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PREFACE

The 9-th International Workshop on Complex Structures, Integrability

and Vector Fields was held at Sofia from August 25 to August 29, 2008.

Throughout the series of these Workshops we have always been trying to

keep intact with the top level achievements in the contemporary Complex

Analysis, Differential Geometry and Mathematical Physics without ignor-

ing their classical aspects.

With the years the overlap among different research areas in Mathemat-

ics and Physics has been increasing steadily. This reflected on the Workshop

by introducing the word Integrability in its title, thus including in its pro-

gramme a new research area deeply related to Mathematical Physics. Many

deep and innovative results were reported during the Workshop; most of

them are included in the present volume.

A new positive trend in the activity of the Workshop was the increased

number of young scientists from South Korea, Poland, Ireland and Bulgaria

as well. This may give further new breed and stream to the forthcoming

Workshops.

With this volume we are paying deep respect to Professor Pierre Dol-

beault from the Pierre et Marie Curie University, Paris. He participated in

the 3rd Workshop at St. Konstantin and Elena, nearby Varna, in 1996 and

was regarded as a teacher by many of the participants. We also congrat-

ulate Professor Julian  Lawrynowicz from  Lodź University, Poland for his

70-th birthday. Over the long years his regular and active participation has

contributed a lot for their success.

Last, but not least, the Editors express their deepest gratitude to Pro-

fessor T. Oguro for his constant outstanding co-operations and efforts in

the preparation of this volume.

The Editors
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June 3, 2009 9:47 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

xv

A characterization of Clifford minimal hypersurfaces of a

sphere in terms of their geodesics 167

S. Maeda

On the curvature properties of real time-like hypersurfaces of

Kähler manifolds with Norden metric 174

M. Manev, M. Teofilova

Some submanifolds of almost contact manifolds with Norden metric 185

G. Nakova

A short note on the double-complex Laplace operator 195

P. Popivanov

Monogenic, hypermonogenic and holomorphic Cliffordian

functions — A survey 199

I.P. Ramadanoff

On some classes of exact solutions of eikonal equation 210

 L.T. Stȩpień
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A DISCRETE MODEL FOR KÄHLER MAGNETIC FIELDS

ON A COMPLEX HYPERBOLIC SPACE

DEDICATED TO PROFESSOR TOSHIKAZU SUNADA ON THE OCCASION OF

HIS 60TH BIRTHDAY

TOSHIAKI ADACHI

Department of Mathematics, Nagoya Institute of Technology,
Nagoya, 466-8555, JAPAN
E-mail: adachi@nitech.ac.jp

In this article we propose discrete models of trajectories for Kähler magnetic
fields. We consider regular graphs whose edges are colored by 2 colors and
compare the asymptotic behaviors of the number of prime cycles on them with
those of prime trajectory-cycles on compact quatients of complex hyperbolic
spaces.

Keywords: Kähler magnetic fields; Trajectories; Graphs; Prime cycles; Complex
hyperbolic spaces.

1. Introduction

A graph (V,E) is a 1-dimensional CW-complex which consists of a set V of

vertices and a set E of edges. Graphs are frequently considered as discrete

models of Riemannian manifolds of negative curvatures. Paths on a graph

correspond to geodesics on a Riemannian manifold, and the adjacency ma-

trix which shows the position of edges corresponds to the Laplace-Bertrami

operator.

The aim of this paper is to propose a discrete model for Kähler mani-

folds with Kähler magnetic fields. On a Kähler manifold M with complex

structure J , we can consider Kähler magnetic fields which are constant

multiples of the Kähler form BJ . A smooth curve γ parameterized by its

arclength is said to be a trajectory for a Kähler magnetic field Bk = kBJ

if it satisfies ∇γ̇ γ̇ = kJγ̇. Clearly, trajectories for a trivial Kähler magnetic

The author is partially supported by Grant-in-Aid for Scientific Research (C)
(No. 20540071) Japan Society of Promotion Science.
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field B0 are geodesics. The author has been studying some properties on

trajectories in connection with geometry of base manifolds, hence he is in-

terested in introducing their discrete models which correspond to discrete

models of geodesics on Riemannian manifolds. In this paper we consider

graphs whose edges are colored by 2 colors as such models and study the

asymptotic behavior of the number of prime cycles with respect to their

lengths.

2. Kähler magnetic fields on complex hyperbolic spaces

In order to explain our standing position, we shall start by recalling some

properties of Kähler magnetic fields on a complex hyperbolic space CHn(c)

of constant holomorphic sectional curvature c. We denote by ∂CHn the

ideal boundary of a Hadamard manifold CHn. We say a trajectory γ for

Bk on CHn is unbounded in both directions if both of the sets γ([0,∞))

and γ((−∞, 0]) are unbounded. We set γ(∞) = limt→∞ γ(t), γ(−∞) =

limt→−∞ γ(t) ∈ ∂CHn if they exist. For a trajectory γ with bounded image

we call it closed if there is a non-zero constant tc with γ(t+ tc) = γ(t) for

all t. The minimum positive tc with this property is called the length of

γ and is denoted by `(γ). It is known that every trajectory for a Kähler

magnetic field on CHn(c) lies on some totally geodesic submanifold CH1(c).

Moreover, trajectories are classified into three classes according to forces of

magnetic fields.

1) If |k| <
√
|c|, then it is unbounded in both directions and satisfies

γ(∞) 6= γ(−∞).

2) When k = ±
√
|c|, it is also unbounded in both directions but satisfies

γ(∞) = γ(−∞).

3) If |k| >
√
|c|, then it is closed of length 2π/

√
k2 + c.

We see this fact more precisely. On the unit tangent bundle UM of

a Kähler manifold M , a Kähler magnetic field Bk induces a flow Bkϕt :

UM → UM which is defined by Bkϕt(v) = γ̇v(t) with a trajectory γv

whose initial vector is v. This flow is called a Kähler magnetic flow. For a

trivial Kähler magnetic field B0, this flow ϕt = B0ϕt is the geodesic flow.

For a complex hyperbolic space CHn, Kähler magnetic flows are classified

into three congruence classes; hyperbolic flows, horocycle flows and rotation

flows.

Proposition 2.1 ([1]). Let M = Γ\CHn(c) be a Riemannian quotient of

a complex hyperbolic space of constant holomorphic sectional curvature c.
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A Kähler magnetic flow Bkϕt : UM → UM is hyperbolic if and only if

|k| <
√
|c| . It is congruent to the geodesic flow: For such k, there is a

diffeomorphism fk on UM with fk ◦ Bkϕt = ϕ√|c|−k2 t
/√

|c| ◦ fk.

In view of this result the feature of trajectories depends on the relation

of forces of magnetic fields and sectional curvatures of the base manifold.

Though the author gave some comparison theorems in [2,3], it is not enough

to make clear this relationship. This also carries us to a study of discrete

models for trajectories.

3. Graphs of Kähler type

Let G = (V,E) be a graph. The ends of each edges are vertices. We call

G oriented if each edge is oriented. For an oriented edge e ∈ E we denote

the starting vertex and the end vertex of e by o(e), t(e) and call them the

origin and terminus of e, respectively. When all edges are not oriented, we

call G a non-oriented graph. In this case we regard both two ends of an

edge to be its origins and terminuses. When the origin and the terminus of

an edge coincide we say this edge to be a loop. If there are two edges e1, e2
with o(e1) = o(e2) and t(e1) = t(e2) we call them multiple edges. If a graph

does not have loops and multiple edges, we say this graph simple. The set

E of edges of a simple graph hence is a subset of V × V \
{

(v, v)
∣∣ v ∈ V

}
.

When a simple graph is non-oriented, we consider (v, w) ∈ E if and only if

(w, v) ∈ E and identify them. Given a simple graph G= (V,E) with finite

cardinality ](V ) of V , we define its adjacency matrix AG = (avw) by

avw = 1, if (v, w) ∈ E, avw = 0, if (v, w) 6∈ E.

When we treat graphs it is usual to suppose there are no “hairs”. That

is, on a non-oriented graph for each vertex v there are at least two edges

emanating from v, and on an oriented graph for each vertex v there are

edges e1, e2 with o(e1) = v = t(e2).

For a graph G=(V,E), an element c = (e1, e2, . . . , en) ∈ E×E×· · ·×E
is said to be an n-step path if it satisfies t(ei) = o(ei+1). We put `(c) = n

and call it the length of c. An n-step path c is called closed if its origin

o(c) = o(e1) and its terminus t(c) = t(en) coincide. When G is a non-

oriented graph, we say a path c = (e1, . . . , en) has backtrackings if there

is i0 (1 ≤ i0 ≤ n − 1) with ei0 = ei0+1. When c is closed and e1 = en we

also say that it has a backtracking. For a non-oriented graph it is usual to

consider only paths without backtrackings. When c is an n-step closed path,

for a divisor k of n, we say an n-step path c to be n/k-folded if ei+k = ei,
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i = 1, . . . , n, where indices are considered modulo n. If an n-step path is

not k-folded for every divisor k of n, it is called prime. We call two closed

n-step paths c = (e1, . . . , en) and c′ = (e′1, . . . , e
′
n) are congruent to each

other if there is k with e′i = ei+k, i = 1, . . . , n. A congruence class of closed

paths is called a cycle. Clearly, prime cycles correspond to images of closed

geodesics.

If we consider the universal covering of a graph as a CW-complex, it

is a graph which is so-called a tree, which does not have closed paths. We

can consider its ideal boundary as the set of limit points of unbounded

paths from a base vertex. Hence graphs are considered as discrete models

of Riemannian manifolds of negative curvature. For the sake of later use,

we here recall graphs which are considered as models of quotients of non-

compact symmetric spaces of rank one. A non-oriented graph G = (V,E)

is called regular if the order at v ∈ V , which is the cardinality ]
(
o−1(v)

)
of

the set of edges emanating from v, does not depend on the choice of v. If we

consider the order at v as the negativity of curvature at this vertex, we can

consider regular graphs as models of quotients of real hyperbolic spaces. A

non-oriented graph G= (V,E) is called bipartite if the set of vertices are

divided into two subsets V = V1 + V2 and each edge joins only a vertex in

V1 and a vertex in V2. A bipartite graph (V1 +V2, E) is called (m,n)-regular

if the order at v ∈ V1 is m and the order at w ∈ V2 is n. In the case that

m = n it is an n-regular bipartite graph. From the viewpoint of sectional

curvature, this can be seen as a discrete model of a quotient of a complex

hyperbolic space and a quotient of a quaternionic hyperbolic space.

We now consider graphs where we can study models of trajectories for

Kähler magnetic fields. It is needless to say that complex structures are real

even dimensional objects and on contrary graphs are 1-dimensional. Hence,

if we intend to use graphs as discrete models of Kähler manifolds we need

to add some structures on graphs. We shall say a simple oriented/non-

oriented graph (V,E) to be of Kähler type if edges are colored by 2-colors.

More precisely, E is divided into 2 subsets as E = E1 +E2 satisfying that

o−1(v) ∩Ei 6= ∅ for i = 1, 2. We call edges in E1 principal, and those in E2

auxiliary. In order to get rid of the existence of hairs, we suppose at each

vertex v ∈ V that ]
(
o−1(v)∩Ei

)
≥ 2 for non-oriented graphs of Kähler type

and that t−1(v)∩Ei 6= ∅ for oriented graphs of Kähler type if we need. We

here note that the line graph of a graph of Kähler type is not necessarily a

bipartite graph. A graph (V,E) of Kähler type is called regular if both of

its principal graph (V,E1) and its auxiliary graph (V,E2) are regular. More

clearly we say a graph of Kähler type is (m,n)-regular if its principal graph
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is m-regular and its auxiliary graph is n-regular. We here show figures of

some regular non-oriented graphs of Kähler type.

Fig. 1. K5(2, 2) Fig. 2. K7(3, 3) Fig. 3. complex Euclid

On a graph (V,E1 + E2) of Kähler type we can consider models of

trajectories for Kähler magnetic fields in the following manner. Let a, b be

relatively prime positive integers. An n-step path c = (e1, . . . , en) is said to

be an (a, b)-path if

i) a+ b is a divisor of n,

ii) ei ∈ E1, i ≡ 1, 2, . . . , a (mod a+ b),

iii) ei ∈ E2, i ≡ a+ 1, a+ 2, . . . , a+ b (mod a+ b).

We regard (a, b)-paths correspond to trajectories for a Kähler magnetic field

Bb/a. This means that an a-step path on the principal graph G1,0 = (V,E1)

is bended under the force of a magnetic field and turns to an (a, b)-path on

G. But as orders of vertices of the auxiliary graph G0,1 = (V,E2) are not 1,

an a-step path on G1,0 can be seen as bended many ways. In order to get rid

of bifurcations of charged particles, we consider the auxiliary graph G0,1

stochastically. That is, for G0,1 we take the stochastic adjacency matrix

P = (pu,v) which is given as

pvw =

{
1/]
(
o−1(v)

)
, (v, w) ∈ E2,

0, (v, w) 6∈ E2.

Figure 4 shows a part of a graph of

Kähler type. By use of this adjacency

matrix, we consider as follows: Two

(3, 1)-paths (OABCD), (OABCH) are

4-steps and of weight 1/2, and the

path (DEFGO) is of weight 1/3.

2
1/

2
1/

1/3

1/3

1/3

1

1 1

1

1

1

1

1

1

A B C

DEF

O

G 1

H
Fig. 4. weight of colored paths

We should note that colored paths on a graph G = (V,E) of Kähler

type induces oriented graphs. If we set Ea,b to be the set of all (a+ b)-step
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(a, b)-paths on G, we obtain an oriented graph Ga,b = (V,Ea,b) which may

have loops and multiple edges.

Example 3.1. We take a colored complete graphK6(3, 2) which is given in

Figure 5. For an induced graph Ga,b we draw two oriented edges of reversed

directions like a non-oriented edge. We then have the following figures.

Fig. 5. K6(3, 2) Fig. 6. G0 Fig. 7. G1,1 Fig. 8. G2,0 Fig. 9. G2,1

We call a graph G = (V,E) irreducible if for arbitrary v, w ∈ V there

is a path c with o(c) = v and t(c) = w. We shall call a graph of Kähler

type (a, b)-irreducible if the induced graph (V,Ea,b) is irreducible. In view

of Example 3.1 we see a graph K6(3, 2) is (1, 1)-irreducible but is (2, 1)-

reducible.

We say a graph G = (V,E1 +E2) of Kähler type bipartite if V is divided

into two subsets as V = V1 + V2 and both of principal graph (V1 + V2, E1)

and auxiliary graph (V1 + V2, E2) are bipartite. For a bipartite graph of

Kähler type we see the induced graphs Ga,b with odd a+b are also bipartite

graphs and induced graphs Ga,b with even a+b are not connected. We call

a bipartite graph (V,E1 + E2) of Kähler type ((m,m′), (n, n′))-regular if

bipartite graphs (V,E1) and (V,E2) are (m,m′)-regular and (n, n′)-regular,

respectively. In the case that m = m′ and n = n′ it is an (m,n)-regular

bipartite graph of Kähler type.

4. Counting prime cycles

In order to show that we may consider (a, b)-paths on graphs of Kähler type

as models of trajectories on Kähler manifolds of negative curvature, we shall

study the asymptotic behavior of the number of prime cycles on regular

graphs of Kähler type. The reason why we take regular graphs lies on the

fact that every trajectories for Kähler magnetic fields on CHn lies on some

totally geodesic CH1 = RH2. For a graph G and a positive T , we denote by

PG(T ) the set of all prime cycles on G of length not greater than T . Given

two functions f, g : (0,∞) → R or f, g : N → R we call them asymptotic to

each other and denote by f ∼ g if they satisfy limT→∞ f(T )/g(T ) = 1. It is

well-konwn that the asymptotic behavior of the cardinality of the set PG(T )
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closely related with the maximum eigenvalue of the adjacency matrix of G.

When a graph of Kähler type is regular, then its derived graphs are also

regular. Applying Perron-Frobenius theorem, we obtain the following.

Theorem 4.1. Let G = (V,E) be a (p+ 1, q + 1)-regular graph of Kähler

type with p ≥ 2 and q ≥ 1. If the induced graph Ga,b is irreducible and is

not bipartite, then the asymptotic behavior of the number of prime cycles is

]
(
PGa,b

(T )
)∼ eha,b(G)T

/
ha,b(G)T (T → ∞).

Here

ha,b(G) =
{log(p+ 1) + (a− 1) log p+ (b− 1) log

(
q/(q + 1)

)
}

a+ b
.

Theorem 4.2. Let G = (V,E) be a (p+ 1, q+ 1)-bipartite regular graph of

Kähler type with p ≥ 2 and with q ≥ 1. If it is (a, b)-irreducible (in particular

a+ b is odd), then the asymptotic behavior of the number of prime cycles is

]
(
PGa,b

(2T )
)∼ e2ha,b(G)T

/
ha,b(G)T (T → ∞).

Here

ha,b(G) =
{log(p+ 1) + (a− 1) log p+ (b− 1) log

(
q/(q + 1)

)
}

a+ b
.

We compare these results with the result on trajectories for Kähler

magnetic fields. We say two trajectories γ1, γ2 are congruent to each other

if there is t0 with γ2(t+ t0) = γ1(t) for all t, and say a congruence class of

closed trajectories to be a cycle. A pair p = ([γ], `(γ)) of a cycle [γ] and its

length is called a prime cycle. We denote by Pk(T ;M) the set of all prime

cycles for Bk on a Kähler manifold M whose lengths are not greater than

T . We should note that the set Pk(M) of all prime cycles for Bk on M is

identified with the set of prime cycles of Kähler magnetic flow Bkϕt. When

the magnetic flow Bkϕt is hyperbolic, the generating function ζBkϕt which

is called the zeta function for Bkϕt is defined by

ζBkϕt(s) =
∏

p∈Pk(M)

1

1 − e−s`(p)
.

By Proposition 2.1 we have the following.

Proposition 4.1. Let M = Γ\CHn(c) be a compact quotient of a complex

hyperbolic space. The zeta functions of the geodesic flow ϕt and a Kähler

magnetic flow Bkϕt with |k| <
√
|c| for M are related as

ζBkϕt(s) = ζϕt

(√
|c|/(|c| − k2) s

)
.
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Therefore if we denote the topological entropy of Bkϕt by hk(M) which

coincides with n
√
|c| − k2, it satisfies the following:

(1) ζBkϕt(s) converges absolutely and is holomorphic on <(s) > hk(M),

(2) ζBkϕt(s) has a nowhere vanishing meromorphic extension on a domain

containing <(s) = hk(M),

(3) ζBkϕt(s) has a simple pole at s = hk(M), and is holomorphic on <(s) =

hk(M).

As a direct consequence we can conclude the following.

Corollary 4.1. On a compact quotient M = Γ\CHn(c) of a complex hy-

perbolic space, if |k| <
√
|c| then the asymptotic behavior of the number of

prime cycles for Bk is as follows:

]
(
Pk(T ;M)

)∼ ehk(M)T
/
hk(M)T (T → ∞).

We are interested in the constants ha,b(G) and hk(M). It is clear that

the topological entropy hk(M) of Bkϕt and that h(M) of geodesic flow on

UM are related as hk(M) =
√

1 − (k2/|c|)h(M). If we consider a trajectory

segment γ : [0, `] → CHn(c) for Bk on the universal covering of M , we see

the distance d
(
γ(0), γ(`)

)
between two end points of γ satisfies

sinh
(√

|c| − k2 `/2
)

√
|c| − k2

=
sinh

(√
|c| d

(
γ(0), γ(`)

)
/2
)

√
|c|

.

Thus one can see that for about Kähler magnetic fields the relation on

topological entropies and the relation between arc-lengths and distances

of trajectory segments are closely related to each other. Next we consider

π1(V,E1) covering graph G̃ of G. On this graph for an (a+b)-step (a, b)-

path c we may consider the distance between o(c) and t(c) is equal to a

because we can consider an a-step path on the principal graph is bended

by a magnetic field to this path. On the other hand, for regular graphs

it is known that their zeta functions are essentially the same as the Ihara

zeta function associated with a cocompact torsion-free discrete subgroup of

PSL2(QP ) over p-adic numbers. Therefore, the asymptotic behavior of the

number of prime cycles on the principal graph G1,0 is given as follows: If

G1,0 is irreducible and is not bipartite, then

]
(
PG1,0(T )

)∼ eh(G1,0)T
/
h(G1,0)T (T → ∞),

and if G1,0 is irreducible and is bipartite

]
(
PG1,0(2T )

)∼ e2h(G1,0)T
/
h(G1,0)T (T → ∞),
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where h(G1,0) = log(p+1). Since the entropy ha,b(G) approximately equals

to 1
1+(b/a)h(G1,0), the relation of entropies and the relation between steps

and distances of colored paths have a similar relationship as for trajecto-

ries for Kähler magnetic fields. From this point of view, we may say that

colored paths on graphs of Kähler type can be regard as discrete models of

trajectories for Kähler magnetic fields.

References

1. T. Adachi, Kähler magnetic flows on a manifold of constant holomorphic sec-
tional curvature, Tokyo J. Math. 18 (1995), 473–483.

2. T. Adachi, A comparison theorem on crescents for Kähler magnetic fields,
Tokyo J. Math. 28 (2005), 289–298.

3. T. Adachi, A comparison theorem on sectors for Kähler magnetic fields, Proc.
Japan Acad. Sci. 81 Ser. A (2005), 110–114.

4. T. Adachi and T. Sunada, Twisted Perron-Frobenius theorem and L-functions,
Journal of Functional Analysis 71 (1987), 1–46.

5. Y. Ihara, On discrete subgroups of the two by two projective linear group over
p-adic field, J. Math. Soc. Japan 18 (1966), 219–235.

6. J.P. Serre, Tree, Springer New York, 1980.
7. T. Sunada, Fundamental groups and Laplacians — Number theoretc methods

in geometry —, in Japanese, Kinokuniya 1988.
8. A. Terras, A stroll through the garden of graph zeta functions, preprint,

http://math.ucsd.edu/˜aterras/newbook.pdf.



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

10

INTEGRABILITY CONDITION ON THE BOUNDARY

PARAMETERS OF THE ASYMMETRIC EXCLUSION

PROCESS AND MATRIX PRODUCT ANSATZ

BOYKA ANEVA

Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences,

blvd. Tzarigradsko chaussee 72, 1784 Bulgaria
E-mail: blan@inrne.bas.bg

We consider the question whether with the constraint from the Bethe ansatz
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1. Introduction

The asymmetric simple exclusion process (ASEP) has become a paradigm in

nonequilibrium physics [1,2] due to its simplicity, rich behaviour and wide

range of applicability. It is an exactly solvable model of an open many-

particle stochastic system interacting with hard core exclusion. Introduced

originally as a simplified model of one dimensional transport for phenom-

ena like hopping conductivity [3] and kinetics of biopolymerization [4], it

has found applications from traffic flow [5] to interface growth [6], shock

formation [7], hydrodynamic systems obeying the noisy Burger equation,

problems of sequence alignment in biology [8]. At large time the ASEP ex-

hibits relaxation to a steady state, and even after the relaxation it has a

nonvanishing current. An intriguing feature is the occurrence of boundary

induced phase transitions [9] and the fact that the stationary bulk proper-

ties strongly depend on the boundary rates.
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The ASEP dynamics is governed by a master equation for the proba-

bility distribution P (si, t) of a stochastic variable si = 0, 1, at a site i =

1, 2, . . . , L of a linear chain. In the set of occupation numbers (s1, s2, . . . , sL)

specifying a configuration of the system si = 0 if a site i is empty, or si = 1

if the site i is occupied. On successive sites particles hop with probability

g01dt to the left, and g10dt to the right. The event of hopping occurs if

out of two adjacent sites one is a vacancy and the other is occupied by a

particle. The symmetric simple exclusion process is the lattice gas model

of particles hopping between nearest-neighbour sites with a constant rate

g01 = g10 = g. The asymmetric simple exclusion process with hopping in

a preferred direction is the driven diffusive lattice gas of particles moving

under the action of an external field. The process is totally asymmetric if

all jumps occur in one direction only, and partially asymmetric if there is a

different non-zero probability of both left and right hopping. The number

of particles in the bulk is conserved and this is the case of periodic bound-

ary conditions. In the case of open systems, the lattice gas is coupled to

external reservoirs of particles of fixed density and additional processes can

take place at the boundaries. Namely, at the left boundary i = 1 a particle

can be added with probability αdt and removed with probability γdt, and

at the right boundary i = L it can be removed with probability βdt and

added with probability δdt. The master equation

dP (s, t)

dt
=
∑

s′

Γ(s, s′)P (s′, t)

can be mapped to a Schrödinger equation in imaginary time

dP (t)

dt
= −HP (t)

for a quantum Hamiltonian with nearest-neighbour interaction in the bulk

and single-site boundary terms. Through the mapping the equivalence to

the integrable spin 1/2 XXZ quantum spin chain with anisotropy ∆ =

−(q + q−1)/2, q = g01/g10 and most general non diagonal boundary terms

was obtained [10] which allowed for the derivation of exact results for the

ASEP using Matrix Product Approach (MPA) and Bethe Ansatz (BA).

Bethe Ansatz solution was recently achieved [11] for the XXZ chain

Hamiltonian and subsequently for the ASEP [12] provided the model pa-

rameters satisfy a condition which in terms of the ASEP notations reads

(q
1
2 (L+2k) − 1)(αβ − q

1
2 (L−2k−2)γδ) = 0 (1)

with |k| ≤ L/2. Given k, the first factor zero in (1) assumes q to be a

root of unity which is unacceptable for the ASEP. The second factor zero
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imposes a relation between the bulk and the boundary parameters and it

is believed [10,13] that with this constraint the MPA fails to produce the

stationary state. Quite remarkably, however, for generic q, one can satisfy

the constraint [12] by choosing k to be k = −L/2, which, as commented in

[13] implies additional symmetries for the ASEP.

Emphasizing the dependence of the steady state bulk behaviour on the

boundary rates we consider the boundary Askey-Wilson algebra (as well

as the tridiagonal one) which reveals hidden symmetries of the ASEP. We

discuss the consequences of the algebraic properties on the applicability of

the MPA in relation to the BA integrability condition.

2. Matrix Product State Ansatz (MPA)

The idea is that the steady state properties of the ASEP can be obtained

exactly in terms of matrices obeying a quadratic algebra [7,14]. For a given

configuration (s1, s2, . . . , sL) the stationary probability is defined by the

expectation value P (s) = 〈w|Ds1Ds2 . . . DsL |v〉/ZL, where Dsi = D1 if a

site i = 1, 2, . . . , L is occupied and Dsi = D0 if a site i is empty and ZL =

〈w|(D0 +D1)L|v〉 is the normalization factor to the stationary probability

distribution. The operators Di, i = 0, 1 satisfy the quadratic (bulk) algebra

D1D0 − qD0D1 = x1D0 −D1x0, x0 + x1 = 0 (2)

with boundary conditions of the form

(βD1 − δD0)|v〉 = x0|v〉,
〈w|(αD0 − γD1) = −〈w|x1.

(3)

and 〈w|v〉 6= 0. We stress the one parameter dependence of the MPA due

to x0 = −x1 = ζ with 0 < ζ < ∞. In most known applications it is

restricted to the choice ζ = 1. In our opinion the relation x0 + x1 = 0

implies an abelian symmetry with a conserved quantity D0 +D1, following

from D0 → D0 + x0, D1 → D1 + x1.

The MPA is an efficient method to evaluate exactly all the relevant phys-

ical quantities such as the mean density at a site i, the correlation functions,

the current J through a bond between sites i and i+1. Exact results for the

ASEP with open boundaries were obtained within the MPA through the

relation of the stationary state to q-Hermite [16] and Al-Chihara polyno-

mials [17] in the case γ = δ = 0 and to the Askey-Wilson polynomials [18]

in the general case. Finite dimensional representations [10,15] have been

considered too and they simplify calculations. Due to a constraint on the

model parameters they define an invariant subspace of the infinite matrices
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and give exact results only on some special curves of the phase diagram.

The MPA was readily generalized to many-species models and to dynamical

MPA [19].

In the general case of incoming and outgoing particles at both bound-

aries with all boundary parameters nonzero there are four operators βD1,

−δD0, −γD1, αD0 and one needs an addition rule to form two linear

independent boundary operators acting on the dual boundary vectors.

A solution to the boundary problem can be obtained by using the bulk

Uq(su(2)) symmetry algebra written as a deformed (u,−u)-algebra (u < 0

and 0 < q < 1)

[N,A±] = ±A± [A−, A+] = uqN − uq−N (4)

with a central element Q = A+A− − u(qN + q1−N )/(1 − q). The represen-

tations, labeled by the values of the Casimir Q(κ) = −u(qκ + q1−κ)(1 − q)

for a fixed parameter κ, are finite dimensional and in a basis |n, κ〉 given by

N |n, κ〉 = (κ+n)|n, κ〉, A−|n, κ〉 = rn|n− 1, κ〉, A+|n, κ〉 = rn+1|n+ 1, κ〉,
where r2n = ((1 − qn)(−uqκ + uq1−n−κ)/(1 − q). (|0, κ〉 is the vacuum with

r0 = 0.) The dimension l+ 1 of the spin κ-representation is defined by the

condition

−uqκ + uq−l−κ = 0 (5)

for some n = l. Given the Uq(su(2)) generators A± and N we can present

the boundary operators in the form

βD1 − δD0 = − x1β√
1 − q

qN/2A+ − x0δ√
1 − q

A−q
N/2

− x1βq
1/2 + x0δ

1 − q
qN − x1β + x0δ

1 − q
,

αD0 − γD1 =
x0α√
1 − q

q−N/2A+ +
x1γ√
1 − q

A−q
−N/2

+
x0αq

−1/2 + x1γ

1 − q
q−N +

x0α+ x1γ

1 − q
.

(6)

Separating the shift parts from the boundary operators and denoting the

corresponding rest parts by A and A∗ we can prove that the operators A

and A∗ defined by

A = βD1 − δD0 +
x1β + x0δ

1 − q
,

A∗ = αD0 − γD1 −
x0α+ x1γ

1 − q
,

(7)
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and their q-commutator [A,A∗]q = q1/2AA∗ − q−1/2A∗A form a closed

linear algebra

[[A,A∗]q , A]q = −ρA∗ − ωA− η,

[A∗, [A,A∗]q ]q = −ρ∗A− ωA∗ − η∗,
(8)

where the operator-valued structure constants depend on q, α, β, γ, δ and

the suq(2) Casimir Q. In particular

−ρ = x0x1βδq
−1(q1/2 + q−1/2)2,

−ρ∗ = x0x1αγq
−1(q1/2 + q−1/2)2.

(9)

Relations (8) are the well known Askey-Wilson (AW) relations [20,21] for

the shifted boundary operators A,A∗, from which the defining relations of a

tridiagonal algebra follow as well. This is an associative algebra with a unit

generated by a (tridiagonal) pair of operators A,A∗ [22,23], A → tA + c,

A∗ → t∗A∗ + c∗ where t, t∗, c, c∗ are some scalars.

The AW algebra (8) possesses important properties that allow to obtain

its ladder representations, spectra, overlap functions. Namely, there exists

a basis (of orthogonal polynomials) fr according to which the operator A

is diagonal and the operator A∗ is tridiagonal. There exists a dual basis fp

in which the operator A∗ is diagonal and the operator A is tridiagonal. The

overlap function of the two basis 〈s|r〉 = 〈f ∗
s |fr〉 is expressed in terms of

the Askey-Wilson polynomials. Let pn = pn(x; a, b, c, d|q) denote the nth

AW polynomial [25] depending on four parameters a, b, c, d, with p0 = 1,

x = y + y−1, 0 < q < 1 and a three term recurrence relation

xpn = bnpn+1 + anpn + cnpn−1, p−1 = 0. (10)

We need only the explicit form of the matrix elements bn

bn =
(1 − abqn)(1 − acqn)(1 − adqn)(1 − abcdqn−1)

a(1 − abcdq2n−1)(1 − abcdq2n)
. (11)

After rescaling A→ 1
βA, A∗ → 1

αA
∗ we have found the explicit form of the

infinite dimensional representation (and the dual one) for the boundary op-

erators. Let A denote the matrix satisfying (10) in the basis (p0, p1, p2, . . . ).

Result : There exist a representation π in the space of Laurent polynomials

with basis (p0, p1, p2, . . . )
t with respect to which π(D1 − δ

βD0) is diagonal

with eigenvalues

λn =
1

1 − q

(
bq−n + dqn−1

)
+

1

1 − q
(1 + bd) (12)
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and π(D0 − γ
αD1) is tridiagonal

π(D0 −
γ

α
D1) =

1

1 − q
bAt +

1

1 − q
(1 + ac). (13)

The dual representation π∗ has a basis p0, p1, p2, . . . with respect to which

π∗(D0 − γ
αD1) is diagonal with eigenvalues

λ∗n =
1

1 − q

(
aq−n + cqn

)
+

1

1 − q
(1 + ac) (14)

and π∗(D1 − δ
βD0) is tridiagonal

π∗(D1 −
δ

β
D0) =

1

1 − q
aA +

1

1 − q
(1 + bd). (15)

The choice 〈w| = h
−1/2
0 (p0, 0, 0, . . . ), |v〉 = h

−1/2
0 (p0, 0, 0, . . . )

t (h0 is a

normalization) as eigenvectors of the diagonal matrices π(D1 − δ
βD0) and

π∗(D0 − γ
αD1) yields a solution to the boundary equations which uniquely

relates a, b, c, d to α, β, γ, δ. Namely

a = κ∗+(α, γ), b = κ+(β, δ), c = κ∗−(α, γ), d = κ−(β, δ),

where

κ
(∗)
± (ν, τ) =

−(ν − τ − (1 − q)) ±
√

(ν − τ − (1 − q))2 + 4ντ

2ν
.

These are the functions of the parameters which define the phase diagram

of the ASEP. They have been used in previously known MPA applications

where have always been taken for granted. It is remarkable that here they

follow from the AW algebra representations.

The condition for the representation to be finite dimensional is bn = 0

for some n = nf , where nf = 1, 2, . . . is the dimension of the represen-

tation. From the explicit form of bn it follows that the representation is

finite dimensional if any of the factors in the numerator in (11) is zero, in

particular, with our normalization abcd = γδ
αβ , if the condition holds

αβ = qnf−1γδ. (16)

Since we are using Uq(su(2)) besides the constraint (16) there is one more

constraint (given by eq. (5)) which is the first factor in (1). Comparison with

the second factor in (1) (with the value k from the first factor) suggests that

it defines a finite dimensional representation of the MPA boundary opera-

tors of dimension nf = L. Finite dimensional representations of the bound-

ary algebra imply finite dimensional matrices D0 and D1. The examples

considered in [15] correspond to the condition ab = κ∗+κ+ = q1−L, which
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defines an L-dimensional representation of the boundary algebra according

to the first factor in the nominator of bn. A special case of the tridiagonal

algebra with c = d = 0 is the open system with only incoming (outgoing)

particles at the left (right) boundary when the (shifted) diagonal elements

are of the form q±n and the tridiagonal operators satisfy the recurrence

relation for either q-Hermite or Al-Chihara polynomials. A nontrivial spe-

cial case of an open system with four boundary parameters related to the

representations above with b = 0 and c = 0, was considered in [26] for

the MPA solution of the weakly ASEP. The constraint αβ = qL−1γδ was

found to describe the detailed balance when the steady state is a Bernoulli

measure at density, the same for both reservoirs.

3. Detailed Balance and MPA

Detailed balance (DB) means that the probability P ({s}) for a transition

from a configuration {s} to another configuration {s′} is equal to the prob-

ability of the reverse transition. Thus for the event of hopping between site

i and i+ 1 one has

P (s1, . . . , 0, 1, . . . , sL) = q−1P (s1, . . . , 1, 0, . . . , sL), (17)

for an event at the left boundary -

P (1, s2, . . . , sL) =
α

γ
P (0, s2, . . . , sL) (18)

and correspondingly at the right boundary

P (s1, . . . , sL−1, 1) =
δ

β
P (s1, . . . , sL−1, 0). (19)

Starting from a given configuration and using eqs. (17) and (18) one can al-

ways calculate the weights of all configurations by removing particles at the

left boundary and the consistency with eq. (19) [26] requires αβ = qL−1γδ

which is the DB condition. As can be readily verified the above DB rela-

tions with P expressed as matrix elements of the type 〈w|Ds1Ds2 ...DsL |v〉
are consistent with the limit x0 = −x1 = 0 of the MPA defining relations

(2) and (3). The presence of the parameter dependent linear terms in the

bulk algebra is due to the boundary processes and these quadratic-linear

algebraic relations provide recursive expressions for matrix elements of the

steady weights, the current, the correlation functions. The quadratic algebra

induces a reordering property and an element of length L can be brought in

a linear combination of elements of length L− 1 with positive coefficients.

Hence one can compute all matrix elements of length L if 〈w|Dk
0D

L−k
1 |v〉,
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k = 0, 1, . . . , L, and all (L − 1)- elements are known. From the boundary

conditions (3) and after reordering one has

β〈w|Dk
0D

L−k
1 |v〉 − qL−k−1δ〈w|Dk+1

0 DL−k−1
1 |v〉 = x0PL−1,

−qkγ〈w|Dk
0D

L−k
1 |v〉 + α〈w|Dk+1

0 DL−k−1
1 |v〉 = −x1P

′
L−1,

where PL−1 and P ′
L−1 are positive linear combinations of matrix elements

of length L− 1. The conclusion is straightforward: If αβ − qL−1γδ 6= 0,

then the recursions are consistent. If αβ − qL−1γδ = 0, then in order

that a matrix element of length L exists, the zero determinant x0αPL−1 −
x1q

L−k−1δP ′
L−1 = 0 implies x0 = −x1 = 0. (All matrix elements of length

L− k, with k = 0, 1, . . . , L− 1 are nonzero if αβ − qL−k−1γδ = 0 for some

α, β, γ, δ.) This has the consequence that the current

J =
〈w|(D0 +D1)i−1(D1D0 − qD0D1)(D0 +D1)L−i−1|v〉

ZL

vanishes and the probabilities satisfy the DB condition. Thus with the con-

straint on the boundary parameters even though the boundary processes

are present they become irrelevant and the nonequilibrium behaviour of

the system is no longer maintained. The MPA in the limit x0 = x1 = 0

produces a stationary state whose probability weights satisfy DB.

The boundary operators of the detailed balance case satisfy an AW al-

gebra with η = η∗ = 0 and ρ = ρ∗, ω ' Q. Without writing the explicit

form of the representation, related now to q-Hahn polynomials, we note that

in the limit x0 = −x1 = 0 from the boundary equations it follows b = d

and a = c, with b =
√
−β

δ and a =
√
− γ

α . Inserting it in the condition

abcd = a2b2 = q1−L we obtain the DB condition. Formally a2b2 = q1−L

for some parameters a′ = −a2, b′ = −b2, with L = 1, resembles the limit

q → 1 and we recover the detailed balance case at equal density ρa′ = ρb′ ,

with ρa′ = α
α+γ , ρb′ = β

β+δ [27]. The system will be in a product measure

state with uniform density and zero current when a′b′ = 1, valid for the

one dimensional representation. We can identify the one dimensional rep-

resentation of the boundary operators with 〈w|D1|v〉 and 〈w|D0|v〉, which

are non zero in the limit x0 = −x1 = 0. A non vanishing matrix element

of length L can be formed as the product of single-site matrix elements

〈w|D1|v〉L−k and 〈w|D0|v〉k. Given the DB condition αβ = qL−1γδ, we can

always find corresponding α′β′ = γ′δ′ which define the one dimensional rep-

resentation of the boundary algebra and hence determine the steady state

as a Bernoulli product measure at equal density for both reservoirs.
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4. Conclusion

The MPA defining algebraic relations (2) and boundary conditions (3)

provide solvable recursions for the stationary state, the current, the cor-

relation functions of an open L-site nonequilibrium system for all values

of the parameters in the range 0 ≤ α, β, γ, δ,≤ 1, αγ 6= 0, βδ 6= 0,

0 < q < 1 and x0 = −x1 = ζ > 0. The recursions remain valid with

final dimensional matrices of dimension L determined by (one of) the con-

ditions κ+(α, γ)κ+(β, δ) = κ+(α, γ)κ−(β, δ) = q1−L, which also define L

dimensional representations of the boundary AW algebra. Exceptional sub-

range of parameters is given by the constraints αβ = qL−1γδ and ζ = 0

when the MPA produces a stationary state satisfying detailed balance.

In the BA condition (1) the first factor zero with k = −L/2 defines a rep-

resentation of dimension L+1 of the bulk Uq(su(2)) symmetry. The second

factor zero defines a finite L-dimensional representation of the boundary

AW algebra. The BA condition relates a spin |k| = L/2 representation of

the Uq(su(2)) symmetry to a finite L representation of the boundary al-

gebra. The Bethe integrability condition on the boundary parameters cor-

responds to finite dimensional representations of the MPA matrices which

constrain the parameters of the open system to a range when the system

will eventually reach a steady state satisfying detailed balance. For arbi-

trary values of the ASEP parameters the BA condition is automatically

satisfied by the spin |k| = L/2 representation of the bulk Uq(su(2)). The

symmetry behind this property is the boundary algebra, which assures the

exact solvability and allows for employing Bethe ansatz or applying matrix

product ansatz with no restriction on the physics of the system.
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These remarks are devoted to a basic properties of the double-complex Laplace

operator ∆+U(z,w) = ∂2U(z,w)
∂z2 + i ∂2U(z,w)

∂w2 , where z,w are complex variables
and U(z, w) is a double-complex value function. A decomposition into two
complex operators is given. An initial problem for the double-complex Laplace
operator on the whole space C(1, j) is solved with a D’Alember’s type formula.
An initial problem on the cartesian product of two unit squares in C for the zero
eigenvalue problem for the double-complex Laplace operator is treated with the
Fourier method of separating of the variables in double-complex context. The

corresponding system of two equations of second order and the corresponding
operator of fourth order with real coefficients are obtained.

Keywords: Double-complex number; Fundamental solution; Double-complex
Laplace operator; Ultrahyperbolic system; Double-complex Laplace operator.

1. Double-complex Laplace operator

Let C(1, j) be the commutative algebras of the arranged couple of complex

numbers (z, w) written also as z + jw, z, w ∈ C with an unit j having the

property j2 = i, i being the imaginary unit in C. This is a commutative

algebras without division, as the numbers (z, w) : z2 − iw2 = 0 are divisors

of the zero in C(1, j). Actually, (z+jw)(z−jw) = z2−j2w2 = z2−iw2 = 0

and z + jw is a divisor of the zero in the case z2 − iw2 = 0.

We shall consider the functions of double complex variables with values

double-complex variables, i.e. functions of the type f : U → C(1, j), where

U is an open subset in the algebra C(1, j).

In papers [1,5] the following differential operator of second order with

complex coefficients

∆+ =
∂2

∂z2
+ i

∂2

∂w2
(1)
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is obtained. This operator is called a double-complex Laplace operator.

Differential operators arising for other generalizations of the numbers are

given in [2].

Let us show the factorization of the operator ∆+ as a composition of

two operators of first order with double-complex coefficients. We shall make

the following transformations:

∆+ =
∂2

∂z2
+ i

∂2

∂w2
=

∂2

∂z2
+ j2

∂2

∂w2
=

∂2

∂z2
− j6

∂2

∂w2

=

(
∂

∂z
+ j3

∂

∂w

)(
∂

∂z
− j3

∂

∂w

)

=

(
∂

∂z
+ ji

∂

∂w

)(
∂

∂z
− ji

∂

∂w

)
= ∂∂∗.

This factorizations shows the appropriate Cauchy-Riemann equations for

double-complex functions and the conjugate Cauchy-Riemann equation as-

sociated with operator ∆+.

Now let us consider the double complex Laplace operator ∆+ =
∂2

∂z2
+

i
∂2

∂w2
, which is a second order partial differential operator with complex

coefficients. We shall obtain the complex symbol of the double-complex

Laplace operator

∆+ =
1

4

(
∂

∂x
− i

∂

∂y

)2

+
i

4

(
∂

∂u
− i

∂

∂v

)2

.

To do this we replace respectively ∂/∂x by ξ1, ∂/∂y by ξ2, ∂/∂u by ξ3 and

∂/∂v by ξ4. In such a way we obtain the quadratic form

B(ξ1, ξ2, ξ3, ξ4) =
1

4
(ξ1 − iξ2)2 +

i

4
(ξ3 − iξ4)2

=
1

4
(ξ21 − ξ22 − 2iξ1ξ2 + iξ23 − iξ24 + 2ξ3ξ4),

whose matrix is the following one

Q =
1

4




1 −i 0 0

−i −1 0 0

0 0 i 1

0 0 1 −i


 .

The quadratic form B(ξ1, ξ2, ξ3, ξ4) is the complex symbol of the operator

∆+. The matrix of this quadratic form has rank 2 and so the operator is a

degenerate one. We shall note that the matrix Q of the operator ∆+ is not

a Hermitian matrix.
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2. Decomposition of the double-complex Laplace operator

into two ∂-operators

We propose a decomposition of the double-complex Laplace operator into

two ∂ operators. Since −i =
(

1−i√
2

)2

we can present ∆+ as follows

∆+U(z, w) =
∂2U(z, w)

∂z2
−
(

1 − i√
2

)2
∂2U(z, w)

∂w2

=

(
∂

∂z
− 1 − i√

2

∂

∂w

)(
∂U(z, w)

∂z
+

1 − i√
2

∂U(z, w)

∂w

)
.

Introducing new variables z1 = z− (1− i)/
√

2w and w1 = z+ (1− i)/
√

2w,

we get

∂U(z, w)

∂z1
:=

∂U(z, w)

∂z
− 1 − i√

2

∂U(z, w)

∂w
,

∂U(z, w)

∂w1
:=

∂U(z, w)

∂z
+

1 − i√
2

∂U(z, w)

∂w

and we obtain

∆+U(z1, w1) =
∂

∂z1
◦ ∂U(z1, w1)

∂w1
.

Then the composition of the operators ∆+ and ∆+ will be equal to the

composition of the two real Laplace operators, namely

PU = ∆+∆+U(x1, y1, u1, v1)

=

(
∂2

∂x2
1

+
∂2

∂y2
1

)(
∂2U(x1, y1, u1, v1)

∂u2
1

+
∂2U(x1, y1, u1, v1)

∂v2
1

)

=
∂4U(x1, y1, u1, v1)

∂x2
1∂u

2
1

+
∂4U(x1, y1, u1, v1)

∂x2
1∂v

2
1

+
∂4U(x1, y1, u1, v1)

∂y2
1∂u

2
1

+
∂4U(x1, y1, u1, v1)

∂y2
1∂v

2
1

.

It is appropriate to assume that in the formula above the function

U(x1, y1, u1, v1) is real valued.

3. D’Alamber’s type formula for the initial value problem

in the whole space C(1, j)

Let us consider the initial value problem for the equation

∆+F (z, w) = 0 (2)
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on the whole space C(1, j), namely we shall consider a function F (z, w) :

C(1, j) → C(1, j) with the following initial conditions

F (z, 0) = ϕ0(z) + jϕ1(z), F ′
w(z, 0) = ψ0(z) + jψ1(z), (3)

on the complex space C. Here ϕ0(z), ϕ1(z) and ψ0(z), ψ1(z) are holomor-

phic functions on C. As the Laplace operator ∆+ has complex coefficients,

the problem reduces to two complex-valued problems, namely one for the

complex-valued function F0(z, w) and one for the complex-valued function

F1(z, w).

We can obtain immediately a solution of this problem by D’Alamber’s

type formula as follows:

F (z, w) =
1

2

(
ϕ0

(
z +

1 + i√
2
w

)
+ ϕ0

(
z − 1 + i√

2
w

))

+ j
1

2

(
ϕ1

(
z +

1 + i√
2
w

)
+ ϕ1

(
z − 1 + i√

2
w

))

+
1√

2(1 + i)

∫ z+(1+i)w/
√

2

z−(1+i)w/
√

2

ψ0(t) dt

+ j
1√

2(1 + i)

∫ z+(1+i)w/
√

2

z−(1+i)w/
√

2

ψ1(t) dt.

In this formula the integration does not depend on the curve along which

it is performed, since ψ0(z) and ψ1(z) are holomorphic functions. We assume

it is performed along the segment between the points z − (1 + i)w/
√

2 and

z + (1 + i)w/
√

2.

Actually, it would be checked that the function F (z, w) defined above,

satisfies the equation ∆+F (z, w) = 0 as well as the initial conditions

F (z, 0) = ϕ0(z) + jϕ1(z), Fw(z, 0) = ψ0(z) + jψ1(z).

Therefore this formula gives a solution of the given initial problem in

the whole space C(1, j).

4. Real representation of the equation ∆+u = 0

Now we shall reduce the partial differential equation of second order with

complex coefficients and one unknown function

∆+(f + ig) =
∂2(f + ig)

∂z2
+ i

∂2(f + ig)

∂w2
= 0,

to a system of two partial differential equations of second number with real

coefficients and two unknown function f and g. Indeed, if we separate the
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real and the imaginary parts in the written above equations we obtain the

system




∂2f

∂x2
− ∂2f

∂y2
− 2

∂2f

∂u∂v
− ∂2g

∂u2
+
∂2g

∂v2
+ 2

∂2g

∂x∂y
= 0

∂2f

∂u2
+
∂2f

∂v2
− 2

∂2f

∂x∂y
− ∂2g

∂x2
− ∂2g

∂y2
− 2

∂2g

∂u∂v
= 0.

(A)

Denoting

A(f) =
∂2f

∂x2
− ∂2f

∂y2
− 2

∂2f

∂u∂v
, B(f) =

∂2f

∂u2
− ∂2f

∂v2
− 2

∂2f

∂x∂y
,

the system can be written as

Af −Bg = 0,

Bf +Ag = 0.
(B)

The symbol of this system is the following matrix

σ ≡
(
σ(A), −σ(B)

σ(B), σ(A)

)
=

(
ξ21 − ξ22 − 2ξ3ξ4, −ξ23 + ξ24 + 2ξ1ξ2
ξ23 − ξ24 − 2ξ1ξ2, ξ21 − ξ22 − 2ξ3ξ4

)
.

The rank of this matrix over the line ξ1 = ξ2 =

√
2

2
ξ3, ξ4 = 0 is equal

to 0 and over the line ξ1 = ξ2 = −
√

2

2
ξ3, ξ4 = 0 is equal to 1. So it is of

variable type.

Then we see that

(A2 +B2)f = A(A(f)) +B(B(f)) = A(B(g)) −B(A(g)) = 0,

as the operators A and B have constant coefficients.

So the system (B) implies the following partial differential equation of

fourth order with one unknown function:

(A2 +B2)f = 0,

and analogously

(A2 +B2)g = 0.

Written down in explicit form we get

(
∂2

∂x2
− ∂2

∂y2
− 2

∂2

∂u∂v

)2

f +

(
∂2

∂u2
− ∂2

∂v2
− 2

∂2

∂x∂y

)2

f = 0

and the same equation for the function g.
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The symbol of the operator A2 + B2 then is

(ξ21 − ξ22 − 2ξ3ξ4)2 + (ξ23 − ξ24 − 2ξ1ξ2)2.

The system

ξ21 − ξ22 + 2ξ3ξ4 = 0, ξ23 − ξ24 − 2ξ1ξ2 = 0,

has as nonzero real characteristic vectors the following four straight lines

in the corresponding hyperplanes:

I. ξ1 = ξ2 =

√
2

2
ξ3, ξ4 = 0,

II. ξ1 = ξ2 =

√
2

2
ξ4, ξ3 = 0,

III. ξ3 = ξ4 =

√
2

2
ξ1, ξ2 = 0, and

VI. ξ3 = ξ4 =

√
2

2
ξ2, ξ1 = 0, in R4.

Let us note also that the operators A and B are ultra-hyperbolic which is

seen by the change of variables u′ = (u + v)/
√

2, v′ = (u − v)/
√

2 for the

operator A and x′ = (x + y)/
√

2, y′ = (x− y)/
√

2 for the operator B.

The double complex Laplace operator has very interesting properties

from the point of view of linear partial differential operators, see also [4].

We also note that the theory of double-complex power series is considered

in [3].
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Introduction

Geometry of conjugate connections is a natural generalization of geometry

of Levi-Civita connections from Riemannian manifolds theory. Since conju-

gate connections arise from affine differential geometry and from geometric

theory of statistical inferences, many studies have been carried out in the

recent 20 years [1–3].

In this paper, we study generalizations of conjugate connections. Some

of such generalizations have been introduced independently. The genere-

lized conjugate connection was introduced in Weyl geometry [4]. The semi-
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conjugate connection was introduced in affine differential geometry [7]. In

order to consider the relations between these connections, we introduce the

dual semi-conjugate connection. Then we shall discuss the properties and

the relations between these connections.

In the later part of this paper, we concentrate to study generalized con-

jugate connections. It is known that the generalized conjugate connection

is invariant under gauge transformations. Hence, under suitable conditions,

the generalized conjugate connection reduces to the standard conjugate

connection. This property is called local triviality. Therefore, we give suf-

ficient conditions for the generalized conjugate connection to have a local

triviality.

1. Generalizations of conjugate connections

We assume that all the objects are smooth throughout this paper. We may

also assume that a manifold is simply connected since we discuss local

geometric properties on a manifold.

Let (M, g) be a semi-Riemannian manifold, and ∇ an affine connection

on M . We can define another affine connection ∇∗ by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ). (1)

We call ∇∗ the (standard) conjugate connection or the (standard) dual

connection of ∇ with respect to g. It is easy to check that (∇∗)∗ = ∇.

In this paper, we consider generalizations of these conjugate connections.

Let (M, g) be a semi-Riemannian manifold, ∇ an affine connection on

M , and C̃ a (0, 3)-tensor field on M . We define another affine connection

∇̃∗ by

Xg(Y, Z) = g(∇XY, Z) + g(Y, ∇̃∗
XZ) + C̃(X,Y, Z). (2)

If the tensor C̃ vanishes identically, then ∇̃∗ is the standard conjugate con-

nection of ∇. Since the metric tensor g is symmetric, using twice Equation

(2), we obtain the following proposition.

Proposition 1.1. g((̃∇̃∗)
∗

XY −∇XY, Z) = C̃(X,Y, Z) − C̃(X,Z, Y ).

Next, we shall define generalizations of the aforementioned conjugate

connections.

Definition 1.1. Let (M, g) be a semi-Riemannian manifold, ∇ an affine

connection on M , and τ a 1-form on M .
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(1) The generalized conjugate connection [5,6] ∇∗
of ∇ with respect to g

by τ is defined by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ) − τ(X)g(Y, Z). (3)

(2) The semi-conjugate connection [5,7] ∇̂∗ of ∇ with respect to g by τ is

defined by

Xg(Y, Z) = g(∇XY, Z) + g(Y, ∇̂∗
XZ) + τ(Z)g(X,Y ). (4)

(3) The dual semi-conjugate connection ∇̌∗ of ∇ with respect to g by τ is

defined by

Xg(Y, Z) = g(∇XY, Z) + g(Y, ∇̌∗
XZ) − τ(X)g(Y, Z) − τ(Y )g(X,Z).

(5)

The generalized conjugate connection is introduced in Weyl geometry

to characterize Weyl connections [4]. The semi-conjugate connection arises

naturally in affine hypersurface theory [7]. The dual semi-conjugate con-

nection is introduced in this paper. As we will see later in this section, the

dual semi-conjugate connection has dual property of the semi-conjugate

connection.

From Proposition 1.1, (∇̄∗)
∗

= ∇ holds for a generalized conjugate

connection. On the other hand, this equality does not hold for a semi-

conjugate connection ∇̂, or a dual semi-conjugate connection ∇̌∗.

To clarify relations among the connections ∇∗
, ∇̂∗ and ∇̌∗, let us re-

call the projective equivalence relation and the dual-projective equivalence

relation of affine connections.

Suppose that ∇ and ∇′ are affine connections on a semi-Riemannian

manifold (M, g). We say that ∇ and ∇′ are projectively equivalent if there

exists a 1-form τ such that

∇′
XY = ∇XY + τ(Y )X + τ(X)Y. (6)

We say that ∇ and ∇′ are dual-projectively equivalent if there exists a

1-form τ such that

∇′
XY = ∇XY − g(X,Y )τ#, (7)

where τ# is the metrical dual vector field, i.e., g(X, τ#) = τ(X).

The readers should not confuse that, even if ∇ and ∇′ are projectively

(or dual-projectively) equivalent, their dual connections ∇∗ and (∇′)∗ may

not be dual-projectively (or projectively) equivalent, respectively.
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Proposition 1.2. Let (M, g) be a semi-Riemannian manifold, ∇ an affine

connection on M , and ∇∗ the standard conjugate connection of ∇ with

respect to g. Suppose that an affine connection ∇′ is projectively equivalent

to ∇ by τ . Then the following relations hold.

(1) The generalized conjugate connection ∇′∗ of ∇′ by τ is dual-projectively

equivalent to ∇′ by τ with respect to g.

(2) The dual semi-conjugate connection ∇̌′∗ of ∇′ by τ coincides with ∇∗,

that is, ∇̌′∗ = ∇.

(3) The semi-conjugate connection ∇̂′∗ of ∇′ by τ is given by

∇̂′∗
XY = ∇∗

XY + g(X,Y )τ# + τ(Y )X + τ(X)Y.

Proof. Form Equations (1), (3) and (6), we obtain

Xg(Y, Z) = g(∇′
XY, Z) + g(Y,∇′∗

XZ) − τ(X)g(Y, Z)

= g(∇XY, Z) + g(Y,∇′∗
XZ) − τ(Y )g(X,Z).

The last equality implies that ∇′∗ is dual-projectively equivalent to ∇∗ by

τ with respect to g.

On the other hand, from Equations (1), (5) and (6), we obtain

Xg(Y, Z) = g(∇′
XY, Z) + g(Y, ∇̌′∗

XZ) − τ(Y )g(X,Z) − τ(X)g(Y, Z)

= g(∇XY, Z) + g(Y, ∇̌′∗
XZ).

This implies that the dual semi-conjugate connection ∇̌′∗ by τ coincides

with ∇∗.

From Equations (1), (4) and (6), we obtain the third statement.

Following similar arguments as in Proposition 1.2, we obtain the follow-

ing proposition.

Proposition 1.3. Let (M, g) be a semi-Riemannian manifold, ∇ an affine

connection on M , and ∇∗ the standard conjugate connection of ∇ with re-

spect to g. Suppose that an affine connection ∇′ is dual-projectively equiv-

alent to ∇ by τ . Then the following relations hold.

(1) The generalized conjugate connection ∇′∗ of ∇′ by τ is projectively

equivalent to ∇′ by τ .

(2) The semi-conjugate connection ∇̂′∗ of ∇′ by τ coincides with ∇∗, that

is, ∇̂′∗ = ∇.

(3) The dual semi-conjugate connection ∇̌′∗ of ∇′ by τ is given by

∇̌′∗
XY = ∇∗

XY + g(X,Y )τ# + τ(Y )X + τ(X)Y.
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2. Generalized conjugate connections and gauge

transformations

Here after, we concentrate on generalized conjugate connections.

Let (M, g) be a semi-Riemannian manifold, ∇ an affine connection on

M , and φ a function on M . We consider a conformal change of the metric

ḡ := eφg. Denote by ∇∗
the standard conjugate connection of ∇ with

respect to the conformal metric ḡ. Then we obtain

Xḡ(Y, Z) = ḡ(∇XY, Z) + ḡ(Y,∇∗
XZ)

⇐⇒ Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ) − dφ(X)g(Y, Z). (8)

This implies that ∇∗
is the generalized conjugate connection of ∇ with

respect to g by dφ.

Let τ be a 1-form on M . Set

(ḡ, τ̄ ) := (eφg, τ − dφ). (9)

The pair (ḡ, τ̄) is called a gauge transformation of (g, τ).

Proposition 2.1. The generalized conjugate connection is invariant under

gauge transformations. That is, ∇∗
is the generalized conjugate connection

of ∇ with respect to g by τ if and only if ∇∗
is the generalized conjugate

connection of ∇ with respect to ḡ by τ̄ .

Proof. From Equations (8) and (9), we easily obtain

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ) − τ(X)g(Y, Z)

⇐⇒ Xḡ(Y, Z) = ḡ(∇XY, Z) + ḡ(Y,∇∗
XZ) − τ̄ (X)ḡ(Y, Z).

We remark that the gauge invariance is an important notion in Weyl

geometry. We can discuss Weyl geometry in terms of the generalized con-

jugate connections [4,8].

3. Local triviality of generalized conjugate connections and

equiaffine structures

Suppose that ∇∗
is the generalized conjugate connection of an affine con-

nection ∇ by a 1-form τ . Equation (8) implies that ∇∗
is reduced to the

standard conjugate connection with respect to some conformal metric ḡ if

τ = dφ.

Definition 3.1. The generalized conjugate connection ∇∗
is called locally

trivial if there exists a function φ such that ∇∗
is the standard conjugate



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

Generalizations of conjugate connections 31

connection with respect to some conformal metric ḡ = eφg. That is, the

equivalence (8) holds.

In order to elucidate the local triviality of generalized conjugate con-

nections, we consider equiaffine structures on a manifold.

Definition 3.2. Let ∇ be a torsion-free affine connection on M . Let ω be

a volume form on M , that is, ω is an n-form on M which does not vanish

everywhere. We say that the pair (∇, ω) is an equiaffine structure on M if

ω is parallel with respect to ∇, that is, ∇ω = 0. We say that the connection

∇ is equiaffine, and the volume form ω is parallel with respect to ∇.

Let R be the curvature tensor of ∇, and Ric the Ricci tensor of ∇,

i.e., Ric(Y, Z) = tr{X 7→ R(X,Y )Z}. In local coordinate expressions, the

quantities are given by

∇ ∂

∂xi

∂

∂xj
=

n∑

k=1

Γk
ij

∂

∂xk
,

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xl
=

n∑

k=1

Rk
lij

∂

∂xk

with

Rk
lij =

∂Γk
lj

∂xi
− ∂Γk

li

∂xj
+

n∑

m=1

(
Γk

miΓ
m
lj − Γm

li Γk
mj

)
. (10)

Proposition 3.1. Let ∇ be a torsion-free affine connection on M . Then

the following conditions are equivalent.

(1) ∇ is equiaffine.

(2) Ric is symmetric.

(3)
∂

∂xi

(
n∑

k=1

Γk
jk

)
=

∂

∂xj

(
n∑

k=1

Γk
ik

)
.

Proof. The statement (1) ⇐⇒ (2) is Proposition 3.1 in Section 1 by

Nomizu and Sasaki [1]. Contracting (10) to get the Ricci tensor, we can

easily obtain (2) ⇐⇒ (3).

For further information about equiaffine structures, see Zhang’s paper

[9], or Zhang and Matsuzoe’s paper [10].

Proposition 3.2. Let ∇ be a torsion-free affine connection on M , and

dv =
√
gdx1 ∧ · · · ∧ dxn the standard volume element with respect to g.
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Then the connection is equiaffine if and only if there exists a function f

such that

∂

∂xk
(log (f

√
g)) =

n∑

j=1

Γj
kj . (11)

Proof. Recall that
√
g is a non-zero function on M . If ∇ is equiaffine, then

the condition (3) in Proposition 3.1 holds. This is the integrability condition

of f since
√
g is a non-zero function.

On the other hand, if the formula (11) holds, then the condition (3) in

Proposition 3.1 holds. This implies the desired result, and we may say that

the function f is just the proportionality function between the parallel form

ω and the volume form dv.

In the following it makes sense to assume τ exact. If M is connected

and simply connected, by Poincaré’s lemma, there is a function φ on M

such that τ = dφ. Since we are considering local properties on a manifold,

we have the following result.

Theorem 3.1. Let (M, g) be a connected and simply connected n-

dimensional semi-Riemannian manifold. Let ∇ be a torsion-free affine con-

nection on M , and τ a 1-form on M . Suppose that the generalized conjugate

connection ∇∗
of ∇ is torsion-free. Consider the following three conditions:

(1) τ is an exact 1-form.

(2) ∇ is equiaffine.

(3) ∇∗
is equiaffine.

Then any two of the above conditions imply the third one.

Proof. In a local coordinate expression, the definition of ∇∗
in (3) is writ-

ten

∂gij

∂xk
= Γki,j + Γ

∗
kj,i − τkgij .

Contracting the above equation with gij , we have
n∑

i,j=1

gij ∂gij

∂xk
=

n∑

i=1

Γi
ki +

n∑

i=1

Γ
∗i

ki − nτk.

Let ∇(0) be the Levi-Civita connection with respect to g. Using that
n∑

i=1

Γ
(0) i
ki =

1

2

n∑

i,j=1

gij ∂gij

∂xk
,
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we obtain

nτk =
n∑

j=1

{
Γj

kj + Γ
∗
kj

j − 2Γ
(0) j
kj

}
.

Differentiating with respect to xi and then xk, subtracting, yields

n

(
∂τk
∂xi

− ∂τi
∂xk

)
=

n∑

j=1

{(
∂

∂xi
Γj

kj −
∂

∂xk
Γj

ij

)
+

(
∂

∂xi
Γ
∗j

kj −
∂

∂xk
Γ
∗j

ij

)}

− 2

n∑

j=1

(
∂

∂xi
Γ

(0) j
kj − ∂

∂xk
Γ

(0) j
ij

)
.

The last parenthesis vanishes since the Levi-Civita connection ∇(0) is

equiaffine (it admits a parallel volume element dv =
√
gdx1 ∧ · · · ∧ dxn,

or, equivalently, it has a symmetric Ricci tensor). Then

n

(
∂τk
∂xi

− ∂τi
∂xk

)
=

n∑

j=1

{(
∂

∂xi
Γj

kj −
∂

∂xk
Γj

ij

)
+

(
∂

∂xi
Γ
∗j

kj −
∂

∂xk
Γ
∗j

ij

)}
.

If any two of the above parentheses vanish, then the third one must vanish.

Applying Proposition 3.1 leads to the desired result.

From Theorem 3.1 and Proposition 3.1, we obtain the following.

Corollary 3.1. Suppose that ∇ and ∇∗
are torsion-free. Consider the fol-

lowing three conditions:

(1) τ is an exact 1-form.

(2) ∇ has a symmetric Ricci tensor.

(3) ∇∗
has a symmetric Ricci tensor.

Then any two of the above conditions imply the third one.

Let ω = fdv, and ω∗ = f
∗
dv be the volume elements associated with

the generalized conjugate connections ∇ and ∇∗
, with f, f

∗
functions, i.e.,

∇ω = 0, ∇∗
ω∗ = 0,

where dv =
√
g dx denotes the Riemannian volume element. We shall con-

sider the following notations

[ω] := f, [ω∗] := f̄∗.

Theorem 3.2. Let τ = dφ. Then

[ω][ω∗] = Cenϕ, (12)

with C > 0, constant.
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Proof. Applying Proposition 3.2 to formula (11) yields

nτk =
∂

∂xk
(log(f

√
g)) +

∂

∂xk

(
log(f̄∗√g)

)
− 2

∂

∂xk
(log

√
g).

Using τk = ∂φ
∂xk , the above relation can be written as an exact equation

∂

∂xk

(
nφ− log(f

√
g) − log(f̄∗√g) + 2 log

√
g
)

= 0 ⇐⇒
∂

∂xk

(
nφ− log(f f̄∗)

)
= 0 ⇐⇒

nφ− log(f f̄∗) = c constant ⇐⇒
ff̄∗ = Cenφ,

with C = e−c.
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We consider a family of Herglotz functions Fy (y ∈ R) generated from a Her-
glotz function F , and obtain their integral representations. We review the the-
ory of value distribution for boundary values of Herglotz functions, and present
a result for limiting generalized value distribution for translated Herglotz func-
tions.

Keywords: Herglotz functions; Generalized value distribution.

1. Introduction

Given a Lebesgue measurable function R → R, the distribution of values

of f can be described by a mapping D : (A,S) → R, defined for arbitrary

Borel sets A, S by

D(A,S; f) = |A ∩ f−1
+ (S)|.

Here |.| denotes Lebesgue measure, and D(A,S; f) is the Lebesgue measure

of the set of points λ ∈ A for which f(λ) ∈ S.

A case of particular interest is when f(λ) is the real boundary value

of the Weyl-Titchmarsh m-function [1,2] associated with the Schrödinger

equation

−d
2f(x, z)

dx2
+ V (x)f(x, z) = zf(x, z), (1)

where z ∈ C+ is a complex spectral parameter. Let u, v be solutions of eq.

(1) which satisfy, at x = 0, the boundary conditions

u(0, z) = 1, v(0, z) = 0,

u′(0, z) = 0, v′(0, z) = 1.
(2)
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The m-function m(z) is defined by the condition

u(., z) +m(z)v(., z) ∈ L2(0,∞). (3)

It is analytic and has positive imaginary part in the upper half-plane C+ =

{z ∈ C : Im z > 0}. Functions with these properties are called Herglotz

functions. The spectral analysis of the Sturm-Liouville differential operator

T = − d2

dx2 +V associated with eq. (1) can be carried out through an analysis

of the boundary behaviour of the m-function. See for example [3], and [4],

where the large x asymptotic behaviour of the solution v defined in (2) has

been studied.

One of the main theoretical tools in [4] was the determination of limiting

value distribution for a family of value distribution mappings Dδ (δ > 0)

defined by

Dδ(A,S;F ) = D(A,S;F δ),

where F δ is the Herglotz function F δ(z) = F (z + iδ) obtained from a Her-

glotz function F by translation through distance δ parallel to the imaginary

axis. It was proved that Dδ converge, and precise bounds were obtained.

We present in this paper an analogous result in the case of generalized value

distribution for Herglotz functions.

The paper is organized as follows. In Section 2 we introduce Herglotz

functions and their integral representation. We consider a one-parameter

family of Herglotz functions Fy (y ∈ R) generated from a Herglotz function

F , and obtain their integral representations and spectral properties for the

corresponding measures. In Section 3 we are concerned with value distribu-

tion for Herglotz functions. The main result regarding limiting generalized

value distribution for translated Herglotz functions is stated in Theorem 3.1.

2. Herglotz functions and their integral representation

Let F be a Herglotz function, that is, analytic and with positive imaginary

part in the upper half-plane C+. Then F admits the integral representation

[5,6]

F (z) = aF + bF z +

∫ ∞

−∞

{
1

t− z
− t

t2 + 1

}
dρ(t), (4)

where aF , bF are constants (bF > 0), and the function ρ(t), which is deter-

mined up to an additive constant, is non-decreasing and right-continuous.

For given Herglotz function F the constants aF , bF are determined by

aF = ReF (i), bF = lim
s→∞

1

s
ImF (is).
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The spectral function ρ(t) gives rise to a measure µ through the relation

µ((a, b]) = ρ(b)− ρ(a) for finite intervals (a, b], and µ extends to Borel sets.

Then µ is said to be the spectral measure corresponding to the Herglotz

function F , and satisfies the convergence condition
∫

R

1

1 + t2
dµ(t) <∞.

If bF = 0 and the measure µ is finite, then we can absorb the term∫
R
dρ(t)t(t2 + 1)−1 into the constant aF , drop the linear term, and adopt

the simpler representation

F (z) = aF +

∫ ∞

−∞

1

t− z
dρ(t). (5)

In this case we have F (is) = aF + iµ(R)/s+ o(1/s) as s→ ∞.

By the Lebesgue decomposition theorem [7], the measure µ can be de-

composed into an absolutely continuous and a singular part, µ = µac + µs,

and further, the singular part can be decomposed into a singular but con-

tinuous and a discrete part, µs = µsc +µd. The supports of the components

of µ can be characterized through an analysis of the boundary behaviour

of F (z) as z approaches the real axis [8]. Thus,

µs = µ � {λ ∈ R : lim
ε→0+

ImF (λ+ iε) = ∞};

µac = µ � {λ ∈ R : ImF (λ+ iε) is bounded for 0 < ε < 1};

µd = µ � {λ ∈ R : lim
ε→0+

−iεF (λ+ iε) = µ{λ} 6= 0}.

We denote by F+(λ) the boundary value of F (z) as z approaches the

real axis; that is,

F+(λ) = lim
ε→0+

F (λ+ iε), (6)

for each λ ∈ R for which this limit exists finitely. It is known from the theory

of boundary values of analytic functions that F+(λ) is defined Lebesgue

almost everywhere [9]. The density function of µac is given by f(λ) =

ImF+(λ)/π, whereas the measure µ restricted to the set {λ ∈ R : F+(λ) ∈
R} is identically zero [8]. In the special case that F has real boundary value

F+(λ) almost everywhere, the measure µ is purely singular, and F+(λ) takes

every real value in any neighbourhood of a point of the essential spectrum

of µ (see [10] for further details).

In spectral analysis we require not a single Herglotz function but a

family of them. Given a Herglotz function F , consider the one-parameter
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family of Herglotz functions defined by the relation

Fy(z) =
1

y − F (z)
, z ∈ C+, y ∈ R. (7)

Denote by aFy , bFy , ρy, µy respectively the constants, spectral function,

and measure corresponding to Fy, defined through the representation (1).

Let F (is) = A(s) + iB(s), and suppose that bF = lims→∞ ImF (is)/s =

lims→∞ B(s)/s > 0. We must have in this case B(s) → ∞ as s → ∞, and

it follows that

bFy = lim
s→∞

1

s
ImFy(is) = lim

s→∞
1

s

[
B(s)

(y −A(s))2 +B2(s)

]
= 0

for all y ∈ R.

The Lebesgue dominated convergence theorem implies that A(s)/s → 0

as s → ∞. Therefore, we have Fy(is) = i(sbF )−1 + o(1/s) as s → ∞, from

which we conclude that µy(R) = lims→∞ sImFy(is) = b−1
F for all y ∈ R.

If bF = 0 and the measure µ is finite, then we can substitute F (is) =

aF + iµ(R)/s+ o(1/s) into (7) in order to determine the large s asymptotic

behaviour of Fy(is). We find in this case that the measure µy is finite except

for y = aF .

These two cases, together with the resulting Herglotz representations

for Fy(z), are given under (i) and (ii) below. The remaining case (iii), in

which bF = 0 and the measure µ is infinite, follows from (i) and (ii) on

reversing the roles of F and Fy and observing that F (z) = y − (Fy(z))−1.

In summary, we have:

(i) if bF 6= 0, then for y ∈ R we have bFy = 0 and Fy has the representation

Fy(z) =

∫ ∞

−∞

dρy(t)

t− z
,

where µy is a finite measure and µy(R) = b−1
F .

(ii) if bF = 0 and µ(R) <∞, then for y 6= aF we have bFy = 0 and

Fy(z) =
1

y − aF
+

∫ ∞

−∞

dρy(t)

t− z
,

where µy is a finite measure and µy(R) = µ(R)(y − aF )−2.

(iii) if bF = 0 and µ(R) = ∞, then bFy = 0 for all y ∈ R, and either

µy(R) <∞, or µy(R) = ∞, for all y ∈ R.

We note that in each case bFy > 0 for at most one value of y. Eq. (7) is

equivalent to Fy(z) = Fx(z)/(1 + (y − x)Fx(z)). By using this relation we
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can take any one of the family {Fy(z)} and define the others in terms of

that function.

The discrete spectrum of µy is determined by the boundary behaviour

of F as follows. If λ is a discrete point of the measure µy, for some y ∈ R,

then F+(λ) = y, and we have

lim
ε→0+

F (λ+ iε) − F+(λ)

iε
= bF +

∫ ∞

−∞

dρ(t)

(t− λ)2
=

1

µy{λ}
. (8)

To see this, note first that since limε→0+ ImFy(λ+ iε) = ∞, it follows that

F+(λ) = lim
ε→0+

F (λ+ iε) = lim
ε→0+

[
y − 1

Fy(λ+ iε)

]
= y.

Moreover, µy{λ} = − limε→0+ iεFy(λ+ iε) implies that

lim
ε→0+

F (λ+ iε) − y

iε
= lim

ε→0+

1

−iεFy(λ+ iε)
=

1

µy{λ}
.

Taking the real part and using the representation (1), we see that this limit

is also

lim
ε→0+

1

ε
ImF (λ+ iε) = bF + lim

ε→0+

∫ ∞

−∞

dρ(t)

(t− λ)2 + ε2
= bF +

∫ ∞

−∞

dρ(t)

(t− λ)2
,

which completes the proof of (8).

An immediate consequence is that the singular part of the measure µy is

supported on the set {λ ∈ R : F+(λ) = y}, and hence, for any two distinct

values of y, the singular parts of µy are mutually singular.

3. Value distribution for Herglotz functions

A theory of value distribution for boundary values of Herglotz functions

has been developed in the last fifteen years [3,4,10]. By a value distribution

mapping we mean a mapping D : (A,S) → D(A,S) which assigns an ex-

tended real non-negative number to pairs of Borel subsets A, S of R and

satisfies the following properties:

(i) A→ D(A,S) defines a measure on Borel subsets of R, for fixed S;

S → D(A,S) defines a measure on Borel subsets of R, for fixed A;

(ii) D(A,R) = |A|; this implies that the measure A → D(A,S) is abso-

lutely continuous with respect to Lebesgue measure;

(iii) the measure S → D(A,S) is absolutely continuous with respect to

Lebesgue measure.
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The value distribution mapping associated with a Herglotz function F

is given by [10]

D(A,S;F ) =

∫

S

µy(A)dy, (9)

where {µy} (y ∈ R) are the measures corresponding to a family of Her-

glotz functions Fy generated from F . If F has real boundary value almost

everywhere, then the measure µ corresponding to F , and the measures µy

corresponding to Fy , are purely singular, and we have [10]

D(A,S;F ) =

∫

S

µy(A)dy = |A ∩ F−1
+ (S)|. (10)

Thus, in this case, D(A,S;F ) is the Lebesgue measure of the set of points

λ ∈ A for which F+(λ) ∈ S.

An alternative characterization of the value distribution mapping asso-

ciated with a Herglotz function F uses the angle θ(z, S) subtended at the

point z ∈ C+ by a Borel set S on the real axis, defined by [4]

θ(z, S) =

∫

S

Im

[
1

t− z

]
dt, z ∈ C+. (11)

Define ω(z, S;F ) = θ(F (z), S)/π, for z ∈ C+, and ω(λ, S;F ) =

limε→0+ θ(F (λ + iε), S)/π, for λ ∈ R. If it is clear from the context, we

shall write ω(z, S), and ω(λ, S), respectively. We then have

ω(λ, S) =





1 F+(λ) ∈ R and F+(λ) ∈ S,

0 F+(λ) ∈ R and F+(λ) /∈ S,

θ(F+(λ), S)/π ImF+(λ) > 0.

In particular, if F has real boundary value almost everywhere, then ω(λ, S)

is a.e. the characteristic function of the set F−1
+ (S), and we have [4]

D(A,S;F ) =

∫

A

ω(λ, S)dλ = |A ∩ F−1
+ (S)|. (12)

The integral in eq. (12) is also a natural value distribution mapping asso-

ciated with the Herglotz function F .

In [4], the determination of the asymptotic value distribution of the

Herglotz function −v′/v, where v is the solution of the Schrödinger equation

(1) which was defined in (2), was based on an important estimate about

value distribution for translated Herglotz functions F δ(z) = F (z + iδ). If

we denote ωδ(z, S;F ) = ω(z, S;F δ), for z ∈ C+, and similarly for points

λ ∈ R, it was shown that
∣∣∣∣
∫

A

ωδ(λ, S;F )dλ−
∫

A

ω(λ, S;F )dλ

∣∣∣∣ ≤ EA(δ), (13)
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where A, S are arbitrary Borel sets (|A| <∞), and EA(δ) is a non-decreas-

ing function of δ, with limδ→0+ EA(δ) = 0. Surprisingly, it was found that

the bound in (13) holds uniformly for all Herglotz functions F and Borel

sets S.

The results can be generalized by allowing a description of value distri-

bution in terms of measures other than Lebesgue measure. The generalized

value distribution [11] associated with a Herglotz function F is described

by a measure νS defined by

νS(A) =

∫

S

µy(A)dσ(y). (14)

In (14), A, S are arbitrary Borel sets, µy are the measures appearing in

(9), and dσ is a Herglotz measure corresponding to a Herglotz function φ

having representation

φ(z) = aφ + bφz +

∫ ∞

−∞

{
1

t− z
− t

t2 + 1

}
dσ(t). (15)

The measure νS satisfies the condition
∫

R
1/(1 + t2)dνS(t) <∞, and there-

fore it is also a Herglotz measure. It can easily be verified that if the measure

dσ is absolutely continuous, then νS is also absolutely continuous. If F has

real boundary value almost everywhere, then the measure µ is purely sin-

gular and we have νS(A) = νS(A ∩ F−1
+ (S)) = νR(A ∩ F−1

+ (S)). For any

Borel set B we have the relation [11]

νS(B) = µ(φS◦F )(B) − bφµ(B), (16)

where µ is the measure corresponding to the Herglotz function F , bφ is

the constant appearing in the representation (15) of φ, and µ(φS◦F ) is the

measure corresponding to the composed Herglotz function φS ◦F , where φS

has the same representation as that of φ except that integration takes place

over the Borel set S instead of R. The integral representation of composed

Herglotz functions, and their boundary values, have been studied in [12].

We present a result for generalized value distribution which is analogous

to the one in (13). Define first, for any Borel set S of R and z ∈ C+, a

generalized angle subtended θσ by

θσ(z, S) =

∫

S

Im

[
1

t− z

]
dσ(t).

Thus θσ(z, S) may be thought of as an angle subtended at the point z ∈ C+

by the set S, weighted on R by the measure σ. We define ωσ(z, S;F ) =

θσ(F (z), S)/π for z ∈ C+, and ωσ(λ, S;F ) = limδ→0+ ωσ(λ + iδ, S;F ) for

points λ ∈ R.
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In the remainder of the section we shall assume that the measure dσ is

absolutely continuous, with density function hσ .

We have the relation
∫

S

µδ
y(A)dσ(y) =

1

π

∫

R

θ(t+ iδ, A)dνS(t), (17)

where the measures µδ
y correspond to the translated Herglotz functions

F δ
y (z) = Fy(z + iδ). A detailed proof of (17) will be published elsewhere.

For any Borel set S and positive constant C, let the sets S0, S1 be

defined by

S0 = {y ∈ S : hσ(y) ≤ C}, S1 = {y ∈ S : hσ(y) > C}.

We define Herglotz functions φ0, φ1 having the integral representations

φ0(z) = aφ + bφz +

∫

S0

{
1

t− z
− t

t2 + 1

}
dσ(t), (18)

φ1(z) =

∫

S1

{
1

t− z
− t

t2 + 1

}
dσ(t), (19)

and let ν0, ν1 be the measures corresponding to the composed Herglotz

functions φ0 ◦F , φ1 ◦F respectively. Since (φS ◦F )(z) = (φ0 ◦F )(z) + (φ1 ◦
F )(z) for all z ∈ C+, we have µ(φS◦F )(B) = ν0(B) + ν1(B) for any Borel

set B, and from eq. (16) we obtain νS(B) = ν0(B) + ν1(B) − bφµ(B).

The measure (ν0 − bφµ) is absolutely continuous with respect to

Lebesgue measure, with density function bounded by C. For finite intervals

(a, b] whose endpoints are not discrete points of the measure (ν0−bφµ), this

follows from the standard result [8] about Herglotz measures of intervals, by

an application of the Lebesgue dominated convergence theorem. We have

(ν0 − bφµ)((a, b]) = lim
ε→0+

1

π

∫ b

a

{∫

S0

Im

[
1

t− F (λ+ iε)

]
dσ(t)

}
dλ

≤ C(b− a),

since dσ is bounded by Lebesgue measure on the set S0, and for any fixed

value ε > 0 we have
∫

R
Im [t− F (λ+ iε)]−1dt = π.

The result extends to arbitrary open intervals by considering sequences

of intervals whose endpoints are not discrete points of (ν0−bφµ), and hence

to open Borel sets.

Now fix C > 0. If B is any bounded Borel set, given ε > 0 there is an

open set G containing B such that |G| < |B| + ε/C. Then, we have

(ν0 − bφµ)(B) ≤ (ν0 − bφµ)(G) ≤ C|G| ≤ C|B| + ε,
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and since ε was arbitrary we can infer (ν0 − bφµ)(B) ≤ C|B|.
Finally, the result generalizes to arbitrary Borel sets through the relation

(ν0 − bφµ)(B) = (ν0 − bφµ)(∪NB ∩ [−N,N ]).

Let [a, b] be a finite closed interval. For any Borel set A ⊆ [a, b] we have,

therefore,

1

π

∫

A

θ(t+ iδ, Ac)d(ν0 − bφµ)(t) ≤ CEA(δ),

1

π

∫

Ac

θ(t+ iδ, A)d(ν0 − bφµ)(t) ≤ CEA(δ),

(20)

where

EA(δ) =
1

π

∫

Ac

θ(t+ iδ, A)dt. (21)

Note that

EA(δ) =
1

π

∫

R

θ(t+ iδ, A)dt− 1

π

∫

A

{π − θ(t+ iδ, Ac)}dt

=
1

π

∫

A

θ(t+ iδ, Ac)dt.

It has been shown [4] that EA(δ) is a non-decreasing function of δ, with

limδ→0+ EA(δ) = 0.

We also have the following result: let ε > 0 be given, and take δ with

0 < δ < 1. Then, a constant N = N(ε) can be found such that

1

π

∫

A

θ(t+ iδ, Ac)dν1(t) < ε,

1

π

∫

Ac

θ(t+ iδ, A)dν1(t) < ε,

(22)

hold for all C > N(ε) and for all Borel sets A ⊆ [a, b], where C is the

constant appearing in the definition of the sets S0, S1. The proof of (22)

will be published elsewhere.

From eq. (17) and the definition of the measure νS we have
∣∣∣∣
∫

S

µδ
y(A)dσ(y) −

∫

S

µy(A)dσ(y)

∣∣∣∣ =

∣∣∣∣
1

π

∫

R

θ(t+ iδ, A)dνS(t) − νS(A)

∣∣∣∣

=

∣∣∣∣
∫

A

{ 1

π
θ(t+ iδ, A) − 1}dνS(t) +

1

π

∫

Ac

θ(t+ iδ, A)dνS(t)

∣∣∣∣. (23)

In (23), the integral on the left is negative, and the integral on the right is

positive. Hence an upper bound for this expression is

sup

{
1

π

∫

A

θ(t+ iδ, Ac)dνS(t),
1

π

∫

Ac

θ(t+ iδ, A)dνS(t)

}
.
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Since νS(B) = (ν0 − bφµ)(B) − ν1(B) for any Borel set B, combining (20)

and (22) we have
∣∣∣∣
∫

S

µδ
y(A)dσ(y) −

∫

S

µy(A)dσ(y)

∣∣∣∣ ≤ CEA(δ) + ε, (24)

for all C > N(ε) and for all Borel sets A ⊆ [a, b].

The measures µδ
y are absolutely continuous, with density functions

Im (limε→0+ F δ
y (λ+ iε))/π = ImFy(λ + iδ)/π. Thus, we have

∫

S

µδ
y(A)dσ(y) =

∫

A

{
1

π

∫

S

Im

[
1

y − F (λ+ iδ)

]
dσ(y)

}
dλ

=

∫

A

1

π
θσ(F (λ+ iδ), S)dλ =

∫

A

ωδ
σ(λ, S;F )dλ,

by a change in the order of integration. The absolute continuity of dσ implies

the absolute continuity of νS , which has been associated with the Herglotz

function (φS ◦ F ) − bφF . Thus, the density function hνS of νS is given by

hνS (λ) = limε→0+ Im (φS ◦F −bφF )(λ+ iε)/π, and from the representation

of φS we have

hνS (λ) = lim
ε→0+

1

π

∫

S

Im

[
1

t− F (λ+ iε)

]
dσ(t)

= lim
ε→0+

1

π
θσ(F (λ + iε), S) = ωσ(λ, S).

Hence,

νS(A) =

∫

S

µy(A)dσ(y) =

∫

A

ωσ(λ, S)dλ.

We have therefore obtained the following Theorem.

Theorem 3.1. Let [a, b] be a finite closed interval, K a compact subset of

C+, and S any Borel set. Take δ with 0 < δ < 1, let EA(δ) be defined by

(21), and suppose that the measure dσ is absolutely continuous. Then, given

ε > 0, a constant N = N(ε) can be found such that
∣∣∣∣
∫

A

ωδ
σ(λ, S;F )dλ−

∫

A

ωσ(λ, S;F )dλ

∣∣∣∣ ≤ CEA(δ) + ε, (25)

for all C > N(ε), A ⊆ [a, b], and for any Herglotz function F such that

F (i) ∈ K.

We remark that the condition F (i) ∈ K is required in order to prove the

inequalities (22).

The application of Theorem 3.1 in the spectral analysis of differential

operators is the aim of research in progress.
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In the paper we consider cyclic hyper-number systems which are naturally
related to the partial differential equations over the paracomplex algebra with
zero divisors. This research is somehow parallel to the notion of the classical
hypercomplex systems. At the end we shortly describe the Hankel geometry
as a special cyclic geometry. Due to some page restrictions in this volume, we
shall develop the analytic and the geometric approaches to this specific kind
of cyclic geometry in another article of ours.
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Let K denotes the field of complex numbers or the field of real numbers,

i. e. K = R or K = C. By definition K(j0, j1, . . . , jn) := {a0j0 + a1j1 +

· · · + anjn : ak ∈ K, k = 0, 1, 2, . . . , n}, dim K(j0, j1, . . . , jn) = n + 1, is

called an (n+ 1)-dimensional hyper-K-system with units jk.

Addition in such systems is defined naturally by the addition of the

corresponding coefficients, and the multiplication with the help of the units
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(clkr ), r = 0, 1, . . . , n:

jkjl = ckl
0 j0 + ckl

1 j1 + · · · + ckl
n jn, jljk = clk0 j0 + clk1 j1 + · · · + clkn jn.

In general we have that jkjl 6= jljk, k, l = 0, 1, 2, . . . , n, i.e a non-

commutative multiplication. We see that K ⊂ K(j0, j1, j2, . . . , jn). We set

j0 = 1 and therefore j0j0 = j0, j0jk = jkj0 = jk.

1. Hyper-real systems: K = R

The ordinary complex numbers x + iy can be considered as

linear combinations of the kind x · 1 + y · i constructed from the

units 1 and i with the help of the (real) parameters x and y.

Felix Klein, The Elementary Mathematics from the Point of

View of the Higher.

The simplest hyper-real system is the field of complex numbers, namely

R(1, i) := {x+ iy : x, y ∈ R, i2 = −1},

where i is the unique unit j1. In fact, there are two other 2-dimensional

hyper-real systems:

R(1, κ) = {x+ κy : x, y ∈ R, κ2 = 1}

(double-real numbers, or para-complex numbers, or hyperbolic numbers),

and

R(1, ω) = {x+ ωy : x, y ∈ R, ω2 = 0},

known as E. Study’s numbers. The unit in the case of double-real numbers

can be interpreted using the matrix representation of the hyper-real system

R(1, κ). The elements of this system have the following matrix representa-

tion as 2 × 2 real cyclic matrices:

Q =

(
x y

y x

)
= x

(
1 0

0 1

)
+ y

(
0 1

1 0

)
,

(
0 1

1 0

)2

= 1,

and we set κ :=

(
0 1

1 0

)
. Let us recall that the matrix representation of

the real numbers can be written as follows: if r ∈ R, then r →
(
r 0

0 r

)
.

Therefore we have κ =

(
0 1

1 0

)
6∈ R.
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The hyper-real systems above are two-dimensional systems. The follow-

ing hyper-real systems are real four-dimensional. They are closely related

to the non-commutative division quaternion algebras (Hamilton, 1843):

R(1, i, j, k) = {x0 + ix1 + jx2 + kx3 : x0, x1, x2, x3 ∈ R,

i2 = j2 = −1, k = ij}
The bicomplex numbers (Segre, 1894) are: R(1, i, j, e) = {x0 + ix1

+ jx2 +ex3 : x0, x1, x2, x3 ∈ R, i2 = j2 = −1, e2 = +1}. The corresponding

algebra is a commutative algebra with zero divisors.

2. Hyper-complex systems

Some of the above presented hyper-real systems admit a complexification.

We shall note this for the complex and bicomplex numbers [1]:

R(1, i) = C(1), R(1, i, j, e) = C(1, j), j2 = −1.

These are true up to an isomorphism.

3. Real double-variables or para-complex variables

The real double-number system R(1, κ), κ2 = 1, is an algebra and we denote

its elements by z = x + κy, x, y ∈ R. They are also called para-complex

numbers. By definition z∗ := x−κy is called the conjugate of z. This algebra

has zero divisors. We have that dz = dx+ κdy, dz∗ = dx − κdy.

One can consider differentiable real double-number functions

f : R(1, κ) → R(1, κ), i.e. f(z) = f0(x, y) + κf1(x, y).

From here on we consider only continuously differentiable functions, i.e.

functions with continuous partial derivatives.

The following representation for the differentials is valid:

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z∗
dz∗,

where

∂

∂z
= 1/2

(
∂

∂x
+ κ

∂

∂y

)
,

∂

∂z∗
= 1/2

(
∂

∂x
− κ

∂

∂y

)
, 1/κ = κ.

We say that f(z) is holomorphic real double-number or holomorphic

paracomplex function if

∂f

∂z∗
= 0, or

∂f

∂x
− κ

∂f

∂y
= 0. (1)
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The condition above implies

∂f0(x, y)

∂x
+ κ

∂f1(x, y)

∂x
− κ

(
∂f0(x, y)

∂y
+ κ

∂f1(x, y)

∂y

)
= 0,

and since κ2 = 1, we get

∂f0(x, y)

∂x
− ∂f1(x, y)

∂y
+ κ

(
∂f1(x, y)

∂x
− ∂f0(x, y)

∂y

)
= 0.

Finally, we get the following system of two unknown functions f0 and f1:

∂f0(x, y)

∂x
− ∂f1(x, y)

∂y
= 0,

∂f1(x, y)

∂x
− ∂f0(x, y)

∂y
= 0,

∂f0(x, y)

∂x
=
∂f1(x, y)

∂y
,

∂f1(x, y)

∂x
=
∂f0(x, y)

∂y
.

(2)

From (2) we get the following second order equations:

∂2f0(x, y)

∂x2
− ∂2f0(x, y)

∂y2
= 0,

∂2f1(x, y)

∂x2
− ∂2f1(x, y)

∂y2
= 0. (3)

Remark 3.1. The system (2) is a hyperbolic system of two unknown func-

tions, and the second order equations are hyperbolic equations respectively.

Example 3.1. Let f0(x, y) = x, f1(x, y) = y, i.e. f(x+κy) = x+κy . The

system (2) and the second order equations (3) are satisfied.

Example 3.2. Let f0(x, y) = x, f1(x, y) = −y, i.e. f(x − κy) = x − κy.

The system (2) and the second order equations are not satisfied.

4. Four real variables, K = R

Let us consider the cyclic matrices




a b c d

d a b c

c d a b

b c d a


. Then any real number can

be represented in the form




r 0 0 0

0 r 0 0

0 0 r 0

0 0 0 r


, which is a cyclic matrix. We denote

the set of all real (4×4)-matrices by M4(R). This set is a non-commutative

real algebra. For r = 1 the matrix above is the unity element in the algebra

M4(R).

We see that the set of all cyclic matrices is a subalgebra of M4(R), which

include the reals and the unity of M4(R). It is denoted by R(1, τ, τ2, τ3).
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In the previous paragraph we considered, in fact, cyclic (2 × 2)-matrices

(R(1, κ) ⊂M2(R)).

Let us define

τ :=




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


 , τ2 :=




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 , τ3 :=




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0


 ,

and τ4 coincides with the unity matrix I in the algebra M4(R). It is easy

to see that τkτ q = τk+q , k, q = 1, 2, 3, 4 and τ4 = I .

Let (a, b, c, d) denotes the cyclic (4×4)-matrix defined by these four real

numbers.

Proposition 4.1. Each cyclic matrix (a, b, c, d) can be represented in the

form:

(a, b, c, d) = aI + bτ + cτ 2 + dτ3, aI = a.

Proof. The proof is obtained by straightforward computations.

Proposition 4.2. Each four-real number can be represented as a sum of

two double-real numbers.

Proof. It is obvious that a+ bτ + cτ 2 + dτ3 = a+ cτ2 + τ(b+ dτ2). Let us

set a+ cτ2 = α and b+ dτ2 = β. Since (τ2)2 = 1, it follows that α and β

are double-real numbers. So we obtain that

a+ bτ + cτ2 + dτ3 = α+ βτ, with τ4 = 1.

The above is often called a doubling of the initial real variables.

5. Four-real functions of four real variables

The set of four-real variables is denoted by R(1, τ, τ 2, τ3) ⊂ M4(R). It is

a commutative algebra with zero divisors which is a subalgebra of M4(R),

or 4-dimensional commutative hyper real system. If ξ ∈ R(1, τ, τ 2, τ3), we

have that

ξ = x+ yτ + uτ2 + vτ3 with x, y, u, v ∈ R.

A function φ : R(1, τ, τ2, τ3) → R(1, τ, τ2, τ3) is represented as follows:

φ(x+ yτ + uτ2 + vτ3)

= φ0(x, y, u, v) + φ1(x, y, u, v)τ + φ2(x, y, u, v)τ2 + φ4(x, y, u, v)τ3,
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where φj , j = 0, 1, 2, 3 are function of four real variables.

On the other hand the function φ can be considered as a function of

two double-real variables φ : [R(1, τ 2)](1, τ) → [R(1, τ2)](1, τ) if it can be

represented as follows:

φ(α + τβ) = φ0(α, β) + τφ1(α, β), α, β ∈ R(1, τ2).

This means that φ is differentiable as a function of double-real variables

if there are two functions ϕ0 and ϕ1 of the double-real variables α and β

such that the equality above is true.

Let dx, dy, du, dv be the ordinary differentials. Then the differentials of

the double-real variables α and β are

dα = dx+ τ2du, dβ = dy + τ2dv.

6. Partial derivatives with respect to the double-real

variables α and β

Let f(ξ) be a four-real function of four-real variables

ξ = x+ τy + τ2u+ τ3v =




x y u v

y u v x

u v x y

v x y u


 .

We have that

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂u
du+

∂f

∂v
dv,

where

∂f

∂x
=
∂f0
∂x

+ τ
∂f1
∂x

+ τ2 ∂f2
∂x

+ τ3 ∂f3
∂x

,

etc. We recall that

α = x+ τ2u, β = y + τ2v, α∗ = x− τ2u, β∗ = y − τ2v.

Then

dα = dx+ τ2du, dβ = dy + τ2v, dα∗ = dx− τ2du, dβ∗ = dy − τ2dv,

and it follows that

2dx = dα+ dα∗, 2dy = dβ + dβ∗, 2du = τ2(dα − dα∗),
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and 2dv = τ2(dβ − dβ∗). We introduce the following differential operators:

∂f

∂α
:=

1

2

(
∂f

∂x
+ τ2 ∂f

∂u

)
,

∂f

∂β
:=

1

2

(
∂f

∂y
+ τ2 ∂f

∂v

)
,

∂f

∂α∗ :=
1

2

(
∂f

∂x
− τ2 ∂f

∂u

)
,

∂f

∂β∗ :=
1

2

(
∂f

∂y
− τ2 ∂f

∂v

)
.

Then the following equalities are true:

∂f

∂x
=

(
∂f

∂α
+

∂f

∂α∗

)
,

∂f

∂y
=

(
∂f

∂β
+

∂f

∂β∗

)
,

τ2 ∂f

∂u
=

(
∂f

∂α
− ∂f

∂α∗

)
,

∂f

∂v
=

(
∂f

∂β
− ∂f

∂β∗

)
.

Proposition 6.1. The following equalities hold:

∂f

∂x
dx+

∂f

∂u
du =

∂f

∂α
dα+

∂f

∂α∗ dα
∗,

∂f

∂y
dy+

∂f

∂v
dv =

∂f

∂β
dβ+

∂f

∂β
dβ∗. (4)

Proof. We have that

∂f

∂x
dx+

∂f

∂u
du

=

(
∂f

∂α
+

∂f

∂α∗

)(
1

2
(dα+ dα∗)

)
+ τ2

(
∂f

∂α
− ∂f

∂α∗

)(
τ2

2
(dα− dα∗)

)

=
∂f

∂α
dα+

∂f

∂α∗ dα
∗.

The second equality can be proved in exactly the same way.

If we put f(ξ) = f(α + τβ) where α = x + τ 2u and β = y + τ2v, we

obtain the following

Corollary 6.1. df =
∂f

∂α
dα+

∂f

∂β
dβ +

∂f

∂α∗ dα
∗ +

∂f

∂β∗ dβ
∗.

7. Para-complex differentiability

Let f be a four-real function of four-real variables.

Definition 7.1. We say that a function f is a para-complex differentiable

if

∂f

∂α∗ dα
∗ +

∂f

∂β∗ dβ
∗ = 0. (5)
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It follows that

∂f

∂α∗ dα
∗ +

∂f

∂β∗ dβ
∗

=
1

2

(
∂f

∂x
− τ2 ∂f

∂u

)
(dx− τ2du) +

1

2

(
∂f

∂y
− τ2 ∂f

∂v

)
(dy − τ2dv)

=
1

2

(
∂f

∂x
− τ2 ∂f

∂u

)
dx+

1

2

(
∂f

∂y
− τ2 ∂f

∂v

)
dv

+
1

2

(
∂f

∂u
− τ2 ∂f

∂x

)
du+

1

2

(
∂f

∂v
− τ2 ∂f

∂y

)
dv.

It turns out that the differentiability condition (5) implies a new condition:

∂f

∂x
= τ2 ∂f

∂u
,

∂f

∂y
= τ2 ∂f

∂v
. (6)

In terms of components f0, f1, f2, f3, we have

∂f0
∂x

+ τ
∂f1
∂x

+ τ2 ∂f2
∂x

+ τ3 ∂f3
∂x

= τ2

(
∂f0
∂u

+ τ
∂f1
∂u

+ τ2 ∂f2
∂u

+ τ3 ∂f3
∂u

)
;

∂f0
∂y

+ τ
∂f1
∂y

+ τ2 ∂f2
∂y

+ τ3 ∂f3
∂y

= τ2

(
∂f0
∂v

+ τ
∂f1
∂v

+ τ2 ∂f2
∂v

+ τ3 ∂f3
∂v

)
.

Comparing coefficients before 1, τ, τ 2, τ3, one arrives at the next

Theorem 7.1. The components fj of the differentiable four-real function

f = f0 + τf1 + τ2f2 + τ3f3 satisfy the following system of 8 first order

partial differential equations

∂f0
∂x

=
∂f2
∂u

,
∂f0
∂u

=
∂f2
∂x

,
∂f1
∂x

=
∂f3
∂u

,
∂f1
∂u

=
∂f3
∂x

,

∂f0
∂y

=
∂f2
∂v

,
∂f0
∂v

=
∂f2
∂y

,
∂f1
∂y

=
∂f3
∂v

,
∂f1
∂v

=
∂f3
∂y

.

For the 4 second order partial differential equations of hyperbolic type, we

have respectively

∂2f0
∂x2

− ∂2f0
∂u2

= 0,
∂2f1
∂x2

− ∂2f1
∂u2

= 0,

∂2f0
∂y2

− ∂2f0
∂v2

= 0,
∂2f1
∂y2

− ∂2f1
∂v2

= 0.
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8. Hyper four-dimensional real scalar systems and the

Hankel geometry [2–4]

Here we recall another pure geometric aspect of the cyclic 4 × 4 matrices,

namely the decomposition




a b c d

b c d a

c d a b

d a b c


 = aH1 + bH2 + cH3 + dH4,

where

H1 =




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


 , H2 =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 ,

H3 =




0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1


 , H4 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 ,

and a + b + c + d 6= 0, a + c − b − d 6= 0, a 6= c, and b 6= d. The last are

sufficient for the matrices to be non-singular. The set of all such matrices

is denoted by R(H1,H2,H3,H4). The following properties of the above

considered matrices are valid:

H2
1 = H2

2 = H2
3 = H2

4;

H1H2 = H2H3 = H3H4;

H1H3 = H2H4.

The considered matrices are called Hankel matrices and the geometry in-

duced by them is called a Hankel geometry.

Since the product of two Hankel matrices is not a Hankel matrix,

R(H1,H2,H3,H4) is not a ring with the usual matrix multiplication, but

it is a linear space. The inverse matrix of a Hankel matrix is a Hankel ma-

trix too. Sometimes the inverse of a non-singular Hankel matrix is called a

Bézout matrix. Hence, it is easy to formulate the following assertion:

Any product of two Hankel matrices is a linear combination of the ma-

trices H1H1 = I, H1H2, H1H3 and H1H4 defined already above.
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Let now

M =




x y z u

y z u x

z u x y

u x y z


 ∈ R(H1,H2,H3,H4).

One can define the following transformations:

X := ax+ by + cz + du, Y := ay + bz + cu+ dx,

Z := az + bu+ cx+ dy, U := au+ bx+ cy + dz.
(7)

Points (vectors) v(x, y, z, u) are the points (vectors) in Hankel geometry,

and (7) are the Hankel transformations. One can study some specific in-

variants under these transformations.

Let v1(x1, y1, z1, u1), v2(x2, y2, z2, u2) be two vectors in Hankel geome-

try. Then we define a scalar product as follows:

v1v2 = x1x2 + y1y2 + z1z2 + u1u2.

It is proved that scalar product in Hankel geometry is an absolute invariant

iff a2 + b2 + c2 + d2 = 1, ab + bc + cd + ud = 0 and ac + bd = 0 i.e. the

considered cyclic matrix is an orthogonal matrix.

Analogously, it is possible to define a pseudo-scalar product of two vec-

tors and a cross-product of three vectors. In particular, a pseudo-scalar

product of two vectors v1 and v2 is defined as follows:

v1v2 = x1x2 + y1y2 +K(z1z2 + u1u2). (8)

Then the following remarkable fact is true:

Pseudo-scalar product (8) is invariant under the Hankel transformations

iff K = −1 and these transformations are of the form

X = cosh(t)x + sinh(t)z, Y = cosh(t)y + sinh(t)u,

Z = sinh(t)x + cosh(t)z, U = sinh(t)y + cosh(t)u,

i.e. iff the Hankel transformations are extensions to the Lorentz transfor-

mations and K = −1.
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This paper deals with plane curves which being integral curves of a certain
dynamical system of two degrees of freedom can be thought of as trajecto-
ries of a particle of unit mass in a potential field. Two special cases of this
system that are integrable by quadratures are identified in another paper of
this volume. Typical examples of curves, corresponding to each of these two
cases are the so-called Lévy’s elasticae and the profile curves of the Delaunay
surfaces, respectively. Here their parameterizations are derived in explicit form
and illustrated by a number of figures.

Keywords: Dynamical system; Integrability; Lévy’s elastica; Delaunay surfaces.

1. Dynamical systems of the Frenet-Serret type

The present contribution is concerned with the integral curves of systems

consisting of two second-order ordinary differential equations of form

ẍ+ K(x, z)ż = 0, z̈ −K(x, z)ẋ = 0 (1)

where (x, z) are Cartesian co-ordinates in the Euclidean plane R2 and dots

denote derivatives with respect to the archlength s of the respective curve.

Systems like (1) may be referred to as systems of Frenet-Serret type since

they originate from the prominent Frenet-Serret formulas as is shown in

another paper in this volume (see Ref. 1). Each system of the form (1)

can be also regarded as a dynamical system of two degrees of freedom

determining the motion (trajectories) of a particle of unit mass, s playing
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the role of time. Given a system of the aforementioned form, the function

K(x, z) is easily identified with the curvature of its integral curves.

Two cases of dynamical systems of Frenet-Serret type that are integrable

by quadratures are identified in Ref. 1. Examples of such systems within

each of these cases are given below, and explicit parametric equations of

the respective curves are derived for all of them.

2. Lévy’s elasticae

The first example is the so-called Lévy’s elasticae [3] — curves of curvature

K(x, z) = K(r) = ar2 + c, a, c ∈ R, a 6= 0 (2)

where

r =
√
x2 + z2.

It is shown in Ref. 1 that in this case, integrability in quadratures of the

respective system of the form (1) can be accomplished in polar coordinates

x = r cos θ, y = r sin θ (3)

in which it reduces to

ϑ̇ =
1

r2
(rU(r) − ε) , ṙ = ±1

r

√
r2 − (rU (r) − ε)

2
(4)

where

U (r) =
1

r

∫
rK(r) d r =

1

4

(
ar3 + 2cr

)

and ε is a real number.

Instead of integrating directly for r(s) and ϑ(r), we chose another path

on the way to determine the explicit parametric equations of the curves with

curvature specified in (2). Namely, we first differentiate the expressions (3)

with respect to s, then substitute the so obtained derivatives of x and z in

ẋ = cosϕ, ż = sinϕ, where ϕ is the slope angle (ϕ̇ = κ(s) = K (x(s), z(s)))

and finally solve for cosϑ and sinϑ. Substitution of the so obtained expres-

sions in (3) yields

x =
rṙ

r2ϑ̇2 + ṙ2
cosϕ+

r2ϑ̇

r2ϑ̇2 + ṙ2
sinϕ,

z =
rṙ

r2ϑ̇2 + ṙ2
sinϕ− r2ϑ̇

r2ϑ̇2 + ṙ2
cosϕ.
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Substituting here equations (4) and taking into account the relation

r2 =
1

a
κ(s) − c

that is inherent to Lévy’s elasticae (see Ref. 3 as well as formula (2)), one

ends with the expressions

x(s) =
1

2a

dκ(s)

ds
cosϕ(s) +

1

4a
(κ 2(s) − c2 − 4aε) sinϕ(s),

z(s) =
1

2a

dκ(s)

ds
sinϕ(s) − 1

4a
(κ 2(s) − c2 − 4aε) cosϕ(s)

(5)

which produce the position vector components in terms of the curvature

κ(s) and the slope angle ϕ(s), obtained by other means in Ref. 2. Thus, the

problem for determination of explicit parametric equations of the curves

constituting Lévy’s elasticae reduces to the problem for determination of

explicit expressions for the curvature κ(s) and the slope angle ϕ(s).

After the above substitutions, the equation for ṙ can be written in the

form (
dκ (s)

ds

)2

= P (κ(s)), P (κ) = 2E − 1

4
κ4 +

1

2
µκ2 + σκ (6)

where

E = −1

8
c4 − 2a2ε2 − c2aε− 2ca, µ = c2 + 4aε, σ = 4a.

The very same equation has been studied recently by the present authors

in the context of the equilibrium shapes of lipid bilayer membranes [2] and

it has been proved that depending on the values of the parameters µ, σ and

E, two cases for the intrinsic equation of the curve and the corresponding

slope angle ϕ(s) have to be considered.

Case 1. The polynomial P (κ) has two real roots α < β and two complex

conjugate roots γ and δ = γ̄. In this case there exist both periodic and

non-periodic solutions of the equation (6) for the curvature κ(s).

If (3α + β)(α + 3β) 6= 0 and η = (γ − δ)/(2i) 6= 0, then there exist

periodic solutions which are given below by the following formulas

κ1 (s) =
(Aβ +Bα) − (Aβ −Bα) cn(us, k)

(A+B) − (A−B) cn(us, k)
, (7)

ϕ1 (s) =
Aβ −Bα

A−B
s+

(A+B) (α− β)

2u (A−B)
Π

(
− (A−B)

2

4AB
, am(us, k), k

)

+
α− β

2u

√
k2 + (A−B)2

4AB

arctan



√

k2 +
(A−B)

2

4AB

sn (us, k)

dn (us, k)




(8)
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where

A =

√
4η2 + (3α+ β)

2
, B =

√
4η2 + (α+ 3β)

2
, u =

1

4

√
AB,

k =
1√
2

√√√√1 − 4η2 + (3α+ β) (α+ 3β)√
[4η2 + (3α+ β) (α+ 3β)]

2
+ 16η2(β − α)2

·

Non-periodic solutions are obtained in the cases in which

(3α+ β)(α + 3β) = η = 0,

and they are of the form

κ2 (s) = ζ − 4ζ

1 + ζ2s2
, ϕ2 (s) = ζs− 4 arctan (ζs) ,

where ζ = α if 3α+ β = 0 and ζ = β if α+ 3β = 0.

Case 2. The polynomial P (ξ) has four real roots α < β < γ < δ. Then,

two periodic solutions of the equation (6) exist, i.e.,

κ3 (s) = δ − (δ − α) (δ − β)

(δ − β) + (β − α) sn2 (us, k)
,

ϕ3 (s) = δs− δ − α

u
Π

(
β − α

β − δ
, am(us, k), k

) (9)

and

κ4 (s) = β +
(γ − β) (δ − β)

(δ − β) − (δ − γ) sn2 (us, k)
,

ϕ4 (s) = βs− β − γ

u
Π

(
δ − γ

δ − β
, am(us, k), k

) (10)

where in both cases

u =
1

4

√
(γ − α) (δ − β), k =

√
(β − α) (δ − γ)

(γ − α) (δ − β)
.

Depending on the chosen values of the constants µ, σ and E, the curves

constituting the Lévy’s elasticae can be open or closed, the latter being

simple or self-intersecting. It is shown in Ref. 2 that the respective simple

curves are generated by the periodic solutions specified in the first case

while the two solutions in the second case produce only self-intersecting

curves.

Typical examples of curves, corresponding to curvatures of the form (7)

are seen in Figure 1. Curves of this kind with only one axis of symmetry
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are necessarily self-intersecting, whereas curves of more axes of symmetry

could be simple as it is illustrated in that Figure.

Fig. 1. Examples of closed curves of curvature (7).

Figure 2 represents typical examples of curves whose curvatures are

of the forms (9) or (10). It is already pointed out that these curves are

necessarily [2] self-intersecting ones, but in Figure 2 one can see that the

protuberances, which are shaped due to the self-intersection, are directed

inward for curvatures of the form (9) and outward for curvatures of the

form (10).

Fig. 2. Closed self-intersecting curves generated via (9) (top) and (10) (bottom).

3. Profile curves of Delaunay’s surfaces

As another quite interesting example, let us consider the profile curves of

classic Delaunay’s surfaces [4]. Elsewhere [5] it is shown that their curva-

tures are specified by the general formula

κ(x) = m+
n

x2
, x > 0, m, n ∈ R. (11)
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Here, for typographical reasons we have replaced the canonical variables

q, p in formulae (39) and (40) presented in Ref. 1 with x, respectively z.

Besides, according to them, the system (1) for these surfaces reduces to the

quadratures

s = ±
∫

xdx√
x2 − (mx2 − n)

2
, z = ±

∫
(mx2 − n)dx√
x2 − (mx2 − n)

2
.

Apparently, the integration depends crucially on whether m = 0 or not.

Note that the parameter m in formula (11) is the mean curvature of the

Delaunay’s surfaces as can be traced in more details in Ref. 5.

In the case of profile curves of Delaunay’s surfaces with nonzero mean

curvature (m 6= 0), and omitting the signs in the above integrals, x(s) is

expressed by the elementary function

x(s) =

√
1 + 2mn+

√
1 + 4mn sin(2ms)

√
2m

(12)

whereas z(s) is expressed in terms of the first and the second kind elliptic

integrals

z(s) =
λ

m
E
(
ms− π

4
, k
)
− n

λ
F
(
ms− π

4
, k
)

(13)

with

λ =

√
1 + 2mn+

√
1 + 4mn√

2
, k =

√
2
√

1 + 4mn

1 + 2mn+
√

1 + 4mn
·

The case m = 0 corresponds to the profile curves of Delaunay’s surfaces

with zero mean curvature (minimal surfaces). In this case both, x(s) and

z(s) are expressed via elementary functions, namely

x(s) =
√
s2 + n2, z(s) = −n ln

(
s+

√
s2 + n2

)
. (14)

Typical examples of Delaunay’s surfaces and their profile curves are

given in Figure 3. The most interesting profile curves — nodary, undulary

and catenary are shown on the top and the corresponding surfaces obtained

after their revolution about the symmetry axes are depicted at the bottom.

All of them are produced by making use of the solutions of the system

(1) given in (12)–(14). The nodoids and unduloids are obtained when the

parametersm and n in (12)–(13) have the same, respectively different signs.

The solutions to the system (1) of the form (14) correspond to catenoids.

Expressions (14) imply also that since the catenoids are infinite in both

directions surfaces of revolution, their shapes are independant of the sign

of the parameter n.
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Fig. 3. Left to right: the nodary, undulary and catenary (top), and the nodoid, unduloid
and catenoid (bottom).
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This paper aims to relate some properties of photon-like objects, considered as
spatially finite time-stable physical entities with dynamical structure, to well
defined properties of the corresponding electromagnetic strains defined as Lie
derivatives of the Minkowski (pseudo) metric with respect to the eigen vector
fields of the Maxwell-Minkowski stress-energy-momentum tensor. First we re-
call the geometric sense of the concept of strain, then we introduce and discuss
the notion for PhLO. We compute then the strains and establish important
correspondences with the divergence terms of the energy tensor and the terms
determining some internal energy-momentum exchange between the two com-
ponents F and ∗F of a vacuum electromagnetic field. The role of appropriately
defined Frobenius curvature is also discussed and emphasized. Finally, equa-
tions of motion and interesting PhLO-solutions are given.

Keywords: Strain; Frobenius curvature; Photon-like object.

1. Strain

The concept of strain is introduced in studying elastic materials subject to

external forces of different nature: mechanical, electromagnetic, etc. The

classical strain describes mainly the abilities of the material to bear force-

action from outside through deformation, i.e. through changing its shape,

or, configuration.

The mathematical counterparts of the allowed (including reversible) de-

formations are the diffeomorphisms ϕ of a riemannian manifold (M, g),

and every ϕ(M) represents a possible configuration of the material con-

sidered. The essential diffeomorphisms ϕ must transform the metric g to

some new metric ϕ∗g, such that g 6= ϕ∗g. The naturally arising tensor field

e = (ϕ∗g − g) 6= 0 appears as a measure of the physical abilities of the

material to withstand external force actions.
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The continuity of the process of deformation leads to consider 1-

parameter group ϕt, t ∈ [a, b] ⊂ R of deformations, i.e. of local diffeo-

morphisms. Let the vector field X generate ϕt, then the quantity

1

2
LXg :=

1

2
lim
t→0

ϕ∗
t g − g

t
,

i.e. one half of the Lie derivative of g along X , is called (infinitesimal) strain

tensor, or deformation tensor.

Remark. Further in the paper we shall work with LX g, i.e. the factor 1/2

will be omitted.

A consecutive relativistic approach to elasticity may be found in [3] (see

also the corresponding quotations therein). In our further study we shall

carry the above given Lie derivative definition of strain tensor to the case of

Minkowski space-time, so we shall call LX η, where g = η is the Minkowski

(pseudo)metric and X is any local nonisometry of η, just strain tensor.

Clearly, the term “material” does not seem to be appropriate for photon-

like objects (PhLO) because, as we suggest in the next section, these objects

admit NO static situations, they are of entirely dynamical nature, so

the corresponding relativistic strain tensors must take care of this.

2. The Concept of photon-like object(s)

We introduce the following notion of Photon-like object(s) (we shall use the

abbreviation “PhLO” for “Photon-like object(s)”):

PhLO are real massless time-stable physical objects with a

consistent translational-rotational dynamical structure.

We give now some explanatory comments, beginning with the term real.

First, we emphasize that this term means that we consider PhLO as re-

ally existing physical objects, not as appropriate and helpful but imagi-

nary (theoretical) entities. Accordingly, PhLO necessarily carry energy-

momentum, otherwise, they could hardly be detected. Second, PhLO can

undoubtedly be created and destroyed, so, no point-like and infinite mod-

els are reasonable: point-like objects are assumed to have no structure,

so they cannot be destroyed since there is no available structure to be

destroyed; creation of infinite physical objects (e.g. plane waves) requires

infinite quantity of energy to be transformed from one kind to another for

finite time-period, which seems also unreasonable. Accordingly, PhLO are

spatially finite and have to be modeled like such ones, which is the only

possibility to be consistent with their “created-destroyed” nature. It seems
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hardly reasonable to believe that PhLO can not be created and destroyed,

and that spatially infinite and indestructible physical objects may exist at

all. Third, “spatially finite” implies that PhLO may carry only finite val-

ues of physical (conservative or non-conservative) quantities. In particular,

the most universal physical quantity seems to be the energy-momentum,

so the model must allow finite integral values of energy-momentum to be

carried by the corresponding solutions. Fourth, “spatially finite” means

also that PhLO propagate, i.e. they do not “move” like classical particles

along trajectories, therefore, partial differential equations should be used

to describe their evolution in time.

The term “massless” characterizes physically the way of propagation in

terms of appropriate dynamical quantities: the integral 4-momentum p of a

PhLO should satisfy the relation pµp
µ = 0, meaning that its integral energy-

momentum vector must be isotropic, i.e. to have zero module with respect

to Lorentz-Minkowski (pseudo)metric in R4. If the object considered has

spatial and time-stable structure, so that the translational velocity of every

point where the corresponding field functions are different from zero must

be equal to c, we have in fact null direction in the space-time intrinsically

determined by a PhLO. Such a direction is formally defined by a null vector

field ζ̄ , ζ̄2 = 0. The integral trajectories of this vector field are isotropic (or

null) straight lines as is traditionally assumed in physics. It follows that

with every PhLO a null straight line direction is necessarily associated, so,

canonical coordinates (x1, x2, x3, x4) = (x, y, z, ξ = ct) on R4 may be chosen

such that in the corresponding coordinate frame ζ to have only two non-zero

components of magnitude 1: ζ̄µ = (0, 0,−ε, 1), where ε = ±1 accounts for

the two directions along the coordinate z (further such a coordinate system

will be called ζ̄-adapted and will be of main usage). Our PhLO propagates

as a whole along the ζ̄-direction, so the corresponding energy-momentum

tensor Tµν of the model must satisfy the corresponding local isotropy (null)

condition, namely, TµνT
µν = 0 (summation over the repeated indices is

throughout used).

The term “translational-rotational” means that besides translational

component along ζ̄, the propagation necessarily demonstrates some ro-

tational (in the general sense of this concept) component in such a way

that both components exist simultaneously and consistently. It seems rea-

sonable to expect that such kind of behavior should be consistent only

with some distinguished spatial shapes. Moreover, if the Planck relation

E = hν must be respected throughout the evolution, the rotational com-

ponent of propagation should have time-periodical nature with time period
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T = ν−1 = h/E = const , and one of the two possible, left or right, orien-

tations. It seems reasonable also to expect periodicity in the spatial shape

of PhLO, which somehow to be related to the time periodicity.

The term “dynamical structure” means that the propagation is sup-

posed to be necessarily accompanied by an internal energy-momentum re-

distribution, which may be considered in the model as energy-momentum

exchange between (or among) some appropriately defined subsystems. It

could also mean that PhLO live in a dynamical harmony with the outside

world, i.e. any outside directed energy-momentum flow should be accompa-

nied by a parallel inside directed energy-momentum flow.

3. The Electromagnetic strain tensors

From formal point of view the relativistic formulation of classical electrody-

namics in vacuum (zero charge density) is based on the following assump-

tions. The configuration space is the Minkowski space-time M = (R4, η)

where η is the pseudometric with sign(η) = (−,−,−,+) with the corre-

sponding volume 4-form ωo = dx ∧ dy ∧ dz ∧ dξ and Hodge star ∗ de-

fined by α ∧ β = η(∗α, β)ωo, α and β are p-form and (4 − p)-form re-

spectively. The electromagnetic filed is described by two closed 2-forms

(F, ∗F ) : dF = 0, d ∗ F = 0. The physical characteristics of the field are

deduced from the following stress-energy-momentum tensor field

Tµ
ν(F, ∗F ) = −1

2

[
FµσF

νσ + (∗F )µσ(∗F νσ)
]
. (1)

In the non-vacuum case the allowed energy-momentum exchange with other

physical systems is given in general by the divergence

∇ν T
ν
µ =

1

2

[
Fαβ(dF )αβµ+(∗F )αβ(d∗F )αβµ

]
= Fµν(δF )ν +(∗F )µν(δ∗F )ν ,

(2)

where δ = ∗d∗ is the co-derivative. Since dF = 0,d∗F = 0, this divergence

is obviously equal to zero on the vacuum solutions: its both terms are zero.

Therefore, energy-momentum exchange between the two component-fields

F and ∗F , which should be expressed by the terms (∗F )αβ(dF )αβµ, and

Fαβ(d ∗F )αβµ, summation over α < β, is NOT allowed on the solutions of

dF = 0,d ∗ F = 0. This shows that the widely used 4-potential approach

(even if two 4-potentials U,U∗ are introduced so that dU = F, dU∗ = ∗F
locally) to these equations excludes any possibility to individualize two

energy-momentum exchanging time-stable subsystems of the field that are

mathematically represented by F and ∗F .
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According to the above introduced and discussed concept of PhLO we

have to impose the condition TµνT
µν = 0 on the energy tensor (1). As is

well known [3] this is equivalent to zero eigenvalues of T ν
µ , which implies

zero invariants I1 = 1
2FµνF

µν = 1
2Fµν(∗F )µν = 0, and that T ν

µ admits just

one null eigen direction defined by the vector field ζ̄, ζ̄2 = 0, determining

a null straight-line direction along which the energy density propagates

translationally. So, the spatial-like electric and magnetic 1-form components

of the field, further denoted correspondingly by A and A∗, in this case are

mutually orthogonal and with equal magnitudes: η(A,A∗) = 0, A2 = (A∗)2,

and orthogonal to the η-corresponding to ζ̄ 1-form ζ: η(A, ζ) = η(A∗, ζ) =

0. Under these conditions it is possible to find, and convenient to use,

a canonical coordinate system (x, y, z, ξ = ct) such that ζ = εdz + dξ,

A = u dx+ p dy, A∗ = ε p dx− εu dy, F = A ∧ ζ, ∗F = A∗ ∧ ζ, where (u, p)

are two functions, and ε = ±1 carries information about the direction of

propagation along the coordinate z of our PhLO.

Remark 3.1. All further identifications of tangent and cotangent objects

will be made by η, and if A is 1-form we shall denote by Ā the corresponding

vector field.

Since we have three generic vector fields (ζ̄ , Ā, Ā∗), we compute the

corresponding three strain tensors.

Proposition 3.1. The following relations hold:

Lζ̄ η = 0, (LĀ η)µν ≡ Dµν =

∥∥∥∥∥∥∥∥

2ux uy + px uz uξ

uy + px 2py pz pξ

uz pz 0 0

uξ pξ 0 0

∥∥∥∥∥∥∥∥
,

(LĀ∗ η)µν ≡ D∗
µν =

∥∥∥∥∥∥∥∥

−2εpx −ε(py + ux) −εpz −εpξ

−ε(py + ux) 2εuy εuz εuξ

−εpz εuz 0 0

−εpξ εuξ 0 0

∥∥∥∥∥∥∥∥
.

Proof. Immediately verified.

Let [X,Y ] denote the Lie bracket of vector fields onM , and φ2 = u2+p2,

ψ = arctg(p/u), i.e. u = φ cosψ, p = φ sinψ. We note that the local

conservation law ∇νT
ν
µ = 0 reduces in our case to Lζ̄φ

2 = 0, so (u, p)

would be running waves if Lζ̄ψ = 0 too.
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We give now some important from our viewpoint relations.

D(ζ̄ , ζ̄) = D∗(ζ̄ , ζ̄) = 0,

D(ζ̄) ≡ D(ζ̄)µdx
µ ≡ Dµν ζ̄

νdxµ = (uξ − εuz)dx + (pξ − εpz)dy,

D(ζ̄)µ ∂

∂xµ
≡ Dµ

ν ζ̄
ν ∂

∂xµ
= −(uξ − εuz)

∂

∂x
− (pξ − εpz)

∂

∂y
= −[Ā, ζ̄ ],

DµνĀ
µζ̄ν = −1

2

[
(u2 + p2)ξ − ε(u2 + p2)z

]
= −1

2
Lζ̄φ

2, (3)

DµνĀ∗µ
ζ̄ν = −ε

[
u(pξ − εpz) − p(uξ − εuz)

]
= −εR = −εφ2Lζ̄ψ, (4)

where R ≡ u(pξ − εpz) − p(uξ − εuz). We also have:

D∗(ζ̄) = ε
[
− (pξ − εpz)dx + (uξ − εuz)dy

]
,

D∗(ζ̄)µ ∂

∂xµ
≡ (D∗)µ

ν ζ̄
ν ∂

∂xµ
= −ε(pξ − εpz)

∂

∂x
+ (uξ − εuz)

∂

∂y
= [Ā∗, ζ̄],

D∗
µνĀ

∗µ
ζ̄ν = −1

2

[
(u2 + p2)ξ − ε(u2 + p2)z

]
= −1

2
Lζ̄φ

2, (5)

D∗
µνĀ

µζ̄ν = ε
[
u(pξ − εpz) − p(uξ − εuz)

]
= εR = εφ2 Lζ̄ψ. (6)

Clearly, D(ζ̄) and D∗(ζ̄) are linearly independent in general:

D(ζ̄) ∧D∗(ζ̄) = ε
[
(uξ − εuz)2 + (pξ − εpz)2

]
dx ∧ dy

= εφ2(ψξ − εψz)2 dx ∧ dy 6= 0.

Recall now that every 2-form F defines a linear map F̃ from 1-forms to

3-forms through the exterior product: F̃ (α) := α ∧ F , where α ∈ Λ1(M).

Moreover, the Hodge ∗-operator, composed now with F̃ , gets F̃ (α) back to

∗F̃ (α) ∈ Λ1(M). We readily obtain now

D(ζ̄) ∧ F = D∗(ζ̄) ∧ (∗F ) = D(ζ̄) ∧A ∧ ζ = D∗(ζ̄) ∧A∗ ∧ ζ

= −ε
[
u(pξ − εpz) − p(uξ − εuz)

]
dx ∧ dy ∧ dz

−
[
u(pξ − εpz) − p(uξ − εuz)

]
dx ∧ dy ∧ dξ

= −φ2 Lζ̄ψ (ε dx ∧ dy ∧ dz + dx ∧ dy ∧ dξ)
= −R (ε dx ∧ dy ∧ dz + dx ∧ dy ∧ dξ),

D(ζ̄) ∧ (∗F ) = −D∗(ζ̄) ∧ F = D(ζ̄) ∧ A∗ ∧ ζ = −D∗(ζ̄) ∧ A ∧ ζ

=
1

2

[
(u2 + p2)ξ − ε(u2 + p2)z

]
(dx ∧ dy ∧ dz + ε dx ∧ dy ∧ dξ).
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Thus we get

∗
[
D(ζ̄) ∧ A ∧ ζ

]
= ∗
[
D∗(ζ̄) ∧ A∗ ∧ ζ

]

= −εR ζ = −i(∗̄F )dF = i(F̄ )d(∗F ), (7)

∗
[
D(ζ̄) ∧ A∗ ∧ ζ

]
= − ∗

[
D∗(ζ̄) ∧ A ∧ ζ

]

=
1

2
Lζ̄φ

2 ζ = i(F̄ )dF = i(∗̄F )d(∗F ), (8)

where, if (F,G) are respectively a 2-form and a 3-form, we have denoted

i(F̄ )G = F µνGµνσdx
σ , µ < ν.

4. Discussion

The above relations show various dynamical aspects of the energy-

momentum redistribution during evolution of our PhLO in terms of elec-

tromagnetic strain. Let’s look closer to some of them.

Relation (8) shows how the local conservation law ∇νT
ν
µ = 0, being

equivalent to Lζ̄φ
2 = 0, and meaning that the energy density φ2 propa-

gates just translationally along ζ̄ , can be expressed in terms of the strain

components. On the other hand the phase function ψ would satisfy Lζ̄ψ = 0

ONLY if the introduced quantity R is equal to zero: R = 0. Now, what is

the sense of R reveals the following

Proposition 4.1. The following relations hold:

dA ∧A ∧ A∗ = 0; dA∗ ∧ A∗ ∧ A = 0;

dA ∧A ∧ ζ = ε
[
u(pξ − εpz) − p(uξ − εuz)

]
ωo;

dA∗ ∧A∗ ∧ ζ = ε
[
u(pξ − εpz) − p(uξ − εuz)

]
ωo.

Proof. Immediately verified.

These relations say that the 2-dimensional Pfaff system (A,A∗) is com-

pletely integrable for any choice of the two functions (u, p), while the two

2-dimensional Pfaff systems (A, ζ) and (A∗, ζ) are NOT completely inte-

grable in general, and the same curvature factor

R = u(pξ − εpz) − p(uξ − εuz)

determines their nonintegrability. Hence, the condition R 6= 0 allows in

principle rotational component of propagation, i.e. u and p NOT to be plane
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waves, so consistency between the translational and rotational components

of propagation is possible in principle.

As we mentioned above it is possible the translational and rotational

components of the energy-momentum redistribution to be represented in

form depending on the ζ̄-directed strains D(ζ̄) and D∗(ζ̄). So, the local

translational changes of the energy-momentum carried by the two compo-

nents F and ∗F of our PhLO are given by the two 1-forms ∗
[
D(ζ̄)∧A∗∧ ζ

]

and ∗
[
D∗(ζ̄)∧A∧ζ

]
), and the local rotational ones are given by the 1-forms

∗
[
D(ζ̄)∧A∧ζ

]
and ∗

[
D∗(ζ̄)∧A∗∧ζ

]
. In fact, the 1-form ∗

[
D(ζ̄)∧A∧ζ

]
de-

termines the strain that tends to ”leave” the 2-plane defined by (A, ζ) and

the 1-form ∗
[
D∗(ζ̄) ∧ A∗ ∧ ζ

]
determines the strain that tends to ”leave”

the 2-plane defined by (A∗, ζ). So, the particular kind of nonintegrabil-

ity of (A, ζ) and (A∗, ζ) mathematically guarantees some physical inter-

communication through establishing local dynamical equilibrium (eq.(7)))

between two subsystems of the field, that are mathematically represented

by F and ∗F .

Since the PhLO is free, i.e. no energy-momentum is lost or gained, this

means that the two (null-field) components F and ∗F exchange locally equal

energy-momentum quantities:

∗
[
D(ζ̄) ∧ A ∧ ζ

]
= ∗
[
D∗(ζ̄) ∧ A∗ ∧ ζ

]
.

Now, the local energy-momentum conservation law

∇ν

[
FµσF

νσ + (∗F )µσ(∗F )νσ
]

= 0,

i.e. Lζ̄φ
2 = 0, requires the corresponding strain-fluxes ∗

[
D∗(ζ̄) ∧ A ∧ ζ

]

and ∗
[
D(ζ̄)∧A∗∧ ζ

]
to become zero. It seems important to note that, only

dynamical relation between the energy-momentum change and strain fluxes

exists, so NO analog of the assumed in elasticity theory generalized Hooke

law, i.e. linear relation between the stress tensor and the strain tensor [1],

seems to exist here. This clearly goes along with the fully dynamical nature

of PhLO, i.e. linear relations exist between the divergence terms of our

stress tensor 1
2

[
−FµσF

νσ − (∗F )µσ(∗F )νσ
]

and the ζ̄-directed strain fluxes

as given by equations (2), (7), (8).

The constancy of the translational propagation and the required

translational-rotational compatibility suggest also constancy of of the ro-

tational component of propagation, i.e. Lζ̄ψ = const , so we consider the

equations

Lζ̄φ
2 = 0, Lζ̄ψ =

κ

lo
,
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where κ = ±1 and lo is a parameter of dimension of length. These equations

admit the following solutions:

u(x, y, z, ξ) = φ(x, y, ξ + εz) cos(−εκ z
lo

+ const ),

p(x, y, z, ξ) = φ(x, y, ξ + εz) sin(−εκ z
lo

+ const ),

where φ(x, y, ξ + εz) is an arbitrary smooth finite function, so it can be

chosen to have compact support inside an appropriate 3-region such, that

at every moment our PhLO to be localized inside an one-step long helical

cylinder wrapped up around the z-axis (the figures bellow).

Fig. 1. Theoretical example with κ = −1. The translational propagation is directed
left-to-right.

Fig. 2. Theoretical example with κ = 1. The translational propagation is directed left-
to-right.

5. Conclusion

We introduced and discussed a concept of photon-like object(s) (PhLO) as

real, massless time stable physical object(s) with an intrinsically compatible

translational-rotational dynamical structure. So, PhLO are spatially finite,

with every PhLO a straight-line null direction is necessarily associated,

and the corresponding stress-energy-momentum tensor must be isotropic:

TµνT
µν = 0. We showed that in the frame of the relativistic formulation

of vacuum electrodynamics two essential strain tensors D and D∗ can be

introduced as corresponding Lie derivatives of the flat Minkowski metric.

In terms of the components of these strain tensors can be defined impor-

tant characteristics of the internal dynamics of PhLO, in particular, internal

energy-momentum exchange between the F -component and ∗F -component
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of the free field was explicitly obtained. Definite relations of the projections

of D and D∗ along the null direction of translational propagation to the

Lie brackets of the electric and magnetic components were also given. We

defined amplitude φ and phase ψ of PhLO and showed that the plane wave

character of φ is admissible and corresponds to the local energy conser-

vation. The non plane wave character of ψ guarantees the availability of

rotational component of propagation, which property turned out to be well

defined in terms of corresponding Frobenius curvature. The physical un-

derstanding of the Frobenius nonintegrability of some subcodistributions in

this context should read: there is internal energy-momentum exchange be-

tween two individualized subsystems of PhLO mathematically represented

in our case by F and ∗F .

Assuming constant nature of the rotation we come to an extension of the

Riemann-Clifford-Einstein idea for linear relation between energy-density

and Riemannian curvature to linear relation between energy-density and

Frobenius curvature as a measure of nonintegrability. This helps also to

define linear equations of motion, which equations admit spatially finite

solutions of helical structure along the corresponding spatial direction of

propagation.

Finally we note that integrating any of the two 4-forms lo/c dA∧A∧ ζ
and lo/c dA∗ ∧ A∗ ∧ ζ over the 4-volume R3 × 4lo gives ±E.T , where

T = ν−1 = 4lo/c and E is the integral energy of the solution. This is

naturally interpreted as action for one period, and represents an analog of

the famous Planck formula E.T = h.

As for the question what is the “material” that PhLO are made of we

leave the corresponding reasoning for the future.
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1. Introduction

Micallef [6] proved that a full, compact, orientable, stable, hyperelliptic

minimal surface in a Riemannian flat torus is holomorphic with respect to

a suitable orthogonal complex structure on the torus. Hence it is homo-

logically area-minimizing by the Wirtinger inequality. On the other hand,

there are many full, compact, orientable, stable, non-hyperelliptic minimal

surfaces that are not holomorphic with respect to all orthogonal complex

structure in Riemannian flat tori [2,4]. However, since there are at least two,

full, compact, orientable, homotopically area-minimizing, non-hyperelliptic

minimal surfaces of genus 4 that are not holomprphic with respect to all

orthogonal complex structures in some Riemannian flat torus of dimension

8 [4, Corollary 12.5], we consider whether the stableness of minimal surfaces

implies the area-minimizingness. Let Mg denote the moduli of Riemann sur-

faces of genus g ≥ 4. Let n be a positive integer and Mg(n) the subset of

of Mg(g ≥ 4) such that the Riemann surface corresponding to each point

of Mg(n) admits a stable minimal immersion into a torus of dimension 7

which contains at least n homotopic, compact, orientable, stable, minimal

surfaces of genus g with different areas.

Theorem 1.1. Mg(n) is dense in Mg.

Our idea is as follows: Put a compact, orientable, immersed minimal

surface of genus g with only trivial Jacobi fields, which are caused by par-

allel translations of the torus, in a torus of dimension < 2g and swell the

torus to the higher dimensional (indefinite) torus. Then we find that many
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homotopic, minimal surfaces of genus g with different areas appear in the

swelled thin torus.

Arezzo and Micallef [2] have given stable nonholomorphic minimal im-

mersion of Σγ into T 2γ−2k, for k = 1, 2 or 3 and sufficently large γ ( if

γ ≥ 7, 9, 10, then k = 1, 2, 3, respectively). They expect that such examples

also exit for any k ≤ γ − 4. From our Theorem 1.1, we can infer the result

that their expectation is true.

2. Preliminary

We reviw some results [4]. Let M be a Riemann surface of genus g,

{Ai, Bi} a canonical homology basis and {ψi} the associated 1 forms such

that
∫

Ai
ψj = δij holds. Then the matrix τ = (τij) of size g defined by

τij =
∫

Bj
ψi is called the Riemann matrix, which provides an element of

the Siegel upper half space Hg (the space of complex symmetric matrices

τ of size g such that Im τ is positive (see, for example, [5])). Let RM be

the space of Riemann matrices in Hg. Let RMnon-hyper and RMhyper be the

space of Riemann matrices of non-hyperelliptic Riemann surfaces and hy-

perelliptic Riemann surfaces, respectively. Then RMnon-hyper and RMhyper

are the (3g − 3) and (2g − 1)- dimensional complex submanifold, respec-

tively, RM = RMnon-hyper∪RMhyper and RMhyper is the singularity of RM

(see, for example, [1]).

Let RN denote the real vector space of dimension N given by vec-

tors of t(x1, . . . , xN ), where x1, . . . , xN are real numbers. Then the indefi-

nite innnerproduct of type (p, q) is defined by (x1, . . . , xN )Ip,q
t(y1, . . . , yN),

where p+ q = N ,

Ip,q =

(−Ip 0

0 Iq

)

and Ip is an identity matrix of size p. Let Γ be a lattice group of RN and

TN the indefinite flat torus RN/Γ of dimension N with the innerproduct

of type (p, q).

Let Ψ denote the R2g-valued 1-form given by

t(Reψ1, . . . ,Reψg, Imψ1, . . . , Imψg).

Let F be a harmonic map of M into TN . Then, since the differential dF

of F is the RN -valued harmonic 1-form, there exists the (N, 2g)-matrix Q

such that dF = QΨ. We define the periods of F by
∫

Aj

dF = `j ,

∫

Bj

dF = `g+j , j = 1, . . . , g
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and set L = (`1, . . . , `2g). Let Tτ denote the matrix
(
I Re τ

0 Im τ

)
.

Then QTτ = L holds and hence, we obtain dF = LT−1
τ Ψ. We call L the

period matrix of F with respect to {Ai, Bi}.

In this paper, we consider the case that the periods of F generate Γ.

If L = Tτ , then F is called the Albanese map of M into the Jacobian

variety whose lattice group is generated by column vectors of Ig and τ .

Theorem 2.1 ([4]). The energy of F is given by 1
2 tr(P (τ)L̃), where

L11 = tL1Ip,qL1, L12 = tL1Ip,qL2, L21 = tL2Ip,qL1, L22 = tL2Ip,qL2,

L̃ =

(
L11 L12

L21 L22

)

and

P (τ) =

(
(Im τ) + (Re τ)(Im τ)−1(Re τ) −(Re τ)(Im τ)−1

−(Im τ)−1(Re τ) (Im τ)−1

)
.

We consider a harmonic map of a Riemann surface of genus g into TN

whose period matrix is only L = (L1, L2) for a suitable canonical homology

basis and select such harmonic map for all Riemann surfaces. Note that

these harmonic maps are homotopic. Then we obtain the function on RM ,

which can be extended to the function EL̃(τ) = 1
2 tr(P (τ)L̃) on Hg . We call

it the enegy function. We relate the critical points of the energy function

to minimal surfaces.

Theorem 2.2 ([4]). Let τ be an element of RMnon-hyper. Then the re-

striction of EL̃ to RMnon-hyper is critical at τ if and only if there exist the

unique Riemann surface M and the two canonical homology basis {Ai, Bi},

{−Ai,−Bi} up to automorphisms of M such that dF = ±LT−1
τ Ψ is weakly

conformal. Similarly, let τ be an element of RMhyper. Then the restriction

of EL̃ to RMhyper is critical at τ if and only if there exist the unique Rie-

mann surface M and the unique canonical homology basis {Ai, Bi} up to

automorphisms of M such that dS = LT−1
τ Ψ is weakly conformal.

If the ambient torus is a Riemannian flat torus, then we can define

indexA and nullityA by the index and the nullity of Jacobi operators for

minimal surfaces, respectively.

Let indexL̃ and nullityL̃ be the index and the nullity of the hessian of

EL̃. Then we related indexL̃ and nullityL̃ to indexA and nullityA.
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In this paper, we need the following [4].

Fact 1. For a critical point τ ∈ RMnon-hyper, indexEL̃
= indexA holds. If

the map is immersed, then nullityL̃ = nullityA −N .

Fact 2. For a critical point τ ∈ RMhyper of the restriction of EL̃, there is a

non-negative integer α ≤ g−2 such that indexL̃+α = indexA holds.

If the map is immersed, then nullityL̃+2(g−2)−2α= nullityA−N .

3. Minimal surfaces in Riemannian flat tori

Let Γ0 be a lattice group of RN and TN the Riemannian flat torus RN/Γ0.

Let M be a compact, orientable, minimal surface of genus g in TN with

N < 2g and F the branched minimal immersion of M into TN . Since the

periods of F generate Γ0, F∗ : H1(M,Z) → H1(TN ,Z) is surjective.

Lemma 3.1. There exists a canonical homology basis {Ai, Bi} satisfying

F∗(A1) = 0.

Proof. Let KerF∗ be the kernel of F∗. Then KerF∗ is of rank 2g − N

of H1(M,Z) and there exists a basis e1, . . . , e2g of H1(M,Z) and integers

k1, . . . , k2g−N such that k1e1, . . . , k2g−Ne2g−N is a basis of KerF∗. Thus

k1 = · · · = k2g−N = 1 and e1, . . . , e2g−N is a basis of KerF∗. Let a · b
denote the intersection number of a and b for a, b ∈ H1(M,Z). Putting

A1 = e1, we can construct B1 such that A1 · B1 = 1 as follows: Integers

e1 · ej are relatively prime, because the determinant of the matrix (ei · ej)

is ±1. Thus we have integers αk such that B1 =
∑
αkek and A1 · B1 = 1.

Since
{
X ∈ H1(M,Z)

∣∣ A1 · (X) = B1 · (X) = 0
}

is of dimension 2g− 2, we

have a basis e1, . . . , e2g−2 of
{
X ∈ H1(M,Z)

∣∣ A1 ·(X) = B1 ·(X) = 0
}

. We

set A2 = e1 and can construct B2 by the same method as above. Continuing

this process, we can obtain a canonical homology basis seeked in Lemma

3.1.

Note that the canonical homology basis {Ai, Bi} given in Lemma 3.1 is

not unique.

Lemma 3.2. Let m be an integer and {Ãi, B̃i} the canonical homology

bassis defined by Ãi = Ai, i = 1, . . . , g, B̃1 = B1 + mA1, B̃i = Bi,

i = 2, . . . , g. Then the associated holomorphic 1 forms ψ̃i with respect

to {Ãi, B̃i} are ψi and F∗(Ã1) = 0 holds. Furthermore we denote by τ0
and τ0(m) the associated Riemann matrices with respect to {Ai, Bi} and

{Ãi, B̃i}, respectively. Then
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τ0(m) = τ0 +




m 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


 .

Proof. It is easy to see that {Ãi, B̃i} is a canonical homology basis, ψ̃i = ψi

and F∗Ã1 = 0. Then we see
∫

B̃i

ψ̃j =

∫

Bi+mAiδ1i

ψj = τ0ij +mδijδ1i.

Let L0 be the period matrix of F with respect to {Ai, Bi} and L̃0 =
tL0L0. Then τ0 is a critical point of E

L̃0
restricted to RMnon-hyper or

RMhyper.

Lemma 3.3. The period matrix of F with respect to {Ãi, B̃i} is also given

by L0. So τ0(m) is also a critical point of E
L̃0

restricted to RMnon-hyper or

RMhyper.

Proof. By F∗(A1) = 0, F∗(Ã1) = 0, F∗(Ãi) = F∗(Ai), F∗(B̃1) = F∗(B1 +

mA1) = F∗(B1) and F∗(B̃i) = F∗(Bi) for i = 2, . . . , g.

Note L0 = (0 `2 · · · `2g). We define the (N + 1, 2g)-matrix Ls (s > 0) by
(√

s 0 · · · 0

0 `2 · · · `2g

)
.

It is easy to see the following.

Lemma 3.4. The column vectors of Ls generate a lattice group of RN+1.

Remark 3.1. The obtained torus is S1(
√

s
2π ) × TN . We may consider

{one point} × TN as TN and say that TN is swelled to S1(
√

s
2π ) × TN .

Lemma 3.5. Let L̃s be tLsIp,qLs, where p = 0 or 1. Then

L̃s = L̃0 +

(±s 0

0 0

)
.

So we obtain the following.

Lemma 3.6. E
L̃s

(τ) =
1

2
tr(P (τ)L̃0) +

1

2
tr(P (τ)

(±s 0

0 0

)
).
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Lemma 3.7. E
L̃s

(τ0(m)) = ±s
2 Q(m) +E

L̃0
(τ0), where

Q(m) = (Im τ0)−1
11 m

2 + 2m
∑

i

(Im τ0)−1
1i Re (τ0)i1 + Im(τ0)11

+
∑

ijk

Re(τ0)ij(Im τ−1
0 )jkRe(τ0)ki.

Q(m) is a polynomial of degree 2 with respect to m, because Im τ0 is positive.

From now, If M is non-hyperelliptic, then, we assume that M is

immersed and has only trivial Jacobi fields (nullityA = N) and hence

nullity
L̃0

= 0 by Fact 1. If M is hyperelliptic, then, we assume that

2(g − 2) − 2α = nullityA −N holds. By Fact 2, again nullity
L̃0

= 0 holds.

So the hessian of E
L̃0

is non-degenerate at τ0(m).

For non-degenerate critical points of a function with parameteres, we

obtain the following (see, for example, [7]).

Lemma 3.8. There is a positive integer εm and a smooth curve τs(m),

0 ≤ s ≤ εm starting at τ0(m) such that τs(m) is a non-degenerate critical

point of E
L̃s

.

By the Taylor expansion,

E
L̃s

(τs(m)) = E
L̃0

(τ0(m)) +

[
d

ds

∣∣∣∣
s=0

E
L̃s

(τ0(m))

]
s

+

[
d

ds

∣∣∣∣
s=0

E
L̃0

(τs(m))

]
s+O(s2).

Since τ0(m) is a critical point of E
L̃0

,

d

ds

∣∣∣∣
s=0

E
L̃0

(τs(m)) = 0.

By Lemma 3.7,

d

ds

∣∣∣∣
s=0

E
L̃s

(τ0(m)) =
±1

2
Q(m).

Thus we obtain

Lemma 3.9. E
L̃s

(τs(m)) = E
L̃0

(τ0(m)) + ±s
2 Q(m) +O(s2).

Hence for any positive integer n, there are m1, . . . ,mn such that Q(mi)

are different for each other. So E
L̃s

(τs(mi)) are all different for small s(≤
εmi) by Lemma 3.9. The minimal surfaces corresponding to the critical

points τs(mi), i = 1, . . . , n have different area. Namely, we obtain n different



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

80 N. Ejiri

homotopic minimal surfaces in a torus of dimension N + 1 corresponding

to L̃s.

Theorem 3.1. Let M be a compact, orientable, immersed minimal sur-

face of genus g with only trivial Jacobi fields in a Riemannian flat torus

TN of dimension N < 2g. Then, by swelling of TN for a natural num-

ber n, we obtain n homotopic minimal surfaces with different areas in a

swelled indefinite torus of dimension N + 1. If M is non-hyperelliptic and

hyperelliptic, then obtained minimal surfaces are non-hyperelliptic and hy-

perelliptic, respectively. When the ambient space is a Riemannian flat torus,

these minimal surfaces have the same index and nullity as M . In particular,

if M is stable, then obtained minimal surfaces are stable.

Corollary 3.1. Let M be a holomorphic curve of genus g with only trivial

infinitesimal holomorphic deformations in a complex torus TN of complex

dimension N < g. Let n be a natural number. Then, by swelling of TN we

obtain n homotopic stable minimal surfaces with different areas in a swelled

Riemannian flat torus of real dimension 2N + 1.

Proof. A holomorphic curve of genus g with only trivial infinitesimal holo-

morphic deformations in a complex torus TN is immersed and has only

trivial Jacobi fields.

Colombo and Pirola [3] proved the density of the subset of Mg for g ≥ 4

such that the Riemann surface corresponding to each element of the subset

admits a holomorphic map with only infinitesimal holomorphic deformation

in complex tori of dimension 3. So we obtain Theorem 1.1 by Corollary 3.1.

Remark 3.2. We may deform a complex torus of dimension 3 to a real Rie-

mannian flat torus of dimension 6 which contains a stable minimal surface.

However, the obtained minimal surface is again holomorphic [2].

Remark 3.3. We may consider a holomorphic curve in a complex torus of

dimension 2. However, the holomorphic curve has non-trivial infinitesimal

holomorphic deformations. So, we would like to know what occurs when we

swell the torus to tori of higher dimension.

We do not know whether one of stable minimal surfaces obtained in

Corollary 3.1. is homotopically area-minimizing.

Let L̃1 = tTτ0Tτ0 . We set L̃s = (1 − s)L̃0 + sL̃1. Since τ0 is a critical

point of E
L̃0

and E
L̃1

, τ0 is a critical point of E
L̃s

by Theorem 7.1 [4]. Since
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L̃s, 1 ≥ s > 0 is positive-definite, the square root of Ls =

√
L̃s exists and

the column vectors generate a lattice group of R2g which gives a torus T 2g
s

of dimension 2g. This gives a swelling of TN to the Jacobi variety and a

minimal surface M with the fixed conformal structure in T 2g
s . We see that

if M is a holomorphic curve in a complex torus of dimension 3, then T 2g
s is

isomorphic to the Jacobi variety and M is again holomorphic in T 2g
s . We

can prove that our argument is useful in this case. So we get the following.

Corollary 3.2. The dense set given by Colombo and Pirola of Mg, (g ≥ 4)

has the property as follows: The Jacobi variety of the Riemann surface cor-

responding to each point of the dense set admits a Riemannian flat metric

depending on each positive integer n which contains at least n different

compact, orientable, non area-minimizing, stable minimal surfaces of genus

g homotopic to the Albanese map, which is the only one area-minimizing

minimal surface.

We consider another application of Theorem 3.1. Ross [8] proved that

Schwarz’ P and D surfaces have indexA = 1 and only trivial Jacobi fields.

So we get the following.

Corollary 3.3. When we swell the torus containing Schwarz’ P and D

surfaces to a Riemannian flat torus of dimension 4, many different hyper-

elliptic minimal surfaces of genus 3 appear in the Riemannian flat torus of

dimension 4.

Corollary 3.4. When we swell the torus containing Schwarz’ P and D

surfaces to a Minkowski flat torus of dimension 4, many different hyper-

elliptic minimal surfaces of genus 3 appear in the Minkowski flat torus of

dimension 4.

For Schwarz’ P surface, one of obtained minimal surfaces may be iso-

metric to Schwarz’ P surface [4].
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We analyze the algebraic aspects of solving the multicomponent nonlinear
Schrödinger (MNLS) equations related to the symmetric spaces of BD.I-type.
This analysis includes: i) the spectral properties of the MNLS equations under
the nonvanishing (constant) boundary conditions; ii) the construction of new
equations of MNLS type imposing additional reductions; iii) the involutivity of
their integrals of motion proven by using the method of the classical R-matrix;
iv) brief but explicit description of their hierarchies of Hamiltonian structures.
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1. Introduction

We analyze the algebraic aspects of solving the multicomponent nonlinear

Schrödinger (MNLS) equations [1–5] equations related to the symmetric

spaces.

In Section 2 we formulate the Lax representation for the MNLS on

BD.I type symmetric spaces [1,5] and give examples of new reductions. In

Sections 3 and 4 we formulate the MNLS equations and outline the spec-

tral properties of the Lax operator for the class of potentials with constant

boundary conditions (CBC). In Section 5 we derive the regularized Hamil-

tonian for the MNLS with CBC and prove the involutivity of their integrals

of motion by using the classical R-matrix method.

2. MNLS eqs on BD.I-symmetric spaces

These symmetric spaces are SO(n+ 2)/SO(n) × SO(2). The Lax pairs for

the corresponding MNLS eqs. with vanishing boundary conditions take the
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form:

Lψ ≡
(
i
dψ

dx
+ U(x, t, λ)

)
ψ(x, t, λ) = 0,

Mψ ≡
(
i
dψ

dt
+ V0(x, t) + λq(x, t) − λ2J)

)
ψ(x, t, λ) = −ψλ2J,

U(x, λ) = q(x, t) − λJ, V0(x, t) = iad −1
J

dq

dx
+

1

2

[
ad −1

J q, q(x, t)
]
,

q =




0 ~qT 0

~p 0 s0~q

0 ~pT s0 0


 , J =




1 0 0

0 0 0

0 0 −1


 .

(1)

Here s0 is the matrix used to define the orthogonality condition. For n =

2r+1 we have s0 =
∑n

k=1(−1)kEk,k̄ with k̄ = n+1−k and (Ekl)sp = δksδlp.

The corresponding MNLS have the form:

i∂t~q + ∂2
xx~q + 2(~p, ~q)~q − (~qs0~q) s0~p = 0,

i∂t~p− ∂2
xx~p− 2(~p, ~q)~p+ (~ps0~p) s0~q = 0.

(2)

The reductions of these equations are obtained following the method of

Mikhailov [6] using automorphisms of the corresponding Lie algebra of finite

order, see also [7]. The typical reduction with an automorphism K1 from

the Cartan subgroup with K1 = 11 gives rise to ~p = ~q ∗ and:

i∂t~q + ∂2
xx~q + 2(~q †, ~q)~q −

(
~qT s0~q

)
s0~q

∗ = 0. (3)

For n = 3 with K1 = diag (ε1, ε2, 1, ε2, ε1), ε21,2 = 1 we get p2 = ε1ε2q
∗
2 ,

p3 = ε1q
∗
3 , p4 = ε1ε2q

∗
4 , which gives a 3-component system of NLS equation

iq2,t + q2,xx + 2ε1(ε2|q2|2 + |q3|2)q2 + ε1ε2q
2
3q

∗
4 = 0,

iq3,t + q3,xx + 2ε1q2q4q
∗
3 + ε1(2ε2|q2|2 + 2ε2|q4|2 + |q3|2)q3 = 0, (4)

iq4,t + q4,xx + 2ε1(ε2|q4|2 + |q3|2)q4 + ε1ε2q
2
3q

∗
2 = 0.

A second type of reductions are produced via Weyl reflections. Taking

n = 2r + 1 and K2 to correspond to Se2Se3 · · ·Ser leads to ~p = s0~q
∗ and

the MNLS eq. (3) becomes:

i∂t~q + ∂2
xx~q + 2(~q †s0~q)~q −

(
~qT s0~q

)
~q ∗ = 0. (5)

For r = 2 we get p2 = q∗4 , p3 = −q∗3 , p4 = q∗2 and another inequivalent

system of 3 NLS equations:

iq2,t + q2,xx + 2(q2q
∗
4 − |q3|2)q2 + q23q

∗
2 = 0,

iq3,t + q3,xx − 2q2q4q
∗
3 + (2q2q

∗
4 + 2q4q

∗
2 − |q3|2)q3 = 0, (6)

iq4,t + q4,xx + 2(q4q
∗
2 − |q3|2)q4 + q23q

∗
4 = 0.
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3. MNLS with Constant Boundary Conditions

Below we fix up the boundary conditions on q in such a way that the two

asymptotic operators L± = id/dx+ U±(λ) with

U(x, t, λ) = q(x, t) − λJ, U±(λ) ≡ lim
x→±∞

U(x, t, λ) = q± − λJ (7)

have the same continuous spectrum. Here q± = limx→±∞ q(x, t) and

~q± = limx→±∞ ~q(x, t). Besides we consider only solutions which have time-

independent limits for x → ∞. This can be done by modifying the M -

operators as follows:

Mψ ≡
(
i
dψ

dt
+ V0(x, t) − V00 + λq(x, t) − λ2J)

)
ψ(x, t, λ)

= −ψ(x, t, λ)λ2J, V00 = lim
x→∞

V0(x, t) = lim
x→−∞

V0(x, t).
(8)

The last condition in eq. (8) is satisfied if and only if ~q− = eiθ~q+, where

the overall phase θ is an integral of motion. In other words

q+ = u−1
θ q−uθ, uθ = e−iθJ/2 (9)

so U+(λ) and U−(λ) are related by a similarity transformation and therefore

have the same sets of eigenvalues.

The corresponding regularized MNLS with ~p = −~q ∗ have the form:

i~qt + ~qxx − (2(~q †, ~q)− ρ2)~q+ (~q †
±, ~q)~q± + (~qT s0~q)s0~q

∗ − (~qT
±, s0~q)s0~q

∗
± = 0.

(10)

Note that due to eq. (9) the coefficients in eq. (10) are the same for both

choices of the subscript + and −.

4. Spectral properties of BD.I-type MNLS with CBC

Using the typical reduction ~p = −~q †, the eigenvalues of U±(λ) are the roots

of the characteristic polynomial:

µn−2(µ4 − µ2(2a+ λ2) + a2 − b) = 0,

a = −(~q†±, ~q±) = −ρ2, b = |(~qT
±s0~q±)|2.

(11)

They are given by:

µ2
1,n+2(λ) =

λ2

2
+a+

√
λ4

4
+ aλ2 + b, µ2

2,n+1(λ) =
λ2

2
+a−

√
λ4

4
+ aλ2 + b,

and µ3,4,...,n = 0. The Jost solutions are determined by their asymptotics

for x→ ±∞:

lim
x→∞

ψ(x, λ)eiµ(λ)x = u0,+, lim
x→−∞

φ(x, λ)eiµ(λ)x = u0,−,

q± − λJ = −u0,±µ(λ)û0,±, µ(λ) = −diag (µ1(λ), . . . , µn+2(λ)),
(12)
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and the scattering matrix is defined as T (t, λ) = ψ−1φ(x, t, λ). The contin-

uous spectrum of Las lies on those lines in the complex λ-plane on which

Imµj(λ) = 0. With the typical reduction ~p = −~q ∗ we get that the spectrum

fills in the two semiaxis |Reλ| > ρ0, where ρ0 =
√

2ρ2 + 2
√
ρ4 − b, see the

figure.

kλ

-

6

ρ0−ρ0

Fig. 1. The continuous spectrum of L± for BD.I-type MNLS with typical reduction
~p = −~q † and ρ4 > b.

The characteristic equation determines a Riemannian surface R which

is characterized by the cuts on the figure. On each of the leaves of R we

can introduce a fundamental analytic solution (FAS). Let us denote by R+

(resp. R−) the leaf on which

Imµ1(λ) > Imµ2(λ) > 0, for λ ∈ R+,

Imµ1(λ) < Imµ2(λ) < 0, for λ ∈ R−.
(13)

Then the FAS χ±(x, t, λ) that are analytic on R± are constructed by using

the generalized Gauss decomposition of the scattering matrix [8]:

χ±(x, t, λ) = φ(x, t, λ)S±(t, λ) = ψ(x, t, λ)T∓(t, λ)D±(λ),

T (t, λ) = T−(t, λ)D+(λ)Ŝ+(t, λ) = T+(t, λ)D−(λ)Ŝ−(t, λ),
(14)

where T+(t, λ), S+(t, λ) (resp. T−(t, λ), S−(t, λ) are block-upper-triangular

(resp. block-lower-triangular) whose diagonal elements are equal to 1 and

whose block-matrix structure is compatible with µ(λ). The block-diagonal

factors D±(λ) = bdiag ((m±
1 )±1, (m±

2 )±1, m̃±
3 , (m

±
2 )∓1, (m±

1 )∓1) have the

same block structure with block dimensions 1, 1, n − 2, 1, 1. Note that

D±(λ) are analytic functions for λ ∈ R± and are the generating func-

tionals of the integrals of motion. In the particular case of n = 3 T+(t, λ),

S+(t, λ) (resp. T−(t, λ), S−(t, λ) are simply upper-triangular (resp. lower-

triangular) whose diagonal elements are equal to 1.
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Hamiltonian properties

The phase space M for non-vanishing boundary conditions is a nonlinear

space: M ≡ ∪θMθ,

Mθ =
{
q(x, t) = Π0Jq(x, t), lim

x→±∞
q(x, t) = q±, q+ = u−1

θ q−uθ

}
.

Here Π0J = ad −1
J ad J and uθ is an integral of motion which must be fixed

up in order to have non-degenerate symplectic structures.

The invariants of the transfer matrix T (λ) such as, e.g. its principal

minors generate integrals of motion, i.e. if all Imµj are different we have

only r independent series of conserved quantities. The methods of deriving

of these integrals as functionals of the potential q is based on the Wronskian

relation [7]:

tr

[
i(χ+)−1 dχ

+

dλ
C − dµ(λ)

dλ
xC

]∣∣∣∣
∞

x=−∞

= i

r∑

k=1

dδ+k
dλ

tr (HkC) + itr

(
ψ̂0(λ)

dψ0

dλ
C − φ̂0(λ)

dφ0

dλ
C

)

=

∫ ∞

−∞
dx tr

[
JRC(x, t, λ) − λµ−1(λ)C

]
, (15)

where C is a constant element of h and RC(x, t, λ) = χ+C(χ+)−1(x, t, λ)

is a natural generalization of the diagonal of the resolvent of L. It satisfies

the equation:

i
dRC

dx
+ [q(x, t) − λJ,RC ] = 0, lim

x→∞
RC(x, t, λ) = ψ0(λ)Cψ−1

0 (λ). (16)

Eq. (16) allows one to derive the recurrent relations for evaluating the

expansion coefficients

RC(x, t, λ) = C0 +

∞∑

k=1

Rkλ
−k(x, t), ψ0Cψ

−1
0 (λ) = C0 +

∞∑

k=1

Ckλ
−k . (17)

In what follows we fix up C = J .

The trace identities for the MNLS type equations with CBC can be

derived by inserting the asymptotic expansions of RJ(x, λ) and m+
k (λ):

ln m+
k (λ) =

∞∑

p=1

I(k)
p λ−p, k = 1, . . . , r, (18)

in both sides of (15) and equating the corresponding coefficients of λ−p.

Here m+
k (λ) are the upper principal minors of order k of T (λ), which are
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all analytic on the sheet R+. The matrix elements of D+(λ) are expressed

by them as m+
1 = m+

1 (λ), m+
2 = m+

2 (λ)/m+
1 (λ), etc.

The first three of the local integrals of motion coming from the principal

series with C = J , see [9]:

I
(1)
k =

∫ ∞

−∞
dx tr (JRk+1(x, t) − Ck+1) ,

I
(1)
1 =

i

2

∫ ∞

−∞
dx
(
〈q, q(x, t)〉 + 2ρ2

)
= i

∫ ∞

−∞
dx
(
(~q †, ~q(x, t)) − ρ2

)
,

I
(1)
2 =

1

2

∫ ∞

−∞
dx
〈
q, ad −1

J qx
〉

=
1

2

∫ ∞

−∞
dx
((
~q †

x, ~q
)
−
(
~q †, ~qx

))
,

I
(1)
3 =

i

6

∫ ∞

−∞
dx {− 〈qx, qx〉 + 〈Y (x, t), Y (x, t)〉 − 〈Y0, Y0〉}

=
i

3

∫ ∞

−∞
dx

{(
~q †

x, ~qx
)

+ (~q †, ~q)2 − 1

2
(~q †s0~q

∗)(~q T s0~q) − ρ4 +
b

2

}

where

Y (x, t) =
1

2

[
q, ad −1

J q(x, t)
]
, Y0 = lim

x→±∞
Y (x, t). (19)

The correct use of the Wronskian relation (15) allowed us to derive

renormalized integrals of motion, i.e. ones that converge for q(x, t) ∈ M.

However among the integrals in this series one can not find the Hamilto-

nian of the MNLS (10). The obvious candidate for Hamiltonian −3iI
(1)
3 has

two defects: i) its gradient δI
(1)
3 /δqT (x, t) does not vanish for x→ ±∞ and

ii) it does not produce the terms in (10) depending on the boundary values

~q±. In order to deal with these difficulties we have to regularize −3iI
(1)
3

by adding additional integrals of motion. For the scalar NLS with CBC

the regularization is obtained just by taking proper linear combination of

−3iI
(1)
3 and −iI(1)

1 . For the MNLS related to the BD.I-type of symmetric

spaces this still does not solve the problem. Therefore we need to consider

an additional series of integrals, which generically have non-local densi-

ties. Fortunately among the simplest of them one may find local ones. For

example, there exist first integrals of zeroth order with local densities:

Ĩ
(l)
1 =

1

2

∫ ∞

−∞
dx
〈
Y (x, t) − Y0, Y

2l−1
0

〉
, l = 1, . . . (20)

Note, that since Y0 ∈ so(n + 2) then Y 2l+1
0 belongs to so(n + 2) too for

any positive integer l. Besides Y0 ∈ so(n + 2) and satisfies characteristic

polynomial equation of order 2r+ 1, so at most r of them are independent.
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In particular Ĩ
(l)
1 = −iρ2I

(l)
1 +K1 where

K1 =
1

2

∫ ∞

−∞
dx
{

(~q †, ~q±)(~q †
±, ~q(x, t)) − ρ4 − (~q †s0~q±

∗)(~q T
±s0~q(x, t)) + b

}
.

(21)

Using these integrals we can regularize the other higher integrals. For ex-

ample, the Hamiltonian of the MNLSE (10) is obtained by:

HMNLS = −3iI
(1)
3 − 2Ĩ

(l)
1

=
1

2

∫ ∞

−∞
dx {− 〈qx, qx〉 + 〈Y (x, t) − Y0, Y (x, t) − Y0〉}

=

∫ ∞

−∞
dx

{
(~q †

x, ~qx) + (~q †, ~q)2 − ρ2(~q †, ~q) − (~q †, ~q±)(~q †
±, ~q(x, t))

− 1

2
(~q †s0~q

∗)(~q T s0~q(x, t)) + (~q †s0~q
∗
±)(~q T

±s0~q(x, t)) + ρ4 − 1

2
b

}
. (22)

It is easy to check that HMNLS is a regular integral of motion since the

gradient δHMNLS/δq
T (x, t) vanishes for both x → ∞ and x → −∞; it also

gives rise to the MNLS equation (10).

In analyzing the Hamiltonian properties of the MNLS with CBC we will

make use of the classical r-matrix approach. It allows one to write down

in compact form the Poisson brackets of the transfer (monodromy) matrix.

Since our problem is ultra-local in the terminology of Faddeev then the

definition of r is independent on the boundary conditions. Using [1] we find

r(λ, µ) =
1

λ− µ


 ∑

α∈∆+

(Eα ⊗E−α +E−α ⊗Eα) +
r∑

j=1

Hj ⊗Hj


 , (23)

where ∆+ is the set of positive roots of simple Lie algebra g and Eα and

Hj are its Cartan-Weyl generators. In order to derive the Poisson brackets

for the MNLS on the whole axis with CBC we need to take into account

the corresponding oscillations coming from the Jost solutions.

Skipping the details we just write down the expressions for the Poisson

brackets between the matrix elements of T (λ):
{
T (λ)⊗

′
T (µ)

}
= r+(λ, µ)T (λ) ⊗ T (µ) − T (λ) ⊗ T (µ)r−(λ, µ), (24)

r±(λ, µ) = lim
x→±∞

τ−1
± (x, λ, µ)r(λ, µ)τ±(x, λ, µ),

τ+(x, λ, µ) = ψ0(λ)e−iJ(λ)x ⊗ ψ0(µ)e−iJ(µ)x,

τ−(x, λ, µ) = φ0(λ)e−iJ(λ)x ⊗ φ0(µ)e−iJ(µ)x,
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where {T (λ)⊗
′
T (µ)}ij,kl ≡ {Tij(λ), Tkl(µ)}.

An important and difficult problem here is to take correctly into account

the the threshold singularities of Tkl(λ) at the end points of the continuous

spectrum.

As a consequence of (24) we get the involution properties of m+
k (λ):

{m+
k (λ),m+

j (λ′)} = 0, (25)

for all values of 1 ≤ i, j ≤ r and λ and λ′ taking values on the continuos

spectrum of L. From (25) there follows that {I (k)
p , I

(l)
s } = 0 for all positive

values of p and s, and for all 1 ≤ k, l ≤ r. A consequence of eq. (25) is the

involutivity of the integrals of the principal series {I (k)
1 , I

(1)
s } = 0. This is

a necessary condition in proving the complete integrability of the MNLS

equations with CBC.

Of course the rigorous proof of the complete integrability and the deriva-

tion of the basic properties of the MNLS equations must be based on the

completeness relation of the relevant ‘squared solutions’ of L. For the single

component NLS such relation has been proposed in [10]; for the multicom-

ponent systems this is still open question.

5. Discussion

Recently it was discovered by Wadati [11], that the so(5) and so(7) MNLS

with vanishing BC have important applications to BEC with spin F = 1

and F = 2 respectively. The dark solitons are also relevant for the BEC

[12] and attract attention, which enhances the interest to the MNLS type

models.

The soliton solutions of MNLS with non-vanishing boundary conditions

have been reported in 1983 (see Ref. 2) for the su(n+m)/s(u(n)⊗ su(m))

case. Later in [13] it was worked out for some special choices of the boundary

constants q2+ = q2− = ρ211. Then it is possible to introduce uniformization

variable and the dressing can be done as for vanishing boundary conditions.

In the generic case however, uniformization variables do not exist, which

makes the problem still more difficult. Deriving the dressing factors for the

MNLS for the symmetric spaces of types C.II and D.III requires substan-

tial changes even for vanishing BC (see [7,14–16]); doing the same for CBC

is still a bigger challenge.
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1. Introduction

The purpose of this paper is to construct the family of induced almost com-

plex structures on S2 ×R4 (compatible with the induced metric) in purely

imaginary octonions ImC. It is well known that any orientable hypersurface

M6 in ImC can admit the almost Hermitian structure ([1,2]) (J, 〈, 〉) where

〈, 〉 and J are the induced metric on M 6 and the almost complex struc-

ture compatible with the metric, respectively. Also, note that the structure

group of the tangent bundle of M can reduce to SU(3).

We construct the 1-parameter family of the isometric imbeddings from

S2 × R4 to purely imaginary octonions. As Riemaniann manifolds, they

coincide. However, the induced almost complex structures are different. We

will prove this, and show that the induced almost Hermitian structures of

1-parameter family are all homogeneous.

2. Preliminaries

Let H be the skew field of all quaternions with canonical basis {1, i, j, k},

which satisfy

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The octonions (or Cayley algebra) C over R can be considered as a direct

sum H⊕H = C with the following multiplication

(a+ bε)(c+ dε) = ac− d̄b+ (da+ bc̄)ε,
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where ε = (0, 1) ∈ H ⊕ H and a, b, c, d ∈ H, where the symbol “̄ ” denote

the conjugation of the quaternion. For any x, y ∈ C, we have

〈xy, xy〉 = 〈x, x〉〈y, y〉

which is called “normed algebra” in ([3]). The octonions is a non-

commutative, non-associative alternative division algebra. The group of

automorphisms of the octonions is the exceptional simple Lie group

G2 =
{
g ∈ SO(8) | g(xy) = g(x)g(y) for any x, y ∈ C

}
.

Since g(1) = 1, we have G2 ⊂ SO(7) ' SO(Im C) where Im C = {x ∈
C | 〈x, 1〉 = 0} (which is called purely imaginary octonions).

3. Hypersurfaces in ImC

In ([1,2]), it is proved that any orientable hypersurface ϕ : M 6 → Im C of

purely imaginary octonions admits the almost complex (Hermitian) struc-

ture defined by

ϕ∗(JX) = ϕ∗(X)ξ,

where ξ is the (oriented) unit normal vector field on M 6. The structure

equations of G2 is given by

Proposition 3.1 ([1]). Let ϕ : M6 → Im C be an isometric immersion

from an oriented 6-dimensional manifold M 6 to the purely imaginary octo-

nions and ξ be an unit normal vector field on M 6. Then

dϕ = fω + f̄ ω̄, (1)

dξ = f(−2
√
−1 θ) + f̄(2

√
−1 θ̄), (2)

df = ξ(−
√
−1 tθ̄) + fκ+ f̄ [θ], (3)

and the integrability conditions imply that

dω = −κ ∧ ω − [θ] ∧ ω̄, (4)

0 = −tθ̄ ∧ ω + tθ ∧ ω̄, (5)

dθ = −κ ∧ θ + [θ̄] ∧ θ̄, (6)

dκ = −κ ∧ κ+ 3θ ∧ tθ̄ − (tθ ∧ θ̄)I3, (7)

where (ξ, f, f̄) is a G2-adapted (local) frame field along ϕ, and θ, κ are

M3×1(C), M3×3(C) valued 1-forms on M6, respectively.
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By (5), we see that there exist M3×3-valued matrices A,B satisfying
√
−1 θ = tBω + Aω̄,

where tA = A. More explicitly, there exists a unitary frame {ei, Jei} (i =

1, 2, 3), such that

fi = (1/2)(ei −
√
−1Jei).

We denote by II the second fundamental form of M 6. Then the components

of second fundamental form are given by

Aij = 〈II(fi, fj), ξ〉, Bij = 〈II(fi, f̄j), ξ〉.

Let ϕ, ϕ′ : M6 → Im C be two isometric immersions from an oriented 6-

dimensional manifold M6 to Im C. If there exist g ∈ G2, a ∈ Im C satisfying

g ◦ ϕ+ a = ϕ′,

then we say that ϕ and ϕ′ are G2-congruent. We can easily see that, if

ϕ and ϕ′ are G2-congruent, then the induced almost Hermitian structures

coincide. However, the induced almost Hermitian structure of g̃ ◦ ϕ are

different from the one of ϕ in general, for g̃ ∈ SO(7).

4. On G2 frame field on S2 × R4

In this section, we give an explicit representation of G2-frame fields on

S2 × R4 ⊂ Im C, and the G2-invariants. Let q ∈ S3(⊂ H) be the unit

quaternion. We define the map π : S3 → S2 such that π(q) = qiq̄, which is

called the Hopf map.

Next we define the 1-parameter family of imbeddings from S2 × R4 to

Im C, as follows

ϕα(qiq, ỹ) = cos(α)qiq + sin(α)(qiq)ε

+ y0ε+ y1(− sin(α)i+ cos(α)iε)

+ y2(− sin(α)j + cos(α)jε)

+ y3(− sin(α)k + cos(α)kε),

(8)

where qiq ∈ S2 and ỹ = (y0, y1, y2, y3) ∈ R4, for some fixed α ∈ [0, π/3].

Note that the imbeddings are equivariant in the following sense.

Let ρIII : Sp(1) → G2 be the representation of the Lie subgroup Sp(1)

of G2, which is defined by

ρIII(q)(a+ bε) = qaq + (qbq)ε, (9)
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where a, b ∈ H (see [5]). In fact, we may show that ρIII satisfies

ρIII(q)(a+ bε)ρIII(q)(c+ dε) = ρIII(q)(ac− d̄b+ (da+ bc̄)ε),

for any a, b, c, d ∈ H. From (8) and (9), it follows immediately that the

imbedding ϕα is rewritten as

ϕα(qiq, ỹ) = ρIII(q)(cos(α)i+ sin(α)iε)

+ y0ε+ y1(− sin(α)i+ cos(α)iε)

+ y2(− sin(α)j + cos(α)jε)

+ y3(− sin(α)k + cos(α)kε).

(10)

Therefore, we see that the imbeddings are equivariant and the induced

almost Hermitian structures are homogeneous for all α ∈ [0, π/3]. In fact,

we define the G2-adapted frame fields by

ξ =
{
ρIII(q)(cos(α) · i+ sin(α)iε)

}
,

f1 =
1

2

{
ρIII(q)(− sin(α) · i+ cos(α)iε−

√
−1 (ε))

}
,

f2 =
1

2

{
ρIII(q)(j −

√
−1 (− cos(α)k + sin(α)kε))

}
,

f3 = −1

2

{
ρIII(q)(− sin(α)k − cos(α)kε−

√
−1 jε)

}
.

Then we may see that (f1, f2, f3) is a SU(3)−frame field on ϕα(S2 ×R4).

To calculate the G2 invariants, we define the local 1-forms µ1, µ2 on S2

by

µ1 = 〈d(qiq), qjq〉, µ2 = 〈d(qiq), qkq〉.

Then, we obtain

ω1 = dy1 −
√
−1 dy0,

ω2 = cos(α)µ1 − sin(α)dy2 +
√
−1 (− cos(2α)µ2 + sin(2α)dy3),

ω3 = sin(2α)µ2 + cos(2α)dy3 −
√
−1 (sin(α)µ1 + cos(α)dy2),

at q = 1. Since

dξ = cos(α)dqiq + sin(α)(dqiq)ε

= cos(α)(qjq ⊗ µ1 + qkq ⊗ µ2) + sin(α) ((qjq)ε⊗ µ1 + (qkq)ε⊗ µ2) ,

we get

dξ = cos(α)(j ⊗ µ1 + k ⊗ µ2) + sin(α) (jε⊗ µ1 + kε⊗ µ2) ,
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at q = 1. Hence we have

B = −1

4




0 0 0

0 cos2(α) + cos2(2α)
√
−1
2 (sin(2α) − sin(4α))

0 −
√
−1
2 (sin(2α) − sin(4α)) sin2(α) + sin2(2α)


 ,

A = −1

4




0 0 0

0 cos2(α) − cos2(2α) −
√
−1
2 (sin(2α) + sin(4α))

0 −
√
−1
2 (sin(2α) + sin(4α)) − sin2(α) + sin2(2α)


 . (11)

Thererfore from (11), we get the G2 invariants on S2 ×R4 given by

tr(tB B) =
1

8
(1 + cos2(3α)), tr(tAA) =

1

8
(1 − cos2(3α)).

Summing up the above arguments, we have

Theorem 4.1. For α ∈ R (0 ≤ α ≤ π/3), let (S2 × R4, ϕα) be defined as

above. The family of the imbeddings ϕα induce the 1-parameter family of

the almost complex structures Jα on S2 ×R4, which are not G2−conguent

to each other. Moreover the induced almost Hermitian structure (Jα, 〈, 〉) is

(1,2)-symplectic iff α = 0 or π/3.

We here note that ϕ0 and ϕπ/3 are G2-congruent. The almost Hermitian

manifold (M,J, 〈, 〉) is said to be (1, 2)-symplectic if (dω)(1,2) = 0, where

ω = 〈J , 〉 is the canonical 2-form (or Kähler form) on M . In our situation,

(dω)(1,2) = 0, is equivalent to A = 0.

5. Orbits related to G2

It is well known that 6-dimensional, 5-dimensional spheres can be repre-

sented as follows

S6 = G2/SU(3), S5 = SU(3)/SU(2). (12)

Let G+
2 (R7) be the Grassmann manifold of oriented 2-planes in R7 and

let V2(R7) be the Stiefel manifold of oriented orthonormal 2-frames in R7.

Then

V2(R7) =
{

(u, v) ∈ S6 × S6 | 〈u, v〉 = 0
}
.

By (12) we see that

V2(R7) ' G2/SU(2), G+
2 (R7) ' G2/U(2).

A 3-dimensional vector space V in Im C is called associative if spanR{u, v,
uv} = V , where {u, v} is an oriented orthonormal pair of V . We also note
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that the Grassmann manifold Gass(Im C) of associative 3-planes are given

by

Gass(Im C) ' G2/SO(4).

We note that the representation ρ from SO(4)(' Sp(1) × Sp(1)/Z2) to G2

is given by

ρ(q1, q2)(a+ bε) = q1aq1 + (q2aq1)ε,

where (q1, q2) ∈ Sp(1)×Sp(1) and a+bε ∈ Im C. Let S2 be a 2-dimensional

sphere in Im C. Then there exists a 3-dimensional vector space V such that

S2 ⊂ V . In general, V is not necessarily associative.

If V is an associative 3-plane, then the imbedding from S2×R4 to Im C

is G2-congruent to ϕ0(S2 ×R4).

Next we assume that V is not an associative 3-plane. Let {v1, v2, v3} be

the oriented orthonormal base of V . From assumption

spanR{v1, v2, v1v2} 6= V.

We set

cos θ = 〈v1v2, v3〉,
then, we may choose a vector u1 ∈ V , (|u1| = 1, 〈u1, v1v2〉 = 0) satisfying

v3 = cos θv1v2 + sin θu1.

By algebraic properties of G2, we can take g ∈ G2 satisfying

g(i) = v1, g(j) = v2, g(k) = v1v2, g(ε) = u1.

From which, we may assume that S2 is included in the 3-dimensional vec-

tor space spanR

{
g(i), g(j), g(cos θk + sin θε)

}
, for some θ ∈ [0, π/2]. By

reparametrizing 3-dimensional subspace in ImC suitably, we may assume

that

S2 ⊂ spanR

{
cosαi+ sinαiε, cosαj + sinαjε, cosαk + sinαkε

}
,

for some α ∈ [0, π/3]. Therefore we obtain

Proposition 5.1. Let ϕ be any isometric imbedding from S2×R4 to Im C.

Then there exist a g ∈ G2 and α ∈ [0, π/3] such that

g ◦ ϕ = ϕα.

Hence the moduli space (up to the action of G2) of isometric imbedddings

from S2 ×R4 to Im C coincide with {ϕα | α ∈ [0, π/3]}.
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In the following article we present some recently derived results describing
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this family, including applications in modelling shallow water waves over a flat
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1. Introduction

The equations of motion for a perfect (homogeneous and inviscid) fluid in

two dimensions are described by Euler’s equation,
{
ut + uux + vuy = −Px,

vt + uvx + vvy = −Py − g,

where (u(x, y, t), v(x, y, t)) is the velocity field, P (x, y, t) is the pressure

function and g is the gravitation constant of acceleration. This equation,

coupled with the equation of mass conservation and equations describing

boundary conditions on the surface and at the bottom of the fluid domain,

describe the full governing equations for the water wave problem. The equa-

tions of motion are highly intractible, due to nonlinearity, and this difficulty

is compounded by the fact that the free-surface of the fluid is also an un-

known element of the problem [26]. In general the full governing equations

are not well understood. As a first step in tackling the water wave problem,

we can study approximations to the full governing equations. Such approx-

imations can be derived in a variety of ways, however most follow from the
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introduction of small shallowness or amplitude paramters. We assume the

water motion is two-dimensional over a flat bed, where the water has a

typical depth h0— this is a reasonable assumption for water flowing in a

channel, or for wave motion in the ocean. In the case where the scale of the

amplitude is small compared to that of the water depth then the parameter

ε = a/h0 is tiny, and where the scale of the wavelength is long compared to

that of the water depth then the shallowness parameter δ = h0/λ is very

small. If we perform asymptotic expansions in terms of these parameters

[24,25], then we find that, to the first order, the motion is described by the

well-known Korteweg-deVries equation,

ut − uux + uxxx = 0

and to the next asymptotic order we obtain a nonlinear dispersive partial

differential

ut − utxx + buux = buxuxx + uuxxx (1)

where, depending on how we manipulate various coefficients, we can have

b = 2, 3 [24].

2. The b-equations

The family of equations Eq. (1), parameterised by the real coefficient b ∈ R,

are commonly known as the b-equations, and have been the focus of much

research in their own right. However, as mentioned above, there are two

special cases of great interest.

The Camassa-Holm (CH) equation (b = 2) arises in a variety of different

contexts. It has been widely studied since 1993 when Camassa and Holm [3]

proposed it as a model for the unidirectional propagation of shallow water

waves over a flat bed. In the shallow water setting u(x, t) represents the

horizontal velocity of the fluid motion at a certain depth over a flat bed

in nondimensional variables [24,25]. The equation was originally derived in

1981 as a bi-Hamiltonian equation with infinitely many conservation laws

by Fokas and Fuchssteiner [19]. It also models axially symmetric waves in

hyperelastic rods [12].

The Degasperis-Procesi (DP) equation (b = 3) was originally derived

by Degasperis and Procesi [14], and it was shown to be formally integrable

by Degasperis, Holm and Hone [13] when they obtained a Lax pair and a

bi-Hamiltonian structure for it. Concerning the existence of solutions to the

DP equation, certain classical solutions exist for all times, whereas others
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blow up in finite time [17,28,32] — a situation which occurs for the CH

equation [4,7] but not for KdV (where all classical solutions are global).

The solitary wave solutions of the DP and CH equations are solitons

[2,11,13,16] — in fact they also admit a class of weak solutions which are

peaked-solitons (peakons) [2,3,13]. A property which is unique to the DP

equation is the existence of discontinuous shock wave and periodic shock

wave solutions [18].

Geometrically, the KdV and CH equations are re-expressions of geodesic

flow on the Bott-Virasoro group and the diffeomorphism group respectively

[1,4,9,27]. However, the DP equation has not currently been afforded such

a geometric interpretation.

The main reason the CH and DP equations have generated such interest

is that the CH and DP equations are the only members of the b-equation

family with a bi-Hamiltonian structure and which are integrable [24]. In

what follows we present a summary of recently derived results which de-

scribe how solutions of Eq. (1) which initially have compact support, or so-

lutions which initially have a weighted asymptotic exponential decay rate,

retain these properties as they evolve over the duration of their existence.

If p(x) = 1
2e

−|x|, x ∈ R, then (1 − ∂2
x)−1f = p ∗ f for all f ∈ L2(R)

and so p ∗m = u, where ∗ denotes convolution in the spatial variable. If we

define the function

Fb(x, t) :=
3 − b

2
u2

x(x, t) +
b

2
u2(x, t),

which depends on the parameter b ∈ R, then we can re-express equation

Eq. (1) as

ut + uux + ∂xp ∗ Fb = 0, x ∈ R, t ≥ 0. (2)

The space Hs(R), is the space of functions f for which the following sum

is finite,

‖f‖s =

( ∞∑

n=−∞
(1 + n2)s|f̂(n)|2

) 1
2

<∞,

where f̂(n) denotes the Fourier series of f . The above expression for ‖f‖s

defines a norm on Hs(R). An application of Kato’s semigroup theory to

Eq. (2) ensures, for each fixed b ∈ R, the local existence of solutions to

Eq. (2) for u0 ∈ Hs(R), where s > 3/2 [21]. We will regards these strong

solutions of Eq. (2) to be weak solutions of Eq. (1).
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2.1. Compactly supported solutions

Note that we can rewrite Eq. (1) as

mt + buxm+mxu = 0, (3)

where m = u−uxx represents the momentum density. Compactly supported

solutions of Eq. (3) represent localised perturbations, and it is of interest to

see how such perturbations develop over time. The first result we present

tells us that, for each fixed b ∈ R, initially compactly supported classical

solutions of Eq. (3) remain compactly supported throughout their evolution.

Proposition 2.1 ([20]). Assume that u0 ∈ H4(R) is such that m0 = u0 −
u0,xx has compact support. If T = T (u0) > 0 is the maximal existence time

of the unique solution u(x, t) to Eq. (3) with initial data u0(x), then for

any t ∈ [0, T ) the C1 function x 7→ m(x, t) has compact support.

Proof. We fix b ∈ R, and associate to the solution m the fam-

ily {ϕ(·, t)}t∈[0,T ) of increasing C2 diffeomorphisms of the line defined by

ϕt(x, t) = u(ϕ(x, t), t), t ∈ [0, T ), (4)

with

ϕ(x, 0) = x, x ∈ R. (5)

We find that the following identity holds:

m(ϕ(x, t), t) · ϕb
x(x, t) = m(x, 0), x ∈ R, t ∈ [0, T ). (6)

Note that if we are dealing with the case b = 0, then Eq. (6) gives

m(·, t) = m0 x ∈ R, t ∈ [0, T ),

and so m(·, t) is automatically compactly supported. For the rest of the

cases, we infer from Eq. (4)–Eq. (5) that

ϕx(x, t) = exp

(∫ t

0

ux(ϕ(x, s), s) ds

)
, x ∈ R, t ∈ [0, T ). (7)

It follows that if m0 is supported in the compact interval [a, b], then

since ϕx(x, t) > 0 on R× [0, T ) from Eq. (7), we can conclude from Eq. (6)

that m(·, t) has its support in the interval [ϕ(a, t), ϕ(b, t)].

It is worth noting that the Hunter-Saxton (HS) equation,

uxxt + 2uxuxx + uuxxx = 0, (8)
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which is an integrable equation that arises in the theoretical study of ne-

matic liquid crystals [23], arises from the CH equation in what is called the

high frequency limit — essentially we end up with m = −uxx in Eq. (3).

Following basic computations we see that the above Proposition also holds

for the HS equation, and so any solution of the HS where m which is ini-

tially compactly supported, retains this property for all future times of

existence. Since m = −uxx, it follows that if u is a solution of the HS

equation Eq. (8) with u0 = u(x, 0) compactly supported, then u is com-

pactly supported throughout its evolution. In general, the b−equations do

not share this property, as we see from the following theorem.

Theorem 2.1 ([20]). Fix b ∈ [0, 3] in Eq. (1). Assume that the function

u0 ∈ H4(R) has compact support. Let T > 0 be the maximal existence time

of the unique solution u(x, t) to Eq. (1) with initial data u0(x). If at every

t ∈ [0, T ) the C2 function x 7→ u(x, t) has compact support, then u must be

identically zero.

A consequence of this result is that any solution to Eq. (1) which is

initially compactly supported, for b ∈ [0, 3], instantly loses this property —

to see this, apply the statement of the Theorem to u on the interval [0, ε],

for any ε > 0.

2.2. Soliton-type solutions

We now study the evolution of solutions of Eq. (1) which admit a larger

class of initial data. First, we extend our definition of solutions to allow

weak solutions of Eq. (1), that is, classical solutions of Eq. (2).

We adopt the following notation: we write |f(x)| ∼ O(g(x)) as x → ∞
if limx→∞ |f(x)|/g(x) = C, where C is a constant (allowed to be zero); we

write |f(x)| ∼ o(g(x)) as x→ ∞ if limx→∞ |f(x)|/g(x) = 0.

The next result provides an asymptotic description of how solutions

of Eq. (2) propagate, if they initially decay asymptotically at a weighted

exponential rate. Such a class of solutions trivially include the functions

whose initial data is compactly supported, but more importantly, since the

CH and DP are integrable, it includes soliton type solutions— solutions

with rapid decay outside a localised region.

The solitons of the CH equation are weak solutions of the form u(x, t) =

ce−|x−ct|, where c is both the speed and the amplitude. This travelling wave

is known as a peakon (peaked soliton) and it is smooth everywhere except

at the cusp (where x− ct = 0), and here it is not differentiable. There are

also multi-peakon solutions for the CH equation [2], which consist of a finite
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sum of peakons. The DP equation also admits multi-peakon solutions [30]

as well as solutions which display even more exotic properties [29].

The evolution of such solutions is particularly interesting in the context

of CH as an equation describing the propagation of waves in a rod. This

equation acts as a model for nonlinear waves in cylindrical hyperelastic

rods, with the solutions representing the radial stretch relative to a pre-

stressed state [12]. Solitary waves in solids are interesting from the point of

view of applications, as they are easy to detect because they do not change

their shapes during propagation and can be used to determine material

properties and to detect flaws.

We state the following result, which was obtained in Ref. 21, and

describes the persistence of decay properties for the entire family of

b−equations.

Theorem 2.2 ([21]). Let b ∈ R. For s > 3/2, let T > 0 be the maxi-

mal existence time of the strong solution u ∈ C([0, T ),Hs(R)) to equation

Eq. (2) with initial data u0 = u(x, 0). Suppose there is a θ ∈ (0, 1) such

that both

|u0(x)| and |u0,x(x)| ∼ O(e−θ|x|) as |x| → ∞. (9)

Then both

|u(x, t)| and |ux(x, t)| ∼ O(e−θ|x|) as |x| → ∞, (10)

uniformly in the time interval I, where

I =

{
[0, T − ε] for any ε ∈ (0, T ), if T <∞,

[0, T ] for any T > 0, if T = ∞.
(11)

The condition on the interval I is necessary to ensure uniformity — for

solutions of the CH and DP equations which breakdown then wave-breaking

occurs [4,7,28,32], that is, ‖u(., t)‖∞ is bounded for all t ∈ [0, T ] but

limt→T sup ‖ux(t)‖∞ = ∞. (12)

The next Theorem sharpens the result of Theorem 2.1 by prescribing an

asymptotic rate of decay which no non-trivial solution of Eq. (2) can satisfy

at any more than one instant. Since a compactly supported solutions auto-

matically satisfies this rate, therefore any non-trivial compactly supported

solution to Eq. (1) must instantly lose its compact support.

Theorem 2.3 ([21]). Let b ∈ [0, 3]. For s > 3/2, let T > 0 be the maxi-

mal existence time of the strong solution u ∈ C([0, T ),Hs(R)) to equation
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Eq. (2) with initial data u0 = u(x, 0). Suppose there is a δ ∈ (1/2, 1) such

that

|u0(x)| ∼ o(e−|x|) and |u0,x(x)| ∼ O(e−δ|x|) as |x| → ∞. (13)

If there is a t1 ∈ (0, T ) such that

|u(x, t1)| ∼ o(e−|x|) as |x| → ∞, (14)

then u ≡ 0.

We saw in Theorem 2.1 that, for fixed b ∈ [0, 3], every nontrivial solution

of Eq. (1) which is initially compactly supported must instantly lose this

property. The following result provides a more explicit description of this

process.

Theorem 2.4 ([21]). For b ∈ R, let u be a nontrivial solution of equation

Eq. (2) with maximal time of existence T > 0 and u ∈ C([0, T ),Hs(R)) for

s > 5/2.

(a) If the initial data u0(x) = u(x, 0) is initially compactly supported on

[α, β] then for t ∈ [0, T ) we have

u(x, t) =

{
1/2E+(t)e−x for x > ϕ(β, t),

1/2E−(t)ex for x < ϕ(α, t),
(15)

where E+ and E− are continuous nonvanishing functions with E+(0) =

E−(0) = 0; and when b ∈ [0, 3] then E+ > 0 and E− < 0 with E+

strictly increasing and E− strictly decreasing for t ∈ (0, T ).

(b) Suppose for some constant µ > 0 we have

u0, u0,x, u0,xx ∼ O(e−(1+µ)|x|) as |x| → ∞, (16)

then for t ∈ [0, T ) we have

m(x, t) ∼ O(e−(1+µ)|x|) as |x| → ∞, (17)

and

lim
x→±∞

e±xu(x, t) = 1/2E±(t). (18)

Proof. Since u = p ∗m let us re-express u in the form

u(x, t) =
1

2
e−x

∫ x

−∞
eym(y, t)dy +

1

2
ex

∫ ∞

x

e−ym(y, t)dy. (19)
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Notice Proposition 2.1 tells us that if u0 is initially supported on the com-

pact interval [α, β] then, for any t ∈ [0, T ), our function m(·, t) is supported

on the compact interval [ϕ(α, t), ϕ(β, t)]. To prove (a) we define

E+(t) =

∫ ϕ(β,t)

ϕ(α,t)

eym(y, t)dy and E−(t) =

∫ ϕ(β,t)

ϕ(α,t)

e−ym(y, t)dy, (20)

with

u(x, t) = p(x) ∗m(x, t) =
1

2
e−xE+(t), x > ϕ(β, t),

u(x, t) = p(x) ∗m(x, t) =
1

2
exE−(t), x < ϕ(α, t).

(21)

It follows from the relations in Eq. (21) that

u(x, t) = −ux(x, t) = uxx(x, t) =
1

2
e−xE+(t), x > ϕ(β, t),

u(x, t) = ux(x, t) = uxx(x, t) =
1

2
exE−(t), x < ϕ(α, t),

and so E+(0) = E−(0) = 0 by definition of {α, β}. Since m(ϕ(α, t)) =

m(ϕ(β, t)) = 0, for fixed t we have

dE+(t)

dt
=

∫ ϕ(β,t)

ϕ(α,t)

eymt(y, t)dy =

∫ ∞

−∞
eymt(y, t)dy. (22)

If b ∈ [0, 3], then from Eq. (3) and integration by parts, and using the fact

that both u and consequently m have compact support, we get

dE+(t)

dt
= −b

∫ ∞

−∞
eyuxmdy −

∫ ∞

−∞
eyumxdy

=

∫ ∞

−∞
ey

(
b

2
u2 +

3 − b

2
u2

x

)
dy > 0.

Thus E+(t) is initially zero and strictly increasing for all t ∈ [0, T ). In a

similar manner one can show that, when b ∈ [0, 3], E− is also initially zero

but strictly decreasing for t ∈ [0, T ). This proves part (a) of the theorem.

To prove (b) we write equation Eq. (3) in the form

mt(x, t) + u(x, t)mx(x, t) = −bux(x, t)m(x, t), x ∈ R, t ∈ [0, T ), (23)

and proceeding as in Theorem 2.2 we find that

sup
t∈I

‖m(t)e(1+µ)|x|‖∞ ≤ c(I)‖m(0)e(1+µ)|x|‖∞, (24)

where c(I) is a constant depending on the choice of time interval I for

supt∈I(‖ux(τ)‖∞ + ‖u(τ)‖∞). We note that for any θ ∈ (0, 1)

u(t), ux(t), uxx(t) ∼ O(e−θ|x|) as |x| → ∞, (25)
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meaning that all of the integrals in the computations above are well-defined.

The property Eq. (18) follows by an approach similar to the one performed

before, taking into account Eq. (19) and defining E± as in Eq. (20) but

with α = −∞, β = ∞.
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SOME GEOMETRIC PROPERTIES AND OBJECTS

RELATED TO BÉZIER CURVES
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Classical Bézier curves (the parabolic case) with the natural barycentric de-
scription are considered. The explicit expressions for lenght, curvature, shape
etc. are given. It is introduced the notion trajectory of Bézier curve and by
means of the projective isotomic conjugation the corresponding envelope conic
surfaces in the space are obtained.

Keywords: Barycentric coordinates and orbits; Projective isotomic conjugation;
Bézier curves; Curvature; Shape; Envelope.

1. Preliminaries

1.1. Barycentric coordinates and barycentric trajectories

Let α be fixed euclidean plane, 4ABC be fixed triangle in λ and E∗
2(α)

be the extended euclidean plane — the basic model of the real projective

plane RP2. The set of points (resp. lines) in E∗
2(α) will be denoted by Σ

(resp. Λ). For G ∈ Σ, ΛG will stand for the set of lines, incident ( z ) with G

(known as star of lines with center G), for g ∈ Λ, Σg will stand for the set

of points z g and Ug denotes the infinity (unproper) point of g. The infinity

line in α is the set of all infinity points and will be denoted by ω.

For any point P ∈ Σ and p ∈ R there exist unique x, y, z ∈ R, so that
{
p · −−→OP = x · −→OA + y · −−→OB + z · −−→OC
x+ y + z = p.

The ordered triple (x, y, z) is said to be triple of barycentric coordinates

(b-coordinates) [4–6] of P with respect to basic Möbius triangle ABC and

it will be written P (x, y, z). The case p = 0 corresponds to P ∈ ω and

p 6= 0 describes finite euclidean points. From projective point of view, b-

coordinates of P are the affine coordinates with respect to space coordinate
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system

K = {O(6zα), a1(‖−→OA), a2(‖−−→OB), a3(‖−−→OC)},

of a vector p‖−−→OP and α : x + y + z = p. That is why we do not use the

terminology “homogeneous relative (absolute) b-coordinates” [4–6].

From algebraic point of view b-coordinates x, y, z of finite P ∈ Σ are

the unique solution of the system of linear equations (SLE)




λy + z = 0

µx + (1 − λ)y = 0

(1 − µ)x = p

, (1)

where λ = (BCA′)
def
=

BA′

CA′ and µ = (AA′P ) are the affine ratios, always

6= 1 for each finite points P and A′ = PA ∩ BC (it is assumed) and

λ = 1 ⇐⇒ A′ = UBC . We rewrite (1) in the matrix form A.X1 = B,

where

A =




1 λ 0

0 1−λ µ

0 0 1−µ


 , B =




0

0

p


 , X1 =



z1
y1
x1


 .

Thus, in transposed form,

XT
1 = BT (A−1)

T
=

(
pλµ

(1 − λ)(1 − µ)
;− pµ

(1 − λ)(1 − µ)
;

p

1 − µ

)
.

The triangle matrix A is of stochastic type by columns (left(L)-stochastic-

like) and generates the affine transfomation ϕA in E∗
2(α). The reason to use

“-like” is that A is not non-negative. The set A of all such matrixes is mul-

tiplicative, non-commutative group. We express the commutator [A1, A2]

of such matrixes in the form

[A1, A2] =

∣∣∣∣
λ1 λ2

µ1 µ2

∣∣∣∣ ·D (2)

where

D =




0 0 1

0 0 −1

0 0 0


 , Ai =




1 λi 0

0 1 − λi µi

0 0 1 − µi


 .

Moreover A is Lie group. We call A L-stochastic-like Lie group with basic

Möbius triangle ABC.

By the consideration of the powers of A ∈ A, we get the following
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Definition 1.1. The orbit of the point P (x, y, z) under the action of the

matrix A ∈ A, i.e. the set of points {Pn(xn, yn, zn) = ϕ1−n
A (P ), n ∈ N},

such that (xn, yn, zn) is the unique solution of SLE

AnXn = B, Xn =



zn

yn

xn


 , B =




0

0

p




is said to be barycentric trajectory (b-trajectory) of the point P (≡P1) with

respect to basic 4ABC.

We get the explicit form of the b-trajectory in the form

zn = p+
p

λ− µ

[
µ

(1 − λ)n
− λ

(1 − µ)n

]
,

yn =
pµ

λ− µ

[
1

(1 − µ)n
− 1

(1 − λ)n

]
,

xn =
p

(1 − µ)n
.

(3)

Any point Pn(xn, yn, zn) ∈ α : x+ y + z = p and determines

λn = (BCAn) = −zn

yn
, µn = (AAnPn) = −yn + zn

xn

where An = APn ∩ BC. Thus, the position of Pn is determined by

−−→
CPn =

1

1 − µn

−→
CA− µn

1 − µn

1

1 − λn

−−→
CB.

1.2. Barycentric characterization of the duality in the

projective plane. Projective isotomic conjugation

Further we assume P (x, y, z) : x+ y + z = 1, i.e. α : x+ y + z = 1.

In the following theorem we resume some well known facts from the

analytic geometry of E∗
2(α).

Theorem 1.1. Let in the plane α of a basic 4ABC be given in b-

coordinates the points A′(a1, a2, a3), B′(b1, b2, b3) and C ′(c1, c2, c3). Let

M(A′B′C ′) =



a1 a2 a3

b1 b2 b3
c1 c2 c3


 and ∆′ = detM(A′B′C ′)

be the matrix and it’s determinant, formed by the ordered triple (A′, B′, C ′).

Then:



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

112 M.J. Hristov

(i) A′, B′, C ′ are incident with a line ⇐⇒ ∆′ = 0;

(ii) the ratio of the areas
SA′B′C′

SABC
= |∆′| ;

(iii) the barycentric equation of the line a′ :

{
z B′(b1, b2, b3)

z C ′(c1, c2, c3)
is

a′ :

∣∣∣∣∣∣

x y z

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
= 0 ⇐⇒ a′ : A23.x+ A31.y + A12.z = 0.

The minors Aij are called b-coordinates of the line a′ and it is written

a′[A23, A31, A12];

(iv) the b-coordinates of the intersect point P = m ∩ n of the lines

m[M1, M2, M3 ] and n[N1, N2, N3 ] are P
(p23

∆
,
p31

∆
,
p12

∆

)
, where

pij are the minors, formed with {i, j}-columns of the matrix

P(m,n) =

(M1 M2 M3

N1 N2 N3

)
and ∆ =

∣∣∣∣∣∣

1 1 1

M1 M2 M3

N1 N2 N3

∣∣∣∣∣∣
;

(v) the b-equation of a conic C is C : (x, y, z).A.(x, y, z)T = 0, where A

is 3 × 3 real symmetric matrix. In particular, C passes through the

vertexes of the basic triangle iff aii = 0, i = 1, 2, 3.

There are several kinds of conjugate maps (isogonal, isotomic) with

respect to fixed triangle, defined as colineations over E∗
2, for example by

means of point multiplication [6]. The theorems of Ceva and Menelaus give

rise

Definition 1.2. Projective (RP2-) isotomic conjugation with respect to

basic 4ABC is the map

π : Σ\{ΣAB ∪ ΣBC ∪ ΣCA} −→ Λ\{AB ∪ BC ∪ CA}
P = AA′ ∩ BB′ ∩ CC ′ 7−→ π(P ) = p z A∗, B∗, C∗,

where the points I ′, I∗ are harmonically-conjugated to the pair (J,K), i.e.

I ′, I∗ z JK and (JKI ′) = −(JKI∗) for I, J,K ∈ {A, B, C}. The Ceva

point P is called pole, the Menelaus line p = π(P ) is called polar line and

the map π is known also as polarity w.r. to 4ABC.

The image of the medicenter G is π(G) = ω.

The following theorem is easy to check by using Theorem 1.1.

Theorem 1.2.
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(i) The RP2−isotomic conjugation is involutive corelation, i.e. π 6= id (the

identity), π2 = id (or π−1 ≡ π) and analytically in b-coordinates

Σ 3 P (p1, p2, p3)
π7−→π(P ) = p [p2p3, p3p1, p1p2 ] ∈ Λ.

(ii) The sets of stars of lines in the plane of basic 4ABC and the set of

conics, incident with the vertexes A,B,C are equivalent in the sence

of the RP2-isotomic conjugation.

2. Bézier curves and related geometric properties and

objects

Bézier curves, as basic tools for Computer Aided Geometric Design [1], are

intensively studied by many autors. We recall the well known

Definition 2.1. Let 4A0A1A2 be fixed triangle with vertex-vector-posi-

tions ai =
−−→
OAi, i = 0, 1, 2. The polynomial curve of second degree

C : r(t) = (1 − t)2a0 + 2t(1 − t)a1 + t2a2, 0 ≤ t ≤ 1

is said to be Bézier curve of 2−d power with basic 4A0A1A2. It is also in

use the denotation C{A0A1A2}.

Generally, C{A0A1...An} : r(t) =

n∑

k=0

(
n

k

)
tk(1 − t)n−k.ak, t ∈ [0, 1] is

Bézier curve of n−th power with basic symplex A0A1 . . . An, formed as

the linear combination of ak =
−−→
OAk with coefficients the basic Bernstein’s

polynomials Bk,n =
(
n
k

)
tk(1 − t)n−k, k = 0, 1, . . . , n. Point A0 is called

initial, An — end-point, all the rest Ak — control points. Any Bézier curve

is invariant under the action of any affine transformation.

We use the following matrix forms for C{A0A1A2}

C{A0A1A2} : r(t) = (1, t, t2) ·




−−→
OA0

2
−−−→
A0A1−−−→

A1A0 +
−−−→
A1A2


 = (1, t, t2) ·




−−→
OA0

2
−−−→
A0A1

2
−−−→
A1M1


 ,

where M1 is the midpoint of A0A2, from which it’s easy to calculate the

derivatives ṙ(t) = dr(t)
dt ets. and to proove the well known properties, used

in the De’Casteljau algorithm:

Lemma 2.1. Arbitrary Bézier curve C{A0A1A2} passes through A0(t = 0)

and A2(t = 1), tangent to
−−−→
A0A1‖ṙ(0),

−−−→
A1A2‖ṙ(1), with curvatures at the
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initial point A0 and the end-point A2

κ(0) =
S4A0A1A2

|−−−→A0A1|3
, κ(1) =

S4A0A1A2

|−−−→A1A2|3
,

respectively, where S4A0A1A2 is the area of 4A0A1A2. Moreover C{A0A1A2}
intersects the median A1M1 at the midpoint M(t = 1

2 ) and is tangent at M

to the midsegment: ṙ( 1
2 )‖A0A2.

From barycentric point of view any Bézier curve C{A0A1A2} is the set of

points P with b-coordinates with respect to basic 4A0A1A2 — the basic

Bernstein polinomials of second degree P
(

(1− t)2, 2t(1− t), t2
)

, t ∈ [0, 1].

Lemma 2.2.

(i) Let P
(

(1− t)2, 2t(1− t), t2
)

, t ∈ [0, 1] be arbitrary point of the Bézier

curve C{A0A1A2}. The b-coordinates of the points: B0 = A0P ∩ A1A2,

B1 = A1P ∩ A0A2, B2 = A2P ∩ A1A0 are

B0

(
0;

2(1 − t)

2 − t
;

t

2 − t

)
, B1

(
(1 − t)2

2t2 − 2t+ 1
; 0;

t2

2t2 − 2t+ 1

)
,

B2

(
1 − t

1 + t
;

2t

1 + t
; 0

)
.

(ii) Any Bézier curve C{A0A1A2} generates the functional matrix A(t) from

the L-stochastic-like Lie group A with

λ(t) =
t

2(t− 1)
and µ(t) =

t(t− 2)

(t− 1)2
, t ∈ [0, 1).

Proof. The statement (i) follows by applying Theorem 1.1. and (ii) — by

calculating the affine ratios λ(t) = (A2A1B0) and µ(t) = (A0B0P ).

For 4A0A1A2 we denote: li = |−−−→AjAk|, mi = |−−−→AiMi|, Mi — the

midpoints of AjAk for i 6= j 6= k ∈ {0, 1, 2}, ϕ = ]A0A1A2 and

ψ = ]A0A1M1.

Theorem 2.1. Let C{A0A1A2} be Bézier curve.

(i) For any P ∈ C{A0A1A2} the ratio of the areas

s(t) =
S4B0B1B2

S4A0A1A2

=
4t2(1 − t)2

(2 − t)(1 + t)(2t2 − 2t+ 1)
∈
[
0;

2

9

]
,

max s
[0,1]

= s( 1
2 ) = 2

9 ⇐⇒ P ≡ M( 1
4 ; 1

2 ; 1
4 ) — the midpoint of the

median A1M1 for 4A0A1A2;
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(ii) The length of the curve is

lC =
2m1 − l2 cosψ

2m1

√
(2m1 − l2 cosψ)2 + l22 sin2 ψ +

l22 cosψ

2m1

+
l22 sin2 ψ

2m1
ln

√
(2m1 − l2 cosψ)2 + l22 sin2 ψ + 2m1 − l2 cosψ

l2(1 − cosψ)
.

Proof. The statement (i) follows from Theorem 1.1.-(ii) and standard ob-

taining of the max s(t) over [0, 1]. For (ii) we apply the lenght-formula

lC =

∫ 1

0

|ṙ(t)|dt for |ṙ(t)| = 2

√
(1, 2t).Γ(

−−−→
A0A1

−−−→
A1M1).

(
1

2t

)

where Γ(
−−−→
A0A1

−−−→
A1M1) is the Gramm-matrix for the pair {−−−→A0A1,

−−−→
A1M1}.

Theorem 2.2. The curvature κ(t) of any Bézier curve C{A0A1A2} is

κ(t) = S4A0A1A2 .[g(t)]−3/2,

where the function g(t), defined over [0, 1], is of the form

g(t) = |(t− 1)
−−−→
A1A0 + t

−−−→
A1A2|2 = (t− 1 ; t)

(
l22 l0l2 cosϕ

l0l2 cosϕ l20

)(
t− 1

t

)
.

Proof. It follows by direct calculations, analogous to Theorem 2.1.-(ii),

over the well known formula κ(t) =
|ṙ × r̈|
|ṙ|3 .

Theorem 2.2. implies immediately the well known

Corollary 2.1. The Bézier curve C{A0A1A2} is a parabola with vertex at

point K, such that
−−→
OK = r(t0), where

t0 =
l22 + l0l2 cosϕ

l22 + 2l0l2 cosϕ+ l20

is the unique (global) maximum for κ(t): κ|K = κ(t0) = max
[0,1]

κ(t).

Moreover, the result of Theorem 2.2. gives additional geometric infor-

mation of the shape of Bézier curve C{A0A1A2}, considered and discussed in

[2] and generalized in [3] for cubic Bézier curve.

By cosidering the action of RP2-isotomic conjugation over each point of

C{A0A1A2}\{A0, A2}, jointly with Lemma 2.2. (i), we get



June 3, 2009 9:47 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

116 M.J. Hristov

Theorem 2.3. The RP2-isotomic-conjugated image of C{A0A1A2} is

π(C{A0A1A2}) =
{
p [2t2; t(1 − t); 2(1 − t)2] : t ∈ (0, 1)

}
,

i.e. is the 1-parameter set of polar lines

p = π(P ) : 2t2 · x+ t(1 − t) · y + 2(1 − t)2 · z = 0, t ∈ (0, 1), u, v ∈ R.

The lines, corresponding to t = 1
3 ,

1
2 ,

2
3 , are the polar lines of the intersecting

points of C{A0A1A2} with the medians through A2, A1, A0 and are parallel to

A1A0, A0A2, A2A1, respectively.

From projective point of view w.r. to the space coordinate system

K = {O, a1, a2, a3} the obtained 1-parameter family of lines p, give rise

1-parameter family of the planes σ :

{
z O

z p
. The envelope of the last one is

conic surface S with vertex O and generator Eπ(C) = S∩α : x+y+z = 1 —

the envelope of π(C{A0A1A2}). More precisely, after standard calculations,

we get the following

Theorem 2.4. The envelope S of the set of planes σ :

{
z O

z π(C{A0A1A2})
with respect to K = {O, a1, a2, a3} is the real hyperbolic conic surface

S : 16xz − y2 = 0

with generator in the basic plane α : x+ y + z = 1, the envelope

Eπ(C) :

(
x =

(1 − t)2

6t2 − 6t+ 1
; y =

4t(t− 1)

6t2 − 6t+ 1
; z =

t2

6t2 − 6t+ 1

)

(in b-coordinates) and t ∈ (0, 1)\{ 1
2 ± 1

2
√

3
}.

Proof. From Theorem 2.3. the b-equation F (x, y, z, t) = 0, where

F (x, y, z, t) = 2t2.x + t(1 − t).y + 2(1 − t)2.z for t ∈ (0, 1) describes the

1-parameter set of polar lines. Then the envelope is obtained by the solu-

tions of

Eπ(C) :





F (x, y, z, t) = 0

∂F

∂t
(x, y, z, t) = 0

x+ y + z = 1

⇐⇒




2t2 t(1 − t) 2(1 − t)2

4t 1 − 2t 4(t− 1)

1 1 1


 .



x

y

z


 =




0

0

1


 .

By solving the SLE with respect to x, y, z we proof the theorem.

Analogous to Lemma 2.2, we get
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Lemma 2.3. The envelope Eπ(C) of RP2-isotomic image of any Bézier

curve C{A0A1A2} generates the functional L-stochastic-like matrix Aε(t) with

λ(t) =
t

4(1 − t)
, µ(t) =

t(4 − 5t)

(t− 1)2
, t ∈ (0, 1) : t 6= 4

5
,

1

2
± 1

2
√

3
.

By applying (2) to Lemma 2.2 (ii) and Lemma 2.3, we calculate the

commutators and obtaine

Lemma 2.4. Let A(t) and Aε(t) be the functional matrices in A of

C{A0A1A2} and Eπ(C) respectively. For t1 6= t2 in (0, 1), the following re-

lations for the commutators are valid

[A(t1), A(t2)] = −2[Aε(t1), Aε(t2)] =
t1t2(t2 − t1)

2(1 − t1)2(1 − t2)2
.D.

By the notion b-trajectory of a point we consider b-trajectories of the

Bézier curve C{A0A1A2} as the family of lines C(n)
{A0A1A2} formed by the nth–

b-image of any point of C{A0A1A2}, ∀n ∈ N.

Theorem 2.5. The b-trajectories of the Bézier curve C{A0A1A2} are the

elements of the sequence of curves

C(n)
{A0A1A2} : rn(t) = xn(t).a0 + yn(t).a1 + zn(t).a2, t ∈ [0, 1],

with
(
xn(t); yn(t); zn(t)

)

=

(
(t− 1)2n; 2f(t)

∣∣∣∣
(t− 1)n 2n

1 (t− 2)n

∣∣∣∣ ; 1 − f(t)

∣∣∣∣
(t− 1)n+1 2n+1

1 (t− 2)n−1

∣∣∣∣
)

(4)

and where f(t) =
(1 − t)n

(t− 3)(2 − t)n−1
.

(i) For arbitrary n ∈ N, rn(0) = a0, i.e. A0 ∈ C(n)
{A0A1A2}, rn(1) = a2 and

A2 ∈ C(n)
{A0A1A2}.

(ii) The tangent vectors to each C(n)
A0A1A2

at A0 and A2 are

ṙn(0) = 2n · (a1 − a0) = 2n · −−−→A0A1, ∀n ∈ N,

ṙn(1) = ḟ(1).2n+1(a2 − a1) =

{
0, for n ≥ 2

2(a2 − a1) = 2.
−−−→
A1A2, for n = 1.
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(iii) The envelope En of π(C(n)
A0A1A2

), in b-coordinates, is

En :





x = ∆1.∆
−1

y = ∆2.∆
−1

z = ∆3.∆
−1

,

for all (t, n) in order to have well defined

∆1 =
−1

y2
n

(
yn

zn

)•
, ∆2 =

−1

z2
n

(
zn

xn

)•
, ∆3 =

−1

x2
n

(
xn

yn

)•
,

and ∆ =
∑3

i=1 ∆i.

Proof. By applying Lemma 2.2.(ii) jointly with (3) we get (4) and calculate

(i). We express the derivatives ẋn, ẏn, żn of (4) are as follows:

ẋn = 2n(t− 1)2n−1,

ẏn =
2f(t)

(t− 1)(t− 2)(3 − t)

∣∣∣∣
(t− 1)n(t− 2)n 2n

t− 1 + n(t− 3) t− 1 + 2n(t− 2)(3 − t)

∣∣∣∣ ,

żn =
2f(t)

(t− 1)(t− 2)(3 − t)

∣∣∣∣
(t− 1)n+1(t− 2)n−1 −2n

t− 1 + n(t− 3) (3 − t)[1 − n(t− 2)] − 1

∣∣∣∣ .

Thus we calculate (ii).

(iii) The RP2− isotomic conjugated image of each C(n)
{A0A1A2} is the 1-

parameter family of lines

π(C(n)
{A0A1A2}) = pn :

1

xn(t)
· x+

1

yn(t)
· y +

1

zn(t)
· z

︸ ︷︷ ︸
=Fn(x,y,z,t)

= 0.

The envelope En of π(C(n)
{A0A1A2}) is obtained by the solutions of the system

En :





x+ y + z = 1

Fn(x, y, z, t) = 0

∂Fn

∂t
(x, y, z, t) = 0

⇐⇒ En :





x+ y + z = 1

x−1
n · x+ y−1

n · y + z−1
n · z = 0

ẋnx
−2
n · x+ ẏny

−2
n · y + żnz

−2
n · z = 0.

By applying the Cramer’s rule for all t and n, each determinant to be well

defined, we get the evelope En in b-coordinates.

By (iii) of Theorem 2.5 in the space arises the sequence of conic surfaces

Sn with vertex O and generators En — the envelopes of π(C(n)
{A0A1A2}).
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The Heisenberg relations are derived in a quite general setting when the field
transformations are induced by three representations of a given group. They
are considered also in the fibre bundle approach. The results are illustrated in
a case of transformations induced by the Poincaré group.
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1. Introduction

As Heisenberg relations or equations in quantum field theory are known a

kind of commutation relations between the field operators and the gener-

ators (of a representation) of a group acting on system’s Hilbert space of

states. Their (global) origin is in equations like

ϕ′
i(r) = U ◦ ϕi(r) ◦ U−1, (1)

which connect the components ϕi and ϕ′
i of a quantum field ϕ with respect

to two frames of reference. Here U is an operator acting on the state vectors

of the quantum system considered and it is expected that the transformed

field operators ϕ′
i can be expressed explicitly by means of ϕi via some

equations. If the elements U (of the representation) of the group are labeled

by b = (b1, . . . , bs) ∈ Ks for some s ∈ N (we are dealing, in fact, with a Lie

group), i.e. we may write U(b) for U , then the corresponding Heisenberg

relations are obtained from Eq. (1) with U(b) for U by differentiating it

with respect to bω, ω = 1, . . . , s, and then setting b = b0, where b0 ∈ Ks is

such that U(b0) is the identity element.

The above shows that the Heisenberg relations are from pure geometric-

group-theoretical origin and the only physics in them is the motivation lead-

ing to equations like Eq. (1). However, there are strong evidences that to
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the Heisenberg relations can be given dynamical/physical sense by identify-

ing/replacing in them the generators (of the representation) of the group by

the corresponding operators of conserved physical quantities if the system

considered is invariant with respect to this group (see, e.g. the discussion

in [1, §68]).

In sections 2-4, we consider Heisenberg relations in the non-bundle ap-

proach. At first (section 2), we derive the Heisenberg relation connected

with the Poincaré group. Then (section 3) the Heisenberg relations arising

from internal transformation, which are related with conserved charges, are

investigated. At last, in section 4 are considered the Heisenberg relations in

the most general case, when three representations of a group are involved.

In section 5 are investigated the Heisenberg relation on the ground of fibre

bundles. Section 6 closes the paper.

2. The Poincaré group

Suppose we study a quantum field with components ϕi relative to two

reference frames connected by a general Poincaré transformation

u′(x) = Λu(x) + a. (2)

Here x is a point in the Minkowski spacetime M , u and u′ are the coordinate

homeomorphisms of some local charts in M , Λ is a Lorentz transformation

(i.e. a matrix of a 4-rotation), and a ∈ R4 is fixed and represents the com-

ponents of a 4-vector translation. The “global” version of the Heisenberg

relations is expressed by the equation

U(Λ, a) ◦ ϕi(x) ◦ U−1(Λ, a) = Dj
i (Λ, a)ϕj(Λx+ a), (3)

where U (resp. D) is a representation of the Poincaré group on the space of

state vectors (resp. on the space of field operators), U(Λ, a) (resp. D(Λ, a) =

[Dj
i (Λ, a)]) is the mapping (resp. the matrix of the mapping) corresponding

via U (resp. D) to Eq. (2). Note that here we have rigorously to write

ϕu,i := ϕi ◦u−1 for ϕi, i.e. we have omitted the index u. Besides, the point

x ∈ M is identified with x = u(x) ∈ R4. Since for Λ = 11 and a = 0 ∈ R4

is fulfilled u′(x) = u(x), we have U(11,0) = id, D(11,0) = 11, where id is the

corresponding identity mapping and 11 stands for the corresponding identity

matrix. Let Λ = [Λµ
ν ], Λµν := ηνλΛµ

λ, with ηµν being the components of

the Lorentzian metric with signature (−+++), and define

Tµ :=
∂U(Λ, a)

∂aµ

∣∣∣
(Λ,a)=(11,0)

, Sµν :=
∂U(Λ, a)

∂Λµν

∣∣∣
(Λ,a)=(11,0)

, (4a)
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H i
jµ :=

∂Di
j(Λ, a)

∂aµ

∣∣∣
(Λ,a)=(11,0)

, I i
jµν :=

∂Di
j(Λ, a)

∂Λµν

∣∣∣
(Λ,a)=(11,0)

. (4b)

The particular form of the numbers I i
jµν depends on the field under con-

sideration. In particular, we have I1
1µν = 0 for spin-0 (scalar) field and

Iσ
ρµν = δσ

µηνρ − δσ
ν ηµρ for spin-1 (vector) field.

Differentiating Eq. (3) relative to aµ and setting after that (Λ, a) =

(11,0), we find

[Tµ, ϕi(x)] = ∂µϕi(x) +Hj
iµϕj(x), (5)

where [A,B] := AB−BA is the commutator of some operators or matrices

A and B. Since the field theories considered at the time being are invariant

relative to spacetime translation of the coordinates, i.e. with respect to x 7→
x + a, further we shall suppose that H i

jµ = 0. In this case equation Eq. (5)

reduces to

[Tµ, ϕi(x)] = ∂µϕi(x). (6a)

Similarly, differentiation Eq. (3) with respect to Λµν and putting after that

(Λ, a) = (11,0), we obtain

[Sµν , ϕi(x)] = xµ∂νϕi(x) − xν∂µϕi(x) + Ij
iµνϕj(x) (6b)

where xµ := ηµνx
ν . The equations Eq. (6) are identical up to notation

with [1, eqs.(11.70) and (11.73)]. Note that for complete correctness one

should write ϕu,i(x) instead of ϕi(x) in Eq. (6), but we do not do this to

keep our results near to the ones accepted in the physical literature [2–4].

As we have mentioned earlier, the particular Heisenberg relations Eq. (6)

are from pure geometrical-group-theoretical origin. The following heuristic

remark can give a dynamical sense to them. Recalling that the translation

(resp. rotation) invariance of a (Lagrangian) field theory results in the con-

servation of system’s momentum (resp. angular momentum) operator Pµ

(resp. Mµν) and the correspondences

i~Tµ 7→ Pµ i~Sµν 7→Mµν , (7)

with ~ being the Planck’s constant (divided by 2π), one may suppose the

validity of the Heisenberg relations

[Pµ, ϕi(x)] = i~∂µϕi(x), (8a)

[Mµν , ϕi(x)] = i~{xµ∂νϕi(x) − xν∂µϕi(x) + Ij
iµνϕj(x)}. (8b)
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However, one should be careful when applying the last two equations in the

Lagrangian formalism as they are external to it and need a particular proof

in this approach; e.g. they hold in the free field theory [3,5], but a general

proof seems to be missing. In the axiomatic quantum field theory [2,6,7]

these equations are identically valid as in it the generators of the transla-

tions (rotations) are identified up to a constant factor with the components

of the (angular) momentum operator, Pµ = i~Tµ (Mµν = i~Sµν).

3. Internal transformations

In our context, an internal transformation is a change of the reference frame

(u, {ei}), consisting of a local coordinate system u and a frame {ei} in some

vector space V , such that the spacetime coordinates remain unchanged. We

suppose that ei : x ∈M 7→ ei(x) ∈ V , where M is the Minkowski spacetime

and the quantum field ϕ considered takes values in V , i.e. ϕ : x ∈ M 7→
ϕ(x) = ϕi(x)ei(x) ∈ V

Let G be a group whose elements gb are labeled by b ∈ Ks for some

s ∈ N. a Consider two reference frames (u, {ei}) and (u′, {e′ i}), with

u′ = u and {ei} and {e′ i} being connected via a matrix I−1(b), where

I : G 7→ GL(dimV,K) is a matrix representation of G and I : G 3 gb 7→
I(b) ∈ GL(dimV,K). The components of the fields, known as field opera-

tors, transform into (cf. Eq. (1))

ϕ′
u,i(r) = U(b) ◦ ϕu,i(r) ◦ U−1(b) (9)

where U is a representation of G on the Hilbert space of state vectors and

U : G 3 gb 7→ U(b). Now the analogue of Eq. (3) reads

U(b) ◦ ϕu,i(r) ◦ U−1(b) = Ij
i (b)ϕu,j(r) (10)

due to u′ = u in the case under consideration.

Suppose b0 ∈ Ks is such that gb0 is the identity element of G and define

Qω :=
∂U(b)

∂bω

∣∣∣
b=b0

, Ij
iω :=

∂Ij
i (b)

∂bω

∣∣∣
b=b0

(11)

where b = (b1, . . . , bs) and ω = 1, . . . , s. Then, differentiation Eq. (10)

with respect to bω and putting in the result b = b0, we get the following

Heisenberg relation

[Qω, ϕu,i(r)] = Ij
iωϕu,j(r) (12)

a In fact, we are dealing with an s-dimensional Lie group and b ∈ Ks are the (local)
coordinates of gb in some chart on G containing gb in its domain.
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or, if we identify x ∈M with r = u(x) and omit the subscript u,

[Qω, ϕi(x)] = Ij
iωϕj(x). (13)

To make the situation more familiar, consider the case of one-

dimensional group G, s = 1, when ω = 1 due to which we shall identify b1

with b = (b1). Besides, let us suppose that

I(b) = 11 exp(f(b) − f(b0)) (14)

for some C1 function f . Then Eq. (13) reduces to

[Q1, ϕi(x)] = f ′(b0)ϕi(x), (15)

where f ′(b) := df(b)/db. In particular, if we are dealing with phase trans-

formations, i.e.

U(b) = ebQ1/(ie), I(b) = 11e−qb/(ie), b ∈ R (16)

for some constants q and e (having a meaning of charge and unit charge,

respectively) and operator Q1 on system’s Hilbert space of states (having a

meaning of a charge operator), then Eq. (10) and Eq. (15) take the familiar

form [2, eqs. (2.81) and (2-80)]

ϕ′
i(x) = ebQ1/(ie) ◦ ϕi(x) ◦ e−bQ1/(ie) = e−qb/(ie)ϕ(x), (17)

[Q1, ϕi(x)] = −qϕi(x). (18)

The considerations in the framework of Lagrangian formalism invariant

under phase transformations [2–4] implies conservation of the charge opera-

tor Q and suggests the correspondence (cf. Eq. (7)) Q1 7→ Q which in turn

suggests the Heisenberg relation [Q,ϕi(x)] = −qϕi(x). We should note

that this equation is external to the Lagrangian formalism and requires a

proof in it [5].

4. The general case

The corner stone of the (global) Heisenberg relations is the equation

U ◦ϕu,i(r) ◦U−1 =
∂(u′ ◦ u−1)(r)

∂r

(
A−1(u−1(r))

)j
i
ϕu,j((u′ ◦ u−1)(r)) (19)

representing the components ϕ′
u′,i of a quantum field ϕ in a reference frame

(u, {e′ i = Ai
je

j}) via its components ϕu,i in a frame (u, {ei}) in two different

way. Here A = [Aj
i ] is a non-degenerate matrix-valued function, r ∈ R4 and

ϕu,i := ϕi ◦ u−1. Now, following the ideas at the beginning of section 1,

we shall demonstrate how from the last relation can be derived Heisenberg

relations in the general case.
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Let G be an s-dimensional, s ∈ N, Lie group. Without going into details,

we admit that its elements are labeled by b = (b1, . . . , bs) ∈ Ks and gb0 is the

identity element of G for some fixed b0 ∈ Ks. Suppose that there are given

three representations H , I and U of G and consider frames of reference

with the following properties:

(1) H : G 3 gb 7→ Hb : RdimM → Rdim M and any change (U, u) 7→ (U ′, u′)
of the charts of M is such that u′ ◦ u−1 = Hb for some b ∈ Ks.

(2) I : G 3 gb 7→ I(b) ∈ GL(dimV,K) and any change {ei} 7→ {e′i = Ai
je

j}
of the frames in V is such that A−1(x) = I(b) for all x ∈ M and some

b ∈ Ks.

(3) U : G 3 gb 7→ U(b), where U(b) is an operator on the space of state

vectors, and the changes (u, {ei}) 7→ (u′, {e′i}) of the reference frames

entail Eq. (1) with U(b) for U .

Under the above hypotheses equation Eq. (19) transforms into

U(b) ◦ ϕu,i(r) ◦U−1(b) = det
[∂(Hb(r))

i

∂rj

]
Ij
i (b)ϕu,j(Hb(r)) (20)

which can be called global Heisenberg relation in the particular situation.

The next step is to differentiate this equation with respect to bω, ω =

1, . . . , s, and then to put b = b0 in the result. In this way we obtain the

following (local) Heisenberg relation

[Uω, ϕu,i(r)] = ∆ω(r)ϕu,i(r) + Ij
iωϕu,j(r) + (hω(r))

k ∂ϕu,i(r)

∂rk
, (21)

where

Uω :=
∂U(b)

∂bω

∣∣∣
b=b0

, ∆ω(r) :=
∂ det

[
∂(Hb(r))j

∂rj

]

∂bω

∣∣∣∣∣∣
b=b0

∈ RdimM , (22a)

Ij
iω :=

∂Ij
i (b)

∂bω

∣∣∣
b=b0

∈ K, hω :=
∂Hb

∂bω

∣∣∣
b=b0

: RdimM → RdimM . (22b)

In particular, ifHb is linear and non-homogeneous, i.e.Hb(r) = H(b)·r+a(b)

for some H(b) ∈ GL(dimM,R) and a(b) ∈ KdimM with H(b0) = 11 and

a(b0) = 0, then (Tr means trace of a matrix or operator)

∆ω(r) =
∂ det(H(b))

∂bω

∣∣∣
b=b0

=
∂Tr(H(b))

∂bω

∣∣∣
b=b0

and

hω( · ) =
∂H(b)

∂bω

∣∣∣
b=b0

· ( · ) +
∂a(b)

∂bω

∣∣∣
b=b0
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as ∂ detB/∂bji
∣∣
B=11 = δi

j for any square matrix B = [bji ]. In this setting

the Heisenberg relations corresponding to Poincaré transformations (see

subsection 2) are described by b 7→ (Λµν , aλ), H(b) 7→ Λ, a(b) 7→ a and

I(b) 7→ I(Λ), so that Uω 7→ (Sµν,Tλ
), ∆ω(r) ≡ 0, Ij

iω 7→ (Ij
iµν , 0) and

(hω(r))k ∂

∂rk
7→ rµ

∂

∂rν
− rν

∂

∂rµ
.

The case of internal transformations, considered in the previous subsection,

corresponds to Hb = idRdim M and, consequently, in it ∆ω(r) ≡ 0 and hω =

0.

5. Fibre bundle approach

Suppose a physical field is described as a section ϕ : M → E of a vector

bundle (E, π,M). Here M is a real differentiable (4-)manifold (of class

at least C1), serving as a spacetime model, E is the bundle space and

π : M → E is the projection; the fibres π−1(x), x ∈ M , are isomorphic

vector spaces.

Let (U, u) be a chart of M and {ei} be a (vector) frame in the bundle

with domain containing U , i.e. ei : x 7→ ei(x) ∈ π−1(x) with x in the domain

of {ei} and {ei(x)} being a basis in π−1(x). Below we assume x ∈ U ⊆M .

Thus, we have

ϕ : M 3 x 7→ ϕ(x) = ϕi(x)ei(x) = ϕu,i(x)ei(u−1(x)), (23)

where

x := u(x), ϕu,i := ϕi ◦ u−1 (24)

and ϕi(x) are the components of the vector ϕ(x) ∈ π−1(x) relative to the

basis {ei(x)} in π−1(x).

The origin of the Heisenberg relations on the background of fibre bundle

setting is in the equivalent equations

U ◦ ϕi(x) ◦ U−1 = (A−1)j
i (x)ϕj(x), (25)

U ◦ ϕu,i(x) ◦ U−1 = (A−1)j
i (x)ϕu,j(x). (25′)

Similarly to subsection 4, consider a Lie group G, its representations I

and U and reference frames with the following properties:

(1) I : G 3 gb 7→ I(b) ∈ GL(dim V,K) and the changes {ei} 7→ {e′i = Ai
je

j}
of the frames in V are such that A−1(x) = I(b) for all x ∈ M and some

b ∈ Ks.
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(2) U : g 3 gb 7→ U(b), where U(b) is an operator on the space of state

vectors, and the changes (u, {ei}) 7→ (u′, {e′i}) of the reference frames

entail Eq. (1) with U(b) for U .

Remark 5.1. One can consider also simultaneous coordinate changes

u 7→ u′ = Hb ◦ u induced by a representation H : G 3 gb 7→ Hb : RdimM →
RdimM , as in subsection 4. However such a supposition does not influence

our results as the basic equations Eq. (26) and Eq. (26′) below are in-

dependent from it; in fact, equation Eq. (26) is coordinate-independent,

while Eq. (26′) is its version valid in any local chart (U, u) as ϕu := ϕ ◦u−1

and x := u(x).

Thus equations Eq. (25) and Eq. (25′) transform into (cf. Eq. (20))

U(b) ◦ ϕi(x) ◦ U−1(b) = Ij
i (b)ϕj(x), (26)

U(b) ◦ ϕu,i(x) ◦ U−1(b) = Ij
i (b)ϕu,j(x). (26′)

Differentiating Eq. (26) with respect to bω and then putting b = b0, we

derive the following Heisenberg relation

[Uω, ϕi(x)] = Ij
iωϕj(x) (27)

or its equivalent version (cf. Eq. (21))

[Uω, ϕu,i(x)] = Ij
iωϕu,j(x), (27′)

where

Uω :=
∂U(b)

∂bω

∣∣∣
b=b0

, (28a)

Ij
iω :=

∂Ij
i (b)

∂bω

∣∣∣
b=b0

. (28b)

We can rewire the Heisenberg relations obtained as

[Uω, ϕ] = Ij
iωϕje

i. (29)

One can prove that the r.h.s. of this equation is independent of the partic-

ular frame {ei} in which it is represented.

The case of Poncaré transformations is described by the replacements

b 7→ (Λµν , aλ), Uω 7→ (Sµν , Tλ) and Ij
iω 7→ (Ij

iµν , 0) and, consequently, the

equations Eq. (26) and Eq. (26′) now read

U(Λ, a) ◦ ϕi(x) ◦ U−1(Λ, a) = Ij
i (Λ, a)ϕj(x), (30)

U(Λ, a) ◦ ϕu,i(x) ◦ U−1(Λ, a) = Ij
i (Λ, a)ϕu,j(x). (30′)
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Hence, for instance, the Heisenberg relations Eq. (27) now takes the form

(cf. Eq. (6))

[Tµ, ϕi(x)] = 0, (31a)

[Sµν , ϕi(x)] = Ij
iµνϕj(x). (31b)

Respectively, the correspondences in Eq. (7) transform these equations

into

[Pµ, ϕi(x)] = 0, (32a)

[Mµν , ϕi(x)] = Ij
iµνϕj(x) (32b)

which now replace Eq. (8).

Since equation Eq. (8a) (and partially equation Eq. (8b)) is (are) the

corner stone for the particle interpretation of quantum field theory [3–5],

the equation Eq. (32a) (and partially equation Eq. (32b)) is (are) physically

unacceptable if one wants to retain the particle interpretation in the fibre

bundle approach to the theory. For this reason, it seems that the corre-

spondences Eq. (7) should not be accepted in the fibre bundle approach to

quantum field theory, in which Eq. (6) transform into Eq. (31). However, for

retaining the particle interpretation one can impose Eq. (8) as subsidiary

restrictions on the theory in the fibre bundle approach. It is almost evident

that this is possible if the frames used are connected by linear homoge-

neous transformations with spacetime constant matrices, A(x) = const or

∂µA(x) = 0. Consequently, if one wants to retain the particle interpretation

of the theory, one should suppose the validity of Eq. (8) in some frame and,

then, it will hold in the whole class of frames obtained from one other by

transformations with spacetime independent matrices.

Since the general setting investigated above is independent of any (local)

coordinates, it describes also the fibre bundle version of the case of inter-

nal transformations considered in section 3. This explains why equations

like Eq. (12) and Eq. (27′) are identical but the meaning of the quanti-

ties ϕu,i and Ij
iω in them is different. b In particular, in the case of phase

transformations

U(b) = ebQ1/(ie), I(b) = 11e−bq/(ie), b ∈ R (33)

the Heisenberg relations Eq. (27) reduce to

[Q1, ϕi(x)] = −qϕi(x), (34)

b Note, now I(b) is the matrix defining transformations of frames in the bundle space,
while in Eq. (16) it serves a similar role for frames in the vector space V .
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which is identical with Eq. (18), but now ϕi are the components of the

section ϕ in {ei}. The invariant form of the last relations is

[Q1, ϕ] = −qϕ (35)

which is also a consequence from Eq. (29) and Eq. (17).

6. Conclusion

In this paper we have shown how the Heisenberg equations arise in the gen-

eral case and in particular situations. They are from pure geometrical origin

and one should be careful when applying them to the Lagrangian formal-

ism in which they are subsidiary conditions, like the Lorenz gauge in the

electrodynamics. In the general case they need not to be consistent with

the Lagrangian formalism and their validity should carefully be checked.

For instance, if one starts with field operators in the Lagrangian formalism

of free fields and adds to it the Heisenberg relations Eq. (8a) concerning

the momentum operator, then the arising scheme is not consistent as in it

start to appear distributions, like the Dirac delta function. This conclusion

leads to the consideration of the quantum fields as operator-valued distri-

bution in the Lagrangian formalism even for free fields. In the last case,

the Heisenberg relations concerning the momentum operator are consistent

with the Lagrangian formalism. Besides, they play an important role in the

particle interpretation of the so-arising theory.
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1. Camassa-Holm equation

The Camassa-Holm (CH) equation can be considered as a member of the

family of EPDiff equations, that is, Euler-Poincaré equations, associated

with the diffeomorphism group in n-dimensions [18]. Let us consider first

the CH equation in the form

qt + 2uxq + uqx = 0, q = u− uxx + ω, (1)

with ω an arbitrary parameter. The traveling wave solutions of (1) are

smooth solitons [5] if ω > 0 and peaked solitons (peakons) if ω = 0 [4,13,

14,24,28], assuming that u(x; t) is rapidly decaying to zero at x→ ±∞.

CH is a bi-Hamiltonian equation, i.e. it admits two compatible Hamil-

tonian structures [4,15] J1 = −(q∂ + ∂q), J2 = −(∂ − ∂3):

qt = J2
δH2[q]

δq
= J1

δH1[q]

δq
, (2)

H1 =
1

2

∫
qu dx, (3)
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H2 =
1

2

∫
(u3 + uu2

x + 2ωu2) dx. (4)

If ω 6= 0 the invariance group of the Hamiltonian is the Virasoro group,

Vir = Diff(S1) × R and the central extension of the corresponding Vira-

soro algebra is proportional to ω [10–12,19,25,30]. Thus CH has various

conformal properties [21]. It is also completely integrable, possesses bi-

Hamiltonian form and infinite sequence of conservation laws [4,8,9,22,32].

The soliton solution has the form

q(x, t) =

∫ ∞

0

δ(x−X(ξ, t))P (ξ, t) dξ, (5)

where X(ξ, t) and P (ξ, t) are quantities well defined in terms of the scat-

tering data [7,8,10] (q(x, 0) > 0 is assumed, otherwise wave breaking occurs

[6]). From (5) one can easily compute u = (1 − ∂2)−1(q − ω),

u(x, t) =
1

2

∫ ∞

0

e−|x−X(ξ,t)|P (ξ, t) dξ − ω. (6)

Substitution of (5) and (6) into the equation (1) and using the fact that

f(x)δ′(x− x0) = f(x0)δ′(x− x0) − f ′(x0)δ(x− x0)

we derive a system of integral equations for X and P :

Xt(ξ, t) =

∫
G(X(ξ, t) −X(ξ, t))P (ξ, t) dξ − ω, (7)

Pt(ξ, t) = −
∫
G′(X(ξ, t) −X(ξ, t))P (ξ, t)P (ξ, t) dξ, (8)

where G(x) ≡ 1
2e

−|x|. From (5) and (6) the Hamiltonian H1 can be ex-

pressed as

H1(X,P )

=
1

2

∫
G(X(ξ1, t) −X(ξ2, t))P (ξ1, t)P (ξ2, t) dξ1dξ2 − ω

∫
P (ξ, t) dξ

and the equations (7) and (8) as

Xt(ξ, t) =
δH

δP (ξ, t)
, Pt(ξ, t) = − δH

δX(ξ, t)
, (9)

i.e. these equations are Hamiltonian, with respect to the canonical Poisson

bracket

{A,B}c =

∫ (
δA

δX(ξ, t)

δB

δP (ξ, t)
− δB

δX(ξ, t)

δA

δP (ξ, t)

)
dξ (10)
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and the canonical variables are X(ξ, t), P (ξ, t):

{X(ξ1, t), P (ξ2, t)}c = δ(ξ1 − ξ2), (11)

{P (ξ1, t), P (ξ2, t)}c = {X(ξ1, t), X(ξ2, t)}c = 0. (12)

Now we can show that (5) is a Clebsh parametrization that produces the

Poisson brackets, given by the Hamiltonian operator J1. To do this we will

use the canonical Poisson brackets (11), (12) to compute {q(x1), q(x2)}c.

Indeed with Xi ≡ X(ξi, t), and Pi ≡ P (ξi, t), i = 1, 2 we get:

{q(x1, t), q(x2, t)}c

=

{∫ ∞

0

δ(x1 −X1)P1 dξ1 ,

∫ ∞

0

δ(x2 −X2)P2 dξ2

}

c

= −
∫ ∞

0

∫ ∞

0

{X1, P2}cδ
′(x1 −X1)P1δ(x2 −X2) dξ1dξ2

−
∫ ∞

0

∫ ∞

0

{P1, X2}cδ(x1 −X1)δ′(x2 −X2)P2 dξ1dξ2

= −δ′(x1 − x2)

∫ ∞

0

P2δ(x2 −X2) dξ2 + δ′(x2 − x1)

∫ ∞

0

P1δ(x1 −X1) dξ1

= −q(x2, t)δ
′(x1 − x2) + q(x1, t)δ

′(x2 − x1)

= −
(
q(x1, t)

∂

∂x1
+

∂

∂x1
q(x1, t)

)
δ(x1 − x2)

= J1(x1)δ(x1 − x2).

Now it is straightforward to check, using (2), that (1) can be written in

a Hamiltonian form as

qt = {q,H1}c,

with the Poisson bracket, generated by J1:

{A,B}c =

∫
δA

δq(x)
J1(x)

δB

δq(x)
dx

= −
∫
q(x)

(
δA

δq(x)

∂

∂x

δB

δq(x)
− δB

δq(x)

∂

∂x

δA

δq(x)

)
dx.

(13)

A singular version of (5) is used [18] for the construction of peakon, filament

and sheet singular solutions for higher dimensional EPDiff equations.

The parallel with the geometric interpretation of the integrable SO(3)

top can be made explicit by a discretization of CH equation based on Fourier

modes expansion [23]. Since the Virasoro algebra is an infinite-dimensional

algebra, the obtained equation represents an ‘integrable top’ with infinitely

many momentum components.
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If we compare (6) and (7) we have

Xt(ξ, t) = u(X(ξ, t), t), (14)

i.e. X(ξ, t) is explicitly the diffeomorphism related to the geodesic curve

[10,27,30], i.e. X(x, t) is an one-parameter curve of diffeomorphisms of R

(or, with periodic boundary conditions, of the circle S1), depending on

a parameter t and associated with a right-invariant metric given by the

Hamiltonian H1.

For the peakon solutions (ω = 0) the dependence on the scattering data

is also known. For completeness and comparison we mention the analogous

results for this case. The N -peakon solution has the form [2,4]

u(x, t) =
1

2

N∑

i=1

pi(t) exp(−|x− xi(t)|), (15)

provided pi and xi evolve according to the following system of ordinary

differential equations:

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, (16)

where the Hamiltonian is H = 1/4
∑N

i,j=1 pipj exp(−|xi−xj |). Now one can

see immediately the analogy between X(ξ, t) and xi(t); P (ξ, t) and pi(t) due

to the fact that the N -soliton solution with the limit ω → 0 converges to

the N -peakon solution [3].

2. n-dimensional EPDiff equations

Let us consider motion in Rn with a velocity field u(x, t): Rn × R → Rn

and define a momentum variable m = Qu for some (inertia) operator Q

(for CH generalizations Q is the Helmholtz operator Q = 1− ∂i∂i = 1−∆,

where ∂i = ∂/∂xi). The kinetic energy defines a Lagrangian

L[u] =
1

2

∫
m · u dnx. (17)

Since the velocity u = ui∂i is a vector field, m = midx
i ⊗ dnx is a n + 1-

form density, we have a natural bilinear form

〈m,u〉 =

∫
m · u dnx. (18)

The Euler-Poincaré equation for the geodesic motion is [18,19]

d

dt

δL

δu
+ ad∗

u

δL

δu
= 0, u = G ∗m, (19)
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whereG is the Green function for the operatorQ. The corresponding Hamil-

tonian is

H [m] = 〈m,u〉 − L[u] =
1

2

∫
m ·G ∗m dnx, (20)

and the equation in Hamiltonian form (u = δH/δm) is

∂m

∂t
= −ad∗

δH/δmm. (21)

The left Lie algebra of vector fields is [u,v] = −(uk(∂kv
p) − vk(∂ku

p))∂p.

For an arbitrary vector field v one can write [19]

〈ad∗
um,v〉 = 〈m, aduv〉 = 〈m, [u,v]〉

= −
〈
ml dxl ⊗ dnx,

(
uk (∂kv

p) − vk (∂ku
p)
)
∂p

〉

= −
∫
mp

(
uk (∂kv

p) − vk (∂ku
p)
)

dnx

= −
∫ (

∂k

(
mpu

kvp
)
− (∂kmp)ukvp −mpv

p
(
∂ku

k
)
−mpv

k (∂ku
p)
)

dnx

=

∫
vp
(
uk (∂kmp) +mp

(
∂ku

k
)

+mk

(
∂pu

k
))

dnx

= 〈((u · ∇)mp + m · ∂pu +mpdivu) dxp ⊗ dnx,v〉 ,

and therefore (21) has the form

∂mp

∂t
+ (u · ∇)mp + m · ∂pu +mpdivu = 0. (22)

Let us now define an one-parametric group of diffeomorphisms of Rn, with

elements that satisfy

∂X(x, t)

∂t
= u(X(x, t), t), X(x, 0) = x. (23)

Due to the invariance of the Hamiltonian under the action of the group

there is a momentum conservation law:

mi(X(x, t), t)∂jX
i(x, t) det

(
∂X

∂x

)
= mj(x, 0), (24)

where (∂X/∂x)ij = ∂X i/∂xj is the Jacobian matrix.

The Lie-Poisson bracket is

{A,B}(m) =

〈
m,

[
δA

δm
,
δB

δm

]〉

= −
∫
mi

(
δA

δmk
∂k

δB

δmi
− δB

δmk
∂k

δA

δmi

)
dnx.

(25)
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When n = 1 clearly (25) gives (13) and the algebra, associated with

the bracket is the algebra of vector fields on the circle. This algebra admits

a generalization with a central extension, which is the famous Virasoro

algebra [10–12,19,25,30]. In two dimensions, n = 2, the algebra, associated

with the bracket is the algebra of vector fields on a torus [1,16,33]. This

algebra also admits central extensions [16,20].

3. Reduction to the subgroup of volume-preserving

diffeomorphisms

In the case of volume-preserving diffeomorphisms we consider vector fields,

further restricted by the condition div u = 0. Let us restrict ourselves to the

three-dimensional case (n = 3) and let us assume that m = (1 − ∆)u, so

that divm = 0 as well. According to the Helmholtz decomposition theorem

for vector fields, m can be determined only by the quantity Ω = ∇ × m.

Therefore we can write the Lie-Poisson brackets (25) in terms of Ω. Indeed,

one can compute that

δA

δm
= ∇× δA

δΩ
. (26)

Thus

∇ · δA
δm

= ∇ ·
(
∇× δA

δΩ

)
= 0, (27)

i.e. the vector fields δA
δm are divergence-free. Therefore

mi
δA

δmk
∂k

δB

δmi
= ∂k

(
mi

δA

δmk

δB

δmi

)
− (∂kmi)

δA

δmk

δB

δmi

and from (25) we obtain

{A,B} =

∫
(∂kmi)

(
δA

δmk

δB

δmi
− δB

δmk

δA

δmi

)
d3x

=

∫
Ω ·
(
δA

δm
× δB

δm

)
d3x

=

∫
Ω ·
((

∇× δA

δΩ

)
×
(
∇× δB

δΩ

))
d3x. (28)

This is the well known Poisson bracket used in fluid mechanics [1,17,26,29,

31,34]. The curl of the equation (22) gives the following equation for Ω [19]:

Ωt + (u · ∇)Ω − (Ω · ∇)u = 0, Ω = (1 − ∆)(∇× u). (29)
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Note that u can be expressed through Ω:

u[Ω] = (1 − ∆)−1

(
∇×

∫
Ω(x′)

4π|x − x′| d3x′
)
,

thus

H [Ω] =
1

2

∫
u[Ω] · (1 − ∆)u[Ω] d3x.

The vector Ω is always perpendicular to u. The further reduction to

an equation in n = 2 dimensions is straightforward. Introducing a (scalar)

stream function ψ(x1, x2) we have

u(x1, x2) = (−∂2ψ, ∂1ψ, 0) = e3 ×∇ψ, (30)

Ω(x1, x2) = (1 − ∆)(∇× u) = (1 − ∆)∆ψe3, (31)

where e3 is the unit vector in the direction of x3. Since (Ω·∇)u = Ω∂3u = 0,

(29) leads to the equation

Ωt + (u · ∇)Ω = 0,

which produces a scalar equation for the stream function ψ due to (30) and

(31), or alternatively for Ω ≡ Ω · e3. The Poisson bracket that one can find

from (28) is

{A,B} =

∫
Ω

(
∂1

(
δA

δΩ

)
∂2

(
δB

δΩ

)
− ∂2

(
δA

δΩ

)
∂1

(
δB

δΩ

))
d2x

=

∫
Ω ·
(
∇
(
δA

δΩ

)
×∇

(
δB

δΩ

))
d2x (32)

and the Hamiltonian

H =
1

2

∫
∇ψ · (1 − ∆)∇ψ d2x.
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1. Introduction

In the differential geometry of surfaces in hyperbolic three-space H3,

surfaces of constant mean curvature one (CMC-1 surfaces) and surfaces

of constant Gaussian curvature zero (flat surfaces) are well studied. (cf.

Refs. 1,2,4,6–13, etc.) These surfaces have representation formulas which

turn the complex function theory into the efficacious tool. They play the

role such as the Weierstrass-Enneper formula in the minimal surface theory

of Euclidean space. Gálvez, Mart́ınez and Milán (Ref. 3) also derived a rep-

resentation formula for a certain class of Weingarten surfaces in H3, which

contains CMC-1 surfaces and flat surfaces. These Weingarten surfaces are

the ones satisfying α(H − 1) = βK for some constants α and β, where K

denotes the Gaussian curvature and H the mean curvature. In Ref. 5, the

author gave a refinement for their representation formula.

In these formulas, the hyperbolic Gauss maps (see Section 2 for the

definition) play an important role. Moreover, one of the remarkable thing

is that this class of Weingarten surfaces is closed under taking the parallel

surfaces. The author thinks it rather important to investigate hyperbolic

Gauss maps and parallel surfaces themselves, before representation formu-

las. For this reason, the purpose of this note is to collect some elementary

properties of hyperbolic Gauss maps and parallel surfaces.

The author was supported by Grant-in-Aid for Scientific Research (C) No. 18540096
from the Japan Society for the Promotion of Science.
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2. Basic items

Let L4 be the Minkowski 4-space with the Lorentzian metric 〈 , 〉L, i.e.,

〈x, y〉L = −x0y0 +
∑
xiyi for x = (xα), y = (yα) ∈ L4. As is well known,

H3 := {x ∈ L4 ; 〈x, x〉L = −1, x0 > 0}
is a simply-connected, complete 3-dimensional Riemannian manifold of con-

stant negative curvature −1, which is called hyperbolic 3-space.

Let M2 be an oriented connected surface and f : M 2 → H3 an immer-

sion. We denote by n the unit normal field along f . Let e1, e2 be a local

orthonormal frame defined on U ⊂M 2.

Structure equations. We consider f , e1, e2, n as L4-valued functions and

local frame field (e0 = f, e1, e2, e3 = n) : U(⊂M2) → SO(1, 3). The 1-form

(ωβ
α) defined by deα =

∑3
β=0 eβ ⊗ωβ

α is valued in o(1, 3), the Lie algebra of

SO(1, 3). In other words, 1-forms ωβ
α satisfy

ω0
0 = 0, ωα

α = 0, −ω0
α + ωα

0 = 0, ωβ
α + ωα

β = 0 (1 ≤ α, β ≤ 3).

Moreover, ω3(= ω3
0) = 0 and the following equations hold:

de0 = ei ⊗ ωi, (1)

dei = e0 ⊗ ωi + ej ⊗ ωj
i + e3 ⊗ ω3

i , (2)

de3 = ej ⊗ ωj
3, (3)

dωi = −ωi
j ∧ ωj , (4)

0(= dω3) = −ω3
j ∧ ωj , (5)

dω1
2 = −ω1

3 ∧ ω3
2 − ω1 ∧ ω2, (6)

dω3
j = −ω3

k ∧ ωk
j . (7)

Here, the indices i, j, k run over the range 1 ≤ i, j, k ≤ 2 and the Einstein’s

summation convention is used, i.e., the notation
∑

is omitted. Moreover,

ωi
0 is denoted by ωi for simplicity.

Fundamental forms, curvatures. The first and second fundamental

forms I, II are, by definition,

I = (ω1)2 + (ω2)2, II = ω3
1ω

1 + ω3
2ω

2.

Determining the locally defined functions hij by ω3
i = hijω

j , we have

hij = hji and can write II = hijω
iωj . On the other hand, the Gaussian

curvature K is intrinsically defined by the equation dω1
2 = Kω1∧ω2. It fol-

lows from (6) that K = −1 +h11h22 − (h12)2. It is usually called the Gauss
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equation. The eigenvalues κ1, κ2 and their eigenvectors of the symmetric

matrix (hij) are called principal curvatures and principal directions. The

Gaussian curvature K equals −1 + κ1κ2. The average H := (κ1 + κ2)/2 of

the principal curvatures is called mean curvature. H equals (h11 + h22)/2.

Recall that the third fundamental form is III = (ω3
1)2 + (ω3

2)2. We also

set IV := det(f, df, n, dn) = ω2ω3
1−ω1ω3

2, and call it the fourth fundamental

form. A tangent vector v is a principal vector if and only if IV(v, v) = 0.

A curve γ : I → M2 on the surface is called the curvature line or the line

of curvature if the tangent vectors are always principal. In other words, a

curve γ satisfying γ∗IV = 0 is the curvature line.

Hyperbolic Gauss maps. Let us consider the lightcone LC in L4;

LC := {x ∈ L4 \ {0}; 〈x, x〉L = 0}.
Moreover, we consider the projectification P(LC) of the lightcone LC. Then

P(LC) is diffeomorphic to the 2-sphere S2. It is naturally endowed with a

conformal structure induced by 〈 , 〉L. This conformal 2-sphere S2 is called

the ideal boundary of H3, and is also denoted by ∂H3. Since f ± n are

lightlike vectors, we can define two maps G± = [f ± n] : M2 → S2 = ∂H3.

These maps G± are called the hyperbolic Gauss maps .

Center surfaces. If one of the principal curvatures κi of the surface

f : M2 → H3 satisfies |κi| > 1 at p ∈ M2, then the radius of principal

curvature corresponding to κi can be defined. The radius of principal cur-

vature is, by definition, the real number ri determined by coth ri = κi.

Using this ri at every point p ∈ M2, we can define another surface

Ci = cosh ri e0 + sinh ri e3 : M2 → H3 ⊂ L4,

called the center surface or the caustic or the focal surface of f . Ci draws

the locus of the centers of the principal curvature corresponding to κi. Note

that, in general, the center surface Ci is not defined whole onM2. The center

surface Ci is defined only on the domain Ui = { p ∈M2 ; |κi(p)| > 1 }.

Finally we introduce formulas for the surface f = e0 and the unit normal

field n = e3 recovering from two center surfaces if they exist:

Lemma 2.1.

f =
1

sinh(r1 − r2)
(C2 sinh r1 − C1 sinh r2) , (8)

n =
1

sinh(r1 − r2)
(C1 cosh r2 − C2 cosh r1) . (9)



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

142 M. Kokubu

Proof. Since C1 = cosh r1 e0 + sinh r1 e3 and C2 = cosh r2 e0 + sinh r2 e3
hold, we have

C1 sinh r2 − C2 sinh r1 = (cosh r1 sinh r2 − sinh r1 cosh r2)f

= − sinh(r1 − r2)f,

C1 cosh r2 − C2 cosh r1 = (sinh r1 cosh r2 − cosh r1 sinh r2)n

= sinh(r1 − r2)n.

3. Parallel surface

For a surface f : M2 → H3 and a real number t, the parallel surface at the

distance t is defined to be a surface ft = cosh t · f + sinh t · n : M2 → H3.

The unit normal field nt of ft is given by nt = sinh t · f + cosh t · n.

Singularities of parallel surfaces. In general, the parallel surface ft may

fail to be an immersion. In fact, since

dft = cosh t de0 + sinh t de3 = cosh t eiω
i + sinh t eiω

i
3

= ei(cosh t ωi + sinh t ωi
3),

the first fundamental form It = 〈dft, dft〉L is given by

It = (cosh t ω1 + sinh t ω1
3)2 + (cosh t ω2 + sinh t ω2

3)2.

If we set θi = cosh t ωi + sinh t ωi
3, the singularities of ft appear at the

point where θ1 ∧θ2 = 0. At regular points, i.e., the point where θ1 ∧θ2 6= 0,

θ1 and θ2 form an orthonormal coframe of ft.

Proposition 3.1. A point p ∈ M2 is a singularity of ft if and only if t

coincides with the radius of principal curvature of f at p.

Proof. p ∈ M2 is a singularity of ft if and only if (cosh t ω1 + sinh t ω1
3) ∧

(cosh t ω2+sinh t ω2
3) = 0 at p. We will examine this condition taking a frame

e1, e2 that are principal vectors at p. Because ω3
1 = κ1ω

1 and ω3
2 = κ2ω

2,

we find that the condition p a singularity is equivalent to κi = coth t at p

at least for one of i = 1, 2.

Corollary 3.1. Assume that an immersion f : M 2 → H3 has principal

curvatures κ1, κ2 such that |κi| ≤ 1. Then singularities never appear in its

parallel surfaces.

Corollary 3.2. The singular locus Si = { ft(p) | p ∈ M2, κi(p) = coth t }
coincides with the image of the center surface Ci (i = 1, 2) .
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Invariants of parallel surfaces. The fundamental forms of ft are written

in terms of the fundamental forms of the original surface f as follows:

It = cosh2 t I − 2 cosh t sinh t II + sinh2 t III (10)

IIt = − cosh t sinh t I + (cosh2 t+ sinh2 t) II − cosh t sinh t III (11)

IIIt = sinh2 t I − 2 cosh t sinh t II + cosh2 t III (12)

IVt = IV (13)

(13) asserts that the fourth fundamental form IV is invariant under the

parallel surface transform. There also exist invariants other than IV.

Proposition 3.2. The following (i)–(vii) are the common geometric in-

variants of parallel surfaces:

(i) hyperbolic Gauss maps G±

(ii) KdA, where dA is the are element

(iii) the ratio [κ1 − κ2 : 1 − κ1κ2]

(iv) umbilical points

(v) lines of curvature

(vi) the difference r1 − r2 of radii of principal curvatures

(vii) center surfaces

Proof.

(i) It is obvious from the following equation:

[ft ± nt] = [(cosh t e0 + sinh t e3) ± (sinh t e0 + cosh t e3)]

= [(cosh t ± sinh t )(e0 ± e3)] = [e0 ± e3].

(ii) Recall that It = (θ1)2 + (θ2)2 and θi = cosh t ωi + sinh t ωi
3. It follows

from (4) and (7) that dθi = −ωi
j ∧ θj . It implies that ω1

2 is also the

connection form of ft. Therefore (dω1
2 =)Ktθ

1 ∧ θ2 = Kω1 ∧ ω2.

(iii) Let p be an arbitrary point. Take a frame e1, e2 so that it is in the

principal direction at p. Then I(p) = (ω1)2 + (ω2)2, II(p) = κ1(ω1)2 +

κ2(ω2)2, III(p) = κ2
1(ω1)2 + κ2

2(ω2)2. Hence, by (10), (11), we have

It(p) =
∑

i

{cosh2 t− 2κi cosh t sinh t+ κ2
i sinh2t}(ωi)2

IIt(p) =
∑

i

{− cosh t sinh t+κi(cosh2t+ sinh2t)−κ2
i cosh t sinh t}(ωi)2

Therefore the principal curvature κ
(t)
i of ft is given by

κ
(t)
i =

− cosh t sinh t+ κi(cosh2 t+ sinh2 t) − κ2
i cosh t sinh t

cosh2 t− 2κi cosh t sinh t+ κ2
i sinh2 t
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=
−(cosh t− κi sinh t)(sinh t− κi cosh t)

(cosh t− κi sinh t)2

=
κi cosh t− sinh t

−κi sinh t+ cosh t
(14)

at p. Since p is arbitrary, the equation (14) holds on M 2.

κ
(t)
i is also written as κ

(t)
i = (κi − tanh t)/(−κi tanh t+ 1). Solving

this for tanh t, we have tanh t = (κi −κ(t)
i )(1−κiκ

(t)
i ). Hence we have

κ1 − κ
(t)
1

1 − κ1κ
(t)
1

=
κ2 − κ

(t)
2

1 − κ2κ
(t)
2

i.e.,
κ1 − κ2

1 − κ1κ2
=

κ
(t)
1 − κ

(t)
2

1 − κ
(t)
1 κ

(t)
2

.

(iv) It immediately follows from (iii).

(v) It immediately follows from (13).

(vi) By (14), the radius r
(t)
j of principal curvature of ft satisfies

coth r
(t)
j =

κj cosh t− sinh t

−κj sinh t+ cosh t
=

coth rj cosh t− sinh t

− coth rj sinh t+ cosh t

=
cosh rj cosh t− sinh rj sinh t

− cosh rj sinh t+ sinh rj cosh t
=

cosh(rj − t)

sinh(rj − t)

= coth(rj − t).

Thus we have r
(t)
j = rj − t. It implies that r

(t)
1 − r

(t)
2 = r1 − r2.

(vii) By r
(t)
j = rj − t, the center surface C

(t)
i = cosh r

(t)
i · ft + sinh r

(t)
i · nt

of ft is given by

C
(t)
i = cosh(ri − t){cosh t · f + sinh t · n}

+ sinh(ri − t){sinh t · f + cosh t · n}
= cosh((ri − t) + t) · f + sinh((ri − t) + t) · n
= cosh ri · f + sinh ri · n = Ci.

It is natural to ask the converse problem of Proposition 3.2.

Theorem 3.1. Suppose that there are two surfaces f, f̃ : M2 → H3. If

C1 = C̃1 (or C2 = C̃2) and G± = G̃±, then f and f̃ belong to the common

parallel family.

Proof. Since the hyperbolic Gauss maps coincide, e0 + e3 = λ(ẽ0 + ẽ3)

holds for some λ. It follows that the condition C1 = C̃1, i.e., cosh r1 e0 +

sinh r1 e3 = cosh r̃1 ẽ0 + sinh r̃1 ẽ3 is equivalent to

cosh r1 e0 + sinh r1{λ(ẽ0 + ẽ3) − e0} = cosh r̃1 ẽ0 + sinh r̃1 ẽ3,

(cosh r1 − sinh r1) e0 = (cosh r̃1 − λ sinh r1) ẽ0 + (sinh r̃1 − λ sinh r1) ẽ3.
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Hence, we can set e0 = aẽ0 + bẽ3. Taking the norm of both side of e0 =

aẽ0 + bẽ3, we find that a2 − b2 = 1.

On the one hand, by 〈de0, e0〉L = 〈de0, e3〉L = 0, we have 〈de0, e0 ±
e3〉L = 0. Thus, 〈de0, ẽ0 ± ẽ3〉L = 0. Hence, 〈de0, ẽ0〉L = 〈de0, ẽ3〉L = 0.

On the other hand, differentiating e0 = aẽ0 + bẽ3, we have de0 = daẽ0 +

adẽ0 + dbẽ3 + bdẽ3 and then

−da+ b〈dẽ3, ẽ0〉L = 0, a〈dẽ0, ẽ3〉L + db = 0.

Using 〈dẽ3, ẽ0〉L = 0 and 〈dẽ0, ẽ3〉L = 0, we have da = db = 0. Thus a and

b are constants. It means that e0 is a parallel surface of ẽ0.

Theorem 3.2. Suppose that there are two surfaces f, f̃ : M2 → H3. If they

have the common center surfaces (i.e., C1 = C̃1, C2 = C̃2) and the same

difference of radii of principal curvature (i.e., r1 − r2 = r̃1 − r̃2), then f

and f̃ belong the same parallel family.

Proof. It follows from (8) and (9) that

f̃ =
1

sinh(r1 − r2)
(C2 sinh r̃1 − C1 sinh r̃2) ,

ñ =
1

sinh(r1 − r2)
(C1 cosh r̃2 − C2 cosh r̃1) .

It implies that

[f̃ ± ñ] = [C1(± cosh r̃2 − sinh r̃2) + C2(sinh r̃1 ∓ cosh r̃1)]

= [C1 + C2(−er̃2−r̃1)] or [C1 − C2e
−r̃2+r̃1 ]

= [C1 + C2(−er2−r1)] or [C1 − C2e
−r2+r1 ] = [f ± n],

that is, the hyperbolic Gauss maps coincide. Therefore Theorem 3.1 com-

pletes the proof.

4. Linear Weingarten surface

Recall that the surface is called a Weingarten surface if the Gaussian cur-

vature K and the mean curvature H are dependent, i.e., dK∧dH = 0. One

can also say that a surface is Weingarten if and only if dκ1 ∧ dκ2 = 0.

The formula (14) immediately implies the following proposition:

Proposition 4.1. Any parallel surface of Weingarten surface is also Wein-

garten.
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A surface satisfying aK + bH + c = 0 for some [a : b : c] ∈ RP 2 is called a

linear Weingarten surface.

Proposition 4.2. Any parallel surface of a linear Weingarten surface is

also linear Weingarten.

Proof. It follows from (14) that the Gaussian curvature Kt and the mean

curvature Ht of the parallel surface ft is given by

Kt =
K

K sinh2 t− 2H cosh t sinh t+ cosh2 t+ sinh2 t
, (15)

Ht =
H(cosh2 t+ sinh2 t) − (2 +K) cosh t sinh t

K sinh2 t− 2H cosh t sinh t+ cosh2 t+ sinh2 t
, (16)

where K, H are Gaussian, mean curvatures of f . By (15), (16), we have

K = (Kt)−t =
Kt

Kt sinh2 t+ 2Ht cosh t sinh t+ cosh2 t+ sinh2 t
,

H = (Ht)−t =
Ht(cosh2 t+ sinh2 t) + (2 +Kt) cosh t sinh t

Kt sinh2 t+ 2Ht cosh t sinh t+ cosh2 t+ sinh2 t
.

It follows from the condition aK + bH + c = 0 that

0 = {a+ b cosh t sinh t+ c sinh2 t}Kt

+ {b(cosh2 t+ sinh2 t) + 2c cosh t sinh t}Ht (17)

+ 2b cosh t sinh t+ c(cosh2 t+ sinh2 t).

It means that ft is linear Weingarten.

In the right-hand side of the equality (17) above, we shall denote each

coefficient by at, bt, ct, respectively:

at = {a+ b cosh t sinh t+ c sinh2 t},
bt = {b(cosh2 t+ sinh2 t) + 2c cosh t sinh t},
ct = 2b cosh t sinh t+ c(cosh2 t+ sinh2 t).

The ratio [at : bt : ct] can be written as

[at : bt : ct] = [a : b : c]




1 0 0

cosh t sinh t cosh2 t+ sinh2 t 2 cosh t sinh t

sinh2 t 2 cosh t sinh t cosh2 t+ sinh2 t




= [1 : cosh 2t : sinh 2t]




2a− c 0 0

c 2b 2c

b 2c 2b


 .
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The rank of the matrix




2a− c 0 0

c 2b 2c

b 2c 2b


 is given by

rk =





3 when c 6= 2a, b2 6= c2

2 when (c 6= 2a, b2 = c2 6= 0) or (c = 2a, b2 6= c2)

1 when (c 6= 2a, b = c = 0) or (c = 2a, b2 = c2)

=





1 when [a : b : c] = [1 : 0 : 0] or [1 : ±2 : 2]

2 when [a : b : c] = [a : ±b : b](2a 6= b 6= 0) or

[a : b : 2a](4a2 6= b2)

3 otherwise

=





1 when K = 0 or K ± 2H + 2 = 0

2 when aK + b(1 ±H) = 0(2a 6= b 6= 0) or

a(K + 2) = bH(4a2 6= b2)

3 otherwise.

Here, rank 3 means the curve r : t 7→ [at : bt : ct] is full, rank 2 means

the curve r lies in the one-dimensional subspace, and rank 1 means that r

degenerates to a single point.

The observation above leads us to the following proposition:

Proposition 4.3.

(i) Any parallel surface of a flat surface is also flat.

(ii) Any parallel surface of a surface satisfying 2H = ±(K + 2) also satis-

fies 2H = ±(K + 2).

(iii) Let f be a surface satisfying bH = a(K + 2) for some ratio [a : b](6=
[±1 : 2]). Then the parallel surfaces of f also satisfy the condition

b′H = a′(K + 2).

(iv) Let f be a surface satisfying aK + b(1 ±H) = 0 for some ratio [a : b]

(6= [1 : 0], [1 : 2]). Then the parallel surfaces of f also satisfy the

condition a′K + b′(1 ±H) = 0.
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We study two wave interacting system by the inverse scattering method. We
develop the algebraic approach in terms of classical r-matrix and give an in-
terpretation of the Poisson brackets as linear r-matrix algebra. The solutions
are expressed in terms of Weierstrass functions and Jacobian functions.

1. Two-wave interaction system and monomer

Several studies have appeared recently on discrete systems of coupled

quadratic nonlinear oscillators, each with two frequencies, a fundamental

one Wn and a second harmonic Vn close to resonance [1,2]. A prototype of

these systems is of the form

i∂ξWn + (Wn+1 +Wn−1) +W ∗
nVn = 0, (1)

i∂ξVn + η(Vn+1 + Vn−1) − αVn +
1

2
W 2

n = 0, (2)

where ξ is the evolution coordinate and η is the ratio between nearest

neighbor coupling strength of the second harmonic Vn and the fundamental

Wn. The quantity α corresponds to the normalized wave number mismatch.

This system is used in optics to describe arrays of quadratic nonlinear

waveguides [2] and in solid state physics to describe nonlinear interface

waves between two media close to Fermi resonance. For a single waveguide

(n = 1) Eqs. (1), (2) reduce to second harmonic generation, which is one

of earliest and most well studied effects of nonlinear optics [3,4]. The case

n = 1 we shall refer as monomer [1] or explicitly we have

i
dW1

dξ
+W ∗

1 V1 = 0, (3)
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i
dV1

dξ
− αV1 +

1

2
W 2

1 = 0 (4)

and introduce the following Lax representation

dL

dξ
= [L,M ], (5)

where L,M are 2 × 2 matrices satisfying the following linear system:

dψ

dξ
= M(ξ, λ)ψ(ξ, λ) L(ξ, λ)ψ(ξ, λ) = 0. (6)

In explicit terms we have that

L(ξ, λ) =

(
iλ− i|W1|2/(4λ) − iα/2 V1 −W 2

1 /(4λ)

V ∗
1 −W ∗2

1 /(4λ) −iλ+ i|W1|2/(4λ) + iα/2

)
, (7)

M(ξ, λ) =

(
iλ V1

V ∗
1 −iλ

)
. (8)

To integrate the system (3), (4) we introduce new variable

µ = (i
dV1

dξ
− αV1)/2V1 = −W

2
1

4V1
, (9)

in terms of which our equations can be written as

dµ

dξ
= 2i

√
R(µ), (10)

where

R(λ) = λ4 − α1λ
3 + α2λ

2 − α3λ+ α4

=

(
λ2 +

1

2
αλ − 1

4
|W1|2

)2

− |V1|2(λ− µ)(λ − µ∗).

The µ variable and V1,W1 obey the equations

−α = α1,
α2

4
− |V1|2 −

1

2
|W1|2 = α2,

α

4
|W1|2 − |V1|2(µ+ µ∗) = α3, (11)

1

16
|W1|4 − µµ∗|V1|2 = α4, (12)

which are related to the integrals of motion of the monomer system with

α4 = 0. The equation of motion is then
(
dµ

dξ

)2

+ 4
(
µ4 + αµ3

)
+ (α2 − 2N)µ2 −H1µ = 0, (13)
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where the system (3), (4) conserves the dimensionless power N and the

Hamiltonian H

N = |W1|2 + 2|V1|2, H1 = αN − 2H,

H = α|V1|2 −
1

2
W 2

1 V
∗
1 − 1

2
V1W

∗2
1 .

Solving Eqs. (12) for µ variable we obtain

µ = −α/4 +
1

4ν

(
H + i

√
P (ν)

)
, (14)

where

P (ν) = 4ν3 − (4N + α2)ν2 + (2αH +N2)ν −H2. (15)

We seek the solution V1 in the following form

V1 =
√
ν(ξ) exp

(
−iαξ/2 + iC

∫ ξ

0

dξ′

ν(ξ′)

)
=

√
ν exp(iψ(ξ)), (16)

where ν = |V1|2 = ℘(ξ + ω′) + C1, ℘ is the Weierstrass function, and ω′ is

half period.Using Eq. (14) and the following equation

dν

dξ
= −2iν(µ− µ∗), (17)

derived from (9) and the monomer equations we obtain
(
dν

dξ

)2

= 4ν3 − (α2 + 4N)ν2 + (2αH +N2)ν −H2, (18)

whose solution can be expressed in terms of the Weierstrass elliptic func-

tions as

ν = ℘(ξ + ω′) + (α2 + 4N)/12. (19)

Substituting this expression in Eq. (16) we obtain

V1 =
√
℘(ξ + ω′) + (α2 + 4N)/12 exp(iψ(ξ)), (20)

where the phase ψ(ξ) is given by

ψ(ξ) = −αξ/2 − H

2℘′(κ)

(
ln
σ(ξ + ω′ − κ)

σ(ξ + ω′ + κ)
+ 2ζ(κ)ξ

)
+ ψ0, (21)

and ψ0 is initial constant phase. Here we are using the well known relation

from elliptic functions theory [5]
∫

dz

℘(z) − ℘(κ)
=

1

℘′(κ)

(
2zζ(κ) + ln

σ(z − κ)

σ(z + κ)

)
,
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with the parameters κ, C1, C satisfying

℘′(κ) = iH, C1 = −℘(κ) =
1

12
(α2 + 4N), C = −1

2
H. (22)

Using the relation between ℘ and sn functions we have

ν(ξ) = ν1 + (ν2 − ν1)sn2
√
ν3 − ν1(ξ + ξ0, k). (23)

Here sn(W,k) is the Jacobi elliptic function determined by the three real

roots 0 ≤ ν1 ≤ ν2 ≤ ν3 ≤ N/2 and with modulus k2 = (ν2 − ν1)/(ν3 − ν1),

ξ0 is determined by initial condition. These results are in agreement with

results obtained in [1,6,7]. The integrability of this system can also be seen

in terms of the existence of a classical r-matrix algebra. To be specific,

introduce standard Poisson bracket, {·; ·}

{f ; g} = −i
(
∂f

∂V1

∂g

∂V ∗
1

− ∂f

∂V ∗
1

∂g

∂V1

)
− i

(
∂f

∂W1

∂g

∂W ∗
1

− ∂f

∂W ∗
1

∂g

∂W1

)
,

and denote the entries of L-matrix as follows,

L =

(
A(λ) B(λ)

C(λ) D(λ)

)
. (24)

Then the L operator yields the linear r-matrix algebra

{A(λ);A(µ)} = {B(λ);B(µ)} = {C(λ);C(µ)} = {D(λ);D(µ)} = 0,

{A(λ);B(µ)} = {B(λ);D(µ)} = − 1

2(λ− µ)
(B(λ) −B(µ)),

{A(λ);C(µ)} = {C(λ);D(µ)} =
1

2(λ− µ)
(C(λ) − C(µ)),

{B(λ);C(µ)} = − 1

(λ− µ)
(A(λ) −A(µ)),

{A(λ);D(µ)} = 0,

which leads to the r-matrix representation. Indeed, by introducing the 4×4-

matrices L1(λ) = L(λ) ⊗ 12 and L2(λ) = 12 ⊗ L(λ) one recognize that

{L1(λ)⊗
′
L2(µ)} = [r(λ − µ), L1(λ) + L2(µ)] (25)

where the 4× 4-matrix{L1(λ)⊗
′
L2(µ)} represents itself the direct product

of the matrices L(λ) and L(µ) with the products of two matrix elements

replaced by the Poisson bracket and the r-matrix has the form

r(λ − µ) =
1

2

P

λ− µ
, P =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 .
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This algebra can be extended at the quantum level (quantum linear R-

matrix algebra [8]) this leading to the quantization of the system in the

same way as done in [9] for the DST dimer. The bihamiltonian structures

for different Hamiltonian systems are given in [11,12].

2. Three-wave interaction system

Let us consider three wave system [10],

i
dA1

dξ
= εA3A

∗
2, i

dA2

dξ
= εA∗

1A3, i
dA3

dξ
= εA1A2. (26)

The corresponding elements of Lax matrices are

L(ξ, λ) =

( −iλ/2 + iA/(2λ) −iεA1 − iA3A
∗
2/λ

−iεA∗
1 − iA2A

∗
3/λ iλ/2 − iA/(2λ)

)
, (27)

M(ξ, λ) =

(−iλ/2 −iεA1

−iεA∗
1 −iλ/2

)
, A = |A2|2 − |A3|2. (28)

To integrate the system (26) we introduce new variable with ε = 1

µ = i
1

A1

dA1

dξ
=
A3A

∗
2

A1
, (29)

in terms of which our equations can be written as

dµ

dξ
= 2i

√
R(µ), (30)

where

R(λ) =

(
1

4
λ2 − 1

2
A
)2

− |A1|2(λ− µ)(λ − µ∗) (31)

=
1

4
λ4 − α1λ

3 + α2λ
2 − α3λ+ α4. (32)

The µ variable and Aj , j = 1, . . . 3 obey the equations

α1 = 0, |A1|2 −
1

2
A = α2, (33)

−|A1|2(µ+ µ∗) = α3,
1

4
A− µµ∗|A1|2 = α4. (34)

The equation of motion is then

(
dµ

dξ

)2

= −4
(
µ4 +Nµ2 −Hµ

)
(35)
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where the system (26) conserves the dimensionless variable N and the

Hamiltonian H

N = |A1|2 −
1

2
A, H = A1A2A

∗
3 +A3A

∗
1A

∗
2. (36)

Solving Eqs. (34) for µ variable we obtain

µ =
1

4ν

(
H + i

√
P (ν)

)
, (37)

where

P (ν) = 4ν3 − 4Nν2 +N2ν −H2. (38)

We seek the solution A1 in the following form

A1 =
√
ν(ξ) exp

(
iC

∫ ξ

0

dξ′

ν(ξ′)

)
=
√
ν(ξ) exp(iψ(ξ)), (39)

where ν = |A1|2 = ℘(ξ + ω′) + C1, ℘ is the Weierstrass function, and ω′ is

half period.Using Eq. (37) and the following equation

dν

dξ
= −2iν(µ− µ∗), (40)

derived from (29) and three wave equations we obtain
(
dν

dξ

)2

= 4ν3 − 4Nν2 +N2ν −H2, (41)

whose solution can be expressed in terms of the Weierstrass elliptic function

℘ as

ν = ℘(ξ + ω′) +
N

3
. (42)

Substituting this expression in Eq. (39) we obtain

A1 =

√
℘(ξ + ω′) +

N

3
exp(iψ(ξ)), (43)

where the phase ψ(ξ) is given by

ψ(ξ) =
H

2℘′(κ)

(
ln
σ(ξ + ω′ − κ)

σ(ξ + ω′ + κ)
+ 2ζ(κ)ξ

)
+ ψ0, (44)

where σ, ζ are Weierstrass functions and ψ0 is initial constant phase.
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We decide to use some fractals of the algebraic Clifford structure in relation
with the quaternionic sequence of Jordan algebras, and this appears to be quite
promising (Theorem 2). Finally we outline further perspectives of investigation
in this direction.

Keywords: Fractals; Chaos; Ising lattice; Clifford structure; Quaternion; Jordan
algebra; Bilinear form; Quadratic form.

1. Introduction and relationship with Bethe-type fractals

The idea of fractal modeling of crystals comes back to Bethe [3] who ob-

served its convenience when coming to first, second and third nearest neigh-

bours etc. Taking into account that an atom is a neighbour of two or more

other atoms, even in the case of one layer with a lattice formed by squares,

one naturally comes to the notion of cluster [4,12]. It is then natural to

cut the plane of lattice (dashed lines – – on Fig. 1) correspondingly to the

cluster involved and construct a Riemann surface or a Bethe lattice — a

fractal set of the branch type [7,14] (Fig. 2). The construction is parallel to

that related to the holomorphic function f(z) = exp z2 in C (Fig. 3); cf.

also [1].

Fig. 1. Cuts – – in the plane of lattice. Fig. 2. A Bethe lattice.

The Bethe method allows us to discuss the order at large and small

distances, distinguishing two degrees of order, influence of the number of

dimensions, qualitative discussion of the transition point, and approxima-

tion for vanishing long distance order; it gives an exact solution for the Ising

model [5] on a Bethe lattice. Unfortunately, the lattice cannot be realized

as a physical system in the sense that in order to preserve the homogeneity
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Fig. 3. Construction of the Riemann surface corresponding to the function f(z) =
exp z2 in C.

of the structure and the equivalence of the branches of each vertex, one

would have to think of each branch as a step along a new dimension in a

regular lattice of an infinite number of spacial dimensions.

In connection with an elegant generalization by Z.-D. Zhang [17] of the

exact solution by Onsager [13] to the problem of description of Ising lattices

it is natural to proceed in four steps:

• to characterize the differences when taking into account the first, second,

and third nearest neighbours of an atom in an alloy;

• to discuss the Ising-Onsager-Zhang lattices in the context of possible

application of the Jordan-von Neumann-Wigner approach [6];

• to use some fractals of the algebraic Clifford structure in relation with

the quaternionic sequence of Clifford algebras;

• to analyze further perspectives of investigation in this direction.

Wu, McCoy, Fisher, and Chayes [16] have downloaded their comment on

Zhang’s work with criticism of correctness of the Zhang’s extension. Some

other criticism has been downloaded by Perk [15]; cf. also Zhang’s replies.

We believe we are referring to the well-motivated results of Zhang only.
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2. First, second, and third nearest neighbours of an atom

in an alloy

Mathematically, an alloy is an ordered pair of foliation of a sample space by

layers and a lattice determined by various atoms of type A (e.g. A = Au -

gold), B (e.g. B = Cu - copper), . . . , situated in the crystallographic lattice

sites which, in the stochiometric and ordered case, are denoted by α, β, . . . ,

respectively [3]. Some of the sites may correspond to vacancies and, because

of fluctuations, it is possible, that for instance an atom A appears in a site

denoted by β, etc.

Choosing a binary AB3 alloy of fcc lattice and (111) surface orientation

we can determine the first, second, and third nearest neighbours of an α-

or β-site (Fig. 4). To this end we have to consider the spheres of radii

R1 = 1
2

√
2a, R2 = a, R3 = 1

2

√
6a, where a is the lattice constant. Atoms of

the i-th (i+ 1-st, i+ 2-nd, etc.) layer are denoted by i, i+ 1, i+ 2, etc. In

analogy we can consider the case of AB3 fcc (100) alloy (Fig. 5). In the case

of a ternary ABC2 alloy of bcc lattice and (111) surface orientation we have

to consider the spheres of radii R1 =
√

3
4 a, R2 = 1

2a, and R3 = 1
2

√
2a and to

distinguish three cases at least, corresponding to the nearest neighbours of

an α-, or β-, or γ-site (Fig. 6). A configuration for AB3 fcc with vacancies

is shown in Fig. 7. It can be regarded a particular case of a ternary alloy or

even of a quaternary alloy because a vacancy may be situated in an α-site

or in a β-site.

3. Ising-Onsager-Zhang lattices vs. Jordan-von

Neumann-Wigner approach

We observe that the very elegant Zhang’s basis is determined by the for-

mulae (8a), (8b), (8c) and (12) of [17], which can be equivalently written

as

s1r,s = 1⊗ 1⊗ · · · ⊗ 1 ⊗ σ1 ⊗ 1⊗ · · · ⊗ 1;

s2r,s = 1⊗ 1⊗ · · · ⊗ 1 ⊗ 1

i
σ2 ⊗ 1⊗ · · · ⊗ 1 with 1 =

(
1 0

0 1

)
;

s3r,s = 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
r−2, s−2

⊗σ3 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−r, `−s

;

(1)

Z = (2 sinh 2K1)
1
2 m·n·l · trace(V2V3V1)m = (2 sinh 2K1)

1
2 m·n·`

2(n·`)∑

j=1

λm
j .
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Fig. 4. First, second, and third neighbours of an α- or β-site in an AB3 fcc (111) alloy
in the stochiometric case (A in α, B in β).

Here, if E1(νj , νj+1) denotes the energy due to interaction between two

contiguous rows (j = 1, 2, . . . ,m) in all the monoatomic layers represented

by planes (i = 1, 2, . . . , `), E2(µj) denotes the energy due to interaction

between two j-th rows in two contiguous monoatomic layers, and E3(µj)

stands for the energy due to interactions within the j-th row in all the

monoatomic layers (we assume that each row contains n sites with particles

or vacancies: k = 1, 2, . . . , n), then the matrices [sα
r,s], r = 1, 2, . . . , n; s =

1, 2, . . . , `; α = 1, 2, 3, satisfy some relations

V1(E1(νj , νj+1)) = Φ1
j (K1, s

1
r,s)), Vα(Eα(νj , νj+1)) = Φα

j (Kα, s
α
r,s)),

α = 2, 3; whereas λj are the eigenvalues of V = V2 · V3 · V1. It is very

important that sα
r,s in (1), α = 1, 2, 3, represent 2n·`-dimensional quaternion

matrices and σα are the familiar Pauli matrices.

Therefore the relations (1) suggest a relationship with the Jordan-von

Neumann-Wigner approach [6]. The idea of Jordan was to consider the

family of algebras A with addition + and multiplication ◦ such that

λA ∈ A for A ∈ A, λ ∈ R; (2)
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Fig. 5. First, second, and third neighbours of an α- or β-site in an AB3 fcc (100) alloy
in the stochiometric case (A in α, B in β).

((A ◦A) ◦B) ◦A = (A ◦A) ◦ (B ◦A) for A, B ∈ A; (3)

if (A ◦A) + (B ◦B) + (C ◦ C) + · · · = 0 for A,B,C ∈ A,
then A = B = C = · · · = 0.

(4)

He was looking for matrix algebras A 3 A,B such that

A ◦B =
1

2
(AB +BA), (5)

where AB represents the usual matrix multiplication.

In the quoted paper Jordan, von Neumann and Wigner had proved what

follows:

Theorem 1. The only irreducible algebras satisfying the conditions (2)–(4)

are the following:

• the algebra of real numbers with A + B, λA, A ◦ B defined in the usual

way;

• Cn, n = 3, 4, . . . ; C being the algebra with the linear basis 1, s1, . . . , sn−1,

where A + B and λA are defined in the usual way, but A ◦ B is defined
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Fig. 6. First, second, and third neighbours of an α-, or β-, or γ-site in an ABC2 bcc
(111) alloy in the stochiometric case (A in α, B in β, and C in γ).

A

B

α-vacancies

β-vacancies

Fig. 7. An example of a binary AB3 fcc alloy with α- and β-vacancies.
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by

1 ◦ 1 = 1, 1 ◦ sj = sj and sj ◦ sk = δj,k ◦ 1, j, k = 1, 2, . . . , n− 1

and δj,k denoting the Kronecker delta;

• Hp
q , p = 1, 2, 4, 8 and q = 3, or p = 1, 2, 4 and q = 4, 5, . . . , Hp

q being the

algebra of Hermitian matrices of order q whose elements are:

— real numbers for p = 1,

— complex numbers for p = 2,

— quaternions for p = 4,

— octonions for p = 8;

A+B and λA are defined in the usual way, but for ◦ we have (5).

From our point of view, because of (1) with sα
r,s, α = 1, 2, 3, representing

2n·`-dimensional quaternion matrices, the H-sequence (H4
q) is of a particular

importance.

4. The use of fractals of the algebraic structure

In [8-11] we are dealing with and applying the interaction and approxi-

mation process of constructing subsequent structure fractals related to the

foliated manifold endowed with a lattice joining vertices being distinguished

points of n kinds (or of one kind with n gradation functions). We can extend

our geometry to n = 1
2 , 1, 1

1
2 , . . . , and consider the iteration process

p(n) 7→ p(n+ 2) with p(n) = 4n+ 1,

involving generators of a Clifford algebra. The objects constructed, graded

fractal bundles Σn, appear to have an interesting property of periodicity

related to the fractal sets situated on the diagonals of the matrices rep-

resented by squares — generators of Clifford algebras, normalized to unit

squares.

Explicitly, given generators A1
1, A1

2, . . . , A1
2p−1 of a Clifford algebra

C`2p−1(C), p = 2, 3, . . . , consider the sequence

Aq+1
α = σ3 ⊗Aq

α ≡
(
Aq

α 0

0 −Aq
α

)
, α = 1, 2, . . . , 2p+ 2q − 3;

Aq+1
2p+2q−2 = σ1 ⊗ Ip,q ≡

(
0 Ip,q

Ip,q 0

)
,

Aq+1
2p+2q−1 = −σ2 ⊗ Ip,q ≡

(
0 iIp,q

−iIp,q 0

)
,
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of generators of Clifford algebras C`2p+2q−1(C), q = 1, 2, . . . , and the se-

quence of corresponding systems of closed squares Qα
q of diameter 1, cen-

tered at the origin of C, where Ip,q = I2p+q−2 , the unit matrix of order

2p+q−2. It is convenient to start with q always from 1, i.e., to shift q for

α ≥ 2p correspondingly. For understanding the idea of this choice in details

we refer to Fig. 3 in [8] and the related description. In particular we may

take A1
α = σα, α = 1, 2, 3; p = 2, so that

Aq+1
α = σ3 ⊗Aq

α, α = 1, 2, . . . , 2q + 1; (6)

Aq+1
2q−2 = σ1 ⊗ I2,q , Aq+1

2q−1 = −σ2 ⊗ I2,q , q = 1, 2, . . . . (7)

Leaving details for a subsequent paper, we announce

Theorem 2. The fractal bundles obtained correspond in a canonical way

to (H4
q), the “quaternionic” sequence of Jordan algebras, with q = 22n−2

(2n+ 1).

Physically, we get at least five models:

• Melting model with Σ2 ∼ H4
4·5 = H4

20 and 5 degrees of freedom: 3 co-

ordinates, time, entropy.

• Binary alloys model with Σ4 ∼ H4
64·9 = H4

576 and 9 degrees of freedom:

6 co-ordinates, time, entropy, long range order parameter.

• Ising-Onsager model of order q and number of degrees of freedom to be

calculated from (1)–(3), with an arbitrary ` ∈ N.

• Ternary alloy with Σ4 ∼ H4
1024·13 = H4

13 312 and 13 degrees of freedom:

9 co-ordinates, time, entropy, 2 long range order parameters.

• Zhang model of order q and number of degrees of freedom to be calculated

from the (1)–(3), with an arbitrary ` ∈ N.

5. Further perspectives

We can see the following perspectives of the present research:

• relationship with Kikuchi-type fractals [3];

• relationship with duality for fractal sets;

• relationship with lattice models on fractal sets;

• fractal renormalization and the renormalized Dirac operator;

• relationship with Schauder and Haar bases on fractal sets;

• meromorphic Schauder basis and hyperfunctions on fractal boundaries;

• the role of noncommutative isomorphisms between the function spaces;
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• application of globally defined meromorphic functions to studying chaotic

dynamical systems;

• the role of periodic orbits and dense orbits;

• an analysis of the conclusion that fluctuations observed in the nature

can be realized as the image of fluctuation mappings of smooth functions

without fluctuations.

The major part of these remarks is due to Professor Osamu Suzuki (Tokyo).
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We characterize Clifford minimal hypersurfaces Sr(nc/r) × Sn−r(nc/(n − r))
with 1 5 r 5 n − 1 in a sphere Sn+1(c) of constant sectional curvature c by
observing their geodesics from this ambient sphere.

Keywords: Spheres; Clifford minimal hypersurfaces; Geodesics; Small circles;
Great circles; Principal curvatures.

1. Introduction

In an (n + 1)-dimensional sphere Sn+1(c) (n = 2) of constant sectional

curvature c, a Clifford hypersurface Mn
r,n−r(c1, c2) is defined as a Rieman-

nian product of two spheres Sr(c1) and Sn−r(c2) with 1 5 r 5 n − 1 and

1/c1+1/c2 = 1/c. It is known that Mn
r,n−r(c1, c2) has two constant principal

curvatures λ1 = c1/
√
c1 + c2 and λ2 = −c2/

√
c1 + c2 whose multiplicities

are r and n− r, respectively. Moreover, they are the only examples of non

totally umbilic hypersurfaces with parallel shape operator in Sn+1(c).

We here recall the fact that a hypersurface Mn of Sn+1(c) is totally

umbilic if and only if all geodesics on Mn are mapped to circles, namely

great circles and small circles, in the ambient space Sn+1(c). In this con-

text, we investigate geodesics on Mn
r,n−r(c1, c2) which are mapped to cir-

cles in Sn+1(c) (see Lemma 2.1). Lemma 2.1 shows that some geodesics on

each Mn
r,n−r(c1, c2) are mapped to circles in Sn+1(c). Considering the con-

verse of Lemma 2.1, we characterize all Clifford hypersurfacesMn
r,n−r(c1, c2)

(1 5 r 5 n− 1, 1/c1 + 1/c2 = 1/c) and all minimal Clifford hypersurfaces

The author is partially supported by Grant-in-Aid for Scientific Research (C) (No.
19540084), Japan Society for the Promotion of Science.
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Mn
r,n−r(nc/r, nc/(n − r)) (1 5 r 5 n − 1) (see Proposition 3.1 and Theo-

rem 3.1).

2. Geodesics on Clifford hypersurfaces

Let TMn
r,n−r(c1, c2) = Vλ1⊕Vλ2 be the decomposition of the tangent bundle

TMn
r,n−r(c1, c2) into principal distributions Vλ1 =

{
X ∈ TMn

r,n−r(c1, c2)
∣∣

AX = λ1X
}

and Vλ2 =
{
X ∈ TMn

r,n−r(c1, c2)
∣∣ AX = λ2X

}
. Our aim

here is to classify geodesics on the hypersurface Mn
r,n−r(c1, c2) which are

mapped to circles in the ambient sphere Sn+1(c).

Lemma 2.1. For each Clifford hypersurface Mn
r,n−r(c1, c2) (1 5 r 5 n−1,

1/c1 + 1/c2 = 1/c) of Sn+1(c), the following hold :

(1) A geodesic γ on Mn
r,n−r(c1, c2) is mapped to a small circle in Sn+1(c) if

and only if the initial vector γ̇(0) satisfies either γ̇(0) ∈ Vλ1 or γ̇(0) ∈
Vλ2 ;

(2) A geodesic γ on Mn
r,n−r(c1, c2) is mapped to a great circle in

Sn+1(c) if and only if the initial vector γ̇(0) is expressed as γ̇(0) =√
c2/(c1 + c2) u+

√
c1/(c1 + c2) v for some unit vectors u ∈ Vλ1 and

v ∈ Vλ2 .

Proof. We denote by ∇̃ and ∇ the Riemannian connections of

Sn+1(c) and Mn
r,n−r(c1, c2), respectively. TMn

r,n−r(c1, c2) is decomposed as:

TMn
r,n−r(c1, c2) = Vλ1 ⊕ Vλ2 .

We find that ∇XY ∈ Vλi holds for any X,Y ∈ Vλi (i = 1, 2), namely

the principal distribution Vλi is integrable and its each leaf Lλi is a totally

geodesic submanifold of our hypersurface Mn
r,n−r(c1, c2). Indeed,

A(∇XY ) = ∇X(AY ) − (∇XA)Y = ∇X(λiY ) = λi(∇XY ),

where we have used the fact that the shape operator A of Mn
r,n−r(c1, c2)

in Sn+1(c) is parallel. Also, our leaf Lλi (i = 1, 2) is a real space form

of constant sectional curvature di with di = c + λ2
i , which is a totally

umbilic but non totally geodesic submanifold in the ambient sphere Sn+1(c).

Then we see that every geodesic on Lλi (i = 1, 2) is also a geodesic on

Mn
r,n−r(c1, c2) and a small circle (of positive curvature |λi|) on Sn+1(c).

These, together with the existence and uniqueness theorem for geodesics,

yield the “if part” of Statement (1). That is, we can see that every geodesic

γ = γ(s) on Mn
r,n−r(c1, c2) satisfying γ̇(0) ∈ Vλ1 (resp. γ̇(0) ∈ Vλ2) is

mapped to a small circle of positive curvature |λ1| (resp. |λ2|) on Sn+1(c).
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Conversely, we take a geodesic γ = γ(s) on Mn
r,n−r(c1, c2) which is

mapped to a small circle of curvature (, say) k in Sn+1(c). Then this curve

satisfies

∇̃γ̇∇̃γ̇ γ̇ = −k2γ̇. (1)

On the other hand, using the Gauss formula ∇̃XY = ∇XY +〈AX, Y 〉N and

the Weingarten formula ∇̃XN = −AX for the hypersurface Mn
r,n−r(c1, c2),

we see that

∇̃γ̇∇̃γ̇ γ̇ = −〈Aγ̇, γ̇〉Aγ̇ + 〈(∇γ̇A)γ̇, γ̇〉N . (2)

Here N is a unit normal vector field on Mn
r,n−r(c1, c2). Comparing the

tangential components of Equations (1) and (2) for Mn
r,n−r(c1, c2), we have

〈Aγ̇, γ̇〉Aγ̇ = k2γ̇. This, combiend with k 6= 0, shows that Aγ̇(s) = kγ̇(s)

for every s or Aγ̇(s) = −kγ̇(s) for every s. Hence, in particular the initial

vector γ̇(0) is a principal curvature vector. Thus we can check the “only if”

part of Statement (1).

Next, we shall check Statement (2). For a geodesic γ on Mn
r,n−r(c1, c2)

we have ∇̃γ̇ γ̇ = 〈Aγ̇, γ̇〉N . We remark that 〈Aγ̇(s), γ̇(s)〉 is a constant

function along the geodesic γ, since ∇A = 0. This tells us that a geodesic

γ on the submanifold Mn
r,n−r(c1, c2) is a great circle on Sn+1(c) if and only

if 〈Aγ̇(0), γ̇(0)〉 = 0. Here we set γ̇(0) = (cos t)u + (sin t)v (0 < t < π/2),

where u, v are unit vectors with u ∈ Vλ1 and v ∈ Vλ2 . Then the equation

〈Aγ̇(0), γ̇(0)〉 = 0 gives

cos2 t · c1√
c1 + c2

− sin2 t · c2√
c1 + c2

= 0,

so that we obtain cos t =
√

c2

c1+c2
, sin t =

√
c1

c1+c2
. Hence we get State-

ment (2).

3. Statements of resuls

Motivated by Lemma 2.1, we characterize all Clifford hypersurfaces.

Proposition 3.1. A connected hypersurface Mn in Sn+1(c) is locally

congruent to a Clifford hypersurface Mn
r,n−r(c1, c2) (1 5 r 5 n − 1,

1/c1 + 1/c2 = 1/c) if and only if there exist a function d : M → N, a

constant α (0 < α < 1) and an orthonormal basis {v1, . . . , vn} of TxM at

each point x ∈M satisfying the following two conditions :

(i) All geodesics γi on Mn with initial vector vi (1 5 i 5 n) are small

circles in Sn+1(c);
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(ii) All geodesics γij on Mn with initial vector αvi +
√

1 − α2 vj (1 5 i 5

dx < j 5 n) are great circles in Sn+1(c).

In this case d is a constant function with d ≡ r and

Mn = Mn
r,n−r(c/α2, c/(1 − α2)).

Proof. Lemma 2.1 shows that all Clifford hypersurfacesMn
r,n−r(c1, c2) sat-

isfy Conditions (i) and (ii) in our Proposition by taking an othonormal basis

{v1, . . . , vn} of TxM
n
r,n−r(c1, c2) in such a way that each vi is a principal

curvature vector of Mn
r,n−r(c1, c2) in Sn+1(c).

Conversely, we consider a connected hypersurface Mn satisfying Con-

ditions (i) and (ii). We explain the discussion in [1,4] in detail. We first

concentrate our attention on Condition (i). We study on an open dense

subset

U =

{
x ∈ Mn

∣∣∣∣
the multiplicity of each principal curvature of Mn in

Sn+1(c) is constant on some neighborhood Vx(⊂ U) of x

}

of Mn. For an orthonormal basis {v1, . . . , vn} of TxM
n at x ∈ U which

satisfies the conditions, we take geodesics γi (1 5 i 5 n) on Mn with initial

vector vi. Since the geodesic γi is a circle of positive curvature (, say) ki, the

same discussion as that in the proof of Lemma 2.1 yields that Avi = kivi

or Avi = −kivi for 1 5 i 5 n. This means that the tangent space TxM
n is

decomposed as:

TxM =
{
v ∈ TxM

∣∣ Av = −ki1v
}
⊕
{
v ∈ TxM

∣∣ Av = ki1v
}

⊕ · · · ⊕
{
v ∈ TxM

∣∣ Av = −kigv
}
⊕
{
v ∈ TxM

∣∣ Av = kigv
}
,

where 0 < ki1 < ki2 < · · · < kig and g is the number of distinct positive ki

(i = 1, . . . , n). We decompose TxM in such a way at each point x ∈ U . Note

that each kij is a smooth function on Vx for each x ∈ U . We shall show the

constancy of each kij . It suffices to check the case of Avij = kij vij . As kij

is a constant function along the curve γij in Sn+1(c), we have vijkij = 0.

For any v` (1 5 ` 6= ij 5 n), since A is symmetric, we have

〈(∇vij
A)v`, vij 〉 = 〈v`, (∇vij

A)vij 〉. (3)

We extend an orthonormal basis {v1, . . . , vn} of TxM
n to a local field of

orthonomal frames (, say) {V1, . . . , Vn} on some open neighborhood Wx(⊂
Vx). In order to compute Equation (3) easily, we extend the vector vij to

the vector field Vij satisfying that AVij = kijVij on Wx and ∇Vij
Vij = 0

at the point x ∈ U . Indeed, such a principal curvature smooth unit vector

field Vij can be obtained in the following manner.
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First of all we define a smooth unit vector field Wij on some “sufficiently

small” neighborhood Wx(⊂ Vx) by using parallel displacement for the vec-

tor vij along each geodesic with origin x. We note that in general Wij is

not principal on Wx, but AWij = kijWij on the geodesic γ = γ(s) with

γ(0) = x and γ̇(0) = vij . We here define the vector field Uij on Wx as: Uij =∏
α6=kij

(A−αI)Wij , where α runs over the set of all distinct principal curva-

tures of Mn except for the principal curvature kij . We remark that Uij 6= 0

on the neighborhood Wx, because (Uij )x 6= 0. Moreover, the vector field Uij

satisfies AUij = kijUij on Wij . We define Vij by normalizing Uij in some

sense. That is, when
∏

α6=kij
(kij −α)(x) > 0 (resp.

∏
α6=kij

(kij −α)(x) < 0),

we define Vij = Uij/‖Uij‖ (resp. Vij = −Uij/‖Uij‖). Then we know that

AVij = kijVij on Wx and (Vij )x = vij . Furthermore, our constrction shows

that the integral curve of Vij through the point x is a geodesic on Mn, so

that in particular ∇Vij
Vij = 0 at the point x.

Thanks to the Codazzi equation 〈(∇XA)Y, Z〉 = 〈(∇Y A)X,Z〉, at the

point x we have

(the left-hand side of (3)) = 〈(∇v`
A)vij , vij 〉 = 〈(∇V`

A)Vij , Vij 〉
= 〈∇V`

(kijVij ) −A∇V`
Vij , Vij 〉

= 〈(V`kij )Vij + (kij I −A)∇V`
Vij , Vij 〉 = v`kij

and

(the right-hand side of (3)) = 〈V`, (∇Vij
A)Vij 〉

= 〈V`,∇Vij
(kijVij ) −A∇Vij

Vij 〉
= 〈v`, (vijkij )vij 〉 = 0.

Thus we can see that the differential dkij of kij vanishes at the point x,

which shows that every kij (> 0) is constant on Wx, since we can take

the point x as an arbitrarily fixed point of Wx. So the principal curvature

function kij is locally constant on the open dense subset U of Mn. This,

together with the continuity of kij and the connectivity of Mn, implies that

kij is constant on the hypersurface Mn. Hence all principal curvatures of

Mn are (nonzero) constant if Mn satisfies Condition (i).

Next, we consider Condition (ii). The above argument tells us that

each vi (1 5 i 5 n) is principal. We set Avi = λivi. Then the condition

(ii) yields αλi +
√

1 − α2 λj = 0 for 1 5 i 5 dx < j 5 n. Hence M

has just two distinct constant principal curvatures. Therefore we conclude

that the hypersurface Mn is locally congruent to a Clifford hypersurface

Mn
r,n−r(c1, c2) (1 5 r 5 n− 1, 1/c1 + 1/c2 = 1/c) with dx = r.
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As an immediate consequence of Proposition 3.1 we establish the fol-

lowing:

Theorem 3.1. A connected hypersurface Mn in Sn+1(c) is locally congru-

ent to a minimal Clifford hypersurface Mn
r,n−r(nc/r, nc/(n− r)) (1 5 r 5

n− 1) if and only if there exist a function d : M → N and an orthonormal

basis {v1, . . . , vn} of TxM at each point x ∈M satisfying the following two

conditions :

(i) All geodesics γi on Mn with initial vector vi (1 5 i 5 n) are small

circles in Sn+1(c);

(ii) All geodesics γij on Mn with initial vector
√
r/n vi +

√
(n− r)/n vj

(1 5 i 5 dx < j 5 n) are great circles in Sn+1(c).

In this case d is a constant function with d ≡ r and

Mn = Mn
r,n−r(nc/r, nc/(n− r)).

Proof. By virtue of Proposition 3.1 we find that the hypersurface Mn

satisfying Conditions (i), (ii) of Theorem 3.1 is locally congruent to some

Clifford hypersurfaceMn
r,n−r(c1, c2). Next, we shall investigate the case that

Mn
r,n−r(c1, c2) is minimal in the ambient space Sn+1(c). Equation TrA =

0 holds if and only if rc1 − (n − r)c2 = 0. This, combiend with 1/c1 +

1/c2 = 1/c, implies that c1 = nc/r, c2 = nc/(n− r). As the constant α in

Proposition 3.1 is given by
√
c2/(c1 + c2) (see the proof of Lemma 2.1), we

know that α =
√
r/n . Thus we obtain the desirable conclusion.

Remark 3.1.

(1) In Proposition 3.1 and Theorem 3.1, we need Condition (ii) at some

point x ∈Mn.

(2) If we add a condition that Mn is complete to assumptions of Propo-

sition 3.1 and Theorem 3.1, then these results characterize globally

Mn
r,n−r(c1, c2).

(3) In assumptions of Proposition 3.1 and Theorem 3.1, we do not need

to take the vectors {v1, . . . , vn} as a local field of orthonormal frames

of Mn. However, for each Clifford hypersurface Mn
r,n−r(c1, c2), we can

take a global smooth field of orthonormal frames {v1, . . . , vn} satisfying

these assumptions.

(4) A connected hypersurface Mn of Sn+1(c) is isoparametric without null

principal curvatures, namely all principal curvatures of Mn are nonzero

constans, if and only if Mn satisfies Condition (i) of Proposition 3.1.
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In fact, the discussion in the proof of Proposition 3.1 gives the “if”

part and the “only if” part can be proved by the following well-known

lemma ([3]):

Lemma 3.1. For each isoparametric hypersurface Mn
g of Sn+1(c)

with g distinct principal curvatures, every principal distribution Vλi

(i = 1, . . . , g) is integrable and its any leaf Lλi is totally umbilic in

the ambient sphere Sn+1(c), moreover such a leaf is totally geodesic in

the hypersurface Mn
g .

Proof. It suffices to verify that ∇XY ∈ Vλi for ∀X,Y ∈ Vλi . By the

same discussion as in the proof of Lemma 2.1 we see that

A(∇XY ) = ∇X(AY ) − (∇XA)Y = λi(∇XY ) − (∇XA)Y.

On the other hand, for every Z ∈ TMn
g the Codazzi equation shows

〈(∇XA)Y, Z〉 = 〈(∇ZA)Y,X〉 = 〈∇Z(AY ) −A∇ZY,X〉
= 〈(λiI − A)∇ZY,X〉 = 〈∇ZY, (λiI −A)X〉 = 0.

Hence we get Statement of Lemma 3.1.

At the end of this paper we refer to some papers on Clifford minimal hy-

persurfaces ([2,5,6,7,8]).

References

1. T. Adachi and S. Maeda, Isoparametric hypersurfaces with less than four prin-
cipal curvatures in a sphere, Colloquium Math. 105 (2006), 143–148.

2. S.S. Chern, M.P. doCarmo and S. Kobayashi, Minimal submanifolds of a
sphere with second fundamental form of constant length, Functional analysis
and related fields, Springer (1970), 59–75.

3. T.E. Cecil and P.J. Ryan, Tight and Taut immersions of manifolds, Res. Notes
Math. 107 Pitman, Boston, MA, (1985).

4. M. Kimura and S. Maeda, Geometric meaning of isoparametric hypersurfaces
in a real space form, Canadian Math. Bull. 43 (2000), 74–78.

5. H.B. Lawson, Local rigidity theorems for minimal hypersurfaces, Ann. Math.
89 (1969), 187–197.

6. K. Nomizu and B. Smyth, A formula of Simons’ type and hypersurfaces with
constant mean curvature, J. Diff.Geom. 3 (1969), 367-377.

7. T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant cur-
vature, Amer. J. Math. 92 (1970), 145–173.

8. T. Otsuki, On periods of solutions of a certain nonlinear differential equation
and the Riemannian manifold O2

n, Proc. Symp. Pure. Math. 27 (1975), 327–
337.



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

174

ON THE CURVATURE PROPERTIES OF REAL TIME-LIKE

HYPERSURFACES OF KÄHLER MANIFOLDS WITH
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Introduction

The Kähler manifolds with Norden metric have been introduced in [9].

These manifolds form the special class W0 in the decomposition of the

almost complex manifolds with Norden metric, given in [2]. This most im-

portant class is contained in each of the basic classes in the mentioned

classification.

The natural analogue of the almost complex manifolds with Norden

metric in the odd dimensional case are the almost contact manifolds with

Norden metric, classified in [4].

In [5] two types of hypersurfaces of an almost complex manifold with

Norden metric are constructed as almost contact manifolds with Norden

metric, and the class of these hypersurfaces of a W0-manifold is determined.

An important problem in the differential geometry of the Kähler mani-

folds with Norden metric is the studying of the manifolds of constant totally

real sectional curvatures [3]. In this paper we study some curvature prop-

erties of the real time-like hypersurfaces of Kähler manifolds with Norden

metric of constant totally real sectional curvatures and particularly curva-
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ture properties of nondegenerate special sections.

1. Preliminaries

1.1. Almost complex manifolds with Norden metric

Let (M ′, J, g′) be a 2n′-dimensional almost complex manifold with Norden

metric, i.e. J is an almost complex structure and g′ is a metric on M ′ such

that:

J2X = −X, g′(JX, JY ) = −g′(X,Y )

for all vector fields X,Y ∈ X(M ′) (the Lie algebra of the differentiable

vector fields on M ′). The associated metric g̃′ of the manifold is given by

g̃′(X,Y ) = g′(X,JY ). Both metrics are necessarily of signature (n′,n′).
Further, X,Y, Z, U will stand for arbitrary differentiable vector fields on

the manifold, and x, y, z, u — arbitrary vectors in its tangent space at an

arbitrary point.

The (0,3)-tensor F ′ on M ′ is defined by F ′(X,Y ,Z) = g′((∇′
X J)Y ,Z),

where ∇′ is the Levi-Civita connection of g′.
A decomposition to three basic classes of the considered manifolds with

respect to F ′ is given in [2]. In this paper we shall consider only the class

W0 : F ′ = 0 of the Kähler manifolds with Norden metric. The complex

structure J is parallel on every W0-manifold, i.e. ∇′J = 0.

The curvature tensor field R′, defined by

R′(X,Y )Z = ∇′
X∇′

Y Z −∇′
Y ∇′

XZ −∇′
[X,Y ]Z,

has the property R′(X,Y, Z, U) = −R′(X,Y, JZ, JU) on a W0-manifold.

Using the first Bianchi identity and the last property of R it follows

R′(X, JY, JZ, U) = −R′(X,Y, Z, U). Therefore, the tensor field R̃′ :

R̃′(X,Y, Z, U) = R′(X,Y, Z, JU) has the properties of a Kähler curvature

tensor and it is called an associated curvature tensor.

The essential curvature-like tensors are defined by:

π′
1(x, y, z, u) = g′(y, z)g′(x, u) − g′(x, z)g′(y, u),

π′
2(x, y, z, u) = g′(y, Jz)g′(x, Ju) − g′(x, Jz)g′(y, Ju),

π′
3(x, y, z, u) = −g′(y, z)g′(x, Ju) + g′(x, z)g′(y, Ju)

− g′(y, Jz)g′(x, u) + g′(x, Jz)g′(y, u).

For every nondegenerate section α′ in Tp′M ′, p′ ∈ M ′, with a basis

{x, y} there are known the following sectional curvatures [1]: k′(α′; p′) =
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k′(x, y) = R′(x, y, y, x)/π′
1(x, y, y, x) – the usual Riemannian sectional cur-

vature; k̃′(α′; p′) = k̃′(x, y) = R̃′(x, y, y, x)/π′
1(x, y, y, x) — an associated

sectional curvature.

The sectional curvatures of an arbitrary holomorphic section α′ (i.e.

Jα′ = α′) is zero on a Kähler manifold with Norden metric [1].

For the totally real sections α′ (i.e. Jα′ ⊥ α′) it is proved the following

Theorem 1.1 ([1]). Let M ′ (2n′ ≥ 4) be a Kähler manifold with Norden

metric. M ′ is of constant totally real sectional curvatures ν ′ and ν̃′, i.e.

k′(α′; p′) = ν′(p′), k̃′(α′; p′) = ν̃′(p′) whenever α′ is a nondegenerate totally

real section in Tp′M ′, p′ ∈M ′, if and only if

R′ = ν′ [π′
1 − π′

2] + ν̃′π′
3.

Both functions ν′and ν̃′are constant if M ′is connected and 2n′ ≥ 6.

1.2. Almost contact manifolds with Norden metric

Let (M,ϕ, ξ, η, g) be a (2n+1)-dimensional almost contact manifold with

Norden metric, i.e. (ϕ, ξ, η) is an almost contact structure determined by a

tensor field ϕ of type (1, 1), a vector field ξ and a 1-form η on M satisfying

the conditions:

ϕ2X = −X + η(X)ξ, η(ξ) = 1,

and in addition the almost contact manifold (M,ϕ, ξ, η) admits a metric g

such that [4]

g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y ).

There are valid the following immediate corollaries: η ◦ ϕ = 0, ϕξ = 0,

η(X) = g(X,ξ), g(ϕX,Y ) = g(X,ϕY ).

The associated metric g̃ given by g̃(X,Y ) = g(X,ϕY ) + η(X)η(Y ) is a

Norden metric, too. Both metrics are indefinite of signature (n, n+ 1).

The Levi-Civita connection of g will be denoted by ∇. The tensor field

F of type (0,3) on M is defined by F (X,Y ,Z) = g((∇X ϕ)Y ,Z).

If {ei, ξ} (i = 1, 2, . . . , 2n) is a basis of TpM and (gij) is the inverse

matrix of (gij), then the following 1-forms are associated with F :

θ(·) = gijF (ei, ej , ·), θ∗(·) = gijF (ei, ϕej , ·), ω(·) = F (ξ, ξ, ·).

A classification of the almost contact manifolds with Norden metric with

respect to F is given in [4], where eleven basic classes Fi are defined. In the
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present paper we consider the following classes:

F4 : F (x, y, z) = −θ(ξ)
2n

{g(ϕx,ϕy)η(z)+g(ϕx,ϕz)η(y)};

F5 : F (x, y, z) = −θ
∗(ξ)

2n
{g(x, ϕy)η(z) + g(x, ϕz)η(y)};

F6 : F (x, y, z) = F (x, y, ξ)η(z) + F (x, ξ, z)η(y), θ(ξ) = θ∗(ξ) = 0,

F (x, y, ξ) = F (y, x, ξ), F (ϕx, ϕy, ξ) = −F (x, y, ξ);

F11 : F (x, y, z) = η(x){η(y)ω(z) + η(z)ω(y)}.

(1)

The classes Fi ⊕Fj , etc., are defined in a natural way by the conditions

of the basic classes. The special class F0 : F = 0 is contained in each of the

defined classes. The F0
i -manifold is an Fi -manifold (i = 1, 4, 5, 11) with

closed 1-forms θ, θ∗ and ω ◦ ϕ.

The following tensors are essential curvature tensors on M :

π1(x, y, z, u) = g(y, z)g(x, u) − g(x, z)g(y, u),

π2(x, y, z, u) = g(y, ϕz)g(x, ϕu) − g(x, ϕz)g(y, ϕu),

π3(x, y, z, u) = −g(y, z)g(x, ϕu) + g(x, z)g(y, ϕu)

− g(y, ϕz)g(x, u) + g(x, ϕz)g(y, u),

π4(x, y, z, u) = η(y)η(z)g(x, u) − η(x)η(z)g(y, u)

+ η(x)η(u)g(y, z) − η(y)η(u)g(x, z),

π5(x, y, z, u) = η(y)η(z)g(x, ϕu) − η(x)η(z)g(y, ϕu)

+ η(x)η(u)g(y, ϕz) − η(y)η(u)g(x, ϕz).

In [7] it is established that the tensors π1 − π2 − π4 and π3 + π5

are Kählerian, i.e. they have the condition of a curvature-like tensor L:

L(X,Y, Z, U) = −L(X,Y, ϕZ, ϕU).

Let R be the curvature tensor of ∇. The tensorsR and R̃ : R̃(x, y, z, u) =

R(x, y, z, ϕu) are Kählerian on any F0-manifold.

There are known the following sectional curvatures with respect to g

and R for every nondegenerate section α in TpM with a basis {x, y}:

k(α; p) = k(x, y) =
R(x, y, y, x)

π1(x, y, y, x)
, k̃(α; p) = k̃(x, y) =

R̃(x, y, y, x)

π1(x, y, y, x)
.

In [8] there are introduced the following special sections in TpM : a ξ-section

(e.g. {ξ, x}), a ϕ-holomorphic section (i.e. α = ϕα) and a totally real section

(i.e. α ⊥ ϕα).
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The canonical curvature tensor K is introduced in [7]. The tensor K is

a curvature tensor with respect to the canonical connection D defined by

DXY = ∇XY +
1

2
{(∇Xϕ)ϕY + (∇Xη)Y.ξ} − η(Y )∇Xξ. (2)

The connection D is a natural connection, i.e. the structural tensors are

parallel with respect to D. Let us note that the tensor K out of F0 has the

properties of R in F0.

2. Curvatures on the real time-like hypersurfaces of a

Kähler manifold with Norden metric

In [5] two types of real hypersurfaces of a complex manifold with Norden

metric are introduced. The obtained submanifolds are almost contact man-

ifolds with Norden metric. Let us recall the real time-like hypersurface with

respect to the Norden metric.

The hypersurface M of an almost complex manifold with Norden metric

(M ′, J, g′), determined by the condition the normal unit N to be time-

like regarding g′ (i.e. g′(N,N) = −1), equipped with the almost contact

structure with Norden metric

ϕ := J + cos t.g′(·, JN){cos t.N − sin t.JN},
ξ := sin t.N + cos t.JN, η := cos t.g′(·, JN), g := g′|M ,

(3)

where t := arctan {g′(N, JN)} for t ∈
(
−π

2 ; π
2

)
, is called a real time-like

hypersurface of (M ′, J, g′).
In the case when (M ′, J, g′) is a Kähler manifold with Norden metric (i.e.

a W0-manifold), in [6] it is ascertained the following statement: The class

F4⊗F5⊗F6⊗F11 is the class of the real time-like hypersurfaces of a Kähler

manifold with Norden metric. There are 16 classes of these hypersurfaces

in all. When n = 1 the class F6 is restricted to F0. Therefore, for a 4-

dimensional Kähler manifold with Norden metric there are only 8 classes

of the considered hypersurfaces.

The tensor F and the second fundamental tensor A of the considered

type of hypersurfaces have the following form, respectively:

F (X,Y, Z) = sin t {g(AX,ϕY )η(Z) + g(AX,ϕZ)η(Y )}
− cos t {g(AX, Y )η(Z) + g(AX,Z)η(Y ) − 2η(AX)η(Y )η(Z)} ,

AX = − dt(ξ)

2 cos t
η(X)ξ − sin t{∇Xξ + g(∇ξξ,X)ξ}

+ cos t{ϕ∇Xξ + g(ϕ∇ξξ,X)ξ}.
(4)
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The basic classes of the considered hypersurfaces are characterized in terms

of the second fundamental tensor by the conditions [5]:

F0 : A = − dt(ξ)

2 cos t
η ⊗ ξ;

F4 : A = − dt(ξ)

2 cos t
η ⊗ ξ − θ(ξ)

2n
{sin t.ϕ− cos t.ϕ2};

F5 : A = − dt(ξ)

2 cos t
η ⊗ ξ +

θ∗(ξ)

2n
{cos t.ϕ+ sin t.ϕ2};

F6 : A ◦ ϕ = ϕ ◦A , trA− dt(ξ)

2 cos t
= tr (A ◦ ϕ) = 0;

F11 : A = − dt(ξ)

2 cos t
η ⊗ ξ − cos t{η ⊗ Ω + ω ⊗ ξ}

− sin t{η ⊗ ϕΩ + (ω ◦ ϕ) ⊗ ξ}, ω(·) = g(·,Ω).

According to the formulas of Gauss and Weingarten in this case ∇′
XY =

∇XY − g(AX, Y )N , ∇′
XN = −AX , we get the relation between the curva-

ture tensors R′ and R of the W0-manifold (M ′, J, g′) and its hypersurface

(M,ϕ, ξ, η, g), respectively:

R′(x, y, z, u) = R(x, y, z, u) + π1(Ax,Ay, z, u),

R′(x, y)N = − (∇xA) y + (∇yA)x.

Hence, having in mind Theorem 1.1, we obtain:

R(x, y, z, u) =
{
ν′ [π′

1 − π′
2] + ν̃′π′

3

}
(x, y, z, u) − π1(Ax,Ay, z, u),

R(x, y, ϕz, ϕu) = −
{
R− ν′[π4 − tan tπ5] + ν̃′[π5 + tan tπ4]

}
(x, y, z, u)

− [π1 + π2](Ax,Ay, z, u),

R(x, y)ξ =
{
ν′[π4 − tan tπ5] − ν̃′[π5 + tan tπ4]

}
(x, y)ξ

− π1(Ax,Ay)ξ,

R(x, y)N = − 1

cos t
[ν′π5 + ν̃′π4](x, y)ξ.

Therefore

(∇xA)y − (∇yA)x =
1

cos t
[ν′π5 + ν̃′π4](x, y)ξ. (5)

Having in mind the equations:

g′(y, Jz) = g(y, ϕz) + tan t η(y)η(z), π′
1 = π1,

π′
2 = π2 + tan t π5, π′

3 = π3 − tan t π4,

which are valid for real time-like hypersurfaces, we obtain
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Proposition 2.1. A real time-like hypersurface of a Kähler manifold with

Norden metric of constant totally real sectional curvatures ν ′ and ν̃′ has

the following curvature properties:

R(x, y, z, u) =
{
ν′[π1 − π2 − tan tπ5] + ν̃′[π3 − tan tπ4]

}
(x, y, z, u)

− π1(Ax,Ay, z, u),

τ = 4n2ν′ − 4nν̃′ tan t− (trA)2 + trA2,

τ̃ = −2nν′ tan t+ 2n(2n− 1)ν̃′ − trAtr (A ◦ ϕ) + tr (A2 ◦ ϕ);

for a ξ-section {ξ, x}

k(ξ, x) = ν′ − ν̃′ tan t− [ν′ tan t+ ν̃′]
g(x, ϕx)

g(x, x) − η(x)2
− π1(Aξ,Ax, x, ξ)

g(x, x) − η(x)2
;

for a ϕ-holomorphic section
{
ϕx, ϕ2x

}
and for a totally real section {x, y},

orthogonal to ξ, respectively:

k(ϕx, ϕ2x) = −π1(Aϕx,Aϕ2x, ϕ2x, ϕx)

π1(ϕx, ϕ2x, ϕ2x, ϕx)
, k(x, y) = ν′ − π1(Ax,Ay, y, x)

π1(x, y, y, x)
.

If (M,ϕ, ξ, η, g) is a real time-like hypersurface of W0-manifold, then

(2), (4) and (5) imply that the canonical curvature tensor has the form

K(x, y, z, u) = R(x, y, ϕ2z, ϕ2u) + π1(Ax,Ay, ϕz, ϕu)

+ sin t {sin t[π1 − π2 − π4] − cos t[π3 + π5]} (Ax,Ay, z, u).

Then, because of the last equation and Proposition 2.1 we have

Proposition 2.2. Let (M,ϕ, ξ, η, g) be a real time-like hypersurface of a

W0-manifold (M ′, J, g′) of constant totally real sectional curvatures. Then

K of M is Kählerian and

K(x, y, z, u) =
{
ν′[π1 − π2 − π4] + ν̃′[π3 + π5]

}
(x, y, z, u)

− cos t
{

cos t[π1 − π2 − π4] + sin t[π3 + π5]
}

(Ax,Ay, z, u),

τ(K) = 4n(n− 1)ν′ − cos t(a cos t+ 2b sin t),

τ̃(K) = 4n(n− 1)ν̃′ − cos t(a sin t− 2b cos t),

a = (trA)2 − trA2 − [tr (A ◦ ϕ)]2 + tr (A ◦ ϕ)2 − 2η(Aξ)trA+ 2g(Aξ,Aξ),

b = tr (A2 ◦ ϕ) − trAtr (A ◦ ϕ) + η(Aξ)tr (A ◦ ϕ) − g(ϕAξ,Aξ).
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3. Curvatures on W0’s real time-like hypersurfaces,

belonging to the main classes

Now, let (M,ϕ, ξ, η, g) belong to the widest integrable main class F4 ⊕ F5

of the real time-like hypersurfaces. Let us recall that a class of almost

contact manifolds with Norden metric is said to be main if the tensor F is

expressed explicitly by the structural tensors ϕ, ξ, η, g. In this case for the

second fundamental tensor we have [5]:

A = − dt(ξ)

2 cos t
η ⊗ ξ − 1

2n

{
[θ(ξ) sin t− θ∗(ξ) cos t]ϕ

− [θ(ξ) cos t+ θ∗(ξ) sin t]ϕ2
}
,

trA = − dt(ξ)

2 cos t
− θ(ξ) cos t− θ∗(ξ) sin t,

tr (A ◦ ϕ) = θ(ξ) sin t− θ∗(ξ) cos t.

(6)

Then, having in mind the last identities and Proposition 2.1, we obtain

Corollary 3.1. If a real time-like hypersurface of a Kähler manifold with

Norden metric of constant totally real sectional curvatures is an F4 ⊕ F5-

manifold, then it has the following curvature properties:

R = ν′[π1 − π2 − tan tπ5] + ν̃′[π3 − tan tπ4]

− dt(ξ)

4n cos t

{
θ(ξ)[sin tπ5 + cos tπ4] + θ∗(ξ)[sin tπ4 − cos tπ5]

}

− θ(ξ)2 + θ∗(ξ)2

4n2
π2 −

(
θ(ξ) cos t+ θ∗(ξ) sin t

)2

4n2
[π1 − π2 − π4]

+

(
θ(ξ) cos t+ θ∗(ξ) sin t

)(
θ(ξ) sin t− θ∗(ξ) cos t

)

4n2
[π3 + π5],

τ = 4n(nν′ − ν̃′ tan t) − dt(ξ)θ(ξ) − dt(ξ)θ∗(ξ) tan t

− n− 1

n
(θ(ξ) cos t+ θ∗(ξ) sin t)2 − θ(ξ)2 + θ∗(ξ)2

2n
,

τ̃ = 2n(n− 1)ν̃′ + 2nν′ tan t+
dt(ξ)θ(ξ)

2
tan t− dt(ξ)θ∗(ξ)

2

+
n− 1

n

(
θ(ξ) sin t− θ∗(ξ) cos t)(θ(ξ) cos t+ θ∗(ξ) sin t

)
,

k(ϕx, ϕ2x) = −θ(ξ)
2 + θ∗(ξ)2

4n2
, k(x, y) = ν′ −

(
θ(ξ) cos t+ θ∗(ξ) sin t

)2

4n2
.

Let us remark that we can obtain the corresponding properties for the

classes F4, F5 and F0, if we substitute θ∗(ξ) = 0, θ(ξ) = 0 and θ(ξ) =

θ∗(ξ) = 0, respectively.
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Using the equations (2) and (1), we express the canonical connection

explicitly for the class F4 ⊕F5 as follows

DXY = ∇XY+
θ(ξ)

2n
{g(x, ϕy)ξ − η(y)ϕx}−θ

∗(ξ)

2n

{
g(ϕx, ϕy)ξ − η(y)ϕ2x

}
.

Let (M,ϕ, ξ, η, g) ∈ F0
4 ⊕ F0

5 , i.e. (M,ϕ, ξ, η, g) is an (F4 ⊕F5)-manifold

with closed 1-forms θ and θ∗. The canonical curvature tensor K of any(
F0

4 ⊕F0
5

)
-manifold is Kählerian and it has the form

K = R+
ξθ(ξ)

2n
π5 +

ξθ∗(ξ)

2n
π4

+
θ2(ξ)

4n2
[π2 − π4] +

θ∗2(ξ)

4n2
π1 −

θ(ξ)θ∗(ξ)

4n2
[π3 − π5] .

Then, using Corollary 3.1, we ascertain the truthfulness of the following

Corollary 3.2. If a real time-like hypersurface of a Kähler manifold with

Norden metric of constant totally real sectional curvatures is an
(
F0

4 ⊕F0
5

)
-

manifold, then K is expressed in the following way:

K =

(
ν′ +

θ∗(ξ)

4n2

)
[π1 − π2] +

(
ν̃′ − θ(ξ)θ∗(ξ)

4n2

)
π3

−
(
ν̃′ tan t+

dt(ξ)θ(ξ)

4n
+
dt(ξ)θ∗(ξ)

4n
tan t− ξθ∗(ξ)

2n
+
θ(ξ)2

4n2

)
π4

−
(
ν′ tan t+

dt(ξ)θ(ξ)

4n
tan t− dt(ξ)θ∗(ξ)

4n
− ξθ(ξ)

2n
− θ(ξ)θ∗(ξ)

4n2

)
π5

−
(
θ(ξ) cos t+ θ∗(ξ) sin t

)2

4n2
[π1 − π2 − π4]

+

(
θ(ξ) sin t− θ∗(ξ) cos t

)(
θ(ξ) cos t+ θ∗(ξ) sin t

)

4n2
[π3 + π5].

We compute the expression (∇xA) y−(∇yA)x using (6) and we compare

the result with (5). Thus, we get the relations

ν′ = −dt(ξ)θ(ξ)
4n

+
cos t

2n

[
ξθ(ξ) sin t− ξθ∗(ξ) cos t

]

+
cos2 t

4n2

[
θ(ξ)2 − θ∗(ξ)2

]
+

sin t cos t

2n2
θ(ξ)θ∗(ξ)

+
dt(ξ)

2n
cos t

[
θ(ξ) cos t+ θ∗(ξ) sin t

]
,

(7)
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ν̃′ = −dt(ξ)θ
∗(ξ)

4n
+

cos t

2n

[
ξθ(ξ) cos t+ ξθ∗(ξ) sin t

]

+
sin t cos t

4n2

[
θ∗(ξ)2 − θ(ξ)2

]
+

cos2 t

2n2
θ(ξ)θ∗(ξ)

− dt(ξ)

2n
cos t

[
θ(ξ) sin t− θ∗(ξ) cos t

]
.

(8)

Hence, we have

K = λ[π1 − π2 − π4] + µ[π3 + π5],

R = λ[π1 − π2 − π4] + µ[π3 + π5] − ξθ∗(ξ)

2n
π4 −

ξθ(ξ)

2n
π5

− θ∗(ξ)2

4n2
π1 −

θ(ξ)2

4n2
[π2 − π4] +

θ(ξ)θ∗(ξ)

4n2
[π3 − π5],

λ = −dt(ξ)θ(ξ)
4n

+
dt(ξ)

2n
cos t

[
θ(ξ) cos t+ θ∗(ξ) sin t

]

+
cos t

2n

[
ξθ(ξ) sin t− ξθ∗(ξ) cos t

]
,

µ = −dt(ξ)θ
∗(ξ)

4n
− dt(ξ)

2n
cos t

[
θ(ξ) sin t− θ∗(ξ) cos t

]

+
cos t

2n

[
ξθ(ξ) cos t+ ξθ∗(ξ) sin t

]
.

We solve the system (7), (8) with respect to the functions θ(ξ) and θ∗(ξ)

for t = const and get

θ(ξ) = 2εn

√
ν′ cos t− ν̃′ sin t+

√
ν′2 + ν̃′2

2 cos t
,

θ∗(ξ) = 2εn

√
cos t(ν′ tan t+ ν̃′)√

2(ν′ cos t− ν̃′ sin t+
√
ν′2 + ν̃′2)

,

where ε = ±1. Since ν ′ and ν̃′ are point-wise constant for M ′4 (n = 1) and

they are absolute constants for M ′2n+2 (n ≥ 2) (Theorem 1.1), then the

functions θ(ξ) and θ∗(ξ), which determine the real time-like hypersurface as

an almost contact manifold with Norden metric, are also pointwise constant

on M3 and absolute constants on M2n+1 (n ≥ 2). Hence, we have

Theorem 3.1. Let (M ′, J, g′) be a Kähler manifold with Norden metric

of constant totally real sectional curvatures. Let the
(
F0

4 ⊕F0
5

)
-manifold

(M,ϕ, ξ, η, g), dimM ≥ 5, be its real time-like hypersurface, defined by (3).



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

184 M. Manev, M. Teofilova

If t = const, then K = 0 on M and

R = −θ(ξ)
2

4n2
[π2 − π4] − θ∗(ξ)2

4n2
π1 +

θ(ξ)θ∗(ξ)

4n2
[π3 − π5] ,

τ =
θ(ξ)2

2n
− (2n+ 1)

θ∗(ξ)2

2n
, τ̃ =

θ(ξ)θ∗(ξ)

2n
,

k (ξ, x) =
θ(ξ)2 − θ∗(ξ)2

4n2
+

2θ(ξ)θ∗(ξ)

4n2

g(x, ϕx)

g(ϕx, ϕx)
,

k
(
ϕx, ϕ2x

)
= −θ(ξ)

2 + θ∗(ξ)2

4n2
, k (x, y) = −θ

∗(ξ)2

4n2
.
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1. Introduction

Let (M,ϕ, ξ, η, g) be a (2n+ 1)-dimensional almost contact manifold with

Norden metric, i. e. (ϕ, ξ, η) is an almost contact structure [1] and g is a

metric [3] on M such that

ϕ2X = −id + η ⊗ ξ, η(ξ) = 1,

g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y ),
(1)

where id denotes the identity transformation and X , Y are differentiable

vector fields on M , i. e., X,Y ∈ X(M). The tensor g̃ given by

g̃(X,Y ) = g(X,ϕY ) + η(X)η(Y )

is a Norden metric, too. Both metrics g and g̃ are indefinite of signature

(n+ 1, n).

Let ∇ be the Levi-Civita connection of the metric g. The tensor field F

of type (0, 3) on M is defined by

F (X,Y, Z) = g((∇Xϕ)Y, Z).

A classification of the almost contact manifolds with Norden metric

with respect to the tensor F is given in [3] and eleven basic classes Fi,

(i = 1, 2, . . . , 11) are obtained.
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Let R be the curvature tensor field of ∇ defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

The corresponding tensor field of type (0, 4) is determined as follows

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

Let (M,ϕ, ξ, η, g), (dimM = 2n + 3) be an almost contact manifold

with Norden metric and let M be a submanifold of M . Then for each point

p ∈M we have

TpM = TpM ⊕ (TpM)⊥,

where TpM and (TpM)⊥ are the tangent space and the normal space of M

at p respectively. When the submanifold M of M is of codimension 2 we

denote (TpM)⊥ by α = {N1, N2}, i.e. α is a normal section of M . Let α be

a 2-dimensional section in TpM . Let us recall a section α is said to be

• non-degenerate, weakly isotropic or strongly isotropic if the rank of the

restriction of the metric g on α is 2, 1 or 0 respectively;

• of pure or hybrid type if the restriction of g on α has a signature

(2, 0), (0, 2) or (1, 1) respectively;

• holomorphic if ϕα = α;

• ξ- section if ξ ∈ α;

• totally real if ϕα⊥α.

Submanifolds M of M of codimension 2 with a non-degenerate of hybrid

type normal section α are studied. In [4] two basic types of such submani-

folds are considered: α is a holomorphic section and α is a ξ-section. In [5]

the normal section α = {N1, N2} is such that ϕN1 /∈ α, ϕN2 ∈ α. In this

paper we consider submanifolds M of M of codimension 2 in the case when

the normal section α is a non-degenerate of hybrid type and α is a totally

real. The totally real sections α are two types: α is non-orthogonal to ξ and

α is orthogonal to ξ.

2. Submanifolds of codimension 2 of almost contact

manifolds with Norden metric with totally real

non-orthogonal to ξ normal spaces

Let (M,ϕ, ξ, η, g) (dimM = 2n + 3) be an almost contact manifold with

Norden metric and let M be a submanifold of codimension 2 of M . We

assume that there exists a normal section α = {N1, N2} defined globally

over the submanifold M such that
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• α is a non-degenerate of hybrid type, i.e.

g(N1, N1) = −g(N2, N2) = 1, g(N1, N2) = 0; (2)

• α is a totally real, i.e.

g(N1, ϕN1) = g(N2, ϕN2) = g(N1, ϕN2) = g(N2, ϕN1) = 0; (3)

• α is a non-orthogonal to ξ (ξ /∈ TpM) and ξ /∈ α.

Then we obtain the following decomposition for ξ, ϕX , ϕN1, ϕN2 with

respect to {N1, N2} and TpM

ξ = ξ0 + aN1 + bN2;

ϕX = ϕX + η1(X)N1 + η2(X)N2, X ∈ χ(M);

ϕN1 = ξ1; ϕN2 = −ξ2;

(4)

where ϕ denotes a tensor field of type (1, 1) on M ; ξ0, ξ1, ξ2 ∈ χ(M); η1

and η2 are 1-forms on M ; a, b are functions on M such that (a, b) 6= (0, 0).

We denote the restriction of g on M by the same letter.

Let a 6= 0, |a| > b and a2 − b2 = k2. Taking into account the equalities

(1)–(4) we compute

ηi(X) = g(X, ξi), (i = 0, 1, 2); (5)

g(ϕX,ϕY ) = −g(X,Y ) + η0(X)η0(Y ) − η1(X)η1(Y ) + η2(X)η2(Y ); (6)

ϕ2X = −X + η0(X)ξ0 − η1(X)ξ1 + η2(X)ξ2;

η0(ϕX) = −aη1(X) + bη2(X);

η1(ϕX) = aη0(X); η2(ϕX) = bη0(X);

(7)

ϕξ0 = −aξ1 + bξ2; ϕξ1 = aξ0; ϕξ2 = bξ0; (8)

g(ξ0, ξ0) = 1 − a2 + b2; g(ξ1, ξ1) = a2 − 1;

g(ξ2, ξ2) = 1 + b2; g(ξ0, ξ1) = g(ξ0, ξ2) = 0;

g(ξ1, ξ2) = ab;

(9)

for arbitrary X,Y ∈ χ(M).

Now we define a vector field ξ, an 1-form η and a tensor field φ of type

(1, 1) on M by

ξ = − b

k
.ξ1 +

a

k
.ξ2;

η(X) = − b

k
.η1(X) +

a

k
.η2(X), X ∈ χ(M);

φX = λ.ϕ3X + µ.ϕX, X ∈ χ(M);

(10)
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where

λ1 =
ε

k(k + 1)
, µ1 =

ε(1 + k2 + k)

k(k + 1)
;

λ2 =
ε

k(k − 1)
, µ2 =

ε(1 + k2 − k)

k(k − 1)
;

ε = ±1.

Further we consider the following cases for k:

1) k2 6= 1 ⇐⇒ k 6= ±1. In this case φ, ξ, η are given by (10) and λ = λ1,

µ = µ1 or λ = λ2, µ = µ2.

2) k = −1. We obtain φ, ξ, η from (10) by k = −1 and λ = λ2 = ε/2,

µ = µ2 = 3ε/2.

3) k = 1. We obtain φ, ξ, η from (10) by k = 1 and λ = λ1 = ε/2, µ = µ1 =

3ε/2.

Using (5)–(10) we verify that (φ, ξ, η) is an almost contact structure on

M and the restriction of g on M is Norden metric. Thus, the submanifolds

(M,φ, ξ, η, g) of M considered in 1), 2), 3) are (2n+ 1)-dimensional almost

contact manifolds with Norden metric.

Denoting by ∇ and ∇ the Levi-Civita connections of the metric g in M

and M respectively, the formulas of Gauss and Weingarten are

∇XY = ∇XY + g(AN1X,Y )N1 − g(AN2X,Y )N2;

∇XN1 = −AN1X + γ(X)N2;

∇XN2 = −AN2X + γ(X)N1, X, Y ∈ χ(M);

(11)

where ANi (i = 1, 2) are the second fundamental tensors and γ is a 1-form

on M .

3. Submanifolds of codimension 2 of almost contact

manifolds with Norden metric with totally real

orthogonal to ξ normal spaces

Let (M,ϕ, ξ, η, g) (dimM = 2n + 3) be an almost contact manifold with

Norden metric and let M be a submanifold of codimension 2 of M . We

assume that there exists a normal section α = {N1, N2} defined globally

over the submanifold M such that

• α is a non-degenerate of hybrid type, i.e. the equality (2) holds;

• α is a totally real;

• α is orthogonal to ξ, i.e. ξ ∈ TpM .
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Then from (4) by a = b = 0 we obtain the following decomposition with

respect to {N1, N2} and TpM

ξ = ξ0;

ϕX = ϕX + η1(X)N1 + η2(X)N2, X ∈ χ(M);

ϕN1 = ξ1; ϕN2 = −ξ2.
(12)

Substituting a = b = 0 in (7), (8), (9) we have

η0(ϕX) = η1(ϕX) = η2(ϕX) = 0;

ϕξ0 = ϕξ1 = ϕξ2 = 0;

g(ξ0, ξ0) = g(ξ2, ξ2) = 1; g(ξ1, ξ1) = −1;

g(ξ0, ξ1) = g(ξ0, ξ2) = g(ξ1, ξ2) = 0.

(13)

Now we define a vector field ξ, an 1-form η and a tensor field φ of type

(1, 1) on M by

ξ = t0ξ0 − t2ξ2;

η(X) = t0η
0(X) − t2η

2(X), X ∈ χ(M);

φX = ϕX + t0{η1(X).ξ2 + η2(X).ξ1} + t2{η0(X).ξ1 + η1(X).ξ0};

(14)

where t0, t2 are functions on M and t20 + t22 = 1.

Using equations (5), (6), (13), (14) we verify that (φ, ξ, η) is an almost

contact structure on M and the restriction of g on M is Norden metric. So,

the submanifolds (M,φ, ξ, η, g) of M are (2n+ 1)-dimensional almost con-

tact manifolds with Norden metric. The formulas of Gauss and Weingarten

are the same as those in section 2.

4. Examples of submanifolds of codimension 2 of almost

contact manifolds with Norden metric with totally real

normal spaces

In [6] a Lie group as a 5-dimensional almost contact manifold with Norden

metric of the class F9 is constructed. We will use this Lie group to obtain

examples of submanifolds considered in sections 2 and 3.

First we recall some facts from [6] which we need. Let g be a real Lie al-

gebra with a global basis of left invariant vector fields {X1, X2, X3, X4, X5}
and G be the associated with g real connected Lie group. The almost con-
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tact structure (ϕ, ξ, η) and the Norden metric g on G are defined by:

ϕXi = X2+i, ϕX2+i = −Xi, ϕX5 = 0, (i = 1, 2);

g(Xi, Xi) = −g(X2+i, X2+i) = g(X5, X5) = 1, (i = 1, 2);

g(Xj , Xk) = 0, (j 6= k, j, k = 1, . . . , 5);

ξ = X5, η(Xi) = g(Xi, X5), (i = 1, . . . , 5).
(15)

The commutators of the basis vector fields are given by:

[X1, X2] = −[X1, X3] = aX4, [X2, X3] = aX2 + aX3,

[X3, X4] = −[X2, X4] = aX1, [X2, ξ] = 2mX1,

[X3, ξ] = −2mX4, [X1, X4] = [X1, ξ] = [X4, ξ] = 0,

(16)

where a,m ∈ R. So, the manifold (G,ϕ, ξ, η, g) is an almost contact mani-

fold with Norden metric in the class F9.

Theorem 4.1 ([2]). Let G be a Lie group with a Lie algebra g and b̃ be a

subalgebra of g. There exists a unique connected Lie subgroup H of G such

that the Lie algebra b of H coincides with b̃.

From the equalities for the commutators of the basis vector fields

{X1, X2, X3, X4, X5} it follows that the 3-dimensional subspaces of g b1

with a basis {X1, X2, X3}, b2 with a basis {X1, X3, X4} and b3 with a ba-

sis {X1, X4, ξ } are closed under the bracket operation. Hence bi (i = 1, 2, 3)

are real subalgebras of g. Taking into account Theorem 4.1 we have there

exist Lie subgroups Hi (i = 1, 2, 3) of the Lie group G with Lie algebras bi
(i = 1, 2, 3) respectively. The normal spaces αi (i = 1, 2, 3) of the submani-

folds Hi (i = 1, 2, 3) of G are: α1 = {X4, ξ}, α2 = {X2, ξ}, α3 = {X2, X3}.

Because of (15) we have α1 is ξ-section of hybrid type, α2 is ξ-section of

pure type and α3 is a totally real orthogonal to ξ section of hybrid type.

So, the submanifold H3 of G is of the same type submanifolds considered

in section 3.

We choose the unit normal fields of H3 N1 = X2 and N2 = X3. For

an arbitrary X ∈ χ(H3) we have X = x1X1 + x4X4 + η(X)ξ. Taking into

account (15) we compute

ξ = ξ0; ϕX = −x4X2 + x1X3;

ϕX2 = X4; ϕX3 = −X1.
(17)
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From (12), (17) it follows

η0(X) = η(X);

ϕX = 0; η1(X) = −x4; η2(X) = x1;

ξ1 = X4; ξ2 = X1.

(18)

Substituting (18) in (14) for the almost contact structure on H3 we obtain

ξ = t0ξ − t2X1;

η(X) = t0η(X) − t2x
1;

φX = t0{−x4X1 + x1X4} + t2{η(X)X4 − x4ξ};

(19)

where t0, t2 ∈ R and t20 + t22 = 1.

Using the well known condition for the Levi-Civita connection ∇ of g

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z) − Zg(X,Y ) + g([X,Y ], Z)

+ g([Z,X ], Y ) + g([Z, Y ], X)
(20)

we get the following equation for the tensor F of H3

F (X,Y, Z) =
1

2
{g([X,φY ] − φ[X,Y ], Z) + g(φ[Z,X ] − [φZ,X ], Y )

+g([Z, φY ] − [φZ, Y ], X)} , X, Y, Z ∈ χ(H3).
(21)

From (16) we have [X1, X4] = [X1, ξ] = [X4, ξ] = 0. Having in mind the

last equalities, (19) and (21) for the tensor F of H3 we obtain F = 0. Thus,

the submanifold (H3, φ, ξ, η, g) of G, where (φ, ξ, η) is defined by (19) is an

almost contact manifold with Norden metric in the class F0.

In order to construct an example for a submanifold from section 2 we

make the following change of the basis of g




E1

E2

E3

E4

E5




= T T




X1

X2

ξ

X3

X4



, T =




1 0 0 0 0

0
√

3
2

1
2 0 0

0 − 1
2

√
3

2 0 0

0 0 0 1 0

0 0 0 0 1




∈ O(3, 2). (22)

Taking into account (16) and (22) we compute the commutators of the basis

vector fields {E1, E2, E3, E4, E5} of g
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[E1, E2] =

√
3

2
aE5, [E1, E3] =

1

2
aE5, [E3, E5] = −1

2
aE1,

[E2, E5] = −
√

3

2
aE1, [E1, E4] = −aE5,

[E2, E4] =
3

4
aE2 +

√
3

4
aE3 +

√
3

2
aE4 −mE5,

[E3, E4] =

√
3

4
aE2 +

1

4
aE3 +

1

2
aE4 +

√
3mE5,

[E4, E5] = aE1, [E2, E3] = 2mE1, [E1, E5] = 0.

(23)

Because of the elements of the matrix T are constants the Jacobi iden-

tity for the vector fields {E1, E2, E3, E4, E5} is valid. Now, we compute

the matrix B of ϕ and the coordinates of ξ with respect to the basis

{E1, E2, E3, E4, E5}

B =




0 0 0 −1 0

0 0 0 0 −
√

3
2

0 0 0 0 − 1
2

1 0 0 0 0

0
√

3
2

1
2 0 0




; ξ =

(
0,−1

2
,

√
3

2
, 0, 0

)
. (24)

From T ∈ O(3, 2) it follows the matrix of the metric g with respect to the

basis {E1, E2, E3, E4, E5} is the same as the matrix

C =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 −1




(25)

of g with respect to the basis {X1, X2, ξ,X3, X4}.

Using (23) we have that the 3-dimensional subspace b of g with a basis

{E1, E2, E5} is a subalgebra of g. Let H be the Lie subgroup of G with a Lie

algebra b. Having in mind (24), (25) we obtain that the section α = {E3, E4}
is a normal to the submanifold H , α is a totally real non-orthogonal to ξ

section of hybrid type and ξ /∈ α, i.e. H is of the same type submanifolds

considered in section 2. We have the following decomposition of ξ , ϕX ,

ϕE3, ϕE4 with respect to {E3, E4} and TpH
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ξ = −1

2
E2 +

√
3

2
E3;

ϕX = −
√

3

2
x5E2 +

√
3

2
x2E5 −

1

2
x5E3 + x1E4;

ϕE3 =
1

2
E5; ϕE4 = −E1;

(26)

where X ∈ χ(H) and X = x1E1 + x2E2 + x5E5. We substitute

a =

√
3

2
, b = 0, k =

√
3

2
, λ =

4
√

3(2 −
√

3)

3
, µ = λ+ 1,

ξ2 = E1, η2(X) = x1, ϕX = −
√

3

2
x5E2 +

√
3

2
x2E5

in (10) and obtain an almost contact structure (φ, ξ, η)

ξ = E1; η(X) = x1;

φX =
2
√

3

3
ϕX = −x5E2 + x2E5;

(27)

on the submanifold H .

Using (11), (16) and (20) we get

AE3X = −mx2E1 −mx1E2;

AE4X = −1

2

(
3

2
ax2 +mx5

)
E2 +

1

2
mx2E5;

γ(X) =

√
3

2

(
ax2 −mx5

)
.

Then the formulae of Gauss and Weingarten (11) become

∇XY =∇XY −m
(
x2y1 + x1y2

)
E3 +

1

2

((
3

2
ax2 +mx5

)
y2 +mx2y5

)
E4;

∇XE3 = mx2E1 +mx1E2 +

√
3

2

(
ax2 −mx5

)
E4;

∇XE4 =
1

2

(
3

2
ax2 +mx5

)
E2 −

1

2
mx2E5 +

√
3

2

(
ax2 −mx5

)
E3.

Having in mind the last formulas, (26) and (27) we compute the tensor F

of H

F (X,Y, Z) = −
√

3

2
ax2(y1z2 + y2z1), X, Y, Z ∈ χ(H)

and verify that the submanifold (H,φ, ξ, η, g) of G, where (φ, ξ, η) is defined

by (27) is an almost contact manifold with Norden metric in the class

F4 ⊕F8.
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This short communication deals with several properties of the double-complex
Laplace operator, namely it is constructed a fundamental distribution solu-
tion, it is proved the partial C∞ hypoellipticity and it is proved a theorem on
microlocal propagation of singularities of the solutions along the leaves (two
dimensional) of the real and imaginary parts of the Hamiltonian vector field of
the symbol.

Keywords: Fundamental solution; Partial hypoellipticity; Microlocal propaga-
tion of singularities.

1. Introduction and formulation of the main results

1. The double-complex Laplace operator was introduced by S. Dimiev in [1].

The Cauchy problem for it was studied by L. Apostolova in [2]. Stimulated

by the talk of these two authors on the 9th International workshop on

complex structures, integrability and vector fields, held in Sofia, August

2008, we propose a look at the same operator from the point of view of

the general theory of linear partial differential operators and microlocal

analysis too. Therefore, we have constructed its fundamental solution in the

sense of L. Schwartz, we have shown its non-hypoellipticity and its partial

C∞ hypoellipticity, we have proved a result on propagation of microlocal

singularities along canonical two-dimensional leaves etc.

2. This is the definition of the double-complex Laplace operator:

P (D) = ∂2/∂u2 + i∂2/∂v2, (1)

where u = x1 + ix2 ∈ C1, v = x3 + ix4 ∈ C1 and as usual
∂

∂u
= 1/2(

∂

∂x1
+
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1

i

∂

∂x2
), x′ = (x1, x2), x′′ = (x3, x4) ∈ R2.

Evidently, if f(.) is analytic, then
∂

∂u
f(u) = 0, while

∂

∂u
f(u) = f ′(u).

We remind of the reader that a distribution E(x) ∈ D′ is called a fun-

damental solution of (1) if P (D)E(x) = δ(x) and δ(x), x ∈ R4 is the Dirac

delta function. The characteristic set of (1) is given by:

Char P = {(x, ξ) ∈ T ∗(R4) \ 0 : p(ξ) = 0}
where the symbol p of the operator P is the following one:

p(ξ) := 1/4[(iξ1 + ξ2)2 + i(iξ3 + ξ4)2] = −1/4[(ξ1 − iξ2)2 + i(ξ3 − iξ4)2].

Let us put λ = ξ1 + iξ2, µ = ξ3 + iξ4. Thus, −4p(ξ) = λ
2

+ iµ2.

Evidently,

p(ξ) = 0 ⇐⇒ p(ξ) = 0 ⇒ p(ξ) = 0 ⇐⇒ λ2 − iµ2 = 0 ⇐⇒ λ = ±ei π
4 µ,

i.e. λµ 6= 0. This way we conclude that CharP can be written in real and

complex forms:

CharP = R4
x × CharξP, (2)

CharξP = {ξ ∈ R4 \ 0 : ξ21 − ξ22 + 2ξ3ξ4 = 0, ξ23 − ξ24 − 2ξ1ξ2 = 0}
= {(λ, µ) ∈ C2 : λ = ±eiπ/4µ} and λ 6= 0, µ 6= 0.

Evidently, ∇ξRe p(ξ) 6= 0, ∇ξIm p 6= 0 and ∇ξRep(ξ) 6‖ ∇ξIm p(ξ).

Consequently, CharξP is 2 dimensional conical submanifold of R4
ξ \ 0.

We shall denote ξ′ = (ξ1, ξ2), ξ′′ = (ξ3, ξ4) and D1
ε,eiπ/4 = {z ∈ C1 :

|z − eiπ/4| ≤ ε}, D2
ε,−eiπ/4 = {z ∈ C1 : |z + eiπ/4| ≤ ε}, where 0 < ε < 1 is

arbitrary small. Put M1 = D1 \ (D1
ε,eiπ/4 ∪ D2

ε,−eiπ/4). In a similar way we

define D1
ε,e−iπ/4 , D2

ε,−e−iπ/4 , M2; D1 = {z : |z| ≤ 1}.

One can easily see that |P (λ, µ)| ≥ c1|µ|2, c1 > 0 if λ/µ ∈ M1, µ 6= 0

and |P (λ, µ)| ≥ c2|λ|2, c2 > 0 if µ/λ ∈ M2, λ 6= 0. Certainly, c1,2 = c1,2(ε).

We point out that CharP ⊂ T ∗(R4) \ 0 is a conic manifold of codimen-

sion 2 and the Poisson bracket {Re p(ξ), Im p(ξ)} ≡ 0. Therefore, Char P

is involutive manifold of codimension 2. If

HRep = 〈∇ξRe p,
∂

∂x
〉, HImp = 〈∇ξIm p,

∂

∂x
〉, ([HRep,HImp] = 0)

are the corresponding Hamilton vector fields of Re p and Im p we obtain

according to Frobenius theorem that CharP foliates by 2 dimensional leaves

Γ. We shall call them bicharacteristics of P. This is the complex involutive

case considered in section 26.2 of [3].
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We are ready now to formulate the main result of this short communi-

cation.

Theorem 1.1. The following results hold for the double-complex Laplace

operator P :

1.) P is neither C∞, nor analytic hypoelliptic.

2.) P has the fundamental solution E(x) =
c3

u2 + iv2 ∈ D′(R4), c3 =

const. 6= 0.

3.) P is partially C∞ hypoelliptic, i.e. if Pw ∈ C∞(Ω), w ∈ D′(Ω) and for

each multiindex α′ = (α1, α2) ∈ Z2
+ we have that Dα′

x′w ∈ C0(Ω) then

w ∈ C∞(Ω), (respectively, if Dα′′

x′′w ∈ C0(Ω) then again w ∈ C∞(Ω)).

4.) P is operator of principal type, i.e. p(ξ) = 0 ⇒ ∇ξp(ξ) 6= 0. If w ∈
D′(Ω) and Pw = f then (Char P ∩ WF (w)) \ WF (f) is invariant

under the bicharacteristic foliation in CharP \WF (f).

5.) Let Pw ∈ C∞, w ∈ D′(Ω). Then for each ϕ ∈ C∞
0 (Ω) and each

N ∈ N there exists a constant CN > 0 and such that |ϕ̂w(ξ)| ≤ CN (1+

|ξ′′|)−N , when
ξ1 + iξ2
ξ3 + iξ4

∈M1 (respectively, |ϕ̂w(ξ)| ≤ DN (1+ |ξ′|)−N ,

when
ξ3 + iξ4
ξ1 + iξ2

∈ M2).

If g ∈ D′ then ϕ̂g(ξ) stands for its Fourier transformation, while WF (f)

is the wave front set of the Schwartz distribution f ∈ D′ (see [3], vol. I]).

The result, formulated in p. 4 of Theorem 1 can be given in the form:

Singularities of Pw = f ∈ C∞ propagate along the bicharacteristics Γ of p.

Proofs of the results of Theorem 1

1. P.1. follows from p.2 as sing supp E 6= {0}. So we shall prove at first p.2.

As it is known (see [4]) E1(u) ≡ E1(x1, x2) =
1

πu
=

1

π(x1 − ix2)
is a

fundamental solution of
∂

∂u
, i. e.

E ′
1(u) =

∂

∂u
E1(x1, x2) = δ(x1, x2) = δ(Reu, Imu).

Let a ∈ C1. Then
∂

∂u
E1(u+ a) = E ′

1(u+ a) = δ((x1, x2) + (Re a, Im a)).

We are looking for the fundamental solution of the form

E(x) = E(u, v) = E1(u+ eiπ/4v)E1(u− eiπ/4v).
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Therefore,

PE = 4E ′
1(u+ eiπ/4v)E ′

1(u− eiπ/4v)

= 4δ(x′ + (Re eiπ/4v, Im eiπ/4v))δ(x′ − (Re eiπ/4v, Im eiπ/4v)).

Put y1 = Re(eiπ/4v), y2 = Im(eiπ/4v). Then the identity δ(x′ + y′)δ(x′ −
y′) = const.δ(x′, y′) completes the proof. (See ([3], Chapter 8)).

In fact, let ϕ(x′, y′) ∈ C∞
0 (R4). Then the linear change x′ − y′ = z,

x′ + y′ = w leads to 〈δ(x′ − y′)δ(x′ + y′), ϕ(x′, y′)〉 = const. 〈δ(z) ⊗
δ(w), ϕ

(
z + w

2
,
w − z

2

)
〉 = const. ϕ(0, 0) = const. 〈δ(x′, y′), ϕ(x′, y′)〉;

const. 6= 0, y′ = 0 ⇐⇒ eiπ/4v = 0 ⇐⇒ v = 0 ⇐⇒ x3 = x4 = 0.

P.3. of Theorem 1 follows immediately from Theorem 11.2.3 and 11.2.5

from [3].

P.5 follows from the fact that P is microelliptic outside Char P (see also

[3], vol. 2, page 72).

P.4. of Theorem 1 is a special case of Corollary 26.2.2. of [3].

As we have seen, the double complex Laplace operator has very inter-

esting properties from the point of view of the linear partial differential

operators.
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The aim of this paper is to make an overview on three generalizations to higher
dimensions of the function’s theory of a complex variable. The first one con-
cerns the so-called monogenic functions which were introduced by F. Brackx,
R. Delanghe and F. Sommen, the second is the theory of hyper-monogenic
functions developed by H. Leutwiler, and the last one studies the theory of
holomorphic Cliffordian functions due to G. Laville and I. Ramadanoff. The
basic notions in this three theories will be given. Their links and differences
will also be commented.

Keywords: Clifford analysis; Monogenic; Hypermonogenic and holomorphic
Cliffordian functions; Special functions.

1. Clifford algebras

Denote by Rp+q a real vector space of dimension d = p+ q provided with

a non-degenerate quadratic form Q of signature (p, q).

Main definition: The Clifford algebra, we will denote by Rp,q , of the

quadratic form Q on the vector space Rp+q is an associative algebra over

R, generated by Rp+q, with unit 1, if it contains R and Rp+q as distinct

subspaces and

(1) ∀v ∈ Rp+q , v2 = Q(v),

(2) the algebra is not generated by any proper subspace of Rp+q.

Actually, if we consider the Clifford algebra Rp,q as a vector space, it has

the splitting:

Rp,q = R0
p,q ⊕R1

p,q ⊕ · · · ⊕Rk
p,q ⊕ · · · ⊕Rd

p,q ,

where R0
p,q = R are the scalars, R1

p,q = Rp+q is the vector space, R2
p,q is the
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vector space of the so-called bivectors corresponding to the planes in Rp+q,

and so on. Finally, Rd
p,q contains what we call the pseudoscalars. Moreover,

dimR Rk
p,q = Ck

d , dimR Rp,q = 2d. Now, set e0 = 1 as basis of R0
p,q = R and

suppose {e1, e2, . . . , ed} be an orthonormal basis for R1
p,q = Rp+q. Thus, the

corresponding vector spaces of the splitting will be provided with respective

basis

{e0 = 1}, {e1, e2, . . . , ed}, {eij = eiej , 1 ≤ i < j ≤ d}, . . . ,

. . . , {ei1...ik
= ei1ei2 . . . eik

, 1 ≤ i1 < i2 < · · · < ik ≤ d}, . . . ,

. . . , {e12...d = e1e2 . . . ed},

and the algebra will obey to the laws:

e2i = 1, i = 1, . . . , p, e2i = −1, i = p+ 1, . . . , d = p+ q,

eiej = −ejei, i 6= j.

This allows us to write down any Clifford number a ∈ Rp,q as a sum of its

scalar part 〈a〉0, its vector part 〈a〉1 ∈ R1
p,q, its bivector part 〈a〉2 ∈ R2

p,q,

up to its pseudoscalar part 〈a〉d ∈ Rd
p,q, namely

a = 〈a〉0 + 〈a〉1 + · · · + 〈a〉d,

where 〈a〉k =
∑

|J|=k

aJeJ , with J = (j1, . . . , jk) is a strictly increasing mul-

tiindex of length k and eJ = ej1ej2 . . . ejk
, while aJ ∈ R.

Some examples. The Clifford algebra R0,1 can be identified with the com-

plex numbers C. The algebra R0,2 is nothing else than the set of quaternions

H if we identify e1 = i, e2 = j, e12 = k using the traditional notations.

Physicists are working very often with the algebras R1,3 or R3,1. It suf-

fices to note the nature of the corresponding signatures (+,−,−,−) and

(+,+,+,−), respectively. However, R1,3 and R3,1 are not isomorphic as

algebras.

Some models. Let M2(R) be the algebra of all 2 × 2 matrices with real

entries. Put:

ε0 =

(
1 0

0 1

)
, ε1 =

(
1 0

0 −1

)
, ε2 =

(
0 1

1 0

)
, ε3 =

(
0 1

−1 0

)
.

In a first case, let us identify e0 = ε0, e1 = ε1, e2 = ε2, e12 = ε3. Thus

we get a model for the algebra R2,0. On the other hand, if we identify

e0 = ε0, e1 = ε1, e2 = ε3, e12 = ε2, then we will obtain a model for R1,1.
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Recall that the main involution ∗, the reversion ∼ and the conjugation
− act on a ∈ Rp,q as follows:

a∗ =
d∑

k=0

(−1)k〈a〉k, a∼ =
d∑

k=0

(−1)k(k−1)/2〈a〉k, ā =
d∑

k=0

(−1)k(k+1)/2〈a〉k.

These operations are not of algebraic type, they are of geometric type.

Remark 1.1. For C = R0,1, the usual complex conjugation is the main

involution, as well as the conjugation. The reversion is useless.

Remark 1.2. For H = R0,2, with the classical notations, we have:

a = α+ βi+ γj + δk, a∗ = α− βi− γj + δk,

a∼ = α+ βi+ γj − δk, ā = α− βi− γj − δk.

Periodicity properties. Let us turn to the problem how to classify Clif-

ford algebras. There is an algebraic point of view 13,14. Here we will illus-

trate the pseudoscalar computational point of view. Actually, they are four

possibilities for the behavior of the pseudoscalar basis element e12...d:

(1) d = p+ q even ⇐⇒ ∀a ∈ Rp+q , ae12...d = −e12...da.

(2) d = p+ q odd ⇐⇒ ∀a ∈ Rp+q, ae12...d = e12...da.

(3) p− q ≡ 0 (mod 4) or p− q ≡ 1 (mod 4) ⇐⇒ e212...d = 1.

(4) p− q ≡ 2 (mod 4) or p− q ≡ 3 (mod 4) ⇐⇒ e212...d = −1.

In [5] Guy Laville introduced the notations i+, i−, e+, e− for the pseu-

doscalar e12...d having in mind that i commutes, e does not, the index +

corresponds to a square equal to +1, the index − to −1.

2. Generalizations of the one complex variable theory

Henceforth, we will consider Clifford algebras of antieuclidean type [1,2],

namely R0,d. Note the first three, for d = 0, 1, 2 : R,C and H, are division

algebras by the well known theorem of Frobenius.

Our aim is to survey different generalizations of the function theory of

a complex variable which can be viewed as the study of those functions

defined in a domain of R2 and taking their values in the Clifford algebra

R0,1 = C.

The first key of the theory of holomorphic functions is, of course, the

Cauchy-Riemann operator (∂/∂z̄ in the classical notations), which can be

written now as:

D =
∂

∂x0
+ e1

∂

∂x1
,



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

202 I.P. Ramadanoff

omitting the famous normalization constant 1/2. It should be noted that

the definition domain of f lies in a space whose elements are couples of a

scalar and a vector, so that R2 should be identified to R⊕ iR.

Monogenic functions. Let R0,n be the Clifford algebra of the real vector

space V of dimension n provided with a quadratic form of negative signa-

ture, n ∈ N. denote by S the set of the scalars in R0,n, identified with R.

Let {ei}n
i=1 be an orthonormal basis of V and set also e0 = 1.

A point x = (x0, x1, . . . , xn) of Rn+1 will be considered as an element

of S ⊕ V , namely x =

n∑

i=0

xiei. Such an element will be called a paravec-

tor. Obviously, it belongs to R0,n and we can act on him with the main

involution: x∗ = x0 −
∑n

i=1 xiei. It is remarkable that:

xx∗ = x∗x = |x|2,
where | x | denotes the usual euclidean norm of x in Rn+1 and it shows

that every non-zero paravector is invertible. Sometime, if necessary, we will

resort to the notation x = x0 + −→x , , where −→x is the vector part of x, i.e.
−→x =

∑n
i=1 xiei.

Let f : Ω → R0,n, where Ω is an open subset of S ⊕ V. Introduce the

Cauchy-Dirac-Fueter operator:

D =

n∑

i=0

ei
∂

∂xi
.

Note D possesses a conjugate operator

D∗ =
∂

∂x0
−

n∑

i=1

ei
∂

∂xi

and that DD∗ = D∗D = ∆, where ∆ is the usual Laplacian.

Definition 2.1. A function f : Ω → R0,n, of class C1, is said to be (left)

monogenic in Ω if and only if Df(x) = 0 for each x ∈ Ω.

Obviously, in the case n = 1, we get the holomorphic functions of one

complex variable.

Remark 2.1. If n > 1, then the functions x 7→ x and x 7→ xm, x ∈
S ⊕ V,m ∈ N are not monogenic.

Following R. Brackx, R. Delanghe and F. Sommen [1], recall that there

exists a Cauchy kernel: E(x) = (ω−1
n )(x∗/|x|n+1) for x ∈ S⊕V −{0}, where

ωn is the area of the unit sphere in Rn+1. This kernel is really well adapted
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to the monogenic functions because it is himself a monogenic function with

a singularity at the origin, i.e. DE(x) = δ for x ∈ S ⊕ V .

Then, put ω(y) = dy0 ∧ · · · ∧ dyn and

γ(y) =

n∑

i=0

eidy0 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn.

Thus, we have:

Integral representation formula. If f is monogenic in Ω and U is an

oriented compact differentiable variety of dimension n + 1 with boundary

∂U and U ⊂ Ω, then
∫

∂U

E(y − x)γ(y)f(y) = f(x), x ∈ U̇ .

Thanks to this, the analogous of the mean value theorem, the maximum

modulus principle, Morera’s theorem follow easily.

The depth and the wealth of the one complex variable theory come

also thanks to the “duality”: Cauchy-Riemann and Weierstrass, i.e. every

holomorphic function is analytic and the reciproque. How to understand

what is the generalization of a power series?

In the frame of monogenic functions, an answer exists because, for-

tunately, the functions wk = xke0 − x0ek, k = 1, . . . , n are monogenic.

Omitting the details and roughly speaking one can expand every mono-

genic function in a series of polynomials which elementary monomials are

the wk and their powers. Just for an illustration let us show this phenom-

ena is somehow natural: suppose f : S ⊕ V → R0,n is real analytic on a

neighborhood of the origin, so

f(h) =

∞∑

k=0

(
h0

∂

∂x0
+ · · · + hn

∂

∂xn

)k

f(0).

But at the same time f is monogenic, i. e.

∂f

∂x0
= −

n∑

i=1

ei
∂f

∂xi
.

Hence

f(h) =

∞∑

k=0

(
n∑

i=1

(hi − eih0)
∂

∂xi

)k

f(0).

Holomorphic Cliffordian functions. Here, consider functions f : Ω →
R0,2m+1, where Ω is an open subset of S⊕V = R⊕R2m+1 = R2m+2. The
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paravectors of S ⊕ V will be written as

x = x0 + −→x , x0 ∈ R, −→x =

2m+1∑

i=1

xiei.

Definition 2.2. A function f : Ω → R0,2m+1 is said to be (left) holomor-

phic Cliffordian in Ω if and only if:

D∆mf(x) = 0

for each x ∈ Ω. Here ∆m means the iterated Laplacian [7].

The set of holomorphic Cliffordian functions is wider than those of the

monogenic ones: every monogenic is also holomorphic Cliffordian, but the

reciprocate is false. Indeed, if Df = 0, then D∆mf = ∆mDf = 0 because

∆m is a scalar operator. The simplest example of a holomorphic Cliffordian

function which is not monogenic is the identity x 7→ x. Actually, one can

prove that all entire powers of x are holomorphic Cliffordian, while they

are not monogenic.

Note that f is holomorphic Cliffordian if and only if ∆mf is monogenic.

There is a simple way to construct holomorphic Cliffordian functions

which is based on the Fueter principle [4].

Lemma 2.1. If u : R2 → R is harmonic, then u(x0, |−→x |), where x =

x0 + −→x and |−→x |2 =
∑2m+1

i=1 x2
i is (m+ 1)-harmonic, i. e.

∆m+1u(x0, |−→x |) = 0.

Lemma 2.2. If f : (ξ, η) 7→ f = u+ iv is a holomorphic function, then

F (x) = u(x0, |−→x |) +
−→x
|−→x |v(x0, |−→x |)

is a holomorphic Cliffordian function.

If we summarize: from an usual holomorphic function f , with real part

u, we construct the associated (m + 1)-harmonic u(x0, |−→x |) and then it

sufficies to take D∗u(x0, |−→x |) in order to get a holomorphic Cliffordian one.

This receipt is very well adapted for the construction of trigonometric or

exponential functions [10] in R0,2m+1. Note also the set of holomorphic

Cliffordian functions is stable under any directional derivation.

It is natural to ask for an integral representation formula but in this

case, the operator D∆m being of order 2m + 1, such a formula would be

much more complicated. Anyway, the first step is to exhibit an analog

to the Cauchy kernel. Remember the fundamental solution of the iterated
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Laplacian ∆m+1h(x) = 0 for x ∈ S⊕V −{0} is known: that is h(x) = ln |x|.
Hence D∗(1/2 ln(xx∗)) must be holomorphic Cliffordian. But:

D∗
(

1

2
ln(xx∗)

)
=

1

2

D∗(|x|2)

|x|2 =
x∗

|x|2 = x−1.

By the way, we found the first holomorphic Cliffordian function with an

isolated punctual singularity at the origin.

It is remarkable that, after computations, one get: ∆m(x−1) =

(−1)m22m

(m!)2ωmE(x). It becomes natural to introduce a new kernel:

N(x) = εmx
−1,

with the suitable choice for the constant εm = (−1)m[22m+1m!πm+1]−1.

So, N is the natural Cauchy kernel for holomorphic Cliffordian functions

and we have:

D∆mN(x) = DE(x) = δ, x ∈ S ⊕ V.

Integral representation formula. Let B be the unit ball in R2m+2, x an

interior point of B, ∂
∂n means the derivation in the direction of the outward

normal. Thus, we have:

f(x) =

∫

∂B

(∆mN(y − x)γ(y)f(y)

−
m∑

k=1

∫

∂B

(
∂

∂n
∆m−kN(y − x)

)
D∆k−1f(y)dσy

+

m∑

k=1

∫

∂B

(
∆m−kN(y − x)

) ∂

∂n
D∆k−1f(y)dσy.

The above formula involves 2m + 1 integrals on ∂B, which means one

can deduce the values of f inside B knowing the values on ∂B of f,D∆k−1f

and ∂
∂nD∆k−1f, k = 1, 2, . . . ,m.

Recall that all integer powers of a paravector x are solutions of D∆m =

0, and we saw also that D∆m(x−1) = δ. Those facts can be proved directly

following straightforward computations. Let x = x0 +−→x be a paravector in

a general Clifford algebra of antieuclidean type R0,d, d ∈ N. Very fastidious

calculations give:

D∆m(x−1) = (−1)2mm!

m∏

j=0

(2j + 1 − d)(|x|)−(2m+2).
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The right hand side is a scalar vanishing for d = 1, 3, 5, . . . , 2m+ 1. More-

over, we have:

D∆m(x2n+1) =

m∏

j=0

(2j + 1 − d)

n∑

q=m

m∏

k=1

(2q − 2k + 2)C2q+1
2n+1x

2n−2q
0

−→x 2q−2m,

and a similar formula for an even power x2n of x. In both cases, the right

hand sides are again scalars vanishing for d = 1, 3, 5, . . . , 2m+ 1.

Polynomial solutions of D∆m = 0. Set

α = (α0, α1, . . . , α2m+1), αj ∈ N, |α| =

2m+1∑

j=0

αj .

Consider the set

{eν} = {e0, . . . , e0, e1, . . . , e1, . . . , e2m+1, . . . , e2m+1},
where e0 is written α0 times, ei : αi times. Then set:

Pα(x) =
∑

Θ

|α|−1∏

ν=1

(eσ(ν)x)eσ(|α|),

the sum being expanded over all distinguishable elements σ of the permu-

tation group Θ of the set {eν}. The Pα are polynomials of degree |α| − 1.

A straightforward calculation carried on them shows that Pα is equal up

to a rational constant to ∂ |α|(x2|α|−1). Thus, it follows that the Pα are

holomorphic Cliffordian functions, which are left and right, thanks to the

symmetrization process.

The classical way for getting Taylor’s series of a holomorphic function

is to expand the Cauchy kernel in the integral representation formula. The

same procedure is available here:

(y − x)−1 = (y(1 − y−1x))−1 = (1 − y−1x)y−1

= y−1 + y−1xy−1 + y−1xy−1xy−1 + · · · + (y−1x)ny−1 + · · · .
Obviously, we have y−1 = y∗(|y|)−2, and thus:

(y − x)−1 =

∞∑

k=0

(y∗x)ky∗

|y|2k+2
.

It is not difficult to observe the polynomials Pα appear again. Finally, as in

the classical case, we can deduce the expansion in a ”power series” of any

holomorphic Cliffordian function f under the form:

f(x) =

∞∑

|α|=1

Pα(x)Cα,
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where Cα ∈ R0,2m+1.

Further, let us mention that a function f which is holomorphic Cliffor-

dian in a punctured neighborhood of the origin possesses a Laurent expan-

sion [7,8]. So, the set of meromorphic Cliffordian functions with isolated

singularities is well defined. For this reason, it was possible to generalize

the classical theory of elliptic functions to the Cliffordian case [8,9]. Note

that only the additive properties of the Weierstrass ζ and ℘ functions, also

for the Jacobi sn, cn and dn, are used for this purpose. The multiplication

of two holomorphic Cliffordian functions is not yet so clear.

What about the case R0,2m? More precisely, could we pass from holo-

morphic Cliffordian functions in R0,2m+1 to their restrictions in R0,2m ?

Roughly speaking, it is the same as between C and R. In the general case

of a Clifford algebra of type R0,d, we can observe that the set of homoge-

neous polynomials of degree n which are holomorphic Cliffordian is a right

R0,d-module generated by the monomials (ax)na, where a is a paravector.

Now, let us consider f : R⊕Rd → R0,d.

Case 1: d is odd. The function f will be holomorphic Cliffordian if

D∆(d−1)/2f = 0.

Case 2: d is even. We say that f is holomorphic (analytic) Cliffordian

[6] if there is a holomorphic Cliffordian function of one more variable F :

R ⊕ Rd+1 → R0,d+1, which is even with respect to ed+1 and such that

F |xd+1=0= f .

Hypermonogenic functions. In this part we will briefly discuss another

class of functions, named hypermonogenic, which were introduced by H.

Leutwiler [11,12] and studied by himself and Sirkka-Liisa Eriksson-Bique

[3].

Recall that any element a ∈ R0,n may be uniquely decomposed as

a = b + cen for b, c ∈ R0,n−1. This should be compared with the clas-

sical decomposition of a complex number a = b + ic. Using the above

decomposition, one introduces the projections P : R0,n → R0,n−1 and

Q : R0,n → R0,n−1 given by Pa = b,Qa = c.

Now define the following modification of the Dirac operatorD as follows:

Mf = Df +
n− 1

xn
(Qf)∗,

where ∗ denotes the main involution introduced above.

Definition 2.3. An infinitely differentiable function f : Ω → R0,n,Ω being

an open subset of Rn+1, such that Mf = 0 on Ω − {x : xn = 0} is called a

(left) hypermonogenic function.
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Decomposing f into f = Pf + (Qf)en, its P -part satisfies the Laplace-

Beltrami equation:

xn∆(Pf) − (n− 1)
∂(Pf)

∂xn
= 0,

associated to the hyperbolic metric, defined on the upper half space Rn+1
+

by ds2 = x−2
n (dx2

0 + dx2
1 + · · · + dx2

n).

Its Q-part solves the eigenvalue equation:

x2
n∆(Qf) − (n− 1)xn

∂(Qf)

∂xn
+ (n− 1)Qf = 0.

It turns out that hypermonogenic functions are stable by derivations in all

possible directions excepted this one on en and that, for any m ∈ N, the

maps x 7→ xm and x 7→ x−m are hypermonogenic in Rn+1, resp. Rn+1−{0}.

Clearly, hypermonogenic functions generalize usual holomorphic func-

tions of a complex variable. But what about the relations of this class with

the class of holomorphic Cliffordian?

Let us study this problem in the case n = 3.

We can prove that hypermonogenic are holomorphic Cliffordian. As-

suming f : Ω → R0,3 is hypermonogenic, Df = − 2

x3
(Qf)∗ and hence

D(∆f) = −2∆

[
(Qf)∗

x3

]
. On account of the above eigenvalue equation for

the Q-part of f , we conclude that

∆

[
(Qf)∗

x3

]
=

1

x3

[
∆(Qf) − 2

x3

∂(Qf)

∂x3
+ 2

Qf

x2
3

]∗
= 0

forcing D(∆f) = 0.

In contrast to left hypermonogenic functions, the left holomorphic Clif-

fordian ones may also be multiplied from the right by e3 and not just by e1
and e2. In addition, partial differentiation with respect to x3 does not lead

out of the class of left holomorphic Cliffordian functions.

On the other hand, it can be shown [3] that if f : Ω → R0,3 is a

holomorphic Cliffordian function in Ω ⊂ R4, then there exist, locally, hy-

permonogenic functions g1, g2, g3 and g4 such that

f = g1 + g2e3 +
∂

∂x3
(g3 + g4e3).

The conclusion is clear: both theories agree.

Recently, the last two statements were improved and they give now a

better interconnection between hypermonogenic and holomorphic Cliffor-

dian functions in R0,n. Let say also the theory of hypermonogenic functions
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is provided with an integral representation formula and that the expansion

in power series is generated by polynomials which are deeply related to the

Pα above.
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1. Introduction

Eikonal equation

u,µu
,µ = n (1)

appears in many branches of physics, as:

• describing a propagation of wave front or so called characteristic surface

[1,2],

• in classical electromagnetic field [3], and in algebrodynamics [4,5],

• in semiclassical approximation [6],

• a version of relativistic Hamilton-Jacobi equation [7].

In this paper we obtain some new classes of exact solutions of the eikonal

equation, by using a method, called decomposition method or decomposi-

tion scheme. We also discuss the properties of some of these solutions. The

paper is organized as follows. In section 2 we briefly describe the main idea

of the mentioned method. We present its extension and its applications for

some selected cases of eikonal equation in the section 3. Section 4 includes

an applicaion of extended decomposition method in quantum mechanics.
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2. The main idea of decomposition method

The essential version of this method has been presented in [8]. If we want

to use it for solving eikonal equation (1), we must extend this method.

We want to solve analytically a partial differential equation:

F (xµ, u1, . . . , um, u1,xµ , u1,xµxν , . . . , um,xµ , um,xµxν , . . . ) = 0, (2)

where m ∈ N , µ, ν = 0, 1, 2, 3 and u is in general an unknown function of

class Ck , k ∈ N .

Let us limit in this introduction to the case: m = 1, k = 2.

(1) we examine, whether there is possible to decompose this equation into

such fragments, which are characterized by a homogenity of the deriva-

tives of the unknown function u. A meaning of ”homogenity of the

derivatives”: the mentioned fragments should be products of at least

two factors:

A. arbitrary expression, which may depend on the unknown function

u, its derivatives (this expression may be obviously a constant) and the

independent variables (in general: xµ, µ = 0, 1, 2, 3);

B. a sum of: at least two derivatives and (or) at least two products of

the derivatives, so that there we can find for any derivative and (or)

any product some other derivative and (or) other product, which has

the same degree and order.

(2) For example, the investigated equation may be as follows:

F1 · [(u,x)2 + (u,y)2] + F2 · [u,xx + u,xy] = 0, (3)

where F1 and F2 may depend on xµ, u, uxµ , . . . .

(3) we insert some ansatzes, presented below.

• The ansatz of first kind, being a nonlinear superposition of travelling

waves:

u(x, y, z, t) = β1 + f(aµx
µ + β2, bνx

ν + β3, cρx
ρ + β4), (4)

where: vαx
α = −v0x0 + vkx

k, aµ, bν , cρ, µ, ν, ρ = 0, 1, 2, 3, k = 1, 2, 3,

are some constants to be determined later, βi, i = 1, 2, 3, 4, are arbi-

trary constants and xµ ∈ R.

A talk delivered during the conference “9th International Workshop on Complex Struc-
tures, Integrability and Vector Fields”, in 25-29 August 2008, in Sofia, Bulgaria.
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• The ansatz of second kind:

u(x, y, t) = β1 + f(A0x
0x1 +A1x

0x2 +A2x
0x3 +A3x

1x2 (5)

+A4x
1x3 +A5x

2x3 + β2)

where Aλ, λ = 0, 1, . . . , 5 may be in general complex constants and

they are to be determined later, xµ ∈ R.

• The combined ansatz

u(x, y, z, t) = β1 + f(aµx
µ + β2, A0x

0x1 +A1x
0x2 +A2x

0x3 (6)

+A3x
1x2 +A4x

1x3 +A5x
2x3 + β2),

where aµ, . . . , Aλ, µ = 0, 1, 2, 3, λ = 0, . . . , 5 and x0 = t, x1 = x,

x2 = y, x3 = z.

As far as the function f is concerned, we assume only that it is arbitrary

function of class C2.

After inserting these ansatzes, we try to collect all algebraic terms, ap-

pearing by the variables xµ and the derivatives of the function f with

respect to the arguments like: aµx
µ + β2 and (or) A0x

0x1 +A1x
0x2 +

A2x
0x3 +A3x

1x2 +A4x
1x3 +A5x

2x3 + β2. We require vanishing of all

such algebraic terms. Therefore we obtain a system of algebraic equa-

tions, which we call determining system. The coefficients aµ, . . . , Aλ are

to be determined as the solutions of such obtained system of algebraic

equations.

For example, after inserting a two-dimensional version of ansatz of first

kind (4) into (3), we get:

F1 · [(a2
1 + a2

2)(D1f)2 + (b21 + b22)(D2f)2 + (c21 + c22)(D3f)2

+ 2(a1b1 + a2b2)D1fD2f + 2(a1c1 + a2c2)D1fD3f (7)

+ 2(b1c1 + b2c2)D2fD3f ] + F2 · [(a2
1 + a1a2)D1,1f (8)

+ (2a1b1 + a1b2 + a2b1)D1,2f + (2a1c1 + a1c2 + a2c1)D1,3f

+ (b21 + b1b2)D2,2f + (2b1c1 + b1c2 + b2c1)D2,3f

+ (c21 + c1c2)D3,3f ] = 0,

where Dif denotes the derivative of function f with respect to i-nary

argument and Di,jf denotes the mixed derivative of this function with

respect to: i-nary and j-nary argument.

To sum up:

• this method (or scheme) does not use any other known analytic method

(i.e. Lie group method) of solving of PDE’s,
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• the main goal of the method is to obtain the wide classes of solutions of

the NPDE, as general as possible,

• it assumes applying some ansatzes,

• the necessary conditions for using this method are: the homogenity of the

derivatives in the investigated NPDE and possibility of obtaining some

system of algebraic equations.

The above procedure constitutes the main version of decomposition

method. We have found the classes of the solutions, given by the all above

ansatzes for 4-dimensional real eikonal equation and complex eikonal equa-

tion, in the case, when n = 0. The appropriate values of the coefficients

aµ, . . . , Aλ, µ = 0, . . . , 3, λ = 0, . . . , 5 are (in the case of complex eikonal

equation in Minkowski spacetime, when n = 0): for the solution of first

kind:

a0 = 0, a1 = 0, a3 = ia2, b0 = b1, b3 = ib2, (9)

c1 = c0, c3 = ic2, (10)

for the solutions of second kind:

A1 = iA0, A3 = A0, A5 = iA0, A2 = 0, A4 = A0, (11)

and for the combined solutions:

A0 = A3, A1 = 0, A2 = iA3, A5 = iA3, (12)

A4 = 0, a2 = −a0, a3 = ia1. (13)

However, if we want to apply this method for solving the more general

case of eikonal equation, i.e. when n 6= 0, we must extend this method.

3. An extension of decomposition method

Now, let us look at the eikonal equation (1) in flat space-time:

−(u,0)2 + (u,1)2 + (u,2)2 + (u,3)2 = n(xi), i ∈ {1, 2, 3} (14)

We will be engaged now with more general cases n = const and n =

n(xi), i ∈ {1, 2, 3} and we will want to find the class of solutions of first kind

(4). Then, let us come back to the idea of an extension of the decomposition

method.

This idea is such that for n 6= 0 we split the unknown function u :

u(x, y, z, t) = f1(xα) + f2(xβ), and next balance the term n by second

power of the derivative of f1. It has turned out that in the case, when n =

const 6= 0, there does not exist the classes of solutions of II- and combined
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kind. When n = n(x, y, z), the solutions of all kinds exist [9]. However, ow-

ing to limited amount of the space of this paper we limit our considerations

to the class of solutions of I kind in three cases:

(1) If n = const , then f1 is a linear function of at least, two independent

variables, for example y and z: f1 = −γ0t + γ1z, f2 = β1 + f(aµx
µ +

β2, bνx
ν +β3, cρx

ρ +β4), γξ are to be determined later as the coefficients

in the function f1, ξ = 1, 2, µ, ν, ρ = 0, 1, 2, 3. Then after inserting

u = f1 + f2 into (1) and collecting appropriate algebraic terms, we

obtain determining system:

γ2
1 − γ2

0 = n, γ1c3 − γ0c0 = 0, (15)

γ1b3 − γ0b0 = 0, γ1a3 − γ0a0 = 0, (16)

aµb
µ = 0, aµc

µ = 0, bµc
µ = 0, (17)

aµa
µ = 0, bµb

µ = 0, cµc
µ = 0. (18)

The solutions of this above system are:

γ1 = a0

√
n

a2
0 − a2

3

, a1 =
a3c1
c3

, (19)

a2 =

√
(a2

0 − a2
3)c23 − a2

3c
2
1

c3
, (20)

b0 =
a0b3
a3

, b1 =
b3c1
c3

, (21)

b2 =
b3
√

(a2
0 − a2

3)c23 − a2
3c

2
1

a3c3
, (22)

c0 =
a0c3
a3

, c2 =

√
(a2

0 − a2
3)c23 − a2

3c
2
1

a3
, (23)

γ0 =
γ1a3

a0
(24)

where the values of the coefficients have be such that the square roots

are real and of course a0, a3, c3 6= 0.

If we put n = 0 in (1) and in formulas of corresponding coefficients

above, we obtain the solution of (1) for special case n = 0.

(2) In the case of n = n(x, y), we apply separation of variables and we put

u(x, y, z, t) = β1 + f1(xα) + f2(aρx
ρ + β2, bσx

σ + β3, cζx
ζ + β4), where

α = 1, 2 and ρ, σ, ζ = 0, 3. The values of the coefficients are determined

accordingly with the main decomposition method. These values are:

a1 = −a0, b1 = −b0, c1 = −c0. (25)
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The function f1(x, y) must satisfy the equation:

(f1,1)2 + (f1,2)2 = n(x, y), (26)

where f1,i = ∂f1

∂xi , i = 1, 2.

(3) Separately in this paper we treat 3-dimensional complex eikonal equa-

tion, when n = n(x, y, z):

(u,x)2 + (u,y)2 + (u,z)2 = n(x, y, z), (27)

for which we apply also extended decomposition method, but without

separation of variables (section 4).

4. Some applications to quantum mechanics

Now, we apply the extended decomposition method for the case n =

n(x, y, z), considered previously, to some situation from quantum mechan-

ics.

As it is known, the most simple idea of limit transition from quantum

mechanics to classical mechanics is to choose a wave-function of the form

[6]:

ψ(~r, t) = exp

(
i

~
S(~r, t)

)
, S ∈ C. (28)

After inserting it into Schroedinger equation [6]:

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (~x)ψ (29)

we get:

−∂S
∂t

=
(∇S)2

2m
+ V (~x) − i

~2

2m
∇2S. (30)

If we pass over the third term on the right hand of (30), we get Hamilton-

Jacobi equation:

−∂S
∂t

=
(∇S)2

2m
+ V (~x). (31)

So, as it is well-known, the limit transition to classical mechanics, is realized

by transition to the limit ~ → 0. Let’s investigate a case of stationary state:

S(~x, t) = u(~x) −Et. (32)

Then, the equation (30) is [6]:

(∇u)2

2m
+ V (~x) −E − i~

2m
∇2u = 0. (33)



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

216  L.T. Stȩpień

If | ~p |2� ~ | ~∇ · ~p |, then [6]:

(∇u)2

2m
+ V (~x) −E = 0. (34)

Usually the equation (34) is to be solved by WKB method.

Now, in order to solve this equation, we apply the results, obtained for

the eikonal equation in the previous part of this talk.

Another approach towards the extension of decomposition method will

be now applied directly to quantum mechanics.

We will now illustrate, on the example of this equation, some ex-

tension of decomposition method. Namely, we assume that the potential

U(x, y, z) = U(ckx
k + β4), k = 1, 2, 3, β4 = const . Now we split the func-

tion ω:

u = β1 + f1(ckx
k + β4) + f2(aix

i + β2, bjx
j + β3), i, j, k = 1, 2, 3, (35)

so it is a special case of the ansatz of first kind (4) and: X = ckx
k + β4.

If we insert this function into (34), we get:

(a2
1 + a2

2 + a2
3)f2

2,1 + (b21 + b22 + b23)f2
2,2 + 2(a1b1 + a2b2 + a3b3)f2,1f2,2

+ 2(a1c1 + a2c2 + a3c3)
df1
dX

f2,1 + 2(b1c1 + b2c2 + b3c3)
df1
dX

f2,2 (36)

+ (c21 + c22 + c23)

(
df1
dX

)2

+ 2m(V (X) −E) = 0.

Now, similarly to the main version of decomposition method, we require

vanishing of all underlined terms in the ebove equation. Then we get some

system of equations:

a2
1 + a2

2 + a2
3 = 0, b21 + b22 + b23 = 0, (37)

a1b1 + a2b2 + a3b3 = 0, a1c1 + a2c2 + a3c3 = 0, (38)

b1c1 + b2c2 + b3c3 = 0, (39)

(c21 + c22 + c23)

(
df1
dX

)2

+ 2m(V (X) −E) = 0. (40)

The roots of the system of algebraic equations are:

a3 = i
√
a2
1 + a2

2, b1 =
a1b2
a2

, b3 = i
b2
√
a2
1 + a2

2

a2
, (41)

c1 = 0, c3 = i
a2c2√
a2
1 + a2

2

(42)
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and the solution of the ordinary differential equation (40) is:

f1(X) = ±
∫ √

2
√
m(E − V (X))√
c21 + c22 + c23

dX + C. (43)

The simplest example: m = 1, V (X) = X ≡ c1x + c2y + c3z, where

c1 = 0, c3 = i a2c2√
a2
1+a2

2

f1(X) = ±2
√

2

3

(E −X)
3
2

√
c22 −

a2
2c2

2

a2
1+a2

2

(44)

so we have the exact solution of (34) for V (y, z) = c2y + i a2c2√
a2
1+a2

2

z.

u(x, y, z) = + ± 2
√

2

3

(E − (c2y + i a2c2√
a2
1+a2

2

z))
3
2

√
c22 −

a2
2c2

2

a2
1+a2

2

(45)

+ f2(a1x+ a2y + i
√
a2
1 + a2

2z + β2,
a1b2
a2

x+ b2y + i
b2
√
a2
1 + a2

2

a2
z + β3).

However, the potential V should be real function and thus the coeffi-

cients ci must be real. Hence we chose a2 = ip, where p and a1 must be

real numbers.

5. Summary

The presented decomposition method and its extension give some chance

for obtaining exact solutions of eikonal equation.

As far as the application of the decomposition method to quantum me-

chanics is concerned, let us note that when we apply WKB method, there in

return points or where V (X) = E, the wave-function is singular [6]. Namely,

here, for example, when V (X) = X , the wave-function is non-singular, even

when V (X) attains the value E (return points).

More exact discussion of physical context of the results obtained by

extended decomposition method, in among others, quantum mechanics, will

be included in separate paper [9].

6. Resources

The computations was carried out by using Waterloo MAPLE 12 Software

on computers: MARS and SATURN (No. of grants MNiI /IBMBCH S21 /

AP/057 /2008 and MNiI /Sun6800/WSP/008/2005 , correspondingly) in

ACK-Cyfronet AGH in Krakow.
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8.  L.T. Stȩpień, Some decomposition method for analytic solving of certain non-

linear partial differential equations in physics with applications, A talk delivered
during the conference “Special Functions, Information Theory and Mathemat-
ical Physics”, An interdisciplinary conference in honor of Prof. Jesús S. De-
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We take a convex pentagon R = ABCDE satisfying AB = BC, AE = ED and
∠B = ∠E = π/2. By use of 4 pentagons congruent to R we make a fundamental
hexagon and give a tessellation of a Euclidean plane, which is called a tessel-
lation of tiling-type 4 by congruent pentagons. This tessellation has 3-valent
and 4-valent vertices. We study Dirichlet property for such tessellations of a
plane. We also consider similar tessellations by congruent original and reversed
pentagons which have fundamental regions made by 4 pieces and study their
Dirichlet property.

Keywords: Dirichlet tessellations; Even-valent vertices; Congruent pentagons;
Tiling-type 4; Fundamental region made by 4 pentagons.

1. Introduction

The aim of this paper is to study the Dirichlet property of some tessella-

tions by congruent convex polygons which have even-valent vertices. In the

preceding paper [5] we studied the Dirichlet property of periodic tessella-

tions by congruent quadrangles. We are hence interested in getting other

Dirichlet tessellations by congruent convex polygons.

Classifying patterns of tiling on a Euclidean plane by congruent convex

∗The second author is partially supported by Grant-in-Aid for Scientific Research (C)
(No. 20540071) Japan Society of Promotion Science.
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polygons itself is an interesting problem. It was shown by Reinhardt [3] that

when we consider a convex polygon with n (≥ 7) edges then there are no

patterns of tiling on a plane all of whose tiles are congruent to this polygon.

For about tiling by convex triangles and tiling by convex quadrangles, there

are infinitely many patterns. But for tiling by convex pentagons and tiling

by convex hexagons their situations are not the same. It is known that there

are (at least) 14 types of tiling on a Euclidean plane by congruent convex

pentagons (see [4] for example).

Our meaning of “tessellation” which is due to Ash and Bolker [1] is

a bit different from the meaning of tiling (for detail see section 2). Being

different from a tiling, if two regions of a tessellation have an intersection

it should be either their vertices or their edges. But we can make use of

reversed polygons. In this sense tiling of types 1, 2, 3, 10, 11, 12 and 14, are

not tessellations in the sense of [1] in general. In this paper, we restrict

ourselves on tessellations by congruent convex pentagons whose tiling-type

is 4 and some similar tessellations and study their Dirichlet property.

2. Dirichlet tessellations

A convex tessellation R = {Rα} of a Euclidean plane R2 is a family of

convex closed polygons which satisfies the following two conditions:

1) R2 =
⋃

αRα,

2) if Rα ∩Rβ 6= ∅, then this set Rα ∩Rβ is either an edge of each Rα and

Rβ or a vertex of each of them.

We do not arrow that a vertex of some region Rα ∈ R lies on an edge of

other region Rβ where it is not a vertex of Rβ . We call a convex tessellation

R =
{
Rα

}
of R2 Dirichlet if there is a point Pα ∈ Rα for each α and each

polygon Rα coincides with the set
⋂

β 6=α

{
P ∈ R2

∣∣ d(P,Pα) ≤ d(P,Pβ)
}
.

These points {Pα} are called cites of R.

It is an interesting problem to know when a convex tessellation is Dirich-

let. A vertex V of a convex tessellation R, which is a vertex of some Rα ∈ R,

is said to be n-valent if n edges of polygons in R meet at V. Under the as-

sumption that all vertices of a tessellation are odd-valent, Ash and Bolker

[1] gave a necessary and sufficient condition for this tessellation to be Dirich-

let. But if a tessellation contains an even-valent vertex, the situation is not

simple and we still do not have any general conditions. From probabilistic
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point of view, tessellations containing even-valent vertices are exceptional.

But from the viewpoint of applications it seems useful to treat tessellations

containing 4-valent vertices, if one imagines cages in a zoo. We hence study

tessellations with even-valent vertices whose regions are congruent to each

other. As we obtain Dirichlet tessellations by convex quadrangles in [5], we

investigate tessellations by congruent pentagons.

3. A tessellation of tiling-type 4 by congruent pentagons

We give tessellations by congruent pentagons whose tiling-type is 4 in

this section. Let R = ABCDE be a convex pentagon whose lengths of

edges satisfy AB = BC, DE = EA and whose angles at vertices satisfy

∠B = ∠E = π/2. In order to make a tessellation of a Euclidean plane R2, we

construct a “fundamental region” in the following manner. We take a pen-

tagonR1 = A1B1C1D1E1 which is congruent to R. We rotateR1 centered at

the vertex B1 with angle −π/2 and obtain a pentagon R2 = A2B2C2D2E2.

We also rotate original R1 centered at the vertex E1 with angle π/2 and

obtain another pentagon R4 = A4B4C4D4E4. Let R3 = A3B3C3D3E3 be

a pentagon which is symmetric to R1 with respect to the midpoint of the

edge C1D1 (see Figure 2).

A
B

C

D

E

Fig. 1. original pentagon
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A

A

A

B B

B B
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D
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1

1

1
1

1

2

2

2

2
2 3

3

3

3

3 4

4

4
4

4

=
=

=

=

Fig. 2. Fundamental region

Lemma 3.1. For about the region R1 ∪R2 ∪R3 ∪R4 we can conclude the

following :

(1) The pentagons R2, R3 are adjacent to each other by the edge A2E2 =

D3E3.

(2) The pentagons R3, R4 are adjacent to each other by the edge A4B4 =

C3B3.

Proof. Since R is a convex pentagon and ∠B = ∠E = π/2, we find that

∠A + ∠C + ∠D = 2π. As we have AB = CB and AE = DE, we get our

conclusions.
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By this lemma we find that S = R1 ∪ R2 ∪ R3 ∪ R4 forms a hexagon.

We shall call this S a fundamental region of our tessellation. We denote

S by FGHKMN, where vertices are named as F = A1, G = C2, H = D2,

K = A3, M = C4, N = D4. We here note that this fundamental region

S is symmetric with respect to the mid point of the edge C1D1 = D3C3.

Moreover, the motion which gives this symmetry preserves the partitions

by 4 pentagons. In particular, we have GH = MN (= CD). Thus if we take

hexagons Si = FiGiHiKiMiNi (i = 0,±1,±2, . . .) which are congruent to

the fundamental region S so that GiHi = Ni−1Mi−1, then they form a

band. We consider infinitely many such bands. We note that these bunds

are congruent to each other by parallel translations. Since the angles of the

hexagon satisfy ∠F = ∠K = ∠A, ∠G = ∠M = ∠C, ∠H = ∠N = ∠D, we

have

∠F + ∠H + ∠M = π, ∠G + ∠K + ∠N = π.

As we have FG = MK (= 2AB) and FN = HK (= 2AE), we obtain a

tessellation R = {Rα} of R2 which consists of congruent pentagons by

using bands like Figure 3. This tessellation is said to be of tiling-type 4.

A

A
A

A
A

A

A

A

B
B

B B

BB

BB

CC
C

C
C
D

D
D

D

D

C

D

C

C

D E E
E E

E E
E E D

Fig. 3. Tessellation of tiling-type 4

We here note that all 3-valent vertices of this tessellation R are formed

by vertices corresponding to A, C and D. They are the same type in the

following sence: If R1∪R2∪R3 and R̂1∪R̂2∪R̂3 form 3-valent vertices, then

they are congruent to each other with respect to parallel movements and

rotations. In order to see this we are enough to investigate at the vertices

in the inside of a fundamental region S and at vertices F,N ∈ S. In view

of Figure 3, our assertion is clearly true. We also note that in R meeting

pairs of edges are uniquely determined in the following sense:

i) Edges corresponding to AB only meet with edges corresponding to CB,

ii) edges corresponding to CD only meet with edges corresponding to DC,

iii) edges corresponding to DE only meet with edges corresponding to AE.
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4. Dirichlet property

In this section we show our tessellation R of a Euclidean given in section 2

satisfies the Dirichlet condition.

Theorem 4.1. Let R = ABCDE be a convex pentagon satisfying AB =

BC, DE = EA and ∠B = ∠E = π/2. Let R be a tessellation of R2 given in

section 2 all of whose regions are congruent to R. Then this tessellation R
of tiling-type 4 is Dirichlet. Cite for each R ∈ R is uniquely determined.

For a Dirichlet tessellation with odd-valent vertices, positions of cites

are restricted by information on alternative sum of angles formed by edges

around odd-valent vertices (see [1]).

Lemma 4.1. There are three vertices P0, P1, P2 and three edges OA0, OA1

and OA2 which meet at the vertex O on R2. We suppose the line OAi is the

perpendicular bisector of the segment Pi−1Pi, where indices are considered

in modulo 3. We then have OP0 = OP1 = OP2 and

∠PiOAi =
1

2
(θi − θi+1 + θi+2),

where θi = ∠AiOAi+1.

Proof. We denote by Qi the crossing point of

edges Pi−1Pi and OAi. As triangles ∆PiOQi

and ∆Pi−1OQi are congruent to each other, we

see OP0 = OP1 = OP2 and

θi = ∠PiOAi + ∠Pi+1OAi+1,

which leads us to the conclusion.

O
A

A

A

P

P

P1

1

2

2

0 0

Fig. 4. Positions of cites
around 3-valent vertex

As was pointed out in section 2, in this tessellation every vertex of order

3 is a point where vertices corresponding to original A, C and D of R meet

(recall Figure 2). We hence consider on the original R. For the pentagon R

we take a ray λ(A;R) which is emanating from A whose angle between the

edge AB is the half of the alternative sum θA = (∠A −∠D + ∠C)/2 of the

angles around the vertex A, where we measure the angle anticlockwisely

from the edge AB. We also consider a ray λ(C;R) which is emanating from

C whose angle between the edge CD is θC = (∠C − ∠A + ∠D)/2, and a

ray λ(D;R) which is emanating from D whose angle between the edge DE

is θD = (∠D − ∠C + ∠A)/2. Since R is convex, each angle is less than π,

hence these angles are positive because ∠A + ∠C + ∠D = 2π.
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Lemma 4.2. Three rays λ(A;R), λ(C;R) and λ(D;R) meet at one point

in R. If we denote this point by P, then it satisfies PA = PC = PD and it

lies in the interior of R.

Proof. The angle between the ray λ(C;R) and the edge CD is θC, and the

angle between the ray λ(D;R) and the edge CD is ∠D−θD = θC. As AB =

BC, DE = EA and ∠B = ∠E = π/2, we find ∠A > ∠BAC + ∠DAE = π/2.

Hence we have

θC + (∠D − θD) = ∠C − ∠A + ∠D = 2π − 2∠A < π.

We therefore see that two rays λ(C;R), λ(D;R) meet at some point. We

denote this point by P′. Since ∠P′CD = ∠P′DC = θC, we have P′C = P′D.

Draw a circle γ of radius P′C centered at P′.
As AB = BC, DE = EA and ∠B = ∠E = π/2, we

see that

∠CAD = ∠A − ∠BAC − ∠DAE = ∠A − π

2
.

On the other hand, we have

∠CP′D = π − 2θC = π − (2π − 2∠A) = 2∠A − π.

A

P

B

C
D

E

Fig. 5.

We hence get ∠CP′D = 2∠CAD and therefore find that the vertex A lies

on the circle γ. In particular, we have P′A = P′C. Moreover, we have

∠BAP′ = ∠P′CA +
π

4
= ∠C − θC = θA,

hence P′ lies on the ray λ(A;R). Thus we find three rays meet at the point

P′ = P. As R is convex, by the way of taking three rays we find it lies in

the interior of R.

We are now in the position to prove Theorem 4.1. For each region Rα ∈
R we take the point Pα ∈ Rα corresponding to the point P ∈ R. This

means that (Rα,Pα) is pointed congruent to (R,P). More precisely, there

is a congruent transformation ϕ : Rα → R satisfying ϕ(Pα) = P.

For the sake or readers’ convenience, we shall start by studying inside the

fundamental region S = R1∪R2∪R3∪R4 (recall Figure 2). We consider R1

and R2. By Lemma 4.2 we have P1C1 = P2A2. As A2 = C1 and ∠P1C1B1 =

∠C − θC = θA = ∠P2A2B2, we find the line B1C1 is the perpendicular

bisector of the segment P1P2. Next we consider R1 and R4 by the same

way. By Lemma 4.2 we have P1D1 = P4A4. As A4 = D1 and ∠P4A4E4 =

∠A − θA = θD = ∠P1D1E1, we find the line D1E1 is the perpendicular

bisector of the segment P1P4. Hence we also obtain the following;
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• the line A2E2 is the perpendicular bisector of the segment P2P3,

• the line B3C3 is the perpendicular bisector of the segment P3P4.

We consider R1 and R3. As we have PC = PD and ∠PCD = ∠PDC, we

find the line C1D1 is the perpendicular bisector of the segment P1P3.

Next we study Pα’s beyond the boundary of a fundamental region. Sup-

pose that R5 ∈ R is adjacent to R1 by the edge A1B1 = C5B5, and that

R6 ∈ R is adjacent to R1 by the edge A1E1 = D6E6. Since the situation of

R1, R5 and R6 is completely the same as the situation of R2, R1 and R3,

we find the following;

• the line A1B1 is the perpendicular bisector of the segment P1P5,

• the line A1E1 is the perpendicular bisector of the segment P1P6,

• the line C5D5 is the perpendicular bisector of the segment P5P6.

These guarantee that R is Dirichlet with cites {Pα}. The uniqueness of

choosing cites is guaranteed by Lemma 4.1 because each R ∈ R has three

3-valent vertices. We hence get our conclusion.

Fig. 6. Cites in tessellations of tiling-type 4

5. A tessellation of semi-tiling type 4

We consider another tessellation of a plane by congruent pentagons whose

pattern of tiling is closely related to that of a tessellation of tiling-type 4.

Let R′ = ABCDE be a convex pentagon satisfying

AB = BC = DE = EA and ∠B + ∠E = π. Since

∠A + ∠C + ∠D = 2π, we can construct a fundamental

region S = R′
1 ∪R′

2 ∪R′
3 ∪R′

4 by just the same way as

in section 2. When ∠B 6= π/2, this fundamental region

is a decagon, but we can obtain a bund of fundamental

regions in the same manner. We take two bunds and

A
B

C D

E

Fig. 7.
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reverse one of them. We then obtain a thick bund like Figure 7, hence get

a tessellation R′ = {R′
α} of R2.

A

A

A

A

A
A

A
A

B
B

BBB B

B B

CC

C C

C

C

C

C

D
D

D

D

D

D

D
D

E E

EE

E E

E E

Fig. 8. Tessellation made by original and reversed fundamental regions

Unfortunately, this tessellation R′ is essentially not Dirichlet. We should

note that we have two types of 3-valent vertices in general. One is the type

of vertices in the inside of a fundamental region, and the other is the type

of some vertices on the boundary of a fundamental region. More precisely,

there are R′
1 ∪ R′

2 ∪ R′
3 and R̂′

1 ∪ R̂′
2 ∪ R̂′

3 which form 3-valent vertices

and which are congruent to each other with respect to parallel movements,

rotations and axial symmetries but not congruent to each other with respect

to parallel movements and rotations. We also note that in R′ meeting pairs

of edges are uniquely determined. For example, edges corresponding to AB

meet either edges corresponding to CB or edges corresponding to DE.

Proposition 5.1. A tessellation R′ which is obtained by the above manner

is Dirichlet if and only if the original pentagon R′ satisfies ∠B = ∠E = π/2.

Proof. We consider in R′
1. Since C1,D1 lie in the inside of the fundamental

region S, we take two rays λ(C1;R′
1) and λ(D1;R′

1) which are the same as

in Lemma 4.2. As we can see in Figure 8, because A1 lies on the boundary

of S, we have to consider a ray λ(A1;R1) whose angle between the edge

A1B1 is (∠A−∠C +∠D)/2. In view of the proof of Lemma 4.2, these three

rays meet at one point if and only if ∠C = ∠D. By the assumption that

AB = BC = DE = EA we find that ∠B = ∠E and get the conclusion.

This proposition shows that a tessellation R′ in this section is Dirichlet if

and only if it can be regard as the type in section 2. Though the tessellation

in section 2 and for the above tessellation contain 4-valent vertices, their

Dirichlet property and their cites are determined by 3-valent vertices.

6. Other tessellations by congruent pentagons

Since we can reverse tiles we can consider many such patterns of tiling. We
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here give some examples of patterns of tiling on a plane by congruent pen-

tagons which have a fundamental region made by 4 original pentagons, and

consider their Dirichlet property.

As for the first example, we take a convex pentagon R′′ = ABCDE

whose lengths of edges satisfy AB = CD = DE = EA and whose angles

satisfy 2∠A + ∠E = 2π, 2∠B + ∠D + ∠E = 2π, 2∠C + ∠D = 2π. We

construct a fundamental region in the following manner. We take a pentagon

R′′
1 = A1B1C1D1E1 which is congruent to R′′. Let R′′

2 = A2B2C2D2E2 be a

pentagon which is symmetric to R′′
1 with respect to the line B1C1 = B2C2

and R′′
3 = A3B3C3D3E3 be a pentagon which is symmetric to R′′

1 with

respect to the mid point of the edge C1D1 = D3C3. Let

R′′
4 = A4B4C4D4E4 be a pentagon which is symmetric to

R′′
3 with respect to the line B3C3 = B4C4. We note that

the faces of R′′
2 and R′′

4 are the reverse of the face of R′′
1 .

By the assumption that CD = DE and 2∠C + ∠D = 2π

we find these 4 pentagons form a region like Figure 10.

We can make a bund of fundamental regions by just the

A

B

C
D

E

Fig. 9.

same way as in section 2. We take two bunds and reverse one of them. As

AB = DE = EA and 2∠B+∠D+∠E = 2π, 2∠A+∠E = 2π, we can obtain

a thick bund like Figure 11, hence we obtain a tessellation R′′ = {R′′
α} of

R2.

A
A

A
A

A
A A

A

A
A

A
A

B
B

B B
B
B

BB

C
C

C
C

D

D

D
D

D

D

E

E

E

E

E E

E

E

E

E

Fig. 10. Fudamental region
Fig. 11. Tessellation made by original and
reversed fundamental regions

Proposition 6.1. A tessellation R′′ which is obtained by the above manner

is not Dirichlet.

Proof. We suppose this tessellation R′′ to be Dirichlet. We take pentagons

R′′
1 , R

′′
2 , R

′′
3 and R′′

4 as we mentioned above. Let R′′
5 = A5B5C5D5E5 be a

pentagon which is adjacent to R′′
1 by the edge A1B1 = E5D5. Let R′′

6 =

A6B6C6D6E6 be a pentagon which is adjacent to R′′
2 by the edge A2B2 =

A6E6 and is adjacent to R′′
5 by the edge C5D5 = D6E6. We denote by

Pi (i = 1, 2, . . . , 6) the cites of these pentagons.
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Since A1, C1, D1 are 3-valent in this tessellation, calculating alternative

sums in Lemma 4.1 at these vertices we find that

∠P1C1D1 = ∠P1D1C1 = ∠P1D1E1 = ∠D/2, ∠P1A1B1 = ∠E/2.

On the other hand, it is clear that two pairs (R′′
1 ,P1), (R′′

2 ,P2) and (R′′
3 ,P3),

(R′′
4 ,P4) are pointed congruent to each other. In view of their 3-valent

vertices, we see by Lemma 4.1 that (R′′
1 ,P1), (R′′

3 ,P3) are pointed congruent

to each other. Since a fundamental region R′′
1 ∪R′′

2 ∪R′′
3 ∪R′′

4 of R′′ contains

two 3-valent vertices in its interior, cites are uniquely determined. Recalling

the way of constructing the tessellation we hence find (R′′
i ,Pi) (i = 1, . . . , 6)

are pointed congruent to each other. As we suppose R′′ to be Dirichlet, we

have

∠P1E1D1 = ∠P4D4C4, ∠P1B1A1 = ∠P5D5E5, ∠P2B2A2 = ∠P6E6A6.

Therefore we see

∠P1B1A1 = ∠P1E1A1 = ∠P1E1D1 = ∠D/2,

which leads us to ∠D = ∠E and hence to ∠P1A1B1 = ∠D/2. As we have

A1B1 = C1D1 = D1E1, these equalities on angles show that three triangles

∆P1A1B1, ∆P1C1D1, ∆P1D1E1 are congruent to each other. Thus we have

P1A1 = P1B1 = P1C1 = P1D1 = P1E1.

We hence find ∠P1B1C1 = ∠P1C1B1 and therefore ∠B = ∠C. By use of

the assumption that 2∠B + ∠D + ∠E = 2π, 2∠C + ∠D = 2π, we have

∠E = 0, which is a contradiction.

As for the second example, we take a convex pentagon R′′′ = ABCDE

whose lengths of edges satisfy AB = DE, BC = EA and

whose angles satisfy ∠B+∠E = π. We take 4 pentagons

R′′′
i = AiBiCiDiEi (i = 1, 2, 3, 4) which are congruent

to R′′′. Two pentagons R′′′
1 , R′′′

3 are adjacent to each

other by the edge C1D1 = D3C3 and are symmetric to

each other with respect to the mid point of this edge.

A E

DC

B

Fig. 12.

We reverse the tiles R′′′
2 and R′′′

4 . By the condition on angles we have ∠A +

∠D + ∠E = 2π. Therefore with the conditions on lengths of edges, we

can construct a fundamental region by 4 pentagons like Figure 13: R′′′
2 is

adjacent to R′′′
1 by the edge B1C1 = E2A2 and R′′′

4 is adjacent to R′′′
1 by

the edge D1E1 = A4B4. We can make a bund of fundamental regions by

just the same way as in section 2. By the conditions on lengths of edges

and on angles we can obtain a tessellation R′′′ of R2 by use of such bunds
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without reversing them (see Figure 14). This tessellation R′′′ has a similar

property as of tessellations of tiling-type 4. In R′′′ meeting pairs of edges

are uniquely determined:

i) Edges corresponding to AB only meet with edges corresponding to DE,

ii) edges corresponding to BC only meet with edges corresponding to EA,

iii) edges corresponding to CD only meet with edges corresponding to DC.

But being different from tessellation of tiling-type 4, it has two types of

3-valent vertices; vertices in the interior and those on the boundary of a

fundamental region.

A

A

A A A

A

A

A

B

B

B

B

B

B

B

B

C

C

C

CC

C

C

C

D
DD

D

D

D

E

E

E

E
E

E

E

D

D

Fig. 13. Fudamental region Fig. 14.

Theorem 6.1. A tessellation R′′′ which is obtained by the above manner

is Dirichlet if and only if ∠B = ∠E = π/2. When R′′′ is Dirichlet, its cites

are uniquely determined.

Proof. We suppose R′′′ is Dirichlet. We take pentagons R′′′
1 , R′′′

2 and R′′′
4

as we mentioned above. In view of 3-valent vertices in these pentagons,

Lemma 4.1 shows that (R′′′
1 ,P1), (R′′′

2 ,P2), (R′′′
4 ,P4) are pointed congruent

to each other. Since R′′′ is Dirichlet, we have

∠P1B1C1 = ∠P2E2A2, ∠P1E1D1 = ∠P4B4A4,

which gurantee that ∠P1B1C1 = ∠P1E1A1, ∠P1B1A1 = ∠P1E1D1. Thus

we obtain ∠B = ∠E. As ∠B + ∠E = π, we get ∠B =

∠E = π/2.

We now show the converse. We suppose ∠B =

∠E = π/2. With the conditions AB = DE, BC = EA

this condition on angles shows two triangles ∆ABC

and ∆DEA are congruent to each other. In particular,

we see AC = AD and ∠BAC = ∠EDA. Let P ∈ R′′′

be the center of circumcircle of the triangle ∆ACD.

A

B

C D

E

P

Fig. 15.
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We shall show that points corresponding to P are cites of our tessellation

R′′′. We study Dirichlet property of R′′′ at 3-valent vertices each of which

is formed by vertices corresponding to A,C and D. Since P is the center of

circumcircle of ∆ACD, we have PA = PC = PD. This gurantees that

∠PAC = ∠PCA, ∠PAD = ∠PDA, ∠PCD = ∠PDC.

As ∆ACD is an isosceles triangle, we have ∠PAC = ∠PAD, hence we obtain

∠PAB = ∠PAC + ∠BAC = ∠PDA + ∠EDA = ∠PDE,

∠PAE = ∠PAD + ∠DAE = ∠PCA + ∠ACB = ∠PCB.

Next we study at 4-valent vertices each of which is formed by vertices

corresponding to B and D. By use of the condition AB = DE and equalities

PA = PD and ∠PAB = ∠PDE, we obtain two triangles ∆PAB and ∆PDE

are congruent to each other. Hence we get PB = PE and

∠PBA = ∠PED, ∠PBC =
π

2
− ∠PBA =

π

2
− ∠PED = ∠PEA.

For each pentagon R′′′
α ∈ R′′′ we take a point Pα ∈ R′′′

α corresponding to

P ∈ R′′′. The above argument shows that these {Pα} are cites of R′′′.

Fig. 16. Cites in a tessellation of the type in Theorem 6.1
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Introduction

Almost complex manifolds with Norden metric were first studied by

A. P. Norden [9]. These manifolds are introduced in [6] as generalized B-

manifolds. A classification of the considered manifolds with respect to the

covariant derivative of the almost complex structure is obtained in [2] and

two equivalent classifications are given in [3,5].

An important problem in the geometry of almost complex manifolds

with Norden metric is the study of linear connections preserving the almost

complex structure or preserving both, the structure and the Norden metric.

The first ones are called almost complex connections, and the second ones

are called natural connections. A special type of a natural connection is the

canonical one. In [3] it is proved that on an almost complex manifold with

Norden metric there exists a unique canonical connection. The canonical

connection and its conformal group on a conformal Kähler manifold with

Norden metric are studied in [5].

In [10] we have studied the Yano connection on a complex manifold with

Norden metric and in [11] we have proved that the curvature tensors of
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the canonical connection and the Yano connection coincide on a conformal

Kähler manifold with Norden metric.

In the present paper we define a four-parametric family of almost com-

plex connections on an almost complex manifold with Norden metric. We

find necessary and sufficient conditions for these connections to be natural.

By this way we obtain a two-parametric family of natural connections on an

almost complex manifold with Norden metric. We study a two-parametric

family of complex connections on a conformal Kähler manifold with Nor-

den metric, obtain the form of the Kähler curvature tensor corresponding

to each of these connections and prove that these tensors coincide.

1. Preliminaries

Let (M,J, g) be a 2n-dimensional almost complex manifold with Norden

metric, i.e. J is an almost complex structure and g is a metric on M such

that

J2X = −X, g(JX, JY ) = −g(X,Y ) (1)

for all differentiable vector fields X , Y on M , i.e. X,Y ∈ X(M).

The associated metric g̃ of g, given by g̃(X,Y ) = g(X, JY ), is a Norden

metric, too. Both metrics are necessarily neutral, i.e. of signature (n, n).

Further, X,Y, Z,W (x, y, z, w, respectively) will stand for arbitrary dif-

ferentiable vector fields on M (vectors in TpM , p ∈M , respectively).

If ∇ is the Levi-Civita connection of the metric g, the tensor field F

of type (0, 3) on M is defined by F (X,Y, Z) = g ((∇XJ)Y, Z) and has the

following symmetries

F (X,Y, Z) = F (X,Z, Y ) = F (X, JY, JZ). (2)

Let {ei} (i = 1, 2, . . . , 2n) be an arbitrary basis of TpM at a point p

of M . The components of the inverse matrix of g are denoted by gij with

respect to the basis {ei}. The Lie 1-forms θ and θ∗ associated with F , and

the Lie vector Ω, corresponding to θ, are defined by, respectively

θ(z) = gijF (ei, ej , z), θ∗ = θ ◦ J, θ(z) = g(z,Ω). (3)

The Nijenhuis tensor field N for J is given by N(X,Y ) = [JX, JY ] −
[X,Y ]−J [JX, Y ]−J [X, JY ]. The corresponding tensor of type (0,3) is given

by N(X,Y, Z) = g(N(X,Y ), Z). In terms of ∇J this tensor is expressed in

the following way

N(X,Y ) = (∇XJ)JY − (∇Y J)JX + (∇JXJ)Y − (∇JY J)X. (4)
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It is known [8] that the almost complex structure is complex if and only if

it is integrable, i.e. N = 0. The associated tensor Ñ of N is defined by [2]

Ñ(X,Y ) = (∇XJ)JY + (∇Y J)JX + (∇JXJ)Y + (∇JY J)X, (5)

and the corresponding tensor of type (0,3) is given by Ñ(X,Y, Z) =

g(Ñ(X,Y ), Z).

A classification of the almost complex manifolds with Norden metric is

introduced in [2], where eight classes of these manifolds are characterized

according to the properties of F . The three basic classes Wi (i = 1, 2, 3)

and the class W1 ⊕W2 are given by

• the class W1:

F (X,Y, Z) = 1
2n [g(X,Y )θ(Z) + g(X, JY )θ(JZ)

+g(X,Z)θ(Y ) + g(X, JZ)θ(JY )] ;
(6)

• the class W2 of the special complex manifolds with Norden metric:

F (X,Y, JZ) + F (Y, Z, JX) + F (Z,X, JY ) = 0, θ = 0; (7)

• the class W3 of the quasi-Kähler manifolds with Norden metric:

F (X,Y, Z) + F (Y, Z,X) + F (Z,X, Y ) = 0 ⇔ Ñ = 0; (8)

• the class W1 ⊕W2 of the complex manifolds with Norden metric:

F (X,Y, JZ) + F (Y, Z, JX) + F (Z,X, JY ) = 0 ⇔ N = 0. (9)

The special class W0 of the Kähler manifolds with Norden metric is char-

acterized by F = 0.

A W1-manifold with closed Lie 1-forms θ and θ∗ is called a conformal

Kähler manifold with Norden metric.

Let R be the curvature tensor of ∇, i.e. R(X,Y )Z = ∇X∇Y Z −
∇Y ∇XZ −∇[X,Y ]Z and R(X,Y, Z,W ) = g (R(X,Y )Z,W ).

A tensor L of type (0,4) is said to be curvature-like if it has the

properties of R, i.e. L(X,Y, Z,W ) = −L(Y,X,Z,W ) = −L(X,Y,W,Z),

L(X,Y, Z,W ) +L(Y, Z,X,W ) +L(Z,X, Y,W ) = 0. Then, the Ricci tensor

ρ(L) and the scalar curvatures τ(L) and τ ∗(L) of L are defined by:

ρ(L)(y, z) = gijL(ei, y, z, ej),

τ(L) = gijρ(L)(ei, ej), τ∗(L) = gijρ(L)(ei, Jej).
(10)

A curvature-like tensor L is called a Kähler tensor if L(X,Y, JZ, JW ) =

−L(X,Y, Z,W ).
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Let S be a tensor of type (0,2). We consider the following tensors [5]:

ψ1(S)(X,Y, Z,W ) = g(Y, Z)S(X,W ) − g(X,Z)S(Y,W )

+ g(X,W )S(Y, Z) − g(Y,W )S(X,Z),

ψ2(S)(X,Y, Z,W ) = g(Y, JZ)S(X, JW ) − g(X, JZ)S(Y, JW )

+ g(X, JW )S(Y, JZ) − g(Y, JW )S(X, JZ),

π1 =
1

2
ψ1(g), π2 =

1

2
ψ2(g), π3 = −ψ1(g̃) = ψ2(g̃).

(11)

The tensor ψ1(S) is curvature-like if S is symmetric, and the tensor ψ2(S)

is curvature-like is S is symmetric and hybrid with respect to J , i.e.

S(X, JY ) = S(Y, JX). The tensors π1 − π2 and π3 are Kählerian.

2. Almost complex connections on almost complex

manifolds with Norden metric

In this section we study almost complex connections and natural connec-

tions on almost complex manifolds with Norden metric. First, let us recall

the following

Definition 2.1 ([7]). A linear connection ∇′ on an almost complex man-

ifold (M,J) is said to be almost complex if ∇′J = 0.

Theorem 2.1. On an almost complex manifold with Norden metric there

exists a 4-parametric family of almost complex connections ∇′ with torsion

tensor T defined by, respectively:

g
(
∇′

XY −∇XY, Z
)

=
1

2
F (X, JY, Z) + t1

{
F (Y,X,Z) + F (JY, JX,Z)

}

+ t2
{
F (Y, JX,Z) − F (JY,X,Z)

}
+ t3

{
F (Z,X, Y )

+ F (JZ, JX, Y )
}

+ t4
{
F (Z, JX, Y ) − F (JZ,X, Y )

}
,

(12)

T (X,Y, Z)

= t1
{
F (Y,X,Z) − F (X,Y, Z) + F (JY, JX,Z) − F (JX, JY, Z)

}

+
(1

2
− t2

){
F (X, JY, Z) − F (Y, JX,Z)

}
+ t2

{
F (JX, Y, Z)

− F (JY,X,Z)
}

+ 2t3F (JZ, JX, Y ) + 2t4F (Z, JX, Y ),

(13)

where ti ∈ R, i = 1, 2, 3, 4.

Proof. By (12), (2) and direct computation, we prove that ∇′J = 0, i.e.

the connections ∇′ are almost complex.



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

Almost complex connections on almost complex manifolds 235

By (8) and (9) we obtain the form of the almost complex connections

∇′ on the manifolds belonging to the classes W1 ⊕W2 and W3 as follows,

respectively

Corollary 2.1. On a complex manifold with Norden metric there exists a

2-parametric family of complex connections ∇′ defined by

∇′
XY = ∇XY +

1

2
(∇XJ)JY

+ p
{

(∇Y J)X + (∇JY J)JX
}

+ q
{

(∇Y J)JX − (∇JY J)X
}
,

(14)

where p = t1 + t3, q = t2 + t4.

Corollary 2.2. On a quasi-Kähler manifold with Norden metric there ex-

ists a 2-parametric family of almost complex connections ∇′ defined by

∇′
XY = ∇XY +

1

2
(∇XJ)JY

+ s
{

(∇Y J)X + (∇JY J)JX
}

+ t
{

(∇Y J)JX − (∇JY J)X
}
,

(15)

where s = t1 − t3, t = t2 − t4.

Definition 2.2 ([3]). A linear connection ∇′ on an almost complex man-

ifold with Norden metric (M,J, g) is said to be natural if

∇′J = ∇′g = 0 (⇔ ∇′g = ∇′g̃ = 0). (16)

Lemma 2.1. Let (M,J, g) be an almost complex manifold with Norden

metric and let ∇′ be an arbitrary almost complex connection defined by

(12). Then
(
∇′

Xg
)
(Y, Z) = (t2 + t4)Ñ(Y, Z,X) − (t1 + t3)Ñ(Y, Z, JX),

(
∇′

X g̃
)
(Y, Z) = −(t1 + t3)Ñ(Y, Z,X) − (t2 + t4)Ñ(Y, Z, JX).

(17)

Then, by help of Theorem 2.1 and Lemma 2.1 we prove

Theorem 2.2. An almost complex connection ∇′ defined by (12) is natural

on an almost complex manifold with Norden metric if and only if t1 = −t3
and t2 = −t4, i.e.

g
(
∇′

XY −∇XY, Z
)

=
1

2
F (X, JY, Z)

+ t1N(Y, Z, JX) − t2N(Y, Z,X).
(18)

The equation (18) defines a 2-parametric family of natural connections on

an almost complex manifold with Norden metric and non-integrable almost
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complex structure. In particular, by (8) and (17) for the manifolds in the

class W3 we obtain

Corollary 2.3. Let (M,J, g) be a quasi-Kähler manifold with Norden met-

ric. Then, the connection ∇′ defined by (15) is natural for all s, t ∈ R.

If (M,J, g) is a complex manifold with Norden metric, then from (9)

and (18) it follows that there exists a unique natural connection ∇′ in the

family (14) which has the form

∇′
XY = ∇XY +

1

2
(∇XJ)JY. (19)

Definition 2.3 ([3]). A natural connection ∇′ with torsion tensor T on

an almost complex manifold with Norden metric is said to be canonical if

T (X,Y, Z) + T (Y, Z,X) − T (JX, Y, JZ) − T (Y, JZ, JX) = 0. (20)

Then, by applying the last condition to the torsion tensors of the natural

connections (18), we obtain

Proposition 2.1. Let (M,J, g) be an almost complex manifold with Norden

metric. A natural connection ∇′ defined by (18) is canonical if and only if

t1 = 0, t2 = 1
8 . In this case (18) takes the form

2g
(
∇′

XY −∇XY, Z
)

= F (X, JY, Z) − 1

4
N(Y, Z,X).

Let us remark that G. Ganchev and V. Mihova [3] have proven that

on an almost complex manifold with Norden metric there exists a unique

canonical connection. The canonical connection of a complex manifold with

Norden metric has the form (19).

Next, we study the properties of the torsion tensors (13) of the almost

complex connections ∇′.
The torsion tensor T of an arbitrary linear connection is said to be

totally antisymmetric if T (X,Y, Z) = g(T (X,Y ), Z) is a 3-form. The last

condition is equivalent to

T (X,Y, Z) = −T (X,Z, Y ). (21)

Then, having in mind (13) we obtain that the torsion tensors of the almost

complex connections ∇′ defined by (12) satisfy the condition (21) if and

only if t1 = t2 = t3 = 0, t4 = 1
4 . Hence, we prove the following

Theorem 2.3. Let (M,J, g) be an almost complex manifold with Norden

metric and non-integrable almost complex structure. Then, on M there ex-

ists a unique almost complex connection ∇′ in the family (12) whose torsion
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tensor is a 3-form. This connection is defined by

g
(
∇′

XY −∇XY, Z
)

=
1

4

{
2F (X, JY, Z) + F (Z, JX, Y ) − F (JZ,X, Y )

}
.

(22)

By Corollary 2.2 and the last theorem we obtain

Corollary 2.4. On a quasi-Kähler manifold with Norden metric there ex-

ists a unique natural connection ∇′ in the family (15) whose torsion tensor

is a 3-form. This connection is given by

∇′
XY = ∇XY +

1

4

{
2(∇XJ)JY − (∇Y J)JX + (∇JY J)X

}
. (23)

Let us remark that the connection (23) can be considered as an ana-

logue of the Bismut connection [1,4] in the geometry of the almost complex

manifolds with Norden metric.

Let us consider symmetric almost complex connections in the family

(12). By (13) and (4) we obtain

T (X,Y ) − T (JX, JY ) =
1

2
N(X,Y ). (24)

From (24), (13) and (4) it follows that T = 0 if and only if N = 0 and

t1 = t3 = t4 = 0, t2 = 1
4 . Then, it is valid the following

Theorem 2.4. Let (M,J, g) be a complex manifold with Norden metric.

Then, on M there exists a unique complex symmetric connection ∇′ belong-

ing to the family (14) which is given by

∇′
XY = ∇XY +

1

4

{
(∇XJ)JY + 2(∇Y J)JX − (∇JXJ)Y

}
. (25)

The connection (25) is known as the Yano connection [12,13].

We give a summery of the obtained results for the 4-parametric family

of almost complex connections ∇′ in the following Table.

3. Complex connections on conformal Kähler manifolds

with Norden metric

Let (M,J, g) be a W1-manifold with Norden metric and consider the 2-

parametric family of complex connections ∇′ defined by (14). By (6) we
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Class manifolds

Connection type W1 ⊕W2 ⊕W3 W1 ⊕W2 W3

almost complex t1, t2, t3, t4 ∈ R p, q ∈ R s, t ∈ R

natural t1 = −t3, p = q = 0 s, t ∈ R

t2 = −t4
canonical t1 = t3 = 0, p = q = 0 s = 0, t = 1/4

t2 = −t4 = 1/8

T is a 3-form t1 = t2 = t3 = 0,

t4 = 1/4

@ s = 0, t = −1/4

symmetric @ p = 0, q = 1/4 @

obtain the form of ∇′ on a W1-manifold as follows

∇′
XY = ∇XY +

1

4n

{
g(X, JY )Ω − g(X,Y )JΩ + θ(JY )X

− θ(Y )JX
}

+
p

n

{
θ(X)Y + θ(JX)JY

}
+
q

n

{
θ(JX)Y − θ(X)JY

}
.

(26)

Then, by (26) and straightforward computation we prove

Theorem 3.1. Let (M,J, g) be a conformal Kähler manifold with Norden

metric and ∇′ be an arbitrary complex connection in the family (14). Then,

the Kähler curvature tensor R′ of ∇′ has the form

R′ = R− 1

4n

{
ψ1 + ψ2

}
(S) − 1

8n2
ψ1(P ) − θ(Ω)

16n2

{
3π1 + π2

}
+
θ(JΩ)

16n2
π3,

where S and P are defined by, respectively:

S(X,Y ) =
(
∇Xθ

)
JY +

1

4n

{
θ(X)θ(Y ) − θ(JX)θ(JY )

}
,

P (X,Y ) = θ(X)θ(Y ) + θ(JX)θ(JY ).
(27)

By (26) we prove the following

Lemma 3.1. Let (M,J, g) be a W1-manifold and ∇′ be an arbitrary com-

plex connection in the family (14). Then, the covariant derivatives of g and

g̃ are given by

(∇′
Xg) (Y, Z) = − 2

n
{[pθ(X) + qθ(JX)] g(Y, Z)

+ [pθ(JX) − qθ(X)] g(Y, JZ)} ,

(∇′
X g̃) (Y, Z) =

2

n
{[pθ(JX) − qθ(X)] g(Y, Z)

− [pθ(X) + qθ(JX)] g(Y, JZ)} .

(28)
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It is well-known [7] that the curvature tensor R′ and the torsion tensor

T of an arbitrary linear connection ∇′ satisfy the second Bianchi identity,

i.e.

S
X,Y,Z

{(
∇′

XR
′)(Y, Z,W ) +R′(T (X,Y ), Z,W

)}
= 0, (29)

where S is the cyclic sum over X,Y, Z.

From (26) it follows that the torsion tensor of an arbitrary connection

∇′ in the family (14) has the following form on a W1-manifold

T (X,Y ) =
1 − 4q

4n
{θ(X)JY − θ(Y )JX − θ(JX)Y + θ(JY )X}

+
p

n
{θ(X)Y − θ(Y )X + θ(JX)JY − θ(JY )JX} .

(30)

Let us denote τ ′ = τ(R′) and τ ′∗ = τ∗(R′). We establish the following

Theorem 3.2. Let (M,J, g) be a conformal Kähler manifold with Norden

metric, and τ ′ and τ ′∗ be the scalar curvatures of the Kähler curvature

tensor R′ corresponding to the complex connection ∇′ defined by (14). Then,

the function τ ′ + iτ ′∗ is holomorphic on M and the Lie 1-forms θ and θ∗

are defined in a unique way by τ ′ and τ ′∗ as follows :

θ = 2n d

(
arctan

τ ′

τ ′∗

)
, θ∗ = −2n d

(
ln
√
τ ′2 + τ ′∗2

)
. (31)

Proof. By (29) and (30) we obtain
(
∇′

XR
′)(Y, Z,W ) +

(
∇′

Y R
′)(Z,X,W ) +

(
∇′

ZR
′)(X,Y,W )

=
4q − 1

2n

{
θ(X)R′(JY, Z,W ) − θ(JX)R′(Y, Z,W ) − θ(Y )R′(JX,Z,W )

+ θ(JY )R′(X,Z,W ) + θ(Z)R′(JX, Y,W ) − θ(JZ)R′(X,Y,W )
}

− 2p

n

{
θ(X)R′(Y, Z,W ) + θ(JX)R′(JY, Z,W ) − θ(Y )R′(X,Z,W )

− θ(JY )R′(JX,Z,W ) + θ(Z)R′(X,Y,W ) + θ(JZ)R′(JX, Y,W )
}
.
(32)

Then, having in mind the equalities (28) and their analogous equalities for

gij , we find the total traces of the both sides of (32) and get

dτ ′ =
1

2n

{
τ ′∗θ − τ ′θ∗

}
, dτ ′∗ = − 1

2n

{
τ ′θ + τ ′∗θ∗

}
. (33)

From (33) it follows immediately that dτ ′∗ ◦ J = −dτ ′, i.e. the function

τ ′ + iτ ′∗ is holomorphic on M and the equalities (31) hold.
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Coherent states (CS) for non-Hermitian systems are introduced as eigenstates
of pseudo-Hermitian boson annihilation operators. The set of these CS includes
two subsets which form bi-normalized and bi-overcomplete system of states.
The subsets consist of eigenstates of two complementary lowering pseudo-
Hermitian boson operators. Explicit constructions are provided on the example
of one-parameter family of pseudo-boson ladder operators. The wave functions
of the eigenstates of the two complementary number operators, which form
a bi-orthonormal system of Fock states, are found to be proportional to new
polynomials, that are bi-orthogonal and can be regarded as a generalization of
standard Hermite polynomials.

Keywords: Non-Hermitian quantum mechanics; Coherent states; Fock states;
Bi-orthogonal polynomials.

1. Introduction

In the last decade a growing interest is shown in the non-Hermitian PT -

symmetric (or pseudo-Hermitian) quantum mechanics. For a review with an

enlarged list of references see the recent papers [1,2]. This trend of interest

was triggered by the papers of Bender and coauthors [3], where the Bessis

conjecture about the reality and positivity of the spectrum of Hamiltonian

H = p2 + x2 + ix3 was proven (‘using extensive numerical and asymptotic

studies’) and argued that the reality of the spectrum is due to the unbroken

PT -symmetry. The Bessis-Zinn Justin conjecture about the reality of the

spectrum of the PT -symmetric Hamiltonian p2 − (ix)2ν for ν ≥ 1 has been

proven in Ref. 4. A criterion for the reality of the spectrum of non-Hermitian

PT -symmetric Hamiltonians is provided in Ref. 5. Mustafazadeh [6] has

soon noted that all the PT -symmetric non-Hermitian Hamiltonians studied

in the literature belong to the class of pseudo-Hermitian Hamiltonians. A
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Hamiltonian H was said to be pseudo-Hermitian if it obeys the relation [6]

H# := η−1H†η = H, (1)

where η is an invertible Hermitian operator. H# was called η-pseudo-

Hermitian conjugate to H , shortly η-pseudo-adjoint to H . The PT -

symmetric Hamiltonian H = p2 − (ix)2ν , examined in Refs. 3,4, obeys (1)

with η equal to the parity operator P . The spectrum of a diagonalizable

pseudo-Hermitian H is either real or comes in complex conjugate pairs. A

diagonalizable (non-Herimitian) Hamiltonian H has a real spectrum iff it is

pseudo-Hermitian with respect to positive definite η [7]. In terms of P and

T operations the reality of the spectrum of H occurs if the PT symmetry is

exact (not spontaneously broken) (see e.g. Refs. 1,2 and references therein).

In fact many of the later developments in the field are anticipated in the

paper by Scholtz et al [8] (see comments in Ref. 1).

In the present paper we address the problem of construction of pseudo-

Hermitian boson (shortly pseudo-boson) creation and annihilation opera-

tors and related Fock states and coherent states (CS). For pseudo-fermion

system ladder operator CS have been introduced by Cherbal et al [11]

on the example of two-level atom interacting with a monochromatic em

field in the presence of level decays. For non-Hermitian PT -symmetric sys-

tem CS of Gazeau-Klauder type have been constructed, on the example

of Scarf potential, by Roy et al [9]. Annihilation and creation operators in

non-Hermitian (supersymmetric) quantum mechanics were considered by

Znojil [13]. For the bosonic PT symmetric singular oscillator (which de-

picts a double series of real energy eigenvalues) [14] ladder operators and

eigenstates of the annihilation operators have been built up by Bagchi and

Quesne [15]. Our main aim here is the construction of overcomplete fami-

lies (in fact bi-overcomplete) of ladder operator CS for pseudo-bosons. The

problem of pseudo-boson ladder operators is considered in section 2. In the

third section we consider the construction of eigenstates of pseudo-boson

number operators. The pseudo-boson CS are introduced and discussed in

section 4. Explicit example of pseudo-boson ladder operators and related

eigenstates is provided and briefly commented in section 5. Outlook over

the main results is given in the Conclusion.

2. Pseudo-boson ladder operators

With the aim to construct pseudo-Hermitian boson (shortly pseudo-boson)

coherent states (CS) we address the problem of ladder operators that are

pseudo-adjoint to each other. In analogy with the pseudo-Hermitian fermion
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(phermion) annihilation and creation operators [10] the η-pseudo-boson lad-

der operators b, b# := η−1b†η can be defined by means of the commutation

relation

[b, b#] ≡ bb# − b#b = 1. (2)

If η = 1 the standard boson operators a, a† are recovered.

From (2) it follows that the pseudo-Hermitian (pseudo-selfadjoint) op-

erator b#b ≡ N commutes with b and b# according to

[b,N ] = b, [b#, N ] = −b#, (3)

and could be regarded as pseudo-boson number operator . For a pair of non-

Hermitian operators b, b̃ with commutator [b, b̃] = 1, the existence of η such

that b̃ = η−1b†η ≡ b#, stems from the existence of b-vacuum. We have the

following

Proposition 2.1. If the operators b and b̃ and a state |0〉 satisfy

[b, b̃] = 1, b|0〉 = 0, (4)

then b̃ is η-adjoint to b with

η =
∑

n=0

|ϕn〉〈ϕn|, (5)

where |ϕn〉 are eigenstates of N ′ = b†b̃†.

Proof. Note first that the non-Hermitian operatorN = b̃b is diagonalizable

and with real and discrete spectrums. It’s eigenstates can be constructed

acting on the b-vacuum by the operators b̃ correspondingly (see the next

section). The spectrum of a diagonalizable non-Hermitian operator H is

real iff H is η-pseudo-Hermitian (theorem of Ref. 6), and this η may be

chosen as a sum of projectors onto the eigenstates of H† [6]. In our cases

H = N and H† = N † = b†b̃†. This ends the proof of the Proposition.

For the sake of completeness however we provide in the next section the

construction (and brief discussion) of the eigenstates of N , N ′.

Remark 2.1. A similar Proposition can be formulated and proved for a

pair of non-Hermitian nilpotent operators g, g̃, g2 = 0 with anticommutator

{g, g̃} = 1: just replace b, b̃, [b, b̃] with g, g̃, {g, g̃}.
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3. Pseudo-boson Fock states

The eigenstates of pseudo-boson number operators N = b̃b can be con-

structed by acting on the ground states |0〉 by the raising operator b̃:

|ψn〉 =
1√
n!
b̃ n|0〉, (6)

N |ψn〉 = b̃b|ψn〉 = n|ψn〉. (7)

However in view of b̃ 6= b† these number states are not orthogonal. It turned

out that a complementary pair of pseudo-boson ladder operators and num-

ber operator exist, such that the system of the two complementary sets

of number states form the so-called bi-orthogonal and bi-complete sets . In-

deed, if b̃ is creating operator related to b, then, on the symmetry ground,

we could look for new operators b′ for which b† is the creating operator,

[b′, b†] = 1. (8)

The pairs of “prime”-ladder operators b′, b′† is just b̃†, b†, and the “prime”

number operator is

N ′ = b′†b′ = b†b̃†. (9)

The eigenstates of N ′ are constructed in a similar way acting with b† on

the b′-vacuums |0〉′:

|ϕn〉 =
1√
n!

(b†)n|0〉′. (10)

The existence of the b′-vacuum |0〉′ = |ϕ0〉 follows from the properties of

the pseudo-Hermitian operators H with real spectra [6,7]: the spectrum of

H and H† coincide since they are related via a similarity transformation.

In our case H = b̃b, H† = b†b̃† ≡ b†b′.
Using the commutation relations of the above described ladder operators

one can easily check that if 〈0|0〉′ = 1 then the “prime” number-states |ϕn〉
are bi-orthonormalized to |ψn〉 (that is 〈ψn|ϕm〉 = δnm), and form together

the bi-complete system of states {|ψn〉, |ϕn〉}:

∑

n

|ψn〉 〈ϕn| = 1 =
∑

n

|ϕn〉 〈ψn|. (11)

The set {|ψn〉, |ϕn〉} can be called the set of Fock states for pseudo-

Hermitian boson system (shortly pseudo Fock states). In terms of the pro-

jectors on these states the pseudo-boson ladder operators b, b̃ can be rep-
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resented as follows

b =
∑

n

√
n|ψn−1〉 〈ϕn|, b̃ =

∑

n

√
n|ψn〉 〈ϕn−1|,

b′ =
∑

n

√
n|ϕn−1〉 〈ψn|, b† =

∑

n

√
n|ϕn〉 〈ψn−1|.

(12)

Now consider the operator [6]

η =
∑

n

|ϕn〉 〈ϕn|. (13)

This is Hermitian, positive and invertible operator, η−1 =
∑

n |ψn〉 〈ψn|.
From the above expressions of η and η−1 one can see that |ϕn〉 = η|ψn〉.

Finally one can easily check (using (12) ) and (13) that b̃ is η-pseudo-

adjoint to b, b′ is η−1-pseudo-adjoint to b†,

b̃ = η−1b†η, b′ = ηbη−1, (14)

and N and N ′ are η- and η−1 pseudo-Hermitian: N# := η−1N †η = N ,

(N ′)# := (η′)−1(N ′)†η′ = N ′, η′ = η−1.

4. Pseudo-boson coherent states

We define coherent states (CS) for the pseudo-Hermitian boson systems as

eigenstates of the corresponding pseudo-boson annihilation operators. In

this aim we introduce the pseudo-unitary displacement operator D(α) =

exp(αb#−α∗b) and construct eigenstates of b as displaced ground state |0〉,
b|α〉 = α|α〉, → |α〉 = D(α)|0〉, (15)

where α ∈ C. Using BCS formula one gets the expansion

|α〉 = e−
1
2 |α|2

∑

n

αn

√
n!
|ψn〉. (16)

The structures of the above two formulas are the same as those for the case

Hermitian boson CS (the Glauber canonical CS [16]), but the properties of

our D(α) and |α〉 are different. First note that D(α) is not unitary. There-

fore |α〉 are not normalized. Second, the set {|α〉;α ∈ C} is not overcomplete

(since |ψn〉 are not orthogonal).

The way out of this impasse is to consider the eigenstates of the dual

ladder operator b′ = (b#)†, which take the analogous to (15) form,

b′|α〉′ = α|α〉′, → |α〉′ = D′(α)|0〉′, (17)

where D′(α) = exp(αb† − α∗b′) is the complementary pseudo-unitary dis-

placement operator. Therefore the eigenstates |α〉′ are again non-normalized
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and do not form overcomplete set. However they are bi-normalized to |α〉
(that is 〈α|α〉′ = 1) and the system {|α〉, |α〉′;α ∈ C} is {bi-overcomplete}
in the following sense

1

π

∫
d2α |α〉′ 〈α| = 1,

1

π

∫
d2α |α〉 ′〈α| = 1. (18)

It is this bi-overcomplete set that we call pseudo-boson CS , or CS of pseudo-

boson systems. More precisely they are η- pseudo-boson CS. When η = 1

these states recover the famous Glauber CS |α〉 = exp(αa†−α∗a)|0〉, where

a, a† are canonical boson annihilation and creation operators.

5. Example

In this section we illustrate the above described scheme of construction

of pseudo-boson Fock states and CS on the example of the following one-

parameter family of non-Hermitian operators,

b(s) = a+ sa†,

b̃(s) = sa+ (1 + s2)a†,
(19)

where s ∈ (−1, 1) and a, a† are Bose annihilation and creation operators:

[a, a†] = 1. It is clear that b(0) = a, b̃(0) = a† and b̃(s) 6= b†(s). In this

way the parameter s could be viewed as a measure of deviation of b(s) and

b#(s) from the canonical boson operators a and a†.

5.1. Pseudo-boson Fock state wave functions

The b(s)- and b′-vacuums |0〉 and |0〉′ do exist. Using the coordinate repre-

sentation of b(s) and b̃(s),

b(s) =
1√
2

(
(1 + s)x− (1 − s)

d

dx

)
, (20)

b̃(s) =
1√
2

(
(s+ 1 + s2)x− (s− 1 − s2)

d

dx

)
, (21)

we find the wave functions of |0〉 and |0〉′:

ψ0(x, s) = N (s) exp

(
− 1 + s

2(1 − s)
x2

)
, (22)

ϕ0(x, s) = N (s) exp

(
− 1 + s+ s2

2(1 + s2 − s)
x2

)
, (23)

N (s) =
(
π(1 − s)(1 − s+ s2)

)−1/4
.
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The above two wave functions are bi-normalized, that is 〈ϕ0|ψ0〉 = 1, if the

parameter s is restricted in the interval (−1, 1), that is −1 < s < 1.

Therefore, according to Proposition 1 (and the related development in

the previous section) b̃(s) is η-pseudo-adjoint to b(s) and (for s2 < 1) the

bi-orthonormalized Fock states and bi-overcomplete CS can be explicitly

realized. The wave functions of the pseudo-boson Fock states (6) and (10)

are obtained in the following form:

ψn(x, s) =
1√

2nn!
Pn(x, s)ψ0(x, s),

ϕn(x, s) =
1√

2nn!
Qn(x, s)ϕ0(x, s),

(24)

where Pn(x, s), Qn(x, s) are polynomials of degree n in x, defined by means

of the following recurrence relations

Pn =
2x

1 − s
Pn−1 + (n− 1)

2(s− s2 − 1)

1 − s
Pn−2,

Qn =
2x

1 + s2 − s
Qn−1 + (n− 1)

2(s− 1)

1 + s2 − s
Qn−2.

(25)

For the first three values of n, n = 0, 1, 2, the polynomials Pn(x, s) and

Qn(x, s) read:

P0 = 1, P1 =
2

1 − s
x, P2 =

4x2

(1 − s)2
+

2(s− s2 − 1)

1 − s
,

Q0 = 1, Q1 =
2

1 − s+ s2
x, Q2 =

4x2

(1 − s+ s2)2
+

2(s− 1)

1 − s+ s2
.

At s = 0 these two polynomials Pn(x, 0) and Qn(x, 0) coincide and recover

the known Hermite polynomialsHn(x). Therefore Pn(x, s) and Qn(x, s) can

be viewed as two different generalizations of Hn(x). They are not orthog-

onal. Instead of the orthogonality they satisfy the bi-orthonality relations,

the weight function being w(x, s) = ψ0(x, s)ϕ0(x, s),
∫
Pn(x, s)Qm(x, s)ψ0(x)ϕ0(x) = n!2nδnm. (26)

Therefore Pn(x, s) and Qn(x, s) realize bi-orthogonal generalization of

Hn(x). The relations between these three types of polynomials may be

illustrated by the following diagram (where µ(s) = 1/(1 − s)(1 − s+ s2)):

�
�

���

A
A
AAU

Pn(x) Qn(x)

Hn(x) - ∫
HnHme

−x2

dx =
√
π 2nn! δnm

- ∫
PnQme

−µ(s)x2

dx = N−2(s)2nn! δnm
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It is worth emphasizing that the above bi-orthogonal generalization of

Hn(x) is not unique. If instead of (19), we take another pair of b, b̃ (satisfying

the Proposition 2.1), say

b2(s) = a+ sa†,

b̃2(s) = −sa+ (1 − s2)a†,
(27)

and apply the above described scheme, we would get another similar pair

of bi-orthogonal polynomials.

5.2. Pseudo-boson CS wave functions

Equations (15), (17) for the eigenstates of b(s) and b′(s), given in (20), (21)

in the coordinate representation, lead to the following wave functions for

any α ∈ C,

ψα(x, s) = N exp

[
− 1 + s

2(1 − s)
x2 +

√
2α

1 − s
x

]
, (28)

ϕα(x, s) = N ′ exp

[
− 1 + s+ s2

2(1 − s+ s2)
x2 +

√
2α

1 − s+ s2
x

]
, (29)

where N and N ′ are bi-normalization constants. Up to constant phase

factors they are determined by the bi-normalization condition 〈ψα|ϕα〉 = 1.

We put α = α1 + iα2 and find

(N∗N ′)−1

=

∫
exp

[
− x2

(1 − s)(1 − s+ s2)
+
√

2x
(2 − 2s+ s2)α1 + iα2s

2

(1 − s)(1 − s+ s2)

]
dx

=
√
π(1 − s)(1 − s+ s2) exp

[(
2α1 − 2α1s+ α1s

2 + iα2s
2
)2

2(1 − s)(1 − s+ s2)

]
.

(30)

At s = 0 we get, up to a constant phase factor, N = N ′ = π−1/4 exp(−α2
1).

At s = 0 both ψα(x, 0) and ϕα(x, 0) recover the wave functions of Glauber

canonical CS.

The constructed Fock states and CS are time independent, and can be

used as initial states (initial conditions) of pseudo-boson systems. Important

question arises of the temporal stability of these states. In analogy with the

case of Hermitian mechanics we define temporal stability of a given set of

states by the requirement the time evolved states to belong to the same set.

This means that, up to a time-dependent phase factor, the time-dependence

of any state from the initial set should be included in the time-dependent
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parameters only. Clearly the time dependent parameters should remain in

the same domain as defined initially.

For our CS the temporal stability means that the time evolved wave

functions ψα(x, s, t), ϕα(x, s, t) should keep the form

ψα(x, s, t) = eiχ(t)ψα(t)(x, s),

ϕα(x, s, t) = eiχ′(t)ϕα(t)(x, s)),
(31)

where χ(t), χ′(t) ∈ R, α(t) ∈ C and s(t)2 < 1. It is clear, that if the time

evolved CS obey (31) they remain eigenstates of the same ladder operators

b(s) and b′(s). (Let us recall at this point that we are in the Schrödinger

picture, where operators are time-independent). As an illustration consider

now the time evolution of CS governed by the simple pseudo-Hermitian

Hamiltonian

Hpo = ω

(
b#(s)b(s) +

1

2

)
, (32)

where b#(s) = η−1b†(s)η, ω ∈ R+. System with Hamiltonian of the type

(32) should be called pseudo-Hermitian oscillator . At s = 0 it coincides

with the Hermitian harmonic oscillator of frequency ω. In pseudo-Hermitian

mechanics the time evolution of initial ψα(x, s) and ϕα(x, s), by definition,

is given by

ψα(x, s, t) = e−iHtψα(x, s),

ϕα(x, s, t) = e−iH†tϕα(x, s).
(33)

For H = Hpo equations (33) produce

ψα(x, s, t) = e−iωt/2ψα(t)(x, s),

ϕα(x, s, t) = e−iωt/2ϕα(t)(x, s), α(t) = αe−iωt,
(34)

which shows that the evolution of CS, governed by the pseudo-Hermitian

oscillator Hamiltonian Hpo is temporally stable. Comparing (34) and (31)

we see that for the system (32) the time-evolved CS remain stable with

constant s, α(t) = e−iωt and χ = −iωt/2.

Finally it is worth noting that the pseudo-Hermitian Hamiltonian Hpo

has unbroken PT -symmetry [1]. Indeed, from (20) and (20) it follows that

PTHpoPT = Hpo, and from (24) and (25) it follows that all eigenstates of

Hpo (and of H†
po as well) are eigenvectors of PT with eigenvalue +1 or −1.
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Conclusion

We have shown that if the commutator of two non-Hermitian operators b

and b̃ equals 1 and b annihilates a state ψ0 then b̃ is η-pseudo-Hermitian

agjoint b# of b and b† is η−1-pseudo-adjoint of (b̃#)†. Eigenstates of the

pseudo-boson number operator b#b and its adjoint b†(b#)† form a bi-

orthonormal system of pseudo-boson Fock states, while eigenstates of b

and its complementary lowering operator b′ = (b#)† are shown to form bi-

normalized and bi-overcomplete system.This system of states is regarded as

system of coherent states (CS) for pseudo-Hermitian bosons. We have pro-

vided a simple one-parameter family of ladder operators b(s) and b̃(s) that

possess the above described properties and constructed the wave functions

of the related Fock states and CS. Fock state wave functions are obtained

as product of an exponential of a quadratic form of x and one of the two

new polynomials Pn(x), Qn(x) that are bi-orthogonal and at s = 0 recover

the standard Hermite orthogonal polynomials. The pseudo-boson CS are

shown to be temporally stable for the pseudo-boson oscillator Hamiltonian

ω
(
b#(s)b(s) + 1/2

)
.

References

1. C.M. Bender, Rep. Prog. Phys. 70, 947 (2007); C.M. Bender and P.D.
Mannheim, Phys. Rev. D78, 025022 (2008).

2. P. Dorey, C. Dunning, and R. Tateo, J. Phys. A40, R205 (2007).
3. C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998); C.M. Ben-

der, S. Boettcher, and P.N. Meisinger, J. Math. Phys. 40, 2201 (1999).
4. P. Dorey, C. Dunning and R. Tateo, J. Phys. A 34, L391 (2001); P. Dorey,

C. Dunning and R. Tateo, J. Phys. A34, 5679 (2001).
5. E. Caliceti, S. Graffi and J. Sjostrand, J. Phys. A38 185 (2005).
6. A. Mostafazadeh, J. Math. Phys. 43, 205 (2002).
7. A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002).
8. F.G. Scholtz, H.B. Geyer and F.J.W. Hahne, Ann. Phys. (NY) 213, 74

(1992).
9. B. Roy and P. Roy, Phys. Lett. A359, 110 (2006).

10. A. Mostafazadeh, Nucl. Phys. B640, 419 (2002); J. Phys. A37, 10193 (2004).
11. O. Cherbal, M. Drir, M. Maamache, and D.A. Trifonov, J. Phys. A40, 1835

(2007);
12. Y. Ben-Aryeh, A. Mann and I. Yaakov, J. Phys. A37, 12059 (2004).
13. M. Znojil, Annihilation and creation operators in non-Hermitian supersym-

metric quantum mechanics, hep-th/0012002.
14. M. Znojil, Phys. Lett. A259, 220 (1999).
15. B. Bagchi and C. Quesne, Mod. Phys. Lett. A16, 2449 (2001).
16. R.J. Glauber, Phys. Rev. 131, 2766 (1963).



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

251

NEW INTEGRABLE EQUATIONS OF MKDV TYPE

T. I. VALCHEV

Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences,

Sofia, Bulgaria
E-mail: valtchev@inrne.bas.bg

We present new examples of multicomponent mKdV type equations associated
with symmetric spaces of BD.I series. These are integrable equations obtained
by using the method of reduction group. Their 1-soliton solutions are derived as
well by applying the dressing procedure with an appropriately chosen dressing
factor.

Keywords: MKdV; Symmetric spaces; Method of reductions; Dressing method.

1. Introduction

The modified Korteweg-de Vries equation (mKdV)

vt + vxxx + 6v2vx = 0 (1)

is one of the classical soliton equations which describes the propagation of

ion-acoustic waves in warm plasma. It was Wadati [1] who solved mKdV

for the first time by means of the inverse scattering problem.

One of the purposes of this report is to present multicomponent S-

integrable generalizations of the equation (1) which are to be expected to

find physical applications as well. In order to achieve this we apply the

reduction group method [2] on the generic Lax representation of mKdV

associated with symmetric spaces of the series BD.I [3]. Generic multi-

component mKdV equations associated with different types of symmetric

spaces are considered for the first time by Athorne and Fordy [4]. An-

other purpose of the report is to demonstrate how one can generate soliton

solutions to these reduced mKdV equations by applying the well-known

Zakharov-Shabat’s dressing method [5] with an appropriate dressing fac-

tor. This dressing factor has to be compatible with the structure of the

symmetric space and the action of the reduction group.
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2. Some facts from the theory of solitons

In the present paragraph we are going to expose some basic facts from

the theory of solitons, for more details see Ref. 6. We consider nonlinear

evolution equationsa which admit a zero curvature representation (Lax rep-

resentation)

[L,M ] = 0 (2)

where L and M are linear differential operators of the type

L = i∂x + U(x, t, λ) = i∂x + q(x, t) − λJ, (3)

M = i∂t + V (x, t, λ) = i∂t +
∑

k

λkVk(x, t). (4)

The matrix-valued functions q and Vk take values in a simple Lie algebra

g and the real constant matrix J belongs to its Cartan subalgebra h ⊂ g.

We shall resrict ourselves with considering only zero boundary conditions

for q, i.e. q is inifinitely smooth and satisfies

lim
|x|→∞

|x|nq(x, t) = 0

for any n. Since L and M commute there exist functions ψ(x, t, λ) taking

values in the Lie group G corresponding to the Lie algebra g which satisfy

i∂xψ + (q − λJ)ψ = 0, (5)

i∂tψ +
∑

k

λkVkψ = ψC(λ). (6)

The linear problem (5) is called generalized Zakharov-Shabat problem

(GZS).

An important role in the scattering theory is played by fundamental

solutions of GZS to obey the property

lim
x→±∞

ψ±(x, t, λ)eiλJx = 11. (7)

These are the so-called Jost solutions. By choosing

C(λ) = lim
x→±∞

V (x, t, λ)

one can ensure the relevance of definition (7). The transition matrix

ψ−(x, t, λ) = ψ+(x, t, λ)T (t, λ)

a These equations are sometimes called S-integrable, see Ref. 7.



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

New integrable equations of mKdV type 253

between the two Jost solutions is the scattering matrix. Its time evolution

is determined by the equality

T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t

where f(λ) := limx→±∞ V (x, t, λ) is the dispersion law of the nonlinear

equation.

Another important notion in the theory of solitons is provided by the

so-called fundamental analytic solutions introduced by Shabat [8]. These

are fundamental solutions which have analytic properties in the upper and

lower half plane of the λ-plane. They can be constructed from the Jost

solutions in the following manner

χ±(x, t, λ) = ψ−(x, t, λ)S±(t, λ) = ψ+(x, t, λ)T∓(t, λ)D±(λ) (8)

where S±, T∓ and D± are factors in the Gauss decomposition of the scat-

tering matrix

T (t, λ) = T∓(t, λ)D±(λ)(S±(t, λ))−1.

As a direct consequence of (8) it follows that χ± can be viewed as solutions

of a local Riemann-Hilbert problem

χ+(x, t, λ) = χ−(x, t, λ)G(t, λ), G(t, λ) = (S−(t, λ))−1S+(t, λ).

This is a manifestation of the deep connection between the inverse scatter-

ing method and the Riemann-Hilbert problem.

One of the basic applications of the fundamental analytic solutions is

in the dressing method. The idea that underlies the dressing method is

deriving a new solution q1 from a known one q0 taking into account the

existence of auxiliary linear problems. Given an auxiliary linear problem

L0ψ0 = i∂xψ0 + (q0 − λJ)ψ0 = 0 (9)

for some known potential q0. In principle, one can obtain a fundamental

solution, say ψ0, and then construct a function ψ1 = gψ0 which is assumed

to be a fundamental solution of a linear problem

L1ψ1 = i∂xψ1 + (q1 − λJ)ψ1 = 0 (10)

with a potential q1 to be found. Combining (9) and (10) we convince our-

selves that the dressing factor g satisfies

i∂xg + q1g − gq0 − λ[J, g] = 0. (11)
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Due to reasons concerning the relation between the inverse scattering

method and the Riemann-Hilbert problem we choose the dressing factor

in the form

g = 11 +
A

λ− λ+
+

B

λ− λ−
, λ± ∈ C±. (12)

After taking the limit λ → ∞ we obtain the following interrelation

q1 = q0 + [J,A+B].

If we know the residues A and B we are able to generate another solution

q1 from q0. A more detailed analysis of the definition gg−1 = 11 shows that

the matrices A and B admit a decomposition of the type

A = XF T , B = Y GT ,

where X and Y are given by

X = (λ+ − λ−)[Z −W (GTW )−1β̃][F TZ − α̃(GTW )−1β̃]−1, (13)

Y = (λ− − λ+)[W − Z(F TZ)−1α̃][GTW − β̃(F TZ)−1α̃]−1. (14)

As a consequence of (11) and the corresponding equation for g−1 all quan-

tities above can be expressed via the fundamental analytic solutions χ±
0 of

the initial linear problem

F T (x) = F T
0 [χ+

0 (x, λ+)]−1, GT (x) = GT
0 [χ−

0 (x, λ−)]−1,

W (x) = χ+
0 (x, λ+)W0, Z(x) = χ−

0 (x, λ−)Z0,

α̃(x) = −(λ+ − λ−)F T
0 [χ+

0 (x, λ+)]−1∂λχ
+
0 (x, λ+)W0 + α̃0,

β̃(x) = −(λ− − λ+)GT
0 [χ−

0 (x, λ−)]−1∂λχ
−
0 (x, λ−)Z0 + β̃0,

where all matrices with a subscript 0 are constant. The dressing factor take

values in SL(n). This factor generalizes those obtained by Zakharov and

Mikhailov [9] and Ivanov [10] which are suited for the case of symplectic

and orthogonal algebras. We can apply the dressing procedure on q1 and

thus obtain another solution q2 and so on. In particular, when q0 ≡ 0 the

dressed solution q1 is called 1-soliton solution, q2 — 2-soliton solution etc.

Consider a discrete group GR (reduction group) acting on the set of

fundamental solutions as follows

K : ψ(x, λ) 7→ ψ̃(x, λ) = K
[
ψ
(
x, κ−1(λ)

)]
,

where K ∈ Aut(G) and κ : C 7→ C is some conformal mapping. This action

yields another action on the Lax operators

L 7→ L̃ = KLK−1, M → M̃ = KMK−1.
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From the GR-invariance condition of the set of fundamental solutions one

derives certain restrictions on the potential U . We require that the dressing

factor is GR-invariant

(Kg)(x, λ) = K
[
g
(
x, κ−1(λ)

)]
= g(x, λ). (15)

For example, let us consider the following action of Z2

K : ψ(x, λ) → ψ̃(x, λ) = K
(
ψ† (x, λ∗)

)−1
K−1, (16)

provided K ∈ G and K2 = ±11. Therefore the potential fulfills the symme-

try condition

KU †(x, λ∗)K−1 = U(x, λ) ⇒ Kq†(x)K−1 = q(x), KJK−1 = J (17)

and the dressing factor satisfies the equality

K[g†(x, λ∗)]−1K−1 = g(x, λ). (18)

3. Multicomponent mKdV associated with symmetric

spaces of BD.I series

The generic system of mKdV type equations associated with symmetric

spaces SO(2r + 1)/SO(2) × SO(2r − 1) have the following form

~qt + ~qxxx + 3(~p, ~q)~qx + 3 (~qx, ~p) ~q − 3 (~qxs0~q) s0~p = 0,

~pt + ~pxxx + 3(~p, ~q)~px + 3 (~px, ~q) ~p− 3 (~pxs0~p) s0~q = 0,

where

~q = (q2, q3, . . . , q2r)T , ~p = (p2, p3, . . . , p2r)T , (s0)ij = (−1)i−1δi,2r−j .

The connection with the symmetric spaces of the mentioned kind is via its

Lax pair

L = i∂x + q(x, t) − λJ,

M = i∂t + V0(x, t) + λV1(x, t) + λ2V2(x, t) − λ3J.

It is known [3,4,11] that with any symmetric spaceG/K it can be associated

a splitting g = k +m where k ⊂ g is the Lie subalgebra corresponding to K

and m is its complement to g. J is the element whose centralizer is k while

q ∈ m. In the case under consideration J = He1 = diag (1, 0, . . .0,−1) and

q =




0 ~qT 0

~p 0 s0~q

0 ~pT s0 0


 , V2 = q, V1 = iad J∂xq +

1

2
[ad Jq, q] ,

V0 = −∂2
xxq +

1

2
[ad Jq, [ad Jq, q]] + i [∂xq, q] .



June 2, 2009 17:11 WSPC - Proceedings Trim Size: 9in x 6in 00Procs2008

256 T.I. Valchev

From now on we shall focus on the case when r = 2. Then the poten-

tial q and the Cartan element J associted with SO(5)/SO(2) × SO(3) are

presented by

q =




0 q2 q3 q4 0

p2 0 0 0 q4
p3 0 0 0 −q3
p4 0 0 0 q2
0 p4 −p3 p2 0



, J = diag (1, 0, 0, 0,−1).

Let us consider several examples.

Example 3.1. Let the following Z2 reduction be given

KU †(x, λ∗)K−1 = U(x, λ) ⇒ Kq†(x)K−1 = q(x), KJK−1 = J (19)

with K = diag (ε1, ε2, 1, ε2, ε1), ε1,2 = ±1. Hence we have the following

relations

p2 = ε1ε2q
∗
2 , p3 = ε1q

∗
3 , p4 = ε1ε2q

∗
4 .

As a result one derives the following 3-component mKdV type system

q2,t + q2,xxx + 3ε1(q2q3)xq
∗
3 + 3ε1ε2q3q

∗
4q3,x + 6ε1ε2|q2|2q2,x = 0,

q3,t + q3,xxx + 3ε1(q2q4)xq
∗
3 + 3ε1ε2(q2q3)xq

∗
2 + 3ε1ε2(q3q4)xq

∗
4

+ 3ε1|q3|2q3,x = 0,

q4,t + q4,xxx + 3ε1(q3q4)xq
∗
3 + 3ε1ε2q

∗
2q3q3,x + 6ε1ε2|q4|2q4,x = 0.

In order to find its soliton solution we apply the dressing procedure with

a dressing factor to take values in SO(2r + 1), i.e. gTSg = S is satisfied.

More specifically, we choose Sij = (−1)i−1δi 6−j . This implies that

Z = S−1G, W = S−1F, α̃T = −α̃, β̃T = −β̃.
Taking into account the Z2 symmetry condition (18) we obtain that the

dressing factor (12) in the simplest case when rank(X) = rank(F) = 1

reads

g = 11 +
A

λ− λ+
+
KSA∗S−1K−1

λ− (λ+)∗
.

The resudue A admit the following decomposition

A = XF T , X =
2iνKF ∗(x, t)

F †(x, t)KF (x, t)
, F T (x) = F T

0 [χ+(x, λ+)]−1.

In the soliton case, i.e. q = 0 we have

χ+
0 (x, λ) = e−iλJx ⇒ F (x) = eiλ+JxF0.
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Thus we obtain a reflectionless potential. To derive the soliton solution it

remains to recover the time dependence using the formula

F0 → ei(λ+)3JtF0.

Taking into account all these facts we can derive the following expressions

for the 1-soliton solution

q2(x, t) = iνe−iµ(x−vt−δ0) ε1e
−ν(x−ut−ξ0)F2 + ε2e

ν(x−ut−ξ0)F∗
4

ε1 cosh 2ν(x− ut− ξ0) + C ,

q3(x, t) = iνe−iµ(x−vt−δ0) ε1e
−ν(x−ut−ξ0)F3 − eν(x−ut−ξ0)F∗

3

ε1 cosh 2ν(x− ut− ξ0) + C ,

q4(x, t) = iνe−iµ(x−vt−δ0) ε1e
−ν(x−ut−ξ0)F4 + ε2e

ν(x−ut−ξ0)F∗
2

ε1 cosh 2ν(x− ut− ξ0) + C ,

where u = ν2 − 3µ2, v = 3ν2 − µ2 and

C =
1

2
[ε2(|F2|2 + |F4|2) + |F3|2], Fk =

F0,k√
|F0,1||F0,5|

,

ξ0 =
1

2ν
ln

|F0,1|
|F0,5|

, µδ0 = − argF0,1 = argF0,5.

Example 3.2. Let us consider another example of a Z2 reduction

KU †(−λ∗)K−1 = U(λ) ⇒ Kq†K−1 = q, KJK−1 = −J. (20)

In order to fulfill the condition for J we choose K in the form

We1 =




0 0 0 0 −1

0 1 0 0 0

0 0 −1 0 0

0 0 0 1 0

−1 0 0 0 0




⇒ K =




0 0 0 0 −ε1
0 ε2 0 0 0

0 0 −1 0 0

0 0 0 ε2 0

−ε1 0 0 0 0



.

As a result the following relations hold true

q4 = −ε1ε2q∗2 , q3 = −ε1q∗3 , p4 = −ε1ε2p∗2, p3 = −ε1p∗3
and we have a 4-component mKdV system

q2,t + q2,xxx + 3(q2q3)xp3 − 3ε1ε2q3p
∗
2q3,x + 6q2p2q2,x = 0,

q3,t + q3,xxx − 3ε1ε2|q2|2xp3 + 3(q2q3)xp2 + 3(q∗2q3)xp
∗
2 + 3q3p3q3,x = 0,

p2,t + p2,xxx + 3(p2p3)xq3 − 3ε1ε2q
∗
2p3p3,x + 6q2p2p2,x = 0,

p3,t + p3,xxx − 3ε1ε2|p2|2xq3 + 3(p2p3)xq2 + 3(p∗2p3)xq
∗
2 + 3q3p3p3,x = 0.
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In this case the dressing factor satisfies

K[g†(−λ∗)]−1K−1 = g(λ).

After taking into account the explicit form of g

g = 11 +
A

λ− λ+
+

B

λ− λ−

we conclude that

λ± = ±iν±, A = −KSA∗S−1K−1, B = −KSB∗S−1K−1.

Like before the residues admit the decomposition A = XF T , B = Y GT

where

X = i(ν+ + ν−)
SG

F TSG
, Y = −i(ν+ + ν−)

SF

F TSG
,

F (x, t) = e−ν+JxF0, G(x, t) = eν−JxG0.

After substituting all expressions in

q = [J,A+B]

we reach to the following expressions for 1-soliton solution

q2 =
i(ν+ + ν−)

∆

(
e−ν−(x−u−t)F0,2G0,5 − eν+(x−u+t)G0,2F0,5

)
,

q3 =
i(ν+ + ν−)

∆

(
e−ν−(x−u−t)F0,3G0,5 − eν+(x−u+t)G0,3F0,5

)
,

p2 =
i(ν+ + ν−)

∆

(
e−ν+(x−u+t)F0,1G0,4 − eν−(x−u−t)G0,1F0,4

)
,

p3 =
i(ν+ + ν−)

∆

(
eν−(x−u−t)G0,1F0,3 − e−ν+(x−u+t)F0,1G0,3

)
,

∆ = e−(ν++ν−)(x−ut)F0,1G0,5 + e(ν
++ν−)(x−ut)F0,5G0,1 + C,

C = F0,3G0,3 − F0,2G0,4 − F0,4G0,2,

u± = (ν±)2, u = (ν+)2 + (ν−)2 − ν+ν−.

Example 3.3. Let us consider now two Z2 reductions acting simultane-

ously as follows

U †(x, λ∗) = U(x, λ) ⇒ q†(x) = q(x), (21)

UT (x,−λ) = −U(x, λ) ⇒ qT (x) = −q(x). (22)

As a consequence of both reductions we find that q∗k = −qk, k = 2, 3, 4, i.e.

qk = iqk. These 3 independent fields obey the following system of equations
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for three real functions:

q2,t + q2,xxx + 3(q2q3)xq3 + 3q3q4q3,x + 6q2
2q2,x = 0,

q3,t + q3,xxx + 3(q2q4)xq3 + 3(q2q3)xq2 + 3(q3q4)xq4 + 3q2
3q3,x = 0,

q4,t + q4,xxx + 3(q3q4)xq3 + 3q2q3q3,x + 6q2
4q4,x = 0.

In the present case there exist two essentially different types of soli-

ton solutions: doublet solitons (2 eigenvalues ±iν) and quadruplet solitons

(4 eigenvalues ±λ+,±(λ+)∗). The situation resembles that of sin-Gordon

equation or Z2 ×Z2 -reduced N -wave equations where there also exist two

types of solitons [12]. The doublet soliton can be obtained by using a 2-poles

dressing factor of the form

g = 11 +
A

λ− iν
+
SA∗S−1

λ+ iν
, A∗ = −A.

The result reads

q2(x, t) =
ν

cosh 2ν(x− ut− ξ0) + C
(
e−ν(x−ut−ξ0)F2 + eν(x−ut−ξ0)F4

)
,

q3(x, t) = −2ν sinh ν(x − ut− ξ0)F3

cosh 2ν(x− ut− ξ0) + C ,

q4(x, t) =
ν

cosh 2ν(x− ut− ξ0) + C
(
e−ν(x−ut−ξ0)F4 + eν(x−ut−ξ0)F2

)
,

C = F2
2 + F2

3 + F2
4 , u = ν2.

The quadruplet solution requires a dressing factor with 4-poles as follows

g = 11 +
A

λ− λ+
+

SA∗S

λ− (λ+)∗
− SAS

λ+ λ+
− A∗

λ+ (λ+)∗
.

Then the quadruplet soliton can be derived using next formula

q = 2Im [J,A− SAS].

Like before A = XF T is fulfilled and it can be proven that the factors now

are given by

X =
1

∆
(a∗F + bF ∗ − cSF ∗) , F = e[iµ(x−vt)−ν(x−ut)]JF0,

∆ = |a|2 + b2 − c2, a =
F TF

2λ+
, b =

F TF ∗

2iν
, c =

F TSF ∗

2µ
.

Finally we obtain

qk = 2Im [(a∗eiµ(x−vt)−ν(x−ut)F0,1 + be−iµ(x−vt)−ν(x−ut)F ∗
0,1

− ceiµ(x−vt)+ν(x−ut)F ∗
0,5)F0,k + (−1)k(a∗e−iµ(x−vt)+ν(x−ut)F0,5

+ beiµ(x−vt)+ν(x−ut)F ∗
0,5e

−iµ(x−vt)−ν(x−ut)F ∗
0,1)F0,k ].
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There exists another possible combination of two Z2 reductions: first of

the type (20) and the second one in the form (22). In this case one obtains

a coupled system of just two mKdV equations, see Ref. 13.

4. Conclusion

New two, three and four component generalizations of the classical mKdV

equation have been obtained by imposing additional Z2 and Z2 ×Z2 reduc-

tions on the generic Lax representation. The Lax representation of all equa-

tions is associated with symmetric spaces of the type SO(5)/SO(2)×SO(3).

This fact explains the variety of possible reductions which mKdV admits.

Following the same procedures one is able to derive mKdV equations as-

sociated with symmetric spaces SO(2r)/SO(2) × SO(2r − 2) as well. The

only difference consists in the choice of the matrix s0. By using the dressing

technique with a dressing factor which is compatible with the reductions

we have derived their soliton solutions.
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Let the curvature of a plane curve parametrized by arclength s be given as a
function of the Cartesian co-ordinates of the points the curve is passing through
in the Euclidean plane. Then, the co-ordinates of its position vector are deter-
mined by a system of equations arising from the Frenet-Serret relations that
can be regarded as a dynamical system of two degrees of freedom determining
the motion (trajectories) of a particle of unit mass, s playing the role of time.
Here, two classes of integrable systems of the foregoing type are identified. For
that purpose, we explore the variational symmetries of a generic system of this
kind with respect to Lie groups of point transformations of the involved vari-
ables. As a result, a set of sufficient conditions are found which ensure that
such a system possesses two functionally independent integrals of motion and,
consecutively, is integrable by quadratures. In each such case, we achieve either
an explicit parameterization of the corresponding trajectory curves in terms of

their curvatures or, at least, a separation of the dependent variables.

Keywords: Integrability; Dynamical systems; Plane curves; Parameterization.

1. Introduction

Suppose that the curvature κ of a plane curve Γ parametrized by arclength

s is given explicitly as a function of the arclength, i.e., the intrinsic equation

of the curve Γ is known. Then, it is possible to recover the position vector

x(s) = (x(s), z(s)) ∈ R2 of the curve in the plane R2 (up to a rigid motion)

by quadratures in the standard manner.
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First, recall that the unit tangent t (s) and normal n (s) vectors to the

curve Γ

t(s) = (ẋ(s), ż(s)), n(s) = (−ż(s), ẋ(s)) (1)

are related to the curvature κ(s) through the Frenet-Serret formulae

ṫ(s) = κ(s)n(s), ṅ(s) = −κ(s)t(s). (2)

Here and throughout this paper, the dots denote derivatives with respect

to s. Then, expressions (1) and the Frenet-Serret relations (2) provide the

following system of two second-order ordinary differential equations for the

components of the position vector

ẍ+ κ(s)ż = 0, z̈ − κ(s)ẋ = 0 (3)

which is readily integrable by quadratures to give the parametric equations

of the curve Γ. Indeed, in terms of the slope angle ϕ (s) of the curve Γ one

has

κ(s) = ϕ̇(s), ẋ(s) = cosϕ(s), ż(s) = sinϕ(s)

and hence, the parametric equations of the curve Γ can be expressed in the

form

x (s) =

∫
cosϕ (s) ds, z (s) =

∫
sinϕ (s) ds

where

ϕ (s) =

∫
κ (s) ds.

Suppose now that the intrinsic equation of the curve Γ is not known but

its curvature κ is given as a function of the Cartesian co-ordinates (x, z)

of the points the curve is passing through in the Euclidean plane R2, i.e.,

κ = K(x, z) is a known function. In this case, system (3) reads

ẍ+ K(x, z)ż = 0, z̈ −K(x, z)ẋ = 0 (4)

and here, each system of this form is referred to as a planar Frenet-Serret

system as it arises from the Frenet-Serret relations (2) for planar curves.

In this setting, unlike the case when the intrinsic equation of the curve Γ

is known, the integrability of a system of form (4) by quadratures is not

clear in advance. Below, we identify two types of functions K(x, z) which

are such that the solutions of the corresponding systems of form (4) can

be expressed explicitly by quadratures. Before proceeding with the details,

however, let us note the following.
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Although the considered systems (4) have appeared here in a purely

geometric context, it is convenient to regard them as dynamical systems of

two degrees of freedom determining the motion (trajectories) of particles

of unit mass, s playing the role of time. Actually, a generic system of this

type coincides with the system of Newton-Lorentz equations [1] describing

the planar non-relativistic motion of a charged particle of unit mass in the

transverse magnetic field which essential component is K(x, z). Due to this

analogy, it is clear that the system (4) is a Lagrangian system consisting of

the Euler-Lagrange equations associated with the action functional

A =

∫
L(x, z, ẋ, ż) ds (5)

in which the Lagrangian L can be taken in the form

L =
1

2

(
ẋ2 + ż2

)
+ F (x, z) ẋ+G (x, z) ż (6)

where the functions F (x, z) and G (x, z) are the non-zero components of

the vector potential and

K(x, z) =
∂F (x, z)

∂z
− ∂G (x, z)

∂x
· (7)

At the same time, Eqs. (4) are the equations of motion corresponding to

the Hamiltonian function

H =
1

2

(
p2

x + p2
z

)
− F (x, z) px −G (x, z) pz +

1

2

(
F (x, z)

2
+G (x, z)

2
)

which can be established directly by eliminating the momenta px and pz

from the associated canonical Hamilton’s equations and taking into account

relation (7).

This latter property of system (4) gives a hint of what one has to look

for in order to find integrable systems of this form. Indeed, according to the

famous Liouville theorem [2] if an n-degree-of-freedom Hamiltonian system

possesses n functionally independent integrals of motion in involution, then

it is integrable by quadratures, i.e., it is possible to express its general

solution in terms of integrals.

As far as v = ẋ2 + ż2 is an obvious integral of motion for any dynamical

system of form (4), the problem here is to find conditions under which a

system of that form has at least one more appropriate integral of motion.

To settle this matter, we explore the variational symmetry of a generic

system of form (4) with respect to Lie groups of point transformations of

the involved variables. As a result, a set of sufficient conditions are found

below which ensure that such a system admits a suitable second integral of

motion and, consequently, is integrable by quadratures.
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2. Variational Symmetries

By a variational symmetry of a system of form (4) we assume each local

one-parameter Lie group Gv of local point transformations of the involved

independent s and dependent variables x, z whose generator, which is a

vector field v of the form

v = ξ (s, x, z)
∂

∂s
+ η (s, x, z)

∂

∂x
+ ζ (s, x, z)

∂

∂z
(8)

(here ξ, η and ζ are certain smooth functions of the indicated variables),

is an infinitesimal divergence symmetry (see Definition 4.33 in Ref. 3) of

any action functional (5) with Eqs. (4) as the associated Euler-Lagrange

equations. It should be noted that if two action functionals lead to the same

system of Euler-Lagrange equations, then they have the same collection of

infinitesimal divergence symmetries.

According to the aforementioned definition and Theorem 4.7 in Ref. 3,

a system of form (4) admits a group Gv as a variational symmetry group

if and only if its generator v is such that the relation

E
[
pr(1) v (L) + (D ξ)L

]
= 0 (9)

holds, where L is the Lagrangian (6). Here, E is the Euler operator, pr(1) v

is the first prolongation of the vector field v and D is the total derivative

operator [3].

Thus, to find the variational symmetries of the systems of form (4), we

assume initially that the components ξ, η and ζ of the vector field (8) are

unknown functions of the variables s, x and z, and then write down the

left-hand side of (9) by using expression (6) and the prolongation formulae

(2.38) and (2.39) given in Ref. 3. Finally, equating the coefficients at the

derivatives of the dependent variables x and z to zero we arrive at the

following result (see also Refs. 4–8).

Proposition 2.1. A system of form (4) admits a one-parameter Lie group

Gv as a variational symmetry group if and only if the components ξ, η and

ζ of its generator (8) are of the form

ξ = 2α1s+ α0, η = α1x+ α2z + α3, ζ = α1z − α2x+ α4 (10)

where α0, . . . , α4 ∈ R, and the respective function K(x, z) is such that

v(K) + 2α1K = 0 (11)

i.e., the function K(x, z) is either an invariant of the admitted group Gv

(when α1 = 0) or an eigenfunction (when α1 6= 0) of its generator v.
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3. Conservation Laws

Actually, the interest in the determination of the variational symmetries

of a given system of differential equations is motivated by the fact that,

in virtue of Bessel-Hagen’s extension of Noether’s theorem (see Refs. 3, 9

and 10), to each variational symmetry of the regarded system corresponds

a conservation law (integral of motion) admitted by its smooth solutions.

Thus, if a given system of form (4) admits a vector field of form (8)

as an infinitesimal divergence symmetry, then the aforementioned theorem

implies that this system has an integral of motion of the form

ε = −1

2
ξ
(
ẋ2 + ż2

)
+ ηẋ+ ζż + h(x, z) (12)

where the function h(x, z) remains to be determined by the condition ε̇ = 0

on the solutions of the respective system.

In this setting, we can formulate the following results that unify and

generalize the achievements of various authors [4–8].

Proposition 3.1. Any system of form (4) admits the group Gv0 generated

by the vector field v0 = ∂/∂s as a variational symmetry group and the

corresponding integral of motion can be cast in the form v = ẋ2 + ż2.

Proof. This statement is a straightforward consequence of Proposition 2.1

and formula (12) and has already been mentioned in the Introduction.

Proposition 3.2. Each system of form (4) that admits a nontrivial group

Gv1 generated by a vector field v1 of the form (8), (10) with α0 = 0, i.e.,

v1 = 2α1s
∂

∂s
+ (α1x+ α2z + α3)

∂

∂x
+ (α1z − α2x+ α4)

∂

∂z
(13)

as a variational symmetry group has two integrals of motion v and ε that

can be written as follows

v = ẋ2 + ż2, ε = −1

2
ξ
(
ẋ2 + ż2

)
+ ηẋ+ ζż + h(x, z) (14)

where the function h(x, z) is such that

∂h (x, z)

∂x
+ ζ K(x, z) = 0,

∂h (x, z)

∂z
− ηK(x, z) = 0. (15)

Proof. From Proposition 3.1 we already know that v is an integral of

motion for any system of form (4). Moreover, under the above assumptions

it is easy to ascertain also that ε̇ = 0 on the solutions of system (4) provided

that relations (15) hold. This completes the proof but it should be noted

that relation (11) is just the compatibility condition for equations (15).
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4. Group Classification

Propositions 2.1 and 3.2 allow us to characterize the systems of form (4)

that have variational symmetries by representing the respective functions

K in terms of the canonical co-ordinates [11] of the admitted Lie group Gv1

and to express the corresponding integrals of motion (14) by means of these

functions. Below, we analyze in detail all possible cases.

First, suppose that a system of form (4) admits a vector field v1 specified

by formula (13) as an infinitesimal divergence symmetry and that α1 6= 0.

In this case, we can introduce new dependent variables

u =
1

α2
1 + α2

2

[
α1 arctan

(
ζ

η

)
+ α2 ln

√
η2 + ζ2

]
, (16)

w =
1

α2
1 + α2

2

[
α1 ln

√
η2 + ζ2 − α2 arctan

(
ζ

η

)]
(17)

which, as follows by relations (8), (10) and (13), obey

v1(u) = 0, v1(w) = 1

i.e., u and w are the canonical co-ordinates of the restriction of admitted

variational symmetry group Gv1 on the space of the dependent variables.

In these variables, condition (11) reads

∂K
∂w

+ 2α1K = 0

and the latter can be easily solved to obtain

K = K1 (u) exp [−2α1w] (18)

where K1 (u) is an arbitrary function of the indicated variable. At the same

time, relations (15) take the form

∂h

∂w
= 0,

∂h

∂u
−K1 (u) exp [2α2u] = 0

that immediately gives the following expression for the function h, namely

h = h1(u), h1(u) =

∫
K1 (u) exp [2α2u] du (19)

up to an arbitrary real constant that can be omitted. Consequently, the

two integrals of motion (14) read

v =
(
u̇2 + ẇ2

)
exp [2 (α2u+ α1w)] , (20)

ε = ẇ exp [2 (α2u+ α1w)] − α1s+ h1(u) (21)

in which the first one is taken into account for the derivation of the second.
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The following Proposition summarizes the above results.

Proposition 4.1. A system of form (4) admits a Lie group Gv1 generated

by a vector field v1 specified by formula (13) with α1 6= 0 as a variational

symmetry if and only if upon the transformation of the dependent variables

x and z to u and w, given by formulae (16) and (17), the function K has

the form (18). Each such system possesses two integrals of motion, given

by expressions (20) and (21), where the function h1(u) has the form (19).

Next, suppose that a system of form (4) admits a variational symmetry

group Gv2 generated by a vector field of the form

v2 = (α2z + α3)
∂

∂x
− (α2x− α4)

∂

∂z
(22)

with α2 6= 0. In this case, without loss of generality one may set α2 = 1

and transform the dependent variables to the following ones

r =

√
(x− α4)2 + (z + α3)2, ϑ = arctan

(
z + α3

x− α4

)
(23)

which, together with the independent variable s, are nothing else but the

canonical co-ordinates of the admitted symmetry group Gv2 . Indeed, in

view of relations (8), (10) and (22), we have

v2(s) = 0, v2(r) = 0, v2(ϑ) = −1.

Then, according to Proposition 2.1, cf. condition (11), the function K is an

invariant of the admitted symmetry group, i.e.,

K = K2(r) (24)

where K2(r) is an arbitrary function of the basic invariant r. Successively,

in the new dependent variables (23), equations (15) take the form

∂h

∂ϑ
= 0,

∂h

∂r
− rK2 (r) = 0

and can be readily solved to obtain

h = h2(r) =

∫
rK2 (r) dr (25)

again up to an arbitrary real constant that can be omitted. Consequently,

the integrals of motion (14) this time read

v = r2ϑ̇2 + ṙ2, (26)

ε = −r2ϑ̇+ h2(r). (27)
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This results can be stated as follows.

Proposition 4.2. A system of form (4) admits a Lie group Gv2 generated

by a vector field v2 specified by the formula (22) with α2 6= 0 as a variational

symmetry if and only if upon the change of the dependent variables x and

z to r and ϑ, given by formulae (23), the function K has exactly the form

(24). Each such system possesses two integrals of motion which are given

by expressions (26) and (27).

Finally, let us characterize the systems of form (4) that admit a Lie

group Gv3 generated by a vector field of the form

v3 = α3
∂

∂x
+ α4

∂

∂z
(28)

such that α2
3 +α2

4 6= 0 as a variational symmetry group. In these cases, the

canonical co-ordinates of the admitted variational symmetry group Gv3 are

s and

p =
α3x+ α4z

α2
3 + α2

4

, q =
α4x− α3z

α2
3 + α2

4

(29)

since, according to expressions (8), (10) and (28), they satisfy the relations

v3(s) = 0, v3(p) = 1, v3(q) = 0.

Here again, according to Proposition 2.1, the function K is an invariant of

the admitted symmetry group, i.e.,

K = K3(q) (30)

where K3(q) is an arbitrary function of the basic invariant q. In the new

dependent variables (29), equations (15) take the form

∂h

∂p
= 0,

∂h

∂q
+
(
α2

3 + α2
4

)
K3 (q) = 0

which immediately produces

h = h3(q) = −
(
α2

3 + α2
4

) ∫
K3 (q) dq (31)

up to a real constant that is omitted. Thus, in terms of the variables p and

q the integrals of motion (14) become

v =
(
α2

3 + α2
4

) (
ṗ2 + q̇2

)
, (32)

ε =
(
α2

3 + α2
4

)
(ṗ− h3(q)) (33)

where relation (31) is taken into account.
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The latter results can be formulated in the following way.

Proposition 4.3. A system of form (4) admits a Lie group Gv3 generated

by a vector field v3 such that α2
3 + α2

4 6= 0 as a variational symmetry if

and only if under the change of the dependent variables x and z to p and q,

given by formulae (29), the function K has the form (30). Each such system

possesses two integrals of motion given by expressions (32) and (33).

It is worth noting that each one of the Frenet-Serret systems described in

Propositions 4.1 – 4.3 admits a two-parameter variational symmetry group

whose two-dimensional Lie algebra is spanned by the vector field v0 and

one of the vector fields v1, v2 or v3. According to formulae (13), (22) and

(28), the respective commutators are

[v0,v1] = 2α1v0, [v0,v2] = 0, [v0,v3] = 0.

Thus, all possible cases for a two-dimensional Lie algebra, namely, to be

abelian or isomorphic to the one with a basis satisfying the first of the

above commutator relations (see Exercise 1.21 in Ref. 3), appear in our

group classification problem.

5. Integrable Systems

Once the dynamical systems of form (4) admitting variational symmetries

are identified and the corresponding integrals of motion are derived, we are

at the position to examine the problem of their integrability by quadratures.

The systems characterized in Proposition 4.1 possess two functionally

independent integrals of motion (20) and (21). Relation (21) can be cast in

the form

d

ds

(
1

2α1
exp [2α1w]

)
= (ε+ α1s− h1 (u)) exp [−2α2u]

which gives

w (s) =
1

2α1
ln

{
2α1

∫
(ε+ α1s− h1 (u (s))) exp [−2α2u (s)] ds

}
· (34)

In this way, one of the sought functions, i.e., w (s), is expressed by means

of the other one, u (s), by a quadrature. It is clear however that the substi-

tution of the expression (34) in the second integral of motion (20) or in the

respective equations (4) leads to a rather complicated integro-differential

equations for the function u (s). These equations can hardly be solved by

quadratures but, nevertheless, a separation of the variables for the systems

of the considered type is actually achieved.
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Next, let us specialize to the systems described in Proposition 4.2. Here,

we have at disposition the two functionally independent integrals of motion

(26) and (27). The second one readily gives the expression

ϑ̇ =
1

r2
(h2(r) − ε) (35)

which when substituted into the first yields

ṙ = ±1

r

√
vr2 − (h2(r) − ε)

2· (36)

Now, the integrability of the dynamical systems of the foregoing type by

quadratures is obvious. Indeed, combining relations (35) and (36) we have

ϑ = ±
∫

(h2(r) − ε)d r

r

√
vr2 − (h2(r) − ε)

2
+ ϑ0 (37)

where ϑ0 ∈ R, which, together with equation (36), completes the problem.

Finally, consider the systems of form (4) specified in Proposition 4.3. In

these cases, there are two functionally independent integrals of motion (32)

and (33) to deal with. By solving (33) one finds

ṗ =
ε

α2
3 + α2

4

+ h3(q) (38)

which substituted into (32) produces

q̇ = ±
√

v

α2
3 + α2

4

−
(

ε

α2
3 + α2

4

+ h3(q)

)2

(39)

and hence the solution of our problem is given by the relations (39) and

p = ±
∫

(ε+
(
α2

3 + α2
4

)
h3(q))dq√

v (α2
3 + α2

4) − (ε+ (α2
3 + α2

4)h3(q))
2

+ p0, p0 ∈ R (40)

which is obtained by combining the expressions (38) and (39).

6. Concluding Remarks

Two quite interesting classes of dynamical systems of the Frenet-Serret type

(4) that are integrable by quadratures are identified in the present paper.

These are the systems characterized in Propositions 4.2 and 4.3. In these

cases the explicit parametrization of the corresponding trajectory curves

can be obtained via direct integration of (37), respectively (40).

Two particular examples of plane curves associated with systems of the

aforementioned types — the so-called Lévy’s elasticae and the profile curves

of classic Delaunay’s surfaces — are considered in Ref. 12 where explicit

parametric equations of the respective curves are derived to the very end.
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