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Preface: What is Mathematics?

Günter M. Ziegler

This book is an Invitation to Mathematics.
But What is Mathematics? This is a question that asks us for a definition.

You could look in Wikipedia and find the following:

Mathematics is the study of quantity, structure, space, and change.
Mathematicians seek out patterns, formulate new conjectures, and
establish truth by rigorous deduction from appropriately chosen ax-
ioms and definitions.

Quantity, structure, space, and change? These words outline a vast field of
knowledge — and they are combined with a very narrow, mechanistic, and,
frankly, quite boring description of “what mathematicians do”. Should “what
mathematicians do” really be a part of the definition?

The definition given by the German Wikipedia is interesting in a different
way: it stresses that there is no definition of mathematics, or at least no
commonly accepted one. I translate:

Mathematics is the science that developed from the investigation
of figures and computing with numbers. For mathematics, there is
no commonly accepted definition; today it is usually described as a
science that investigates abstract structures that it created itself for
their properties and patterns.

Is this a good definition, a satisfactory answer to the question “What is
Mathematics”? I believe that Wikipedia (in any language) does not give a
satisfactory answer. At the same time, and much more importantly, high
school curricula do not give a satisfactory answer. Even the famous book
by Richard Courant and Herbert Robbins entitled “What is Mathematics?”
(and subtitled “An Elementary Approach to Ideas and Methods”) does not
give a satisfactory answer.

Günter M. Ziegler
Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 2,
14195 Berlin, Germany. e-mail: ziegler@math.fu-berlin.de
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viii Günter M. Ziegler

Perhaps it is impossible to give a good definition in a sentence or two. In-
deed, I claim that there cannot be one single answer that we could be content
with: mathematics in the 21-st century is a huge body of knowledge and a
very diverse area of study. There are thus so many ways to experience mathe-
matics — the arenas of national and international competitions, and research
experiences that range from years spent working in solitude (think of Andrew
Wiles, who proved Fermat’s Last Theorem, or Grigori Perelman, who proved
the Poincaré conjecture) to coffee break discussions at conferences to mas-
sive collaborations on internet platforms (such as the POLYMATH projects
initiated by Michael Nielsen, Timothy Gowers, Terence Tao, and others).

But perhaps the English Wikipedia is right in one aspect — that in ap-
proaching the science called mathematics one should look at the people who
do mathematics. So what is mathematics as an experience? What does it
mean to do mathematics?

This book is an invitation to mathematics comprised of contributions by
leading mathematicians. Many of them were initiated to mathematics, and
led to mathematics research, through competitions such as the mathematical
olympiads — one of the ways to get attracted to and drawn into mathematics.
This book builds a link between the “domesticated” mathematics taught at
high schools or used in competitions and the “wild” and “free” world of math-
ematical research. As a former high school student, successful participant at
competitions such as the IMO 1981, and now professor of mathematics who
is doing research and who is active in communicating mathematics to the
public, I have personally experienced all these kinds of mathematics, and I
am excited about this book and the link that it provides.

The starting point of this book was an event that I had the pleasure
of hosting (jointly with Martin Grötschel), namely the 50-th International
Mathematical Olympiad, held in Bremen in 2009, at which several premier
IMO gold medal winners got on stage to talk about the mathematics that
they studied, the mathematics that they are studying, and the mathematics
that they are interested in.

All this is reflected in this volume, which contains some of these IMO
presentations, as well as other facets of the mathematics research experience.
It was put together with admirable care, energy, and attention to detail by
Dierk Schleicher (one of the chief organizers of the 50-th IMO in Bremen) and
Malte Lackmann (a successful three-time IMO participant). Let me express
my gratitude to both of them for this volume, which I see as a book-length
exposition of an answer to the question “What is Mathematics?” — and let
me wish you an informative, enjoyable, and (in the proper sense of the word)
attractive reading experience.

Berlin, November 2010

Günter M. Ziegler



Welcome!

Dear Readers,

we are pleased that you have accepted our Invitation to Mathematics. This
is a joint invitation by a number of leading international mathematicians,
together with us, the editors. This book contains fourteen individual invita-
tions, written by different people in different styles, but all of us, authors and
editors alike, have one thing in common: we have a passion for mathematics,
we enjoy being mathematicians, and we would like to share that enjoyment
with you, our readers.

Whom is this book written for? Broadly speaking, this book is written for
anyone with an interest in mathematics — yes, for people just like you. More
specifically, we have in mind young students at high schools or universities
who know mathematics through their classes and possibly through mathe-
matics competitions that they have participated in, either on a local level
or all the way up to the level of international olympiads. Mathematics has
different flavors: the kind of mathematics found at high school is distinctly
different from that found at competitions and olympiads, and both are quite
different from mathematics at the research level. Of course, there are simi-
larities too — after all, it’s all mathematics we’re talking about.

The idea of this book is to allow professional research mathematicians to
share their experience and some aspects of their mathematical thinking with
our readers. We made a serious effort to reach out to you and write at a level
that, for the most part, should be accessible to talented and, most important-
ly, interested young students in their final years of high school and beyond.
Quite importantly, this book is also meant to address high school math teach-
ers, in the hope that they find our invitation interesting as well and share this
interest with their students. And of course, we hope that even active research
mathematicians will find this book inspiring and, in reading it, will gain new
insights into areas outside of their specialization — just as we learned quite
a bit of mathematics ourselves in the process of editing this book.

ix



x Malte Lackmann and Dierk Schleicher

Fourteen invitations to mathematics. You will find that the individual invita-
tions in this book are as varied as the personalities of their authors and their
mathematical tastes and preferences: mathematics is a place for very different
people. All of our fourteen invitations are independent from each other, and
you are welcome to browse through them and start with those that you like
best, or that you find most accessible, and continue in your preferred order
— much as the white “random path” on the book cover that connects the
pictures from the different contributions. (We ordered the contributions by
attempting to bring together those that discuss related topics, but of course
there would have been many equally good ways to order them.) If you get
stuck at one particular invitation, you may want to continue with another.
You may discover, though, that some of those that you found difficult at first
may become easier, and perhaps more beautiful, once you’ve learned some
more mathematics, or gotten more experience with other invitations, or sim-
ply had some time to digest them. Indeed, a number of our contributions are
invitations to active reading, and ask you to think along seriously: after all,
thinking is what most of us do for much of our professional research time.

Although we encourage you to start by reading those invitations that you
prefer, we would like to equally strongly encourage you to fully use the op-
portunity that this book provides, with the broad area of mathematics that
it covers. In high school or during competitions and olympiads, you may have
developed preferences for some areas of mathematics or dislikes for others;
but mathematics is a broad and rich field, and it is dangerous to become spe-
cialized too early, before having seen the beauty of many other mathematical
areas. We have often spoken to young university students who thought they
were sure they wanted to work in area X and thus refused to take courses in
other areas, and advised them to get at least some background in areas Y
and Z. Often enough, it turned out that these areas weren’t so bad after all,
and the students ended up doing their research in areas Y′ or Z′, or possibly
Ω. And even for those few who, after having explored different branches of
mathematics, ended up working in exactly the area X that they liked best as
a young student, it can only be good to take along as many ideas from other
areas of mathematics as possible. In modern mathematics, there is increas-
ingly more interaction between different branches that seemed to be drifting
apart some time ago. This can be seen quite well in the articles of our book:
many contributions cover (apparently) quite different aspects of mathemat-
ical research and show surprising links between them. In addition, there are
many links between the different contributions, so that you will often have
the feeling of meeting similar ideas in quite different contexts. Rather than
telling you where, we encourage you to read and discover this on your own.

To paraphrase the spirit of the book, the title is not “Fourteen invitations
to mathematics”, but “An invitation to mathematics”, and we hope that
you can get a glimpse of mathematics that has as much breadth and variety
as we managed to fit between the covers of this book. (Mathematics itself
is much broader, of course, and we thought of many further contributions.
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If you feel that an important aspect of mathematics is missing here, and
that we overlooked a particular person that should have contributed another
invitation to mathematics, then please let us know — and help us convince
this person to share this invitation with us for the next edition of this book!)

The inspiration for this book. This book was inspired by the 50-th Interna-
tional Mathematical Olympiad that took place in 2009 in Bremen, Germany.
Both of us were quite involved in this olympiad: one as a senior organizer,
the other as a participant.

One highlight of this olympiad was the 50-th IMO anniversary celebration
ceremony, to which six of the world’s leading international research mathe-
maticians were invited, all of whom had personal experience with the IMO:
Béla Bollobás, Timothy Gowers, László Lovász, Stanislav Smirnov, Terence
Tao, and Jean-Christophe Yoccoz. All six accepted our invitations! They gave
wonderful presentations and were celebrated by the IMO contestants and
delegates like movie stars. We tried to provide ample opportunity for IMO
contestants and delegates to get in contact with our guests of honor and to
have a chance to interact personally with them. This was a most memorable
and exciting event that created lasting memories for all of us. We hope that
this spirit of personal interaction and invitation will also shine through in
this book and its individual contributions.

In addition to the contributions of these guests of honor, three more of
our invitations have their roots at the IMO 2009: over the course of three
evenings, while the solutions of the contestants were being evaluated, we
offered mathematics talks to them (given by Michael Stoll, Marcel Oliver, and
Dierk Schleicher). Another contribution (by Alexander Razborov) is based on
a lecture series given at the “Summer School on Contemporary Mathematics”
held in Dubna/Moscow in 2009. Whatever their inspirations, all contributions
were written specifically for this occasion (earlier versions of the contributions
by Bollobás, Gowers, Lovász, Smirnov, Tao, and Yoccoz appeared in the
report of the 50-th IMO).

This book goes far beyond a single event, exciting as it was, and tries
to build lasting links between high schools, competitions, and mathematical
research. To use a metaphor of Jószef Pelikán, chairman of the IMO advisory
board, research mathematics is like wildlife in uncharted territory, whereas
olympiad problems are like animals in a zoo: even though they are presented
as animals from the wild, they are constrained to a very restrictive cage.
No lion can show its full splendor and strength in the few square meters
enclosed by its cage, just as mathematics cannot show its full beauty within
the rigid boundaries of competition rules. For young students who have been
successful at olympiads, it is important that they learn to leave the olympiad
microcosm, to get used to dealing with real mathematical wildlife, and to
accept new challenges.

Advertising mathematics, or being a mathematician. We thought about using
this introduction to advertise mathematics, including a recitation of the usual



xii Malte Lackmann and Dierk Schleicher

claims about how important mathematics is and how much our culture is
built upon mathematical thinking. However, we believe that our readers do
not need to be convinced, and that the invitations speak for the beauty
and value of mathematics by themselves. Nevertheless, we are aware that
many students have parents or counselors who tell them that they should
study something that will one day earn them money or that has safer job
prospects. To them, we would like to say that young people will be most
successful in areas that they enjoy the most, because it is only there that
they can develop their full potential. Parents1, please don’t worry: all the
students from various countries who wanted to become mathematicians and
that we advised to pursue their goals despite the concerns of their parents
have become quite successful in their fields, in academia, in industry, or in
business, and none of them went unemployed.

What makes this book special. First and foremost, our authors include some
of the world’s leading mathematicians, who are sharing some of their math-
ematics with you, our readers. This book wants to build a bridge between
active research mathematicians and young students; it was realized by a team
of people that come from both ends of this bridge: authors, editors, and test
readers.

Indeed, we have not made it easy for our authors to write their contri-
butions: we adopted an editing style that Timothy Gowers, in the preface
to his Princeton Companion to Mathematics, describes as “active interven-
tionist editing”. All contributions have been carefully read by us and by a
team of young test readers at the age of the intended readership, and we or
the authors improved whatever our team could not understand, until things
became clear. In this way, we hope that contributions that were meant to be
comprehensible to our readers actually are: the only way to find out was by
asking a number of test readers, and that’s what we did.

This resulted in numerous and substantial requests for changes in most
contributions. All authors accepted these requests, and many were extremely
pleased with the feedback they received from us. One author, who was initially
somewhat skeptical about this process, wrote “I am extremely impressed by
the quality of the job they have done — it greatly surpasses the average level
of referee reports I have seen in all three major capacities (editor, author or,
well, referee)”. In the preface to his Princeton Companion, Timothy Gowers
writes “given that interventionist editing of this type is rare in mathematics,
I do not see how the book can fail to be unusual in a good way”. With due
modesty, we hope that this applies to some extent to this book as well, and

1 Additional evidence for parents: just a year ago, the Wall Street Journal published
a ranking of 200 jobs according to five important criteria: work environment, income,
employment outlook, physical demands, and stress. The jobs investigated included
such different occupations as computer programmer, motion picture editor, physicist,
astronomer, and lumber jack. What are the top three jobs? In order, they are: mathe-
matician, actuary, and statistician. All three jobs are based on a strong mathematics
education. (Source: http://online.wsj.com/article/SB123119236117055127.html.)
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that our readers will appreciate the outcome of the substantial efforts of our
authors and our editorial team — our test readers, at least, told us many
times that they did.

We would like to conclude this Welcome with quotations from two more
of our test readers: “I never thought that the topic XY could be exciting to
read; well, now I know, it can be!” Another one wrote, after reading a different
contribution: “I really found this text very interesting to read; and this really
means something because this is not an area I thought I was interested in!”

This is the spirit in which we would like to encourage you to read this
book.

Bremen, November 2010

Malte Lackmann and Dierk Schleicher
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Structure and Randomness in the Prime
Numbers

Terence Tao

Abstract. We give a quick tour through some topics in analytic prime
number theory, focusing in particular on the strange mixture of order and
chaos in the primes. For instance, while primes do obey some obvious patterns
(e.g. they are almost all odd), and have a very regular asymptotic distribution
(the prime number theorem), we still do not know a deterministic formula
to quickly generate large numbers guaranteed to be prime, or to count even
very simple patterns in the primes, such as twin primes p, p+2. Nevertheless,
it is still possible in some cases to understand enough of the structure and
randomness of the primes to obtain some quite nontrivial results.

1 Introduction

The prime numbers 2, 3, 5, 7, . . . are one of the oldest topics studied in math-
ematics. We now have a lot of intuition as to how the primes should behave,
and a great deal of confidence in our conjectures about the primes... but we
still have a great deal of difficulty in proving many of these conjectures! Ulti-
mately, this is because the primes are believed to behave pseudorandomly in
many ways, and not to follow any simple pattern. We have many ways of es-
tablishing that a pattern exists... but how does one demonstrate the absence
of a pattern?

In this article I will try to convince you why the primes are believed to
behave pseudorandomly, and how one could try to make this intuition rig-
orous. This is only a small sample of what is going on in the subject; I am
omitting many major topics, such as sieve theory or exponential sums, and
am glossing over many important technical details.

Terence Tao
Department of Mathematics, UCLA, Los Angeles CA 90095-1555, USA.
e-mail: tao@math.ucla.edu

D. Schleicher, M. Lackmann (eds.), An Invitation to Mathematics,
DOI 10.1007/978-3-642-19533-4 1, © Springer-Verlag Berlin Heidelberg 2011
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2 Terence Tao

2 Finding Primes

It is a paradoxical fact that the primes are simultaneously very numerous,
and hard to find. On the one hand, we have the following ancient theorem [2]:

Theorem 1 (Euclid’s Theorem). There are infinitely many primes.

In particular, given any k, there exists a prime with at least k digits. But
there is no known quick and deterministic way to locate such a prime! (Here,
“quick” means “computable in a time which is polynomial in k”.) In par-
ticular, there is no known (deterministic) formula that can quickly generate
large numbers that are guaranteed to be prime. Currently, the largest known
prime is 243,112,609 − 1, about 13 million digits long [3].

On the other hand, one can find primes quickly by probabilistic methods.
Indeed, any k-digit number can be tested for primality quickly, either by prob-
abilistic methods [10, 12] or by deterministic methods [1]. These methods are
based on variants of Fermat’s little theorem, which asserts that an ≡ a mod n
whenever n is prime. (Note that an mod n can be computed quickly, by first
repeatedly squaring a to compute a2j

mod n for various values of j, and then
expanding n in binary and multiplying the indicated residues a2j

mod n to-
gether.)

Also, we have the following fundamental theorem [8, 14, 16]:

Theorem 2 (Prime Number Theorem). The number of primes less than
a given integer n is (1 + o(1)) n

log n
, where o(1) tends to zero as n → ∞.

(We use log to denote the natural logarithm.) In particular, the probability
of a randomly selected k-digit number being prime is about 1

k log 10
. So one

can quickly find a k-digit prime with high probability by randomly selecting
k-digit numbers and testing each of them for primality.

Is Randomness Really Necessary? To summarize: We do not know a
quick way to find primes deterministically. However, we have quick ways to
find primes randomly.

On the other hand, there are major conjectures in complexity theory, such
as P = BPP, which assert (roughly speaking) that any problem that can
be solved quickly by probabilistic methods can also be solved quickly by
deterministic methods.1

These conjectures are closely related to the more famous conjecture
P �= NP, which is a USD $ 1 million Clay Millennium prize problem.2

1 Strictly speaking, the P = BPP conjecture only applies to decision problems —
problems with a yes/no answer —, rather than search problems such as the task of
finding a prime, but there are variants of P = BPP, such as P = promise-BPP, which
would be applicable here.
2 The precise definitions of P, NP, and BPP are quite technical; suffice to say that
P stands for “polynomial time”, NP stands for “non-deterministic polynomial time”,
and BPP stands for “bounded-error probabilistic polynomial time”.
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Many other important probabilistic algorithms have been derandomised
into deterministic ones, but this has not been done for the problem of finding
primes. (A massively collaborative research project is currently underway to
attempt this [11].)

3 Counting Primes

We’ve seen that it’s hard to get a hold of any single large prime. But it is
easier to study the set of primes collectively rather than one at a time.

An analogy: it is difficult to locate and count all the grains of sand in a box,
but one can get an estimate on this count by weighing the box, subtracting
the weight of the empty box, and dividing by the average weight of a grain
of sand. The point is that there is an easily measured statistic (the weight of
the box with the sand) which reflects the collective behaviour of the sand.

For instance, from the fundamental theorem of arithmetic one can establish
Euler’s product formula

∞∑

n=1

1
ns

=
∏

p prime

(
1 +

1
ps

+
1

p2s
+

1
p3s

+ . . .

)
=

∏

p prime

(
1 − 1

ps

)−1

(1)

for any s > 1 (and also for other complex values of s, if one defines one’s
terms carefully enough).

The formula (1) links the collective behaviour of the primes to the be-
haviour of the Riemann zeta function

ζ(s) :=
∞∑

n=1

1
ns

,

thus ∏

p prime

(
1 − 1

ps

)
=

1
ζ(s)

. (2)

One can then deduce information about the primes from information about
the zeta function (and in particular, its zeroes).

For instance, from the divergence of the harmonic series
∑∞

n=1
1
n = +∞

we see that 1
ζ(s)

goes to zero as s approaches 1 (from the right, at least).
From this and (2) we already recover Euclid’s theorem (Theorem 1), and in
fact obtain the stronger result of Euler that the sum

∑
p

1
p

of reciprocals of
primes diverges also.3

In a similar spirit, one can use the techniques of complex analysis, com-
bined with the (non-trivial) fact that ζ(s) is never zero for s ∈ C when

3 Observe that log 1/ζ(s) = log
Q

p(1 − p−s) =
P

p log(1 − p−s) ≥ −2
P

p p−s.
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Re(s) ≥ 1, to establish the prime number theorem (Theorem 2) [16]; indeed,
this is how the theorem was originally proved [8, 14] (and one can conversely
use the prime number theorem to deduce the fact about the zeroes of ζ).

The famous Riemann hypothesis asserts that ζ(s) is never zero when4

Re(s) > 1/2. It implies a much stronger version of the prime number theorem,
namely that the number of primes less than an integer n > 1 is given by
the more precise formula5

∫ n

0
dx

log x
+ O(n1/2 log n), where O(n1/2 log n) is a

quantity which is bounded in magnitude by Cn1/2 log n for some absolute
constant C (for instance, one can take C = 1

8π
once n is at least 2657 [13]).

The hypothesis has many other consequences in number theory; it is another
of the USD $ 1 million Clay Millennium prize problems. More generally, much
of what we know about the primes has come from an extensive study of the
properties of the Riemann zeta function and its relatives, although there are
also some questions about primes that remain out of reach even assuming
strong conjectures such as the Riemann hypothesis.

4 Modeling Primes

A fruitful way to think about the set of primes is as a pseudorandom set —
a set of numbers which is not actually random, but behaves like one.

For instance, the prime number theorem asserts, roughly speaking, that a
randomly chosen large integer n has a probability of about 1/ log n of being
prime. One can then model the set of primes by replacing them with a random
set of integers, in which each integer n > 1 is selected with an independent
probability of 1/ log n; this is Cramér’s random model.

This model is too crude, because it misses some obvious structure in the
primes, such as the fact that most primes are odd. But one can improve the
model to address this, by picking a model where odd integers n are selected
with an independent probability of 2/ log n and even integers are selected
with probability 0.

One can also take into account other obvious structure in the primes, such
as the fact that most primes are not divisible by 3, not divisible by 5, etc.
This leads to fancier random models which we believe to accurately predict
the asymptotic behaviour of primes.

4 A technical point: the sum
P∞

n=1
1

ns does not converge in the classical sense when
Re(s) ≤ 1, so one has to interpret this sum in a fancier way, or else use a different
definition of ζ(s) in this case; but I will not discuss these subtleties here.
5 The Prime Number Theorem in the version of Theorem 2 says that, as n → ∞, the
number of correct decimal digits in the estimate n/ log n tends to infinity, but it does
not relate the number of correct digits to the total number of digits of π(n). If the
Riemann hypothesis is correct, then

R n
0 dx/ log x correctly predicts almost half of the

digits in π(n).
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For example, suppose we want to predict the number of twin primes n,
n + 2, where n ≤ N for a given threshold N . Using the Cramér random
model, we expect, for any given n, that n, n+2 will simultaneously be prime
with probability 1

log n log(n+2) , so we expect the number of twin primes to be
about6

N∑

n=1

1
log n log(n + 2)

≈ N

log2 N
.

This prediction is inaccurate; for instance, the same argument would also
predict plenty of pairs of consecutive primes n, n + 1, which is absurd. But if
one uses the refined model where odd integers n are prime with an indepen-
dent probability of 2/ log n and even integers are prime with probability 0,
one gets the slightly different prediction

∑

1≤n≤N
n odd

2
log n

× 2
log(n + 2)

≈ 2
N

log2 N
.

More generally, if one assumes that all numbers n divisible by some prime
less than a small threshold w are prime with probability zero, and are prime
with a probability of

∏
p<w(1 − 1

p
)−1 × 1

log n
otherwise, one is eventually led

to the prediction

2

⎛

⎜⎝
∏

p<w
p odd

p − 2
p

(
1 − 1

p

)−2

⎞

⎟⎠
N

log2 N
= 2

⎛

⎜⎝
∏

p<w
p odd

(
1 − 1

(p − 1)2

)
⎞

⎟⎠
N

log2 N

(for p an odd prime, among p consecutive integers, only p − 2 have a chance
to be the smaller number in a pair of twin primes). Sending w → ∞, one is
led to the asymptotic prediction

Π2
N

log2 N

for the number of twin primes less than N , where Π2 is the twin prime
constant

Π2 := 2
∏

p odd prime

(
1 − 1

(p − 1)2

)
≈ 1.32032 . . . .

For N = 1010, this prediction is accurate to four decimal places, and is be-
lieved to be asymptotically correct. (This is part of a more general conjecture,
known as the Hardy-Littlewood prime tuples conjecture [9].)

6 We use the symbol ≈ in the sense that the quotient of the two quantities tends to
1 as N → ∞.
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Similar arguments based on random models give convincing heuristic sup-
port for many other conjectures in number theory, and are backed up by
extensive numerical calculations.

5 Finding Patterns in Primes

Of course, the primes are a deterministic set of integers, not a random one,
so the predictions given by random models are not rigorous. But can they be
made so?

There has been some progress in doing this. One approach is to try to
classify all the possible ways in which a set could fail to be pseudorandom
(i.e. it does something noticeably different from what a random set would
do), and then show that the primes do not behave in any of these ways.

For instance, consider the odd Goldbach conjecture: every odd integer
larger than five is the sum of three primes. If, for instance, all large primes
happened to have their last digit equal to one, then Goldbach’s conjecture
could well fail for some large odd integers whose last digit was different from
three. Thus we see that the conjecture could fail if there was a sufficiently
strange “conspiracy” among the primes.

However, one can rule out this particular conspiracy by using the prime
number theorem in arithmetic progressions, which tells us that (among other
things) there are many primes whose last digit is different from 1. (The proof
of this theorem is based on the proof of the classical prime number theorem.)

Moreover, by using the techniques of Fourier analysis (or more precisely,
the Hardy-Littlewood circle method), we can show that all the conspiracies
which could conceivably sink Goldbach’s conjecture (for large integers, at
least) are broadly of this type: an unexpected “bias” for the primes to prefer
one remainder modulo 10 (or modulo another base, which need not be an
integer), over another.

Vinogradov [15] eliminated each of these potential conspiracies, and estab-
lished Vinogradov’s theorem: every sufficiently large odd integer is the sum
of three primes.7 This method has since been extended by many authors, to
cover many other types of patterns; for instance, related techniques were used
by Ben Green and myself [4] to establish that the primes contain arbitrarily
long arithmetic progressions, and in subsequent work of Ben Green, myself,
and Tamar Ziegler [5, 6, 7] to count a wide range of other additive patterns
also. (Very roughly speaking, known techniques can count additive patterns
that involve two independent parameters, such as arithmetic progressions
a, a + r, . . . , a + (k − 1)r of a fixed length k.)

7 Vinogradov himself could not specify explicitly what “sufficiently large” is. Soon
after, his student Borozdin showed that numbers greater than 3315 ≈ 106 846 169 are
“sufficiently large”. Meanwhile, this bound has been lowered to e3 100 ≈ 101 346 —
still far beyond reach for computer tests for the smaller numbers.
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Unfortunately, “one-parameter” patterns, such as twins n, n + 2, remain
stubbornly beyond current technology. There is still much to be done in the
subject!
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[6] Ben Green and Terence Tao, The Möbius function is asymptotically orthogonal

to nilsequences. Preprint. http://arxiv.org/abs/0807.1736, 22 pages (April 26,
2010)

[7] Ben Green, Terence Tao and Tamar Ziegler, The inverse conjecture for the Gow-
ers norm. Preprint

[8] Jacques Hadamard, Sur la distribution des zéros de la fonction ζ(s) et ses
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199–220 (1896)

[9] Godfrey H. Hardy and John E. Littlewood, Some problems of ‘partitio numero-
rum’. III. On the expression of a number as a sum of primes. Acta Mathematica
44, 1–70 (1923)

[10] Gary L. Miller, Riemann’s hypothesis and tests for primality. Journal of Com-
puter and System Sciences 13(3), 300–317 (1976)

[11] Polymath4 project: Deterministic way to find primes. http://michaelnielsen.org/
polymath1/index.php?title=Finding primes

[12] Michael O. Rabin, Probabilistic algorithm for testing primality. Journal of Num-
ber Theory 12, 128–138 (1980)

[13] Lowell Schoenfeld, Sharper bounds for the Chebyshev functions θ(x) and ψ(x).
II. Mathematics of Computation 30, 337–360 (1976)

[14] Charles-Jean de la Vallée Poussin, Recherches analytiques de la théorie des nom-
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How to Solve a Diophantine Equation

Michael Stoll

Abstract. We introduce Diophantine equations and show evidence that it
can be hard to solve them. Then we demonstrate how one can solve a specific
equation related to numbers occurring several times in Pascal’s Triangle with
state-of-the-art methods.

1 Diophantine Equations

The topic of this text is Diophantine Equations. A Diophantine equation is
an equation of the form

F (x1, x2, . . . , xn) = 0 ,

where F is a polynomial with integer coefficients, and one asks for solu-
tions in integers (or rational numbers, depending on the problem). They are
named after Diophantos of Alexandria on whom not much is known with any
certainty. Most likely he lived around 300 AD. He wrote the Arithmetika,
a text consisting of 13 books, a number of which have been preserved. In
this text, he explains through many examples ways of solving certain kinds
of equations like the above in rational numbers. Diophantos was also one
of the first to introduce symbolic notation for the powers of an indetermi-
nate.

To give you a flavor of this kind of question, let me show you some ex-
amples. Ideally, you should cover up the part of the page below the equation
and try to find a solution for yourself before you read on. The first equation
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is
x3 + y3 + z3 = 29 ,

an equation in three unknowns, to be solved in (not necessarily positive)
integers. I trust it did not take you very long to come up with a solution like
(x, y, z) = (3, 1, 1) or maybe (4,−3,−2). Now let us look at

x3 + y3 + z3 = 30 .

Try to solve it for a while before you look up a solution in this footnote1.
This solution is the smallest and was found by computer search in July 1999
and published in 2007 [1]. This already indicates that it may be quite hard
to find a solution to a given Diophantine equation. Now consider

x3 + y3 + z3 = 31 .

Did you try to solve it? You should have come to the conclusion that there
is no solution: the third power of an integer is always ≡ −1, 0 or 1 mod 9,
so a sum of three cubes can never be ≡ 4 or 5 mod 9. Since 31 ≡ 4 mod 9,
the number 31 cannot be a sum of three cubes. If we replace 31 with 32, the
same argument applies. So we consider

x3 + y3 + z3 = 33

next. If you were able to solve this, you should consider making Diophantine
equations your research area. The sad state of affairs is that it is an open
problem whether this equation has a solution in integers or not!2

So the following looks like an interesting problem: to decide if a given
Diophantine equation is solvable or not. In fact, this problem appears on the
most famous list of mathematical problems, namely the 23 problems David
Hilbert stated in his address to the International Congress of Mathematicians
in Paris in 1900 as questions worth working on in the new century. The
description of the tenth problem in Hilbert’s list reads thus (in the German
original [3], see [4] for an English translation of Hilbert’s address):

1 x = 2 220 422 932, y = −2 218 888 517, z = −283 059 965.
2 This introduction was inspired by a talk Bjorn Poonen gave at a workshop in
Warwick in 2008.
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Here is an English translation.

Given a Diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: to devise a
process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.

In modern terminology, Hilbert asks for an algorithm that, given an ar-
bitrary polynomial F (x1, . . . , xn) with integral coefficients, decides whether
the equation

F (x1, . . . , xn) = 0

can be solved in integers. This is commonly known as Hilbert’s Tenth Problem.
It is not only the shortest problem on Hilbert’s list, it is also the only decision
problem3, so it is somewhat special. From the wording it can be inferred that
Hilbert believed in a positive solution to his problem: such an algorithm had
to exist. In fact, at the end of the introductory part of his speech, before
turning to the list of problems, he says

. . . in der Mathematik giebt es kein Ignorabimus!

(There is no ‘Ignorabimus’4 in mathematics.) This indicates that Hilbert was
convinced that every mathematical problem must have a definite solution.

The simple examples I have shown at the beginning may (or should) have
given you a feeling that this problem may actually be very hard. This is also
what happened historically. People got more and more convinced that the
answer to Hilbert’s Tenth Problem was likely to be negative: an algorithm
conforming to the given specification does not exist. Now if an algorithm
does exist that performs a certain task, it is fairly clear how one can prove
this fact. Namely, one has to find such an algorithm and write it down, then
everybody will agree that it indeed is an algorithm solving the given problem.
To show that such an algorithm does not exist is a quite different matter.
One needs some way of getting a handle on all possible algorithms, so that
one can show that none of them solves the problem. The relevant theory,
which is a branch of mathematical logic, did not yet exist when Hilbert gave
his talk. It was developed a few decades later, leading to such famous results
as Gödel’s Incompleteness Theorem, which definitely showed that there is an
Ignorabimus in mathematics. Indeed, work of several people, most notably
Martin Davis, Hilary Putnam and Julia Robinson, made it possible for Yuri
Matiyasevich to finally prove in 1970 the following result.5

Theorem 1 (Davis, Putnam, Robinson; Matiyasevich).
The solvability of Diophantine equations is undecidable.

3 A decision problem asks for an algorithm that decides if a given element of a
specified set has a specified property.
4 This Latin word means ‘we will not know’.
5 See [6] for an accessible account of the problem and its solution.
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In fact, he proved a much stronger result, which implies for example that
there is an explicit polynomial F (x0, x1, . . . , xn) such that there is no algo-
rithm that, given a ∈ Z as input, decides whether or not there is an integral
solution to

F (a, x1, . . . , xn) = 0 .

Note that if a Diophantine equation is solvable, then we can prove it, since
we will eventually find a solution by searching through the countably many
possibilities (but we do not know beforehand how far we have to search). So
the really hard problem is to prove that there are no solutions when this is
the case. A similar problem arises when there are finitely many solutions and
we want to find them all. In this situation one expects the solutions to be
fairly small.6 So usually it is not so hard to find all solutions; what is difficult
is to show that there are no others.

So, given Theorem 1, should we give up all attempts to solve Diophantine
equations, convinced that the task is completely hopeless? That would be
premature. We might still be able to prove positive results when we restrict
the set of equations in some way. For example, there are quite good reasons
to believe that there should be a positive answer to Hilbert’s question for
equations in two variables. In the remainder of this contribution, we will
consider one such equation as an example case and show with what kind of
methods it can be attacked and solved.

2 The Example Equation

The equation we want to consider here is motivated by the following question.
Consider Pascal’s Triangle (Fig. 1). Which natural numbers occur several
times in this triangle, if we disregard the outer two “layers” (1, 1, 1, . . . and
1, 2, 3, . . . ) on either side and the obvious reflectional symmetry?

In other words, what are the integral solutions to the equation
(

y

k

)
=

(
x

l

)
, (1)

subject to the conditions 1 < k ≤ y/2, 1 < l ≤ x/2 and k < l?

6 The large solution to x3 + y3 + z3 = 30 is no counterexample to this statement,
since there should be infinitely many solutions in this case.
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Fig. 1. Pascal’s Triangle.

The following solutions are known.
(

16
2

)
=

(
10
3

)
,

(
56
2

)
=

(
22
3

)
,

(
120
2

)
=

(
36
3

)
,

(
21
2

)
=

(
10
4

)
,

(
153
2

)
=

(
19
5

)
,

(
78
2

)
=

(
15
5

)
=

(
14
6

)
,

(
221
2

)
=

(
17
8

)
,

(
F2i+2F2i+3

F2iF2i+3

)
=

(
F2i+2F2i+3 − 1
F2iF2i+3 + 1

)
for i = 1, 2, . . . ,

where Fn is the n-th Fibonacci number.
Equation (1) is not a Diophantine equation according to our definition,

since it depends on k and l in a non-polynomial way. Also, it is way too hard
to solve. So we specialize by fixing k and l. The cases

(k, l) ∈ {(2, 3), (2, 4), (2, 6), (2, 8), (3, 4), (3, 6), (4, 6), (4, 8)}

have already been solved completely [7]. Each of these cases requires some
deep mathematics of a flavor similar to what is described below. The next
interesting case is obviously (k, l) = (2, 5), leading to the equation

(
y

2

)
=

(
x

5

)
, or 60y(y − 1) = x(x − 1)(x − 2)(x − 3)(x − 4) . (2)

The first step in solving an equation like (2) is to go and look for its
solutions. We easily find solutions with

x = 0, 1, 2, 3, 4, 5, 6, 7, 15, and 19 ,
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and then no further ones. (Only the last two are ‘nontrivial’ in the sense that
they satisfy the constraints given above. Also, there are no solutions with
x < 0, since then the right hand side is negative, but the left hand side can
never be negative for y ∈ Z.) This now raises the question if we have already
found them all, and if so, how to prove it.

This is a good point to look at what is known about the solution set of
equations like (2) in general. The first important result was proved by Carl
Ludwig Siegel in 1929. (See [5, Section D.9] for a proof.)

Theorem 2 (Siegel).
Let F be a polynomial with integer coefficients in two variables x and y. If the
solutions to F (x, y) = 0 cannot be rationally parameterized, then F (x, y) = 0
has only finitely many solutions in integers.

A rational parameterization of F (x, y) = 0 is a pair of rational func-
tions f(t), g(t) (quotients of polynomials), not both constant, such that
F (f(t), g(t)) = 0 (as a function of t). The existence of such a rational param-
eterization can be algorithmically checked; for our equation it turns out that
it is not rationally parameterizable. So we already know that there are only
finitely many solutions. In particular, we have a chance that our list is com-
plete. On the other hand, Theorem 2 and its proof are inherently ineffective:
we do not get a bound on the size of the solutions, so this result gives us
no way of checking that our list is complete. This somewhat unsatisfactory
state of affairs did not change until the 1960s, when Alan Baker developed his
theory of ‘linear forms in logarithms’ that for the first time provided explicit
bounds for solutions of many types of equations. For this breakthrough, he
received the Fields Medal. Baker’s results cover a class of equations that con-
tains our equation (2). For our case, what he proved comes down to roughly
the following:

|x| < 10101010
600

. (3)

This reduces the solution of our equation (2) to a finite problem. The inequal-
ity in (3) gives us an explicit upper bound for x. So we only have to check the
finitely many possibilities that remain, and we will obtain the complete set of
solutions to (2). From a very pure mathematics viewpoint, we may therefore
consider our problem as solved. On the other hand, from a more practical
point of view, we would like to actually obtain the complete list of solutions,
and the assertion that it is possible in principle to get it does not satisfy us.
To say that the number showing up in (3) defies all imagination is a horrible
understatement, and one cannot even begin to figure out how long it would
take to actually perform all the necessary computations.

However, time did not stop in the 1960s, and with basically still the same
method, but with a lot of refinements and improvements thrown in, we are
now able to prove the following estimate:

|x| < 1010600
. (4)
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You may rightly ask whether something has really been gained, in practical
terms. The number of electrons in the universe is estimated to be about 1080,
so we cannot even write down a number with something like 10600 digits!
However, it will turn out that the improvement represented by (4) is crucial.
But before we can see this, we need to look at our problem from a different
angle.

3 A Geometric Interpretation

The idea is to translate our at first sight algebraic problem ((2) is an algebraic
equation) into a geometric one. An equation F (x, y) = 0 in two variables
defines a subset of the plane, consisting of those points whose coordinates
satisfy the equation. If F is a (non-constant) polynomial, this solution set is
called a plane algebraic curve. We can draw the curve C corresponding to
our equation (2) in the real plane R2, see Fig. 2. We are now interested in
the integral points on C, since they correspond to integral solutions to (2).
The set of integral points on C is denoted C(Z).

This set C(Z) of integral points on the curve C by itself does not have
any useful additional structure. But we can make use of a well-developed
theory, called Algebraic Geometry, that studies sets defined by a collection of
polynomial equations, and in particular algebraic curves like C. This theory
tells us that we can embed the curve C into another object J , which is not a
curve, but a surface. This can be constructed for any curve and is called the
Jacobian variety of the curve.7 The interesting fact about J (and Jacobian
varieties in general) is that J is a group. More precisely, there is a composition
law on J that is defined in a geometric way and that turns (for example)
the set J(Z) of integral points8 on J into an abelian group. In a similar
spirit as Siegel’s Theorem 2 (and actually preceding it by one year), we have
the following important result by André Weil, valid for Jacobian varieties in
general. (See [5, Part C].)

Theorem 3 (Weil).
If J is the Jacobian variety of a curve, then the abelian group J(Z) is finitely
generated.

This means that we can (in principle) get an explicit description of the
group J(Z) in terms of generators and relations. If we have that, we may be
able to use the group structure and the geometry in some way to get a handle
on the elements of J(Z) that are in the image of C; these correspond exactly
to the integral points on C.

7 The Jacobian variety need not be a surface; its dimension depends on the curve.
8 Algebraic geometers use the set of rational points here. This does not make a
difference, since J is a projective variety (this means that the coordinates can be
scaled so as to remove denominators).
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Fig. 2. The curve given
by (2), with some integral
points.

In general, it is not known whether it is always possible to actually deter-
mine explicit generators of a group like J(Z) in an algorithmic way, although
there are some ‘standard conjectures’ whose truth would imply a positive
answer. There are methods available that, with some luck, can find a set
of generators, but they are not guaranteed to work in all cases. This is the
point where the method we are describing may fail in practice. In our specific
example, we are lucky, and we can show that J(Z) is a free abelian group of
rank 6 :
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J(Z) = Z P1 + Z P2 + Z P3 + Z P4 + Z P5 + Z P6 (5)

with explicitly known points P1, . . . , P6 ∈ J(Z).
Let ι : C → J denote the embedding of C into J . The surface J lives

in some high-dimensional space, and we can specify integral points on it by
a bunch of coordinates. We can measure the size of such a point by taking
the logarithm of the largest absolute value of the coordinates (this tells us
roughly how much space we need to write the point down). This gives us a
function

h : J(Z) → R≥0

called the height. One can show that this height function has the following
properties. The first one tells us how the height relates to the size of integral
points on our curve.

h
(
ι(x, y)

)
≈ log |x| for points (x, y) ∈ C(Z) such that x is not very small.

(6)
The second property says that the height function behaves well with re-

spect to the group structure on J .

h(n1P1+n2P2+n3P3+n4P4+n5P5+n6P6) ≈ n2
1+n2

2+n2
3+n2

4+n2
5+n2

6 . (7)

(To be precise, each side can be bounded by an explicit constant multiple of
the other one. To be more precise, h is, up to a bounded error, a positive
definite quadratic form on J(Z).)

If we now combine the estimate (4) with the properties (6) and (7) of the
height h, then we obtain the following statement.

Lemma 1. If (x, y) ∈ C(Z), then we have

ι(x, y) = n1P1 + n2P2 + n3P3 + n4P4 + n5P5 + n6P6

with coefficients nj ∈ Z satisfying |nj | < 10300.

Of course, the bound 10300 given here is not precise; a precise bound can
be given and is of the same order of magnitude.

The conclusion is that using the additional structure we have on J enables
us to reduce the size of the search space from about 1010600

to ‘only’ 101800

(there are six coefficients nj with about 10300 possible values each). This is,
of course, still much too large to check each possibility (think of the electrons
in the universe), but, and this is the decisive point, the numbers nj we have
to deal with can be represented easily on a computer, and we can compute
with them!



18 Michael Stoll

4 Needles in a Haystack

We now have an enormous haystack

H =
{
(n1, n2, n3, n4, n5, n6) ∈ Z

6 : |nj | < 10300
}

of about 101800 pieces of grass that contains a small number of needles. We
want to find the needles. Instead of looking at each blade of grass in the
haystack, we can try to solve this problem faster by finding conditions on
the possible positions of the needles that rule out large parts of the haystack.
This is the point where we make use of the fact that the group law on J is
defined via geometry. Our objects C, J and ι are defined over Z, therefore
it makes sense to consider their defining equations modulo p for prime num-
bers p. We denote the field Z/pZ of p elements by Fp. The sets of points with
coordinates in Fp that satisfy these defining equations mod p are denoted by
C(Fp) and J(Fp). Then for all but finitely many p (and the exceptions can be
found explicitly), J(Fp) is again an abelian group, and it contains the image
ι(C(Fp)) of C(Fp). The group J(Fp) is finite, and so is the set C(Fp); both
can be computed. Furthermore, the following diagram commutes, and the
geometric nature of the group structure implies that the right hand vertical
map is a group homomorphism.

The vertical maps are obtained by reducing the coordinates of the points
mod p. The diagonal map αp is again a group homomorphism, determined
by the image of the generators P1, . . . , P6 of J(Z). The following is now clear.

Lemma 2. Let (x, y) ∈ C(Z) and ι(x, y) = n1P1 + · · · + n6P6. Then

αp(n1, n2, n3, n4, n5, n6) ∈ ιp
(
C(Fp)

)
.

The subset Λp = α−1
p

(
ιp(C(Fp))

)
⊂ Z6 is (usually, when αp is surjective)

a union of #C(Fp) cosets of a subgroup of index #J(Fp) in Z
6. Since one

can show that #C(Fp) ≈ p and #J(Fp) ≈ p2 (reflecting dimensions 1 and 2,
respectively), we see that the intersection of our haystack H with Λp has only
about 1/p times as many elements as the original haystack. This does not yet
help very much, but we can try to combine information coming from many
primes. If S is a (finite, but large) set of prime numbers, then we set

ΛS =
⋂

p∈S

Λp and obtain ι
(
C(Z)

)
⊂ ΛS ∩ H .
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If we make S sufficiently large (about a thousand primes, say), then it is likely
that the set on the right hand side is quite small, so that we can easily check
the remaining possibilities. The idea is that the reductions of the haystack
size we obtain from several distinct primes should accumulate, so that we can
expect a reduction by a factor which is roughly the product of all the primes
in S.

We have to be careful to select the primes in a good way so that the de-
scription of the sets ΛS we encounter on the way stays within a reasonable
complexity. It is, however, indeed possible to make a good selection of primes
and to implement the actual computation of ΛS in a reasonably efficient man-
ner, so that a standard PC (standard as of 2008) can perform the calculations
in less than a day. We finally obtain the result we were suspecting from the
beginning.

Theorem 4 (Bugeaud, Mignotte, Siksek, Stoll, Tengely).
Let x, y be integers satisfying

(
y

2

)
=

(
x

5

)
.

Then x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 15, 19} .

A detailed description of the method (explained using the different exam-
ple equation y2 − y = x5 − x) can be found in [2].
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From Sex to Quadratic Forms

Simon Norton

Abstract. We start with an elementary problem and successively gener-
alize it to reach an important area of mathematics, the theory of quadratic
forms. Furthermore we describe a way of calculating the number of essen-
tially different quadratic forms of any discriminant, the class number; this is
a concept of great importance, which for example figured in early attempts
to prove Fermat’s Last Theorem.

1 Introduction

Some time ago I was thinking about a quite simple problem (Problem 1 below)
that turned out to lead me via a number of steps to some deep mathematics.
I was already fairly familiar with the relevant concepts, but I was led to a
new and interesting way of looking at them. The reader is invited to follow
my journey.

Problem 1. A schoolteacher is in charge of some children. She wants to
select two of them at random, and notices that it is exactly an even chance
(50%) that they are of the same sex. What can be said about how many
children of each sex there are?

We suggest that the reader tries to solve this problem before turning the
page.
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Let us suppose that there are α boys and β girls. Then the number of
(unordered) pairs of children is 1

2
(α + β)(α + β − 1), while the number of

pairs of opposite sex is αβ. So

(α + β)(α + β − 1) = 4αβ (1)

which when rearranged gives

(α − β)2 = α + β . (2)

If we write n = α − β ∈ Z, then α = n(n+1)
2 and β = n(n−1)

2 . This means
that α and β are consecutive triangular numbers, with α being the larger if
n > 0 and β being the larger if n < 0.

The cases where n equals 0 or ±1 are “degenerate” in the sense that the
hypothesis is automatically true because there aren’t two children to choose.

Thus we have a complete solution to the problem:

Theorem 1. The numbers of boys and girls are consecutive triangular num-
bers. If the solution is to be non-degenerate then the smaller and larger num-
bers must be at least 1 and 3 respectively. Conversely, any such pair of num-
bers represents a solution. ��

2 From Sex to Socks

When mathematicians have solved a problem, they tend to look for gen-
eralizations. In this case one possible generalization is to assume that the
children are of not two but three different sexes. However any mathematician
who poses the problem in this form is likely to be seen as being divorced from
reality, so let us switch from sex to socks and pose the following problem:

Problem 2. A man has a selection of socks of three different colours, which
he keeps in a bag. Two socks of the same colour may be assumed to form a
pair. He finds that if he pulls out two socks at random then there is exactly
an even chance that they will form a pair. What can be said about how many
socks of each colour he has?

Let the number of socks of each of the three colours be α, β and γ. We then
get the following equations, which correspond to (1) and (2) in Problem 1:

(α + β + γ)(α + β + γ − 1) = 4βγ + 4γα + 4αβ (3)

α2 + β2 + γ2 − 2βγ − 2γα − 2αβ = α + β + γ (4)

We transform the second equation by multiplying by 4 and putting a = 2α+1,
b = 2β + 1, c = 2γ + 1. This gives us:
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a2 + b2 + c2 − 2bc − 2ca − 2ab = −3 . (5)

Remark 1. Our main goal is to classify the solutions of this equation (and its
generalizations when −3 is replaced by an arbitrary integer Δ) in (possibly
negative) integers, independently of the problem that motivated it. As it
turns out, the classification of solutions of this equation, for any value of Δ,
provides a classification of binary quadratic forms with discriminant Δ.

Equation (5) can also be written as

(a + b − c)2 = 4ab − 3 (6)

so, as the right hand side must be non-negative, a and b (and, similarly, c)
must have the same sign. We call a solution of (5) a positive or negative
triple according to the sign of a, b and c. As the equation is invariant under
negating a, b and c we may without loss of generality restrict ourselves to
positive triples. It also follows from (6) that a and b (and similarly c) must
be odd, as otherwise 4ab − 3 would have remainder 5 when divided by 8,
whereas an odd square such as (a + b − c)2 has remainder 1. This therefore
proves:

Theorem 2. There is a (2, 1) correspondence between solutions of (5) in
integers and solutions of (4) in non-negative integers by changing the signs
of a, b and c if they are all negative and then putting a = 2α + 1, b = 2β + 1,
c = 2γ +1. This in turn gives rise to a non-degenerate solution of Problem 2
(i.e., a solution in which α+β +γ is at least 2) unless (a, b, c) is ±(1, 1, 1) or
a permutation of ±(1, 1, 3); though if any of a, b or c is ±1 not all the three
colours will in fact be used. ��

We now study positive triples, and start by using a standard trick to enable
us to transform one solution to another. Equation (5) can be rewritten as

c2 − 2(a + b)c + (a − b)2 + 3 = 0 . (7)

Consider a particular solution (a, b, c). If we replace c by t we get the equation
t2 − 2(a+ b)t+(a− b)2 +3 = 0, and let us solve this equation for t. As it is a
quadratic, it will have two roots, one of them being c. Let us call the other c′.
By the remainder theorem the left hand side of the equation is (t− c)(t− c′).
Equating the coefficients of t, this gives us c + c′ = 2(a + b). In other words,
if (a, b, c) is a triple, then the other triple with the same values for a and b is
(a, b, 2a+2b−c). Similarly, we may replace a by 2b+2c−a or b by 2a+2c−b
in any triple to get another triple. Note that if the triple (a, b, c) is positive,
then each of its three transforms must be positive as well, so that 2a+2b− c,
2b + 2c − a, or 2c + 2a − b are all positive; also if we repeat any of the three
transformations we get back to the original triple.

Transforming a, b or c in this way will simplify the triple (i.e., reduce the
value of |a|+ |b|+ |c|) if a > b + c, b > c + a or c > a + b respectively. If none
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of these inequalities hold, so that none of the three transformations simplifies
our triple, we call it reduced. What reduced triples are there? To find out, we
rewrite equation (5) yet again as

a(b + c − a) + b(c + a − b) + c(a + b − c) = 3 . (8)

By hypothesis, a, b and c are positive. The numbers b + c − a, c + a − b and
a + b− c are non-negative (because the triple is assumed to be reduced) and
odd (because a, b and c are), which means they are positive. So we have to
express 3 as the sum of three positive numbers, each of which must therefore
be 1, so that the unique reduced triple is a = b = c = 1.

Let us consider any positive triple. If it’s (1, 1, 1) then it’s reduced. Oth-
erwise we can simplify it by using one of our three transformations. (There’s
only one way to do this, because at most one of the inequalities a > b + c,
b > c+a, c > a+ b can hold.) Unless we have reached (1, 1, 1) we then repeat
the process. By the principle of infinite descent, as the numbers keep getting
smaller, we must eventually reach a point where no further simplification is
possible, which can only be at the unique reduced triple, (1, 1, 1). We can
now reverse the process to get

Theorem 3. Any positive triple can be obtained from (a, b, c) = (1, 1, 1) by
repeatedly applying the three transformations a �→ 2b+2c−a, b �→ 2c+2a−b,
c �→ 2a + 2b − c. ��

We note that when we apply these transformations the triple always gets
larger: this can be shown by induction, because as we said above at most one
of them can reduce the size of the triple, and this can only be the one we
used to derive the triple from a smaller one. Analogues of this argument will
be used later.

We look at a few triples. If we start with (a, b, c) = (1, 1, 1) and transform
b and c alternately, we get (1, 3, 1), (1, 3, 7), (1, 13, 7), (1, 13, 21), and so on.
In fact, as a = 1 and hence α = 0, these are just the triples that correspond
to the solutions of Problem 1; β = (b−1)/2 and γ = (c−1)/2 are consecutive
triangular numbers. If we now transform a in the four triples specified above,
we get (7, 3,1), (19, 3, 7), (39, 13, 7) and (67, 13, 21).

If we study the numbers that appear, one thing stands out: they have no
prime factors of the form 3n− 1. At first glance this seems quite remarkable.
We start with a triple (1, 1, 1) and apply some purely additive transforma-
tions, and we see a set of numbers none of which has a prime factor of the
form 3n − 1, a multiplicative property.

However, this result is in fact a consequence of (6), because if a was divis-
ible by p = 3n− 1 then (a+ b− c)2 +3 would be too, and it is known that no
number of the form d2 + 3 can be divisible by any odd prime of this form.1

(We already know that p must be odd, as a is.)

1 By Gauss’ law of quadratic reciprocity, −3 is the residue of a square modulo an
odd prime p if and only if p does not have the form 3n − 1.
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Together with its converse, this gives:

Theorem 4. A number a occurs in a triple if and only if there is an integer
d such that d2 + 3 is divisible by 4a.

Proof. If d2 +3 is divisible by 4a, we choose b = (d2 +3)/4a and c = a+b−d.
Then (a + b− c)2 = d2 = 4ab− 3, thus giving a solution to (6), hence (5), in
which a appears. The other direction follows directly from (6), as above. ��

Remark 2. The condition of Theorem 4 is satisfied, and thus a occurs in a
triple, exactly when the odd number a has no prime factor of the form 3n−1
and is not divisible by 9. We do not prove this here (it uses the fact mentioned
in footnote 1 as well as the Chinese Remainder Theorem). Remembering that
a = 2α + 1, it answers completely the question of what numbers can appear
in solutions to Problem 2.

3 From Socks to Triangles

Now we transform our problem into geometric form as a prelude to further
generalization.

Consider a triangle with vertices XY Z whose side lengths are Y Z =
x =

√
a, ZX = y =

√
b and XY = z =

√
c. Heron’s formula states

that if s = 1
2 (x + y + z) is the semi-perimeter of XY Z, then its area is√

s(s − x)(s − y)(s − z), or, in terms of a, b and c,

1
4

√
−a2 − b2 − c2 + 2bc + 2ca + 2ab .

So our triples correspond to triangles whose sides are each the square root of
an integer and whose area is

√
3

4 (see (5)).
These properties are still satisfied if we replace the point Z by its image,

say Z′, under the half turn around the point X. This does not change the
side XY , and it takes XZ to XZ ′ which obviously has the same length. As
for the third side, Y Z, it is taken to Y Z ′ whose length we may call x′. Also,
let us denote the angle at X in the original triangle XY Z by X̂; then the
corresponding angle in XY Z′ will be its supplement π − X̂.

To show that the areas of XY Z and XY Z′ are equal, we note that both
triangles share a base XY and that because of the half turn property the
corresponding altitudes — the distances of Z and Z ′ from XY — are equal.
To show that x′ is the square root of an integer, we apply the cosine rule to the
triangles XY Z and XY Z ′, yielding the equations x2 = y2 + z2 − 2yz cos X̂,
x′2 = y2 +z2−2yz cos(π−X̂) = y2 +z2 +2yz cos X̂, and therefore x2 +x′2 =
2(y2 +z2), so since x, y and z are all square roots of integers it follows that x′

is. Clearly this is precisely equivalent to the transformation a �→ 2b + 2c − a
which we obtained previously.
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Fig. 1. A triangle XY Z and its image triangle XZ′Y under the half turn operation
about X.

This transformation reduces the sum of the squares of the sides of the
triangle (which is |a| + |b| + |c|) whenever x′ < x, i.e. (by the cosine rule),
whenever X̂ is obtuse. A reduced triangle is therefore one which is acute or
right angled. By the argument we used to prove Theorem 3 the only reduced
triangle with area

√
3

4 is an equilateral triangle with sides 1. The vertices of
this triangle determine a hexagonal lattice, and all the vertices obtained by
repeatedly applying half turn operations also lie on this lattice.

Remark 3. Note that the following interesting statement follows directly from
our arguments: Every triangle with area

√
3

4 whose side lengths are square
roots of integers can be embedded into a hexagonal lattice of side length 1,
i.e., there is a hexagonal lattice of side length 1 such that the vertices of the
triangle are lattice points.

It turns out that our operations naturally give rise to a group which we now
describe. Consider the set of triangles of area

√
3

4 with labelled vertices and
side lengths that are roots of integers, identifying triangles that are translates
of each other. Our half turn operations send translated triangles to translated
triangles, so they operate on this set.

Let S0 be the operation that replaces the triangle XY Z with Y ZX (cyclic
permutation of the vertices), and let T0 be the operation that replaces XY Z
with XZ ′Y (half-turn of Z around X); we use the image XZ′Y rather than
XY Z ′ in order to preserve orientation.

Since we are ignoring translations, we may represent the triangle XY Z

by the two vectors
−−→
XY and

−−→
XZ. The operation S0 replaces these vectors by−−→

Y Z =
−−→
XZ − −−→

XY and
−−→
Y X = −−−→

XY respectively, and T0 replaces them by−−→
XZ ′ = −−−→

XZ and
−−→
XY . In other words, S0 and T0 take the “vector of vectors”

(
−−→
XY ,

−−→
XZ) to

(
−−→
XY ,

−−→
XZ)

(
−1 −1
1 0

)
and (

−−→
XY ,

−−→
XZ)

(
0 1
−1 0

)
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Fig. 2. The operation T0 sends the triangle XY Z to XZ′Y ; in turn, it sends XZ′Y
to XY ′Z′, then to XZY ′ and finally back to XY Z, so applying T0 four times yields
the identity.

so that the two 2 × 2 matrices above may be thought of as representing S0

and T0.
We consider the group 〈S0, T0〉 generated by S0 and T0. As the group

composition is compatible with matrix multiplication, we may represent the
elements of this group by 2 × 2 matrices similar to those we used for S0 and
T0, and it is often useful to think of 〈S0, T0〉 as a group of 2 × 2 matrices.

The operations S0 and T0 also act as linear transformations on a, b and c.
It is easily seen that they postmultiply the vector (a, b, c) by the matrices

S =

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ and T =

⎛

⎝
−1 0 0
2 0 1
2 1 0

⎞

⎠

respectively. In fact,

(a, b, c) T = (−a + 2b + 2c, c, b)

and we recognize our formula from above.
In the same way, every transformation A0 ∈ 〈S0, T0〉 has a corresponding

operation A acting on triples (a, b, c). A will be generated by S and T in the
same way that A0 is generated by S0 and T0, so it acts on these triples as a
3 × 3 matrix. The mapping sending A0 to A is thus a homomorphism from
〈S0, T0〉 to the group of invertible 3 × 3 matrices.

In fact, this descends to a homomorphism from 〈S0, T0〉/〈−I〉 to the group
of invertible 3 × 3 matrices2 because −I = T 2

0 is a rotation by 180◦ and
thus leaves side lengths invariant. The group 〈S0, T0〉/〈−I〉 is known as the

2 For readers who are not familiar with group quotients: the notion 〈S0, T0〉/〈−I〉
denotes the set of all matrices in 〈S0, T0〉 in which each matrix A is identified with its
negative −A. This set inherits a natural group structure from 〈S0, T0〉 and is called
the quotient group of 〈S0, T0〉 by 〈−I〉.
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modular group, denoted by Γ, which plays a vital role in many areas of math-
ematics. We will often write 2Γ for 〈S0, T0〉 since each element of Γ represents
exactly two elements in 2Γ. We also write 〈S, T 〉 = Γ′, which is isomorphic
to Γ, as we will see below.

We will now give an explicit formula for the homomorphism A0 �→ A that
we just defined. Note that

a = 〈〈−−→Y Z,
−−→
Y Z 〉〉 = 〈〈−−→XY ,

−−→
XY 〉〉 − 2〈〈−−→XY ,

−−→
XZ 〉〉 + 〈〈−−→XZ,

−−→
XZ 〉〉 ,

b = 〈〈−−→XZ,
−−→
XZ 〉〉 ,

c = 〈〈−−→XY ,
−−→
XY 〉〉 ,

where 〈〈 , 〉〉 denotes the inner product. A tedious but not difficult calculation

shows that the operation acting as the matrix
(

e f
g h

)
on (

−−→
XY ,

−−→
XZ) acts as

the following matrix on (a, b, c):
⎛

⎝
(e − f)(h − g) −fh −eg

(g − h)(e − f + g − h) h(f + h) g(e + g)
(e − f)(e − f + g − h) f(f + h) e(e + g)

⎞

⎠ .

By equating this matrix with the identity it can be seen that the kernel of our
group homomorphism is exactly the group generated by −I. It follows that
the group Γ′ generated by S and T , which is the image of the homomorphism,
is isomorphic to 〈S0, T0〉/〈−I〉 = Γ, as stated above.

Remark 4. By an extension of our arguments it can be shown that any relation
between S0 and T0 is a consequence of the relations S3

0 = I and T 2
0 = −I,

together with the fact that the latter commutes with S0. This implies that
the modular group is the free product of the cyclic groups of orders 3 and 2
generated by the elements of Γ corresponding to S0 and T0 respectively.

In the groups Γ′ and 2Γ we look at the subgroups 〈T, STS−1, S−1TS〉
and 〈T0, S0T0S

−1
0 , S−1

0 T0S0〉. These can easily be seen to have index 3. In the
2×2 representation the generators correspond to the operations that replace
Z, X, Y by their images under the half turn about X, Y , Z, and then swap
the resulting points with Y , Z, X respectively. In the 3 × 3 representation
they correspond to the operations that transform one of a, b, c as described
in Theorem 3, and then swap the other two. We use the notation Ta, Tb, Tc

for these operations in the 3 × 3 representation.
In the literature the modular group is usually defined as the group PSL2(Z)

of all integral 2× 2 matrices with determinant 1, quotienting out 〈−I〉. Why
is this definition equivalent to ours? Well, as S0 and T0 have determinant 1,
it follows directly that this is true for all elements of 〈S0, T0〉. On the other
hand, let R be a 2 × 2 matrix with determinant 1. If XY Z is an equilateral
triangle with side length 1, then R takes the vector of vectors (

−−→
XY ,

−−→
XZ) to a
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vector of two vectors spanning a triangle of area
√

3
4

(as R has determinant 1,
it can be seen by a straightforward calculation that it preserves areas) which,
by the reduction process above, can be obtained from XY Z by applying a
transformation from 2Γ. As R coincides with this transformation on the row
of vectors (

−−→
XY ,

−−→
XZ), the two transformations have to be equal.

4 From Triangles to Quadratic Forms

Let us again consider the hexagonal lattice generated by an equilateral tri-
angle XY Z of side length 1. A vector between two lattice points will always
have the form m

−−→
XY +n

−−→
XZ with integers m and n. The length of the vector

m
−−→
XY + n

−−→
XZ can easily be calculated: by the cosine rule, it equals

√
m2 + n2 − 2mn cos(120◦) =

√
m2 + mn + n2 .

From the definition of Γ as the group of integral 2 × 2 matrices of deter-
minant 1 (quotiented out by 〈−I〉), it follows that a lattice vector can be
represented as the first vector of the image of (

−−→
XY ,

−−→
XZ) under an element of

2Γ, and thus occurs as the side of a triangle with area
√

3
4

, if and only if it is
primitive, i.e., none of its submultiples is also a lattice vector. Together with
Theorem 4, we get that a positive number a can be written as m2 +mn+n2

with coprime integers m and n if and only if 4a divides d2+3 for some integer
d. (These numbers are characterized in Remark 2.)

We will now move to a slightly more general situation: Consider a tri-
angular lattice generated by an arbitrary triangle XY Z whose squared side
lengths a, b and c are integers. Then for arbitrary integers m and n, the
vector m

−−→
XY + n

−−→
XZ has squared length

|m−−→
XY + n

−−→
XZ|2 = 〈〈m

−−→
XY + n

−−→
XZ,m

−−→
XY + n

−−→
XZ 〉〉

= m2〈〈−−→XY ,
−−→
XY 〉〉 + 2mn〈〈−−→XY ,

−−→
XZ 〉〉 + n2〈〈−−→XZ,

−−→
XZ 〉〉

= cm2 + (−a + b + c)mn + bn2

since the inner product in the middle can be written as

1
2

(
〈〈−−→XY ,

−−→
XY 〉〉 + 〈〈−−→XZ,

−−→
XZ 〉〉 − 〈〈−−→XY −−−→

XZ,
−−→
XY −−−→

XZ 〉〉
)

and the last term in this is 〈〈−−→Y Z,
−−→
Y Z 〉〉.

Motivated by this observation, we will now introduce the general concept
of (binary) quadratic forms. A binary quadratic form is an expression of the
form um2 + vmn+wn2, where u, v and w are fixed integers and m and n are
variables. This can be written in matrix form as
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(
m n

) (
u v/2

v/2 w

) (
m
n

)
.

In describing a quadratic form um2 + vmn + wn2, the determinant of the

matrix
(

u v
2

v
2 w

)
plays an important role. Multiplying it by −4, we define the

discriminant of the quadratic form um2 +vmn+wn2 as Δ = v2−4uw. As is
well known (and not hard to check, using quadratic equations), the quadratic
form factorizes into linear factors of the form sm + tn with rational s and t
if and only if Δ is a square, and it can in fact be shown that s and t can be
chosen as integers.

Note that if we put a = u + w− v, b = u and c = w, then the discriminant
of the quadratic form um2 + vmn + wn2 becomes

v2 − 4uw = (−a + b + c)2 − 4bc = a2 + b2 + c2 − 2bc − 2ca − 2ab ,

i.e., we get exactly the left hand side of equation (5). Thus, there is a one-
to-one correspondence between quadratic forms um2 + vmn + wn2 with dis-
criminant Δ and solutions (a, b, c) of the equation

a2 + b2 + c2 − 2bc − 2ca − 2ab = Δ . (5′)

Furthermore, if there is a triangular lattice generated by a triangle XY Z
which gives rise to the quadratic form uv2 +vmn+wn2 in the way described
above, then the area of this triangle is exactly

√
−Δ
4 , which follows directly

from (5′) using Heron’s formula.
Conversely, we note that if (a, b, c) is a positive triple solving the above

equation for negative Δ, then as the left hand side is

−(
√

a +
√

b +
√

c)(
√

a +
√

b −
√

c)(
√

b +
√

c −
√

a)(
√

c +
√

a −
√

b)

it follows that
√

a,
√

b and
√

c must satisfy the triangle inequalities, so that
there is a triangle with these side lengths which gives rise to the relevant
quadratic form.

Summarizing, we see that our classification of integral solutions of (5),
and triangles of area

√
3

4 with side lengths which are roots of integers, also
classifies quadratic forms of discriminant Δ = −3.

In the next sections, we will do this for all other values of Δ. There are es-
sentially four cases: negative discriminants, zero discriminant, positive square
discriminants, and positive non-square discriminants. The first and last of
these are the most important, but in the other two cases we can and will give
a complete solution.
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5 Negative Discriminants

We now pose the following problem, which generalizes the geometric inter-
pretation of Problem 2:

Problem 3. Find all triangles whose sides are square roots of integers and
whose area is

√
−Δ
4

, for any negative integer Δ.

Our analysis shows that if Δ = −3 we have equation (5), and in general
we get equation (5′) above. This is equivalent to equations which similarly
generalize (6)–(8), which we call (6′)–(8′). Here, for the reader’s convenience,
we show equations (6′)–(8′) together:

(a + b − c)2 = 4ab + Δ , (6′)
c2 − 2(a + b)c + (a − b)2 − Δ = 0 , (7′)

a(b + c − a) + b(c + a − b) + c(a + b − c) = −Δ . (8′)

Equation (6′) shows that Δ has remainder 0 or 1 when divided by 4. We
call numbers of this form permitted discriminants (this also applies when Δ
is non-negative). Conversely, (6′) has a solution for any Δ of this form: if Δ
is divisible by 4 we may put a = 1, b = −Δ

4 and c = b + 1, while if Δ − 1 is
divisible by 4 we may put a = 1 and b = c = 1−Δ

4
.

Most of our analysis goes forward with little modification. The set of triples
satisfying (5′) is still closed under the half turn operations Ta, Tb, Tc. The
definition of reduced triples is unchanged, and equation (8′) can be used
to show that there are only finitely many reduced triples, from which all
triangles may be obtained by applying a sequence of the operations Ta, Tb

and Tc. There may, however, be more than one. Distinct reduced triples are
only equivalent under Γ (i.e., there is an operation from Γ′ taking the one
to the other) if either they are related by a cyclic permutation of (a, b, c), or
they are related by an odd permutation and one of a, b and c is the sum of
the other two. This is essentially the same as saying that a reduced (a, b, c)
is equivalent to (a, c, b) only when two of a, b and c are equal (in other words
when the triangle XY Z is isosceles) or when one of them is the sum of the
other two (i.e., when the triangle XY Z is right-angled). We call these the
isosceles and Pythagorean cases respectively.

Theorem 3 goes through to say that any positive triple can be obtained
from one of the finitely many reduced triples by applying a sequence of the
Ti, i = a, b, c.

Theorem 4 generalizes to say that a number a occurs in a triple if and
only if there is an integer d such that d2−Δ is divisible by 4a. Our geometric
analysis also goes through. As we saw earlier, the area of our triangle XY Z

is
√
−Δ
4 , the area of a period parallelogram of the lattice generated by this

triangle is
√
−Δ
2 , and the discriminant of the corresponding quadratic form

is Δ.
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We call a triple imprimitive if a, b and c have a common factor, say k.
Then the triple (a/k, b/k, c/k) has discriminant Δ/k2, so, if for some Δ there
is no k > 1 such that Δ/k2 is a permitted discriminant, then all triples with
discriminant Δ are primitive. This happens when −Δ is either square-free
or 4 times a square-free number of form 4n + 1 or 4n + 2. In these cases the
number of inequivalent reduced triples is an important function of Δ, called
the class number.

3: (1, 1, 1)
4: (1, 1, 2)
7: (1, 2, 2)
8: (1, 2, 3)

11: (1, 3, 3)
12: (1, 3, 4), (2, 2, 2) the first case with distinct reduced triples
15: (1, 4, 4), (2, 2, 3) the first case with distinct primitive

reduced triples
16: (1, 4, 5), (2, 2, 4)
19: (1, 5, 5)
20: (1, 5, 6), (2, 3, 3)
23: (1, 6, 6), (2, 3, 4), (2, 4, 3) the first case where reduced triples appear

that are neither isosceles nor Pythagorean

Table 1. Reduced triples for the first few values of −Δ. Note that as a cyclic shift
of a reduced triple is reduced, we need only show those for which a ≤ b and a ≤ c;
furthermore in the isosceles and Pythagorean cases we may also require b ≤ c.

Remark 5. In these cases the class number is 1 if and only if the ring of so-
called algebraic integers in the field of rational numbers extended by

√
Δ

satisfies a property called unique factorization. It can be shown that the only
cases are −Δ = 3, 4, 7, 8, 11, 19, 43, 67 and 163. This was conjectured in
the 19-th century but a complete proof didn’t appear till the 1980s. Without
going into a definition of algebraic integers, we assert that if −Δ is divisible
by 4 then they are the numbers of the form m + m′√Δ/4 for integers m
and m′, while if −Δ + 1 is divisible by 4 then they are the numbers of the
form m + m′√Δ where m and m′ are either both integers or both halves of
odd integers. Nor do we define unique factorization; let us just say that many
theorems about integers generalize to rings with this property. The concept
of class numbers was motivated by early attempts to prove Fermat’s Last
Theorem: an attempted proof made an unjustified assumption that the ring
of cyclotomic integers of order p — integral linear combinations of p-th roots
of unity — had unique factorization, and when it was pointed out that this
could not be assumed Kummer showed that the equation xp + yp = zp has
no solutions in non-zero integers x, y and z whenever the ring of cyclotomic
integers of order p has class number not divisible by p.
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We digress by noting that the fact that the class number for Δ = −163 is
1 is associated with Euler’s famous formula for prime numbers, x2 + x + 41
for −40 ≤ x ≤ 39, and also with the curious fact that eπ

√
163 is very close

to an integer. Both these results also generalize to smaller (negatives of)
discriminants with class number 1. In fact, the former result can easily be
obtained by our methods: there is exactly one reduced triple for Δ = −163
up to equivalence, which must be (1, 41, 41) as this solves (5′) and is reduced.
So any other (positive) triple can be obtained from (1, 41, 41) by a sequence
of Ti, and by the argument below Theorem 3 we can assume that all these
operations make the triple larger. So no number between 2 and 40 can occur
in a triple: starting from (1, 41, 41) and applying operations Ti that make
the triple larger, the second and third coordinates always remain at least
41, and when one first applies Ta, the first coordinate will change from 1 to
2b + 2c − 1 ≥ 41 + 41 − 1 = 81. By the analogue of Theorem 4, we see that
no number between 2 and 40 divides a number of the form d2+163

4
.

The rest is straightforward: Assume that x2 +x+41 is not prime for some
−40 ≤ x ≤ 39. Then it has a prime factor p with

1 < p ≤
√

x2 + x + 41 <
√

402 + 40 + 41 = 41 ,

and we get a contradiction by noting that

x2 + x + 41 =
(2x + 1)2 + 163

4
.

6 Zero Discriminant

Now we remove the hypothesis that Δ is negative. Of course we can just ask
for integer solutions of (5′) or for quadratic forms with discriminant Δ, but
can we also use the geometric interpretation of Problem 3 without becoming
divorced from reality? Yes, if we work in Lorentz-Minkowski geometry, the
four-dimensional version of which can be defined analytically as the set of
points with coordinates (x, y, z, iw) where x, y, z, w are real numbers. This
is the geometry associated with Einstein’s theory of special relativity. Dis-
tances can be either real or pure imaginary numbers, or zero; these correspond
respectively to spacelike, timelike or lightlike vectors. It is possible to find lat-
tices associated with quadratic forms of any permitted discriminant inside
this geometry. For example, if we choose the lattices generated by (0, 1, 0, 0)
and (0, 0, 1, i) or (0, 0, 0, i) the forms have discriminants 0 and 4 respectively.
(However, those who don’t want to bother with Lorentz-Minkowski geometry
may stick to the algebraic interpretation of equation (5′).)

We start with the case when Δ = 0. Equation (6′) now reads (a+b−c)2 =
4ab. This means that the product of a and b must be a square, say a = km2
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and b = kn2. The equation now yields c− a− b = ±2kmn, which rearranges
to c = k(m±n)2. Conversely, (km2, kn2, k(m±n)2) is a solution of (6′) with
Δ = 0, thus giving a complete solution of this case.

This makes sense geometrically, as — assuming for the moment that the
triple is positive so that k > 0 — it means that one of x, y and z (which, we
recall, are the square roots of a, b and c) must be the sum of the other two,
and the area of a “triangle” one of whose sides is the sum of the other two
is certainly zero. (In fact, points X, Y and Z the right distance apart can be
found in a suitable 1-dimensional lattice.)

We summarise these results in:

Theorem 5. In every (non-negative) triple for Δ = 0, the square roots of a,
b and c are integral multiples of the same square root of an integer, and one
of the multiples is the sum of the other two. ��

Any number can appear as a value for a. This too makes sense, as the
condition in the analogue of Theorem 4 is that there should exist an integer
d such that d2 is divisible by 4a, which is always true.

7 Positive Discriminants

Let us move to the case where Δ is positive. In this case, for reasons we won’t
go into, to make the theory of class numbers work, we need to enumerate
equivalence classes of quadratic forms not under Γ′ but under the larger
group Γ′′ obtained by adjoining the transformation U that takes

(a, b, c) to (−a,−c,−b) .

As conjugation by U — the operation replacing X by U−1XU — inverts
S and fixes T , it takes Γ′ to itself, so Γ′ has index 2 in Γ′′ and thus the
enumerations of equivalence classes under the two groups are very similar.

Problem 4. Classify quadratic forms of discriminant Δ > 0 under the action
of Γ′′.

As when Δ < 0, all quadratic forms are primitive (i.e., their coefficients
have no common divisor) if Δ is either square-free or 4 times a square-free
number of form 4n + 2 or 4n + 3. And in these cases the class number — the
number of classes of quadratic forms under the action of Γ′′ — is related to
the uniqueness of factorization in the ring of algebraic integers in the field of
rational numbers extended by

√
Δ.

When Δ > 0 the concept of a reduced triple doesn’t work, as sometimes
each of Ta, Tb, Tc makes the triple (a, b, c) larger, but there is a sequence of
such transformations that makes it smaller. Instead we work with the set of
triples, which we call P , such that (a, b, c) is in P if either at least one of a, b
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and c is positive and another is negative, or exactly two of a, b and c are zero.
Theorem 6 states the properties of P that make it useful.

Theorem 6. Every triple is equivalent under Γ′ to a triple in P . If two triples
each in P are equivalent under Γ′, then one can be obtained from the other
(up to permutation of the triple) by a sequence of Ti such that at every stage
the triple is in P . Finally, there are only finitely many triples in P .

Proof. If a triple (a, b, c) is not in P , then either a, b, c all have the same
sign, or two of them have the same sign and the third is zero. If we can show
that in either case one of the Ti makes the triple simpler, the first part of
Theorem 6 follows by the infinite descent argument.

This is easy to see in the case when one of a, b and c — say, without loss
of generality, a — is zero. Again without loss of generality, we may assume
that b and c are positive and that b ≤ c. If b = c then Δ would be zero, and
we are assuming that it is positive. So b < c. We may therefore apply Tc,
which takes (0, b, c) to (b, 0, 2b − c), which is easily seen to be simpler.

In the other case, a, b and c all have the same sign, which we may assume
to be positive. As in the case when Δ is negative we define x, y and z to equal√

a,
√

b and
√

c. If x, y and z satisfy the triangle equality (i.e., each is less
than the sum of the other two) then a triangle with sides x, y and z can be
found in the Euclidean plane and would have area

√
−Δ
4 , which is impossible

as Δ is assumed to be positive. So one of x, y and z must be greater than
or equal to the sum of the other two — say z ≥ x + y. Squaring, we get
c ≥ a + b + 2xy > a + b, i.e., c > a + b, so, again, replacing c by 2a + 2b − c
reduces its absolute value.

It is clear that in either of these cases the other two Ti will make the
triple larger, and also that the resulting triple will not be in P . That means
that if we start with a Ti that takes a triple in P to one that isn’t, then
any subsequent sequence of Ti can only return to P if the path doubles back
on itself. So any sequence of Ti that takes one triple in P to another can
be reduced to a sequence such that every intermediate triple is in P , by
eliminating subsequences that have no action. That proves the second part
of Theorem 6.

To prove the last part, we start with the cases when one of a, b and c is
zero, say a = 0. Then equation (5′) reduces to (b − c)2 = Δ. If Δ is not a
square, this will have no solutions. If it is a square, there will still only be
finitely many pairs (b, c) which differ by

√
Δ and which do not have the same

sign.
This just leaves the cases when two of a, b and c — say b and c — have

one sign and the third has the other sign. Then by equation (6′) we must
decompose Δ into a positive integer −4ab and a non-negative integer (a +
b − c)2. There are only finitely many ways of doing this, and for each the
factorization of −4ab leads to only finitely many values for a and b, after
which the value of (a + b − c)2 leads to at most two values for c. ��
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8 Orbits of Triples

A general triple has 6 images under the group 〈S, U〉 (including itself). We
may regard these images as essentially the same, as the three numbers, or
their negatives, differ only in order. It is convenient to choose a specific repre-
sentative for each class of 6 triples in P : we choose the one where (a, b, c) has
sign pattern (−, +, +), (−, 0, +), (−, +, 0) or (0,+, 0), where in the second
and third cases −a ≤ c and −a ≤ b respectively, and call the set of such
triples Q. It is easy to see that every triple in P has exactly one image in Q.

If (a, b, c) ∈ P contains a zero, then just one of its images under Ta, Tb

and Tc will also be in P ; otherwise two of them will be. It is sufficient to deal
with triples in Q; for the above sign patterns Ta never works, Tb works in the
first, second and fourth cases, and Tc in the first and third.

We now define an operation K on a subset of Q. If (a, b, c) ∈ Q has sign
pattern (−, +, 0) then K is undefined. Otherwise we first apply the operation
Tb that takes (a, b, c) to (c, 2a − b + 2c, a), which will have one of the sign
patterns (+, +,−), (+, 0,−), (+,−,−) or (0,−, 0). We then move this into
Q by applying an element of 〈S, U〉, which will be S−1 in the first two cases,
U in the third, and US (i.e., U followed by S) in the fourth.

A similar operation can be defined on triples with the first and third sign
patterns which applies Tc and then an element of 〈S, U〉. However it can be
shown that this is just the inverse of K (which also takes triples with sign
pattern (0, +, 0) to themselves). Note that if K takes a triple to itself so does
K−1.

It follows from all of this that all equivalence classes of triples in Q can be
expressed by joining each triple to its image under K (and hence also to its
image under K−1) and taking connected components of the resulting graph.
As there are only finitely many triples in Q, and each is joined to 1 or 2 other
triples or just to itself, every connected component is either a (linear) chain,
which starts with a triple of sign pattern (−, 0, +) and ends with one of sign
pattern (−, +, 0), or a circuit. We now prove:

Theorem 7. If Δ is not a square then only circuits can happen; if Δ is a
square then only chains can happen, except in the trivial case when a = c = 0
(which yields a circuit of length 1).

Proof. The first part is obvious, as the initial triple in a chain has b = 0, which
means that Δ = (a − c)2. To prove the second part, it is sufficient to show
that if Δ is a square then (a, b, c) is equivalent under Γ to a triple whose first
entry is zero, because we showed in Theorem 6 that any equivalence within
P can be expressed (up to permutation of the entries) by moving along a
chain or circuit.

We move to the geometrical interpretation. As Δ is a square the quadratic
form factorizes. Let sm + tn be a factor. Then t

−−→
XY − s

−−→
XZ will be a vector

of length zero. If this vector is not primitive, take its smallest submultiple
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within the lattice, which will both be primitive and have length zero. But we
saw earlier that we can find an element of Γ that turns any primitive lattice
vector into a side of our triangle. ��

9 Square Discriminants

Note that, as we stated at the end of Section 4, the main interest in this
section is that a complete solution is possible, so the reader may choose to
skip this section.

If Δ is a square, so that all sequences of K- and K−1-images are chains,
then there is a simple description of these chains. To express it, we define a
function L(m, n) of two non-negative integers by induction on their size as
follows:

(a) If m or n = 0 then L(m, n) = 0.
(b) If m ≥ n > 0 then L(m, n) = L(m − n, n) + 1.
(c) If n ≥ m > 0 then L(m, n) = L(m, n − m) + 1.

In other words, if we apply the Euclidean Algorithm to m and n, replacing
each in turn by its remainder when divided by the other, then L(m, n) is the
sum of the resulting partial quotients.

Theorem 8. Let Δ be a square and let m ≤ n be positive integers whose
sum squares to Δ. Then we can apply K exactly L(m, n) times to (−m, 0, n)
before it stops.

If m and n are coprime, it stops at (−q, r, 0) where p, q and r are the
unique positive integers such that m + n = q + r = p, q ≤ r and mq ± 1 is
divisible by p.

If m and n have greatest common divisor d, then the place where it stops
is d times the place where the repeated application of K to (−m

d , 0, n
d ) stops.

K takes (0, n, 0) to itself.
The above chains, together with the operations S and U , determine all

equivalences between triples in P with discriminant Δ.

We start with two lemmas.

Lemma 1. If eh − fg = 1 and e, f , g and h are non-negative, then exactly
one of the following three holds:

A: e = h = 1, f = g = 0.
B: e ≤ g and f ≤ h.
C: e ≥ g and f ≥ h.

Proof. We leave this as an exercise for the reader. ��
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Lemma 2. If
(

e f
g h

)
∈ 2Γ has non-negative entries then it can be expressed

as a product of a sequence of T0S0’s and T−1
0 S−1

0 ’s, where the length of the
sequence is Max(L(e, g), L(f, h)).

Proof. We start by noting that T0S0 =
(

1 0
1 1

)
and T−1

0 S−1
0 =

(
1 1
0 1

)
. We

now use induction on the size of the entries. By Lemma 1 one of the conditions
A–C holds. If A, then the matrix, being the identity, can be expressed as the
product of the empty sequence. If B, then

(
e f
g h

)
= T0S0

(
e f

g − e h − f

)

where the second matrix on the right hand side is a smaller matrix satisfying
the hypothesis of the theorem. So by induction we can express the latter in
the required form and then add a T0S0 on the left to get an expression for(

e f
g h

)
. The argument if condition C holds is similar, using the expression

(
e f
g h

)
= T−1

0 S−1
0

(
e − g f − h

g h

)
.

If condition A holds then L(e, g) and L(f, h), hence the Max of these, are
zero, which is the length of our sequence. If condition B holds, since e = 0
is impossible (because of the condition eh − fg = 1), we have L(e, g) =
L(e, g − e) + 1; while L(f, h) = L(f, h − f) + 1 unless f = 0, when L(f, h)
and L(f, h − f) are both zero. Thus in either case Max(L(e, g), L(f, h)) =
Max(L(e, g − e), L(f, h − f)) + 1, which by induction proves the last part of
Lemma 2. The argument for condition C is similar. ��

Proof (of Theorem 8). We start by assuming that m and n are coprime.
Find the unique g such that 0 < g < n and gm + 1 is divisible by n, and
choose e such that en− gm = 1. It is easy to see by induction on (m, n) that
L(m, n) > L(e, g). Consider the sequence of L(m, n) matrices of the form

T0S0 or T−1
0 S−1

0 whose product is
(

e m
g n

)
. In the 3-dimensional represen-

tation, the corresponding matrix is
⎛

⎝
(e − m)(n − g) −mn −eg

(g − n)(e − m + g − n) n(m + n) g(e + g)
(e − m)(e − m + g − n) m(m + n) e(e + g)

⎞

⎠ .

Using the equation en − gm = 1, we find that this takes (0, m,−n) to (m −
e + n− g, 0,−e− g). We can apply elements of 〈S, U〉 before and after to get
something that takes (−m, 0, n) to whichever of (−e − g,m − e + n − g, 0)
and (e − m + g − n, e + g, 0) — say (−q, r, 0) — is in Q.
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Each T0S0 and T−1
0 S−1

0 will correspond to an application of K in a chain
that starts with (−m, 0, n) and ends with (−q, r, 0). So we need exactly
L(m, n) applications. It is clear that q + r = m + n, so all that remains
to be checked is that mq ± 1 is divisible by m + n. But if q = e + g
then mq + 1 = m(e + g) + 1 = e(m + n), and if q = m − e + n − g then
mq − 1 = m(m + n) − m(e + g) − 1 = (m − e)(m + n).

If m and n have greatest common divisor d > 1, we just apply the argument
to (−m

d , 0, n
d ) and multiply by d. And the case of (0, n, 0) is even more obvious.

Finally, the last paragraph of Theorem 8 is an immediate consequence of
Theorem 7. ��

This leaves only the most interesting case, where the discriminant is pos-
itive but not a square.

10 Positive Non-Square Discriminants

We turn to the problem of counting the number of circuits when Δ is a
positive non-square. In this case the only sign pattern that occurs in Q is
(−, +, +).

It can be seen that if one interchanges b and c in each triple of a circuit
one gets either the same or a different circuit in reverse cyclic order. Let us
therefore call (−a, c, b) the reflection of (−a, b, c). Reflection is actually the
product of the operation U with negation, and what we are saying is that
conjugating by it inverts the operation K. Now certain triples play a special
role under reflection:

1. The triple (−a, b, b) is its own reflection. This gives a (Lorentz-Minkowski)
isosceles triangle, so as in the case Δ < 0 we call this the isosceles case
(I). In this case Δ = a(a + 4b).

2. The triple (−a, b, a) is taken to its own reflection by K. As the squared
length of one of the sides of the corresponding triangle is the negative of
the squared length of another, let’s call this the anti-isosceles case (A). In
this case Δ = 4a2 + b2.

3. The triple (−a, b − a, b) is also taken to its own reflection by K. As the
squared length of one of the sides is the sum of those of the other two, as
before we call this the Pythagorean case (P). In this case Δ = 4ab.

One can show that any triple that is, or is taken by K to, its reflection
must be of one of these three types. It follows that if a circuit with length at
least 2 is its own reflection then it must contain exactly two triples of one of
these types. So if every circuit is self-reflecting and of length at least 2, then
the class number will be half the number of triples of types A, I or P.

The reader may find it an interesting exercise to enumerate all the circuits
for various values of Δ (either by hand or by writing a computer program),
study their behaviour, and try to prove any results that turn up. I wrote a
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computer program covering all Δ < 500 and found (and then proved) several
interesting results. Here are some of them:

• A primitive circuit of length 1 only occurs when Δ = 5. The relevant
triple is (−1, 1, 1). As this is both isosceles and anti-isosceles, and the only
primitive triple (for any positive non-square value of Δ) that satisfies more
than one of the above conditions to lie in A, I or P, it may be thought of
as a “degenerate” example of the result that every self-reflecting circuit
has 2 triples that lie in A, I or P.

• A primitive circuit of length 2 occurs only when Δ = 8, and has triples
(−1, 1, 2) (which is Pythagorean) and (−1, 2, 1) (which is anti-isosceles).

• The number of primitive triples of each of the types A, I or P is always
either zero or a power of 2 (including 1), the same in each case where it
is non-zero. It will be non-zero for at least one of I and P, and zero in at
least one other case. It follows from this that the number of self-reflecting
circuits — and therefore the class number, if all circuits are self-reflecting
and all triples are primitive — is always a power of 2.

• In the above, the types that occur, and what the power of 2 is, can be
deduced from the number of odd primes dividing Δ, whether any of them
have the form 4m−1, the power of 2 dividing Δ, and (if this is 4) whether
Δ/4 is of form 4m + 1 or 4m − 1.

• Self-reflecting circuits can in principle be of six types: AA (i.e., containing
two anti-isosceles triples), AI, AP, II, IP, and PP. For each of the last five,
there are values of Δ where the answer to the previous result forces the
existence of such circuits (e.g. 13, 8, 21, 12 and 24 respectively). Though
not forced in this way, the type AA also occurs, but the smallest value of
Δ is 136.

• When Δ is small, then all circuits are self-reflecting. The smallest coun-
terexample is when Δ = 145, which has two self-reflecting circuits plus
a pair related by reflection, giving a class number of 4. An example of a
triple of discriminant 145 that generates a circuit that isn’t self-reflecting
is (−8, 2, 3).

• The next example of a non self-reflecting circuit occurs when Δ = 148,
generated for example by (−7, 3, 4). As there is a unique primitive self-
reflecting circuit, the total number of primitive circuits is 3, and this is the
first case when this number not a power of 2.

• The next example after that is when Δ = 229, generated for example
by (−9, 3, 5). Again there is a unique self-reflecting circuit, and as 229 is
square-free this gives the first example of a quadratic field whose class
number, 3, is not a power of 2.

• The first Δ with more than 2 primitive self-reflecting circuits is 480.
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11 Conclusion

Our journey, which started with an elementary problem, has taken us through
several different branches of mathematics, thus illustrating the unity of the
subject. We have introduced two important concepts: the modular group
and class numbers for rings of algebraic integers in algebraic number fields.
Furthermore we have described a method of calculating class numbers of
quadratic number fields.

We should note that there is a different, more classical approach to cal-
culating the class numbers of quadratic number fields. It is less explicit than
our approach, but leads to a closed formula for the class number; see for
instance [2].

We hope that this article will stimulate readers to find out more for them-
selves; we added a few suggestions for further reading below.

Further Reading

[1] Godfrey H. Hardy and Edward M. Wright, An Introduction to the Theory of
Numbers, sixth edition. Oxford University Press, Oxford (2008)
This is a “classical” textbook on Number Theory; it provides background and de-
tails to the topics of the article. Particularly relevant are Chapter XIV (quadratic
fields (1)) and Chapter XV (quadratic fields (2)), as well as Chapter VI (Fermat’s
theorem and consequences, including quadratic reciprocity).

[2] Zenon I. Borevich and Igor R. Shafarevich, Number Theory. Academic Press, New
York/London (1966)
A well-written textbook on number theory, more advanced than [1]. Includes a
classical closed formula for the class number (Chapter 5.4).

[3] Duncan A. Buell, Binary Quadratic Forms. Classical Theory and Modern Com-
putations. Springer, New York (1989)
This is a general textbook on quadratic forms, including an extensive collection
of tables extending those given in our text.





Small Divisors: Number Theory in
Dynamical Systems

Jean-Christophe Yoccoz

Abstract. We discuss dynamical systems with two or more moving parti-
cles, such as two planets orbiting around the sun. If the ratio of their rotation
periods, say α, is rational, then the planets are in resonance, and the mutual
interaction will make the dynamics unstable. If the period ratio α is irra-
tional, it can be approximated arbitrarily well by rational numbers, and the
stability depends on how good this approximation is in terms of the sizes
of numerators and denominators. We discuss this in a mathematical model
case that can be analyzed completely, the setting of iteration of quadratic
polynomials z �→ e2πiαz + z2, and show how this leads to questions of Dio-
phantine approximation within number theory. Finally, we briefly mention
the situation of more than two planets.

1 Planetary Systems

Celestial mechanics is the study of the motion of celestial bodies under New-
ton’s law of gravitation. This law stipulates that the attractive force between
any two bodies (which we assume to have negligible size) is proportional to
their masses and inversely proportional to the square of their distance. The
acceleration of each body is proportional to the resultant of the forces to
which it is submitted. In mathematical terms, the motion of N bodies in
gravitational interaction is therefore the solution of a system of differential
equations of second order.

When there are only 2 bodies, this system can actually be solved explicitly
and leads to the famous Kepler laws, which were discovered experimentally
long before Newton’s law was established: the bodies either escape to infinity
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e-mail: jean-c.yoccoz@college-de-france.fr

D. Schleicher, M. Lackmann (eds.), An Invitation to Mathematics,
DOI 10.1007/978-3-642-19533-4 4, © Springer-Verlag Berlin Heidelberg 2011

43



44 Jean-Christophe Yoccoz

(the uninteresting case) or they move periodically along homothetic elliptic
orbits.

When there are at least 3 bodies, the system of differential equations be-
comes fantastically complicated and remains largely mysterious even today.
Poincaré showed at the end of the 19-th century that in some appropriate
sense, one cannot write the solutions of the system through explicit formulas
(somewhat like Galois’s assertion, several decades earlier, about the impos-
sibility to solve by radicals the general polynomial equation of degree 5 or
larger). Poincaré then looked for other methods in order to study the solu-
tions, founding the modern theory of dynamical systems [8].

Planetary systems constitute a particularly interesting special case of the
general N -body problem. One of the bodies (the sun) is assumed to be much
heavier than the others (the planets). Therefore, in a first approximation,
one can forget about the gravitational interaction between the planets. Each
planet will then, independently of the others, move periodically along an ellip-
sis with the sun as focus. When the motions of all the planets are considered
together, the motion is no longer periodic unless the periods of the planets
are all commensurate (i.e. all periods have a common multiple): such a su-
perposition of periodic motions (with not necessarily commensurate periods)
is called quasiperiodic.

A major question is to understand how much this picture changes when one
takes into account the mutual gravitational attraction between the planets. In
the short or medium term (a few revolutions around the sun), the effect will
not be very important because the perturbation is so much smaller than the
attractive force of the sun. But in the long term, the effect is quite significant,
at least when some periods are close to being commensurate.1 For instance,
the period of Jupiter is close to 2/5 of the period of Saturn, and for the orbits
of these two planets this produces deviations from the Keplerian solutions
that have been documented by astronomers several centuries ago.

The question of stability of quasiperiodic motions under small perturba-
tions has been one of the major areas of research in dynamical systems theory
for one century. Negative results appeared in the first decades of the 20-th
century. Then in 1942 Siegel achieved the first breakthrough in a setting
which is described below. In the setting of mechanics which is appropriate
for planetary systems, a number of results have been obtained since the 1950s;
these are collectively known as KAM theory after Kolmogorov, Arnol’d, and
Moser who were the pioneers in this line of research. A very good survey is [1].

1 Of course, every real number is arbitrarily close to rational numbers; what matters
is how well a real number (the ratio of the periods) can be approximated by rationals
in relation to the sizes of numerators and denominators. This will be a key theme in
our discussion below.
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2 Complex Quadratic Polynomials and Linearization

In this section, we will consider sequences (zn)n≥0 of complex numbers which
are defined by their initial term z0 and some recurrence relation zn+1 = f(zn).
The map f is fixed and we want to understand the behaviour of the sequence
(zn)n≥0 as the integer n (that should be thought of as time) goes to ∞. This in
general requires different tools depending on the nature of the transformation
f ; we will only consider examples related to the stability of quasiperiodic
motions. A good general reference on the topic of this section, and more
generally on complex dynamics, is [7].

The reference example of a pure unperturbed quasiperiodic motion is given
by

zn+1 = λzn ,

i.e. f(z) = λz. Here λ is a fixed complex number of absolute value 1; such a
number can be written uniquely as λ = exp(2πiα) where α is a real number
in [0, 1). Geometrically, zn+1 is obtained from zn by a rotation of angle 2πα
centered at the origin of the complex plane. The sequence of points z0, z1, z2,
. . . , zn, . . . is called the orbit of the initial point z0. (The orbit points zn can
be thought of as the positions at time n of a small planet that orbits around
the origin. Here the unit of time is chosen arbitrarily; it will be specified
below.) This is the unperturbed system. For this very simple example, we
can find an explicit formula for the full sequence:

zn = λnz0 = exp(2πinα)z0 .

We thus have to distinguish two cases:

• α is a rational number p
q (with coprime p and q). In this case, we have

λq = 1, hence zn+q = zn for all n ≥ 0 and the sequence (zn) is periodic of
period q.

• α is an irrational number. Except in the trivial case z0 = 0, the zn are all
distinct and lie on the circle centered at the origin of radius |z0|. It is not
difficult to show that the sequence zn is actually dense on this circle: for
every point z on the circle and every δ > 0, there exist infinitely many zn

whose distance to z is smaller than δ.

We will now consider a very specific perturbation of the previous example
where the recurrence relation is

zn+1 = λzn + z2
n ,

i.e., f(z) is the complex quadratic polynomial λz + z2. We will assume that
the initial value z0 is small (in absolute value); for small z, the perturbation
(the quadratic term z2) is much smaller than the linear term λz and the new
example is indeed a small perturbation of the previous one.



46 Jean-Christophe Yoccoz

This quadratic map is particularly important because it is the simplest
non-trivial perturbation of the unperturbed system z �→ λz. It can model the
dynamics of two weakly interacting planets as follows. Suppose the ratio of
the orbit periods of planets 2 and 1 is α; then during one period of planet
2, planet 1 moves through an angle 2πα. Choosing the unit of time as the
period of planet 2, the motion of planet 1 is described by the map zn+1 = λzn

with λ = e2πiα. The term z2
n models the combined effect of the perturbation

from planet 2 on planet 1 during one orbit period of planet 2. (To illustrate
that this perturbation should be small, one could write zn+1 = λzn + εz2

n;
but in coordinates wn = εzn, one obtains again wn+1 = λwn + w2

n.)
The case of rational α is quite interesting [7, Sec. 10], but we will limit

ourselves to the following simple remark. Assume that α = 0, so that zn+1 =
zn+z2

n, and that z0 is real and close to 0. Then the sequence (zn) is converging
to 0 if z0 < 0, and increasing to +∞ if z0 > 0. So the behaviour is completely
different from the unperturbed case zn+1 = zn.

Now we generalize and ask the natural question whether the following
property holds for arbitrary α:

(Bdd) The sequence (zn) is bounded when z0 ∈ C is close enough to
the origin.

We have just seen that this is not the case for α = 0, and the same holds actu-
ally for any rational α [7, Lemma 11.1]. For the unperturbed linear example,
the answer obviously is yes for all α ∈ [0, 1), rational or not.

Let us consider the following (apparently) much stronger property called
linearizability :

(Lin) In a neighbourhood of the origin there exists a change of vari-
ables z = h(y), defined by a bijective complex differentiable2

map h(y) with h(0) = 0, such that after setting yn = h−1(zn)
the recurrence relation zn+1 = λzn + z2

n is transformed into
yn+1 = λyn.

In other terms, the change of variables h must turn the perturbed linear map
f : z �→ λz + z2 into the exactly linear map y �→ λy (it linearizes f). This
means that h must satisfy the functional equation h−1 ◦ f ◦ h(y) = λy, or
equivalently

(FE) λh(y) + h(y)2 = h(λy) ,

for y close to the origin (see Figure 1).

2 According to a basic result in complex analysis, a function h is complex differen-
tiable in a neighbourhood of the origin if and only if it can be expressed as a power
series h(z) =

P

�≥0 h�z�, where the growth of the |h�| is modest enough so that this

converges for all z with |z| < r, for some r > 0. Such functions h are also called
holomorphic. A holomorphic map is invertible in a neighbourhood of the origin if and
only if h1 �= 0; in this case the inverse is holomorphic as well.
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Fig. 1. Left: The dynamics of a polynomial f(z) = λz+z2 with |λ| = 1 that satisfies
condition (Bdd). (Here λ = e2πiα with α = (

√
5 − 1)/2, the “golden mean”.) The

set of points z0 ∈ C for which the sequence zn is bounded is coloured orange; its
boundary is called the Julia set. Condition (Bdd) means that the origin (marked by
a ‘+’) has an orange neighbourhood. The largest such open neighbourhood is called
a Siegel disk. There is a change of variables h−1 from the Siegel disk to a round disk
D (right) that transports the dynamics of f to multiplication by λ, i.e., to a rigid
rotation by the angle α: in other words, h−1 ◦f ◦h(y) = λy for all y ∈ D, so condition
(Lin) holds. For every point y0 ∈ D other than 0, the points yn = λny0 lie densely
on a circle; some such circles are drawn in, together with their image circles under h
in the Siegel disk. (Left picture courtesy of Arnaud Chéritat.)

Property (Lin) means that the behaviour of the sequences (zn) is deformed,
but not qualitatively changed, by the introduction of the quadratic term z2

n

in the recurrence relation: therefore, (Lin) implies (Bdd).
On the other hand, if property (Lin) is not satisfied, property (Bdd) is

also not satisfied: there always exist arbitrarily small initial values z0 such
that the sequence (zn) is unbounded. We cannot prove this here; see [7,
Lemma 11.1]. Hence, Properties (Bdd) and (Lin) are in fact always equivalent
(for holomorphic maps).

A related important condition is stability of the fixed point at the origin:
this means that for every ε > 0 there is a δ > 0 so that for any point z with
distance at most δ from the origin, the entire orbit has distance at most ε from
the origin. Obviously, (Lin) implies stability, and stability implies (Bdd), so
all three conditions are equivalent for holomorphic maps.

It is actually quite easy to see that for rational α, property (Lin) can never
be satisfied for any polynomial f of degree 2 (or higher). If, say, α = p/q, then
the q-th iterate of the linear map equals the identity. If (Lin) were satisfied,
then the origin would have to have a neighbourhood in which the q-th iterate
of f was equal to the identity; but the q-th iterate is a polynomial of degree
2q, and hence has only finitely many fixed points.
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We will from now on consider irrational α. Recall the function h from con-
dition (Lin). As a complex differentiable map, it has a power series expansion
h(y) = y +

∑
�≥2 h�y

� (one can always normalize so that h1 = 1). The coef-
ficients h� can, in principle, be calculated recursively using (FE). As � gets
large, one obtains ever more complicated formulas for h�; their denominators
contain factors of the form λj − 1. These factors can be very small (for any
irrational α, we must have infn≥1 |λn − 1| = 0). Depending on how fast they
become small, the coefficients h� can grow very rapidly, and this can make the
series h(y) = y+

∑
�≥2 h�y

� divergent even for arbitrarily small nonzero values
of y. The occurrence of these small denominators gave rise to the term “small
divisors” that was coined for this problem and others of the same nature.

In the beginning of the 20-th century, Cremer [3] constructed examples of
irrational numbers α which do not satisfy property (Lin). Observe first that

z1 = λz0 + z2
0 ,

z2 = λ2z0 + (λ + λ2)z2
0 + 2λz3

0 + z4
0 ,

z3 = λ3z0 + · · · + z8
0 ,

and more generally

zn = λnz0 + · · · + z2n

0 =: Pn, λ(z0) .

If z∗0 is a solution of Pn, λ(z0) − z0 = 0, the sequence (zn) with initial value
z0 = z∗0 is periodic of period n. By Viète’s Law, the product of the 2n−1 non-
zero solutions equals 1−λn. Therefore, there exists such a solution satisfying

|z∗0 | ≤ |λn − 1| 1
2n−1 .

Assume that λ satisfies

(Cr) inf
n≥1

|λn − 1| 1
2n−1 = 0 .

Then we conclude that there are periodic sequences (zn) starting arbitrarily
close to 0 (but not at 0). But then property (Lin) is not satisfied, because
the unperturbed reference example does not have such periodic sequences.

It remains to see that there are irrational numbers α that satisfy (Cr). To

define such a number, let b0 = 2, bk+1 = bk
2bk

for k ≥ 0, and α =
∑

k≥0 b−1
k .

This is clearly an irrational number (as can be seen most easily when writing
it in base 2). We evaluate |λn − 1| for n = bk and get

|λbk − 1| =
∣∣∣exp

(
2πibk

∑

�≥0

b−1
�

)
− 1

∣∣∣ =
∣∣∣ exp

(
2πibk

∑

�>k

b−1
�

)
− 1

∣∣∣

≈ 2πbk/bk+1 = 2πb
−(2bk−1)
k ,

and thus |λbk − 1|
1

2bk −1 ≈ 1/bk.
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This concludes our discussions on angles α for which condition (Lin) is
not satisfied, and we turn our attention to the converse. In 1942, Siegel [9]
proved the following remarkable result:

Theorem 1 (Siegel). If λ satisfies the Diophantine Condition

(DC)γ,τ |λn − 1| ≥ γ

n1+τ

for some constants γ > 0, τ ≥ 0 and for all n > 0, then property (Lin) holds.

Siegel’s result holds for perturbations of the reference linear example which
are much more general than the quadratic one that we have considered. More
precisely, it holds for recurrence relations of the form

zn+1 = λzn + g(zn) ,

provided g is complex differentiable in a neighbourhood of the origin and
satisfies g(0) = 0 and g′(0) = 0.

Conditions such as (Cr) and (DC)γ,τ are related to the approximation
of irrational numbers by rational numbers, a subject discussed in the next
section. For now, we define a fundamental concept and relate it to condition
(DC)γ,τ above.

Definition (Diophantine Numbers). An irrational number α is called
Diophantine of exponent τ if there exists some γ > 0 such that all p, q ∈ Z

with q > 0 satisfy |α − p/q| > γ/qτ .

It is easy to see that a number α is Diophantine of exponent 2+τ if and only
if λ = e2πiα satisfies Condition (DC)γ,τ for some γ > 0.

3 Diophantine Approximation

Given an irrational number α and any ε > 0, there exists a rational number
p
q such that |α− p

q | < ε. But as ε becomes small, q (and p ≈ αq) must become
large. How fast in terms of ε?

The continued fraction algorithm produces, for every irrational number α,
a sequence of rational numbers (pk/qk) called the convergents of α which
are, in a sense explained below, the best rational approximations of α. The
algorithm also analyses the quality of these approximations. Background and
more information on continued fractions and Diophantine approximation can
be found in [4, Secs. X–XI], as well as [7, Sec. 11].

We denote by [x] the integral part of a real number x and by {x} its
fractional part. Given an irrational number α, define a0 = [α], α1 = {α}, and
then ak = [α−1

k ], αk+1 = {α−1
k } for k ≥ 1. Thus, one obtains recursively
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(CF) α = a0 +
1

a1 + 1
a2+

1
a3+...

.

For k ≥ 0, define the k-th convergent of α as

pk

qk
= a0 +

1
a1 + 1

. . .+ 1
ak

(in lowest terms). The sequences of integers (pk), (qk) satisfy the following
recurrence relation [4, Sec. 10.2]:

pk = akpk−1 + pk−2 , qk = akqk−1 + qk−2

starting with p−2 = q−1 = 0, p−1 = q−2 = 1. For instance, for the golden
mean α =

√
5+1
2 , all ak are equal to 1 and (pk = qk+1) is the Fibonacci

sequence.

Conversely, for any sequence (ak) of integers with ak ≥ 1 for k ≥ 1, the
formula (CF) defines a unique irrational number α.

The convergents are the best rational approximations of α in the following
sense: let k ≥ 0 and let p, q be integers with 0 < q < qk+1; if one has

|qα − p| ≤ |qkα − pk| ,

then q = qk and p = pk [4, Sec. 10.15].

Concerning the quality of the approximation by the convergents, one has
for all k ≥ 0 the following estimates:3

1
(ak+1 + 2)qk

≤ 1
qk+1 + qk

< |qkα − pk| <
1

qk+1
≤ 1

ak+1qk
.

3 Since the central inequalities are not as easily found in the introductory litera-
ture, we justify them here. We use the fact that the convergents pk/qk converge
alternatingly to α, in the sense that p2k/q2k < p2k+2/q2k+2 < · · · < α < · · · <
p2k+3/q2k+3 < p2k+1/q2k+1 for all k. Moreover, pk+1qk − qk+1pk = (−1)k, which
is easily proved by induction using the recursive relations for pk and qk. This gives
˛

˛

˛

α − pk

qk

˛

˛

˛

<
˛

˛

˛

pk+1

qk+1
− pk

qk

˛

˛

˛

= 1
qkqk+1

.

For the second inequality, we repeatedly use the fact that a
c

< b
d

for a, b, c, d > 0

implies a
c

< a+b
c+d

< b
d
. We thus get (for even k; the other case is analogous)

pk

qk

<
pk + pk+1

qk + qk+1
≤ pk + ak+2pk+1

qk + ak+2qk+1
=

pk+2

qk+2
< α <

pk+1

qk+1

and thus

˛

˛

˛

˛

α − pk

qk

˛

˛

˛

˛

>

˛

˛

˛

˛

˛

pk + pk+1

qk + qk+1
− pk

qk

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

pk+1qk − pkqk+1

qk(qk + qk+1)

˛

˛

˛

˛

˛

=
1

qk(qk + qk+1)
.
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Therefore, large ak+1 correspond to especially good rational approximations
of α. The golden mean is thus the irrational number with the worst rational
approximations, and hence the best candidate for a rotation angle α satisfying
condition (Lin) and thus stability.

From the last inequalities above, together with the recursion formula
qk+1 = ak+1qk + qk−1, it is easy to see that a number α is Diophantine
of exponent 2 + τ if and only if

qk+1 = O
(
q1+τ
k

)
or equivalently ak+1 = O(qτ

k)

(this just means that the sequences qk+1/q1+τ
k and ak+1/qτ

k are bounded).
For instance, the golden mean is Diophantine of exponent 2. Note that the
golden mean satisfies the equation α2 = α + 1. More generally, for any irra-
tional number α that is the root of a second-degree polynomial with integer
coefficients, the sequence (ak) becomes periodic for large k, so this sequence
is bounded, and α is Diophantine of exponent 2 [4, Sec. 10.9].

Many more Diophantine numbers are provided by the following theorem,
the proof of which is rather elementary (see for instance [7, Theorem 11.6] or
[4, Sec. 11.7]).

Theorem 2 (Liouville). If α is an irrational number which is the root of a
polynomial of degree d ≥ 2 with integer coefficients, then α is Diophantine of
exponent d.

A much deeper and more difficult theorem in this direction is Roth’s theorem.

Theorem 3 (Roth). If α is an irrational number which is the root of a
polynomial (of any degree) with integer coefficients, then α is Diophantine of
exponent 2 + τ for any τ > 0.

Assume that you choose at random a number α ∈ [0, 1), by choosing
successively and independently the digits in its decimal expansion with equal
probability. Then α will be irrational almost surely (i.e. with probability 1)
and the corresponding sequences (ak), (qk) will almost surely satisfy the
following properties:

• the sequence
(

ak

k log k

)

k≥2

is unbounded;

• for any ε > 0, the sequence
(

ak

k(log k)1+ε

)

k≥2

is bounded;

• the sequence
(

1
k

log qk

)
converges to

π2

12 log 2
.

This implies that a random α is almost surely Diophantine of exponent 2+ τ
for every τ > 0. The corresponding numbers λ = e2πiα thus satisfy the
conditions of Siegel’s theorem so that the corresponding recurrence relation
zn+1 = λzn + g(zn) satisfies condition (Lin).
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Remark. The first two assertions are special cases of a more general theorem
due to Khinchin; see [6, Section II] or [5, Theorem 30]. The third assertion is
essentially Lochs’ theorem: it easily implies that almost surely the number of
valid decimal places of α in pk/qk, divided by k, tends to π2/6 log 2 log 10 ≈
1.0306 . . . for random numbers α (in other words, each extra term in the
continued fraction expansion of α gains just over one more decimal digit, on
average).

4 Further Results and Open Questions

Let α be an irrational number and λ = exp(2πiα). We have seen above that
if the convergents (pk/qk) of α satisfy

(DC) qk+1 = O
(
q1+τ
k

)

for some τ ≥ 0 then λ satisfies (DC)γ,τ for some γ > 0 and thus, by Siegel’s
theorem, the sequences defined by zn+1 = λzn + z2

n satisfy the equivalent
properties (Bdd) and (Lin) above. Recall that a “random” number α is
Diophantine of exponent 2 + τ for τ > 0 and hence satisfies (DC) almost
surely.

On the other hand, it is easy to check that Cremer’s condition (Cr) above
is equivalent to

(Cr) ′ sup
k≥0

log qk+1

2qk
= +∞ .

Under this condition, we know that the equivalent properties (Bdd) and (Lin)
are not satisfied.

What about irrational numbers α which satisfy neither (DC) nor (Cr)?
There is a rather large gap between the growth of the qk implied by the two
conditions: the first condition says log qk+1 < (1 + τ) log qk + C for some
C ∈ R and all k, while the second implies that log qk+1 > 2qk infinitely
often.

In 1965, Brjuno [2] proved that, if the convergents of α satisfy

(Br)
∑

k≥0

log qk+1

qk
< +∞ ,

then properties (Bdd) and (Lin) are still satisfied. Observe that this condi-
tion restricts the growth of the qk much less than (DC); for instance, the
condition log qk+1 = O(

√
qk) implies (Br) (since the qk grow at least expo-

nentially).
Brjuno’s theorem is valid for the same kind of general recurrence rela-

tion zn+1 = λzn + g(zn) as Siegel’s theorem (g complex differentiable in a
neighbourhood of 0, g(0) = 0, g′(0) = 0).
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On the other hand, in 1988 I proved the following result [10]:

Theorem 4. Assume that Brjuno’s condition (Br) is not satisfied:

∑

k≥0

log qk+1

qk
= +∞ .

Then the properties (Bdd), (Lin) are not satisfied for the sequences defined
by the quadratic relation zn+1 = λzn + z2

n. In particular, there exist initial
values z0 arbitrarily close to 0 such that the sequence (zn) converges to ∞.

For the quadratic recurrence relation zn+1 = λzn + z2
n, we therefore know

exactly for which irrational numbers α the equivalent properties (Bdd) and
(Lin) are satisfied. Quadratic polynomials form the first family of dynamical
systems in which explicit necessary and sufficient conditions are known for
when a small divisor problem is stable, i.e., satisfies condition (Bdd).

However, this is not the end of the story. Replace the quadratic recurrence
relation zn+1 = λzn + z2

n by any polynomial of degree d ≥ 3 of the form

zn+1 = λzn +
∑

2≤ �≤ d

f� z�
n

with fd �= 0. As before, write λ = exp(2πiα). From Brjuno’s theorem, we
know that if α satisfies (Br), then properties (Bdd) and (Lin) are satisfied.
On the other hand, it is conjectured that if α does not satisfy (Br), then
properties (Bdd), (Lin) are not satisfied; but we do not have a proof at the
moment.

More information on the topic of this section can be found in [7, Sec. 11].

5 Several Degrees of Freedom

Finally, we come back to the setting of planetary systems introduced in the
first section, with one heavy central body (the sun) and N−1 planets orbiting
around it. Consider a bounded solution of the unperturbed system (i.e., we
do not take the mutual interaction between the planets into account). Each
of the N − 1 planets describes a Keplerian elliptic orbit with a period Ti

(1 ≤ i ≤ N − 1). Let ωi = T−1
i , 1 ≤ i ≤ N − 1, be the corresponding

frequencies. The totally irrational (or non-resonant) case occurs when there
is no relation of the form

(Res)
N−1∑

i=1

ki ωi = 0

with ki ∈ Z, not all 0.
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One says that the frequency vector ω = (ωi) is Diophantine if there are con-
stants γ > 0, τ ≥ 0 such that for any nonzero vector k = (ki) ∈ ZN−1 one has

(HDC)γ,τ

∣∣∣∣∣

N−1∑

i=1

ki ωi

∣∣∣∣∣ ≥ γ

(
N−1∑

i=1

|ki|
)2−N−τ

.

We do not try to give a precise mathematical statement from KAM theory
which applies in the setting of planetary systems. The general idea is that
those solutions of the unperturbed system whose frequency vector is Dio-
phantine (with τ > 0 fixed, and γ not too small with relation to the size
of the perturbation) will survive as slightly deformed quasiperiodic solutions
of the perturbed system with the same frequency vector. Because a random
frequency vector has a strictly positive probability to verify the required con-
dition (HDC)γ,τ (the probability is strictly less than 1 because γ cannot be
too small), it will also be true that a random initial condition for the differen-
tial equation of the planetary system leads with strictly positive probability
to a quasiperiodic solution with a Diophantine frequency vector.

However, we expect that another set of initial conditions having strictly
positive probability leads to solutions which are not quasiperiodic. To prove
this statement and to understand these solutions is a major open problem.

References
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How do IMO Problems
Compare with Research Problems?

Ramsey Theory as a Case Study

W. Timothy Gowers

Abstract. Although IMO contestants and research mathematicians are
both attempting to solve difficult mathematical problems, there are impor-
tant differences between their two activities. This is partly because most
research problems involve university-level mathematical concepts that are
excluded from IMO problems. However, there are more fundamental differ-
ences that are not to do with subject matter. To demonstrate this, we look at
some results and questions in Ramsey theory, an area that has been a source
both of IMO problems and of research problems.

1 Introduction

Many people have wondered to what extent success at the International
Mathematical Olympiad is a good predictor of success as a research math-
ematician. This is a fascinating question: some stars of the IMO have gone
on to extremely successful research careers, while others have eventually left
mathematics (often going on to great success in other fields). Perhaps the
best one can say is that the ability to do well in IMO competitions correlates
well with the ability to do well in research, but not perfectly. This is not
surprising, since the two activities have important similarities and important
differences.

The main similarity is obvious: in both cases, one is trying to solve a
mathematical problem. In this article, I would like to focus more on the
differences, by looking at an area of mathematics, Ramsey theory, that has
been a source both of olympiad problems and of important research problems.
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I hope to demonstrate that there is a fairly continuous path from one to the
other, but that the two ends of this path look quite different.

Many expositions of Ramsey theory begin by mentioning the following
problem.

Problem 1.1. There are six people in a room, and any two of them are either
good friends or bitter enemies. Prove that there must either be three people
such that any two of them are good friends, or three people such that any two
of them are bitter enemies.

If you have not seen this problem (though I would imagine that most IMO
contestants have encountered it), then you should solve it before reading on.
It is not hard, but one learns a lot from working out the solution for oneself.

It is convenient to reformulate the problem before solving it, by stripping it
of its irrelevant non-mathematical part (that is, its talk of people, friendship
and enmity) and looking just at the abstract heart of the problem. One way
of doing this is to represent the people by points in a diagram, and joining
each pair of points by a (not necessarily straight) line. This gives us an object
known as the complete graph of order 6. To represent friendship and enmity,
we then colour these lines red if they join two people who are good friends
and blue if they join two people who are bitter enemies. So now we have six
points, with each pair of points joined by either a red line or a blue line. The
standard terminology of graph theory is to call the points vertices and the
lines edges. (These words are chosen because an important class of graphs is
obtained by taking a polyhedron and forming a graph out of its vertices and
edges. In such an example, there will be pairs of points not joined by edges,
unless the polygon is a tetrahedron: these are therefore incomplete graphs.)
Our task is now to prove that there must be a red triangle or a blue triangle,
where a triangle in this context means a set of three edges that join three
vertices.

To prove this, pick any vertex. It is joined by edges to five other vertices,
so by the pigeonhole principle at least three of those edges have the same
colour. Without loss of generality, this colour is red. There are therefore
three vertices that are joined by red edges to the first vertex. If any two of
these three vertices are joined by a red edge, then we have a red triangle. If
not, then all three pairs of vertices from that group of three must be joined
by blue edges, which gives us a blue triangle. QED

Let us define R(k, l) to be the smallest number n such that if you colour
each edge of the complete graph of order n red or blue, then you must be
able to find k vertices such that any two of them are joined by a red edge, or
l vertices such that any two of them are joined by a blue edge. We have just
shown that R(3, 3) ≤ 6. (If you have not already done so, you should find
a way of colouring the edges of the complete graph with five vertices red or
blue in such a way that you do not get a red triangle or a blue triangle.)

It is not immediately obvious that the definition above makes sense: Ram-
sey’s theorem is the assertion that R(k, l) exists and is finite for every k and l.
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A simple generalization of the argument we used to prove that R(3, 3) ≤ 6
can also be used to prove the following result, due to Erdős and Szekeres,
which proves Ramsey’s theorem and gives us information on how big R(k, l)
is.

Theorem 1.2. For every k and l, we have the inequality

R(k, l) ≤ R(k − 1, l) + R(k, l − 1) .

Once again, if you have not seen this before, then you should prove it for
yourself. (It is much easier than a typical IMO problem.) And you can then
prove, by an easy inductive argument, that the inequality above implies that
R(k, l) ≤

(
k+l−2
k−1

)
. (The main additional step is to note that R(k, 1) = 1, or,

if that bothers you, then the slightly safer R(k, 2) = k, which allows you to
get the induction started.)

This tells us that R(3, 4) ≤ 10. However, the true answer is in fact 9.
Proving this is a more interesting problem — not too hard, but it involves
an extra idea. From that and the inequality of Erdős and Szekeres, we may
deduce that R(4, 4) ≤ R(3, 4) + R(4, 3) = 18, which turns out to be the
correct answer: to show this you need to think of a red–blue colouring of the
edges of the complete graph of order 17 such that no four vertices are all
joined by red edges and no four vertices are all joined by blue edges. Such a
graph exists, and it is rather beautiful: as ever, I would not want to spoil the
fun by saying what it is.

We do not have to go much further than this before we enter the realms
of the unknown. Using the Erdős–Szekeres inequality again we find that
R(3, 5) ≤ R(2, 5) + R(3, 4) = 5 + 9 = 14, which turns out to be the ac-
tual value, and then that R(4, 5) ≤ R(4, 4) + R(3, 5) = 32. In 1995, McKay
and Radziszowski showed, with a great deal of help from a computer, that in
fact R(4, 5) = 25. The best that is currently known about R(5, 5) is that it
lies between 43 and 49.

It is not clear that the correct value of R(5, 5) will ever be known. Even if
the answer is 43, a brute-force search on a computer through all of the 2(

43
2 )

red–blue colourings of the complete graph of order 43 would take far too long
to be feasible. Obviously, there are ways of cutting this search down, but so
far not by enough to make the computation feasible. At any rate, even if
somebody does eventually manage to calculate R(5, 5), it is highly unlikely
that R(6, 6) will ever be known. (It is known to be between 102 and 165.)

Why, you might ask, do we not try to find a theoretical argument rather
than an ugly argument that checks huge numbers of graphs on a computer?
The reason is that the largest graphs that avoid k vertices that are all joined
by red edges or l vertices that are all joined by blue edges tend to be rather
unstructured. In this respect, the graphs that demonstrate that R(3, 3) > 5,
R(3, 4) > 8 and R(4, 4) > 17 are rather misleading, since they have plenty
of structure. This seems to be an example of the so-called “law of small
numbers”. (For a simpler example of this, take the fact that the first three
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primes, 2, 3 and 5, are consecutive Fibonacci numbers. This fact is of no
significance whatsoever: there just aren’t that many small numbers around
so one expects coincidences.)

We therefore find ourselves in the unsatisfactory situation that there is
probably no theoretical argument that gives an exact formula for R(k, l),
and therefore the best one can do is try to find clever search methods on a
computer when k and l are small. This may sound a bit defeatist, but Gödel
has taught us that we cannot just assume that everything we want to know
has a proof. In the case of small Ramsey numbers, we do not learn anything
directly from Gödel’s theorem, since we could in principle calculate them by
brute force, even if not in practice. However, the general message that nice
facts do not have to have nice proofs still applies, and has an impact on the
life of a research mathematician, which can be summed up in the following
general problem-solving strategy, which I do not recommend to participants
in mathematical olympiads.

Strategy 1.3. When you are stuck on a problem, sometimes the best thing
to do is give up.

As a matter of fact, I do not entirely recommend it to research mathe-
maticians either, unless it is coupled with the following rather more positive
principle, which again I do not recommend to participants in mathematical
olympiads.

Strategy 1.4. If you cannot answer the question, then change it.

2 Asymptotics of Ramsey Numbers

One of the commonest ways of changing a mathematical question when we
find ourselves in a situation such as the one just described, faced with a
quantity that we do not think we can calculate exactly, is to look for the best
approximations that we can find, or at least to prove that the quantity must
lie between L and U , where we try to make L (called a lower bound) and U
(called an upper bound) as close as we can.

We have already obtained an upper bound for R(k, l): the bound in ques-
tion was

(
k+l−2
k−1

)
. For simplicity let us look at the case where k = l. Then

we obtain the upper bound
(
2(k−1)

k−1

)
. Can we match that with a comparable

lower bound?
Before we try to answer this question, we should first think about roughly

how large
(
2(k−1)

k−1

)
is. A fairly good approximation (but by no means the

best known) is given by the formula (kπ)−1/24k−1, which we can think of as
growing at about the same speed as 4k (since the ratios of successive values
of this function get closer and closer to 4).
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This is a pretty large function of k. Is there any hope of finding a lower
bound of anything like that size?

If by “finding” you mean writing down a rule that tells you when to colour
an edge red and when to colour it blue, then the answer is that to find an
exponentially large lower bound is a formidably difficult unsolved problem
(though there are some fascinating results in this direction). However, in
1947, Erdős came up with a simple but revolutionary method of obtaining
an exponentially large lower bound that does not involve finding one in this
sense. Rather than give Erdős’s proof, I shall just give the idea of the proof.
It will be useful to introduce the following piece of terminology. If we have
a red–blue colouring of the edges of the complete graph on n vertices, then
let us call a set of vertices monochromatic if any two vertices in the set are
joined by edges of the same colour.

Idea of Proof. Do not attempt to find a colouring that works. Instead,
choose the colours randomly and prove that the average number of monochro-
matic sets of size k is less than 1.

If we can do that, then there must be a graph with no monochromatic
sets of size k, since otherwise the average would have to be at least 1. The
calculations needed to make this argument work turn out to be surprisingly
simple, and they show that R(k, k) is at least

√
2

k
. (In fact, they give a slightly

larger estimate than this, but not by enough to affect this discussion.)
The good news is that this lower bound is exponentially large. The bad

news is that
√

2
k

is a lot smaller than 4k. Can one improve one or other of
these bounds? This is a central open problem in combinatorics.

Problem 2.1. Does there exist a constant α >
√

2 such that for all suffi-
ciently large k we have the lower bound R(k, k) ≥ αk, or a constant β < 4
such that for all sufficiently large k we have the upper bound R(k, k) ≤ βk?

A more ambitious question is the following.

Problem 2.2. Does the quantity R(k, k)1/k tend to a limit, and if so what is
that limit?

Probably R(k, k)1/k does tend to a limit. There are three natural candi-
dates for what the limit might be:

√
2, 2 and 4. I have seen no truly convincing

argument in favour of one of these over the other two.
There has been only a tiny amount of progress on these problems for sev-

eral decades. So should we give up on them too? Definitely not. There is
a profound difference between these extremely hard problems and the ex-
tremely hard problem of evaluating R(6, 6), which is that here one expects
there to be a beautiful theoretical argument: it is just very hard to find.
To give up the search merely because it is hard would be to go completely
against the spirit of mathematical research. (Sometimes a single mathemati-
cian is well-advised to give up on a problem after spending a long time on it
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and getting nowhere. But here I am talking about a collective effort: pretty
well all combinatorialists have at some time or another tried to improve the
bounds for R(k, k) and I am saying that this should continue until somebody
eventually cracks it.)

3 What, in General, is Ramsey Theory?

A typical theorem in Ramsey theory concerns a structure that has many
substructures that are similar to the main structure. It then says that if you
colour the elements in the main structure with two colours (or more generally
with r colours for some positive integer r), then you must be able to find
a substructure all of whose elements have the same colour. For example,
with Ramsey’s theorem itself in the case where k = l, the structure is the
complete graph of order R(k, k) (or to be precise, the edges of the complete
graph) and the substructures are all complete subgraphs of order k. Some
Ramsey theorems also give information about how the size of the substructure
depends on the size of the main structure and the number of colours.

Here is another example, a famous theorem of van der Waerden.

Theorem 3.1. Let r and k be positive integers. Then there exists a positive
integer n such that if you colour the numbers in any arithmetic progression
X of length n with r colours, then you must be able to find some arithmetic
progression Y inside X of length k such that all the numbers in Y have been
given the same colour.

I could talk a great deal about van der Waerden’s theorem and its rami-
fications, but that would illustrate less well some of the more general points
I want to make about IMO problems and research problems. Instead, I want
to move in a different direction.

4 An Infinitary Structure and an Associated Ramsey
Theorem

Up to now, the structures we have coloured — complete graphs and arith-
metic progressions — have been finite. There is a version of Ramsey’s the-
orem that holds for infinite complete graphs (another interesting exercise is
to formulate this for yourself and prove it), but I want to look instead at
a more complicated structure: the space of all infinite 01-sequences that are
“eventually zero”. An example of such a sequence is

001001110110000000000000000000000000000000000000000000000000........
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If s and t are two such sequences, and if the last 1 in s comes before the
first 1 in t, then we write s < t. (One can think of this as saying that all the
action in s has finished by the time the action in t starts.) If this is the case,
then s + t is another 01-sequence that is eventually zero. For example, you
can add

001001110110000000000000000000000000000000000000000000000000........

to

000000000000000110001100011000000000000000000000000000000000........

and you will get the sequence

001001110110000110001100011000000000000000000000000000000000........

Now let us suppose that we have sequences s1 < s2 < s3 < s4 < . . . . That
is, each si is a sequence of 0s and 1s, and all the 1s in si+1 come after all the
1s in si. (Note that (s1, s2, s3, . . . ) is a sequence of sequences.) Therefore, if
we take any sum of finitely many distinct sequences si, then we will obtain
another sequence that belongs to our space. For example, we could take the
sum s1 + s2, or the sum s3 + s5 + s6 + s201. The set of all possible sums of
this kind is called the subspace generated by s1, s2, s3, . . . .

Now the entire space of sequences that we are talking about can be thought
of as the subspace generated by the sequences 1000000 . . . , 0100000 . . . ,
0010000 . . . , 0001000 . . . , and so on. Thus, the structure of the entire space is
more or less identical to that of any of its subspaces. This makes it an ideal
candidate for a Ramsey-type theorem. We can even guess what this theorem
should say.

Theorem 4.1. Let the 01-sequences that are eventually zero be coloured with
two colours. Then there must be an infinite collection s1 < s2 < s3 < . . . of
sequences such that all the sequences in the subspace generated by the si have
the same colour.

That is, however you colour the sequences, you can find a sequence of
sequences si such that s1, s2, s1 + s2, s3, s1 + s3, s2 + s3, s1 + s2 + s3, s4 etc.
all have the same colour.

This theorem is due to Hindman, and is too difficult to be thought of as
an exercise. However, one thing that is a simple exercise is to show that once
you have Hindman’s theorem for two colours then you can deduce the same
theorem for any (finite) number of colours.

Hindman’s theorem is usually stated in the following equivalent form,
which is easier to grasp, but which relates less well to what I want to talk
about in a moment. Proving the equivalence is another exercise that is not
too hard.
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Theorem 4.2. Let the positive integers be coloured with two colours. Then
it is possible to find positive integers n1 < n2 < n3 < . . . such that all sums
of finitely many of the ni have the same colour.

This version of the theorem concerns addition. What if we try to introduce
multiplication into the picture as well? Almost instantly we are back in the
world of the unknown, since even the following innocent looking question is
an unsolved problem.

Problem 4.3. Let the positive integers be coloured with finitely many colours.
Is it always possible to find integers n and m such that n, m, n + m and nm
all have the same colour? Is it even possible to ensure merely that m+n and
mn have the same colour (except in the trivial case m = n = 2)?

This looks very much like an IMO problem. The difference is that it just
happens to be far far harder (and one does not have the helpful knowledge
that somebody has solved it and deemed it suitable for a mathematics com-
petition).

5 From Combinatorics to Infinite-dimensional Geometry

We represent three-dimensional space by means of coordinates. Once we have
done this, it is easy to define d-dimensional space for any positive integer d.
All we have to do is express our concepts in terms of coordinates and then
increase the number of coordinates. For example, a four-dimensional cube
could be defined as the set of points (x, y, z, w) such that each of x, y, z and
w is between 0 and 1.

If we want to (which we often do when we are doing university-level math-
ematics), we can even extend our concepts to infinite-dimensional space. For
instance, an infinite-dimensional sphere of radius 1 can be defined as the set
of all sequences (a1, a2, a3, . . . ) of real numbers that satisfy the condition
a2
1 + a2

2 + a2
3 + · · · = 1. (Here I am using the word “sphere” to mean the

surface of a ball rather than a solid ball.)
In our infinite-dimensional world, we also like to talk about lines, planes,

and higher-dimensional “hyperplanes”. In particular, we are interested in
infinite-dimensional hyperplanes. How do we define these? Well, a plane go-
ing through the origin in three-dimensional space can be defined by taking
two points x = (x1, x2, x3) and y = (y1, y2, y3) and forming all combinations
λx + μy of these two points. (Here, λx + μy, when written out in coordi-
nates, is (λx1 + μy1, λx2 + μy2, λx3 + μy3).) We can do something similar
in infinite-dimensional space. We take a sequence of points p1,p2,p3, . . .
(here each pi will itself be an infinite sequence of real numbers) and we
take all combinations (subject to certain technical conditions) of the form
λ1p1 + λ2p2 + λ3p3 + . . . .
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It turns out that if we look at the intersection of an infinite-dimensional
sphere with an infinite-dimensional hyperplane, then we get another infinite-
dimensional sphere. (Apart from the fact that all the dimensions are infinite,
this is a bit like the fact that if you intersect a sphere with a plane then you
get a circle.) Let us call this a subsphere of the original sphere. Once again
we seem to be ideally placed for a Ramsey-type theorem, since we have a
structure (a sphere) with many substructures (subspheres) that look exactly
like the structure itself. Suppose that we colour an infinite-dimensional sphere
with two colours. Can we always find a subsphere that has been coloured with
only one colour?

There is some reason to expect a result like this to be true. After all, it is
quite similar to Hindman’s theorem, in that both statements involve colouring
some infinite-dimensional object, defined by coordinates, and looking for a
monochromatic infinite-dimensional subobject of a similar type. It is just that
in Hindman’s theorem all the coordinates have to be 0 or 1.

Unfortunately, however, the answer to our new question is no. If p belongs
to a subsphere, then −p must belong to the same subsphere. So we could
colour p red if its first non-zero coordinate is positive and blue if its first
non-zero coordinate is negative. In that case, p and −p will always receive
different colours. (Since the squares of their coordinates have to add up to 1
they cannot all be zero.)

This annoying observation highlights another difference between IMO
problems and the kinds of questions that come up in mathematical research.

Principle 5.1. A significant proportion of conjectures that come up naturally
in one’s research turn out to be easy or badly formulated. One has to be lucky
to stumble on an interesting problem.

However, under these circumstances we can apply a variant of a strategy
I mentioned earlier.

Strategy 5.2. If the question you are thinking about turns out to be unin-
teresting, then change it.

Here is a small modification to the problem about colouring spheres, which
turns it from a bad problem into a wonderful one. Let us call a subsphere
c-monochromatic if there is a colour such that every point in the subsphere
is within a distance c from some point of that colour. We think of c as small,
so what this is basically saying is that we do not ask for all points in the
subsphere to be red (say), but merely that every point in the subsphere is
close to a red point.

Problem 5.3. If the infinite-dimensional sphere is coloured with two colours,
and c is a positive real number, then is it always possible to find a c-
monochromatic infinite-dimensional subsphere?
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This problem remained open for a long time and became a central ques-
tion in the theory of Banach spaces, which are a formalization of the idea of
infinite-dimensional space and one of the central concepts in research-level
mathematics. Unfortunately, it too had a negative answer, but the counterex-
ample that shows it is much more interesting and much less obvious than
the counterexample to the bad version of the problem. It was discovered by
Odell and Schlumprecht.

The example of Odell and Schlumprecht killed off the hope of a Hindman-
like theorem for Banach spaces (except for one particular space where the
similarity to the space of 01-sequences is more pronounced, for which I ob-
tained such a theorem). However, it did not entirely destroy the connections
between Ramsey theory and Banach-space theory, as we shall see in the next
section.

Before we finish this section, let me mention another difference between
IMO problems and research problems.

Principle 5.4. A research problem can change from being completely out of
reach to being a realistic target.

To somebody with experience only of IMO problems, this may seem
strange: how can the difficulty of a problem change over time? But if you
look back at your own mathematical experience, you will know of many ex-
amples of problems that “became easy”. For example, consider the problem
of finding the positive real number x such that x1/x is the biggest it can be. If
you know the right tools, then you argue as follows. The logarithm of x1/x is
log x/x, and the logarithm function is increasing, so the problem is equivalent
to maximizing log x/x. Differentiating gives us (1 − log x)/x2, which is zero
only when x = e, and decreasing there. Hence, the maximum is at x = e.

That solution is fairly straightforward, both to understand and to find in
the first place, but only if one knows a bit of calculus. So the problem is out
of reach to people who do not know calculus and a realistic target to those
who do. Something similar to this happens in mathematical research, but the
additional point I am making is that it can be a collective phenomenon and
not just an individual one. That is, there are many problems that are out of
reach simply because the right technique has not been invented yet.

You might object that that does not really mean that the problem is out
of reach: it just means that part of the work of solving it is to invent the right
technique. In a way that is true, but it overlooks the fact that mathematical
techniques are very often used to solve problems that were not the problems
that originally motivated the technique. (For instance, Newton and Leibniz
did not invent calculus so that we could maximize the function x1/x.) Thus, it
may well happen that Problem B becomes a realistic target because somebody
has invented the right technique while thinking about Problem A.

I mention all this here because Odell and Schlumprecht built their coun-
terexample by modifying (in a very clever way) an example that Schlumprecht
had built a few years earlier for a completely different reason.
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6 A Little Bit More About Banach Spaces

I am aware that I have not explained very clearly what a Banach space is, and
I may have given the impression that the only notion of distance in infinite-
dimensional spaces is what you get by generalizing Pythagoras’s theorem
and defining the distance of a point (a1, a2, a3, . . . ) from the origin to be√

a2
1 + a2

2 + a2
3 + . . ..

However, other notions of distance are possible and useful. For instance,
for any p ≥ 1 we can define the distance from (a1, a2, a3, . . . ) to the origin to
be the p-th root of |a1|p+ |a2|p+ |a3|p+ . . . . Of course, there will be sequences
for which this number is infinite. We regard these sequences as not belonging
to the space.

It is not obvious in advance that this will be a sensible notion of distance,
but it turns out to have some very good properties. Writing a and b for the
sequences (a1, a2, a3, . . . ) and (b1, b2, b3, . . . ), and writing ‖a‖ and ‖b‖ for the
distances from a and b to the origin, usually known as the norms of a and
b, we can express these properties as follows.

(i) ‖a‖ = 0 if and only if a = (0, 0, 0, . . . ).
(ii) ‖λa‖ = |λ| · ‖a‖ for every a.
(iii) ‖a + b‖ ≤ ‖a‖ + ‖b‖ for every a and b.

All three of these properties are properties that we are familiar with from the
usual notion of distance in space. (Note that we can define the distance from
a to b to be ‖a−b‖.) A Banach sequence space is a set of sequences together
with some norm that satisfies properties (i)–(iii) above, together with a more
technical condition (called completeness) that I shall not discuss.

The particular example where ‖a‖ is defined to be
(∑∞

n=1 a2
n

)1/2 is a
very special kind of Banach space called a Hilbert space. I will not say what
a Hilbert space is, except to say that it has particularly good symmetry
properties. One of these good properties is that every subspace of a Hilbert
space is basically just like the space itself. We have already seen this: when
we intersected an infinite-dimensional sphere with an infinite-dimensional
hyperplane we obtained another infinite-dimensional sphere. This property,
that all subspaces are “isomorphic” to the whole space, does not seem to hold
for any other space, so Banach himself asked the following question in the
1930s.

Problem 6.1. Is every space that is isomorphic to all its (infinite-dimensio-
nal) subspaces isomorphic to a Hilbert space?

To put that more loosely, is a Hilbert space the only space with this par-
ticularly good property? The difficulty of the question is that there are many
ways that two infinite-dimensional spaces can be isomorphic, so ruling them
all out for a non-Hilbert space and some carefully chosen subspace is likely
to be hard.
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This is another example of a problem that turned from impossible to
possible as a result of developments connected with other problems, and I
was lucky enough to be in the right mathematical place at the right time, so
to speak. Some work of Komorowski and Tomczak–Jaegermann (incidentally,
I am mentioning several mathematicians whose names will mean very little
to most readers of this article, but decided against prefacing every single one
with “a mathematician called”) showed that if there was a counterexample
to the problem, it would have to be rather nasty in a certain sense.

Now it is far from obvious that there could be a space as nasty as what
would be required, but it so happened that a couple of years earlier Maurey
and I had constructed just such a nasty space, and our nasty space was so
nasty that for entirely different reasons it had no chance of being a counterex-
ample to Banach’s question. This raised the possibility that the answer to
Banach’s question was yes, because nice examples couldn’t work, and nasty
examples couldn’t work either. In order to make an approach like this work,
I found myself needing to prove a statement of the following kind.

Statement 6.2. Every infinite-dimensional Banach space has an infinite-
dimensional subspace such that all its subspaces are nice or all its subspaces
are nasty.

Now this has strong overtones of Ramsey theory: we could think of nice
subspaces as “red” and nasty subspaces as “blue”.

7 A Weak Ramsey-type Theorem for Subspaces

There is, however, one important difference between Statement 6.2 and our
earlier Ramsey-theoretic statements, which is that here the objects we are
colouring are (infinite-dimensional) subspaces rather than points. (However,
I should point out that in Ramsey’s theorem itself we coloured edges rather
than vertices, so the idea of colouring something other than points is not
completely new.) How do we fit this into our general framework?

It is in fact not too hard. The structures we are colouring can be thought of
as “the structure of all subspaces of a given space”. If we take any subspace,
then all its subspaces form a structure of a similar kind to the structure we
started with, so we can think of trying to prove a Ramsey-type theorem.

The best we could hope to prove would be something like this: if you
colour all the subspaces of some space red or blue, then there must be a
subspace such that all of its subspaces have the same colour. However, not
too surprisingly, this turns out to be far too much to hope for, for both boring
and interesting reasons. The boring reason is similar to the reason that we
could not colour the points of an infinite-dimensional sphere and hope for a
monochromatic infinite-dimensional subsphere. The interesting reason is that
even if we modify the statement so that we are looking for subspaces that
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are close to all being the same colour (in some suitable sense of “close”), the
results of Odell and Schlumprecht, which concerned colouring points, can be
used fairly easily to show that we will not necessarily find them.

We appear to have reached a dead end, but in fact we have not, because
for the application I had in mind, I did not need the full strength of a Ramsey
theorem. Instead, I was able to get away with a “weak Ramsey theorem”,
which I shall now briefly describe.

To do so, I need to introduce a curious-looking game. Suppose that we
are given a collection Σ of sequences of the form (a1,a2,a3, . . . ), where all
ai are points in a Banach space. (It is important, here and in many previous
places in this article, to keep in mind what the objects are that I am talking
about. This can get quite complicated: Σ is a collection of sequences, as I
have just said; but the terms in each sequence are themselves points in a
Banach space, so they are sequences of real numbers, which is why I have
written them in bold face. Thus, Σ is a set of sequences of sequences of real
numbers. One could take this even further and say that each real number is
represented by an infinite decimal, so Σ is a set of sequences of sequences of
sequences of numbers between 0 and 9. But it is probably easier to think of
the terms an as points in an infinite-dimensional space and forget about the
fact that they have coordinates.) Given the collection Σ, Players A and B
then play as follows. Player A chooses a subspace S1. Player B then chooses a
point a1 from S1. Player A now chooses a subspace S2 (which does not have
to be a subspace of S1) and player B chooses a point a2 from S2. And so
on. At the end of this infinite process, player B will have chosen a sequence
(a1,a2,a3, . . . ). If this sequence is one of the sequences in the collection Σ,
then B wins, and otherwise A wins.

Now obviously who wins this game depends heavily on what Σ is. For
example, if there happens to be a subspace S such that it is impossible to
find points an in S that form a sequence (a1,a2,a3, . . . ) in Σ, then A has
the easy winning strategy of choosing S every single time, but if Σ contains
almost all sequences then B will be expected to have a winning strategy.

Here, then, is the weak Ramsey theorem that turned out to be enough to
prove a suitably precise version of Statement 6.2 and hence answer Banach’s
question (Problem 6.1). I have slightly oversimplified the statement. Before
I give the statement itself, let us make the following definition. If S is a
subspace, then the restriction of the game to S is the game that results if all
the subspaces S1, S2, . . . chosen by A have to be subspaces of S (and hence
all the points chosen by B have to be points in S).

Theorem 7.1. For every collection Σ of sequences in a Banach space there
is a subspace S such that either B has a winning strategy for the restriction
of the game to S or no sequence in Σ can be made out of points of S.

To see how one might call this a weak Ramsey theorem, let us colour a
sequence red if it belongs to Σ and blue otherwise. Then the theorem says
that we can find a subspace S such that either all the sequences built out of
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points in S are blue, or there are so many red sequences built out of points
in S that if the game is confined to S then B has a winning strategy for
producing red sequences.

In other words, we have replaced “all sequences in S are red” by “so many
sequences in S are red that B has a winning strategy for producing them”.

It is one thing to formulate such a statement and observe that it is sufficient
for one’s purposes, but quite another to prove it. This brings me to another
difference between IMO problems and research problems, which is that the
following problem-solving strategy is far more central to research problems
than to IMO problems.

Strategy 7.2. If you are trying to prove a mathematical statement, then
search for a similar statement that has already been proved, and try to modify
the proof appropriately.

I would not want to say that this always works in research or that it never
works in an IMO problem, but with IMO problems it is much more common
to have to start from scratch.

Going back to the weak Ramsey theorem, it turned out to resemble another
infinitary Ramsey theorem, due to Galvin and Prikry. The resemblance was
close enough that I was able to modify the argument and prove what I needed.
And luckily I had been to a course in Cambridge a few years earlier in which
Béla Bollobás had covered the theorem of Galvin and Prikry.

8 Conclusion

I do not have much to say in conclusion that I have not already said. However,
there is one further point that is worth making. If you are an IMO participant
reading this, it may seem to you that your talent at solving olympiad problems
has developed almost without your having to do anything: some people are
just good at mathematics. But if you have any ambition to be a research
mathematician, then sooner or later you will need to take account of the
following two principles.

Principle 8.1. If you can solve a mathematical research problem in a few
hours, then it probably wasn’t a very interesting problem.

Principle 8.2. Success in mathematical research depends heavily on hard
work.

Even from the examples I have just given, it is clear why. When one sets
out to solve a genuinely interesting research problem, one usually has only a
rather hazy idea of where to start. To get from that hazy idea to a clear plan
of attack takes time, especially given that most clear plans of attack have to
be abandoned anyway — for the simple reason that they do not work. But
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you also need to be ready to spot the connections and similarities to other
problems, and to have developed your own personal toolbox of techniques,
bits of mathematical knowledge, and so on. Behind any successful research
mathematician will be thousands of hours spent pondering mathematics, only
very few of which will have directly led to breakthroughs. It is strange, in a
way, that anybody is prepared to put in those hours. Perhaps it is because
of a further principle such as this.

Principle 8.3. If you are truly interested in mathematics, then hard mathe-
matical work does not feel like a chore: it is what you want to do.
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How do Research Problems
Compare with IMO Problems?

A Walk Around Games

Stanislav Smirnov

Abstract. Are the problems one encounters at IMOs and the problems
one encounters as a research mathematician alike? We will make use of a
few examples to show their similarities as well as their differences. The prob-
lems chosen come from different areas, but are all related to arrangements of
numbers or colors on graphs, and to games one can play with them.

1 Do Mathematicians Solve Problems?

When asked what research in mathematics is like, mathematicians often
answer: We prove theorems. This best describes the quintessential part of
mathematical work and also how it differs from research in, say, biology or
linguistics. And though in school one often gets the impression that all the-
orems were proved ages ago by Euclid and Pythagoras, there are still many
important unsolved problems.

Indeed, research mathematicians do solve problems. There are other im-
portant parts of research, from learning new subjects and looking for connec-
tions between different areas to introducing new structures and concepts and
asking new questions. Some even say that posing a problem is more important
than solving it. In any case, without problems there would be no mathemat-
ics, and solving them is an important part of our job. As Paul Halmos, who
has written several books about research problems, once said: Problems are
the heart of mathematics.

Students often ask: How does doing research compare to the IMO experi-
ence? There are many similarities, and problem solving skills certainly help in
research, so many IMO competitors go on to become mathematicians. There
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are also, however, some differences. So how do IMO problems compare to
research problems?

Substantial differences in solutions are often mentioned. Typically, an IMO
problem will have a nice solution that requires the use of a limited number
of methods (and hopefully at least one participant can find it within the
given four and a half hours). Problems one encounters as a mathematician
often require methods from very different mathematical areas, so that inge-
nuity alone would not suffice to solve them. Moreover for many problems
that are easy to formulate only long and technical solutions have been found;
it may even be the case that no nice solution exists. And when starting
to work on a research problem, you cannot be sure that there is a solu-
tion at all. So you do not need to be as quick as when at IMO competi-
tions, but you need to have much more determination — you rarely prove
a theorem in four hours, and sometimes it takes years to advance on an
important question. On the positive side, mathematics is now more of a
collective effort, and collaborating with others is a very rewarding experi-
ence.

Not only the solutions, but also the problems themselves are somewhat
different. Three IMO problems easily fit on one sheet of paper, but it takes
much more to describe most of the open questions in mathematical research.
Fortunately, there are exceptions that have equally short formulations, and
mathematicians very much enjoy tackling these — they often play a catalytic
role, attracting our attention to a particular area. Motivation for posing prob-
lems also differs. Whereas many research problems (like most IMO problems)
are motivated by the inner beauty of mathematics, a significant number origi-
nate in physical or practical applications, and then the questions asked change
somewhat.

So, are research problems and IMO problems really different? I would say
that they have more in common, and that mathematicians enjoy beautiful
problems, elegant solutions, and the process of working on a problem just as
much as IMO contestants do.

To highlight both the similarities and the differences, I describe below a
few problems that I have encountered and that would do well as both IMO
and research questions (but would come in a slightly different light). While
coming from different areas of mathematics, all of these are concerned with
numbers (or colors) placed on a graph.

2 The Pentagon Game

The Pentagon Game is one of the most memorable problems I solved at
olympiads. It was proposed by Elias Wegert of Germany, who also took part
in the 50-th IMO as a coordinator:



How do Research Problems Compare with IMO Problems? 73

27th International Mathematical Olympiad
Warsaw, Poland

Day I
July 9, 1986

Problem 3. To each vertex of a regular pentagon an integer is assigned
in such a way that the sum of all five numbers is positive. If three con-
secutive vertices are assigned the numbers x, y, z respectively and y < 0
then the following operation is allowed: the numbers x, y, z are replaced
by x + y, −y, z + y respectively. Such an operation is performed repeat-
edly as long as at least one of the five numbers is negative. Determine
whether this procedure necessarily comes to an end after a finite number
of steps.

I was among the students, and it was a very nice problem to tackle, perhaps
the hardest at that IMO. It is almost immediately clear that one should
find some positive integer function of a configuration that decreases with
each operation. Indeed, two such semi-invariants were found by participants,
and since we cannot decrease a positive integer infinitely many times, the
procedure will necessarily come to an end.

This is a classical combinatorics problem, and if you are into olympiads,
you certainly have seen a few very similar ones. What is interesting is that its
life was more like that of a research problem. It was originally motivated by
a question that arose in research dealing with partial reflections of polygons.
So even the motivating area, geometry, was very different.

The combinatorial structure of this game is interesting in itself, and study-
ing it on graphs that are different from a pentagon could have led to a few
IMO problems and perhaps a research paper. But connections with algebraic
questions have surfaced, which made it much more interesting for mathemat-
ical research. I was very pleasantly surprised to hear a talk that originated
from the Pentagon Game at a research seminar some twenty years after that
IMO. The talk was by Qëndrim Gashi, who used a version of the game due
to Shahar Mozes to prove the Kottwitz-Rapoport conjecture in algebra. So
far, versions of the Pentagon Game have led to more than a dozen research
papers — not bad for an IMO problem!

These kinds of unexpected links between different areas, and between sim-
ple and complicated subjects, are one of the best things about doing mathe-
matical research. Unfortunately, they often pass unnoticed in IMO competi-
tions.
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3 The Game of Life

There are many similar games with numbers, and they may yield much wider
connections, often stretching beyond mathematics.

The most famous is perhaps John Conway’s Game of Life. This is an
example of a very rich class of games called cellular automata, first introduced
by John von Neumann and Stanis�lav Ulam. In such games the graph is taken
to be a regular grid, only a finite set of numbers (or states) is used, and an
operation consists of simultaneously changing all numbers according to some
rule depending on their neighbors.

The Game of Life is played on a square grid, with cells (squares) that can
have two states: 1 and 0. The operation simultaneously changes the states
of all cells by a simple rule depending on the state of their eight neighbors
(i.e. squares with which they share an edge or a vertex). The rule is usually
formulated in terms of live (state 1) and dead (state 0) cells:

• a live cell with 2 or 3 live neighbors stays alive,
• a live cell with < 2 live neighbors dies as if from loneliness,
• a live cell with > 3 live neighbors dies as if from overcrowding,
• a dead cell with 3 live neighbors becomes alive,
• a dead cell with �= 3 live neighbors stays dead.

The rule is very simple, but it leads to rather complicated phenomena. Be-
sides configurations that stay fixed (e.g. a 2×2 square of live cells) and those
that oscillate periodically (e.g. a 1×3 rectangle of live cells), there are config-
urations that exhibit nontrivial behavior. For example, the “glider” pattern
moves one step southeast every four operations, whereas “Bill Gosper’s gun”
shoots out a new glider every thirty operations. Patterns like this allow us
to use the Game of Life to even model a computer, though the needed con-
figurations would be rather large and complicated. Also, chaotic configura-
tions quite often transform into complex patterns with some structure, which
makes the game interesting to scientists in other disciplines, from philosophy
to economics.

Fig. 1. A glider configuration: every four operations, it moves one step southeast.
Live cells are colored black, while dead cells are colored white.

The Game of Life was popularized by Martin Gardner well beyond the
mathematics community, and one can now easily find information about
it, including interactive models, on the internet (it is quite instructive
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Fig. 2. Gosper’s glider gun configuration: it shoots out a glider every thirty oper-
ations. There are also configurations that reflect, turn, or destroy gliders. Together,
they can be used to build very complicated structures, and even model a computer.

and amusing to watch the Game of Life in “real time”, for instance on
http://www.bitstorm.org/gameoflife). Moreover many questions about this
game could well double as IMO and research problems, and there are many
other interesting cellular automata.

4 The Sandpile Model

It seems natural that if one wants to model more phenomena, some random-
ness has to be added, so that the evolution is not uniquely determined by
the initial configuration. Indeed, it has been known for a long time that by
introducing randomness into simple games (roughly speaking, we take two
or more rules, and at each vertex toss a coin to decide which one to apply)
one can accurately model many phenomena exhibiting phase transitions —
from ferromagnetic materials to the spread of epidemics. It came as quite a
surprise, however, that similar phenomena could be observed even in usual,
non-random games.

One famous such game, the Sandpile Model, was introduced by three physi-
cists, Per Bak, Chao Tang, and Kurt Wiesenfeld, in 1987. The game is played
on an infinite square grid by writing positive integers on finitely many cells,
and zeroes elsewhere. These integers are thought of as heights of a pile of
sand. (One can also play on a finite region, but then one cell is designated a
“pit”: all grains falling there disappear.)
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In the original model, all cells were changed simultaneously. Below we give
a modified version, due to Deepak Dhar, where the same rule is applied but
only to one cell at a time, much like in the Pentagon Game. The operation is
slightly different, though: whereas in the Pentagon Game we subtract 2y from
a vertex with value y and redistribute this amount evenly among neighbors,
here we subtract 4. To be precise, the operation in the Sandpile Model is the
following: if some cell with h grains is too tall (i.e. h ≥ 4), it will topple over,
giving one grain of sand to each of its four neighboring cells (i.e. those cells
with which it shares an edge), which have, say, h1, h2, h3, and h4 grains.
Thus the operation is described by

h → h − 4 ,

hj → hj + 1 .

Like in the Pentagon Game, the operation is performed repeatedly as long
as we can find a cell with h ≥ 4. Eventually, we stop, reaching a stable
configuration with all piles satisfying h ≤ 3. The sequence of operations that
leads to a stable configuration is called an avalanche.

Fig. 3. A pile of five grains is toppled, with one grain going to each of its four
neighbors. Note that we created a new pile of four grains, ready to be toppled. (The
figure shows a 3 × 3 square within the infinite square grid.)

In order to work with the sandpile model, one first has to solve a problem
very similar to one from the 1986 IMO:

Show that an avalanche ends after a finite number of operations.

Often, more than one pile has big height, so that we must choose the pile
that we wish to topple. But it appears (unlike with the Pentagon Game) that

at the end of an avalanche, one obtains the same configuration in-
dependently of the order of operations.

Can you prove these two statements? In addition to being important lem-
mas in research papers, they would make for nice IMO problems.
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Fig. 4. 50 000 grains were added at the central square, resulting in an avalanche. This
is a pile obtained afterwards, with colors (white, yellow, orange, red) representing the
heights (0, 1, 2 or 3) of the cells. The shape is almost circular. If we keep adding more
grains, will it look more like a circle?

According to physicists (and we have high respect for our colleagues —
interactions between mathematics and physics have enriched both fields), the
really interesting problems only start here. Once the avalanche comes to an
end, we can add one more grain of sand at some fixed center cell (or at a
random place). This leads to a new avalanche. Then we add a new grain, and
so forth.

When the original sandpile paper appeared, physicists were struggling to
explain two recurring phenomena in nature: the “1/f noise” and the appear-
ance of spatial fractal structures. Both phenomena are often encountered in
everyday life: 1/f -noise (so called because its power is inversely proportional
to its frequency) appears in areas as different as hissing sounds of a home
stereo system, human heartbeats, or stock market fluctuations. And seem-
ingly chaotic yet self-similar fractal structures (so called because they behave
as if their dimension was fractional) can be seen in the shapes of clouds, sys-
tems of blood vessels, or mountain ranges. Based on physical observations,
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Fig. 5. An avalanche triggered by adding one grain (not at the center) to the pile
of 50 000 grains from Figure 4. Highlighted are cells where many topplings occured;
other cells are deemphasized. What would be the average size of such an avalanche?

one could ask questions like: given a pile totaling N grains, what would be
the average diameter (size), length (number of grains toppled), or shape of
an avalanche?

Computer experiments have exposed both phenomena in the Sandpile
Model: adding grains to a stable configuration triggers an avalanche of a
fractal shape and a size distributed not unlike 1/f noise. Moreover it is usu-
ally the case that adding one grain of sand either does not change much or
causes almost the entire pile to collapse in an avalanche. Such behavior is
characteristic of physical systems at “critical points”, like a liquid around
freezing temperature, when a small change (slightly decreasing the temper-
ature, or sometimes dropping a small crystal into it) can cause it to freeze.
However, the Sandpile Model is attracted to the critical point, whereas most
physical systems are difficult to keep at criticality. And the sandpile model,
though very simple to formulate, turned out to be the first mathematical
example of what physicists now call “self-organized criticality”.
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Despite extensive computer simulations providing convincing evidence, as
well as a vast literature, most of these questions remain open after 20 years,
but mathematicians work for much longer than four and a half hours! Also,
it is not clear that such questions will have a nice (and provable) answer, and
their original motivation comes from outside of mathematics, so that they
would likely not be asked as IMO problems.

Though the original motivation for the Sandpile Model came from physics,
mathematicians have since asked a number of mathematical questions about
it, motivated by the simplicity and beauty of the model. Some of these ques-
tions are of geometric nature and would do fine as IMO problems if only we
had nice solutions. For example, we can keep adding particles at the origin,
and the pile will grow in size. Will it look like a circle, as Figure 4 suggests?
Apparently not — it seems that it will start developing sides after a while.
So what will be its shape? How can we describe the intricate patterns we see?
Despite much work, we still do not know.

5 The Self-Avoiding Walk

This article started with a problem that I solved at the 1986 IMO. It therefore
seems appropriate to end with one of the problems that I am trying to solve
now. Lately, I have spent a lot of time working on a large class of questions
about systems undergoing phase transitions, and they too can be formulated
as games played on a grid. The most famous one is perhaps the Ising Model,
which is applied to many phenomena, from the magnetization of metals to
the neuron activity in the brain. It can be formulated similarly to the Game
of Life: again the cells of the square lattice can have two states (+ and −
polarization for magnets, active and passive for neurons). The operation also
counts the number of + neighbors, but then one makes a coin toss to decide
the outcome. The coin is biased, so that the cell is more likely to choose the
same state as the majority of its neighbors.

Interestingly, when the bias is gradually changed, the generic state of the
Ising model undergoes a phase transition from the chaotic state to the ordered
state (when the majority of the cells tends to be in the same state). There
is also a deterministic version which only uses randomness to generate the
initial state.

There is a number of similar problems, and below I describe one which is
perhaps the simplest to formulate. One does not even need to define a game
— it is sufficient to count configurations on a grid. Moreover, we find here a
fruitful interaction between chemistry, physics, and mathematics!

In the 1940s, Paul Flory, a Nobel Prize winning chemist, asked how a poly-
mer is positioned in space. He proposed modeling polymer chains by broken
lines drawn on a grid without self-intersections (since a molecule obviously
won’t intersect itself). Equivalently, imagine a person walking on a grid in
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such a way that he does not visit the same vertex twice. We call this a self-
avoiding walk. Each n-step trajectory would then model a possible position
of a length n chain.

The fundamental question is what generic chains would look like, but
before answering this one has to ask the following question:

How many length n self-avoiding walks starting from the origin can
one draw on a grid?

Denote this number by C(n); walks that are rotations of each other are
counted separately. It depends on the grid chosen, and in general we do not
expect to have a nice formula for it (though it may exist despite expectations
— sometimes miracles do happen). One thus asks how fast this number grows
in terms of n. An IMO-type problem might be the following:

Show that there is a constant μ such that the number of self-avoiding
walks satisfies C(n) ≈ μn as n tends to ∞.

The sign ≈ above means that however small we take ε, for large enough
n we have (μ − ε)n < C(n) < (μ + ε)n. The problem above is not difficult
and follows from the observation that a self-avoiding walk of length n + m
can be cut into two self-avoiding walks of lengths n and m. Indeed, its first n
steps give a self-avoiding walk (starting at the origin), while its last m steps
give a self-avoiding walk starting at the end of the n-th step (this walk can
be translated so that it starts at the origin). Hence C(n+m) ≤ C(n) ·C(m).

Fig. 6. A self-avoiding walk on the hexagonal lattice. Starting from the origin, we
make steps along edges, visiting each vertex at most once. How many such walks of
length n are there?

On the other hand, if we glue together two self-avoiding walks of lengths
n and m, the resulting walk of length n + m need not be self-avoiding, so
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that in general there is no equality. This makes the determination of C(n)
difficult.

The number μ is called the connective constant and has several impor-
tant applications, so its determination is indeed important. The connective
constant μ depends on the grid, which can be established by comparing its
values for the hexagonal and square grids in the plane. An IMO-type problem
would be to show that

μhex < 2 < μsquare .

The inequalities “≤” are easy, can you do it with “<”?
Though many estimates were proved, quite some time passed before a

guess was even made about the actual values. In 1982, the physicist Bernard
Nienhuis found a heuristic argument for the value of μ on the two-dimensional
hexagonal lattice, like the one in Figure 6. His argument strongly suggested
that in this case

C(n) ≈
(√

2 +
√

2
)n

,

and moreover, if one wants higher precision, that for every ε > 0
(√

2 +
√

2
)n

n
11
32−ε < C(n) <

(√
2 +

√
2

)n

n
11
32+ε ,

when n is large. His arguments are quite beautiful and inspiring, but they
are not mathematically rigorous (and would not have yielded a full score if
submitted at a mathematical olympiad).

More than 20 years had to pass before a mathematical solution confirming
this prediction was found. Just two months after giving a talk on this subject
at the IMO anniversary in Bremen, together with Hugo Duminil-Copin we
proved that on a hexagonal lattice indeed μ =

√
2 +

√
2. Surprisingly, the

proof is elementary, and so short that it could be written within the IMO
time limit! We carefully count the self-avoiding walks, looking not only at
their lengths but also at their windings (i.e. the number of turns they make).
The value of μ arises in relation to turns, as 2 cos(π/8).

So is it surprising that the proof had to wait for so long, and could this
problem be given as an IMO problem? The answer to both questions is no:
although our way of counting is elementary, inventing it the first time around
is far from easy, and requires knowing, in addition to mathematics, a great
deal of physics. And what about 11/32? We are probably closer to it than
ever before. The mathematicians Greg Lawler, Oded Schramm, and Wendelin
Werner have explained where it would come from, and together our results
could eventually lead to the proof. But it is still some months or years away,
and probably won’t be elementary — surprisingly, the number 11/32 arises
in a much more complicated way than 2 cos(π/8)!
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6 Conclusion

Problem solving experience gained at the IMO will be useful to you regardless
of what you decide to do in life. But it will be especially useful if you decide to
become a mathematician, and although there are many other things involved
in mathematical research besides problem solving, most of them are excit-
ing as well. Mathematics is currently an exciting field, with many beautiful
problems and many surprising connections between different branches and to
other disciplines. It has become a truly collaborative effort, and is as inter-
national as the IMOs — the researchers mentioned in this short article alone
come from almost a dozen different countries. I hope that many IMO partici-
pants will go on to become mathematicians, and that we will meet again.

Recommended Reading

Among books about the topics discussed, I tried to choose some which are interesting
to research mathematicians, and at the same time well written and accessible to
motivated high school students. Incidentally, three of the mathematicians mentioned
in this article are among the authors of the books below.

There are many books on problem solving, and quite a few apply both to compe-
tition and research mathematics. I would like to mention just two (though there are
many more that I like).

[1] George Pólya, How to Solve It. Princeton University Press, Princeton (1945)
This is perhaps the first notable book about problem solving, and it has had a
great impact. It remains a timeless classic today.

[2] Paul Halmos, Problems for Mathematicians, Young and Old. The Dolciani Math-
ematical Expositions. The Mathematical Association of America, Washington
(1991)
The author has written a few books about problems in research mathematics.
This is the most accesible one; it has many problems on the borderline between
IMO and research mathematics.

From the many popular books about games, only a few apply to our context: we dis-
cuss games without randomness and played by one person only, so that the evolution
is completely determined by the initial state. Still, there are some very good ones.

[3] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy, Winning Ways for
Your Mathematical Plays, second edition. AK Peters, Wellesley (2004)
This (very lively) four-volume book discusses the general theory and also describes
many examples of non-random games, played by one or several players. Game of
Life (which was invented by one of the authors) is discussed in the last chapter.

[4] Joel L. Schiff, Cellular Automata: A Discrete View of the World. Wiley-Inter-
science Series in Discrete Mathematics & Optimization. Wiley-Interscience, Hobo-
ken (2008)
This is perhaps the best popular introduction to cellular automata, discussing the
game of life, the sandpile, and the Ising model, among other things. It is accessible
to high-school students while remaining interesting for research mathematicians.
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Similarly, there are many popular books about random models of physical phenomena,
though most of them stress the physics side of the story.

[5] Gregory F. Lawler and Lester N. Coyle, Lectures on Contemporary Probability.
Student Mathematical Library, volume 2. The American Mathematical Society,
Providence (1999)
This is a short collection of lectures in probability, requiring almost no back-
ground. It discusses several very modern research topics, from the Self Avoiding
Walk to card shuffling.

[6] Alexei L. Efros, Physics and Geometry of Disorder: Percolation Theory. Science
for Everyone. Mir, Moscow (1986)
This is an introduction to the domain of mathematics that studies phase transi-
tions by considering random colorings of lattices. It is written very nicely and is
specifically oriented towards high school students.





Graph Theory Over 45 Years

László Lovász

Abstract. From 1963 to 1966, when I participated in IMOs, graph theory
did not appear in the problem sets. In recent years, however, graph-theoretic
problems were often given. What accounts for this? What is the role of graph
theory in mathematics today? I will try to answer these questions by describ-
ing some of the many connections between graph theory and other areas of
mathematics as I encountered them.

1 Introduction

Graph theory is not a new subject. The first result in graph theory was the
solution of the Königsberg Bridges Problem in 1736 by Leonhard Euler, one
of the greatest mathematicians of all times.

Fig. 1. The bridges of Königsberg in Euler’s time, and the graph modeling them.
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It started with a recreational challenge made by the citizens of Königsberg.
The city was divided into four districts by the river Pregel (Figure 1), which
were connected by seven bridges. This gave rise to a question: Is it possible
to walk in such a way that each bridge is crossed exactly once?

Euler proved that such a walk is impossible. If we represent each district by
a vertex and draw an edge between two vertices for each bridge that connects
the corresponding districts, we get the little graph on the right hand side of
Figure 1. The argument of Euler (which is simple and so well known that I
will not reproduce it here) can be translated to this graph by examining the
degrees of the vertices (that is, the number of edges incident with each vertex).

Many important results in graph theory were obtained in the nineteenth
century, mostly in connection with electrical networks. However nobody
thought to consider graph theory as an area of mathematics in its own right
until the first book on graph theory, Dénes König’s Theorie der endlichen
und unendlichen Graphen, was published in 1936.

König taught in Budapest, and he had two very prominent students, Paul
Erdős and Tibor Gallai. Many other Hungarian mathematicians of that gen-
eration got interested in graph theory and proved results which are considered
fundamental today. Turán and Hajós are two examples.

I was introduced to graph theory, and thereby to mathematical research,
quite early in life. My high school classmate and friend Lajos Pósa (himself
a gold medalist at the IMO) met Erdős when he was quite young. Erdős
gave him graph-theoretic problems to solve, and he was successful. When
Pósa started high school, he wrote a paper with Erdős and then wrote more
papers by himself. Later, when we met, he told me about other problems
due to Erdős, and since I was able to solve one or two, Erdős and I were
introduced. Erdős gave me unsolved problems, and thereafter I thought up
some of my own, and so began my lifelong commitment to graph theory.

Many of you have probably heard of Erdős. He was not only one of the
greatest mathematicians of the twentieth century but a special soul, who
did not want to settle, did not want to have property (so that it would not
distract him from doing mathematics), and traveled all the time. He was
always surrounded by a big group of young people, and he shared with them
new problems, research ideas, and results about which he learned during his
travels.

Gallai was just the opposite — a very shy and quiet person, who preferred
long, one-on-one conversations. When I was a student, I visited him regularly
and learned a lot about graph theory and his ideas concerning the directions
in which it was developing.

In those days, graph theory was quite isolated from mainstream mathe-
matics. It was often regarded as recreational mathematics, and I was often
advised by older mathematicians to do something more serious. I have worked
in other areas of mathematics since then (algorithms, geometry, and opti-
mization), but in one way or another there was always some graph-theoretic
problem in the background.
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Things have changed. Graph theory has become important over the course
of the last decades, both through its applications and through its close links
with other parts of mathematics. Let me describe some developments.

2 Discrete Optimization

I wrote my thesis under the guidance of Gallai on the problem of factors
of graphs (today we call them matchings). The basic question is: Given a
graph, can we pair up its vertices so that the two vertices in each pair are
adjacent? (Such a pairing is called a perfect matching.) More generally, what
is the maximum number of edges that are pairwise disjoint (that is, without
a common endpoint)? A special case is that of bipartite graphs, i.e. graphs
in which the vertices are divided into two classes, so that each edge connects
two vertices in different classes. In this case, the answer was given by König
in 1931: The maximum number of pairwise disjoint edges in a bipartite graph
is equal to the minimum number of vertices covering all edges. Earlier, in
1914, König proved the following related theorem about bipartite graphs:
The minimum number of colors needed to color the edges of a graph so that
edges with a common endpoint are colored differently is equal to the maximum
degree of its vertices.

Tutte extended the characterization of bipartite graphs with perfect match-
ings to all graphs (the condition is beautiful but a bit too complicated to state
here). Many other matching problems remained unsolved, however (allowing
me to write a thesis by solving some), and matching theory is still an impor-
tant source of difficult, but not hopelessly difficult, graph-theoretic problems.

The Austrian mathematician Menger studied the following question in
the 1920s: Given a graph and two vertices s and t, what is the maximum
number of mutually disjoint paths from s to t (meaning disjoint except for
their common endpoints s and t)? He proved that this number is equal to the
minimum number of vertices (different from s and t) whose removal destroys
all paths from s to t. This is a very useful identity, but Menger’s proof does
not tell us how to compute the aforementioned value. In fact it took thirty
years until the American mathematicians Ford and Fulkerson defined flows
in networks and used them to give an efficient algorithm for computing a
maximum family of mutually disjoint s-t paths in a graph.

The matching problem and the disjoint path problem mentioned above
are examples of optimization problems that are quite different from those
one studies in calculus. There are many other graph-theoretic optimization
problems, some of which, like the Traveling Salesman Problem, became very
well known. In a typical optimization problem in analysis, we want to find
the minimum or maximum of a function, where the function is “smooth”
(differentiable) and defined on an interval. Many of you probably learned
how to do this: we find the zeroes of the derivative of the function, and
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compare the values of the function at these points as well as at the ends of
the interval. In discrete optimization, the situation is quite different: we want
to optimize functions that are defined on a finite but large and complicated
set (like the set of all matchings in a graph, where the function is the number
of edges in the matching). These functions have no derivatives, and classical
methods of analysis are useless.

There are several methods to attack such problems; perhaps the most
successful proceeds by linear programming, which can be thought of as the
art of solving systems of linear inequalities. Most of you could probably solve a
system of two linear equations with two unknowns, or three linear equations
with three unknowns. (You could, for example, eliminate one variable by
subtracting the equations from each other, and then repeat.) Solving systems
of linear inequalities is substantially more complicated, but also possible. The
methods are analogous, but quite a bit more involved. In most applications,
one wants to find not just any solution, but an optimal solution, for which a
certain linear function is maximized or minimized. There are, however, rather
easy methods to reduce this seemingly more involved problem to the first one.

It is perhaps interesting to note that this algebraic problem can be trans-
lated to geometry by constructing a convex polyhedron (in a high-dimensional
space) and reducing the optimization problem to optimizing a linear function
over this polyhedron.

One important source of combinatorial optimization problems are hyper-
graphs. In an ordinary graph, every edge has two endpoints. We can generalize
this, and allow edges that have any number of endpoints. Tibor Gallai called
my attention to the fact that any problem in graph theory could be extended
(usually in more than one way) to hypergraphs, and that virtually all of these
hypergraph problems were unsolved (many of them still are).

For example, König’s two theorems mentioned above remain perfectly
meaningful for hypergraphs. The question is: how can we define “bipartite”
hypergraphs so that the theorems remain not only meaningful but true? A
first attempt is to assume that the vertices can be partitioned into two classes,
so that every edge meets both classes (it could now contain more than one
vertex from a class). We call such hypergraphs 2-colorable; they are interest-
ing and important, but in this case, there are easy examples showing that
both of König’s theorems fail to hold for them. One can try other variations
on the notion of bipartiteness, but none of these seem to work. In one of
my first papers I managed to prove that the two theorems remain equivalent
(even though there is no simple criterion under which they hold). This was a
hypergraph-theoretic reformulation of a graph-theoretic conjecture of Berge,
and the proof showed that hypergraph theory is useful not only for finding
new research problems, but also for solving old problems.
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3 Computer Science

Coming back to matching theory, many of us tried to obtain an analogue of
Tutte’s aforementioned characterization of graphs having a perfect matching
for Hamilton cycles: Given a graph, is there a cycle in it that goes through
each vertex exactly once? The problem is quite similar to the matching prob-
lem. It is also quite similar to the Euler cycle problem which started this
paper, and which has an easy answer. My advisor Tibor Gallai and many
of us were wondering why it was so much more difficult than the other
two.

This time (around 1970) was also a time of rapid developments in com-
puter science, in particular of the theory of algorithms and their complexity.
In 1972–73, I spent a year in the US and learned about the newly devel-
oped theory of polynomial time algorithms and NP-complete problems. The
fundamental definitions are as follows.

• A problem is in class P if there exists an algorithm that solves it in poly-
nomial time, i.e., so that the time required to find a solution is bounded
above by a polynomial in the size of the problem input. Such problems
are considered “easy”, or at least efficiently solvable (no matter what the
degree of the polynomial is).

• A problem is in class NP (or is an NP-problem) if a proposed solution
can be verified in polynomial time (whether or not we know a polynomial
time algorithm to find the solution). In other words, it can be solved
in polynomial time by “lucky guessing”, i.e., non-deterministically. The
letters NP stand for non-deterministic polynomial.

• Finally, a number of NP-problems have the property that if a polynomial-
time solution algorithm for one of them was found, it would imply that
all NP-problems also had polynomial-time solution algorithms (because a
polynomial solution to such a problem could be transformed, in polynomial
time, to a solution of any other NP problem). Among the NP-problems,
these are thus the “hardest” ones; they are known as NP-complete.

It is widely expected that there is a real distinction between class P and
class NP: in other words, there are problems for which a solution can be
verified but not found in polynomial time. However, no mathematical proof
is known. This fundamental question of complexity theory, usually phrased
“P = NP ?”, was named one of the seven most important open problems in
mathematics in 2000.

The theory of the complexity of algorithms thrilled me because it ex-
plained the difference between the matching problem and the Hamilton cycle
problem: the first one was in P, and the other one was NP-complete!

When I returned to Hungary, I met a friend of mine, Péter Gács, who had
spent a year in Moscow. Interrupting one another, we began to describe the
great ideas we had learned about: Leonid Levin’s work in Moscow, and the
work of Cook and Karp in the US. As it turned out, they were independent
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developments of the same theory. (For about two weeks we thought we had
a proof of the P �= NP conjecture. Nowadays, we would be more suspicious
of simplistic ideas concerning a famous problem. . . .)

Graph theory has become one of the most prominent areas of the math-
ematical foundation of computer science. We have seen that graph-theoretic
problems motivated the “P = NP ?” problem and many more of the most
interesting questions that arose in the development of complexity theory.

There is also an important connection that points in the other direction:
to describe the process of a complicated computation in mathematical terms,
one needs the notion of a directed graph. Steps in the computation are rep-
resented by vertices (often called “gates”), and an edge indicates that the
output of one step is the input of the other. We can assume that these out-
puts are just bits, and the gates themselves can be very simple (it suffices to
use just one kind, a NAND gate, which outputs TRUE if and only if at least
one of the inputs is FALSE). All of the complexity of the computation goes
into the structure of the graph.

I am sorry to report that we graph theorists have not achieved much in
this direction. For example, the famous “P = NP ?” problem boils down to
the following question: we want to design a network that can find out whether
an arbitrary graph with n vertices has a Hamilton cycle or not. The vertices
of the graph are labeled 1, 2, 3, . . . , n. The network has

(
n
2

)
input gates vi,j

(1 ≤ i < j ≤ n) and a single output gate u. The graph is specified by
assigning TRUE to an input gate vi,j if and only if the vertices i and j are
connected by an edge; the other input gates are assigned FALSE. We want
the output to be TRUE if and only if the graph has a Hamilton cycle, for all
possible input graphs. Such a network can be designed, but the question is
whether its size can be bounded by some polynomial in n, say by n100. To
understand the complexity of computations using graph theory is a BIGGGG
challenge!

4 Probability

Around 1960, Paul Erdős and Alfréd Rényi developed the theory of random
graphs. In their model, we start with n vertices, which we fix. Then we begin
to add edges in such a way that new edges are chosen randomly among all
pairs of vertices that are not yet adjacent. After adding a prescribed number
m of edges, we stop.

Of course, if we repeat this construction, we will very likely end up with
a different graph. If n and m are large, however, the graphs constructed in
this way will be very similar, with a very small probability of getting an
“outlier” (this is a manifestation of the Law of Large Numbers). A related
phenomenon is that in watching these random graphs develop (as edges are
added), we observe sudden changes in their structure. For example, if we look
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at the graph when it has m = 0.49n edges, it will almost surely consist of
many small connected components. If we look at it again when it has 0.51n
edges, then it will contain a single giant component (containing about 4% of
all vertices, independently of n), along with a few very small ones (the sizes
of which are small compared to n). This sudden change in the structure of
the graph is closely related to everyday physical phenomena like the melting
of ice. This is called a “phase transition”, and its study is a very active (and
quite difficult) area.

Determining typical properties of random graphs is not easy, but Erdős
and Rényi worked out many. Less than a decade later, I learned probability
theory from the lectures of Rényi, and he gave me copies of their papers
on random graphs. I have to admit that I was not interested in them for a
while. They contained long, detailed computations, and who likes to read such
things? Since then, the field has blossomed into one of the most active areas
in graph theory and has become fundamental for modeling the internet. Of
course I could not avoid working with random graphs, as we shall see below.

Probability enters graph theory in other ways. In fact, it is becoming a fun-
damental tool in many areas of mathematics. Often questions may have noth-
ing to do with probability, although their solutions involve random choice.
Their proofs can be so simple and elegant that I can describe one of them
here. Let H be a hypergraph. Under what conditions is it 2-colorable? For an
ordinary graph, this is a classical question that can be answered easily (one
possible answer is that the graph contain no odd cycles), but for a general
hypergraph, this is a very hard question.

Erdős and Hajnal proved the following theorem around 1970: If every edge
of the hypergraph H has r vertices, and H has less than 2r−1 edges, then H is
2-colorable. This is an example of a hypergraph question that “stands alone”:
the claim is trivial for graphs (you need 3 edges to create a non-bipartite
graph), but very interesting for general hypergraphs.

Trying to prove this via usual methods (e.g. induction) does not work.
But here is a proof using probability theory. Let us color the vertices at
random: for each vertex, we flip a coin and color it red or blue depending
on the outcome of the coin flip. There are possible “bad events”: the event
that a given edge has only one color is bad. If we are lucky, and none of
these occur, then we get a good coloring. But can all bad events be avoided
simultaneously? What is the probability of this?

Let us start with an easier task: what is the probability that a specific
bad event is avoided? There are 2r ways to color the vertices of an edge (the
colors of the other vertices don’t matter), and two of these are bad. So the
probability that this edge is all red or all blue is 2/2r = 21−r.

Now the probability that one of these bad events happens is bounded by
the sum of their probabilities. This is less than 2r−1 × 21−r = 1. Thus, good
colorings must exist. It is difficult to construct a single good coloring, but
coloring the vertices randomly works!
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This method, called the probabilistic method, has become very powerful
and important. I got involved in improving it. For example, I proved (working
with Erdős) that in the above problem, we don’t have to limit the number of
edges; it suffices to assume that no edge meets more than 2r−3 other edges.

5 Algebra, Topology, and Graph Theory

Probability is not the only field of mathematics that has profound appli-
cations in graph theory. There are beautiful applications of very classical
mathematics, such as algebra or topology. I always found this fascinating,
and tried to find connections myself. When I was a student, it seemed that
mathematics was on a path towards fragmentation: different branches, and in
particular relatively new branches like probability or graph theory, looked to
be separating both from each other and from classical branches. I am happy
to report, however, that this tendency seems to have turned around, and that
the case for the unity of mathematics is on much firmer grounds.

This may sound like empty speculation, but I can illustrate such connec-
tions by citing a recent IMO problem, namely Problem 6 of 2007, and its
solution. The problem was the following:

Let n be a positive integer, and consider the set

S =
{
(x, y, z) ∈ {0, . . . , n}3 | x + y + z > 0

}

as a set of (n+1)3−1 points in three-dimensional space. Determine
the smallest number of planes whose union contains S but does not
contain the point (0, 0, 0).

It is easy to guess the right answer (it is 3n) and to find a collection of 3n
planes that satisfy the given conditions. In order to prove that 3n is really
minimal, it seems natural to try combinatorial approaches like induction, col-
orings, or graph theory. But although the problem is apparently a combinato-
rial one, it turns out that the only known way to get to a solution is to apply
algebraic methods — for instance, the theory of polynomials. Suppose you
can find m < 3n planes that cover S but don’t pass through the origin. They
are described by m linear equations in three variables x, y, and z, as follows:

aix + biy + ciz + di = 0 (di �= 0, 1 ≤ i ≤ m).

Multiplying these equations together, we obtain the polynomial

P (x, y, z) =
m∏

i=1

(aix + biy + ciz + di)

of degree m that is zero on S but nonzero at the origin.
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Now we define an operator Δx that replaces a polynomial Q with the
polynomial ΔxQ, where

ΔxQ(x, y, z) = Q(x + 1, y, z) − Q(x, y, z) ,

and analogous operators Δy and Δz (these are discrete versions of differenti-
ation operators). Note that each of these operators decreases the degree of a
polynomial by at least 1 (we define the zero polynomial to have degree −∞).

By repeatedly applying these three operators to our polynomial P , one
sees inductively that Δr

x Δs
y Δt

zP (0, 0, 0) is never zero for r, s, t ≤ n, and in
particular that Δn

x Δn
y Δn

z P (0, 0, 0) �= 0. But this contradicts the fact that
the polynomial Δn

xΔn
y Δn

z P has degree at most m − 3n < 0, so it has to be
the zero polynomial.

This very difficult IMO problem was solved by only five students, and all
of them gave solutions very similar to the one described above. (This solution
is due to Peter Scholze, one of these five students.)

6 Networks, or Very Large Graphs

Many areas of mathematics, computer science, biology, physics, and the so-
cial sciences are concerned with properties of very large graphs (often called
networks).

The internet is an obvious example. There is in fact more than one network
that we can define based on the internet. One is a “physical” network, i.e. the
graph whose vertices are electronic devices (computers, telephones, routers,
hubs, etc.), and whose edges are the connections between them (wired or
wireless). There is also a “logical” network, often called the World Wide
Web, whose vertices are the documents available on the internet, and whose
(directed) edges are the hyperlinks that point from one to the other.

Social networks are of course formed by people, and they may be based on
various definitions of connectivity. However the best known and best studied
social networks are internet-based (like Facebook). Some historians want to
understand history based on a network of humans. The structure of this
network determines, among other things, how fast news, disease, religion,
and knowledge spread through society, and it has an enormous impact on
the course of history.

There are many other networks related to humans. The brain is a great
example of a huge network whose workings are not yet fully understood. It is
too large for its structure (i.e. all of its neurons and their connections) to be
encoded in our DNA. Why is it that it still functions and is able, for example,
to solve math problems?

Biology is full of systems whose basic structure is a network. Consider
the interactions between the plants and animals living in a forest (who eats



94 László Lovász

whom?), or the interactions between proteins in our bodies. Networks are
about to become part of a basic language for describing the systems and
structures in many parts of nature — just as continuous functions and the
operations of differentiation and integration are part of a basic language for
describing mechanics and electromagnetism.

From the point of view of a mathematician, this should imply that powerful
tools must be created to help biologists, historians, and sociologist describe
the systems in which they (and all of us) are interested. This will not be an
easy task, since these systems are very diverse. Modeling traffic, information
distribution, and the electrical networks discussed above is only the tip of the
iceberg.

Let me conclude with a few words about a topic that I have studied re-
cently which is motivated by problems concerning very large graphs. The
main idea is to assume that these graphs “tend to infinity” and to study the
“limit objects”. We often use the finite to approximate the infinite; obtaining
numerical solutions to physical equations (say, for the purpose of predicting
the weather) usually requires restricting space and time to a finite number
of points, and then computing (more or less step-by-step) how temperature,
pressure, etc. develop at these points.

The idea that the infinite may be a good approximation of the finite is
more subtle. Continuous structures are often cleaner, more symmetric, and
richer than their discrete counterparts.

To illustrate this idea with a physical example, consider a large piece of
metal. This piece of metal is a crystal that is really a large graph consisting of
atoms and bonds between them (arranged in a periodic and therefore rather
boring way). But for an engineer who uses this metal to build a bridge, it
is more useful to consider it as a continuum with a few important param-
eters (e.g. density, elasticity, and temperature) that are functions on this
continuum. Our engineer can then use differential equations to compute the
stability of the bridge. Can we regard a very large graph as some kind of a
continuum?

In some cases this is possible, and Figure 2 illustrates the idea. We start
with a random graph that is just a little more complicated than the random
graphs introduced by Erdős and Rényi. It is constructed randomly according
to the following rule: at each step, either a new vertex or a new edge is
created. If the total number of vertices is n, then the probability that a new
vertex is created is 1/n, and the probability that a new edge is created is
(n − 1)/n. A new edge connects a randomly chosen pair of vertices.

The grid on the left represents a random graph with 100 vertices in the
following way: the pixel at the intersection of the i-th row and the j-th column
is black if there is an edge connecting the i-th and j-th vertices, and white
if there is no such edge. Thus the area in the upper left is darker, because a
pixel there represents a pair of vertices that have been around for a longer
time and hence have a greater chance of being connected.
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Fig. 2. A randomly grown uniform attachment graph with 100 vertices, and the
continuous function 1 − max(x, y) approximating it.

Although this graph is random, the pixel picture on the left is, from a
distance, quite similar to the continuous function 1 − max(x, y), which is
depicted on the right. If instead of 100 vertices we took 1000, the similarity
would be even more striking. One can prove that the rather simple function
on the right encodes all of the information one needs to know about the
graph on the left, except for random fluctuations, which become smaller and
smaller as the number of vertices grows.

Large graphs, with thousands of vertices, and huge graphs, with billions,
represent a new kind of challenge for the graph theorists. It hints at the
beauty of mathematics that to meet some of these challenges we have to
discover and use more and more connections with other, more classical parts
of mathematics.
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Communication Complexity

Alexander A. Razborov

Abstract. When I was asked to write a contribution for this book about
something related to my research, I immediately thought of communication
complexity. This relatively simple but extremely beautiful and important
sub-area of complexity theory studies the amount of communication needed
for several distributed parties to learn something new. We will review the
basic communication model and some of the classical results known for it,
sometimes even with proofs. Then we will consider a variant in which the
players are allowed to flip fair unbiased coins. We will finish with a brief review
of more sophisticated models in which our current state of knowledge is less
than satisfactory. All our definitions, statements and proofs are completely
elementary, and yet we will state several open problems that have evaded
strong researchers for decades.

1 Introduction

As the reader can guess from the name, communication complexity studies
ways to arrange communication between several parties so that at the end
of the day they learn what they are supposed to learn, and to do this in the
most efficient, or least complex way. This theory constitutes a small but, as we
will see below, very beautiful and important part of complexity theory which,
in turn, is situated right at the intersection of mathematics and theoretical
computer science. For this reason I would like to begin with a few words
about complexity theory in general and what kind of problems researchers
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are studying there. The reader favoring concrete mathematical content over
philosophy should feel free to skip the introduction and go directly to Sec-
tion 2.

Complexity theory is interested in problems that in most cases can roughly
be described as follows. Assume that we have a task T that we want to ac-
complish. In most cases this involves one or more computers doing some-
thing, but it is not absolutely necessary. There can be many different ways
to achieve our goal, and we denote the whole set of possibilities by PT .
Depending on the context, elements of PT can be called algorithms or, as
in our article, protocols. In most cases of interest it is trivial that there
is at least one algorithm/protocol to solve T , that is the set PT is non-
empty.

While all P ∈ PT solve our original task T , not all solutions are born
equal. Some of them may be better than others because they are shorter,
consume less resources, are simpler, or for any other reason. The main idea of
mathematical complexity theory is to try to capture our intuitive preferences
by a positive real-valued function μ(P ) (P ∈ PT ) called complexity measure
with the idea that the smaller μ(P ) is, the better is our solution P . Ideally,
we would like to find the best solution P ∈ PT , that is the one minimizing the
function μ(P ). This is usually very hard to do, so in most cases researchers
try to approach this ideal from two opposite sides as follows:

• try to find “reasonably good” solutions P ∈ PT for which μ(P ) may per-
haps not be minimal, but still is “small enough”. Results of this sort are
called “upper bounds” as what we are trying to do mathematically is to
prove upper bounds on the quantity

min
P∈PT

μ(P )

that (not surprisingly!) is called the complexity of the task T .
• Lower bound problems: for some a ∈ R we try to show that μ(P ) ≥ a for

any P , that is that there is no solution in PT better than a. The class
PT is usually very rich and solutions P ∈ PT can be based upon very
different and often unexpected ideas. We have to take care of all of them
with a uniform argument. This is why lower bound problems are amongst
the most difficult in modern mathematics, and the overwhelming majority
of them is still wide open.

All right, it is a good time for some examples. A great deal of mathe-
matical olympiad problems are actually of complexity flavor even if it is not
immediately clear from their statements.
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You have 7 (or 2010, n, . . . ) coins, of which 3 (at most 100, an
unknown number, . . . ) are counterfeit and are heavier (are lighter,
weigh one ounce more, . . . ) than the others. You also have a scale
that can weigh (compare, . . . ) as many coins as you like (compare
at most 10 coins, . . . ). How many weighings do you need to identify
all (one counterfeit, . . . ) coin(s)?

These are typical complexity problems, and they are very much related to
what is called sorting networks and algorithms in the literature. The task T
is to identify counterfeit coins, and PT consists of all sequences of weighings
that allow us to accomplish it. The complexity measure μ(P ) is just the
length of P (that is, the number of weighings used).

You have a number (polynomial, expression, . . . ), how many ad-
ditions (multiplications, . . . ) do you need to build it from certain
primitive expressions?

Not only is this a complexity problem, but also a paradigmatic one. Can you
describe T,PT and μ in this case? And, by the way, if you think that the
“school” method of multiplying integers is optimal in terms of the number of
digit operations used, then this is incorrect. It was repeatedly improved in the
work of Karatsuba [13], Toom and Cook (1966), Schönhage and Strassen [26]
and Fürer [11], and it is still open whether Fürer’s algorithm is the optimal
one. It should be noted, however, that these advanced algorithms become
more efficient than the “school” algorithm only for rather large numbers
(typically at least several thousand digits long).

If you have heard of the famous P vs. NP question (otherwise I recommend
to check out e.g. http://www.claymath.org/millennium/P vs NP), it is an-
other complexity problem. Here T is the task of solving a fixed NP-complete
problem, e.g. SATISFIABILITY, and PT is the class of all deterministic al-
gorithms fulfilling this task.

In this article we will discuss complexity problems involving communi-
cation. The model is very clean and easy to explain, but quite soon we
will plunge into extremely interesting questions that have been open for
decades. . . And, even if we will not have time to discuss it here at length, the
ideas and methods of communication complexity penetrate today virtually
all other branches of complexity theory.

Almost all material contained in our article (and a lot more) can be found
in the classical book [17]. The recent textbook [3] on computational complex-
ity has Chapter 13 devoted entirely to communication complexity, and you
can find its applications in many other places all over the book.

Since the text involves quite a bit of notation, some of it is collected
together at the end of the article, along with a brief description.
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2 The Basic Model

The basic (deterministic) model was introduced in the seminal paper by Yao
[27]. We have two players traditionally (cf. the remark below) called Alice and
Bob, we have finite sets X,Y and we have a function f : X × Y −→ {0, 1}.
The task Tf facing Alice and Bob is to evaluate f(x, y) for a given input
(x, y). The complication that makes things interesting is that Alice holds the
first part x ∈ X of their shared input, while Bob holds another part y ∈ Y .
They do have a two-sided communication channel, but it is something like a
transatlantic phone line or a beam communicator with a spacecraft orbiting
Mars. Communication is expensive, and Alice and Bob are trying to minimize
the number of bits exchanged while computing f(x, y).

Thus, a protocol P ∈ PT looks like this (see Figure 1). Alice sends a

Fig. 1. Protocol P for computing f(x, y). (Picture of Alice by John Tenniel.)

message encoded for simplicity as a binary string a1 (i.e., a finite sequence of
zeroes and ones). Bob responds with some b1 that depends only on his y and
Alice’s message a1. They continue in this way until one of them (say, Bob) is
able to compute the value of f(x, y) and communicate it to Alice in the t-th
round.

Remark 1. It should be noted that Alice and Bob are by far the most lovable
and popular heroes in the whole literature on complexity and the closely re-
lated field of cryptography. As such, they are summoned up in many other
episodes of this ongoing story, and, just like their real-life prototypes, they
live a busy life. Sometimes their goals coincide only partially, and they are
very cautious about leaking out unwanted information, then it is called cryp-
tography. Often there is an evil eavesdropper (usually called, for obvious
reasons, Eve). Sometimes Alice and Bob do not even trust that the other
party will truthfully follow the protocol, although in such cases they usually
change their names to Arthur and Merlin. But in our article we will consider
only the simplest scenario: complete mutual trust, nothing to hide, perfect
and secure communication channel.
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In this definition we deliberately left a few things imprecise. For example,
is the length of Alice’s message a1 fixed or is it allowed to depend on x?
Likewise, can the number of rounds t depend on x and y and, if so, how
can Alice know that Bob’s message bt is actually the last one and already
gives the final answer? It turns out, however, that all these details are very
inessential, and the reader can fill them any way he or she likes — this will
change the complexity only by a small additive factor.

How to measure the complexity μ(P ) of this protocol P? There are several
ways of doing this, all of them reasonable. In this article we will focus only on
the most important and popular model called worst-case complexity. For any
given input (x, y) ∈ X ×Y we define the cost of the protocol P on this input
as the total number of bits1 |a1|+ |b1|+ . . .+ |bt| exchanged on this input (cf.
Figure 1). And then we define the complexity (that, for historical reasons, is
also called cost in this case) cost(P ) of the protocol P as the maximal cost of
P over all inputs (x, y) ∈ X×Y . Finally, the communication complexity C(f)
of (computing) the function f : X × Y −→ {0, 1} is defined as the minimum
minP∈Pf

cost(P ) taken over all legitimate protocols P , i.e., those protocols
that correctly output the value f(x, y) for all possible inputs. We would like
to be able to compute C(f) for “interesting” functions f , or at least get good
estimates for it.

The first obvious remark is that

C(f) ≤ �log2 |X|� + 1 (1)

for any problem2 f . The protocol of this cost is very simple: Alice encodes her
input x as a binary string of length �log2 |X|� using any injective encoding
f1 : X −→ {0, 1}�log2 |X|� and sends a1 = f1(x) to Bob. Then Bob decodes
the message (we assume that the encoding scheme f1 is known to both parties
in advance!) and sends the answer f(f−1

1 (a1), y) back to Alice.
Surprisingly, there are only very few interesting functions f for which we

can do significantly better than (1) in the basic model. One example that is
sort of trivial is this. Assume that X and Y consist of integers not exceeding
some fixed N : X = Y = {1, 2, . . . , N}. Alice and Bob want to compute
the {0, 1}-valued function fN (x, y) that outputs 1 if and only if x + y is
divisible by 2010. A much more economical way to solve this problem would
be for Alice to send to Bob not her whole input x, but only its remainder
x mod 2010. Clearly, this still will be sufficient for Bob to compute x + y
mod 2010 (and hence also fN (x, y)), and the cost of this protocol is only
�log2 2010� + 1 (= 12). Thus,

C(fN ) ≤ �log2 2010� + 1 . (2)

1 |a| is the length of the binary word a.
2 Note that complexity theorists often identify functions f with computational prob-
lems they naturally represent. For example, the equality function EQN defined below
is also viewed as the problem of checking if two given strings are equal.
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Now, complexity theorists are lazy people, and not very good at elementary
arithmetic. What is really remarkable about the right-hand side of (2) is that
it represents some absolute constant that magically does not depend on the
input size at all! Thus, instead of calculating this expression, we prefer to
stress this fact using the mathematical big-O notation and write (2) in the
simpler, even if weaker, form

C(fN ) ≤ O(1) .

This means that there exists a positive universal constant K > 0 that anyone
interested can (usually) extract from the proof such that for all N we have
C(fN ) ≤ K ·1 = K. Likewise, C(fN ) ≤ O(log2 N) would mean that C(fN ) ≤
K log2 N etc. We will extensively use this standard3 notation in our article.

Let us now consider a simpler problem that looks as fundamental as it
can only be. We assume that X = Y are equal sets of cardinality N . The
reader may assume that this set is again {1, 2, . . . , N}, but now this is not
important. The equality function EQN is defined by letting EQN (x, y) = 1
if and only if x = y. In other words, Alice and Bob want to check if their
files, databases etc. are equal, which is clearly an extremely important task
in many applications.

We can of course apply the trivial bound (1), that is, Alice can simply
transmit her whole input x to Bob. But can we save even a little bit over
this trivial protocol? At this point I would like to strongly recommend you
to put this book aside for a while and try out a few ideas toward this goal.
That would really help to better appreciate what will follow.

3 We should warn the reader that in most texts this notation is used with the equal-
ity, rather than inequality, sign, i.e., C(fN ) = O(log2 N) in the previous example.
However, we see numerous issues with this usage and in particular it becomes rather
awkward and uninformative in complicated cases.
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3 Lower Bounds

Did you have any luck? Well, you do not have to be distressed by the result
since it turns out that the bound (1) actually can not be improved, that is
any protocol for EQN must have cost at least log2 N . This was proven in the
same seminal paper by Yao [27], and many ideas from that paper determined
the development of complexity theory for several decades to follow. Let us see
how the proof goes, the argument is not very difficult but it is very instructive.

We are given a protocol P of the form shown on Figure 1, and we know
that upon executing this protocol Bob knows EQN (x, y). We should somehow
conclude that cost(P ) ≥ log2 N .

One very common mistake often made by new players in the lower bounds
game is that they begin telling P what it “ought to do”, that is, consciously
or unconsciously, begin making assumptions about the best protocol P based
on the good common sense. In our situation a typical argument would start
off by something like “let i be the first bit in the binary representation of x
and y that the protocol P compares”. “Arguments” like this are dead wrong
since it is not clear at all that the best protocol should proceed in this way,
or, to that end, in any other way we would consider “intelligent”. Complexity
theory is full of ingenious algorithms and protocols that do something strange
and apparently irrelevant almost all the way down, and only at the end of the
day they conjure the required answer like a rabbit from the hat — we will
see one good example below. The beauty and the curse of complexity theory
is that we should take care of all protocols with seemingly irrational (in our
opinion) behavior all the same, and in our particular case we may not assume
anything about the protocol P besides what is explicitly shown on Figure 1.

Equipped with this word of warning, let us follow Yao and see what useful
information we still can retrieve from Figure 1 alone. Note that although we
are currently interested in the case f = EQN , Yao’s argument is more general
and can be applied to any function f . Thus, for the time being we assume
that f is an arbitrary function whose communication complexity we want to
estimate; we will return to EQN in Corollary 2.

The first thing to do is to introduce an extremely useful concept of a his-
tory or a transcript : this is the whole sequence (a1, b1, . . . , at, bt) of messages
exchanged by Alice and Bob during the execution of the protocol on some
particular input. This notion is very broad and general and is successfully
applied in many different situations, not only in communication complexity.

Next, we can observe that there are at most 2cost(P ) different histories as
there are only that many different strings4 of length cost(P ). Given any fixed
history h, we can form the set Rh of all those inputs (x, y) that lead to this
history. Let us see what we can say about these sets.

4 Depending on finer details of the model, histories may have different length, the
placement of commas can be also important etc. that might result in a slight increase
of this number. But remember that we are lazy and prefer to ignore small additive,
or even multiplicative factors.
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First of all, every input (x, y) leads to one and only one history. This means
that the collection {Rh} forms a partition or disjoint covering of the set of
all inputs X × Y :

X × Y =
⋃̇

h∈H
Rh , (3)

where H is the set of all possible histories. The notation
⋃̇

stands for disjoint
union and simultaneously means two different things: that X×Y =

⋃
h∈H Rh,

and that Rh ∩ Rh′ = ∅ for any two different histories h 
= h′ ∈ H.
Now, every history h includes the value of the function f(x, y) as Bob’s

last message bt. That is, any Rh is an f -monochromatic set, which means
that either f(x, y) = 0 for all (x, y) ∈ Rh or f(x, y) = 1 for all such (x, y).

Finally, and this is very crucial, every Rh is a combinatorial rectangle
(or simply a rectangle), that is it has the form Rh = Xh × Yh for some
Xh ⊆ X, Yh ⊆ Y . In order to understand why, we should simply expand the
sentence “(x, y) leads to the history (a1, b1, . . . , at, bt)”. Looking again at Fig-
ure 1, we see that this is equivalent to the set of “constraints” on (x, y) shown
there: f1(x) = a1, g1(y, a1) = b1, f2(x, a1, b1) = a2, . . . , gt(y, a1, . . . , at) = bt.
Let us observe that odd-numbered constraints in this chain depend only on
x (remember that h is fixed!); let us denote by Xh the set of those x ∈ X
that satisfy all these constraints. Likewise, let Yh be the set of all y ∈ Y
satisfying even-numbered constraints. Then it is easy to see that we precisely
have Rh = Xh × Yh!

Let us summarize a little bit. For any protocol P solving our problem
f : X × Y −→ {0, 1}, we have been able to chop X × Y into at most 2cost(P )

pieces so that each such piece is an f -monochromatic combinatorial rectangle.
Rephrasing somewhat, let us denote by χ(f) (yes, complexity theorists love
to introduce complexity measures!) the minimal number of f -monochromatic
rectangles into which we can partition X × Y . We thus have proved, up to a
small multiplicative constant that may depend on finer details of the model:
Theorem 1 (Yao). C(f) ≥ log2 χ(f). �

Let us return to our particular case f = EQN . All f -monochromatic com-
binatorial rectangles can be classified into 0-rectangles (i.e., those on which
f is identically 0) and 1-rectangles. The function EQN has many large 0-
rectangles. (Can you find one?) But all its 1-rectangles are very primitive,
namely every such rectangle consists of just one point (x, x). Therefore, in or-
der to cover even the “diagonal” points {(x, x) | x ∈ X }, one needs N different
1-rectangles, which proves χ(EQN ) ≥ N . Combining this with Theorem 1,
we get the result we were looking for:
Corollary 2. C(EQN ) ≥ log2 N . �
Exercise 1. The function LEN (less-or-equal) is defined on {1, 2, . . . , N} ×
{1, 2, . . . , N} as

LEN (x, y) = 1 iff x ≤ y .

Prove that C(LEN ) ≥ log2 N .
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Exercise 2 (difficult). The function DISJn is defined on {0, 1}n × {0, 1}n

as
DISJn(x, y) = 1 iff ∀i ≤ n : xi = 0 ∨ yi = 0 ,

that is, the sets of positions where the strings x and y have a 1 are disjoint.
Prove that C(DISJn) ≥ Ω(n).

(Here Ω is yet another notation that complexity theorists love. It is dual to
“big-O”; the inequality C(DISJn) ≥ Ω(n) means that there exists a constant
ε > 0 that we do not want to compute such that C(DISJn) ≥ εn for all n.)

Hint. How many points (x, y) with DISJn(x, y) = 1 do we have? And what
is the maximal size of a 1-rectangle?

4 Are These Bounds Tight?

The next interesting question is, how good is Theorem 1 in general? Can
it be the case that χ(f) is small, that is we do have a good disjoint cover-
ing by f -monochromatic rectangles, and nonetheless C(f) is large, so that
in particular we can not convert our covering into a decent communication
protocol? Figure 2 suggests at least that this question may be non-trivial: it

Fig. 2. What should Alice do?

gives an example of a disjoint covering by only five rectangles that does not
correspond to any communication protocol.

As in many similar situations, the answer depends on how precise you
want it to be. In the next influential paper on communication complexity [1],
the following was proved among other things:

Theorem 3 (Aho, Ullman, Yannakakis). C(f) ≤ O(log2 χ(f))2.

The proof is not very difficult, but still highly non-trivial. The reader can try
to find it by himself or consult e.g. [17].

Can we remove the square in Theorem 3? For almost thirty years that have
elapsed since the paper [1], many people have tried to resolve the question
one or the other way. But it has resisted all efforts so far. . .
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Open Problem 1. Is it true that C(f) ≤ O(log2 χ(f))?

Besides Theorem 3, the paper [1] contains many other great things per-
taining to the so-called non-deterministic communication complexity. In this
model, Alice and Bob are also given access to a shared string z not deter-
mined by the protocol (whence comes the name) but rather given to them
by a third all-powerful party trying to convince them that f(x, y) = 1. We
require that a convincing string z exists if and only if f(x, y) is indeed equal
to 1, and we note that in this definition we give up on the symmetry of an-
swers 0 and 1. Due to lack of space we discuss this important concept only
very briefly, and complexity measures we mention during the discussion will
hardly be used in the rest of the article.

Define t(f) in the same way as χ(f), only now we allow the monochromatic
rectangles in our cover to overlap with each other. Clearly, t(f) ≤ χ(f), but
it turns out that the bound of Theorem 3 still holds: C(f) ≤ O(log2 t(f))2.
On the other hand, there are examples for which C(f) is of order (log2 t(f))2.
This means that the (negative) solution to the analogue of Problem 1 for not
necessarily disjoint coverings is known.

Let χ0(f) and χ1(f) be defined similarly to χ(f), except now we are in-
terested in a disjoint rectangular covering of only those inputs that yield
value 0 (respectively, value 1); note that χ(f) = χ0(f) + χ1(f). Then
still C(f) ≤ O(log2 χ1(f))2 and (by symmetry) C(f) ≤ O(log2 χ0(f))2.
By analogy, we can also define the quantities t0(f) and t1(f) (the non-
deterministic communication complexity we mentioned above turns out to
be equal to log2 t1(f)). We cannot get any reasonable (say, better than expo-
nential) bound on C(f) in terms of log2 t1(f) or log2 t0(f) only: for example,
t0(EQN ) ≤ O(log2 N) (why?) while, as we already know, C(EQN ) ≥ log2 N .
In conclusion, there is no good bound on the deterministic communication
complexity in terms of the non-deterministic one, but such a bound becomes
possible if we know that the non-deterministic communication complexity of
the negated function is also small.

The next landmark paper we want to discuss is the paper [19] that intro-
duced to the area algebraic methods. So far all our methods for estimating
χ(f) from below (Corollary 2 and Exercises 1 and 2) were based on the same
unsophisticated idea: select “many” inputs D ⊆ X × Y such that every f -
monochromatic rectangle R may cover only “a few” of them, and then apply
the pigeonhole principle. This method does not use anyhow that the covering
(3) is disjoint or, in other words, it can be equally well applied to bounding
from below t(f) as well as χ(f). Is it good or bad? The answer depends. It is
always nice, of course, to be able to prove more results, like lower bounds on
the non-deterministic communication complexity log2 t1(f), with the same
shot. But sometimes it turns out that the quantity analogous to t(f) is al-
ways small and, thus, if we still want to bound χ(f) from below, we must
use methods that “feel” the difference between these two concepts. The rank
lower bound of Mehlhorn and Schmidt [19] was the first of such methods.
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We will need the most basic concepts from linear algebra like a matrix M
or its rank rk(M), as well as their simplest properties. If the reader is not yet
familiar with them, then this is a perfect opportunity to grab any textbook
in basic linear algebra and read a couple of chapters from it. You will have
to learn this eventually anyway, but now you will also immediately see quite
an unexpected and interesting application of these abstract things.

Given any function f : X × Y −→ {0, 1}, we can arrange its values in the
form of the communication matrix Mf . Rows of this matrix are enumerated
by elements of X, its columns are enumerated by elements of Y (the order is
unimportant in both cases), and in the intersection of the x-th row and the
y-th column we write f(x, y). The following result relates two quite different
worlds, those of combinatorics and linear algebra.

Theorem 4. χ(f) ≥ rk(Mf ).

Proof. The proof is remarkably simple. Let R1, . . . , Rχ be disjoint 1-rectangles
covering all (x, y) with f(x, y) = 1 so that χ ≤ χ(f). Let fi : X×Y −→ {0, 1}
be the characteristic function of the rectangle Ri, i.e., fi(x, y) = 1 if and only
if (x, y) ∈ Ri, and let Mi = Mfi

be its communication matrix. Then rk(Mi) =
1 (why?) and Mf =

∑χ
i=1 Mi. Thus, rk(Mf ) ≤

∑χ
i=1 rk(Mi) ≤ χ ≤ χ(f). �

In order to fully appreciate how useful Theorem 4 is, let us note that
MEQN

is the identity matrix (we tacitly assume that if X = Y then the
orders on rows and columns are consistent) and, therefore, rk(MEQN

) = N .
This immediately gives Corollary 2. MLEN

is the upper triangular matrix,
and therefore we also have rk(MLEN ) = N . Exercise 1 follows. It does require
a little bit of thinking to see that the communication matrix MDISJn

is non-
singular, that is rk(MDISJn

) = 2n. But once it is done, we immediately obtain
C(DISJn) ≥ n which is essentially tight by (1) and also stronger than what
we could do with combinatorial methods in Exercise 2 (the Ω is gone).

How tight is the bound of Theorem 4? It had been conjectured for a while
that perhaps χ(f) ≤ (rk(Mf ))O(1) or maybe even χ(f) ≤ O(rk(Mf )). In this
form the conjecture was disproved in the series of papers [2, 23, 21]. But it
is still possible and plausible that, say,

χ(f) ≤ 2O(log2 rk(Mf ))2 ;

note that in combination with Theorem 3 that would still give a highly non-
trivial inequality C(f) ≤ O(log2 rk(Mf ))4.

Despite decades of research, we still do not know the answer, and we
actually do not have a very good clue how to even approach this problem
that has become notoriously known as the Log-Rank Conjecture:

Open Problem 2 (Log-Rank Conjecture). Is it true that

χ(f) ≤ 2(log2 rk(Mf ))O(1)
?

Equivalently (by Theorems 1, 3), is it true that C(f) ≤ (log2 rk(Mf ))O(1)?
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5 Probabilistic Models

This is all we wanted to say about the basic model of communication com-
plexity. Even more fascinating and difficult problems arise when we introduce
some variations. The most important of them, and the only one that we treat
in sufficient detail in the rest of this article, is the model of probabilistic com-
munication complexity.

Assume that Alice and Bob are now slightly less ambitious and agree to
tolerate some small probability of error when computing the value of f(x, y) ∈
{0, 1}. Both of them are equipped with a fair unbiased coin (scientifically
known as generator of random bits) that they can toss during the execution
of the protocol, and adjust the messages they send to each other according to
the result. Everything else is the same (that is, as on Figure 1) but we have to
specify what it means that the protocol P correctly computes the function f .

Fix an input (x, y) and assume that Alice and Bob together flip their coins
r times during the execution, which gives 2r possible outcomes of these coin
tosses. Some of them are good in the sense that Bob outputs the correct value
f(x, y), but some are bad and he errs. Let Good(x, y) be the set of all good
outcomes, then the quantity

pxy =
|Good(x, y)|

2r
(4)

is for obvious reasons called the probability of success on the input (x, y).
What do we want from it? There is a very simple protocol of cost 1 that

achieves pxy = 1/2: Bob simply tosses his coin and claims that its outcome
is f(x, y). Thus, we definitely want to demand that

pxy > 1/2 . (5)

But how well should the probability of success be separated from 1/2?
It turns out that there are essentially only three different possibilities

(remember that we are lazy and do not care much about exact values of
our constants). In the most popular and important version we require that
pxy ≥ 2/3 for any input (x, y). The minimal cost of a probabilistic protocol
that meets this requirement is called bounded-error probabilistic communica-
tion complexity of the function f and denoted by R(f). If for any input pair
(x, y) we only require (5) then the model is called unbounded-error, and the
corresponding complexity measure is denoted by U(f). In the third model
(that is less known and will not be considered in our article), we still require
(5), but now Alice and Bob are also charged for coin tosses. This e.g. implies
that in any protocol of cost O(log2 n), (5) automatically implies the better
bound px,y ≥ 1

2 + 1
p(n) for some polynomial p(n).

Why, in the definition of R(f), did we request that pxy ≥ 2/3, not pxy ≥
0.9999? By using quite a general technique called amplification, it can be
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shown not to be very important. Namely, assume that Alice and Bob have at
their disposal a protocol of cost R(f) that achieves pxy ≥ 2/3, they repeat it
independently 1000 times and output at the end the most frequent answer.
Then the error probability of this repeated protocol of cost only 1000R(f)
will not exceed 10−10. . . (In order to prove this statement, some knowledge
of elementary probability theory, like Chernoff bounds, is needed.)

Are coins really helpful for anything, that is are there any interesting prob-
lems that can be more efficiently solved using randomization than without
it? An ultimate answer to this question is provided by the following beautiful
construction, usually attributed to Rabin and Yao, that has to be compared
with Corollary 2.

Theorem 5. R(EQN ) ≤ O(log2 log2 N).

Proof. In order to prove this, it is convenient to represent elements of X and
Y as binary strings of length n, where n = �log2 N�. Furthermore, we want to
view the binary string x1x2 . . . xn as the polynomial x1 + x2ξ + . . . + xnξn−1

in a variable ξ. Thus, Alice and Bob hold two polynomials g(ξ) and h(ξ) of
the form above, and they want to determine if these polynomials are equal.
For doing that they agree beforehand on a fixed prime number p ∈ [3n, 6n]
(such a prime always exists by Chebyshev’s famous theorem). Alice tosses
her coin to pick a random element ξ ∈ {0, 1, . . . , p − 1}. Then she computes
the remainder (!) g(ξ) mod p and sends the pair (ξ, g(ξ) mod p) to Bob.
Bob evaluates h(ξ) mod p and outputs 1 if and only if h(ξ) mod p is equal
to the value g(ξ) mod p he received from Alice.

The cost of this protocol is only O(log2 n) as required: this is how many
bits you need to transmit a pair of integers (ξ, g(ξ) mod p) not exceeding
p ≤ O(n) each. What about the probability of success? If EQ(g, h) = 1 then
g = h and Bob clearly always outputs 1, there is no error in this case at
all. But what will happen if g 
= h? Then (h − g) is a non-zero polynomial
of degree at most n. And any such polynomial can have at most n different
roots in the finite field Fp. If you do not understand the last sentence, then
you can simply trust me that the number of bad ξ ∈ {0, 1, . . . , p − 1}, i.e.,
those for which Bob is fooled by the fact g(ξ) = h(ξ) mod p, does not exceed
n ≤ p

3 . And since ξ was chosen completely at random from {0, 1, . . . , p − 1},
this precisely means that the probability of success is at least 2/3. �

Let us now review other problems that we already saw before in the light of
probabilistic protocols. The function less-or-equal from Exercise 1 also gives
in to such protocols: R(LEN ) ≤ O(log2 log2 N), although the proof is way
more complicated than for equality [17, Exercise 3.18]. On the other hand,
randomization does not help much for computing the disjointness function
[4, 12, 24]:

Theorem 6. R(DISJn) ≥ Ω(n).

The proof is too complicated to discuss here. It becomes slightly easier for
another important function, inner product mod 2, that we now describe.
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Given x, y ∈ {0, 1}n, we consider, like in the case of disjointness, the set of
all indices i for which xi = 1 and yi = 1. Then IPn(x, y) = 1 if the cardinality
of this set is odd, and IPn(x, y) = 0 if it is even. Chor and Goldreich [9] proved
the following:

Theorem 7. R(IPn) ≥ Ω(n).

The full proof is still too difficult to be included here, but we would like to
highlight its main idea.

So far we have been interested only in f -monochromatic rectangles, i.e.,
those that are composed either of zeros only or of ones only. We typically
wanted to prove that every such rectangle is small in a sense. In order to tackle
probabilistic protocols, we need to consider arbitrary rectangles R. Every
such rectangle has a certain number N0(f,R) of points with f(x, y) = 0,
and N1(f,R) points with f(x, y) = 1. We need to prove that even if R
is “large” then it is still “well balanced” in the sense that N0(f,R) and
N1(f,R) are “close” to each other. Mathematically, the discrepancy under
uniform distribution5 of the function f : X × Y −→ {0, 1} is defined as

Discu(f) = max
R

|N0(f,R) − N1(f,R)|
|X| × |Y | ,

where the maximum is taken over all possible combinatorial rectangles R ⊆
X × Y .

It turns out that

R(f) ≥ Ω(log2(1/ Discu(f))) , (6)

that is, low discrepancy implies good lower bounds for probability protocols.
Then the proof of Theorem 7 is finished by proving Discu(IPn) ≤ 2−n/2

(which is rather non-trivial).

What happens if we go further and allow probabilistic protocols with un-
bounded error, that is we only require the success probability (4) to be strictly
greater than 1/2? The complexity of the equality function deteriorates com-
pletely [20]:

Theorem 8. U(EQN ) ≤ 2.

The disjointness function also becomes easy, and this is a good exercise:

Exercise 3. Prove that U(DISJn) ≤ O(log2 n).

The inner product, however, still holds the fort:

Theorem 9. U(IPn) ≥ Ω(n).

This result by Forster [10] is extremely beautiful and ingenious, and it is one
of my favorites in the whole complexity theory.

5 This concept can be generalized to other distributions as well.
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6 Other Variations

We conclude with briefly mentioning a few modern directions in communica-
tion complexity where current research is particularly active.

6.1 Quantum Communication Complexity

Well, I will not even attempt to define what quantum computers are or
if they have anything to do with the Quantum of Solace — most readers
have probably heard of these still imaginary devices. Let me just say that
they can be utilized for solving communication problems as well [28] and
denote by Q(f) the corresponding complexity measure. Quantum comput-
ers have an implicit access to random bits that implies Q(f) ≤ R(f). On
the other hand, the discrepancy lower bound (6) still holds for quantum
protocols [16] that gives for them the same bound as in Theorem 7. Some-
thing more interesting happens to the disjointness function: its complexity
drops from n to

√
n [7, 25]. Can a quantum communication protocol save

more than a quadratic term over the best probabilistic protocol? This is
one of the most important and presumably very difficult problems in the
area:

Open Problem 3. Is it true that R(f) is bounded by a polynomial in Q(f)
for functions f : X × Y −→ {0, 1}?

6.2 Multiparty Communication Complexity

Now we have more than 2 players, Alice, Bob, Claire, Dylan, Eve. . . , who
collectively want to evaluate some function f . Depending on how the input
to f is distributed among the players, there are several different models,
the simplest being the scenario in which every player is holding her own
set of data not known by any of the others. It turns out, however, that
the most important one of them (by the token of having a really great
deal of various applications) is the following number-on-the-forehead model.
In this model, k players still want to evaluate a function f(x1, . . . , xk),
xi ∈ {0, 1}n. An interesting twist is that the i-th player has xi writ-
ten on his forehead, so he can actually see all pieces of the input ex-
cept for his own. Let Ck(f) as always be the minimal number of bits
the players have to exchange to correctly compute f(x1, . . . , xk); for sim-
plicity we assume that every message is broadcast to all other players at
once.

Our basic functions DISJn and IPn have “unique” natural generalizations
DISJk

n and IPk
n in this model. (Can you fill in the details?) The classical paper

[5] proved the following bound:

Theorem 10. Ck(IPk
n) ≥ Ω(n) as long as k ≤ ε log2 n for a sufficiently small

constant ε > 0.
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If we only could improve this result to a larger number of players (even for any
other “good” function f), that would give absolutely fantastic consequences
in complexity theory, some of which are outlined already in [5]. But this seems
to be well out of reach of all methods that we currently have at our disposal.

Open Problem 4. Prove that Ck(IPk
n) ≥ nε for, say, k = �(log2 n)2� and

some fixed constant ε > 0.

The multiparty communication complexity of DISJk
n was completely un-

known for quite a while even for k = 3. A very recent breakthrough [8, 18, 6]
gives lower bounds on Ck(DISJk

n) that are non-trivial up to k = ε(log2 n)1/3

players.

6.3 Communication Complexity of Search Problems

So far we have been considering functions that assume only two values, 0
and 1. In complexity theory such functions are often identified with decision
problems or languages. But we can also consider functions of more general
form f : X × Y −→ Z, where Z is some more complicated finite set. Or we
can go even one step further and assume that the function f is multi-valued,
or in other words, we have a ternary relation R ⊆ X × Y × Z such that for
any pair (x, y) there exists at least one z ∈ Z (a “value” of the multi-valued
function f) such that (x, y, z) ∈ R. Given (x, y), the protocol P is supposed
to output some z ∈ Z with the property (x, y, z) ∈ R. Otherwise this z can
be arbitrary. This kind of problems is called search problems.

The complexity of search problems is typically even more difficult to an-
alyze than the complexity of decision problems. Let us consider just one
important example, somewhat inspired by the equality function.

Assume that X,Y ⊆ {0, 1}n, but that these sets of strings are disjoint:
X ∩Y = ∅. Then EQ(x, y) = 0 for any x ∈ X, y ∈ Y and there always exists
a position i where they differ: xi 
= yi. Assume that the task of Alice and
Bob is to actually find any such position.

This innocently-looking communication problem turns out to be equivalent
to the second major open problem in computational complexity concerning
computational depth [15, 22] (the first place being taken by the famous P
vs. NP question). We do not have any clue as to how to prove lower bounds
here. A simpler problem is obtained in a similar fashion from the disjointness
function. That is, instead of X ∩Y = ∅ we assume that for any input (x, y) ∈
X × Y there is a position i such that xi = yi = 1. The task of Alice and
Bob is once again to exhibit any such i. Lower bounds for this problem were
indeed proved in [15, 22, 14], and they lead to very interesting consequences
about the monotone circuit depth of Boolean functions.
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7 Conclusion

In this article we tried to give some impression of how soon simple, elementary
and innocent questions turn into open problems that have been challenging us
for decades. There are even more such challenges in the field of computational
complexity, and we are in the need of young and creative minds to answer
these challenges. If this article has encouraged at least some of the readers
to look more closely into this fascinating subject, the author considers its
purpose fulfilled in its entirety.

List of Notation

Since this text uses quite a bit of notation, some of the most important
notations are collected here together with a brief description, as well as the
page of first appearance.

Complexity Measures

cost(P ) cost of protocol P — maximal number of bits to transmit in order to
calculate the value of a function on any input (x, y) using protocol
P 101

C(f) (worst-case) communication complexity of function f — minimal
cost of any protocol computing f 101

χ(f) partition number of function f — minimal number of pairwise dis-
joint f -monochromatic rectangles covering domain of f 105

t(f) cover number of function f — minimal number of f -monochromatic
rectangles covering domain of f 107

χ0(f) minimal number of pairwise disjoint f -monochromatic rectangles
covering f−1({0}) 107

χ1(f) minimal number of pairwise disjoint f -monochromatic rectangles
covering f−1({1}) 107

t0(f) minimal number of f -monochromatic rectangles covering f−1({0})
107

t1(f) minimal number of f -monochromatic rectangles covering f−1({1})
(log2 t1(f) is called non-deterministic communication complexity of
f) 107

R(f) bounded-error probabilistic communication complexity of function
f — minimal cost of randomized protocol that assures that for any
input the output will be correct with probability at least 2

3 109
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U(f) unbounded-error probabilistic communication complexity of func-
tion f — minimal cost of randomized protocol that assures that
for any input the output will be correct with probability greater
than 1

2
109

Discu(f) discrepancy (under uniform distribution) of function f — maxi-
mal difference of how often values 0 and 1 occur on any rectangle
(divided by |X × Y |, where X × Y is the domain of f) 111

Q(f) quantum communication complexity of function f — minimal cost
of quantum computer protocol evaluating f 112

Ck(f) multi-party communication complexity of function f — minimal
number of bits that k players have to transmit in order to correctly
compute the value of f (in number-on-the-forehead model) 112

Binary Functions

EQN equality function — maps {1, 2, . . . , N} × {1, 2, . . . , N} to {0, 1}
with EQN (x, y) = 1 iff x = y 102

LEN less-or-equal function — maps {1, 2, . . . , N}×{1, 2, . . . , N} to {0, 1}
with LEN (x, y) = 1 iff x ≤ y 105

DISJn disjointness function (“NAND”) — maps {0, 1}n×{0, 1}n to {0, 1}
with DISJn(x, y) = 1 iff for all i ≤ n we have xi = 0 or yi = 0
106

IPn inner product mod 2 — maps {0, 1}n × {0, 1}n to {0, 1} with
IPn(x, y) = 1 iff xi = yi = 1 for an odd number of indices i 111

DISJk
n generalized disjointness function — maps ({0, 1}n)k to {0, 1} with

DISJk
n(x1, . . . , xk) = 1 iff for all i ≤ n there exists ν ∈ {1, . . . , k}

with xν
i = 0 112

IPk
n generalized inner product mod 2 — maps ({0, 1}n)k to {0, 1} with

IPk
n(x1, . . . , xk) = 1 iff the number of indices i ≤ n for which x1

i =
x2

i = . . . = xk
i = 1 is odd 112

Growth of Functions6 and Other

O(f(n)) g(n) ≤ O(f(n)) iff there is C > 0 with g(n) ≤ Cf(n) for all n
102

Ω(f(n)) g(n) ≥ Ω(f(n)) iff there is ε > 0 with g(n) ≥ εf(n) for all n 106

�x� the smallest integer n ≥ x, for x ∈ R 101

6 The more traditional notation is g(n) = O(f(n)) and g(n) = Ω(f(n)); see also
footnote 3.
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Ten Digit Problems

Lloyd N. Trefethen

Abstract. Most quantitative mathematical problems cannot be solved
exactly, but there are powerful algorithms for solving many of them numeri-
cally to a specified degree of precision like ten digits or ten thousand. In this
article three difficult problems of this kind are presented, and the story is told
of the SIAM 100-Dollar, 100-Digit Challenge. The twists and turns along the
way illustrate some of the flavor of algorithmic continuous mathematics.

1 Introduction

I am a mathematician who spends his time working with numbers, real num-
bers like 0.3233674316 . . . and 22.11316746 . . . . If I can compute a quantity
to ten digits of accuracy, I am happy. Most mathematicians are not like this!
In fact, sometimes it seems that the further you go in mathematics, the less
important actual numbers become. But some of us develop algorithms to
solve problems quantitatively, and we are called numerical analysts. I am the
head of the Numerical Analysis Group at Oxford.

Like all mathematicians, I enjoy having a concrete problem to chew on.
For example, what is the value of the integral

∫ 1

0

x−1 cos(x−1 log x)dx ? (1)

You won’t find the answer in a table of integrals, and I don’t think anybody
knows how to derive an exact formula. But even though an exact formula
does not exist, the integral still makes sense. (More precisely, it makes sense
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if we define (1) as the limit ε → 0 of an integral from ε to 1.) The only way
to evaluate it is by some kind of numerical algorithm, and this is hard, for
the integrand (i.e., the function under the integral sign) oscillates infinitely
often as x approaches 0 while swinging between larger and larger values that
diverge to infinity. To ten digits, the answer turns out to be the first number
listed above.

Each October in Oxford, four or five new graduate students arrive to
begin a PhD in numerical analysis, and in their first term they participate in
a course called the Problem Solving Squad. Each week I give them a problem
like (1) whose solution is a single real number. Working in pairs, their job is to
compute this number to as many digits of accuracy as they can. I don’t give
any hints, but the students are free to talk to anybody and use the library and
the web. By the end of six weeks we always have some unexpected discoveries
— and some tightly bonded graduate students!

In this article I want to tell you about three of these problems that have
given me pleasure, which I’ll call “two cubes”, “five coins”, and “blowup”.
Though this is the first article I’ve written about it, Oxford’s Numerical Anal-
ysis Problem Solving Squad has been well known since the SIAM 100-Dollar,
100-Digit Challenge was organized in 2002. This involved ten problems se-
lected from the early years of the Squad, and the challenge for contestants
was to try to solve each problem to as many digits of accuracy as possible,
up to ten digits for each. Teams from around the world entered the race,
and twenty of them achieved perfect scores of 100 and won $100. Afterwards
a book about the problems was published by four of the winners, with a
cover picture illustrating an ingenious method of solving (1) using complex
numbers [1]. I’ll say more about the 100-Digit Challenge at the end.

2 Two Cubes

Our first problem is motivated by a simple question from physics. Isaac New-
ton discovered that if two point masses of magnitude m1 and m2 are separated
by a distance r, then they are attracted towards each other by a gravitational
force of magnitude

F =
Gm1m2

r2
,

where G is a constant known as the gravitational constant. If you have masses
that are not points but spheres or other objects, then each point in one mass
is attracted to each point in the other by the same formula. We now pose the
following idealized problem:

Problem 1. Two objects of mass 1 attract each other gravitationally accord-
ing to Newton’s law with G = 1. Each object is a unit cube with its mass
uniformly distributed. The centers of the cubes are one unit apart, so they
are in contact along one face. What is the total force, F?
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You can think of the cubes as suns or planets if you like. No mathematician
will be troubled by the idea of cubic planets. That’s what mathematics is
best at, reasoning about any kind of precisely defined situation, no matter
how artificial. Something else about this problem, however, marks it out as
unusual for most mathematicians. It is so trivial! We all know the formula
for gravity, so where’s the interest here? Working out the force between these
particular bodies should be just a matter of bookkeeping. We are not in this
business to be bookkeepers!

But some of us are in this business to design algorithms, and this innocent-
looking problem is a killer. Let’s try to solve it, and you’ll see what I mean.

The first thought that may occur to you is, can’t we replace each cube by
a unit mass at the center and get the answer F = 1? Isn’t that what Newton
showed so many years ago, that as far as gravity is concerned, planets are
equivalent to points? Well yes, Newton did show that, but only for spherical
planets. If the shape is a cube, we have to investigate more carefully.

Let’s say that cube 1 consists of points (x1, y1, z1) with 0 < x1, y1, z1 < 1,
and cube 2 consists of points (x2, y2, z2) in the same range except 1 < x2 < 2.
For unit point masses at (x1, y1, z1) and (x2, y2, z2), the force would be

1
r2

=
1

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2
,

aligned in the direction between the points. Our job is to add up these forces
over all pairs of points (x1, y1, z1) and (x2, y2, z2). That is, we need to evaluate
a six-dimensional integral. The y and z components of the total force will
cancel to zero, by symmetry, so it’s the x component we need to integrate,
which is equal to (x2 − x1)/r times the expression above. That is, the x
component of the force between unit masses at (x1, y1, z1) and (x2, y2, z2) is

f(x1, y1, z1, x2, y2, z2) =
x2 − x1

[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]3/2
. (2)

The number F we are looking for is thus

F =
∫ 1

0

∫ 1

0

∫ 2

1

∫ 1

0

∫ 1

0

∫ 1

0

f(x1, . . . , z2)dx1 dy1dz1dx2 dy2 dz2 . (3)

This is an integral over a six-dimensional cube. How do we turn it into a
number?
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I must be honest and confess that I am always behind schedule and usually
make up these problems the night before giving them to the students. I aim
to make sure I can compute a couple of digits at least, trusting that more
powerful and beautiful ideas will come along during the week.

For this problem, the night before, I tried the most classical numerical
method for evaluating integrals, Gauss quadrature. The idea of Gauss quadra-
ture in one dimension is to sample the integrand at n precisely defined values
of x called nodes, multiply the sampled values by n corresponding real num-
bers called weights, and add up the results. (The nodes and weights are
determined by the condition that the estimate comes out exactly correct if
the integrand happens to be a polynomial of degree no greater than 2n− 1.)
For smooth integrands, such as those defined by functions that can be dif-
ferentiated several times, this gives amazingly accurate approximations. And
by squaring or cubing the grid, you can evaluate integrals in two or three
dimensions. Here are pictures of 10, 102, and 103 Gauss nodes for integration
over an interval, a square, and a cube:

For our integral (3) the same idea applies, though it’s not so easy to draw a
picture.

Here is what I found with this method of “Gauss quadrature raised to the
6-th power”. The number of nodes is N = n6 with n = 5, 10, . . . , 30, FN is
the Gauss quadrature approximation to F , and time is the amount of time
each computation took on my computer.

N = 15625 FN = 0.969313 time = 0.0 secs.
N = 1000000 FN = 0.947035 time = 0.3 secs.
N = 11390625 FN = 0.938151 time = 3.2 secs.
N = 64000000 FN = 0.933963 time = 17.6 secs.
N = 244140625 FN = 0.931656 time = 66.7 secs.
N = 729000000 FN = 0.930243 time = 198.2 secs.

This is awful! We can see that the answer looks like F ≈ 0.93, 7% less than if
the cubes were spheres. But that is all we can see, and it has taken minutes
of computing time. Computing 10 digits would take pretty much forever.

In fact, these results from Gauss quadrature with its special nodes and
weights are worse than what you get if you set all the weights equal to 1/N
and place the nodes at random in the six-dimensional cube! This kind of
randomized computation is called the Monte Carlo method. Here are typical
sets of 10, 100, and 1000 random nodes in one, two and three dimensions:
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And here’s a set of Monte Carlo results for the same values of N as before.

N = 15625 FN = 0.906741 time = 0.1 secs.
N = 1000000 FN = 0.927395 time = 0.5 secs.
N = 11390625 FN = 0.925669 time = 4.4 secs.
N = 64000000 FN = 0.925902 time = 22.7 secs.
N = 244140625 FN = 0.926048 time = 88.0 secs.
N = 729000000 FN = 0.925892 time = 257.0 secs.

It seems that we now have three or four digits, F ≈ 0.9259 or 0.9260. In this
collection of results, and indeed for all the numbers reported in this article,
it is a very interesting matter to try to make more precise statements about
the accuracy of a computation. This is an important aspect of the field of
numerical analysis, but to keep things as simple as possible, we shall settle
for experimental evidence here and not attempt such estimates.

So, the world’s slickest method for numerical integration is losing out to the
world’s simplest! Actually this often happens with high-dimensional integrals.
The errors with Monte Carlo decrease in proportion to 1/

√
N , the inverse of

the square root of the number of samples, more or less independently of the
number of dimensions, whereas Gauss quadrature slows down greatly with
increasing dimension. This is a widespread theme in numerical algorithms,
and one speaks of “the curse of dimensionality”.

But even Monte Carlo hits a wall at 4 or 5 digits, or maybe 6 or 7 if we run
overnight or use a parallel computer. How can we get more? The students
worked hard and came up with many good ideas. Let’s focus on one of these
which eventually turned into a ten digit solution.

If you’re familiar with Gauss quadrature, you can quickly spot why it
has done so badly. The problem is that the integrand (2) is not smooth but
singular because the cubes are right up against each other. The denominator
goes to zero whenever x1 = x2 = 1, y2 = y1, and z2 = z1, so the fraction goes
to ∞. This isn’t bad enough to make the values of the integral infinite, but
it slows down the convergence terribly.

We would like to eliminate the singularity. One way to do it would be to
change the problem by separating the cubes, say, by a distance 1.
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The convergence of Gauss quadrature changes completely, giving 14 digits in
a fraction of a second:

N = 15625 F = 0.24792296453612 time = 0.0 secs.
N = 1000000 F = 0.24792296916638 time = 0.3 secs.
N = 11390625 F = 0.24792296916638 time = 3.2 secs.
N = 64000000 F = 0.24792296916638 time = 17.6 secs.

Notice that the answer is close to 1/4, which is what the force would be if
the cubes were spheres with centers separated by distance 2.

So we can accurately solve a modified problem, with the cubes separated.
What about the original problem? Let F (ε) denote the force between cubes
separated by a distance ε ≥ 0. We want to know F (0), but we can only
evaluate F (ε) accurately for values of ε that are not too small. A good idea is
to perform some kind of extrapolation from ε > 0 to ε = 0. Extrapolation is
a well-developed topic in numerical mathematics, and some of the important
methods in this area are known as Richardson extrapolation and Aitken
extrapolation. The students and I tried a number of strategies like these and
got. . . well, we were disappointed. We got another digit or two.

And then along came a delightful additional idea from graduate student
Alex Prideaux, which finally nailed the two cubes problem.

Prideaux’s idea was, let’s break each cube into eight pieces, eight sub-cubes
of size 1/2. Now the number F will be the sum of 64 pairwise contributions.

Four of these pairs meet along a face. Eight pairs meet along an edge, and
four meet at a vertex:

In the other 48 cases the sub-cubes are well separated.
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Having started with one kind of six-dimensional quadrature problem, we
now have four! — face, edge, vertex, and separated. Let’s define Face(d) to
be the x component of the force between two cubes of size d touching along a
face, and similarly Edge(d) and Vertex(d) for cubes of size d touching along
edges and at vertices. If you think about the picture with 16 sub-cubes above,
you will see that we can write equations for the forces at scale 1 in terms of
the forces at scale 1

2
like this:

Vertex(1) = Vertex(1
2
) + well-separated terms,

Edge(1) = 2Edge(1
2 ) + 2Vertex(1

2 ) + well-separated terms,

Face(1) = 4Face( 1
2 ) + 8Edge(1

2 ) + 4Vertex(1
2) + well-separated terms.

This may look like dubious progress, until we note a basic fact of scaling:

Vertex( 1
2
) = 1

16
Vertex(1), Edge(1

2
) = 1

16
Edge(1), Face( 1

2
) = 1

16
Face(1).

The factors of 16 come about as follows. If you halve the scale of a cubes
problem, each mass decreases by a factor of 8, so the product of masses
decreases by 64. On the other hand the distance between the cubes also cuts
in half, so 1/r2 increases by a factor of 4. Thus overall, the force changes by
the factor 4/64 = 1/16.

Putting these observations together, we find

Vertex(1) = 1
16

Vertex(1) + well-separated terms,

Edge(1) = 2
16 Edge(1) + 2

16 Vertex(1) + well-separated terms,

Face(1) = 4
16 Face(1) + 8

16 Edge(1) + 4
16 Vertex(1) + well-separated terms.

We can calculate the well-separated terms to high accuracy in a second or
two by Gauss quadrature, and these formulas give us first Vertex(1), then
Edge(1), and then the number we care about, Face(1). The answer is

F ≈ 0.9259812606 .

3 Five Coins

The second problem involves no physics, just geometry and probability.

Problem 2. Non-overlapping coins of radius 1 are placed at random in a
circle of radius 3 until no more can fit. What is the probability p that there
are 5 coins?

We shall see that this story, so far at least, has a less happy ending.
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We can illustrate the game in a picture. We put a red coin down at random,
then a green one, then a blue one. I’ll leave it to you to prove that fitting in
at least three coins is always possible. Here’s an example that gets stuck at
three, with no room for a fourth.

(Incidentally, to be precise the problem must specify what “at random”
means. The meaning is pretty obvious; the trick is how to say it mathemat-
ically. If k coins are down, consider the set S of points at which the center
of another coin could be placed. If S is nonempty, we put the center of coin
k + 1 at a point in S selected at random with respect to area measure.)

Quite often a fourth coin can fit too. Here’s an example.

At four coins, we are usually finished. But occasionally a fifth can fit too:

Five coins is the limit. (Well, not quite. Six or seven are also possible, but
the probabilities of these events are zero, meaning that no matter how many
times you play the game randomly, you will never see them. Can you prove
it? Think of where the centers of a 7-coin configuration would have to fall.)

So the question is, how often do we get to five coins? This problem has
something in common with the two cubes. Since it is posed in terms of prob-
ability, one approach to a solution should be Monte Carlo simulation. We
can write a computer program and see what happens. It’s not obvious how
best to organize the computation, but one reasonable approach is to replace
the big disk by a fine grid, then pick points at random in that grid. Every
time you pick a point, you remove it from further consideration along with
all its neighbors at distance less than 2. For convergence to the required num-
ber, you must refine the grid and also increase the number of samples. By
following this Monte Carlo approach we find approximately these frequencies:

3 coins: 18% 4 coins: 77% 5 coins: 5%
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This level of accuracy can be achieved in 5 minutes. Running overnight gives
possibly one more digit:

p ≈ 0.053 .
You may sense a bit of foreshadowing in the fact that we’ve printed this
number in large type.

There’s a scientific context to the five coins: this is known as a “parking
problem”. In one dimension, imagine a curb of length L with k cars parking at
random, one after another, along the curb. How many cars will fit? Problems
like this are of interest to chemists and physicists investigating aggregation of
particles, and have been studied in 1, 2, and 3 dimensions. A question often
asked is, in the limit of an infinite parking area, what fraction of the space
can one expect will be filled by randomly arriving cars or coins or particles?
In the one-dimensional case, the answer is known in the form of an integral
that evaluates to 0.7475979202 . . . .

For circular disks (“coins”) in two dimensions, or spheres in three, we
speak of a “Tanemura parking problem”. So far as I am aware, no formula is
known for the infinite-size limit in either of these situations.

But in any case our Problem 2 concerns not a limit but a very concrete
setting of 3, 4, and 5 coins. And do you know something? Despite hard work,
the Problem Squad never improved on 0.053. We found variations on the
theme of Monte Carlo, but none that helped decisively. Yet this problem
is one of finite-dimensional geometry, equivalent in fact to another multiple
integral. There must be a way to solve it to high accuracy!

Sometimes a problem has no slick solution. In this case, I think a slick
solution is still waiting to be found.

4 Blowup

Our final problem involves a partial differential equation (PDE). Since this
may be unfamiliar territory, let me explain a little.

One of the best known PDEs is the heat or diffusion equation:

∂u

∂t
=

∂2u

∂x2
. (4)

We have here a function u(x, t) of a space variable x and a time variable t.
The equation says that at each point in space-time, the partial derivative of
u with respect to t is equal to its second partial derivative with respect to x.
Physically, the idea is that at a particular point x and time t, the temperature
will increase (∂u/∂t > 0) if the temperature curves upward as a function of x
(∂2u/∂x2 > 0), since this means that heat will flow in towards x from nearby
hotter points.
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For example, one solution to (4) would be the function

u(x, t) = e−t sin(x) ,

for it is not hard to verify that for this choice of u,

∂u

∂t
= −u ,

∂2u

∂x2
= −u .

In the time of Napoleon, Joseph Fourier discovered that equation (4) governs
diffusion of heat in a one-dimensional body. For example, if a function u0(x)
describes the temperature distribution in an infinitely long bar at time t = 0,
then a solution u(x, t) to (4) with initial condition u(0, x) = u0(x) tells the
temperature at times t > 0. This was a first-class scientific discovery, and it
is bad luck for Mr. Fourier that for whatever accidental reason of history, we
talk about the Laplace and Poisson equations but not the Fourier equation.

Most PDE problems are posed on bounded domains, and then we must
prescribe boundary conditions to determine the solution. For example, the
heat equation might apply on the interval x ∈ [−1, 1], corresponding to a
finite bar, with boundary conditions u(−1, t) = u(1, t) = 0, corresponding
to zero temperature at both ends. Here’s an illustration of a solution to
this problem at different times. Notice how the sharp edges diffuse instantly,
whereas the larger structure decays more slowly. That makes sense, since
strong temperature differences between nearby points will quickly equalize.

Eventually, all the heat flows out the ends and the signal decays to zero. (If
you are troubled by how to take the second derivative of the jagged initial
function, you are right to be troubled! We may imagine that u(x, 0) is a
smooth function that happens to match the jagged curve to high accuracy.)

Equation (4) depends linearly on the variable u: it is a linear PDE. Our
third problem involves a nonlinear PDE which consists of this equation plus
an additional term, the exponential of u:

∂u

∂t
=

∂2u

∂x2
+ eu. (5)

Whereas the heat equation just moves heat around, conserving the total heat
apart from any inflow or outflow at the boundaries, this nonlinear term adds
heat. You can think of eu as a model of a chemical process like combustion,
a temperature-dependent kind of combustion that accelerates exponentially
as the temperature goes up.
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Suppose we apply equation (5) on an interval [−L, L] with initial condition
u(x, 0) = 0 and boundary conditions u(−L, t) = u(L, t) = 0. For t > 0,
the exponential term adds heat, and the derivative term diffuses it out the
boundaries. There’s a competition here. If L is small, diffusion wins and the
solution converges to a fixed limit function u∞(x) as t → ∞, with combustion
exactly balancing diffusion. If L is larger, combustion wins. The heat can’t
diffuse away fast enough, and the solution explodes to infinity at a finite time
t = tc. In particular, this happens for the case L = 1. Here are the solutions
at times 0, 3, and 3.544, by which point the amplitude has reached about
7.5. Soon afterwards, the curve will explode to infinity.

Physically, this blowup is related to the phenomenon of spontaneous com-
bustion. Imagine a heap of grass cuttings or compost. Chemical processes may
generate some heat, but if it’s a small heap, the heat escapes and all is stable.
In a larger pile, however, the heat may be unable to get away. Eventually,
the heap catches fire. Much the same mathematics explains why a quantity
of Uranium 235 has a critical mass above which it explodes in a fission chain
reaction, the original principle behind atomic bombs.

Here then is our mathematical problem.

Problem 3. At what time tc does the solution u(x, t) to the problem

∂u

∂t
=

∂2u

∂x2
+ eu, u(x, 0) = 0, u(−1, t) = u(1, t) = 0 (6)

blow up to infinity?

The numerical solution of PDEs on computers goes back to von Neumann
and others in the 1940s. It is as important a topic as any in numerical analy-
sis, and a huge amount is known. For Problem 3, the geometry is an interval
and the equation is a simple one with a single variable. Other problems of in-
terest to scientists and engineers may be much more complicated. The shapes
of wings and airplanes are designed by solving PDEs of fluid and structural
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mechanics in complicated three-dimensional geometries. Weather forecasts
come from solutions of PDE problems involving variables representing air
velocity, temperature, pressure, humidity and more, and now the geometry
is nothing less than a chunk of planet Earth with its oceans and islands and
mountains.

Most numerical solutions of PDEs depend on discretizing the problem,
replacing partial derivatives by finite approximations. The grid around an
airplane may be eye-poppingly complicated, but for (6), one might begin
by using a simple regular grid like this one, with the horizontal direction
corresponding to x and the vertical direction to t.

Quite a good solution strategy for Problem 3 is to discretize (6) on grids like
this, shrink the step sizes Δx and Δt systematically, and then use some kind
of extrapolation to estimate the blowup time.

For example, one way to discretize this equation from t = 0 to t = 3.544 is
to divide [−1, 1] into N space intervals and [0, 3.544] into 2N2 time intervals
and then approximate the PDE on this grid in a manner whose details we
won’t go into. Here are the approximate values u(0, 3.544) produced by this
method for a succession of values of N :

N = 32 u(0,3.544) = 9.1015726 time = 0.0 secs.
N = 64 u(0,3.544) = 7.8233770 time = 0.1 secs.
N = 128 u(0,3.544) = 7.5487013 time = 0.6 secs.
N = 256 u(0,3.544) = 7.4823971 time = 3.3 secs.
N = 512 u(0,3.544) = 7.4659568 time = 21.2 secs.
N = 1024 u(0,3.544) = 7.4618549 time = 136.2 secs.

It seems clear that the true value u(0, 3.544) must be about 7.46, and by
applying Richardson extrapolation to the data, one can improve this estimate
to 7.460488. Using methods like this, with some ingenuity and care, one can
estimate the blow-up time for Problem 3 to six or seven digits.

It seems wasteful, however, to use a regular grid for a problem like this
where all the action happens in a narrow spike near x = 0 and t = 3.5. It
is tempting to try to take advantage of this structure by using some kind of
uneven grid, one which gets finer as the spike gets narrower, like this:
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Adapting grids like this to the solution being computed is a big topic in
numerical PDE. When flows are computed over airplanes, the grids may be
thousands of times finer near the surface than further out.

The ten digit solution that I know of for Problem 3 makes use of a highly
nontrivial adaptive-gridding algorithm due to my former student Wynn Tee.
Tee’s method starts from the observation that although (6) is posed for x in
the interval [−1, 1], we can extend the solution to complex values of x too,
that is, to values of x with an imaginary as well as a real part. As t approaches
tc, it turns out that the solution u(x, t) has singularities in the complex x-
plane that approach the real axis. By monitoring this situation and using
what is known as a conformal map to distort the grid systematically, one can
maintain extremely high accuracy with a small number of grid points even
as the spike grows very tall and narrow. In fact it is possible to calculate a
solution to ten digits of accuracy with only 100 grid points in the x direction:

tc ≈ 3.544664598 .

This solution also takes advantage of advanced methods of time discretiza-
tion, and it is really a tour de force of clever computation, illustrating that
some very abstract mathematics may be useful for concrete problems.

5 The 100-Digit Challenge

What does it mean to solve a mathematical problem? That’s too big a ques-
tion, for the solution to a mathematical problem might be a “yes” or “no”,
a proof, a counterexample, a theorem, who knows what. More specifically,
then: what does it mean to solve one of those mathematical problems whose
solution, in principle, is a number? Must we find an exact formula — and if
we do, is that good enough regardless of the formula’s complexity? Must we
write down the number in decimal form — and how many digits are enough?
Is it sufficient to find an algorithm that can generate the number — and does
it matter how quickly it runs?

There are plenty of sand traps in this discussion. Even the notion of an
exact formula is elusive. For example, in the theory of roots of polynomials,
an exact formula is traditionally allowed to include n-th roots, like 3

√
2, but

not trigonometric or other special functions, like sin(2). A computer, however,
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doesn’t see much difference between 3
√

2 and sin(2). Both are calculated by
fast iterative algorithms. For that matter, even a fraction like 2/3 is calculated
by an iterative algorithm on some computers, but nobody would question
the credentials of 2/3 as an exact solution! What about a more complicated
expression like

∫ 1

0
e−x4

dx? That’s easy for your computer too, but it will
probably have to call a piece of software rather than use something built-in
to the microprocessor hardware. Is it an exact solution?

For me, solving a numerical problem means finding an algorithm that can
calculate the answer to high accuracy on a computer, whether or not there’s
an explicit formula, and this brings us to the question: what’s so special about
ten digits? Why not three digits, or a hundred? I’d like to suggest two reasons
why ten digits is indeed a good goal to aim for.

One reason is that in science, many things are known to more than three
digits of accuracy, but hardly anything is known to more than ten. If a quan-
tity is known to a hundred or a million digits, you can be sure it is a math-
ematical abstraction like π rather than a physical constant like the speed of
light or Planck’s constant. So in science, you might say that ten digits is more
or less the same as infinity. Ultimately this is why computers normally com-
pute with 16-digit precision, not 160. (And since 10 digits is comfortably less
than 16, you usually don’t have to worry too much about computer precision
when tackling a ten-digit problem.)

The second reason is illustrated by the five coins. To exaggerate a little
bit, you can solve just about any problem to three digits of accuracy by
brute force. But a brute force algorithm doesn’t encode much insight, and
it often fails if you try to push it much further. This is just what happened
with the five coins, where we got stuck at three digits with Monte Carlo. Ten
digits is a very different achievement. To get to ten digits, you need a good
understanding of your problem and a well targeted algorithm. In fact, if you
can get this far, the chances are pretty good that you could get ten thousand
if you had to. To see what I mean, let’s return to the 100-Digit Challenge.

The Challenge was launched in January 2002, and its ten problems in-
volved the integral (1), some chaotic dynamics, the norm of an infinite ma-
trix, global optimization in two dimensions, the approximation of the gamma
function in the complex plane, a random walk on a lattice, inverting a
20 000 × 20 000 matrix, the heat equation on a square plate, parametrized
optimization, and Brownian motion. Each team was allowed to have up to
six members, and 94 teams entered from 25 countries. Twenty of them got
perfect scores! That surprised me. I had planned to spend $100 rewarding
whoever got the most digits, but with twenty perfect scores, I was unsure
what to do. To my great pleasure, a donor came forward to plug the gap
— William Browning, founder of Applied Mathematics, Inc. in Connecticut.
You might think that for a member of a team of six to give nights and week-
ends to a mathematical project and be rewarded with $16.67 must be some
kind of sour joke. But it turned out that receiving a little bit of cash meant
a great deal to the winners as a symbolic recognition of their achievement.
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The winners also got certificates, like this one awarded to Folkmar Borne-
mann of the Technical University of Munich, one of the authors of the book
The SIAM 100-Digit Challenge [1].

I published an article in SIAM News telling the story and outlining a
solution to each problem. The article ended like this:

If you add together our heroic numbers, the result is τ =
1.497258836 . . . . I wonder if anyone will ever compute the ten thou-
sandth digit of this fundamental constant?

Now I wrote this to be funny, and to get people thinking. What’s funny is
that this number τ is the most unfundamental constant you could imagine.
The sum of the answers to ten arbitrary unrelated problems — what non-
sense! I chose the Greek letter tau because privately I was thinking of this
as “Trefethen’s Constant”. With good British modesty I felt it was OK to
name something after oneself, provided the item was sufficiently ridiculous.

In the book [1], τ took on a life of its own. The authors amazed us all by
finding ways to solve nine of the problems, one after another, to ten thou-
sand digits! The variety of mathematical, algorithmic, and computational
tools they used was striking. Indeed, the book emphasizes throughout that
there is no “right way” to solve a problem, and your bag of tools can never be
too big. By one beautiful chain of reasoning making use of ideas of the Indian
mathematician Ramanujan, Bornemann found an exact formula for the so-
lution to Challenge Problem 10 (Brownian motion). By another remarkable
method based on ideas related to the field of number theory, Jean-Guillaume
Dumas together with 186 computer processors running for four days were
able to compute exactly the solution to Challenge Problem 7 (inverting a
matrix): the task was to find a particular element of this inverse, and they
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discovered that the answer was a rational number equal to the quotient of
two 97,389-digit integers.

Bornemann et al. wrote an appendix called “Extreme Digit-Hunting”,
which reported their super-accurate results in this format:

0.32336 74316 77778 76139 93700 <<9950 digits>> 42382 81998 70848 26513 96587 27

The listing goes to digit 10,002, so that if you added up the ten numbers,
you’d be confident that the 10,000-th digit of the sum would be correct.

But Challenge Problem 3 proved intractable. (This was to determine what
is called the “2-norm” of a matrix with infinitely many rows and columns,
with entries a11 = 1, a12 = 1/2, a21 = 1/3, a13 = 1/4, a22 = 1/5, a31 =
1/6, . . . .) With a month of computer time the authors computed 273 digits:

1.2742 24152 82122 81882 12340 <<220 digits>> 75880 55894 38735 33138 75269 029

And that’s where Trefethen’s constant is stuck as of today, at 273 digits.
I decided at age 20 to devote my career to number crunching, and it has

given me unending satisfaction since then. My knowledge and confidence
have advanced with the years, and so have the computers and software tools
available. What a feeling, to be working on algorithms related to those that
control spacecraft, design integrated circuits, and run satellite navigation
systems — yet still be so close to elegant mathematics!

The field of numerical analysis can be defined like this:

Numerical analysis is the study of algorithms
for the problems of continuous mathematics.

This means problems involving real or complex variables, not just integers.
“Continuous” is the opposite of “discrete”, and algorithms for discrete prob-
lems have quite a different flavor and a different community of experts. Like
any scientific field, numerical analysis stretches over a pure–applied range,
with some people spending most of their time inventing algorithms or apply-
ing them to scientific problems, while others are more interested in rigorous
analysis of their properties. In earlier centuries the leading pure mathemati-
cians were the same people as the leading numerical ones, like Newton and
Euler and Gauss, but mathematics has grown a lot since then, and now the
two groups are rather separate. If you look at numbers of specialists, numer-
ical analysis is nowadays one of the biggest branches of mathematics.

Let’s finish with another ten digit problem from my file. Suppose you have
three identical regular tetrahedra, each of volume 1. What’s the volume of
the smallest sphere you can fit them inside?

Every problem is different. This is the only one so far for which I’ve found
myself playing with cardboard models! I made three tetrahedra, then juggled
and jiggled till I thought I knew roughly what the shape of the optimal con-
figuration must be. By numerically minimizing a function whose derivation
took hours of tricky trigonometry, I got the estimate
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22.113167462973 . . . .

Now by a curious coincidence, my computer tells me

256π(
√

12 −
√

10)3 = 22.113167462973 . . . .

Have we stumbled upon the exact answer? I think so, but I’m not sure, and
I certainly don’t have a proof. And what in the world gave me the idea of
calculating 256π(

√
12 −

√
10)3 ?1

6 Epilogue

Stop Press! We’ve had an unexpected development on Problem 1, the two
cubes. I showed a draft of this article to Prof. Bengt Fornberg of the Univer-
sity of Colorado, one of the best numerical problem-solvers in the world. He
got hooked. The problem is so simple, yet so devilishly hard!

Working with pencil and paper and the symbolic computing system Math-
ematica, Fornberg managed to shrink the dimensionality from six to five, then
four. Then three, then two. That is, he managed to reduce Problem 1 to a
two-dimensional integral to be evaluated numerically. As he peeled off one
dimension after another, the formulas kept getting more complicated, and he
fought hard to keep the complexity under control.

Then one morning Fornberg reported he was down to one dimension. This
meant that the problem could be five-sixths solved analytically, leaving just
a one-dimensional integral to be evaluated numerically. We were startled.

The next morning, Fornberg had the exact solution! It was preposterously
long and complicated. He kept working, making more and more simplifica-
tions of trigonometric functions and logarithms and hyperbolic functions and
their inverses, combining some terms together and also splitting some terms
into two to make the result more elementary. And here is what he found:

F =
1
3

(
26π

3
− 14 + 2

√
2 − 4

√
3 + 10

√
5 − 2

√
6 + 26 log(2) − log(25)

+ 10 log(1 +
√

2) + 20 log(1 +
√

3) − 35 log(1 +
√

5)

+ 6 log(1 +
√

6) − 2 log(4 +
√

6) − 22 tan−1(2
√

6)
)

.

1 OK, I’ll tell you. My calculation led to the estimate R ≈ 0.85368706 for
the radius of the smallest sphere that can enclose three tetrahedra each of side
length 1. I tried typing this number into the Inverse Symbolic Calculator at
http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html, and back came the sugges-
tion that R might be 4(

√
6−

√
5). Cubing this number and multiplying by 4π/3 gives

the volume of the sphere, and dividing that result by
√

2/12, which is the volume of
a regular tetrahedron with side length 1, gives 256π(

√
12 −

√
10)3.
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So now we can have as many digits as we want:

F ≈ 0.9259812605572914280934366870 . . . .

Most computational problems don’t have exact solutions, but when I cook
up challenges for the Problem Squad, the drive for elegance keeps me close
to the edge of tractability. In this case we were lucky.
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The Ever-Elusive Blowup in the
Mathematical Description of Fluids

Robert M. Kerr and Marcel Oliver

Abstract. This contribution introduces you to the Euler equations of
ideal fluids and the Navier–Stokes equations which govern fully developed
turbulent flows. We describe some of the unresolved mathematical issues,
including the “Navier–Stokes millennium problem”, and the role numerical
simulations play in developing this field.

1 Introduction

When you think of turbulence, you might recall the jostling and vibrations
during a recent flight. Or maybe the irregular turning and twisting motions
surrounding a hurricane or storm. But you don’t need to look far to feel,
if not see, a turbulent flow. The truth is that turbulence surrounds us al-
most all the time. It explains how heat and cold can quickly fill the room
you are in, even if breezes are kept out. Turbulence around wings is essential
for explaining the flight of airplanes and gliders. And this mundane turbu-
lence is even less understood than the large vortices and waves primarily
responsible for clear air turbulence during flight or the strong shears during
storms.

Part of the reason is that, while the equations we use to represent
and simulate fluids have been known for almost 200 years, we do not
know whether they meet fundamental mathematical criteria. In particular,
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could solutions to these equations develop discontinuities or singularities?
If they do, our description of small scale flow must be missing essential
physics.

This contribution aims at introducing the underlying mathematical prob-
lem in simple, yet precise terms and link it to insight that could be gained
from computer simulation. We begin by introducing the incompressible Euler
and Navier–Stokes equations of fluid dynamics. Section 3 explains conserva-
tion laws which provide important structural information. Section 4 intro-
duces the open mathematical question of global regularity of solutions, while
Section 5 sketches some heuristics which shape our current understanding.
Sections 6 and 7 look at the interplay between theory and numerical exper-
iment for guiding our choice of initial conditions and validating the results
of a simulation. The final Section 8 looks into the future, sketching out new
directions for research.

The article is supplemented by three more technical appendices. For read-
ers who might not be comfortable with multivariable calculus, Appendix A
introduces the main concepts and formulas in an intuitive, yet concise fash-
ion. Appendix B explains so-called energy estimates, which give a caricature
of what is known about the Navier–Stokes equations. Finally, Appendix C
sketches some of the concepts behind spectral and pseudo-spectral numerical
methods.

Giving complete and proper attribution is beyond what we can hope
to achieve in the format of this contribution. Thus, we make no serious
attempt to cite original research papers, but hope that the enterprising
reader will look at the excellent recent review articles [2, 4, 5, 6, 9, 10, 12,
15, 17] and, from there, venture further into the vast body of specialized
literature.

2 The Equations of Fluid Mechanics

Equations governing fluid motion may, at first glance, look intimidating. The
underlying principles, however, are surprisingly simple: we apply Newton’s
second law of mechanics in a continuum setting and make assumptions on
the mechanical forces that characterize a fluid.

Newton’s equation F = ma, which says that the mechanical force on
a point-particle equals its mass times its acceleration, will look familiar to
anyone with some background in high school physics. Using calculus, we in-
troduce the instantaneous velocity v(t) as the time derivative of position x(t)
and the instantaneous acceleration a(t) as the time derivative of velocity v(t).
When the force is a known function of position, Newton’s law leads to the
differential equation F (x(t)) = md2x(t)/dt2, where the particle trajectory
x(t) is an unknown function to be solved for.
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Fig. 1. The flow map Φt maps the initial configuration of the fluid to its config-
uration at a later time t > 0, thereby deforming an original sub-volume V0 into
Vt. A distinguished “fluid particle” at initial location ξ is transported to location
x(t) = Φt(ξ) where it moves with velocity u(x(t), t) = dx/dt.

A fluid can be seen as a continuum of particles: consider some container
(or domain) Ω ⊂ R

d in d = 2 or d = 3 space dimensions entirely filled with
point-particles. Pick a particle at location ξ ∈ Ω at time t = 0, and denote
its trajectory by x(t). There will be exactly one such trajectory emanating
from every point in Ω. Therefore, the collection of trajectories defines, for
each fixed time t, a mapping Φt from the domain Ω into itself; see Figure 1.
This mapping is referred to as the flow map.

Newton’s law now applies to each fluid particle; more precisely, it applies
to the fluid contained in each sub-volume Vt in the limit that the size of
the sub-volume goes to zero. In this limit, Newton’s law equates forces per
volume. In particular, mass m is replaced by mass density ρ(x, t), the mass
per volume,1 so that Newton’s law states that ρa equals force per volume.

The setting so far applies to any type of mechanical continuum. A fluid,
in particular, is characterized by the assumption that each particle pushes its
neighbors equally in every direction. Then, a single scalar quantity p(x, t), the
pressure, describes the force per area that a particle at location x ∈ Ω exerts
onto all its neighbors at time t. A particle is not accelerated if its neighbors
push back with equal force — it is pressure differences that result in accelera-
tion. This suggests that force per volume at a point is the limit of a difference
quotient,2 the negative gradient −∇p of the pressure. (The gradient operator
∇ is introduced in equation (15) of Appendix A.1. Here, it is understood to

1 The mass contained in each finite sub-volume V is then given by the integral of ρ
over the sub-volume.
2 Consider a small box-shaped sub-volume of fluid, say of lengths (a, b, c) in the
three coordinate directions. Denote the three components of force acting on the box
by F1, F2, and F3. Then F1, the x1-component of force acting on the entire box,
equals the difference of pressures at the left and right ends of the box, multiplied
by bc, the area of the right and left faces. To first order, this pressure difference is
−a ∂p/∂x1, so F1 ≈ −abc ∂p/∂x1, and similarly for the other coordinate directions,
so that F ≈ −abc ∇p. In the limit a, b, c → 0, the higher order corrections tend
to zero at a faster rate and −∇p remains as an exact expression for the force per
volume.
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act only on the space variables x.) We note that the force is directed toward
areas of low pressure, hence the minus sign. Equating our two expressions for
force per volume, we conclude that Newton’s law for a fluid reads

− ∇p(x(t), t) = ρ(x(t), t)
d2x(t)

dt2
. (1)

In principle, this is the equation we want. However, it is not quite useful
yet because it mixes so-called Eulerian quantities and Lagrangian quanti-
ties. Eulerian quantities are properties of the fluid which are functions of
the current position x, while Lagrangian quantities are functions of the ini-
tial location, or “particle label” ξ. So pressure and density are Eulerian3

while the particle position x itself, the velocity dx/dt, and the acceleration
d2x/dt2 are Lagrangian. For most purposes it is much more convenient to
re-express (1) in terms of all-Eulerian quantities: writing u(x, t) to denote
the velocity felt by a stationary observer at location x and time t, we observe
that

dx(t)
dt

= u(x(t), t) . (2)

Differentiating in time and using the chain rule of multivariable calculus (17)
explained in Appendix A.1, we obtain a fully Eulerian expression for the
acceleration of the particle,

d2x(t)
dt2

=
∂u

∂t
(x(t), t) + u(x(t), t) · ∇u(x(t), t) . (3)

Inserting (3) into (1) and dropping all arguments for simplicity, we ar-
rive at a form of Newton’s law which was first introduced by Euler in
1757:

ρ

(
∂u

∂t
+ u · ∇u

)
+ ∇p = 0 . (4)

A fluid governed by (4) is called ideal : the model neglects possible frictional
forces which can turn kinetic energy into heat and other effects caused by
the molecular structure of a real fluid.

At this point, we have more unknown functions than we have equations
(the d components of u, pressure p, and density ρ are unknowns, but (4) pro-
vides only d equations). So we need more information coming from physics.
The question is essentially this: what happens to the density when the pres-
sure changes? There is no general answer as a gas will behave differently
than, e.g., water. In this contribution, we focus on the case where the fluid
is incompressible: the volume of arbitrary parcels pushed around by the flow

3 In (1), the Eulerian quantities ∇p and ρ are evaluated at the current position x(t)
of a Lagrangian particle, so they are read as Lagrangian quantities. The gradient,
however, must be computed with respect to Eulerian position coordinates x rather
than Lagrangian labels ξ.
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(such as Vt in Figure 1) does not change over time.4 The relative rate of
change of a parcel volume, in the limit of vanishing size, is measured by a
quantity called the divergence of the velocity field u, see Appendix A.2. In
particular, the flow of u is incompressible if and only if div u = 0.

For simplicity, we also assume that the fluid is homogeneous: fluid parcels
not only maintain their volume as they are pushed around by the flow, but
have constant density throughout the fluid domain.5 Then, with appropriate
normalization, we can take ρ ≡ 1. What results are the Euler equations for a
homogeneous incompressible ideal fluid,

∂u

∂t
+ u · ∇u + ∇p = 0 , (5a)

div u = 0 . (5b)

The pressure in incompressible flow is determined solely by the condition
that each sub-volume must move consistently with the motion of all of its
neighbors. The resulting pressure force generates the necessary instantaneous
adjustment across the entire fluid domain.

So far, we have neglected friction. Due to its fundamental theoretical and
practical implications, we shall look at friction in more detail. Frictional forces
enhance the local coherence of the flow, i.e. they counteract, at each point,
the deviation of the velocity field from its local average: if a particle moves
faster than the average of its neighbors, then friction slows it down. The
deviation of a function at a point from its average value on small surrounding
spheres is measured by the negative of the Laplacian Δ, a differential operator
explained in Appendix A.3, so that frictional forces should be proportional
to Δu. Adding such a term to the Euler equations (5), we obtain the Navier–
Stokes equations for a homogeneous incompressible fluid,

∂u

∂t
+ u · ∇u + ∇p = ν Δu , (6a)

div u = 0 . (6b)

4 There are certain physical effects that can only be described by a compressible
model, such as acoustic waves, shock formation, and supersonic flows. If these are
important, the model must be augmented with the appropriate laws of thermody-
namics; in this more general case, the pressure forces are due to local imbalances in
the internal energy or temperature. However, the usual state of the flow of water and
the macroscopic motion of air are well described as being incompressible. There is
also a computational motivation for considering incompressible flows: the effects of
compressibility usually take place on much smaller scales than the motion of the bulk.
These are expensive to resolve properly. Moreover, in situations where compressible
effects are physically negligible, simulations of the compressible model which do not
properly resolve such small scales may be very “unstable” so that it is better to start
with an incompressible model right away.
5 This is a rather mild restriction as the case of non-constant density incompressible
flow is mathematically very similar to the special case considered here.
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The constant ν > 0 is called coefficient of viscosity and describes the strength
of the viscous forces; it is much larger for honey, for example, than it is
for water. Note that the same right hand term, νΔu, appears for the same
reason when modeling the flow of heat or the diffusion of a chemical; one
such example is described by L.N. Trefethen in this volume [18].

The partial differential equations (5) and (6) are examples of initial-
boundary value problems: this means that, in order to determine the flow
completely, we need to specify both initial and boundary values to compute
the velocity field for later times t > 0. For the purpose of this discussion,
we assume periodic boundary conditions on a box-shaped domain Ω: we can
think of tiling the whole of R

d with an array of exact copies of our domain
Ω, thereby matching corresponding points at opposite faces of the box. Thus,
what flows out one face of Ω appears to come back in at the opposite face.

For more physically realistic boundaries, one might alternatively specify
the fluxes across the boundary — the amount of fluid moving in or out of
the domain. For a Navier–Stokes flow, momentum fluxes due to the frictional
forces on the boundaries are also required; this holds true even in situations
where the energy dissipation due to friction is negligible — a crucial difference
which is necessary for explaining lift on an aircraft wing. Here, however, we
shall not consider boundary issues further; we take the point of view that fluid
dynamics with periodic boundary condition is prototypical for fluid flow far
away from real boundaries.

3 Conservation Laws

In classical mechanics, there are three fundamental conserved quantities: mo-
mentum, energy, and angular momentum. Each has a fluid analogue which
provides important structural information. Conservation of momentum is the
essence of Newton’s second law and therefore already part of the picture. The
kinetic energy of a point-particle is given by the expression E = 1

2m|v|2. In a
continuum, as we replace mass m by the mass density ρ, we correspondingly
replace E by the kinetic energy density 1

2
ρ|u|2. For incompressible flow, all

energy is kinetic, so that the total energy is obtained by integrating the ki-
netic energy density over the fluid domain. Here, with ρ = 1, the total energy
reads

E =
1
2

∫

Ω

|u|2 dx . (7)

A simple computation, detailed in Appendix B.1, shows that E remains con-
stant under the flow of the Euler equations and is decreasing for Navier–
Stokes flow where friction turns kinetic energy into heat.

What remains are conservation laws related to rotation. For Newton’s
equations of particle mechanics, the conserved quantity is called angular mo-
mentum, always defined relative to a reference point. In fluid mechanics,
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matters are more complicated. Instead of a reference point we must consider
closed curves Ct which are transported by the flow, i.e. Ct = Φt(C0). Relative
to any such curve, the circulation is defined by the line integral

Γt =
∮

Ct

u · ds (8)

which is computed by summing up the components of the velocity field which
are tangent to Ct, see Appendix A.4. Each such Γt is a constant of motion
for the Euler equations. Moreover, due to Stokes’ theorem as explained in
Appendix A.4, the circulation equals the surface integral

Γt =
∫

St

ω · dA , (9)

where St is any oriented surface, again moving with the flow, whose boundary
is the curve Ct, and where ω denotes the vorticity

ω = curlu =
(∂u3

∂x2
− ∂u2

∂x3
,
∂u1

∂x3
− ∂u3

∂x1
,
∂u2

∂x1
− ∂u1

∂x2

)
. (10)

The i-th component of the vorticity vector can be seen as the limit circulation
per unit area in the plane perpendicular to the xi-direction. Intuitively, it
measures how much a little leaf carried by the flow would spin about the i-th
coordinate vector. In two space dimensions, only the third component of (10)
is nonzero and vorticity can be identified with the scalar ∂u2/∂x1−∂u1/∂x2.

Circulation highlights a crucial difference between flows in two and in three
dimensions: since “volume” in two dimensions coincides with the notion of
area, incompressibility implies that the area of St is a constant of the motion.
In the limit of arbitrarily small area of S0, equation (9) shows that conserva-
tion of circulation implies conservation of vorticity along flow lines. In three
dimensions, there is no constraint on the area of St under volume-preserving
transformations. Hence, conservation of circulation cannot control the mag-
nitude of the vorticity vector. This is the reason for the qualitative differences
between flow in two and three dimensions, and why the two-dimensional equa-
tions cannot have singularities, but the three-dimensional equations might.

The importance of vorticity and circulation for the question of singularity
formation can be understood by a simple thought experiment. Start with a
balloon filled with an incompressible non-viscous fluid at rest and tie a lasso
around its waist which is contracted to a point in a finite time, forcing the
fluid into two lobes above and below its waist as in Figure 2. Clearly, we have
created a topological singularity as we close off the two lobes from each other
at a point. Velocity and vorticity of the fluid, however, remain bounded.

Now repeat the thought experiment with a fluid inside the balloon rotating
about its axis. In this example, the velocity is always tangent to the lasso
so that (per the definition of the line integral) the circulation is obtained by
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Fig. 2. Illustration of the rotating balloon thought experiment. As the lasso con-
tracts, conservation of circulation implies that the velocity along the waist increases
(indicated by red colors) while the velocity on the outer lobes decreases (indicated
by blue colors).

integrating the magnitude of the velocity along a circle on the surface of the
balloon, which is given by the product of fluid speed and the circumference
of the opening. Conservation of circulation demands that both fluid speed
and vorticity become infinite near the lasso as it closes, see Figure 2. This is
much like an ice-skater who turns faster and faster as she moves all her mass
towards the axis of her pirouette, propelled just by conservation of angular
momentum. This scenario creates a much stronger singularity than the first.

The blowup question for fluids asks if any of these (or possibly other)
scenarios of singularity formation may be the result of the action of a flow onto
itself. For the Euler equations, it is known that any singularity is necessarily
a singularity in the vorticity; this is discussed with more detail in Section 7.
So the squeezing off of the rotating balloon could possibly be the movement
of a sub-volume in a singular flow, while the squeezing off of the nonrotating
balloon can never occur as the most singular event in the interior of a flow.
For the Navier–Stokes equations, friction would prevent the velocity from
becoming singular in these simple thought experiments, but in general, the
question remains open, as we explain next.

4 The Clay Millennium Problem

For a mathematician, the first question when studying partial differential
equations like (5) or (6) is their well-posedness: (i) existence of solutions —
the physical system must have a way to evolve into the future, (ii) uniqueness
— there must not be arbitrary choices for the evolution, and (iii) continuous
dependence on the initial state — any future state is determined, to arbitrary
finite precision, by the initial conditions to a sufficient finite precision.

For the incompressible Euler and Navier–Stokes equations, a complete
answer to these questions is open. What is known is that both are locally
well-posed : solutions starting out from smooth (infinitely differentiable) initial
data are unique, depend continuously on the initial data, and remain smooth
for at least a finite, possibly short, interval of time. Proofs of local well-
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posedness can be achieved by formulating the equations as a fixed point
problem in a suitable space X of functions. Doing so discards much of the
problem-specific structure, but we can hope to continue the solution for all
times by noting that this local existence argument permits only one of the
following alternatives: either the solution exists on the entire interval [0,∞)
of times, or the solution exists only on some finite interval [0, T ∗) of times
and the size of the solution, called the “norm in X”, diverges as t → T ∗. In
the latter instance, we say colloquially that the solution is “blowing up at
time T ∗”. Hence, proving global well-posedness reduces to finding a bound
on the norm in X for every t > 0.

The question of whether arbitrary smooth solutions of the incompressible
Navier–Stokes equations in three space dimensions can be continued globally
in time in this manner is now one of the seven Millennium Prize Problems
posed by the Clay Mathematics Institute. It is stated as follows [8]. Either
prove that initially smooth solutions with periodic boundary conditions (or
in R

3 with strong decay conditions toward infinity) remain smooth for all
times, or find at least one solution which blows up in finite time. Global well-
posedness for the three-dimensional incompressible Euler equations remains
equally open, but is not covered by the Clay prize question.

Let us sketch some partial results. For the Euler equations in two space
dimensions, we have already argued that vorticity is conserved as a scalar
along flow lines. This is sufficient to prevent blowup of finite energy solutions.
For Navier–Stokes in two dimensions, the dissipation of energy due to friction
is sufficiently strong so that the same conclusion can also be derived via
“energy estimates” which are described in more detail in Appendix B.

Even in three dimensions, solutions to the Navier–Stokes equations with
general initial data can be continued past the time of their first possible
singularities as “weak” or “generalized” solutions.6 Weak solutions exist
globally in time; however, it is physically troublesome that they are not known
to be unique. For the three-dimensional Euler equations, only special classes
of weak solutions are known; there are also examples of non-uniqueness.

It is further known that “small” solutions of the Navier–Stokes equations
do not blow up. Much effort has been spent on characterizing smallness, e.g.
in terms of the smallness of the initial data, of the viscosity being large, or of
the solution being in some sense close to some known special solution or sym-
metry. Physically, all such cases can be characterized as being non-turbulent:
diffusion νΔu is, in some specific sense, so strong that any perturbation
coming from the u · ∇u term is damped away before it could lead to sin-
gularities. Intuitively, if a fluid equation for water is in danger of developing
singularities, we replace the water by honey, and if the honey is sufficiently
viscous, no singularities can develop. Obviously, such results are not avail-

6 Although such a solution may be discontinuous or even singular, averages of the
solution over small finite sub-volumes can still depend continuously on the initial
state. Interpreted this way, condition (iii) in the notion of well-posedness may still be
satisfied.
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able for the Euler equations where ν = 0. Another class of results known
to hold for Navier–Stokes, but not for Euler, are so-called partial regularity
results which, based on more subtle measure-theoretic arguments, state that
the space-time set of singular points of weak solutions is in a certain sense
small.

As a further surprise, there are known blowup solutions to both Euler
and Navier–Stokes equations on unbounded domains in three as well as two
dimensions. However, even before blowup, their kinetic energy per volume
is also unbounded. Unbounded local energy implies, in particular, that arbi-
trarily large velocities arise, which cannot happen in a real physical system.
Such solutions are also not covered by the Clay prize question.

5 To Blow Up or Not To Blow Up?

Let us consider a few inconclusive arguments which shape our beliefs in
whether or not solutions to the Euler or Navier–Stokes equations blow up. An
often cited but potentially misleading analogy are Burgers’ equations, taken
either with or without viscosity. These equations are obtained, respectively,
from the Navier–Stokes and Euler equations by setting p = 0 and dropping
the incompressibility constraint. These equations are not a physical model,
but are of theoretical interest as a clear black-and-white picture emerges:
without viscosity, each particle keeps its initial velocity and blowup occurs in
the form of particle collisions. With viscosity, the global maximum of velocity
remains nonincreasing and friction is strong enough to prevent blowup [12].

There is no reason to expect that the same pattern, namely, that blowup
occurs if and only if viscosity is absent, pertains to real fluids. The two
systems are different in very fundamental ways: for real fluid flow, there is no
mechanism which can give us direct control on the magnitude of the velocity
field; the difficulty arises from the coupling between transport, an inherently
local phenomenon, with pressure forces which are due to the global interaction
of all fluid particles. So one might think that Euler and Navier–Stokes behave
worse than Burgers’ equations. However, there is clear evidence that pressure
stabilizes incompressible flow to some extent. In two dimensions, as we recall,
we can now control the magnitude of vorticity which implies the existence
of global regular solutions with or without viscosity. In three dimensions, as
this control is lost, all bets are off.

Despite this, many believe that either, or both, Euler or Navier–Stokes
flows develop singularities. Why? One reason is related to the cumulative
energy dissipation

ν

∫ t

0

∫

Ω

|∇u|2 dx dt . (11)

This quantity measures how much energy has been lost up to time t, as
is explicitly shown in Appendix B.1. We would expect that, over a fixed
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interval of time [0, t], this quantity is continuous as a function of ν. However,
there is strong numerical and experimental evidence that the cumulative
energy dissipation does not converge to zero as ν → 0. This phenomenon
is referred to as anomalous dissipation and is assumed in most attempts to
model turbulence [7]. Mathematically, anomalous dissipation implies loss of
smoothness at least for the Euler equations. Its implications for the Navier–
Stokes equations are less clear.

Suppose, for the sake of argument, that Euler solutions do blow up, but
Navier–Stokes solutions don’t. Then regularity for the Navier–Stokes equa-
tions should come from the viscous term. However, the known mechanisms
in which viscosity acts do not suffice to prove that viscosity could always
control the nonlinearity. (For example, in L.N. Trefethen’s model blowup
problem [18], the diffusive term is insufficiently strong to prevent blowup.)
So unless there is a yet unknown magical mechanism, at least some Navier–
Stokes solutions might blow up, too.

So why do others believe that the Euler and Navier–Stokes equations do
not have singularities? There are two reasons. First, because the numerical
evidence remains, despite much effort, inconclusive. There are simulations on
both sides of the argument [3, 11, 13, 15] none of which, however, establishes
a “road to blowup” as is known for other models. Second, because once
the continuum description of fluids is accepted, there is nothing obviously
missing or incomplete. This is bolstered by the success of the Navier–Stokes
equations as a deterministic theory when compared with almost every piece
of experimental evidence.

6 Collapse of Vortex Tubes

Let us now look more closely at the role that simulation might play in solving
the blowup problem. As with experiments in a real-world laboratory, before
embarking on any sort of computational experimentation, one must first iden-
tify computational scenarios which would provide the most insight within the
hardware and algorithmic constraints under which we must operate.

Our objective is to find configurations which quickly develop localized in-
tense dynamics. Such scenarios can then be probed for signs of singularity
formation or for signs of depletion of the nonlinear self-amplification. Initial-
ization with random data was used first and indicated that intense events
tend to occur in tube-like structure that rotate about their axis of symme-
try. They are referred to as vortex tubes and occur in many natural flows,
including tornadoes descending from strongly rotating storms or around the
rising parcels of heated air in afternoon thunder clouds. Vortex tubes are
often not easily visible, but can be visualized through condensation due to
the low pressure in the vortex cores, air bubbles sucked into the cores, or
injection of dye.
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Fig. 3. Self-propagating steam rings ejected from an eruption at the south east
crater of the volcano Etna in 2000. Notice how the shadow of the ring travels across
the slope. Photos by Juerg Alean from http://www.swisseduc.ch/stromboli/etna/
etna00/etna0002photovideo-en.html?id=4.

Simulations and data from experiments indicate two further trends. Vor-
tices in turbulent flows amplify by stretching, much as in the rotating balloon
thought experiment in Section 3. And the most intense events, if not the
most frequent, tend to involve pairs of parallel counter-rotating (“antiparal-
lel”) vortex tubes which initially self-propagate. This is why many studies
of singularity formation focus on such pairs [15]. There are also high reso-
lution studies with smooth, highly symmetric initial conditions which might
be showing signs of similar singular behavior [11]. Simulations with random
data continue to play a crucial role in the study of turbulence, but are now
considered too “noisy” to reveal the local structure of possible singularity
formation.

In a flow without viscosity, two exactly linear, antiparallel vortex tubes
will simply propagate at constant velocity. Similarly, vortex rings, which can
appear as smoke rings, are a beautiful example of self-propagation: diago-
nally across the core, the direction of vorticity is anti-aligned, pushing fluid
through the center and dragging the vortex ring with it; see Figure 3. An-
other good example of self-propagation and subsequent break-down are the
vortices shed by aircraft wings. Sometimes they are visible as condensation
trails, where water vapor condenses due to pressure and temperature drops in
the vortex cores; they can also be made visible by smoke generators, as in the
NASA study shown in Figure 4. (Typical high-altitude aircraft condensation
trails come from the outflow of jet engines, but eventually they are engulfed
by the wing-tip vortices.) Further downstream, these tube-like structures are
twisting and starting to attract one another. This is known as the Crow in-
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Fig. 4. This picture shows the wing-tip vortices which are associated with the cir-
culation generating lift coming off the wings of a Boeing 727 aircraft. They were
made visible by smoke generators installed on the tips of the aircraft wings. (NASA
photograph number ECN-3831.)

Fig. 5. Breakdown via the so-called Crow instability of a pair of vortex tubes trailing
an aircraft. What is seen is the interaction of the vortices with the condensation trail
from the jet engines; the lower half of the picture continues the upper half on the
right. From http://commons.wikimedia.org/wiki/File:The Crow Instability.jpg.

stability; see Figure 5. Eventually, the tubes will touch and reconnect, before
becoming turbulent and disappearing.

Why are the two vortex tubes attracted to one another? When an exactly
linear self-propagating pair of vortex tubes is perturbed, the tubes will be
stretched somewhere along their axis. Under incompressibility, this must be
compensated for by compression in the perpendicular directions. The tubes
become longer and thinner, much as when chewing gum is pulled, and move
closer together; see Figure 6. This mechanism is self-amplifying and leads to
a rapid generation of small scale structures, as in Figure 7. Many measures of
the complexity of the flow, especially vorticity and pressure gradients, grow
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Fig. 6. Two antiparallel vortex tubes. The true velocity of the flow is marked ufluid;
the apparent direction of propagation of the vortex structure is indicated as uvortex.
The colored surfaces are surfaces of constant vorticity modulus at 60% and 90% of
peak vorticity. From [3].

around these structures. One of the questions that remain unanswered is this:
do pressure gradients contribute to the amplification of vorticity, or do they
suppress any possible blowup by repelling the vortices and flattening them?
Both trends have been observed, depending upon the initial conditions or,
adding to the mystery, upon what stage of the evolution is considered.

7 Numerical Error

In areas such as number theory or discrete mathematics, computers can
find examples or counterexamples; sometimes it is even possible to achieve
computer-assisted proofs. The space-time continuum of fluid motion, how-
ever, can only be approximated on a discrete computational mesh by finitely
many floating point values. Consequently, computers are fundamentally in-
capable of proving that solutions to the Euler or Navier–Stokes problems
are well-behaved. On the other hand, knowing that the solutions are well-
behaved, we can prove that, given sufficient computational resources, we
could numerically solve the equation to any required accuracy. Yet, there
are many ways how computations interact with mathematical analysis to
provide us with a better understanding of the blowup question. Given the
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Fig. 7. Collapse of two antiparallel vortex tubes. Snapshots at t = 5.6 and t = 8.1
with a conjectured time of singularity T∗ ≈ 11. From [3].

proper configurations, simulations can inspire conjectures, validate assump-
tions, and probe the properties of inequalities.

A large number of numerical approximation methods (“schemes”) for fluid
equations have been devised, each with distinct advantages and disadvan-
tages. For example, many engineering problems use adaptive schemes that
refine the computational mesh locally in regions of interest. Sometimes it is
also possible to choose an initial condition which makes optimal use of a fixed
computational mesh, and then use simple and fast numerics, such as spectral
methods as detailed in Appendix C.

No matter which approach is used, a near-singular flow will develop small
scale features which cannot be represented well with a fixed and finite num-
ber of degrees of freedom. As the flow develops, errors will grow, so that we
need some means of validating the accuracy of the computation. The most
complete validation possible would be to refine on progressively finer meshes,
requiring progressively larger computers. Since this is impossible from a prac-
tical point of view, the usual compromise is to monitor the preservation of
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invariants and check for anomalous growth of small scale features for a few
refined mesh calculations. When carefully done, this can provide us with a
reasonable degree of confidence in the quality of the simulation.

Validation of numerical results becomes easier when the equations possess
symmetries and conservation laws. For this reason, almost all blowup studies
are done on the Euler rather than the Navier–Stokes equations. An additional
benefit of looking at non-viscous flow is that one can study the geometry of
vortex stretching without possible interference of viscous effects.

Besides validation, we need computable measures to decide whether a par-
ticular simulation result might be singular, or is clearly nonsingular. The most
famous such criterion is the Beale–Kato–Majda bound for the Euler equations
[1], which says that ∫ T∗

0

max
x∈Ω

|ω(x, t)| dt = ∞ (12)

is necessary and sufficient for blowup at time T ∗. This criterion is important
for two reasons. First, it gives a bound on how fast singularities can develop:
the peak vorticity must blow up essentially at least as fast as (T ∗ − t)−1.
Second, there can be no singularities in higher derivatives of velocity in the
Euler equations unless there is a singularity in the vorticity, which is a first
derivative of the velocity and usually easily calculable.

The publication of this calculable test in 1984 fueled a decade of numer-
ical activity aimed at identifying either singular structures, or mechanisms
for suppressing singular trends. However, no scientific consensus had been
reached, with only one calculation [14] providing modest consistency with a
power law singularity while maintaining sufficient resolution in all three direc-
tions. It also became apparent that the Beale–Kato–Majda criterion by itself
was insufficient for discriminating between the competing claims. Several ad-
ditional tests for singular behavior that are both independent and calculable
were subsequently proposed [2, 5, 13, 16]. Still, whether the strongest claims
for singular behavior are consistent with the mathematical bounds remains
an open question [3, 13]. It now appears feasible that a consolidated effort
involving adequate high performance computing resources, the latest in adap-
tive mesh methods, and the use of better initial perturbation profiles could
either substantiate the proposed singular scaling regime, or would clearly
show how the nonlinearities generate a negative feedback that suppresses
singular trends.

8 An Invitation to Research

New blowup criteria — some that are more robust, as well as some that are
more refined — could make a real difference. Numerically robust tests would
involve space integrals or averages. One candidate might be the enstrophy,
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the integral over the square of the vorticity, which appears promising but
needs theoretical support. In [3], for example, the Euler enstrophy appears to
follow a power law consistent with the best known upper bound on the growth
of enstrophy in the Navier–Stokes equations. Whether this is coincidental or
whether there is a deeper connection remains a mystery. More refined blowup
tests, on the other hand, might make explicit reference to the local geometry
of vortex lines and vortex structures.

More generally, there remain open questions about the relationship be-
tween the Navier–Stokes and Euler equations. In the presence of boundaries,
the limit of vanishing viscosity is still not well understood [2]. Further, it
remains a mystery whether a global regularity result for Euler would imply
one for Navier–Stokes, as one would naively expect because one would think
viscosity can only dampen the development of singularities [5]. Nonetheless,
we believe that a breakthrough on the Navier–Stokes problem will come via
a breakthrough on the Euler problem. One reason is that the Navier–Stokes
viscosity is mathematically well understood, yet is insufficient to control the
nonlinearity. Another reason is that the Euler equations have conservation
laws, while the Navier–Stokes equations do not, which can be used to monitor
the reliability of numerical simulations probing for blowup.

Independent of these hard problems, it is always worthwhile building intu-
ition with lower dimensional toy problems which share some similarity with
the three-dimensional Navier–Stokes and Euler equations. In some cases, sim-
ulations have been used to predict existence and non-existence of singularities.
The extreme situations created to address these issues, often found after a
painful period of numerical experimentation, continue to inspire new mathe-
matics which is then used to validate numerical predictions.

In practical applications, one can often “model” the effects of small scales
which cannot be resolved computationally. In “large eddy simulations”, for
example, the Navier–Stokes viscous term is replaced by an eddy viscosity
designed to represent the average effects of viscosity over a computational
cell. In a global weather calculation, almost everything is modeled. Such ap-
proaches are often successful in preserving crucial statistical properties of
the solution; their importance cannot be overestimated, yet their mathemat-
ical study remains wide open. Especially needed is the development of new
mathematical concepts to address the relation of accuracy at large scales to
a probabilistic notion of accuracy at small scales.

Mathematical fluid dynamics and, more generally, partial differential equa-
tions is a field where analysis, physics, and computation meet and frequently
progress jointly. It is a field where deep mathematical questions and applica-
tion driven problems sit side by side. And it is a field which, at this point in
its long history, is as vibrant as ever.
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Appendix A. A Brief Guided Tour of Vector Calculus

For functions in one variable, the derivative f ′ = df/dx denotes the local rate
of change of f per unit distance, and the fundamental theorem of calculus
relates these local rates to the global change of f within an interval [a, b].
For functions in several variables, as necessarily occur when modeling fluid
flow, local rates of change are measured by directional derivatives which give
rise to four important differential operators: gradient, divergence, curl, and
Laplacian. These differential operators describe local properties of a function
or vector field which are related to global changes via the integral theorems
of Gauss and Stokes. We will explain these basic concepts without proofs
and precise statements of assumptions under the premise that our readers
are already familiar with single variable calculus and some analytic geometry.
For further background, there are many excellent textbooks and we encourage
the reader to find his or her favorite, or to search on the internet.

A.1 Directional Derivative, Gradient, and Chain Rule

Let U ⊂ R
n be an open set, f : U → R a function, and consider a point

x = (x1, . . . , xn) ∈ U . (We use boldface symbols for vector-valued variables
or functions, and plain symbols for real-valued variables or functions.) We
ask for the rate of change of f as we vary its argument x in some direction
v = (v1, . . . , vn) ∈ Rn. This question can be answered by taking the single-
variable derivative of the function t �→ f(x + tv), which is well-defined for
small values of t. Then the local rate of change,

df(x + tv)
dt

∣∣∣∣
t=0

= lim
t→0

f(x + tv) − f(x)
t

, (13)

if it exists, is called the directional derivative of f at x in the direction v.7

When v = (0, . . . , 0, 1, 0, . . . , 0) is a unit vector with a single 1 in the
i-th coordinate, the associated directional derivative is referred to as the
i-th partial derivative, written ∂f/∂xi or ∂if for short. It is computed by
taking the single-variable derivative of f with respect to xi while holding the
remaining components of x constant.

More generally, we can look at the rate of change of f as its argument
changes along an arbitrary smooth curve which is parameterized by a function
φ : (a, b) → U . The vector components of φ are denoted φ1, . . . , φn, so that
φ(t) = (φ1(t), . . . , φn(t)). Then the multivariate chain rule asserts that

d
dt

f(φ(t)) =
n∑

i=1

dφi(t)
dt

∂f

∂xi

∣∣∣∣
x=φ(t)

. (14)

7 The “vertical bar” notation used in (13) and subsequent expressions indicates that
the derivative should be computed before the indicated argument substitution is ap-
plied.
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The sum in this expression can be understood as a vector dot product between
dφ/dt = (dφ1/dt, . . . , dφn/dt), which can be thought of as the velocity of a
point moving on the curve, and the vector of partial derivatives

∇f ≡ (∂f/∂x1, . . . , ∂f/∂xn) , (15)

which is called the gradient of f . Using familiar dot product notation u ·v =
u1 v1 + · · · + un vn, we can then write the chain rule (14) as

d
dt

f(φ(t)) =
dφ(t)

dt
· ∇f

∣∣
x=φ(t)

. (16)

This is like the one-dimensional chain rule (f(φ(t))′ = φ′(t) f ′(φ(t)), except
we have to take the contributions in all n coordinate directions into account.

Applying the chain rule with φ(t) = x + tv so that dφ/dt = v, we find
that v ·∇f expresses the directional derivative of f in the direction v. Among
all vectors v of unit length, v · ∇f is maximal when v aligns with ∇f ; we
conclude that the gradient ∇f is a vector which points into the direction in
which f has the greatest directional derivative at x, and that the magnitude
of ∇f is the directional derivative of f in this direction. It is often convenient
to think of ∇ = (∂1, . . . , ∂n) as a vector of differentiation symbols.

A vector field is a function u : U → R
n which assigns a vector to each

x ∈ U . A typical example is a fluid which has, at each point, a velocity
vector u(x). When applying the directional derivative u ·∇ to a vector field
v, it acts on each component separately, i.e., u ·∇v = (u ·∇v1, . . . ,u ·∇vn).

In fluid dynamics, we typically encounter time dependent functions and
vector fields. Hence, we must notationally distinguish the space variables
x from time t. We write x ∈ Ω ⊂ Rd (usually with d = 2 or d = 3) to
denote a point in our fluid domain, and (a, b) for a time interval. We use
∇ = (∂1, . . . , ∂d) to denote the gradient with respect to the space coordinates
only, and ∂t for the partial derivative with respect to time. The chain rule
(14) for a function f : Ω× (a, b) → R and ψ : (a, b) → Ω with n = d +1 reads

d
dt

f(ψ(t), t) = ∂tf
∣∣
x=ψ(t)

+
dψ(t)

dt
· ∇f

∣∣
x=ψ(t)

. (17)

The first term on the right records the change of f coming directly from
the time dependence of f , while the second term records the changes
from moving along the curve ψ. This form of the chain rule arises from
(16) by setting U = Ω × (a, b) and φ(t) = (ψ(t), t) so that dφ(t)/dt =
(dψ1(t)/dt, . . . , dψd(t)/dt, 1) and the vector of partial derivatives of f reads
(∂1f, . . . , ∂df, ∂tf) = (∇f, ∂tf).

A.2 Source Strength and the Divergence of a Vector Field

Given a vector field u, we measure its “source strength” as follows. For a
given sub-volume, for instance a small box Q with boundary S, we define the
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flux of u through S as the surface integral

Fl =
∫

S

u · dA . (18)

This integral expresses that we are summing up the component of u which is
perpendicular to the boundary S. The flux measures the net volume of fluid
crossing S per unit time. Note that the component of u which is parallel to
the boundary does not contribute to the flux in or out of the box.

If Q is subdivided into two
subelements of volume, say Q1 and
Q2, then the flux out of Q equals the
sum of the fluxes out of Q1 and out
of Q2, as the contributions on the
common boundary cancel. By fur-
ther repeated subdivision, we can lo-
calize the contributions to the flux
which are generated by smaller and
smaller sub-volumes. Finally, we de-
fine the divergence of u at x, written
div u, as the flux out of Q divided
by the volume of Q, in the limit
of smaller and smaller volume ele-
ments Q. The divergence measures
how much flux is produced per volume, and this is the “source density” or
“source strength”. An immediate consequence of this definition is that the
flux out of Q equals the volume integral of the source strength over Q, sym-
bolically written as ∫

S

u · dA =
∫

Q

div udx , (19)

where S denotes the surface of Q. This expression is usually referred to as
Gauss’ divergence theorem. A simple calculation reveals that

div u = ∂1u1 + · · · + ∂nun , (20)

which can be written symbolically as ∇ · u. (Usually, this equation is used
as the definition of the divergence; then one needs to prove Gauss’ theorem
(19). Here, we have essentially taken (19) as a definition, and it is (20) that
needs proof.)

The Gauss theorem implies, in particular, that when div u(x) > 0, more
fluid comes out of a small box around x than flows in, and there is a “source”
at x — the fluid expands. Correspondingly, if div u(x) < 0, then more fluid
comes in than flows out — the fluid contracts. If div u = 0 at all points, then
inflow balances outflow everywhere and the flow preserves volume.
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A.3 Deviations from Averages and the Laplace Operator

The Laplacian Δ of a real-valued function f in n variables measures how
much the value of f at a point x differs from the average of f on small
spheres around x: let Sε(x) denote the sphere of radius ε centered at x and
let Av(f, Sε(x)) denote the average value of f on this sphere. We then define

Δf = 2n lim
ε→0

Av(f, Sε(x)) − f(x)
ε2

. (21)

An intricate computation based on Gauss’ theorem (19) shows that the Lapla-
cian is the differential operator

Δf = ∂1∂1f + · · · + ∂n∂nf , (22)

which can be written symbolically as ∇ · ∇f . Applied to a vector field, the
Laplacian acts on each component separately, i.e., Δu = (Δu1, . . . ,Δun).

To motivate the equivalence of (21) and (22), consider an affinely linear
function f(x) = ax + b in one variable; then d2f/dx2 = 0 and f(x) =
(f(x− ε) + f(x + ε))/2, so f(x) equals the average of all values at distance ε
from x; we rewrite this as f(x + ε) + f(x − ε) − 2f(x) = 0. This is of course
not so for non-linear f , but we always have

d2f

dx2
= lim

ε→0

f(x + ε) + f(x − ε) − 2f(x)
ε2

, (23)

the expression for the one-dimensional Laplacian.

A.4 Circulation and the Curl of a Vector Field

Our final differential operator, the curl, is most easily introduced for n = 3.
There is, however, the beautiful more abstract framework of “differential
forms” in which Gauss’ theorem (19) and Stokes’ theorem below take a simple
common form.

Let C ⊂ R
3 denote a smooth curve, parametrized as s : [a, b] → C. The

curve is called closed if s(a) = s(b), and we assume that the parametrization
is traversing the curve once. The circulation of u along C is then defined by

∮

C

u · ds =
∫ b

a

u(s(r)) · s′(r) dr . (24)

(The small circle in the integral sign indicates that the curve of integration is
closed.) The line integral can be thought of as summing up the components of
u which are tangential to the curve; it is easy to show that it is independent
of the choice of parametrization. It measures the amount of spinning of the
flow along the curve C. For instance, water flow around the drain of a water
basin often develops a strong circulation around the drain.
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Suppose there is a piece of a
surface, say S, for which C is the
boundary. The circulation in (24) is
found by going once around S. How
does the total circulation change
if we subdivide S into two sub-
surfaces S1 and S2? When comput-
ing the circulation around S1 and S2

separately, their common boundary
curve is traversed twice, but in op-
posite direction. The corresponding
contributions to the total circulation
thus cancel in the sum, and only the contribution from the boundary of S
remains. Again, we can ask which part of the surface is responsible for pro-
ducing circulation by further subdividing S. As the area of the subdivisions
tends to zero, the surfaces look more and more like planes, so that it suffices
to look at the limit circulation per unit area for planar surface elements.
This limit circulation per unit area is called the curl of u at point x, and is
written curlu. It is a vector whose component in the direction perpendicular
to a plane P is the circulation of u around a small surface S ⊂ P contain-
ing x, divided by the area of S, in the limit that this area tends to zero.
Consequently, ∫

S

curlu · dA =
∮

C

u · ds , (25)

where we may interpret curl u as a vector field and the left hand integral as
the total flux of curlu through the surface S. Equation (25) is usually referred
to as Stokes’ theorem. To determine the three vector components of the curl,
it is sufficient to compute the limit circulation per unit area in the each of
the three coordinate planes. A calculation which we will not reproduce here,
but that we encourage our readers to find for themselves, yields

curl u = (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1) , (26)

which can be written symbolically as the vector product ∇ × u. If u is the
velocity field of a fluid, we refer to curlu as the vorticity. Its third component,
for instance, measures how much the flow restricted to the (x1, x2)-plane
rotates about the axis through x in the x3-direction.

Appendix B. Energy Estimates

In this appendix, we derive simple estimates for smooth solutions of the
Navier-Stokes equations which are remarkably close to the best known. We
treat only the case of periodic boundary conditions. The main result is the
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“energy relation” (32), which expresses that the total kinetic energy is con-
stant for solutions of the Euler equations and strictly decreasing for solutions
of the Navier–Stokes equations where friction comes into play. We also indi-
cate how energy estimates can lead to bounds on derivatives, and where the
difficulty in establishing better bounds comes from.

B.1 Energy is Non-Increasing

We begin by taking the dot product of the Navier–Stokes momentum equation
(6a) with u and integrating over the space domain Ω:

∫

Ω

u · ∂u

∂t
dx +

∫

Ω

u · (u · ∇u) dx +
∫

Ω

u · ∇pdx = ν

∫

Ω

u · Δudx . (27)

Writing

|u|2 =
d∑

i=1

|ui|2 and |∇u|2 =
d∑

i,j=1

|∂iuj |2 , (28)

recognizing that ∂|u|2/∂t = 2 u · ∂u/∂t and u · ∇|u|2 = 2 u · (u · ∇u), and
moving the time derivative under the integral, we obtain

1
2

d
dt

∫

Ω

|u|2 dx +
1
2

∫

Ω

u · ∇|u|2 dx +
∫

Ω

u · ∇pdx = ν

∫

Ω

u · Δudx . (29)

Now, if f is a function and v a vector field, then div(fv) = f div v + v ·∇f .
Thus, applying Gauss’ theorem (19) to fv and noting that the boundary inte-
gral on the left of (19) vanishes (because contributions from opposite bound-
ary faces of our periodic domain cancel), we obtain the multi-dimensional
“integration by parts” formula

∫

Ω

v · ∇f dx = −
∫

Ω

f div v dx . (30)

Hence, the second and third terms in (29) vanish altogether: after integrating
by parts, the integrands each contain the factor div u, which is zero. Writing
Δu = ∇ · ∇u and integrating by parts in the last term of (29), we find

1
2

d
dt

∫

Ω

|u|2 dx = −ν

∫

Ω

|∇u|2 dx . (31)

Integration with respect to time finally yields the “energy relation”

E(t) ≡ 1
2

∫

Ω

|u(t)|2 dx = E(0) − ν

∫ t

0

∫

Ω

|∇u(s)|2 dx ds . (32)

Since the integrand in the last term is non-negative, the energy E is non-
increasing and the cumulative energy dissipation (11) is bounded by the initial
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energy E(0). For the Euler equations where ν = 0, energy is a constant of the
motion, but there is no implied bound on the space-time integral of |∇u|2.

B.2 Bounds on Derivatives

Let us now consider how the energy relation may control derivatives of u.
The essential difficulty lies in getting control of, in particular, the integral of
|∇u|2 over Ω pointwise in time; if this were done, bounds on derivatives of
any order would follow by standard arguments. In an attempt to prove the
required bound, we take the dot product of (6a) with Δu and integrate over
the spatial domain as before,

∫

Ω

Δu ·∂tu dx+
∫

Ω

Δu ·(u ·∇u) dx+
∫

Ω

Δu ·∇pdx = ν

∫

Ω

|Δu|2 dx . (33)

Integration by parts readily identifies the first term as the time derivative of
|∇u|2 and lets the pressure contribution vanish as before. However, the sec-
ond term — containing the contribution from the Navier–Stokes nonlinearity
— does not vanish. After a short computation, we obtain

1
2

d
dt

∫

Ω

|∇u|2 dx +
d∑

i,j,k=1

∫

Ω

∂iuj ∂iuk ∂kuj dx = −ν

∫

Ω

|Δu|2 dx . (34)

The second term looks complicated and does not have a definite sign. Simple-
mindedly, we bound each gradient by its Euclidean length: when ν > 0,

∣∣∣∣
d∑

i,j,k=1

∫

Ω

∂iuj ∂iuk ∂kuj dx

∣∣∣∣ ≤
∫

Ω

|∇u|3 dx

≤ c1

(∫

Ω

|Δu|2 dx

)d
4

(∫

Ω

|∇u|2 dx

)6−d
4

≤ ν

∫

Ω

|Δu|2 dx + c2

(∫

Ω

|∇u|2 dx

)d

, (35)

where c1 and c2 = c2(ν) are known positive constants and d = 2 or d = 3. The
proof of the second inequality requires some technical tricks in multivariate
integration; the values of the right hand exponents, however, follow from a
simple scaling argument which expresses that the inequality preserves physi-
cal units. The third inequality is simply a variant of the arithmetic-geometric
mean inequality. Altogether,

1
2

d
dt

∫

Ω

|∇u|2 dx ≤ c2

(∫

Ω

|∇u|2 dx

)d

. (36)

When d = 2 and ν > 0, equation (36) can be interpreted as a linear nonau-
tonomous differential inequality: due to the boundedness of the cumulative
energy dissipation (11), a standard “integrating factor” argument yields a
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global bound on the integral of |∇u|2. When d = 3, this differential inequal-
ity is truly nonlinear so that the implied bound blows up in finite time. In
in other words, energy and cumulative energy dissipation are too weak to
control the development of fine scales.

The argument can be tweaked to show that when d = 3, global solu-
tions exist provided the initial data is sufficiently small, the viscosity ν is
sufficiently large, or the initial data is in various ways close to some global
regular special situation (as already mentioned in Section 4). Tweaking at
this level or looking for more clever choices of function spaces, however, can
neither alter the dimensional scaling of the terms in the equation nor the fact
that in three dimensions the energy relation provides the strongest known
globally controlled quantities. Hence, the greater strength of the nonlinear
term relative to dissipation seen in the argument above is invariant under a
large class of possible approaches.

The place where we butchered the argument is the first inequality in (35)
where all of the three-dimensional geometry of the flow was thrown out. This
geometry, or equivalently the geometry of vortex stretching, is arguably the
key to progress. Yet, it remains poorly understood because it does not map
easily into the language of continuity and compactness of mappings between
topological vector spaces, and the latter forms the backbone of much of the
theory of partial differential equations.

Appendix C. Spectral and Pseudo-Spectral Schemes

In this section, we briefly introduce spectral methods which are often the
method of choice for the computational study of turbulence and blowup.
Spectral methods rely on the Fourier series (or spectral decomposition) of
the fluid fields.

Compared with alternative numerical schemes, spectral methods are fast,
accurate, and easy to compare to many mathematical results. The last is
because much of the mathematical analysis of partial differential equations
uses spectral decompositions at some level. The main drawbacks of spectral
methods are that they lose many of their advantages if used for anything
except the simplest possible boundary geometries and, more serious in our
case, they do not allow refinement if the most intense structures are very
localized such as near developing singularities.

Under mild assumptions, the velocity field u has a unique representation
in terms of the Fourier series

u(x, t) =
∑

k∈Zd

uk(t) eik·x (37)
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where, for convenience, we have scaled our box-shaped periodic domain such
that Ω = [0, 2π]d. Each of the Fourier coefficients uk is a d-dimensional
vector of complex numbers; the index k is referred to as the wavenumber. By
taking the gradient of (37), we see that differentiation of u is equivalent to
multiplication by ik on the Fourier side,

∇u(x, t) =
∑

k∈Zd

ik uk(t) eik·x . (38)

This observation can be turned into a numerical method by assuming that
only the coefficients uk with |k| < n/2 for some n are nonzero, so that the
Fourier series involves no more than nd summands. Consequently, the linear
terms in (5) and (6) can be represented exactly by algebraic operations on this
finite set of coefficients. The first apparent drawback is that a direct evalua-
tion of the nonlinearity in the Fourier representation requires n2d operations
compared to nd for the other terms, which would be prohibitively expensive.

Another problem stemming from the nonlinear term is that upon each new
nonlinear evaluation, required for time advancement, the number of nonzero
coefficients expands by a factor of 2d. If these terms become large and can-
not be neglected, then the required amount of computer memory will grow
exponentially. Physically, this is perfectly reasonable, as it corresponds to
the emergence of smaller scale structures as the flow evolves. This is called
a cascade in the theory of turbulence. Cascades are naturally described in
Fourier space, but are difficult to identify in the physical domain.

The inefficiency of calculating the nonlinearity in Fourier space is ad-
dressed by using the linear one-to-one correspondence between our set of
nd nonzero Fourier coefficients and the nd values on equidistant mesh points
in the physical domain. Since multiplication is cheap on the physical space
mesh, we compute it there. Operations involving derivatives can be done ef-
ficiently in Fourier space. And the map between the Fourier representation
and the physical space representation can be computed efficiently by the fast
Fourier transform, or FFT, in just nd lnn operations, i.e., we can map back
and forth as needed without significant slowdown. Methods that split the
operations in this way are known as pseudo-spectral codes.

Once the manner of calculating the spatial derivatives and the nonlinear
interaction has been established, we have reduced the problem to solving
a system of coupled ordinary differential equations. Combinations of well-
known algorithms for the numerical solution of ordinary differential equations
are then used to propagate the solution forward in time.

Pseudo-spectral approximations must be dealiased by setting to zero an
appropriate set of the high wavenumber Fourier modes — the details are
outside the scope of this discussion — to ensure that the results are mathe-
matically equivalent to a truncation of the Fourier series as indicated earlier.
Doing so ensures that quadratic invariants such as the energy in the Euler
equations remain constants of the motion. However, errors still appear at the
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scale of the mesh spacing, that is in the high wavenumber Fourier coefficients,
and in non-quadratic conservation laws such as the circulation — properties
which can be monitored to assess the accuracy of a calculation [3, 11, 15].

Ultimately, the only way to ensure accuracy is to apply more resources,
that is redo the calculations on finer meshes. In practice, when performing
simulations at the limit of available resolution, a clear understanding of the
biases of the chosen numerical scheme is as important as an understanding of
the properties of the underlying partial differential equation. And often, the
mathematical study of the numerical scheme is an interesting and worthwhile
undertaking in its own right.
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About the Hardy Inequality

Nader Masmoudi

Abstract. The Hardy inequality has a long history and many variants.
Together with the Sobolev inequalities, it is one of the most frequently used
inequalities in analysis. In this note, we present some aspects of its history, as
well as some of its extensions and applications. This is a very active research
direction.

1 Inequalities

Inequalities are among the main tools used in mathematics, and they can
have very different roles within mathematics. They range from very classical
inequalities (used in all fields of mathematics) such as the Cauchy-Schwarz
inequality or the inequality between the arithmetic and the geometric mean
to more specific ones. Inequalities can be important in their own right — as
is often the case for instance in IMO problems — and they can be candidates
for an “Oscar” for the best supporting actor within some other mathematical
field. Indeed, in research an inequality is most often not the goal in itself but
rather a tool to prove a theorem. Of course, in the olympiads, the same hap-
pens: one often has to use a known inequality to solve a problem. Sometimes,
however, the problem is to prove a new inequality, so that the inequality is the
goal itself and one has to be well equipped with proof methods of inequalities.

Of course, it happens that an inequality that is required somewhere in
mathematics starts to take on a life of its own; and conversely, an inequality
that has been investigated in its own interest may become useful somewhere
else, perhaps unexpectedly. The Hardy inequality is an interesting such ex-
ample, as we will see. It was discovered in an attempt to simplify the proof of
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another inequality, it was then studied in its own right and acquired several
useful variants, and it eventually turned out to be extremely useful in the
theory of partial differential equations.

Most inequalities have three forms: finite, infinite and integral. For in-
stance, the Hölder inequality (which is a generalization of Cauchy-Schwarz)
has these three different forms:

n∑

i=1

aibi ≤
(

n∑

i=1

ap
i

)1/p (
n∑

i=1

bp′

i

)1/p′

∞∑

i=1

aibi ≤
( ∞∑

i=1

ap
i

)1/p ( ∞∑

i=1

bp′

i

)1/p′

(1)

∫ b

a

f(x)g(x) dx ≤
(∫ b

a

f(x)p dx

)1/p (∫ b

a

g(x)p′
dx

)1/p′

for 1
p

+ 1
p′ = 1. All the integrals here and in the sequel are taken in the sense

of Lebesgue. The reader who is not familiar with this notion can assume that
f and g are continuous or piecewise continuous functions defined on (a, b).
Those who are not familiar with integrals at all can just focus on the versions
involving series.

Even if not specified, all functions and series are supposed to be real-valued
and non-negative in the whole article. Let us also recall the meaning of (1)
(as well as all the inequalities that will be given later). The meaning of (1)
is that if the right hand side is finite then the left hand side is also finite
and the inequality holds. If the right hand side is infinite then the inequality
does not say anything. So one can always assume that the right hand side is
finite. Also, throughout the whole article, p will denote a real number with
1 < p < ∞, and p′ > 1 will denote the positive real number with 1

p + 1
p′ = 1.

Some names may refer to different inequalities. In many cases, there is
a relation between those inequalities. For instance, the name Minkowski in-
equality (in the integral form and for p > 1) usually refers to

[∫ b

a

(f + g)p dx

]1/p

≤
[∫ b

a

fp dx

]1/p

+

[∫ b

a

gp dx

]1/p

(2)

with equality if and only if f and g are proportional. One can also give the
name Minkowski to the following double integral form

[∫

I2

(∫

I1

F (x1, x2) dx1

)p

dx2

]1/p

≤
∫

I1

(∫

I2

F (x1, x2)p dx2

)1/p

dx1 (3)
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for any two intervals I1 and I2. The integrals in (2) occur frequently in anal-

ysis under the name of p-norms ‖f‖p :=
[∫ b

a
fp dx

]1/p

, and (2) is simply
the triangle inequality for this norm: ‖f + g‖p < ‖f‖p + ‖g‖p. The spaces of
functions with finite p-norms are called Lp-spaces.

The two inequalities (2) and (3) can be interpreted as particular cases
of a more general statement on measure spaces S1 and S2, namely the fact
that Lp

x2
(L1

x1
) ⊃ L1

x1
(Lp

x2
) for p ≥ 1. One can recover (2) by taking S1 to be

reduced to two points and taking the counting measure on it.
Some inequalities may be reversed when we go from the infinite form to

the integral one. For instance:

( ∞∑

i=1

ap
i

)1/p

≤
∞∑

i=1

ai ,

while

∫ b

a

f(x) dx ≤ (b − a)1−
1
p

(∫ b

a

f(x)p dx

)1/p

where (a, b) is a finite interval. For readers familiar with Lebesgue spaces,
these are just the inclusions �1 ⊂ �p for sequence spaces and Lp(a, b) ⊂
L1(a, b) for function spaces. Of course these two inequalities can be seen as
extensions of different sides of the following two inequalities for finite sums:

(
N∑

i=1

ap
i

)1/p

≤
N∑

i=1

ai ≤ N
p−1

p

(
N∑

i=1

ap
i

)1/p

.

Inequalities can come in the form of a strict inequality < or of a non-strict
inequality ≤. When a constant is involved, one of the important questions is
to find the best constant and to study the case of equality. For instance in the
case of the Hölder inequality (1) and dealing only with the positive case, this
happens if ap

i = λbp′

i for all i ∈ N (f(x)p = λg(x)p′
for all x ∈ (a, b) in the

integral case) for some fixed non-negative number λ. In particular, we note
for later use that for any function g such that

∫ b

a
g(x)p′

dx < ∞, we have

sup
f

∫ b

a

f(x)g(x) dx =

(∫ b

a

g(x)p′
dx

)1/p′

(4)

where the sup is taken over all f such that
∫ b

a
f(x)p dx = 1. In (4) the sup is

achieved at f(x) =
g(x)p′/p

(∫ b

a
g(x)p′dx

)1/p
.
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The proof (or the proofs) of most classical inequalities come from the
convexity properties of some function such as xp, exp(x), . . . or from inte-
gration by parts (or summation by parts for series) or from the study of
the maximum or minimum of some function (as in the proof of Theorem 2
below).

The aim of this note is to study one of these inequalities, namely the Hardy
inequality (see [4, Chapter 9] and [2, 3] for earlier versions):

Theorem 1 (The Hardy Inequality).
1) If An = a1 + a2 + ... + an, then

∞∑

n=1

(
An

n

)p

<

(
p

p − 1

)p ∞∑

n=1

ap
n (5)

unless all the an are zero. The constant is the best possible.
2) If F (x) =

∫ x

0
f(t) dt, then

∫ ∞

0

(
F (x)

x

)p

dx <

(
p

p − 1

)p ∫ ∞

0

f(x)p dx (6)

unless f ≡ 0. The constant is the best possible.

As usual in Lebesgue theory, f ≡ 0 doesn’t mean that f = 0 everywhere, but
only on the complement of a set of (Lebesgue) measure zero. Of course for
continuous functions, this makes no difference.

Notice here the similarity between the two inequalities (5) and (6). Indeed,
An

n
is the arithmetic average of the sequence a up to the index n (this is

often called the Césaro mean of the sequence (an), a frequent concept in
summability theory), and F (x)

x
is the average of f over the interval (0, x).

Also, as stated after (1), the inequalities (5) and (6) mean that if the right
hand side is finite then the left hand side is also finite and the inequality
holds.

2 History of the Hardy Inequality

The first motivation of Hardy [2] was to find a simpler proof for the
Hilbert inequality (see below). As stated in [4], Theorem 1 was discov-
ered in the course of attempts to simplify the proofs of Hilbert’s theo-
rem that were known at the time. As a footnote, one can read “It was
a considerable time before any really simple proof of Hilbert’s double se-
ries theorem was found”. Let us state without proof the Hilbert inequal-
ity:
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Theorem 2 (The Hilbert Inequality).
1) If

∑
ap

m ≤ A,
∑

bp′

n ≤ B, the summation running from 1 to ∞, then

∞∑

m,n=1

ambn

m + n
<

π

sin(π/p)
A1/pB1/p′

(7)

unless all the am are zero or all the bn are zero. The constant is the best
possible.

2) If
∫ ∞
0

f(t)p dt ≤ A,
∫ ∞
0

g(t)p′
dt ≤ B, then

∫ ∞

0

∫ ∞

0

f(x)g(y)
x + y

dx dy <
π

sin(π/p)
A1/pB1/p′

(8)

unless f ≡ 0 or g ≡ 0. The constant is the best possible.

The determination of the best constant and the integral analogue are due
to Schur. We only give an elementary proof of (7) in the case p = 2 and a = b
(here and elsewhere, we simply write a or b for finite or infinite sequences
(an) and (bn), so a = b means that an = bn for all n). Our proof is based
on the theory of maxima and minima of functions of several variables (see
[4, Appendix III]; for a full proof, see Chapter 9). We will prove a slightly
stronger version of (7), namely that

∞∑

m,n=0

aman

m + n + 1
≤ π

∞∑

n=0

a2
n . (9)

We may suppose that more than one an is different from 0, otherwise the
inequality is trivial. Consider the two functions

F (a) =
N∑

m,n=0

aman

m + n + 1
, G(a) =

N∑

n=0

a2
n

defined for finite sequences a = (a0, a1, . . . , aN ) ∈ [0,+∞)N+1. We want
to prove that F (a) < πG(a) for any a 
= 0. For each t > 0, we maximize
the function F on the set of all sequences a with G(a) = t. This set is
clearly compact and hence F attains its maximum F ∗ = F ∗(t) at some
point a.

We would like to deduce from that a Lagrange equation. Hence, we first
need to show that all the an are positive, so that a is away from the boundary
of its domain. Indeed, if any an = 0, then a small increment δ in an produces
an increase of δ2 in G and one of order δ in F . Hence, denoting b =

√
t

t+δ2 (a+
δen), where en = (0, ..., 1, 0, ...) with 1 at the n-th position, we see that
G(b) = t and F (b) > F (a).
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Hence, necessarily all the an are positive and we deduce from the maxi-
mality of F (a) that there is a Lagrange1 multiplier λ satisfying

∂F

∂an
− λ

∂G

∂an
= 0 (10)

for all n ≤ N . Hence, for n ≤ N , we have

N∑

m=0

am

m + n + 1
= λan . (11)

Multiplying by an and adding, we get F (a) = λt.

Let am

√
m + 1

2
be maximal for m = m0. Then, for n = m0 in (11), we get

λam0 =
N∑

m=0

am

m + m0 + 1
≤ am0

√
m0 +

1
2

N∑

m=0

1

(m + m0 + 1)
√

m + 1
2

≤ am0

√
m0 +

1
2

∫ N+1/2

−1/2

dx

(x + m0 + 1)
√

x + 1
2

= am0

∫ r

N+1
m0+ 1

2

0

2 dy

y2 + 1
< am0

∫ ∞

0

2 dy

y2 + 1
= πam0 .

Here we used in the second line that
(
(x + m0 + 1)

√
x + 1

2

)−1

is con-
vex in x; from the second to the third line we used the substitution y =√

(x + 1
2 )/(m0 + 1

2 ), and for the last integral we used a well known formula
(which follows by substituting y = tan z).

From the inequality above, we deduce that λ < π, and thus F (a) < πG(a)
holds for any a 
= 0. Sending N to infinity, we deduce the infinite series
version, namely the fact that (9) holds. This also yields (7) (in our special
case) by replacing an by an−1 and using that 1

m+n
< 1

m+n−1
. ��

1 The idea of Lagrange multipliers is simple: at every point a, the vector of partial

derivatives
“

∂F
∂a0

, ∂F
∂a1

, . . . , ∂F
∂aN

”

, called the gradient of F at a, points in the direction

(in the space of sequences a) of maximal increase of F . The same is true for G. Since
we only allow sequences a for which G assumes the constant value t, the values of a
are restricted to an N -dimensional hypersurface (think of a 2-dimensional surface in
ordinary 3-space). The gradient of G is perpendicular to this hypersurface (at every
point, the direction of maximal increase of G is perpendicular to the hypersurface of
constant values). If the gradient of F was not perpendicular to this hypersurface, then
there would be a direction along the hypersurface along which F could increase, and
this cannot happen at a point a where F is maximal. Hence the gradients of F and G
must both be perpendicular to the hypersurface and thus be parallel, up to sign, and
the existence of λ follows. — Those who are not familiar with partial derivatives like
∂F/∂an or with the gradient may wish to consult Appendix A.1 in the contribution
[6] in this volume.
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3 Proof of the Hardy Inequality

Here, we give a proof of Theorem 1. In the series case, the proof is due to
Elliott. Let us write αn = An/n and α0 = 0. We have

αp
n − p

p − 1
anαp−1

n = αp
n − p

p − 1
[nαn − (n − 1)αn−1] αp−1

n

= αp
n

(
1 − np

p − 1

)
+

(n − 1)p
p − 1

αp−1
n αn−1

≤ αp
n

(
1 − np

p − 1

)
+

n − 1
p − 1

[
(p − 1)αp

n + αp
n−1

]
(12)

=
1

p − 1
[
(n − 1)αp

n−1 − nαp
n

]

where we have used the Young inequality on the third line, namely xy ≤
xp

p
+ yp′

p′ with y = αp−1
n and x = αn−1.

Summing from 1 to N yields a telescoping sum on the right hand side, so
we get

N∑

n=1

αp
n − p

p − 1

N∑

n=1

αp−1
n an ≤ −Nαp

N

p − 1
≤ 0 (13)

and hence, by the Hölder inequality, we get

N∑

n=1

αp
n ≤ p

p − 1

N∑

n=1

αp−1
n an ≤ p

p − 1

(
N∑

n=1

ap
n

)1/p (
N∑

n=1

αp
n

)1/p′

. (14)

Dividing by the last factor (which is positive, otherwise there is nothing to
prove) and raising to the power p yields the result in the finite case. In

particular, we see that
∞∑

n=1

αp
n is finite if

∞∑

n=1

ap
n is finite. Replacing N by ∞

in (13) and (14) yields

∞∑

n=1

αp
n ≤ p

p − 1

( ∞∑

n=1

ap
n

)1/p ( ∞∑

n=1

αp
n

)1/p′

(15)

and the inequality is strict unless ap
n and αp

n are proportional, i.e unless
an = Cαn where C is independent of n. Without loss of generality, we can
assume that a1 
= 0. Otherwise, we can replace an+1 by an and the inequality
becomes weaker. Hence, C = 1 and we infer that An = nan which is only
possible if all the a are equal which is inconsistent with the convergence of∑

αp
n. Hence, (5) holds.
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To prove that the constant is optimal, we take an = n−1/p for n ≤ N and
an = 0 for n > N , where N is some positive integer that will be specified

below. Hence,
N∑

n=1

ap
n =

N∑

n=1

1
n

and

An =
n∑

k=1

k−1/p >

∫ n

1

x−1/p dx =
p

p − 1

[
n

p−1
p − 1

]
(n ≤ N) ,

so (
An

n

)p

>

(
p

p − 1

)p 1 − εn

n
(n ≤ N) ,

where εn only depends on n (and not on N) and εn goes to zero when n goes
to infinity.

Now, let ε > 0 be given and let n0 be some positive integer such that
εn < ε whenever n ≥ n0. Choose N such that

∑N
n=1

1
n

> 1
ε

∑n0−1
n=1

1
n

(this is
possible because the harmonic series diverges). Then for the sequence (an)
as defined above, we have

∞∑

n=1

(
An

n

)p

>
N∑

n=n0

(
An

n

)p

>

(
p

p − 1

)p N∑

n=n0

1 − εn

n
>

(
p

p − 1

)p N∑

n=n0

1 − ε

n

= (1 − ε)
(

p

p − 1

)p N∑

n=n0

1
n

> (1 − ε)2
(

p

p − 1

)p N∑

n=1

1
n

= (1 − ε)2
(

p

p − 1

)p ∞∑

n=1

ap
n .

If we let ε tend to 0, this shows that the constant
(

p
p−1

)p

is optimal. An

alternative choice is to take an = n−1/p−ε for all n and to send ε to zero.
Now, we turn to the proof of the integral inequality. Integrating by parts,

we have
∫ X

0

(
F (x)

x

)p

dx = − 1
p − 1

∫ X

0

F (x)p d

dx
(x1−p) dx

=
[
−x1−pF (x)p

p − 1

]X

0

+
p

p − 1

∫ X

0

(
F (x)

x

)p−1

f(x) dx

≤ p

p − 1

∫ X

0

(
F (x)

x

)p−1

f(x) dx

since the integrated term (first term on the second line) vanishes at x = 0
in virtue of F (x) = O(x) if we assume that f is continuous on [0,∞). If we
only assume that fp is integrable, we can get the same conclusion using that
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F (x) ≤ (
∫ x

0
f(t)p dt)1/px

p−1
p by the Hölder inequality and that

∫ x

0
f(t)p dt

goes to zero when x goes to 0.
Sending X to infinity and using the Hölder inequality, we get as in the

series case that the strict inequality (6) holds unless x−pF p and fp are pro-
portional, which is impossible, since it would make f a power of x and hence∫

fp dx divergent. The proof that the constant is optimal can be done by
looking at fε(x) = 0 for x < 1 and fε(x) = x−1/p−ε for x ≥ 1 and then
sending ε to zero. Two other choices consist in taking gε(x) = 0 for x ≥ 1
and gε(x) = x−1/p+ε for x < 1 or hε(x) = x−1/p for x ∈ (ε, 1

ε ) and hε(x) = 0
elsewhere and then sending ε to zero. ��

Remark 1. Notice that (12) is a sort of integration by parts similar to the one
used in the Abel transformation.

Remark 2. In the limit p ↘ 1, the inequalities in Theorem 1 are void because
both sides are infinite, unless a or f are identically zero. Indeed, if ak > 0,
then An ≥ ak for n ≥ k, and we have a diverging harmonic series as lower
bound. On the right hand side, clearly p/(p − 1) → ∞.

4 Variants of the Hardy Inequality

The Case of a Decreasing Function. If in Theorem 1, we assume that
f is non-increasing, then we get the following two-sided inequality

(
p

p − 1

) ∫ ∞

0

f(x)p dx ≤
∫ ∞

0

(
F (x)

x

)p

dx <

(
p

p − 1

)p ∫ ∞

0

f(x)p dx .

(16)
To prove the left inequality, we notice that

d

dt
[F (t)p] = pf(t)F (t)p−1 ≥ pf(t)ptp−1

where we have used that f is non-increasing. Integrating between 0 and x,
we get that

F (x)p ≥ p

∫ x

0

f(t)ptp−1 dt .
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Hence,
∫ ∞

0

(
F (x)

x

)p

dx ≥ p

∫ ∞

0

x−p

∫ x

0

f(t)ptp−1 dt dx

= p

∫ ∞

0

(∫ ∞

t

x−p dx

)
f(t)ptp−1 dt

=
p

p − 1

∫ ∞

0

f(t)p dt .

The Weighted Hardy Inequality.

Theorem 3 (The Weighted Hardy Inequality).
If p > 1 and r 
= 1 and F (x) is defined by

F (x) =
∫ x

0

f(t) dt if r > 1, F (x) =
∫ ∞

x

f(t) dt if r < 1,

then ∫ ∞

0

x−rF (x)p
dx ≤

(
p

|r − 1|

)p ∫ ∞

0

f(x)pxp−r dx (17)

and the constant is the best possible.

Again, here (17) means that if the right hand side is finite, then the left hand
side is also finite and the inequality holds.

We only give the proof in the case r > 1. The proof in the second case is
very similar. The proof uses the Minkowski inequality (3):

(∫ ∞

0

x−r

(∫ x

0

f(t) dt

)p

dx

)1/p

=

(∫ ∞

0

xp−r

(∫ 1

0

f(sx) ds

)p

dx

)1/p

≤
∫ 1

0

(∫ ∞

0

f(sx)pxp−r dx

)1/p

ds

=
∫ 1

0

s−
1+p−r

p

(∫ ∞

0

f(y)pyp−r dy

)1/p

ds

=
p

r − 1

(∫ ∞

0

f(y)pyp−r dy

)1/p

.

Here, we have made the change of variables t = sx in the first line and y = sx
in the third one. This yields (17). Notice also that this gives another proof
of the original Hardy inequality when r = p. We leave it to the reader to
check that the constant is optimal. We also point out that if p = 1, then by a
simple integration by parts, one can see that (17) is actually an equality. ��
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The next theorem is a generalization of (17) in the sense that it gives a
necessary and sufficient condition on the non-negative functions u and v so
that the weighted Hardy inequality (18) holds [8]. Again u and v are supposed
to be non-negative measurable functions on the interval (0, b). The reader who
is not familiar with this notion can suppose them to be continuous on the
open interval (0, b).

Theorem 4 (The Generalized Weighted Hardy Inequality).
Let p > 1 and 0 < b ≤ ∞. The inequality

∫ b

0

(∫ x

0

f(t) dt

)p

u(x) dx ≤ C

∫ b

0

f(x)pv(x) dx (18)

holds for any measurable (or just continuous) function f(x) ≥ 0 on (0, b) if
and only if

A = sup
r∈(0,b)

(∫ b

r

u(x) dx

)1/p (∫ r

0

v(x)1−p′
dx

)1/p′

< ∞ . (19)

Moreover, the best constant C in (18) satisfies A ≤ C1/p ≤ p1/p(p′)1/p′
A.

We only prove that the condition is necessary and leave the other part to
the reader.

We assume that (18) holds for any f such that
∫ b

0
f(x)pv(x) dx < ∞. For

any such f , when applying (18) to fr = fχ(0,r), we get

∫ b

r

u(x) dx

(∫ r

0

f(t) dt

)p

≤ C

∫ r

0

f(x)pv(x) dx . (20)

Let us denote
M = sup

f

∫ r

0

f(t) dt (21)

where the sup is taken over all functions f such that
∫ r

0
f(x)pv(x) dx = 1.

Using (4), we deduce easily that

M =
(∫ r

0

v1−p′
dt

)1/p′

.

Indeed, introducing h(t) = f(t)v(t)1/p, we see that

M = sup
h

∫ r

0

h(t)v(t)−1/p dt

where the sup is taken over all h such that
∫ r

0
h(t)p dt = 1. The reader

familiar with weighted Lp space can deduce this directly.
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Hence, we deduce from (20) that

∫ b

r

u(x) dx

(∫ r

0

v1−p′
dt

)p/p′

≤ C . (22)

Therefore, we see that (19) holds and that Ap ≤ C.
The proof that the condition (19) is sufficient and that the optimal con-

stant C satisfies C1/p ≤ p1/p(p′)1/p′
A is left to the reader. ��

The Limit p Going to 1 and to ∞. As stated in Remark 2, the Hardy
inequality (6) does not hold for p = 1. However, (18) can be extended to p = 1,

if we replace the second term on the right hand side of (19) by sup
x∈(0,r)

1
v
. We

also leave this to the reader.
Next, we would like to consider the limit p going to infinity in (5) and (6).

We have the following theorem:

Theorem 5 (The Hardy Inequality for p = ∞).
1) If an ≥ 0, then

∞∑

n=1

(a1a2...an)1/n < e

∞∑

n=1

an (23)

unless all the a are zero. The constant is the best possible.
2) If f(x) ≥ 0, then

∫ ∞

0

exp
(

1
x

∫ x

0

log f(t) dt

)
dx < e

∫ ∞

0

f(x) dx (24)

unless f ≡ 0. The constant is the best possible.

We can prove (23) with a ≤ instead of < by a passage to the limit. Re-
placing ap

n by an in (5), we get

∞∑

n=1

(
a
1/p
1 + a

1/p
2 + ... + a

1/p
n

n

)p

<

(
p

p − 1

)p ∞∑

n=1

an . (25)

Sending p to infinity, we deduce that (23) holds with a ≤ . To prove that
it is actually < unless all the an are zero requires a different proof [4].

For the proof of (24), we use the same idea, namely we replace fp by f in
(6) and then send p to infinity. We just have to observe that

lim
p→∞

(
1
x

∫ x

0

f(t)1/p dt

)p

= exp
(

1
x

∫ x

0

log f(t) dt

)
. (26)

which follows for example by l’Hôpital’s rule. ��
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5 Applications

One branch of mathematics where inequalities, including the Hardy inequal-
ity in its various forms, are essential tools is the theory of partial differential
equations (PDEs). Partial differential equations are equations which contain
derivatives of an unknown function in more than one variable; many problems
in mathematics, physics, engineering, and similar fields give rise to PDEs. A
fundamental mathematical question is whether a PDE has solutions and,
if so, if these are unique. The motor for essentially all such theorems are
inequalities, and it is here that the Hardy inequality is often put to good use.

Many important PDEs describe the time development (evolution) of in-
teresting quantities. In such cases, a second question is whether solutions to
these equations exist forever, or whether they “blow up” in finite time, so
that some quantities become infinite and solutions fail to exist thereafter. A
simple case of blow-up in finite time has been described by Nick Trefethen
in this volume [10, Section 4 “Blow-Up”]. The importance of the blow-up
question in fluid dynamics is discussed in the contribution by Bob Kerr and
Marcel Oliver [6], especially Sections 4 and 5; their Appendix B demonstrates
explicitly how inequalities come into play.

We would like to present here a few specific applications of where the
Hardy inequalities come up in the theory of partial differential equations.
This section is meant to give you a rough idea; readers who are not familiar
with some notation or background are encouraged to read it like “science
fiction”.

Boundary Traces of Non-Smooth Functions. In the theory of partial
differential equations it is often useful to generalize the class of functions from
which to seek a solution beyond functions for which all partial derivatives
which appear in the PDE exist and are continuous. In this case, the equation
must be interpreted in a carefully defined averaged or “weak” sense. One
class of functions f : Ω → R which is frequently encountered is the Lebesgue
space Lp(Ω) (recall that Lp- functions are defined only “almost everywhere”),
another is the Sobolev space

W 1,p(Ω) := {f ∈ Lp(Ω) | ∇f ∈ Lp(Ω)} ,

where ∇f is the gradient of f (see [6, Appendix A.1] in this volume); the
superscript 1 in W 1,p says that we want to control the function f and its first
derivatives on the domain Ω in the Lp sense (even though f may be undefined
on a set of measure zero, it is still possible that almost everywhere they have
derivatives in a certain sense, called “distributions”; we require that these
derivatives must also be Lp-functions).

When the system described by the PDE is defined on a domain Ω with
smooth boundary ∂Ω, the PDE must usually be augmented by boundary
conditions such as by specifying which values the solution must assume on
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the boundary. Hence, we need to establish a relationship between functions
(from a certain space) defined on the entire domain and their restrictions to
the boundary. This is done by means of a trace operator γ which, for smooth
functions on Ω, is simply the restriction to the boundary. For functions f ∈
Lp(Ω), the trace is not well defined because the boundary is a set of Lebesgue
measure zero, hence is not “seen” by the Lp norm. On the other hand, γ
extends to a continuous operator from W 1,p(Ω) into a certain space that we
shall not define here (a “Besov space of fractional order”). The proof of this
result is based on the fact that ∇f ∈ Lp(Ω) implies that

f(x) − γf(π(x))
d(x)

∈ Lp(Ω) , (27)

where d(x) is the distance of x to the boundary of the domain and π(x)
denotes the boundary point of Ω nearest to x (defined for x close to the
boundary). This can be deduced from the Hardy inequality written in the
perpendicular direction to the boundary.

Compressible Euler Equations with Degenerate Density. When
partial differential equations involve coefficients that go to zero near the
boundary of Ω, we often need to control quantities like f(x)/d(x) that di-
verge as x tends to the boundary. In all these cases, estimating f(x)/d(x) in
appropriate spaces of functions requires some control on the derivatives of f ,
and this is achieved using Hardy or Hardy–Sobolev estimates.

One such example arises when studying acoustic waves within a bubble
of a compressible fluid surrounded by vacuum. Generally, the dynamics of a
fluid without friction is described by the Euler equations. They are discussed,
mainly in their incompressible form, in the contribution [6] by Bob Kerr and
Marcel Oliver in this volume. The compressible Euler equations describe the
motion of a gas whose density at time t and position x is denoted ρ(x, t),
its velocity by u(x, t), and the pressure by p(x, t). Written in terms of these
so-called Eulerian variables and omitting arguments, the equations read

ρ
∂u

∂t
+ ρu · gradu + grad p = 0 , (28a)

∂ρ

∂t
+ div(ρu) = 0 . (28b)

The first equation is the same as (5a) of [6]. The second equation (28b)
expresses conservation of mass: if more fluid flows into a neighborhood of
a point than flows out, then the density increases. For an incompressible
homogeneous flow where ρ = const, it reduces to div u = 0, cf. [6].

Compared to the incompressible Euler system, there is one more unknown
function, the density ρ. Correspondingly, an extra condition is needed, which
can be supplied, for example, by assuming the equation of state for an isen-
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tropic gas p = Kργ where γ > 1 is called the adiabatic exponent and K is
some constant of proportionality.

When we consider a bubble of gas surrounded by vacuum, the density is
zero outside the bubble — the equation “degenerates” toward the boundary
of the bubble.

It is convenient to rewrite the system in terms of the flow map Φ(ξ, t)
which describes the position of a fluid particle at time t when it started
from position ξ at time t = 0. In this form (which we omit), turning “Eu-
lerian variables” into “Lagrangian variables”, the resulting equations look
like a nonlinear wave equation. (The linear wave equation is one of the the
best known PDEs. It describes, for example, the propagation of light and
of acoustic waves in air under typical conditions.) In this form, the initial
density turns into an external parameter in such a way that, under the as-
sumption of a vacuum in the exterior of the bubble, it behaves like d(x) near
the boundary, hence is responsible for the degeneracy.

This degeneration is best explained in a linear toy model system: the
equation in a single space variable x ∈ (0, 1) ⊂ R

wα ∂2Φ
∂t2

+
∂

∂x

(
w1+α ∂Φ

∂x

)
= 0 (29)

where w = x(1 − x), α = 1/(γ − 1) > 0, and Φ(x, t) ∈ R is the (one-
dimensional) flow map. This is a very simple equation, from the point of
view of those dealing with partial differential equations. Note again that this
equation degenerates when x tends to the boundary {0, 1} (because then
w tends to 0). The study of even this relatively simple partial differential
equation requires the use of the weighted Hardy inequality; see [5].

There are many further examples for partial differential equations coming
e.g. from physics that need the use of the Hardy inequality. These include
equations describing thin films or porous media [1], or so-called “Fokker-
Planck equations” for polymers [9].

6 Conclusion

In this article, we presented various aspects of the Hardy inequality and its
generalizations. This inequality has a very long and interesting history. It is a
prominent example of an inequality that was first studied in order to simplify
the proof of some other inequality (Hilbert’s inequality), before the relevance
of this inequality for other areas of mathematics was realized and it assumed
an important role, notably in partial differential equations. This is definitely
a very active research direction where one tries to find new inequalities with
precise applications in mind.
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[1] Lorenzo Giacomelli, Hans Knüpfer, and Felix Otto, Smooth zero-contact-angle
solutions to a thin-film equation around the steady state. Journal of Differential
Equations 245(6), 1454–1506 (2008)

[2] Godfrey H. Hardy, Notes on some points in the integral calculus. XLI. On the
convergence of certain integrals and series. Messenger of Mathematics 45, 163–
166 (1915)

[3] Godfrey H. Hardy, Notes on some points in the integral calculus. LX. An in-
equality between integrals. Messenger of Mathematics 54, 150–156 (1925)

[4] Godfrey H. Hardy, John E. Littlewood, and George Pólya, Inequalities. Cam-
bridge Mathematical Library. Cambridge University Press, Cambridge (1988);
reprint of the 1952 edition

[5] Juhi Jang and Nader Masmoudi, Well-posedness of compressible Euler equations
in a physical vacuum. Preprint. http://arxiv.org/abs/1005.4441, 35 pages (May
24, 2010)

[6] Robert M. Kerr and Marcel Oliver, The ever-elusive blowup in the mathemat-
ical description of fluids. In: Dierk Schleicher and Malte Lackmann (editors),
An Invitation to Mathematics: From Competitions to Research, pp. 137–164.
Springer, Heidelberg (2011)

[7] Alois Kufner, Lech Maligranda, and Lars-Erik Persson, The prehistory of the
Hardy inequality. American Mathematical Monthly 113(8), 715–732 (2006)

[8] Alois Kufner, Lech Maligranda, and Lars-Erik Persson, The Hardy inequality.
About Its History and Some Related Results. Vydavatelský Servis, Plzeň (2007)
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The Lion and the Christian,
and Other Pursuit and Evasion Games

Béla Bollobás

Abstract. In this note we shall show that a playful question in recre-
ational mathematics can quickly lead to mathematical results and unsolved
problems.

1 An Arena in Rome

Fig. 1. An aged Lion and an agile young Christian in the arena.
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It was a beautiful spring day in the second year of the reign of Marcus
Ulpius Nerva Traianus, Emperor of Rome. The gladiatorial games put on
to celebrate the Emperor’s victory over Dacebalus, King of Dacia, and the
conquest of his entire kingdom had been in full swing for sixty days, and to
the joy of the good citizens of Rome showed no sign of abating. The amazing
Colosseum that had been built a few years before was almost full, and the
people were eagerly awaiting the treat this beautiful new day would bring
them.

It all started well: the gladiators were magnificent — they were skilful and
extremely brave, and many a fighter received his freedom from the Emperor.
However, when it came to one of the favourite parts of the show, men against
beasts, there was disappointment in the air: only one Lion and one Christian
appeared in the arena. The Lion was big enough, but on a closer examination
he turned out to be old, way past his prime, while the Christian was a fit
young man. It soon transpired that the Lion and the Christian had the same
top speed, so the good citizens of Rome began to wonder whether the Lion
would ever catch the Christian.

While watching this pathetic spectacle, the more mathematical-minded
citizens of Rome came up with the following problem they were confident
they could solve within a few minutes.

The Lion and Christian Problem. A Lion and a Christian (each consid-
ered to be a single point) move about in a closed circular disc with the same
maximum speed. Can the Lion catch the Christian in finite time?

As we shall see, this problem is not as easy as it looks: it is a prime example
of the large family of pursuit and evasion problems. In this brief paper we
shall discuss some aspects of these problems.

Note that in order to turn their conundrum into a mathematical problem,
the citizens have made some simplifications usual in mathematics and physics:
the Lion and the Christian have been turned into points, and the Colosseum
has become a circular closed disc, rather than an oval, which would be a bet-
ter approximation of the shape of the arena. The disc is assumed to be closed,
so that the points corresponding to the Lion and Christian are allowed to be
on the circle bounding the disc. Rather importantly, the catch is required to
be in finite time. (Needless to say, it is assumed that at the start of the game
the Lion and the Christian are not in the same spot.) The question is about
a ‘clever’ Lion and a ‘clever’ Christian: the Lion ‘plays’ as well as possible,
and so does the Christian.

Contrary to the story above, this question was not invented by the good
citizens of Rome close to two thousand years ago, but in the 1930s by the
German–British mathematician Richard Rado, who called it the Lion and
Man problem. Its solution (the second solution below) remained the stan-
dard answer for about twenty years, when the Russian–British mathemati-
cian Abram S. Besicovitch, the Rouse Ball Professor in Cambridge, found a
brilliant and unexpected solution (the third solution below). After this, the
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question and its answer by ‘Bessie’, as Besicovitch was known affectionately,
were extensively popularized by the great British mathematician John E.
Littlewood, Bessie’s predecessor in the Rouse Ball chair, in his Miscellany [6]
(see also [2]).

In the next section we sketch three solutions to this problem; the section
after that is about various extensions of it, the fourth section is about some
finer points of pursuit and evasion games, and the last section is about further
results and open problems.

2 Solutions

In this section we shall give three solutions to the LC problem, coming to
different conclusions.

First Solution: Curve of Pursuit. Clearly, the best strategy for the Lion
is to run right towards the Christian. What should the Christian do? He
should run round the perimeter of the disc at full speed. What develops then
is that the Christian runs around the circle, and the Lion is running along the
‘curve of pursuit’. Although this curve is not too easy to describe explicitly,
even when the Lion starts at the centre of the disc and the Christian starts
his run on the boundary, as in Figure 2, one can show that during this chase
the Lion gets arbitrarily close to the Christian, without ever catching him.

Conclusion. The Christian wins the LC game. ��

Fig. 2. The curve of pursuit when the Lion starts from the centre and the Christian
runs a full circle starting and ending at S. When the Christian gets back to S, the
Lion is not far away, at T .
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Curve of pursuit problems, like the one above, have been around in math-
ematics for almost three centuries, with the pursuer and the pursuit having
different speeds. The standard formulation of these pure pursuit problems
is that of a dog racing towards his master who is walking in a field. (See
Puckette [8] and Nahin [7].)

To give two other solutions, we shall need some notation. First, we shall
write B for the position of the ‘Beast’, the Lion, and C for that of the
Christian, suppressing the dependence of these points on the time. We may
and shall assume that the action takes place in the unit disc D with centre
O, and the maximum speed of the contestants is 1. Also, we shall take D
to be closed, i.e. we shall take it together with its boundary. (In fact, much
of the time it will make no difference whether D is closed or not, although
occasionally, like in the first solution we have just seen, and in the second
solution below, it is convenient to take the boundary circle as part of our
disc D.)

Second Solution: Stay on the Radius. The Lion decides to be not as
greedy as in the first solution, but adopts the cunning plan of staying on the
segment OC and, subject to this constraint, running towards the Christian
at maximum speed. What happens if, as before, the Christian races along the
boundary of D at full speed? Let us assume, for simplicity, that the Christian,
C, starts at a point S of the big (radius 1) circle and runs in anticlockwise
direction, and the Lion, B, starts at its centre, O.

Fig. 3. The Lion’s path when he starts from the centre and the Christian from S.
When the Christian, running along the big circle, reaches T , so does the Lion.

Claim. If the Lion follows his ‘stay-on-the-radius’ strategy, then he runs along
the small (radius 1/2) circle touching the line OS at O and the big circle at
T , where the ST -arc of the big circle is a quarter-circle, as in Figure 3. Even
more, wherever C is on the arc ST of the big circle, B is the intersection of
the segment OC with the small circle. In particular, when the Christian gets
to T , so does the Lion.
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To justify this Claim, all we have to show is that the length of the SC-arc
of the big circle is precisely the length of the OB-arc of the small circle (with
centre O′). This is immediate from the two facts that a) the line OS is a
tangent of the small circle, so the angle BO′O is twice as large as the angle
COS, and b) the radius of the big circle is twice the radius of the small one.

Conclusion. The Lion wins the LC game. ��

This solution shows that in the first argument we were too hasty to assume
that the best strategy for the Lion is to run right towards the Christian. In
fact, as we have seen, the Lion can do better by adopting a less obvious
strategy: he tries to cut off the path of the Christian by running towards his
future position.

Some readers may well suspect that we are trying to fool them, and the
Christian can escape by simply reversing his direction along the boundary
of the circle. This is not the case at all: as the Lion is on the radius leading
to the Christian, for the Lion it makes no difference in which direction the
Christian runs. By reversing his direction along the boundary the Christian
gains nothing, since according to his strategy the Lion just stays on the
radius, and so runs towards the same side as the Christian. No matter how
often the Christian changes his direction while running at full speed along the
boundary, he will be caught in exactly the same time as before. And slowing
down just leads to a swifter end.

This is where the problem and its solution rested for about twenty years:
the ‘stay-on-the-radius’ strategy is a quick win for the Lion. This is nice, but
rather boring: for a mathematician it is not worth a second glance. Then,
in the 1950s, a thunderbolt struck, when Besicovitch found the following
beautiful argument. It is not clear what prompted Besicovitch to consider
the problem again: it is quite possible that he wanted to mention it in an
after-dinner talk to mathematics undergraduates in his College, Trinity.

Third Solution: Run Along a Polygonal Path of Infinite Length.
In this solution we describe a strategy for the Christian. Trivially, we may
assume that in the starting position the Christian is in C1 �= O, the Beast is
in B1 �= C1 and the length OC1 is r1, where 0 < r1 < 1.

Claim. Suppose that there are positive numbers t1, t2, . . . such that
∑

i ti is
infinite but

∑
i t2i < 1 − r2

1. Then the Christian can escape.

To show this, split the (infinite) time into a sequence of intervals, of lengths
t1, t2, . . . . We shall ‘review the situation’ at times si =

∑i−1
j=1 tj , i = 1, 2, . . . ,

calling the time period between si and si+1 = si + ti the i-th step. For
convenience, set t0 = r1 so that

∑∞
i=0 t2i < 1.

Suppose that at time si the Christian is at point Ci �= O, the Beast in
Bi �= Ci, and Ci is at a distance ri = OCi from the centre, where r2

i =∑i−1
j=0 t2j < 1. (Since the Christian starts at C1, this is consistent with our
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earlier assumption. The condition Ci �= O is utterly unimportant: its only role
is to make the description below slightly easier.) Let �i be the line through
O and Ci. At the i-th step the Christian runs for time ti in a straight line
perpendicular to �i, in the direction that takes him away from Bi as much
as possible. To be precise, if Bi is not on �i, but in the interior of one of the
half-planes bounded by �i then Bi runs away from this half-plane, otherwise
(i.e. if Bi is on �i) either direction will do. During this step the Christian runs
away from the line �i; as the Lion starts either on �i or on its ‘wrong’ side,
he has no chance of catching the Christian in this time step (see Figure 4).
In particular, Ci+1 �= Bi+1 and Ci+1 �= O.

Fig. 4. The polygonal path of the Christian.

How far is the Christian from the centre at time si+1? By Pythagoras’
theorem, the square of this distance OCi+1 is precisely r2

i + t2i =
∑i

j=0 t2j =
r2
i+1 < 1. Hence the polygonal path C1C2 . . . of infinite length the Christian

runs along remains in the disc D, and the Christian is not caught during this
run, completing the proof of our Claim.

Finally, the Claim gives a winning strategy for the Christian, since it is
easy to choose a sequence t1, t2, . . . satisfying the conditions in our Claim:
e.g. we may take ti = 1/(i + r) for r large enough, since

∑∞
i=1 1/i = ∞ and∑∞

i=1 1/i2 is finite.

Conclusion. The Christian wins the LC game. ��
Clearly, this is ‘where the buck stops’. Bessie’s solution is indeed correct:

using his polygonal path strategy, the Christian can indeed escape, no matter
what the Lion does. The first ‘solution’ collapsed since we had no right to
assume that the Lion rushes straight at the Christian; the second ‘solution’
collapsed since it was still based on the unjustified assumption that the best
strategy for the Christian is to run along the boundary. The third, correct
solution shows that, like a boxer on the ropes, in the second solution the
Christian puts himself at a disadvantage by restricting his movements.
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There is an obvious variant of the strategy in the third solution, which is
slightly ‘better’ for the Christian: in the i-th step, he can run in a direction
perpendicular to the BiCi line, starting in the direction which initially takes
him closer to O. Unless the points Bi, Ci and O are collinear, this is better
for the Christian in the sense that he stays further away from the boundary.

3 Variants

There are numerous variants of the LC game: here we shall mention only a
few, leaving the exact formulations to the reader. Let us start with a question
which must have occurred to the reader some time ago.

1. Does the Shape of the Arena (Within Reason) Matter? Could the
Lion win in an oval arena, the kind the Romans really had? Or in a triangular
arena? Could the Lion drive the Christian into a corner of the triangle and
then devour him?

No doubt, a reader who has paid a little attention to the strategies we
have given will see through this question in an instant.

Turning to less trivial variants, here are two results proved by Croft [4].

2. Birds Catching a Fly. There are some Birds and a Fly in the d-
dimensional closed unit ball, each with the same maximum speed. What is
the minimal number of Birds that can catch the Fly?

Fig. 5. Birds catching a Fly.
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What Bessie’s solution of the LC game tells us is that for d = 2 one bird
is not enough; it is easy to see that two birds suffice. In general, d − 1 birds
do not suffice, but d do.

3. Uniformly Bounded Curvature. If the Christian is forced to run along
a curve of uniformly bounded curvature, then the Lion can win the LC game.

Roughly, if the Christian cannot change direction arbitrarily fast, then the
Lion can catch him.

What happens if we have many Lions and one Christian, but the game is
played on the entire plane rather than in a bounded arena? The answer was
given by Rado and Rado [9] and Janković [5].

4. Many Lions in the Plane. Finitely many Lions can catch a Christian
in the plane in finite time if and only if the Christian is in the interior of the
convex hull of the Lions.

Finally, here is a problem which is still open.

5. Two Lions on a Golf Course. Can two Lions catch the Christian on
a golf course with finitely many rectifiable lakes?

Needless to say, the assumptions are that neither the Christian nor the
Lions are allowed to step into the lakes, and the boundaries of the lakes are
‘nice’ in a technical sense (see Figure 6).

Fig. 6. Lions trying to catch a Christian.

4 Mathematical Formalism

Having read three ‘solutions’ of the LC game, the reader is entitled to won-
der whether we actually know what a ‘winning strategy’ really means. If the
game is played using alternate moves, then there is no problem: in every
time step, knowing the position of the game, the player has to decide what
to do next. In particular, a winning strategy amounts to a choice of moves
ending in a win, no matter what the opponent does. However, if the game is
played in continuous time, we have to be more careful. Indeed, can we say
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precisely what a strategy is in the continuous LC game? To answer this ques-
tion precisely, we need some definitions. We shall write |x| for the modulus
of a number x and also for the length of a vector x. In particular, if x, y ∈ D
then |x − y| denotes the distance between the points x and y.

Suppose the Lion starts at x0 and the Christian at y0, and both have
maximum speed 1. A Lion path is a map f from [0,∞) to the unit disc D
such that f(0) = x0 and |f(t) − f(t′)| ≤ |t − t′| for all times t, t′ ≥ 0. (Such
a map f is said to be ‘Lipschitz’, with constant 1.) Similarly for a Christian
path. When the Lion follows a path f then at time t he is at f(t), and when
the Christian follows a path g then at time t he is at g(t).

Let B be the set of Lion paths (the paths of the beast) and C the set of the
Christian paths. Then a strategy for the Christian is a map Φ from B into C
such that if f1, f2 ∈ B agree up to time t0 (i.e. f1(t) = f2(t) for all 0 ≤ t ≤ t0)
then Φ(f1) and Φ(f2) agree on [0, t0]. This ‘no lookahead’ condition tells us
that Φ(f)(t) depends only on the restriction of f to the interval [0, t]. A Lion
strategy Ψ : C → B is defined similarly. A Christian strategy Φ is winning if
Φ(f)(t) �= f(t) for every path f ∈ B and for every t ≥ 0. And a Lion strategy
Ψ is winning if for every path g ∈ C of the Christian there is a time t ≥ 0
such that Ψ(g)(t) = g(t).

Are these the ‘correct’ definitions? A moment’s thought tells us that they
are, since we want to allow strategies without delay, like the ‘curve of pursuit’
and ‘stay on the radius’ strategies of the Lion in the first two ‘solutions’
above.

Note that these definitions make sense in more general circumstances. For
instance, the arena need not be the disc: any set in the plane or 3-dimensional
space would do. In fact, so would any metric space (a space with a sensible
‘distance’ function). Consequently, pursuit–evasion games like the LC game
make good sense in these general metric spaces. As we wish to give the Lion
a chance to catch the Christian, we shall always assume that the playing field
(our metric space) contains a path from the Lion to the Christian.

Having defined what we mean by a winning an LC-type pursuit–evasion
game, let us ask a question our readers may find surprising. We know that
in the disc Bessie’s strategy is a win for the Christian;

but could it happen that the Lion also has a winning strategy?
Surely many readers would agree that this question is not only surprising but
also downright crazy. How on earth could both have a winning strategy? Of
course not, we say loud and clear:

if both had winning strategies then with each playing his own winning strat-
egy we would get a game which is a win for the Christian and also a win for
the Lion — a blatant contradiction.
A little thought should tell us that, once again, we have been too hasty:
this ‘argument’ is sheer nonsense. Indeed, how can both play their winning
strategies? Suppose that the outcome of a game in which both play their
winning strategies, Φ and Ψ, is a Lion path f and a Christian path g. Then
Φ(f) = g and Ψ(g) = f ; in particular, Ψ(Φ(f)) = f , i.e. f is a fixed point of
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the composite map Ψ◦Φ mapping B into itself. But why should the composite
map Ψ ◦ Φ have a fixed point at all? There is no reason why it should.

Thus, in a general pursuit–evasion game, there are two basic questions.
Does the Lion have a winning strategy? Does the Christian have a winning
strategy? Can all four conceivable combinations of answers occur?

If the moves in our game alternate, say, if the moves take place at times 1,
2, etc., with the Christian moving at odd times and the Lion at even times,
then there is no problem with playing a strategy against another. Thus in
this case it cannot happen that both players have winning strategies. What
gives the present continuous problem an entirely different complexion is that
whoever plays his strategy can react instantaneously to the move (really ‘path’
or ‘trajectory’) of the other. This is certainly the right definition if we want
to allow strategies like the Lion’s ‘stay on the radius’ strategy, in which the
Lion is shadowing the move of the Christian, instantly reacting to any change
of speed or direction of his prey.

There are also several other natural questions. For example, are there ‘nice’
winning strategies? The most obvious way a strategy can be ‘nice’ is that it is
continuous: it maps ‘nearby’ paths into ‘nearby’ paths. (Formally, a Christian
strategy Φ : B → C is continuous if for every f0 ∈ B and ε > 0 there is a
δ > 0 such that if f1 ∈ B is such that |f0(t) − f1(t)| < δ for every t then
|Φ(f0)(t) − Φ(f1)(t)| < ε for every t. And similarly for a Lion strategy.)

Also, what happens if we play the bounded-time game, i.e. the entire game
must run its course by a fixed time T? In this version the Christian wins if
he can stay alive up to time T . And what happens if we postulate that the
playing field is ‘nice’?

If everything goes as we ‘feel’ it should, then our mathematical formalism
is rather wasted. However, the results in the final section show that this is
far from the case: there are several unexpected twists.

5 Results and Open Problems

In this final section we shall give a selection of results from a recent paper by
Bollobás, Leader and Walters [3], and state some open problems.

We shall play the bounded-time game on a playing field which is just
about as nice as possible: a compact metric space, so that every sequence
has a subsequence converging to a point of the space, like a closed interval,
a closed disc or a closed ball.

What about the following two statements?

1. At least one of the players has a winning strategy.
2. At most one of the players has a winning strategy.

Certainly, both statements feel true. In fact, by considering the discretised
version of the game, one can show that the first statement is true in the best
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of all possible worlds: in a compact metric space, at least one of the players
has a winning strategy for the bounded-time game. It turns out that not even
this assertion is trivial to prove; for a proof, see [3].

And what about the second statement, which feels just as much true?
Surprisingly, this statement is false.

A Game in Which Both Players Have Winning Strategies. Let the
playing field be the closed solid cylinder

D × I = {(a, z) : a ∈ D and 0 ≤ z ≤ 1} ,

with the distance of two points (a, z), (b, u) ∈ D × I defined to be

max{|a − b|, |z − u|} .

At the start, C is at the centre of the top of the cylinder (a unit disc), and
B is at the centre of the bottom. Then both players have winning strategies.

Proof. Having defined this game, it is very easy to justify these assertions.
Indeed, the Christian can win if he can make a small move which takes him
away from being exactly above the Lion, since from then on he can simply
run the Bessie strategy, ignoring the height, and so survives for ever. But can
he get away from above the Lion in time t0 < 1/2, say? Unexpectedly, this
can be done very easily. We encourage the reader to find a simple argument
for this.

And how can the Lion win? That is even easier. He keeps his disc coordi-
nate the same as the Christian, and increases his height with speed 1 until
he catches him. This will happen by time 1. Note that the Lion makes use
of the fact that the distance on the solid cylinder is not the usual Euclidean
distance, but the so-called �∞ distance, the maximum of the distances in the
disc D and the interval I. ��

Note that the simple strategies in the proof above are examples of strate-
gies which cannot be played against each other.

Let us return to the original Christian and Lion game in the closed unit
disc D. Bessie’s strategy is a winning strategy for the Christian, and it turns
out that it can be discretised to show that the Lion does not have a winning
strategy. But is Bessie’s strategy continuous? By considering the positions in
which O, B and C are collinear, we can see that it is not. In fact, considerably
more is true.

Continuity in the Original Lion and Christian Game. In the original
game, neither player has a continuous winning strategy.

Furthermore, with the Lion starting in the origin, for any continuous strat-
egy of the Christian, there is a Lion path catching the Christian by time 1.

Proof. As we know that the Lion does not have a winning strategy, we have
to prove only the second assertion. For this, we need a classical result from
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topology, Brouwer’s fixed point theorem, stating that every continuous map
ϕ : D → D has a fixed point, i. e. a point x ∈ D such that ϕ(x) = x (see,
e.g., [1], p. 216).

Let then Φ : B → C be a continuous Christian strategy. For every z ∈ D,
let hz be the constant speed straight path from 0 to z, reaching z at time 1, i.e.
set hz(t) = tz (assuming, as we do, that the origin is the centre of D.) Then
z �→ hz is a continuous map from D into B. Consequently, z �→ Φ(hz)(1) is a
continuous function mapping D into D. By Brouwer’s fixed point theorem,
this map has a fixed point z0 ∈ D: Φ(hz0)(1) = z0. Hence, if the Lion follows
hz0 , and the Christian plays using his strategy Φ then the Lion catches the
Christian at time 1. ��

Rather curious phenomena can occur if the arena is not compact, even
if otherwise it is as nice as possible. For example, Alexander Scott noted
that in the LC game played on the open interval (0, 1) both the Lion and the
Christian have winning strategies. Indeed, suppose the Lion starts at 2/3 and
the Christian at 1/3. Then

f(t) �→ Φ(f)(t) = f(t)/2

is a winning strategy for the Christian, and

g(t) �→ Ψ(g)(t) = max{2/3 − t, g(t)}

is a winning strategy for the Lion.

However, as we mentioned earlier, it was shown in [3] that a bounded-time
LC game played on a compact field cannot be too pathological: at least one
of the players has a winning strategy.

In a bounded-time LC game played on a compact field at least one of the
players has a winning strategy.

Finally, let us leave the reader with two open questions which arise natu-
rally from this result.

1. Is there a bounded-time LC game in which neither player has a winning
strategy?

2. Is there an unbounded-time LC game played on a compact field in which
neither player has a winning strategy?

For other results and questions, the reader is referred to the original pa-
per [3].
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Three Mathematics Competitions

Günter M. Ziegler

Abstract. The development of mathematics is based on cooperation, col-
laboration, joint efforts, and joint work. Nevertheless, mathematicians com-
pete. Indeed, they compete in many different ways, in very different races,
and in diverse arenas. In this little contribution, I want to tell you about
three different types of mathematics competitions that are different from the
IMO.

1 Computing π

Much older than International Mathematical Olympiads is the “compute as
many different digits of π as you can” competition, which was started in
antiquity. The first person to compute more than 10 decimal digits correctly
was (as far as we know) Al-Kashi, in 1429; Machin computed 100 digits in
1706, and in 1949 Smith and Wrench obtained more than 1000 digits — using
a desktop calculator.

Why would they do this? Of course, any university press office is happy
if they can announce a world record. For the mathematicians, however, it is
a kind of sport, a competition. But a more serious reason is that massive,
record-breaking computations demonstrate the extent to which theory has
made progress, and which of the many wonderful formulas for π [20] can
really be used for a computation. Whoever wants to compute, say, a million
digits of π can’t be content with 18-th century formulas. There is another
reason for the record races: they are good for testing computers, hardware
as well as software. Accordingly, all such computations are supposed to be
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done in two different ways, and the results are checked against each other,
and against the result of the previous record computation.

For a long time, the world record was held by Yasumasa Kanada and his
team, which, in November 2002, after more than 600 hours of computation,
obtained the first 1.2 trillion (1.2 · 1012) digits of π on a Hitachi supercom-
puter SR8000/MPP with 144 processors. This record held until August 17,
2009: Daisuke Takahashi used the supercomputers at Tsukuba University
with a peak performance of 95 trillion floating point operations per second
(95 teraflops) for a computation which still took 73 hours and 36 minutes —
to compute 2.577 trillion digits of π.

This record, however, held only for 136 days: on December 31, 2009, the
French programmer Fabrice Bellard announced the computation of the first
2 699 999 990 000 decimal digits of π — that’s nearly 2.7 trillion digits, and
over 123 billion more than the previous record. The Japanese may have been
surprised by this announcement, and they may not really have liked it, be-
cause Bellard did not use a super-expensive supercomputer. Instead, he used
a single PC that cost less than 2000 Euro. He did, of course, use an advanced
formula for the computation:1

1
π

=
3√

40 020

∞∑

n=0

(−1)n

(
6n

3n, n, n, n

)
545 140 134 n + 13 591 409

640 3203n+1
.

This remarkable formula, which yields 14 new digits of π with every single
summand, was discovered by the legendary Chudnovsky brothers in 1984.
They live together in New York (David assisting Gregory, who suffers from
the autoimmune muscular disease myasthenia gravis), and they both hold
professorships at the NYU Polytechnic Institute. The Chudnovsky brothers
are famous not only for their formulas which can be used to compute π, but
also for their “home made” supercomputer which they used to compute the
first one billion digits of π. This computation held the world record from 1989
to 1997. See [16] for a remarkable rendition of the Chudnovsky’s story. (The
Chudnovsky brothers may also have inspired the 1998 movie “Pi”, directed
by Darren Aronofsky . . . )

The Chudnovskys’ amazing formula did not come out of the blue. It was
inspired by earlier formulas due to the Indian genius Srinivasa Ramanujan,
who, for example, came up with this formula:

1
π

=
2
√

2
9 801

∞∑

n=0

(
4n

n, n, n, n

)
26 390 n + 1 103

3964n
.

1 The “multinomial” coefficient
“

n
k1,k2,k3,k4

”

:= n!
k1!k2!k3!k4!

denotes the number of

partitions of a set of n elements into four subsets of sizes k1, k2, k3, and k4, where
n = k1 + k2 + k3 + k4.
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Such formulas (see e.g. [20]) are deeply rooted in the theory of modular forms
— a theory that Ramanujan did not have available in his time. The life of
Ramanujan has also been the subject of literature, including the biography
“The Man Who Knew Infinity”, by Robert Kanigel (1991), the novel “The
Indian Clerk”, by David Leavitt (2007), and the theater play “A Disappear-
ing Number”, by Simon McBurney and the Théâtre de Complicité company
(2007).

For his recent record, Bellard used the Chudnovskys’ formula [5], and he
certainly also coded it well — so that it could run on a standard desktop
PC (with a Core i7 CPU at 2.93 GHz). Technical details are given in [1]. His
calculation, including verification, took 131 days, so he must have started the
computation just a few days after the Japanese 2009 world record had been
announced.

But of course the race continues. Bellard’s record stood for seven months
and three days: on August 2, 2010, Alexander J. Yee and Shigeru Kondo
announced the computation of 5 trillion digits of π, the next new world
record, again on a single desktop computer [22]. And by the time you read
this, this record may not stand any more . . .

2 Mathematician vs. Mathematician

This is the story of a remarkable public competition between two mathemati-
cians that took place in the year 1894. In mathematics, there are sometimes
races for the solution of a mathematical problem. Such a fight will become
public in the best (or worst) case only after the race, as in the case of the
fierce, unfair, and destructive fight between Newton and Leibniz about pri-
ority in the invention of calculus. The 1894 competition that I want to tell
you about was not primarily about mathematics, but about chess, the most
mathematical of all strategic games. Chess is pure logic. It is logical thinking
that counts, as well as strategy and the proper evaluation of positions; thus,
chess competitions are an arena for mathematicians.

May I introduce the competitors to you? The first was Wilhelm Steinitz,
born in Prague in 1836. He came to Vienna in 1858 in order to study math-
ematics. At that time he earned his living as a parliamentary newspaper
reporter for the “Österreichische Constitutionelle Zeitung”, but he found
out rather soon that it was much easier to earn money by playing chess
at Viennese coffee houses. Steinitz played a lot of chess (and neglected his
mathematics studies, as we are forced to assume). In 1862 he played his first
international tournament, in London. I don’t know whether he ever grad-
uated from his mathematics studies — but his approach to chess gives the
mathematician away. Steinitz is today seen as a revolutionary of chess theory:
we owe to him the “scientific approach” to chess, the systematic search for
rules and patterns. And this led him to success. He practiced “theoria cum
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praxi” (to quote a motto that the mathematician Gottfried Wilhelm Leibniz
proposed in March of 1700 on the occasion of the founding of the Prussian
Academy of Sciences), and won one tournament after another. In a fierce bat-
tle in London in 1866 (which ended 8:6 — there was not a single draw in the
14 games played), he defeated Adolf Anderssen from Prussia, who had also
studied mathematics. Anderssen was an exponent of the “romantic”, attack-
at-all-costs style of chess, and until then had been regarded as the unofficial
world chess champion. From this point on Steinitz was seen as the best chess
player in the world. From 1866 up to the world championship fight in 1894 —
that is, for twenty-eight years — he dominated the world of chess. In 1886,
aged fifty, he defeated Johannes Hermann Zukertort from Poland. From this
point on he was the first official chess world champion.

The second competitor was Emanuel Lasker, a German jew, who was born
in 1868 in Berlinchen (Neumark, which is today in Poland). He was a brother-
in-law of the German poet Else Lasker-Schüler. Lasker started to study math-
ematics in Berlin in 1889, but one year later he moved to Göttingen. In the
same year his chess career started with a victory at the Main Tournament in
Breslau (Wroc�law, Poland). At some point after this, chess must have domi-
nated mathematics in his life: Emanuel Lasker interrupted his mathematics
studies in 1891, moved first to London and then in 1893 to the US.

One year later, in 1894, the decisive duel “Mathematician vs. Mathemati-
cian” took place: the 25-year-old Lasker against the 58-year-old Steinitz. You
are welcome to voice your sympathies — for the distinguished senior mas-
ter or for the youthful challenger. Supporters for both sides collected prize
money amounting to 3000 US Dollars, of which the winner was to get 2250,
and the loser the rest. The New York Times reported that there was lots of
“excitement in chess circles all around the world”. The contest was to take
place first in New York, then in Philadelphia, and then in Montreal, until one
of the contestants had won 10 matches.

The fight starts on March 15, 1894. Lasker wins the first game, Steinitz the
second, Lasker the third, and Steinitz the fourth. Then there are two draws.
The score is now 2:2, since draws don’t count. The fight is dramatic, and the
odds change several times. Eventually Lasker wins games number 15 and 16,
and thus takes a 9:4 lead. He is missing one more victory, but then Steinitz
strikes back, winning the 17-th game in the “great style of his heyday”. The
game is said to be the best in the whole competition. Can Steinitz still turn
the tables? Will the old man succeed in the end? Lasker still can’t win the
next match, despite having an apparent advantage throughout the game.

The two competitors were similar in their styles: they played the mod-
ern, systematic positional chess style introduced by Steinitz. But in addition
Lasker may have used psychology to his advantage — he was not interested
in the scientifically correct move, but only in the one that was most annoy-
ing to his opponent. At least this was claimed by one of his badly inferior
competitors.
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Did the public hear about the competition? Yes, it seems so: the New
York Times reported on all the games in detail. Did they view this as a fight
“Mathematician vs. Mathematician”? That I don’t know.

But then, finally, on May 26, 1894, Lasker is pertinacious in winning the
19-th and last game, and the final score looks quite unambiguous: Lasker
wins the championship 10:5 (with four games ending in a draw).

Lasker, therefore, is champion of the world, and deserves to be
congratulated upon his success, inasmuch as he has beaten his man
fairly and decisively, and thereby justified the confidence which was
placed in him by his backers,

the New York Times reports the next day. Lasker, whom the New York Times
termed “the Teuton” after this victory, is also the first and so far only German
chess world champion.

Two and a half years later, at the turn of the years 1896/1897, a rematch
takes place in Moscow. This time Lasker wins much more clearly, 10:2 (with
five draws), and keeps the title of the chess world champion for 27 years, until
1921, longer than anyone else (up to now).

As a mathematician, I claim Lasker as “one of us”: he was not a chess
world champion with unfinished mathematics graduate studies, but someone
who was a mathematician and wanted to be exactly that. Indeed, after his
second fight against Steinitz he retired from chess for a while and contin-
ued his mathematics studies, first in Heidelberg and then in Berlin. In 1900
he completed his Ph.D. at the University of Erlangen as a student of Max
Noether, the father of Emmy Noether. His dissertation “Über Reihen auf
der Convergenzgrenze” was only 26 pages long. It was published in 1901.
Four years later, in 1905, a long and important paper of his appeared in
the journal Mathematische Annalen. The paper was on commutative algebra
and introduced the concept of “primary decomposition”. This line of inves-
tigation was later continued by Emmy Noether. Apparently, Lasker hoped
for an academic career in mathematics, but since he could not find a suit-
able position in Germany, England, or the US, he had to continue playing
chess. Perhaps Lasker was a real-life predecessor to the ingenious piano vir-
tuoso Frantisek Hrdla in Wolfgang Hildesheimer’s story “Guest Performance
of an Insurance Agent” (1952), who really wanted to be an insurance agent,
but whose dominating father kept him from taking up the profession of his
dreams . . .

What was Lasker’s dream profession? Albert Einstein writes in the preface
of a biography [11] about Lasker, whom he had met in Berlin and come to
know well on their common walks:
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To my mind, there was a tragic note in his personality, despite
his fundamentally affirmative attitude towards life. The enormous
psychological tension, without which nobody can be a chess master,
was so deeply interwoven with chess that he could never entirely
rid himself of the spirit of the game, even when he was occupied
with philosophic and human problems. At the same time, it seemed
to me that chess was more a profession for him than the real goal
of his life. His real yearning seems to be directed towards scientific
understanding and the beauty inherent only in logical creation, a
beauty so enchanting that nobody who has once caught a glimpse
of it can ever escape it.

Spinoza’s material existence and independence were based on the
grinding of lenses; chess had an analogous role in Lasker’s life.

It is interesting to note that Lasker stepped onto Einstein’s territory, so to
speak, by publishing a paper critical of Einstein’s special theory of relativity,
where he questioned the hypothesis that the speed of light is constant in a
vacuum.

A strange man, I thought (. . . ) truly a double talent of unusual
degree.

(This quote, however, is not Einstein about Lasker, but Hildesheimer about
Hrdla.)

3 Packing Tetrahedra

How densely can one pack equal-sized regular tetrahedra in space? This ques-
tion was posed by Hilbert as part of the 18-th of his famous problems pre-
sented at the 1900 International Congress of Mathematicians in Paris [13]:

I point out the following question, related to the preceding one,
and important in number theory and perhaps sometimes useful in
physics and chemistry: how can one arrange most densely in space
an infinite number of equal solids of given form, e.g. spheres with
given radii or regular tetrahedra with given edges (or in prescribed
position), that is how can one fit them together so that the ratio of
the filled to the unfilled space may be as great as possible?

But indeed the story starts much earlier. The greek philosopher Aristotle
claimed that there was a perfect packing in which the tetrahedra fill space
completely, without gaps — a 100% packing. This is not true, but the full
truth is even worse. Aristotle writes:2

2 De Caelo III, 306b; quoted from Majorie Senechal’s prize winning paper “Which
Tetrahedra Fill Space?” [17].
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It is agreed that there exist only three plane figures that can fill
a place, the triangle, the quadrilateral, and the hexagon, and only
two solid bodies, the pyramid and the cube.

Clearly the “figures” refer to regular polygons or polyhedra only, and the
“pyramid” in question is a regular tetrahedron. As for filling space with
regular tetrahedra, Aristotle not only claims that this is possible, he says
of it that “it is agreed”. Well known? Maybe, but it is not true! However, if
the great Aristotle refers to this as known and agreed, then it will take time
before anyone seriously dares to question it . . . .

The error stood for nearly 1800 years, until the German Johannes Müller
(1436–1476), known as Regiomontanus, a father of modern trigonometry,
uncovered it. His manuscript “De quinque corporibus aequilateris quae vulgo
regularis nuncupantur: quae videlicet eorum locum impleant corporalem &
quae non. contra commentatorem Aristotelis Averroem”3 seems to be lost,
so we do not know what he wrote in detail — but the title gives a clear
indication. That Aristotle’s claim is false can be verified using a carefully
constructed cardboard model, or, more easily (and more reliably), using a
bit of trigonometry and a pocket calculator: the dihedral angle at each edge
of a regular tetrahedron is arccos 1

3 ≈ 70.529◦, and thus just a bit less than a
fifth of 360◦. But of course this trigonometry, and the pocket calculator, were
not available to Aristotle and his contemporaries. Apparently Regiomontanus
could do the math: he had the trigonometry at hand.

But if 100% of the space cannot be filled, how densely can one pack tetra-
hedra? That one can pack cubes perfectly can be seen, for example, in any
package of sugar cubes. Equal-sized spheres can fill space up to a fraction
of π√

18
≈ 74.05% — this was the Kepler Conjecture, made in 1611, which

was settled in 1998 by Thomas C. Hales together with his student Samuel
Fergusson [10], based on extensive computer calculations — see [12] and [18].

But tetrahedra? How dense can a “sand” whose grains are equal-sized,
regular tetrahedra be? This problem is rather easy to solve if you assume
that all the tetrahedra have the same orientation in space, and moreover that
their centers form a lattice. Then the densest packing fills only 18

49 ≈ 36.73%
of three-dimensional space: see Figure 1.

If you do not require the lattice structure, then things get much more com-
plicated (the same was also true for the case of spheres, for which Gauß had
solved the problem of a lattice packing). But if you also allow the tetrahedra
to be individually rotated in space, then it gets really complicated. This is
Tetrahedron Tetris©?: you can and should try to rotate the tetrahedra clev-
erly so that they fit into the gaps left by the others. But how dense a packing
can one achieve?
3 “On the five like-sided bodies, that are usually called regular, and which of them
fill their natural place, and which do not, in contradiction to the commentator of
Aristotle, Averroës”.
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Fig. 1. The densest tetrahedron lattice packing. Graphics from [6].

It is only recently that this problem has moved into the focus of research
— and become the object of a competition that involved scientists from quite
different disciplines. My rendition of the story owes a lot to a New York Times
report by Paul Chang [2], which tells a lot of the story (but by far not all of
it, as I am told by scientists close to the race).

The starting signal for the current competition was given in 2006 by John
H. Conway, a legendary Princeton geometer and group theorist, together
with Salvatore Torquato, a colleague of his from the chemistry department.
Together they obtained a remarkably bad result, which they published in the
Proceedings of the National Academy of Sciences: they could not fill more
than 72% of space with equal-sized regular tetrahedra — this is worse than
the optimal sphere packing!

This seemed incredible to Paul M. Chaikin, an NYU physicist: he bought
large packs of tetrahedral dice (as used for the game “Dungeons & Dragons”)
and let high school students experiment with them. With a bit of wobbling
and shaking of tetrahedra in large containers, they got a percentage signifi-
cantly greater than 72%. But of course such physical experiments would not
be accepted as proofs in a mathematics community — since, for example,
the plastic tetrahedra used here have slightly rounded edges and vertices,
and hence are not ideal tetrahedra. Does that make much of a difference?
That is hard to tell!

At the same time in Ann Arbor, Michigan . . . the mathematician Jeff
Lagarias challenged his Ph.D. student Elizabeth Chen: “You’ve got to beat
them. If you can beat them, it’ll be very good for you.” Chen got going,
analyzed lots of possible local configurations, and in August 2008 presented
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a packing with a remarkable 78% density [3]. At first, Lagarias wouldn’t even
believe her!

A bit later . . . at the same university, but at the chemical engineering
department, Sharon C. Glotzer became interested in tetrahedron packings:
she and her colleagues wanted to find out whether, upon shaking, tetrahedra
would fall into the crystalline structures that they knew from liquid crys-
tals. In order to find this out, they wrote a computer program to simulate
the shaking and rearrangement of tetrahedra — and found a complicated,
“quasi-crystalline” structure that consists of lattice-like repetitions of a basic
configuration of 82 tetrahedra. Complicated, but dense: 85.03%! While these
results were on the way to publication in Nature [9], competitors emerged:
Yoav Kallus, Simon Gravel, and Veit Elser from the Laboratory of Atomic
and Solid-State Physics at Cornell University found a much simpler packing
that is built up from repetitions of a simple configuration of 4 tetrahedra
[14]. (It is not at all clear why this simple configuration did not turn up in
the simulations by Glotzer et al.) Density: 85.47%.

But the race went on . . . Shortly before Christmas 2009, Salvatore Tor-
quato and his Ph.D. student Yang Jiao achieved a density of 85.55%: they
analyzed the Cornell solution and managed to improve it slightly [19]. Was
this the end of the race?

No! On December 26, 2009, Elizabeth Chen struck back: her preprint,
submitted to the arXiv just after the end of the year (and written jointly with
Sharon Glotzer and Michael Engel from the chemical engineering department)
describes a further improvement of the Cornell crystal; it was obtained by
a systematic optimization ansatz [4]. Density: 4000

4671
≈ 85.6348%. And this,

nearly one year later (November 2010), still seems to be the current record.

Fig. 2. An optimized configuration of N = 16 tetrahedra that repeats a configuration
of two double-tetrahedra. Graphics from [4].

Where is the finishing line for the race? I don’t know, of course. And as
far as I know there are currently no good estimates at all for the distance to
the optimum. Perhaps 85.6348% is optimal, perhaps there are much better
packings. Now we have to look for upper bounds, and these cannot be ob-
tained via constructions but require quite different tools. Perhaps estimates
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such as those used for the Kepler problem (see Lagarias [15] and Henk &
Ziegler [12]) can help, and perhaps they can’t.

However, I would now expect a race that starts at the other end, at the
100% mark: Who can show that a packing of equal-sized regular tetrahedra
cannot fill more than 95% of three-space? All that is proved at the mo-
ment (November 2010) seems to be that the density cannot be more than
99.999 999 999 999 999 999 999 974%, according to Gravel et al. [8].

How Does It Feel?

How does it feel to compete in mathematics? IMO participants know. (Others
may get a glimpse from George Csicsery’s splendid documentary [7] about
the US team at the 2006 IMO. A film by Oliver Wolf about the 2009 IMO was
finished in the summer of 2010 [21].) As far as I can tell, chess competitions
are more physically demanding, but research competitions are much more
collaborative, as you can see from the tetrahedron race. There are many more
races going on. Some of them are treated with a certain amount of secrecy
— see for example the sailing competition “America’s Cup”, which has over
the years turned into a mathematicians’ competition, at least to some extent.
Competitors include, for example, the mathematician Alfio Quarteroni from
the École Polytechnique Fédérale de Lausanne, who, along with his team, is
deeply involved in the design and optimization of the Swiss yacht Alinghi,
which won the competition twice. But most of the races are much less a
competition than a collaborative effort, and anyone who is looking for an
intellectual challenge (and perhaps for a chance to contribute, and to prove
his or her talent and capability), is welcome to join in. Do it!
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Complex Dynamics, the Mandelbrot Set,
and Newton’s Method — or:
On Useless and Useful Mathematics

Dierk Schleicher

Abstract. We discuss the theory of iterated polynomials, which is moti-
vated because it is rich, beautiful, and interesting, but not primarily because
it is useful. We then discuss the dynamics of the Newton method for finding
roots of smooth functions, which is most useful. And finally, we show that
they are closely related, and that work on the useful aspects requires deep
knowledge of the ‘useless’ theory. This is an appeal against disintegrating
mathematics (or science at large) into ‘useful’ and ‘useless’ parts.

Preamble. During the IMO 2009, I had many discussions with contes-
tants. A frequent topic was that students told me that they were especially
interested in mathematics and wanted to study it, but they had been told
by parents or others that they should rather study a more “useful” field of
science, a field with greater chances of getting a good job. This is a concern
that I often hear as well from international students on our own campus. In
this text, I will try to convey some of my personal answers to these questions.

The first piece of answer I learned as a high school student during the
training camp for the German team to the IMO 1983, when I wasn’t sure what
I would study myself; I found it difficult to choose between physics, computer
science, electrical engineering, and mathematics. One of my teachers told me
that “smart people will always be needed” no matter what they study. I am
convinced that one can be really successful only in a field that one enjoys
the most: one can develop one’s maximal creativity and potential only in
a field that one is excited about. The world is full of opportunity for the
creative people, so they can afford choosing their fields of study in terms of
maximizing their potential achievements (or their enjoyment!), rather than
having to minimize the risk of going unemployed: essentially all the students
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that I have met in IMO circles, or as math students on our campus, have
been quite successful in their future careers, even though they have chosen
very different career paths: this means they have had lots of different options
for their further careers. (In my own case, I decided to study physics and
computer science, only to discover, after earning my Master’s degree, that for
me the most interesting questions in both fields were mathematical questions;
as a result, I turned [back?] into a mathematician and obtained my PhD in
this field.)

1 Iteration of Complex Polynomials

Let us start by discussing some (apparently) most useless part of mathemat-
ics: iteration of polynomials. Let q : C → C be a polynomial of degree at least
2. We are interested in the behavior of q under iteration: i.e., given some
z ∈ C, what will be the long-term behavior of the sequence z, q(z), q(q(z)),
q(q(q(z))), . . . .? Let us write q◦0 := id and q◦n := q ◦ q◦(n−1) for the n-th
iterate of q. The sequence (q◦n(z))n∈N is called the orbit of z. Some orbits will
certainly be bounded, for instance for those z that are fixed points or periodic
points of q (i.e., points z with q(z) = z or q◦n(z) = z for some n ∈ N). Other
orbits will be unbounded: if |z| is sufficiently large, then |q(z)| > 2|z| and
thus q◦n(z) → ∞ as n → ∞. An important goal in the theory of dynamical
systems is to find invariant sets, i.e. sets K ⊂ C with q(K) ⊂ K; different in-
variant sets give different answers to the question of what possibilities for the
dynamics of the various orbits there are. Two obviously invariant non-empty
sets are the filled-in Julia set1 of q

K(q) := {z ∈ C : the orbit of z is bounded under iteration of q}

and the escaping set of q

I(q) := {z ∈ C : the orbit of z tends to ∞ under iteration of q} ;

we have C = K(q) ∪̇ I(q) for every q. Several examples of sets K(q) are
displayed in Figure 1.

These sets have a rich and difficult structure; for instance, some sets K(q)
are connected, while others are not. Understanding them is not easy and
raises a number of questions, some of them quite deep.

1 These sets are named after Gaston Julia (1893–1978), one of the founders of the
field of complex dynamics in the early 20-th century; the other major pioneer was
Pierre Fatou (1878–1929).
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Fig. 1. For several quadratic polynomials q, the filled-in Julia set K(q) is shown in
black; the colored complement is the escaping set I(q), where different colors indicate
how fast points converge (“escape”) to ∞. In some pictures, the black Julia set is
so “thin” that it is hardly visible: in the left (and right) pictures, the Julia set is
connected, and in the middle picture, it is totally disconnected.

These questions include the following:

(P1) Does K(q) have interior points (i.e., does K(q) contain open sets)?
Can the dynamics on open subsets of K(q) be described explicitly?

(P2) How can the different sets K(q) be distinguished topologically or com-
binatorially?

(P3) Are all disconnected sets K(q) homeomorphic to each other (i.e., topo-
logically the same)?

(P4) If K(q) is connected, is its boundary (the Julia set) a curve (i.e., the
continuous, not necessarily injective image of a circle)?

(P5) Is it possible that the boundary of K(q) has positive measure? In
particular, if K(q) has no interior, can it still have positive measure? (Here
we speak of planar Lebesgue measure; the question is thus whether we
obtain sets without interior that have positive area.)

(P6) For which (quadratic) polynomials q is K(q) connected (or equiva-
lently, is I(q) simply connected)?

Some questions can be answered relatively easily, others are very recent
breakthroughs, and yet others are still open. For instance, (P3) has a simple
answer at least in the case of degree 2: if the filled-in Julia set of a quadratic
polynomial is disconnected, then it is a Cantor set, i.e., it is compact, totally
disconnected (every connected component is a point), and it has no isolated
points; and any two Cantor sets that are subsets of a metric space are home-
omorphic to each other. Moreover, the dynamics on two quadratic Cantor
sets is the same (technically speaking, it is “topologically conjugate”). For
polynomials of higher degrees, the situation is somewhat more involved, but
in light of a very recent theorem all disconnected Julia sets can be described
in terms of Cantor sets, as well as connected Julia sets of polynomials of lower
degrees. The most interesting Julia sets are thus those that are connected.
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Question (P1) also has simple aspects: if K(q) has interior, then any con-
nected component of this interior is called a Fatou component, and each Fatou
component maps by q onto some other Fatou component. By a deep theorem
of Sullivan (conjectured by Fatou before 1920, but proved only around 1980),
each Fatou component is either periodic (i.e., it maps onto itself after finitely
many iterations), or at least it will map to a periodic Fatou component after
finitely many iterations. For a periodic Fatou component U ⊂ K(q), say of
period n ∈ N, there are only a few possibilities (by a theorem of Fatou):

(A) every orbit in U converges to a periodic point p ∈ U under iteration of
q◦n (in this case, the orbit of p is called attracting);

(P) every orbit in U converges to a periodic point p ∈ ∂U under iteration
of q◦n (in this case, the periodic orbit of p is called parabolic); or

(S) there is a periodic point p ∈ U , and (after a change of coordinates)
the dynamics of q◦n on U is the rotation of a disk by an irrational angle
(such components U are called Siegel disks, and their existence is a deep
theorem originally due to the number theorist Carl Ludwig Siegel; this is
discussed in Yoccoz’ article [12] in this book).

Question (P5), whether the boundary of K(q) can have positive measure
in the plane, has been a deep open question for several decades; in a recent
breakthrough, Xavier Buff and Arnaud Chéritat proved that the boundary
of K(q) can indeed have positive measure; the “hunt” for the solution is
described in [1]. We will get back to this later.

We have seen above that the most interesting Julia sets are those that
are connected. How can we decide whether a particular polynomial q has
connected filled-in Julia set K(q)? It turns out that this is determined by the
critical points of q: these are points z ∈ C with q′(z) = 0. The theorem is
the following: a polynomial q has connected Julia set if and only if the orbits
of all critical points of q are bounded (and it is a Cantor set at least if all
critical orbits converge to ∞ under iteration).

The simplest (non-trivial) case is that of quadratic polynomials. In appro-
priate coordinates, each of them can be written as z �→ qc(z) = z2 + c for a
unique complex parameter c. For these polynomials, the only critical point
(in C) is z = 0, so all we need to do is test whether the orbit of 0 is bounded
or not: if the orbit is bounded, then K(q) is connected, and otherwise it is a
Cantor set. (Background and further reading on the dynamics of polynomials
can be found in the excellent book of Milnor [5].)

For qc(z) = z2 + c, the set of parameters c for which Kc := K(qc) is
connected is called the Mandelbrot set M: each point in M represents a dif-
ferent quadratic polynomial with a different Julia set. In this sense, M can
be viewed as a “table of contents” in the book of all (connected) quadratic
Julia sets. With its help, questions such as (P2) or (P4) can be systemati-
cally investigated: while there is serious progress, some questions still remain
open.
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The Mandelbrot set M itself has a very complicated structure; see Figure 2.
Among the open questions are the following:

(M1) Is there a simple way to describe the topology of the Mandelbrot set?
(M2) Is it true that, for every c in the interior of M, the filled-in Julia set

of the polynomial z �→ qc(z) = z2 + c has interior?
(M3) Is the boundary of M a curve? Does the boundary have measure zero?

These questions are deep and difficult, and not completely answered yet.
Question (M2) is often referred to as “is hyperbolic dynamics dense in the
space of quadratic polynomials?”, and is one of the most important ques-
tions in (complex) dynamics. The first half of Question (M3), whether the
boundary of M is a curve, is usually referred to as “is the Mandelbrot set
locally connected?”, and a positive answer would imply Question (M2) by a
fundamental theorem of two of the pioneers, Adrien Douady and John Hub-
bard [2]. If this was true, then there would be a relatively simple answer to
Question (M1): under the assumption that M is locally connected, there is a
simple way to describe the topology of M, the so-called pinched disk model
developed by William Thurston and Adrien Douady (see for instance [11]
and its appendix).

Fig. 2. The Mandelbrot set M (in black) in the space of iterated complex polyno-
mials z �→ z2 + c. Each point represents a different parameter c ∈ C. Points outside
of M are colored; different color shades describe how fast the point 0 converges to ∞
under iteration of z �→ z2 + c.

What we have described are some of the fundamental questions that are in-
vestigated in the field of complex dynamics (or holomorphic iteration theory).
These questions are quite theoretical. Why are they interesting, and why use-
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ful? After all, a number of smart mathematicians enjoy working on these ques-
tions, and they all have their own reasons. Some of my personal answers are:

• these questions arise quite naturally, and they lead to a deep and beautiful
theory;

• these questions are related to deep questions in other areas of mathematics,
such as number theory and physics (compare for instance Yoccoz’ text [12]
in this volume), as well as (hyperbolic) geometry, topology, and others;

• while these are phrased for rather special mappings (quadratic polynomi-
als), many of their answers extend to much more general settings (such as
iterated polynomials of higher degrees — and more; see below), so that
quadratic polynomials serve as prototypes for more complicated situations
(compare again Yoccoz’ text);

• iteration itself appears in many contexts (even the proofs of some of the
most fundamental theorems in mathematics, such as the Implicit Function
Theorem, or the Existence Theorem of Ordinary Differential Equations,
use an iteration procedure; moreover, many algorithms are of an iterative
nature); interesting new insights are often obtained in simple settings.

In my opinion, all of these are valid answers. In Section 3, we will see another
reason that gives additional relevance to the iteration theory of polynomials.

2 The Dynamics of Newton’s Method

Let us discuss a situation in which iteration is very natural and important:
the dynamics of Newton’s method. Consider a smooth function f : R → R,
for instance a polynomial. A frequent question in many areas of mathematics
and other sciences is to find zeroes of f , i.e., points x ∈ R with f(x) = 0.
Solving any equation f(x) = g(x) can be reduced to the form f(x)−g(x) = 0,
so this is one of the most fundamental questions of mathematics.

In most cases, there is no explicit formula to find zeroes of f , so the best
one can do is to find approximate solutions (and even if there are explicit
formulas, it is often more efficient to approximate the solutions). One of the
oldest and best known methods is the Newton method : given some initial
guess x0, draw a tangent to f at x0 and see where it intersects the x-axis.
This point of intersection, say x1, is often a better approximation to the
true zero than x0; and this procedure can be iterated to find a sequence
of approximations xn = Nf (xn−1). We thus have xn = N◦n

f (x0): based on
the point x0, iteration of the Newton map Nf yields a sequence (xn) of
approximations. In many cases, this sequence converges very rapidly to a
zero of f . More precisely, the following theorem is classical and quite basic. If
x∗ is any simple root of f (i.e., f(x∗) = 0 and f ′(x∗) 	= 0), then all starting
points sufficiently close to x∗ have Newton orbits that converge to x∗: there
is an ε > 0 so that all x0 with |x0 − x∗| < ε have the property that xn → x∗.



Complex Dynamics, the Mandelbrot Set, and Newton’s Method 213

Fig. 3. Left: the dynamical plane of the Newton map for a typical complex polyno-
mial p (here of degree 7). Different colors describe which points in C converge to which
root of p under iteration of Np. Right: the same Newton dynamics on the Riemann
sphere (that is the image sphere of the complex plane union ∞ under stereographic
projection); the point at ∞ stands out near the top (where all basins meet).

The same “usually” holds even for non-simple zeroes, but there are some
“pathological” counterexamples. In the case of a simple root the convergence
is even extremely rapid: in the long run, the number of correct decimal digits
in xn roughly doubles in each iteration step of Nf . For instance, after 10
iterations of Nf , one could expect some 210 > 1000 valid decimal digits;
of course, in practical implementations, the numerical precision would cease
to suffice long before that: this means that in fewer than 10 iterations, the
approximate answer would be found within the possible numerical precision
— provided one has started sufficiently near x0.

It is easy to give a formula for Nf :

Nf (x) = x − f(x)/f ′(x) .

Let us now consider the fundamental case that f = p is a polynomial in one
variable. In this case, Np(x) = (xp′(x) − p(x))/p′(x) is a rational function
(the quotient of two polynomials). It may not be so clear why one would want
to iterate polynomials, but Newton maps of polynomials want to be iterated!

In Figure 3, the dynamics of the Newton map of a typical polynomial is
depicted. The formula easily extends from real to complex numbers, and here
(as well as in many other contexts), it is much more convenient to work with
complex numbers: it often turns out that

Real mathematics is difficult, but complex mathematics is beautiful!
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The pictures show that most starting points in C converge to some root of the
polynomial under iteration of Np. Some natural (and important!) questions
include the following:

(N1) Is it true that almost all points in C converge to some root of p under
iteration of Np? (Will a random starting point converge to some root with
full probability? Or equivalently, does the set of starting points that do
not converge to any root have measure zero in the plane?) This would be
the best possible case.

(N2) Is it possible that there are open sets of points in C none of which
converge to any root of p under iteration of Np? This would be worst
possible case.

(N3) Suppose all that one knows is that some polynomial p of degree d ≥ 2
has all its roots in the complex unit disk D. How can one find points at
which to start the Newton iteration in order to be sure that one finds all
roots of p?

(N4) Starting at appropriate points, how many times does one have to
iterate in order to find all the roots with a given precision ε > 0?

For any root α of p, let Bα be the basin of α: this is the set of all z ∈ C

that converge to α under iteration of Np. It is easy to see that each basin is
open, and it contains a neighborhood of α. The union of the basins are the
“good” starting points (starting the Newton iteration there will find some
root); their complement are the “bad” starting points (starting the iteration
there will not lead to any root).

For a quadratic polynomial p with two distinct roots, it is quite easy to see
that the set of bad starting points always forms a single straight line symmet-
ric to the two roots. The interesting cases happen when the polynomial p has
degree d ≥ 3. First of all, observe that every Newton map (for a polynomial p
of degree d ≥ 2) must have bad starting points z: for instance, there are always
periodic points of periods n ≥ 2 (but their number is always countable). More-
over, the boundary of any basin is a closed non-empty set, and it cannot inter-
sect the basin of any root. Therefore, all points in all basin boundaries cannot
converge to any root. (Interestingly, it turns out that the boundaries of all
basins always coincide! This common boundary is the Julia set of Np.) Ques-
tions (N1) and (N2) can thus be rephrased as follows: if a point z ∈ C does not
converge to any root of p, does this imply that z is in the common boundary
of all basins? And can this common boundary have positive measure?

3 The Useless and the Useful

Clues to some of these questions can be found in Figure 4: for certain cu-
bic polynomials, the set of bad starting points contains subsets that resemble
filled-in Julia sets of quadratic polynomials. This is explained by a fundamen-



Complex Dynamics, the Mandelbrot Set, and Newton’s Method 215

tal theory of Adrien Douady and John Hubbard of “polynomial-like maps”
and “renormalization”: for every quadratic polynomial q, there is a cubic
polynomial p so that in the Newton dynamics Np, there is a copy of the filled-
in Julia set of q within the set of bad starting points. In fact, in a precise
sense, most bad starting points belong to such small copies of the filled-in
Julia sets of quadratic polynomials (all the others have measure zero). There-
fore, an understanding of the bad starting points for the Newton dynamics
needs an understanding of the dynamics of iterated polynomials! The “use-
ful” questions of Newton dynamics requires knowledge of the “useless” theory
of iterated polynomials!

Fig. 4. Newton maps for two cubic polynomials (left), with magnifications of some
details (center). Black are “renormalizable” starting points that do not converge to
any root at all; for starting points that do converge to a root, colors describe to which
root they converge. Right: Filled-in Julia sets for two quadratic polynomials: these
are homeomorphic to (a connected component of) the set of black points in the center
pictures.

It follows from the renormalization theory that the answer to question
(N1) is no: there are polynomials p so that the boundary of set of points con-
verging to some root has positive measure in the plane, because this boundary
contains a copy of the boundary of the filled-in Julia set of a quadratic poly-
nomial with positive measure: this uses the recent result on question (P5).
In such cases, the set of bad starting points may or may not have interior.

Worse yet, since there are many quadratic polynomials q whose filled-in
Julia sets do have interior, there are many cubic polynomials p so that the
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bad starting points for the Newton map Np have interior, i.e., they contain
open sets; this gives an answer to question (N2). A few examples are shown
in Figure 4.

The “worst-case scenario” that Newton maps may have open sets of bad
starting points was discovered, rather unexpectedly, in the late 1970’s, after
systematic computer experiments became available (pioneered by John Hub-
bard). This led to the following question that was raised by Fields medallist
Stephen Smale [8, Problem 6] and others:

(N5) Classify all polynomials p (of all degrees) so that the corresponding
Newton maps have open sets of bad starting points.

Some 25 years later, we are now ready to answer this question. Some
form of the answer is contained in the forthcoming PhD thesis of Yauhen
Mikulich in Bremen (himself a winner of a First Prize at the International
Mathematics Competition for University Students). We skip the details, but
roughly speaking he shows that an understanding of the useful and important
question (N5) involves a detailed understanding of the “useless” dynamics
of iterated polynomials of all degrees! In all degrees d ≥ 3, all the “bad”
cases are contained in copies of little filled-in Julia sets of polynomials q of
some degrees (up to sets of measure zero), and their classification requires a
classification of all iterated polynomials.

Let us investigate a specific “toy-model” case of low degrees. We saw above
that Newton maps of quadratic polynomials are simple. But Newton maps
of cubic polynomials are already much more interesting. So let us consider a
cubic polynomial p(z) = c(z−α1)(z−α2)(z−α3) with c, α1, α2, α3 ∈ C. The
factor c is irrelevant for the Newton map Np(z) = z − p(z)/p′(z), so we can
set c = 1. Translating coordinates, we may assume α1 = 0, and rescaling and
possibly relabeling, we may assume that α2 = 1 (unless α3 = α2 = α1 = 0).
In convenient coordinates, every cubic polynomial other than z3 may thus
be written as pλ(z) = z(z − 1)(z − λ), and the Newton dynamics respects
these coordinates. Every λ ∈ C represents some cubic polynomial with its
own Newton map Npλ

=: Nλ.
The investigation starts with the following classical theorem: if, for the

Newton map of a cubic polynomial p, the set of “bad” starting points contains
an open set, then it also contains the center of gravity of the three roots of p.

In order to test whether the Newton map of a given cubic polynomial has
open sets of bad starting points, it suffices to iterate a single point (which
happens to be be the unique point z ∈ C \ {α1, α2, α3} with N ′

λ(z) = 0:
it is the only “free critical point” of Nλ; this is analogous to the behav-
ior of critical points that we saw earlier). In Figure 5, the λ-plane of the
cubic polynomials pλ is depicted, and all parameters λ are colored black
for which the free critical point does not converge to any root. It turns
out that an understanding of the “bad polynomials” even in the simple
cubic case involves an understanding of the Mandelbrot set! (See [9].) Of
course, an understanding of the general case of higher-degree polynomials
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Fig. 5. The λ-plane of cubic polynomials pλ(z) = z(z − 1)(z − λ) for λ ∈ C. Black
points denote those polynomials for which the free critical point does not converge to
any root. Shown are a large-scale view of the λ-plane (upper left) and two subsequent
magnifications (lower left and right). Colors distinguish which root the free critical
point converges to.

involves an understanding of higher-dimensional analogues of the Mandel-
brot set, and this is much more complicated, but the basic principle is the
same.

4 Old Questions and New Answers

Let us come to some very practical questions. Newton’s method was designed
to find zeroes of smooth functions. In the fundamental case of complex poly-
nomials of a single variable, how does one actually find all the roots? Newton’s
method, as described above, is a heuristic principle: choose a starting point
somewhere, start iterating the Newton map and hope the orbit converges to
some root. Even if almost all starting points converge to some root: how can
one make sure that all roots are found? Is it conceivable that some root is
“hiding” somewhere and can be found starting only at a small set of starting
points? (Of course, when some roots are found, one could in principle factor
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them out and start over with a polynomial of lower degree. But in practice,
this is often not an option: deflation of polynomials is in general numerically
very unstable; moreover, if a polynomial has a special and easy-to-evaluate
form, then this may no longer be so after deflation. We thus want to find all
roots without deflation.)

One of our goals is to turn Newton’s method into an algorithm. We want
a recipe of the following kind: given a polynomial p of some degree d ≥ 2 and
a desired accuracy ε > 0, take the following starting points z(1), . . . , z(k) with
k ≥ d (specify) and iterate the Newton map starting at these points until the
following condition is satisfied (specify); then the following d points are ε-
close to the d roots of p (specify). (Of course, the starting points z(j) must be
specified explicitly; in our approach, they do not depend on p at all, provided
p is appropriately normalized.)

Newton’s method is as old as analysis, but there is no complete theory
known about it, and it is not (yet) an algorithm. One of the main problems
is that an orbit zn = N◦n

p (z0) could reach a point z where p′(z) is very close
to zero, so that Np(z) = z − p(z)/p′(z) is near ∞, and from then on it would
take a long time until the orbit gets back to where the roots are: one thus loses
control on the dynamics. It is difficult to predict for which starting points
this happens. Therefore, numerical analysis contains an elaborate theory on
polynomial root-finding, but Newton’s method has a reputation as being
difficult to control, so most of the theory is on different numerical methods.
A recent overview on what is known on Newton’s method as a root-finder
can be found in [6].

However, methods from complex dynamics, and from the “useless” parts of
the theory allow us to make progress on the practical task of turning Newton’s
method into an algorithm. For instance we have the following theorem [4]:
given a (suitably normalized) polynomial of some degree d ≥ 2, one can specify
a relatively small set of k = �1.11 d log2 d� starting points z(1), z(2), . . . , z(k),
so that for each root α of p there is at least one of these starting points
that converge to α under iteration of Np. This is a set of “good starting
points”, and it depends only on the degree d, not on the specific polynomial
p (provided it is suitably normalized). This is a good answer to question (N3)
raised above. (This set of starting points is easy to write down; these points
are equidistributed on log d concentric circles around the origin.)

This is a good beginning for turning Newton’s method into an algorithm,
but it is not quite complete. One of the most important remaining questions
is (N4), how many iterations does it require until all the roots are found with
prescribed precision ε? Here, too, there is progress in sight, using methods
from complex dynamics, in particular using an interplay between Euclidean
and hyperbolic geometry; it is indeed possible to give explicit upper bounds
on how many iterations are required in order to find all the roots, and these
bounds are not too bad (this is current work in progress [7]). Newton’s method
may be a much better algorithm than previously thought — this is one of
the oldest questions of analysis, and yet there is still a lot of work that one
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Fig. 6. The dynamics for the Riemann ξ function: some of the zeroes are marked in
the picture, and different colors distinguish to which zero of ξ any point in the plane
converges under Newton’s method.

can do. Contrary to certain preconceptions, even old parts of mathematics
still leave room for new discoveries — often exactly because there is progress
in other areas, whether or not they are deemed useful ahead of time. (This
point of view is also mentioned in the article by Timothy Gowers [3].)

We cannot resist the temptation to mention the case of functions f that
are more general than polynomials, for instance “entire functions” f : C → C

that are (complex) differentiable everywhere in C. A most prominent exam-
ple is the famous “Riemann zeta function” ζ as discussed in the article by
Terence Tao [10]: it has zeroes at the negative even integers, and the Riemann
conjecture says that all remaining zeroes have real parts 1/2. The ζ function is
not an entire function (it has a pole at z = 1), but it has a close cousin, the ξ-
function: its zeroes are exactly the “non-trivial” zeroes of ζ. To this function,
one can apply Newton’s method as well: see Figure 6. The location of these
zeroes is of fundamental importance for many results in mathematics, and
Newton’s method is designed for finding these roots. Of course, there are spe-
cial methods designed specifically for the ζ function, but Newton’s method is
general enough to deal even with such functions; we have to omit the details.

Let me conclude with a personal note. I believe there is no useful or useless
mathematics. Different areas of mathematics can be more or less interesting
— that is a matter of personal taste. But there are no areas of mathematics
that should be classified as “useful” or “useless”. Mathematics is full with
connections and interrelations, some of them obvious, while others are discov-
ered only after a long time. Some of us are motivated by the intrinsic beauty



220 Dierk Schleicher

of our mathematical areas, others because we can solve questions that were
raised by others, inside mathematics or outside. We are all building the same
house, and what matters is the willingness to observe new interrelations when
they arise, the willingness to think more broadly beyond narrow borders of
sub-disciplines, and the willingness to go more deeply into uncharted terri-
tory. Good mathematics may find its applications by itself, sooner or later,
and quite possibly in unexpected ways. Restricting the paths of discovery
only to obvious applications would miss some of the most important rela-
tions — it would be a waste of those talents that are at their best when
building up a good theory!
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