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Foreword

The Indian Statistical Institute (ISI) was established on 17th December,
1931 by a great visionary Professor Prasanta Chandra Mahalanobis to pro-
mote research in the theory and applications of statistics as a new scien-
tific discipline in India. In 1959, Pandit Jawaharlal Nehru, the then Prime
Minister of India introduced the ISI Act in the parliament and designated it
as an Institution of National Importance because of its remarkable achieve-
ments in statistical work as well as its contribution to economic planning.

Today, the Indian Statistical Institute occupies a prestigious position
in the academic firmament. It has been a haven for bright and talented
academics working in a number of disciplines. Its research faculty has done
India proud in the arenas of Statistics, Mathematics, Economics, Computer
Science, among others. Over seventy five years, it has grown into a massive
banyan tree, like the institute emblem. The Institute now serves the na-
tion as a unified and monolithic organization from different places, namely
Kolkata, the Headquarters, Delhi, Bangalore, and Chennai, three centers,
a network of five SQC-OR Units located at Mumbai, Pune, Baroda,
Hyderabad and Coimbatore, and a branch (field station) at Giridih.

The platinum jubilee celebrations of ISI have been launched by
Honorable Prime Minister Prof. Manmohan Singh on December 24, 2006,
and the Government of India has declared 29th June as the “Statistics Day”
to commemorate the birthday of Professor Mahalanobis nationally.

Professor Mahalanobis, was a great believer in interdisciplinary research,
because he thought that this will promote the development of not only
Statistics, but also the other natural and social sciences. To promote inter-
disciplinary research, major strides were made in the areas of computer
science, statistical quality control, economics, biological and social sciences,
physical and earth sciences.

The Institute’s motto of “unity in diversity” has been the guiding prin-
ciple of all its activities since its inception. It highlights the unifying role
of statistics in relation to various scientific activities.
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vi Foreword

In tune with this hallowed tradition, a comprehensive academic pro-
gramme, involving Nobel Laureates, Fellows of the Royal Society, Abel
prize winner and other dignitaries, has been implemented throughout the
Platinum Jubilee year, highlighting the emerging areas of ongoing frontline
research in its various scientific divisions, centers, and outlying units. It
includes international and national-level seminars, symposia, conferences
and workshops, as well as series of special lectures. As an outcome of these
events, the Institute is bringing out a series of comprehensive volumes in
different subjects under the title Statistical Science and Interdisciplinary
Research, published by the World Scientific Press, Singapore.

The present volume titled Perspectives in Mathematical Sciences II:
Pure Mathematics is the eighth one in the series. The volume consists of
fifteen chapters, written by eminent mathematicians from different parts
of the world. These chapters cover a wide range of topics and provide a
current perspective of different areas of research, emphasizing the major
challenging issues. Some of the articles are written keeping the students
and the young researchers of mathematics in mind. I believe the state-of-
the art studies presented in this book will be very useful to both researchers
as well as practitioners.

Thanks to the contributors for their excellent research contributions,
and to the volume editors Profs. N. S. Narasimha Sastry, T. S. S. R. K. Rao,
M. Delampady and B. Rajeev for their sincere effort in bringing out the
volume nicely in time. Initial design of the cover by Mr. Indranil Dutta is
acknowledged. Sincere efforts by Prof. Dilip Saha and Dr. Barun Mukhopad-
hyay for editorial assistance are appreciated. Thanks are also due to World
Scientific for their initiative in publishing the series and being a part of the
Platinum Jubilee endeavor of the Institute.

December 2008 Sankar K. Pal
Kolkata Series Editor and

Director



Preface

Indian Statistical Institute, a premier research institute founded by Pro-
fessor Prasanta Chandra Mahalanobis in Calcutta in 1931, celebrated its
platinum jubilee during the year 2006-07. On this occasion, the institute
organized several conferences and symposia in various scientific disciplines
in which the institute has been active.

From the beginning, research and training in probability, statistics and
related mathematical areas including mathematical computing have been
some of the main activities of the institute. Over the years, the contributions
from the scientists of the institute have had a major impact on these areas.

As a part of these celebrations, the Division of Theoretical Statistics and
Mathematics of the institute decided to invite distinguished mathematical
scientists to contribute articles, giving “a perspective of their discipline,
emphasizing the current major issues”. A conference entitled “Perspectives
in Mathematical Sciences” was also organized at the Bangalore Centre of
the institute during February 4-8, 2008.

The articles submitted by the speakers at the conference, along with
the invited articles, are brought together here in two volumes (Part I and
Part II).

Part I consists of articles in Probability and Statistics. Articles in Statis-
tics are mainly on statistical inference, both frequentist and Bayesian, for
problems of current interest. These articles also contain applications illus-
trating the methodologies discussed. The articles on probability are based
on different “probability models” arising in various contexts (machine learn-
ing, quantum probability, probability measures on Lie groups, economic
phenomena modelled on iterated random systems, “measure free martin-
gales”, and interacting particle systems) and represent active areas of re-
search in probability and related fields.

Part II consists of articles in Algebraic Geometry, Algebraic Number
Theory, Functional Analysis and Operator Theory, Scattering Theory,
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viii Preface

von Neumann Algebras, Discrete Mathematics, Permutation Groups, Lie
Theory and Super Symmetry.

All the authors have taken care to make their exposition fairly self-
contained. It is our hope that these articles will be valuable to researchers
at various levels.

The editorial committee thanks all the authors for writing the articles
and sending them in time, the speakers at the conference for their talks and
various scientists who have kindly refereed these articles. Thanks are also
due to the National Board for Higher Mathematics, India, for providing
partial support to the conference. Finally, we thank Ms. Asha Lata for her
help in compiling these volumes.

October 16, 2008 N. S. Narasimha Sastry
T. S. S. R. K. Rao
Mohan Delampady

B. Rajeev
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Chapter 1

Use of Resultants and Approximate Roots for Doing the
Jacobian Problem

Shreeram S. Abhyankar

Mathematics Department,
Purdue University, West Lafayette, IN 47907, USA

ram@cs.purdue.edu

This is an expository article giving a modified version of my talks at
ISI-Kolkata and ISI-Bangalore. After sketching the history of the jaco-
bian problem, I shall discuss the two basic tools which are employed in
attacking this problem. The first is the theory of resultants which are
usually coupled with discriminants. The second is the theory of approx-
imate roots of polynomials which are inspired by the construction of
square roots of positive real numbers.

1.1. Introduction

Two given bivariate polynomials are said to form a jacobian pair if their
jacobian equals a nonzero constant, and they are said to form an auto-
morphic pair if the variables can be expressed as polynomials in the given
polynomials. By the chain rule we see that every automorphic pair is a
jacobian pair. The jacobian problem asks if conversely every jacobian pair
is an automorphic pair. It turns out that a useful method for attacking this
problem is to study the similarity of polynomials. Two bivariate polyno-
mials are similar means their degree forms, i.e., highest degree terms, are
powers of each other when they are multiplied by suitable nonzero con-
stants. Geometrically this amounts to saying that the corresponding plane
curves have the same points at infinity counting multiplicities. At any rate,
the points at infinity correspond to the distinct irreducible factors of the
degree form.

Before getting into technicalities, I shall first give a short history of the
problem or rather the history of my acquaintance with the problem. For
that we have to go back to 1965 when a German mathematician, Karl Stein

1



2 S. S. Abhyankar

who created Stein Manifolds, wrote me a letter asking a question. He said
that there was an interesting 1955 paper in the Mathematische Annalen
by Engel [9]. In this paper Engel claims to prove the jacobian theorem
or what is now known as the jacobian problem or the jacobian conjecture
or whatever. Karl Stein said to me that it is an interesting theorem but
he cannot understand the proof. Can I help him? He also reduced it, or
generalized it, to a conjecture about complex spaces. I wrote back to Stein
giving a counterexample to his complex space conjecture. But I did not
look at the Engel paper. Then in 1968, Max Rosenlicht of Berkeley asked
me the same question and still I did not look at the Engel paper. Finally
in 1970, my own guru (= venerable teacher) Oscar Zariski asked me the
same question. Then, following the precept that one must obey one’s guru,
I looked up the Engel paper and found it full of mistakes and gaps.

The primary mistake in the Engel paper, which was repeated in a large
number of published and unpublished wrong proofs of the jacobian problem
in the last thirty-five years, is the presumed “obvious fact” that the order of
the derivative of a univariate function is exactly one less than the order of
the function. Being a prime characteristic person I never made this mistake.
Indeed, the “fact” is correct only if the order of the function in nondivisible
by the characteristic. Of course you could say that the jacobian problem is
a characteristic zero problem, and zero does not divide anybody. But zero
does divide zero. So the “fact” is incorrect if the order of the function is
zero, i.e., if the value of the function is nonzero. Usually this mistake is
well hidden inside a long argument, because you may start with a function
which has a zero or pole at a given point and your calculation may lead to
a function having a nonzero value at a resulting point.

A gap is a spot where you are not sure of the argument because of
imprecise definitions or what have you. The gap in the Engel paper seems
to be the uncritical use of the Zeuthen-Segre invariant. For this invariant
of algebraic surfaces see the precious 1935 book of Zariski [12]. Over the
years I have made several attempts to understand the somewhat mysterious
theory of this invariant, and I still continue to do so.

In 1970-1977 I discussed the matter in my courses at Purdue and also
in India and Japan. Mostly I was suggesting to the students to fix the
proof and, to get them started, I proved a few small results. Notes of my
lectures were taken down by Heinzer, van der Put, Sathaye, and Singh.
These appeared in [1] and [4]. Then I put the matter aside for thirty years.
Seeing that the problem has remained unsolved in spite of a continuous
stream of wrong proofs announced practically every six months, I decided
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to write up my old results, together with some enhancements obtained
recently, in the form of a series of three long papers [6], [7], [8], in the Journal
of Algebra, dedicated to the fond memory of my good friend Walter Feit.
The ISI Jubilee Volume has given me a welcome opportunity of introducing
these papers to the young students with an invitation to further investigate
the problem.

Now one of my old results says that the jacobian conjecture is equiva-
lent to the implication that each member of a jacobian pair can have only
one point at infinity. Another says that each member of any jacobian pair
has at most two points at infinity. Note that the first result is a funny
statement; it only says that to prove the jacobian conjecture, it suffices to
show that each member of any jacobian pair has only one point at infinity.
The second result is of a more definitive nature, and it remains true even
when we give weights to the variables which are different from the normal
weights. Very recently I noticed that, and this is one of the enhancements,
the weighted two point theorem yields a very short new proof of Jung’s
1942 automorphism theorem [10]. This automorphism theorem says that
every automorphism of a bivariate polynomial ring is composed of a finite
number of linear automorphisms and elementary automorphisms. In a lin-
ear automorphsim both variables are sent to linear expressions in them. In
an elementary automorphism, one variable is unchanged and a polynomial
in it is added to the second variable. In his 1972 lecture notes [11], Nagata
declared the automorphism theorem to be very profound and so it did come
as a pleasant surprise to me that the weighted two point theorem yields a
five line proof of the automorphism theorem. For other recent enhancements
let me refer to my Feit memorial papers cited above.

The present paper is only meant to whet the student’s appetite. At any
rate the material of this paper is based on my recent talks in various places
such as ISI-Kolkatta and ISI-Bangalore.

1.2. Basic Technique

Our basic technique in attacking the jacobian problem is the use of re-
sultants and approximate roots. Resultants are usually coupled with dis-
criminants; the theory of these two objects will be discussed in Section 3.
Approximate roots are polynomial concepts coming out of the construction
of square roots in the theory of real numbers; these two topics will be dis-
cussed in Section 4. Here, assuming resultants and approximate roots, let
us very briefly see how they are used in trying to do the jacobian problem.
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Given any jacobian pair F (X,Y ) and G(X,Y ), by making a homoge-
neous linear transformation we can arrange that they are monic polynomials
of positive degrees N and M in Y respectively. Adjoin W to the ground
field k and consider the algebraic closure K of k(W ). Now eliminate Z by
using the Z-resultant to get

φ(X,Y ) = (−1)M+NResZ(F (W,Z)−X,G(W,Z)− Y ).

Then φ(X,T ) is a monic polynomial of degree N in Y with coefficients
in K[X ]. Let ρ0 = N and ρ1 = M . Let d1 = N and d2 = GCD(ρ0, ρ1).
Let AppDΦ denote the D-th approximate root of a monic polynomial Φ
whose Y -degree is a multiple E of D, i.e., AppDΦ is the unique monic
polynomial Ψ of Y -degree E/D such that degY (Φ − ΨD) < E − (E/D).
Let ψ1(X,Y ) = Y . For 2 ≤ i ≤ h let us inductively define

ψi(X,Y ) = Appdi
φ(X,Y )

with

ρi = degX ResY (φ(X,Y ), ψi(X,Y ))

and

di+1 = GCD(ρ0, . . . , ρi)

so that d2 > d3 > · · · > dh+1 = 1. Here h is called the number of charac-
teristic pairs.

By manipulating with this data, we can show that the polynomials F
and G are similar. We can also show that if either h ≤ 2 or h = 3 with
dh even then the given jacobian pair (F,G) is an automorphic pair. As a
consequence we can settle the jacobian conjecture when min(M,N) ≤ 52.
For details see [1] to [8].

1.3. Resultants and Discriminants

The material of this Section is taken from pages 100-104 of my new Algebra
Book [5]. Details of proof can be found on pages 172-188 of that Book.

Beginning algebra students encounter discriminants of quadratic poly-
nomials, but resultants are less well known. They were introduced by
Sylvester around 1840. Actually in some sense we need to start with
Descartes who introduced coordinates around 1637. Bézout built on these
ideas to introduce his version of resultants for the original proof of Bézout’s
Theorem.
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Bézout’s Theorem, proved by him around 1770, is one of the oldest
theorems of algebraic geometry. It says that a curve of degreem and a curve
of degree n meet in mn points provided they have no common component
and provided the intersections are counted properly.

One way of proving Bézout’s Theorem is by using resultants. Vertical
tangents can be located by using discriminants which are special cases of
resultants.

Assuming n,m to be nonnegative integers, the Y -Resultant of two poly-
nomials

f(Y ) = a0Y
n + a1Y

n−1 + · · ·+ an

g(Y ) = b0Y
m + b1Y

m−1 + · · ·+ bm

is the determinant

ResY (f, g) = det(ResmatY (f, g))

of the n+m by n+m matrix

ResmatY (f, g) =



a0 a1 · · · · an 0 · · · · 0
0 a0 a1 · · · · an 0 · · · 0
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
0 0 · · · a0 a1 · · · · · an

b0 b1 · · · · bm 0 · · · · 0
0 b0 b1 · · · · bm 0 · · · 0
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
0 0 · · · b0 b1 · · · · · bm


where the first m rows consist of the coefficients of f and the last n rows
consist of the coefficients of g. More precisely, the first row starts with the
coefficients of f , these are shifted one step to the right to get the second
row, shifted two steps to the right to get the third row, and so on for the
first m rows, then the (m+ 1)-st row starts with the coefficients of g, these
are shifted one step to the right to get the (m + 2)-nd row, and so on
for the next n rows. The matrix is completed by stuffing zeroes elsewhere.
The determinant ResY (f, g) is sometimes called the Sylvester resultant of
f and g because it was introduced by Sylvester in his 1840 paper where he
enunciated the following:
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BASIC FACT (T1). If the coefficients ai, bj belong to a domain R then we
have: ResY (f, g) = 0 ⇔ n+m �= 0 and either a0 = 0 = b0 or f and g have
a common root in some overfield of R.

In case n > 0, the Y -Discriminant of f is defined to be the Y -Resultant
of f and fY , i.e.,

DiscY (f) = ResY (f, fY ).

where we view fY to be the polynomial

fY (Y ) = na0Y
n−1 + (n− 1)a1Y

n−2 + · · ·+ an−1

i.e., we let the discriminant to be the determinant of the appropriate 2n−1
by 2n− 1 matrix without considering whether na0 equals zero or not.

From the Basic Fact (T1) we deduce the following:

COROLLARY (T2). If n > 1 and the coefficients ai belong to a domain
R then: DiscY (f) = 0 ⇔ either a0 = 0 or f has a multiple root in some
overfield of R.

OBSERVATION (O1). [Resultant and Projection]. If X1, . . . , XN are
indeterminates over a field k with N ∈ N+ and R is either the polynomial
ring k[X1, . . . , XN ] or the power series ring k[[X1, . . . , XN ]], then ResY (f, g)
equals a polynomial or power series Φ = Φ(X1, . . . , XN ). If a0 and b0 are in
k× with nm �= 0 and k is algebraically closed then, in the polynomial case,
by the Basic Fact it follows that the hypersurface Φ = 0 in the N -space
of (X1, . . . , XN ) is the projection of the intersection of the hypersurfaces
f = 0 and g = 0 in the (N + 1)-space of (X1, . . . , XN , Y ). Moreover,
without assuming k to be algebraically closed but assuming that a0 and b0
are nonzero constants, in the polynomial case as well as the power series
case, by the Basic Fact it follows that: Φ is identically zero (i.e., Φ is the
zero element of R) ⇔ f and g have a nonconstant common factor in R[Y ].

OBSERVATION (O2). [Discriminant and Projection]. Again if
X1, . . . , XN are indeterminates over a field k with N ∈ N+ and R is either
the polynomial ring k[X1, . . . , XN ] or the power series ring k[[X1, . . . , XN ]],
then DiscY (f) equals a polynomial or power series ∆ = ∆(X1, . . . , XN ).
Now if a0 is in k× with n > 1 and k is algebraically closed then, in the
polynomial case, for all values (U1, . . . , UN) of (X1, . . . , XN) in k, the equa-
tion f = 0 has n roots which may or may not be distinct, and by the
Corollary it follows that these roots are not distinct iff ∆(U1, . . . , UN) = 0.
In other words, when we project the hypersurface f = 0 in (N + 1)-space
onto the N -space, above most points there lie n points, and ∆ = 0 is the
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locus of those points above which there lie less than n points. Moreover,
without assuming k to be algebraically closed but assuming that a0 is a
nonzero constant, in the polynomial case as well as the power series case,
by the Corollary it follows that: ∆ is identically zero⇔ f has a nonconstant
multiple factor in R[Y ].

OBSERVATION (O3). [Isobaric Property]. View the coefficients ai, bj
as indeterminates over Z. Give weight i to ai, and j to bj . Then 0 �=
ResY (f, g) ∈ Z[a0, . . . , an, b0, . . . , bm] is isobaric of weight mn, i.e., for the
weight of any monomial ai0

0 . . . ain
n b

j0
0 . . . bjm

m occurring in ResY (f, g) we have
(
∑

0≤r≤n rir) + (
∑

0≤s≤m sjs) = mn. In particular, the principal diagonal
am
0 b

n
m has weight mn, and it does not cancel out because there is no other

term of bm-degree n in the resultant; the principal diagonal of an N×N ma-
trix (Aij) is the term A11A22 . . . ANN . The resultant being isobaric of weight
mn is the fundamental fact behind various cases of Bézout’s Theorem. The
following two Observations, where we use the set-up of Observation (O1),
illustrate this for plane curves and general hypersurfaces respectively.

OBSERVATION (O4). [Plane Bézout]. Let N = 1 with X = X1, and
assume that a0, b0 are nonzero elements in k, and f, g are polynomials of
total (X,Y )-degrees n and m respectively. By the isobaric property we see
that then always degXΦ ≤ mn and “in general” degXΦ = mn. Hence the
n-degree plane curve f = 0 meets the m-degree plane curve g = 0 in mn

points “counted properly.” The possibility of degXΦ < mn is explained by
saying that some intersections have “gone to infinity.”

OBSERVATION (O5). [Hyperspatial Bézout]. Let N be general and
assume that a0, b0 are nonzero elements in k, and f, g are polynomials
of total (X1, . . . , XN , Y )-degrees n and m respectively. By the isobaric
property we see that then always deg(X1,...,XN )Φ ≤ mn and “in general”
deg(X1,...,XN )Φ = mn. Hence, in the (N + 1)-dimensional space, the n-
degree hypersurface f = 0 and the m-degree hypersurface g = 0 meet along
a “secundum” (= a subvariety of dimension two less than dimension of the
ambient space) which projects onto the (mn)-degree hypersurface Φ = 0
in N -dimensional space. Again the possibility of deg(X1,...,XN )Φ < mn says
that some intersections have “gone to infinity.”

EXAMPLE (X1). [Resultant and Discriminant in Terms of Roots].
If the coefficients ai, bj belong to a domain R and a0 �= 0 �= b0 then, upon
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writing

f(Y ) = a0

∏
1≤i≤n

(Y − αi) and g(Y ) = b0
∏

1≤j≤m

(Y − βj)

with α1, . . . , αn and β1, . . . , βm in an overfield of R, we have

ResY (f, g) = am
0 b

n
0

∏
1≤i≤n

∏
1≤j≤m

(αi − βj)

= am
0

∏
1≤i≤n

g(αi) = (−1)mnbn0
∏

1≤j≤m

f(βj)

and

DiscY (f) = (−1)n(n−1)/2an
0

∏
1≤i<j≤n

(αi − αj)2.

EXAMPLE (X2). [Quadratic Resultant]. Considering the quadratic
polynomials

f(Y ) = aY 2 + bY + c and g(Y ) = a′Y 2 + b′Y + c′

and calculating the 4× 4 determinant
a b c 0
0 a b c

a′ b′ c′ 0
0 a′ b′ c′


we get ResY (f, g) = (a2c′2 + a′2c2) + (b2a′c′ + b′2ac) − (abb′c′ + a′b′bc) −
2aca′c′.

EXAMPLE (X3). [Quadratic Discriminant]. Considering the quadratic

f(Y ) = aY 2 + bY + c

and calculating the 3× 3 determinant a b c

2a b 0
0 2a b


we get DiscY (f) = −a(b2 − 4ac).

EXAMPLE (X4). [Cubic Discriminant]. Considering the cubic

f(Y ) = a0Y
3 + a1Y

2 + a2Y + a3
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and calculating an appropriate 5× 5 determinant we get

DiscY (f) = −a0(a2
1a

2
2 − 4a0a

3
2 − 4a3

1a3 − 27a2
0a

2
3 + 18a0a1a2a3).

EXAMPLE (X5). [Special Quartic Discriminant]. Considering the
quartic

f(Y ) = Y 4 + pY 2 + qY + r

and calculating an appropriate 7× 7 determinant we get

DiscY (f) = 16p4r − 4p3q2 − 128p2r2 + 144pq2r − 27q4 + 256r3.

EXAMPLE (X6). [General Quartic Discriminant]. Considering the
quartic

f(Y ) = a0Y
4 + a1Y

3 + a2Y
2 + a3Y + a4

and calculating an appropriate 7× 7 determinant we get
DiscY (f) = a0(256a3

0a
3
4 − 192a2

0a1a3a
2
4 − 128a2

0a
2
2a

2
4 + 144a2

0a2a
2
3a4

− 27a2
0a

4
3 + 144a0a

2
1a2a

2
4 − 6a0a

2
1a

2
3a4 − 80a0a1a

2
2a3a4

+ 18a0a1a2a
3
3 + 16a0a

4
2a4 − 4a0a

3
2a

2
3 − 27a4

1a
2
4

+ 18a3
1a2a3a4 − 4a3

1a
3
3 − 4a2

1a
3
2a4 + a2

1a
2
2a

2
3).

1.4. Real Numbers and Approximate Roots

The material of this Section is taken from pages 52-59 of my new Algebra
Book [5].

Historically, the process of counting gave rise to the set N+ of all positive
integers. Augmenting it by zero, this set was enlarged to get the set N of
all nonnegative integers. Inserting the negative of everybody gave the full
set Z of all integers. Finally the process of division gave rise to the set Q of
all rational numbers.

Taking this much for granted, we shall describe the limiting processes
which gave rise first to the set R of real numbers and then to the set C of all
complex numbers. The passage from Q to R was made precise by Cauchy
by means of Cauchy Sequences around 1830, and by Dedekind by means
of Dedekind Cuts around 1880. After sketching this development, we show
how the construction of square roots of positive integers led us, around
1975, to the construction of approximate roots of polynomials. Briefly, this
solves the problem as to how close we can come to finding the D-the root of
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a one-variable polynomial whose degree is a multiple of the positive integer
D.

As in the quoted Algebra Book, we shall divide the material into a
series of Definitions and Exercises. For the basic definitions of terms and
standard set theory symbols which we shall use, such as ∈ for “element of,”
the reader may consult the first few pages of the said Algebra Book, or any
other current text-book of college mathematics.

DEFINITION (D1). [Real and Complex Numbers]. Real numbers may
be defined as equivalence classes of Cauchy sequences of rational numbers,
and the complex number field C may then be defined as the splitting field
of the quadratic polynomial Y 2+1 over the real number field R. By analogy
with N+, by Q+ we denote the set of all positive rationals; moreover, by
Q0+, Q−, and Q0− we denote the set of all nonnegative rationals, nega-
tive rationals, and nonpositive rationals respectively; as usual, the absolute
value of any r ∈ Q is denoted by |r|, i.e., |r| = r or −r according as r ∈ Q0+

or r ∈ Q−; by context, this will not be confused with the size |S| of a set S.
A sequence x = (xi)1≤i<∞ in Q is Cauchy means for every ε ∈ Q+ there ex-
ists Nε ∈ N+ such that for all i > Nε and j > Nε we have |xi−xj | < ε. This
is equivalent to the Cauchy sequence x′ = (x′i)1≤i<∞, in symbols x ∼ x′, if
for every ε ∈ Q+ there exists Mε ∈ N+ such that for all i > Mε we have
|xi−x′i| < ε. Now R may be defined to be the quotient CQ/ ∼ of the set CQ

of all Cauchy sequences in Q by the equivalence relation ∼. We “identify”
Q with a subset of R by sending any q ∈ Q to the equivalence class of the
Cauchy sequence (qi)1≤i<∞ with qi = q for all i. If y = (yi)1≤i<∞ is another
Cauchy sequence in Q then the sequences (xi + yi)1≤i<∞ and (xiyi)1≤i<∞
are Cauchy sequences whose equivalence classes are unchanged if x and y

are replaced by equivalent Cauchy sequences; this makes R into a ring and
in fact an overfield of Q.

DEFINITION (D2). [Ordered Fields]. The order relation ≤ can be ex-
tended from Q to R by declaring that the equivalence class of x is ≤ the
equivalence class of y if the Cauchy sequences x and y in their equivalence
classes can be chosen so that xi ≤ yi for all i; see (E3) below. Like Z and
Q, this makes R an ordered domain, i.e., a domain whose underlying addi-
tive abelian group is an ordered abelian group and in which the product of
any positive elements (i.e., elements which are greater than zero) is again
positive. Out of these Q and R are ordered fields, i.e., fields whose under-
lying domains are ordered domains. We extend the notation Q+, Q0+, Q−,
and Q0− to any ordered abelian group G (and hence to ordered domains
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and ordered fields) by putting G+ = {g ∈ G : g > 0}, G0+ = G+ ∪ {0},
G− = {g ∈ G : g < 0}, and G0− = G− ∪ {0}; also we define the absolute
value of any g ∈ G by putting |g| = g or −g according as g ∈ G0+ or
g ∈ G−. In particular this defines the sets R+, R0+, R−, R0−, and defines
the absolute value |r| of any r ∈ R. Note that now Z+ = N+ and Z0+ = N.
An ordered abelian group G is archimedean means for all x, y in G+ we
have nx > y for some n ∈ N+. Clearly R is an archimedean ordered field,
i.e., an ordered field whose underlying additive ordered abelian group is
archimedean. A sequence x = (xi)1≤i<∞ in an ordered abelian group G

is Cauchy means for every ε ∈ G+ there exists Nε ∈ N+ such that for all
i > Nε and j > Nε we have |xi − xj | < ε; the sequence x is convergent
means it converges to a limit ξ ∈ G, i.e., for every ε ∈ G+ there exists
Mε ∈ N+ such that for all i > Mε we have |ξ − xi| < ε; we indicate this
by some standard notation such as xi → ξ as i → ∞ or limi→∞xi = ξ.
An ordered abelian group is complete means in it every Cauchy sequence
is convergent. Clearly R is a complete field, i.e., an ordered field whose
underlying additive group is complete as an ordered abelian group.

DEFINITION (D3). [Torsion Subgroups and Divisible Groups]. By
the subgroup of a group G generated by elements x1, x2, . . . in G we mean
the smallest subgroup of G which contains these elements. The order of
an element in a group is the order of the subgroup generated by it. The
subgroup of an additive abelian group G generated by all of its elements of
finite order is called the torsion subgroup of G; if this is zero then G is said
to be torsion free. An additive abelian group G is divisible means for every
g ∈ G and n ∈ Z× there is h ∈ G with nh = g.

EXERCISE (E1). Show that for any elements a, b in a torsion free additive
abelian group and any nonzero integer n we have: na = nb⇒ a = b. Show
that any ordered abelian group is torsion free, and hence any ordered field
is of characteristic zero. Show that for all x, y in an ordered field we have
|xy| = |x||y|. Show that the usual order on Q is the only order on it which
makes it an ordered field.

EXERCISE (E2). Show that for all x, y in an ordered abelian group G we
have |x+ y| ≤ |x|+ |y|, and from this deduce that any convergent sequence
in G is Cauchy and has a unique limit.

DEFINITION (D4). [Rational Completions]. Given any torsion free ad-
ditive abelian group G, let G∗ = G×Z×/ ∼ where the equivalence relation
∼ is given by: (g, n) ∼ (g′, n′) ⇔ n′g = ng′, and embed G in G∗ by
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identifying every g ∈ G with the equivalence class containing (g, 1). De-
fine addition in G∗ by taking equivalence classes in the proposed equation
(g, n) + (h,m) = (mg + nh, nm). Note that then G∗ is a divisible additive
abelian group such that for every g ∈ G∗ we have ng ∈ G for some n ∈ Z×.
We call G∗ the rational completion of G. Note that if G is divisible then
G∗ = G.

EXERCISE (E3). In (D2) show that the induced relation ≤ on the equiv-
alence classes of Cauchy sequences in Q is a linear order.

EXERCISE (E4). In (D4) show that the induced relation ≤ on the equiv-
alence classes of Cauchy sequences in an ordered abelian group is a linear
order.

EXERCISE (E5). LetG be any nonzero archimedean ordered abelian group.
Show that given any g > 0 in G and x > 0 in R, there exists a unique order
monomorphism (i.e., a group monomorphism which is order preserving)
φ : G→ R such that φ(g) = x, and there exists a unique order isomorphism
(i.e., a group isomorphism which is order preserving) ψ : G∗ → R such that
ψ(g) = x. Moreover, for these maps we always have φ(h) = ψ(h) for all
h ∈ G.

EXERCISE (E6). Show that x 
→ x2 gives a surjection R → R0+.

HINT. The usual method of finding the decimal expansion 1.14142 . . . of
√

2
can be explained in terms of decimal expansions of integers by saying that
12 < 2 < 22, 142 < 2×102 < 152, 1412 < 2×104 < 1422, 14142 < 2×106 <

14152, 141422 < 2 × 108 < 141432, and so on. More generally let n > 1
and d > 1 be any integers, and let y > 0 and i > 0 be any integers. Then
clearly there is a unique integer xi such that xd

i ≤ yndi < (xi + 1)d; xi is
nothing but the n-adic expansion of the largest integer ≤ y1/dni. Obviously
the sequence (xi/n

i) is Cauchy and for its limit x in R+ we have xd = y.
Any positive rational can be written in the form y/zd where y and z are
positive integers, and then we get x/z ∈ R+ with (x/z)d = y/zd. Finally,
any η ∈ R+ can be written as the limit of a sequence (ηj) in Q+ and then
taking ξj ∈ R+ with ξd

j = ηj we get a Cauchy sequence (ξj) for whose limit
ξ ∈ R+ we have ξd = η.

DEFINITION (D5). [Rational Ranks]. In view of the first sentence of
(E1), any torsion free divisible additive abelian group may clearly be re-
garded as a Q-vector-space. The Q-vector-space dimension of the rational
completion of a torsion free additive abelian group G is called the rational
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rank of G and is denoted by r(G). Alternatively, r(G) may be character-
ized as the cardinal of a maximal (= nonenlargeable) Z-linearly indepen-
dent subset H of G, where independent means that for any finite number
of distinct elements x1, . . . , xd in H and any integers n1, . . . , nd we have:
n1x1 + · · ·+ ndxd = 0 ⇒ n1 = · · · = nd = 0.

DEFINITION (D6). [Dedekind Cuts]. Instead of using Cauchy sequences
to prove (E5), we can use Dedekind Cuts. So let G be a nonzero divisible
archimedean ordered abelian group. A Dedekind cut of G is a pair (L,U) of
nonempty subsets of G with U = G\L such that for all l ∈ L and u ∈ U we
have l < u and there is no u′ ∈ U with U = {u ∈ G : u′ ≤ u}. For any t ∈ G
we get a Dedekind cut (Lt, Ut) with Lt = {l ∈ G : l ≤ t} and Ut = {u ∈ G :
t < u}. Let DG be the set of all Dedekind cuts of G. It can be shown that
G is complete ⇔ t 
→ (Lt, Rt) gives a surjection G→ DG. Indeed, DG may
be defined to be the completion of G. At any rate, for proving (E5), given
any h ∈ G let θ(h) be the real number which corresponds to the Dedekind
cut (L,U) of Q where L = {m/n ∈ Q with m ∈ Z and n ∈ N+ : nh ≤ mg}
and U = Q \ L, and take φ(h) = xθ(h).

DEFINITION (D7). [Approximate Roots]. In the Hint to (E6) we showed
how to use n-adic expansions of positive integers to find successive approx-
imations to the d-th root of a positive integer. Mixing a generalization of
this with a generalization of the completing the square method of solv-
ing quadratic equations leads us to the concept of approximate roots of
polynomials. So consider a monic polynomial

F = F (Y ) = Y N +
∑

1≤i≤N

AiY
N−i

of degree N > 0 in Y with coefficients Ai in a ring R. If N is a unit in R

then we can generalize the completing the square idea to completing the
N -th power by writing

F (Y ) = (Y +A1/N)N +
∑

2≤i≤N

A′i(Y +A1/N)N−i

with A′i ∈ R, i.e., by killing the coefficient of Y N−1. [On page 58 of my
Lectures on Algebra Volume I, inadvertently the two plus signs in the above
display have been printed as minus signs and, three lines above that, N > 0
has been printed as N ≥ 0]. To generalize this further let D > 0 be an
integer which divides N . Instead of assuming N to be a unit in R, assumeD
to be a unit in R; note that in case of a field R this is equivalent to assuming
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that the characteristic of R does not divide D and so characteristic zero is
always ok. Now we look for a monic polynomial

G = G(Y ) = Y N/D +
∑

1≤i≤N/D

BiY
(N/D)−i

of degree N/D in Y with coefficients Bi in R such that GD is as close to
being equal to F as possible. As (E7) below shows, if we interpret this as
requiring degY (F−GD) < N−(N/D) then a unique G exists, and we call it
the approximateD-th root of F (relative to Y ) and denote it by AppD(F ) or
AppD,Y (F ). Recall that for any m,n in N with n > 1, the n-adic expansion
of m consists of writing m =

∑
i≥0min

i where integers 0 ≤ mi < n are the
digits of the expansion. Likewise for any f, g inR[Y ] with g monic of positive
Y -degree, the g-adic expansion of f consists of writing f =

∑
i≥0 fig

i where
fi ∈ R[Y ] with degY fi < degY g are the digits of the expansion. By (E8)
below these expansions exist and are unique. Moreover, if f is monic of
Y -degree N > 0 and the Y -degree of g is N/D ∈ N+ where D ∈ N+ is a
unit in R, then fD = 1 and fi = 0 for all i > D; we try completing the
D-th power by putting τf (g) = τf,Y (g) = g + (fD−1/D) and calling it the
f -Tschirnhausen of g (relative to Y ). This references to the 1683 work of
Tschirnhausen who was a friend of Leibnitz. By (E9) below, starting with
any monic g of degree N/D and applying τf to it N/D times will produce
the approximate D-th root of f .

EXERCISE (E7). Let F be a monic polynomial of degree N > 0 in Y over
a ring R. Let D > 0 be an integer such that D divides N and D is a unit in
R. Show that there exists a unique monic polynomial G of degree N/D in Y
overR such that degY (F−GD) < N−(N/D). Hint: With display as in (D7),
the last condition gives the equations Ai = DBi +Pi(B1, . . . , Bi−1) for 1 ≤
i ≤ N/D where the coefficient of Y N−i inGD equalsDBi+Pi(B1, . . . , Bi−1)
with Pi a polynomial over Z; since D is a unit in R, these can be solved
successively (in a unique manner).

EXERCISE (E8). Given integers m ≥ 0 and n > 1, show the unique exis-
tence of the n-adic expansion of m. Given univariate polynomials f, g over a
ring R with g monic of positive degree, show the unique existence of the g-
adic expansion f =

∑
i≥0 fig

i of f . Show that if f is monic of degree N > 0
and the degree of g is N/D where D is a positive integer factor of N , then
fD = 1 and fi = 0 for all i > D, and moreover: AppD(f) = g ⇔ fD−1 = 0.

EXERCISE (E9). Let f, g be univariate monic polynomials of positive de-
grees N and N/D over a ring R where D is a positive integer which di-



Jacobian Problem 15

vides N , and is a unit in R. Let τf (g) = g, and let f =
∑

0≤i≤D fig
i and

f =
∑

0≤i≤D f ig
i be the g-adic and g-adic expansions of f respectively.

Show that if fD−1 �= 0 �= fD−1 then deg(fD−1) < deg(fD−1). From this
deduce that τN/D

f (g) = AppD(f).

Epilogue

MANGALACHARAN
ATA VISHVATMAKE DEVE | YENE VAGYADNYE TOSHAVE
TOSHONI MAJA DYAVE | PASAYDANA HE
GANITAVIDYECHEE JAGRUTEE | KARONIYA SARVA JAGATEE
PRADNYASURYE UJALATEE | SUKHAVAYA SAKALA JANA

Here is a free Paraphrase of the above MANGALACHARAN =
INVOCATION in my mother tongue MARATHI whose founding father
DHYANESHVAR composed the first two lines around 1250 A.D. to which
I added the last two lines.

PARAPHRASE. May the Lord God of the Universe be pleased with my
recounting of the story of algebra and geometry which are the essence of our
beloved subject of mathematics. Being pleased may he shower his blessings
upon us and make our endeavor pleasurable.
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2.1. Introduction

Let M be a smooth manifold and EG a C∞ principal G–bundle over M ,
where G is a Lie group. The Lie algebra of G will be denoted by g. Let ∇
be a connection on EG. Therefore, ∇ is a g–valued smooth one–form on the
total space of EG satisfying the following two conditions:

• the map TEG −→ g defined by ∇ intertwines the action of G on
EG and the adjoint action of G on g, and

• the restriction of ∇ to any fiber of EG is the Maurer–Cartan form.

The connection ∇ defines parallel transport on EG. In other words,
given a smooth curve

γ : [0 , 1] −→ M

and a point z in the fiber (EG)γ(0) of EG over the point γ(0), there is a
unique smooth map

γ̃z : [0 , 1] −→ EG (2.1)

that satisfies the following three conditions:

• p ◦ γ̃z = γ, where p : EG −→ M is the natural projection,
• γ̃z is horizontal with respect to ∇, which means that the image of

the differential dγ̃z lies in the kernel of the form ∇, and
• γ̃z(0) = z.

17
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Any γ̃z as in Eq. (2.1) satisfying the first two of the above three condi-
tions is called a horizontal lift of γ.

Fix a point x0 ∈ M , and also fix a point z0 ∈ (EG)x0 . Consider all
curves γ as above with γ(0) = x0, and consider their horizontal lifts γ̃ with
γ̃(0) = z0. Let Z denote the closure of the subset of EG consisting of all
points of the form γ̃(1), with γ̃ of this type. There is a closed subgroup H
of G such that a point z ∈ (EG)x0 lies in Z if and only if z = z0g for some
g ∈ H . More precisely,

EH := Z ⊂ EG (2.2)

is a smooth reduction of structure group of EG to H , and H is a closed
subgroup of G.

Note that if we replace the base point z0 by any other point of Z, then
both H and Z remain unchanged. If we replace z0 by z0g0, where g0 ∈ G

is a fixed point, then Z gets replaced by Zg0, and H gets replaced by
the group g−1

0 Hg0. Hence the conjugacy class of the subgroup H ⊂ G is
independent of x0 and z0 (it depends only on ∇).

Let Ad(EG) = EG×G G be the adjoint bundle. So Ad(EG) is the fiber
bundle over M associated to EG for the adjoint action of G on itself. Hence
the fibers of Ad(EG) are groups isomorphic to G. More precisely, each fiber
of Ad(EG) is identified with G uniquely up to an inner automorphism of
G. Consider

Ad(EH) ⊂ Ad(EG) , (2.3)

where EH is defined in Eq. (2.2). Since H gets replaced by g−1
0 Hg0 if z0 is

replaced by z0g0, the subgroup

Ad(EH)x0 ⊂ Ad(EG)x0

is independent of the choice of z0; it depends only on ∇ and x0. The sub-
bundle Ad(EH) of Ad(EG) in Eq. (2.3) depends only on ∇.

The subbundle Ad(EH) in Eq. (2.3) is called the holonomy bundle, and
the subgroup Ad(EH)x0 of Ad(EG)x0 is called the holonomy group for ∇.
Note that the holonomy group depends on x0.

The conjugacy class of subgroups of G defined by Ad(EH)x0 (recall that
Ad(EG)x0 is identified with G up to an inner automorphism) is independent
of the choice of x0.

Now let X be a smooth projective variety defined over a field k, and
let G be a linear algebraic group defined over k. Let EG be a principal
G–bundle over X . Under some semistability assumption on EG, and also
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an assumption that X admits a k–rational point, a canonical holonomy
group of EG exists, and also a holonomy bundle of EG exists. Note that no
reference to any connection on EG is made.

The constructions of the above mentioned holonomy group and the
holonomy bundle are based on a work of Nori. Our aim here is to describe
these constructions.

In [5] and [6], the term monodromy is used instead of holonomy. We will
stick to the terminology of [5] and [6].

In [1] an interesting construction of holonomy group (= monodromy)
and holonomy bundle of polystable vector bundles over complex projective
varieties is given (see also [2], [3]). An application of holonomy is given
is [4].

We will mainly describe results from [6]. In the last section, we will very
briefly describe some work in progress.

2.2. Tannakian Category

In this section we will briefly recall some results on Tannakian category
that we need. This section is reproduced from [5].

Let k be any field and H an affine algebraic group scheme defined over
k. We will denote by H–mod the category of finite dimensional rational left
representations of H . The tensor product operation of two H–modules will
be denoted by ⊗̂. We denote by k–mod the category of finite dimensional
vector spaces over k, and we denote by ⊗ the usual tensor product operation
on k–mod. Let

T : H–mod −→ k–mod

be the forgetful functor. Let O be a trivial one dimensional representation
of H . The quadruple (H–mod, ⊗̂, T,O) determines H in the following sense
(see [14, Theorem 1], and [11, Section 2.1, Theorem 1.1]).

Theorem 2.1. ([11], [14]) Let C be a category with a distinguished object
O equipped with an operation

⊗̂ : C × C −→ C
and T : C −→ k–mod a functor satisfying the following eight conditions:

(C1) C is an abelian category with direct sums;
(C2) isomorphism classes of objects of C form a set;
(C3) T is an additive, faithful and exact functor;
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(C4) ⊗̂ is k-linear in each variable, and T ◦ ⊗̂ = ⊗ ◦ (T × T );
(C5) ⊗̂ is associative preserving T ;
(C6) ⊗̂ is commutative preserving T ;
(C7) the object O of C is equipped with an isomorphism φ : k −→ T (O)

such that O is an identity object of ⊗̂ preserving T ;
(C8) for every object L of C such that T (L) is one dimensional, there is

an object L−1 of C such that L⊗̂L−1 is isomorphic to O.

Then there exists a unique affine algebraic group scheme H defined
over k such that the quadruple (C, ⊗̂, T,O) is identified with the quadru-
ple (H–mod, ⊗̂, T,O).

Any quadruple (C, ⊗̂, T,O) as in Theorem 2.1 satisfying all the condi-
tions in Theorem 2.1 will be called a neutral Tannakian category (see [11,
p. 76]).

Let H1 and H2 be two affine algebraic group schemes. An algebraic
group homomorphism H1 −→ H2 is defined by a morphism of neutral
Tannakian categories

CI : H2–mod −→ H1–mod (2.4)

compatible with ⊗̂, T and O. Such a morphism CI defines a closed embed-
ding of H1 in H2 if and only if every object of H1–mod is isomorphic to a
subquotient (in H1–mod) of the image of an object of H2–mod under CI .
This is proved in [7, p. 139, Proposition 2.21(b)].

Next we recall a description of principal bundles over a scheme S defined
over k using the language of categories and functors in a similar spirit. Let
H be an affine algebraic group scheme defined over k and EH −→ S a
principal H-bundle over S. Then for every object

ρ : H −→ GL(V )

in H–mod we can construct the associated vector bundle Eρ := EH ×H V

over S. Here EH×HV = (EH×V )/H with the action of any h ∈ H sending
any (z , v) ∈ EH ×V to (zh , ρ(h−1)v) (a point of a group scheme H over k
means a R-valued point for some k-algebra R). This defines a functor FE

from the category H–mod to the category of vector bundles Vect(S) on S.
Nori proved, in [11, Section 2.2], that this functor determines the principal
H-bundle in the following sense:

Theorem 2.2. ([11]) Let F : H–mod −→ Vect(S) be a functor satisfying
the following:
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(F1) F is a k–additive exact functor;
(F2) F ◦ ⊗̂ = ⊗ ◦ (F × F);
(F3)1 the functor F preserves commutativity, or in other words, if c is the

canonical isomorphism of V ⊗̂W with W ⊗̂V in H–mod, then F(c)
is the canonical isomorphism of the corresponding vector bundles;

(F3)2 the functor F preserves associativity, which means that if a is the
canonical isomorphism of U⊗̂(V ⊗̂W ) with (U⊗̂V )⊗̂W in H–mod,
then F(a) is the canonical isomorphism of the corresponding vector
bundles;

(F3)3 the vector bundle F(O) is the trivial line bundle OS on S;
(F4) for any V ∈ H–mod of dimension n, the vector bundle F(V ) is of

rank n.

Then there exists a unique principal H-bundle E −→ S such that F is
identified with FE.

Let

ρ : H1 −→ H2 (2.5)

be a group homomorphism defined by the functor

CI : H2–mod −→ H1–mod

as in Eq. (2.4). Suppose E1 −→ S is a principal H1-bundle defined by a
functor F1 : H1–mod −→ Vect(S). We define

F2 : H2–mod −→ Vect(S)

by F2 := F1 ◦ CI . Since both F1 and CI are additive, exact, preserving
commutativity and associativity it follows that F2 satisfies all the conditions
(F1), (F2), (F3)1 and (F3)2 in Theorem 2.2. For the remaining conditions
in Theorem 2.2, recall that CI takes O to O, and it preserves the rank of the
modules. In view of this, the functor F2 satisfies both (F3)3 and (F4) as the
functor F1 does so. Consequently, F2 defines a principal H2-bundle over S;
the principal H2-bundle constructed this way will be denoted by E2. This
principalH2-bundle E2 is identified with the principalH2-bundle E1×H1H2

obtained by extending the structure group of E1 using the homomorphism
ρ in Eq. (2.5). We recall that E1×H1H2 = (E1×H2)/H1, where the action
of any h ∈ H1 sends any (z , h2) ∈ E1 ×H2 to (zh , ρ(h−1)h2).

Definition 2.1. Let E2 be a principal H2-bundle over S given by a functor
F2 as in Theorem 2.2. A reduction of structure group to a closed subgroup
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scheme H1 ⊂ H2 is a principal H1-bundle E1 given by a functor F1 that
satisfies the identity

F2 = F1 ◦ CI ,

where CI is the functor as in Eq. (2.4) defining the subgroup H1 ↪→ H2.

Giving a reduction of structure group of a principalH2-bundle E2 over S
to a closed subgroup scheme H1 ⊂ H2 is equivalent to giving a subscheme

E1 ⊂ E2

such that the action of H1 on E2 preserves E1 making it a principal H1-
bundle over S.

2.3. A Tannakian Category for a Pointed Curve

Fix a field k. Let X be a geometrically irreducible smooth projective curve
defined over this field k.

The notion of a semistable vector bundle was introduced by Mumford;
we will recall the definition.

A vector bundle E over X is called semistable if for every subbundle
V ⊂ E of positive rank, the inequality

degree(V )
rank(V )

≤ degree(E)
rank(E)

(2.6)

holds. If

degree(V )
rank(V )

<
degree(E)
rank(E)

(2.7)

for all subbundles V with 0 < rank(V ) < rank(E), then E is called stable.
The rational number degree(E)

rank(E) is called the slope of E, and it is customary
to denote it by µ(E).

Let  be a field extension of k. If a vector bundle E over X admits a
subbundle V with µ(V ) > µ(E), then for the subbundle V

⊗
k  of the

vector bundle E
⊗

k  over X ×k , the inequality µ(V
⊗

k ) > µ(E
⊗

k )
holds. In other words, if E is not semistable, then E

⊗
k  is not semistable.

The following proposition shows that the converse is also valid.

Proposition 2.1. Let  be a field extension of k. A vector bundle E over
X is semistable if and only if the vector bundle E

⊗
k  over X ×k  is

semistable.
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The above proposition is proved in [9] under the assumption that k is
infinite (see [9, p. 97, Proposition 3]), and it is proved in [8] under the
assumption that k is perfect (see [8, p. 222]). Hence the proposition holds
for all fields.

If the characteristic of k is p, with p > 0, then we have the Frobenius
map

Fk : k −→ k

defined by λ 
−→ λp. Consider the Cartesian diagram

X
π−→ X1

ϕ−→ X� �
Spec(k) Fk−→ Spec(k)

(2.8)

where and π is the relative Frobenius map (see [13, p. 118]). The composi-
tion ϕ ◦ π will be denoted by FX . If the characteristic of k is zero, then FX

will denote the identity map of X .
A semistable vector bundle W over X is called strongly semistable if the

iterated pull back

(

n−times︷ ︸︸ ︷
FX ◦ · · · ◦ FX)∗W

is semistable for all n ≥ 1.
So if the characteristic of k is zero, then any semistable vector bundle

is strongly semistable. We note that strongly semistable vector bundles are
usually defined under the assumption that the base field is perfect. In view
of Proposition 2.1, the above definition is compatible with it.

Let SX denote the category of all strongly semistable vector bundles on
X . Let CX denote the space of all maps

f : Q −→ Obj(SX) (2.9)

satisfying the following two conditions:

• f(λ) = 0 for all but finitely many rational numbers, and
• For any λ ∈ Q with f(λ) �= 0,

µ(f(λ)) := λ .

We will define direct sum and tensor product, as well as dual, of objects
of CX .
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If E ,F ∈ SX (see Eq. (2.9)) with µ(E) = µ(F ), then the direct sum
E
⊕
F is also strongly semistable with µ(E

⊕
F ) = µ(E). Also, the dual

vector bundle E∗ is strongly semistable with µ(E∗) = −µ(E).
For any f, g ∈ CX , define f

⊕
g ∈ CX by

λ 
−→ f(λ)⊕ g(λ) .

Define the dual f∗ of f by

λ 
−→ f(−λ)∗ .

For V ,W ∈ SX of positive ranks, the vector bundle V
⊗
W is also

strongly semistable ([12, p. 288, Theorem 3.23]). We also note that

µ(V
⊗

W ) = µ(V ) + µ(W ) . (2.10)

For any f, g ∈ CX , define

(f ⊗ g)(λ) :=
⊕
z∈Q

f(z)⊗ g(λ− z) . (2.11)

For any two objects f , g ∈ CX , an element of

Hom(f , g) :=
⊕
γ∈Q

H0(X, Hom(f(γ) , g(γ))) (2.12)

will be called a homomorphism from f to g. Any h ∈ Hom(f , g) will also
be considered as a map

h : Q −→
⊕
γ∈Q

H0(X, Hom(f(γ) , g(γ)))

such that h(γ) ∈ H0(X, Hom(f(γ) , g(γ))) for all γ.
A homomorphism h from f to g will be called an isomorphism if

h(γ) : f(γ) −→ g(γ)

is an isomorphism for all γ ∈ Q.
Take any object f in the category CX . A sub–object of f is an object f ′

in CX such that for each λ ∈ Q, the vector bundle f ′(λ) is a subbundle of
the vector bundle f(λ). If f ′ is a sub–object of f , then the object of CX that
sends any λ ∈ Q to the quotient vector bundle f(λ)/f ′(λ) will be called
a quotient–object of f . For any object f of the category CX , a sub-quotient
of f is a sub–object of some quotient–object of f .

Let ϕ : V −→ W be a homomorphism between strongly semistable
vector bundles V and W over X with

µ(V ) = µ(W ) . (2.13)
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Then either ϕ is injective, or kernel(ϕ) is a strongly semistable vector bun-
dle over X with µ(kernel(ϕ)) = µ(V ). Similarly, either ϕ is surjective or
cokernel(ϕ) := W/ϕ(V ) is a strongly semistable vector bundle over X with
µ(cokernel(φ)) = µ(W ).

Take any f , f ′ ∈ CX and any h ∈ Hom(f , f ′) (see Eq. (2.12)). Con-
sider the function Q −→ SX that sends any λ ∈ Q to the kernel of the
homomorphism

h(λ) : f(λ) −→ f ′(λ) .

This function defines an object of CX , which we will call the kernel of h,
and it will be denoted by kernel(h). So kernel(h) is a sub–object of f .

Similarly, the object of CX defined by function Q −→ SX that sends
any λ ∈ Q to the cokernel of the homomorphism

h(λ) : f(λ) −→ f ′(λ)

will be called the cokernel of h, and it will be denoted by cokernel(h). So
cokernel(h) is a quotient–object of f ′.

We note that CX is an abelian category.
We will henceforth assume that the curve X admits a k–rational point.

Fix a k–rational point x of X .
For any vector bundle V over X , the fiber of V over x will be denoted

by Vx.
The category of finite dimensional vector spaces over the field k will be

denoted by k–mod.
We have a functor

ω : CX −→ k–mod (2.14)

defined by

f 
−→
⊕
z∈Q

f(z)x .

Let OX be the trivial line bundle over X defined by the structure sheaf
of X . The object in CX that sends any λ ∈ Q \ {0} to the vector bundle of
rank zero and sends 0 to OX will also be denoted by OX .

The triple (CX ,OX , ω), where ω is defined in Eq. (2.14) and OX ∈ CX

is the object defined above, together form a neutral Tannakian category
over k; see [7], [10] for neutral Tannakian category. Any neutral Tannakian
category over k gives an affine group scheme defined over k (see Theorem
2.1). Hence the triple (CX ,OX , ω) produce an affine group scheme defined
over k.
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Let GX denote the group scheme defined over k given by the neutral
Tannakian category (CX ,OX , ω).

We will now show that there is a tautological principal GX–bundle over
X .

Let Vect(X) denote the category of vector bundles over X . We have a
functor

FX : CX −→ Vect(X) , (2.15)

defined by

f 
−→
∞⊕

λ=−∞
f(z) .

Using [11, Lemma 2.3, Proposition 2.3], the functor FX in Eq. (2.15) defines
a principal GX–bundle over X , where GX is the affine group scheme defined
above (see Theorem 2.2).

Let EGX denote the tautological GX–bundle over X constructed above.

2.4. Monodromy of a Strongly Semistable Principal Bundles

As before, k is any field, X is a geometrically irreducible smooth projective
curve defined over k and x is a k–rational point of X .

Let G be a linear algebraic group defined over the field k. Let Z ′0(G)
denote the connected component, containing the identity element, of the
reduced center of G.

We assume that G satisfies the following condition: there is no nontrivial
character of G which is trivial on Z ′0(G).

Let

Z0(G) ⊂ Z ′0(G) (2.16)

be the (unique) maximal split torus contained in Z ′0(G). Let Z0(G)∗ de-
note the group of all characters of Z0(G). The subgroup Z0(G) gives a
decomposition of any G–module, which we will describe now.

Let V be a finite dimensional left G–module. Let be the decomposition

V =
⊕

χ∈Z0(G)∗
Vχ , (2.17)

into isotypical components of the Z0(G)–module V . So for any character χ
of Z0(G),

Vχ ⊂ V
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is the subspace on which Z0(G) acts as scalar multiplications through the
character χ. It is easy to see that each Vχ is left invariant by the action of
G on V .

See [6] for the proof of the following lemma.

Lemma 2.1. Take any character χ ∈ Z0(G)∗. Let V and W be two
nonzero finite dimensional left G–modules such that Z0(G) acts on both
V and W as scalar multiplications through the character χ. Let EG be a
principal G–bundle over X. Let EV (respectively, EW ) be the vector bun-
dle over X associated to the principal G–bundle EG for the G–module V
(respectively, W ). Then

µ(EV ) = µ(EW ) .

The following is a corollary of [7, p. 139, Proposition 2.21].

Corollary 2.1. All characters of Z0(G) arise from the indecomposable rep-
resentations of G. In other words, for any character χ of Z0(G), there is
some nonzero finite dimensional indecomposable left G–module V such that
Z0(G) acts on V as scalar multiplications through the character χ.

If E and F are two vector bundles over X , then µ(E
⊗
F ) = µ(E) +

µ(F ). Therefore, Lemma 2.1 and Corollary 2.1 combine together to give
the following corollary:

Corollary 2.2. Fix any principal G–bundle EG over X. Then there is a
homomorphism to the additive group

δEG : Z0(G)∗ −→ Q

that sends any character χ to µ(EV ), where V is a finite dimensional
nonzero left G–module on which Z0(G) acts as scalar multiplications
through the character χ, and EV is the vector bundle over X associated
to the principal G–bundle EG for the G–module V .

Definition 2.2. Let G be any affine group scheme defined over k. A princi-
pal G–bundle EG over a geometrically irreducible smooth projective curve
X will be called strongly semistable if for any indecomposable finite dimen-
sional left G–module V ∈ G–mod, the vector bundle over X associated to
EG for V is strongly semistable.

See [13], [12] for the definition of a (strongly) semistable principal bun-
dle with a reductive group as the structure group. We will show that the
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above definition coincides with the usual definition a (strongly) semistable
principal G–bundle when G is reductive. For that we will need the follow-
ing theorem. We note that Definition 2.2 is justified by the following lemma
which is proved in [6].

Lemma 2.2. Let H be a reductive linear algebraic group and X a ge-
ometrically irreducible smooth projective curve defined over k. A principal
H–bundle EH over X is strongly semistable if and only if for every indecom-
posable H–module V , the vector bundle EV = EH(V ) over X associated
to the principal H–bundle EH for V is strongly semistable.

Let EG be a strongly semistable principal G–bundle over X . To each
G–module we will associate an object of the neutral Tannakian category
CX that we constructed in Section 2.3.

Let V be a finite dimensional left G–module. We noted earlier that each
Vχ in Eq. (2.17) is a G–module. Let EVχ be the vector bundle over X
associated to the principal G–bundle EG for the above G–module Vχ.

The following lemma is proved in [6].

Lemma 2.3. The vector bundle EVχ is strongly semistable, and if Vχ �= 0,
then

µ(EVχ) = δEG(χ) ,

where δEG is the homomorphism constructed in Corollary 2.2.

Lemma 2.3 has the following corollary:

Corollary 2.3. For any λ ∈ Q and any V ∈ G–mod, the direct sum

Eλ
G(V ) :=

⊕
{χ∈Z0(G)∗|δEG

(χ)=λ}
EVχ

is either zero, or it is a strongly semistable vector bundle with

µ(Eλ
G(V )) = λ .

As before, G–mod denote the category of finite dimensional G–modules.
As before, by Vect(X) we will denote the category of vector bundles over
X . Consider the function

fEG,V : Q −→ Vect(X)

defined by

fEG,V (λ) := Eλ
G(V ) , (2.18)
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where V ∈ G–mod, and Eλ
G(V ) is defined in Corollary 2.3. From Corollary

2.3 it follows immediately that this function fEG,V is an object of the cat-
egory CX constructed in Section 2.3. Therefore, to each object of G–mod
we have associated an object of CX .

Let CEG denote the subcategory of CX defined by all objects f of CX such
that there exists some V ∈ G–mod with the property that f is isomorphic
to a sub-quotient of fEG,V , where fEG,V is the object of CX constructed
from V in Eq. (2.18). The morphisms remain unchanged. In other words,
for any two objects f and f ′ in CEG , the morphisms from f to f ′ are the
morphisms from f to f ′ considered as objects of CX .

It is straight–forward to check that CEG is a neutral Tannakian subcat-
egory of CX . Therefore, the neutral Tannakian category CEG gives an affine
group scheme defined over k (see Theorem 2.1).

Definition 2.3. The affine group scheme defined over k given by the neu-
tral Tannakian category CEG will be called the monodromy group scheme
of EG. The monodromy group scheme of EG will be denoted by M .

Since CEG is a Tannakian subcategory of CX , the monodromy group
scheme M is a quotient of the group scheme GX constructed in Section 2.3
(see [7, Proposition 2.21]). Let

φEG : GX −→ M (2.19)

be the quotient map.
Just as we have the tautological GX–bundle EGX , there is a tautological

principal M–bundle over X .

Definition 2.4. Let EM denote the tautological principal M–bundle over
X . This principal M–bundle EM will be called the monodromy bundle for
EG.

The principal M–bundle EM is evidently the one obtained by extending
the structure group of the principal GX–bundle EGX using the homomor-
phism φEG in Eq. (2.19).

We will next show that there is a tautological embedding of the mon-
odromy group scheme M into the fiber, over the fixed k–rational point
x ∈ X , of the adjoint bundle for EG.

Let Ad(EG) be the adjoint bundle for the principal G–bundle EG over
X . Let Ad(EG)x be the fiber of Ad(EG) over the fixed k–rational point x
of X .
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If ω is the fiber functor for the principal G–bundle EG over X , then
the group Ad(EG)x defined over k represents the functor Aut⊗(ω). Using
Theorem 2.11 in [7, p. 130], we get a natural homomorphism from the group
scheme GX (constructed in Section 2.3) to Ad(EG)x. Let

Φ(EG) : GX −→ Ad(EG)x (2.20)

be this natural homomorphism.
It is easy to see that the image of the homomorphism Φ(EG) in

Eq. (2.20) coincides with the monodromy group scheme M in Definition
2.3.

Therefore, we have the following proposition:

Proposition 2.2. The monodromy group scheme M for EG (introduced in
Definition 2.3) is identified with the image of the homomorphism Φ(EG) in
Eq. (2.20). In other words, the kernel of the homomorphism Φ(EG) coin-
cides with the kernel of the homomorphism φEG in Eq. (2.19).

There is a natural inclusion M ↪→ Ad(EG)x obtained from the fact that
the quotients of GX for the two homomorphisms Φ(EG) and φEG coincide.

We will now investigate the behavior of the monodromy group and the
monodromy bundle under the extensions of structure group.

Let

ρ : G −→ G1 (2.21)

be an algebraic homomorphism between linear algebraic groups defined
over k. Let Z0(G1) denote the (unique) maximal split torus contained in
the reduced center of G1. We assume the following:

• The group G1 does not admit any nontrivial character which is
trivial on Z0(G1).

• The homomorphism ρ in Eq. (2.21) satisfies the condition

ρ(Z0(G)) ⊂ Z0(G1) . (2.22)

The following lemma in proved in [6].

Lemma 2.4. Let EG be a strongly semistable principal G–bundle over
X. Then the principal G1–bundle EG1 := EG(G1), obtained by extending
the structure group of EG using ρ (defined in Eq. (2.21)) is also strongly
semistable.

Let EG be a strongly semistable principal G–bundle over X . Hence
by Lemma 2.4, the principal G1–bundle EG1 , obtained by extending the
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structure group of the principal G–bundle EG using the homomorphism ρ,
is also strongly semistable. The homomorphism ρ in Eq. (2.21) induces a
homomorphism of group schemes

ρ̃ : Ad(EG) −→ Ad(EG1) (2.23)

over X .
The following lemma is proved in [6].

Lemma 2.5. The monodromy group scheme M1 ⊂ Ad(EG1)x for EG1

is the image ρ̃(x)(M), where ρ̃(x) is the homomorphism in Eq. (2.23) re-
stricted to the k–rational point x of X, and M ⊂ Ad(EG)x is the mon-
odromy group scheme of EG (see Proposition 2.2). Furthermore, the mon-
odromy bundle EM1 for EG1 is the extension of structure group of the mon-
odromy bundle EM for EG by the homomorphism M −→ M1 obtained by
restricting ρ̃(x).

2.5. More on Monodromy

For a subgroup scheme H ⊂ G, let (H
⋂
Z0(G))red denote the reduced

intersection; let (H
⋂
Z0(G))0 denote the (unique) maximal split torus con-

tained in the abelian group (H
⋂
Z0(G))red.

As before, let EG be a principal G–bundle EG over the curve X .

Definition 2.5. A reduction of structure group

EH ⊂ EG (2.24)

of EG to a subgroup scheme H ⊂ G will be called balanced if for every
character χ of H trivial on (H

⋂
Z0(G))0 ⊂ H (see the above definition),

we have

degree(EH(χ)) = 0 ,

where EH(χ) is the line bundle overX associated to the principalH–bundle
EH for the character χ.

Since any character of (H
⋂
Z0(G))red/(H

⋂
Z0(G))0 is of finite order,

if a character χ of H is trivial on (H
⋂
Z0(G))0, then there is a positive

integer n such that the character χn of H is trivial on (H
⋂
Z0(G))red.

Therefore, a reduction of structure group EH ⊂ EG as in Definition 2.5 is
balanced if and only if for every character χ of H trivial on (H

⋂
Z0(G))red

we have

degree(EH(χ)) = 0 .
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Since the quotient (H
⋂
Z0(G))/(H

⋂
Z0(G))red is a finite group

scheme, if a character χ of H is trivial on (H
⋂
Z0(G))red, then there is a

positive integer n such that the character χn of H is trivial on H
⋂
Z0(G).

Therefore, a reduction EH ⊂ EG as in Definition 2.5 is balanced if and
only if for every character χ of H trivial on H

⋂
Z0(G) we have

degree(EH(χ)) = 0 .

The following proposition is proved in [6].

Proposition 2.3. Let EG be a strongly semistable principal G–bundle over
X and EH ⊂ EG a balanced reduction of structure group of EG to a sub-
group scheme H ⊂ G. Then the principal H–bundle EH over X is strongly
semistable.

Let EG be a strongly semistable principal G–bundle over X . In Propo-
sition 2.2 we saw that the monodromy group scheme M (constructed in
Definition 2.3) is canonically embedded in Ad(EG)x. For national conve-
nience, we will denote by G̃ the group Ad(EG)x defined over k. Let EG̃ be
the principal G̃–bundle over X obtained by extending the structure group
of the monodromy bundle EM (see Definition 2.4) using the inclusion of M
in G̃. Therefore,

EM ⊂ EG̃ (2.25)

is a reduction of structure group of EG̃ to M .
Let Z0(G̃) denote the unique maximal split torus contained in the re-

duced center of G̃.
The following theorem is proved in [6].

Theorem 2.3. Assume that the group G̃ := Ad(EG)x does not admit
any nontrivial character which is trivial on Z0(G̃). Then the reduction of
structure group in Eq. (2.25) is a balanced reduction of structure group of
EG̃ to M . In particular, the principal M–bundle EM is strongly semistable.

Assume that the fiber of the principal G–bundle EG, over the k–rational
point x of X , admits a rational point. If we fix a rational point in the fiber
of EG over x, then G̃ gets identified with G, and the principal bundle EG̃

gets identified with EG.
If EH ⊂ EG is a reduction of structure group, to a subgroup scheme

H ⊂ G, of a principal G–bundle EG over X , then the adjoint bundle
Ad(EH) is a subgroup scheme of the group scheme Ad(EG) over X .
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The following theorem is proved in [6].

Theorem 2.4. Let EG be a strongly semistable principal G–bundle over a
geometrically irreducible smooth projective curve X defined over k, where G
is a linear algebraic group defined over k with the property that G does not
admit any nontrivial character which is trivial on Z0(G). Fix a k–rational
point x of X. Let H ⊂ G be a subgroup scheme and EH ⊂ EG a balanced
reduction of structure group of EG to H. Then the image in Ad(EG)x of the
monodromy group scheme M (image by the homomorphism in Proposition
2.2) is contained in the subgroup scheme Ad(EH)x ⊂ Ad(EG)x.

More properties of the monodromy group and the monodromy reduction
can be found in [5].

2.6. Bundles on Higher Dimensional Varieties

In this section we will assume k to be an algebraically closed field, but we do
not put any assumptions on the characteristic of k. Let X be an irreducible
smooth projective variety equipped with a very ample line bundle ξ.

The degree of a torsionfree coherent sheaf F on X is defined to be the
degree of F restricted to the general complete intersection curve obtained
by intersecting hyperplanes from the complete linear system |ξ|.

A torsionfree coherent sheaf E over X is called semistable (respectively,
stable) if the inequality Eq. (2.6) (respectively, Eq. (2.7)) holds for all
coherent subsheaves V ⊂ E with 0 < rank(V ) < rank(E). A semistable
sheaf is called polystable if it is a direct sum of stable sheaves.

As before, a semistable vector bundle E is called strongly semistable if
its iterated pullbacks by the self–map FX of X are all semistable. We recall
FX is the Frobenius map of X when the characteristic of k is positive, and
it is the identity map of X when the characteristic of k is zero.

Let E be a strongly semistable vector bundle overX . There is a filtration
of coherent subsheaves

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = E

such that each successive quotient Vi/Vi−1, i ∈ [1 , n], is polystable, and
µ(Vi/Vi−1) = µ(V ). More precisely, Vi/Vi−1 is the maximal polystable
subsheaf of E/Vi−1, which is also called the socle of E/Vi−1.

Let

UE ⊂ X (2.26)
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be the maximal Zariski open dense subset such that each Vi/Vi−1, i ∈
[1 , n], is locally free. It can be shown that E possesses a monodromy group
as well as a monodromy bundle over the open subset UE .

Compared to the case of curves, the construction of the monodromy
group and the monodromy bundle for higher dimensional X is technically
more complicated.

LetG be a connected reductive linear algebraic group defined over k. Let
EG be a strongly semistable principal G–bundle over X . Consequently, the
adjoint vector bundle ad(EG) is strongly semistable ([12, p. 288, Theorem
3.23]).

Fix a point x ∈ Uad(EG), where Uad(EG) is constructed as in Eq. (2.26).
There is a canonical monodromy group H ⊂ Ad(EG)x as well as a mon-
odromy reduction over the open subset Uad(EG).
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A permutation group G (acting on a set Ω, usually infinite) is said to
be oligomorphic if G has only finitely many orbits on Ωn (the set of n-
tuples of elements of Ω). Such groups have traditionally been linked with
model theory and combinatorial enumeration; more recently their group-
theoretic properties have been studied, and links with graded algebras,
Ramsey theory, topological dynamics, and other areas have emerged.

This paper is a short summary of the subject, concentrating on
the enumerative and algebraic aspects but with an account of group-
theoretic properties. The first section gives an introduction to permuta-
tion groups and to some of the more specific topics we require, and the
second describes the links to model theory and enumeration. We give
a spread of examples, describe results on the growth rate of the count-
ing functions, discuss a graded algebra associated with an oligomorphic
group, and finally discuss group-theoretic properties such as simplicity,
the small index property, and “almost-freeness”.

3.1. Introduction

Despite the history and importance of group theory, we have very little
idea what an arbitrary group looks like. We have made important strides
in understanding finite groups, by determining the finite simple groups;
but we can only study general groups under some very strong condition,
usually a finiteness condition. We have theories of finitely generated groups,
locally finite groups, residually finite groups, groups of finite cohomological
dimension, linear groups, profinite groups, and so forth, but no theory of
general groups.

37
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Oligomorphic groups satisfy a rather different kind of finiteness condi-
tion; paradoxically, one which makes them “large” rather than “small”. A
permutation group G (a subgroup of the symmetric group on a set Ω) is
said to be oligomorphic if G has only finitely many orbits on Ωn for every
natural number n. (An element of G acts componentwise on the set Ωn of
all n-tuples of points of Ω.)

Thus, by definition, an oligomorphic group G gives us a sequence of
natural numbers, the numbers of orbits on n-tuples for n = 0, 1, 2, . . . .
Not surprisingly, the theory is connected with counting problems in vari-
ous parts of mathematics (combinatorics, model theory, graded algebras).
Curiously, there is rather less we can say about the groups themselves. If
G is oligomorphic and H is a proper subgroup having the same orbits on
n-tuples as G for all n, then counting cannot distinguish between G and
H , even though they may be very different as groups (for example, G may
be simple while H is a free group).

In the remainder of this section, we introduce some basics of permuta-
tion group theory and of the counting functions associated with oligomor-
phic groups. For further information about permutation groups, see [7, 14].
Note also that there are many connections between parts of the theory
of oligomorphic groups and that of (combinatorial) species, as developed
by [21].

3.1.1. Permutation groups

This section is a brief introduction to permutation groups. For more details,
see [7].

The symmetric group Sym(Ω) on a set Ω is the group of all permutations
of Ω. If Ω is finite, say Ω = {1, 2, . . . , n}, we write the symmetric group as
Sn. We write permutations on the right, so that the image of α under g is
written αg.

An orbit of G is an equivalence class of the relation α ∼ β if αg = β for
some g ∈ G; in other words, a set of the form {αg : g ∈ G}. We say that G
is transitive if it has only one orbit. In a sense, any permutation group can
be “resolved” into transitive groups.

There is a partial converse. If Gi is a transitive permutation group on
Ωi for i ∈ I, where I is some index set, the cartesian product

∏
i∈I Gi is

the set of functions f : I → ⋃
i∈I Gi satisfying f(i) ∈ Gi for all i ∈ I. It

has two natural actions:

• The intransitive action on the disjoint union of the sets Ωi: if α ∈ Ωi,
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then αf = αf(i). If each group Gi is transitive, then the sets Ωi are
the orbits of the cartesian product.

• There is also a product action, componentwise on the cartesian prod-
uct of the sets Ωi.

If I is finite, we speak of the direct product, and write it as (for example)
G1 × · · · ×Gk, if I = {1, . . . , k}.

Thus, if G1 = Sn and G2 = Sm, then G1×G2 has an intransitive action
on m+n points, and a product action on mn points (which can be regarded
as a rectangular grid with G1 permuting the rows and G2 the columns).

Now let G be transitive on Ω. A congruence is an equivalence relation
on Ω which is G-invariant. There are two “trivial” congruences on Ω: the
relation of equality, and the “universal” relation with a single equivalence
class. We say that G is primitive if there are no other congruences. For
example, the symmetric group is primitive.

Important examples of imprimitive groups are the wreath products, de-
fined as follows. Let H be a permutation group on Γ, and K a permutation
group on ∆. Let Ω = Γ×∆, regarded as a union of copies of Γ indexed by
∆: thus Γδ = {(γ, δ) : γ ∈ Γ}, for each δ ∈ ∆. Take a copy Hδ of H for each
δ ∈ ∆, where Hδ acts on Γδ. Then the cartesian product B =

∏
δ∈∆Hδ

acts on Ω (in its intransitive action). Moreover, the group K acts on Ω by
permuting the second components (i.e. by permuting the “fibres” Γδ. The
wreath product G = HWrK is the group generated by B and K; we call B
the base group (it is a normal subgroup) and K the top group of the wreath
product.

We note that there are different notations and conventions in other areas
of mathematics. For example, in experimental design in statistics (cf. [2]),
direct product (product action) is called crossing, and wreath product is
called nesting, but nesting is written with the top structure before the
bottom one, e.g. ∆/Γ in our case.

If |Γ| > 1 and |∆| > 1, the wreath product is imprimitive: the relation
(γ, δ) ≡ (γ′, δ′) if δ = δ′ is a congruence. For this reason it is called the
imprimitive action. Any imprimitive permutation group can be embedded
in a wreath product in a natural way.

There is another action of the wreath product, the power action, on
the set Γ∆ of functions from ∆ to Γ. It bears a similar relation to the
imprimitive action as the product action does to the intransitive action for
the cartesian product. If we regard the domain of the imprimitive action
as a fibred space, with fibres Γδ isomorphic to Γ indexed by ∆, then the
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domain for the power action is the set of global sections (subsets containing
one point from each fibre).

3.1.2. Oligomorphic permutation groups

For a natural number n, a permutation group is n-transitive if it acts tran-
sitively on the set of n-tuples of distinct elements of Ω, and n-set-transitive
if it acts transitively on the set of n-element subsets of Ω. We say a per-
mutation group is highly transitive if it is n-transitive for all n, and highly
set-transitive if it is n-set-transitive for all n.

Oligomorphic permutation groups generalise these classes. Thus, we let
Fn(G) denote the number of orbits of G on the set of n-tuples of distinct
elements, and fn(G) the number of orbits on n-element subsets. So G is
n-transitive (resp. n-set-transitive) if Fn(G) = 1 (resp. fn(G) = 1). If the
group G is clear, we drop it and write simply Fn, fn.

The definition speaks of orbits on Ωn, the set of all n-tuples. Let F ∗n(G)
denote the number of these orbits. It is clear that, for given n, one of these
numbers is finite if and only if the others are; indeed, we have

• F ∗n =
n∑

k=1

S(n, k)Fk, where S(n, k) is the Stirling number of the sec-

ond kind (the number of partitions of an n-set into k parts);
• fn ≤ Fn ≤ n! fn.

As an example for the first point, if G is highly transitive, then

F ∗n(G) =
n∑

k=0

S(n, k) = B(n),

the nth Bell number (the number of partitions of an n-set).
In the second point, both bounds are attained:

• Let G = Sym(Ω) (we will always denote this group by S). Then
fn(S) = Fn(S) = 1 for all n.

• Let G be the group of order-preserving permutations of the rational
numbers (we will always denote this group by A). We can map any
n rational numbers in increasing order to any other n such by an
order-preserving permutation (by filling in the gaps to produce a
piecewise-linear map); so fn(A) = 1 and Fn(A) = n!.

Highly set-transitive groups must resemble the above types. All we can
do is to modify the total order slightly. The following is proved in [3].
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Theorem 3.1. Let G be a highly set-transitive but not highly transitive
permutation group. Then there is a linear or circular order preserved by G.
In particular, G is not 4-transitive.

3.1.3. Topology

We will only consider permutation groups of countable degree in this ar-
ticle. If we are interested in the sequences fn and Fn, this is justified by
the following result, which follows from the Downward Löwenheim–Skolem
Theorem of model theory:

Proposition 3.1. Let G be an oligomorphic permutation group on an infi-
nite set. Then there is an oligomorphic permutation group G′ on a countably
infinite set such that Fn(G′) = Fn(G) and fn(G′) = fn(G) for all n ∈ N.

There is a natural topology on the symmetric group of countable de-
gree. This is the topology of pointwise convergence, where a sequence (gn)
converges to g if αign = αig for all sufficiently large n, where (α1, α2, . . .) is
an enumeration of Ω. This topology can be derived from a complete metric.
The topology is specified by the first part of the proposition below.

Proposition 3.2.

(a) G is open in Sym(Ω) if and only if it contains the pointwise stabiliser
of a finite set.

(b) G is closed in Ω if and only if G is the automorphism group of a
relational structure on Ω, that is, a family of relations (of various
arities) on Ω.

The closure of a permutation group G consists of all permutations which
preserve the G-orbits on Ωn for all n. We remarked earlier that, as far as
orbit-counting goes, we cannot distinguish between groups with the same
orbits. The largest such group is necessarily closed in Sym(Ω). So we may
restrict our attention to closed groups of countable degree (that is, auto-
morphism groups of countable relational structures) if we are interested in
orbit-counting.

The fact that the topology on the symmetric group is derived from a
complete metric means that the same is true for any closed subgroup. This
permits use of the Baire category theorem. Recall that a subset of a complete
metric space is residual if it contains the intersection of countably many
open dense subsets. The Baire category theorem asserts that a residual
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set is non-empty. Indeed, residual sets are “large” (for example, they have
non-empty intersection with any open set, and the intersection of countably
many residual sets is residual). Often it is possible to give a non-constructive
existence proof for some object by showing that objects of the required type
form a residual set.

3.1.4. Cycle index

An important tool in combinatorial enumeration is the cycle index of a
finite permutation group G, which is the polynomial in the indeterminates
s1, s2, . . . , sn (where n is the degree) given by

Z(G; s1, s2, . . . , sn) =
1
|G|

∑
g∈G

s
c1(g)
1 s

c2(g)
2 · · · scn(g)

n ,

where ci(g) is the number of i-cycles in the decomposition of the permuta-
tion g into disjoint cycles.

For its role in enumeration, see [18].
One cannot simply take this definition unchanged for infinite permu-

tation groups, for several reasons: the number ci(g) may be infinite; there
may be infinite cycles; and the denominator |G| is infinite.

The trick to generalising it lies in the following result about finite groups,
the Shift Lemma. Let PΩ be the set of all subsets of the finite set Ω, and let
PΩ/G denote a set of representatives of the G-orbits on PΩ. Also, if X is
any subset of Ω, we let G[X ] denote the permutation group on X induced
by its setwise stabiliser in G.

Proposition 3.3. For a finite permutation group G on Ω,∑
X∈PΩ/G

Z(G[X ]; s1, s2, . . .) = Z(G; s1 + 1, s2 + 1, . . .).

Now let G be any oligomorphic permutation group on the (possibly
infinite) set Ω. We define the modified cycle index of G to be the left-hand
side of the Shift Lemma, with one small modification: we replace PΩ by
PfinΩ, the set of all finite subsets of Ω. Thus, the modified cycle index is

Z̃(G; s1, s2, . . .) =
∑

X∈PfinΩ/G

Z(G[X ]; s1, s2, . . .).

Each term in the sum is the cycle index of a finite permutation group.
Also since G is oligomorphic, there are only a finite number of terms in
the sum which contribute to the coefficient of a fixed monomial sc1

1 · · · scr
r ,
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namely those corresponding to the fn(G) orbits on sets of cardinality n =
c1 + 2c2 + · · · + rcr. (We see here that the definition would fail if G were
not oligomorphic.) So we have defined a formal power series in s1, s2, . . . .
We also see that if G happens to be a finite permutation group, then we
have the ordinary cycle index with 1 added to each indeterminate.

Our previous counting functions can be extracted from the modified
cycle index:

Proposition 3.4. Let G be an oligomorphic permutation group.

• FG(x) is obtained from Z̃(G) by substituting s1 = x and si = 0 for
i > 1.

• fG(x) is obtained from Z̃(G) by substituting si = xi for all i.

Just as before, it is true that

• for any oligomorphic permutation group G, there is an oligomorphic
group G′ of countable degree satisfying Z̃(G) = Z̃(G′);

• an oligomorphic group of countable degree and its closure have the
same modified cycle index.

So we may consider closed groups of countable degree.
We conclude this section by displaying the modified cycle index for

the groups S (the infinite symmetric group) and A (the group of order-
preserving permutations of Q).

Proposition 3.5.

Z̃(S) = exp

(∑
i≥1

si

i

)
;

Z̃(A) =
1

1− s1
.

3.2. Connections

Oligomorphic permutation groups are closely connected with two other ar-
eas of mathematics: model theory, and combinatorial enumeration. In this
section we discuss the connections.
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3.2.1. Model theory

Model theory describes structures consisting of a set with a collection of
constants, relations and functions. Much of mathematics can be fitted into
this framework, often in different ways. For example, a group has a binary
operation (composition), a unary operation (inversion), and a constant (the
identity); but the second and third may be defined in terms of the first. A
graph can be regarded as a set of vertices with a binary relation (adjacency),
or as a set of vertices and edges with a unary relation (to distinguish the
vertices) and a binary operation of incidence. The latter is appropriate for
multigraphs.

Logic describes such structures by means of collections of formulae. The
language includes symbols for the relations, functions, and constants, con-
nectives and quantifiers, equality, brackets, and a supply of variables. We
work in first-order logic: we are allowed to combine finitely many formulae
with connectives, and to quantify over variables which range over the un-
derlying set. I will assume that the language is countable. A sentence is a
formula with no free variables (all variables are quantified). Thus for exam-
ple the group axioms can be expressed as a single sentence (the conjunction
of the associative, identity and inverse laws, each universally quantified over
all variables).

A theory is a set of sentences; a structure is a model for a theory if every
sentence in the theory is true in the model.

Sometimes we want a theory to have a wide range of models (this is the
case with group theory). At other times, we have a particular model in mind,
and want to capture as much of its essence as possible in a theory (this is
the case with the Peano axioms for the natural numbers). It is known that,
as long as a theory has infinite models, it cannot have a unique model; there
will be models of arbitrarily large cardinality. The best we can do is ask
that the theory is α-categorical, where α is an infinite cardinal, meaning
that there is a unique model of cardinality α up to isomorphism. By a
theorem of Vaught, there are only two types of categoricity, countable and
uncountable: if a theory is α-categorical for some uncountable cardinal α,
then it is α-categorical for all such.

Uncountable categoricity gives rise to a powerful structure theory, ex-
tending that for vector spaces over a fixed field or algebraically closed
fields of fixed characteristic (where a single invariant, the rank, deter-
mines the model). By contrast, countable categoricity is related to sym-
metry, by the following remarkable theorem due independently to Engeler,
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Ryll-Nardzewski and Svenonius:

Theorem 3.2. Let M be a countable model of a theory T over a countable
language. Then T is ℵ0-categorical if and only if the automorphism group
of M is oligomorphic.

In fact, if M is the unique countable model of T , and G = Aut(M),
then F ∗n(T ) is the number of n-types over T (maximal consistent sets of
formulae in n free variables). So our results are applicable to counting types
in such theories.

Note in passing that the automorphism group of N is trivial; so the
Peano axioms have countable “non-standard” models.

3.2.2. Combinatorial enumeration

The set-up is similar, but we restrict ourselves to relational structures (no
function or constant symbols). We will see that the counting problems for
orbits on sets and tuples of oligomorphic permutation groups are identi-
cal with those for unlabelled and labelled structures in so-called oligomor-
phic Fräıssé classes of relational structures. These include large numbers of
combinatorially important classes of structures, so we have a rather general
paradigm for interesting counting problems.

Take a fixed relational language L (this means, each set carries named
relations of prescribed arities). For example, we could consider graphs, di-
rected graphs, tournaments, partially ordered sets, k-edge-coloured graphs,
graphs with a fixed bipartition, or much more recondite examples.

A Fräıssé class over L is a class C of finite relational structures over L
satisfying the following four conditions:

(a) C is closed under isomorphism;
(b) C is closed under taking induced substructures (this means, take a

subset of the domain, and all instances of all relations which are
contained within this subset);

(c) C has only countably many members up to isomorphism;
(d) C has the amalgamation property: this means that, if B1, B2 ∈ C

have isomorphic substructures, they can be “glued together” along
these substructures (or possibly more) to form a structure in C.
Formally, if A,B1, B2 ∈ C and fi : A → Bi is an embedding for
i = 1, 2, then there is a structure C ∈ C and embeddings hi : Bi → C

for i = 1, 2 so that h1f1 = h2f2.
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(The reader is warned that I allow the structure A to be empty here. Some
authors exclude this, state the special case where A = ∅ separately, and
call it the joint embedding property.)

For a simple example, finite graphs form a Fräıssé class: take the union
of B1 and B2 identifying the isomorphic substructures, and put any or no
edges between B1 \ A and B2 \ A. It is just a little more difficult to show
that finite total or partial orders form a Fräıssé class.

Let M be a structure over L. We make two definitions:

• The age of M is the class of all finite L-structures which are embed-
dable in M .

• M is homogeneous if any isomorphism between finite induced sub-
structures of M can be extended to an automorphism of M .

For example, the totally ordered set Q is homogeneous, and its age consists
of all finite totally ordered sets.

Fräıssé’s Theorem asserts:

Theorem 3.3. A class C of finite L-structures is the age of a countable
homogeneous L-structure M if and only if it is a Fräıssé class. If these
conditions hold, then M is unique up to isomorphism.

We call the countable homogeneous structure M the Fräıssé limit of the
class C. Thus, (Q, <) is the Fräıssé limit of the class of finite totally ordered
sets. The Fräıssé limit of the class of finite graphs is the celebrated random
graph, or Rado graph R, which is extensively discussed in [4].

Now suppose that a Fräıssé class satisfies the following stronger version
of condition (c):

(c′) For any n ∈ N, the class C has only finitely many n-element members
up to isomorphism.

We call such a class an oligomorphic Fräıssé class. All examples mentioned
so far are oligomorphic; the condition certainly holds if L contains only
finitely many relations. Let M be its Fräıssé limit, and let G = Aut(M) be
the automorphism group of M . By homogeneity, it follows that

• Fn(G) is the number of labelled n-element structures in C (that is,
structures on the set {1, 2, . . . , n};

• fn(G) is the number of unlabelled n-element structures in C (that
is, isomorphism classes of n-element structures).
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Some Fräıssé classes satisfy a stronger version of the amalgamation prop-
erty, called strong amalgamation. This is said to hold if the amalgam of any
two structures can be produced without identifying any points not in the
common substructure. More formally, if h1(b1) = h2(b2), then b1 = f1(a)
and b2 = f2(a) for some a ∈ A.

This holds in the above examples. An example where it fails is given
by the class of graphs consisting of isolated vertices and edges. If B1 and
B2 are edges and A a single vertex, then in the amalgam we are forced to
identify the other ends of the two edges as well.

Proposition 3.6. A Fräıssé class has the strong amalgamation property
if and only if the automorphism group of its Fräıssé limit has the property
that the stabiliser of any finite set of points fixes no additional points.

Later we will see a still stronger version.

3.3. Constructions

There are two main sources for examples of (closed) oligomorphic groups:
building new examples from old, or constructing Fräıssé classes (the group
is then the automorphism group of the Fräıssé limit of the class).

3.3.1. Direct and wreath products

Suppose that G1 and G2 are oligomorphic permutation groups on Ω1 and
Ω2 respectively. We can form their direct or wreath product, and each of
these has two actions, which we now discuss.

Direct product, intransitive action. The direct product G = G1×G2

acts on the disjoint union of Ω1 and Ω2, say Ω. An n-subset of Ω consists of
k points of Ω1 and n−k points of Ω2, for some k with 0 ≤ k ≤ n; two n-sets
are in the same G-orbit if and only if their intersections with Ωi are in the
same Gi-orbit for i = 1, 2. Thus (fn(G)) is the convolution of (fn(G1)) and
(fn(G2)):

fn(G) =
n∑

k=0

fk(G1)fn−k(G2),

from which it follows that the generating functions multiply:

fG(x) = fG1(x)fG2(x).
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Similarly, for Fn, we have an exponential convolution, so that the exponen-
tial generating functions also multiply:

FG(x) = FG1(x)FG2 (x).

The modified cycle index is also multiplicative:

Z̃(G) = Z̃(G1)Z̃(G2).

Direct product, product action. The direct product G1×G2 also has
a product action on the cartesian product Ω1 × Ω2. This is more difficult
to analyse; the recent paper [9] describes the situation.

First, there is a multiplicative property: it is easy to see that

F ∗n (G) = F ∗n(G1)F ∗n(G2).

The modified cycle index of the product can be computed as follows.
Define an operation on the indeterminates by

si • sj = (slcm(i,j))gcd(i,j).

Extend this operation multiplicatively to monomials and then additively to
sums of monomials. Then we have

Z̃(G) = Z̃(G1) • Z̃(G2).

It should clearly be possible to deduce the first of these relations from
the second; but this is surprisingly difficult (see the cited paper).

Here is an example. Consider first the groupG = A, the order-preserving
permutations of Q. We have Fn(G) = n!, and hence

F ∗n(G) =
n∑

k=1

S(n, k)k! = P (n),

the number of preorders of an n-set (reflexive and transitive relations).
Now let G = A× A with the product action. We have F ∗n(G) = P (n)2,

and so

Fn(G) =
n∑

k=1

s(n, k)P (k)2.

Moreover, since G (like A) has the property that the setwise stabiliser of
an n-set fixes it pointwise, we have

fn(G) = Fn(G)/n!.
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Now the exponential generating function for P (n) is 1/(2 − ex), with the
nearest singularity to the origin at log 2; so P (n) is roughly n!/(log 2)n.
So Fn(G) is about (n!)2/(log 2)2n. Since the Stirling numbers alternate in
sign, it is not completely trivial to find the asymptotics of fn(G). This was
achieved in [10], using three entirely different methods; it turns out that

fn(G) ∼ n!
4

e−
1
2 (log 2)2 1

(log 2)2n+2
.

In broad-brush terms, “factorial times exponential”.

Wreath product, imprimitive action. The wreath product G1WrG2

has its imprimitive action on Ω1 × Ω2; as we have seen, this should be
thought of as a covering of Ω2 with fibres isomorphic to Ω1. The function
FG(x) is found by substitution:

FG(x) = FG2(FG1(x)− 1).

In particular, for any oligomorphic group G, we have

FSWrG(x) = FG(ex − 1) = F ∗G(x),

so that Fn(SWrG) = F ∗n(G) for all n, as is easily seen directly.
For another example, we note that FGWrS(x) = exp(FG(x) − 1). Thus,

the substitution rule for the wreath product can be regarded as the proto-
type of a wide generalisation of the exponential principle in combinatorics
(cf. [16, 33]). If G is the automorphism group of the Fräıssé limit of a Fräıssé
class C, then GWrS is similarly associated with the class of disjoint unions
of C-structures; the exponential principle applies to this situation. In gen-
eral, if H is associated with a Fräıssé class D, then GWrH is associated
with the class of disjoint unions of C-structures with a D-structure on the
set of parts. For example, if H = A, then we have ordered sequences of C-
structures; if H is the automorphism group of the random graph, we have
a graph whose vertices are C-structures; and so on.

The numbers fn(G) of orbits on unordered sets cannot be obtained from
the sequences (fn(G1)) and fn(G2)) alone; we need the modified cycle index
of the top group G2. The generating function fG(x) is obtained from Z̃(G2)
by substituting fG1(x

i)− 1 for the variable si, for i = 1, 2, . . . .

Wreath product, power action. The wreath product also has a power
action on ΩΩ2

1 , the set of functions from Ω2 to Ω1 (the set of transver-
sals to the fibres in the imprimitive action). This action is not in general
oligomorphic; it is so if G2 is a finite group.
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It is shown in [9] that F ∗n(G) is obtained from the (ordinary) cycle index
of the finite group G2 by substituting F ∗n(G1) for all of the variables si.

3.3.2. Other examples

Further examples are most easily described as automorphism groups of
relational structures. As we have seen, any closed oligomorphic group of
countable degree is the automorphism group of a homogeneous relational
structure, which is the Fräıssé limit of a Fräıssé class of finite structures.
Sometimes the easiest way to specify the group is to give the Fräıssé class.

The random graph and some of its relations. LetR be the countable
random graph. This graph is the Fräıssé limit of the class of finite graphs.
There are direct constructions for it, see [4]: for example, the vertices are
the primes congruent to 1 mod 4, and p and q are joined if and only if p
is a quadratic residue mod q. Alternatively, as Erdős and Rényi showed, if
we form a countable random graph by choosing edges independently with
probability 1/2 from the 2-subsets of a countable set, the resulting graph
is isomorphic to R with probability 1.

The graph R is homogeneous, and contains all finite (and indeed all
countable) graphs as induced subgraphs. So, if G = Aut(R), then Fn(G)
is the number of labelled graphs on n vertices (which is 2n(n−1)/2), while
fn(G) is the number of unlabelled graphs on n vertices (which is asymptoti-
cally Fn(G)/n!). Note that these sequences grow so fast that the generating
functions converge only at the origin.

There are several related Fräıssé classes. Here are a few examples.

• In place of graphs, we can take directed graphs, or oriented graphs,
or tournaments, or k-uniform hypergraphs. Note that the auto-
morphism group of the random k-uniform hypergraph is (k − 1)-
transitive but not k-transitive; so every degree of transitivity is pos-
sible for infinite permutation groups.

• In [34] it is shown that there are only five closed supergroups of
Aut(R), namely

– Aut(R);
– The group D(R) of dualities (automorphisms and anti-

automorphisms) of R, which is 2-transitive and contains
Aut(R) as a normal subgroup of index 2;
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– The group S(R) of switching automorphisms of R (see below),
which is 2-transitive;

– The group B(R) of switching automorphisms and anti-
automorphisms of R, which is 3-transitive and contains S(R)
as a normal subgroup of index 2;

– the symmetric group.

• In [24] the countable homogeneous graphs were determined. There
are some trivial ones (disjoint unions of complete graphs of the same
size, and their complements); some non-trivial ones, the Henson
graphs and their complements; and the random graph. The Hen-
son graph Hn is the Fräıssé limit of the class of all finite graphs
which contain no complete graph of order n, for n ≥ 3. They are
not very well understood.

The operation σX of switching a graph with respect to a setX of vertices
consists in replacing edges between X and its complement by non-edges,
and non-edges by edges, while keeping things inside or outside X the same
as before. A permutation g is a switching automorphism of Γ if Γg = σX(Γ)
for some set X . Switching anti-automorphisms are defined similarly.

One curious fact is that Fn(S(R)) and fn(S(R)) are equal to the num-
bers of labelled and unlabelled even graphs on n vertices (graphs with all
vertex degrees even), although the even graphs do not form a Fräıssé class.

Ordered structures. An old theorem of Skolem says that, if two subsets
X and Y of Q are dense and have dense complements, then there is an order-
preserving permutation of Q carrying X to Y . More generally, consider
colourings of Q with m colours so that each colour class is dense. It is not
hard to show that there is a unique such colouring up to order-preserving
permutations. The automorpism group Am of such a colouring (the group
of permutations preserving the order and the colours) is oligomorphic, and
fn(Am) = mn. For, if {c1, . . . , cm} is the set of colours, then an n-set
{q1, . . . , qn}, with q1 < · · · < qm, can be described by a word of length n

in the alphabet {c1, . . . , cm}, whose ith letter is the colour of qi; two sets
lie in the same orbit if and only if they are coded by the same word, and
every word arises as the code of some subset.

We can modify this example in the same way we did for Q itself, allowing
ourselves to preserve or reverse the order, or turning it into a circular order.
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Treelike structures. There are vast numbers of treelike structures; I
cannot give even a brief overview, so I will concentrate on a couple of
examples.

Consider the class of boron trees, that is, finite trees in which each
vertex has degree 1 or 3. Consider any four leaves in such a tree. They are
connected by a graph of the following shape:

� �

� �

� �

�
��

�
���

��
�
��

We see that one of the three partitions of the four leaves into two sets of two
is distinguished by the fact that the paths joining vertices in the same pair
do not intersect. Thus, there is a quaternary relation on the set of leaves.
It is possible to show that this relation uniquely determines the boron tree,
and that the class of finite structures carrying quaternary relations which
arise in this way is a Fräıssé class. So there is a corresponding oligomorphic
group G, which is 3-transitive but not 4-transitive, and satisfies fn(G) ∼
An−5/2cn, where c = 2.483 . . . .

This construction can be modified in many ways, of which a few are
given below.

• We may consider trees with degrees 1, 3, 4, . . . ,m, or with any possi-
ble degree except 2. (Divalent vertices are invisible in this construc-
tion.)

• We may consider internal vertices as well as leaves: there will be a
ternary betweenness relation saying that one vertex is on the path
joining the other two.

• By embedding the trees in the plane, we may impose a circular order
on the set of leaves.

Many of these constructions give examples with exponential growth
(roughly cn for some c > 1).

Other examples. The symmetric group S on a countable set Ω has an
induced action on the set of k-element subsets of Ω, for any k. These groups
are oligomorphic, but except in the case k = 2, not much is known about
the asymptotics of the orbit-counting sequences (see [11] for the case k = 2).

Other examples are linear and affine groups on infinite-dimensional vec-
tor spaces over finite fields. See [12] for the asymptotics.
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3.4. Growth Rates

In this section we survey some known results about the rate of growth of
the sequences (fn(G)) and (Fn(G)) for an oligomorphic group G.

First, note that there is no upper bound for growth rates. Given any
sequence (an) of natural numbers, let L be a relational language containing
an n-ary relations C be the Fräıssé class consisting of all structures in which
an n-ary relation holds only if all its arguments are distinct. If G is the
automorphism group of the Fräıssé limit, then fn(G) ≥ 2an for all n. Indeed,
it is slow growth which is most interesting!

For intransitive or imprimitive groups, we can have polynomial growth
for (fn). For a simple example, if G is the direct product of r symmetric

groups (with the intransitive action), then fn(G) =
(
n+ r − 1
r − 1

)
, with

generating function fG(x) = (1 − x)−r.
For the same group, Fn(G) = rn, since the orbit of an n-tuple is de-

termined by the orbit containing each of its points. Recently it has been
shown (cf. [1]) that, if G is transitive, and the point stabiliser has m orbits
on the remaining points, then Fn(G) ≥ mn−1. Equality is possible here for
any m.

There is a gap above polynomial growth for (fn). The next possible
growth rate is fractional exponential, about exp(

√
n). This is realised by

the group G = SWrS, for which we have fn(G) = p(n), the number of
partitions of the integer n, with growth asymptotically

1
4n
√

3
exp(π

√
2n/3);

and Fn(G) = B(n), the number of partitions of an n-set (the Bell number),
whose growth is faster than exponential but slower than factorial.

However, if we insist that the group is primitive, there is a dramatic
change ([25, 29]):

Theorem 3.4. There is a number c > 1 such that the following holds.
Suppose that G is primitive but not highly set-transitive. Then

• fn(G) ≥ cn/q(n), for some polynomial q;
• Fn(G) ≥ n! cn/q(n), for some polynomial q.

In other words, for (fn), there is a gap between constant and exponential
growth! Merola’s proof gives the result with c = 1.324 . . . ; the best-known
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examples have c = 2 (these are circular versions of the rationals partitioned
into two dense subsets, that we met earlier).

The main problems for exponential growth are:

• prove that the “exponential constant” limn→∞(fn)1/n always exists;
• find the possible values it can take;
• find a structural description of the examples where the growth is no

faster than exponential.

What happens just above exponential growth? Here are some examples.

• Let C be the Fräıssé class each of whose members is a set with a pair
of total orders, and G the automorphism group of its Fräıssé limit.
Then fn(G) = n! and Fn(G) = (n!)2.

• The group SWrS2 with the power action is primitive. I do not know
what the asymptotic behaviour of (fn(G)) is. As explained earlier,
we find that

Fn(G) ∼ 1
2B(n)(B(n) + 1),

where B(n) is the Bell number.
• For the permutation group induced by S on the set of 2-element

subsets of the domain, we have

Fn(G) ∼ B(2n)2−nn−1/2 exp
(−[12 log(2n/ logn)]2

)
.

No clear evidence of a gap emerges from this limited data. In [26] there
are some theorems connecting growth just faster than exponential with
model-theoretic properties such as stability and the strict order property.

For the automorphism group of the random graph, the growth rate is
about exp(cn2). For such growth, it doesn’t make a lot of difference whether
we consider Fn or fn. We make one brief observation about this case.

Proposition 3.7. Let G be the automorphism group of a homogeneous
structure over a finite relational language. Then Fn(G) is bounded above by
the exponential of a polynomial.

The converse of this is not true. For example, the general linear group
on a vector space of countable dimension over the field of two elements has
Fn(G) roughly 2n2/16, but is not the automorphism group of a homogeneous
structure over a finite relational language. (Take two n-tuples of vectors,
the first linearly independent and the second satisfying the single linear
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relation that the sum of the vectors is zero. These two n-tuples cannot be
distinguished by relations of arity less than n.)

An open problem here is to understand what the implications for G are
of being the automorphism group of a homogeneous structure over a finite
relational language.

3.5. Graded Algebras

Another part of mathematics where sequences of positive integers occur is
the theory of graded algebras. Such an algebra is a direct sum

A =
⊕
n∈N

An,

where the An are vector spaces over a field F , and, if v ∈ Am and w ∈
Am, then the algebra product vw belongs to Am+n. The subspaces An are
the homogeneous components. If they are all finite-dimensional, then the
sequence of their dimensions (or its ordinary generating function) is the
Hilbert series of the algebra. If a graded algebra is finitely generated, then
the dimensions grow no faster than a polynomial in n, and so the Hilbert
series converges inside the unit circle.

We construct graded algebras as follows. First, let Ω be an infinite set,
and F a field (for our purposes, always of characteristic zero). Let An be
the vector space of functions from

(
Ω
n

)
(the set of n-element subsets of Ω)

to F , and define a multiplication on the homogeneous components by the
rule

fg(X) =
∑

Y ∈(X
n)
f(Y )g(X \ Y )

for f ∈ An, g ∈ Am, and X ∈ ( Ω
n+m

)
. Extended linearly to A =

⊕
An,

this multiplication is commutative and associative, and makes A a graded
algebra. The constant function 1 on

(
Ω
0

)
= {∅} is the identity. (In fact

A0 is 1-dimensional, spanned by the identity.) This algebra is the reduced
incidence algebra of the poset of finite subsets of Ω, but we make no use of
this fact.

The algebra A is much too large: its homogeneous components have
infinite dimension (except for A0 which has dimension 1), and there are
many nilpotent elements.

But it has one important feature: if e ∈ A1 is the constant function on
Ω with value 1, then e is not a zero-divisor ; that is, multiplication by e is a
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monomorphism from An to An+1. (This algebraic statement is really a fact
about finite combinatorics: the incidence matrix of n-sets and (n+ 1)-sets
of a set X of cardinality at least 2n+ 1 has full rank.)

Now let G be a permutation group on Ω. There is a natural action of
G on An, for all n; we let AG

n be the set of functions invariant under G
(that is, constant on the G-orbits), and AG =

⊕
AG

n . Then AG is a graded
subalgebra of A. Moreover, if G is oligomorphic, then dim(AG

n ) = fn(G),
so that the Hilbert series of AG is fG(x).

There are various interesting examples of groups for which AG is finitely
generated. For example, if G = G1×G2 in its intransitive action on Ω1∪Ω2,
where Gi acts on Ωi for i = 1, 2, we have

AG ∼= AG1 ⊗F AG2 ,

for any field of characteristic zero. In particular, AS×S is freely generated
by (that is, a polynomial ring in) two generators of degree 1, and more
generally, ASr

freely generated by r generators of degree 1.
If H is a finite permutation group of degree n, and G = SWrH (in

its imprimitive action), then AG is isomorphic to the ring of invariants of
H (acting as a linear group via permutation matrices). In particular, if
H = Sn, then AG is the ring of symmetric polynomials in n variables, and
is freely generated by the elementary symmetric polynomials e1, . . . , en of
degrees 1, 2, . . . , n, by Newton’s Theorem.

However, it follows from Macpherson’s Theorem that, if G is primitive
but not highly homogeneous, then AG cannot be finitely generated.

In the light of this, we are forced to look for other kinds of algebraic
properties of AG. An example is a remarkable recent theorem of [30], con-
firming a 30-year-old conjecture:

Theorem 3.5. Let G be a permutation group on an infinite set Ω. Then
AG is an integral domain if and only if G has no finite orbits on Ω.

One direction is trivial. Suppose that ∆ is a G-orbit of size n, and let
f ∈ An be the characteristic function of {∆}. Then f ∈ AG

n and f2 = 0.
The converse requires a new type of Ramsey-type theorem which is likely
to have further applications. The result itself is applicable to growth rates,
in view of the following result by [6], whose proof uses some easy dimension
theory from algebraic geometry:

Theorem 3.6. If G is oligomorphic and AG is an integral domain then
fm+n ≥ fm + fn − 1.
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Another situation in which we can describe the structure of AG is when
G is associated with a Fräıssé class C (that is, G is the automorphism group
of the Fräıssé limit of C). In [5] it is shown that, if the class C has notions of
connected components, disjoint union, and spanning substructures satisfy-
ing a few simple axioms, then AG is a polynomial algebra whose generators
are the characteristic functions of the connected structures in C. (More pre-
cisely, for each isomorphism type of n-element connected structure in C, let
f be the function in An which takes the value 1 on n-sets whose induced
substructure is of the given type and 0 elsewhere; the collection of all such
functions is a set of free generators for AG.) Here are a few, reasonably
typical, examples.

• Let C be the class of finite graphs, so that G is the automorphism
group of the random graph R. Then a basis for the nth homogeneous
component of AG consists the characteristic functions of all n-vertex
graphs (so that dim(AG

n ) = fn(G) is the number of unlabelled graphs
on n vertices). Now the characteristic functions of connected graphs
on n vertices are algebraically independent, and the set of all such
elements forms a free generating set for AG, which is a polynomial
algebra (infinitely generated).

• We saw earlier that, if G is associated with a Fräıssé class C, then
GWrS is associated with the class of disjoint unions of C-structures.
There is an obvious notion of connectedness: structures with a sin-
gle part are connected! Thus, AGWrS is a polynomial algebra, with
fn(G) generators of degree n for all n. (Thus, the structure of AGWrS

is independent of the structure of AG except for numerical informa-
tion about dimensions of components.)

• Consider the set Q with two kinds of structure: the order, and m

subsets forming a partition of Q, each one dense in Q. (Think of a
colouring of Q with m colours c1, c2, . . . , cm, so that each colour
class is dense.) Let G be the group of permutations preserving
the order and the colours. An orbit of G on n-sets is described
uniquely by a word of length n in the alphabet {c1, c2, . . . , cm},
recording the colours of the elements of the set in increasing order.
Now the algebra AG is the shuffle algebra over an alphabet of size
m, which occurs in the theory of free Lie algebras (cf. [32]). One
can develop an appropriate notion of connectedness, so that the
connected words are the so-called Lyndon words. The fact that the
shuffle algebra is a polynomial algebra generated by the Lyndon
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words was first proved in [31], but emerges as a special case of the
theory presented here.

3.6. Group Structure

Relatively little is known about the structure of closed oligomorphic per-
mutation groups, but the picture is rapidly changing. We look first at the
normal structure in a couple of classical examples.

The countable symmetric group S = Sym(Ω) has a normal subgroup
FSym(Ω), the finitary symmetric group, consisting of all permutations mov-
ing only finitely many points; this has a normal subgroup of index 2, the
alternating group Alt(Ω), consisting of finitary permutations which are even
permutations of their supports. These are the only non-trivial proper nor-
mal subgroups; in particular, the quotients are simple.

The group A of order-preserving permutations of Q has two normal
subgroups L and R; L consists of all permutations fixing all sufficiently
large positive rationals, and R consists of permutations fixing all sufficiently
large negative rationals. Their intersection consists of the order-preserving
permutations of bounded support. These are the only non-trivial normal
subgroups. In particular, A/(L∩R) ∼= L/(L∩R)×R/(L∩R), and the two
factors are isomorphic.

The automorphism group of the countable random graph is simple (cf.
[35]). Indeed, given any two elements g, h of this group with g �= 1, it is
possible to write h as the product of three copies of g or g−1.

An important property which has had a lot of attention is the small
index property. Let G be a permutation group of countable degree. A sub-
group H has small index if |G : H | < 2ℵ0 . (If the Continuum Hypothesis
holds, this just says that H has finite or countable index.) The stabiliser of
any finite set has small index. We say that G has the small index property
if any subgroup of G of small index contains the pointwise stabiliser of a
finite set; it has the strong small index property if every subgroup of small
index lies between the pointwise and setwise stabilisers of a finite set. If
G is a closed oligomorphic group with the small index property, then the
topology of G is determined by the group structure: a subgroup is open
if and only if it has small index, so the subgroups of small index form a
neighbourhood basis of the identity.

The symmetric group S, the group A of order-preserving permutations
of Q, and the automorphism group of the random graph all have the strong
small index property ([8, 15, 19]). A typical example of a permutation group
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which does not have the strong small index property is SWrS, in its imprim-
itive action; the stabiliser of a block of imprimitivity is not contained in the
setwise stabiliser of any finite set. Examples which do not have the small
index property can be constructed by producing automorphism groups of
Fräıssé limits which have infinite elementary abelian 2-groups as quotients;
they have “too many” subgroups of small index!

I mentioned earlier that the notion of Baire category is important for
closed oligomorphic groups. Such a group G is said to have generics if there
is a conjugacy class which is residual in G. In each of the three groups
mentioned above, generics exist. Indeed, the nth direct power of the group
has generics (in other words, the original group has generic n-tuples) for all
n. This property is closely related to the small index property (see [19]).

We can also ask what group is generated by a “typical” n-tuple of el-
ements. John Dixon proved that almost all pairs of elements of the finite
symmetric group Sn generate Sn or the alternating group An. Later [13],
he proved an analogue for the symmetric group of countable degree: almost
all pairs of elements (in the sense of Baire category, that is, a residual set)
generate a highly transitive free subgroup of S. (The existence of highly
transitive free groups was first shown in [28].)

As noted, very recently these results have been extended to wider classes
of groups.

Macpherson and Tent define the free amalgamation property, which is
a strengthening of the strong amalgamation property, as follows. A Fräıssé
class C has the free amalgamation property if, whenever B1 and B2 are
structures in C with a common substructure A, there is an amalgam C of
B1 and B2 such that

• the intersection of B1 and B2 in C is precisely A (this is the content
of strong amalgamation, see Section 3.2);

• Every instance of a relation in C is contained in either B1 or B2.

This holds for graphs: we can choose to make the amalgam so that there
are no edges between B1 \A and B2 \A.

They prove the following theorem:

Theorem 3.7. Let C be a nontrivial Fräıssé class (that is, there are some
non-trivial relations) with the free amalgamation property, and G the auto-
morphism group of its Fräıssé limit. Then G is simple.

The trivial case must be excluded, since then G is the symmetric group
S, and as we have seen this group is not simple.
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A Polish group (a topological group whose topology comes from a com-
plete metric) is almost free if a residual subset of the n-tuples of elements
of G freely generate a free group. Now [17] gives a number of equivalent
characterisations of such groups, and show:

Theorem 3.8. Closed oligomorphic groups are almost free.

[23] give conditions for the existence of generic conjugacy classes in a
closed oligomorphic group.

In closing I mention a couple of important papers linking oligomorphic
permutation groups, dynamical systems, and Ramsey theory: [20, 22].
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4.1. Introduction

Mathematicians began to investigate the intrinsic complexity of subsets
of the real line and of more general spaces about a century ago. Souslin’s
discovery that the projection on the line of a Borel subset of the plane is not
always Borel was an early but major success, and his separation theorem
as well. When put together, his results say that a set which is defined with
an existence quantifier on a real number (∃ x ∈ R such that . . . ) cannot in
general be defined only with a sequence of quantifier on natural numbers,
although it is so if this set can also be defined with a universal quantifier
on a real variable (∀ x ∈ R, . . . ), in which case the real numbers can be
eliminated from the definition.

In the above, speaking of “real numbers” is nothing but a convenience
and what really matters is to know whether our set can be defined from,
say, closed sets by iterating countable intersections and unions countably
many times or if we need to index certain operations with an uncountable
set (which is usually metrizable, separable and complete, so that we keep
some control on what goes on).

In real life, all the sets we actually meet are measurable, but it must be
stressed that quite often they are not Borel, and we will actually display in
this survey many classes of separable Banach spaces which are not Borel.

What we mean when speaking of a “Borel class” of Banach spaces has
been made clear in Bossard’s work [3] (motivated by the seminal work [4])
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where it was shown for instance that the relation of linear isomorphism be-
tween Banach spaces is complicated and that no decent set contains exactly
one space in each isomorphism class (see Theorem 4.2 below). This work
opened the way to several applications of descriptive set theory to Banach
spaces, in particular through the use of (transfinite) uniform boundedness
principles. In the last few years, the work of S. Argyros, P. Dodos and of co-
authors deepened the theory with the discovery of “amalgamation” meth-
ods which tighten the links (and stress the analogy) between set-theoretical
and linear operations. These new techniques provide the right approach to
universality problems, by showing that the classes SE(Y ) of isomorphic sub-
spaces of a given Banach space Y are the generic hereditary and analytic
classes of Banach spaces.

Let us now outline the contents of this paper. Section 4.2 is a survey of
the classical theory of analytic sets. The gist of the results from this section
is that knowing that a tree T ⊆ ω<ω of integers is not well-founded gives no
way of finding the infinite branch which testifies that T is ill-founded. Sec-
tion 4.3 displays Bossard’s frame, which allows a measure of the complexity
of given classes of Banach spaces. The main results of this section explain
the “non-algorithmic” nature of the isomorphic theory of Banach spaces.
Section 4.4 presents some natural coanalytic ranks such as the Szlenk index
(and related indices) on the coanalytic non-Borel class of spaces with sepa-
rable dual, and motivations for their use. Finally, Section 4.5 introduces the
recent “converse statements” where analytic collections of separable spaces
are “glued together” (with a tree space) for being embedded into the set of
subspaces of a “small” Banach space. The theory is far from complete and
several open problems are mentioned in the text.
Notation: We denote ω = {0, 1, 2, 3, . . .} the set of natural numbers. If
E is a set, Eω (respectively, E<ω) is the set of sequences (respectively of
finite sequences) of elements of E. In particular, ωω is the set of sequences
of integers, and ω<ω is the set of finite sequences of integers. If s ∈ ω<ω, we
denote |s| the length of s and t < s means that |t| ≤ |s| and that s begins
with t. We denote as well s < σ if σ ∈ ωω begins with s ∈ ω<ω. The Cantor
set 2ω of subsets of ω is denoted ∆. An ordinal is identified with the set of
its predecessors. In particular, we denote ω1 the set of countable ordinals.
If A and B are sets, we define π1 = A×B → A by π1(a, b) = a. The vector
space of functions u : A → R which are 0 except for finitely many a ∈ A

is denoted c00(A). Other pieces of notation are classical or will be defined
before use.
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4.2. A Short Survey on Analytic Sets

The space ωω of sequences of integers is a metric complete separable space
- in other words, a Polish space when equipped with the distance

d(σ, σ′) =
∑
i∈ω

2−i δ(σ(i), σ′(i))

where δ(n, k) = 0 if n = k and 1 if not. It is easy to check that given any
Polish space P , there exists a continuous onto map S : ωω → P .

The following definition is due to Souslin and goes back to 1917.

Definition 4.1. A metric space M is analytic if there exists a continuous
onto map S : ωω →M.

It follows immediately from the definition that the class of analytic sets
is stable under continuous images.

Lemma 4.1. Let P be a Polish space, and A ⊆ P be a subset of P . The
following are equivalent:
(i) A is analytic.
(ii) There exists a closed subset F ⊆ P × ωω such that A = π1(F ).

Proof. (ii)⇒ (i): F is closed in the Polish space P×ωω hence it is Polish.
Hence F is analytic, and A as well since it is a continuous image of F .

(i) ⇒ (ii): Let S = ωω → P be a continuous map such that S(ωω) = A.
Since S is continuous, the set

F = {(S(σ), σ) ∈ P × ωω; σ ∈ ωω}
is closed in P × ωω, and A = π1(F ). �

We now observe that the space ωω enjoys remarkable stability proper-
ties. Indeed ωω × ω � ωω and (ωω)ω � ωω. This implies:

Lemma 4.2. The class of analytic subsets of a given Polish space P is
stable under countable unions and countable intersections.

Proof. Let An = π1(Fn) with Fn a closed subset of P × ωω. The set

F = {(x, σ, n) ∈ P × ωω × ω; (x, σ) ∈ Fn}
is a closed subset of P × ωω × ω, and thus⋃

n∈ω

An = π1(F )
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is analytic. On the other hand the set

G = {(x, (σn)n) ∈ P × (ωω)ω; (x, σn) ∈ Pn for all n}
is closed in P × (ωω)ω, and thus⋂

n∈ω

An = π1(G)

is analytic. �
Since closed subsets of P are clearly analytic, Lemma 4.2 implies that

every Borel subset of P is analytic, and thus one has:

Lemma 4.3. If P1 and P2 are Polish spaces and B ⊆ P1 × P2 is a Borel
subset of P1 × P2 then π2(S) is analytic.

This lemma provides a substitute to an erroneous statement of
Lebesgue, who had claimed that the projection on a line of a Borel subset
of the plane is Borel. This claim was actually the starting point of Souslin’s
work, who showed that although such a projection is in general not Borel,
it retains some properties of Borel sets such as universal measurability.

We now recall the definition of a tree on integers: this is a subset T of
ω<ω such that if s ∈ T and t < s, then t ∈ T . The boundary [T ] of such
a tree T is the set of all σ ∈ ωω such that σ|n ∈ T for all n ∈ ω. In other
words, [T ] consists of all the “infinite branches” of T . Every boundary is a
closed subset of ωω, and all closed subsets can be obtained in this way.

In view of Definition 4.1, it is therefore not surprising that trees show
up in this context. Indeed let

A = π1(F )

with F closed in P × ωω. For s ∈ ω<ω, let

Vs = {σ ∈ ωω; s < σ}.
Let d be a distance which defines the topology of P , and for x ∈ P and
δ > 0, let

B(x, δ) = {y ∈ P ; d(x, y) < δ}.
We define a tree T (x) as follows:

T (x) = {s ∈ ω<ω; (B(x, |s|−1)× Vs) ∩ F �= φ}.
It is easily seen that

(x, σ) ∈ F ⇔ σ ∈ [T (x)]

and thus x ∈ A = π1(F ) if and only if [T (x)] �= φ.
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We now recall a classical piece of notation: a tree T is well-founded if
[T ] = φ. With this notation, x ∈ A if and only if T (x) is not well-founded.

Let T ⊆ 2(ω<ω) be the set of all trees on integers (including the tree {φ}).
This is a closed subset of 2(ω<ω), and thus a compact set. Let WF ⊆ T be
the subset consisting of well-founded trees. This subset WF is a transfinite
union of “constituents” defined as follows: let ω1 = {α;α < ω1} be the set
of countable ordinals. Given T ∈ T , we define

T ′ = {s ∈ ω<ω; there is n ∈ ω with s−n ∈ T }
In other words, T ′ consists of all s ∈ T which can be extended to a longer
sequence in T . We define then by transfinite induction

T (α+1) = (T (α))′

and for β a limit ordinal

T (β) =
⋂

α<β

T (α).

It is clear that if T �∈WF , then for all α < ω1 and all σ ∈ [T ]

bσ = {s < σ} ⊆ T (α).

Conversely, if s ∈ T (α) for all α < ω1, there is n ∈ ω such that s−n ∈ T (α)

for all α, and it follows that if ⋂
α<ω1

T (α) �= φ

then T �∈WF . If T ∈WF , we denote by h(T ) the height of T , that is, the
smallest α < ω1 such that T (α) = φ. If T �∈ WF , we denote h(T ) = ω1.

Returning to A = π1(F ) an analytic subset of P , we define

r : P → ω1 ∪ {ω1}
by r(x) = h(T (x)). By the above, A = r−1({ω1}) and

C = P\A =
⋃

α<ω1

r−1({λ;λ < α}).

This map r is called a rank. Such a set C = P\A, whose complement is
analytic, is called a coanalytic set and if we let

Cα = r−1({λ;λ < α})
we have C =

⋃
α∈ω1

Cα, and C appears as a transfinite increasing union of

“constituents”.
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The following combinatorial result on trees is an abstract version of
Souslin’s separation theorem. We state it without proof.

Theorem 4.1. For any countable ordinal α < ω1, the set

Bα = {T ∈ T ;h(T ) < α}
is a Borel subset of T . Moreover, if A is an analytic subset of WF ⊆ T ,
then

sup
T∈A

h(T ) < ω1.

It is an instructive exercise to show that for every α < ω1, there exists
T ∈ WF such that h(T ) = α and then, Theorem 4.1 implies that WF is
not analytic, and that T \WF is analytic but not Borel.

If now A = π1(F ) is an analytic set, the map r(x) = h(T (x)) defined
above yields to the following applications of Theorem 4.1: the coanalytic set
C = P\A is a transfinite union of the Borel sets Cα = r−1(Bα). If A1 is an
analytic subset of C, there is α < ω1 such that A1 ⊆ Cα. Hence two disjoint
analytic sets can be separated by a Borel set: A1 ⊆ Cα and A ⊆ P\Cα.

So far, we displayed the basic facts of Souslin’s theory within the frame
of metric spaces. However, most of this can be done in standard Borel
spaces, that is, in sets X equipped with a σ-field B such that (X,B) is
Borel-isomorphic with some Polish space equipped with its Borel σ-field. In
other words, (X,B) is a standard Borel space if there is a Polish distance
on X whose Borel σ-field coincide with B. However this distance is not
canonical and it plays little role. In order to introduce a “Borel way” to
describe analytic sets, we return to the above definition of the trees T (x)
and with the same notation, we observe that for all s ∈ ω<ω, the set

Us = {x ∈ P ; (B(x, |s|−1)× Vs) ∩ F �= φ}
is open in P , and

A =
⋃

σ∈ωω

⋂
s<σ

Us.

This is called the Souslin operation, and it is usually denoted

A = S((Us)).

This shows that every analytic set can be obtained from Borel sets {Bs; s ∈
ω<ω} through the Souslin operation S. Conversely, the class of analytic sets
is stable under S: if the sets {As; s ∈ ω<ω} are analytic, so is S((As)).
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We can therefore define a subset A of a standard Borel space (X,B) to
be analytic if there exist {Bs; s ∈ ω<ω} ⊆ B with

A = S((Bs)).

The above theory (rank, constituents, separation, . . . ) applies and no
reference is needed to a Polish distance on X . If (X,B) and (Y,B′) are
standard Borel spaces, and F : X → Y is a Borel map, then F (X) is an
analytic subset of Y , and every analytic set is obtained in this way. We
refer to [6], [26], [31] for much more on Souslin theory and descriptive set
theory and to [2] for some connections between this theory and geometry
of Banach spaces.

4.3. Bossard’s Coding of Separable Banach Spaces

This section is devoted to a general frame (published in [3]) which makes it
possible to define Borel, analytic or coanalytic families of separable Banach
spaces.

In order to do so, we need a proper parametrization of the collection of
separable Banach spaces, which turns it into a set.

If P is a Polish space, we denote F(P ) the set of closed subsets of P .
Let P̂ be a metrizable compactification of P ; with the Hausdorff distance,
the set F(P̂ ) is compact metric, and the map F → F̄ maps F(P ) to the
subset F0(P̂ ) of F(P̂ ) defined by

F0(P̂ ) = {F ⊆ P̂ ;F = F ∩ P}.
It is easily checked that F0(P̂ ) is a Gδ subset of F(P̂ ) and thus it is home-
omorphic to a Polish space. The corresponding Borel structure on F(P )
does not depend upon the compactification, and it is called the Effros-Borel
structure on F(P ). It is generated by the sets

BU = {F ∈ F(P );F ∩ U �= φ}
where U is an arbitrary open subset of P .

We denote by ∆ = 2ω the Cantor set. It is well-known that every sep-
arable Banach space is isometric to a subspace of C(∆) equipped with the
supremum norm.

Let SE(C(∆)) be the set of all closed linear subspaces of C(∆). It is
easily checked that SE(C(∆)) is a Borel subset of F(C(∆)) equipped with
the Effros-Borel structure. It is therefore a standard Borel space, as Borel
subset of a standard Borel space.
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For sake of shortness we now denote SE(C(∆)) simply as SE. Let � by
the equivalence relation of isomorphism: if (X,Y ) ∈ SE2, X � Y means
that X is isomorphic to Y .

Definition 4.2. A coding of separable Banach spaces up to isomorphism
is an onto map from a set Z onto the set SE/ �. The canonical coding is
the quotient map θ : SE → SE/ �.

It could of course be objected at this stage that the “canonical” coding
is not so canonical, since other parametrizations of Banach spaces could be
chosen: for instance, any separable Banach space is a quotient of 1(ω) and
the kernels of such quotient map could be used. However, it is shown in [3]
that such alternative parametrizations lead to the same complexity results.

The space SE is a standard Borel space, but is there any chance to
equip the quotient space SE/ � with a usable structure of standard Borel
space? The following result from [3] answers this question in the negative.

Theorem 4.2. The relation � is analytic non-Borel; that is, the set

I = {(X,Y ) ∈ SE2; X � Y }

is analytic non-Borel. There exists a space U ∈ SE whose isomorphism
class

〈U〉 = {X ∈ SE; X � U}

is analytic non-Borel. The relation � has no analytic section.

Outline of Proof:
This result relies on the fact that the set WF of well-bounded trees

is coanalytic non Borel (see Theorem 4.1). We denote by U Pelczynski’s
universal space (cf. [35]) which has a basis (un) and contains complemented
copies of every Banach space with a basis. Let ‖ · ‖ denote the norm on U .
We now define a “tree space” as follows: for y ∈ c00(ω<ω), set

‖| y‖|2= sup


 k∑

j=0

∥∥∥∥∥∥
∑
s∈Ij

y(s) u|s|

∥∥∥∥∥∥
2


1/2


where the supremum is taken over all k ∈ ω and over all admissible choices
of intervals, namely all finite sets {Ij ; 0 ≤ j ≤ k} of intervals ω<ω such that
every branch of ω<ω meets at most one of these intervals.
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Let U(ω<ω) be the completion of c00(ω<ω) under this norm. If T ∈ T
is any subtree of ω<ω, let U(T ) be the space of all vectors from U(ω<ω)
supported by T or alternatively the completion of c00(T ) under ‖ | ·‖ |2.
Since WF is a non-Borel subset of T , the fact that the isomorphism class
〈U〉 is non-Borel follows from the following three statements:

(a) the map T 
→ U(T ) is Borel from T to SE.
(b) If T ∈WF,U(T ) is reflexive and thus U(T ) �∈ 〈U〉.
(c) If T �∈WF, U(T ) is isomorphic to U .
Statement (a) is easy to check. Statement (b) follows from the fact that

an 2-sum of reflexive spaces is reflexive through a transfinite induction.
Statement (c) follows from the fact that if σ ∈ ωω and bσ = {s < σ}
is the corresponding branch, the space U(bσ) is isomorphic to U . Now, if
T �∈ WF , pick σ such that bσ ⊆ T . Then U(bσ) � U is a complemented
(by restriction) subspace of U(T ), and since U(T ) has a basis it is isomor-
phic to a complemented subspace of U . Now an application of Pelczynski’s
decomposition scheme shows that U(T ) � U .

It remains to establish that the relation � (that is, the set I) is ana-
lytic, and this follows quite easily from its definition by “there exists an
isomorphism”. Since the intersection

〈U〉 = I ∩ (SE × {U})
is non-Borel, the relation � is analytic non-Borel. Finally the existence of
a non-Borel class shows that there is no analytic set A which meets every
class in exactly one point. Indeed, if A were such a set let {X} = A∩〈U〉 and
let A′ = A\{X}. Since A′ is analytic as well as �, its saturation SE\〈U〉
would be analytic. But since 〈U〉 is analytic, Souslin’s separation theorem
would show that both are Borel, contradicting the fact that 〈U〉 is not. �

The proof of Theorem 4.2 is typical of which one should expect in this
context: given a tree T , one tries to construct a copy of U in U(T ). This
will be possible exactly when T �∈ WF . If T ∈WF but is very high, it will
take “very long” to check that U(T ) does not contain U , and this cannot
be done in any “algorithmic” way.

We note that condition (b) from the above proof shows that the class
of reflexive spaces is coanalytic non-Borel.

The above proof shows that the isomorphism class 〈U〉 of U is analytic
non-Borel. On the other hand, Kwapien’s theorem (see [28]) easily implies
that 〈2〉 is Borel. It is not known whether this characterizes 2:
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Problem 4.1. Let X be a separable Banach space whose isomorphism class
〈X〉 is Borel. Is X isomorphic to 2?

It follows from Bourgain’s work [5] on Lp space that if X = Lp with
1 < p < ∞, p �= 2 then 〈X〉 is not Borel (see [5], Th. 4.35). The case of
X = c0 is particularly interesting: it is not known (see [19], Remark 2 after
the Theorem 5.6) whether c0 is up to isomorphism the only predual of l1
with a summable Szlenk index. Such a characerization of c0 would show
that its isomorphism class is Borel.

Clearly, the proof of Theorem 4.2 shows as well that the class of spaces
which contain an isomorphic copy of U is analytic non-Borel. This is a
special case of the following result from [3], whose proof follows similar
lines.

Theorem 4.3. Let Z be an infinite-dimensional separable Banach space.
Then the class CZ of separable Banach spaces which contain an isomorphic
copy of Z is analytic non-Borel.

Let us mention that Theorem 4.3 remains true when “isomorphic” is
replaced by “isometric”, in which case it even extends to every space Z of
dimension greater than 1 (see [20]).

The article [3] contains much more results similar to the above, whose
common feature is to assert that the natural classes of Banach spaces are as
complicated as they look at first sight. For instance, the class of separable
spaces not containing 1 with non-separable dual is the difference A1\A2 of
two analytic sets and is not simpler. One natural question seems however to
be left open. Before stating it, let us recall that the relation of embedding,
in other words the set

J = {(X,Y ) ∈ SE2; ∃ Z ⊆ Y with X � Z}
is analytic (non-Borel), and then for every space Y , the class SE(Y ) of space
which are isomorphic to subspaces of Y is analytic. Is this really optimal?

Problem 4.2. Does there exist a separable space Y such that SE(Y ) is
non-Borel?

Let us note that for some space Y , such as 2 or C(∆) it is actually
Borel. The behaviour of the isomorphism relation � restricted to such
classes SE(Y ) is not well-understood despite important recent progress
(see [15], [37], [14], [16]). Actually the following improvement of Theorem
4.2 has been shown in [17]: the relation of isomorphism between separable



Geometry of Banach Spaces 73

Banach spaces is a complete analytic equivalence relation. In other words,
this isomorphism relation enjoys maximal complexity among all analytic
equivalence relations. Thus, separable Banach spaces up to isomorphism
provide complete invariants for essentially every isomorphism problem in
analysis, with the by-product that classifying Banach spaces up to isomor-
phism is definitively beyond reach.

Gowers’ solution to the homogeneous space problem (see [21]) states
that Y � 2 if and only if {SE∗(Y )/ �} is a singleton, where SE∗ denotes
the set of infinite dimensional closed subspaces. However the following prob-
lem is still open.

Problem 4.3. Let Y be an infinite-dimensional separable Banach space
which is not isomorphic to 2. Does Y contain subspaces {Xn;n ∈ ω} such
that Xn is not isomorphic to Xk if n �= k?

4.4. Coanalytic Ranks

In Section 4.2 we discussed heights of trees and the corresponding rank
function r associated with a representation A = π2(F ) of an analytic set as
projection of a closed set. This yields to a general definition.

Definition 4.3. Let P be a standard Borel space and C be a coanalytic
subset of P . A coanalytic rank σ on C is a map σ = P → ω1 ∪ {ω1} such
that
(i) C = {x ∈ P ; σ(x) < ω1}
(ii) {(x, y) ∈ C × P ; σ(x) ≤ σ(y)} is coanalytic in P 2.
(iii) {(x, y) ∈ C × P ; σ(x) < σ(y)} is coanalytic in P 2.

For every coanalytic set C, there exists such a coanalytic rank, and the
classical result below, which extends Theorem 4.1, states that this rank is
quite canonically associated with C.

Theorem 4.4. Let σ be a coanalytic rank of the coanalytic set C. Then:

(i) For every α < ω1, the set Bα = {x ∈ C;σ(x) ≤ α} is Borel.
(ii) If A ⊆ C is analytic, there is α < ω1 such that A ⊆ Bα.
(iii) If σ′ is another coanalytic rank on C, there exists φ : ω1 → ω1 such

that if σ(x) ≤ α, then σ′(x) ≤ φ(α).

Condition (iii) above asserts that all coanalytic ranks on C are some-
what equivalent (a special case of the Kunen-Martin uniform boundedness
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principle). Indeed the set of all α’s such that σ−1([0, α[) = σ′−1([0, α[) is a
closed and cofinal subset of ω1.

Natural coanalytic ranks can be displayed on the coanalytic classes from
section 4.3, such as an “embedding rank” on the class GZ = SE\CZ of
Banach spaces which do not contain an isomorphic copy of a given space Z
(cf. [3]). However the most interesting examples where (iii) can be applied,
come from Cantor-Bendixon derivations.

We now define this concept, and refer to [25] for its applications to
harmonic analysis. Let K be a metrizable compact space, and F(K) be the
set of closed subsets of K equipped with the Hausdorff topology. A Borel
derivation

d : F(K)→ F(K)

is a Borel map such that
(i) d(F ) ⊆ F for all F .
(ii) If F ⊆ G then d(F ) ⊆ d(G).

Such a derivation can be iterated: if α < ω1, define

d(α+1)(F ) = d(d(α)(F ))

and for β < ω1 a limit ordinal,

d(β)(F ) =
⋂

α<β

d(α)(F )

let now

σd(F ) = min{α; d(α)(F ) = φ}.
If such an ordinal exists, and ω1 otherwise. Then one has:

Theorem 4.5. Let {dn;n ∈ ω} be a countable family of Borel derivations.
Then the map Σ(F ) = sup{σdn(F );n ∈ ω} is a coanalytic rank on the
coanalytic set C = {F ∈ F(K);σdn(F ) < ω1 for all n}.

Note that the special case of a single derivation (when all dn’s coincide)
is very important.

The first example of derivation, due to Cantor, is when d(F ) is the set
of accumulation points of F . We now define a similar concept: Let F be a
w∗-compact subset of the space ∞ = ∗1 and ε > 0. We define

dε(F ) = {x ∈ F ; ‖ · ‖ − diam (V ∩ F ) ≥ ε for all V }
where V runs through the set of all w∗-open sets containing x, and

δε(F ) = {x ∈ F, ‖ · ‖ − diam (H ∩ F ) ≥ ε for all H}
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where H runs through the set of all w∗-open half-spaces containing x. It is
clear that dε and ∆ε are derivations, and it can be checked that they are
Borel on F(B∞). Let now

σε(F ) = σdε(F )

and

σ′ε(F ) = σδε(F ).

By Theorem 4.5 the map

σ(F ) = sup{σ1/k(F ); k ∈ ω}
is a coanalytic rank on the set

C = {F ∈ F(BK∗);σε(F ) < ω1 for all ε > 0}.
Although the obvious inclusion

dε(F ) ⊆ δε(F )

is in general strict, it follows from a result of [32] that C coincide with the
set of F ’s for which σ′ε(F ) < ω1 for all ε > 0. Hence if

σ′(F ) = sup{σ′1/k(F ), k ∈ ω}
it follows from Theorems 4.4 (iii) and Theorem 4.5 that there exists a map
φ : ω1 → ω1 such that σ(F ) ≤ α implies σ′(F ) ≤ φ(α). Hence, although
the derivation δ which consists removing small slices is slower than d which
allows the removal of small w∗-open sets, it is not much slower. Actually,
as noted after Theorem 4.4, there is a closed cofinal subset C of ω1 such
that if α ∈ C then σ(F ) < α if and only if σ′(F ) < α.

This theory yields to natural indices defined on separable Banach spaces.
Let X be separable. Since there exists Q : 1 → X a quotient map, the dual
unit ball BX∗ embeds (in w∗ and norm topologies) into B∞ , and we can
define

Sz(X) = σ(BX∗)

Dz(X) = σ′(BX∗).

These indices are called the Szlenk index (following [39] where it is defined
in another equivalent way) and the dentability index (see e.g. [19]). It is
easily seen that these indices do not depend upon the choice of the quotient
map Q, and that Sz (respectively, Dz) can be defined by removing from
BX∗ those w∗-open sets (respectively, w∗-slices) which are small in norm.
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The frame provided by B∞ shows however thatDz(X) ≤ ψ(Sz(X)), where
ψ = ω1∪{ω1} → ω1∪{ω1} is a universal map such that ψ(ω1) = ω1. Indeed
Sz(X) < ω1 if and only if Dz(X) < ω1, if and only if X∗ is separable.
A separable reduction argument shows that ψ actually works for every
Asplund space (see [29]).

The first value of the map ψ is known: if Sz(X) = ω, then Dz(X) ≤ ω2

and this estimate is optimal ( [22]). Actually, Dz(X) = ω if and only if
X is super-reflexive, and if Sz(X) = ω and X is not super-reflexive then
Dz(X) = ω2. Note that a third index, denoted Cz(X) in [19], can be defined
through the removal of w∗-open slices which can be covered by a union of
small w∗-open sets. Equivalently, the convex Szlenk index Cz(X) is defined
by the derivations

∆ε(F ) = convw∗
(dε(F )).

It is clear that

Sz(X) ≤ Cz(X) ≤ Dz(X).

It is shown in [22] that Dz(X) ≤ ωω · Cz(X). It is known that the Szlenk
index of any space with separable dual has the form ωα for some α < ω1.
The values of ψ(ωα) for α ≥ 2 are not known. The existence of a cofinal
subset S′ of ω1 such that if α ∈ S′ and Sz(X) = α then Dz(X) = α follows
from an application of the classical “pressing-down” lemma (see [30], Prop.
6.4).

There are several motivations for studying these indices. First of all,
they are invariants for linear isomorphisms and this sometimes lead to clas-
sification results: for instance, if K and L are countable compact spaces,
then C(K) � C(L) if and only if Sz(C(K)) = Sz(C(L)). Even more, the
condition Sz(X) = ω is equivalent to Cz(X) = ω and is invariant under
uniform homeomorphism ( [19]) and in particular under Lipchitz isomor-
phism.

Also, they happen to be useful in renorming theory. This follows from
the fact that the derivations δε and ∆ε maps convex sets to convex sets, and
convex combinations of distances from these convex sets yield to dual norms
with good convexity properties and thus to smooth equivalent norms. We
provide two examples: using the inequality Cz(X) ≤ ϕ(Sz(X)) for all X
with separable dual, it is shown in [29] that every space Y such that

sup{Sz(X);X separable, X ⊆ Y } < ω1

has an equivalent Fréchet-smooth norm. Using the quantitative behaviour
of dε and ∆ε, it is shown in [19] that Sz(X) = ω if and only if X has
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an asymptotically uniformly smooth equivalent norm (a result previously
shown in [27] with weaker quantitative estimates).

We refer to [12], [10] and [11] for more applications of Szlenk derivations
to Lipschitz isomorphisms, to [18] and [30] for surveys on the Szlenk index,
and to the Chapter 2 of [23] for a presentation of the whole theory.

To make a link with section 4.3, let us mention that the Szlenk index
Sz(X) and the dentability index Dz(X) are coanalytic ranks on the coana-
lytic subset of SE consisting of spaces with a separable dual ([3], Th. 4.11).
However, it is still not known if the index r(X) = sup(Sz(X), Sz(X∗)) is
a coanalytic rank on the coanalytic set of reflexive spaces, although the
corresponding index on the set of bases of reflexive spaces is known to be
a coanalytic rank ([3], Cor. 5.5).

We will see in the next section how to use such ranks for showing the
existence of certain universal spaces.

4.5. A New Direction: The Converse Statements

The main argument in the proof of Theorem 4.2 is that the “tree space”
U(ω<ω) satisfies the following conditions: if σ ∈ ωω and bσ = {s < σ} is
the corresponding branch, then U(bσ) � U while if T ′ ∈ WF the space
U(T ) is not isomorphic to U (and is actually reflexive). Under one form or
another, similar arguments are frequently used for proving that a collection
of Banach spaces is analytic non Borel.

A remarkable progress due to S. Argyros and P. Dodos is that such
constructions are actually generic. Indeed they showed in [1] that a usable
analogue of Definition 4.1 is available for analytic families of Banach spaces
with Schauder bases.

We need some terminology. If ∧ is a non-empty set, a pruned tree on ∧
is a subset T of ∧<ω such that for every s ∈ T , there is s < σ ∈ ∧ω such
that bσ = {s < σ} ⊆ T . We denote [T ] = {σ ∈ ∧ω ; bσ ⊆ T }.

With this notation, let us call a Schauder tree space on T a Banach
space X equipped with a collection {xt; t ∈ T } of normalized vectors such
that
(i) X = span{xt; t ∈ t}
(ii) For every σ ∈ [T ], the sequence {xσ|n ;n ≥ 1} is a bi-monotone Schauder
basic sequence.

We can now state the following fundamental lemma (see [1], Prop. 83):

Lemma 4.4. Let A ⊆ SE be an analytic set of Banach spaces, such that
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every Y ∈ A has a Schauder basis. Then there exist a pruned tree T on ω

and a Schauder tree space X on T such that
(1) For every Y ∈ A, there is σ ∈ [T ] such that

Y � Xσ = span{xσ|n ;n ≥ 1}.
(2) For every σ ∈ [T ], there is Y ∈ A such that Xσ � Y .

This lemma turns out to be a very powerful tool for constructing “small”
universal spaces for the analytic set A. For instance, given a Schauder tree
space X , let us consider like in the proof of Theorem 4.2 (using some ideas
from [24]) its “2 Baire sum” TX

2 defined by the norm

‖z‖T X
2

= sup


 ∑

j=0

∥∥∥∥∥∥
∑
t∈Sj

z(t) xt

∥∥∥∥∥∥
2

X


1
2


where the supremum is taken over all choices of intervals such that every
branch bσ meets at most one of them. It is clear that for all σ ∈ [T ], Xσ

is isometric to the subspace of TX
2 of vectors supported by bσ. And on

the other hand, TX
2 is “close enough” to the family A, in the sense where

some control is available on subspaces of TX
2 which would not belong to A.

This construction, with several technical refinements (since for using [1],
one needs to construct spaces with bases containing the elements in A, in
a controlled way from the Effros-Borel point of view) allows to show that
several natural classes of Banach spaces are strongly bounded, according to
the following definition.

Definition 4.4. A subset C of SE is said to be strongly bounded if for
every analytic subset A of C, there exists Y ∈ C such that A is contained
in the set SE(Y ) of spaces which are isomorphic to a subspace of Y .

Several natural coanalytic classes of separable Banach spaces have been
shown to be strongly bounded (and others are conjectured to be). To make
a link with the result shown in section 4.2 asserting that coanalytic sets C
can be written

C =
⋃

α<ω1

Cα

with Cα Borel sets, we note that strongly bounded coanalytic classes C can
be written

C =
⋃

α<ω1

SE(Yα)
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and thus a transfinite family (Yα)α<ω1 of spaces from C suffices to exhaust
the class. Let us now provide examples.

Theorem 4.6. ([8]): The following classes are strongly bounded:
1) The class R of reflexive spaces.
2) The class SD of spaces with a separable dual.

It follows from 1) that there exists a reflexive space Z such that X ∈
SE(Z) for every uniformly convex space X (a result from [33]). Indeed the
existence of an equivalent uniformly convex norm (in other words, super-
reflexivity) is a Borel condition.

As said before, it is not known if the functional

r(X) = sup(Sz(X), Sz(X∗))

is a coanalytic rank on R (a question from [3]). However, it is known ([34])
that for every α < ω1, there is a reflexive space Zα such that SE(Zα)
contains all reflexive spaces X such that Sz(X) ≤ α and Sz(X∗) ≤ α. Note
that it is also proved in [34], using the universality results shown there,
that the class Cα of reflexive spaces X such that r(X) ≤ α is analytic for
every countable ordinal α. Hence the main result of [34] appears to be a
consequence of Theorem 4.6. So far however, no direct proof is known of
the fact that Cα is analytic.

On the class SD, the Szlenk index Sz(·) is a coanalytic rank. Hence 2)
shows that for every α < ω1, there is Yα such that Y ∗α is separable and
X ∈ SE(Yα) if Sz(X) ≤ α. This answers positively a question from [37].

Theorem 4.7. ([7]): The class of non-universal spaces is strongly bounded.

Actually, P. Dodos shows the existence, for every λ > 1, of a transfinite
family (Yα)α<ω1 of non-universal L∞,λ spaces, such that

GC(∆) =
⋃

α<ω1

SE(Yα)

where GC(∆) denotes the collection of spaces which do not contain an iso-
morphic copy of C(∆); in other words, the collection of non-universal spaces.

The coanalytic set GC(∆) is equipped with a natural coanalytic rank
obtained from a tree (see [3], Th. 4.4), and this is also true for the set GY

where Y is infinite-dimensional but arbitrary. However, it is not known if
every class GY is strongly bounded; in particular, it is not known for G1 .
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Note that there is no space Z ∈ GY such that GY = SE(Z). Indeed,
SE(Z) is analytic while GY is coanalytic non Borel ([3]). Hence, every class
GY is hereditary with no universal space.

Theorem 4.8. ([9]): The class of unconditionally saturated Banach spaces
is strongly bounded.

In this statement, “X unconditionally saturated” means that every
subspace of X contains an unconditional basic sequence, or equivalently
(by [21]) that X does not contain an hereditary indecomposable (in short,
H.I) subspace. Hence if we decide once and for all to live in a universe from
where H.I. spaces are banned (in other words, if we restrict our attention to
unconditionally saturated Banach spaces) then the above theorem asserts
that strong boundedness holds in our world.
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In a recent paper, the authors have constructed a large class of operators
in the Cowen-Douglas class of the unit disc D which are homogeneous
with respect to the action of the group Möb – the Möbius group consist-
ing of bi-holomorphic automorphisms of the unit disc D. The associated
representation for each of these operators is multiplicity free. Here we give
a different independent construction of all homogeneous operators in the
Cowen-Douglas class with multiplicity free associated representation and
verify that they are exactly the examples constructed previously.

The homogeneous operators form a class of bounded operators T on a
Hilbert space H. The operator T is said to be homogeneous if its spectrum
is contained in the closed unit disc and for every Möbius transformation g
the operator g(T ), defined via the usual holomorphic functional calculus,
is unitarily equivalent to T . To every homogeneous irreducible operator T
there corresponds an associated unitary representation π of the universal
covering group G̃ of the Möbius group G:

π(ĝ)∗ T π(ĝ) = (pĝ) (T ), ĝ ∈ G̃,
where p : G̃ → G is the natural homomorphism. In the paper [6] (see
also [3]), it was shown that each homogeneous operator T , not necessarily
irreducible, in Bm+1(D) admits an associated representation. The repre-
sentations of G̃ are quite well-known, but we are still far from a com-
∗This research was supported in part by a DST – NSF S&T Cooperation Programme.
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plete description of the homogeneous operators. In the recent paper [6], the
following theorem was proved.

Theorem 5.1. For any positive real number λ > m/2, m ∈ N and an
(m+1)-tuple of positive reals µ = (µ0, µ1, . . . , µm) with µ0 = 1, there exists
a reproducing kernel K(λ,µ) on the unit disc such that the adjoint of the
multiplication operator M (λ,µ) on the corresponding Hilbert space A(λ,µ)(D)
is homogeneous. The operators (M (λ,µ))∗ are in the Cowen-Douglas class
Bm+1(D), irreducible and mutually inequivalent.

In the paper [6], we have presented the operators M (λ,µ) in as elemen-
tary a way as possible, but this presentation hides the natural ways in which
these operators can be found to begin with. Here we will describe another
independent construction of the operators M (λ,µ). We will also give an ex-
position of some of the fundamental background material. Finally, we will
prove that if T is an irreducible homogeneous operator in Bm+1(D) whose
associated representation is multiplicity free then, up to equivalence, T is
the adjoint of of the multiplication operator M (λ,µ) for some λ > m/2 and
µ ≥ 0.

5.1. Background Material

Although, we intend to discuss homogeneous operators in the Cowen-
Douglas class Bn(D), the material below is presented in somewhat greater
generality. Here we discuss commuting tuples of operators in the Cowen-
Douglas class Bn(D) for some bounded open connected set D ⊆ Cm. The
unitary equivalence class of a commuting tuple in Bn(D) is in one to one
correspondence with a certain class of holomorphic Hermitian vector bun-
dles (hHvb) on D (cf. [4]). These are distinguished by the property, among
others, that the Hermitian structure on the fibre at w ∈ D is induced by
a reproducing kernel K. It is shown in [4] that the corresponding operator
can be realized as the adjoint of the commuting tuple multiplication oper-
ator M on the Hilbert space H of holomorphic functions with reproducing
kernel K.

Start with a Hilbert space H of Cn-valued holomorphic functions on a
bounded open connected set D ⊆ Cm. Assume that the Hilbert space H
contains the set of vector valued polynomials and that these form a dense
subset in H. We also assume that there is a reproducing kernel K for H.
We use the notation Kw(z) := K(z, w).
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Recall that a positive definite kernel K:D×D → Cn×n on D defines an
inner product on the linear span of {Kw(·)ξ : w ∈ D, ξ ∈ Cn} ⊆ Hol(D,Cn)
by the rule

〈Kw(·)ξ,Ku(·)η〉 = 〈Kw(u)ξ, η〉, ξ, η ∈ Cn.

(On the right hand side 〈, 〉 denotes the inner product of Cn. We denote
by ε1, . . . , εn the natural basis of Cn.) The completion of this subspace is
then a Hilbert space H of holomorphic functions on D (cf. [1]) in which the
linear span of the set of vectors {Kw(·)ξ : w ∈ D} is dense. The kernel K
has the reproducing property, that is,

〈f,Kwξ〉 = 〈f(w), ξ〉, f ∈ H, w ∈ D, ξ ∈ Cm.

Now, for 1 ≤ i ≤ m, we have

M∗i Kwξ = w̄iKwξ, w ∈ D, where
(
Mif

)
(z) = zif(z), f ∈ H

and {Kwεi}n
i=1 is a basis for ∩m

i=1 ker(Mi − wi)∗, w ∈ D.
The joint kernel of the commuting m-tuple M∗ = (M∗1 , . . . ,M∗m), which

we assume to be bounded, then has dimension n. The map σi : w 
→ Kw̄εi,
w ∈ D̄, 1 ≤ i ≤ n, provides a trivialization of the corresponding bundle E
of Cowen-Douglas (cf. [4]). Here D̄ := {z ∈ Cm | z̄ ∈ D}).

On the other hand, suppose we start with an abstract Hilbert space
H and a m-tuple of commuting operators T = (T1, . . . , Tm) in the Cowen-
Douglas class Bn(D). Then we have a holomorphic Hermitian vector bundle
E over D with the fibre Ew = ∩n

i=1 ker(Ti − wi) at w ∈ D. Following [4],
one associates to this a reproducing kernel Hilbert space Ĥ consisting of
holomorphic functions on D̄ as follows. Take a holomorphic trivialization
σi : D → H with σi(w), 1 ≤ i ≤ n, spanning Ew. For f ∈ H, define f̂j(w) :=
〈f, σj(w̄)〉H, w ∈ D̄. Set 〈f̂ , ĝ〉Ĥ := 〈f, g〉H. The function Kwεj := σ̂j(w̄)
then serves as the reproducing kernel for the Hilbert space Ĥ. Note that

〈Kw(z)εj, εi〉Cn = 〈Kwεj,Kzεi〉Ĥ
= 〈σ̂j(w̄), σ̂i(z̄)〉Ĥ
= 〈σj(w̄), σi(z̄)〉H, z, w ∈ D̄.

If one applies this construction to the case where H is a Hilbert space
of holomorphic functions on D, possesses a reproducing kernel, say K, and
the operator M∗ is in Bn(D̄) then using the trivialization σi(w) = Kw̄εi,
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w ∈ D̄ for the bundle E defined on D̄, the reproducing kernel for Ĥ is

〈Kw(z)εj, εi〉Cn = 〈Kwεj ,Kzεj〉H
= 〈σj(w̄), σi(z̄)〉H
= 〈Kwεj ,Kzεi〉Ĥ, z, w ∈ D.

Thus H = Ĥ.
Let G be a Lie group acting transitively on the domain D ⊆ Cd. Let

GL(n,C) denote the set of non-singular n × n matrices over the complex
field C. We start with a multiplier J , that is, a smooth family of holomorphic
maps Jg : D → Cn×n satisfying the cocycle relation

Jgh(z) = Jh(z)Jg(h · z), for all g, h ∈ G, z ∈ D, (5.1)

Let Hol(D,Cn) be the linear space consisting of all holomorphic functions
on D taking values in Cn. We then obtain a natural (left) action U of the
group G on Hol(D,Cn):

(Ugf)(z) = Jg−1(z)f(g−1 · z), f ∈ Hol(D,Cn), z ∈ D. (5.2)

Let K ⊆ G be the compact subgroup which is the stabilizer of 0. For h, k
in K, we have Jkh(0) = Jh(0)Jk(0) so that k 
→ Jk(0)−1 is a representation
of K on Cn.

As in [6], we say that if a reproducing kernel K transforms according
to the rule

J(g, z)K(g(z), g(ω))J(g, ω)∗ = K(z, ω) (5.3)

for all g ∈ G̃; z, ω ∈ D, then K is quasi-invariant.

Proposition 5.1 ([6], Proposition 2.1). Suppose H has a reproducing
kernel K. Then U defined by (5.2) is a unitary representation if and only
if K is quasi-invariant.

Let gz be an element of G which maps 0 to z, that is gz · 0 = z.
For quasi-invariant K we have

K(gz · 0, gz · 0) = (Jgz (0))−1K(0, 0)(Jgz(0)∗)−1, (5.4)

which shows that K(z, z) is uniquely determined by K(0, 0). For each z in
D, the positive definite matrix K(z, z) gives the Hermitian structure of our
vector bundle.

Given any positive definite matrix K(0, 0) such that

Jk(0)−1K(0, 0) = K(0, 0)Jk(0)∗ for all k ∈ K, (5.5)
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that is, the inner product 〈K(0, 0)· | ·〉 is invariant under Jk(0), (5.4) defines
a Hermitian structure on the homogeneous vector bundle determined by
Jg(z). In fact, K(z, z), for any z ∈ D is well defined, because if g′z is another
element of G such that g′z · 0 = z then g′z = gzk for some k ∈ K. Hence

K(g′z · 0, g′z · 0) = K(gzk · 0, gzk · 0)

= (Jgzk(0))−1K(0, 0)(Jgzk(0)∗)−1

=
(
Jk(0)Jgz (k · 0)

)−1
K(0, 0)

(
Jgz (k · 0)∗Jk(0)∗

)−1

= (Jgz (0))−1(Jk(0))−1K(0, 0)(Jk(0)∗)−1(Jgz (0)∗)−1

= (Jgz (0))−1K(0, 0)(Jgz(0)∗)−1

= K(gz · 0, gz · 0) .

This gives a good overview of all the Hermitian structures of a homo-
geneous holomorphic vector bundle. But not all such bundles arise from a
reproducing kernel. Starting with a positive matrix satisfying (5.5), (5.4)
gives us K(z, z), but there is no guarantee (and is false in general) that
K(z, z) extends to a positive definite kernel on D ×D. It is, however, true
that if there is such an extension then it is uniquely determined by K(z, z)
(because K(z, w) is holomorphic in z and antiholomorphic in w).

This leaves us with the following possible strategy for finding the ho-
mogeneous operators in the Cowen-Douglas class. Find all multipliers, (i.e.,
holomorphic homogeneous vector bundles (hhvb)) such that there exists
K(0, 0) satisfying (5.5) and consider all suchK(0, 0). Then determine which
of the K(z, z) obtained form (5.4) extends to a positive definite kernel on
D×D. Then check if the multiplication operator is well-defined and bounded
on the corresponding Hilbert space.

Let H be a Hilbert space consisting of Cn-valued holomorphic functions
on some domain D possessing a reproducing kernel K. The sections of
the corresponding holomorphic Hermitian vector bundle defined on D have
many different realizations. The connection between two of these is given by
a n× n invertible matrix valued holomorphic function ϕ on D. For f ∈ H,
consider the map Γϕ : f 
→ f̃ , where f̃(z) = ϕ(z)f(z). Let H̃ = {f̃ : f ∈ H}.
The requirement that the map Γϕ is unitary, prescribes a Hilbert space
structure for the function space H̃. The reproducing kernel for H̃ is easily
calculated

K̃(z, w) = ϕ(z)K(z, w)ϕ(w)∗. (5.6)

It is also easy to verify that ΓϕMΓ∗ϕ is the multiplication operator
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M : f̃ 
→ zf̃ on the Hilbert space H̃. Suppose we have a unitary representa-
tion U given by a multiplier J acting onH according to (5.2). Transplanting
this action to H̃ under the isometry Γϕ, it becomes(

Ũg−1 f̃
)
(z) = J̃g(z)f̃(g · z),

where the new multiplier J̃ is given in terms of the original multiplier J by

J̃g(z) = ϕ(z)Jg(z)ϕ(g · z)−1.

Of course, now K̃ transforms according to (5.3), with the aid of J̃ . If we
want, we can now ensure that, by passing from H to an appropriate H̃,
K̃(z, 0) ≡ 1. We merely have to set ϕ(z) = K(0, 0)1/2K(z, 0)−1. Thus the
reproducing kernel K̃ is almost unique. The only freedom left is to multiply
ϕ(z) by a constant unitary n×n matrix. Once the kernel is normalized, we
have

Jk(z) = Jk(0), z ∈ D, k ∈ K.

In fact,

I = K(z, 0) = Jk(z)K(k · z, 0)Jk(0)∗ = Jk(z)Jk(0)−1

and the statement follows. Therefore, once the kernel K is normalized, we
have (

Uk−1f
)
(z) = Jk(0)f(k · z), k ∈ K.

Given a multiplier J , there is always the following method for construct-
ing a Hilbert space with a quasi-invariant Kernel K transforming according
to (5.4). We look for a functional Hilbert space possessing this property
among the weighted L2 spaces of holomorphic functions on D. The norm
on such a space is

‖f‖2 =
∫
D
f(z)∗Q(z)f(z)dV (z) (5.7)

with some positive matrix valued function Q(z). Clearly, this Hilbert space
possesses a reproducing kernel K. The condition that Ug−1 in (5.2) is uni-
tary is∫
D
f(g · z)∗J∗g (z)Q(z)Jg(z)f(g · z)dV (z) =

∫
D
f(w)∗Q(w)f(w)dV (w)

=
∫
D
f(g · z)∗Q(g · z)f(g · z)

∣∣∣∣∂(g · z)
∂(z)

∣∣∣∣2 dV (z),
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that is,

Q(g · z) = Jg(z)∗Q(z)Jg(z)
∣∣∣∣∂(g · z)
∂(z)

∣∣∣∣−2

, (5.8)

which is equation (5.3) with Jg(z) replaced by ∂(g·z)
∂(z) Jg(z)∗−1.

Given the multiplier Jg(z), Q(z) is again determined by Q = Q(0), and
(just as in the case of K(0, 0) = A) it must be a positive matrix commuting
with all Jk(0), k ∈ K. (It is assumed that each Jk(0) is unitary).

In this way, we can construct many examples of homogeneous operators
in Bn(D) but not all.

Even, not all the the homogeneous operators in B1(D) come from this
construction. There is a homogeneous operator in the class B1(D) corre-
sponding to the multiplier J(g, z) = (g′(z))λ, λ ∈ R exactly when λ > 0.
The reproducing kernel is K(z, w) = (1 − zw̄)−2λ. But such an operator
arises from the construction outlined above only if λ ≥ 1/2.

Never the less, the homogeneous operators constructed in the manner
described above are of interest since they happen to be exactly the subnor-
mal homogeneous operators in this class (cf. [2]).

5.2. Computation of the Multipliers for the Unit Disc

In the case of Bn(D), it is shown in [6] that the bundle corresponding to
a homogeneous Cowen-Douglas operator admits an action of the covering
group G̃ of the group G = Möb via unitary bundle maps. This suggests the
strategy of first finding all the homogeneous holomorphic Hermitian vector
bundles (a problem easily solved by known methods) and then determining
which of these correspond to an operator in the Cowen-Douglas class.

We are going to use the method of holomorphic induction. For this, first
we describe some basic facts and fix our notation. We follow the notation
of [7] which we will use as a reference.

The Lie algebra g of G̃ is spanned by X1 = 1
2

(
0 1
1 0

)
, X0 = 1

2

(
i 0
0 −i

)
and Y = 1

2

(
0 −i
i 0

)
. The subalgebra k corresponding to K̃ is spanned by

X0. In the complexified Lie algebra gC, we mostly use the complex basis
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h, x, y given by

h = −iX0 =
1
2

(
1 0
0 −1

)
x = X1 + iY =

(
0 1
0 0

)
y = X1 − iY =

(
0 0
1 0

)
.

We write GC for the (simply connected group) SL(2,C). Let G0 =
SU(1, 1) be the subgroup corresponding to g. The group GC has the closed

subgroups KC =
{(z 0

0 1
z

)
: z ∈ C, z �= 0

}
, P+ =

{(1 z

0 1

)
: z ∈ C

}
, P− ={(1 0

z 1

)
: z ∈ C

}
; the corresponding Lie algebras kC =

{(c 0
0 −c

)
: c ∈ C

}
,

p+ =
{(0 c

0 0

)
: c ∈ C

}
, p− =

{(0 0
c 0

)
: c ∈ C

}
are spanned by h, x and

y, respectively. The product KCP− =
{(a 0

b 1
a

)
: 0 �= a ∈ C, b ∈ C

}
is a

closed subgroup to be denoted T ; its Lie algebra is t = Ch+ Cy. The prod-
uct set P+KCP− = P+T is dense open in GC, contains G, and the product
decomposition of each of its elements is unique. (GC/T is the Riemann
sphere, gK̃ → gT, (g ∈ G) is the natural embedding of D into it.)

According to holomorphic induction ([5, Chap. 13]) the isomorphism
classes of homogeneous holomorphic vector bundles are in one to one cor-
respondence with equivalence classes of linear representations � of the pair
(t, K̃). Since K̃ is connected, here this means just the representations of t.
Such a representation is completely determined by the two linear transfor-
mations �(h) and �(y) which satisfy the bracket relation of h and y, that
is,

[�(h), �(y)] = −�(y). (5.9)

The G̃-invariant Hermitian structures on the homogeneous holomorphic
vector bundle (making it into a homogeneous holomorphic Hermitian vector
bundle), if they exist, are given by �(K̃)-invariant inner products on the
representation space. An inner product is �(K̃)-invariant if and only if �(h)
is diagonal with real diagonal elements in an appropriate basis.

We will be interested only in bundles with a Hermitian structure. So,
we will assume without restricting generality, that the representation space
of � is Cd and that �(h) is a real diagonal matrix.



Homogeneous Operators 91

Furthermore, we will be interested only in irreducible homogeneous
holomorphic Hermitian vector bundles, this corresponds to � not being
the orthogonal direct sum of non-trivial representations. Suppose we have
such a �; we write Vα for the eigenspace of �(h) with eigenvalue α. Let
−η be the largest eigenvalue of �(h) and m be the largest integer such
that −η,−(η + 1), . . . ,−(η + m) are all eigenvalues. From (5.9) we have
�(y)Vα ⊆ Vα−1; this and orthogonality of the eigenspaces imply that
V = ⊕m

j=0V−(η+j) and its orthocomplement are invariant under �. So,
V is the whole space, and have proved that the eigenvalues of �(h) are
−η, . . . ,−(η +m).

From this it is clear that � can be written as the tensor product of the
one dimensional representation σ given by σ(h) = −η, σ(y) = 0, and the
representation �0 given by �0(h) = �(h) + ηI, �0(y) = �(y). Correspond-
ingly, the bundle for � is the tensor product of a line bundle Lη and the
bundle corresponding to �0.

The representation �0 has the great advantage that it lifts to a holo-
morphic representation of the group T . It follows that the homogeneous
holomorphic vector bundle it determines for D, G̃, can be obtained as the re-
striction to D of the homogeneous holomorphic vector bundle overGC/T ob-
tained by ordinary induction in the complex analytic category. So, (as a con-

venient choice) take the local holomorphic cross section z 
→ s(z) :=
(1 z

0 1

)
of GC/T over D. In the trivialization given by s(z), the multiplier then

appears for g =
(a b

c d

)
∈ GC as

J0
g (z) = �0

(
s(z)−1g−1s(g · z))

= �0

(
cz + d 0
−c (cz + d)−1

)

= �0

(
exp

( −c
cz + d

y

))
�0
(
exp(2 log(cz + d)h)

)
. (5.10)

The last two equalities are simple computations.
For the line bundle Lη, the multiplier is g′(z)η (we write g′(z) = ∂g

∂z (z)).
Consequently, the multiplier corresponding to the original � is

Jg(z) =
(
g′(z)

)η
J0

g (z). (5.11)
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5.3. Conditions Imposed by the Reproducing Kernel

We now assume that we have a homogeneous holomorphic vector bundle
induced by � as in the preceding sections and that it has a reproducing
kernel. Then we derive conditions about the action of G̃ that follow from
this hypothesis. In the final section, we will show that these conditions
are sufficient: they lead directly to the construction of all homogeneous
operators the Cowen-Douglas class with multiplicity free representations.

Under our hypothesis there is a Hilbert space structure on our sections
in which the action of G̃ given by (5.4) is unitary. We will study this repre-
sentation through its K-types (i.e., its restriction to K̃). We first compute
the infinitesimal representation.

For X ∈ g, and holomorphic f , we have

(UXf)(z) :=
(
d

dt

)
|t=0

(
Uexp(tX)f

)
(z)

=
(
d

dt

)
|t=0

{(
∂(exp(−tX) · z)

∂z

)η

J0
exp(−tX)(z)f(exp(−tX) · z)

}
. (5.12)

There is a local action of GC, so this formula remains meaningful also
for X ∈ gC. There are three factors to differentiate. For the last one,(

d
dt

)
|t=0

f(exp(−tX) · z) = −(Xz)f ′(z), and we see that exp(tx) · z =(
1 t

0 1

)
· z = z + t gives x · z = 1; by similar computations, y · z = −z2,

h · z = z. For the first factor, we interchange the differentiations and get
−η ∂

∂z (X · z), i.e., 0, 2ηz,−η, respectively for x, y and h.

To differentiate the factor in the middle, we use its expression (5.10).
First for X = y, we have

d

dt

∣∣∣∣
t=0

�0
(
exp(−t(tz + 1)−1y)

)
=

d

dt

∣∣∣∣
t=0

(
exp(−t(tz + 1)−1�0(y)

)
= −�0(y) (5.13)

and

d

dt

∣∣∣∣
t=0

�0(exp(2 log(tz + 1)h)) =
d

dt

∣∣∣∣
t=0

exp(2 log(tz + 1)�0(h))

= 2z�0(h) . (5.14)
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From these, following the conventions of [7] in defining H, E, F, it follows
that

(Ff)(z) := (U−yf)(z) =
d

dt

∣∣∣∣
|t=0

Jexp(ty)(z)f(exp(ty) · z)

=
(−2ηzI + 2z�0(h)− �0(y)

)
f(z)− z2f ′(z).

(5.15)

Similar, simpler computations give, for g = exp(tx) =
(

1 t

0 1

)
(Ef)(z) :=

(
Uxf

)
(z) = −f ′(z). (5.16)

Finally, for g = exp(th) =
(
et/2 0
0 e−t/2

)
, we have

Jexp(th)(z) = �

(
e−t/2 0

0 et/2

)
= exp(−t)�0(h).

Hence it is not hard to verify that

(Hf)(z) := (Uhf)(z) =
(−ηI + �0(h)

)
f(z)− zf ′(z). (5.17)

Under our hypothesis, we have a reproducing kernel and U is unitary. From
our computations above, we can determine how U decomposes into irre-
ducibles. The infinitesimal representation of U acts on the vector valued
polynomials; a good basis for this space is {εjz

n : n ≥ 0}; εj is the jth
natural basis vector in Cd. We have H(εjz

n) = −(η + j + n)(εjz
n), so the

lowest K-types of the irreducible summands are spanned by the εj . This
space is also the kernel of E. So, U is direct sum of discrete series represen-
tations (Uη+j , in the notation of [7]), each one appearing as many times as
−(η + j) appears on the diagonal of �(h).

5.4. The Multiplicity-Free Case

In order to be able to use the computations of [6] without confusion, we
introduce the parameter λ = η + m

2 .
From the last remark of the preceding section, it is clear that if U is

multiplicity-free then �(h) is an (m+ 1)× (m+ 1) matrix with eigenvalues
−λ+ m

2 ,−λ+ m
2 −1, . . . ,−λ− m

2 . As �(h)εj = −(λ− m
2 + j) εj , (5.9) shows

that

�(h)
(
�(y)εj

)
= −

(
λ+

m

2
+ j + 1

)
�(y) εj , that is, �(y) εj = const εj+1.
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So, �(y) is a lower triangular matrix (with non-zero entries, otherwise we
have a reducible bundle). The homogeneous holomorphic vector bundle
determines �(y) only up to a conjugacy by a matrix commuting with �(h),
that is, a diagonal matrix. So, we can choose the realization of our bundle
by applying an appropriate conjugation such that �(y) = Sm, the triangular
matrix whose (j, j − 1) element is j for 1 ≤ j ≤ m.

By standard representation theory of SL(2,R), the vectors (−F )nεj are
orthogonal and the irreducible subspaces H(j) for U are span{(−F )nεj :
n ≥ 0} for 0 ≤ j ≤ m. There is also precise information about the norms.

Using this, we can construct an orthonormal basis for our representation
space.

For any n ≥ 0, we let uj
n(z) = (−F )nεj.

To proceed further, we need to find the vectors uj
n(z) explicitly. This is

facilitated by the following Lemma.

Lemma 5.1. Let u be a vector with u(z) = uz
n−, 0 ≤  ≤ m and n ≥ 0.

We then have

(−Fu)(z) = (2λ−m+ + n)uz
n+1− + u−1z

n+1−, 0 ≤  ≤ m.

Proof. We recall (5.15) that−(Ff)(z) = 2λzf(z)+Smf(z)−2zDmf(z)+
z2f ′(z) for f ∈ H(n), where Dm = −�0(h) is the diagonal operator with
diagonal {−m

2 ,−m
2 + 1, . . . , m

2 } and Sm is the forward weighted shift with
weights 1, 2, . . . ,m. Therefore we have

(−Fu)(z) =
(
2λu + u−1 − (m− 2)u + (n− )u

)
zn+1−

completing the proof. �

Lemma 5.2. For 0 ≤ j ≤ m and 0 ≤  ≤ m, we have

uj
n,(z) =

{
0, 0 ≤  ≤ j − 1(
n
k

)
(j + 1)k(2λ−m+ 2j + k)n−kz

n−k, j ≤  ≤ m, k = − j,

where uj
n,(z) is the scalar valued function at the position  of the Cm+1-

valued function uj
n(z) := (−F )nεj.

Proof. The proof is by induction on n. The vectors uj
n are in H(n) for

0 ≤ j ≤ m. For a fixed but arbitrary positive integer j, 0 ≤ j ≤ m, we see
that uj

n,(z) is 0 if n < − j. We have to verify that (−Fuj
n)(z) = uj

n+1(z).
From the previous Lemma, we have

(−Fuj
n)(z) = (2λ−m+ + n+ j)uj

n,z
n+j+1− + uj

n,−1z
n+j+1−,
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where (−Fuj
n)(z) is the scalar function at the position  of the Cm+1 -

valued function (−Fuj
n)(z). To complete the proof, we note (using k = −j)

that

(−Fuj
n)j+k(z)

=
((

n
k

)
(j + 1)k(2λ−m+ 2j + k)n−k(2λ−m+ 2j + k + n) +(

n
k−1

)
(j + 1)k(2λ−m+ 2j + k − 1)n−k

)
zn+1−k

= (j + 1)k(2λ−m+ 2j + k)n−k((
n
k

)
(2λ−m+ 2j + k + n) +

(
n

k−1

)
(2λ−m+ 2j + k − 1)

)
zn+1−k

= (j + 1)k(2λ−m+ 2j + k)n−k(
(
(
n
k

)
+
(

n
k−1

)
(2λ−m+ 2j + k − 1) + (n+ 1)

(
n
k

))
zn+1−k

= (j + 1)k(2λ−m+ 2j + k)n−k((
n+1

k

)
(2λ−m+ 2j + k − 1) +

(
n+1

k

)
(n− k + 1)

)
zn+1−k

= (j + 1)k(2λ−m+ 2j + k)n−k

((
n+1

k

)
(2λ−m+ 2j + n)

)
zn+1−k

= (j + 1)k

((
n+1

k

)
(2λ−m+ 2j + k)n+1−k

)
zn+1−k

= uj
n+1,j+k(z)

for a fixed but arbitrary j, 0 ≤ j ≤ m and k, 0 ≤ k ≤ m−j. This completes
the proof. �

On H(j), we have the representation Uλj acting (0 ≤ j ≤ m), where
λj = λ− m

2 + j. Its lowest K-type is spanned by εj (= uj
0) and Hεj = λjεj .

By [7, Prop 6.14] we have ‖(−F )kεj‖2 = σj
k‖(−F )k−1εj‖2 with

σj
k = (2λj + k − 1)k

for all k ≥ 1. (Here we used that the constant q in [7, Eq. (6.33)] equals
λj(1 − λj) by [7, Theorem 6.2].) We write

σj
n =

n∏
k=1

σj
k

which can be written in a compact form

σj
n = ((2λj)n(1)n), (5.18)

where (x)n = (x + 1) · · · (x + n − 1). We stipulate that the binomial co-
efficient

(
n
k

)
as well as (x)n−k are both zero if n < k.

The positivity of the normalizing constants
(
σj

n−j

) 1
2 (n ≥ j) is equiva-

lent to the existence of an inner product for which the set of vectors ej
n−j
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defined by the formula:

ej
n−j = (σj

n)−
1
2 uj

n−j(z), n ≥ j, 0 ≤ j ≤ m

forms an orthonormal set. Of course, the positivity condition is fulfilled if
and only if 2λ > m.

In this way, for fixed j, each ej
n−j has the same norm for all n ≥ j. Hence

the only possible choice for an orthonormal system is {µje
j
n−j : n ≥ j} for

some positive real numbers µj > 0 (0 ≤ j ≤ m). However, we may choose
the norm of the first vector, that is, the vector ej

0, 0 ≤ j ≤ m, arbitrarily.
Therefore, all the possible choices for an orthonormal set are

µje
j
n−j(z) =

µj√
(2λ−m+ 2j)n−j

√
(1)n−j

uj
n−j(z), (5.19)

n ≥ j, 0 ≤ j ≤ m, and µj , 0 ≤ j ≤ m are m+1 arbitrary positive numbers.

Let us fix a positive real number λ and m ∈ N satisfying 2λ > m.
Let H(λ,µ) denote the closed linear span of the vectors {µje

j
n−j : 0 ≤ j ≤

m, n ≥ j}. Then the Hilbert space H(λ,µ) is the representation space for
U defined in (5.2). Since the vectors uj

n ⊥ uk
p as long as j �= k, it follows

that the Hilbert space H(λ,µ) is the orthogonal direct sum ⊕m
j=0

1
µj
H(j).

We proceed to compute the reproducing kernel by using the orthonormal
system {µje

j
n−j : n ≥ j}, 0 ≤ j ≤ m. We point out that for 0 ≤  ≤ m,

the entry e,j
n−jz

n−j at the position  of the vector ej
n−j(z) is 0 for n < .

Consequently, ej
n−j is the zero vector unless n ≥ j. The set of vectors

{µje
j
n−j : 0 ≤ j ≤ m, n ≥ j} is orthonormal in the Hilbert space H(λ,µ).

We note that

ej
n−j(z) = ((e,j

n−jz
n−k))m

=0 ,(
ej

n−j(z)
)


=

0, 0 ≤  ≤ j − 1√
(2λ+2j−m+k)n−j−k

(1)n−j−k

√
(n−j−k+1)k

(2λ+2j−m)k

(j+1)k

(1)k
zn−k, j ≤  ≤ m, k = − j .

(5.20)

We have under the hypothesis that we have a reproducing kernel Hilbert
space on which the representation U is unitary, explicitly determined an
orthonormal basis for this space. Now we are able to answer the ques-
tion of whether this space really exists. For this it is enough to show that∑
en(z) en(w)

tr
converges pointwise, the sum then represents the repro-

ducing kernel for this Hilbert space. We will sum the series explicitly, and



Homogeneous Operators 97

will verify that it gives exactly the kernels constructed in [6]. This will com-
plete the program of this paper by proving that the examples of [6] give all
the homogeneous operators in the Cowen-Douglas class whose associated
representation is multiplicity free.

To compute the kernel function, it is convenient to set, for any n ≥ 0,

G(µ, n, z) =



µ0e
0,0
n zn . . . 0 . . . 0
... . . .

... . . .
...

µ0e
j,0
n zn−j . . . µje

j,j
n−jz

n−j . . . 0
... . . .

... . . .
...

µ0e
m,0
n zn−m . . . µje

m,j
n−jz

n−m . . . µme
m,m
n−mz

n−m



=

z
n . . . 0
...

. . .
...

0 . . . zn−m




e0,0
n . . . 0 . . . 0
... . . .

... . . .
...

ej,0
n . . . ej,j

n−j . . . 0
... . . .

... . . .
...

em,0
n . . . em,j

n−j . . . e
m,m
n−m


µ0 . . . 0

...
. . .

...
0 . . . µm



= Dn(z)G(n)D(µ), (5.21)

where Dn(z), D(µ) are the two diagonal matrices and G(n) = ((e,j
n−j )m

,j=0

with e,j
n−j = 0 if  < j or if n < . The nonzero entries of the lower

triangular matrix G(n), using (5.20), are

Gj+k,j(n) =

(
n−j

k

)
(j + 1)k(2λ−m+ 2j + k)n−j−k√
(2λ−m+ 2j)n−j

√
(1)n−j

=

√
(2λ−m+ 2j + k)n−j−k√

(2λ−m+ 2j)k

(n− j − k + 1)k√
(1)n−j

(j + 1)k

(1)k

=

√
(2λ−m+ 2j + k)n−j−k

(2λ−m+ 2j)k

√
(n− j − k + 1)k

(1)n−j−k

(j + 1)k

(1)k
(5.22)

for 0 ≤ k ≤ m− j.
Now, we are ready to compute the reproducing kernel Kj for the

Hilbert space H(j) = span{ej
n−j : n ≥ j}, 0 ≤ j ≤ m. Recall that

K(z, w) =
∑∞

n=0 en(z)en(w)∗ for any orthonormal basis en, n ≥ 0. This
ensures that K is a positive definite kernel. For our computations, we will
use the particular orthonormal basis ej

n−j as described in (5.19). Since there
are j zeros at the top of each of these basis vectors, it follows that (, p)
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will be 0 if either  < j or p < j. We will compute (Kj(z, w))), at (, p) for
j ≤ , p ≤ m. For , p as above, we have

((Kj(z, w)),p =
∞∑

n≥max(,p)

ej
n−j,(z)e

j
n−j,p(w)

=
∞∑

n≥max(,p)

G,j(n)Gp,j(n)zn−w̄n−p.

We first simplify the co-efficient G,j(n)Gp,j(n) of zn−w̄n−p. The values of
G,j(n) are given in (5.22). Therefore, we have

G,j(n)Gp,j(n)

=
( (2λj + − j)n−

(2λj)−j

(n− + 1)−j

(1)n−

(2λj + p− j)n−p

(2λj)p−j

(n− + 1)−j

(1)n−p

)1/2

× (j + 1)−j

(1)−j

(j + 1)p−j

(1)p−j

=
(2λj + p− j)n−p(n− + 1)−j

(2λj)−j(1)n−p

((2λj + − j)p−(n− p+ 1)p−

(2λj + − j)p−(n− p+ 1)p−

)1/2

× (j + 1)−j

(1)−j

(j + 1)p−j

(1)p−j

=
(2λj)p−j(2λj + p− j)n−p(n− + 1)−j(n− p+ 1)p−j

(2λj)p−j(2λj)−j(1)n−p(n− p+ 1)p−j

(j + 1)−j

(1)−j

(j + 1)p−j

(1)p−j

=
(2λj)n−j(n− + 1)−j(n− p+ 1)p−j

(2λj)p−j(2λj)−j(1)n−j

(j + 1)−j

(1)−j

(j + 1)p−j

(1)p−j
.

Theorem 5.2. Given an arbitrary set µ0, . . . , µm of positive numbers, and
2λ > m, we have

K(λ,µ)(z, w) =
m∑

j=0

µ2
jKj(z, w) = B(λ,µ)(z, w).

As a result, the two Hilbert spaces H(λ,µ) and A(λ,µ) of [6] are equal.

Proof. We now compare the co-efficients ((Kj(z, w)),p with that of a
known Kernel. Let Bλj (z, w) = (1− zw̄)−2λj , where B(z, w) = (1− zw̄)−2

is the Bergman kernel on the unit disc. We let ∂ and ∂̄ denote differentiation
with respect to z and w̄ respectively. Put

B̃(λj)(z, w) = (∂−j ∂̄p−j(1− zw̄)−2λj )j≤,p≤m.
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We expand the entry at the position (, p) of B̃(λj)(z, w) to see that

(B̃(λj)(z, w))),p

=
∑

ν≥max(−j,p−j)

(2λj)ν

(1)ν
(ν − + j + 1)−j(ν + j − p+ 1)p−jz

ν−(−j)w̄ν−(p−j)

=
∑

n≥max(,p)

(2λj)n−j

(1)n−j
(n− + 1)−j(n− p+ 1)p−jz

n−w̄n−p,

where we have set n = m + j. Comparing these coefficients with that of
G,j(n)Gp,j(n), we find that

Kj(z, w) = DjB̃(λj)(z, w)Dj , (5.23)

where Dj is a diagonal matrix with 1
(2λj)�−j

(j+1)�−j

(1)�−j
at the (, ) position

with j ≤  ≤ m. Hence Kj(z, w) = B(λj)(z, w) which was defined in the
equation ([6, Eq. (4.3)]).

Clearly, we can add up the kernels Kj to obtain the kernel K(λ,µ) for
the Hilbert space H(λ,µ) = ⊕m

j=0
1

µj
H(j). Hence the proof of the theorem is

complete. �

Corollary 5.1. The irreducible homogeneous operators in the Cowen-
Douglas class whose associated representation is multiplicity free are exactly
the adjoints of M (λ,µ) constructed in [6].

Proof. In our discussion up to here we proved that the Hilbert space
H(λ,µ) corresponding to a homogeneous operator in the Cowen-Douglas
class has a reproducing kernel given by K(λ,µ) =

∑m
0 µ2

jKj , 2λ >

1, µ1, . . . , µm > 0. It follows from the Theorem that the kernels obtained
this way are the same as (are equivalent to) the kernels constructed in [6].
These operators were shown to be irreducible ([6]). �

We now consider the action of the multiplication operator M (λ,µ) on
the Hilbert space H(λ,µ). Let H(n) be the linear span of the vectors

{e0
n(z), . . . , ej

n−j(z), . . . , e
m
n−m(z)},

where as before, for 0 ≤  ≤ m, ej
n−(z) is zero if n −  < 0. Clearly,

H(λ,µ) = ⊕∞n=0H(n). We have

zG(µ, n, z) = Dn(z)G(n)D(µ)

= Dn+1(z)G(n)D(µ)

= Dn+1(z)G(n+ 1)D(µ)
(
D(µ)−1G(n+ 1)−1G(n)D(µ)

)
.
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If we letW (n) = D(µ)−1G(n+1)−1G(n)D(µ), then we see that zej
n−j(z) =

G(µ, n+1, z)Wj(n), where Wj(n) is the jth column of the matrix W (n). It
follows that the operator M (λ,µ) defines a block shift W on the represen-
tation space H(λ,µ). The block shift W is defined by the requirement that
W : H(n)→ H(n+ 1) and W|H(n) = W tr

n .
Here, we have a construction of the representation space H(λ,µ) along

with the matrix representation of the operatorM (λ,µ) which is independent
of the corresponding results from [6].

5.5. Examples

Recall that G(µ, n, z) = Dn(z)G(n)D(µ). Once we determine the matrix
G(n) explicitly, we can calculate both the block weighted shift and the
kernel function.

We discuss these calculations in the particular case of m = 1. First, it
is easily seen that

G(n) =


(

(2λ−1)n

(1)n

)1/2

0(
n

2λ−1

)1/2(
(2λ)n−1
(1)n−1

)1/2 (
(2λ+1)n−1

(1)n−1

)1/2

 . (5.24)

The block Wn of the weighted shift W is

Wn =


(

n+1
2λ+n−1

)1/2

0

− 1
µ1

(
2λ

2λ−1

)1/2(
1

(2λ+n−1)(2λ+n)

)1/2 (
n

2λ+n

)1/2

 . (5.25)

Finally, the reproducing kernel K(λ,µ) with m = 1 is easily calculated:

K(λ,µ)(z, w) =

 1
(1−w̄z)2λ−1

z
(1−w̄z)2λ

w̄
(1−w̄z)2λ

1
2λ−1

1+(2λ−1)w̄z
(1−w̄z)2λ+1

+ µ2
1

(
0 0

0 1
(1−w̄z)2λ+1

)
.

(5.26)
One might continue the explicit calculations, as above, in the particular

case of m = 2 as well. We begin with the matrix

G(n) =



√
(2λ−2)n

(1)n
0 0√(

n
2λ−2

)( (2λ−1)n−1
(1)n−1

) √
(2λ)n−1
(1)n−1

0√(
n(n−1)

(2λ−2)(2λ−1)

)( (2λ)n−2
(1)n−2

)
2
√(

n−1
2λ

)( (2λ+1)n−2
(1)n−2

) √
(2λ+2)n−2

(1)n−2

 .

(5.27)
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The block Wn of the weighted shift W , in this case, is
√

n+1
2λ+n−2

0 0

−1
µ1

√(
2λ−1
2λ−2

)(
1

(2λ+n−1)(2λ+n−2)

) √
n

2λ+n−1
0

−2
µ2

√(
2λ+1

(2λ−2)3

)(
n

(2λ+n−2)3

) −2µ1
µ2

√(
2λ+1
2λ

)(
1

(2λ+n−1)(2λ+n)

) √
n−1
2λ+n

 .

(5.28)

Finally, the reproducing kernel K(λ,µ) with m = 2 has the form:

K(λ,µ)(z, w)

=


1

(1−w̄z)2λ−2
z

(1−w̄z)2λ−1
z2

(1−w̄z)2λ

w̄
(1−w̄z)2λ−1

1+(2λ−2)w̄z
(2λ−2)(1−w̄z)2λ

z(2+(2λ−2)w̄z)
(2λ−2)(1−w̄z)2λ+1

w̄2

(1−w̄z)2λ

w̄(2+(2λ−2)w̄z)
(2λ−2)(1−w̄z)2λ+1

2+4(2λ−1)w̄z+(2λ−1)(2λ−2)z2w̄2

(2λ−1)(2λ−2)(1−w̄z)2λ+2



+µ2
1


0 0 0

0 1
(1−w̄z)2λ 2 z

(1−w̄z)2λ+1

0 2 w̄
(1−w̄z)2λ+1 2 2

2λ
1+2λw̄z

(1−w̄z)2λ+2



+µ2
2

0 0 0

0 0 0

0 0 1
(1−w̄z)2λ+2

 . (5.29)
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In his talk at the International Colloquium on Algebraic Geometry held in
January 1968 at the Tata Institute of Fundamental Research, Grothendieck
formulated two “standard conjectures” on algebraic cycles, which arose
“from an attempt at understanding the conjectures of Weil on the ζ func-
tions of algebraic varieties” ([4]). At the end of his talk he says “alongside
the problem of resolution of singularities, the proof of the standard con-
jectures seems to be the most urgent task in algebraic geometry”. The
conjectures also form the basis of his theory of “motives”. (See [5], also [1].)
Unfortunately, the conjectures are not yet proved.

These conjectures are of two types:

1) The standard conjecture of Lefschetz type.
2) The standard conjecture of Hodge type (not to be confused with the

Hodge conjecture on algebraic cycles, which will be mentioned later).

We will state the conjectures first in the case of complex non-singular
projective varieties and later in the case of abstract algebraic varieties. (The
standard conjecture of Hodge type is known to be true in the complex case,
from the work of Hodge. The conjecture of Lefschetz type is still unknown
even in the complex case).

6.1. The Case of Complex Projective Varieties

Let X be a compact connected complex manifold of (complex) dimension
n, embedded in a complex projective space Pm(C). An algebraic cycle (of
codimension i) in X is a finite formal linear combination Z =

∑
ajZj where

103
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Zj are irreducible analytic (algebraic) subvarieties of X of codimension i

and aj are rational numbers (or integers, depending on the context). Such
a cycle defines an element of the singular cohomology group H2i(X,Q), by
associating to an irreducible algebraic variety Z its Poincaré dual [Z], and
extending this to cycles in the obvious way.

To define [Z] one associates to Z its fundamental homology class in
H2(n−i)(Z,Z) either by using a triangulation or as in Theorem 3.2 and
Proposition in 3.3 of [2]; the inclusion of Z in X yields an element of
H2(n−i)(X,Z) and [Z] is defined to be the image of this element under the
Poincaré duality isomorphism H2(n−i)(X,Z)→ H2i(X,Z).

(Another way to define [Z] is to use the theorem of Hironaka on resolu-
tion of singularities. First, for Z nonsingular, define [Z] to be i∗(1) where
i∗ is the Gysin homomorphism defined by the inclusion i : Z → X . If Z is
singular, let f : Z̃ → Z be a resolution of singularities, with Z̃ nonsigular
and projective and f an isomorphism on the smooth locus of Z. Define [Z]
to be (i ◦ f)∗[1]; the class thus obtained is independent of the resolution.)

The real cohomology class defined by [Z] is the class of the (closed)
current obtained by appropriately integrating forms of degree 2(n − i) on
Z ([2], Proposition in §3.4).

We denote by Ai the Q-subspace of elements of H2i(X,Q) represented
by algebraic cycles, and we callAi the space of algebraic cohomology classes.

Let us denote byHp the spaceHp(X,Q). Let ξ ∈ H2 be the cohomology
class defined by a hyperplane section, and L : Hp → Hp+2 the operator
L(u) = ξ ∪ u for u ∈ Hp, where ∪ denotes the cup product in cohomology.
We then have the Hard Lefschetz theorem ([10], Corollaire on p. 75): for
0 ≤ p ≤ n,

Ln−p : Hp → H2n−p

is an isomorphism. We now state

The standard conjecture of Lefschetz type. For 0 ≤ 2i ≤ n,

Ln−2i : H2i → H2n−2i

maps Ai onto An−i. (Note that Ln−2i maps Ai into An−i.)

Remark: The Hodge conjecture is the following: let u ∈ H2i(X,Q); if u
considered as an element of H2i(X,C) is represented under the de Rham
isomorphism by a differential form of type (i, i), then u is an algebraic class.
Let H i,i ⊂ H2i(X,C) denote the space represented by forms of type (i, i).
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By the Hard Lefschetz Theorem, Ln−2i maps H2i(X,Q) ∩H i,i isomorphi-
cally onto H2n−2i(Q) ∩Hn−i,n−i. So we see that the Hodge conjecture on
algebraic cycles implies standard conjecture of Lefschetz type.

An equivalent form of the standard conjecture of Lefschetz type (for all
smooth projective varieties) is: the operator Λ of Hodge theory is algebraic
([8] Th. 4-1, p. 14).

For the definition of Λ see §4 of [8] or p. 76, [9]. Using the Künneth
formula and Poincaré duality, the operator Λ : H∗(X,Q) → H∗(X,Q)
can be considered as an element of H∗(X × X,Q), and to say that Λ is
algebraic means that this element is an algebraic cohomology class inX×X .
Grothendieck says that the conjecture seems to be most amenable in this
form.

Let X be as above. The kernel of the map

Ln−p+1 : Hp → H2n−p+2

is called the space of primitive forms and is denoted by P p (0 ≤ p ≤ n).

Hodge Index theorem. Let X be a complex projective manifold. Then
on P 2i∩Ai (the space of primitive algebraic classes) the Q-valued symmetric
form

(x, y) = (−1)i

∫
X

x ∪ y ∪ ξn−2i

is positive definite ([10], p. 77).
The “abstract” analogue of the above result is the Standard Conjecture

of Hodge type, described in the next section.

Homological and numerical equivalence of algebraic cycles. Two
cycles Z1 and Z2 of codimension i in X are said to be numerically equiv-
alent if the intersection numbers (Z1 · Z) and (Z2 · Z) are the same for all
irreducible subvarieties of codimension (n− i). They are said to be homo-
logically equivalent if they have the same image in H2i(X,Q). It has been
a long standing conjecture that numerical and homological equivalence of
algebraic cycles (with Q-coefficients) coincide. This result can be seen to be
a consequence of the standard conjecture of Lefschetz type as follows. Since
the cycle map, which associates to a cycle its cohomology class, takes inter-
section product into cup product, it is enough to show that the canonical
pairing

Ai ⊗Q A
n−i → Q
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is non-degenerate. To prove this we define an operator

∗ : Hp → H2n−p

which is an isomorphism and which maps algebraic classes to algebraic
classes such that (a, b)→ ∫

a∪ (∗b) is positive definite on Ai. If a ∈ Hi and

a =
∑

Ljaj , aj ∈ P i−2j

is the primitive decomposition (cf. [5], Th. 5 on p. 75) then ∗a is defined by

∗a =
∑

(−1)
(i−2j)(i−2j+1)

2 Ln−i+jaj .

That ∗ maps algebraic classes to algebraic classes follows from the standard
conjecture of Lefschetz type and positive definiteness follows from Hodge
index theorem.

6.2. Standard Conjectures in Abstract Algebraic Geometry

Let X be a smooth irreducible projective algebraic variety of dimension n

over an algebraically closed field k, perhaps of positive characteristic p. Let
 be a prime number  �= p. We denote by Hi the -adic étale cohomology
group Hi(X,Q) with coefficients in the field Q of -adic numbers, which
has been defined by Grothendieck ([6]). Let µlm denote the group of roots of
unity of order lm in k, and set µl∞ =

⋃
m≥0 µlm . For simplicity, we choose

an isomorphism between µl∞ and Q/Z. (Making such a choice is called
“a heresy” by Grothendieck!) We then have a cycle map

Zi(X)⊗Z Q → H2i

where Zi(X) denotes the group of i-codimensional (integral) algebraic cy-
cles ([6], pp. 23-24). We denote by Ai the image and an element of Ai will
be referred to as an algebraic cohomology class. Let ξ ∈ H2(X) be the class
of a hyperplane section. From the work of Deligne it follows that for m ≤ n

∪ξn−m : Hm → H2n−m

is an isomorphism (Hard Lefschetz, [3], Theorem 5.5). We can now state

The standard conjecture of Lefschetz type. For 2i ≤ n,

∪ξn−2i : H2i → H2n−2i

maps Ai isomorphically onto An−i.
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For m ≤ n we denote by Pm the primitive part of Hm, defined as the
kernel of the map

∪ξn−m+1 : Hm → H2n−m+2.

The standard conjecture of Hodge type. On P 2i ∩ Ai the Q-valued
symmetric form

(a, b) = (−1)iK(a ∪ b ∪ ξn−2i)

is positive definite, where K denotes the isomorphism H2n → Q.

Remark: If both these conjectures are true then numerical and homolog-
ical equivalence of algebraic cycles would coincide, as indicted above in the
case of complex projective varieties.

Remark: A priori it is not clear that Ai are finite dimensional vector
spaces over Q. This would be the case if numerical and homological equiva-
lence coincide, since the space of algebraic cycles modulo numerical equiv-
alence is a finite dimensional vector space ([1], 3.5 and [8], Lemma 5.2).

Remark: As in the complex case, the standard conjecture of Lefschetz
type (for all varieties X) is equivalent to: the operator Λ is algebraic.

Weil conjectures. As mentioned earlier, a motivation for standard con-
jectures was to understand Weil conjectures (on rational points of varieties
defined over a finite field).

Let X be an irreducible smooth projective variety of dimension n, de-
fined by polynomials with coefficients in a finite field Fq. For each m ≥ 1,
let νm denote the number of points with coordinates in the extension field
Fqm . Define the function Z(t) by:

logZ(t) =
∑
m≥1

νm tm/m.

The function Z(t) is called the zeta function of X (The function Z(q−s),
denoted by ζ(s), is also sometimes considered.)

Among the conjectures of A. Weil on the zeta function are the following.

1) Z(t) is a rational function.
2) Z(t) is of the form
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Z(t) =
P1(t) · · ·P2n−1(t)
P0(t) · · ·P2n(t)

where Pi(t) a polynomial with integer coefficients with P0(t) = 1 − t and
P2n(t) = (1 − qnt). The absolute value of the roots of Pi(t) is q−i/2; i.e.,
Pi(t) is of the form

∏
j(1− ωijt) with | ωij |= qi/2: (Riemann hypothesis).

Remark: Moreover, if X is a non-singular algebraic variety defined over
a number field K, then for almost all prime ideals p of K, the degree of
the polynomial Pi associated with Xp (the reduction of X mod p) coincides
with the (usual) ith Betti number of the complex variety X . This gives
a method of computing Betti numbers of complex projective varieties by
computing rational points on varieties defined over finite fields.

We will now indicate how the Riemann hypothesis (for varieties over a
finite field), which has been proved by Deligne ([3]), is related to standard
conjectures. Arguments due to Weil and Serre ( [4]) yield (compare [9],
Theorem 5.6 of [8], and [1], 5.4.3, p. 58):

Proposition 6.1. Assume that the standard conjecture of Lefschetz type
holds for X and the standard conjecture of Hodge type holds for the product
X × X. (X smooth projective). Let f : X → X be a morphism such that
f∗(ξ) = qξ where ξ is the cohomology class of a hyperplane section and
q ∈ Q, q > 0. Then the eigenvalues of the endomorphism f |Hi induced on
the ith -adic cohomology group Hi(X,Q) are algebraic integers of absolute
value qi/2.

Now let X be defined over a finite field Fq and let f : X → X be the
Frobenius morphism

(x1, · · ·xN )→ (xq
1, · · · , xq

N )

raising the coordinates to qth powers. Note that the number of rational
points in Fqm is the number of points left fixed by the mth iterate fm, and
the latter can be computed in terms of the trace of the action of fm on
Hi by using the Lefschetz fixed points theorem (extended to -adic étale
cohomology). One then finds that

Pi(t) = det (1− tf)|Hi .

On applying the previous proposition to f , we see that the absolute value
of an eigenvalue of f |Hi is qi/2 (if we assume that the standard conjectures
have affirmative answers).
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We provide a complete classification up to conjugacy of the binary shifts
of finite commutant index on the hyperfinite II1 factor. There is a nat-
ural correspondence between the conjugacy classes of these shifts and
polynomials over GF (2) satisfying a certain duality condition.

7.1. Introduction

Let R denote the hyperfinite II1 factor. A pair of *-automorphisms σ, ρ on
R are said to be conjugate if there exists a *-automorphism γ on R which
satisfies γ ◦ σ(A) = ρ ◦ γ(A) for all A in R. The notion of conjugacy carries
over to the setting of unital *-endomorphisms on R. In this situation it turns
out that the Jones index [R : σ(R)] of the subfactor σ(R) in R is a numerical
conjugacy invariant, as is the commutant (or relative commutant) index:
this is the first positive integer k (or ∞) for which the relative commutant
algebra σk(R)′ ∩R is nontrivial.

In [12] R. T. Powers introduced a family of unital *-endomorphisms
on R known as binary shifts. The range σ(R) of each binary shift σ is a
subfactor of index 2. As a result the minimal possible commutant index for
a binary shift is 2 (cf. [7]). Powers has shown [12] that there exist binary
shifts of any specified commutant index k ∈ {∞, 2, 3, . . .}. In particular he
showed that for any finite commutant index there are at most countably
many conjugacy classes, but that there are uncountably many conjugacy
classes having infinite commutant index (see Theorem 7.4).

∗Supported in part by a research grant from the National Science Foundation.
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In [15] we gave a complete classification of the conjugacy classes of
binary shifts of commutant index 2. We showed that there is a natural cor-
respondence between the conjugacy classes of these shifts and polynomials
with coefficients in GF (2) which satisfy a certain duality condition (see
Theorem 7.6). These are the polynomials which have constant coefficient
1 and which have no self-reciprocal factors (see Definition 7.2) of degree
greater than 1. In this paper we extend the results of [15] by establishing
a correspondence between binary shifts of finite commutant index k ≥ 2
and polynomials over GF (2) with constant coefficient 1 which have no self-
reciprocal factors of degree exceeding 2k − 3. Unlike the case for k = 2,
this correspondence for higher commutant indices is not one-to-one, but we
produce a recursion formula (4.1) which relates the number of conjugacy
classes of binary shifts of commutant index k which are associated with
each of the polynomials of the form described above. As a consequence we
can provide precise information, for example, on the number of binary shifts
of fixed finite commutant index which are associated with any irreducible
polynomial p(x) over GF (2).

There is another notion of equivalence among unital ∗-endomorphisms
on R, in addition to conjugacy, which is known as cocycle conjugacy. A
pair α and β of unital ∗-endomorphisms are said to be cocycle conjugate
if there exists a unitary u ∈ R for which α ◦ Ad(u) and β are conjugate.
In [20] it was shown that all binary shifts of commutant index 2 are cocycle
conjugate and partial results were obtained in [21] for binary shifts of higher
finite commutant index.

Since their introduction binary shifts have been used by several authors
to illustrate various phenomena. In [10] the authors constructed a binary
shift σ on the hyperfinite II1 factor R such that σ has a unique invariant
state φ and for which the Connes-Størmer entropy (cf. [4]) hφ(σ) is 0.
On the other hand hφ⊗φ(σ ⊗ σ) = log(2), which shows that the additive
tensor product formula for the Connes-Størmer entropy fails in general (see
also [6] and [9]). In [18] it was shown that if σ is a binary shift with finite
commutant index then its Connes-Størmer entropy hτ (σ) is 1

2 log(2) where
τ is the unique tracial state on R.

It is a pleasure to thank Alexis Alevras and Robert T. Powers for helpful
conversations. We are also grateful to Professor Powers for writing a very
enlightening computer program related to the classification of binary shifts.

This paper appeared in an abbreviated form in the Proceedings of the
National Academy of Sciences, see [19].



Classification of Binary Shifts 113

7.2. Preliminaries

In this section we present Powers’ construction of the binary shifts on R. We
also state some of the results which are known about binary shifts and which
are relevant to the classification of their conjugacy classes. In particular we
shall exploit the close connections that have been made between the theory
of recurring linear sequences and binary shifts. See [8], Chapter 6, for an
extensive bibliography on the subject of recurring linear sequences.

A spin system is a sequence of self-adjoint unitary operators {ui : i ∈
Z+} that commute pairwise up to a phase in the sense that

uiuj = λijujui

for complex numbers λij , where i, j ∈ Z+. Since the ui are self-adjoint,
u2

i = I and so it follows that λij = λji = ±1 for all i and j.
Now given a subset X (finite or infinite) subset of N, and its charac-

teristic function g : N → {0, 1}, we can use g to define a spin system as
follows. Let {u0, u1, . . . } be a sequence of hermitian unitary operators, or
generators, which satisfy the commutation relations

uiui+j = (−1)g(j)ui+jui, i, j ∈ Z+. (1.1)

Note that the commutation relations in (1.1) are translation invariant,
i.e., the equations above are independent of the choice of subscript i.

One may define words in the generators by setting, for finite ordered
subsets J = {j0, j1, . . . , jm} of distinct nonnegative integers, u(J) =
uj0uj1 · · ·ujm , and u(∅) = I, the identity. In fact, since the uj

′s are hermi-
tian and satisfy (1.1), any product of the generators may be rewritten as
either +u(J) or −u(J) for some finite ordered subset J ⊂ Z+. For n ∈ N,
let An be the finite-dimensional group algebra over C consisting of lin-
ear combinations of the words in the generators {u0, u1, . . . , un−1}. Note
that An has dimension 2n, the number of words in the generators. Since
An ⊂ An+1 for all n ∈ N, one may obtain an AF−algebra by taking the
uniform closure of the union ∪∞n=1An. Following the terminology of [12],
Definition 3.2, we refer to A as the binary shift algebra associated with X .
The binary shift itself is the unital *-homomorphism on A defined uniquely
by the mappings σ(uj) = uj+1 on the generators. We shall refer to X

as the anticommutation set, to a = {a0, a1, . . . }, where aj = g(j), as the
bitstream, and to ǎ = {. . . , a2, a1, a0, a1, a2, . . . } as the reflected bitstream
associated with σ.



114 G. L. Price

If the reflected bitstream is periodic it is easy to see that A has a non-
trivial center. In fact, if ǎ has period length p the word u0up (as well as its
shifts) lies in the center. On the other hand, A has trivial center if ǎ is not
periodic.

Theorem 7.1. (cf. [12], Theorem 3.9, [16], Theorem 2.3, [13], Corollary
5.5) Let A be the binary shift algebra with anticommutation set X and corre-
sponding bitstream given by aj = g(j), j ∈ Z+. Then the folloing conditions
are equivalent.

(i) ǎ is not periodic.
(ii) The center of A consists of scalar multiples of the identity.
(iii) For any nontrivial word w, wuj = −ujw for some uj.
(iv) A has a unique normalized trace.
(v) A is isomorphic to the UHF algebra of type 2∞.

Hence if any of the above conditions hold then with respect to the unique
trace on A, the weak operator closure of A is isomorphic to the hyperfinite
II1 algebra R.

(For the structure of the algebras generated by more general spin sys-
tems see [1].)

Assuming any of the conditions of the theorem hold the mapping σ :
ui → ui+1 for all i ∈ Z+ uniquely defines a binary shift on R.

Theorem 7.2. (cf. [12], Theorem 3.6) A pair of binary shifts on R are
conjugate if and only if they are defined via the same bitstream.

Observe that the trace τ satisfies τ(u(J)) = 0 for any nontrivial word
w = u(J): for by condition (iii) there is for any word w a generator uj such
that τ(w) = τ(uj

2w) = τ(ujwuj) = −τ(w).
It is straightforward to see that the binary shift σ on A extends to a

unital *-homomorphism on R which we shall also denote by σ. Then we
have the following result for binary shifts on R.

Theorem 7.3. (cf. [12], [7], Example 2.3.2) For any binary shift on R the
subfactor σ(R) has Jones index [R : σ(R)] = 2.

As a consequence of the previous theorem the minimal commutant index
for a binary shift is 2, [7], Corollary 2.2.4. On the other hand, ifX = {k−1},
then u0 ∈ σk(R)′ ∩ R, σk−1(R)′ ∩ R = CI, so the associated binary shift
has commutant index k. Hence there exist examples of binary shifts for any
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finite commutant index k ≥ 2. The following theorem characterizes those
binary shifts with finite commutant index.

Theorem 7.4. (cf. [2], Theorem 2.1, [17], Theorem 5.8) A binary shift on
R has finite commutant index if and only if its bitstream a is eventually
periodic. For a binary shift σ of finite commutant index k and generators
uj , j ∈ Z+, there is a word w = u(j0, j1, . . . , jn) such that

(i) j0 = 0, i.e., w “starts” with u0, and
(ii) for any s ≥ 0, σk+s(R)′ ∩R is a 2s−dimensional algebra generated by

the words w, σ(w), . . . , σr(w).

Definition 7.1. Let σ be a binary shift on R with generators uj , j ∈ Z+.
Let z be a word in the generators, and let p(x) = c0 + c1x + · · · + cnx

n

be a polynomial with coefficients in GF (2), then < z, p > is the word
zc0σ(z)c1 · · ·σn(z)cn in R.

Suppose p(x) is the polynomial for which w =< u0, p > in the preced-
ing theorem. In the study of binary shifts of commutant index 2 in [15]
we described connections among polynomials p(x) words w =< u0, p >

generating relative commutant algebras, and conjugacy classes of shifts.
Theorem 7.6 describes this connection. In order to state the theorem we
need to identify polynomials which possess a special symmetry.

Definition 7.2. A polynomial p(x) with constant term 1 is called reciprocal
or self-reciprocal if its coefficients are flip-symmetric (see [3], [8]), i.e., p(x) =
c0 + c1x+ · · ·+ cnx

n = cn + cn−1x+ · · ·+ c0x
n.

Remark 7.1. Note that if a polynomial p(x) = c0 + c1x+ · · ·+ cnx
n with

constant coefficient 1 then p∗(x) = xnp( 1
x) = cn +cn−1x+ · · ·+c0xn. Hence

p(x) is reciprocal if and only if p(x) = p∗(x).

The following results about reciprocal polynomials will be used in the
next section.

Lemma 7.1. If h(x) is a polynomial with constant coefficient 1 then
h∗(x)h(x) is reciprocal. The product of reciprocal polynomials is reciprocal.

Proof. Obvious. �

Theorem 7.5. (see [15], Theorem 4.3) Any polynomial p(x) has a unique
reciprocal divisor of maximal degree.
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Theorem 7.6. Let p(x) be a polynomial over GF (2) with constant coef-
ficient 1. Then there exists a binary shift of commutant 2 and generators
uj , j ∈ Z+ such that < u0, p > generates σ2(R)′ ∩R if and only if p(x) has
no reciprocal factors of degree exceeding 1. Moreover there is a one-to-one
correspondence between such polynomials and the family of binary shifts of
commutant index 2.

It is possible to show that among all polynomials of degree n ≥ 3 and
constant coefficient 1 there are 2n−2 which satisfy the hypotheses of the
theorem, (see [15], Theorem 4.4). Hence there are countably many conju-
gacy classes of binary shifts of commutant index 2. Corollary 7.7 establishes
the same conclusion for any finite commutant index.

Although we are interested in analyzing binary shifts on R it is useful for
that purpose to understand the structure of the AF−algebras [∪∞n=1An]−

which have nontrivial centers (see the proof of Theorem 7.10).

Theorem 7.7. Let a be a bitstream for which ǎ is periodic. Let A be the
corresponding AF− algebra, and let τ be the trace on A which vanishes on
nontrivial words. Let M be the von Neumann algebra obtained by completing
A in the weak operator closure with respect to τ . Then there exists a word
w =< u0, p >= uc0

0 u
c1
1 · · ·ucn

n such that

(i) c0 = 1,
(ii) p(x) is reciprocal, and
(iii) the center of M is generated by w and its shifts.

Hence the center of M is isomorphic to the algebra of continuous functions
on the Cantor set.

Suppose a is a bitstream in GF (2) with a0 = 0. Then for each n ∈ N

one may construct an n× n Toeplitz matrix An whose first row consists of
the first n elements of a, viz.,

An =


a0 a1 a2 a3 . . . an−1

a1 a0 a1 a2 . . . an−2

a2 a1 a0 a1 . . . an−3

...
...

...
...

. . .
...

an−1 an−2 an−3 . . . . . . a0

 (1.2)

Since An is a skew-symmetric matrix it has even rank (this holds true
even for matrices over GF (2), (see [11], Theorem IV.11). Considered as
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a sequence of matrices, the Toeplitz matrices associated with a bitstream
exhibit a remarkable property.

Theorem 7.8. (cf. [13], Theorem 5.4) Let ν(An) denote the nullity of the
n×n Toeplitz matrix above. If ǎ is not periodic the sequence {ν(An) : n ∈ N}
consists of the concatenation of strings of non-negative integers of the form
1, 2, . . . ,m−1,m,m−1, . . . , 2, 1, 0. If ǎ is periodic then the nullity sequence
consists of finitely many strings of the above mentioned form followed by
the sequence 1, 2, . . . .

Theorem 7.9. (cf. [5], Corollary 2.10, see also [22]) For any even positive
integer n there are 2n−2 n×n invertible Toeplitz matrices of the form above.

Finally it will be helpful to use the following properties of the operations
< z, p > for a word z in the generators of a binary shift on R and for
polynomials p(x) with coefficients in GF (2) (see [16], Section 4):

< z, p >< z, q > = ± < w, p+ q > (1.3.1)

<< w, p >, q > = ± < w, pq > (1.3.2)

7.3. Bitstreams and Polynomials

In this section we prove some elementary results about bitstreams over
finite fields which are based on some well-known results from the theory
of linearly recurring sequences, (see [8], Chapter 6). Our results stem from
important connections which exist between eventually periodic bitstreams
with entries in a finite field and polynomials with coefficients in the same
field. Here we deal exclusively with the finite field GF (2). We shall say that
a polynomial p(x) = c0 + c1x + · · ·+ cnx

n annihilates a bitstream a if for
any j ∈ Z+,

∑n
l=0 claj+l = 0. If a bitstream is eventually periodic, i.e., if

there exists a positive integer s such that ak = ak+s for all k ≥ N , some
N, then the polynomial xN + xN+s annihilates a. In particular one has the
following result.

Lemma 7.2. (cf. [8], Theorem 6.11) A bitstream a over GF (2) is eventu-
ally periodic if and only if it is annihilated by some polynomial p(x) with
coefficients in GF (2). a is periodic if and only if it is annihilated by a
polynomial with constant coefficient 1.
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If a and b are bitstreams then define addition by a + b = c where
cj = aj + bj for all j ∈ Z+. Defining scalar multiplication in the obvious
way, one sees that the set of periodic (respectively, eventually periodic bit-
streams) forms a vector space over GF (2): for if a is periodic (respectively,
eventually periodic) with period s and b is periodic (respectively, eventu-
ally periodic) with period t, then c is periodic (resp., eventually periodic)
with period a divisor of st, (see [8]). The same is true for doubly-infinite
periodic sequences, and also for the subspace which consists of the reflected
bitstreams ǎ = {. . . , a2, a1, a0, a1, a2, . . . }, a0 = 0, which happen to be pe-
riodic. Thus we have:

Lemma 7.3. The set of periodic reflected bitstreams forms a vector space
over GF (2).

Definition 7.3. (cf. [8], Section 6.5) For a polynomial p(x) with coefficients
in GF (2) let S(p) be the vector space of periodic reflected bitstreams an-
nihilated by p(x).

Proposition 7.1. Suppose ǎ is a periodic reflected bitstream in S(p). If
r(x) is the maximal reciprocal factor of p(x) then ǎ ∈ S(r).

Proof. Since the reflected bitstream ǎ is symmetric about its entry a0 =
0, it is clear that p(x) annihilates ǎ if and only if p∗(x) does, too (see
Remark 7.1). Hence ǎ ∈ S(p)∩ S(p∗). But for any pair p, q of polynomials,
S(p) ∩ S(q) = S(gcd (p, q)), by [8], Theorem 6.54. Clearly r divides the
polynomial d = gcd(p, p∗). Suppose p(x)/r(x) =

∏
hi(x), where the hi

′s
are irreducible, then clearly d(x) = r(x)·gcd (

∏
hi(x),

∏
hi
∗(x)). But if h(x)

is an irreducible factor of both
∏
hi(x) and

∏
hi
∗(x) then h(x) = hi(x) =

hj
∗(x) for some i and j. But then by Lemma 7.1, hihj = hi(x)hi

∗(x)
is reciprocal, which contradicts the maximality of the degree of r. Hence
r = gcd (p, p∗) = S(p) ∩ S(p∗) annihilates ǎ. �

Proposition 7.2. Let r(x) be a reciprocal polynomial with constant coeffi-
cient 1 and degree either 2l or 2l + 1, l ∈ Z+, The vector space of periodic
reflected bitstreams annihilated by r(x) has dimension l.

Proof. Let č = {. . . , c2, c1, c0, c1, c2, . . . } be a periodic reflected bit-
stream. Since r is reciprocal of degree 2l or 2l+1, and č is symmetric about
c0, r annihilates č if and only if it annihilates {cl, cl−1, . . . , c1, c0, c1, . . . }.
Since degree(r)∈ {2l, 2l + 1}, it is clear that c1, c2, . . . , cl may be chosen
arbitrarily but that cl+1, cl+2, . . . depend on the choice of c1 through cl.�
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Corollary 7.1. If r(x) is a reciprocal polynomial with constant coefficient
1 and degree either 2l or 2l+1, l ∈ Z+, there are exactly 2l periodic reflected
bitstreams annihilated by r(x).

Definition 7.4. Let k ≥ 2 be a fixed positive integer. Let w =
uc0

0 u
c1
1 · · ·ucn

n , with c0 = 1, be a word in the generators uj , j ∈ Z+ of
a binary shift σ. Then w is called a qkword if w ∈ σk(R)′ ∩ R but
w /∈ σk−1(R)′ ∩R.

Remark 7.2. Suppose a is a bitstream and w is a word of the form
above. Using (1.1) repeatedly it follows that for j ∈ Z+, wuj =
(−1)ajc0+aj−1c1+···+a|n−j|cnujw. Hence w is a qkword if and only if there
exists a bitstream a satisfying the following linear system.

ak−1c0 + ak−2c1 + ak−3c2 + · · ·+ a|n−k−1|cn = 1

akc0 + ak−1c1 + ak−2c2 + · · ·+ a|n−k|cn = 0 (2.1)

ak+1c0 + akc1 + ak−1c2 + · · ·+ a|n−k+1|cn = 0
...

The first equation holds since w must anticommute with uk−1 and the
remaining equations hold since w commutes with uk, uk+1, . . . .

Remark 7.3. As [R : σ(R)] = 2, σ(R)′ ∩R = CI ([7], Corollary 2.2.4), so
there are no q1words.

We shall see below that for fixed values c0, c1, . . . , cn it is possible to
have more than one bitstream a which satisfies (2.1). For that reason we
shall need the following terminology.

Definition 7.5. Let p(x) = c0 + c1x + · · · + cnx
n be a polynomial with

constant coefficient 1. If the system (2.1) is satisfied then p(x) is said to
meet a at the integer k. If there is an integer k for which p(x) meets a then
we say that (p, a) are a binary pair.

Remark 7.4. Note that if (p, a) meet at k then if σ is the binary shift on
R with generators uj , j ∈ Z+ and bitstream a, w =< u0, p >∈ σk(R)′ ∩
R, w /∈ σk−1(R)′ ∩ R. Hence w is a qkword and σ is a binary shift of
commutant index ≤ k. On the other hand, since 2 is the minimal possible
commutant index for a binary shift, if a binary pair (p, a) meet at 2 then
σ has commutant index 2.
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Theorem 7.10. Let k ≥ 2 and n > 2k − 2 be fixed integers. Then for any
polynomial p(x) of degree n and constant coefficient 1 there are at most
2k−2 distinct bitstreams a = {a0, a1, . . . } which meet p(x) at k.

Proof. Induction on k. Using the remark above, a restatement of Theo-
rem 7.6 shows that any polynomial of any degree n with constant coefficient
1 can meet at most one bitstream a at the integer 2. Suppose the assertion
holds for j = 2, . . . , k − 1. Suppose there is a polynomial p(x) of degree
n > 2k − 2 with constant coefficient 1 which meets some bitstream a at k.
Let σ be the corresponding binary shift which, by the preceding remark,
has commutant index ≤ k. Let uj, j ∈ Z+ be the generators for σ.

Now suppose ρ is any other binary shift, with generators {vj : j ∈ Z+}
and bitstream b, such that < v0, p > is a qkword. Let s = a+b. Note that
since p(x) meets a at k, < u0, p > is a qkword for σ. Hence the coefficients
c0, . . . , cn of p(x) satisfy the infinite linear system (2.1), as well as system
obtained from (2.1) by replacing each aj with bj . Hence [c0, . . . , cn] satisfies
the linear system of equations.

sk−1c0 + sk−2c1 + sk−3c2 + · · ·+ s|n−k−1|cn = 0

skc0 + sk−1c1 + sk−2c2 + · · ·+ s|n−k|cn = 0 (2.2)

sk+1c0 + skc1 + sk−1c2 + · · ·+ s|n−k+1|cn = 0
...

It follows that if z0, z1, . . . is a family of hermitian generators satisfying
the commutation relations given by s and if η is the shift on the von Neu-
mann algebra M generated by the zj

′s, then either z =< z0, p > commutes
with all of the zj

′s and lies in the center of M (in which case the re-
flected bitstream ǎ of a associated with η is periodic, Theorem 7.7), or M
is the hyperfinite II1 factor R, η is a binary shift on R, and there is a
j ∈ {2, 3, . . . , k−1} such that z ∈ ηj(M)′∩M, z /∈ ηj−1(M)′∩M , i.e., that
z is a qjword.

Now let s(1), s(2), . . . , s(m) be the list of all bitstreams s satisfying one
of the following two conditions with respect to the fixed polynomial p(x):
either (i) the reflected bitstream š of s is periodic and annihilated by p, or
(ii) p(x) meets s at j for some j ∈ {2, . . . , k − 1}. Then by the preceding
paragraph it follows that the bitstreams b which meet p(x) at the integer
k are a, a + s(1), . . . ,a + s(m).

Let r(x) be the maximal reciprocal factor of p(x). If r(x) has degree
either 0 or 1 then by the preceding lemmas there are no periodic reflected
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bitstreams ǎ annihilated by r(x) (and hence by p(x), Proposition 7.1,
Proposition 7.2) other than ǎ = {. . . , 0, 0, 0, . . .}. Hence the nontrivial bit-
streams s in the previous paragraph meet the polynomial p(x) at some
integer j for 2 ≤ j ≤ k − 1. By the induction assumption there are no
more than 2j−2 bitstreams which meet p(x) at each such j. Then from the
preceding paragraph, the number of bitstreams b which meet p(x) at k is
no greater than 1 +

∑k−1
j=2 2j−2 = 2k−2.

Next suppose that r(x) satisfies 2 ≤ deg(r(x)) ≤ 2k−2. Write deg(r(x))
= 2l or 2l+1. By Corollary 7.1 the number of periodic reflected bitstreams
ǎ annihilated by r(x) is 2l. By Proposition 7.1 these are exactly the periodic
reflected bitstreams which are annihilated by p. By Lemma 7.5 below there
are no bitstreams which meet p(x) at j for 1 ≤ j ≤ l + 1. On the other
hand, by the induction assumption there are, for l + 2 ≤ j ≤ n, no more
than 2j−2 bitstreams which meet p(x) at j. Then the number of binary
shifts which meet p(x) at k cannot exceed 2l +

∑k−1
j=l+2 2j−2 = 2k−2. �

7.4. Counting Polynomials with Symmetry

In this section we complete the analysis necessary to enumerate the binary
shifts of finite commutant index on the hyperfinite II1 factor R. As in [15],
where a classification was made of the binary shifts of commutant index 2,
we establish a natural connection between binary shifts of finite commu-
tant index and polynomials over GF (2) which satisfy a certain symmetry
condition. In the course of making this connection, it is convenient first to
study the family of binary pairs which meet at a fixed integer k ≥ 2 (see
Definition 7.5) and subsequently to match these pairs with binary shifts. In
Lemmas 7.4 and 7.5 we show that a polynomial p(x) with constant coeffi-
cient 1 meets a bitstream at k if and only if p(x) has no reciprocal factors of
degree ≥ 2k− 2. Using these results we are able to provide a recursion for-
mula which counts, for each polynomial p(x) above, the number of binary
shifts σ of commutant index k, with generating family uj , j ∈ Z+ of her-
mitian unitaries for which < u0, p > generates the first nontrivial relative
commutant algebra σk(R)′ ∩R.

Recall that a polynomial p(x) = c0 + c1x + · · · + cnx
n with constant

coefficient c0 = 1 meets a bitstream a at an integer k if and only if the coef-
ficients of p(x) satisfy the following infinite system (3.1) of linear equations
over F . The first equation holds since w =< u0, p > must anticommute
with uk−1, and the remaining equations are satisfied since w commutes
with the generators uk, uk+1, . . . . If n < 2k− 2 then |n− k− 1| < k− 1 and
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we observe, since c0 = 1, that for any choice of a1, a2, . . . , ak−2, there exists
one and only one choice of ak, ak+1, . . . such that the system holds. Hence
w is a qkword which corresponds to exactly 2k−2 distinct bitstreams a.

For n = 2k − 2 the system above becomes

ak−1c0 + ak−2c1 + ak−3c2 + · · ·+ ak−1c2k−2 = 1

akc0 + ak−1c1 + ak−2c2 + · · ·+ ak−2c2k−2 = 0 (3.1)

ak+1c0 + akc1 + ak−1c2 + · · ·+ ak−3c2k−2 = 0
...

If the first equation holds then clearly there is one and only one choice
for each of the remaining terms ak, ak+1, . . . to satisfy the system of equa-
tions. Note that the first equation may be rewritten as a0ck−1 + a1(ck +
ck−2) + a2(ck+1 + ck−3) + a3(ck+2 + ck−4) + · · · + ak−1(c2k−2 + c0) = 1,
or (since a0 = 0 and c2k−2 + c0 = 0), as a1(ck + ck−2) + a2(ck+1 +
ck−3) + a3(ck+2 + ck−4) + · · ·+ ak−2(c2k−3 + c1) = 1. Hence if a1, . . . , ak−2

satisfy this equation then ak−1 may be chosen arbitrarily. If p(x) is re-
ciprocal, however, the left side of this equation is necessarily 0 and so
no solution is possible. On the other hand, if p(x) is not reciprocal then
[ck + ck−2, ck+1 + ck−3, ck+2 + ck−4, . . . , c2k−3 + c1] �= [0, 0, . . . , 0]. Hence
there is at least one solution to the initial equation above. By viewing the
initial equation as a nonhomogeneous linear system of 1 equation in k − 2
unknowns a1, a2, . . . , ak−2, since there is at least one solution, there are
therefore exactly 2k−3 solutions [a1, a2, . . . , ak−2] to this first equation. As
noted above, the entry ak−1 may be chosen arbitrarily but ak, ak+1, . . . are
determined by their predecessors, hence there are 2k−2 bitstreams satisfy-
ing the system for each polynomial which is not reciprocal. Note that there
are 2n−1 − 2k−1 = 22k−3 − 2k−1 = 2n−1 − 2n−k+1 polynomials of degree n
with constant coefficient 1 which are not reciprocal. Hence we have shown
the following.

Lemma 7.4. If k ≥ 2 and n < 2k − 2, any polynomial of degree n with
constant coefficient 1 meets at k with 2k−2 distinct bitstreams. If n = 2k−2
then 2n−1−2n−k+1 polynomials of degree n with constant coefficient 1 which
meet at k with some bitstream. These are the polynomials which are not re-
ciprocal. Each of these polynomials meets at k with 2k−2 distinct bitstreams.

The analysis pertaining to polynomials of degree exceeding 2k − 2 is
considerably more difficult, and we devote the remainder of this section to
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studying this case. As we shall see below, whether a polynomial of degree
n ≥ 2k−2 meets a bitstream at the integer k is determined by the degree of
its maximal reciprocal factor. Polynomials with reciprocal factors of high
degree will not correspond to qkwords, and therefore we will be led to
counting the number of polynomial of fixed degree n ≥ 2k − 2 having
maximal reciprocal factors exceeding a certain degree (see Theorem 7.12).

Lemma 7.5. Let k ≥ 2. No polynomial p(x) with coefficients in GF (2),
constant coefficient 1, and a reciprocal factor of degree ≥ 2k− 2 meets at k
with any bitstream.

Proof. Suppose p(x) = q(x)r(x) where r(x) is a reciprocal polynomial of
degree m ≥ 2k − 2, and suppose p(x) meets at k with some bitstream a.
Then there is a binary shift σ with generators uj, j ∈ Z+, say, such that
w =< u0, p > is a qkword for σ. Let z =< u0, q >, then w =< u0, p >=<
u0, qr >= ± << u0, q >, r >= ± < z, r >. It is straightforward to see
that if zj = σj(z), j ∈ Z+, then σ restricts to a binary shift on the von
Neumann algebra M generated by the zj

′s and w ∈ σk(M)′ ∩M but w /∈
σk−1(M)′∩M . Hence w anticommutes with zk−1 so that if b is the bitstream
for the restricted binary shift on M and r(x) = l0 + l1x+ · · ·+ lmx

m,

bk−1l0 + bk−2l1 + · · ·+ bm−k+1lm = 1. (3.2.1)

If m = 2k − 2 then since r(x) is reciprocal (3.2.1) becomes

bk−1l0 + bk−2l1 + · · ·+ b1lk−2 + b0lk−1 + b1lk−2 + bk−1l0 = 0, (3.2.2)

a contradiction. If m > 2k − 2 then since r(x) is reciprocal (3.2.1) may be
rewritten

bk−1lm + bk−2lm−1 + · · ·+ bm−k+1l0 = 1, (3.2.3)

which implies that w anticommutes with zm−k+1, also a contradiction (since
m−k+1 ≥ k and w ∈ σk(M)′∩M). By contradiction w cannot be a qkword.
Equivalently, p(x) does not meet at k with any bitstream. �

Remark 7.5. We shall see below (Corollary 7.4) that for n ≥ 2k − 2 all
other polynomials with constant coefficient 1 meet at k with at least one
bitstream. In fact, they meet at k with exactly 2k−2 bitstreams.
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Below we shall count the number of polynomials of fixed degree n ≥
2k − 2 which have maximal reciprocal factors of degree ≥ 2k − 2. In order
to make this calculation we require both a definition and a result from [15].

Definition 7.6. (cf. [15], Definition 4.1.) A polynomial f(x) ∈ F [x] with
constant coefficient 1 is completely free if f(x) has no reciprocal factors
except for the constant polynomial 1. z(n) denotes the number of completely
free polynomials of degree n with constant coefficient 1.

Theorem 7.11. (cf. [15], Theorem 4.4.) Let r ≥ 1 be a fixed integer. If
n = 2r, then z(n) = 1

3 (2 · 4r−1 + 4) − 2 and if n = 2r + 1 then z(n) =
1
3 (4r − 4) + 2.

Theorem 7.12. With the same notation as above, there are, for n > 2k−
2, exactly 2n−k polynomials of degree n with constant coefficient 1 whose
maximal reciprocal factor has degree ≥ 2k − 2. If n = 2k − 2 there are
2n−(k−1) = 2k−1 such polynomials.

Proof. For n ≥ 2k − 2 let r(n) denote the number of polynomials satis-
fying the hypotheses of the theorem. For j ∈ N let s(n) denote the number
of reciprocal polynomials of degree n with constant coefficient 1. Obviously
if n = 2l or 2l + 1, s(n) = 2l. From [15], Theorem 4.3, each polynomial
with constant coefficient 1 can be decomposed uniquely into a product of
a reciprocal and a completely free polynomial. If n = 2k − 2 then clearly
r(n) = s(n) = s(2k − 2) = 2k−1. If a polynomial p(x) of degree 2k − 1 or
2k has a reciprocal factor g(x) of degree at least 2k − 2 then f(x)/g(x), a
factor of degree 2 or 1, is itself reciprocal, so by Lemma 7.1 f(x) is recip-
rocal. Hence r(2k − 1) = s(2k − 1) = s(2(k − 1) + 1) = 2k−1 = 2n−k, and
r(2k) = s(2k) = 2k = 2n−k.

Suppose n > 2k then since z(1) = z(2) = 0,

r(n) =
n−3∑

j=2k−2

s(j)z(n− j) + s(n)z(0).

By direct calculation or by [15], proof of Theorem 4.4,

r(n) =
n−3∑
j=2

s(j)z(n− j) + s(n)z(0) = 2n−2,
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so we calculate, with d = 2k − 2

d−1∑
j=2

s(j)z(n− j) = s(2)z(n− 2) + s(3)z(n− 3) +

s(4)z(n− 3) + s(5)z(n− 4) +
...

s(d− 2)z(n− d+ 2) + s(d− 1)z(n− d+ 1).

Suppose n is even. Then with n = 2m, by the preceding theorem,

s(2t)z(n− 2t) + s(2t+ 1)z(n− 2t− 1)

= 2t{z(2(m− t)) + z(2(m− t− 1) + 1)}

= 2t

{
1
3
(2 · 4m−t−1 + 4)− 2 +

1
3
(4m−t−1 − 4) + 2

}
= 2t{4m−t−1} = 22m−t−2,

so
d−1∑
j=2

s(j)z(n− j) =
2k−3∑
j=2

s(j)z(2m− j)

=
k−2∑
t=1

22m−t−2

= 22m−3 + · · ·+ 22m−k

= 22m−2 − 22m−k

= 2n−2 − 2n−k.

Therefore

r(n) =
n−3∑

j=2k−2

s(j)z(n− j) + s(n)z(0)

=
n−3∑
j=2

s(j)z(n− j) + s(n)z(0)−
d−1∑
j=2

s(j)z(n− j)

= 2n−2 − {2n−2 − 2n−k} = 2n−k

We omit the similar argument for the case when n is odd. �
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Combining the preceding result with Lemma 7.5 gives the following.

Corollary 7.2. With the same notation as above, let n ≥ 2k− 2 be a fixed
integer. If n = 2k − 2 then the number of polynomials of degree n with
constant coefficient 1 which meet at k is at most 2n−1− 2k−1 (equivalently,
the maximum number of polynomials of coefficient 1 for which < u0, p > is
a qkword is 2n−1− 2k−1). If n > 2k− 2 there are at most 2n−1− 2n−k such
polynomials.

Definition 7.7. For a fixed nonnegative integer n and an integer k ≥ 2 we
denote by BP (n, k) the set of pairs (p, a) such that (i) p(x) is a polynomial
of degree n with constant coefficient 1, (ii) a is a bitstream, and (iii) <
u0, p > is a qkword for the binary shift σ corresponding to the bitstream
a and u0, u1, . . . are the generators for σ. We shall refer to a pair (p, a)
satisfying (i), (ii), (iii) as a binary pair which meeting at k.

For the remainder of the section we assume that n > 2k − 2. For such
n we shall show that there are at least (2n−1 − 2n−k)2k−2 binary pairs in
BP (n, k). Note first that if (p, a) ∈ BP (n, k) if and only if the coefficients
of p(x) = c0 + c1x+ · · ·+ cnx

n satisfy the following linear system, for some
choice of elements l0, l1, . . . , lk−2 in F .

a1c0 + a0c1 + a1c2 · · ·+ an−3cn−2 + an−2cn−1 + an−1cn = l1

a2c0 + a1c1 + a0c2 · · ·+ an−4cn−2 + an−3cn−1 + an−2cn = l2

...

ak−2c0 + ak−3c1 + ak−4c2 · · ·+ an−kcn−2 + an−k+1cn−1 + an−k+2cn = lk−2

ak−1c0 + ak−2c1 + ak−3c2 · · ·+ an−k−1cn−2 + an−kcn−1 + an−k+1cn = 1

akc0 + ak−1c1 + ak−2c2 · · ·+ an−k−2cn−2 + an−k−1cn−1 + an−kcn = 0

ak+1c0 + akc1 + ak−1c2 · · ·+ an−k−3cn−2 + an−k−2cn−1 + an−k−1cn = 0
...

(3.3)

Theorem 7.13. Let k ≥ 2 be an integer. Then for all integers n > 2k− 2,
BP (n, k) ≥ (2n−1 − 2n−k) · 2k−2.

Proof. We divide the proof into cases depending on the parity of n. The
proof is obtained as an application of the unimodality properties obtained in
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[13] (see also [5, 22]) for the nullity sequence {ν(Am) : m ∈ N} correspond-
ing to the m×m matrices associated with any bitstream a = {aj : j ∈ Z+}.

Suppose first that n is odd. Let a = a1, a2, . . . be a bitstream for which
An−1 is invertible. If there is a polynomial p for which (3.3) holds, then
since c0 = cn = 1 the first n − 1 equations of the system above may be
rewritten as


a0 a1 a2 a3 . . . an−2

a1 a0 a1 a2 . . . an−3

a2 a1 a0 a1 . . . an−4

...
...

...
...

. . .
...

an−2 an−3 an−4 . . . . . . a0

 ·

c1
c2
c3
...

cn−1

 =



a1 + an−1 + l1
a2 + an−2 + l2
a3 + an−3 + l3

...
ak−2 + an−k+2 + lk−2

ak−1 + an−k+1 + 1
ak + an−k

...
an−1 + a1


Since An−1 is assumed to be invertible, the matrix equation above has

a solution for any choice of elements an−1, l0, l1, . . . , lk−2. Also note that
once a1 through an−1 have been chosen, as well as l1 through lk−2, there
is one and only one choice for each of the remaining entries an, an+1, . . .

in order to satisfy (3.3). Recalling from [5], Corollary 2.10, that there are
2n−3 choices of a1, . . . , an−2 such that An−1 is invertible, we see that there
are 2n−3 · 2k−1 = 2n−2 · 2k−2 binary pairs (p, a) corresponding to the case
when An−1 is invertible.

More generally let s be a fixed integer such that 1 ≤ s ≤ k − 1. By [5],
Theorem 2.9, it is possible to find a string of elements a1, a2, . . . , an−s of F
such that the matrix An−(2s−1) is invertible and that ν(An−(2s−1)+b) = b

for 0 ≤ b ≤ s. (Note that the case considered in the preceding paragraph
corresponds to the case s = 1 here.) Momentarily deleting the first s − 1
equations of the system (3.3) above we see that the next n−2s+1 equations
may be written in the form


a0 a1 a2 a3 . . . an−2s

a1 a0 a1 a2 . . . an−2s−1

a2 a1 a0 a1 . . . an−2s−2

...
...

...
...

. . .
...

an−2s an−2s−1 an−2s−2 . . . . . . a0

 ·

cs
cs+1

cs+2

...
cn−s
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=



asc0 + as−1c1 + · · · + a1cs−1

as+1c0 + asc1 + · · · + a2cs−1

...
ak−2c0 + ak−3c1 + · · · + ak−s−1cs−1

ak−1c0 + ak−2c1 + · · · + ak−scs−1

akc0 + ak−1c1 + · · · + ak−s+1cs−1

...
an−sc0 + an−s−1c1 + · · · + an−2s−1cs−1



+



an−2s+1cn−s+1 + · · · + an−scn
an−2scn−s+1 + · · · + an−s−1cn

...
an−s−k+3cn−s+1 + · · · + an−k+2cn
an−s−k+2cn−s+1 + · · · + an−k+1cn
an−s−k+1cn−s+1 + · · · + an−kcn

...
a1cn−s+1 + · · · + ascn


+



ls
ls+1

...
lk−2

1
0
...
0


.

To count the number of binary pairs (p, a) arising from this case we recall
the following facts from [5]. By [5], Corollary 2.10, the number of choices of
a1, a2, . . . , an−2s for which An−(2s−1) is invertible is 2n−2s−1. By [5], The-
orem 2.7, since ν(An−(2s−1)) = 0, then ν(An−2s+2) = 1 regardless of the
choice of an−2s+1. This latter condition follows from the phenomenon that
the sequence {ν(Aj) : j ∈ N} is unimodal, i.e., it is the concatenation of
strings of positive integers of the form 1, 2, . . . ,m− 1,m,m− 1, . . . , 2, 1, 0.
By the proof of Theorem 2.9 of [5] there is one and only one choice
for the entries an−2s+2, an−2s+3, . . . , an−s so that ν(An−2s+1+b) = b for
2 ≤ b ≤ s − 1. Observe from the matrix equation above that the co-
efficients c1, . . . , cs−1, cn−s+1, . . . , cn−1 may be chosen arbitrarily, as may
ls, . . . , lk−2. Once the strings a1 through an−s, c1 through cs−1, cn−s+1

through cn−1 and ls through lk−2 have been chosen, it follows by consid-
ering all equations of (3.3) subsequent to the first n− s equations that the
entries an−s+1, an−s+2, . . . are all uniquely determined. It then follows by
examining the first s− 1 equations of the system (3.3) that l1 through ls−1

are all uniquely determined. Counting our choices for the entries above, the
number of solutions to the system (3.3) for which ν(An−(2s−1)+b) = b for
0 ≤ b ≤ s are 2n−2s−1 · 21 · 2s−1 · 2s−1 · 2k−1−s, or 2n−s−1 · 2k−2.
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We show that no binary pair (p, a) can arise from the construction
above for more than one choice of s ∈ {1, . . . , k− 1}. For suppose 1 ≤ s′ <
s ≤ k − 1 and (p, a) is obtained for both indices s and s′. Recall from the
construction above corresponding to s that ν(An−2s+1) = 0, ν(An−2s+2) =
1, . . . , ν(An−s+1) = s. It then follows from the unimodality properties of
the nullity sequence {ν(Aj) : j ∈ N} (see Theorem 7.8) that for n−2s+1 <
t ≤ n − 1, ν(At) > 0, i.e., that At is not invertible. Hence ν(Aj) > 0 for
n− 2s+ 2 ≤ j ≤ n− 1. Since (p, a) arises from the analysis for the integer
s′, however, we have ν(An−2s′+1) = 0. But n− 2s+ 1 < n− 2s′+ 1 ≤ n− 1
so ν(An−2s′+1) > 0. This contradiction yields the result. Adding all of the
binary pairs obtained from each of the cases for s, 1 ≤ s ≤ n− 1 we get

k−1∑
s=1

2n−s−1 · 2k−2 = (2n−1 − 2n−k) · 2k−2

distinct binary pairs.
We sketch the proof for the case when n is even. For a fixed positive

integer s ∈ {1, 2, . . . , k − 1} consider finite sequences a0, a1, . . . , an−s−1 of
elements of F for which the corresponding sequence of Toeplitz matrices
Aj , j ∈ {1, 2, . . . , n − s} satisfies ν(An−2s+b) = b, 0 ≤ b ≤ s. An analysis
similar to the one above shows that we obtain at least 2n−2s · 2k−2 binary
pairs which meet at k for each s, and therefore we have (2n−1−2n−k) ·2k−2

binary pairs which meet at k. �

Corollary 7.3. Let k ≥ 2 be an integer. Then

(i) BP (0, k) = 2k−2.
(ii) BP (n, k) = 2n−1 · 2k−2 if 1 ≤ n < 2k − 2.
(iii) BP (n, k) = (2n−1 − 2n−k+1) · 2k−2 if n = 2k − 2.
(iv) BP (n, k) = (2n−1 − 2n−k) · 2k−2 if n > 2k − 2.

Proof. The first three equations are obtained by combining the results
of Lemmas 7.4 and 7.5. So suppose n > 2k − 2. By Theorem 7.12 there
are 2n−k polynomials of degree n > 2k − 2 with constant coefficient 1
having a reciprocal factor of degree ≥ 2k − 2. By Lemma 7.5 none of
these polynomials meets with any bitstream at the integer k. Therefore,
among all polynomials of degree n with constant coefficient 1, there are
at most 2n−1 − 2n−k which meet some bitstream at k. By Theorem 7.10
each such polynomial meets at k with at most 2k−2 distinct bitstreams.
Hence BP (n, k) ≤ (2n−1 − 2n−k) · 2k−2. But by the preceding theorem,
BP (n, k) ≥ (2n−1 − 2n−k) · 2k−2. �
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The following result follows as a corollary to the proof of the preceding
corollary.

Corollary 7.4. The following are equivalent for any polynomial p(x) with
constant coefficient 1 over GF (2), and any integer k ≥ 2.

(i) p(x) meets at least one bitstream at k.
(ii) p(x) meets exactly 2k−2 bitstreams at k.
(iii) p(x) has no reciprocal factors of degree ≥ 2k − 2.

7.5. Conjugacy Classes of Binary Shifts

As a consequence of the preceding results we are now in a position to estab-
lish a correspondence between the conjugacy classes of binary shifts of finite
commutant index and the family of polynomials over GF (2) with constant
coefficient 1. Specifically we provide an algorithm which can be used to
compute, for any polynomial p(x) over GF (2) with constant coefficient 1,
and any integer k ≥ 2, the number of binary shifts σ of commutant index k
associated with p(x) in the sense that w =< u0, p > generates σk(R)′ ∩R,
(where uj , j ∈ Z+ are the generators for σ. In Corollary 7.4 it is shown
that for a fixed index k ≥ 2, any polynomial p(x) meets either 2k−2 bit-
streams at k or it meets no bitstreams at k. In terms of binary shifts, using
Remark 7.4, this means that for a polynomial p(x) there are either 2k−2

binary shifts σ for which < u0, p > is a qkword, or no such binary shifts.
Note, however, that if w =< u0, p > is a qkword for some binary shift σ it
is not necessarily the case that σ has commutant index k. As an elemen-
tary example consider the polynomial p(x) = x + 1 and the binary shift σ
with bitstream {0, 1, 0, 0, 0, . . .}. Then < u0, p >= u0u1 is a q3word. On
the other hand, σ is a binary shift of commutant index 2, with the word
u0 generating the relative commutant algebra σ2(R)′ ∩R. What is needed,
therefore, is a way to determine how many of the bitstreams a which meet
p(x) at k actually correspond to binary shifts of commutant index k. The
following three results provide the key.

Theorem 7.14. Let a be an eventually periodic but not mirror-periodic
bitstream, i.e., the reflected bitstream ǎ is not periodic. Let σ, with gen-
erators {uj : j ∈ Z+}, be the binary shift on R corresponding to a. Let
k ∈ {2, 3, . . .} be the commutant index of σ. Then if p(x) is such that the
word w =< u0, p > generates σk(R)′ ∩R, then

(i) (p, a) is a binary pair,
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(ii) (p, a) meets at the integer k,
(iii) if f(x) is a polynomial with constant coefficient 1 then (pf,a) meets

at k+deg(f).
(iv) if (g, a) is a binary pair for some polynomial g with constant coefficient

1, then p is a factor of g and (g, a) meets at k + deg(g/p).

Proof. First note that σ is indeed a binary shift on R, since ǎ is not
periodic, Theorem 7.1. Also, σ has finite commutant index, since a is
eventually periodic, Theorem 7.4. Let p(x) = c0 + c1x + · · · + cnx

n, then
w = uc0

0 u
c1
1 · · ·ucn

n . Since w anticommutes with uk−1 and commutes with
uk, uk+1, . . . , the infinite linear system (2.1) is satisfied. Hence (p, a) is a
binary pair meeting at the integer k. This proves (i) and (ii). To see (iii)
note that if f(x) = l0 + l1x + · · · + lmx

m with l0 = 1 = lm then by (1.3),
< u0, pf >= ± << u0, p >, f >= ± < w, f >= ±wl0σ(w)l1 · · ·σm(w)lm .
It follows that < u0, pf > anticommutes with uk−1+m and commutes with
uk+m, uk+m+1, . . . whence (iii).

To see (iv) let y =< u0, g >. Since (g, a) is a binary pair there is
an integer k0 where they meet. It follows that the word y anticommutes
with uk0−1 and commutes with uk0 , uk0+1, . . . , i.e., y /∈ σk0−1(R)′ ∩ R
but y ∈ σk0 (R)′ ∩ R. Since σ has commutant index k then k ≤ k0

and y /∈ σk0−1(R)′ ∩ R, y ∈ σk0(R)′ ∩ R = {w, σ(w), . . . , σk0−k(w)}′′.
We conclude that there is a polynomial h(x) of degree k0 − k and
constant coefficient 1 such that y = ± < w, h >. But then< u0, g >= y = ±
< w, h >= ± << u0, p >, h >= ± < u0, ph >, so p(x)h(x) = g(x). Hence
p(x) is a factor of g(x). That (g, a) meet at k + deg(g/p) now follows from
(iii). �

As an immediate corollary we have the following.

Corollary 7.5. Suppose σ is a binary shift on the hyperfinite II1 factor R
with corresponding bitstream a = {a0, a1, . . . }. Suppose there are an integer
k0 and a polynomial g(x) ∈ F [x], with constant coefficient 1, such that g is
paired at k0 with a. Then σ has finite commutant index. In particular there
is a unique polynomial p with constant coefficient 1 such that p and a are
paired at k, the commutant index of σ. Moreover,

(i) p is a factor of g, and
(ii) if the polynomial g/p has degree s, then k + s = k0.

Corollary 7.6. Suppose σ is a binary shift on R with finite commutant in-
dex k and corresponding bitstream a. Then for s ≥ 0 there are exactly 2s−1
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binary pairs (g, a) which meet at the integer k + s. Each such polynomial
g has the form g(x) = p(x)f(x) where p(x) is the unique polynomial
which meets a at k, and f(x) is a polynomial with constant coefficient 1 of
degree s.

Proof. The result follows from the preceding result and the fact that
there are exactly 2s−1 distinct polynomials of degree s with constant coef-
ficient 1. �

Definition 7.8. Let p(x) be a polynomial with constant coefficient 1 in
GF (2). For any integer k ≥ 2 let C(p, k) denote the family of binary shifts
σ of commutant index k on R for which the word w =< u0, p > in the
generators of σ generates the first nontrivial relative commutant algebra
σk(R)′ ∩R.

Remark 7.6.

(i) Restating Theorem 7.6 (see also Remark 7.4 in terms of this nota-
tion, we have C(p, 2) = ∅ if p(x) has any reciprocal divisors of degree
exceeding 1 and |C(p, 2)| = 1, otherwise.

(ii) Since there are no q1words, by Remark 7.3, C(p, 1) = ∅.
(iii) Let p(x) = 1. Then C(p, k), for k ≥ 2, consists of all binary shifts of

commutant index k for which the word w =< u0, p >= u0 generates
σk(R)′ ∩ R. It is not difficult to show that these are the binary shifts
each of whose bitstreams a = {a0, a1, . . . } satisfies ak−1 = 1, ak =
ak+1 = · · · = 0. Note that, as a1, a2, . . . , ak−2 may be chosen arbitrar-
ily, there are 2k−2 such binary shifts, i.e., |C(p, k)| = 2k−2.

The following result gives a recursive formula for computing the cardi-
nality of C(p, k).

Theorem 7.15. Let k ≥ 2 be a fixed integer. Let p(x) be a polynomial of
degree n. If p(x) has a reciprocal factor r(x) with deg(r(x)) ≥ 2k − 2 then
C(p, k) = ∅. Otherwise, for each j = 0, 1, . . . , n− 1 let qj1, qj2, . . . , qjmj be
the distinct factors of p(x) of degree j. Then

|C(p, k)| = 2k−2 −
∑

max({0,2+n−k})≤j≤n−1
1≤i≤mj

|C(qji, k − (n− j))| (4.1)

Proof. If p(x) = 1 statement (iii) of the remark indicates that |C(p, k)| =
2k−2. It is clear that the summation in this case is 0 and the formula holds
in this situation. If k = 2 and p(x) has no reciprocal factors of degree
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> 1 then by statement (iii) the formula should be 1. Since C(p, 1) = ∅ by
statement (ii) the formula holds in this case. So we may assume that p(x)
has degree ≥ 1 and that k ≥ 3. Let p(x) be a polynomial of degree n with
constant coefficient 1. By Lemma 7.5 (see also Remark 7.4) C(p, k) = ∅ if
p(x) has a reciprocal factor of degree ≥ 2k− 2, so we may assume that the
maximal reciprocal factor of p(x) has degree < 2k − 2. Suppose |C(q, l)| is
known, for all polynomials q(x) of degree < n and all l ∈ {2, 3, . . . , k − 1}.
Suppose a is a bitstream which meets p(x) at k. Let σ be the corresponding
binary shift on R. Then either σ ∈ C(p, k) or by Corollary 7.5 there is an
l ∈ {2, . . . , k − 1} such that σ has commutant index l < k. In the latter
case there is a unique polynomial q(x) for which σ ∈ C(q, l). Suppose
deg(q) = j ≤ n − 1. By Corollary 7.5 q(x) is a proper factor of p(x) and
k = l+deg(p/q) = l+n−j, so l = k−(n−j). Since C(q, l) = 0 unless l ≥ 2,,
we must have k− (n− j) ≥ 2, or j ≥ 2 + (n− k). Of course j ≥ 0 also. On
the other hand, q(x) is a proper factor of p(x), so j = deg(q) < deg(p) = n,
hence max({0, 2 + (n − k)}) ≤ j ≤ n − 1. Hence every binary shift σ of
commutant index less than k, for which < u0, p > is a qkword (where
{uj : j ∈ Z+} are the generators of σ) is accounted for in the summation
in the formula above.

Conversely, suppose q(x) is a proper factor of p(x), and suppose
σ ∈ C(q, k − deg(p/q) = C(p, k − n + deg(q)). Let a be the bitstream
corresponding to σ. Then by Corollary 7.4 and Theorem 7.14, a is one of
the 2k−2 bitstreams which meet p(x) at k. Hence the summation in the
formula subtracts from the 2k−2 bitstreams corresponding to p(x) any bit-
stream associated with a binary shift σ of commutant index < k for which
< u0, p > is a qkword. Hence the right side of the formula above counts all
binary shifts σ of commutant index equal to k for which < u0, p > generates
σk(R)′ ∩R. �

Corollary 7.7. There are countably many conjugacy classes of binary
shifts of any finite commutant index.

Corollary 7.8. Let p(x) be an irreducible polynomial over GF (2) of degree
n ≥ 1. Let k ≥ 2 be an integer. If p(x) is reciprocal then

(i) |C(p, k)| = 0 if n ≥ 2k − 2,

(ii) |C(p, k)| = 2k−2 if k − 1 ≤ n ≤ 2k − 2, and

(iii) |C(p, k)| = 2k−2 − 2k−n−2 if 0 < n ≤ k − 2.
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If p(x) is not reciprocal then

(iv) |C(p, k)| = 2k−2 if n ≥ k − 1, and

(v) |C(p, k)| = 2k−2 − 2k−n−2 if 0 < n ≤ k − 2.

Proof. (i) follows immediately from the first assertion of the theorem.
Otherwise, since 1 is the only proper factor of p(x) the formula in the
theorem reduces to |C(p, k)| = 2k−2 − |C(1, k − n)|. If n ≥ k − 1 then
|C(1, k − n)| = 0, so (ii) and (iv) follow. If 0 < n ≤ k − 2 then |C(1, k −
n)| = 2k−n−2 by (iii) of the remark preceding the theorem, and |C(p, k)| =
2k−2 − |C(1, k − n)| = 2k−2 − 2k−n−2, giving (iii) and (v). �

What follows is an algorithm for determining the bitstreams of those
binary shifts which lie in C(p, k), for any polynomial p(x) over GF (2)
with constant coefficient 1. If p(x) = 1 then C(p, k), by Remark
7.6(iii), consists of binary shifts whose bitstreams are of the form a =
{0, a1, a2, . . . , ak−2, 1, 0, 0, . . .}. Suppose p(x) has degree n > 0 and sup-
pose k ≥ 2. Suppose moreover that p(x) has no reciprocal factors of degree
≥ 2k−2. Assuming the bitstreams for all binary shifts in C(q, l), deg(q(x))
< n, l ≤ n−1, have been determined we find the bitstreams associated with
the binary shifts in C(p, k).

To do this we first seek any bitstream a which meets p(x) at k. If q(x)
is a factor of p(x) such that C(q, k − deg(p/q)) �= ∅ then by Theorem 7.14
the bitstream associated with a binary shift in this set meets p(x) at k.
If no such factor q(x) exists we find a as follows. If deg(p(x)) ≤ 2k − 2
then we may obtain a as in the proof of Lemma 7.4. If deg(p(x)) > 2k − 2
then we can find a bitstream a by solving the system consisting of the first
n+1 equations in the infinite system (3.1). Having done that, the remaining
elements {an−k, an−k+1, . . . } are obtained from the remaining equations in
(3.1) using the fact that c0 = 1. For the next step, let s(1), s(2), . . . , s(m)

be the bitstreams as in the proof of Theorem 7.10. For 1 ≤ j ≤ m let
b(j) = a+s(m). (From that theorem it was determined thatm ≤ 2k−2. From
the computation of BP (n, k) in Corollaries 7.3 and 7.4, however, it turns
out that m = 2k−2.) By the theorem we have found all of the bitstreams
which meet p(x) at k. Note that all of these bitstreams correspond to binary
shifts in C(p, k). For if not, the proof of the theorem above implies that
one of these bitstreams meets with some factor q(x) of p(x) at the integer
k − deg(p/q), a case which we have ruled out.

Since a bitstream is a complete conjugacy invariant for binary shifts on
R, the procedure above leads to the following.
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Theorem 7.16. The algorithm above gives a complete classification of the
binary shifts of finite commutant index up to conjugacy.
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8.1. Introduction and Preliminaries

Combinatorial Designs first appeared in the medieval literature mainly as
puzzles. We will dwell on this theme somewhat later during the course of
this article. The medieval forerunner of design theory is thus the famous
Euler conjecture, disproved by Bose, Shrikhande and Parker. In the twen-
tieth century, Combinatorial designs, mainly in the form of constructions
were first looked at by Statisticians. Specifically a designs or a 2-design
has the following definition. By an incidence structure, we mean a triple,
consisting of the set of points, the set of blocks and an incidence relation
between the two sets. It is common to identify a block with the set of points
incident to it; but if there are repeated blocks, then the blocks form a mul-
tiset of the sets of points. An incidence structure is called a 2-design (or
a balanced incomplete block design) if every block has a constant size k,
which is strictly less than v, the number of points, and any two points occur
together (are commonly contained in) the same number λ of blocks. If b
the number of blocks and r the number of blocks containing a given point,
then such a configuration is called a (v, b, r, k, λ)-design or sometimes also
called a (v, k, λ)-design.

A two-way counting produces following two equations on the parameters
of a design D.

λ(v − 1) = r(k − 1)
vr = bk.
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If we look at the (point-block) incidence matrix N of a design D, then
it is easy to see that the rows of N are linearly independent. Since N is a
v × b matrix, we see that

Theorem 8.1. (Fisher’s inequality) We always have v ≤ b, i.e., the
number of points is less than or equal to the number of blocks. Further if
D is a design with v = b, the incidence structure in which blocks are points
and points are blocks is also a design with the same parameter set (v, k, λ).

Definition 8.1. A design with v = b is called a symmetric design.

2-designs were called Balanced Incomplete Block Designs (BIBDs) by
statisticians and were used by them in order to get rid of “two-way hetero-
geneity”. For a statistician, the mathematician balance, which just means
that every pair of points is contained in exactly λ, a constant number of
blocks, translates into statistical balance which means that all the elemen-
tary treatment contrasts are estimated with the same variance.

If k = 3 and λ = 1, then the necessary conditions yield v = 2r + 1 and
hence v is odd. Also the second condition says that 3 divides r(2r+ 1) and
hence v has the form 6m+1 or 6m+3. Such designs, with k = 3 are called
Steiner triple systems. Fano plane is the smallest example of a Steiner triple
system. Through recursive constructions, it is not very difficult to show that
for all orders v ≡ 1, 3 (mod 6), a Steiner triple system of order v exists. In
the year 1847, Kirkman, who was a minister with the Church of England,
posed the following question: 15 schoolgirls are to be arranged in batches of
three girls each for seven days of the week such that every two of them are
together in the same batch in exactly one batch on some day and every day
we have 5 batches of girls. This amounts to constructing a Steiner triple
system on 15 points and 5 × 7 = 35 blocks (or lines) such that the system
is “resolvable”. The general problem of constructing a resolvable Steiner
triple system for every order v of the form 6m+ 3 was solved in 1970s by
Ray-Chaudhuri and Wilson.

8.2. Symmetric Designs

Let us have a second look at Fisher inequality and the Symmetric Designs.
If N denotes the point-block incidence matrix of such a design D, then the
design properties translate into the following matrix equations:

NN t = (r − λ)I − λJ, JN = kJ, NJ = rJ
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where I is the identity matrix and J denotes the all 1-matrix (of appropriate
order). If v = b, then the matrix N is square and non-singular and hence
multiplication of the first equation by N−1 on the left and N on the right
(note that r = k, in this case) obtains:

N tN = (k − λ)I + λN−1JN

But NJ = kJ and hence N−1J = k−1J and we thus get: N tN =
(k − λ) λJ . An interpretation of this is the following:

Theorem 8.2. If D is a symmetric design, the block-point incidence struc-
ture Dt called the (combinatorial) dual of D is also a symmetric design with
the same parameters v, k and λ.

Let H denote a Hadamard matrix of order 4t. This is a matrix of order
4t with entries ±1 such that any two rows of H are orthogonal. Multiplying
rows/columns by −1 does not change the Hadamard property and hence
we can assume w.l.o.g. that H is in a standard form. That is the first row
and the first column of H consist only of +1’s. Then deleting the first row
and the first column of H and changing −1’s to zeroes, we get an incidence
matrix of a (v, k, λ) = (4t−1, 2t−1, t−1) symmetric design which is called
a Hadamard symmetric design. This procedure is reversible and hence the
existence of a Hadamard matrix and a Hadamard symmetric design go hand
in hand.

We look at a projective space of dimension 2 over GF (q) and declare
its points as points and its lines as blocks of a symmetric design. This is
called a projective plane and has parameters (q2 + q + 1, q + 1, 1). This
construction works for every prime power q. More generally, we may take
an n-dimensional projective space over GF (q) and declare its points as
points and its hyperplanes as blocks of a symmetric design. This is called
a projective design and has parameters

v =
qn+1 − 1
q − 1

, k =
qn − 1
q − 1

, λ =
qn−1 − 1
q − 1

In the special case, when the projective space has dimension 2, the
corresponding symmetric designs have λ = 1. Symmetric designs of this
kind with λ = 1 (that is, with parameters v, k, λ) = (q2 + q + 1, q + 1, 1))
are defined to be projective planes of order q.



140 S. S. Sane

Construction: Let π be an affine plane of order q with parallel classes of
lines π1, π2, . . . , πq+1. Let the lines of a-th parallel class πa be denoted by
lat, t = 1, 2, . . . , q. Let the points of π be c0, c1, . . . , cq2−1. For πa, define a
matrix A of order q2 indexed by the points of π as follows. A = [aij ], aij = 1
iff i, j ∈ lat for some t and aij = 0 otherwise. If we denote this A by Aa

(for the a th parallel class) then,

• Aa is a symmetric matrix.

• Aa(Aa′)t =

{
qAa if a′ = a

J if a′ �= a

• ∑q+1
a=1Aa = qI + J.

Now let L = [Lαβ], α, β = 0, 1, 2, . . . , q+1 denote a Latin square on the
symbol-set {0, 1, 2, . . . , q + 1}. Replace Lαβ by the matrix Aa if Lαβ = a

and replace Lαβ by 0 (a zero matrix of order q2) if Lαβ = 0. Then let the
resulting matrix be M = [Mαβ ], α, β = 0, 1, 2, . . . , q+1. Then (1), (2) and
(3) imply that MM t = q2I + qJ proving that M is a incidence matrix of a
symmetric design with parameters

v = q2(q + 2), k = q(q + 1), λ = q (∗)

Also, the construction (see [5, 6]) shows that we have a point-partition
in which every point class (this corresponds to the juxtaposed q2×(q3+2q2)
matrix [Mαβ] where β takes all values from 0 to q + 1) is an affine plane
of order q (repeated q times). Hence M is an incidence matrix of a quasi-
affine design (defined later in this exposition). This family of designs is
important for several other reasons. The first construction of such designs
was obtained by Ahrens and Szekeres and these designs naturally give rise
to strongly regular graphs. Finally, the constructions of Ahrens and Szekeres
also connects these objects with generalized quadrangles. We will get back
to this theme a bit later in this exposition.

For the reasons of structural symmetry and better connections with
group theory, symmetric designs are objects of considerable interest. Many
other constructions of symmetric designs are known. The existence ques-
tion for Symmetric designs is the question of constructing a (0, 1)-matrix
satisfying the matrix equations given above. Algebraic number theory has
been employed in order to answer this existence question and the relevant
seminal result is called the Bruck-Ryser-Chowla theorem. Unfortunately,
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it works only in one direction. That is, it provides us with only a necessary
condition which, may not be sufficient. For example, it is not known whether
there is a projective plane of order twelve but it is known, thanks to the
Bruck-Ryser-Chowla theorem that

Theorem 8.3. If q is the order of a projective plane such that
q ≡ 1, 2 (mod 4) then q is a sum of two integer squares. In particular,
there are no projective planes of orders q such that q ≡ 6 (mod 8).

An extensive search ([13]) for almost 200 hours on the fastest CRAY
computer available then proved in the late 1980s that there is no projective
plane of order ten.

In a recent seminal paper on this difficult problem of constructions of
symmetric designs, Ionin ([9]) has obtained an elegant general method that
yields about ten different families of symmetric designs not known until
three years ago. Improving very strongly on the methods of Dinesh Ra-
jkunlia where the use of weighing matrices and designs was first made,
Ionin’s constructions have far reaching consequences. Some simplifications
of Ionin constructions are published in the last couple of years and the au-
thor also expects to write out some simplification of Ionin constructions.
We give below one of the theorems of Ionin.

Theorem 8.4. There exist symmetric designs D with parameters:

v = 1 + 2(q + 1)
(q + 1)2m − 1

q + 2
, k = (q + 1)2m, λ =

(q + 1)2m−1(q + 2)
2

where q = 2p − 1 is a Mersene prime and m is a positive integer.

About 23 infinite families of symmetric designs are known. However, all
the known examples of symmetric designs seem to be only of the following
types:

• When λ = 1, we have a projective plane of order q with parameters
(q2 + q + 1, q + 1, 1). These exist for every prime power q. No other
examples are known.

• When λ = 2, we have a biplane with parameters (
(

k
2

)
+ 1, k, 2). These

are known to exist for the following values of k: 3, 4, 5, 6, 9, 11, 13. No
other examples are known.

• When λ = 3, all the known examples have k bounded by 15.
• When λ ≥ 4, all the known examples have k bounded by λ2 + λ.
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The known situation led to the following informal conjecture attributed
to M. Hall.

Conjecture 8.1.

(a) ∀λ ≥ 2, there exist only finitely many symmetric (v, k, λ).
(b) Stronger form: ∀λ ≥ 4, the parameters of a symmetric design satisfy

k ≤ λ2 + λ.

Symmetric designs with parameters (v, k, λ) where k equals q2 + q and
λ equals q are also related to the famous design extension theorem of
Cameron. We will refrain from discussing the actual statement of Cameron
extension theorem but will discuss the original problem of permutation
group extensions from which the design extension problem arose. Let (G,X)
denote a permutation group. We call the action of G on X transitive, if
given any points x and y in X there is some α in G such that α(x) = y.
In general, G is said to be t-transitive on X if given any t-tuples of points
X say (x1, x2, . . . , xt) and (y1, y2, . . . , yt), we have some α in G such that
α(xi) = yi for all i = 1, 2, . . . , t. Further, this action is sharp (i.e. G is sharp
t-transitive) if such an α is unique. Trivial examples of sharp n-transitive
actions are the symmetric groups Sn. Jordan proved in the last century that
no non-trivial sharp t-transitive group exists for t ≥ 6 and for t = 4, 5
the non-trivial sharp 4 and 5-transitive groups are precisely the Mathieu
groups M11 and M12 that act on sets of orders 11 and 12 respectively. We
call a symmetric design D with parameters (v, k, λ) extendable if there is
a 3-design D′ with parameters v′ = v + 1, k′ = k + 1, λ′ = λ such that if
we look at all the blocks containing a single point ∞ of D′, then the re-
sulting incidence structure is D. The symmetric design extension theorem
of Cameron is the following.

Theorem 8.5. Let D be a symmetric 2-design that has an extension (to a
3-design). Then D has one of the following as its parameters.

(1) D is a Hadamard 2-design.
(2) v = (λ+ 2)(λ2 + 4λ+ 2) and k = λ2 + 3λ+ 1.
(3) (v, k, λ) = (495, 39, 3).
(4) D is a projective plane of order ten and hence is a 2-design with

(v, k, λ) = (111, 11, 1).

The first type in this list contains all the Hadamard symmetric de-
signs and extensions exists for all the Hadamard symmetric designs. Other
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than this infinite class, there is a sporadic 3-design and a parametrically
possible projective plane of order ten. Besides these, the Cameron classifi-
cation theorem also The second type is a putative infinite list of extendable
symmetric designs, the first object of which is the projective plane of order
four. This object does have an extension, not just to a 3-design but even to
4 and 5-designs. These extensions, called the Witt designs, are intimately
connected with the Mathieu groups M22,M23 and M24. The next parame-
ter set in this list is a symmetric design with (v, k, λ) = (56, 11, 2). As we
already saw in the discussion on M. Hall’s conjecture, none of the designs
of the second type with λ ≥ 3 has been constructed so far and nor has any
one shown that designs with such parameters cannot exist. (the question
of extension naturally makes sense only after that). The same remark also
applies to a design of the third type with (v, k, λ) = (495, 39, 3) whose ex-
istence is an open question. Fortunately, thanks to the result of Lam cited
earlier, the fourth type cannot arise because there is no projective plane
of order ten (though this was not known at the time Cameron proved his
theorem).

We briefly deal with the question of non-isomorphism. An isomorphism
φ between two symmetric designs D1 and D2 is a pair (φ′, φ′′) of two per-
mutations, the first from the point-set of D1 to the point-set of D2 and
the second from the block-set of D1 to the block-set of D2 such that the
incidence is preserved. When D1 equals D2 this is called an automorphism
and it is easily seen that the set of automorphisms of a symmetric design
form a group. This is one way in which we can actually construct a sym-
metric design from a group. This is called the method of difference set.
For example developing the initial block (0, 1, 3) modulo 7 gives us all the
7 blocks of the Fano plane. The problem of determining whether or not
two given symmetric designs are isomorphic is essentially a uniform hyper-
graph isomorphism problem (hypergraphs are objects for which edges are
subsets of size greater than 2). This problem is evidently at least as hard
as the corresponding problem of graph isomorphism which is known to be
an NP -complete problem.

It is on this background that producing a large number of non-
isomorphic symmetric designs (with the same parameters) is a pertinent
question. This question was first handled in the case of Hadamard symmet-
ric designs by Bhat-Nayak, Shrikhande and Singhi. For the case of projec-
tive designs (the point-hyperplane incidence structure), this was done first
by Kantor and later by Jungnickel. In both the cases, the lower bounds
are asymptotically exponential. A recent result establishes the same type of
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result for designs of Ahrens-Szekeres type, i.e., those designs with k = λ2+λ.
Among various lower bounds proved in that paper of Gharge and Sane ([6]),
one is in terms of Catalan numbers and one is in terms of special partitions
of integers. Since both these numbers are exponential, the established lower
bound is also exponential. We conclude by pointing that there is a marked
difference between techniques employed by the earlier authors (Shrikhande,
Singhi, Jungnickel) and those in the recent paper. In the former situation,
techniques are recursive while in the latter situation they are direct and
depend on graph isomorphisms as well as partition functions in number
theory. This forms a part of the recent Ph.D. thesis of Gharge. Specifi-
cally, call a symmetric design of the Ahrens-Szekeres type, that is one with
parmeters

v = q2(q + 2), k = q(q + 1), λ = q (∗)

quasi-affine if its point-set admits a partition into q + 2 point classes each
with q2 points such that the induced incidence structure in each point
class is an affine plane of order q (repeated q times). We have already
come across this special class of symmetric designs with parameters as in
(∗) in Construction in Section 8.2. It was shown by the author that such
a partition (if it exists) is unique (that is, it is uniquely determined by
the structure of the given incidence structure. This was exploited in the
same paper of the author, to show that, upto isomorphism, there are at
least two non-isomorphic quasi-affine designs for any given prime power q.
This result was vastly improved recently and two of the main results of
Sanjeevani Gharge’s Ph.D. thesis ([5]) are the following.

Theorem 8.6. Let q be a prime power. Then:

(1) The number of non-isomorphic solutions of quasi-affine designs with
parameters (∗) is at least m

√
q.

(2) Let Cm denote the m-th Catalan number defined by

Cm =
1
m

(
2m− 2
m− 1

)
and let q ≥ 7. Then the number of non-isomorphic quasi-affine designs
with parameters (∗) is at least 2mCm (in both the cases m denotes [ q

2 ]
and here [x] denotes the largest integer less than or equal to x).
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8.3. Strongly Regular Graphs

Recall that a regular graph Γ of degree k is a simple graph in which every
vertex has degree k. The graph Γ with n vertices and regular of degree k is
called a strongly regular graph with parameters (n, k, a, c) if we have two
more constants a and c such that

• If x and y are adjacent vertices then the number of vertices commonly
adjacent to both of them is a.

• If x and y are non-adjacent vertices then the number of vertices com-
monly adjacent to both of them is c.

It is not difficult to see that the complement of a strongly regular graph
(srg) Γ is also strongly regular. In order to make the situation non-trivial
and interesting, we insist that both Γ and its complement are connected
graphs on at least n ≥ 4 vertices. In particular, this means that neither Γ
nor its complement are complete graphs. Here are some examples.

(1) A Triangular Graph Tm is defined to be the line graph L(Km) of a
complete graph. Equivalently, Tm has a vertex set that consists of all
unordered pairs (2-subsets) of the set M = {1, 2, . . . ,m} of order m
with two vertices adjacent iff the corresponding pairs have an element
in common. The parameters of Tm are:((

m

2

)
, 2m− 4,m− 2, 4

)
(2) A Lattice Graph (sometimes also called a Latin Square Graph) X L(m)

is the line graph L(Km,m) and has the following description. V = M ×
M where M is as in the previous example. Two vertices of X are
adjacent iff they have the same first or second co-ordinate. X has the
parameters:

(m2, 2m− 2,m− 2, 2)

Whenm �= 4, such graphs are uniquely determined by their parameters.
For m = 4, there is an exceptional graph called the Shrikhande graph.
This is not isomorphic to L(4) and in fact has an embedding on a torus
(which L(4) does not have). Another reason for non-isomorphism is that
the full automorphism of the Shrikhande graph has order 16×12 = 192
(in fact, a point stabilizer is the dihedral group D6) while the full group
of L(4) has order 2× (4!)2.
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(3) The Petersen graph P is a graph on 10 vertices and is the complement
of T5. Its parameters are (10, 3, 0, 1). This graph is also a quotient of the
graph of the 1-skeleton of a regular dodecahedron. Its automorphism is
the symmetric group S5.

Strongly regular graphs were first defined by Bose in 1959 in the context
of embedding problems of Bruck nets, though, in the form of association
schemes these objects were introduced earlier in the paper of Bose and
Nair. These objects have connections with group theory. Specifically, let G
denote a rank 3 permutation group. Recall that this is a transitive group in
which the stabilizer Gx of any point x has precisely two orbits other than
the singleton x. It is easily seen that this is independent of the choice of x.
Equivalently, rank of a transitive permutation group G acting on a set X is
the number of orbits ofX×X (again, one orbit here is the diagonal {(x, x)}).
If these orbits are symmetric (and this happens if and only if G has even
order), that is (x, y) and (y, x) are in the same orbit, then we can define a
graph Γ whose edges are the pairs in one of the non-diagonal orbits. This
graph is strongly regular and the given group G acts as an automorphism
group of this graph. A prototypical situation where this holds is the group
G that consists of the set of all affine transformations of a finite field K

given by: x→ a2x+ b where a and b are elements of K and a is a non-zero
quadratic residue. To get symmetric orbits, we require that |K| ≡ 1(mod4).
The family of graphs obtained through this construction is called the Paley
family of graphs.

An adjacency matrix A of a graph Γ or order n is a binary square matrix
of order n with entry 1 at (i, j)-th place iff the i-th and j-th vertices are
adjacent and 0 otherwise. A is a real symmetric matrix and hence must
have real eigenvalues.

A2 = kI + aA+ c(J − I −A)

= (k − c)I + (a− c)A+ cJ

and hence we get:

A2 − (a− c)A− (k − c)I = cJ

Since Γ is connected and regular of degree k, k is a simple eigenvalue
of A with a corresponding eigenvector that consists of all 1’s. The other
eigenvalues can be read off from the above matrix equation and they satisfy
the quadratic equation:

x2 − (a− c)x− (k − c) = 0 (∗)
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Let θ and τ denote the other eigenvalues of A. Then Γ connected implies
that these eigenvalues have smaller modulus than k. Further, since the
product θτ is −(k − c) < 0 as shown by (∗) we see that one of these
numbers is positive and the other is negative, where, by convention, we take
θ to be positive. It was shown by Shrikhande and Bhagwandas that a regular
and connected graph Γ is strongly regular iff it has exactly two eigenvalues
besides the degree of regularity. Now let ∆ denote the discriminant of (∗).
Then we have

∆ = (a− c)2 + 4(k − c)
= (θ + τ)2 − 4θτ

2pt] = (θ − τ)2

Let mθ and mτ denote the respective multiplicities of the eigenvalues θ
and τ . Since the trace of A is 0, we can read off two equations for mθ and
mτ in terms of θ and τ :

mθ +mτ = n− 1

mθθ +mττ = −k

Theorem 8.7. (Friendship theorem of Erdös and Sös and the
(v, k, λ)-graphs) In a gathering of n people every two persons have ex-
actly one common friend. The Friendship theorem then asserts that there is
a person who knows all the rest (and the corresponding graph is the windmill
graph whose picture is shown below):
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For a proof by contradiction, we assume there is no one who knows
all the rest. Then a small argument will prove that every person has the
same number of friends and hence the graph Γ is regular and the given
conditions imply that it is strongly regular with a = c = 1 and plugging
these values shows that ∆ equals 2

√
k − 1. This gives the values of θ and

τ to be ±2
√
k − 1 and since mθ and mτ must be integers, we see that

(mθ−mτ )(2
√
k − 1) equals −k from which it follows that k−1 is a perfect

square and
√
k − 1 divides k which holds only if k = 2, a contradiction.

This investigation can be generalized to the following: Every two persons
have the same number λ of friends (here λ ≥ 2) What are the possibilities?
The corresponding strongly regular graphs are called (v, k, λ)-graphs ([19])
and they give rise a class of symmetric designs.

Further Investigations of Strongly Regular Graphs: ([7])
We could, of course, solve the equations explicitly for θ, τ and mθ and

mτ to get:

θ =
a− c+

√
∆

2
: τ =

a− c−
√

∆
2

and

mθ =
(n− 1)τ + k

θ − τ

mτ =
(n− 1)θ + k

θ − τ
Alternative expressions for mθ and mτ are

1
2

{
(n− 1) ∓ 2k + (n− 1)(a− c)√

∆

}
There are two distinct possibilities. In case, mθ = mτ = m, clearly, we
must have 2m = n − 1 and also 2k + (n − 1)(a − c) = 0 so that a < c

and if a ≤ c − 2, then we get 2k ≥ 2(n − 1) which leads to k = n − 1 a
contradiction since the graph is not complete. So we must have a = c− 1
and k = m. Finally a two-way counting gives:

k(k − 1− a) = (n− k − 1)c (∗)

(Hold a vertex x fixed and count in two ways all the pairs (y, z) such
that y is adjacent to x but z is not adjacent to x while y and z themselves
are adjacent.)
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Substitution of n = 2m+ 1 and k = m gives the simplification a+ c =
m− 1 and hence we see that c = m

2 and the parameters are:

(n, k, a, c) =
(
q,
q − 1

2
,
q − 5

4
,
q − 1

4

)
where q ≡ 1 (mod 4). This is customarily called the half-case and the Paley
graphs are examples of the half-case. We have already seen the construc-
tion of Paley graphs. Paley graphs exhibit a remarkable level of structural
symmetry. Their automorphism groups are rank 3 groups. The following
two points should be noted about the half-case strongly regular graphs.

(1) A strongly regular graph falls into the half-case if and only if has the
same parameter as its complement. In particular, a strongly regular
graph which is isomorphic to its complement (a self-complementary
graph) belongs to this case.

(2) A necessary condition for the existence of a graph falling in the half-case
is that n must be a sum of two squares.

Not the Half-Case; Moore Graphs:
A regular graph of degree k and diameter 2 has at the most k2 + 1

vertices and in case of equality such a graph is called a Moore graph. Our
investigation will now include these graphs. In case we are not in the half-
case, the difference between mθ and mτ is non-zero and hence it is easily
seen that 2k+ (n− 1)(a− c) is a non-zero integer. In order for mθ and mτ

to be rational (in fact integers) it is then essential that ∆ is a square of an
integer and the integer

√
∆ must divide 2k+ (n− 1)(a− c). We record this

in the following theorem.

Theorem 8.8. Let Γ be a strongly regular graph which is not a half-case.
Then:

• ∆ = (a− c)2 + 4(k − c) is a perfect square say u2.

• u divides 2k + (n− 1)(a− c).

Moore graphs are characterized by a = 0 and c = 1. Here we neither
have triangles (because a = 0) nor 4-cycles (because c = 1) but have a
very large number of pentagons. Here we have u2 = 4k − 3. The counting
equation produces n = k2 + 1 and hence u divides k2 − 2k = k(k − 2). If
k = 2 then we have C5 the cycle with 5 vertices. In other cases, u divides
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(u2+3
4 )(u2−5

4 ) and hence it follows that u divides 15 giving 1, 3, 5, 15 as the
only possibilities for u. Here u = 3 corresponds to k = 3 and we have the
Petersen graph. When u = 5, we get k = 7 and n = 50 and we get the
Hoffman-Singleton graph. When u = 15, we have k = 57 and the existence
of a graph in this situation is an open question.

The question of existence of a strongly regular graph (n, k, a, c) satisfy-
ing the obvious necessary conditions (∗) is wide open. There are some other
intricate necessary conditions such as the Krein condition. A good source
of strongly regular graphs, from the point of view of a design theorist, are
the 2-designs that have λ = 1. For such a design, any two blocks intersect
in either 0 or 1 point and we can thus declare two blocks to be adjacent
if they are disjoint. This graph turns out to be strongly regular (the class
of quasi-symmetric designs studied in the next section is a generalization
of such designs). Even good characterizations of such specialized strongly
regular graphs are not available. Designs of this type (those with λ = 1) are
a special case of what Bose called partial geometries but we will not go into
these things in the present exposition. A special class of partial geometries
is the class of Bruck nets, which are equivalent to sets of mutually orthog-
onal Latin squares. Therefore, sets of mutually orthogonal Latin squares
provide prolific source of examples of strongly regular graphs.

8.4. Quasi-Symmetric Designs

Take a design D, not necessarily symmetric. An integer x is called a block
intersection number of D if we have two blocks X and Y the cardinality of
whose intersection is x. Which numbers occur as block intersection numbers
of a design? Thanks to the proof of Fisher’s inequality, we see that D has
exactly one block intersection number iff it is a symmetric design.

Definition 8.2. A design D with two block intersection numbers x and
y (with x < y by convention) is called a Quasi-symmetric design.
Such a design is called a proper quasi-symmetric design if both the block
intersection numbers occur (and hence D is not a symmetric design).

Reasons for studying quasi-symmetric designs are many. A mundane
and practical reason is that symmetric designs are more difficult to study
(this is not completely true but sometimes believed to be so). On a more
serious level quasi-symmetric design allows one to construct its block graph
which in most cases of interest can be shown to be strongly regular. Finally
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quasi-symmetric designs are connected with combinatorial configurations
arising out of finite simple groups. Here is a small list of examples.

(1) As was observed in the last section block designs with λ = 1 are quasi-
symmetric with (x, y) = (0, 1).

(2) Every n-dimensional affine geometry (with hyperplanes as blocks) over
GF (q) furnishes an example of a quasi-symmetric design. Here v = qn

and k = qn−1 while the intersection pair (x, y) is given by (0, qn−2).
(3) Let s be a fixed positive integer. Take a symmetric (v, k, λ)-design D

and let D′ be obtained from D as follows: D′ has the same point-set
as that of D. As blocks of D′ we take s copies of all the blocks of
D (customarily, this is expressed by saying that each block of D is
repeated s times). Then D′ has parameters

v′ = v, b′ = sv, r′ = sk, k′ = k, λ′ = λ (∗)

This design is easily seen to be quasi-symmetric (there are repeated
blocks) and we have x = λ and y = k. However, a 2-design D′ with
parameters as above may actually exist independent of the existence
of a symmetric (v, k, λ)-design. Such a 2-design D′ is called an s-quasi-
multiple design (of a symmetric (v, k, λ)-design), where s is an integer,
s ≥ 1. Observe also that the existence question of an s-quasi-multiple
design makes sense irrespective of whether a corresponding symmet-
ric design exists or not. But this question naturally assumes a lot of
importance when a corresponding symmetric design does not exist (is
known not to exist). It is obvious that quasi-multiple designs with par-
ticular parameters can be constructed using suitable subsets of a finite
field. For example, a (7, 3, 1) symmetric design is constructed by taking
quadratic residues in the field with 7 elements. Similarly, a (37, 9, 2)
symmetric design is constructed by taking biquadratic residues in the
field GF (37). In general, suppose v = k(k−1)

2 + 1 is such that a GF (v)
exists (necessarily then v is a prime power). Now suppose u = k−1

2 is an
integer. Now consider the “development” of sets of the following kind
in the sense of C. R. Rao or R. C. Bose:

Ai = {αi, αu+i, . . . , α(k−1)u+i}

where α is a primitive element of the field. Then by taking sufficiently
many Ai’s and their developments, one will have constructed a quasi-
multiple of a biplane.
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(4) Delete a block of a biplane (that is a symmetric design with λ = 2).
What we get is a design in which every two blocks intersect in either 1
or 2 points. We thus get a quasi-symmetric design. Unfortunately, due
to the fact that only a finite number of biplanes is known as of now,
this will only produce a finite number of quasi-symmetric designs. The
famous Hall-Connor embedding theorem shows that such designs can
always be embedded into a unique biplane by supplying the missing
block.

(5) Let D be a point-block incidence structure constructed from PG(n, q)
a projective geometry of dimension n over a field with q elements by
taking as points the points of the geometry and as blocks the subspaces
of codimension two (where n ≥ 3). Parameters of D as a quasi-
symmetric design are:

v =
qn+1 − 1
q − 1

, k =
qn−1 − 1
q − 1

λ =
qn−1 − 1
q − 1

, x =
qn−3 − 1
q − 1

, y =
qn−2 − 1
q − 1

There are other classes of examples particularly the affine geometries
(where x = 0) There is also a classical object called the Witt design
on 23 points which is associated with the Mathieu group M23 on 23
letters.

Define the block graph Γ of a quasi-symmetric design D by taking as
vertices of Γ the blocks of D. Make two vertices adjacent iff the correspond-
ing blocks intersect in x points. Let N denote the incidence matrix of D
and A, the adjacency matrix of Γ. Recall that we have already established
the following matrix equations:

NN t = (r − λ)I λJ, N tJ = kJ, NJ = rJ

Here, D is quasi-symmetric and hence the following matrix equation
connects N tN and A:

N tN = kI + xA+ y(J − I −A)

= (k − y)I + (x− y)A+ yJ
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Since N tN commutes with J (check this!) it follows that A also com-
mutes with J which is just the same thing as saying that Γ is a regular
graph. If we can now show that besides the degree of regularity, A has ex-
actly two other eigenvalues, then Γ must be a strongly regular graph. But
NN t and N tN have the set of non-zero eigenvalues. So, N tN has eigenval-
ues rk, r − λ and 0. The eigenvalue rk is a simple eigenvalue of N tN that
corresponds to the largest simple eigenvalue of A which is also the degree
of regularity of Γ. Hence A has exactly two other eigenvalues proving that
the block graph is strongly regular.

The connection between quasi-symmetric designs and strongly regular
graphs has paved way for a lot of recent interesting research work in the
area of quasi-symmetric designs. Some prominent results in this area in-
clude the classification of quasi-symmetric designs with x = 0 and those for
which the strongly regular graph contains no triangles. This study was ini-
tially undertaken by Baartmans and M. S. Shrikhande. This problem also
has connections with the design extension theorem of Cameron mentioned
earlier in this paper.

Theorem 8.9. ([22]) Let D be a proper quasi-symmetric design with block
intersection numbers x = 0 and y ≥ 2. Then D has only a finite number of
possibilities under any one of the following assumptions.

(1) k is fixed.
(2) y is fixed.
(3) λ is fixed.

This theme has been greatly explored in a number of recent publica-
tions of Pawale. It was proved by Pawale and the author ([17]) as well as
Calderbank and Morton that:

Theorem 8.10. Up to isomorphism, the only quasi-symmetric 3-design
with (x, y) = (1, 3) are the unique 4− (23, 7, 1)-design or its block residual.

A paper of Sane and M. S. Shrikhande ([23]) began the task of classifying
quasi-symmetric 3-designs. Various finiteness results were proved in that
paper. It should be noted here that extremely few cases of the existence of a
quasi-symmetric 3-designs are known, In fact, upto complementation, these
are just the Witt designs mentioned in the above theorem. Classification
of quasi-symmetric 3-designs with x = 1, and Pawale’s work in his Ph.D.
thesis has also completed this for all quasi-symmetric 3-designs with x upto
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100. Pawale has also obtained a classification of all quasi-symmetric 3-
designs whose block graph is triangle-free and essentially with the exception
of the Witt designs these are the Hadamard 3-designs. The classification
programme of quasi-symmetric 3-designs has an obvious connection with
what are called tight designs. Specifically, a tight 2s-design is one that
has s blocks intersection numbers. It was proved by Ray-Chaudhuri and
Wilson that any 2s-design must have at least s block intersection numbers
(generalization of Fisher inequality for higher designs).

Recall that an s-quasi-multiple design D′ has parameters

v′ = v, b′ = sv, r′ = sk, k′ = k, λ′ = λ (∗)
Call such design proper if it is not obtained by simply repeating each

block of a symmetric (v, k, λ)-design s times. Jungnickel and Tonchev con-
sidered proper s-quasi-multiples which are also quasi-symmetric. Let us call
such a design a special design. Perhaps the existence question of special de-
signs will shed some light on the connection between symmetric and quasi-
symmetric designs. However, only one example of a special design seems
to be known, the unique design with 22 points and 176 blocks which is a
proper 8-fold quasi-multiple of a non-existent (22, 7, 2) symmetric design.
In that paper of Jungnickel and Tonchev, various results on special designs
were proved. In particular, the authors proved that no such special designs
which are quasi-multiples of projective planes exist. the author proved a
classification result for special designs corresponding to biplanes, extending
the results in Jungnickel and Tonchev. After partial results by Jungnickel
and Tonchev ([12]) and Ionin and M. S. Shrikhande, the following result
was proved by the author ([21]).

Theorem 8.11. Let D be a s-fold quasi-multiple design with parameters
v, sv, sk, k, sλ. Let D be also a quasi-symmetric design. Further assume that
the parameters satisfy (k, (s− 1)λ) = 1 (here (m,n) denotes the g.c.d. of
m and n). Then D cannot be proper. That is, D must be a multiple of
a symmetric design.

Other than purely combinatorial techniques employed in the study of
symmetric and quasi-symmetric designs, we also have techniques derived
from linear algebra, number theory and coding theory. This article has dis-
cussed linear algebra of designs and strongly regular graphs in some detail.
The number theoretic techniques stem mainly from the Hasse-Minkowski
theory of quadratic form as applied to a binary matrix. Coding theoretic
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techniques mainly rely on the weight enumerator identities and deeper re-
sults in the algebra of codes that use invariant theory. Though it is a fact
that ‘most of the strongly regular graphs’ have trivial automorphism groups,
looking for symmetries in symmetric and quasi-symmetric designs as well
as strongly regular graphs, is one of the strong motivations for studying
these combinatorial objects. At a meta level, it is to be expected that this
study will also reflect on the structures of many interesting finite groups
(and vice versa), the study of which has been carried out extensively in the
last hundred years.
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The concept of a determinant in an infinite-dimensional space is intro-
duced, leading to the perturbation determinant for a pair of self adjoint
operators (H,H0) as a meromorphic function in complex plane. The
winding number of this function counts the difference of discrete spectra
of H and H0. As an application the generalized Levinson theorem con-
necting the number of bound states of H and the Krein’s shift function
at 0+ is proved.

9.1. Introduction

One can extend the notion of a determinant to that of an operator of the
form I+T where T is a finite rank or trace-class operator on an infinite di-
mensional Banach or Hilbert space respectively. This determinant satisfies
many of the properties of the usual finite-dimensional one. This leads to a
natural definition of a meromorphic function, called perturbation determi-
nant, defined in an open subset of the complex plane for a pair (T, T +A)
where T is a closed operator and A is either finite-rank on a Banach space
or trace class in a Hilbert space. This constitutes essentially the content of
the next section which ends with a theorem, known as Weinstein-Aronsajn
formula that connects the total number of eigenvalues of the pair (T, T+A)
(counting multiplicities) with the poles and zeros of the perturbation de-
terminant of the pair.

The third section introduces the Witten index in terms of the trace of the
difference of the resolvents of two self-adjoint operators on a Hilbert space
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and proves a theorem about the invariance of such an index under “small”
perturbations. The fourth section deals with Krein’s theorems where the
trace of the difference of the resolvents mentioned above is given as an
integral representation in terms of a real valued function defined on the
union of the spectra of the two self adjoint operators. This function is called
Krein’s shift function and it is shown that under suitable conditions, the
Witten index equals (up to a sign) the value of the Krein’s shift function at
0 + . In the final section all these results are put together to show that in
many situations of interest in the scattering theory in quantum mechanics,
the shift function at 0+ is an integer (the total number of bound states in
physicist’s language) so that the Witten index is a negative integer which
is invariant under small perturbations.

9.2. Perturbation Determinant

Let X be a Banach space and let T ∈ B(X), the Banach space of all linear
bounded operators on X with Domain of T = X. Assume furthermore, that
T is degenerate, i.e. range of T ≡ Ran(T ) is finite dimensional. In such a
case, T can be represented as:

Tu =
m∑

j=1

< ej , u > yj (9.1)

where m = rank(T ) ≡ dim Ran(T ); {yj}m
j=1 is a basis for Ran(T ) and

{ej}m
j=1 are linearly independent elements of X∗. Clearly Ran(T) is invari-

ant under the action of T and if we denote by T ′ the restriction of T to the
Ran(T ), then we can define the determinant of I + T by

det(I + T ) = det(1′ + T ′) (9.2)

which implies that

det(I + T ) = det[δjk + 〈ej, yk〉]. (9.3)

In the identity (9.3), yk ∈ Ran(T ) is looked upon as a (finite - dimensional)
subset of X and the right hand side is the usual determinant of matrices.

With these definitions, it is easy to derive the property of such determi-
nants: det{(I +S)(I +T )} = det(I +S) det(I +T ), where T and S are two
degenerate operators in B(X). If one defines furthermore the trace of T as

trT ≡ trT ′ = Σm
j=1 < ej, yj >, (9.4)
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then one has the trace property

trTA = trAT, ∀A ∈ B(X), (9.5)

the proof of which reduces to the same for a pair of finite dimensional
matrices. Furthermore the m×m dimensional matrix ((δjk + < ej, yk >))
does not have any zero eigenvalue. For its having zero eigenvalue is equiv-
alent to the null space of (I ′ + T ′) on Ran(T ) being non-trivial. Let
(1 + T )u = 0 for u ∈ Ran(T ). Then by (9.1), Σm

j=1 < ej, u > yj = −u
and if we set u = yk, we get yk= −Σm

j=1 < ej, yk > yj to conclude that all
the y′js are not linearly independent contradicting the assumption of the
m-dimensionality of Ran(T ). Thus we can define the operator ln(I + T )
to be

ln(((δjk+ < ej , yk >))) = ln(I ′ + T ′) ∈ B(X).

It is also clear from the definition that ln(I+T ) is also a degenerate operator
with Ran ln(I + T ) = Ran(T ). Therefore by the Jordan decomposition
of T

det(I + T ) ≡ det(I ′ + T ′) = Πr
j=1(1 + λj)mj

= exp(Σr
j=1mj ln(1 + λj)) = exp(tr ln(I ′ + T ′)) = exp(tr ln(I + T )),

(9.6)

where (λi, mj) are the eigenvalues and the multiplicities respectively for
T ′. Some more details on these can be found in Kato’s book ([3, 4]). The
above observations, of course remain valid when X is a Hilbert space H.
Moreover, since the infinite product

∏
(1 + λj)mj converges to a non zero

complex number if and only if Σ∞j=1|λj | <∞, it is easy to see that det(I+T )
will be definable for all trace-class T ∈ B1(H) i.e. T such that the singular
values of T are summable. In such a case, det(I + T ) = exp(tr ln(I + T )).

Reverting back to the Banach space scenario, let T be a closed operator
on the Banach space X and let A be relatively degenerate, i.e. for operator
A(T − z)−1 ∈ B(X) and degenerate for some z (and hence for all z) in
ρ(T ), the resolvent set of T. In such a case we define for z ∈ ρ(T ), the
perturbation determinant.

∆(T, T +A; z) ≡ ∆(z) = det(I +A(T − z)−1). (9.7)

It is also clear that in a Hilbert space H for A(T −Z)−1 ∈ B1(H) for some
z ∈ ρ(T ) the definition (9.7) will also make sense and

∆(z) = det(I +A(T − z)−1) = exp(tr ln(I +A(T − z)−1)). (9.8)
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In either case, it is also easy to see that for z ∈ ρ(T ) ∩ ρ(T +A),

∆(z) = det((T +A−z)(T−z)−1) = [det((T −z)(T +A−z)−1)]−1. (9.9)

For proceeding further, we need the following two definitions. Let ϕ be
complex-valued meromorphic function defined in a domain Ω ⊆ C and we
define the multiplicity function ν(z, ϕ) of ϕ by

ν(z, ϕ) =


m, if z is a zero of ϕ of order m,
−m, if z is a pole of ϕ of order m,
0 for all other z ∈ Ω.

(9.10)

Therefore ν(z, ϕ) takes values in Z except when ϕ = 0 identically, in which
case we set ν(z, ϕ) = +∞. Also we define the multiplicity function µ(z, T )
for a closed operator T on X by

µ(z, t) =


0, if z ∈ ρ(T ) ,
dim P if z is an isolated point in σ(T ),
∞ otherwise,

(9.11)

where P is the projection associated with the isolated point z ∈ σ(T ), given
by the holomorphic functional calculus (see [4], p. 178). Then we have the
theorem:

Theorem 9.1. (Weinstein-Aronsajn formula): Let T be a closed operator
on a Banach space X, and let A be a relatively degenerate operator on X.

Furthermore, let !(z) be the perturbation determinant !(T, T +A; z), and
let Ω be a domain consisting of ρ(T ) along with the isolated eigenvalues of
T with finite multiplicities. Then ∆ is meromorphic in Ω and we have

µ(z, T +A) = µ(z, T ) + ν(z, ∆), ∀z ∈ Ω. (9.12)

Since by definition, µ(z, T ) is finite for all z ∈ Ω we have the alter-
natives: either µ(z, T + A) is finite for all z ∈ Ω or it is equal to +∞
identically. In the case of the first alternative, Ω ⊆ ρ(T + A) except for at
most countably many discrete eigenvalues of T + A, while in the second
Ω ⊆ σ(T +A).

Proof. In case ∆(z) = 0 identically, the relation (9.9) implies that
(T + A − z)(T − z)−1 has a zero eigenvalue for all z ∈ Ω which leads
to the conclusion that z is an eigenvalue for T +A for all z ∈ ρ(T )∩Ω. But
this means by definition that µ(z, T+A) = +∞ since either ρ(T )∩Ω = ∅ in
which case z is not an eigenvalues of T +A and Ω ⊆ σ(T ) or ρ(T )∩Ω �= ∅
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when z is an eigenvalue, not isolated. Thus we can assume without loss
of generality that ∆ is not identically zero, we consider first z ∈ ρ(T )
such that ∆(z) �= 0 and set B(z) = A(T − z)−1 so that by (9.8),
∆(z) = det(I + B(z)) = exp[tr ln(I + B(z))]. That ∆(z) �= 0 implies that
B(z) has no eigenvalues −1, and in such a case by holomorphic functional
calculus ([4], p. 178)

ln(I +B(z)) =
1

2πi

∫
C

ln(1 + ς)(ς −B(z))−1dς,

where C is a closed curve enclosing all the eigenvalues of B(z) (they are
finite in number since B(z) is finite-rank) and excluding the point {−1}.
We note that

d

dz
ln ∆(z) =

d

dz
tr ln(I +B(z)) =

1
2πi

d

dz
tr

∫
c

ln(1 + ζ)(ζ −B(z))−1dζ.

(9.13)
Interchanging the order of integration with taking trace and differentiation,
which is permissible because the function z → (ζ−B(z))−1 is differentiable
in trace, we note that:

d

dz
(ζ −B(z))−1 = (ζ −B(z))−1B′(z)(ζ −B(z))−1

= (ζ −B(z))−1(A(T − z)−2)(ζ −B(z))−1

and substituting this in (9.13) and using the trace property, we have

d

dz
ln ∆(Z) =

1
2πi

∫
C

tr[ln(1 + ζ)(ζ −B(z))−2B′(z)]dζ

=
1

2πi

∫
C

d

dζ
{− ln(1 + ζ)tr((ζ −B(z))−1B′(z))}dζ

+
1

2πi

∫
C

(1 + ζ)−1tr((ζ −B(z))−1B′(z))dζ

= tr[(1 +B(z))−1B′(z)], (9.14)

where we have observed that the first integral in the second step vanishes
since [ln(1+ζ)tr {(ζ−B(z))−1B′(z)}] is an holomorphic function of ζ inside
C. On the other hand,

tr[(1 +B(z))−1B′(z)] = tr[(T − z)−1(1 +A(T − z)−1)−1(T − z)−1]

= tr(T +A− z)−1A(T − z)−1 = −tr[(T +A− z)−1 − (T − z)−1].
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Thus for z ∈ ρ(T ) such that ∆(z) �= 0,

tr[(T +A− z)−1 − (T − z)−1] = − d

dz
ln ∆(z). (9.15)

In the above we have also noted that since (T+A−z) = (I+B(z))(T−z) and
since for such z, I+B(z) is bounded invertible it follows that z ∈ ρ(T +A).
Finally, to obtain Weinstein-Aronsajn (W-A) formula, we need to integrate
the relation (9.15) and realize that 1

2πi

∫
C

d
dz ln ∆(z) = ν(λ, ∆) for a small

circle C enclosing λ ∈ Ω, and also that 1
2πi

∫
C

(T − z)−1dz = P, the eigen-
projection for the eigenvalue λ of T and µ(λ, T ) = dimP = trP. �

Corollary 9.1. Let H be a separable Hilbert space, T a closed operator on
H and A ∈ B1(H). Then also W-A formula (9.12) is true.

The proof follows by observing that the passage from equation (9.13) to
(9.14) remains valid by an application of dominated convergence theorem
in trace-norm, to interchange the integral and trace ;and then the rest of
the steps also remain valid.

Remark 9.1. Let H be a separable Hilbert space, T1 and T2 two closed
operators on H such that [(T2 − z)−1 − (T1 − z)−1] ∈ B1(H) for some z ∈
ρ(T1)∩ρ(T2). Then (T2−z)−1−(T1−z)−1 ∈ B1(H) for all z ∈ ρ(T1)∩ρ(T2).
This easily follows from the resolvent equation.

9.3. Witten Index and Its Invariance

For the rest of this article H is a separable Hilbert space, and let H and H0

be two self joint operators on H. We also assume that [(H − z)−1 − (H0 −
z)−1] ∈ B1(H), the Banach space of trace-class operators on H, for some z
(and hence every z) in ρ(H)∩ ρ(H0). Then the Witten index δ(H, H0) for
the pair (H, H0) is defined as:

δ(H, H0) ≡ lim
z→0:|Re z|≤C|Im z|

[−ztr{(H − z)−1 − (H0 − z)−1}], (9.16)

whenever this limit exists. This is called the non-tangential limit and using
the resolvent equation, one can easily establish that the limit, if it exists
for some non-tangential ray in the complex plane, then it exists for every
other such ray and they are equal. Thus without loss of generality we shall
assume that z is pure imaginary for the purpose of the limit.

For the rest of this section, H = L2(R3), H0 = −∆, the self-adjoint
operator on H associated with the Laplacian, and Vj : j = 1, 2 the operators
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of multiplication by real measurable functions Vj ∈ L2 ∩ L1(R3). It is well
known ([6, 7]) that H = H0 + V1 and Hα = H + αV2 for all α ∈ R are self-
adjoint operators with D(Hα) = D(H) = D(H0), where we have written
D(A) for the domain of definition of a linear (not necessarily bounded)
operator A onH. Next we note that Vj(x) = sgn[Vj(x)]|Vj(x)| 12 . |Vj(x)| 12 ≡
Vj(x)

1
2 |Vj(x)| 12 so that V

1
2

j , |Vj | 12 ∈ L2(R3).
Then we have the following sets of results which are either available

in [6, 7] or easily provable.

Theorem 9.2. Let H,H0, Vj be as above. Then

(i) V
1
2

j (Ho − z)−1|Vk| 12 ≡ Mjk(z) are Hilbert -Schmidt and ‖Mjk‖2 ≤ βjk,

independent of z for all z ∈ ρ(H0).

(ii) For all z with Im z �= 0, the bounded operator I+V
1
2

j (H0−Z)−1 | Vj | 12 is
bounded invertible. If furthermore, the point 0 is not an exceptional
point for the self-adjoint operator H0 + Vj (see page 433 of [7]), then

‖[I + V
1
2

j (H0 − z)−1|Vj | 12 ]−1‖ ≤ Cj , independent of z with Re z in a
neighborhood of {0}.

(iii) For any z with Im z �= 0, [(H − z)−1 − (H0 − z)−1], [(Hα − z)−1 −
(H − z)−1] and [(Hα − z)−1 − (H0 + αV2 − z)−1] are all trace - class.

(iv) Under the condition of part (ii), the Witten index δ(Hα, H) = 0 for
sufficiently small |α| and therefore, δ(H0 + αV2, H0) = 0 for sufficiently
small |α| by setting V1 = 0.

(v) The Witten index is invariant under “small perturbation”, i.e. for suf-
ficiently small |α|

δ(H0 + V1 + αV2, H0 + αV2) = δ(H0 + V1, H0), (9.17)

in the sense that if one exists so does the other and they are equal.

Proof. Sketch:
(i) By the hypothesis on the functions Vj , it is clear that Vj ∈ L 3

2 (R3). Also
the operator Mjk(z) is an integral operator with kernel

Mjk(z)(x, y) = Vj(x)
1
2
ei
√

z|x−y|

4π|x− y| |Vk(y)| 12 ,
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where the branch of the square root with Im
√
z > 0 is taken. Thus by

Hardy-Littlewood-Sobolev inequality (see [6])

‖Mjk(z)‖22 =
1

16π2

∫
|Vj(x)|e

−2|Im
√

z||x−y|

|x− y|2 |Vk(y)|dx dy

≤ C′‖Vj‖ 3
2
‖Vk‖ 3

2
≡ βjk,

independent of z.

(ii) We have seen that Mjj(z) ∈ B2(H), therefore compact. Also from
the kernel of Mjj(Z) and the choice of the branch of

√
z, it is clear that

ρ(H0) " z 
→ Mjj(z) is B2 analytic, since Vj ∈ L2. Furthermore, from the
resolvent equation (H+Vj − z)−1− (H0− z)−1 = −(H0− z)−1Vj(H− z)−1

for z ∈ ρ(H) ∩ ρ(H0), it follows that, for Im z �= 0,

(1 + V
1
2

j (H0 − Z)−1|Vj | 12 )−1 = (1 − V
1
2

j (H + Vj − z)−1|Vj | 12 ) ∈ B(H).

Therefore by the analytic Fredholm theorem ([6]),

[1 +Mjj(λ + i0)]−1 ∈ B(H)

for all λ ∈ R except for a closed set of Lebesgue measure 0. If for λ = λ0, the
above operator is not invertible then it follows that gλ0 ≡ (H0−λ0)−1|V | 12 f
with f in the null space N [1+Mjj(λ0 + i 0)] is the eigenvector of the oper-
ator H0 + Vj . Since by hypothesis λ0 = 0 is not an eigenvector of H0 + Vj ,

the part (ii) is proven.

(iii) Since if Vj ∈ L2(R3), then Vj(H0 − z)−1 ∈ B2 and

‖Vj(H0−z)−1‖22 .=
1

16π2

∫ ∫
|Vj(x)|2 e

−2Im
√

z|x−y|

|x− y|2 dx dy = C′′‖Vj‖22
1

Im
√
z

for Im z �= 0. This along with the resolvent equations verify (iii).

(iv) Since D(H) = D(H0) = D(H0 + V2), for z with Im z �= 0

(H − z)−1 − (H0 − z)−1 = −(H0 − z)−1V1(H − z)−1

and by (i) and (ii) we have

M̃jk(z) ≡ V
1
2

j (H − z)−1|Vk| 12 = Mjk(z)−Mj1(z)M̃1k(z).

Thus for Im z �= 0,

M̃11(z) = (1 +M11(z))−1M11(z)
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and similarly ((V
1
2

1 (H − z)−1) = [1 +M11(z)]−1(V
1
2

1 (H0 − z)−1) ∈ B2(H).
One can show exactly in the same way that

V
1
2 (H + αV2 − z)−1 = [1− αM̃22(z)]−1[1 +M11(z)]−1[V

1
2 (H − z)−1] and

M̃12(z) = [1 +M11(z)]−1]M12(z). (9.18)

By (ii) and equation (9.18), we get that, supz∈[0,i] ‖ M̃12(z) ‖2≤ C′′′β12

and then by choosing |α| sufficiently small,

||V 1
2 (H+αV2−z)||2 ≤ (C′′′)2(1−|α|β12)−1‖V 1

2 (H0−z)‖2 ≡ D (Im
√
z)−

1
2 .

(9.19)
Finally putting all these together, we have that for z = iy,

|tr[(H + αV2 − iy)−1 − (H − iy)−1]|
≤ |α|‖(H − iy)−1V2(H + αV2 − iy)−1‖1
≤ |α|‖V2‖

1
2 (H + iy)−1‖2‖V

1
2

2 (H + αV2 − iy)−1‖2 ≤ D′ y−
1
2

and hence

lim
y→0,z=iy

−z tr[(H + αV2 − z)−1 − (H − z)−1]

= lim
y→0

−iy tr[(H + αV2 − iy)−1 − (H − iy)−1] = 0

for |α| sufficiently small. Setting V1 = 0, for small enough |α| we get

lim
y→0−iy

[(H0 + αV2 − i y)−1 − (H0 − iy)−1] = 0.

(v) Finally, since

tr[(H0 + V1 + αV2 − iy)−1 − (H0 + αV2 − iy)−1]

−tr[(H − iy)−1 − (H0 − iy)−1]

= tr[(H0 + V1 + αV2 − iy)−1 − (H0 + V1 − iy)−1]

−tr[(H0 + αV2 − iy)−1 − (H0 − iy)−1]

it follows by result of (iv) that under the assumption in (ii), for sufficiently
small |α|, δ(H + αV2, H0 + αV2) = δ(H, H0). �

In the special situation where H1 and H2 are positive self adjoint op-
erators A∗A and AA∗ respectively, with A a Fredholm operator on some
Hilbert space, then the Witten index for the pair δ(H1, H2) is equal to the
Fredholm index of A, which is an integer. But in a general case, the Witten
index need not be an integer.
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9.4. Krein’s Shift Function

Given two self adjoint operators on a Hilbert space such that their difference
is a trace-class operator, there is an L1-function ξ (called Krein’s Shift
function ) such that the integral of ξ equals the trace of the above difference.
The value of ξ at zero, if it exists, has many properties of an index.

Proposition 9.1. Let H0 be a self-adjoint operator on a Hilbert space
H(dimH < ∞) and let V be another self adjoint operator. There exists
a unique real-valued function ξ ∈ L∞(R), supported in σ(H0) ∪ σ(H0 + V )
such that for every polynomial p on R.

tr[p(H0 + V )− p(H0)] =
∫
p′(λ)ξ(λ)dλ.

In fact, by the spectral theorem and functional calculus, one has that

p(H0 + V )− p(H0) =
∫
p(λ)[E(dλ) − E0(dλ)],

where E0 and E are the spectral family of the self-adjoint operators H0

and H0 + V respectively. Clearly these integrals are actually sums and the
integral is over the union of the two spectra contained in some interval [a, b].
One can do integration by parts to get

p(H0 + V )− p(H0) =
∫
p′(λ)[E0(λ)− E(λ)]dλ

and the expression for the trace follows with ξ(λ) = tr[E0(λ) − E(λ)].
In infinite dimensional H, the story changes drastically, even for a pair of
bounded self adjoint operators they can have only continuous spectra and
moreover,they can be pair of unbounded self-adjoint operators. We state
the next two theorems without proof, which can be found in [1, 3, 5].

Theorem 9.3. Let H and H0 be two self adjoint operators on a separable
Hilbert space H such that V ≡ H −H0 is trace-class (i.e ∈ B1(H)). Then
there exists unique L1-function ξ with support in σ(H) ∪ σ(H0) such that

(i) trV =
∫
ξ(λ)dλ,

(ii)
∫ |ξ(λ)|dλ ≤ ‖V ‖1,

(iii) for ϕ : R → C such that φ(λ) =
∫

eitλ−1
it dν(t)+ constant, with ν a

complex measure in R,

ϕ(H)− ϕ(H0) ∈ B1(H) and tr[ϕ(H) − ϕ(H0] =
∫
ϕ′(λ)ξ(λ)dλ,
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(iv) ξ(λ) = 1
π limε↓0 Im ln ∆(λ+ iε) for almost all λ.

Theorem 9.4. Let H and H0 be two self adjoint operators such that
(H − z)−1 − (H0 − z)−1 ∈ B1(H) for some z ∈ ρ(H) ∩ ρ(H0). Then there
exists a real-valued measurable function ξ on R, unique up to an additive
constant such that

(i)
∫ |ξ(λ)|

1+λ2 <∞,
(ii) tr [(H − z)−1 − (H0 − z)−1] = − ∫ ξ(λ)

(λ−z)2 dz

(iii) For every function ψ : R → C with the property ψ(λ) = (1+λ2)−1ϕ(λ)
where ϕ satisfies the condition of (iii) of the previous theorem,

ϕ(H)− ϕ(H0) ∈ B1(H) and tr[ψ(H)− ψ(H0)] =
∫
ψ′(λ)ξ(λ)dλ.

The next theorem (cf. [2, 8]) connects the Witten index δ(H,H0) and
the Krein’s shift function ξ(H,H0;λ) for the pair (H,H0).

Theorem 9.5. Let H and H0 be self-adjoint operators bounded below on a
Hilbert space H such that [(H− z)−1− (H0− z)−1] ∈ B1(H) for z ∈ ρ(H)∩
ρ(H2). Assume furthermore that ξ is locally bounded and piecewise contin-
uous. Then δ(H,H0) exists and is equal to ξ(H,H0; 0−)− ξ(H,H0; 0+).

Proof. Let f(z) = −z tr[(H − z)−1 − (H0 − z)−1] = −z ∫∞−b
ξ(λ)

(λ−z)2 dλ,

where b = −min(inf σ(H), inf σ(H0)) and we have written ξ(λ) for
ξ(H,H0;λ). Thus by an integration by parts, we have that

z

∫ 0

−b

ξ(λ)
(λ− z)2 dλ = − z

b+ z
ξ(−b) + ξ(0−) +

∫ 0

−b

z

λ− z dξ(λ).

In the above we have used the fact that under the hypothesis of the theorem,
ξ is locally a signed measure. The non-tangential condition |Re z| ≤ C|Im z|
leads to the bound | z

λ−z | ≤
√
C2 + 1 and therefore, by the dominated con-

vergence theorem,

lim
z→0:|Re z|≤C|Im z|

−z
∫ 0

−b

ξ(λ)
(λ − z)2dλ = ξ(0−).

An identical argument proves that

lim
z→0:|Rez|≤C|Im z|

∫ a

0

ξ(λ)
λ2 + 1

dλ = −ξ(0+).

On the other hand for |z| < a

|z
∫ ∞

a

ξ(λ)
(λ− z)2 dλ| = |z

∫ ∞
a

λ2 + 1
(λ− z)2

ξ(λ)
λ2 + 1

dλ| ≤ |z|(a2 + 1)
(a− |z|)2

∫ ∞
a

|ξ(λ)|
λ2 + 1

dλ
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and it goes to 0 as z tends to 0. Thus δ(H, H0) exists in this case and

δ(H, H0) = ξ(0−)− ξ(0+). �

9.5. Application to Quantum Mechanics and Generalized
Levinson’s Theorem

Next, we go back to the quantum mechanical case addressed in
Theorem 9.2: H = L2(R3), H0 = −∆, the potentials Vj ∈ L2 ∩ L1(R3)
for j = 1, 2. In such a case it is known ([6, 7]) that H0, H = H0 +V1, Hα =
H + αV2 are all bounded below and that (real) negative spectra are re-
spectively σ−(H0) = ∅ and σ−(H), σ−(Hα) consists of finite number of
discrete eigenvalues with finite multiplicities. Therefore the open interval
(−κ, 0) ∈ ρ(H) and ρ(Hα) for κ > 0 small enough and therefore by the
definition of ξ (see Theorem 4.2), ξ(λ) = 0 for λ ∈ (−κ, 0) and thus
ξ(H, H0; 0−) = ξ(Hα, H0; 0−) = 0. In such a case the conclusion of the
Theorem 4.4 would be that the Witten index δ(H, H0) exist and is equal to
−ξ(H, H0; 0+), provided the other assumption on the shift function ξ, viz.
that ξ is locally bounded and piecewise continuous, is valid.
If these extra hypothesis on ξ(H,H0;λ) and on ξ(Hα, H0 + αV2;λ) are
satisfied, then combining all the above results we conclude that the Witten
indices δ(H, H0) and δ(Hα, H0 + αV2) exist and are equal, and therefore,

δ(Hα, H0 +αV2) = −ξ(Hα, H0 +αV2; 0+) = δ(H, H0) = −ξ(H, H0; 0+).
(9.20)

The above relation (9.20), which on the one hand describes the invariance
of the Witten index under small perturbations, can be understood, on the
other hand as a consequence of what may be called Levinson’s theorem
which we go on to describe now. Originally Levinson proved a similar the-
orem in H=L2(R) i.e. where H0 and H are ordinary differential operators.
The starting point is W-A formula or rather the relation (9.15) with a pair
of self adjoint operatorsH0 and H ≡ H0+V on a Hilbert space H replacing
T and T + A such that [(H − z)−1 − (H0 − z)−1] is trace class for some
(and hence for all) z ∈ ρ(H) ∩ ρ(H0); this along with Krein’s Theorem 9.4
leads to

tr[(H − z)−1 − (H0 − z)−1 = − d

dz
ln(∆) = −

∫
ξ(λ)

(λ− z)2 dλ. (9.21)

Theorem 9.6. Let H and H0 be two self adjoint operators on a Hilbert
space such that (H − z0)−1 − (H0 − z0)−1 ∈ B1(H) for some z0 ∈
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ρ(H)
⋂
ρ(H0). Assume furthermore the following:

(i) H and H0 bounded below, i.e. H,H0 ≥ −β, the discrete spectrum of
H contained in [−b,−a] with 0 < a < b < β <∞ and H0 has no point
spectrum,

(ii) the associated Krein’s shift function ξ(H,H0;λ) ≡ ξ(λ) locally bounded
and piecewise continuous,

(iii) ξ(+∞) ≡ limλ→+∞ ξ(λ) exists and is equal to 0.

Then ξ(H,H0; 0+) = n, where n = Σi:λi∈σdisc(H)µ(λi, H).

Proof. The relation (9.15) is integrated along the contour given below.

We note the following, the function z 
→ tr[(H − z)−1 −H0 − z)−1] is
continuous on the contour Cr,R = CR ∪ (C1 ∪ C2) ∪ Cr, and is meromo-
prphic in the interior with poles at {λi}, the discrete spectrum of H with
µ(λi, H) = dim Pi <∞ and

1
2πi

∫
Cr,R

tr[(H − z)−1 − (H0 − z)−1]dz = ΣidimPi = Σiµ(λi, H) = n.

On the other hand, setting ϕ(z) = tr[(H − z)−1 − (H0 − z)−1], we note
that

∫
Cr
ϕ(z)dz = − ∫

Cr

d
dz ln ∆(z)dz and since d

dz ln ∆(z) is holomorphic
in compact region containing Cr, it is uniformly bounded in that region,
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say by c′ so that | ∫Cr
ϕ(z)dz| ≤ π r c′ → 0 as r → 0. For the integral on

CR, we use (9.21), to get that

|
∫

CR

ϕ(z)dz| ≤
∫

CR

|dz|
∫ |ξ(λ)|

(λ2 +R2 − 2λR cos θ)
dλ ≤ πR

∫ |ξ(λ)|
λ2 +R2

dλ.

Next we note that the support of the λ-integral is contained in [−b,−a] ∪
[0,∞) by (i) and we write

R

∫ |ξ(λ)|
λ2 +R2

dλ = R

∫ −a

−b

|ξ(λ)|
λ2 +R2

dλR

∫ N

0

|ξ(λ)|
λ2 +R2

dλ

+R

∫ ∞
N

|ξ(λ)|
λ2 +R2

dλ

where given ε > 0 we have chosen N so large positive that |ξ(λ)| < ε for all
λ > N by (iii). Since by (ii), ξ is bounded locally, the first two integrals can
be estimated by C1 tan−1 C2

R where C1 and C2 are two positive constants.
Therefore the first two integrals converges to zero as R → ∞ while the
third integral can be bounded by π ε

2 . This proves that | ∫
CR

ϕ(z)dz| → 0
as R→∞. That leaves the integrals on the lines C1 and C2. But∫

C1

ϕ(z)dz +
∫

C2

ϕ(z)dz

= [ln ∆(ir)− ln ∆(−ir)] − [ln ∆(iR)− ln ∆(−iR)]

= 2i{Im ln ∆(i r) − Im ln ∆(iR)}.
From the definition of the perturbation determinant ∆(z), it is clear that
ln ∆(iR)→ 0 as R→∞ and from the property of ξ as in Theorem 9.4 and
assumption (ii) of this theorem it follows that Im ln ∆(ir) → πξ(H, H0; 0+)
as r → 0+. Finally putting all these together one gets that:

n =
1

2πi
lim

r→0+

∫
Cr, R

tr[(H − Z)−1 − (H − 0− Z)−1]dz

=
2i
2πi

πξ(H, H0; 0+) = ξ(H, H0; 0+),

which is the generalized Levinson’s theorem. �
Combining this with the Theorem 9.2 and the discussions at the begin-

ning of this section, we get the following corollary relevant to the quantum
mechanical situation.

Corollary 9.2. Let H0 = −∆, H = H0 + V1 and Hα = H + αV2 (with
α real) be the three self adjoint operators on the Hilbert space H = L2(R3)
with Vj (j=1,2) real valued functions in L2 ∩ L1(R3) as in Theorem 3.1.
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Assume furthermore as in the discussion in the first paragraph of this
section that all the relevant Krein’s shift function satisfy the properties of
(ii) and (iii) of Theorem 5.1, viz. that they are locally bounded and piecewise
continuous and they converge to zero at infinity. Then

δ(Hα, H0 + αV2) = δ(H, H0) = −ξ(H, H0; 0+) = −n
for sufficiently small |α| and where n = Σiµ(λi, H) as in Theorem 9.6.

The proof follows by combining the earlier discussions and Theorem 9.6.
In the language of physics, the corollary states that the number of bound
states (i.e. the discrete spectrum, counting multiplicities) of the Hamilto-
nian operator Hα = H0 +αV1 +αV2 for |α| sufficiently small is independent
of α.
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Let us begin with some elementary observations. Let A be a Dedekind
domain (see [8], Ch. V). Two basic examples are obtained as follows.

(i) Let K be a finitely generated extension field of transcendence degree 1
of an algebraically closed field k, t ∈ K a transcendence basis, and

A = integral closure of k[t] in K.

These rings arise as the coordinate rings of nonsingular affine algebraic
curves over k. In this lecture, we focus on this example and some natural
generalizations.

(ii) Let K be an algebraic number field (finite algebraic extension of Q),
and let

A = integral closure of Z in K.

This is called the ring of algebraic integers in K.

For a Dedekind domain A, let

Div (A) = Free abelian group on maximal ideals of A

= Group of divisors of A.

If a ∈ A is a non-zero element, it defines a principal ideal aA, which
has a factorization of the form aA = Mn1

1 · · ·Mnr
r , where Mi are distinct

maximal ideals, and ni are positive integers (if a is a unit, then aA = A,
and we take r = 0). Equivalently, aA has a primary decomposition aA =
Mn1

1 ∩ · · · ∩ Mnr
r (the equivalence is a property of Dedekind domains).

173
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The assignment

a 
→
r∑

i=1

ni[Mi] ∈ Div (A)

gives a semigroup homomorphism

A \ {0} → Div (A).

The subgroup P (A) ⊂ Div (A) generated by the image of A \ {0} is called
the group of principal divisors.

We may now define

Cl (A) = Divisor class group of A

= Div (A)
P (A) .

Theorem 10.1. For a Dedekind domain A, the following properties are
equivalent.
(i) A has the unique factorization property.
(ii) Every maximal ideal of A is a principal ideal.
(iii) Cl (A) = 0.

Thus the divisor class group measures the failure of the unique factorization
property.

The divisor class group of a Dedekind domain has an interpretation in
terms of algebraic K-theory (see [5]).

Recall that a projective A-module is a direct summand of a free A-
module. Let K0(A) be the Grothendieck group of finitely generated projec-
tive A-modules, defined as a quotient

K0(A) =
F (A)
R(A)

,

with

F (A) =
Free abelian group on isomorphism classes of
finitely generated projective A-modules

R(A) =
subgroup of F (A) generated by classes [P2]− [P1]− [P3]
for all exact sequences 0 → P1 → P2 → P3 → 0.

Since a Dedekind domain A has Krull dimenion 1 (i.e., every non-zero
prime ideal is a maximal ideal), one can show that there is an isomorphism

K0(A) ∼= Z⊕ Cl (A).
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The map K0(A) → Z is induced by

[P ] 
→ rankP = dimK P ⊗A K,

where K is the quotient field of A.
To define the map K0(A) → Cl (A), one first identifies Cl (A) with the

Picard group

Pic (A) = isomorphism classes of projective A-modules of rank 1,

which is a group with respect to the tensor product, with the class of the
free module A as identity element.

If M is any maximal ideal of A, then it is in fact a projective A-module
of rank 1, and so has a class in Pic(A). This defines a homomorphism
Div (A) → Pic (A), which vanishes on P (A) because a principal ideal aA is
a free module, which represents the identity element of Pic (A); thus, there
is an induced homomorphism Cl (A) → Pic (A). For certain “traditional”
reasons, one usually multiplies the above map Cl (A) → Pic (A) by -1; it
can be shown that it is an isomorphism.

Now if P is a projective module, say of rank s, we can associate to it
the element

[det(P )] = [
s∧P ] ∈ Pic (A),

the determinant of the projective module P , and (using the above iden-
tification), there is a corresponding element in Cl (A). Thus we have a
composition

K0(A) det−→Pic (A)
∼=−→Cl (A).

To make a connection with geometry, let A be a Dedekind domain which
is the coordinate ring of an affine algebraic curve C, over an algebraically
closed field k ((see [2]). The points of C are in bijection with the maximal
ideals of A. We write C = SpecA to denote this relationship. Finitely
generated projective A-modules correspond to vector bundles on the curve
C, giving an isomorphism of K0(A) with the Grothendieck group K0(C) of
vector bundles.

There is an associated projective non-singular curve X over k, such
that C ∼= X \ S for some finite, nonempty set S of points of X . If K is the
quotient field of A, then the points of X are in bijection with the discrete
valuation subrings of K which contain k (see [2], Ch. I). This determines X
as a set, and the projective algebraic structure of X may also be determined
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intrinsically, using the algebraic structure of the field K, which is then
identified with the field of rational functions on the curve X .

There is a similarly defined Grothendieck groupK0(X) of vector bundles
(or locally free sheaves) on X . If Pic (X) is the group of isomorphism classes
of algebraic line bundles on X , one can show that there is an isomorphism

K0(X) ∼= Z⊕ Pic (X),

again given by the rank and determinant for vector bundles.
There is also an isomorphism Pic (X) ∼= Cl (X) (which we may view as

the algebraic first Chern class), where Cl (X) = Div (X)/P (X), with

Div (X) = Group of Divisors on X
= Free abelian group on points of X,

P (X) = Principal divisors
= Divisors of non-zero rational functions on X .

If f is a nonzero rational function on X , its divisor is

div (f) = (zeroes of f)− (poles of f)

where the zeroes and poles are counted with multiplicities.
Finally, there is a relationship between the class groups of X and of

C = SpecA = X \ S, given by an isomorphism

Cl (A) = Cl (C)
∼= Cl (X)

Subgroup generated by points of S.

The geometry comes in now, in terms of a structure theorem for Cl (X).
There is a degree homomorphism

deg : Cl (X)→ Z.

deg
∑

ni[xi] 
→
∑

i

ni.

This is well-defined, because any nonzero rational function onX is known to
have the same number of poles and zeroes, when counted with multiplicities.

Now an important theorem in algebraic geometry is that the kernel
Cl (X)deg0 has the structure of an abelian variety (a projective algebraic
group variety), called the Jacobian variety, which is denoted J(X), and
whose dimension is the genus of the non-singular projective curve X .

If the ground field k is C, the field of complex numbers, then the complex
points of X naturally form a compact Riemann surface, and the “algebraic
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genus” of X , as considered above, equals the “topological genus” of the
underlying compact connected oriented 2-manifold. The Jacobian J(X) is
identified, as a real Lie group, with the torus H1(X,R/Z), which has a
natural complex structure coming from the theory of harmonic forms.

The genus may be defined algebraically as the dimension of the vector
space of algebraic regular 1-forms on the curve X , or equivalently (using
Serre duality) as the dimension of the sheaf cohomology H1(X,OX) of the
sheaf OX of algebraic regular functions on X .

We now have the following remarkable result:

Theorem 10.2. Let C = SpecA be an affine algebraic curve over an alge-
braically closed field k, where A is a Dedekind domain (i.e., C is a nonsin-
gular algebraic curve). Let X be the corresponding nonsingular projective
algebraic curve over k. Then the following are equivalent:

every maximal ideal of A is principal ⇔ Cl (A) = 0 ⇔
the projective curve X has genus 0, i.e., H1(X,OX) = 0.

This is because of a property of abelian varieties: if the Jacobian J(X) is
nonzero (equivalently the genus ofX is nonzero), then J(X) is not a finitely
generated group. This means that for A as in the Theorem, we either have
that Cl (A) = 0, or that Cl (A) is not finitely generated.

A refinement of the above result applies to an arbitrary reduced, finitely
generated k-algebra A of Krull dimension 1, where k is an algebraically
closed field.

Once again, one can uniquely associate to C = SpecA a projective alge-
braic curve X , such that C = X \ S for a finite set S of nonsingular points
of X . The dimension of the sheaf cohomology group H1(X,OX) is called
the arithmetic genus of the projective curve X , and equals the dimension
of a certain algebraic group variety called the generalized Jacobian of the
(possibly singular) curve X .

A point x ∈ C is a nonsingular point if for the corresponding maximal
ideal Mx of A, the localization AMx is a discrete valuation ring; C has only
a finite number of singular points. The maximal ideal corresponding to a
nonsingular (or smooth) point will be called a smooth maximal ideal.

Theorem 10.3. Let C = SpecA and X be as above. Then:

every smooth maximal ideal of A is principal ⇔
the projective curve X has arithmetic genus 0.
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We now turn to the higher dimensional case.
If A is a finitely generated k-algebra which is an integrally closed domain

(i.e., a normal domain) of dimension d, one can associate to it a divisor class
group, defined using Weil divisors (free abelian group on irreducible d− 1-
dimensional subvarieties), with a relationship to the theory of the Picard
variety. One result obtained from this theory is the following (it can be
refined in several ways, which we do not go into here).

Theorem 10.4. Let A be a finitely generated k-algebra, which is an integral
domain. Then the following properties hold.

(i) The group of units of A is of the form

A∗ = k∗ × (free abelian group of finite rank).

(ii) Assume that A is normal. Let X be a normal projective algebraic k-
variety containing V = SpecA as a dense Zariski open set. Then the
divisor class group of A is finitely generated ⇔ the Picard variety of X
(in the sense of Weil) is trivial.

Another generalization, which is our main interest here, is to consider
the complete intersection property for maximal ideals.

Let A be a reduced, finitely generated algebra of Krull dimension d,
over an algebraically closed field k. Let V = SpecA be the affine variety
associated to A, so that maximal ideals of A correspond to (closed) points
of V . A point x ∈ V , corresponding to a maximal ideal Mx in A, is called a
complete intersection point if the ideal Mx is of height d, and is generated
by d elements f1, . . . , fd. Geometrically, this means that if Hi ⊂ V is the
hypersurface defined by

Hi = {y ∈ V |fi(y) = 0} = SpecA/fiA,

then H1 ∩ · · · ∩Hd = {x}, and x ∈ V is a nonsingular point, such that the
hypersurfaces Hi are also nonsingular at x, and intersect transversally.

Note that when d = dimA = 1, M is a complete intersection ⇔ M is a
principal ideal.

Recall that a point x ∈ V is a smooth (or nonsingular) point if the local
ring OV,x = AMx is a regular local ring of dimension d, in the sense of
commutative algebra; this means that Mx has height d, and the localized
maximal ideal MxAMx is generated by d elements.

Equivalently, there is an affine Zariski open subset W ⊂ V containing
x such that x ∈ W is a complete intersection point. Thus, we may view a
smooth point x ∈ V as a “local complete intersection point”. A maximal
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ideal M of A is called a smooth maximal ideal if it corresponds to a smooth
point of V = SpecA.

The main question we want to discuss is the following.
Question: Which k-algebras A of dimension d > 1 have the property that
all smooth maximal ideals are complete intersections? In other words, when
are all local complete intersection points on V = SpecA the same as the
complete intersection points?

There are several conjectures and results related to this Question. We
first state a general “positive” result.

Theorem 10.5. Let k = Fp be the algebraic closure of the finite field Fp.
Then for any reduced finitely generated k-algebra A of dimension d > 1,
every smooth maximal ideal is a complete intersection.

In the case when dimA ≥ 3, or A is smooth of dimension 2, this is a result
essentially due to M. P. Murthy. The higher dimensional case is reduced to
the 2-dimensional case by showing that any smooth point of V = SpecA
lies on a smooth affine surface W ⊂ V such that the ideal of W in A is
generated by d − 2 elements (i.e., W is a complete intersection surface in
V ). This argument depends on the fact that we are dealing here with affine
algebraic varieties. (see [6]).

The case of an arbitrary 2-dimensional algebra is a corollary of results
of Amalendu Krishna and mine (see [3], [4]).

Next, we state two conjectures, which are affine versions of famous con-
jectures on 0-cycles.

Conjecture 10.1. (Bloch Conjecture). Let k = C, the complex numbers.
Let V = SpecA be a non-singular affine C-variety of dimension d > 1, and
let X ⊃ V be a smooth proper (or projective) C-variety containing V as a
dense open subset. Then:
all maximal ideals of A are complete intersections
⇔ X does not support any global regular (or holomorphic) differential d-
forms
⇔ Hd(X,OX) = 0.

Here, OX is the sheaf of algebraic regular functions on X . The non-
existence of d-forms is equivalent to the cohomology vanishing condition,
by Serre duality; the open question is the equivalence of either of these
properties with the complete intersection property for maximal ideals.

This conjecture has been verified in several “non-trivial” examples (for
example, if V = SpecA is a “small enough” Zariski open subset of the
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Kummer variety of an odd (> 1) dimensional abelian variety over C, all
smooth maximal ideals of A are complete intersections).

One consequence of the conjecture is that, for smooth affine C-varieties,
the property that all maximal ideals are complete intersections is a bira-
tional invariant (that is, it depends only on the quotient field of A, as a
C-algebra). This birational invariance can be proved to hold in dimension
2, using a result of Roitman; in dimensions ≥ 3, it is unknown in general.

Conjecture 10.2. (Bloch-Beilinson Conjecture) Let k = Q be the field
of algebraic numbers (algebraic closure of the field of rational numbers).
Then for any finitely generated smooth k-algebra of dimension d > 1, every
maximal ideal is a complete intersection.

This very deep conjecture has not yet been verified in any “nontrivial”
example (i.e., one where there do exist smooth maximal ideals of A ⊗

Q
C

which are not complete intersections).
However, it is part of a more extensive set of interrelated conjectures (see

[1]) relating K-groups of motives over algebraic number fields and special
values of L-functions, and there are nontrivial examples where some other
parts of this system of conjectures can be verified. This is viewed as indirect
evidence for the above conjecture.

I will now relate these conjectures to algebraic cycles and K-theory.
The first step is a result of Murthy, giving a K-theoretic interpretation

of the complete intersection property.
Recall that K0(A) denotes the Grothendieck group of finitely generated

projective A-modules. If M is an arbitrary finitely generated A-module,
recall thatM has finite projective dimension if there exists a finite projective
resolution of M , i.e., an exact sequence

0 → Pr → Pr−1 → · · · → P0 →M → 0

where the Pi are finitely generated projective A-modules. Then M has a
well-defined class [M ] ∈ K0(A), obtained by choosing any such resolution,
and defining

[M ] =
r∑

i=0

(−1)i[Pi] ∈ K0(A).

Recall also that a maximal ideal M has finite projective dimension pre-
cisely when the local ring AM is a regular local ring.
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Theorem 10.6. ([7]) Let A be a reduced finitely generated algebra over an
algebraically closed field. A smooth maximal ideal M of A is a complete
intersection ⇔ its class in K0(A) vanishes.

Let A be a reduced, finitely generated algebra, of Krull dimension d, over
an algebraically closed field k. We can associate to it the group F dK0(A),
the subgroup ofK0(A) generated by the classes of smooth maximal ideals. If
V = SpecA, then F dK0(A) is a quotient of the free abelian group on smooth
points of V , modulo a suitable equivalence relation. Murthy’s theorem in
fact is stronger: if V is non-singular, it identifies the above equivalence
relation with rational equivalence, coming from algebraic geometry.

Recall that the Chow group of 0-cycles modulo rational equivalence on
a smooth d-dimensional variety X is

CHd(X) =
Zd(X)
Rd(X)

,

where

Zd(X) = Free abelian group on points of X,

and Rd(X) ⊂ Zd(X) is the subgroup generated by

div (f)C = (zeroes of f)− (poles of f),

for all curves C ⊂ X , and nonzero rational functions f on C.
The Grothendieck groupK0(X) of algebraic vector bundles on X equals

the Grothendieck group of coherent sheaves on X , since X is smooth. Let
F dK0(X) be the subgroup of K0(X) generated by the classes of points on
X . The induced surjective map Zd(X) → F dK0(X) is easily seen to yield
a surjection

ψd : CHd(X)→ F dK0(X).

Grothendieck’s algebraic theory of Chern classes, and the Riemann-
Roch Theorem (“without denominators”), implies that the dth algebraic
Chern class gives a homomorphism

cd : F dK0(X)→ CHd(X),

so that the compositions ψd ◦ cd and cd ◦ ψd both equal multplication by
(−1)d−1(d− 1)!.

In particular, ψd and cd are both isomorphisms modulo torsion.
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Now assume V = SpecA is an affine open subset of a nonsingular pro-
jective k-variety X of dimension d. Clearly

CHd(V ) =
CHd(X)

subgroup generated by points of X \ V .

Roitman’s Theorem on torsion 0-cycles, extended by Milne to arbitrary
characteristic, gives a description of the torsion in CHd(X), using which it
can be shown that CHd(V ) is a torsion free, divisible abelian group (i.e.,
a vector space over Q). In particular, we see that the map ψd : CHd(V )→
F dK0(V ) is an isomorphism.

Thus, by Murthy’s theorem, all maximal ideals of A are complete inter-
sections ⇔ CHd(X) is generated by points of X \ V .

We now restate the Bloch and Bloch-Beilinson Conjectures in their
“original” forms.

Conjecture 10.3. (Bloch Conjecture) Let X be a projective smooth variety
over C. Suppose that, for some integer r ≥ 0, X has no nonzero regular
(or holomorphic) s-forms for any s > r. Then for any “sufficiently large”
subvariety Z ⊂ X of dimension r, we have CHd(X \ Z) = 0.

For a smooth projective complex surface X , this conjecture states that
if X has no holomorphic 2-forms, then CH2(X \ C) = 0 for some curve C
in X . This has been verified in a few situations, for example, for surfaces
of Kodaira dimension ≤ 1 (Bloch, Kas, Lieberman), for general Godeaux
surfaces (Voisin), and in some other cases. In higher dimensions, Roitman
proved it for complete intersections in projective space, and there are a
few other isolated examples, like the Kummer variety associated to an odd
dimensional abelian variety (Bloch and myself).

Conjecture 10.4. (Bloch-Beilinson Conjecture) Let X be a smooth projec-
tive variety of dimension d over Q. Then CHd(X) is “finite dimensional”;
in particular, there is a curve C ⊂ X so that CHd(X \ C) = 0.

As remarked earlier, there is only indirect evidence for this conjecture:
it has not been verified for any smooth projective surface over Q which
supports a non-zero 2-form (e.g., any hypersurface in projective 3-space of
degree ≥ 4).

To exhibit one such nontrivial example is already an interesting open
question.

From the algebraic viewpoint, it seems restrictive to work only with
smooth varieties. In any case, it is unknown in characteristic p > 0 that
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a smooth affine variety V can be realized as an open subset of a smooth
proper variety X (in characteristic 0, this follows from Hironaka’s theorem
on resolution of singularities).

Inspite of this, it is possible to make a systematic study of the singular
case, and to try to extend the above conjectures.

For the purposes of this chapter, let me focus on one very special situ-
ation. Let

Z ⊂ PN
k

be a non-singular projective algebraic k-variety, and

A = ⊕n≥0An

= homogeneous coordinate ring of Z.

The affine variety V = SpecA is the “affine cone” over Z with “vertex”
corresponding to the unique graded maximal ideal M = ⊕n>0An, and the
vertex is the unique singular point of V . The projective cone C(Z) over
Z with the same vertex naturally contains V as an open subset, whose
complement is a divisor isomorphic to Z, and the vertex is again the only
singular point of C(Z).

The first part of the following theorem is obtained using results from my
paper [3] with Amalendu Krishna, in the 2-dimensional case, and a preprint
of Krishna’s in the higher dimensional case. The result over Q is in [4].

Theorem 10.7. (i) Let k = C. Assume that V is Cohen-Macaulay (for
example, d = 2 and A is normal) of dimension d ≤ 3. Then every smooth
maximal ideal of A is a complete intersection ⇔ Hd−1(Z,OZ(1)) = 0
⇔ Hd(C(Z),OC(Z)) = 0
(ii) Let k = Q. Then every smooth maximal ideal of A is a complete inter-
section.

Here, (i) is analogous to the Bloch Conjecture, while (ii) is analogous
to the Bloch-Beilinson Conjecture.

Let us close with two examples.

Example 1 ([3])

A =
Q[x, y, z]

(x4 + y4 + z4)
.

Here, all smooth maximal ideals of A are complete intersections, while
“most” smooth maximal ideals of A ⊗

Q
C are not complete intersections.

The complete intersection smooth maximal ideas are those determined by
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points on the rulings of the affine cone over points of the Fermat Quartic
curve with Q coordinates. This is a consequence of Theorem 10.7.

Example 2

A =
Q[x, y, z]

(xyz(1− x− y − z)) .

Again, all smooth maximal ideals of A are complete intersections, while
“most” smooth maximal ideals of A ⊗

Q
C are not complete intersections.

In fact, there is an identification

F 2K0(A⊗Q k) = K2(k),

where K2 denotes the Milnor K2. Now one has the result of Garland (vastly
generalized by Borel) that K2(Q) = 0, while K2(C) is “very large”.
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This article is broadly based on the talk that was given at the symposium
‘Perspectives in the Mathematical Sciences’, held at Indian Statistical
Institute (ISI), Bangalore, to celebrate the Platinum Jubilee of the ISI.
I would like to thank the organisers, especially Professor N.S.N. Sastry,
for inviting me to lecture on this occasion. The article is intended for a
general audience and does not contain any new results. We have aimed
at highlighting several new results that have been proved on this topic
by various authors, in the last few years. The proofs have been omitted
and the interested reader is referred to the research papers, which we
have tried to list rather extensively.

11.1. Elliptic Curves and the Birch and Swinnerton-Dyer
Conjecture

Let F be a finite extension of Q and let E/F be an elliptic curve. Recall
that E has an affine equation

E : y2 = f(x),

where f(x) ∈ F [x] is a cubic polynomial with distinct roots. A famous
result of Mordell asserts that the group E(F ) of F -rational points of E
is a finitely generated abelian group. Let gE/F denote the rank of E(F ).
Associated with E is the complex L-function L(E/F, s) of E, which is
defined by an Euler product. This function converges only for Re(s) > 3/2,
but is conjectured to have an entire continuation (see [22]), and a functional
equation relating its values at s and 2− s.

185
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When F = Q, thanks to deep results of Wiles ([24]) and [2], this con-
jecture is true, but it is only for elliptic curves with complex multiplication
that it so far has been proven over all number fields F . Assuming the an-
alytic continuation of L(E/F, s), the analytic rank, which we denote by
rE/F , is defined to be the order of zero of L(E/F, s) at s = 1, the centre
of its critical strip. In the 1960’s, based on rather compelling numerical
evidence, Birch and Swinnerton-Dyer made the astonishing conjecture that

gE/F = rE/F . (11.1)

A refined version of this conjecture even gives an exact formula for the lead-
ing Taylor coefficient of the L-function at s = 1. For more details, see [25].
An important part of this exact formula is the order of the Tate-Shafarevich
group of E/F . For a finite extension K of F , the Tate Shafarevich group of
E over K, denoted by X(E/K), is defined by

X(E/K) = Ker

(
H1(K,E) →

∏
v

H1(Kv, E)

)
. (11.2)

Here, v varies over all the places of K and Kv denotes the completion of K
at v, while E := E(F̄ ) denotes the group of points of E over a fixed algebraic
closure F̄ of F , considered as a module over the Galois group of K. Finally,
for any field K and a module M over the Galois group GK := Gal(K̄/K),
the first cohomology group is denoted by H1(K,M). The Tate-Shafarevich
group is among the most mysterious groups occurring in the study of the
arithmetic of elliptic curves and part of the full Birch and Swinnerton-Dyer
conjecture is that it is always finite. However, it was only in the late 1980’s
that explicit examples of elliptic curves with finite Tate-Shafarevich group
came to light. Kolyvagin, and independently Rubin, whose work was based
on ideas of Thaine, gave these first examples. We remark here that we do
not yet know the finiteness of the Tate-Shafarevich group for a single elliptic
curve of rank at least 2.

11.2. Congruent Number Problem

Recall that a natural number N ≥ 1 is said to be congruent if there exists
a right angled triangle whose sides have rational length, and area N . In
other words N is congruent if there exists rational numbers a, b, c in Q

such that a2 + b2 = c2 and ab/2 = N . One of the oldest problems in
number theory is to explicitly give an algorithm which would determine
whether a given number is congruent. While Arab manuscripts dating back
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to the tenth century A.D. give a long list of examples of congruent numbers,
it is almost certain that the ancient Indians too grappled with congruent
numbers and knew of many examples. For more on this subject, the reader
is referred to the book by Koblitz ( [13]) and the article by Coates ( [3]).
A folklore conjecture in this subject is the following, which remains open
despite overwhelming numerical evidence:

Conjecture 11.1. If N is a positive integer congruent to 5, 6,or 7 modulo
8, then N is congruent.

The connection between congruent numbers and elliptic curves is the
following. For any integer N ≥ 1, consider the elliptic curve E over Q

defined by

EN : y2 = x3 −N2x.

Then N is congruent if and only if E has a rational point (x, y), x, y ∈ Q

with y �= 0. Indeed, if (a, b, c) are the lengths of the corresponding right
angled triangle, with area N and a2 + b2 = c2, then (x, y) with

x =
N(a+ c)

b
, y =

2N2(a+ c)
b2

is a point on EN with y �= 0. Such a point is well-known to give a point
of infinite order on EN and the theory of L-functions shows that for N ≡
5, 6, 7 mod 8, L(EN , s) has a zero of odd order (and therefore a zero) at
s = 1. Thus, Conjecture 11.1 is seen to be a special case of the Birch and
Swinnerton-Dyer conjecture.

Iwasawa theory is a p-adic theory that provides a systematic method to
attack the Birch and Swinnerton-Dyer conjecture and has led to important
results in the study of the arithmetic of elliptic curves. The main object
of study here is the investigation of the Galois action on the dual Selmer
group, viewed over certain infinite extensions of F . We refer the reader
to [21], [9], and [3] for detailed accounts of the Iwasawa theory of elliptic
curves. Hereafter, we fix an odd prime p. Recall that for an elliptic curve
E/F and a finite extension K of F , the p-Selmer group, denoted Sp(E/K),
is defined as

Sp(E/K) = Ker
(
H1(K,Ep∞) −→ ⊕

v
H1(Kv, E)

)
where Ep∞ := ∪

n
Epn(F̄ ) denotes the group of all p-power division points of

E(F̄ ) considered as a module over GK . It is well-known that Sp(E/K) is a
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cofinitely generated Zp-module and we define

sp,E/K := Zp − corank of Sp(E/K). (11.3)

For an infinite Galois extension K∞ of F with Galois group G :=
Gal(K∞/F ) a p-adic Lie group, the Selmer group Sp(E/K∞) is defined
as the direct limit over the Selmer groups Sp(E/L), as L varies over finite
Galois extensions of F contained in K∞. It is clear that Sp(E/K∞) is a
discrete G-module, and its Pontryagin dual denoted Xp(E/K∞) is a com-
pact G-module, and is the dual Selmer group. It is even a finitely generated,
compact module over the Iwasawa algebra Λ(G) defined as the inverse limit

Λ(G) := lim← Zp[G/G′],

the limit being taken over the group rings Zp[G/G′] as G′ varies over open
normal subgroups, with respect to the natural maps. The key idea in Iwa-
sawa theory is to study the arithmetic of E over suitable infinite extensions
via the dual Selmer groups considered as Λ(G)-modules. For a finite ex-
tension K of F , Kummer theory yields the well-known exact sequence of
discrete GK-modules

0→ E(K)⊗Qp/Zp → Sp(E/K) → X(E/K)(p) → 0, (11.4)

where X(E/K)(p) denotes the p-primary torsion subgroup of X(E/K).
For an infinite p-adic Lie extension K∞ of F , with Galois group G, a direct
limit argument gives the exact sequence of G-modules

0 → E(K∞)⊗Qp/Zp → Sp(E/K∞) → X(E/K∞)(p) → 0,

where X(E/K∞)(p) denotes the p-primary part of the Tate-Shafarevich
group of E over K∞ and is defined as the direct limit of X(E/K)(p) as
K varies over finite Galois extensions of F in K∞. Iwasawa theory can be
used to prove the following result:

Theorem 11.1. Let N be an integer ≥ 1 such that L(EN/Q, 1) = 0. If
the p-primary part X(EN/Q)(p) is finite for some odd prime p, then N is
congruent.

The central idea here is to prove that Xp(EN/Q) has Zp-rank at least one.
Then, using the hypothesis on X(EN ), one deduces that the same is true
of EN (Q). We shall return to this briefly in the next section.
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11.3. Root Numbers and the Parity Conjecture

Let GF denote the absolute Galois group as before. An Artin representation
of GF is a finite dimensional complex representation ρ of GF which is trivial
on an open subgroup and thus factors through a finite Galois extension of
F . Unless necessary, the base field will not be specified and the associated
representation space will be denoted by Vρ. In a similar vein, as most of
the results we need or state below are independent of the finite extension of
the base field through which the Artin representation factors, we shall omit
reference to the associated finite Galois extension, except in cases where it
might be necessary to specify the extension.

Given an elliptic curve E/F and an Artin representation ρ of GF , there
is an associated twisted L-function defined by an Euler product and de-
noted by L(E, ρ, s) (see [23] for details). Again, this twisted L-function is
conjectured to be entire with a functional equation. More precisely, let

L̃(E, ρ, s) :=
(
N(E, ρ)
π2dρ

)s/2

Γ
(s

2

)dρ

Γ
(
s+ 1

2

)dρ

L(E, ρ, s);

here dρ is the dimension of Vρ and N(E, ρ) is the global conductor of the
Galois representation associated to that of E twisted by Vρ (cf. [6, 2.4]).
The conjectured functional equation is

L̃(E, ρ, s) = w(E, ρ) L̃(E, ρ̂, 2− s), (11.5)

where ρ̂ is the contragredient of ρ andw(E, ρ) is the root number, which is an
algebraic number of complex absolute value 1. We remark that even though
the functional equation (11.5) is largely conjectural, the root number is
nonetheless well-defined. Indeed, by the theorem of Deligne and Langlands,
it can be written as a product of local root numbers, taken over all places
v of F (see [23]). In particular, if ρ is self-dual (i.e. ρ = ρ̂), then the root
number is equal to ±1 and is often referred to as the sign in the functional
equation.

Definition 11.1. Assuming that L(E, ρ, s) is entire, the ρ-analytic rank
is defined as r(E, ρ) = ords=1 L(E, ρ, s). Note that if ρ is self-dual and
irreducible, then

w(E, ρ) = (−1)r(E,ρ). (11.6)

Now let ρ be an irreducible Artin representation andK/F a finite Galois
extension through which ρ factors, with GK/F = Gal(K/F ).
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Definition 11.2. The multiplicity of the irreducible representation ρ

occurring in the GK/F -module E(K) ⊗ Q̄p is the ρ-algebraic rank and is
denoted by gE,ρ.

The invariant gE,ρ is in fact independent of the prime p.

Definition 11.3. The multiplicity of the contragredient representation ρ̂

in X(E/K)⊗Zp Q̄p is denoted by sp,E,ρ.

The refined form of Birch and Swinnerton-Dyer conjecture in this con-
text is the conjecture that

gE,ρ = rE,ρ and gE,ρ = sp,E,ρ for all p. (11.7)

Note that when ρ is the trivial representation these invariants coincide with
the invariants gE , rE and sp,E defined earlier.

The ρ-parity conjecture is the assertion that for self-dual, irreducible
Artin representations ρ, we have

w(E, ρ) = (−1)sp,E,ρ , or equivalently that sp,E,ρ ≡ rE,ρ mod 2. (11.8)

We stress that it is completely unknown whether sp,E,ρ has the same parity
as gE,ρ, or even whether the parity of sp.E,ρ is independent of p. When ρ

is the trivial representation, we clearly recover (11.1) as a special case of
(11.7). Finally, note that if the root number is −1 for some self-dual Artin
representation, then the parity conjecture implies that the dual Selmer
groupXp(E/K) has positive Zp-rank for a finite extension K of F . Further,
the Birch and Swinnerton-Dyer conjecture predicts that E(K) is infinite.
However, to deduce that the elliptic curve has a point of infinite order
over K, by (11.4), one needs to know the finiteness of the p-primary part
of the Tate-Shafarevich group of E. We refer the reader to the beautiful
paper of Rohrlich ([19]) which elaborates on the interplay between Artin
representations, root numbers and elliptic curves.

Suppose that E/F is an elliptic curve and we are given a p-adic Lie
extension K∞ of F (with p and odd prime), with Galois group G. Let ρ
be an irreducible, self-dual, Artin representation which factors through a
finite quotient of G. Then there is the notion of the twisted dual Selmer
group, which we denote by Xp(E/K∞, ρ) (see [4, §3]). The basic idea is to
study the invariants gE,ρ, rE,ρ and sp,E,ρ for E as ρ ranges over all self-
dual representations of G. We remark that the study of the dual Selmer
group twisted by an Artin representation ρ of G, [4, §3], considered as
a Λ(G)-module (see §3), is an important ingredient in the determination
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of the invariant sp,E,ρ. We refer the reader to the papers of Greenberg,
Guo [10], [11] and [4] for more details.

11.4. Recent Results

In this section, we list some of the comparatively recent results towards
the ρ-parity conjecture. Earlier affirmative results in this direction (when
the representation ρ is trivial), have been proved by many authors, notably
[1, 11, 16, 17]. More recently, interesting work has been done by [6, 7, 10,
12, 14, 15, 18].

In the next section, we shall illustrate some of these results with nu-
merical examples and also consider some interesting applications. Here is a
striking result due to Tim and Vladimir Dokchitser ([8]):

Theorem 11.2. Let E be any elliptic curve over Q and p any prime num-
ber. Then sp,E/Q ≡ rE/Q mod 2.

A completely different perspective is adopted in [4], where the results
proved give some fragmentary evidence that a close connection exists be-
tween root numbers and the dual Selmer group of an elliptic curve over
certain non-commutative Galois extensions of the base field F . In fact, the
Galois extensions being non-commutative, provide us with a rich source of
examples of infinite families of irreducible self-dual Artin representations
of the corresponding Galois groups. We consider two such extensions below
where the base field is assumed to be Q for simplicity.

Let p be an odd prime. Fix an integer m ≥ 1 which is p-power free, and
not divisible by any prime of additive reduction for E.

Definition 11.4. The False Tate extension of Q corresponding to m is
defined as

F∞ = ∪
n≥1

Q(µpn ,m1/pn

). (11.9)

For n ≥ 1, put

Fn = Q(µpn ,m1/pn

), Kn = Q(µpn), Ln = Q(m1/pn

), (11.10)

and let Kcyc denote the field obtained by adjoining all the p-power roots
of unity to K := Q(µp). Put

G = Gal(F∞/Q), H = Gal(F∞/Kcyc) � Zp. (11.11)

Our hypotheses above on m imply that the degree [Ln : Q] = pn for all
n ≥ 0. The extension F∞ is a p-adic Lie extension of Q with Galois group
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isomorphic to the semi-direct product of H and Z×p . As the group H is
isomorphic to Zp, the Iwasawa algebra Λ(H) is isomorphic to the power
series ring in one variable over Zp.

We fix an odd prime p such that E/Q has good ordinary reduction at
p. Further, we shall also assume that the quotient of the dual Selmer group
by its p-primary torsion subgroup,

Yp(E/F∞) = Xp(E/F∞)/Xp(E/F∞)(p) (11.12)

is finitely generated as a Λ(H)-module. Indeed, as we shall discuss in the
next section, there are interesting numerical examples where these assump-
tions are satisfied, and it is conjectured in [5] that this latter hypothesis
always holds. The self-dual irreducible Artin representations of G are well-
known in this case. Further, the twisted L-functions are all known to be
entire, and satisfy the standard functional equation, thanks to deep results
in automorphic forms (Langlands-Tunnell, Arthur-Clozel, Wiles, Breuil-
Conrad-Diamond-Taylor). Also, the root numbers exhibit a surprisingly
uniform behaviour as was shown by T. Dokchitser. Further, it can be shown
that the parity of the root numbers is equal to that of the Λ(H)-rank of
Yp(E/F∞). We also have [4, §4]

Theorem 11.3. Let E/Q be an elliptic curve such that E has good ordinary
reduction at p. Assume that Yp(E/F∞) (see (11.12)), is a finitely generated
Λ(H)-module. Then for all self-dual, irreducible Artin representations ρ of
G with dimension > 1, the ρ-parity conjecture holds, i.e.

w(E, ρ) = (−1)sp,E,ρ .

The second infinite extension is obtained as follows. Let E/Q be an
elliptic curve with potential good ordinary reduction at p, where p ≥ 5.
Assume also that E does not have complex multiplication. Define

F∞ := Q(Ep∞) (11.13)

where

Ep∞ := ∪
n≥0

Epn

is the Galois module of all p-power division points of E. Let G :=
Gal(F∞/Q), which by a theorem of Serre is an open subgroup of GL2(Zp).
By the Weil pairing, Kcyc = Q(µp∞) is a subfield of F∞, and we put
H := Gal(F∞/Kcyc). The module Yp(E/F∞) is again defined as in (11.12).
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Recall that an Artin representation is said to be orthogonal if the underly-
ing vector space carries a G-invariant, non-degenerate, symmetric bilinear
form. The following theorem is a particular case of a more general result
proved in [4, §6].

Theorem 11.4. Assume that E admits an isogeny of degree p over Q,
where p is a prime of potential good ordinary reduction. Assume further
that Yp(E/F∞) is a finitely generated Λ(H)-module. Further, assume that
the image of G in PGL2(Fp) has even order. Then the ρ-parity conjecture
holds for any self-dual, irreducible, orthogonal Artin representation ρ of G
of dimension greater than 1.

It is intriguing to note that the proof of this theorem given in [4] is
uncannily parallel to Rohrlich’s computation of the root numbers w(E, ρ) in
this case [20], perhaps suggesting an as yet undiscovered deeper connection
between Iwasawa theory and local root numbers.

Finally T. and V. Dokchitser (see [8]) have proven the following more
general result by completely different methods, which do not involve Iwa-
sawa theory.

Theorem 11.5. Let E/Q be an elliptic curve with semi-stable reduction at
2 and 3, and let p be any prime. Let K be a finite Galois extension of Q

such that the p-Sylow subgroup of Gal(K/Q) is normal and has abelian quo-
tient. Then the ρ-parity conjecture holds for the prime p, and all orthogonal
representations of Gal(K/Q).

11.5. Examples and Applications

In this final section, we give some applications of the ρ-parity conjecture
to obtain lower bounds on the Zp-ranks of dual Selmer groups, and discuss
several numerical examples. It is also worth noting that Iwasawa theory
can be used to give upper bounds for the Zp-coranks of the ρ-components
of the Selmer group, as ρ varies over the irreducible Artin characters of a
p-adic Lie extension. In this spirit, we end by stating a joint conjecture with
J. Coates that proposes strong upper bounds for the multiplicities of Artin
representations which can occur in the dual Selmer group of an elliptic
curve, considered over finite extensions within a p-adic Lie extension.

Let E/Q be an elliptic curve and write NE for the conductor of E. Let
p be an odd prime. For each integer n ≥ 1, let Fn be the fixed field of the
centre of Gal(Q(Epn)/Q)). The following result is a special case of a more
general result of [15, Corollary 2.5].
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Theorem 11.6. Assume that E has good ordinary reduction at p and a
rational prime of order p. Suppose further that every prime of bad reduction
of E has odd order in F×p , and that −NE is not a square mod p. Then there
exists a positive rational number c independent of n such that for every
n ≥ 1, we have

sp,E/Fn
≥ c p2n.

As stated above, Iwasawa theory provides lower bounds for the coranks
of the Selmer groups. Particularly striking is the case of the False Tate
extension (see Definition 11.4), when the module Yp(E/F∞) (see (11.12))
has Λ(H)-rank 1 where H is as in (11.11). We remark that there are many
numerical examples where this is the case. We then have the following
theorem [4, Theorem 4.8], where we recall that K = Q(µp).

Theorem 11.7. Assume Y (E/F∞) is a finitely generated Λ(H)-module of
Λ(H)-rank 1. Then for all n ≥ 1, we have

sp,E/Ln
= n+ sp,E/Q, sp,E/Fn

= pn − 1 + sp,E/K ,

where the fields Fn and Ln are as in (11.10).

A numerical example of this theorem is given by the elliptic curve

E : y2 + y = x3 − x2,

and for the prime p = 3 with m = 11. We deduce from the theorem that

s3,E/Ln
= n, and s3,E/Fn

= 3n − 1, for n ≥ 1.

Similarly, the assertions of the theorem hold for p = 7 and m = 2,
showing that

s7,E/Ln
= n, and s7,E/Fn

= 7n, for n ≥ 1.

Here we have used the fact that sp,E/K = 1.
There is also a lower bound in the case of the GL2 extension F∞ as

defined in (11.13).

Theorem 11.8. Let E be an elliptic curve without complex multiplication
and p a prime of potential good ordinary reduction. Let

F∞ = F (Ep∞), Fn = Q(Epn).
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In addition to the hypotheses of Theorem 11.4, assume that p ≡ 3 mod 4.
Then there exists c > 0 independent of n, such that

sp,E/Fn
≥ c.p2n (n ≥ 1).

As a numerical example of both Theorem 11.4 and Theorem 11.8, take
E to be the elliptic curve

y2 + xy = x3 − x− 1,

of conductor NE = 2.3.72, with p = 7, and F∞ = Q(E7∞). Then E achieves
good ordinary reduction at the unique prime of Q(µ7) above 7. Moreover, µ7

is a Galois submodule of E7, and so E has an isogeny of degree 7 defined
over Q. It can be shown that X7(E/F∞) is a finitely generated Λ(H)-
module where H = Gal(F∞/Q(µ7∞)). Further, the image in this case of
G in PGL2(Fp) has order 42. Hence all the hypotheses of Theorems 11.4
and 11.8 hold in this example. We remark that Rohrlich has shown that
the cases w(E, ρ) = +1 and w(E, ρ) = −1 both occur for infinitely many
self-dual irreducible Artin representations ρ of G.

We end with a conjecture proposed jointly with John Coates, which
was suggested by Theorem 4.12 of [4]. Let F∞ be a Galois extension of Q

which is unramified outside a finite set of primes, and whose Galois group
G is p-adic Lie group. We assume that F∞ contains the cyclotomic Zp-
extension Qcyc of Q. Let X denote the set of all one dimensional characters
of Gal(Qcyc/Q), and E be any elliptic curve defined over Q.

Conjecture 11.2. Assume E has potential good ordinary reduction at p.
Then there exists an integer C, depending only on E and F∞, such that,
for all irreducible Artin representations ρ of G, we have

Σ
χ∈X

sp,E,ρχ ≤ C. (11.14)

Naturally, there is another version of the above conjecture in which we
replace sp,E.ρχ in (11.14) by rE,ρχ. Of course, the generalised Birch and
Swinnerton-Dyer conjecture (11.7), would imply the equivalence of the two
versions. We note finally that Theorem 4.12 of [4] shows that the first
version of the above conjecture holds for the False Tate extension. Both
forms are true for the cyclotomic Zp extension of Q by virtue of well-known
theorems of Kato and Rohrlich. At present, it is completely unknown for the
extension F∞ = F (Ep∞) when E does not admit complex multiplication.
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There has been a long-standing and strong link between ergodic the-
ory and von Neumann algebras (in particular, factors) dating back to the
seminal work (cf. [18]) of Murray and von Neumann, specifically their con-
struction of the first examples of factors of type II and type III. The bridge
is provided by the celebrated group-measure space construction (or the
crossed-product construction in modern parlance). In this survey, we shall
commence with a discussion of some aspects of the magnificent edifice cre-
ated by Murray and von Neumann, Dye, Krieger, Connes, Ornstein, Weiss,
Feldman, Moore, . . . , and conclude with an attempta to describe some
“rigidity” results of Gaboriau and Popa.

We commence proceedings with brief introductions to each of the topics
von Neumann algeras, ergodic theory, the group-measure space construction
and II 1 factors.

von Neumann algebras
A von Neumann algebra is a self-adjoint (i.e., x ∈ M ⇒ x∗ ∈ M)

unital (i.e., 1 ∈ M) subalgebra M of the *-algebra B(H) of all continuous
linear operators on a Hilbert spaceb H , which satisfies any of the following
equivalent requirements: c

aIt is only natural that the picture portrayed here is coloured/flawed by the author’s
own perceptions/limitations of exposure, and it is almost sure that there have been
many grave omissions, for all of which only the author’s limitations are to blame, and
the author apologises for any such errors or omissions.
bAll our Hilbert spaces will be assumed to be separable.
cThe equivalence of these three conditions — two topological, one algebraic — is von
Neumann’s celebrated double commutant theorem.
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(1) M is closed in the strong operator topology — i.e., xi ∈ M,x ∈
B(H), ‖(xi − x)ξ‖→0∀ξ ∈ H ⇒ x ∈M

(2) M is closed in the weak operator topology — i.e., xi ∈ M,x ∈
B(H), 〈(xi − x)ξ, η〉→0∀ξ, η ∈ H ⇒ x ∈M

(3) M ′′(= (M ′)′) = M , where S′ = {x ∈ B(H) : xs = sx∀s ∈ S} denotes
the commutant of S.

The prototypical example of an abelian von Neumann algebra is given
by the algebra A = L∞(X,B, µ) of essentially bounded measurable func-
tions on a standard probability space (X,B, µ), viewed as a subalgebra of
B(L2(X)) via f · ξ = fξ∀f ∈ A, ξ ∈ L2(X). At the other extreme from
an abelian von Neumann algebra is a factor, i.e., a von Neumann algebra
whose center M ∩M ′ reduces to the scalar operators C.

It was recognised early that an important component to a von Neumann
algebra is the set P(M) = {p ∈M : p = p∗ = p2} of its projections. Just as
all measurable functions can be approximated by simple functions, it is true
that the linear subspace spanned by P(M) is norm-dense in M . Two pro-
jections p, q are said to be (Murray-von Neumann) equivalent “rel M” —
denoted by p ∼M q — if there exists a u ∈M such that u∗u = p, uu∗ = q.
It turns out that M is a factor if and only if any two projections are “com-
parable” in the sense that one is equivalent to a sub-projection of the other.
Murray and von Neumann initially classified factors into types I (there ex-
ists a minimal projection), II (there do not exist minimal projections, but
there do exist non-zero projections which are finite meaning they are not
equivalent to any strictly smaller sub-projection) and III (there do not exist
non-zero finite projections).

(The material in this section first appeared in the papers of von Neu-
mann, either singly authored or co-authored with Murray: see [18].)

Ergodic theory
Ergodic theory deals with the study of transformations T on a measure

space (X,B, µ) — which we will always assume is a complete standard
probability space; the map T is usually assumed to be bijective mod µ,
bimeasurable and non-singular — i.e., there are µ-null sets N1, N2 such
that T maps X \ N1 1-1 onto X \ N2, and E ∈ B ⇔ T (E) ∈ B and
µ(T−1(E)) = 0 ⇔ µ(E) = 0. A countable group Γ of such transformations
γ is said to act ergodically if it satisfies any of the following equivalent
conditions:

(1) µ(γ−1(E)∆E) = 0∀γ ∈ Γ ⇒ µ(E) = 0 or 1
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(2) f = f ◦ γ∀γ ∈ Γ ⇒ f is constant a.e.
(3) E,F ∈ B, µ(E) > 0, µ(F ) > 0⇒ ∃γ ∈ Γ such that µ(F ∩ γ(E)) > 0.

Group-measure space construction
Suppose Γ is a countable group of non-singular transformations of a

standard Borel space (X,B) , equipped with a σ-finite measure µ. Let H =
2(Γ, L2(X,B, µ)); the equations

(π(f)ξ̃)(γ) = (f ◦ γ)ξ̃(γ)

(λ(γ0)ξ̃)(γ) = ξ̃(γ−1
0 γ)

respectively define a *-algebra representation of A = L∞(X,B, µ) into
B(H) and a unitary representation of Γ into B(H), and these represen-
tations satisfy the commutation relation

λ(γ)π(f) = π(f ◦ γ−1)λ(γ) (12.1)

The von Neumann algebra M = (λ(Γ) ∪ π(A))′′ generated by these two
representations is denoted by A � Γ and called the crossed product of A
with Γ. Suppose the group Γ acts freely: i.e., for each γ �= 1 in Γ, the set of
points fixed by γ is assumed to be a µ-null set. Then, we have the following
beautiful result due to von Neumann (cf. [18] or [16]):

Theorem 12.1. A�Γ is a factor if and only if Γ acts ergodically. Further,
in this case:

(1) The following conditions are equivalent:
(i) µ is atomic;
(ii) M = A� Γ has a minimal projection
In this case, M is a factor of type I. Further M is said to be a factor
of type In, n ≤ ∞ if µ admits precisely n mutually disjoint atoms.

(2) The following conditions are equivalent:
(i) µ has no atoms, but there exists a σ-finite measure ν which is mu-
tually absolutely continuous with µ, which is invariant under Γ (i.e.,
ν ◦ γ−1 = ν∀γ);
(ii) M is type II
In this case, 1 is a finite projection in M precisely when ν is a finite
measure.

(3) M is type III if and only if there is no σ-finite measure ν which is
mutually absolutely continuous with µ, which is invariant under Γ.

Thus, we have our first examples of factors of type II — both type II 1

(which is type II with 1 being a finite projection) and type II∞ (which
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is type II with 1 not being a finite projection) — and type III from the
following examples of groups Γ acting ergodically on Lebesgue spaces:

• (II 1) Γ = Z acting on (S1,BS1 , 1
2πdθ) via n.e2πiθ = e2πi(θ+nα) with α

being irrational.
• (II∞) Γ = Q acting on (R,BR, dx) via translation (r.x = r + x)
• (III) Γ = Q � Q× acting on (R,BR,m = dx) via (b, a).x = ax+ b. (The

point here is that Γ does not preserve the measure m, while the proper
subgroup Γ0 = {(b, 1)} ⊂ Γ preserves m and itself acts ergodically, and
such a group Γ cannot admit any σ-finite equivalent invariant measure.)

II 1 factors
Note that the only finite factors are the factors of type In, n < ∞

or of type II 1. It is a fact that a factor M is of finite type if and only
if it admits a trace, i.e., a linear functional tr such that tr(1) = 1 and
tr(xy) = tr(yx) ∀x, y ∈ M and tr(x∗x) ≥ 0 ∀x ∈ M ; further, such a
trace is automatically faithful (0 �= x ∈ M ⇒ tr(x∗x) > 0) and unique.
A type In factor is isomorphic to the full matrix algebra Mn(C), and the
corresponding “tr” is nothing but the usual matrix trace normalised by a
factor of 1/n. On the other hand II 1 factors are infinite-dimensional, but
their “finiteness” results in many pleasant features.

What is also true of a finite factor is that if p, q ∈ P(M), then p ∼M

q ⇔ tr(p) = tr(q). While the set {tr(p) : p ∈ P(M)} is nothing but
{k/n : 0 ≤ k ≤ n} in the In case, it turns out to be [0, 1] in the II 1

case. A Hilbert space equipped with a normal (= appropriately continuous)
*-representation of a II 1 factor M is referred to as an M -module. It turns
out (as a perfect parallel with the case of In factors) that a module H
over a II 1 factor M is classified, up to M -linear isomorphism, by a number
dimMH (which can be any number in [0,∞]), the so-called von Neumann
dimension as an M -module.

If λ : Γ→2(Γ) denotes the left-regular representation of a countable
group Γ, then the equation

tr(x) = 〈x1, 1〉

defines a faithful trace on the von Neumann algebra LΓ = λ(Γ)′′ where 1
denotes the standard basis vector indexed by the identity element of Γ; and
LΓ is a II 1 factor if and only if the conjugacy class of every γ �= 1 is infinite
(the ICC condition).
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Almost all the material, so far, in this section, is from the seminal work
of von Neumann ([18]). Some of the details, in slightly more modern termi-
nology, may also be found in [16], for instance.

Two questions:

(1) What pairs of algebras (M,A) arise in the above manner?
(2) When do two ergodic dynamical systems (Xi,Bi, µi,Γi), i = 1, 2 yield

isomorphic pairs (Mi, Ai) as above?

The first question, or rather, a near relative (where one considers more
general crossed-products twisted by a 2-cocycle) has been answered very
satisfactorily in [9], and the answer turns out to be: precisely when A is a
Cartan subalgebra of M — meaning that it has the following properties:

• A is a maximal abelian von Neumann subalgebra of M ;
• The normaliser NM (A) = {u ∈ U(M) : uAu∗ = A} (where U(M) =
{u ∈ M : u∗u = uu∗ = 1} is the unitary group of M) generates M as
a von Neumann algebra: i.e., M = NM (A)′′; and

• there exists a faithful conditional expectation of M onto A.

We shall say no more about the first question, since our concern is
primarily with the second, whose answer turns out to be:

if and only if the two actions are orbit equivalent

The notion of orbit (or weak-) equivalence (see definition below) was
introduced (and the validity of the answer established) in the measure-
preserving context by Dye (cf. [5], [6]) and studied (and the validity of the
answer established) in the non-singular case by Krieger (cf. [12], [13]).

Before getting to the pertinent definitions, we first make two blanket
assumptions for the remainder of this paper.

All our measure spaces (X,B, µ) will henceforth be assumed to be com-
plete standard probability spaces equipped with a non-atomic probability
measure; “isomorphisms between such triples are bijective (mod null sets),
bimeasurable measure preserving transformations”.

Definition 12.1.

(1) An isomorphism between two spaces (X1,B1, µ1) and (X2,B2, µ2) is a
bijective bimeasurable map φ : X1 \ N1→X2 \N2, for µi-null sets Ni,
such that µ1 ◦ φ−1 = µ2.
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(2) A dynamical system is a tuple (X,B, µ, α,Γ) where Γ is a countable
group, and α : Γ→Aut(X,B, µ) is a homomorphism of groups.

(3) Two dynamical systems (Xi,Bi, µi, αi,Γi), i = 1, 2 are conjugate if there
exists an isomorphism φ : X1→X2 such that α2(Γ2) = φα1(Γ1)φ−1.

(4) Two dynamical systems (Xi,Bi, µi, αi,Γi), i = 1, 2 are orbit equivalent
if there exists an isomorphism φ : X1→X2 such that φ(α1(Γ1)x) =
α2(Γ2)φ(x) for µ1- a.a x.

Every dynamical system (X,B, µ, α,Γ) gives rise to an equivalence re-
lation — which we shall denote by RΓ or Rα — which is the Borel subset
of X ×X given by {(x, α(γ)(x)) : x ∈ X, γ ∈ Γ}. This equivalence relation
has countable equivalence classes. In fact, a result of [8] shows that any
such standard equivalence relation (with countable classes) arises as orbit
equivalence defined by a countable group Γ acting as Borel isomorphisms of
(X,B) — although not necessarily freely according to a result of Furman.

Question 2 above may be viewed as asking when two dynamical systems
are orbit equivalent — i.e., when is there a Borel isomorphism f : X1→X2

such that (f × f)(Rα1) = Rα2 . Dye showed ( [5]) that any two ergodic
actions of Z are so isomorphic. A volume of work by several people (notably
Dye, Connes, Feldman, Krieger, Vershik, . . . ) culminated in the following
beautiful result proved by Ornstein and Weiss (cf. [14], see also [4]).

Theorem 12.2. (Ornstein-Weiss) If Γ1 and Γ2 are infinite amenable
groups, every ergodic action of Γ1 is orbit equivalent to every ergodic action
of Γ2.

Equivalence relations obtained from such actions of such groups are
characterised by the following property of hyperfiniteness:

there exists a sequence of standard equivalence relations Rn on X with
finite equivalence classes such that

Rn ⊂ Rn+1∀n and R = ∪nRn.

Thus RΓ remembers neither Γ nor α if Γ is an infinte amenable group
and α is an ergodic action. On the other hand, at the other end of the spec-
trum, many people (Zimmer, Furman, Gaboriau, and later Popa, Monod,
Ozawa, . . . ) have obtained “rigidity results” which say something like this:
if Rαi are orbit equivalent, then under some conditions on the Γi, these
two dynamical systems must actually be conjugate! (For an example, see
Popa’s strong rigidity theorems (cf. [17]), which say something like this:

Certain kinds of free ergodic actions of certain kinds of groups G are
such that if the resulting equivalence relation R has the property that the
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‘induced relation’ RY (defined in the third paragraph below) is isomorphic to
RΓ for some Borel subset Y and some free ergodic action of some countable
group Γ, then Y must have full measure, and the actions of Γ and G must
be conjugate through a group isomorphism.

It follows that for a relation R as in this strong rigidity theorem, the
restriction RY to a Borel subset with 0 < µ(Y ) < 1 can never be obtained
from a free ergodic action of any countable group Γ, thus furnishing another
proof of Furman’s result mentioned earlier.

The key notions used in Gaboriau’s work are stable orbit equivalence,
measurable equivalence and 2-Betti numbers, upon which we now briefly
dwell.

It is well known that if the action is ergodic, then the “space of orbits”
(= the quotient of X by the relation of being in the same orbit) does
not have a “good Borel structure”, i.e., is not standard. The space R is
a good substitute. Now, if A is a Borel subset of positive measure in X ,
then A meets almost every orbit, so by the philosophy expressed in the
previous sentence, the induced relation RA := R ∩ (A × A) is an equally
good description of the “space of orbits”. Let us call ergodic equivalence
relations Ri on standard probability spaces (Xi,Bi, µi) (for i = 1, 2) stably
orbit equivalent (or simply SOE) if there exist Borel subsets Ai ∈ Bi of
positive measure, a positive constant c and a Borel isomorphism f : A1→A2

such that µ2 ◦ f = cµ1 on A1 and (f × f)(RA1) = RA2 ; and c is called the
compression constant of the SOE.

On the other hand, call two countable groups Γi, i = 1, 2 measurably
equivalent (or simply ME) if they admit commuting free actions on a stan-
dard measure space (X,B, µ)d which admit a fundamental domain Fi of
finite measure; call the ratio µ(F2)

µ(F1) the compression constant of the ME.
The two notions of equivalence defined in the preceding paragraphs turn

out to be closely related, and we have the following result, proved originally
by Furman (cf. [7], [10]):

Theorem 12.3. Γ1 is ME to Γ2 with compression constant c if and only
if Γ1 and Γ2 admit free actions on standard probability space such that the
associated equivalence relations are SOE with compression constant c.

Now, we briefly discuss 2-Betti numbers. These were first introduced
by Atiyah in the context of actions of countable groups on manifolds with
compact quotients; he relied on the von Neumann dimension dimLΓHn of
the Hilbert space of harmonic L2-forms of degree n, which has the structure

dHere the measure is allowed to be infinite (but should be σ-finite).
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of a module over the von Neumann algebra LΓ (generated by the regular
representation of Γ). This was later considerably extended by Cheeger and
Gromov, who studied actions of countable groups on general topological
spaces, and succeeded in defining the sequence {βn(Γ)} of 2-Betti numbers
of any countable group.

Next, Gaboriau defined the 2-Betti numbers βn(R) of any standard
equivalence relation with invariant measure. He was helped in this by the
work of Feldman and Moore, where a von Neumann algebra LR with a finite
faithful normal trace had been naturally associated to a standard equiva-
lence relation with invariant probability measure. (If R = RΓ for an ergodic
action preserving a probability measure space (X,B, µ), then LR is just the
II 1 factor given by the crossed product construction.) Gaboriau considers a
universal R-simplicial complex ER and essentially observes that the space
of 2-chains has a natural structure of an LR-module, defines βn(R) as the
LR-dimension of the corresponding reduced 2-homology groups of ER,
and proves:

Theorem 12.4. (Gaboriau) If an equivalence relation R is produced by a
free action of Γ which preserves a probability measure, then

βn(R) = βn(Γ).

Gaboriau goes on to prove that the ratio of corresponding 2-Betti num-
bers of two ME groups agrees with the compression constant of the ME.

Thus we find that if free actions of countable groups Γj yield equiva-
lence relations Rj , j = 1, 2 which are orbit equivalent, and hence SOE with
compression constant 1, then the groups Γj must be ME with compression
constant 1.

Coming back to orbit equivalence, we deduce the following fact from
the foregoing discussion:

The 2-Betti numbers of orbit equivalent free actions are equal.
The simplest example of groups in the same ME class is furnished by

any two lattices, not necessarily co-compact, of a locally compact second
countable group (as seen by their actions by left-, resp., right- multipli-
cations on the ambient group). Gaboriau obtains many rigidity results, a
sample being:

Corollary 12.1. (Gaboriau)

(1) No lattice in SP (n, 1) is ME to a lattice in SP (p, 1) if n �= p.
(2) No lattice in SU(n, 1) is ME to a lattice in SU(p, 1) if n �= p.
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(3) No lattice in SO(2n, 1) is ME to a lattice in SO(2p, 1) if n �= p.

Proof. It is known from the work of Borel (cf. [2]) that

βi(Γ(SP (m, 1)) �= 0 ⇔ i = 2m

βi(Γ(SU(m, 1)) �= 0 ⇔ i = m

βi(Γ(SO(2m, 1)) �= 0 ⇔ i = m

where we write Γ(G) to denote any lattice in G. �

Finally, we should mention that Gaboriau’s results have been used
ingeniously by Sorin Popa to settle a long-standing conjecture of
Kadison’s — regarding the existence of II 1 factors with trivial fundamental
group.

If M is a II 1 factor, there is a natural definition of the so-called
amplification Md(M) (or the d× d matrix algebra over M) where d is any
positive real number. For instance, it may be identified with the (II 1 factor
EndM (Hd) of)M -linear operators on theM -moduleHd with dimMHd = d.
von Neumann already realised the importance of the object, called the fun-
damental groupeF(M) of M , and defined by

F(M) = {d > 0 : M ∼= Md(M)}.
Popa showed that there are many examples of II 1 factors of the form LRα

(arising from free ergodic actions α of suitable ICC groups) which do indeed
have trivial fundamental group. An example of such an action is the natural
action of SL(2,Z) on T2. In fact, Gaboriau and Popa have even shown
(cf. [11]) that (each finitely generated non-abelian free group) Fn admits
uncountably many free ergodic actions αi preserving a probability measure,
which are pairwise not SOE, such that LRαi has trivial fundamental group
for each i. Much more of the subsequent exciting developments, as well as
pertinent literature, may be found in the article [17] by Vaes.
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We discuss the Segal-Bargmann transform associated to the Laplacian on
the Heisenberg group. Using analogues of Gutzmer’s formula for Hermite
and special Hermite expansions, we obtain several characterisations of
the image of L2(Hn) under the Segal-Bargmann transform.

13.1. Introduction

In 1888 August Gutzmer ([5]) published a formula which in modern nota-
tion amounts to the following: If F is a 2π-periodic holomorphic function
on the complex plane, then for every y ∈ R we have

∫ 2π

0

|F (x+ iy)|2dx =
∞∑

k=−∞
|F̂ (k)|2e−2ky

under suitable assumptions on the Fourier coefficients F̂ (k) of the restric-
tion of F to the real line R. The above is just Parseval’s identity applied to
Fy(x) = F (x + iy). Integrating the above identity over R with respect to
e−

1
2t y2

dy we obtain

∫
R

∫ 2π

0

|F (x + iy)|2e− 1
2t y2

dxdy =
∞∑

k=−∞
|F̂ (k)|2e2tk2

.

∗Dedicated to 222 A.
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If F = f ∗ pt where f ∈ L2(S1) and pt is the heat kernel defined by the
series

pt(x) =
∞∑
−∞

e−k2teikx

then the above becomes∫
R

∫ 2π

0

|f ∗ pt(x+ iy)|2e− 1
2t y2

dxdy = c

∫ 2π

0

|f(x)|2dx

which is a characterisation of the image of L2(S1) under the Segal-
Bargmann transform which takes f into the holomorphic function F (x +
iy) = f ∗ pt(x+ iy).

More generally, let G be a Lie group, ∆ a (non-negative) Laplacian on
G and pt, t > 0 the heat kernel associated to ∆. Given f ∈ L2(G), the
function f ∗ pt, initially defined on G extends holomorphically to certain
G−invariant domain Ω contained in the complexification GC of G. This
transform, taking f into the holomorphic extension of f ∗ pt, is known as
the Segal-Bargmann transform and is of interest to mathematical physicists.
It is also called the heat kernel transform for obvious reasons.

This transform was studied by Bargmann ([1]) (and by Segal indepen-
dently) when G = Rn. They showed that the image of L2(Rn) under this
transform is a weighted Bergman space- namely, the space of all entire func-
tions on Cn which are square integrable with respect to a positive weight
function wt. To be precise, they showed that∫

R2n

|f ∗ pt(x+ iy)|2pt/2(y)dxdy = cn

∫
Rn

|f(x)|2dx.

In 1994 similar results were obtained for all compact Lie groups by Hall ([6])
and later in 1999 Stenzel ([11]) treated the case of Riemannian symmetric
spaces of compact type.

In the Euclidean set up, with the standard heat kernel

pt(x) = (4πt)−n/2e−
1
4t |x|2

the result of Segal and Bargmann can be described as follows. A function
F on Rn can be factored as F = f ∗ pt if and only if it can be extended to
Cn as an entire function and∫

R2n

|F (x+ iy)|2pt/2(y)dxdy <∞.
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Another way of saying the same is that∫
R2n

|F̂ (ξ)|2e−2y·ξpt/2(y)dydξ <∞.

The equivalence follows from the fact that∫
Rn

|F (x + iy)|2dx =
∫

Rn

|F̂ (ξ)|2e−2y·ξdξ

which is the analogue of Gutzmer’s formula for the Fourier transform. Note
that it is again a simple consequence of the Plancherel theorem.

In 1978 M. Lassalle ([9], [10]) established analogues of Gutzmer’s for-
mula for compact Lie groups and compact symmetric spaces. His formulas
were used by Faraut in [4] to study Segal-Bargmann transform on com-
pact symmetric spaces. The works of Hall ([6]) and Stenzel ([11]) did not
use Lassalle’s formula but as can be seen from Faraut ([4]) and the recent
work [14] of the author it is clear that the use of Gutzmer’s formula makes
the proofs simple and transparent. In [2], [3] Faraut proved an analogue of
Gutzmer’s formula for non-compact symmetric spaces which was used by
Krötz, Olafsson and Stanton ([8]) to study Segal-Bargmann transform.

The investigations of Krötz et al. ([8]) have revealed that the results
which are true for compact symmetric spaces are no longer true in general.
In the case of non-compact Riemannian symmetric spaces X = G/K, the
solution of the heat equation f ∗ pt associated to the Laplace-Beltrami
operator does not extend to the complexificationXC but only to a domain Ξ
called the complex crown. Even then, the image is not a weighted Bergman
space; this was shown in the work of Krötz et al. [8]. Another surprising
case is that of the Heisenberg group Hn. For the full Laplacian on Hn it
was shown in Krötz, Thangavelu and Xu ([7]) that the image of L2(Hn)
is not a weighted Bergman space in the usual sense. However, the image
turned out to be a direct sum of two Bergman spaces defined in terms of
oscillating weight functions.

In this article we restrict ourselves to the Segal-Bargmann transform on
the Heisenberg group. We obtain several characterisations - some are new
and some already known- using various analogues of Gutzmer’s formula.

As a motivation, return to Rn and consider the two conditions char-
acterising the image of L2(Rn) under the Segal-Bargmann transform men-
tioned above. The first is in terms of holomorphic properties of F whereas
the second one transfers the condition on the Fourier transform side. In
view of Gutzmer’s formula, both are equivalent. Let us look at the second
condition more carefully. For each ξ ∈ Rn we have an irreducible unitary
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representation eξ realised on C. In terms of this the second condition takes
the following form: the function eξ(x)F̂ (ξ) = F̂ (ξ)eix·ξ extends to Cn as an
entire function and∫

Rn

∫
Rn

|eξ(x+ iy)F̂ (ξ)|2pt/2(y)dydξ <∞.

This restatement of the characterisation motivates the following consider-
ation.

Given a Lie group G let Ĝ stand for its unitary dual with Plancherel
measure dµ(π). For f ∈ L2(G) and π ∈ Ĝ let π(f) be its Fourier transform
which is a Hilbert-Schmidt operator on Hπ, the Hilbert space on which π

is realised. Then we have another representation of G, denoted by the same
symbol π and realised on S2, the Hilbert space of Hilbert-Schmidt operators
on Hπ. This is defined by g → π(g)T, T ∈ S2. Unlike the abelian case, it
is not true that this representation can be extended to GC for all T ∈ S2.

However, under further assumptions on T it might have a holomorphic
extension. For example, when T = π(F ), F = f ∗pt we hope that we get an
operator valued holomorphic function on GC. Then the main problem for
Segal-Bargmann transform reduces to characterise functions F that can be
written as f ∗ pt in terms of properties of the above function.

Taking the clue from the Euclidean case, instead of looking for a weight
function wt on GC so that∫

GC

|f ∗ pt(z)|2wt(z)dz =
∫

G

|f(g)|2dg

we can look for a weight function wt(z, π) on GC × Ĝ such that∫
Ĝ

∫
GC

‖π(z)π(f ∗ pt)‖2HSwt(z, π)dzdµ(π) =
∫

G

|f(g)|2dg.

In other words, we ask if the image can be identified with a direct integral
of (operator valued) weighted Bergman spaces. In the case of Heisenberg
group, we already know from the work [7] that the image is a direct integral
of twisted Bergman spaces. The new approach leads to another such result
where the fibres are operator valued weighted Bergman spaces (see Theorem
2.5).

As we have noted above, both approaches lead to the same result for
the Euclidean spaces. Using Gutzmer’s formula, which is due to Lassalle
([9]), we can also prove the same (i.e., the equivalence of two approaches)
for all compact symmetric spaces (and hence for all compact Lie groups).
Our investigations with non-compact symmetric spaces does not lead to
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anything new. In this respect Heisenberg group seems to be special. We
believe similar characterisations are true for all nilpotent Lie groups.

13.2. Segal-Bargmann Transform on the Heisenberg Group

The Heisenberg group Hn is just Rn×Rn×R with the group law given by

(x, u, ξ)(x′, u′, ξ′) = (x+ x′, u+ u′,
1
2
(x · u′ − u · x′) + ξ + ξ′) .

Here x · u =
∑n

j=1 xjuj , as usual, denotes the standard pairing on Rn. On
Hn we consider the (2n+ 1) vector fileds

Xj = ∂xj +
1
2
uj∂ξ, Uj = ∂uj −

1
2
xj∂ξ, Z = ∂ξ, j = 1, 2, ..., n

forming a basis for the Heisenberg Lie algebra. Recall that [Xj , Uj] = Z,
all other brackets being zero. We consider the full Laplacian

∆ = −
n∑

j=1

(X2
j + U2

j )− Z2

which is a non-negative elliptic differential operator which generates a dif-
fusion semigroup. The heat kernel associated to this semigroup is explicitly
given by

pt(x, u, ξ) = cn

∫
R

e−iλξe−tλ2
(

λ

sinhλt

)n

e−
1
4 λ(coth tλ)(x·x+u·u) dλ

with cn = (4π)−n (see [7] for a proof).
In the sequal we use the notation

fλ(x, u) =
∫

R

eiλξf(x, u, ξ)dξ

for a function f on Hn. In this notation we have

pt(x, u, ξ) =
∫

R

e−iλξe−tλ2
pλ

t (x, u) dλ

where

pλ
t (x, u) = cn

(
λ

sinhλt

)n

e−
1
4 λ(coth tλ)(x·x+u·u).

From the above representation it is clear that pt(x, u, ξ) extends to the
complexification Cn×Cn×C of Hn as an entire function pt(z, w, ζ). There-
fore, for any f ∈ L2(Hn) the convolution f ∗ pt also extends as an entire
function. This map, which takes f into f ∗pt(z, w, ζ) is the Segal-Bargmann
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transform or heat kernel transform for the Heisenberg group. Our problem
is to characterise functions F in L2(Hn) that can be factored as f ∗ pt for
some f ∈ L2(Hn).

As f ∗ pt extends to an entire function on Cn × Cn × C it is natural to
ask if there is an analogue of Bargmann’s result, namely, does there exist a
non-negative weight function Wt(z, w, ζ) such that F on Hn can be factored
as F = f ∗ pt, f ∈ L2(Hn) if and only if F extends to Cn × Cn × C as an
entire function which is square integrable with respect to Wt. In [7] the
following result was proved, answering the above question in the negative.

Theorem 13.1. The image of L2(Hn) is not a weighted Bergman space.

Our first characterisation is in terms of holomorphic properties of
Fλ(x, u). We consider the weight function

Wλ
t (z, w) = eλ(u·y−v·x)pλ

2t(2y, 2v)

where z = x + iy, w = u + iv. Let Bλ
t (C2n) be the Hilbert space of entire

functions G on C2n which are square integrable with respect to Wλ
t . We

equip Bλ
t (C2n) with the norm

‖G‖2Bλ
t

=
∫

C2n

|G(z, w)|2Wλ
t (z, w)dzdw.

These spaces are called twisted Bergman spaces. We then have the following
result.

Theorem 13.2. A function F ∈ L2(Hn) can be factored as F = f ∗ pt if
and only if for every λ �= 0, Fλ(x, u) extends to an element of Bλ

t (C2n) and∫
R

e2tλ2‖Fλ‖2Bλ
t
dλ <∞.

This result, proved in [7], shows that the image of L2(Hn) under the
Segal-Bargmann transform is a direct integral of twisted Bergman spaces.
Moreover, it was proved in [7] that we have∫

R

e2tλ2‖Fλ‖2Bλ
t
dλ =

∫
Hn

|f(g)|2dg

where f is the function related to F via F = f ∗ pt. The above result is in
terms of the Fourier transform of F in the central variable. Our next result
is in terms of the group Fourier transform of F.

In order to define the group Fourier transform of a function f on Hn we
need to recall the relevant representations of Hn. We use the Schrödinger
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picture. For every non-zero real λ we have an irreducible unitary represen-
tation πλ of Hn which is realised on L2(Rn). It is explicitly given by

πλ(x, u, ξ)ϕ(v) = eiλξeiλ(x·ξ+ 1
2 x·u)ϕ(v + u)

for ϕ ∈ L2(Rn). By a theorem of Stone and von Neumann any irreducible
unitary representation of Hn which is nontrivial at the center is unitarily
equivalent to some πλ. Using these representations we define the Fourier
transform of a function f ∈ L1(Hn) as the operator valued function

f̂(λ) =
∫

Hn

f(g)πλ(g)dg.

The Plancherel theorem says that the above definition can be extended to
all f ∈ L2(Hn), f̂(λ) is Hilbert-Schmidt for every λ and we have∫

Hn

|f(g)|2dg =
∫

R

‖f̂(λ)‖2HSdµ(λ)

where dµ(λ) = (2π)−n−1|λ|ndλ is the Plancherel measure.
The Fourier transform of the heat kernel can be explicitly calcu-

lated in terms of the Hermite operators H(λ) = −∆ + λ2|x|2. In fact
p̂t(λ) = e−tλ2

e−tH(λ) where e−tH(λ) is the Hermite semigroup generated
by H(λ). The Hilbert space L2(Rn) has an orthonormal basis consisting of
the Hermite functions Φλ

α, α ∈ Nn which are eigenfunctions of H(λ) with
eigenvalues (2|α|+n)|λ|. The image of L2(Rn) under the Hermite semigroup
e−tH(λ) has been characterised as a weighted Bergman space, see [16] for a
proof. Let

Uλ
t (z) = 2n(sinh(4tλ))−n/2eλ tanh(2tλ)|x|2−λ coth(2tλ)|y|2

and define Hλ
t (Cn) to be the Hilbert space of entire functions on Cn which

are square integrable with respect to Uλ
t (z)dz. Then it is known that an

entire function Φ on Cn belongs to Hλ
t (Cn) if and only if Φ = e−tH(λ)ϕ

for some ϕ ∈ L2(Rn). This space Hλ
t (Cn) is called the Hermite Bergman

space.

Theorem 13.3. A function F ∈ L2(Hn) can be factored as F = f ∗ pt if
and only if for every λ �= 0, F̂ (λ)∗ maps L2(Rn) into Hλ

t (Cn) in such a
way that ∫

R

e2tλ2

(∑
α∈Nn

‖F̂ (λ)∗Φλ
α‖2Hλ

t

)
dµ(λ) <∞.
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This result is not difficult to prove. The first assumption on F̂ (λ) means,
in view of the characterisation of Hλ

t (Cn), that there is an operator valued
function Tλ such that F̂ (λ)∗ = e−tH(λ)Tλ. The second assumption shows
that Tλ is actually Hilbert-Schmidt and∫

R

‖Tλ‖2e2tλ2
dµ(λ) <∞.

Hence, we can find f ∈ L2(Hn) such that f̂(λ) = e−tλ2
T ∗λ and hence F = f∗

pt follows. The other implication is even simpler. The non trivial ingredient
in the proof is the realisation of Hλ

t (Cn) as the image of L2(Rn) under
e−tH(λ). This can be proved using an analogue of Gutzmer’s formula for
the Hermite expansions (see Section 3).

We can define another family of representations of Hn realised on S2,
the Hilbert space of all Hilbert-Schmidt operators on L2(Rn), by setting
π̃λ(g)T = πλ(g)T for T ∈ S2. This is clearly a unitary representation of Hn.

When T is an arbitrary element of S2 we may not be able to holomorphically
continue the S2 valued function (x, u, ξ) → π̃λ(x, u, ξ)T. It turns out that
such an extension is possible precisely when T can be factored as T =
Se−tH(λ). This leads us to the following characterisation of the image of
L2(Hn) under the Segal-Bargmann transform. We let Cλ

t (C2n,S2) stand
for the S2-valued weighted Bergman space consisting of entire functions
G(z, w) on C2n for which

‖G‖2Cλ
t

=
∫

R2n

‖G(iy, iv)‖2HS pλ
2t(2y, 2v)dydv <∞.

Let Cλ
t,0(C2n,S2) be the subspace of Cλ

t (C2n,S2) consisting of functions
G(z, w) satisfying G(z, w) = π̃λ(z, w, 0)G(0, 0).

Theorem 13.4. A function F ∈ L2(Hn) can be factored as F = f ∗ pt if
and only if for every λ �= 0, π̃λ(x, u, 0)F̂ (λ) can be extended to C2n as an
element of Cλ

t,0(C
2n,S2) which satisfies∫

R

‖π̃λ(·, ·, 0)F̂ (λ)‖2Cλ
t,0
e2tλ2

dµ(λ) <∞.

By defining wλ
t (y, v, η) = pλ

2t(2y, 2v)e
− 1

2t η2
and dν(y, v, η) = dydvdη we

can rewrite the above theorem as follows.

Theorem 13.5. A function F ∈ L2(Hn) can be factored as F = f ∗ pt

if and only if for every λ �= 0, π̃λ(x, u, ξ)F̂ (λ) can be extended as entire
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function on C2n+1 which satisfies∫
R

∫
R2n+1

‖π̃λ(iy, iv, iη)F̂ (λ)∗‖2HSw
λ
t (y, v, η)dν(y, v, η)dµ(λ) <∞.

When it happens, the above integral is a constant multiple of ‖f‖22.

A proof of this theorem requires an analogue of Gutzmer’s formula for
the Hermite expansions which will be stated in the next section. Similarly,
Theorem 2.2 can be proved using Gutzmer’s formula for special Hermite
expansions. We can view the Heisenberg group as the homogeneous space
Gn/K where Gn is the Heisenberg motion group and K = U(n). We there-
fore have a Gutzmer’s formula for entire functions on the complexification
C2n+1 of Hn which has been used in proving a Paley-Wiener theorem for
the inverse Fourier transform on Hn, see [15]. We can also use it to prove the
main result in [7], namely, the image of L2(Hn) under the Segal-Bargmann
transform is the direct sum of two weighted Bergman spaces defined via
oscillating weight functions.

13.3. Gutzmer Formulas and Their Applications

The aim of this section is to state several analogues of Gutzmer’s formula
relevant to the Heisenberg group and use them to obtain various character-
isations of the image of L2(Hn) under the Segal-Bargmann transform. We
begin with an analogue of Gutzmer’s formula for the Hermite expansions.

Recall that the spectral decomposition of the Hermite operator H(λ) =
−∆ + λ2|x|2 is given by

H(λ) =
∞∑

k=0

(2k + n)|λ|Pk(λ)

where Pk(λ) is the orthogonal projection of L2(Rn) onto the eigenspace
spanned by {Φλ

α : |α| = k}. Here Φλ
α are the normalised Hermite functions

on Rn scaled by λ. For various facts about Hermite functions we refer to
[12]. The following result, which is an analogue of Gutzmer’s formula for
the Hermite expansions, has been established in [16].

Theorem 13.6. Let f ∈ L2(Rn) has a holomorphic extension F to Cn.

Then for any z = x+ iy, w = u+ iv ∈ Cn we have∫
Rn

∫
K

|πλ(σ.(z, w))F (ξ)|2dσdξ
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= eλ(u·y−v·x)
∞∑

k=0

k!(n− 1)!
(k + n− 1)!

ϕλ
k(2iy, 2iv)‖Pk(λ)f‖22

under some further assumptions on the function f .

In the above theorem ϕλ
k(y, v) stands for the Laguerre function

Ln−1
k (

1
2
|λ|(y2 + v2))e−

1
4 |λ|(y2+v2).

Note that we have used the notation y2 in place of |y|2 so that ϕλ
k(y, v)

can be holomorphically extended to ϕλ
k(z, w). The group K appearing in

the above formula is Sp(n,R)∩O(2n,R), the intersection of the symplectic
group and the orthogonal group. It has a natural action on Rn×Rn which
extends to Cn×Cn. The formula is valid if we assume, say, f = e−tH(λ)g for
some function g ∈ L2(Rn). As an immediate corollary of the above formula
we obtain the following result mentioned earlier.

Theorem 13.7. An entire function F belongs to Hλ
t (Cn) if and only if

F = e−tH(λ)g for some g ∈ L2(Rn).

For a proof of this theorem we refer to [16]. The only other ingredient
needed is given in the following lemma proved in [13].

Lemma 13.1.∫
R2n

ϕλ
k(2iy, 2iv)pλ

2t(2y, 2v)dydv = cn
(k + n− 1)!
k!(n− 1)!

e2(2k+n)|λ|t.

We are now in a position give a sketch of the proof of Theorem 2.4.
First of all we need to show that π̃λ(x, u, 0)F̂ (λ)∗ extends to C2n as an S2

valued entire function. If F = f ∗ pt we are required to see if

tr
(
π̃λ(x, u, 0)e−tH(λ)f̂(λ)∗T ∗

)
extends as an entire function for every T ∈ S2. This amounts to check, in
view of inversion formula for the Weyl transform, if pλ

t ∗λ gλ is an entire
function where ∗λ is the twisted convolution and gλ is given by the relation
πλ(gλ) = f̂(λ)∗T ∗. But this is the case since pλ

t is a Gaussian.
We can calculate the S2 norm of π̃λ(z, w, 0)e−tH(λ)f̂(λ)∗ using the Her-

mite basis {Φλ
α : α ∈ Nn}. Using Gutzmer’s formula for the Hermite expan-

sions and some properties of the special Hermite functions it is not hard to
show that ∫

K

‖π̃λ(k.(z, w), 0)e−tH(λ)f̂(λ)∗‖2HSdk
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= eλ(u·y−v·x)
∞∑

k=0

e−2(2k+n)|λ|t k!(n− 1)!
(k + n− 1)!

ϕλ
k(2iy, 2iv)‖fλ ×λ ϕ

λ
k‖22.

Setting x = u = 0 and integrating the above with respect to pλ
2t(2y, 2v)dydv,

we get ∫
R

e2tλ2‖π̃λ(·, ·, 0)F̂ (λ)∗‖2Cλ
t,0
dµ(λ) = cn

∫
Hn

|f(g)|2dg.

This proves one half of the theorem.
To prove the converse, suppose that F ∈ L2(Hn) satisfies the hypothesis

of the theorem. Then it is easy to see that it also satisfies the hypothesis of
Theorem 2.3. Indeed, it follows from Gutzmer’s formula that

‖g‖2Hλ
t

= c

∫
R2n

‖πλ(iy, iv)g‖22 pλ
2t(2y, 2v)dydv

for every g ∈ Hλ
t . Hence we can appeal to Theorem 2.3 to conclude that

F = f ∗ pt for some f ∈ L2(Hn).
Thus Gutzmer’s formula for the Hermite expansions is the main ingre-

dient in the proof of Theorem 2.4 and Theorem 2.5 follows immediately.
We now show that Theorem 2.2 can be proved by using another Gutzmer
formula, namely the one for special Hermite expansions.

Theorem 13.8. Assume that the entire function f satisfies ‖f ∗λ ϕ
λ
k‖2 ≤

Ce−((2k+n)|λ|) 1
2 t for all t > 0. Then we have∫

R2n

∫
U(n)

|f((x, u) + iσ(y, v))|2eλ[(x,u),σ(y,v)]dσdxdu

= cn

∞∑
k=0

‖f ∗λ ϕ
λ
k‖22

k!(n− 1)!
(k + n− 1)!

ϕλ
k(2iy, 2iv).

In the above theorem, [(x, u), (y, v)] stands for the symplectic form
(u · y − x · v) on R2n. For a proof of this formula we refer to [13]. From
this and Lemma 3.3 it follows that an entire function F ∈ Bλ

t if and only
if F = f ∗λ p

λ
t for some f ∈ L2(Cn). Theorem 2.2 is proved by observing

that (f ∗ pt)λ = e−tλ2
fλ ∗λ p

λ
t .

We conclude this section with another Gutzmer formula for the full
Heisenberg group. Let Gn be the Heisenberg motion group which is the
semidirect product of Hn with the unitary group U(n). This group has a
natural action on Hn which extends to all entire functions on C2n+1.



220 S. Thangavelu

Theorem 13.9. Under suitable hypothesis on an entire function f on
C2n+1 we have the following identity:∫

Gn

|f(g.(z, w, ζ))|2dg

=
∫ ∞
−∞

e2ληe−λ(u·y−v·x)

( ∞∑
k=0

‖fλ ∗λ ϕ
λ
k‖22

k!(n− 1)!
(k + n− 1)!

ϕλ
k(2iy, 2iv)

)
dµ(λ)

where ‖fλ ∗λ ϕ
λ
k‖2 is the L2(Cn) norm of fλ ∗λ ϕ

λ
k .

We remark that the above theorem is valid for all those functions for
which the right hand side of the above identity is finite. For example, when
the Fourier transform of the restriction of f to Hn is compactly supported
(in a suitable sense) the theorem remains true. We refer to [13] for a proof of
this theorem and also for the hypotheses under which it is true. The proof
uses some calculations on special Hermite functions and a general theorem
proved by Faraut ([2]). A similar result is valid for the semidirect product of
the reduced Heisenberg group with U(n) from which Gutzmer’s formula for
the special Hermite expansions can be deduced. Gutzmer’s formula for the
Heisenberg group has been used in [13] to prove a different characterisation
of the image of L2(Hn) under the Segal-Bargmann transform. A version of
Paley-Wiener theorem for the inverse Fourier transform also follows from
Gutzmer’s formula.
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My talk is a survey on finite translation generalized quadrangles. To
each translation generalized quadrangle of order (s, t), with s �= 1 �= t,
there corresponds a set O(n, m, q) of qm + 1 (n − 1)-dimensional sub-
spaces of the projective space PG(2n+m−1, q) satisfying (i) every three
subspaces generate a PG(3n − 1, q) and (ii) for every such subspace π
there is a subspace PG(n + m− 1, q) containing π and having empty in-
tersection with the other elements of O(n, m, q). Conversely, every such
O(n, m, q) defines a finite translation generalized quadrangle. For each
known example of O(n, m, q) we have m ∈ {n, 2n}, and for q even there
are no other examples. Many papers were written on the case m = 2n.
Here emphasis is on the case m = n, and besides interesting and useful
old results several new theorems are stated.

14.1. Finite Generalized Quadrangles

14.1.1. Finite generalized quadrangles

A (finite) generalized quadrangle (GQ) is an incidence structure S =
(P,B, I) in which P and B are disjoint (nonempty) sets of objects called
points and lines respectively, and for which I is a symmetric point-line in-
cidence relation satisfying the following axioms.

(i) Each point is incident with 1 + t lines (t ≥ 1) and two distinct points
are incident with at most one line.

(ii) Each line is incident with 1 + s points (s ≥ 1) and two distinct lines
are incident with at most one point.

(iii) If x is a point and L is a line not incident with x, then there is a unique
pair (y,M) ∈ P ×B for which x I M I y I L.

223
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Generalized quadrangles were introduced by Tits ([42]) in the appendix
of his celebrated work on triality.

The integers s and t are the parameters of the GQ and S is said to
have order (s, t); if s = t, S is said to have order s. There is a point-line
duality for GQs (of order (s, t)) for which in any definition or theorem the
words “point” and “line” are interchanged and the parameters s and t are
interchanged. Hence, we assume without further notice that the dual of a
given theorem or definition has also been given.

If the point x is not incident with the line L, in a GQ S = (P,B, I),
then we write x �I L.

Let S = (P,B, I) be a (finite) GQ of order (s, t). Then S has v = |P | =
(1 + s)(1 + st) points and b = |B| = (1 + t)(1 + st) lines; see 1.2.1 of [24].
Also, s+ t divides st(1 + s)(1 + t), and, for s �= 1 �= t, we have t ≤ s2 and,
dually, s ≤ t2 (inequalities of Higman, ([13])); see 1.2.2 and 1.2.3 of [24].

Given two (not necessarily distinct) points x, y of S, we write x ∼ y

and say that x and y are collinear , provided that there is some line L for
which x I L I y. And x �∼ y means that x and y are not collinear. Dually,
for L,M ∈ B, we write L ∼ M or L �∼ M according as L and M are
concurrent or nonconcurrent, respectively. The line which is incident with
distinct collinear points x, y is denoted by xy; the point which is incident
with distinct concurrent lines L,M is denoted by either LM or L ∩M .

For x ∈ P , put x⊥ = {y ∈ P ‖ y ∼ x}, and note that x ∈ x⊥.
A subquadrangle, or also subGQ, S ′ = (P ′, B′, I′) of a GQ S = (P,B, I)

of order (s, t), is a GQ for which P ′ ⊆ P,B′ ⊆ B, and where I′ is the
restriction of I to (P ′ × B′) ∪ (B′ × P ′). If the GQ S′ of order (s′, t′) is
a subGQ of the GQ S of order (s, t), with S �= S′, then either s = s′ or
s ≥ s′t′, and, dually, either t = t′ or t ≥ s′t′; see 2.2.1 of [24].

Let S = (P,B, I) be a GQ. A collineation or automorphism of S is a
permutation of P ∪B that preserves P , B and incidence.

14.1.2. Grids and dual grids

A grid is an incidence structure S = (P,B, I) with P = {xij ‖ i = 0, 1, . . . , s1
and j = 0, 1, . . . , s2}, s1 > 0 and s2 > 0, B = {L0, L1, . . . , Ls1 ,M0,M1, . . . ,

Ms2}, xijILk if and only if i = k, and xijIMk if and only if j = k. We say
that such a grid is an (s1 + 1)× (s2 + 1)-grid. A grid is a GQ if and only if
s1 = s2 = s; in such a case the GQ has order (s, 1). Any GQ of order (s, 1)
is isomorphic to an (s+ 1)× (s+ 1)-grid. A dual grid has parameters t1, t2,
and it is a GQ if and only if t1 = t2 = t, in which case it is a GQ of order
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(1, t). Any GQ of order (1, t) is isomorphic to a dual (t+ 1)× (t+ 1)-grid.
An ordinary quadrangle is a GQ of order (1,1) and is at the same time
a grid and a dual grid. This is the motivation for the term “generalized
quadrangle”.

A GQ of order (s, t) is called thin if either s = 1 or t = 1; in the other
case it is called thick.

14.1.3. The classical generalized quadrangles

We now give a brief description of three families of examples known as the
classical GQs, all of which are associated with classical groups and were
first recognized as GQs by Tits.

(i) Consider a nonsingular quadric Q of projective index 1, that is, of
Witt index 2, of the projective space PG(d, q), with d = 3, 4 or 5. Then
the points of Q together with the lines of Q (which are the subspaces of
maximal dimension on Q) form a GQ Q(d, q) with parameters

s = q, t = 1, v = (q + 1)2, b = 2(q + 1), when d = 3,
s = q, t = q, v = (q + 1)(q2 + 1), b = (q + 1)(q2 + 1), when d = 4,
s = q, t = q2, v = (q + 1)(q3 + 1), b = (q2 + 1)(q3 + 1), when d = 5.

Notice that Q(3, q) is a grid.

(ii) Let H be a nonsingular Hermitian variety of the projective space
PG(d, q2), d = 3 or 4. Then the points of H together with the lines on H

form a GQ H(d, q2) with parameters

s = q2, t = q, v = (q2 + 1)(q3 + 1), b = (q + 1)(q3 + 1), when d = 3,
s = q2, t = q3, v = (q2 + 1)(q5 + 1), b = (q3 + 1)(q5 + 1), when d = 4.

(iii) The points of PG(3, q), together with the totally isotropic lines with
respect to a symplectic polarity, form a GQ W (q) with parameters

s = q, t = q, , v = (q + 1)(q2 + 1), b = (q + 1)(q2 + 1).

Theorem 14.1.

(i) The GQ Q(4, q) is isomorphic to the dual of W (q). Also, Q(4, q) (or
W (q)) is self-dual if and only if q is even.

(ii) The GQ Q(5, q) is isomorphic to the dual of H(3, q2).

For a proof of Theorem 14.1, see 3.2.1 and 3.2.3 of [24].
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14.1.4. Ovals, hyperovals and ovoids

A k-arc of PG(2, q) is a set of k points of PG(2, q) no three of which are
collinear. Then clearly k ≤ q+ 2. By [5], for q odd, k ≤ q+ 1. Further, any
nonsingular conic of PG(2, q) is a (q + 1)-arc. It can be shown that each
(q + 1)-arc K of PG(2, q), q even, extends to a (q + 2)-arc K ∪ {x} (see,
e.g., [15], p. 177); the point x, which is uniquely defined by K, is called the
kernel or nucleus of K. The (q + 1)-arcs of PG(2, q) are called ovals ; the
(q + 2)-arcs of PG(2, q), q even, are called hyperovals.

For any k-arc K, with 3 ≤ k ≤ q + 1, choose three of its points as the
triangle of reference u0u1u2 of the coordinate system. The lines intersecting
K in one point are called the tangent lines ofK. A tangent line ofK through
one of u0, u1, u2 has respective equation

X1 − dX2 = 0, X2 − dX0 = 0, X0 − dX1 = 0,

with d �= 0. We call d the coordinate of such a line. Suppose the t = q+2−k
tangent lines at each of u0, u1, u2 are

X1 − aiX2 = 0, X2 − biX0 = 0, X0 − ciX1 = 0,

i = 1, 2, . . . , t. Then Segre ([27]) proved the following important lemma.

Lemma 14.1. (Lemma of Tangents) The coordinates ai, bi, ci of the
tangent lines at u0, u1, u2 of a k-arc K through these points satisfy

Πt
i=1aibici = −1.

For an oval K we have t = 1, and so the lemma becomes abc = −1.
Geometrically this means that for q odd the triangles formed by three
points of an oval and the tangent lines at these points, are in perspective, or,
equivalently, that for any three distinct points u0, u1, u2 on an oval there is
a (unique) nonsingular conic containing these points u0, u1, u2 and having
as tangent lines at u0, u1, u2 the tangent lines of the oval at u0, u1, u2; for q
even the condition means that the tangent lines at any three points of the
oval are concurrent.

Relying on Lemma 14.1, Segre ([27]) proves the following celebrated
result.

Theorem 14.2. In PG(2, q), q odd, every oval is a nonsingular conic.

For q even, Theorem 14.2 is valid if and only if q ∈ {2, 4}; see, e.g., [35].
We now introduce the notion of “ovoid” as defined in [43]. An ovoid O

of PG(3, q) is a set of points of PG(3, q), no three of which are collinear
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and such that for any point of O the union of the lines which meet O only
in that point, that is, the tangent lines at that point, is a PG(2, q). If O is
an ovoid, its number of points is q2 + 1. A k-cap K of PG(3, q) is a set of
k points no three of which are collinear. For any k-cap K of PG(3, q), with
q �= 2, k ≤ q2+1; for any k-cap K of PG(3, 2), k ≤ 8 holds and the 8-caps of
PG(3, 2) are the complements of planes. For q odd this result is due to Bose
([5]), for q even to Qvist ([26]). A (q2+1)-cap of PG(3, q), q �= 2, is precisely
an ovoid (cf. [3] or [14]); the ovoids of PG(3, 2) are the sets of 5 points no
4 of which are coplanar. It is easy to show that each nonsingular elliptic
quadric of PG(3, q) is an ovoid. By a celebrated theorem, due independently
to Barlotti ([3]) and Panella ([19]), every ovoid in PG(3, q), q odd or q = 4,
is an elliptic quadric.

Theorem 14.3. Each ovoid of PG(3, q), q odd, is an elliptic quadric.

To the contrary, in the even case, Tits ([43]) showed that for any q =
22e+1, with e ≥ 1, there exists an ovoid which is not an elliptic quadric; these
ovoids are called Tits ovoids, or also Suzuki-Tits ovoids, and are related to
the simple Suzuki groups Sz(q). In fact, for q = 8, Segre ([28]) discovered
an ovoid which is not an elliptic quadric, and which was shown to be a Tits
ovoid in [12]. For even q no other ovoids than the elliptic quadrics and the
Tits ovoids are known.

If O is an ovoid in PG(3, q), then any plane π of PG(3, q) intersects O
in either one point or in an oval. If |π ∩ O| = 1, then we say that π is a
tangent plane of O. At each of its points O has exactly one tangent plane.
For more details, see [14]. Finally, a beautiful result due to Brown ([6]) tells
us that any ovoid O of PG(3, q) containing at least one conic section, is an
elliptic quadric.

14.1.5. The generalized quadrangles T2(O) and T3(O) of Tits

Let d = 2 (respectively, d = 3) and let O be an oval (respectively, an ovoid)
of PG(d, q). Further, let PG(d, q) = H be embedded as a hyperplane in
PG(d+ 1, q) = P . Define

• Points as

(i) the points of P\H ,
(ii) the hyperplanes X of P for which |X ∩O| = 1, and
(iii) one new symbol (∞).
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• Lines as

(a) the lines of P which are not contained in H and meet O (neces-
sarily in a unique point), and

(b) the points of O.

• Incidence is defined as follows. A point of Type (i) is incident only
with lines of Type (a); here the incidence is that of P . A point of Type
(ii) is incident with all lines of Type (a) contained in it and with the
unique element of O in it. The point (∞) is incident with no line of
Type (a) and all lines of Type (b).

It is an easy exercise to show that the incidence structure T2(O) (re-
spectively, T3(O)) so defined is a GQ. The parameters are

s = q, t = q, v = (q + 1)(q2 + 1), b = (q + 1)(q2 + 1), when d = 2,

s = q, t = q2, v = (q + 1)(q3 + 1), b = (q2 + 1)(q3 + 1), when d = 3.

Theorem 14.4.

(i) The GQ T2(O) is isomorphic to the GQ Q(4, q) if and only if O is a
nonsingular conic. The GQ T2(O) is isomorphic to the GQ W (q) if
and only if q is even and O is a conic.

(ii) The GQ T3(O) is isomorphic to the GQ Q(5, q) if and only if O is a
nonsingular elliptic quadric.

For a proof of Theorem 14.4, see 3.2.2 and 3.2.4 of [24].

Remark 14.1.

(i) For q odd any oval is a nonsingular conic, hence for q odd we always
have T2(O) ∼= Q(4, q).

(ii) For q odd any ovoid is an elliptic quadric, hence for q odd we always
have T3(O) ∼= Q(5, q).

14.1.6. The generalized quadrangles T ∗
2 (O)

Let O be a hyperoval of PG(2, q), so q is even. Embed PG(2, q) = H as a
hyperplane in PG(3, q) = P .

• The points of the GQ T ∗2 (O) are the points of P\H ,
• lines of the GQ are the lines of P not in H which meet O, and
• the incidence is inherited from P .
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Then T ∗2 (O) is a GQ with parameters

s = q − 1, t = q + 1, v = q3, b = (q + 2)q2.

14.1.7. Orders of the known generalized quadrangles

The orders of the known GQs are

(s, 1), s ∈ N\{0},
(1, t), t ∈ N\{0},
(q, q), q any prime power,
(q, q2), q any prime power,
(q2, q), q any prime power,
(q2, q3), q any prime power,
(q3, q2), q any prime power,
(q − 1, q + 1), q any prime power,
(q + 1, q − 1), q any prime power.

14.1.8. Generalized quadrangles with small parameters

The proofs of all the results in this section are contained in Chapter 6 of
[24].

Let S be a GQ of order (s, t), 1 < s ≤ t. If s = 2, then t ∈ {2, 4} and
GQs of order (2, 2) and (2, 4) are unique. If s = 3, then t ∈ {3, 5, 6, 9}. GQs
of order (3, 5) and (3, 9) are unique; up to isomorphism there are two GQs
of order 3. If s = 4, then t ∈ {4, 6, 8, 11, 12, 16}. There is just one GQ of
order 4, and for t ∈ {6, 8, 16} a unique example is known. Nothing is known
about t = 11 and t = 12.

14.2. Translation Generalized Quadrangles

14.2.1. Translation generalized quadrangles

For proofs of all results in this section we refer to Chapter 8 of [24] or
Chapter 3 of [41].

Let S = (P,B, I) be a finite generalized quadrangle. A whorl about a
point p of the GQ S is a collineation fixing p linewise. A whorl about a line
L is a collineation fixing L pointwise. An elation about the point p ∈ P is
a whorl about p that fixes no point of P \ p⊥. Dually, one defines elations
about lines. If θ is an elation about p, then we will often say that p is the
center of θ. By definition, the identical permutation is an elation (about
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every point and every line). If p is a point of the GQ S, for which there
exists a group of elations G about p which acts sharply transitively on the
points of P \ p⊥, then S is said to be an elation generalized quadrangle
(EGQ) with base-point or center or elation point p and elation group (or
base-group) G, and we sometimes write (S(p), G) or S(p) for S. Dually, we
define the base-line of an EGQ. We only work with EGQs that are thick,
and therefore we will not bother each time to mention this.

If a GQ (S(p), G) is an EGQ with elation point p, and if G is abelian,
then we say that S is a translation generalized quadrangle (TGQ) with base-
point or translation point or center p and translation group (or base-group)
G. The elements of a translation group are called translations. It can be
shown that the translation group G is uniquely defined by the translation
point p.

Theorem 14.5. For any TGQ of order (s, t) we have t ≥ s.

14.2.2. The kernel of a translation generalized quadrangle

Suppose (S(p), G) is a TGQ of order (s, t), s �= 1 �= t, with translation point
p and translation group G, and let y be a point of P \p⊥. Let L0, L1, . . . , Lt

be the lines incident with p, and define ri and Mi by LiIriIMiIy, 0 ≤ i ≤ t.
Put Hi = {θ ∈ G ‖M θ

i = Mi}, H∗i = {θ ∈ G ‖ rθ
i = ri}, with 0 ≤ i ≤ t;

then |Hi| = s and |H∗i | = st. The kernel K of S(p) (or of (S(p), G)) is the
set of all endomorphisms α of G for which Hα

i ⊆ Hi, 0 ≤ i ≤ t. With the
usual addition and multiplication of endomorphisms K is a ring.

Theorem 14.6. The ring K is a field, so that Hα
i = Hi, (H∗i )α = H∗i for

all i = 0, 1, . . . , t and all α ∈ K0 = K\{0}.

For each subfield F of K there is a vector space (G,F ) whose vectors
are the elements of G, and whose scalars are the elements of F . Vector
addition is the group operation in G, and scalar multiplication is defined
by gα = gα, g ∈ G,α ∈ F . It is easy to verify that (G,F ) is indeed a vector
space. As Hi is a subspace of (G,F ), we have |Hi| ≥ |F |. It follows that
s ≥ |K|. There is an interesting corollary of (G,F ) being a vector space.

Theorem 14.7. The group G is elementary abelian, so s and t must be
powers of the same prime.

Finally we have the following result.
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Theorem 14.8. The multiplicative group K0 induces the group of all
whorls about p and y, with p �∼ y.

14.2.3. T (n, m, q)s and translation generalized quadrangles

In this section, we introduce the notion of T (n,m, q), which is a natural
generalization of the Td(O) constructions of Tits, d ∈ {2, 3}.

SupposeH = PG(2n+m−1, q) is the finite projective (2n+m−1)-space
over GF(q). Now define a set O = O(n,m, q) of subspaces as follows: O is a
set of qm+1 (n−1)-dimensional subspaces of H , denoted by PG(i)(n−1, q),
and often also by πi, so that

(i) every three generate a PG(3n− 1, q);
(ii) for every i = 0, 1, . . . , qm, there is a subspace PG(i)(n+m− 1, q), also

denoted by τi, of H of dimension n+m− 1, which contains PG(i)(n−
1, q) and which is disjoint from any PG(j)(n− 1, q) if j �= i.

If O satisfies these conditions for n = m, then O is called a pseudo-oval
or a generalized oval or an [n−1]-oval of PG(3n−1, q). A [0]-oval of PG(2, q)
is just an oval of PG(2, q). For n �= m, O(n,m, q) is called a pseudo-ovoid
or a generalized ovoid or an [n− 1]-ovoid or an egg of PG(2n+m− 1, q). A
[0]-ovoid of PG(3, q) is just an ovoid of PG(3, q).

The space PG(i)(n + m − 1, q) is the tangent space of O(n,m, q) at
PG(i)(n−1, q); it is uniquely determined by O(n,m, q) and PG(i)(n−1, q).
Sometimes we will call an O(n, n, q) also an “egg” or a “generalized ovoid”
for the sake of convenience.

From any egg O = O(n,m, q) arises a GQ T (n,m, q) = T (O) which is a
TGQ of order (qn, qm) for some base-point (∞). This goes as follows. Let
H be embedded in a PG(2n+m, q) = H ′.

• The points are of three types.

(i) The points of H ′ \H .
(ii) The subspaces PG(n + m, q) of H ′ which intersect H in a

PG(i)(n+m− 1, q).
(iii) A symbol (∞).

• The lines are of two types.

(a) The subspaces PG(n, q) of PG(2n + m, q) which intersect H in
an element of the egg.

(b) The elements of the egg O(n,m, q).
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• Incidence is defined as follows. The point (∞) is incident with all the
lines of Type (b) and with no other lines. A point of Type (ii) is
incident with the unique line of Type (b) contained in it and with all
the lines of Type (a) contained in it. Finally, a point of Type (i) is
incident with the lines of Type (a) containing it.

Conversely, by interpreting any TGQ in terms of the vector space (G,F ),
defined in Section 14.2.2, it can be seen that any TGQ is a T (n,m, q)
associated to some O(n,m, q).

Theorem 14.9. The geometry T (n,m, q) is a TGQ of order (qn, qm) with
translation point (∞) and for which GF(q) is a subfield of the kernel. More-
over, the translations of T (n,m, q) induce translations of the affine space
AG(2n+m, q) = PG(2n+m, q)\PG(2n+m−1, q). Conversely, every TGQ
for which GF(q) is a subfield of the kernel is isomorphic to a T (n,m, q).
It follows that the theory of TGQs is “equivalent” to the theory of the sets
O(n,m, q).

Remark 14.2.

(a) We emphasize that with the group of all homologies of PG(2n+m, q)
having center y not in PG(2n+m− 1, q) and axis PG(2n+m− 1, q)
corresponds in a natural way the multiplicative group of a subfield of
the kernel.

(b) It is clear that T (1, 1, q) is a T2(O) of Tits, and that T (1, 2, q) is a
T3(O) of Tits.

(c) If S ∼= T (O), with O = O(n,m, q), then for fixed n,m, q, we have that
O is uniquely defined by S.

Corollary 14.1. For any O(n,m, q) we have n ≤ m ≤ 2n.

Corollary 14.2. Let S(x) be a TGQ of order (s, t), s a prime. Then either
S(x) ∼= Q(4, s) or S(x) ∼= Q(5, s).

Theorem 14.10. Let (S(x), G) be a TGQ of order (s, t). Then S(x) ∼=
Td(O) for some d ∈ {2, 3}, if and only if for a fixed point y, y �∼ x, the
group of all whorls about x fixing y has order s − 1, that is, if and only if
|K| = s.



Finite Translation Generalized Quadrangles 233

14.2.4. Regular pseudo-ovals and regular pseudo-ovoids

In the extension PG(2n+m−1, qn) of PG(2n+m−1, q), with m ∈ {n, 2n},
we consider n (m

n + 1)-dimensional spaces PG(i)(m
n + 1, qn) = ξi, with

i = 1, 2, . . . , n, which are conjugate with respect to the extension GF(qn)
of GF(q), that is, which form an orbit of the Galois group corresponding to
this extension, and which span PG(2n+m−1, qn). In ξ1 we consider an oval
O1 for m = n and an ovoid O1 for m = 2n. Let O1 = {x(1)

0 , x
(1)
1 , . . . , x

(1)
qm}.

Further, let x(1)
i , x

(2)
i , . . . , x

(n)
i , with i = 0, 1, . . . , qm, be conjugate with

respect to the extension GF(qn) of GF(q). The points x(1)
i , x

(2)
i , . . . , x

(n)
i

define an (n−1)-dimensional space PG(i)(n−1, q) = πi over GF(q), with i =
0, 1, . . . , qm. Then O = {π0, π1, . . . , πqm} is a generalized oval of PG(3n−
1, q) for m = n, and a generalized ovoid of PG(4n− 1, q) for m = 2n. Here,
we speak of a regular or elementary pseudo-oval, respectively a regular or
elementary pseudo-ovoid. If O1 is a conic, then we speak of a pseudo-conic
or a classical pseudo-oval; if O1 is an elliptic quadric, then we speak of a
classical pseudo-ovoid.

If m = n, then in the regular case T (n, n, q) ∼= T2(O1); if m = 2n, then
in the regular case T (n, 2n, q) ∼= T3(O1).

For m = n each known pseudo-oval is regular. Also for m = 2n with q

even each known pseudo-ovoid is regular. Form = 2n with q odd nonregular
pseudo-ovoids are known, see Section 14.4.

14.3. Important Properties of O(n, m, q)

For details and proofs we refer again to Chapter 8 of [24] and to Chapter 3
of [41]. We remark that pseudo-ovals were already introduced in 1971; see
[32].

14.3.1. Properties of O(n, m, q)

In this section properties of O(n,m, q), for any n and m, will be stated. Let
PG(2n+m− 1, q) be the projective space containing O(n,m, q).

Theorem 14.11. The following hold for any O(n,m, q).

(i) Each hyperplane of PG(2n + m − 1, q) which does not contain a tan-
gent space of O(n,m, q), contains either 0 or 1 + qm−n elements of
O(n,m, q). If m = 2n, then each hyperplane of PG(4n − 1, q) which
does not contain a tangent space of O(n, 2n, q) contains exactly 1 + qn
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elements of O(n, 2n, q). If m �= 2n, then there are hyperplanes which
contain no element of O(n,m, q).

(ii) Either n = m or n(a+ 1) = ma with a ∈ N0 and a odd.

Corollary 14.3. Let Õ be the union of all elements of any O(n, 2n, q) and
let π be any hyperplane of PG(4n − 1, q). Then |Õ ∩ π| ∈ {γ1, γ2}, with
γ1 = (qn − 1)(q2n−1 + 1)/(q − 1) and γ1 − γ2 = q2n−1. Hence Õ defines a
linear projective two-weight code and a strongly regular graph.

Remark 14.3. For the construction of a linear projective two-weight code
and a strongly regular graph from a pointset of PG(r, q) with two inter-
section numbers with respect to hyperplanes of PG(r, q), we refer, e.g., to
[8].

14.3.2. Properties of pseudo-ovals

In particular, O(n, n, q) has the following properties.

Theorem 14.12. Let O = O(n, n, q) be a pseudo-oval in PG(3n− 1, q).

(i) If q is even, then all tangent spaces of O contain a common (n − 1)-
dimensional space, called the kernel or nucleus of O.

(ii) If q is odd, then each point of PG(3n− 1, q) not in an element of O is
contained in either 0 or 2 tangent spaces of O, and each hyperplane of
PG(3n− 1, q) not containing a tangent space of O contains either 0 or
2 elements of O.

Theorem 14.13. For q odd, the tangent spaces of a pseudo-oval O =
O(n, n, q) are the elements of a pseudo-oval O∗ = O∗(n, n, q) in the dual
space of PG(3n− 1, q).

Definition 14.1. The pseudo-oval O∗ is called the translation dual of
the pseudo-ovalO. The TGQ T (O∗) = T ∗(O) is also called the translation
dual of the TGQ T (O).

Remark 14.4. It is not known whether or not we have always O ∼= O∗,
respectively T (O) ∼= T ∗(O). In any case, for each known T (O), with O =
O(n, n, q) and q odd, we have T (O) ∼= Q(4, qn).

Theorem 14.14. The TGQ S of order s, with s odd, and its translation
dual S∗ have isomorphic kernels.
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14.3.3. Properties of eggs

In this section we mention fundamental results on eggs.

Theorem 14.15. Let O(n,m, q) be an egg, so n �= m.

(i) Each point of PG(2n+m− 1, q) which is not contained in an element
of O(n,m, q) belongs to either 0 or qm−n + 1 tangent spaces of the
egg. If m = 2n, then each point of PG(4n − 1, q) not contained in an
element of O(n, 2n, q) belongs to exactly qn + 1 tangent spaces of the
egg. If m �= 2n, then there are points contained in no tangent space of
O(n,m, q).

(ii) For q even we necessarily have m = 2n. Hence for any O(n,m, q) with
q even, we have m ∈ {n, 2n}, that is, for any TGQ S of order (s, t),
with s and/or t even, we have t ∈ {s, s2}.

Theorem 14.16. Every three distinct tangent spaces of O(n,m, q), m �= n,
have as intersection a space of dimension m− n− 1.

By Theorem 14.16 the tangent spaces of O(n,m, q), with m �= n, are
the elements of an egg O∗(n,m, q) in the dual space of PG(2n+m− 1, q).

Definition 14.2. The tangent spaces of an egg O(n,m, q) in PG(2n +
m− 1, q) form an egg O∗(n,m, q) in the dual space of PG(2n+m− 1, q).
So in addition to the TGQ T (n,m, q), a TGQ T ∗(n,m, q) arises. The egg
O∗(n,m, q) = O∗ will be called the translation dual of O(n,m, q) = O,
and T ∗(n,m, q) = T ∗(O) = T (O∗) will be called the translation dual of
the GQ T (n,m, q) = T (O).

Remark 14.5. For regular eggs O, we clearly have O ∼= O∗, respectively
T (O) ∼= T ∗(O). For q odd there are examples with O �∼= O∗, respectively
T (O) �∼= T ∗(O); see Section 14.4. For q even we have O ∼= O∗ for all known
examples (all known examples are regular).

Theorem 14.17. The TGQ S of order (s, t), with s �= t, and its translation
dual S∗ have isomorphic kernels.

14.4. Eggs O(n, 2n, q): Fundamental Results and Characterizations

In this section we first mention two interesting characterizations of regular
eggs; see [24]. For the other results we refer to [41].
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14.4.1. Characterizations of regular eggs O(n, 2n, q)

Theorem 14.18. Let O(n, 2n, q) = O be an egg in PG(4n− 1, q).

(i) The egg O is regular if and only if the qn +1 tangent spaces containing
any given point z not contained in an element of O, have exactly (qn−
1)/(q − 1) points in common.

(ii) The egg O is regular if and only if each PG(3n − 1, q) containing at
least three elements of O, contains exactly qn + 1 elements of O.

14.4.2. Fundamental results on eggs

This section contains fundamental results on eggs, all of which were discov-
ered after the monograph by Payne and Thas was published.

An egg O = O(n, 2n, q), respectively a TGQ T (O), is called good at an
element π ∈ O if for every two distinct elements π′ and π′′ of O \ {π} the
(3n − 1)-dimensional space < π, π′, π′′ > generated by π, π′, π′′ contains
exactly qn +1 elements of O; in such a case π is called a good element of O.

Theorem 14.19. ([34]) The egg O(n, 2n, q), with q even, is good if and
only if its translation dual O∗(n, 2n, q) is good.

Theorem 14.20. ([34]) Let O be an egg in PG(4n− 1, q), q odd, which is
good at its element π. Then the q2n + qn pseudo-ovals on O containing π
are classical.

Remark 14.6. Relying on Theorem 14.20 a new infinite class of ovoids
of Q(4, s) and a new infinite class of translation planes was discovered (an
ovoid of Q(4, s) is a set of s2 + 1 points of Q(4, s) no two of which are on a
common line of Q(4, s)); see [39].

For q even every known egg O(n, 2n, q) is regular, so good at any
of its elements; hence the corresponding TGQs are TGQs of Tits. For
q odd, there are O(n, 2n, q)s which are not regular. In fact four infinite
classes of O(n, 2n, q)s, q odd, are known, and two sporadic examples: the
classical eggs, an infinite class due to Kantor ([18]) (here O(n, 2n, q) ∼=
O∗(n, 2n, q), O(n, 2n, q) is good at some element, and for each odd q to-
gether with an automorphism σ �= 1 of GF(q) there is a nonclassical exam-
ple), an infinite class of O(n, 2n, q)s with q = 3h and h > 1, deduced from
Ganley semifields (see [23]) (here O(n, 2n, q) �∼= O∗(n, 2n, q), O∗(n, 2n, q) is
good at some element, while O(n, 2n, q) is not good at any element), the
translation duals O∗(n, 2n, q) of the foregoing O(n, 2n, q)s (it was Payne
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who discovered in 1989 that O(n, 2n, q) �∼= O∗(n, 2n, q)), and finally an egg
O(5, 10, 3) together with its non-isomorphic translation dual O∗(5, 10, 3)
(these two examples were deduced by Bader, Lunardon and Pinneri ([1])
from an ovoid of Q(4, 35) discovered by Penttila and Williams ([25]) (one
of these eggs is good).

Let F be a flock of the quadratic cone K in PG(3, q), that is, a partition
of K minus its vertex into q nonsingular conics. In 1976 it was shown by
Walker ([44]), and independently by Thas, that F defines a translation plane
P(F ) of order q2. In 1987 Thas ([33]), relying on work of Kantor ([17,18])
and Payne ([21,22]), proved that with each flock F there corresponds a
GQ S(F ) of order (s2, s), called a flock GQ. The paper [33] was the origin
of an explosion of interest in the theory of GQs and led to many results,
also because of the fact that now certain GQs of order (s2, s) and certain
translation planes of order s2 were closely linked.

Theorem 14.21. ([16]) A TGQ T (O) of order (s, s2), s even, is the point-
line dual of a flock GQ if and only if O (respectively, T (O)) is classical.

Theorem 14.22. ([34, 37]) The TGQ T (O) of order (s, s2), s odd, is the
point-line dual of a flock GQ if and only if the translation dual O∗ of O is
good at one of its elements.

Remark 14.7. Theorem 14.22 is a particular case of a more general result
of [37].

We also mention that there is a classification in [36] of good eggs of
PG(4n− 1, q), q odd, in terms of Veronese surfaces and their projections.

In Section 14.1.4 we mentioned the beautiful theorem of Brown on ovoids
in PG(3, q), with q even. The next theorem generalizes this result to pseudo-
ovoids.

Theorem 14.23. ([7]) Let O(n, 2n, q) be an egg in PG(4n− 1, q), q even.
Then O(n, 2n, q) is classical if and only if it contains a pseudo-conic.

Other interesting characterization theorems are the following.

Theorem 14.24. ([40]) Let O be an egg in PG(4n− 1, q), q even, which is
good at π ∈ O. If the q2n + qn pseudo-ovals on O containing π are regular,
then O is regular.

Theorem 14.25. ([4]) Assume that O(n, 2n, q), q odd, is good and that
q ≥ 4n2−8n+2. Then either O(n, 2n, q) is classical or is an egg of Kantor
type.
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Remark 14.8. Many interesting and useful characterizations of eggs in-
volving subquadrangles and automorphism groups can be found in [24] and
[41].

14.5. Pseudo-Ovals: Old and New Results

All known pseudo-ovals are regular; so for q odd all known pseudo-ovals are
classical. Compared to eggs, not many results on pseudo-ovals are known.
Here we collect some interesting results on these objects, including very
recent ones.

14.5.1. Old results

Let O(n, n, q) = {π0, π1, . . . , πqn} be a pseudo-oval in PG(3n − 1, q). The
tangent space of O(n, n, q) at πi will be denoted by τi, with i = 0, 1, . . . , qn.
Let PG(2n−1, q) ⊂ PG(3n−1, q) be skew to πi, i ∈ {0, 1, . . . , qn}. Further,
let τi∩PG(2n − 1, q) = ξi, < πi, πj > ∩PG(2n − 1, q) = ξj , j �= i. Then
{ξ0, ξ1, . . . , ξqn} = Si is an (n−1)-spread of PG(2n−1, q), that is, a partition
of PG(2n− 1, q) consisting of qn + 1 (n− 1)-dimensional subspaces.

Now let q be even and let η be the nucleus (cf. Section 14.3.2) of
O(n, n, q). Let PG(2n−1, q) be skew to η. If ζj = PG(2n−1, q)∩ < η, πj >,
then {ζ0, ζ1, . . . , ζqn} = S is an (n− 1)-spread of PG(2n− 1, q).

Let q be odd. Let i ∈ {0, 1, . . . , qn}. Put τi ∩ τj = δj , j �= i. Then by
Theorem 14.12, {πi, δ0, . . . , δi−1, δi+1, . . . , δqn} = S∗i is an (n− 1)-spread of
τi.

Theorem 14.26. ([9]) Consider a pseudo-oval O(n, n, q), with q odd. Then
at least one of the (n−1)-spreads S0, S1, . . . , Sqn , S∗0 , S∗1 , . . . , S

∗
qn is regular

if and only if they are all regular if and only if O(n, n, q) is classical if and
only if the corresponding GQ T (n, n, q) is isomorphic to the classical GQ
Q(4, qn).

Let O(n, n, q) = O be a generalized oval in PG(3n−1, q), with q even. Then
O is a translation generalized oval, with axis the tangent space PG(i)(2n−
1, q) of O at PG(i)(n − 1, q) ∈ O, if there is a group of involutions of
PGL(3n, q) with axis PG(i)(2n − 1, q), fixing O and acting regularly on
O\{PG(i)(n−1, q)}. It can be shown that it is sufficient that there is a group
of involutions of PGL(3n, q) fixing PG(i)(n − 1, q) and acting regularly on
the remaining elements of O. If n = 1, then a translation generalized oval is
just called a translation oval. All translation ovals of PG(2, q), q = 2h, were
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determined by Payne ([20]); choosing suitable coordinates, they are always
of the form

{(1, t, t2i

) ‖ t ∈ GF(q)} ∪ {(0, 0, 1)},

where i is fixed in {1, 2, . . . , h− 1} and (h, i) = 1.

Theorem 14.27. ([40]) Let O be a generalized oval in PG(3n− 1, q), with
q even. Then O is a translation generalized oval if and only if the point-line
dual of T (O) is a TGQ.

Remark 14.9. For n = 1 the theorem can be found in the monograph [24].

Let O = {π, π1, . . . , πqn} be a generalized oval in PG(3n−1, q), with q even,
and let η be the nucleus of O. Further, let τ be the tangent space of O at
π. For each i ∈ {1, 2, . . . , qn}, the set

{π, η} ∪ {< πi, πj > ∩τ ‖ i �= j}

is an (n− 1)-spread of τ , denoted S̄i. If O is a translation generalized oval
with axis τ , then all the spreads S̄i coincide.

Suppose that all the spreads S̄i coincide. We say that O is projective at
τ if the following property holds :

Let γ be an element of S̄ = S̄i (for all i),where π �= γ �= η, and let j, k
be in {1, 2, . . . , qn}, j �= k, such that < γ, πj > �=< γ, πk >. As the spreads
S̄i coincide, there are elements πj′ and πk′ so that πj′ ⊂< γ, πj >, with
j �= j′, and πk′ ⊂< γ, πk >, with k �= k′. Then < πj , πk > ∩ < πj′ , πk′ > is
an element of S̄.

Theorem 14.28. ([40]) Let O be a generalized oval in PG(3n − 1, q), q
even, and use the above notation. Then O is a translation generalized oval
with axis τ if and only if all the spreads S̄i coincide and O is projective at
τ .

Let O = {π, π1, . . . , πqn} be a generalized oval in PG(3n − 1, q), with
q = 2h, and let τ be the tangent space of O at π. Now we define a point-line
incidence structure A(O) as follows

• Points are the elements of O \ {π};
• Lines are the pairs {πi, πj} with i, j ∈ {1, 2, . . . , qn} and i �= j;
• Incidence is containment.
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Hence A(O) is the complete graph with vertex set O \{π}. Further, two
lines {πi, πj} and {πk, πl} are called parallel if < πi, πj > ∩τ =< πk, πl >

∩τ .

Theorem 14.29. ([40]) The incidence structure A(O) provided with par-
allelism is isomorphic to the hn-dimensional affine space AG(hn, 2) over
GF(2) if and only if O is a translation generalized oval with axis τ .

We also have the following characterization of classical generalized ovals
in the even case.

Theorem 14.30. ([40]) The pseudo-oval O(n, n, q), q even, is classical if
and only if O(n, n, q) is 2-transitive.

Relying on the previous theorem, Bamberg and Penttila ([2]) obtained the
following stronger characterization.

Theorem 14.31. ([2]) The pseudo-oval O(n, n, q), q even, is classical if
and only if O(n, n, q) is transitive.

14.5.2. New results

In this section yet unpublished results on pseudo-ovals will be discussed;
see [38].

Let π1, π2, π3 be mutually skew (n − 1)-dimensional subspaces of
PG(3n − 1, q), let τi be a (2n − 1)-dimensional space containing πi but
skew to πj and πk, with {i, j, k} = {1, 2, 3}, and let τi ∩ τj = ηk with
{i, j, k} = {1, 2, 3}. The space generated by ηi and πi will be denoted by ζi,
with i = 1, 2, 3. If the (2n− 1)-dimensional spaces ζ1, ζ2, ζ3 have a (n− 1)-
dimensional space in common, then we say that {π1, π2, π3} and {τ1, τ2, τ3}
are in perspective; if ζ1, ζ2, ζ3 have a nonempty intersection, then we say
that {π1, π2, π3} and {τ1, τ2, τ3} are in semi-perspective.

Let O be a regular generalized oval in PG(3n− 1, q), with q odd. Then
for any three distinct elements πi, πj , πk of O the sets {πi, πj , πk} and
{τi, τj , τk} are in perspective, where τl is the tangent space of O at πl,
l ∈ {i, j, k}. This follows immediately from the fact that in the odd case,
by the Lemma of Tangents (that is, Lemma 14.1), this property holds for
every oval. In the even case, by Theorem 14.12(i), the triples {πi, πj , πk}
and {τi, τj , τk} are in perspective for any three distinct elements πi, πj , πk

of any generalized oval O (here ζ1 ∩ ζ2 ∩ ζ3 is the nucleus of O).
Now we state an interesting property on quadrics in PG(3n−1, q), n ≥ 1.
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Theorem 14.32. Let Q be a nonsingular quadric in PG(3n− 1, q), q odd,
and let π1, π2, π3 be distinct (n−1)-dimensional spaces on Q which generate
PG(3n − 1, q). The tangent space of Q at πi is denoted by τi, with i =
1, 2, 3. Further, assume that πi ∩ τj = ∅, for all i �= j. Let ηk = τi ∩ τj
with {i, j, k} = {1, 2, 3} and let ζi =< ηi, πi >, with i = 1, 2, 3. Then the
dimension of ζ1 ∩ ζ2 ∩ ζ3 has the same parity as n − 1. In particular, if n
is odd, then {π1, π2, π3} and {τ1, τ2, τ3} are always in semi-perspective.

Remark 14.10. Since we are mainly interested in generalized ovals we
assume in Theorem 14.32 that q is odd. In the even case the statement
is quite different, so for example if q is even and n = 2 we always have
ζ1 ∩ ζ2 ∩ ζ3 = ∅.

Let q be odd. Then for each n even any classical generalized oval of
PG(3n − 1, q) belongs to a nonsingular elliptic quadric Q−(3n − 1, q) and
to a nonsingular hyperbolic quadric Q+(3n− 1, q), and for each n odd, any
classical generalized oval of PG(3n−1, q) belongs to a nonsingular parabolic
quadric, see [31]. In each of these cases the tangent space at any element π
of the generalized oval coincides with the tangent space at π of any of the
corresponding quadrics. For n = 2 any classical generalized oval O is the
intersection of some Q−(5, q) and some Q+(5, q); it is contained in (q+1)/2
nonsingular elliptic quadrics and (q+1)/2 nonsingular hyperbolic quadrics,
and at each element L of O these quadrics have a common tangent space
which coincides with the tangent space of O at L. Shult and Thas ([30])
prove that if O is a generalized oval of lines contained in a nonsingular
hyperbolic quadric Q+(5, q) of PG(5, q), q odd, then O is classical.

As for q even all tangent spaces of a generalized oval contain a common
(n−1)-dimensional space, it follows that for n > 1 and q even, a generalized
oval is never contained in a nonsingular quadric.

In recent years there was great interest in generalized ovals consisting
of q2 +1 lines of Q−(5, q), with q odd. Such a generalized oval is equivalent
to a set of q2 + 1 points of the nonsingular Hermitian variety H(3, q2) in
PG(3, q2), such that the plane defined by any three distinct points of this
set is nontangent to H(3, q2). This object was studied in different contexts
in [29], [11] and [10].

Theorem 14.33. Let O be a generalized oval of PG(3n− 1, q), with q odd,
contained in a nonsingular quadric Q of PG(3n− 1, q). If π ∈ O, then the
tangent spaces at π of O and Q coincide.

Corollary 14.4. Let O be a generalized oval of PG(3n− 1, q), with q odd,
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contained in a nonsingular quadric Q of PG(3n − 1, q). Then any three
distinct elements π1, π2, π3 of O satisfy the requirements in the statement
of Theorem 14.32.

Next we state an elegant characterization of pseudo-conics, generalizing
a characterization of conics from Section 14.1.4 (Theorem 14.2, relying on
the geometric interpretation of Lemma 14.1).

Theorem 14.34. Assume that O = {π0, π1, . . . , πqn} is a pseudo-oval of
PG(3n − 1, q), q odd, and let τi be the tangent space of O at πi, with i =
0, 1, . . . , qn. If for any three distinct i, j, k with i, j, k ∈ {0, 1, . . . , qn} the
triples {πi, πj , πk} and {τi, τj , τk} are in perspective, then O is a pseudo-
conic; clearly the converse also holds.

We will now give the formulation of Theorem 14.34 in terms of gener-
alized quadrangles.

Theorem 14.35. Let S be a TGQ of order s, s odd and s �= 1, with base-
point x. Further, let L1, L2, L3 be distinct lines incident with x and let yi

I Li, x �= yi, with i = 1, 2, 3. Then S is isomorphic to the GQ Q(4, s) if
and only if there are s points z1, z2, . . . , zs not collinear with x such that the
line Mij incident with zi and concurrent with xyj contains a point collinear
with yk and yl, with {j, k, l} = {1, 2, 3} and i = 1, 2, . . . , s.

There is also an interesting interpretation of Theorem 14.34 in terms of
Laguerre planes; see [38].

Now we will state another property on quadrics in PG(3n− 1, q).

Theorem 14.36. Let π0, π1, π2 be mutually skew (n− 1)-dimensional sub-
spaces of PG(3n−1, q), and let τi be a (2n−1)-dimensional space containing
πi but skew to πj and πk, with {i, j, k} = {0, 1, 2}. Coordinates are chosen
in such a way that π0 =< e0, e1, . . . , en−1 >, π1 =< en, en+1, . . . , e2n−1 >,
π2 =< e2n, e2n+1, . . . , e3n−1 >, where ei has coordinate 1 in position i+ 1,
and zero elsewhere. Further, let

τ0 :

 Xn

...
X2n−1

+ α

 X2n

...
X3n−1

 = 0,
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τ1 : β

 X0

...
Xn−1

+

 X2n

...
X3n−1

 = 0,

τ2 :

 X0

...
Xn−1

+ γ

 Xn

...
X2n−1

 = 0,

for certain n × n matrices α, β, γ (then det(αβγ) �= 0). Then there is a
quadric containing π0, π1, π2 and having τi as tangent space at πi, with
i = 0, 1, 2, if and only if the matrix equation

Zθ = ZT ,with θ = αβγ,

has a nonsingular solution for the n × n matrix Z. Moreover the quadric
is nonsingular if and only if θ + ε is nonsingular, that is, if and only if
τ0 ∩ τ1 ∩ τ2 = ∅ (here ε is the identity matrix).

Corollary 14.5. For n = 2 such a quadric exists if and only if det(θ) = 1
with either Tr(θ) �= 2 or θ = ε, that is, with either det(θ − ε) �= 0 or θ = ε.

Remark 14.11. The condition θ = ε is equivalent for {π0, π1, π2} and
{τ0, τ1, τ2} to be in perspective; det(θ − ε)det(θ + ε) = 0 is equivalent for
{π0, π1, π2} and {τ0, τ1, τ2} to be in semi-perspective.

Another interesting result towards the classification of all pseudo-ovals
of PG(5, q), with q odd, is the following result.

Theorem 14.37. Let O = {L0, L1, . . . , Lq2} be a generalized oval in
PG(5, q), with q odd, and let τi be the tangent space of O at Li, with
i = 0, 1, . . . , q2. Then for any three distinct i, j, k in {0, 1, . . . , q2} there
is either a quadric containing Li, Lj, Lk and having {τi, τj , τk} as tangent
spaces at respectively Li, Lj, Lk, or {Li, Lj , Lk} and {τi, τj , τk} are in semi-
perspective but not in perspective.

Remark 14.12. In order to prove Theorem 14.37 a new type of “Lemma
of Tangents” was developed.



244 J. A. Thas

References

[1] Bader, L., Lunardon, G. and Pinneri, I. (1999). A new semifield flock.
J. Combin. Theory Ser. A. 86 49-62.

[2] Bamberg, J. and Penttila, T. (2006). Transitive eggs. Innov. Incid. Geom. 4
1-12.

[3] Barlotti, A. (1955). Un ’estensione del teorema di Segre-Kustaanheimo. Boll.
Un. Mat. Ital. 10 498-506.

[4] Blokhuis, A., Lavrauw, M. and Ball, S. (2004). On the classification of semi-
field flocks. Adv. Math. 180 104-111.

[5] Bose, R. C. (1947). Mathematical theory of the symmetric factorial design.
Sankhya. 8 107-166.

[6] Brown, M. R. (2000). Ovoids of PG(3, q), q even, with a conic section.
J. London Math. Soc. 62 569-582.

[7] Brown, M. R. and Lavrauw, M. (2004). Eggs in PG(4n − 1, q), q even, con-
taining a pseudo-conic. Bull. London Math. Soc. 36 633-639.

[8] Calderbank, R. and Kantor, W. M. (1986). The geometry of two-weight
codes. Bull. London Math. Soc. 18 97-122.

[9] Casse, L. R. A., Thas, J. A. and Wild, P. R. (1985). (qn + 1)-sets of
PG(3n − 1, q), generalized quadrangles and Laguerre planes. Simon Stevin.
59 21-42.

[10] Cossidente, A., King, O. H. and Marino, G. (2006). Special sets of the Her-
mitian surface and Segre invariants. European J. Combin. 27 629-634.

[11] Cossidente, A., Ebert, G. L., Marino, G. and Siciliano, A. (2006). Shult sets
and translation ovoids of the Hermitian surface. Adv. Geom. (4) 6 523-542.

[12] Fellegara, G. (1962). Gli ovaloidi in uno spazio tridimensionale di Galois di
ordine 8. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 32 170-176.

[13] Higman, D. G. (1971). Partial geometries, generalized quadrangles and
strongly regular graphs. In Atti Convegno di Geometriae Combinatorica e
Sue Applicazioni (Univ. Perugia, Perugia, 1970) Ist. Mat., Univ. Perugia,
Perugia, 263-293.

[14] Hirschfeld, J. W. P. (1985). Finite Projective Spaces of Three Dimensions.
Oxford Mathematical Monographs. The Clarendon Press, Oxford University
Press, New York.

[15] Hirschfeld, J. W. P. (1998). Projective Geometries over Finite Fields, Second
Edition. Oxford Mathematical Monographs, The Clarendon Press, Oxford
University Press, New York.

[16] Johnson, N. L. (1987). Semifield flocks of quadratic cones. Simon Stevin. 61
313-326.

[17] Kantor, W. M. (1980). Generalized quadrangles associated with G2(q).
J. Combin. Theory Ser. A. 29 212-219.

[18] Kantor, W. M. (1986). Some generalized quadrangles with parameters q2, q.
Math. Z. 192 45-50.

[19] Panella, G. (1955). Caratterizzazione delle quadriche di uno spazio (tridi-
mensionale) lineare sopra un corpo finito. Boll. Un. Mat. Ital. 10 507-513.



Finite Translation Generalized Quadrangles 245

[20] Payne, S. E. (1971). A complete determination of translation ovoids in finite
Desarguian planes. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.
51 328-331.

[21] Payne, S. E. (1980). Generalized quadrangles as group coset geometries.
Congr. Numer. 29 717-734.

[22] Payne, S. E. (1985). A new infinite family of generalized quadrangles. Congr.
Numer. 49 115-128.

[23] Payne, S. E. (1989). An essay on skew translation generalized quadrangles.
Geom. Dedicata. 32 93-118.

[24] Payne, S. E. and Thas, J. A. (1984). Finite Generalized Quadrangles.
Research Notes in Mathematics 110, Pitman Advanced Publishing Program,
Boston/London/Melbourne; Second edition (2009), European Mathematical
Society, Series of Lectures in Mathematics.

[25] Penttila, T. and Williams, B. (2000). Ovoids of parabolic spaces. Geom.
Dedicata. 82 1-19.

[26] Qvist, B. (1952). Some remarks concerning curves of the second degree in a
finite plane. Ann. Acad. Sci. Fennicae Ser. A I. Math.-Phys. 134 1-27.

[27] Segre, B. (1954). Sulle ovali nei piani lineari finiti. Atti Accad. Naz. Lincei
Rend. Cl. Sci. Fis. Mat. Natur. 17 141-142.

[28] Segre, B. (1959). On complete caps and ovaloids in three-dimensional Galois
spaces of characteristic two. Acta Arith. 5 315-332.

[29] Shult, E. E. (2005). Problems by the wayside. Discrete Math. 294 175-201.
[30] Shult, E. E. and Thas, J. A. (1994). m-systems of polar spaces. J. Combin.

Theory Ser. A. 68 184-204.
[31] Shult, E. E. and Thas, J. A. (1995). Constructions of polygons from

buildings. Proc. London Math. Soc. 71 397-440.
[32] Thas, J. A. (1971). The m-dimensional projective space Sm(Mn(GF (q)))

over the total matrix algebra Mn(GF (q)) of the n×n-matrices with elements
in the Galois field GF (q). Rend. Mat. 4 459-532.

[33] Thas, J. A. (1987). Generalized quadrangles and flocks of cones. European
J. Combin. 8 441-452.

[34] Thas, J. A. (1994). Generalized quadrangles of order (s, s2), I. J. Combin.
Theory Ser. A. 67 140-160.

[35] Thas, J. A. (1995). Projective Geometry over a Finite Field. Chapter 7 of
Handbook of Incidence Geometry. Edited by F. Buekenhout, North-Holland,
Amsterdam, 383-431.

[36] Thas, J. A. (1997). Generalized quadrangles of order (s, s2), II. J. Combin.
Theory Ser. A. 79 223-254.

[37] Thas, J. A. (1999). Generalized quadrangles of order (s, s2), III. J. Combin.
Theory Ser. A. 87 247-272.

[38] Thas, J. A. (2008). Generalized ovals in PG(3n − 1, q), with q odd. Pure
Appl. Math. Quart., to appear.

[39] Thas, J. A. and Payne, S. E. (1994). Spreads and ovoids in finite generalized
quadrangles. Geom. Dedicata. 52 227-253.

[40] Thas, J. A. and Thas, K. (2006). Translation generalized quadrangles in even
characteristic. Combinatorica. 26 709-732.



246 J. A. Thas

[41] Thas, J. A., Thas, K. and Van Maldeghem, H. (2006). Translation General-
ized Quadrangles. Volume 26 of Series in Pure Mathematics. World Scientific,
New Jersey/Singapore.
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15.1. Introduction

Mathematicians who have an interest in physics know that a new and ex-
tremely powerful collider is being readied at CERN, the European Center
for Nuclear Research, in Geneva, Switzerland. It is an order of magnitude
more powerful than Fermilab, the host of the currently most powerful such
machine. It is expected that the new collider will make fundamental dis-
coveries about the nature of physics in ultra-small distances and times,
thereby revealing a lot about the structure of elementary particles. Among
the questions that may be answered by the experiments with the new ma-
chine are the existence of the super particles which have been predicted by
what the theoretical physicists call super symmetry. I say may in the above
because it is not known at what energy level in the past super symmetry
was broken, and so one cannot be sure that the collider would reveal the
presence of super symmetry. Nevertheless, because of its beauty, it would
be surprising if Nature has not made use of super symmetry (to modify a
famous remark of Dirac about monopoles).

For the mathematician there are two basic questions.

(i) What is super symmetry and what has it to do with symmetry, one of
the oldest parts of mathematics?

(ii) How does the presence of super symmetry lead to the existence of super
partners of the known elementary particles?

In this short article I shall attempt to examine these two questions briefly.

247
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There is nothing that is new in what I am going to say, and all of it is known
to experts. But the general mathematician may not be aware of some of
the things I shall talk about, and this article is intended for such a person.
Almost all of what I shall say is based on joint work with Gianni Cassinelli,
Alessandro Toigo and Claudio Carmeli of the theoretical physics group at
the University of Genoa and INFN, Genoa, Italy.

It is very well known [1, 2] that the notion and uses of symmetry go back
to very ancient times and are tied up with concepts of group theory. In the
most primitive setting we have a group G acting on a set X , and one views
the actions of the elements of the group as “symmetries”ofX or symmetries
of the system whose states are described by the points of X . If G is a Lie
group one can often replace the action of G by the infinitesimal action of
g, the Lie algebra of G. Sometimes we only have the action of g; this is
the case when the Lie algebra is infinite dimensional and the corresponding
group is more ambiguous to define because of topological difficulties, as for
example, when g is an affine Kac-moody Lie algebra or a Virasoro algebra.

In classical physics, and even in quantum mechanics, there is no neces-
sity to question the use of flat Minkowskian geometry for spacetime, since
gravitational forces are negligible in that scale. It is only when experiments
began to probe extremely small distances that theories trying to understand
and predict the experiments began to encounter serious conceptual difficul-
ties. Physicists then began to look more closely into the structure of space-
time at ultrashort scales of distances and times. The Planck scale refers to
distances of the order of 10−33cm and times of the order of 10−43sec. At the
Planck scale, no measurements are possible and so conventional models can
no longer be relied upon to furnish a true description of phenomena. String
theory attempts to work in a framework where the smallest objects are not
point-like but extended, i.e., strings or (more recently) membranes. Space-
time geometry at the Planck scale is thus almost surely non-commutative
because there are no points. No one has so far constructed a convincing
geometrical theory which is noncommutative at the Planck scale but has
the Riemann-Einstein geometry as a limit when the scale becomes the usual
one.

Even at energies very much lower than the Planck scale, a better un-
derstanding of phenomena is obtained if we assume that the geometry of
spacetime is described locally by a set of coordinates consisting of the usual
ones supplemented by a set of anticommuting (Grassmann) coordinates.
Why Grassmann coordinates? The Grassman coordinates model the Pauli
exclusion principle for the Fermions in an embryonic form. The theory of
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classical fields on such a manifold would then provide a basis for quanti-
zation that will yield the exterior algebras characteristic of quantum de-
scriptions of Fermionic states. Such a manifold is nowadays called a super
manifold. The symmetries of super manifolds are super Lie groups.

It must be noted that the original super symmetries discovered by the
physicists were infinitesimal and acted on matter fields which, because of
the Dirac equation, were complex Fermiominc fields. If A,B are two such
symmetries, the anticommutator [A,B]+ := AB + BA is also one. This
is very different from the usual infinitesimal symmetries governed by Lie
algebras, where, for given A,B, the usual commutator [A,B] = AB − BA

is also an infinitesimal symmetry. The physicists’ examples are actually
super Lie algebras and the whole theory acquired a beautiful shape when
Kac [3] introduced the notion of a super Lie algebra and classified the
simple ones. However the theory of these symmetries still lacked a geometric
underpinning till Salam, Strathdee, and others came up with the beautiful
idea that it is essential to generalize the notion of a classical manifold
to include Grassmann coordinates in order to have the proper geometric
foundation for the super symmetries [4, 5].

As I shall explain below, the physicists’ treatment of super symmetry
and its consequences can be fitted into a rigorous framework of super man-
ifolds, super Lie groups, and their actions on super manifolds. The result is
a beautiful extension of classical geometry with a possibility of applications
to the most fundamental parts of the physical world. For some physicists’
views see [6]. For a survey see [7].

15.2. Super Geometry

Normally, manifolds, groups, and their actions are described by first describ-
ing them at the set-theoretical level and then adding the structural features
(smoothness etc). In super geometry also this is the way things are done;
but to achieve this geometrically intuitive picture it is necessary to take
into account the presence of the odd coordinates (Grassmann variables) in
an essential manner. The basic language to describe super manifolds is that
of ringed spaces , namely, a topological space with a sheaf of rings on it. To
encode the Fermionic structure of matter the rings of the sheaf are required
to be non commutative, more specifically, super commutative. This means
that they are Z2-graded and satisfy the super commutativity axiom:

ab = (−1)p(a)p(b)ba
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where p is the parity function: p(x) is 0 for x even and 1 for x odd. The
standard examples are Rp|q = (Rp,Op|q) where the space is Rp and for any
open set U , the ring of the sheafOp|q is C∞(U)⊗Λ(ξ1, . . . , ξq), Λ(ξ1, . . . , ξq)
being the Grassman algebra in the indeterminates ξ1, . . . , ξq. A general su-
per manifold is a ringed space (X,O) which is locally isomorphic to Rp|q.
The odd local coordinates ξj cannot be observed but their presence in the
fundamental sheaf alters the consequences of the theory. This is like the
Grothendieck notion of a scheme in algebraic geometry where the structure
sheaf contains nilpotents which are not observable but which have funda-
mental geometrical consequences. By equating all odd coordinates to 0, we
obtain from a super manifold M a classical smooth manifold M0, which
can be realized as a submanifold of M . M may thus be interpreted as a
classical manifold M0 together with a Grassmann cloud over it.

The super manifolds form a category in a natural manner. Of course
I have only spoken about real C∞ super manifolds but one can define
in a similar fashion the real or complex analytic super manifolds also. A
super Lie group is a group object in the category of super manifolds. More
precisely, in order to endow a super manifold G with the structure of a
super Lie group, we must specify two morphisms

µ : G×G −→ G, ι : G −→ G

which are the multiplication and inverse maps, satisfying the appropriate
axioms for associativity. In order to speak of symmetries of super manifolds
we must introduce super group actions on super manifolds. In principle this
is easy: a super Lie group G acts on a super manifold M if there is an action
morphism

α : G×M −→M

satisfying the appropriate associativity constraints expressed in terms of
the maps α, µ, ι.

The super manifolds are not easy to work with because of the involved
nature of their definition which makes geometric motivation very hard to
come by. In order to overcome this difficulty one follows the path laid out by
Grothendieck in algebraic geometry, namely, the language of the functor of
points. If we have a category C and M is an object in it, one has associated
to it the contravariant functor T −→ M(T ) where M(T ) = Hom(T,M).
Elements ofM(T ) are called the T -points of M . IfM1,M2 are two objects in
C, any morphism M1 −→M2 gives rise to a natural map M1(T ) −→M2(T )
between their respective functors of points. It is a simple but fundamental
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result (Yoneda’s lemma) that any natural map M1(T ) −→M2(T ) arises in
this way from a unique morphism M1 −→ M2. In this manner M can be
entirely replaced by the functor T −→ M(T ). The natural question is of
course to ask which contravariant functors from C to the category of sets
arise as the functors of points of objects of C. Such a functor is called repre-
sentable. In practice the basic questions always come down to showing that
certain functors constructed naturally from given representable functors,
are representable.

This language restores the geometric intuition completely. For instance,
if Mi(i = 1, 2, . . . , n) are super manifolds, the functor

T −→M1(T )×M2(T )× · · · ×Mn(T )

is representable and the object representing it is the product super manifold
M1×M2×· · ·×Mn. Super Lie groups correspond to representable functors
from the category of super manifolds to the category of groups. Thus, if
G is a super Lie group, G(T ) is a group for every T and T −→ G(T ) is
a functor into the category of groups. It is important to realize that for
any fixed T,G(T ) has no structure other than that of a group, and that the
super Lie group structure of G is to be recovered from the entire assignment
T −→ G(T ) and its functorial nature. The classical part G0 of a super Lie
group G is a classical Lie group. It is a general principle that all topological
issues regarding a super Lie group G are always resolvable in terms of its
classical part G0. For a super Lie action of G on M the description in terms
of functor of points is equally intuitive: the action is equivalent to an action
G(T )×M(T ) −→M(T ) in the usual sense for each T , functorial in T .

Just as in the classical case one can associate super Lie algebras to
super Lie groups. The assignment G −→ Lie(G) that takes a super Lie
group to its (super) Lie algebra is functorial and as in the classical case
captures the group structure in essence. Because of its linearity, the super
Lie algebra is a much easier object to handle than the corresponding group,
and physicists invariably work with the super Lie algebra. However what
captures the complete information is the so-called super Harish-Chandra
pair (G0, g) associated to the super Lie group G: here G0 is the classical
Lie group underlying G, g = Lie(G), and the two objects are interlocked by
the action of G0 on g. It is a fundamental theorem that the assignment

G −→ (G0, g)

is functorial and is an equivalence of categories from the category of super
Lie groups to the category of super Harish-Chandra pairs.
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15.3. Super Symmetric Extensions of Relativistic Theories
and Super Poincaré Groups

The relativistic invariance of the description of a physical system is usually
guaranteed by giving an action of the Poincaré group on the space of states
of the physical system. In order to obtain a super symmetric extension of
such a theory it is first of all necessary to enlarge the Poincaré group to a su-
per Lie group whose classical part is the Poincaré group. Such enlargements
are called super Poincaré groups and I shall discuss their construction now.

Let me first of all describe how Lie algebras can be enlarged to super
Lie algebras. If g is a super Lie algebra with even and odd parts g0, g1,
then we have the following (to be pedantic, the ground field should have
characteristic different from 2 and 3; here we may take it to be R or C).

(i) g0 is a Lie algebra and g1 is a g0-module
(ii) The super bracket [·, ·] is a symmetric bilinear map of g1 × g1 into g0

which is g0-equivariant
(iii) For all X ∈ g1, we have [X, [X,X ]] = 0.

Only the condition (iii) is non-linear and so requires care in handling. Let
t be an ideal of g0 and let us assume that t acts trivially on g1 and [·, ·]
in (ii) maps into t. Then (iii) is automatic. Although this is the preferred
mode of construction of super Lie algebras in the physics literature, there
are other methods and examples.

In the physical situations the Lie algebra g0 is a Poincaré Lie algebra. By
this we mean that g0 = Lie(ISO(V )0)) where ISO(V )0 is the inhomogeneous
Lorentz group attached to V , namely, the semidirect product V ×′ SO(V )0

where the superindex 0 denotes the connected component of the identity.
Clearly g0 is the semi direct sum V ×′ Lie(SO(V )), and any module for
Lie(SO(V )) can be viewed as a module for g0 in which V acts trivially. The
physical requirements need the following.

(iv) If the ground field is R and g0 = V ×′ Lie(SO(V )) where V is a
real vector space with a non-degenerate quadratic form (the metric)
of Minkowski signature, then g1, as a g0-module, is spinorial .

The meaning of spinoriality for a g0-module is as follows. Briefly, a
module for g0 = V ×′ Lie(SO(V )) is spinorial if V acts trivially and as a
Lie(SO(V ))-module it splits over C as a direct sum of spin modules. Let me
recall what the spin modules are. The orthogonal Lie algebras are simple
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(except when dim(V ) = 4 when it is the direct sum of 2 orthogonal Lie
algebras in dimension 3) and their irreducible modules are generated in a
natural sense by the fundamental modules whose highest weights are delta
functions on the Dynkin diagram. Thus there is one to each node of the
diagram and the ones corresponding to the right extreme nodes are the spin
modules. There are 2 of them when V is even dimensional and 1 when V

is odd dimensional. If Spin(V ) is the two-fold cover of SO(V )0, then these
modules can also be described as the irreducible modules of g0 of minimal
dimension which do not come down to modules for SO(V )0 (they always
lift to Spin(V )).

The super Poincaré algebras and the associated super Poincaré groups
are defined as follows. We start with

g0 = V ×′ Lie(SO(V )0), G0 = V ×′ Spin(V )

and select a module S for Lie(SO(V )0) which is viewed as a module for g0

in which V acts trivially. Then g := g0⊕S is a super Poincaré algebra, and
(G0, g) is the corresponding super Poincaré group if:

(i) G0 acts on g1 = S spinorially.
(ii) The odd bracket g1 × g1 −→ t0 maps into the closure of the open for-

ward light come (minus the origin) (positivity of energy).

Theorem 15.1. Given any spinorial module S there is a super Poincaré
group (G0, g) with g0 = Lie(G0), g1 = S. The bracket on g1 is projectively
unique if S is irreducible.

Given V it is thus clear that there are many super Poincaré algebras
with classical part equal to V ×′ Lie(SO(V )). If S is irreducible this super
Poincaré algebra is essentially unique. If r is the number of irreducible
constituents of S, physicists speak of N = r super symmetry. The case
when V has the Minkowski signature is most important for applications
but one can classify the modules S for all signatures. The simplest special
case arises when dim(V ) = 4 and V has Minkowski signature (+ − −−).
The group Spin(V ) is then SL(2,C)R where the suffix R means that the
group is viewed as a group over R. There are now 2 spin modules, namely
the two dimensional representation 2 and its complex conjugate 2. The
representation 2 ⊕ 2 is then real and we write M for it, so that MC :=
C ⊗R M = 2 ⊕ 2. The physicists call M the Majorana spinor. Any real
spinorial module for SL(2,C)R is a direct sum of copies of M and so to
get the smallest super Lie algebra extending g0 we must take g1 to be M.



254 V. S. Varadarajan

To see that we have a projectively unique symmetric map M ⊗M −→ V

which is equivariant with respect to the spin group, it is easy to reduce it
to the complex case; there it follows from the decomposition

(MC ⊗MC)symm = 3⊕ 3⊕ 4

where 3 is the complex 3-dimensional irreducible representation, and 4 is
the unique 4-dimensional irreducible which descends to SO(V )0.

This super Lie algebra was the first to be constructed historically. In or-
der to determine all the super Lie algebras extending the Poincaré algebra
in arbitrary dimension and Minkowski signature one must have complete
information on the reality of spin modules and the circumstances when
they admit symmetric invariant forms. It turns out that this can be done
and so one has a description of all super Poincaré algebras [8] (hence the
corresponding super Lie groups). For a general discussion of spinor calculus
see [8, 9]. The reference [9] is a profound tour de force of everything math-
ematical that one wants to know about super symmetry (and more!). See
also 6c, 6d, 6e, 6f, 6g, 6h.

15.4. Classification of Super Particles

Let P be a Poincaré group or better, its two-fold cover V ×′Spin(V ), and let
G be a super Lie group whose classical part is P : G0 = P . The first question
is to determine the free elementary particles which admit super symmetry
and to describe the states of such particles. Without super symmetry the
classification of elementary particles is through their mass and spin. The
Hilbert space of states of the particles must carry a representation of P
and elementarity requires the representation to be irreducible. Thus the
free elementary particles are in bijection with UIR’s (unitary irreducible
representations) of P . However not all UIR’s define physically realizable
particles: the mass must be real or the energy must be ≥ 0. Mathematically
it is a question of determining the UIR’s of a semi direct product P = V ×′L
where V is a real vector space (spacetime) and L is a closed subgroup of
GL(V ). For determining the UIR’s of such groups we have available the
Mackey-Wigner [16, 17] method of little groups. I shall now explain briefly
this method. The group L acts on V and so, by duality, on the dual V ∗ (the
momentum space). We can then speak of the orbits in V ∗ for this action of
L. Fix a point p ∈ V ∗. The stabilizer Lp of p in L is called the little group
at p. Then to each UIR σ of Lp one can associate a UIR of P in a canonical
manner which we denote by Up,σ. The unitary equivalence class of Up,σ
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does not change if we change p to some other point in the orbit of p. The
Hilbert space of σ is the space of spin states of the particle (represented by
the UIR Up,σ) for the given momentum p. The orbit of p and the unitary
equivalence class of σ are the parameters of the UIR of P thus defined.
In the case when V is a quadratic vector space with Minkowski signature
and L is Spin(V ), the orbits are given essentially as the level sets of the
dual quadratic form on V ∗ and so represent sets of constant energy. In
pathological cases the group P may have additional UIR’s than the Up,σ.
However when the action of L on V ∗ is regular in a certain sense, there
are no other UIR’s of P except for the Up,σ. Regularity means that we
can find a Borel set in V ∗ meeting each orbit exactly once. It is a theorem
of Effros [18] that this happens if and only if each orbit is locally closed,
i.e., is open in its closure. The Minkowskian vector spaces are regular in
this sense and thus we obtain the classification of elementary particles in
terms of mass and spin. Notice that we have to rule out the negative energy
particles by fiat.

The super Poincaré groups are semi direct products also. The subspace
a := V ⊕ g1 is a sub super Lie algebra of g since the bracket g1 × g1

goes into V . It is often called a super translation algebra. It is easy to
construct explicitly the corresponding super Lie group which we call A so
that A0 = V . The action of the spin group Spin(V ) on a lifts to an action
on A and allows us to form the semi direct product A×′ Spin(V ) which we
denote by G. The question now is the classification of the UIR’s of G.

This was essentially done by the physicists [19, 20] in the 1970’s. They
assumed that the Mackey-Wigner method of little groups would extend to
the super symmetric context and determined the little groups and the space
of states for the little groups for a given momentum vector (on which the
little groups act). There were several novel features in the situation that
were not present in the theory when no super symmetry is assumed.

(i) Only the orbits with energy ≥ 0 give rise to UIR’s. Thus super sym-
metry makes energy positive.

(ii) For a given momentum p let Hp be the space of states of fixed spin;
the new space of states at p turns out to be Hp ⊗Wp where Wp is
an irreducible representation of a certain Clifford algebra canonically
associated to p.

(iii) A super particle, when viewed as a quantum system for the usual
Poincaré group, splits as a direct sum of particles in the usual sense,
forming a multiplet ; the multiplet contains pairs of particles with same
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mass but opposite parity of spin (super partners), leading to one of the
most striking consequences of super symmetry, namely, the existence
of super partners. (In practice, because of super symmetry breaking,
the partners acquire mass.)

How are we to understand these results on a rigorous basis? Clearly what
one wants is an extension of Mackey’s classical theory of UIR’s for regular
semi direct products to the super symmetric case. I shall devote the next
section to a discussion of this approach [21].

15.5. UIR’s of Regular Super Semi Direct Products

We begin with some remarks on super Hilbert spaces. All sesquilinear forms
are linear in the first argument and conjugate linear in the second. A super
Hilbert space is a super vector space H = H0 ⊕ H1 over C with a scalar
product (· , ·) such that H is a Hilbert space under (· , ·), and Hi(i = 0, 1)
are mutually orthogonal closed linear subspaces. If we define

〈x, y〉 =


0 if x and y are of opposite parity

(x, y) if x and y are even

i(x, y) if x and y are odd,

then 〈x, y〉 is an even super Hermitian form with

〈y, x〉 = (−1)p(x)p(y)〈x, y〉, 〈x, x〉 > 0(x �= 0 even)

and

i−1〈x, x〉 > 0(x �= 0 odd).

If T (H → H) is a bounded linear operator, we denote by T ∗ its Hilbert
space adjoint and by T † its super adjoint given by

〈Tx, y〉 = (−1)p(T )p(x)〈x, T †y〉.
Clearly T † is bounded, p(T ) = p(T †), and T † = T ∗ or −iT ∗ according as T
is even or odd. For unbounded T we define T † in terms of T ∗ by the above
formula. These definitions are equally consistent if we use −i in place of i.
But our convention is as above.

The first problem to understand is how to define the concept of a unitary
representation (UR) of a super Lie group. The notion of a representation ρ
of a super Lie algebra g is quite clear. However if X in an odd element of
g, then [X,X ] must go over under ρ to ρ(X)2; but as [X,X ] ∈ g0, it will in
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general be represented by an unbounded operator in the Hilbert space of the
representation, and so it becomes clear that X itself must be represented
by an unbounded operator. This means that domain considerations enter
the picture and so we must exercise great care in defining what we mean by
a UR of a super Lie group. Initially we shall suppose we are given a UR π0

of the classical group G0 in a super Hilbert space H and that the operators
ρ(X)(X ∈ g1) are all defined on C∞(π0), the space of differentiable vectors
for π0 in H. We require the following properties.

(i) π0 is an even unitary representation of G0.
(ii) ρ is a linear map of g1 into the subspace of odd endomorphisms of

C∞(π0). Here C∞(π0) is the space of differentiable vectors for π0 (it
is super linear, i.e., it contains the odd and even components of each
of its elements).

(iii) ρ satisfies the requirements below:

(a) ρ(g0X) = π0(g0)ρ(X)π0(g0)−1 (X ∈ g1, g0 ∈ G0) (compatibility
of ρ with π0).

(b) ρ(X) with domainC∞(π0) is symmetric for allX ∈ g1. This means
that the adjoint ρ(X)∗ is an extension of ρ(X) for X ∈ g1.

(c) −idπ0([X,Y ]) = ρ(X)ρ(Y ) + ρ(Y )ρ(X)(X,Y ∈ g1) on C∞(π0).

It then turns out that for any X ∈ g1 the operator ρ(X) with domain
C∞(π0) is essentially self adjoint , and, with ζ = e−iπ/4,

π : X0 +X1 
−→ dπ0(X0) + ζ−1ρ(X1)(X0 ∈ g0, X1 ∈ g1)

is a super representation of the super Lie algebra g in C∞(π0) compatible
with π0.

The choice of C∞(π0) as a domain of definition for the ρ(X)(X ∈ g1),
although natural, is certainly arbitrary; for instance we could have chosen
the space of analytic vectors . But fortunately this does not create problems.
If we use any other dense domain with some natural requirements, all the
ρ(X)(X ∈ g1) will have closures which are defined on C∞(π0) and we have
the earlier situation. Thus we have an essentially unique way to define the
UR of a super Harish-Chandra pair .

The classical Mackey theory is based on two themes. The first is an
analysis of transitive systems of imprimitivity and the second is an applica-
tion to the UIR’s of regular semi direct products. I shall now describe the
generalizations to the super symmetric case.
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The sub super Lie groupH = (H0, h) of G = (G0, g) is special if h1 = g1.
The quotient super manifold Ω = G/H � G0/H0 is then purely even.
A super system of imprimitivity based on Ω is a system (π, ρπ, P ) where
(π, ρπ) is a UR of (G0, g), P an even projection valued measure on Ω such
that (π, P ) is a classical system of imprimitivity and the projections of P
commute with the spectral projections of ρ(X) for all X ∈ g1 (P ↔ ρπ).

The super imprimitivity theorem. There is a natural equivalence
of categories from UR’s of (H0, h) to super systems of imprimitivity on Ω.

The super Harish-Chandra pair(G0, g) is a super semidirect product if:

(i) G0 = T0 ×′ L0, T0 a real finite dimensional vector space, L0 ⊂ SL(T0)
a closed subgroup

(ii) T0 acts trivially on g1 and [g1, g1] ⊂ t0 := Lie(T0)

We can now describe the little group theory in the super symmetric
case. For λ ∈ T ∗0 , Sλ = (Gλ

0 , g
λ) is the little (super) group at λ: Gλ

0 = T0L
λ
0

and gλ = t0 ⊕ lλ0 ⊕ g1. It is a special sub super Lie group. For a UR (π, ρπ)
of G = (G0, g), P is the spectral measure of π

∣∣
T0

. Since T0 acts trivially
on g1, the π(t) commute with the ρπ(X). If the UR is irreducible (UIR),
then P is concentrated on an orbit. If λ ∈ T ∗0 , a UR of G is λ-admissible
if π(t) = eiλ(t)I(t ∈ T0). λ itself is admissible if there is a λ-admissible UR
(⇐⇒ if there is a λ-admissible UIR).

T+
0 =

{
λ
∣∣ λ ∈ T ∗0 , λ admissible

}
.

Theorem 15.2. For any λ ∈ T+
0 , the super imprimitivity theorem gives

an equivalence of categories from the category of λ-admissible UR’s of Sλ

with the UR’s of (G0, g) whose spectra are contained in the orbit of λ.
In particular, a UIR has spectrum in the orbit of λ if and only if λ is
admissible, and then we have a bijection between the sets of equivalence
classes of UIR’s of G and Sλ.

Remark 15.1. Note the significant difference from the classical one in that
there is a selection rule for the orbits: admissibility.

Let λ be admissible and (σ, ρσ) be a λ-admissible UIR for Sλ. Then

(i) Qλ(X) = (1/2)λ([X,X ]) is a Lλ
0 -invariant quadratic form on g1

(ii) ρσ(X)2 = Qλ(X)I on C∞(σ)

It follows, as ρσ(X) is essentially self adjoint on C∞(σ), that

(1) Qλ is nonnegative and the ρσ are bounded.
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Theorem 15.3. Let λ ∈ T ∗0 . Then the following are equivalent.

(i) λ is admissible
(ii) Qλ(X) ≥ 0 for all X ∈ g1.

If G is a super Poincaré group, condition (ii) is essentially the condition
that energy is positive. Hence we refer to (ii) as the positive energy condi-
tion.

Let Cλ be the algebra generated by g1 with the relations

X2 = Qλ(X)1(X ∈ g1).

Even though Qλ may have a nonzero radical we call Cλ the Clifford algebra
of (g1, Qλ). If

g1λ := g1/rad Qλ

then Qλ is strictly positive on g1λ and there is a natural map

Cλ −→ C∼λ = Clifford algebra of g1λ

with kernel as the ideal generated by the radical of Qλ.
One can build a UIR (σ, ρ) of the little group Sλ with

(i) ρ a representation of Cλ by bounded operators , ρ(X) self adjoint and
odd for all X ∈ g1; ρ is called a self adjoint representation.

(ii) σ is an even UR of Lλ
0 such that

σ(t)ρ(X)σ(t)−1 = ρ(tX) (t ∈ Lλ
0 , X ∈ g1)

We shall assume for simplicity that Lλ
0 is simply connected. Since Qλ is

Lλ
0 -invariant we have a map

Lλ
0 −→ SO(g1λ)

which lifts to a map

Lλ
0 −→ Spin(g1λ).

There is an irreducible self adjoint representation τλ of Cλ, finite dimen-
sional, unique if dim(g1λ) is odd, unique up to parity reversal otherwise.
The spin representation of Spin(g1λ) lifts to an even UR κλ of Lλ

0 , with

κλ(t)τλ(X)κλ(t)−1 = τλ(tX) (t ∈ Lλ
0 , X ∈ g1).

The assignment

r 
−→ θrλ = (σ, ρ), σ = eiλr ⊗ κλ, ρ = 1⊗ τλ
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is an equivalence of categories from the category of purely even UR’s r of
Lλ

0 to the category of λ-admissible UR’s of the little super group Sλ. It
gives a bijection (up to equivalence) between UIR’s of Lλ

0 and UIR’s of Sλ.
When the little group is only connected but is of the form

Lλ
0 = A×′ T (A simply connected , T a torus)

Then the development is similar but a little more involved. The theory now

gives a bijection

r ←→ θrλ ←→ Θrλ

between UIR’s r of Lλ
0 and UIR’s Θrλ of G with spectrum in the orbit of

λ. The Θrλ represent the super particles. The corresponding UR’s of G0

are not irreducible and their irreducible constituents define the so-called
super multiplets. The members of the multiplet are the ordinary particles
that correspond to the orbit of λ and the irreducible constituents of r⊗κλ.
When r is the trivial representation we obtain the fundamental multiplet.
They are the ordinary particles defined by the orbit of λ and the irreducible
constituents of κλ. In the case of super Poincaré groups κλ can be explicitly
determined and its decomposition into irreducibles described (in principle).
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