Vm+1, for any integer m. It is
clear from (a) and (b) of Definition 7.1 that

L2(R, Cs) = ⊕m∈ZWm.
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The main purpose of nonuniform vector-valued multiresolution analysis is
to construct Riesz basis of L2(R, Cs) given by appropriate translates and
dilates of a finite collection of functions, called the associated wavelets.

Definition 7.2. A collection {ψk}k=1,2,...,2N−1 of functions in V1 will
be called a set of wavelets associated with a given nonuniform vector-
valued multiresolution analysis if the family of functions {ψk(x −
λ)}k=1,...,2N−1,λ∈Λ is Riesz system for W0.
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A human brain is the most important organ which controls the functioning

of the body including heartbeat and respiration. It is an extremely complex

system. Electroencephalography (EEG) is the recording of electrical activity

along the scalp produced by the firing of neurons within the brain. In clinical

context EEG refers to the recording of the brain’s spontaneous electrical activ-

ity over a short period of time, say 20-40 minutes, as recorded from multiple

electrodes placed on the scalp. The main application of EEG is in the case

of epilepsy, as epileptic activity can create clear abnormalities on a standard

EEG study. A secondary clinical use of EEG is in coma, Alzheimer’s disease,

encephalopathies, and brain death. However in the recent years EEG is also

being used to design the brain of a robot. Mathematical concepts specially

methods for numerical solution of partial differential equations with boundary

conditions, inverse problem methods and wavelet analysis have found promi-

nent position in the study of EEG. The present paper is devoted to this theme

and will highlight the role of wavelet methods. It will also include the results

∗
This work is supported by Kocaeli University Scientific Research Foundation (Project

number: 2010/003).

†
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obtained in our research project.

Keywords: EEG; Epilepsy; Wavelet; Inverse Problems.

1. Introduction

The outline of the paper is as follows. In the next section an introduction

to inverse problems is given. In the third section wavelet methods will be

introduced. Under this section brief information on multiresolution analy-

sis, wavelet spectrum and wavelet cross-correlation will be given. Wavelet

methods for inverse problems in signal and image processing will be studied

in the fourth section. Wavelet-vaguelette decomposition approach will be

introduced in the same section. In the fifth section wavelets for EEG (Elec-

troencephalograhy - recording of brain activity) related inverse problems

will be investigated. In the same section after giving a brief information

on brain and EEG, direct problem and inverse problem for EEG source

localization will be explained. Also usage of wavelet methods in medicine

with references for further reading and some open problems are included.

In Appendix some case studies regarding wavelet analysis of data obtained

through Kocaeli University’s Medical School via the project will be pre-

sented.

2. Introduction to Inverse Problems

Let X and Y be spaces having appropriate structure, say a Banach Space

or a Hilbert space. Given x ∈ X and T : X → Y , direct problem consists

of finding Tx such that

y = Tx (1)

Given an observed output y, finding an input x that produces it is called

an inverse problem, i.e.,

x ∈ X → y = Tx ∈ Y (2)

or equivalently, given a desired output z, finding an input x that produces

an output y that is as “close” to z as possible:

min
xi∈X

‖ Tx− z ‖L2
.

Remark here that an inverse problem is to find out “x” such that Eq. (2)

holds (at least approximately), where T is the operator describing explic-

itly relationship between the data “y” and the model parameters x and

is representation of the physical system from which the inverse problem
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is generated. The operator T is called “forward operator” or “observable

operator” or “observation function”.

If T is a linear operator then the inverse problem is called linear inverse

problem, otherwise non-linear inverse problem:

g(x) =

∫ b

a

K(x, t)f(t)dt⇔ Tf = g (3)

is an example of a linear inverse problem where K(x, t) is the kernel of the

integral equation, g(x) is the data and f(x) is the model parameter.

The common thread among inverse problems, signal analysis, and mo-

ment problems is a canonical problem: recovering an object (function, sig-

nal, picture) from partial or indirect information about the object. In seis-

mology studying the behaviour of elastic waves propagating through the

earth which are produced by earthquakes and tsunamis, etc. These sources

produce different types of seismic waves which travel through rock, and

provide an effective way to image both sources and structures deep within

the earth. This is an inverse problem.

In describing the heat conduction in a material occupying a three di-

mensional domain Ω whose temperature is kept zero at the boundary, the

temperature distribution “u” after a sufficiently long time is modeled by

−∇(q(u)∇(u)) = f(u), x ∈ Ω

u = 0, x ∈ ∂Ω (4)

where f denotes internal heat sources and q is the spatially varying heat

conductivity. If one can not measure q directly, one can try to determine q

from internal measurements of the temperature u or from boundary mea-

surements of the heat flux. Eq. (4) with unknown q and given u is non-linear

although direct problem is linear. The inverse problem in the context of the

BVP Eq. (4) is to estimate the coefficient q from a measurement z of the

solution u.

In recent years the field of inverse problems has emerged as one of the

most active branches of applied mathematics. Certainly the main reason

behind this is the ever-growing number of real-world situations that are

being modeled and studied in a unified framework of inverse problems.

However, the theory of mathematical aspects of inverse problems are also

challenging and require a fine blending of various branches of mathematics.

We cite the following references for updated information [15, 20, 25, 26, 27,

28, 36, 37].

A number of approaches to the aforementioned inverse problem have

been proposed in the literature; most of them involve either regarding Eq.
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(4) as a hyperbolic PDE in q or posing an optimization problem whose

solution is an estimate of q. Furthermore, the approach of reformulating

Eq. (4) as an optimization problem is divided into two possibilities, namely

either formulating the problem as an unconstrained optimization problem

or treating it as a constrained optimization problem, in which the BVP

itself is the constraint.

3. Wavelet Methods

The continuous wavelet transform (CWT) of a function with respect to

some local base function (wavelet) is defined as

W (a, b) = WW f(b, a) =
1
√
a

∫
∞

−∞

f(t)Ψ∗(
t− b

a
)dt, a > 0 (5)

where y∗ is the complex conjugate of y. The parameter b and a are called

as translation (shifting) and dilation parameters respectively. The wavelet

behaves like a window function. At any scale a, the wavelet coefficients

W (a, b) can be obtained by convolving f(t) and a dilated version of the

wavelet. To be a window and to recover from its inverse wavelet transform

(IWT), y(t) must satisfy

Ψ(0) =

∫
∞

−∞

Ψ(t)dt = 0. (6)

Although W (b, a) provides space-scale analysis rather than space-frequency

analysis, proper scale-to-frequency transformation allows analysis that is

very close to space-frequency analysis. Reducing the scale parameter ‘a’ re-

duces the support of the wavelet in space and hence covers higher frequen-

cies and vice-versa therefore ‘1/a’ is a measure of frequency. The parameter

‘b’ indicated the location of the wavelet window along the space axis thus

changing (b, a) enables computation of the wavelet coefficients on the entire

frequency plane.

Scalograms are the graphical representation of the square of the wavelet

coefficients for the different scales. They are isometric view of sequence of

the wavelet coefficients versus wavelength. A scalogram clearly shows more

details, identifies the exact location at a particular depth, and detects low

frequency cyclicity of the signal. The scalogram surface highlights the loca-

tion (depth) and scale (wavelength) of dominant energetic features within

the signal, say of gamma rays, bulk density and neutron porosity of a well

log.

The combinations of the various vectors of coefficients at different scales

(wavelengths) form the scalogram. The depth with the strongest coefficient
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indicates the position that the particular wavelength change is taking

place. The scalogram provides a good space-frequency representation of the

signal.

3.1. Multiresolution Analysis

The continuous wavelet transform (CWT) is useful for cyclicity determina-

tion. However, for other applications, it was found that the CWT was not

easy to apply. Meyer discovered that by using certain discrete values of the

two parameters a and b, an orthonormal basis can be obtained. The basis

is of the form

{2s/2Ψ(2st− k)}s,k∈Z

Thus, a will be of the form 2−s and b of the form k2−s. With these

values of a and b the discrete wavelet transform (DWT) becomes

WΨf(k2
−s, 2−s) = 2s/2

∫
∞

−∞

f(t)Ψ(2st− k)dt

By discretizing the function f(t), and assuming the sampling rate to be

1, the integral above can be approximated by

WΨf(k2
−s, 2−s) ≈ 2s/2

∑
f(n)Ψ(2st− k).

The discrete wavelet transform (DWT) plays an important role in divid-

ing a complicated signal into several simpler ones and analyze them sepa-

rately. This concept is known as multiresolution analysis (MRA). Here, the

function is decomposed at various levels of approximations and resolutions.

As a result, a time series signal can be decomposed into a low frequency

approximation and several medium-to-high frequency details. Each individ-

ual approximation or detail can be analyzed separately, depending on the

application.

The discrete wavelet transform belongs to the multiresolution analysis.

It is a linear transformation with a special property of time and frequency

localization at the same time. It decomposes the given signal series onto a

set of basis functions of different frequencies, shifted each other and called

wavelets. Unlike the discrete Fourier transform the discrete wavelet trans-

form is not a single object. In reality, it hides a whole family of transforma-

tions. The individual members of the family are determined by the choice

of so-called mother wavelet function. The goal of discrete wavelet transform

is to decompose arbitrary signal f(t) into a finite summation of wavelets at
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different scales (levels) according to the expansion

f(t) =
∑
j

∑
k

cijΨ(2jt− k) (7)

where cj,k is a new set of coefficients and Ψ(2jt − k) is the wavelet of j

th level (scale) shifted by k samples. The set of wavelets of different scales

and shifts can be generated from the single prototype wavelet, called mother

wavelet, by dilations and shifts. What makes the wavelet bases interesting is

their self-similarity: Every function in wavelet basis is a dilated and shifted

version of one (or possibly few) mother functions. In practice the most

often used are the orthogonal or bio-orthogonal wavelets, for which the set

of wavelets forms an orthogonal or bi-orthogonal base.

Let us denote the discrete form of the original signal vector by f and by

Ajf the operator that computes the approximation of f at resolution 2j.

Let Djf denote the detailed signal,Djf = Aj+1f − Ajf at the resolution

2j . It was shown by Mallat in [12] that both operations Ajf and Djf can

be interpreted as the convolution of the signal of previous resolution and

the finite impulse response of the quadrature mirror filters: the high pass

(G̃) of coefficients (g̃) and the low pass (H̃) of coefficients (h̃)

Ajf =

∞∑
k=−∞

h̃(2n− k)Aj+1f(2n),

Djf =
∞∑

k=−∞

g̃(2n− k)Aj+1f(2n).

These operations performed for values of j, from 1 to J , deliver the coeffi-

cients of the decomposition at different levels (scales) and different resolu-

tions of the original vector f and form the analysis of the signal. The most

often used discrete wavelet analysis scheme uses Mallat pyramid algorithm.

As a result of such transformation we get the set of coefficients repre-

senting the detailed signals Dj at different levels j, (j = 1, 2, . . . , J) and the

residue signal Ajf at the level J . All of them are of different resolutions,

appropriate to the level. The coefficients of Djf can be interpreted as the

high frequency details, that distinguish the approximation of f at two sub-

sequent levels of resolution. On the other hand, the signal Ajf represents

the coarse approximation of the vector f .

The next step is the transformation of the detailed signals Djf (j =

1, 2, . . . , J) and the coarse approximation signals Ajf into the original res-

olution. It is done by using special filters G and H associated with the
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analysis filters (G̃) and (H̃) by the quadrature and reflection relationships.

This is so-called reverse Mallat pyramid algorithm, forming the reconstruc-

tion of the original signal. As a result we get the decomposed signals of each

level in the original resolution. The recovery of the original signal f(n) in

each time instant n is then performed by simply adding the appropriate

wavelet coefficients and the coarse approximation. At J-level decomposi-

tion we have

f(n) = D1(n) +D2(n) + . . .+Dj(n) +Aj(n) (8)

3.2. Wavelet Spectrum

The total energy contained in a signal is defined as

E =

∫
∞

−∞

|f(t)|2dt = ‖f‖2.

Two dimensional wavelet energy density function is defined as E(a, b) =

W (b, a). It signifies the relative contribution of the energy contained at a

specific scale “a” and location “b”. The wavelet energy density function

E(a, b) can be integrated across “a” and “b” to recover the total energy in

the signal using admissibility constant cg as follows

E =
1

cg

∫
∞

−∞

∫
∞

0

|W (a, b)|2
da

a2
db.

Wavelet spectrum denoted by E(a) is defined as

E(a) =
1

cg

∫
∞

−∞

|W (a, b)|2db.

The wavelet spectrum E(a) has a power law behavior E(a) ≈ aλ.

Wavelet Spectrum E(a) defines the energy of the wavelet coefficient

(wavelet transform) for scale ’a’. Peaks in E(a) highlights the dominant

energetic scales within the signal.

The total energy contained in a 2D signal is defined as

E =

∫ d1

c1

∫ d2

c2

|f(x, y)|2dxdy = ‖f‖2.

For discrete f , the total energy E is given as

E =
∑
m

∑
n

|f(m,n)|2 = ‖f‖2.

It may be noted that the wavelet transform of a given signal can be recon-

structed. Furthermore, the total energy of the given signal and its wavelet
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transform are identical. If E(Total) is considered to be the total energy of

the signal then relative energy is given by

ERelative =
E(Energy of the level to be considered)

E(Total)
.

Scalogram is the graphical representation of the square of the wavelet

coefficient versus wavelength. It clearly shows more details and direct low

frequency cyclicity of the signal. It may be noted that scalogram is nothing

but a 2-dimension wavelet energy density function.

3.3. Wavelet Cross-Correlation

Two signals are said to be correlated if they are linearly associated, in other

words if their wavelength spectrum a certain scale or wavelength are linearly

associated. Broadly speaking graphs of a versus E(a) for two signals are

similar (increase or decrease together).

4. Wavelet Methods for Inverse Problems in Signal and

Image Processing

As we have seen in Section 2, in an inverse problem we wish to estimate an

unknown function (signal) f(t) with the help of an observed data (informa-

tion) (Tf)(t), where T is some linear operator. Assume that the data are

observed at discrete points ti and are corrupted by noise, so observed data

y(t) are

y(t) = (Tf)(t) + ε(t) (9)

where ε(t) represents unwanted quantity (noise). Thus the inverse problem

under consideration is the problem of estimating f from noisy data y in the

model in Eq. (9).

For most such inverse problems one cannot recover f simply as f̃ =

T−1y in practice; either because the inverse operator T−1 does not exist at

all, or because it is an unbounded operator, which means small changes in

y would cause large changes in T−1y (ill posed problem). Classical methods

are discussed to solve such problems in references mentioned in Section 2.

Donoho proposed wavelet methods to solve such problems where T is

linear or nonlinear [38]. Essentially one uses the expansion f in a wavelet

series, constructing a corresponding vaguelette series (to be defined below)

for Tf , then estimating the coefficients using appropriate methods (one of

such is thresholding). For usage of either kinds of expansion/decomposition

such as wavelet-vaguelette, wavelet frames, shearlets we cite references given

above.
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4.1. Outline of Wavelet-vaguelette Decomposition Approach

In wavelet vaguelette decomposition method wavelet expansion of the un-

known function f is written as

f =
∑
j

∑
k

〈f,Ψj,k〉Ψj,k (10)

Let Φj,k = TΨj,k for some operators T there exists constants ˜betaj,k such

that the set of scaled functions

vj,k = Ψj,k/β̃j,k

forms a Riesz basis in L2 norm, i.e., there exist two constants 0 < A ≤ B <

∞ such that

A
∑
j

∑
k

c2j,k ≤ ‖
∑

cj,kvj,k‖
2 ≤ B

∑
j

∑
k

c2j,k (11)

for all square summable sequences cj,k. The functions vj,k are called

vaguelettes.

If wavelet basis Ψj,k is chosen appropriately, any function g in the range

of T can be expanded in a vaguelette series as

g =
∑
j

∑
k

〈g, uj,k〉vj,k (12)

where uj,k is dual vaguelette basis satisfying

T ∗uj,k = β̃j,kΨj,k.

uj,k and uj,k are biorthogonal, that is, 〈vj,k, ul,m〉 = δj,lδk,m.

If we observe the signal Tf without noise, we could expand it in a

vaguelette series:

Kf =
∑
j

∑
k

〈Kf, uj,k〉vj,k (13)

and recover the original function f as

f =
∑
j

∑
k

〈Kf, uj,k〉β̃
−1
j,kΨj,k =

∑
j

∑
k

〈Kf, Ψ̃j,k〉Ψj,k (14)

where Ψ̃j,k = uj,k/β̃j,k and, hence T ∗ψ̃j,k = ψj,k. (14) is the key formula

for estimating f from Kf by the wavelet-vaguelette method.

In the case of noisy data, we expand the observed signal y in terms of

vaguelettes, with coefficients b̂j,k = 〈y, Ψ̃j,k〉 which satisfy

b̂j,k = bj,k + wj,k (15)
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from (14) and

wj,k = 〈ε, Ψ̃j,k〉

are the vaguelette decomposition of a white noise.

5. Wavelets for EEG (Electroencephalograhy) Related to

Inverse Problems

Since the 1930s electrical activity of the brain has been measured by sur-

face electrodes connected to the scalp. Potential differences between these

electrodes were then ploted as a function of time named EEG (Electroen-

cephalogram). Mathematicial tools and techniques are used to find the un-

derlying sources which generate the EEG. This activity is known as EEG

source localization. It consists of solving a direct and inverse problem.

Solving direct problem starts from a given electrical source configuration

representing active neurons in the head., then the potentials at the elec-

trodes are calculated for this configuration. The inverse problem endeavors

to find the electrical source which generates a measured EEG. By solving

the inverse problem, repeated solutions of the forward problem for different

source configurations are needed.

Mathematical technology which has been used to solve direct and in-

verse problems related to EEG include Poissons equation, the finite element

method (FEM), the boundary element method (BEM), the finite difference

method (FDM), fast solver for the matrix equation, multigrid methods for

direct problem and fairly good number of methods. We cite two important

reviews [7] and [6]. We also refer to a recent paper where wavelet methods

have been used to analyze EEG. Wavelet methods have not been used in

two reviews cited above. There is a research project of Kocaeli University,

Turkey, taken by Dr.Hulya K. Sevindir on applications of wavelet methods

to EEG data taken at the Hospital of Kocaeli University. Besides a medi-

cal doctor from the medical schools hospital, the authors of this paper are

involved in this project.

5.1. Introduction to Brain and Electroencephalogram

(EEG)

Brain is the portion of the vertebrate central nervous system that is enclosed

within the cranium, continuous with the spinal cord, and composed of gray

matter and white matter. It is the primary center for the regulation and

control of bodily activities, receiving and interpreting sensory impulses,
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and transmitting information to the muscles and body organs. It is also the

seat of consciousness, thought, memory, and emotion. In short, brain is the

most important organ which controls the functioning of the human body

including heart beat and respiration.

Fig. 1. Brain A. pituitary gland B. cerebrum C. skull D. corpus callosum E. thalamus

F. hypothalamus G. pons H. cerebellum I. medulla J. spinal cord

Brain is an extremely complex system. The cerebral cortex of the human

brain contains roughly 15-33 billion neurons, perhaps more, depending on

gender and age, linked with up to 10,000 synaptic connections each. Each

cubic millimeter of cerebral cortex contains roughly one billion synapses.

These neurons communicate with one another by means of long protoplas-

mic fibers called axons, which carry trains of signal pulses called action

potentials to distant parts of the brain or body and target them to spe-

cific recipient cells. Methods of observation such as EEG recording and

functional brain imaging tell us that brain operations are highly organized,

while single unit recording can resolve the activity of single neurons, but

how individual cells give rise to complex operations is unknown.

Electroencephalography (EEG) is the recording of electrical activity

along the scalp produced by the firing of neurons within the brain. In

clinical contexts, EEG refers to the recording of the brain’s spontaneous

electrical activity over a short period of time, usually 20-40 minutes, as

recorded from multiple electrodes placed on the scalp. In neurology, the

main diagnostic application of EEG is in the case of epilepsy, as epileptic

activity can create clear abnormalities on a standard EEG study. A sec-
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ondary clinical use of EEG is in the diagnosis of coma, encephalopathies,

and brain death. EEG used to be a first-line method for the diagnosis of

tumors, stroke and other focal brain disorders, but this use has decreased

with the advent of anatomical imaging techniques such as MRI and CT.

A routine clinical EEG recording typically lasts 20-30 minutes (plus

preparation time) and usually involves recording from scalp electrodes. Rou-

tine EEG is typically used in the following clinical circumstances:

• to distinguish epileptic seizures from other types of spells, such as psy-

chogenic non-epileptic seizures, syncope (fainting), sub-cortical move-

ment disorders and migraine variants,

• to differentiate “organic” encephalopathy or delirium from primary psy-

chiatric syndromes such as catatonia,

• to serve as an adjunct test of brain death,

• to prognosticate, in certain instances, in patients with coma,

• to determine whether to wean anti-epileptic medications. Both effects are

independent and additive.

At times, a routine EEG is not sufficient, particularly when it is necessary to

record a patient while he/she is having a seizure. In this case, the patient

may be admitted to the hospital for days or even weeks, while EEG is

constantly being recorded (along with time-synchronized video and audio

recording). A recording of an actual seizure (i.e., an ictal recording, rather

than an inter-ictal recording of a possibly epileptic patient at some period

between seizures) can give significantly better information about whether

or not a spell is an epileptic seizure and the focus in the brain from which

the seizure activity emanates. Epilepsy monitoring is typically done:

• to distinguish epileptic seizures from other types of spells,

• to characterize seizures for the purposes of treatment,

• to localize the region of brain from which a seizure originates for work-up

of possible seizure surgery.

If a patient with epilepsy is being considered for resective surgery, it is often

necessary to localize the focus (source) of the epileptic brain activity with a

resolution greater than what is provided by scalp EEG. This is because the

cerebrospinal fluid, skull and scalp smear the electrical potentials recorded

by scalp EEG. In these cases, neurosurgeons typically implant strips and

grids of electrodes (or penetrating depth electrodes) under the dura mater,

through either a craniotomy or a burr hole. The recording of these signals

is referred to as electrocorticography (ECoG), subdural EEG (sdEEG) or
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intracranial EEG (icEEG)–all terms for the same thing. The signal recorded

from ECoG is on a different scale of activity than the brain activity recorded

from scalp EEG. Low voltage, high frequency components that cannot be

seen easily (or at all) in scalp EEG can be seen clearly in ECoG. Further,

smaller electrodes (which cover a smaller parcel of brain surface) allow even

lower voltage, faster components of brain activity to be seen. Some clinical

sites record from penetrating microelectrodes.

Besides above usage of EEG, it can also be used to develope information

extraction technology to remotely control a robot. Honda Motor Co. reports

that they have good results doing so [24].

A different method to study brain function is functional magnetic reso-

nance imaging (fMRI). There are some benefits of EEG compared to fMRI.

For interested reader see [34] and [35].

EEG data is almost always contaminated with biological and enviro-

mental artifacts. Electrical signals detected along the scalp by an EEG,

but that originate from non-cerebral origin are called artifacts. The am-

plitude of artifacts can be quite large relative to the size of amplitude of

the cortical signals of interest. This is one of the reasons why it takes con-

siderable experience to correctly interpret EEGs clinically. In addition to

artifacts generated by the body, many artifacts originate from outside the

body. Movement by the patient may cause electrode pops, spikes originating

from a momentary change in the impedance of a given electrode.

Recently, independent component analysis techniques have been used to

correct or remove EEG contaminates. These techniques attempt to “unmix”

the EEG signals into some number of underlying components. There are

many source separation algorithms, often assuming various behaviors or na-

tures of EEG. Regardless, the principle behind any particular method usu-

ally allow “remixing” only those components that would result in “clean”

EEG by nullifying (zeroing) the weight of unwanted components.

5.2. Direct Problem for EEG Source Localization

Hallez et al [7] have presented a detailed review of the direct problem. In

this review they have elaborated EEG source localization and have shown

that this phenomenon is modeled by Poissons equation with its boundary

conditions. Different methods are discussed for solving this model with ap-

propriate boundary conditions. The role of well known numerical methods

such as Finite difference methods, Finite element methods, Boundary el-

ement methods is highlighted in solving these boundary value problems

modelling the phenomena. The number of unknowns in the FEM and FDM
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can easily exceed the million and thus lead to large but sparse linear sys-

tems. As the number of unknowns is too large to solve the system in a direct

manner, iterative solvers need to be used. Some popular iterative solvers

are discussed such as successive over-relaxation (SOR), conjugate gradient

method (CGM) and algebraic multigrid methods (AMG). In this review

paper physics of EEG, neurophysiology and the generators of EEG are also

discussed.

We present here formulation of the main direct problem. In symbolic

terms, the EEG forward problem is that of finding, in a reasonable time,

the scalp potential g(r, rdip) at an electrode positioned on the scalp at r

due to a single dipole with dipole moment d = ded (with magnitude d

and orientation ed),positioned at rdip. This amounts to solving Poisson’s

equation to find the potentials V (r) on the scalp for different configurations

of rdip and d. For multiple dipole sources, the electrode potential would be

V (r) =
∑
i

g(r, rdipi
, di) =

∑
i

g(r, rdipi
, edi

)di.

In practice, one calculates a potential between an electrode and a ref-

erence (which can be another electrode or an average reference). For N

electrodes and p dipoles:

V =

⎡⎢⎣ V (r1)
...

V (rN )

⎤⎥⎦ =

⎡⎢⎣ g(r1, rdip1
, ed1

) · · · g(r1, rdipp
, edp

)
...

. . .
...

g(rN , rdip1
, ed1

) · · · g(rN , rdipp
, edp

)

⎤⎥⎦
⎡⎢⎣d1

...

dp

⎤⎥⎦

= G({rj , rdipi
, edi

})

⎡⎢⎣d1
...

dp

⎤⎥⎦

where i = 1, . . . , p and j = 1, . . . , N . Here V is a column vector. For N

electrodes, p dipoles and T discrete time samples:

V =

⎡⎢⎣ V (r1, 1) · · · V (r1, T )
...

. . .
...

V (rN , 1) · · · V (rN , T )

⎤⎥⎦ = G({rj , rdipi
, edi

})

⎡⎢⎣d1,1 · · · d1,T
...

. . .
...

dp,1 · · · dp,T

⎤⎥⎦
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= G({rj , rdipi
, edi

})D

where V is now the matrix of data measurements, G is the gain matrix and

D is the matrix of dipole magnitudes at different time instants.

More generally, a noise or perturbation matrix n is added V = GD+n.

In general for simulations and to measure noise sensitivity, noise distri-

bution is a gaussian distribution with zero mean and variable standard

deviation. Further details can be found in [7].

We would like to remark here that wavelet based numerical methods

have not been applied to above mentioned boundary value problems. The

wavelet methods which have been discussed by various speakers in this

workshop may be applied to the present situation and performance can be

compared with classical methods.

5.3. Inverse Problem for EEG Source Localization

In a recent paper Grech et al [6] have reviewed the inverse problem in EEG

source analysis. The main modal relevant to this workshop is presented

here. In symbolic terms, the EEG direct problem is that of finding, in

a reasonable time, the potential g(r, rdip) at an electrode positioned on

the scalp at a point having position vector r due to a single dipole with

dipole moment d = ded (with magnitude d and orientation ed) positioned

at rdip (see Figure 2). This amounts to solving Poisson’s equation to find

the potentials V on the scalp for different configurations of rdip and d. For

multiple dipole sources, the electrode potential would be

m(r) =
∑
i

g(r, rdip, di).

Assuming the principle of superposition, this can be rewritten as∑
i

g(r, rdipi
)(dix, diy , diz)

T =
∑
i

g(r, rdipi
)diei

where g(r, rdip) now has three components corresponding to the Cartesian

x, y, z directions, di = (dix, diy, diz) is a vector consisting of the three dipole

magnitude components, T denotes the transpose of a vector, di = ‖di‖ is

the dipole magnitude and ei = di/‖di‖ is the dipole orientation. In practice,

one calculates a potential between an electrode and a reference (which can

be another electrode or an average reference).
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Fig. 2. A three layer head model.

For N electrodes and p dipoles:

m =

⎡⎢⎣ m(r1)
...

m(rN )

⎤⎥⎦ =

⎡⎢⎣ g(r1, rdip1
) · · · g(r1, rdipp

)
...

. . .
...

g(rN , rdip1
) · · · g(rN , rdipp

)

⎤⎥⎦
⎡⎢⎣ d1e1

...

dpep

⎤⎥⎦

where i = 1, . . . , p and j = 1, . . . , N . Each row of the gain matrix G is often

referred to as the lead-field and it describes the current flow for a given

electrode through each dipole position. For N electrodes, p dipoles and T

discrete time samples:

M =

⎡⎢⎣ m(r1, 1) · · · m(r1, T )
...

. . .
...

m(rN , 1) · · · m(rN , T )

⎤⎥⎦ = G({rj , rdipi
})

⎡⎢⎣ d1,1e1 · · · d1,T e1
...

. . .
...

dp,1ep · · · dp,T ep

⎤⎥⎦
= G({rj , rdipi

})D

where M is the matrix of data measurements at different times m(r, t) and

D is the matrix of dipole moments at different time instants.

In the formulation above it was assumed that both the magnitude and

orientation of the dipoles are unknown. However, based on the fact that

apical dendrites producing the measured field are oriented normal to the

surface, dipoles are often constrained to have such an orientation. In this
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case only the magnitude of the dipoles will vary and the formulation above

can therefore be re-written as:

M =

⎡⎢⎣ g(r1, rdip1
)ei · · · g(r1, rdipp

)ep
...

. . .
...

g(rN , rdip1
)e1 · · · g(rN , rdipp

)ep

⎤⎥⎦
⎡⎢⎣ d1

...

dp

⎤⎥⎦

= G({rj , rdipi
, ei})

⎡⎢⎣d1,1 · · · d1,T
...

. . .
...

dp,1 · · · dp,T

⎤⎥⎦ = G({rj , rdipi
, ei})D

where D is now a matrix of dipole magnitudes at different time instants.

This formulation is less underdetermined than that in the previous struc-

ture. Generally a noise or perturbation matrix n is added to the system

such that the recorded data matrix M is composed of: M = GD + n.

Under this notation, the inverse problem then consists of finding an

estimate of the dipole magnitude matrix given the electrode positions and

scalp readings M and using the gain matrix G calculated in the forward

problem. In what follows, unless otherwise stated, T = 1 without loss of

generality.

The EEG inverse problem is an ill-posed problem because for all admis-

sible output voltages, the solution is non-unique (since p� N and unstable

(the solution is highly sensitive to small changes in the noisy data). There

are various methods to remedy the situation. As regards the EEG inverse

problem, there are six parameters that specify a dipole: three spatial coor-

dinates (x, y, z) and three dipole moment components (orientation angles

(θ, ϕ) and strength d), but these may be reduced if some constraints are

placed on the source.

Several methods discussed by earlier speakers could be applied to

the inverse problem of EEG, especially the wavelet methods. In the re-

view paper cited above all methods are discussed except the wavelet

method. Thus it appears that wavelet method for the inverse prob-

lem of EEG is an open question and one should try to study this

method. The following references provide updated account of this study

[11, 3, 1, 17, 14, 20, 10, 23, 18, 5, 19, 9, 8].
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5.4. Wavelets in Medicine

Seizures are sudden surge of electrical activity in the brain that usually

affects how a person feels or acts for a short duration of time. Epilepsy is a

common neurological disorder characterized by recurrent seizures. There are

more than fourty types of epilepsy which can be characterized by their dif-

ferent energy distribution in different levels of decomposition using wavelet

transform (See Section 2). Electroencephalogram (EEG) is a record of elec-

trical potential generated by cerebral cortex nerve cells. Recorded EEG

provides graphical exhibition of the spatial distribution of the changing

voltage field. Epileptic seizures are characterized by various events of elec-

trical activity which may rapidly change with time and exhibit different

frequency content.

Drake et al [4] reported that seizure patients have a decreased power at

high frequencies (8.25-30 Hz) relative to lower frequency (0.25-8 Hz), low

amplitude pattern at high frequency named electrodermal events appear as

a key phenomenon at focal seizure onset. These patterns are characterized

by a decrease of signal voltage and increase of signal frequency.

D’Attellis et al in [3] essentially initiated the study of identification

of epileptic events in EEG using wavelet analysis (See Section 2) time lo-

calization and characterization of epileptic form events and computational

efficiency of the method. The spline wavelet transform has been used. A con-

cept of energy is introduced and different types of epileptic events have been

characterized in terms of this energy. The detection is made when the en-

ergy is bigger than a threshold value defined for each level. In this paper the

performance of the algorithm proposed with the help of spline biorthogonal

wavelets and algorithms based especially on orthogonal wavelets are com-

pared. In the same paper it was suggested that computational techniques

based on wavelet theory may be incorporated in the automatic analysis

of EEG signals to deal with the problem of extraction features containing

relevant information.

It is well known by now that about 1% of the world population is suffer-

ing from epilepsy and 30% of epileptic patients are not cured by medication

and may need surgery. For surgery careful analysis of EEG is essential. As

seen earlier EEG records can provide valuable insight and improved un-

derstanding of the mechanisms causing epileptic disorders. It is also well

established by now that wavelet transform is particularly effective for rep-

resenting various aspects of non-stationary signals such as trends, discon-

tinuities, and repeated patterns where other signal processing approaches

fail or are not as effective.
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In [1] Adeli analyzed epileptic EEG records available at http://kdd.ics.

uci.edu/ databases /eeg/eeg.html using Daubechies 4 and harmonic

wavelets. The capability of multiresolution analysis known as mathematical

microscope is tested especially with Daubechies 4 and harmonic wavelets

which have been found experimentally very appropriate for wavelet analysis

of spike and wave EEG signals. This analysis depicts physiological processes

undergoing in the brain in epilepsy onset. Better understanding of the dy-

namics of the human brain through EEG analysis is expected according to

this investigation.

In [17] Rosso et al have reviewed wavelet based informational tools

for quantitative EEG record analysis. Relative wavelet energies, wavelet

entropies, and wavelet statistical complexities are introduced and are used

in the characterization of EEG (scalp) records corresponding to a class

of epileptic seizures. In this study it has been shown that the epileptic

recruitment observed during seizure development is well described in terms

of the relative energies.

In a recent long paper [11] a wavelet based approach in the analysis of

biomedical signals is studied which exploits the capability of wavelet trans-

form to separate the signal energy among different frequency bands (differ-

ent scales), realizing a good compromise between temporal and frequency

resolution. The two important aspects of this paper are to present a math-

ematical formalization of energy calculation (different kinds of energy have

been introduced) from wavelet coefficients in order to obtain uniformly time

distributed atoms of energy across all the scales and then to study different

classes of biomedical signals including EEG. This study helps us to know

epileptic brain electrical activity, with aim of identifying typical patterns

of energy distribution during the seizure. In this study EEG records from

epileptic patients acquired at Bellaria Hospital in Bologna in Italy were an-

alyzed by using Daubechies 4. It may noted here that an important aspect

in the analysis of EEGs during epilepsy is the energy distribution among

the different details; this redistribution may be indicative of changes in the

characteristics of EEG signals which, in turn, may represent specific events

in the course of seizure. They have confined their analysis to the resolution

levels 4-7 which corresponds to frequency range 0.75 and 12Hz. approxi-

mately due to the reasons given below. It is well known that analysis of

EEG is represented by artifacts due to muscular activity. Muscular activity

induces artifacts in the EEG, which are especially localized high frequen-

cies, and which often blunt information of neural origin and consequently

low and medium frequencies EEGs are preferred.
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One of the most dreadful features of epilepsy is the random nature of

seizures. In patients seizure occur suddenly, without external, previously de-

tected, precipitant. A system which can predict seizures would allow some

preventing measures to keep the risk of seizures to a minimum. These mea-

sures could improve the quality of life of patients. In view of this, authors

of [5] initiated work on prediction of epileptic seizures using accumulative

energy in a multiresolution framework. In the references [10, 5, 9, 19, 8]

attempts have been made to develop wavelet based methods in conjunc-

tion with other methods to predict seizures. In our group we are studying

wavelet based energetic approach of Kocaeli University data and trying to

develop reliable prediction methods for seizures based on the data available

with us.

5.5. Selected References

Besides the references given at the end, we cite the following references

for updated information. For direct problem case (modelling by Poisson

equation) [7] can be cited. For inverse problem related to Poisson equation

[6] and [15] can be cited. Under analysis and miscellaneous the papers [1,

2, 3, 10, 11, 14, 17, 21, 23] and for prediction with wavelet, wavelet-cum-

ANFIS and wavelet-cum-Neuro-Fuzzy [4, 8, 9, 10, 16, 19] can be listed.

5.6. Open Problems

(1) What has been done till today on the data of other countries using

wavelet will be tried for the data of Kocaeli University provided by the

Kocaeli University’s Medical School. Research papers by [11, 3, 1, 17]

will be basis for our studies. This is a vast field which requires intensive

study.

(2) In Section 2 we have seen inverse problem of EEG and various methods

for solving it. It is clear that wavelet methods have not been used to

solve inverse problem related to EEG. The work of Prof. M.Z.Nashed

[15] provides us guidelines for solving inverse problem related to EEG

using wavelet methods.

(3) We know that wavelet methods have been used to solve partial dif-

ferential equations with boundary value conditions, see e.g. book of

A.H.Siddiqi [20] and Dr.Mani Mehra [13]. Direct problem of EEG can

be solved by using wavelet techniques discussed in these references pro-

viding better results at specified scale.

(4) As we have seen, problems related to brain are studied using PDE
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with appropriate boundary conditions or with the help of time series.

Reliability of these two methods could be investigated and compared.

Appendix Case Study

In this paper we have analyzed thirty signals of three categories. First group

(s1-s10) corresponds to the signals having no symptoms of epilepsy in their

electroencephalogram (EEG), second group (s11-s20) corresponds to the

signal having single epileptic seizure in their EEG and third group (s21-

s30) corresponds to the signal having sequence of epileptic seizures in their

EEG.

Analysis of signal s25 by wavelet transforms

Fig. 3. s25 analysis using ’db10’ Fig. 4. s25 analysis using ’coif4’

From above decomposition of the signal s25 using db10 and coif4, it can

be easily observed that the signal decomposition is quite similar except for

the detailed level 1 which contains very small amount of energy as compared

to the other detailed levels. Hence changing the mother wavelet has very

small effect on the decomposition of the signal.

3-Dimensional visualization of EEG signal

With the help of wavelet transform, it is possible to analyze time and fre-

quency at a time along with the amplitude plot. This makes analysis of

signal very easy as compared to spectrum provided by Fourier transform

e.g. amplitude of any peak can be determined along with its frequency at

a time from same plot.
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Fig. 5. 3-Dimensional Visualization of

s25
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Fig. 6. Frequency-Time Plot of s25

Energy Computation and EEG Analysis

In this research work, relative wavelet energy corresponding to different

band of frequencies of epileptic patient is calculated and is compared to

the relative energy distribution of a person having no symptoms of epilepsy

using MATLAB. For calculating relative energy db10 wavelet is used.

In Table 1, row represents the signals (s1 to s10) and column represents

relative energy in approximate (a7) and detailed levels (d1-d7).Entries in

the matrix are in percentage (relative energy) showing their total contri-

bution to the signal energy. These signals are of normal human being in

which majority of energy content is concentrated in lower frequency band

i.e. approximate level of wavelet decomposition and very less amount of

energy is shared by high frequency signal.

Now analyzing the energy levels of the signal in which epileptic seizure

occurred only once. Table 2 below shows that there is an energy transfer

from approximate level to detail level i.e. now some major portion of the

energy is contained by high frequency component of the EEG signals which

is a characteristic of epileptic seizure i.e. there is an energy transfer from

low frequency component to high frequency component.
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Table 1. Table 1. Relative energy distribution in non-epileptic EEG signals

d1 d2 d3 d4 d5 d6 d7 a7

S1 0.0334 0.1419 1.3319 7.3304 14.4934 3.8816 1.5219 71.2654

S2 0.0004 0.0277 0.0751 0.6409 3.1432 5.1494 1.6651 89.2980

S3 0.0423 0.2453 2.9036 17.7078 5.1810 2.7608 2.9175 68.2417

S4 0.0183 0.1789 1.5836 4.3190 4.2371 8.8468 1.4465 79.3699

S5 0.0510 0.0237 0.5060 3.1641 3.2330 1.4525 8.5090 83.0607

S6 0.0291 0.5157 1.2825 2.1287 1.9477 4.4790 4.2514 85.3659

S7 0.0279 0.1895 2.7740 13.3421 8.0650 2.0215 2.8864 70.6936

S8 0.0004 0.0169 0.0580 0.5336 7.2668 5.7495 0.6891 85.6857

S9 0.0471 0.0855 1.0215 4.6689 5.6763 5.3544 4.2884 78.8580

S10 0.0392 0.3217 1.3989 3.3492 4.1335 4.9630 3.8433 81.9512

Table 2. Table 2. Relative energy distribution in single seizure epileptic EEG signals

d1 d2 d3 d4 d5 d6 d7 a7

S11 0.0021 0.0947 2.3308 26.7369 25.5774 20.3462 10.1937 14.7182

S12 0.0586 0.4162 2.3742 8.5767 25.2817 43.4494 4.8862 14.9569

S13 0.0083 0.2447 5.0308 8.6989 27.7278 14.2981 7.3948 36.5965

S14 0.0143 0.0960 1.4914 14.9424 27.8668 24.0007 13.8599 17.7286

s15 0.0013 0.0275 0.1897 1.0162 7.6810 23.5638 16.3855 51.1349

S16 0.0581 0.1668 4.5553 9.4586 22.7161 11.3294 8.4004 43.3154

S17 0.0352 0.1900 3.6503 20.4685 26.1663 12.8692 4.9087 31.7118

S18 0.0126 0.1323 1.6804 15.6393 28.3191 10.7967 4.2711 39.1485

S19 0.0155 0.2618 2.7697 21.2343 32.1086 18.0549 7.8356 17.7197

S20 1.3330 0.3934 3.5659 6.1014 12.6269 14.3218 4.1937 57.4639

Now analyzing the EEG signal having sequence of spike i.e. now the

patient is suffering from epilepsy seizure. Now most of the energy content is

shifted to detailed levels and energy is considerably reduced in approximate

level.

On analyzing the above tables for all three groups of signals, energy transfer

from approximate level to detailed levels (d4, d6) can be observed. This

proves that during the seizure, in EEG signal, high frequency component

are dominating as compared to the low frequency signal.

Cross-correlation

Cross-correlation gives the similarity between two signals. Applying the

concept of cross-correlation to s9 and s10, we get results showing that there
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Table 3. Table 3. Relative energy distribution in EEG signals having sequence

d1 d2 d3 d4 d5 d6 d7 a7

S21 0.0142 0.1037 5.6530 33.7127 30.6331 21.6553 5.6002 2.6277

S22 0.0016 0.0357 2.3568 24.8919 34.1427 26.4745 7.8432 4.2535

S23 0.0016 0.0559 1.5332 15.8848 29.5901 39.4139 9.7807 3.7398

S24 0.0068 0.0592 1.9956 22.9827 33.0698 31.4255 8.1007 2.3599

S25 0.0024 0.0492 2.7363 24.1476 34.3231 29.3186 8.0204 1.4023

S26 0.0041 0.2629 8.3963 38.9510 33.2099 14.4360 3.6358 1.1039

S27 0.0081 0.0462 1.3358 21.0487 33.5500 31.9619 8.3568 3.6926

S28 0.0016 0.0574 1.4378 15.9367 32.9950 37.5294 9.5269 2.5151

S29 0.0010 0.0508 2.8008 24.2717 34.6544 30.1317 6.5542 1.5354

S30 0.0052 0.2724 6.8588 33.2147 40.2686 15.8056 2.7417 0.8329

is a great similarity in the energy content in various decomposition levels

of these two signals.
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Fig. 7. Plot Showing energy distribution between two signals s9 and s10

Plotting cross-correlation for s13 and s18 will tell us about energy dis-

tribution similarity in these two signals.

Here it can be observed that on the basis of energy distribution, there

is a similarity between these two signals. Plotting for signal s25 and s26

which contains sequence of spikes, we get the same similarity in these two

signals s25 and s26.

This means that same type of EEG signal will have same type of cross-

correlation on the basis of energy distribution.

Now plotting cross-correlation for all three types of signal, i.e., s9, s18

and s25.
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Fig. 8. Plot Showing relative energy distribution between two signals s13 and s18

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40
−−− S25

−.−. S26

Fig. 9. Plot Showing relative energy distribution between two signals s25 and s26

It can be observed that the relative energy cross correlation of a sampled

data s9, s18 and s25 representing normal, single spike and multiple spike,

respectively, have different relative energy at approximate signal shown at

instant 8 in the above figure. On the basis of approximate energy distribu-

tion we can predict the epileptic signal.

Conclusion

From above tables and cross correlation plots, it can be concluded that

characteristics of signal having no symbol of epilepsy, single seizure and

multiple seizure have different energy content. During epilepsy, EEG con-

tains majority of high frequency signals which can be observed from the

relative energy distribution which shows that they are concentrated in high
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Fig. 10. Plot Showing energy distribution between three signals s9, s18 and s25

frequency levels. There is also very less similarity between different groups

of EEG signals because energy distribution is varying in these groups.

Hence epileptic signal can be predicted as signal in which there is a

decrease of energy in approximate signals (a7) or increased value of signal

energy in detailed signals (d4, d5, d6, d7).
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Inverse problem is to deduce cause from effect. A wide variety of scientific

problems ends with the situation where if m is desirable quantity, instead of

m we have G(m) accessible for s ome operator G. Inverse problem is to find

out m given G(m). There are large number of traditional methods available for

solving inverse problems and some methods for solving inverse problems have

been formulated using wavelets which are better than traditional methods in

many senses because of special properties of wavelets (e.g. localizing property,

compact support, adaptivity etc.). In this review article initially we are dis-

cussing general approach to solve an inverse problem and then we will move

on to the wavelet methods to solve inverse problem.

Keywords: Inverse problem, Singular values of a matrix, Wavelets, Vaguelettes,

Discrete wavelet transform (DWT), Least square problem.

1. Introduction

An inverse problem is a task that often occurs in many branches of Mathe-

matics and Science. Physically, inverse problem is the problem that consist

of finding an unknown property of an object or a medium, from the ob-

servation of response of this object to a probing signal. Mathematically an

inverse problem is

d = G(m), (1)

where for given data ‘d’ we have to find out the model parameter ‘m’. There

are many approaches to solve the inverse problems with very appropriate

results but still with many limitations. Recently, wavelets have shown their

usefulness in many fields of Mathematics, Science and Engineering. The

field of inverse problems is also within the impact area of wavelets. Many

people have used different kinds of wavelet to solve inverse problems1 and
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PDEs2 arising in the physical world and have produced better results than

the traditional methods. Nowadays many new wavelets have been discov-

ered (e.g. Daubechies wavelets,3 interpolating wavelets,4 second generation

wavelets,5 diffusion wavelets6) and we believe that with these wavelets we

can generate wavelet methods to solve inverse problems which will be proved

better than the existing methods in many respects. This review article has

been written in such a way that even a novice to this field can have an idea

about the field after reading it. The format goes like this, first of all we will

introduce the concept and examples of inverse problems and a general idea

of how to solve an inverse problem. Next we will throw light on how wavelet

methods are proved to be better in solving inverse problems as compared

to traditional existing methods. Then we will conclude our discussion by

looking at some future challenges.

2. Inverse Problems

Mathematically, inverse problems can be formulated in more understand-

able way as follows:

Data⇒Model Parameters

i.e. an inverse problem is to find out ‘m’ such that Eq. (1) holds (at least

approximately), where ‘G’ is the operator describing explicitly relationship

between the data ‘d’ and the model parameters ‘m’ and is a representation

of the physical system from which the inverse problem is generated. This

operator G is called ‘Forward Operator’ or ‘Observation Operator’

or sometimes ‘Observation Function’.

Depending on the type of the operator G, the inverse problems can be

categorized in the following two categories:

• Linear inverse problem: If the forward operator G is a linear operator

then Eq. (1) becomes linear inverse problem.

Example: Fredholm’s first kind integral equation

d(x) =

∫
b

a

g(x, y)m(y)dy, (2)

where g(x, y) is the kernel of the integral equation, d(x) is the data and

m(y) is the model parameter.
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• Non linear inverse problem: If the forward operator G is a non linear

operator then Eq. (1) becomes non linear inverse problem.

Example: In describing the heat conduction in a material occupying a

three dimensional domain Ω whose temperature is kept zero at the bound-

ary, the temperature distribution ‘u’ after a sufficiently long time is mod-

eled by

−∇.(q(x)∇(u)) = f(x), x ∈ Ω (3)

u = 0 on ∂Ω,

where f denotes internal heat sources and q is the spatially varying heat

conductivity. If one cannot measure q directly, one can try to determine

q from internal measurements of the temperature u or from boundary

measurements of the heat flux q ∗∂u/∂n. This kind of problems occurs in

geophysical applications and non-destructive material testing. Note that

Eq. (3) with unknown q and given u is nonlinear although the direct

problem of computing u given q is linear.

Physically, inverse problem is to deduce cause from an effect. Consider

a physical system, there will be input and output parameters related to this

system. If all the parameters were known perfectly, then for a given input

we can predict the output very easily and this is what we do most of the

times. It may happen, however, that some of the parameters characterizing

the system are not known, being inaccessible to direct measurements. If it

is important to know what these parameters are, in order to understand

the system, then we have to infer them by observing the outputs from the

system corresponding to special inputs. Thus in an inverse problem we seek

cause (the system parameters), given the effects (the outputs of the system

for given special inputs).

2.0.1. Examples

• If an acoustic plane wave is scattered by an obstacle, and one observes

the scattered field far away from the obstacle or in some exterior region,

then the inverse problem is to find out the shape and the material prop-

erties of the obstacle from the observed scattered field. Such problems

are important in identification of flying objects (airplanes, missiles etc.),

objects immersed in water (submarines, paces of fishes etc.) and in many

other situations.

• One of the central example of inverse problem is tomography. Tomog-

raphy is imaging by sections through the use of waves of energy. To-
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mography is used in geophysics, medicine, metallurgy, radiology, biology,

astrophysics, seismology and in many other branches of science.

• In geophysics one sends an acoustic wave from the surface of the earth

and collects the scattered field on the surface for various positions of the

source of the field, for a fixed frequency or for several frequencies. The

inverse problem, in this case, is to find out the inhomogeneities from the

study of scattered field. This inhomogeneity can be an oil deposit, a cave

or a mine in case of geophysics, in medicine it can be a tumor or some

abnormality in human body, and in the field of metallurgy it can be a

hole in the metal.

• In seismology we study the behavior of elastic waves propagating through

the earth which are produced by earthquakes and tsunamis etc. to study

earth’s interior structure. Earthquakes, and other sources (e.g. tsunamis),

produce different types of seismic waves which travel through rock, and

provide an effective way to image both sources and structures deep within

the earth.

For details of above examples one can refer.7 If one is able to find the

inhomogeneities in the medium by processing the scattered field on the

surface as explained in above examples, then one does not have to drill

a hole in the medium. This in turns avoid the expensive and destructive

evaluations. The practical advantages of remote sensing makes inverse

problems more important. It is interesting to note that when astronomer

Urbain Le Verrier worked out the math to successfully predict where the

planet Neptune would be discovered in the night sky back in 1846, he was

really solving an inverse problem. By that, he used the observations that

had been recorded about Uranus’ position in its orbit to infer how that

orbit might have been affected by what was then a hypothetical eighth

planet in the solar system, and where it would have to be to create the

observed effects.

3. General procedure for solving an inverse problem

Whenever we formulate inverse problem mathematically, we typically find

that the problem amounts to that of determining one or more coefficients

in the differential equation, or system of differential equations, given partial

knowledge of of certain special solutions of equations. For example in seis-

mology, the propagation of wave in the earth is governed by equations of

elasticity, a system of partial differential equations in which material prop-

erties of earth manifest themselves as coefficient functions in the equation.

The measurements we make amounts to the knowledge of special solutions
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of the equation at special points (e.g. those points which are on the surface

of earth). In a very simplified case inverse problem of seismology reduces

to find the coefficient in following Eikonal equation

a2(x3)((∂1τ)
2 + (∂3τ)

2)− 1 = 0,

where ∂j is partial differentiation w.r.t. to xj , τ is the travel time of seismic

waves and the coefficient a(x3) is density of earth. Any numerical technique

applied to solve above problem will ultimately ends up with the problem

of solving Eq. (1) for m. Hence our ultimate aim is to solve Eq. (1) for m.

Understanding ill posed problems is an integral part of the subject of

inverse problems, because inverse problems are typically ill posed problems.

The term Well posed problem was introduced by ‘Jacques Hadamard’. He

believed that mathematical models of physical phenomenon should have

the following properties:

(1) Existence: Solution of the mathematical model of the problem should

exist.

(2) Uniqueness: Solution of the mathematical model should be unique.

(3) Stability: The Solution of the mathematical model should depend con-

tinuously on the data in some reasonable space.

Examples of well posed problems are: Dirichlet’s problem for Laplace equa-

tion, heat equation with specified initial conditions etc. Problems that are

not well posed in the sense of Hadamard are termed as ill posed problems.

For example inverse heat equation and deducing a previous distribution of

temperature from the final data are ill posed problems in the sense that

solution is highly sensitive to the changes in the final data.

It should be noted that among the three conditions of well posed prob-

lems suggested by Hadamard (i.e. existence, uniqueness and stability), the

condition of stability is most often violated by inverse problems. Now to

solve an inverse problem we need to know how ill posed problems are solved.

Our problem is of the form of Eq. (1), where G : X → Y is a compact linear

or non linear operator. In the worst case an ill posed problem will violate

all three conditions due to Hadamard.

• Non Uniqueness can be treated by taking into account some informa-

tion source related to our system. For example if we are solving inverse

problem (arising in Tomography) to find out the properties of earth’s
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interior, then we can use travel time of earthquake as extra constraint to

the problem to overcome the problem of non-uniqueness.

• Instability and the possible non-existence can be treated by regularization

techniques.

Regularization?

Practically, we can never have an exact data for a physical problem available

with us. The data available is perturbed with noise because of the errors in

the measurements and the limitations of the measuring instruments. Even

if their deviation from the exact data is small, algorithms developed for

well-posed problems then fail in case of a violation of the third Hadamard

condition, since data as well as round-off errors may then be amplified by

an arbitrarily large factor. In order to overcome these instabilities one has

to use regularization methods, which in general terms replace an ill-posed

problem by a family of neighboring well-posed problems. Typically regu-

larization involves including additional assumptions such as smoothness of

the solution. Mathematically, regularization can be explained as follows:

We take a family of bounded (linear or non-linear) regularization oper-

ators

Rα : Y → X, α > 0, (4)

with the property

lim
α→0

Rα(G(x)) = x, for all x ∈ X, (5)

i.e. the operators RαG converges point wise to the identity as α→ 0. Here

α is called the regularization parameter. If Rα satisfies Eq. (5), then the

family of operators Rα is called regularization strategy. In the presence of

the data error of size δ we calculate solution of Eq. (1) with d replaced by

dδ i.e. we calculate

mδ = Rα(δ)d
δ,

with regularization parameter α(δ) depending on δ > 0. Of course, we

would like to choose the regularization parameter in such a way that our

approximate solution tend toward the true solution if the data error tend

to zero. This motivates the following definition:

A strategy for the choice of the parameter α depending on the error level

δ is called regular, if for all d ∈ G(X) and for all dδ
∈ Y with ‖ dδ

−d ‖≤ 0,

the following holds:

Rαd
δ
→ G−1d as δ → 0.
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We will call a set of regularization operators Rα with regular strategy for

the inversion of Eq. (1) as convergent regularization. Tikhonov regulariza-

tion is most commonly used regularization technique for ill posed problems

and is defined as follows:

Tikhonov regularization: Tikhonov defines a regularization scheme with

‖ Rα ‖≤ 1/2α. It is regular provided α(δ) is chosen such that

α(δ) → 0 and δ2/α(δ) → 0 for δ → 0.

The very important problem of option pricing in financial mathematics can

be solved using Tikhonov regularization.8 Another technique by which we

can solve inverse problems is minimum norm solutions, which is briefly dis-

cussed below:

Minimum norm solution: Consider the inverse problem d = G(m),

where G : X → Y is a bounded linear operator between the two normed

spaces X and Y . For δ > 0 and d ∈ Y an element m0 ∈ X is called a mini-

mum norm solution of the problem with discrepancy δ, if ‖ Gm0 − d ‖≤ δ

and

‖ m0 ‖= inf{‖ m ‖:‖ Gm− d ‖≤ δ}.

The theorem which motivates the above technique to solve inverse problems

is the following:

Theorem 3.1.

Minimum Norm Theorem:Let X and Y be two Hilbert spaces. If

G : X → Y has dense range in Y , then for each d ∈ Y there is a unique

minimum norm solution m0 of d = G(m) with discrepancy δ. The mini-

mum norm solution m0 can be calculated by

m0 = (αI +G∗G)−1G∗d,

where α is a zero of the function

H(α) :=‖ (αI +G∗G)∗d− d ‖2 −δ2.

Note: For an injective linear operator G, minimum norm solutions de-

fines a regular strategy for the choice of the regularization parameter α for

Tikhonov regularization.
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4. Different approaches to solve inverse problems

4.1. Truncated singular value decomposition

TSVD (Truncated singular value decomposition) is the most frequently

used method for the solution of linear ill-posed least square problems. In

this method, we seek solution m̃ of linear inverse problem in Eq. (1) which

minimize the value of ‖ d − Gm ‖
2 in the least square sense. Suppose we

compute the singular value decomposition of G, i.e. we find the left singular

vectors {uk}
m

k=1, right singular vectors {vk}
n

k=1 and the singular values λk

such that

G =

r∑
k=1

λkukv
T

k
.

Since {uk}
m

k=1 form a basis of data space, we may write the data d as a

linear combination:

d =

m∑
k=1

uk(uT

k
d).

Then, given any m, we have

‖ d−Gm ‖
2 =‖

m∑
k=1

uk(uT

k
d)−

r∑
k=1

λkuk(vT

k
) ‖2

=‖

r∑
k=1

uk{u
T

k
d− λk(vT

k
m)}+

m∑
k=r+1

uk(uT

k
d) ‖2 .

Using the theorem of Pythagoras (since the vectors {uk} are orthogonal),

‖ d−Gm ‖
2=

r∑
k=1

| uT d− λk(vT

k
m) |2 +

m∑
k=r+1

| uT

k
d |2 .

Choosing m̃ so as to minimize ‖ d−Gm ‖
2 is now straight forward. The sec-

ond term on the right hand side is the square of the perpendicular distance

of d to the image of G, and is completely unaffected by the choice of m.

The first term on the right hand side can be reduced to zero (its minimum

possible value) by choosing m̃ such that
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vT

k
m̃ = uT

k
d/λk for k = 1, 2, ....., r.

Whether or not this completely determines m̃ depends on if r = n or r < n.

For r = n, we will get the unique solution.

In the theory discussed so far, we have drawn a sharp line between

the eigenvalues of GTG which are non- zero and those which are zero. In

practice when the eigenvalues ofGTG are sorted in decreasing order, there is

a smooth transition from the large eigenvalues through the small eigenvalues

to tiny eigenvalues. It is important to note that the small singular values

always create a problem. Let us suppose that the measured data d may

be written as sum of the transformed image G(m) and a noise vector n,

therefore,

d = G(m) + n. (6)

The vector m represent the true image and G(m) is the data that would

have been obtained in the absence of noise. Neither of these quantities

is known in practice, but the aim of reconstruction is to find a vector m̃

approximating m. Now using the SVD (singular value decomposition) of

the matrix G and the least-square solution which we obtained above, we

will get

m̃ = m+

n∑
k=1

(uT

k
)vk/λk.

We have seen that the reconstruction m̃ is the sum of true image i.e. m

and the terms due to noise. The error term along the direction of vk in

the image space arises from the component of noise in the direction of

uk in the data space divided by the singular value λk. If we now suppose

that some of the singular values λk are small, this division will give a

very large component, often completely swamping the component of m

in that direction. Thus when there are small singular values, the simple

SVD regularization technique can give bad reconstructions. It is better to

consider small singular values as being effectively zero, and to regard the

components along such directions as being free parameters which are not

determined by the data. This is what we do in the method TSVD.9,10

Although the TVSD explained above is one of the oldest and most

frequently used technique for solving inverse problems, it has still some

serious drawbacks. The essential drawback of TSVD are the following (note

that all the drawbacks are connected with the polynomial character of the

basis functions that are used in TSVD):
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(1) The continuous dependence of the approximate solution on G, is triv-

ially given due to the finite dimension (bandlimitedness) of the re-

stricted solution space.

(2) Whole data set available has to be used completely for the calculation

of each orthogonal (Fourier) coefficient of investigated function. This

means TVSD is always connected with global smoothing of available

data. Moreover, in the case of large data sets numerical effort will be-

come immense.

(3) A variation of only a few data in a small region requires the new com-

putation of all coefficients.

(4) Due to global nature of the basis functions used in TVSD space-

dependent measuring accuracies cannot be sufficiently taken into ac-

count.

(5) We can note that the basis used above is entirely defined by the oper-

ator G and ignores the specific physical nature of the problem under

study. For example, for stationary operators the corresponding eigen-

functions generate a Fourier sine and cosine basis. Fourier series are

appropriate for smooth spatially homogeneous functions, but do not

provide a good information of the inhomogeneous signals which are

smooth in one region and have rapid variations in others. Hence us-

ing TSVD, while dealing with problems where G is inhomogeneous will

not give us accurate results and in most of the real world problems the

operator is usually inhomogeneous.

Now if we use wavelet methods for solving inverse problems then we can

theoretically obtain non-bandlimited solutions and also the localizing prop-

erties of the scaling functions and the wavelets used as basis functions

resolve first four problems discussed above.

4.2. Generalized wavelet-Galerkin or projection method

Generalized wavelet-Galerkin or projection method to solve inverse problem

(described in Eq. (6) where G is an operator from X to Y (which are

assumed to bo Hilbert spaces)) is defined by family of subspaces {Xh ⊂

Xh′ ⊂ X} for h′ < h and {Yh ⊂ Y } growing in size with step width h. We

determine the approximate solution mh in the space Xh by solving

〈Gmh|v〉Y = 〈d|v〉Y ∀ v ∈ Yh. (7)

The basic question is to estimate the quality of the approximation ‖ m −

mh ‖X and to determine the optimal step width h such that this quantity
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becomes minimum.

Now let us fix basis for Xh and Yh

Xh = span{uj |j ∈ Ih},

Yh = span{vj |j ∈ Ih}.

If mh =
∑
j∈Ih

xjuj , then Eq. (7) is transformed to the following system:

Ghx = y, (8)

where x = {xj |j ∈ Ih}, (Gh)j,k = 〈Guk|vj〉Y and y = {yj |j ∈ Ih} with

yj = 〈d|vj〉Y . We then obtain the corresponding regularization operator Rh

Rh : Y → X,

d → Rhd = mh.

Now if we suppose that spaceXh has wavelet basis then by the results in1 we

get that optimal step width hopt can easily calculated and the corresponding

error ‖ m−mhopt
‖ is asymptotically bounded.

It is to be noted that the Galerkin method suffers from the drawback of

being unstable in many cases (e.g. in case of inhomogeneous data. consider11

for details). In response to above limitation of Galerkin method and fifth

limitation of TSVD wavelet-domain linear inversion and wavelet-vaguelette

decomposition methods has been proposed which are discussed below:

4.3. Wavelet domain linear inversion

Usually while solving an inverse problem, the data set encountered is in-

homogeneous. Traditional approaches in linear inversion (such as TSVD,

least square deconvolution or interpolation) are often based on certain ho-

mogeneity and may face difficulties while dealing with non-homogeneous

data. Most of the inhomogeneous data sets can be shown to lie in the Besov

function spaces and are characterized by their smoothness (differentiabil-

ity). Contrary to fourier transforms, wavelets form an unconditional basis

for Besov spaces, allowing for a new generation of linear inversion schemes

which incorporate smoothness information of the data sets.

Besov space: A Besov space Bs

p,q
(R) is a complete quasi-normed space

which is a Banach space for 1 ≤ p, q ≤ ∞.

let n = 0, 1, 2, ......... and s = n+α with 0 < α ≤ 1, the Besov space Bs

p,q
(R)
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contains all the functions f such that

f ∈Wn
p and

∫
∞

0

|W 2
p (f

(n), t)/tα |q dt/t <∞,

where W 2
p (f, t) = sup

|h|≤t

‖ Δh2f ‖p and Δh = f(x− h)− f(x).

The Besov space Bs
p,q(R) is equipped with the norm

‖ f ‖Wn

p
(R) +(

∫
∞

0

|W 2
p (f

(n), t)/tα |q dt/t)1/q.

Now we consider the linear inversion problem in Eq. (6) where the data

set d is in some Besov space Bβ
p,q, n is the possible noise in the experiment.

The solution of the inverse problem involves minimizing:

‖ n ‖Bβ

p,q

=‖ d−Gm ‖Bβ

p,q

, (9)

over all the possible values of m. For unique solution we provide an extra

constraint to the problem, which usually comes in the form of smoothness

constraint in which we minimize the norm of m (i.e. ‖ m ‖β
′

p′,q′) in some

function space. In order to obtain the solution of inverse problem we must

find a vector model m̂, which simultaneously minimizes a norm on the noise

vector and the unknown model:

m̂ = min[‖ (d−Gm) ‖Bβ

p,q

+ ‖ m ‖
Bβ′

p′,q′

] (10)

In transforming the inverse problem to wavelet domain we change our

problem (i.e. d = G(m) + n) to

d = GW−1Wm+ n or d = G̃m̃+ n,

where G̃ = GW−1 is the wavelet transform of each row of the matrix G

and m̃ = Wm, where W is discrete wavelet transform and W−1 is inverse

discrete wavelet transform. This expresses the inverse problem in terms of

wavelet coefficients. Then, we need to redefine the minimization problem in

Eq. (10) in terms of the wavelet coefficients. The problem now is that Besov

norm in the wavelet domain is equivalent to the norm of the function in

state domain, not equal to it. Thus A ‖ m ‖Bβ

p,q

‖≤‖ m̃ ‖Bβ

p,q

≤ B ‖ m ‖Bβ

p,q

for some constants A and B. Only in case of an orthogonal transform is

the energy in both the domains equal. Therefore, orthogonal wavelets (e.g.

orthogonal fractional spline wavelets) are chosen .

Then,

m̂ = min[‖ d− G̃m̃ ‖Bβ

p,q

+ ‖ m̃ ‖
Bβ′

p′,q′

]. (11)
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The simplest and easiest inverse methods assumes that p = q = 2. In

this special case the Besov spaces reduce to simpler Sobolov spaces and

it is much easier to perform inversion in Sobolov spaces because we can

use standard least square methods. Important problem of well logging in

geology can be solved using above explained method as in.12

4.4. Wavelet-Vaguelette decomposition

Term vaguelette was introduced by Meyer in13 to describe a collection of

functions which are wavelet-like. Wavelet Vaguelette decomposition method

was proposed by Donoho in.14 It is based on the expansion of the unknown

function m as wavelet series. Wavelet series is generated by translations

and dilations of a single function ψ called the mother wavelet. In wavelet

vaguelette decomposition method we write the wavelet expansion of the

unknown function m as:

m =
∑

j

∑
k

〈m,ψ
j

k
〉ψ

j

k
,

where ψj

k
= 2j/2ψ(2jx − k). Let Ψj

k
= Gψ

j

k
, for some operators G there

exist constants β̃j

k
such that the functions vj

k
= Ψj

k
/β̃

j

k
forms a Riesz basis

in L2 norm, that is there exist two constants 0 < A ≤ B <∞ such that

A
∑

j

∑
k

(cj
k
)2 ≤‖

∑
c
j

k
v

j

k
‖
2
≤ B

∑
j

∑
k

(cj
k
)2, (12)

for all square summable sequences {cj
k
}. The functions v

j

k
are called

vaguelettes. Operators satisfying Eq. (12) include integration, fractional

integration and Radon transformation. If we choose the basis ψj

k
properly,

then any function g in the range of G can be written as

g =
∑

j

∑
k

〈g, u
j

k
〉v

j

k
,

where {uj

k
} is dual vaguelette basis satisfying G∗uj

k
= β̃

j

k
ψ

j

k
. The dual basis

{u
j

k
} and {vj

k
} are orthogonal i.e. 〈vj

k
, ul

m
〉 = δjlδkm. Thus, the signal G(m)

is expanded in vaguelette series as:

G(m) =
∑

j

∑
k

〈Gm,u
j

k
〉v

j

k
,

and then recover the original function m as

m =
∑

j

∑
k

〈Gm,u
j

k
〉(β̃j

k
)−1ψ

j

k

=
∑

j

∑
k

〈Gm, Ψ̃j

k
〉ψ

j

k
,

(13)
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where Ψ̃j

k
= u

j

k
/β̃

j

k
and hence G∗Ψ̃j

k
= ψ

j

k
. The formula (13) is main formula

for wavelet-vaguelette decomposition method. In the case of noisy data, the

observed signal y = G(m) + n is expanded in terms of vaguelettes, with

coefficients b̂j
k

= 〈y,Ψj

k
〉 which satisfy

b̂
j

k
= b

j

k
+ w

j

k
, (14)

where bj
k

= 〈Gm, Ψ̃j

k
〉 are the noiseless vaguelette coefficients from Eq. (12)

and wj

k
= 〈ε, Ψ̃j

k
〉 are the vaguelette decomposition of white noise.

Using the central limit theorem of probability theory, from Eq. (14), we

have b̃j
k
∼ N(bj

k
, σ2

0 ‖ Ψ̃j

k
‖
2) for some σ2

0 . Construct rescaled coefficients

(b̂j
k
)0 = b̂

j

k
/ ‖ Ψ̃j

k
‖, which all have same variance σ2

0 . Now we will apply

threshold on (b̂j
k
)0, either using the soft threshold function

δλ(x) = sign(x)(| x | −λ)+,

or using the hard threshold function

δλ(x) =

{
x : | x |> λ

0 : otherwise
,

for some threshold value λ ≥ 0. Note that the thresholding used above

is non-linear as compared to thresholding in TSVD (linear weighting of

eigenvalues). Also note that there are thresholding techniques which can

exploit some features of representation of the function in a particular space

(e.g. sparsity) as in.15 Mapping the threshold coefficients back into the

wavelet expansion in original space yields the resulting wavelet-vaguelette

decomposition estimator m̂WV D

λ
:

m̂WV D

λ
=
∑

j

∑
k

‖ Ψ̃j

k
‖ δλ(b̂j

k
)0ψj

k
. (15)

In a matrix formulation the method proceeds as follows: an orthogonal

wavelet transform matrix W is constructed, where each row is a discrete

wavelet. G then operates on each individual wavelet to produce what is

called a vaguelette:

GWT = V T Γ. (16)

Each column in the matrix V T is a discrete vaguelette and is normalized

to unit energy. Each normalization factor has been put on the diagonal

matrix Γ. Moving W to the other side of Eq. (16), the wavelet-vaguelette

decomposition (WVD) obtained is:

G = V T ΓW. (17)
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Entries of Γ are called quasi-singular values. W and Γ are always invertible,

but V T is invertible only if G is invertible. If V T is invertible, its inverse is

called U .

Now WVD is applied to the solution of a linear inverse problem. The

problem is Eq. (6), where m is a function which is to be estimated, n is the

noise and d is the noise contaminated data. A solution to this problem is

obtained by minimizing

‖ d−Gm ‖L2 . (18)

If G is rectangular and GTG is invertible,this leads to

mest = (GTG)−1d. (19)

If G is square and invertible we have

mest = G−1d. (20)

Substituting Eq. (6) in Eq. (20) we obtain

mest = m+G−1n. (21)

From the Eq. (21), it is observed that the solution is contaminated with

colored noise (i.e.G−1n), which can be very large while dealing with ill

posed problems. The traditional way to solve such problems is regularization

where we redefine the minimization problem in Eq. (18) by adding one of

the following constraints

min
m

‖ m ‖L2 or min
m

‖ Lm ‖L2 (22)

where L is usually a differential operator. Assuming that G is invertible

and square, its inverse via WVD is represented as

G−1 = WT Γ−1U. (23)

Substituting Eq. (23) into Eq. (20)

mest = WT Γ−1Ud. (24)

Noting that U = V −1 = ΓWK−1, substituting in Eq. (24)

mest = WT Γ−1ΓWK−1d. (25)

Equation (25) is actually same as Eq. (20); the first four matrices cancel

themselves. A non-linear thresholding operator, ΘT is defined as

ΘT [·] =

{
mj : | mj |> T

0 : | mj |≤ T.
(26)
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Then, ΘT is substituted into the Eq. (25):

mest = WT Γ−1ΘT [ΓWK−1d], (27)

where T (universal threshold criterion)= σn

√
2ln(N) and σn is assumed

standard deviation of noise and N is the number of coefficients in m. The

idea here is this: solving Eq. (20) leads to noise contaminated solution.

Transforming this solution to wavelet domain tends to isolate good sig-

nal into few large valued, isolated coefficients, while the noise tends to

be spread around equally with smaller energy. Thus thresholding the small

wavelet coefficients will tend to remove the noise and leave the coherent fea-

tures untouched. Travel time inversion problem (a fundamental problem in

mathematical geophysics) can be solved using the above explained method

as in.16 Couette inverse problem is solved using this wavelet vaguelette

method in.17

4.5. The vaguelette-wavelet decomposition method

A natural alternative to wavelet-vaguelette decomposition is vaguelette-

wavelet decomposition. In vaguelette-wavelet decomposition18 we expand

the observed data d in wavelet space, threshold the resulting coefficients and

then map back by G−1 to obtain an estimate of m in term of vaguelette

series. Hence it is G(m) rather than m which is expanded in wavelet series.

Suppose we have the wavelet expansion

G(m) =
∑

j

∑
k

d
j

k
ψ

j

k
, (28)

where ψj

k
for all j and k are in the range of G. Assume the existence of βj

k

such that Eq. ( 12) holds for vj

k
= G−1ψ

j

k
/β

j

k
. Then m is recovered from

Eq. (28) by expanding in the vaguelette series as follows:

m =
∑

j

∑
k

〈Gm,ψ
j

k
〉β

j

k
v

j

k

=
∑

j

∑
k

〈Gm,ψ
j

k
〉Ψj

k
,

(29)

where Ψj

k
= G−1ψ

j

k
. As in wavelet-vaguelette decomposition the wavelet

coefficients of a noisy signal y, d̂j

k
= 〈y, ψ

j

k
〉, are contaminated by noise

d̂
j

k
= d

j

k
+ w

j

k
,

where w
j

k
= 〈ε, ψ

j

k
〉 are the coefficients of the wavelet decomposition of

white noise, and hence are themselves are white noise; note that this is not
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the case in the corresponding vaguelette coefficients b̂j
k

in Eq. (14) used

in wavelet-vaguelette decomposition. Therefore d̂j

k
need to be denoised, for

example by thresholding. The resulting vaguelette-wavelet decomposition

estimator m̂V WD

λ
will be then

m̂V WD

λ
=
∑

j

∑
k

δλ(〈y, ψj

k
〉)Ψj

k
,

where δλ(·) is soft or hard thresholding operator.

5. Recent progress and future challenges in inverse

problems

• The function m to be recovered from the inverse problem d = G(m) is

usually assumed to be smooth apart from at the edge. Traditional meth-

ods for solving inverse problems in the presence of edges behave poorly.

Qualitatively the reconstructions are blurred at the edges. Curvelets

which generalize wavelets in the sense that these are localized in orienta-

tion also, can produce methods to solve inverse problems in the presence

of edges.

• If the operator G in Eq. (1) is such that high powers of G has low numer-

ical rank then we can construct multiresolution analysis which will yield

scaling functions and wavelets (called diffusion wavelets6) on domains,

manifolds, graphs and other general classes of metric spaces. Then trans-

forming the above discussed wavelet methods to diffusion wavelet space

can provide us new methods which can work well in the situations where

former fails (e.g. in presence of edges or in case of inhomogeneous data.).

• Solving the inverse problem of electrocardiography (problem of describ-

ing the electrochemical activity of each cell in the heart based on body

surface electrocardiograms (ECGs)), is difficult because of the non-

unique relationship between the true intra-cardiac sources and the remote

observations-the same set of measurements could result from more than

one source configuration. So we need to design inverse problem formu-

lations that have unique source models without much loss of generality

and applicability.
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Mangasarian and Stone
9
observed that the problem of computation of equilib-

rium points of bimatrix games is equivalent to solving a certain quadratic pro-

gramming problem with linear constraints. We extend this approach of Man-

gasarian and Stone
9
for generalized bimatrix game problem and SC/AR-AT

mixture class of stochastic game problem. We establish an alternative neces-

sary and sufficient condition for the existence of optimal stationary strategies

for a mixture class of zero-sum stochastic game in which the set of states are

partitioned into sets S1, S2 and S3 so that the law of motion is controlled by

Player I alone when the game is played in S1, Player II alone when the game

is played in S2 and in S3 the reward and transition probabilities are additive.

We formulate and discuss about the computation of value vector and optimal

stationary strategies for SC/AR-AT mixture class of stochastic game as an

optimization model for both discounted and undiscounted case.

Keywords: Optimization model; Generalized bimatrix game, Structured

stochastic game; Switching control (SC) property; AR-AT property; SC/AR-

AT mixture.
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1. Introduction

Optimization model arises naturally for games, economics, engineering and
management decision making problems. Mangasarian and Stone 9 con-
structed a quadratic program which has a global maximum of zero, and
showed that the optimal solution of this quadratic program form Nash equi-
librium points of the bimatrix game. Rothblum 20 first formulated stochas-
tic games as an optimization model. Stochastic games concentrate on deci-
sion situations where at different time moments the players have to make
a choice. Stochastic games are motivated by many practical applications
and the potential future applications. A few of them are Pollution Game,
Fishery Game, Inspection Game and Salary Negotiations Game. Especially
these sorts of applications have motivated the study of algorithms for dif-
ferent classes of stochastic games with special structure.

A bimatrix game is a non-cooperative nonzero-sum two person game
with payoff matries A ∈ Rm×n and B ∈ Rm×n to player I and player
II respectively in which each player has a finite number pure strategies.
A mixed strategy for player I is a probability vector x ∈ Rm whose ith

component xi represents the probability of choosing pure strategy i where

xi ≥ 0 for i = 1, . . . ,m and
m∑

i=1

xi = 1. Similarly, a mixed strategy for player

II is a probability vector y ∈ Rn. Let α and β are the expected payoffs of
Player I and Player II respectively. An equilibrium point 8 for such a game
is a 4-tuple (x∗, y∗, α∗, β∗) that satisfies the following relation

α∗ = x∗tAy∗ = max
x

{xtAy∗, | et
mx = 1, x ≥ 0}

β∗ = x∗tBy∗ = max
y

{x∗tBy | et
ny = 1, y ≥ 0}

where em and en are m × 1 and n × 1 vector of ones respectively.
Mangasarian and Stone 9 showed that the problem of computation of

equilibrium points of bimatrix games is equivalent to solving a certain
quadratic programming problem with linear constraints. The equivalence
theorem is stated as follows.

Theorem 1.1. A necessary and sufficient condition that (x∗, y∗, α∗, β∗) be
an equilibrium point is that it is a solution of the programming problem

maximizex,y,α,β {xt(A + B)y − α − β | (x, β) ∈ S, (y, α) ∈ T}

where S and T are the convex polyhedral sets

S = {(x, β) | Btx − βen ≤ 0, et
mx = 1, x ≥ 0}.
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T = {(y, α) | Ay − αem ≤ 0, et
ny = 1, y ≥ 0}.

In Section 2, we consider the generalized bimatrix game and formulate
the problem of computing a Nash equilibrium point as an optimization
problem in the spirit of Mangasarian and Stone 9. In Section 3, we present
some preliminaries on stochastic games which are needed for subsequent
discussions. In Section 3.1, we present a necessary and sufficient condition
for the existence of optimal stationary strategies for discounted SC/AR-
AT mixture class of stochastic game in terms of finding a global minimum
to a linearly constrained optimization problem with nonlinear objective
function. In Section 3.2, we show that for undiscounted SC/AR-AT mixture
class of stochastic game optimal stationary strategies exist if and only if
the objective function of the optimization problem can be driven to zero
and, when this occurs, a pair of optimal stationary strategies and the value
vector are among the variables of the given optimization problem. Finally,
in Section 4, we present concluding remarks and areas of further research.

2. Optimization Model for Generalized Bimatrix Game
Problem

We require the concept of a vertical block matrix. We say that an m × k

matrix N with the partitioned form N =
[
N1 . . . Nk

]t
is a vertical block

matrix of type (m1,m2, . . . ,mk) if N j is of order mj × k, 1 ≤ j ≤ k and
k∑

j=1

mj = m. Let N be a vertical block matrix of type (m1,m2, . . . ,mk). A

submatrix of size k of N is called a representative submatrix if its jth row
is drawn from the jth block N j of N .

Now we extend the approach of Mangasarian and Stone 9 for generalized
bimatrix game. Gowda and Sznajder 7 introduced a generalization of the
bimatrix game presented in previous section. This generalized version of
the bimatrix game is described as follows:

Let A and B be two given finite sets of matrices, A containing s matrices
and B containing r matrices, each of order m×n. Player I forms his payoff
matrix whose ith row is chosen as the ith row of some A ∈ A and then
plays his choice of a mixed strategy over {1, 2, . . . ,m}. Similarly, player II
(the column player) forms his payoff matrix whose jth column is chosen by
him as the jth column of some B ∈ B and then plays his choice of mixed
strategy over {1, 2, . . . , n}. The rest of the description of the game is the
same as that of a bimatrix game.
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Now we consider the question of computing a generalized Nash equi-
librium point for the generalized bimatrix game and formulate it as an
optimization model. See also 15 in this connection.

Suppose, A= {Ap | p = 1, 2, . . . , s} and B = {Bp | p = 1, 2, . . . , r}.
Consider the matrices Cj , j = 1, 2, . . . ,m and Dj , j = 1, 2, . . . , n defined
as follows:

Cj
i· = Ai

j·, 1 ≤ i ≤ s

Dj
i· = (Bi)t

j·, 1 ≤ i ≤ r.

Without loss of generality, we may assume that each Ap, p = 1, 2, . . . , s

and each Bp, p = 1, 2, . . . , r are positive matrices. Hence each Cj , j =
1, 2, . . . ,m and each Dj , j = 1, 2, . . . , n are positive matrices.

Let C =

⎡⎢⎢⎢⎣
C1

C2

...
Cm

⎤⎥⎥⎥⎦ and D =

⎡⎢⎢⎢⎣
D1

D2

...
Dn

⎤⎥⎥⎥⎦
where each Cj is of order s × n and each Dj is of order r × m and by our
assumption C > 0, D > 0. Note that C is a vertical block matrix of
type (s, . . . , s) and D is a vertical block matrix of type (r, . . . , r) where the
number of blocks in C is m and the number of blocks in D is n.

Given vertical block matrices C of type (s, . . . , s) and D of type (r, . . . , r)
there exist representative matrices CR and DR so that a generalized Nash
equilibrium point of a generalized bimatrix game is same as the Nash equi-
librium point of a bimatrix game obatained using the representative sub-
matrces CR and DR.

Now, we construct equivalent matrices Ĉ by copying C·k, r times for
k = 1, . . . , n and D̂ by copying D·k, s times for k = 1, . . . ,m. Note that the
order of the equivalent matrix Ĉ is ms×nr and the order of the equivalent
matrix D̂ is nr × ms. For convenience we denote C̄ = Ĉ and D̄ = D̂t.

We note that a generalized Nash equilibrium point as considered by
Gowda and Sznajder 7 can be computed by obtaining a solution from the
optimization problem constructed similarly as in Theorem 1.1 using equiv-
alent matrices C̄ and D̄ as described above. This result is stated in the
following theorem.

Theorem 2.1. A generalized Nash equilibrium point (x∗, y∗, α∗, β∗) of the
generalized bimatrix game can be computed from the solution of the opti-
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mization problem

maximizex,y,α,β {xt(C̄ + D̄)y − α − β | (x, β) ∈ S, (y, α) ∈ T}

where S and T are the convex polyhedral sets

S = {(x, β) | D̄tx − βenr ≤ 0, et
msx = 1, x ≥ 0}.

T = {(y, α) | C̄y − αems ≤ 0, et
nry = 1, y ≥ 0}.

where C̄ and D̄ are the equivalent matrices obtained from vertical block
matrices C and D as described above.

From the solution of the game problem using the optimization model in
Theorem 2.1, we obtain the probability vectors x and y where

xj =
s∑

i=1

xi
j , j = 1, . . . ,m

yj =
r∑

i=1

yi
j , j = 1, . . . , n.

3. Structured Stochastic Game

In 1953, Shapley 24 introduced stochastic game and established the exis-
tence of value and optimal stationary strategies for discounted stochastic
games. Gillete 6 studied the undiscounted case or limiting average payoff
case.

A two-player finite state/action space zero-sum stochastic game is de-
fined by the following objects.

(1) A state space S = {1, 2, . . . , N}.
(2) For each s ∈ S, finite action sets A(s) = {1, 2, . . . ,ms} for Player I and

B(s) = {1, 2, . . . , ns} for Player II.
(3) A reward law R(s) for s ∈ S where R(s) = [r(s, i, j)] is an ms × ns

matrix whose (i, j)th entry denotes the payoff from Player II to Player
I corresponding to the choices of action i ∈ A(s), j ∈ B(s) by Player I
and Player II respectively.

(4) A transition law q = (qij(s, s′) : (s, s′) ∈ S × S, i ∈ A(s), j ∈ B(s)),
where qij(s, s′) denotes the probability of a transition from state s to
state s′ given that Player I and Player II choose actions i ∈ A(s), j ∈
B(s) respectively.
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The game is played in stages t = 0, 1, 2, . . . At some stage t, the players find
themselves in a state s ∈ S and independently choose actions i ∈ A(s), j ∈
B(s). Player II pays Player I an amount r(s, i, j) and at stage (t + 1), the
new state is s′ with probability qij(s, s′). Play continues at this new state.

The players guide the game via strategies and in general, strategies can
depend on complete histories of the game until the current stage. However
in this paper, we are concerned with the simpler class of stationary strategies
which depend only on the current state s and not on stages. So for Player
I, a stationary strategy

f ∈ Fs = {fi(s) | s ∈ S, i ∈ A(s), fi(s) ≥ 0,
∑

i∈A(s)

fi(s) = 1}

indicates that the action i ∈ A(s) should be chosen by Player I with prob-
ability fi(s) when the game is in state s.

Similarly for Player II, a stationary strategy

g ∈ Gs = {gj(s) | s ∈ S, j ∈ B(s), gj(s) ≥ 0,
∑

j∈B(s)

gj(s) = 1}

indicates that the action j ∈ B(s) should be chosen by Player II with
probability gj(s) when the game is in state s.

Here Fs and Gs will denote the set of all stationary strategies for Player I
and Player II, respectively. Let f(s) and g(s) are the ms and ns dimensional
column vector, respectively.

Fixed stationary strategies f and g induce a Markov chain on S with
transition matrix P (f, g) whose (s, s′)th entry is given by

Pss′(f, g) =
∑

i∈A(s)

∑
j∈B(s)

qij(s, s′)fi(s)gj(s)

and the expected current reward vector r(f, g) has entries defined by

rs(f, g) =
∑

i∈A(s)

∑
j∈B(s)

r(s, i, j)fi(s)gj(s) = f(s)R(s)g(s).

With fixed general strategies f, g and an initial state s, the stream of
expected payoff to Player I at stage t, denoted by vt

s(f, g), t = 0, 1, 2, . . . is
well defined and the resulting discounted and undiscounted payoffs are

φβ
s (f, g) =

∞∑
t=0

βtvt
s(f, g) for a β ∈ (0, 1)
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and

φs(f, g) = lim
T↑∞

inf
1

T + 1

T∑
t=0

vt
s(f, g).

A pair of strategies (f∗, g∗) is optimal for Player I and Player II in the
undiscounted game if for all s ∈ S

φs(f, g∗) ≤ φs(f∗, g∗) = v∗s ≤ φs(f∗, g),

for any strategies f and g of Player I and Player II respectively. The number
v∗s is called the value of the game starting in state s and v∗ = (v∗1 , v∗

2 , . . . , v∗N )
is called the value vector. The definition for discounted case is similar. For
theory and applications of stochastic games see 5.

Bewley and Kohlberg 1 obtained a very general set of sufficient con-
ditions for a game to possess optimal stationary strategies. However, the
conditions are not easily verifiable. Filar and Schultz 4 observed that the
problem of finding a computationally feasible characterization of and solu-
tion methods for this class of games remains a major open problem in the
theory of finite state/action stochastic games.

In the literature of stochastic game, many authors have considered
stochastic games with special structures in which one can hope for finite
step algorithms. We will refer to these zero-sum stochastic games with spe-
cial structure collectively as the class of structured stochastic games. We will
first describe below some known classes of games which possess ordered field
property.

• Single controller stochastic games : In the case where player II is
single controller this means q(s′ | s, i, j) = q(s′ | s, j) ∀ i, j, s, s′.

• Switching controlled games : In a switching control stochastic game
the law of motion is controlled by Player I alone when the game is
played in a certain subset of states and Player II alone when the game
is played in other states. In other words, a switching control game is a
stochastic game in which the set of states are partitioned into sets S1

and S2 where the transition function is given by

qi,j(s, s′) =
{

qi(s, s′), for s′ ∈ S, s ∈ S1, i ∈ A(s) and ∀j ∈ B(s)
qj(s, s′), for s′ ∈ S, s ∈ S2, j ∈ B(s) and ∀i ∈ A(s)

• AR-AT games : A stochastic game is said to be an Additive Reward-
Additive Transition game (AR-AT game) if

the reward (i) r(s, i, j) = r1
i (s) + r2

j (s) for i ∈ A(s), j ∈ B(s), s ∈ S
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and the transition probabilities

(ii) qi,j(s, s′) = q1
i (s, s′)+q2

j (s, s′) for i ∈ A(s), j ∈ B(s), (s, s′) ∈ S×S.

Filar 2 generalized the optimization model of Mangasarian and Stone 9

for two person, general sum, single controller stochastic game by showing
that an optimal solution of appropriately constructed quadratic program
provides a Nash equilibrium point. This generalization of Filar 2 include
as special cases the known quadratic/linear programming formulations of
bimatrix games, matrix games, Markovian decision processes and single
controller zersum stochastic games. The model proposed by Filar 2 apply
to both discounted and limiting average criteria.

The class of switching control (SC) stochastic games was introduced by
Filar 3. Even though the transition structure is a natural generalization of
the single control game but from the algorithmic point of view this class of
games appear to be more difficult. The game structure was used to develop a
finite step algorithm in 25 but that algorithm requires solving a large number
of single control stochastic games. Mohan, Neogy and Parthasarathy 10,?

formulated a single control game as solving a single linear complementarity
problem and proved that Lemke’s algorithm can solve such an LCP. Mohan
and Raghavan 12 proposed an algorithm for discounted switching control
games which is based on two linear programs. Schultz 23 formulated the
discounted switching control game as a linear complementarity problem.

AR-AT games have been studied in the literature earlier by Raghavan,
Tijs and Vrieze 19. Both the discounted and the limiting average criterion
of evaluation of strategies have been considered. It is known, for example,
that for a β-discounted zero-sum AR-AT game, the value exists and both
players have stationary optimal strategies, which may also be taken as pure
strategies. As already mentioned earlier, in general, it is difficult to find
a pair of equilibrium (optimal strategies) strategies. See 14, 16 and the
excellent survey paper by Raghavan and Filar 18 and Mohan, Neogy and
Parthasarathy 13.

Sinha 21,22 consider the mixture of the structured classes and studies
the ordered field property. To be more specific, one such case is the mixture
of AR-AT and the switching controller stochastic games whose data satisfy
the AR-AT conditions in some state and the switching control conditions
in the remaining state.

In this paper we consider the following generalization involving two
classes of stochastic games in which the state space S is the union of 3
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disjoint subsets S1, S2 and S3 such that the law of transition is controlled
by Player-I in S1 and player -II in S2 and all the state in S3 of the game has
AR-AT state. More specifically, a zero-sum stochastic game is in SC/AR-
AT mixture class if
(i). S = S1 ∪ S2 ∪ S3, Si ∩ Sj = ∅ ∀ i �= j

(ii). qi,j(s, s′) = qi(s, s′), for s′ ∈ S, s ∈ S1, i ∈ A(s) and ∀j ∈ B(s).
(iii). qi,j(s, s′) = qj(s, s′), for s′ ∈ S, s ∈ S2, j ∈ B(s) and ∀i ∈ A(s)
(iv). the reward r(s, i, j) = r1

i (s) + r2
j (s) for i ∈ A(s), j ∈ B(s), s ∈ S3

and the transition probabilities qi,j(s, s′) = q1
i (s, s′) + q2

j (s, s′) for i ∈
A(s), j ∈ B(s), (s, s′) ∈ S3 × S.

Sinha 22 gives a nonconstructive proof to show that the above SC/AR-
AT mixture class of game has ordered field property and raises the question
that whether a finite step algorithm can be developed in SC/AR-AT mix-
tures. Neogy, Das, Sinha and Gupta 17 formulate the problem of computing
the value vector vβ

s and optimal stationary strategies fβ(s) for Player I and
gβ(s) for Player II for the class of discounted stochastic game with SC/AR-
AT mixture as a linear complementarity problem and the class of undis-
counted stochastic game with SC/AR-AT mixture is presented as a vertical
linear complementarity problem. This complementarity formulation gives
an alternative proof of the ordered field property.

We require the following result from Schultz 23 to prove our main result
for discounted case in the next section.

Theorem 3.1. (23[Theorem 1.1]) A β-discounted zero-sum stochastic game
has values vβ

s and optimal stationary strategies fβ for Player I and gβ for
Player II if and only if there exists a solution (vβ , fβ , gβ) that solves the
following nonlinear system SYS1.
SYS1: Find (vβ , fβ , gβ) such that

vβ
s − β

∑
s′∈S

vβ
s′
∑

j∈B(s)

qij(s, s′)g
β
j (s) − [R(s)gβ(s)]i ≥ 0, i ∈ A(s), s ∈ S

(1)

−vβ
s + β

∑
s′∈S

vβ
s′
∑

i∈A(s)

qij(s, s′)f
β
i (s) + [fβ(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S

(2)

Corollary 3.1. If (vβ , fβ , gβ) satisfies (1) and (2) then

vβ
s = β[P (fβ , gβ)vβ ]s + rs(fβ , gβ) (3)
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We require the following definition and results established by Filar and
Schultz 4 to prove our subsequent results for undiscounted case.

Definition 3.1. A pair of optimal stationary strategies (f∗, g∗) for an
undiscounted stochastic game is asymptotically stable if there exist a β0 ∈
(0, 1) and stationary strategy pair (fβ , gβ) optimal in the β-discounted
stochastic game for each β ∈ (β0, 1) such that

(i) lim
β↑1

fβ = f∗, lim
β↑1

gβ = g∗

(ii) for all β ∈ (β0, 1), r(fβ , gβ) = r(f∗, g∗), P (f, gβ) = P (f, g∗) for
f ∈ Fs and P (fβ , g) = P (f∗, g) for g ∈ Gs where P (f, g) is the transition
matrix and r(f, g) is the current expected reward vector which are defined
earlier.

Theorem 3.2. (4[Theorem 2.1]) An undiscounted stochastic game pos-
sesses value vector v∗ and optimal stationary strategies f∗ for Player I
and g∗ for Player II if and only if there exists a solution (v∗, t∗, u∗, f∗, g∗)
with t∗, u∗ ∈ R|S| to the following nonlinear system SYS2a.
SYS2a: Find (v, t, u, f, g) where v, t, u ∈ R|S|, f ∈ FS and g ∈ GS such
that

vs −
∑
s′∈S

vs′
∑

j∈B(s)

qij(s, s′)gj(s) ≥ 0, i ∈ A(s), s ∈ S (4)

vs + ts −
∑
s′∈S

ts′
∑

j∈B(s)

qij(s, s′)gj(s) − [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S

(5)

−vs +
∑
s′∈S

vs′
∑

i∈A(s)

qij(s, s′)fi(s) ≥ 0, j ∈ B(s), s ∈ S (6)

−vs − us +
∑
s′∈S

us′
∑

i∈A(s)

qij(s, s′)fi(s) + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S

(7)

Theorem 3.3. (4[Theorem 2.2]) If a stochastic game possesses asymptot-
ically stable stationary optimal strategies then feasibility of the nonlinear
system (SYS2b) is both necessary and sufficient for existence of a station-
ary optimal solution.
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SYS2b: Find (v, t, f, g) where v, t ∈ R|S|, f ∈ FS and g ∈ GS such that
(4),(5),(6) are satisfied and

−vs − ts +
∑
s′∈S

ts′
∑

i∈A(s)

qij(s, s′)fi(s) + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S

(8)

3.1. Discounted Zero-sum SC/AR-AT Mixture Stochastic

Game

Theorem 3.4. A β-discounted zero-sum SC/AR-AT mixture stochastic
game has values vβ where

vβ
s =

{
vβ

s , s ∈ S1 ∪ S2

ζβ
s + ηβ

s , s ∈ S3

and an optimal pair of stationary strategies (fβ , gβ) if and only if vβ
s , fβ(s)

and gβ(s) are the solution of the following optimization problem OPT1 with
global minimum objective value of zero.
Objective function:

OPT1:

min
∑
s∈S1

[θβ
s − β

∑
s′∈S1∪S2

∑
i∈A(s)

vβ
s′qi(s, s′)fi(s)

−β
∑

s′∈S3

∑
i∈A(s)

(ζβ
s′ + ηβ

s′)qi(s, s′)fi(s)]

+
∑
s∈S2

[−θβ
s + β

∑
s′∈S1∪S2

∑
j∈B(s)

vβ
s′qj(s, s′)gj(s)

+β
∑

s′∈S3

∑
j∈B(s)

(ζβ
s′ + ηβ

s′)qj(s, s′)gj(s)]

+
∑
s∈S3

[ηβ
s − β

∑
s′∈S1∪S2

∑
i∈A(s)

vβ
s′q

1
i (s, s′)fi(s)

−β
∑

s′∈S3

∑
i∈A(s)

(ζβ
s′ + ηβ

s′)q1
i (s, s′)fi(s)
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−ζβ
s + β

∑
s′∈S1∪S2

∑
j∈B(s)

vβ
s′q

2
j (s, s′)gj(s))

+β
∑

s′∈S3

∑
j∈B(s)

(ζβ
s′ + ηβ

s′)q2
j (s, s′)gj(s)

−
∑

i∈A(s)

r1
i (s)fi(s) +

∑
j∈B(s)

r2
j (s)gj(s)]

Constraints:

vβ
s − β

∑
s′∈S1∪S2

vβ
s′qi(s, s′) − β

∑
s′∈S3

(ζβ
s′ + ηβ

s′)qi(s, s′)

−[R(s)gβ(s)]i ≥ 0, i ∈ A(s), s ∈ S1 (9)

vβ
s − θβ

s − [R(s)gβ(s)]i ≥ 0, i ∈ A(s) s ∈ S2 (10)

−vβ
s + θβ

s + [fβ(s)R(s)]j ≥ 0, j ∈ B(s) s ∈ S1 (11)

−vβ
s + β

∑
s′∈S1∪S2

vβ
s′qj(s, s′) + β

∑
s′∈S3

(ζβ
s′ + ηβ

s′)qj(s, s′)

+[fβ(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S2 (12)

−ζβ
s + β

∑
s′∈S1∪S2

vβ
s′q

2
j (s, s′) + β

∑
s′∈S3

(ζβ
s′ + ηβ

s′)q2
j (s, s′)

+r2
j (s) ≥ 0, j ∈ B(s), s ∈ S3 (13)

ηβ
s − β

∑
s′∈S1∪S2

vβ
s′q

1
i (s, s′) − β

∑
s′∈S3

(ζβ
s′ + ηβ

s′)q1
i (s, s′)

−r1
i (s) ≥ 0, i ∈ A(s), s ∈ S3 (14)

f ∈ F (s), g ∈ G(s) (15)
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Proof. We prove this theorem by showing that a feasible solution to OPT1
with zero objective value is a solution of SYS1 and by Theorem 3.1, this
solution solves the stochastic game with SC/AR-AT structure. Conversely,
we show that any solution of SYS1 can be used to derive a solution of
OPT1.

First we show that an objective function φ(z) of OPT1 with value zero
must be a global minimum. Let z = (vβ

s , θβ
s , fβ(s), gβ(s))be a feasible so-

lution of OPT1. For s ∈ S1, constraint (9) weighted by f(s) added to the
constraint (11) weighted by g(s) yields

θβ
s − β

∑
s′∈S1∪S2

∑
i∈A(s)

vβ
s′qi(s, s′)fi(s) − β

∑
s′∈S3

∑
i∈A(s)

(ζβ
s′ + ηβ

s′)qi(s, s′)fi(s) ≥ 0.

Similarly we can show that the remaining terms of φ(z) are nonnegative.
Therefore, it follows that the objective function φ(z) ≥ 0.

Let ẑ = (v̂β
s , θ̂β

s , f̂β(s), ĝβ(s)) be a feasible solution of OPT1 with φ(ẑ) =
0. This must be the global minimum. Since φ(ẑ) is nonnegative term by term
therefore each term of φ(ẑ) is zero.

θ̂β
s = β

∑
s′∈S

∑
i∈A(s)

v̂β
s′qi(s, s′)f̂

β
i (s), s ∈ S1 (16)

θ̂β
s = β

∑
s′∈S

∑
j∈B(s)

v̂β
s′qj(s, s′)g

β
j (s), s ∈ S2 (17)

From (17), (9), (10) and (16), (11), (12) we get (1) and (2) respectively
for s ∈ S1 ∪ S2.

For s ∈ S3 noting that v̂β
s = ζ̂β

s + η̂β
s we obtain

ζ̂β
s − β

∑
s′∈S

∑
j∈Bs

v̂β
s′q

2
j (s, s′)ĝβ

j (s) −
∑

j∈B(s)

r2
j (s)ĝβ

j (s) = 0 (18)

η̂β
s − β

∑
s′∈S

∑
i∈As

v̂β
s′q

1
i (s, s′)f̂β

i (s) −
∑

i∈A(s)

r1
i (s)f̂β

i (s) = 0 (19)

Adding (14) and (18) we get the inequality (1) for s ∈ S3.

v̂β
s − β

∑
s′∈S

∑
j∈Bs

v̂β
s′ [q1

i (s, s′) + q2
j (s, s′)]gβ

j (s) −
∑

j∈B(s)

[r1
i (s) + r2

j (s)]ĝβ
j (s) ≥ 0

⇒

v̂β
s − β

∑
s′∈S

∑
j∈Bs

v̂β
s′qij(s, s′)ĝ

β
j (s) −

∑
j∈B(s)

r(s, i, j)ĝβ
j (s) ≥ 0, s ∈ S3, i ∈ A(s)

(20)

50777_8063 -insTexts#150Q.indd   46050777_8063 -insTexts#150Q.indd   460 6/8/11   7:34 PM6/8/11   7:34 PM



461

Similarly, adding (13) and (19) we obtain inequality (2) for j ∈ B(s), s ∈ S3

of SYS1. Therefore, by Theorem 3.1, v̂β
s , f̂β(s), ĝβ(s) is an optimal solution

for OPT1.
Conversely, from any solution (v̂β

s , θ̂β
s , f̂β(s), ĝβ(s)) for s ∈ S1 and s ∈ S2

of SYS1 we define θ̂β
s as in (16), (17). Rewriting SYS1 using the switch-

ing control assumption, we get the inequalities (9) through (12) of OPT1.
Similarly, from any solution (v̂β

s , θ̂β
s , f̂β(s), ĝβ(s)) of SYS1 for s ∈ S3, we

write v̂β
s = ζ̂β

s + η̂β
s and define ζ̂β

s , η̂β
s as in (18) and (19). Using the AR-AT

structure, we rewrite SYS1 to get the inequalities (13), (14) of OPT1. Thus
the vector ẑ is a feasible solution of OPT1 and by construction φ(ẑ) = 0.

Since SYS1 is satisfied and after simplifications SYS1 is exactly the same as
the constraints of OPT1 after substitution of θβ

s as in (16), (17) and ζ̂β
s , η̂β

s

as in (18) and (19). Using the AR-AT structure, we rewrite SYS1 to get
the inequalities (13), (14). Therefore ẑ is the global minimum of OPT1.

3.2. Undiscounted Zero-sum SC/AR-AT Mixture

Stochastic Game

We require the following lemma which was proved by Filar and Schultz 4.

Lemma 3.1. (4[Lemma 2.4])
(i) If (v∗, t∗, u∗, f∗, g∗) satisfy SYS1a, then for all s ∈ S

v∗s = [P (f∗, g∗)v∗]s

(ii) If (v∗, t∗, u∗, f∗, g∗) solves SYS1b, then for all s ∈ S

v∗s + t∗s = [P (f∗, g∗)t∗ + r(f∗, g∗)]s

Theorem 3.5. An undiscounted zero-sum SC/AR-AT mixture stochastic
game has values vs where

vs =

⎧⎪⎪⎨⎪⎪⎩
vs, s ∈ S1 ∪ S2

vs, s ∈ S1 ∪ S2

vs = θs + φs, s ∈ S3

ts = ηs + γs − θs − φs, s ∈ S3

and an optimal pair of stationary strategies (fβ , gβ) can be derived from
any global optimal solution to OPT2 with value of the objective function
as zero. Conversely, for such a game, a global optimal solution to OPT2
with value of the objective function as zero can be derived from any pair of
asymptotically stable stationary strategies.
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OPT2:

Decision variables: (v, t, ρ1, ρ2, θ, η, φ, γ, f, g) where v, t,∈ R|S|, ρ1, ρ2 ∈
R|S1∪S2|, θ, η, φ, γ ∈ R|S3|, f ∈ FS and g ∈ GS

Objective function:

min
∑
s∈S1

[ρ1
s + ρ2

s −
∑

s′∈S1∪S2

∑
i∈A(s)

vs′qi(s, s′)fi(s)

−
∑

s′∈S3

∑
i∈A(s)

(θs′ + φs′)qi(s, s′)fi(s)

−
∑

s′∈S1∪S2

∑
i∈A(s)

ts′qi(s, s′)fi(s) −
∑

s′∈S3

∑
i∈A(s)

(ηs′ + γs′

−θs′ − φ′
s)ts′qi(s, s′)fi(s)]∑

s∈S2

[−ρ1
s − ρ2

s +
∑

s′∈S1∪S2

∑
j∈B(s)

vs′qj(s, s′)gj(s)

+
∑

s′∈S3

∑
j∈B(s)

(θs′ + φs′)qj(s, s′)gj(s)

+
∑

s′∈S1∪S2

∑
j∈B(s)

ts′qj(s, s′)gj(s) +
∑

s′∈S3

∑
j∈B(s)

(ηs′

+γs′ − θs′ − φ′
s)qj(s, s′)gj(s)]

+
∑
s∈S3

[φs + γs −
∑

s′∈S1∪S2

∑
i∈A(s)

vs′q1
i (s, s′)fi(s)

−
∑

s′∈S3

∑
i∈A(s)

(θs′ + φs′)q1
i (s, s′)fi(s)

−
∑

s′∈S1∪S2

∑
i∈A(s)

ts′q1
i (s, s′)fi(s) −

∑
s′∈S3

∑
i∈A(s)

(ηs′ + γs′

−θs′ − φs′)q1
i (s, s′)fi(s)

−θs − ηs +
∑

s′∈S1∪S2

∑
j∈B(s)

vs′q2
j (s, s′)gj(s)
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+
∑

s′∈S3

∑
j∈B(s)

(θs′ + φs′)q2
j (s, s′)gj(s)

+
∑

s′∈S1∪S2

∑
j∈B(s)

ts′q2
j (s, s′)gj(s) +

∑
s′∈S3

∑
j∈B(s)

(ηs′ + γs′

−θs′ − φs′)q2
j (s, s′)gj(s)

−
∑

i∈A(s)

r1
i (s)fi(s) +

∑
j∈B(s)

r2
j (s)gj(s)]

Constraints:

vs −
∑

s′∈S1∪S2

vs′qi(s, s′) −
∑

s′∈S3

(θs′ + φs′)qi(s, s′) ≥ 0, i ∈ A(s), s ∈ S1

(21)

−vs + ρ1
s ≥ 0, s ∈ S1 (22)

vs + ts −
∑

s′∈S1∪S2

ts′qi(s, s′) −
∑

s′∈S3

(ηs′ + γs′ − θs′ − φs′)qi(s, s′)

−[R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S1 (23)

−vs − ts + ρ2
s + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S1 (24)

−vs +
∑

s′∈S1∪S2

vs′qj(s, s′) +
∑

s′∈S3

(θs′ + φs′)qj(s, s′) ≥ 0, j ∈ B(s), s ∈ S2

(25)

vs − ρ1
s ≥ 0, s ∈ S2 (26)

vs + ts − ρ2
s − [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S2 (27)

−vs − ts +
∑

s′∈S1∪S2

ts′qj(s, s′) +
∑

s′∈S3

(ηs′ + γs′ − θs′ − φs′)qj(s, s′)

+[f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S2 (28)

φs −
∑

s′∈S1∪S2

vs′q1
i (s, s′) −

∑
s′∈S3

(θs′ + φs′)q1
i (s, s′) ≥ 0, i ∈ A(s), s ∈ S3

(29)
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γs −
∑

s′∈S1∪S2

ts′q1
i (s, s′) −

∑
s′∈S3

(ηs′ + γs′ − θs′ − φs′)q1
i (s, s′)

−r1
i (s) ≥ 0, i ∈ A(s), s ∈ S3 (30)

−θs +
∑

s′∈S1∪S2

vs′q2
j (s, s′) +

∑
s′∈S3

(θs′ + φs′)q2
j (s, s′) ≥ 0, j ∈ B(s), s ∈ S3

(31)

−ηs +
∑

s′∈S1∪S2

ts′q2
j (s, s′) +

∑
s′∈S3

(ηs′ + γs′ − θs′ − φs′)q2
j (s, s′)

+r2
j (s) ≥ 0, j ∈ B(s), s ∈ S3 (32)

f ∈ Fs, g ∈ Gs (33)

Proof. We establish this theorem by showing that a feasible solution to
OPT2 with zero objective value is a solution of SYS2b and by Theorem 3.3,
it follows that this solution solves the undiscounted SC/AR-AT mixture
stochastic game. Conversely, we show that any solution of SYS2b can be
used to obtain a solution of OPT2. For s ∈ S1 ∪ S2, we follow a similar
argument of the proof given in 4[Theorem 3.1, 4.1].

Let z = (v, t, ρ1, ρ2, θ, η, φ, γ, f, g) be a feasible solution of OPT2. First
we observe that an objective function ψ(z) of OPT2 with value zero must
be a global minimum. For s ∈ S1, constraint (21),(22), (23)weighted by
f(s) added to the constraint (24) weighted by g(s) yields

∑
s∈S1

[ρ1
s + ρ2

s −
∑

s′∈S1∪S2

∑
i∈A(s)

vs′qi(s, s′)fi(s)

−
∑

s′∈S3

∑
i∈A(s)

(θs′ + φs′)qi(s, s′)fi(s) −
∑

s′∈S1∪S2

∑
i∈A(s)

ts′qi(s, s′)fi(s)

−
∑

s′∈S3

∑
i∈A(s)

(ηs′ + γs′ − θs′ − φ′
s)ts′qi(s, s′)fi(s)] ≥ 0. Similarly we can

show that the remaining terms of ψ(z) are nonnegative. Therefore, it follows
that the objective function ψ(z) ≥ 0.

Let z∗ = (v∗, t∗, ρ1∗, ρ2∗, θ∗, η∗, φ∗, γ∗, f∗, g∗) be a feasible solution of
OPT2 with ψ(z∗) = 0. Since ψ(z∗) is nonnegative term by term therefore
each term of ψ(ẑ) is zero.
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For s ∈ S1, constraints (21),(22), (23)weighted by f(s), constraint (24)
weighted by g(s) and for s ∈ S2, constraints (25),(26), (28) weighted by
g(s), constraint (27) weighted by f(s) yields

ρ1∗
s =

⎧⎪⎪⎨⎪⎪⎩
∑
s′∈S

∑
i∈A(s)

v∗s′qi(s, s′)f∗
i (s), s ∈ S1∑

s′∈S

∑
j∈B(s)

v∗s′qj(s, s′)g∗j (s), s ∈ S2

(34)

ρ2∗
s =

⎧⎪⎪⎨⎪⎪⎩
∑
s′∈S

∑
i∈A(s)

t∗s′qi(s, s′)f∗
i (s), s ∈ S1∑

s′∈S

∑
j∈B(s)

t∗s′qj(s, s′)g∗j (s), s ∈ S2

(35)

Now substituting the value of ρ1∗
s and ρ2∗

s in the system of inequalities
(21) through (28) we get the system of inequalities in SYS2b. Note that the
inequalities (21) and (26) yield after substitution

v∗s −
∑
s′∈S

v∗s′qi(s, s′)[
∑

j∈B(s)

g∗j (s)] ≥ 0, i ∈ A(s), s ∈ S1

i.e.,v∗s −
∑
s′∈S

v∗s′
∑

j∈B(s)

qi(s, s′)g∗j (s) ≥ 0, i ∈ A(s), s ∈ S1

since
∑

j∈B(s)

g∗j (s) = 1. Substituting ρ1
s in (26) and combining with the above

using the definition of a switching control game we get

v∗s −
∑
s′∈S

v∗s′
∑

j∈B(s)

qi,j(s, s′)g∗j (s) ≥ 0, i ∈ A(s), s ∈ S1 ∪ S2

which is same as (4). Similarly inequalities (5), (6) and (8) can be obtained.
We define

v∗s = θ∗s + φ∗
s for s ∈ S3 (36)

t∗s = η∗
s + γ∗

s − θ∗s − φ∗
s for s ∈ S3 (37)

From (36) and (37) we get

η∗
s + γ∗

s = v∗s + t∗s for s ∈ S3

Substituting v∗s for (θ∗s + φ∗
s) and (v∗s + t∗s) for (η∗

s + γ∗
s ) in (29) through

(32) and for s ∈ S3 constraints (29),(30) weighted by f(s), constraint (31),
(32) weighted by g(s) yields
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φ∗
s −

∑
s′∈S

v∗s′q1
i (s, s′) ≥ 0, i ∈ A(s), s ∈ S3 (38)

γ∗
s −

∑
s′∈S

t∗s′q1
i (s, s′) − r1

i (s) ≥ 0, i ∈ A(s), s ∈ S3 (39)

−θ∗s +
∑
s′∈S

v∗s′q2
j (s, s′) ≥ 0, j ∈ B(s), s ∈ S3 (40)

−η∗
s +

∑
s′∈S

t∗s′q2
j (s, s′) + r2

j (s) ≥ 0, j ∈ B(s), s ∈ S3 (41)

φ∗
s =

∑
s′∈S

∑
i∈A(s)

v∗s′q1
i (s, s′)f∗

i (s), s ∈ S3 (42)

γ∗
s =

∑
s′∈S

∑
j∈B(s)

t∗s′q1
i (s, s′)f∗

i (s) +
∑

i∈A(s)

r1
i (s)f∗

i (s), s ∈ S3 (43)

θ∗s =
∑
s′∈S

∑
j∈B(s)

v∗s′q2
j (s, s′)g∗j (s), s ∈ S3 (44)

η∗
s =

∑
s′∈S

∑
j∈B(s)

t∗s′q2
j (s, s′)g∗j (s) +

∑
j∈B(s)

r2
j (s)g∗j (s), s ∈ S3 (45)

Adding (38) and (44) we get

θ∗s + φ∗
s −

∑
s′∈S

∑
j∈B(s)

v∗s′q2
j (s, s′)g∗j (s) −

∑
s′∈S

v∗s′q1
i (s, s′) ≥ 0, i ∈ A(s), s ∈ S3

(46)
Therefore

θ∗s + φ∗
s −

∑
s′∈S

v∗s′
∑

j∈B(s)

[q2
j (s, s′)g∗j (s) + q1

i (s, s′)g∗j (s)] ≥ 0, i ∈ A(s), s ∈ S3

(47)
Substituting v∗s for (θ∗s + φ∗

s) we get (4).

v∗s −
∑
s′∈S

∑
j∈B(s)

v∗s′qij(s, s′)g∗j (s) ≥ 0, i ∈ A(s), s ∈ S3 (48)

Adding (39) and (45) we get (5).

50777_8063 -insTexts#150Q.indd   46650777_8063 -insTexts#150Q.indd   466 6/8/11   7:34 PM6/8/11   7:34 PM



467

η∗
s + γ∗

s −
∑
s′∈S

t∗s′ [
∑

j∈B(s)

q2
j (s, s′) + q1

i (s, s′)]g∗j (s) −
∑

j∈B(s)

[r2
j (s) + r1

i (s)]g∗j (s) ≥ 0,

i ∈ A(s), s ∈ S (49)

This implies

v∗s + t∗s −
∑
s′∈S

t∗s′
∑

j∈B(s)

qij(s, s′)g∗j (s) − [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S

(50)
Subtracting (42) from (40) and subtracting (43) from (41) we get (6) and

(8) respectively. Since f ∈ Fs and g ∈ Gs the variables satisfy SYS2b and
by Theorem 3.3, this yields an optimal solution to undiscounted SC/AR-AT
mixture stochastic game.

To prove the converse, we show that any solution to SYS2b which al-
ways exists for these games, since they possess asymptotically stable op-
timal stationary strategies can be used to derive a feasible solution for
OPT2. Assume that (v∗, t∗, f∗, g∗) be a feasible solution of the SYS2b. We
define ρ1

s, ρ
2
s as in (34), (35). Rewriting SYS2b using the switching control

assumption and using (34), (35) we get (21) through (28).
From (4), (5), (6) and (8) and using the definition of AR-AT game we

get

v∗s −
∑
s′∈S

∑
j∈B(s)

v∗s′q2
j (s, s′)g∗j (s) −

∑
s′∈S

v∗s′q1
i (s, s′) ≥ 0, i ∈ A(s), s ∈ S3

(51)

v∗s + t∗s −
∑
s′∈S

∑
j∈B(s)

t∗s′q2
j (s, s′)g∗j (s) −

∑
s′∈S

t∗s′q1
i (s, s′) −

∑
j∈B(s)

r2
j (s)g∗j (s)

−r1
i (s) ≥ 0, i ∈ A(s), s ∈ S3 (52)

−v∗s +
∑
s′∈S

∑
i∈A(s)

v∗s′q1
i (s, s′)f∗

i (s) +
∑
s′∈S

v∗s′q2
j (s, s′) ≥ 0, j ∈ B(s), s ∈ S3

(53)

−v∗s − t∗s +
∑
s′∈S

∑
i∈A(s)

t∗s′q1
i (s, s′)f∗

i (s) +
∑
s′∈S

t∗s′q2
j (s, s′) +

∑
i∈A(s)

r1
i (s)f∗

i (s)

+r2
j (s) ≥ 0, j ∈ B(s), s ∈ S3 (54)
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Take θ∗s , η∗
s , φ∗

s and γ∗
s for s ∈ S3 as in (42) through (45). Adding (42)

and (44) we get

θ∗s + φ∗
s =

∑
s′∈S

v∗s′ [
∑

i∈A(s)

q1
i (s, s′)f∗

i (s) +
∑

j∈B(s)

q2
j (s, s′)g∗j (s)]

= [P (f∗, g∗)v∗]s = v∗s (55)

by Lemma 3.1 (i). Similarly, using Lemma 3.1(ii) and from (43) and (45)
we get

η∗
s + γ∗

s = [P (f∗, g∗)t∗ + r(f∗, g∗)]s = v∗s + t∗s (56)

From (51), (55) and using the definition of θ∗s in (44) we get (29).

θ∗s + φ∗
s − θ∗s −

∑
s′∈S

(θ∗s′ + φ∗
s′)q1

i (s, s′) ≥ 0, i ∈ A(s), s ∈ S3 (57)

From (52),(45),(55) and (56) we get (30) of OPT2. From (53), (55) and the
definition of φ∗ in (42) yields (31) of OPT2.

−θ∗s − φ∗
s +

∑
s′∈S

(θ∗s′ + φ∗
s′)q2

j (s, s′) + φ∗
s ≥ 0, j ∈ B(s), s ∈ S3 (58)

Similarly from (54), (55), (56) and (43) we get (32) of OPT2. Since, f ∈ Fs

and g ∈ Gs, we obtain a feasible solution of OPT2. Note that by construc-
tion ψ(z∗) = 0. Since SYS2b is satisfied and after simplifications SYS2b
is exactly the same as the constraints of OPT2. Therefore z∗ is the global
minimum of OPT2.

4. Concluding Remarks and Areas of Further Research

Sinha 21,22 raises the question that whether a finite step algorithm can be
developed for SC/AR-AT mixture class. The main results proved in this pa-
per is the computation of optimal strategies and the value vector for both
discounted and undiscounted SC/AR-AT mixture games with a optimiza-
tion model in the spirit of Mangasarian and Stone 9. The computational
results using optimization approach seems to be very encouraging. Inves-
tigation regarding comparison involving different solution methods for the
optimization models OPT1 and OPT2 are areas of further research.
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PREDATOR - PREY RELATIONS FOR MAMMALS

WHERE PREY SUPPRESS BREEDING

Q.J.A. KHAN and M. AL-LAWATIA

Department of Mathematics and Statistics, Sultan Qaboos University,

P.O. Box 36, Al-Khodh 123, Sultanate of Oman

In any environment, current reproduction of prey population will affect future

population size, but these future changes may also affect the current reproduc-

tive decisions. We propose the dynamics of predator-prey cycles by a theoretical

model based on field and laboratories experiments. These represent the sup-

pression of breeding by prey in response to increase in predation pressure. On

the other hand, non-breeding prey individuals have a better chance of avoid-

ing predation than those in a reproductive state. The predator consumes both

the breeder and suppressor individuals and this prey population is more prone

to predation at higher densities. We showed that all the solutions of the first

model in positive octant are bounded. The stability analysis has been carried

out for the equilibrium set for both models. We found out that Hopf bifurca-

tion will occur by varying a parameter q1 which represents the rate by which

breeder population turns suppressor population. It is found that predator in-

duced breeding suppression (PIBS) acts to destabilize the stable interaction.

We discussed these finding in the light of the Fennoscandian vole cycle. The

theoretical results are compared with the numerical results for different sets of

parameters.

Keywords: prey, predator, Hopf bifurcation, vole cycle.

1. Introduction

Population ecologists are studying the population dynamics of small mam-

mals like voles and snowshoe hares from many years. Several papers can be

referred in the literature which reported that certain small mammals sup-

press breeding in response to strong predation pressure (Lima and Dill,

1990; Ylönen, 1989). It is observed in laboratories and by field experi-

ments that small mammals like voles suppressed breeding on the exposure

to predators. They believed that this happens due to change in feeding and

mating behaviours due to stress in small prey mammals on the high expo-

sure of predation (Ylönen et al. 1992; Ronkainen and Ylönen 1994; Ylönen
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and Ronkainen 1994; Heikkil et al., 1993; Koskela and Ylönen 1995, Ko-
rpimki et al., 1994). Oksanen and Lundberg, (1995) and Ylönen, (1994)
studied the antipredator behaviour of prey and explained that the prey
in non-productive state have greater chances of survival than the prey in
breeding stage. The reason behind this fact is that mammal in breeding
stage becomes inactive and have less antipredator capabilities to run away
or to avoid themselves efficiently from predator.

Ruxton and Lima (1997) presented a mathematical model to explain the
effect of predator induced breeding suppression (PIBS). They found out
that the strong level of PIBS acts to stabilize predator-prey cycles and that
weaker levels reduce the amplitude and increase the frequency of existing
oscillations. They explained that PIBS promotes stability in the interac-
tion between predator and prey. Ruxton et al. (2002) studied two switching
models that represent the suppression of breeding by prey in response to
short-term increase in predation pressure. In these models both breeding
and suppression population are exposed (to varying degree) to the preda-
tor. However, the predator feeds preferentially on the abundant prey . This
implies a kind of switching from breeder species to suppressor type as these
prey change in numerical superiority. For both models they produced an-
alytic conditions for the local stability of the interior steady state. They
concluded the paper by a statement that no simple and general rule for the
effect of the behaviours on the stability of population dynamics but these
effects is system specific.

In this paper we modified the model presented in Ruxton et al. (2002) by
considering that both suppressor and breeder populations contribute to the
carrying capacity of the breeder class. We also consider the fact that breeder
population contributes α times more than suppressor class in the growth
of predator population. We extended the study of Ruxton et al. and found
out that Hopf bifurcation will occur by varying the parameter q1. We found
out, contrary to Ruxton and Lima (1997) that the strong level of PIBS is a
destabilizing factor in predator-prey cycles and that weaker level increases
the stability. Hopf bifurcation study helped us in finding the existence of
a region of Instability in the neighborhood of a nonzero equilibrium where
prey-predator populations will survive undergoing regular fluctuations.
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2. The mathematical model

We consider a class of Volterra predator-prey model with switching exhibi-
tion by the predator. Prey population is divided into two classes, one that
always breeds and the other suppress breeding for short-term in response
to increased predation pressure. The predation risk of the prey is reduced
by suppressing the breeding. Both class of prey species with varying de-
grees are exposed to the predator. The predator will feed to that class of
prey more which is numerically superior so that the chance that a predator
catches a member of prey species is proportional to their abundance. This
situation is described by the following system of coupled ordinary differen-
tial equations.

dB

dt
= γ B ( 1 − S + B

K
) − IbB

2P

αB + S
− QmbPB

P + P0 + aB
+

QmsBS

B + B0 + bP
,

dS

dt
=

QmbPB

P + P0 + aB
− QmsBS

B + B0 + bP
− IsS

2P

αB + S
,

dP

dt
=

δ1IbB
2P

αB + S
+

δ2IsS
2P

αB + S
− μP,

(1)
where, B is the prey population that breeds regardless of predator den-
sity, S is the prey population which suppresses breeding, P is the predator
population, γ is the species growth of prey individuals in the breeding sub-
population, the predator that prey upon the breeder α times more often
than on the suppressor class, K is the carrying capacity for prey, μ is the
per capita death rate of the predator, Ib and Is are the predator response
rates towards the breeder and suppressor populations, and δ1 and δ2 are
the efficiency with which captured breeders and suppressors respectively
are converted to predators. QmbPB

P+P0+aB is the rate at which individuals in
the breeding population move to the suppressor population. The per capita
rate of movement into the suppressor population increases with predator
density but is reduced with an increasing breeding population (since indi-
viduals gain protection through dilution). The positive parameters a and
P0 control the shape of the response QmbBP

P+P0+aB is the rate at which individ-
uals in the suppressor population return to the breeding population. The
per capita rate of movement into the breeder population increases with size
of the breeder population (representing the protection afforded by dilution)
and decreases with increasing predator density. The positive parameters b
and B0 control the shape of the response curve QmsBS

B+B0+bP .
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We assume all the parameters in the model are positive, and that B(0),
S (0), P(0) > 0. In order to avoid mathematical complexity and to reduce
number of parameters we transform the variables and parameters by

γ

μ
= r1,

Qmb

μ
= q1 ,

Qms

μ
= q2 ,

Ib

μ
= lb ,

Is

μ
= ls,

δ1

μ
= α1 ,

δ2

μ
= α2 and μ t = τ,

so the system of equations (2.1) becomes

dB

dτ
= r1B(1 − S + B

K
) − lbB

2P

αB + S
− q1BP

P + P0 + aB
+

q2BS

B + B0 + bP
,

dS

dτ
=

q1BP

P + P0 + aB
− q2BS

B + B0 + bP
− lsS

2P

αB + S
,

dP

dτ
=

α1lbB
2P

αB + S
+

α2lsS
2P

αB + S
− P.

(2)

3. Boundedness results

We have the following three results, on the boundedness of the system (2):

Proposition 1. The prey is always bounded above.
Proof. On adding first and second equations of system(2), we get

dB

dτ
+

dS

dτ
≤ r1B

(
1 − S + B

K

)
(3)

where

dB

dτ
+

dS

dτ
> 0 because S + B < K

It follows that

lim sup
τ→∞

(B + S)(τ) ≤ K. (4)

Proposition 2. The predator are always bounded above if a bK ≤ 1
Proof. Using the third equation in the system (2), we obtain
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dP

dτ
+ P <

α1lbB
2P + α2lsS

2P

B + S
where α > 1. (5)

Let Max {α1, α2} = a and Max {lb, ls} = b then

dP

dτ
+ P < abP

(
(B + S)2 − 2BS

B + S

)
(6)

or

dP

dτ
+ P < abP

[
(B + S) − 2BS

B + S

]
< abPK (7)

Let abK = M , then

dP

dτ
< P (M − 1) and P < P (0)e(M−1)τ

If M ≤ 1, then P ≤ P (0). It follow that lim
τ→∞

sup (P (τ)) ≤ P (0).

Proposition 3. The trajectories of system (2) are bounded if a bK ≤ 1.
Proof. Define the function U(τ) = ( B(τ) + S(τ) ) + P (τ). So,

lim
τ→∞

[ ( B(τ) + S(τ) ) + P (τ)] ≤ lim
τ→∞

[ ( B(τ) + S(τ) ) ] + lim
τ→∞

P (τ)

≤ K + P (0) = η

and lim sup U(τ) ≤ η as τ → ∞ independently of the initial conditions.
Hence all the solutions of equation (2) for all nonnegative initial conditions
are bounded if a bK ≤ 1.

4. Existence and Uniqueness

The equations in the system (2) do not make sense if B = S = 0. If they
are defined on the region

(a) U1 = {(B > 0, S > 0) and P ≥ 0} : Equations are continuously differ-
entiable within this region. Therefore, a solution exists and is unique
for some time interval extending forward from the initial point. See
Arnold (1992), p. 107, 109 and (p. 273 deals with Lipschitz condition)

(b) U2 = {(B = 0, S > 0)∀τ and P ≥ 0} : System of equations (2) re-
duces to

dS

dτ
= −ISSP

dP

dτ
= α

2
ISSP − P
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(c) U3 = {(B > 0, S = 0)∀τ and P ≥ 0} : System of equation (2) reduces
to

dB

dτ
= r1B

(
1 − B

K

)
− IB

α
BP − q1BP

P + Po + aB
dS

dτ
=

q1BP

P + Po + aB
dP

dτ
=

α1

α
IBBP − P

(d) U4 = {(B = 0, S = 0) ∀τ and P ≥ 0} : System of equations (2) re-

duces to
dP

dτ
= −P

Hence in all these cases (b, c and d) equations are continuously differentiable
within their respective region and so the solution exists and is unique as in
case a.

5. Equilibria

We find the steady states of system (2) by equating the derivatives on the
left hand sides to zero and solving the resulting algebraic equations. The
ecological meaning possible equilibria of system (2) are:

(i) E0 = (0, 0, 0), where the population is extinct and this will always exist.
(ii) E1 = (B, 0, 0), where B = K.

(iii) E2 = (0, S, 0), where S =
r1K B0

(r1B0 − q2K)
this equilibrium point will

exist if r1B0 > q2K.
(iv) E3 = (B, S, P ), where both prey and predator exist, with

B =
(αx + 1 ) x

(α1lbx
2 + α2ls)

, S =
(αx + 1)

(α1lbx
2 + α2ls)

,

P =
r1 xR(QK − R( x + 1))

T RQ
,

Q = α1 lb x2 + α2 ls, R = α x + 1 and T = lb x2 + ls.

For equilibrium values (B,S, P ) to be positive, we require that

Q K

R
> x + 1.

Here x = B
S

is a real positive root of the 15 degree polynomial which is
obtained by using second equation of (2) at equilibrium.
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6. Stability

6.1. Behaviour of the system around Ē0

The stability matrix is not defined at the zero equilibrium Ē0 . However,
easily it can be proved that if B0 > 0 then Ē0 is unstable. If B0 = 0 then
Ē0 is stable.
Lemma 6.1

(i) If B0 > 0 then Ē0 will be unstable because all trajectories will diverge
from zero equilibrium point for large times

(ii) If B0 = 0 then all trajectories will converge towards the origin for large
times. Hence Ē0 will be stable.

Proof.

(i) From the first equation of the system (2), we get

d

dτ
(ln B) = r1

(
1 − S + B

K

)
− IbBP

αB + S
− q1P

P + Po + aB
+

q2S

B + Bo + bP

As (B,S, P ) → (0, 0, 0),
d

dτ
(ln B) → r1, where indeterminate from

IbBP

αB + S
= 0. Hence there is a small sphere with center Ē0 and radius

r 1such that within this sphere
d

dτ
(lnB) ≥ r1

2
. If Ē0 is stable then

B → 0, S → 0, I → 0 as τ → ∞ then there exist τ0 such that B(τ0) =
B0.Therefore τ ≥ τ0, B(τ) = B0e

r1
2 (τ−τ0) so B(τ) will approach to

infinity for large times.

(ii) If B0 = 0 then dB
dτ = 0 ie B(τ) = 0 for all times.

(a) If S0 > 0 and P0 > 0, then from second equation of the system (2)
dS

dτ
< 0. i.e. S (τ) → 0 as τ → ∞. Hence from the third equation

of (2)
dP

dτ
< 0. i.e. P (τ) → 0 as τ → ∞. Hence all trajectories will

approach towards Ē0.

(b) If S0 > 0 and P0 = 0, then
dS

dτ
< 0 so S → 0 as τ → ∞ and dP

dτ =

0 so P (τ) = 0 for all times. Hence all trajectories will approach
towards Ē0.
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(c) If S0 = 0 and P0 = 0, then
dS

dτ
=

dP

dτ
= 0. These imply that S(τ)

and P (τ) = 0 for all τ�0.

(d) If S0 = 0 and P0 > 0, then
dS

dτ
= 0, and so S(τ) = 0 and

dP

dτ
< 0.

Hence P (τ) → 0 as τ → ∞. Hence, all trajectories will converge
towards Ē0.

6.2. Behaviour of the system around E1

The stability matrix of the system (2) is given by

J1 =

⎛⎜⎜⎜⎜⎜⎝
−r1 − λ q2K

K+B0
− r1 −( lbK

α + q1K
P0+aK )

0 − q2K
K+B0

− λ q1K
P0+aK

0 0 α1lbK
α − 1 − λ

⎞⎟⎟⎟⎟⎟⎠ (8)

This leads to the characteristic equation

(r1 + λ)(
q2K

K + B0
+ λ)(

α1lbK

α
− 1 − λ) = 0. (9)

It can also be shown that all these eigenvalues are negative if
α1lbK

α
< 1.

Theorem 6.2: If
α1 lb K

α
< 1, the equilibrium E1 is locally asymptotically

stable and otherwise it is unstable.

6.3. Behaviour of the system around E2

The stability matrix of the system (2) is given by

J2 =

⎛⎜⎜⎜⎜⎜⎝
0 − λ 0 0

−q2S
B0

0 − λ −lsS

0 0 (α2lsS − 1) − λ

⎞⎟⎟⎟⎟⎟⎠ (10)

The corresponding characteristic equation is

λ2((α2lsS − 1) − λ) = 0. (11)

Hence the equilibrium point E2 = (0, S, 0) will be bounded if α2lsS < 1.
Theorem 6.3: If α2lsS < 1, then the equilibrium E2 will be bounded
and unstable.
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6.4. Behaviour of the system around E3

The stability matrix of the system (2) is given by

J3 =

⎛⎜⎜⎜⎜⎝
A1 − λ B1 C1

D1 E1 − λ F1

G1 H1 0 − λ

⎞⎟⎟⎟⎟⎠ (12)

The corresponding characteristic equation is

λ3 − (A1 + E1)λ2 + (A1E1 − H1F1 − B1D1 − C1G1)λ

+H1F1A1 − G1F1B1 − C1D1H1 + C1G1E1 = 0
(13)

Equation (13) has the form

λ3 + a1λ
2 + a2λ + a3 = 0 (14)

where

a1 = −(A1 + E1)

a2 = (A1E1 − H1F1 − B1D1 − C1G1)

a3 = H1F1A1 − G1F1B1 − C1D1H1 + C1G1E1

(15)
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with

A1 = − (r1B)
K

− (lbBPS)
(αB + S)2

+
(aq1BP )

(P + P0 + aB)2
− (q2BS)

(B + B0 + bP )2

B1 =
−(r1B)

K
+

(lbB
2
P )

(αB + S)2
+

(q2B)
(B + B0 + bP )

C1 =
(−lbB

2
)

(αB + S)
− (q1B(P0 + aB))

(P + P0 + aB)
− (q2bBS)

(B + B0 + bP )2

D1 =
lsαPS

2

(αB + S)2
+

q1P (P + P0)
(P + P0 + aB)2

− q2S(B0 + bP )
(B + B0 + bP )2

E1 = − q2B

(B + B0 + bP )
− lsPS(2αB + S)

(αB + S)2

F1 =
q1B(P0 + aB)

(P + P0 + aB)2
+

q2bBS

(B + B0 + bP )2
− lsS

2

αB + S

G1 =
(2α1lbB P − αP )

(αB + S)

H1 =
2α2lsS P − P

αB + S
.

(16)
We examine the stability of E3 using the Routh-Hurwitz criteria,

(i) a1 > 0, a3 > 0, (ii) a1 a2 > a3.

a1 a2 > a3 ⇔ Q(q1) = b0 q2
1 + b1 q1 + b2 > 0.

(17)

It is difficult to list the coefficients of this equation, which has 13 different
parameters. However, we have used the computer algebra system, Maple,
to find the coefficient b0, b1, and b2 explicitly.

Theorem 6.4: The equilibrium E3 will be locally asymptotically stable if
the conditions (17) are satisfied otherwise it is unstable.

7. Hopf bifurcation around the positive interior equilibrium
E3

We have taken q1 as a bifurcation parameter to study Hopf bifurcation for
the system (2).
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Lemma 7.1 The System (2) undergoes a Hopf bifurcation when q1 passes
through q1.
Proof: Hopf bifurcation will occur if and only if there exists a q1 = q1,
such that

(i) a1(q1) a2(q1) = a3(q1) with a1(q1), a2(q1), a3(q1) > 0, (See
equation (17)), and

(ii)
d

dq1
(Re ( λk(q1)))| q1= q1

�= 0, (Marsden and Mckracken, 1976).k =

1, 2.

Now, when q1 = q1, a1 a2 = a3 with a1, a2, a3 > 0.
The characteristic equation (14) is given by

(λ2 + a2)(λ + a1) = 0 (18)

with roots λ1 = i
√

a2, λ2 = − i
√

a2 and λ3 = −a1, so there is a
pair of purely imaginary eigenvalues and a strictly negative real eigen-
value. For q1 in a neighbourhood of q1 the roots have the form λ1(q1) =
u(q1) + iv(q1), λ2(q1) = u(q1) − iv(q1), λ3(q1) = − a1(q1).

Next, we shall verify the transversality condition

d

dq1
(Re( λk( q1)))|q1=q1

�= 0 k = 1, 2 (19)

where

R(q1) = 3u2(q1) + 2a1(q1) u(q1) + a2(q1) − 3v2(q1)

S(q1) = 6u(q1)v(q1) + 2a1(q1)v(q1)

T (q1) = u2(q1)a′
1(q1) + a′

2(q1)u(q1) + a′
3(q1) − a′

1(q1)v2(q1)

U(q1) = 2u(q1)v(q1)a′
1(q1) + a′

2(q1)v(q1)

(20)

If SU + RT �= 0 at q1 = q1, then

Re(
dλk

dq1
)| q1= q1

=
−(SU + RT )

(R2 + S2)
| q1 = q1

�= 0. (21)

Now from equation (20) and u = 0, v =
√

a2 we have

SU + RT = 2 a2(a1a
′
2 + a2a

′
1 − a′

3) at q1 = q1 (22)

or

SU + RT = (2 a2)
d

dq1
(a1a2 − a3) at q1 = q1,
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where a1a2 − a3 = Q(q1), so SU + RT �= 0 if

(a1a
′
2 + a2a

′
1 − a′

3) =
dQ

dq1
| q1= q1

�= 0. (23)

Now

d

dq1
(Re (λ k(q1)))| q1 = q1

=
−(SU + RT )

(R2 + S2)
=

− (2 a2) Q′(q1)
(R2 + S2)

| q1= q1
�= 0.

(24)
This completes the proof.

We have performed the Hopf bifurcation analysis fo E3 as we are interested
in seeing the dynamics when all three types of species are present.

8. Numerical results

The system (2) has been integrated numerically using the corresponding
equilibrium values with slight perturbations as initial conditions. The in-
tegration is carried out using a fourth order Runge-Kutta method pro-
grammed in MatLab. We have observed that, the region of stability de-
pends on the values of parameters selected. Tables 1-6, show the effect on
the stability when we vary one of the parameters such as q1, q2, r1, K, lb
and α and fixing the rest. Table (1) and Figure (1) show that the region
of stability decreases on increasing the value of q1. i.e. the rate at which
individuals in the breeding population move to the suppressor population is
a destabilizing factor. Higher birth rate, decreasing carrying capacity, more
interaction of predator with breeder population, and higher rate by which
suppressor population returns to breeding population, all promote the re-
gion of stability. For more details the reader can refer to Tables (2-6) and
Figures (2-6). In Figure (7) we plot the polynomial (17) as a function of the
parameter q1 which has only one real root at the point q1 = 1.3280735 and
Figures (8) shows that there is a Hopf bifurcation for this model (2) where
stable behavior changes to unstable behavior when we cross the bifurcation
parameter q1 = 1.3280735, (see Table (7)).

9. Discussion and Conclusion

Prey-predator model has been studied where prey population suppress
breeding due to high predation and high population density. Non- breed-
ing individuals have a better chance of avoiding predation than those in
a reproductive state. Both breeding and suppressor prey populations are
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Table 1. The effect on stability when value of q1 is varying: The region

of stability decreases as q1increases (see Figure (1))

lb q2 α K r1 q1

0.9 0.2 1.1 100 0.9 0.5

0.9 0.2 1.1 100 0.9 1.0

0.9 0.2 1.1 100 0.9 1.2

Table 2. The effect on stability when value of r1 is varying: The region

of stability increases as r1 increases (see Figure (2))

lb q2 α K r1 q1

0.9 0.2 1.1 100 0.5 0.5

0.9 0.2 1.1 100 1.5 0.5

0.9 0.2 1.1 100 3.5 0.5

Table 3. The effect on stability when value of K is varying: The region

of stability decreases as K increases (see Figure (3))

lb q2 α K r1 q1

0.9 0.2 1.1 8 0.9 0.5

0.9 0.2 1.1 50 0.9 0.5

0.9 0.2 1.1 100 0.9 0.5

exposed to predator population with varying degree. Predator feeds prefer-

entially on the most numerous class prey species.

The results we have obtained can be summarized as follows: First of all

in chapter 2, the prey population (breeder and suppressor) is found to be

bounded by the environmental carrying capacity. Furthermore, we found

that the predator population and the solution of the system (2) is bounded

Table 4. The effect on stability when value of α is varying: The region

of stability decreases as α increases (see Figure (4))

lb q2 α K r1 q1

0.9 0.2 1.1 100 0.9 0.5

0.9 0.2 1.9 100 0.9 0.5

0.9 0.2 2.8 100 0.9 0.5
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Table 5. The effect on stability when value of q2 is varying: The

region of stability decreases as q2 increases (see Figure (5))

lb q2 α K r1 q1

0.9 0.8 1.1 100 0.9 0.5

0.9 1.8 1.1 100 0.9 0.5

0.9 3.5 1.1 100 0.9 0.5

Table 6. The effect on stability when value of lb is varying: The region

of stability decreases as lb increases (see Figures (6))

lb q2 α K r1 q1

0.4 0.2 1.1 100 0.9 0.5

0.9 0.2 1.1 100 0.9 0.5

1.4 0.2 1.1 100 0.9 0.5

Table 7. Hopf bifurcation of the model with

respect to q1

Interval State

0 < q1 < 1.3280735 Stable Interval

q1 = 1.3280735 Bifurcation point

q1 > 1.3280735 Unstable Interval

if we found four equilibria. The first of these points is where all popula-

tions get extinct which is an unstable state. We also noted that as the

origin is unstable, the whole ecosystem can not eventually become extinct.

The suppressor and predator free equilibrium E1 is locally asymptotically
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Fig. 1. The effect on stability using values of q1 = 0.5 (left) and 1.2 (right).

50777_8063 -insTexts#150Q.indd   48450777_8063 -insTexts#150Q.indd   484 6/8/11   7:34 PM6/8/11   7:34 PM



485

0 10 20 30 40 50 60 70 80
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
r1=0.5 k=100 q1=0.5 q2=0.2 P0=0.2 B0=0.2 alpha=1.1 alpha1=0.9 alpha2=0.3 Is=0.6 Ib=0.9 a=0.08 b=0.3

Time

P
op

ul
at

io
n

B
S
P

0 10 20 30 40 50 60 70 80
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
r1=3.5 k=100 q1=0.5 q2=0.2 P0=0.2 B0=0.2 alpha=1.1 alpha1=0.9 alpha2=0.3 Is=0.6 Ib=0.9 a=0.08 b=0.3

Time

P
op

ul
at

io
n

B
S
P

Fig. 2. The effect on stability using values of r1 = 0.5 (left) and 3.5 (right).
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Fig. 3. The effect on stability using values of K = 8 (left) and 100 (right).
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Fig. 4. The effect on stability using values of α =1.01 (left) and 2.8 (right).

stable if α1 lb K
α < 1 otherwise it is unstable. The equilibrium E2 is feasible

if r1 B0 > q2 Kand will be bounded if α2 lsS < 1. The non-zero equi-
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Fig. 5. The effect on stability using values of q2 = 0.8 (left) and 3.5 (right).
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Fig. 6. The effect on stability using values of lb = 0.4 (left) and 1.4 (right).
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Fig. 7. Plot of the polynomial a1a2−a3 as a function of q1 on the interval [0, 12]. This
function has only one real root q1 = 1.3280735.

librium E3 exists if (α1 lb X
2

+ α2 ls)K > (α X + 1) ( X + 1 )and is
stable if it satisfies the Routh - Hurwitz criteria. Hopf bifurcation analysis
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Fig. 8. The model is stable when 0 < q1 < 1.3280735 (left) and unstable with q1 >
1.3280735 (right)

has been carried out with respect to q1 as a parameter. In addition, there
are three ecological meaningful equilibria which belong to interaction of
breeder prey with predator in the absence of suppressor prey. The equilib-
rium Ê0 is unstable, while the equilibria Ê1 and Ê2 are stable if α1 l′b K < 1
and r1 > q1Pa K

(P+P0+aB )2
respectively, otherwise they are unstable. If there

is no breeder population then ultimately the whole population of prey and
predator will become extinct. The case when the predator population is
absent the breeder prey will not suppress breeding so the whole prey pop-
ulation will be breeder.

Views on the consequences of antipredatory behavior on population dynam-
ics have undergone rapid changes in recent years. Breeding suppression was
first presented as an adaptive mechanism in individuals to avoid predation
(Ylönen, 1994). Models of (Gyllenberg et al. 1996, Ruxton and Lima,1997)
suggest that this suppression effect is rather likely to be stabilization of the
dynamics. Our results suggest that breeding suppression in prey population
is destabilizing. These results conflict with earlier models (i.e. Gyllenberg
et al. 1996, Ruxton and Lima 1997) but support the result of Hik’s (1995)
that increasing the length of time in a suppressed state acts to reduce the
strength of the stabilization caused by PIBS. PIBS in snowshoe hare exceed
one or two years.
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An SEI model with distributed delay is proposed where the transmission and

the death rates depend on the age of infection. The basic reproduction number

R0 is identified as a threshold quantity for the stability of equilibria. If R0 <

1, then the disease-free equilibrium is globally asymptotically stable and the

disease dies out. On the contrary, ifR0 > 1, then a locally asymptotically stable

endemic equilibrium appears, and applying a permanence theorem for infinite

dimensional systems we obtain that the disease persists in the population.

AMS 2000: 92D30, 37C70, 34K10

Keywords: disease model, distributed delay, varying infectivity and death rate

1. Introduction

Many compartmental models in mathematical epidemiology assume the

homogeneity of the infected class: all individuals in that compartment share

the same epidemiological parameters. In reality, as time elapses and the dis-

ease develops within the host, its infectivity continuously changes. Disease

induced mortality rate may also change during the course of infection. The

purpose of this paper is to incorporate these features into an SEI type

model. Besides multistage models6,8 , approaches keeping track of an indi-

vidual’s infection-age have existed1,2,5,7 to capture this variability. However,

the model we formulate in this paper differs from the previous ones since it

can be transformed into a system of differential equation with distributed

delays, which is easier to deal with than integro-differential or Volterra-type

models.

The paper is organized as follows. In section 2, taking into account the

age of infection as a parameter, and allowing varying infectivity and death

rates, we formulate an SEI model with distributed and constant delays. We
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identify the basic reproduction numberR0 in terms of the model parameters

as a threshold quantity in section 3. If R0 < 1, the disease dies out and

all solutions converge to the disease free equilibrium. In section 4 we show

that a stable endemic equilibrium appears if R0 > 1. In section 5 we prove

that the disease is endemic in the sense of permanence whenever R0 > 1.

2. Derivation of the model

We divide a given population into the following categories: susceptibles

(those who are capable of contracting the disease); exposed (those who

are infected but not yet infectious); infectives (those who are infected and

capable of transmitting the disease). Denote the number of individuals at

time t in these classes by S(t), E(t), I(t), respectively. Let i(t, a) represent

the density of infected individuals with respect to the age of infection a

at the current time t, where a ≤ τ , then I(t) =
∫ τ

0
i(t, a)da. We introduce

the function 0 ≤ β(a) ≤ β to express the infectivity according to the age

of infection a. In what follows, Λ denotes the constant recruitment rate,

β is the maximal transmission rate, Δ is the natural death rate, δ(a) ≥ 0

is the disease-induced death rate which depends on the age of infection as

well, 1/μ is the average incubation period. At age τ of infection, we remove

all remaining individuals from the class I who has survived. Thus, τ > 0

represents the maximal duration of the infectious period. All the constants

above are assumed to be positive. Then, using bilinear incidence in the force

of infection corrected by the infectivity factor due to the age of infection,

we arrive at the SEI type model

dS(t)

dt
= Λ− S(t)

∫ τ

0

β(a)i(t, a)da−ΔS(t),

dE(t)

dt
= S(t)

∫ τ

0

β(a)i(t, a)da− (μ+Δ)E(t),

dI(t)

dt
= μE(t)−ΔI(t)−

∫ τ

0

δ(a)i(t, a)da− i(t, τ)

The time evolution of the density i(t, a) is given by( ∂

∂t
+

∂

∂a

)
i(t, a) = −(Δ + δ(a))i(t, a), (1)

subject to the boundary condition

i(t, 0) = μE(t).
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Solving (1) leads to

i(t, a) = i(t − a, 0)e−(Δa+
∫ a
0 δ(u)du) = μE(t − a)e−(Δa+

∫ a
0 δ(u)du), (2)

and we obtain the following deterministic model of delay differential equa-
tions with distributed and constant delays:

dS(t)
dt

= Λ − S(t)
∫ τ

0

β(a)μE(t − a)e−(Δa+
∫ a
0 δ(u)du)da − ΔS(t), (3)

dE(t)
dt

= S(t)
∫ τ

0

β(a)μE(t − a)e−(Δa+
∫ a
0 δ(u)du)da − (μ + Δ)E(t), (4)

dI(t)
dt

= μE(t) − ΔI(t) −
∫ τ

0

δ(a)μE(t − a)da

−e−(Δτ+
∫ τ
0 δ(u)du)μE(t − τ). (5)

From (2) we can express I(t) as a function of a solution E(t):

I(t) = μ

∫ τ

0

E(t − a)e−(Δa+
∫ a
0 δ(u)du)da.

All the information (boundedness, convergence, etc.) for I(t) can be ob-
tained from the E-component of the solution, and equation (5) decouples.
Therefore it is sufficient to restrict our attention to the system (3-4), and
we do this in the sequel. Clearly the state of system (3-4) at time t is spec-
ified by S(t) ∈ R and Et ∈ C([−τ, 0], R), the space of continuous functions
on the interval [−τ, 0]. It is straightforward to see that solutions of (3-4)
preserve non-negativity.

Proposition 2.1. The system (3-4) is point dissipative; that is there exists
an M > 0 such that for any non-negative solution of (3-4), there exists a
T > 0 such that S(t) ≤ M and E(t) ≤ M for all t ≥ T .

Proof. Consider an arbitrary nonnegative solution. For W (t) = S(t) +
E(t), we have

dW (t)
dt

= Λ − ΔW (t) − μE(t) ≤ Λ − ΔW (t).

Since any nonnegative solution of w′(t) = Λ − Δw(t) satisfies

lim
t→∞

w(t) = Λ/Δ,

by a standard comparison argument we obtain

lim sup
t≥0

W (t) ≤ Λ
Δ

.
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We conclude that for any ε > 0, there is a T > 0 such that the nonnegative
solution of (3-4) satisfies

S(t) ≤ Λ
Δ

+ ε, E(t) ≤ Λ
Δ

+ ε

whenever t ≥ T . Consequently, we can choose any M > Λ
Δ . Additionally,

we obtain the a-priori estimate

S(t), E(t) ≤ W (t) ≤ Λ/Δ + exp(−Δt)
(
S(0) + E(0) − Λ/Δ

)
.

3. Basic reproduction number and the global stability of
the disease-free equilibrium

Clearly our model has a disease-free equilibrium P0 = (S0, 0) where
S0 = Λ/Δ. To find the basic reproduction number R0, we introduce a single
exposed individual into a totally susceptible population in the disease-free
equilibrium at t = 0. The probability of the presence of this individual in
the E-class after time t is given by e−(μ+Δ)t, so the expected number of
generated secondary infections can be calculated by

R0 = S0

∫ ∞

0

∫ τ

0

β(a)μe−(Δa+
∫ a
0 δ(u)du)e−(μ+Δ)tdadt,

which, after interchanging the integrals, reduces to

R0 =
S0μ

μ + Δ

∫ τ

0

β(a)e−(Δa+
∫ a
0 δ(u)du)da. (6)

Next we show that R0 determines the stability of the disease-free equilib-
rium and the disease dies out when R0 < 1.

Theorem 3.1. The disease free equilibrium is globally asymptotically stable
if R0 < 1, and unstable if R0 > 1.

Proof. For any ε > 0, we define

Rε =
μ

μ + Δ

(Λ
Δ

+ ε
)∫ τ

0

β(a)e−(Δa+
∫ a
0 δ(u)du)da.

Then limε→0 Rε = R0 and Rε < 1 if R0 < 1 and ε is sufficiently small.
In Proposition 1. we have shown that for any ε > 0 there is a T > 0 such
that S(t) ≤ Λ

Δ + ε whenever t > T . Thus, without loss of generality, we
can suppose that S(t) ≤ Λ

Δ + ε for all t ≥ 0. This yields that the exposed
population E(t) is bounded above by the solutions of the linear equation

dE(t)
dt

=
(Λ

Δ
+ ε
)∫ τ

0

β(a)μE(t − a)e−(Δa+
∫ a
0 δ(u)du)da − (μ + Δ)E(t).
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Now we show that the characteristic roots of this linear equation have nega-
tive real parts and the global stability of the disease-free equilibrium follows
from the standard comparison argument. Using the exponential Ansatz eλt,
we arrive at the characteristic function

h(λ) =
(Λ

Δ
+ ε
)
μ

∫ τ

0

β(a)e−(λa+Δa+
∫ a
0 δ(u)du)da − (λ + μ + Δ). (7)

We check that each characteristic root has negative real part. Suppose
that λ = x+ iy is a root of h(λ) with x > 0. Then |e−λa| < 1 for any a > 0,
and

1 =
∣∣∣
(

Λ
Δ + ε

)
μ

λ + μ + Δ

∫ τ

0

β(a)e−(−λa+Δa+
∫ a
0 δ(u)du)da

∣∣∣
≤

(
Λ
Δ + ε

)
μ

|λ + μ + Δ|

∫ τ

0

β(a)|e−λa|e−(Δa+
∫ a
0 δ(u)du)da < Rε,

which is a contradiction. Therefore, if R0 < 1, then all roots have negative
real part, thus limt→∞ E(t) = 0 and all solutions converge to the disease
free equilibrium.

If R0 > 1, then the linearization about the disease free equilibrium gives
for (4) that

dE(t)
dt

= S0μ

∫ τ

0

β(a)E(t − a)e−(Δa+
∫ a
0 δ(u)du)da − (μ + Δ)E(t),

which leads to the characteristic function

ĥ(λ) = S0μ

∫ τ

0

β(a)e−(λa+Δa+
∫ a
0 δ(u)du)da − (λ + μ + Δ). (8)

Clearly, ĥ(λ) is a monotone decreasing continuous function for nonnegative
real λ and ĥ(∞) = −∞ . We have

ĥ(0) = S0μ

∫ τ

0

β(a)e−(Δa+
∫ a
0 δ(u)du)da − (μ + Δ) = (μ + Δ)(R0 − 1).

If R0 > 1, then there exists a positive real root of ĥ(λ) , and the disease-free
equilibrium is unstable.

4. The endemic equilibrium

Theorem 4.1. An endemic equilibrium exists if and only if R0 > 1. More-
over, the endemic equilibrium, if exists, is unique and locally asymptotically
stable.
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Proof. An endemic equilibrium P ∗ = (S∗, E∗) must satisfy the algebraic
equations

ΔS∗ = Λ − S∗μ

∫ τ

0

β(a)E∗e−(Δa+
∫ a
0 δ(u)du)da, (9)

(μ + Δ)E∗ = S∗μ

∫ τ

0

β(a)E∗e−(Δa+
∫ a
0 δ(u)du)da. (10)

Since E∗ �= 0, (10) yields

S0/S∗ = R0, or S∗ =
Λ

R0Δ
. (11)

Simple calculations on (9) show that

Λ
R0

= Λ − (Δ + μ)E∗;

that is

E∗ =
Λ

Δ + μ

(
1 − 1

R0

)
.

So, we conclude that E∗ > 0 if and only if R0 > 1.
Next we show the local asymptotic stability of the endemic equilibrium.

Introducing the new variables s(t) = S(t)−S∗, f(t) = E(t)−E∗, we obtain
the linearized system about the endemic equilibrium P ∗ = (S∗, E∗)

ds(t)
dt

= −
∫ τ

0

(
s(t)E∗ + S∗e(t − a)

)
μβ(a)e−(Δa+

∫ a
0 δ(u)du)da − Δs(t),

de(t)
dt

=
∫ τ

0

(
s(t)E∗ + S∗e(t − a)

)
μβ(a)e−(Δa+

∫ a
0 δ(u)du)da − (μ + Δ)e(t).

Noticing

μ

∫ τ

0

β(a)E∗e−(Δa+
∫ a
0 δ(u)du)da = R0 − 1,

we have

ds(t)
dt

= −s(t)(R0 − 1) − Λμ

R0Δ

∫ τ

0

β(a)e(t − a)e−(Δa+
∫ a
0 δ(u)du)da − Δs(t),

de(t)
dt

= s(t)(R0 − 1) +
Λμ

R0Δ

∫ τ

0

β(a)e(t − a)e−(Δa+
∫ a
0 δ(u)du)da − (μ + Δ)e(t).

Using the exponential Ansatz eλt(s0, e0), we have

(λ + Δ)s0 = −(λ + μ + Δ)e0
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and

(R0 − 1 + Δ + λ)s0 = −
( Λμ

R0Δ

∫ τ

0

β(a)e−λae−(Δa+
∫ a
0 δ(u)du)da

)
e0,

thus we obtain the characteristic equation

(λ+μ+Δ)(R0−1+Δ+λ) = (λ+Δ)
( Λμ

R0Δ

∫ τ

0

β(a)e−λae−(Δa+
∫ a
0 δ(u)du)da

)
.

(12)
Suppose that λ = x + iy is a root and x ≥ 0, that implies |e−λa| ≤ 1 for
any a ≥ 0. Now the inequalities∣∣∣ Λμ

R0Δ

∫ τ

0

β(a)e−λae−(Δa+
∫ a
0 δ(u)du)da

∣∣∣ ≤ μ + Δ ≤ |λ + μ + Δ|

and

|Δ + λ| < |R0 − 1 + Δ + λ|

follow, contradicting to (12). Therefore, every root has negative real part
and the endemic equilibrium is locally asymptotically stable if R0 > 1.

5. Persistence

Denote by T (t) : X → X, t ≥ 0 the family of solution operators corre-
sponding to (3-4), where X = R+

0 × C+
0 . Here C+

0 denotes the set of non-
negative continuous functions on the interval [−τ, 0]. The ω-limit set ω(x)
of x consists of y ∈ X such that there is a sequence tn → ∞ as n → ∞ with
T (tn)x → y as n → ∞. We shall apply the following permanence theorem
of Hale & Waltman3 , in the spirit of Röst & Wu4 .

Theorem. Suppose that we have the following:
(i) X0 is open and dense in X with X0 ∪ X0 = X and X0 ∩ X0 = ∅;
(ii) the solution operators T (t) satisfy

T (t) : X0 → X0, T (t) : X0 → X0;

(iii) T (t) is point dissipative in X;
(iv) there is a t0 ≥ 0 such that T (t) is compact for all t ≥ t0;
(v) A =

⋃
x∈Ab

ω(x) is isolated and has an acyclic covering N , where
Ab is the global attractor of T (t) restricted to X0 and N = ∪k

i=1Ni;
(vi) for each Ni ∈ N ,

W s(Ni) ∩ X0 = ∅,

where W s refers to the stable set.

50777_8063 -insTexts#150Q.indd   49550777_8063 -insTexts#150Q.indd   495 6/8/11   7:34 PM6/8/11   7:34 PM



496

Then T (t) is a uniform repeller with respect to X0, i.e. there is an η > 0

such that for any x ∈ X0, lim inf t→∞ d(T (t)x,X0) ≥ η.

Theorem 5.1. If R0 > 1, then the disease is endemic; more precisely,

there exists an η > 0 such that

lim inf
t→∞

E(t) ≥ η.

Proof. Let

X0 = {(S, φ) ∈ X : φ(θ) > 0 for some θ < 0}

X0 = {(S, φ) ∈ X : φ(θ) = 0 for all θ ≤ 0}.

We check all the conditions of the permanence theorem. It is straightforward

to see that (i) and (ii) are satisfied. The point dissipativity has been proved

in Proposition 1, so we have (iii). Applying the Arzela-Ascoli theorem we

obtain (iv) with t0 = τ .

Regarding (v), clearly A = {P0} (now P0 = (Λ/Δ, 0) ∈ X) and isolated.

Hence the covering is simply N = {P0}, which is acyclic (there is no orbit

which connects P0 to itself in X0).

It remains to show that W s(P0) ∩ X0 = ∅. Suppose the contrary, that

is there exists a solution in X0 such that

lim
t→∞

S(t) = S0, lim
t→∞

E(t) = 0.

Since R0 > 1, there exists an ε > 0 such that

(S0 − ε)μ

∫ τ

0

β(a)e−(Δa+
∫

a

0
δ(u)du)da > μ+Δ.

There exists a t0 such that for t ≥ t0, S(t) > S0 − ε and hence

E′(t) ≥ (S0 − ε)μ

∫ τ

0

β(a)E(t− a)e−(Δa+
∫

a

0
δ(u)du)da− (μ+Δ)E(t).

If E(t) → 0, as t → ∞, then by a standard comparison argument and the

nonnegativity, the solution n(t) of

n′(t) = (S0 − ε)μ

∫ τ

0

β(a)n(t − a)e−(Δa+
∫

a

0
δ(u)du)da− (μ+Δ)n(t)

with initial data n0 = E0, has to converge to 0 as well. By the mean value

theorem for integrals we have that for any t there is a ξt such that∫ τ

0

β(a)n(t − a)e−(Δa+
∫

a

0
δ(u)du)da = n(ξt)

∫ τ

0

β(a)e−(Δa+
∫

a

0
δ(u)du)da
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and t − τ ≤ ξt ≤ t. Define

V (t) := n(t) + (μ + Δ)
∫ t

ξt

n(s)ds.

Differentiating with respect to time gives

dV

dt
=
(
β(S0 − ε)

∫ τ

0

k(a)μe−(Δa+
∫ a
0 δ(u)du)da − (μ + Δ)

)
n(ξt) ≥ 0.

Therefore, V (t) goes to infinity or approaches a positive limit as t → ∞.
On the other hand, by the definition of V , limt→∞ n(t) = 0 implies
limt→∞ V (t) = 0, a contradiction. Thus W s(P0) ∩ X0 = ∅ and we can
apply Theorem 4.2 of Hale & Waltman3 to obtain that for some η > 0,

lim inf
t→∞

E(t) > η.

Though our calculations has been done for the reduced system (3-4),
and we are interested in the dynamics of the infectious class, we easily
obtain that for R0 < 1, E(t) → 0 implies I(t) → 0, and for R0 > 1 from
(2) we have the endemic equilibrium

I∗ =
Λμ

Δ + μ

(
1 − 1

R0

)( ∫ τ

0

e−(Δa+
∫ a
0 δ(u)du)da

)
,

furthermore, from (2) we obtain

lim inf
t→∞

I(t) > μη

∫ τ

0

e−(Δa+
∫ a
0 δ(u)du)da > 0.

Hence, applying the permanence theorem above, we obtain that the
disease will always be present in the population when R0 > 1.
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program of the Hungarian National Development Agency.

References

1. C. Castillo-Chavez, K. Cooke, W. Huang & S. A. Levin. On the role of long
incubation periods in the dynamics of acquired immunodeficiency syndrome
(AIDS). I. Single population models J. Math. Biol. 27(1989), 373–398.

2. H. R. Thieme & C. Castillo-Chavez. How may infection-age-dependent in-
fectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math. 53(1993),
1447–1479.

50777_8063 -insTexts#150Q.indd   49750777_8063 -insTexts#150Q.indd   497 6/8/11   7:34 PM6/8/11   7:34 PM



498

3. J. K. Hale & P. Waltman. Persistence in infinite-dimensional systems. SIAM
J. Math. Anal. 20(1989), 388–395.
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The Lagrangian points for the Sun-Earth system are considered due to their

special importance for the scientific community for the design of space missions.

The location of the Lagrangian points with the trajectories and stability regions

are computed numerically for the initial conditions very close to the points. The

influence of belt, effect of radiation pressure due to the Sun and oblateness

effect of second primary(finite body Earth) is presented for various values of

parameters. The collinear points are asymptotically stable within a specific

interval of time t correspond to the values of parameters and initial conditions.

Keywords: Trajectory; Stability; Equilibrium points; Radiation pressure;

Oblateness; Rtbp.

1. Introduction

A modified restricted three body problem is considered which was first

time studied by.1 This problem generalizes two classical problems of Celes-

tial mechanics: the two fixed center problem and the restricted three body

problem. This gives wide perspectives for applications of the problem in

celestial mechanics and astronomy. The importance of the problem in as-

tronomy has been addressed by.2 It is supposed that the primary bodies are

moving in circular orbits about their center of mass. The well-known five

equilibrium points of the planar restricted three-body problem are very

important for astronautical applications, collinear points are metastable

points in the sense that, like a ball sitting on top of a hill and the trian-

gular points are conditionally stable.3 These Lagrange points have proven

to be very useful indeed since a spacecraft can be made to execute a small

orbit about one of these Lagrange points with a very small expenditure of

50777_8063 -insTexts#150Q.indd   49950777_8063 -insTexts#150Q.indd   499 6/8/11   7:34 PM6/8/11   7:34 PM



500

energy.4,5 Because of the its unobstructed view of the Sun, the Sun-Earth

L1 is a good place to put instruments for doing solar science. NASA’s Gen-

esis Discovery Mission has been there, designed completely using invariant

manifolds and other tools form dynamical systems theory. In 1972, the

International Sun-Earth Explorer (ISEE) was established, joint project of

NASA and the European Space Agency(ESA). The ISEE-3 was launched

into a halo orbit around the Sun-Earth L1 point in 1978, allowing it to

collect data on solar wind conditions upstream from the Earth.6 In the

mid-1980s the Solar and Heliospheric Observatory (SOHO)7 is places in

a halo orbit around the Sun-Earth L1 position, about a million miles the

Sun ward from the Earth. They have provided useful places to “park”a

spacecraft for observations.

The goal of present paper is to investigate the nature of collinear equi-

librium points because of the interested point to the mission design.These

results provide new information on the behavior of trajectories around the

Lagrangian points for different possible set values of the parameters pro-

posed by.8

2. Location of Lagrangian Points

It is supposed that the motion of an infinitesimal mass particle is influ-

enced by the gravitational force from primaries and a belt of mass Mb. The

units of the mass, the distance and the time are taken such that sum of

the masses and the distance between primaries are unities, the unit of the

time i.e. the time period of m1 about m2 consists of 2π units such that the

Gaussian constant of gravitational k2 = 1. Then perturbed mean motion n

of the primaries is given by n2 = 1+ 3A2

2 + 2Mbrc
(r2

c
+T 2)3/2

, where T = a+b, a,b

are flatness and core parameters respectively which determine the density

profile of the belt, r2c = (1 − μ)q
2/3
1 + μ2, A2 =

r2
e
−r2

p

5r2 is the oblateness co-

efficient of m2; re, rp are the equatorial and polar radii of m2 respectively,

r =
√
x2 + y2 is the distance between primaries and x = f1(t), y = f2(t) are

the functions of the time t i.e. t is only independent variable. The mass pa-

rameter is μ = m2

m1+m2

(9.537×10−4 for the Sun-Jupiter and 3.00348×10−6

for the Sun-Earth mass distributions respectively), q1 = 1 −
Fp

Fg

is a mass

reduction factor and Fp is the solar radiation pressure force which is exactly

apposite to the gravitational attraction force Fg. The coordinates ofm1, m2

are (−μ, 0), (1−μ, 0) respectively. In the above mentioned reference system

and9 model, the equations of motion of the infinitesimal mass particle in
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the xy-plane formulated as[please see10–12]:

ẍ− 2nẏ = Ωx, (1)

ÿ + 2nẋ = Ωy, (2)

where

Ωx = n2x−
(1− μ)q1(x+ μ)

r31
−

μ(x+ μ− 1)

r32
−

3

2

μA2(x + μ− 1)

r52

−
Mbx

(r2 + T 2)
3/2

Ωy = n2y −
(1− μ)q1y

r31
−

μy

r32
−

3

2

μA2y

r52

−
Mby

(r2 + T 2)
3/2

Ω =
n2(x2 + y2)

2
+

(1− μ)q1
r1

+
μ

r2
+

μA2

2r32
+

Mb

(r2 + T 2)1/2
(3)

r1 =
√
(x+ μ)2 + y2, r2 =

√
(x + μ− 1)2 + y2.

From equations (1) and (2), the Jacobian integral is given by:

E =
1

2

(
ẋ2 + ẏ2

)
− Ω(x, y, ẋ, ẏ) = (Constant) (4)

which is related to the Jacobian constant C = −2E. The location of

three collinear equilibrium points and two triangular equilibrium points

is computed by dividing the orbital plane into three parts L1, L4(5):

μ < x < (1 − μ), L2: (1 − μ) < x and L3: x < −μ. For the collinear

points, an algebraic equation of the fifth degree is solved numerically with

initial approximations to the Taylor-series as:

x(L1) = 1− (
μ

3
)1/3 +

1

3
(
μ

3
)2/3 −

26μ

27
+ . . . (5)

x(L2) = 1 + (
μ

3
)1/3 +

1

3
(
μ

3
)2/3 −

28μ

27
+ . . . (6)

x(L3) = −1−
5μ

12
+

1127μ3

20736
+

7889μ4

248832
+ . . . (7)

(8)

The solution of differential equations (1) and (2) is presented as interpo-

lation function which is plotted for various integration intervals by sub-

stituting specific values of the time t and initial conditions i.e. x(0) =

x(Li), y(0) = 0 where i = 1, 2, 3 and x(0) = 1
2 − μ, y(0) = ±

√

3
2 for the
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Fig. 1. The position of equilibrium points when T=0.01, q1 = 0.75, A2 = 0.05 and
Mb = 0.4, panel (I):Red doted curves and blue points for Sun-Jupiter mass distribution,
blue curves and black points for Sun-Earth mass distribution, (II): Position of L1, L2

with respect to Jupiter’s and Earth’s is shown in zoom

triangular equilibrium points. The equilibrium points are shown in figure 1

in which two panels i.e. (I) red solid curves and blue points correspond to

the Sun-Jupiter mass distribution and blue dashed curves and black points

correspond to the Sun-Earth mass distribution. Panel (II) show the zoom

of the neighborhood of L1, L2. The numerical values of these points are

presented in Table 1. One can see that the positions of L1, L3 appeared

rightward and the positions of L2, L4 ( L4 is shifted downward also) are

shifted leftward in the Sun-Earth system with respect to the position in the

Sun-Jupiter system. The nature of the L5 is similar to the L4. The detail

behavior of the L1 with stability regions is discussed in sections. 3 & 4.

Sun-Jupiter Sun-Earth

Li x y x y

L1 0.774577 0 0.78569 0

L2 1.09493 0 1.0232 0

L3 -0.786195 0 -0.785732 0

L4 0.410603 0.669308 0.393072 0.680342
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3. Trajectory of L1

The equations (1-2) with initial conditions x(0) = x(L1), y(0) = 0, x′(0) =

y′(0) = 0 are used to determine the trajectories of L1 for different pos-

sible cases. The origin of coordinate axes is supposed to the equilibrium

point at time t = 0 to draw the figures which show the trajectories of

the point in consideration. They are shown in figure 2 with six panels

i.e the panels (I-III) show the trajectory moves about the origin (L1 at

t = 0) with x ∈ (0.990093, 1.00916) , y ∈ (−0.0061448, 0.00587171), the

energy E ∈ (−12706.5(t = 22.66),−5.08226(t= 0)) and the distance r(t) ∈

(0.990093(t = 0), 1.00916(t = 55)). The panels (I-III:127 < t < 129.6) show

the trajectory moves away from the origin (L1 at t = 0) after a certain value

of the time t, with x ∈ (0.990093, 1.00916) , y ∈ (−0.0061448, 0.00587171).

The minimum energy E = −1447 is found at t = 128.52, and E > 0 for

t > 128.88.
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Fig. 2. The Panels (I-III):0 < t < 128.23 and (IV-VI):127 < t < 129.6 in which (I and
II) show the trajectory of L1, (II and V) show energy-versus time and (III-VI) show
the local distance of trajectory at time t form the initial points i.e. t = 0 the other
parameters are T=0.01, q1 = 1, A2 = 0 and Mb = 0.

Figure 3 is plotted for q1 = 1,Mb = 0 and A2 = 0.05 with six panels

(I-III:0 ≤ t ≤ 0.06) and (IV-VI:0.06 ≤ t ≤ 1) which describe the effect of

oblateness of Earth to the trajectory of L1. The graphs plotted against time

which describe behavior of trajectories to equilibrium points not the point
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Fig. 3. The Panels (I-III):0 < t < 0.06 and (IV-VI):.06 < t < 1 in which (I and II)

show the trajectory of L1, (II and V) show energy-versus time and (III-VI) show the local

distance of trajectory at time t form the initial points i.e. t = 0 the other parameters are

T=0.01, q1 = 1, A2 = 0.05 and Mb = 0.

itself is moving with time. It is seen that x = −1.91954×10−48(t = 0.06) to

x = 0.99405(t = .05) coordinate y is deceasing function of time that reach

maxima -0.0000530614, at t = 0.04 and minima −0.000105662 at time

t = 0.05 again it deceases and reach at value −2.5677 × 1047(t = 0.06).

Initially energy has negative values for time 0 ≤< t < 0.059 decreases with

time t which attains minimum value -2.64032× 106(t = 0.059) then strictly

increases; attains positive value when t ≥ 0.0594. When t ∈ (0.2, 0.6), ini-

tially energy returns down and then it tend to very large (infinite) positive

value. It is clear from panels (IV-VI) the trajectory moves far from the

Lagrangian point L1 when t ≥ 0.0594. The distance r(t) from this point to

the trajectory increases periodically, when 0 < t < 0.6 then it approaches

to very large it t ≥ 0.6.

The effect of radiation pressure, oblateness and mass of the belt is

considered in figure 4, panels (I&III) describes the trajectory and pan-

els (II&IV) shows the energy with respect to t. The mass reduction factor

q1 = 0.75 and Mb = 0.2 are taken to plot the graphs. In the panels, solid

blue lines represent A2 = 0.25, red dashed lines correspond to A2 = 0.50

and dotted black lines for A2 = 0.75. One can see that the trajectory move
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very far from the L1 the energy is positive when time is greater than a

certain value. Details of trajectory and energy is presented in Table 2 for

various values of parameters. One can see that x increases but y initially

decreases for certain values of the time, then strictly increases. Similarly

the energy E is negative and went downward but for specific value of time

it becomes positive and strictly increases lastly it attains very large positive

value.
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Fig. 4. The Panels (I-III):0 < t < 0.005 and (II-IV):.00 < t < 1 in which (I and II)
show the trajectory of L1, (II and V) show energy-versus time and (III-VI) show the local
distance of trajectory at time t form the initial points i.e. t = 0 the other parameters are
T=0.01, q1 = 1, A2 = 0.05 and Mb = 0
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A2 time t x y Energy E

0.25 0.000 0.990093 −1.27593× 10−32 -3946.49

0.002 0.990333 −4.4421× 10−7 -4460.93

0.004 0.991106 −3.63139× 10−6 -6764.39

0.006 0.992646 −1.26827× 10−5 -17501.7

0.008 0.996301 −285308× 10−5 -544626.

0.010 4.03799× 1055
−1.06467× 1054 7.84745× 10117

0.50 0.000 0.990093 7.51113× 10−33 -7887.36

0.002 0.99058 −9.7398× 10−7 -10146.9

0.004 0.992298 −8.12979× 10−6 -27763.1

0.006 −8.35666× 1048
−1.70025× 1047 2.17394× 10107

0.008 −3.05605× 1056
−6.21786× 1054 2.74317× 10119

0.010 −9.05111× 1057
−1.84154× 1056 6.20464× 10121

0.75 0.000 0.990093 −1.80556× 10−34 -11828.2

0.002 0.990836 −1.58382× 10−6 -17463.6

0.004 0.993821 −1.33765× 10−5 -125336.

0.006 6.67303× 1055 1.19389× 1054 4.20091× 10118

0.008 1.02535× 1058 1.83448× 1056 1.32379× 10122

0.010 1.19678× 1059 2.1412× 1057 6.74915× 10123

4. Stability of L1

Suppose the coordinates (x1, y1) of L1 are initially perturbed by changing

x(0) = x1 + ε cos(φ), y(0) = y1 + ε sin(φ) where φ = arctan
(

y(0)−y1
x(0)−x1

)
∈

(0, 2π), 0 ≤ ε =
√

(x(0)− x1)2 + (y(0)− y1)2 < 1. The φ indicates the

direction of the initial position vector in the local frame. If the ε = 0 means

there is no perturbation. It is supposed that the ε = 0.001 and the φ = π

4 to

examine the stability of L1. Figure 5 show the path of test particle and its

energy with four panels i.e. the panels (I&III):q1 = 0.75, 0.50, A2 = 0.0, in

(I) trajectory of perturbed L1 moves in chaotic-circular path around initial

position without deviating far from it, then steadily move out of the region.

In (III) the test particle moves in stability region and returns repeatedly on

its initial position. The blue solid curves represent Mb = 0.25 and dashed

curves represent Mb = 0.50. It is clear form panel (III) that bounded region

for Mb = 0.25 is t < 2500 and for Mb = 0.50, t < 2600.

The effect of oblateness of the second primary is shown in figure 6 when
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Fig. 5. Show the stability of L1 with panels (I-II):0 ≤ t‘491, q1 = 0.75, A2 = 0.0 and
(III-IV):0 < t < 2500, q1 = 0.50, A2 = 0.0 in which blue solid curves for Mb = 0.25, red
curves for Mb = 0.50

q1 = 0.75,Mb = 0.25. The panel (I) shows the trajectory of perturbed

point L1 and (II) shows the energy of that point. The blue doted lines

correspond to A1 = 0.25 and red lines for A2 = 0.50. One can see that the

oblate effect is very powerful on the trajectory and stability of L1. When

A2 = 0.0 the L1 is asymptotically stable for the value of t which lies within

a certain interval. But if oblate effect of second primary is present(A2 �= 0),

the stability region of L1 disappears as this effect increases. Further all the

results presented in the manuscripts are similar to the results obtained by.8
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Fig. 6. Effect of oblateness coefficient A2 on the stability of L1 panel (I) trajectory (II)

energy of perturbed point L1 in which blue solid curves for A2 = 0.25, red curves for

A2 = 0.50

5. Conclusion

We obtained intervals of time where trajectory continuously moves around

the L1, does not deviate far from the point but tend to approach it, the

energy of perturbed point is negative for these intervals, so we conclude

that the point is asymptotical stable. More over we have seen that after the

specific time intervals the trajectory of perturbed point depart from the

neighborhood and goes away from it, in this case the energy also becomes

positive, so the Lagrangian point L1 is unstable.
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MHD FLOW PAST AN INFINITE PLATE UNDER THE
EFFECT OF GRAVITY MODULATION
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Unsteady mixed convection flow under the influence of gravity modula-
tion and magnetic field has been investigated. The conducting fluid flows
past a vertical porous plate of infinite length in a porous medium subjected
to oscillating suction and temperature. The solution has been obtained by
using regular perturbation method. Velocity profiles, temperature profiles,
skin friction and heat transfer coefficients have been derived and shown
graphically. It is noted that the fluid flow and heat transfer are signifi-
cantly affected by gravity modulation.

Keywords: Gravity modulation; Mixed convection; MHD; Porous medium; Suc-
tion.

1. Introduction

There has been a lot of research in the area of free convection in the presence
of porous media due to its application in oil exploration, nuclear waste dis-
posal, geothermal energy etc. Many of the engineering applications involve
periodic temperature variations. These include daily or seasonal tempera-
ture changes in the earth’s crust. Raptis 1 studied the free convective flow
through a porous medium bounded by an infinite vertical plate with oscil-
lating plate temperature and constant suction. Singh et al 2 investigated
the effect of permeability variation on free convection flow and heat trans-
fer in porous medium bounded by vertical porous wall. In many situations
liquid metals that occur in nature and industry are electrically conducting,
hence the study of fluid flow under the effect of magnetic field is important.
The unsteady convection free flow past a vertical porous plate under the
effect of magnetic field has been studied by Helmy 3. The effect of mag-
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netic field on the onset of convection in porous medium has been studied
by Das et al 4 and Vassuer & Bilgen 5. Jaiswal & Soundalgekar 6,7 has
investigated the effect of free and forced convection on a MHD flow past
an infinite vertical porous plate under oscillating plate temperature. Saini
& Sharma 8 investigated the effect of permeability variation and oscilla-
tory suction velocity on free convection and mass transfer of MHD flow of
a viscous fluid past an infinite vertical porous plate bounded by a porous
medium. The plate is subjected to oscillatory suction velocity normal to
the plate in the presence of a uniform transverse magnetic field with pre-
scribed rate of change of temperature and concentration of species on the
boundary.

Over the years with the advancement of technology, oscillatory flows
with gravity modulation have made their presence felt in the vast field
of research. These have applications in the areas of space technology, in
large scale convection in atmosphere, crystal growth and in space labo-
ratory experiments. The effect of fluctuating gravity is a major area of
interest aboard an orbiting spacecraft which experiences perturbed accel-
eration due to vibrations of the equipment, movement of crew members
and other factors. Jules et al 9 found that the international space station
(ISS) is characterized by low mean accelerations which are O(10−6)ge - the
gravity on earth and fluctuations that are two or three order of magnitude
above the mean. The studies under the microgravity conditions aboard an
orbiting spacecraft have shown that gravitational field can be resolved into
a mean and fluctuating component. The presence of temperature gradi-
ent and a gravitational field generate convective flows in viscous fluids and
porous media. In a recent study, the effect of periodic oscillation of gravity
on free convection over a vertical flat plate has been considered by Saeid
10. He has used fully implicit finite difference scheme and concluded that
heat transfer follows g-jitter forcing function. Deka and Soundalgekar 11

have studied the effect of gravity modulation on transient free convection
flow past an infinite vertical isothermal plate using Laplace Transform tech-
nique. They analyzed that with increasing frequency of gravity modulation
the transient velocity decreases.

In the present paper, the effect of fluctuating gravity on the flow past
a vertical porous plate of infinite length in a porous medium subjected
to oscillating suction and temperature field is studied using perturbation
method. It is found that fluid flow and heat transfer are significantly af-
fected by gravity modulation in presence of magnetic field. The velocity
profiles and skin friction show a marked variation under the effect of gravity.
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2. Formulation of the problem

We consider the flow of an electrically conducting viscous incompressible
fluid through a porous medium bounded by an infinite flat plate. The
vertically upward direction of flow along the plate is taken as x∗ - axis
and y∗ - axis is normal to it. The vertical plate is of infinite length in the
direction of x∗ - axis; hence all the physical quantities are independent of
x∗ and are functions of y∗ and t∗ (time) only. The free stream velocity is
taken uniformly as U . The fluid velocities along x∗ - axis and y∗ - axis are
taken as u∗ and v∗ respectively. The induced magnetic field B0 is negligible.
The suction velocity and gravitational field are assumed to oscillate in the
following form

v∗(t∗) = −V (1 + εeιω∗t∗), g(t∗) = g0 + g1 cos ω∗t∗ (1)

the negative sign of v∗ indicates that suction is taking place at the plate.
V > 0 is the constant mean velocity and ε << 1 is a constant. g0 is the
constant gravity level in the environment, g1 is the amplitude of the oscil-
lating component of acceleration and ω∗ is the frequency of gravitational
oscillation. The gravitational acceleration can be rewritten in the form

g(t∗) = g0(1 + εαeιω∗t∗) (2)

where
g1

g0
= εα is the gravity modulation parameter. It is assumed that

the real part alone is physically relevant.
Using Boussinesq approximation, the equation of continuity, momentum

and energy conservation are written as

∂v∗

∂y∗ = 0 (3)

∂u∗

∂t∗
+ v∗ ∂u∗

∂y∗ = ν
∂2u∗

∂y∗2 + g0(1 + εαeιω∗t∗)β(T ∗ − T ∗
∞) +

σ(U − u∗)
ρ

B2
0 +

ν(U − u∗)
K∗ (4)

ρCp

(
∂T ∗

∂t∗
+ v∗

∂T ∗

∂y∗

)
= κ

∂2T ∗

∂y∗2 + μ

(
∂u∗

∂y∗

)2

(5)

The boundary conditions are given by

y∗ = 0 : u∗ = 0, T ∗ = T ∗
ω + ε(T ∗

ω − T ∗
∞)eιω∗t∗

y∗ → ∞ : u∗ = U, T ∗ = T ∗
∞ (6)
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The physical variables used are defined in the Nomenclature.The super-
script (∗) represents dimensional quantities and the subscript (∞) denotes
free stream velocity. The following non-dimensional quantities are intro-
duced into the equations:

y =
y∗V

ν
, ω = ν

ω∗

V 2
,

t =
t∗V 2

ν
, u =

u∗

U
,

K =
K∗V 2

ν2
,

θ =
(T ∗ − T ∗

∞)
(T ∗

ω − T ∗
∞)

The following parameters have also been introduced:

M (Hartmann Number) =
σν(B2

0)
ρV 2

Pr (Prandtl Number) =
μCp

κ

Gr (Grashof Number) =
νβg0(T ∗

ω − T ∗
∞)

(UV 2)

Ec (Eckert Number) =
U2

Cp(T ∗
ω − T ∗

∞)

Using these quantities the non-dimensional form of the governing equations
reduce to

∂u

∂t
− (1 + εeιωt)

∂u

∂y
=

∂2u

∂y2
+ Grθ(1 + εαeιωt) + M(1 − u) +

1 − u

K
(7)

∂θ

∂t
− (1 + εeιωt)

∂θ

∂y
=

1
Pr

∂2θ

∂y2
+ Ec

(
∂u

∂y

)2

(8)

with boundary conditions

y = 0 ; u = 0, θ = 1 + εeiωt

y → ∞ ; u = 1, θ = 0 (9)
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3. Solution of the problem

It is assumed that the amplitude of oscillation of the velocity ε is very small.
Using this assumption, the steady and unsteady components of velocity and
temperature are separated in the following form

u(y, t) = u0(y) + εeιωtu1(y)

θ(y, t) = θ0(y) + εeιωtθ1(y) (10)

Substituting (10) into (7) and (8), and equating the coefficients of harmonic
and non-harmonic terms, we get

u0
′′ + u0

′ − (M +
1
K

)u0 = −Grθ0 − (M +
1
K

) (11)

u1
′′ + u1

′ − (M +
1
K

+ ιω)u1 = −u0
′ − Gr(αθ0 + θ1) (12)

θ0
′′ + Prθ0

′ = −Pr Ec u0
′2 (13)

θ1
′′ + Prθ1

′ − ιωPrθ1 = −Prθ0
′ − 2PrEcu0

′u1
′ (14)

The modified boundary conditions are given by

y = 0 : u0 = 0, u1 = 0, θ0 = 1, θ1 = 1

y → ∞ : u0 = 1, u1 = 0, θ0 = 0, θ1 = 0 (15)

where prime denotes derivative with respect to y. The equations are
still coupled non-linear differential equations. The solution is obtained
using regular perturbation technique. It is assumed that Ec $ 1 and
u0, u1, θ0, θ1 are written in the following form

(u0, u1, θ0, θ1) = (u01, u11, θ01, θ11) + Ec(u02, u12, θ02, θ12) (16)

Substituting (16) in (11), (12), (13) and (14) and equating coefficients of
Ec we get the following equations

u01
′′ + u01

′ − M̃u01 = −Grθ01 − M̃ (17)

u02
′′ + u02

′ − M̃u02 = −Grθ02 (18)

θ01
′′ + Prθ01

′ = 0 (19)

θ02
′′ + Prθ02

′ = −Pru01
′2 (20)

u11
′′ + u11

′ − (M̃ + ιω)u11 = −u01
′ − Gr(αθ01 + θ11) (21)

u12
′′ + u12

′ − (M̃ + ιω)u12 = −u02
′ − Gr(αθ02 + θ12) (22)

θ11
′′ + Prθ11

′ − ιωPrθ11 = −Prθ01
′ (23)

θ12
′′ + Prθ12

′ − ιωPrθ12 = −Prθ02
′ − 2Pru01

′u11
′ (24)
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where M̃ = M + 1
K The boundary conditions are modified to

y = 0 : u01 = 0, u02 = 0, u11 = 0, u12 = 0,

θ01 = 1, θ02 = 0, θ11 = 1, θ12 = 0

y → ∞ : u01 = 1, u02 = 0, u11 = 0, u12 = 0,

θ01 = 0, θ02 = 0, θ11 = 0, θ12 = 0 (25)

The solutions of these ordinary differential equations under the modified
boundary conditions are obtained in the following form

u0(y) = A1(e−Ly − e−Pry) + (1 − e−Ly) + Ec[A5(e−Ly − e−Pry) −
A6(e−Ly − e−2Pry) − A7(e−Ly − e−2Ly) −
A8(e−Ly − e−(Pr+L)y)] (26)

θ0(y) = e−Pry + Ec[A2(e−Pry − e−2Pry) + A3(e−Pry − e−2Ly) +

A4(e−Pry − e−(Pr+L)y)] (27)

u1(y) = A10(e−ny − e−Pry) + A11(e−ny − e−Ly) +

A12(e−ny − e−my) + Ec[A21(e−Ly − e−ny) +

A22(e−ny − e−Pry) − A23(e−ny − e−2Pry) −
A24(e−ny − e−2Ly) − A25(e−ny − e−(Pr+L)y) +

A26(e−ny − e−my) + A27(e−ny − e−(Pr+n)y) −
A28(e−ny − e−(Pr+m)y) + A29(e−ny − e−(L+n)y) −
A30(e−ny − e−(L+m)y)] (28)

θ1(y) = e−my − A9(e−my − e−Pry) + Ec[A13(e−Pry − e−my) +

A14(e−my − e−2Pry) + A15(e−my − e−2Ly) +

A16(e−my − e−(Pr+L)y) − A17(e−my − e−(Pr+n)y) +

A18(e−my − e−(Pr+m)y) − A19(e−my − e−(L+n)y) −
A20(e−my − e−(L+m)y)] (29)

where the constants L ,m,n,A1, ............., A30 are recorded in the Appendix.
Substituting (26) - (29) in (10) we get the expression for velocity and tem-
perature profiles.
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4. Results and Discussion

4.1. Velocity profiles

The transient velocity from (10) has been shown in fig. 1 for Ec =
0.001, P r = 0.71, εα = 10, t =

π

10
. With an increase in values of perme-

ability K and Grashof number Gr the velocity increases under the effect
of gravity modulation parameter taken as εα = 10. The curve IV shows
that the velocity attains a maximum value of 25.3743 at y = 0.153. As
M increases there is a considerable change in the velocity profile. Also
with increase in ω the velocity decreases. The effect of increase in gravity
modulation parameter has also been shown. It has been observed that the
velocity increases when the parameter is taken as εα = 15. The velocity
profile of the present study agrees with the previous result 12 for a particular
case with α = 0, K = 5, ω = 10, P r = 0.71, Gr = 10, Ec = 0.001.

4.2. Temperature profiles

The effect of temperature has been shown in fig. 2 with Ec = 0.001, K =
5, εα = 10. As the distance from the plate increases there is decrease in
transient temperature. With an increase in the value of gravity modulation
parameter there is slight decrease in the temperature profile. The value
of transient temperature is less in water (Pr = 7) as compared to air
(Pr = 0.71). The temperature increases with increase in M and ω, while
it falls with increase in Gr. Due to absence of gravity term explicitly in
the temperature profile, the gravity modulation has less impact on it as
compared to the velocity profile.

4.3. Skin friction

The skin friction is expressed as,

τ∗
xy = μ

(
∂u∗

∂y∗

)
(30)

where μ is the viscosity.
The non-dimensional form of the skin friction on the plate y = 0 is given

by

τ =
τ∗
xy

ρUV
= −τm − ε|B|(cos ωt + φ) (31)

where τm is the steady part of skin friction, ε|B| is the amplitude of un-
steady part and φ is the phase difference. Using (10), (26),(28), (30) and
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(31), we get

τm =
(

∂u0

∂y

)
y=0

= A1(Pr − L) + L + Ec[A5(Pr − L)

−A6(2Pr − L) − A7(L) − A8(Pr)] (32)

and

B =
(

∂u1

∂y

)
y=0

= A10(Pr − n) + A11(L − n) + A12(m − n) +

Ec[A21(n − L) + A22(Pr − n) − A23(2Pr − n) −
A24(2L − n) − A25(Pr + L − n) + A26(m − n) +

A27(Pr) − A28(Pr + m − n) + A29(L) − A30(L + m − n)] (33)

where φ is the phase angle.
The amplitude of skin fraction in fig. 3 for Ec = 0.001, P r = 0.71, α =

100, ε = 0.01, t =
π

10
increases with increase in permeability K and

Grashof Number Gr, but decreases when M is increased. There is an
increase in the amplitude of skin friction with increase in ω under the effect
of gravity. In fig. 4, the phase of skin friction is shown for Gr = 10, Ec =
0.001, α = 10, t =

π

10
versus ω. As permeability K is increased the phase

change takes place and it shows a phase lead. It has been observed that
even a small increase in M results in a significant decrease in the value of
the phase angle of skin friction. There is a phase lead in water (Pr = 7) as
compared to air (Pr = 0.071).

4.4. Rate of heat transfer

The rate of heat transfer is given by

q∗ = −κ
∂T ∗

∂y∗ (34)

In non dimensional form heat transfer coefficient is given by,

Nu =
q∗L

(T ∗
ω − T ∗

∞)κ
=
(

∂θ

∂y

)
y=0

= qm + ε|Q| cos(ωt + δ) (35)

where qm = −Pr + Ec[A2(Pr) + A3(2L − Pr) + A4(L)]
and

Q = m(A9 − 1) − A9Pr + Ec[A13(m − Pr) + A14(2Pr − m) +

A15(2L − m) + A16(Pr + L − m) − A17(Pr + n − m) +

A18(Pr) − A19(L + n − m) + A20(L)] (36)
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and δ is the phase angle.
Fig. 5 shows that the variation of heat with ω for Pr = 0.71, Ec =

0.001, εα = 10. The heat transfer increases with increase in the value of
Gr. When either the permeability K or M in increased, the heat transfer
shows a decreasing effect. In Fig. 6, phase of heat is depicted. The phase
difference increases with increase in Gr and M . It increases in air with
(Pr = 0.71) as compared to water (Pr = 0.71).
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5. Nomenclature

Cp=specific heat at constant pressure
Ec=Eckert number
g=acceleration due to gravity
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g0=constant gravity level
g1=amplitude of oscillating component of acceleration due to gravity
Gr=Grashof number
K=dimensionless permeability of porous medium
K∗=permeability of porous medium
M=Hartmann number
Nu=dimensionless coefficient of heat transfer
Pr=Prandtl number
q∗=rate of heat transfer
T ∗=temperature of the fluid
T ∗
∞=temperature of fluid in free stream

T ∗
ω=temperature of the plate

t∗=time
t=dimensionless time
U=dimensionless velocity of the moving vertical porous plate
u∗=velocity of fluid
u=dimensionless velocity of fluid
V =constant mean velocity
β=coefficient of volume expansion
ρ=density
ν=kinematic viscosity
κ=thermal conductivity
μ=coefficient of viscosity
σ=electrical conductivity
θ=dimensionless temperature
ω=dimensionless frequency of gravitational oscillation
ω∗=frequency of gravitational oscillation
τ=skin friction
τm=mean skin friction

6. Appendix

L = 1+
√

1+4M̃
2 M̃ = M + 1

K

m = Pr+
√

Pr2+4ιωPr
2 n = 1+

√
1+4(M̃+ιω)

2

A1 = G
(Pr2−Pr−M̃)

A2 = ((A1)
2)Pr)
2
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A3 = (PrL(1−A1)(1−A1))
(2(2L−Pr)) A4 = (2A1Pr2(1−A1))

(Pr+L)

A5 = (GrB1)

(Pr2−Pr−M̃)
A6 = GrA2

4Pr2−2Pr−M̃

A7 = GrA3

4L2−2L−M̃

A8 = GrA4

(Pr+L)2−(Pr+L)−M̃
A9 = ιPr

ω

A10 = A1Pr+GrA9+αGr
(Pr2−P−(M̃+ιω))

A11 = (L(1−A1))

(L2−L−ιω−M̃)

A12 = Gr(1−A9)

((m2)−m−M̃+ιω)
A13 = (ιPrB1)

ω

A14 = (2PrA2+2A1Pr2A10)
(2Pr−ιω

A15 = (2PrL(A3+L(1−A1)A11))
(4L2−2PrL−ιωPr)

A16 = (Pr(Pr+L)A4+2A1Pr2LA11+2P 2L(1−A1)A10)
((P+L)2−Pr(Pr+L)−ιωPr)

A17 = (2A1nB3P 2)
(n2−nPr−ιωPr)

A18 = (2A1mA12Pr2)
(m2−mPr−Prιω)

A19 = (2nB3PrL(1−A1))
((L+n)2−Pr(L+n)−ιωPr)

A20 = (2PrLmA12(1−A1))
((L+m)2−Pr(L+m)−ιωPr)

A21 = (LB2)

(L2−L−(M̃+ιω))

A22 = (PrA5+GrA13+GrαB1)

(Pr2−Pr−(M̃+ιω))

A23 = (2PrA6+GrA14+GrαA2)

(4Pr2−2Pr−(M̃+ιω))

A24 = (2LA7+GrA15+αGrA3)

(4L2−2L−(M̃+ιω))

A25 = ((Pr+L)A8+GrA16+αGrA4)

((Pr+L)2−(Pr+L)−(M̃+ιω))

A26 = (GrB4)

(m2−m−(M̃+ιω))

A27 = (GrA17)

((Pr+n)2−(P+n)−(M̃+ιω))

A28 = (GrA18)

((Pr+m)2−(Pr+m)−(M̃+ιω))

A29 = (GrA19)

((L+n)2−(L+n)−(M̃+ιω))

A30 = (GrA20)

((L+m)2−(L+m)−(M̃+ιω))

B1 = A2 + A3 + A4

B2 = A5 − A6 − A7 − A8

B3 = A10 + A11 + A12

B4 = −A13+A14 +A15 +A16−A17 +A18−A19 +
A20

B5 = −A21 +A22−A23−A24−A25 +A26 +A27−
A28 + A29 − A30
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