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Sources in the Development of Mathematics

The discovery of infinite products by Wallis and infinite series by Newton marked the
beginning of the modern mathematical era. The use of series allowed Newton to find
the area under a curve defined by any algebraic equation, an achievement completely
beyond the earlier methods of Torricelli, Fermat, and Pascal. The work of Newton and
his contemporaries, including Leibniz and the Bernoullis, was concentrated in math-
ematical analysis and physics. Euler’s prodigious mathematical accomplishments
dramatically extended the scope of series and products to algebra, combinatorics, and
number theory. Series and products proved pivotal in the work of Gauss, Abel, and
Jacobi in elliptic functions; in Boole and Lagrange’s operator calculus; and in Cayley,
Sylvester, and Hilbert’s invariant theory. Series and products still play a critical role
in the mathematics of today. Consider the conjectures of Langlands, including that of
Shimura-Taniyama, leading to Wiles’s proof of Fermat’s last theorem.

Drawing on the original work of mathematicians from Europe, Asia, and America,
Ranjan Roy discusses many facets of the discovery and use of infinite series and
products. He gives context and motivation for these discoveries, including original
notation and diagrams when practical. He presents multiple derivations for many
important theorems and formulas and provides interesting exercises, supplementing
the results of each chapter.

Roy deals with numerous results, theorems, and methods used by students,
mathematicians, engineers, and physicists. Moreover, since he presents original math-
ematical insights often omitted from textbooks, his work may be very helpful to
mathematics teachers and researchers.

ranjan roy is the Ralph C. Huffer Professor of Mathematics and Astronomy at
Beloit College. Roy has published papers and reviews in differential equations, fluid
mechanics, Kleinian groups, and the development of mathematics. He co-authored
Special Functions (2001) with George Andrews and Richard Askey, and authored
chapters in the NIST Handbook of Mathematical Functions (2010). He has received
the Allendoerfer prize, the Wisconsin MAA teaching award, and the MAA Haimo
award for distinguished mathematics teaching.
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Preface

But this is something very important; one can render our youthful students no greater
service than to give them suitable guidance, so that the advances in science become
known to them through a study of the sources. – Weierstrass to Casorati, December 21,
1868

The development of infinite series and products marked the beginning of the modern
mathematical era. In his Arithmetica Infinitorum of 1656, Wallis made groundbreak-
ing discoveries in the use of such products and continued fractions. This work had a
tremendous catalytic effect on the young Newton, leading him to the discovery of the
binomial theorem for noninteger exponents. Newton explained in his De Methodis that
the central pillar of his work in algebra and calculus was the powerful new method of
infinite series. In letters written in 1670, James Gregory presented his discovery of sev-
eral infinite series, most probably by means of finite difference interpolation formulas.
Illustrating the very significant connections between series and finite difference meth-
ods, in the 1670s Newton made use of such methods to transform slowly convergent
or even divergent series into rapidly convergent series, though he did not publish his
results. Illustrating the importance of this approach, Montmort and Euler soon used new
arguments to rediscover it. Newton further wrote in the De Methodis that he conceived
of infinite series as analogues of infinite decimals, so that the four arithmetical opera-
tions and root extraction could be carried over to apply to variables. Thus, he applied
infinite series to discover the inverse function and implicit function theorems. Newton
concentrated largely on analysis and mathematical physics; Euler’s prodigious intellect
broadened Newton’s conception to apply infinite series and products to number theory,
algebra, and combinatorics; this legacy continues unabated even today.

Infinite series have numerous manifestations, including power series, trigonometric
series, q-series, and Dirichlet series. Their scope and power are evident in their piv-
otal role in many areas of mathematics, including algebra, analysis, combinatorics, and
number theory. As such, infinite series and products provide access to many mathe-
matical questions and insights. For example, Maclaurin, Euler, and MacMahon studied
symmetric functions using infinite series; Euler, Dirichlet, Chebyshev, and Riemann
employed products and series to get deep insight into the distribution of primes. Gauss
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employed q-series to prove the law of quadratic reciprocity and Jacobi applied the
triple product identity, also discovered by Gauss, to determine the number of represen-
tations of integers as sums of squares. Moreover, the correspondence between Daniel
Bernoulli and Goldbach in the 1720s introduced the problem of determining whether a
given series of rational numbers was irrational or transcendental. The 1843 publication
of their letters prompted Liouville to lay the foundations of the theory of transcendental
numbers.

The detailed table of contents at the beginning of this book may prove even more
useful than the index in locating particular topics or questions. The preliminary remarks
in each chapter provide some background on the origins and motivations of the ideas
discussed in the subsequent, more detailed, and substantial sections of the chapter.
The exercises following these sections offer references so that the reader may perhaps
consult the original sources with a specific focus in mind. Most works cited in the notes
at the end of each chapter should be readily accessible, especially since the number of
books and papers online is increasing steadily.

Mathematics teachers and students may discover that the old sources, such as
Simpson’s books on algebra and calculus, Euler’s Introductio, or the correspondence
of Euler and Goldbach and the Bernoullis, are fruitful resources for calculus projects or
undergraduate or graduate seminar topics. Since early mathematicians often omitted to
mention the conditions under which their results would hold, analysis students could
find it very instructive to work out the range of validity of those results. For example,
Landen’s formula for the dilogarithm, while very insightful and significant, is incorrect
for a range of values, even where the series converge. At an advanced level, important
research has arisen out of a study of old works. Indeed, by studying Descartes and
Newton, Laguerre revived a subject others had abandoned for two hundred years and
did his excellent work in numerical solutions of algebraic equations and extensions
of the rule of signs. Again, André Weil recounted in his 1972 Ritt lectures on number
theory that he arrived at the Weil conjectures through a study of Gauss’s two papers on
biquadratic residues.

It is edifying and a lot of fun to read the noteworthy works of long ago; this is
common practice in literature and is equally appropriate and beneficial in mathematics.
For example, a calculus student might enjoy and learn from Cotes’s 1714 paper on
logarithms or Maria Agnesi’s 1748 treatment of the same topic in her work on analysis.
At a more advanced level, Euler gave not just one or two but at least eight derivations
of his famous formula

∑
1/n2 = π 2/6. Reading these may serve to enlighten us on the

variety of approaches to the perennial problem of summing series, though most of these
approaches are not mentioned in textbooks. Students of literature routinely learn from
and enjoy reading the words of, say, Austen, Hawthorne, Turgenev, or Shakespeare. We
may likewise deepen our understanding and enjoyment of mathematics by reading and
rereading the original works of mathematicians such as Barrow, Laplace, Chebyshev,
or Newton. It might prove rewarding if mathematicians and students of mathematics
were to make such reading a regular practice. In the introduction to his Development
of Mathematics in the 19th Century, Felix Klein wrote, “Thus, it is impossible to grasp
even one mathematical concept without having assimilated all the concepts which led
up to its creation, and their connections.”



Preface xix

Wherever practical, I have tried to present a mathematician’s own notational meth-
ods. Seeing an argument in its original form is often instructive and can give us insight
into its motivations and underlying rationale. Because of the numerous notations for
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Power Series in Fifteenth-Century Kerala

1.1 Preliminary Remarks

The Indian astronomer and mathematician Madhava (c. 1340–c. 1425) discovered
infinite power series about two and a half centuries before Newton rediscovered them
in the 1660s. Madhava’s work may have been motivated by his studies in astronomy,
since he concentrated mainly on the trigonometric functions. There appears to be no
connection between Madhava’s school and that of Newton and other European math-
ematicians. In spite of this, the Keralese and European mathematicians shared some
similar methods and results. Both were fascinated with transformation of series, though
here they used very different methods.

The mathematician-astronomers of medieval Kerala lived, worked, and taught in
large family compounds called illams. Madhava, believed to have been the founder
of the school, worked in the Bakulavihara illam in the town of Sangamagrama, a few
miles north of Cochin. He was an Emprantiri Brahmin, then considered socially inferior
to the dominant Namputiri (or Nambudri) Brahmin. This position does not appear to
have curtailed his teaching activities; his most distinguished pupil was Paramesvara, a
Namputiri Brahmin. No mathematical works of Madhava have been found, though three
of his short treatises on astronomy are extant. The most important of these describes
how to accurately determine the position of the moon at any time of the day. Other
surviving mathematical works of the Kerala school attribute many very significant
results to Madhava. Although his algebraic notation was almost primitive, Madhava’s
mathematical skill allowed him to carry out highly original and difficult research.

Paramesvara (c.1380–c.1460), Madhava’s pupil, was from Asvattagram, about
thirty-five miles northeast of Madhava’s home town. He belonged to the Vatasreni illam,
a famous center for astronomy and mathematics. He made a series of observations of
the eclipses of the sun and the moon between 1395 and 1432 and composed several
astronomical texts, the last of which was written in the 1450s, near the end of his life.
Sankara Variyar attributed to Paramesvara a formula for the radius of a circle in terms of
the sides of an inscribed quadrilateral. Paramesvara’s son, Damodara, was the teacher
of Jyesthadeva (c. 1500–c. 1570) whose works survive and give us all the surviving
proofs of this school. Damodara was also the teacher of Nilakantha (c. 1450–c. 1550)

1



2 Power Series in Fifteenth-Century Kerala

who composed the famous treatise called the Tantrasangraha (c. 1500), a digest of the
mathematical and astronomical knowledge of his time. His works allow us determine
his approximate dates since in his Aryabhatyabhasya, Nilakantha refers to his observa-
tion of solar eclipses in 1467 and 1501. Nilakantha made several efforts to establish new
parameters for the mean motions of the planets and vigorously defended the necessity
of continually correcting astronomical parameters on the basis of observation. Sankara
Variyar (c. 1500–1560) was his student.

The surviving texts containing results on infinite series are Nilakantha’s Tantrasan-
graha, a commentary on it by Sankara Variyar called Yuktidipika, the Yuktibhasa by
Jyesthadeva and the Kriyakramakari, started by Variyar and completed by his student
Mahisamangalam Narayana.All these works are in Sanskrit except the Yuktibhasa, writ-
ten in Malayalam, the language of Kerala. These works provide a summary of major
results on series discovered by these original mathematicians of the indistinct past:

A. Series expansions for arctangent, sine, and cosine:

1. θ = tan θ − tan3 θ
3 + tan5 θ

5 −·· · ,
2. sin θ = θ − θ3

3! + θ5

5! − · · · ,
3. cos θ = 1− θ2

2! + θ4

4! − · · · ,
4. sin2 θ = θ2 − θ4

(22−2/2)
+ θ6

(22−2/2)(32−3/2)
− θ8

(22−2/2)(32−3/2)(42−4/2)
+·· · .

In the proofs of these formulas, the range of θ for the first series was 0≤ θ ≤π/4
and for the second and third was 0 ≤ θ ≤ π/2. Although the series for sine and
cosine converge for all real values, the concept of periodicity of the trigonometric
functions was discovered much later.

B. Series for π :

1. π

4 ≈ 1− 1
3 + 1

5 −·· ·∓ 1
n
±fi(n+ 1), i = 1,2,3, where

f1(n)= 1/(2n), f2(n)= n/(2(n2 + 1)),

and
f3(n)= (n2 + 4)/(2n(n2 + 5));

2. π

4 = 3
4 + 1

33−3
− 1

53−5
+ 1

73−7
−·· · ;

3. π

4 = 4
15+4·1 − 4

35+4·3 + 4
55+4·5 −·· · ;

4. π

2
√

3
= 1− 1

3·3 + 1
5·32 − 1

7·33 +·· · ;
5. π

6 = 1
2 + 1

(2·22−1)2−22 + 1
(2·42−1)2−42 + 1

(2·62−1)2−62 +·· · ;
6. π−2

4 ≈ 1
22−1

− 1
42−1

+ 1
62−1

−·· ·∓ 1
n2−1

± 1
2((n+1)2+2)

.

These results were stated in verse form. Thus, the series for sine was described:

The arc is to be repeatedly multiplied by the square of itself and is to be divided [in order] by the
square of each even number increased by itself and multiplied by the square of the radius. The
arc and the terms obtained by these repeated operations are to be placed in sequence in a column,
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and any last term is to be subtracted from the next above, the remainder from the term then next
above, and so on, to obtain the jya (sine) of the arc.

So if r is the radius and s the arc, then the successive terms of the repeated operations
mentioned in the description are given by

s · s2

(22 + 2)r2
, s · s2

(22 + 2)r2
· s2

(42 + 4)r2
, . . .

and the equation is

y = s− s · s2

(22 + 2)r2
+ s · s2

(22 + 2)r2
· s2

(42 + 4)r2
−·· ·

where y = r sin(s/r). Nilakantha’s Aryabhatiyabhasya attributes the sine series to
Madhava. The Kriyakramakari attributes to Madhava the first two cases of B.1, the
arctangent series, and series B.4; note that B.4 can be derived from the arctangent
by taking θ = π/6. The extant manuscripts do not appear to attribute the other series
to a particular person. The Yuktidipika gives series B.6, including the remainder; it
is possible that this series is due to Sankara Variyar, the author of the work. We can
safely conclude that the power series for arctangent, sine, and cosine were obtained by
Madhava; he is, thus, the first person to express the trigonometric functions as series.
In the 1660s, Newton rediscovered the sine and cosine series; in 1671, James Gregory
rediscovered the series for arctangent.

The series for sin2 θ follows directly from the series for cos θ by an application of
the double angle formula, sin2 θ = 1

2 (1− cos2θ). The series for π/4 (B.1) has several
points of interest. When n→∞, it is simply the series discovered by Leibniz in 1673.
However, this series is not useful for computational purposes because it converges
extremely slowly. To make it more effective in this respect, the Madhava school added
a rational approximation for the remainder after n terms. They did not explain how they
arrived at the three expressions fi(n) in B.1. However, if we set

π

4
= 1− 1

3
+ 1

5
−·· ·∓ 1

n
±f (n), (1.1)

then the remainder f (n) has the continued fraction expansion

f (n)= 1

2
· 1

n+
12

n+
22

n+
32

n+ ·· · , (1.2)

when f (n) is assumed to satisfy the functional relation

f (n+ 1)+f (n− 1)= 1

n
. (1.3)

The first three convergents of this continued fraction are

1

2n
= f1(n),

n

2(n2 + 1)
= f2(n), and

1

2

n2 + 4

n(n2 + 5)
= f3(n). (1.4)
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Although this continued fraction is not mentioned in any extant works of the Kerala
school, their approximants indicate that they must have known it, at least implic-
itly. In fact, continued fractions appear in much earlier Indian works. The Lilavati of
Bhaskara (c. 1150) used continued fractions to solve first-order Diophantine equations
and Variyar’s Kriyakramakari was a commentary on Bhaskara’s book.

The approximation in equation B.6 is similar to that in B.1 and gives further evi-
dence that the Kerala mathematicians saw a connection between series and continued
fractions. If we write

π − 2

4
= 1

22 − 1
− 1

42 − 1
+ 1

62 − 1
−·· ·± 1

n2 − 1
±g(n+ 1), then (1.5)

g(n)= 1

2n
· 1

n+
1 · 2
n+

2 · 3
n+

3 · 4
n+ ·· · , and (1.6)

g1(n)= 1

2n
, g2(n)= 1

2(n2 + 2)
. (1.7)

Newton, who was very interested in the numerical aspects of series, also found the
f1(n) = 1/(2n) approximation when he saw Leibniz’s series. He wrote in a letter of
1676 to Henry Oldenburg:

By the series of Leibniz also if half the term in the last place be added and some other like device
be employed, the computation can be carried to many figures.

Though the accomplishments of Madhava and his followers are quite impressive, the
members of the school do not appear to have had any interaction with people outside of
the very small region where they lived and worked. By the end of the sixteenth century,
the school ceased to produce any further original works. Thus, there appears to be no
continuity between the ideas of the Kerala scholars and those outside India or even
from other parts of India.

1.2 Transformation of Series

The series in equations B.2 and B.3 are transformations of

∞∑
k=1

(−1)k−1

k

by means of the rational approximations for the remainder. To understand this
transformation in modern notation, observe:

π

4
= (1−f1(2))−

(
1

3
−f1(2)−f1(4)

)
+
(

1

5
−f1(4)−f1(6)

)
−·· · . (1.8)

The (n + 1)th term in this series is

1

2n+ 1
−f1(2n)−f1(2n+ 2)= 1

2n+ 1
− 1

4n
− 1

4(n+ 1)
= −1

(2n+ 1)3 − (2n+ 1)
.

(1.9)
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Thus, we arrive at equation B.2. Equation B.3 is similarly obtained:

π

4
= (1−f2(2))−

(
1

3
−f2(2)−f2(4)

)
+
(

1

5
−f2(4)−f2(6)

)
−·· · , (1.10)

and here the (n+ 1)th term is

1

2n+ 1
− n

(2n)2 + 1
− n+ 1

(2n+ 2)2 + 1
= 4

(2n+ 1)5 + 4(2n+ 1)
. (1.11)

Clearly, the nth partial sums of these two transformed series can be written as

si(n)= 1− 1

3
+ 1

5
− 1

7
+·· ·∓ 1

2n− 1
±fi(2n), i = 1,2. (1.12)

Since series (1.8) and (1.10) are alternating, and the absolute values of the terms are
decreasing, it follows that

1

(2n+ 1)3 − (2n+ 1)
− 1

(2n+ 3)3 − (2n+ 3)
<

∣∣∣π
4
− s1(n)

∣∣∣
<

1

(2n+ 1)3 − (2n+ 1)3
. Also, (1.13)

4

(2n+ 1)5 + 4(2n+ 1)
− 4

(2n+ 3)5 + 4(2n+ 3)
<

∣∣∣π
4
− s2(n)

∣∣∣
<

4

(2n+ 1)5 + 4(2n+ 1)
. (1.14)

Thus, taking fifty terms of 1 − 1
3 + 1

5 − ·· · and using the approximation f2(n), the
last inequality shows that the error in the value of π becomes less than 4 × 10−10.
The Leibniz series with fifty terms is normally accurate in computing π up to only
one decimal place; by contrast, the Keralese method of rational approximation of the
remainder produces numerically useful results.

1.3 Jyesthadeva on Sums of Powers

The Sanskrit texts of the Kerala school with few exceptions contain merely the
statements of results without derivations. It is therefore extremely fortunate that
Jyesthadeva’s Malayalam text Yuktibhasa, containing the methods for obtaining the
formulas, has survived. Sankara Variyar’s Yuktidipika is a modified Sanskrit version of
the Yuktibhasa. It seems that the Yuktibhasa was the text used by Jyesthadeva’s stu-
dents at his illam. From this, one may surmise that Variyar, a student of Nilakantha,
also studied with Jyesthadeva whose illam was very close to that of Nilakantha.

A basic result used by the Kerala school in the derivation of their series is that

lim
n→∞

1

np+1

n∑
k=1

kp = 1

p+ 1
. (1.15)
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This relation has a long history; sums of powers of integers have been used in the study
of area and volume problems at least since Archimedes. Archimedes summed

S(p)n =
n∑
k=1

kp

for p= 1 and p= 2. For p= 2, he proved the more general result: IfA1,A2, . . . ,An are
n lines (we may take them to be numbers) forming an ascending arithmetical
progression in which the common difference is equal to A1 (the least term), then

(n+ 1)A2
n+A1(A1 +A2 +·· ·+An)= 3(A2

1 +A2
2 +·· ·+A2

n). (1.16)

This implies that

3(12 + 22 +·· ·+n2)= n2(n+ 1)+ (1+ 2+ 3+·· ·+n). (1.17)

Archimedes used this formula in his work on spirals and in computing the volume of
revolution of a segment of a parabola about its axis. The celebratedArab mathematician
al-Haytham (c.965–1039), known also as Alhazen, generalized Archimedes’s formula
to find the volume of revolution of segment of a parabola about its base. The calcu-
lation involved sums of cubes and fourth powers of integers. Al-Haytham proved his
generalization by means of a diagram; it can be expressed in modern notation by

(n)S(p)n = S(p)n +S(p−1)
1 +S(p−1)

2 +·· ·+S(p−1)
n−1 . (1.18)

It is interesting that the statement of Jyesthadeva’s first lemma leading to the proof of
(1.15) is a restatement of al-Haytham’s formula; Jyesthadeva’s result was stated:

Whenever we wish to obtain the sum (sankalitam) of any given powers [say the pth powers of
natural numbers, up to an assigned limit n], we multiply the sankalitam of the next lower powers
[that is, (p− 1)th powers, up to the given limit n] by the limit [n]. The result will contain the
required sankalitam and also the sankalitam of all the sankalitams of all lower powers up to various
limits.

Jyesthadeva’s next lemma stated:

Multiply the lower [power] sankalitam [up to the limit of n] by the limit [n]. Subtract from this
product the result of dividing the product by an integer one more than the given power [p]. The
result will be [asymptotically equal to] the desired sankalitam.

Thus

nS(p−1)
n

(
1− 1

p+ 1

)
∼ S(p)n as n→∞. (1.19)

Jyesthadeva proved this result inductively, but he did not perform the induction com-
pletely. It is easy to see that (1.19) is equivalent to (1.15) and thus Jyesthadeva assumed
that

S(p−1)
n ∼ np/p,
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which is certainly true for p = 1. From this it can be deduced that

S
(p−1)
1 +S(p−1)

2 +·· ·+S(p−1)
n ∼ 1p+ 2p+·· ·+np

p
= S(p)n

p
as n→∞.

Jyesthadeva asserted this but verified it only for p = 2 and 3. But once we fill in the
gap by proving this for all p, equation (1.18) implies that

(n+ 1)S(p−1)
n ∼ S(p)n + S(p)n

p
as n→∞.

Hence by the inductive hypothesis it follows that

S(p)n ∼ np+1

p+ 1
as n→∞.

This was Jyesthadeva’s argument for (1.15).

1.4 Arctangent Series in the Yuktibhasa

The following derivation of the arctangent series, attributed to Madhava, boils down
to the integration of 1/(1+ x2), as do the methods of Gregory and Leibniz.

In Figure 1.1,AC is a quarter circle of radius one with centerO;OABC is a square.
The side AB is divided into n equal parts of length δ so that nδ = 1 and Pk−1Pk = δ.
EF and Pk−1D are perpendicular to OPk. Now, the triangles OEF and OPk−1D are
similar, implying that

EF

OE
= Pk−1D

OPk−1
or EF = Pk−1D

OPk−1
.

The similarity of the triangles Pk−1PkD and OAPk gives

Pk−1Pk

OPk
= Pk−1D

OA
or Pk−1D = Pk−1Pk

OPk
.

Thus,

EF = Pk−1Pk

OPk−1OPk
� Pk−1Pk

OP 2
k

= Pk−1Pk

1+AP 2
k

= δ

1+ k2δ2
.

O

C B

A

Pk�1

Pk

E

F DG

Figure 1.1. Rectifying a circle by the arctangent series.
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Now

arcEG�EF � δ

1+ k2δ2
,

and if we write APk = x = tan θ , where θ =AÔPk, then

arctan x = lim
k→∞

k∑
j=1

δ

1+ j 2δ2
. (1.20)

To compute this limit, Jyesthadeva expanded 1
1+j2δ2 as a geometric series. He derived

the series by an iterative procedure:

1

1+ x = 1− x
(

1

1+ x
)
= 1− x

(
1− x

(
1

1+ x
))

.

Thus, (1.20) is converted to

arctan x = lim
k→∞

δ k∑
j=1

1− δ3
k∑
j=1

j 2 + δ5
k∑
j=1

j 4 −·· ·


= lim
k→∞

x
k

k∑
j=1

1− x3

k3

k∑
j=1

j 2 + x5

k5

k∑
j=1

j 4 −·· ·


= x− x3

3
+ x5

5
−·· · .

The last step follows from (1.15). Note that this is the Madhava–Gregory series for
arctanx and the series for π/4 follows by taking x = 1.

1.5 Derivation of the Sine Series in the Yuktibhasa

Once again, Madhava’s derivation of the sine series has similarities with Leibniz’s
derivation of the cosine series. In Figure 1.2, suppose that AÔP = θ,OP = R, P is
the midpoint of the arc P−1P1, and PQ is perpendicular to OA, where O is the origin
of the coordinate system. Let P = (x,y),P1 = (x1,y1), and P−1 = (x−1,y−1). From the
similarity of the triangles P−1Q1P1 and OPQ, we have

P−1P1

OP
= x−1 − x1

y
= y1 − y−1

x
. (1.21)

For a small arcP−1P =,θ/2, identified by Jyesthadeva with the line segmentP−1P ,
we can write (1.21) as

cos

(
θ + ,θ

2

)
− cos

(
θ − ,θ

2

)
=−sin θ ,θ and (1.22)

sin

(
θ + ,θ

2

)
− sin

(
θ − ,θ

2

)
= cos θ ,θ. (1.23)
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O
u

Q
A

P1

P

P�1

Q1

Figure 1.2. Derivation of the sine series.

In fact, Bhaskara earlier stated this last relation and proved it in the same way; he
applied it to the discussion of the instantaneous motion of planets. Interestingly, in
the 1650s, Pascal used a very similar argument to show that

∫
cos θ dθ = sin θ and∫

sin θ dθ =−cos θ.
From (1.22) and (1.23) Jyesthadeva derived the result, given in modern notation:

sin θ − θ =−
∫ θ

0

∫ t

0
sin ududt. (1.24)

We also note that Leibniz found the series for cosine using a similar method of repeated
integration. In Jyesthadeva, the integrals are replaced by sums and double integrals by
sums of sums. The series is then obtained by using successive polynomial approxi-
mations for sin θ . For example, when the first approximation sin u≈ u is used in the
right-hand side of (1.24), the result is

sin θ − θ ∼−θ
3

3! or sin θ ∼ θ − θ3

3! .
When this approximation is employed in (1.24), we obtain

sin θ − θ ∼−θ
3

3! +
θ5

5! .
Briefly, Jyesthadeva arrived at the sums approximating (1.24) by first dividingAP into
n equal parts using division points P1,P2, . . . ,Pn−1. Denote the midpoint of the arc
Pk−1Pk as Pk−1/2. Then by (1.21)

xk+1/2 − xk−1/2 =−,θ
2R
yk, k = 1,2, . . . ,n− 1. (1.25)

We also have

(yk+1 − yk)− (yk− yk−1)= ,θ

2R

(
xk+1/2 − xk−1/2

)
, k = 1, . . . ,n− 1 or (1.26)

yk+1 − 2yk+ yk−1 =−
(
,θ

2R

)2

yk, k = 1,2, . . . ,n− 1. (1.27)
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Now start with k= n−1 and multiply the equations by 1,2, . . . ,n−1 respectively and
sum up the resulting equations. We then have

yn−ny1 =−
(
,θ

2R

)2

(yn−1 + 2yn−2 +·· ·(n− 1)y1)

=−
(
,θ

2R

)2

(y1 + (y1 + y2)+·· ·+ (y1 + y2 +·· ·yn−1)) . (1.28)

This is the result corresponding to (1.24). To obtain the successive polynomial approxi-
mations, Jyesthadeva had to work with sums of powers of integers; in order to deal with
these sums, he applied the same lemma (1.15) he had used for the arctangent series.

1.6 Continued Fractions

The noted twelfth-century Indian mathematician Bhaskara, who lived and worked in
the area now known as Karnataka, used continued fractions in his c. 1150 Lilavati. The
Kerala school was certainly familiar with Bhaskara’s work, since they commented on
it. It is therefore possible that they were aware of the specific continued fractions (1.2)
and (1.6) for the error terms, even though they mentioned only the first few convergents
of these fractions. They did not indicate how they obtained these convergents. Some
historians have suggested that Madhava may have found the approximations for the
error term, without knowing the continued fractions, by comparing the first few partial
sums of the series with a known rational approximation of π . Others speculate that
Madhava may have used a method of Wallis.

Whether or not Madhava knew it, Wallis’s technique can be used to derive the
continued fractions of which the Kerala school gave the convergents; this may be of
interest. Start with the functional equation (1.4) for f (n),

f (n+ 1)+f (n− 1)= 1

n
. (1.29)

It is obvious that a first approximation for f (n) is given by f (n)≈ 1
2n . As a first step

toward the continued fraction for f (n), set

f (n)= 1

2r(0)n
and r(0)n = n+ 1

r
(1)
n

. (1.30)

It follows from (1.29) that r(0)n satisfies(
2r(0)n+1 −n

)(
2r(0)n−1 −n

)
= n2. (1.31)

From (1.30)

2r(0)n+1 −n= n+ 2+ 2

r
(1)
n+1

,
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and a similar relation holds for r(0)n−1. When these values are substituted in (1.31), some
calculation gives us (

2r(1)n+1 − (n− 2)
)(

2r(1)n−1 − (n+ 2)
)
= n2. (1.32)

Once again, r(1)n ≈ n. So assume r(1)n = n+ 1/s(2)n and substitute in (1.32) to get, after
simplification,

16s(2)n−1s
(2)
n−1 − 2(n+ 4)s(2)n+1 − 2(n− 4)s(2)n−1 − 4 = 0.

To obtain an equation such as (1.31) or (1.32), multiply this last equation by 4, set

s(2)n = r(2)n /22,

and add n2 to both sides to get(
2r(2)n+1 − (n− 4)

)(
2r(2)n−1 − (n+ 4)

)
= n2. (1.33)

We then have r(1)n = n+ 22/r(2)n . A similar calculation shows that

r(2)n = n+ 32/r(3)n

satisfies the equation (
2r(3)n+1 − (n− 6)

)(
2r(3)n−1 − (n+ 6)

)
= n2. (1.34)

Inductively, it can be shown that if

r(k−1)
n = n+ k2/r(k)n , and(

2r(k−1)
n+1 − (n− 2(k− 1))

)(
2r(k−1)
n−1 − (n+ 2(k− 1))

)
= n2, then(

2r(k)n+1 − (n− 2k)
)(

2r(k)n−1 − (n+ 2k)
)
= n2.

It follows that f (n) has the continued fraction expansion (1.2). In a similar way, we
may obtain the continued fraction (1.6) for g(n) if we start with the functional relation

g(n− 1)+g(n+ 1)= 1

n2 − 1
.

It may be instructive to consider another method for finding the continued fractions
of the Kerala school, also a method for obtaining the successive convergents. There is
certainly no clear indication that this method was discovered before Gauss did so in his
work on approximate quadrature, published in 1813. Start with a series of the form

f (n)= a1

n
+ a2

n2
+ a3

n3
+·· · . (1.35)
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Note that it is always possible to associate a continued fraction with (1.35) by applying
successive division. Write (1.35) as

f (n)= 1

n/a1 − a2/a
2
1 + t1(n)

. (1.36)

From this we can see that

t1(n)= b1

n
+ b2

n2
+ b3

n3
+·· · ,

a series of the same kind as (1.35). So the process can be continued, and the result is a
continued fraction for f (n). To find the numbers a1, a2, a3, a4, . . . , substitute (1.35) in
(1.29). The first four values are

a1 = 1/2, a2 = 0, a3 =−1/2, a4 = 0.

From these values, we obtain the second convergent of the continued fraction for f (n)
by applying the process described in (1.36):

1

2n+ 2
n

= n

2(n2 + 1)
.

By also usinga5 = 5/2 anda6 = 0, we obtain the third convergent: (n2+4)/(2n(n2+5)).
One problem that arises in the computation of a1, a2, a3, etc., is finding the series
expansions of 1/(n+ 1)2, 1/(n− 1)2, 1/(n+ 1)3, etc. Although this may appear to
require knowledge of the binomial theorem for negative integer powers, observe that
the series may be obtained by repeatedly multiplying the geometric series by itself. In
our chapter on the binomial theorem, we see that Newton verified the correctness of
his binomial theorem by multiplying series.

1.7 Exercises

1. Prove that if C is the circumference and D the diameter of a circle, then

C=3D+6D

(
1

(2 · 22−1)2−22
+ 1

(2 · 42−1)2−42
+ 1

(2 · 62−1)2−62
+ ·· ·

)
.

This result (equivalent to B.5) is easily derived from series B.2; it is con-
tained in the Karanapaddhati, by an unknown author from the Putumana illam in
Sivapur, Kerala. The result is described: “Six times the diameter is divided sepa-
rately by the square of twice the squares of even integers minus one, diminished
by the squares of the even integers themselves. The sum of the resulting quo-
tients increased by thrice the diameter is the circumference.” See Bag (1966).
Also see Srinivasienger (1967), p. 149.

2. Compute

1− 1

3
+ 1

5
−·· ·+ 1

149
−f3(150)
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where f3 is defined in (1.4). This gives π correct to eleven decimal places.
In one of his astronomical works, Madhava gave a value of π : “For a circle of
diameter 9×1011 units, the circumference is 2,827,433,38,233 units.” This gives
the approximate value of π as 3.14159265359, correct to eleven decimal places.
The Sadratnamala by Sankara Verman of unknown date gives π to seventeen
decimal places. See Parameswaran (1983), p. 194, and Srinivasiengar (1967).

3. Prove al-Haytham’s formula (1.18).
4. This exercise outlines the proof of Paramesvara’s formula for the radius of the

circle circumscribing a cyclic quadrilateral, as given in the Kriyakramakari.
First, prove that the product of the flank sides of any triangle divided by the
diameter of its circumscribed circle is equal to the altitude of the triangle. This
result follows from a rule given by Brahmagupta (c. 628) in an astronomical
work, the Brahmasphutasiddhanta.

Next, prove that the area of the cyclic quadrilateral is given by

A=√
s(s− a)(s− b)(s− c) where s = (a+ b+ c+ d)/2

and a,b,c,d are the lengths of the sides of the quadrilateral. This was also
stated by Brahmagupta. The Yuktibhasa contains a complete proof. See also
Kichenassamy (2010), who convincingly argues that Brahmagupta had a proof
and reconstructs it from indications in Brahmasphutasiddhanta.

Then, letABCD′ be the quadrilateral obtained fromABCD by interchanging
the sides AD and CD, so that AD′ = CD = c and CD′ = AD = d. Show that
if x,y,z denote the three diagonals AC,BD,BD′, respectively, then

yz= ab+ cd,zx = bc+ da,xy = ca+ bd.

This is, of course, Ptolemy’s theorem. Ptolemy’s formula is equivalent to the
addition formula for the sine function; his Almagest, containing this relation,
is heavily indebted to the Chords in a Circle of Hipparchus. Bhaskara defined
the three diagonals in his Lilavati. See Boyer and Merzbach (1991) and Maor
(1998), pp. 87–94. Finally, prove that the radius of the circle circumscribing the
cyclic quadrilateral is

r =
√

(ad+ bc)(ac+ bd)(ab+ cd)
(b+ c+ d− a)(c+ d+ a− b)(d+ a+ b− c)(a+ b+ d− d) .

This is Paramesvara’s formula, sometimes attributed to S. A. J. L’Huillier who
published it in 1782. See Gupta (1977).

5. Use Archimedes’s formula (1.17) to show that

n∑
k=1

k2 = 1

3
n3 + 1

2
n2 + 1

6
n.
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6. Use al-Haytham’s formula (1.19) to obtain

n∑
k=1

k3 = 1

4
n4 + 1

2
n3 + 1

4
n2 and

n∑
k=1

k4 = 1

5
n5 + 1

2
n4 + 1

3
n3 − 1

30
n.

7. Prove that with the notation as in (1.18),

S(p−1)
n

np
∼ 1

p
implies that

S
(p−1)
1 +S(p−1)

2 +·· ·+S(p−1)
n

1p+ 2p+·· ·+np ∼ 1

p
as n→∞.

This proves the missing step in the Yuktibhasa.

1.8 Notes on the Literature

The Weierstrass quotation at the beginning of the preface is a translation by the author
of a passage in a letter to Casorati; see Neuenschwander (1978b), p. 73. It seems that
the work of Madhava and his followers on series became known outside India only
when a British civil servant and Indologist, Charles M. Whish, wrote a paper on the
subject, posthumously published in the Transactions of the Royal Asiatic Society of
Great Britain and Ireland in 1835. This journal was founded by British Indologists in
the early 1830s, though Sir William Jones had first conceived the idea about fifty years
earlier. Unfortunately, Whish’s paper had little impact. Interest in the Kerala school
was renewed in the twentieth century by the efforts of C. Rajagopal and his associates,
who published several papers on the topic. See Rajagopal (1949), Rajagopal and Aiyar
(1951), Rajagopal and Venkataraman (1949), Rajagopal and Rangachari (1977), and
Rajagopal and Rangachari (1986). The translation of the verse enunciating the series
for sine is taken from Rajagopal and Rangachari (1977), p. 96. The translations of
verses in the Yuktibhasa concerning sums of powers are contained in Rajagopal and
Aiyar (1951), p. 70. Newton’s letter is quoted from Newton (1959–60), p. 140. We
discussed two methods for deriving continued fractions for the remainder term; for
further details, see Srinivasiengar (1967), pp. 149–151 and Rajagopal and Rangachari
(1977). The latter paper makes use of Whiteside’s (1961) reconstruction of Wallis’s
incomplete derivation of Brouncker’s continued fraction for π .

The Yuktibhasa of Jyesthadeva and the Tantrasangraha of Nilakantha have recently
been published with commentaries in English by Sarma (1977) and (2008). Sarma
(2008) was posthumously published with additional notes by Ramasubramanian,
Srinivasa, and Sriram. This two-volume translation with extensive and informative
commentary contains both the mathematical and astronomical portions; the original
Malayalam text extends to 300 pages. Sarma (1972) also discusses the Kerala school,
but from the astronomical point of view. Biographical information on the members of
the Kerala school, as well as numerous other ancient and medieval Indian astronomers
and mathematicians, can be found in David Pingree’s five-volume work (1970–1994).
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Readers who wish to read more on the Indian work on series, but with modern nota-
tion, may consult Roy (1990), Katz (1995), and Bressoud (2002). These papers are
conveniently available in Anderson, Katz, and Wilson (2004). Also see the papers by
Parameswaran (1983) on Madhava, Bag (1966) on the Karanapaddhati, Gupta (1977)
on Paramesvara’s rule for radius of the cyclic quadrilateral, and Sarma and Hariharan
(1991) on the Yuktibhasa. Plofker (2009) presents a scholarly, detailed, and readable
discussion of Kerala mathematics, with several excerpts on π translated from Sankara
Variyar’s Kriyakramakari. She also presents the derivation of the sine series with trans-
lations from the Yuktidipika and describes Takao Hayashi’s suggested reconstruction of
Madhava’s remainder term results. In order to derive the continued fraction, Hayashi
and his collaborators have compared the values of partial sums of Madhava’s series
for π with the then-known rational approximations for π . Van Brummelen (2009), on
the history of trigonometry, discusses the contributions of the Kerala school and relates
them to the astronomical work of medieval India. In the context of the development
of astronomy, Van Brummelen (2009) presents the Yuktibhasa derivation of the sine
series. This accessible presentation is very helpful, since the mathematics of the Kerala
school was largely motivated by an interest in astronomy.
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Sums of Powers of Integers

2.1 Preliminary Remarks

Archimedes, and most probably the ancient Babylonian mathematicians, discovered
the formulas for the sum of the first n integers and for the sum of the squares of
these integers. Archimedes applied these formulas to area and volume problems.
Moreover, the great mathematician and physicist al-Haytham extended Archimedes’s
results to cubes and fourth powers and gave a recursive procedure for finding each
successive power. Recall that Madhava and his successors employed this method in
the course of their work on power series for trigonometric functions. When evalu-
ating integrals, they were focused on the asymptotic value of the sums of powers:

S(p)n ∼ np+1

p+ 1
as n→∞, (2.1)

where sum S(p)n = 1p+ 2p+·· ·+np.
The work of Archimedes and al-Haytham showed that S(p)n could be expressed as a

polynomial in n; the asymptotic value simply yields the term with the highest power.
Because Madhava and his school were primarily interested in integration, and thus in
the highest power, they failed to note the full significance of the polynomial itself.

In the seventeenth century, Fermat was very interested in asymptotic values, since
he too wished to evaluate

∫ a
0 x

p dx. While the Indians followed the geometric approach
of al-Haytham, Fermat arrived at his results through figurate numbers.

By contrast, in the early seventeenth century, Johann Faulhaber (1580–1635) ini-
tiated an approach to the topic of sums of powers, taking an algebraic and number
theoretic point of view. Thus, he gave the expression of sums of powers as a polyno-
mial, of which the asymptotic value was just the first term. Faulhaber’s approach was
also motivated by his fascination with figurate numbers.

The figurate numbers have been studied since ancient times. The one-dimensional
figurate numbers are merely the consecutive positive integers 1,2,3, . . . ,n. The two-
dimensional figurate numbers are the triangular numbers, where the nth triangular

16
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number is the sum of the first n consecutive numbers:

1,1+ 2 = 3,1+ 2+ 3 = 6,1+ 2+ 3+ 4 = 10, . . . ,n(n+ 1)/2.

The three-dimensional figurate numbers are the pyramidal or tetrahedral numbers such
that the nth pyramidal number is the sum of the first n triangular numbers:

1,4,10,20, . . . ,n(n+ 1)(n+ 2)/6, . . . .

There exists an ancient Egyptian papyrus (c. 300 BC) containing the formula for the
nth triangular and tetrahedral numbers. These formulas in modern notation can be
written as

n∑
k=1

(
k

1

)
=

(
n+ 1

2

)
, (2.2)

n∑
k=1

(
k+ 1

2

)
=

(
n+ 2

3

)
. (2.3)

When written this way, it is clear that the figurate numbers are related to the number
of combinations of k things chosen fromm different things, for appropriatem and k. It
appears that the connection between figurate numbers and combinations was recognized
by Narayana Pandita whose Ganita Kaumudi of 1356 makes this explicit.

Narayana Pandita also algebraically extended the figurate numbers by taking sums
of sums of sequences. So the sequence after the tetrahedral numbers would be

1, 1+ 4 = 5, 1+ 4+ 10 = 15, 1+ 4+ 10+ 20 = 34, . . . .

Some of the earlier mathematicians may have refrained from doing this because they
did not conceive of dimensionality beyond three as meaningful. In effect, Narayana
had the formula

n∑
k=1

(
k+p− 1

p

)
=

(
n+p
p+ 1

)
, p = 1,2,3, . . . . (2.4)

Fermat rediscovered (2.4) around 1635, though he apparently never wrote down
a proof. In the margin of his copy of Diophantus’s Book on Polygonal Numbers, he
wrote that he had discovered this proposition and called it beautiful and wonderful. He
also noted that the margin was too small to contain his proof, though we may surmise
it to have been an inductive proof. It was the common practice of mathematicians
up to the nineteenth century to work out a number of special cases as evidence for
the correctness of the general result. But in his work Plane Loci Fermat proved a
proposition by induction and included the crucial n to n+ 1 step; one may surmise
that Fermat accomplished this around 1630. It is possible that Fermat had learned of
the need to supply this step from F. Maurolico’s Arithmeticorum Libri Duo, written
in 1557 and published in 1575. Maurolico proved by complete induction that the sum
of the first n odd integers was n2. Also, in 1654 Pascal gave a lucid exposition of
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mathematical induction in his treatise on the arithmetical triangle; he too was familiar
with Maurolico’s work.

In fact, Fermat used (2.4) to determine the asymptotic values of sums of powers. To
see this, observe that since(

n+p− 1
p

)
= n(n+ 1)(n+ 2) · · ·(n+p− 1)

p!
= np

p! + terms of lower order,

we can write (2.4) as

n∑
k=1

(
kp

p! + lower order terms

)
= np+1

(p+ 1)! + lower order terms.

This implies (2.1).
The work of the English mathematicians Thomas Harriot and Henry Briggs on prob-

lems related to interpolation shows that they also understood formula (2.4). The German
algebraist and arithmetician Johann Faulhaber also independently discovered (2.4),
but his motivation was an interest in numbers and in particular the figurate numbers.
However, his results do not seem to have influenced Fermat, Harriot, or Briggs.

Faulhaber (1580–1635) was born in Ulm, Germany, and learned the weaving trade
from his father. His love of computation led him to study mathematics. His knowledge of
Latin was not very good, so in the course of his studies, he laboriously translated several
mathematical texts, ancient and modern, into German. He founded a school for engi-
neers in the early 1600s and wrote treatises on arithmetical questions. Faulhaber gave
an algorithm for expressing S(p)n as a polynomial in n; though he worked with Bernoulli
numbers, he failed to note their significance. It was not the practice in Faulhaber’s time
to give proofs of algorithms. Two centuries later, in a paper on the Euler–Maclaurin
formula, Jacobi provided proofs of some of Faulhaber’s formulas.

Around 1700, Jakob Bernoulli gave a simple method for computing the polynomial
in n for S(p)n . Bernoulli numbers, a sequence of rational numbers, play a significant role
in the determination of this polynomial. Bernoulli’s interest in the summation of finite
and infinite series was connected with his study of probability theory. Jakob Bernoulli
(1654–1705) was the eldest in an illustrious scientific and mathematical family, includ-
ing his brother Johann, nephews Niklaus I, Niklaus II, Daniel, and Johann II. In 1676,
Bernoulli received a degree in theology from the University of Basel, intending to go
into the ministry. He then traveled in Europe, coming into contact with the Dutch math-
ematician Hudde and members of the Royal Society. These experiences aroused his
interest in science and mathematics. In the 1680s, he taught himself mathematics by
reading short treatments by Leibniz on differentiation and integration; he then taught
this subject to his younger brother Johann. One of the first mathematicians to grasp
Leibniz’s calculus, Jakob Bernoulli proceeded to apply it to fundamental problems in
mechanics and to differential equations. The study of Huygens’s treatise on games of
chance led Bernoulli to a study of probability theory, on which he wrote the first known
full-length text, Ars Conjectandi. From 1687 until his death, Bernoulli happily served
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as professor of mathematics at Basel, in spite of a salary more meager than he would
have received as a clergyman. This professorship was occupied by a member of the
Bernoulli family for one hundred years.

Although he spent many years on the problems contained in his probability treatise,
he never completed it. It appears that he wished to include several problems arising out
of “civil, moral, and economic matters,” i.e., applications to practical situations. For
example, even a year before his death, he repeated his earlier request to Leibniz for
a hard-to-find copy of Jan de Witt’s work on annuities and life expectancy. Ars Con-
jectandi was posthumously published in 1713 by Jakob Bernoulli’s son Niklaus with a
foreword by his nephew Niklaus I. Publication was delayed when Jakob’s immediate
family, fearing academic dishonesty, refused to hand over the manuscript to Johann or
to Niklaus I. The first part of the book consisted in Huygens’s treatise with extensive
annotations.

2.2 Johann Faulhaber and Sums of Powers

Faulhaber published his Academia Algebrae in 1631. In spite of the Latin title, the text
is in German and in it he discussed the sums of powers of integers. He wished to study
the polynomial in n determined by

∑n

k=1 k
p. He explicitly wrote down the polynomial

expressions for p = 1,2, . . .17 and an encryption at the end of the book indicates that
he had carried out the computation up to p= 25. He also expressed these polynomials
in powers of the triangular numbers N = n(n+ 1)/2 with rational coefficients and
gave an algorithm to determine these coefficients. For example, Faulhaber presented
the formulas

n∑
k=1

k15 = 1
12 (192N 8 − 768N7 + 1792N6 − 2816N5 + 2872N4 − 1680N3 + 420N2),

n∑
k=1

k17 = 1
45

(
1280N 9 − 6720N8 + 21120N7 − 46880N6 + 72912N5 − 74220N4

+ 43404N 3 − 10851N2
)
.

More generally he showed that

n∑
k=1

k2m =
(

n∑
k=1

k2

)(
b1 + b2N + b3N +·· ·+ bmNm−1

)
, (2.5)

n∑
k=1

k2m+1 =N2
(
c1 + c2N + c3N

2 +·· ·+ cmNm−1
)
. (2.6)

Faulhaber gave a procedure for finding bi from ci , amounting to

3(j + 1)cj = 2(2m+ 1)bj , j = 1,2, . . .m. (2.7)

He also gave a method for obtaining the ci themselves.
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Like Narayana Pandita, Faulhaber also considered sums of sums. To understand
Faulhaber’s insight here, consider

2∑
nm ≡

n∑
j=1

j∑
k=1

km and
3∑
nm ≡

n∑
j=1

j∑
h=1

h∑
k=1

km

and so on. Faulhaber saw that the r-fold sum
∑r

n2m could be written as a polynomial
in n(n+ r) times

∑r
n2, while

∑r
n2m+1 would be such a polynomial times

∑r
n.

He explicitly wrote down the 17th degree polynomial equal to
∑11

n6. In fact, this
expression was verified in 1993 by Donald Knuth.

In 1834, Jacobi gave a slightly different formulation of the Faulhaber results
connected with (2.5) and (2.6). He stated that

1

2m+ 1

d

dn

(
n∑
k=1

k2m+1

)
=

n∑
k=1

k2m. (2.8)

Moreover, he observed that for u= n(n+ 1) and

n∑
k=1

k2m+1 = 1

2m+ 2

(
um+1 − d1u

m+ d2u
m−1 −·· ·(−1)m−1dm−1u

2
)
, (2.9)

the relation between the coefficients d1,d2, . . . ,dm−1 and the coefficients e1,e2, . . . ,

em−2 in

n∑
k=1

k2m−1 = 1

2m

(
um− e1u

m−1 + e2u
m−2 −·· ·+ (−1)mem−2u

2
)

(2.10)

would be given by

(2m+ 1)(2m+ 2)ek

= (2m− 2k+ 1)(2m− 2k+ 2)dk− (m− k+ 1)(m− k+ 2)dk−1, (2.11)

where

k = 1,2, . . . ,m− 1, d0 = 1, em−1 = 0.

Jacobi’s result shows that if the sum of the first n integers, each taken to an odd
power, is given as a polynomial in n(n+ 1), then this same sum, with each integer
taken to the next odd power, can be determined as a polynomial in n(n+1). Moreover,
the polynomial expression for a sum of integers taken to an even power can be obtained
by differentiating the polynomial for the sum of the next odd powers.

2.3 Jakob Bernoulli’s Polynomials

The second part of Bernoulli’s great probability treatise contains results on permuta-
tions and combinations. He rigorously worked out the connection between binomial



2.3 Jakob Bernoulli’s Polynomials 21

coefficients and figurate numbers. He thought that he was the first to do this, but Pascal
anticipated him in 1654. Bernoulli also rediscovered the formula (2.4) and applied it
to the problem of finding the sums of powers of integers. Herein he made his enduring
discovery of the role played by the sequence of rational numbers now named after him.
Bernoulli found a pattern in the coefficients of the polynomials for S(p)n that had been
missed by so outstanding an arithmetician as Faulhaber.

Bernoulli began by explicitly expressing S(p)n for p = 1,2, . . . ,10 as polynomials
in n:

Sums of Powers ∫
n= 1

2
nn+ 1

2
n.∫

n2 = 1

3
n3 + 1

2
nn+ 1

6
n.∫

n3 = 1

4
n4 + 1

2
n3 + 1

4
nn.∫

n4 = 1

5
n5 + 1

2
n4 + 1

3
n3 ∗− 1

30
n.∫

n5 = 1

6
n6 + 1

2
n5 + 5

12
n4 ∗− 1

12
nn.∫

n6 = 1

7
n7 + 1

2
n6 + 1

2
n5 ∗−1

6
n3 + 1

42
n.∫

n7 = 1

8
n8 + 1

2
n7 + 7

12
n6 ∗− 7

24
n4 ∗ 1

12
nn.∫

n8 = 1

9
n9 + 1

2
n8 + 2

3
n7 ∗− 7

15
n5 ∗+2

9
n3 ∗− 1

30
n.∫

n9 = 1

10
n10 + 1

2
n9 + 3

4
n8 ∗− 7

10
n6 ∗+1

2
n4 ∗− 1

12
nn.∫

n10 = 1

11
n11 + 1

2
n10 + 5

6
n9 ∗−1n7 ∗ 1n5 ∗−1

2
n3 ∗+ 5

66
n.

A. W. F. Edwards has noted that the last term in the polynomial for
∫
n9 should be

− 3
20n

2, rather than − 1
12n

2.
Bernoulli went on:

Any one who carefully observed the symmetry properties of this table will easily be able to continue
it. If we let c denote an arbitrary exponent, we have∫

nc = 1

c+ 1
nc+1+1

2
nc+ c

2
Anc−1 + c(c− 1)(c− 2)

2 · 3 · 4 Bnc−3

+c(c− 1)(c− 2)(c− 3)(c− 4)

2 · 3 · 4 · 5 · 6 Cnc−5

+c(c− 1)(c− 2)(c− 3)(c− 4)(c− 5)(c− 6)

2 · 3 · 4 · 5 · 6 · 7 · 8 Dnc−7 +·· · , (2.12)

the exponents of n decreasing by 2 until n or nn is reached. The capitals A,B,C,D, etc. denote,
in order, the last terms in the expressions of

∫
nn,

∫
n4,

∫
n6,

∫
n8 etc. namely

A= 1/6, B =−1/30, C = 1/42, D =−1/30.
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But these coefficients are so established that each of the coefficients along with the others of its
order adds up to one. Thus D =−1/30, since

1

9
+ 1

2
+ 2

3
− 7

15
+ 2

9
+D = 1.

Using this table, it took me less than a quarter of an hour to compute the tenth powers of the first
1000 integers; the result is

91, 409, 924, 241, 424, 243, 424, 241, 924, 242, 500.

This example shows the uselessness of the book Arithmetica Infinitorum by Ismael Bullialdus,
which is entirely devoted to a tremendously large computation of the sums of the six first powers –
less than what I have accomplished in a single page.

Bernoulli left it to the reader to use “the symmetry properties of this table” to figure
out how he obtained his general formula for the sums of powers. A little earlier in his
book, Bernoulli presented a “table of combinations or figurate numbers” and analyzed
it columnwise. Apply this idea to Bernoulli’s table on sums of powers. The progression
in the first column is easy to understand. Now in the second column, factor out 1/2
to obtain the progression 1,1,1, . . .; these form the first column of Bernoulli’s table of
figurate numbers. Next factor out the first number in the third column, 1/6, to obtain the
sequence 1,3/2,2,5/2,3, . . ., and this turns out to be 1/2 of the sequence 2,3,4,5,6, . . .
appearing in the second column of the figurate numbers table. The fourth column of the
sums of powers table consists of only zeros but factor out −1/30 from the fifth column
to obtain the progression 1,5/2,5,35/4,14, . . .. This last sequence is equal to 1/4 of
the fourth column in the figurate numbers table. These observations clarify Bernoulli’s
comment on the “symmetry properties of the table.” Note that the Bernoulli numbers
are formed by the sequence of coefficients of n in the polynomial expansions of the
various sums of powers. Today, however, we take the first Bernoulli number to be−1/2
rather than 1/2 so that the signs alternate.

In modern terminology, Bernoulli’s formula (2.12) can be written as

n−1∑
k=1

kc = 1

c+ 1

(
B0n

c+1 +
(
c+ 1

1

)
B1n

c+
(
c+ 1

2

)

×B2n
c−1 +

(
c+ 1

3

)
B3n

c−2 +·· ·+
(
c+ 1
c

)
Bcn

)
, (2.13)

where

B0 = 1, B1 =−1

2
, B2k+1 = 0 for k = 1,2, . . . ,

B2 = 1

6
, B4 =− 1

30
, B6 = 1

42
, B8 =− 1

30
, etc.

Bernoulli noted that these numbers could be calculated using

1

c+ 1

(
B0 +

(
c+ 1

1

)
B1 +

(
c+ 1

2

)
B2 +·· ·+

(
c+ 1
c

)
Bc

)
= 1. (2.14)
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This equation follows when n = 1 in (2.13). Faulhaber also noted this fact, useful in
successively finding the values of the Bernoulli numbers. Thus, if B2, B4 and B6 are
known, take c= 8 in (2.14) to get

1

9

(
1+

(
9
1

)
1

2
+
(

9
2

)
1

6
+
(

9
4

)(
− 1

30

)
+
(

9
6

)
1

42
+ 9B8

)
= 1,

or

1

9
+ 1

2
+ 2

3
− 7

15
+ 2

9
+B8 = 1

or

B8 =− 1

30
.

Although Bernoulli left us no proof of his formula, he may well have had one; in fact,
fairly straightforward inductive proofs exist. We note that the name Bernoulli numbers
was given in 1730 by de Moivre, when he used (2.12) in his work on the asymptotic
behavior of n! for large n. The notation Bk was introduced in the nineteenth century by
a number of mathematicians, though it often stood for B2k.

The Bernoulli polynomials are essentially those polynomials given by Faulhaber
and Bernoulli for the sums of powers; in the 1840s, Joseph Raabe formally defined
them:

Bc(x)= xc+
(
c

1

)
B1x

c−1 +
(
c

2

)
B2x

c−2 +·· ·+
(
c

c

)
Bc. (2.15)

From (2.13), it follows that the sums of powers can be explicitly obtained from the
Bernoulli polynomials by the equation

S
(c)

n−1 =
1

c+ 1
(Bc+1(n)−Bc+1) , c= 1,2,3, . . . . (2.16)

In the early 1730s, Euler found a generating function for the Bernoulli numbers,
apparently unaware that Bernoulli had already defined these numbers in a different
way. His generating function is given by

t

et − 1
=

∞∑
k=0

Bk

k! t
k.

This exponential generating function arose naturally and automatically in his work on
the Euler–Maclaurin summation formula. In fact, the function he expanded was

et

et − 1
= 1+ 1

et − 1
.

In his 1834 paper mentioned earlier, Jacobi gave the generating function for the
Bernoulli polynomials:

text

et − 1
=

∞∑
k=0

Bk(x)

k! t k.
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Once again, this discovery took place in the context of the Euler–Maclaurin summation
formula, as Jacobi was deriving an expression for the remainder term in the Euler–
Maclaurin series. Since the odd Bernoulli numbers B2k+1 vanish for k ≥ 1, Jacobi
worked only with the even Bernoulli polynomials.

2.4 Proof of Bernoulli’s Formula

In the first part of his 1755 differential calculus book Institutiones Calculi Differentialis,
Euler suggested deriving Bernoulli’s formula, (2.12), by means of finite differences,
but he did not provide any details. In the second part of his book, Euler derived (2.12)
using the Euler–Maclaurin summation formula. Sylvestre F. Lacroix (1765–1843), in
the third volume of his important text on calculus, summarized Euler’s ideas on finite
differences and then indicated how they could be worked into a proof. Lacroix inves-
tigated partial differential equations under the tutelage of Gaspard Monge but did not
pursue mathematical research. Rather, at the urging of Condorcet, he decided that his
broad knowledge of eighteenth-century mathematics should be put to use in the writing
of elementary and advanced mathematics textbooks. These books were widely popular,
going into numerous editions and translations. I here summarize Lacroix’s treatment
of Bernoulli’s formula.

Using Lacroix’s notation, let
∑
xm denote the sum

∑x−1
k=1 k

m ≡ S(x). Note that,
unlike Euler and Bernoulli, Lacroix took the sum up to x− 1, rather than x. With this
in mind, he had

S(x+ 1)−S(x)= xm.
Now Lacroix did not use subscripts such asAk, but we use the modern notation:Assume

∑
xm =

m+1∑
k=0

Akx
m+1−k.

Then

xm =
m+1∑
k=0

Ak
(
(x+ 1)m+1−k− xm+1−k)

=
m+1∑
k=0

Ak

((
m+ 1− k

1

)
xm−k+

(
m+ 1− k

2

)
xm−k−1 +·· ·+

(
m+ 1− k
m− k

)
x+ 1

)
.

Equate the powers of x to get

FA0 = 1

m+ 1
; A1 =−A0

(m+ 1)

2
=−1

2
; A2 =−A0

(m+ 1)m

2 · 3 −A1
m

2
= 1

6
· m

2
;

A3 =−A0
(m+ 1)(m(m− 1)

2 · 3 · 4 −A1
m(m− 1)

2 · 3 −A2
(m− 1)

2
= 0; etc.

Lacroix wrote that from these equations one could successively obtain the values of
the coefficients Ak, and he explicitly gave the values of Ak,k = 0,1, . . . ,20. Although
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he did not work out the general case, it is easy to do: If we take the coefficient of xm−k,
then we obtain

A0
(m+ 1)m(m− 1) · · ·(m− k+ 1)

(k+ 1)!
+A1

m(m− 1) · · ·(m− k+ 1)

k! + · · ·+Ak(m− k+ 1)= 0. (2.17)

We must show that

As =Csm(m− 1) · · ·(m− s+ 2) for s = 2, 3, 4, . . . ,

where Cs is some rational number independent of m. Now the result is true for m= 2.
Assume that A3, A4, . . . ,Ak−1 are of the required form. Then each term except the
last in (2.17) is of the form m(m− 1) · · ·(m− k+ 1) multiplied by a rational number
independent of m. Thus, by equation (2.17) the result follows. We may therefore write

As =
(
m

s− 1

)
Bs/s,

where Bs can be seen to be the sth Bernoulli number. This completes Lacroix’s
demonstration of Bernoulli’s formula.

2.5 Exercises

1. Prove Narayana’s formula (2.4).
2. Prove the inequality of Roberval

S
(p)

n−1 <
np+1

p+ 1
< S(p)n .

Roberval mentioned this inequality in a letter to Torricelli as a means of comput-
ing

∫ 1
0 x

p dx. Hofmann (1990), vol. 2, pp. 232 and 471 give references as well
as connections with the work of Fermat and Archimedes.

3. Prove Pascal’s formula(
m+ 1

1

)
d

n−1∑
k=0

(a+ kd)m+
(
m+ 1

2

)
d2

n−1∑
k=0

(a+ kd)m−1 +·· ·

+
(
m+ 1
m

)
dm

n−1∑
k=0

(a+ kd)

= (a+nd)m+1 − (am+1 +ndm+1). (2.18)

By taking a= 0 and d = 1, Pascal obtained an explicit recursion formula for the
sum of the mth powers. See Boyer (1943).

4. Prove Bernoulli’s formula (2.12) or (2.13) by induction.
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5. Use Bernoulli’s formula (2.12) to prove Jacobi’s statement that

d

dn

(
n∑
k=1

k2m+1

)
= (2m+ 1)

n∑
k=1

k2m form= 1,2,3, . . . .

6. Prove Jacobi’s recurrence relations (2.11) for the coefficients of the Faulhaber
polynomials.

7. Prove that the Faulhaber coefficients e0, e1, . . . ,em−2 in (2.10) satisfy Knuth’s
relations

e0 = 1,
k∑
j=0

(
m− j

2k+ 1− 2j

)
ej = 0. (2.19)

Expand uk = nk(n + 1)k in powers of n and then use the fact that B3 = 0,
B5 = 0, B7 = 0, etc. See Knuth (2003), pp. 61–84.

8. Use (2.16) and (2.10) to express e1, e2, . . . em−2 in terms of Bernoulli numbers.
See Knuth (2003), pp. 61–84.

2.6 Notes on the Literature

Faulhaber’s Academia Algebrae is now a very rare book. According to Knuth (2003),
p. 83, “An extensive search of printed indexes and electronic indexes indicates that
no copies have ever been recorded to exist in America, in the British Library, or the
Bibliothèque Nationale.” A copy is available at the Cambridge University Library,
and Knuth placed an annotated photocopy at the Mathematical Sciences Library at
Stanford University. Knuth (2003), pp. 61–84, has given an excellent summary of the
results in Faulhaber’s book, adding some details on the methods Faulhaber may have
used. Ivo Schneider (1983) also offers a discussion of the methods of Faulhaber. As
we have mentioned, Jacobi gave sophisticated proofs of some of these results without
referring to Faulhaber; this paper, De Usu Legitimo Formulae Summatoriae Maclau-
rinianae, can be found on pp. 64–75 of vol. VI of Jacobi’s collected papers. However,
A. W. F. Edwards discovered that the copy of Faulhaber’s book in the Cambridge
University Library had once belonged to Jacobi. Moreover, before Jacobi, it may well
have been in the possession of J. F. Pfaff. Luckily, Edwards brought Faulhaber’s pre-
viously neglected work to the attention of Knuth and the mathematical community. In
the past twenty years, two biographies of Faulhaber have appeared, by Schneider and
by Kurt Hawlitschek.

Jakob Bernoulli’s important Ars Conjectandi is now available in an English trans-
lation by Edith D. Sylla; see Bernoulli (2006). The quotation from Bernoulli on sums
of powers is from Bernoulli (2006), pp. 215–216. The translator’s helpful 126-page
introduction puts the book in historical context. Schneider’s nice article in Grattan–
Guinness (2005) provides a summary of the contents and explains its importance in the
development of probability theory.



2.6 Notes on the Literature 27

The material quoted from Lacroix can be found on pp. 82–85 of the third volume of
Lacroix (1819). Many old mathematical works have been difficult to find, although the
internet is changing this very rapidly. However, anyone wishing easy access to eigh-
teenth century analysis can do no better than to read the three volumes of Lacroix on
calculus. The first two discuss differential and integral calculus, while the third deals
with the calculus of finite differences. Lacroix performed a great service to mathe-
matics, not only by giving a clear exposition of the received mathematics of his day
but also by including a well-organized, section-by-section list of all the papers and
books from which he gleaned his expertise. Grattan–Guinness (2005) also includes
J. C. Domingues’s informative article on the first edition of Lacroix’s calculus work.
Illustrating the popularity of Lacroix, Domingues mentions that in 1812 Lacroix was
translated into Portugese in Brazil.

To gain further background in the topic of sums of powers and in the mathemat-
ics contributing to it, one may consult A. W. F. Edwards (2002), Mahoney (1994),
and (on Narayana) Bressoud (2002). One may also look at André Weil’s review, con-
tained in the third volume of his collected papers, of the first edition of Mahoney. This
review, although overly critical of Mahoney, contains a highly insightful and concise
summation of Fermat’s mathematical work.
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Infinite Product of Wallis

3.1 Preliminary Remarks

In 1655, John Wallis produced the following very important infinite product:

4

π
= 3

2
· 3

4
· 5

4
· 5

6
· · · · . (3.1)

This result appeared in his Arithmetica Infinitorum, published in 1656; in 1593 François
Viète gave the only earlier example of an infinite product, a calculation of the value of π
by inscribing regular polygons in a circle. The passage of 350 years has not diminished
the beauty and significance of Wallis’s result, the culmination of a series of remarkable
mathematical insights and audacious guesses; his book exercised great influence on the
early mathematical work of Newton and Euler.

John Wallis (1616–1703) apparently received little mathematical training at school
or at Emmanuel College, Cambridge. He taught himself elementary arithmetic from
textbooks belonging to his younger brother, who was going into a trade. It was only
during the English Civil War (1642–1648) that Wallis’s mathematical inclinations began
to be evident as he decoded letters for Parliament. The code operated by replacing letters
with numerical values. Wallis gained a feeling for numerical relationships through
this experience, and he applied it to his mathematical researches for the Arithmetica
Infinitorum. In fact, the manner in which he presented and analyzed the mathematical
data in his book is reminiscent of the way in which he decoded messages.

It was probably around 1646 that Wallis began delving more deeply into mathemat-
ics, by studying the famous Clavis Mathematicae by William Oughtred (1574–1660),
inventor of the slide rule. First published in 1631 and composed for the instruction of
the son of the Earl of Arundel, this book was widely studied and exerted a tremendous
influence on seventeenth-century English mathematics. A second edition in English
and then in Latin appeared in 1647 and 1648. The second edition was among the first
mathematical texts studied by Newton as a student in 1664. In the 1690s Newton recom-
mended that the book be reprinted for the new generation of students of mathematics.
The Clavis introduced Wallis to algebraic notation and to the method of applying algebra
to geometric problems in the manner developed by Viète in the 1590s.

28
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In 1649, Wallis was appointed to the Savilian Chair of Geometry at Oxford. The
valuable service Wallis had provided to the winning side in the Civil War helped him
attain this post. The Savilian Chair, endowed by Sir Henry Savile in 1619 to promote
development of mathematics in England, was the second endowed mathematics chair
in England; the first was founded in 1597 at Gresham College, London. With the rapid
advancement of mathematics after 1550, it had become clear that university instruction
in mathematics was essential, especially since this subject was proving useful in navi-
gation and military matters. In fact, Italy and France had already established a number
of mathematics professorships.

At the time of his appointment, Wallis knew little more than the contents of the
Clavis. But the professorship gave him access to the Savile Library with its fine col-
lection of mathematics books. Wallis was most influenced by Frans van Schooten’s
1649 Latin translation of René Descartes’s La Géométrie and Evangelista Torricelli’s
Opera Geometrica of 1644. Although Oughtred and Viète had employed algebra in the
study of geometry, Descartes took the process to a higher level by reducing the study
of curves to algebraic equations by means of coordinate systems. At around the same
time, Pierre Fermat (1607–1666) also made this major step, but his expositions on this
and other topics were unfortunately published only posthumously. Wallis’s first book,
De Sectionibus Conicis, written in 1652 and published in 1656, was clearly inspired
by Descartes. He obtained properties of conic sections algebraically, making extensive
use of the symbolic algebra developed by Harriot and Descartes. Wallis defined the
parabola, hyperbola, and ellipse by means of algebraic equations; he remarked that “It
is no more necessary that a parabola is the section of a cone by a plane parallel to a side
than that a circle is a section of a cone by a plane parallel to the base, or that a triangle
is a section through the vertex.”

Wallis learned of Bonaventura Cavalieri’s method of indivisibles from Torricelli;
Wallis regarded his own Arithmetica Infinitorum as a continuation of Cavalieri, an
accurate assessment. Wallis spent a fair amount of his book computing the area under
y= xm whenmwas a positive integer, using an arithmetical approach, as contrasted with
Torricelli’s geometrical method. Wallis then extended the result to the case m = 1/n
where n was a positive integer, by observing that the curve y = x1/n was identical to
x = yn when seen from the y-axis. Now when the area under y = xn on the interval
(0,1) was added to the area under x = yn, taken on the same interval on the y-axis, the
result was a square of area 1. But since Wallis had already found the area under y = xn
to be 1/(n+ 1), the area under y = x1/n turned out to be

1− 1

n+ 1
= n

n+ 1
= 1

(1/n)+ 1
. (3.2)

Wallis then jumped to the conclusion that the area under y = xm/n over the unit interval,
where m and n were positive integers, was

1

(m/n)+ 1
. (3.3)

In the Arithmetica, Wallis’s aim was to obtain the arithmetical quadrature of the circle.
In modern term this means that he wished to evaluate the integral

∫ 1
0 (1 − x2)1/2dx
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using numerical calculations. Since (3.3) gave the value of
∫ 1

0 x
m/n dx, Wallis’s plan

of attack was to compute
∫ 1

0 (1− x1/p)qdx for positive integer values of p and q and
then interpolate the values of the integral for fractional p and q. The area of the quarter
circle was obtained when p = q = 1/2. To compute

∫ 1
0 (1 − x1/p)qdx for integer q,

Wallis expanded the integrand and integrated term by term. For example, for q = 3 one
has (in modern notation)∫ 1

0
(1− x1/p)3dx =

∫ 1

0
(1− 3x1/p+ 3x2/p− x3/p)dx = 1− 3

1
p
+ 1

+ 3
2
p
+ 1

− 1
3
p
+ 1

.

In proposition 131, he tabulated thirty-six values of these integrals (or areas) for
1 ≤ p, q ≤ 6, of which we present the reciprocals:

2 3 4 5 6 7
3 6 10 15 21 28
4 10 20 35 56 84
5 15 35 70 126 210
6 21 56 126 252 462
7 28 84 210 462 924 .

Here the rows are given by p and the columns by q. Wallis observed that these were
figurate numbers. For example, the second row/column consisted of triangular numbers,
the third row/column of pyramidal numbers, and so on. It was already known (though
Wallis may have rediscovered this) that these numbers could be expressed as ratios of
two products. Thus the numbers in the pth row were given by

(q+ 1)(q+ 2) · · ·(q+p)
p! .

Therefore, if

w(p,q)= 1∫ 1
0 (1− x1/p)qdx

,

then Wallis had

w(p,q)= (q+ 1)(q+ 2) · · ·(q+p)
p! . (3.4)

Wallis then assumed that the formula continued to hold when q was a half integer. Of
course, p could not be taken to be a half integer since neither the denominator nor the
numerator would have meaning in that case. However, for p = 1/2 the integral would
be

∫ 1
0 (1 − x2)qdx; this could be easily computed when q was an integer. So Wallis

had a row corresponding to p = 1/2, and he got the values of w( 1
2 ,q) for q = 0, 1,

2, 3, . . . as

1,
3

2
=

1
2 + 1

1! ,
15

8
=

(
1
2 + 1

)(
1
2 + 2

)
2! ,

105

48
=

(
1
2 + 1

)(
1
2 + 2

)(
1
2 + 3

)
3! , . . . .
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To find w( 1
2 ,q) when q was a half integer, he observed that (3.4) implied (in our

notation)

w(p,q+ 1)=w(p,q)
p+ q+ 1

q+ 1
. (3.5)

From this relation, he could get the value of w( 1
2 ,

1
2 + n), for integer n, in terms of

w( 1
2 ,

1
2 ). So if A denoted w( 1

2 ,
1
2 )= 4/π , then the row corresponding to p = 1/2 and

q =− 1
2 , 0, 1

2 , 1, 3
2 , 2, 5

2 , · · · would be

1

2
A, 1, A,

3

2
,

4

3
A,

3× 5

2× 4
,

4× 6

3× 5
A,

3× 5× 7

2× 4× 6
, · · · . (3.6)

Wallis understood the rule for forming the subsequence of the first, third, fifth, . . .
terms and of the subsequence of the second, fourth, sixth, . . . terms, but he was initially
unable to see the law for constructing the full sequence. Wallis’s research was stalled
at this stage in the spring of 1652. He consulted a number of his mathematical friends
at Oxford including Christopher Wren, the famous architect, but none could help him.
Three years later, he informed Oughtred of the progress he had made and where he
was still stymied, ending his letter with the request, “wherein if you can do me the
favour to help me out; it will be a very great satisfaction to me, and (if I do not delude
myself) of more use than at the first view it may seem to be.” Apparently, Oughtred
could provide no assistance and eventually in the spring of 1655, Wallis requested help
from Brouncker, who sent back an infinite continued fraction to solve the problem. It
is likely that Brouncker’s solution inspired Wallis to discover his own very different
one, though some speculate that Wallis made his discovery independently.

William Brouncker (c. 1620–1684) may have studied at Oxford around 1636, though
he told his friend John Aubrey that he was “of no university.” However, Brouncker
was very proficient in languages as well as mathematics. He did all his surviving
mathematical work in association with Wallis, with the exception of his series for ln 2. In
addition to the continued fraction for π , he wrote a short piece on the rectification of the
semicubical parabola y = x 3

2 , probably after seeing William Neil’s work. He also gave
a method for solving Fermat’s problem of finding integer solutions of x2 −Ny2 = 1 for
a given positive integer N . This solution can also be described in terms of continued
fractions, but when Wallis wrote up Brouncker’s method, he did not use that form.
A letter of 1669 from Collins to James Gregory suggests that Brouncker found the
series for (1− x2)

1
2 independently of Newton. Indeed, Charles II chose Brouncker as

the inaugural President of the Royal Society, a post he held from 1662 to 1677. The
Society’s Philosophical Transactions was founded during his tenure; his proof of the
formula

ln 2 = 1

1 · 2 + 1

3 · 4 + 1

5 · 6 +·· · (3.7)

appeared in the April 1668 issue.
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Brouncker provided no explanation of how he obtained his very intriguing result
on the continued fraction for π and in his book, Wallis presented only a sketch of
Brouncker’s argument. In the course of this discussion, Wallis included a short account
of a few fundamental results on continued fractions, including the recurrence rela-
tions satisfied by the numerators and denominators of the successive convergents of
a continued fraction. Brouncker’s result, as well as Wallis’s exposition of it, suggests
connections between continued fractions and series, products, integrals, and rational
approximations. It is surprising to note that, although Huygens and Cotes gave isolated
results, no mathematician before Euler made a systematic study of continued fractions.
Wallis’s book had a tremendous impact on Euler who, at the age of 22, used it as his
starting point for his theory of gamma and beta functions. At about the same time,
Euler began his investigations into continued fractions, as indicated by a 1731 letter
from Euler to his friend Goldbach. He explained how he had applied continued frac-
tions to solve a Riccati equation. Shortly after that, he began researching the relation
between continued fractions and infinite series, infinite products, and integrals. It is
a remarkable fact that when Euler chanced upon a mathematical avenue or by-path,
such as those suggested by Wallis, he explored it with vigor and almost always found
numerous results of interest and value.

3.2 Wallis’s Infinite Product for π

Wallis, we may recall, was searching for a rule capable of describing (3.6) in some
form. He eventually arrived at the deep insight that the sequence of the reciprocals was
logarithmically convex. This allowed him to express the first term of the sequence as an
infinite product. To reach his insight, Wallis first denoted the numbers in the sequence
(3.6) by the letters α, a, β, b, γ, c, δ, d etc. He observed that the ratios

β

α
= 2

1
,
b

a
= 3

2
,
γ

β
= 4

3
,
c

b
= 5

4
,
δ

γ
= 6

5
,
d

c
= 7

6
, etc.

were decreasing. He then assumed the same for the ratios a/α, β/a, b/β, γ /b, etc. This
meant that a2 > αβ,β2 > ab, b2 > βγ , and so on. So, if we denote three consecutive
members of (3.6) by an−1, an, an+1, we must have

a2
n > an−1an+1, a0 = 1

2
A. (3.8)

Since this indicates logarithmic concavity, the reciprocals must be logarithmically con-
vex. Wallis wrote down the first few of these inequalities explicitly. Thus, c2 > γδ and
δ2 > cd gave him

A<
3× 3× 5× 5

2× 4× 4× 6

√
6

5
,

A >
3× 3× 5× 5

2× 4× 4× 6

√
7

6
.
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In general, we can write these inequalities as

3× 3×·· ·× 2n− 1× 2n− 1

2× 4×·· ·× 2n− 2× 2n

√
2n+ 1

2n
<A

<
3× 3×·· ·× 2n− 1× 2n− 1

2× 4×·· ·× 2n− 2× 2n

√
2n

2n− 1
.

Studying the pattern evident in only the first few cases of these two inequalities, Wallis
concluded that

A= 4

π
= 3× 3× 5× 5× 7× 7×·· ·

2× 4× 4× 6× 6× 8×·· · . (3.9)

Newton studied Wallis as a student in the winter of 1664–65 and made notes in
a notebook now held by the University Library, Cambridge. Here Newton observed
that Wallis’s proof of (3.9) could be simplified. He noted that the sequence (3.6) was
increasing, though he did not explain why. Observe, however, that the terms of the
sequence are the reciprocals of the integrals∫ 1

0
(1− x2)mdx, m=−1

2
, 0,

1

2
, 1, . . . .

The integrand decreases as m increases and hence so does the integral. Therefore, we
see that

3× 5×·· ·× 2n− 1

2× 4×·· ·× 2n− 2
<

4× 6×·· ·× 2n

3× 5×·· ·× 2n− 1
A<

3× 5×·· ·× 2n− 1× 2n+ 1

2× 4×·· ·× 2n− 2× 2n
.

And these two inequalities together imply (3.9). Newton’s argument certainly shortened
the proof of Wallis. But Wallis’s use of (3.8) gave a deep insight into the connection
between interpolation of factorials and logarithmic convexity. Note that the inequality
(3.8) implies the logarithmic convexity of the sequence 1/an. This was fully understood
only in the 1920s, when Bohr and Mollerup showed that logarithmic convexity was
one of the defining properties of the gamma function, by which the factorial is interpo-
lated. Thus, as Bourbaki also commented, Wallis’s methods are very similar to those
used today in the theory of the gamma function. It is possible that by 1890 the Dutch
mathematician T. J. Stieltjes had also gained an understanding of the significance of
logarithmic convexity as it related to the gamma function.

3.3 Brouncker and Infinite Continued Fractions

Indian mathematicians between 700 and 1500 discussed finite continued fractions.
We have noted that it is possible that the Kerala school also had a conception of
infinite continued fractions. It appears, however, that the first explicit discussions of
infinite continued fractions appeared in the works of two professors of mathematics at
the University of Bologna: Rafael Bombelli (1526–1572) and Pietro Antonio Cataldi
(1548–1626). In 1572, Bombelli described a method for computing

√
13, amounting
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to the continued fraction expansion

√
13 = 3+ 4

6+
4

6+ ·· · .

Though Cataldi’s work appeared later than that of Bombelli, he may fairly be regarded
as the first discoverer of infinite continued fractions. He explained how to expand the
square root of a number in terms of fractions in such a way as to clearly show that
an infinite continued fraction must result. Moreover, he introduced a modern notation
for continued fractions, also used by Wallis. Cataldi also gave the recurrence relations
satisfied by the successive convergents of the continued fraction representation of a
quadratic irrational. Finally, he showed that the convergents were successively larger
and smaller than the continued fraction and that they converged to it.

Brouncker was the first British mathematician to work with continued fractions.
He applied them to present an ingenious solution to Wallis’s longstanding problem of
finding the law of formation of the sequence (3.6). He stated that the continued fraction

φ(n)= n+ 12

2n+
32

2n+
52

2n+ ·· · , n= 0,1,2,3, . . . (3.10)

had the two properties:

φ(n− 1)φ(n+ 1)= n2, n= 0,1,2, . . . (3.11)

and φ(1)= 4/π ≡A. (3.12)

It follows from these properties that the mth term of the sequence (3.6), starting at 1
rather than at A/2, is given by

A

2
· 2

φ(1)
· 4

φ(3)
· · · 2m

φ(2m− 1)
, m= 1,2,3, . . . . (3.13)

If we take the empty product in (3.13) to be 1, then for m=−1, we also get the term
A/2 in (3.6).

Wallis was able to prove (3.12) from his formula (3.9) combined with (3.11). We
note briefly that by (3.11),

φ(1)= 22

φ(3)
= 22

42
φ(5)= 22

42
· 62

φ(7)
= 22 · 62 · · ·(4m− 2)2

42 · 82 · · ·(4m)2 φ(4m+ 1)

= 1

2
· 32 · 52 · · ·(2m− 1)2

2 · 42 · · ·(2m− 1)22m
· φ(4m+ 1)

2m
. (3.14)

Now by (3.10), n < φ(n) < n+ 1, and, therefore,

4m+ 1

2m
<
φ(4m+ 1)

2m
<

4m+ 2

2m
.

If we let m→ ∞ in (3.14), then these inequalities and Wallis’s formula imply that
φ(1) = 4/π. Wallis did not give a complete proof of (3.11), but one may reconstruct
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his thought from the arguments he gave. He wrote that Brouncker had noticed that the
product of two consecutive odd or even numbers was one less than a square, since
(n−1)(n+1)= n2 −1. He then asked by what fraction the factors should be increased
so that one obtained n2 rather than n2 − 1. We may say that he looked for a function
φ(n) such that

φ(n− 1)φ(n+ 1)= n2.

Since φ(n)= n gives n2 − 1, we take

φ(n)= n+ α1

φ1(n)
, (3.15)

where α1 is a constant to be determined. If we substitute this in (3.11), we get

−φ1(n− 1)φ1(n+ 1)+α1(n+ 1)φ1(n+ 1)+α1(n− 1)φ1(n− 1)+α2
1 = 0. (3.16)

The symmetry of (3.11) is preserved if we take α1 = 1 for then (3.16) can be written as

(φ1(n− 1)− (n+ 1))(φ1(n+ 1)− (n− 1))= n2. (3.17)

Now let

φ1(n)= 2n+ α2

φ2(n)
, (3.18)

so that (3.17) simplifies to

−9φ2(n− 1)φ2(n+ 1)+α2(n+ 3)φ2(n+ 1)+α2(n− 3)φ2(n− 1)+α2
2 = 0. (3.19)

If we take α2 = 32, then we get an equation similar to (3.17):

(φ2(n− 1)− (n+ 3))(φ2(n+ 1)− (n− 3))= n2.

So set

φ2(n)= 2n+ α3

φ3(n)
,

and it turns out that α3 = 52. One can continue in this way to get the continued fraction
expansion (3.10).

Wallis’s contribution to the theory of continued fractions was to develop the recur-
rence relations for the convergents of a general continued fraction. Take a continued
fraction

C = b0 + a1

b1+
a2

b2+ ·· · , (3.20)

and set the nth convergent (or approximant) of the continued fraction to be

C ≡ Pn

Qn

≡ b0 + a1

b1+
a2

b2+ ·· · an
bn
, n= 1,2,3, . . . (3.21)
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with P0 = b0,P−1 = 1,Q0 = 1, andQ−1 = 0. Then Wallis’s recurrence relations for the
numerators and denominators Pn,Qn of the convergents can be written as

Pn = bnPn−1 + anPn−2, (3.22)

and Qn = bnQn−1 + anQn−2. (3.23)

Wallis wrote the continued fraction (3.20) with b0 = 0 as

a

α
b

β
c

γ
d

σ
e

ε
etc.

and gave the first four convergents. He stated the rules (3.22) and (3.23) in words and
showed how it worked by an example. He remarked that these results allowed one to
compute the convergents by starting at the beginning of the fraction rather than from
the end. The twelfth-century Indian mathematician, Bhaskara, in his Lilaviti, also gave
the rules (3.22) and (3.23). Since he considered continued fractions of only rational
numbers, the value of ak was 1.

3.4 Stieltjes: Probability Integral

It appears from Stieltjes’s papers and from his letters to Hermite that he was quite
familiar with Wallis’s work. In fact, in 1890, more than two centuries after Wallis,
Stieltjes evaluated the probability integral

∫∞
0 e−u2

du by Wallis’s method of defining
a logarithmically convex sequence whose first term was the integral to be evaluated.
Stieltjes’s insightful use of Wallis’s method showed that he perceived the depth of
Wallis’s approach. Stieltjes defined the sequence

In =
∫ ∞

0
une−u

2
du, n= 0,1,2, . . . (3.24)

and observed that integration by parts implied

In = n− 1

2
In−2. (3.25)

Stieltjes applied (3.25) repeatedly to obtain the formulas

I2k = 1 · 3 · 5 · · ·(2k− 1)

2k
I0 (3.26)

I2k+1 = 1 · 2 · 3 · · ·k
2

. (3.27)
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He obtained convexity by observing that for an arbitrary real number x,

In+1 + 2xIn+ x2In−1 =
∫ ∞

0
un−1(u+ x)2e−u2

du > 0.

Note that this is equivalent to

(xIn−1 + In)2 > I 2
n − In−1In+1,

so that Stieltjes could conclude that

I 2
n < In−1In+1. (3.28)

To see this, simply take x =−In/In−1. From (3.25) and (3.28), Stieltjes found

I 2
n <

n

2
I 2
n−1. (3.29)

Inequalities (3.28) and (3.29) produced the two inequalities

I 2
2k >

2

2k+ 1
I 2

2k+1, I 2
2k < I2k−1I2k+1.

Therefore by (3.27), Stieltjes had

I 2
2k >

(1 · 2 · 3 · · ·k)2
4k+ 2

, I 2
2k <

(1 · 2 · 3 · · ·k)2
4k

,

or I 2
2k =

(1 · 2 · 3 · · ·k)2
4k+ 2

(1+ ε), 0< ε <
1

2k
.

At this point, Stieltjes used (3.26) to conclude that

2I 2
0 = (2 · 4 · 6 · · ·2k)2

(1 · 3 · 5 · · ·(2k− 1))2(2k+ 1)
(1+ ε).

2I 2
o = π/2, I0 =√

π/2.

Note that Wallis’s sequence (3.6) can be written as the reciprocal of

In =
∫ 1

0
(1−u2)n/2 du,

where we start at n = −1. Wallis obtained the infinite product for I1 by assuming
convexity, and since I1 was the area of the quarter circle, he had the infinite product for
π . Note that convexity follows immediately by Stieltjes’s method.

We observe that the gamma integral

In =
∫ ∞

0
ux+n−1e−u du where 0< x < 1,

can be similarly treated. As we shall see in the chapter on the gamma function, in 1922
Bohr and Mollerup were the first to use logarithmic convexity to explicitly work out
the derivation of this product representation from the gamma integral. The details of
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their argument were different from those of Stieltjes. However, it is clear that we can
give credit to Stieltjes for providing a rigorous exposition of Wallis’s method.

We may also raise the interesting question of whether Wallis was very close to being
able to evaluate the probability integral. In 1652, Wallis found that∫ 1

0
(1− x2)n dx = 2 · 4 · 6 · · ·2n

3 · 5 · 7 · · ·(2n+ 1)
.

If we set x = y/√n, then we have∫ √
n

0

(
1− y2

n

)n
dy = 2 · 4 · 6 · · ·2n

3 · 5 · 7 · · ·(2n+ 1)

√
n.

The probability integral follows by letting n→∞ and applying Wallis’s formula. This
argument was given by Euler, although he expressed it as the integral∫ 1

0
(ln 1/x)−1/2 dx.

It should be remembered, however, that it was not until the 1690s that Leibniz and
Johann Bernoulli developed the calculus of the exponential functions. Moreover, it
took another forty years for Euler to find the formula

lim
n→∞(1− y

2/n)n = e−y2
,

required in the above evaluation. So even though Wallis appears to have been only a
change of variables and a limit away from discovering the probability integral, it was a
very long step and took mathematicians almost a century to complete it. It is important
to keep these things in mind when reading older works.

3.5 Euler: Series and Continued Fractions

Wallis’s discussion of Brouncker’s continued fractions convinced Euler of their impor-
tance in analysis. Quite early in his career, he found a connection with the Riccati
equation and saw the necessity of relating continued fractions with series, products,
and definite integrals. In this way, Euler succeeded in fleshing out the methods of which
Wallis and Brouncker had only given key examples.

Euler presented his general theorems on the conversion of series to continued frac-
tions in such a way that the nth partial sum of the series and the nth convergent of the
continued fraction were identical. Euler’s first paper on this topic, of 1737, treated this
topic somewhat briefly but the second one, of 1739, was more detailed. It explicitly
stated the formulas for obtaining the corresponding series starting with a given contin-
ued fraction and, conversely, for obtaining the continued fraction from the given series.
We present Euler’s result for converting a fraction to a series, and the converse, in his
own notation, except that he described some steps in words instead of symbolically.
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The continued fraction
a+ α

b+ β

c+ γ

d+ σ

e+ etc.
is equal to the series

a+ α

1 · b −
αβ

b(bc+β) +
αβγ

(bc+β)(bcd+βd+ γ b)
− αβγσ

(bcd+βd+ γ b)(bcde+·· ·) + etc.

This is equivalent to

b0 + a1

b1+
a2

b2+ ·· · = b0 + a1

Q1
− a1a2

Q1Q2
+ a1a2a3

Q2Q3
− a1a2a3a4

Q3Q4
+·· · (3.30)

where Qn is the denominator of the nth convergent Pn/Qn of the continued fraction.
To prove (3.30), multiply equation (3.22) by Qn−1 and equation (3.23) by Pn−1 and
subtract to obtain

PnQn−1 −Pn−1Qn =−an(Pn−1Qn−2 −Pn−2Qn−1).

Iterate this formula n times and divide the final result by QnQn−1 to arrive at

Pn

Qn

− Pn−1

Qn−1
= (−1)n−1 a1a2 · · ·an

Qn−1Qn

. (3.31)

Observe that because of cancellation

Pn

Qn

=
(
Pn

Qn

− Pn−1

Qn−1

)
+
(
Pn−1

Qn−1
− Pn−2

Qn−2

)
+·· ·+

(
P1

Q1
− P0

Q0

)
+ P0

Q0
.

The series on the right is the nth partial sum of the series in (3.30). The result follows
by letting n→∞.

Next suppose we start with the finite series

c1 − c2 + c3 − c4 +·· ·+ (−1)n−1cn. (3.32)

To obtain the corresponding continued fraction, compare this with (3.30) to set

c1 = a1, c2 = a1a2, c3 = a1a2a3, . . . and Qk = 1 for k ≥ 0.

Thus, a1 = c1, a2 = c2/c1, a3 = c3/c2, . . . ,

and we have the numerators in the continued fraction. To find the denominators bk,
recall that Qk = bkQk−1 + akQk−2. Since Qk = 1 for k ≥ 0 and a−1 = 0, we have

bk = 1− ak, k ≥ 2 and b1 = 1. Hence,
n∑
k=1

(−1)k−1ck = c1

1+
c2/c1

1− c2/c1+
c3/c2

1− c3/c2+ ·· · cn/cn−1

1−
cn

cn−1
. (3.33)
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The result for the infinite series follows by letting n→∞. Euler illustrated this with
two examples:

ln 2 = 1− 1

2
+ 1

3
− 1

4
+·· · and

π

4
= 1− 1

3
+ 1

5
− 1

7
+·· · .

Euler used equation (3.33) to convert these series to the continued fractions:

ln 2 = 1

1+
1/2

1− 1/2+
2/3

1− 2/3+
3/4

1− 3/4+ ·· · = 1

1+
22

1+
32

1+ ·· · , (3.34)

π

4
= 1

1+
1/3

1− 1/3+
3/5

1− 3/5+
5/7

1− 5/7+ ·· · = 1

1+
1

2+
32

2+
52

2+ ·· · . (3.35)

Thus, he derived Brouncker’s continued fraction forπ . He then noted that the two series
were equal to the integrals ∫ 1

0

dx

1+ x and
∫ 1

0

dx

1+ x2
.

More generally, he observed that∫ 1

0

xn−1

1+ xm dx =
∫ 1

0
xn−1(1− xm+ x2m+·· ·)dx

= 1

n
− 1

m+n + 1

2m+n − 1

3m+n +·· ·

= 1

n+
n2

m+
(m+n)2
m+

(2m+n)2
m+

(3m+n)2
m+ ·· · . (3.36)

The last step follows from (3.33).
In equation (3.35), Euler derived Brouncker’s continued fraction from the Madhava–

Leibniz series for π/4. In spite of repeated attempts, he was unable to obtain this
continued fraction from Wallis’s product as Brouncker had apparently done. Euler
deeply regretted that Brouncker never wrote up his derivation, allowing it to sink into
oblivion. This failure, however, did not prevent Euler from discovering several methods
of converting infinite products, including the one found by Wallis, into some striking
continued fractions.

3.6 Euler: Products and Continued Fractions

In his 1739 paper, “De Fractionibus Continuis, Observationes,” Euler investigated the
relation of certain infinite products with continued fractions. For example, he considered
the infinite product

p(p+ 2q+ r)(p+ 2r)(p+ 2q+ 3r) · · ·
(p+ 2q)(p+ r)(p+ 2q+ 2r)(p+ 3r) · · · . (3.37)
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This and other similar products had earlier appeared prominently in Euler’s work on
the gamma and beta functions, to be discussed in a later chapter. In the previously-
mentioned paper, Euler noted that the product was a ratio of beta integrals:∫ 1

0
yp+2q−1(1− y2r )−1/2 dy/

∫ 1

0
yp−1(1− y2r )−1/2 dy. (3.38)

In an analysis quite similar to one carried out by Wallis, he associated a sequence
A0,A1,A2, . . . (he wrote A,B,C, . . . ) with the product. The sequence was defined by
the relations

A0A1 = p/(p+ 2q), A2A3 = (p+ 2r)/(p+ 2q+ 2r),

A4A5 = (p+ 4r)/(p+ 2q+ 4r), . . . . (3.39)

He added the requirement that

A1A2 = (p+ r)/(p+ 2q+ r), A3A4 = (p+ 3r)/(p+ 2q+ 3r),

A5A6 = (p+ 5r)/(p+ 2q+ 5r), . . . . (3.40)

Euler desired a continued fraction representation for the infinite productA0.To eliminate
the denominators, Euler defined another sequence a0,a1,a2, . . . by the relations

A0 = a0

p+ 2q− r , A1 = a1

p+ 2q
, A2 = a2

p+ 2q+ r , A3 = a3

p+ 2q+ 2r
, · · · , (3.41)

so that a0a1 = (p+ 2q− r)p, a1a2 = (p+ 2q)(p+ r),

a2a3 = (p+ 2q+ r)(p+ 2r), · · · . (3.42)

He then set

a0 =m− r + 1

α1
, a1 =m+ 1

α2
,

a2 =m+ r + 1

α3
, a4 =m+ 2r + 1

α4
, · · ·

to obtain a continued fraction for a0 orA0 dependent onm. He then chose special values
ofm such asp−r, p+q, p+2q to obtain several interesting continued fractions forA0.

To simplify the equations satisfied by α1,α2, α3, . . . , Euler set

P = p(p+ 2q− r)−m(m− r) and Q= 2r(p+ q−m).
Then he had the relations

Pα1α2 − (m− r)α1 =mα2 + 1,

(P +Q)α2α3 −mα2 = (m+ r)α3 + 1,

(P + 2Q)α3α4 − (m+ r)α3 = (m+ 2r)α4 + 1,

(P + 3Q)α4α5 − (m+ 2r)α4 = (m+ 3r)α5 + 1,
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and so on. From these equations, he deduced

α1 = mα2 + 1

Pα2 − (m− r) =
m

P
+ p(p+ 2q− r) : P 2

−(m− r) : P +α2

(
where x : y = x

y

)
,

α2 = (m+ r)α3 + 1

(P +Q)α3 −m = m+ r
P +Q + (p+ r)(p+ 2q) : (P +Q)2

−m : (P +Q)+α3
,

α3 = (m+ 2r)α4 + 1

(P + 2Q)α4 − (m+ r) =
m+ 2r

P + 2Q
+ (p+ 2r)(p+ 2q+ r) : (P + 2Q)2

−(m+ r) : (P + 2Q)+α4
, etc.

To write the resulting continued fraction for α1 in simpler form, Euler set

R = p2 + 2pq−mp−mq+ qr and S = pr + qr −mr

and obtained the continued fraction for α1 as

α1 = m

P
+ p(p+ 2q− r) : P 2

2rR : P(P +Q)+
(p+ r)(p+ 2q) : (P +Q)2

2r(R+S) : (P +Q)(P + 2Q)+ (3.43)

(p+ 2r)(p+ 2q+ r) : (P + 2Q)2

2r(R+ 2S) : (P + 2Q)(P + 3Q)+ ·· · . (3.44)

He could therefore write down the continued fraction for a0 after transforming the
denominators in the fractions of α1:

a0 =m− r + P

m+
p(p+ 2q− r)(P +Q)

2rR+
+ (p+ r)(p+ 2q)P (P + 2Q)

2r(R+S)+
(p+ 2r)(p+ 2q+ r)(P +Q)(P + 3Q)

2r(R+ 2S)+ ·· · .
(3.45)

To derive the continued fractions related to Wallis’s product, Euler tookp= 2q = r = 1.
In this case the ratio of the beta integrals was

A0 = a0 =
∫ 1

0
y dy√
1−y2∫ 1

0
dy√
1−y2

= 2

π
;

the values of P,Q,R,S were, respectively, 1 + m − m2, 3 − 2m, (5 − 3m)/2,
(3− 2m)/2. Thus,

a0 =m− 1+ 1+m−m2

m+
12(4−m−m2)

5− 3m+
22(1+m−m2)(7− 3m−m2)

8− 5m+
32(4−m−m2)(10− 5m−m2)

11− 7m+ ·· · . (3.46)
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As special cases he presented the continued fractions

π

2
= 1

1−
1

2+
1× 2

1+
2× 3

1+
3× 4

1+ ·· · = 1+ 1

1+
1× 2

1+
2× 3

1+
3× 4

1+ ·· · (3.47)

and
π

2
= 1

1 : 2+
1 : 4

3 : 2+
12

2+
22

2+
32

2+ ·· · = 2− 1

2+
12

2+
22

2+
32

2+ ·· · . (3.48)

Thus, the continued fractions produced by Euler’s method for the product for π were
different from the continued fraction found by Brouncker. This makes the question of
Brouncker’s method quite intriguing.

3.7 Euler: Continued Fractions and Integrals

In the later part of his 1739 paper, Euler gave another method for drawing a relationship
between definite integrals and continued fractions. His approach was to find functions
P and R such that a relation

(a+nα)
∫ 1

0
PRn dx = (b+nβ)

∫ 1

0
PRn+1 dx+ (c+nγ )

∫ 1

0
PRn+2 dx (3.49)

would hold for some a,b,c,α,β and γ . Then∫ 1
0 PR

n dx∫ 1
0 PR

n+1 dx
= b+nβ
a+nα + c+nγ

a+nα · 1∫ 1
0 PR

n+1 dx/
∫ 1

0 PR
n+2 dx

. (3.50)

Thus, Euler obtained the continued fraction∫ 1
0 P dx∫ 1

0 PRdx
= b

a
+ c : a
(b+β) : (a+α)+

(c+ γ ) : (a+α)
(b+ 2β) : (a+ 2α)+

(c+ 2γ ) : (a+ 2α)

(b+ 3β) : (a+ 3α)+ ·· · ,
(3.51)

and for the reciprocal with the fractions rationalized he had∫ 1
0 PRdx∫ 1

0 P dx
= a

b+
(a+α)c
b+β+

(a+ 2α)(c+ γ )
b+ 2β+

(a+ 3α)(c+ 2γ )

b+ 3β+ ·· · . (3.52)

Euler’s method for finding P and R was to consider the relation

(a+nα)
∫
PRn dx+Rn+1S = (b+nβ)

∫
PRn+1 dx+ (c+nγ )

∫
PRn+2 dx (3.53)

such that Rn+1S vanished at x = 0 and x = 1. Euler took the derivative of this equation
and divided by Rn to get

(a+nα)P dx+RdS+ (n+ 1)S dR = (b+nβ)PRdx+ (c+nγ )PR2 dx. (3.54)
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He then argued that since this relation was true for all n, it implied the two relations

aP dx+RdS+S dR = bPRdx+ cPR2 dx, (3.55)

αP dx+S dR = βPRdx+ γPR2 dx. (3.56)

Euler solved these equations for P dx to get

P dx = RdS+SdR
bR+ cR2 − a = SdR

βR+ γR2 −α , whence (3.57)

dS

S
= (b−β)RdR+ (c− γ )R2dR− (a−α)dR

βR2 + γR3 −αR
= (a−α)dR

αR
+ (αb−βa)dR+ (αc− γ a)RdR

α(βR+ γR2 −α) . (3.58)

To illustrate this method, Euler took the continued fraction

r + f h

r+
(f + r)(h+ r)

r+
(f + 2r)(h+ 2r)

r+ ·· · , (3.59)

and compared it with the general formula

a
∫ 1

0 P dx∫ 1
0 PRdx

= b+ (a+α)c
b+β+

(a+ 2α)(c+ γ )
b+ 2β+

(a+ 3α)(c+ 2γ )

b+ 3β+ ·· · . (3.60)

In this manner, he obtained b= r, β = 0, α= r, γ = r, a= f − r, c= h. He substituted
these values in the differential equation (3.58) for S to obtain

dS

S
= rRdR+ (h− r)R2dR− (f − 2r)dR

rR3 − rR
= (f − 2r)dR

rR
+ rdR+ (h−f + r)RdR

r(R2 − 1)
. (3.61)

Then after integration

lnS = f − 2r

r
lnR+ h−f

2r
ln(R+ 1)+ h−f + 2r

2r
ln(R− 1)+ lnC

or S =CR(f−2r)/r (R2 − 1)(h−f )/2r (R− 1). (3.62)

Thus, Rn+1S =CR(f+(n−1)r)/r (R2 − 1)(h−f )/2r (R− 1)

and Pdx = CR(f−2r)/r (R2 − 1)(h−f )/2rdR
r(R+ 1)

. (3.63)

Recall that Euler required that Rn+1S vanish for x = 0 and x = 1. This would happen
when R = xr and 0< f − 2r < h and in that case

Pdx =C1
xf−r−1(1− x2r )(h−f )/2r

1+ xr dx, (3.64)
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for a constant C1. Thus, Euler was able to express the continued fraction (3.59) as a
ratio of two definite integrals. In a similar way, he also considered the more general
continued fraction

s+ ch

s+
(c+ r)(h+ r)

s+
(c+ 2r)(h+ 2r)

s+ ·· · . (3.65)

In this case b= s in (3.58), and the values of a,c,α,β,γ remained the same as in the
previous example.

3.8 Sylvester: A Difference Equation and Euler’s Continued Fraction

In 1869, J. J. Sylvester rediscovered Euler’s formula (3.47) while investigating a dif-
ference equation arising out of the successive involutes to a circle. The successive
convergents of the continued fraction in Euler’s formula produced the partial products
of Wallis’s infinite product. This infinite product was not useful for deriving approx-
imations of π , but Sylvester showed that its continued fraction could be modified to
yield good approximations. The continued fraction representation often provides better
approximations than other representations, as was noted by Euler in his first paper on
the topic. In his work on successive involutes, Sylvester was led to study the difference
equation

vn+1 − vn−1 = 1

n
vn. (3.66)

He found two sequences as particular solutions of this equation:

β1 = 1, β2n = β2n+1 = 2 · 4 · 6 · · ·2n
1 · 3 · 5 · · ·2n− 1

, n= 1,2,3, . . .

α2n−1 = α2n = 3 · 5 · 7 · · ·2n− 1

2 · 4 · 6 · · ·2n− 2
, n= 1,2,3, . . . .

From Wallis’s formula for π , Sylvester concluded that

π

2
= lim

n→∞
βn

αn
.

From equations (3.22), (3.23), and (3.66), we see that βn/αn is the nth convergent of a
continued fraction

b0 + a1

b1+
a2

b2+
a3

b3+ ·· · ,
where an = 1 and bn = 1/n for n≥ 1. Thus, Sylvester could write that

π

2
= 1+ 1

1+
1

2−1+
1

3−1+ ·· · = 1+ 1

1+
2

1+
6

1+
12

1+
20

1+ ·· · . (3.67)

To give a sense of Sylvester’s inimitable style, we quote the sentence immediately
following the last continued fraction, from Sylvester’s paper: “This is obviously the
simplest form of continued fraction for π that can be given, and yet, strange to say, has
not, I believe, before been observed. Truly wonders never cease!” Though Sylvester’s
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result was of course not new, his method was original, and he also explained that this
continued fraction could be used to improve the approximation obtained from Wallis’s
product or, equivalently, from the Madhava–Leibniz series.

Note that if un is the remainder after n terms of the fraction, then

un = n(n+ 1)

1+
(n+ 1)(n+ 2)

1+ ·· · (3.68)

and un = n2 +n
1+un+1

. (3.69)

This shows that un is unbounded as n→∞, and hence unun+1 ≈ n2 +n and un ≈ n for
large n. Thus, for large n we may write, following Sylvester,

π

2
= 1+ 1

1+
2

1+
6

1+ ·· · n(n− 1)

1+n . (3.70)

This correction by n at the end of the formula improves the nth approximant obtained
from the continued fraction. Thus, Sylvester noted that the convergents for n= 4 and
n= 5 were

64

45
= 1.4222 and

384

225
= 1.7056,

while the corrected values given by (3.70) were

128

81
= 1.5802 and

352

225
= 1.5644.

For comparison, note that the actual value of π/2 to four decimal places is 1.5708;
thus, the continued fraction has an advantage over the Wallis product.

3.9 Euler: Riccati’s Equation and Continued Fractions

Euler found continued fractions for e, its square and cube roots, and other related
numbers. In his first paper on the topic, “De Fractionibus Continuis Dissertatio” written
in 1737 and published in 1744, he explained that he had initially found these expansions
by studying the patterns in the continued fractions for the rational approximations of
these numbers. It was only later that he attempted to prove the results. In the process,
he discovered a connection with the Riccati equation and he employed this to establish
his formulas. It is interesting that Euler gave the main theorem of this paper in a 1731
letter to Goldbach. For e he had the expansion

e= 2+ 1

1+
1

2+
1

1+
1

1+
1

4+
1

1+
1

1+
1

6+ ·· · . (3.71)

This was obtained by taking the approximation e = 2.71828182845904 and applying
the division algorithm. Cotes had earlier given this expansion by applying the same
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procedure. Similarly, Euler took
√
e= 1.6487212707 and found

√
e= 1+ 1

1+
1

1+
1

1+
1

5+
1

1+
1

1+
1

9+
1

1+
1

1+
1

13+ ·· · . (3.72)

Then again

e
1
3 − 1

2
= 0.1978062125 = 1

5+
1

18+
1

30+
1

42+
1

54+ ·· · (3.73)

and
e+ 1

e− 1
= 2+ 1

6+
1

10+
1

14+
1

18+
1

22+
1

26+ ·· · . (3.74)

He observed that in (3.71) and (3.72), the arithmetic progressions of the denominators
2,4,6, . . . and 1,5,9,13, . . . were interrupted by consecutive 1’s, whereas in (3.73) and
(3.74) they were not. He showed how to convert the interrupted progressions into non-
interrupted progressions. When he applied this procedure to (3.71) and (3.72), he got

e= 2+ 1

1+
2

5+
1

10+
1

14+
1

18+
1

22+
1

26+ ·· · (3.75)

and
√
e= 1+ 2

3+
1

12+
1

20+
1

28+ ·· · . (3.76)

Euler then noted that he had not really proved any of these expansions and that it was
only probable that the arithmetic progressions continued in the manner indicated. He
wrote that after some exertion he had found a rigorous though peculiar proof that related
the problem to differential equations. He stated without proof the theorem that if

q = 1

p+
1

3/p+
1

5/p+ ·· · 1

(2n− 1)/p+
1

1/x2n/(2n+1)y
, (3.77)

where p = (2n+ 1)x1/(2n+1), then y satisfied the differential equation

dy+ y2 dx = x−4n/(2n+1) dx. (3.78)

Euler’s expression for q also contained a parameter a but this can be taken to be equal
to 1 without loss of generality.

It is possible to give an inductive proof of this theorem and it is very likely that Euler
had discovered that argument. Note that when n= 0 and when n= 1, (3.77) takes the
form

q = y and q = 1

p+
1

1/x2/3y
. (3.79)

The corresponding differential equations would be

dy+ y2dx = dx (3.80)

dy+ y2dx = x−4/3dx. (3.81)
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In this way, the solution of (3.81) required the solution of (3.80). More generally, the
solution of the Riccati equation (3.78) depended on that of (3.80). However, Euler
easily solved (3.80) by observing that it was equivalent to

dy

1− y2
= dx or

1

2
ln

1+ y
1− y = x.

Since x = p and y = q for n= 0, Euler wrote the solution as

q = e2p+ 1

e2p− 1
, (3.82)

or, in modern terms, q = cothp. Euler observed that when n was an infinite number in
(3.77), then

q = 1

p+
1

3/p+
1

5/p+
1

7/p+ ·· · . (3.83)

This result is now called Lambert’s continued fraction, although Euler found it earlier.
Now, since e2p = 1+ 2

q−1 , Euler saw that

e2p = 1+ 2

(1−p)/p+
1

3/p+
1

5/p+
1

7/p+ ·· · ,

or e1/s = 1+ 2

2s− 1+
1

6s+
1

10s+
1

14s+ ·· · . (3.84)

He then noted that (3.84) would in fact produce all those continued fractions he had
obtained experimentally by using rational approximations.

3.10 Exercises

1. Evaluate (3.65) by Euler’s method for the continued fraction (3.59) and find the
values of S and P corresponding to equations (3.62) and (3.63). See Eu. I-14,
pp. 339–340.

2. Prove that

s+ 1

s+
4

s+
9

s+
16

s+ ·· · =
(

2
∫ 1

0

xsdx

1+ x2

)−1

.

See Eu. I-14, pp. 292–297.
3. Prove that ∫∞

0 sinhβ−1ucosh−a ue−xu du

(β− 1)
∫∞

0 sinhβ−2ucosh1−a ue−xu du

= 1

x+
αβ

x+
(α+ 1)(β+ 1)

x+
(α+ 2)(β+ 2)

x+ ·· · .

See Stieltjes (1993), vol. II, p. 391.
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4. From Stieltjes’s formula in the previous exercise, deduce that

�
(
x− 1

2a+ 1
4

)
�
(
x+ 1

2a+ 3
4

)
�
(
x+ 1

2a+ 1
4

)
�
(
x− 1

2a+ 3
4

) = 1+ 2a

4x− a+
12 − a2

4x+
22 − a2

4x+
32 − a2

4x+ ·· · ,

�
(
x− 1

2a+ 1
4

)
�
(
x+ 1

2a+ 1
4

)
�
(
x− 1

2a+ 3
4

)
�
(
x+ 1

2a+ 3
4

)= 4

4x+
12−4a2

8x+
32−4a2

8x+
52−4a2

8x+
72−4a2

8x+ ·· · .

Also show that if
1 · 3 · 5 · · ·(2n− 1)

2 · 4 · 6 · · ·2n = 1√
(π(n+ ε)) ,

then φ(n)= 1+ 2

8n− 1+
1 · 3
8n+

3 · 5
8n+

5 · 7
8n+

7 · 9
8n+ ·· · .

See Stieltjes (1993), vol. II, pp. 396–398.
5. Show that

a+ 1

m+
1

n+
1

b+
1

m+
1

n+
1

c+
1

m+
1

n+
1

d+ ·· ·

= 1

mn+ 1

(
(mn+ 1)a+n+ 1

(mn+ 1)b+m+n+
1

(mn+ 1)c+m+n+ ·· ·
)
.

See Euler (1985), p. 313, and Eu. I-14, p. 205.
6. Show that

a+ 1

m+
1

n+
1

p+
1

q+
1

b+
1

m+ ·· ·

= 1

p

(
P +npq+n+ q+ 1

Pb+Q+
1

Pc+Q+
1

Pd+ q+ ·· ·
)
,

where P =mnpq+mn+mq+pq andQ=mnp+npq+m+n+p+ q. See
Euler (1985), p. 318, and Eu. I-14, p. 208.

7. Show that
√

2 = 1+ 1

2+
1

2+
1

2+ ·· ·
√

3 = 1+ 1

1+
1

2+
1

1+
1

2+ ·· · .
See Euler (1985), pp. 307–308 and Eu. I-14, p. 200.

8. Show that if x = a + 1
b+

1
b+ · · · , then x = a − b

2 +
√

1+ b2

4 . See Euler (1985),
p. 308, and Eu. I-14, p. 201.

9. Show that if x = a+ 1
a1+

1
a2+ · · · 1

an+
1
a1+ · · · , that is, if x is a periodic continued

fraction, then x satisfies a quadratic equation. See Eu. I-14, p. 203. Euler stated
the result in words, as opposed to symbolically.

10. Show that

tan
πx

4
= x

1+
1− x2

2+
3− x2

2+
5− x2

2+ ·· · .
See Stieltjes’s March 4, 1891 letter to Hermite in Baillaud and Bourget (1905),
p. 157.
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3.11 Notes on the Literature

The introduction to Stedall’s excellent English translation of Wallis’s 1656 Arithmetica
Infinitorum, Wallis (2004), discusses the evolution of Wallis’s ideas and the influence
of his book on his contemporaries and mathematical heirs. The two quotes attributed
to Wallis were taken from Stedall’s introduction. The article by Stedall in Grattan-
Guinness (2005) may also be helpful, especially for its insight into how Wallis’s work
influenced Newton.The fruitful collaboration ofWallis and Brouncker is also the subject
of two interesting notes by Stedall (2000). Wallis’s letter of Feb. 28, 1655, can be found
in Rigaud (1841), pp. 85–86.

To read Newton’s simplification of Wallis’s proof of the infinite product for π , see
Newton (1967–1981), vol. I, p. 103, giving Newton’s annotations of Wallis. Newton first
summarized Wallis and then gave his own modifications: “Thus Wallis doth it, but it may
bee [sic] done thus.” In his Cambridge thesis, Whiteside (1961) reconstructed Wallis’s
attempt to recreate the continued fraction formula communicated to him without proof
by Brouncker. This thesis is an informative and perceptive resource on seventeenth-
century mathematics. Bourbaki (1994), p. 187 presents an enlightening commentary
on Wallis’s interpolation results. Brezinski (1991) is a very useful book; it contains
excerpts from original works accompanied by interesting historical commentary.

The two papers by Euler, “De Fractionibus Continuis, Dissertatio,” and “De Fraction-
ibus Continuis, Observationes,” can be found in Eu. I-14, pp. 187–216 and 291–349.
Surprisingly, a translation into English of the “Dissertatio” appeared in the applied
mathematics journal Mathematical Systems Theory (1985); the editors requested this
translation, since they thought Euler’s discussion of Riccati’s equation could be useful
to their readers. Khrushchev (2008) contains an English translation of Euler’s “Obser-
vationes.” Khrushchev gives a systematic and well-organized summary of the work on
continued fractions by Wallis, Brouncker, Huygens, the Bernoullis, Euler, Lagrange,
Gauss, Chebyshev, Stieltjes, and others. Khrushchev illustrates the process by which
the ideas of earlier researchers in continued fractions have evolved into important mod-
ern theories, such as that of orthogonal polynomials. Euler’s 1731 letter to Goldbach
can be found in Fuss (1968), pp. 57–59.

The results of Stieltjes discussed in this chapter appear on pp. 267–268 of Stieltjes
(1993), vol. II. And Sylvester’s paper on Euler’s continued fraction can be seen on
pp. 691–693 of vol. II of Sylvester (1973). Papers leading up to this, on the successive
involutes to a circle, are also contained in the same volume. One of these papers takes
the naturalist Thomas Huxley to task for claiming that “mathematics is that study which
knows nothing of observation, nothing of experiment, nothing of induction, nothing
of causation.” Sylvester gives a list of illustrious mathematicians who would have to
disagree with Huxley and explains that his paper on the successive involutes to a circle
in fact “owes its origin” to a practical problem of self-reversing military gun carriages.
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The Binomial Theorem

4.1 Preliminary Remarks

The discovery of the binomial theorem for general exponents exerted a tremendous
impact on the development of analysis, especially the theory of power series. It also
led to an understanding that an exponential function was defined by the property
f (a + b) = f (a)f (b). The binomial theorem was pivotal not only in the initial dis-
covery of series for other important functions but also in the eventual consolidation of
the foundations of analysis as a whole. The development of the theorem is particularly
fascinating because it was independently found by both Newton and Gregory; because
of the various approaches to its proof, including one by Euler; and because the vali-
dation of these proofs elicited the efforts of the best mathematicians of the nineteenth
century.

Islamic mathematicians were the original discoverers of the binomial theorem for
positive integral exponents, although they did not have the notation to write the expan-
sion for arbitrary integers. But they knew how to find the coefficients for any given
integral exponent. The two important rules for binomial coefficients appear in the work
of al-Kashi of around 1427, and it is likely that earlier Islamic mathematicians such
as al-Tusi, Omar Khayyam, and al-Karji were also aware of them: Let Cn,k denote the
coefficient of xk in the expansion of (1+ x)n. Then

Cn,k =Cn−1,k+Cn−1,k−1 and Cn,k = n(n− 1) · · ·(n− k+ 1)

k! .

The first formula, the additive rule for binomial coefficients, leads to the expansion of
(1+x)n, by means of the expansion of (1+x)n−1; the second formula, the multiplicative
rule, immediately yields the expansion of (1+x)n. Henry Briggs (1561–1630) appears
to be the first European to explicitly state both formulas, though Cardano may have
known the results around 1570. In 1654, Pascal gave a proof by complete induction of
the second formula.

Newton discovered the general binomial theorem in the winter of 1664–65, while
he was still a student at Cambridge. He was motivated by this discovery to develop

51
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his “method of infinite series” and apply it to several important problems. Indeed,
the binomial theorem played a basic role in his approach to such topics as algebraic
equations in two variables and differential equations. James Gregory independently
found this theorem between 1668 and 1670, and it formed an important part of his
original work on infinite series.

Newton discussed particular cases of his theorem in two papers written in 1669 and
1671. However, the first explicit statement of the general theorem for rational exponents
appeared in a June 13, 1676 letter from Newton to Oldenburg. This letter was a response
to an inquiry from Leibniz, who had learned of Newton’s series for arcsinx and sinx
from the Danish mathematician Georg Mohr. Newton’s letter also introduced his new
notation for exponents, as he explained:

These are the foundation of these reductions: but extractions of roots are much shortened by this
theorem,

(P +PQ)m/n =

Pm/n+ m

n
AQ+ m−n

2n
BQ+ m− 2n

3n
CQ+ m− 3n

4n
DQ+ etc.

where P + PQ signifies the quantity whose root or even any power, or the root of a power, is
to be found: P signifies the first term of that quantity, Q the remaining terms divided by the
first, and m/n the numerical index of the power of P + PQ, whether that power is integral or
(so to speak) fractional, whether positive or negative. For as analysts, instead of aa,aaa,, etc.,
are accustomed to write a2,a3, etc., so instead of

√
a,
√
a3,

√
c : a5, etc. I write a

1
2 ,a

3
2 ,a

5
3 , and

instead of 1/a,1/aa,1/a3, I write a−1,a−2,a−3. And so for

aa√
c : (a3 + bbx)

I write aa(a3 + bbx)− 1
3 , and for

aab√
c : (a3 + bbx)(a3 + bbx) I write aab(a3 + bbx)− 2

3 · · · .

In Newton’s formula, A denotes the first term, B the second term, and so on, such
notation being common at that time. Note also that

√
c : x stands for the cube root

of x.
Intrigued by Newton’s groundbreaking work, Leibniz responded with some of his

own discoveries on series and requested details about the origin and derivation of
Newton’s results, especially the binomial theorem. Newton wrote a lengthy reply
amounting to nineteen printed pages in his October 24, 1676 letter, again through
Oldenburg. Newton explained that in 1664–65, he was inspired by Wallis’s Arithmetica
Infinitorum to consider the integral

∫ x
0 (1 − t2)1/2 dt and to expand the integrand. He

looked at the absolute values of the coefficients of the polynomials

(1− x2)0 = 1, (1− x2)1 = 1− x2, (1− x2)2 = 1− 2x2 + x4,

(1− x2)3 = 1− 3x2 + 3x4 − x6, (1− x2)4 = 1− 4x2 + 6x4 − 4x6 + x8, . . .
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and asked how the (absolute) values of the first two coefficients of any of these
polynomials could produce the remaining coefficients.

I found that on putting m for the second figure [coefficient], the rest could be produced by a
continual multiplication of the terms of this series,

m− 0

1
× m− 1

2
× m− 2

3
× m− 3

4
× m− 4

5
, etc.

For example, letm= 4, and 4× 1
2 (m−1), that is 6 will be the third term, and 6× 1

3 (m−2), that is
4 the fourth, and 4× 1

4 (m−3), that is 1 the fifth, and 1× 1
5 (m−4), that is 0 is the sixth, at which

term in this case the series stops. According, . . ., for the circle, . . ., I put m= 1/2 and the terms
arising were

1

2
×

1
2 − 1

2
or − 1

8
, −1

8
×

1
2 − 2

3
or + 1

16
,

1

16
×

1
2 − 3

4
or − 5

128
,

and so to infinity.

Thus, Newton learned how to generate the binomial series when the exponent was any
number m and, by taking m= 1/2, he obtained the expansion

(1− x2)1/2 = 1− 1

2
x2 − 1

8
x4 − 1

16
x6 − 5

128
x8 −·· ·

from which he derived the value of the integral
∫ x

0 (1− t2)1/2 dt as an infinite series.
It is curious that Newton was unaware of the work of Briggs, Pascal, and others

on the multiplicative formula for binomial coefficients. It seems that the mathematical
texts Newton studied as a student did not contain the multiplicative formula. In fact,
Wallis wrote in 1685 that he had not known this formula when he wrote his Artithmetica
Infinitorum. This is surprising because this work included the multiplicative expression
for figurate numbers, intimately connected with binomial coefficients. In any case,
Wallis’s book was apparently sufficiently suggestive for Newton to make his discovery
about Cn,k for integral n and then extend it to fractional n by following Wallis once
again. Newton attempted to verify his theorem by the interpolation methods he had
learned from Wallis but he soon found more satisfactory techniques, described in his
October 24, 1676 letter.

For in order to test these processes, I multiplied

1− 1

2
x2 − 1

8
x4 − 1

16
x6, etc. (4.1)

into itself; and it became 1− x2, the remaining terms vanishing by the continuation of the series
to infinity. And even so 1 − 1

3x
2 − 1

9x
4 − 5

81x
6, etc. multiplied twice into itself also produced

1−x2. And as this was not only sure proof of these conclusions so too it guided me to try whether,
conversely, these series, which it thus affirmed to be roots of the quantity 1 − x2, might not be
extracted out of it in an arithmetical manner. And the matter turned out well. This was the form of
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the working in square roots.

1− x2(1− 1

2
x2 − 1

8
x4 − 1

16
x6, etc.

1

0− x2

−x2 + 1

4
x4

− 1

4
x4

−1

4
x4 + 1

8
x6 + 1

64
x8

0 − 1

8
x6 − 1

64
x8.

After getting this clear I have quite given up the interpolation of series, and have made use of
these operations only, as giving more natural foundations.

Newton realized that all the algebraic operations could be applied to infinite series and
that series could be viewed as the algebraic analogs of infinite decimals. Just as the
latter appear when division and root extraction are performed on integers, infinite series
result when these operations are performed on polynomials. In the preceding quote,
Newton explained that when he applied the square root algorithm, the result was the
series for (1− x2)1/2. For division, Newton gave the example of the geometric series

1

d+ e =
1

d
− e

d2
+ e2

d3
− e3

d4
+ etc. (4.2)

In searching for the proof of the binomial theorem, Newton looked no further than a
few cases, and he verified these by multiplication. We shall see that this method is the
basis for one proof of the binomial theorem, due to Euler.

James Gregory first revealed his discovery of the binomial theorem in a letter to
his longtime correspondent, John Collins. First, on March 24, 1670, Collins wrote
to Gregory, mentioning some mysterious work done by Newton: “Mr Newtone of
Cambridge sent the following series for finding the Area of a Zone of a Circle to
Mr. Dary, to compare with the said Dary’s approaches, putting R the radius and B the
parallell [sic] distance of a Chord from the Diameter the Area of the space or Zone
betweene [sic] them is = 2RB − B3

3R − B5

20R3 − B7

56R5 − 5B9

576R7 .” This area is given by

the integral 2
∫ B

0

√
R2 − x2 dx. We note that Newton obtained the series by expanding

the integrand as a binomial series and then doing term-by-term integration.
Gregory then formulated the binomial theorem in a November 30, 1670 letter to

Collins, stated as the solution of a problem: Use the numbers b,b+d and the values of
their logarithms, e and e+c, respectively, to find the number whose logarithm is e+a.
Gregory wrote that the desired number was given by the series

b+ a

c
d+ a(a− c)

c · 2c
d2

b
+ a(a− c)(a− 2c)

c · 2c · 3c
d3

b2
+ etc. (4.3)
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Since

ln (b(1+ d/b)a/c)= ln b+ (a/c)(ln(b+ d)− lnb) (4.4)

= e+ (a/c)(e+ c− e)= e+ a,

we see that the series is the binomial expansion of b
(
a+ d

b

)a/c
. In this letter, Gregory

also stated his general interpolation formula; the manner in which he stated this formula
and the binomial theorem suggests that the latter was derived from the former.

In spite of the fact that he had already found the binomial theorem, it was not until
December 1670 that Gregory could perceive the origin of Newton’s series. Gregory
explained in a letter of December 19 to Collins, that he had derived numerous series
for the circle and had mistakenly expected Newton’s to be a corollary of at least one
of them. He added, “I admire much my own dulness [sic], that in such a considerable
time, I had not taken notice” that Newton’s series followed from a binomial expansion.
Note that the interpolation formula can be written as

f (x)= f (0)+ x,f (0)+ x(x− 1)

2! ,2f (0)+ x(x− 1)(x− 2)

3! ,3f (0)+·· · .

To derive the binomial theorem, take

f (x)= b
(

1+ d

b

)x
, so that ,f (x)= f (x+ 1)−f (x)= b

(
1+ d

b

)x
d

b
,

,2f (x)=,f (x+ 1)−,f (x)= b
(

1+ d

b

)x
d2

b2
, ,3f (x)= b

(
1+ d

b

)x
d3

b3
,etc.

Thus,

,f (0)= d, ,2f (0)= d2/b, ,3f (x)= d3/b2 etc.,

and we get Gregory’s series (4.3) by taking x = a/c in the interpolation formula.
Interestingly, Gregory’s derivation is logically more sound than Newton’s original

argument by a Wallis interpolation. Yet the two derivations both involve interpolation
with respect to the exponent. In spite of their highly imaginative and useful work in this
area, both Newton and Gregory failed to give well-founded derivations of the binomial
series. Eighteenth-century mathematicians made very interesting attempts to fill this
gap, but it took until the nineteenth century to find a completely rigorous derivation.

In the eighteenth century, it was generally known that the binomial expansion for
f (x)= (1+ x)α could be obtained as the series solution of the equation

(1+ x) dy
dx

= αy. (4.5)

Of course, whether a series could be differentiated term by term and whether a differ-
ential equation had a series solution were not then seen as problems. The point that
bothered the English mathematician John Landen (1719–1790) was that the proof used
derivatives (fluxions) to obtain a result in algebra. In his 1758 Discourse Concerning
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the Residual Analysis, Landen applied the algebraic identity

x
m
n − v

m
n

x− v
= x mn −1 × 1+ q+ q2 + q3 +·· ·+ qm−1

1+ q mn + q 2m
n + q 3m

n +·· ·+ q(n−1) mn
, (4.6)

where q = v/x and m and n were integers, to avoid differentiation.
Euler took a different approach, presenting a proof using Newton’s idea of

multiplication of series. He showed that if

f (m)= 1+ m

1
x+ m

1
· m− 1

2
x2 + etc., then

f (m+n)= f (m) ·f (n). (4.7)

His proof consisted in demonstrating that the coefficients of xk on both sides of equation
(4.7) were the same. This was sufficient to derive the binomial theorem for rational
exponents, except that he did not address convergence questions, particularly in the
case of the product of two series. We must note that seventeenth- and eighteenth-
century mathematicians had more or less clear ideas of convergence of series, but
only occasionally did they apply these ideas to the series arising in their work. As
examples of rigor, Grégoire St. Vincent (1584–1667) gave an entirely rigorous treatment
of the geometric series in his Opus Geometricum of 1647. Twenty years later, Wallis
discussed the logarithmic series with a careful analysis of the remainder term, obtainable
from the remainder in a geometric series. Then, in the 1680s, Leibniz gave a thorough
account of alternating series with decreasing terms. Some gems from the eighteenth
century include Stirling’s 1717 criterion for convergence based on second differences
of the terms of a series (though it required an amendment) and Maclaurin’s statement
and proof of the integral test in his 1742 Treatise of Fluxions. Moreover, d’Alembert
made some comments on the convergence of series from which the ratio test can be
developed. We mention that Gauss greatly extended this ratio test in his famous work
on hypergeometric series.

To extend Euler’s proof to all real exponents, it was necessary to give a precise def-
inition of continuity. Bernard Bolzano (1781–1848) and A. L. Cauchy (1789–1856)
independently accomplished this. Bolzano was a professor of theology at Prague;
his main interests were in philosophy and mathematics. He defined continuity in an
1817 paper on the intermediate value theorem: A function f x varies according to the
law of continuity for all values of x inside or outside certain limits if the difference
f (x+w)−f (x) can be made smaller than any given quantity, provided w can be taken
as small as we please. Bolzano’s definition leaves little to be desired.

Cauchy emphasized rigor in analysis from the very beginning of his teaching career
at the École Polytechnique. His published lectures from 1821 and 1823 discussed the
concepts of limits, continuity, and convergence. His 1821 lectures Analyse algébrique
gave his definition of continuity, not quite as good as Bolzano’s: The function f (x)will
be a continuous function of the variable x between two assigned bounds if, for each
value of x between these bounds, the numerical value of the differencesf (x+α)−f (x)
decrease indefinitely with α.
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Cauchy derived the continuity of the series f (m) in (4.7) from the erroneous result
that if every term of an infinite series is continuous and the series is convergent, then
the series is continuous. In fact, in his 1826 paper on the binomial theorem, Abel noted
that Cauchy’s theorem on the continuity of a series admits of exception. For example,

sinφ− 1

2
sin 2φ+ 1

3
sin 3φ−·· · (4.8)

was discontinuous for every value (2m+ 1)π of φ, where m is a whole number. Abel
then proceeded to state and prove his famous continuity theorem for power series, using
the method of summation by parts. This method had been known for over a century, but
Abel was the first to apply it to problems of convergence of series. Dirichlet profited
fromAbel’s paper and used these ideas very effectively in his study ofL-series less than
a decade later. Interestingly, Abel gleaned ideas of mathematical rigor from Cauchy’s
lectures, obtained from his friend Crelle’s library; Abel’s paper appeared in Crelle’s
newly founded journal.

The concept of uniform convergence was implied in Abel’s continuity theorem, but
its explicit formulation came later. First, C. Gudermann observed in an 1838 paper
on modular functions, published in Crelle’s journal, that he had obtained a certain
series having the same convergence rate for all values of the variable. A year later,
K. Weierstrass was the only student in Gudermann’s course on modular functions.
Weierstrass introduced the term uniform convergence, understood its importance, and
gave its definition in an 1841 paper “Zur Theorie der Potenzreihen”, submitted as part of
his examination for teaching certification. Gudermann declared, “The candidate hereby
enters by birthright into the ranks of discoverers crowned with glory.” Unfortunately, the
paper was not published until 1894. During the winter of 1859–60, Weierstrass lectured
at the University of Berlin on the foundations of analysis, but it took some time before
his ideas spread to other European countries and to America. In a letter of 1881 to
his former student Hermann A. Schwarz, Weierstrass observed that people in France
were finally grasping the importance of the idea of uniform convergence. Finally, in the
last two decades of the nineteenth century, textbooks containing Weierstrassian ideas
appeared in several languages. In 1848, the British mathematical physicist G. G. Stokes
(1819–1903) and Dirichlet’s student P. Seidel (1821–1896), also wrote on concepts
related to uniform convergence, though their papers did not have much influence.

Interestingly, Cauchy wrote a paper in 1853 acknowledging his mistake on con-
tinuity, noting that it was easy to rectify. He then proceeded to work with uniform
convergence without naming the concept, so it is not clear whether he fully realized
the wider significance of the idea.

4.2 Landen’s Derivation of the Binomial Theorem

In 1758, John Landen presented the standard eighteenth-century derivation of the
binomial theorem, in which one assumes the series expansion

(1+ x)m/n = 1+ ax+ bx2 + cx3 + dx4 + etc. (4.9)
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Now take the derivative of each side to get

(m/n)(1+ x)mn −1 = a+ 2bx+ 3cx2 + 4dx3 + etc. (4.10)

Multiply the last equation by 1+ x to see that

(m/n)(1+ ax+ bx2 + cx3 + etc.)= (1+ x)(a+ 2bx+ 3cx2 + 4dx3 + etc.).

Equate coefficients to obtain

a = m

n
, 2b+ a = m

n
a, 3c+ 2b= m

n
b, 4d+ 3c= m

n
c, . . . so that

b=
(m
n

(m
n
− 1

))
/2!, c=

(m
n

(m
n
− 1

)(m
n
− 2

))
/3!

d =
(m
n

(m
n
− 1

)(m
n
− 2

)(m
n
− 3

))
/4!, . . . ,

proving the binomial theorem. Landen also gave an alternative method, avoiding
differentiation, by starting with (4.9) and applying (4.6) to get

(1+ x)mn − (1+ y)mn
x− y = (1+ x)mn −1 × 1+ 1+y

1+x +·· ·+ ( 1+y
1+x

)m−1

1+ ( 1+y
1+x

)m
n +·· ·+ ( 1+y

1+x
)(n−1) mn

= a+ b(x+ y)+ c(x2 + xy+ y2)+ d(x3 + x3y+ xy2 + y3)+ etc.

He then observed that the last equation is an algebraic identity true for all values of y
and so that he could take y = x to obtain (4.10).

Almost seven decades later, Abel objected to differentiation in this context, not
because he perceived the binomial series as algebraic but, as he wrote from Berlin to
his friend and former teacher Holmboe, he thought it impermissible to apply operations
on infinite series as if they were finite. He noted that it had not been proved that the
derivative of an infinite series could be obtained by taking the derivative of each term,
and that there were numerous counterexamples. For example, he observed, the sum of
the series (4.8) was φ/2 in the interval −π < φ < π . Taking derivatives gave

1

2
= cos φ− cos 2φ+ cos 3φ− etc.,

a clearly false result, because the series was divergent. In 1841, Weierstrass finally
addressed Abel’s concerns when he developed the theorems for differentiation and
integration of series.

4.3 Euler’s Proof for Rational Indices

When he presented his 1774 proof of the binomial theorem, Euler explained that to
avoid circularity, he wished to give a demonstration not using differentiation, since he
had used the binomial theorem in his differential calculus book of 1755 to find the
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derivative of xn. Moreover, in 1763, the German scientist Franz Aepinus published
an inductive proof for positive integral exponents in the Petersburg Academy journal.
Euler thought that the argument, while ingenious, was quite obscure. Euler started by
observing that since (a+b)n = an (1+ b

a

)n
, it was sufficient to obtain the expansion of

(1+ x)n. He set

[m] = 1+ m

1
x+ m

1
· m− 1

2
x2 + etc. (4.11)

with the aim of proving that [m] = (1+x)m whenmwas a fraction. Note that he already
knew that the result was true when m was a positive integer. The important step in his
proof was to show that [m] · [n] = [m+n]. He took

[n] = 1+ n

1
x+ n

1
· n− 1

2
x2 + etc. so that

[m] · [n] = 1+ m

1
x+ m

1
· m− 1

2
x2 + etc.

+n
1
x+ m

1
· n

1
x2 + etc.

+ n

1
· n− 1

2
x2 + etc.

Thus, the product had the form 1+Ax+Bx2 +Cx3 + etc., where

A=m+n, B = mm

2
+mn+ nn

2
= m+n

1
· m+n+ 1

2
.

Euler then observed that it was very laborious to computeC,D,E, etc., by this method.
To see in modern terms what this involved, note that the coefficient of xk in the
product is (

m

k

)(
n

0

)
+
(
m

k− 1

)(
n

1

)
+·· ·+

(
m

0

)(
n

k

)
. (4.12)

Since m and n are not necessarily positive integers, we define(
x

j

)
= x(x− 1) · · ·(x− j + 1)

j ! .

Euler had to prove that the sum (4.12) reduced to(
m+n
k

)
= (m+n)(m+n− 1) · · ·(m+n− k+ 1)

k! . (4.13)

So, to compute the coefficients more simply, Euler noted that when m and n were
positive integers, then by the known result [m] = (1+ x)m and [n] = (1+ x)n,

[m] · [n] = (1+ x)m · (1+ x)n = (1+ x)m+n = [m+n]. (4.14)
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Hence, the sum (4.12) reduced to (4.13) when m and n were positive integers. From
this, he concluded that (4.12) and (4.13) were equal for all realm and n. This depended
on the facts that both (4.12) and (4.13) were polynomials inm and n and that they were
equal for infinitely many values of m and n. Since

[m] · [n] = [m+n] (4.15)

was true for all real m and n, Euler could deduce the binomial theorem for rational
exponents. He supposed m = p/q where p and q were positive integers. Then by
(4.14)

(1+ x)p = [p] =
[
p

q
+ p

q
+·· ·+ p

q

]
=

[
p

q

]
·
[
p

q

]
· · ·

[
p

q

]
=

[
p

q

]q
, or

[
p

q

]
= (1+ x)p/q, (4.16)

proving the theorem for positive rational exponents. Euler extended this result to
negative rational exponents by noting that

[m][−m] = [m−m] = [0] = 1 and, therefore,[
p

q

][
−p
q

]
= 1.

By (4.16), this meant that (1+x)p/q
[
−p

q

]
= 1 and thus

[
−p

q

]
= (1+x)−p/q . Euler did

not discuss convergence questions. He certainly knew that the series for [m] converged
when |x|< 1, but he had not given thought to the more subtle questions related to the
convergence of the products of infinite series. Cauchy, Abel, and Dirichlet eventually
addressed such issues.

4.4 Cauchy: Proof of the Binomial Theorem for Real Exponents

In his lectures at the École Polytechnique, Cauchy attempted to put the work of his
predecessors on a more solid foundation, although his students did not appreciate his
efforts and apparently complained about it. In order to make Euler’s work of the previous
section more rigorous, Cauchy had to define a continuous function, and he also needed
to work out the definitions of convergence, absolute convergence, and the product of
infinite series.

Cauchy defined the convergence of a series

µ0 +µ1 +µ2 +·· · and let sn = µ0 +µ1 +µ2 +·· ·+µn.
Cauchy stated that if sn approached a fixed limit as n increased indefinitely, then the
series would converge; otherwise, it diverged. The limit of sn was said to be s if for any
small number ε, the limit of sn fell between s− ε and s+ ε for large enough n.
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He stated and proved the ratio test for convergence of a series and deduced that the
binomial series for |x| < 1 converged. He also defined what is known as the Cauchy
product of two series

u0 +u1 +u2 +·· · and v0 + v1 + v2 +·· · as

u0v0 + (u0v1 +u1v0)+ (u0v2 +u1v1 +u2v0)+·· ·

+(u0vn+u1vn−1 +·· ·+unv0)+·· · .
He then proved that if the two series were absolutely convergent and converged to s
and s ′, then the product series converged to s ′′ = ss ′. For the case in which all u and v
were positive, Cauchy observed that

sm+1s
′
m+1 < s

′′
n < sns

′
n,

where m= n−1
2 for all n odd and m= n−2

2 for n even. The two inequalities implied the
theorem for series with positive terms. When the terms u0,u1,u2, . . . and v0,v1,v2 . . .

were positive as well as negative, Cauchy first observed that

sns
′
n− s ′′n = un−1vn−1 + (un−1vn−1 +un−2vn−2)+·· ·+ (un−1v1 +·· ·u1vn−1).

He denoted the absolute values of the u and v by P0,P1,P2, . . . and P ′
0,P

′
1,P

′
2, . . .

respectively and remarked that, from the result on the convergence of the product of
series with all positive terms,

Pn−1P
′
n−1 + (Pn−1P

′
n−2 +Pn−2P

′
n−1)+·· ·+ (Pn−1P

′
1 +·· ·+P1P

′
n−1)

tended to zero as n→∞. Since this expression bounded |sns ′n− s ′′n |, it followed that
sns

′
n− s ′′n → 0 as n→∞, proving the result.
With these theorems in hand, Cauchy could close the gaps in Euler’s proof of the

binomial theorem. The binomial series [m] and [n] in (4.11) were absolutely convergent
for |x| < 1. Hence by Euler’s argument and Cauchy’s result on products of series,
[m] · [n] = [m+ n]. Finally, if [m] was a continuous function of m, and if for integer
p and q, [p/q] = (1+x)p/q , then [m] = (1+x)m for all real exponents m. Recall that
Cauchy’s proof of the continuity of [m] was inadequate, and the gap was filled by Abel.

Cauchy gave another proof of the binomial theorem as a corollary of Taylor’s or
Maclaurin’s theorem. It was well known in the eighteenth century that the binomial
theorem could be formally derived from Maclaurin’s theorem, but Cauchy was the
first to understand how an analysis of the remainder term could be applied to obtain a
rigorous proof of the binomial theorem for real exponents. Recall that Cauchy gave the
remainder in two different forms, as discussed in our chapter on Taylor series:

f (x)= f (0)+ x

1
f ′(0)+ x2

1 · 2f
′′(0)+·· ·+ xn−1

1 · 2 · · · ·(n− 1)
f n−1(0)+Rn,



62 The Binomial Theorem

where

Rn = xn

1 · 2 · · ·nf
(n)(θx), 0< θ < 1, or

Rn = xn

1 · 2 · · · ·(n− 1)
(1− θ1)

n−1f (n)(θ1x), 0< θ1 < 1.

When f (x)= (1+ x)µ, he had

f (k)(x)= µ(µ− 1) · · ·(µ− k+ 1)(1+ x)µ−k and hence

f (k)(0)

k! = µ(µ− 1) · · ·(µ− k+ 1)

k! ,

so the binomial series was obtained. To determine the values of x for which the series
equaled (1+x)µ, it was necessary to find the values of x for which Rn→ 0 as n→∞.
Taking m large enough that |µ/m|< 1, Cauchy noted that

µn−1 = µ(µ− 1) · · ·(µ−n+ 1)

1 · 2 · 3 · · ·n xn−1

= µ(µ− 1) · · ·(µ−m+ 1)

1 · 2 · 3 · · ·m xm−1 ·
(

1− µ+ 1

m+ 1

)
· · ·

(
1− µ+ 1

n

)
(−x)n−m,

and hence for |x| < 1,µn−1 → 0 as n→ ∞. Now the first form of the remainder
would be

Rn = µ(µ− 1) · · ·(µ−n+ 1)

1 · 2 · 3 · · ·n xn(1+ θx)µ−n

= µn−1 · x(1+ θx)µ
(

1

1+ θx
)n
.

The factor
(

1
1+θx

)n
was bounded only for positive x, and he could deduce that Rn → 0

as n→∞ for 0 ≤ x < 1. Cauchy needed the second form of the remainder to be able
to deduce the binomial theorem for |x|< 1. Using the second form, Cauchy had

Rn = µn−1 · x(1+ θ1x)
µ−1

(
1− θ1

1+ θ1x

)n−1

.

Clearly,
(

1−θ1
1+θ1x

)n
was bounded for |x|< 1 and Rn → 0 as n→∞ for |x|< 1.

4.5 Abel’s Theorem on Continuity

Abel’s continuity theorem was a response to Cauchy’s 1821 result requiring uniform
convergence, not developed until Weierstrass. Implicitly accounting for uniform con-
vergence in his result, Abel proved a theorem yielding the binomial theorem for real
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exponents. Though Abel found a mistake in Cauchy’s work, he acknowledged his
indebtedness to Cauchy and wrote in his paper that every analyst who loved rigor
in mathematics should study Cauchy’s Cours d’analyse; we note that this work is
also called Analyse algébrique. Abel’s basic result on power series is now called
Abel’s continuity theorem; in modern terms, it states that if an infinite series

∑
an

converges, then the series
∑
anx

n converges uniformly for 0 ≤ x ≤ 1 and also tends to∑
an as x tends to 1−. In 1897, Alfred Tauber (1866–1942) proved a conditional con-

verse, leading to the extensive Tauberian theory, developed and named by Hardy and
Littlewood.

In a January 1826 letter to Holmboe, Abel discussed his continuity theorem:

Let a0+a1+a2+a3+a4+ etc. be any infinite Series and thus You know that a very useful Manner
of adding up this Series is to seek the sum of the following: a0 +a1x+a2x

2 +a3x
3 +·· · and then

later, put x = 1 in the Results. This is correct; but it seems to me that one cannot accept it without
Proof.

Abel applied his theorem to show that if A and B were convergent infinite series and
their Cauchy product C was convergent, then AB =C. Abel’s continuity theorem was
based on a lemma using summation by parts: If t0, t1, . . . , tm, . . . denoted a sequence of
arbitrary quantities, and if the quantity pm = t0 + t1 + ·· ·+ tm was less than a definite
quantity δ, then

r = ε0t0 + ε1t1 +·· ·+ εmtm < δε0, (4.17)

where ε0, ε1, ε2, . . . were positive decreasing quantities. To prove this result, Abel
noted that

r = ε0p0 + ε1(p1 −p0)+ ε2(p2 −p1)+·· ·+ εm(pm−pm−1)

= p0(ε0 − ε1)+p1(ε1 − ε2)+·· ·+pm−1(εm−1 − εm)+pmεm
< δ(ε0 − ε1 + ε1 − ε2 +·· ·+ εm−1 − εm+ εm)= δε0.

The last step in this proof was valid because ε0 − ε1, ε2 − ε1, . . . were positive. Next,
for the continuity theorem, Abel wrote that if the series

f (α)= v0 + v1α+ v2α
2 +·· ·+ vmα

m+·· ·

converged for α = δ, it would also converge for every smaller value of α; likewise,
f (α−β), for continually decreasing values of β, would come arbitrarily close to the
limit f (α), with α equal to or smaller than δ. To prove this, Abel let

v0 + v1α+·· ·+ vm−1α
m−1 = φ(α),

vmα
m+ vm+1α

m+1 +·· · =ψ(α). Then

ψ(α)=
(α
δ

)m · vmδm+(α
δ

)m+1 +·· ·<
(α
δ

)m
p,
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where p was the maximum of

vmδ
m, vmδ

m+ vm+1δ
m+1, vmδ

m+ vm+1δ
m+1 + vm+2δ

m+2, . . . .

Note that the inequality followed from his lemma proving (4.17). Then for 0≤α≤ δ, m
could be chosen large enough so thatψ(α)=w.We observe that Abel used the symbol
w to denote an arbitrarily small quantity. Next,

f (α)= φ(α)+ψ(α), and hence

f (α)−f (α−β)= φ(α)−φ(α−β)+w.

Since φ(α)was a polynomial, β could be taken small enough that φ(α)−φ(α−β)=w
and hence f (α)−f (α−β)=w, proving the theorem.

To address the defect in Cauchy’s proof of the binomial theorem, Abel stated
and proved the theorem: Let v0 + v1δ + v2δ

2 + ·· · be a convergent series, in which
v0, v1, v2, . . . are continuous functions of a variable quantity x between x = a and
x = b; then the series f (x)= v0 + v1α+ v2α

2 + ·· · , where α < δ, will be convergent
and a continuous function of x between the same limits. As in the proof of the previous
theorem, Abel set

v0 + v1α+·· ·+ vm−1α
m−1 =ψ(x) and vmα

m+ vm+1α
m+1 +·· · = φ(x).

Then

ψ(x)=
(α
δ

)m
vmδ

m+
(α
δ

)m+1
vm+1δ

m+1 +
(α
δ

)m+2
vm+2δ

m+2 +·· · .

By the summation by parts lemma, if θ(x) denoted the largest of the quantities

vmδ
m,vmδ

m+ vm+1δ
m+1,vmδ

m+ vm+1δ
m+1 + vm+2δ

m+2, . . . ,

then ψ(x) <
(
α

δ

)m
θ(x). Thus, for m large enough, ψ(x) = w and f (x) = φ(x)+w,

where w was less than any assignable quantity. Similarly,

f (x)−f (x−β)= φ(x)−φ(x−β)+w.

Since φ(x) was a finite sum of continuous functions, it was also continuous and hence
φ(x)−φ(x− β)= w. Therefore, f (x)− f (x− β)= w, which meant that f (x) was
continuous. It was here that Abel pointed out in a footnote that Cauchy’s theorem
on an infinite sum of continuous functions had some exceptions. But Abel succeeded
in filling the gap, so that the proof of the binomial theorem for real exponents was
complete.
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Abel went on to prove the binomial theorem for a complex variable x and complex
exponent. He finally stated his result as

1+m+ni
1

(a+ bi)+ (m+ni)(m− 1+ni)
12̇

(a+ bi)2

+ (m+ni)(m− 1+ni)(m− 2+ni)
1 · 2 · 3 (a+ bi)3 +·· ·

+ (m+ni)(m− 1+ni) · · ·(m−µ+ 1+ni)
1 · 2 · 3 · · ·µ (a+ bi)µ+·· ·

= [cos(marctan
b

1+ a + 1

2
n ln[(1+ a)2 + b2])

+ i sin(marctan
b

1+ a + 1

2
n ln[(1+ a)2 + b2])]

× [(1+ a)2 + b2]m2 e−narctan b
1+a .

Note that Abel wrote
√−1 for i and log for ln; the right-hand side was the principal

value of (1+ a+ bi)m+ni .
Liouville found Abel’s proof of the continuity theorem difficult to understand and

asked Dirichlet to explain it. Dirichlet presented a proof on the spot; Liouville then used
it in his lectures at the Collège de France. After Dirichlet’s death, Liouville published
the proof in honor of his friend. He stated and proved the theorem:

If the series a0 + a1 + a2 +·· · converges to A, then

lim
p→1−

∞∑
n=0

anp
n =A.

Let δn = a0 + a1 +·· ·+ an and 0<p < 1. Then

s = a0 + a1p+ a2p
2 +·· ·+ anpn+·· ·

= δ0 + (δ1 − δ0)p+ (δ2 − δ1)p
2 +·· ·+ (δn− δn−1)p

n+·· ·
= (1−p)(δ0 + δ1p+ δ2p

2 +·· ·+ δnpn+·· ·).
The last equation is true because the first n+1 terms of the two series differ by δnpn+1,
and this tends to zero as n→∞. Next, break up the last series into two parts:

S(p)= (1−p)(δ0 + δ1p+·· ·+ δn−1p
n−1)+ (1−p)(δnpn+ δn+1p

n+1 +·· ·).
Let Pn be a number between the maximum and minimum values of the sequence

δn,δn+1,δn+2, . . .

such that the second series is equal to

(1−p)Pn(pn+pn+1 +pn+2 +·· ·)= Pnpn.
Clearly, Pn → A as n→∞. So if we let p→ 1 and then let n→∞, the finite series
tends to zero and the other series tends to A and the theorem is proved.
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4.6 Harkness and Morley’s Proof of the Binomial Theorem

Weierstrass promulgated his fundamental ideas through his teaching. Thus, it was left
to others to write up and disseminate these ideas. For example, in 1898, J. Harkness
of Bryn Mawr and F. Morley of Haverford College, wrote Introduction to the Theory
of Analytic Functions. They explained: “we recognized that readers approaching the
subject for the first time could not fail to be hampered by the non-existence in English
of any text-book giving a consecutive and elementary account of the fundamental
concepts and processes employed in the theory of functions.” In his delightful article,
“A Mathematical Education,” the great English analyst J. E. Littlewood mentioned that
his study of Harkness and Morley’s book was one of the bright spots in his education
up to the time he took his Tripos examination in 1905.

Harkness and Morley’s proof of the binomial theorem is different from the other
proofs presented here, and it considers the general case where the variable and exponent
are both complex numbers. The proof depends on a theorem attributed to Weierstrass:
Let uq, q = 0, 1, 2, . . . be series in powers of x:

uq = aq0 + aq1x+ aq2x
2 +·· ·+ aqnxn+·· · .

Given that the separate series uq and the collective series
∑
uq converge within the

circle (R) and that the series
∑
uq converges uniformly along every circle (R1) where

R1 <R, then within the circle (R) we have

∞∑
q=0

uq =
∞∑
n=0

anx
n,

where an is the sum of the coefficients of xn in the series of us. Now consider the
function (1−a)−x = exp(−x log(1−a)), where a and x are complex with |a|< 1 and
where log takes its principal value. Then

(1− a)−x = 1+u+u2/2!+u3/3!+ · · · where

u=−x log(1− a)= xa+ xa2/2+ xa3/3+·· · .
It is clear that the series in u is absolutely and uniformly convergent in every circle
|u| ≤R, while the series forun/n! in powers of a is absolutely and uniformly convergent
in |a| ≤ 1− δ for every δ > 0. Therefore, by Weierstrass’s theorem

∞∑
n=0

un/n! =
∞∑
n=0

xna
n/n!

for |a| < 1. It remains to find xn. Note that only u, u2, . . . ,un contribute to the
expression. So

xn = xn+·· ·+ (n− 1)!x
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is a polynomial of degree n in x. When x= 0,−1,−2, . . . ,−n+1, we have (1−a)−x =
(1− a)m where m= 0, 1, 2, . . . ,n− 1. For these values of m, the coefficient of an in
(1− a)m is zero. Hence, xn = 0 for x = 0,−1,−2, . . . ,−n+ 1, and we have

xn = x(x+ 1)(x+ 2) · · ·(x+n− 1) and thus

(1− a)−x =
∞∑
n=0

x(x+ 1) · · ·(x+n− 1)

n! an.

4.7 Exercises

1. Following Newton, apply the procedure for finding the square root of a number
to the algebraic expression 1− x2 and show that you get the series

1− 1

2
x2 − 1

8
x4 − 1

16
x6 −·· · .

2. Apply the Gregory–Newton difference formula to the function f (α)= (1+x)α
and show that you get the binomial series.

3. Prove that the Cauchy product of the series
∑∞

n=0
(−1)n√
n+1

with itself diverges.
Cauchy gave this example in his Analyse algébrique , chapter 6.

4. Cauchy stated the ratio test in chapter 6 of his Analyse algébrique: If for n
increasing and positive, the ratio un+1/un converges to a fixed limit k, then the
series u0 +u1 +u2 +·· · converges when k < 1 and diverges when k > 1. Prove
this theorem.

5. Cauchy’s Analyse algébrique, chapter 6, also gave the condensation test:Aseries
of positive and decreasing terms u0 + u1 + u2 + ·· · converges if and only if
u0 + 2u1 + 4u3 + 8u7 + ·· · converges. Prove this theorem, and use it to prove
that

∑∞
n=1

1
nµ

converges forµ> 1 and diverges forµ≤ 1. Cauchy gave this appli-
cation. Earlier, the fourteenth-century French theologian and scientific thinker
N. Oresme used the condensation test in the case µ= 1.

6. Prove Abel’s theorem on products, that if cn = a0bn+ a1bn−1 + ·· · + anb0, and
A=∑∞

n=0 an, B =∑∞
n=0 bn, C =∑∞

n=0 cn are all convergent, thenAB =C. See
Abel (1965), vol. 1, p. 226.

7. Prove F. Mertens’s extension of Cauchy’s product theorem: If A is absolutely
convergent and B conditionally convergent, then AB =C. See Mertens (1875).

8. Prove that if A and B are convergent, and |an| ≤ k/n, |bn| ≤ k/n for all n, then
C is convergent. This theorem is due to G. H. Hardy; see Hardy (1966–1979),
vol. 6, p. 414–416.

9. Follow Abel in proving that
∑∞

k=2
1

k lnk diverges. Use ln(1+x) < x to show that
that ln ln(1+n)< ln ln n+ 1

n lnn . Conclude that ln ln(1+n)< ln ln 2+∑n

k=1
1

k lnk .
See Abel (1965), vol. 1, pp. 399–400.

10. Show that ifAn= a1 +a2 +·· ·+an, |An| is bounded for all n, and
∑n

k+1 |bk+1 −
bk| is bounded for all n, and bn → 0 as n→ ∞, then 

∑∞
n=1 anbn converges.
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Dedekind stated this theorem in Supplement IX to Dirichlet’s lectures on number
theory. See Dirichlet and Dedekind (1999), pp. 261–264.

11. (a) Supposeφ is a real valued continuous function andφ(x+y)=φ(x)+φ(y).
Show that φ(x)= ax for some constant a.

(b) Suppose φ is a real valued continuous function and φ(x+ y)= φ(x)φ(y).
Show that φ(x)=Ax for some positive constant A.

(c) Suppose φ is a real valued continuous function and for x > 0, y >
0, φ(xy)= φ(x)+φ(y). Show that φ(x)= a ln x.

(d) Suppose φ is a real valued continuous function and for x > 0, y >
0, φ(xy)= φ(x)φ(y). Show that φ(x)= xa for x > 0.

(e) Suppose φ is a real valued continuous function and φ(y+x)+φ(y−x)=
2φ(x)φ(y). Show that if 0 ≤ φ(x)≤ 1 and φ is not constant, then φ(x)=
cos(ax) where a is a constant. If φ(x) ≥ 1, then there exists a positive
constant A such that φ(x)=Ax . The solutions of these five problems take
up all of chapter 5 of Cauchy’s Analyse algébrique of 1821.

12. Let

φ(x)= 1+ x

1
+ x2

1 · 2 + x3

1 · 2 · 3 +·· · .

Show that φ(x + y) = φ(x) · φ(y)  and hence that φ(x) = (φ(1))x = ex. See
Cauchy (1989), pp. 168–169.

13. Prove the binomial theorem: Let

fα(x)=
∞∑
k=0

α(α+ 1) · · ·(α+ k− 1)

k! xk.

Show that d

dx
fα(x) = αfα+1(x) and fα+1(x)− fα(x) = xfα+1(x). Deduce that

fα(x)= (1−x)−α.Gauss did not explicitly give this proof, but the first two steps
are very special cases of results in his paper on hypergeometric functions.

14. With the development of set theory and the language of sets by Cantor, Dedekind
and others in the period 1870–1900, mathematicians could ask whether the
equation φ(x + y) = φ(x) + φ(y) had solutions other than φ(x) = ax, a a
constant, and, if so, whether a condition weaker than continuity would imply
φ(x)= ax. Hilbert’s student Georg Hamel (1877–1954) used Zermelo’s result,
that the set of real numbers can be well-ordered, to obtain a basis B for the
vector space of real numbers over the field of rational numbers. Thus, B has the
property that for every real number x, x = r1α1 + r2α2 + ·· · + rnαn for some
n, rationals r1, . . . , rn and basis elements α1, . . . ,αn. Use a Hamel basis to show
that φ(x + y)= φ(x)+ φ(y)  has solutions different from φ(x)= ax, where a
is a constant. See G. Hamel (1905).

15. Prove that if φ is measurable and satisfies φ(x+y)= φ(x)+φ(y), then φ(x)=
ax. This was proved by M. Fréchet in 1913. For a simple proof, see Kac (1979),
pp. 64–65.
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4.8 Notes on the Literature

The two letters from Newton to Oldenburg, intended for Leibniz, on the binomial
theorem are in Newton’s correspondence. See Newton (1959–60), pp. 20–47 and
110–161). The original letters are in Latin, but English translations with further explana-
tory notes are also given. These letters give an excellent summary of Newton’s work
on series and related topics during the period 1664–1676. In 1712, Newton used them
as documentary evidence in his bitter priority dispute with Leibniz. The early work
of Newton leading to the discovery of the binomial theorem is printed in vol. 1 of his
Mathematical Papers. Pages 104–110 and 122–134 show how Newton used Wallis
interpolation to first discover the binomial theorem and then to attempt to establish it.
He later abandoned this method of proof.

James Gregory’s letter of November 23, 1670, on the binomial theorem, appears
in Turnbull (1939), pp. 118–137. This and other letters of Gregory to Collins, now
contained in Turnbull (1939), were used to establish Newton’s absolute priority in
the invention of the calculus. In that context, it was argued that Gregory was led to
his work on series after he saw Newton’s series on the area of the zone of a circle.
Consequently, Gregory’s work was relegated to a secondary position, although his dis-
coveries were independent. However, the publication of the Gregory memorial volume
has helped to establish Gregory’s reputation as one of the greatest mathematicians
of the seventeenth century. For Euler’s proof of the binomial theorem, see Eu. I-15,
pp. 207–216.

Cauchy started teaching analysis at the École Polytechnique in 1817. He divided his
course into two parts, the first dealing with infinite series of real and complex variables
and the second with differential and integral calculus. Following eighteenth century
usage, he called the first part algebraic analysis. These lectures were published in 1821
with the title Analyse algébrique. Bradley and Sandifer (2009) present an English
translation with useful notes. This was the first textbook dealing fairly rigorously with
the basic concepts of infinite series: limits, convergence, and continuity. For Cauchy’s
derivation of the binomial theorem by use of Taylor’s theorem with remainder, see
chapters 8 and 9 of Cauchy (1829).

Abel’s paper on the binomial theorem appeared in the first issue of A. L. Crelle’s
Journal für die reine und angewandte Mathematik in 1826. It is the oldest mathematical
journal still being published today. A large majority of Abel’s papers were published
in this journal, helping this journal quickly secure a high standing in the mathematics
community. There are two editions of Abel’s collected papers. Abel’s college teacher
B. M. Holmboe (1795–1850) published the first in 1837. Unfortunately, Holmboe could
not include Abel’s great paper, “Mémoire pour une propriété générale d’une classe très-
étendue des fonctions transcendantes,” presented by Abel to the French Academy in
1826. This manuscript was lost and found several times before it was finally published
in Paris in 1841. The manuscript was again lost, possibly stolen by G. Libri; in 1952 a
portion was recovered in Florence by the Norwegian mathematician V. Brun. In 2000,
Andrea Del Cantina discovered the remaining parts, with the exception of four pages.
Abel’s “Mémoire” was included in the second and larger edition of his collected work,
edited by L. Sylow and S. Lie, published in 1881. Abel (1965) is a reprint of this
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edition; the first volume contains Abel’s paper on the binomial theorem; see pp. 219–
250. Abel’s letter to Holmboe is quoted from Stubhaug (2000), p. 345. For Dirichlet’s
paper on Abel’s theorem, see Dirichlet (1862), a paper published by Liouville.

Landen (1758), pp. 5–7 gives his remarks on the binomial theorem. His 43-page
booklet was a contribution to the mathematical tendency of that time, to employ alge-
bra to avoid infinitesimals and fluxions. Also part of this tradition, Hutton (1812)
discusses the binomial theorem, expressing appreciation for Landen’s proof. Hutton’s
three-volume work is entertaining reading, with articles on building bridges, experi-
ments with gunpowder, histories of trigonometric and logarithmic tables, and a long
history of algebra. See p. 134 of Harkness and Morley (1898) for a statement of Weier-
strass’s theorem; p. 169 for the proof of the binomial theorem. For Gudermann’s praise
of Weierstrass, see Klein (1979), p. 263.
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The Rectification of Curves

5.1 Preliminary Remarks

Up until the seventeenth century, geometry was pursued along the Greek model. Thus,
second-order algebraic curves were studied as conic sections, though higher-order
curves were also considered. Algebraic relationships among geometric quantities were
considered, but algebraic equations were not used to describe geometric objects. In
the course of his attempts during the late 1620s to recreate the lost work of Apollo-
nius, it occurred to Fermat that geometry could be studied analytically by expressing
curves in terms of algebraic equations. Now conic sections are defined by second-
degree equations in two variables, but this new perspective expanded geometry to
include curves of any degree. Fermat’s work in algebraic geometry was not published
in his lifetime, so its influence was not great. But during the 1620s, René Descartes
(1596–1650) developed his conception of algebraic geometry and his seminal work,
La Géométrie, was published in 1637. The variety of new curves thus made possible,
combined with the development of the differential method, spurred the efforts to dis-
cover a general method for determining the length of an arc. In the late 1650s, Hendrik
van Heuraet (1634–c. 1660) and William Neil(e) (1637–1670) gave a solution to this
problem by reducing it to the problem of finding the area under a related curve. In this
and other areas, Descartes’s new approach to geometry served as a guiding backdrop.

Descartes’s early training in mathematics included the study of the classical texts of
the fourth-century Greek mathematician Pappus, the Arithmetica of Diophantus, and
the contemporary algebra of Peter Roth and Christoph Clavius. Descartes’s meeting
with Johann Faulhaber in the winter 1619–20 also contributed to his understanding
of algebra. However, from the very beginning, Descartes was determined to develop
and follow his own methods, and this eventually led him to a symbolic algebra whose
notation was very similar to the one we now use.

In the first part of his Géométrie, Descartes explained how geometric curves could
be reduced to polynomial equations in two variables. He did not consistently use what
are now called the Cartesian orthogonal axes but chose the angle of his axes to suit
the problem. On the subject of the rectification of curves, Descartes wrote, “geometry
should not include lines that are like strings, in that they are sometimes straight and

71
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sometimes curved, since the ratios between straight and curved lines are not known,
and I believe cannot be discovered by human minds.” But in a November 1638 letter to
Mersenne, Descartes nevertheless discussed the rectification of the logarithmic spiral,
a curve he defined as making a constant angle with the radius vector at each point. To
understand this apparent contradiction in his thinking, note that Descartes made a dis-
tinction between geometric and mechanical curves. Geometric curves were defined by
algebraic equations; mechanical curves would today be termed transcendental. So when
Descartes referred to unrectifiable curves, he meant the geometric ones. He maintained
that the study of geometry should be restricted to algebraic curves, for which algebraic
methods should be used. Thus, for constructing tangents and normals to curves, he
used algebraic methods, as opposed to the infinitesimal methods of Fermat. Descartes
considered Fermat’s methods inappropriate for geometric (for us, algebraic) curves.
And, since the length of an arc could not be found by algebraic methods, he stated
that the length of geometric curves could not be obtained. He allowed, however, that
the lengths of mechanical (transcendental) curves could be determined by infinitesimal
methods. In fact, in 1638 Descartes succeeded in rectifying the equiangular (or logarith-
mic) spiral, and he was therefore one of the earliest mathematicians to find the length
of a noncircular arc. Soon after this, Torricelli also rectified this spiral. We note that in
approximately 1594, Harriot worked with this spiral in connection with his researches
related to navigation, but he did not publish his results.

Frans van Schooten (1615–1660) played an important role in the solution of the
rectification problem. A Dutch mathematician of considerable ability, he was certainly
one of the great teachers of mathematics. He attracted a number of talented young
students to mathematics, even when their primary interests lay in other disciplines. Van
Schooten studied at the University of Leiden where his father, Frans van Schooten the
Elder, was a professor of mathematics. The younger van Schooten received a thorough
grounding in the Dutch mathematical tradition. In 1635, he met Descartes, and by the
summer of 1637 he had seen his Géométrie, though he did not immediately understand
it. In 1646 he inherited his father’s professorship and in 1647, van Schooten published a
Latin translation of Descartes’s book with his own commentary. This translation made
Descartes’s ideas accessible to many more mathematicians and simultaneously helped
build van Schooten’s reputation. A second edition of this translation appeared in 1659.
The work was about a thousand pages long, ten times longer than Géométrie; it included
several significant contributions by van Schooten’s students: Christiaan Huygens, Jan
Hudde, Jan de Witt, and Hendrik van Heuraet.

Van Heuraet entered the University of Leiden as a medical student. He was inspired
to study the rectification problem by Huygens’s 1657 discovery that the arc length of
a parabola could be measured by the quadrature of an equilateral hyperbola. In mod-
ern terms, this means that the arc length of y = x2 can be computed by the integral∫
(1+4x2)1/2dx. Sometime in 1658, van Heuraet solved the general problem; he com-

municated his work to van Schooten in a letter dated January 13, 1659. In the course
of applying his method to the semicubical parabola y2 = ax3, he used a rule of Hudde
concerning multiple roots of polynomials.

Jan Hudde (1628–1704) studied law at Leiden around 1648 and later served as bur-
gomaster of Amsterdam for 21 years. He stated his rule in the article “De Maximis et
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Minimis,” communicated to van Schooten in a letter of February 26, 1658. His rule
provided a method for determining maxima and minima of functions and a simplifica-
tion of Descartes’s method for finding the normal to an algebraic curve. In unpublished
work from 1654, Hudde used the logarithmic series in the form x+x3/3+x5/5+·· · .
In his manuscript of 1693, David Gregory attested to this work of Hudde. Note that N.
Mercator published this series in 1668 and Newton’s unpublished results on this topic
date from 1665.

Around the same time as van Heuraet, the English mathematician William Neil gave
a method for rectifying the semicubical parabola; this method could also be general-
ized to other curves. Wallis included Neil’s work in his Tractatus de Cycloide of 1659.
The methods of Neil and van Heuraet were lacking in rigor, but Pierre Fermat very
soon filled the gap. He showed in his Comparatio Curvarum Linearum of 1660 that
a monotonically increasing curve will have a length. James Gregory, apparently inde-
pendently of Fermat, also found a rigorous proof of this fact, technically better than
Fermat’s, using the same basic idea. Gregory’s proof appeared in his Geometriae Pars
Universalis of 1668. The inspiration behind both Fermat and Gregory was Christopher
Wren’s rectification of the cycloid in 1659.

5.2 Descartes’s Method of Finding the Normal

Descartes asserted that properties of curves depended on their angles of intersection
with other lines. He defined the angle between two curves as the angle between the
normals to the curves at the point of intersection. Before giving the method for finding
the normal, he wrote:

This is my reason for believing that I shall have given here a sufficient introduction to the study
of curves when I have given a general method of drawing a straight line making right angles with
the curve at an arbitrarily chosen point upon it. And I dare say that this is not only the most useful
and most general problem in geometry that I know, but even that I have desired to know.

Summarizing Descartes’s method, let CA in Figure 5.1 be an algebraic curve. Note
that in the original book, Descartes interchanged x and y. But we will suppose CP is
normal to the curve at C and letAM = x and CM = y. The problem is to find v =AP .
Descartes took the x-axis such that the center P of the required circle fell on the axis.

F A M P G

C

Q

Figure 5.1. Descartes’s construction of a normal.
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The equation of the circle was (x−v)2+y2 = s2, whereCP = s was the radius. He used
this equation to eliminate y from the equation of the curve, obtaining an expression in
x with a double root when the circle was tangent to the curve. He could then write this
expression such that it had a factor (x− e)2. Descartes then found the required result
by equating the powers of x. He explained his method by applying it to some examples
such as the ellipse r

q
x2 − rx+ y2 = 0, in which case he used the equation of the circle

to eliminate y and obtain the equation

x2 + qr − 2qv

q− r x+ q(v2 − s2)

q− r = 0.

He set the left-hand side as (x− e)2 to find the necessary result:

−2e= q(r − 2v)

q− r , or v = r

2
+ q− r

q
e= r

2
+ q− r

q
x.

Claude Raubel’s 1730 commentary on Descartes’s Géométrie gave the example of the
parabola y2 = rx. In this case,

x2 + (r − 2v)y+ v2 − s2 = 0

must have a double root. The resulting equations, when the left-hand side is set equal
to (x− e)2, are

r − 2v =−2e, v2 − s2 = e2.

So v = r

2 + e, and this implies that v = r

2 + x, since x = e.
It is easy to see that Descartes’s method would become cumbersome for curves of

higher degree. After equating coefficients, one would end up with a large number of
equations. It is for this reason that Hudde searched for a simpler approach.

5.3 Hudde’s Rule for a Double Root

Hudde gave a rule to determine conditions for a polynomial to have a double root:

If in an equation two roots are equal and this is multiplied by an arbitrary arithmetical progression,
naturally the first term of the equation by the first term of the progression, the second term of the
equation by the second term of the progression and so on: I say that the product will be an equation
in which one of the afore-mentioned roots will be found.

Hudde gave a proof for a fifth-degree polynomial, and it works in general. In modern
notation, suppose b is a double root of f (x)= 0. Then

f (x)= (x− b)2(c0 + c1x+ c2x
2 +·· ·+ cn−2x

n−2)

=
n−2∑
k=0

ck(x
k+2 − 2bxk+1 + b2xk).
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If this equation is multiplied term-wise by an arithmetic progression p + qk where
p and q are integers and k = 0, 1, . . . ,n− 2, then we arrive at the polynomial

g(x)=
n−2∑
k=0

ck((p+ q(k+ 2))xk+2 − 2b((p+ q(k+ 1))xk+1 + b2(p+ qk)xk))

=
n−2∑
k=0

ck(p+ qk)xk(x2 − 2bx+ b2)+
n−2∑
k=0

ck2q(x
k+2 − bxk+1)

= (x− b)2
n−2∑
k=0

(p+ qk)xk+ 2q(x− b)
n−2∑
k=0

ckx
k+1.

Clearly, x = b is a root of g(x). For a modern proof of Hudde’s rule, observe that
g(x) = pf (x)+ qxf ′(x), where f ′(x) is the derivative of f (x). By writing f (x) =
(x−a)2h(x), we get f ′(x)= 2(x−a)h(x)+ (x−a)2h′(x). Thus, if x = a is a double
root of f (x), then x = a is also a root of f ′(x) and conversely.

Hudde’s rule greatly reduced the computation required for Descartes’s method, espe-
cially if the arithmetic progression was chosen judiciously. Van Schooten’s book gave
several examples of the application of Hudde’s rule, and van Heuraet used it in his
work on rectification.

5.4 Van Heuraet’s Letter on Rectification

We present van Heuraet’s 1659 rectification method largely in his own terms with some
modification. Concerning Figure 5.2, van Heuraet wrote, in the classical style, “CM is
toCQ as> toMI ,” where> denoted a fixed line segment. We describe this relationship
as CQ/CM =MI , eliminating the reference to >. Unlike van Heuraet, we now view
> as a number and set it equal to 1. Van Heuraet set out to find the length of the curve
ACE. CQ was normal to the curve, and CN was the tangent at C. The point I was
determined so that CQ/CM =MI , where MI was perpendicular to AQ. The locus
of the point I then determined the curve GIL, and the area under this curve rectified
ACE. Once again, recall van Heuraet’s perspective: He wrote that the area under the
curveGIL equaled the area of the rectangle with one side as> and the other side equal
to the length of the curve ACE. To prove this, he observed that the similarity of the
triangles STX and CMQ gave

ST

SX
= CQ

CM
=MI,

(
= MI

>

)
, or ST =MI ·SX.

Thus, the length of ST was the area of the rectangle of base SX and heightMI . The
lengths of the tangents taken at successive points along AE approximated the length
of the curve ACE; when the number of points was increased to infinity, the length of
the curve equaled the area under GIL.



76 The Rectification of Curves

A

C

E

F

G

I

L

MN Q

S

T Σ

X

Figure 5.2. Van Heuraet’s diagram.

Van Heuraet then explained how the result might be applied to the semicubical
parabola y2 = x3/a, where AM = x and MC = y. He let AQ= s, CQ= v. Then

s2 − 2sx+ x2 + x3

a
= v2. (5.1)

Following Descartes, van Heuraet noted that there were two equal roots of the equation
implied by the simultaneous equations y2 = x3

a
and (s−x)2+y2 = v2. So he multiplied

equation (5.1), according to Hudde’s method, by 0, 1, 2, 3, 0 to get

−2sx+ 2x2 + 3x3

a
= 0 or s = x+ 3x2

2a
.

Thus, MI = CQ

CM
= v

y
=

(
1+ 9

4a
x

)1/2

,

and the area under the curve GIL could be expressed as

8a

27

(
1+ 9

4a
x

)3/2

− 8a

27
.

Van Heuraet then pointed out that the lengths of the curves defined by y4 = x5/a, y6 =
x7/a, y8 = x9/a , and so on to infinity, could be found in a similar way. However, in
the case of a parabola y = x2/a, one had to compute the area under the hyperbola
y = √

4x2 + a2. He concluded, “From this exactly we learn that the length of the
parabolic curve cannot be found unless at the same time the quadrature of the hyperbola
is found and vice versa.”

5.5 Newton’s Rectification of a Curve

Isaac Newton carefully studied van Schooten’s book, so he understood van Heuraet’s
method. Newton worked out a simpler method of rectification, based on his conception
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Figure 5.3. Newton’s rectification of a curve.

of a curve as a dynamic entity, or as a moving point. In his 1671 treatise, Of the Method
of Fluxions and Infinite Series, Newton treated arc length by the approach he developed
in his 1666 tract on calculus (or fluxions). Referring to Figure 5.3, he explained his
derivation in the text presented by the 1737 editor, modified to include Newton’s later
“dot” notation:

The Fluxion of the Length is discovered by putting it equal to the square root of the sum of the
squares of the Fluxion of theAbsciss and of the Ordinate. For letRN be the perpendicular Ordinate
moving upon the Absciss MN . And let QR be the proposed Curve, at which RN is terminated.
Then callingMN = s, NR= t, andQR= v, and their Fluxions ṡ, ṫ , and v̇, respectively; conceive
the lineNR to move into the place nr infinitely near the former, and letting fallRs perpendicularly
to nr; then Rs, sr and Rr , will be contemporaneous moments of the lines MN, NR, and QR,
by the accession of which they become Mn, nr, and Qr; but as these are to each other as the

Fluxions of the same lines, and because of the Rectangle Rsr , it will be

√
Rs

2 + sr2 = Rr , or√
ṡ2 + ṫ2 = v̇.

Later in the treatise, he added that one may take ṡ = 1. This gives exactly the formula
we have in textbooks now. It is interesting that some of his examples still appear in
modern textbooks. For example, Newton considered the equation y = z3

aa
+ aa

12z , with

a a constant. Taking ż = 1, he had ẏ = 3zz
aa

− aa

12zz and
√

1+ ẏ2 = 3zz
aa

+ aa

12zz . Thus,

the arc length was given by z3

aa
− aa

12z . Newton also went on to find the constant of
integration.

5.6 Leibniz’s Derivation of the Arc Length

Leibniz derived a formula for arc length in 1673, during his earliest mathematical
researches. At that time he had not yet understood the significance of the derivative.
However, under the influence of Pascal, he used the characteristic triangle.

The vertical line in the Figure 5.4 is of length a; t is the length of the tangent between
the x-axis and the vertical line. From the two similar triangles, Leibniz had

a ds = t dy, or a

∫
ds =

∫
t dy.



78 The Rectification of Curves

a
ds

dx

dy

t

Figure 5.4. Leibniz on arclength.

Leibniz left the result in this form, since he had reduced the arc length to an area or
quadrature problem. It is easy to see that

t

a
dy =

√
1+

(
dx

dy

)2

dy.

In a manuscript of 1677, he merely noted that

ds =√
(dx)2 + (dy)2 =

√
1+

(
dy

dx

)2

dx,

and thus s =
∫
ds =

∫ √
1+

(
dy

dx

)2

dx.

5.7 Exercises

1. Find the lengths, between two arbitrary points, of curves defined by the equations:
y = 2(a2 + z2)3/2/3a2; ay2 = z3; ay4 = z5; ay6 = z7; ay2n = z2n+1; ay2n−1 =
z2n; y = (a2 +bz2)1/2. See Newton (1964–1967), vol. 1, pp. 181–187. Note that
in y = (a2 + bz2)1/2, Newton expressed the arc length as an infinite series.

2. Find the length of any part of the equiangular or logarithmic spiral. Note that this
spiral in polar coordinates is defined by r = aeθ cotα where a and α are constants.

3. Find the length of any arc of the Archimedean spiral defined by r = aθ . Stone
(1730) worked out the examples in exercises 2 and 3. Edmund Stone (1700–
1768) was the son of the gardener of the Duke of Argyll. He taught himself
mathematics, Latin, and French and translated mathematical works from these
languages into English. Elected to the Royal Society in 1725, Stone was finan-
cially supported by the Duke whose death in 1743 left him destitute. See
Pierpoint (1997).
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4. Take a triangle ABC whose sides AB = x, AC = a, BC = x2/a, and the
perpendicular (altitude) CD = a2/x form a geometric progression. Show that

x = a
√

1/2+√
5/2.

See Newton (1964–1967), p. 63. This exercise is taken from Newton’s book
on algebra, illustrating that algebra could be used to solve geometric problems.
Viète had earlier used algebra in this way. Note, however, that this use of algebra
is different from the algebraic geometry of Descartes and Fermat, in which
algebraic equations are used from the outset to define curves.

5. In a triangleABC, letAC= a, BC= b, AB = x. LetCD= c bisect the angle at
C. Show that x = (a+b)√(ab− cc)/ab. See Simpson (1800), p. 261. This is an
example of algebra being used in the service of geometrically defined problems.

6. Suppose ABC is a triangle such that the length of the bisectors of the angles B
and C are equal. Use the result of the previous exercise to prove that the triangle
is isosceles. In 1840, this theorem, now known as the Lehmus-Steiner theorem
or the internal bisectors problem, was suggested as a problem by D. C. Lehmus
(1780–1863) to the great Swiss geometer, Jacob Steiner (1796–1867). As a high
school student during the 1930s, A. K. Mustafy rediscovered Simpson’s result
and applied it to solve this problem. A. S. Mittal has pointed out to me that if the
trisectors or n-sectors are equal, the triangle must be isosceles; the reader may
wish to prove this also.

5.8 Notes on the Literature

Descartes (1954), translated by Smith and Latham, gives both an English translation
and the original French of Descartes’s book on geometry, in which the discussion on
the normal to a curve appears on pp. 95–112. The quotation on rectification is on p. 91;
Descartes’s remark on his construction of the normal is on p. 95. A detailed account
of van Heuraet’s mathematical work is given in van Maanen (1984). A translation into
Dutch and English of van Heuraet’s Latin letter can be found in Grootendorst and van
Maanen (1982); see p. 107 for the Hudde quotation on double roots. The reader may
also enjoy reading Bissell (1987) for a well-written summary of the 1650–1660 work
of the Dutch mathematicians. Hudde’s method is also discussed in these three articles.
Newton’s rectification procedure is taken from Newton (1964–67), vol. I, pp. 173–174.
This is a 1737 anonymous English translation of Newton’s 1671 text on calculus.
Whiteside preferred this translation to the 1736 version by John Colson, who was later
Lucasian professor at Cambridge.

Child (1920) has English translations of excerpts from some Leibniz manuscripts
written during 1673–1680. These indicate the progression in Leibniz’s thought as he
developed the calculus. Scriba (1964) presents a careful discussion of the evolution
of Leibniz’s ideas; Hofmann (1974) contains an interesting chapter on rectification.
Edmund Stone’s 1730 book had two parts: a translation of G. l’Hôpital’s 1696 differ-
ential calculus text and a treatment of the integral calculus. Out of regard for Newton,
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Stone changed l’Hôpital’s differentials to fluxions, even though in 1715 Newton
warned against this identification, since the fluxion or velocity was finite, whereas the
differential was an infinitesimal. Gucciardini’s (1989) discussion of other eighteenth-
century British calculus textbooks provides much interesting information on those
books and their authors. For example, Gucciardini suggests that Bishop (George)
Berkeley may have used Stone’s presentation as mathematical background for his
1734 work, containing his philosophical objection to the concept of the infinitesimal.
Pierpoint (1997) gives Stone’s dates as 1700–1768, as opposed to others who give 1695
as his date of birth.
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Inequalities

6.1 Preliminary Remarks

In his 1928 presidential address to the London Mathematical Society, G. H. Hardy
observed, “A thorough mastery of elementary inequalities is to-day one of the first
necessary qualifications for research in the theory of functions.” He also recalled, “I
think that it was Harald Bohr who remarked to me that that ‘all analysts spend half their
time hunting through the literature for inequalities which they want to use and cannot
prove.’” It is surprising, however, that the history of one of our most basic inequalities,
the arithmetic and geometric means inequality (AMGM), is tied up with the theory of
algebraic equations. Inequalities connected with the symmetric functions of the roots of
an equation were used to determine the number of that equation’s positive and negative
roots. In 1665–66, Newton laid down the foundation in this area when, in order to
determine the bounds on the number of positive and negative roots of equations, he
stated a far-reaching generalization of Descartes’s rule of signs.

The arithmetic and geometric means inequality states that if there are n nonnega-
tive numbers a1,a2, . . . ,an and there are n positive numbers q1,q2, . . . ,qn, such that∑n

i=1 qi = 1, then

a
q1
1 a

q2
2 · · ·aqnn ≤

n∑
i=1

qiai, (6.1)

where equality holds only when all the ai are equal. The theory of equations has an
interesting connection with the case for which qi = 1/n:

(a1a2 · · ·an)1/n ≤
n∑
i=1

ai/n. (6.2)

Note that when n= 2, the AMGM is simply another form of

(a1 − a2)
2 ≥ 0; (6.3)

this case can probably be attributed to Euclid. The nature of the relationship between
the AMGM and algebraic equations is clear from (6.2). To see this, suppose that

81
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a1,a2, . . . ,an are the roots of

xn−A1x
n−1 +A2x

n−2 +·· ·+ (−1)nAn = 0.

Then (6.2) is identical with the inequality A1/n
n ≤A1.

The three-dimensional case of the AMGM was first stated and proved by Thomas
Harriot (c. 1560–1621) to analyze the roots of a cubic. Before this, François Viète
(1540–1603) gave the condition under which a cubic could have distinct positive roots;
Harriot then noted that Viète’s condition was insufficient and that one also required
A

1/3
3 < A1. Much of Harriot’s algebraic work arose from his attempts to improve on

both the notation and the results of the algebraist Viète. One of Harriot’s innovations
was to make algebra completely symbolic. Much of his work dates from about 1594 to
the early 1600s, but his book on algebra Artis Analyticae Praxis was published in 1631,
ten years after his death. And even this book omitted significant portions of Harriot’s
original text and, in places, changed the order of presentation so that the text lost its
clarity. Harriot set up a new, convenient notation for inequality relations, and it is still
in use, although Harriot’s inequality symbol was very huge. William Oughtred, whose
work was done later, independently introduced a different notation for inequality. One
can see this cumbersome notation in the early manuscripts of Newton, but it soon
fell into disuse. Harriot, with his effective notation, showed that one could carry out
algebraic operations without using explanatory sentences or words and he demonstrated
the superiority of his notation by rewriting Viète’s expressions. The Harriot scholar
J. Stedall points out some key examples of this: Where Viète wrote: If to Aplane

B
there

should be added Z squared
G

, the sum will be G times A plane + B timesZ squared
B timesG ; Harriot

wrote: ac
b
+ zz

g
= acg+bzz

bg
.Viète, under the influence of the Greek mathematicians, wrote

A plane, meaning that A was a two-dimensional object; Harriot instead had ac. Then
again, Viète described his example of antithesis:

A squared minusD plane is supposed equal toG squared minus B times A. I say that A squared
plusB timesA is equal toG squared plusD plane and that by this transposition and under opposite
signs of conjuction the equation is not changed.

Harriot’s streamlined notation gives us:

Suppose aa− dc= gg− ba. I say that aa+ ba = gg+ dc by antithesis.

Descartes made similar advances in notation and in some places went beyond Harriot.
For example, Descartes wrote a3 or a4, in place of aaa or aaaa, retaining aa for a2.
Moreover, Descartes also stated a rule giving an upper bound for the number of positive
(negative) roots of an equation. Its extension by Newton contributed further to the
discovery of some important inequalities. In his 1637 La Géométrie Descartes stated
his rule: “We can determine also the number of true [positive] and false [negative]
roots that any equation can have as follows: An equation can have as many true roots
as it contains changes of sign from + to − or from − to +; and as many false roots
as the number of times two + signs or two − signs are found in succession.” Thus, in
Descartes’s example, x4 −4x3 −19x2 +106x−120= 0, the term +x4 followed by the
term −4x3, then −19x2 followed by 106x and, finally, 106x followed by −120 net a
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total of three changes of sign. According to Descartes’s recipe, there can therefore be
three positive roots. In fact, the roots are 2, 3, 4, and −5. The negative root is indicated
by one repeated sign:−4x3 followed by−19x2.Arudimentary form of this rule of signs
can be found in the earlier work of Faulhaber and Roth. Indeed, some historians have
suggested with some justification that Faulhaber and Descartes may have collaborated
in analyzing the work of Roth.

Since Descartes’s rule gave an upper bound for the number of positive roots and
for the number of negative roots, it also determined a lower bound for the number of
complex roots. Newton gave an extension of this rule, yielding a more accurate lower
bound for many cases. This extension also directly connected this problem with certain
inequalities satisfied by the coefficients of the given polynomial. Such inequalities
included the AMGM. Newton’s rule involved the consideration of another sequence
of polynomials, quadratic in the coefficients of the original polynomial. Newton stated
this rule, called by Sylvester Newton’s incomplete rule, in his Arithmetica Universalis,
in the section “Of the nature of the roots of an equaiton.”

But you may know almost by this rule how many roots are impossible.
Make a series of fractions, whose denominators are numbers in this progression 1, 2, 3, 4, 5,

&c. going on to the number which shall be the same as that of the dimensions of the equation; and
the numerators the same series of numbers in a contrary order. Divide each of the latter fractions
by each of the former. Place the fractions that come out over the middle terms of the equation. And
under any of the middle terms, if its square, multiplied into the fraction standing over its head, is
greater than the rectangle of the terms on both sides, place the sign +; but if it be less, the sign −.
But under the first and last term place the sign +. And there will be as many impossible roots as
there are changes in the series of the under-written signs from + to −, and − to +.

He made the following remarks for the case in which two or more successive terms of
the polynomial were zero:

Where two or more terms are wanting together, under the first of the deficient terms you must
write the sign −, under the second sign +, under the third the sign −, and so on, always varying
the signs, except that under the last of such deficient terms you must always place +, when the
terms next on both sides the deficient terms have contrary signs. As in the equations

x5 + ax4 ∗ ∗ ∗ + a5 = 0, and x5 + ax4 ∗ ∗ ∗ − a5 = 0;
+ + − + − + + + − + + +

the first whereof has four, and the latter two impossible roots. Thus also the equation,

x7 − 2x6 + 3x5 − 2x4 + x3 ∗ ∗ −3 = 0+ − + − + − +

has six impossible roots.

To understand Newton’s incomplete rule, we use modern notation. Let the polynomial
be

a0x
n+ a1x

n−1 + a2x
n−2 +·· ·+ an−1x+ an.

In the sequence of fractions n

1 ,
n−1

2 ,
n−2

3 , . . . , . . . ,
1
n
, divide the second term by the first,

the third by the second and so on to get n−1
2n ,

2(n−2)
3(n−1) ,

3(n−3)
4(n−2) , . . . . So n−1

2n is placed over

a1,
2(n−2)
3(n−1) over a2 and so on. If (n−1)

2n a
2
1 > a0a2, then a + sign is placed under a1 and a

− sign if the inequality is reversed. Similarly, if 2(n−2)
3(n−1) a

2
2 > a1a3, then place a + sign
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under a2 and so on. These inequalities take a simpler form if we follow J. J. Sylvester’s
notation from his 1865 paper in which Newton’s rule was proved for the first time,
almost two hundred years after it was discovered. Write the polynomial as

f (x)= p0x
n+np1x

n−1 + 1

2
n(n− 1)p2x

n−2 +·· ·+npn−1x+pn. (6.4)

The inequalities become p2
1 >p0p2 or p2

1 −p0p2 > 0, p2
2 −p1p3 > 0, and so on. Thus,

Newton’s sequence of signs is obtained from the sequence of numbers

A0 = p2
0, A1 = p2

1 −p0p2, A2 = p2
2 −p1p3, . . . , An−1 = p2

n−1 −pn−2pn, An = p2
n.

A0 and An are always positive, while a plus sign is written under ak if

Ak = p2
k −pk−1pk+1 > 0

and a minus sign if
Ak = p2

k −pk−1pk+1 < 0.

Newton gave several examples of his method, including the polynomial equation x4 −
6xx− 3x− 2 = 0 . Here a1 = 0 and the signs of A1,A1,A2,A3,A4 came out to be + +
+ − +. So, Newton wrote that there were [at least] two “impossible roots.”

In a 1728 paper appearing in the Philosophical Transactions, the Scottish mathemati-
cian George Campbell published an incomplete proof of the incomplete rule (Newton’s
rule for complex roots); his efforts were sufficient to obtain the AMGM. A little later, in
1729, Colin Maclaurin published a paper in the same journal proving similar results. A
priority dispute arose in this context, although it is generally recognized that Maclaurin’s
work was independent. Both Campbell and Maclaurin use the idea that the derivative
of a polynomial with only real roots also had only real roots. Note that, in fact, this fol-
lows from Rolle’s theorem, published in 1692, though neither Campbell nor Maclaurin
referred to Rolle. Campbell wrote that the derivative result was well-known to alge-
braists “and is easily made evident by the method of the maxima and minima.” He
began his paper by stating the condition under which a quadratic would have complex
roots. He then showed that a general polynomial would have complex roots if, after
repeated differentiation, it produced a quadratic with complex roots. Extremely little
is known of Campbell’s life; he was elected to the Royal Society on the strength of his
paper in the Transactions.

In his 1729 paper, Maclaurin stated and proved, among other results, that

p1 ≥ p1/2
2 ≥ p1/3

3 ≥ ·· · ≥ p1/n
n , (6.5)

where the pk were all positive and defined by (6.4) with p0 = 1. Most of Maclaurin’s
work in algebra arose out of his efforts to prove Newton’s unproven statements and he
presented them in his Treatise of Algebra, unfortunately published only posthumously
in 1748.

Later, especially in the nineteenth century, the arithmetic and geometric means and
related inequalities became objects of study on their own merits; they were then stated
and proved independent of their use in analyzing the roots of algebraic equations. In the
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1820s, Cauchy gave an inductive proof of AMGM in his lectures at the École Polytech-
nique. He started with n= 2 and then proved it for all powers of 2. He then obtained
the result for all positive integers by a proof containing an interesting trick. In 1906,
Jensen discovered that Cauchy’s method could be generalized to convex functions, a
fruitful concept he discovered and named, though it is implicitly contained in the work
of Otto Hölder. To understand Jensen’s motivation, observe that the two-dimensional
case of (6.1) could be written as

ex1 + ex2 ≥ 2e(x1+x2)/2.

This led Jensen to define a convex function on an interval [a,b] as a continuous function
satisfying

φ(x1)+φ(x2)≥ 2φ

(
x1 + x2

2

)
(6.6)

for all pairs of numbers x1,x2 in [a,b]. Cauchy’s proof could be applied in this situation
without any change and Jensen was able to prove that for any n numbers x1,x2, . . . ,xn
in [a,b],

φ

(
x1 + x2 +·· ·+ xn

n

)
≥ φ(x1)+φ(x2)+·· ·+φ(xn)

n
. (6.7)

Jensen did not require continuity up to this point, but he needed it for a generalization
of (6.1).

Johan Jensen (1859–1925) was a largely self-taught Danish mathematician. He stud-
ied in an engineering college where he took courses in mathematics and physics. To
support himself, he took a job in a Copenhagen telephone company in 1881. His energy
and intelligence soon got him a high position in the company where he remained for
the rest of his life. The rapid early development of telephone technology in Denmark
was mainly due to Jensen. His spare time, however, was devoted to the study of math-
ematics; the function theorist Weierstrass, also self-taught to a great extent, was his
hero. Jensen himself made a significant contribution to the theory of complex analytic
functions, laying the foundation for Nevanlinna’s theory of meromorphic functions of
the 1920s. Jensen wrote his generalization of (6.1) in the form

φ

(∑
aµxµ

a

)
≤

∑
aµφ(xµ)

a
, (6.8)

where a = ∑
aµ and aµ > 0. He took φ(x) = xp,p > 1,x > 0 to obtain the impor-

tant inequality named after Hölder, one form of which states that for p,bµ,andcµ all
positive, if 1

p
+ 1

q
= 1, then

∑
bµcµ ≤

(∑
bpµ

)1/p (∑
cqµ

)1/q
. (6.9)

Interestingly, in 1888, L. J. Rogers was the first to state and prove the inequality (6.9)
named after Hölder; he first proved (6.1) and then derived several corollaries, including
the Hölder inequality. A year later, Hölder gave the generalization (6.8), except that
he took φ(x) to be differentiable, with φ′(x) ≥ 0. It is not difficult to prove that such
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functions are convex in Jensen’s sense. Hölder noted that his work was based on that
of Rogers, and Jensen also credited Rogers.

The casep= q= 2 of (6.9) is called the Cauchy–Schwarz inequality. Cauchy derived
it from an identity with the form, in three dimensions,

(ax+ by+ cz)2 + (ay− bx)2 + (az− cx)2 + (bz− cy)2
= (a2 + b2 + c2)(x2 + y2 + z2). (6.10)

It is clear that the identity implies

∑
ax ≤

(∑
a2
)1/2(∑

x2
)1/2

(6.11)

and that equality would hold if ay = bx,az = cx, and bz = cy, that is, a
x
= b

y
= c

z
. It

is evident that identity (6.10) can be extended to any number of variables. Eighteenth-
century mathematicians such as Euler and Lagrange applied this and other identities
involving sums of squares to physics problems, number theory and other areas.

In 1885, Hermann Schwarz (1843–1921) gave the integral analog of the inequality
with which his name is now associated. But this analog was actually presented as early as
1859 by Viktor Bunyakovski (1804–1859), a Russian mathematician with an interest in
probability theory who had studied with Cauchy in Paris. Though Bunyakovski made no
claim to this result, it is sometimes called the Cauchy–Schwarz-Bunyakovski inequality.
Bunyakovski was very familiar with Laplace’s work in probability theory, a subject
in which he did his best work and for which he worked out a Russian terminology,
introducing many terms which have became standard in that language.

One of the earliest applications of the infinite form of the Cauchy–Schwarz and
Hölder inequalities was in functional analysis, dealing with infinite series and inte-
grals. For example, in a pioneering paper of 1906, David Hilbert defined l2 spaces
consisting of sequences of complex numbers {an} such that the sum of the squares of
absolute values converged. The infinite form of the Cauchy–Schwarz inequality may
be employed to show that an inner product can be defined on l2. In a paper of 1910,
the Hungarian mathematician Frigyes Riesz (1880–1956) generalized Hilbert’s work.
Dieudonné called this paper “second only in importance for the development of Func-
tional Analysis to Hilbert’s 1906 paper.” Riesz kept well abreast of the work of Hilbert,
Erhard Schmidt, Ernst Hellinger, Otto Toeplitz, Ernst Fischer, Henri Lebesgue, Jacques
Hadamard, and Maurice Frèchet. With such inspiration, Riesz was able to define and
develop the theory of lp and Lp spaces. By using Minkowski’s inequality, he proved
that these were vector spaces; employing the Hölder inequality, he showed that lq and
Lq were duals of lp and Lp, where q = (p− 1)/p and p > 1. In a proof very different
from Minkowski’s proof related to the geometry of numbers, Riesz demonstrated that
Minkowski’s inequality could be obtained from Hölder’s. Thus, inequalities originating
in the study of algebraic equations eventually led to inequalities now fundamental to
analysis.
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6.2 Harriot’s Proof of the Arithmetic and Geometric Means Inequality

Harriot proved the AMGM only in the cases of two and three dimensions, but his
motivation, notation, and mode of presentation are worthy of note. Harriot began by
proving the inequality for dimension 2:

Lemma I Suppose b,a, aa
b

are in continued proportion and suppose b > a. I say that b+ aa
b
> 2a

that is bb+ aa > 2ab so bb− ba > ba− aa that is

b − a
b

>
b − a

a
(6.12)

so b > a and this is so. Therefore the lemma is true.

Note that the expression on the left was Harriot’s notation for (b − a)b. Harriot
used this lemma to analyze the different forms taken by a cubic with one positive root.
He proved the three-dimensional case in connection with a result of Viète. In his De
Numerosa Potestatum Resolutione, Viète discussed a condition for a cubic to have three
distinct roots: “Acubic affected negatively by a quadratic term and positively by a linear
term is ambiguous [has distinct roots] when three times the square of one-third the linear
coefficient [of the square term] is greater than the plane coefficient [of the first power].”
Viète’s example was x3 − 6x2 + 11x = 6. Here 3

(
6
3

)2
> 11 and the roots were 1,2,3.

Harriot commented that Viète’s statement required an amendment; in order to get three
positive roots, he required that “the cube of a third of the coefficient of the square term
is greater than the given constant.” This would yield the three-dimensional case of the
inequality. Harriot went on to give an example, showing why Viète’s condition was
inadequate. He noted that aaa− 6aa+ 11a = 12 had only one positive root (namely,
4) even though Viète’s condition was satisfied. In a similar way, he amended Viète’s
remarks for the case of equal roots.

Harriot stated and proved additional lemmas, of which we give two; he gave the
comment, “But what need is there for verbose precepts, when with the formulae from
our reduction, it is possible to show all the roots directly, not only for these cases, but
for any other case you like. However, if a demonstration of these precepts is required,
we adjoin the three following lemmas.”

3, b+c+d3
b+c+d

3

> bc+ cd+ bd and

b+c+d
3

b+c+d
3

b+c+d
3

> bcd.

These inequalities are particular cases of (6.5) and can be written as

3((b+ c+ d)/3)2 > bc+ cd+ bd ; ((b+ c+ d)/3)3 > bcd.
As we noted previously, Descartes made advances over Harriot in terms of notation,
though he continued to write aa instead of a2; in fact, this practice continued well into
the nineteenth century as one may see in the work of Gauss, Riemann, and others. The
notation for the fractional or irrational power was introduced by Newton in his earliest
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mathematical work. Surprisingly, Descartes claimed that he had not seen Harriot’s
book, published six years before his own 1637 work. He even claimed not to have read
Viète.

6.3 Maclaurin’s Inequalities

Maclaurin’s novel proof of the arithmetic and geometric means inequality is worth
studying, though it used an unproved assumption on the existence of a maximum. The
proof consists of two steps, lemmasV andV I , contained in his 1729 paper on algebraic
equations.

Lemma V Let the given line AB be divided anywhere in P and the rectangles of the parts AP
and PB will be a maximum when the parts are equal.

In algebraic symbols, Maclaurin’s lemma would be stated: IfAB = a andAP = x, then
x(a−x) is maximized when x = a/2 for x in the interval 0 ≤ x ≤ a. Maclaurin wrote
that this followed from Euclid’s Elements. He then stated and proved the following
generalization:

Lemma V I If the line AB is divided into any numbers of parts AC,CD,DE,EB, the product
of all those parts multiplied into one another will be a maximum when the parts are equal among
themselves.

A C D E e B

For let the point D be where you will, it is manifest that if DB be bisected in E, the product
AC×CD×DE×EB will be greater than AC×CD×De× eB, because DE×EB is greater
thanDe×eB; and for the same reason CE must be bisected in C andD; and consequently all the
parts AC,CD,DE,EB must be equal among themselves, that their product may be a maximum.

In other words, Maclaurin argued that if α1,α2, . . . ,αn are positive quantities not all
equal to each other and their sum

∑
αi =A is a constant, then there exist α′

1,α
′
2, . . . ,α

′
n

with
∑
α′
i =A and α′

1α
′
2 · · ·α′

n > α1α2 · · ·αn. Thus, if a maximum value of the product
exists, then it must occur when all the α are equal. Maclaurin assumed that such a
maximum must exist; proving this would boil down to showing that the continuous
function of n− 1 variables

α1α2 · · ·αn−1 (A−α1 −α2 −·· ·−αn−1)

has a maximum in the closed domainα1 ≥ 0,α2 ≥ 0, . . . ,αn−1 ≥ 0,α1+α2+·· ·+αn−1 ≤
A. It was common for eighteenth-century mathematicians to assume the existence of
such a maximum. Lagrange did this extensively in his derivation of the Taylor theorem
with remainder. The inequality for the arithmetic and geometric means follows from
these lemmas. We see that if all values of αi are equal, then αi = A/n and we can
conclude that

α1α2 · · ·αn ≤
(
A

n

)n
=

(
α1 +α2 +·· ·+αn

n

)n
.

Moreover, equality holds if and only if all the αi are identical.
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6.4 Jensen’s Inequality

Jensen proved (6.7) by following Cauchy’s proof of (6.2) in detail. From the definition
of convexity (6.6), he deduced that

φ(x1)+φ(x2)+φ(x3)+φ(x4)≥ 2φ

(
x1 + x2

2

)
+ 2φ

(
x1 + x2

2

)
≥ 4φ

(
x1 + x2 + x3 + x4

4

)
.

He showed by an inductive argument that

2m∑
ν=1

φ(xν)≥ 2mφ

(
2−m

2m∑
ν=1

xν

)
.

This proved the inequality for the case in which the number of xs was a power of two.
To prove the theorem for any number of xs, Jensen, still following Cauchy, applied
Cauchy’s ingenious idea: For any positive integer n, choose m so that 2m > n and set

xn+1 = xn+2 = ·· · = x2m = x1 + x2 +·· ·+ xn
n

.

Then
n∑
ν=1

φ(xν)+ (2m−n)φ
(

1

n

n∑
ν=1

xν

)
≥ 2mφ

(
1

n

n∑
ν=1

xν

)

or φ

(
1

n

n∑
ν=1

xν

)
≤ 1

n

n∑
ν=1

φ(xν).

Jensen then used the continuity of φ to get the more general inequality (6.8). He
supposed a1,a3, . . . ,am to be m positive numbers with sum a, as in (6.8). He chose
sequences of positive integers n1,n2, . . . ,nm with n1 +n2 +·· ·+nm = n such that

lim
n→∞

n1

n
= a1

a
, lim

n→∞
n2

n
= a2

a
, · · · , lim

n→∞
nm−1

n
= am−1

a
.

Consequently, he could write

lim
n→∞

nm

n
= am

a
.

Now (6.7) implied that

φ

(
n1x1 +n2x2 +·· ·+nmxm

n

)
≤ n1

n
φ(x1)+ n2

n
φ(x2)+·· ·+ nm

n
φ(xm);

from this Jensen got (6.8) by letting n→∞ and using the continuity of φ. Jensen also
gave an integral analog of this inequality. He supposed that a(x) and f (x) were inte-
grable on (0,1) and a(x)was positive; φ(x)was assumed to be convex and continuous
in the interval (g0,g1), where g0 and g1 were, respectively, the inferior and superior
limits of f (x) in (0,1). Then he had

φ

(∑n

ν=1 a (ν/n)f (ν/n)1/n∑n

ν=1 a (ν/n)1/n

)
≤

∑n

ν=1 a (ν/n)φ (f (ν/n))1/n∑n

ν=1 a (ν/n)1/n
.
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By letting n→∞, he found

φ

(∫ 1
0 a(x)f (x)dx∫ 1

0 a(x)dx

)
≤

∫ 1
0 a(x)φ (f (x)) dx∫ 1

0 a(x)dx
.

6.5 Reisz’s Proof of Minkowski’s Inequality

Riesz’s derivation of Hölder’s and Minkowski’s inequalities were contained in his letter
to Leonida Tonelli of February 5, 1928. Although Riesz had worked out these ideas
almost two decades earlier and had presented them in papers, his object in this letter
was to present proofs of the inequalities without any mention of the applications. These
proofs are essentially the same as our standard derivations of all these inequalities.
Stating that he did this work around 1910, Riesz started with

AαB1−α ≤ αA+ (1−α)B, 0< α < 1, A≥ 0, B ≥ 0.

This followed immediately from the convexity of the exponential function, but Riesz
gave a simpler proof. After this proof, he supposed f (x) and g(x) were nonnegative
functions defined on a measurable set E such that∫

E

f p dx =
∫
E

g
p
p−1 dx = 1, p > 1.

He then took A= f p, B = g p
p−1 , α = 1

p
to get

fg ≤ 1

p
f p+ p− 1

p
gp/p−1; thus,

∫
E

fgdx ≤ 1

p
+ p− 1

p
= 1.

For general f and g, he replaced f and g by |f |/ ∣∣∫
E
|f |p dx∣∣1/p and

|g|/
∣∣∣∫E |g| p

p−1 dx

∣∣∣ p−1
p

, respectively, to obtain

∫
E

|fg|dx ≤
∣∣∣∣∫
E

|f |p dx
∣∣∣∣1/p ∣∣∣∣∫

E

|g| p
p−1 dx

∣∣∣∣
p−1
p

.

He next cleverly observed that∫
E

(f +g)p dx =
∫
E

f (f +g)p−1 dx+
∫
E

g(f +g)p−1 dx.

With f ≥ 0 and g ≥ 0, he had∫
E

(f +g)p dx ≤
(∫

E

f p dx

)1/p (∫
E

(f +g)p dx
) p−1

p

+
(∫

E

gp dx

)1/p (∫
E

(f +g)p dx
) p−1

p

.
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Dividing across by
(∫
E
(f +g)p dx) p−1

p , he could obtain(∫
E

(f +g)p dx
)1/p

≤
(∫

E

f p dx

)1/p

+
(∫

E

gp dx

)1/p

,

and this was Minkowski’s inequality, stated and used by Minkowski for sums in
geometry of numbers.

6.6 Exercises

1. Let sn = u0 +u1 +·· ·+un, where the terms ui are positive.

(a) Show that ln sn
sn−1

< un
sn−1

.
(b) Deduce that

u1

s0
+ u2

s1
+·· ·+ un

sn−1
> ln sn− ln s0.

(c) Prove that if
∑∞

n=1un is divergent, then
∑α

n=1
un
sαn

is divergent for α ≤ 1.
(d) Show that when α > 0,

s−αn−1 − s−αn = (sn−un)−α− s−αn > s−αn +αs−α−1
n un− s−αn = α · un

s1+α
n

.

(e) Deduce that if
∑∞

n=1un is divergent, then
∑∞

n=1(un/s
1+α
n ) is convergent for

α > 0. See Abel (1965), vol. 2, pp.197–98.

2. Suppose p > 1 and ai > 0. Suppose that the series L=∑∞
i=1 aixi converges for

every system of positive numbers xi(i = 1,2, . . .) such that
∑∞

i=1 x
p

i = 1. Use
Abel’s result in exercise 1 to prove that

∑∞
i=1 a

p/(p−1)
i is convergent and that

L≤
(∑∞

i=1 a
p/(p−1)
i

)(p−1)/p
. See Landau (1907).

3. Prove that if h is measurable and
∫ b
a
|f (x)h(x)|dx exists for all functions f ∈

Lp(a,b), then h ∈Lp/(p−1)(a,b). See Riesz (1960), vol. 1, pp. 449–451.
4. Show that

∞∑
m=1

∞∑
n=1

ambn

m+n < 2π

( ∞∑
m=1

a2
m

)1/2( ∞∑
n=1

b2
n

)1/2

.

Hilbert presented this result in his lectures on integral equations. It was first
published in 1908 in Hermann Weyl’s doctoral dissertation. I. Schur proved that
the constant 2π could be replaced by π . See Steele (2004).

5. Where p1,p2, . . . ,pn are real, let

f (x,y)= (x+α1y)(x+α2y) · · ·(x+αny)

= xn+np1x
n−1y+

(
n

2

)
p2x

n−2y2 +·· ·+
(
n

n

)
pny

n.
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(a) Derive the quadratic polynomial obtained by first taking the rth derivative
of f (x,y)with respect to y and then the (n−r−2)th derivative with respect
to x of f (r)y (x,y).

(b) Use the quadratic polynomial to show that if all α1,α2, . . . ,αn are real, then
p2
r+1 ≥prpr+2. This is in effect the argument George Campbell gave to show

that ifp2
r+1<prpr+2 for some r , then f (x,1) has at least two complex roots.

In fact, he did not use the variable y; instead, he applied the lemma he stated
and proved:

Whatever be the number of impossible roots in the equation

xn−Bxn−1 +Cxn−2 −Dxn−3 +·· ·± dx3 ∓ cx2 ± bx∓A= 0,

there are just as many in the equation

Axn− bxn−1 + cxn−2 − dxn−3 +·· ·±Dx3 ∓Cx2 ±Bx∓ 1 = 0.

For the roots of the last equation are the reciprocals of those of the first as is evident
from common algebra.

This lemma is also contained in Newton’s Arithmetica Universalis. Newton
explained that the equation for the reciprocals of the roots of f (x)was given
by xnf (1/x)= 0.

6. Suppose that α1,α2, . . . ,αn in exercise 5 are positive. Show that

p2(p1p3)
2(p2p4)

3 · · ·(pk−1pk+1)
k < p2

1p
4
2p

6
3 · · ·p2k

k .

Deduce Maclaurin’s inequality (6.5) thatp1/(k+1)
k+1 <p

1/k
k . See Hardy, Littlewood,

and Pólya (1967).
7. Fourier’s proof of Descartes’s rule of signs: Suppose that the coefficients of the

given polynomial have the following signs:

+ + − + − − − + + − + − .
Multiply this polynomial by x−p where p is positive. The result is

+ + − + − − − + + − + −− − + − + + + − − + − +
+ ± − + − ∓ ∓ + ± − + − + .

The ambiguous sign ± appears whenever there are two terms with different
signs to be added. Show that in general the ambiguous sign appears whenever
+ follows + or − follows −. Next show that the number of sign variations is
not diminished by choosing either of the ambiguous signs. Also prove that there
is always one variation added at the end, whether or not the original polynomial
ends with a variation, as in our example. Show by induction that these facts,
taken together, demonstrate Descartes’s rule. Descartes indicated no proof for
his rule. In 1728, J. A. von Segner gave a proof and in 1741 the French Jesuit
priest J. de Gua de Malves gave a similar proof, apparently independently. We
remark that de Gua also wrote a short history of algebra in which he emphasized
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French contributions to algebra at the expense of the English, in order to counter
Wallis’s 1685 history, emphasizing the opposite. Fourier presented the method
described in this exercise in his lectures at the École Polytechnique, soon after
its inauguration in November 1794. In 1789, Fourier communicated a paper
on the theory of equations to the Académie des Sciences in Paris but due to
the outbreak of the French Revolution the paper was lost. In the late 1790s,
Fourier’s interests turned to problems of heat conduction; it was not until around
1820 that he returned to the theory of equations. His book on equations was
published posthumously in 1831.

8. Gauss’s proof of Descartes’s rule: With his extraordinary mathematical insight,
Gauss saw the essence of Fourier’s argument and presented it in a general form.
He supposed

xn+1 +A1x
n+A2x

n−1 +·· ·+An+1 = (x−p)(xn+a1x
n−1 +a3x

n−2 +·· ·+an),
and that the sign changes occurred at ak1,ak2, . . . ,aks . Show that Akj = akj −
pakj−1 and that this in turn implies that the signs of Akj and akj are identical
for j = 1,2, . . . , s. Deduce also that there is an odd number of sign changes
betweenAki−1 andAki . Conclude, by induction, that the number of sign changes
is an upper bound for the number of positive roots and that the two differ by an
even number. Gauss published this result in 1828 in the newly founded Crelle’s
Journal. Note that Gauss did not use subscripts; we use them for convenience.
See Gauss (1863–1927), vol. 3, pp. 67–70.

9. Fourier’s extension of Descartes’s rule gives an upper bound on the number of
real roots of a polynomial f (x) of degree n in an interval (a,b). Suppose r is the
number of real roots in (a,b), m is the number of sign changes in the sequence

f (x),f ′(x),f ′′(x), . . . ,f (n)(x)

when x = a, and k is the number of sign changes when x = b. Prove that then
(m− k)− r = 2p, where p is a nonnegative integer. Descartes’s rule follows
when a = 0 and b=∞. In his 1831 book, Fourier gave a very leisurely account
of this theorem with numerous examples.

10. Ferdinand François Budan’s (1761–1840) extension of Descartes’s rule: With
the notation as in the previous exercise, suppose that m is the number of sign
changes in coefficients of powers of x in f (x+a), and that k is the corresponding
number in f (x+ b). Then, r ≤m− k. Prove this theorem and also prove that it
follows from Fourier’s theorem. Budan was born in Haiti and was a physician
by training. In 1807, he wrote a pamphlet on his theorem; then in 1811 he
presented a paper to the Paris Academy. Lagrange and Legendre recommended
it be published, but the Academy’s journal was not printed until 1827, partly due
to political problems. With the appearance of Fourier’s papers in 1818 and 1820,
Budan felt compelled to republish his pamphlet with the paper as an appendix. In
response, Fourier pointed out that he had lectured on this theorem in the 1790s,
as some of his students were willing to testify. Some of Fourier’s lecture notes
from this period have survived; they contain a discussion of algebraic equations,
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in particular Descartes’s rule, but they do not discuss Fourier’s more general
theorem. See the monograph, Budan (1822).

11. Let f0(x)= f (x) and f1(x)= f ′(x). Apply the Euclidean algorithm to f0 and
f1, but take the negatives of the remainders. Thus,

f0(x)= q1(x)f1(x)−f2(x) ,

f1(x)= q1(x)f2(x)−f3(x) ,

...................................

fm−2(x)= qm−1(x)fm−1(x)−fm(x) .
Consider the sequence f0(x),f1(x), . . . ,fm(x). Prove that the difference
between the number of changes of sign in the sequence when x= a is substituted
and the number when x = b is substituted gives the actual number of real roots in
the interval (a,b). Charles Sturm (1803–1855) published this theorem in 1829.
Sturm was a great friend of Liouville; they jointly founded the spectral theory of
second order differential equations. He also worked as an assistant to Fourier,
who helped him in various ways. See Sturm (1829).

12. Let F(x) = Axp + ·· · +Mxr +Nxs + ·· · +Rxu, and let the powers of x run
in increasing (or decreasing) order. Let m be the number of variations of signs
of the coefficients and let α be an arbitrary real number. Prove that the number
of positive roots of xF ′(x)−αF(x)= 0 is one less than the number of positive
roots of F(x)= 0. Prove also that if α lies between r and s, then the number of
sign variations in the coefficients of xF ′ −αF is the same as the number of sign
variations in the sequence A,. . . ,M,−N,. . . ,−R; in other words,m−1. From
this, deduce Descartes’s rule and prove that the equation

x3 − x2 + x1/3 + x1/7 − 1 = 0

has at most three positive roots and no negative roots. These results were given
by Laguerre in 1883. See Laguerre (1972), vol. 1, pp. 1–3.

13. Prove de Gua’s observation that when 2m successive terms of an equation have
0 as coefficient, the equation has 2m complex roots; if 2m+ 1 successive terms
are 0, the equation has 2m+2, or 2m complex roots, depending on whether the
two terms, between which the missing terms occur, have like or unlike signs.
See Burnside and Panton (1960), vol. 1, chapter 10.

14. In his book on the theory of equations, Robert Murphy took f (x)= x3 −6x2 +
8x + 40 to illustrate Sturm’s theorem in exercise 5. Carry out the details. See
Murphy (1839), p. 25.

15. Suppose f (x) is a polynomial of degree n. Prove Newton’s rule that if
f (a),f ′(a), . . . ,f (n)(a) are all positive, then all the real roots of f (x)= 0 are
less than a. Newton gave this rule in his Arithmetica Universalis in the section,
“Of the Limits of Equations.”

16. Following Fourier, let f (x)= x5−3x4−24x3+95x2−46x−101. Consider the
sequence f V (x),f IV (x), . . . ,f ′(x),f (x) and find the number of sign variations
when x =−10,x =−1,x = 0,x = 1, and x = 10. What does your analysis show



6.6 Exercises 95

about the real roots of f (x)? Now apply Sturm’s method to this polynomial. The
tediousness of this computation explains why one might wish to rely on Fourier’s
procedure.

17. Let
f0(x)=A0x

m+A1x
m−1 +A2x

m−2 +·· ·+Am−1x+Am.
Set fm(x) = A0, and fi(x) = xfi+1(x)+Am−i , i = m− 1,m− 2, . . . ,0. Prove
that the number of variations of sign in fm(a),fm−1(a), . . . ,f0(a), a > 0, is an
upper bound for the number of roots of f0(x) greater than a; show that the two
numbers differ by an even number. This result is due to Laguerre. See Laguerre
(1972), vol. 1, p. 73.

18. After his examples of the incomplete rule, Newton moved on to state what has
become known as Newton’s complete rule for complex roots. In 1865, J. J.
Sylvester offered a description of this rule:

Let f x = 0 be an algebraical equation of degree n. Suppose

f x = a0x
n+na1x

n−1 + 1

2
(n− 1)a2x

n−2 +·· ·+nan−1x+ an;

a0,a1,a2, . . . ,an may be termed the simple elements of f x. Suppose

A0 = a2
0 , A1 = a2

1 − a0a2, A2 = a2
2 − a1a3, . . .An−1 = a2

n−1 − an−2an, An = a2
n;

A0,A1,A2, . . . ,An may be termed the quadratic elements of f x. ar ,ar+1 is a succession
of simple elements, and Ar,Ar+1 of quadratic elements.

ar

Ar

}
is an associated couple of elements;

ar ar+1

Ar Ar+1

}
is an associated couple of successions.

A succession may contain a permanence or a variation of signs, and will be termed for
brevity a permanence or variation, as the case may be. Each succession in an associated
couple may be respectively a permanence or a variation. Thus an associated couple may
consist of two permanences or two variations, or a superior permanence and inferior vari-
ation, or an inferior permanence and superior variation; these may be denoted respectively
by the symbols pP,vV,pV,vP , and termed double permanences, double variations, per-
manence variations, variation permanences. The meaning of the simple symbolsp,v,P ,V
speaks for itself.

Newton’s rule in its complete form may be stated as follows–On writing the complete
series of quadratic under the complete series of simple elements of f x in their natural
order, the number of double permanences in the associated series, or pair of progressions
so formed, is a superior limit to the number of negative roots, and the number of variation
permanences in the same is a superior limit to the number of positive roots in f x. Thus
the number of negative roots = or <

∑
pP . . . , positive roots = or <

∑
vP . This is the

Complete Rule as given in other terms by Newton. The rule for negative roots is deducible
from that for positive, by changing x into −x. As a corollary, the total number of real roots
= or <

∑
pP +∑

vP , that is = or <
∑
P . Hence, the number of imaginary roots

= or> n−
∑

P, that is = or>
∑

V.
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This is Newton’s incomplete rule, or first part of complete rule, the rule as stated by every
author whom the lecturer has consulted except Newton himself.

Read Sylvester’s proof of this rule. Though Newton did not write down a proof,
Sylvester wrote in another paper of the same year, “On my mind the internal
evidence is now forcible that Newton was in possession of a proof of this theorem
(a point which he has left in doubt and which has often been called into question),
and that, by singular good fortune, whilst I have been enabled to unriddle the
secret which has baffled the efforts of mathematicians to discover during the last
two centuries, I have struck into the very path which Newton himself followed
to arrive at his conclusions.” See Sylvester (1973), vol. 2, pp. 494 and 498–513.
See also Acosta (2003).

6.7 Notes on the Literature

Newton’s Arithmetica Universalis, written in 1683, contains his account of the under-
graduate algebra course he taught at Cambridge in the 1670s. This was partly based on
Newton’s extensive notes on N. Mercator’s Latin translation of Gerard Kinckhuysen’s
1661 algebra text in Dutch. The later parts of the Arithmetica present Newton’s own
researches in algebra, carried out in the 1660s. This work was first published in 1707,
in Latin; Newton was reluctant to have it published, perhaps because the first portion
depended much on Kinckhuysen. An English translation appeared in 1720, motivating
Newton to make a few changes and corrections and publish a new Latin version in
1721. In 1722, the English translation was republished with the same minor changes.
Whiteside published the 1722 version in vol. 2 of Newton (1964–67); for the Newton
quotations in this chapter, see pp. 103–105. The quote comparing Harriot’s and Viète’s
notations is in Stedall (2003), pp. 8–11. This book presents Harriot’s original text on
algebra for the first time, although in English. The 1631 book published as Harriot’s
algebra was in fact a mutilated and somewhat confused version. Stedall’s introduction
explains this unfortunate occurrence. For Harriot’s results presented in this chapter, see
p. 195 and pp. 233–34. For other results, see G. Campbell (1728), Maclaurin (1729),
Jensen (1906), Riesz (1960), vol. 1, pp. 519–21. Note II of Cauchy’s Analyse algébrique
gives the results on inequalities and their proofs, presented by Cauchy to his students in
the early 1820s. For Viète’s rule for a cubic with distinct roots, see Viète (1983), p. 360.
A good source for references to early work on inequalities is Hardy, Littlewood, and
Pólya (1967), though they omit Campbell. See Grattan–Guinness (1972) for an interest-
ing historical account of Fourier’s work on algebraic equations and Fourier series. For
Dieudonné’s remark on Riesz’s paper, see p. 124 of Dieudonné (1981). This work is an
excellent history of functional analysis and covers the period 1900–1950, from Hilbert
and Riesz to Grothendieck. For functional analysis after 1950, see the comprehensive
history of Pietsch (2007).
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Geometric Calculus

7.1 Preliminary Remarks

During the decade 1660–1670, the discoveries of the previous quarter century on the
mathematics of infinitesimals were systematized, unified, and extended. Those earlier
discoveries included the integration of y = xm/n,y = sin x or cos x; the connection
of the area under the hyperbola with the logarithm; the reduction of the problem of
finding arc length to that of quadrature; the method for finding the tangent to a curve;
and the procedure for determining the maximum or minimum point on a curve. Before
1660, the interdependence between problems on construction of tangents and problems
concerning areas under curves had been evident only in special cases, but during this
decade, Isaac Barrow (1630–1677), James Gregory (1638–1675), and Isaac Newton
(1642–1727) independently discovered the fundamental theorem of calculus. Gregory
and Barrow stated this result as a theorem in geometry, whereas Newton, deeply influ-
enced by Descartes’s algebraic approach, gave it in a form recognizable even today.
Later on, Newton adopted the geometric perspective of his Principia. It is interesting
to see that evaluations of the trigonometric functions took a very simple form when
performed geometrically. In the geometric calculus, one got direct visual contact with
the elementary functions and their properties, whereas the abstract approach, while
more general and widely applicable, gave less insight into its underpinnings.

Barrow entered St. Peter’s College, Cambridge in 1643, and later Trinity College.
He had wide intellectual interests, including anatomy, botany, mathematics, astronomy,
and divinity. He was ordained in 1659. In 1660, Barrow was appointed professor of
Greek at Cambridge where his inaugural lectures were on Aristotle’s Rhetoric. Two
years later, he became professor of mathematics in Gresham College and in 1664,
became the first Lucasian Professor of Mathematics. The Lucasian Professorship was
the first endowed chair of mathematics in Cambridge, as the importance of mathematics
was then beginning to be recognized in England.

Barrow resigned from this professorship in favor of Newton in 1669 so he could
devote himself entirely to divinity. Barrow’s lectures on geometry were printed in 1670
and two decades later Jakob Bernoulli as well as l’Hôpital saw that they contained
the elements of calculus in geometric form. Indeed, Barrow stated the sum, product,

97
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and quotient rules for derivatives; gave derivatives and integrals of several specific
functions; and presented the fundamental theorem of calculus. Following Descartes,
Barrow described his results on tangents in terms of the subtangent segment. Thus, his
theorem on the derivative of the product w = yz, when converted to analytic form,
appears as

1

w

dw

dx
= 1

y

dy

dx
+ 1

z

dz

dx
.

Barrow found derivatives for tan x,
√
x2 − a2,

√
a2 − x2, and xn for n rational. He

thought that his demonstration of the result for xn was the first rigorous proof. In his
twelfth and final lecture, Barrow also gave interesting and simple geometric arguments
for the evaluations of

∫
sec θ dθ,

∫
tan θ dθ,

∫
ax dx, and

∫
dx/

√
x2 + a2. Apparently,

he had not intended publishing these results, since they dealt with particular curves and
were not general theorems, but he included them “to please a friend who thinks them
worth the trouble.” From Barrow’s correspondence, we can determine that this friend
was John Collins.

When Barrow became professor of mathematics in 1664, Newton was a student at
Cambridge and may well have attended some of Barrow’s lectures. Barrow’s 1664–
66 lectures on the fundamentals of mathematics, published in 1683 under the title
Lectiones Mathematicae, were philosophical in approach with little connection with
the calculus. Newton’s researches of this period, inspired by the writings of Descartes,
Wallis, and van Schooten, took a strongly analytic form. This approach stood in contrast
to Barrow’s geometric calculus lectures, published later on. Later in life, Newton wrote,
concerning his October 1666 derivation of the fundamental theorem of calculus, that he
might have been indebted to Barrow for his dynamic view of a curve as a moving point.
In the 1640s, Torricelli and Gilles de Roberval (1602–1675) had applied dynamical or
kinematic methods to problems on spirals. And in the 1650s, Christopher Wren and
others had also used this method to study the cycloid. Since this method had been
employed so widely, Newton may have been later uncertain about where he learned
it. In addition, note that in the 1630s, Roberval succeeded by geometric methods in
integrating sin x and sin2 x over the interval (0,2π). Later, Blaise Pascal used the
same method to determine the indefinite integral of these functions.

Thus, it is possible that Barrow, or perhaps others, influenced Newton to adopt the
geometrical approach employed in the Principia. Until Whiteside, it had generally
been assumed that Newton initially derived his results in analytic form, and afterwards
transcribed them into geometric form. But Newton actually developed the ideas of his
Principia at every stage in geometric terms. Later, Euler spent several years converting
the proofs of the propositions in the Principia into analytic form. Because calculus is
now taught and understood completely in an analytic context, it is very often assumed
that the analytic form is simpler or easier to understand. However, Newton himself
thought otherwise; to him, the geometric method was more rigorous, intuitively clearer,
more directly related to the work of the ancients, and avoided concepts or symbols
lacking in referential content. In a letter of June 13, 1676, to Leibniz via Oldenburg,
Newton discussed infinite series and quadrature, but added, “For I write rather shortly
because these theories long ago began to be distasteful to me, to such an extent that I have
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refrained from them for nearly five years.” Thus, although Newton first discovered his
calculus in analytic form, he soon found the geometric approach of Barrow and others
more congenial. Here we may be instructed by the opinion of a modern scholar of
the Principia, the Nobel Prize winning physicist, S. Chandrasekhar: “I first constructed
[analytic] proofs [of the Principia propositions] for myself. Then I compared my proofs
with those [geometric ones] of Newton. The experience was a sobering one. Each time,
I was left in sheer wonder at the elegance, the careful arrangement, the imperial style,
the incredible originality, and above all the astonishing lightness of Newton’s proofs;
and each time I felt like a schoolboy admonished by his master.”

James Gregory published his work somewhat before Barrow. His Geometriae Pars
Universalis appeared at the end of his 1668 visit to Italy, where he studied with Stephano
degli Angeli (1623–1700), a student of Cavalieri. After his return to Scotland, Gregory
studied the recently published Logarithmotechnia of Nicholas Mercator (Kaufmann)
(1620–1687). This inspired him to compose a short work titled Exercitationes Geomet-
ricae. These two books contain all of Gregory’s publications on the mathematics of
infinitesimals. He continued to make interesting discoveries, especially in differential
calculus and infinite series, but died before he could publish these results.

In his Pars Universalis, Gregory proved general theorems on tangents, arc length,
and area. He considered and defined convex monotonic curves and gave a rigorous
proof in the style of Archimedes that the arc length of such a curve was given by an area
under a suitable curve. Van Heuraet had already stated this result, but Gregory added
the necessary rigor. In the course of the proof, he also demonstrated the fundamental
theorem of calculus in geometric form. It is important to make clear that Gregory
did not think in terms of the processes of integration and differentiation and their
inverse relationship. Rather, he conceived and stated his results by means of tangents
and areas. Yet he discovered several remarkable theorems, including one in which he
proved that if f (x) and g(x) were functions such that f ′(x)= g′(x) and f (0)= g(0),
then f (x)= g(x).

The most important results of Gregory’s Exercitationes were his evaluations of∫
secθ dθ and

∫
tan θ dθ in terms of the logarithm. The first integral was well known

for its usefulness in navigation as Gerhard Mercator’s projection, but its exact value
was unproved until the appearance of Gregory’s booklet. He computed the integral
by transforming it into a double integral and then changing the order of integration.
Naturally, he did all this in wholly geometric terms.

Barrow studied Gregory before he published the Lectiones Geometricae and some of
his important results such as the tangent and area duality can also be found in Gregory.
However, it is probable that Barrow made his discoveries independently, including his
simpler proofs of some special results in Gregory, such as the evaluations of the two
integrals,

∫
secθ dθ and

∫
tan θ dθ . It is generally accepted that Barrow shunned any

form of plagiarism. In connection with another result of Gregory, Barrow gave some
extensions, remarking “I do not like to put my sickle into another man’s harvest, but
it is permissible to interweave amongst these propositions one or two little observa-
tions…which have obtruded themselves upon my notice whilst I have been working at
something else.” On the other hand, Gregory was motivated to go more deeply into the
differential calculus by a study of Barrow’s Lectiones. For example, on the blank space
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in the letter from Collins dated November 1, 1670, he noted several results on deriva-
tives, including the formula, expressed in modern notation:

√
af /(

√
af )′ = 2ce/(c+e),

where c= a/a′, e= f/f ′. The accent denotes differentiation with respect to a variable,
say x.

It is difficult to determine exactly what these three very great mathematicians,
Barrow, Gregory, and Newton, owed to each other, but the evidence strongly suggests
that they developed their most important ideas independently.

7.2 Pascal’s Evaluation of
∫

sinx dx

We have noted that Gregory and Barrow derived the integral of the secant in the late
1660s. A decade earlier, in his 1659 paper “Traité des sinus du quart de cercle,” Blaise
Pascal (1623–1662) computed the simpler indefinite integral of the sine function; Pascal
based his work on earlier results of Roberval. In his 1659 paper, Pascal also stated the
change of variables formula∫

sinn θ dθ =−
∫

sin(n−1) θ d cosθ;

in another work, he presented particular cases of the integration by parts formula. The
basic idea behind Pascal’s work is contained in the lemma illustrated by Figure 7.1: The
rectangle formed by the sine DI and the tangent EE is equal to the rectangle formed
by a portion of the base (that is RR) and the radius AB.

Note that for Pascal, as for all writers up to the end of the seventeenth century, the
sine of an angle was not a ratio, but a line. To obtain the modern sine, first defined by
Euler, one divides Pascal’s sine,DI , by the radius AD =AB. Pascal’s lemma follows
immediately from the similarity of the �s ADI and EEK . In modern notation, we
may set DÂC = φ to write the result as

sinφ dφ =−dx =−d cosφ, since EE =ADdφ.

C R I R
A

B

D

E
K

E

Figure 7.1. Pascal’s integration of sine.
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Pascal then stated the following propositions: Proposition I. The sum of the sines of
any arc of a quadrant is equal to the portion of the base between the extreme sines,
multiplied by the radius. Proposition II. The sum of the squares of those sines is equal
to the sum of the ordinates of the quadrant that lie between the extreme sines, multiplied
by the radius. Proposition III. The sum of the cubes of the same sines is equal to the
sum of the squares of the same ordinates between the extreme sines, multiplied by
the radius. Proposition IV. The sum of the fourth powers of the sines is equal to the
sum of the cubes of the same ordinates between the extreme sines, multiplied by the
radius. And so on to infinity. Pascal’s proof of Proposition I consisted in summing all
the equations sinφdφ =−d cosφ to get∫ φ1

φ0

sinφ dφ = cosφ0 − cosφ1.

Pascal used no algebraic symbolism; he appears to have ignored the notational innova-
tions of Harriot and Descartes. He gave his work on the binomial theorem descriptively;
this can prove challenging to the modern reader. But his geometrical argument for
Proposition I is fairly straightforward and we give the translation of the main part of
the proof:

Indeed, let us draw at all the pointsD the tangentsDE, each of which intersects its neighbor at the
points E; if we drop the perpendiculars ER it is clear that each sineDI multiplied by the tangent
EE is equal to each distance RR multiplied by the radius AB. Therefore, all the quadrilaterals
formed by the sines DI and their tangents EE (which are all equal to each other) are equal to all
the quadrilaterals formed by all portions RR with the radius AB; that is (since one of the tangents
EE multiplies each of the sines, and since the radius AB multiplies each of the distances), the
sum of the sines, DI , each of them multiplied by one of the tangents EE, is equal to the sum of
the distances RR, each multiplied by AB. But each tangent EE is equal to each one of the equal
arcs DD. Therefore the sum of the sines multiplied by one of the equal small arcs is equal to the
distance AO multiplied by the radius.

7.3 Gregory’s Evaluation of a Beta Integral

Gregory gave a beautiful and ingenious geometric argument to prove the integral
formula ∫ π/2

0
cos2n θ dθ = 3 · 5 · 7 · · · ·2n− 1

4 · 6 · 8 · · · ·2n
π

4
. (7.1)

His derivation was effectively based on the integration by parts formula∫
cosn+1 θ dθ = 1

n+ 1
cosn θ sin θ + n

n+ 1

∫
cosn−1 θ dθ (7.2)

from which he obtained the recursion relation∫ π/2

0
cosn+1 θ dθ = n

n+ 1

∫ π/2

0
cosn−1 θ dθ. (7.3)
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It is easy to see that (7.3) implies (7.1). Thus, Gregory provided the first rigorous proof
of Wallis’s formula for π .

Wallis used, but did not prove, a formula equivalent to (7.1) in his derivation of the
infinite product forπ ; thus, a proof of this formula was clearly in order. Note that Wallis’s
integral

∫ 1
0 (1− x2)n/2 dx is obtained when x = sin θ is substituted in

∫ π/2
0 cosn+1 θ dθ .

Pietro Mengoli (1626–1686) apparently discovered Wallis’s formula at about this
same time, though he published it in the early 1670s. Gregory’s motivation for investi-
gating formulas (7.1), (7.2), and (7.3) was to give a rigorous proof of Mengoli’s result, of
which Gregory became aware through a May 28, 1673 letter from Collins. Collins wrote
that Mengoli had recently published a book in which he discussed Wallis’s formula

2 · 4 · 4 · · ·2n · 2n
3 · 3 · 5 · · ·(2n− 1)(2n+ 1)

<
π

4
<

2 · 4 · 4 · · ·2n · (2n+ 2)

3 · 3 · 5 · · ·(2n+ 1) · (2n+ 1)
.

This follows easily from the obvious inequalities

∫ π/2

0
cos2n+2 θ dθ <

∫ π/2

0
cos2n+1 θ dθ <

∫ π/2

0
cos2n θ dθ

and the recursion formula (7.3).
Gregory wrote up his proof on the back of an April 1674 letter from Collins, where

it lay undiscovered until Turnbull examined Gregory’s papers: “I first examined the
documents at St Andrews in 1932, when it was discovered that Gregory, the original
recipient of the letters, had used their blank spaces for recording his own mathematical
thoughts. As a result of careful scrutiny it has been established that Gregory made
several remarkable and unsuspected discoveries, particularly in the calculus and the
theory of numbers, which he never published. He was, for example, employing Taylor
and Maclaurin expansions more than forty years in advance of anyone else.”

The proof depends on a change of variables formula, stated in geometric form as
proposition 11 of Gregory’s Geometriae Pars Universalis of 1668. In fact, this work
also contains a result equivalent to the n= 2 case of (7.2). Gregory saw that his method
could be generalized, as illustrated in Figure 7.2.

In Figure 7.2, letHDK be a quadrant of a circle with centerK and radius r . Denote
angle OK̂D by θ and let EI = r cosn θ and LI = r cosn−2 θ . Thus, the curves HED
and HLD may be taken as the graphs of r cosn θ and r cosn−2 θ , respectively, as θ
varies from 0 to π/2. Let NC, the tangent to HED at E, meet the vertical line KD
at C and let BC be parallel to HK and meet the vertical line IO at B. Finally, let the
curve BD be the locus of B obtained by constructing a tangent at each point of the
curve ED.

On the back of the letter from Collins, James Gregory wrote in Latin:

On p. 113 Geom Pars Univers., let DK = r, OI = e, EI = en/rm, m = n− 1, p = n− 2, q =
n−3, EB

n
= r2ep−en

rm
; whence EO exceeds EB/n by an excess e − ep/rq . For let ODE =

S, EDF = T ; and put LI = ep/rq , and LOD = V ; then S exceeds T/n by an excess V , or
ODE exceeds DEF/n by an excess LOD; that is LDE =DEF/n.
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H K
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F
E
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L

Figure 7.2. Gregory’s method for integration by parts of cosn θ .

He gave a brief outline of a proof; we expand upon that: The curve HED is defined
by IE = y = en/rn−1 and HLD by en−2/rn−3. Let IK = a so that a2 + e2 = r2. Then
the subtangent NI = y/dy

da
, or

NI = yrn−1

nen−1de/da
= e2

na
.

The similar �s NIE and CEF give

CF =EI · EF
NI

= en

rn−1
· na

2

e2
= nen−2a2

rn−1
.

Thus, BE =CF = nLE, since LE = IL− IE = en

rn−1
− en−2

rn−3
= en−2a2

rn−1
.

Because the relation BE = nLE holds at every point along the curve ED, we can
conclude that the area of the curvilinear region BDE is n times the area of the region
LDE. Now observe that a de

da
=BE, and as a varies, the quantity a de

da
gives the vertical

distance between the curve BD and ED. Gregory then proved that area BDE = area
DEF by applying proposition 11 of his Pars Universalis. This is a change of variables
result, easily understandable in the Leibniz notation:

areaDEF =
∫
a de=

∫
a
de

da
da = area BDE.

We now have

areaODE− areaLDE = areaLOD,

or areaODE− 1

n
areaDEF = areaLOD.
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The last equation is equivalent to the integration by parts formula given at the beginning
of this section. Note that if we denote OK̂D by θ and let r = 1, then

areaODE =
∫
(cosθ − cosn θ)d sin θ =

∫
(cos2 θ − cosn+1 θ)dθ,

areaDEF =
∫

cosn+1 θ dθ − cosn θ sin θ,

areaLOD =
∫
(cos2 θ − cosn−1 θ)dθ,

and the integration (7.2) formula follows.
Gregory did not write down the general formula (7.1), but he explicitly wrote down

the values of the integral for n= 3, 5, 7, and 9 and then noted that the process could
be continued indefinitely. Unfortunately, Gregory died before he could publish these
remarkable results, which were rediscovered and generalized by Euler in the 1730s.
From these theorems and his penetrating reasoning, we get a sense of Gregory’s power
as a mathematician and of the extent to which, in those early days, he had developed
the methods of calculus.

7.4 Gregory’s Evaluation of
∫

secθ dθ

We have already noted the connection of
∫ x

0 secθ dθ with Mercator’s projection, a
significant tool in navigation. The great Portugese mathematician, Pedro Nuñez (1502–
1578), or Nunes, after whom the nonius is named, defined the navigational problem. He
saw that loxodromes, curves intersecting meridians at a constant angle, were distinct
from Great Circles. He asked how loxodromes could be represented as straight lines
on a map such that a compass direction could be set. Gerhard Mercator (1512–1594)
employed his projection to answer this question, publishing his Great World Map in
1569. In the 1590s, Harriot effectively evaluated the secant integral by a stereographic
projection of a loxodrome from the South Pole into a logarithmic spiral, though he did
not publish his results. In 1599, Edward Wright, a Cambridge professor of mathematics,
published an important book called Certaine Errors in Navigation Corrected, contain-
ing tables of numerical values of this integral, computed by means of the continued
addition of the secants of 1’, 2’, 3’, etc. Henry Bond analyzed the pattern of these
tables and observed that the values could be closely approximated by ln tan

(
π

4 + x

2

)
.

He published this observation in the 1645 edition of Richard Norwood’s Epitome of
Navigation. Bond’s observation quickly became well known, and a theoretical proof
was greatly desired. Collins mentioned this need in his 1659 book on navigation, and
in 1666 Nicholas Mercator (Kaufmann) offered a sum of money for a demonstration.
Collins brought these facts to the notice of his friend James Gregory who provided a
very difficult proof in 1668. Barrow soon presented a simpler proof, performing inte-
gration by partial fractions for the first time in any published work. Some notes of
Newton on plane and spherical trigonometry dating from 1665–66 also contain some
useful remarks on this problem.
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Figure 7.3. Gregory’s integration of secθ .

Gregory’s evaluation of the secant integral was wholly geometric. For convenience,
we follow Turnbull to describe Gregory’s method in analytic terms.
The curveBQE in Figure 7.3 is parametrically given by (1−sin θ, secθ) and the curve
CRF is the rectangular hyperbola y2 −x2 = 1; E is the point (1− sinα, secα), where
α is fixed. The straight lineOG, asymptotic to the hyperbola, is y = x and the straight
line OKF is easily seen to be y = x cscα.

Gregory converted the integral
∫ α

0 secθ dθ to a double integral. His first step was to
do a change of variables:∫ α

0
secθ dθ =

∫ α

0
sec2 θ d(1− sin θ)=

∫ 1−sinα

0
zdx,

where x = 1 − sin θ and z = sec2 θ . Now, in brief, with y = secθ, we may write
dz= 2ydy and 2

∫ θ
0 sec t d(sec t)= sec2 θ − 1; it follows that∫ α

0
secθ dθ = 2

∫ ∫
y dydx,

where the double integral is evaluated over the region EBAH . Changing the order of
integration gives

2
∫ ∫

y dxdy = 2
∫
(x ′ − x ′′)y dy,

where x ′ is the value of x on the boundary ABQE and x ′′ = 1− sinα is the value of
x on HE. Gregory then divided the last integral into two parts: the first below the line
CB, where x ′ = 1 and the second above the lineCB, where x ′ = 1−sin θ . When x ′ = 1,
we have x ′ − x ′′ = sinα and the value of the double integral for the first part (below
CB) is equal to sinα. Since the x coordinate of K from y = x cscα is sinα, it follows
that twice the area of triangle OCK is equal to the first part of the double integral.

For the second part, note that x ′ −x ′′ = sinα− sin θ , so that the integrand y(x ′ −x ′′)
is equal to RS for ON = y. Thus, the double integral over the region above CB is
double the area CRFK . Therefore, the double integral, or the sum of the two parts,
equals twice the area OCF , that is, twice the area between the hyperbolic segment
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y2 − x2 = 1 and the straight line y = x cscα. It is not difficult to show that this area
= ln(secα+ tanα).

7.5 Barrow’s Evaluation of
∫

secθ dθ

In Figure 7.4, AB is a quadrant of a circle with center C. MT is the tangent to the arc
AB at M , meeting the vertical line CA at T . The line TX is parallel to BC and meets
the vertical line PM at X. The curve XA is obtained by applying this process to every
point on the arc MA. The hyperbola LEO is defined by the equation LP = BC2

BP
. In

particular, CE = BC2

BC
= BC and OQ= BC2

BQ
.

Note that BQ was understood simply as a line segment and not as an axis in the
modern sense; likewise for ET . Thus, the curve LEO did not lie below the x-axis,
since there was no negative portion of an axis. The concept of negative and positive
portions of axes having a fixed origin did not arise until more than a century after
Barrow’s work. The purpose of a curve was to express a relation between variables
(line segments), and the purpose of the axes was to signify the values of those line
segments. Each line segment was thus simply a length with no negative value attached;
the equation of the hyperbola in the diagram would be y = 1/x and not y =−1/x.

Barrow stated his theorem:

Let CQ be taken equal to CP , and QO be drawn parallel to CE, meeting the hyperbola LEO
in O; then the hyperbolic space PLOQ multiplied by the radius CB (or the cylinder on the base
PLOQ of height CB) is double the sum of the squares on the straight lines . . . PX, belonging to
the arc AM , and applied to the straight line CB.

In alternative notation, Barrow’s sum of squares would be written as
∫ C
P
y2 dx, where

y is the ordinate of the curve XA and x = CP . If we let AĈM = θ and set the radius

B C Q

X
A
T

P

L

E

O

u

M

Figure 7.4. Barrow’s integral of secant as an area under a hyperbola.
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CB = 1, then y = PX =CT = secθ and x =CP = sin θ and∫
y2 dx =

∫
sec2 θ d(sin θ)=

∫
secθ dθ.

Let us now follow the steps of Barrow’s argument. Observe that from the values of
LP and OQ,

PL

QO
= BQ

BP
= BC+CP
BC−CP .

Adding one to the extreme sides of the above equation, we obtain

PL+QO
QO

= 2BC

BC−CP .

Then again
QO

BC
= BC

BQ
= BC

BC+CP ,
and thus

PL+QO
BC

= PL+QO
QO

· QO
BC

= 2BC2

BC2 −CP 2
= 2BC2

PM2
.

Since the similarity of the triangles TMC and PMC implies BC/PM =PX/BC, we
arrive at

2PX2

BC2
= PL+QO

BC
or 2PX2 = (PL+QO)BC.

This proves Barrow’s contention; in modern notation, Barrow proved that

2
∫

secθ dθ = ln(1+ sin θ)− ln(1− sin θ)= ln
1+ sin θ

1− sin θ
.

The final result follows immediately from this. Note that in Barrow’s relation

(PL+QO)/BC = 2BC2/(BC2 −CP 2),

the left side of the equation is equivalent toBC/BP+BC/BQ, and this gives the partial
fractions decomposition of the right side. Barrow’s proof of the formula

∫
tan θ dθ =

− ln cosθ was even simpler. We present Barrow’s statement of the result and the figure
accompanying it (Figure 7.5); the reader may wish to fill in the details.
ABC is a quadrant of a circle with AS a tangent at A while KZZ is a hyperbola

with asymptotes CA and CY . (Barrow tended to denote more than one point by the
same letter, but this practice was usually not confusing.) The hyperbola is defined, as in
the previous case, by the equation y =FZ=CA2/CF =R2/x, where R is the radius.
Barrow then stated:

The straight line CS is equal to FZ; thus the sum of the secants belonging to the arc AM , applied
to the line AC, is equal to the hyperbolic space AFZK .

As a corollary he had the integral of tan θ : “the sum of the tangents to the arc AM…is
equal to the hyperbolic space AFZK .”
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Figure 7.5. Barrow’s integration of the tangent function.

7.6 Barrow and the Integral
∫ √

x2 + a2 dx

Although Barrow did not explicitly evaluate this integral, it turns out to be a corollary
of his theorem related to rectification, illustrated by Figure 7.6.

Take as you may any right-angled trapezial area (of which you have sufficient knowledge), bounded
by two parallel straight lines AK,DL, a straight line AD, and any line KL whatever; to this let
another such area ADEC be so related that, when any straight line FH is drawn parallel to DL,
cutting the linesAD,CE,KL in the pointsF,G,H , and some determinate straight lineZ is taken,
then the square on FH is equal to the squares on FG and Z. Moreover, let the curveAIB be such
that, if the straight lineGFI is produced to meet it, the rectangle contained by Z and FI is equal
to the space AFGC; then the rectangle contained by Z and the curve AB is equal to the space
ADLK . The method is just the same, even if the straight line AK is supposed to be infinite.

To understand this theorem, letAF = x,IF = y = g(x) and the let the constant Z= a.
Then FG= ag′(x), and we have the length of the arc AIB = ∫ √

1+ (g′(x))2 dx. As
an example, Barrow considered the case where KL was an equilateral hyperbola with
center A and axis AK , as in Figure 7.7. He concluded that in this case CGE was a
straight line and AIB a parabola.

If we write the parabola as y = g(x) = x2/2a, then FG = x so that y = x is the
line AE asymptotic to the hyperbola KL given by y =√

x2 + a2. Barrow did not go
beyond this point, but he could easily have computed

∫ √
x2 + a2 dx = area AFHK

if necessary. He knew from the work of Grégoire St. Vincent, Alphonse de Sarasa, and
N. Mercator that since y = x is asymptotic to the hyperbola (y− x)(y+ x)= a2, area
KHPQ= a2(lnAQ− lnAP). Here note that KP and HQ are perpendicular to CE.
Now

areaAFHK = areaAFG+ areaAKP + areaKHQP − areaGHQ

= 1

2
x2 + 1

4
a2 + a2 ln

(
1√
2
(
√
x2 + a2 − x)+√

2x

)
− a2 ln

a√
2
− 1

4
(
√
x2 + a2 − x)2

= 1

2
x
√
x2 + a2 + a2 ln

(
x+√

x2 + a2

a

)
.
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Figure 7.6. Barrow’s preliminary result on rectification.
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Figure 7.7. Barrow’s quadrature of a rectangular hyperbola.
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Figure 7.8. Barrow’s integration of an algebraic function.

We outline the main steps of Barrow’s very interesting evaluation of
∫

dx√
a2+x2

,

omitting some of his geometric reasoning; please refer to Figure 7.8.
Suppose ERK is any curve and RT is tangent to it at R. EVY is a curve such that

CT =V S, whereRS is a vertical line parallel toCD andKI . One of Barrow’s general
results was that the region EDKY bounded by the curve EVY had twice the area of
the region EDK bounded by the curve ERK . Analytically, this means that if we write
ERK as y = f (x), then EVY is given by y = f (x)− xf ′(x). Barrow’s theorem then
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follows upon integration by parts, for it can be stated as

2

(
xf (x)−

∫ x

0
f (t)dt

)
= xf (x)−

∫ x

0
(f (t)− tf ′(t))dt.

Barrow applied this result to the case in which f (x)=√
x2 + z2 so that the curveEVY

was given by y = a2/
√
x2 + a2. We now reproduce his evaluation of

∫
dx/

√
x2 + a2

in his language:

Let there be an equilateral HyperbolaERK , viz. having equal Axes, and letKI,KD be Ordinates
to these Axes (CED,CI ). Also let the Curve EVY be such, that assuming the point R at pleasure
in the Hyperbola, and drawing the right Line RV S parallel to DC, let SR, CE, SV be continual
Proportionals [author’s remark: This means that SR : CE :: CE : SV ; this can be seen from our
earlier remarks, since SR=√

x2 + a2, CE = a, and SV = a2/
√
x2 + a2.] Then joyning the right

Line CK; the Space CEIY will be the double of the Hyperbolick Sector KCE. For draw RT

touching the Hyperbola, and RH parallel to CI . Then it is CH : CE :: CE : CT . Therefore,
CT = SV , or HT =RV . Consequently the Space EDKY is twice the Segment EDK . Also the
Rectangle IKDC is twice the Triangle CDK . Consequently the remaining Space CEYI is twice
the remaining Sector ECK .

We have already established the fact that the sector ECK is given by a2

2 ln(x +√
a2 + a2). Thus, Barrow’s result is that∫

dx√
x2 + a2

= a2 ln(x+
√
x2 + a2).

7.7 Barrow’s Proof of d
dθ

tan θ = sec2 θ

Barrow used more algebraic notation in this proof than in any other proof in his lectures.
He also neglected second-order infinitesimals in his computations and we shall do the
same without comment.

In Figure 7.9, let DEB be a quadrant of a circle to which BX is a tangent. AMO
is a curve such that AP is equal in length to the arc BE and PM = BG= CB tan θ .
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Figure 7.9. Barrow’s diagrams for the derivative of tan θ .
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The infinitesimal arc EF = e =QP . Also let EK and FL be perpendicular to CB.
Denote the radius by r , CK = f, KE = g, GB = m and the infinitesimal GH = a.
The problem is to compute a

e
= d

dθ
tan θ .

Since the triangle CEK is similar to the differential triangle EFI,LK = ge/r .
Thus,

CL= f + ge

r
, and LF =√

(r2 −f 2 − 2fge/r)=√
(g2 − 2fge/r).

Now from the triangles CFL and CHB, CL :LF =CB : BH , or

f +ge/r :√(g2 − 2fge/r)= r :m− a.
Squaring this relation gives

f 2 + 2fge/r : g2 − 2fge/r = r2 :m2 − 2ma.

From triangles CBG and CEK we get fm = rg, and hence the previous relation
simplifies to rfma = gr2e+gm2e. Thus,

a

e
= g(r2 +m2)

rfm
= r2 +m2

r2
= sec2 θ.

7.8 Barrow’s Product Rule for Derivatives

Barrow’s derivation of the product rule depended on a reduction theorem stating, in
analytic terms, that if (a,b) is an intersection point of the curves y= f (x) and y= g(x),
then the curves y = (

1− r

n

)
f (x)+ r

n
g(x) and y = f (x)1−

r
n g(x)

r
n have a common

tangent at (a,b). Barrow used this theorem to reduce problems on the derivatives of
products to those on derivatives of sums. Of course, this is equivalent to taking the
logarithm of the product to get a sum of logarithms. In Barrow’s time, the logarithm
was viewed as the means for associating an arithmetic progression with a geometric
progression. For his purposes, Barrow developed a few elementary properties of these
progressions and in particular, he proved the inequality, given here analytically:

1+ r

n
x > (1+ x)r/n, for r < n and x > 0

and, using this inequality, Barrow derived his result.
Changing Barrow’s notation slightly, we give the statement and proof of the theorem

upon which he based his derivation of the product rule. He denoted curves by EBE or
FBF, etc. so that the symbol E or F , etc. would appear on more than one part of the
curve. We shall avoid this.

In Figure 7.10, QBE and ABF are two convex curves and BR is a tangent to
QBE. We summarize Barrow’s description of the diagram and theorem: Let VD,T B
be straight lines meeting in T , and let a straight line BD, given in position, fall across
them. In our terminology, BD and TD are the coordinate axes. Let the two curves be
such that if any straight line PG is drawn parallel to BD,PF is always an arithmetic
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Figure 7.10. Barrow’s figure for the product rule.

mean of the same order betweenPG andPE. This means that there are positive integers
M and N,M >N such that

M.PF = (M −N)PG+N.PE.

If the point S on TD is such that

N.TD+ (M −N)RD
M.TD

= RD

DS
, (7.4)

then BS touches the curveABF . Note here that Barrow thought of a tangent to a curve
as a straight line touching the curve at one point. He dealt only with convex (or concave)
curves. Moreover, he consistently used ratios of magnitudes such as RD : SD instead
of RD/SD, although some may prefer the latter notation in a long argument.

Now in an earlier lecture, Barrow proved the lemma

LG.TD+KL.RD
KG.TD

= RD

SD
, (7.5)

also pointing out that EF/FG = M/N ; therefore,

FG.TD

EF.TD
= N.TD

M.ND
and

EF.RD

EG.TD
= (M −N).RD

M.TD
.

After adding the two equations, we have

FG.TD+EF.RD
EG.TD

= N.TD+ (M −N)RD
M.TD

= RD

SD
.
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When this is combined with the equation in the lemma (7.5), we get

FG.TD+EF.RD
EG.TD

= LG.TD+KL.RD
KG.TD

.

Thus,
EG/EF

KG/KL
= FG/EF +RD/TD
LG/KL+RD/TD

= EF/EF −RD/TD
KL/KL−RD/TD .

Therefore, EG/EF =KG/KL or EG/FG =KG/GL. Now since EF > KG, we
must haveFG>LG. This implies thatL falls outside the curve. Thus, SB is tangent to
the curve. By use of his reduction theorem, Barrow next extended this result to curves
which satisfy PFM = PGM−N.PEN . He merely remarked that if PF was assumed to
be a geometric mean betweenPG andPE (that is, the given equation held forPF ) and

N.TD+ (M −N)RD
M.TD

= RD

SD
,

then BS will touch the curve ABF , proving the theorem. The product rule follows
quickly after this; note that the last relation can be written as

N

RD
+M −N

TD
= M

SD
.

So if the straight lines BD and TD are taken orthogonal to each other, it follows that
RD, TD and SD are subtangents and

1

DS
= 1

y

dy

dx
.

See Figure 7.11.
Thus, we can see that Barrow found the product rule for wM = yM−NzN .

D S

y

Figure 7.11. Subtangent DS in terms of the derivative.
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Figure 7.12. Barrow: Fundamental theorem of calculus in geometric form.

7.9 Barrow’s Fundamental Theorem of Calculus

In his eleventh lecture, Barrow gave an expression of the duality between the derivative
and the integral, a form of the fundamental theorem of calculus. He showed that if
R.dz/dx = y, then R.z = ∫

y dx where R was a constant. Earlier in his lectures, he
gave the converse.

Following Barrow’s proof very closely and using Figure 7.12, let AMB be a curve
with axisAD, and let BD be perpendicular toAD. LetKZL be another curve defined
as follows: When MT is tangent to the curve AMB, and MFZ is parallel to DB,
cutting KZ in Z and AD in F , and when R is a line of fixed length, we then have
T F : FM = R : FZ. The curve KZL thus defined is such that the space ADLK is
equal to the rectangle contained by R and DB.

Barrow’s proof is very brief. He argued that ifDH =R andMN was an infinitesimal
arc of the curve AB, then NO :MO = T F : FM =R : f z and, therefore, NO.FZ =
MO.R and FG.FZ =ES.EX. “Hence,” he wrote, “since the sum of such rectangles
as FG.FZ differs only in the least degree from the space ADLK , and the rectangles
ES.EX form the rectangle DHIB, the theorem is quite obvious.”

7.10 Exercises

1. Barrow’s lemma:BR andBS are two straight lines throughB andGP is parallel
to BD and intersects the two lines at K and L, respectively, as in Figure 7.13.
Show that

LG.TD+KL.RD
KG.TD

= RD

SD
.

See Child (1916), p. 79.
2. Prove the result that if A,B,C,D,E,F are in arithmetic progression, and A,

M , N ,O, P , andQ are in geometric progression, and the last term F is not less
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Figure 7.14. Gregory’s diagram for product and quotient rules.

than the last term Q, then B > M,C > N and so on. Show that this result is
equivalent to the statement 1+αx > (1+ x)α, 0< α < 1, with α rational. See
Child (1916), pp. 84–85.

3. Let Ch,AK be two curves; letMB be a straight line, and letGI be a curve such
that GB is always equal to the sum of AB and CB, as in Figure 7.14.

• Let the straight linesCD,AF touch the curvesCh,AK . PutCB = a, BD=
b, AB = c, FB = d and let BH = adb+cdb

da+bd . Prove that GH will touch the
curve GI .

• Prove that if GB :AB ::CB :OB, and BH = a, BF = b, BD = c, then

BN = acb

ab+ ac− cb .

These results are equivalent to the product and quotient rules for derivatives.
Gregory obtained these results after reading Barrow. See Turnbull (1939),
pp. 347–349.

4. In Figure 7.15, let AB be the quadrant of a circle with center C. The hyperbola
LEO is defined by BP.LP = BC2. AS is tangent to the circle at A and MY is
parallel to AS. The curve AY is such that FY =AS. The space ACQYA (that
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Figure 7.16. Derivative of an algebraic function.

is, the sum of the tangents belonging to the arc AM , and applied to the straight
lineAC, together with the rectangle FCQY ) is one-half of the hyperbolic space
PLOQ. Show that this result is equivalent to the integration by parts formula:∫

tan θ d(cosθ)= tan θ cosθ −
∫

cosθ d(tan θ).

See Child (1916), pp. 167 and 186.
5. In Figure 7.16, let BEI and DFG be two curves such that if PFE is any line

parallel to the fixed line JA, then the square on PE is equal to the square on PF
plus the square on a given straight line Z. Also, let the straight line T E touch
BEI and let S be such that PE2/PF 2 =PT/PS.Then SF will touch the curve
DFG.

Show that this theorem is equivalent to the result that if s2 = t2 − a2, then

ds/dt = t/
√
t2 − a2.

See Child (1916), p. 96.
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Figure 7.17. Quotient rule for derivatives.

6. In Figure 7.17, let XEM,YFN be two curves such that if any straight EDF is
drawn parallel to a fixed line, the rectangle contained by DE and DF is equal
to an arbitrary given area. Also the straight line ET touches the curve XEM at
E. Prove that if DS is taken equal to DT , then FS will touch the curve YFN
at F .

Draw IN parallel to EF , cutting the given lines as shown and prove the
following:

• T P/PM > TD/DE.
• (T P ·SP )/(PM ·PK) > (TD ·SD)/(T P ·SP ).
• TD ·SD > T P ·SP .
• PM ·PK < PM ·PN . Thus, the line FS lies outside the curve YFN and

therefore is tangent to the curve.

Show that the preceding result implies that if u = 1/v, then 1
u

du

dx
= − 1

v
dv
dx
.

Combine this with the product rule, proved in the text, to obtain the quotient
rule. See Child (1916), p. 93.

7. In Figure 7.18, ZGE is an increasing curve, that is, the ordinates VZ,PG, and
DE are increasing. V IF is a line such that the rectangle contained byDF and a
given lengthR is equal to the area VDEZ; andDE/DF =R/DT . Then T F is
tangent toV IF atF . Show that this theorem is a form of the fundamental theorem
of calculus. Let ZGE be y = f (x) and V IF be z= g(x). If Rz= ∫ x

0 y dx, then
y =Rdz/dx. Prove the theorem as follows: Take IL to be an infinitesimal.

• Show that R×LF =LK ×DE = area PDEG.
• Conclude that LK <DP =LI and hence FK is outside the curve V IF .
• Now take the point I on the other side of F and prove a similar result.

See Child (1916), p. 117.
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Figure 7.19. Barrow’s and Newton’s illustration of the integrability of a monotonic function.

8. In Figure 7.19, let AB be a decreasing curve lying over the abscissa DB; DB
is divided into several parts by points denoted by Z. Observe that each base ZZ
forms the base of a smaller rectangle and the base of a larger rectangle containing
the smaller (e.g., XPZZ and GXZZ). Show that the difference between the
sum of the areas of the larger rectangles and the sum of the areas of the smaller
rectangles yields the area of the rectangle KADL. Then show that this proves
that a monotonic function is integrable. See Child (1920), p. 172.

7.11 Notes on the Literature

The best source for the study of Barrow’s work on the calculus is his Lectiones Geomet-
ricae. These lectures have been translated into English twice, first in 1735 by Edmund
Stone, and more recently in 1916 in abridged form by J. M. Child. Stone’s edition
is a straightforward translation, but Child’s work contains a long introduction to put
Barrow’s lectures in historical perspective, mentioning where in the lectures a specific
calculation can be found. Child also added notes at the end of each chapter, making
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it easier to understand Barrow’s results. Child’s purpose in translating the Lectiones
Geometricae was to establish the thesis, stated at the beginning of his preface:

Isaac Barrow was the first inventor of the Infinitesimal Calculus; Newton got the main idea of
it from Barrow by personal communication; and Leibniz also was in some measure indebted to
Barrow’s work, obtaining confirmation of his own original ideas, and suggestions for their further
development, from the copy of Barrow’s book that he purchased in 1673.

Child is mistaken in his comments on Newton, since he did not have a chance to see all
of Newton’s early manuscripts; Whiteside’s edition of Newton’s complete papers was
not then available. In spite of this, Child’s book is worth reading. Child’s exaggerated
claims led to a decline of attention to the work of Barrow, but there has been a recent
renewal of interest; see Feingold (1990) and (1993). For another treatment of Barrow
and Newton, see Arnold (1990).

The James Gregory Memorial Volume, edited by Turnbull, published in 1939, con-
tains the mathematical discoveries Gregory was unable to publish in his time. Turnbull’s
remark on when he examined Gregory’s papers and notes is given on p. vi. This volume
contains all of Gregory’s mathematical and scientific correspondence. The majority of
his letters are to John Collins, who was similar to Marin Mersenne in being a very inter-
ested amateur who kept up a vast correspondence with several scholars and informed
them of the results of others. Apparently Gregory evaluated the integral

∫ π/2
0 cosn θ dθ

after receiving news from Collins that Mengoli had written a book in which he had
rediscovered Wallis’s formula for π . Gregory recorded his derivation on the back of a
letter from Collins. To note important discoveries on the back of letters was a common
practice with Gregory. Turnbull contains all such recordings and makes fascinating
reading; it also has detailed summaries of Gregory’s published works.

Gregory’s evaluation of the beta integral is given in Turnbull (1939) pp. 378–382
and his evaluation of the integral of secx can be found on pp. 463–464. See also Baron
(1987), a thorough history of the origins of calculus, for a nice discussion of Gregory and
Barrow. Our discussion of Barrow’s work is based largely on Child (1916). Barrow’s
quote about his sickle may be found on p. 190 of Child (1916). Barrow’s derivations
of the special integrals are in lecture twelve and in the first appendix to that lecture. He
obtained the product and quotient rules for derivatives in chapter nine; the derivative
of tanx in chapter ten; the fundamental theorem of calculus in chapter eleven. See
pp. 101–109, 123, 135, 160–168, and 183–186. Child’s translation is abridged, so
for Barrow’s evaluation of

∫
secx, by means of partial fractions, consult p. 236 of

Barrow (1735) and see pp. 238–239 for the quotation concerning the evaluation of∫
dx/

√
x2 + a2. The English translation of Pascal’s evaluation of

∫
sinx is in Struik

(1969), pp. 239–241. For the quote of Chandrasekhar, see Wali (1991), p. 243, where
he refers to Chandrasekhar’s unpublished manuscript on the Principia.
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The Calculus of Newton and Leibniz

8.1 Preliminary Remarks

Newton was a student at Cambridge University from 1661 to 1665, but he does not
appear to have undertaken a study of mathematics until 1663. According to de Moivre,
Newton purchased an astrology book in the summer of 1663; in order to understand
the trigonometry and diagrams in the book, he took up a study of Euclid. Soon after
that, he read Oughtred’s Clavis and then Descartes’s Géométrie in van Schooten’s
Latin translation. By the middle of 1664, Newton became interested in astronomy; he
studied the work of Galileo and made notes and observations on planetary positions.
This in turn required a deeper study of mathematics and Newton’s earliest mathe-
matical notes date from the summer of 1664. On July 4, 1699, Newton wrote in his
1664–65 annotations on Wallis’s work that a little before Christmas 1664 he bought van
Schooten’s commentaries and a Latin translation of Descartes and borrowed Wallis’s
Arithmetica Infinitorum and other works. In fact, his meditations on van Schooten and
Wallis during the winter of 1664–65 resulted in his discovery of his method of infinite
series and of the calculus.

Following the methods of van Schooten’s commentaries, Newton devoted intense
study to problems related to the construction of the subnormal, subtangent, and the
radius of curvature at a point on a given curve. Newton’s analyses of these problems
gradually led him to discover a general differentiation procedure based on the concept of
a small quantity, denoted by o, that ultimately vanished. Later in life, Newton wrote that
he received a hint of this method of Fermat from the second volume of van Schooten’s
commentaries, although this gave only a brief summary based on P. Hérigone’s 1642
outline of Fermat’s method of finding the maximum or minimum of a function. Newton
found the derivative, just as Fermat had, by expanding f (x + o) = f (x)+ of ′(x)+
O(o2). Newton realized that the derivative was a powerful tool for the analyses of the
subtangent, subnormal, and curvature and by the middle of 1665 he had worked out
the standard algorithms for derivatives in general. Wallis’s work motivated Newton to
research the integration of rational and algebraic functions. Newton combined this with
a study of van Heuraet’s rectification of curves; in the summer of 1665, he began to

120
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understand the inverse method of tangents, that is, the connection between derivatives
and integrals.

Newton left Cambridge in summer 1665 due to the plague, and returned to his home
in Lincolnshire for two years. This gave him the opportunity to organize his thoughts
on calculus and several other subjects. He gave up the idea of infinitesimal increments
and adopted the concepts of fluents and fluxions as the new foundation for calculus.
Fluents were flowing quantities; their finite instantaneous speeds were called fluxions,
for which he later used the dot notation, such as ẋ, where x was the fluent. From this
point of view, Newton regarded it as obvious that the fluxion of the area generated by
the ordinate y along the x-axis would be y itself. In other words, the derivative of the
area function was the ordinate. In the fall of 1665, Newton ran into trouble with an
uncritical application of the parallelogram of forces method, but he soon realized his
mistake and by the spring of 1666 he was able to apply the method to an analysis of
inflection points. Note that in 1640, the French mathematician G. Roberval warned that
a curve could be viewed as the result of a moving point, but that there were pitfalls to
using the parallelogram of forces method to find the tangent. What was the origin of
Newton’s conception of a curve as a moving point? A half century later, Newton wrote
that, though his memory was unclear, he might have learned of a curve as a moving
point from Barrow. Another possible source was Galileo but Newton did not mention
him in this connection. In any case, Newton organized his concentrated research on
calculus into a short thirty-page essay without title; he later referred to it as the October
1666 tract, published only in 1967 in the first volume of Whiteside’s edition of Newton’s
mathematical papers.

In 1671, Newton wrote up the results of his researches on calculus and infinite series
as a textbook on methods of solving problems on tangents, curvature, inflection, areas,
volumes, and arclength. The portions of this work on infinite series were expanded
from his 1669 work De Analysi. Whiteside designated the 1671 book as De Methodis
Serierum et Fluxionum because Newton once referred to it this way, but Newton’s
original title is unknown because the first page of the original manuscript was lost.
English translations of 1736 and 37 were given the title The Method of Fluxions and
Infinite Series. Unfortunately, Newton was unable to publish this work in the 1670s,
though he made several attempts. At that time, the market for advanced mathematics
texts was not good; the publisher of Barrow’s lectures on geometry, for example, went
bankrupt. The controversy with Leibniz, causing wasted time and effort, would have
been avoided had Newton succeeded in publishing his work.

Newton’s De Methodis dealt with fluxions analytically, but it was never actually
completed; in some places he merely listed the topics for discussion. However, when
he revised the text in the winter of 1671–72, Newton added a section on the geometry of
fluxions, developed axiomatically; he later called this the synthetic method of fluxions.
Note that in the Principia Newton employed his geometric approach.

As Newton was completing his researches on the calculus and infinite series,
Gottfried Leibniz (1646–1716) was starting his mathematical studies. He studied law
at the University of Leipzig but received his degree from the University of Altdorf,
Nuremberg in 1666. At that time, he conceived the idea of reducing all reasoning to a
symbolic computation, although he had not yet studied much mathematics. Leibniz’s
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mathematical education started with his meeting with Huygens in 1672, at whose
suggestion he studied Pascal and then went on to read Grégoire St. Vincent’s Opus
Geometricum and other mathematical works.

From the beginning, Leibniz searched for a general formalism, or symbolic method,
capable of handling infinitesimal problems in a unified way. In a paper of 1673, Leibniz
began to denote geometric quantities associated with a curve, such as the tangent,
normal, subtangent and subnormal, as functions. He began to set up tables of specific
curves and their associated functions in order to determine the relations among these
quantities. Thus, he raised the question of determining the curve, given some property of
the tangent line. In 1673, Leibniz came to the conclusion that this problem, the inverse
tangent problem, was reducible to the problem of quadratures. By the end of the 1670s,
Leibniz had independently worked out his differential and integral calculus. In 1684,
his first paper on differentiation appeared, and in 1686 his first paper on integration
was published. The notation of Leibniz, including the differential and integral signs,
gave insight into the processes and operations being performed. The Bernoulli brothers
were among the first to learn and exploit the calculus of Leibniz and in the 1690s, they
began to make contributions to the development of calculus in tandem with Leibniz.

In the May 1690 issue of the Acta Eruditorum, Jakob Bernoulli proposed the problem
of finding the curve assumed by a chain/string hung freely from two fixed points,
named a catenary by Leibniz. Leibniz was the first to solve the problem, announcing
his construction without details in the July 1691 issue of the Acta. Johann Bernoulli
(1667–1748) soon published a solution, in which he explained that he and his brother
had been surprised that this everyday problem had not attracted anyone’s attention.
But in his paper Leibniz wrote that the problem had been well known since Galileo
had articulated it; moreover, Leibniz stated that he would refrain from publishing his
solution by means of differential calculus, to give others a chance to work out a solution.
Jakob had trouble with this question, since he initially thought the curve was a parabola,
until Johann corrected him. Jakob, however, went on to develop a general theory of
flexible strings.

In his Mathematical Discourses Concerning Two New Sciences, Galileo wrote that
the shape of the curve formed by a chain hanging from two fixed points could be
approximated by a parabola and that this approximation improved as the curvature was
reduced. In his first important publication, in 1645 Christiaan Huygens (1629–1695)
showed explicitly that the catenary could not be a parabola. In the 1690s, Huygens
offered a geometric solution to the problem posed by Bernoulli, using classical methods
of which he was a master. In their approach, Leibniz and Johann Bernoulli applied
mechanical principles to determine the differential equation of the catenary, making use
of the work of Pardies. The Jesuit priest Ignace-Gaston Pardies (1636–1673) published
a 1673 work on theoretical mechanics, developing his original idea of tension along
the string, a concept fully clarified by Jakob Bernoulli. Thus, Leibniz and Johann found
the differential equation of the catenary: dy/dx = s/a where s was the length of
the curve. They showed that the solution of this differential equation was the integral
x = ∫

a dy/
√
y2 − a2 .

In his 1691 paper, Leibniz presented a geometric figure and explained that the
points on the catenary could be found from an exponential curve, called by Leibniz
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the logarithmic line. Details of this proof can be found in his letters to Huygens
and von Bodenhausen. In modern notation, the solution would be expressed as
y = a

2 (e
x/a + e−x/a). Johann Bernoulli also failed to publish details but presented two

geometric constructions of the catenary, one using the area under a curve related to a
hyperbola and the other using the length of an arc of a parabola. In the1690s, this kind
of solution would have been acceptable, because the coordinates of any point on the
catenary were then described in terms of geometric quantities related to known curves
such as the hyperbola and parabola. In modern terms, the area and length can be written
as the integrals ∫

dx√
(x− a)2 − a2

and
∫ √

2a+ x
x

dx.

At this time, Johann was not familiar with the analytic form of the logarithm, though
Leibniz soon wrote him a 1694 letter on properties of the logarithm defined by the inte-
gral

∫
dx/x. Soon after this, Bernoulli wrote a paper on the calculus of the exponential,

explaining how to apply the logarithm to find the derivatives ofmn ormn
p
, etc., where

m,n and p were varying quantities. In particular, he showed that if y = xx , then

dy = xxdx+ xx lnx dx, or dy : dx = y : subtang

where the subtangent = 1/(1 + lnx). Bernoulli also gave the area under xx over the
interval (0,1) as the curious series

1− 1

22
+ 1

33
− 1

44
+ 1

55
&c.

Bernoulli gave details of his solution in his 1691–92 lectures to l’Hôpital, and published
these lectures and his lectures on the integral calculus in the third volume of his collected
works in 1742.

8.2 Newton’s 1671 Calculus Text

The De Methodis Serierum et Fluxionum of Newton began by considering the gen-
eral problem, called Problem 1, of determining the relation of the fluxions, given the
relations to one another of two flowing quantities. As an example, Newton took

x3 − ax2 + axy− y3 = 0. (8.1)

His rule for finding the fluxional equation was to first write the equation in decreas-
ing powers of x, as in (8.1), and then multiply the terms by 3ẋ/x,2ẋ/x, ẋ/x, and 0,
respectively, to get

3ẋx2 − 2ẋax+ ẋay. (8.2)

Thus, if the term were xnym, then it would be multiplied by nẋ/x. He next wrote
the equation in powers of y : −y3 + axy + (x3 − ax2) and multiplied the terms by
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−3ẏ/y, ẏ/y and 0 to obtain

−3ẏy2 + aẏx. (8.3)

In order to obtain the equation expressing the relation between the fluxions ẋ and ẏ
Newton added (8.2) and (8.3) and set the sum equal to zero:

3ẋx2 − 2aẋx+ aẋy− 3ẏy2 + aẏx = 0.

From this it followed that

ẋ : ẏ = (3y2 − ax) : (3x2 − 2ax+ ay).
Newton also presented more examples, involving more complex expressions such as√

a2 − x2 and
√
ay+ x2.

Explaining why his rule for finding fluxional (differential) equations worked, Newton
pointed out that a fluent quantity x with speed ẋ would change by ẋo during the small
interval of time o. So the fluent quantity x would become x+ ẋo at the end of that time
interval. Hence, the quantities x+ ẋo and y+ ẏo would satisfy the same relation as x
and y, and when substituted in (8.1) gave him

(x3 + 3ẋox2 + 3ẋ2o2x+ ẋ3o3)− (ax2 + 2aẋox+ aẋ2o2)

+(axy+ aẋoy+ aẏox+ aẋẏo2)− (y3 + 3ẏoy2 + 3ẏ2o2y+ ẏ3o3)= 0. (8.4)

After subtracting (8.1) from (8.4) and dividing by o, Newton had

3ẋx2 + 3ẋ2ox+ ẋ3o2 − 2aẋx− aẋo+ aẋy+ aẏx
−aẋẏo− 3ẏy2 − 3ẏ2oy− ẏ3o2 = 0.

Here Newton explained that quantities containing the factor o could be neglected,
“since o is supposed to be infinitely small so that it be able to express the moments of
quantities, terms which have it as a factor will be equivalent to nothing in respect of
the others. I therefore cast them out and there remains

3ẋx2 − 2aẋx+ aẋy+ aẏx− 3ẏy2 = 0.′′

Note that this amounts to the result of implicit differentiation with respect to a parameter.
Actually, Newton here used the lettersm and n for ẋ and ẏ, respectively. He introduced
the dot notation in the early 1690s. From this he had the slope

ẏ : ẋ = 3x2 − 2ax+ ay : 3y2 − ax. (8.5)

Observe that to construct the tangent, rather than work with slope, it is better to find the
point where the tangent intersects the x-axis and join this point to the point of tangency
on the curve. Now if (x,y) is the point on the curve, then the length of the segment
of the x-axis from (x,0) to the intersection with the tangent is given by the magnitude
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of y/ dy
dx

. In his discussion of the tangent, Newton computed this quantity to obtain
(3y3 − axy)/(3x2 − 2ax+ ay).

In the section of his book on maxima and minima, Newton gave a method and then
two examples and nine exercises to be solved using that method. He never completed
this section of his book. To find a maximum or minimum, he explained, the derivative
should be set equal to zero at an extreme value:

When a quantity is greatest or least, at that moment its flow neither increases nor decreases; for if
it increases, that proves that it was less and will at once be greater than it now is, and conversely
so if it decreases. Therefore seek its fluxion by Problem 1 [above] and set it equal to nothing.

In the first application of this principle, he sought the greatest value of x in equation
(8.1) by setting ẋ = 0 in the fluxional equation (8.2) to get

−3y2 + ax = 0. (8.6)

This last result should be used in the original equation to obtain the largest value of x.
Newton remarked that equation (8.6) illustrated the “celebrated Rule of Hudde, that,
to obtain the maxima or minima of the related quantity, the equation should lie ordered
according to the dimensions of the correlate one and then multiplied by an arithmetical
progression.” He added that his method extended to expressions with surd quantities,
whereas the earlier rules and techniques did not. As an example, he gave the problem
of finding the greatest value of y in the equation

x3 − ay2 + by3/(a+ y)− x2
√
ay+ x2 = 0.

Newton wrote that the equation for the fluxions of x and y would come out to be

3ẋx2 − 2aẏy+ 3abẏy2 + 2bẏy3

a2 + 2ay+ y2
− 4aẋxy+ 6ẋx3 + aẏx2

2
√
ay+ x2

= 0.

He then observed that by hypothesis ẏ = 0 and hence, after substituting this in the
equation and dividing by ẋx,

3x− (2ay+ 3x2)/
√
(ay+ x2)= 0 or 4ay+ 3x2 = 0.

Newton noted that this equation should be used to eliminate x or y from the original
equation; the maximum would be obtained by solving the resulting cubic.

The next section of Newton’s book discussed the problem of constructing tangents
to curves and he mentioned seven problems solvable by the principles he explained.
For example:

1. To find the point in a curve where the tangent is parallel to the base (or any other
straight line given in position) or perpendicular to it or inclined to it at any given
angle.

2. To find the point where a tangent is most or least inclined to the base or to another
straight line given in position – to find, in other words, the bound of contrary
flexure. I have already displayed an example of this above in the conchoid.
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By “the bound of contrary flexure” Newton meant the point of inflection. At this point,
d2y/dx2 = 0. In the example of the conchoid of Nichomedes, defined by yx = (b+
y)
√
c2 − y2, Newton actually minimized the x-intercept of the tangent given by

x− y dx/dy. (8.7)

Note that in 1653, Huygens determined the inflection points of this conchoid by this
method, using Fermat’s procedure to obtain the minimum value. Newton was most
likely aware of Huygens’ work and wanted to show that calculus algorithms could
simplify Huygens’s calculation. It should be noted that Huygens’s criterion that the
inflection points in general could be obtained by minimizing (8.7) is false, though it
is true for the conchoid. As we noted before, Newton suggested the maximization (or
minimization) of the tangent slope to find the inflection point.

Newton was very interested in problems related to curvature and intended to devote
several chapters to the topic, but many of these are barely outlines. However, he pre-
sented a procedure for finding radius of curvature, and we explain this later on. He also
included sections on arclength and the area of surface of revolution.

8.3 Leibniz: Differential Calculus

Leibniz gave a very terse account of his differential calculus in his 1684 Acta Erudi-
torum paper, starting with the basic rules for the differentials of geometric quantities
(variables). Leibniz’s approach was not to find the derivative of a function. As he con-
ceived things, geometric quantities had differentials; when the quantities stood in a
certain relationship to one another, then the differentials also satisfied certain relations.
To determine these relations, for a constant a and variable quantities v,x,y, etc., he
stated the rules for the differentials dv,dx,dy, etc.:

da = 0, d(ax)= adx, d(z− y+w+ x)= dz− dy+ dw+ dx,
d(xv)= xdv+ vdx, d

v

y
=±vdy∓ y dv

yy
.

Concerning signs of differentials, Leibniz explained that if the ordinate v increased,
then dv was positive, and when v decreased, dv was negative.

In only one paragraph, Leibniz described in terms of differentials: maxima and
minima, concavity or convexity, and inflection points of curves. He explained that at
a maximum or minimum for an ordinate v, dv = 0 since v was neither increasing nor
decreasing. For concavity, the difference of the differences d dv had to be positive,
and for convexity d dv had to be negative. At a point of inflection d dv = 0. After this,
Leibniz gave the rules for the differentials of powers and roots, that is

dxa = axa−1 dx, and d
b
√
xa = a

b

b
√
xa−b. (8.8)

He wrote that with this differential calculus, he could solve problems dealing with
tangents and with maxima and minima by a uniform technique, lacking in the earlier
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expositions. To demonstrate the power of his method, he found the tangent to a curve
defined by a complicated algebraic relation between the variables x and y. As another
application of the differential calculus, he gave the derivation of Snell’s law in optics,
one of the standard examples in modern textbooks.

As a final example, Leibniz considered the problem that de Beaune proposed to
Descartes in 1639. Florimond de Beaune (1601–1652) was a jurist who carefully studied
Descartes’s book on geometry. He observed that, though Descartes had given a method
for finding the tangent to a curve, he had not indicated how to obtain the curve, given a
property of the tangent. One of de Beaune’s problems was to find the curve for which
the subtangent was the same for each point of the curve. This problem translates to the
differential equation dy

dx
= y

a
, where a is a constant. It is well known that the solution

is lny = ax+ c and Descartes came close to a solution. In the course of his work, he
obtained, without mentioning logarithms, particular cases of the inequality, written in
modern notation as

1

n
+ 1

n+ 1
+·· ·+ 1

m− 1
> ln

m

n
>

1

n+ 1
+ 1

n+ 2
+·· ·+ 1

m
.

To tackle this problem, Leibniz described the differential equation by saying that y was
to a as dy was to dx. He then noted that dx could be chosen arbitrarily and hence could
be taken to be a constant b. Then

dy = b

a
y, or y = a

b
dy.

He observed that this implied that if the x formed an arithmetic progression, then the
y formed a geometric progression. Leibniz did not explain or prove this statement, but
it is easy to check that if

y(x)= a

b
dy(x), then

y(x+ dx)= y(x)+ dy(x)=
(

1+ b

a

)
y(x).

Again,

y(x+ 2dx)= y(x+ dx)+ dy(x+ dx)

= y(x+ dx)+ b

a
y(x+ dx)

=
(

1+ b

a

)
y(x+ dx)

=
(

1+ b

a

)2

y(x).
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Similarly,

y(x+ 3dx)= y(x+ 2dx)+ b

a
dy(x+ 3dx)

=
(

1+ b

a

)3

y(x),

and in general

y(x+ndx)=
(

1+ b

a

)n
y(x).

This proves Leibniz’s claim, since he took dx to be a constant; thus, x, x + dx, x +
2dx, . . . is an arithmetic progression, and the values ofy at these points form a geometric
progression. This idea illustrates the seventeenth century understanding of logarithms.
In fact, Leibniz was already suggesting that the logarithm be defined by means of the
integral

∫
dx/x and later on, he did so.

Leibniz could have integrated to get lny = ∫
dy/y = 1/a

∫
dx = x/a, but in his

1684 paper, he did not use or discuss integration, though he had been aware of it for
several years. Surprisingly, he gave a brief exposition of his ideas on integration in a
review of John Craig’s 1685 book on quadrature. In the review, Leibniz introduced the
symbol

∫
for the summation of infinitesimal quantities and gave an illustration of its

power when used in conjunction with differentials. Leibniz also pointed out that the
integral symbol could be used to represent transcendental quantities such as the arcsine
or logarithm, in such a way that it revealed a property of the quantity.

In his 1684 paper on the differential calculus, Leibniz gave a derivation of Snell’s
law by applying Fermat’s principle of least time.

Light traveled from point C to point E and the lineQP separated an upper medium
of density r from a lower medium of density h (Figure 8.1). Leibniz explained that
density should be understood to be with respect to the resistance to a ray of light.

LetQF = x, QP =p, CP = c, andEQ= e. ThenFC=√
cc+pp− 2px+ xx=

(in short)
√
l; EF = √

ee+ xx = (in short)
√
m. Leibniz gave the quantity to be

C

E

F

P

QS S

Figure 8.1. Leibniz’s figure for derivation of Snell’s law.
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minimized when the densities were taken into account as w = h√l+ r√m. He then
argued that to minimize, set dw = 0, to obtain 0 = hdl : 2

√
l + rdm : 2

√
m. Note

that Leibniz specified that he would denote x/y by x : y. He then observed that
dl =−2(p− x) and dm= 2xdx; hence he had Snell’s law: h(p− x) : √l = rx : √m.

8.4 Leibniz on the Catenary

Leibniz developed a theory of second- and higher-order differentials in order to apply
differential calculus to geometry and mechanics. In his applications, including the
catenary problem, he often took one of the variables, say y, to be such that the second-
order differential ddy was 0 or, equivalently, that the first-order differential dy was a
constant. This amounted to taking y to be the independent variable. To describe the
curve of the catenary, Leibniz used Pardies’s important mechanical principle that for
any portion AC of the curve made by the string, the vertical line through the center of
gravity of AC, and the tangents at A and at C intersected at one point (Figure 8.2).

Leibniz’s letters to Huygens and Bodenhausen offered the following details of his
derivation of the catenary. In Leibniz’s figure (Figure 8.3), A is the lowest point of the
catenary;CT is the tangent at a pointC on the catenary; andCβ,AB are perpendicular
to Aβ, the tangent at A. We follow Leibniz’s notation and argument. Let AB = x,

BC = y,Tβ = x dy : dx and AT = y − x dy : dx. Then, by Pardies’s theorem, the y
coordinate of the center of gravity of the arc AC of length c is 1

c

∫
y dc. Thus,

1

c

∫
y dc= y− x dy : dx. (8.9)

Now multiply both sides by c and differentiate to get

y dc= cdy+ y dc− x dy : dx dc− cdy− cxd, dy : dx. (8.10)

A

b

C

B

Figure 8.2. Pardies’s theorem.

B C

A T b

Figure 8.3. Leibniz’s figure of catenary, made for Huygens.
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Note that Leibniz used a comma to separate the operator d from the quantity dy : dx.
Upon simplification, obtain

dcdy : dx+ cd, dy : dx = 0. (8.11)

Suppose that y increases uniformly, so that dy is constant and ddy = 0. This implies
by the quotient rule that

d, dy : dx =−dy ddx : dx dx,
so that (8.11) is transformed into dcdx− cddx = 0.

By differentiating dx : c= dy : a we get the previous equation, indicating that this
is the integral of that equation. Rewrite this integral as

a dx = cdy. (8.12)

This is the differential equation of the catenary, and its differential is

a ddx = dcdy. (8.13)

Following Leibniz, one may solve this equation by observing that in general, since c
denotes arclength,

dcdc= dy dy+ dx dx. (8.14)

Differentiate this, using ddy = 0 and (8.13), to obtain

dcddc= dy ddy+ dx ddx = dx ddx = dx dcdy/a,
by (8.13). By integration (Leibniz used the term summation), we arrive at a dc =
(x+b)dy , where b is a constant. Next set z= x+b to rewrite, obtaining a dc= zdy.
Combining this with dcdc= dzdz+ dy dy, the result emerges as

aa dzdz+ aa dy dy = zzdy dy. (8.15)

Thus,

y = a
∫
dz : √zz− aa (8.16)

gives the area under the curve with ordinate a/
√
z2 − a2. This integral can be computed

in terms of the logarithm. Although we today would wish to evaluate the integral, and
write it as the logarithm of a specific function, mathematicians of the seventeenth
century were satisfied with a result expressed in terms of areas or arclengths of known
curves, so that from Leibniz’s point of view, this result was sufficient to define the
catenary.

We remark that the meaning of the logarithm function within the calculus was not
fully understood in 1690, and so Leibniz’s paper devoted some space to what he called
the logarithmic line, now written as y = ax . Leibniz had to explain the concept to
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Huygens. In a similar context, l’Hôpital raised questions on the dimensionality of
geometric objects, asking Johann Bernoulli: Since a and x were magnitudes of lines,
what did it mean to have one as the power of the other? To deal with problems of
this kind, Leibniz, the Bernoullis and their followers began to define their quantities in
terms of formulas instead of geometric objects.

8.5 Johann Bernoulli on the Catenary

In his 1691–1692 lectures on integral calculus, Bernoulli gave details to supplement the
treatment of the catenary in his 1691 paper. He first set down the mechanical principles
required to obtain the fundamental equation.

In Figure 8.4, Bernoulli set BG= x, GA= y, Ha = dx, HA= dx, and BA= s.
He then applied the laws of statics, and in effect Pardies’s law, to obtain the differential

dx

dy
= ks

ka
= s

a
(8.17)

for some constant a. Bernoulli’s solution, like that of Leibniz, amounted to showing
that (8.17) was equivalent to

dy = a dx√
x2 − a2

. (8.18)

To show this, he wrote (8.17) as

dy = a dx

s
or dy2 = a2

s2
dx2 .

Therefore,

ds2 = dx2 + dy2 = s2 dx2 + a2 dx2

s2

and ds = dx
√
s2 + a2

s
, or dx = s ds√

s2 + a2
.

g

L
G

BE

A

C

a
H

Figure 8.4. Bernoulli’s diagram for a catenary.
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By integration,

x =
√
s2 + a2 or s =

√
x2 − a2 .

By differentiating, he got

ds = x dx√
x2 − a2

=√
dx2 + dy2 .

Squaring this, he had
x2 dy2 − a2 dy2 = a2 dx2 ,

equivalent to (8.18).

8.6 Johann Bernoulli: The Brachistochrone

In 1696, Bernoulli conceived of and solved the brachistochrone problem: Given two
points in a vertical plane but not vertically aligned, find the curve along which a point
mass must fall under gravity, starting at one point and passing through the other in
the shortest possible time. He argued that this mechanical problem was identical to an
optical problem of the path taken by light moving from one point to another, following
the curve of least time, passing through a medium whose ever-changing density is
inversely proportional to the velocity of a falling body. As light passes continuously
from one medium to another, the quantity sinα

v
remains constant, where α is the angle

between the vertical and the direction of the path and v is the velocity.
We change Bernoulli’s notation slightly; he used t for the velocity and interchanged

the x and y. So in Figure 8.5, letAC = y,CM = x,mn= dx,Cc= dy,Mm= ds, and
α =∠nMm. Since sin α/v is a constant, we have

dx

ds
= v

a
,or a2dx2 = v2(dx2 + dy2),

where a is a constant. Since for a falling body v2 = 2gy, we get dx =√
y/(c− y)dy,

where c= a2/2g. Now

dy

√
y

c− y = 1

2

cdy√
cy− y2

− 1

2

cdy− 2y dy√
cy− y2

.
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O
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Figure 8.5. Bernoulli’s diagram to derive the brachistochrone.



8.7 Newton’s Solution to the Brachistochrone 133

Integrating this, obtain CM = arcGL−LO and, sinceMO =CO− arcGL+LO =
arcLK +LO, it follows that ML= arcLK . Thus, the curve is a cycloid.

Bernoulli was particularly proud of having linked mechanics with optics. In his
brachistochrone paper he wrote, “In this way I have solved at one stroke two important
problems – an optical and a mechanical one – and have achieved more than I have
demanded from others: I have shown that the two problems, taken from entirely separate
fields of mathematics, have the same character.” Bernoulli mentioned the link between
geometrical optics and mechanics more than once in his works, but this concept was
not developed until the 1820s when the Irish mathematician William Rowan Hamilton
independently worked out the same idea.

8.7 Newton’s Solution to the Brachistochrone

In 1696, although he had already solved the problem, Johann Bernoulli made a public
challenge of the brachistochrone problem, perhaps directed at Newton. At that time,
Newton was serving in London as warden of the mint, having given up mathematics.
However, upon receiving the problem after a full day’s work, he set upon it immediately
and reportedly solved it within twelve hours. Whiteside commented that, although
this was a marvelous feat, Newton was then out of practice, and thus he took hours
instead of minutes for this problem. We note that in 1685, Newton had addressed
a mathematically similar problem, of the solid of revolution of least resistance in a
uniform fluid; his solution was included in the Principia. In 1697, Newton published
a very short note with an accompanying diagram in the Philosophical Transactions,
stating that the solution to Bernoulli’s problem was a cycloid; then in 1700, he wrote
up the details, apparently for the purpose of explaining the solution to David Gregory,
nephew of James Gregory. In his brief note in the Transactions, Newton gave Figure 8.6
and stated:

From the given point A draw the unbounded straight line APCZ parallel to the horizontal and
upon this same line describe both any cycloidAQP whatever, meeting the straight lineAB (drawn
and, if need be, extended) in the point Q, and then another cycloid ADC whose base and height
[as AC : AP ] shall be to the previous one’s base and height respectively as AB to AQ. This most
recent cycloid will then pass through the point B and be the curve in which a heavy body shall,
under the force of its own weight, most swiftly reach the point B from the point A. As was to be
found.

APC
Z

B Q

D

Figure 8.6. Newton’s solution to the brachistochrone problem.
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Figure 8.7. Newton’s solution for David Gregory.

We summarize Newton’s solution for David Gregory, based upon his diagram,
Figure 8.7, and Whiteside’s commentary. Let AB = x, BC = o = CD, BE =
y(= y(x)). By Taylor’s expansion

CN = y(x+ o)= y+ ẏo+ 1

2
ÿo2,

DG= y(x+ 2o)= y+ 2ẏo+ 2ÿo2.

From this it follows that

HN = IK = ẏo+ 1

2
ÿo2, IG= ẏo+ 3

2
ÿo2, andLG= 2ẏo+ 2ÿo2.

Define p and q by FN = q and GL= 2p.
The time taken to travel from E toG is to be minimized as q varies. The expression

for time is given by√
o2 + (p− q)2√

x
+

√
o2 + (p+ q)2√

o+ x =R+S,

where

R2 = o2 + (p− q)2
x

and S2 = o2 + (p+ q)2
o+ x .

Taking the derivative with respect to q,

2RṘ = −2pq̇+ 2qq̇

x
and 2SṠ = 2pq̇+ 2qq̇

x+ o .

So the condition for minimum time is that

−pq̇+ qq̇
Rx

+ pq̇+ qq̇
S(x+ o) = 0,
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or

(p− q)√x√
(p− q)2 + o2

= (p+ q)√x+ o√
(p+ q)2 + o2

.

This condition implies that p
√
x/

√
p2 + o2 must be a constant and since o/p = ẋ/ẏ,

we have
√
x/

√
1+ (ẋ/ẏ)2 = constant or 1+

(
dx

dy

)2

= x/c.

Thus, dy =
√

x

c−x dx, and we have the differential equation of a cycloid.

8.8 Newton on the Radius of Curvature

From the time he studied van Schooten’s book on Descartes’s Géometrie, Newton was
interested in the problem of finding the radius of curvature at a point on the curve.
In 1664–1665, he grappled with this question, and after several attempts he found a
solution. In the 1737 anonymous translation of his treatise on fluxions and series, he
wrote:

There are few Problems concerning Curves more elegant than This, or that give a greater insight
into their nature. In order to its resolution, I must premise the following general considerations….
2. If a Circle touches any Curve on its concave side in a given point, and its magnitude be such
that no other Tangent Circle can be interscribed in the Angle of contact nearer that point, that
Circle will be the same Curvature as the Curve is of in that point of contact. For that circle which
comes between the curve and another Circle at the point of contact, varies less from the Curve and
makes a nearer approach to its Curvature, than that other Circle does; and therefore that Circle
approaches nearest to its Curvature, between which and the Curve no other Circle can intervene.
3. Therefore the Center of Curvature at any point of a curve, is the Center of a Circle equally
curved, and thus the Radius or Semi-diameter of Curvature is part of the perpendicular which is
terminated at that Center.

After some discussion of properties of the center of curvature, he described one method
for finding the radius of curvature by constructing normals at two infinitely close points,
D and d. The intersection of the normals gave the center C of the circle of curvature
and therefore CD was the radius of curvature. Referring to Figure 8.8, he explained
how to find CD.

At any point D of the Curve AD, let DT be a Tangent, DC a Perpendicular, and C the Center
of Curvature, as before. And let AB be the Absciss, to which let DB be applied at right angles,
which DC meets in P . Draw DG parallel to AB, and CG perpendicular to it, in which take
Cg of any given magnitude, and draw gδ perpendicular to it, which meets DC in δ. Then it
will be Cg : gδ :: (T B : BD ::) as the Fluxion of the Absciss to the Fluxion of the Ordinate.
Likewise imagine the point D to move in the Curve an infinitely little distance Dd, and drawing
de perpendicular to DG, and Cd perpendicular to the Curve, let Cd meet DG in F , and δg in f .
Then will De be the momentum of the Absciss, de the momentum of the Ordinate, and δf the
contemporaneous momentum of the RightLine gδ. ThereforeDF =De+ de×de

De
. Having therefore

the ratios of these momenta, or which is the same thing, of their generating Fluxions, you will
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Figure 8.8. Newton’s derivation of the radius of curvature.

have the ratio of GC to the given line Cg, which is the same as that of DF to δf . And thence the
point C will be determined.

Therefore let AB = x, BD = y,Cg = 1, and gδ = z. Then it will be 1 : z :: ẋ : ẏ, or z = ẏ

ẋ
.

Now let the momentum δf of z be ż× o, (that is the product of the velocity and of an infinitely
small quantity o,) therefore the momentum De= ẋ× o, de= ẏ× o, and thence DF = ẋo+ ẏẏo

ẋ
.

Therefore it is

Cg(1) :CG :: (δf :DF ::)żo : ẋo+ ẏẏo

ẋ
, that is,

CG= ẋẋ+ẏẏ
ẋż

. And whereas we are at liberty to ascribe whatever velocity we please to the Fluxion
of the Absciss, to which as to an equable Fluxion the rest may be referred, make ẋ = 1, and then
ẏ = z, and CG= 1+zz

ż
; whence GD = z+z3

ż
; and DC = 1+zz√1+zz

ż
.

8.9 Johann Bernoulli on the Radius of Curvature

In 1691, Guillaume l’Hôpital (1661–1704) met Johann Bernoulli, who informed him
that he had found a formula for the radius of curvature. A keen student of mathematics,
l’Hôpital was fascinated, and requested Bernoulli give him a course of lectures. In
1691–92, Bernoulli delivered these lectures, in which was necessarily included an
elaboration of the calculus. L’Hôpital proceeded to write his famous differential calculus
textbook, popular for a century. Bernoulli included his integral calculus lectures as
Lectiones Mathematicae in vol. 3 of his Opera Omnia; he mentions l’Hôpital in the
subtitle of the lectures. The derivation of the formula for the radius of curvature is
contained in Lecture 16 of this work.

In Figure 8.9, the lines OD and BD are radii normal to the curve, with O and B
infinitely close, so that BD is the radius of curvature. Bernoulli let AE = x, EB = y
with BF = dx, FO = dy. Then he could write

FC = dy2

dx
[= dy

dx
dy] and therefore BC = dx2 + dy2

dx
.
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Figure 8.9. Bernoulli’s figure for the radius of curvature.

Now BF : FO = BE :EH , so that

EH = y dy
dx
, BH = y

√
dx2 + dy2

dx
, and AH = x+ y dy

dx
,

and, taking d2x = 0, the differential of AH could be written as

HG= dx+ dy2 + yd2y

dx
.

Then because BC : HG = BD : HD, he had (BC −HG) : BC = BH : BD and
Bernoulli obtained the formula for the radius of curvature:

BD = (dx2 + dy2)
√
dx2 + dy2

−dxd2y
.

8.10 Exercises

1. Let b be a root of y3+a2y−2a3 = 0. Show that if y3+a2y+axy−2a3−x3 = 0
and a2 + 3b2 = c2, then

y = b− abx

c2
+ a4bx2

c6
+ x3

c2
+ a3b3x3

c8
− a5bx3

c8
+ a5bx3

c10
+·· · .

2. Suppose y3 + y2 + y− x3 = 0 where x is known to be large. Show that

y = x− 1

3
− 2

9x
+ 7

81x2
+ 5

81x3
etc.

See Newton (1964–1967), vol. 1, pp. 46–47 for the above two exercises.
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3. Show that if ẏ = 3xy2/3 + y, then y1/3 = 1
2x

2 + 1
15x

3 + 1
216x

4 etc. See Newton
(1964–1967), vol. 1, p. 63; see p. 66 for the next exercise.

4. In a given triangle, find the dimensions of the greatest inscribed rectangle.
5. Show that in the parabola ax = yy, the point at which the radius of curvature is

of length f is given by x =− 1
4a+ 3

√
1

16af
2.

6. Find the locus of the center of curvature of the parabola x3 = a2y and of the
hyperbola (of the second kind) xy2 = a3. See Newton (1964–1967), vol. 1, p. 87
for this exercise and p. 85 for the previous exercise. Note that Newton called
a polynomial equation y = p(x) a parabola. Similarly, he called y = a/

√
x a

hyperbola of the second kind.
7. Find the asymptotes of the curve y3 − x3 = axy. See Stone (1730), p. 19.
8. Take a point E on the line segment AB. Find E such that the product of the

square of AE times EB is the greatest. See Stone (1730), p. 58. Recall that this
part of Stone’s book was a translation of l’Hôpital’s differential calculus book.

9. Find the volume of a parabolical conoid generated by the rotation of the parabola
ym = x about its axis. See Stone (1730), p. 121 of the appendix.

10. Show that∫
x3 ln3 x dx = 1

4
x4 ln3 x− 3

42
x4 ln2 x+ 3 · 2

43
x4 lnx− 3 · 2

44
x4.

More generally, find
∫
xm lnm x dx. From this result, deduce that∫ 1

0
xx dx = 1− 1

22
+ 1

33
− 1

44
+ 1

55
− 1

66
+ etc.

See Joh. Bernoulli (1968), vol. 3, pp. 380–381.

8.11 Notes on the Literature

Even though Newton was unable to publish his 1671 calculus treatise, the text was
published several times, starting in the 1730s, in both Latin and English. However,
Whiteside found that the translations were not completely adequate. Consequently, in
vol. 3 of Newton (1967–1981), Whiteside presented his own translation accompanied
by Newton’s Latin text. The discussion of equation (8.4) and the quotation following
it is from p. 81; the quotation on maxima and minima on p. 117; on tangents, p. 149.
However, we quote Newton’s derivation of the radius of curvature from the 1737 anony-
mous translation, in order to give the flavor of the text. For a discussion of Newton’s
brachistochrone work along with Whiteside’s commentary, see pp. 86–90 of vol. 8 of
Newton (1967–1981). Apparently, Newton wrote these notes on the brachistochrone
for David Gregory, to help him understand Nicolas Fatio de Duillier’s complicated and
peculiar 1699 paper, tangentially dealing with this topic. Newton’s brief description of
his solution, given in 1697, appears on p. 75 of vol. 8 and the accompanying diagram
is on p. 72.

For Descartes’s solution of de Beaune’s problem, see the discussion in Hofmann
(1990), vol. 2, pp. 279–84. An English translation of Leibniz’s differential calculus
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paper is in Struik (1969), pp. 272–280. A reprint of the original 1684 paper in Latin can
be found in Leibniz (1971), vol. 3. The mathematical details of Leibniz’s work on the
catenary were given in his letters to Huygens and to von Bodenhausen. See vol. 7 of
Leibniz (1971), pp. 370–372 for the letter to von Bodenhausen. Truesdell quotes the
complete derivation of the equation of the catenary from Leibniz’s letter to Huygens,
but the letter is also included in Huygens’s collected works, referenced by Truesdell
(1960). Truesdell presents an interesting commentary on the work of Pardies, Leibniz,
Huygens, and Johann Bernoulli relating to the catenary. See especially pp. 64–75.

We have not dealt with Leibniz’s higher differentials in any detail. An interesting
account appears in Bos (1974). Euler showed that the complicated theory of higher dif-
ferentials could be avoided by using dependent and independent variables. An English
translation of Bernoulli’s brachistochrone paper appears in Struik (1969), pp. 392–396.
Areprint of Bernoulli’s original work is in Joh. Bernoulli (1968), pp. 187–193. Simmons
(1992) gives an entertaining account in modern terminology. Bernoulli’s derivation of
the radius of curvature appears in his collected works, Joh. Bernoulli (1968), vol. 3,
pp. 488–505. Find his paper on the calculus of the exponential function on pp. 179–187.
The reader may enjoy seeing Knoebel, Laubenbacher, Lodder, and Pengelley (2007)
for their discussion of Newton’s derivation of the radius of curvature. They review
this work of Newton in the context of the general notion of curvature and include a
discussion of the ideas of Huygens, Euler, Gauss, and Riemann on the topic. Bourbaki
(1994) contains a deep but concise summary of the development of the calculus; see
pp. 166–198.
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De Analysi per Aequationes Infinitas

9.1 Preliminary Remarks

Newton’s groundbreaking paper, revealing the power of infinite series to resolve
intractable problems in algebra and calculus, was probably written in the summer of
1669. Before Newton, the only infinite series to be studied, besides the infinite geomet-
ric series, was the logarithmic series, by J. Hudde and N. Mercator. Inspired by Wallis’s
work on the area of a quadrant of a circle, Newton, in the winter of 1664–65, considered
the more general problem of finding the area under y =√

1− t2 on the interval (0,x),
for x ≤ 1. This question led Newton to make the extraordinary inquiry into the value of
(1− t2)1/2 in powers of t ; Newton thus discovered the binomial theorem, first for expo-
nent 1/2 and soon for all rational exponents. He very quickly perceived the tremendous
significance of this result, and more generally, the importance and usefulness of infinite
series to analysis.

In this paper Newton resolved the general problem, at least in principle, of finding
the area under a curve defined explicitly or implicitly. He showed that by means of
infinite series the problem could be reduced to that of integrating xm/n, where m and n
were integers. If the equation was given explicitly as y = f (x) with f (x) a rational or
algebraic function, then f (x) could be expanded as an infinite series by the binomial
theorem. The area under the curve could then be obtained after term-by-term integration.
Among the examples he gave were the curves y = 1/(1 + x2), y = (2x1/2 − x3/2)/

(1+ x1/2 − 3x) and y =√
(1+ ax2)/

√
(1− bx2). He wrote that the quadrature of the

last example yielded the length of an elliptic arc.
The problem of integrating even these elementary functions would have been too

difficult for the mathematicians before Newton, but his work on the integration of
implicitly defined functions took algebra and analysis to a new level. In 1664, Newton
learned from the books of Viète and Oughtred how to solve algebraic equationsf (x)= 0
by the method of successive approximation. One chose an approximate solution, and
on that basis, one derived successively better ones. The Islamic mathematician Jamshid
al-Kashi (1380–1429) had used a primitive form of this method to solve cubic equations
and to compute roots of numbers, that is, to solve equationsxp−N = 0. With the concept
of infinite series in hand, and the technical skill to work with it, Newton showed how to

140
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solve the equation f (x,y)= 0 in the form y = g(x), where g(x) was an infinite series.
He obtained higher and higher powers of x by successive approximation. Newton then
found the area under a curve defined implicitly as f (x,y)= 0 by integrating g(x) term
by term. Newton gave this method in the De Analysi, but he realized that one did not
always obtain the solution to y = g(x) as a power series. In a longer treatise on calculus
and infinite series of 1671, Newton gave examples where the solution around x = 0
was of the form y = xαg(x), with g(0) �= 0 and α a fraction. He realized that for only
certain values of α could g(0) be determined; for those values, the functions y= xαg(x)
were solutions of f (x,y) = 0 in the neighborhood of x = 0. He devised a method
now called Newton’s polygon to determine the allowable values of α. This method
has important applications in algebraic geometry and analysis. Newton extended his
method for solving f (x,y)= 0 to obtain the inverses of functions defined by infinite
series. He knew that his formula, mentioned earlier, for the area of a sector of a circle
was equivalent to the series for arcsine. By inversion he found the series for sine and
from that the series for cosine. We have seen that Madhava earlier obtained the series
for these functions by a different method.

Newton uncharacteristically wrote up his results on infinite series because by 1668
others were beginning to make similar discoveries. In letters to James Gregory in 1669,
John Collins reported that N. Mercator had found series for sine and for the segment of
a circle, and that Brouncker could expand the square root as an infinite series. In 1668,
Mercator also published a book, Logarithmotechnia in which he expanded 1/(1+ x)
as a series and integrated term by term to obtain his series for ln(1 + x); he applied
his result to the computation of logarithmic values. In the spring of 1665, Newton had
done exactly the same thing; after Mercator’s publication, he realized that he would
lose credit for his discoveries unless he made them known.

Newton submitted his paper to Isaac Barrow, then Lucasian Professor of Mathe-
matics at Cambridge, who mentioned it to Collins in a letter of July 20, 1669 with the
words:

A friend of mine here, that hath a very excellent genius to those things, brought me the other day
some papers, wherein he hath sett downe methods of calculating the dimensions of magnitudes like
that of Mr Mercator concerning the hyperbola, but very generall; as also of resolving aequations;
which I suppose will please you; and I shall send you them by the next.

He wrote Collins again on August 20, 1669:

I am glad my friends paper giveth you so much satisfaction. his name is Mr Newton; a fellow
of our College, & very young (being but the second yeest [youngest] Master of Arts) but of an
extraordinary genius & proficiency in these things. you may impart the papers if you please to my
Ld Brounker [sic].

Collins made a complete copy of Newton’s paper and communicated some of its results
to his correspondents in Britain, France, and Italy. He and Barrow urged Newton to
publish his paper as an appendix to Barrow’s optical lectures but Newton resisted,
perhaps because he had a much larger work in mind, finally written in 1671. This long
but incomplete tract is referred to as De Methodis Serierum et Fluxionum, though its
original title or whether it even had one is unclear, since the first page of the original
manuscript is lost and mathematicians of Newton’s own time referred to it by various
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titles. In the De Methodis, Newton showed how to find the derivative by implicit
differentiation of the equation for the curve f (x,y)= 0.He applied this to problems on
tangents, normals, and radii of curvature. Conversely, given a fluxional (differential)
equation, he explained how it could be solved, particularly with infinite series. The
equations he worked with here were algebraic differential equations.

It is interesting to note that Newton wrote up his results on series only when he
realized that others were working on similar problems; this exercise gave him the
opportunity to rethink his ideas and improve upon them. This happened to him several
times. For example, in the spring of 1684, David Gregory, nephew of James, published
a fifty-page tract Exercitatio Geometrica de Dimensione Figurarum, discussing his
uncle’s results on infinite series related to the binomial theorem. He also promised to
write a sequel with more results. This immediately spurred Newton to compose the
“Matheseos Universalis Specimina,” in the first part of which he gave a brief history of
his work on series and the results on this topic he had communicated to Collins and to
Leibniz. He then went on to develop some new ideas on finite differences and series.
The paper was not completed and in fact ended in the middle of a sentence. Very soon
after this, he reorganized his ideas and presented them in a paper called “De Computo
Serierum.” Here he left out the history but further clarified the new mathematical idea
on series and differences, framed as the transformation formula now often called Euler’s
transformation. Unfortunately, Newton never published these papers. Similarly, in 1691
he wrote and rewrote the tract De Quadratura Curvarum, containing the first explicit
statement of Taylor’s theorem; he published only a portion of this work some years later.

9.2 Algebra of Infinite Series

Newton pointed out in his De Analysi that just as infinite decimals were needed to divide
by numbers, extract roots of numbers, and solve equations with numerical coefficients,
infinite series were needed to divide by polynomials, extract roots of algebraic expres-
sions, and solve equations with algebraic coefficients. To illustrate division, Newton
considered the equation y = a2/(b+ x) and showed that the process led to the series

y = a2

b
− a2x

b2
+ a2x2

b3
− a2x3

b4
+·· · . (9.1)

From this he concluded that the area under the curve y = a2/(b + x) could be
expressed as

a2x

b
− a2x2

2b2
+ a2x3

3b3
− a2x4

4b4
+·· · , (9.2)

if the required area was taken over the interval (0,x). If, however, the required area
under y = 1/(1+ x2) was over (x,∞), then with a = b= 1, and x replaced by x2, he
started with the series

y = 1

x2 + 1
= x−2 − x−4 + x−6 − x−8 etc. (9.3)
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The area was then given by

−x−1 + 1

3
x−3 − 1

5
x−5 + 1

7
x−7 etc. (9.4)

Newton noted that x should be small in (9.2), but should be large in (9.4), though he did
not specify how small or how large. At the end of the paper, he made some remarks on
convergence. He observed that if x= 1/2, then x would be half of all of x+x2+x3+x4

etc. and x2 half of all of x2 + x3 + x4 + x5 etc. So if x < 1/2, then x would be more
than half of all of x+ x2 + x3 etc. and x2 more than half of all of x2 + x3 + x4 etc. He
then extended the argument to the case x/b where b was a constant.

In his second example, Newton applied the algorithm for finding square roots of
numbers to

√
(a2 + x2), obtaining the infinite series

a+ x2

2a
− x4

8a3
+ x6

16a5
− 5x8

128a7
+ 7x10

256a9
− 21x12

1024a11
etc. (9.5)

A little later in the paper, Newton explained his method of successive approximations
to solve polynomial equations f (x,y) = 0. To illustrate the method, he first took an
equation with constant coefficients:

y3 − 2y− 5 = 0. (9.6)

An approximate solution would be 2, so he set y = 2+p to transform (9.6) to

p3 + 6p2 + 10p− 1 = 0. (9.7)

He argued that since p was small, the terms p3 + 6p2 could be neglected, though he
noted that a better approximation would be obtained if only p3 were neglected. Thus,
he had p = 0.1, and he substituted p = 0.1+ q in (9.7) to obtain

q3 + 6.3q2 + 11.23q+ 0.061 = 0.

Newton linearized this equation to 11.23q+0.061= 0, solved for q to get q=−0.0054,
set q = −0.0054 + r , and wrote that one could continue in this manner. In a similar
way, he resolved the equation

y3 + a2y− 2a3 + axy− x3 = 0 (9.8)

for small values of x. He set x = 0 to obtain

y3 + a2y− 2a3 = 0 (9.9)

so that y = a was a solution; he set y = a+p in (9.8) and took the linear part of the
equation to get p =− 1

4x. In this manner, he had the series

y = a− 1

4
x+ x2

64a
+ 131x3

512a2
+ 509x4

16384a3
etc. (9.10)
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He then used the example

y3 + axy+ x2y− a3 − 2x3 = 0 (9.11)

to illustrate how to obtain a solution for large values of x. Here he started with the
highest power terms in the equation (9.10) to get

y3 + x2y− 2x3 = 0.

Since y = x was a solution of this, he set y = x+p in (9.11) and proceeded as before.
Finally, Newton showed that similar methods could be applied when the equation

had an infinite number of terms. The problem of interest was to solve y = f (x), for x
in terms of y, where f (x) was an infinite series. This gave him a series for the inverse
function and in the De Analysi, he applied it to the cases where f (x)=− ln(1− x)=
x+ 1

2x
2 + 1

2x
3 +·· · and where f (x)= arcsinx = x+ 1

6x
3 + 3

40x
5 + 5

112x
7 +·· · . Thus,

he found the series for the exponential and sine functions.
Observe that Newton’s method of successive approximations is actually equivalent

to the method of undetermined coefficients, learned by Newton through his careful
study of Descartes. One assumes that if z denotes the series, say for − ln(1− x), then

x = a0 + a1z+ a2z
2 +·· · ,

and the values of a0, a1, a2, . . . are obtained by substituting back in the series and
equating the coefficients of the powers of z on both sides of the equation. Newton must
have understood this because in his October 1676 letter to Oldenburg he wrote:

Let the equation for the area of an hyperbola be proposed

z= x+ 1

2
x2 + 1

3
x3 + 1

4
x4 + 1

5
x5, etc.

and its terms being multiplied into themselves, there results

z2 = x2 + x3 + 11

12
x4 + 5

6
x5, etc.,

z3 = x3 + 3

2
x4 + 7

4
x5, etc.,

z4 = x4 + 2x5, etc.,

z5 = x5, etc.

Now subtract 1
2z

2 from z, and there remains

z− 1

2
z2 = x− 1

6
x3 − 5

24
x4 − 13

60
x5, etc.

To this I add 1
6z

3, and it becomes

z− 1

2
z2 + 1

6
z3 = x+ 1

24
x4 + 3

40
x5, etc.
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I subtract 1
24z

4 and there remains

z− 1

2
z2 + 1

6
z3 − 1

24
z4 = x− 1

120
x5, etc.

I add 1
120z

5 and it becomes

z− 1

2
z2 + 1

6
z3 − 1

24
z4 + 1

120
z5 = x

as nearly as possible; or

x = z− 1

2
z2 + 1

6
z3 − 1

24
z4 + 1

120
z5, etc.

He then went on to state two general theorems:
Let z= ay+ by2 + cy3 + dy4 + ey5+ etc. Then conversely will

y = z

a
− b

a3
z2 + 2b2 − ac

a5
z3 + 5abc− 5b3 − a2d

a7
z4

+ 3a2c2 − 21ab2c+ 6a2bd+ 14b4 − a3e

a9
z5 + etc.

(9.12)

Let z= ay+ by3 + cy5 + dy7 + ey9+ etc. Then conversely will

y = z

a
− b

a4
z3 + 3b2 − ac

a7
z5 + 8abc− a2d− 12b3

a10
z7

+ 55b4 − 55ab2c+ 10a2bd+ 5a2c2 − a3e

a13
z9 + etc.

(9.13)

Newton observed that if he took a= 1, b= 1
6 , c= 3

40 , d = 5
112 , etc., in the second series,

then the series for sin z would follow. We note that actually Newton wrote the series
for r sin z, where r was the radius of the circle, in powers of z/r because z was the
length of an arc of the circle. Euler later eliminated the role of the radius and defined
the trigonometric functions as we do now.

9.3 Newton’s Polygon

In his De Methodis, Newton explained his method of solving f (x,y)= 0 by means of
the Newton polygon, where the solution took the form y = xαy1, with α rational and
y1 a power series in x. To find the possible values of α, he plotted the points (b,a) for
each term cxayb in f (x,y), such that b ran along the horizontal axis and a along the
vertical. He then took the lower portion of the convex hull of these points, consisting
of the straight line(s) joining the vertical to the horizontal axis. Although it does not
enclose an area, this lower portion is called the Newton polygon and the slope(s) of
these line(s) gave him the values of α. For example, ifm were the slope of a line in the
polygon, then one value of α would be given by −1/m. These values of α permitted
the evaluation of a nonzero value of y1(0). Note here that the lines joining the other
pairs of points (b,a) could allow for zero values of y1(0).
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Newton considered the example

y6 − 5xy5 + x3

a
y4 − 7a2x2y2 + 6a3x3 + b2x4 = 0,

where he had the points (6,0), (5,1), (4,3), (2,2), (0,3), and (0,4). The line joining (0,3),
(2,2), and (6,0) formed the polygon and gave Newton the terms

y6 − 7a2x2y2 + 6a3x3;
setting these equal to zero, he obtained the lowest-order term in the expansion of y as a
series in x. The slope of the line in the polygon was −1/2 so in the case y = cx1/2, the
terms had the same power in x. Newton could then set y= v

√
ax to reduce the equation

to v6−7v2+6= 0 .He obtained v=±1,±√
2,±√−3 but rejected the complex roots.

Thus, he had four possible initial values of y: ±√
ax,±√

2ax. He wrote that all four
expressions were acceptable initial values for y; by successive approximations, he went
on to find more terms.

Newton’s solutions of f (x,y) = 0 are the first known examples of the implicit
function theorem. Significantly, though Newton did not give an existence proof, he
presented an algorithm for deriving the solution. S. S. Abhyankar pointed out that this
algorithm is applicable to existence proofs in analysis and can also produce the formal
solutions required in algebraic geometry.

9.4 Newton on Differential Equations

In his 1670–71 treatise De Methodis Serierum et Fluxionum, Newton discussed how
to find the derivative from the equation f (x,y) = 0 and, conversely, how to find the
relation between x and y, given a first-order differential equation f (x,y, ẋ, ẏ) = 0.
Note that in the 1690s, Newton began to use the dot notation to indicate a fluxion, or
derivative. In his earliest work, including his work in the 1670s, he employed the letters
p, q, or m, n.

To illustrate how series could be used to solve differential equations, Newton
considered several examples, including

ẏ/ẋ = 1+ y/(a− x),
ẏ2 = ẋẏ+ ẋ2x2, and

ẏ3 + axẋ2ẏ+ a2ẋ2ẏ− ẋ3x3 − 2ẋ3a3 = 0.

He rewrote the first equation as

ẏ/ẋ = 1+ y/a+ xy/a2 + x2y/a3 + x3y/a4 etc.

and then showed how to obtain particular solutions of this equation by assuming a
series solution. He rewrote the second equation as a quadratic in ẏ/ẋ to get

ẏ2/ẋ2 = ẏ/ẋ+ x2
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and solved the quadratic algebraically to obtain

ẏ/ẋ = 1

2
±
√

1

4
+ x2.

After expanding (1/4+x2)1/2 by the binomial theorem, Newton integrated the resulting
infinite series term by term. He apparently did not observe that (1/4+ x2)1/2 could be
integrated directly in terms of the logarithm. As we have seen, Barrow gave the integral
of (a2 +x2)1/2 in his Lectiones Geometricae of 1670 and Newton knew this work quite
well. However, unlike Leibniz, Newton may not have been particularly interested in
closed-form solutions. Newton changed the third equation into a cubic in ẏ/ẋ:

(ẏ/ẋ)3 + ax(ẏ/ẋ)+ a2(ẏ/ẋ)− x3 − 2a3 = 0,

the same cubic as in (9.8). So from (9.10) he saw that

ẏ/ẋ = a− x

4
+ x2

64a
+ 131x3

512a2
etc.

and hence

y = ax− x2

8
+ x3

192a
+ 131x4

2048a2
etc.

9.5 Newton’s Earliest Work on Series

In some of the earliest material recorded in his mathematical notebooks, Newton raised
the problem of finding x, given sinx, observing that the problem was equivalent to
finding the area of a segment of a circle. Newton did this work, inspired by Wallis’s
book, in winter 1664–65.

In Figure 9.1, let aec be a quarter of the circle of radius one with center p and let
pq = x. If the angle ape = θ , then x = sin θ and the area of the sector ape would

a

c

e

p q

Figure 9.1. Newton’s figure for derivation of the arcsine series.
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be 1
2θ = 1

2 arcsinx. Newton’s problem was to find an expression for the area given
by 1

2 arcsinx, when x was known. He knew, from a study of Wallis’s Arithmetica

Infinitorum, that the area aeqp was equal to the area under the curve y =√
1− t2 over

the interval [0,x]. The area of the triangle peq was 1
2x

√
1− x2. So his formula in

modern notation would be given as

area of sectoraep = 1

2
arcsinx =

∫ x

0

√
1− t2 dt − 1

2
x
√

1− x2 . (9.14)

In the course of this work, he discovered the binomial theorem. This gave him the result

(1− x2)1/2 = 1− x2

2
− x4

8
− x6

16
− 5x8

128
− 7x10

256
− 21x12

1024
etc.

He substituted this series in the integral and integrated term by term to get the solution
of his problem:

arcsinx = x+ x2

6
+ 3x5

40
+ 5x7

112
+ 35x9

1152
etc. (9.15)

In the later DeAnalysi, Newton found the series for arcsinx by determining the arclength
of the arc of a circle. In this case, he had to integrate 1/

√
1− t2. If this were combined

with (9.14 ), the result would be∫ x

0

dt√
1− t2 = arcsinx.

Thus, Newton was aware of the integral for arcsine as well as the formula∫ x

0

√
1− t2 dt = 1

2
x
√

1− x2 + 1

2

∫ x

0

dt√
1− t2 .

Modern textbooks usually derive the last formula by means of integration by parts.
After 1666, Newton was effectively aware of substitution and integration by parts,
but to obtain a result more simply, he often gave geometric arguments, similar to the
preceding one; note, however, that he derived the series for arcsine in 1664–65. Newton
discovered another interesting formula from which the series for arcsine can be easily
derived; the first mention of it occurs in his June 13, 1676 letter to Oldenburg, in
response to Leibniz:

If an arc is be taken in a given ratio to another arc, let d be the diameter, x the chord of the given
arc, and the required arc be to that given arc as n : 1. Then the chord of the arc required will be

nx+ 1−n2

2× 3d2
x2A+ 9−n2

4× 5d2
x2B+ 25−n2

6× 7d2
x2C+ 36−n2

8× 9d2
x2D+ 49−n2

10× 11d2
x2E+ etc.

Here note that when n is an odd number the series is no longer infinite and becomes the same as
that which results by common algebra for multiplying the given angle by that number n.
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As Newton explained in his letter, A stood for the first term, B for the second term, C
for the third term, etc. Observe that this formula is equivalent to

sinnθ = nsin θ − n(n2 − 1)

3! sin3 θ + n(n2 − 1)(n2 − 32)

5! sin5 θ

− n(n2 − 1)(n2 − 32)(n2 − 52)

7! sin7 θ +·· · .
(9.16)

Note that the series for arcsine is obtained by dividing (9.16) by n and letting n tend to
zero. The corresponding cosine series is given by

cosnθ = 1− n2

2! sin2 θ + n2(n2 − 22)

4! sin4 θ − n2(n2 − 22)(n2 − 42)

6! sin6 θ +·· · .
(9.17)

This series does not appear in the extant papers of Newton, although one may safely
assume he must have known this result. Note that if we subtract 1 from both sides and
then divide the equation by θ2, then we obtain the series for arcsin2 x when θ tends
to zero.

9.6 De Moivre on Newton’s Formula for sinnθ

In 1698, de Moivre gave a derivation of Newton’s series for sinnθ in “A Method of
Extracting the Root of an Infinite Equation” published in the Philosophical Transac-
tions. Now de Moivre had already seen the method of undetermined coefficients used
in this context, as presented in the letter of Newton for Leibniz. Note that British math-
ematicians of the 1690s were aware of these letters, since Wallis had published portions
of them in his 1685 book on algebra and had presented more complete accounts in the
1690s. In his paper, de Moivre considered the situation in which the series on the left
side of the equation was in terms of a variable different from that on the right; one
variable had to be determined in terms of the other. He stated the main result at the very
beginning of his paper:

If az+ bzz+ cz3 + dz4 + ez5 + f z6 + etc.= gy+hyy+ iy3 + ky4 + ly5 +my6+
etc., then z will be

= g

a
y+ h− bAA

a
y2

+ i− 2bAB− cA3

a
y3

+ k− bBB− 2bAC− 3cAAB− dA4

a
y4

+ l− 2bBC− 2bAD− 3cABB− 3cAAC− 4dA3B− eA5

a
y5

+ etc.
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Note that de Moivre also included the coefficient of y6. Each capital letter denoted the
coefficient of the preceding term. Thus,A= g

a
andB = h−bAA

a
, and so on. His proof first

assumed that z had a series expansion Ay+Byy+Cy3 +Dy4+ etc., then substituted
this for each z on the left side of the initial equation, and then equated coefficients of
powers of y to get A, B, C,D. To apply de Moivre’s formula to get Newton’s formula,
recall that the latter involved the expansion of z= sinnθ in powers of y= sin θ . Clearly,
we can write

arcsin z= narcsiny.

When the arcsines are replaced by their power series expansions, we have

z+ z3

6
+ 3z5

40
+ 5z7

112
+·· · = ny+ ny3

6
+ 3ny5

40
+ 5ny7

112
+·· · .

De Moivre applied his general result to this special equation to obtain

A= n, B = 0, C =−n(n
2 − 1)

6
, D = 0, E = n(n2 − 1)(n2 − 32)

5! , . . . ,

thereby completing a proof of Newton’s formula.

9.7 Stirling’s Proof of Newton’s Formula

By studying Stirling’s unpublished notebooks, Ian Tweddle discovered that Stirling
gave yet another proof of Newton’s formula, by means of differential equations. This
work was probably done before 1730. Stirling took variablesy= r sin θ andv= r sinnθ ,
where n was any positive number. He used geometric considerations to define these
variables and these required that 0 ≤ nθ ≤ π/2, but his proof is actually valid for
0 ≤ |θ | ≤ π/2 with n any real number. Since θ = arcsin(y/r), θ̇ = rẏ/√r2 − y2 and
similarly nθ̇ = r v̇/√r2 − v2, Stirling obtained the fluxional equation

nẏ√
rr − yy = v̇√

rr − vv
; (9.18)

after squaring, he got

n2ẏ2

rr − yy = v̇2

rr − vv
.

He cross multiplied to obtain

n2r2ẏ2 −n2ẏ2v2 = v̇2r2 − y2v̇2.

We note that until the middle of the nineteenth century, mathematicians sometimes
wrote xx and sometimes x2. He took the fluxion (derivative) of this equation, assuming
that ẏ was uniform. This meant that ÿ = 0. Thus, he had the equation

−n2ẏ2vv̇ = v̇v̈r2 − v̇v̈y2 − yẏv̇2, or

−n2ẏ2v = v̈r2 − v̈y2 − yẏv̇.
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He next set ẏ = 1, without loss of generality, to obtain

v̈(r2 − y2)− yv̇+n2v = 0. (9.19)

Assuming a series solution, Stirling set

v =Ay+By3 +Cy5 +Dy7 etc. (9.20)

After substituting (9.20) in (9.19), Stirling found the coefficients, completing the
derivation:

B = 1−n2

2 · 3r2
A, C = 9−n2

4 · 5r2
B, D = 25−n2

6 · 7r2
C, etc.

In his 1730 Methodus Differentialis, proposition 15, Stirling briefly explained why
he used a series of the form (9.20) to solve the differential equation. He set v = Aym
and substituted this expression in the differential equation to get

(m2 −m)Aym−2 + (n2 −m2)Aym = 0. (9.21)

To obtain the lowest power of y in the series solution, he then setm2 −m= 0 to obtain
m= 0 or m= 1. Thus, the lowest power of y was either 0 or 1. By (9.21), the powers
had to increase by two, so that either v was given by the series (9.20), or else

v =A+By2 +Cy4 +Dy6 +·· · . (9.22)

By using (9.22) in a similar way, he obtained the formula (9.17) for cosnθ .
Newton did not state the cosine formula, but he must have known it from his 1664

study of Viète’s booklet on angular sections, written in 1591 but published in 1615
with proofs supplied by Alexander Anderson, an uncle of the great Scottish mathemati-
cian James Gregory. In this paper, Viète expressed in geometric terms the formulas
for cosnθ and sinnθ in powers of cosθ , with n an integer. He explicitly pointed
out the appearance of the figurate numbers as coefficients of these polynomials. As
a student, Newton made annotations on this work of Viète, though they do not indi-
cate that he knew his formula (9.16) at that time. The manner in which he wrote
the coefficients of the powers of sin θ in his letter for Leibniz suggests that he found
the result after his discovery of the binomial theorem. It is even likely that he found the
formula while reviewing his old notes before writing his first letter for Leibniz in
June 1676.

The methods employed by de Moivre and Stirling to prove Newton’s formulas were
familiar to Newton in 1676. In fact, it is very likely that Newton had already found
a proof. It is possible that he first came upon the formula for sinnθ by interpolation,
but he wrote in his letter for Leibniz that he had discarded interpolation as a method
of proof. Since Newton was very cautious, he must have had an alternative derivation
when he communicated it to Leibniz, though he gave no hint of what it was.

In 1812, Gauss applied (9.16) to produce an unusual proof of Euler’s gamma function
formula �(x)�(1 − x) = π/sinπx. He also briefly mentioned that he could prove
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(9.16) using transformations of hypergeometric functions. Yet another proof was given
by Cauchy in his École Polytechnique lectures of 1821. He also observed that the series
for arcsinx could be derived by equating the coefficient of n on both sides of (9.16).
Similarly, by equating the coefficient of n2 in (9.17), Cauchy obtained

1

2
(sin−1 x)2 =

∞∑
n=0

22n(n!)2
(2n+ 2)!x

2n+2, (9.23)

a result he attributed to J. de Stainville who published it in 1815. In 1738, the particular
case of the above series where x = 1 was discovered by Johann Bernoulli who commu-
nicated it to his former student Euler. Euler responded by using differential equations
to prove the more general formula (9.23). As we shall see later, Bernoulli’s method can
be modified slightly to prove the general case. Even before Bernoulli and Euler, Takebe
Katahiro published these two series in his 1722 Yenri Tetsujutsu.

9.8 Zolotarev: Lagrange Inversion with Remainder

Newton’s statement of his two theorems on the inversion of series suggests that he
got them by using the method of undetermined coefficients, though his related work
employs successive approximation. In 1769, Lagrange published a more interesting
result now referred to as the Lagrange inversion formula. This work was done in con-
nection with an application to celestial mechanics. Lagrange’s formula stated that if
z= a+ xφ(z), then

F(z)= F(a)+xφ(a)F ′(a)+ x2

1 · 2
d

da
(φ2(a)F ′(a))+ x3

1 · 2 · 3
d2

da2
(φ3(a)F ′(a))+·· · .

In support of this formula, Lagrange gave a complicated argument using divergent
series. In 1861,A. Popoff was the first to determine the remainder term for the Lagrange
series, and in 1876 Zolotarev gave a simple proof of the Lagrange series with remainder:

F(z)= F(a)+
n∑
k=1

xk

k!
dk−1

dak−1
(φk(a)F ′(a))+ 1

n!
dn

dan

(∫ z

a

(xφ(u)+ a−u)nF ′(u)du
)
.

He proved this formula by setting

Sn =
∫ z

a

(xφ(u)+ a−u)nF ′(u)du

and observing that differentiation with respect to a immediately yielded

dSn

da
= nSn−1 − xnφn(a)F ′(a).
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By setting n= 1,2, . . . ,n, he arrived at the n relations

S0 = xφ(a)F ′(a)+ dS1

da
,

2S1 = x2φ2(a)F ′(a)+ dS2

da
,

. . .

nSn−1 = xnφn(a)F ′(a)+ dSn

da
.

Noting that

S0 =
∫ z

a

F ′(u)du= F(z)−F(a),

and by substituting the nth equation into the (n− 1)th equation and continuing the
process, he obtained the required formula.

9.9 Exercises

1. Show that Newton’s series in (9.1) and (9.3) can be obtained by repeated division.
2. Apply the method of finding square roots to the polynomial a2 + x2 to obtain

Newton’s series (9.5).
3. Carry out Newton’s procedure for successive approximation of a solution of

(9.8) to obtain the series (9.10).
4. Verify Newton’s two theorems on the reversion of series, given in equations

(9.12) and (9.13).
5. Show that

π 3

48
= 1

3
· 1

2
+ 1

5
· 1 · 3

2 · 4
(

1+ 1

32

)
+ 1

7
· 1 · 3 · 5

2 · 4 · 6
(

1+ 1

32
+ 1

52

)
+·· · ;

cos
πx

3
= 1− x2

2! +
x2(x2 − 12)

4! − x2(x2 − 12)(x2 − 22)

6! + · · · ;

sin
πx

3
=

√
3

2

(
x− x(x2 − 12)

3! + x(x2 − 12)(x2 − 22)

5! − · · ·
)
.

See Schellbach (1854); and Glaisher, (1878) vol. 7, pp. 76–77.
6. Prove that for any real number n and non-negative integer s,(

n

2
s

)
+
(
n

2

)(
n−2

2
s− 1

)
+
(
n

4

)(
n−4

2
s− 2

)
+·· ·

= n2(n2 − 22)(n2 − 42) · · ·(n2 − (2s− 2)2)

(2s)! ;
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n

1

)(
n−1

2
s

)
+
(
n

3

)(
n−3

2
s− 1

)
+
(
n

5

)(
n−5

2
s− 2

)
+·· ·

= n(n2 − 12)(n2 − 32) · · ·(n2 − (2s− 1)2)

(2s+ 1)! .

Cauchy used these identities without proof in his Analyse algébrique to prove
Newton’s formulas (9.16) and (9.17).Aproof depends on the Chu–Vandermonde
identity; see chapter 27 on hypergeometric series.

7. Show that for any real number n and |θ | ≤ π/4

cosnθ = cosn θ − n(n− 1)

1 · 2 cosn−2 θ sin2 θ

+ n(n− 1)(n− 2)(n− 3)

1 · 2 · 3 · 4 cosn−4 θ sin4 θ −·· · ,

sinnθ = n

1
cosn−1 θ sin θ − n(n− 1)(n− 2)

1 · 2 · 3 cosn−3 θ sin3 θ +·· · .
Viète came close to stating these formulas. Cauchy pointed out in his Analyse
algébrique that |θ | ≤ π/4 was necessary to expand (cosθ + i sin θ)n by the
binomial theorem when n was not a positive integer.

8. Replace cosk θ by (1 − sin2 θ)k/2 in exercise 7 and expand by the binomial
theorem. Then use (9.5) to deduce Newton’s formulas (9.16) and (9.17) for
|θ | ≤ π/4.

9. Prove that if z= g(a+ xφ(z)), then

f (z)= f (g(a))+
n∑
k−1

xk

k!
dk−1

dak−1

(
φk(g(a))

d

da
f (g(a))

)
+ 1

n!
dn

dan
In(a),

where In(a)=
∫ g−1

a

(xφ(g(t))+ a− t)nf ′(g(t))dt.

See Edwards (1954b), vol. I, pp. 373–74. An equivalent result was published by
Emory McClintock (1881), pp. 96–97. McClintock (1840–1916), who served
as president of the American Mathematical Society and was instrumental in the
founding of the Bulletin and the Transactions, was an actuary by profession. See
Johnson (2007) for historical remarks on the Lagrange series.

10. Show that if g(0)= 0, then

g−1(x)= x
(
x

g(x)

)
x=0

+ x2

2!
(
d

dx

(
x

g(x)

)2)
x=0

+ x3

3!
(
d2

dx2

(
x

g(x)

)3)
x=0

+·· · .

See Edwards (1954a), p. 459.
11. Show that Newton’s differential equation ẏ/ẋ = 1+y/(a−x) can be written in

the form

(a− x+ y)(y ′ − 1)− yy ′ = 0,
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where y ′ = ẏ/ẋ. Show that this can be directly integrated. This observation is
due to Whiteside; see Newton (1967–81), vol. III, p. 101.

12. Show that Newton’s second differential equation ẏ2/ẋ2 = ẏ/ẋ + x2 can be
integrated in closed form in terms of the logarithmic function.

13. Show that

π 2

8
= 1+ 1

6
+ 1 · 4

6 · 15
+ 1 · 4 · 9

6 · 15 · 28
+·· · ,

π2

4
= 1+ 2

6
+ 2 · 8

6 · 15
+ 2 · 8 · 18

6 · 15 · 28
+·· · .

This was proved by Tanzan Shokei in his 1728 Yenri Hakki.
14. Show that

π2

9
= 1+ 12

3 · 4 + 12 · 22

3 · 4 · 5 · 6 + 12 · 22 · 32

3 · 4 · 5 · 6 · 7 · 8 +·· · ,
π2

3
= 1+ 12

4 · 6 + 12 · 32

4 · 6 · 8 · 10
+ 12 · 32 · 52

4 · 6 · 8 · 10 · 12 · 14
+·· · .

These were presented by Matsunaga Ryohitsu in his Hoyen Sankyo of 1738.
15. Prove that

π

4
= 1− 1

2 · 3 − 1

8 · 5 − 3

48 · 7 − 15

384 · 9 − 105

3840 · 11
−·· · .

This was presented by Hasegawa Ko in his Kyuseki Tsuko of 1844. Prove
also that

2π = 1− 1

22
− 3

82
− 3 · 15

482
− 15 · 105

3842
−·· · .

This was given in an anonymous manuscript, Sampo Yenri Hyo, discussed in
Mikami (1974). For exercises 14–16, see Mikami (1974), pp. 213–215.

16. Define

f (m)= 1+m(i sinφ)+ m2

2! (i sinφ)2 + m(m2 − 12)

3! (i sinφ)2

+ m2(m2 − 22)

4! (i sinφ)4 +·· ·

where m is real and i =√−1.

(a) Show that

f (m1)f (m2)= f (m1 +m2).

(b) Use the method of exercise 8 to prove that Newton’s formulas holds for |θ | ≤
π/2 when n is a positive integer. Deduce that f (m) = cosmφ + i sinmφ
when m is a positive integer.
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(c) Show that f (p/q)= cos pφ
q
+ i sin pφ

q
when p and q are integers.

(d) Show that f (m) is continuous and deduce Newton’s formulas for
|θ | ≤ π/2.

See Hobson (1957a), pp. 273–277.

9.10 Notes on the Literature

The De Analysi was first published by William Jones in 1711, over forty years after it was
written. An English translation was published in 1745. This translation was reprinted
in Newton (1964–1967). Whiteside’s English translation is contained in Newton
(1967–1981), vol. II. Newton wrote this paper so that he should not completely lose his
priority in the discovery of the methods of infinite series; he circulated the manuscript
privately to several people who were interested in the topic, but he did not want to
publish it. For the purpose of publication, he wrote a much longer tract, De Methodis
Serierum et Fluxionum, in 1671. Due to the difficulties of finding a publisher and other
concerns, Newton did not complete the work or publish it. In 1736 John Colson pub-
lished an English translation, soon retranslated by Castillione into Latin; in 1799 Samuel
Horsley published the original Latin version. Whiteside remarked that a comparison
of these two translations provides “an instructive check on the clarity and fluency of
Newton’s Latin style.”

Newton used the material in the De Methodis to construct his two letters to Oldenburg
for Leibniz in 1676. The second letter was quite long, and in it Newton gave a fairly
complete account of his work on infinite series. In 1712, he included these letters in the
Commercium Epistolicum, produced by a Royal Society committee headed by Newton
to establish conclusively that he was the ‘first inventor’ of the calculus. The letters
have been republished with English translations in the second volume of Newton’s
Correspondence, Newton (1959–1960).

The quotations from Barrow’s letters to Collins can be found in Newton
(1959–1960), vol. I, p. 13–15. And vol. II, p. 146, has Newton’s derivation of the
series for the exponential function. For Newton’s solutions by infinite series of cer-
tain algebraic differential equations, see Newton (1967–1981), vol. III, pp. 89–101.
Newton originally derived the series for arcsine while studying Wallis’s book; see
Newton (1967–1981), vol. I, pp. 104–111. Newton’s statement of his series for sinnθ
is given in his first letter for Leibniz; see Newton (1959–1960), vol. II, p. 36.

It is remarkable that Newton’s mathematical works were published in their entirety
only 250 years after his death. Early attempts to accomplish this task were abandoned
because his papers were in a state of disarray and were stored in several different
locations. It was even assumed that all of Newton’s significant results were already
published. Thus, before Whiteside’s monumental work, the world was unaware of a
number of the results of Newton discussed in this book: transformation of series by
finite differences, the first clear statement of Taylor’s formula, and the expression of an
iterated integral as a single integral. D. T. Whiteside (1932–2008) studied French and
Latin at Bristol University; he was self-taught in mathematics. As a graduate student
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at Cambridge, he became deeply interested in the history of mathematics; his doctoral
thesis on seventeenth-century mathematics became a classic. In the course of his studies,
Whiteside asked to see the papers of Newton, still piled in boxes, and soon resolved to
sort and edit them. Cambridge University Press, the world’s oldest continually operating
press, chartered by Henry VIII, published the eight handsome volumes between 1967
and 1982 from Whiteside’s handwritten manuscript and hand-drawn diagrams, with
facing pages giving the English and Latin. Whiteside’s commentary and notes are
extensive and invaluable. Whiteside executed this prodigious task in twenty years and
single-handedly, with the excellent assistance of his thesis advisor Michael Hoskin and
Adolf Prag, a teacher at Westminster School.

See Tweddle (1988), pp. 67–68, for Stirling’s proof of Newton’s series. Lagrange’s
first proof of his inversion formula was republished in Lagrange (1867–1892), vol. 3,
p. 25. See Zolotarev (1876) for the remainder term in Lagrange’s series. For some
interesting historical remarks on Lagrange inversion series, see Johnson (2007); John-
son also fills out the details of Lagrange’s proof, sketched in the Théorie des fonctions
analytiques.

For a discussion of Takebe’s work, see Mikami (1974). The formula for (arcsinx)2

was also discovered by Ming An-tu who was Manchurian by birth. It appeared in his
Ko-yuan Mi-lu Chieh-fa of 1774, some years after his death. Ming had not completed
the work before he died, and his son Hsin finished it. Ming An-tu’s work on infinite
series was inspired by the three infinite series communicated to Chinese mathematicians
by the French Jesuit Pierre Jartoux in 1702. These were Newton’s series for sine, cosine
and arcsine.

Pierre Jartoux (1670–1720) was a French Jesuit missionary who entered China in
1701. He is said to have communicated either three or nine series for trigonometric
functions to Chinese mathematicians. There is some doubt as to how much information
he brought from Europe and how much the Chinese and Japanese mathematicians
independently discovered. There is no doubt that he communicated the series for sine,
cosine, and arcsine. But there is some question about the other six formulas, one of
which is Takebe’s series for (arcsinx)2. Though Jartoux’s original notes are lost, Smith
and Mikami (1914) suggested that the series for (arcsinx)2 was also introduced by
Jartoux, who had been in correspondence with Leibniz. This appears to be unlikely.
Jartoux was not a mathematician, and his correspondence with Leibniz was on an
astronomical topic. If Jartoux knew the series for (arcsinx)2, he would have informed
Leibniz, and perhaps others, because this would have been a new discovery. In fact, in
1737, when Euler and Bernoulli rediscovered this result and its particular case dealing
with π 2, they regarded their formulas as original. And these mathematicians were very
well aware of the works of all European mathematicians at that time. We may conclude
that Takebe was the first to find the series for (arcsinx)2 and the corresponding series
for π2, while Ming’s discovery was independent, though inspired by a knowledge of
the series communicated by Jartoux.



10

Finite Differences: Interpolation and Quadrature

10.1 Preliminary Remarks

The method of interpolation for the construction of tables of trigonometric functions
has been used for over two thousand years. On this method, one may tabulate the
values of a function f (x) constructed from first principles (definitions) for x = a and
x = a + h, where h is small, and then interpolate the values between a and a + h,
without further computation from first principles. For sufficiently small h, one may
approximate the function f (x) by a linear function on the interval [a,a + h]. This
means that, in order to interpolate the values of the function in this interval, one may
use the approximation f (a + λh) ≈ f (a)+ λ(f (a + h)− f (a)), 0 ≤ λ ≤ 1. In his
Almagest of around 150 AD, Ptolemy applied linear interpolation to construct a table
of lengths of chords of a circle as a function of the corresponding arcs. These are the
oldest trigonometric tables in existence, though Hipparchus may well have constructed
similar tables almost three centuries earlier. In Ptolemy’s table, the length of the chord
was given as 2R sin θ , where R was the radius and 2θ was the angle subtended by
the arc. Later mathematicians in India, on the other hand, tabulated the half chord;
when divided by the radius, this gives our sine. In his 628 work, Dhyanagrahopade-
sadhyaya, the Indian mathematician and astronomer Brahmagupta used a second order
approximation equivalent to the second order Newton–Stirling interpolation formula.
In addition to the sine, the Indian mathematicians tabulated the cosine (multiplied
by the radius). Later on, Islamic mathematicians, including Al Biruni (973–1048),
expanded the tables to include the tangent and cotangent functions; in fact, in their
hands, the study of plane and spherical trigonometry was elevated to a mathematical
discipline.

By the seventeenth century, the requirements of navigation and astronomy demanded
finer tables of trigonometric and related functions; this led to the invention of the loga-
rithm and better interpolation methods. Motivated by the needs of navigation, in 1611
or a little earlier, Thomas Harriot wrote a remarkable treatise, De Numeris Triangu-
laribus et inde de Progressionibus Arithmeticis: Magisteria Magna, considering finite
differences of third and higher order. He gave the fifth-order interpolation formula,
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expressed in modern notation as

f (x)= f (0)+
(
x

1

)
,f (0)+

(
x

2

)
,2f (0)+·· ·+

(
x

5

)
,5f (0), where (10.1)(

x

k

)
= x(x− 1)(x− 2) · · ·(x− k+ 1)

k! (10.2)

were the binomial coefficients and ,f (0) = f (1)− f (0), ,2f (0) = ,(,f (0)) =
,f (1)−,f (0)= f (2)−f (1)− (f (1)−f (0)), etc. In Harriot’s work, x took rational
values and he used his formula to interpolate between unit values of the argument.
He understood the values of (10.2) in terms of figurate numbers, instead of binomial
coefficients, when x was an integer.

Unfortunately, Harriot did not publish his work; some of his methods were redis-
covered soon afterwards by Henry Briggs (1561–1631). Briggs was the first professor
of mathematics at Gresham College, London, as well as the first Savilian Professor at
Oxford. In his Arithmetica Logarithmica of 1624, Briggs mentioned that the nth-order
differences of the nth powers of integers were constants. This work contained tables of
logarithms obtained by second-order interpolation, that is, taking the first three terms
on the right side of Harriot’s formula (10.1). Observe that if the second differences are
approximately identical, then the third and higher differences are approximately zero
and can be neglected. More generally, if the nth differences are approximately constant,
then f (x) can be approximated by the polynomial of degree n obtained by extending
Harriot’s formula (10.1) to nth differences.

Briggs also wrote Trigonometria Britannica, a book of trigonometric tables with
a very long introduction giving details of his methods. Briggs’s friend, Henry
Gellibrand, had this work published in 1633, after Briggs’s death. Unfortunately, the
many users of these trigonometric tables did not bother to read the more important
introduction in which Briggs gave some very interesting results, including the bino-
mial theorem for exponent 1/2. However, the Scottish mathematician James Gregory
studied Briggs’s introduction and thereby learned interpolation methods. Thus, also
making use of advances in algebraic notation, and employing N. Mercator’s discovery
of infinite series, Gregory obtained interpolation formulas containing up to an infinite
number of terms. In an important letter to Collins, dated November 23, 1670, he com-
municated his formula, given below in my translation, describing it as “both more easie
and universal than either Briggs or Mercator’s, and also performed without tables.”

I remember you did once desire of me my method of finding the proportional parts in tables, which
is this: In figure 8 of my exercises [Exercitationes Geometricae], on the straight line AI consider
any segmentAα, to which there is a perpendicular αγ , such that γ lies on the curveABH , the rest
remaining the same; let there be an infinite series [sequence] a

c
, a−c2c ,

a−2c
3c ,

a−3c
4c , etc., and let the

product of the first two terms of this series be b
c
, of the first three terms k

c
, of the first four terms l

c
,

of the first five terms m
c

, etc., to infinity; the straight line αγ = ad
c
+ bf

c
+ kh

c
+ li

c
+ etc. to infinity.

Gregory defined d, f, h, i, etc., as the successive differences of the ordinates, at equal
intervals c. He took f (0) = 0, so that d = f (c)− f (0) = f (c), f = f (2c)− 2f (c),
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etc. After inserting the values of a, b, k, l, . . ., Gregory’s formula can be written as

f (a)= a

c
,f (0)+ a(a− c)

2c2
,2f (0)+ a(a− c)(a− 2c)

6c3
,3f (0)

+ a(a− c)(a− 2c)(a− 3c)

24c4
,4f (0)+·· · . (10.3)

This result is now known as the Gregory–Newton forward difference formula, but it
may also be called the Harriot–Briggs formula.

Newton’s interest in finite differences and interpolation appears have been a response
to an appeal from one John Smith for help with the construction of tables of square,
cube, and fourth roots of numbers. Collins broadcast this appeal; he wrote in a letter of
November 23, 1674, to Gregory, “We have one Mr. Smith here taking pains to afford
us tables of the square and cube roots of all numbers from unit to 10000, which will
much facilitate Cardan’s rules.” Smith was an accountant and compiler of tables whom
Newton had helped five years earlier with the making of tables for the areas of segments
of circles. Newton again assisted Smith, writing to him on May 8, 1675, giving details
for the construction of tables of roots. Newton explained to Smith that he should tabu-
late the roots of every hundredth number n. From these, he should construct the roots
of every tenth number n± 10, n± 20, . . . with a constant third difference and thence
the roots of n±1, n±2, . . . with a constant second difference. Newton also cautioned
that all computations should be done to the tenth or eleventh decimal place so as to
obtain a table accurate to eight places. Newton’s ideas on finite difference interpolation
developed quite rapidly after this. A year later, on October 24, 1676, he set forth some
of his insights in a draft of his second letter for Leibniz through Henry Oldenburg.
Newton later eliminated this portion of the letter because he saw a copy of a February
1673 letter from Leibniz to Oldenburg, showing that Leibniz had independently found
the Harriot–Briggs formula. Newton perhaps assumed from this that Leibniz had made
progress parallel to his own in the study of finite differences, though this was not the
case. However, this assumption spurred Newton to write down his ideas systematically
in the manuscript “Regula Differentiarum,” unpublished until 1970; this contained all
the important ideas presented in Newton’s Methodus Differentialis of 1711. In partic-
ular, Newton gave an exposition of interpolation by central differences and derived
the Newton–Stirling and Newton–Bessel formulas. In 1708, Roger Cotes (1682–1716)
found the latter independently; it might be more appropriate to call this the Newton–
Cotes formula, since Bessel employed it only in his numerical work. In the course of
addressing several practical problems, Newton also considered the more general prob-
lem of interpolating a set of points whose abscissas were not necessarily equidistant,
leading to his theory of divided differences.

Newton was the single most significant contributor to the theory of finite differences;
although many formulas in this subject are attributed jointly to Newton and some other
mathematician, they are actually all due originally to Newton, with the exception of
the Gregory–Newton formula. The secondary mathematicians usually made use of
these formulas in their numerical work. As early as 1730, Stirling pointed this out in
his Methodus Differentialis: “After Newton several celebrated geometers have dealt
with the description of the curve of parabolic type [defined by a polynomial] through
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any number of given points. But all their solutions are the same as those which have
just been shown; indeed these differ scarcely from Newton’s solutions.” It is amusing
that Stirling was subsequently honored by having his name attached to a formula he
explicitly and modestly attributed to Newton.

Newton’s divided difference formula, in the notation of the French mathematicians
A. M. Ampère (1775–1836) and A. L. Cauchy (1789–1857), was written as

f (x)=f (x1)+ (x− x1)f (x1,x2)+ (x− x1)(x− x2)f (x1,x2,x3)+·· ·
+ (x− x1) · · ·(x− xn−1)f (x1,x2, . . . ,xn)

+ (x− x1) · · ·(x− xn)f (x1, . . . ,xn,x), where (10.4)

f (x1,x2)= f (x1)−f (x2)

x1 − x2
,

f (x1,x2, . . . ,xk)= f (x1, . . . ,xk−1)−f (x2, . . . ,xk)

x1 − xk . (10.5)

If we denote the last term in (10.4) by Rn(x), and the remaining sum as Pn−1(x), then
Pn−1(x) is a polynomial of degree n− 1 equal to f (xi) for i = 1, 2, . . . ,n. Note that
this is true because Rn(xi) = 0, i = 1, . . . ,n. Thus, Pn−1(x) is the interpolating poly-
nomial for a function f (x) whose values are known at x1, x2, . . . ,xn. In the 1770s,
Lagrange and Waring gave a different expression for this polynomial, more conve-
nient for many purposes, especially for numerical integration. The Lagrange–Waring
interpolating polynomial is easy to obtain, yet it is interesting to see different proofs
presented in the 1820s by Cauchy and Jacobi.

James Gregory was the first mathematician to use interpolating polynomials to
approximately evaluate the area under a curve. He communicated his quadrature
formula to Collins in the letter containing his interpolation formula, deriving it by
integrating the interpolating polynomial, just as Newton did in his Methodus Differen-
tialis. Newton derived his three-eighths rule by integrating the third-degree polynomial
obtained by taking the first four terms of (10.1). He explained:

If, for instance, there be four ordinates positioned at equal intervals, let A be the sum of the first
and fourth, B the sum of the second and third, and R the interval between the first and the fourth,
and then the new ordinate in the midst of all will be 1

16 (9B −A) and the total area between the
first and fourth will be 1

8 (A+ 3B)R.

In 1707, Cotes, unaware of Newton’s then unpublished work in this area, composed
a treatise on approximate quadrature. He wrote down formulas for areas when the
number of ordinates was 3,4,5, . . . ,11. The coefficients became fairly large after six
ordinates; for example, his formula for eight ordinates was

751A+ 3577B+ 1323C+ 2989D

17280
R,

where A was sum of the extreme ordinates, B the sum of the ordinates closest to the
extremes, C the sum of the next ones, andD the sum of the two in the middle. Cotes’s
paper, published posthumously in 1722, contained no proofs of his formulas.
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Meanwhile, in 1719, Stirling published a paper in the Philosophical Transactions
on the same topic, presenting formulas for approximate areas for only the odd number
of ordinates 3, 5, 7 and 9. He remarked that the approximations with an odd number of
ordinates were more accurate than those with an even number. He did not prove this,
though it is true. For example, it can be demonstrated that if h=R/n, where 4n is the
number of ordinates, then the error will be O(hn+2) for odd n but O(hn+1) for even n.

The Newton–Cotes method of numerical integration was used for a century before
Gauss developed a new approach, including a formula exact for any polynomial of
degree 2n− 1 or less when n interpolation points were judiciously constructed. The
Newton–Cotes formulas are exact only for polynomials of degree at most n−1. Gauss’s
procedure will be discussed in a later chapter in connection with orthogonal polyno-
mials. A drawback of the Newton–Cotes and Gauss formulas was that the coefficients
of the ordinates were unequal. The Russian mathematician P. L. Chebyshev (1821–
1894) observed that when the ordinates f (xi)were experimentally obtained, they were
liable to errors. Assuming that the probability of error in each of the ordinates was
the same, the linear combination of the ordinates with equal coefficients had the least
probable error among all the linear combinations with a given fixed sum of coefficients.
Chebyshev observed that a quadrature formula with equal coefficients might often be
preferable. Chebyshev studied mathematics at Moscow University from 1837–1841.
He was interested in building mechanical gadgets and some of his papers deal with the
mathematics involved with these. Chebyshev was of the view that his job as a math-
ematician was to consider practical problems and to give solutions both theoretically
satisfying and practically useful. He repeatedly professed this opinion in his lectures
and advocated it in several papers; his work on numerical integration may be seen as
an example of this perspective.

In 1874, Chebyshev wrote a paper on quadrature with equal coefficients, considering
formulas of the type∫ 1

−1
f (x)φ(x)dx ≡ k(f (x1)+f (x2)+·· ·+f (xn)), (10.6)

where φ(x)was the weight function and k was the common coefficient of the ordinates.
He found a method, exact for polynomials of degree less than n, for determining the
interpolation points x1,x2, . . . ,xn and the constant k, such that they depended upon
φ but not on f . He worked out the details with the weights given as φ(x) = 1 and
φ(x) = 1/

√
1− x2. In particular, he showed that when φ(x) = 1, then k = 2/n and

x1,x2, . . . ,xn were the roots of that polynomial given by the polynomial portion of the
expression

zne−n/(2·3z
2)−n/(4·5z4)−n/(6·7z6)−···.

He computed the zeros of these polynomials for n = 2,3,4,5,6,7. Interestingly,
Chebyshev was inspired to do this work by Hermite’s 1873 Paris lectures on the case
φ(x) = 1/

√
1− x2. We observe that, even before Hermite, Brice Bronwin gave the

formula for this case in a paper of 1849 in the Philosophical Magazine. In the chapter
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on numerical integration of their Calculus of Observations, Whittaker and Robinson
discussed Chebyshev’s method and noted that naval architects found it useful.

10.2 Newton: Divided Difference Interpolation

Newton started his work on interpolation in the mid-1770s, but had made sufficient
progress to make a brief mention of it in his October 24, 1776 letter for Leibniz. While
discussing the problem of determining the area under a curve, especially when the
expression for the curve led to difficult calculations of series, he wrote:

But I make little of this because, when simple series are not manageable enough, I have another
method not yet communicated by which we have access to our solution at will. Its basis is a
convenient, rapid and general solution of this problem, To draw a geometrical curve which shall
pass through any number of given points. Euclid showed how to draw a circle through three
given points. A conic section also can be described through five given points, and a curve of the
third degree through eight given points; (so that I have it fully in my power to describe all the
curves of that order, which can be determined by eight points only.) These things are done at once
geometrically with no calculation intervening. But the above problem is of the second kind, and
though at first it looks unmanageable, yet the matter turn out otherwise. For it ranks among the
most beautiful of all that I could wish to solve.

Interestingly, Stirling quoted just this passage at the end of proposition 18 of his book.
Clearly, Newton was pleased with the result of his researches on interpolation, so he did
not neglect the chance to include at least one result in the Principia, as Lemma V, Book
III. Newton gave his method of interpolation by divided differences in the Principia
without proof; he provided details in his very short Methodus Differentialis. The first
proposition stated that if one started with a polynomial, then the divided differences
would also be polynomials of degree one less:

If the abscissa of a curvilinear figure be composed of any given quantity A and the indeterminate
quantity x, and its ordinate consist of any number of given quantities b,c,d,e, . . . multiplied
respectively into an equal number of terms of the geometric progression x,x2,x3,x4, . . . and if
ordinates be erected at the corresponding number of given points in the abscissa: I assert that the
first differences of the ordinates are divisible by the intervals between them, and that the differences
of the differences so divided are divisible by the intervals between every second ordinate, and so
on indefinitely.

We describe Newton’s method in theAmpére–Cauchy notation: If f (x) is a polynomial,
then the first divided difference

f (x1,x2)= f (x1)−f (x2)

x1 − x2
(10.7)

is also a polynomial, as is the second divided difference

f (x1,x2,x3)= f (x1,x2)−f (x2,x3)

x1 − x3
, (10.8)
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and, in general, the so is the nth divided difference, defined inductively by

f (x1,x2, . . . ,xn,xn+1)= f (x1,x2, . . . ,xn)−f (x2,x3, . . . ,xn+1)

x1 − xn+1
. (10.9)

Newton explicitly worked out all the divided differences for a fourth-degree polynomial.
In the second proposition, he explained how the original polynomial or function could
be constructed from the divided differences:

With the same suppositions, and taking the number of terms b,c,d,e, . . . to be finite, I assert that
the last of the quotients will be equal to the last of the terms b,c,d,e, . . . , and that the remaining
terms b,c,d,e, . . . will be yielded by means of the remaining quotients; and that once these are
determined there will be given the curve of parabolic kind which shall pass through the end-points
of all the ordinates.

If this procedure is applied in general, we obtain Newton’s divided difference formula
(10.4). In the case of fourth differences we have

f (x,x1)= f (x)

x− x1
− f (x1)

x− x1
,

f (x,x1,x2)= f (x,x1)

x− x2
− f (x1,x2)

x− x2
,

f (x,x1,x2,x3)= f (x,x1,x2)

x− x3
− f (x1,x2,x3)

x− x3
,

f (x,x1,x2,x3,x4)= f (x,x1,x2,x3)

x− x4
− f (x1,x2,x3,x4)

x− x4
.

Thus, in each step, the values from the previous equation are substituted for the terms
on the right-hand side and the resulting equation is multiplied by (x − x1)(x − x2)

(x− x3)(x− x4), yielding

f (x)=f (x1)+ (x− x1)f (x1,x2)+ (x− x1)(x− x2)f (x1,x2,x3)

+ (x− x1)(x− x2)(x− x3)f (x1,x2,x3,x4)

+ (x− x1)(x− x2)(x− x3)(x− x4)f (x,x1,x2,x3,x4). (10.10)

In the third proposition, Newton derived his central difference formulas for the case
where the points were equidistant. When the number of interpolating points was odd,
he presented what is now known as the Newton–Stirling formula and, for the even
case, the so-called Newton-Bessel formula. He did not write down details of the deriva-
tion, but it is most likely that he obtained it from his general divided difference formula,
employed in modern textbooks.

In the case of an odd number of points, Newton let k denote the middle ordinate;
l denote the average of the two middle first differences of the ordinates, the number
of first differences being even, since the number of ordinates was odd; m denote the
middle second difference; n the average of the two middle third differences, etc. Then

f (x)= k+ x · l+ x2

1 · 2 ·m+ x(x2 − 12)

1 · 2 · 3 ·n+ x2(x2 − 12)

1 · 2 · 3 · 4 · o+ etc. (10.11)
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Newton’s formula for an even number of ordinates is discussed in the chapter on the
gamma function. Stirling made very effective use of this method, computing the values
of the gamma function at a few half-integral values.

10.3 Gregory–Newton Interpolation Formula

The Gregory–Newton formula (10.3) is important not only in numerical analysis but
also in the study of sequences whose nth differences, for some n, are constant. These
sequences are now studied as a part of combinatorial analysis, but in the seventeenth and
early eighteenth centuries they arose in elementary number theory and in probability
theory. It is therefore interesting to consider the methods by which mathematicians of
that period proved this formula. Unfortunately, Gregory did not leave us a proof. It
is possible that he had the simple inductive argument given by Stirling in proposition
19 of his Methodus Differentialis. Stirling assumed that there existed some unknown
coefficients, A,B,C,D,. . . such that

f (z)=A+Bz+C z(z− 1)

1 · 2 +Dz(z− 1)(z− 2)

1 · 2 · 3 +·· · .

Clearly A= f (0). Moreover,

,f (z)= f (z+ 1)−f (z)

= B,z+C,z(z− 1)

1 · 2 +D,z(z− 1)(z− 2)

1 · 2 · 3 +·· · .

Observing that for n= 2, 3, 4, . . .

,
z(z− 1) · · ·(z−n+ 1)

1 · 2 · · ·n = z(z− 1) · · ·(z−n+ 2)

1 · 2 · · ·(n− 1)
, (10.12)

and that,z= (z+1)−z= 1, he obtained B =,f (0). Continuing this process, he got
C =,2f (0),D =,3f (0), . . . , completing the proof. Note that Gregory’s version of
the formula, given by (10.3), would be obtained by taking A= 0 and z= a/c.

10.4 Waring, Lagrange: Interpolation Formula

Edward Waring and Joseph Lagrange independently but nearly simultaneously took up
the interpolation problem of finding the polynomial of degree n−1, taking prescribed
values at n given points: y1, y2, . . . ,yn at x1, x2, . . . ,xn. Of course, this result may
readily be derived by writing the Newton divided differences in symmetric form, but
Lagrange and Waring gave the solution in a convenient and useful form. In fact, Waring
remarked in his 1779 paper on the topic that he could state and prove the result without
any “recourse to finding the successive differences.” We state Waring’s theorem in
modern notation: Let y be a polynomial of degree n− 1 and let the values of y at
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x1, x2, . . . ,xn be given by y1, y2, . . . ,yn. Then

y = (x− x2)(x− x3) · · ·(x− xn)
(x1 − x2)(x1 − x3) · · ·(x1 − xn)y1 + (x− x1)(x− x3) · · ·(x− xn)

(x2 − x1)(x2 − x3) · · ·(x2 − xn)y2

+·· ·+ (x− x1)(x− x2) · · ·(x− xn−1)

(xn− x1)(xn− x2) · · ·(xn− xn−1)
yn. (10.13)

Waring’s proof consisted in the observation that, when x = x1, the first term on the right
was y1, while, because of the factor x− x1, all the other terms were zero. Continuing
this argument, taking successive values of x, Waring completed his proof. Lagrange
proved this result in a similar manner at about the same time, but did not immediately
publish it; it appeared in his 1797 Fonctions analytiques.

10.5 Cauchy, Jacobi: Lagrange Interpolation Formula

The Lagrange interpolation formula is easy to prove, as Waring’s demonstration shows.
It is nevertheless interesting to consider other proofs such as those of Cauchy and
Jacobi. Cauchy’s argument, presented in his 1821 Analyse algébrique in the chapter
on symmetric and alternating functions, was based on an interesting evaluation of the
so-called Vandermonde determinant, without using modern notation for determinants.
Lagrange had used this evaluation in a different context almost fifty years earlier.
Cauchy was an expert on determinants, a term he borrowed from Gauss. He wrote an
important 1812 paper on this topic, in which he also proved results on permutation
groups and alternating functions. In his book, Cauchy considered the system of linear
equations

αjx+αj1x1 +·· ·+αjn−1xn−1 = kj , (10.14)

where j = 0,1, . . . ,n− 1. We have used subscripts more freely than Cauchy; he set

f (α)= (α−α1)(α−α2) · · ·(α−αn−1)= αn−1 +An−2α
n−2 +·· ·+A1α+A0,

so that

αn−1
i +An−2α

n−2
i +·· ·+A1αi +A0 = 0, for i = 1,2, . . . ,n− 1.

Cauchy multiplied the first equation of the system (10.14) by A0; the second, when
j = 1, by A1; . . .; and the last, when j = n− 1, by 1 and then added to get

(A0 +A1α+·· ·+αn−1)x = k0A0 + k1A1 +·· ·+ kn−2An−2 + kn−1 or

x = kn−1 +An−2kn−2 +·· ·+A0k0

f (α)
. (10.15)

He derived the values of x1,x2, . . . ,xn−1 in a similar way. Cauchy applied this result to
obtain the Lagrange interpolation polynomial. He supposedu0,u1, . . . ,un−1 to be values
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of some function at the numbers x0,x1, . . . ,xn−1. It was required to find a polynomial
of degree n− 1

u= a0 + a1x+ a2x
2 +·· ·+ an−1x

n−1,

such that its values were u0,u1, . . . ,un−1 at x0,x1, . . . ,xn−1, respectively. Then

uj = a0 + a1xj + a2x
2
j +·· ·+ an−1x

n−1
j ,

where j = 0,1, . . . ,n − 1. Cauchy multiplied these n equation by unknown
X0,X1, . . . ,Xn−1 and subtracted their sum from the equation for u to get

u−X0uo−X1u1 −X2u2 −·· ·−Xn−1un−1

= (1−X0 −X1 −X2 −·· ·−Xn−1)a0

+ (x− x0X0 − x1X1 −·· ·− xn−1Xn−1)a1

+ (x2 − x2
0X0 − x2

1X1 −·· ·− x2
n−1Xn−1)a2 +·· ·

+ (xn−1 − xn−1
0 X0 − xn−1

1 X1 −·· ·− xn−1
n−1Xn−1)an−1. (10.16)

To determine X0,X1, . . . ,Xn−1 so that

u=X0u0 +X1u1 +·· ·+Xn−1un−1,

he set equal to zero all the coefficients of a0,a1, . . . ,an−1 on the right-hand side of
(10.5). Thus, he had the system of equations

x
j

0X0 + xj1X1 +·· ·+ xjn−1Xn−1 = xj ,
with j = 0,1, . . . ,n− 1. He could solve these as before to get

X0 = f (x)

f (x0)
= (x− x1)(x− x2) · · ·(x− xn−1)

(x0 − x1)(x0 − x2) · · ·(x0 − xn−1)
, (10.17)

X1 = (x− x0)(x− x2) · · ·(x− xn−1)

(x1 − x0)(x1 − x2) · · ·(x1 − xn−1)
,

and so on. This gave him the Lagrange–Waring interpolation formula.
Jacobi’s method employed partial fractions; he presented it in his doctoral disserta-

tion on this topic as well as in his 1826 paper on Gauss quadrature. He let

g(x)= (x− x0)(x− x1) · · ·(x− xn−1)

and u(x) be the polynomials of degree n − 1 whose values were u0, . . . ,un−1 at
x0, . . . ,xn−1, respectively. Then by a partial fractions expansion he got

u(x)

g(x)
= B0

x− x0
+ B1

x− x1
+·· ·+ Bn−1

x− xn−1
; (10.18)

by setting x = xj , he obtained

Bj = uj/((xj − x0) · · ·(xj − xj−1)(xj − xj+1) · · ·(xj − xn−1)). (10.19)

Jacobi arrived at Lagrange’s formula by multiplying across by g(x). We note that
Jacobi’s dissertation also discussed the case in which some of the xi were repeated.
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10.6 Newton on Approximate Quadrature

The Methodus Differentialis stated the three-eighths rule for finding the approximate
area under a curve when four values of the function were known; one proposition sug-
gests that Newton most probably derived the formula by integrating the interpolating
cubic for the four points. However, in October 1695, he wrote a very short manuscript,
though he left it incomplete, presenting his derivation of some rules for approximate
quadrature. Surprisingly, he did not obtain these rules by integrating the interpolating
polynomials but by means of heuristic and somewhat geometric reasoning. Since inter-
polation calculations tend to become very unwieldy, perhaps Newton sought a short
cut, though it is not clear what stimulated him to write this short note. Whiteside con-
jectured that Newton may have been working on his contemporaneous amplified lunar
theory where he used some of the results.

Newton wrote his results consecutively for two, three, four, . . . ordinates. In
Figure 10.1, he took equally spaced points A,B,C,D,. . . on the abscissa (x-axis)
and points K,L,M,N,. . . on the curve (y = f (x)) such that AK,BL,CM,DN,. . .
were the ordinates, or y values of the corresponding points on the curve. For two points,
he gave the trapezoidal rule labeled as Case 1.

If there be given two ordinates AK and BL, make the area (AKLB)= 1
2 (AK +BL)AB.

He next obtained Simpson’s rule, published by Thomas Simpson in his Mathematical
Dissertations of 1743; Simpson gave an interesting geometric proof. We note that
since Simpson’s books were quite popular, his name got attached to the rule. In 1639,
Cavalieri gave particular cases of this rule to determine the volume of a symmetrical
wine cask. In 1668, in his Exercitationes Geometricae, Gregory too presented this rule
to approximate

∫ h
0 tanx dx. Newton derived Simpson’s and the three-eights rule as

Cases 2 and 3, where the box notation denotes area:

Case 2. If there be given three AK,BL and CM , say that

1

2
(AK +CM)AC =�(AM), and again, by Case 1,

1

2

(
1

2
(AK +BL)+ 1

2
(BL+CM)

)
AC = 1

4
(AK + 2BL+CM)AC =�(AM),

and that the error in the former solution is to the error in the latter as AC2 to AB2 or 4 to 1, and
hence the difference 1

4 (AK−2BL+CM)AC of the solutions is to the error in the latter as 3 to 1,

A B C D E F G H I

K L
M

N

O
P

Q R
S

Figure 10.1. Newton’s approximate quadrature.
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and the error in the latter will be

1

12
(AK − 2BL+CM)AC.

Take away this error and the latter solution will come to be

1

6
(AK + 4BL+CM)AC =�(AM), the solution required.

Case 3. If there be given four ordinates AK,BL,CM and DN , say that 1
2 (AK +DN)AD =

�(AN); likewise, that

1

3

(
1

2
(AK +BL)+ 1

2
(BL+CM)+ 1

2
(CM +DN)

)
AD,

that is, 1
6 (AK + 2BL+ 2CM +DN)AD = �(AN). The errors in the solutions will be as AD2

to AB2 or 9 to 1, and hence the difference in the errors (which is the difference 1
6 (2AK−2BL−

2CM+2DN)AD in the solutions) will be to the error in the latter as 8 to 1. Take away this error
and the latter will remain as

1

8
(AK + 3BL+ 3CM +DN)AD =�(AN).

We observe that in these three cases and others, Newton assumed without justification
that when n+1 equidistant ordinates were given, the corresponding ratio of the errors
in using the trapezoidal rule would be n2 : 1. Newton went on to consider cases with
five, seven, and nine ordinates, but his results in the last two cases were not the same
as the ones obtained by integrating the interpolating polynomials.

To describe Newton’s proof of Simpson’s formula in somewhat more analytic terms,
let [a,b] in Case 2 be the interval with b= a+2h, and let y = f (x) be the function on
that interval. By the trapezoidal rule,∫ b

a

f (x)dx ≈ 1

2
(f (a)+f (b))(2h)≡ I1.

If this rule is applied to each of the intervals [a,a+h], [a+h,b], then∫ b

a

f (x)dx ≈ 1

2

(
1

2
(f (a)+f (a+h))+ 1

2
(f (a+h)+f (b))

)
(2h)

= 1

4
(f (a)+ 2f (a+h)+f (b))(2h)≡ I2.

Let the errors in the two formulas be e1 and e2, so that∫ b

a

f (x)dx = I1 + e1 = I2 + e2.

Newton assumed without proof that e1/e2 = 4. Hence,

(I2 − I1)/e2 = (e1 − e2)/e2 = 3 so that

e2 = 1

3
(I2 − I1)=− 1

12
(f (a)− 2f (a+h)+f (b))2h.
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When this value of e2 is added to I2, we get Simpson’s approximation

1

6
(f (a)+ 4f (a+h)+f (b)). (10.20)

10.7 Hermite: Approximate Integration

The formulas of Newton, Cotes, and Stirling for numerical integration were used with-
out change for a century. In the nineteenth century, mathematicians began to present
new methods, starting with Gauss, whose work in this area is discussed in our treat-
ment of orthogonal polynomials. Charles Hermite (1822–1901) was a professor at the
École Polytechnique. He gave a series of analysis lectures in 1873; these and other
such lectures were published and serve as a valuable resource even today. For exam-
ple, Hermite discussed an original method for the numerical evaluation of integrals of
the form ∫ +1

−1

φ(x)dx√
1− x2

, (10.21)

where φ(x) was an analytic function. He started with the nth-degree polynomial F(x)
defined by

F(x)= cosn(arccosx). (10.22)

By taking the derivative, he obtained

F ′(x)= nsinn(arccosx)
1√

1− x2
= n

√
1−F 2(x)√

1− x2
.

Hence

1√
x2 − 1

= F ′(x)
nF (x)

(
1− 1/F 2(x)

)−1/2

= F ′(x)
nF (x)

(
1+ 1

2

1

F 2(x)
+ 1 · 3

2 · 4
1

F 4(x)
+·· ·

)
.

Hermite observed that the last expression without the first term could be written in
decreasing powers of x in the form

λ0

x2n+1
+ λ1

x2n+2
+ λ2

x2n+3
+·· · .

Consequently,

1√
x2 − 1

= F ′(x)
nF (x)

+ λ0

x2n+1
+ λ1

x2n+2
+ λ2

x2n+3
+·· · .
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At this point, Hermite invoked the integral formula∫ +1

−1

dz

(x− z)√1− z2
= π√

x2 − 1
, to obtain (10.23)

1

π

∫ +1

−1

dz

(x− z)√1− z2
= F ′(x)
nF (x)

+ λ0

x2n+1
+ λ1

x2n+2
+·· ·

= 1

n

n∑
j=1

1

x− aj +
λ0

x2n+1
+ λ1

x2n+2
+·· · ,

where a1,a2, . . . ,an were the n roots of F(x) = 0. An application of the geometric
series 1/(x− z)=∑

zn/xn+1 gave him

1

π

∫ +1

−1

(
1+ z

x
+ z2

x2
+·· ·

)
dz√

1− z2

= 1

n

n∑
j=1

(
1+ aj

x
+ a2

j

x2
+·· ·

)
+ λ0

x2n
+ λ1

x2n+1
+·· · .

Equating the coefficients of 1/xl on both sides yielded

1

π

∫ 1

−1

zl√
1− z2

dz= 1

n

n∑
j=1

alj when l < 2n,

= 1

n

n∑
j=1

a2n+s
j +λs when l = 2n+ s, s ≥ 0.

So, Hermite wrote φ(z) = k0 + k1z+ k2z
2 + ·· · + knzn + ·· · in order to obtain the

formula

1

π

∫ 1

−1

φ(z)√
1− z2

dz= 1

n

n∑
j=1

φ(aj )+R, where (10.24)

R = λ0k2n+λ1k2n+1 +·· · .
Hermite also noted that since the roots aj of F(x)=0 were given by

aj = cos

(
2j − 1

2n
π

)
, j = 1,2, . . . ,n, he obtained

∫ π

0
φ(cosθ)dθ = π

n

n∑
j=1

φ

(
cos

(
2j − 1

2n
π

))
+πR. (10.25)

Observe that the expression for the error R shows that it must be zero for any
polynomial φ of degree less than 2n. Hermite may have been unaware that in
1849, Brice Bronwin derived formula (10.25) by a different method, but without the
error term.
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10.8 Chebyshev on Numerical Integration

Anice feature of the Bronwin–Hermite formula is that it allows us to find an approximate
value of the integral by simply adding the values of the function φ(x) at the zeros of
F(x) and then multiplying by π/n. Chebyshev’s interest in applications led him to seek
similar formulas for other weight functions. Thus, the purpose of Chebyshev’s 1874
paper was to find a constant k, and numbers x1,x2, . . . ,xn such that

∫ 1
−1F(x)φ(x)dx

could be approximated by k(φ(x1)+φ(x2)+·· ·+φ(xn)). Note that φ(x)was the func-
tion to be integrated with respect to the weight function F(x). In general, Chebyshev
required that the approximation be exact for polynomials of degree at most n− 1, so
he looked for a formula of the form ∫ +1

−1

F(x)

z− x dx

= k (φ(x1)+φ(x2)+·· ·+φ(xn))+ k1φ
(n+1)(0)+ k2φ

(n+2)(0)+·· · , (10.26)

where φ(m) denoted the mth derivative of φ and k1,k2, . . . were constants. Following
Hermite, he considered the case φ(x)= 1/(z− x) to obtain∫ +1

−1

F(x)

z− x dx = k
(

1

z− x1
+·· ·+ 1

z− xn
)
+ (n+ 1)!k1

zn+2
+ (n+ 2)!k2

zn+3
+·· · .

(10.27)

He set f (z)= (z−x1)(z−x2) · · ·(z−xn), so that after multiplying by z, the last relation
became

z

∫ +1

−1

F(x)

z− x dx

= kzf
′(z)
f (z)

+ 1 · 2 · 3 · · ·(n+ 1)k1

zn+1
+ 1 · 2 · 3 · · ·(n+ 2)k2

zn+2
+·· · . (10.28)

He let z→∞ to get ∫ +1

−1
F(x)dx = nk, or k = 1

n

∫ +1

−1
F(x)dx. (10.29)

He thus had the value of k, and it remained for him to find the polynomial f (z) whose
zeros would be the numbers x1,x2, . . . ,xn. For this purpose, he integrated equation
(10.27) with respect to z to obtain∫ 1

−1
F(x) ln(z− x)dx = k ln

f (z)

C
− n!k1

zn+1
− (n+ 1)!k2

zn+2
−·· · ,

where C was a constant. Hence, by exponentiation he could write

f (z)e−n!k1/(kz
n+1)−(n+1)!k2/(kz

n+2)− ··· = C exp

(
1

k

∫ +1

−1
F(x) ln(z− x)dx

)
.
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Chebyshev then noted that the exponential on the left differed from 1 by a series of
powers of z less than z−n; hence, he noted that f (z) was the polynomial part of the
exponential on the right-hand side. He deduced Hermite’s formula by taking F(x)=
1/
√

1− x2, so that

k = 1

n

∫ +1

−1

dx√
1− x2

= π

n

and ∫ +1

−1
F(x) ln(z− x)dx =

∫ 1

−1

ln(z− x)√
1− x2

dx = π ln
z+√

z2 − 1

2
. (10.30)

Chebyshev could then conclude that the polynomial f (z) in this case was in fact the
polynomial part of

en ln z+
√
z2−1
2 =

(
z+√

z2 − 1

2

)n
,

and he wrote that it was equal to 1
2n−1 cos(narccosz). He then considered the case where

F(x)= 1, to obtain by (10.29): k = 2/n and∫ +1

−1
ln(z− x)dx = ln

(z+ 1)z+1

(z− 1)z−1
− 2.

Thus, Chebyshev arrived at the result he wanted:∫ 1

−1
φ(x)dx = 2

n
(φ(x1)+φ(x2)+·· ·+φ(xn)), (10.31)

where x1,x2, . . . ,xn were the zeros of the polynomial given by the polynomial part of
the expression

(z+ 1)n(z+1)/2(z− 1)−n(z−1)/2 = zne− n

2·3z2 −
n

4·5z4 −
n

6·7z6 −···
.

He also computed the cases in which n = 2,3,4,5,6,7 to get the polynomials z2 −
1/3, z3 −1/2z, z4 −2/3z2 +1/45, z5 −5/6z3 +7/72z, z6 − z4 +1/5z2 −1/105, z7 −
7/6z5 + 119/360z3 − 149/6480z. He calculated the zeros of these polynomials to six
decimal places. At this juncture, Chebyshev pointed out that in (10.31) the sum of the
squares of the coefficients had the smallest possible value, because they were all equal;
thus, his formula might sometimes even be an improvement on Gauss’s quadrature
formula.

10.9 Exercises

1. Let A,B,C,E, . . . be points on the x-axis and K,L,M,N,. . . corresponding
points on the curve. Then the ordinates are given by AK,BL,CM,DN,. . ..
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Newton described the following formulas for the approximate area under the
curve in the case of seven and nine ordinates:

If there be seven ordinates there will come to be

1

280
(17AK + 54BL+ 51CM + 36DN + 51EO+ 54FP + 17GQ)AG= �AQ,

While if there be given nine there will come

(217AK+1024BL+352CM+1024DN+436EO+1024FP +352GQ+1024HR+217IS)AI

5670

= �AS.

Derive these formulas using Newton’s ideas, as explained in the text and as
presented by Newton in his “Of Quadrature by Ordinates.” Recall that these
formulas, making use of Newton’s assumption on the proportionality of the
errors, differ from those obtained by integrating the interpolating polynomial.
See Newton (1967–1981), vol. 7, p. 695, including Whiteside’s footnotes.

2. Suppose

u= a+ bx+ cx2 +·· ·+hxn−1

α+βx+ γ x2 +·· ·+ θxm ,

and u(xk), x = 0,1,2, . . . ,n+m− 1. Determine the values of the coefficients
a/α,b/α, · · · ,h/α,β/α, · · ·θ/α. In particular, show that whenm= 1 and n= 2,

u= u0u1
x−x2

(x0−x2)(x1−x2)
+u0u2

x−x1
(x0−x1)(x2−x1)

+u1u2
x−x0

(x1−x0)(x2−x0)

u0
x0−x

(x0−x1)(x0−x2)
+u1

x1−x
(x1−x0)(x1−x2)

+u2
x2−x

(x2−x0)(x2−x1)

.

Cauchy discussed this interpolation by rational functions after he deduced the
Waring–Lagrange formula in his lectures. See Cauchy (1989), pp. 527–529.

3. Chebyshev computed the zeros of the polynomials, z5 − 5
6z

3 + 7
72z and z6 −z4 +

1
5z

2 − 1
105 for use in (10.31). His results were

±0.832497,±0.374541, 0 and ± 0.866247. ± 0.422519,±0.266635.

Check Chebyshev’s computations.
4. Show that Chebyshev’s result in (10.30) implies Hermite’s formula (10.24).
5. Prove the following formulas of Stieltjes:

∫ +1

−1

√
1− x2f (x)dx = π

n+ 1

n∑
k=1

sin2 kπ

n+ 1
f

(
cos

kπ

n+ 1

)
+ corr.

∫ +1

−1

√
1− x
1+ x f (x)dx = = 4π

2n+ 1

n∑
k=1

sin2 kπ

2n+ 1
f

(
cos

2kπ

2n+ 1

)
+ corr.
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The correction is zero when f (x) is a polynomial of degree ≤ 2n− 1.∫ 1

0

f (x)√
x(1− x) =

π

n

n∑
k=1

f

(
cos2 (2k− 1)π

4n

)
+ corr,

∫ 1

0

√
x(1− x)f (x)dx = π

4n+ 4

n∑
k=1

sin2 kπ

n+ 1
f

(
cos2 kπ

2n+ 2

)
+ corr,

∫ 1

0

√
1− x
x

f (x)dx = 2π

2n+ 1

n∑
k=1

sin2 kπ

2n+ 1
f

(
cos2 kπ

2n+ 1

)
+ corr.

See Stieltjes (1993), vol. 1, pp. 514–515.

10.10 Notes on the Literature

For the November 23, 1674 letter of Collins, see Turnbull (1939), pp. 290–292.
Stirling’s comments on Newton’s contribution to interpolation theory may be found
on p. 122 of Tweddle (2003). Newton (1964–1967), vol. 2, pp. 168–173, pro-
vides an English translation of Newton’s Methodus, presenting his divided difference
method and its applications to various interpolation and quadrature formulas. Newton
(1967–1981), vol. 7, pp. 690–99, contains his approximate quadrature method. For
the quotation from Newton’s letter, see Newton (1959–1960), vol. 2, p. 137. Waring
(1779) presents his derivation of the Lagrange–Waring interpolation formula. Cauchy’s
derivation of this result appears in Note V of his Analyse algébrique; Jacobi’s argument
can be found in Jacobi (1969), vol. 6, p. 5. See Hermite (1873), pp. 452–454 for his
approximate quadrature, and see Chebyshev (1899–1907), vol. 2, pp. 165–180, for his
extension of Hermite.

Chapters 10 and 11 of J. L. Chabert (1999) contain interesting observations on
interpolation and quadrature with excerpts from original authors. Thomas Harriot’s
manuscript De Numeris Triangularibus, containing his derivations of symbolic inter-
polation formulae and their applications, has now been published in Beery and Stedall
(2009), almost four centuries after it was written. Beery and Stedall provide a com-
mentary to accompany the almost completely nonverbal presentation of Harriot. They
also discuss the work on interpolation of several British mathematicians in the period
1610–1670.
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Series Transformation by Finite Differences

11.1 Preliminary Remarks

Around 1670, James Gregory found a large number of new infinite series, but his
methods remain somewhat unclear. From circumstantial evidence and from the form
of some of his series, it appears that he was the first mathematician to systemati-
cally make use of finite difference interpolation formulas in finding new infinite series.
The work of Newton, Gregory, and Leibniz made the method of finite differences
almost as important as calculus in the discovery of new infinite series. We observe
that interpolation formulas usually deal with finite expressions because in practice
the number of interpolating points is finite. By theoretically extending the number of
points to infinity, Gregory found the binomial theorem, the Taylor series, and numer-
ous interesting series involving trigonometric functions. Gregory most likely derived
these theorems from the Gregory–Newton (or Harriot–Briggs) interpolation formula.
Gregory’s letter of November 23, 1670, to Collins explicitly mentions these results,
and also contains some other series, not direct consequences of the Harriot–Briggs
result. Instead, these other series seem to require the Newton–Gauss interpolation
formula; one is compelled to conclude that Gregory must have obtained this inter-
polation formula, though it is not given anywhere in his surviving notes and letters.
In a separate enclosure with his letter to Collins, Gregory wrote several formulas,
including:

Given an arc whose sine is d , and sine of the double arc is 2d− e, it is required to find another arc
which bears to the arc whose sine is d the ratio a to c. The sine of the arc in question

= ad

c
− be

c
+ ke2

cd
− le3

cd2
+·· · (11.1)

where
b

c
= a(a2 − c2)

2 · 3 · c3
,

k

c
= a(a2 − c2)(a2 − 4c2)

2 · 3 · 4 · 5 · c5
, etc.
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In modern notation, c= rθ, d = r sin θ, 2d−e= r sin 2θ ; hence, e= 2r sin θ(1−cosθ)
and the series takes the form

sin
aθ

c
=sin θ

(
a

c
− a(a2 − c2)

3!c3
2(1− cosθ)

+ a(a2 − c2)(a2 − 4c2)

5!c5
(2(1− cosθ))2 −·· ·

)
. (11.2)

Gregory noted at the end of the enclosure that an infinite number of other ways of
measuring circular arcs could be deduced from his calculations.

Gregory did not publish his work on series and his mathematical letters to Collins
were not printed until later. Meanwhile, Newton developed his profound ideas on
interpolation and finite differences starting in the mid 1670s. In the early 1680s, he
applied the method of differences to infinite series and in June–July of 1684, he wrote
two short treatises on the topic. He was provoked into writing up his results upon
receiving a work from David Gregory, the nephew of James, Exercitatio Geometrica
de Dimensione Figurarum. In this treatise, David Gregory discussed several aspects
of infinite series, apparently without knowledge of Newton’s work. Newton evidently
wished to set the record straight; he first wrote “Matheseos Universalis Specimina,”
in which he pointed out that James Gregory and Leibniz were indebted to him in their
study of series. He did not finish this treatise, but instead started a new one, called “De
Computo Serierum” in which he eliminated all references to Gregory and Leibniz. The
first chapter of the second treatise dealt with infinite series in a manner similar to that of
his early works of 1669 and 1671. However, the second chapter employed the entirely
new idea of applying finite differences to derive an important transformation of infinite
series, often called Euler’s transformation. In modern notation, this is given by

A0t +A1t
2 +A2t

3 +·· · =A0z+,A0z
2 +,2A0z

3 +·· · , (11.3)

where z= t/(1− t), ,A0 =A1 −A0, ,
2A0 =A2 − 2A1 +A0, etc.

Newton noted one remarkable special case of his transformation:

tan−1 t = t − 1

3
t3 + 1

5
t5 − 1

7
t7 +·· ·

= t

1+ t2
(

1+ 2

1 · 3
t2

1+ t2 +
2 · 4

1 · 3 · 5
(

t2

1+ t2
)2

+ 2 · 4 · 6
1 · 3 · 5 · 7

(
t2

1+ t2
)3

+·· ·
)
.

(11.4)

Observe that when t = 1 we have t2/(1+t2)= 1/2 so that while the first series converges
very slowly for this value of t , the second series converges much more rapidly. Moreover
when t =√

3, the first series is divergent while the second is convergent. In fact, Newton
wrote:

The chief use for these transformations is to turn divergent series into convergent ones, and
convergent series into ones more convergent. Series in which all terms are of the same sign cannot
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diverge without simultaneously coming to be infinitely great and on that account false. These,
consequently, have no need to be turned into convergent ones. Those, however, in which the
terms alternate in sign and proceed regularly, are so moderated by the successive addition and
subtraction of those terms as to remain true even in divergence. But in their divergent form their
quantity cannot be computed and they must be turned into convergent ones by the rule introduced,
while when they are sluggishly convergent the rule must be applied to make them converge more
swiftly. Thus the series y = x− 1

3x
3 + 1

5x
5 · · · , when it converges or diverges slowly enough and

has been turned into this one

y = x− 1

3
x3 + 1

5
x5 − 1

7
x7 + 1

9
x9 − 1

11
x11 + 1

13
x13 − 1

15
x15

+ x15

(
1

17
z+ 2

17 · 19
z2 + 2 · 4

17 · 19 · 21
z3 + 2 · 4 · 6

17 · 19 · 21 · 23
z4 · · ·

)
,

will speedily enough be computed to many places of decimals. If the same series proves swiftly
divergent it must be turned into the convergent

xy = z+ 2

1 · 3z
2 + 2 · 4

1 · 3 · 5z
3 · · · (11.5)

and then by what is presented in the following chapter it can be computed. It is, however, frequently
convenient to reduce the coefficientsA, B,C, . . . to decimal fractions at the very start of the work.

We note that Newton’sA, B, C, . . . are theA0, A1, A2 . . . in (11.3) and z= x2/(1+x2),
as in (11.4). We do not know why Newton discontinued work on this treatise. Perhaps
it was because Edmond Halley visited Cambridge in August 1684 and urged Newton
to work on problems of planetary motion. As is well known, Newton started work on
the Principia soon after this visit and for the next two years had time for little else.

Newton’s transformation (11.4) for the arctangent series is obviously important, so
it is not surprising that others rediscovered it, since Newton’s paper did not appear in
print until 1970. InAugust 1704, Jakob Bernoulli communicated the t = 1 case of (11.4)
to Leibniz as a recent discovery of Jean Christophe Fatio de Duillier. Jakob Hermann, a
student of Bernoulli, found a proof for this and sent it to Leibniz in January 1705. This
proof is identical with that of Newton’s when specialized to t = 1. Johann Bernoulli,
and probably others, succeeded in deriving the general form of (11.4). Bernoulli, in fact,
applied the general form in a paper of 1742 and thereby derived a remarkable series
for π 2 found earlier by Takebe Katahiro by a different technique. In 1717, the French
mathematician Pierre Rémond de Montmort (1678–1719) rediscovered Newton’s more
general transformation (11.3) with a different motivation and method of proof.

Montmort was born into a wealthy family of the French nobility and was self-taught
in mathematics. An admirer of both Newton and Leibniz, he remained neutral but
friendly with followers of both mathematicians during the calculus priority dispute
in the early eighteenth century. He mainly worked in probability and combinatorics
but also made contributions to the theory of series. His paper on series was inspired
by Brook Taylor’s 1715 work Methodus Incrementorum; consequently, Montmort’s
“De Seriebus Infinitis Tractatus” was published in the Philosophical Transactions with
an appendix by Taylor, then Secretary of the Royal Society. Montmort’s paper dealt
with those finite as well as infinite series to which the method of differences could
be applied. He first worked out the transformation of a finite power series and then
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obtained Newton’s formula (11.3) as a corollary. He also quoted from a 1715 letter of
Niklaus I Bernoulli, showing that Niklaus had found a result similar to that of Newton.

In 1717, François Nicole (1683–1758), a pupil of Montmort, also published a paper
on finite differences. He too wrote that his ideas were suggested by Taylor’s book of
1715. The title of his paper, “Traité du calcul des différences finies,” indicated that
he viewed the calculus of finite differences as a new topic in mathematics, separate
from geometry, calculus, or algebra. By means of examples, he showed that the shifted
factorial expression

(x)n = x(x+h)(x+ 2h) · · ·(x+ (n− 1)h) (11.6)

behaved under differencing as xn under differentiation. Thus,

,h(x)n = (x+h)n− (x)n = (n)h(x+h)n−1. (11.7)

Also, the difference relation

1

(x)n
− 1

(x+h)n =
nh

(x)n+1
(11.8)

showed that the analog of x−n was 1/(x)n. Moreover, the inverse of a difference would
be a sum. And just as the derivative of a function indicated the integral of the derived
function, so also one could use the difference to find the sum. He gave an example:
From

f (x)= x(x+ 1)(x+ 2)/3, f (x+ 1)−f (x)= (x+ 1)(x+ 2), (11.9)

he got

1 · 2+ 2 · 3+·· ·+ x(x+ 1)= x(x+ 1)(x+ 2)

3
+C. (11.10)

By taking x = 1, he obtained the constant as zero.
In 1723, in his second memoir, Nicole discussed the problem of computing the

coefficients a0, a1, a2, . . . in

f (x+m)−f (x)= a0 + a1(x+h)+ a2(x+h)(x+ 2h)

+·· ·+ ak−1(x+h) · · ·(x+ (k− 1)h), (11.11)

where f (x) = x(x + h) · · ·(x + (k − 1)h). His method employed a long inductive
process, but simpler procedures have since been found. In his second memoir and in
his third memoir of 1724, Nicole solved a similar problem for the inverse factorial
1/x(x+h) · · ·(x+ (k− 1)h).

Both Montmort and Nicole mentioned Taylor as the source of their inspiration; we
note that Taylor gave a systematic exposition of finite differences and derivatives with
their inverses, sums, and integrals. Many of these ideas were already known but Taylor
explicitly laid out some of the concepts, such as the method of summation by parts.
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In a letter of November 14, 1715, Montmort also attributed to Taylor the summation
formula

1

b− a = 1

b
+ a

b(b+ d) +
a(a+ d)

b(b+ d)(b+ 2d)
+·· · . (11.12)

There are several ways of proving this, but it is likely that Taylor proved it by the
Gregory–Newton interpolation formula, since he used this to prove his famous series.

The Scottish mathematician James Stirling (1692–1770) took Nicole’s work much
further. Stirling’s book, Methodus Differentialis, is sometimes called the first book
on the calculus of finite differences. Like all prominent British mathematicians of
the early eighteenth century, he was a disciple of Newton. His first paper, “Lineae
Tertii Ordinis Newtonianae,” was an account with some extensions of Newton’s theory
of cubic curves. His second paper, “Methodus Differentialis Newtoniana Illustrata,”
developed some of Newton’s ideas on interpolation. He later expanded this paper into
the Methodus. Stirling received his early education in Scotland. In 1710 he traveled to
Oxford and graduated from Balliol College the same year. He stayed on at Oxford on
a scholarship, but he lost his support after the first Jacobite rebellion of 1715, as his
family had strong Jacobite sympathies. He then spent several years in Italy and was
unable to obtain a professorship there. Athough details of his time in Italy are unknown,
his second paper was communicated from Venice. After returning to Britain in 1722,
he was given financial assistance by Newton, making him one of Newton’s devoted
friends. After teaching in a London school, in 1735 Stirling began service as manager
of the Leadhills Mines in Scotland where he was very successful, looking after the
welfare of the miners as well as the interests of the shareholders. In the early 1750s, he
also surveyed the River Clyde in preparation for a series of navigational locks.

Stirling started his book where Nicole ended. In the introduction, he defined the
Stirling numbers of the first and second kinds. These numbers appeared as coefficients
when zn was expanded in terms of z(z− 1) · · ·(z− k+ 1), and 1/zn was expanded in
terms of 1/z(z+ 1) · · ·(z+ k− 1). These expansions were required in order to apply
the method of differences to functions or quantities normally expressed in terms of
powers of z. Stirling constructed two small tables of these coefficients to make the
transformation easy to use. In the first few propositions of his book, Stirling considered
problems similar to those of Nicole, but he very quickly enlarged the scope of those
methods. He applied his new method to the approximate summation of series such
as 1+ 1/4+ 1/9+ 1/16+ ·· · , whose approximate value had also been computed by
Daniel Bernoulli, Goldbach and Euler in the late 1720s. It was a little later that Euler
brilliantly found the exact value of the series to be π 2/6. Stirling also applied his
method of differences to derive several new and interesting transformations of series.
For example, observe propositions 7 and 8 of his Methodus Differentialis presented in
modernized notation:

1+ z−n
z(1−m) +

(z−n)(z−n+ 1)

z(z+ 1)(1−m)2 +·· ·

= m− 1

m

(
1+ n

zm
+ n(n+ 1)

z(z+ 1)m2
+·· ·

)
(11.13)
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and

1+ (z−m)(z−n)
z(z−n+ 1)

+ (z−m)(z−m+ 1)(z−n)(z−n+ 1)

z(z+ 1)(z−n+ 1)(z−n+ 2)
+·· ·

= z−n
m

(
1+ nm

z(m+ 1)
+ n(n+ 1)m(m+ 1)

z(z+ 1)(m+ 1)(m+ 2)
+·· ·

)
. (11.14)

Note that Newton’s transformation (11.4) for arctan t follows by taking n= 1, z= 3/2,
and m = 1 + 1/t2 in (11.13). We shall see later that these formulas are particular
cases of transformations of hypergeometric series. The hypergeometric generalization
of (11.13) was discovered by Pfaff in 1797, and the generalization of (11.14) was found
by Kummer in 1834. Thus, the methods of hypergeometric series provide the right
context with the appropriate degree of generality to study the series (11.4), (11.13),
and (11.14). Moreover, Gauss extended Stirling’s finite difference method to the theory
of hypergeometric series and derived his well-known and important contiguous rela-
tions for hypergeometric series. Even today, contiguous relations continue to provide
unexplored avenues for research.

We also note that since expressions of the form z(z− 1) · · · (z− k+ 1) appear in
finite difference interpolation formulas, Stirling numbers of the first kind also appear
in those formulas. For this reason, in the early 1600s, Harriot computed these numbers.
Stirling numbers also cropped up in Lagrange’s 1770s proof of Wilson’s theorem that
(p− 1)! + 1 was divisible by p if and only if p was prime. In fact, Lagrange’s proof
gave the first number theoretic discussion of Stirling numbers of the first kind.

Like Gregory, Leibniz, Taylor, and Nicole, Euler saw the intimate connections
between the calculus of finite differences and the calculus of differentiation and inte-
gration. His influential 1755 book on differential calculus began with a chapter on finite
differences. The second chapter on the use of differences in the summation of series
discussed examples such as those in Nicole’s work. In the second part of his book, Euler
devoted the first chapter to Newton’s transformation (11.3). He gave a proof different
from Newton’s and from Montmort’s; this in turn led him to a further generalization of
the formula. Suppose

S = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 +·· · .

Euler then got the generalization

A0a0 +A1a1x+A2a2x
2 +A3a3x

3 +·· ·

=A0S+,A0
x

1!
dS

dx
+,2A0

x2

2!
d2S

dx2
+,3A0

x3

3!
d3S

dx3
+·· · . (11.15)

The Newton–Montmort formula followed by taking a0 = a1 = a2 = ·· · = 1.

11.2 Newton’s Transformation

In his 1684 “Matheseos,” Newton attempted to change slowly convergent series into
more rapidly convergent ones. He considered the method of taking differences of the
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coefficients, but it was not until a little later that he arrived at the explicit and useful
transformation (11.3) contained in the “De Computo.” He wrote the initial series as

v =At ±Bt2 +Ct3 ±Dt4 +Et5 ±F t6 &c. (11.16)

Newton explained his transformation:

Here A, B, C, . . . are to denote the coefficients of the terms whose ultimate ratio, if the series be
extended infinitely, is one of equality, and 1 to t is the remaining ratio of the terms; while the sign
± is ambiguous and the converse of the sign ∓. Collect the first differences b, b2, b3, . . . of the
terms A, B, C, . . .; then their second ones c, c2, c3, . . . , third ones d, d2, d3, . . ., and any number
of following ones. Collect these, however, by always taking a latter term from the previous one:
B from A, C from B,. . .; b2 from b, b3 from b2, . . . ; d2 from d, d3 from d2, . . ., and so on. Then
make t/(1∓ t)= z and when the signs are appropriately observed there will be

v =Az∓ bz2 + cz3 ∓ dz4 + ez5 ∓f z6 +·· · .

He took the differences in reverse order of the modern convention. He hadA−B, B−
C, C−D,. . . for the first differences instead ofB−A, C−B,D−C,. . . and similarly
for the higher-order differences. The revised version of the “De Computo” did not
include a proof but notes of an earlier version suggest the following iterative argument:

v = z(1∓ t)(A±Bt +Ct2 ±Dt3 +Et4 ±F t5 · · ·)
= z(A∓ (A−B)t − (B−C)t2 ∓ (C−D)t3 − (D−E)t4 ∓·· ·)
=Az∓ z((A−B)t ± (B−C)t2 + (C−D)t3 ± (D−E)t4 +·· ·). (11.17)

Now the last series in parentheses is of the same form as the original series except that
the coefficients are the differences of the coefficients of the original. So the procedure
can be repeated to give

v =Az∓ z(z(A−B)∓ z((A− 2B+C)t
± (B− 2C+D)t2 + (C− 2D+E)t3 ±·· ·))

=Az∓ (A−B)z2 + (A− 2B+C)z3 ∓·· · . (11.18)

The final formula results from an infinite number of applications of this procedure;
Newton applied this formula to the logarithmic and arctangent series. In the case of
the logarithm, the transformation amounted to the equation ln(1+x)=− ln

(
1− x

1+x
)
.

Newton’s main purpose was to use the transformation for numerical computation and
this explains why he applied the transformation after the eight term 1

15x
15 in (11.5)

rather than immediately at the outset. Note also that the first step in (11.17) was an
example of the summation by parts discussed explicitly by Taylor and later used by
Abel to study the convergence of series.

11.3 Montmort’s Transformation

In his 1717 paper, “De Seriebus Infinitis Tractatus,” Montmort started with elemen-
tary examples, but toward the end of the paper he posed the problem of summing or
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transforming the series

S = a0

h
+ a1

h2
+ a2

h3
+·· · . (11.19)

He also discussed partial sums of this series, written as

S0 = A0

h
, S1 = A1

h2
, . . . ,Sp = Ap

hp+1
, . . . , where (11.20)

A0 = a0, A1 = a0h+ a1, A2 = a0h
2 + a1h+ a2, . . . . (11.21)

He noted that a simple relation existed between the differences of the sequence
A0,A1,A2, . . . and the sequence a0,a1,a2, . . . . He wrote down just the first three cases:
For q = h− 1,

,A0 = ha0 +,a0,

,2A0 = qha0 +h,a0 +,2a0,

,3A0 = q2ha0 + qh,a0 +h,2a0 +,3a0,etc.

It is not difficult to write out the general relation from these examples. He then proved
the result that if for k ≥ l, ,ka0 = 0, then

,kA0 = qk−l,lA0. (11.22)

In fact, he verified this for l = 1 and 2, but noted that was sufficient to see that the
result was true in general. Montmort then proceeded to evaluate the partial sums of
(11.19) under the assumption that,la0 = 0 for some positive integer l. The basic result
used here and in other examples was that for any sequence b0,b1,b2, . . . and a positive
integer p,

bp = b0 +
(
p

1

)
,b0 +

(
p

2

)
,2b0 +·· ·+

(
p

p

)
,pb0. (11.23)

For example, to evaluate Ap for p > l and ,la0 = 0, he employed (11.22) to obtain

Ap =
(
A0 +

(
p

1

)
,A0 +·· ·+

(
p

l− 1

)
,l−1A0

)
+
(
p

l

)
,lA0 +

(
p

l+ 1

)
,l+1A0 +·· ·+

(
p

p

)
,pA0

=A0 +
(
p

1

)
,A0 +·· ·+

(
p

l− 1

)
,l−1A0

+ ,lA0

ql

((
p

l

)
ql +

(
p

l+ 1

)
ql+1 +·· ·+

(
p

p

)
qp

)
=A0 +

(
p

1

)
,A0 +·· ·+

(
p

l− 1

)
,l−1A0

+ ,lA0

ql

(
hp− 1−

(
p

1

)
q−·· ·−

(
p

l− 1

)
ql−1

)
. (11.24)
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As an application of this formula, he gave the sum of the finite series

1 · 3+ 3 · 32 + 6 · 33 + 10 · 34 + 15 · 35 + 21 · 36.

Here h= 1/3, q =−2/3, p = 5, and ,3a0 = 0. Next, as a corollary, Montmort stated
without proof the transformation formula

∞∑
k=0

ak

hk+1
=

∞∑
k=0

,ka0

(h− 1)k+1
. (11.25)

Of course, this is Newton’s formula. Since equation (11.23) was Montmort’s basic
formula, we may assume that he applied it to give a formal calculation to justify (11.25).
Indeed, this is easy to do:

∞∑
k=0

ak

hk+1
=

∞∑
k=0

1

hk+1

k∑
j=0

(
k

j

)
,ja0

=
∞∑
k=0

,ka0

∞∑
j=0

(
k+ j
j

)
1

hk+1+j

=
∞∑
k=0

,ka0

(h− 1)k+1
.

Unfortunately, he did not give any interesting examples of this formula. The three cases
he explicitly mentioned follow from the binomial theorem just as easily. We mention
that Zhu Shijie (c. 1260–1320), also known as Chu Shi-Chieh, knew (11.23) and used
it to sum finite series in his Siyuan Yujian of 1303.

11.4 Euler’s Transformation Formula

As we mentioned earlier, Newton did not publish his transformation formula. It is not
certain whether or not Euler saw Montmort’s paper on this topic. In any case, Euler’s
approach differed from those of Newton and Montmort. Euler’s proof of (11.3) applied
the change of variables in the first step. We present the proof as Euler set it out. He let

S = ax+ bx2 + cx3 + dx4 + ex5 +&c.

and let x = y/(1+ y) and replaced the powers of x by the series

x = y− y2 + y3 − y4 + y5 − y6 +&c.

x2 = y2 − 2y2 + 3y4 − 4y5 + 5y6 − 6y7 +&c.

x3 = y3 − 3y4 + 6y5 − 10y6 + 15y7 − 21y8 +&c.

x4 = y4 − 4y5 + 10y6 − 20y7 + 35y8 − 56y9 +&c.



11.4 Euler’s Transformation Formula 185

Thus,

S = ay−ay2 + ay3−ay4 + ay5&c.

+b− 2b +3b− 4b

+ c −3c+ 6c

+d− 4d.

Note that the coefficients of the various powers of y were presented in columns. Since
y = x/(1− x),

S = a x

1− x + (b− a) x2

(1− x)2 + (c− 2b+ a) x3

(1− x)3 &c,

yielding the transformation formula.
Note that the series for x is the geometric series, while the series for x2, x3, . . . can

be obtained by the binomial theorem or by the differentiation of the series for x. In fact,
Euler must have had differentiation in mind, since his proof of the second transformation
formula (11.15) was obtained by writing the right-hand side of (11.15) as

αS+β x
1!
dS

dx
+ γ x

2

2!
d2S

dx2
+ δ x

3

3!
d3S

dx3
+·· ·

and then substituting the series forS, dS/dx, d2S/dx2, . . . . By equating the coefficients
of the various powers of x, he found α = A0, β = A1 −A0, γ = A2 − 2A1 +A0, and
so on.

Euler gave several examples of these formulas in his differential calculus book. At
times writing xx and at other times using x2, he considered the problem of summing
the series

1x+ 4xx+ 9x3 + 16x4 + 25x5 + etc. (11.26)

The first and second differences of the coefficients 1, 4, 9, 16, 25, . . . were 3, 5, 7, 9,
. . . and 2, 2, 2, . . .. Therefore, the third differences were zero, and by equation (11.3),
the sum of the series (11.26) came out to be

x

1− x + 3x2

(1− x)2 +
2x3

(1− x)3 = x+ xx
(1− x)3 . (11.27)

To sum the finite series

1x+ 4x2 + 9x3 + 16x4 +·· ·+n2xn, (11.28)

Euler subtracted (n+ 1)2xn+1 + (n+ 2)2xn+2 + ·· · from the series in the previous
example. He found the sum of this infinite series to be

xn+1

1− x
(
(n+ 1)2 + (2n+ 3)

x

1− x + 2x2

(1− x)2
)
. (11.29)
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Euler observed the general rule, already established by Montmort, that if a power series
had coefficients such that ,nA0 = 0 for n≥ k, then the series would sum to a rational
function.

When Euler discovered a new method of summation or a new transformation of
series, he applied it to divergent as well as convergent series. He believed that divergent
series could be studied and used in a meaningful way. He explained that whenever
he assigned a sum to a divergent series by a given method, he arrived at the same
sum by alternative methods, leading him to conclude that divergent series could be
legitimately summed. Applying the differences method, he found the sums of various
divergent series, including 1 − 4 + 9 − 16 + 25 − ·· · ; ln 2 − ln 3 + ln 4 − ln 5 + ·· · ;
and 1− 2+ 6− 24+ 120− 720+ ·· · . Observe that the terms in the third example are
1!, 2!, 3!, 4!, . . .. This was one of Euler’s favorite divergent series. By taking twelve
terms of the transformed series and using (11.3), he found the sum to be 0.4036524077.
He must have later realized that this sum was very inaccurate, since he reconsidered it
in a 1760 paper in which he took the function

f (x)= 1− 1!x+ 2!x2 − 3!x3 +·· ·

and proceeded to express f (x) as an integral and as a continued fraction:

f (x)= 1

x

∫ x

0

1

t
e−1/t dt and

f (x)= 1

1+
x

1+
x

1+
2x

1+
2x

1+
3x

1+
3x

1+ etc.

Euler then computed the value of the original series f (1). To approximately evaluate
the integral, he divided the interval [0,1] into ten equal parts and used the trapezoidal
rule. By this method, f (1)= 0.59637255. The continued fraction, on the other hand,
gave f (1)= 0.59637362123, correct to eight decimal places. Even earlier, in a letter to
Goldbach of August 7, 1745, Euler wrote that he had worked out the continued fraction
for the divergent series f (1) and found the value to be approximately 0.5963475922,
adding the remark that in a small dispute with Niklaus I Bernoulli about the value of a
divergent series, he himself had argued that all series such as f (1)must have a definite
value.

In his differential calculus book, Euler gave a few applications of his more general
formula (11.15), including the derivation of the exponential generating function of a
sequence whose third difference was zero. He began with the difference table in Figure
(11.1).

2 5 10 17 26 37
3 5 7 9 11

2 2 2 2

Figure 11.1. Difference Table
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From this, he derived

2+ 5x+ 10x2

2
+ 17x3

6
+ 26x4

24
+ etc.

= ex(2+ 3x+ xx)= ex(1+ x)(2+ x).
More generally, he noted that when S = ex , the result was

A0 +A1
x

1
+A2

x2

1 · 2 +A3
x3

1 · 2 · 3 +A4
x4

1 · 2 · 3 · 4 + etc.

= ex
(
A0 + x

1
,A0 + x2

1 · 2,
2A0 + x3

1 · 2 · 3,
3A0 + x4

1 · 2 · 3 · 4,
4A0 + etc.

)
.

In fact, this result is equivalent to (1+,)nA0 = An, as is quickly verified by writing
ex as a series and multiplying the two series. Jacobi gave a very interesting application
of Euler’s general transformation formula (11.15) to the derivation of the Pfaff–Gauss
transformation for hypergeometric functions and we discuss this in the chapter on
algebraic analysis.

11.5 Stirling’s Transformation Formulas

Stirling’s new generalization of Newton’s transformation of the arctangent series (11.4)
was a particular case of a hypergeometric transformation discovered by Pfaff in 1797.
Stirling stated his formula as proposition 7 of his 1730 book and his proof made remark-
able use of difference equations. Beginning with a series satisfying a certain difference
equation, or recurrence relation, he then showed that the transformed series satisfied the
same difference equation. Adhering closely to Stirling’s exposition, we state the theo-
rem: If the successive terms T and T ′ of a series S satisfied (z−n)T + (m−1)zT ′ = 0,
then S could be transformed to

S = m− 1

m
T + n

z
× A

m
+ n+ 1

z+ 1
× B

m
+ n+ 2

z+ 2
× C

m
+ n+ 3

z+ 3
× D

m
+ etc.

Stirling’s notation made unusual use of the symbol z. In the equation (z − n)T +
(m− 1)zT ′ = 0, T and T ′ represented any two successive terms of the series S. The
value of z changed by one when Stirling moved from one pair to the next. To see how
this worked, take S = T0 + T1 + T2 + T3 + ·· · . The initial relation (between the first
two terms) could then be expressed as (z− n)T0 + (m− 1)zT1 = 0 and, in general,
the relation between two successive terms would be

Tk+1 =− z−n+ k
(z+ k)(m− 1)

Tk. (11.30)

Thus, the relation between successive terms produced the series

S = T0

(
1+ z−n

z(1−m) +
(z−n)(z−n+ 1)

z(z+ 1)(1−m)2 +·· ·
)
. (11.31)
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In Stirling’s notation, A, B, C, . . . each represented the previous term so that

A= m− 1

m
T

(
= m− 1

m
T0

)
, B = n

z
× A

m
,C = n+ 1

z+ 1
× B

m
,etc.

Hence, the transformed series could be written as

T0

(
1+ n

z
· 1

m
+ n(n+ 1)

z(z+ 1)
· 1

m2
+ n(n+ 1)(n+ 2)

z(z+ 1)(z+ 2)
· 1

m3
+·· ·

)
. (11.32)

Thus, Stirling’s transformation formula is equivalent to the statement that the series
in (11.31) equals the series in (11.32). We use modern notation to derive Stirling’s
difference equation. Let

Sk =
∞∑
n=k
Tn = Tkyk

so that Tk+1yk+1 = Sk+1 = Sk−Tk = Tk(yk− 1).

By relation (11.30), the last equation would become

(m− 1)yk+ yk+1 − n

z+ k yk+1 −m+ 1 = 0. (11.33)

Since Stirling wrote y and y ′ for any two successive yk and yk+1, he could write z
instead of z+ k to get the recurrence relation

(m− 1)y+ y ′ − n

z
y ′ −m+ 1 = 0. (11.34)

In proving his transformation formula, Stirling assumed that

y = a+ b

z
+ c

z(z+ 1)
+ d

z(z+ 1)(z+ 2)
+·· · , so (11.35)

y ′ = a+ b

z+ 1
+ c

(z+ 1)(z+ 2)
+ d

(z+ 1)(z+ 2)(z+ 3)
+·· · . (11.36)

Before substituting these expressions for y and y ′ in (11.34), Stirling observed that

y ′ = a+ b

z
+ c− b
z(z+ 1)

+ d− 2c

z(z+ 1)(z+ 2)
+ e− 3d

z(z+ 1)(z+ 2)(z+ 3)
+·· · . (11.37)

We can easily see this to be true by taking the term-by-term difference of the series for
y and y ′ in (11.35) and (11.36). Next, he substituted the expression (11.37) for y ′ in
(11.34) but used (11.36) for the term− n

z
y ′ in (11.34).After these substitutions, equation

(11.34) became

ma−m+ 1+ mb−na
z

+ mc− (n+ 1)b

z(z+ 1)
+ md− (n+ 2)c

z(z+ 1)(z+ 2)
+ etc. = 0.

On setting the like terms equal to zero, he got

a = m− 1

m
, b= n

m
a, c= n+ 1

m
b, d = n+ 2

m
c,. . . .
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When these values were substituted back in y, Stirling got his result.
Stirling applied this transformation to the approximate summation of the series

1

2

(
1+ 1

3
+ 1 · 2

3 · 5 + 1 · 2 · 3
3 · 5 · 7 + 1 · 2 · 3 · 4

3 · 5 · 7 · 9 +·· ·
)
. (11.38)

Now this is the series one gets upon taking t = 1 in Newton’s formula (11.4), and its
value is therefore π/4. It is interesting to note that, after posing the problem of approx-
imately summing the above series, Newton had abruptly ended the second chapter of
his unpublished “Matheseos” of 1684 with the word “Inveniend” (to be found). Thus,
although the “Matheseos” went unpublished, Stirling took up the very problem left
pending by Newton. Stirling began by adding the first twelve terms of the series and
applied his transformation (11.13) to the remaining (infinite) part of the series, yielding

12!
3 · 5 · 25

(
1− 1

27
+ 1 · 3

27 · 29
− 1 · 3 · 5

27 · 29 · 31
+·· ·

)
. (11.39)

To approximate this sum, he took the first twelve terms of this series and found the value
ofπ/4 as 0.78539816339. Since the terms are alternating and decreasing, Stirling could
also have easily determined bounds on the error by using results of Leibniz dating from
1676.

Proposition 8 of Stirling’s Methodus Differentialis was a transformation of what we
now call a generalized hypergeometric series, noteworthy as an important particular
case of a formula discovered by Kummer in 1836 in the course of his efforts to generalize
Gauss’s 1812 theory of hypergeometric series. After having seen the manner in which
Stirling stated his propositions, we state Stirling’s eighth proposition in a form more
immediately understandable to modern readers:

1

z−n + z−m
z(z−n+ 1)

+ (z−m)(z−m+ 1)

z(z+ 1)(z−n+ 2)
+ (z−m)(z−m+ 1)(z−m+ 2)

z(z+ 1)(z+ 2)(z−n+ 3)
+·· ·

= 1

m
+ n

z(m+ 1)
+ n(n+ 1)

z(z+ 1)(m+ 2)
+ n(n+ 1)(n+ 2)

z(z+ 1)(z+ 2)(m+ 3)
+·· · . (11.40)

Let Sk denote the sum of the series on the left after the first k terms have been removed:

Sk = (z−m) · · ·(z−m+ k− 1)

z(z+ 1) · · ·(z+ k− 1)

×
(

1

z−n+ k +
z−m+ k

(z+ k)(z−n+ k+ 1)
+ (z−m+ k)(z−m+ k+ 1)

(z+ k)(z+ k+ 1)(z−n+ k+ 2)
+·· ·

)
.

Denote the sum in parentheses by yk. It is simple to check that

yk− yk+1 + m

z+ k yk+1 − 1

z−n+ k = 0.

Stirling wrote this relation as

y− y ′ + m

z
y ′ = 1

z−n. (11.41)
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He then assumed that for some a, b, c, d, . . .

y = a

m
+ b

(m+ 1)z
+ c

(m+ 2)z(z+ 1)
+ d

(m+ 3)z(z+ 1)(z+ 2)
+·· · .

He substituted this into the left side of (11.41) and after a simple calculation obtained

y− y ′ + m

z
y ′ = a

z
+ b

z(z+ 1)
+ c

z(z+ 1)(z+ 2)
+ d

z(z+ 1)(z+ 2)(z+ 3)
+·· · .

(11.42)

Stirling applied Taylor’s formula (11.12) to the right side of (11.41) to get

1

z−n = 1

z
+ n

z(z+ 1)
+ n(n+ 1)

z(z+ 1)(z+ 2)
+ n(n+ 1)(n+ 2)

z(z+ 1)(z+ 2)(z+ 3)
+·· · (11.43)

and equated the coefficients in (11.42) and (11.43) to obtain

a = 1, b= n, c= n(n+ 1), d = n(n+ 1)(n+ 2), . . . .

This proves the transformation formula (11.40). As we mentioned, a century later
Kummer obtained a more general result but he did not seem to have been aware of
Stirling’s work.

Newton pointed out in his second letter for Leibniz that sin−1 1
2 was more convenient

than sin−1 1 for computing π because it converged rapidly. Stirling showed that by
applying his transformation to sin−1 1, he could cause it to converge sufficiently rapidly
as to make it useful for computation. Stirling summed up the first twelve terms directly
and then applied the transformation to the remainder, thereby achieving the value of π
to eight decimal places.

11.6 Nicole’s Examples of Sums

The method of finite differences is also useful in the summation of series, as noted
by Mengoli, Leibniz, Jakob Bernoulli, and Montmort. Nicole, student of Montmort,
wished to establish a new subject devoted to the calculus of finite differences.Analogous
to integration in the calculus, summation of series had to be developed within this new
subject. Nicole attacked this problem by summing examples of certain kinds of series
and Montmort gave similar examples. The basic idea was that, given a function g(x)
such that g(x+ h)− g(x)= f (x), the sum would be f (a)+ f (a+ h)+ ·· · + f (a+
(n−1)h)= g(a+nh)−g(a). When the sum was indefinite, Nicole wrote that the sum
of the f (x) was g(x). For example, the sum of the terms (x + 2)(x + 4)(x + 6) was
x(x+ 2)(x+ 4)(x+ 6)/8 because

(x+ 2)(x+ 4)(x+ 6)(x+ 8)

8
− x(x+ 2)(x+ 4)(x+ 6)

8
= (x+ 2)(x+ 4)(x+ 6).

Similarly, he wrote that the integral (sum) of 1/[x(x+2)(x+4)(x+6)]was 1/[6x(x+
2)(x+ 4)]. As an application of the first type of sum, Nicole considered the series

1 · 4 · 7 · 10+ 4 · 7 · 10 · 13+ 7 · 10 · 13 · 16+ 10 · 13 · 16 · 19+ etc.
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He gave the general term as (x+3)(x+6)(x+9)(x+12) and its integral asx(x+3)(x+
6)(x + 9)(x + 12)/15. Now to find the constant of integration, note that the starting
value was x =−2 and the corresponding value of the integral was (−2) ·1 ·4 ·7 ·10/15.
Thus, Nicole got the value of the series as x(x + 3)(x + 6)(x + 9)(x + 12)/15 + (2 ·
1 · 4 · 7 · 10)/15. Similarly, he computed

1

1 · 3 · 5 · 7 + 1

3 · 5 · 7 · 9 + 1

5 · 7 · 9 · 11
+ 1

7 · 9 · 11 · 13

+·· ·+ 1

x(x+ 2)(x+ 4)(x+ 6)
etc.

by observing that

1

x(x+ 2)(x+ 4)(x+ 6)
+ 1

(x+ 2)(x+ 4)(x+ 6)(x+ 8)
+ etc.

= 1

6(x+ 2)(x+ 4)(x+ 6)
.

Since the original sum started at x = 1, Nicole gave its value as 1/(6 ·1 ·3 ·5)= 1/90.
As another example, Nicole then considered a slightly more difficult sum:

4

1 · 4 · 7 · 10 · 13 · 16
+ 49

4 · 7 · · ·19
+ 225

7 · · ·22
+ etc.

Note that the general term was 1
36

(x+2)2(x+3)2

x(x+3)···(x+15) , where x was replaced by x = 3 as one
moved from one term to the next. Nicole wrote the numerator as

1

36
(A+Bx+Cx(x+ 3)+Dx(x+ 3)(x+ 6)+Ex(x+ 3)(x+ 6)(x+ 9))

and found the coefficients A to E by taking x = 0,−3,−6, and −9. Nicole then
expressed the general term as

1

36

(
A

x(x+ 3) · · ·(x+ 15)
+·· ·+ E

(x+ 12)(x+ 15)

)
and wrote the integral as

1

36

(
A

15x(x+ 3) · · ·(x+ 12)
+·· ·+ E

3(x+ 12)

)
. (11.44)

He found the sum by taking x = 1 in the sum, or integral, as he called it.

11.7 Stirling Numbers

In the introduction to his Methodus Differentialis, Stirling explained that the series sat-
isfying difference equations were best expressed by using terms of the factorial form
x(x−1) · · ·(x−m+1) or 1/x(x+1) · · ·(x+m−1) instead of xm or 1/xm. He defined
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the Stirling numbers in order to facilitate the conversion of series expressed in powers
of x into series with terms in factorial form. He gave a table for the Stirling numbers
of the first kind.

1
1 1
2 3 1
6 11 6 1
24 50 35 10 1
120 274 225 85 15 1
720 1764 1624 735 175 21 1
5040 13068 13132 6769 1960 322 28 1
40320 109584 118124 67284 22449 4536 546 36 1

Stirling described how to construct the table: “Multiply the terms of this progression
n, 1+n, 2+n, 3+n, etc. repeatedly by themselves, and let the results be arranged in the
following table in order of the powers of the number n, only the coefficients having been
retained.” Thus, to get the fourth row taken(n+1)(n+2)(n+3)= 6n+11n2+6n3+n4

and the coefficients will be the numbers 6, 11, 6, 1 in the fourth row.
Stirling applied these numbers to the expansion of 1/zn+1, n = 1,2,3, . . . as an

inverse factorial series. The numbers in the first column then appeared as numerators
in the expansion of 1/z2; the numbers in the second column appeared in that of 1/z3,
and so on. He wrote down three expansions explicitly:

1

z2
= 1

z(z+ 1)

(
1+ 1

z+ 2
+ 2

(z+ 2)(z+ 3)
+ 6

(z+ 2)(z+ 3)(z+ 4)
+·· ·

)
1

z3
= 1

z(z+ 1)(z+ 2)

(
1+ 3

z+ 3
+ 11

(z+ 3)(z+ 4)
+·· ·

)
1

z4
= 1

z(z+ 1)(z+ 2)(z+ 3)

×
(

1+ 6

z+ 4
+ 35

(z+ 4)(z+ 5)
+ 225

(z+ 4)(z+ 5)(z+ 6)
+&c.

)
.

Since the inverse factorial series could be summed by the Montmort-Nicole method
mentioned earlier, Stirling could apply the preceding formulas to the approximate
evaluation of the series

∑∞
k=1 1/kn. Observe that for n= 2,

∞∑
k=z

1

k2
=

∞∑
k=z

1

k(k+ 1)
+

∞∑
k=z

1

k(k+ 1)(k+ 2)
+

∞∑
k=z

2

k(k+ 1)(k+ 2)(k+ 3)
+·· ·

= 1

z
+ 1

2z(z+ 1)
+ 2

3z(z+ 1)(z+ 2)
+·· · .

Stirling took z=13 and then took thirteen terms of the last series to get 0.079957427, and
when he added this quantity to

∑12
k=1 1/k2, a sum approximately equal to 1.564976638,

he had the approximate value 1.644934065 for the series 1+ 1
4 + 1

9 + 1
16+ etc. Euler
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showed that this series was equivalent to π2/6, implying that Stirling’s value was
correct to eight decimal places.

As defined today, the Stirling numbers of the first kind S(m,k) are given by

x(x− 1)(x− 2) · · ·(x−m+ 1)=
m∑
k=1

S(m,k)xk, (11.45)

so we can see that Stirling took his numbers as absolute values |S(m,k)|. Stirling’s
series expansion can then be expressed in modern notation as

1

zn+1
=

∞∑
m=n

|S(m,n)|
z(z+ 1) · · ·(z+m). (11.46)

Stirling defined numbers of the second kind s(m,k) by the equation

xm =
m∑
k=1

s(m,k)x(x− 1) · · ·(x− k+ 1). (11.47)

The introduction to his book also contains a table of these numbers, as shown here.

1 1 1 1 1 1 1 1 1
1 3 7 15 31 63 127 255

1 6 25 90 301 966 3025
1 10 65 350 1701 7770

1 15 140 1050 6951
1 21 266 2646

1 28 462
1 36

1

Using his table, Stirling wrote down the expansion for z,z2,z3,z4 and z5. For example,
the fourth column gave him the expansion for z4:

z4 = z+ 7z(z− 1)+ 6z(z− 1)(z− 2)+ z(z− 1)(z− 2)(z− 3).

It is clearly not easy to determine the Stirling numbers of the second kind from his
definition. Stirling therefore provided a generating function to find these numbers:

1

(x− 1)(x− 2) · · ·(x−m) =
∞∑
n=m

s(m,n)

xn
. (11.48)

The significance of the Stirling numbers was not fully realized until the twentieth century
when they became very useful in combinatorics. In his 1939 book on the calculus of
finite differences, the Hungarian mathematician Charles Jordan (1871–1959) wrote,
“Since Stirling’s numbers are as important as Bernoulli’s, or even more so, they should
occupy a central position in the Calculus of Finite Differences. The demonstration of a
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great number of formulae is considerably shortened by using these numbers, and many
new formulae are obtained by their aid; for instance, those which express differences
by derivatives or vice versa.”

11.8 Lagrange’s Proof of Wilson’s Theorem

Lagrange was the first mathematician to investigate the arithmetical properties of Stir-
ling numbers and he did so in the process of proving Wilson’s theorem. This proposition,
also found by al-Haytham in the tenth or eleventh century, named after Edward War-
ing’s best friend John Wilson (1741–1793), states that for n> 1 , (n−1)!+1 is divisible
by n if and only if n is prime. The statement of Wilson’s theorem was first published
in Waring’s Meditationes Algebraicae of 1770. Waring was certain of the truth of the
theorem but was unable to prove it. Lagrange provided a proof, using Stirling numbers,
in 1771. For this purpose, he considered the product

(x+ 1)(x+ 2)(x+ 3)(x+ 4) · · ·(x+n− 1)

= xn−1 +A′xn−2 +A′′xn−3 +A′′′xn−4 +·· ·+A(n−1).

We can see that the coefficients A′, A′′, A′′′, . . .A(n−1) are in fact absolute values of
Stirling numbers of the first kind, though Lagrange did not mention Stirling. Lagrange
replaced x by x+ 1 to get

(x+ 2)(x+ 3)(x+ 4)(x+ 5) · · ·(x+n)
= (x+ 1)n−1 +A′(x+ 1)n−2 +A′′(x+ 1)n−3 +A′′′(x+ 1)n−4 +·· ·+A(n−1).

It was then easy to see that

(x+n)(xn−1 +A′xn−2 +A′′xn−3 +A′′′xn−4 +·· ·+A(n−1))

= (x+ 1)n+A′(x+ 1)n−1 +A′′(x+ 1)n−2 +A′′′(x+ 1)n−3 +·· ·+A(n−1)(x+ 1).

Expanding both sides of this equation in powers of x Lagrange obtained

xn+ (n+A′)xn−1 + (nA′ +A′′)xn−2 + (nA′′ +A′′′)xn−3 +·· ·

= xn+ (n+A′)xn−1 +
(
n(n− 1)

2
+ (n− 1)A′ +A′′

)
xn−2

+
(
n(n− 1)(n− 2)

2 · 3 + (n− 1)(n− 2)

2
A′ + (n− 2)A′′ +A′′′

)
xn−3 +·· · .
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He next equated the coefficients on both sides to get recurrence relations for the Stirling
numbers of the first kind:

n+A′ = n+A′,

nA′ +A′′ = n(n− 1)

2
+ (n− 1)A′ +A′′,

nA′′ +A′′′ = n(n− 1)(n− 2)

2 · 3 + (n− 1)(n− 2)

2
A

′ + (n− 2)A′′ +A′′′, · · · ,
or

A′ = n(n− 1)

2
,

2A′′ = n(n− 1)(n− 2)

2 · 3 + (n− 1)(n− 2)

2
A′,

3A′′′ = n(n− 1)(n− 2)(n− 3)

2 · 3 · 4 + (n− 1)(n− 2)(n− 3)

2 · 3 A′

+ (n− 2)(n− 3)

2
A′′, · · ·

(n− 1)A(n−1) = 1+A′ +A′′ + · · ·+A(n−2).

Lagrange noted that if n were an odd prime p, then the first equation (in the second set
of equations) showed thatA′ was divisible by p; the third equation showedA′′ divisible
byp, and so on. The last but one equation implied thatp dividedA(n−2). Next, observing
that A(n−1) = (n− 1)! = (p− 1)!, Lagrange perceived that the last equation implied
Wilson’s theorem that A(n−1)+ 1 = (p− 1)!+ 1 was divisible by p. As an application
of this theorem, Lagrange determined the quadratic character of −1 modulo a prime p.
That is, he deduced that if p were a prime of the form 4n+1, then there had to exist an
integer x such that x2 + 1 was divisible by p. Note that Euler had given a remarkable
proof of this result using repeated differences of the sequence 1n, 2n, 3n, 4n, . . ..

11.9 Taylor’s Summation by Parts

The method of summation by parts is usually attributed to Abel who used it in a
rigorous discussion of convergence of series. However, a century earlier, in the 1717
Philosophical Transactions, Taylor explicitly worked out this idea as an analog of
integration by parts. Moreover, one can see in the work of Newton, Leibniz, and others
that they were implicitly aware of this method.

Taylor’s result is actually an indefinite summation formula in which the constants
of summation are not explicitly written. Because Taylor’s presentation is obscure, we
present the 1819 derivation below from Lacroix in which

∑
and,were taken as inverse

operations. In Lacroix’s notation, P andQ were functions of an integer variable x and
P1 = P +,P, P2 = P1 +,P1, etc. In this notation, Taylor’s formula took the form∑

PQ=Q
∑

P −
∑
(,Q

∑
P1). (11.49)
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To prove this following Lacroix, first suppose that∑
PQ=Q

∑
P + z.

Apply the difference operator , to both sides to get

,(
∑

PQ)=,(Q
∑

P + z),

or PQ= (Q+,Q)
∑
(P +,P)−Q

∑
P +,z

=Q
∑

,P +,Q
∑
(P +,P)+,z

=QP +,Q
∑
(P +,P)+,z.

Hence,

,z=−,Q
∑
(P +,P) or z=−

∑
(,Q

∑
(P +,P))=−

∑
(,Q

∑
P1),

and Lacroix’s proof of Taylor’s formula (11.49) was complete. In his book, Lacroix
attributed the result to Taylor.

Just as one can perform repeated integration by parts, one may also do repeated sum-
mation by parts if necessary. Thus, Lacroix gave this formula for repeated summation
by parts:∑

PQ=Q
∑

P −,
∑2

P1 +,2Q
∑3

P2 −,3Q
∑4

P3 + etc. (11.50)

where
∑2
,
∑3
, . . . denoted double, triple, . . . summation. To derive this formula, he

replaced Q by ,Q and P by
∑
P1 in (11.49). He then had∑

(,Q
∑

P1)=,Q
∑2

P1 −
∑
(,2Q

∑2
P2).

Combining this with (11.49), he obtained∑
PQ=Q

∑
P −,Q

∑2
P1 +

∑
(,2Q

∑2
P2).

A continuation of this process would yield formula (11.50).

11.10 Exercises

1. Show that for a finite sequence of positive decreasing numbers a0,a1, . . . ,an

a0 =
n−1∑
i=0

(ai − ai+1)+ an.

The sequence can be infinite; in that case “the last number” of the sequence
an should be replaced by the limit of the sequence. Then deduce the sum of
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the convergent infinite geometric series. For a reference to this 1644 result of
Torricelli, see Weil (1989b).

2. Use the inequality
1

a− 1
+ 1

a
+ 1

a+ 1
>

3

a

to prove that 1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+·· ·

diverges. Apply Torricelli’s formula in the previous problem to sum

1

3
+ 1

6
+ 1

10
+ 1

15
+·· · .

See Weil (1989b) for the reference to these 1650 results of Mengoli.
3. Show that

1

3
+ 1

15
+ 1

35
+ 1

63
+ 1

99
+·· · = 1

2
.

Leibniz also mentioned this result in his Historia et Origo of 1714, written in con-
nection with the calculus controversy, where he explained that in a 1682 article
in the Acta Eruditorum, he had extended the inverse relationship between differ-
ences and sums to differentials and integrals. See Leibniz (1971), vol. 5, p. 122.

4. Find the sums of the reciprocals of the figurate numbers. For example, the sum
of the reciprocals of the pyramidal numbers is given as

1

1
+ 1

4
+ 1

10
+ 1

20
+ 1

35
+·· · = 3

2
.

See Jakob Bernoulli (1993–99), vol. 4, p. 66.
5. Show that if

x = 1

1m
+ 1

2m
+ 1

3m
+ 1

4m
+·· · and y = 1

am
+ 1

3m
+ 1

5m
+·· · ,

then x− y = x

2m
.

See Jakob Bernoulli (1993–99), vol. 4, p. 74.
6. Let m, n, and p be integers and x = a+mn. Show that

m∑
k=0

(a+ kn)(a+ (k+ 1)n) · · ·(a+ (k+p− 1)n)

= x(x+n) · · ·(x+pn)− (a−n)a(a+n) · · ·(a+ (p− 1)n)

(p+ 1)n
.

Deduce the values of the sums

1+ 2+ 3+ 4+·· ·+ x,
1+ 3+ 6+ 10+·· · to x terms,

1 · 3 · 5+ 3 · 5 · 7+ 5 · 7 · 9+·· · to x terms.
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This is the first result in Montmort’s (1717) paper “De Seriebus Infinitis Tracta-
tus.” He noted that this result was a generalization of a sum in Taylor’s Methodus
Incrementorum.

7. Sum the series
5

3 · 5 · 7 · 9 · 11 · 13
+ 41

5 · 7 · 9 · 11 · 13 · 15

+ 131

7 · 9 · 11 · 13 · 15 · 17
+ 275

9 · · ·19
+ 473

11 · · ·21
+·· · .

Montmort (1717) computed the sum to be 283
80·3·5·7·9·11 .

8. Prove Taylor’s summation formula (11.12) by an application of the Harriot–
Briggs, usually known as the Gregory–Newton, formula.

9. Find the values of A, B, . . . , E to obtain the sum of Nicole’s series (11.44).
10. Prove Stirling’s formula (11.46). Note that Stirling stated this without proof in

the introduction to his Methodus Differentialis.
11. Prove Stirling’s generating function formula (11.48) for Stirling numbers of the

second kind.
12. Derive Gregory’s formula (11.1) from the Newton-Gauss interpolation.
13. Use Wilson’s theorem to prove that ifp= 4n+1 is a prime, there exists an integer

x such that p divides x2 + 1. See Lagrange (1867–1892) vol. 3, pp. 425–438.
14. Prove Wilson’s theorem by using Stirling numbers of the first kind and Fermat’s

little theorem that zp−1 ≡ 1 (mod p) when p is prime and a is an integer not
divisible by p:

(a) Let

(x− 1)(x− 2) · · ·(x−p+ 1)= xp−1 +A1x
p−2 +Axxp−3 +·· ·+Ap−1,

and A0 = 1 + Ap−1. Observe that xp−1 + Ap−1 ≡ A0 (mod p) for x =
1,2, . . . ,p− 1. Prove that

A0 + kp−2A1 + kp−3A2 +·· ·+ kAp−2 ≡ 0(mod p)

for k = 1,2, . . . ,p− 1.
(b) Show that the determinant of the system of p − 1 equations in

A0,A1, . . . ,Ap−2 has a nonzero determinant modulo p.
(c) Deduce that A0 ≡ 0, A1 ≡ 0, . . . ,Ap−2 ≡ 0 (mod p). Sylvester published

this result in 1854. See Sylvester (1973), vol. 2, p. 10.

15. Show that if a prime p = 4n+ 1, the 2nth difference of the sequence

12n,22n, . . . , (p− 1)4n

is not divisible byp. Deduce that a2n−1 is not divisible byp for all 1≤ a≤p−1.
For this result of Euler, see his correspondence in Fuss (1968), p. 494. See also
Weil (1984), p. 65, and Edwards (1977), p. 47.
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11.11 Notes on the Literature

Gregory’s November 23, 1670 letter contains several mathematical discoveries, and we
have mentioned some in earlier chapters. The letter can be found in Turnbull (1939).
Turnbull (1933) shows how, from the Newton–Bessel formula, Gregory could have
derived some of his series. Newton’s “De Computo” and “Matheseos” were first pub-
lished in vol. 4 of Newton (1967–1981). This volume covers the period 1674–1684
of Newton’s mathematical researches, including his work on finite differences and
their applications to infinite series. The quotation containing equation (11.5) is from
pp. 611–613 of this volume; the other quotation is on pp. 605–607; they are translations
by Whiteside from Newton’s original in Latin. Also note Whiteside’s footnotes on these
pages.

Montmort (1717) contains all his results mentioned in this chapter, including his
version of the transformation formula. For Zhu Shijie’s use of (11.23), see Hoe (2007),
p. 401. Nicole (1717) has the examples we discuss; see Tweedie (1917–1918) for an
evaluation of Nicole’s researches in the calculus of finite differences. Tweddle (2003),
an annotated English translation of Stirling’s original Methodus Differentialis, gives an
extensive discussion of propositions 7 and 8 of Stirling, including a numerical analysis
of Stirling’s examples. See the same work for the Stirling numbers. Whittaker may
have been the first to notice the connection of proposition 7 with the transformation of
hypergeometric series. See p. 286 of Whittaker and Watson (1927).

Euler’s 1755 book on differential calculus has been reprinted in Eu. I-10. For J. D.
Blanton’s English translation of the first part of this book, including results on finite
differences, see Euler (2000). Taylor’s summation by parts is taken from pp. 91–92 of
Lacroix (1819), and Taylor’s formula (11.12) is mentioned in Bateman (1907). Finally,
Lagrange’s proof of Wilson’s theorem is in Lagrange (1867–1892), vol. 3, pp. 425–438.
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The Taylor Series

12.1 Preliminary Remarks

In 1715, Brook Taylor (1685–1731) published one of the most basic results in the
theory of infinite series, now known as Taylor’s formula. Taylor published his formula
fifty years after Newton’s seminal work on series and twenty-five years after Newton
discovered, but did not publish, this same formula. In modern notation, Taylor’s formula
takes the form

f (x)= f (a)+ (x− a)f
′(a)
1! + (x− a)2 f

′′(a)
2! + · · · . (12.1)

Taylor communicated this result to John Machin in a letter of July 26, 1712. We note
here that in 1706, Machin calculated π to 100 digits by employing the formula

π

4
= 4arctan

1

5
− arctan

1

239
.

In his letter to Machin, Taylor wrote

I fell into a general method of applying Dr. Halley’s Extraction of roots to all Problems, wherein
the Abscissa is required, the Area being given which, for the service that it may be of calculations,
(the only true use of all corrections) I cannot conceal. And it is comprehended in this Theorem.
. . . If α be any compound of the powers of z and given quantities whether by a finite or infinite
expression rational or surd. And β be the like compound of p and the same coefficients, and
z= p+ x, and ṗ = 1 = ż. Then will

α−β = β̇

1
x+ β̈

1 · 2x
2 +

˙̈β
1 · 2 · 3x

3 +
¨̈β

1 · 2 · 3 · 4x
4 &c.

= α̇

1
x− α̈

1 · 2x
2 + ˙̈α

1 · 2 · 3x
3 − ¨̈α

1 · 2 · 3 · 4x
4 &c.

Where α̇, α̈, ˙̈α &c. are formed in the same manner of z and the given quantities, as β̇, β̈, &c. are
formed of p. &c. So that having given α, β, and one of the abscissae z or p, the other may be found
by extracting x, their difference, out of this aequation. Or you may apply this to the invention of
α or β, having given z, p and x. But you will easily see the uses of this.

200
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Newton discovered and extensively used infinite series in the period 1664–1670,
but during that time it does not appear that he observed the connection between the
derivatives of a function and the coefficients of its series expansion. This connection is
the essence of the Taylor series, and it can be applied to obtain power series expansions
of many functions. Newton discovered infinite series before he had investigated the
concept of derivatives. Thus, he found expansions for several functions by using his
binomial expansion, term-by-term integration, and reversion of series. He first indi-
cated his awareness of the connection between derivatives and coefficients in his 1687
Principia, wherein he expanded (e2 − 2ao− o2)

1
2 in powers of o and interpreted the

coefficients as geometric quantities directly related to the derivatives of the function.
It is very possible that Newton was aware of the Taylor expansion at this time. In fact,
forty years later, this Principia result inspired James Stirling to consider whether it
could be generalized, leading him to an independent discovery of the Maclaurin series,
published in 1717 in the Philosophical Transactions.

In 1691–92, Newton gave an explicit statement of Taylor’s formula as well as
the particular case now named for Maclaurin. These appear in his De Quadratura
Curvarum, composed in the winter of 1691–92 and never fully completed; in 1704
parts of this text were published under the title Tractatus de Quadratura Curvarum.
Unfortunately, the published portions omitted the Taylor and Maclaurin theorems. As
we shall see, Gregory used this result in 1670 to construct series for numerous func-
tions, but Newton was the first to give its clear, though unpublished, statement. In his
De Quadratura, finally published in 1976 by Whiteside, Newton discussed the problem
of solving algebraic differential equations by means of infinite series. In this context,
he stated the Taylor and Maclaurin expansions and then wrote the word “Example” and
left a blank space. Apparently, he intended to give a solution of an algebraic differen-
tial equation but could not hit upon a satisfactory example. According to Whiteside,
Newton’s worksheets from this period show that he made several attempts to solve the
equation

√
1+ ẏ2 × ÿ = n ˙̈y without complete success. This may explain why he did

not include these results in the published work, although his corollaries three and four
contain Newton’s own formulation of the Taylor and Maclaurin series:

Corollary 3. Hence, indeed, if the series proves to be of this form

y = az+ bz2 + cz3 + dz4 + ez5 + etc.

(where any of the terms a, b, c, d etc. can either be lacking or be negative), the fluxions of y,

when z vanishes, are had by setting ẏ/ż = a, ÿ/ż2 = 2b, ˙̈y/ż3 = 6c, ¨̈y/ż4 = 24d, ˙̈̈y/ż5 = 120e.
Corollary 4. And hence if in the equation to be resolved there be written w+ x for z, as in Case
3, and by resolving the equation there should result the series [y =]ex+ f x2 + gx3 +hx4+ etc.
the fluxions of y for any assumed magnitude of z whatever will be obtained in finite equations by
setting x = 0 and so z=w. For the equations of this sort gathered by the previous Corollary will
be ẏ/ż= e, ÿ/ż2 = 2f , ˙̈y/ż3 = 6g, ¨̈y/ż4 = 24h etc.

Even before Newton, the Scottish mathematician James Gregory discovered and
used Maclaurin’s series to obtain power series expansions of some fairly compli-
cated functions. In a letter to John Collins dated February 15, 1671, Gregory gave
the series expansions for arctanx, tanx, secx, ln secx, ln tan(π4 + x

2 ), arcsec(
√

2ex),



202 The Taylor Series

2arctan(tanh(x/2)). Of the seven series, the first two are inverses of each other, as are
the fifth and the seventh; the fourth and sixth are inverses of each other, except for a
constant factor. It does not seem that Gregory applied reversion of series, a technique
used by Newton, to obtain the inverses. On the back of a letter from Shaw, Gregory
noted the first few derivatives of some of the seven functions. From this, we can see that
Gregory derived the series for the second, third, sixth, and seventh functions by taking
the derivatives; the series for the fourth and fifth using term-by-term integration of the
series for the second and third functions; and the series for arctanx by integration of the
series for 1/(1+ x2). As we shall see below, a key mistake in Gregory’s calculations
gives us evidence that he used the derivatives of a function to find its series.

Gregory knew that Newton had made remarkable advances in the theory of series,
though he had seen only one example of Newton’s work. He concluded that Newton
must have known Taylor’s expansion, since that could be used to find the power series
expansion of any known function. Before giving his seven series expansions to Collins,
Gregory wrote, “As for Mr. Newton’s universal method, I imagine I have some knowl-
edge of it, both as to geometrik and mechanick curves, however I thank you for the
series [of Newton] ye sent me, and send you these following in requital.”

In 1694, Johann Bernoulli published a result in the Acta Eruditorum equivalent to
Taylor’s formula, though it did not as easily produce the series expansion:∫

ndz= nz− z2

1 · 2
dn

dz
+ z3

1 · 2 · 3
d dn

dz2
− z4

1 · 2 · 3 · 4
d3n

dz3
+ etc. (12.2)

He used this to solve first-order differential equations by infinite series and also applied
it to find the series for sinx and ln(a+x) and to solve de Beaune’s problem concerning
the curve whose subtangent remained a constant. Unfortunately, Bernoulli could not
use this formula to derive the series for sinx; he obtained only a ratio of two series
for y/

√
a2 − y2 where y = a sinx. He commented that, though this method had this

drawback, it was commendable for its universality. Bernoulli communicated his series
to Leibniz in a letter of September 2, 1694, before the paper was printed. In reply,
Leibniz observed that he had obtained similar results almost two decades earlier by
using the method of differences of varying orders. He gave a detailed exposition of
how that method would produce Bernoulli’s series. We note that in 1704, Abraham
de Moivre published an alternative proof of Bernoulli’s series and four years later he
communicated this to Bernoulli.

It seems very likely that Gregory derived the Taylor expansion from the Gregory–
Newton, or rather, the Harriot-Briggs, interpolation formula:

f (x)= f (a)+ (x− a)
h

,f (a)+ (x− a)(x− a−h)
2!h2

,2f (a)+·· · ,

where ,f (a)= f (a+ h)− f (a), ,2f (a)= f (a+ 2h)− 2f (a+ h)+ f (a), . . . . As
h→ 0, the number of interpolating points tends to infinity, and ,f (a)/h→ f ′(a),
,2f (a)/h2 → f ′′(a), . . . . The resulting series is Taylor’s expansion. This proof is
not rigorous, but the same argument was given by de Moivre in his letter to Bernoulli
and then again by Taylor in his Methodus Incrementorum Directa et Inversa of 1715.
Leibniz too started with a formula involving finite differences to derive Bernoulli’s
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series. On the other hand, the unpublished argument of Newton, also independently
found by Stirling and Maclaurin, assumed that the function had a series expansion and
then, by repeated differentiation of the equation, showed that the coefficients of the
series were the derivatives of the function computed at specific values. This is called
the method of undetermined coefficients.

We can see that there were three different methods by which the early researchers
on the Taylor series discovered the expansion: (a) the method of taking the limit of
an appropriate finite difference formula, by Gregory, Leibniz, de Moivre, and Taylor,
(b) the method of undetermined coefficients, by Newton, Stirling, and Maclaurin, and
(c) repeated integration by parts, or, equivalently, repeated use of the product rule, by
Johann Bernoulli.

Infinite series, including power series, were used extensively in the eighteenth
century for numerical calculations. On the basis of considerable experience, mathe-
maticians usually had a good idea of the accuracy of their results even though they did
not perform error analyses. It was only in the second half of the eighteenth century that
a few mathematicians started considering an explicit error term. In the specific case of
a binomial series, Jean d’Alembert (1717–1783) obtained bounds for the remainder of
the series after the first n terms. In 1754, he also found a more general but not very
useful method by which he expressed the remainder of a Taylor series using an iterative
process, and when worked out, this would have resulted in an n-fold iterated integral.
Surprisingly, in 1693 Newton proved a result that converted an iterated integral into
a single integral. If d’Alembert had used this, he would have obtained the remainder
given in many textbooks; Lagrange, de Prony, and Laplace discovered this remainder
term using a different method.

In an undated manuscript determined by Whiteside to date from 1693, apparently
written while he was revising De Quadratura, Newton worked out the nth fluent
(integral) of ẏ, the fluxion of y. The formula in modern notation takes the form

1

n!
(
zn

∫ z

0
ẏ dt −nzn−1

∫ z

0
t ẏ dt + n(n− 1)

2
zn−2

∫ z

0
t2ẏ dt −·· ·

)
+ a0

zn

n! + a1
zn−1

(n− 1)! + a2
zn−2

(n− 2)! + · · ·+ an.

The expression without the polynomial part can be simplified by the binomial theorem
so that we have

1

n!
∫ z

0
(z− t)nẏ dt.

If we instead take the nth iterated integral of y, then this expression takes the form

1

(n− 1)!
∫ z

0
(z− t)n−1y dt. (12.3)

Newton’s result is but one step away from Taylor’s formula with the remainder as an
integral. Compare Newton’s result with Cauchy’s work on the equation dny

dxn
= f (x),

given later in this chapter. It is not clear whether Newton was aware that the Taylor
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series followed easily from his result, but he certainly revised his monograph in that
connection. Thus, it is possible that Newton was aware of the relation between his
integral and Taylor series. Interestingly, Newton included an equivalent of this result
in geometric garb, but without proof, in his 1704 Tractatus. In 1727, Benjamin Robins
published a proof in the Philosophical Transactions.

Newton’s formula for the nth iterate of an integral appears to have escaped the
notice of the continental mathematicians of the eighteenth century. Thus, it remained
for Lagrange to discover an expression for the remainder term. This appeared in his
Théorie des fonctions analytiques of 1797. Owing to his algebraic conception of the
calculus, Lagrange avoided the use of integrals in this work. So, to find bounds for
the remainder, he wrote down an expression for its derivative. In a later work of 1801
entitled Leçons sur les calcul des fonctions, he generalized the mean value theorem and
consequently obtained the well-known expression of the remainder as an nth derivative,
now called the Lagrange remainder. He applied this to a discussion of the maximum
or minimum of a function and also to his theory of the degree of contact between two
curves. Without defining area, he also used the remainder to prove that the derivative
of the area was the function itself.

Though the integral form of the remainder followed immediately from his work,
Lagrange never explicitly stated it. In his lectures of 1823, Cauchy wrote that in 1805
Gaspard Riche de Prony (1755–1839) used integration by parts to obtain Taylor’s the-
orem with the integral remainder. De Prony was a noted mathematician of his time
and taught at the École Polytechnique. He is now remembered as a leader in the con-
struction of mathematical tables. To fill the need for the numerous human calculators
required for this process, de Prony gave training in arithmetic to many hairdressers, left
unemployed by the French Revolution. Pierre-Simon Laplace (1749–1827) included a
derivation of Taylor’s theorem with remainder, using integration by parts, in his famous
Théorie analytique des probabilités, published in 1812. The third volume of Lacroix’s
book on calculus, of 1819, referred to Laplace but not to de Prony; Cauchy may have
mentioned de Prony in order to set the record straight.

Lagrange’s derivation of the remainder had significant gaps, though his outline was
essentially correct. He regarded it as well known and therefore did not provide a proof
that functions – by which he meant continuous functions, though he did not define
continuity – had the intermediate value property as well as the maximum value property
on a closed interval. It was not until about 1817 that Bolzano and Cauchy gave a precise
definition of the continuity of a function and proved the intermediate value property.
Bolzano’s definition, similar to our modern definition, was that f (x) was continuous
if the difference f (x+ω)−f (x) could be made smaller than any given quantity, with
ω chosen as small as desired.

Bernard Bolzano studied philosophy and mathematics at Charles University in
Prague from 1796 through 1800.Although he did not particularly enjoy his mathematics
courses, he studied the work of Euler and Lagrange on his own. However, Bolzano was
fully converted to mathematics by the study of Eudoxus in Eulcid’s Elements. Bolzano
served as professor of theology at Prague from 1807 to 1819 but published several
mathematics papers during this period, including his 1817 work on the intermediate
value theorem. He based this theorem on his lemma that if a propertyM were true for
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all x less than u, but not for all x, then, among all values of u for which this was true,
there existed a greatest, U . To prove this lemma, he applied a form of the Bolzano–
Weierstrass theorem; lacking a complete theory of real numbers, he could not prove
this last result. In the 1830s, realizing that there was a need for such a theory, Bolzano
made an unsuccessful attempt to develop it. However, Bolzano’s insight into real anal-
ysis was deep; he was the first mathematician to construct an example of a continuous
nowhere differentiable function. In 1861, Karl Weierstrass finally made use of Cauchy’s
method of repeated division of the interval to prove the existence of a maximum (or
minimum) value. Hilbert commented that the establishment of this last theorem created
an indispensable tool for refined analytical and arithmetical investigations.

In modern calculus books, the remainder term for the Taylor series of a function
f (x) is used to determine the values of x for which the series represents the function.
This approach is due to Cauchy; in his courses at the École Polytechnique in the 1820s,
he used this method to find series for the elementary functions. Cauchy’s use of the
remainder term for this purpose was consistent with his pursuit of rigor; we also note
that in 1822 he discovered and published the fact that all the derivatives at zero of the
function f (x)= e−1/x2

when x �= 0 and f (0)= 0 were equal to zero. Thus, the Taylor
series at x = 0 was identically zero; it therefore represented the function only at x = 0.
This example would have come as a great surprise to Lagrange who believed that all
functions could be represented as series and even attempted to prove it. He built the
whole theory of calculus on this basis. He defined the derivative of f (x), for example,
as the coefficient of h in the series expansion of f (x+h). He was thereby attempting to
eliminate vague concepts such as fluxions, infinitesimals, and limits in order to reduce
all computations to the algebraic analysis of finite quantities. Cauchy, by contrast,
rejected Lagrange’s foundations for analysis but accepted with small changes some of
Lagrange’s proofs.

The proof of Taylor’s theorem based on Rolle’s theorem, now commonly given in
textbooks, seems to have first been given in J. A. Serret’s 1868 text on calculus; he
attributed the result to Pierre Ossian Bonnet (1819–1892). In fact, Rolle proved the
theorem only for polynomials. Serret did not mention Rolle explicitly in the course of
his proof, but did mention him in his algebra book. Michel Rolle (1652–1719) was a
paid member of the Academy of Sciences of Paris. In a small book published in 1692,
Rolle established that the derivative of a polynomial f (x) had a zero between two
successive real zeros of f (x). Since he did not initially accept the validity of calculus,
Rolle worked out an algebraic procedure called the method of cascades, by which one
could obtain the derivative of a polynomial. Euler, Lagrange, and Ruffini made mention
of Rolle’s result, but it did not occupy a central place in calculus at that time because
it was seen as a theorem about polynomials. Once it was extended to all differentiable
functions, its significance was greatly increased.

The modern conditions for the validity of Rolle’s theorem were given in sub-
stance by Bonnet, but they were more carefully and exactly stated by the Italian
mathematician, Ulisse Dini (1845–1918) in his lectures at the University of Pisa in
1871–1872. After this, mathematicians began investigating the consequences of relax-
ing the conditions. In the exercises, we state a 1909 result of W. H. Young and Grace
C. Young, using left-hand and right-hand derivatives. Grace Chisholm (1868–1944)
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studied at Girton College, Cambridge and then went on to receive a doctorate in
mathematics from the University of Göttingen in 1896. Her best work was done in
real variables theory and she was among the very few women mathematicians of her
generation with an international reputation. William Young (1863–1942) studied at
Cambridge and became a mathematical coach there. He coached his future wife for
the Tripos exam and took up mathematical research after their marriage in 1896. He
published over 200 papers and was one of the most profound English mathemati-
cians of the early twentieth century. It appears from a letter W. H. Young wrote to
his wife that several papers published under his name alone were in fact joint efforts.
In recognition of this, a volume of their selected papers was published in 2000 under
both names.

Returning to Bolzano and Cauchy’s proofs of the intermediate value theorem, we
note that they both had gaps. Bolzano assumed the existence of a least upper bound
and Cauchy’s argument produced a sequence of real numbers an, n= 1,2,3, . . . such
that an+1 − an = 1

2 (an − an−1); he assumed that such a sequence must have a limit.
A theory of real numbers was required to shore up these proofs. Although it seems
that by the 1830s, Bolzano had begun to understand the basic problem here, it was
not until the second half of the nineteenth century that mathematicians were able to
construct the necessary framework. Richard Dedekind (1831–1916) was one of the first
to develop it and he described his motivation in his famous paper on the theory of real
numbers:

As professor in the Polytechnique School in Zurich I found myself for the first time obliged to
lecture upon the elements of the differential calculus and felt more keenly than ever before the
lack of a really scientific foundation for arithmetic. In discussing the notion of the approach of
a variable magnitude to a fixed limiting value, and especially in proving the theorem that every
magnitude which grows continually, but not beyond all limits, must certainly approach a limiting
value, I had recourse to geometric evidences. Even now such resort to geometric intuition in a
first presentation of the differential calculus, I regard as exceedingly useful, from the didactic
standpoint, and indeed indispensable, if one does not wish to lose too much time. But that this
form of introduction into the differential calculus can make no claim to being scientific, no one will
deny. For myself this feeling of dissatisfaction was so overpowering that I made the fixed resolve
to keep meditating on the question till I should find a purely arithmetic and perfectly rigorous
foundation for the principles of infinitesimal calculus.

Dedekind published his theory in 1872, though he had completed it by November 1858.
Meanwhile, before 1872, the theories of Charles Méray, Eduard Heine, and Cantor,
equivalent to Dedekind’s, were published. Though he had discovered it some years
before, Weierstrass presented his own independently developed theory of real numbers
as part of his lectures in Berlin during the 1860s.

12.2 Gregory’s Discovery of the Taylor Series

In 1671, Gregory gave power series expansions of the seven functions mentioned
earlier. His notation was naturally different from the one we now use. For example, he
described the series for tanx and ln secx:
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If radius = r , arcus = a, tangus = t , secans artificialis = s, then

t = a+ a3

3r2
+ 2a5

15r4
+ 17a7

315r6
+ 3233a9

181440r8
+ etc., (12.4)

s = a2

2r
+ a4

12r3
+ a6

45r5
+ 17a8

2520r7
+ 3233a10

1814400r9
etc.

Gregory’s descriptions of the ln tan(π4 + x

2 ) and arcsec(
√

2ex) functions were slightly
more complicated. In his letter to Collins, he gave no indication of how he obtained
his seven series, but H. W. Turnbull determined that, except for the series for arctanx,
Gregory obtained them by using their derivatives. While examining Gregory’s unpub-
lished notes in the 1930s, Turnbull noticed that Gregory had written the successive
derivatives of some trigonometric and logarithmic functions on the back of a January
29, 1671 letter from Gideon Shaw, an Edinburgh stationer. For example, he gave the first
seven derivatives of r tan θ with respect to θ expressed as polynomials in tan θ = q/r .
He denoted the function and its derivatives by m so that he had

1st m= q,

2nd m= r + q2

r
,

3rd m= 2q+ 2q3

r2
,

4th m= 2r + 8q2

r
+ 6q4

r3
,

5th m= 16q+ 40q3

r2
+ 24q5

r4
,

6th m= 16r + 136q2

r
+ 240q4

r3
+ 120q6

r5
,

7th m= 272q+ 987q3

r2
+ 1680

q5

r4
+ 720

q7

r6
,

8th m= 272r + 3233
q2

r
+ 11361

q4

r3
+ 13440

q6

r5
+ 5040

q8

r7
.

Note that since the derivative of tan θ is sec2 θ = 1+ q2/r2, one can move from one
value ofm to the next by taking the derivative of the initialmwith regard to q and then
multiplying by r + q2/r . This suggests that Gregory used a method equivalent to the
chain rule; indeed, this conclusion is supported by his computational mistake in finding
the seventh m from the sixth:(

272
q

r
+ 960

q3

r3
+ 720

q5

r5

)(
r + q2

r

)
.

The coefficient of q3/r2 is 272 + 960 = 1232, whereas Gregory had 987. Evidently,
he had miscopied 272 from the previous step as 27 to get 27 + 960 = 987. This in
turn produced an error in the coefficient of q2/r in the eighth m; this should be 3968
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instead of Gregory’s 3233. If this computation, with Gregory’s mistake, is continued
to the tenthm, that is, the ninth derivative of r tan θ , then the first term of the derivative
would be 2× 3233 = 6466, as given in his notes.

Note that the Maclaurin series for tan θ is obtained by computing the derivatives at
θ = 0. According to Gregory’s mistaken calculation, the coefficient of θ9 in the series
for tan θ in the letter to Collins would be 6466/9!. This simplifies to 3233/181440,
just as Gregory noted in (12.4). As Turnbull pointed out, the appearance of this key
error in Gregory’s letter fortunately allows us to see that the calculations on the back of
Shaw’s letter were for the purpose of constructing the series. Thus, though no explicit
statement of Maclaurin’s formula has been found in Gregory’s papers, we may conclude
that Gregory was implicitly aware of it, since he made use of it in so many instances.

In 1713, Newton, then president of the Royal Society, insisted that the society publish
relevant portions of Gregory’s letters to Collins in the Commercium Epistolicum to
prove his own absolute priority in the discovery of the calculus. Recall that Gregory’s
letters referred to the series of Newton communicated to him by Collins. But in the
published accounts, Gregory’s computational error was corrected.

Gregory found the series for arcsec(
√

2ex) by taking the derivatives of rθ with
respect to ln secθ . In his notes, he wrote down the first five derivatives employed to
construct the series in the letter to Collins. If we write y = rθ, x = ln secθ, q = r tan θ ,
then we have

dy

dx
= 1

tan θ

dy

dθ
= r2

q
and

dq

dx
= r2

q
+ q.

This implies that the successive derivatives can be found by taking the derivative with
respect to q and multiplying by r2

q
+ q:

d2y

dx2
= d

dq

(
r2

q

)
· dq
dx

=− r
2

q2

(
r2

q
+ q

)
,

d3y

dx3
= r2

q
+ 4r4

q3
+ 3r6

q5
, etc.

Except for the signs of the derivatives, Gregory wrote precisely these expressions in his
notes. He also wrote, without signs, expressions for the next two derivatives (without
signs):

r2

q
+ 13

r4

q3
+ 27

r6

q5
+ 15

r8

q7
,

r2

q
+ 40

r4

q3
+ 174

r6

q5
+ 240

r8

q7
+ 105

r10

q9
.

Gregory then expanded y = r (θ − π

4

)
as a series in x = ln secθ√

2
about x = 0. Now when

x = 0, then θ = π/4 and q = r . Hence, he had the series, given in modern notation:

θ = π

4
+ x− x2 + 4x3

3
− 7x4

3
+ 14x5

3
− 452x6

45
+·· · .

To see how the constants in this series are produced, consider the coefficient of x3

obtained from the third derivative with q = r . From the preceding expression for
d3y/dx3, this value can be given as r + 4r + 3r = 8r , and since this has to be divided
by 3! = 6, we arrive at 4r/3 or simply 4/3 after dividing by r .
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12.3 Newton: An Iterated Integral as a Single Integral

Newton wrote up his evaluation of the nth iterated integral as a single integral sometime
around 1693, but did not publish it. His main idea was to repeatedly use integration by
parts, combined with the fundamental theorem of calculus, to reduce a double integral
to a single integral. We reproduce his derivation, though we change his notation. He
used the letters A, B, C, . . . to denote areas under ẏ, zẏ, z2ẏ, . . . but we shall use these
letters to denote the areas under y, zy, z2y, . . . to obtain the result in standard form.
We also employ the Fourier-Leibniz notation of a definite integral to denote area. Let
y = f (t) be a curve, and let A= ∫ z

0 y dt , B = ∫ z
0 ty dt , C = ∫ z

0 t
2y dt , D = ∫ z

0 t
3y dt ,

. . . . Then for some constant a ∫ z

a

y dt =A+g,

where g is a constant. The second iterated integral of y is∫ z

a

(A+g)dt = zA−
∫ z

a

t
dA

dt
dt +gz+h1

= zA−B+gz+h,
where h is some constant. Integration of this expression gives

1

2
z2A− zB−

∫ z

a

(
1

2
t2
dA

dt
− t dB

dt

)
dt + 1

2
gz2 +hz+ i2

= 1

2
z2A− zB−

∫ z

a

(
1

2

dC

dt
− dC

dt

)
dt + 1

2
gz2 +hz+ i1

= 1

2
z2A− zB+ 1

2
C+ 1

2
gz2 +hz+ i.

This is the third iterated integral of y. The integral of its first three terms is

1

2

(
1

3
z3A− z2B+ zC

)
− 1

2

∫ z

a

(
1

3
t3
dA

dt
− t2 dB

dt
+ t dC

dt

)
dt + constant

= 1

6

(
z3A− 3z2B+ 3zC

)− 1

2

∫ z

a

1

3

dD

dt
dt + constant

= 1

6

(
z3A− 3z2B+ 3zC−D)+ constant.

Hence the fourth iterated integral is

1

6

(
z3A− 3z2B+ 3zC−D)+ 1

6
gz3 + 1

2
hz2 + iz+ k.

Newton worked out another iterate to obtain

1

24

(
z4A− 4z3B+ 6z2C− 4zD+E)+ 1

24
gz4 + 1

6
hz3 + 1

2
iz2 + kz+ l.
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By induction, he wrote the general nth iterate, in our notation, as

1

(n− 1)!
(
zn−1

∫ z

a

y dt − (n− 1)zn−2

∫ z

a

ty dt + (n− 1)(n− 2)

2
zn−3

∫ z

a

t2y dt −·· ·
)

+ 1

(n− 1)!gz
n−1 + 1

(n− 2)!hz
n−2 +·· · . (12.5)

Newton left the integral in this form, although it is clear that he could easily have
applied the binomial theorem to obtain the integral in the form (12.3).

12.4 Bernoulli and Leibniz: A Form of the Taylor Series

Johann Bernoulli’s 1794 result on series was stated in a paper and in a letter to Leibniz as

Integr.ndz=+nz− zzdn

1 · 2 · dz +
z3 ddn

1 · 2 · 3 · dz3
− z4 dddn

1 · 2 · 3 · 4 · dz4
etc. (12.6)

Here Integr.ndz stood for the integral of n, or
∫
ndz. In fact, the term “integral” was

first used by the Bernoulli brothers, Jakob and Johann, who conceived of it as the
antiderivative. In a letter to Johann, Leibniz once wrote that he preferred to think of
the integral as a sum instead of as an antiderivative. Bernoulli’s proof of this result was
very simple:

ndz=+ndz+ zdn− zdn− zzddn

1 · 2 · dz +
zzddn

1 · 2 · dz +
z3 dddn

1 · 2 · 3 · dz2
etc.

He took the terms on the right in pairs to get

ndz= d(nz)− d
(
z2

1 · 2
dn

dz

)
+ d

(
z3

1 · 2 · 3
ddn

dz2

)
−·· · .

The required result followed upon integration. This process amounts to repeated inte-
gration by parts applied to

∫
ndz. Bernoulli applied his formula to three questions: de

Beaune’s problem; determination of the series for ln(a+ x); and the determination of
the series for sinx. He was not completely successful with the third problem and was
only able to find sinx/cosx as a ratio of two series.

In reply to Bernoulli’s 1794 letter containing the preceding result, Leibniz outlined
his own derivation of the formula, instructive as an illustration of Leibniz’s conception
of the analogy between finite and infinitesimal differences, leading to his characteristic
approach to the calculus. We change Leibniz’s notation slightly in the initial part of his
derivation; he himself used neither subscripts nor the difference operator. Supposing
the sequence a0, a1, a2, . . . decreases to zero, Leibniz started with the equation

a0 =−(,a0 +,a1 +,a2 +·· ·) .

Since an = (1+,)na0 = a0 + n

1
,a0 + n(n− 1)

1 · 2 ,2a0 +·· · ,
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Leibniz could rewrite the first equation as

a0 = − (
,a0 +,a0 +,2a0 +,a0 + 2,2a0 +,3a0 +·· ·)

= − (
,a0(1+ 1+ 1+·· ·)+,2a0(1+ 2+ 3+·· ·))

− (
,2a0(1+ 3+ 6+·· ·)+·· ·) .

He then observed that a similar relation continued to hold when the differences were
infinitely small and he replaced a0, −,a0, ,2a0, −,3a0, . . . by y (= y(x)), dy, ddy,
d3y, . . . respectively; moreover, by letting the infinitely small dx become 1, he set
1+1+1+·· · equal to x, 1+2+3+·· · = ∫

x, 1+3+6+10+·· · = ∫ ∫
x, etc. Since∫

x = 1
1·2xx,

∫ ∫
x = 1

1·2·3x
3, . . . , Leibniz obtained

y = 1

1
x
dy

dx
− 1

1 · 2xx
ddy

dx2
+ 1

1 · 2 · 3x
3 d

3y

dx3
− 1

1 · 2 · 3 · 4x
4 d

4y

dx4
etc.

He then noted that Bernoulli’s formula followed upon replacing y, dy, ddy, etc. by
∫
y,

y, dy, etc., respectively.

12.5 Taylor and Euler on the Taylor Series

In Taylor’s book of 1715, he obtained his namesake series from the well-known interpo-
lation formula by letting the distance between the equidistant points on the axis tend to
zero. We shall follow Euler’s exposition of 1736, since Euler used a more convenient and
easily understandable notation. Euler divided the interval from x to x+a intom equal
parts, each equal to dx. He let y be a function of x and then let dy = y(x+dx)−y(x),
ddy = y(x+ 2dx)− 2y(x+ dx)+ y(x), . . . be the first, second, . . . differences at x.
He then had

y(x+ 2dx)= y+ 2dy+ ddy, y(x+ 3dx)= y+ 3dy+ 3ddy+ d3y,

. . . . . .

y(x+ a)= y(x+mdx)= y+mdy+ m(m− 1)

1 · 2 ddy+ m(m− 1)(m− 2)

1 · 2 · 3 d3y+ etc.

Next, he letm be an infinite number and dx infinitely small so thatmdx was finite and
equal to a. Then

y(x+ a)= y+mdy+ m2

1 · 2ddy+
m3

1 · 2 · 3d
3y+ etc.

= y+ a dy
dx

+ a2

1 · 2
ddy

dx2
+ a3

1 · 2 · 3
d3y

dx3
+ etc.

Gregory, de Moivre, and Taylor derived the Taylor series by means of essentially the
same argument.
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Euler then showed how Bernoulli’s series could be derived from Taylor’s formula.
He set y(0)= 0 and a =−x to get

0 = y− x

1

dy

dx
+ x2

1 · 2
ddy

dx2
− x3

1 · 2 · 3
d3y

dx3
+ etc.

This implied y = x

1

dy

dx
− x2

1 · 2
ddy

dx2
+ x3

1 · 2 · 3
d3y

dx3
− etc.

Euler then replaced y by
∫
y dx, as Leibniz did, and obtained Bernoulli’s formula. See

the exercises for the converse.

12.6 Lacroix on d’Alembert’s Derivation of the Remainder

In his 1754 book Recherches sur différents points importants du système du monde,
d’Alembert obtained the n-dimensional iterated integral for the remainder in the
Taylor series. In his 1819 book, Sylvestre Lacroix (1765–1843) presented the essence
of d’Alembert’s proof in notation more familiar to us: Lacroix let u′ = u(x + h)
and u= u(x) and set u′ = u+P . Then

du′

dh
= dP

dh
, and hence P =

∫
du′

dh
dh.

Note that the derivatives of u′ are partial derivatives; for now, we follow Lacroix’s
notation. Thus, he had

u′ = u+
∫
du′

dh
dh. Next, he let

du′

dh
= du

dx
+Q,

so that
d2u′

dh2
= dQ

dh
, or Q=

∫
d2u′

dh2
dh,

du′

dh
= du

dx
+
∫
d2u′

dh2
dh,

∫
du′

dh
dh= du

dx

h

1
+
∫ ∫

d2u′

dh2
dh2,

u′ = u+ du

dx

h

1
+
∫ ∫

d2u′

dh2
dh2.

Setting
d2u′

dh2
= d2u

dx2
+R, he had

d3u′

dh3
= dR

dh
, or R =

∫
d3u′

dh3
dh,

d2u′

dh2
= d2u

dx2
+
∫
d3u′

dh3
dh,

u′ = u+ du

dx

h

1
+ d2u

dx2

h2

1 · 2 +
∫ ∫ ∫

d3u′

dh3
dh3.

Continuing in the same manner, he had in general

u′ = u+ du

dx

h

1
+ d2u

dx2

h2

1 · 2 +·· ·+ dn−1u

dxn−1

hn−1

1 · 2 · · ·(n− 1)
+
∫ n dnu′

dhn
dhn,
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where the n-fold multiple integral
∫ n was zero when h = 0. If Newton’s formula for∫ n had been used here, then the remainder would have emerged in the form

Rn(h)= 1

(n− 1)!
∫ h

0
(h− t)n−1 d

n

dxn
u(x+ t)dt. (12.7)

In his 1823 lectures on calculus, Cauchy showed the equivalence of the two remainders
by proving

dnRn

dhn
= dn

dxn
u(x+ t).

He applied the fundamental theorem of calculus and Leibniz’s formula for the derivative
of an integral to obtain

dRn

dh
= 1

(n− 1)!
∫ h

0

d

dh
(h− t)n−1 d

n

dxn
u(x+ t)dt

= 1

(n− 2)!
∫ h

0
(h− t)n−2 d

n

dxn
u(x+ t)dt.

(12.8)

Cauchy derived the desired result, and in effect a proof of Newton’s formula, by per-
forming this process n times. Lacroix did not provide a proof of (12.7), merely noting
that ∫ n

H dhn = 1

1 · 2 · · ·(n− 1)

(
hn−1

∫
Hdh− n− 1

1
hn−2

∫
Hhdh+ (n− 1)(n− 2)

1 · 2 hn−3

∫
Hh2dh−·· ·

)
.

This result is equivalent to Newton’s formula (12.5) and, as we have noted, Newton
actually stated it in this form. Lacroix could have proved this inductively, using integra-
tion by parts. He did not mention Newton in this context; one may assume that he was
not aware of Newton’s work, since Lacroix was very meticulous in stating his sources.

12.7 Lagrange’s Derivation of the Remainder Term

In his 1797 book, Fonctions analytiques, Joseph-Louis Lagrange (1736–1813) obtained
the remainder term of the Taylor series as a single integral. He started with

f x = f (x− xz)+ xP,
where P = 0 at z = 0. The derivative with respect to z of this equation gave 0 =
−xf ′(x − xz)+ xP ′ or P ′ = f ′(x − xz). For the second-order remainder, Lagrange
wrote

f x = f (x− xz)+ xzf ′(x− xz)+ x2Q

and obtained Q′ = zf ′′(x− xz). Similarly,

f x = f (x− xz)+ xzf ′(x− xz)+ x2z2

2
f ′′(x− xz)+ x3R
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and, after taking the derivative and simplifying, he got R′ = z2

2 f
′′′(x− xz). Lagrange

did not write the general expression for the remainder and gave only the recursive
procedure. This method gives the remainder as an integral, though Lagrange did not
write it in that form, since he avoided the use of integrals in this book. It is easy to
see that

R(z)= 1

2!
∫ z

0
t2f ′′′(x− xt)dt = 1

2!x3

∫ x

x−xz
(x−u)2f ′′′(u)du. (12.9)

Had he stated it explicitly, the general form of Lagrange’s formula would have been

f x = f (x− xz)+ xzf ′(x− xz)+ x2z2

2
f ′′(x− xz)+·· ·

+ xn−1zn−1

(n− 1)! f
(n−1)(x− xz)+ xnRn,

where Rn = 1

(n− 1)!
∫ x

x−xz
(x−u)n−1f (n)(u)du.

If we replace x− xz by a, Lagrange’s formula becomes

f (x)= f (a)+ (x− a)f ′(a)+ (x− a)2
2! f ′′(a)+·· ·

+ (x− a)n−1

(n− 1)! f
(n−1)(a)+ 1

(n− 1)!
∫ x

a

(x− t)n−1f (n)(t)dt .

Thus, here the multiple integral remainder of d’Alembert was replaced by a single
integral. However, Lagrange himself gave only the derivative of the remainder. In his
1799 lectures on the calculus, published in 1801 as Leçons sur le calcul des fonctions,
he presented the remainder as it appears in modern texts, as an nth derivative.

Lagrange proved a lemma for the purpose of determining bounds for Rn: If f ′x is
positive for all values of x between x = a and x = b with b > a, then f b−f a > 0. To
prove this statement, Lagrange set f (x+i)= f x−iP , whereP was a function of x and
i, such that at i=0,P =f ′(x)>0. SoP(x, i)>0 for i sufficiently small, and it followed
that f (x+ i)− f (x) > 0 for small i. Next, he divided the interval [a,b] into n equal
parts, each of length (j = (b−a)/n), with n sufficiently large that in each subinterval
[a+kj,a+ (k+1)j ], k= 0,1, . . . ,n−1, he had f (a+ (k+1)j)−f (a+kj) > 0. By
adding up these inequalities, he got f b−f a > 0.

Lagrange’s lemma was correct but his proof was obviously inadequate. For example,
he assumed that the same j would work in all parts of the interval. But he went on to
use the result to derive a different form of the remainder. He supposed f ′(q) and f ′(p)
to be the maximum and minimum values, respectively, of f ′(x) in an interval. Then
g′(i)= f ′(x+ i)−f ′(p) and h′(i)= f ′(q)−f ′(x+ i) were both positive. Lagrange’s
lemma then gave

g(i)= f (x+ i)−f (x)− if ′(p)≥ 0 , h(i)= if ′(q)−f (x+ i)+f (x)≥ 0.
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These inequalities implied bounds for f (x+ i):

f (x)+ if ′(p)≤ f (x+ i)≤ f (x)+ if ′(q) and thus

f (x+ i)= f (x)+ if ′(x+ iθ), 0< θ < 1.

The last equation followed from the intermediate value theorem, implicitly assumed
by Lagrange; similarly, he assumed that f ′ had a maximum/minimum in an interval.
More generally, Lagrange showed that f (x+ i) lay between

f (x)+ if ′(x)+ i2

2!f
′′(x)+·· ·+ iu

u!f
(u)(p) and

f (x)+ if ′(x)+ i2

2!f
′′(x)+·· ·+ iu

u!f
(u)(q),

wherep andqwere the values at whichf (u) had a minimum and maximum, respectively,
in the given interval. Once again, an application of the intermediate value theorem would
yield Taylor’s formula with the remainder as a derivative:

f (x+ i)= f (x)+ if ′(x)
i2

2!f
′′(x)+·· ·+ iu

u!f
(u)(x+ θi), 0< θ < 1 .

12.8 Laplace’s Derivation of the Remainder Term

After being launched in his career by d’Alembert, Laplace used his tremendous com-
mand of analysis to make groundbreaking contributions in his areas of interest, celestial
mechanics and probability. In his famous 1812 work, Théorie analytique des probabil-
ités, Laplace used repeated integration by parts in a direct way to obtain the remainder
term. He started with the observation that∫

dzφ′(x− z)= φ(x)−φ(x− z) , (12.10)

when the lower limit of integration was z= 0. This result, the fundamental theorem of
calculus, would be written in modern notation:∫ z

0
φ′(x− t)dt = φ(x)−φ(x− z).

Using Laplace’s notation, integration by parts gave∫
dzφ′(x− z)= zφ′(x− z)+

∫
zdzφ′′(x− z),∫

zdzφ′′(x− z)= 1

2
z2φ′′(x− z)+

∫
1

2
z2 dzφ′′′(x− z) etc.
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Hence, in general∫
dzφ′(x− z)= zφ′(x− z)+ z2

1 · 2φ
′′(x− z)+·· ·+ zn

1 · 2 · 3 · · ·nφ
(n)(x− z)

+ 1

1 · 2 · 3 · · ·n
∫
zn dzφ(n+1)(x− z).

(12.11)

Combined with (12.10), this equation provided Taylor’s theorem with remainder.
Laplace then converted this remainder to the Lagrange form. Since

∫
zn dz = zn+1/

(n+1), the integral in (12.11) lies betweenmzn+1/(n+1) andMzn+1/(n+1)wherem
andM are the smallest and largest values of φ(n+1)(x−z) in the interval of integration.
Hence, the value of the integral in (12.11) lies in between these values and is given by

zn+1

n+ 1
φ(n+1)(x−u),

where u is some value between 0 and z. Thus, the remainder term in (12.11) can be
written as

zn+1

1 · 2 · 3 · · ·(n+ 1)
φ(n+1)(x−u).

This completed Laplace’s derivation of the two forms of the remainder in Taylor’s
theorem.

12.9 Cauchy on Taylor’s Formula and l’Hôpital’s Rule

In his lectures published in 1823, Cauchy took an interesting approach to Newton’s
n-fold integral. He started with the differential equation

dny

dxn
= f (x).

Repeated integration of this equation yielded

dn−1y

dxn−1
=

∫ x

x0

f (z)dz+C, d
n−2y

dxn−2
=

∫ x

x0

(x− z)f (z)dz+C(x− x0)+C1,

. . . . . .

y =
∫ x

x0

(x− z)n−1

1 · 2 · · ·(n− 1)
f (z)dz+ C(x− x0)

n−1

1 · 2 · · ·(n− 1)
+·· ·+Cn−2(x− x0)+Cn−1,

whereC,C1, . . . ,Cn−1 were arbitrary constants. Here Cauchy used the result expressed
in equation (12.8) to integrate in each step of the argument. The reader might compare
this with Newton’s formula (12.5). Cauchy then proceeded to obtain Taylor’s theorem
with remainder. He let y = F(x) be a specific solution of y(n) = f (x) to obtain

Cn−1 = F(x0), Cn−2 = F ′(x), . . . , C = F (n−1)(x0),



12.9 Cauchy on Taylor’s Formula and l’Hôpital’s Rule 217

and with these values, he had

F(x)= F(x0)+ F ′(x0)

1! (x− x0)+·· ·+ F (n−1)(x0)

1 · 2 · · ·(n− 1)
(x− x0)

n−1

+
∫ x

x0

(x− z)n−1F (n)(z)

1 · 2 · · ·(n− 1)
dz.

Cauchy gave another proof modeled along the lines of Lagrange’s second proof. He
started with the lemma: Suppose f (x) and F(x) are continuously differentiable in
[x0,x] with f (x0)=F(x0)= 0, and F ′(x0) > 0 in this interval. For x in this interval, if

A≤ f ′(x)
F ′(x)

≤ B, then A≤ f (x)

F (x)
≤ B.

To prove this, Cauchy noted that since F ′(x) > 0, he had

f ′(x)−AF ′(x)≥ 0 and f ′(x)−BF ′(x)≤ 0.

He then applied Lagrange’s lemma to the functions

f (x)−AF(x) and f (x)−BF(x)

to obtain the required result. Cauchy then took x = x0 +h and applied the intermediate
value theorem to derive

f (x0 +h)
F (x0 +h) =

f ′(x0 + θh)
F ′(x0 + θh), where 0< θ < 1.

In the situation where f (x0) andF(x0)were nonzero, he replaced f (x0+h) andF(x0+
h) by f (x0 + h)− f (x0) and F(x0 + h)−F(x0), respectively, to get the generalized
mean value theorem:

f (x0 +h)−f (x0)

F (x0 +h)−F(x0)
= f ′(x0 + θh)
F ′(x0 + θh), where 0< θ < 1. (12.12)

He next supposed f ′(x0)= f ′′(x0)= ·· · = f (n−1)(x0)= 0 = F ′(x0)= F ′′(x0)= ·· · =
F (n−1)(x0) and F (n) �= 0, and that all the derivatives were continuous. By an iteration
of the process used to find the generalized mean value theorem, Cauchy deduced that

f (x0 +h)
F (x0 +h) =

f (n)(x0 + θh)
F (n)(x0 + θh), where 0< θ < 1. (12.13)

He then let h→ 0 to deduce l’Hôpital’s rule

lim
x→ x0

f (x)

F (x)
= lim

x→ x0

f (n)(x)

F (n)(x)
.
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From this result, Cauchy derived Taylor’s formula with Lagrange’s remainder by taking
F(x)= (x− x0)

n and replacing f (x) by

g(x)= f (x)−f (x0)−f ′(x0)(x− x0)−·· ·− f (n−1)(x0)

(n− 1)! (x− x0)
n−1;

this vanished at x0, along with its first n− 1 derivatives. Then by (12.13),

g(x0 +h)= hn

n! g
(n)(x0 + θh), 0< θ < 1.

Since g(n)(x)= f (n)(x), the required result followed.
Cauchy also obtained another form of the remainder by defining a function φ(a) by

the equation

f (x)= f (a)+ x− a
1

f ′(a)+ (x− a)2
1 · 2 f ′′(a)+·· ·+ (x− a)n−1

1 · 2 · · ·(n− 1)
f (n−1)(a)+φ(a).

In (12.12), taking F(x)= x,x0 = a,h= x− a, and f = φ, he had

φ(a)= φ(x)+ (a− x)φ′(a+ θ(x− a)), 0< θ < 1.

Since φ(x)= 0 and φ′(a)=− (x− a)n−1

1 · 2 · · ·(n− 1)
f (n)(a),

he concluded

φ(a)= (1− θ)n−1(x− a)n
1 · 2 · · ·(n− 1)

f (n)(a+ θ(x− a)). (12.14)

This remainder, called Cauchy’s remainder, can also be obtained from the integral form
of the remainder.

12.10 Cauchy: The Intermediate Value Theorem

Recall that the intermediate value theorem was regarded as intuitively or geometrically
obvious by eighteenth-century mathematicians. For example, Lagrange and Laplace
assumed it in their derivation of the remainder. Bolzano and Cauchy saw the need for
a proof and each provided one. Cauchy stated and proved the theorem in his lectures,
published in 1821: Suppose f (x) is a real function of x, continuous between x0 and
X. If f (x0) and f (X) have opposite signs, then the equation f (x) = 0 is satisfied
by at least one value between x0 and X. In his proof, Cauchy first divided [x0,X]
of length h = X − x0 into m parts to consider the sequence f (x0), f (x0 + h/m),
f (x0 +2h/m), . . . , f (X−h/m), f (X). Since f (x0) and f (X) had opposite signs, he
had two consecutive terms, say, f (x1) and f (X′) with opposite signs. Clearly

x0 ≤ x1 ≤X′ ≤X and X′ − x1 = h/m= (X− x0)/m.

We remark that Cauchy’s notation was slightly different in that he used < for ≤. He
repeated the preceding process for the interval [x1,X

′] to get x1 ≤ x2 ≤X′′ ≤X′ with
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X′′ −x2 = (X−x0)/m
2. Continuation of this procedure produced two sequences, x0 ≤

x1 ≤ x2 ≤ ·· · andX≥X′ ≥X′′ ≥ · · · , such that the differences between corresponding
members of the two sequences became arbitrarily small. Thus, he had the two sequences
converging to a common limit a. Now since f was continuous between x = x0 and
x = X, the two sequences f (x0), f (x1), f (x2), . . . and f (X), f (X′), f (X′′), . . .
converged to f (a). Since the signs of the numbers in the first sequence were opposite
to the signs of the numbers in the second sequence, it followed by continuity that
f (a) = 0. Since x0 ≤ a ≤ X, Cauchy had the required result. Observe that Cauchy
assumed that a sequence, now called a Cauchy sequence, must converge; this was later
proved by Dedekind. Bolzano’s slightly earlier proof of the intermediate value theorem
had a similar deficiency, as he himself recognized in the 1830s.

12.11 Exercises

1. Following Johann Bernoulli, consider the differential equation dy =
√
a2−y2

a
dx

for y = sinx, and take n =
√
a2−y2

a
, dz = dx in Bernoulli’s formula (12.6) to

obtain

y√
a2 − y2

= x− x3

2·3a2 + x5

2·3·4·5a4 −·· ·
a− x2

2a + x4

2·3·4a3 −·· · .

Next consider the equation dy = a dx/(a+ x) and apply Bernoulli’s method to
obtain his series for a ln( a+x

a
):

y = ax

a+ x + ax2

2(a+ x)2 +
ax3

3(a+ x)3 +
ax4

4(a+ x)4 +·· · .

See Joh. Bernoulli (1968), vol. I, pp. 127–128. This paper was published in the
Acta Eruditorum in 1694.

2. Complete de Moivre’s outline of a method to obtain Bernoulli’s series for
∫
y dz.

Note that this is similar to Newton’s method of successive approximation. Let
the fluent of ży be zy−q so that ży = ży+zẏ− q̇ or q̇ = zẏ. Now let ẏ = żv so
that q̇ = zżv. Take the fluent of each side to get q = 1

2zzv− r for some r . Then
zżv = zżv+ 1

2zzv̇− ṙ , so that ṙ = 1
2zzv̇. Set v̇ = zṡ and continue as before. De

Moivre gave this argument in 1704. See Feigenbaum (1985), p. 93.
3. Show that Bernoulli’s series (12.6) is obtained by applying integration by parts

to
∫
ndz and then repeating the process infinitely often.

4. In the Bernoulli series for
∫
ndz, set n= f ′(z) to obtain

f (z)−f (0)= zf ′(z)− 1

2!z
2f ′′(z)+ 1

3!z
3f ′′′(z)−·· · . (12.15)

Similarly, find the series for f ′(z)− f ′(0), f ′′(z)− f ′′(0), f ′′′(z)− f ′′′(0), . . .
and use them to eliminate f ′(z), f ′′(z), f ′′′(z), . . . from the right-hand side of
(12.15). Show that the result is the Maclaurin series for f (z). See Whiteside’s
footnote in Newton (1967–1981), vol. VII, p. 19.
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5. Show that all the derivatives of f (x)= e−1/x2
(x �= 0), 0(x= 0) are zero. Cauchy

remarked that the two functions e−x2 
and e−x2 + e−1/x2 

had the same Maclaurin
series. See Cauchy (1823), p. 230 and Cauchy (1829), p. 105.

6. Show that the remainder in Taylor’s theorem can be expressed in the form

hn

p(n− 1)! (1− θ)
n−pf (n)(x+ θh), 0< θ < 1,

where p is a positive integer ≤ n. This was first given by Schlömilch and also
published a decade later by E. Roche. See Prasad (1931), p. 90, Hobson (1957b),
vol. 2, p. 200, and Schlömilch (1847), p. 179.

7. Prove that if f , φ, and F are differentiable, then∣∣∣∣∣∣
f (x+h) φ(x+h) F (x+h)
f (x) φ(x) F (x)

f ′(x+ θh) φ′(x+ θh) F ′(x+ θh)

∣∣∣∣∣∣= 0 ,

for some 0< θ < 1. This result and its generalization to n+1 functions is stated
in Giuseppe Peano’s Calcolo differenzial of 1884.

8. Let h > 0. Set m(x1,x2)= f (x1)−f (x2)

x1−x2
. Define the four derivatives of f :

f +(x)= lim
h→0

m(x+h,x),

f+(x)= lim
h→0

m(x+h,x),

f −(x)= lim
h→0

m(x−h,x),
f−(x)= lim

h→0
m(x−h,x).

Show that if f (x) is continuous on [a,b], then there is a point x in (a,b) such
that either

f +(x)≤m(a,b)≤ f−(x) or f −(x)≥m(a,b)≥ f+(x).
The generalized mean value theorem is a corollary: If there is no distinction with
respect to left and right with regard to the derivatives of f (x), then there is a
point x in (a,b) at which f has a derivative and its value is equal to m(a,b).
See Young and Young (1909).

12.12 Notes on the Literature

H. Bateman (1907) contains Taylor’s letter to Machin. For Gregory’s seven series and
the quote from his letter, see Turnbull (1939), pp. 168–176; for Gregory’s notes on these
series, see pp. 349–360. Malet (1993) explains that Gregory could have obtained the
Taylor rule without being in possession of a differential or equivalent technique. The
correspondence of Leibniz and Bernoulli concerning (12.2) can be found in Leibniz
(1971) vol. 3-1, pp. 143–157 and series (12.6) is in Bernoulli (1968), vol. I, pp.123–128.
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Euler’s 1736 paper with the derivations of the Taylor and Bernoulli series appears in
Eu 1-14, pp. 108–123. This paper also contains Euler’s first derivation of the Euler–
Maclaurin formula.

Feigenbaum (1985) presents a thorough discussion of Taylor’s book, Methodus
Incrementorum, as well as a treatment of the work of earlier mathematicians who
contributed to the Taylor series. See also Feigenbaum (1981), containing an English
translation of the Methodus. For later work on the Taylor series, especially the remainder
term, see Pringsheim (1900).

Grabiner (1981) and (1990) are interesting sources for topics related to the work on
series of Lagrange and Cauchy. Grabiner shows that, although Cauchy did not accept
Lagrange’s ideas on the foundations of calculus, Lagrange’s use of algebraic inequalities
nevertheless exerted a significant influence on Cauchy. She further points out that, a
half century earlier, Maclaurin made brilliant use of inequalities to prove theorems in
calculus. See her article, “Was Newton’s Calculus a Dead End?” in Van Brummelen and
Kinyon (2005). Newton’s calculations for the nth iterated integral as a single integral
are given in Newton (1967–1981), vol. VII, pp. 164–169; for his statements of the
Maclaurin and Taylor series, see pp. 97–99.

Cauchy’s proof of the intermediate value theorem is in Note 3 of his 1821 Analyse
algébrique. Cauchy (1823), pp. 208–213 gives the remainder in a Taylor series as an
integral; pp. 360–61 contain Cauchy’s form of the remainder (12.14). Cauchy (1829),
pp. 69–79 also treats the remainder. These books are also conveniently found in his
collected works, Cauchy (1882–1974). A look at Cauchy’s 1820s lectures on calculus
from a modern viewpoint is in Bressoud (2007). The quotation from Dedekind can
be found in Dedekind (1963), p. 1. Laplace (1812), pp. 176–177 gives a derivation of
Taylor’s theorem with remainder using integration by parts. For Lacroix’s exposition
of d’Alembert’s work on the remainder term, see Lacroix (1819), pp. 396–397.
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Integration of Rational Functions

13.1 Preliminary Remarks

The integrals of rational functions form the simplest class of integrals; they are included
in a first course in calculus.Yet some problems associated with the integration of rational
function have connections with the deeper aspects of algebra and of analysis. Examples
are the factorization of polynomials and the evaluation of beta integrals. These problems
have challenged mathematical minds as great as Newton, Johann Bernoulli, de Moivre,
Euler, Gauss, and Hermite; indeed, they have their puzzles for us even today. For
example, can a rational function be integrated without factorizing the denominator of
the function?

Newton was the first mathematician to explicitly define and systematically attack
the problem of integrating rational and algebraic functions. Of course, mathematicians
before Newton had integrated some specific rational functions, necessary for their work.
The Kerala mathematicians found the series for arctangent; N. Mercator and Hudde
worked out the series for the logarithm. But Newton’s work was made possible by his
discovery, sometime in mid-1665, of the inverse relation between the derivative and
the integral. At that time, he constructed tables, extending to some pages, of functions
that could be integrated because they were derivatives of functions already explicitly or
implicitly defined. He extended his tables by means of substitution or, equivalently, by
use of the chain rule for derivatives. He further developed the tables by an application
of the product rule for derivatives, or integration by parts, in his October 1666 tract
on fluxions. In this work, Newton viewed a curve dynamically: The variation of its
coordinates x and y could be viewed as the motion of two bodies with velocities p
and q, respectively. He posed the problem of determining y when q/p was known and
noted: “Could this ever bee done all problems whatever might bee resolved. But by ye

following rules it may be very often done.”
After giving the already known rules for integrating axm/n when m/n �= −1 and

when m/n = −1, Newton went on to consider examples, such as the integrals of
x2/(ax+b), x3/(a2 −x2), and c/(a+bx2). He did not take more complicated rational
functions, perhaps because of a lack of an understanding of partial fractions. Instead,
he evaluated integrals of some algebraic functions involving square roots. One result

222
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stated: If cx3n

x

√
axn+bx2n

= q

p
. Make

√
a+ bxn = z. yn [then] is

cxn

2nb

√
axn+ bx2n−� 3ac

2nbb

√
zz− a
b

= y. (13.1)

The square symbol was the equivalent of our integral with respect to z, representing
area.

Newton was led deeper into the integration of rational functions by an August 17,
1676 letter from Leibniz, addressed to Oldenburg, but intended for all British
mathematicians. In this letter, Leibniz presented his series for π ,

π

4
= 1− 1

3
+ 1

5
− 1

7
+·· · . (13.2)

To obtain this series, Leibniz applied transmutation, a somewhat ad hoc method of
finding the area of a figure by transforming it into another figure with the same area.
St. Vincent, Pascal, Gregory, and others had employed this method before Leibniz.
In his reply of October 1676, Newton listed an infinitely infinite family of rational
and algebraic functions, saying that he could integrate them. These included the four
rational functions

dzη−1

e+f zη+gz2η
,

dz2η−1

e+f zη+gz2η
etc.,

dz
1
2 η−1

e+f zη+gz2η
,

dz
3
2 η−1

e+f zη+gz2η
etc.,

where d, e, f , and g were constants and in the third and fourth expressions, in case
e and g had the same sign, 4eg had to be ≤ f 2. Newton went on to observe that the
expressions could become complicated, “so that I hardly think they can be found by
the transformation of the figures, which Gregory and others have used, without some
further foundation. Indeed I myself could gain nothing at all general in this subject
before I withdrew from the contemplation of figures and reduced the whole matter to
the simple consideration of ordinates alone.”

Newton then observed that Leibniz’s series would be obtained by taking η= 1 and
f = 0 in the first function. In fact,

π

4
= arctan 1 =

∫ 1

0

dz

1+ z2
=

∫ 1

0
(1− z2 + z4 +·· ·)dz= 1− 1

3
+ 1

5
− 1

7
+·· · .

As another series, he offered

π

2
√

2
= 1+ 1

3
− 1

5
− 1

7
+ 1

9
+ 1

11
−·· · (13.3)

and explained that it could be obtained by means of a calculation, setting 2eg= f 2 and
η= 1. He did not clarify any further, and Leibniz did not understand him since even a
quarter century later Leibniz had trouble with the integral arising in this situation.
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Some of Newton’s unpublished notes from this period suggest that he considered
integrals of the form

∫
1/(1 ± xm), since these integrals would lead to simple and

interesting series. To express them in terms of standard integrals (that is, in terms of
elementary functions such as the logarithm and arctangent), Newton had to consider
the problem of factorizing 1 ± xm so that he could resolve the integrals into simpler
ones by the use of partial fractions. We note that, in several examples in his 1670–71
treatise on fluxions and infinite series, he had broken up rational fractions into a sum of
two fractions. In the 1710s, Cotes and Johann Bernoulli and, to a lesser extent, Leibniz
pursued the algebraic topic of partial fractions with more intensity than did Newton.
It may be noted in this context that even in 1825 Jacobi was able to make an original
contribution to partial fractions in his doctoral dissertation.

Newton’s method for finding the quadratic factors of 1± xm was to start with

(1+nx+ x2)(1−nx+px2 − qx3 + rx4 −·· ·)= 1± xm (13.4)

and then determine the pattern of the algebraic equations satisfied by n for different
values of m. In this way he factored 1 − x3, 1 + x4, 1 − x5, 1 + x6, 1 ± x8, 1 ± x12,
though he apparently was unable to resolve the equation for n when m = 10. As an
example, Newton found the equation for 1± x4 to be n3 − 2n = 0, or n = ±√

2 and
n= 0. This would yield

x4 + 1 = (x2 +√
2x+ 1)(x2 −√

2x+ 1), (13.5)

and, of course, x4 − 1 = (x2 − 1)(x2 + 1),

though Newton did not bother to write this last explicitly. Note that this factorization
of x4 + 1 was just what he needed to derive his series for π/(2

√
2) in (13.3). He also

recognized that values of n were related to cosines of appropriate angles. He was just
a step away from Cotes’s factorization of xn± an.

Newton also considered the binomial 1 ± x7 and found the equation for n to be
n6 − 5n4 + 6nn− 1 = 0. Note that the solution involved cube roots; Newton did not
write the values of n2, apparently because he wanted to consider only those values
expressible, at worst, by quadratic surds. One wonders whether it occurred to him to
ask which values of m would lead to equations in n solvable by quadratic radicals. In
1796, Gauss resolved this problem in his theory of constructible regular polygons.

In 1702, since Newton’s work remained unpublished, Johann Bernoulli and Leibniz
in separate publications discussed the problem of factorizing polynomials, in connection
with the integration of rational functions. In general, Leibniz and Bernoulli were of the
opinion that integration of rational functions could be carried out by partial fractions,
but the devil lay in the details. Leibniz factored

x4 + a4 =
(
x+ a

√√−1

)(
x− a

√√−1

)(
x+ a

√
−√−1

)(
x− a

√
−√−1

)
.

(13.6)
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He was puzzled by this factorization and wondered whether the integrals
∫
dx/(x4+a4)

and
∫
dx/(x8 +a8) could be expressed in terms of logarithms and inverse trigonomet-

ric functions. Bernoulli’s paper also observed that the arctangent was related to the
logarithm of imaginary values because∫

dx

a2 + x2
= 1

2a

(∫
dx

a+ ix +
∫

dx

a− ix
)
. (13.7)

Cotes made the connection between the logarithm and the trigonometric functions even
more explicit with his discovery of the formula

ln(cosθ + i sin θ)= iθ. (13.8)

Roger Cotes (1679–1716) is known for his factorization theorem, his work on approx-
imate quadrature, and for editing the 1713 edition of the Principia. He studied at
Cambridge and became Fellow of Trinity College in 1704 and Plumian Professor of
Astronomy and Experimental Philosophy in 1705. Unfortunately, he published only
one paper in his lifetime, on topics related to the logarithmic function. Robert Smith
published Cotes’s mathematical writings in a 1722 work titled Harmonia Mensurarum.
Formula (13.8) was stated geometrically:

For if some arc of a quadrant of a circle described with radius CE has sine CX, and sine of the
complement of the quadrantXE, taking radius CE as modulus, the arc will be the measure of the
ratio between EX+XC√−1 and CE, the measure having been multiplied by

√−1.

Observe that this statement translates to iR ln(cosθ + i sin θ)=Rθ , which is not quite
correct, because the i should be on the other side of the equation.

Cotes’s factorization theorem was stated as a property of the circle. In Figure 13.1,
the circumference of a circle of radius a with center O is divided into n equal parts .
A point P lying on the line OA1 and inside the circle is joined to each division point
A1,A2,A3, . . . ,An. Then

PA1 ·PA2 · · ·PAn = an− xn, (13.9)

A1
P O

A4

A3

A2

Figure 13.1. Cotes’s factorization of xn− an as a property of the circle.
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where x=OP.Cotes noted that ifP lay outside the circle, the product equaled xn−an,
and he had a similar result for the factorization of xn+ an.

Cotes wrote to William Jones on May 5, 1716, that he had resolved by a general
method the questions raised by Leibniz in his 1702 paper on the integration of rational
functions. Unfortunately, Cotes died two months later, but Smith searched among his
papers and unearthed the new method. Smith’s note in his copy of the Harmonia stated:
“Sir Isaac Newton, speaking of Mr. Cotes said ‘if he had lived we might have known
something.’”

It is very likely that the source of Cotes’s inspiration was Bernoulli’s paper on the
integration of rational functions, pointing out the connection between the logarithm
and the arctangent. In the second part of the Logometria on integration published
posthumously in 1722, Cotes wrote that the close connection between the measure
of angles and measure of ratios (logarithms) had persuaded him to propose a single
notation to designate the two measures. He used the symbol

R

∣∣∣∣R+T
S

(13.10)

to stand for R ln((R+ T )/S) when R2 was positive; when R2 was negative, it repre-
sented |R|θ , where θ was an angle such that the radius, tangent, and secant were in the
ratio R : T : S. We should keep in mind that for Cotes, tangent and secant stood for
R tan θ and R secθ . In his tables, he gave the single value

2

e
R

∣∣∣∣R+T
S

for the fluent of ẋ/(e+ f x2); that is, for
∫
dx/(e+ f x2), when R =√−e/f , T = x

and S = √
(x2 + e/f ). Recall that when f < 0, the integral is a logarithm and when

f > 0, the integral is an arctangent. Cotes’s notation distinguished the two cases by
the interpretation of the symbols depending on R. This notation implies that when R
is replaced by iR in the logarithm, we get the angular measure provided that S and T
are replaced by R secθ and R tan θ . Thus, we have

iR ln
iR+R tan θ

R secθ
=Rθ +C, where C is the constant of integration.

This yields

ln(cosφ+ i sinφ)= iφ,
when we take C =−Rπ/2 and θ −π/2 = φ. It may be of interest to note that, as de
Moivre and Euler showed, this result connecting logarithms with angles also served as
the basis for Cotes’s factorization formula. Surprisingly, Johann Bernoulli did not make
any use of his discovery of the connection between the logarithm and the arctangent
(13.7). When Euler pointed out to Bernoulli that his formula implied that the logarithm
of −1 was imaginary, he refused to accept it, maintaining that it had to be zero.

British mathematicians such as Newton and Cotes were ahead of the Continental
European mathematicians in the matter of integration of rational functions, but by 1720
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the Continental mathematicians had caught up. In 1718, Brook Taylor challenged them
to integrate rational functions of the form

xm−1

e+f xm+gx2m
.

Johann Bernoulli and Jakob Hermann, a former student of Jakob Bernoulli, responded
with solutions. In particular, they explained how the denominator could be factored
into two trinomials of the form a+ bxm/2 + cxm.

We can describe the Newton–Cotes–Bernoulli–Leibniz algorithm for integrating a
rational function f (x) with real coefficients by writing

f (x)= P(x)+ N(x)

D(x)
,

where P , N , D are polynomials with degree N < degree D and where N and D have
1 as their greatest common divisor. FactorizeD(x) into linear and quadratic factors so
that their coefficients are real:

D(x)= c
n∏
i=1

(x− ai)ei
m∏
j=1

(x2 + bjx+ cj )fj . (13.11)

Then there are real numbers Aik, Bjk, and Cjk such that

f (x)= P +
n∑
i=1

ei∑
k=1

Aik

(x− ai)k +
m∑
j=1

fj∑
k=1

Bjkx+Cjk
(x2 + bjx+ cj )k . (13.12)

From this it is evident that the result of the integration of f (x) contains an algebraic part,
consisting of a rational function, and a transcendental part, consisting of arctangents
and logarithms.

Though Leibniz and Bernoulli had in principle solved the problem of the integration
of rational functions, the practical problem of computing the constants a,b,c and
A,B,C was formidable. In 1744, Euler tackled this problem in two long papers, taking
up 140 pages of the Petersburg Academy Journal (or 125 pages of vol. 17 of Euler’s
Opera Omnia). In these papers he explained in detail how to computeA,B,C in (13.12)
when the roots of the denominator were known. He also worked out a large number of
special integrals of the form ∫

xm

1± xn dx, (13.13)

where m and n were integers. By evaluating these integrals, Euler gained insight into
several important topics. In fact, they provided him with new proofs of evaluations
of zeta and L-series values; the reflection formula for the gamma function; and of
the infinite product expressions for trigonometric functions. It is no wonder that Euler
published several hundred pages on the integration of rational functions.

The problem of factoring a polynomial is a difficult one, so the partial fractions
method has its drawbacks. A question raised in the nineteenth century was whether a
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part or all of the integral of a rational function could be obtained without factorizing the
denominator. The Russian mathematician M. V. Ostrogradski published an algorithm in
1845 by which the rational part after integration could be obtained without factorization.
In 1873, C. Hermite published a different algorithm and taught it in his courses at the
École Polytechnique.

With the development of general computer algebra systems, the problem of mech-
anizing integration, including the integration of rational functions, has received new
attention. The methods of Ostrogradski and Hermite, along with others, have been
important in the development of symbolic integration. The question of obtaining the log-
arithmic or arctangent portion of the integral of a rational function, without factorization
of the denominator, has been resolved by a host of researchers. In these symbolic inte-
gration methods, the problem of factorization is replaced by the much more accessible
problems of obtaining the greatest common denominators and/or resultants of polyno-
mials. These last procedures in turn require polynomial division and the elimination
of variables. Contributors to symbolic integration are many, including M. Bronstein,
R. Risch, and M. F. Singer.

13.2 Newton’s 1666 Basic Integrals

In the beginning sections of his October 1666 tract on calculus, Newton tackled the
problems of finding the areas under the curves y = 1/(c + x) and y = c/(a + bx2),
equivalent to evaluating integrals of those functions. Recall, however, that seventeenth-
century mathematicians thought in terms of curves, even those defined by equations,
rather than functions. The variables in an equation were regarded as quantities or magni-
tudes on the same footing, rather than dependent and independent variables. Newton’s
two integrals were the building blocks for the more general integrals of rational func-
tions. It is interesting to read what he said about these integrals. He first noted the rule
that if

q

p
= ax mn , then y = na

m+nx
m+n
n .

Note that in Newton’s 1690s notation q/p was written as ẏ/ẋ, whereas Leibniz wrote
dy/dx. Newton next observed:

Soe [so] if a
x
= q

p
. Then is a

0x
0 = y. soe yt [that] y is infinite. But note yt in this case x & y

increase in ye [the] same proportion yt numbers & their logarithmes doe [do], y being like a
logarithme added to an infinite number a

0 . [That is,
∫ x

0
a
t
dt = a lnx− a ln 0 = a lnx+ a

0 .] But if
x bee diminished by c, as if a

c+x = q

p
, y is also diminished by ye infinite number a

0 c
0 & becomes

finite like a logarithme of ye number x. & so x being given, y may bee mechanically found by a
Table of logarithmes, as shall be hereafter showne.

Here Newton was explaining how the logarithm could be obtained by an application of
the power rule, since he regarded this as the fundamental rule for integration. Newton
clearly saw the difficulty of division by zero when the rule was applied to a

x
. His

method of dealing with this stumbling block can now be seen as an attempt to define
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Figure 13.2. Newton’s integration of a rational function.

the logarithm as a limit. We may say that Newton was describing the calculation:

y =
∫ x

0

a

c+ t dt = lim
ε→0

∫ x

0

a

(c+ t)1−ε dt

= lim
ε→0

(a
ε
((c+ x)ε − cε)

)
= a ln

c+ x
c
. (13.14)

As for the integral of 1
1+x2 , we would now give the result as arctanx. In Newton’s time,

the trigonometric quantities or functions were conceived of as line segments and their
ratios constructed in relation to arcs of circles. It was therefore natural for Newton to
connect the area under y = 1

1+x2 to the area of simpler or more well-known geometric
objects such as conic sections. For this reason, he reduced the integral to the area of a
sector of an ellipse. Consider the diagram in Newton’s tract, Figure 13.2. SetBD= v(x)
andCB= z(x), whereC is the point on the right-hand side. Let z(t)= 1/

√
1+ t2 so that

tz(t)=√
1− z2(t)= v(t)/2. Thus, the curveVD is an arc of the ellipse (v/2)2+z2 = 1.

Note that CV = z(0)= 1. In a one-line argument, Newton showed that
∫ x

0 dt/(1+ t2)
was equal to the area of sector CVD. To see this, observe that∫ x

0

1

1+ t2 dt =
∫ x

0
z2 dt = xz2(x)−

∫ z(x)

1
2zt dz. (13.15)

Since 2zt = v, the rightmost integral represents the area under the ellipse from V to
B; when the negative sign is included with the integral, the area under the ellipse from
B to V is obtained. Moreover, xz2(x)= v(x)z(x)/2 = BD ·CB/2, and hence xz2(x)

represents the area of the triangle DBC, completing the proof.
Newton may also have known at this point that he could relate this area to an arc of

the circle. Since 2zt = 2
√

1− z2, the integral on the right of (13.15) is twice the area
under the circle y =√

1− z2 from z(x) to 1. Recall that Newton had already related
this area to the arcsine almost two years earlier when generalizing a result of Wallis, to
obtain (9.14). Thus, he knew that∫ 1

z(x)

2zt dz= 2
∫ 1

z(x)

√
1− z2 dz= 2

(
π

4
− 1

2
z
√

1− z2 − 1

2
arcsin z

)
. (13.16)

When (13.15) is combined with (13.16), we get the integral in terms of the arctangent:∫ x

0

1

1+ t2 dt =
π

2
− arcsin z(x)= arccos

(
1/

√
1+ x2

)
= arctanx. (13.17)
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13.3 Newton’s Factorization of xn ± 1

Most probably around 1676, Newton wrote his very sketchy notes on this factorization,
of which Whiteside has given a very helpful clarification. From these sources we learn
that Newton’s method of factoring 1± xm was to write(

1+nx+ x2
)(

1−nx+px2 − qx3 + rx4 −·· ·± xm−2
)≡ 1± xm (13.18)

and equate the coefficients of xi for 2 ≤ i ≤ m− 1 to 0 in order to obtain equations
satisfied by n,p,q,r, . . . . By eliminating p,q,r, . . . , he obtained the algebraic equation
satisfied by n. For example, whenm= 4, Newton’s equations were p+1−n2 = 0 and
pn− n = 0. Note that the first equation multiplied by n gives pn+ n− n3 = 0, and
hence, by the second equation, n3 − 2n= 0. One can then write n= 0, ±√

2. The first
case gives the factorization 1− x4 = (1− x2)(1+ x2) and the second gives

1+ x4 =
(

1−√
2x+ x2

)(
1+√

2x+ x2
)
. (13.19)

Recall that Newton applied this factorization to derive his series for π/(2
√

2). His
cryptic remark on his method was apparently insufficient for Leibniz to decipher, so in
1702 Leibniz could obtain only (13.6), leading him to wonder if

∫
dx /(a4 +x4) could

be expressed in terms of logarithms and arctangents. One may get a sense of the ill
will existing at that time between the supporters of Newton and those of Leibniz from
a remark in a 1716 letter from Roger Cotes to William Jones:

M. Leibnitz, in the Leipsic Acts of 1702 p. 218 and 219, has very rashly undertaken to demonstrate
that the fluent of ẋ/(x4+a4) cannot be expressed by measures of ratios and angles; and he swaggers
upon the occasion (according to his usual vanity), as having by this demonstration determined a
question of the greatest moment.

Using the same method as before, m= 5 gave Newton the equation n4 − 3n2 + 1 = 0,

or n2 = 3
2 ±

√
5
4 , or n= 1±√

5
2 . Thus, he got the factorization

1− x5 =
(

1+ 1+√
5

2
x+ x2

)(
1− 1+√

5

2
x+ 1+√

5

2
x2 − x3

)
.

Of course, the second factor is (1− x)(1+ 1−√
5

2 x+ x2), though Newton did not write
this out explicitly. Newton explicitly gave the factorization of x6+1. Here the equations
satisfied by the coefficientsn,p, q, r are q=nr ,p= qn−r ,n=pn−q, andn2−p= 1.
This implies that

p = n2 − 1, q = n3 − 2n, r = n4 − 3n2 + 1, (13.20)

and hence the equation satisfied by n is

n5 − 4n3 + 3n= 0.
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This indicates the values of n to be 0, ±1, ±√
3. When n= 0, we have r = 1, q = 0,

p =−1, and the factorization

1+ x6 = (
1+ x2

)(
1− x2 + x4

)
. (13.21)

When n=√
3, we have r = 1, q =√

3, p = 2, and the factorization given by Newton
was

1+ x6 =
(

1+√
3x+ x2

)(
1−√

3x+ 2x2 −√
3x3 + x4

)
. (13.22)

It follows that the second factor in (13.21) is 1 − x2 + x4 = (1 + √
3x + x2)

(1 − √
3x + x2), and the second factor in (13.22) can be written as (1 + x2)

(1−√
3x+ x2).

Newton wrote down the polynomials satisfied by n for m= 3 to m= 12 and solved
the polynomials for those cases when n could be expressed in terms of quadratic surds.
In the case m= 7, he had the equation n6 − 5n4 + 6n2 − 1 = 0 . He wrote “n2 =” next
to the equation and filled in no value when he realized it would involve cube roots. For
m= 10, he did not appear to expect the solutions to be in terms of quadratic surds and
wrote nothing after the equation for n. He appears to have missed the factorization,
noted by Whiteside,

n9 − 8n7 + 21n5 − 20n3 + 5n= n(n4 − 5n2 + 5)(n4 − 3n2 + 1
)
,

yielding the quadratic surds for n when m= 10.
Newton seems to have grasped the connection between the values ofn and the cosines

of 2kπ
m

or (2k−1)π
m

. He drew a diagram of a right triangle with one angle as 22 1
2

◦ = π/8
and noted that 2cos(π/8) gave a value of n whenm= 8. At this point, he was just one
step away from Cotes’s factorization of an±xn. Moreover, the number cos 2π

m
is related

to the length of a side of a regular polygon of m sides. Such a polygon is constructible
when cos 2π

m
can be expressed in terms of quadratic surds. It is unlikely that Newton

considered constructible polygons, but he may have wondered about conditions for n
to be expressed in quadratic surds. Thus, we have an interesting connection between
Newton and Gauss, although Gauss could not have been aware of it because Newton
did not publish his work, since it was incomplete.

13.4 Cotes and de Moivre’s Factorizations

De Moivre presented his method of factorizing the more general trinomial
x2n−2cos nθ xn+1 in his Miscellanea Analytica of 1730. His method depended on a
formula he stated without proof: Let l and x be cosines of arcs A and B, respectively,
of the unit circle where A is to B as the integer n to one. Then

x = 1

2

n

√
l+

√
l2 − 1+ 1

2

1
n
√
l+√

l2 − 1
. (13.23)
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Note that this is equivalent to the formula named after de Moivre:

cosθ = 1

2

(
(cosnθ + i sinnθ)1/n+ (cosnθ − i sinnθ)1/n

)
. (13.24)

De Moivre had published a similar result without proof for sine in a Philosophical
Transactions paper of 1707. In the chapter on difference equations, we present a proof
by Daniel Bernoulli in which he solved a difference equation obtained from the addition
formula for cosine. Here we present Euler’s simple proof given in his Introductio in
Analysin Infinitorum of 1748. Observe that by the addition formulas for sine and cosine

(cosy± i siny)(cosz± i sin z)= cos(y+ z)± i sin(y+ z). (13.25)

By taking y = z, Euler had

(cosy± i siny)2 = (cos2y± i sin 2y).

When both sides were multiplied by cosy± i siny, he got

(cosy± i siny)3 = cos3y± i sin 3y.

Finally, it followed by induction that for a positive integer n,

(cosy± i siny)n = cosny± i sinny, (13.26)

completing the proof. To obtain the factorization, de Moivre set z = n
√
l+√

l2 − 1
so that

zn− l =
√
l2 − 1 or z2n− 2lzn+ 1 = 0, where l = cosnθ.

By de Moivre’s formula (13.23), x = (z+1/z)/2, or z2−2zx+1= 0, where x = cosθ .
De Moivre’s theorem was therefore equivalent to the statement that z2n−2cosnθzn+
1 = 0, when z2 − 2cosθz+ 1 = 0. Thus, z2 − 2xz+ 1 was a factor of z2n− 2lzn+ 1.
To obtain the other n− 1 factors, de Moivre observed that

(cosA± i sinA)1/n = cos

(
2kπ ±A

n

)
+ i sin

(
2kπ ±A

n

)
, k = 0,1,2, . . . .

The factorization thus obtained after taking θ = A/n may be written in modern
notation as

z2n− (2cosA)zn+ 1 =
n−1∏
k=0

(
z2 − 2cos

(
2kπ +A

n

)
z+ 1

)
. (13.27)

We note that de Moivre used the symbol C for 2π . Cotes’s factorization theorems are
actually corollaries of de Moivre’s (13.27). For example, letC be a circle of radius a and
centerO with B a point on the circumference and P a point onOB such thatOP = x.
Also letA1,A2, . . . ,An be points on the circumference such that, for k= 1,2, . . . ,n, the
angle BOAk = (2k−1)π/n. Then the product A1P ·A2P · · ·AnP is equal to xn+an.
This result of Cotes can be derived by taking A= π in (13.27). But by taking A= 0,
we obtain the result of Cotes (13.9).
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13.5 Euler: Integration of Rational Functions

In his 1744 papers on the integration of rational functions, Euler assumed that the factors
of the denominator of the rational function were known. He then gave explicit formulas
for decomposing the rational functions to partial fractions. From these he obtained the
integral. Euler then gave applications to specific integrals where he could factorize the
denominators by Cotes’s formula or, more generally, by de Moivre’s formula. When
these specific integrals are taken over the interval (0,∞), they become extremely
important examples of beta integrals. In fact, Euler’s results using these integrals in
effect provided a new proof of his reflection formula for the gamma function. His
representation of the integral as an infinite series of partial fractions then gave Euler
the partial fraction expansion of the cosecant function – and hence the infinite products
for the sine and other trigonometric functions. Euler worked out these connections in
the 1740s. But he never really abandoned any area of study, and so he returned to this
topic thirty years later with new insights, allowing him to streamline computations and
make the details more transparent.

Thus, in his first paper of 1744 on integration of rational functions, Euler took the
polynomial in the denominator to be

N(x)= (1+px)(1+ qx)(1+ rx) · · · ,
where some factors could be repeated. Suppose M(x) is a polynomial of degree less
than that of N(x). Now allow that 1+px is repeated exactly n times and that

N(x)= (1+px)nA(x),
M(x)

N(x)
= C1

1+px + C2

(1+px)2 +·· ·+ Cn

(1+px)n +
D(x)

A(x)
, (13.28)

and V (p)= pn−1M(−1/p)

A(−1/p)
. (13.29)

Euler showed that

Ck = p

(n− k)!
dn−k

dpn−k
(V/pk), k = 1,2, . . . ,n. (13.30)

In the second paper, Euler presented the formula for the case where the factors were of
the form (p+ qx)n. He let N(x)= (p+ qx)nS and

M(x)

N(x)
= b0

(p+ qx)n +
b1

(p+ qx)n−1
+·· ·+ bn−1

p+ qx + D(x)

S(x)
.

He showed that

bj = 1

j !qj
(
dj

dxj
(M/S)

)
x=−p/q

, j = 0,1,2, . . . ,n− 1. (13.31)

In both papers, Euler worked out some important specific examples of integrals of ratio-
nal functions in which the denominator had quadratic factors. Consider his important
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example related to the beta integral:∫
xm dx

1+ x2n
, m < 2n. (13.32)

Euler started with a formula well known in his time:∫
(P +Qx)dx
1+px+ qxx = Q

2q
ln(1+px+ qxx)+ 2Pq−Qp

q
√
(4q−pp) arctan

x
√
(4q−pp)
2+px ,

(13.33)

when 4q > p2. Note that Euler wrote A. tang. for arctangent. He then observed that the
factors of 1+ x2n were

1+ 2x cos
kπ

2n
+ xx, k = 1,3, . . . ,2n− 1. (13.34)

He referred to de Moivre’s Miscellanea Analytica for this result, but, as we have seen,
this factorization was first given by Cotes. Euler showed that the partial fractions of
xm/(1+ x2n) were of the form

(−1)m

n
· cos mkπ2n + x cos (m+1)kπ

2n

1+ 2x cos kπ2n + x2
, where k = 1,3, . . . ,2n− 1. (13.35)

Hence by (13.33), the integral (13.32) was a sum of terms of the form

(−1)m

2n
cos

(m+ 1)kπ

2n
ln

(
1+ 2cos

kπ

2n
+ xx

)
+ (−1)m

n
sin
(m+ 1)kπ

2n
arctan

x sin(kπ/2n)

1+ x cos(kπ/2n)
. (13.36)

Further details of these evaluations are given in the next section in connection with
Euler’s calculations for a slightly more general integral.

13.6 Euler’s Generalization of His Earlier Work

Late in his life, Euler used his earlier method to evaluate a more general integral, with
gratifying results. In the 1740s, he used Cotes’s factorization; later on, by using de
Moivre’s factorization applied to a more general polynomial, Euler was able to obtain
the Fourier series for cosλx and sinλx. This result appeared in the paper “Investigatio
Valoris Integralis,” published posthumously in 1785. Using modern notation, we give
a brief sketch of his evaluation of the integral∫ ∞

0

xm−1 dx

1− 2xk cosθ + x2k
.

By de Moivre’s product for the denominator of the integrand

xm−1

1− 2xk cosθ + x2k
=

k−1∑
s=0

As +Bsx
1− 2x cos

(
2sπ+θ
k

)+ x2
.
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Let ωs = (2sπ + θ)/k and

As +Bsx
1− 2x cosws + x2

= fs

x− eiws +
gs

x− e−iws
so that

Bs = fs +gs andAs = (fs −gs)i sinws − (fs +gs)cosws .

To find fs , observe that

xm−1(x− eiws )
1− 2xk cosθ + x2k

= fs +Rs(x− eiws ),

whereRs consists of the remaining partial fractions. The limit as x→ eiws gives fs and
here Euler applied l’Hôpital’s rule to find

fs = eimws

2ki sin θeiθ
; similarly, gs = e−imws

−2ki sin θe−iθ
.

Therefore, Bs = sin(mws − θ)
k sin θ

, As =−sin((m− 1)ws − θ)
k sin θ

.

Now ∫
(As +Bsx)dx

1− 2x cosws + x2
=

∫ (
Bs(x− cosωs)

1− 2x cosws + x2
+ (As +Bs cosωs)

1− 2x cosws + x2

)
dx

= 1

2
Bs ln(1− 2x cosws + x2)+ As +Bs cosωs

sinws

arctan
x sinws

1− x cosws

.

The original integral is a sum of these integrals as s ranges from 0 to k− 1. We have
also to integrate over (0,∞). At x = 0, the logarithm is zero, as is the arctangent. For
large x, the logarithm behaves as 2 lnx. So the logarithmic part can be written as

lnx
k−1∑
s=0

Bs = lnx

k sin θ

k−1∑
s=0

sin

(
(m− k)θ

k
+ 2s

mπ

k

)

= lnx

k sin θ

k−1∑
s=0

sin(2sα+ ζ ),

where α =mπ/k and ζ = (m− k)θ/k. Observe that

2sinα sin(2sα+ ζ )= cos((2s− 1)α− ζ )− cos((2s+ 1)α+ ζ ),
and hence, after cancellation,

2sinα
k−1∑
s=0

sin(2sα+ ζ )= cos(α− ζ )− cos((2k− 1)α+ ζ ).



236 Integration of Rational Functions

Now note that the sum of the angles α − ζ and (2k − 1)α + ζ is 2kα = 2mπ and
hence

∑
Bs = 0. Thus, we know that the integral has no logarithmic part. For large

x,arctan(x sinws/(1− x cosws)) behaves like

arctan(− tanws)= π −ws,

and by a short calculation,

As +Bs cosωs
sinws

= cos(mws − θ)
k sin θ

.

Therefore, the sum of the arctangents at x =∞ is

1

k sin θ

k−1∑
s=0

(π −ws)cos(mws − θ).

Set π

k
= β, π − θ

k
= γ and let α,ζ be as before. Denote the preceding sum, without

the factor 1/k sin θ, by S. An application of the addition formula for the sine function
followed by an easy simplification gives

2S sinα = γ sin(α− ζ )+ (γ − (2k− 1)β)sin((2k− 1)α+ ζ )+βT (13.37)

where T = 2(sin(α+ ζ )+ sin(3α+ ζ )+·· ·+ sin((2k− 3)α+ ζ ).

The series T is summed similarly. Yet another application of the addition formula for
the cosine function results in

T sinα = cos
θ(k−m)

k
− cos

2mπ + θ(k−m)
k

= 2sin
mπ + θ(k−m)

k
sin
mπ

α

= 2sin(α− ζ )sinα.

Substitute this value of T in (13.37) to obtain

2S sinα = (γ + 2β)sin(α− ζ )+ (γ − 2(k− 1)β)sin((2k− 1)α+ ζ )
= (γ + 2β)(sin(α− ζ )+ sin((2k− 1)α− ζ ))− 2kβ sin((2k− 1)α+ ζ )
= (2γ + 4β)sinαk cos((k− 1)α+ ζ )− 2kβ sin((2k− 1)α+ ζ ).

Now sinαk = sinmπ = 0. So

S =−kβ sin((2k− 1)α+ ζ )
sinα

= π sin mπ+θ(k−m)
k

sin mπ

k

.

Thus, the final result is∫ ∞

0

xm−1

1− 2xk cosθ + x2k
dx = π sin m(π−θ)+kθ

k

k sin θ sin mπ

k

.
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The special case θ = π/2 gave Euler the value of the beta integral∫ ∞

0

xm−1

1+ x2k
dx = π

2k sin mπ

2k

, (13.38)

and from θ = π , he obtained∫ ∞

0

xm−1 dx

(1+ xk)2 = (1− m

k
)π

k sin mπ

k

.

Observe that this integral can be obtained from the previous beta integral by integration
by parts.

13.7 Hermite’s Rational Part Algorithm

As a professor at the École Polytechnique, Hermite lectured on analysis. This gave him
the opportunity to rethink several elementary topics. He often came up with new proofs
and presentations of old material. In his lectures, published in 1873, Hermite gave a
method for finding the rational part of the integral of a rational function, by employing
the Euclidean algorithm. He first found the square-free factorization of the denominator
Q(x) of the rational function P(x)/Q(x):

Q=Q1Q
2
2 · · ·Qn

n, (13.39)

where Q1, Q2, . . . , Qn were the relatively prime polynomials with simple roots. This
decomposition could be accomplished by the Euclidean algorithm, but Hermite did not
give details in his published lectures. Note that there existed polynomials P1, P2, . . . ,
Pn such that

P

Q
= P1

Q1
+ P2

Q2
2

+·· ·+ Pn

Qn
n

. (13.40)

As a first step in the derivation of this relation, Hermite observed that U = Q1, and
that V =Q2

2 · · ·Qn
n were relatively prime and hence by the Euclidean algorithm, there

existed polynomials P1 and P̃1 such that

P = P1V + P̃1U

or
P

Q
= P1

Q1
+ P̃1

Q2
2 · · ·Qn

n

. (13.41)

Hermite obtained the required result by a repeated application of this procedure. Since∫
P

Q
=

∫
P1

Q1
+
∫
P2

Q2
2

+·· ·+
∫
Pn

Qn
n

, (13.42)

he needed a method to reduce
∫
Pk

Qk
k

to
∫

E

Qk−1
k

, for some polynomial E, when k > 1.

SinceQk had simple roots,Qk and its derivativeQ′
k were relatively prime. Thus, there
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existed polynomials C and D such that

Pk =CQk+DQ′
k and

Pk

Qk
k

= C

Qk−1
k

+ DQ′
k

Qk
k

= C

Qk−1
k

− D

k− 1

d

dx

(
1

Qk−1
k

)
.

After integration by parts, he obtained the necessary reduction∫
Pk

Qk
k

=− D

(k− 1)Qk−1
k

+
∫
C+D′/(k− 1)

Qk−1
k

. (13.43)

Again, by a repeated application of this algorithm, Hermite had∫
P

Q
=R+

∫
P1

Q1
+
∫
P̃2

Q2
+
∫
P̃3

Q3
+·· ·+

∫
P̃n

Qn

, (13.44)

where R was a rational function. SinceQ1,Q2, . . . ,Qn were pairwise relatively prime
and had simple roots, the integrals on the right-hand side formed the transcendental
part of the original integral.

13.8 Johann Bernoulli: Integration of
√
ax2 + bx+ c

We have seen that Isaac Barrow geometrically evaluated the integrals
∫ √

x2 + a2 dx

and
∫
dx/

√
x2 + a2 and that his results could be immediately converted to analytic

form. Roger Cotes included in his tables of integrals those of the form∫
R(x, t)dx with t =

√
ax2 + bx+ c,

where the integrand was a rational function of x and t . Clearly, seventeenth- and
eighteenth-century mathematicians knew how to handle such integrals. But Johann
Bernoulli pointed out in his very first lecture on integration, contained in vol. 3 of
his Opera Omnia, that there was another method, related to Diophantine problems.
By a substitution used in the study of Diophantine equations, the integral

∫
R(x, t)dx

could be rationalized. At the end of his lecture, Bernoulli illustrated this idea by means
of an example: His problem was to integrate a3 dx : x√ax− x2; his method was
to rewrite the quantity within the root as a square containing x and a newly intro-
duced variable. In this case, he had ax− x2 = a2x2 : m2. Thus, x = am2 : (m2 + a2),

dx = 2a3mdm : (m2 + a2)2 and∫
a3 dx

x
√
ax− x2

=
∫

2a3 dm

m2
=−2a3

m
.

We note that a general substitution of the form ax2 + bx + c = (u+√
ax)2 could be

used to rationalize integrals involving
√
ax2 + bx+ c.



13.9 Exercises 239

13.9 Exercises

1. Prove Newton’s formula (13.3) by showing

(a)

∫ x

0

1+ t2
1+ t4 dt =

1√
2

arctan
x
√

2

1− x2
.

(b)

∫ x

0

1+ t2
1+ t4 dt =

x

1
+ x3

3
− x5

5
− x7

7
+ x9

9
+ x11

11
−·· · , for 0 ≤ x ≤ 1.

2. In his October 24, 1676 letter to Oldenburg, Newton remarked that Leibniz’s
series and his own variant of it were unsuitable for the approximate evaluation
ofπ : “For if one wished by the simple calculation of this series 1+ 1

3 − 1
5 − 1

7 + 1
9+

etc. to find the length of the quadrant to twenty decimal places, it would need
about 5000000000 terms of the series, for the calculation of which 1000 years
would be required.” He recommended his series for arcsin for this purpose. He
suggested another formula to evaluate π :

π

4
= a

1
− a3

3
+ a5

5
− a7

7
+ etc. + a2

1
+ a5

3
− a8

5
− a11

7
+ a14

9
+ a17

11
− etc.

+ a4

1
− a10

3
+ a16

5
− a22

7
+ a28

9
− etc.,

where a = 1/2. Prove this formula and show that it is equivalent to

π

4
= arctan

1

2
+ 1

2
arctan

4

7
+ 1

2
arctan

1

8
.

Also prove Newton’s formula:

1− 1

7
+ 1

9
− 1

15
+ 1

17
− 1

23
+ 1

25
− 1

31
+ 1

33
+ etc. = π

4
(1+√

2).

3. Derive Newton’s equations for n defined by (13.18) when m= 3, 4, 5, 6, 7, 8,
9, 10, 11, and 12. For these values of m, Newton had, respectively,

nn− 1 = 0, n3 − 2n= 0, n4 − 3nn+ 1 = 0, n5 − 4n3 + 3n= 0,

n6−5n4+6nn−1=0, n7−6n5+10n3−4n=0, n8−7n6+15n2−10nn+1=0,

n9 − 8n7 + 21n5 − 20n3 + 5n= 0, n10 − 9n8 + 28n6 − 35n4 + 15nn− 1 = 0,

n11 − 10n9 + 36n7 − 56n5 + 35n3 − 6n= 0.

Use Newton’s equation for m = 7 to show that the cubic equation satisfied by
2cos 2π

7 is x3 + x2 − 2x− 1 = 0.
4. Prove Newton’s integration formula (13.1).
5. Show that for e > 0 and f < 0∫

dx

d+f x2
= 1

e
R ln

R+T
S

+ 1

e
R ln

1

i
,
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whereR=√−e/f , T = x, S=√
x2 + e/f . Then show that for e > 0 and f > 0∫

dx

e+f x2
= 1

e
R arctan

x

R
,

whereR=√
e/f . Compare these results with comments on Cotes’s notation for

integrals of rational functions in the preliminary remarks for this chapter.
6. Prove that∫

dx

e+f x2 +gx4
=

(a)(when4eg < f 2 andb2 = e)
∫

αdx

b+mx2
+
∫

β dx

b+nx2
, whereα,β,m,n

can be determined in terms ofe,f,g,

(b)(when4eg ≥ f 2 andb2 = e)
∫

(α+ γ x)dx
b+nx+mx2

+
∫

(β+ εx)dx
b−nx+nx2

, where

α,β,γ,ε,m,ncan be determined in terms ofe,f and g.

Bernoulli published an entertaining paper containing this result in the Acta Eru-
ditorum in response to a challenge from Brook Taylor. See Joh. Bernoulli (1968),
vol. II, p. 409.

7. Use Hermite’s reduction formula (13.43) to show that the integral∫
4x9 + 21x6 + 2x3 − 3x2 − 3

(x7 − x+ 1)2
dx

has only the rational part −(x3+3)/(x7−x+1) and no transcendental part. See
G. H. Hardy (1905), pp. 14–15.

8. Prove that

a2n−2

∫
dx

(x2 − a2)n
= (−1)n−1 1 · 3 · · ·(2n− 3)

2 · 4 · · ·(2n− 2)

(∫
dx

x2 − a2
+fn−1(x)

)
,

where

fn(x)= x

x2 − a2

(
1+

n−1∑
k=1

(−1)k
2 · 4 · · ·(2k)

3 · 5 · · ·(2k+ 1)

a2k

(x2 − a2)k

)
.

See Hermite (1905–1917), vol. 3, p. 50.
9. Show that∫

(1− x)dx
x4(2x− 1)3(3x− 2)2(4x− 3)

=C− 1

36x3
− 7

18xx
− 1879

432x
+ 24499

1296
lnx

+ 8

(2x− 1)2
+ 48

2x− 1
− 272ln(2x− 1)+ 729

16(3x− 2)

+ 3645

16
ln(3x− 2)+ 2048

81
ln(4x− 3).

See Eu. I-17, p. 165.
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10. Show that∫
dx

1+ x5
= 1

5
ln(1+ x)+ 1

5
cos

2π

5
ln

(
1+ 2x cos

2π

5
+ x2

)
+ 2

5
sin

2π

5
arctan

x sin(2π/5)

1+ x cos(2π/5)
− 1

5
cos

π

5

× ln
(

1− 2x cos
π

5
+ x2

)
+ 2

5
sin
π

5
arctan

x sin(π/5)

1− x cos(π/5)
,

cos
π

5
= 1+√

5

4
, sin

π

5
=

√
(10− 2

√
5)

4
,

cos
2π

5
= −1+√

5

4
, sin

2π

5
=

√
(10+ 2

√
5)

4
.

Also show that∫
dx

1+ x6
=

√
3

12
ln

1+ x√3+ x2

1− x√3+ x2
+ 1

3
arctanx

+ 1

6
arctan

x

2+ x√3
+ 1

6
arctan

x

2− x√3
.

Note that the second formula implies

1− 1

7
+ 1

13
− 1

19
+ 1

25
− 1

31
+·· · = π

6
+

√
3

12
ln

2+√
3

2−√
3
.

See Eu. I-17, pp. 131 and 120, respectively, for the two formulas.
11. Show that for 0<m< 2k,∫ ∞

0

xm−1 dx

1+ 2xk cosθ + x2k
= π sin

(
1− m

k

)
θ

k sin θ sin mπ

k

.

See Eu. I-18, p. 202.
12. Show that for 0<m< k∫ ∞

0

xm−1 dx

(1+ xk)n =
π

k sin mπ

k

n−1∏
s=1

(
1− m

sk

)
.

See Eu. I-18, p. 188.
13. (a) Show that

sinη

1+ 2xk cosη+ x2k
= sinη− xk sin 2η+ x2k sin 3η− x3k sin 4η+·· · .

(b) Write the integral in the previous exercise as∫ 1

0

xm−1 + x2k−m−1

1+ 2xk cosη+ x2k
dx.
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Next, apply part (a) to obtain

π sin
(
1− m

k

)
η

k sin mπ

k

=
∞∑
s=1

(−1)s−1

(
1

m+ (s− 1)k
+ 1

(s+ 1)k−m
)

sin sη.

(c) Deduce that

π sin(nη/k)

2k2 sin(nπ/k)
= sinη

k2 −n2
− 2sin 2η

4k2 −n2
+ 3sin 3η

9k2 −n2
− 4sin 4η

16k2 −n2
+·· · ,

πncos(nη/k)

2k3 sin(nπ/k)
= cosη

k2 −n2
− 4cos2η

4k2 −n2
+ 9cos3η

9k2 −n2
− 16cos4η

16k2 −n2
+·· · ,

π cos(nη/k)

2nk sin(nπ/k)
= 1

2n2
+ cosη

k2−n2
− cos2η

4k2−n2
+ cos3η

9k2−n2
− cos4η

16k2−n2
+·· · .

Consult Eu. I-18 pp. 202–208.
14. Apply the factorization

1− x2n = (1− x2)

n−1∏
k=1

(
1+ 2x cos

kπ

n
+ x2

)
to show that

(a) ∫ x

0

xm−1

1− x2n
dx = −1

2n
ln(1− x)+ (−1)m−1

2n
ln(1+ x)

+ (−1)m−1

2n

n−1∑
k=1

cos
kmπ

n
ln
(

1+ 2x cos
π

n
+ x2

)

+ (−1)m−1

n

n−1∑
k=1

sin
kmπ

n
arctan

x sin(kπ/n)

1+ x cos(kπ/n)
.

(b) ∫ x

0

xm−1−x2n−m−1

1−x2n
dx = 2(−1)m−1

n

n−1∑
k=1

sin
kmπ

n
arctan

x sin(kπ/n)

1+x cos(kπ/n)
.

(c) ∫ 1

0

xm−1 − x2n−m−1

1− x2n
dx = π

2n
cot

mπ

2n
.

See Eu. I-17, pp. 35–69.
15. Show that ∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
= π

2m+3/2(a+ 1)m+1/2
Pm(a),
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where

Pm(a)= 2−2m
m∑
k=0

2k
(

2m− 2k
m− k

)(
m+ k
m

)
(a+ 1)k.

See Moll (2002) or Boros and Moll (2004), p. 154 for this example and for some
intriguing open questions related to the integration of rational functions.

13.10 Notes on the Literature

Newton’s October 1666 tract, first published in vol. 1 of Newton (1967–1981), gives in
fewer than fifty pages the first sketch of an exposition of calculus. It contains six pages
of tables of integrals of rational and algebraic functions. Newton increased the size of
this table in later expositions. Newton’s notes on the factorization of xn±1 can be found
in Newton (1967–81), vol. 4, pp. 205–213. Note that Newton’s October 1676 letter is
on p. 138 of vol. 2 of his correspondence, Newton (1959–1960). Newton’s two letters
were first published in full in Commercium Epistolicum D. Johannis Collins, et aliorum
de analysi promota of 1712. Newton had this work published in order to document his
priority in the calculus. Primarily concerned with the claims of Leibniz, this work
also gave the indirect impression that Gregory’s results were probably corollaries of
Newton’s work; thus, Gregory did not receive much attention until Turnbull studied
his unpublished notes in the 1930s.

Gowing (1983) gives a thorough discussion of the various mathematical works of
Roger Cotes with a chapter on the Cotes factorization and its application by Cotes
to the evaluation of integrals of rational functions. The quote by Smith can be found
on pp. 141–42 of Gowing; the quote from the Harmonia Mensurarum is on p. 50. See
Rigaud (1841), vol. I, p. 271, for the Cotes letter to Jones on Leibniz. De Moivre’s more
general factorization formula is given in the first two pages of de Moivre (1730b). Smith
(1959), on pp. 440–454 of vol. II, gives an English translation of parts of de Moivre’s
works on this factorization and related topics.

The original paper of Leibniz on the integration of rational functions appeared in
1701 in the Journal de Trevoux and in 1702 in the Acta Eruditorum, the first German
scientific journal, founded in 1682 by Otto Mencke (1644–1707), a Leipzig professor
of moral and political philosophy. This paper was reprinted in Leibniz (1971), vol. 5,
pp. 350–361. Leibniz’s first published mathematical paper, on the arithmetic quadrature
of the circle, giving the integral for the arctangent, appeared in the Acta in February,
1682.

Johann Bernoulli’s 1702 paper, showing the connection between the logarithmic
function and the arctangent, was published by the French Academy and can be found in
vol. 1 of Johann Bernoulli (1968), pp. 393–400. His second paper on this topic appeared
in the Acta Eruditorum in 1719. See Joh. Bernoulli (1968), vol. II, pp. 402–418. Euler
wrote two to three hundred pages on the integration of rational functions. His results
are available in volumes 17 and 18 of his Opera Omnia. See Euler’s “Investigatio
Valoris Integralis

∫
xm−1 dx

1−2xk cosθ+x2k a termino x = 0 usque ad x =∞ extensi”, Eu. I-18,
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pp. 190–208. Hermite (1905–1917), vol. 3, pp. 40–44, contains his algorithm for finding
the rational part of the integral. Our discussion makes use of the account in Hardy (1905),
pp. 13–16. Hardy’s book also deals with the evaluation of integrals in finite terms,
significant for symbolic integration. See Bronstein (1997). Even today, mathematicians
continue to find interesting results on integrals of rational functions. See Boros and Moll
(2004) and Moll (2002).



14

Difference Equations

14.1 Preliminary Remarks

Difference equations occur in discrete problems, such as are encountered in proba-
bility theory, where recursion is an oft-used method. In the mid seventeenth century,
probability was developing as a new discipline; Pascal and Huygens used recursion, or
first-order difference equations, in working out some elementary probability problems.
Later, in the early eighteenth century, Niklaus I Bernoulli, Montmort, and de Moivre
made use of more general difference equations. By the 1710s, it was clear that a general
method for solving linear difference equations would be of great significance in prob-
ability and in analysis. Bernoulli and Montmort corresponded on this topic, discussing
their methods for solving second-order difference equations with constant coefficients.
In particular, they found the general term of the Fibonacci sequence. In 1712, Bernoulli
also solved a special homogeneous linear equation of general degree with constant
coefficients. He accomplished this in the course of tackling the well-known Walde–
grave problem, involving the probability of winning a game, given players of equal
skill. Then in 1715, Montmort rediscovered and communicated to de Moivre Newton’s
transformation, (11.3). This revealed the connection between difference equations and
the summation of infinite series. It was an easy consequence of the Newton–Montmort
transformation formula that the difference equation

,nAk =An+k−
(
n

1

)
An+k−1 +

(
n

2

)
An+k−2 −·· ·+ (−1)nAk = 0, (14.1)

k= 0,1,2, . . . , implied that the series
∑∞

k=0Akx
k was a rational function with (1−x)n

as denominator. More generally, de Moivre called a series recurrent if its coefficients
satisfied the recurrence relation

a0An+k+ a1An+k−1 +·· ·+ anAk = 0, (14.2)

where a0,a1, . . . ,an were constants and k = 0,1,2, . . . . De Moivre was the first to
present a general theory of recurrent series. He proved that such a series could be
represented by a rational function and showed how to find this function. He then applied
partial fractions to obtain the general expression for An in terms of the roots of the

245
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denominator of the rational function. De Moivre was therefore the first mathematician
to solve a general linear difference equation with constant coefficients by generating
functions. He expounded this theory without proofs in the first edition of his Doctrine
of Chances, published in 1717. He omitted the proofs, but he provided proofs in his
1730 Miscellanea Analytica.

In the 1720s, several mathematicians turned their attention toward recurrent series.
Daniel Bernoulli (1700–1782) made some very early investigations into this topic
without making much headway, being unaware of the results of de Moivre, Niklaus
I Bernoulli, and Montmort. In his Exercitationes of 1724, he stated that there was no
formula for the general term of the sequence 1, 3, 4, 7, 11, 18, . . . . Niklaus informed

his cousin Daniel that this was false; that the general term should be
(
(1+√

5)/2
)n+(

(1−√
5)/2

)n
. Apparently, Daniel Bernoulli subsequently became familiar with the

work of de Moivre and others. At the end of 1728, he wrote a paper explaining the
method, still contained in our textbooks, for giving special solutions for homogeneous
linear difference equations with constant coefficients, in which the form of the solution
is assumed and then substituted into the equation. The values of the parameter in
the assumed solution can then be determined by means of an algebraic equation. He
obtained the general solution by taking an arbitrary linear combination of the special
solutions.

Though the connection between differentials and finite differences had become clear
by 1720, simultaneous advances in the two topics did not occur; one area seemed to
make progress in alternation with the other. For example, D. Bernoulli’s 1728 method
of solution was not matched by a similar advance in the area of differential equations
with constant coefficients until 1740. Euler, having defined the number e and the corre-
sponding exponential function, then gave the general solution of a differential equation
as a combination of special exponential functions. He used the exponential function
as the form of the solution in giving a method for solving a differential equation with
constant coefficients.

Then, from the 1730s through the 1750s, the theory of differential equations made
great strides, partially due to the application of this subject to physics problems, such
as hanging chains and vibration of strings. In fact, d’Alembert, Euler, and Clairaut
initiated the study of partial differential equations in this context. However, no cor-
responding progress took place in the area of difference equations until 1759 when
Lagrange had the inspiration of applying the progress made in differential equations
to difference equations. He found a technique, analogous to d’Alembert’s method for
differential equations, for solving a non-homogeneous difference equation by reduc-
ing its degree by one. A repeated application of this technique reduced a general nth
degree difference equation to a first-degree equation, already treated by Taylor in 1715.
Similarly, Lagrange adapted his method of variation of parameters for solving differ-
ential equations to the case of difference equations. In the 1770s, Laplace published
several papers, extending Lagrange’s method and using other techniques to solve lin-
ear difference equations with variable coefficients. In a paper written in 1780 and
published in 1782, he introduced the term “generating functions”. He developed this
theory by the symbolic methods introduced in 1772 by Lagrange, courtesy of Leibniz.
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Laplace also applied generating functions of two variables to solve partial difference
equations.

De Moivre’s work on recurrent series also contained interesting, albeit implicit,
results on infinite series, a topic of his earliest research and a life-long interest. In the
1737 second edition of his Doctrine of Chances, he solved the problem of summing
the series

∑∞
n=0 anp+kx

n, where p and k were integers and 0 ≤ k < p, when the sum of∑∞
n=0 anx

n was known. In his solution, de Moivre dealt only with recurrent series, but
in 1758, Simpson published a paper tackling the general problem. Even a year earlier,
Waring also gave a general solution for summing the series

∑∞
n=0 anp+kx

n. An expert in
the area of symmetric functions, he obtained his solution by taking specific symmetric
functions of roots of unity. He did not publish the paper, but communicated it to the
Royal Society. Waring later wrote that he believed Simpson’s proof was based on this
result, since Simpson was an active member of the society.

Another of de Moivre’s results on series implied that if the recurrent series
∑
anx

n

and
∑
bnx

n had singularities at α and β, respectively, then
∑
anbnx

n had a singularity
at αβ. In 1898 Hadamard extended this result to arbitrary power series, though it does
not seem that he was motivated by de Moivre’s theorem.

14.2 De Moivre on Recurrent Series

In his Doctrine of Chances, de Moivre wrote that the summation of series was required
for the solution of several problems relating to chance, that is, to probabilistic problems.
He then presented a list of nine propositions connected with recurrent series, series
whose coefficients satisfied a linear recurrence relation. Thus, a series

∑∞
n=0 anx

n was a
recurrent series if there were constantsα1,α2, . . . ,αk such that an satisfied the difference
equation

an+α1an−1 +α2an−2 +·· ·+αkan−k = 0, (14.3)

for n= k,k+ 1,k+ 2, . . . . De Moivre started with the example of the series

1+ 2x+ 3xx+ 10x3 + 34x4 + 97x5 +·· · , (14.4)

whose coefficients satisfied the equation

an− 3an−1 + 2an−1 − 5an−3 = 0, (14.5)

for n = 3,4,5, . . . . His terminology is no longer used. For example, instead of the
recurrence relation (14.5), he called 3x− 2xx+ 5x3, or simply 3− 2+ 5, the scale of
relation of the series. This scale of relation was used to sum the series. Thus, if we let
S denote the series (14.4), then

−3xS =−3x− 6x2 − 9x3 − 30x4 − 102x5 −·· ·
+2x2S = 2x2 + 4x3 + 6x4 + 20x5 +·· ·
−5x3S = − 5x3 − 10x4 − 15x5 −·· · .
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Now add these three series to the original series (14.4) for S. Because of the recurrence
relation (14.5) satisfied by the coefficients, or because of the scale of relation of the
series, we get

(1− 3x+ 2x2 − 5x3)S = 1− x− x2.

All other terms on the right-hand side cancel and we have the sum of S:

S = 1− x− x2

1− 3x+ 2x2 − 5x3
. (14.6)

De Moivre called the expression in the denominator the differential scale, since it was
obtained by subtracting the scale of relation from unity.

De Moivre’s purpose in summing S was to find the numerical value of the coefficient
an of the series, or, in modern terms, to solve the difference equation (14.5). Once he had
S, he could factorize the denominator and obtain the partial fractions decomposition
of the rational function S. Actually, he did not discuss this algebraic process in his
book. He merely noted the form of an when the denominator was a polynomial of
degree m with roots α1,α2, . . . ,αm in the cases m = 2,3,4. Moreover, he wrote the
solutions for only those cases in which the roots were distinct. One can be sure that
he knew how to handle the case of repeated roots, because only a knowledge of the
binomial theorem for negative integral powers was required. Thus, all series

∑∞
n=0 anx

n,
whose coefficients an satisfy a linear difference equation with constant coefficients as in
(14.3), must be rational functions. Conversely, the power series expansions of rational
functions whose numerators are of degree less than the corresponding denominators are
recurrent series. Euler devoted a chapter of his Introductio in Analysin Infinitorum to
recurrent series. Since de Moivre gave very few examples, we consider two examples
from Euler’s exposition, illustrating the method of using generating functions to solve
linear difference equations such as (14.3). In the first example, the recurrence relation
was the same as the one satisfied by the Fibonacci sequence, though the initial values
were different. The coefficients of the series

∞∑
n=0

anx
n = 1+ 3x+ 4x2 + 7x3 + 11x4 + 18x5 + 29x6 + 47x7 +·· ·

satisfied the recurrence relation an = an−1 + an−2 for n≥ 2. Note from our discussion
of de Moivre’s work that the above series would sum to a rational function whose
denominator would be 1− x− x2. In fact, the sum was

1+ 2x

1− x− x2
= (1+√

5)/2

1−
(

1+√
5

2

)
x
+ (1−√

5)/2

1−
(

1−√
5

2

)
x
.

Hence Euler had the solution of the difference equation:

an =
(
(1+√

5)/2
)n+1 +

(
(1−√

5)/2
)n+1

.
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In the second example, there were repeated roots as well as complex roots. Euler
explained earlier in his book precisely how to obtain the partial fractions in this situation.
The difference equation would be

an− an−1 − an−2 + an−4 + an−5 − an−6 = 0, (14.7)

and the initial conditions would yield the sum of the series as

1

1− x− x2 + x4 + x5 − x6
= 1

(1− x)3(1+ x)(1+ x+ x2)

= 1

6(1− x)3 +
1

4(1− x)2 +
17

72(1− x) +
1

8(1+ x) +
2+ x

9(1+ x+ x2)
. (14.8)

Euler obtained the general term an by expanding the partial fractions using the binomial
theorem. Thus, he had

an = n2

12
+ n

2
+ 47

72
± 1

8
± 4sin (n+1)π

3 − 2sin nπ

3

9
√

3
, (14.9)

where a positive sign was used for n even and negative sign for n odd.
In his Doctrine of Chances, de Moivre stated a few specific examples but did not

work out details for obtaining the general term. Of his nine theorems, the first six
dealt in general terms with the ideas in the above two examples from Euler. The last
three propositions applied to more general series, though de Moivre worked wholly in
terms of recurrent series. In the seventh proposition, on the even and odd parts of a
rational function, de Moivre supposed that

∑∞
n=0 anx

n was a recurrent series and hence
representable as a rational function. He then gave a method for representing the even
series

∑∞
n=0 a2nx

2n and the odd series
∑∞

n=0 a2n+1x
2n+1 as rational functions. In this

connection, he explained that if A(x) was the denominator, or differential scale, for∑∞
n=0 anx

n, then the common differential scale for the two series with the even and odd
powers was the polynomial obtained by eliminating x from the equationsA(x)= 0 and
x2 = z. More generally, de Moivre wrote that if

a0 + a1x+ a2x
2 +·· · = B(x)/A(x), (14.10)

then the m series

ajx
j + am+j xm+j + a2m+j x2m+j +·· · , j = 0,1, . . . ,m− 1, (14.11)

had the common differential scale obtained by eliminating x fromA(x)= 0 and xm= z.
We may state a more general problem: Given f (x) = ∑∞

n=0 anx
n, express g(x) =∑∞

k=0 akm+j x
km+j in terms of values of f (αx), α a root of unity. This was the problem

solved by Simpson and Waring in the late 1750s. The essence of their method was to
use appropriate mth roots of unity and those roots were implicit in de Moivre’s use of
the equation xm = z.

The eighth proposition of de Moivre explained how to find the differential scale
for

∑
(an + bn)xn when the differential scales of

∑
anx

n and
∑
bnx

n were known.
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This was straightforward. In the very interesting ninth proposition, de Moivre worked
out the differential scale for

∑
anbnx

n, but only for the case where the scales for∑
anx

n and
∑
bnx

n were quadratic polynomials. His result is stated as an exercise at
the end of this chapter. An immediate consequence of this result is that

∑
anbnx

n has
a singularity at αβ if

∑
anx

n and
∑
bnx

n have singularities at α and β respectively.
In 1898, Hadamard, probably unaware of this result of de Moivre, stated and proved
a beautiful generalization, usually called Hadamard’s multiplication of singularities
theorem: If

∑∞
n=0 anz

n has singularities at α1,α2, . . . , and
∑∞

n=0 bnz
n at β1,β2, . . . , then

the singularities of
∑∞

n=0 anbnz
n are among the points αiβj .

14.3 Stirling’s Method of Ultimate Relations

Stirling extended de Moivre’s recurrent series method to sequences satisfying differ-
ence equations with nonconstant coefficients. In the preface to his 1730 Methodus,
he wrote:

For I was not unaware that De Moivre had introduced this property of the terms into algebra with
the greatest success, as the basis for solving very difficult problems concerning recurrent series:
And so I decided to find out whether it could also be extended to others, which of course I doubted
since there is so great a difference between recurrent and other series. But, the practical test having
been made, the matter has succeeded beyond hope, for I have found out that this discovery of De
Moivre contains very general and also very simple principles not only for recurrent series but also
for any others in which the relation of the terms varies according to some regular law.

In the statement of the proposition 14, Stirling explained the term ultimate relation:
Let T be the zth term of a series and T ′ the next term; let r,s,a,b,c,d, be constants.
Suppose that the relation

r(z2 + az+ b)T + s(z2 + cz+ d)T ′ = 0 (14.12)

held between the successive terms. Then the ultimate relation of the terms was defined as

rT + sT ′ = 0. (14.13)

Stirling used the term ultimate because he understood that z was a very large integer,
so that az+ b and cz+ d could be neglected in comparison to z2. This made it clear
that (14.13) followed from (14.12). Similarly, if the equation were

r(z+ a)T + s(z+ b)T ′ + t (z+ c)T ′′ = 0, (14.14)

then the ultimate relation would be

rT + sT ′ + tT ′′ = 0. (14.15)

In modern notation, if
∑
An is the series, then (14.14) takes the form

r(k+ a)Ak+ s(k+ b)Ak+1 + t (k+ c)Ak+2 = 0. (14.16)
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Stirling stated his theorem as proposition 14:

Every series A+B+C+D+E+&c. in which the ultimate relation of the terms is rT + sT ′ +
tT ′′ = 0 splits into the following

(s+ t)×
(
A

n
+ A2

n2
+ A3

n3
+ A4

n4
+ A5

n5
+&c.

)

+t ×
(
B

n
+ B2

n2
+ B3

n3
+ B4

n4
+ B5

n5
+&c.

)
where n= r + s+ t and

A2 = rA+ sB+ tC, A3 = rA2 + sB2 + tC2, A4 = rA3 + sB3 + tC3, &c.

B2 = rB+ sC+ tD, B3 = rB2 + sC2 + tD2, B4 = rB3 + sC3 + tD3, &c.

C2 = rC+ sD+ tE, C3 = rC2 + sD2 + tE2. C4 = rC3 + sD3 + tE3, &c.

D2 = rD+ sE+ tF, D3 = rD2 + sE2 + tF2, Dr = rD3 + sE3 + tF3, &c.

E2 = rE+ sF + tG, E3 = rE2 + sF2 + tG2, E4 = rE3 + sF3 + tG3, &c.

&c.

This result generated some interest in its time. A reviewer of the Methodus wrote in
1732 that the result was very powerful and complicated. In a letter to Stirling dated
June 8, 1736, Euler wrote

But before I wrote to you, I searched all over with great eagerness for your excellent book on the
method of differences, a review of which I had seen a short time before in the Actae Lipslienses,
until I achieved my desire. Now that I have read through it diligently, I am truly astonished at the
great abundance of excellent methods contained in such a small volume, by means of which you
show how to sum slowly converging series with ease and how to interpolate progressions which
are very difficult to deal with. But especially pleasing to me was prop. XIV of Part I in which
you give a method by which series, whose law of progression is not even established, may be
summed with great ease using only the relation of the last terms; certainly this method extends
very widely and is of the greatest use. In fact the proof of this proposition, which you seem to
have deliberately withheld, caused me enormous difficulty, until at last I succeeded with very great
pleasure in deriving it from the preceding results, which is the reason why I have not yet been able
to examine in detail all the subsequent propositions.

Stirling gave three examples of this theorem. The first example, similar to the second,
was the summation of the series

1+ 4x+ 9x2 + 16x3 + 25x4 + 36x5 + etc. (14.17)

Recall that Euler summed this series in his Institutiones Calculi Differentialis of 1755
by applying Newton or Montmort’s transformation. Stirling was aware that the series
could be summed by that method and mentioned Montmort explicitly. Stirling observed
that the difference equation for the terms of the series was

(z2 + 2z+ 1)xT − z2T ′ = 0. (14.18)
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For example, for the third term, z= 3, T = 9x2, and T ′ = 16x3. The ultimate relation
was xT −T ′ = 0, so that r = x, s =−1, t = 0, and n= x− 1. It followed that A= 1,
A2 =−3x, A3 = 2x2, A4 = 0, and the series transformed to

−1

(
1

x− 1
− 3x

(x− 1)2
+ 2x2

(x− 1)3

)
= 1+ x
(1− x)3 .

In the third example, he considered the series

1− 6x+ 27x2 − 104x3 + 366x4 − 1212x5 + 3842x6 − 11784x7 + etc.

defined by the difference equation

x2(z+ 4)T − 2x(z+ 2)T ′ − zT ′′ = 0; (14.19)

the ultimate relation was

x2T − 2xT ′ −T ′′ = 0. (14.20)

Hence r = x2, s =−2x, t =−1 and n= x2 − 2x− 1. Stirling computed the values of
the A and B as

A= 1, A2 =−14x2, A3 = 29x4, A4 = 0,

B =−6x, B2 = 44x3, B3 =−70x5, B4 = 0.

Thus, the sum of the series was

−(2x+ 1)

(
1

x2 − 2x− 1
− 14x2

(x2 − 2x− 1)2
+ 29x4

(x2 − 2x− 1)3

)
−
( −6x

x2 − 2x− 1
+ 44x3

(x2 − 2x− 1)2
− 70x5

(x2 − x− 1)3

)
.

Note that in (14.19) z takes the values 2,3,4, . . . while in (14.18) z starts at 1. Thus,
in the second series when T = 1, T ′ = −6x, and T ′′ = 27x2, we take z= 2. Stirling’s
normal practice was to start at z= 1.

14.4 Daniel Bernoulli on Difference Equations

In 1728, while at the St. Petersburg Academy, Bernoulli presented to the academy a
method for solving a difference equation in which the form of the solution was assumed;
this particular approach is often given in elementary textbooks. Unlike Bernoulli, we
use subscripts to write the equation

an = α1an−1 +α2an−2 +·· ·+αkan−k, (14.21)

with α1, α2, . . . , αk constants. Bernoulli assumed ax = λx , substituted in the equation
and divided by λn−k to arrive at

λk = α1λ
k−1 +α2λ

k−2 +·· ·+αk. (14.22)
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Bernoulli stated that if λ1, λ2, . . . , λk were the k distinct solutions of the algebraic
equation (14.22), then the general solution of (14.21) would be an arbitrary linear
combination of the particular solutions λxi , that is

ax =A1λ
x
1 +A2λ

x
2 +·· ·+Akλxk . (14.23)

However, if λ1 = λ2, then the first two terms of (14.23) would be replaced by (A1 +
A2x)λ

x
1 . More generally, if a root λj was repeatedm times, then that part of the solution

(14.23) corresponding to λj would be replaced by

(Aj +Aj+1x+·· ·+Am+j−1x
m−1)λxj .

Daniel Bernoulli considered examples of distinct roots and of repeated roots. He first
took the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . ., leading to the difference equation
an = an−1 + an−2 and the algebraic equation λ2 = λ+ 1. The solutions were λ1 =
(1+√

5)/2, λ2 = (1−
√

5)/2 so that

ax =A1λ
x
1 +A2λ

x
2 .

To find A1 and A2, Bernoulli took x = 0 and x = 1 to get

A1 +A2 = 0 andA1

(
1+√

5

2

)
+A2

(
1−√

5

2

)
= 1.

Solving these equations, Bernoulli found A1 = 1/
√

5 and A2 = −1/
√

5. Recall that
Montmort and Niklaus I Bernoulli in their correspondence of 1718–1719 had already
solved the problem of the general term in the Fibonacci sequence.

As an example of a difference equation leading to repeated roots, Daniel Bernoulli
considered the sequence 0,0,0,0,1,0,15,−10,165,−228, etc., generated by the
difference equation

an = 0an−1 + 15an−2 − 10an−3 − 60an−4 + 72an−5.

He found the roots of the corresponding algebraic equation to be 2,2,2,−3,−3; the
general term of the sequence was then

((1026− 1035x+ 225xx) · 2x + (224− 80x) · (−3)x)/9000.

As a final example, Bernoulli set an = sin nx and applied the addition formula for sine
to get, in modern notation,

an+1 + an−1 = sin(n+ 1)x+ sin(n− 1)x = 2cos x sin nx = 2cos xan.

This produced the algebraic equation λ2 −2cos xλ+1 = 0 whose roots were given by

λ1 = cos x+
√

cos2 x− 1 = cos x+√−1sin x,

λ2 = cos x−
√

cos2 x− 1 = cos x−√−1sin x.
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This gave him the formula for sine:

an = sin nx = (cos x+√−1sin x)n− (cos x−√−1sin x)n

2
√−1

.

Note that this gives a new proof of de Moivre’s formula. Bernoulli also made an
interesting observation about the root largest in absolute value of the algebraic equation
(14.22), noting that such a root could be obtained from the sequence satisfying the
corresponding difference equation. Taking λ to be the root largest in absolute value,
and writing the sequence as a1,a2,a3, . . . ,am, . . ., he observed that asmwent to infinity,
am+1/am would approach the value λ. Also, the root smallest in absolute value could be
found by setting λ= 1/µ in (14.22). Bernoulli was quite proud of this result, writing
in a February 20, 1728 letter to Goldbach that even if it were not useful, it was among
the most beautiful theorems on the topic. Euler must have agreed with Bernoulli, since
he devoted a whole chapter of his Introductio of 1748 to finding roots of algebraic
equations by solving difference equations.

Illustrating that his beautiful theorem was in fact useful, Bernoulli showed how
to find the approximate solution of xx = 26. He began by setting x = y + 5 to get
1 = 10y+ yy. Of the two roots of this last equation, he needed the smaller in absolute
value, so he set y = 1/z to obtain z2 = 10z+1. The corresponding difference equation
was an = 10an−1 + an−2, and Bernoulli took the two initial values of the sequence to
be 0 and 1. The difference equation then gave him the sequence 0, 1, 10, 101, 1020,
10301, 104030, . . .. To obtain an approximate value of y, Bernoulli took the ratio of the
seventh and sixth terms of the sequence, obtaining x =√

26 = 5 + 10301/104030 =
5.09901951360. He then computed

√
26 by the usual method and got 5.0990151359.

Bernoulli employed this idea to find the smallest roots of Laguerre polynomials of low
degree. In his work with hanging chains, the roots of these polynomials yielded the
frequencies of the oscillations.

14.5 Lagrange: Nonhomogeneous Equations

In 1759, Lagrange published a method for solving a nonhomogeneous linear differ-
ence equation with constant coefficients and this method can be seen as the analog
of d’Alembert’s method for the corresponding differential equation. Lagrange started
with a third-order equation to illustrate the technique. In brief, let the equation be
y+A,y+B,2y+C,3y =X; set ,y = p and ,p = q so that the equation can be
written as y+Ap+Bq+C,q =X. For the arbitrary constants a and b we have

y+ (A+ a)p+ (B+ b)q− a,y− b,p+C,q =X. (14.24)

Choose a and b such that

,y+ (A+ a),p+ (B+ b),q =,y+ b

a
,p− C

a
,q. (14.25)

Then A+ a = b/a, B + b = −C/a. These equations imply that a satisfies the cubic
a3 +Aa2 + Ba + C = 0. Moreover, by (14.25), equation (14.24) is reduced to the
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first-order equation
z− a,z=X, where (14.26)

z= y+ (A+ a)p+ (B+ b)q. (14.27)

The problem is now reduced to solving (14.26). Suppose it has been solved for each
of the three values a1, a2, a3 of a, obtained from the cubic. Let z1, z2 and z3 be the
corresponding values of z from (14.26). Now we have three linear equations

y+ (A+ a1)p+ (B+ b1)q = z1, y+ (A+ a2)p+ (B+ b2)q = z2,

y+ (A+ a3)p+ (B+ b3)q = z3,

and these can be solved to obtain y = Fz1 +Gz2 +Hz3 for some constants F,G,
andH . Finally, to solve the first-order equation (14.26), Lagrange considered the more
general equation

,y+My =N, (14.28)

where M and N were functions of an integer variable x. He set y = uz to get

u,z+ z,u+Mzu=N. (14.29)

He let u be such that (,u+Mu)z= 0, or u was a solution of the homogeneous part of
(14.28). Thus,

u(x)−u(x− 1)=−M(x− 1)u(x− 1) or u(x)= (1−M(x− 1))u(x− 1).

By iteration,

u(x)= (1−M(x− 1))(1−M(x− 2)) · · ·(1−M(1)).
For this u, equation (14.29) simplified to

z(x)− z(x− 1)= N(x− 1)

u(x− 1)
.

Therefore

z(x)= N(x− 1)

u(x− 1)
+ z(x− 1)= N(x− 1)

u(x− 1)
+ N(x− 2)

u(x− 2)
+·· ·+ N(1)

u(1)
+ z(1).

Laplace later observed that (14.28) could be solved directly by iteration:

y(x)= y(x− 1)+N(x− 1)−M(x− 1)y(x− 1)

= (1−M(x− 1))y(x− 1)+N(x− 1)

=N(x− 1)+ (1−M(x− 1))N(x− 2)+ (1−M(x− 2))y(x− 2) etc.

As Lagrange himself pointed out, this method could obviously be generalized to
a nonhomogeneous equation of any order. Of course, the question of solving the
corresponding algebraic equation of arbitrary degree would be a separate problem.
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Lagrange found another method of solving difference equations, using the device
of the variation of parameters. Again presenting Lagrange’s work in brief, suppose we
have a third-order difference equation

yx+3 +Pxyx+2 +Qxyx+1 +Rxyx = Vx. (14.30)

Let zx, z′x, z
′′
x be three independent solutions of the corresponding homogeneous

equation

yx+3 +Pxyx+2 +Qxyx+1 +Rxyx = 0. (14.31)

The general solution of this equation is Czx +C ′z′x +C ′′z′′x where C, C ′, and C ′′ are
constants. Now supposeCx, C ′

x andC ′′
x are functions of x, determined by the condition

that

yx =Cxzx +C ′
xz

′
x +C ′′

x z
′′
x (14.32)

is a solution of the nonhomogeneous equation. Changing x to x+ 1, we have

yx+1 =Cx+1zx+1 +C ′
x+1z

′
x+1 +C ′′

x+1z
′′
x+1

=Cxzx+1 +C ′
xz

′
x+1 +C ′′

x z
′′
x+1 +,Cxzx+1 +,C ′

xz
′
x+1 +,C ′′

x z
′′
x+1.

Now suppose that Cx, C ′
x, C

′′
x are such that

zx+1,Cx + z′x+1,C
′
x + z′′x+1,C

′′
x = 0. Then

yx+1 =Cxzx+1 +C ′
xz

′
x+1 +C ′′

x z
′′
x+1. (14.33)

If in the equation for yx+2, we again change x to x+ 1, the result is

yx+3 =Cxzx+3 +C ′
xz

′
x+3 +C ′′

x z
′′
x+3 +,Cxzx+3 +,C ′

xz
′
x+3 +,C ′′

x z
′′
x+3.

Thus,
yx+3 =Cxzx+3 +C ′

xz
′
x+3 +C ′′

x z
′′
x+3. (14.34)

We also have an equation for yx+1 resembling the equation for yx . If we make a similar
x→ x+ 1 change in the equation for yx+1, we can require that

zx+2,Cx + z′x+2,C
′
x + z′′x+2,C

′′
x = 0. (14.35)

Multiply equation (14.32) by Rx ; multiply equation (14.33) by Qx ; multiply (14.34)
by Px . Now add the results to (14.35). From (14.30) and the fact that zx, z′x, z

′′
x satisfy

(14.31), it follows that

zx+3,Cx + z′x+3,C
′
x + z′′x+3,C

′
x = Vx.

Consider this last equation together with the two equations

zx+2,Cx + z′x+2,C
′
x + z′′x+2,C

′′
x = 0,
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zx+1,Cx + z′x+1,C
′
x + z′′x+1,C

′′
x = 0.

Recall that we required,C to satisfy these last two equations. Thus, we have three linear
equations yielding ,Cx, ,C ′

x , and ,C ′′
x . Suppose we obtain ,Cx =Hx, ,C ′′

x =H ′
x ,

and ,C ′′
x = H ′′

x . These first-order equations can be solved for Cx, C ′
x , and C ′′

x , and
hence we have yx from (14.32).

As an example of the method of variation of parameters, Lagrange considered a
nonhomogeneous equation with constant coefficients. In this case, briefly, zx will be of
the formmx for some constantm. Suppose we have a second-order equation for which
zx =mx and z′x =mx1 . Then the equations for ,Cx and ,C ′

x are

mx+1,Cx +mx+1
1 ,C ′

x = 0,

mx+2,Cx +mx+2
1 ,C ′

x = Vx.
Solving for ,Cx and ,C ′

x , we have

,Cx = Vx

mx+1(m−m1)
,

,C ′
x =

Vx

mx+1
1 (m1 −m)

; therefore,

Cx = Vx(m
x − 1)

(m− 1)(m−m1)mx
+C0 and C ′

x =
Vx(m

x
1 − 1)

(m1 − 1)(m1 −m)mx1
+C ′

0.

14.6 Laplace: Nonhomogeneous Equations

The method of Laplace for solving a non-homogeneous equation differed from the
variation of parameters of Lagrange, but was analogous to Lagrange’s method for
equations with constant coefficients (14.25). Suppose the equation to be

yx+n+Pxyx+n−1 +Qxyx+n−2 +·· ·+Txyx+1 +Uxyx = Vx.
Laplace assumed that there existed functions px and qx such that yx+1 = pxyx + qx.
This implied

yx+2 = px+1yx+1 + qx+1 · · · ,
yx+n = px+n−1yx+n−1 + qx+n−1.

Laplace introduced functions α1, α2, . . . ,αn−1 to obtain

yx+n = px+n−1yx+n−1 + qx+n−1

= (px+n−1 −αn−1)yx+n−1 + (αn−1px+n−2 −αn−2)yx+n−2

+ (αn−2px+n−3 −αn−3)yx+n−3 +·· ·+α1pxyx

+ qx+n−1 +αn−1qx+n−2 +·· ·+α1qx.
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He then chose α1, α2, . . . ,αn−1 such that

Px = px+n−1 −αn−1,

Qx = αn−1px+n−2 −αn−2,

Rx = αn−2px+n−3 −αn−3,

· · ·
Tx = α2px+1 −α1,

Ux = α1px.

Therefore, px satisfied

n−1∏
i=0

px+i = Px
n−2∏
i=0

px+i +Qx

n−3∏
i=0

px+i +·· ·+pxTx +Ux;

qx satisfied an equation of order m− 1:

Vx = qx+n−1 +αn−1qx+n−2 +·· ·+α1qx.

By successive reduction, qx could be determined, although the equation satisfied by px
was more difficult to handle.

14.7 Exercises

1. In Proposition VII for recurrent series of the Doctrine of Chances, de Moivre
showed that if

a0 + a1x+ a2x
2 +·· · = B(x)/(1−f x+gx2),

with B(x) a linear function, then the two series
∞∑
n=0

a2nx
2n and

∞∑
n=0

a2n+1x
2n+1

sum to a rational function with denominator 1 − (f 2 − 2g)x2 + g2x4. If the
denominator of the original series was 1−f x+gx2−hx3, then the denominator
of the two series would be

1− (f 2 − 2g)x2 − (2f h−g2)x4 −h2x6.

Work out the details by following de Moivre’s method described in the text.
Extend the results to the case where the original series is divided into three parts.
See de Moivre (1967).

2. Simpson showed that if p, q, and r were the three cube roots of unity and
f (x)=∑∞

n=0 anx
n, then p+ q+ r = p2 + q2 + r2 = 0, p3 + q3 + r3 = 3, and

(f (px)+f (qx)+f (rx))/3 =
∞∑
n=0

a3nx
3n.
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He also explained how to generalize this to sum
∑∞

n=0 amn+j x
mn+j , j = 0,

1, . . . ,m− 1 by using mth roots of unity. Prove Simpson’s result and obtain the
generalization. Compare Simpson’s results with de Moivre’s in exercise 1. See
Simpson (1759). Thomas Simpson (1710–1761) was a self-taught mathemati-
cian who contributed to the popularization of mathematics and other intellectual
pursuits during that period in England. He was an editor of the Ladies Diary and
was one of the earliest mathematics professors at the Royal Military Academy
at Woolwich. See the excellent account by Clarke (1929).

3. In Proposition IX for recurrent series of his Doctrine, de Moivre stated that if∑
anx

n and
∑
bnx

n have the differential scales 1−f x+gx2 and 1−mx+px2,
respectively, then the differential scale of

∑
anbnx

n is

1−fmx+ (f 2p+m2g− 2gp)x2 −fgmpx3 +g2p2x4.

Prove this result. Compare with Hadamard’s theorem on the multiplication of
singularities in Hadamard (1898). See de Moivre (1967).

4. Solve the recurrence relation an+5 = an+4 + an+1 − an, with a0 = 1,a1 = 2,
a2 = 3,a3 = 3,a4 = 4 by recurrent series (generating function) as well as by
letting ax = λx . See Euler (1988), p. 195.

5. Use recurrent series to find the largest root of the equation y3 −3y+1 = 0. See
Euler (1988), p. 288.

6. Find the smallest root of y3 −6y2 +9y−1= 0. This value is 2(1− sin 70◦). See
Euler (1988), p. 290.

14.8 Notes on the Literature

For de Moivre’s work on recurrent series, see de Moivre (1967), pp. 220–229. Euler’s
treatment of this topic can be found in Euler (1988), pp. 181–203. Daniel Bernoulli’s
1728 paper on recurrent series is contained in D. Bernoulli (1982–1996), vol. 2,
pp. 49–64. U. Bottazzini has discussed D. Bernoulli’s early mathematical work, includ-
ing recurrent series, and put it into historical perspective; for this, see D. Bernoulli
(1982–1996), vol. 1, pp. 133–189. Lagrange’s 1759 paper on difference equations was
reprinted in Lagrange (1867–1892), vol. 1, pp. 23–36; his discussion of the method
of variation of parameters can be found in vol. 4, pp. 151–60. Hald (1990) gives a
fine treatment of the history of difference equations in the eighteenth century, provid-
ing references to the significant papers of Laplace. For Euler’s letter to Stirling, see
Tweddle (1988), pp. 141–154, especially p. 141. Stirling (2003), pp. 88–91 contains
his proposition 14 and the examples.
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Differential Equations

15.1 Preliminary Remarks

In the seventeenth century, before the development of calculus, problems reducible to
differential equations began to appear in the study of general curves and in naviga-
tion. Interestingly, these differential equations were often related to the logarithm or
exponential curve. For example, Harriot obtained the logarithmic spiral by projecting
the loxodrome onto the equatorial plane. And in 1638, I. F. de Beaune (1601–1652)
posed to Descartes the problem of finding a curve such that the subtangent at each point
was a constant. Note that the problem actually leads to the simple differential equation
dy

dx
= y

a
. Descartes replied with a solution involving the logarithmic function, though

he did not explicitly recognize it. In 1684, Leibniz gave the first published solution by
explicitly stating the problem as a differential equation.

Newton understood the significance of the differential equation as soon as he started
developing calculus. In his October 1666 tract on calculus, written a year after he
graduated from Cambridge, he wrote

If two Bodys A&B, by their velocitys p&q describe ye [the] lines x and y. & an Equation bee
given expressing ye relation twixt one of ye lines x, & ye ratio q

p
of their motions q & p; To find

the other line y. Could this ever bee done all problems whatever might be resolved.

So Newton’s problem to solve all problems was: Given f
(
x,

dy

dx

) = 0, find y. In a
treatise prepared five years later, Newton gave a classification of first-order differential
equations dy

dx
= f (x,y).

In the 1660s, Isaac Barrow and James Gregory too dealt with differential equations,
arising from geometric problems. Gregory considered the question of determining a
curve whose area of surface of revolution produced a given function. This translates to
the differential equation

y2

(
1+

(
dy

dx

)2
)
= f (x),

260
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where f (x) is the given function. In connection with this, Barrow gave a geometric
solution for the differential equation

y

(
1+ dy

dx

)
= a ,

by expressing the solution in terms of areas under hyperbolas. Geometrically, the prob-
lem would be to find a curve y = f (x) such that the sum of the ordinate y and the
subnormal yy ′ is a constant.

By the 1690s, it was clear to Newton, Leibniz, the two Bernoullis, and the other
mathematicians with whom they corresponded that differential equations were inti-
mately connected with curves and their properties. If they knew some property of a
geometric object, such as the subtangent or curvature, then the problem of finding the
curve itself usually led them to a differential equation. They had begun to recognize or
get a glimpse of some general methods of solving these equations, such as separation
of variables and multiplication of the equation by an integrating factor.

Newton encountered differential equations in the geometrical and astronomical prob-
lems of the Principia; in his De Quadratura Curvarum of 1691, Newton once again
emphasized the importance of differential equations, or fluxional equations, discussing
a number of special methods for solving them, as well as the general separation of
variables method. He wrote, “Should the equation involve both fluent quantities, but
can be arranged so that one side of the equation involves but a single one together with
its fluxion and the other the second alone with its fluxions.” The term separation of vari-
ables was first used by Johann Bernoulli in his May 9, 1694 letter to Leibniz and then
in a related paper published in November 1694. Bernoulli also noted that there were
important equations unable to be solved by this method, such as aady = xxdx+yydx.
Observe that this is an equation between the differentials dx and dy; it is hence given
the name “differential equation.” We would now write it as a2dy/dx = x2 + y2, a
particular case of Riccati’s equation, to which we will return later.

The first person to discover the integrating factor technique seems to be the Swiss
mathematician Nicolas Fatio de Duillier (1664–1753). In 1687, he mastered the ele-
ments of differential and integral calculus by his own unaided efforts. Since so little on
this subject had been published, Fatio’s achievement was remarkable. He exchanged
several letters on calculus with Huygens, to whom in February 1691 Fatio first com-
municated his method of multiplying an equation by xµyν to possibly put it into
integrable form. Huygens in turn wrote Leibniz concerning Fatio’s method for solving
the differential equations

−2xydx+ 4x2dy− y2dy = 0 and − 3a2ydx+ 2xy2dx− 2x2ydy+ a2xdy = 0.

Observe that, after multiplying across by y−5, the first equation becomes the dif-
ferential of −x2y−4 + 1

2y
−2 = c. And the second equation, when multiplied by x−4,

can be integrated to yield a2x−3y − x−2y2 = c. Fatio later told Newton about his
method, and Newton included it in his De Quadratura, giving credit to Fatio. The
technique, as Newton explained it, was to multiply f1(x,y)ẋ + f2(x,y)ẏ = 0 by
xµyν to get M(x,y)ẋ +N(x,y)ẏ = 0, where M and N were polynomials or even
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algebraic functions of x and y. The basic idea was to compute ∂

∂y

∫
M(x,y)dx and

choose µ and ν so that this quantity became equal toN(x,y). If this was possible, then∫
M(x,y)dx = c was the solution of the differential equation. Newton even extended

this method to second, third- and higher-order differential equations. Regrettably,
Newton did not include these results on differential equations in the published version
of De Quadratura; they were rediscovered by Leibniz and the two elder Bernoullis. It
should be noted that Newton’s acknowledgment of Fatio’s contribution was unusual; it
showed the depth of their friendship at that time. Unfortunately, it appears that in 1693,
this friendship was abruptly and emotionally terminated.

In the tenth of his 1691–92 lectures on integral calculus to l’Hôpital, Johann Bernoulli
gave an ingenious application of integrating factors to solve the separable equation
axdy−ydx = 0. He multiplied the equation by ya−1/x2 to obtain aya−1

x
dy− ya

x2 dx = 0.
Since the left-hand side was the differential of ya/x, integration yielded ya/x = c.
Note that, after separation of variables in the original differential equation, one gets a
logarithm on each side. But it seems that at that time Bernoulli found some difficulty
in working with logarithms in an analytic setting and found the solution by a method
avoiding the logarithm. It was only after an exchange of letters with Leibniz that
Bernoulli understood logarithms; in fact, in 1697 he published a paper on exponentials
and logarithms.

In the 1690s, Leibniz and the Bernoullis also learned to handle first-order linear
differential equations. In a 1695 paper, Jakob Bernoulli raised the question of how to
solve the nonlinear equation ady = ypdx+bynq dx where p and q were functions of
x and a, b were constants. In response, Leibniz as well as Johann Bernoulli observed
that the equation could be linearized by the substitution v = y1−n. Bernoulli found an
interesting method, applicable to linear equations as well, for solving the equation by
setting y = mz. This technique showed that in the case of linear equations, m could
be chosen to be e−

∫
pdx , the reciprocal of the integrating factor. Three decades later, in

1728, Euler wrote a paper in which he solved the linear equation by making use of an
integrating factor, making due reference to his teacher Bernoulli.

The theory of linear differential equations with constant coefficients was developed
much more slowly than one might expect. Recall that in 1728 Daniel Bernoulli solved
linear difference equations with constant coefficients by substituting xn in the difference
equation to obtain an algebraic equation in x, whose solutions x1,x2, . . . determined
the possible values of x. The general solution was then a linear combination c1x

n
1 +

c2x
n
2 + ·· · of the special solutions. Yet it took Euler nearly a decade to perceive that

he could solve the corresponding differential equation in a similar way. For more
discussion on the alternating development of difference and differential equations, see
the chapter on difference equations.

The search for a general solution for a linear differential equation with constant
coefficients seems to have started with Daniel Bernoulli’s May 4, 1735 letter to Euler,
describing his work on the transverse vibration of a hanging elastic band fixed at one
end to a wall. Bernoulli wrote that he found the equation for the curve of vibration to be
nd4y = ydx4, n a constant. He requested Euler’s help in solving the equation, noting
that if p divided m, then the solutions of αdpy = ydxp were contained in those of
ndmy = ydxm. It followed, he observed, that the logarithm satisfied both his equation
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and n1/2ddy = ydx2, but that it was not general enough for his purpose. Euler too
was unable to solve the equation except as an infinite series. Commenting on this,
C. Truesdell remarked, “These are two great mathematicians who have just shown
themselves not fully familiar with the exponential function; we must recall that this
is 1735!”

In his Principia, Newton gave a full description of his geometric treatment of sim-
ple harmonic motion. In a 1728 paper on simple harmonic motion, Johann Bernoulli
gave a more analytic treatment, solving the second-order linear differential equation
d2y/dx2 =−y by reducing it to a first-order equation; Hermann did similar work in a
1716 paper in the Acta Eruditorum. These are the earliest treatments of simple harmonic
motion by the integration of the differential equation describing this motion.

In a May 5, 1739 letter to Johann Bernoulli, Euler wrote that he had succeeded in
solving the third-order equation a3dy3 = ydx3, where dx was assumed constant. Note
that this meant that x was the independent variable. Euler gave the solution as

y = bex/a+ ce−x/2a. Sinum Arcus
(f + x)√3

2a
.

He gave no indication of how he found this, but he probably did not use a general
method, because in his letter of September 15, 1739 to Bernoulli, he wrote that he had
recently found a general method for solving in finite terms the equation

y+ a dy
dx

+ bddy
dx2

+ cd
3y

dx3
+ d d

4y

dx4
+ ed

5y

dx5
+ etc. = 0.

He expressed surprised that the solution depended on the roots of the algebraic equation

1− ap+ bp2 − cp3 + dp4 − ep5 + etc. = 0.

As an example, he explained that the solution of Daniel Bernoulli’s equation d4y =
k4ydx4 was determined by the algebraic equation 1− k4p4 = 0. Thus, the solution of
the differential equation emerged as

y =Ce−x/k+Dex/k+E sin(x/k)+F cos(x/k).

In a letter of January 19, 1740, Euler mentioned that he could also solve

0 = y+ ax dy
dx

+ bx2 d
2y

dx2
+ cx3 d

3y

dx3
+·· · . (15.1)

Johann Bernoulli replied to Euler in a letter of April 16, 1740, that he too had solved
(15.1). He reduced its order by multiplying it by xp and choosing p appropriately.
He remarked that he had actually done this before 1700 and also wrote that he had
found a special solution similar to that found by Euler for the equation with constant
coefficients. However, he was puzzled as to how the imaginary roots could lead to sines
and cosines. For about a year, he discussed this with Euler. Finally, Euler pointed out
that the equation ddy+ydx2 = 0 had the obvious solution y = 2cosx, also taking the
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form y = ex√−1 + e−x√−1. Bernoulli ended his letter by asking whether it was possible
to reduce the equation

yxx dx2 + addy = 0

(
i.e., a

d2y

dx2
+ x2y = 0

)
to a first-order equation. Euler answered that by the substitution y = e∫ zdx , the equation
reduced to

xxdx+ adz+ azzdx = 0 (15.2)

and noted that this was a particular case of the Riccati equation dy = yydx+ axmdx
on which he had already written papers.

Interestingly, in a paper on curves and their differential equations, published
46 years earlier, Bernoulli stated an equation almost identical to (15.2) and wrote that he
had not solved it; he noted that, of course, separation of variables would not work. His
older brother Jakob made persistent efforts to solve the equation and finally succeeded
in 1702. In a letter to Leibniz dated November 15, 1702, some of which was devoted to
the relation of the sum

∑
1/n2 with integrals of the form

∫
xl ln(1+x)dx, he mentioned

in passing that he could solve dy = yy dx+xx dx by reducing it to ddy = x2ydx2 and
then applying separation of variables. When Leibniz asked for details, Jakob provided
them in a letter of October 3, 1703. In modern notation, he defined a new function z by
the equation y =− 1

z

dz

dx
to reduce

dy

dx
= x2 + y2 to the form

d2z

dx2
+ x2z= 0 .

He solved this second order linear equation by an infinite series for z from which he
obtained y as a quotient of two infinite series. After performing the division of one
series by the other, his result was

y = x3

3
+ x7

2 · 2 · 7 + 2x11

3 · 3 · 3 · 7 · 11
+ 13x15

3 · 3 · 3 · 3 · 5 · 7 · 7 · 11
+·· · . (15.3)

Now Newton would have been satisfied with this infinite series solution, whereas
Leibniz and the Bernoullis had a different general outlook. They strove to find solutions
in finite form, using the known elementary functions. Perhaps this may explain why
mathematicians in the Leibniz-Bernoulli school took scant note of Jakob Bernoulli’s
new method for dealing with the Riccati equation. However, Euler himself later
rediscovered this method and generalized it.

Jacopo Riccati (1676–1754) studied law at the University of Padua, but was encour-
aged to pursue mathematics by Stephano degli Angeli, who had earlier taught James
Gregory. Riccati became interested in the equation named after him upon studying
Gabriele Manfredi’s treatise De Constructione Aequationum Differentialium in which
he considered the equation

nxxdx−nyydx+ xxdy = xydx,
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a special case of what is now known as the generalized Riccati equation

dy

dx
= P +Qy+Ry2 ,

where P ,Q, and R are functions of x. Around 1720, Riccati and others worked on the
special case

axmdx+ yydx = bdy , (15.4)

and Riccati attempted a solution using separation of variables. Amusingly, Riccati
corresponded on this topic with all the then living Bernoulli mathematicians: Niklaus I,
Johann, and his two sons Niklaus II and Daniel. The latter two determined by different
methods a sequence of values of m for which the equation could be solved in finite
terms. Riccati published his work in 1722 with a note by D. Bernoulli, who gave the
announcement of the solution of the Riccati equation (15.4) as an anagram.About a year
later, without reference to his anagram, D. Bernoulli published details of his solution.
Briefly, his result was that the equation could be solved in terms of the logarithmic,
exponential and algebraic functions when n= −4m

2m±1 , that is, when n was a number in
the sequence

0;−4

1
,−4

3
;−8

3
,−8

5
;−12

5
,−12

7
;−16

7
,−16

9
, · · · .

His method was to show that the substitutions x
n+1

n+1 =u,y=− 1
v

in the equationdy/dx=
axn+ by2 produced another equation of the same form, but with n changed to − n

n+1 .
Then again, the substitutions x = 1

u
, y =− u

b
− vu2 also produced another equation of

the same form, but with n changed to −n− 4. Now when n= 0, the equation was the
integrable dy/dx = a+by2. It followed that when n=−4, the equation would still be
integrable, and the same was true when n=− −4

−4+1 =− 4
3 . The result was the sequence

given by Daniel Bernoulli. Note that when m→∞, n= −4m
2m±1 →−2; it turns out that

when n=−2, the equation is still integrable. In that case, dy/dx = a/x2 +by2 and the
substitution y = v/x produces the separable equation

x
dv

dx
= a+ v+ bv2 .

Euler published many papers on the Riccati equation. In the 1730s, he elucidated
its relation to continued fractions, and solved it as a ratio of two infinite series in the
manner of Jakob Bernoulli. Euler’s method here also demonstrated that these series
would be finite for those values ofm defined by Daniel Bernoulli and his brother. In the
1760s, Euler demonstrated that the generalized Riccati equation could be transformed
to a linear second-order equation, and conversely. He also showed that if one particular
solution, y0, of the generalized Riccati equation were known, then, by the substitution
y = y0 + 1/v, Riccati’s equation could be reduced to the linear equation

dv

dx
+ (Q+ 2Ry0)v+R = 0 . (15.5)
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On the other hand, if two solutions, y0 and y, were known, then w = (y−y0)/(y−y1)

satisfied the simpler equation

1

w

dw

dx
=R(y0 − y1) . (15.6)

Interestingly, in 1841, Joseph Liouville proved the converse of D. Bernoulli’s the-
orem on the Riccati equation. Liouville was very interested in the general problem of
integration in finite terms, using the elementary and algebraic functions, a topic now
seeing renewed interest in the area of symbolic integration. Liouville proved that if
dy/dx = axn+by2 could be solved in finite terms, then n had to be one of the numbers
determined by Bernoulli.

In a 1753 paper, Euler solved nonhomogeneous linear equations by the technique of
multiplying the equation by an appropriate function to reduce its order. Later, in 1762,
Lagrange found another method for reducing the order of such an equation, leading
him to the concept of an adjoint, a label apparently first used in this context by Lazarus
Fuchs about a century later. Briefly, Lagrange took the differential equation to be

Ly+Mdy

dt
+N d

2y

dt2
+·· · = T , (15.7)

where L,M,N,. . . ,T were functions of t . He then multiplied the equation by some
function z(t) and integrated by parts. Since∫

Mz
dy

dt
dt =Mzy−

∫
d

dt
(Mz)y dt ,∫

Nz
d2y

dt2
dt =Nzdy

dt
− d

dt
(Nz)y+

∫
d2

dt2
(Nz)y dt,

and so on, the original equation was transformed to

y

(
Mz− d

dt
(Nz)

)
+ dy

dt
Nz+·· ·

+
∫ (

Lz− d

dt
(Mz)+ d2

dt2
(Nz)+·· ·

)
ydt =

∫
T zdt . (15.8)

Lagrange then took z to be the function satisfying

Lz− d

dt
(Mz)+ d2

dt2
(Nz)−·· · = 0 . (15.9)

This was the adjoint equation, and if z satisfied it, then the expression within parentheses
in the integral on the left-hand side of (15.8) would vanish. The remaining equation
would then be of order n−1. In this way, the order of the equation (15.7) was reduced
by one, and the process could be continued. When Lagrange applied this procedure
to the adjoint equation (15.9) to reduce its order, he obtained the homogeneous part
of the equation (15.7). Thus, he saw that the adjoint of a homogeneous equation was,
in fact, that equation itself. Lagrange also discovered the general method of variation
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of parameters in order to obtain the solution of a nonhomogeneous equation, once the
solution of the corresponding homogeneous equation was known. Lagrange did this
work around 1775, but in 1739, Euler applied this same method to the special equation
d2y

dx2 + ky =X.
We have seen that in his 1743 paper, Euler introduced the concepts of general and

particular solutions of linear equations. By choosing appropriate constants in the general
solution, any particular solution could be obtained. Taylor in 1715 and Clairaut in
1734 found solutions for some special nonlinear equations, solutions not producible
by choosing constants in the general solutions. Of one solution, Taylor remarked that
it was singular, and so they were named. Euler also studied singular solutions; he
found it paradoxical that they could not be obtained from the general solutions. He
first encountered such a situation in the course of his study of mechanics in the 1730s.
In his paper of 1754, he posed a number of geometric problems leading to singular
solutions, commenting that the paradox of singular solutions was not a mere aberration
of mechanics.

It appears that the French mathematician Alexis Claude Clairaut (1713–1765) was
the first to give a geometric interpretation of a singular solution; this appeared in his
1734 paper on differential equations. He considered the equation

y = (x+ 1)
dy

dx
−
(
dy

dx

)2

≡ (x+ 1)p−p2 .

Note here that the more general solution y = xy ′ + f (y ′) is now called Clairaut’s
equation. Briefly describing his solution, we differentiate with respect top and simplify
the equation to get

dp (x+ 1− 2p)= 0 .

The first factor gives p = c, a constant, so that y = c(x + 1)− c2. The second factor
givesp= (x+1)/2 so that y= (x+1)2/4 is a solution. Now the envelope of the family
of straight lines y = c(x+1)−c2 is found by first eliminating c from this equation and
its derivative with respect to c, given by 0 = x + 1− 2c. Thus, the envelope is given
by y = (x+1)2/4 and in this case, the singular solution y = (x+1)2/4 is the envelope
of the family of integral curves.

D’Alembert, Euler, and Laplace also studied singular solutions. These efforts culmi-
nated in the general theory developed in the 1770s by Lagrange. Considering equations
of the form

f

(
x,y,

dy

dx

)
= an(x,y)

(
dy

dx

)n
+·· ·+ a1(x,y)

dy

dx
+ a0(x,y)= 0 ,

he gave two approaches to the study of singular solutions. In the second of these
methods, he differentiated the equation with respect to x to obtain the expression for
the second derivative

d2y

dx2
=−∂f/∂x+ (∂f/∂y)dy/dx

∂f/∂y ′
.
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Lagrange asserted that at the points of the singular solutions, the numerator and the
denominator both vanish. Hence, both the equations

∂f

∂y ′
= 0 and

∂f

∂x
+ ∂f

∂y

∂y

∂x
= 0

had to be satisfied along the singular solutions. Note that these relations are true for
Clairaut’s singular solution. In fact, the second equation is identically true in that case.

In 1835, Cauchy was the first to treat the question of the existence of a solution of
a differential equation. Earlier mathematicians had presented methods for solving the
equation on the assumption that solutions existed. Cauchy worked with a system of first-
order differential equations; given in its simplest form with only one equation, his result
can be stated: Suppose f (x,y) is analytic in the variables x and y in the neighborhood
of a point (x0,y0); then the equation dy/dx = f (x,y) has a unique analytic solution
y(x) in a neighborhood of x0 such that y(x0)= y0. Cauchy’s first proof of this theorem
had gaps and in the 1840s, he published papers giving a more detailed exposition of the
result. The French mathematicians C. Briot and J. Bouquet worked out a clearer and
more complete presentation of this method, called the method of majorant. For a brief
description of this method, take x0 = y0 = 0 and suppose

f (x,y)=
∑

aklx
lyk for |x| ≤A, |y| ≤ B.

Also, let M be the maximum of |f (x,y)| in this region. Then the function

F(x,y)= M

((1− x/A)(1− y/B)) is such that if

F(x,y)=
∑

Aklx
lyk then |akl| ≤ |Akl|.

The differential equation dy/dx =F(x,y) can now be solved explicitly. First, it can be
shown that the coefficients of the formal power series solution of dy/dx = f (x,y) are
bounded by the coefficients of the explicit solution of dy/dx = F(x,y), and this fact
may then be used to show that the formal solution is an actual solution and is unique.
In the 1870s, Kovalevskaya showed that this method could be extended to a certain
system of partial differential equations. The paper containing this result formed a part
of her doctoral dissertation, supervised by Weierstrass.

15.2 Leibniz: Equations and Series

Leibniz’s approach, as contrasted with Newton’s, called for only occasional use of infi-
nite series. Nevertheless, Leibniz discussed the connection between series and calculus;
he derived series for elementary functions in several ways. In a paper of 1693, referring
to Mercator and Newton, he derived the logarithmic and exponential series. As early
as 1674, while working his way toward his final conception of the calculus, Leibniz
discovered the series for exp(x). He started with the series

y = x+ x2

2! +
x3

3! + · · · ,
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and integrated to get ∫ x

0
y dx = x2

2! +
x3

3! +
x4

4! + · · · = y− x. (15.10)

Note that at the time Leibniz did this calculation, he was still using the “omn.” notation
for the integral. By taking the differential of both sides, he obtained

ydx = dy− dx or dx = dy

y+ 1
.

Now Leibniz knew from the work of N. Mercator that this last equation implied
x = ln(y+ 1) so that

exp(x)= 1+ y = 1+ x+ x2

2! +
x3

3! + · · · .

Although Leibniz did not explicitly write the last equation, he clearly understood the
relation of the series to the logarithm.

Leibniz wrote a letter to Huygens, dated September 4/14, 1694 explaining his new
calculus techniques. Here note that Leibniz gave two dates because of the ten-day
difference between the Julian and Gregorian calendars during that period. Huygens, at
the close of an outstanding scientific career, was still eager to learn of the new advances
in mathematics. He had already glimpsed the power of calculus from the work of Leibniz
and the two Bernoullis on the catenary problem. Leibniz’s first example for Huygens
was the derivation of the infinite series for cosx from its differential equation. He started
by observing that if y was the arc of a circle of radius a, and x denoted cosy, then

y = a
∫

dx√
a2 − x2

, (15.11)

and dy = a dx√
a2 − x2

, (15.12)

or
√
a2 − x2 dy = a dx. (15.13)

Note here that the integral (15.11) was Leibniz’s definition of arcsine or arccosine, as
given in his 1686 paper. We follow Leibniz almost word for word. He set

v =
√
a2 − x2 (15.14)

so that vdy = a dx. (15.15)

By differentiating this equation he found

vddy+ dvdy = a ddx. (15.16)

Leibniz then assumed that the arcs y increased uniformly, that is, dy was a constant or
ddy was zero. Recall that in our terms this meant that he was taking y as the independent
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variable and x and v as functions of y. Thus, he had ddy = 0, and equation (15.16)
reduced to

dvdy = a ddx. (15.17)

To eliminate v, he observed that from (15.14), v2 = a2 − x2, and therefore
vdv =−x dx or

dv =−x dx
v
. (15.18)

By (15.15) and (15.18),

dv =−x dy
a

; (15.19)

then, by (15.17) and (15.19), he arrived at the required differential equation,

−x dydy = a2 ddx. (15.20)

In order to derive the series for a cos(y/a) from this equation, Leibniz set

x = a+ by2 + cy4 + ey6 +·· · .
He substituted this in (15.20) and equated coefficients. After a detailed calculation, he
arrived at

x = 1

1
a− 1

1 · 2 · a y
2 + 1

1 · 2 · 3 · 4 · a3
y4 − 1

1 · 2 · 3 · 4 · 5 · 6 · a5
y6 + etc.

15.3 Newton on Separation of Variables

To get an idea of Newton’s thinking and notation, we consider one simple example on
separation of variables from De Quadratura. He began with the equation −axẋy2 =
a4ẏ+ a3xẏ. He separated the variables and integrated to get(

aa

a+ x − a
)
ẋ = a3

y2
ẏ ,

and then
aa

a+ x − ax =−a
3

y
.

In Newton’s notation, the square box denoted an integral. Sometimes, he replaced the
box by the letterQ, denoting the Latin expression for area. He had no special notation
for the logarithm and merely referred to it as the area of the hyperbola with ordinate
aa/(a + x) and abscissa x. He then rewrote the last equation, omitting the constant
term, as an infinite series

a2

y
= 1

2
xx− x3

3a
+ x4

4aa
−·· · .
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“Or again, if c2 is any given quantity, then is

a2

y
= c2 + 1

2
xx− 1

3

x3

a
+ 1

4

x4

aa
· · ·

the equation to be found.” Newton illustrated Fatio’s method of integrating factors,
starting with

9xẋy− 18ẋy2 − 18xyẏ+ 5x2ẏ = 0 . (15.21)

Applying Fatio’s technique, he multiplied the equation by xµyν to get

9ẋxµ+1yν+1 − 18ẋxµyν+2 − 18xµ+1yν+1ẏ+ 5xµ+2yνẏ = 0 .

He then integrated with respect to x the terms forming the coefficient of ẋ to obtain

9

µ+ 2
xµ+2yν+1 − 18

µ+ 1
xµ+1yν+2 +g .

The fluxion of this expression would then reproduce the terms containing ẋ, but the
terms with ẏ would be given by

9(ν+ 1)

µ+ 2
xµ+2yνẏ− 18(ν+ 2)

µ+ 1
xµ+1yν+1ẏ .

For this to agree with (15.21), Newton required that 9(ν+1)
µ+2 = 5 and ν+2

µ+1 = 1; or that
µ= 5/2 and ν = 3/2. Hence, with g a constant, the solution of the fluxional equation
was

2x9/2y5/2 − 36

7
x7/2y7/2 +g = 0 .

15.4 Johann Bernoulli’s Solution of a First-Order Equation

We have seen that quite early in the study of differential equations, mathematicians
noticed that separation of variables and integrating factors were applicable in many
special situations. At the same time, they observed that there were simple first-order
equations to which these methods could not be directly applied. Jakob Bernoulli, in
the November 1695 issue of the Acta Eruditorum, posed the problem of solving the
differential equation

a dy = ypdx+ bynq dx, (15.22)

where p and q were functions of x and a was a constant. In 1696, Leibniz noted that
this problem could be reduced to a linear equation, though he did not give details. A
year later, Johann Bernoulli wrote that y = v1/1−n would reduce the equation to the
linear equation

1

1−na dv = vpdx+ bq dx. (15.23)
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However, his alternative method was to take y to be a product of two new variables
so that the extra variable could be appropriately chosen. Thus, he set y = mz so that
dy =mdz+ zdm and equation (15.22) would take the form

azdm+ amdz=mzpdx+ bmnznq dx. (15.24)

He then set amdz=mzpdx or

adz : z= pdx. (15.25)

Hence, z could be found in terms of x. Bernoulli denoted this function by ξ . In the
notation developed by Euler in the late 1720s, one would write ξ = c 1

a

∫
pdx or e

1
a

∫
pdx .

Note that Euler changed the c to e in the 1730s. Equation (15.24) was then reduced to

azdm= bmnznq dx or aξ dm= bmnξnq dx

or am−n dm= bξn−1q dx. (15.26)

After integration, he had

a

−n+ 1
m−n+1 = b

∫
ξn−1q dx. (15.27)

In 1728, Euler made use of the integrating factor suggested by Bernoulli’s method
to solve nonhomogeneous linear equations of the first order. The specific equation he
faced was

dz+ 2zdt

t − 1
+ dt

tt − t = 0.

He found the integrating factor by taking the exponential of the integral of the coefficient
of z. So he multiplied the equation by c2

∫
dt/(t−1)= (t−1)2 and then integrated to obtain

the solution

(t − 1)2z+
∫
t − 1

t
dt = a.

In the general situation, this would require the solution of dy

dx
+py = q; multiplying by

e
∫
pdx , Euler wrote

d

dx
(ye

∫
pdx)= qe

∫
pdx

and hence y = e−
∫
pdx

∫
qe

∫
pdx dx.

15.5 Euler on General Linear Equations with Constant Coefficients

Euler seems to have been the first mathematician to apply linear superposition of spe-
cial solutions to obtain the general solution of a linear differential equation. One may
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contrast this with the method employed by Johann Bernoulli to solve the equation for
simple harmonic motion,

n2a2 d
2x

dy2
= a− x.

Note that we have slightly modernized Bernoulli’s notation; he wrote the equation as

nnaaddx : dy2 = a− x.

Note also that dy2 stands for (dy)2. Bernoulli multiplied the equation by dx (or dx/dy)
and integrated to get

n2a2

2

(
dx

dy

)2

= ax− 1

2
x2.

Here observe that Bernoulli used
∫
dxddx = 1

2 (dx)
2; next, he had

n

∫
a dx√

2ax− x2
=

∫
dy = y, or y = na arcsin

x− a
a

+C.

Bernoulli presented his solution in this form with no mention of linear superposition of
particular sine and cosine solutions. In 1739, Euler considered an equation of the form

0 =Ay+B dy
dx

+Cd
2y

dx2
+Dd

3y

dx3
+·· ·+N d

ny

dxn
(15.28)

and observed that if y = u was a solution, then so was y = αu, with α a constant.
Moreover, if n particular solutions y = u,y = v, . . . could be found, then the gen-
eral solution would be y = αu+ βv + ·· · . To obtain these special solutions, he took
y = e∫ pdx ; Euler then wrote out the derivatives of y:

y = e
∫
pdx

dy

dx
= e

∫
pdxp

d2y

dx2
= e

∫
pdx

(
pp+ dp

dx

)
d3y

dx3
= e

∫
pdx

(
p3 + 3p

dp

dx
+ d2p

dx2

)
d4y

dx4
= e

∫
pdx

(
p4 + 6pp

dp

dx
+ 4p

d2p

dx2
+ d3p

dx3

)
.

When these values were substituted in the differential equation, the expression would
be simplest when p was a constant, for in that case the derivatives of p would vanish;
p would then satisfy the algebraic equation

0 =A+Bz+Czz+Dz3 +·· ·+Nzn .
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If z= s/t was a root of this equation, then s− tz= 0 satisfied the nth-degree algebraic
equation, and the solution y = αesx/t of the differential equation

sy− t dy
dx

= 0

also satisfied the nth-order differential equation. When there was a repeated root, so
that (s− tz)2 = ss− 2stz+ t tzz= 0 was a factor of the nth-degree polynomial, then
there would be a corresponding factor

ssy− 2st
dy

dx
+ t t ddy

dx2
= 0

of (15.28). To solve this second-order equation, Euler set y = esx/tu to find that u
satisfied

ddu

dx2
= 0 .

Thus, u = αx + β and y = esx/t (αx + β). Similarly, when there were three repeated
roots, then y = esx/t (αx2 + βx + γ ). In the general case where a root was repeated
k times, the solution would turn out to be esx/t times a general polynomial of degree
k − 1. In 1743, Euler then considered complex roots, making use of a result he had
published three years earlier, that the general solution of the equation

d2y

dx2
+ ky = 0 was Acos

√
kx+B sin

√
kx .

So he supposed that a− bz+ cz2 = 0 was a quadratic factor of the polynomial; this

yielded z = b±
√
b2−4ac
2c . Then he assumed b

2
√
ac
< 1 and set cosφ = b/(2√ac). Euler

wrote the quadratic factor as a−2z
√
accosφ+ cz2 and the corresponding differential

equation as

0 = ay− 2
√
accosφ

dy

dx
+ cd

2y

dx2
.

The substitution y = e√acx cosφu reduced the equation to

c
d2u

dx2
+ (
ac2 cos2φ− 2accos2φ+ a)u= 0 ;

note that this was of the required form d2u

dx2 + ku= 0. Euler then proceeded to the case
where there were repeated complex roots.

15.6 Euler: Nonhomogeneous Equations

Euler suggested a series method to solve a nonhomogeneous equation

X =Ay+B dy
dx

+Cddy
dx2

+·· ·+,d
ny

dxn
, (15.29)
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where A,B,C, . . . were constants and X was any power series. This method, using
power series and equating coefficients, was presented to the Petersburg Academy in
1750–51 and was published in 1753. But in this paper, Euler also discussed in detail a
second method, starting with the first-order equation

X =Ay+B dy
dx

; (15.30)

he multiplied by eax dx to get

eaxXdx =Aeaxy dx+Beax dy (15.31)

and then assumed ∫
eaxXdx = Beaxy. (15.32)

Differentiation of this equation gave Euler

eaxXdx = aBeaxy dx+Beax dy.

Comparing this equation with (15.31), he concluded that a =A/B, and by (15.32), the
solution of (15.30) emerged as

y = a

A
e−ax

∫
eaxXdx.

Euler then considered a second-order equation to illustrate how the method could be
generalized. This second order equation, after multiplication by eax dx, yielded

eaxXdx =Aeaxy dx+Beax dy+Ceax ddy
dx

. (15.33)

He assumed ∫
eaxXdx = eax

(
A′y+B ′ dy

dx

)
(15.34)

in this case, so that, after differentiation, he obtained

eaxXdx = eax
(
aA′y dx+ a′ dy+ b′ ddy

dx
+ aB ′ dy

)
. (15.35)

By comparing (15.33) and (15.35), he obtained

B ′ =C, A′ = B− aC, and aA′ =A. (15.36)

Hence, a came out to be a solution of the quadratic 0 =A− aB+ a2C. Moreover, the
second-order equation was reduced to a first-order equation

e−ax
∫
eaxXdx =A′y+B ′ dy

dx
, (15.37)
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where A′ =B− aC and B ′ =C. Euler could then solve (15.37) in the manner used to
solve (15.30) and, in fact, he gave full details. For the general case (15.29), he set∫

eaxXdx = eax
(
A′y+B ′ dy

dx
+C ′ ddy

dx2
+·· ·+,′ d

n−1y

dxn−1

)
and showed that a had to be a solution of

A−Ba+Ca2 −Da3 +·· ·±,an = 0 and that

A′ =A/a, B ′ = (B− aA)/a2, C ′ = (Ca2 −Ba+A)/a3, etc.

Thus, (15.29) was reduced to an equation of a lower order:

eax
∫
eaxXdx =A′y+B ′ dy

dx
+·· ·+,′ d

n−1y

dxn−1
.

15.7 Lagrange’s Use of the Adjoint

In 1761–62, Lagrange illustrated how to use the knowledge of the solutions of a homoge-
neous equation of second-order to solve the corresponding nonhomogeneous equation.
He supposed that y1 and y2 were (independent) solutions of the homogeneous part of
the second order equation

Ly+Mdy

dt
+N d

2y

dt2
= T . (15.38)

By multiplying by z and applying integration by parts, the adjoint equation was
obtained:

y(Mz− dNz

dt
)+ dy

dt
Nz+

∫ (
Lz− d(Mz)

dt
+ d2(Nz)

dt2

)
dt =

∫
T zdt. (15.39)

He then set

Lz− d(Mz)

dt
+ d2(Nz)

dt2
= 0 ,

so that

y

(
Mz− d(Nz)

dt

)
+ dy

dt
Nz=

∫
T zdt. (15.40)

Multiplying this adjoint equation by a function y and applying the same integration by
parts procedure, Lagrange arrived at

y

(
Mz− d(Nz)

dt

)
+ dy

dt
Nz−

∫ (
Ly+Mdy

dt
+N d

2y

dt2

)
zdt = constant .
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When y = y1 or y = y2, the integral vanished, and he got the two relations

z

[(
M − dN

dt

)
y1 +N dy1

dt

]
− dz

dt
Ny1 = c1 (15.41)

z

[(
M − dN

dt

)
y2 +N dy2

dt

]
− dz

dt
Ny2 = c2 , (15.42)

where c1 and c2 were constants. Lagrange solved for z to obtain

z= c1y2 − c2y1

N
(
y2

dy1
dt

− y1
dy2
dt

) . (15.43)

It may be helpful to note that the denominator here is N times the Wronskian of y1 and
y2. Lagrange then took c1 = 0 and then c2 = 0, denoting the corresponding values of z
by z1 and z2, respectively. When these were substituted in (15.40), he obtained

y

(
Mz1 − d(Nz1)

dt

)
+ dy

dt
Nz1 =

∫
T z1 dt ,

y

(
Mz2 − d(Nz2)

dt

)
+ dy

dt
Nz2 =

∫
T z2 dt .

He solved for y and thereby arrived at a solution for (15.38):

y = z2

∫
T z1 dt − z1

∫
T z2 dt

N
(
z1
dz2
dt

− z2
dz1
dt

) .

Lagrange then considered the case where just one solution y1 was known so that he
had only equation (15.41). Now (15.41) was a linear first order equation in z solvable
by Euler’s integrating factor method, so that

z= y1

N
e
∫
M
N
dt

(
c− c1

∫
e−

∫
M
N
dt

y2
1

dt

)
.

Again, by taking c1 = 0 and then c = 0, he obtained two values, z1 and z2, of z. Thus,
Lagrange taught us that when two solutions of the homogeneous equation are known,
the solution of the nonhomogeneous equation may be obtained by solving two sets of
linear equations. But when only one solution is known, one must solve a first-order
equation and a pair of linear equations. Lagrange pointed out that when L,M , and
N were constants, then the homogeneous equation could easily be solved by Euler’s
method, and hence the nonhomogeneous equation could also be solved in general for
this case. In the case for whichL,M , andN were constants and k1 and k2 were solutions
of L+Mk+Nk2 = 0, (k1 �= k2), Lagrange gave the solution of (15.38) by the formula

y = ek2t
∫
T e−k2t dt − ek1t

∫
T e−k2t dt

N(k2 − k1)
.
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15.8 Jakob Bernoulli and Riccati’s Equation

In his 1703 letter to Leibniz, Bernoulli gave the derivation for the solution of Riccati’s
equation, dy = yydx + xxdx. Part of the problem here was to reduce the equation
to a separable one. Bernoulli used an interesting substitution to accomplish this, end-
ing up with a second-order instead of a first-order equation. In order to solve the
second order equation, he had to use infinite series. He began by setting y = −dz :
zdx

(
y =− 1

z

dz

dx

)
, so that by the quotient rule for differentials, the differential equation

took the form

dxdz2 − zdxddz : zzdx2 = dy = yydx+ xxdx = dz2 : zzdx+ xxdx ;

this simplified to

−zdxddz= xxzzdx3 ,

a separable equation expressible as

−ddz : z= xxdx2 . (15.44)

Now this was the second-order equation− 1
z

d2z

dx2 = x2. Bernoulli observed that if you had
an equation −zeddz= xvdx2 and you sought a solution z= axm, then by substituting
this in the equation you would find that m = (v + 2) : (e+ 1). However, in (15.44),
e = −1 and therefore no solution of the form axm would be possible. He then drew
an analogy with the first-order equation dz : z= xvdx, for which no algebraic solution
was possible when v = −1. So Bernoulli concluded that no algebraic solution was
possible for (15.44) and that he must take recourse in infinite series. He obtained the
series solution as

z= 1− x4

3 · 4 + x8

3 · 4 · 7 · 8 − x12

3 · 4 · 7 · 8 · 11 · 12
+ x16

3 · 4 · 7 · 8 · 11 · 12 · 15 · 16
−·· · .

Since y = − 1
z

dz

dx
, he could write his solution as a ratio of two infinite series. By

dividing the series for −dz/dx by the series for z, he obtained the first few terms of
the series for y given in (15.3).

15.9 Riccati’s Equation

We have seen that in the 1730s, Euler wrote on Riccati’s equation, and returned to
the topic sometime around 1760, then composing an important paper on first-order
differential equations, published in 1763. In that paper, he explained how to obtain
the general solution of the Riccati equation if one particular solution were known. His
method was to use the known solution to reduce the Riccati equation to a first-order
linear differential equation. He supposed v to be a solution of the equation

dy+Py dx+Qyy dx+Rdx = 0, (15.45)
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and observed that y = v+ 1/z reduced this equation to

−dz
zz

+ P dx

z
+ 2Qvdx

z
+ Qdx

zz
= 0 or

dz− (P + 2Qv)zdx−Qdx = 0. (15.46)

He then noted that S = e−
∫
(P+2Qv)dx was an integrating factor. Hence his solution

of (15.46) was Sz− ∫
QSdx = Constant. Later in the paper, Euler considered the

particular case of (15.45), discussed by Riccati and the Bernoullis:

dy+ yydx = axm dx. (15.47)

Euler could find a special solution of this equation, by use of which he could determine
the general solution by the already described method. He set a = cc, m=−4n and

y = cx−2n+ 1

z

dz

dx
(15.48)

so that (15.47) was converted to the linear second-order equation

ddz

dx2
+ 2c

x2n

dz

dx
− 2nc

x2n+1
z= 0. (15.49)

He then solved this equation as a series:

z=Axn+Bx3n−1 +Cx5n−2 +Dx7n−3 +Ex9n−4 + etc.

After substituting this in (15.49), he found

B = −n(n− 1)A

2(2n− 1)c
, C = −(3n− 1)(3n− 2)B

4(2n− 1)c
, D = −(5n− 2)(5n− 3)C

6(2n− 1)c
, etc.

Euler did not write the general case but if we letAk denote the coefficient of x(2k+1)n−k,
starting at k = 0, then the recurrence relation would be

Ak = −((2k− 1)n− k+ 1)((2k− 1)n− k)
2k(2n− 1)C

Ak−1, k = 1,2,3, . . . . (15.50)

Note that if for some k, Ak = 0, then An = 0 for n = k + 1,k + 2, . . . . In this case,
the series reduced to a polynomial and from (15.50) one could determine the general
condition to be n= (k−1)/(2k−1), or n= k/(2k−1). For these values, the solution
could be written in finite form.

15.10 Singular Solutions

In his 1715 book, Methodus Incrementorum, Brook Taylor presented some techniques
for solving differential equations. In proposition VIII, he explained that solutions in
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finite form might be found if the equation could be suitably transformed. In describing
one method of doing this, he considered the differential equation

4x3 − 4x2 = (1+ z2)2ẋ2 (15.51)

and found a singular solution. He set x = vθyγ , where θ and γ were parameters to be
chosen appropriately later on, so that

ẋ = (θ v̇y+ γ ẏv)vθ−1yγ−1. (15.52)

He substituted these values of x and ẋ in (15.51) to obtain

4v3θy3γ − 4v2θy2γ = (1+ z2)2(θ v̇y+ γ ẏv)2v2θ−2y2γ−2. (15.53)

Taylor then chose v = 1+ z2 and assumed that z was flowing uniformly, that is ż= 1
so that v̇ = 2z. Substituting these values in (15.53), he arrived at

4vθyγ+2 − 4y2 = (2θzy+ γ ẏv)2. (15.54)

Taylor then took γ =−2 to eliminate y in the first term on the left to obtain

vθ − y2 = (θzy− ẏv)2 or

vθ = (θ2z2 + 1)y2 − 2θzvyẏ+ v2ẏ2. (15.55)

At this point, he set θ = 1 so that θ2z2 + 1 = z2 + 1 = v; then dividing by v, equation
(15.55) reduced to 1 = y2 − 2zyẏ+ vẏẏ. Taking fluxions, he found

0 = 2yẏ− 2yẏ− 2zyÿ− 2zẏẏ+ v̇ẏẏ+ 2vẏÿ.

Since v̇ = 2z, he had − 2zyÿ+ 2v̇ÿ = 0. (15.56)

This implied that either ÿ = 0 or −2zy+2vẏ = 0. Then the second equation gave him

−v̇y+ 2vẏ = 0 or y2 = v. (15.57)

Now since he had taken θ = 1 and γ =−2, he got a solution,

x = vθyγ = vy−2 = 1,

where the last relation followed from (15.57). At this point, he remarked that x = 1
was “a certain singular solution of the problem.” For the equation ÿ = 0, he picked the
initial values in such a way as to obtain as solution

y = a+
√

1− a2z, and hence

x = vy−2 = 1+ z2

a+√
1− a2z

. (15.58)
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Observe that the solution x = 1 is not obtained from the general (15.58) for any value
of a.

Euler discussed singular solutions in a 1754 paper on paradoxes in integral calculus.
He there noted the paradoxical fact was that there were differential equations easier
to solve by differentiating than by integrating. He wrote that he had encountered such
equations in his work on mechanics but that his purpose was to explain that there were
easily stated geometric problems from which similar types of equations could arise.
Euler started by presenting the problem of finding a curve such that the length of the
perpendicular from a given point to any tangent to the curve was a constant. By using
similar triangles, he found that the differential equation would be

y dx− x dy = a
√
dx2 + dy2, (15.59)

where a denoted a constant. After squaring and solving for dy he obtained

(a2 − x2)dy+ xy dx = a dx
√
x2 + y2 − a2. (15.60)

He substituted y = u√a2 − x2 to transform the equation into the separable equation

du√
u2 − 1

= a dx

a2 − x2
. (15.61)

After integration he obtained

ln(u+
√
u2 − 1)= 1

2
ln
n2(a+ x)
a− x ,

where n was a constant. He simplified this to

u= n

2

√
a+ x
a− x + 1

2n

√
a− x
a+ x or

y = u
√
a2 − x2 = n

2
(a+ x)+ 1

2n
(a− x). (15.62)

Note that equation (15.61), when written as

du= a
√
u2 − 1dx

a2 − x2
,

shows that u ≡ 1 is also a solution because both sides vanish. When Euler used this
solution in the first equation in (15.62), he got y =√

a2 − x2, or

x2 + y2 = a2. (15.63)

Thus, the solution of (15.60) turned out to be a family of straight lines (15.62) as
well as the circle (15.63). In the same paper, Euler next set out to show that he could
derive these solutions by differentiation. Now note that this paper was written before
his book on differential calculus in which he explained how higher differentials could
be completely replaced by higher differential coefficients. So he explained that he
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would assume that dy = pdx, with p a differential coefficient, to remove difficulties
associated with further differentiation. His equation (15.59) then became

y = px+ a√1+p2. (15.64)

Euler then differentiated (instead of integrated) this equation to get

dy = pdx+ x dp+ apdp√
1+p2

or 0 = x dp+ apdp√
1+p2

(15.65)

or x =− ap√
1+p2

.

Hence by (15.64), y = a√
1+p2

. By eliminating p, he obtained the solution x2 +y2 = a2

and noted that he could also find the family of straight lines by this method. For that
purpose, he observed that (15.65) also had the solution dp = 0. This implied p =
constant = n, and so by (15.64) he obtained y = nx+ a√1+n2, the required system
of straight lines.

Euler then remarked that equation (15.59) could be modified in such a way that
the new equation could be solved more easily by the second method than the first. He
considered the equation

y dx− x dy = a(dx3 + dy3)1/3, (15.66)

or y = px+ a(1+p3)1/3.As solutions, he found a sixth-order curve

y6 + 2x3y3 + x6 − 2a3y3 + 2a3x3 + a6 = 0 (15.67)

and the family of straight lines

y = nx+ a(1+n3)1/3. (15.68)

Euler gave three other geometric examples leading to differential equations with
singular solutions. One of them yielded

ydx− (x− b)dy =√
(a2 − x2)dx2 + a2dy2, (15.69)

an equation difficult to integrate. He solved it by differentiation to obtain the solutions:
the ellipse

(x− b)2
a2

+ y2

a2 − b2
= 1,

and the family of straight lines

y =−n(b− x)+
√
a2(1+n2)− b2.

Later in the paper, Euler remarked that he found it strange that integration, which
introduced arbitrary constants, did not produce the general solution, while differentia-
tion did.
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15.11 Mukhopadhyay on Monge’s Equation

In his September 4/14, 1694 letter to Huygens, Leibniz noted that the differential
equation for the circle x2 + y2 = a2 could be expressed as dy/dx =−x/y. Now start
with the equation for a general circle,

(x− a)2 + (y− b)2 = c2,

or x2 + y2 = 2ax+ 2by+ c2 − a2 − b2. (15.70)

To obtain the differential equation, we temporarily let p,q,r denote the first three
derivatives of y with respect to x; differentiation of the last equation gives x + yp =
a+bp and hence 1+p2+yq = bq.Therefore, 1+p2 = (b−y)q and x−a= (b−y)p;
then, after a short calculation,

c= (1+p2)3/2/q. (15.71)

In his book on differential equations, Boole remarked that since the right-hand side of
(15.71) was the expression for the radius of curvature, this equation was the differential
equation for a circle of radius c. To obtain the equation for a circle of arbitrary radius,
take the derivative of (15.71) to get

3pq2 − r(1+p2)= 0. (15.72)

George Salmon (1819–1904) offered an interesting geometric interpretation of this
equation in his book Higher Plane Curves, first published in 1852, also in later editions.
Salmon defined “aberrancy of a curve” where the curve was y = f (x). Let P be a point
on the curve and V the midpoint of a chord AB drawn parallel to the tangent at P . Let
δ denote the limit of the angles made by the normal at P with the line PV as A and B
tend to P . Salmon called δ the aberrancy because δ = 0 for a circle. He noted that

tan δ = p− (1+p2)r

3q2
. (15.73)

Thus, the geometric meaning of (15.72) was that the aberrancy vanished at any point
of any circle.

Boole also stated the differential equation of a general conic

ax2 + 2nxy+ by2 + 2gx+ 2fy+ c= 0 :

9

(
d2y

dx2

)2
d5y

dx5
− 45

d2y

dx2

d3y

dx3

d4y

dx4
+ 40

(
d3y

dx3

)3

= 0. (15.74)

This differential equation was published in 1810 by the French geometer Gaspard
Monge (1746–1818). Boole remarked on this equation, “But here our powers of geo-
metrical interpretation fail, and results such as this can scarcely be otherwise useful
than as a registry of integrable forms.”
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The Indian mathematician Asutosh Mukhopadhyay (also Mookerjee) (1864–1924)
published an 1889 paper in the Journal of the Asiatic Society of Bengal, showing
an interesting geometric interpretation of Monge’s equation (15.74). Concerning this
result, much appreciated by some British mathematicians, Edwards wrote in the 1892
second edition of his treatise on differential calculus:

A remarkable interpretation which calls for notice has, however, been recently offered by Mr. A.
Mukhopadhyay, who has observed that the expression for the radius of curvature of the locus of
the centre of the conic of five pointic [sic] contact with any curve (called the centre of aberrancy)
contains as a factor the left-hand member of Monge’s equation, and this differential equation
therefore expresses that the “radius of curvature of the ‘curve of aberrancy’vanishes for any point
of any curve.”

Mukhopadhyay received an M.A. in mathematics from Calcutta University in 1886.
He studied much on his own, as is shown by entries in his diary: “Rose at 6.15 a.m. Read
Statesman [Newspaper], and Boole’s Diff. Equations in the morning. Read Fourier’s
Heat at noon.” And “At noon read from Messenger of Math. Vol. 2, Prof. Cayley’s
Memoir on Singular Solutions–to my mind, the simplest but the most philosoph-
ical account of the subject yet given; read from Forsyth on the same subject.”
Mukhopadhyay published papers on topics in differential geometry, elliptic func-
tions and hydrodynamics. The following abstract of his 1889 paper, “On a Curve of
Aberrancy,” may give a sense of his mathematical work:

The object of this note is to prove that the aberrancy curve (which is the locus of the centre of the
conic of closest contact) of a plane cubic of Newton’s fourth class is another plane cubic of the
same class, the invariants of which are proportional to the invariants of the original cubic; it is
also proved that the two cubics have only one common point of intersection, which is the point of
inflection for both.

Mukhopadhyay thus gave evidence of a fine mathematical mind but his dream of
spending his life in mathematical research could not be realized because there was no
support for such endeavors in nineteenth century Indian universities. As one biogra-
pher wrote, “Sir Asutosh’s contributions to mathematical knowledge were due to his
unaided efforts while he was only a college student.” Interestingly, after serving as a
judge, in 1906 Mukhopadhyay became Vice-Chancellor of Calcutta University and his
first order of business was to have the University “combine the functions of teaching
and original investigation.” He appointed Syamadas Mukhopadhyay (1866–1937)
professor of mathematics and encouraged him to pursue research. S. Mukhopadhyay
subsequently produced several interesting results, including the well-known four vertex
theorem, published in the Bulletin of the Calcutta Mathematical Society, founded by
Asutosh. Syamadas stated the theorem: “The minimum number of cyclic points on an
oval is four.” Asutosh created a physics department at the university with the appoint-
ment of the experimental physicist C. V. Raman, whom he persuaded to leave his post
as an officer in the Indian Accounts Department. Raman went on to win a Nobel Prize
in physics. In applied mathematics, he made two outstanding appointments: S. N. Bose,
known for his statistical derivation of Planck’s law leading to Bose-Einstein statistics,
and M. N. Saha, who discovered the Saha ionization law in astrophysics.
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15.12 Exercises

1. Show that the polynomial

yk =Lk(x)=
k∑
j=0

k(k− 1) · · ·(k− j + 1)

j !j ! (−x)j ,

the kth Laguerre polynomial, is a solution of the recurrence relation

(k+ 1)yk+1 − (2k+ 1− x)yk+ kyk−1 = 0, k = 0,1,2, . . . .

D. Bernoulli and Euler encountered this equation in their works on the discrete
analog of the problem of the small oscillations of a hanging chain. They discussed
the discreet and the continuous forms of the problem while they were colleagues
at the Petersburg Academy in the late 1720s and early 1730s. Bernoulli sub-
mitted his results to the academy before his departure in 1733 and a year later
presented his proofs. Upon seeing Bernoulli’s work, Euler, who had obtained
similar results, submitted his work. They took x= a/α, where a was the distance
between the weights and α was related to the angular frequency ω by ω2 = g/α;
g was the acceleration due to gravity. The yk was the simultaneous displacement
of the kth weight. The chain was assumed to hang from the nth weight, so yn= 0.
This gave Ln(a/α)= 0 as the equation determining the frequencies. Euler dis-
covered the polynomial solution of the difference equation; in that sense, he
and D. Bernoulli were the first mathematicians to use Laguerre polynomials.
Bernoulli found the smallest roots of these polynomials for some values of k,
using his method of sequences; see the previous chapter for Daniel Bernoulli’s
work on difference equations.

2. The differential equation satisfied by the displacement y at a distance x from the
point of suspension of a heavy chain was determined by D. Bernoulli to be

αx
d2y

dx2
+α dy

dx
+ y = 0 .

Show that

y =AJ0

(
2

√
x

α

)
=A

∞∑
j=0

1

j !j !
(−x
α

)j
is a solution of this equation. Note that Bernoulli did not use the J0 notation but
gave the corresponding series. The value of α is determined from the equation
J0

(
2
√
l/α

) = 0. Bernoulli stated that this equation had an infinite number of
roots and gave the first value α/l= 0.691, a good approximation.About 50 years
later, Euler gave the first three roots. Bernoulli and Euler may have conjectured
the existence of infinitely many roots because the solution of the difference
equation in the previous exercise, with a slight change of variables, approximates
the solution of the differential equation given in this exercise. We remark that
this is not surprising, as the first is a discrete analog of the second. In fact,
Lk(x/k)→ J0(2

√
x). And since Lk(x)= 0 has k zeros, J0 must have infinitely
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many roots; in fact, the rth root of Lk must tend to the rth root of J0. This can
be proved rigorously by the theory of analytic functions of a complex variable,
though Bernoulli and Euler obviously had no knowledge of this theory.

3. In the works mentioned in exercises 1 and 2, Euler also treated the equation

x

n+ 1

d2y

dx2
+ dy

dx
+ y

α
= 0 .

Show, with Euler, that the equation has the series solution

y =Aq−n/2In(2√q), where q =− (n+ 1)x

α
, and

In(x)= (x/2)n
∞∑
k=0

(x/2)2k

k!�(k+n+ 1)
.

This appears to be the first occurrence of the Bessel function of arbitrary real
index n. Euler also proved that for n=−1/2, the solution was y=Acos

√
2x/α.

Prove this and show that this is equivalent to the result I−1/2(x)=
√

2
πx

cosx.

4. Euler also obtained the solution of the differential equation in the previous
exercise as the definite integral

y/A=
∫ 1

0 (1− t2)
2n−1

2 cosh

(
2t
√
(n+1)x
α

)
dt∫ 1

0 (1− t2)
2n−1

2 dt
.

Prove Euler’s result. It is equivalent to the Poisson integral representation

Jn(x)= 2√
π

(x/2)n

�(n+ 1/2)

∫ π/2

0
cos(x sinφ)cos2n φ dφ .

Prove this. According to Truesdell, this may be the earliest example of solu-
tion of a second-order differential equation by a definite integral. For this and
the previous three exercises, see Truesdell (1960), pp. 154–65 and Cannon and
Dostrovsky (1981), pp. 53–64. The references to the original papers of Euler and
Bernoulli may be found there.

5. Solve the equation

(ydx− xdy)(ydx− xdy+ 2bdy)= c2(dx2 + dy2)

by Euler’s method for finding singular solutions.
6. Let f (x,y) be bounded and continuous on a domain G. Show that then at least

one integral curve of the differential equation dy/dx = f (x,y) passes through
each interior point (x0,y0) of G. This result is due to the Italian mathemati-
cian Giuseppe Peano (1838–1932) who graduated from the University of Turin
(Torino), where he heard lectures by Angelo Genocchi and Faà di Bruno. Peano
developed some aspects of mathematical logic in order to bring a higher degree
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of clarity to proofs of theorems in analysis. This led him to produce several coun-
terexamples to intuitive notions in mathematics; his most famous example is that
of a space-filling curve, dating from 1890. Bertrand Russell wrote that Peano’s
ideas on logic had a profound impact on him. See Peano (1973), pp. 51–57
for Peano’s 1885 formulation and not completely rigorous proof of the theorem
stated in this exercise. A more stringent proof may be found in Petrovski (1966),
pp. 29–33. In 1890, Peano generalized this theorem to systems of differential
equations. That paper also contained the first explicit formulation of the axiom
of choice; interestingly, Peano rejected it as a possible component of the logic
of mathematics. He wrote, “But as one cannot apply infinitely many times an
arbitrary rule by which one assigns to a class A an individual of this class, a
determinate rule is stated here.” See Moore (1982), p. 4. Nevertheless, a logical
equivalent of the axiom of choice, in the form of Zorn’s lemma, has turned out
to be of fundamental importance in algebra. For the origins of Zorn’s lemma,
see Paul Campbell (1978).

15.13 Notes on the Literature

For the quote from Newton’s October 1666 tract, see Newton (1967–1981), vol. 1,
p. 403, and for his method of separation of variables, see vol. 7, p. 73. Newton’s exam-
ple of the use of an integrating factor, presented in the text, may be found on pp. 78–81
of vol. 7. See also Whiteside’s footnote concerning Fatio de Duillier on pp. 78–79
of that volume. For the correspondence of Leibniz with Johann and Jakob Bernoulli,
see Leibniz (1971), vol. III, parts 1 and 2. For Leibniz’s letter to Huygens (Leibniz
wrote Hugens), see Leibniz (1971), vol. 2, pp. 195–196. For Leibniz’s early work
on series, see Scriba (1964). Jakob Bernoulli’s solution of a Riccati equation can be
found on pp. 74–75 of Leibniz (1971), vol. III/1. See Johann Bernoulli (1968), vol. 1,
pp. 174–76 and Eu. I-22, pp. 10–12 in connection with the integrating factor. See
Euler’s paper, “De Integratione Aequationum Differentialium Altiorum Graduum,”
Eu. I-22, pp. 108–41, for his solution of linear differential equations with constant coef-
ficients; Eu. I-22, pp. 214–36 for his paper on singular solutions; Eu. I-22, pp. 181–213
for his work on nonhomogeneous equations; Eu. I-22, pp. 334–94 for the paper
“De Integratione Aequationum Differentialium,” containing the material on Riccati’s
equation.

Taylor’s work on singular solutions is in proposition eight of his 1715 Methodus
Incrementorum.An English translation was a part of Feigenbaum’s (1981)Yale doctoral
dissertation. For Lagrange’s 1762 paper on integral calculus, discussing the adjoint and
its applications, see Lagrange (1867–1892), vol. 1, pp. 471–478. See Edwards (1954a),
p. 436, for his remarks on Mukhopadhyay’s equation. See Boole (1877), p. 20, for
his comment on Monge’s equation. For some discussion of Mukhopadhyay’s role in
the development of mathematics in India, see Narasimhan (1991). For the quotations
from his diary, see Mukhopadhyay (1998); for biographical information, see Sen Gupta
(2000). Katz (1998) and (1987) contain a discussion of how, in May 1739, Euler may
have solved a3d3y− ydx3 = 0.A lively history of the Riccati equation is available in
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Bottazzini’s article, “The Mathematical Writings from Daniel Bernoulli’s Youth”, con-
tained in D. Bernoulli (1982–1996), vol. I, pp. 142–66. Ferraro (2004) discusses Euler’s
concept of the differential coefficient and its relation to differentials. See Truesdell
(1960), p. 167, for the quote on Euler and D. Bernoulli’s understanding of the expo-
nential function. The reader may also wish to see Burn (2001) for the development
of the concept of the logarithm in the second half of the seventeenth century, starting
with the 1649 work of Alphonse de Sarasa. This topic is also discussed in Hofmann’s
article on differential equations in the seventeenth century; see Hofmann (1990), vol. 2,
pp. 277–316.



16

Series and Products for Elementary Functions

16.1 Preliminary Remarks

Euler was the first mathematician to give a systematic and coherent account of the
elementary functions, although earlier mathematicians had certainly paved the way.
These functions are comprised of the circular or trigonometric, the logarithmic, and
the exponential functions. Euler’s approach was a departure from the prevalent, more
geometric, point of view. On the geometric perspective, the elementary functions
were defined as areas under curves, lengths of chords, or other geometric concep-
tions. Euler’s 1748 Introductio in Analysin Infinitorum defined the elementary functions
arithmetically and algebraically, as functions.

At that time, infinite series were regarded as a part of algebra, though they had been
obtained through the use of calculus. The general binomial theorem was considered
an algebraic theorem. So in his Introductio, Euler used the binomial theorem to pro-
duce new derivations of the series for the elementary functions. Interestingly, in this
book, where he avoided using calculus, Euler gave no proof of the binomial theo-
rem itself; perhaps he had not yet found any arguments without the use of calculus.
In a paper written in the 1730s, Euler derived the binomial theorem from the Taylor
series, as Stirling had done in 1717. It was only much later, in the 1770s, that Euler
found an argument for the binomial theorem depending simply on the multiplication
of series.

We recall that before Euler, between 1664 and 1666, Newton found the series for all
the elementary functions, using a combination of geometric arguments, integration, and
reversion of series. In the course of his work, he also discovered the general binomial
theorem. Later on, Gregory, Leibniz, Johann Bernoulli, and others used methods of cal-
culus to obtain infinite series for elementary functions. Even before Newton, unknown
to European mathematicians, the Kerala school had derived infinite series for some
trigonometric functions, also using a form of integration.

Although the series for ex and ewere already known, one of Euler’s major innovations
was to explicitly define the exponential function. To understand this peculiar fact, recall
that Newton and N. Mercator discovered the series for y = ln(1+x) in the mid-1660s.
Soon afterwards, Newton applied reversion of series to obtain x as a series in y.And note

289
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that for the eighteenth-century mathematician who took the geometric point of view,
the basic object of study was not the function, but the curve. From this perspective,
there was hardly any need to distinguish between the function and its inverse, since
both curves would take same form, although with differing orientations. So the series
for ex was perceived as but another description of the logarithmic curve.

In a 1714 paper published in the Philosophical Transactions, Roger Cotes, in the
spirit of Halley’s earlier work of 1695, took the step of setting up an analytic defini-
tion of the logarithm. Cotes used this definition to derive the logarithmic series and
then, by inversion, the series for the exponential. He proceeded to use the series for
e to compute its value to thirteen decimal places. Incidentally, he also gave continued
fractions for e and 1/e to obtain rational approximations of e. However, Cotes focused
on the logarithm, rather than its inverse. To understand how the lack of a clear con-
ception of the exponential handicapped mathematics, consider that in the early 1730s,
Daniel Bernoulli was unable to fully solve the differential equationK4d4y/dx4 = y. He
observed that the logarithm, meaning the inverse or exponential, satisfied this equation
as well as the equation K2d2y/dx2 = y, but that no such logarithm was sufficiently
general. Euler was also stumped by this problem, until he gave an explicit definition of
the exponential and developed its properties in the mid-1730s.

To derive the series for elementary functions, Euler made considerable use of
infinitely large and infinitely small numbers. This method can be made rigorous by an
appropriate use of limits, as accomplished by Cauchy in the 1820s. Following Euler’s
style, Cauchy divided analysis into two parts, algebraic analysis and calculus. The
former dealt with infinite series and products without using calculus, yet employed
the ideas of limits and convergence. It is interesting to note here that Lagrange had
earlier attempted to make differential calculus a part of algebraic analysis by defin-
ing the derivative of f (x) as the coefficient of h in the series expansion of f (x+ h).
Gauss, Cauchy, and their followers rejected this idea as invalid. Besides providing
greater rigor, Cauchy’s lectures presented original and insightful derivations of some
of Euler’s results.

In addition to defining elementary functions, Euler also showed that functions could
be represented by infinite products and partial fractions. The latter could be obtained
from products by applying logarithmic differentiation, a process he worked out in his
correspondence with Niklaus I Bernoulli. In his Introductio, Euler presented fascinating
ways of avoiding the methods of calculus. He also gave an exposition on the connection,
discovered earlier by Cotes, between the trigonometric and the exponential functions.
Cotes had found the relation log(cosx+ i sinx)= ix, although this equation was more
useful when Euler wrote it as cosx + i sinx = eix. Of course, Cotes was unable to
take this last step because he did not explicitly define the exponential ex . Euler, on the
other hand, made use of this relationship to derive important results such as the infinite
products for the trigonometric functions.

At the very beginning of his career, Euler discovered the simple and useful
dilogarithm function. The dilogarithm is defined by

Li2(x)=−
∫ x

0

ln(1− t)
t

dt = x

12
+ x2

22
+ x3

32
+·· · , (16.1)
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where the series converges for |x| ≤ 1. Euler initially investigated this function in
1729–30 to evaluate the series

∑∞
n=1 1/n2. He succeeded at that time only in determining

its approximate value, but in the 1730s he found the exact value by the factorization
of sinx.

In the 1740s, the amateur English mathematician and surveyor John Landen began
publishing his mathematical problems in the Ladies Diary. In the late 1750s, he dis-
covered that the dilogarithm could be used to exactly evaluate

∑∞
n=1 1/n2, provided

logarithms of negative numbers were employed. Euler had already developed his the-
ory of logarithms of complex numbers at that time but his work had not appeared in
print. So Landen’s determination of ln(−1)=±√−1π in 1758 was an important and
independent discovery. And he went further, by repeated integration, to define the more
general polylogarithm,

Lik(x)= x

1k
+ x2

2k
+ x3

3k
+·· · , (16.2)

for k = 1,2,3, . . . . He could then evaluate the series
∑∞

n=1 1/n2k for k = 1,2,3, etc.
The polylogarithm was further studied by the Scottish mathematician William

Spence (1777–1815) who published his book, Essay on Logarithmic Transcendents, in
1809. He derived several interesting results on dilogarithms, including the theorem for
which he is known today. As a student in the 1820s, Abel rediscovered this formula,
having been inspired to study the dilogarithm by reading Legendre’s three volumes
on the integral calculus. This work discussed numerous results of Euler. Spence was
apparently self-taught but, unlike many other British mathematicians of his time, he
read Bernoulli, Euler, Lagrange, and other continental mathematicians. In the preface
to his work, Spence commented on the disadvantage of British insularity:

Our pupils are taught the science by means of its applications; and when their minds should be
occupied with the contemplation of general methods and operations, they are usually employed
on particular processes and results, in which no traces of the operations remain. On the Continent,
Analysis is studied as an independent science. Its general principles are first inculcated; and then
the pupil is led to the applications; and the effects have been, that while we have remained nearly
stationary during the greater part of the last century, the most valuable improvements have been
added to the science in almost every other part of Europe. The truth of this needs no illustration.
Let any person who has studied Mathematics only in British authors look into works of the higher
analysts of the Continent, and he will soon perceive that he has still much to learn.

Interestingly, other British mathematicians were independently arriving at this con-
clusion. In 1813, a few students at Cambridge University formed the Analytical Society
in order to promote broadening mathematical studies to include the works of non-British
mathematicians. Among the members of this new Society was John Herschel, who col-
lected, published, and annotated the works of Spence, an example of the progress
facilitated by broader mathematical horizons. In one of his extensive notes on Spence’s
work, Herschel presented, without fanfare, his own discovery of the Schwarzian deriva-
tive. Interestingly, in 1781 Lagrange also found this derivative, but in the context of
cartography. We also note that Kummer, before he became a committed number theo-
rist, wrote a very long 1840 paper on the dilogarithm; this paper contained a wealth of
results, including the rediscovery of Spence’s formula.
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16.2 Euler: Series for Elementary Functions

Euler defined the exponential functions by explaining the meaning of az, first for z
as an integer and then for a z as a rational number. He remarked that for irrational z
the concept was more difficult to understand but that a

√
7, for example, had a value

between a2 and a3 when a > 1. He noted that the study of az for 0< a < 1 could be
reduced to the case where a > 1. He then defined the logarithm: If az = y, then z is
called the logarithm of y to the base a. Euler did not have a notation for the base of a
logarithm and always expressed the base in words. It seems that in 1821, A. L. Crelle,
founder of the famous journal and a friend of Abel, introduced the notation for the base
of the logarithm, writing the base a on the upper left-hand side of the log. However,
we employ the modern notation: loga .

To obtain the series for az, Euler observed that since a0 = 1, he could write aw =
1+kw, where w was an infinitely small number. Thus, by the binomial theorem, called
the universal theorem by Euler,

ajw = (1+ kw)j = 1+ j

1
kw+ j (j − 1)

1 · 2 k2w2 + j (j − 1)(j − 2)

1 · 2 · 3 k3w3 +·· · . (16.3)

He took j to be infinitely large so that jw= z, a finite number, and equation (16.3) was
transformed to

az =
(

1+ kz

j

)j
= 1+ 1

1
kz+ 1(j − 1)

1 · 2j k2z2 + 1(j − 1)(j − 2)

1 · 2j · 3j k3z3 +·· · . (16.4)

For infinitely large j , he concluded that j−1
2j = 1

2 , (j−1)(j−2)
2j ·3j = 1

2·3 etc. and hence he had
the series

az = 1+ kz

1
+ k2z2

1 · 2 + k3z3

1 · 2 · 3 +·· · . (16.5)

He then set z= 1 to obtain the equation for k:

a = 1+ k

1
+ k2

1 · 2 + k3

1 · 2 · 3 +·· · . (16.6)

He denoted by e the value of a when k= 1 and computed it to 23 decimal places. From
(16.5 ) and (16.6), with a = e, Euler obtained these famous equations:

ez = 1+ z+ z2

1 · 2 + z3

1 · 2 · 3 +·· · , (16.7)

e= 1+ 1+ 1

1 · 2 + 1

1 · 2 · 3 +·· · . (16.8)

It also followed from (16.6) and (16.7) that k = lna where ln stands for the natural
logarithm. To find the series for loga(1+x), Euler set ajw = (1+kw)j = 1+x, so that

jw = loga(1+ x)=
j

k

(
(1+ x)1/j − 1

)
. (16.9)



16.3 Euler: Products for Trigonometric Functions 293

He expanded the expression in parentheses by the binomial theorem to get

loga(1+ x)=
j

k

(
x

j
− 1(j − 1)

j · 2j x2 + 1(j − 1)(2j − 1)

j · 2j · 3j x3 −·· ·
)

= 1

k

(
x− x2

2
+ x3

3
−·· ·

)
.

(16.10)

The second equation followed from the condition that j was an infinitely large number.
When k = 1,

ln(1+ x)= loge(1+ x)= x−
x2

2
+ x3

3
−·· · . (16.11)

To obtain the series for sinx and cosx, Euler started with de Moivre’s formulas

cosnz= (cosz+√−1sin z)n+ (cosz−√−1sin z)n

2
, (16.12)

sinnz= (cosz+√−1sin z)n− (cosz−√−1sin z)n

2
√−1

. (16.13)

By the binomial theorem, equation (16.12) could be written as

cosnz= (cosz)n− n(n− 1)

1 · 2 (cosz)n−2(sin z)2

+ n(n− 1)(n− 2)(n− 3)

1 · 2 · 3 · 4 (cosz)n−4(sin z)4 −·· · .
Euler took n infinitely large and z infinitely small, such that that nz= x was finite. He
then concluded that sin z= z= x/n and cosz= 1, and hence

cosx = 1− x2

1 · 2 + x4

1 · 2 · 3 · 4 − x6

1 · 2 · 3 · 4 · 5 · 6 +·· · . (16.14)

Similarly, Euler found the series for sinx from (16.13).

16.3 Euler: Products for Trigonometric Functions

Euler derived the infinite products for the sine and cosine functions from the Cotes
factorization of xn± yn. Note that Cotes’s formula for n odd may be expressed as

xn± yn = (x± y)
(n−1)/2∏
k=1

(
x2 ± 2xy cos

2kπ

n
+ y2

)
. (16.15)

Euler observed that the series for the exponential, cosine and sine functions yielded the
relations:

cosx = exi + e−xi
2

= (1+ xi/j)j + (1− xi/j)j
2

, (16.16)

sinx = exi − e−xi
2i

= (1+ xi/j)j − (1− xi/j)j
2i

. (16.17)
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He first determined the factors of ex − 1 = (1 + x/j)j − 1 by Cotes’s formula. He
noted that one factor was (1 + x/j)− 1 = x/j and the quadratic factors were of the
form (1+x/j)2 −2(1+x/j)cos(2kπ/j)+1. He also noted that every factor could be
obtained by taking all positive even integers 2k. Euler then set cos(2kπ/j)=1− 2k2π2

j2 by
taking the first two nonzero terms of the series expansion for cosine and then simplified
the quadratic factor to

x2

j 2
+ 4k2

j 2
π2 + 4k2

j 3
π 2x = 4k2π2

j 2

(
1+ x

j
+ x2

4k2π2

)
.

He observed at this point that though x/j was infinitesimal, it could not be neglected
because there were j/2 factors, producing a nonzero term x/2. This remark shows us
that Euler had some pretty clear ideas about the convergence of infinite products. To
eliminate this difficulty, Euler then considered the factors of ex − e−x = (1+ x/j)j −
(1− x/j)j . In this case, he simplified the general quadratic factor to

1+ x2

k2
π 2 − x2

j 2
.

The contribution of the term x2/j 2 after multiplication of j/2 factors was x2/j and he
could now neglect this. So Euler determined the quadratic factors to be 1+ x2π 2/k2

and wrote the formula

ex − e−x
2

= x
(

1+ x2

π 2

)(
1+ x2

4π 2

)(
1+ x2

9π 2

)(
1+ x2

16π2

)
· · · . (16.18)

Similarly, he got

ex + e−x
2

=
(

1+ 4x2

π 2

)(
1+ 4x2

9π 2

)(
1+ 4x2

25π2

)(
1+ 4x2

49π 2

)
· · · . (16.19)

To obtain the products for sinx and cosx, he changed x to ix to find

sinx = x
(

1− x2

π 2

)(
1− x2

4π 2

)(
1− x2

9π2

)(
1− x2

16π 2

)
· · · , (16.20)

and

cosx =
(

1− 4x2

π 2

)(
1− 4x2

9π 2

)(
1− 4x2

25π2

)(
1− 4x2

49π2

)
· · · . (16.21)

16.4 Euler’s Finite Product for sinnx

By repeated use of the addition formula for the sine function, Euler showed inductively
that when n was an odd number 2m+ 1

sinnx = nsinx− n(n2 − 12)

1 · 2 · 3 sin3 x+ n(n2 − 12)(n2 − 32)

1 · 2 · 3 · 4 · 5 sin5 x−·· ·

+ (−1)m
n(n2 − 12) · · ·(n2 − (2m− 1)2)

1 · 2 · 3 · · ·(2m+ 1)
sinn x.



16.5 Cauchy’s Derivation of the Product Formulas 295

Recall that Newton found this formula in his student days in the course of studying
Viéte. The last term in the preceding formula can be shown to be (−1)m2n−1. The
right-hand side is a polynomial of degree n in y = sinx and in his Introductio Euler
expressed this polynomial equation as

0 = 1− n

sinnx
y+ n(n2 − 12)

1 · 2 · 3 · sinnx
y3 −·· ·± 2n−1

sinnx
yn, (16.22)

where a plus sign applied in the last term ifn= 4l−1 and a minus sign applied otherwise.

He observed that the roots of this equation were sinx, sin

(
x+ 2π

n

)
, sin

(
x+ 4π

n

)
, . . . ,

sin

(
x+ 2(n−1)π

n

)
. He factorized the polynomial on the right-hand side of (16.22) in the

form (
1− y

sinx

)(
1− y

sin(x+ 2π
n
)

)
· · ·

(
1− y

sin(x+ 2(n−1)π
n

)

)

and equated the coefficients of y, yn, and yn−1 to obtain:

n

sinnx
= 1

sinx
+ 1

sin(x+ 2π
n
)
+ 1

sin(x+ 4π
n
)
+·· ·+ 1

sin(x+ 2(n−1)π
n

)
, (16.23)

±sinnx

2n−1
= sinx sin

(
x+ 2π

n

)
sin

(
x+ 4π

n

)
· · ·sin

(
x+ 2(n− 1)π

n

)
, (16.24)

0 = sinx+ sin

(
x+ 2π

n

)
+ sin

(
x+ 4π

n

)
+·· ·+ sin

(
x+ 2(n− 1)π

n

)
.

(16.25)

Euler made use of all these significant formulas. We emphasize the second formula; it
was used by Cauchy to derive the infinite product for the sine function by a method
different from Euler’s, without using Cotes’s factorization.

16.5 Cauchy’s Derivation of the Product Formulas

In his lectures at the École Polytechnique, published in 1821 under the title Analyse
algébrique , Cauchy gave a rigorous treatment of series and products. He then applied
these ideas to a discussion of elementary functions; his discourse on infinite products
was presented in note IX as the last topic in the work. Suppose u0, u1, u2, . . . to be real
numbers with |un| ≤ 1. Cauchy began with a definition of convergence. The infinite
product

(1+u0)(1+u1)(1+u2) · · · (16.26)
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was said to converge if lim
n→∞

(
(1+u0) · · ·(1+un)

)
existed and was different from zero.

He then stated the theorem: If the series

u0 +u1 +u2 +·· · and (16.27)

u2
0 +u2

1 +u2
2 +·· · (16.28)

are convergent, then the infinite product (16.26) converges. However, if (16.28) is
convergent and (16.27) is divergent, then the infinite product diverges to zero. In his
proof, Cauchy observed that for large enough n,

ln(1+un)= un− 1

2
u2
n+

1

3
u3

3 −·· · = un− 1

2
u2
n(1± εn),

with εn infinitesimally small. He concluded that

ln(1+un)+ ln(1+un+1)+·· ·+ ln(1+un+m−1)

= un+un+1 +·· ·+un+m−1 − 1

2
(u2
n+u2

n+1 +·· ·+u2
n+m−1)(1± ε),

(16.29)

when all the u had absolute value less than one and 1±ε was the average of 1±εn,1±
εn+1, . . . . Formula (16.29) completed the proof of the theorem, because the infinite
product converged if and only if the series ln(1+ u0)+ ln(1+ u1)+ ln(1+ u2)+ ·· ·
converged. As examples of this theorem, Cauchy noted that the product

(1+ x2)

(
1+ x2

22

)(
1+ x2

32

)
· · ·

converged for all x, while the product

(1+ 1)

(
1− 1√

2

)(
1+ 1√

3

)(
1− 1√

4

)
· · ·

diverged to zero.
Although earlier mathematicians did not explicitly state such a theorem on infinite

products, it can hardly be doubted that Euler, with his enormous experience manipulat-
ing and calculating with infinite products and series, intuitively understood this result.
However, Cauchy’s presentation – with clearer, more precise and explicit definitions of
fundamental concepts such as limits, continuity, and convergence – paved the way for
future generations of mathematicians. His work led to higher standards of clarity and
rigor in definitions, statements of theorems, and proofs. We present a slightly condensed
form of Cauchy’s derivation of the infinite product for sinx, first noting that

sin

(
x+ 2π

n

)
sin

(
x+ 2(n− 1)π

n

)
= sin2 x− sin2 2π

n
,

sin

(
x+ 4π

n

)
sin

(
x+ 2(n− 2)π

n

)
= sin2 x− sin2 4π

n
, etc.
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Hence, by Euler’s formula (16.24) for odd n,

sinnx = 2n−1 sinx

(
sin2 2π

n
− sin2 x

)(
sin2 4π

n
− sin2 x

)
· · ·

(
sin2 (n− 1)π

n
− sin2 x

)
.

(16.30)

It is easy to see that the set of n−1
2 numbers sin2 2π

n
, sin2 4π

n
, . . . , sin2 (n−1)π

n
is identical

to the set of n−1
2 numbers sin2 π

n
, sin2 2π

n
, . . . , sin2 (n−1)π

2n . Thus,

sinnx = 2n−1 sinx

(
sin2 π

n
− sin2 x

)(
sin2 2π

n
− sin2 x

)
· · ·

(
sin2 (n− 1)π

2n
− sin2 x

)
.

Let x→ 0 in this formula to get

n= 2n−1 sin2 π

n
sin2 2π

n
· · ·sin2 (n− 1)π

2n
.

After replacing nx by x,

sinx = nsin
x

n

(
1− sin2 x

n

sin2 π
n

)(
1− sin2 x

n

sin2 2π
n

)
· · ·

(
1− sin2 x

n

sin2 (n−1)π
n

)
.

When n→∞, we get

1− sin2 x/n

sin2 kπ/n
−→ 1− x2

k2π 2
.

Euler might have found the argument up to this point sufficient to obtain the product
formula for sinx. Cauchy, on the other hand, was more careful; we present an abridged
version of the rest of his argument, illustrating his more rigorous attention to questions
of convergence.

Let m be any fixed number less than (n− 1)/2 and write

sinx = nsin
x

n

(
1− sin2 x

n

sin2 π
n

)
· · ·

(
1− sin2 x

n

sin2 mπ
n

)

·
(

1− sin2 x
n

sin2 (m+1)π
n

)
· · ·

(
1− sin2 x

n

sin2 (n−1)π
2n

)
.

For large enough n,

nsin
x

n

(
1− sin2 x

n

sin2 π
n

)
· · ·

(
1− sin2 x

n

sin2 mπ
n

)
= x

(
1− x2

π 2

)
· · ·

(
1− x2

m2π 2

)
(1+α),

where α is small. Moreover, because
∏n

1(1−αi) > 1−∑n

1 αi , we have(
1− sin2 x

n

sin2 (m+1)π
n

)
· · ·

(
1− sin2 x

n

sin2 (n−1)π
2n

)
> 1− sin2 x

n

(
csc2(m+ 1)

π

n
+·· ·+ csc2 (n− 1)π

2n

)
. (16.31)
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Since for 0< x < π/2, we have x < 2sinx, it follows that

csc2 kπ

n
<

4n2

k2π 2
, for k =m+ 1, . . . ,

n− 1

2
.

Now because sinx < x for x > 0, we get

sin2 x

n
csc2 kπ

n
<

4x2

π 2k2
. (16.32)

Thus, the product in (16.31) is greater than

1− 4x2

π 2

(
1

(m+ 1)2
+ 1

(m+ 2)2
+·· ·+ 4

(n− 1)2

)
> 1− 4x2

π2(m+ 1)
,

and less than one. Therefore, it is equal to 1− x2

π2(m+1)
θ , where θ lies between 0 and 1.

Thus, we may write

sinx = x
(

1− x2

π2

)
· · ·

(
1− x2

m2π 2

)(
1− 4x2

π 2(m+ 1)
θ

)
(1+α).

The result follows by letting m→∞.

16.6 Euler and Niklaus I Bernoulli: Partial Fractions Expansions of
Trigonometric Functions

Recall that Euler obtained the partial fractions expansions of cscx and cotx by the use
of calculus methods and, later on, by other methods. The former approach depended
upon the evaluation of the integrals

∫∞
0 xp−1dx/(1± xq) in two different ways. First,

Euler used Cotes’s factorization of 1±xq to express 1/(1±xq) as partial fractions; he
then integrated to find ∫ ∞

0

xp−1

1+ xq dx =
π

q sin pπ

q

and (16.33)

∫ ∞

0

xp−1

1− xq dx =
π

q tan pπ

q

(16.34)

where 0<p < q and p, q were integers. For Euler’s derivation of (16.33), see Section
13.6. He found (16.34) in a similar way. The integral in (16.34) is a principal value,
although this concept was not explicitly defined until Cauchy introduced it in the 1820s.
Dedekind gave a number of proofs of (16.33), including a streamlined form of Euler’s
proof, and we present it in Section 23.5.

For Euler’s derivation of the partial fractions expansion of csc x, note that the change
of variable y = 1/x shows that∫ ∞

1

xp−1

1+ xq dx =
∫ 1

0

yq−p−1

1+ yq dy .
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So Euler could rewrite the integral (16.33) as∫ 1

0

xp−1 + xq−p−1

1+ xq dx =
∫ 1

0
(xp−1 + xq−p−1)(1− xq + x2q − x3q +·· ·)dx

=
∫ 1

0

(
xp−1 + xq−p−1 − xq+p−1 − x2q−p−1 + x2q+p−1 + x3q−p−1 −·· ·

)
dx

= 1

p
+ 1

q−p − 1

q+p − 1

2q−p + 1

2q+p + 1

3q−p −·· ·

= π

q sin pπ

q

.

Thus, he had the partial fractions expansion for cscx

π

sinπx
= 1

x
+ 1

1− x − 1

1+ x − 1

2− x + 1

2+ x + 1

3− x − etc.

= 1

x
− 2x

x2 − 12
+ 2x

x2 − 22
− 2x

x2 − 32
+ etc.

(16.35)

In a similar way, he obtained the partial fractions expansion of cotx:

π

tanπx
= 1

x
− 1

1− x + 1

1+ x − 1

2− x + 1

2+ x − 1

3− x + 1

3+ x − etc.

= 1

x
+ 2x

x2 − 12
+ 2x

x2 − 22
+ 2x

x2 − 32
+ etc.

(16.36)

Note that by integrating the last formula, Euler had another way to obtain the product
for sinx.

In a letter of January 16, 1742, Euler communicated these results to Niklaus I
Bernoulli, also observing that partial fractions expansions of other functions could
be found by repeated differentiation of (16.35) and (16.36). In particular, he had

π2 cosπx

(sinπx)2
= 1

x2
− 1

(1− x)2 −
1

(1+ x)2 +
1

(2− x)2 +
1

(2+ x)2 −
1

(3− x)2 − etc.

(16.37)
and

π 2

(sinπx)2
= 1

x2
+ 1

(1− x)2 +
1

(1+ x)2 +
1

(2− x)2 +
1

(2+ x)2 + etc. (16.38)

In his reply of July 13, 1742, Bernoulli noted that the logarithmic differentiation of
Euler’s product for sinx would immediately produce (16.36). To see this, we note that

ln sinπx = ln(πx)+
∞∑
n=1

ln

(
1− x2

n2

)
;

differentiation of this equation yields the required formula. In his subsequent letter of
October 24, 1742, Bernoulli noted that (16.35) could also be obtained by logarithmic
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differentiation. In his letter, Bernoulli wrote the differential d lnx as differ.lnx. His
notation for the natural logarithm was log. We maintain our practice of writing lnx,
and present Bernoulli’s argument as he wrote it:

differ. ln
sinπx

cosπx
= differ.sinπx

sinπx
− differ.cosπx

cosπx

= π dx cosπx

sinπx
+ π dx sinπx

cosπx
= π dx

sinπx cosπx

= 2π dx

sin 2πx
= differ. ln

πx(1− xx)(1− 1
4xx)(1− 1

9xx)etc.

(1− 4xx)(1− 4
9xx)(1− 4

25xx)etc.

Replace 2x by x to get

π dx

sinπx
= differ. ln

1
2πx(1− 1

4xx)(1− 1
16xx)(1− 1

36xx)etc.

(1− xx)(1− 1
9xx)(1− 1

25xx)etc.

= dx
(

1

x
+ 1

1− x − 1

1+ x − 1

2− x + 1

2+ x + etc.

)
,

which yields (16.35) after division by dx.
In his Introductio, Euler gave an alternate derivation of the partial fractions expan-

sions of the trigonometric functions, avoiding the use of integration and differentiation.
He first showed by Cotes’s formula that the quadratic factors of

ey + ec−y =
(

1+ y

j

)j
+
(

1+ c− y
j

)j
were of the form

1− 4cy− 4y2

m2π 2 + c2
,

with odd m, and hence

ey + ec · e−y
1+ ec =

(
1− 4cy− y2

π 2 + c2

)(
1− 4cy− y2

9π2 + c2

)(
1− 4cy− y2

25π2 + c2

)
etc.,

where the denominator on the left side was chosen so that value of both sides of the
equation was 1 for y = 0. Euler then took c= iπx and y = iπv/2, so that the left side
reduced to cos(πv/2)+ tan(πx/2)sin(πv/2). This gave him the formula

cos
πv

2
+ tan

πx

2
sin
πv

2
=

(
1+ v

1− x
)(

1− v

1+ x
)(

1+ v

3− x
)(

1− v

3+ x
)

etc.

In a similar way he derived

cos
πv

2
+ cot

πx

2
sin
πv

2
=

(
1+ v

x

)(
1− v

2− x
)(

1+ v

2+ x
)

×
(

1− v

4− x
)(

1+ v

4+ x
)

etc.
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By equating the coefficients of v in the two equations, he had respectively

π

2
tan

πx

2
= 1

1− x − 1

1+ x + 1

3− x − 1

3+ x + 1

5− x − 1

5+ x + etc.

and

π

2
cot

πx

2
= 1

x
− 1

2− x + 1

2+ x − 1

4− x + 1

4+ x etc.

Since
π

2

(
tan

πx

2
+ cot

πx

2

)
= π

sinπx
,

Euler also obtained the partial fractions expansion of π/sinπx.

16.7 Euler: Dilogarithm

The dilogarithm function Li2(x) can be defined for −1 ≤ x ≤ 1 by the series

Li2(x)= x+ x2

22
+ x3

32
+·· · .

This series is obtained when the series for −1
t

ln(1− t) is integrated term by term. Thus,
we have

Li2(x)=−
∫ x

0

ln(1− t)
t

dt =
∫ x

0

(
1+ t

2
+ t2

3
+·· ·

)
dt.

This series arose in a 1729 paper of Euler, the purpose of which was to evaluate
ζ(2)=∑∞

n=1 1/n2. Though Euler succeeded only in finding an approximate value for
ζ(2), he obtained an interesting and useful formula for the dilogarithm:

Li2(x)+Li2(1− x)=
∞∑
n=1

1

n2
− lnx ln(1− x). (16.39)

Euler wished to find an approximation for the sum of the right-hand side of (16.39).
Note that this series converges very slowly. Euler took x = 1/2 and got

∞∑
n=1

1

n2
=

∞∑
n=1

1

2n−1n2
+ (ln 2)2. (16.40)

The series on the right-hand side in (16.40) converges much more rapidly and Euler
found its approximate value to be 1.64481. He approximated (ln 2)2 as 0.480453 and
obtained

∞∑
n=1

1

n2
≈ 1.644934.
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Euler’s proof of (16.39) was slightly complicated, partly because he proved a more
general result. Therefore, we reproduce instead the brief argument given by Abel:

Li2(x)+Li2(1− x)=−
∫ x

0

ln(1− t)
t

dt −
∫ 1−x

0

ln(1− t)
t

dt

=−
∫ 1

0

ln(1− t)
t

dt −
∫ x

0

ln(1− t)
t

dt +
∫ 1

1−x

ln(1− t)
t

dt

=
∞∑
n=1

1

n2
−
∫ x

0

(
ln(1− t)

t
− ln t

1− t
)
dt

=
∞∑
n=1

1

n2
− lnx ln(1− x).

The last step follows from the observation that the integrand in the last integral is
the derivative of ln t ln(1− t).

16.8 Landen’s Evaluation of ζ(2)

Landen used the logarithm of −1 to evaluate
∑∞

n=1 1/n2 and more generally∑∞
n=1 1/n2k. He showed that the dilogarithm could be used for this purpose but one

had to employ complex numbers. Thus, Landen here succeeded where Euler had failed.
Landen started his paper of 1760, “A New Method of Computing the Sums of Certain
Series,” with the determination of the values of log(−1). He observed that if x = sin z,
then ż= ẋ/√1− x2 or ż/

√−1 = ẋ/√x2 − 1. He integrated, taking z= 0 where x = 0
to get

z√−1
= log

x+√
x2 − 1√−1

.

For z=π/2 and x= 1, he had log
√−1=− π

2
√−1

. Since the square root has two values,
Landen concluded that

log(−1)= 2log
√−1 =±π/√−1. (16.41)

Landen’s fundamental relation for the dilogarithm was

Li2(x)= π2

3
+ π√−1

logx− 1

2
(logx)2 −Li2(1/x). (16.42)

His proof was straightforward; note that he decided to use the minus sign in (16.41):

x−1 + x−2

2
+ x−3

3
+·· · = log

1

1− 1/x

= logx+ log
1

1− x + log(−1)

=− π√−1
+ logx+ log

1

1− x .
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Landen divided the equation by x and integrated to get

−x
−1

1
− x−2

22
− x−3

32
−·· · = − π√−1

logx+ 1

2
(logx)2 +Li2(x)+C. (16.43)

He set x = 1 to find that

C =−2
∞∑
n=1

1

n2
.

Landen derived the value of this series by setting x =−1 in (16.43) to obtain

−C = 2
∞∑
n=1

1

n2
= 2Li2(−1)− π√−1

log(−1)+ 1

2

(
log(−1)

)2

. (16.44)

Since

2Li2(−1)=−2

(
1− 1

22
+ 1

32
−·· ·

)
=−2

(
1− 2

22

)(
1+ 1

22
+ 1

32
+·· ·

)
=−

∞∑
n=1

1

n2
= C

2
,

equation (16.44) became

−C = C

2
− π√−1

· π√−1
+ 1

2

(
π√−1

)2

. (16.45)

Landen took log(−1) = −π/√−1 to derive (16.43), but he took log(−1) = π/√−1
in the last equation. Although he did not explain this, he clearly wished to obtain a
positive value for the series

∑∞
n=1 1/n2. So (16.45) simplified to

−1

2
C =

∞∑
n=1

1

n2
= π2

6
. (16.46)

This completed Landen’s proof of (16.42). Note that this formula holds for x ≥ 1, as is
suggested by the first step of his proof and by the fact that he chose the negative sign
in the term containing π/

√−1. Note, however, that we cannot set x = eiθ in (16.42)
unless we change the sign ofπ/

√−1 in Landen’s formula. The need for this change was
understood only after the development of complex analysis. After this change of sign,
the formula is equivalent to the Fourier expansion of the second Bernoulli polynomial.
Similar changes in equations (16.49) through (16.51) produce the Fourier series for the
third, fourth, and fifth Bernoulli polynomials. Of course, Landen did not mention these
expansions; they were discovered by Daniel Bernoulli and Euler.

Landen also derived formulas for the polylogarithms, Li3(x), Li4(x), Li5(x), etc.,
where

Lin(x)= x

1n
+ x2

2n
+ x3

3n
+ x4

4n
+·· · . (16.47)
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Note that

Lin(x)=
∫ x

0

Lin−1(t)

t
dt. (16.48)

Though he did not employ the factorial notation, Landen obtained the formulas

Li3(x)= π2

3
logx+ π

2
√−1

(logx)2 − 1

2 · 3 (logx)3 +Li3(1/x) , (16.49)

Li4(x)= 2
∞∑
n=1

1

n4
+ π2

6
(logx)2 + π

2
√−1

1

3
(logx)3 − 1

4! (logx)4 −Li4(1/x) ,

(16.50)

Li5(x)=
(

2
∞∑
n=1

1

n4

)
logx+ π2

18
(logx)3+ π

2
√−1

1

3 · 4 (logx)4− 1

5! (logx)5+Li5(1/x).

(16.51)

He got (16.49) by dividing equation (16.42) by x, integrating, and using (16.48). In a
similar way, he derived (16.50) from (16.49) and got (16.51) from (16.50). Landen put
x = 1/

√−1 in (16.49) to produce, after some manipulation,

1− 1

33
+ 1

53
− 1

73
+·· · = π 3

32
. (16.52)

On the other hand, x =−1 in (16.50) gave him

1+ 1

24
+ 1

34
+ 1

44
+·· · = π 4

90
. (16.53)

Landen pointed out that these formulas can also be continued indefinitely, but he did
not indicate a connection with Bernoulli numbers.

16.9 Spence: Two-Variable Dilogarithm Formula

In his essay on logarithmic transcendents, William Spence remarked that Euler and
Bernoulli had only one variable in their formulas for the dilogarithm, whereas he himself
used more unknowns. Spence perhaps did not fully appreciate Landen’s work, saying
that Landen “added nothing of consequence to the discoveries of Bernoulli and Euler.”
Spence was perhaps confused as to the identities of the Bernoullis. Also, Spence most
likely saw only the republication of Landen’s independent results of 1859; this appeared
after the publication of Euler’s work, of the early 1860s, on the polylogarithm. Spence
worked with the function defined by

2
L (1+ x)=

∫ x

0

dt

t
ln(1+ t). (16.54)

Note that he wrote ln(1+ t) as
1
L (1+ t). Spence observed that when |x|< 1:

ln(1+ t)
t

= 1− 1

2
t + 1

3
t2 − 1

4
t3 +·· · − 1< t < 1,
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and so
2
L (1+ x)= x

12
− x2

22
+ x3

32
− x4

42
+·· · − 1 ≤ x ≤ 1.

He then gave a simple proof of the formula

2
L

(
(1+mx)(1+nx)

)
= 2
L (1+mx)+ 2

L (1+nx)− 2
L

(
m+n+mnx

m

)
− 2
L

(
m+n+mnx

n

)
+ ln

(
m+n+mnx

m

)
· ln

(
n(1+mx)

m

)
+ ln

(
m+n+mnx

n

)
· ln

(
m(1+nx)

n

)
− 1

1 · 2
(

ln
m

n

)2

+ 2
2
L (2). (16.55)

He expressed the formula (16.54) as

2
L (1+ x)=

∫
dx

x
ln(1+ x), (16.56)

and worked with the integral as if it were an indefinite integral where the constant
of integration was computed in the final step. With this in mind, he replaced x by
(m+n)x+mnx2 to get

2
L

(
(1+mx)(1+nx)

)
=

∫ (
dx

x
+ mndx

m+n+mnx
)

ln

(
(1+mx)(1+nx)

)
=

∫
dx

x
ln(1+mx)+

∫
dx

x
ln(1+nx)+

∫
dx

m+n+mnx ln(1+mx) (16.57)

+
∫

dx

m+n+mnx ln(1+nx).

By definition, the first two integrals were
2
L (1 +mx) and

2
L (1 + nx), respectively.

Letting z denote the sum of the last two integrals and setting v = m+ n+mnx, he
obtained

z=
∫
dv

v
ln

(
v−m
n

)
+
∫
dv

v
ln

(
v−n
m

)
=

∫
dv

v
ln

(
v

m
− 1

)
+
∫
dv

v
ln

(
v

n
− 1

)
= ln

(
v

m

)
ln

(
v

m
− 1

)
− 2
L

(
v

m

)
+ ln

(
v

n

)
ln

(
v

n
− 1

)
− 2
L

(
v

n

)
+C.

The last step involved integration by parts and the value of the constant C was found
by setting x = 0. This completed Spence’s proof.

Abel rediscovered Spence’s formula, with a different proof; it first appeared in his
collected papers in 1839. Abel stated his formula as

Li2

(
x

1− x ·
y

1− y
)
=Li2

(
y

1− x
)
+Li2

(
x

1− y
)
−Li2(y)−Li2(x)−ln(1−y) ln(1−x).

(16.58)
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Abel gave a simple and elegant proof of this formula: He let a denote a constant. Then
it was easy to check that

Li2

(
a

1− a · y

1− y
)
=−

∫ (
dy

y
+ dy

1− y
)

ln
1− a− y

(1− a)(1− y)
= −

∫
dy

y
ln

(
1− y

1− a
)
+
∫
dy

y
ln(1− y)−

∫
dy

1− y ln

(
1− a

1− y
)

+
∫

dy

1− y ln(1− a)

= Li2

(
y

1− a
)
−Li2(y)− ln(1− a) ln(1− y)−

∫
dy

1− y
(

1− a

1− y
)
.

The first equation could be verified by taking the derivative of both sides. To evaluate
the last integral, Abel set

z= a

1− y or 1− y = a

z
and dy = a dz

z2
so that

−
∫

dy

1− y ln

(
1− a

1− y
)
=−

∫
dz

z
ln(1− z)= Li2(z)+C = Li2

(
a

1− y
)
+C.

Thus, he had

Li2

(
a

1− a ·
y

1− y
)
= Li2

(
y

1− a
)
+Li2

(
a

1− y
)
−Li2(y)− ln(1−a) ln(1−y)+C.

To find C, Abel let y = 0 to get C = −Li2(a). This proved the formula after a was
replaced by the variable x.

16.10 Exercises

1. Show that the series for cosx can be obtained by a repeated integration of the
equation cosx = 1 − ∫ x

0

∫ t
0 cosududt. This method of deriving the series for

cosine is due to Leibniz. See Newton (1959–1960), vol. 2, p. 74.
2. Let n= 2m+ 1. Show that

sinx− sin

(
x+ π

n

)
− sin

(
x− π

n

)
+ sin

(
x− 2π

n

)
+ sin

(
x+ 2π

n

)
− sin

(
x− 3π

n

)
− sin

(
x+ 3π

n

)
+·· ·± sin

(
x+ mπ

n

)
± sin

(
x− mπ

n

)
= 0,

where the plus sign is used when m is even and the minus sign otherwise. See
Euler (1988), p. 208
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3. With n as in the previous problem, prove Euler’s formula

ncscnx = cscx− csc

(
x+ π

n

)
− csc

(
x− π

n

)
+ csc

(
x+ 2π

n

)
+ csc

(
x− 2π

n

)
−·· ·± csc

(
x+ mπ

n

)
± csc

(
x− mπ

n

)
.

See Euler (1988), p. 209.
4. Prove the following formulas:

cosnx = 2n−1 cos

(
x+ n− 1

n
π

)
cos

(
x− n− 1

n
π

)
· cos

(
x+ n− 3

n
π

)
cos

(
x− n− 3

n
π

)
· · · ,

where there are n factors;

ncotnx = cotx+ cot
(
x+ π

n

)
+ cot

(
x+ 2π

n

)
+·· ·+ cot

(
x+ n− 1

n
π

)
.

Also show that the sum of the squares of the cotangents is n2

(sinx)2
−n. See Euler

(1988), pp. 214 and 218.
5. Show that Landen’s formula (16.42) can be correctly and comprehensively stated

by Kummer’s 1840 result:

Li2(re
iθ )= Li2(r,θ)+ i

2
[2ω log r +Cl2(2ω)+Cl2(2θ)−Cl2(2ω+ 2θ)]

where tanω= r sin θ/(1− r cosθ), and

Li2(r,θ)=−1

2

∫ r

0

log(1− 2r cosθ + r2)

r
dr.

See Kummer (1840), pp. 74–90 and Lewin (1981), pp. 120–121.
6. Prove Kummer’s formula

Li2

(
x(1− y)2
y(1− x)2

)
= Li2

(
x− xy
x− 1

)
+Li2

(
1− y
xy− y

)
+Li2

(
x− xy
y− xy

)
+Li2

(
1− y
1− x

)
+ 1

2
(lny)2.

See Kummer (1975), vol. 2, p. 238.
7. Prove that Spence’s formula (16.55) and Abel’s formula (16.58) are equivalent.
8. Show that

sinx

siny
= x

y

(
π − x
π − y

)(
π + x
π + y

)(
2π − x
2π − y

)(
2π + x
2π + y

)(
3π − x
3π − y

)(
3π + x
3π + y

)
· · · .
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Derive the product for cosx by replacing x by π

2 − x, y by π/2, and applying
Wallis’s formula. See Cauchy’s Analyse algébrique, note IV.

9. Prove that

Li2(x)+Li2(y)−Li2(xy)= Li2

(
x(1− y)
1− xy

)
+Li2

(
y(1− x)
1− xy

)
+ ln

(
1− x

1− xy
)

ln

(
1− y

1− xy
)
.

See L. J. Rogers (1907).
10. Prove the two inequalities for 0< x ≤ π/2 used in Cauchy’s proof of (16.30):

sinx < x and
x

sinx
< 2.

See note IX of Cauchy’s Analyse algébrique.
11. Prove that for even m

cosmx =
m/2∏
k=1

(
1− sin2 x

sin2 (2k−1)π
2m

)
,

sinmx =m sinx cosx
(m−2)/2∏
k=1

(
1− sin2 x

sin2 2kπ
2m

)
.

State and prove a similar formula for odd m. See Cauchy, Analyse algébrique,
note IX.

12. Use the formulas in exercise 11 and (16.30) to show that for m even

cosmx = 2
m
2 −1

m/2∏
k=1

(
cos2x− cos

(2k− 1)π

m

)
,

sinmx = 2
m
2 −1 sin 2x

m/2∏
k=2

(
cos2x− cos

(2k− 1)π

m

)
.

State and prove similar results for m odd. See Cauchy, Analyse algébrique,
note IX.

13. Suppose φ0(x)= φ0(1/x) and

φn(x)=
∫
dx

x
φn−1(x), n= 1,2,3, . . . .

Prove that

(a) φ2n(x)−φ2n(1/x)= 2
∑n−1

k=0 φ2n−2k−1(1)(lnx)2k+1,
(b) φ2n+1(x)−φ2n+1(1/x)= 2

∑n

k=0φ2n−2k+1(1)(lnx)2k,

(c) φ2n+1(1)−φ2n+1(−1)=∑n

k=1(−1)k−1 π2k

(2k)!φ2n−2k+1(1).

Find φ1(1), when φ0(x)= xp+x−p
xm+a+x−m . See Spence (1819), pp. 139–143.
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14. Observe that 1/(1− a)= 1+ a/(1− a) and 1/((1− a)(1− b))= 1+ a/(a1−
a)+ b/((1− a)(1− b)). Generalize to prove the partial fractions formula

α

α− a · β

β− b ·
γ

γ − c ·
δ

δ− d · · · = 1+ α

α− a + αb

(α− a)(β− b)
+ αβc

(α− a)(β− b)(γ − c) +·· · .

Note that from the product expansion for sinx, we obtain

x csc(πx/2)= 3

3− (x2 − 1)
· 15

15− (x2 − 1)
· 35

35− (x2 − 1)
· · · .

Use the partial fractions formula to deduce that

x csc(πx/2)= 1+ x2 − 1

4− x2

(
1+

∞∑
n=1

(22 − 1)(42 − 1) · · ·((2n)2 − 1)

(42 − x2)(62 − x2) · · ·((2n+ 2)2 − x2)

)
,

2

π
= 1−

(
1

2

)2

− 1

3

(
1 · 3
2 · 4

)2

− 1

5

(
1 · 3 · 5
2 · 4 · 6

)2

− 1

7

(
1 · 3 · 5 · 7
2 · 4 · 6 · 8

)2

−·· · .
In a similar way, show that

sec(πx/2)= 1+ x2

1− x2

∞∑
n=1

(1 · 3 · · ·(2n− 1))2

(32 − x2) · · ·((2n+ 1)2 − x2)
.

What famous result is obtained by dividing the last equation by x2 and letting x
tend to 0? Also show that

cos(πx/2)= 1− x2 − (1− x2)
x2

9

− (1− x2)(1− x2/9)x2/25

− (1− x2)(1− x2/9)(1− x2/25)x2/49−·· · ,

sin(πx/2)

= x+ x(1− x2)

1 · 3 + x(1− x2)(4− x2)

(1 · 3)25
+ x(1− x2)(4− x2)(16− x2)

(1 · 3 · 5)27
+·· · ,

cos(πx/3)

= 1− x
2

2! +
x2(x2−1)

4! − x
2(x2−1)(x2−4)

6! + x
2(x2−1)(x2−4)(x2−9)

8! − · · ·,
sin(πx/3)

=
√

3

2

(
x− x(x

2−1)

3! + x(x
2−1)(x2−4)

5! − x(x
2−1)(x2−4)(x2−9)

7! + · · ·
)
.

See Schellbach (1854), pp. 233–236. Karl Schellbach (1805–1892) was one of
Eisenstein’s teachers in secondary school at Berlin.
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16.11 Notes on the Literature

Euler’s derivations of the series and products for elementary functions are taken from
Euler (1988), chapters 7–9 and 14. Euler published several papers on the partial frac-
tions expansions of trigonometric functions. It is perhaps most interesting to read his
correspondence on this topic with Niklaus I Bernoulli. See Eu. 4A-2, pp. 483–550. For
Euler’s first work on the dilogarithm, see Eu. I-14, pp. 38–41. For Abel’s derivation of
Euler’s dilogarithm formula (16.39), see Abel (1965), vol. 2, p. 190. Landen’s paper
appeared in the Philosophical Transactions, 1760. See Spence (1819), a work con-
taining his 1809 book and other writings, for his dilogarithm formula (16.55). Abel’s
proof of the same formula (16.58) is in Abel (1965), vol. 2, pp. 192–193. Lewin (1981)
gives a modern treatment of the dilogarithm and polylogarithm as functions of complex
variables.
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Solution of Equations by Radicals

17.1 Preliminary Remarks

The problem of solving algebraic equations has been of interest to mathematicians for
about four thousand years. Clay tablets from 1700 BC Babylon contain the essence
of the quadratic formula for solutions of second-degree equations. Unfortunately, the
tablets do not indicate how the Babylonians arrived at the methods they described.
Greek mathematicians later considered the problem from a geometric point of view.
Indian mathematicians from the second century AD made significant advances in alge-
bra, especially in the development of the kind of notational system by which the
symbolic algebra of the seventeenth century was made possible. These Indian math-
ematicians also described a method for solving the quadratic using factorization by
completing the square. Medieval Islamic mathematicians continued this algebraic tra-
dition with several original contributions of their own. For example, they considered the
cubic equation and gave algebraic and geometric methods for solving special cubics,
although a general method for solving the cubic was not found until the sixteenth
century.

Artis Magnae, sive de Regulis Algebraicis by Girolamo Cardano (1501–1576) pre-
sented the first known general method for solving a cubic, as well as a method for
solving a quartic. Published in 1545, this book contained the work of Scipione del
Ferro, Niccolò Tartaglia, Lodovico Ferrari, and Cardano himself. As Cardano wrote in
the first chapter:

In our own days Scipione del Ferro of Bologna has solved the case of the cube and the first power
equal to a constant, a very elegant and admirable accomplishment. Since this art surpasses all
human subtlety and the perspicuity of moral talent and is a truly celestial gift and a very clear test
of the capacity of men’s minds, whoever applies himself to it will believe that there is nothing he
cannot understand. In emulation of him, my friend Niccolò Tartaglia of Brescia, wanting not to
be outdone, solved the same case when he got into a contest with his [Scipione’s] pupil, Antonio
Maria Fior, and, moved by my many entreaties, gave it to me. For I had been deceived by the
words of Luca Paccioli, who denied that any more general rule could be discovered than his own.
Notwithstanding the many things which I had already discovered, as is well known, I had despaired
and had not attempted to look any further. Then, however, having received Tartaglia’s solution
and seeking for the proof of it, I came to understand that there were a great many other things that
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could also be had. Pursuing this thought and with increased confidence, I discovered these others,
partly by myself and partly through Lodovico Ferrari, formerly my pupil.

We note that Cardano did not use the term first power; this more modern terminology
has been employed by the translator for greater clarity. Thus, del Ferro (1465–1526)
was the original discoverer of the solution of the cubic in the form x3+ax= b; he made
this discovery around 1515 when he was a professor of mathematics in Bologna, where
his original papers are kept. Before his death, he passed on the solution to his students
Annibale della Nave, who was also his son-in-law, and Antonio Maria Fior. In 1535,
Fior challenged Tartaglia to a public problem-solving contest. All the problems posed
by Fior amounted to solving del Ferro’s cubic. Luckily for Tartaglia, he was able to
find a method for solving this cubic the night before the contest, and Fior was defeated.
When Cardano heard of this contest, he requested Tartaglia to give him the solution.
Tartaglia refused, hoping to write his own book on the subject, but later visited Cardano
in Milan and told him the solution in the form of a poem. When Cardano’s book was
published, Tartaglia was angry, claiming that Cardano had given a most solemn promise
never to divulge the solution. Ferrari, a young servant in Cardano’s house at the time
of Tartaglia’s visit, reported that he was present at the meeting and no such promise
was made. This dispute led to a scholarly contest between Tartaglia and Ferrari, won
by the latter. Ferrari’s prestige was greatly enhanced, and he received several offers of
important positions. Eventually he became the professor of mathematics at Bologna.

In Cardano’s work, the coefficients of the equations were always positive; hence
he distinguished between the equations N = x3 + ax and N + ax = x3. He classified
thirteen different cubics, and much of the book is taken up by a discussion of these
cases. He mentioned the different cases of the quartic, without elaboration: “For as
positio [first power] refers to a line, quadratum [the square] to a surface, and cubum
[the cube] to a solid body, it would be very foolish for us to go beyond this point.
Nature does not permit it.” Thus, his arguments were framed in geometric language,
accompanied by diagrams.

Cardano’s method for solving the cubic was essentially to assume the form of the
solution, x = u+v, and then show that u3 and v3 were the solutions of a quadratic. He
then solved the quadratic to obtain x. Notice that this method of assuming the correct
form of the solution to solve the equation may be applied to the quadratic equation
as well. The method used up to Cardano’s time was factorization after completing
the square. The ninth-century Indian mathematician Sridhara employed this general
method for solving ax2 + bx = c. He multiplied the equation by 4a and added b2 to
obtain

4a2x2 + 4abx+ b2 = b2 + 4ac or (2ax+ b)2 =
(
±
√
b2 + 4ac

)2
.

Interestingly, Ferrari used the method of completing the square to solve the quartic
equation. In chapter 39 of his book Cardano wrote, “For example, divide 10 into three
proportional parts, the product of the first and second of which is 6. This was proposed
by Zuanne de Tonini da Coi, who said it would not be solved. I said it could, though
I did not yet know the method. This was discovered by Ferrari.” Cardano showed that
the equation satisfied by x, the mean, was 60x = x4 + 6x2 + 36. By adding 6x2 to
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both sides, he had x4 + 12x2 + 36 = 6x2 + 60x. Next he added a quadratic expression
2bx2 +b2 +12b to both sides so that the left-hand side was a square and the right-hand
side became a square, provided b satisfied a certain cubic. This method is easily gener-
alized to all quartics. Thus, for the quartic x4 + 2ax2 + bx+ c= 0, write x4 + 2ax2 =
−bx− c or

x4 + (2a+ 2d)x2 + (d+ a)2 = 2dx2 − bx+ (d+ a)2 − c.

The right-hand side is a perfect square if 8d
(
(d+ a)2 − c)= b2, a cubic in d; thus, it

can be solved.
In his 1637 La Geométrie, Descartes used a different factorization, solving the quartic

in which the coefficient ofx3 was zero. He then demonstrated that a general quartic could
be reduced to this case. Harriot had already performed this reduction, while Cardano
applied a similar method to a cubic. Although Cardano solved the cubic by assuming
the form of the solution, it was two centuries later that Euler first used this method to
solve a quartic. Euler assumed x = √

p+√
q +√

r to be the solution of the quartic
x4 + ax2 + bx + c = 0. He then solved the quartic by determining the cubic whose
solutions were p, q, and r . Denoting the assumed solution as x1, the other solutions
would be

x2 =√
p−√

q−√
r,

x3 =−√
p+√

q−√
r,

x4 =−√
p−√

q+√
r.

At first sight, it might appear that Euler assumed an overly specific form of the solution,
but a brief argument explains why it worked. Since the coefficient of x3 in the quartic
is zero, we must have x1 + x2 + x3 + x4 = 0 and thus

x1 + x2 =−(x3 + x4),

x1 + x3 =−(x2 + x4),

x1 + x4 =−(x2 + x3).

Euler’s cubic is actually a polynomial of degree 3 in y2. This cubic has the six solutions
xi + xj , (i > j), where i, j = 1,2,3,4. Thus, p = (x1 + x2)

2 = (x3 + x4)
2 and so on.

The British mathematician Edward Waring appears to be the first to study the
relation between the roots of a given quartic (or cubic) and the roots of the resol-
vent cubic (or quadratic). Later on, Lagrange and Alexandre Theophile Vandermonde
(1835–1896) systematically exploited this relationship to determine whether a given
algebraic equation could be solved by radicals. Waring noted in the third and final edition
of his Meditationes Algebraicae that in 1763 he sent a copy of the first edition to Euler
and in 1770 sent the second edition to d’ Alembert, Bézout, Montucla, Lagrange, and
Frisi. Lagrange praised Waring’s researches in his long paper on algebraic equations.
Nevertheless, Waring perhaps felt that his work had not been sufficiently recognized
and in his third edition, pointed out several instances of his priority.
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Waring’s book showed that if α,β,γ were the roots of a cubic, then Z = α +
wβ+w2γ , where w3 = 1, satisfied a quadratic in Z3. Hence, (α+wβ+w2γ )3 was a
solution of the resolvent quadratic. More generally, Waring considered the expression
x = a n

√
p + b n

√
p2 + c n

√
p3 + ·· · . In the particular case p = 1, so that n

√
p was an

nth root of unity, he showed that when a,b,c, . . . were roots of a general nth degree
polynomial, then xwas the resolvent of the equation, now called the Lagrange resolvent.
Waring found expressions for the roots a,b,c, . . . in terms of the resolvents obtained
by taking the n different roots of unity. He also noted that Ferrari’s method of solving
a quartic with roots α,β,γ,δ produced a (resolvent) cubic with roots (αβ + γ δ)/2,
(αγ +βδ)/2, and (αδ+βγ )/2. Waring also discussed other resolvents of the quartic,
such as (α+ β − γ − δ)2 and (αβ − γ δ)2. In short, Waring had the conception of the
resolvent of an equation, in particular the so-called Lagrange resolvent. He also had
rudimentary ideas on the important role of symmetry (permutations) in the study of
the roots of the equation. In the preface to the third edition of the Meditationes, he
explained:

In the first edition I gave a resolution, shown below, of a biquadratic equation x4 + 2px3 =
qx2 + rx+ s, in which the second term is not removed: to each side of the equation the quantity
(p2 + 2n)x2 + 2pnx + n2 is added, giving the equation (x2 + px + n)2 = (p2 + 2n+ q)x2 +
(2pn+ r)x+ s+n2. Now we require that 4(p2 + 2n+ q)(s+n2)= (2pn+ r)2, or equivalently
8n3 +4qn2 + (8s−4rp)n+4qs+ rp2s− r2 (=A)= 0, whence x2 +px+n=√

p2 + 2n+ q x+√
s+n2. Then in the second edition I proved that αβ+γ δ2 , αγ+βδ2 , αδ+βγ2 are the three values of the

quantity n, where α,β,γ,δ are the roots of the given equation, and α+β−γ−δ
2 , γ+δ−α−β2 , α+γ−β−δ2 ,

β+δ−α−γ
2 , α+δ−β−γ

2 , and β+γ−α−δ
2 , are the six values of the quantity

√
p2 + 2n+ q, and finally

αβ−γ δ
2 , γ δ−αβ

2 , αγ−βδ
2 , . . . are the six values of the quantity

√
s+n2. The same result was later

published by Lagrange. Using all three roots of the cubic (A= 0), we have a resolution with 24
values, of which 12, as I showed in the second edition, are extraneous, while the other 12 are true,
i.e. they are roots of the given biquadratic, each of them occurring three times.

Because of his obscure and difficult style, Waring’s work was not much read; his
discoveries did not become known, and he did not receive much credit for his innovative
work on symmetric functions and the theory of equations. J. J. Sylvester commented,
“Written in Latin, and when the proper language of algebra was yet unformed, it is
frequently a work of much labour to follow Waring’s demonstrations and deductions,
and to distinguish his assertions from his proofs.”

Lagrange’s great advance in the problem of solving algebraic equations by radicals
was his 1771 discovery of a general technique underlying the various methods of
solving equations of degrees two, three, and four. His essential idea was to place this
problem within the framework of the theory of symmetric functions, the elements of
which had been established by Newton. On this basis, Lagrange worked out Waring’s
sketchy ideas on the number of values a function of the roots could assume under
permutations. Lagrange observed that if a polynomial in the roots assumed k different
expressions when all the permutations of the roots were taken, then any elementary
symmetric function of the k expressions would be symmetric, and hence a polynomial
in the coefficients. This implied that the coefficients of the equation with exactly these
k expressions as roots would be polynomials in the coefficients of the original equation.
To understand Lagrange’s idea, consider the simplest case where x1 and x2 are solutions
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of the quadratic equation x2 + bx + c = 0. Here the expression x1 − x2 takes the two
values x1 − x2 and x2 − x1 under all the permutations. The coefficients of the equation

(x− (x1 − x2))(x+ (x1 − x1))= 0 or x2 − (x1 − x2)
2 = 0

are polynomials in b and c. In fact, the coefficient of x is zero and (x1 −x2)
2 = b2 −4c.

So x1 − x2 =±√
b2 − 4c, and since we also have x1 + x2 =−b,

x1 = −b±√
b2 − 4c

2
, x2 = −b∓√

b2 − 4c

2
.

Note that here x1 − x2 is the resolvent of the quadratic.
To solve a cubic x3 +ax+b= 0, Lagrange took the resolvent to be a similar linear

expression in the roots x1,x2,x3: x1 +wx2 +w2x3, where w was a nontrivial cube root
of unity. Permutation of the roots gave six different expressions, but Lagrange observed
that permutations of the roots in the cubed expression (x1 +wx2 +w2x3)

3 gave only
two different values. Thus,(

x− (x1 +wx2 +w2x3)
3
)(
x− (x1 +w2x2 +wx3)

3
)= x2 − 27b3x− (27)2a3.

The solutions of this quadratic were

27b3 ±√
(27b3)2 + 2(27)2a3

2
= 27

2

(
b3 ±

√
b6 + 4a3

)
.

Lagrange then obtained the value of the root x1 from the relations

x1 + x2 + x3 = 0,

x1 +wx2 + q2x3 = 3

√
27

2

(
b3 ±

√
b6 + 4a3

)
,

x1 +w2x2 +wx3 = 3

√
27

2

(
b3 ∓

√
b6 + 4a3

)
.

Adding the three equations, he got

3x1 = 3

√
27

2

(
b3 +

√
b6 + 4a3

)
+ 3

√
27

2

(
b3 −

√
b6 + 4a3

)
.

In this manner, Lagrange once again obtained Cardano’s solution.
For the quartic with roots x1,x2,x3,x4, the obvious resolvent would be the lin-

ear expression x1 + ix2 − x3 − ix4, taking twenty-four different values, although the
corresponding equation of degree twenty-four could be reduced to a cubic. How-
ever, Lagrange noticed that it would be simpler to work with x1 − x2 + x3 − x4.
The twenty-four permutations in this case produced only six different expressions:
±(x1 − x2 + x3 − x4),±(x1 − x2 − x3 + x4), and ± (x1 + x2 − x3 − x4). The squares
of these quantities satisfied a cubic whose coefficients were polynomials in the coef-
ficients of the quartic. Moreover, the solutions of the quartic could be obtained from



316 Solution of Equations by Radicals

the solutions of the cubic. For example, 4x1 would be the sum of the known quantity
(x1 + x2 + x3 + x4) and the roots

(x1 − x2 + x3 − x4), ((x1 − x2 − x3 + x4), (x1 + x2 − x3 − x4).

In his 1771 paper, Lagrange also developed some general results, now a part of group
theory, in connection with roots of equations. Suppose x1,x2, . . . ,xn are the roots of
an nth degree algebraic equation and f (x1,x2, . . . ,xn) is a polynomial in n variables.
Lagrange raised and answered the question: What was the number of different values
taken by f (x1,x2, . . . ,xn) when the roots were permuted? Lagrange first noted that
there were n! permutations of the n roots and some of these might leave f invariant.
He then proved the impressive general result that ifmwere the number of permutations
leavingf invariant, thenm dividedn! andn!/mwould be the number of different values
assumed by f . This is now known as Lagrange’s theorem; in group-theoretic language,
it states that the order of the subgroup divides the order of the group. As an example
of this theorem, observe that f = x1 − x2 + x3 − x4 is unchanged by the permutation
α in which x1 and x3 are interchanged, or by β when x2 and x4 are interchanged, or
by αβ. Including the identity permutation, we thus have four permutations leaving f
invariant, so x1 − x2 + x3 − x4 takes 24/4 = 6 different values.

Lagrange did not develop a convenient notation for expressing a general permutation
of n objects. This made it difficult for him to describe and prove his results. However,
he succeeded in proving the following important and interesting theorem: If t and y
are two functions (polynomials) of x1,x2, . . . ,xn such that every permutation leaving
t unchanged also leaves y unchanged, then y is a ratio of polynomials in t and the
elementary symmetric functions of x1,x2, . . . ,xn. More generally, if y takesm different
values, then y satisfies an equation of degree m whose coefficients are polynomials
in t and the elementary symmetric functions of x1,x2, . . . ,xn. A consequence of this
theorem is that if t is invariant for only the identity permutation, then every y is a
rational function of t and of the elementary symmetric functions of x1,x2, . . . ,xn. We
note that such a t was constructed and used by Ruffini and then by Galois, becoming
known as the Galois resolvent.

Vandermonde independently discovered some of Lagrange’s ideas and applied them
to the equation x11 − 1 = 0. In this he anticipated aspects of Gauss’s 1795–98 more
general work. Gauss showed that xn − 1 = 0 could be solved by radicals, though he
omitted proofs of some crucial results. Abel and Galois later relied on the foundation
laid by Lagrange and Gauss to construct their theories of algebraic equations.

17.2 Viète’s Trigonometric Solution of the Cubic

While most mathematicians of the time concentrated on solving algebraic equations by
working with the coefficients, by means of algebraic operations, including taking roots,
François Viète (1540–1603) considered the possibility of solving algebraic equations
by employing transcendental functions. In fact, in his De Aequationum Recognitione
et Emendatione Tractatus Duo, published posthumously in 1615, he solved the cubic
using the cosine function, by application of the triple-angle formula. In another work,
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Figure 17.1. Viète’s trigonometric solution of a cubic.

Ad Angularium Sectionum Analyticen Theoremata, also published in 1615, he expressed
cosnx as a polynomial in cosx for several values of n, by applying algebra to trigonom-
etry. In spite of the political turmoil of his time and difficulties in publishing his work,
Viète made significant contributions to algebra and its applications to geometry and
trigonometry. He introduced better algebraic notation and his 1591 Isagoge in Artem
Analyticem had a profound influence on Harriot. In the nineteenth century, when Ruffini,
Abel, and Galois showed that general fifth-degree equations could not be solved alge-
braically, Viète’s solution of the cubic motivated a search for transcendental solutions.
In particular, in 1858, Charles Hermite solved the quintic by using elliptic modular
functions.

Viète’s angular section analysis gave him a theorem, stated in his Tractatus Duo,
applicable to the solution of irreducible cubics. Figure 17.1 may help in understanding
the theorem.

If A3 − 3B2A= B2D

and if, moreover, B is greater than half of D, then

3B2E−E3 = B2D

and there are two right triangles of equal hypotenuse, B, such that the acute angle subtended by
the perpendicular of the first is three times the acute angle subtended by the perpendicular of the
second and twice the base of the first is D, making A twice the base of the second. The base of
the second, shortened or extended by a length that, [if] raised to the square, [is] three times the
perpendicular of the same, is then E.

To understand this statement in modern terms, letA= x andE= y so that the equations
can be written as x3 − 3B2x = B2D and 3B2y− y3 = B2D. Note that the left side of
the second equation is obtained from the first by taking y = −x; Viète needed these
two equations because he did not use negative numbers. Thus, the two triangles may
be defined by the relations:

PQ̂R = α, XŶZ = 3α, PQ=XY = B,
A= 2QR = 2B cos α, D = 2YZ = 2B cos 3α.

So x = 2B cos α and D = 2B cos 3α. Note that we have the triple angle formula
cos 3α = 4cos3 α− 2cos α or

B2(2B cos 3α)= (2B cos α)3 − 3B2(2B cos α).
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Thus, from cos 3α = D/2B < 1, we can obtain α and hence solve the cubic to get
x= 2B cos α. Also observe that cos(α+2π/3) and cos(α+4π/3)would work equally
well in the triple angle formula. Hence,

x = 2B cos(α+ 2π/3)=−B cos α−B√3sin α,

x = 2B cos(α+ 4π/3)=−B cos α+B√3sin α

are also solutions of the cubic. The former value is clearly negative and Viète obtained
it from the second equation. To illustrate his theorem, he took the example x3−300x =
432 and showed how all three roots were obtained. He obtained the roots 18, 9+√

57,
and 9−√

57. He was clearly aware that a cubic in general had three roots.

17.3 Descartes’s Solution of the Quartic

René Descartes discussed algebraic equations in the third book of his very influential
1637 work, La Geométrie. He therein stated his rule of signs for the number of positive
and negative roots, his method for finding that equation whose roots (each minus a
constant) were the same as the roots of a given equation, and his methods for solving
equations of various degrees. His basic technique for solving equations was factoriza-
tion, and he applied this method to the solution of the quartic. He first explained how
to remove the cubed term: If the coefficient of x3 were −2a, he set x = z+ a/2, to
obtain an equation in z where the coefficient of z3 would be zero. To solve a quartic,
Descartes first cast it in the form x4 ±px2 ± qx ± r = 0 so that the coefficient of x3

was zero. He showed that the solution of this quartic depended on the solution of the
equation

y6 ± 2py4 + (p2 ± 4r)y2 − q2 = 0,

a cubic in y2. Descartes noted that if a value y2 could be obtained from the cubic, then
the quartic could be reduced to two quadratic equations

+x2 − yx+ 1

2
y2 ± 1

2
p± q

2y
= 0, +x2 + yx+ 1

2
y2 ± 1

2
p± q

2y
= 0.

The sign of 1
2p above would be chosen to be the same as that of p in the quartic; with

+q in the quartic, he had −yx + q

2y in one equation and +yx − q

2y in the other. For
−q, the signs were reversed. Descartes then went on to illustrate his method by solving
special examples. He did not explain in detail how he obtained the cubic in y2. For
us, this appears straightforward, but a mathematician of Descartes’s time might have
found this challenging. Thus, suppose

x4 +px2 + qx+ r = (x2 − yx+ c)(x2 + yx+ d)
= x4 + (c+ d− y2)x2 + (cy− dy)x+ cd.

By equating coefficients of various powers of x, we get

c+ d− y2 = p, y(c− d)= q, cd = r.



17.4 Euler’s Solution of a Quartic 319

Now solve for c and d in the two equations c+ d = p+ y2, c− d = q/y to obtain
c= 1

2 (y
2 +p+ q

y
), d = 1

2 (y
2 +p− q

y
). Since cd = r , we see that

(y2 +p)2 − q2

y2
= 4r or y6 + 2py4 + (p− 4r)y2 − q2 = 0.

This is Descartes’s cubic in y2. By this method, Descartes solved the quartic x4 −
17x2 − 20x− 6 = 0, factoring it into x2 − 4x− 3 = 0 and x2 + 4x+ 2 = 0.

17.4 Euler’s Solution of a Quartic

In his first paper on algebraic equations, De Formis Radicum Aequationum Cuiusque
Ordinis Conjectatio, published in 1733, Leonhard Euler solved the cubic and the quar-
tic by the method of assuming the form of the solution. He also noted that the method
seemed to break down for the fifth-degree equation. In a paper presented to the St. Peters-
burg Academy in 1759, published in 1764, he returned to this topic and worked with
resolvents containing roots of unity. Note that in 1763 Waring sent a copy of his book
to Euler; Waring believed that Euler had first learned the method of resolvents with
roots of unity from that book. It is clear, however, that Euler’s work was indepen-
dent. We remark that, while it was not the custom in Euler’s time to extensively give
credit to other researchers, it is abundantly clear that Euler had no interest in taking
credit for anyone else’s discoveries. Euler began his solution of the quartic by letting
x =√

p+√
q+√

r and supposing that p, q, and r were the roots of the third-degree
equation z3 −f z2 +gz−h= 0. Then he could write

p+ q+ r = f, pq+pr + qr = g, and pqr = h.
It followed in turn from these relations that

x2 = f + 2
√
pq+ 2

√
pr + 2

√
qr.

Moving f to the left-hand side and squaring again, he had

x4 − 2f x2 +f 2 = 4pq+ 4pr + 4qr + 8
√
p2qr + 8

√
pq2r + 8

√
pqr2

x4 − 2f x2 +f 2 − 4g = 8
√
pqr

(√
p+√

q+√
r
)= 8

√
hx.

Thus, x satisfied the equation

x4 − 2f x2 − 8
√
hx+f 2 − 4g = 0.

Euler next supposed that the equation to be solved took the form x4−ax2−bx−c= 0 .
To solve this equation, he compared its coefficients with those in the previous equation
to obtain f = a/2, h= b2/64, g = a2/16+ c/4. Once he had f , g, h, he was able to
solve the cubic z3 −f z2 +gz−h= 0 ,whose three roots were p, q, and r . He then had
one root of the quartic: x =√

p+√
q+√

r . But Euler observed that he could actually
find all four roots because there were two signs connected with each of the square roots.
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In fact, there appeared to be eight different values of x, but he could choose the signs
in such a way that

√
pqr =√

h= b/8. So if b > 0, Euler gave the four roots as

√
p+√

q+√
r,

√
p−√

q−√
r,−√

p+√
q−√

r,
√
p−√

q+√
r.

If b < 0, then the roots would be

√
p+√

q−√
r,

√
p−√

q+√
r,−√

p+√
q+√

r,−√
p−√

q−√
r.

Note that if b= 0, then the quartic was really a quadratic equation in x2.

17.5 Gauss: Cyclotomy, Lagrange Resolvents, and Gauss Sums

Euler and Vandermonde showed that the equation xn−1= 0 could be solved by radicals
for positive n ≤ 11. In his Disquisitiones, Gauss extended the proof to any positive
integer n. He did not provide complete details of some important steps, perhaps because
of constraints on the length of the book or on his time. Entries in Gauss’s mathematical
diary suggest that he could have filled in the gaps.

In a paper written in 1741 but published ten years later, Euler considered the equation
xn−1= 0 for values of n≤ 10. For prime n, his idea was to factor out x−1, then reduce
the degree of the other factor by dividing it by x(n−1)/2 and setting y =−(x+1/x). For
example, when n= 5, he had

x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)= 0.

The second factor divided by x2 gave

x2 + 1/x2 + x+ 1/x+ 1 = 0.

Setting y =−(x+1/x) transformed this equation to y2 −y−1 = 0.After solving this
quadratic, he obtained the values of x by solving two more quadratic equations:

x2 + 1+√
5

2
x+ 1 = 0, and x2 + 1−√

5

2
x+ 1 = 0.

Similarly, for n = 7, he had y3 − y2 − 2y + 1 = 0. He solved this cubic and then the
three quadratic equations corresponding to the three solutions. Since only quadratic
and cubic equations had to be solved, all the solutions could be expressed in terms of
radicals. Note that if we write x = eiθ , then x + 1/x = 2cosθ . Thus, the solutions of
the cubic are 2cos2π/7, 2cos4π/7, and 2cos6π/7.

In a paper published in 1771, Vandermonde discussed the more difficult n= 11 case;
the resulting equation for y was the fifth-degree equation

y5 − y4 − 4y3 + 3y2 + 3y− 1 = 0.

Vandermonde solved this equation by radicals; his work anticipated some important
features of Gauss’s work. Gauss became interested in solving the equation xn− 1 = 0
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at a very early stage in his career. Up through 1795, Gauss’s interests seem to have been
equally divided between languages and mathematics. As he worked with this equation
in late March 1796, he gained some insights on the basis of which he made up his
mind to be a mathematician. With his future career clearly fixed in his mind, Gauss
started keeping a mathematical diary. The first entry dated March 30, 1796, stated, “The
principles upon which the division of the circle depend, and geometrical divisibility
of the same into seventeen parts, etc.” This was a remarkable result, of which Gauss
was always proud; Gauss published a notice in the Allgemeine Literatur Zeitung of
April, 1796:

It is known to every beginner in geometry that various regular polygons, viz., the triangle, tetragon,
pentagon, 15-gon, and those which arise by the continued doubling of the number of sides of one
of them, are geometrically constructible.

One was already that far in the time of Euclid, and, it seems, it has generally been said since then
that the field of elementary geometry extends no farther: at least I know of no successful attempt
to extend its limits on this side. . . . that besides those regular polygons a number of others, e.g., the
17-gon, allow of a geometrical construction. This discovery is really only a special supplement to
a theory of greater inclusiveness, not yet completed, and is to be presented to the public as soon
as it has received its completion.

Gauss’s work on the constructibility of regular polygons was a byproduct of his work in
number theory and algebra. Gauss wrote in a letter of January 6, 1819, to his student, the
physicist and mathematician Christian Gerling, that in 1795 he had thought of dividing
the complex pth roots of unity, where p was an odd prime, into two groups according
as the exponent of ζ = e2πi/p was a quadratic residue or nonresidue modulo p. He
considered the sums

η0 =
(p−1)/2∑
j=1

ζ j
2

and η1 =
(p−1)/2∑
j=1

ζ lj
2
, (17.1)

where l was a nonresidue modulo p. Note that the exponents of ζ in η0 are quadratic
residues and those in η1 are nonresidues. In 1795, Gauss was able to prove that for
p = 2m+ 1,

(x−η0)(x−η1)= x2 + x− (−1)m(m/2), and also (17.2)

4(xp−1 + xp−2 +·· ·+ x+ 1)= Y 2 + (−1)m+1pZ2,

where Y and Z were polynomials with integer coefficients. These results, contained
in articles 356 and 357 of his Disquisitiones, show that in 1795 Gauss had already
perceived the connection between cyclotomy, quadratic residues, and quadratic irra-
tionalities. However, Gauss did not fully explain how he moved from these to the
construction of regular polygons. In his Disquisitiones and in his letter to Gerling,
Gauss discussed the solutions of xp− 1 = 0 for p = 17; this case provides an illustra-
tion of his method of constructing solutions. Gauss took 3 as the primitive root of the
congruence x16 ≡ 1(mod17) and used it to group the complex roots of the equation
x17 − 1 = 0. We denote a root of this equation by ζ ; in particular, we take ζ = e2πi/17.
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Gauss first divided the sixteen complex roots into two periods of eight terms each:

(8,1)= ζ + ζ 9 + ζ 13 + ζ 15 + ζ 16 + ζ 8 + ζ 4 + ζ 2,

(8,3)= ζ 3 + ζ 10 + ζ 5 + ζ 11 + ζ 14 + ζ 7 + ζ 12 + ζ 6.

To understand the construction of these periods, consider the powers of 3 and their
residues (mod 17):

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 310, 311, 312, 313, 314, 315;
1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6.

The exponents of ζ in the period (8,1) are all quadratic residues (mod 17) and con-
sist of residues of 30,32,34, . . . ,314. The second set (8,3) consists of exponents three
times those in (8,1). Note also that (8,1)= 2cos2π/17+2cos4π/17+2cos8π/17+
2cos16π/17 and a similar result holds for (8,3).

Gauss observed that (8,1) and (8,3) were solutions of the quadratic

x2 + x− 4 = 0. (17.3)

Note that (8,1)+ (8,3)=−1, and to verify that (8,1) · (8,3)=−4, use 2cosa cosb=
cos(a + b)cos(a − b). Gauss then further divided each of the two periods into two
further periods of four terms each:

(4,1)= ζ 30 + ζ 34 + ζ 38 + ζ 312 = ζ + ζ 13 + ζ 16 + ζ 4 = 2cos
2π

17
+ 2cos

8π

17
,

(4,9)= ζ 9 + ζ 15 + ζ 8 + ζ 2 = 2cos
4π

17
+ 2cos

16π

17
,

(4,3)= ζ 3 + ζ 5 + ζ 14 + ζ 12 = 2cos
6π

17
+ 2cos

10π

17
,

(4,10)= ζ 10 + ζ 11 + ζ 7 + ζ 6 = 2cos
14π

17
+ 2cos

12π

7
.

He next observed that

(x− (4,1))(x− (4,9))= x2 − (8,1)x− 1, (17.4)

(x− (4,3))(x− (4,10))= x2 − (8,3)x− 1. (17.5)

Since the values of (8,1) and (8,3) could be obtained from the quadratic (17.3), the
values of (4,1), (4,9), and so on could be found from the last two quadratic equations.
The periods with four terms could then be used to find the periods with two terms:

(2,1)= ζ + ζ 16 = 2cos
2π

17
, (2,13)= ζ 13 + ζ 4 = 2cos

8π

17
, etc.

Then he had

(x− (2,1))(x− (2,13))= x2 − (4,1)x+ (4,2).
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Since the values of (4,1) and (4,3) were known, he obtained (2,1)= 2cos2π/17, etc.
In article 365 of the Disquisitiones, Gauss gave

cos
2π

17
=− 1

16
+

√
17

16
+

√
(34− 2

√
17)

16

+
√
(17+ 3

√
17−√

(34− 2
√

17)− 2
√
(34+ 2

√
17))

8
.

For a general prime p= 2m+1, Gauss let g denote a primitive root modulo p, so that
g,g2, . . . ,gp−1 (mod p) produced the numbers 1,2, . . . ,p−1, though not in this order.
In article 55 of the Disquisitiones, he gave a proof of the existence of a primitive root,
and he used this to define, in general, e periods with f terms where ef = p−1. He set

(f,gj )= ζ gj + ζ ge+j + ζ g2e+j +·· ·+ ζ g(f−1)e+j
, 0 ≤ j ≤ e− 1. (17.6)

He proved that the product of any two periods of f terms would be a linear combination
of periods of f terms. In fact, the coefficients in the combination were integers. He also
showed that if f1 and f2 were divisors of p− 1 and if f2 divided f1, then any period
with f2 terms was a root of an equation of degree f1/f2 whose coefficients were rational
functions of a period with f1 terms. To prove this last result, Gauss used a particular
form of the Lagrange resolvent, later known as a Gauss sum. We define the Lagrange
resolvent in the particular case where f1 = p−1 and f2 = f . Letting R be a primitive
eth root of unity, the resolvents were given by

GRi = (f,1)+Ri(f,g)+R2i (f,g2)+·· ·+R(e−1)i(f,ge−1), (17.7)

for 1 ≤ i ≤ e− 1. This expression could also be written as

GRi = ζ +Riζ g+R2iζ g
2 +·· ·+R(p−2)iζ g

p−2
(17.8)

and in this form it would be called a Gauss sum. When e= 2, and R =−1, this is the
familiar quadratic Gauss sum reducible to

p−1∑
k=0

e2πik2/p. (17.9)

In article 360, Gauss sketched a proof that GRi could be obtained as the eth root
of a known quantity. Moreover, he obtained the periods (f,gi) in terms of GRi . He
did not prove that the resolvents GRi were not zero, but in a posthumously published
manuscript, he showed that

GRiGRj

GRi+j
(17.10)

was a polynomial in R with integer coefficients. He also showed that the resolvents
could not be zero by proving

GRiGR−i = (−1)ip. (17.11)
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In 1827, Jacobi independently studied quotients given by (17.10), now called Jacobi
sums; he noted the analogy between Jacobi sums and the beta integral. On Jacobi’s
view, the Gauss sum can be seen as an analog of the gamma function, relation (17.11)
as an analog of Euler’s reflection formula �(1+x)�(1−x)= πx/sinπx, and (17.10)
as an analog of the formula expressing the beta integral in terms of gamma functions.

17.6 Kronecker: Irreducibility of the Cyclotomic Polynomial

In the course of his work on cyclotomy, Gauss demonstrated the irreducibility of the
polynomialX(x)= 1+x+x2+·· ·+xp−1, where p was prime. He gave a proof of this
result in article 341 of the Disquisitiones by considering four separate cases. Simpler
proofs were found later. The 1846 proof by A. Schoenemann now appears in many
textbooks, but is attributed to Eisenstein. A year earlier, in his first paper, Kronecker
gave a neat proof, though it does not appear to be well known. Kronecker first proved
a lemma: Suppose α is a pth root of unity, a0,a1, . . . ,ap−1 are integers, and

f (α)= a0 + a1α+ a2α
2 +·· ·+αp−1.

Then f (α)f (α2) · · ·f (αp−1)≡ f (1)p−1(modp).

To prove this result, Kronecker considered the product

f (x)f (x2) · · ·f (xp−1)=A0 +A1x+A2x
2 +·· · .

He set x = 1,α,α2, . . . ,αp−1 and added the p equations. By using the simple relation

An(1+αn+α2n+·· ·+α(p−1)n)= 0, if p � n,

= pAn, if p | n,
he obtained

f (1)p−1 +f (α)f (α2) · · ·f (αp−1)+f (α2)f (α4) · · ·f (α2(p−1))+·· ·
= p(A0 +Ap+A2p+·· ·).

He then observed that for any number r between 1 andp−1 inclusive, the set of numbers
αr,α2r , . . . ,α(p−1)r was merely a rearrangement of the set of number α,α2, . . . ,α(p−1).
Thus, the last relation could be rewritten as

f (1)p−1 + (p− 1)f (α)f (α2) · · ·f (αp−1)= p(A0 +Ap+A2p+·· ·).
This implied the lemma. To deduce the corollary, he assumed the contrary, that
X could be factorized: X = f (x)g(x), where f (x) and g(x) had to have integer
coefficients by Gauss’s theorem on the coefficients of the factors of a monic poly-
nomial with integer coefficients. Setting x = 1, he had X(1)= p= f (1)g(1). Since p
was prime, he assumed that f (1)= 1. Since αj was a root of f (x) for some j , he had
f (α)f (α2) · · ·f (αp−1)= 0. This contradicted the theorem that

f (α)f (α2) · · ·f (αp−1)≡ f (1)p−1 = 1(modp).
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17.7 Exercises

1. Suppose that the monic polynomials f (x) and g(x) have rational coefficients,
not all of which are integers. Prove that the coefficients of f (x)g(x) cannot all
be integers. See article 42 of Gauss’s Disquisitiones.

2. Suppose p is prime and C is a number in a field K , but C1/p is not in K . Prove
that xp−C is irreducible over K . See Abel (1965), vol. 2, pp. 217–43.

3. Prove that an irreducible and algebraically solvable equation of odd prime degree
with rational coefficients either has all real roots or only one real root. See
Kronecker (1968), vol. 4, pp. 25–37.

4. Show that the eighteen complex roots of x19 − 1 = 0 can be divided into three
groups denoted by (6,1), (6,2) and (6,4). Show that the equation, whose roots
are these three periods of six terms, is given by

x3 + x2 − 6x− 7 = 0.

Divide the period (6,1) into three periods of two terms each, with the periods
denoted by (2,1), (2,7), and (2,8). Show that these periods are roots of

x3 − (6,1)x2 + ((6,1)+ (6,4))x− 2− (6,2)= 0.

Note that (2,1)= 2cos(2π/19), if we choose ζ = e2πi/19 to be the initial primitive
root of unity. See Gauss (1966), article 353.

5. Solve x4 − 4x3 − 19x2 + 106x − 120 = 0 by Descartes’s method of solving a
quartic and use the solution, as Descartes did, to illustrate the rule of signs. See
Descartes (1954), ably translated by Smith and Latham, pp. 159–164.

17.8 Notes on the Literature

See Cardano (1993), translated by Witmer, pp. 8, 9, and 239, for the quotations from
Cardano, and see Waring (1991), p. xli for the quote from Waring. For Sylvester’s
comment on Waring, see Sylvester (1973), vol. 2, p. 381. For Viète’s trigonometric
solution, see Viète (1983), pp. 174–175 and for Descartes’s method of solving a quartic,
see Descartes (1954), pp. 180–192. See Eu. I-6, pp. 1–19 for Euler’s 1733 paper.
Sandifer (2007), on pp. 106–113 comments on significant portions of that paper. For
Gauss’s work on cyclotomy, see section seven of his Disquisitiones, reprinted in Gauss
(1863–1927), vol. I. There are French, German, and English translations of this work.
See Gauss (1966) for the English. The excerpts of Gauss’s notice of his construction
of the 17-gon is from Dunnington (2004), p. 28.

See Neumann’s (2007a) and (2007b) for perceptive commentary on Vandermonde
and Gauss’s work on the cyclotomic equation. Neumann’s first article appeared in
Bradley and Sandifer (2007) and his second appeared in C. Goldstein et al. (2007). These
two collections provide many excellent articles on the development of mathematical
ideas. For a thorough account of the theory of equations, and the cyclotomic equation in
particular, see Tignol (1988). See Edwards (1984) for a more brief discussion. Dunham
(1990) has a very entertaining chapter on Cardano.
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Symmetric Functions

18.1 Preliminary Remarks

The study of symmetric functions originated in the early seventeenth century, as
mathematicians took an increasingly sophisticated approach to solving algebraic
equations. For example, instead of simply solving or attempting to solve an equation,
attention was turned toward the relationships among roots and coefficients. Consider,
for example, the cubic

(x−α1)(x−α2)(x−α3)= x3 − c1x
2 + c2x− c3.

When the product on the left is multiplied out and the coefficients equated, we get

α1 +α2 +α3 = c1, α1α2 +α1α3 +α2α3 = c2, α1α2α3 = c3. (18.1)

The expressions on the left-hand sides are called the elementary symmetric functions
of α1,α2,α3. More generally, if there are n symbols α1,α2, . . . ,αn, then the elementary
symmetric functions are∑

i

αi,
∑
i<j

αiαj ,
∑
i<j<k

αiαjαk, . . . , α1α2 · · ·αn.

A polynomial in α1,α2, . . . ,αn is called a symmetric function if every permuta-
tion of α1,α2, . . . ,αn leaves the polynomial invariant. For example, the expression
α2

1α2 +α1α
2
2 +α2

1α3 +α1α
2
3 +α2

2α3 +α2α
2
3 is symmetric in α1,α2,α3. Relation (18.1)

reveals the connection between the elementary symmetric functions of the roots of a
polynomial and the coefficients of that polynomial. It appears that algebraists of the
early seventeenth century were aware of this relationship; as early as the 1540s, the col-
orful Italian mathematician Girolamo Cardano noted a particular example for the sum
of the roots of a cubic. One important question in this area is whether every symmetric
function of the roots can be expressed as a polynomial in the coefficients. In his 1629
book, Invention nouvelle en l’algébre, Albert Girard (1595–1632) showed that the first
four cases of the sums of powers of the roots could be written as polynomials in the
coefficients. His notation was close to that of Viéte and lacked the mature algebraic

326
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symbolism of Harriot and Descartes. Girard’s book defined the elementary symmetric
functions:

When several numbers are proposed, the entire sum may be called the first faction; the sum of
all the products taken two by two may be called the second faction; the sum of all the products
taken three by three may be called third faction; and always thus to the end, but the product of all
numbers is the last faction. Now, there are as many factions as proposed numbers.

Soon after these definitions, Girard presented a statement of the fundamental theorem
of algebra and the connection between the elementary symmetric functions and the
coefficients of a polynomial:

Every algebraic equation except the incomplete ones admits of as many solutions as the denomi-
nation of the highest quantity indicates. And the first faction of the solutions is equal to the number
of the first mixed quantity, the second faction of them is equal to the number of the second mixed
quantity, the third to the third, and so on, so that the last faction is equal to the closing quantity –
all this according to the signs that can be noted in the alternating order.

Girard then explained his results on sums of the powers of the roots:

It might seem to some that the factions would be also explicable otherwise than above. That instead
of saying the sum, the products two by two, the products three by three, etc., one could say more
simply, the sum, the sum of the squares, the sum of the cubes, etc., which however is not so,
for when there are several solutions, the sum will be for the first mixed quantity, the sum of the
products two by two for the second, etc., as has been sufficiently explicated. But it is not the case
for any factions of the powers that someone might offer.

Example

Let:

Abe the first quantity,

B the second,

C the third,

D the fourth,

etc.

Then, in every type of equation,

A

Asq−B2

Acub−AB3+C3

Asq -sq−AsqB4+AC4+Bsq2−D4

will be the sum, respectively, of the

solutions

squares

cubes

square-squares
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Thus, in modern notation, where −c1,c2,−c3,c4 are the coefficients of the polynomial
and α1, α2, α3, α4 are the roots, Girard had∑

αi = c1,
∑

α2
i = c2

1 − 2c2,
∑

α3
i = c3

1 − 3c1c2 + 3c3,∑
α4

1 = c4
1 − 4c2

1c2 + 4c1c3 + 2c2
2 − 4c4.

Girard gave no indication of any motivation for considering the sums of powers of the
roots, beyond his expressed purpose of showing the difference between these sums and
the sums of the roots taken two, three, etc., at a time.

Newton rediscovered this theorem in 1665–1666. It is unlikely that he had seen
it in Girard’s book because Newton’s knowledge of French was weak. For instance,
when Collins asked Newton to comment on van Heuraet’s book on optics, Newton
excused himself by saying that he could not read French without continual use of
a dictionary. His knowledge of algebra came from Oughtred, Viète, and Descartes,
whom he read in van Schooten’s Latin translation. Newton also found a recurrence
relation, not in Girard, for the sums of powers of the roots. He included these and other
algebraic results from 1665–66 in his lectures on algebra, given in the 1670s and early
1680s, published in 1707 as Arithmetica Universalis. To state Newton’s rule for sums
of powers of roots, we first note that he used the symbols−p,q,−r, . . . for coefficients;
for example,

xn−pxn−1 + qxn−2 − rxn−3 + sxn−4 − txn−5 + vxn−6 −·· · = 0.

Newton stated his rule in his 1707 Arithmetica:

Let us suppose now, that the known Quantities of the Terms of any Equation under their Signs
changed, arep,q,r,s, t,v,&c.viz. that of the secondp, that of the thirdq, of the fourth r , of the fifth
s, and so on. And the Signs of the Terms being rightly observed, make p= a, pa+2q = b, pb+
qa+3r = c, pc+qb+ra+4s= d, pd+qc+rb+sa+5t = e, pe+qd+rc+sb+ ta+6v= f ,
and so on in infinitum, observing the Series of the Progression. And a will be the Sum of the Roots,
b the Sum of the Squares of each of the Roots, c the Sum of the Cubes, d the Sum of the Biquadrates,
e the Sum of the Quadrato-Cubes, f the Sum of the Cubo-Cubes, and so on. As in the Equation
x4 − x3 − 19xx + 49x − 30 = 0, where the known Quantity of the second Term is −1, of the
third −19, of the fourth +49, of the fifth −30; you must take 1 = p, 19 = q,−49 = r, 30 = s.
And there will thence arise a = (p =)1, b = (pa + 2q = 1 + 38 =)39, c = (pb + qa + 3r =
39+ 19− 147 =)− 89, d = (pc+ qb+ ra+ 4s =−89+ 741− 49+ 120 =)723. Wherefore the
Sum of the Roots will be 1, the Sum of the Squares of the Roots 39, the Sum of the Cubes −89,
and the Sum of the Biquadrates 723, viz. the Roots of that Equation are 1, 2, 3, and −5, and the
Sum of these 1+ 2+ 3− 5 is 1; the Sum of the Squares, 1+ 4+ 9+ 25, is 39; the Sum of the
Cubes, 1+ 8+ 27− 125, is −89; and the Sum of the Biquadrates, 1+ 16+ 81+ 625, is 723.

If we let σ1,σ2,σ3, . . . denote the elementary symmetric functions of the roots α1, α2,
. . . ,αn, with the understanding that σj = 0 for j > n, and let sk denote the sum of the
kth powers of the roots, then Newton’s recurrence rule in modern notation would be

sk−σ1sk−1 +σ2sk−2 −·· ·+ (−1)k−1σk−1s1 + (−1)kkσk = 0, (18.2)
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for k = 1,2,3, . . . . Newton could obtain the formula for sk by first working out the
formulas for s1, s2, . . . sk−1. For example, to find s4 take k = 1, 2, 3, 4 successively
to get

s1 −σ1 = 0, s2 −σ1s1 + 2σ2 = 0, s3 −σ1s2 +σ2s1 − 3σ3 = 0,

s4 −σ1s3 +σ2s2 −σ3s1 + 4σ4 = 0. Thus,

s1 = σ1, s2 = σ 2
1 − 2σ2, s3 = σ 3

1 − 3σ1σ2 + 3σ3, (18.3)

s4 = σ 4
1 − 4σ 2

1 σ2 + 4σ1σ3 + 2σ 2
2 − 4σ4. (18.4)

In his notes dating from 1665, Newton explicitly wrote down the formulas up to s8.
He did not give a general proof of this theorem; he generally did not give proofs of his
algebraic results. From his examples and remarks, however, it is clear that his insights
would most probably have enabled him to give valid proofs.

Newton’s notes suggest that he was led to a study of symmetric functions by a
problem in elimination theory: When do two polynomials have a common root? In his
notes, Newton answered this question by means of symmetric functions and illustrated
using two cubics. Newton’s result stated that in order for two polynomials to have a
common root, their coefficients had to satisfy a certain relation. In notes judged by
Whiteside to have been written in early 1665, Newton worked out the details for two
cubics x3+bxx+cx+d = 0 and f x3+gxx+hx+k= 0. He assumed that r, s, t were
the roots of the first polynomial; if one denoted the second polynomial by p(x), then
there would be a common root if p(r)p(s)p(t)= 0. The product produced symmetric
polynomials in r, s, t , and Newton computed these in terms of b, c, d. For example,
in his notes Newton denoted the expression r2s+ rs2 + s2t + st2 + t2r+ r2t as “every
rrs” and found its value to be bc − 3d. His final expression for p(r)p(s)p(t) had
thirty-four terms. In modern terminology, this expression is called the resultant of the
two polynomials, and setting it equal to zero gives the condition for the polynomials to
have a common root. It appears that Newton worked out sufficiently many examples to
convince himself that any symmetric polynomial of the roots of an equation could be
expressed as a polynomial in the coefficients (elementary symmetric functions of the
roots) of the equation. Naturally, he gave no suggestion of a general proof. In his 1762
Meditationes Algebraicae, Edward Waring presented the first known proof. The result
is of such fundamental importance that later researchers, including Gauss and Cauchy,
searched for and found new and different proofs.

Most probably in the 1720s, Colin Maclaurin composed a treatise on algebra, from
which he lectured at the University of Edinburgh. This work offered more or less
complete proofs of several of Newton’s algebraic theorems, including a full proof of
the recursion formula for the sums of powers of the roots of an equation. In a paper
presented to the BerlinAcademy in 1747, Euler provided two proofs of this formula. The
first, also independently obtained by John Landen, employed logarithmic differentiation
of the polynomial and then expansion into an infinite series. The first part of Euler’s
second proof was the same as Maclaurin’s, but the second part was new and was called
elegant and exact by Kronecker.
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After Maclaurin and Euler, the English mathematician Edward Waring
(c. 1736–1798) took major steps in the study of symmetric functions. In the first chapter
of his 1762 book, he gave several proofs of Newton’s basic result on symmetric func-
tions and presented an explicit formula expressing a monomial symmetric function in
terms of elementary symmetric functions. Note that to construct a monomial symmet-
ric function in n variables, we start with a monomial in those n variables and add to it
all monomials obtained by permutation. Since any symmetric function is obviously a
sum of monomials, Newton’s result follows. Waring also explained how to express the
elementary symmetric functions in terms of the sums of powers symmetric functions.
In effect, he showed that the set of the monomial symmetric functions, or the sums
of powers symmetric functions, and the elementary symmetric functions each formed
a basis for the set of all symmetric functions. Waring was not interested in general,
abstract, or existence results. For him, it was not sufficient to know, for example, that
any sums of powers symmetric function could be expressed as a polynomial in the ele-
mentary functions. Even an algorithm for producing such a polynomial was not enough
for Waring. He demanded a specific formula. Thus, the first theorem in his Meditationes
Algebraicae stated:

sm =m
∑
(−1)m+k1+k2+···+ks · (k1 + k2 +·· ·+ ks − 1)!

k1!k2! · · ·ks ! σ
k1
1 σ

k2
2 · · ·σ kss ,

where sm was the sum of the mth powers of the roots of an equation of degree n; , σ1,

σ2, . . . ,σn were the elementary symmetric functions of the roots; and k1 + 2k2 + ·· ·+
sks = m. The number of terms in the sum was therefore related to the number of
partitions of m. Waring’s notation was not well-developed, to say the least, so he
explicitly wrote several terms to convey the idea of the progression of the terms. His
proof of this formula used induction, combined with Newton’s recursive relation for
sums of powers. This meant that he had to first guess the formula. This task was not too
difficult; to see this, note that the degree of the elementary symmetric functionσj is j and
hence the summation has to be over (k1, k2, . . . ,ks) such that k1 +2k2 +·· ·+ sks =m,
and the formula is easy to check for small values of m, say up to 20. Then again, the
multinomial theorem suggests that it is only natural to consider, as the coefficient for
σ
k1
1 , σ

k2
2 , . . .σ

ks
s , the expression (k1 + k2 + ·· · + ks)!/k1!k2! · · ·ks !. Moreover, the first

few cases of sm indicate that the numerator should be divided by k1 + k2 + ·· · + ks .
Perhaps Waring reasoned in a similar way. Also, note that the multinomial theorem was
already well known in Waring’s time. Leibniz had found it around 1680 but did not
publish the result. Jakob, Johann, and Niklaus I Bernoulli independently rediscovered
the formula, as did de Moivre. In 1713, the French probabilist Pierre Raymond de
Montmort became the first to publish the result, having independently discovered it.

Waring’s desire for explicit formulas often made it difficult for him to state his results
in an attractive manner. Consider the problem of expressing a monomial symmet-
ric function as a polynomial in the sums of powers symmetric functions. An inductive
argument shows that this can always be done. But this result was apparently not enough
for Waring. It took him two pages to describe his explicit formula. Over a century later,
Percy Alexander MacMahon’s (1854–1929) new concepts and notation allowed him
to write Waring’s formulas and his own deeper and more general results in much more
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succinct form. In 1971, Peter Doubilet showed that several classical formulas, includ-
ing Waring’s, could be written very briefly by employing Rota’s concept of Möbius
inversion on a partially ordered set. Thus, Waring’s quest for explicit formulas has
turned out to have mathematical relevance.

18.2 Euler’s Proofs of Newton’s Rule

In modern notation, Euler’s proof of Newton’s recursive relation (18.2) started off by
setting

f (x)= (x−α1)(x−α2) · · ·(x−αn)= xn−σ1x
n−1 +σ2x

n−2 −·· ·+ (−1)nσn.

Taking the logarithmic derivative, he obtained

f ′(x)
f (x)

=
n∑
k=1

1

x−αk =
n∑
k=1

(
1

x
+ αk

x2
+ α2

k

x3
+ α3

k

x4
+·· ·

)
= n

x
+ s1

x2
+ s2

x3
+ s3

x4
+·· · ,

where si =∑n

k=1α
i
k. After multiplying both sides by f (x), Euler could write

nxn−1 − (n− 1)σ1x
n−2 + (n− 2)σ2x

n−3 +·· ·+ (−1)n−1σn−1

= (
xn−σ1x

n−1 +σ2x
n−2 +·· ·+ (−1)nσn

)(n
x
+ s1

x2
+ s2

x3
+ s3

x4
+·· ·

)
. (18.5)

Equating coefficients gave him the required result:

−(n− 1)σ1 = s1 −nσ1 , (n− 2)σ2 = s2 −σ1s1 +nσ2,

−(n− 3)σ3 = s3 −σ1s2 +σ2s1 −nσ3,

(n− 4)σ4 = s4 −σ1s3 + sσ2s2 −σ3s1 +nσ4 , . . . .

Euler gave a second proof, here presented in his own notation. He started with

xn−Axn−1 +Bxn−2 −Cxn−3 +Dxn−4 −Exn−5 +·· ·±N = 0.

He assumed the roots were α,β,γ,δ, . . . ,ν, substituted these values for x, and added
the equations to get∫

αn =A
∫
αn−1 −B

∫
αn−2 +C

∫
αn−3 −·· ·±M

∫
α∓nN.

Next he multiplied the original equation by xm and again set x = α,β, . . . ,ν and added
to obtain∫

αn+m =A
∫
αn+m−1 −B

∫
αn+m−2 +·· ·±M

∫
αm+1 ∓N

∫
αm, (18.6)
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where
∫
αk = αk+βk+γ k+ δk+·· ·+νk. This proved Newton’s theorem for sums of

powers ≥ n. For powers less than n, Euler illustrated his method, praised by Kronecker
as elegant, taking an equation of degree five, x5 −Ax4 +Bx3 −Cx2 +Dx −E = 0,
and the related equations of lower degree

x−A= 0,

x2 −Ax+B = 0,

x3 −Ax2 +Bx−C = 0,

x4 −Ax3 +Bx2 −Cx+D = 0.

He denoted generic roots of these five equations by α,p,q,r,s respectively. Thus,
he had ∫

α =
∫
s =

∫
r =

∫
q =

∫
p,∫

α2 =
∫
s2 =

∫
r2 =

∫
q2,∫

α3 =
∫
s3 =

∫
r3,∫

α4 =
∫
s4.

Next, by (18.6), he completed the proof by obtaining the result∫
p =A,

∫
q2 =A

∫
q− 2B,

∫
r3 =A

∫
r2 −B

∫
r + 3C,∫

s4 =A
∫
s3 −B

∫
s2 +C

∫
s− 4D.

18.3 Maclaurin’s Proof of Newton’s Rule

As Euler did in his second proof, Maclaurin broke up his proof into two cases: When
the power of the roots was at least n (the degree of the equation) and when it was less
than n. His proof of the first case was identical to Euler’s but the proof of the second
case was different and instructive. It is interesting to read this in Maclaurin’s notation
and language, although we have condensed his ten-page argument. Maclaurin stated
the lemma:

That ifA is the Coefficient of one Dimension, or the Coefficient of the second Term, in an Equation,
G any other Coefficient, H the Coefficient next after it; the Difference of the Dimensions of G
and A being r−2: if likewise A′ ×G′ represent the Sum of all those Terms of the Product A×G
in which the Square of any Root, as a2, or b2, or c2, &c. is found; then will A′ ×G′ =AG− rH .

We observe that since H is the rth term, the right-hand side of the last equation is
σ1σr−1 − rσr and A′ ×G′ consists of all terms in σ1σr−1 containing a square of a root.
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Maclaurin explained this by means of an example, but his argument works in general.
Thus, if we write σ1σr−1 = (α1 +α2 +α3 + ·· · + αn)(α1α2 · · ·αr−1 + ·· ·), then a term
such as α1α2 · · ·αr occurs r times: α1×α2 · · ·αr,α2×α1α3 · · ·αr, . . . ,αr×α1α2 · · ·αr−1.
Note that the other terms contain squares of roots. This proves the lemma.

Maclaurin then broke each coefficient G = σr−1 into two parts. The first part con-
tained every term with a specific root (say a) in it and the second part contained every
term without an a. He denoted the first part by G(+a and the second part by G(−a . It
followed that for roots a,b, . . .

G=G(+a+G(−a H (+a = aG(−a, (18.7)

G=G(+b+G(−b H (+b = bG(−b ,

and so on. Maclaurin considered the equation

xn−Axn−1 +Bxn−2 −Cxn−3 +·· · = 0,

with roots a,b,c, . . . and wrote it in the form

xr −Axr−1 +Bxr−2 −Cxr−3 · · ·+Gx−H + I

x
− K

x2
+ L

x3
· · ·+ M

xn−r
= 0. (18.8)

He observed that from relations (18.7)

Ga = aG(+a+ aG(−a

−H = −aG(−a−H(−a

I

a
= +H(−a+ I

a

(−a

−K
a2

= −I
a

(−a
− K

a2

(−a

L

a3
= −K

a2

(−a
+ L

a3

(−a
etc.

Upon adding these equations he got

Ga−H + I

a
− K

a2
+ L

a3
−·· ·± M

an−r
= aG(−a.

When similar relations for the other roots b,c,d, . . . were added, he summed the right-
hand side to be

aG(+a+ bG(+b+ cG(+c+·· · =A′ ×G′ =AG− rH.
Next, Maclaurin put x = a,b,c, . . . in (18.8) and added to get

(ar+br+cr+·· ·)−A(ar−1+br−1+·· ·)+B(ar−2+br−2+·· ·)+·· ·+AG−rH = 0.

He viewed the last A as the sum of the first powers of the roots; this proved Newton’s
formula.
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18.4 Waring’s Power Sum Formula

Waring’s formula

sm =m
∑
(−1)m+k1+k2+···+ks (k1 + k2 +·· ·+ ks−1)!

k1!k2! · · ·ks ! σ
k1
1 α

k2
2 · · ·σ kss ,

where the sum is over all partitions of m, that is, all k1, . . . ,ks such that
k1 + 2k2 + ·· · + sks = m, is obviously true for m = 1. To prove the inductive step,
Waring applied Newton’s formula

sm = σ1sm−1 −σ2sm−2 +σ3sm−3 +·· · .

Suppose Waring’s formula is true up to m − 1. To obtain the coefficient of σ k1
1

σ
k2
2 · · ·σ kss in sm by Newton’s formula, we add up the coefficients of

σ
k1−1
1 σ

k2
2 · · ·σ kss , σ k1

1 σ
k2−1
2 · · ·σ kss , etc.,

in sm−1, sm−2, etc., respectively. By Waring’s formula, these coefficients are

(m− 1)k1
(k1 + k2 +·· ·+ ks − 2)!

k1!k2! · · ·ks ! , (m− 2)k2
(k1 + k2 +·· ·+ ks − 2)!

k1!k2! · · ·ks ! , etc.

When added, the sum is

(k1 + k2 +·· ·+ ks − 2)!
k1!k2! · · ·ks ! ((m− 1)k1 + (m− 2)k2 +·· ·+ (m− s)ks) .

The expression in parentheses can be written as m(k1 + k2 + ·· ·+ ks−1), because k1 +
2k2 + ·· · + sks = m. This gives us the required result. Note that the signs come out
correctly because of the alternating signs in Newton’s result.

18.5 Gauss’s Fundamental Theorem of Symmetric Functions

Gauss’s elegant demonstration of this theorem has now become one of the standard
proofs given in textbooks. This proof was published in an 1816 paper on an alterna-
tive proof of the fundamental theorem of algebra, since Gauss gave his first proof in
his Ph.D. thesis. Although his proof of the theorem on symmetric functions is very
brief even in the original, Gauss’s notation does not include subscripts. We summarize
using subscripts. When terms are written in lexicographic order, a term x

α1
1 x

α2
2 x

α3
3 · · ·

is of higher-order than xβ1
1 x

β2
2 x

β3
3 · · · when the first of the nonvanishing differences

α1 −β1,α2 −β2,α3 −β3, . . . is positive. This implies that the highest order terms of the
elementary symmetric functions σ1,σ2,σ3, . . . are, respectively, x1,x1x2,x1x2x3, . . . .
So the highest-order term of σα1

1 σ
α2
2 σ

α3
3 · · · would be

x
α1+α2+α3+···
1 x

α2+α3+···
2 x

α3+···
3 · · · .
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Now observe that the two expressions σα1
1 σ

α2
2 σ

α3
3 · · · and σβ1

1 σ
β2
2 σ

β3
3 · · · have the same

highest-order term if and only if

α1 +α2 +α3 +·· · = β1 +β2 +β3 +·· · ,
α2 +α3 +·· · = β2 +β3 +·· · ,

α3 +·· · = β3 +·· · .
Thus, they have the same highest-order term if and only if

α1 = β1,α2 = β2,α3 = β3, . . . .

Now letP(x1,x2, . . . ,xn) be a symmetric polynomial with highest-order term xα1
1 x

α2
2 x

α3
3

· · · . By symmetry, xα2
1 x

α1
2 x

α3
3 · · · is also a term inP and so we haveα1 ≥α2. Continuation

of this argument gives α1 ≥ α2 ≥ α3 ≥ ·· · . Observe that the expression

σ
α1−α2
1 σ

α2−α3
2 σ

α3−α4
3 · · ·σαnn has x

α1
1 x

α2
2 x

α3
3 · · ·

as the highest-order term. Therefore,

P(x1,x2, . . . ,xn)−σα1−α2
1 σ

α2−α3
2 σ

α3−α4
3 · · ·σαnn

is a symmetric polynomial with highest term of a lower order than P . A repeated
application of this process shows thatP(x1,x2, . . . ,xn) is a polynomial in the elementary
symmetric functions. This completes our summary of Gauss’s proof.

18.6 Cauchy: Fundamental Theorem of Symmetric Functions

Cauchy’s proof appeared in his 1829 Exercices de mathématiques and utilized induction
on the number of variables. He wrote at some length, looking at particular cases and
giving examples. As in several of his proofs of algebraic results, his argument finally
depended on the solution of a system of linear equations involving a Vandermonde
determinant. In his 1895 algebra book, Heinrich Weber presented a succinct proof,
based on Cauchy’s paper. Weber began by supposing that α1,α2, . . . ,αn were the roots
of the equation

f (x)= xn+ a1x
n−1 + a2x

n−2 +·· ·+ an = 0,

and that S = S(α1,α2, . . . ,αn) was a symmetric polynomial in α1,α2, . . . ,αn. In order
to apply induction, he expressed S in the form

S = S0α
µ

1 +S1α
µ−1
1 +·· ·+Sµ−1α1 +Sµ,

where S0,S1, . . . ,Sµ were symmetric polynomials in α2,α3, . . . ,αn. Since S was sym-
metric, α1 could be replaced by α2, and the new coefficients would be the same
polynomials S0,S1, . . . ,Sµ, but in the variables α1,α3, . . . ,αn. The same argument
applied to α3,α4, . . . ,αn. Next, from the equation

xn+ a1x
n−1 +·· ·+ an = (x−α1)

(
xn−1 + a′1xn−2 +·· ·+ a′n−1

)
,
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Weber obtained the relations

a′1 = α1 + a1, a
′
2 = α2

1 + a1α1 + a2, a
′
3 = α3

1 + a1α
2
1 + a2α1 + a3, . . . .

Continuing the process of induction, Weber assumed the result true for n− 1 or fewer
variables. Since a′1,a

′
2, . . . ,a

′
n−1 were elementary symmetric functions of α2,α3, . . . ,αn,

the functions S0,S1, . . . ,Sµ had to be polynomials in a′1,a
′
2, . . . ,a

′
n−1. He substituted

the value of a′i into the expression for S to obtain

S =A0α
m
1 +A1α

m−1
1 +·· ·+Am−1α1 +Am,

where A0,A1, . . . ,Am were polynomials in a1,a2, . . . ,an. Weber then set

O(x)=A0x
m+A1x

m−1 +·· ·+Am−1x+Am,

and, by an application of the division algorithm, gotO(x)=Q(x)f (x)+P(x),where
deg P < deg f = n, and the coefficients of P(x) were polynomials in the elementary
symmetric functions a1,a2, . . . ,an. He then supposed

P(x)=C0x
n−1 +C1x

n−2 +·· ·+Cn−2x+Cn−1.

Clearly,

S =O(α1)=P(α1); by symmetry S =P(α2)=P(α3)= ·· · =P(αn).

So Weber had a system of equations in the unknowns C0,C1, . . . ,Cn−1 :

C0α
n−1
1 +C1α

n−2
1 +·· ·+Cn−2α1 + (Cn−1 −S)= 0,

C0α
n−1
2 +C2α

n−2
2 +·· ·+Cn−2α2 + (Cn−1 −S)= 0,

. . . . . .

C0α
n−1
n +C2α

n−2
n +·· ·+Cn−2αn+ (Cn−1 −S)= 0.

Since the Vandermonde determinant was not zero, Weber could conclude that
C0 = 0,C1 = 0, . . . ,Cn−2 = 0, and Cn−1 = S. Since Cn−1 was a polynomial in
a1,a2, . . . ,an, the result followed.

18.7 Cauchy: Elementary Symmetric Functions as Rational
Functions of Odd Power Sums

In an 1837 paper on the resolution of algebraic equations, Cauchy derived the very inter-
esting result that the elementary symmetric functions σ1,σ2,σ3, . . . could be expressed
as rational functions of the odd power sum symmetric functions s1, s3, s5, . . . . Laguerre
rediscovered this result in 1878, and it is often named for him. We present Cauchy’s
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argument with a slight change in notation. Let

f (z)= 1−σ1z+σ2z−·· ·+ (−1)mσmz
m = (1−α1z)(1−α2z) · · ·(1−αmz),

f (−z)= 1+σ1z+σ2z+·· ·+σmzm = (1+α1z)(1+α2z) · · ·(1+αmz),
and f (z)/f (−z)= e−2zT . Then

T =− 1

2z
ln

(
1−α1z

1+α1z
· 1−α2z

1+α2z
· · · 1−αmz

1+αmz
)
= s1 + s3

3
z2 + s5

5
z4 + s7

7
z6 + etc.

and

σ1 +σ3z
2 +σ5z

4 +·· ·
1+σ2z2 +σ4z3 +·· · = 1

z

ezT − e−zT
ezT + e−zT

= 1

6
· 22 − 1

1 · 2 22T − 1

30

24 − 1

1 · 2 · 3 · 424z2T 3 + 1

42

26 − 1

1 · 2 · 3 · 4 · 5 · 626z4T 5 − etc.

=A1 +A2z
2 +A3z

4 +A4z
6 + etc, (18.9)

where 1/6, −1/30, 1/42, . . . are Bernoulli numbers and A1,A2, . . . are given by

A1 = s1, A2 = (s3 − s3
1)/3, A3 = s5/5− s2

1s3/3+ 2s5
1/15, . . . . (18.10)

We note, with Cauchy, that in each of the polynomials A2,A3,A4 . . ., the sum of the
coefficients is zero. After multiplying equation (18.9) by the denominator of the left-
hand side and equating coefficients of the powers of z, we get

σ1 =A1, σ3 = σ2A1 +A2, σ5 = σ4A1 +σ2A2 +A3, . . . .

By solving these equations form= 4, for example, we arrive at the required result that

σ1 =A1, σ2 = A1A4 −A2A3

A2
2 −A1A3

, σ3 =A1
A1A4 −A2A3

A2
2 −A1A3

+A2, σ4 = A2
3 −A2A4

A2
2 −A1A3

.

(18.11)

Note that by (18.10) A1,A2,A3, . . . are polynomials in s1, s3, s5, . . . . Cauchy also
observed that if the roots α1,α2,α3, . . . were numbers instead of literal symbols, then
it could happen that the coefficients of the equation given by −σ1, σ2, −σ3, . . . could
not be determined. For example, if the roots of a fourth-degree polynomial were such
that s1 = s3 = s5 = s7 = 1, then A1 = 1, A2 = 0, A3 = 0, A4 = 0 and σ1 = 1,σ3 = σ2,
σ4 = 0. This implied that, although the coefficients of x2 and x3 were the same, they
were undetermined, and the quartic reduced to (x2 +σ2)(x

2 −x)= 0. Cauchy went on
to give a general analysis of this indeterminacy.

18.8 Laguerre and Pólya on Symmetric Functions

Edmond Laguerre (1834–1886) wrote many papers on elementary topics in algebra
and analysis. It may have appeared that the study of these areas had been exhausted,
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but Laguerre’s work contained many novel and intriguing ideas. His studies included
Descartes’s rule of signs, approximate roots of equations, and determining real roots
of algebraic and transcendental equations. Henri Poincaré, one of the editors of the
works of Laguerre, commented that Laguerre’s work in algebraic equations was his
most remarkable, and that Laguerre had the ability to harvest new revelations in a field
from which it was thought that no more could be gleaned. For example, in an 1877
paper, he proved that the coefficients of an algebraic equation of degree n could be
expressed as rational functions of the first n sums of odd-power symmetric functions.
In 1837 Cauchy had anticipated this result, though Laguerre was unaware of this. But, as
George Pólya showed, Laguerre’s method of proof leads to interesting generalizations.
To state Pólya’s generalization, suppose

f (x)= (x−α1)(x−α2) · · ·(x−αn)= xn+ a1x
n−1 + a2x

n−2 +·· ·+ an,
g(x)= (x−β1)(x−β2) · · ·(x−βn)= xn+ b1x

n−1 + b2x
n−2 +·· ·+ bn,

sk = αk1 +αk2 +·· ·+αkn, tk = βk1 +βk2 +·· ·+βkn,

sk− tk = uk, andR =
n∏
i=1

n∏
j=1

(αi −βj ).

Laguerre’s theorem stated that the elementary symmetric functions

−a1, a2, −a3, . . . , (−1)nan

were rational functions of s1, s3, . . . , s2n−1. Pólya’s generalization was that the 2n+ 1
functions

R,Ra1,Ra2, . . . ,Ran; Rb1,Rb2, . . . ,Rbn

were polynomials in u1,u2, . . . ,u2n and that the expression for R did not contain u2n.
To obtain Laguerre’s result, Pólya took βi =−αi in his theorem. In this special case,
u2m−1 = 2s2m−1 and u2m = 0 for m= 1,2,3, . . . , so that the result followed. Following
Laguerre’s basic idea, Pólya computed

ln
g(x)

f (x)
=

n∑
i=1

ln
x−βi
x−αi =

n∑
i=1

(
αi −βi
x

+ α2
i −β2

i

2x2
+ α3

i −β3
i

3x3
+·· ·

)
= s1 − t1

x
+ s2 − t2

2x2
+ s3 − t3

3x3
+·· ·

= u1

x
+ u2

2x2
+ u3

3x3
+·· · .

He then let

U(x)= u1

x
+ u2

2x2
+·· ·+ u2n

2nx2n
,

and, employing Laguerre’s notation, he let ((x−m)) denote a series of the form

cm

xm
+ cm+1

xm+1
+ cm+2

xm+2
+·· · .
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Thus, he could write

ln
g(x)

f (x)
=U(x)+ ((x−2n−1)), or

g(x)

f (x)
= eU(x)+ ((x−2n−1)),

or f (x)eU(x) = g(x)+ ((x−n−1)).

He next set

eU(x) = 1+ υ1

x
+ υ2

x2
+ υ3

x3
+·· · = 1+U(x)+ 1

2!U
2(x)+ 1

3!U
3(x)+·· ·

= 1+
(u1

x
+ u2

2x2
+·· ·

)
+ 1

2!
(u1

x
+ u2

2x2
+·· ·

)2 +·· · .

Equating the coefficients of 1/x,1/x2,1/x3, . . . , he got

υ1 = u1, 2υ2 = u2
1 +u2,

6υ3 = u3
1 + 2u3 + 3u1u2,

24υ4 = u4
1 + 3u2

2 + 8u1u3 + 6u2
1u2 + 6u4, . . . .

These relations showed that υn could be expressed as a polynomial in u1,u2, . . . ,un for
n= 1,2,3, . . . . Then, by f (x)eU(x) = g(x)+ ((x−n−1)), he could write

(xn+ a1x
n−1 + a2x

n−2 +·· ·+ an)
(

1+ υ1

x
+ υ2

x2
+·· ·+ υn

xn
+ υn+1

xn+1
+·· ·

)
= g(x)+ ((x−n−1)).

This implied that the coefficients of 1/x,1/x2, . . . ,1/xn on the left-hand side all had to
vanish, and he got the linear relations in a1,a2, . . . ,an:

υ1an+υ2an−1 +υ3an−2 +·· ·+υna1 =−υn+1,

υ2an+υ3an−1 +υ4an−2 +·· ·+υn+1a1 =−υn+2,

. . . . . .

υnan+υn+1an−1 +υn+2an−2 +·· ·+υ2n−1a1 =−υ2n.

Pólya noted that the determinant of this linear system

Vn =

∣∣∣∣∣∣∣∣
υ1 υ2 . . . υn
υ2 υ3 . . . υn+1

. . . . . . . . . . . .

υn υn+1 . . . υ2n−1

∣∣∣∣∣∣∣∣
was a homogeneous polynomial of degree n2 in α1,α2, . . . ,αn;β1,β2, . . . ,βn and was
also symmetric in α1,α2, . . . ,αn as well as in β1,β2, . . . ,βn. Pólya proceeded to show
that Vn = (−1)n(n−1)/2R . In order to prove this, he supposed α1 = β1 = λ. He argued
that the variations of λ did not alter the values of u1,u2, . . . ,u2n or, therefore, the
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values υ1,υ2, . . . ,υ2n. However, some a1,a2, . . . ,an would vary with λ, so Vn = 0
when α1 = β1. This implied that α1 −β1 was a factor of Vn and, by symmetry, αi−βj ,
i = 1, . . . ,n and j = 1,2, . . . ,n, were all factors of Vn. This in turn meant that R
divided Vn, and they both had the same degrees n2 in αi and βj . Therefore, Vn/R was
a constant, found by taking α1 = α2 = ·· · = αn = 0,β1 = β2 = ·· · = βn =−1. Pólya’s
theorem followed from Cramer’s formulas for a1,a2, . . . ,an. Pólya commented that
the formulas for b1,b2, . . . ,bn could be obtained by interchanging the roles of the a
and the b.

18.9 MacMahon’s Generalization of Waring’s Formula

One of the original insights of MacMahon’s 1889 Memoir on a New Theory of Sym-
metric Functions was that Waring’s formula could be obtained from (18.5), the formula
used by Euler and Landen to derive Newton’s recursive rule for the power sum symmet-
ric function. MacMahon called this observation important, noting, “This fact seems to
have hitherto escaped the notice of writers upon the subject.” In this paper, MacMahon
did not write out details of the new derivation for Waring’s formula, but we present
one, rewriting (18.5) as

σ1x− 2σ2x
2 + 3σ3x

3 −·· ·
1−σ1x+σ2x2 −σ3x3 +·· · = s1x+ s2x

2 + s3x3 +·· · .

Expanding the denominator as a geometric series, we get(
n∑
i=1

(−1)i−1iσix
i

)( ∞∑
l=0

(σ1x−σ2x
2 +σ3x

3 −·· ·)l
)
=

∞∑
m=1

smx
m.

On expanding the lth power term by the multinomial theorem, we obtain terms of the
form

l!
l1!l2! · · · ls ! (σ1x)

l1(−σ2x
2)l2 · · ·(±σsxs)ls , (18.12)

where l1 + l2 + ·· · + ls = l. Since sm, the mth power sum symmetric function, is the
coefficient of xm on the right-hand side, we need only gather together the coefficients
of xm on the left-hand side. Note that the expression (18.12) has to be multiplied by
terms of the form (−1)i−1iσix

i so we require that

l1 + 2l2 +·· ·+ i(li + 1)+ sls =m. (18.13)

Moreover, the absolute value of the coefficient of the term after multiplication will be

i(li + 1)l!
l1!l2! · · ·(li + 1)!li+1! · · · ls ! .
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It is now easy to check that by (18.13), the absolute value of the coefficient of xm on
the left can be found by summing the terms of the form

m(k1 + k2 +·· ·+ ks − 1)!
k1!k2! · · ·ks ! σ

k1
1 σ

k2
2 · · ·σ kss , (18.14)

where k1 + 2k2 +·· ·+ sks =m, (18.15)

proving Waring’s formula.
In order to conveniently and clearly state his generalization of Waring,

MacMahon developed a terminology. He defined the monomial symmetric function∑
α
p1
1 α

p2
2 · · ·αpnn with the condition that the sum be over all those permutations of

the indices resulting in different terms. He denoted this monomial symmetric func-
tion by (p1p2 · · ·pn), where the numbers p were written in descending order. In case
the pi were repeated, he used exponents; for example, for (p1p1p2) he wrote (p2

1p2).
Thus, MacMahon designated the elementary symmetric functions as

∑
αi = (1),∑ αi

αj = (12), · · · ,α1α2 · · ·αn = (1n). He called the sum (p1 +p2 +p3 +·· ·+pn)=w the
weight and called p1 the degree of the symmetric function. Note that MacMahon also
referred to (p1p2 . . .pn) as a partition of w. Products of monomial symmetric functions
were to be denoted, for example, as∑

α
p1
1 α

p3
2

∑
α
p2
1 α

p4
2 · · ·αpn−2

n−2 = (p1p3)(p2p4 · · ·pn−2).

MacMahon named (p1p2 · · ·pn−2) a partition of

p1 + p2 + ·· ·+pn−2,

and
(p1p3)(p2p4 · · ·pn−2)

a separation of the partition, where (p1p3) and (p2p4 · · ·pn−2)were called the separates.
He also wrote the separates in descending order according to their weights. If the
successive weights of the separates were w1,w2,w3, . . . then he named (w1w2w3 · · ·)
the specification of the separation. MacMahon wrote the general form of a partition as

(p
π1
1 p

π2
2 p

π3
3 · · ·)

and that of a separation as

(J1)
j1 (J2)

j2 (J3)
j3 . . . , where J1, J2, J3 . . .

were the distinct separates. It is interesting to note that MacMahon presented his general-
ization of Waring’s formula, complete with proof, in his 1910 Encyclopedia Britannica
article on algebraic forms:

Theorem.—The function symbolized by (n), viz. the sum of the nth powers of the quanti-
ties, is expressible in terms of functions which are symbolized by separations of any partition
(n
ν1
1 n

ν2
2 n

ν3
3 · · ·) of the number n. The expression is —

(−)ν1+ν2+ν3+··· (ν1+ν2+ν3+···−1)!
ν1 !ν2 !ν3 !··· (n)

=
∑
(−)j1+j2+j3+··· (j1+j2+j3+···−1)!

j1 !j2 !j3 !··· (J1)
j1(J2)

j2(J3)
j3 · · · ,
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(J1)
j1(J2)

j2(J3)
j3 · · · being a separation of (nν1

1 n
ν2
2 n

ν3
3 · · ·) and the summation being in regard to

all such separations. For the particular case (nν1
1 n

ν2
2 n

ν3
3 · · ·)= (1n)

(−)n 1

n
(n)=

∑
(−)j1+j2+j3+··· (j1 + j2 + j3 +·· ·− 1)!

j1!j2!j3! · · · (1)j1(12)j2(13)j3 · · · .

To establish this write —

1+µX1 +µ2X2 +µ3X3 +·· · =
∏
a

(1+µa1x1 +µ2a2
1x2 +µ3a3

1x3 +·· ·),

the product on the right involving a factor for each of the quantities a1,a2,a3 . . ., and µ being
arbitrary.

Multiplying out the right-hand side and comparing coefficients

X1 = (1)x1,

X2 = (2)x2 + (12)x2
1 ,

X3 = (3)x3 + (21)x2x1 + (13)x3
1 ,

X4 = (4)x4 + (31)x3x1 + (22)x2
2 + (212)x2x

2
1 + (14)x4

1 ,

. . .Xm =
∑
(m

µ1
1 m

µ2
2 m

µ3
3 · · ·)xµ1

m1
xµ2
m2
xµ3
m3

· · · ,

the summation being for all partitions of m.
Auxiliary Theorem. —The coefficient of xλ1

l1
x
λ2
l2
x
λ3
l3
· · · in the product

X
µ1
m1X

µ2
m2X

µ3
m3 · · ·

µ1!µ2!µ3! · · ·
is ∑ (J1)

j1(J2)
j2(J3)

j3 · · ·
j1!j2!j3! · · ·

where

(J1)
j1(J2)

j2(J3)
j3 · · · is a separation of (lλ1

1 l
λ2

2 l
λ3
3 · · ·)

of specification (mµ1
1 m

µ2
2 m

µ3
3 · · ·) and the sum is for all such separations. To establish this observe

the result.
1

p!X
p

3 =
∑ (3)π1(21)π2(13)π3

π1!π2!π3! x
π1
3 x

π2
2 x

π2+3π3
1

and remark that (3)π1(21)π2(13)π3 is a separation of (3π1 2π2 1π2+3π3) of specification (3p).Asimilar
remark may be made in respect of

1

µ1!X
µ1
m1
,

1

µ2!X
µ2
m2
,

1

µ3!X
µ3
m3
, . . .

and therefore of the product of those expressions. Hence the theorem.
Now

log(1+µX1 +µ2X2 +µ3X3 +·· ·)

=
∑
a

log(1+µa1x1 +µ2a2
1x2 +µ3a3

1x3 +·· ·)
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whence, expanding by the exponential and multinomial theorems, a comparison of the coefficients
of µn gives

(n)
∑
(−)ν1+ν2+ν3···−1 (ν1 + ν2 + ν3 +·· ·− 1)!

ν1!ν2!ν3! · · · xν1
n1
xν1
n2
xν3
n3
· · ·

=
∑
(−)ν1+ν2+ν3+···−1 (ν1 + ν2 + ν3 +·· ·− 1)!

ν1!ν2!ν3! · · · Xν1
n1
Xν2
n2
Xν3
n3
· · ·

and, by the auxiliary theorem, any term X
µ1
m1X

µ2
m2X

µ3
m3 · · · on the right-hand side is such that the

coefficient of xν1
n1
xν2
n2
xν3
n3
· · · in 1

µ1!µ2!µ3!···X
µ1
m1X

µ2
m2X

µ3
m3 · · · is

∑ (J1)
j1(J2)

j2(J3)
j3 · · ·

j1!j2!j3! · · · ,

where, since (mµ1
1 m

µ2
2 m

µ3
3 · · ·) is the specification of (J1)

j1(J2)
j2(J3)

j3 · · · ,µ1 +µ2 +µ3 +·· · =
j1 + j2 + j3 +·· · . Comparison of the coefficients of xν1

n1
xν2
n2
xν3
n3
· · · therefore yields the result

(−)ν1+ν2+ν3+··· (ν1 + ν2 + ν3 +·· ·− 1)!
ν1!ν2!ν3! · · · (n)

=
∑
(−)j1+j2+j3+··· (j1 + j2 + j3 +·· ·− 1)!

j1!j2!j3! · · · (J1)
j1(J2)

j2(J3)
j3 · · · ,

for the expression of
∑
an in terms of products of symmetric functions symbolized by separations

of (nν1
1 n

ν2
2 n

ν3
3 · · ·).

18.10 Exercises

1. Express any given monomial symmetric function in terms of sums of powers
symmetric functions. For Waring’s result, see Waring (1991), pp. 9–11.

2. Let p1 +p2 + ·· ·+pk =m be the weight of the monomial symmetric function∑
α
p1
1 α

p2
2 · · ·αpkk . Denote by hm the sum of all monomial symmetric functions

of weight m. Prove that

1

1−α1x+α2x2 −·· ·+ (−1)nαnxn
= 1+h1x+h2x

2 +h3x
3 +·· · .

Also prove that

hm =
∑
(−1)m+k1+k2+k3+··· (k1 + k2 + k3 +·· ·)!

k1!k2!k3! · · · α
k1
1 α

k2
2 α

k3
3 · · · ,

where the sum is over all partitions of m, that is, all k1, k2, k3, . . . such that
k1 + 2k2 + 3k3 +·· · =m. Derive Faà di Bruno’s formula for m≤ n,

hm =

∣∣∣∣∣∣∣∣∣∣∣∣

α1 α2 α3 · · · αm
1 α1 α2 · · · αm−1

0 1 α1 · · · αm−2

0 0 1 · · · αm−3

· · ·
0 0 0 −̇1 α1

∣∣∣∣∣∣∣∣∣∣∣∣
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Faà di Bruno published this result in 1882; MacMahon and Franklin gave short
proofs in 1884. See MacMahon (1978), vol. I, pp. 51–52.

3. Let Srn denote the sum of all monomial symmetric functions related to partitions
of m into r parts. Prove that

Srm−σ1S
r
m−1 +σ2S

r
m−2 −·· ·+ (−1)m+1 m!

r!(m− r)! σm = 0.

Newton’s formula corresponds to r = 1. MacMahon published this general-
ization of Newton’s formula in an 1884 paper presenting several results on
expanding monomial symmetric functions in terms of elementary symmetric
functions. See MacMahon (1978), vol. I, pp. 41–42.

4. With Srm as in exercise 3, prove that for k = k1 + k2 + k3 +·· · ,:

Srm =
∑
(−1)w2+k+r−1 (k− 1)!wr+1

k1!k2!k3! σ
k1
1 σ

k2

2 σ
k3
3 · · ·

where wr+1 = kr +
(
r + 1

1

)
kr+1 +

(
r + 2

2

)
kr+2 +·· · .

See MacMahon (1978), vol. I, p. 42.
5. Show that if a1 + a2 + a3 = 0, then(

a1

a2 − a3
− a2

a1 − a3
+ a3

a1 − a2

)(
a2 − a3

a1
− a1 − a3

a2
+ a1 − a2

a3

)
= 32.

Generalize to n quantities under the conditions

n∑
i=1

aki = 0, with k = l, . . . ,n− 2.

See MacMahon (1978), vol. I, pp. 20–22.
6. Give a combinatorial proof of the Cauchy–Laguerre theorem. See Kung (1995),

p. 463.

18.11 Notes on the Literature

De Beaune, Girard, and Viéte (1986) contains English translations of algebra texts by
de Beaune, Girard, and Viéte. The quotation from Girard is taken from this source.
These three works together give an idea of the notation and methods used by French
algebraists in the early seventeenth century. The reader may see Manders (2006) for
the “cossic” algebra of Roth and Faulhaber during the same period.

For Newton’s statement of his rule given in the text, see Newton (1964–67), vol. 2,
pp. 107–108. Euler gave his two proofs of this rule in his 1750 paper reprinted in Eu. I-6,
pp. 20–30; also see pp. 263–286. Maclaurin’s proof can be found in his 1748 Treatise
of Algebra; his lemma appears on p. 291. For proofs of the fundamental theorem for
symmetric functions, see Gauss (1863–1927), vol. 3, pp. 36–38 and Weber (1895),
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vol. I, pp. 161–63. MacMahon’s 1889 memoir is reprinted in MacMahon (1978), vol. I,
pp. 109–143. See p. 130 for his remark on Waring’s formula. His Encyclopedia Britan-
nica article is reprinted in vol. II, pp. 620–641. The latter resource contains extensive
commentaries by George Andrews relating the papers of MacMahon to more recent
mathematical work.

Although earlier writers attributed Cauchy’s 1837 result to Laguerre, Lascoux (2003)
has pointed out Cauchy’s paper. As a side point, Lascoux, among others, observes that
Leibniz himself, in his communications with the Paris Academy of Science, signed his
name Leibnitz.
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Calculus of Several Variables

19.1 Preliminary Remarks

During the eighteenth and nineteenth centuries, Niklaus I Bernoulli, Clairaut, Euler,
Fontaine, Lagrange, Gauss, Green, Cauchy, Ostrogradski, Jacobi, and others laid the
foundations for the calculus of several variables. Most of this work was done in the
context of mathematical physics. Not surprisingly, however, it is possible to see traces
of this subject in the earliest work of both Newton and Leibniz. In his study of calculus
conducted in May 1665, Newton expressed the curvature of f (x,y) = 0 in terms of
homogenized first- and second-order partial derivatives of f (x,y). He even worked
out a notation for these partial derivatives, though he did not make use of it in any of his
other work. Newton used partial derivatives as a computational device without a formal
definition. Again, in his calculus book of 1670–71, Newton described the method for
finding the fluxional equation of f (x,y)= 0, identical to the equation fxẋ+fyẏ = 0,
where the dot notation denoted the derivative with respect to some parameter.

Gottfried Leibniz (1646–1716), whose name was written Leibnitz in most of the
early literature, published two papers, in 1792 and 1794, in which he developed a
procedure to find the envelope of a family of curves: a curve touching, at each of its
points, a member of the given family. He showed that the methods of calculus could
be extended to a family of curves by treating the parameter defining the family as
a differentiable quantity. In his paper of 1794, Leibniz explained how to obtain an
envelope of a family of curves using differential calculus. He noted that his method
was a generalization of the technique developed by Fermat and extended by Hudde. To
illustrate his method, he considered a family of circles (x− b)2 + y2 = ab defined by
the parameter b. He differentiated with respect to b and obtained 2(b−x)db= adb or
b = x + a/2. By eliminating b from both equations, he found the envelope to be the
parabola y2 = ax+ a2/4.

At l’Hôpital’s suggestion, Johann Bernoulli immediately applied these ideas to a
problem originally solved by Torricelli in 1644. Torricelli had shown that the family of
parabolic trajectories of cannon balls shot with the same initial velocity but different
angles of elevation had a parabolic envelope called the “safety parabola,” defining the
range of the cannon. However, Leibniz and the Bernoullis sought new applications for

346
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Leibniz’s ideas on families of curves, including the brachistochrone and the orthogonal
trajectories problems – both posed by Johann Bernoulli in 1696–97. The second problem
was to find a family of curves orthogonal to a given family of curves. For example, the
family of rays emanating from one fixed point would be orthogonal to the family of
concentric circles with the fixed point as their common center. As a result of questions
arising out of his correspondence with Johann Bernoulli, in 1697 Leibniz discovered his
famous theorem on differentiation under the integral sign. He began with this problem
involving families of curves: Given a family of logarithmic curves y(x,a)= a lnx, all
of which pass through (1,0), find the locus of points x such that s(x,a)= ∫ x

1
dt

t

√
t2 + a2

is a constant. The quantity s(x,a) is the arclength from 1 to x along the curve y(x,a)=
a lnx. Leibniz was led to consider the expression da

∫
p(x,a)dx, the differential with

respect to a of
∫
p(x,a)dx. Recall that Leibniz always conceived of integrals as sums

and differentials as differences; since these operations commute when the initial value
is properly chosen, he arrived at the formula

da

∫
p(x,a)dx =

∫
dap(x,a)dx.

For various reasons, Leibniz and Bernoulli did not follow up on these discoveries;
for almost two decades, this subject lay fallow, until Niklaus I Bernoulli (1687–1759)
took it up and developed the basic ideas of partial differentiation. Niklaus I studied
mathematics with his uncle Jakob at Basel and earned his masters degree in 1704 with
a thesis on infinite series. He was familiar with the preliminary drafts of Jakob’s famous
Ars Conjectandi, and he extended some of its results by applying probability theory to
questions in jurisprudence. For this work he was awarded a doctorate of law in 1709;
in 1713, he wrote an introductory note to Jakob’s Ars Conjectandi. Niklaus I published
very little; he became known through his correspondence with his contemporaries as a
mathematician with a deep concern for the logical foundations of his subject. In 1716,
he took up the orthogonal trajectories problem and this led him to the basic concepts of
partial differentiation. He defined both partial and complete differentials of variables
depending upon a number of other variables. He proved the equality of mixed second-
order differentials: If a variable S depends on y and a, then dydaS = dadyS, where
dyS denotes the differential of S, with a constant. Niklaus I published his work on
orthogonal trajectories, but not the major part of his results on partial differentiation.
However, in 1743 he communicated with Euler on this topic.

In the 1730s, Euler wrote articles in which he rederived the results of Leibniz and
N. Bernoulli. One of his new and important results was that if P(x,a) was a homoge-
neous function of degree n in x and a, and dP =Qdx+Rda, then nP =Qx+Ra.
Euler applied this formula to the problems of orthogonal trajectories and equal area
trajectories. He very quickly perceived partial differentiation as a topic in the calculus
of functions of many variables, rather than as merely a procedure necessary for the
study of families of curves. After giving the argument for dadxP = dxdaP in terms of a
family of curves, he wrote that he preferred to give a proof from the very nature of dif-
ferentiation. He set P(x+dx,a)=Q, P (x,a+da)=R and P(x+dx,a+da)= S.
So dxP =Q−P , and hence dadxP = (S−R)− (Q−P). Similarly, daP =R−P , so
that dxdaP = (S−Q)− (R−P). Clearly, it followed that dxdaP = dadxP .
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It was only after Bolzano and Cauchy gave local definitions of continuity and differ-
entiability that nineteenth-century mathematicians began to understand that, even if a
result was generally correct, there could be exceptions at certain points. However, this
understanding came very slowly. In 1867, the Finnish mathematician Lorenz Lindelöf
(1827–1908) presented a counterexample to show the proofs that the mixed second
derivatives were independent of their order, published by Schlömilch in 1862 and by
Bertrand in 1864, to be invalid. L. Lindelöf’s review motivated Weierstrass’s student,
H. A. Schwarz, in 1873 to give a proof of the equality of the mixed derivatives with
fairly strong conditions on the partial derivatives. In order to show the necessity for
some conditions on the partial derivatives, Schwarz gave, as a counterexample, the
function

f (x,y)= x2 arctan(y/x)− y2 arctan(x/y),f (0,0)= 0,

where

∂2f/∂x∂y =−1 and ∂2f/∂y∂x =+1 at (0,0).

At all (x,y) �= (0,0),
∂2f/∂x∂y = (x2 − y2)/(x2 + y2)= ∂2f/∂y∂x,

so that that Schwarz’s function would not have been regarded as a counterexample
by eighteenth-century mathematicians. Peano, Stoltz, Hobson, Young, and others suc-
ceeded in weakening the conditions for Schwarz’s theorem. We note that it is easy to
prove that if f ∈ C2, that is, if f and all its partial derivatives up to the second order
are continuous in some open region, then the mixed partial derivatives are equal at all
points of that region.

Like partial derivatives, the theory of multiple integrals originated in the study of
families of curves. Leibniz made a deeper analysis of the integral da

∫ x
1
dt

t

√
t2 + a2 in

an unpublished article of 1697. In modern notation, he had the result∫ a1

a0

da

∫ x

1

dt

t

√
t2 + a2 =

∫ a1

a0

∫ x

1

a da dt

t
√
t2 + a2

.

Since the integral
∫ a1
a0

and da cancel out, we have∫ x

1

dt

t

√
t2 + a2

1 −
∫ x

1

dt

t

√
t2 + a2

0 =
∫ a1

a0

∫ x

1

a da dt

t
√
t2 + a2

.

The left-hand side represents the difference in the arclengths along two logarithmic
curves. Leibniz was excited by his result; he noted that this was the first time double
integrals had appeared in mathematics and that with his work it was possible to integrate
and differentiate with respect to more than one variable. Unfortunately, the theory of
double integrals did not begin its development until more than half a century later.
From the 1740s onward, d’Alembert, Euler, and Lagrange took up the investigation of
partial differential equations, requiring differentiation of functions of many variables.
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Integration in several variables was the next problem to be tackled; in 1769, Euler
published a paper on the change of variables formula for double integrals. Four years
later, Lagrange extended this to triple integrals. Both Euler and Lagrange gave formal
derivations, taking an algebraic approach to calculus, in contrast with Gauss’s later
method of taking an infinitesimal area in the uv-plane and calculating the change under
the transformation x = x(u,v), y = y(u,v).

In 1836, the Russian mathematician Mikhail Ostrogradski (1801–1862) became
the first mathematician to present the change of variables formula for the general
n-dimensional case. Ostrogradski studied at Kharkov University, and he refused his doc-
toral degree there to protest religious discrimination against his teacher T. Osipovsky.
While at the Sorbonne from 1824 to 1827, he studied with Cauchy and presented a
number of important papers to the Paris Academy. His later election to the Peters-
burg Academy contributed to its return to brilliance. Ostrogradski participated in the
work of introducing the Gregorian calendar and the decimal system of measurement
in Russia; he also did a great deal to improve mathematics instruction in Russian uni-
versities. In 1838, he published a paper criticizing the formal methods of Euler and
Lagrange, although his own earlier work had used the same approach. In the same
paper, Ostrogradski carefully explained how the area element should be computed
under a change of variables.

In 1833, Jacobi gave an evaluation of Euler’s beta integral by a simultaneous change
of variables, in contrast with Poisson’s earlier method of changing the variables one at
a time. Subsequently, Jacobi used change of variables in various special cases. Then
in 1841, he published his definitive work on functional determinants, including the
multiplication rule for the composition of several changes of variables.

Investigations in physics were a motivating factor in the development of the theory
of multiple integrals, just as in the theory of partial differential calculus. The integral
theorems named after Gauss, Green, and Stokes were developed in the context of studies
in fluid mechanics, heat conduction, electricity, and magnetism. In 1813, Gauss, against
the backdrop of his studies in magnetism, stated and proved a particular case of the
divergence theorem:∫ (

∂p

∂x
+ ∂q

∂y
+ ∂r

∂z

)
w =

∫
(p cosα+ q cosβ+ r cosγ )ε,

where w and ε denoted elements of volume and surface area, the left integral was
taken over a solid V with surface boundary S, and α, β, and γ were angles made by
the outward normal with the positive direction of the x, y, and z axes, respectively. In
1826, Ostrogradski presented to the Paris Academy a paper on the theory of heat, in
which he stated and proved this theorem; this paper was actually published in 1831 by
the Petersburg Academy.

In 1828, the British mathematician George Green (1793–1841) published a variant
of the divergence theorem in An Essay on the Application of Mathematical Analysis to
the Theories of Electricity and Magnetism. Green printed this groundbreaking essay
at his own expense. In it, he applied many-variable calculus, including some original
results, to intricate and carefully described problems in electricity and magnetism.
Green, a miller by trade, was almost entirely self-educated, having received only four
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terms of schooling when he was very small. Yet he produced results of fundamental
importance in mathematical physics with references to Laplace, Poisson, Cauchy, and
Fourier, although the works of those French scientists were hardly mentioned in the
British universities during that period. Green’s work is a testament to the degree of
general interest in science and mathematics in Britain at that time. In fact, about a
century earlier, de Moivre and Simpson gave lessons in mathematics and its applications
to non-academics.

Green’s biographer, D. M. Cannell, conjectures that Challand Forrest and John
Toplis, headmasters of the grammar school, may have tutored Green after he had exhib-
ited great ability and interest. Both men had studied at Cambridge and in 1812 the latter
published a translation of the first volume of Laplace’s Mécanique céleste. Green’s
remarkable paper earned him the support of E. F. Bromhead of Gonville and Caius
College; at the age of forty, Green became a student at Cambridge. Ironically, though
his paper brought him such success, it remained largely unknown until the 1850s when
William Thomson (Lord Kelvin) had it published in Crelle’s Journal. The formula
known as Green’s theorem, though it is not explicitly given in Green’s paper, states:∫

C

(Pdx+Qdy)=
∫ ∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy,

whereD is a planar region oriented such thatD remains on the left as the boundary C,
consisting of a finite number of smooth simple closed curves, is traversed. In an 1829
paper on fluids in equilibrium, Gauss stated this formula in the case where D was a
surface in three dimensions. Green’s theorem follows by takingD to be a planar region;
this case was explicitly stated in an 1831 work by Poisson. In 1846, Cauchy stated
Green’s theorem without proof and used it to derive his famous theorem in complex
analysis. Riemann gave a proof of Green’s theorem in his 1851 doctoral dissertation.

Stokes set as an 1854 Cambridge examination problem a generalization of this theo-
rem to a surface in three-dimensional space. The latter result is now known as Stokes’s
theorem, though it was actually communicated to Stokes by William Thomson (1824–
1907), also known as Lord Kelvin. These integral theorems played a significant role
in the development of nineteenth-century physics. Thomson and Peter Guthrie Tait
(1831–1901) gave a thorough treatment of the subject in their 1867 Treatise on Nat-
ural Philosophy and Maxwell focused on these integral formulas in the mathematical
preliminaries of his great Treatise on Electricity and Magnetism.

Mathematical physicists did not find it particularly useful to search for the most
general forms of these theorems, but Élie Cartan (1869–1951) and other mathematicians
developed generalizations and refinements of the integral theorems, leading to fruitful
mathematical theories. In fact, discussions between André Weil and Élie Cartan’s son,
Henri Cartan, concerning the teaching of Stokes’s theorem provided the impetus for the
formation of the Bourbaki group. In the mid-1930s, these two French mathematicians
were teaching differential and integral calculus when Henri Cartan raised the question of
the extent to which the formulas should be generalized for the students. On this point,
Weil wrote, “In his book on invariant integrals, Élie Cartan, following Poincaré in
emphasizing the importance of this [Stokes’s] formula, proposed to extend its domain
of validity. Mathematically speaking, the question was of a depth that far exceeded
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what we were in a position to suspect. Not only did it bring into play the homology
theory, along with de Rham’s theorems, the importance of which was just becoming
apparent; but this question is also what eventually opened the door to the theory of
distributions and currents and also to that of sheaves.” Thus, Weil, Cartan, and their
capable mathematical friends gathered to write a book on the topics of the university
calculus course. Weil wrote, “Little did I know that at that moment, Bourbaki was born.”

19.2 Homogeneous Functions

During the 1730s, Euler, Clairaut, and Fontaine made independent efforts to work out
the differential calculus of several variables. Their work grew out of their studies in
mechanics. Alexis Fontaine (1704–1771) created a form of partial differential calculus
in his 1732 study of the brachistochrone problem and then extended its scope in his work
on the tautochrones of bodies moving in resistant mediums. It is not surprising that he
independently found some results also discovered by Euler in a different context, such
as their pretty result on homogeneous functions. When dealing with general functions
of two independent variables x and y, Euler, Clairaut, and Fontaine generally worked
with expressions of the form

axmyn+ bxpyq + cxrys +·· · . (19.1)

Such a function is called homogeneous of degreem+n when each term is of the same
degree, that is,m+n= p+q = r+ s = ·· · .More generally, a homogeneous function
φ of degree n satisfies the relation

φ(x,y,z, . . . )= xnF
(y
x
,
z

x
, · · ·

)
.

If we denote the expression (19.1) by φ, then

x
∂φ

∂x
+ y ∂φ

∂y
= (m+n)axmyn+ (p+ q)bxpyq + (r + s)cxrys +·· ·

= (m+n)φ. (19.2)

The result in (19.2) is an example of Euler’s theorem for homogeneous functions, stating
that for a differentiable homogeneous function φ of degree n,

x
∂φ

∂x
+ y ∂φ

∂y
+ z∂φ

∂z
+·· · = nφ. (19.3)

In1740, Euler pointed out in the first letter he wrote to Clairaut that he had stated this
theorem for functions of two variables in his 1736 book on mechanics and had given
its general form in a paper on partial differential equations presented to the Petersburg
Academy in 1734–5, but published in 1740.

In his 1740 paper, Clairaut gave a proof for the case of three variables, generaliz-
able to any number of variables, and attributed it to Fontaine. He supposed φ to be a
homogeneous function of degree m+ 1 in x,y,z, and he denoted the differential of
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φ by Mdx +N dy +P dz, where M,N,P were homogeneous of degree m �= −1 in
x,y,z. He set

y = xu, z= xt, dy = x du+udx, dz= x dt + t dx,
M = xmF, N = xmG, P = xmH.

Then he could write

dφ = xm(F +Gu+Ht)dx+ xm+1Gdu+ xm+1H dt.

Integrating the differential involving x, he obtained

φ =
∫
xmF(F +Gu+Ht)dx+T (u, t)

= xm+1

m+ 1
(F +Gu+Ht)+T (u, t). (19.4)

The term T (u, t) was the constant of integration, and it had to involve u and t because
the integration was with respect to x. Clairaut very quickly concluded from this equation
for φ that T (u, t) vanished. Observe that since

xm+1(F +gu+Ht)= xM + yN + zP
and φ are both homogeneous functions of degreem+1, it follows from (19.4) that the
constant T (u, t)must be zero. Hence, xM+yN+zP = (m+1)φ and Euler’s theorem,
attributed by Clairaut to Fontaine, is proved.

19.3 Cauchy: Taylor Series in Several Variables

In his 1829 work, Cauchy devoted eight of twenty-three differential calculus lectures to
several variables. As early researchers on partial differential calculus, Euler, Fontaine,
and Clairaut were a little vague about the idea of a differential. Cauchy attempted to pro-
vide a more precise definition. He first defined partial derivatives of u= f (x,y,z, . . . )
denoted by

φ(x,y,z, . . . ), χ(x,y,z, . . . ), ψ(x,y,z, . . . ), etc.,

as the limits (assumed to exist) of the ratios

f (x+ i,y,z, . . . )−f (x,y,z, . . . )
i

,
f (x,y+ i,z, . . . )−f (x,y,z, . . . )

i
,

f (x,y,z+ i, . . . )−f (x,y,z, . . . )
i

,

as i approached zero. Then, supposing ,x,,y,,z, . . . to be finite changes in
x,y,z, . . . , Cauchy set

,u= f (x+,x,y+,y,z+,z,. . . )−f (x,y,z, . . . ).
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Next, to define differentials, he observed that as,x,,y,,z, . . . ,,u approached zero,
there were quantities dx,dy,dz, . . . ,du such that if ,x/dx was an infinitesimal α,
then the ratios ,y/dy, . . . ,,u/du differed from α by a very small value. He set

dx = lim
,x

α
, dy = lim

,y

α
, · · · , du= lim

,u

α
.

To evaluate du, Cauchy applied the mean value theorem to obtain the relations

f (x+,x,y,z, . . . )−f (x,y,z, . . . )=,xφ(x+ θ1,x,y,z, . . . ),

f (x+,x,y+,y,z, . . . )−f (x+,x,y,z, . . . )=,yχ(x+,x,y+ θ2,y,z, . . . ),

f (x+,x,y+,y,z+,z,. . . )−f (x+,x,y+,y,z, . . . )
=,zψ(x+,x,y+,y,z+ θ3,z,. . . ),

etc.,

where θ1,θ2,θ3, . . . were numbers between 0 and 1. By adding these equations, he
obtained

f (x+,x,y+,y,z+,z,. . . )−f (x,y,z, . . . )
=,xφ(x+ θ1,x,y,z, . . . )+,yχ(x+,x,y+ θ2,y,. . . )+ etc.

Cauchy then divided by α and let α tend to 0 to find

du= φ(x,y,z, . . . )dx+χ(x,y,z, . . . )dy+ψ(x,y,z, . . . )dz+·· · .
He then introduced the notation φ(x,y,z, . . . )dx = dxu or φ(x,y,z, . . . )= dxu/dx to
write

du= dxu+ dyu+ dzu+·· · ,
du= dxu

dx
dx+ dyu

dy
dy+ dzu

dz
dz+·· · . (19.5)

As an application, he deduced the Euler and Fontaine theorem on homogeneous
functions, first defining f (x,y,z, . . . ) to be homogeneous of degree a if

f (tx, ty, tz, . . . )= taf (x,y,z, . . . ).
Taking the derivative with respect to t , he applied (19.5) to obtain

φ(tx, ty, tz, . . . )x+χ(tx, ty, tz, . . . )y+ψ(tx, ty, tz, . . . )z+·· · = ata−1f (x,y, . . . ).

He then got the required result by setting t = 1.
Cauchy also stated and proved Taylor’s formula in several variables. This result

had been well known since the second half of the eighteenth century. Lagrange gave
a detailed discussion of it in his famous 1772 paper on symbolic calculus, where he
stated it as

f (x+ ξ,y+ψ,z+ ζ, . . . )= e dfdx ξ+ df
dy
ψ+ df

dz
ζ+···

. (19.6)
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Cauchy obtained Taylor’s formula by writing u= f (x,y,z, . . . ) and

F(α)= f (x+αdx,y+αdy,z+αdz, . . . ),
observing that

F ′(0)= du= dxu+ dyu+ dzu+·· · ,
F ′′(0)= d2u= (dx + dy + dz+·· ·)2u,
F ′′′(0)= d3u= (dx + dy + dz+·· ·)3u,

etc.

The Taylor series for one variable then gave him the series for several variables:

f (x+ dx,y+ dy,z+ dz, . . . )= u+ du

1
+ d2u

1 · 2 + d3u

1 · 2 · 3 + etc.

In addition, Cauchy stated Taylor’s formula for several variables with remainder, also
derived from the corresponding one variable result.

19.4 Clairaut: Exact Differentials and Line Integrals

Alexis Clairaut (1713–1765) studied mathematics with his father, a mathematics teacher
in Paris. Clairaut read l’Hôpital’s differential calculus book at the age of 10 and was
elected to the ParisAcademy at 18. In the mid-1730s, Clairaut took part in an expedition
to Lapland to gather experimental evidence to test the Newton–Huygens theory that the
Earth was flattened at the poles. In his 1743 book on the shape of the Earth, he made
use of his research on line integrals and differentials in many variables to confirm the
Newton–Huygens theory. In 1739 and 1740, Clairaut presented two papers to the Paris
Academy on the line integrals of the differentials Pdx +Qdy, Pdx +Qdy +Rdz,
attempting to define conditions under which these differentials were exact. He was one
of the earliest mathematicians to study such questions. Recall that these differentials
play a key role in the formulas of Green and Stokes. Note that either of these differentials
is exact if there exists a function f of two variables x and y (or three variables x, y, z)
such that df = Pdx +Qdy (or df = Pdx +Qdy +Rdz). Clairaut thought he had
given necessary and sufficient conditions for the exactness of these differentials. It
turned out that his conditions were necessary but not sufficient because he mistakenly
assumed that differentiation and integration along a curve were invertible processes.
But in the 1760s, the French mathematician d’Alembert showed by an example that
integration along curves in two dimensions could produce multivalued functions. He
did this work with the knowledge of Euler’s discovery, around 1750, of the multivalued
nature of the logarithmic function.

Clairaut proved the theorem that ifAdx+Bdy was the differential of a function of x
and y, then ∂A

∂y
= ∂B

∂x
, and he mistakenly believed that he had also proved the converse.

He did not develop a special notation for partial derivatives, but he clarified by examples
that he was keeping x constant and varying y when he wrote dA

dy
and similarly for other
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such expressions. He argued that ifAwas a derivative of some function f with respect
to x, with y a constant, then f was obtained after integrating with respect to x. Thus,
f would have the form

∫
Adx+Y , where Y was a constant of integration and hence

purely a function of y. Similarly, f also took the form
∫
B dy +X, where X was a

function of only x. Thus, ∫
B dy+X =

∫
Adx+Y.

Taking the derivative of this equation with respect to y and keeping x a constant, he
obtained

B =
∫
∂A

∂y
dx+ dY

dy
.

The partial derivative of this equation with respect to x gave Clairaut

∂B

∂x
= ∂A

∂y
,

completing his proof of the theorem.
In his famous book of 1743 on the shape of the Earth, Clairaut wrote that the integral∫
(Adx+B dy) could be evaluated without knowing the equation of the curve along

which the integral was to be computed, provided ∂A

∂y
= ∂B

∂x
. He incorrectly argued that

the latter condition was also sufficient for Adx+B dy to be of the form df for some
function f . From this it would follow that∫

Adx+B dy =
∫
df = f (x,y)−f (x0,y0)

for any path joining (x0,y0) to (x,y). In 1768, d’Alembert pointed out that this was
false, using an example of a differential given by Clairaut himself in his 1740 paper:

y dx− x dy
xx+ yy .

Clairaut stated in his 1740 paper that this differential satisfied ∂A

∂y
= ∂B

∂x
, but d’Alembert

showed that if this differential were integrated over the perimeter of a circle with center
at the origin, the value of the integral would be −2π . Hence the integral was path-
dependent. Clairaut’s 1740 paper also considered the problem of finding an integrating
factor µ(x,y) such that µMdx+µN dy would be exact when Mdx+N dy was not.
Clairaut studied differentials in three variables, where he applied the result he obtained
for two variables. He observed that ifMdx+N dy+P dz was an exact differential of
a function of three variables x,y, and z, then

∂M

∂y
= ∂N

∂x
,
∂M

∂z
= ∂P

∂x
, and

∂N

∂z
= ∂P

∂y
.

To prove this, he noted that if he took z to be a constant, then the differential reduced
to Mdx +N dy, also exact. The first equation given above followed from this; the
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other two conditions were obtained by taking y constant and then x constant. Clairaut
gave the necessary condition for the existence of an integrating factor, makingMdx+
N dy+P dz exact:

N
∂P

∂x
−P ∂N

∂x
+M∂N

∂z
−N ∂M

∂z
+P ∂M

∂y
−M∂P

∂y
= 0. (19.7)

In his proof, he assumed µ(x,y,z) to be a function such that µMdx+µN dy+µP dz
was exact. Then, by his result in differentials of three variables,

∂(µM)

∂y
= ∂(µN)

∂x
,
∂(µM)

∂z
= ∂(µP )

∂x
,
∂(µN)

∂z
= ∂(µP )

∂y
.

After applying the product rule for derivatives and by rearranging, the three equations
could be written as

µ

(
∂M

∂y
− ∂N

∂x

)
=N ∂µ

∂x
−M∂µ

∂y
,

µ

(
∂N

∂z
− ∂P

∂y

)
= P ∂µ

∂y
−N ∂µ

∂z
,

µ

(
∂P

∂x
− ∂M

∂z

)
=M∂µ

∂z
−P ∂µ

∂x
.

Multiplying the first equation by P , the second by M , and the third by N and adding,
Clairaut obtained equation (19.7) when the terms on the right canceled.

19.5 Euler: Double Integrals

Euler presented the change of variables formula for double integrals in his 1769 paper,
“De Formulis Integralibus Duplicatis.” He viewed the double integral

∫∫
Zdxdy as an

interated integral, where he integrated with respect to one variable, keeping the other
fixed. In the beginning sections of his paper, he computed some examples of double
integrals, starting with ∫∫

dxdy

xx+ yy =
∫
dx

∫
dy

xx+ yy .

He noted that ∫
dy

xx+ yy = 1

x
arctan

y

x
+ dX

dx
,

where dX/dx was some function of x, and therefore∫∫
dxdy

xx+ yy =
∫
dx

x
arctan

y

x
+X.

Similarly, ∫∫
dxdy

xx+ yy =
∫
dy

y
arctan

y

x
+Y.
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Euler then evaluated the single integrals as series after noting that

arctan(x/y)= π/2− arctan(y/x)

= π

2
−
(
y

x
− y3

3x3
+ y5

5x5
− y7

7x7
+ y9

9x9
− etc.

)
.

Thus,
∫
dx

x
arctan(y/x)=−y

x
+ y3

9x3
− y5

25x5
+ y7

49x7
− etc. +f (y);∫

dy

y
arctan(x/y)= π

2
lny− y

x
+ y3

9x3
− y5

25x5
+ y7

49x7
− etc. +g(x);

and finally
∫∫

dxdy

xx+ yy =X+Y − y

x
+ y3

9x3
− y5

25x5
+ y7

49x7
− etc.

Euler next considered the problem of changing variables. He tookx andy to be functions
of u and t so that

dx =Rdt +S du, and dy = T dt +V du.
His problem was to show how the area element dxdy changed when written in terms
of u and t . To explain that he could not merely multiply the differentials dx and dy,
he considered the case in which the new orthogonal coordinates were obtained by a
translation, a rotation, and then a reflection about the x-axis. He computed dxdy for
this transformation by multiplying the expression for dx with that for dy; the result
was not dudt . He also ended up with a number of meaningless terms in his expression.
Euler was aware, however, that under this orthogonal transformation the area should
not change.

To derive the necessary change of variables formula, he started with the double
integral

∫∫
dxdy. He took y to be a function of x and u so that dy = P dx +Qdu.

He noted that x was a constant when integration was performed first with respect
to y, so that dy = Qdu and

∫∫
dxdy = ∫

dx
∫
Qdu. Now Q was a function of x

and u, so he changed the order of integration to write
∫∫
dxdy = ∫

du
∫
Qdx. Since

dx = Rdt + S du, he could write the right-hand side as
∫
du

∫
QRdt , because when

integrating with respect to x, u was a constant. Thus, he had
∫∫
dxdy = ∫∫

QRdudt.

However, Q was a function in x and u, not directly a function of u and t . So Euler
observed that the equations

dy = T dt +V du, and

dy = P dx+Qdu= P(Rdt +S du)+Qdu= PRdt + (PS+Q)du
gave PRS+QR = VR and PR = T . Therefore, QR = VR−T S, and the change of
variables formula emerged as

∫∫
dxdy = ∫∫

(V R− T S)dudt. Thus, when variables
were changed from x, y to u, t , the product of the differential dudt had to be multiplied
by the determinant of the equations

dx =Rdt +S du and dy = T dt +V du.
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Euler observed that if x and y were interchanged, the result would be (T S−VR)dudt,
the negative of the previous result, so that, since the area was positive, he had to take
the absolute value of the factor (V R−T S).

19.6 Lagrange’s Change of Variables Formula

Lagrange found the need for the change of variables formula for triple integrals in the
course of his work on the attraction of ellipsoids. He specifically required the change
from Cartesian to spherical coordinates, but he proposed and solved the problem in the
general case. Suppose that x, y, z are expressible as functions ofp,q,r and conversely.
The problem is to express dxdydz in terms of dpdqdr . Lagrange started with the
chain rule

dx=Adp+Bdq+Cdr; dy=Ddp+Edq+Fdr; dz=Gdp+Hdq+Idr , (19.8)

where A,B,C, . . . were functions of p,q,r . He observed that the expressions for
dx,dy and dz could not simply be multiplied together because the product would
contain cubes and squares of dp,dq and dr and these did not make sense in the triple
integral. Following the procedure for evaluating a triple integral, Lagrange proposed to
first fix x and y so that dx = 0,dy = 0 and vary z; then to fix x and vary y; and finally
to vary x. Thus he had three steps:

1. Set dx = 0 and dy = 0 so that Adp + Bdq + Cdr = 0, and Ddp +Edq +
Fdr = 0. Solve for dp and dq in terms of dr to get

dp = BF −CE
AE−BD dr, dq = CD−AF

AE−BD dr;

substitute these expressions in the third equation in (19.8) to find

dz= G(BF −CE)+H(CD−AF)+ I (AE−BD)
AE−BD dr. (19.9)

2. To obtain dy, set dx = 0 and dz= 0. By (19.9) dz= 0 and thus dr = 0. Hence
Adp+Bdq = 0, or dp=−B

A
dq.When this was substituted in the equation for

dy in (19.8), Lagrange got the required expression

dy = AE−BD
A

dq. (19.10)

3. Finally, to find dx, set dy = 0 and dz= 0 so that by (19.9) and (19.10) dq = 0
and dr = 0. Hence

dx =Adp. (19.11)

Multiplying (19.9), (19.10), and (19.11) would yield the necessary result

dxdydz= [G(BF −CE)+H(CD−AF)+ I (AE−BD)]dpdqdr.
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Lagrange also noted that one should use the absolute value of the quantity in brackets,
since dxdydz and dpdqdr were understood to be positive. He then applied his formula
to spherical coordinates p,q,r so that

x = r sin p cos q, y = r sin p sin q, z= r cos p. (19.12)

In this case

A= r cosp cosq, B =−r sinp sinq, C = sinp cosq,

D = r cosp sinq, E = r sinp cosq, F = sinp sinq,

G=−r sinp, H = 0, I = cosp;

and therefore dxdydz= r2 sinpdpdqdr. Note that r2 sinp ≥ 0, since p varies from 0
to π .

19.7 Green’s Integral Identities

In his 1828 paper, George Green gave statements and derivations of his integral formulas
and then applied them to electric and magnetic phenomena. His basic result was the
formula∫ ∫ ∫

U∇2V dxdydz+
∫ ∫

U
∂V

∂n
dσ =

∫ ∫ ∫
V∇2U dxdydz+

∫ ∫
V
∂U

∂n
dσ,

(19.13)

where U and V were twice continuously differentiable in a solid three-dimensional
region. We note that Green denoted ∇2V by δV and wrote d

dw
for ∂/∂n (the derivative

in the normal direction at a point on the surface). Moreover, he denoted the triple
integral on the left as

∫
dxdydzUδV . Green proved (19.13) by showing that both sides

of the equation were equal to the triple integral∫ ∫ ∫ (
∂V

∂x

∂U

∂x
+ ∂V

∂y

∂U

∂y
+ ∂V

∂z

∂U

∂z

)
dxdydz. (19.14)

He noted that integration by parts gave∫ ∫ ∫
∂V

∂x

∂U

∂x
dxdydz=

∫ ∫ (
V ′′ ∂U

′′

∂x
−V ′ ∂U

′

∂x

)
dydz

−
∫ ∫ ∫

V
∂2U

∂x2
dxdydz, (19.15)

where the accents were used to denote the values of those quantities at the limits of the
integral, on the surface of the region. Similar results hold for the other two terms in
(19.14). Turning to

∫ ∫
V ′′∂U ′′/∂x dydz, Green let dσ ′′ be the element of the surface
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corresponding to dydz. Since n was normal to the surface he had

dydz=−∂x
∂n
dσ ′′, and by substitution∫ ∫

V ′′ ∂U
′′

∂x
dydz=−

∫
V ′′ ∂U

′′

∂x

∂x

∂n
dσ ′′.

Similarly, the integral corresponding to the smaller value of x on the surface was

−
∫ ∫

V ′ ∂U
′

∂x
dydz=−

∫
V ′ ∂U

′

∂x

∂x

∂n
dσ ′.

Green observed that since the sums of the elements denoted by dσ ′ combined with
those denoted by dσ ′′ formed the complete surface, the double integral in (19.15) could
be written as ∫ ∫ (

V ′′ ∂U
′′

∂x
−V ′ ∂U

′

∂x

)
dydz=−

∫ ∫
V
∂U

∂x

∂x

∂n
dσ,

where the integral on the right-hand was taken over the whole surface. Applying this
analysis to all three terms of the integral in (19.14), Green obtained

−
∫
V

(
∂u

∂x

∂x

∂n
+ ∂U

∂y

∂y

∂n
+ ∂U

∂z

∂z

∂n

)
dσ −

∫ ∫ ∫
V∇2U dxdydz

=−
∫ ∫

V
∂U

∂n
dσ −

∫ ∫ ∫
V∇2U dxdydz.

Since (19.14) was symmetrical in U and V , Green’s identity (19.13) followed.
At the end of this derivation, Green noted that the continuity of the derivatives of

U and V was essential and showed how the formula would be modified if U had a
singularity at a point p′ such that U behaved like 1/r near p′, where r was the distance
of p′ from the element. We must here understand the element to indicate the point
where U was evaluated. Green took an infinitely small sphere of radius a at point p′.
He observed that formula (19.13) continued to hold for the region outside the sphere.
Moreover, since ∇2U =∇21/r = 0, the triple integral on the right-hand side of (19.13)
vanished for the spherical part, while the triple integral on the left-hand side was of the
order of a2. Similarly, the double integral on the left-hand was of order a on the sphere.
Then, since

∂U

∂n
= ∂U

∂r
=− 1

r2
=− 1

a2
,

the double integral on the right could be written−4πV ′ =−4πV (p′), as a→ 0. Hence,
(19.13) took the form ∫ ∫ ∫

U∇2V dxdydz+
∫ ∫

U
∂V

∂n
dσ

=
∫ ∫ ∫

V∇2U dxdydz+
∫ ∫

∂U

∂n
dσ − 4πV ′. (19.16)
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19.8 Riemann’s Proof of Green’s Formula

The result known as Green’s formula was apparently first proved in Riemann’s inaugural
and highly original dissertation. This was presented to the University of Göttingen in
1851 and is famous for its geometric approach to complex analysis, culminating in
the Riemann mapping theorem. Riemann proved Green’s formula fairly early in his
thesis as a basic result needed in his theory of complex analytic functions. He stated
the formula in the form∫ (

∂X

∂x
+ ∂Y

∂y

)
dT =−

∫
(X cosξ +Y cosη)ds, (19.17)

where X and Y were functions defined on a region A; dT denoted an area element of
the region; and ds an arc element of the boundary. Then, ξ and η were the angles made
by the normal to the boundary curve with the x- and y-axes, respectively. Riemann
was familiar with Cauchy’s work in complex analysis, so he may have seen Green’s
formula in Cauchy’s 1846 paper where it appeared without proof. Cauchy applied
(19.17) to prove his integral formula, now known as the Cauchy integral formula. In
any case, although Cauchy promised a proof of Green’s formula, he never published
it, and Riemann provided a simple proof using the fundamental theorem of calculus.
It is interesting to note that the referee of Riemann’s dissertation, Gauss, had proved
Cauchy’s integral formula in 1811 but did not publish it, though he communicated the
result in a letter to his friend Bessel. Gauss was also aware of Green’s formula in a
more general form.

To prove (19.17), Riemann divided the region into thin strips parallel to the x-axis.
He integrated along a line parallel to the x-axis to obtain∫

∂X

∂x
dx dy = dy

∫
∂X

∂x
dx = (−X′ +X′),

where X′ and X′ , denoted the values of X at the upper and lower end points on the
boundary. Riemann then observed that with ξ and η defined as before, dy took the value

cosξ′ ds′

on the boundary with the lower value of x, and took the value

−cosξ ′ ds ′

on the upper boundary. Thus, after integrating with respect to y, he concluded that∫
∂X

∂x
dT =−

∫
X cosξ dx.

Similarly, he observed ∫
∂Y

∂y
dT =−

∫
Y cosηdx

and the result followed.
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19.9 Stokes’s Theorem

The result known as Stokes’s theorem first appeared in print in February 1854 as the
eighth problem on the Smith’s Prize Exam at Cambridge. The question paper was set
by G. G. Stokes; the students were to prove∫ ∫ (

l

(
∂Z

∂y
− ∂Y

∂z

)
+m

(
∂X

∂z
− ∂Z

∂x

)
+n

(
∂Y

∂x
− ∂X

∂y

))
dS

=
∫ (

X
dx

ds
+Y dy

ds
+Z dz

ds

)
ds,

where X,Y,Z were functions of x,y,z; dS was an element of a bounded surface;
l,m,n were the cosines of the inclination of the normal at dS to the axes; and ds was
an element of the boundary line. The double integral was taken over the surface and the
single integral over the perimeter of the surface. This theorem had been communicated
by William Thomson to Stokes in a letter of July 2, 1850, though the left-hand side of
the formula had appeared in earlier papers of Stokes.

Hermann Hankel (1839–1873) gave a proof of Stokes’s theorem for the case where
the surface could be parameterized by means of two variables. Hankel entered the
University of Leipzig in 1857, studying with his father and Möbius. He spent the
year 1860 with Riemann in Göttingen and the following year with Weierstrass and
Kronecker in Berlin. His refinement of Riemann’s theory of integration was an impor-
tant step toward the measure theoretic integral of Lebesgue, Young, and Borel. In an
1861 monograph on fluid mechanics, Hankel gave his proof without a reference to
Stokes; he was probably unaware that the formula was already known. Hankel referred
to and used Riemann’s Green’s theorem for surfaces expressible in the form z= z(x,y).
We present a summary of Hankel’s proof: Taking

dz= ∂z

∂x
dx+ ∂z

∂y
dy,

rewrite the line integral as∫ (
X+ ∂z

∂x
Z

)
dx+

(
Y + ∂z

∂y
Z

)
dy.

HereX(x,y)=X(x,y,z(x,y)), and similar expressions hold for Y andZ. By Green’s
formula, this expression is equal to the double integral∫ ∫ (

∂

∂x

(
Y + ∂z

∂y
Z

)
− ∂

∂y

(
X+ ∂z

∂x
Z

))
dxdy.

Now we can write
∂X

∂y
= ∂X

∂y
+ ∂X

∂z

∂z

∂x
,



19.9 Stokes’s Theorem 363

and similar equations hold for the partial derivatives of Y and Z. When these are
substituted for the integrand in the double integral, the result is

−
[
∂X

∂y
+ ∂X

∂z

∂z

∂y
+ ∂2z

∂y∂x
Z+ ∂z

∂x

(
∂Z

∂y
+ ∂Z

∂z

∂z

∂y

)
− ∂Y

∂x

−∂Y
∂z

∂z

∂x
− ∂2z

∂x∂y
Z− ∂z

∂y

(
∂Z

∂x
+ ∂Z

∂z

∂z

∂x

)]
.

This simplifies to

−
[(
∂X

∂y
− ∂Y

∂x

)
+
(
∂Z

∂y
− ∂Y

∂z

)
∂z

∂x
+
(
∂X

∂z
− ∂Z

∂x

)
∂z

∂y

]
.

The normal vector to the surface z = z(x,y) is given by (∂z/∂x,−∂z/∂y,1). It then
follows that ∂z/∂x =−l/n,∂z/∂y =−m/n and dS = dxdy/n. This proves Stokes’s
theorem.

Thomson and Tait proved Stokes’s theorem in the beginning of their 1867 work on
mathematical physics, as part of a list of results they would need later in the book.
Following Thomson and Tait, we replaceX, Y, Z, by P, Q, R. They began their proof
evaluating the double integral∫ ∫ (

m
∂P

∂z
−n∂P

∂y

)
dS. (19.18)

We reproduce their succinct argument. First, they divided the surface S into bands by
means of planes parallel to the xy-plane and divided each of these bands into rectangles.
The breadth of the band between the planes at x− 1

2dx and x+ 1
2dx was dx

sin θ , with θ
denoting the inclination of the tangent plane of S to the plane through x. Hence, if ds
denoted the curve in which the plane at x intersected the surface S, they had

dS = 1

sin θ
dxds.

Since l = cosθ , they could express the other direction-cosines m and n as

m= sin θ cosφ and n= sin θ sinφ, for some φ.

The double integral (19.18) then took the form∫ ∫
dxds

(
cosφ

∂P

∂z
− sinφ

∂P

∂y

)
=

∫ ∫
dxds

dP

ds
=

∫
P dx.

They noted that the terms containing Q and R could be similarly worked out. In a
footnote to this theorem, Thomson and Tait commented in their second edition:

This theorem was given by Stokes in his Smith’s prize paper for 1854 (Cambridge University
Calendar, 1854). The demonstration in the text is an expansion of that indicated in our first edition.
A more synthetical proof is given in §69 (q) of Sir W. Thomson’s paper on “Vortex Motion,” Trans.
R. S. E. 1869. A thoroughly analytical proof is given by Prof. Clerk Maxwell in his Electricity and
Magnetism (§24).
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The edition quoted above was published in 1890. Thomson did not mention that he had
communicated the Stokes formula to Stokes.

The Scottish physicist James Clerk Maxwell (1831–1879) published his book in
1873. In his proof of Stokes’s theorem, he assumed that the surface was defined by two
parameters, α and β. He supposed that the curves for which α was a constant formed
closed curves around a point T on the surface where α took the least value, α0. The
largest value, α = α1, corresponded to the closed curve s. Moreover, the curves for
which β was constant formed lines drawn from T to the closed curve s, such that the
initial value β = β0 and the final β = β1 produced the same line. Using the change of
variables

dydz=
(
∂y

∂α

∂z

∂β
− ∂y

∂β

∂z

∂α

)
dαdβ,

the double integral was transformed to∫ ∫ (
∂P

∂α

∂x

∂β
− ∂P

∂β

∂x

∂α

)
dαdβ+·· ·+ · · · . (19.19)

The other two double integrals involvedQ and R. Using integration by parts, Maxwell
integrated the first term in the double integral with respect to α to get∫ β1

β0

((
P
∂x

∂β

)
α=α1

−
(
P
∂x

∂β

)
α=α1

)
dβ−

∫ ∫
P
∂2x

∂α∂β
dαdβ. (19.20)

He similarly integrated the second term with respect to β. The resulting double integral
canceled the one in (19.20); thus, the double integral for P in (19.19) reduced to∫ β

β0

(
P
∂x

∂β

)
α=α1

dβ−
∫ β

β0

(
P
∂x

∂β

)
α=α0

dβ

−
∫ α1

α0

(
P
∂x

∂α

)
β=β1

dα+
∫ α1

α0

(
P
∂x

∂α

)
β=β0

dα.

The third and fourth integrals canceled because (α,β0) and (α,β1) denoted the same
point. The second integral vanished because α = α0 consisted of only one point. Since
α = α1 was the curve s, the first integral could be expressed as

∫
P ∂x

∂s
dx. Hence, the

double integral (19.19) could be written as∫ ∫ (
cosθ

∂P

∂z
− sin θ

∂P

∂y

)
dxds

=
∫ ∫

∂P

∂s
dsdx =

∫
P dx.

This line integral was taken around the perimeter of the curve bounding the surface S.
The proof of Stokes’s theorem could then be completed by applying the same procedure
to the other two double integrals involving the functions Q and R.
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19.10 Exercises

1. Solve the equation (ix + ky)dx + (lx +my + n)dy = 0. See Clairaut (1740),
p. 302.

2. Prove d’Alembert’s assertion that the value of the integral of the differential
(y dx − x dy)/(x2 + y2) taken over a circle with the center at the origin is not
zero. See d’Alembert (1761–1780), vol. 5, pp. 1–40.

3. Use a double integral to find the volume of the sphere. See Eu. I-17, pp. 293–294.
4. Show that if AC−B2 > 0, then

u=Ax2 + 2Bxy+Cy2 + 2Dx+ 2Ey+F
must have a maximum or minimum. See Cauchy (1829), p. 236.

5. Prove that∫ ∫ ∫
α2

(
dU

dx

dU ′

dx
+ dU

dy

dU ′

dy
+ dU

dz

dU ′

dz

)
dxdydz= (19.21)

∫ ∫
Uα2δU ′ dS−

∫ ∫ ∫
U

(
d(α2 dU ′

dx
)

dx
+ d(α2 dU ′

dy
)

dy
+ d(α2 dU ′

dz
)

dz

)
dxdydz,

(19.22)
where δ denotes the normal derivative and d/dx, d/dy, d/dz are the partial
derivatives with respect to x, y, z. See Thomson and Tait (1890), p. 168.

6. Show that if X, Y, Z are continuous and finite within a closed surface S, then
the total surface integral of the vector R = (X, Y, Z) would be∫ ∫

R cosε dS =
∫ ∫ ∫ (

dX

dx
+ dY

dy
+ dZ

dz

)
dxdydz,

where the triple integral is extended over the whole space within S, and ε is the
angle made by the positive normal to the surface with the vectorR. See Maxwell
(1873), vol. I, pp. 19–20.

19.11 Notes on the Literature

Clairaut (1739) and (1740) contain the results discussed in the text. Cauchy (1829)
consists of his course on differential calculus; see pp. 225–228 and 255–257 for the
material on differentials and on Taylor series in many variables. For Euler’s paper on
double integrals, see Eu. I-17, pp. 289–315; for triple integrals, see Lagrange (1867–92),
vol. 3, pp. 619–658. See Green (1970), pp. 23–41, for his results in integral calculus,
especially pp. 23–27 for the theorems we mention. Riemann’s proof of Green’s formula
can be found on pp. 44–46 of Riemann (1990); Thomson and Tait (1890), p. 143, has
their derivation of Stokes’s theorem. The quotation about Bourbaki is in Weil (1992),
p. 100.

For a historical account of the development of multiple integrals and Stokes’s theo-
rem, the reader may wish to see Katz (1979), (1982), and (1985). Engelsman (1984) is
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an insightful history of the early work on several variables calculus; he discusses the
work of Leibniz, Johann and Niklaus I Bernoulli, Euler, and others. A detailed account
of the development of calculus in connection with the theories of the earth’s shape
is presented in Greenberg (1995). This work also provides interesting information on
the mathematicians involved and their interactions, as well as a fair amount of mathe-
matical detail. For example, on p. 383, he gives the details omitted by Clairaut in his
proof of the result on homogeneous functions mentioned in our text. For a discussion
of Gauss’s work on multiple integrals, Green’s formula, and variational methods, see
the article by O. Bolza in Gauss (1863–1927), vol. 10/II.



20

Algebraic Analysis: The Calculus of Operations

20.1 Preliminary Remarks

The operator or operational calculus, the method of treating differential operators as
algebraic objects, was once thought to have originated with the English physicist and
electrical engineer Oliver Heaviside (1850–1925). Indeed, Heaviside revived and bril-
liantly applied this method to problems in mathematical physics. But the basic ideas
can actually be traced back to Leibniz and Lagrange who must be given credit as the
founders of the operational method. With his notation for the differential and integral,
Leibniz was able to regard some results on derivatives and integrals as analogs of alge-
braic results. The later insight of Lagrange was to extend this analogy to infinite series
of differentials so that, in particular, he could write the Taylor expansion as an expo-
nential function of a differential operator. In fact, this formal approach to infinite series
appeared in the work of Newton himself. For Newton, infinite series in algebra served
a purpose analogous to infinite decimals in arithmetic: They were necessary to carry
out the algebraic operations to their completion. Newton’s insightful algorithms using
formal power series were of very wide applicability in analysis, algebra, and algebraic
geometry; their power lay precisely in their formal nature. Thus, the algebraic analysis
of the eighteenth century can trace its origins to Newton’s genius. A branch of algebraic
analysis focusing on the combinatorial aspects of power series was developed by the
eighteenth-century German combinatorial school.

In a letter of May 1695 to Johann Bernoulli, Leibniz pointed out the formal resem-
blance between the expression for the nth derivative of a product xy and the binomial
expansion of (x+ y)n. For n= 2, for example, Leibniz wrote

(x+ y)2 = 1x2 + 2xy+ 1y2, d2,xy = 1yddx+ 2dydx+ 1xddy. (20.1)

He made similar remarks in a September 1695 letter to l’Hôpital, in which he used the
symbol p for the power (or exponent) so that the analogy would be even more evident.
Thus, he denoted xn by pnx, so that he could write

367
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pe(x+ y)= pex ·p0y+ e

1
pe−1x ·p1y+ e · e− 1

1 · 2 pe−2x ·p2y+·· · ;

de(xy)= dexd0y+ e

1
de−1x · d1y+ e · e− 1

1 · 2 de−2x · d2y+·· · .

The exponent e could be a positive or negative integer; when e = −n was negative,
d−n denoted an n-fold integral. He mentioned that the e = −1 case was also noted
by Johann Bernoulli. In fact, the formula in that case would be equivalent to Taylor’s
formula. Finally in 1710, Leibniz published a paper on this symbolic analogy. Later,
Lagrange, inspired by this paper, extended the scope of this analogy by treating the
symbol d, denoting the differential operator, as an algebraic object. In a paper of 1772
presented to the Berlin Academy, he gave the Taylor series formula as

u(x+ ξ)= u+ du

dx
ξ + d2u

dx2

ξ 2

2
+ d3u

dx3

ξ 3

2 · 3 +·· · = e dudx ξ , (20.2)

where
(
du

dx
ξ
)n

in the expansion of the exponential was understood to be dnu

dxn
ξn. We

observe that this point of view was not foreign to Euler. In a brilliant paper of 1750, he
suggested replacing the nth derivative by zn in order to solve a differential equation of
infinite order. By this method, he obtained a result from which one could immediately
derive the Fourier series of an arbitrary function. Unfortunately, Euler does not seem
to have made use of this remarkable result.

The generation of mathematicians after Lagrange chose for clarity, to separate the
symbol d/dx from the function u upon which it acted. Lacroix, for example, in his
influential work summarizing the eighteenth-century discoveries in calculus, wrote
e
du
dx
ξ as eξ

d
dx u. It appears that the French mathematician L. F. Arbogast (1759–1803),

the collector and preserver of important mathematical works, was the first to separate
the operator from the object on which it operated. Arbogast’s method, published in
1800, so impressed the English mathematician Charles Babbage that he wrote:

Arbogast, in the 6th article of his, “Calcul des derivations,” where, by a peculiarly elegant mode
of separating the symbols of operation from those of quantity, and operating upon them as upon
analytical symbols; he derives not only these, but many other much more general theorems with
unparalleled conciseness.

Returning to Lagrange’s paper, we note that he observed that the difference operator
could be expressed as

,u(x)= u(x+ ξ)−u(x)= eξ dudx − 1. (20.3)

In Arbogast’s notation, write ,u =
(
eξ

d
dx − 1

)
u. Lagrange applied this formula to

obtain a formal though very simple derivation of the Euler–Maclaurin summation,
and he extended this to situations involving sums of sums. Laplace used Lagrange’s
operational method in his work on difference equations; he also attempted to give a
rigorous derivation of Lagrange’s formulas. In his work of 1800, Arbogast applied this
technique to numerous problems, including the solutions of differential equations.

Then in 1808, Barnabé Brisson (1777–1828) independently applied this method to
differential equations. A graduate of the École Polytechnique, Brisson published his
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paper in its journal. In the 1810s, other French mathematicians such as F. J. Servois
(1768–1847) and J. F. Français (1775–1833) applied the methods of Lagrange and
Arbogast to obtain some results on series. Servois also considered the logical founda-
tion of the operator method. However, after the 1821 publication of Cauchy’s Analyse
algébrique, effectively establishing the limit concept at the foundation of analysis, the
operational methods ceased to be developed in France. But in 1826, Cauchy presented
a justification of the operational calculus using Fourier transforms. Interestingly, in the
early twentieth century, integral transforms were applied to rigorize the operator meth-
ods employed by the physicist Heaviside. In 1926, Norbert Wiener created generalized
harmonic analysis and one of his motivations was to provide rigorous underpinnings
for the operational method.

During the 1830s and 1840s, important work in the operational calculus was done
in Britain. Robert Murphy (1806–1843), Duncan Gregory (1813–1844), and George
Boole (1815–1864) applied the methods to somewhat more difficult problems than
those considered by Français and Servois. Much of the British work was done without
full awareness of the earlier Continental work, so that even as late as 1851, William
F. Donkin (1814–1869) published a paper in the Cambridge and Dublin Mathematical
Journal giving an exposition of Arbogast’s method of derivations. Thus, the British
work was not a direct continuation of the work of Arbogast, Français, and Servois; its
origins and motivations lay in a more formal and/or symbolic mathematical approach.

To understand the historical background of the British operational calculus, note
that Britain produced a number of outstanding mathematicians in the first half of the
eighteenth century, including Cotes, de Moivre, Taylor, Stirling, and Maclaurin. A
large part of their work elaborated on or continued the study of topics opened up
by Newton. There were also some good textbook writers such as Thomas Simpson
and Edmund Stone who explained these developments to a larger audience. In the
second half of the century, there was a swift decline in the development of mathematics
in Britain. Mathematics was sustained at Cambridge by the almost solitary figure of
Edward Waring, whose main interests were algebra and combinatorics, but he had few
followers or students and little influence. Also, John Landen did interesting work in
analysis, making a significant contribution to elliptic integrals.

British mathematicians had long paid scant attention to the major mathematical
advances in continental Europe: the calculus of several variables and its applications to
problems of mathematical physics developed by Euler, Fontaine, Clairaut, d’Alembert,
Lagrange, and Laplace; major works in algebra produced by Euler, Lagrange, Vander-
monde, and Ruffini; and also the brilliant progress in number theory made by Euler and
Lagrange. In the early nineteenth century, Robert Woodhouse (1773–1827) appears to
be one of the first British mathematicians to attempt to expand the focus of mathe-
matics at Cambridge. He leaned strongly toward a formal or symbolic approach and
his main interests lay in the foundations of calculus and the appropriate notation for
its development. He also wrote expository works in subjects such as the calculus of
variations and gravitation, and his efforts brought this continental work to the notice
of the British. In 1803, Woodhouse wrote The Principles of Analytical Calculation, a
polemical work on the foundation of calculus. He reviewed the foundational ideas of
his predecessors: Newton, Leibniz, d’Alembert, Landen, and Lagrange. He rejected the
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limits of Newton and d’Alembert as well as the infinitesimals of Leibniz as inconsistent
and inadequate, advocating instead the algebraic approach of Lagrange and Arbogast,
though he disputed specific details. In the preface of his book, he wrote:

I regard the rule for the multiplication of algebraic symbols, by which addition is compendiously
exhibited, as the true and original basis of that calculus, which is equivalent to the fluxionary or
differential calculus; on the direct operations of multiplication, are founded the reverse operations
of division and extraction of roots, . . . they are still farther comprehended under a general formula,
called the expansion, or development of a function: from the second term of this expansion, the
fluxion or differential of a quantity may immediately be deduced, and in a particular application,
it appears to represent the velocity of a body in a motion.

Concerning the equal sign, =, Woodhouse maintained that in the context of series, this
sign did not denote numerical equality but the result of an operation. So if 1/(1+ x)
denoted the series obtained by dividing 1 by 1+ x, then

1

1+ x = 1− x+ x2 − x3 +·· · .

On the other hand, if 1/(x+1) represented the series obtained when 1 was divided by
x+ 1, then

1

x+ 1
= 1

x
− 1

x2
+ 1

x3
− 1

x4
+·· · .

Woodhouse remarked with reference to the two series that the equality 1/(1 + x) =
1/(x+ 1) could not be affirmed.

Woodhouse wrote other articles and books advocating his formal point of view. In
his 1809 textbook, A Treatise on Plane and Spherical Trigonometry, he defined the
trigonometric functions by their series expansions and showed the advantages of the
analytic approach over the geometric approach of Newton’s Principia. Though his 1809
treatise acquired some popularity and went into several editions, Woodhouse was unable
to convert the Cambridge dons. Progress in introducing the analytic approach into the
curriculum was achieved mainly through the efforts of his students: Edward Ffrench
Bromhead (1789–1855), Charles Babbage (1791–1871), George Peacock (1791–1858),
and John Herschel (1792–1871). As students at Cambridge, they formed the Analytical
Society in 1812 to promote and practice analytical mathematics; they decided to publish
a journal called the Memoirs of the Analytical Society, though Babbage had wished to
name it The Principles of Pure D-ism in opposition to the Dot-age of the university. Only
one volume was published; it appeared in 1813 and contained one article by Babbage
on functional equations and two by Herschel, on trigonometric series and on finite
difference equations. As the members scattered, the Analytical Society ceased to meet,
though many of its members became fellows or professors at Cambridge. In any case,
Babbage, Peacock, and Herschel remained friends. They translated an elementary text
by Lacroix on differential and integral calculus and in 1820 published a supplementary
collection of examples on calculus, difference equations, and functional equations.
Their efforts gradually influenced the teaching of mathematics at Cambridge, leading
to the acceptance of Continental methods.
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Even though Babbage succeeded Woodhouse as Lucasian Professor of Mathematics
in 1828, he spent very little time at Cambridge. Consistent with his formal approach,
he became interested in the mechanization of computation and spent the rest of his life
on the problems associated with that. He first developed plans to construct a “differ-
ence engine,” complete with printing device; he hoped it would eventually compute
up to twenty decimal places using sixth-order differences. A Swedish engineer, Georg
Schentz, used Babbage’s description to build a machine with a printer capable of com-
puting eight decimal places using fourth-order differences. Instead of actually building
a machine, Babbage himself went on to design a more elaborate computer, called
the “analytical engine,” inspired by the study of Jacquard’s punched cards weaving
machine.

John Herschel lost interest in pure mathematics and became a professor of astronomy
at Cambridge. So that left George Peacock to carry out the reform or modernization of
the teaching of mathematics at Cambridge and more generally in England. In 1832, he
published an algebra textbook in which he attempted to put the theory of negative and
complex numbers on a firm foundation by dividing algebra into two parts, arithmetical
and symbolical. The symbols of arithmetical algebra represented positive numbers,
whereas the domain of the symbols in symbolical algebra was extended by the principle
of the permanence of equivalent forms. This abstract principle implied, according to
Peacock, that any formula in symbolical algebra would yield a formula in arithmetical
algebra if the variables were properly chosen. Note that this approach excluded the
possibility of a noncommutative algebra.

Ironically, this algebraic approach to calculus taken by the British mathematicians
of the 1820s and 1830s stood in contrast with the rigorous methods contemporaneously
introduced in Europe by Gauss, Cauchy, Abel, and Dirichlet. The next generation
of British mathematicians, including Duncan Gregory, Robert Murphy, George Boole,
Leslie Ellis (1817–1859) and others, were aware of the continental approach and yet they
felt that their own methods had legitimacy. Early death prevented the talented Duncan
Gregory from preparing a new foundation for this method. However, the symbolic
method, even if lacking in rigor, had significant influence. The origin of some aspects
of modern operational calculus and of the theory of distributions can be seen in the
symbolic methods of Gregory and Boole. Moreover, some of the methods themselves
were put on a more solid foundation through G. C. Rota’s twentieth-century work on
umbral calculus.

The British symbolic approach served as the starting point for some significant
developments: the symbolic logic of Boole and Augustus De Morgan (1806–1871) and
the invariant theory of Boole, Cayley, and Sylvester. Consider, for example, Boole’s
remarks in the introduction to his 1847 work, The Mathematical Analysis of Logic:

They who are acquainted with the present state of the theory of Symbolical Algebra, are aware,
that the validity of the processes of analysis does not depend upon the interpretation of the symbols
which are employed, but solely upon the laws of their combination. Every system of interpretation
which does not affect the truth of the relations supposed, is equally admissible.

G. H. Hardy wrote in his book Divergent Series that the British symbolical math-
ematicians had the spirit but not the accuracy of the twentieth-century algebraists.
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Nevertheless, there is at least one example of abstract algebraic work consistent with
the standards of today: Hamilton’s theory of couples and of quaternions. The former
laid a rigorous algebraic basis for complex numbers. And Hamilton reported that his
1843 discovery of quaternions was guided by a determination for consistency, so that he
left open the possibility of an algebra with zero divisors or with noncommutativity. It is
noteworthy that around 1819, Gauss composed a multiplication table for quaternions,
though apparently he did not develop this further.

Papers by Murphy, Duncan Gregory, and Boole published between 1835 and 1845
provided important steps toward the creation of concepts laying the groundwork for the
eventual construction of abstract algebraic theories. Murphy, the son of a shoemaker-
parish clerk in Cork County, Ireland, studied mathematics on his own, and his talent
soon became known. In 1819, Mr. Mulcahy, a teacher in Cork County, published math-
ematical problems in the local newspaper; he soon began to receive original solutions
from an anonymous reader. He was surprised to discover that his correspondent was
a boy of 13. After this, Murphy began to receive encouragement and financial assis-
tance to continue his studies. In 1825, some of his work was brought to the attention
of Woodhouse; consequently, Murphy was admitted to Gonville and Caius College,
Cambridge, from which he graduated in 1828. In an 1835 paper on definite integrals,
Murphy introduced the idea of orthogonal functions, giving them the name reciprocal
functions. In his 1837 paper, “First Memoir on the Theory of Analytical Operations”,
he defined what he called linear operations and showed that their sums and products,
obtained by composition, were also linear operations, though the products were not
necessarily commutative. He stated a binomial theorem for noncommutative opera-
tions, and went on to consider inverses of operations, proving that the inverse of the
product of two operations A and B was B−1A−1. Murphy also defined the kernel of an
operation, naming it the appendage of the operation. He applied his theory mainly to
three operations: the differential operator, the difference operator ,, and the operator
transforming a function f (x) to f (x + h). Thus, in his paper Murphy isolated and
defined some basic ideas of a system of abstract algebra.

Around this time, Duncan F. Gregory, descendent of the great James Gregory, also
began to develop his mathematical ideas. Gregory was born at Edinburgh, Scotland,
and graduated from Trinity College, Cambridge, in 1837. Even as a student, Gregory
was interested in mathematical research and in encouraging British mathematicians to
take up this activity. As a step in this direction, in 1837 he helped found the Cambridge
Mathematical Journal, of which he was the editor until a few months before his pre-
mature death in February 1844. R. Leslie Ellis, who served as editor after this, wrote
that Gregory was particularly well qualified for this position for “his acquaintance with
mathematical literature was very extensive, while his interest in all subjects connected
with it was not only very strong, but also singularly free from the least tinge of jealous
or personal feeling. That which another had done or was about to do, seemed to give
him as much pleasure as if he himself had been the author of it, and this even when it
related to some subject which his own researches might seem to have appropriated.” In
addition, D. F. Gregory encouraged undergraduates to publish and permitted authors to
publish anonymously so that they need not fear for their reputations. This journal was
later renamed Cambridge and Dublin Mathematical Journal; it then evolved into the
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Quarterly Journal of Pure and Applied Mathematics, with editors including William
Thomson and J. W. L. Glaisher. In fact, most British mathematicians of the period
contributed papers to the CMJ, including Augustus De Morgan, J. J. Sylvester, George
Gabriel Stokes, Arthur Cayley, George Boole, and William Thomson.

By about 1845, research in operational calculus was no longer widely pursued. In the
1890s, however, Heaviside revived operational methods in order to solve differential
equations occurring in electrical engineering problems. Heaviside may or may not
have independently devised these methods, but he made at least one important new
contribution: The use of the step functionH(t)= 0 with t negative, andH(t)= 1 with
t nonnegative. By taking the derivative of this function, he obtained the Dirac delta
function. In some situations, Heaviside also used the derivative of the delta function.
Because these methods were so successful in solving problems in electrical engineering,
mathematicians such as Wiener, Carson, Doetsch, and van der Pol made successful
efforts toward putting them on a rigorous footing.

Toward the end of the eighteenth century, algebraic analysis was taken in a dif-
ferent direction by the German combinatorial school founded by C. F. Hindenburg
(1741–1808), Professor at Leipzig. Since combinatorial considerations were impor-
tant in probability computations as well as in deriving formulas for higher derivatives
of products of functions and of compositions of functions, Hindenburg saw that he
could find relations between/among series through the use of combinatorial concepts.
This school took as its starting point and inspiration Euler’s extensive use of series
to tackle various mathematical problems, as set forth in his Introductio in Analysin
Infinitorum of 1748. The combinatorial school played a significant role in the over-
all development of mathematics in Germany; it included among its early members
Christian Kramp (1760–1826), Gauss’s thesis supervisor J. F. Pfaff (1765–1825), and
H. A. Rothe (1773–1842). Later, H. F. Scherk (1798–1885), Franz Ferdinand Schweins
(1780–1856), August Leopold Crelle (1780–1855), Weierstrass’s teacher Christoph
Gudermann (1798–1852), and Moritz A. Stern (1807–1894) made contributions to this
tradition, and many of them were active in instituting educational reforms in Germany.
In fact, it is very likely that Weierstrass chose to make power series the fundamental
object in his study of analysis because of his early contact with Gudermann. Also,
Riemann’s earliest research on fractional derivatives and infinite series was done while
he was a student under Stern, though Riemann eventually took a completely different
route as a result of his later association with Dirichlet and Gauss. The combinato-
rial school produced some interesting results useful even today, and their approach to
infinite series is not without significance in modern mathematical research.

Hindenburg believed, and his colleagues agreed, that his most important work was
the polynomial formula he proved in 1779. A power series raised to an exponent is
another power series:

(1+ a1x+ a2x
2 + a3x

3 +·· ·)m = 1+A1x+A2x
2 +A3x

3 +·· · .

Hindenburg’s formula expressed An in terms of a1,a2, . . . ,an. De Moivre had already
done this with m a positive integer in a paper of 1697. Leibniz and Johann Bernoulli
also considered this case in letters exchanged in 1695. This particular case is quite
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useful; for example, it can be applied to give a short proof of Faà di Bruno’s formula,
giving the nth derivative of a composition of two functions. Faà di Bruno stated this in
the mid-nineteenth century without referring to the earlier proofs; Arbogast offered a
proof in 1800.

Using Newton’s binomial theorem, Hindenburg extended his formula to fractional
and negative m by expanding (1 + y)m, where y = a1x + a2x

2 + a3x
3 + ·· · , and yn

was obtained from the polynomial theorem for positive integral n. Part of Hindenburg’s
achievement was to clarify the combinatorial content of the formula. De Moivre had
given only the recursive rule for the calculation of An+1 from An. In the notation
presented by B. F. Thibaut in his 1809 textbook Grundriss der Allgemeinen Arithmetik,
Hindenburg’s formula would be expressed as

An =
n∑
h=1

(
m

h

)
pn

h

C.

The symbol nhC represented the sum of all products of h factors taken from
a1,a2, . . . ,an, so that the sum of the indices in each summand was n. The symbol
p stood for the coefficient associated with each summand, each summand consisting
of h factors, and this coefficient gave the number of different permutations of the h
factors. Thus, 63

C stood for a2
1a4 +a1a2a3 +a3

2 and the number of terms in the sum was
the number of partitions of 6 with exactly three parts. Therefore, p 63

C represented

3!
2!1!a

2
1a4 + 3!

(1!)3 a1a2a3 + a3
2 .

The combinatorial school set great importance on this formula, overestimating its
potential. Still, Hindenburg’s formula is useful in power series manipulation.

In 1793, H. A. Rothe used Hindenburg’s formula to state the reversion of series
formula as a combinatorial relation. Two years later, Rothe and Pfaff showed the
equivalence of Rothe’s formula with the Lagrange inversion formula. In modern times,
Lagrange’s formula has been regarded as more combinatorial than analytic in nature;
in this respect, the combinatorialists were on the right track. Rothe also found one
important terminating version of the q-binomial theorem, published in the preface of
his 1811 book. In this formula, the coefficients of the powers of x are q-extensions of
the binomial coefficients, now called Gaussian polynomials. It is possible that Rothe
may have discovered these polynomials even before Gauss’s work of 1805, published
in 1811. It would be nice to know Rothe’s combinatorial interpretation of these polyno-
mials; he gave no proof or comment. In order to get an insight into the combinatorialists’
mathematical style, consider comment given by Thomas Muir in his monumental The
Theory of Determinants in the Historical Order of Development:

Rothe was a follower of Hindenburg, knew Hindenburg’s preface to Rüdiger’s Specimen Ana-
lyticum, and was familiar with what had been done by Cramer and Bézout . . .. His memoir is very
explicit and formal, proposition following definition, and corollary following proposition, in the
most methodical manner.

Christian Kramp taught mathematics, chemistry, and experimental physics at École
Centrale in Cologne and in 1809 he became professor of mathematics and dean of the
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faculty of science at Strasbourg. He was a follower of Hindenburg and contributed
articles to various journals edited by Hindenburg. In a paper of 1794, he derived some
interesting properties of Stirling numbers. One object of interest for him was what he
termed a factorial:

an|d = a(a+ d)(a+ 2d) · · ·(a+ (n− 1)d).

He expanded this as a polynomial in a and d, and obtained formulas for the coefficients
involving Stirling numbers. Denoting the Stirling numbers of the first and second kinds
by s(n,k) and S(n,k), Kramp proved that

|s(n+ 1,n+ 1− k)| =
∑(

n+ 1
k+ l

)
(k+ l)!

j1!2j1j2!3j2j3!4j3 · · · ,

S(n+ k,n)=
∑(

n+ k
k+ l

)
(k+ l)!

j1!(2!)j1j2!(3!)j2j3!(4!)j3 · · · ,
where the sums were over all nonnegative j such that j1 + 2j2 + 3j3 + ·· · = k, and
where l = j1 + j2 + j3 +·· · . Kramp also introduced the factorial notation, n!.

20.2 Lagrange’s Extension of the Euler–Maclaurin Formula

In his 1772 “Sur une nouvelle espèce de calcul,” Lagrange set out to create a new
symbolic method in calculus. As a first step, he expressed the Taylor series of a function
u(x, y, z, . . . ) of several variables as

u(x+ ξ, y+ψ, z+ ζ, . . . )= eξ dudx+ψ du
dy

+ζ du
dz

+···
.

In his symbolic notation, Lagrange understood the numerator of the nth term of e
du
dx
ξ+···

to represent (ξ d

dx
+ψ d

dy
+·· ·)nu rather than (ξ du

dx
+ψ du

dy
+·· ·)n. In effect, Lagrange

was treating the derivative operator as an algebraic quantity. The later notation of
Arbogast makes this approach clearer, allowing us to write eξ

d
dx u for Lagrange’s e

du
dx
ξ

and
(
eξ

d
dx − 1

)λ
u for his

(
e
du
dx
ξ − 1

)λ
. It is easy to see that the last expression is the

symbolic form of the λth difference ,λu, since we may write

,u= u(x+ ξ)−u(x)=
(
eξ

d
dx − 1

)
u. (20.4)

It follows that the difference operator , can be identified with the operator eξ
d
dx − 1

and the repeated application of these operations yields

,λu=
(
eξ

d
dx − 1

)λ
u. (20.5)

Following Leibniz, Lagrange noted that, given the derivative operator d, he could write

d−1 =
∫
, d−2 =

∫ 2

, . . . and

,−1 =>, ,−2 =>2, . . . .
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Here
∫ 2 stood for an iterated integral and>2 for an iterated sum. Lagrange applied his

symbolic method to a generalization of the Euler–Maclaurin summation by expanding
the expression in (20.5). He assumed the series expansion

(ew − 1)λ =wλ(1+Aw+Bw2 +Cw3 +Dw4 +·· ·)
and took the logarithm to obtain

λ ln(ew − 1)−λ lnw = ln(1+Aw+Bw2 +Cw3 +Dw4 +·· ·).
By differentiation, he found

λ

(
ew

ew − 1
− 1

w

)
= A+ 2Bw+ 3Cw2 + 4Dw3 +·· ·

1+Aw+Bw2 +Cw3 +Dw4 +·· · .

Since
ew

ew − 1
= 1

1− e−w
= 1

w− w2

2 + w3

2·3 − w4

2·3·4 +·· · ,

he obtained the equation

λ

(
1

2
− w

2 · 3 + w2

2 · 3 · 4 −·· ·
)(

1+Aw+Bw2 +Cw3 +·· ·)
=

(
1− w

2
+ w2

2 · 3 − w3

2 · 3 · 4 +·· ·
)
(A+ 2Bw+ 3Cw2 +·· ·).

Finally, by equating the coefficients of the powers of w, Lagrange found that

A= λ

2
, 2B = (λ+ 1)A

2
− λ

2 · 3 , 3C = (λ+ 2)

2
B− (λ+ 1)

2 · 3 C+ λ

2 · 3 · 4 ,

4D = (λ+ 3)

2
C− (λ+ 2)

2 · 3 B+ (λ+ 1)

2 · 3 · 4A− λ

2 · 3 · 4 · 5 etc. (20.6)

Now because ,−λ =>λ, Lagrange could replace λ by −λ in (20.5) to get

>λu=
∫ λ
udxλ

ξλ
+α

∫ λ−1
udxλ−1

ξλ−1
+β

∫ λ−2
udxλ−2

ξλ−2
+·· · . (20.7)

We observe that when λ was changed to −λ in (20.6), Lagrange denoted the changed
values of A, B, C, . . . by α, β, γ, . . . . The case λ= 1 in (20.7) is immediately distin-
guishable as the Euler–Maclaurin formula. In the same paper, Lagrange then proceeded
to derive a formula for repeated integrals in terms of sums. He rewrote (20.4) as

ξ
du

dx
= ln(1+,)u

or in Arbogast’s notation,

ξ
d

dx
= ln(1+,) (20.8)
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and more generally

ξλ
dλ

dxλ
= [ln(1+,)]λ. (20.9)

By expanding the right-side of (20.9) as a series in powers of ,, Lagrange obtained
the coefficients of the expansion by a method similar to the one that gave him (20.6).
Once again, he replaced λ by −λ to obtain∫ λ

udxλ

ξ
=

λ∑
u+µ

λ−1∑
u+ ν

λ−2∑
u+w

λ−3∑
u+·· · , where (20.10)

µ= λ

2
, 2ν = (λ− 1)µ

2
− λ

2 · 3 , 3w = (λ− 2)ν

2
− (λ− 1)µ

2 · 3 + λ

3 · 4 ,

4χ = (λ− 3)w

2
− (λ− 2)ν

2 · 3 + (λ− 1)µ

3 · 4 − λ

4 · 5 , etc.

When λ= 1 in (20.10), Lagrange got the value of the integral in terms a sum involving
finite differences:∫

udx

ξ
=

∑
u+µu+ ν,u+w,2u+χ,3u+·· · . (20.11)

This is exactly the formula communicated by James Gregory to Collins in November
1670. Recall that Gregory most probably discovered this formula by integrating
the Gregory–Newton interpolation formula. Lagrange may not have been aware of
Gregory’s work, but he referred to Cotes, Stirling, and others who used similar, though
not identical, results. Laplace may have found this result independently; he used it in
his astronomical work. Indeed, this formula was sometimes attributed to Laplace, in
particular by Poisson.

Lagrange employed (20.11) to derive an inverse factorial series for ln(1 + 1/x),
taking u= 1/x and ξ = 1 to obtain

lnx =
∑ 1

x
+ µ

x
+ ν,1

x
+w,2 1

x
+ x,3 1

x
+·· · , where

∑ 1

x
= 1

x− 1
+ 1

x− 2
+ 1

x− 3
+·· · ,

,
1

x
= 1

x+ 1
− 1

x
=− 1

x(x+ 1)
,

,2 1

x
= 2

x(x+ 1)(x+ 2)
,

,3 1

x
=− 2 · 3

x(x+ 1)(x+ 2)(x+ 3)
, etc.

Changing x to x+1, Lagrange obtained a similar series for ln(x+1). He then subtracted
the series for lnx to obtain the desired result.
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Lagrange’s heuristic method was immediately welcomed as a powerful tool in
discovering interesting and useful formulas. Laplace’s papers on finite differences
in the 1770s discussed and used Lagrange’s symbolic method. Laplace thought that
Lagrange’s formula,nu= (

eh d

dx
− 1

)n
u could be rigorously established by the use of

formal power series. He observed that

,nu= dnu

dxn
hn+A1

dn+1u

dxn+1
hn+1 +A2

dn+2u

dxn+2
hn+2 +·· ·

for constantA1, A2, . . . . He believed the problem could be reduced to proving that these
coefficients were identical with the coefficients of the powers of h in the expansion of(
eh− 1

)n
. He noted that the constants A1,A2, . . . were the same for all functions u,

so he took u = ex . Then ,ex = ex+h − ex = ex (eh− 1
)

and more generally ,nex =
ex

(
eh− 1

)n
. Thus, (

eh− 1
)n = hn+A1h

n+1 +A2h
n+2 +·· · ,

completing the clever proof.

In 1807, John Brinkley (1766–1835), professor of mathematics at the University
of Dublin and a mentor to Hamilton, presented in the Philosophical Transactions an
interesting expression for the constants A1, A2, . . . . He noted that

(
eh− 1

)n = enh−(
n

1

)
e(n−1)h+

(
n

2

)
e(n−2)h−·· ·

=
(

1−
(
n

1

)
+
(
n

2

)
− etc.

)
+
(
n−

(
n

1

)
(n− 1)+

(
n

2

)
(n− 2)−·· ·

)
h

1!

+
(
n2 −

(
n

1

)
(n− 1)2 +

(
n

2

)
(n− 2)2 −·· ·

)
h2

2! + · · ·

+
(
nm−

(
n

1

)
(n− 1)m+

(
n

2

)
(n− 2)m−·· ·

)
hm

m! + · · · .

Further, it was clear from the formula

,nf (0)= f (n)−
(
n

1

)
f (n− 1)+

(
n

2

)
f (n− 2)−·· ·

that the coefficient ofhm/m!was,n0m. Thus, Brinkley hadAk= ,n0n+k
(n+k)! . Note that these

numbers are related to Stirling numbers of the second kind: (n+k)!Ak = n!s(n+k,n).
Brinkley (c. 1763–1835) studied at Cambridge, graduating senior wrangler in 1788.

He was the first Royal Astronomer of Ireland and later became Bishop of Cloyne.
It was to Brinkley that the 17-year-old Hamilton communicated his work on geo-
metrical optics. Brinkley encouraged Hamilton by presenting his work to the Irish
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Academy with the legendary assertion, “This young man, I do not say will be, but is,
the first mathematician of his age.” Fittingly, Hamilton succeeded Brinkley as Royal
Astronomer.

20.3 Français’s Method of Solving Differential Equations

Jacques F. Français, whose mathematical work incorporated some results from the note-
books of his late brother François, based his solution of ordinary differential equations
with constant coefficients on the relation between the Arbogast operator E and the
differential operator D:

Eφ(x)= φ(x+ 1)= eDφ, (20.12)

whereD= d/dx. We note that Français’s notation had δ forD. Now ifφwere a solution
of the equation

dφ

dx
− aφ = 0, or (D− a)φ = 0, (20.13)

then Français had D − a = 0 by the separation of the operator. By (20.12) he had
E = eD = ea or Ek = eak and hence 1 = eakE−k. He then used this relation to solve
(20.13):

φ(x)= 1φ(x)= eakE−kφ(x)= eakφ(x− k) or

φ(k)= φ(0)eak.
Thus, φ(x)=Ceax , where C was a constant, and the differential equation (20.13) was
solved. To solve the general homogeneous differential with constant coefficients

Dnφ+ a1D
n−1φ+·· ·+ anφ = 0,

Français separated the operator and factored the nth degree polynomial in D to obtain

(D−α1)(D−α2) · · ·(D−αn)= 0.

This gave him the n equations:

D−α1 = 0, D−α2 = 0, . . . , D−αn = 0

whose solutions he expressed as eα1x, eα2x, . . . ,eαnx. Note that this is an exhaustive
list of the independent solutions, under the condition that α1, α2, . . . ,αn are all distinct.
Français also applied the operational method for the summation of series. He found a
series for π , reminiscent of a result obtained by the Kerala school. In a paper of 1811,
he started with Euler’s series

π

4
α = sin α− 1

32
sin 3α+ 1

52
sin 5α− 1

72
sin 7α+·· · .
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He rewrote this as

π

2
α
√−1

=
(
eα

√−1 − e−α
√−1

)
− 1

32

(
e3α

√−1 − e−3α
√−1

)
+ 1

52

(
e5α

√−1 − e−5α
√−1

)
−·· · .

He then set α
√−1 =D, eD =E to obtain

π

2
D = (E−E−1)− 1

32
(E3 −E−3)+ 1

52
(E5 −E−5)−·· · .

Français next applied this operator equation to φ(x), so that

π

2
φ′(x)= φ(x+ 1)−φ(x− 1)− 1

32
(φ(x+ 3)−φ(x− 3))+·· · .

Recall that Eφ(x) = φ(x + 1). Taking φ(x) = x, he obtained Leibniz’s formula. For
φ(x)= 1/x, he found

π

4
· 1

x2
=

(
1

x2 − 1

)
− 1

3

(
1

x2 − 32

)
+ 1

5

(
1

x2 − 52

)
− 1

7

(
1

x2 − 72

)
+·· · . (20.14)

Putting 1
x2 =−a, he could rewrite the equation as

π

4
= 1

1+ a − 1

3
· 1

1+ 32a
+ 1

5
· 1

1+ 52a
− 1

7
· 1

1+ 72a
+·· · .

Then again, by taking φ(x)= lnx, Français obtained the formula

π

2
· 1

x
= ln

(
x+ 1

x− 1

)
− 1

32
ln

(
x+ 3

x− 3

)
+ 1

52
ln

(
x+ 5

x− 5

)
−·· · .

Finally, to derive another interesting series, he set a
√−1 = 1/x in (20.14) and then

integrated, obtaining

π

4
a = arctan a− 1

32
arctan 3a+ 1

52
arctan 5a−·· · .

20.4 Herschel: Calculus of Finite Differences

In the appendix to their English translation of Lacroix’s book, Babbage and Herschel
included a large number of examples on functional and difference equations, some of
which were original. Like his followers, Herschel showed much manipulative ability
of an algebraic kind. To see some of Herschel’s work on difference equations, consider
the equation

ux+1ux − a(ux+1 −ux)+ 1 = 0,
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first given in a paper of Laplace but for which Herschel found a new solution. He
differentiated and rewrote it as

(a+ux+1)
dux

dx
− (a−ux)dux+1

dx
= 0.

He solved for a in the original equation and used this value in the second equation to
find, after simplification

dux+1

1+u2
x+1

− dux

1+u2
x

= 0, or,
∫

dux

1+u2
x

=A,

where A was a constant depending on a. Solving this simple difference equation,
he had ∫

dux

1+u2
x

=Ax+C ,

where C was an arbitrary constant. After computing the integral, he got ux = tan
(Ax+C) and therefore

ux+1 = tan(Ax+C+A)= ux + tanA

1−ux tanA
.

At this point he rewrote the original difference equation as

ux+1 = ux + 1
a

1−ux · 1
a

,

so he could conclude that tanA= 1
a

or A= tan−1 1
a
. Thus, Herschel obtained the result

ux = tan

(
x tan−1 1

a
+C

)
.

To see an example of Herschel’s symbolic approach, take an analytic function f (x),
and let

f (et )=A0 +A1t +A2t
2 +·· ·+Axtx +·· · .

Herschel wished to find an expression for Ax ; he started with the Taylor expansion

f (et )= f (1)+ f ′(1)
1
(et − 1)+ f ′′(1)

1 · 2 (et − 1)2 +·· · ,

and noted that for x ≥ 1, the coefficient of tx in f (1) was 0; in

f ′(1)
1
(et − 1), it was

f ′(1)
1

· 1

1 · 2 · · ·x = f ′(1)
1

· ,0x

1 · 2 · · ·x ;

and in

f ′′(1)
1 · 2 (et − 1)2, it was

f ′′(1)
1 · 2 · ,20x

1 · 2 · · ·x ,
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and so on. He could conclude that

Ax = 1

1 · 2 · · ·x
(
f (1) · 0x + f ′(1)

1
,0x + f ′′(1)

1 · 2 ,20x +·· ·
)
.

He then wrote, “let the symbols of operation be separated from those of quantity, and
we get

Ax = 1

1 · 2 · · ·x
(
f (1)+ f ′(1)

1
,+ f ′′(1)

1 · 2 ,2 +·· ·
)

0x = f (1+,)0x
1 · 2 · · ·x .′′

Herschel apparently saw that taking a function of an operator was somewhat prob-
lematic, commenting that it should be “understood to have no other meaning than its
development, of which it is a mere abbreviated expression.”

20.5 Murphy’s Theory of Analytical Operations

Murphy began his 1837 paper on analytical operations, “The elements of which every
distinct analytical process is composed are three, namely, first the Subject, that is, the
symbol on which a certain notified operation is to be performed; secondly, the Operation
itself, represented by its own symbol; thirdly, the Result, which may be connected with
the former two by the algebraic sign of equality.” He defined several operations. For
example, he denoted by P the operation changing x to x+h, and by , the operation
subtracting the subject from the result of changing x to x+h in the subject. He wrote
these operations as

[f (x)]P = f (x+h), [f (x)],= f (x+h)−f (x).
The operations themselves could be algebraically combined. Thus, P =,+ 1, where
1 was the operation under which the subject remained the same. Murphy defined the
linearity of an operation:

[f (x)+φ(x)]P = [f (x)]P+[φ(x)]P.
He called two operations fixed or free, depending on whether they were noncommuta-
tive or commutative in the given situation. Thus,

[xn]xP = [xn+1]P = (x+h)n+1,

[xn]Px = [(x+h)n]x = x(x+h)n,

so that xP �=Px; but for a constant a

[xn]aP = [axn]P = a(x+h)n,
[xn]Pa = [(x+h)n]a = a(x+h)n,

so that aP =Pa.
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He also stated a noncommutative binomial theorem: When θ and θ ′ were fixed
operations,

(θ + θ ′)n = θ(n)+ θ(n−1)θ ′ + θ(n−2)θ ′(2)+·· ·+ θθ ′(n−1)+ θ ′(n).
Here the term θ(n−1)θ ′ represented the sum of n terms formed by placing θ ′ at the
beginning, at the end, and in all the n− 2 intermediate positions of the expression
θ · θ · · ·θ = θn−1. Similarly, θ(n−2)θ ′(2) signified a similar sum of n(n− 1)/2 terms and
so on. Murphy carefully defined some important algebraic concepts, such as the inverse
and the kernel. Concerning the inverse: “Suppose θ to represent any operation which
performed on a subject [u] gives y as the result, then the inverse operation is denoted
by θ−1, and is such that when [y] is made the subject u becomes the result.” The
kernel was called the appendage, denoted by [0]θ−1. Murphy showed, for example,
that if dx denoted the derivative with respect to x, then [0]d−1

x consisted of all the
constants. To prove this, he took [0]d−1

x = φ(x), implying that [φ(x)]dx = 0, and hence
[φ(x)]d2

x = 0, [φ(x)]d3
x = 0, . . . . Murphy then employed Taylor’s theorem,

φ(x+h)= φ(x)+hdφ
dx

+ h2

1 · 2
d2φ

dx2
+·· · ,

to obtain φ(x + h) = φ(x), meaning φ(x) was a constant. Here Murphy assumed
without comment that φ was analytic. To find the kernel of d−nx , he observed that

[0]d−2
x = [0]d−1

x d
−1
x = [c]d−1

x +[0]d−1
x = cx+ c′,

and, more generally,

[0]d−nx =A1x
n−1 +A2x

n−2 +·· ·+An.
In another interesting example, Murphy let the subject be f (x + y); let Px be the
operation under which x received an increment h; and let Py be the operation under
which y received an increment of h. Then, obviously, [f (x + y)](Px −Py)= 0, and
therefore f (x+ y)(,y−,x)= 0, so that f (x+y) was a value in [0](,y−,x)

−1. He
explained that (,y −,x)

−1 could be expanded as

(,y −,x)
−1 =,−1

y +,−2
y ,x +,−3

y ,
2
x +,−4

y ,
3
x +·· · ,

so that [0](,y −,x)
−1 = [0](,−1

y +,−2
y ,x +,−3

y ,
2
x +·· ·) .

Murphy then explained how to derive the Gregory–Newton interpolation formula from
this last equation. He noted that [0],−1

y was a function independent of y, so he had
[0],−1

y = φ(x), where φ was an arbitrary function of x. Similarly, [0],−2
y = φ(x) · y

h
,

where the appendage was omitted without loss of generality. Then again,

[0],−3
y = φ(x) · y(y−h)

1 · 2 ·h2
for [y(y−h)],y = (y+h)y− y(y−h)= 2hy.

By a similar argument,

[0],−4
y = φ(x) · y(y−h)(y− 2h)

1 · 2 · 3 ·h3
,
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and so on. In this way, Murphy obtained the relation

[0](,y −,x)
−1 = φ(x)+ y

h
·,φ(x)+ y(y−h)

1 · 2 · ·h2
·,2φ(x)

+ y(y−h)(y− 2h)

1 · 2 · 3 ·h3
·,3φ(x)+·· · ,

and “since f (x + h) is included in this general expression, the particular form to be
assigned to the arbitrary φ(x) is known by making y = 0, which gives φ(x)= f (x).”
Thus, Murphy had the Gregory–Newton interpolation formula,

f (x+ y)= f (x)+ y

h
,f (x)+ y(y−h)

1 · 2 ·h2
,2f (x)+ y(y−h)(y− 2h)

1 · 2 · 3 · h3
,3f (x)+·· · .

Note that this is equivalent to (10.3). From this he derived the binomial theorem as Cotes
had done, and perhaps James Gregory before him. Murphy took f (x)= (1+b)x,h= 1
and observed that ,nf (x) = (1 + b)xbn so that the binomial theorem followed after
dividing both sides of the equation by (1+ b)x :

(1+ b)y = 1+ yb+ y(y− 1)

1 · 2 b2 + y(y− 1)(y− 2)

1 · 2 · 3 b3 +·· · .

20.6 Duncan Gregory’s Operational Calculus

Duncan Gregory published many papers on operational calculus, illustrating the power
of the method by elegant derivations of known results. Gregory’s proof of Leibniz’s
formula for the nth derivative of a product of two functions began with the observation
that Euler’s proof of the binomial theorem

(a+ b)n = an+nan−1b+ n(n− 1)

1 · 2 an−2b2 + n(n− 1)(n− 2)

1 · 2 · 3 an−3b3 +·· ·

required that nwas a fraction. More importantly, Gregory wrote that a,b should satisfy
the laws

(1)The commutative, ab= ba,
(2)The distributive, c(a+ b)= ca+ cb,
(3)The index law, am · (an)= am+n.

Gregory added, “Now, since it can be shown that the operations both in the Differential
Calculus and the Calculus of Finite Differences are subject to these laws, the Binomial
Theorem may be at once assumed as true with respect to them, so that it is not necessary
to repeat the demonstration of it for each case.” To prove Leibniz’s theorem, Gregory
observed that

d

dx
(uv)= u dv

dx
+ v

du

dx
.



20.6 Duncan Gregory’s Operational Calculus 385

He then rewrote this equation, as had Arbogast:

d

dx
(uv)=

(
d ′

dx
+ d

dx

)
uv,

where d ′
dx

acted on v but not on u and d

dx
acted on u but not on v. Since these operations

were independent of each other, they commuted, so(
d

dx

)n
(uv)=

(
d ′

dx
+ d

dx

)n
uv

=
((

d ′

dx

)n
+n

(
d ′

dx

)n−1
d

dx
+·· ·

)
uv

= ud
nv

dxn
+nd

n−1v

dxn−1

du

dx
+ n(n− 1)

1 · 2
d2u

dx2

dn−2v

dxn−2
+·· · .

Gregory remarked that this result was true with n negative or fractional, or “in the cases
of integration and general differentiation.” He then took v = 1 and n = −1 to obtain
Bernoulli’s formula,∫

udx = xu− x2

1 · 2
du

dx
+ x3

1 · 2 · 3
d3u

dx3
−·· · .

Using Arbogast’s E operator, Gregory derived a proof of the Newton–Montmort
transformation, given by Euler in his 1755 differential calculus book. Suppose

S = ax+ a1x
2 + a2x

3 + a3x
4 +·· ·

and a1 = Ea,a2 = E2a,a3 = E3a, . . . . We write E instead of Gregory’s D, since D
might be confused with the derivative. Recall thatE= 1+,, where, is the difference
operator; thus, Gregory derived the Newton–Montmort transformation:

S = (x+ x2E+ x3E2 +·· ·)a
= x(1− xE)−1a = x(1− x− x,)−1a

= x

1− x
(

1− x

1− x,
)−1

a

= x

1− x
(

1+ x

1− x,+ x2

(1− x)2,
2 +·· ·

)
a

= ax

1− x +,a
(

x

1− x
)2

+,2a

(
x

1− x
)3

+·· · .

Recall that we have discussed this formula earlier, as (11.3).
Gregory also found an operational method for solving linear ordinary differential

equations with constant coefficients. He began with the equation

dny

dxn
+Ad

n−1y

dxn−1
+B d

n−2y

dxn−2
+·· ·+Rdy

dx
+Sy =X,
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where X was a function of x. After separating “the signs of operation from those of
quantity,” the equation became(

dn

dxn
+A dn−1

dxn−1
+B dn−2

dxn−2
+·· ·+R d

dx
+S

)
y =X.

Note that this can also be written as

f

(
d

dx

)
y =X,

where f is a polynomial. Gregory’s problem was to find

y =
{
f

(
d

dx

)}−1

X

and he first worked out the simplest case, where f (x) = 1 + x and X = 0. Gregory
calculated

y =
(

1+ d

dx

)−1

0

=
(

1+ d−1

dx−1

)−1
d−1

dx−1
0 =

(
1+ d−1

dx−1

)−1

C

=
(

1− d−1

dx−1
+ d−2

dx−2
−·· ·

)
C

=C
(

1− x+ x2

1 · 2 − x3

1 · 2 · 3 +·· ·
)
=Ce−x .

He noted that d−1

dx−1 = ∫
dx. Now note that if f (x)= a+ x, one would get y = ce−ax .

Gregory then observed that(
d

dx
± a

)n
X = e∓ax

(
d

dx

)n
e±axX,

provable by means of the binomial theorem. Gregory finally considered the general
case: (

d

dx
− a1

)(
d

dx
− a2

)(
d

dx
− a3

)
· · ·

(
d

dx
− an

)
y =X.

He applied
(
d

dx
− a1

)−1
to both sides of the equation to find(

d

dx
− a2

)(
d

dx
− a3

)
· · ·

(
d

dx
− an

)
y =

(
d

dx
− a1

)−1

X

= ea1x

∫
e−a1xXdx .
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Similarly,(
d

dx
− a3

)
· · ·

(
d

dx
− an

)
y =

(
d

dx
− a2

)−1

ea1x

∫
e−a1xXdx

= ea2x

∫
e(a1−a2)x

(∫
e−a1xXdx

)
dx

= ea1x
∫
e−a1xXdx

a1 − a2
+ ea2x

∫
e−a2xXdx

a2 − a1
,

using integration by parts in the last step. Thus, Gregory’s final formula took the form

y = ea1x
∫
e−a1xXdx

(a1 − a2)(a1 − a3) · · ·(a1 − an) +·· ·+ eanx
∫
e−anxXdx

(an− a1)(an− a2) · · ·(an− an−1)
.

In 1811, Français had used the same method, going a step beyond Gregory by using
partial fractions to decompose

{
f
(
d

dx

)}−1
. By this technique,

y =
{
f

(
d

dx

)}−1

X =
n∑
i=1

Ni
d

dx
− ai X,

where Français assumed that the roots a1,a2, . . . ,an of f (x)= 0 were distinct. When
the value of Ni was substituted, the result was the same as Gregory’s. Français also
showed that his method could be extended to the case of repeated roots.

20.7 Boole’s Operational Calculus

In his 1844 paper “On a General Method in Analysis,” Boole extended Murphy and
Gregory’s symbolic method to treat problems on linear ordinary and partial differential
equations with variable coefficients, linear difference equations, summation of series,
and the computation of multiple integrals. He started his paper by stating several general
propositions on functions of commutative and noncommutative operators. He made
frequent use of some special cases and noted that they were already known: Let x = eθ .
Then x d

dx
= d

dθ
=D, so

f (D)emθu= emθf (D+m)u, (20.15)

f (D)emθ = f (m)emθ , (20.16)

D(D− 1) · (D−n+ 1)u= xn
(
d

dx

)n
u. (20.17)

Though Boole did not explicitly say so, f (x) is a function expandable as a series.
Relation (20.15) can be verified from the particular case f (D)=Dn. In this case, by
Leibniz’s formula for the nth derivative of a product, we can see that

dn

dθn
(emθu)= emθ

(
d

dθ
+m

)n
u.
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The other two cases can be easily verified. Boole’s fundamental theorem of development
was given by the formula

f0(D)u+f1(D)e
θu+f2(D)e

2θu+·· ·

=
∑{

(f0(m)um+f1(m)um−1 +f2(m)um−2 +·· ·)emθ} , (20.18)

where u=∑
ume

mθ . He verified this by substituting the series for u on the left-hand
side of the equation and applying (20.15). Boole applied his development theorem to
the summation of series, noting that if the coefficients of u satisfied a linear recurrence
relation

f0(m)um+f1(m)um−1 +·· · = 0,

then (20.18) yielded a differential equation satisfied byu. In cases where this differential
equation could be solved in closed form, he had the sum of the series

∑
unx

n. This
method allowed him to use the recurrence relation satisfied by the coefficients of the
series in order to quickly find the differential equation satisfied by the series. As an
example of a series summation, Boole considered for any real n,

u= 1− n2

1 · 2x
2 + n2(n2 − 22)

1 · 2 · 3 · 4 x4 − n2(n2 − 22)(n2 − 42)

1 · 2 · · ·6 x6 +·· · . (20.19)

In this case,

um =−n
2 − (m− 2)2

m(m− 1)
um−2.

He could then immediately write the differential equation satisfied by the series as

u− (D− 2)2 −n2

D(D− 1)
e2θu= 1,

or D(D− 1)u− (
(D− 2)2 −n2

)
e2θu= 0. (20.20)

Applying (20.15) and (20.17),

(D− 2)2e2θu= e2θD2u= e2θ (D(D− 1)+D)u

= x2

(
x2 d

2

dx2
+ x d

dx

)
u.

Thus, (20.20) was simplified to

(1− x2)
d2u

dx2
− x du

dx
+n2u= 0. (20.21)

Boole then substituted
√

1− x2 d

dx
= d

dy
,ory = sin−1 x, to convert the differential

equation (20.21) to d2u

dy2 + n2u = 0 . This gave Boole the solution u = c1 cos(ny)+
c2 sin(ny)= c1 cos(nsin−1 x)+ c2 sin(nsin−1 x) with the constants c1 and c2 equal to 1



20.7 Boole’s Operational Calculus 389

and 0, respectively. He therefore had

cos(nsin−1 x)= 1− n2

1 · 2x
2 + n2(n2 − 22)

1 · 2 · 3 · 4 x4 −·· · or

cos(ny)= 1− n2

2! sin2 y+ n2(n2 − 22)

4! sin4 y− n2(n2 − 22)(n2 − 42)

6! sin6 y+·· · .

Similarly, Boole noted

sin(ny)= nsiny− n(n2 − 12)

3! sin3 y+ n(n2 − 12)(n2 − 32)

5! sin5 y+·· · .

Recall that Newton discovered this series (9.16) and communicated it to Leibniz in his
first letter of 1676. The series was afterwards employed by Gauss to prove that �(x)
�(1 − x) = π/sinπx. Boole also used his method to solve some linear differential
equations with variable coefficients and considered even more complex equations
requiring a somewhat more elaborate technique. A simple example may explain his
basic method. Boole set out to solve a differential equation with variable coefficients,
commenting that it occurred in the theory of the “Earth’s figure”:

d2u

dx2
+ q2u− 6u

x2
= 0. (20.22)

In his solution, Boole employed the general proposition:

The equation u+ φ(D)erθu = U will be converted into the form v + ψ(D)erθv = V , by the
relations

u= Pr φ(D)
ψ(D)

v, U = Pr φ(D)
ψ(D)

V, (20.23)

wherein Pr
φ(D)

ψ(D)
denotes the infinite symbolical product φ(D)φ(D−r)φ(D−2r)···

ψ(D)ψ(D−r)ψ(D−2r)··· .

Boole proved this by assuming u= f (D)v and substituting in the first equation to get

f (D)v+φ(D)erθf (D)v =U.

By (20.17) this became

f (D)v+φ(D)f (D− r)erθv =U or

v+ φ(D)f (D− r)
f (D)

erθv = (f (D))−1U .

So ψ(D)= φ(D)f (D− r)
f (D)

or

f (D)= φ(D)

ψ(D)
f (D− r)= φ(D)φ(D− r)

ψ(D)ψ(D− r)f (D− 2r)= . . . .
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In general, Boole attempted to choose v such that it satisfied the equation dnv
dxn

±qnv=X.
Boole applied his general proposition to rewrite (20.22) as

u+ q2

(D+ 2)(D− 3)
e2θu= 0.

Now Boole required the equation for v to be d2v
dx2 + q2v =X, or

v+ q2

D(D− 1)
e2θv = V.

Here

φ(D)= q2

(D+ 2)(D− 3)
, ψ(D)= q2

D(D− 1)
,

so that, by the general proposition,

P2
φ(D)

ψ(D)
= D− 1

D+ 2
.

Thus, u= D−1
D+2v and 0 = D−1

D+2V . Boole could then take V = 0 and v = c sin(qx+ c1).
Finally,

u= D− 1

D+ 2
v = (

1− 3(D+ 2)−1
)
c sin(qx+ c1)

= c (1− 3e−2θD−1e2θ
)

sin(qx+ c1)

= c
(

1− 3

x2

(
x
d

dx

)−1

x2

)
sin(qx+ c1)

= c sin(qx+ c1)− 3

x2

∫
dx x sin(qx+ c1)

= c
((

1− 3

q2x2

)
sin(qx+ c1)+ 3

qx
cos(qx+ c1)

)
.

20.8 Jacobi and the Symbolic Method

In 1847, Jacobi wrote an interesting paper using the operational method to derive two
results on transformations of series. He applied the second of these to the derivation of
a result in the theory of hypergeometric series knows as Pfaff’s transformation. Jacobi
apparently wished to bring attention to Pfaff’s important result. This wish was finally
fulfilled in about 1970, when Richard Askey read Jacobi’s paper and made Pfaff’s
work known to the mathematical community. Jacobi did not explain why he chose
to explore the operational method. The work of the British mathematicians may have
appealed to his algorithmic style; note that he had visited Britain in 1842. Both of these
transformations had been earlier presented in Euler’s differential calculus book. Euler’s
second formula (11.15) stated that if

f (x)= a+ bx+ cx2 + dx3 +·· · then



20.8 Jacobi and the Symbolic Method 391

aA0 + bA1x+ cA2x
2 + dA3x

3 +·· ·

=A0f (x)+,A0x
df

dx
+ ,2A0

1 · 2 x
2 d

2f

dx2
+ ,3A0

1 · 2 · 3x
3 d

3f

dx3
+·· · .

Jacobi’s proof of this formula was similar to Duncan Gregory’s proof of the Newton–
Montmort formula, discussed earlier. Recall the Arbogast operatorE used by Gregory:
EkA0 =Ak. The formal steps of the argument were then

aA0 + bA1x+ cA2x
2 + dA3x

3 +·· ·
= (a+ bxE+ cx2E2 + dx3E3 +·· ·)A0

= f (xE)A0 = f (x+ x(E− 1))A0 = f (x+ x,)A0

=
(
f (x)+f ′(x)x,+ f ′′(x)

1 · 2 x2,2 +·· ·
)
A0

=A0f (x)+,A0x
df

dx
+ ,2A0

1 · 2 x
2 d

2f

dx2
+·· · .

To obtain Pfaff’s transformation, Jacobi specialized the sequence A0,A1,A2,

A3, . . . to

1,
β

γ
,
β(β+ 1)

γ (γ + 1)
,
β(β+ 1)(β+ 2)

γ (γ + 1)(γ + 2)
, . . .

and noted that the first and second differences were

β− γ
γ

,
β− γ
γ

β

γ + 1
,
β− γ
γ

β(β+ 1)

(γ + 1)(γ + 2)
,
β− γ
γ

β(β+ 1)(β+ 2)

(γ + 1)(γ + 2)(γ + 3)
, · · ·

(β−γ)(β−γ − 1)

γ (γ +1)
,
(β−γ)(β−γ −1)

γ (γ +1)

β

γ +2
,
(β−γ)(β−γ −1)

γ (γ +1)

β(β+1)

(γ +2)(γ +3)
, · · · .

In general, he observed,

,mAn = (β− γ )(β− γ − 1) · · ·(β− γ −m+ 1) ·β(β+ 1) · · ·(β+n− 1)

γ (γ + 1)(γ + 2) · · ·(γ +m+n− 1)
.

In particular, when n= 0, he got

,mA0 = (β− γ )(β− γ − 1) · · ·(β− γ −m+ 1)

γ (γ + 1) · · ·(γ +m− 1)
.

Jacobi then set

f (x)= (1− x)−α = 1+αx+ α(α+ 1)

1 · 2 x2 + α(α+ 1)(α+ 2)

1 · 2 · 3 x3 +·· ·
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so that Euler’s transformation reduced to Pfaff’s transformation:

1+ α ·β
1 · γ x+

α(α+ 1) ·β(β+ 1)

1 · 2 · γ (γ + 1)
x2 + α(α+ 1)(α+ 2) ·β(β+ 1)(β+ 2)

1 · 2 · 3 · γ (γ + 1)(γ + 2)
x3 +·· ·

= 1

(1− x)α
(

1+ α(β− γ )
1 · γ

x

1− x + α(α+ 1) · (β− γ )(β− γ − 1)

1 · 2 · γ (γ + 1)

x2

(1− x)2 +·· ·
)
.

20.9 Cartier: Gregory’s Proof of Leibniz’s Rule

In his 2000 preprint “Mathemagics,” Pierre Cartier gives a rigorous version of Gregory’s
argument for Leibniz’s rule. Cartier makes use of the tensor product V ⊗W of vector
spaces V and W . The vector space V ⊗W consists of all finite sums

∑
λi(vi ⊗wi ),

where λi are scalars, vi ∈ V and wi ∈ W , and where v ⊗w is bilinear in v and w.
For the purpose at hand, let I be an interval on the real line and C∞(I ) be the vector
space of infinitely differentiable functions on I . Define the operators D1 and D2 on
C∞(I )⊗C∞(I ) by

D1(f ⊗g)=Df ⊗g, D2(f ⊗g)= f ⊗Dg.
The two operators commute, that is, D1D2 =D2D1. Now define

D(f ⊗g)=Df ⊗g+f ⊗Dg,
so that D =D1 +D2; we can then conclude that

D
n
(f ⊗g)=

n∑
k=0

(
n

k

)
Dkf ⊗Dn−kg.

We can convert the tensor product to an ordinary product by observing that f · g is
bilinear in f and g and hence there is a linear map

µ :C∞(I )⊗C∞(I )→C∞(I )

such that µ(f ⊗g)= f · g. The proof can now be completed:

Dn(fg)=Dn(µ(f ⊗g))= µ(Dn
(f ⊗g))

= µ
(

n∑
k=0

(
n

k

)
Dkf ⊗Dn−kg

)

=
n∑
k=0

(
n

k

)
µ(Dkf ⊗Dn−kg)

=
n∑
k=0

(
n

k

)
Dkf ·Dn−kg.

Observe that Cartier succeeds in resolving the problem in Gregory’s presentation, that
the operators D1 and D2 do not apply to both f and g.
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20.10 Hamilton’s Algebra of Complex Numbers and Quaternions

We have noted a strong algebraic spirit in the work of the British mathematicians
of 1830–1850 and have observed important modern algebraic concepts in the work
of Murphy. However, William R. Hamilton’s (1805–1865) algebraic work was thor-
oughly modern in its structure and presentation. In 1826, Hamilton’s friend J. T. Graves
communicated to him some results on imaginary logarithms. This led Hamilton to for-
mulate the theory of algebraic couples as the proper logical foundation for complex
numbers. He finally presented this to the British Association in 1834. Gauss also got
these ideas around the same time. Hamilton defined complex numbers as a set of pairs
of real numbers, called couples, with addition and multiplication defined in a special
way. More generally, he determined the necessary and sufficient conditions for a set of
couples to form a commutative and associative division algebra. Hamilton first defined
the sum and scalar multiplication of couples:

(b1,b2)+ (a1,a2)= (b1 + a1,b2 + a2);
a× (a1,a2)= (aa1,aa2).

He took the last equation as the first step toward the definition of the product of two
couples by identifying the real number with a couple (a,0) to get

(a,0)× (a1,a2)= (a,0)(a1,a2)= (a1,a2)(a,0)= (aa1,aa2).

His aim was to define multiplication in order to satisfy the two conditions

(b1 + a1,b2 + a2)(c1,c2)= (b1,b2)(c1,c2)+ (a1,a2)(c1,c2), (20.24)

(c1,c2)(b1 + a1,b2 + a2)= (c1,c2)(b1,b2)+ (c1,c2)(a1,a2). (20.25)

Now for this type of multiplication to be possible, he had to have

(c1,c2)(a1,a2)= (c1,0)(a1,a2)+ (0,c2)(a1,a2)

= (c1a1,c1a2)+ (0,c2)(a1,0)+ (0,c2)(0,a2)

= (c1a1,c1a2)+ (0,c2a1)+ (0,c2)(0,a2)

= (c1a1,c1a2 + c2a1)+ (0,c2)(0,a2). (20.26)

It remained to define the product (0,c2)(0,a2)= c2a2(0,1)(0,1) contained in the last
step. Hamilton set

(0,1)(0,1)= (γ1,γ2) (20.27)

and determined the necessary and sufficient condition on γ1 and γ2 so that the two
conditions (20.24) and (20.25) would hold: He supposed (b1,b2) to be the result of the
product on the left-hand side of (20.26); then by equation (20.27) he had

b1 = c1a1 + γ1a2c2 ,

b2 = c1a2 + c2a1 + γ2a2c2 .
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Now to be able to solve these equations for a1,a2 when c1c2 �= 0, the necessary and
sufficient condition was the nonvanishing of the determinant, where the determinant
was given as

c1(c1 + γ2c2)− γ1c
2
2 =

(
c1 + 1

2
γ2c2

)2

−
(
γ1 + 1

4
γ 2

2

)
c2

2.

This expression was nonvanishing for all c1c2 �= 0 if

γ1 + 1

4
γ 2

2 < 0.

The case in which γ1 = −1,γ2 = 0 gave Hamilton the usual multiplication rule for
complex numbers:

(b1,b2)(a1,a2)= (b1,b2)× (a1,a2)= (b1a1 − b2a2,b2a1 + b1a2).

Further developing the theory of complex numbers, Hamilton showed that the principal
square root of (−1,0)was (0,1), and since (−1,0) could be replaced by−1 for brevity,
he obtained √−1 = (0,1).
He then wrote

In the THEORY OF SINGLE NUMBERS, the symbol
√−1 is absurd, and denotes an IMPOSSI-

BLE EXTRACTION, or a merely IMAGINARY NUMBER; but in the THEORY OF COUPLES,
the same symbol

√−1 is significant, and denotes a POSSIBLE EXTRACTION, or a REAL COU-
PLE, namely (as we have just now seen) the principal square-root of the couple (−1,0). In the
latter theory, therefore, though not in the former, this sign

√−1 may properly be employed; and
we may write, if we choose, for any couple (a1,a2) whatever,

(a1,a2)= a1 + a2

√−1, . . . .

Hamilton next attempted to extend his work to triples, or triplets. His motivation was to
obtain an algebra applicable to three-dimensional geometry and physics. He was well
aware of the geometrical interpretation of complex numbers as vectors in two dimen-
sions. Under this interpretation, the parallelogram law determined addition; moreover,
the length (or modulus) of the product of two complex numbers turned out to be the
product of the lengths of the two numbers. In October 1843, Hamilton described his train
of thought as he worked toward his October 16 discovery of quaternions. He explained
that he considered triplets of the form x+ iy+jz representing points (x,y,z) in space.
Here j was “another sort of

√−1, perpendicular to the plane itself.” Addition and sub-
traction of triplets was a simple matter, but multiplication turned out to be a challenge:
In a letter of 1865 to his son, Hamilton recalled:

Every morning in the early part of the above-cited month, on my coming down to breakfast,
your brother William Edwin and yourself used to ask me, ‘Well, Papa, can you multiply triplets?’
Whereto I was always obliged to reply, with a sad shake of the head, ‘No, I can only add and
subtract them.’
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In his 1843 description of his discovery, Hamilton recounted his dilemma: In order to
multiply triplets, term-by-term multiplication had to be possible and the modulus of
the product was required to equal the product of the moduli. He observed that

(a+ iy+ jz)(x+ iy+ jz)= ax− y2 − z2 + i(a+ x)y+ j (a+ x)z+ (ij + ji)yz
(20.28)

and that

(a2 + y2 + z2)(x2 + y2 + z2)= (ax− y2 − z2)2 + (a+ x)2(y2 + z2).

So the rule for the moduli implied that the last term in (20.28) should be zero, or,
ij + ji = 0. He was sufficiently audacious to consider the possibility that ij = ji = 0;
in modern terminology, this meant that i and j would be zero divisors. However, when
he examined the general case

(a+ ib+ jc)(x+ iy+ jz)= ax− by− cz+ i(ay+ bx)+ j (az+ cx)+ ij (bz− cy)
and the corresponding formula for the moduli

(a2 +b2 +c2)(x2 +y2 +z2)= (ax−by−cz)2 + (ay+bx)2 + (az+cx)2 + (bz−cy)2,
he saw that the coefficient of ij, bz− cy, could not be dropped and hence ij could not
be zero. Put even more simply, the moduli of the product ij had to be 1 and not 0.

When he reached this result, it dawned on Hamilton that to multiply triplets, he
must admit in some sense a fourth dimension, and he described this realization in a
letter to his friend J. T. Graves, written the day after he discovered quaternions. By a
remarkable coincidence, after completing this letter he came across the May 1843 issue
of the Cambridge Mathematical Journal containing a paper by Cayley on analytical
geometry of n dimensions. In a postscript to his letter to Graves, Hamilton noted that
he did not yet know whether or not his ideas were similar to Cayley’s. Continuing his
description, Hamilton saw that he had to introduce a new imaginary k such that ij = k.
Thus, he discovered quaternions! Moreover, ji = −ij = −k. He wondered whether
k2 = 1. But this produced the equation

(a+ ib+ jc+ kd)(α+ iβ+ jγ + kδ)
= aα− bβ− cγ + dδ+ i(aβ+·· ·)+ j (aγ +·· ·)+ k(aδ+ dα+·· ·),

implying that

(a2 + b2 + c2 + c2)(α2 +β2 + γ 2 + δ2)

= (aα− bβ− cγ + dδ)2 + (aβ+·· ·)2 + (aγ +·· ·)2 + (aδ+ dα+·· ·)2.
Of course, this relation could not possibly hold, because the term 2aαdδ in the first
square on the right-hand side would not cancel the same term in the last square. So
Hamilton took k2 =−1. He then supposed that associativity would probably hold true
and hence −j = (ii)j = i(ij) = ik. Similarly, j (ii) = (j i)i = −ki or j = ki and so
ik =−ki. In this way he obtained the basic relations:

i2 = j 2 = k2 =−1, ij = k, jk = i, ki = j, j i =−k, kj =−i, ik =−j.
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The product of two quaternions then emerged as

(a+ ib+ jc+ kd)(α+ iβ+ jγ + kδ)
= aα− bβ− cγ − dδ+ i(aβ+ bα+ cδ− dγ )

+ j (aγ − bδ+ cα+ dβ)+ k(aδ+ bγ − cβ+ dα).
And of course, with this definition,

(a2 + b2 + c2 + d2)(α2 +β2 + γ 2 + δ2)

= (aα− bβ− cγ − dδ)2 + (aβ+ bα+ cδ− dγ )2
+ (aγ − bδ+ cα+ dβ)2 + (aδ+ bγ − cβ+ dα)2.

Thus, the modulus of the product equaled the product of the moduli! Interestingly, Euler
also knew this equation, in connection with the representation of a number as a sum of
four squares. Hamilton concluded his description of this discovery:

Hence we may write, on the plan of my theory of couples,

(a,b,c,d)(α,β,γ,δ)=

(aα− bβ− cγ − dδ, aβ+ bα+ cδ− dγ, aγ − bδ+ cα+ dβ, aδ+ bγ − cβ+ dα).
Hence (a,b,c,d)2 = (a2 − b2 − c2 − d2, 2ab,2ac,2ad).

Thus
(0,x,y,z)2 =−(x2 + y2 + z2); (0,x,y,z)3 =−(x2 + y2 + z2)(0,x,y,z);

(0,x,y,z)4 =+(x2 + y2 + z2)2;&c.

Therefore

e(0,x,y,z) = e(ix+jy+kz) = 1+ ix+ jy+ kz
1

− x2 + y2 + z2

1 · 2 −&c;

= cos
√
x2 + y2 + z2 + ix+ jy+ kz√

x2 + y2 + z2
sin

√
x2 + y2 + z2

and the modulus of e(o,x,y,z)= 1. [Like the modulus of e(0,x) or e
√−1x ] Let

√
x2 + y2 + z2 = ρ, x=

ρ cosφ, y = ρ sinφ cosψ, z= ρ sinφ sinψ ; then eρ(i cosφ+j sinφ cosψ+k sinφ sinψ) = cos ρ+ (i cosφ+
j sinφ cosψ+k sinφ sinψ)sin ρ; a theorem, which whenφ= 0, becomes the well-known equation

eiρ = cos ρ+ i sin ρ, i =√−1.

Hamilton’s letter led John T. Graves in December 1843 to produce an eight-
dimensional division algebra, the algebra of octaves or octonions. The law of moduli
was maintained within this system, so that

(a2
1 + a2

2 +·· ·+ a2
8)(b

2
1 + b2

2 +·· ·+ b2
8)= c2

1 + c2
2 +·· ·+ c2

8.

Hamilton observed that while associativity held for quaternions, it failed to hold for
octonions. Graves did not publish his work, though Cayley rediscovered and published
it in 1845. Octonions are therefore called Cayley numbers.
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The German mathematician A. Hurwitz wrote that Hamilton’s two requirements,
that term-by-term multiplication be valid and that the product of the moduli be equal to
the moduli of the product of n-tuples (x1, x2, . . . ,xn), in fact held only for n= 1, 2, 4, 8.
This explains why Hamilton was unable to discover a way of multiplying triplets. In
the 1870s, C. S. Peirce and Frobenius gave another explanation for Hamilton’s failure
to work out a three-dimensional division algebra, i.e., an algebra of triplets. They
proved that the only real finite-dimensional associative division algebras were: the real
numbers, the complex numbers, and the quaternions.

We have seen that Hamilton was initially hesitant to move to the fourth dimension
and was struck by Cayley’s work outlining a geometry of n dimensions. Note Felix
Klein’s telling remark on George Green’s 1835 paper concerning the attraction of
an ellipsoid, “This investigation merits special mathematical interest … because it is
carried out for n dimensions, long before the development of n-dimensional geometry
in Germany began.” Such was the influence of the formal algebraic approach taken by
British mathematicians of the early 1800s, that even the applied mathematician George
Green was willing to consider the novel concept of an n-dimensional space.

20.11 Exercises

1. Prove Faà di Bruno’s formula for the mth derivative of a composition of two
functions:

dm

dtm
g(f (t))

=
∑ m!

b1!b2! · · ·bm! g
(k)(f (t))

(
f ′(t)

1!
)b1

(
f ′′(t)

2!
)b2

· · ·
(
f (m)(t)

m!
)bm

,

where the sum is over different solutions of b1 + 2b2 + ·· · +mbm = m and
k = b1 + b2 + ·· · + bm. Faà di Bruno gave the right-hand side in the form of a
determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
m−1

0

)
f ′g

(
m−1

1

)
f ′′g

(
m−1

2

)
f ′′′g . . .

(
m−1
m−2

)
f (m−1)g

(
m−1
m−1

)
f (m)g

−1
(
m−2

0

)
f ′g

(
m−2

1

)
f ′′g . . .

(
m−2
m−3

)
f (m−2)g

(
m−2
m−2

)
f (m−1)g

0 −1
(
m−3

0

)
f ′g . . .

(
m−3
m−4

)
f (m−3)g

(
m−3
m−3

)
f (m−2)g

. . −1 . . . . .

. . . . . . . .

. . . . . . . .

0 0 0 . . .
(

1
0

)
f ′g

(
1
1

)
f ′′g

0 0 0 . . . −1
(

0
0

)
f ′g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where f (i) ≡ f (i)(t) and gk = g(k)(f (t)). Faà di Bruno published this formula
without proof or reference in 1855 and then again in 1857. The formulation as
a determinant appears to be original with Faà di Bruno, who may also be the
only mathematician to be beatified by the Catholic Church. The papers of Craik
(2005) and Johnson (2002) contain a detailed history of Faà di Bruno’s formula.
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2. Solve the difference equation

u2
x+1 − 4u2

x(u
2
x + 1)= 0.

Herschel’s hint for the solution is to set ux =
√−1sinvx .

3. Solve the difference equation

ux+1ux − ax(ux+1 −ux)+ 1 = 0.

Herschel remarked that this was a slight generalization of the equation worked
out in our text.

4. Sum the series u= 4x2

1 2̇ 3̇ + 5x4

2 3̇ 4̇ + 6x5

3 4̇ 5̇ +·· · . See Boole (1844b), p. 264.
5. Using Boole’s notation given in the text, prove his proposition: The equation

u+φ(D)erθu=U
will be converted to the form

v+ψ(D)erθv = V,
by the relations u= enθv and U = enθV . See Boole (1844b), p. 247.

6. Let dx denote the derivative with respect to x. Note that [f (x+y)](dy−dx)= 0.
Apply Murphy’s method for the difference operator to the differential in order
to obtain the Taylor series for f (x+ y). See Murphy (1837), p. 196.

7. Sum the series

∞∑
n=1

arctan
(
1/(1+n+n2)

)
.

See Herschel (1820), p. 57.

20.12 Notes on the Literature

See Lagrange (1867–1892), vol. 3, pp. 441–476 for his work on symbolic calculus.
Jacobi’s paper, “De Seriebus ac Differentiis Observatiunculae,” presenting his contri-
bution to the calculus of operations, is given in Jacobi (1969), vol. VI, pp. 174–182.
Friedelmeyer (1994) gives an extensive discussion of Arbogast. The quote from
Babbage may be found in Babbage and Herschel (1813), p. xi. For the work of Français,
see Français (1812–13). Morrison and Morrison (1961) contains papers of Babbage,
including one discussing the Analytical Society. Enros (1983) is a nice discussion of
the Analytical Society. Herschel (1820), pp. 34–36, contains his treatment of the differ-
ence equation of Laplace; our discussion of his evaluation of the coefficientAn is from
pp. 67–68. For the early nineteenth century work on operational calculus in Britain,
see Allaire and Bradley (2002). Duncan Gregory’s extensive work on the operational
method can be found in the early volumes of the Cambridge Mathematical Journal or
in Gregory (1865); for his work discussed in the text, see pp. 14–27 and 108–123 of
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the latter. See the interesting article on Gregory by Leslie Ellis (1845), p. 149, for the
quote on Gregory.

See Murphy (1837) and Boole (1844b) for their works. The quote from Boole may be
seen in Boole (1847), p. 3. The remark attributed to Brinkley about Hamilton appears in
many places, including Robert Perceval Graves’s article about Hamilton in the Dublin
University Magazine of 1842, vol. 19, pp. 94–110. Robert Graves, brother of John and
Charles Graves, later wrote the three-volume biography of Hamilton. Hamilton’s 1865
letter to his son is given in R. P. Graves’ biography, Graves (1885), pp. 434–435. See
Hamilton (1835) for his work on complex numbers and pp. 127–128 for the quotation
on the use of

√−1. See Hamilton (1945) for quaternions. See also articles by E. L. Ortiz
and of S. E. Despeaux in Gray and Parshall (2007) and the paper of Koppelman (1971)
for the role of the operational method in the development of abstract algebra. A fasci-
nating discussion of the notation and history of the Stirling numbers, including Kramp’s
formula, is given by Knuth (2003), pp. 15–44. The work of the German combinatorial
school is well discussed in Jahnke (1993). For the quote on Rothe, see Muir (1960),
p. 55. For Klein’s remark on Green’s work, see Klein (1979), p. 217. For remarks on
the influence of the German combinatorial school on Gudermann and Weierstrass, see
Manning (1975). Becher (1980) is an interesting article on Woodhouse, Babbage, and
Peacock.
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Fourier Series

21.1 Preliminary Remarks

The problem of representing functions by trigonometric series has played as significant a
role in the development of mathematics and mathematical physics as that of representing
functions as power series. Trigonometric series take the form

1

2
a0 + a1 cos x+ b1 sin x+ a2 cos 2x+ b2 sin 2x+·· · , (21.1)

and these series naturally made their appearance in eighteenth-century works on astron-
omy, a subject dealing with periodic phenomena. Now series (21.1) is called a Fourier
series if, for some function f (x) defined on (0, π), the coefficients an and bn can be
expressed as

an = 1

π

∫ 2π

0
f (t)cos nt dt; bn = 1

π

∫ 2π

0
f (t)sin nt dt. (21.2)

Moreover, if (21.1) converges to some integrable function f (x) and can be integrated
term by term, then the coeffieients an and bn will take the form (21.2). Thus, Fourier
series have very wide applicability. The Fourier series first occurred explicitly in the
1750 work of Euler, published in 1753, in which he gave the general solution of the
difference equation

f (x)= f (x− 1)+X(x) (21.3)

in the form

f (x)=
∫
X(ξ)dξ + 2

∞∑
n=1

cos 2nπx
∫
X(ξ)cos 2nπξ dξ

+ 2
∞∑
n=1

sin 2nπx
∫
X(ξ)sin 2nπξ dξ.

(21.4)

Note that the Fourier series for X(x) can readily be derived from this. Earlier, in con-
nection with investigations on the vibratory motion of a stretched string, trigonometric

400
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series of this type were used, although the coefficients were not explicitly written
as integrals. These researches led to controversy among the principal investigators,
d’Alembert, Euler, Bernoulli, and Lagrange, as to whether an ‘arbritrary’function could
be represented by such series. This dispute began with d’Alembert’s 1746 discovery of
the wave equation describing the motion of the vibrating string:

σ
∂2y

∂t2
= T ∂

2y

∂x2
or

1

c2

∂2y

∂t2
= ∂2y

∂x2
, c2 ≡ T

σ
, (21.5)

where σ and T were constants and y was the displacement of the string. The derivation
was based on the work of Taylor dating from 1715. D’Alembert showed that the general
solution of equation (21.5) would be of the form

y =O(ct + x)+P(ct − x),
but the initial and boundary conditions implied a relation betweenO andP. For exam-
ple, at x = 0 and x = l, the string would be fixed and hence y = 0 for all t at these
points. This implied that for all u

0 =O(u)+P(u), or P(u)=−O(u) and (21.6)

0 =O(u+ l)+P(u− l). (21.7)

By (21.6), the general solution took the form y =P(ct+x)−P(ct−x), and by (21.7),
P was periodic: P(u+ 2l) = P(u). Interestingly, d’Alembert’s paper also gave the
first instance of the use of separation of variables to solve partial differential equations.
He set

P(ct + x)−P(ct − x)= f (t)g(x) (21.8)

and by differentiation obtained the relation

1

c2

f ′′

f
= g′′

g
=A.

Since f was independent of x and g of t , A was a constant and the expressions for f
and g could be obtained from their differential equations. Note that from the boundary
conditions, it can be shown that f and g are sine and cosine functions. D’Alembert,
however, saw these solutions as special cases of the general solution.

Euler reacted to d’Alembert’s work by publishing his ideas on the matter within a
few months. Essentially, he and d’Alembert disagreed on the meaning of the function
O(u). D’Alembert thought thatO had to be an analytic expression, whereas Euler was
of the view that O was an arbitrary graph defined only by the periodicity condition

O(u+ 2l)=O(u).
On this view, O could be defined by different expressions in different intervals; in our
terms, O would be continuous but its derivative could be piecewise continuous. The
functions allowed by Euler as solutions of O would now be called weak solutions of
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the equation, while d’Alembert required the solutions to be twice differentiable. And
while Euler allowed all possible initial conditions on O, d’Alembert ruled out certain
initial conditions.

Euler also criticized Taylor’s contention that an arbitrary initial vibration would
eventually settle into a sinusoidal one. He argued from the equation of motion that
higher frequencies would also be involved and that the solution could have the form∑

An sin (nπx/l) cos(nπct/ l)

with the initial shape given by
∑
An sin(nπx)/l. According to Truesdell, Euler was

therefore “the first to publish formulae for the simple modes of a string and to observe
that they can be combined simultaneously with arbitrary amplitudes.” However, Euler
did not regard these trigonometric series as the most general solutions of the problem.

At this point, Daniel Bernoulli entered the discussion by presenting in 1748 two
memoirs to the Petersburg Academy, in which he explained on physical grounds that
the trigonometric solutions found by Euler were in fact the most general possible.
Bernoulli wrote that his ideas were based on the work of Taylor, who had observed that
the basic shapes of the vibrating string of length a were given by the functions

sin
πx

a
, sin

2πx

a
, sin

3πx

a
, . . . .

Bernoulli argued that the general form of the curve for the string would be obtained by
linear superposition:

y = α sin
πx

a
+β sin

2πx

a
+ γ sin

3πx

a
+ δ sin

4πx

a
+ etc.

Unlike Euler, Bernoulli thought that all possible curves assumed by the vibrating string
could be obtained in this way. It is interesting to note that in 1728 Bernoulli solved a
linear difference equation by taking linear combinations of certain special solutions.
However, he was unable to extend this idea to the solutions of ordinary linear differential
equations; Euler did this around 1740. Finally in 1748, Bernoulli once again proposed
this idea to solve a linear partial differential equation, but this time he gave a physical
argument. He apparently saw no need here for the differential equation and thought
that the mathematics only obscured the main ideas. This led to further discussion and
controversy, mainly involving d’Alembert and Bernoulli.

It seems that these discussions led Euler to further ponder on the problem of expand-
ing functions in terms of trigonometric series. In a paper written around 1752, Euler
started with the divergent series

cos x+ cos 2x+ cos 3x+·· · = −1

2

and after integration obtained the formulas

1

2
x = sin x− 1

2
sin 2x+ 1

3
sin 3x− 1

4
sin 4x+·· · and (21.9)

1

12
π 2 − 1

4
x2 = cos x− 1

22
cos 2x+ 1

32
cos 3x− 1

42
cos 4x+·· · .
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He gave no range of validity for the formulas, but two decades later D. Bernoulli
observed that these results were true only in the interval −π < x < π . Euler also
continued the integration process to obtain similar formulas with polynomials of degree
3, 4 and 5; obviously, the process could be continued. The polynomials occurring in this
situation were the (Jakob) Bernoulli polynomials. Neither Bernoulli nor Euler seems to
have noticed this. It appears that the Swiss mathematician Joseph Raabe (1801–1859)
was the first to show this explicitly, around 1850. Recall that the Fourier expansion of the
Bernoulli polynomials also follows when Poisson’s remainder in the Euler–Maclaurin
formula, dating from the 1820s, is set equal to the remainder derived by Jacobi in the
1830s.

In 1759, Lagrange wrote a paper on the vibrating string problem in which he
attempted to obtain Euler’s general solution with arbitrary functions by first finding
the explicit solution for the loaded string and then taking the limit. The equations of
motion in the latter case were

M
d2yk

dt2
= c2 (yk+1 − 2yk+ yk−1) , k = 1,2, . . . ,n, (21.10)

and were first obtained by Johann Bernoulli in 1727. Euler studied them in a slightly
different context in 1748 and obtained solutions by setting

yk =Ak cos
2c√
M
pt

and finding

p = sin
rπ

2(n+ 1)
, r = 1, . . . ,n

and the value ofAk from the corresponding second-order difference equation. Lagrange
solved (21.10) by writing the equations as the first-order system

dyk

dt
= vk,

dvk
dt

= c2 (yk+1 − 2yk+ yk−1) , k = 1,2, . . . . (21.11)

In the course of this work, Lagrange came close to deriving the Fourier coefficients
in the expansion of a function as a series of sines. Instead, he took a different course,
since his aim was to derive Euler’s general solution rather than a trigonometric series.

Surprisingly, Alexis–Claude Clairaut gave the Fourier coefficients in the case of a
cosine series expansion as early as 1757. While studying the perturbations of the sun,
he viewed the question of finding the coefficients A0,A1,A2, . . . in

f (x)=A0 + 2
∞∑
m=1

Am cosmx (21.12)

as an interpolation problem, given that values of f were known at x = 2π/k, 4π/k,
6π/k, . . . . He found

A0 = 1

k

∞∑
m=1

f

(
2mπ

k

)
, An = 1

k

∞∑
m=1

f

(
2mπ

k

)
cos

2mnπ

k
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and then let k→∞, to get

An = 1

2π

∫ 2π

0
f (x)cos nx dx. (21.13)

Twenty years later, Euler derived (21.13) directly by multiplying (21.12) by cos nx and
using the orthogonality of the cosine function.

Joseph Fourier (1768–1830) lost his parents as a child; he was then sent by the bishop
of Auxerre to a military college run by the Benedictines. Fourier’s earliest researches
were in algebraic equations, and he went to Paris in 1789 to present his results to the
Academy. He soon became involved in revolutionary activities and gained a reputation
as an orator. In 1795, Fourier began studying with Gaspard Monge; he soon published
his first paper and announced plans to present a series of papers on algebraic equations.
But Monge selected him to join Napoleon’s scientific expedition to Egypt. When Fourier
returned to France in 1801, Napoleon appointed him an administrator in Isère. Fourier
ably executed his duties, but found time to successfully carry out his difficult researches
in heat conduction, presented to the Academy in 1807. His work was reviewed by
Lagrange, Laplace, Lacroix, and Monge; Lagrange opposed its publication. Perhaps to
make up for this, the Academy then set a prize problem in the conduction of heat, won
by Fourier in 1812.

It is not clear whether Euler thought that f (x) in (21.13) was an arbitrary function.
But in his 1807 work on heat conduction, Fourier took this view explicitly. He translated
a physics problem into the mathematical one of finding a function v such that

d2v

dx2
+ d2v

dy2
= 0,

and v(0,y)= v(r,y)= 0, v(x,0)= f (x). By a separation of variables, Fourier found
v to be given by the series

v = a1e
−πy/r sin

πx

r
+ a2e

−2πy/r sin
2πx

r
+ a3e

−3πy/r sin
3πx

r
+·· · ,

with the coefficients a1,a2,a3, . . . to be obtained from

f (x)= a1 sin
πx

r
+ a2 sin

2πx

r
+ a3 sin

3πx

r
+·· · . (21.14)

Fourier discussed three methods for deriving these coefficients. In one approach, he
converted equation (21.14) into a system of infinitely many equations in infinitely
many unknowns a1,a2,a3, . . . . He also considered problems that reduced to cosine
series and to series with sines as well as cosines. In his 1913 monograph on such sys-
tems, Les systèmes d’équations linéaires the Hungarian mathematician Frigyes Riesz
(1880–1956) wrote that Fourier was the first to deal with linear equations in infinitely
many unknowns. Fourier gave two other methods for determining the coefficients. One
method depended on the discrete orthogonality of the sine function, and the other on its
continuous orthogonality. Dirichlet later gave a brief exposition of Fourier’s discrete
orthogonality method, explaining why the integral representation for an was plausible.
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Fourier regarded the use of an infinite system of equations in infinitely many
unknowns as important enough to first discuss a particular case. He expanded a constant
function as an infinite series of cosines:

1 = a cosy+ bcos3y+ ccos5y+ d cos7y+ etc. (21.15)

To see briefly how he determined the coefficients a, b, c, d, . . . , we write the equation
in the form

1 =
∞∑
m=1

am cos(2m− 1)y.

He took derivatives of all orders of this equation and set y = 0 to obtain

1 =
∞∑
m=1

am, 0 =
∞∑
m=1

(2m− 1)2am,

0 =
∞∑
m=1

(2m− 1)4am, etc.

He considered the first n equations with n= 1, 2, 3, . . . , and replaced these n equations
with a new set of n equations, taking am = 0 for m > n. This new system could be
regarded as n equations in the n unknowns a(n)1 , a

(n)

2 , . . . ,a
(n)
n .By using the well-known

formula now known as Cramer’s rule, Fourier calculated the Vandermonde determinants
appearing in this situation to find that

a
(n)

1 = 3 · 3
2 · 4 · 5 · 5

4 · 6 · · · (2n− 1)(2n− 1)

(2n− 2)(2n)
,

with a similar formula for a(n)m . He assumed that a(n)m → am as n → ∞. This, by
Wallis’s formula, gave him a1 = 4/π and in general am = (−1)m−14/((2m− 1)π).
By substituting these am back in (21.15), he obtained

π

4
= cosx− 1

3
cos3x+ 1

5
cos5x− 1

7
cos7x+ 1

9
cos9x− etc.

Fourier did not discuss the validity of his method. Interestingly, according to Riesz,
the question of the justification of this process was first considered by Henri Poincaré
(1854–1912) in 1885. Poincaré’s attention was drawn to this problem by a paper of Paul
Appell in which Appell applied Fourier’s method to obtain the coefficients of a cosine
expansion of an elliptic function. Poincaré gave a simple theorem justifying Appell’s
calculations. A year later he wrote another paper on the subject, “Sur les Determinants
d’ordre Infini.”

The term infinite determinant was introduced by theAmerican astronomer and math-
ematician G. W. Hill (1838–1914) in an 1877 paper on lunar theory. In this paper, he
solved the equation

d2w

dt2
+
( ∞∑
n=−∞

θne
int

)
w = 0
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by making the substitution

w =
∞∑

n=−∞
bne

i(n+c)t

and determining bn from the infinite system of equations

∞∑
k=−∞

θn−kbk− (n+ c)2bn = 0, n=−∞, . . . ,+∞.

Hill employed a procedure similar to that of Fourier and once again Poincaré devel-
oped the necessary theorems to justify Hill’s result. Poincaré’s work was generalized
a decade later by the Swedish mathematician Niels Helge von Koch (1870–1924) and
this was the starting point for his countryman Ivar Fredholm’s (1866–1927) theory of
integral equations. Fredholm in turn provided the basis for the pioneering work in the
development of functional analysis by David Hilbert and then Riesz, with significant
contributions from others such as Erhard Schmidt (1876–1959). They created the ideas
and techniques by which linear equations in infinitely many variables could be treated
by general methods. The valuable 1913 book by Riesz, one of the earliest monographs
on functional analysis, contains an interesting history of the topic. Surely Fourier could
not have foreseen that his idea would see such beautiful development. On the other
hand, he must have considered it worthy of attention, since he included the long deriva-
tion of the formula for the Fourier coefficients by this method when he was well aware
of the much shorter method using term-by-term integration.

21.2 Euler: Trigonometric Expansion of a Function

In a very interesting paper of 1750, “De Serierum Determinatione seu Nova Methodus
Inveniendi Terminos Generales Serierum,” Euler used symbolic calculus to expand a
function as a trigonometric series. He also applied the discoveries he had made a decade
earlier on solving differential equations with constant coefficients. Given a functionX,
his problem was to determine y(x) such that

y(x)− y(x− 1)=X(x).
He viewed this as a differential equation of infinite order:

dy

dx
− 1

1 · 2
d2y

dx2
+ 1

1 · 2 · 3
d3y

dx3
−·· · =X(x).

He noted that if dny/dxn was replaced by zn, then the left-hand side could be
expressed as

z− z2

1 · 2 + z3

1 · 2 · 3 −·· · = 1− e−z.

He observed that the factors of 1 − e−z were z and z2 + 4kkππ for k = 1,2,3, . . . .
Hence, dy/dx and d2y/dx2 + 4k2π 2y were factors of the differential equation. The
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solution of the differential equation corresponding to dy/dx was given by y = ∫
Xdx,

while the solution corresponding to d2y/dx2 + 4kkππ was given by

y = 2(cos2kπ cos2kπx− sin 2kπ sin 2kπx)
∫
X cos2kπx dx

+ 2(cos2kπ sin 2kπx+ sin 2kπ cos2kπx)
∫
X sin 2kπx dx,

and since sin 2kπ = 0, cos2kπ = 1, Euler could write the complete solution

y =
∫
Xdx+ 2cos2πx

∫
X cos2πx dx+ 2cos4πx

∫
X cos4πx dx+·· ·

+ 2sin 2πx
∫
X sin 2πx dx+ 2sin 4πx

∫
X sin 4πx dx+·· · .

As an application of this result, Euler gave the trigonometric expansion for

y(x)= ln�(x+ 1),

though in this case his result was incomplete; he was unable to obtain the asymptotic
expansion for y(x). Note that in this case

X = y(x)− y(x− 1)= lnx.

21.3 Lagrange on the Longitudinal Motion of the Loaded Elastic String

In his study of the vibrating string, Lagrange considered the situation in which the
masses were assumed to be at a discrete set of points so that he could express the rate
of change with respect to x in terms of finite differences. He wrote the equations in
the form

dyk

dt
= vk,

dvk
dt

=C2(yk+1 − 2yk+ yk−1), (21.16)

where k = 1,2, . . . ,m− 1 and y0 ≡ ym ≡ 0. His idea was to determine constants Mk,
Nk and R such that

m−1∑
k=1

(Mk dvk+Nk dyk)=
m−1∑
k=1

(
Nkvk+C2Mk(yk+1 − 2yk+ yk−1)

)
dt

would be reduced to dz=Rzdt . This required that

R(Mkvk+Nkyk)=Nkvk+C2Mk(yk+1 −2yk+yk−1), k= 1,2, . . . ,m−1, (21.17)

or RMk =Nk, RNk =C2(Mk+1 − 2Mk+Mk−1).

This meant that Mk satisfied the equation

Mk+1 −
(
R2

C2
+ 2

)
Mk+Mk−1 = 0. (21.18)
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Lagrange set Mk =Aak+Bbk, so that a and b were roots of

x2 −
(
R2

C2
+ 2

)
x+ 1 = 0.

Thus, ab= 1 and a+ b= R2

C2
+ 2.

Note that because of the restriction on y0 and ym, Lagrange could assume without loss of
generality thatM0 ≡Mm≡ 0. He also setM1 ≡ 1. From this it followed thatA+B = 0
and Aa+Bb = 1. With these initial values, he could find the constants A,B in Mk.
Thus, he could write

Mk = ak− bk
a− b and

am− bm
a− b = 0.

The last equation gave him m− 1 pairs of values an = enπi/m and bn = e−nπi/m for
n= 1,2, . . . ,m− 1. Corresponding to these were m− 1 values of M and R:

Mkn = eknπi/m− e−knπi/m
enπi/m− e−nπi/m = sin (knπ/m)

sin (nπ/m)
, (21.19)

Rn =±2iC sin (nπ/2m), n= 1,2, . . . ,m− 1. (21.20)

For these values he had the corresponding equations

dzn =Rnzn dt where zn =
m−1∑
k=1

(Mknvk+RnMknyk) . (21.21)

The solution of the differential equation for zn yielded

zn = FneRnt , with Fn a constant.

Next he set

Zn =
m−1∑
k=1

Mknyk, (21.22)

so that dyk/dt = vk implied that

dZn

dt
+RnZn = FneRnt . (21.23)

Lagrange expressed the constant Fn as 2RnKn so that he could solve this differential
equation in the form

Zn =KneRnt +Lne−Rnt , (21.24)

where Ln was a constant of integration. Here recall that (21.23) can be solved by
multiplying it by the integrating factor eRnt . By substituting the value of Rn from
(21.20), he could write Zn in terms of the sine and cosine functions

Zn = Pn cos (2Ct sin (nπ/2m))+Qn

sin (2Ct sin (nπ/2m))

2C sin (nπ/2m)
. (21.25)
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Then,Zn being known, the problem was to determine yk from (21.22); after substituting
the value of Mkn from (21.19), (21.22) took the form

Zn sin
nπ

m
=

m−1∑
k=1

yk sin
knπ

m
, m= 1,2, . . . ,m− 1. (21.26)

The next step was to obtain the m− 1 unknowns y1,y2, . . . ,ym−1 from these m− 1
equations. Several years before Lagrange, in 1748, Euler had encountered this system
of equations in his study of the loaded elastic cord. He was able to write the solution in
general after studying the special cases where m≤ 7. He saw that the result followed
from the discrete orthogonality relation for the sine function:

m−1∑
k=1

sin
knπ

m
sin

kpπ

m
= 1

2
mδnp. (21.27)

He was unable to provide a complete proof. Lagrange gave an ingenious proof of
(21.27) and obtained

yj = 2

m

m−1∑
n=1

Zn sin
nπ

m
sin

njπ

m
, (21.28)

by multiplying (21.26) by sin (njπ/m), summing over n and applying (21.27). In a later
paper, Lagrange observed that the analysis involved in moving from (21.26) to (21.28)
also solved an interpolation problem related to trigonometric polynomials. Specifically,
given the m− 1 values

f
(π
m

)
,f

(
2π

m

)
, . . . ,f

(
(m− 1)π

m

)
of a function f (x), the problem was to find a trigonometric polynomial

a1 sin x+ a2 sin 2x+·· ·+ am−1 sin (m− 1)x (21.29)

passing through m− 1 points
(
kπ

m
,f

(
kπ

m

))
,k = 1,2, . . . ,m− 1. By an application of

(21.27), it was clear that

man = 2sin
nπ

m
f
(π
m

)
+ 2sin

2nπ

m
f

(
2π

m

)
+·· ·+ 2sin

(m− 1)nπ

m
f

(
(m− 1)π

m

)
,

(21.30)

and one obtained the coefficients of the trigonometric polynomial interpolating f (x).
We reproduce Dirichlet’s 1837 proof of the orthogonality relation (21.27), since it is

more illuminating than Lagrange’s complicated though clever proof. The same method
was clearly described in Fourier’s 1822 book on heat. The idea was to apply the addition
formula for the sine function; note that this addition formula is also used for the integral
analog of (21.27). First note that by the addition formula

2sin
knπ

m
sin

kpπ

m
= cos

k(n−p)π
m

− cos
k(n+p)π

m
.
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So when n �= p, twice the sum in (21.27) is given by

m−1∑
k=1

(
cos

k(n−p)π
m

− cos
k(n+p)π

m

)

= sin (m− 1
2 )(n−p) πm

2sin (n−p) π2m
− sin (m− 1

2 )(n+p) πm
2sin (n+p) π2m

= 0,

(21.31)

since each expression is either −1/2 or 0, according as n−p is even or odd. To sum
the series in (21.31) Dirichlet employed the formula

1+ 2cos 2θ + 2cos 4θ +·· ·+ 2cos 2sθ = sin (2s+ 1)θ

sin θ
.

Note that this too can be proved by the addition formula for the sine function. Dirichlet
pointed out that (21.29) and (21.30) strongly suggested that a function f (x) could be
expanded as a Fourier series. Observe that an can be expressed as

2

π

[
π

m
sin

0nπ

m
f

(
0π

m

)
+ π

m
sin

nπ

m
f
(π
m

)
+·· ·+ π

m
sin

(m−1)nπ

m
f

(
(m−1)π

m

)]
,

and when m→∞, the right-hand side tends to

2

π

∫ π

0
sin nx f (x)dx.

Thus, f (x)= a1 sin x+ a2 sin 2x+·· ·+ an sin nx+·· · , with

an = 2

π

∫ π

0
sin nx f (x)dx.

Observe here that Lagrange missed this opportunity to discover Fourier series, partly
because he was focused on obtaining the results of d’Alembert and Euler and partly
because he did not think that functions could be represented by such series.

21.4 Euler on Fourier Series

In 1777, Euler submitted a paper to the Petersburg Academy containing a derivation of
the Fourier coefficients of a cosine series. This was the first derivation of the coefficients
using the orthogonality of the sequence of functions cos nx, n= 1,2, . . .. Euler’s paper
was published in 1798, but its contents did not become generally known until much
later; a half-century afterwards, Riemann thought that Fourier was the first to give such
a derivation. Euler expanded a functionO as a trigonometric series,O=A+B cos φ+
C cos 2φ+·· · and gave the coefficients as

A= 1

π

∫ π

0
Odφ, B = 2

π

∫ π

0
Odφ cos φ, C = 2

π

∫ π

0
Odφ cos 2φ, . . . .
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His argument was that since
∫
dφ cos iφ = 1

i
sin iφ = 0, on integration from φ = 0 to

φ = π , he would get ∫ π

0
Odφ =Aπ.

Next, by the addition formula for the cosine function,

dφ cos iφ cos λφ = 1

2
dφ (cos(i−λ)φ+ cos(i+λ)φ),∫ π

0
dφ cos iφ cos λφ = sin (i−λ)φ

2(i−λ) + sin (i+λ)φ
2(i+ (λ)

]π
0

= 0, when i �= λ. And when i = λ,

∫ π

0
dφ (cos iφ)2 = 1

2
φ+ 1

4i
sin (2iφ)

]π
0

= 1

2
π;

for (cos iφ)2 = 1

2
+ 1

2
cos(2iφ).

Hence the coefficients A,B,C,D,. . . were as given earlier.
In this paper, Euler included a proof of the well-known recurrence relation∫ π

0
dφ (cos φ)λ = λ− 1

λ

∫ π

0
dφ (cos φ)λ−2.

We mention that Euler wrote cos φλ for (cos φ)λ. Observe that, though he was well
aware of the integration by parts formula in the standard form

∫
PdQ=PQ−∫

Qdp,
he usually worked it out in a slightly different way. For example, to prove the recurrence
formula, Euler started with∫

dφ cosλ φ = f sin φ cosλ−1 φ+g
∫
dφ cosλ−2φ,

where f and g had to be determined. He differentiated to get

cosλ φ = f cosλ φ−f (λ− 1)sin2φ cosλ−2φ+g cosλ−2φ.

Since sin2φ = 1− cos2φ,

cosλ φ = λf cosλ φ−f (λ− 1)cosλ−2φ+g cosλ−2φ.

For this relation to hold, Euler had to have f = 1/λ and g= f (λ−1) or g= (λ−1)/λ.
Hence ∫

dφ cosλ φ = 1

λ
sin φ cosλ−1φ+ λ− 1

λ

∫
dλ cosλ−2φ.

Finally, he took the integral from 0 to π . In this paper, as in some others, Euler used
the notation ∂φ instead of dφ.
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21.5 Fourier: Linear Equations in Infinitely Many Unknowns

Fourier rediscovered Euler’s derivation of the Fourier coefficients. Nevertheless,
Fourier sought alternative derivations to convince the mathematical community of the
correctness of the Fourier expansion. He also presented several derivations of Fourier
expansions of specific functions. In spite of these efforts, his theory encountered a cer-
tain amount of opposition, mainly from the older generation. In section six of the third
chapter of his famous book, Théorie analytique de la chaleur, Fourier considered the
problem of determining the coefficients in the sine expansion of an odd function. He
reduced this problem to that of solving an infinite system of equations in infinitely many
unknowns. It is interesting to see how beautifully Fourier carried out the computations;
he started with a sine series expansion of an odd function

φ(x)= a sin x+ b sin 2x+ c sin 3x+ d sin 4x+·· · . (21.32)

He let A= φ′(0), B =−φ′′′(0), C = φ(5)(0), D =−φ(7)(0), . . . , so that by repeatedly
differentiating (21.32), he had

A= a+ 2b+ 3c+ 4d+ 5e+·· · ,
B = a+ 23b+ 33c+ 43d+ 53e+·· · ,
C = a+ 25b+ 35c+ 45d+ 55e+·· · ,
D = a+ 27b+ 37c+ 47d+ 57e+·· · ,
E = a+ 29b+ 39c+ 49d+ 59e+·· · ,

(21.33)

and so on. He broke up this system into the subsystems

a1 =A1

a2 + 2b2 =A2,

a2 + 23b2 = B2,

a3 + 2b3 + 3c3 =A3,

a3 + 23b3 + 33c3 = B3,

a3 + 25b3 + 35c3 =C3,

(21.34)

a4 + 2b4 + 3c4 + 4d4 =A4,

a4 + 23b4 + 33c4 + 43d4 = B4,

a4 + 25b4 + 35c4 + 45d4 =C4,

a4 + 27b4 + 37c4 + 47d4 =D4,

(21.35)

a5 + 2b5 + 3c5 + 4d5 + 5e5 =A5,

a5 + 23b5 + 33c5 + 43d5 + 53e5 = B5,

a5 + 25b5 + 35c5 + 45d5 + 55e5 =C5,

a5 + 27b5 + 37c5 + 47d5 + 57e5 =D5,

a5 + 29b5 + 39c5 + 49d5 + 59e5 =E5,

(21.36)

and so on. Fourier’s strategy was to solve the first equation for a1, the second for 2b2,
the third for 3c3, and so on. He wrote that the equations could be solved by inspection,
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meaning that they could be obtained by Cramer’s rule, since the determinants in the
equations were Vandermonde determinants. He also established the recursive relations
connecting aj−1 with aj , bj−1 with bj , cj−1 with cj , etc., and similarly with the right-
hand sides of the equations,Aj, Bj , Cj , etc. He assumed that as j→∞, aj → a, bj →
b, cj → c, etc., and that Aj → A, Bj → B, Cj → C. To find the recursive relations,
Fourier eliminated e5 from the last five equations to get

a5(5
2 − 12)+ 2b5(5

2 − 22)+ 3c5(5
2 − 32)+ 4d5(5

2 − 42)= 52A5 −B5,

a5(5
2 − 12)+ 23b5(5

2 − 22)+ 33c5(5
2 − 32)+ 43d5(5

2 − 42)= 52B5 −C5,

a5(5
2 − 12)+ 25b5(5

2 − 22)+ 35c5(5
2 − 32)+ 45d5(5

2 − 42)= 52C5 −D5,

a5(5
2 − 12)+ 27b5(5

2 − 22)+ 37c5(5
2 − 32)+ 47d5(5

2 − 42)= 52D5 −E5.

(21.37)

Fourier then argued that for this system to coincide with the system of four equations
in (21.35), he must have

a4 = (52 − 12)a5, b4 = (52 − 22)b5, c4 = (52 − 32)c5 ,d4 = (52 − 42)d5, (21.38)

A4 = 52A5 −B5, B4 = 52B5 −C5, C4 = 52C5 −D5, D4 = 52D5 −E5. (21.39)

We remark that he wrote out all his equations in this manner, noting that this reasoning
would apply in general to the m×m system of equations. We now write his formulas
in shorter form. From the above relations, it is evident that

aj−1 = aj (j 2 − 12), j = 2,3,4, . . . ,

bj−1 = bj (j 2 − 22), j = 3,4,5, . . . ,

cj−1 = cj (j 2 − 32), j = 4,5,6, . . . ,

dj−1 = dj (j 2 − 42), j = 5,6,7, . . . .

(21.40)

Moreover,
Aj−1 = j 2Aj −Bj, j = 2,3,4, . . . ,

Bj−1 = j 2Bj −Cj, j = 3,4,5, . . . ,

Cj−1 = j 2Cj −Dj, j = 4,5,6, . . . ,

Dj−1 = j 2Dj −Ej, j = 5,6,7, . . . .

(21.41)

As we noted before, Fourier assumed that aj → a, bj → b, . . . ,Aj →A, . . . as j→∞.
So from (21.40), he could conclude that

a = a1

(22 − 12)(32 − 12)(42 − 12) · · · ,

b= b2

(32 − 22)(42 − 22)(52 − 22) · · · ,

c= c3

(42 − 32)(52 − 32)(62 − 32) · · · ,

(21.42)
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and so on. Similarly, a repeated application of (21.41) gave him

A1 =A222 −B2, A1 =A322 · 32 −B3(2
2 + 32)+C3,

A1 =A422 · 32 · 42 −B4(2
2 · 32 + 22 · 42 + 32 · 42)+C4(2

2 + 32 + 42)−D4, etc.

To understand Fourier’s next step, one may divide the first value ofA1 by 22, the second
value of A1 by 22 · 32, the third by 22 · 32 · 42, and consider the form of the right-hand
side. So by dividing the ultimate equation A1 by 22 ·32 ·42 ·52 · · · , Fourier obtained by
equations (21.34) and (21.42)

A1 (= a1)

22 · 32 · 42 · 52 · · · =
a(22 − 1)(32 − 1)(42 − 1)(52 − 1) · · ·

22 · 32 · 42 · 52 · · ·
=A−B

(
1

22
+ 1

32
+ 1

42
+·· ·

)
+C

(
1

22 · 32
+ 1

22 · 42
+ 1

32 · 42
+·· ·

)
−D

(
1

22 · 32 · 42
+ 1

22 · 32 · 52
+ 1

32 · 42 · 52
+·· ·

)
+·· ·

=A−BP1 +CQ1 −DR1 +ES1 −·· · .

(21.43)

We note that by P1,Q1,R1, . . . Fourier meant the sums of products of 1
22 ,

1
32 ,

1
42 , · · ·

taken one, two, three, . . . at a time. This gave him the value of a in terms ofA, B, C, D
etc. To find the values of b, c, d, . . . in a similar manner, Fourier solved the second and
third systems in (21.34) to find 2b2 and 3b3. Similarly, he solved (21.35) for 4b4 etc. to
arrive at the solutions:

A−BP2 +CQ2 −DR2 +·· · = 2b2
(12 − 22)

12 · 32 · 42 · 52 · · · ,

A−BP3 +CQ3 −DR3 +·· · = 3c3
(12 − 32)(22 − 32)

12 · 22 · 42 · 52 · 62 · · · ,

A−BP4 +CQ4 −DR4 +·· · = 4d4
(12 − 42)(22 − 42)(32 − 42)

12 · 22 · 32 · 52 · 62 · · · ,

(21.44)

and so on. The starting points for deriving these equations were

2b2(1
2 − 22)=A212 −B2,

3c3(1
2 − 32)(22 − 32)=A312 · 22 −B3(1

2 + 22)+C3,

4d4(1
2 − 42)(22 − 42)(32 − 42)

=A412 · 22 · 32 −B4(1
2 · 22 + 12 · 32 + 22 · 32)+C4(1

2 + 22 + 32)−D4,

(21.45)

and so on. As before, these relations were continued by repeated use of (21.41). Once
again Fourier applied (21.40) to express b2, c3, d4, . . . in terms of b, c, d, . . . . Recall
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that bj → b, cj → c, cj → d, etc. He then had

A−BP1 +CQ1 −DR1 +·· · = a
(

1− 12

22

)(
1− 12

32

)(
1− 12

42

)
· · · ,

A−BP2 +CQ2 −DR2 +·· · = 2b
(12 − 22)(32 − 22)(42 − 22) · · ·

12 · 32 · 43 · 52 · · ·
= 2b

(
1− 22

12

)(
1− 22

32

)(
1− 22

42

)
· · · ,

A−BP3 +CQ3 −DR3 +·· · = 3c

(
1− 32

12

)(
1− 32

22

)(
1− 32

42

)
· · · ,

A−BP4 +CQ4 −DR4 +·· · = 4d

(
1− 42

12

)(
1− 42

22

)(
1− 42

32

)(
1− 42

52

)
· · · ,

(21.46)

and so on. To compute the values of the products on the right-hand side of (21.46), and
the values of Pj , Qj , Rj , Sj , . . . , observe that

sin πx

πx
=

(
1− x2

12

)(
1− x2

22

)(
1− x2

32

)
· · · . (21.47)

Fourier did not write down the details of the evaluations of the products on the right-
hand sides of (21.46), but they are fairly simple. Note that the first product has a factor
(1− 12/12) missing, the second (1− 22/22), the third (1− 32/32), etc. Now the value
of the product with a missing 1− j 2/j 2 can be evaluated by (21.47) to be

lim
ε→0

sinπ(j + ε)
π(j + ε)

(
1− (j+ε)2

j2

) = lim
ε→0

j 2(−1)j−1 sinπε

π(j + ε)(2j + ε)ε = (−1)j−1

2
. (21.48)

To find Pj , Qj , Rj , . . . , he expanded the product on the right-hand side as a series

1−Px2 +Qx4 −Rx6 +·· · , (21.49)

so that P , Q, R,. . . were sums of products of 1, 1
22 ,

1
32 , . . . taken one, two, three, . . .

(respectively) at a time. He could then equate this series with the known power series
for sin (πx)/πx:

1− x2π 2

3! + x4π4

5! − x6π6

7! + · · ·

to get

P = π2/3!, Q= π4/5!, R = π6/7!, . . . . (21.50)
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Moreover, it is easy to see that(
1− y

j 2

)(
1−Pjy+Qjy

2 −Rjy3 +·· ·)= 1−Py+Qy2 −Ry3 +·· · ,

Pj + 1

j 2
= P, Qj + 1

j 2
Pj =Q, Rj + 1

j 2
Qj =R,. . . .

Hence Pj = P − 1

j 2
= π2

3! −
1

j 2
, Qj = π4

5! −
1

j 2

π 2

3! +
1

j 4
, · · · . (21.51)

Using these expressions in (21.46), he obtained the relations

1

2
a =A−B

(
π2

3! −
1

12

)
+C

(
π 4

5! −
1

12

π 2

3! +
1

14

)
−D

(
π6

7! −
1

12

π4

5! +
1

14

π 2

3! −
1

16

)
+·· · ,

−1

2
2b=A−B

(
π2

3! −
1

22

)
+C

(
π 4

5! −
1

22

π 2

3! +
1

24

)
−D

(
π6

7! −
1

22

π4

5! +
1

24

π 2

3! −
1

26

)
+·· · ,

1

2
3c=A−B

(
π2

3! −
1

32

)
+C

(
π 4

5! −
1

32

π 2

3! +
1

34

)
−·· · ,

(21.52)

etc. Now recall that A = φ′(0), −B = φ′′′(0), C = φ(5)(0), . . . ; one may use the
expressions for a,b,c, . . . in equation (21.42) to get

1

2
φ(x)= sin x

{
φ′(0)+φ′′′(0)

(
π 2

3! −
1

12

)
+φ(5)(0)

(
π 4

5! −
1

12

π2

3! +
1

14

)
+·· ·

}
− 1

2
sin 2x

{
φ′(0)+φ′′′(0)

(
π 2

3! −
1

22

)
+φ(5)(0)

(
π 4

5! −
1

22

π 2

3! +
1

24

)
+·· ·

}
+ 1

3
sin 3x

{
φ′(0)+φ′′′(0)

(
π 2

3! −
1

32

)
+φ(5)(0)

(
π 4

5! −
1

32

π 2

3! +
1

34

)
+·· ·

}
. . . . . . .

Fourier noted that the expression in the first set of chain brackets was the Maclaurin
series for

1

π

{
φ(π)− 1

12
φ′′(π)+ 1

14
φ(4)(π)− 1

16
φ(6)(π)+·· ·

}
.

Similarly, the expressions in the second and third brackets were

1

π

{
φ(π)− 1

22
φ′′(π)+ 1

24
φ(4)(π)− 1

26
φ(6)(π)+·· ·

}
;

1

π

{
φ(π)− 1

32
φ′′(π)+ 1

34
φ(4)(π)− 1

36
φ(6)(π)+·· ·

}
.
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To sum the expressions in chain brackets, Fourier observed that

s(x)= φ(x)− 1

m2
φ′′(x)+ 1

m4
φ(4)(x)−·· ·

satisfied the differential equation

1

m2
s ′′(x)+ s(x)= φ(x).

He noted that the general solution of this differential equation was

s(x)=C1 cosmx+C2 sin mx+msin mx
∫ x

0
φ(t)cosmt dt

−mcosmx
∫ x

0
φ(t)sin mt dt.

Because φ(x) was an odd function, its even-order derivatives were also odd functions,
making s(x) an odd function. This meant that C1 = 0. Hence,

s(π)= (−1)m+1m

∫ π

0
φ(t)sin mt dt,

and this in turn implied

am = 2

π

∫ π

0
φ(t)sin mt dt.

Thus, Fourier found the “Fourier” coefficients.

21.6 Dirichlet’s Proof of Fourier’s Theorem

Fourier’s work clearly demonstrated the tremendous significance of trigonometric
series in the study of heat conduction and more generally in solving partial differ-
ential equations with boundary conditions. As we have seen, Fourier offered many
arguments for the validity of his methods. But when the work of Gauss, Cauchy, and
Abel on convergence of series became known in the 1820s, Fourier’s methods were per-
ceived to be nonrigorous. Lejeune Dirichlet (1805–1859) studied in France with Fourier
and Poisson, who introduced him to problems in mathematical physics. At the same
time, Dirichlet became familiar with the latest ideas on the rigorous treatment of infi-
nite power series. Dirichlet’s first great achievement was to treat infinite trigonometric
series with equal rigor, thereby vindicating Fourier, who had befriended him.

In 1829, Dirichlet published his famous paper on Fourier series, “Sur la convergence
des séries trigonométriques qui servent a représenter une fonction arbitraire entre des
limites données” in the newly founded Crelle’s Journal. Eight years later he published
the same paper in the Berlin Academy journal with further computational details and
a more careful analysis of convergence. We follow the 1829 paper, whose title indi-
cates that Dirichlet’s aim was to obtain conditions on an arbitrary function so that
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the corresponding Fourier series would converge to the function. Dirichlet started his
paper by observing that Fourier began a new era in analysis by applying trigonometric
series in his researches on heat. However, he noted that only one paper, published by
Cauchy in 1823, had discussed the validity of this method. Dirichlet noted, moreover,
that the results of Cauchy’s paper were inconclusive because they were based on the
false premise that if the series with nth term vn = (Asinnx)/n converged, the series∑
un also converged when un/vn had 1 as a limit. Dirichlet produced examples of two

series with nth terms

(−1)n/
√
n and (1+ (−1)n/

√
n)(−1)n/

√
n.

Dirichlet pointed out that the ratio of the nth terms approached 1 as n tended to infinity,
but the first series converged and the second diverged.

Now in article 235 of his book on heat, Fourier gave the formula

f (x)= 1

π

∫
f (α)dα

(
1

2
+
∑

cos i(x−α)
)
.

Dirichlet analyzed the partial sums of this series under the assumption that the function
f (x) was piecewise monotonic. Taking n+ 1 terms of the series and using

1

2
+ cos(α− x)+ cos 2(α− x)+·· ·+ cos n(α− x)= sin

(
n+ 1

2

)
(α− x)

2sin 1
2 (α− x)

,

Dirichlet represented the partial sum by

sn(x)= 1

π

∫ π

−π
f (α)

sin
(
n+ 1

2

)
(α− x)

2sin 1
2 (α− x)

dα.

He proved that this integral converged to

f (x+ 0)+f (x− 0)

2
,

when f satisfied certain conditions. For this purpose, he first demonstrated the theorem:
For any function f (β), continuous and monotonic in the interval (g, h), where 0≤ g <
h≤ π/2, the integral (for 0 ≤ g < h)∫ h

g

f (β)
sin iβ

sin β
dβ

converges to a limit as i tends to infinity. The limit is zero except when g= 0, in which
case the limit is π

2 f (0). We present Dirichlet’s argument in a slightly condensed form,
for the most part using his notation. First note that we can write∫ ∞

0
(sin x)/x dx = π/2

∫ π

0
+

∫ 2π

π

+ ·· · +
∫ (n+1)π

nπ

+ ·· · sin x

x
dx = π

2
.
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Since sin x changes signs in the successive intervals [0,π], [π,2π ], . . . and the
integrand is decreasing, we can write the sum as

k1 − k2 + k3 −·· ·+ (−1)n−1kn+·· · = π

2
, (21.53)

where kn+1 =
∣∣∣∣∫ (n+1)π

nπ

sin x

x
dx

∣∣∣∣.
The series converges and hence kn → 0 as n→∞. Now consider the integral

I =
∫ h

0

sin iβ

sin β
f (β)dβ,

where f (β) is decreasing and positive. Divide the interval [0,h] by the points

0<
π

i
<

2π

i
< · · ·< rπ

i
< h,

where r is the largest integer for which the last inequality holds. I is the sum of the
integrals on these r+1 subintervals. On comparing two of the consecutive subintervals,
we see that for υ < r∣∣∣∣Iυ = ∫ υπ

i

(υ−1) π
i

sin iβ

sin β
f (β)dβ

∣∣∣∣≥ ∣∣∣∣Iυ+1 =
∫ (υ+1)π

i

υπ
i

sin iβ

sin β
f (β)dβ

∣∣∣∣.
Verify this by changing β to π

i
+β, so that the second integral can be written as

−
∫ υπ

i

(υ−1) π
i

sin iβ

sin (β+ π

i
)
f
(
β+ π

i

)
dβ.

Also, f (β) is decreasing so that

f (β)

sin β
>
f
(
β+ π

i

)
sin

(
β+ π

i

) .
Thus,

I = I1 − I2 + I3 − I4 +·· ·± Ir ∓ Ih,
where Ih is defined over the interval (rπ/i, h) so that the Ij are positive and decreasing
right up to the last term Ih. Next, let

Kυ =
∣∣∣∣∫ υπ/i

(υ−1)π/i

sin iβ

sin β
dβ

∣∣∣∣
=

∣∣∣∣∫ υπ

(υ−1)π

sin γ

i sin (γ /i)
dγ

∣∣∣∣ .
Observe that the last integral is obtained by the change of variables γ = iβ. As i→∞,
this integral tends to

∫ υπ
(υ−1)π (sin γ )/γ dγ = kυ . Next fix a number m, assumed for

convenience to be even, and let r be greater than m. Let ρv be such that

f

(
(v− 1)π

i

)
≤ ρv ≤ f

(vπ

i

)
and Iv = ρvKv.



420 Fourier Series

Then

I = (K1ρ1 −K2ρ2 +K3ρ3 −·· ·−Kmρm)
+ (Km+1ρm+1 −Km+2ρm+2 +·· ·)= I (m)+ I ′,

where I (m) consists of them terms inside the first set of parentheses and I ′ represents
the remaining terms, inside the second set of parentheses. Therefore, the sum I (m) as
i→∞ converges to

f (0)(k1 − k2 + k3 −·· ·− km)= sm f (0).
This means that the sums I (m) and sm f (0) can be made less than a positive number
w no matter how small. The sum I ′ is an alternating series with decreasing terms and
hence is less than Km+1ρm+1; note that this converges to km+1f (0). Thus, by (21.53),
|I ′|< km+1f (0)|+w′, where w′ can be made arbitrarily small. Moreover,∣∣π

2
− sm

∣∣< km+1 and so
∣∣I − π

2
f (0)

∣∣<w+w′ + 2f (0)km+1. (21.54)

This proves the theorem for f positive and g = 0. If g > 0, then∫ h

g

sin iβ

sinβ
fβ dβ =

∫ h

0

sin iβ

sin β
fβ dβ−

∫ g

0

sin iβ

sin β
fβ dβ.

At this point, one may conclude that both these integrals tend to π

2 f (0) as i→∞. So
Ig → 0 as i→∞. This proves the theorem for positive decreasing f . If f also assumes
negative values, then choose a constant C large enough that C+ f is positive. If f is
increasing, −f is decreasing, taking care of that case, and the theorem is proved.

Dirichlet noted that if f was discontinuous at 0, then by the previous argument, f (0)
could be replaced by f (ε)where ε was an infinitely small positive number. In his 1837
paper, he denoted f (x+ ε) by f (x+ 0), the right-hand limit of f (t) as t→ x. This is
now standard notation.

To prove Fourier’s theorem, break up the integral for sn(x) into two parts, one taken
from −π to x and the other from x to π . If α is replaced by x−2β in the first integral
and by x+ 2β in the second, then we have

sn(x)=
∫ (π+x)/2

0

sin (2n+ 1)β

sin β
f (x− 2β)dβ+

∫ (π−x)/2

0

sin (2n+ 1)β

sin β
f (x+ 2β)dβ.

Suppose x �= −π or π and β − x < π . The function f (x+ 2β) in the second integral
may be discontinuous at several points between β = 0 and β = (π − x)/2, and it may
also have several external points in this interval. Denote these points by l, l′, l′′, . . . , lυ in
ascending order, and decompose the second integral over the intervals (0, l), (l, l′), . . . .
By the theorem, the first of theseυ+1 integrals has the limit f (x+ε)π2 (i.e., f (x+0)π2 )
and the others have the limit zero as n→∞. If in the first integral for sn(x) we have
β+ x ≥ π , then write it as∫ π/2

0

sin (2n+ 1)β

sin β
f (x− 2β)dβ+

∫ (β+x)/2

π/2

sin (2n+ 1)β

sin β
f (x− 2β)dβ.
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The first integral tends to f (x− ε)π2 as n→∞. A similar argument shows that∫ (π+x)/2

0

sin(2n+ 1)β

sinβ
f (x− 2β)dβ tends to f (x+ ε)π

2
.

21.7 Dirichlet: On the Evaluation of Gauss Sums

In 1835, Dirichlet presented a paper to the Berlin Academy explaining how the definite
integral

∫∞
−∞ e

ix2
dx could be applied to evaluate the Gauss sum

∑n−1
k=0 e

2πik2/n. He gave a
slightly simpler version of this proof in his famous 1840 paper in Crelle’s Journal on the
applications of infinitesimal analysis to the theory of numbers. In this paper, Dirichlet
also derived the class number formula for quadratic forms and proved his well-known
theorem on primes in arithmetic progressions. In his paper of 1837, Dirichlet gave an
even more careful analysis of convergence.

He started his evaluation of the Gauss sum by first proving a finite form of the
Poisson summation formula. Note that in 1826, Poisson had used such a finite formula
to deduce the Euler–Maclaurin summation. Dirichlet began with a continuous function
g(x) in [0,π] expandable as a Fourier series:

πg(x)= c0 + 2
∞∑
s=1

cs cos sx, (21.55)

where cs =
∫ π

0
g(x)cos sx dx. (21.56)

It followed for x = 0 that

c0 + 2
∞∑
s=1

cs = πg(0). (21.57)

He then set

g(x)= f (x)+f (2π − x)+f (2π + x)+·· ·+f (2(h− 1)π + x)+f (2hπ − x),
(21.58)

where f (x) was continuous on [0,2hπ ]. He observed that

cs =
∫ π

0
g(x)cos sx dx =

∫ 2hπ

0
f (x)cos sx dx. (21.59)

By using the value of g(0) from (21.58), he could rewrite (21.57) in the form

c0 + 2
∞∑
s=1

cs = π
(
f (0)+f (2nπ)+ 2

h−1∑
s=1

f (2sπ)

)
, (21.60)

where cs was given by (21.59). This was the finite form of the Poisson summation
formula employed by Dirichlet. He then considered the integral∫ ∞

−∞
cos x2 dx = a,
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where a was some number to be determined. Since Euler had evaluated this integral,
Dirichlet knew its exact value. However, Dirichlet’s method of evaluating Gauss sums
was such that it also determined the value of a. He set

x = z

2

√
n

2π
,

where n was a positive integer divisible by 4, transforming the integral to∫ ∞

−∞
cos

( n
8π
z2
)
dz= 2a

√
2π

n
. (21.61)

Dirichlet then rewrote the last integral as a sum:

∞∑
s=−∞

∫ 2(s+1)π

2sπ
cos

( n
8π
z2
)
dz=

∞∑
s=−∞

∫ 2π

0
cos

n

8π
(2sπ + z)2 dz. (21.62)

He observed that since n was divisible by 4,

cos
n

8π
(2sπ + z)2 = cos

n

8π
(4s2π 2 + 4sπz+ z2)= cos

(snz
2

+ n

8π
z2
)
.

Then, by the addition formula, he had

cos
(snz

2
+ n

8π
z2
)
+ cos

(
−snz

2
+ n

8π
z2
)
= 2cos

(snz
2

)
cos

( n
8π
z2
)
.

Hence, (21.61) and (21.62) could be expressed as∫ 2π

0
cos

( n
8π
z2
)
dz+ 2

∞∑
s=1

∫ 2π

0
cos

( n
8π
z2
)

cos
(
s
nz

2

)
dz= 2a

√
2π

n
.

Dirichlet substituted nz= 2x in this formula to obtain∫ nπ

0
cos

(
x2

2nπ

)
dx+ 2

∞∑
s=1

∫ nπ

0
cos

(
x2

2nπ

)
cos sx dx = a√2nπ. (21.63)

Since nwas an even number expressible as 2h, the sum on the left-hand side coincided
with the sum on the left-hand side of (21.60) when f (x)= cos(x2/2nπ).By combining
(21.60) and (21.63), Dirichlet arrived at the formula

cos0+ cos
(n

2

)2 2π

n
+ 2

n
2 −1∑
s=1

cos s2 2π

n
= a

√
2n

π
. (21.64)

He then observed that

cos s2 2π

n
= cos(n− s)2 2π

n
,

and therefore (21.64) could be expressed in the simpler form

n−1∑
s=0

cos s2 2π

n
= a

√
2n

π
. (21.65)
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Dirichlet next remarked that the value of a was independent of n so that by choosing
n= 4, he could write

2 = 2a

√
2

π
, or a =√

π/2,

and therefore he could express the Gauss sum as

n−1∑
s=0

cos
s22π

n
=√

n. (21.66)

Operating in the same manner with
∫∞
−∞ sin x2 dx, he arrived at

n−1∑
s=0

sin
s22π

n
=√

n. (21.67)

Dirichlet pointed out that the sums (21.66) and (21.67) could be similarly evaluated
for n of the form 4µ+1, 4µ+2, and 4µ+3. However, it was possible to obtain these
sums in a different way. For that purpose he defined, for positive integers m and n,

n−1∑
s=0

e2ms2πi/n = φ(m,n).

He then wrote
φ(m,n)= φ(m′,n) whenm≡m′(mod n); (21.68)

φ(m,n)= φ(c2m,n) when c was prime to n; (21.69)

φ(m,n)φ(n,m)= φ(1,mn) whenm and nwere coprime. (21.70)

Dirichlet proved the third equation by observing that

φ(m,n)φ(n,m)=
n−1∑
s=0

m−1∑
t=0

e2ms2πi/ne2nt2πi/m

=
n−1∑
s=0

m−1∑
t=0

e(m
2s2+n2t2)2πi/(mn)

=
n−1∑
s=0

m−1∑
t=0

e(ms+nt)
22πi/(mn).

Since m and n were chosen relatively prime, Dirichlet argued that ms + nt assumed
all the residues (modmn) as s and t ranged over the values 0, 1 . . . ,n−1 and 0, 1, . . . ,
m− 1, respectively. Therefore,

φ(m,n)φ(n,m)=
mn−1∑
s=0

e2πs2i/(mn), (21.71)
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and Dirichlet’s proof of (21.70) was complete. Note that Gauss gave a similar argument
in 1801. Dirichlet then observed that for n, a multiple of 4, (21.66) and (21.67) implied

φ(1,n)= (1+ i)√n. (21.72)

And for odd n, (21.70) and (21.72) gave

φ(4,n)φ(n,4)= φ(1,4n)= 2(1+ i)√n. (21.73)

Moreover, by (21.69), φ(4,n) = φ(1,n) when n was odd, and by (21.68) φ(n,4) =
φ(1,4) or φ(3,4), depending on whether n= 4µ+ 1 or n= 4µ+ 3. Since

φ(1,4)= 2(1+ i), and φ(3,4)= 2(1− i),
Dirichlet could conclude that

φ(1,n)=√
n, n= 4µ+ 1; φ(1,n)= i√n, n= 4µ+ 3. (21.74)

Finally, when n= 4µ+ 2, he argued that n/2 and 2 were relatively prime, so that by
(21.70)

φ(2,n/2)φ(n/2,2)= φ(1,n) and φ(n/2,2)= φ(1,2)= 0.

Thus, φ(1,n)= 0, n= 4µ+ 2.

Gauss gave a proof of the quadratic reciprocity theorem by using the values of the Gauss
sums. Dirichlet repeated these arguments in his papers, though in a simpler form. In fact,
in his papers and lectures Dirichlet presented many number theoretic ideas of Gauss
within an easily understandable approach. For example, he published a one-page proof
of a theorem of Gauss on the biquadratic character of 2. It is interesting to note that the
British number theorist, H. J. S. Smith (1826–1883), presented this result in the first
part of his report on number theory published in 1859; he wrote in a footnote:

The death of this eminent geometer in the present year (May 5, 1859) is an irreparable loss
to the science of arithmetic. His original investigations have probably contributed more to its
advancement than those of any other writer since the time of Gauss; if, at least, we estimate results
rather by their importance than by their number. He has also applied himself (in several of his
memoirs) to give an elementary character to arithmetical theories which, as they appear in the
work of Gauss, are tedious and obscure; and he has thus done much to popularize the theory of
numbers among mathematicians – a service which it is impossible to appreciate too highly.

Noting Smith’s remark on the importance, rather than the number, of Dirichlet’s
results, we observe that Gauss made a similar comment when he recommended Dirichlet
for the order pour le mérite in 1845: “The same [Dirichlet] has – as far as I know – not
yet published a big work, and also his individual memoirs do not yet comprise a big
volume. But they are jewels, and one does not weigh jewels on a grocer’s scales.”

21.8 Exercises

1. Solve y(x)− y(x − 1) = lnx by Euler’s trigonometric series method. See Eu.
I-14, pp. 513–515.
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2. Solve the equation d2v
dx2 + d2v

dy2 = 0 by assuming v = F(x)f (y) to obtain F(x)=
e−mx , f (y) = cosmy. Let v = φ(x,y) and assume the boundary conditions
φ(x,±π/2)= 0 and φ(0,y)= 1. Show that

φ(x,y)= 4

π
(e−x cosy− 1

3
e−3x cos3y+ 1

5
e−5x cos5y−·· ·).

See Fourier (1955), pp. 134–144.
3. Show that π/2 = arctanu+ arctan(1/u). Let u = eix and expand arctanu and

arctan (1/u) as series to obtain

π

4
= cosx− 1

3
cos3x+ 1

5
cos5x−·· · .

See Fourier (1955), p. 154.
4. Let a denote a quadratic residue modulo p, a prime, and let b denote a quadratic

nonresidue. Show that

φ(1,p)= 1+ 2
∑

ea2πi/p = i(p−1)2/4√p,
where the sum is over all the residues a. Show also that

φ(m,p)=
(
m

p

)
φ(1,p)= 1+ 2

∑
ea2mπi/p,

where
(
m

p

)
denotes the Legendre symbol. Deduce that

∑
e2mπia/p−

∑
e2mπib/p =

(
m

p

)
i(p−1)2/4√p.

See Dirichlet (1969), pp. 478–479.
5. Suppose p and q are primes. Use φ(p,q)φ(q,p)= φ(1,pq) and the results in

the previous exercise to prove the law of quadratic reciprocity:(
p

q

)(
q

p

)
= (−1)

p−1
2 · q−1

2 .

This proof originates with Gauss’s 1808 paper, “Summatio Quarundam Serierum
Singularium.” For the derivation discussed in this exercise, see Dirichlet and
Dedekind (1999), p. 206–207.

21.9 Notes on the Literature

For Lagrange’s 1859 paper discussed in the text, see Lagrange (1867–1892), vol. 1,
pp. 72–90. This consists of a part of his paper, “Recherches sur la nature et la propagation
du son.” See Eu. I-14, pp. 463–515 for the difference equation f (x)−f (x−1)=X and
Eu. I-16/2, pp. 333–41, for the derivation of the Fourier coefficients. For Wiener’s treat-
ment of Euler’s difference equation, see Wiener (1979), vol. 2, pp. 443–453. Wiener’s
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paper contributed to the effort to make operational calculus rigorous. Fourier (1955),
pp. 168–185 contains his derivation of the Fourier coefficients by means of infinitely
many linear equations in infinitely many unknowns. Riesz (1913) contains a valuable
commentary on this work of Fourier. See Dirichlet (1969), vol. 1, pp. 117–132, for his
1829 paper. The more detailed paper of 1837, proving the same result, is on pp. 133–160,
and his evaluation of the Gauss sum can be found on pp. 473–479 of the same vol-
ume. The deduction of quadratic reciprocity appears in Dirichlet and Dedekind (1999),
pp. 208–209. Smith (1965b), p. 72, has the quote on Dirichlet. See Duke and Tschinkel
(2005), p. 18, for Gauss’s comment on Dirichlet. The article by J. Elstrodt in Duke and
Tschinkel gives a good summary of Dirichlet’s mathematical achievements. Truesdell
(1960) offers an excellent account of the mathematical contributions to the subject of
mechanics, related to topics mentioned in our text, by Euler, d’Alembert, D. Bernoulli,
and Lagrange. Truesdell’s quote concerning Euler’s formulas for simple modes of an
oscillating string may be found in Truesdell (1984), p. 250. See also Bottazzini (1986)
and Yushkevich (1971) for the development of the concept of a function in connection
with Fourier series.
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Trigonometric Series after 1830

22.1 Preliminary Remarks

At the end of his 1829 paper on Fourier series, Dirichlet pointed out that the concept of
the definite integral required further investigation if the theory of Fourier series were to
include functions with an infinite number of discontinuities. In this connection he gave
the example of a function φ(x) defined as a fixed constant for rational x and another
fixed constant for irrational x. Such a function could not be integrated by Cauchy’s
definition of an integral. Dirichlet stated his plan to publish a paper on this topic at
the foundation of analysis, but he never presented any results on it, though he gave
important applications of Fourier series to number theory.

Bernhard Riemann (1826–1866), a student of Dirichlet, took up this question as he
discussed trigonometric series in his Habilitation paper of 1853. The first part of the
paper gave a brief history of Fourier series, a topic Riemann studied with Dirichlet’s
help. In the later portion, Riemann briefly considered a new definition of the integral
and then went on to study general trigonometric series of the form

1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx),

where the coefficients an and bn were not necessarily defined by the Euler–Fourier
integrals. Using these series, he could represent nonintegrable functions in terms of
trigonometric series. Here he introduced methods still not superseded, though they have
been further developed. He associated with the trigonometric series a continuous func-
tion F(x) obtained by twice formally integrating the series. Riemann then defined the
generalized second, or Riemann–Schwarz, derivative ofF(x) as lim

h→0

(
,2F(x−h))/h2

and proved that if the trigonometric series converged to some f (x), then the Riemann–
Schwarz derivative was equal to f (x). In addition, he proved that if an and bn tended
to zero, then

lim
h→0

,2F(x−h)
h

= 0 . (22.1)

427
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Riemann’s paper also contained a number of very interesting examples, raising impor-
tant questions. Perhaps he did not publish the paper because he was unable to answer
these questions; Dedekind had it published in 1867 after Riemann’s premature death.

The publication of this paper by Riemann led Heinrich Heine (1821–1881) to ask
whether more than one trigonometric series could represent the same function. He
applied Weierstrass’s result that when a series converged uniformly, term-by-term
integration was possible. Weierstrass taught this theorem in his lectures in Berlin start-
ing in the early 1860s, though he had discovered it two decades earlier. From this
result, Heine concluded that a uniformly convergent trigonometric series was a Fourier
series; he defined a generally uniformly convergent series to cover the case of the
series of continuous functions converging to a discontinuous function. Such series
converged uniformly on the intervals obtained after small neighborhoods around the
discontinuities had been removed. In a paper of 1870, Heine stated and proved that a
function could not be represented by more than one generally uniformly convergent
trigonometric series.

When Georg Cantor (1845–1918) joined Heine at the University of Halle in 1869,
Heine awakened his interest in this uniqueness question. Cantor had studied at the
University of Berlin under Kummer, Kronecker, and Weierstrass and wrote his thesis
on quadratic forms under Kummer. At Heine’s suggestion, Cantor studied Riemann’s
paper containing the observation, without proof, that if

an cosnx+ bn sinnx→ 0 as n→∞

for all x in an interval, then an → 0 and bn → 0 as n→ ∞. Cantor’s first paper on
trigonometric series, published in 1870, provided a proof of this important assertion,
now known as the Cantor-Lebesgue theorem. This was the first step in Cantor’s proof
of the uniqueness theorem that if two trigonometric series converge to the same sum
in (0,2π) except for a finite number of points, then the series are identical. Note that
Henri Lebesgue (1875–1941) later proved the theorem in a more general context.

To prove his theorem, Cantor needed to show that if the generalized second, or
Riemann–Schwarz, derivative of a continuous function was zero in an interval, then the
function was linear in that interval. So in a letter of February 17, 1870, he asked his friend
Hermann Schwarz for a proof of this result. Schwarz had received his doctoral degree
a few years before Cantor, but they had both studied under Kummer and Weierstrass
at Berlin. Schwarz left the University of Halle in 1869 and went to Zurich, but they
corresponded often. In fact, Schwarz wrote to Cantor on February 25, 1870, “The fact
that I wrote to you at length yesterday is no reason why I should not write again today.”
In this letter Schwarz gave what he said was the first rigorous proof of the theorem that
if a function had a zero derivative at every value in an interval, then the function was
a constant in that interval.

Schwarz provided a proof of the result Cantor needed for his uniqueness theorem.
Cantor next studied the case with exceptional points, at which the series was not known
to converge to zero. Was the value of every coefficient still zero? He supposed c to be
an exceptional point in an interval (a,b) so that the series converged to zero in the
intervals (a,c) and (c,b). Now Riemann’s second theorem, given by (22.1), implied
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that the slopes of the two lines had to be the same, and hence F(x) was linear in (a,b),
and the uniqueness theorem followed. Clearly, the argument could be extended to a
finite number of exceptional points. When Cantor realized this, he asked whether there
could be an infinite number of exceptional points; he soon understood that even if the
exceptional points were infinite in number, as long as they had only a finite number of
limit points, his basic argument would still be effective.

Leopold Kronecker (1823–1891) was initially quite interested in the work of Cantor
on the uniqueness of trigonometric series. After the publication of Cantor’s first paper,
Kronecker explained to him that the proof of the Cantor–Lebesgue theorem could be
simplified by means of an idea contained in Riemann’s paper. However, as Cantor’s
work progressed and he began to use increasingly intricate infinite sets, Kronecker lost
sympathy with Cantor’s ideas and became a passionate critic of the theory of infinite sets.
Cantor, on the other hand, abandoned the study of trigonometric series and after 1872
became more and more intrigued by infinite sets, at that time completely unexplored
territory. Luckily, Cantor found an understanding and kindred spirit in Dedekind, who
had himself done some work on infinite sets. Cantor started a correspondence with
Dedekind in 1872 that continued off and on for several years. Dedekind helped Cantor
write up a concise proof of the countability of the set of algebraic numbers, and in 1874
this theorem appeared in Cantor’s first paper on infinite sets.

Though there was some opposition to Cantor’s theory, it was directly and indirectly
successful as sets became basic objects in the language of mathematics. Without this
concept, such early twentieth-century innovations as measure theory and the Lebesgue
integral would hardly have been possible. These advances in turn had consequences
for the theory of trigonometric series and the theory of uniqueness of such series. As an
example, consider the noteworthy theorem of W. H. Young from a 1906 paper: “If the
values of a function be assigned at all but a countable set of points, it can be expressed
as a trigonometric series in at most one way.”

22.2 The Riemann Integral

In his 1853 paper on trigonometric series, Riemann observed that since the Euler–
Fourier coefficients were defined by integrals, he would begin his study of Fourier
series with a clarification of the concept of an integral. To understand his definition, let
f be a bounded function defined on an interval (a,b) and let a = x0 < x1 < x2 < · · ·<
xn−1<xn= b. Denote the length of the subinterval xk−xk−1 by δk where k= 1,2, . . . ,n.
Let 0 ≤ εk ≤ 1 and set

s = δ1f (a+ ε1δ1)+ δ2f (x1 + ε2δ2)+ δ3f (x2 + ε3δ3)+·· ·+ δnf (xn−1 + εnδn) .

Riemann noted that the value of the sum s depended on δk and εk, but if it approached
infinitely close to a fixed limit A as all the δs became infinitely small, then this limit
would be denoted by

∫ b
a
f (x)dx. On the other hand, if the sum s did not have this

property, then
∫ b
a
f (x)dx had no meaning.
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Riemann then extended the definition of an integral to include unbounded functions,
as Cauchy had done. Thus, if f (x) was infinitely large at a point c in (a,b), then∫ b

a

f (x)dx = lim
α1→0

∫ c−α1

a

f (x)dx+ lim
α2→0

∫ b

c+α2

f (x)dx .

Riemann next raised the question: When was a function integrable? He gave his answer
in terms of the variations of the function within subintervals. He let Dk denote the
difference between the largest and the smallest values of the function in the interval
(xk−1,xk) for k= 1,2, . . . ,n. He then argued that if the function was integrable, the sum∑

= δ1D1 + δ2D2 +·· ·+ δnDn

must become infinitely small as the values of δ became small. He next observed that
for δk ≤ d (k = 1, . . . ,n), this sum would have a largest value, ,(d). Moreover, ,(d)
decreased with d and,(d)→ 0 as d→ 0. He noted that if swere the total length of those
intervals in which the function varied more than some value σ , then the contribution
of those intervals to

∑
was ≥ σs. Thus, he arrived at

σs ≤ δ1D1 + δ2D2 +·· ·+ δnDn ≤,
or s ≤,/σ. (22.2)

From this inequality, he concluded that for a given σ , ,/σ could be made arbitrarily
small by a suitable choice of d and hence the same was true for s. Riemann could
then state that a bounded function f (x) was integrable only if the total length of the
intervals in which the variations of f (x) were > σ could be made arbitrarily small by
a suitable choice of d. He also gave a short argument proving the converse. Riemann’s
proof omitted some details necessary to make it completely convincing. In fact, in an
1875 paper presented to the London Mathematical Society, H. J. S. Smith formulated
a clearer definition of integrability and a modified form of Riemann’s theorem.

Riemann gave a number of interesting examples of applications of this theorem,
remarking that they were quite novel. For instance, he considered the function defined
by the series

f (x)= (x)

1
+ (2x)

4
+ (3x)

9
+·· · =

∞∑
n=1

(nx)

n2
, (22.3)

where (x) was the difference between x and the closest integer; in the ambiguous case
when x was at the midpoint between two successive integers, (x) was taken to be zero.
He showed that for x = p/2n where p and n were relatively prime,

f (x+ 0)= f (x)− 1

2nn

(
1+ 1

9
+ 1

25
+·· ·

)
= f (x)− ππ

16nn
,

f (x− 0)= f (x)+ 1

2nn

(
1+ 1

9
+ 1

25
+·· ·

)
= f (x)+ ππ

16nn
;
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at all other values of x, f (x) was continuous. Riemann applied his theorem to show
that, although (22.3) had an infinite number of discontinuities, it was integrable
over (0,1).

22.3 Smith: Revision of Riemann and Discovery of the Cantor Set

Henry Smith did his most notable work in number theory and elliptic functions, but
his 1875 paper “On the Integration of Discontinuous Functions” also obtained some
important results later found by Cantor. Though continental mathematicians did not
notice this paper, it anticipated by eight years Cantor’s construction of a ternary set.
In order to reformulate Riemann’s definition and theorem on integrability, Smith effi-
ciently set up the modern definition of the Riemann integral in terms of the upper and
lower Riemann sums, politely pointing out the gap in Riemann’s work:

Riemann, in his Memoir . . . , has given an important theorem which serves to determine whether
a function f (x) which is discontinuous, but not infinite, between the finite limits a and b, does or
does not admit of integration between those limits, the variable x, as well as the limits a and b,
being supposed real. Some further discussion of this theorem would seem to be desirable, partly
because, in one particular at least, Riemann’s demonstration is wanting in formal accuracy, and
partly because the theorem itself appears to have been misunderstood, and to have been made the
basis of erroneous inferences.

Let d be any given positive quantity, and let the interval b− a be divided into any segments
whatever, δ1 = x1 −a, δ2 = x2 −x1, . . . , δn = b−xn−1, subject only to the condition that none of
these segments surpasses d. We may term d the norm of the division; it is evident that there is an
infinite number of different divisions having a given norm; and that a division appertaining to any
given norm, appertains also to every greater norm. Let ε1,ε2, . . . ,εn be positive proper fractions;
if, when the norm d is diminished indefinitely, the sum

S = δ1f (a+ ε1δ1)+ δ2f (x1 + ε2δ2)+·· ·+ δnf (xn−1 + εnδn)
converges to a definite limit, whatever be the mode of division, and whatever be the fractions
ε1,ε2, . . . ,εn, that limit is represented by the symbol

∫ b
a
f (x)dx, and the function f (x) is said to

admit of integration between the limits a and b. We shall call the values of f (x) corresponding to
the points of any segment the ordinates of that segment; by the ordinate difference of a segment
we shall understand the difference between the greatest and least ordinates of the segment. For any
given division δ1,δ2, . . . , δn, the greatest value of S is obtained by taking the maximum ordinate
of each segment, and the least value of S by taking the minimum ordinate of each segment; if Di
is the ordinate difference of the segment di , the difference θ between those two values of S is

θ = δ1D1 + δ2D2 +·· ·+ δnDn.
But, for a given norm d , the greatest value of S, and the least value of S, will in general result,
not from one and the same division, but from two different divisions, each of them having the
given norm. Hence the difference T between the greatest and least values that S can acquire for
a given norm, is, in general, greater than the greatest of the differences θ . To satisfy ourselves, in
any given case, that S converges to a definite limit, when d is diminished without limit, we must
be sure that T diminishes without limit; and it is not enough to show (as the form of Riemann’s
proof would seem to imply) that θ diminishes without limit, even if this should be shown for every
division having the norm d .

With this revised definition of the integral, Smith was in a position to restate Riemann’s
condition for integrability: “Let σ be any given quantity, however small; if, in every
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division of norm d, the sum of the segments, of which the ordinate differences surpass
σ , diminishes without limit, as d diminishes without limit, the function admits of
integration; and, vice versa, if the function admits of integration, the sum of these
segments diminishes without limit with d.”

Recall that Cantor was led to his theory of infinite sets through his researches in
trigonometric series, and these in turn had their origins in Riemann’s paper. This paper
also inspired mathematicians to investigate the possibility of other peculiar or patho-
logical functions and to construct infinite sets with apparently strange properties. In
1870 Hermann Hankel, a student of Riemann, constructed infinite nowhere-dense sets
and he gave a flawed proof that a function with discontinuities only on a nowhere
dense set was integrable. However, Hankel succeeded in proving that the set of points
of continuity of an integrable function was dense.

Smith was the first to notice the mistake in Hankel’s proof; to begin to tackle this
problem, he divided the interval (0,1) into m ≥ 2 equal parts where the last segment
was not further divided. The remaining m− 1 segments were again divided into m
equal parts with the last segments of each left undivided. This process was continued
ad infinitum to obtain the set P of division points. Smith proved that P was nowhere
dense; he called them points “in loose order.” The union of the set P and its limit points
is now called a Cantor set since in 1883 Cantor constructed such a set withm= 3. Smith
showed that after k steps, the total length of the divided segments was (1− 1/m)k; so
that as k increased indefinitely, the points of P were located on segments occupying
only an infinitesimal portion of the interval (0,1). He then applied Riemann’s criterion
for integrability to show that bounded functions with discontinuities only at P would
be integrable.

With a slight modification of this construction, Smith showed that there existed
nowhere dense sets of positive measure. The first step in his modification was the same
as before. In the second step he divided the m− 1 divided segments into m2 parts, but
did not further divide the last segment of each of these. The (m−1)(m2 −1) remaining
segments were divided into m3 parts, and so on. After k steps, Smith found the total
length of the divided segments to be (1 − 1/m)(1 − 1/m2) · · ·(1 − 1/mk). He noted
that the limit

∏∞
k=1(1− 1/mk) was not equal to zero. He again proved that the set of

division pointsQwas nowhere dense but that in this case a function with discontinuities
at the points inQ was not integrable. Smith then noted, “The result obtained in the last
example deserves attention, because it is opposed to a theory of discontinuous functions,
which has received the sanction of an eminent geometer, Dr. Hermann Hankel, whose
recent death at an early age is a great loss to mathematical science.”

In 1902, Lebesgue proved that a bounded function was Riemann integrable if and
only if the set of its discontinuities was of measure zero. Smith would perhaps not have
been surprised at this result.

22.4 Riemann’s Theorems on Trigonometric Series

After defining the integral, Riemann also investigated the question of whether a function
could be represented by a trigonometric series without assuming any specific properties



22.4 Riemann’s Theorems on Trigonometric Series 433

of the function, such as whether the function was integrable. Of course, if a function
is not integrable it cannot have a Fourier series. Thus, Riemann focused on series of
the form

U= 1

2
a0 + (a1 cosx+ b1 sinx)+ (a2 cos2x+ b2 sin 2x)+·· ·

=A0 +A1 +A2 +·· · ,

where A0 = a0/2 and for n > 0

An = an cosnx+ bn sinnx .

He assumed thatAn→ 0 as n→∞ and he associated withU a function F(x) obtained
by twice formally integrating the series U. Thus, he set

C+C ′x+A0
xx

2
−A1 − A2

4
− A3

9
−·· · = F(x) (22.4)

and proved F(x) continuous by showing that the series was uniformly convergent,
though he did not use this terminology. He then stated his first theorem on F(x):

If the series U converges,

F(x+α+β)−F(x+α−β)−F(x−α+β)+F(x−α−β)
4αβ

, (22.5)

converges to the same value as the series if α and β become infinitely small in such a way that
their ratio remains finite (bounded).

By using the addition formula for sine and cosine, Riemann saw that expression (22.5)
reduced to

A0 +A1
sinα

α

sinβ

β
+A2

sin 2α

2α

sin 2β

2β
+A2

sin 3α

3α

sin 3β

3β
+·· · .

When α = β, he had the equation

F(x+ 2α)− 2F(x)+F(x− 2α)

4αα
=A0 +A1

(
sinα

α

)2

+A2

(
sin 2α

2α

)2

+·· · .
(22.6)

Riemann first proved this theorem for the α= β case and then deduced the general case.
Observe that as α→ 0, the series (22.6) converges termwise to U. Thus, Riemann’s
task was essentially to show that (22.6) converged uniformly with respect to α. We
follow Riemann in detail, keeping in mind that Riemann did not use absolute values as
we would today. Suppose that the series U converges to a function f (x). Write

A0 +A1 +·· ·+An−1 = f (x)+ εn (22.7)

so that A0 = f (x)+ ε1 and An = εn+1 − εn . (22.8)
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Riemann noted that, because of convergence, for any positive number δ, there existed
an integer m such that εn < δ for n > m. By (22.8) and using summation by parts, he
concluded that

∞∑
n=0

An

(
sinnα

nα

)2

= f (x)+
∞∑
n=1

εn

((
sin(n− 1)α

(n− 1)α

)2

−
(

sinnα

nα

)2
)
. (22.9)

He then took α to be sufficiently small, so that mα < π and let s be the largest integer
in π/α. He divided the last sum into three parts:

m∑
n=1

+
s∑

n=m+1

+
∞∑

n=s+1

.

The first sum was a finite sum of continuous functions, and it could be made arbitrarily
small by taking α sufficiently small. In the second sum, the factor multiplying εn was
positive and hence the sum could be written

< δ

((
sinmα

mα

)2

−
(

sin sα

sα

)2
)
.

Note that Riemann assumed π/2 ≤ α ≤ π for any n in the second sum, although he did
not explicitly mention this. To show that the third sum could be made arbitrarily small,
he rewrote the general term as the sum of

εn

((
sin(n− 1)α

(n− 1)α

)2

−
(

sin(n− 1)α

nα

)2
)

and

εn

((
sin(n− 1)α

nα

)2

−
(

sinnα

nα

)2
)
=−εn sin(2n− 1)α sinα

(nα)2
.

It was then clear that the general term in the third sum was less than

δ

(
1

(n− 1)2αα
− 1

nnαα

)
+ δ 1

nnα
.

Thus, the third sum was less than

δ

(
1

(sα)2
+ 1

sα

)
.

Then, for infinitely small α, this expression became

δ

(
1

ππ
+ 1

π

)
.

Riemann concluded that the infinite series on the right-hand side of (22.9) could not be
greater than

δ(1+ 1/π + 1/π2),
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so that the theorem was proved. Riemann’s argument can be shortened by observing
that the second and third sums, in absolute value, are together less than

δ

∞∑
n=m+1

∫ nα

(n−1)α

∣∣∣∣∣ ddt
(

sin2 t

t2

)∣∣∣∣∣ dt < δ
∫ ∞

0

∣∣∣∣∣ ddt
(

sin2 t

t2

)∣∣∣∣∣ dt .
Since the last integral is convergent, the result follows. To prove the general result,
when α �= β, Riemann set

F(x+α+β)− 2F(x)+F(x−α−β)= (α+β)2(f (x)+ δ1),

F (x+α−β)− 2F(x)+F(x−α+β)= (α−β)2(f (x)+ δ2),

so that

(
F(x+α+β)−F(x+α−β)−F(x−α+β)+F(x−α−β))/4αβ

= f (x)+ (α+β)2
4αβ

δ1 − (α−β)2
4αβ

δ2 .

The special case α = β implied that δ1 and δ2 became small as α and β got small.
Moreover, the factors (α+β)2/4αβ and (α−β)2/4αβ remained bounded when β/α
was bounded. This proved the general case. Observe that the limit

lim
h→0

F(x+h)+F(x−h)− 2F(x)

h2

is called the Schwarz, or Riemann–Schwarz, derivative of F . Riemann called this the
“second differential quotient.” Note that

F(x+h)+F(x−h)− 2F(x)=,2F(x−h), where,F(x−h)= F(x)−F(x−h).

In general, F(x) is continuous, as Riemann proved, but not necessarily differentiable.
So here we have an instance of a generalized second derivative, although Riemann did
not express himself in those terms.

Riemann’s second theorem stated that when An → 0 as n→∞, then

F(x+ 2α)+F(x− 2α)− 2F(x)

2α

tends to 0 as α tends to 0. In his terse style, Riemann gave a succinct argument for
this, along lines similar to his proof of his first theorem. In his The Apprenticeship of a
Mathematician, André Weil wrote that both he and his sister Simone found great value
in the works of great minds and that he was very lucky to start off his mathematical
reading of the greats with Riemann; he found that Riemann’s works “are not hard to
read, as long as one realizes that every word is loaded with meaning; there is perhaps
no other mathematician whose writing matches Riemann’s for density.”
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22.5 The Riemann–Lebesgue Lemma

The Riemann–Lebesgue lemma states that if f (x) is integrable over (a,b), then as
t→∞, ∫ b

a

f (x)cos tx dx→ 0, and
∫ b

a

f (x)sin tx dx→ 0.

Note that this result implies that the nth Fourier coefficients of an integrable function
tend to zero as n→∞. Riemann derived his lemma from his integrability condition in
an interesting way. He began by writing∫ 2π

0
f (x)sinnx dx =

n∑
k=1

∫ 2kπ/n

2(k−1)π/n
f (x)sinnx dx .

He noted that sinnx was positive in the first half of the subinterval
( 2(k−1)π

n
, 2kπ
n

)
and negative in the second half. He supposed that in the whole subinterval he had
mk ≤ f (x)≤Mk, whereMk was taken to be the largest value of f (x) in the subinterval
and mk the least. We may assume these to be the least upper bound and greatest lower
bound, respectively. Thus, in the first half of the subinterval,∫ (2k−1)π/n

2(k−1)π/n
f (x)sinnxdx ≤Mk

∫ (2k−1)π/n

2(k−1)π/n
sinnxdx = 2Mk/n.

Similarly, in the second half of the subinterval, the integral would be less than−2mk/n.
It followed that ∫ 2kπ/n

2(k−1)π/n
f (x)sinnxdx ≤ 2

n
(Mk−mk)

and hence ∣∣∣∣∫ 2π

0
f (x)sinnx dx

∣∣∣∣≤ n∑
k=1

2

n
(Mk−mk)= 1

π

n∑
k=1

δkDk,

where δk was the length of the kth subinterval and Dk was the variation of f (x) on
that interval. By his own definition of integrablility of f (x), the sum

∑
δkDk had to

become infinitely small as n became infinitely large. This proved the theorem. Observe
that the definition of integrablility was perfect for obtaining this result on the Fourier
coefficients, leading some to speculate that Riemann fashioned the definition with this
result in mind.

22.6 Schwarz’s Lemma on Generalized Derivatives

Recall that in connection with his work on trigonometric series, Cantor in 1870 asked
Schwarz whether the following result was true: If F(x) is continuous in an interval
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a ≤ x ≤ b and

lim
α→0

F(x+α)− 2F(x)+F(x−α)
αα

= 0 (22.10)

for all x in the interval, then F(x) is a linear function. Schwarz replied that this was
indeed a theorem and provided a proof published twenty years later in his collected
mathematical works. Cantor used the theorem and gave the proof, credited to Schwarz,
in his 1870 paper.

Now note that if F is twice differentiable, then its second derivative and generalized
second derivative are identical; moreover, by (22.10),F(x) is linear. Briefly, Schwarz’s
proof of the general case began by setting

φ(x)=
∣∣∣∣F(x)−F(a)− x− a

b− a (F (a)−F(b))
∣∣∣∣− 1

2
k(x− a)(b− x), (22.11)

where k was a positive quantity to be chosen later. Schwarz did not employ the absolute
value sign, instead using an ε, equal to plus or minus 1, as a factor to maintain a positive
value. Observe that φ(a)= 0 and φ(b)= 0. If the expression inside the absolute value
sign in (22.11) is zero for all x in a ≤ x ≤ b, then F(x) is a linear function. Suppose
the value of the expression is not zero. Since φ(x) is continuous, it has a maximum
at some point x0. Take k sufficiently small that the value of φ(x0) is positive. By the
definition of maximum,

φ(x0 +α)−φ(x0)≤ 0 and φ(x0 −α)−φ(x0)≤ 0;
thus,

φ(x0 +α)− 2φ(x0)+φ(x0 −α)≤ 0 .

But

lim
α→0

φ(x0 +α)− 2φ(x0)+φ(x0 −α)
αα

= lim
α→0

(
F(x0 +α)− 2F(x0)+F(x0 +α)

αα
+ k

)
= k > 0.

This contradiction implies thatF(x) is a linear function. Note thatWeierstrass is credited
with the 1841 invention of the absolute value sign we use today.

22.7 Cantor’s Uniqueness Theorem

Cantor first stated his uniqueness theorem in 1870, though he later gave generalizations.
His first theorem stated that if a trigonometric series

1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)
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converged to zero at every point of the interval (−π,π), then a0 = 0 and an = bn = 0
for n≥ 1. To prove this, Cantor first used the convergence of the trigonometric series to
produce a tedious proof that an→ 0 and bn→ 0 as n→∞. Later on, Kronecker helped
Cantor realize that he could greatly streamline his proof by working with a different
series. But we continue with Cantor’s original proof based on this result. Observe
that he could apply Riemann’s second theorem so that the second Riemann–Schwarz
derivative of

F(x)= 1

4
a0x

2 −
∞∑
n=1

1

n2
(an cosnx+ bn sinnx)

was zero in (−π,π). By Schwarz’s lemma, F(x) was a linear function ax + b, and
he had

∞∑
n=1

1

n2
(an cosnx+ bn sinnx)= 1

4
a0x

2 − ax− b .

Since the left-hand side was periodic, a0 and a had to be zero. Because the series was
uniformly convergent, Cantor could multiply by cosmx and sinmx and integrate term
by term to obtain

πam

m2
=−b

∫ π

−π
cosmxdx = 0,

πbm

m2
=−b

∫ π

−π
sinmxdx = 0,

for m ≥ 1. This concludes Cantor’s original proof. Observe that as a student of
Weierstrass, he was quite familiar with uniform convergence and its connection with
integration, but at that time the concept of uniform convergence was not well known.

To take care of the first step concerning an and bn, Kronecker pointed out that it
was not necessary to prove that these coefficients tended to zero. Instead, he called the
trigonometric series in the theorem f (x) and defined a new function in terms of u:

g(u)= 1

2

(
f (x+u)+f (x−u))

= 1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)cosnu= 1

2
a0 +

∞∑
n=1

An cosnu.

Since the series f (x) converged, g(u) also converged and therefore An = an cosnx+
bn sinnx→ 0 as n→∞ for all x in (−π,π). With this new first step, Riemann’s second
theorem could then be applied, using g(u) instead of f (x), yielding An = 0 for n≥ 1.
Thus, an = 0 and bn = 0 for n≥ 1, so he also had a0 = 0. Though Kronecker assisted
Cantor with this argument, the germ of the idea was already in Riemann’s paper.

Cantor extended the uniqueness theorem in an 1871 paper by requiring convergence
to zero of 1

2a0+∑∞
n=1An at all but a finite number of points in (−π,π). He supposed xν

to be a point at which the series did not converge. Now by Cantor’s first proof, on the left-
hand side of xν ,F(x)= kνx+ lν for some constants kν and lν , whereas on the right-hand
side, F(x)= kν+1x+ lν+1. Now because F(x) was continuous, kνxν+ lν = kν+1xν+ lν
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and by Riemann’s second theorem

lim
α→0

F(xν +α)− 2F(xν)+F(xν −α)
α

= lim
α→0

xν(kν+1 − kν)+ lν+1 − lν +α(kν+1 − kν)
α

= 0.

This implied that kν+1 = kν and lν+1 = lν ; therefore, F(x) was defined by the same
linear function in the whole interval (−π,π).

Cantor then extended the argument to an infinite set with a finite number of limit
points. Summarizing his argument, suppose x1, x2, x3, . . . to be a sequence with one
limit point x. Then, by the previous argument, the isolated points x1, x2, x3, . . . can be
removed, and then finally, after an infinite number of steps, x is isolated and can be
removed. Kronecker was horrified at this mode of argument, involving the completion
of an infinite number of steps; he suggested to Cantor that he refrain from publishing his
paper. But to Cantor’s way of thinking, this kind of reasoning was quite legitimate, since
he subscribed to the concept of a completed infinity. Cantor gave further extensions of
his uniqueness theorem to more general infinite sets. The enterprise led him to turn his
attention toward set theory rather than analysis, and he spent the rest of his life creating
and developing the theory of infinite sets.

22.8 Exercises

1. A solution of an equation a0x
n + a1x

n−1 + ·· · + an = 0 where a0,a1, . . . ,an
are integers is called an algebraic number. Let |a0|+ |a1|+ · · ·+ |an|+n be the
height of the equation. Show that there exist only a finite number of equations of a
given height. Use this theorem to prove Dedekind’s result that the set of algebraic
numbers is countable, that is, the set can be put in one-to-one correspondence
with the set of natural numbers. This theorem and this proof appeared in print
in an 1874 paper of Cantor. Dedekind had communicated the proof to Cantor
in November 1873. Uncharacteristically, Cantor did not mention Dedekind’s
contribution. See Ferreirós (1993) for a possible explanation.

2. Read Wilbraham (1848); this paper contains the first discussion of the Gibbs
phenomenon, dealing with overshoot in the convergence of the partial sums of
certain Fourier series in the neighborhood of a discontinuity of the function. See
Hewitt and Hewitt (1980) for a detailed discussion and history of the topic.

3. In his paper, Riemann gave the function f (x)= d

dx
(xν cos1/x), where 0< ν <

1/2 as an example of an integrable function, not representable as a Fourier series
and having an infinite number of maxima and minima. Analyze this claim.

4. Show that the series
∞∑
n=1

sinn2x

n2

converges to a continuous function. Prove that the function does not have a
derivative at ζπ if ζ is irrational; prove the same if ζ = 2A/(4B+ 1) or (2A+
1)/2B for integersA andB. Show that when ζ = (2A+1)/(2B+1), the function
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has a derivative =−1/2. In 1916, Hardy proved the nondifferentiability portion
of this above result; in 1970, J. Gerver proved the differentiability portion. In his
lectures, Riemann discussed this series, apparently without stating the theorem.
Weierstrass was of the opinion that Riemann may have intended this to be an
example of a continuous but nondifferentiable function. Unable to prove this,
Weierstrass constructed a different example, given in the next exercise. See Segal
(1978).

5. Show that the function f (x)=∑∞
n=0 b

n cos(anπx), where 0<b< 1; a is an odd
integer; ab > 1+ 3π/2, and the function

g(x)=
∞∑
n=1

cos(n!x)
n!

are both continuous and everywhere nondifferentiable. Weierstrass presented the
first example in his lectures, and Paul du Bois-Reymond published it in 1875.
G. Darboux published the second example in 1879. See Weierstrass (1894–1927),
vol. 2, pp. 71–74.

6. Let t = ∑
cn/2n, with cn = 0 or 1, be the binary expansion of 0 ≤ t ≤ 1. Set

f (t) = ∑
an/2n, where an denotes the number of zeros among c1,c2, . . . ,cn

if c0 = 0; if c0 = 1, then an denotes the number of ones. Prove that f (t) is
continuous and single-valued for 0 ≤ t ≤ 1 and that f (t) is not differentiable for
any t . See Takagi (1990), pp. 5–6. Teiji Takagi (1875–1960) graduated from the
University of Tokyo and then studied under Schwarz, Frobenius, and Hilbert in
Berlin and Göttingen 1898–1901. Even before going to Germany, Takagi studied
Hilbert’s 1897 Zahlbericht. His thesis proved the statement from Kronecker’s
Jugendtraum that all the abelian extensions of the number field Q(

√−1) can
be obtained by the division of the lemniscate. Takagi did his most outstanding
work in class field theory; he was one of the first Japanese mathematicians to
begin his career after the transition to Western mathematics in Japan, and he was
instrumental in establishing a tradition of algebraic number theory there. See
Miyake (1994) and Sasaki (1994). These two papers, along with other papers of
interest, are contained in Sasaki, Sugiura, and Dauben (1994).

7. For Bolzano’s example of a continuous nowhere differentiable function, dating
from about 1830, read Strichartz (1995), pp. 403–406. He gives a graphical
presentation and points out that it has close connections with fractals.

8. Show that the series

∞∑
n=2

sinnx

lnn

converges to a function not integrable in any interval containing the origin. Then
derive the conclusion that this trigonometric series is not a Fourier series. This
example is due to P. Fatou and is referred to in Lebesgue (1906), p. 124.

9. Prove W. H. Young’s theorem that if q0 ≥ q1 ≥ ·· · form a monotone descend-
ing sequence with zero as limit, and their decrements also form a monotone
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descending sequence, viz., q0 −q1 ≥ q1 −q2 ≥ ·· · , then the trigonometric series

1

2
q0 +

∞∑
n=1

qn cosnx

is the Fourier series of a positive summable function. Use this to prove that

∞∑
n=2

(cosnx)/(lnn)c,

where c > 0 is a Fourier series. For this and the next exercise, see G. C. Young
and W. H. Young (2000), pp. 449–478.

10. Prove that if q1 ≥ q2 ≥ ·· · form a monotone descending sequence of constants
with zero as limit and

∑
n=1n

−1qn converges, then∑
n=1

qn sinnx

is the Fourier series of a summable function bounded below for positive values
of x and bounded above for negative values of x. See exercise 9.

11. Prove that if f ∈L1(−π,π), then the Poisson integral

1

2π

∫ π

−π
f (t)

1− r2

1− 2r cos(t − x)+ r2
dt

converges almost everywhere (a.e.) to f (x) as r→ 1−. See Fatou (1906).
12. Given a series

∑∞
n=1An, An = an cosnx+ bn sinnx, define its conjugate as the

series
∑∞

n=1Bn, where Bn =−bn cosnx+ an sinnx. Suppose then that

∞∑
n=1

(a2
n+ b2

n) <∞.

Prove the Riesz–Fischer theorem that there exist functions f , g ∈ L2 (−π,π)
such that f ∼∑

An and g ∼∑
Bn. Show also Lusin’s result that

1

2π

∫ π

−π
f (t)

1− r2

1− 2r cos(t − x)+ r2
dt

= 1

π

∫ π

−π
g(t)

r sin(t − x)
1− 2r cos(t − x)+ r2

dt = f (x) a.e.

Next, deduce the formula for the Cauchy principal value integral:

lim
ε→0+

1

π

∫
ε≤|t |≤π

g(x+ t) dt

2tan(t/2)
= f (x) a.e. (22.12)

For an arbitrary function g, the conjugate g̃ is defined by the negative of the
principal value integral in (22.12). If g ∈ L1, then in general g̃ might or might
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not be in L1, but g̃ ∈ Lp for 0< p < 1. If g ∈ Lp, for p > 1, then g̃ ∈ Lp. Note
that Lusin proved the last result when p = 2. See Lusin (1913). Nikolai Lusin
(1883–1950) was a student of Dmitri Egorov (1869–1931) at Moscow University
and he founded an important school of mathematics there with students such as
Kolmogorov, Menshov, and Privalov. They developed what is now called the
complex method in Fourier analysis.

13. Concerning Snf , thenth partial sum of the Fourier series off , given by
∑n

k=1Ak,
show that

Snf (x)=
n∑
k=1

(ak coskx+ bk sinkx)

= 1

π

∫ π

−π
g(x+ t)

(
1

2tan(t/2)
− cos(n+ 1/2)t

2sin(t/2)

)
dt,

where the two integrals on the right-hand side should be taken as Cauchy
principal values. Combine this with the result in exercise 12 to show that
lim
n→∞Snf (x)= f (x) a.e. if and only if the principal value integral satisfies

lim
n→∞

∫ π

−π
g(x+ t)cosnt

t
dt = 0 a.e.

From (22.12) it follows that the principal value integral
∫ π
−π

g(x+t)
t
dt exists

a.e. for g ∈ L2. Lusin also had an example of a continuous function g with∫ π
−π

∣∣ g(x+t)
t

∣∣dt =∞ on a set of positive measure. Note that in order for this prin-
cipal value integral to converge, there must have been a good deal of cancellation.
Lusin conjectured the almost everywhere convergence of the Fourier series of
square integrable functions because he thought that the cancellation in the princi-
pal value integral was the reason for the convergence of the series. Kolmogorov
(1923) contains an example of an integrable, but not square-integrable, function
whose Fourier series diverged everywhere. Lennart Carleson proved Lusin’s
conjecture in 1966, and Richard Hunt soon extended Carleson’s theorem to Lp

functions with p > 1. One of the important concepts needed in the Carleson and
Hunt proofs was that of maximal functions. For a locally integrable function f ,
the Hardy–Littlewood maximal function is defined by

Mf (x)= sup
h>0

1

h

∫ x+h

x−h
|f (t)|dt .

14. Prove that if f ∈Lp (−π,π) for 1<p<∞, then f̃ ∈Lp and ||f̃ ||p ≤Cp ||f ||p .
This theorem is due to Marcel Riesz (1928). Also deduce that ||Snf ||p ≤
Cp ||f ||p.

15. Show that if f ∈Lp for 1<p <∞, then

||Mf ||p ≤Cp||f ||p .
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Show also that if f (r,x) is the Poisson integral of f , then

sup
0≤r<1

|f (r,x)| ≤CMf (x),

and hence

∣∣∣∣∣∣∣∣ sup
0≤r<1

|f (r,x)|
∣∣∣∣∣∣∣∣
p

≤Cp ||f ||p .

These results were published in 1930 by Hardy and Littlewood; see Hardy
(1966–1979), p. 509–544, especially pp. 530–538.

22.9 Notes on the Literature

For Carleson’s proof of the convergence theorem, see Carleson (1966). Hunt’s extension
can be found in Haimo (1968), pp. 235–255. For historical background on the conver-
gence of Fourier series, see Hunt’s paper in Butzer and Sz.-Nagy (1974). Riemann’s
paper, “Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe,”
was published by Dedekind in 1867. The easiest place to find the paper is in the third
edition of Riemann’s collected papers edited by R. Narasimhan, Riemann (1990). This
contains all the material from the previous editions together with some new material,
including essays by outstanding mathematicians on particular aspects of Riemann’s
work. An English translation of Riemann’s paper is in S. Hawking (2005). Laugwitz
(1999) presents a lively account of Riemann’s life and mathematical work, including
trigonometric series and complex variables.

See Smith (1965a), vol. 2, pp. 86–89 for the quotations from his paper. His construc-
tion of the Cantor set appears on pp. 94–95 and the reference to Hankel is on p. 95.
Schwarz (1972), vol. 2, pp. 341–343 gives the proof of the theorem on the second
difference quotient, used by Cantor to prove his uniqueness theorem. Cantor (1932)
contains his work on the uniqueness of trigonometric series. See Dauben (1979) for a
discussion of the development of Cantor’s mathematical thought.

Cooke (1993) is an interesting history of the work on the uniqueness of trigono-
metric series, and it also surveys recent contributions. The article by Zygmund in Ash
(1976) contains some insightful remarks on the development of Fourier series. Hawkins
(1975) presents a detailed but very readable account of the development of integration
theory from Riemann to Lebesgue. See also Bressoud (2008) for more on Lebesgue.
Meschkowski (1964) gives an English translation of Schwarz’s February 25, 1870 letter
to Cantor. This letter contains a proof of the theorem that a function whose derivative
vanishes in an interval must be constant in that interval. Schwarz explained that his
proof made use of ideas from Weierstrass’s 1861 lecture at the Technical University in
Berlin. For Weil’s remarks on Riemann, see Weil (1992), p. 40. For a modern discussion
of Riemann integrability, see Bressoud (2007), p. 251.
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The Gamma Function

23.1 Preliminary Remarks

The problem of interpolating the sequence of factorials 0!, 1!, 2!, 3!, . . . appeared in
Wallis’s 1655 book on the quadrature of a circle. Specifically, the problem would be
to find a function f (x) of a positive real variable x, such that f (x+ 1)= x f (x) and
f (n)= (n−1)!, when n is a positive integer. One might wish to have f (n)= n! but we
will identify f (x) with the gamma function �(x), so we shift the function f (n)= n!
to the right by a unit. In his book, Wallis solved this problem for half-integral values
of x but did not work out the details of the general case. Strangely, for seventy years
after this, mathematicians did not take up this subject.

Euler and Stirling made significant contributions to this problem starting in the late
1720s. They worked independently, Euler in Russia and Stirling in Scotland; their
approaches and aims were also distinct. In the mid-1730s, they came to know of each
other’s work and had a brief correspondence. Always the algorist, Euler was interested
in obtaining analytic expressions for the interpolating function f (x). His first paper
on the subject, written in 1730, gives two different representations of f (x), one as an
infinite product and the other as a definite integral. On the other hand, Stirling was a
numerical analyst interested in finding efficient methods for computing f (x). He was
undoubtedly extremely experienced in computation and demonstrated that he knew the
values of many mathematical constants to several decimal places. Without giving an
explicit analytic formula for f (x), but making use of Newton’s method of interpolation,
he calculated the value of (1/2)! = f (3/2) as 0.8862269251. He recognized this as√
π/2 and, indeed, this is the correct value of �(3/2).
There was a common feature in the thinking of Euler and Stirling: They both believed

that there was only one reasonable or logical interpolating function f (x). Thus, Euler
did not prove in his first paper that the integral and infinite product representations of
f (x) were equal for all x > 0, but merely that they were equal for positive integral
values of x. Similarly, Stirling thought that his numerical methods gave the value of the
unique interpolating function f (x). The later work of H. Bohr and J. Mollerup from
around 1920 showed that to obtain uniqueness of the interpolating function one must

444
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assume the convexity of lnf (x), in addition to the two above-mentioned properties
f (x+ 1)= x f (x) and f (1)= 1.

Leonhard Euler (1707–1783) was born in Basel, Switzerland, and studied at the
University of Basel from 1720–1724. After this he studied independently, concentrat-
ing on mathematics, physics, and astronomy, under the guidance of Johann Bernoulli,
with whom he met once a week. Adhering to this regime, Euler quickly became an
excellent mathematician and by 1725 he began seeking a position. Failing to find one
in Switzerland, he moved to Russia in 1727 to join his friends Daniel and Niklaus
(also Nicolaus) II Bernoulli at the newly founded Petersburg Academy. The Bernoulli
brothers received their appointments when their father Johann declined a position and
persuaded the Academy to employ his sons. Euler was originally appointed to a posi-
tion in medicine, prompting him to brush up on his anatomy, but he ended up getting
a situation in mathematics when Niklaus II died unexpectedly before Euler arrived
in St. Petersburg. Euler enjoyed a very stimulating scientific collaboration with Daniel
until the latter returned to Basel in 1834. Euler also developed a friendship with Christian
Goldbach (1690–1764) from Prussia, whom Clifford Truesdell described as “an ener-
getic and intelligent Prussian for whom mathematics was a hobby, the entire realm of
letters an occupation, and espionage a livelihood.” Euler and Goldbach corresponded
extensively with each other, and Goldbach sometimes suggested problems, stimulating
Euler to important mathematical discoveries. Euler spent 1741–66 in Berlin and then
returned to St. Petersburg where he died, mathematically active until the end.

Euler became interested in the interpolation problem when it appeared in a 1728
paper presented by Goldbach to the St. Petersburg Academy. Goldbach also mentioned
the problem in his letters to Daniel Bernoulli who may have discussed the matter
with Euler. Bernoulli outlined a solution in a postscript to a letter to Goldbach dated
October 6, 1729. He let A stand for an infinite number. Then the general xth term of
the factorial sequence was given by(

A+ x

2

)x−1
(

2

1+ x · 3

2+ x · 4

3+ x · · ·
A

A− 1+ x
)
.

He noted that when x = 3/2 and A = 8, the value of the preceding expression was
approximately 1.3005. He had made a computational error here, and the value should
have been 1.329, as he observed in a letter two weeks later. This value of (3/2)! is
correct to three decimal places. Even at this early stage of his career, Daniel Bernoulli
did not pursue this problem any further, and it was left to Euler to initiate and develop the
theory of the gamma function. In fact, Daniel was primarily a mathematical physicist
and after middle age, his interest in pure mathematical questions waned.

Euler’s October 15, 1729 letter to Goldbach gave the value of�(m+1), representing
the mth term of the factorial sequence, to be

�(m+ 1)= 1 · 2m
1+m · 21−m · 3m

2+m · 31−m · 4m
3+m · 41−m · 5m

4+m · · · . (23.1)

He observed that the infinite product reduced to m! when m was a positive integer,
though he verified this only for m= 2 and m= 3. He also noted in the letter that the
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infinite product (23.1), when terminated after n terms, could be written as

1 · 2 · 3 · · ·n · (n+ 1)m

(1+m)(2+m) · · ·(n+m).

This implied

V(m)= �(m+ 1)= lim
n→∞

n!nm
(m+ 1)(m+ 2) · · ·(m+n) . (23.2)

In 1812, Gauss gave the definition of the gamma function as (23.2), often called Gauss’s
definition of the gamma function, although Euler found it in 1729 and published it
in 1776.

Euler recognized that the gamma function was important, but he did not introduce
a notation for it. Legendre employed the symbol �, while Gauss used V. In general,
Euler simply wrote 1 ·2 ·3 · · · ·x to mean �(x+1). He once wrote [x] for �(x+1), but
this was a temporary device and he used the square brackets to stand for other things
as well. Soon after he wrote this letter to Goldbach, Euler presented to the Academy a
long paper on the subject, although the Academy did not publish it until 1738. Euler
made it clear that the source of his inspiration was Wallis’s Arithmetica Infinitorum. In
fact, a large part of the paper was a reworking of the results of Wallis, who had also
grappled with the problem of interpolating the factorial sequence. Recall two important
results of Wallis from the the first two sections of chapter 3. First,∫ 1

0
(1− x1/p)qdx = p!q!

(p+ q)! =
p!

(q+ 1) · · ·(q+p) =
q!

(p+ 1) · · ·(p+ q) . (23.3)

From this relation Wallis could compute the integral when either p or q was a positive
integer. The second result took p = q = 1/2 in (23.3). Then, since the integral repre-
sented the area under the circle y =√

1− x2 on the interval (0,1), Wallis’s formula for
π gave

π

4
= ((1/2)!)2 = 2

3
· 4

3
· 4

5
· 6

5
· · · · 2n

2n+ 1
· 2n+ 1

2n+ 2
· · · ,

or

√
π

2
= (1/2)! = lim

n→∞
n!(n+ 1)1/2(

1
2 + 1

)(
1
2 + 2

) · · ·( 1
2 +n

) . (23.4)

This was the m= 1/2 case of Euler’s formula (23.2).
The new feature in Euler’s paper was his integral representation

�(m+ 1)=m! =
∫ 1

0
(− lnx)mdx;

he verified this only for the case when m was a nonnegative integer. He assumed that
the result continued to hold for all real m, so that Wallis’s formula (23.4) gave him∫ 1

0
(− lnx)1/2dx =

√
π

2
. (23.5)
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Note that a change of variables x = e−t2 , followed by integration by parts, gives the
probability integral ∫ ∞

0
e−t

2
dt =

√
π

2
. (23.6)

Thus, Euler had actually found the probability integral in the form (23.5). At the end
of the paper, he explained how the gamma function could be used to define fractional
derivatives. This was a problem already raised by Leibniz, as Euler may have been
aware. He observed that when n was a nonnegative integer,

dnze

dzn
= e(e− 1) · · ·(e−n+ 1)ze−n;

and so one could define, for any positive real number n,

dnze

dzn
=

∫ 1
0 (− lnx)edx∫ 1
0 (lnx)

e−ndx
ze−n. (23.7)

By taking e= 1 and n= 1/2, he had

d1/2z

dz1/2
= 2

√
z

π
. (23.8)

Euler did not do any more with this concept, later rediscovered by Abel who in 1823
applied it to the solution of an integral equation.

In his second paper of 1739, Euler gave a proof of (23.3), extended to the case when
both p and q were not integers. Interestingly, his proof followed that of Wallis for
(23.4), with a simplification. We note that formula (23.3) is usually written as∫ 1

0
tp−1(1− t)q−1 dt = �(p)�(q)

�(p+ q) . (23.9)

Sometime in the 1740s or perhaps earlier, Euler found a connection between the gamma
function and the trigonometric functions, in the form of his reflection formula:

�(x)�(1− x)= π/sin πx. (23.10)

He explicitly stated this result in an important paper, written in 1749 but published in
1768, giving the functional relation for the zeta function.

Euler made a curious observation in his 1729 letter to Goldbach. He wrote that the

value of (23.1) when m = 1/2 was 1
2

√√−1log(−1), equal to the square root of the

area of a circle with diameter 1. This amounted to
√−1ln(−1) = π . At that time,

mathematicians did not have a clear idea about how the logarithm of a negative number
should be defined. Leibniz and Johann Bernoulli had some correspondence on this point
in the 1710s, but these discussions brought forth nothing of real value. Eventually, Euler
produced a complete definition of the logarithm of a complex number, including its
property of being multivalued. The question is, did Euler have a good understanding of
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this definition in 1729? Perhaps he did not. Roger Cotes’s posthumous work, Harmonia
Mensurarum, published in 1722, had the formula

√−1log(cos θ + i sin θ)= θ

and Euler’s formula covered the particular case when θ = π . Moreover, Cotes’s result
had an error in sign and this error reappeared in Euler, if we take the principal value of
log(−1) to be iπ . It seems reasonable to draw the conclusion that Euler got his result
from Cotes. However, the formula of Cotes set Euler on the right track toward his own
more conclusive results, finally written up in the 1740s.

Euler did not deal with the question of the convergence of the infinite product (23.1).
It was not the practice among mathematicians of the eighteenth century to go into the
details of convergence problems. However, the manner of Euler’s expression in some
cases leads us to believe that he had clear ideas about what was meant by convergence.
For example, in (23.1) Euler did not cancel the factors, showing us that here he was
not unaware of convergence issues. One may easily check that the nth term of the
product is

n1−m · (n+ 1)m

n+m =
(

1+ 1

n

)m(
1+ m

n

)−1 = 1+ m(m− 1)

2n2
+O

(
1

n3

)
,

and thus that the infinite product converges.
The eighteenth-century mathematicians produced an enormous body of analytical

results without a substantial discussion of convergence. The first mathematician to
seriously think about convergence issues was Carl Friedrich Gauss (1777–1855). Like
Euler, he had an extremely broad range of interests, covering almost every area of pure
and applied mathematics. His paper on the gamma function was a part of a larger work
on hypergeometric series published in 1813. He founded his study of convergence on
the theory of limits of sequences. In an unpublished early work, he discussed concepts
such as the upper and lower limits of sequences. It is difficult to determine the influences
informing Gauss’s work. Of course, he was extremely well read and was very familiar
with the works of his great predecessors. But he appeared to prefer to work in isolation.
So it is not clear what motivated him to study convergence of infinite series and products,
besides a desire for greater mathematical rigor. Thus, in the 1813 paper mentioned
earlier, Gauss showed that the limit in (23.2) existed. He also gave a new method of
deriving Euler’s results (23.5), (23.9), and (23.10). At the heart of Gauss’s new method
was the summation formula

1+ a · b
1 · c +

a(a+ 1) · b(b+ 1)

1 · 2 · c(c+ 1)
+ a(a+ 1)(a+ 2) · b(b+ 1)(b+ 2)

1 · 2 · 3 · c(c+ 1)(c+ 2)
+·· ·

= �(c)�(c− a− b)
�(c− a)�(c− b), (23.11)

where a, b, c were complex numbers with Re(c− a− b) > 0. He gave a completely
satisfactory proof of this formula, given in our chapter on hypergeometric functions.
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Gauss also found the multiplication formula for the gamma function:

nnz−1/2�(z)�

(
z+ 1

n

)
�

(
z+ 2

n

)
· · ·�

(
z+ n− 1

n

)
= (2π)(n−1)/2�(nz), (23.12)

where nwas a positive integer. The reflection formula (23.10) suggests that the inspira-
tion for this must have been the similar formula for sin nπz discovered and published
by Euler in his 1748 Introductio in Analysin Infinitorum. In slightly modified form,
Euler’s formula was

sin nπz= 2n−1 sin πz sin π

(
z+ 1

n

)
sin π

(
z+ 2

n

)
· · ·sin π

(
z+ n− 1

n

)
. (23.13)

Euler also gave a special case of (23.12):

√
n�

(
1

n

)
�

(
2

n

)
· · ·�

(
n− 1

n

)
= (2π)(n−1)/2. (23.14)

Slightly before Gauss’s paper was published, Legendre discovered the duplication
formula, the n = 2 case of Gauss’s formula (23.12). Legendre’s proof employed the
integral representation of the gamma function, and this in turn suggested the problem
of deriving the properties of the gamma function using definite integrals. At that time,
definite integrals were appearing in many areas of mathematics and its applications.
For Euler, this topic was a life-long interest; he had already evaluated several definite
integrals by means of a variety of techniques. S. P. Laplace and Legendre also pursued
the study of definite integrals, of great usefulness in solving problems in probability
theory and mechanics. The method of Fourier transforms, originated by Fourier in
his work on heat conduction and its applications to wave phenomena, also produced
numerous definite integrals.

By 1810, several French mathematicians had published papers whose aim was to
evaluate classes of definite integrals. In 1814, Cauchy wrote a long memoir on definite
integrals, the first of his many contributions to what would become complex function
theory. A decade later, Cauchy gave a precise definition of a definite integral in his
lectures at the École Polytechnique; he then proceeded to define improper integrals and
their convergence.

Dirichlet, though a Prussian, studied in Paris in the mid 1820s. He mastered Cauchy’s
ideas on rigor and applied them to the series introduced into mathematics and mathe-
matical physics by his friend Fourier. Even in his first paper on Fourier series, Dirichlet
recognized the importance of extending the definite integral to include highly discon-
tinuous functions. He even made use of improper integrals in his number theoretic
work. He employed the integrals

∫∞
0 cos x2 dx and

∫∞
0 sin x2 dx, closely related to the

gamma function, to obtain a remarkable evaluation of the quadratic Gauss sum. Recall
that we discussed this in chapter 21, section 7. In his famous work on primes in arith-
metic progressions, Dirichlet used Euler’s integral formula for the gamma function in
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the form ∫ 1

0
xn−1 (ln(1/x))s−1 dx = �(s)

ns
(23.15)

to represent as integrals certain Dirichlet series called L-functions. We discuss this
in detail in chapter 32. Dirichlet’s number theoretic work motivated him to further
investigate the gamma function within the theory of definite integrals. He wrote several
papers on the topic, including one dealing with a multidimensional generalization of
Euler’s beta integral (23.9).

Dirichlet’s interest in definite integrals, expressed through his publications and his
lectures at Berlin University, created an interest in this topic among German mathe-
maticians. Thus, in 1852, Richard Dedekind, who did great work in number theory,
wrote his Göttingen doctoral thesis on Eulerian integrals. Riemann, greatly influenced
by Dirichlet, made brilliant use of definite integrals, and the gamma integral in particu-
lar, in his great 1859 paper on the distribution of primes. In this paper, he expressed the
zeta function as a contour integral from which he derived the functional equation for
the zeta function. This work of Riemann inspired his student Hermann Hankel (1839–
1873) to find in 1863 a contour integral representation for �(z), valid for all complex
z except the negative integers.

The gamma function also played a significant role in the development of the the-
ory of infinite products. In an 1848 paper, the English mathematician F. W. Newman
explained how an exponential factor e−x/n in (1+x/n)e−x/n ensured the convergence
of the product

∏∞
n=1(1+ x/n)e−x/n. Using this product, he obtained a new represen-

tation for the gamma function. Oscar Schlömilch (1823–1901), a student of Dirichlet,
published this result in 1843, taking an integral of Dirichlet as a starting point of the
proof. Schlömilch’s work was based on the evaluation of definite integrals. In 1856,
Weierstrass gave a foundation to the theory of the gamma function by defining it in
terms of an infinite product. In fact, the ideas of this paper inspired him to construct
entire functions with a prescribed sequence of zeros.

The gamma function is one of the basic special functions, cropping up again and
again. Consequently, mathematicians have tried to derive its properties from several
different points of view. In 1930, Emil Artin observed that the concept of logarithmic
convexity, used by Bohr and Mollerup to prove the equivalence of the product and
integral representations of the gamma function, could be employed to characterize
and develop the properties of this function. While Artin worked with real variables, in
1939 Helmut Wielandt gave a complex analytic characterization. The defining property
other than the obvious f (z+1)= zf (z)was that f (z)was bounded in the vertical strip
1 ≤ Rez < 2.

23.2 Stirling: �(1/2) by Newton–Bessel Interpolation

James Stirling gave a remarkable numerical evaluation of �(1/2). He tabulated the
base 10 logarithms of the twelve numbers 5!,6!, . . . ,16! and then applied the Newton-
Bessel interpolation formula to obtain the middle value (21/2)!. Then by successive
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9A 7A 5A 3A 1A O A1 A3 T A5 A7 A9

Figure 23.1. Stirling: gamma values by interpolation.

division, he computed �(1/2)= (−1/2)! to ten decimal places and recognized it to be√
π . In the Methodus Differentialis, proposition 20, Stirling described the interpolation

formula:
He first supposed an even number of equidistant ordinates and, using a diagram

similar to Figure 23.1, he denoted them 9A, 7A, 5A,. . . ,A5, A7, A9. Note that these
values refer to heights of the line segments. He called 1A and A1 the middle values
and set A to be their sum. Thus, he had nine differences of these ten numbers, such
as 7A− 9A, 5A− 7A,. . . ,A9 −A7. He called the middle difference a. Taking the
eight differences of these nine differences, he denoted the sum of the middle two
terms as B. Next, Stirling called the middle term of the seven differences of the eight
second differences b, and so on. He took O to be the midpoint of 1A and A1 and let
T be an arbitrary ordinate; he let z/2 be the ratio of the distance between O and that
point whose ordinate was T , and the distance between 1A and A1. Note that this last
distance is also the distance between any two successive ordinates. Stirling wrote the
formula as

T = A+ az
2

+ 3B+ bz
2

× z2 − 1

4 · 6 + 5C+ cz
2

× z2 − 1

4 · 6 × z2 − 9

8 · 10

+ 7D+ dz
2

× z2 − 1

4 · 6 × z2 − 9

8 · 10
× z2 − 25

12 · 14

+ 9E+ ez
2

× z2 − 1

4 · 6 × z2 − 9

8 · 10
× z2 − 25

12 · 14
× z2 − 49

16 · 18
+·· · . (23.16)

Stirling also noted that z was positive when T was on the right-hand side of the middle
pointO, as in Figure 23.1, and negative when it lay on the left-hand side. To write this
in modern form, set

1A= f
(
s− h

2

)
, A1 = f

(
s+ h

2

)
, 2A= f

(
s− 3

2
h

)
, A2 = f

(
s+ 3

2
h

)
, etc.
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Then the Newton–Bessel formula is given by

f

(
s+

(
x− 1

2

)
h

)
= 1

2

(
f

(
s− h

2

)
+f

(
s+ h

2

))
+
(
x− 1

2

)
,f

(
s− h

2

)
+ x(x− 1)

2!
1

2

(
,2f

(
s− 3h

2

)
+,2f

(
s− h

2

))
+ x(x− 1)(x− 1/2)

3! ,3f

(
s− 3h

2

)
+·· · . (23.17)

Stirling’s expression is obtained by setting z= 2x−1 and combining pairs of terms in
(23.17).

In Example 2 of Proposition 21, he explained his approach to the evaluation of �(x)
for x > 0:

Let the series [sequence] to be interpolated be 1,1,2,6,24,120,720, etc. whose terms are generated
by repeated multiplication of the numbers 1,2,3,4,5, etc. Since these terms increase very rapidly,
their differences will form a divergent progression, as a result of which the ordinate of the parabola
does not approach the true value. Therefore, in this and similar cases I interpolate the logarithms
of the terms, whose differences can in fact form a rapidly convergent series, even if the terms
themselves increase very rapidly as in the present example.

Stirling interpolated the sequence

ln 0!, ln 1!, ln 2!, . . . , ln n!, ln (n+ 1)!, . . . .
The first difference would be

ln (n+ 1)!− ln n! = ln (n+ 1);
the second difference would be written as

ln (n+ 1)− ln n= ln

(
1+ 1

n

)
≈ 1

n
;

and the third difference would be written as

ln (n+ 1)− 2ln (n)+ ln (n− 1)= ln

(
1− 1

n2

)
≈− 1

n2
.

Thus, we can see that the successive differences get small rapidly when n is large
enough, though ln n! increases. This means that if one desires to find the value of
�(n+ 1) for a small value, n = 1

2 , then one must first compute ln �(n+ 1) for a
larger value of n by the method of differences and then apply the functional equation
�(n+ 1) = n�(n). Stirling thought that the interpolating function must satisfy the
same functional relation as the successive terms of the original sequence. In fact, in
Proposition 16 of his book, he attempted to explain why this must be so. Stirling then
continued:

Now I propose to find the term which stands in the middle between the first two 1 and 1. And
since the logarithms of the initial terms have slowly convergent differences, I first seek the term
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standing in the middle between two terms which are sufficiently far removed from the beginning,
for example, that between the eleventh term 3628800 and the twelfth term 39916800: and when
this is given, I may go back to the term sought by means of Proposition 16. And since there are
some terms located on both sides of the intermediate term which is to be determined first, I set up
the operation by means of the second case of Proposition 20.

Actually, Stirling worked with log10 since the logarithmic tables were often in base
10. He therefore took the twelve known ordinates to be log10 �(

1
2 (z+ 23)) for z =

±1,±3,±5, ±7,±9, and ±11 and used Newton-Bessel to find the value at z = 0.
From this he found �(11.5) and after successive division by 10.5,9.5, . . ., down to
1.5, he computed �( 3

2 ) to ten decimal places. After this amazing calculation Stirling
commented, “From this is established that the term between 1 and 1 [referring to 0! and
1!] is .8862269251, whose square is .7853 . . . etc., namely, the area of a circle whose
diameter is one. And twice that, 1.7724538502, namely the term which stands before
the first principal term by half the common interval, is equal to the square root of the
number 3.1415926 . . . etc., which denotes the circumference of a circle whose diameter
is one.”

Here Stirling gave the value of �( 1
2 ), obtained from �( 3

2 ) = 1
2�(

1
2 ). His value for

�( 3
2 ) is incorrect only in the tenth decimal place; when rounded, the tenth place should

be 5 instead of 1.

23.3 Euler’s Evaluation of the Beta Integral

Euler followed Wallis quite closely in his paper of 1730. He computed the integral
below by expanding (1− x)n as a series and integrating term by term:∫ 1

0
xe(1− x)ndx = 1

e+ 1
− n

1 · (e+ 2)
+ n(n− 1)

1 · 2(e+ 3)
− n(n− 1)(n− 2)

1 · 2 · 3(e+ 4)
+ etc.

He checked that for n= 0,1,2,3 the results were

1

e+ 1
,

1

(e+ 1)(e+ 2)
,

1 · 2
(e+ 1)(e+ 2)(e+ 3)

,
1 · 2 · 3

(e+ 1)(e+ 2)(e+ 3)(e+ 4)
.

From this he concluded that the value of the integral in the general case was

1 · 2 · 3 · · ·n
(e+ 1)(e+ 2) · · ·(e+n+ 1)

.

When e= f/g, he wrote

f + (n+ 1)g

gn+1

∫ 1

0
xf/g(1− x)ndx = 1 · 2 · 3 · · · ·n

(f +g)(f + 2g) · · ·(f +ng) . (23.18)

Euler then observed that l’Hôpital’s rule, or rather their teacher Johann Bernoulli’s rule,
gave

lim
x→0

1− xg
g

=− lnx,
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and he wrote this as 1−x0

0 =−lx. He changed x to xg in (23.18) to get

(f + (n+ 1)g)
∫ 1

0
xf+g−1

(
1− xg
g

)n
dx = 1 · 2 · 3 · · · ·n

(f +g) · · ·(f +ng) .

Next he set f = 1 and took the limit as g→ 0, or as he wrote, set f = 1 and g = 0 to
obtain ∫ 1

0
(− lnx)ndx = 1 · 2 · 3 · · · ·n. (23.19)

Euler then concluded that when n= 1
2 , Wallis’s result gave the value of the integral to

be
√
π/2. In his first paper, he used Wallis’s result to evaluate

∫ 1
0 (− lnx)

1
2 dx, but gave

no independent derivation.
In all of the eighteenth century, there was no greater master than Euler in this area

of mathematics. His method of evaluating the definite integral (23.19) by taking a
limit was completely new. In the course of his career, Euler gave several methods for
computing definite integrals. Of course, it was only in the nineteenth century that his
methods were fully justified.

Several proofs of (23.10) follow immediately from formulas appearing in Euler’s
papers. He did not explicitly state this result very often, perhaps because he had not
developed a convenient notation for �(x). In his simple proof published in 1772, Euler
used the products for �(x) and sinπx: He let

[m] = 1 · 2m
1+m · 21−m3m

2+m · 31−m · 4m
3+m etc.

Then

[−m] = 1 · 2−m

1−m · 21+m3−m

2−m · 31+m · 4−m

3−m etc.,

[m][−m] = 1

1−m2
· 22

22 −m2
· 32

32 −m2
· etc. = πm

sin πm
. (23.20)

The last equation followed from the infinite product for sin x. Here Euler used the
symbol [m] for �(m+ 1) but its use was merely provisional.

Euler did not prove (23.9) in his first paper on the gamma function, but the second
paper, presented to the PetersburgAcademy in 1739, contained an argument upon which
a proof can be worked out. He started with the observation that∫ 1

0
xm−1(1− xnq) pq dx = m+ (p+ q)n

m

∫ 1

0
xm+nq−1(1− xnq) pq dx. (23.21)

Wallis had stated a similar functional relation without proof, but with the development
of calculus, this could easily be proved by using integration by parts. In this paper,
Euler wrote that the result was easy to prove, and when he returned to the subject over
three decades later, he provided the details, revealing his explanation of the technique
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of integration by parts. Euler supposed∫
xf−1(1− xg)mdx =A

∫
xf−1(1− xg)m−1dx+Bxf (1− xg)m. (23.22)

He took the derivative to get

xf−1(1− xg)m =Axf−1(1− xg)m−1 −Bmgxf+g−1(1− xg)m−1 +Bf xf−1(1− xg)m,
or

1− xg =A−Bmgxg+Bf (1− xg)
=A−Bmg+B(f +gm)(1− xg).

Thus,

A−Bmg = 0 and B(f +mg)= 1, or

A= mg

f +gm, and B = 1

f +mg .

Next, equation (23.21) followed from (23.22) by choosing the parameters appropriately.
Euler applied the functional relation infinitely often to arrive at∫ 1

0
xm−1(1− xnq) pq dx =

(m+ (p+ q)n)(m+ (p+ 2q)n) · · ·(m+ (p+∞q)n)
m(m+nq)(m+ 2nq) · · ·(m+∞nq)

×
∫ 1

0
xm+∞nq−1(1− xnq) pq dx. (23.23)

We note that the infinite product diverges and the integral on the right-hand side van-
ishes. We can, however, define the right-hand side as a limit. Let us continue to go along
with Euler, who followed Wallis again by taking another integral similar to the one on
the left-hand side of (23.23) but which could be exactly evaluated. He took m= nq to
obtain

1

(p+ q)n =
∫ 1

0
xnq−1(1− xnq) pq dx

= (nq+ (p+ q)n)(nq+ (p+ 2q)n) · · ·(nq+ (p+∞q)n)
nq(2nq)(3nq) · · ·(∞nq)

×
∫ 1

0
xnq+∞nq−1(1− xnq) pq dx. (23.24)

Euler then observed that if k was an infinite number and α finite, then∫ 1

0
xk(1− xnq) pq dx =

∫ 1

0
xk+α(1− xnq) pq dx. (23.25)
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So, dividing equation (23.23) by equation (23.24), the integrals on the right-hand side
canceled, and the result was

∫ 1

0
xm−1(1− xnq) pq dx

= 1

(p+ q)n · nq(m+ (p+ q)n) · 2nq(m+ (p+ 2q)n) · 3nq(m+ (p+ 3q)n) · · ·
m(p+ 2q)n(m+nq)(p+ 3q)n(m+ 2nq) · · · .

Replacing n by n/q, the form of the relation became

∫ 1

0
xm−1(1− xn) pq dx

= 1

(p+ q)n · 1(mq+ (p+ q)n)
m(p+ 2q)

· 2(mq+ (p+ 2q)n)

(m+n)(p+ 3q)
· 3(mq+ (p+ 3q)n)

(m+ 2n)(p+ 4q)
· · · .
(23.26)

This was Euler’s final result, equivalent to (23.9). Observe that if we set n= q = 1 and
then replace p by n− 1, we get

∫ 1

0
xm−1(1− x)n−1dx

= 1 · (m+n) · 2 · (m+n+ 1) · 3 · (m+n+ 2) · · ·
n ·m · (n+ 1) · (m+ 1) · (n+ 2) · (m+ 2) · · ·

= lim
s→∞

(
s!sn

n(n+ 1) · · ·(n+ s) ·
s!sm

m(m+ 1) · · ·(m+ s) ·
(m+n) · · ·(m+n+ s)

s!sm+n
)

= �(n)�(m)

�(m+n) . (23.27)

Also note that, since both sides of (23.25) are zero, we have to understand Euler to
mean that the ratio of the two sides tends to 1 as k→∞.

By looking at the infinite product in the last equation from another viewpoint, we
get a different infinite product for the gamma function. In 1848, more than a century
after Euler, the English scholar and mathematician Francis W. Newman (1805–1897)
presented this result:

�(m)= e−γm

m

∞∏
k=1

(
1+ m

k

)−1
em/k, (23.28)

where γ was Euler’s constant defined by

γ = lim
k→∞

(1+ 1

2
+ 1

3
+·· ·+ 1

k
− ln k). (23.29)
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This representation of the gamma function is sometimes attributed to Weierstrass, who
defined the function by a similar infinite product in 1856. In fact, the German mathe-
matician Schlömilch discovered (23.28) even earlier, in 1843; his proof appears in the
exercises. Newman wrote the product in (23.27) as

m+n
mn

· 1+ (m+n)
1+m · 1+n · 1+ 1

2 (m+n)
1+ 1

2m · 1+ 1
2n

· 1+ 1
3 (m+n)

1+ 1
3m · 1+ 1

3n
· · ·

and then observed that the product

m(1+m)(1+ 1

2
m)(1+ 1

3
m) · · ·

was divergent because its logarithm was

lnm+ (1+ 1

2
+ 1

3
+·· ·)m− 1

2
(1+ 1

22
+ 1

32
+·· ·)m2 + 1

3
(1+ 1

23
+·· ·)m3 −·· ·

and the coefficient ofmwas a divergent series. To remove this defect, he defined a new
product,

m · 1+m
em

· 1+ 1
2m

e
1
2m

· 1+ 1
3m

e
1
3m

· · · · , (23.30)

whose logarithm did not have this divergent part, so that the product converged. He
also observed that (23.30) was meaningful when m was a complex number. He next
defined �(m) by equation (23.28). It then followed immediately from (23.27) and this
definition that ∫ 1

0
xm−1(1− x)n−1dx = �(m)�(n)

�(m+n) ,

where Re m> 0 and Re n > 0 would be required for the convergence of the integral.
The Newman-Schlömilch product (23.30) is not difficult to derive from Euler’s product
(23.1).

23.4 Gauss’s Theory of the Gamma Function

Gauss’s work on the gamma function was marked by his systematic approach and a
greater sense of rigor than was earlier practiced. He discussed the convergence of series
and products but did not justify changing the order of limits, or term-by-term integration
of infinite series. He started with the finite product

V(k,z)= 1 · 2 · 3 · · ·k
(z+ 1)(z+ 2) · · ·(z+ k)k

z, (23.31)
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where k was a positive integer and z a complex number not equal to a negative integer.
He first proved that the limit as k→∞ existed. For this purpose, he noted that

V(k+n,z)=V(k,z)
(
1− 1

k+1

)−z
1+ z

k+1

· · ·
(
1− 1

k+n
)−z

1+ z

k+n
, (23.32)

and that the logarithm of the product written after V(k,z) remained finite as n→∞.
This proved that the limit existed.

Wallis and Euler had perceived the significance of the gamma function for the eval-
uation of certain definite integrals. Gauss’s important contribution here was to use the
gamma function to sum series; some early hints of this also appeared in the works of
Stirling, Euler, and Pfaff. Gauss’s insight opened up the subject of summation of series
of the hypergeometric type. Moreover, Gauss used (23.11) to establish the basic results
on the gamma function. Interestingly, in this connection Gauss made use of two series
discovered by Newton while he was a student at Cambridge:

arcsin x = x+
1
2

1!
x3

3
+

1
2 · 3

2

2!
x5

5
+

1
2 · 3

2 · 5
2

3!
x7

7
+·· · and

sin nθ = nsin θ − n(n2 − 12)

3! sin3 θ + n(n2 − 12)(n2 − 32)

5! sin5 θ −·· · ,

where n was not necessarily an integer. Gauss’s analysis of the convergence of the
hypergeometric series showed that the first formula was true for |x| ≤ 1 and the second
for |θ | ≤ π/2. By contrast, Newton took a much more cavalier approach toward con-
vergence questions. He is known to have discussed the convergence of the geometric
series on one occasion, but his remarks contained no new insights. To write (23.11) in
a compact form, we employ the modern notation for a shifted factorial:

(a)n = a(a+ 1)(a+ 2) · · ·(a+n− 1), forn > 0,

= 1, forn= 0. (23.33)

We can now write

∞∑
n=0

(a)n(b)n

n!(c)n = �(c)�(c− a− b)
�(c− a)�(c− b), (23.34)

when Re(c−a−b) > 0. To obtain the value of �(1/2), Gauss took x = 1 in Newton’s
series for arcsinx to get

π

2
=

∞∑
n=0

(1/2)n(1/2)n
n!(3/2)n = �(3/2)�(1/2)

�(1)�(1)
= 1/2(� (1/2))2 (23.35)

or �(1/2)=√
π. (23.36)
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He then derived Euler’s reflection formula (23.10) by taking θ = π

2 in Newton’s series
for sin nθ where n was any real number. In that case,

sin
nπ

2
= n− n(n− 1)(n+ 1)

2 · 3 + n(n− 1)(n+ 1)(n− 3)(n+ 3)

2 · 3 · 4 · 5 · · ·

= n
∞∑
k=0

(−n+1
2 )k(

n+1
2 )k

k!(3/2)k

= n �(3/2)�(1/2)

�(3/2+n/2− 1/2)�(3/2−n/2− 1/2)

= nπ

2�(1+n/2)�(1−n/2) . (23.37)

Note that in the last two steps, (23.36) and (23.34) were employed. Gauss next set x= n

2
in (23.37) to obtain

�(1+ x)�(1− x)= πx

sinπx
or (23.38)

�(x)�(1− x)= π

sinπx
. (23.39)

Finally, to derive (23.9), he wrote∫ 1

0
xm−1(1− x)n−1 dx

=
∫ 1

0
xm−1(1− (n− 1)x+ (n− 1)(n− 2)

2! x2 −·· ·)dx

= 1

m
− n− 1

m+ 1
+ (n− 1)(n− 2)

2!(m+ 2)
− (n− 1)(n− 2)(n− 3)

3!(m+ 3)
+·· ·

= 1

m

[
1+ (−n+ 1)m

m+ 1
+ (−n+ 1)(−n+ 2)m(m+ 1)

2!(m+ 1)(m+ 2)
+·· ·

]
= 1

m
· �(m+ 1+n− 1−m)�(m+ 1)

�(m+ 1+n− 1)�(m+ 1−m) =
�(m)�(n)

�(m+n) . (23.40)

Gauss derived the integral representation for the gamma function by setting y = nx in
(23.40), where n was an integer, to obtain∫ n

0
ym−1

(
1− y

n

)n
dy = n!nm−1

m(m+ 1) · · ·(m+n− 1)
.

The limit as n→∞ gave ∫ ∞

0
ym−1e−ydy = �(m),

a result also due to Euler. Gauss did not justify that limn→∞
∫ = ∫

limn→∞ in this
situation.
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Gauss also defined a new function P(z), given by

P(z)= d

dz
ln�(z+ 1)= �′(z+ 1)

�(z+ 1)
. (23.41)

He observed that P(z), the digamma function, was almost as remarkable a function as
�(z) and noted some of its more important properties. See the exercises for some of
these properties.

23.5 Poisson, Jacobi, and Dirichlet: Beta Integrals

The early nineteenth-century mathematicians, striving to better understand how to
manipulate definite integrals, used them to give new proofs of already known properties
of the gamma and beta integrals. Poisson, Jacobi, and Dirichlet showed how double
integrals could be employed to evaluate Euler’s beta integral (23.9). It is interesting
to see that Poisson made a change of variables in the double integral one variable at a
time, while Jacobi changed from one pair of variables to another. Poisson’s derivation
appeared in papers of 1811 and 1823; Jacobi’s proof was published in 1833. In 1841,
Jacobi wrote his important paper on functional determinants or Jacobians (so called by
J. J. Sylvester) from which arose the change of variables formula for n-dimensional
integrals. Around 1835, the Russian mathematician M. Ostrogradski gave a formal
derivation of the general change of variables formula.

In Poisson’s evaluation of the beta integral, we first observe that the substitution
t = 1/(1+ s) gives ∫ 1

0
tp−1(1− t)q−1dt =

∫ ∞

0

sq−1ds

(1+ s)p+q . (23.42)

Euler knew this, but Poisson also noted that the integrals converged if p and q were
real and positive, or if p and q were complex with positive real parts. Poisson started
by multiplying the integrals for �(p) and �(q) to get

�(p)�(q)=
∫ ∞

0

∫ ∞

0
e−xe−yxp−1yq−1dxdy. (23.43)

He then substituted xy and xdy for y and dy, followed by x/(1+ y) and dx/(1+ y)
in place of x and dx, to obtain

�(p)�(q)=
∫ ∞

0

∫ ∞

0

e−xxp+q−1yq−1

(1+ y)p+q dxdy

=
∫ ∞

0
e−xxp+q−1dx

∫ ∞

0

yq−1 dy

(1+ y)p+q

= �(p+ q)
∫ ∞

0

yq−1 dy

(1+ y)p+q .
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This proved (23.9). In 1833 Jacobi gave a different substitution. He set x+y = r, x =
rw, so that r ranged from 0 to ∞ and w from 0 to 1. He then noted that

dx dy = rdr dw, (23.44)

so that the change of variables from x,y to r,w in (23.43) gave

�(p)�(q)=
∫ ∞

0
e−r rp+q−1 dr

∫ 1

0
wp−1(1−w)q−1 dw.

He did not explain how he obtained (23.44), probably because he took it to be well
known.

We note that Poisson gave the conditions for convergence of the integrals, reflecting
the increasing awareness among mathematicians that rigor was important. In fact, the
works of Gauss, Cauchy, and Abel on infinite series contain the first significant expres-
sions of this rigor. And Dirichlet was particularly attentive to questions of rigor in his
important work on integrals, both in papers and in lectures. For example, he discussed
the conditions, such as absolute convergence, for changing the order of integration in
a double integral.

Dirichlet’s evaluation of Euler’s integral and his proof of Gauss’s multiplication
formula using integrals are both given in the exercises at the end of this chapter. Here
we mention a multivariable extension of Euler’s integral presented by Dirichlet to the
Berlin Academy in 1839:∫

· · ·
∫
x
α1−1
1 x

α2−1
2 · · ·xαn−1

n dx1dx2 · · ·dxn = �(α1)�(α2) · · ·�(αn)
�(1+α1 +·· ·+αn) , (23.45)

whereαi > 0 and the integral is taken over the region
∑n

i=1 xi ≤ 1, xi ≥ 0, i= 1, 2, . . .n.
Note that this formula is an iterated form of Euler’s beta integral; in 1941, Selberg
discovered a genuine multidimensional generalization of Euler’s beta integral. Also
note that the use of Euler’s beta integral yields a new proof of Euler’s reflection formula.
For this purpose, take q = 1−p in the infinite integral (23.42). Then we have

�(p)�(1−p)=
∫ ∞

0

sp−1

1+ s ds.

So if we prove that the value of the integral is π/sin pπ , we have our proof. Euler
himself evaluated this integral in 1738 for p a rational number. Dedekind included an
improved and streamlined version of this method in his doctoral thesis of 1852. He let

B =
∫ ∞

0

x
m
n −1

x+ 1
dx = n

∫ ∞

0

xm−1

xn+ 1
dx. (23.46)

Then xn+ 1 = (x− ζ )(x− ζ 3) · · ·(x− ζ 2n−1),

where ζ = eπi/n. By a partial fractions expansion

xm−1

xn+ 1
= −1

n

n∑
k=1

ζ (2k−1)m

x− ζ 2k−1
.
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From this, Dedekind could conclude

n

∫
xm−1

xn+ 1
dx =−

n∑
k=1

ζm(2k−1) log(ζ 2k−1 − x).

The last expression was easy to evaluate at x = 0 but not at x = ∞. So Dedekind
rewrote this expression as

−
n∑
k=1

ζm(2k−1) log

(
ζ 2k−1

x
− 1

)
− log x

n∑
k=1

ζm(2k−1). (23.47)

This last sum was zero because∑
ζm(2k−1) = ζm

∑
(ζ 2m)k−1 = ζm ζ

2mn− 1

ζ 2m− 1
= 0.

Thus,

n

∫
xm−1

xn+ 1
dx =−

n∑
k=1

ζm(2k−1) log

(
ζ 2k−1

x
− 1

)
. (23.48)

He next used this relation at x =∞ and the previous one at x = 0 to get

B =
n∑
k=1

ζm(2k−1) log(ζ 2k−1)= πi

n

n∑
k=1

(2k− 1)ζm(2k−1) = π

sin(mπ/n)
.

Dedekind remarked that his use of the second relation to evaluate the integral at∞made
his proof shorter than the ones found in integral calculus textbooks. It is interesting to
compare Dedekind’s derivation with that of Euler, (13.38). Dedekind gave three other
evaluations of this integral. One of these used Cauchy’s new calculus of residues.
Another proof, included in the exercises, employed differential equations, and was an
original contribution of Dedekind. In the third proof, given earlier by Euler, Dedekind
expressed the integral as a partial fractions expansion.

23.6 Bohr, Mollerup, and Artin on the Gamma Function

In 1922, the important Danish language textbook on analysis was published, written
by colleagues at the Polytecknisk Lareanstat, Harald Bohr (1887–1951) and Johannes
Mollerup (1872–1937). Bohr gained early fame in 1908 as a member of his country’s
silver-medal Olympic soccer team; he worked on the Riemann zeta function and did his
most original mathematical work in creating the theory of almost periodic functions.
Bohr and Mollerup’s four-volume work, Laerebog i Matematisk Analyse, published in
various editions, had a profound effect on the teaching of analysis in Denmark, greatly
raising the standards. In this work, they applied the idea of logarithmic convexity to
prove that the gamma integral equaled the infinite product, that is,∫ ∞

0
e−xxm−1dx = lim

n→∞
n!nm−1

m(m+ 1) · · ·(m+n− 1)
. (23.49)
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They started with the right-hand side of (23.49) as the definition of�(x). They relied on
a definition of the Danish mathematician Johan Jensen of a convex function as a function
φ(x) with the property that for every pair of numbers x1 < x3 and x2 = (x1 + x3)/2

φ(x2)≤ (φ(x1)+φ(x3))/2. (23.50)

When φ was continuous, Jensen noted that (23.50) was equivalent to

φ(tx1 + (1− t)x3)≤ tφ(x1)+ (1− t)φ(x3), 0< t < 1 (23.51)

for all pairs of numbers x1 < x3. We note that Jensen’s definition of convexity arose
from a study of inequalities.

In proving (23.49), we follow closely the Bohr–Mollerup notation and argument; by
contrast, textbooks usually follow the treatment of Artin. The result we now refer to as
the Bohr–Mollerup theorem was not explicitly stated by Bohr and Mollerup but follows
from their argument. Bohr and Mollerup denoted the integral in (23.49) by W(m) and
then observed thatW(x+1)= xW(x) andW(1)= 1. Moreover, by the Cauchy-Schwarz
inequality (

W

(
x1 + x3

2

))2

≤W(x1)W(x3), 0< x1 < x3. (23.52)

Observe that this result is equivalent to the logarithmic convexity of W(x) because
W(x) is continuous and (23.52) implies

lnW

(
x1 + x3

2

)
≤ 1

2
(lnW(x1)+ lnW(x3)) .

Following Bohr and Mollerup, write x2 = (x1 + x3)/2. They then set

P(x)=W(x)/�(x) (23.53)

where �(x) was defined by (23.2). It followed that P(1)= 1 and

P(x+ 1)= P(x) for x > 0. (23.54)

Bohr and Mollerup then used (23.52) to show that P(x) ≡ 1. For this purpose, they
noted that when n was an integer,

lim
n→∞

�(x1 +n)�(x3 +n)
(�(x2 +n))2 = 1, (23.55)

because

lim
n→∞

�(n+ x)
nx−1n! = lim

n→∞
(n− 1+ x)(n− 2+ x) · · ·x�(x)

nx−1n! = 1.

Now by the periodicity of P(x) given in (23.54), they had

P(x1)P (x3)

(P (x2))2
= P(x1 +n)P (x3 +n)

(P (x2 +n))2 .
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By letting n→∞ in this equation and using (23.52) and (23.55), they could see that

1 ≤ P(x1)P (x3)

(P (x2))2
. (23.56)

Next, they supposed P(x) was not a constant. Then, because P(x + 1) = P(x), it
was possible to choose x1 < x2 such that P(x1) < P (x2). They took the sequence
x1 <x2 <x3 <x4 < · · · such that the difference between two consecutive numbers was
always the same, that is, equal to x2 − x1. This meant that if xn−1 < xn < xn+1 was a
part of the above sequence, then xn = (xn−1 + xn+1)/2. By (23.56), they obtained

1<
P(x2)

P (x1)
≤ P(x3)

P (x2)
≤ P(x4)

P (x3)
≤ ·· · . (23.57)

These inequalities implied by induction that P(xn)/P (x1) ≥ (P (x2)/P (x1))
n. They

could conclude that P(xn)→∞ as n→∞. They noted that P(x) was continuous on
[1,2] and hence bounded on that interval. So they got a contradiction by the periodicity
of P . Thus, P(x) was a constant, necessarily equal to 1, and their proof was complete.

Emil Artin (1898–1962) saw that the Bohr–Mollerup proof of (23.49) could be sim-
plified if (23.51) instead of (23.50) were used for convexity. Artin’s argument applied
Hölder’s inequality to show that

ln(W(tx1 + (1− t)x3))≤ t ln W(x1)+ (1− t) ln W(x3), for 0< t < 1.

He then proved more generally that if f (0)= 1, f (x+1)= xf (x), and lnf (x) satisfied
(23.51), then

f (x)= lim
n→∞

n!nx−1

x(x+ 1) · · ·(x+n− 1)
.

Artin’s proof was quite short. Note that by the first two conditions, lnf (n)= ln(n−1)!,
when n was a positive integer. Next, let 0 < x ≤ 1. With x1 = n, x3 = x + n+ 1 and
t = x/(1+ x) in (23.51) Artin had

(x+ 1) ln n! ≤ x ln (n− 1)!+ ln f (n+ 1+ x).
This simplified to

n!nx−1

x(x+ 1) · · ·(x+n− 1)
· n

n+ x ≤ f (x).

Similarly, with x1 = n+ 1, x3 = n+ 2 and t = 1− x, he had, after simplification,

f (x)≤ n!(n+ 1)x

x(x+ 1) · · ·(x+n) =
n!nx−1

x(x+ 1) · · ·(x+n− 1)
·
(
n+ 1

n

)x−1

· n+ 1

n+ x .

The two inequalities yielded the required formula when n→∞. Artin was a number
theorist and algebraist. In algebra, he was a disciple of Emmy Noether (1882–1935) and
advocated a very abstract point of view. It is therefore interesting to see him make this
contribution to special functions. Some of his other results in this area are mentioned
in the exercises. In addition, the reader may refer to chapter 3, sections 2 and 4, for the
the use of logarithmic convexity by Wallis and Stieltjes.
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23.7 Kummer’s Fourier Series for ln �(x)

By an interesting application of definite integrals, in 1847 Kummer derived the Fourier
series for ln �(x). This formula is important in number theory, although Kummer’s
purpose was to obtain a new derivation for Gauss’s multiplication formula for the
gamma function. The latter can be written as

n−1∑
k=0

ln �

(
x+ k

n

)
= 1

2
(n− 1) ln 2π + 1

2
(1− 2nx) ln n+ ln �(nx). (23.58)

Kummer explained why he thought of the Fourier series in this connection. Suppose

f (x)=A0 + 2
∞∑
k=1

Ak cos 2kπx+ 2
∞∑
k=1

Bk sin 2kπx, for 0< x < 1, (23.59)

where Ak =
∫ 1

0
f (x)cos 2kπx dx, Bk =

∫ 1

0
f (x)sin 2kπx dx. (23.60)

Then
n−1∑
k=0

f

(
x+ k

n

)
= n

(
A0 + 2

∞∑
k=1

Ank cos 2knπx+ 2
∞∑
k=1

Bnk sin 2knπx

)
. (23.61)

Moreover, by denoting

F(x)=A0 + 2
∞∑
k=1

Ank cos 2kπx+ 2
∞∑
k=1

Bnk sin 2kπx,

the right-hand side of (23.61) was nF(nx). Thus, equation (23.61) was suggestive of
Gauss’s formula (23.58). So Kummer took f (x)= ln �(x) in (23.59). Then by Euler’s
reflection formula

ln �(x)+ ln �(1− x)= ln 2π − ln (2sin πx)

= ln 2π −
∞∑
k=1

cos 2kπx

k
, (23.62)

where the last relation followed from Euler’s Fourier series for ln(2sin πx). By (23.59),

ln �(x)+ ln �(1− x)= 2A0 +
∞∑
k=1

4Ak cos 2kπx

and hence, by (23.62),

A0 = 1

2
ln 2π, Ak = 1

4k
.

Kummer had to work harder to find Bk. He started with Plana’s formula

ln �(x)=
∫ 1

0

(
1− tx−1

1− t − x+ 1

)
dt

ln t
, x > 0. (23.63)
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This was an integrated form of Gauss’s formula for P(x). So he had

Bk =
∫ 1

0

∫ 1

0

(
1− tx−1

1− t − x+ 1

)
sin 2kπx

ln t
dt dx. (23.64)

Since
∫ 1

0
sin 2kπx dx = 0,

∫ 1

0
x sin 2kπx dx =− 1

2kπ

and
∫ 1

0
tx−1 sin 2kx dx = (1− t)2kπ

t ((ln t)2 + 4k2π 2)
,

Kummer reduced (23.64) to

Bk =
∫ 1

0

( −2kπ

t ((ln t)2 + 4k2π 2)
+ 1

2kπ

)
dt

ln t
.

Then, with t = e−2kπu,

Bk = 1

2kπ

∫ ∞

0

(
1

1+u2
− e−2kπu

)
du

u
.

When k = 1,

B1 = 1

2π

∫ ∞

0

(
1

1+u2
− e−2πu

)
du

u
.

Kummer then employed a result of Dirichlet; see exercise 3(b):

− γ

2π
= 1

2π

∫ ∞

0

(
e−u− 1

1+u
)
du

u
,

where γ was Euler’s constant. Therefore,

B1 − γ

2π
= 1

2π

∫ ∞

0

e−u− e−2πu

u
du+ 1

2π

∫ ∞

0

(
1

1+u2
− 1

1+u
)
du

u
.

The first integral equaled ln 2π and a change of variables t to 1/t showed that the value
of the second integral was 0. Thus,

B1 = γ

2π
+ 1

2π
ln 2π.

To find Bk, he observed that

kBk−B1 = 1

2π

∫ ∞

0

e−2πu− e−2kπu

u
du= 1

2π
ln k.

Thus, Bk = 1

2kπ
(γ + ln 2kπ), k = 1,2,3, . . . ,

and Kummer got his Fourier expansion:

ln �(x)= 1

2
ln 2π +

∞∑
k=1

cos 2πkx

2k
+ 1

π

∞∑
k=1

γ + ln 2π + 2ln k

2k
sin 2kπx.
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Note that Kummer’s formula is a particular case of the functional equation for the
Hurwitz zeta function.

23.8 Exercises

1. Show that by taking k = p+ q√−1, p > 0 in∫ ∞

0
xn−1e−kxdx = �(n)

kn
,

we get ∫ ∞

0
xn−1e−px cos qx dx = �(n)cos nθ

f n
and∫ ∞

0
xn−1e−px sin qx dx = �(n)sin nθ

f n
,

where f = (p2 + q2)1/2 and tan θ = q

p
.

Deduce that ∫ ∞

0
e−px

cos qx√
x
dx =

√
π

f

√
f −p

2
,∫ ∞

0
e−px

sin qx√
x
dx =

√
π

f

√
f +p

2
,∫ ∞

0

cos x√
x
dx =

√
π

2
,

∫ ∞

0

sin x√
x
dx =

√
π

2
,∫ ∞

0
e−px

sin qx

x
dx = θ, and

∫ ∞

0

sin x

x
dx = π

2
.

All these definite integrals appeared in Euler’s paper of 1781, though he had
evaluated some of them earlier by other methods. See Eu I-19, pp. 217–227.
Euler’s deductions were formal and he was the first to make use of complex
parameters in this way. Although he initially assumed the parameter p > 0,
he let p→ 0 to obtain the later integrals. He expressed this by setting p=0.
He had some reservations about presenting the final integral for (sin x)/x
but numerical computation convinced him of its correctness. This paper was
influential in the development of complex analysis by Cauchy. Legendre and
Laplace referred to it when extending its methods to evaluate other integrals
and these results motivated Cauchy to begin his work on complex integrals
in 1814.

2. If Euler found a formula interesting, he often evaluated it in more than one way.
Complete the details and verify the steps of the three methods he gave to show
that the integral

∫ π/2
0 ln sinφdφ =−π

2 ln 2.
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(a) Euler began by setting x = sinφ to get∫ 1

0

ln x√
1− x2

dx =
∫ 1

0

ln
√
(1− y2)√
1− y2

dy

= −
∫ 1

0

(
y2

2 + y4

4 + y6

6 +·· ·
)

√
1− y2

dy

= − π

2

(
1

22
+ 1 · 3

2 · 42
+ 1 · 3 · 5

2 · 4 · 62
+ 1 · 3 · 5 · 7

2 · 4 · 6 · 82
+·· ·

)
.

Euler showed that the sum of the series was ln 2. For this purpose, he
noted that by the binomial expansion∫ x

0

1

z

(
1√

1− z2
− 1

)
dz= 1

22
x2 + 1 · 3

2 · 42
x4 + 1 · 3 · 5

2 · 4 · 62
x6 + etc.

He applied the substitution v =√
1− z2 to evaluate∫

1

z
√

1− z2
dz=− ln

1+√
1− z2

z
+C.

Hence,
∫ x

0

1

z

(
1√

1− z2
− 1

)
dz= ln

2

1+√
1− x2

.

(b) In his second method, Euler started with a divergent series. He applied
the addition formula 2sin nθ sin θ = cos(n− 1)θ − cos(n+ 1)θ to get

cosθ

sin θ
= 2sin 2θ + 2sin 4θ + 2sin 6θ + 2sin 8θ + etc.

He integrated to obtain

ln sin θ =C− cos2θ − 1

2
cos4θ − 1

3
cos6θ − 1

4
cos8θ − etc. (23.65)

Then θ = π/2 gave C = − ln 2. Euler integrated again to obtain the
required result.

(c) Euler proved the more general formula∫ 1

0
xp−1X ln x dx =

∫ 1

0
xp−1Xdx

∫ 1

0

xp−1(xm− 1)

1− xn dx, (23.66)

where X = (1− xn)m−nn . The result in (a) and (b) would be obtained by
setting n= 2, m= p = 1. To prove (23.66), Euler set P = ∫ 1

0 x
p−1Xdx.

By an argument which gives (23.26), show that

P = n

m
· 2n

m+n · 3n

m+ 2n
· · · ·× p+m

p
· p+m+n

p+n · p+m+ 2n

p+ 2n
· etc.
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He then let p be the variable and m, n be constants to obtain

d P/dp

p
= 1

m+p − 1

p
+ 1

m+p+n − 1

p+n + 1

m+p+ 2n

− 1

p+n + etc.

Prove the result by showing how that this partial fractions expansion
equals

∫ 1

0

xp−1(xm− 1)

1− xn dx.

Euler actually worked with a product for P/Q where Q was an integral
similar to P . Lacroix (1819) gave the preceding simplification on p. 437.
These results are contained in Eu. I-18, pp. 23–50. This volume is full
of ingenious evaluations of definite integrals. Observe that (23.65) is the
Fourier series expansion of ln sin θ used by Kummer to obtain (23.62).
Also, Euler could have derived (23.65) without using divergent series by
expanding ln(1− e2iθ ). But Euler treated divergent series as very much a
part of mathematics, a view validated only in the twentieth century.

3. The following derivation of Gauss’s multiplication formula is due to Dirichlet
(1969), pp. 274–276. Verify the successive steps for Re a > 0:

(a)
∫∞

0 (e
−y − e−sy) dy

y
= ln s.

(b)

�′(a)=
∫ ∞

0
e−ssa−1 ln s ds

=
∫ ∞

0

dy

y

(
e−y

∫ ∞

0
e−ssa−1 ds−

∫ ∞

0
e−(1+y)ssa−1 ds

)
= �(a)

∫ ∞

0

dy

y

(
e−y − 1

(1+ y)a
)
. (23.67)

(c) d

da
ln �(a)= ∫ 1

0

(
e1−1/x − xa) dx

x(1−x) .
(d) Let

S = n
∫ 1

0

(
ne1−1/xn

1− xn − xna

1− x
)
dx

x
. Then

S =
n−1∑
k=0

d

da
ln �

(
a+ k

n

)
.
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(e) Change a to na in (c) and subtract the result from (d) to see that
S− d

da
ln �(na) is independent of a. Denote this quantity by p and integrate

to get

n−1∏
k=0

�

(
a+ k

n

)
= qpa�(na).

(f) Change a→ a+ 1/n in (e) to deduce that p = n−n.
(g) Euler’s formula (23.14) implies that q = (2π)n−1

2
√
n.

(h) Show that Euler’s formula (23.14) is obtained by applying �(x)�(1−x)=
π/sin πx.

4. Show that for suitably chosen constants a, b, c, and k,

(a)
∫∞

0 e−(c+z)yya−1dy = �(a)

(c+z)a .

(b)
∫∞

0 e−cyya−1
(∫∞

0 e−(k+y)zzb−1dz
)
dy = �(a)∫∞

0
e−kzzb−1

(c+z)a dz.

(c) �(b)
∫∞

0
e−cyya−1

(k+y)b dy = �(a)
∫∞

0
e−kzza−1

(c+z)a dz.

(d)
∫∞

0
ya−1

(1+y)a+b dy = �(a)�(b)

�(a+b) .

See Dirichlet (1969), vol. I, p. 278.
5. Use Dirichlet’s integral formula for �′(a)/�(a) (23.67) to show that for a > 0

γ + d

da
ln�(a+ 1)=

∫ 1

0

1− ya
1− y dy

=
(

1− 1

a+ 1

)
+
(

1

2
− 1

a+ 2

)
+
(

1

3
− 1

a+ 3

)
+·· · .

Deduce the infinite product for �(a):

�(a+ 1)= a�(a)= e−γ a ea

1+ a · ea/2

1+ a/2 · ea/3

1+ a/3 · · · .

For details, see Schlömilch (1843).
6. Show that Dirichlet’s integral formula, (23.67) can be obtained from Gauss’s

(23.72).
7. For 0< b < 1, set B(b)= ∫∞

0
tb−1

1+t dt . Show that∫ ∞

0

tb−1

st + 1
dt = Bs−b and∫ ∞

0

tb−1

t + s dt = Bs
b−1.

Deduce that

B
(sb−1 − s−b)
s− 1

=
∫ ∞

0

tb−1(t − 1)

(st + 1)(t + s) dt. (23.68)
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Observe that

B2 =
∫ ∞

0

1

s+ 1

(∫ ∞

0

tb−1

t + s dt
)
ds

=
∫ ∞

0

tb−1 ln t

t − 1
dt.

Deduce that ∫ y

1−y
B2dt =

∫ ∞

0

ty−1 − t−y
t − 1

dt.

From (23.68) obtain

B(b)

∫ b

1−b
[B(t)]2dt = 2

∫ ∞

0

tb−1 ln t

1+ t dt = 2B ′(b).

Observe that B(b)= B(1− b) and deduce that B ′(1/2)= 0,∫ b

1−b
[B(t)]2dt = 2

∫ b

1/2
[B(t)]2dt

and B(b)

∫ b

1/2
[B(t)]2dt = B ′(b).

Now show that B satisfies the differential equation BB ′′ − (B ′)2 = B4. Solve
the differential equation with initial conditions B(1/2)= π and B ′(1/2)= 0 to
obtain B = π cscπb. This is Dedekind’s evaluation of the Eulerian integral B,
a part of his doctoral dissertation. See Dedekind (1930), vol. 1, pp. 19–22 and
29–31.

8. Let c1, c2, . . . ,cn be positive constants and setf (x)= (x+c1)(x+c2) · · ·(x+cn).
Show that for 0< b < n∫ ∞

0

xb−1

f (s)
dx = π

sin bπ

n∑
k=1

cb−1
k

f ′(−ck) ,

where f ′ denotes the derivative of f . See Dedekind (1930), vol. 1, p. 24.
9. (a) Suppose that φ(x) is positive and twice continuously differentiable on 0<

x <∞ and satisfies (i) φ(x + 1) = φ(x) and (ii) φ
(
x

2

)
φ
(
x+1

2

) = dφ(x),
where d is a constant. Prove that φ is a constant.

(b) Show that�(x)�(1−x)sin πx satisfies the conditions of the first part of the
problem. Deduce Euler’s formula (23.10). This proof of Euler’s reflection
formula (23.10) is due to Artin (1964), chapter 4.

10. Suppose that f is a positive and twice continuously differentiable function on
0<x <∞ and satisfies f (x+1)= xf (x) and 22x−1f (x)f (x+ 1

2 )=
√
πf (2x).

Show that f (x)= �(x). See Artin (1964).
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11. Prove the following results of Gauss on the digamma function:

(a) For a positive integer n,

P(z+n)=P(z)+ 1

z+ 1
+ 1

z+ 2
+·· ·+ 1

z+n.

(b) P(0) = �′(1) = −γ = −0.57721566490153286060653. Euler computed
the constant γ correctly to fifteen decimal places by an application of the
Euler–Maclaurin summation formula. About twenty years later, in 1790,
the Italian mathematician, Lorenzo Mascheroni (1750–1800) computed γ
to thirty-two decimal places by the same method. To compute γ , Gauss gave
two asymptotic series forP(z), obtained by taking the derivatives of the de
Moivre and Stirling asymptotic series for ln(z+1). His value differed from
Mascheroni’s in the twentieth place and so he persuaded F. B. G. Nicolai,
a calculating prodigy, to repeat the computation and to extend it further.
Nicolai calculated to forty places, given by Gauss in a footnote, and verified
that Gauss’s computation was correct.

(c)

P(−z)−P(z− 1)= π cot πz. (23.69)

(d)

P(x)−P(y)=− 1

x+ 1
+ 1

y+ 1
− 1

x+ 2
+ 1

y+ 2
− 1

x+ 3
+ etc.

(e)

P(z)+P
(
z− 1

n

)
+P

(
z− 2

n

)
+·· ·+P

(
z− n− 1

n

)
= nP(nz)−n lnn.

(f)

P

(
−1

n

)
+P

(
−2

n

)
+·+P

(
−n− 1

n

)
=−(n− 1)γ −n ln n.

(g) For n an odd integer and m a positive integer less than n,

P
(
−m
n

)
=−γ + 1

2
π cot

mπ

n
− ln n

+
n−1∑
k=1

cos
2kmπ

n
ln

(
2− 2cos

kπ

n

)
. (23.70)
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(h) For n even,

P
(
−m
n

)
= ± ln 2− γ + 1

2
π cos

mπ

n
− ln n

+
n−2∑
k=1

cos
2kmπ

n
ln

(
2− 2cos

kπ

n

)
,

(23.71)

where the upper sign is taken for m even, and the lower for m odd.
(i)

P(t)=
∫ 1

0

(
− 1

ln x
− xt

1− x
)
dx, t >−1. (23.72)

In unpublished work, Gauss explained how P(z) could be used to express
the second independent solution of the hypergeometric equation in certain
special circumstances. See Gauss (1868–1927), vol. 3, pp. 154–160.

12. Prove that

1

2πi

∫ i∞

−i∞
�(a+ s)�(b+ s)�(c− s)�(d− s)ds

= �(a+ c)�(a+ d)�(b+ c)�(b+ d)
�(a+ b+ c+ d) ,

where the path of integration is curved so that the poles of �(c− s)�(d− s) lie
on the right of the path and the poles of �(a+ s)�(b+ s) lie on the left. This
formula is due to Barnes (1908); it played an important role in his theory of
the hypergeometric function. It is an extension of Euler’s beta integral formula
(23.9), as pointed out by Askey. This can be seen by replacing b and d by b− it
and d+ it , respectively, and then setting s = tx and letting t→∞.

13. Show that if n is a positive integer and α,β,γ are complex numbers such that
Re α > 0, Re β > 0, and Re γ >−min(1/n,(Re α)/(n− 1), (Re β)/(n− 1)),
then ∫ 1

0
· · ·

∫ 1

0

n∏
i=1

(
xα−1
i (1− xi)β−1

) |,(x)|2γ dx1dx2 · · ·dxn

=
n∏
j=1

�(α+ (j − 1)γ )�(β+ (j − 1)γ )�(1+ jγ )
�(α+β+ (n+ j − 2)γ )�(1+ γ )

where ,(x)=
∏

1≤i<j≤n
(xi − xj ).

This multidimensional generalization of Euler’s beta integral was discovered by
Selberg around 1940; see Selberg (1989), vol. 1, pp. 204–213. He used it to
prove a generalization of some theorems of Hardy, Pólya, and Gelfond on entire
functions. Since Selberg’s formula did not become well known until the 1970s,



474 The Gamma Function

the theoretical physicists M. L. Mehta and F. J. Dyson conjectured and used the
following limiting case of Selberg’s formula: For Re γ >−1/n,∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

(
−1

2

n∑
i=1

x2
i

) ∏
1≤i<j≤n

|xi − xj |2γ dx1dx2 · · ·dxn

= (2π)n/2
n∏
j=1

�(γj + 1)

�(γ + 1)
.

For other applications of the Selberg integral, see Forrester and Warnaar (2008).
14. Suppose F is a holomorphic function in the right half complex plane Re z > 0.

Suppose also that F(1)= 1, F (z+ 1)= zF (z) and that F(z) is bounded in the
vertical strip 1 ≤ Re z < 2. Then F(z) = �(z) for Re z > 0. This uniqueness
theorem, useful for giving short proofs of several basic results on the gamma
function, was proved by Helmut Wielandt in 1939 and published by Konrad
Knopp in 1941. See Remmert (1996), who quotes a letter of Wielandt explaining
this and gives references.

15. Prove Dirichlet’s formula: Suppose c1, c2, c3, . . . is a sequence of complex
numbers which satisfy cn+k = cn. Suppose

∑∞
n=1

cn
ns

converges absolutely. Then

∞∑
n=1

cn

ns
= 1

�(s)

∫ 1

0

∑k

n=1 cnx
n−1

1− xk lns−1

(
1

x

)
dx.

This is the formula Dirichlet applied to the problem of primes in arithmetic
progressions. See Dirichlet (1969), vol. I, pp. 421–422.

16. Observe that for a < 1/2∫ 1

0
t

1
2−a(1− t) 1

2−adt = (�(1/2− a))2 /�(1− 2a).

Write the integrand as 22a−1(1− (1−2t)2)a−1/2, apply a change of variables, and
then use Euler’s reflection formula to obtain

√
π�(a)= 21−2a cos(aπ)�(2a) ·�

(
1

2
− a

)
.

This proof of the duplication formula is Legendre’s (1811–1817), vol. 1, p. 284.

23.9 Notes on the Literature

For Stirling’s work, see the English translation of Stirling’s Methodus Differentialis by
Tweddle (2003); see especially pp. 124–127 for the quoted passages. Tweddle has added
120 pages of notes to clarify and explain Stirling’s propositions in modern terms. See
Truesdell (1984), p. 345, for the quote concerning Goldbach. For the correspondence
between Euler and Goldbach, see vol. 1 of Fuss (1968). The second volume includes
the letters of D. Bernoulli, mentioned in the text. The integral formula for the gamma
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function (23.16) as well as the fractional derivatives (23.8) and (23.9) appear in Euler’s
1730–31 paper “De Progressionibus Transcendentibus seu Quarum Termini Generales
Algebraice dari Nequeunt.” See Eu. I-14, pp. 1–24, particularly pp. 12 and 23. Euler
treated the beta integral in several papers, some written in the 1730s and some when
he later returned to this subject, in the 1760s and 1770s. His integral calculus book of
1768, contained in Eu. I-11–13, presents a thorough treatment of this whole topic. The
evaluation of the beta integral as an infinite product, in the form given in the text, can
be found in his 1739 paper “De Productis ex Infinitis Factoribus Ortis.” See Eu. I-14,
pp. 260–90, especially pp. 282–84. For Euler’s reflection formula (23.20), refer to
Eu. I-17, pp. 316–357, particularly § 43. For Dedekind’s evaluation of the reflection
formula by means of an integration of a rational function, see Dedekind (1930), vol. I,
pp. 8–9. Euler included sections on the gamma function in his books on the differential
and integral calculus. His differential calculus (reprinted in Eu. I-10) has a chapter
titled “De Interpolatione Serierum” discussing infinite products related to the gamma
function. The evaluation of the beta integral is carried out in even more detail than in
the 1739 paper in his integral calculus (Eu. I-12). See also vol. 17.

The product for the gamma function can be found in Schlömilch (1843) and Newman
(1848). The journal containing Newman’s paper was a continuation of the Cambridge
Mathematical Journal and in 1848, the journal was edited by the mathematical physicist
William Thomson.

Gauss’s work on the gamma function appears in his paper on the hypergeometric
series, “Disquisitiones Generales Circa Seriem Infinitam . . . .” See Gauss (1863–1927),
vol. 3, pp. 123–162, especially pp. 144–152. For evaluations of the beta integrals by
using double integrals, see Poisson (1823), especially pp. 477–478 and Jacobi (1969),
vol. 6, pp. 62–63. For the multivariable iterated form of the beta integral (23.45),
see Dirichlet (1969), vol. I, p. 389; see Selberg (1989), vol. 1, pp. 204–213 for his
multidimensional generalization of the beta integral.

For a discussion of Kummer’s Fourier series expansion of ln�(x), see Andrews,
Askey, and Roy (1999), pp. 29–32. For the Bohr–Mollerup derivation of the gamma
integral as a product, see Bohr and Mollerup (1922), vol. III, pp. 149–164. Also see
Artin (1964), an English translation of his 1930 monograph. For more history of the
gamma function, see Davis (1959) and Dutka (1991).
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The Asymptotic Series for ln�(x)

24.1 Preliminary Remarks

Since the time of Newton, expressions involving the factorial appeared in the solutions
of combinatorial problems and as coefficients of some important power series. However,
good approximations for m! were obtained only around 1730 by the joint efforts of
Abraham de Moivre (1667–1754) and James Stirling (1692–1770), both working in
Britain. The story of their cooperation is fascinating. Although he was born in France,
de Moivre was a victim of religious discrimination there; he relocated to Britain as a
young man and worked there for the rest of his life. In 1721, de Moivre found a method
for converting the sum ln m! =∑m

k=1 lnk into an asymptotic series. Later in the 1720s,
Stirling introduced an improvement in de Moivre’s series and then gave a different
method. De Moivre’s work appeared in the Supplement to his Miscellanea Analytica
in 1730; Stirling’s series was published the same year in his Methodus Differentialis.
Stirling presented the formula, for s =m+ 1/2,

m∑
k=1

lnk = lnm! = s ln s+ 1

2
ln 2π − s− 1

24s
+ 7

2880s3
− etc. (24.1)

But de Moivre gave a slightly different form:

lnm! =
(
m+ 1

2

)
lnm+ 1

2
ln 2π −m+ 1

12m
− 1

360m3
+ 1

1260m5
− 1

1680m7
+ etc.

(24.2)

The approximation m! ∼ √
2πmm+1/2e−m is now known as Stirling’s approximation,

though it is a consequence of de Moivre’s series. Stirling’s series actually suggests the
approximation

m! ∼√
2π

(
m+ 1/2

e

)m+1/2

. (24.3)

476
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In fact, neither de Moivre nor Stirling explicitly stated either of these approximations.
It seems that the first appearance of the result called Stirling’s approximation occurred
in a letter from Euler to Goldbach dated June 23, 1744.

De Moivre’s motivation in developing the series (24.2) arose from his interest in
probability theory, a subject he started cultivating in 1707 at the age of 40. He became
familiar with the works of Jakob Bernoulli, Niklaus I Bernoulli, and Pierre Montmort
and went on to make very important contributions of his own. He made a living as
a consultant to gamblers, speculators, and rich patrons, helping them solve problems
related to games of chance or the calculation of annuities. He published the first edition
of his Doctrine of Chances in 1718. This may have led Sir Alexander Cuming (1690–
1775) to consult de Moivre in 1721 about a problem arising in the context of gambling.
Cuming lived an eventful and long life, as an alchemist, a member of the Scottish bar,
a Fellow of the Royal Society of London, a Cherokee chief, and a baronet - and yet he
died in poverty. Mathematically, the problem he posed to de Moivre reduced to: A coin
tossed n times had p as the probability of getting heads. The probability of x heads in
n tosses would then be

b(x,n,p)=
(
n

x

)
px(1−p)n−x. (24.4)

The problem was to compute
∑n

x=0 |x−p| b(x,n,p). For p = 1/2, de Moivre found
the value to be

n

2n+1

(
n

&n/2'
)
.

With n an even number n= 2m, the expression reduced to

m

22m

(
2m
m

)
. (24.5)

So de Moivre’s problem was to obtain a reasonable approximation for (24.5), easily
usable by a person such as Cuming. De Moivre saw that he could use the power series
for ln(1+x), found by Newton and Mercator in the 1660s, and Bernoulli’s formula for
the sums of powers of integers published in 1713, to show that

ln

(
1

22m

(
2m
m

))
∼

(
2m− 1

2

)
ln(2m− 1)− 2m ln(2m)+ ln 2

+ 1

12
− 1

360
+ 1

1260
− 1

1680
+·· · . (24.6)

The series of constants was infinite but de Moivre took only the first four terms to get
0.7739 as the value of the constant. In his Supplement, he wrote that the terms after the
fourth constant do not decrease, and in the 1756 edition of the Doctrine of Chances,
he remarked that the series converged, but slowly. In fact, the series diverges but the
first four terms give a good approximation for the expression on the left-hand side
of (24.6). Note that this happens because the series in (24.1), (24.2), and (24.6) are



478 The Asymptotic Series for ln�(x)

asymptotic series. Their true nature was not understood until the nineteenth century,
but eighteenth-century mathematicians such as de Moivre, Stirling, Euler, Maclaurin,
Lagrange, and Laplace had an intuitive understanding, allowing them to make effective
use such series. It is very likely that de Moivre got a pretty good idea of the constant
by taking some particular values of m in (24.6). Thus, he had

1

22m

(
2m
m

)
∼ 2.168√

2m− 1

(
1− 1

2m

)2m

. (24.7)

Observe that for large m,(1 − 1/2m)2m is approximately 1/e. By contrast, Stirling’s
approximation yields

1

22m

(
2m
m

)
∼ 1√

πm
.

The role of π was perceived by Stirling, whose letter of June 1729 to de Moivre again
brought Cuming into the picture.

About four years ago, when I informed Mr. Alex. Cuming that problems concerning the Interpola-
tion and Summation of series and others of this type which are not susceptible to the commonly
accepted analysis, can be solved by Newton’s Method of Differences, the most illustrious man
replied that he doubted if the problem solved by you some years before about finding the middle
coefficient in an arbitrary power of the binomial could be solved by differences. Then, led by
curiosity and confident that I would be doing a favour to a most deserving man of Mathematics,
I took it up willingly: and I admit that difficulties arose which prevented me from arriving at the
desired conclusion rapidly, but I do not regret the labour, if I have in fact finally achieved a solution
which is so acceptable to you that you consider it worthy of inclusion in your own writings.

Stirling then gave two series, one for the square of b(m,2m,1/2) in (24.4), and the
other for its reciprocal: (

1

22m

(
2m
m

))−2

= πm
(

1+ 1

22(m+ 1)
+ (1 · 3)2

242!(m+ 1)(m+ 2)
+ (1 · 3 · 5)2

263!(m+ 1)(m+ 2)(m+ 3)
+·· ·

)
(24.8)

and

(
1

22m

(
2m
m

))2

= 2

π(2m+ 1)

×
(

1+ 1

22(m+ 3
2 )

+ (1 · 3)2
242!(m+ 3

2 )(m+ 5
2 )

+ (1 · 3 · 5)2
263!(m+ 3

2 )(m+ 5
2 )(m+ 7

2 )
+·· ·

)
.

(24.9)

We may now recognize these series as hypergeometric; they can be computed by the
summation formula by means of which Gauss proved his fundamental results for the
gamma function. Stirling may have initially come upon this result by an interpolation
technique described in his book. He also gave a different method, mentioned in his
letter, using difference equations. When de Moivre received Stirling’s communication,
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he was astonished to see the appearance of π in this context. He searched the literature
for a result that would explain this and found that Wallis’s formula was just what he
needed. In the Miscellanea Analytica de Moivre restated (24.6). His result in modern
notation is

ln

(
1

22m

(
2m
m

))
=

(
2m− 1

2

)
ln(2m− 1)− 2m ln(2m)+ ln 2− 1

2
ln(2π)

+ 1−
∞∑
k=1

B2k

(2k− 1)2k

(
2

m2m−1
− 1

(2m− 1)2m−1

)
. (24.10)

Stirling then published his series (24.2) for lnm!. After that, de Moivre published the
Supplement, presenting his own proof of (24.1). Just as in the case of (24.10), it was an
application of three formulas: the power series for ln(1+x), the formula for

∑n

k=1 k
m,

and Wallis’s formula for π .
Soon after this, Euler and Maclaurin discovered a very general formula from which

(24.1) and (24.2) could be easily derived. In his paper on the gamma function, Gauss
referred to Euler’s derivation. He noted that though Euler stated the result for ln�(x)
when x was a positive integer, his method applied to the general case so that

ln�(x+ 1)=
(
x+ 1

2

)
lnx− x+ 1

2
ln 2π + B2

1 · 2x + B4

3 · 4x3
+ B6

5 · 6x5
+ etc.

(24.11)

Note that Gauss denoted the absolute values of the Bernoulli numbers by
A, B, C, D,. . . and usedV(x) to mean �(x+1). Euler also proved that (24.1), (24.2)
and more generally (24.11) were divergent. This followed from his beautiful formula
for Bernoulli numbers

B2k = (−1)k−1(2k)!
22k−1π 2k

(
1+ 1

22k
+ 1

32k
+·

)
=O

((
k

π

)2k√
k

)
. (24.12)

Gauss, with his desire for complete mathematical rigor, declared that it was important
to determine why a divergent series gave an excellent approximation when only the
first few terms were used. He also pointed out that the series (24.1) and (24.2) of de
Moivre and Stirling, in their more general form for ln �(x+1), could be obtained from
each other by the duplication formula for the gamma function.

In 1843, Cauchy gave an explanation of the peculiar nature of the series (24.11). He
proved that

µ(x)= ln �(x)− (x− 1/2) ln x+ x− 1

2
ln 2π

=
m∑
k=1

B2k

(2k− 1)2kx2k−1
+ θB2m+2

(2m+ 1)(2m+ 2)x2m+1
, where 0< θ < 1. (24.13)

This means that when m terms of the series (24.11) are used, the error is less than the
(m+1)th term and has the same sign as that term, determined by the sign ofB2m+2. Thus,
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the eighteenth-century mathematicians had the judgment to choose an ideal stopping
point in the series for their numerical calculations. Although Poisson and Jacobi had
already proved Cauchy’s result in a more general situation, they did not specifically
note this important particular case. It is also possible that Cauchy wished to show how
an integral representation for µ(x) in (24.13), due to his friend Binet, could be used for
the proof of (24.13).

Jacques Binet (1786–1856) studied at the École Polytechnique from 1804 to 1806 and
returned to the institution as an instructor in 1807. His main interests were astronomy
and optics, though he contributed some important papers in mathematics. He was a good
friend of Cauchy, and in 1812 the two generalized some results on determinants and took
the subject to a higher level of generality. In particular, Binet stated the multiplication
theorem in more general terms, so that his work can be taken as an early discussion of
the product of two rectangular matrices. In an 1839 paper of over 200 pages, Binet gave
two integral representations forµ(x) in (24.13). These are now called Binet’s formulas.
In applying integrals to study the gamma function, Binet was following the trend of
the 1830s. Thus, he used Euler’s formula for the beta integral

∫ 1
0 x

m−1(1− x)n−1 dx to
prove Stirling’s formulas (24.8) and (24.9).

Although the asymptotic series (24.11) and similar series were used frequently after
1850, it was in 1886 that Henri Poincaré gave a formal definition. He noted that it was
well known to geometers that if Sn denoted the terms of the series for ln�(x+ 1) up
to and including (B2n/2n(2n− 1))1/x2n, then the expression x2n+1(ln�(x+ 1)− Sn)
tended to 0 when x increased indefinitely. He then defined an asymptotic series:

I say that a divergent series

A0 + A1

x
+ A2

x2
+·· ·+ An

xn
+·· · ,

where the sum of the first n+ 1 terms is Sn, asymptotically represents a function J (x) if the
expression xn(J −Sn) tends to 0 when x increases indefinitely.

He showed that asymptotic series behaved well under the algebraic operations of
addition, subtraction, multiplication, and division. Term-by-term integration of an
asymptotic series also worked, but not differentiation. Poincaré noted that the theory
remained unchanged if one supposed that x tended to infinity radially (in the complex
plane) with a fixed nonzero argument. However, a divergent series could not represent
one and the same function J in all directions of radial approach to infinity. He also
observed that the same series could represent more than one function asymptotically.
Poincaré applied his theory of asymptotic series to the solution of differential equations,
though the British mathematician George Stokes developed some of these ideas earlier,
in the 1850s and 1860s, in connection with Bessel’s equation.

The Dutch mathematician Thomas Joannes Stieltjes (1856–1894) also developed a
theory of asymptotic series; following Legendre, he labeled it semiconvergent series.
Stieltjes’s paper appeared in the same year as Poincaré’s, 1886. Then in 1889, Stieltjes
extended formula (24.2) to the slit complex plane C− = C \ (−∞,0] . Until then, the
formula was known to hold only in the right half-plane. He accomplished this extension
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by a systematic use of the formula

µ(z)=
∫ ∞

0

t −[t]− 1/2

z+ t dt, z ∈ C−, (24.14)

where µ was defined by (24.13).

24.2 De Moivre’s Asymptotic Series

De Moivre’s derivation of (24.1) in the Supplement started with

ln
mm−1

(m− 1)! = ln
m−1∑
k=1

(
1− k

m

)−1

=−
m−1∑
k=1

ln

(
1− k

m

)

=
m−1∑
k=1

∞∑
n=1

kn

nmn
=

∞∑
n=1

1

nmn

m−1∑
k=1

kn. (24.15)

We remark that de Moivre did not use the summation or factorial notation. He effected
the change in the order of summation by writing the series for ln(1− k

m
) in rows, for some

values of k, and then summing the columns. He then reproduced Jakob Bernoulli’s table
for the sums of powers of integers and applied it to the inner sum in the last expression
of (24.15). In modern notation, Bernoulli’s formula is

m−1∑
k=1

kn = (m− 1)n+1

n+ 1
+ 1

2
(m− 1)n

+
(
n

1

)
B2

2
(m− 1)n−1 +

(
n

3

)
B4

4
(m− 1)n−3 +·· · . (24.16)

Thus, de Moivre had the equation

ln
mm−1

(m− 1)! =
1

m

(
(m− 1)2

2
+ m− 1

2

)
+ 1

2mm

(
(m− 1)3

3
+ (m− 1)2

2
+ m− 1

6

)
+ 1

3m3

(
(m− 1)4

4
+ (m− 1)3

2
+ 3B2

(m− 1)2

2

)
+ 1

4m4

(
(m− 1)5

5
+ (m− 1)4

2
+ 4B2

(m− 1)3

2
+ 4B4

(m− 1)

4

)
+·· · .

He then set x = m−1
m

and changed the order of summation to get

ln
mm−1

(m− 1)! =m
(
x2

2
+ x3

6
+ x4

12
+·· ·

)
+ 1

2

(
x+ x2

2
+ x3

3
+·· ·

)

+ B2

2m

(
x+ x2 + x3 +·· ·)+ B4

4m3

(
x+ 4

2
x2 + 5 · 4

3 · 2x
3 +·· ·

)
+·· · . (24.17)
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The general term, left unexpressed by de Moivre, as was the common practice, would
have been

B2r

2rm2r−1

((
2r
1

)
x

2r
+
(

2r + 1
2

)
x2

2r + 1
+
(

2r + 2
3

)
x3

2r + 2
+·· ·

)
= B2r

2r(2r − 1)m2r−1

((
2r − 1

1

)
x+

(
2r
2

)
x2 +

(
2r + 1

3

)
x3 +·· ·

)
= B2r

2r(2r − 1)m2r−1

(
(1− x)−2r+1 − 1

)
= B2r

2r(2r − 1)

(
1− 1

m2r−1

)
. (24.18)

The second series in (24.17) summed to

− ln(1− x)=− ln

(
1− m− 1

m

)
= ln m,

and the first series turned out to be the integral of this series, equal to

(1− x) ln(1− x)+ x = m− 1− ln m

m
.

This computation involves integration by parts, and it is interesting to see how de
Moivre handled it. He used Newton’s notation for fluxions, as was only natural since
de Moivre worked in England and was Newton’s friend. He set

v = ln
1

1− x = x+ x2

2
+ x3

3
+ x4

4
+·· · .

Then vẋ = xẋ+ 1

2
x2ẋ+ 1

3
x3ẋ+ 1

4
x4ẋ+·· ·

F.vẋ = 1

2
x2 + 1

6
x3 + 1

12
x4 + 1

20
x5 +·· · . (F. = fluent = integral).

He then set

q = vx−F.vẋ = x2 + 1

2
x3 + 1

3
x4 + 1

4
x5 +·· ·−

(
1

2
x2 + 1

6
x3 + 1

12
x4 +·· ·

)
so that

q̇ = ẋ
(

2x+ 3

2
x2 + 4

3
x3 + 5

4
x4 +·· ·

)
− ẋ

(
x+ 1

2
x2 + 1

3
x3 + 1

4
x4 +·· ·

)
= ẋx

1− x =−ẋ+ v̇.
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Therefore q =−x+v and F.vẋ = vx−q = m−1−ln m
m

.Using the above simplifications,
(24.17) became

ln
mm−1

(m− 1)! = (m− 1)− ln m+ 1

2
ln m

+ B2

2

(
1− 1

m

)
+ B4

3 · 4
(

1− 1

m3

)
+ B6

5 · 6
(

1− 1

m5

)
+·· ·

= (m− 1)− 1

2
ln m+ 1

12
− 1

360
+ 1

1260
− 1

1680
+·· ·

− 1

12m
+ 1

360m3
− 1

1260m5
+ 1

1680m7
−·· · .

After adding ln m to each side and rearranging terms, de Moivre had

ln m! =
(
m+ 1

2

)
ln m−m+ 1− 1

12
+ 1

360
− 1

1260
+ 1

1680
−·· ·

+ 1

12m
− 1

360m3
+ 1

1260m5
− 1

1680m7
+·· · . (24.19)

De Moivre remarked that the constant in this equation could be quickly computed by
taking m= 2. In that case,

C = 1− 1

12
+ 1

360
− 1

1260
+ 1

1680
−·· ·

= 2− 3

2
ln 2− 1

12× 2
+ 1

360× 8
− 1

1260× 32
+ 1

1680× 128
−·· · . (24.20)

As we have noted before, the two series here are divergent but the terms as written
down by de Moivre gave a good approximation forC. After learning of Stirling’s result

on the asymptotic value of 1
22m

(
2m
m

)
, de Moivre realized that C = 1

2 ln(2π), and he

proved it using Wallis’s formula. Stirling and de Moivre’s derivations for the value of
C were identical; we present the details in the next section.

24.3 Stirling’s Asymptotic Series

Stirling’s Methodus Differentialis gave several ingenious applications of difference
equations. His derivations of (24.8) and (24.9) were probably his most imaginative use
of difference equations. It is obvious from his letter to de Moivre that he was quite proud
of his solutions. We give details of this work and derive equation (24.2). Proposition
23 of Stirling’s book states the problem: to find the ratio of the middle coefficient
to the sum of all coefficients in any power of the binomial. Stirling observed that

the sequence 1,2, 8
3 ,

16
5 ,

128
35 , . . . or 22m ÷

(
2m
m

)
, m = 0,1,2, . . . satisfied the relation

T ′ = (n+ 2)T /(n+ 1), where n = 2m = 0,2,4, . . . and T ′ denoted the term after T .
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So if T was the nth term, T ′ would be obtained by changing n to n+2 in T . In modern
notation, Tn+2 = n+2

n+1 Tn. Stirling rewrote this relation after squaring it:

2T ′2 + (n+ 2)(T 2 −T ′2)− T ′2

n+ 2
= 0. (24.21)

This is the difference equation into which Stirling substituted an inverse factorial series
to solve his problem. Since he had so many difference equations from which to choose,
it is hard to discern how Stirling was guided to this one; it worked very successfully.
Stirling first took

T 2 =An+ Bn

n+ 2
+ Cn

(n+ 2)(n+ 4)
+ Dn

(n+ 2)(n+ 4)(n+ 6)
+·· ·

=An+B+ C− 2B

n+ 2
+ D− 4C

(n+ 2)(n+ 4)
+·· · . (24.22)

Then

T ′2 =A(n+ 2)+B+ C− 2B

n+ 4
+ D− 4C

(n+ 4)(n+ 6)
+·· · , (24.23)

so that

(n+ 2)(T 2 −T ′2)=−2A(n+ 2)+ 2C− 4B

n+ 4
+ 4D− 16C

(n+ 4)(n+ 6)
+·· · . (24.24)

It followed from (24.22) after replacing T by T ′ and n by n+ 2 that

T ′2

n+ 2
=A+ B

n+ 4
+ C

(n+ 4)(n+ 6)
+ D

(n+ 4)(n+ 6)(n+ 8)
+·· · .

He used the three series (24.22), (24.23), and (24.24) in (24.21), and the result was

2B−A+ 4C− 9B

n+ 4
+ 6D− 25C

(n+ 4)(n+ 6)
+ 8E− 49D

(n+ 4)(n+ 6)(n+ 8)
+·· · = 0.

This implied the relations

2B−A= 0, 4C− 9B = 0, 6D− 25C = 0, 8E− 49D = 0,

and these in turn implied the series in (24.8) except for the value of A. As was the
practice among the eighteenth-century mathematicians, Stirling computed only the
first few coefficients B, C, D,. . . and gave no expression for the general term. To find
A, he argued that by (24.22) for large n,T 2 =An. Stirling then made an application of
Wallis’s formula, to which he referred in his exposition. For n= 2m,

T 2

n
= 1

2m

(
1

22m

(
2m
m

))−2

= 22 × 42 ×·· ·× (2m)2
32 × 52 ×·· ·× (2m− 1)2 × 2m+ 1

· 2m+ 1

2m
→ π

2
as n→∞.
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First in his Miscellanea and then again in the 1756 edition of his Doctrine of Chances,
de Moivre praised Stirling for his introduction of π in the asymptotic series for lnn!. In
the latter work he wrote, “I own with pleasure that this discovery, besides that it saved
trouble, has spread a singular Elegancy on the Solution.”

Stirling’s series (24.2) for ln m! was a corollary of his main result, contained in
proposition 28 of his book. The purpose of the proposition was to find the sum of any
number of logarithms, whose arguments were in arithmetic progression. He denoted
the progression by x+ n, x+ 2n, x+ 3n, . . . ,z− n, where the logarithms were taken
base 10. Since log10 x = ln x/ ln 10, he defined the number a = 1/ ln 10 and gave the
approximate value of a to be 0.43429,44819,03252. To state his result, Stirling began
with the series

f (z)= z

2n
log10 z−

a

2n
z+ aA1

n

z
+ aA2

n3

z3
+ aA3

n5

z5
+ aA4

n7

z7
+·· · , (24.25)

where the numbers A1, A2, A3, . . . were such that

m∑
k=1

(
2m− 1
2k− 2

)
Ak =− 1

4m(2m+ 1)
. (24.26)

He had the values A1 = − 1
12 , A2 = 7

360 , A3 = − 31
1260 , A4 = 127

1680 , and A5 = − 511
1188 . In

fact, one can show that

Ak =− (2
2k−1 − 1)B2k

2k(2k− 1)
.

Stirling may not have recognized this connection with Bernoulli numbers when he
discovered his result on ln m!. Later, after reading de Moivre’s book, where Bernoulli
numbers were explicitly mentioned, Stirling investigated properties of these numbers
and discussed them in some unpublished notes. Stirling’s main theorem was that

log10 ((x+n)(x+ 3n)(x+ 5n) · · ·(z−n))= f (z)−f (x), (24.27)

where f (z) was the series defined in (24.25). His proof consisted in observing that

f (z)−f (z− 2n)= log10 z− a
(
n

z
+ 1

2

(
n

z

)2

+ 1

3

(
n

z

)3

+·· ·
)

= log10 z− log10

(
1− n

z

)
= log10(z−n). (24.28)

Stirling apparently left the verification of this equation to the reader; an outline of the
proof appears in the exercises. He made the remark that the terms in f (z) and f (z−2n)
had first to be reduced to the same form. The theorem follows immediately from (24.28):

f (z)−f (x)= (f (z)−f (z− 2n))

+ (f (z− 2n)−f (z− 4n))+·· ·+ (f (x+ 2n)−f (x))
= log10(z−n)+ log10(z− 3n)+·· ·+ log10(x+n).
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Stirling applied his theorem to derive his series for log10 m! by taking x= 1/2, n= 1/2,
and z=m+ 1/2. From this he had

f (m+1/2)= (m+ 1

2
) log10(m+ 1

2
)−a(m+ 1

2
)− a

24(m+ 1
2 )

+ 7a

2880(m+ 1
2 )

3
− etc.

Next, by (24.27), log10m! = f (m+ 1/2)−f (1/2). Stirling wrote that

−f (1/2)= 1

2
log10 2π ≈ 0.39908,99341,79,

but he did not explain how he arrived at 1
2 log10 2π . Perhaps he numerically computed

log10m! − f (m+ 1/2) for a large enough value of m and noticed that he had half
the value of log10 2π ; he must have been very familiar with this value, based on his
extensive numerical calculations. Recall that he had recognized

√
π from its numerical

value when computing (1/2)!. Of course, he could also have provided a proof using
Wallis’s formula, as he did in the situation discussed above.

24.4 Binet’s Integrals for ln �(x)

Binet knew that Stirling’s two series (24.8) and (24.9) could be derived by Gauss’s
summation formula. In addition, he gave an interesting proof of (24.8) using integrals:

B

(
m,

1

2

)
=

∫ 1

0
xm−1(1− x)−1/2 dx =

∫ 1

0
xm−

1
2 (1− x)−1/2(1− (1− x))−1/2 dx

=
∫ 1

0
xm−1/2(1− x)−1/2

(
1+

1
2

1! (1− x)+
1
2 · 3

2

2! (1− x)
2 +·· ·

)
dx

= B
(
m+ 1

2
,

1

2

)
+

1
2

1!B
(
m+ 1

2
,

3

2

)
+

1
2 · 3

2

2! B
(
m+ 1

2
,

5

2

)
+·· · .

(24.29)

When Euler’s formula,B(x,y)=�(x)�(y)/�(x+y), was applied in (24.29), Stirling’s
formula (24.8) followed. Binet’s proof of (24.9) ran along similar lines. He also gave
two integral representations for

µ(x)= ln �(x)−
(
x− 1

2

)
lnx+ x− 1

2
ln 2π. (24.30)

These useful representations were:

µ(x)=
∫ ∞

0

(
1

2
− 1

t
+ 1

et − 1

)
e−xt

t
dt, (24.31)

µ(x)= 2
∫ ∞

0

arctan (t/x)

e2πt − 1
dt. (24.32)
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Binet demonstrated the equality of the two expressions for µ(x) by using the two
formulas: ∫ ∞

0
e−sy sin (ty)dy = t

t2 + s2
, (24.33)

4
∫ ∞

0

sin (ty)

e2πy − 1
dy = et + 1

et − 1
− 2

t
. (24.34)

He attributed the first of these to Euler and the second to Poisson. He multiplied the
second equation by e−st dt , integrated over (0,∞), and then used the first integral to get∫ ∞

0
e−st

(
et + 1

et − 1
− 2

t

)
dt = 4

∫ ∞

0

t dt

(t2 + s2)(e2πt − 1)
.

Binet then integrated both sides of this equation with respect to s over the interval
(x,∞), and changed the order of integration to obtain∫ ∞

0

(
1

2
− 1

t
+ 1

et − 1

)
e−xt

t
dt = 2

∫ ∞

0

arctan (t/x)

e2πt − 1
dt.

Thus, it was sufficient to prove one of the formulas for µ(x), and Binet proved the first
one, starting from the definition of µ(x):

µ(x+ 1)−µ(x)=
(
x+ 1

2

)
ln

(
1− 1

x+ 1

)
+ 1

=−
∑ (n− 1)

2n(n+ 1)(x+ 1)n
,

or 2µ(x)= 2µ(x+ 1)+
∑ n− 1

n(n+ 1)(x+ 1)n
.

By Stirling’s approximation, he had µ(x)→ 0 as x→∞, and hence

2µ(x)= 1

2 · 3
∞∑
k=1

1

(x+ k)2 +
2

3 · 4
∞∑
k=1

1

(x+ k)3 +
3

4 · 5
∞∑
k=1

1

(x+ k)4 + etc.

By Euler’s gamma integral

�(n+ 1)

(k+ x)n+1
=

∫ ∞

0
tne−t (k+x) dt, (24.35)

and therefore

�(n+ 1)
∞∑
k=1

1

(x+ k)n+1
=

∫ ∞

0
tn
(
e−t (x+1)+ e−t (x+2)+ e−t (x+3)+·· ·) dt

=
∫ ∞

0

tne−xt

et − 1
dt.
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He then wrote

2µ(x)=
∫ ∞

0

e−xt

et − 1

(
t

2 · 3 + 2t2

2 · 3 · 4 + 3t3

2 · 3 · 4 · 5 +·· ·
)
dt

and an easy calculation showed that the sum of the series inside the parentheses would be

(et − 1)

(
1

t
− 2

t2

)
+ 2

t
.

This completes Binet’s ingenious proof of his formulas.
De Moivre’s form of the asymptotic series for ln�(x) can be obtained from Binet’s

integrals. Start with Euler’s generating function for Bernoulli numbers,

t

et − 1
= 1− 1

2
t +

∞∑
n=1

B2n

(2n)! t
2n.

It follows easily that the integrand in the first integral for µ(x) is

1

t

(
1

et − 1
− 1

t
+ 1

2

)
=

∞∑
n=0

B2n+2

(2n+ 2)! t
2n. (24.36)

We substitute this series in the integrand and integrate term by term; an application
of (24.35) then yields de Moivre’s asymptotic series. Unfortunately, however, this last
operation is invalid because the series (24.36) is convergent only for |t |< 2π , whereas
we are integrating on (0,∞).

24.5 Cauchy’s Proof of the Asymptotic Character of de Moivre’s Series

In an 1843 paper in the Comptes Rendus, Cauchy proved that de Moivre’s series, though
divergent, was asymptotic and hence useful for computation. Cauchy eliminated the
convergence difficulty of the infinite series (24.36) by deriving its finite form:

1

t

(
1

et − 1
− 1

t
+ 1

2

)
=

m−1∑
n=0

B2n+2

(2n+ 2)! t
2n+ θB2m+2

(2m+ 2)! t
2m, 0< θ < 1. (24.37)

Cauchy’s important formula (24.13) followed immediately when (24.37) was applied
in Binet’s integral for µ(x). This proved that de Moivre’s series for ln�(x) was an
asymptotic series. Cauchy first proved that the left-hand side of (24.37) had the partial
fractions expansion

1

t

(
1

et − 1
− 1

t
+ 1

2

)
= 2

(
1

t2 + (2π)2 +
1

t2 + (4π)2 +
1

t2 + (6π)2 +·· ·
)
. (24.38)
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He indicated a proof of this, although Euler had already found and proved the result.
Cauchy then noted that for u > 0,

1

1+u = 1−u+u2 −u3 +·· ·∓um−1 ± um

1+u
= 1−u+u2 −u3 +·· ·∓um−1 ± θum, 0< θ < 1.

Therefore,

1

t2 + (2kπ)2 = 1

(2kπ)2
· 1

1+ (t/2kπ)2 =
m−1∑
n=0

(−t2)n
(2kπ)2n+2

+ (−1)mθt2m

(2kπ)2m+2
.

Cauchy then substituted this in (24.38) and applied Euler’s formula for Bernoulli num-
bers (24.12) to get (24.37). When the latter series was used in Binet’s formula (24.31),
the asymptotic character of de Moivre’s series became evident.

24.6 Exercises

1. Prove that if Sm =√
2π

(
m+1/2
e

)m+1/2
and Dm =√

2πm
(
m

e

)m
, then

lim
m→∞

Sm−m!
m!−Dm

= 1

2
.

This shows that (24.3), implied by Stirling’s series, is a better approximation for
m! thanDm, resulting from de Moivre’s series but called Stirling’s approximation.
Note that Sm gives values larger than m!, while Dm underestimates m!. See
Tweddle (1984).

2. Prove that ∫ 1

0
ln�(x+u)du= x lnx− x+ 1

2
ln 2π (24.39)

by the following methods:

(a) Observe that the integral is equal to

lim
n→∞

1

n

(
ln�(x)+ ln�

(
x+ 1

n

)
+·· ·+ ln�

(
x+ n− 1

n

))
.

Apply Gauss’s multiplication formula and Stirling’s approximation.
(b) Apply Euler’s reflection formula �(x)�(1−x)= π

sin πx to compute the limit∫ 1

0
ln�(u)du= lim

n→∞
1

n

(
ln�

(
1

n

)
+ ln�

(
2

n

)
+·· ·+ ln�

(
n− 1

n

))
= 1

2
ln 2π. (24.40)
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Take the derivative of (24.39) with respect to x to show that∫ 1

0
ln�(u+ x)du= x lnx− x+

∫ 1

0
ln�(u)du.

(c) Denote the integral in (24.40) by C and show that

2C =−
∫ 1

0
f (u)du where f (x)= ln

(
sin πu

u

)
.

Show that C = 1
2 ln 2π by proving (i)

∫ 1
0 f (u)du = ∫ 1

0 f
(
u

2

)
du and

(ii) f (u)= f (
u

2

)+f (
1−u

2

)+ ln 2π.
The proofs in (a) and (b) were published by Stieltjes in 1878. See Stieltjes

(1993), vol. 1, pp. 114–18. The proof in (c) was attributed to Mathias Lerch
by Hermite in his 1891 lectures at the École Normale. See Hermite (1891).

3. Integrate Gauss’s formula for �′(1+y)
�(1+y) to obtain Plana’s formula

ln�(u)=
∫ ∞

0

(
1− e(1−u)x
ex − 1

+ (u− 1)e−x
)
dx

x
.

Then, by another integration, show that

J ≡
∫ a+1

a

ln�(u)du=
∫ ∞

0

(
e−ax

x
+ e−x

e−x − 1
−
(
a− 1

2

)
e−x

)
dx

x
.

Deduce that

ln�(a)= J − 1

2
lna+

∫ ∞

0

(
1

2
− 1

x
+ 1

ex − 1

)
e−ax

x
dx.

This is Binet’s formula (24.31) after the value of J is substituted from exercise
2. This proof of Binet’s formula is from Hermite (1891).

4. Prove the formulas used by Binet:∫ ∞

0
e−xy sin(ty)dy = t

t2 + x2

4
∫ ∞

0

sin(ty)

e2π − 1
dy = et + 1

et − 1
− 2

t
.

5. Let n= 2m and Yn =
(

1
22m

(
2m
m

))2

. Prove the recurrence relation

(n+ 1)(n+ 3)(Yn−Yn+2)− 2(n+ 1)Yn−Yn+2 = 0, n= 0, 2, 4, 6, . . . .
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Assume

Yn = α1

n+ 1
+ α2

(n+ 1)(n+ 3)
+ α3

(n+ 1)(n+ 3)(n+ 5)
+·· · .

Then employ the recurrence relation to prove that (2k − 2)αk = (2k −
3)2αk−1, k = 2, 3, 4, . . . . Finally, use Wallis’s formula to show that α1 = 1/π .
This is Stirling’s formal proof of (24.9) and is very similar to his proof of (24.8)
given in the text.

6. Obtain Binet’s proof of (24.9) by observing that

B

(
m+ 1

2
,

1

2

)
=

∫ 1

0
xm(1− x)−1/2(1− (1− x))−1/2 dx,

and following his argument for (24.8), given in the text.
7. Note that

ln

(
1

22m

(
2m
m

))
= (−2m+ 1) ln 2+

m−1∑
k=1

ln
1+ k/m
1− k/m.

Now apply de Moivre’s method from the Miscellanea Analytica, given in the
text, to obtain (24.10).

8. Prove the formula (24.38) used by Cauchy in his derivation of the remainder in
the series for µ(n). Cauchy started with the infinite product for sinh(t/2), due to
Euler, and took the logarithmic derivative. In fact, Euler was aware of this result
and this proof.

9. In the Methodus, Stirling gave two more formulas for bm =
(

2m
m

)
:

(
22m

bm

)2

= π

2
(2m+ 1)

(
1− 12

2(2m− 3)
+ 12 · 32

2 · 4(2m− 3)(2m− 5)
− etc.

)
,

(
bm

22m

)2

= 1

πm

(
1− 12

2(2m− 2)
+ 12 · 32

2 · 4(2m− 2)(2m− 4)
− etc.

)
.

In his analysis of Stirling’s work, Binet pointed out that these formulas were
incorrect and should be replaced by(

22m

bm

)2

= π

2
(2m+ 1)

∞∑
k=0

(
1
2

)
k

(− 1
2

)
k

k!(m+ 1)k

(
bm

22m

)2

= 1

πm

∞∑
k=0

(
1
2

)
k

(− 1
2

)
k

k!(m+ 1
2

)
k

,

where (a)k = a(a+1) · · ·(a+k−1). Prove Binet’s formulas. See Binet (1839),
pp. 319–320. For an analysis of Stirling’s results, see Tweddle (2003).
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10. From de Moivre’s version (24.11), use Legendre’s duplication formula√
π�(2x)= 22x−1�(x)�(x+ 1/2) to obtain Stirling’s series

ln�(x+ 1)=
(
x+ 1

2

)
ln

(
x+ 1

2

)
−
(
x+ 1

2

)
+ 1

2
ln 2π − B2

4
(
x+ 1

2

) + 7B4

96
(
x+ 1

2

)3 − etc. (24.41)

See Gauss (1863–1927), vol. III, p. 152.
11. Prove that if S(n,k) denotes the Stirling numbers of the second kind, then

n∑
k=1

(−1)kk!
k+ 1

S(n,k)= Bn, n= 1, 2, 3, . . . .

See Tweddle (1988), p. 16, for the reference to unpublished work of Stirling
containing this result.

12. Prove that if A1, A2, A3, . . . is a sequence of rational numbers satisfying

n∑
k=1

(
2n− 1
2k− 2

)
Ak =− 1

4n(2n+ 1)
, n= 1, 2, 3, . . . ,

then Ak =− (2
2k−1 − 1)B2k

2k(2k− 1)
.

See Tweddle (1988).
13. Prove Stirling’s result (24.28) as follows: First set

f (z)= z

2n
log10 z−

az

2n
+ a

∞∑
k=1

Ak

(
n

z

)2k−1

.

Then one obtains

f (z)−f (z− 2n)= z log10 z

2n
− (z− 2n) log10(z− 2n)

2n
− a

+ a

∞∑
k=1

Ak

((
n

z

)2k−1

−
(

n

z− 2n

)2k−1
)
. (24.42)

Note that

log10 z= log10

(
(z−n)

(
1+ n

z−n
))

and

log10(z− 2n)= log10

(
(z−n)

(
1− n

z−n
))

,
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and show that

z log10 z

2n
− (z− 2n) log10(z− 2n)

2n
− a

= log10(z−n)− a
∞∑
k=1

1

2k(2k+ 1)

(
n

z−n
)2k

. (24.43)

Next, take n

z
= n

z−n
(
1+ n

z−n
)−1

and n

z−2n = n

z−n
(
1− n

z−n
)−1

in (24.42) and use

k∑
s=1

(
2k− 1
2s− 2

)
As =− 1

4k(2k+ 1)
(24.44)

to obtain (24.28). See Tweddle (2003), pp. 269–270.

24.7 Notes on the Literature

The excerpt from the English translation of Stirling’s Latin letter to de Moivre is from
Tweddle (2003), pp. 285–287. The Latin original is given in Tweedie (1922), p. 46.
De Moivre’s praise of Stirling can be found in de Moivre (1967), p. 244. For Binet’s
results, see pp. 239–241 and 321–323 of his very long paper, Binet (1839). For Stieltjes’s
work on µ(z), see Stieltjes (1993), vol. 2, pp. 6–62. Schneider (1968) gives a thorough
analysis of de Moivre’s work. Also see Hald (1990), pp. 480–489 for an excellent
treatment of de Moivre and Stirling. Cauchy (1843) gives his work on the legitimacy
asymptotic series. Poincaré (1886) contains his definition of an asymptotic series.



25

The Euler–Maclaurin Summation Formula

25.1 Preliminary Remarks

The Euler–Maclaurin summation formula is among the most useful and important
formulas in all of mathematics, independently discovered by Euler and Maclaurin in
the early 1730s. In modern form, the formula is given by

n∑
k=m

f (k)=
∫ n

m

f (x)dx+ 1

2
(f (m)+f (n))

+
q∑
s=1

B2s

(2s)!
(
f (2s−1)(n)−f (2s−1)(m)

)+Rq(f ), (25.1)

where

Rq(f )= −1

(2q)!
∫ n

m

B2q(x−[x])f (2q)(x)dx. (25.2)

The B2s are the Bernoulli numbers; the Bernoulli polynomial Bq(t) is defined by

Bq(t)=
q∑
k=0

(
q

k

)
Bkt

k. (25.3)

Note that since B2k+1 = 0 for k ≥ 1, only odd order derivatives appear in the sum
(25.1). It can therefore be shown, applying integration by parts, that changing every 2q
to 2q+ 1, also changing the − to +, does not effect a change in Rq .

The Euler–Maclaurin summation formula arose out of efforts to find approximate
values for finite and infinite series. During the 1720s, the series ζ(2) = ∑∞

n=1 1/n2

received a good deal of attention. Since the exact evaluation of this series appeared to
be out of reach at that time, several mathematicians devised methods to compute approx-
imations for this series. Stirling found some ingenious methods for transforming this
and similar slowly convergent series to more rapidly convergent series. In his Metho-
dus Differentialis of 1730, Stirling computed ζ(2) by three different methods, one of
which gave the correct value to sixteen decimal places. Around 1727, Daniel Bernoulli

494
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and Goldbach also showed a passing interest in the problem by computing ζ(2) to a
few decimal places. This may have caused Euler, their colleague at the St. Petersburg
Academy, to study this problem. In a paper of 1729, Euler used integration to derive
the formula

∞∑
n=1

1

n2
=

∞∑
n=0

1

2n
· 1

(n+ 1)2
+ (ln 2)2. (25.4)

The series on the right-hand side was evidently much more rapidly convergent than
the original series for ζ(2), and Euler determined that ζ(2)≈ 1.644934. In fact, Euler
had a result more general than (25.4); this involved the dilogarithmic function defined
by the series

∑∞
n=1 x

n/n2. Perhaps Euler’s work on the dilogarithm led him to apply
calculus to the problem of the summation of the general series

∑n

k=1f (k). The result
was a paper he presented to the Academy in 1732 (published in 1738) in which he
briefly mentioned the Euler–Maclaurin formula in the form

n∑
k=1

t (k)=
∫
t dn+αt +β dt

dn
+ γ d

2t

dn2
+ δ d

3t

dn3
+·· · , (25.5)

where α, β, γ, . . . were computed from the equations

α = 1

2
, β = 1

1 · 2α−
1

1 · 2 · 3 , γ = 1

1 · 2β−
1

1 · 2 · 3α+
1

1 · 2 · 3 · 4 ;

δ = 1

1 · 2γ − 1

1 · 2 · 3β+
1

1 · 2 · 3 · 4α−
1

1 · 2 · 3 · 4 · 5 , . . . .

He gave an application of (25.5) to the summation of the very simple example,∑n

k=1(k
2 +2k), and then proceeded to discuss other types of series. He wrote a longer

paper on the subject four years later, in 1736, in which he explicitly evaluated
∑n

k=1 k
r

as polynomials in n for r = 1, 2, . . . ,16. This should have alerted Euler to the fact that
α,β,γ,δ, . . . were closely related to the Bernoulli numbers. Jakob Bernoulli defined
his numbers in exactly this context, except that in his published work he gave the poly-
nomials up to r = 10. Euler was perhaps not aware of Bernoulli’s work at this stage. In
a highly interesting paper, written in 1740, Euler explained that the generating function
for the numbers α, β, γ, . . . was given by

S = 1+αz+βz2 + γ z3 +·· · = 1

1− z

1·2 + z2

1·2·3 − z3

1·2·3·4 + z4

1·2·3·4·5 −·· ·
= zez

ez− 1
. (25.6)

Euler also offered an explanation for the appearance of the Bernoulli numbers in two
such very different situations: in the values of ζ(2n),n= 1,2,3, . . . and in the Euler–
Maclaurin formula. In rough terms, his explanation was that the generating function
for both cases was the same. In his 1736 paper, he also computed ζ(n)=∑∞

k=1 1/kn to
fifteen decimal places for n= 2, 3, 4, making use of (25.5). The series on the right-hand
side of (25.5) in these cases were asymptotic series and Euler manipulated them exactly
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as Stirling and de Moivre had done in a different context, using the first few terms of
the asymptotic series, up to the point where the terms started getting large.

Maclaurin’s results related to (25.1) appeared in his influential book Treatise of
Fluxions. This work was published in 1742 in two volumes, although the first volume,
containing the statements of the Euler–Maclaurin formula, was already typeset in 1737.
Colin Maclaurin (1698–1746) studied at the University of Glasgow, Scotland, but the
mathematician who had the greatest formative influence on him was Newton, whom
he met in 1719. Much of Maclaurin’s work on algebra, calculus, and dynamics arose
directly from topics on which Newton had published results. Maclaurin was professor
of mathematics at the University of Edinburgh from 1726 to 1746, having been recom-
mended to the position by Newton. Maclaurin was probably inspired to discover the
Euler–Maclaurin formula by the results of de Moivre and Stirling on the asymptotic
series for

∑n

k=1 lnk. Newton had a result on the sum
∑n

k=1 1/(a+ kb), giving the first
terms of the Euler–Maclaurin formula for this particular case. Newton gave this result
in a letter of July 20, 1671, to Collins, but Maclaurin was most likely unaware of it.

It is a curious fact that Euler and Maclaurin learned of each other’s works even
before they were published. This was a result of the brief correspondence between
Euler and Stirling. In June 1736, Euler wrote Stirling about his formula and men-
tioned applications to the summation of

∑∞
k=1 1/k2 and

∑n

k=1 1/k. He wrote the latter
result as

1+ 1

2
+ 1

3
+·· ·+ 1

x
=C+ lnx+ 1

2x
− 1

12x2
+ 1

120x4
− 1

252x6
+ 1

240x8

− 1

132x10
+ 691

32760x12
− etc. (25.7)

We can see that the value of C, Euler’s constant γ , would be limx→∞
(∑x

k=1
1
k
− lnx

)
,

and Euler gave this value as 0.5772156649015329 in his 1736 paper and in his letter.
Then in 1737, Stirling received from Maclaurin the galley proofs of some portions

of the first volume of Maclaurin’s treatise, containing two formulations of the Euler–
Maclaurin formula. Because of some business preoccupations, Stirling did not reply
to Euler’s letter until April 1738. He then informed Euler about Maclaurin’s work and
about his communications with Maclaurin on Euler’s work. Stirling also told Euler
that Maclaurin had promised to acknowledge Euler’s work in his book. And indeed
Maclaurin did so. Concerning this point, Euler wrote in his 27 July 1738 reply to
Stirling:

But in this matter I have very little desire for anything to be detracted from the fame of the
celebrated Mr Maclaurin since he probably came upon the same theorem for summing series
before me, and consequently deserved to be named as its first discoverer. For I found that theorem
about four years ago, at which time I also described its proof and application in greater detail to
our Academy.

Unfortunately, Euler forgot to mention Maclaurin in his differential calculus book of
1755, where he discussed this formula.
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Maclaurin presented four formulas and he understood these to be variations of the
same result. In modern notation, two of these can be given as

n−1∑
k=0

f (a+ k)=
∫ a+n

a

f (x)dx+ 1

2
(f (a)−f (a+n))+ 1

12
(f ′(a)−f ′(a+n))

− 1

720
(f ′′′(a)−f ′′′(a+n))+ 1

30240
(f v(a)−f v(a+n))−·· · ,

(25.8)

n∑
k=0

f (a+ k)=
∫ a−1/2+n

a−1/2
f (x)dx+ 1

24
(f ′(a− 1/2)−f ′

(a− 1/2+n))

− 7

5760
(f ′′′(a− 1/2)−f ′′′(a− 1/2+n))

+ 31

967680
(f v(a− 1/2)−f v(a− 1/2+n))−·· · . (25.9)

The remaining two formulas were for cases where the series was infinite, and it was
assumed that f (x) and its derivatives tended to zero as x→∞. Maclaurin derived the
de Moivre and Stirling forms of the approximations for n! by taking f (x) = lnx in
(25.8) and (25.9), respectively. He also applied his results to obtain Jakob Bernoulli’s
formula for sums of powers of integers as well as approximations of ζ(n) for some
values of n.

In 1772, Lagrange gave a formal expression for the Taylor series as a basis for
an interesting derivation of the Euler–Maclaurin summation formula and of some
extensions involving sums of sums. Suggestive of important analytical applications,
Lagrange’s formula for the Taylor series was

f (x+h)= f (x)+hf ′(x)+ h2

2! f
′′(x)+·· ·

=
(

1+hD+ h2D2

2! + · · ·
)
f (x)= ehDf (x). (25.10)

Here D represents the differential operator d/dx.
Clearly, Lagrange charted out a new approach with his algebraic conception of

the derivative, and yet this algebraic perspective can be traced back to the work of
Leibniz. Leibniz had been struck by the formal analogy between the differential operator
and algebraic quantities; Lagrange implemented this idea by going a step further and
identifying the derivative operator with an algebraic quantity. This formal method was
used by some French and British mathematicians of the first half of the nineteenth
century, leading to significant mathematical developments.

The eighteenth-century mathematicians made very effective use of the Euler–
Maclaurin formula but did not seem too concerned about the reasons for this
effectiveness, especially where divergent asymptotic series were involved. Gauss, with
his interest in rigor, was the first mathematician to express the need for an investi-
gation into this question. He did this in his 1813 paper on the gamma function and
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hypergeometric series and then again in his 1816 paper on the fundamental theorem of
algebra. Interestingly, the rigor needed for the careful discussion of the Euler–Maclaurin
summation formula was provided by the French mathematical physicist, S. D. Poisson.

Siméon Denis Poisson (1781–1840) studied at the École Polytechnique in Paris
where he came under the influence of Laplace and Lagrange. The latter lectured on
analytic functions at the Polytechnique, where he introduced the remainder term for
the Taylor series. In the 1820s, Cauchy lectured at the Polytechnique on the application
of this remainder term to a rigorous discussion of the power series representation
of functions. Poisson’s contribution was to derive the remainder term for the Euler–
Maclaurin series. His motivation for this 1826 work was to explain an apparent paradox
in Legendre’s use of the Euler–Maclaurin formula to numerically evaluate the elliptic
integral ∫ π/2

0

√
1− k2 sin2 θ dθ. (25.11)

The sum on the left-hand side of (25.8), after a small modification to allow for non-
integer division points of the interval (a, a+n), can be used to approximate the integral

on the right-hand side. Now the integrand in (25.11), f (x) =
√

1− k2 sin2 x, is such
that its odd order derivatives vanish at 0 and π/2. Thus, the series on the right-hand
side of (25.8) vanishes, since it involves only the odd order derivatives. This implies
the absurd result that the sum on the left-hand side remains unchanged no matter how
many division points are chosen in the interval. It was to resolve this paradox, rather
than to explain the effectiveness of the asymptotic series, that Poisson developed the
remainder term for the Euler–Maclaurin formula.

Another peculiar feature of Poisson’s work was that he used Fourier series instead of
Taylor series to find the remainder term. Poisson learned the technique of Fourier series
from Fourier’s long 1807 paper on heat conduction. From 1811 on, Poisson published
several papers on Fourier series and was very familiar with its techniques. In particular,
he applied the result now known as the Poisson summation formula (originally due
to Cauchy) to several problems, including the present one. He obtained the remainder
after q terms as an integral whose integrand had the form( ∞∑

n=1

1

n2q
cos 2πnx

)
f (2q)(x). (25.12)

In his 1826 paper, Poisson also applied the Euler–Maclaurin formula to the derivation
of a result he attributed to Laplace. Laplace arrived at his result as he attempted to
approximate an integral by a sum during his study of the variations of the elements of
the orbit of a comet. It is a remarkable fact that James Gregory communicated just this
result to Collins in a letter dated November 23, 1670.

Jacobi, who was aware of Poisson’s paper, gave a different derivation of Euler–
Maclaurin using Taylor series and his remainder was essentially the expression in
equation (25.2). Jacobi defined, but did not name, the even Bernoulli polynomials
B2n(x) and gave their generating function. In the 1840s, Raabe gave them the name
Bernoulli polynomials. Jacobi also proved the important result that B4m+2(x)−B4m+2
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was positive while B4m(x)−B4m was negative in the interval (0,1). From this he was
able to give sufficient conditions on f that the remainder term had the same sign and
the magnitude of at most the first omitted term in the series on the right-hand side of
(25.8). One set of sufficient conditions was that the sign of f (2m)(x) did not change for
x > a and that the product f (2m)(x)f (2m+2)(x) was positive. Since this was clearly true
for f (x)= lnx, Jacobi’s result actually implied that de Moivre’s and Stirling’s series
were asymptotic. Thus, though Jacobi did not explicitly mention it, he had resolved the
problem raised by Gauss.

The papers of Poisson and Jacobi show that the Euler–Maclaurin formula follows
from the Poisson summation formula. Thus, these two extremely important formulas
are essentially equivalent. Moreover, by comparing the remainders in the formulas
of Poisson and Jacobi, we observe that the Bernoulli polynomials Bn(x) restricted to
0 ≤ x ≤ 1 have Fourier series expansions. Surprisingly, Euler and D. Bernoulli were
aware of this fact and in the 1770s, Euler gave a very interesting derivation of this result
by starting with a divergent series.

In 1823, the Norwegian mathematician Niels Abel (1802–1829) found another
summation formula. There was little mathematical instruction at Abel’s alma mater,
University of Christiania, so he independently studied the works of Euler, Lagrange,
and Laplace. Before doing his great work on algebraic equations and elliptic andAbelian
functions, Abel made some interesting discoveries as a student. For example, he found
an integral representation for the Bernoulli numbers, and he substituted this in the
Euler–Maclaurin formula to write:∑

φ(x)=
∫
φ(x)dx− 1

2
φ(x)+

∫ ∞

0

φ
(
x+ t

2

√−1
)−φ (x− t

2

√−1
)

2
√−1

dt

eπt − 1
.

Interestingly, the Italian astronomer and mathematician Giovanni Plana (1781–1864)
discovered this result three years before Abel. Plana studied with Lagrange at the École
Polytechnique; both Lagrange and Fourier supported Plana in the course of his long
and illustrious career. It appears that in 1889 Kronecker used complex analytic methods
to offer the first rigorous proof of this formula.

25.2 Euler on the Euler–Maclaurin Formula

Euler’s problem was to sum
∑x

k=1 t (k)= S(x), where he assumed that t (x) and S(x)
were analytic functions for x > 0. Naturally, he did not state such conditions, but his
calculations imply them. His procedure for solving this problem was almost reckless.
He expanded S(x− 1) as a Taylor series:

S(x− 1)= S(x)−S ′(x)+ 1

2!S
′′(x)− 1

3!S
′′′(x)+·· · .

Following his notation except for the factorials, Euler then had

t (n)= S(n)−S(n− 1)= dS

dn
− 1

2!
d2S

dn2
+ 1

3!
d3S

dn3
− 1

4!
d4S

dn4
+·· · . (25.13)
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To determine S from this equation, he assumed

S =
∫
t dn+αt +β dt

dn
+ γ d

2t

dn2
+ δ d

3t

dn3
+·· · . (25.14)

Next, he substituted this series for S on the right-hand side of (25.13) and equated
coefficients. He called this a well-known method, probably referring to the method of
undetermined coefficients. In his first paper on this topic, he merely noted the values
of α, β, γ, δ, · · · obtained when this substitution was carried out. In the second paper
he observed that he got

t =
(
t +α dt

dn
+·· ·

)
− 1

2!
(
dt

dn
+α d

2t

dn2
+·· ·

)
+ 1

3!
(
d2t

dn2
+α d

3t

dn3
+·· ·

)
−·· · .

The term t on both sides canceled, and thus the coefficients of dt

dn
, d

2t

dn2 , . . . had to be
zero. This gave him

α = 1

2
, β = α

2
− 1

6
, γ = β

2
− α

6
+ 1

24
, . . . ,

so that α = 1

2
, β = 1

12
, γ = 0, δ =− 1

720
.

Finally, Euler could write the Euler–Maclaurin formula as

S =
∫
t dn+ 1

2
t + 1

12

dt

dn
− 1

720

d3t

dn3
+ 1

30240

d5t

dn5
−·· · .

In fact, he calculated the terms up to the fifteenth derivative. Euler applied this formula
to the approximate summation of

∑∞
k=1 1/k2. He let the general term be X = 1/x2.

Then, with Euler’s use of Const. for the constant term,∫
Xdx = Const.− 1

x
and

dX

dx
=− 2

x3
,
d3X

dx3
=−2 · 3 · 4

x5
,
d5X

dx5
=−2 · 3 · 4 · 5 · 6

x7
etc.

Hence, by the Euler–Maclaurin formula,

1+ 1

4
+ 1

9
+·· ·+ 1

x2
= S

= Const.− 1

x
+ 1

2x2
− 1

6x3
+ 1

30x5
− 1

42x7
+ 1

30x9
− 5

66x11
+ 691

2730x13
− 7

6x15
+etc.

(25.15)

Euler took x = 10 and determined that
∑10

k=1 1/k2 = 1.549767731166540. He then
summed the nine terms on the right-hand side of equation (25.15). These calculations
gave him the value of Const. = 1.64493406684822643647. When x =∞, the terms
1/x, 1/2x2, . . . vanished and hence

∑∞
k=1 1/k2 = Const. In this manner, Euler also

computed
∑∞

k=1 1/kp for p = 3 and p = 4.
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25.3 Maclaurin’s Derivation of the Euler–Maclaurin Formula

Maclaurin’s proof of the Euler–Maclaurin formula is similar to that of Euler, though the
procedure appears to be more rigorous. Maclaurin described his results in geometric
terms, but his arguments were mostly analytic. However, to enter Maclaurin’s geometric
mode of thought, we start with his proof of the integral test, usually attributed to Cauchy,
who proved it in his lectures of 1828. The Euler–Maclaurin formula may be viewed as
a refinement of the integral test.

Referring to Figure 25.1, in section 350 of his treatise, Maclaurin wrote:

Let the terms of any progression be represented by the perpendicularsAF,BE,CK,HL,&c. that
stand upon the base AD at equal distances; and let PN be any ordinate of the curve FNe that
passes through the extremities of those perpendiculars. SupposeAP to be produced; and according
as the areaAPNF has a limit which it never amounts to, or may be produced till it exceed any give
space, there is a limit which the sum of the progression never amounts to, or it may be continued
till its sum exceed any given number. For let the rectangles FB,EC,KH,LI,&c. be completed,
and, the areaAPNF being continued over the same base, it is always less than the sum of all those
rectangles, but greater than the sum of all the rectangles after the first. Therefore the area APNF
and the sum of those rectangles either both have limits, or both have none; and it is obvious, that
the same is to be said of the sum of the ordinates AF,BE,CK,HL,&c. and of the sum of the
terms of the progression that are represented by them.

Maclaurin’s derivation of the Euler–Maclaurin formula followed a slightly less dan-
gerous path than Euler’s. His initial description was geometric, but once he had defined
his terms with the help of a picture, his argument was analytic. The Maclaurin series
for f (x)= ∫ x

0 y(t)dt was

f (x)= y(0)+ x2

2! y
′(0)+ x3

3! y
′′(0)+·· · .

Thus, ∫ 1

0
y dx = y(0)+ 1

2!y
′(0)+ 1

3!y
′′(0)+ 1

4!y
′′′(0)+·· · ,

V

F Q

E S

K T
L Z

M N � f
e
DatPIHCBARb

Figure 25.1. Maclaurin’s geometric statement of his formula.
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or

y(0)=
∫ 1

0
y dx− 1

2!y
′(0)− 1

3!y
′′(0)− 1

4!y
′′′(0)−·· · . (25.16)

Similarly

y ′(0)=
∫ 1

0
y ′ dx− 1

2!y
′′(0)− 1

3!y
′′′(0)− 1

4!y
iv(0)−·· · ,

y ′′(0)=
∫ 1

0
y ′′ dx− 1

2!y
′′′(0)− 1

3!y
iv(0)−·· · ,

y ′′′(0)=
∫ 1

0
y ′′′ dx− 1

2!y
iv(0)−·· · .

Maclaurin used these equations to eliminate y ′(0),y ′′(0), . . . in (25.16), obtaining

y(0)=
∫ 1

0
y dx− 1

2

∫ 1

0
y ′ dx+ 1

12

∫ 1

0
y ′′ dx− 1

720

∫ 1

0
y(4) dx+·· · . (25.17)

Thus, he obtained another form of the Euler–Maclaurin formula:

y(0)+ y(1)+·· ·+ y(n− 1)

=
∫ n

0
y dx− 1

2

∫ n

0
y ′ dx+ 1

12

∫ n

0
y ′′ dx− 1

720

∫ n

0
yiv dx+·· · . (25.18)

Maclaurin also explained how the coefficients were obtained. The reader should now
have little trouble in following Maclaurin’s language and argument from section 828
of his book, while referring to Figure 25.2.

Suppose the base AP = z, the ordinate PM = y, and, the base being supposed to flow uniformly,
let ż= 1. Let the first ordinateAF be represented by a,AB = 1, and the areaABEF =A. AsA is
the area generated by the ordinate y, so let B,C,D,E,F,&c. represent the areas upon the same
baseAB generated by the respective ordinates ẏ, ÿ,

...
y ,

....
y ,&c. ThenAF = a=A− B

2 + C
12 − E

720 +
G

30240 −&c. For, by art. 752,A= a+ ȧ
2 + ä

6 +
...
a
24 +

....
a

120 +&c. whence we have the equation (Q)a=
A− ȧ

2 − ä
6 −

...
a
24 −

...
a

120 −&c. In like manner, ȧ=B− ä
2 −

...
a
6 − ....

a
24 −&c. ä=C− ...

a
2 − ....

a
2 −&c.

....
a =

O

V

R

F

A

M

P

V

r

E

B

K

C

L

D

f

a

Figure 25.2. Maclaurin’s representation of E-M formula.
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D− ....
a
2 −&c.

....
a =E−&c. by which latter equations, if we exterminate ȧ, ä,

...
a ,

....
a ,&c. from the

value of a in the equationQ, we find that a=A− B
2 + C

12 − E
720 +&c.The coefficients are continued

thus: let k, l,m,n,&c. denote the respective coefficients of ȧ, ä,
...
a ,&c. in the equation Q; that

is, let k = 1
2 , l = 1

6 , m= 1
120 ,&c.; suppose K = k = 1

2 , L= kK − l = 1
12 ,M = kL−KK +m=

0,N = kM− lL+mK−n=− 1
720 , and so on; then a=A−KB+LC−MD+NE−&c.where

the coefficients of the alternate areas D,F,H,&c. vanish.

25.4 Poisson’s Remainder Term

Poisson entitled his 1826 paper on the Euler–Maclaurin formula “Sur le calcul
numérique des intégrales définies.” This paper applied Fourier series and the Poisson
summation formula, in particular, to a variety of problems. It began with a brief sketch
of the proof given in an earlier paper that the Abel means of a Fourier series of a given
function converged to the function at a point of continuity. Poisson appears to assume
that this was a proof that the Fourier series of a function converged to the function.

Poisson partitioned [−a,a] into 2n equal parts with a = nw. He then wrote∫ a

−a
f (x)dx =wPn+Qn, (25.19)

where

Pn = 1

2
f (−nw)+f (−nw+w)+f (−nw+ 2w)+·· ·

+f (nw− 2w)+f (nw−w)+ 1

2
f (nw), (25.20)

and Qn was the error or remainder. The expression Pn was obtained by applying the
trapezoidal rule to the given set of division points. To find the remainder, he started
with Fourier’s formula:

f (x)= 1

2a

∫ a

−a
f (t)dt + 1

a

∫ a

−a

∞∑
k=1

cos
kπ(x− t)

a
f (t)dt, (25.21)

when −a < x < a. When x = a, the left-hand side was replaced by 1
2 (f (a)+f (−a)).

He took x = nw, (n− 1)w, . . . ,0,−w,−2w, . . . ,−(n− 1)w successively in (25.21)
and added to get

Pn = 2n

2nw

∫ a

−a
f (t)dt + 1

nw

∫ a

−a

n∑
j=−(n−1)

∞∑
k=1

cos
kπ(jw− t)

nw
f (t)dt. (25.22)

It is easy to check that the inner sum in (25.22), after changing the order of summation,
would be

n∑
j=−(n−1)

cos
kπ(jw− t)

nw
=

{
2ncos kπt

nw
when k = 2nl,

0 otherwise.



504 The Euler–Maclaurin Summation Formula

So he obtained

wPn =
∫ a

−a
f (t)dt + 2

∫ a

−a

∞∑
l=1

cos
2lπt

w
f (t)dt

=
∫ a

−a
f (t)dt −Qn. (25.23)

To find another expression for Qn, Poisson applied integration by parts repeatedly
to get∫ a

−a
cos

2lπt

w
f (t)dt = w

2πl
sin

2lπt

w
f (t)]a−a−

∫ a

−a

w

2πl
sin

2lπt

w
f ′(t)dt

= w2

4π 2l2
cos

2lπt

w
f ′(t)]a−a−

∫ a

−a

w2

4π2l2
cos

2lπt

w
f ′′(t)dt

= w2

4π 2l2

(
f ′(a)−f ′(−a))− w2

4π 2

∫ a

−a

1

l2
cos

2lπt

w
f ′′(t)dt.

Thus,

Qn = − 2w2

4π2

∞∑
l=1

1

l2

(
f ′(a)−f ′(−a))+ 2w4

(2π)4

∞∑
l=1

1

l4

(
f ′′′(a)−f ′′′(−a))

− 2w6

(2π)6

∞∑
l=1

1

l6
(f v(a)−f v(−a))+·· ·

+ 2w2m

(2π)2m

∞∑
l=1

1

l2m

(
f (2m−1)(a)−f (2m−1)(−a))+Rm (25.24)

where

Rm =−2(−1)m
( w

2π

)2m
∫ a

−a

∞∑
l=1

1

l2m
cos

2lπt

w
f (2m)(t)dt. (25.25)

Poisson then showed that
∞∑
l=1

1

l2m
= (−1)m−122m−1π 2m

(2m)! B2m (25.26)

by an argument identical with one of several given by Euler. With this formula, Poisson
had

Qn = B2

2!
(
f ′(a)−f ′(−a))w2 + B4

4!
(
f ′′′(a)−f ′′′(−a))w4 +·· ·

+ B2m

(2m)!
(
f (2m−1)(a)−f (2m−1)(−a))w2m+Rm. (25.27)

By substituting this expression forQn in (25.19), Poisson obtained the Euler–Maclaurin
formula with remainder given by (25.25).
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Poisson then took the interval of integration to be [0,c] by a change of variables
and gave a number of applications. For instance, he applied this to the derivation of
Gregory’s formula∫ c

0
f (x)dx =wPn+ w

12
,F(0)− w

24
,2F(0)+ 19w

720
,3F(0)− 3w

160
,4F(0)+ etc,

where c= nw and F(z)= f (z)+f (c−z). In order to obtain Gregory’s result, Poisson
used the Gregory–Newton difference formula to determine the derivatives in the Euler–
Maclaurin formula. Note that one can find the derivatives in terms of the difference
operator , by using Lagrange’s symbolic method:

ewD = 1+, or wD = ln(1+,)=,− 1

2
,2 + 1

3
,3 −·· · ,

w3D3 =
(
,− 1

2
,2 + 1

3
,3 −·· ·

)3

=,3 − 3

2
,4 + 7

4
,5 −·· · etc.

Poisson also observed that if the derivatives of f were bounded at 0 and c, then the
remainder Rm was of the order w2m+1 as w → 0. But it was still possible, for some
f , that the remainder would tend to ∞ as m→ ∞ for a fixed w. Thus, by means
of his remainder term, Poisson was able to clearly explain the difference between an
asymptotic series and a convergent one, a distinction only intuitively understood in the
eighteenth century.

25.5 Jacobi’s Remainder Term

Jacobi used Taylor series instead of Fourier series to obtain the remainder term. He
expressed the remainder by means of Bernoulli polynomials, and in the course of his
proof he found their generating function. Jacobi began his proof by presenting some
results on Bernoulli numbers and polynomials:

1

(2m+ 1)! +B1
1

(2m)! +
B2

2!
1

(2m− 1)! +
B4

4!
1

(2m− 3)! + · · ·+ B2m

(2m)! = 0,

(25.28)

1

(2m+ 2)! +B1
1

(2m+ 1)! +
B2

2!
1

(2m)! +
B4

4!
1

(2m− 2)! + · · ·+ B2m

(2m)!2! = 0,

(25.29)

and

1

2

(
1− exz
1− ez − 1− e−xz

1− e−z
)

= B2(x)−B2

2! z+ B4(x)−B4

4! z3 + B6(x)−B6

6! z5 +·· · . (25.30)

The first two relations were found by Jakob Bernoulli and the third was the form of the
generating function used by Jacobi to prove some properties of Bernoulli polynomials.
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Jacobi proceeded to define the functions

P(x)=
∫ x

a

f (t)dt, and P(x)−P(x−h)=T(x). (25.31)

Now letting x− a be a multiple of h, set Jacobi’s notation as

x∑
a

T(x)=T(a+h)+T(a+ 2h)+·· ·+T(x)=P(x)−P(a)=P(x). (25.32)

Since T(x)=P(x)−P(x−h), Taylor’s theorem with integral remainder gives

T(x)=P ′(x)h−P ′′(x)
h2

2! + · · ·+ (−1)n−1P(n)(x)
hn

n!
+ (−1)n

∫ h

0

(h− t)n
n! P(n+1)(x− t)dt.

Because P ′(x)= f (x),P(m+1)(x)= f (m)(x), Jacobi wrote

x∑
a

T(x)

h
=

∫ x

a

f (t)

h
dt

=
x∑
a

(
f (x)−f ′(x)

h

2
+f ′′(x)

h2

2 · 3 −·· ·+ (−1)n−1f (n−1)(x)
hn−1

n!
)

+ (−1)n
∫ h

0

(h− t)n
hn!

x∑
a

f (n)(x− t)dt.

He eliminated the terms involving h in the sum on the right by using (25.28) and (25.29)
in an elegant way. He replaced f (x) successively by

B1f
′(x)h,

B2

2! f
′′(x)h2,−B4

4! f
iv(x)h4, . . . , (−1)m+1 B2m

(2m)!f
(2m)(x)h2m.

As he replaced f (x) by each successive expression, he replaced n by n− 1,n− 2,
n− 4, . . . ,n− 2m, respectively. He then added all the equations to get∫ x

a

(
f (t)

h
+ B1

1! f
′(t)+ B2

2! f
′′(t)h+ B4

4! f
iv(t)h3 +·· ·+ B2m

(2m)!f
(2m)(t)h2m−1

)
dt

=
x∑
a

f (x)+
∫ h

0

h2m+1

(2m+ 2)!
(
B2m+2

(
t

h

)
−B2m+2

) x∑
a

f (2m+2)(x− t)dt.

This is the form in which Jacobi gave the remainder, but we can easily convert it to the
modern form. Take h= 1 so that the remainder, without (2m+2)! in the denominator,
takes the form∫ 1

0
B2m+2(t)

(
f (2m+2)(a+ 1− t)+f (2m+2)(a+ 2− t)+·· ·+f (2m+2)(x− t)) dt.
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When t is changed to 1− t , the integral is

(−1)m
(∫ 1

0
B2m+2(t)f

(2m+2)(a+ t)dt +
∫ 1

0
B2m+2(t)f (a+ 1+ t)dt +·· ·

)
= (−1)m

(∫ a+1

a

B2m+2(t −[t])f (2m+2)(t)dt +
∫ a+2

a+1
B2m+2(t −[t])f 2m+2(t)dt +·· ·

)
= (−1)m

∫ x

a

B2m+2(t −[t])f (2m+2)(t)dt.

This is the remainder in modern form. A comparison of this remainder with that of
Poisson shows that the Bernoulli polynomials restricted to 0 ≤ x < 1 have very nice
Fourier expansions of which Euler and Daniel Bernoulli were aware.

25.6 Euler on the Fourier Expansions of Bernoulli Polynomials

Euler and Daniel Bernoulli obtained the Fourier series of the Bernoulli polynomials by
repeated integration of the equation

cos u+ cos 2u+ cos 3u+·· · = −1

2
. (25.33)

Euler justified this relation by setting x = eiu in 1+ x+ x2 + x3 +·· · = 1
1−x . He knew

that the series (25.33) was divergent. Nevertheless, he integrated it to get

∞∑
n=1

sin nu

n
=A− 1

2
u, (25.34)

where A was the constant of integration. To find A, he observed that he must not set
u= 0; he also saw that for small u, (sin nu)/n= u, and the series on the left in (25.34)
took the formu+u+u+u+·· · .The sum of this series was infinite. So he letu=π+w
with w small to get

−w+w−w+w−·· · =A− 1

2
(π +w).

When w → 0, the left-hand side vanished and hence A= π

2 . Thus,

∞∑
n=1

sin nu

n
= 1

2
(π −u). (25.35)

This formula turned out to be quite correct; Euler obtained it by integrating a divergent
series! Euler attributed this method of finding A to Daniel Bernoulli. Integration of
(25.35) gave

∞∑
n=1

cos nu

n2
= B− πu

2
+ u2

4
. (25.36)
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Next, u= 0 and u= π produced the two equations

∞∑
n=1

1

n2
= B and

∞∑
n=1

(−1)n

n2
= B− π2

4
.

Euler added these equations to obtain

∞∑
n=1

2

(2n)2
= 2B− π2

4
.

The left side of this equation could be expressed as

1

2

∞∑
n=1

1

n2
= 1

2
B and thus B = π 2

6
.

By (25.36) Euler obtained

∞∑
n=1

cos nu

n2
= π2

6
− πu

2
+ u2

4
. (25.37)

Euler continued by repeated integration to write

∞∑
n=1

sin nu

n3
= π2u

6
− πu2

4
+ u3

12
,

∞∑
n=1

cos nu

n4
= π4

90
− π 2u2

12
+ πu3

12
− u4

48
,

∞∑
n=1

sin nu

n5
= π4u

90
− π2u3

36
+ πu4

48
− u5

240
,

∞∑
n=1

cos nu

n6
= π 6

945
− π4

90
· u

2

2
+ π2

6
· u

4

24
− π

2
· u

5

120
+ 1

2
· u

6

720
.

In particular, he had a new method for computing the exact value of
∑∞

n=1
1
n2k . To see

the connection with Bernoulli polynomials, write the last equation as

2× 6!
∞∑
n=1

cos 2nπt

(2πn)6
= t6 − 3t5 + 5

2
t4 − 1

2
t2 + 1

42
.

Note that this polynomial is, in fact,B6(t). Euler did not mention the connection between
the polynomials appearing here and the polynomials obtained when

∑n

k=1 k
m, m =

1, 2, 3, . . . were expressed as polynomials in n.

25.7 Abel’s Derivation of the Plana–Abel Formula

In 1823, while he was still a student in Norway,Abel published a paper in which he gave
a number of applications of definite integrals. In one of these, he expressed Bernoulli
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numbers as a definite integral. Euler was already aware of this formula, but Abel used it
in the Euler–Maclaurin summation formula to obtain the Plana–Abel formula. Since he
was dealing with divergent series, his proof was not rigorous. A rigorous proof depends
on the complex analytic methods being developed around that time by Cauchy. Abel
observed that

An = 2n

22n−1

∫ ∞

0

t2n−1

eπt − 1
dt, (25.38)

where An = (−1)n−1B2n.

He obtained this from the expansion

1

eπt − 1
= e−πt + e−2πt + e−3πt +·· ·

and term-by-term integration. He wrote the Euler–Maclaurin formula in the form∑
φ(x)=

∫
φ(x)dx− 1

2
φ(x)+A1

φ′(x)
2! −A2

φ′′′(x)
4! + · · ·

=
∫
φ(x)dx− 1

2
φ(x)+ φ′(x)

2!
∫ ∞

0

tdt

eπt − 1
− φ′′′(x)

3!23

∫ ∞

0

t3dt

eπt − 1
+·· ·

=
∫
φ(x)dx− 1

2
φ(x)+

∫ ∞

0

dt

eπt − 1

(
φ′(x)

t

2
− φ′′′(x)

3!
t3

23
+·· ·

)
=

∫
φ(x)dx− 1

2
φ(x)+ 1

2
√−1

∫ ∞

0

φ
(
x+ t

2

√−1
)−φ (x− t

2

√−1
)

eπt − 1
dt.

This is the Plana–Abel formula. The last step followed from the Taylor expansions
of the functions in the numerator of the integrand. After studying Cauchy’s lectures
on analysis, Abel came to realize that his derivation was invalid. In an 1826 letter to
his friend Holmboe, he wondered why the use of divergent series could often lead to
correct results. It was not until the early years of the twentieth century that this puzzle
was fully understood.

25.8 Exercises

1. In his 1671 letter to Collins, Newton expressed his result on
∑p

k=1
a

b+kc as follows:

Any musical progression a
b
· a
b+c · a

b+2c · a
b+3c · a

b+4c etc. being propounded whose last term
is a

d
: for ye following operation choose any convenient number e (whither whole broken

or surd) which intercedes these limits 2mn
b+d and

√
mn; supposing b− 1

2 c to bee m, and

b+ 1
2 c to bee n. And this proportion will give you the aggregate of the terms very near the

truth.
As ye Logarithm of

e+ 1
2 c

e− 1
2 c

to ye Logarithm of n
m

, so is a
e

to ye desired summe.
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Verify Newton’s approximation, stated in modern terminology: Let m= b− 1
2c

and n= d+ 1
2c and d = b+ (p− 1)c. Then

p∑
k=1

a

b+ kc ≈
a ln(n/m)

e ln(e+ 1
2c)/(c− 1

2c))
,

where 2mn
m+n < e <

√
mn. See Newton (1959–1960), pp. 68–70.

2. Supposep= ∫
∂x

x
ln y and q= ∫

∂y

y
ln x, where the symbols ∂x,∂y denote partial

differentiation.

(a) Show that p+ q = ln x ln y+C.
(b) Take y = 1− x, 0< x < 1. Show that

p =−
∞∑
n=1

xn

n2
and q =−

∞∑
n=1

yn

n2
.

Let x→ 1 to get C =−∑∞
n=1 1/n2 =−π2/6. Thus,

Li2(x)+Li2(y)= π2

6
− ln x ln y, (25.39)

where Li2(x)=∑∞
n=1 x

n/n2.
(c) Take y = x− 1. Observe that

ln y = ln x+ ln

(
1− 1

x

)
= ln x− 1

x
− 1

2x2
− 1

3x3
− 1

4x4
− etc.

Show that

p = 1

2
(ln x)2 +Li2(1/x) and q =−Li2(−y).

Deduce that

p+ q = π2

6
+ ln x ln

y√
x
.

(d) Deduce from (c) that for a = (√5− 1)/2

Li2(a)−Li2(−a)= π2

6
− ln a ln (a

√
a).

The results and methods above are from Euler’s paper, written in 1779 and
published in 1811, devoted entirely to the topic of the dilogarithm. By using
partial derivatives, he made the proof of (25.39) somewhat shorter than his 1729
proof of the same result. In 1735 Euler had also been able to evaluate ζ(2); he
made use of this in his 1779 paper. See Eu. I-16-2, pp. 117–138.
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3. Let s = 1n+ 2n+ 3n+·· ·+ xn. Use Euler–Maclaurin summation to prove

s = xn+1

n+ 1
+ xn

2
+ 1

2

(
n

1

)
xn−1

6
− 1

4

(
n

3

)
xn−3

30
+ 1

6

(
n

5

)
xn−5

42

− 1

8

(
n

7

)
xn−7

30
+ 1

10

(
n

9

)
5xn−9

66
− 1

12

(
n

11

)
691xn−11

2730

+ 1

14

(
n

13

)
7xn−13

6
− 1

16

(
n

15

)
3617xn−15

510
+ etc.

Euler gave this formula in his 1736 paper (Eu. I-14, 108–123) and specifically
listed the sums forn= 1, 2, . . . , 16.Note the explicit appearance of the Bernoulli
numbers, 1

6 ,− 1
30 ,

1
42 , . . . ,− 3617

510 in Euler’s presentation of the formula. Naturally,
Euler wrote

1

k+ 1

(
n

k

)
as

n(n− 1) · · ·(n− k+ 1)

1 · 2 · · · ·k(k+ 1)
.

4. Verify Euler’s computations leading to the value of γ to fifteen decimal places.
He took n= 10 in (25.7) and determined that

1+ 1

2
+ 1

3
+·· ·+ 1

10
= 2.9289682539682539.

He also knew that ln 10= 2.302585092994045684. He used precisely the terms
in (25.7) so that he had to calculate

1

20
− 1

1200
+ 1

1200000
−·· ·+ 691

32760× 1012
− 1

12× 1014
.

From this he obtained

Const. = γ = lim
n→∞

(
n∑
k=1

1

k
− ln n

)
= 0.5772156649015329.

This is just one example of the kind of numerical calculation that Euler undertook
on a regular, if not daily, basis.

In this connection, also prove the inequalities of Mengoli:

1

n+ 1
+ 1

n+ 2
+·· ·+ 1

np
< lnp <

1

n
+ 1

n+ 1
+·· ·+ 1

np− 1
. (25.40)

Mengoli proved these in his Geometria Speciosa of 1659. See Hofmann’s arti-
cle on the Euler–Maclaurin formula, in Hofmann (1990), vol. 1, pp. 233–40,
especially p. 237.
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5. Use the Euler–Maclaurin formula to show that

∞∑
k=1

1

k3
= 1.202056903159594

∞∑
k=1

1

k4
= 1.0823232337110824.

These results and the evaluation of γ in the previous exercise are in Euler’s 1736
paper (Eu. I-14, pp. 118–21).

6. Verify Euler’s formal computations to obtain a formula for the alternating series

s(x)= f (x)−f (x+ b)+f (x+ 2b)− etc:

From s(x+ 2b)− s(x)=−f (x)+f (x+ b), deduce that

f (x+ b)−f (x)= 2b

1!
ds

dx
+ 4b2

2!
d2s

dx2
+ etc.

Thus,

b

1!
df

dx
+ b2

2!
d2f

dx2
+ etc. = 2b

1!
ds

dx
+ 4b2

2!
d2s

dx2
+ etc. (25.41)

Assume with Euler that

ds

dx
= αdf

dx
+β d

2f

dx2
+ γ d

3f

dx3
+ etc.

and substitute in (25.41), equating coefficients, to get

2s = Const.+f (x)+ b

2

df

dx
− b3

4!
d3f

dx3
+ 3b5

6!
d5f

dx5
− 17b7

8!
d7f

dx7

+ 155b9

10!
d9f

dx9
− 2073b11

12!
d11f

dx11
+ 38227b13

14!
d13f

dx13
− etc. (25.42)

Euler used this formula to compute the series

1

x
− 1

x+ b +
1

x+ 2b
− 1

x+ 3b
+ etc.

He applied it to

π

4
= 1− 1

3
+ 1

5
− 1

7
+·· ·

by taking x = 25,b = 2 and then computing 1− 1
3 + ·· ·− 1

23 separately. In this
way he obtained a value of π/4 correct to eleven decimal places. The summation
formula (25.42) is often called the Boole summation formula, though Euler had
the result a hundred years before Boole. This work is in Eu. I-14, pp. 128–130.
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7. Show that

f (x)−f (x+ 1)+f (x+ 2)−·· · (25.43)

= 1

2
f (x)+

∞∑
n=1

(1− 22n)B2n

(2n)!
d2n−1f

dx2n−1
. (25.44)

Although this is not Euler’s notation, he pointed out the connection between
the terms of the series and the Bernoulli numbers. The paper appeared in 1788,
though it was presented to the St. Petersburg Academy in 1776. See Eu. I-16-1,
p. 57.

8. Show by a formal calculation that when m is a positive integer

am− (a+ b)m+ (a+ 2b)m− (a+ 3b)m+·· ·

= am

2
− (22 − 1)B2

2

(
m

1

)
am−1b− (24 − 1)B4

4

(
m

3

)
am−3b3 −·· ·

− (2m+1 − 1)Bm+1

m+ 1
bm.

For a = 0,b= 1 this gives

0m− 1m+ 2m− 3m+ 4m−·· · = −Bm+1(2m+1 − 1)

m+ 1
.

This also follows from the formula (25.44) above. Euler used this obviously
divergent series to prove the functional relation for the zeta function. See Eu. I-15,
p. 76.

25.9 Notes on the Literature

The Euler–Maclaurin was one of Euler’s favorite formulas; he discussed or used it in
numerous papers. He first stated it in “Methodus Generalis Summandi Progressiones,”
Eu. I-14, p. 43. Although this paper dealt with a different topic, Euler had apparently
discovered this result at just that time and wished to announce it quickly. He investigated
the subject more thoroughly in the 1736 paper “Inventio Summae cuiusque Seriei ex
Dato Termino Generali,” Eu. I-14, pp. 108–123. There he gave approximations for
ζ(n), n= 2,3,4 and for Euler’s constant γ . He also obtained formulas for the sums of
powers of consecutive integers for pairs up to sixteen. Euler then extended his formula
to the summation of alternating series in his “Methodus Universalis Series Summandi
Ulterius Promota,” also published in 1736. See Eu. I-14, pp. 124–137. His paper written
in 1740, published ten years after that, “De Seriebus Quibusdam Considerationes,”
contains the generating function for the Bernoulli numbers. See Eu. I-14, p. 436. Euler
included a full treatment of the Euler–Maclaurin in chapter 5 of part two of his 1755
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differential calculus book. See Eu. I-10. The other chapters contain much interesting
work on series. For the quote about Maclaurin from Euler’s letter, see Tweddle (1988),
p. 146.

For the derivations of the remainder term, see Poisson (1823) and Jacobi (1969),
vol. 6, pp. 64–75. Incidentally, Poisson refers to Euler for the Euler–Maclaurin
formula, while the title of Jacobi’s paper is “De Usu Legitimo Formulae Summatoriae
Maclaurinianae.” Abel’s 1823 paper presenting the Plana–Abel formula appeared in
Norwegian in the Norwegian journal Magazin for Naturvidenskaberne; it was reprinted
in French as “Solution de quelques problèmes à l’aide d’intégrales définies.” See Abel
(1965), vol. I, pp. 11–27, especially p. 23. Hardy (1949) gives an excellent treatment
of the work of Jacobi and Poisson on the Euler–Maclaurin and Cohen (2007) presents
a modern treatment of the E-M and its extensions.
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L-Series

26.1 Preliminary Remarks

One of the most difficult and outstanding mathematical problems of the early
eighteenth century was the summation of the series

∑∞
n=0 1/n2. In his 1650 book Novae

Quadraturae Arithmeticae Seu De Additione Fractionum, Pietro Mengoli (1626–1686)
considered the sum of the reciprocals of figurate numbers: natural numbers, triangu-
lar numbers, square numbers, and so on. For the natural numbers, Mengoli showed
that the sum of their reciprocals diverged, or that the harmonic series was diver-
gent. For triangular numbers, he showed how the reciprocal of each triangular number
could be written as a difference of two fractions, thus summing the series. But in the
next step, square numbers, Mengoli posed the problem of summing their reciprocals,
but could not solve it. He expressed surprise that the series of triangular recipro-
cals could be more easily summed than the series of square reciprocals, saying that
a “richer intellect” would be required to solve this problem. Leibniz, Jakob and Johann
Bernoulli, and James Stirling all later attempted to sum this series. In fact, this ques-
tion became known as the Basel problem because it frustrated the very best efforts
of Jakob Bernoulli of Basel, who wrote that he would be greatly indebted to any-
one who would send him a solution. Unfortunately, the solution was not found until
thirty years after Bernoulli’s death; in 1735, Euler became the first to sum this series.
With characteristic brilliance, Euler made use of the formulas relating the roots to the
coefficients of algebraic equations and he boldly applied them to equations of infi-
nite degree. When Euler communicated his results without proof to Stirling in 1736,
the latter wrote in response that Euler must have tapped a new source, since the old
methods were insufficient. Euler had indeed found a new source, beginning with the
equation

0 = 1− 1

y
sinx = 1− 1

y

(
x− x3

3! +
x5

5! − · · ·
)

(26.1)

where y was a constant between −1 and 1. He argued that 2nπ+A and (2n+1)π−A
gave a complete list of the roots of (26.1), provided that sinA= y and that n assumed

515
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all possible integer values. Hence, he factored (26.1) as(
1− x

A1

)(
1− x

A2

)(
1− x

A3

)
· · · , (26.2)

where A1, A2, A3, . . . were all the roots. He equated the coefficients of x to obtain the
sum of the reciprocals of the roots:

1

A1
+ 1

A2
+ 1

A3
+·· · = 1

y
. (26.3)

To obtain the sums of the squares, cubes, fourth powers, etc., of the reciprocals of the
roots, he applied the Girard–Newton formulas (18.3). Thus, when y = 1 andA= π

2 , he
had the formula

4

π
− 4

3π
+ 4

5π
+·· · = 1 or (26.4)

1− 1

3
+ 1

5
+·· · = π

4
. (26.5)

From the Girard–Newton formulas he obtained

1+ 1

32
+ 1

52
+·· · = π 2

8
, (26.6)

1− 1

33
+ 1

53
−·· · = π 3

32
, (26.7)

1+ 1

34
+ 1

54
+·· · = π 4

96
, (26.8)

etc. He then observed, as Jakob Bernoulli had also seen, that

1+ 1

22
+ 1

32
+ 1

42
+·· · = 1+ 1

32
+ 1

52
+·· ·+ 1

4

(
1+ 1

22
+ 1

32
+·· ·

)
and hence by (26.6)

∞∑
n=1

1

n2
= π2

6
. (26.9)

Similarly, Euler found

∞∑
n=1

1

n4
= π4

90
, (26.10)

and so on. To derive other series, he took y as constants other than one. For example,
for y = 1/

√
2 and y =√

3/2 he had, respectively,

1+ 1

3
− 1

5
− 1

7
+ 1

9
+ 1

11
− 1

13
− 1

15
+·· · = π

2
√

2
and (26.11)

1+ 1

2
− 1

4
− 1

5
+ 1

7
+ 1

8
− 1

10
− 1

11
+·· · = 2π

3
√

3
. (26.12)
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Recall that Newton had earlier proved (26.11) by the integration of the rational function
(1+x2)/(1+x4) over [0,1]. Indeed, Euler credited Newton with this result. Of course,
Madhava and Leibniz found (26.5) by integrating the rational function 1/(1+ x2). In
the same manner, (26.12) can by obtained by the integration of (1+x)/(1+x3). Thus,
integration of rational functions is a powerful method for evaluating many series that
sum to multiples of π or to logarithms of numbers. However, this method is not as
effective for series such as (26.6) through (26.10). Euler, however, provided a new
insight, so that one could efficiently sum up many series. When Euler communicated
his method to some of his mathematical correspondents, there were objections to his
procedure. How did he know, for example, that nπ were the only roots of sinx = 0?
There could be complex roots! How could he employ the Girard–Newton formulas,
applicable to polynomials, for equations of infinite degree? In addition, there were also
convergence questions concerning some of Euler’s series.

Euler was well aware of these inevitable objections, but he believed in the correct-
ness of his formulas. His methods had succeeded in rederiving known formulas and,
moreover, numerical methods such as the Euler–Maclaurin formula showed him that
his results were correct to many decimal places. So Euler made great efforts to resolve
any doubts about his method, as well as to prove his formulas using alternative pro-
cedures. For example, by proving the product formulas for sinx and cosx, (16.20)
and (16.21), he showed that these functions had only the well-known zeros and no
others. And in 1737 Euler gave an ingenious method for deriving (26.6) and (26.9) by
computing

∫ 1
0 arcsinx/

√
1− x2 dx in two different ways. Unfortunately, this method

did not extend to formulas such as (26.7), (26.8), and (26.10) where the powers of the
denominators were greater than two. Meanwhile, in 1738, Niklaus I Bernoulli gave an
extremely clever proof of (26.6) by squaring the series (26.5). Euler soon simplified the
argument and communicated his result to his friend Goldbach, who suggested consid-
ering even more general series, now known as double-zeta values; Euler found some
very interesting results about them. This laid the foundation for the fertile modern topic
of multizeta values.

In a paper of 1743 published in Berlin, Euler used the partial fractions expansions of
cotπx and cscπx and their derivatives to find the sum of

∑
1/n2k and related series.

This is essentially the method often used in modern textbooks, although Euler, Daniel
Bernoulli, and Landen found other significant proofs. In 1754, Euler discovered the
“Fourier” expansion

sinφ− 1

2
sin 2φ+ 1

3
sin 3φ− 1

4
sin 4φ+ 1

5
sin 5φ− etc. = φ

2
, (26.13)

yielding (26.5) when φ = π

2 . Integration of (26.13) gave him

cosφ− 1

22
cos2φ+ 1

32
cos3φ− 1

42
cos4φ+ etc. =C− φ2

4
. (26.14)

We have seen in the previous chapter that in 1773 Daniel Bernoulli showed that the
values of

∑
1/n2k and

∑
(−1)n/(2n+ 1)2k+1 could be obtained from (26.14). Euler

further improved on these results, and their joint work produced the Fourier expansions
for Bernoulli polynomials.
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Recall that in 1758 Landen evaluated the sums
∑

1/n2k and
∑
(−1)n/(2n+1)2k+1

by means of the polylogarithmic functions. To do this, he employed complex numbers
through the use of log(−1). In the 1770s, Euler made further strides in this area, though
his work had a few errors, especially where complex numbers were used. Thus, by the
1770s, Euler had worked out many ways of evaluating

∑
1/n2. In his papers written

during that period, he described his methods and even added a new one, employing
integration and differentiation under the integral sign.

From the start of his work on what we would now call zeta values, Euler observed that
the numbers appearing in the values of

∑
1/n2k, k = 1,2,3, . . . also presented them-

selves as coefficients in the Euler–Maclaurin summation formula. He was intrigued by
this puzzle and wrote in his 1738 letter to Stirling that an explanation of this would
be a significant advancement. In a 1740 paper, Euler began to understand this, as
he used differential equations to obtain the Taylor series expansions of cotπx and
xex/(ex − 1). The coefficients of the series for cotπx involved the sums

∑
1/n2k; on

the other hand, the coefficients of xex/(ex − 1) involved the Bernoulli numbers and
were the coefficients in the Euler–Maclaurin series. Thus, Euler made his own “sig-
nificant advancement.” It was around 1740 that Euler more precisely understood the
relation between the trigonometric functions and the exponential function, noting that

cotx = i
(

1+ 2

e2ix − 1

)
, and

xex

ex − 1
= x

(
1+ 2

ex − 1

)
(26.15)

gave a simpler reason for the appearance of Bernoulli numbers in the summation of∑
1/n2k. He gave details in his differential calculus book of 1755.
Euler was also mystified by the fact that, even though he could sum∑

1/n2k or
∑
(−1)n+1/n2k

in various ways, he was unable to find the sum of the series with odd powers,
∑

1/n2k+1.
Of course, this is a problem that has baffled mathematicians to the present day. To shed
some light on this question, Euler considered the divergent series

∑
(−1)n+1nk. In a

1740 paper, he noted that

1− 1+ 1− 1+ 1− etc. = 1

2
, (26.16)

1− 22k+ 32k− 42k+ etc. = 0, (26.17)

1− 22k−1 + 32k−1 − 42k−1 + etc.

= (−1)k−12 · 1 · 2 · · ·(2k− 1)

π 2k

(
1+ 1

32k
+ 1

52k
+·· ·

)
, (26.18)

k = 1,2,3, . . . . Note that the series in parentheses in (26.18) can also be written as

22k− 1

22k− 2

(
1− 1

22k
+ 1

32k
− 1

42k
+ etc.

)
. (26.19)

Thus, the series with even/odd powers in the denominator were related to the series
with odd/even powers in the numerator; however, the series with even powers in the
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numerator summed to zero (except for k = 0), and hence gave no information about
the odd series

∑
(−1)n+1/n2k+1, k= 1,2,3, . . . . In the exceptional case, for k= 0, one

gets
∑
(−1)n+1/n2k+1 =∑

(−1)n−1/n = ln 2. We observe that Euler was well aware
that the series on the left-hand side were divergent, but he plunged right in anyway,
since this work was yielding him insight into a very challenging problem. Indeed, he
was justified in his audacity, since this approach led him to the functional equation for
the zeta function.

It appears that at some point in the 1740s, Euler started thinking of the series
∑

1/n2k

and other related series as particular values of the functions defined by ζ(s)=∑
1/ns ,

etc. Here note, however, that the label ζ(s) was later given by Riemann. In a paper
presented to the Berlin Academy in 1749 but published in 1768, Euler drew a relation
between ζ(s) and ζ(1− s), using the equation he wrote as

1− 2−m+ 3−m− 4−m+ 5−m− 6−m+ etc.

1− 2m−1 + 3m−1 − 4m−1 + 5m−1 − 6m−1 + etc.

= − 1 · 2 · 3 · · ·(m− 1)(2m− 1)

(2m−1 − 1)πm
cos

mπ

2
,

(26.20)

where m was a real number. In this way, Euler found a generalization of (26.18).
In 1826, Abel wrote his friend Holmboe that equation (26.17) was a laughable

equation to write. Abel’s early training had been in the formal mathematical tradition of
which Euler was considered the model. After he studied Cauchy’s lectures on analysis,
Abel changed his view of mathematics; he believed it illegitimate to use divergent series
at all and therefore wished to abolish formulas such as (26.17), (26.18), and (26.20).
However, Euler had a very clear idea that the definition of the divergent series in these
formulas amounted to a limit:

1− 2n+ 3n− 4n+·· · = lim
x→1−

(
1− 2nx+ 3nx2 − 4nx3 +·· ·) . (26.21)

He found the values of these limits, for nonnegative integer values of n, by repeated
multiplication by x followed by differentiation of the geometric series formula

1− x+ x2 − x3 + x4 −·· · = 1

1+ x . (26.22)

Euler’s technique of summing (26.21) became an important summability method in the
theory of divergent series developed after 1890. Ironically, it is called the Abel sum.

Euler verified (26.20) for all integer values of m and for two fractional values,
m= 1/2 and m= 3/2. In general, he meant 1 · 2 · 3 · · ·(m− 1) to stand for the gamma
function �(m). For positive integer values of m, he made illegitimate but successful
use of the Euler–Maclaurin summation formula to sum the divergent series

xm− (x+ 1)m+ (x+ 2)m− (x+ 3)m+·· · . (26.23)

By doing this, he could bring into play the Bernoulli numbers that appear in the Euler–
Maclaurin summation, using them to evaluate the sums on the left-hand side of (26.21).
In fact, he could have done this without using Euler–Maclaurin, had he first applied the
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change of variables x= e−y in (26.22). Euler believed that a divergent series, especially
an alternating series, had a definite value, obtainable by varying methods.

In order to verify (26.20) for m = 0, Euler used (26.16) and the series for ln 2.
For negative integers, he noted that under the transformation m→ 1−m, both sides
were converted into their reciprocals. For the right-hand side, he required the reflection
formula for the gamma function �(m)�(1−m)= π/sinπm, and it appears that Euler
explicitly stated this formula for the first time in this paper. For m= 1/2, Euler used
the value �(1/2) = √

π ; he had known this value since 1729, but it also followed
immediately from his reflection formula. Finally, for m = 3/2, Euler computed both
sides to several decimal places, checking that the results were identical. To do this,
he applied the Euler–Maclaurin formula to sum the divergent series 1 −√

2 +√
3

−√
4+·· · = 0.380129, as well as the convergent series

1− 1

2
√

2
+ 1

3
√

3
− 1

4
√

4
+·· · = 0.765158.

G. Faber, the editor of vol. 15 of Euler’s Opera Omnia in which this paper appeared,
noted that the values could be expressed more exactly as 0.380105 and 0.765147.

At the end of his 1749 paper, Euler mentioned without proof the functional equation
for a special L-function:

1− 3n−1 + 5n−1 − 7n−1 + etc.

1− 3−n+ 5−n− 7−n+ etc.
= 1 · 2 · 3 · · ·(n− 1)2n

πn
sin
nπ

2
. (26.24)

These results on the functional relations for the zeta andL-functions went unnoticed. In
the 1840s, the functional equation (26.20) was given a complete proof for 0<m< 1 by
the Swedish mathematician Carl Johan Malmsten (1814–1886), who mentioned seeing
(26.20) somewhere in Euler. Oscar Schlömilch independently found a proof and stated
it as a problem in a journal. A solution was published by Thomas Clausen (1801–1885)
in 1858 and another was noted by Eisenstein on the last blank page in his copy of the
Disquisitiones in the French translation of 1807.André Weil conjectured that Eisenstein
discussed this topic with Riemann, providing the impetus for Riemann’s well-known
paper of 1859 on the zeta function. Indeed, Riemann and Eisenstein had been close
friends in Berlin, and Eisenstein’s note is dated April 1849, just before Riemann left
Berlin for Göttingen.

In 1737, Euler discovered another important result on the zeta function, that∑∞
n=1 1/ns could be expressed as an infinite product involving prime numbers:

∞∑
n=1

1/ns =
∏
p

(1−p−s)−1. (26.25)

This formula has important consequences, just as the product formulas for the trigono-
metric functions have significant corollaries. Euler himself almost immediately saw
that he could derive the infinitude of the primes from this formula. He later extended
the product formula to some L-series. For example,

1− 1

3s
+ 1

5s
− 1

7s
+·· · =

∏
(1−p−s)−1(1+ q−s)−1,
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where p and q are primes of the form 4n+ 1 and 4n+ 3, respectively. He employed
this formula to show that there were infinitely many primes of the form 4n+ 1, and
infinitely many of the form 4n+ 3.

In order to extend Euler’s result to primes in arithmetic progressions, Dirichlet
defined the concept of a character; in modern terms, this would be a homomor-
phism from the residue classes of integers, modulo m, to the complex numbers of
magnitude one:

χ : Z×
m → C×, χ(ab)= χ(a)χ(b). (26.26)

Note that χ(a) is automatically a φ(m)th root of unity, where φ is the Euler totient
function. Dirichlet constructed series corresponding to these characters:

L(χ,x)=
∞∑
n=1

χ(n)

ns
. (26.27)

He noted that terms with n not relatively prime tomwere omitted. In modern notation,
we set χ(n)= 0 if the greatest common divisor (gcd) of n and m is greater than one.
For example, for m = 4, Z×

4 consists of two residue classes relatively prime to 4,
represented by 1 and 3. Then χ(1) = 1, χ(3) = −1 is a character defined on Z×

4 and
the corresponding series would be

1− 1

3s
+ 1

5s
− 1

7s
+·· · .

In this way, Dirichlet systematized and generalized Euler’s results. In particular, he had

L(χ,s)=
∏
p

(1−χ(p)/ps)−1
,

where the product was taken over the primes not dividing m.

26.2 Euler’s First Evaluation of
∑

1/n2k

Euler’s evaluation was based on the factorization given by (26.1) and (26.2):

1− 1

y

(
x

1
− x3

1 · 2 · 3 + x5

1 · 2 · 3 · 5 −·· ·
)
=

(
1− x

A1

)(
1− x

A2

)(
1− x

A3

)
· · · .
(26.28)

Note that Euler wrote A, B, C, D, . . . instead of A1, A2, A3, A4, . . . . He observed
that the coefficients of the powers of x were the elementary symmetric functions of the
infinitely many variables 1/A1, 1/A2, 1/A3, . . . . Therefore, by equating coefficients,
he had

α ≡
∑ 1

Ai
= 1

y
, β ≡

∑
i<j

1

AiAj
= 0, γ ≡

∑
i<j<k

1

AiAjAk
= 1

6y
etc., (26.29)
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where α, β, γ , δ, etc., denoted the elementary symmetric functions. Euler then applied
the Girard–Newton formulas (18.3) connecting the sums of the squares, cubes, fourth
powers, etc., of 1/A1, 1/A2, 1/A3, . . . with the symmetric functions α, β, γ , etc. Thus,
he got ∑ 1

A2
i

= α2 − 2β,
∑ 1

A3
i

= α3 − 3αβ+ 3γ,

∑ 1

A4
i

= α4 − 4α2β+ 4αγ + 2β2 − 4δ, etc.

For y = 1, the roots A1, A2, A3, . . . of the equation sinx = 1 were

π

2
,
π

2
,−3π

2
,−3π

2
,

5π

2
,

5π

2
, . . . ,

since sinx − 1 = 0 had double roots. Thus, Euler obtained equations (26.6), (26.7),
and (26.8). Clearly, he could continue the calculations to arbitrarily large powers of the
reciprocals of the roots. Euler explicitly wrote the values of

∑
1/n2k for k= 1,2, . . . ,6,

and the last of these turned out to be

1+ 1

212
+ 1

312
+ 1

412
+·· · = 691π12

6825 · 93555
. (26.30)

The appearance of the fairly large prime 691 may have alerted Euler to the connection
of zeta values with Bernoulli numbers. Recall that this prime had already appeared in
the Euler–Maclaurin series he had found only two or three years earlier, and at the time
he discovered (26.30), he was still intensely studying the Euler–Maclaurin summation.

26.3 Euler: Bernoulli Numbers and
∑

1/n2k

In a paper of 1740, Euler explained the connection between the Bernoulli numbers
appearing in the Euler–Maclaurin formula and the sums

∑
1/n2k. A year earlier, he had

found the partial fractions expansion of cotx and he made use of this in his explanation.
Euler started with a generating function for the sums

∑
1/n2k and changed the order of

summation to obtain a partial fractions expansion that he could recognize as a cotangent
function. Denoting the generating function by S, he had by a rearrangement of terms

S =
( ∞∑
n=1

1

n2

)
x2 +

( ∞∑
n=1

1

n4

)
x4 +

( ∞∑
n=1

1

n6

)
x6 +·· ·

= x2 + x4 + x6 +·· ·+ x2

22
+ x4

24
+ x6

26
+·· ·+ x2

32
+ x4

34
+ x6

36
+·· ·

= x2

1− x2
+ x2

22 − x2
+ x2

32 − x2
+·· · = 1

2
− πx

2tanπx
. (26.31)

At this point, Euler could have used equation (26.15) to derive the value of
∑

1/n2k in
terms of Bernoulli numbers. By expressing tanπx in terms of the exponential function,
he would have obtained

1− πx

tanπx
= 1+πix− 2πixe2πix

e2πix − 1
. (26.32)
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He next could have used his generating function for the Bernoulli numbers appearing
in the Euler–Maclaurin formula to express the right-hand side as

1

2

∞∑
n=1

(−1)n−1 B2n

(2n)! (2πx)
2n.

Now, in 1740 Euler was just beginning to delve into the connection between the circular
and exponential functions; he was not yet ready to make full use of it. For example,
in a letter to Johann Bernoulli written during this period, he explained the equality of
2cosx and eix + e−ix by means of differential equations. Similarly, in his 1740 paper,
he proved (26.32) through the use of differential equations. Thus, Euler continued his
argument, proceeding to define A, B, C, . . . by A= 1

π2

∑
1/n2, B = 1

π4

∑
1/n4, etc.

Since

S = 1

2

(
1− πx

tanπx

)
, u= arctan

u

1− 2S
,

where u= πx, a simple calculation showed Euler that S satisfied

2u
dS

du
+ 2S = u2 + 4S2.

He substituted the series S = Au2 + Bu4 + Cu6 +Du8 + ·· · into the differential
equation and determined that

A= 1

6
, B = 2A2

5
, C = 4AB

7
,

D = AC+ 2B2

9
, E = 4AD+BC

11
, etc. (26.33)

He then observed that the coefficients in the Euler–Maclaurin series were generated by

s = xex

ex − 1
≡ 1+αx+βx2 + γ x3 + δx4 + etc.

and saw that s satisfied the differential equation

x
ds

dx
− s− sx+ s2 = 0.

By substituting the series for s, he obtained relations for the coefficients α, β, γ , δ, etc.
He noted that except for α = 1/2, the coefficients of the odd powers were zero. To see
this more easily, the reader may consider the fact that −x/2+ xex/(ex − 1) is an even
function. Euler next set β =A/2, δ =−B/23, ζ =C/25, θ =−D/27, χ =E/29, etc.,
where ζ , θ , χ denoted the coefficients of x6, x8, x10, respectively. He then showed that
these A, B, C, . . . also satisfied the relations (26.33). Thus, Euler had the formula we
now write as

ζ(2n)= 1+ 1

22n
+ 1

32n
+ 1

42n
+·· · = (−1)n−1 22n−1π 2n

(2n)! B2n. (26.34)
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26.4 Euler’s Evaluation of Some L-Series Values by Partial Fractions

Euler’s essential idea in the derivation of his famous zeta value formula, proved in the
last section, was the partial fractions expansion of π/ tanπx. After his move to Berlin
in 1741, Euler followed this up with a paper in the Berlin Academy journal of 1743.
There he showed how the same partial fractions could also be applied to the derivation
of several L-series values. He started with

π

sin sπ
= 1

s
+ 1

1− s −
1

1+ s −
1

2− s +
1

2+ s +
1

3− s −
1

3+ s − etc. (26.35)

π

tan sπ
= 1

s
− 1

1− s +
1

1+ s −
1

2− s +
1

2+ s −
1

3− s +
1

3+ s − etc, (26.36)

where he took s to be a rational number s = p/q. He assigned specific integer values
to p and q and evaluated several series, including (26.5), (26.11), and (26.12).

To get the series for the squares of the partial fractions, Euler took the derivatives
of (26.35) and (26.36) to get

π2 cosπs

(sinπs)2
= 1

s2
− 1

(1− s)2 −
1

(1+ s)2 +
1

(2− s)2 +
1

(2+ s)2 −
1

(3− s)2 − etc.,

(26.37)

π 2

(sinπx)2
= 1

s2
+ 1

(1− s)2 +
1

(1+ s)2 +
1

(2− s)2 +
1

(2+ s)2 +
1

(3− s)2 + etc.

(26.38)

Among examples of these relations, for s = 1/3 Euler gave

2π2

27
= 1− 1

22
− 1

42
+ 1

52
+ 1

72
− 1

82
− 1

102
+ etc., (26.39)

4π 2

27
= 1+ 1

22
+ 1

42
+ 1

52
+ 1

72
+ 1

82
+ 1

102
+ etc., (26.40)

and for s = 1/4 in (26.37) he obtained

π2

8
√

2
= 1− 1

32
− 1

52
+ 1

72
+ 1

92
− 1

112
− 1

132
+ etc. (26.41)

He knew that he could obtain (26.40) directly from (26.9). Near the end of the
paper he noted that if P and Q denoted the left-hand sides of (26.35) and (26.36),
respectively, then

(−1)n−1

(n− 1)!
dn−1P

dsn−1
= 1

sn
+ (−1)n−1 1

(1− s)n −
1

(1+ s)n + (−1)n
1

(2− s)n

+ 1

(2+ s)n + (−1)n−1 1

(3− s)n − etc.

(26.42)

(−1)n−1

(n− 1)!
dn−1Q

dsn−1
= 1

sn
+ (−1)n−1 1

(1− s)n +
1

(1+ s)n + (−1)n−1 1

(2− s)n

+ 1

(2+ s)n + (−1)n−1 1

(3− s)n + etc.

(26.43)
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With these expansions, it was possible to obtain moreL-series values. It may be helpful
to observe that in Dirichlet’s terms, the series (26.39) and (26.40) corresponded to
L-series with character modulo 3. In (26.27), put χ(3m± 1) = ±1 to obtain the first
series and put χ(3m± 1) = 1 to obtain the second series. On the other hand, series
(26.41) would be defined by the character modulo 8, such that χ(8m± 1) = 1 and
χ(8m± 3)=−1.

26.5 Euler’s Evaluation of
∑

1/n2 by Integration

Because some mathematicians raised objections to his first evaluation of
∑

1/n2, Euler
looked for other methods. Now his evaluations by partial fractions were immune to these
objections, but even before finding the partial fractions method, Euler discovered an
ingenious technique using integration. In 1737, Euler worked out and communicated to
Johann Bernoulli his integration method. But the paper containing this method appeared
in 1743 in the Journal littéraire d’Allemagne. It was unusual for Euler to use this
journal; consequently, the paper received very scant notice. It was finally reprinted
in the 1907–1908 Bibliotheca Mathematica as a forgotten work of Euler. However,
Euler’s evaluation of

∑
1/(2n+ 1)2, taken from this paper, was reproduced without

attribution in a 1750s calculus book by Simpson.
Briefly (and in modern notation), Euler started with Newton’s series

arcsinx = x+ 1

2

x3

3
+ 1 · 3

2 · 4
x5

5
+ 1 · 3 · 5

2 · 4 · 6
x7

7
+·· ·

to get

1

2
(arcsinx)2 =

∫ x

0

arcsin t√
1− t2 dt =

∫ x

0

(
t + 1

2

t3

3
+·· ·

)
dt√

1− t2 . (26.44)

Assuming nwas odd, since only odd powers appeared in the series, integration by parts
gave him ∫ 1

0

xn+2

√
1− x2

dx = n+ 1

n+ 2

∫ 1

0

xn√
1− x2

dx

= (n+ 1)(n− 1)(n− 3) · · ·2
(n+ 2)(n)(n− 2) · · ·3 .

(26.45)

Euler applied this to (26.44) with x = 1 to obtain

π2

8
= 1+ 1

32
+ 1

52
+ 1

72
+·· · .

Unfortunately, this method could not be extended to
∑

1/n2k for k = 2,3, . . . , though
Euler attempted it. For example, he considered the series for (arcsinx)2 divided by√

1− x2 and integrated over (0,1). After some similar calculations, he obtained

π3

48
= 1

22
· π

2
+ 1

42
· π

2
+ 1

62
· π

2
+ 1

82
· π

2
+ etc.,

a result equivalent to π2/6 =∑
1/n2.
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In a letter dated August 27, 1737 of the Russian or Julian calendar, Euler commu-
nicated to his former teacher, Johann Bernoulli, the evaluation of

∑
1/n2 by means of

(26.44). In his reply of November 6 (Gregorian), Bernoulli expressed his admiration
for this method and observed that it had led him to find a new series for π2/8:

1

1 · 2 + 2

1 · 3 · 4 + 2 · 4
1 · 3 · 5 · 6 + 2 · 4 · 6

1 · 3 · 5 · 7 · 8 + 2 · 4 · 6 · 8
1 · 3 · 5 · 7 · 9 · 10

+·· · = π2

8
. (26.46)

We note that Bernoulli wrote C instead of π . Since the Russian calendar at that time
was about ten days behind the Gregorian calendar, keeping track of correspondence
can be challenging.

Bernoulli gave no further details in his letter, but in 1742 he offered an explanation in
the fourth volume of his Opera Omnia. His method was to divide Newton’s transformed
series for arctan t , written up in the “De Computo,” by 1+ t2 and then integrate. Recall
that Newton had not published his work, so the alternative series for arctan t in powers
of t/(1+ t2) was Bernoulli’s rediscovery. Thus, Bernoulli had

(arctan t)2

2
=

∫
arctan t

1+ t2 dt

=
∫ (

t

(1+ t2)2 +
2t3

1 · 3 · (1+ t2)3 +
2 · 4t5

1 · 3 · 5(1+ t2)4 +·· ·
)
dt. (26.47)

He obtained (26.46) by integrating this formula over (0,∞). Concerning (26.46), Euler
noted in a letter dated December 10, 1737 (Julian), that he had found the more general
series

1

2
(arcsinx)2 = x2

1 · 2 + 2 · x4

1 · 3 · 4 + 2 · 4 · x6

1 · 3 · 5 · 6 + 2 · 4 · 6 · x8

1 · 3 · 5 · 7 · 8 +·· · . (26.48)

Euler went on to remark that Bernoulli’s formula followed from this by taking
x=1. Moreover, he observed that other interesting series would result by taking
x = 1/2,1/

√
2, or

√
3/2.

In his 1743 paper, referred to earlier, Euler gave a derivation of (26.48) by observing
that (arcsinx)2 satisfied the second-order linear differential equation

(1− x2)
d2y

dx2
− x dy

dx
− 2 = 0. (26.49)

He then solved this equation by infinite series to prove (26.48). Observe, however, that
Bernoulli could have obtained Euler’s formula (26.48) from his own (26.47): Rewrite
(26.47) as

1

2
(arctan z)2 =

∫ z

0

arctan t

1+ t2 dt

=
∞∑
n=0

22n(n!)2
(2n+ 1)!

∫ z

0

(
t2

1+ t2
)n

t dt

(1+ t2)2
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=
∞∑
n=0

22n(n!)2
2(2n+ 1)!

∫ z2/(1+z2)

0
un du

=
∞∑
n=0

22n(n!)2
(2n+ 2)!

(
z2

1+ z2

)n+1

. (26.50)

Now set x2 = z2/(1+ z2) so that z= tan(arcsinx) and (26.48) follows.
We here note the remarkable fact that the Japanese mathematician Takebe Katahiro

(1664–1739) published both Bernoulli’s (26.46) and Euler’s (26.48) series in his 1722
treatise, Tetsujutsu Sankei. Takebe’s approach was very different, since he apparently
made his discoveries of these series on the basis of a considerable amount of numerical
work. He related the length of an arc of a circle determined by a chord to the height
of the chord. The latter would be the distance between the midpoint of the arc and the
midpoint of the chord. After finding the series, Takebe sought an analytic justification
for it. The Tetsujutsu exerted great influence on the development of mathematics in
eighteenth-century Japan, spurring Japanese mathematicians to discover other series
for π .

26.6 N. Bernoulli’s Evaluation of
∑

1/(2n+ 1)2

Euler was eager to find many different evaluations of
∑

1/n2 and in this he was assisted
by Niklaus I Bernoulli who in 1738 published a very interesting method by squaring
the Madhava–Leibniz series for π/4, given by (26.5). Bernoulli’s derivation involved
many transformations of series but in a July 1738 letter to Johann Bernoulli, Euler gave
a shorter proof by greatly simplifying the second portion. We present this simplified
proof, whose fundamental idea remained Bernoulli’s.

Bernoulli first observed that by squaring equation (26.5) he had

π2

16
=

(
1− 1

3
+ 1

5
− 1

7
+·· ·

)2

=
∞∑
n=0

1

(2n+ 1)2
− 2

∞∑
n=0

1

2n+ 1
· 1

2n+ 3

+ 2
∞∑
n=0

1

2n+ 1
· 1

2n+ 5
− 2

∞∑
n=0

1

2n+ 1
· 1

2n+ 7
+·· · .

(26.51)

The first series on the right was the sum of the squares of 1, 1/3, 1/5, . . . . The other
series were the sums of the mixed terms obtained by squaring. He then noted that

2
∞∑
n=0

1

2n+ 1
· 1

2n+ 3
=

∞∑
n=0

(
1

2n+ 1
− 1

2n+ 3

)
= 1,

2
∞∑
n=0

1

2n+ 1
· 1

2n+ 5
= 1

2

∞∑
n=0

(
1

2n+ 1
− 1

2n+ 5

)
= 1

2

(
1+ 1

3

)
,

2
∞∑
n=0

1

2n+ 1
· 1

2n+ 7
= 1

3

∞∑
n=0

(
1

2n+ 1
− 1

2n+ 7

)
= 1

3

(
1+ 1

3
+ 1

5

)
,
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and so on. Hence,

π2

16
=

∞∑
n=0

1

(2n+ 1)2
−
(

1− 1

2

(
1+ 1

3

)
+ 1

3

(
1+ 1

3
+ 1

5

)
−·· ·

)
. (26.52)

Euler’s simplification took effect at this point. To sum the series within the parentheses
in (26.52), he observed that

arctanx

1+ x2
= (1− x2 + x4 − x6 +·· ·)

(
x− x3

3
+ x5

5
− x7

7
+·· ·

)
= x− x3

(
1+ 1

3

)
+ x5

(
1+ 1

3
+ 1

5

)
− x7

(
1+ 1

3
+ 1

5
+ 1

7

)
+·· · .

(26.53)

Euler then integrated over (0,1) to obtain

1

2
(arctan 1)2 = 1

2

(
π

4

)2

= 1

2
− 1

4

(
1+ 1

3

)
+ 1

6

(
1+ 1

3
+ 1

5

)
−·· · .

Thus, he showed that the series within parentheses in (26.52) was equal toπ 2/16; hence,∑
1/(2n+ 1)2 = π 2/8, as was required. Not only did Euler simplify N. Bernoulli’s

proof but he also obtained a more general result. This result and the inspiration and
assistance of his friend Christian Goldbach eventually lead him to a fruitful study of
double zeta values.

26.7 Euler and Goldbach: Double Zeta Values

The route toward the consideration of double zeta values started with a theorem com-
municated by Euler to Goldbach on August 28, 1742. Note that this is a generalization
of the last equation, mentioned above, in N. Bernoulli’s evaluation. If

s = 1+ a

n+ 1
+ aa

2n+ 1
+ a3

3n+ 1
+ a4

4n+ 1
+·· · , then (26.54)

ss

2
= 1

2
+ a

n+ 2

(
1+ 1

n+ 1

)
+ aa

2n+ 2

(
1+ 1

n+ 1
+ 1

2n+ 1

)
+ a3

3n+ 2

(
1+ 1

n+ 1
+ 1

2n+ 1
+ 1

3n+ 1

)
+ a4

4n+ 2

(
1+ 1

n+ 1
+ 1

2n+ 1
+ 1

3n+ 1
+ 1

4n+ 1

)
+ etc. (26.55)

Goldbach was intrigued by this result and raised some questions about it in a letter dated
October 1, 1742. Euler responded by explaining how Niklaus I Bernoulli’s result, dis-
cussed in the previous section, could be obtained from the theorem. This led Goldbach
to consider the series now known as double zeta values. In a letter of December 24,
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1742 to Euler, Goldbach wrote that the type of series in Euler’s theorem suggested the
study of the series

1+ 1

2n

(
1+ 1

2m

)
+ 1

3n

(
1+ 1

2m
+ 1

3m

)
+ 1

4n

(
1+ 1

2m
+ 1

3m
+ 1

4m

)
+·· · . (26.56)

Let us denote this series by ζG(n,m). In modern terminology, this is almost the double
zeta value defined by

ζ(n,m)= 1+ 1

2n
+ 1

3n

(
1+ 1

2m

)
+ 1

4n

(
1+ 1

2m
+ 1

3m

)
+·· ·

= ζG(n,m)− ζ(m+n). (26.57)

Goldbach further wrote that he had found

ζG(3,1)= π4/72, and 2ζG(5,1)+ ζG(4,2)= 19π6/(2 · 5 · 7 · 34). (26.58)

He also mentioned that, while he could not evaluate ζG(n,m), he could handle
ζG(n,m)+ ζG(m,n). Euler must have been greatly fascinated by these series, for on
January 5, 1743, he responded with details of the proof of his theorem and then two
weeks later gave a number of evaluations of particular cases of Goldbach’s series. Thus,
he had

ζG(3,1)= 1

2
(ζ(2))2; ζG(5,1)= ζ(2)ζ(4)− 1

2
(ζ(3))2;

ζG(7,1)= ζ(2)ζ(6)− ζ(3)ζ(5)+ 1

2
(ζ(4))2;

ζG(9,1)= ζ(2)ζ(8)− ζ(3)ζ(7)+ ζ(4)ζ(6)− 1

2
(ζ(5))2;

ζG(2,2)= 1

2
(ζ(2))2 + 1

2
ζ(4); ζG(4,2)= (ζ(3))2 − 1

3
ζ(6);

ζG(6,2)= 2ζ(3)ζ(5)− 3

2
(ζ(4))2 + 1

4
ζ(8);

ζG(8,2)= 2ζ(3)ζ(7)− 3ζ(4)ζ(6)+ 4

2
(ζ(5))2 − 1

5
ζ(10);

ζG(3,3)= 1

2
(ζ(3))2 + 1

2
ζ(6);

ζG(5,3)= 3

2
(ζ(4))2 − 5

8
ζ(8)= π8

16 · 3 · 25 · 7 . (26.59)

Euler showed how Goldbach’s results (26.58) could be derived from these values and,
concerning Goldbach’s remark on ζG(m,n)+ ζG(n,m), he observed that

ζ(m)ζ(n)+ ζ(m+n)= ζG(m,n)+ ζG(n,m). (26.60)

Presumably, Goldbach had also found this elementary but basic formula now written as

ζ(m)ζ(n)− ζ(m+n)= ζ(m,n)+ ζ(n,m). (26.61)
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In a letter of February 26, 1743, Euler explained that his results depended on the
partial fractions identity:

1

xm(x+ a)n =
A0

xm
+ A1

xm−1
+·· ·+ Am−1

x
+ B0

(x+ a)n +
B1

(x+ a)n−1
+·· ·+ Bn−1

x+ a
(26.62)

where

Ak = (−1)kn(n+ 1) · · ·(n+ k− 1)

k!an+k ; Bk = (−1)mm(m+ 1) · · ·(m+ k− 1)

k!am+k . (26.63)

This identity was needed when he considered the series

ζ(m)× ζ(n)− ζ(m+n)=
∞∑
x=1

1

xm

∞∑
a=1

1

(x+ a)n +
∞∑
x=1

1

xn

∞∑
a=1

1

(x+ a)m . (26.64)

Needless to say, Euler did not use this notation in his letter or in the paper he wrote up
more than three decades later, in 1775. He wrote several terms of the expressions in
(26.62) and (26.64) to make it clear how the series progressed. In his 1775 paper, Euler
noted that (26.62) could be obtained by the method he had presented in his Introductio
of 1748. Here note that Euler’s notation for ζ(s) and ζG(m,n) used the integral sign
for summation:

ζ(s)=
∫

1

xs
, ζG(m,n)=

∫
1

zm

(
1

yn

)
. (26.65)

To evaluate (26.64), Euler started with the simple observation that

∞∑
x=1

1

(x+ a)t =
∞∑
x=1

1

xt
−

a∑
k=1

1

kt
. (26.66)

He then applied (26.62) and (26.63) to transform the series s:

s =
∞∑
x=1

1

xm(x+ a)n

= 1

an

∞∑
z=1

1

zm
− n

an+1

∞∑
z=1

1

zm−1
+ n(n+ 1)

2!an+2

∞∑
z=1

1

zm−2
−·· ·

+ (−1)m
(

1

am

∞∑
z=1

1

zn
+ m

am+1

∞∑
z=1

1

zn−1
+ m(m+ 1)

2!am+2

∞∑
z=1

1

zm−2
+·· ·

)

+ (−1)m+1

(
1

am

a∑
k=1

1

kn
+ m

am+1

a∑
k=1

1

kn−1
+ m(m+ 1)

2!am+2

a∑
k=1

1

km−2
+·· ·

)
.

(26.67)
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By summing over a, he then obtained an expression for the first series on the right-hand
side of (26.64):

∞∑
x=1

1

xm

∞∑
a=1

1

(x+ a)n = ζ(n)ζ(m)−nζ(n+1)ζ(m−1)+ n(n+ 1)

2! ζ(n+2)ζ(m−2)−·· ·

+(−1)m
(
ζ(m)ζ(n)+mζ(m+ 1)ζ(n− 1)+ m(m+ 1)

2! ζ(m+ 2)ζ(n− 2)+·· ·
)

+(−1)m−1

(
ζG(m,n)+mζG(m+ 1,n− 1)+ m(m+ 1)

2! ζG(m+ 2,n− 2)+·· ·
)
.

(26.68)

By interchangingm and n, Euler immediately got the formula for
∑ 1

xn

∑ 1
(x+a)m . Thus,

he had established all the formulas necessary to evaluate the results in (26.59).
Euler evaluated several specific examples in his paper. He took m+ n = 3 with

m = 2,n = 1 and by applying (26.68) and using an analogous formula with m and n
interchanged, he got

ζ(2)ζ(1)− ζ(3)
= 2ζ(2)ζ(1)− ζG(2,1)− 2ζ(2)ζ(1)+ ζG(1,2)+ ζG(2,1)
= ζG(1,2). (26.69)

Then by (26.60), he obtained

ζ(2)ζ(1)+ ζ(3)= ζG(2,1)+ ζG(1,2). (26.70)

Again, by subtracting (26.69) from (26.70), Euler could conclude that

ζG(2,1)= 2ζ(3), (26.71)

or in modern notation for the double-zeta function:

ζ(2,1)= ζ(3). (26.72)

Observe that series ζ(1) and ζ(1,2) are both logarithmically divergent, though it is
possible to suitably modify Euler’s argument to avoid the use of divergent series. To
compute ζG(4,1), Euler took m= 4,n= 1 to get, after simplification,

ζG(2,3)+ ζG(3,2)− ζG(4,1)= 2ζ(2)ζ(3)− 2ζ(5).

He then took m= 2,n= 3 in (26.60) to obtain

ζ(2)ζ(3)+ ζ(5)= ζG(2,3)+ ζG(3,2). (26.73)

Combined with the previous equation, this gave ζG(4,1) = 3ζ(5)− ζ(2)ζ(3). Euler
noted that he was unable to obtain ζG(2,3) and ζG(3,2) by this method. When he set
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m= 3,n= 2 in (26.68), the result was once again (26.73). Euler effectively remedied
this drawback by developing a new algebraic method in the later part of the paper.

The Euler–Goldbach double-zeta values can be generalized to multizeta values,
defined as

ζ(s1, s2, . . . , sk)=
∑

n1>n2>···nk>0

1

n
s1
1 n

s2
2 · · ·nskk

, (26.74)

where s1, s2 . . . , sk are natural numbers. These values have been found to have connec-
tions with basic objects in number theory, algebraic geometry, and topology. They have
been studied by the use of methods from combinatorics, real and complex analysis,
algebra, and number theory, creating great current interest in this topic.

Christian Goldbach, who was the first to see the potential for double-zeta series,
was a Prussian but moved to Russia in the 1720s and remained there until his death.
In 1725 he became secretary of conferences at the Petersburg Academy. He was a
man of diverse talents and his chief hobbies were languages, number theory, differen-
tial calculus, and infinite series. He was one of the educators of the young Tsar Peter
(1715–1730). As we have seen, Euler frequently communicated important results to
his friend Goldbach, who proposed problems of possible interest to Euler and made
helpful comments. Goldbach informed Euler of Fermat’s unproved theorems and pro-
posed the well-known Goldbach conjecture. Thus, he succeeded in directing Euler’s
extraordinary talents toward the field of number theory, in which Euler’s other col-
leagues had minimal interest before Lagrange entered the scene. The first volume of
P. Fuss’s Correspondance mathématique et physique de quelques célèbres géomètres du
XVIIIème siècle contains 176 letters written by Euler and Goldbach to each other over
more than thirty-four years. Euler apparently regarded Goldbach as his close friend,
writing him an urgent letter in 1738 when his eyesight was threatened. Goldbach then
made unsuccessful attempts to relieve his friend of his burdensome responsibilities in
geographical studies. We note that it was in 1766, when Euler returned to St. Petersburg
after a twenty-five year stay in Berlin, that he became blind for all practical purposes.

26.8 Dirichlet’s Summation of L(1,χ)

The series (26.5) gives the value of L(1,χ) for the nontrivial character modulo 4,
defined by χ(4n±1)=±1. Euler employed this series to prove that primes of the form
4n+1 and of the form 4n−1 were both infinite in number. In the 1830s, J. P. G. Lejeune
Dirichlet went further, giving a general evaluation of L(1,χ) to prove his results on
quadratic forms and on primes in arithmetic progressions. Dirichlet first examined the
case in whichχ was a character modulop, wherepwas a prime. We limit our discussion
to this simple case. Dirichlet defined this character by taking any generator g of the
cyclic group consisting of the integers modulo p without the zero element. Next, he let
w be any (p− 1)th root of unity. For n not divisible by p, he set

χ(n)=wγn where gγn ≡ n(mod p).
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By convention, χ(mp)= 0. More details on Dirichlet’s theory of characters are given
later in this chapter. To evaluate the L-series

∑∞
n=1

wγn

ns
at s = 1 when w �= 1, Dirichlet

first expressed the series as an integral. Note that the terms in which n was a multiple
of p were taken to be 0. In a paper of 1769 on series related to the zeta function, Euler
had used the idea of expressing this type of series as an integral. Like Euler, Dirichlet
started with ∫ 1

0
xn−1(log (1/x))s−1dx = �(s)

ns
. (26.75)

From the periodicity of the character wγn , he had

Lw(s)=
∞∑
n=1

wγn

ns
=

p−1∑
k=1

wγk

(
1

ks
+ 1

(k+p)s +
1

(k+ 2p)s
+·· ·

)

= 1

�(s)

p−1∑
k=1

wγk

∞∑
d=0

∫ 1

0
xk+dp−1(log (1/x))s−1dx

= 1

�(s)

p−1∑
k=1

wγk

∫ 1

0

xk−1

1− xp (log (1/x))s−1dx

= 1

�(s)

∫ 1

0

x−1f (x)

1− xp (log (1/x))s−1dx (26.76)

where f (x)=
p−1∑
k=1

wγkxk. (26.77)

Unlike most eighteenth-century mathematicians, Dirichlet dealt carefully with conver-
gence and term-by-term integration, so he summed only the first (p−1)h terms of the
series and then showed that this sum differed from the integral (26.76) by an integral
with the limit zero as h→∞. When s = 1, the logarithmic term in the integral (26.76)
vanished. Thus, Dirichlet observed that Lw(1), an integral of a rational function, could
be computed in terms of logarithms and circular functions.

Dirichlet pointed out that the factors of xp−1 were of the form x− e2mπi/p; hence,

x−1f (x)

xp− 1
=

p−1∑
m=1

Am

x− e2mπi/p
,

where Am = lim
x→e2mπi/p

(
x− e2mπi/p

)
x−1f (x)

xp− 1
.

This limit was the value of x−1f (x)

pxp−1 at x = e2mπi/p; thus, he found

Am = 1

p
f
(
e2mπi/p

)= 1

p

p−1∑
k=1

wγk e2kmπi/p. (26.78)
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Next, Dirichlet set km≡ h(modp) so that wγk =w−γmwγh and

f
(
e2mπi/p

)=w−γm
p−1∑
h=1

wγhe2hπi/p =w−γm f (e2πi/p).

In this manner, Dirichlet arrived at

Lw(1)=
∞∑
n=1

wγn

n
=− 1

p
f (e2πi/p)

p−1∑
m=1

w−γm
∫ 1

0

dx

x− e2mπi/p
. (26.79)

He next noted that the last integral could be expressed as

log(1− e−2mπi/p)= log

(
2sin

mπ

p

)
+ i π

2

(
1− 2m

p

)
,

so that

∞∑
n=1

wγn

n
=− 1

p
f
(
e2πi/p

) p−1∑
m=1

w−γm
(

log

(
2sin

mπ

p

)
+ i π

2

(
1− 2m

p

))
. (26.80)

Dirichlet further observed that this formula took a much simpler form when w =−1.

This corresponded to the quadratic character (−1)γn =
(
n

p

)
; he then had

∞∑
n=1

(
n

p

)
1

n
=− 1

p
f (e2πi/p)

p−1∑
m=1

(
m

p

)(
log

(
2sin

mπ

p

)
+ i π

2

(
1− 2m

p

))
.

Since
∑p−1

m=1

(
m

p

)
=∑p−1

m=1(−1)γm = 0, he could simplify to obtain

∞∑
n=1

(
n

p

)
1

n
=− 1

p
f (e2πi/p)

p−1∑
m=1

(
m

p

)(
log

(
2sin

mπ

p

)
− i mπ

p

)
. (26.81)

He then noted that(
p−m
p

)
=

(
−m
p

)
=

(
− 1

p

)(
m

p

)
= (−1)

p−1
2

(
m

p

)
=±

(
m

p

)
,

using plus ifp took the form 4n+1 and minus ifp took the form 4n+3. Note that when

p is of the form 4n+1, the imaginary part of the sum vanishes because
∑
m
(
m

p

)
= 0

when
(
p

m

)= (
p−m
m

)
. Dirichlet could then conclude that

∞∑
n=1

(
n

p

)
1

p
= 1

p
f (e2πi/p) log

Vsin bπ

p

Vsin aπ

p

, (26.82)

where a represented quadratic residues (mod p) and b nonresidues. Observe that for
the case p = 4n+ 3,(

m

p

)
log

(
2sin

mπ

p

)
=−

(
p−m
p

)
log

(
2sin

(m−p)π
p

)
,
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and hence the sum of these terms is zero and
∞∑
n=1

(
n

p

)
1

n
= π

p
f (e2πi/p)

(∑
a−

∑
b
)√−1. (26.83)

Moreover, the term f (e2πi/p) is the quadratic Gauss sum

p−1∑
k=1

(−1)γk e2kπi/p =
p−1∑
k=1

(
k

p

)
e2kπi/p =

{ √
p, p = 4n+ 1,

i
√
p, p = 4n+ 3

.

In this way, we obtain Dirichlet’s final formulas

∞∑
n=1

(
n

p

)
1

n
= 1√

p
log

Vsin bπ

p

Vsin aπ

p

, p ≡ 1 (mod4), (26.84)

∞∑
n=1

(
n

p

)
1

n
= π

p
√
p

(∑
b−

∑
a
)

p ≡ 3 (mod4). (26.85)

Dirichlet wrote that the last formula implied that for primes of the form 4n+3,
∑
b >∑

a, that is, the sum of the quadratic nonresidues was greater than the sum of the
quadratic residues, and that it would be difficult to prove this in a different way.

26.9 Eisenstein’s Proof of the Functional Equation

The discovery of Eisenstein’s proof of the functional equation began in 1964 when
B. Artmann came across Eisenstein’s old copy of Gauss’s Disquisitiones in the Giessen
University Mathematical Institute Library. This book had belonged to Ferdinand
Eisenstein (1823–1852) and then to Eugen Netto (1848–1919), student of Weierstrass
and Kummer, before arriving at the Library. The proof, in Eisenstein’s hand and dated
1849, appeared on the last blank page of the book; with the help of Artmann and the
librarian, André Weil was able to examine it and to publish it in a paper of 1989.
Eisenstein’s proof started with the formula∫ ∞

0
eσψiψq−1 dψ = �(q)

(±σ)q e
±qπi/2. (26.86)

This is in fact the Fourier transform of the function

f (ψ)=
{

ψq−1 forψ > 0, 0< q < 1,

0 forψ < 0 .

For this formula, Eisenstein referred to a 1836 paper by Dirichlet on definite integrals.
In that paper, Dirichlet noted that the formula was first found by Euler but that Poisson
gave the proof, with the convergence condition 0< q < 1. Eisenstein then applied the
Poisson summation formula

∞∑
n=−∞

φ(n)=
∞∑

m=−∞
φ̂(m), (26.87)
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where φ̂ was the Fourier transformation of φ, to the function

φ(x)=
{

e2πα(x−β)i(x−β)q−1 for x > β, 0< α < 1, 0< β < 1,

0 for x < β.

He then had

e2πα(1−β)i

(1−β)1−q +
e2πα(2−β)i

(2−β)1−q +
e2πα(3−β)i

(3−β)1−q +·· ·

=
∞∑

σ=−∞

∫ ∞

β

e2πα(λ−β)i(λ−β)q−1e2πiσλ dλ

=
∞∑

σ=−∞

∫ ∞

0
e2π(α+σ)λie2πiλβλq−1 dλ

= �(q)

(2π)q
eqπi/2

∞∑
σ=0

e2πiσβ

(σ +α)q +
�(q)

(2π)q
e−qπi/2

∞∑
σ=1

e2πiσβ

(σ −α)q

(26.88)

where the last step followed from (26.86). By taking α = β = 1/2, he obtained the
functional equation for the L-function

1− 1

31−q +
1

51−q −
1

71−q +·· · = 2q�(q)

πq
sin
qπ

2

(
1− 1

3q
+ 1

5q
+ 1

7q
+·· ·

)
.

(26.89)

Eisenstein also observed at this point that when q was replaced by 1− q and the two
formulas were multiplied, he got another proof of Euler’s reflection formula

�(q)�(1− q)= π

sinπq
.

26.10 Riemann’s Derivations of the Functional Equation

Eisenstein may have discussed his proof of the functional equation with Riemann,
perhaps inspiring Riemann’s 1859 paper on the number of primes less than a given
number. In this paper, Riemann used complex analysis to give two new proofs of the
functional equation. One proof made use of contour integration and the second, deeper
proof employed the transformation of a theta function. The latter method presaged a
connection between modular forms and the corresponding Dirichlet series obtained by
applying the Mellin transform.

The proof by contour integration started with two formulas due to Euler, though
Riemann did not attribute them to anyone, perhaps regarding them as well known: For
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Re s > 0, ∫ ∞

0
e−nx xs−1 dx = �(s)

ns
, (26.90)

�(s)ζ(s)=
∫ ∞

0

xs−1

ex − 1
dx. (26.91)

We here mention that Riemann used Gauss’s notation for the gamma function:V(s−1).
Observe that the second formula follows from the first, using the geometric series
expansion

1

ex − 1
= e−x + e−2x + e−3x +·· · .

Riemann next considered the integral∫
(−x)s−1

ex − 1
dx (26.92)

over a contour from +∞ to +∞ in the positive sense around the boundary of a region
containing in its interior 0 but no other singularities of the integrand. He noted that this
integral simplified to (

e−πsi − eπsi)∫ ∞

0

xs−1

ex − 1
dx, (26.93)

provided that one used the branch of the many-valued function (−x)s−1 = e(s−1) log(−x)

for which log(−x)was real for negative values of x. From (26.91), (26.92), and (26.93),
he concluded that

2sin sπ �(s)ζ(s)= i
∫ ∞

∞

(−x)s−1

ex − 1
dx. (26.94)

Riemann pointed out that this integral defined ζ(s) as an analytic function of s with a
singularity at s = 1. In addition, we note that since

x

ex − 1
= 1− 1

2
x+B2

x2

2! −B4
x4

4! +B6
x6

6! − · · · ,

two of Euler’s famous formulas are immediate corollaries, though Riemann noted only
the first one:

ζ(−2n)= 0, and ζ(1− 2n)= (−1)nB2n

2n
, n= 1,2, . . . . (26.95)

To obtain the functional equation, Riemann remarked at this point that for Re s < 0,
the contour for the integral in (26.94) could be viewed as if defined (with a negative
orientation) as the boundary of the complementary region containing the singularities
±2nπi, n > 0 of the integrand. Since the residue at 2nπi was (−n2πi)s−1(−2πi), he
obtained the equation

2sin sπ �(s)ζ(s)= (2π)s
∑

ns−1
(
(−i)s−1 + is−1

)
. (26.96)
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Riemann noted that by using the known properties of the gamma function, (26.96)
could be seen as equivalent to the statement that:

�(s/2)π−s/2 ζ(s) (26.97)

was invariant under the transformation s→ 1− s. And this was the functional equation
for ζ(s). In his 1859 paper, Riemann noted only the first equation in (26.95), though
he clearly knew the second one as well; when combined with the functional equation,
this yields a new proof of Euler’s formula

ζ(2n)= (−1)n−122n−1π2nB2n

(2n)! .

Riemann wrote that the expression in (26.97) and its invariance led him to consider
the integral for �(s/2) and thus directed him to another important derivation of the
functional equation. Since

�(s/2)π−s/2 1

ns
=

∫ ∞

0
x(s/2)−1e−n

2πx dx,

Riemann used term-by-term integration to find that

�(s/2)π−s/2ζ(s)=
∫ ∞

0
x(s/2)−1

∞∑
n=1

e−n
2πx dx. (26.98)

It was proved by Cauchy and Poisson, and a little later by Jacobi, that

∞∑
n=−∞

e−n
2πx = 1√

x

∞∑
n=−∞

e−n
2π/x. (26.99)

In Riemann’s notation, this was equivalent to

2ψ(x)+ 1 = x−1/2 (2ψ(1/x)+ 1) ,

where ψ(x)=
∞∑
n=1

e−n
2πx.

Riemann referred to Jacobi’s Fundamenta Nova for (26.99). We note that Jacobi’s
proof of (26.99) used elliptic functions, while Cauchy and Poisson employed Fourier
analysis. See chapter 37 for Jacobi’s proof. Next Riemann rewrote (26.98) as

�(s/2)πs/2ζ(s)=
∫ ∞

1
ψ(x)x(s/2)−1dx+

∫ 1

0
ψ(1/x)x(s−3)/2dx

+ 1

2

∫ 1

0

(
x(s−3)/2 − x(s/2)−1

)
dx

= 1

s(s− 1)
+
∫ ∞

1
ψ(x)

(
x(s/2)−1 + x−(1+s)/2)dx.

(26.100)
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This reproved the functional equation because the right-hand side was invariant under
s→ 1− s. Moreover, ζ(s)was once again defined for all complex s �= 1. To emphasize
the significance of the line Res = 1

2 , Riemann set s = 1
2 + it and denoted the left-hand

side of (26.100) as ξ(t), so that he had

ξ(t)= 1

2
−
(
t2 + 1

4

)∫ ∞

1
ψ(x)x−3/4 cos

(
1

2
t logx

)
dx, (26.101)

ξ(t)= 4
∫ ∞

1

d

dx
(x3/2ψ ′(x))x−1/4 cos

(
1

2
t logx

)
dx. (26.102)

26.11 Euler’s Product for
∑

1/ns

In his 1859 paper giving the formula for the number of primes less than a given number,
Riemann remarked that he had taken Euler’s infinite product for the zeta function as
the starting point for his investigations. Indeed, it was Euler’s product representation
for the zeta function that made it possible to perceive the connection between the zeta
function and prime numbers.

In a 1737 paper, Euler showed how to convert the series for the zeta function,∑∞
k=1 1/kn, into a product. Euler’s insightful argument, amounting to an application of

the fundamental theorem of arithmetic, is here presented in its original form. Euler let

x = 1+ 1

2n
+ 1

3n
+ 1

4n
+ 1

5n
+ 1

6n
+ etc.

Then
1

2n
x = 1

2n
+ 1

4n
+ 1

6n
+ 1

8n
+ etc.

Removing all even numbers by subtraction, he got

2n− 1

2n
x = 1+ 1

3n
+ 1

5n
+ 1

7n
+ 1

9n
+ etc.

He multiplied this by 1
3n to obtain

2n− 1

2n
· 1

3n
x = 1

3n
+ 1

9n
+ 1

15n
+ etc.

Again, Euler removed by subtraction all multiples of 3 so that

2n− 1

2n
· 3n− 1

3n
x = 1+ 1

5n
+ 1

7n
+ etc.

By continuing this process with each of the prime numbers, all numbers on the right-
hand side except one were eliminated, yielding

x · 2n− 1

2n
· 3n− 1

3n
· 5n− 1

5n
· etc. = 1,

or 1+ 1

2n
+ 1

3n
+ 1

4n
+ etc. = 2n

2n− 1
· 3n

3n− 1
· 5n

5n− 1
· etc.
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Note that this was in essence the fundamental theorem of arithmetic in analytic form.
Euler’s 1748 book Introductio in Analysin Infinitorum made this connection more clear,
as he expressed this infinite product in almost modern form:

1(
1− 1

2n

)(
1− 1

3n

)(
1− 1

5n

)
etc.

To see the unique factorization theorem here, simply expand these fractions using the
geometric series.

In 1837, Dirichlet defined L-functions for which he found an analogous infinite
product. For example, in the case of characters modulo a prime p, he stated the
result as ∏ 1

1−wγq 1
qs

=
∑

wγn · 1

ns
.

The product was defined over all primes other than p, while w was a (p− 1)th root
of unity. Dirichlet used this formula in his proof of his famous theorem on primes in
arithmetic progressions. Note also that the product formula shows that the series on the
left-hand side of (26.85) has to be positive, justifying Dirichlet’s remark on it.

26.12 Dirichlet Characters

Dirichlet’s construction of characters was based on a theorem first observed by Euler
and later completely proved by Gauss in his 1801 Disquisitiones Arithmeticae. Gauss
showed that for any prime p, the multiplicative group modulo p, whose elements could
be represented by the integers 1, 2, …, p−1, was a cyclic group. This means that there
is at least one g among these p− 1 integers such that for any n, not a multiple of p,
there exists an integer γn such that

gγn ≡ n (modp). (26.103)

This equation implies that for positive integers m and n not multiples of p,

gγmn ≡mn≡ gγmgγn ≡ gγm+γn (modp),

and hence

γmn ≡ γm+ γn (mod(p− 1)). (26.104)

So if w is a (p− 1)th root of unity, we have

wγmn =wγm+γn =wγmwγn . (26.105)

The complex number w can be written as e2πik/(p−1) for k = 1,2, . . . ,p− 1. For any
one of these p−1 complex numbers w, Dirichlet defined a character with values wγ1 ,
wγ2 , …, wγp−1 and with the property

wγn

ns
· w

γm

ms
= wγmn

(mn)s
. (26.106)
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He observed that by (26.105)

1

1−wγq 1
qs

= 1+wγ q · 1

qs
+w

γ
q2 · 1

q2s
+·· ·

for s > 1. Then, by the unique factorization theorem,∏ 1

1−wγq 1
qs

=
∑

wγn · 1

ns
. (26.107)

The infinite product was defined over all primes not equal to p, and the sum was taken
over all positive integers not divisible by p. Note that this sum can be taken over all
positive integers with the convention that wγn = 0 when n is a multiple of p. When
w =−1, we have wγn =±1, depending on whether γn is even or odd. If it is even, we
can write the left-hand side of (26.103) as a square and hence n is a square modulo p,
or rather, n is a quadratic residue. We can therefore write

(−1)γn =
(
n

p

)
, (26.108)

where
(
n

p

)
is the Legendre symbol; it is +1 when n is a quadratic residue (mod p) and

−1 when n is a quadratic nonresidue. For this character, we can write (26.107) as

∏
q

1

1−
(
q

p

)
q−s

=
∞∑
n=1

(
n

p

)
ns
,

where
(
n

p

)
= 0 when n is a multiple of p and the product is taken over all primes not

equal to p.
In his 1837 paper on primes within any arithmetic progression, Dirichlet also defined

characters modulo any positive integerm. For this purpose, he employed a result from
Gauss’s Disquisitiones: For any odd prime p and positive integer k, the multiplicative
group modulo pk, that is, the integers relatively prime to p and represented by integers
less than pk, is a cyclic group. This theorem enabled Dirichlet to define φ(pk) =
pk − pk−1 different characters corresponding to the φ(pk) values e2πim/φ(pk), m =
1,2, . . . ,φ(pk). Letting w denote any one of these values, the value of the corresponding
character at n where n was not divisible by p, would be wγn . As before, γn was defined
as in (26.103), with respect to a generator g of the multiplicative group modulo pk.

For powers of 2, the situation was slightly more complex. Clearly, the multiplicative
groups mod 2 and mod 4 are cyclic. Another result from the Disquisitiones stated
that every relatively prime residue class mod 2k, where k ≥ 3, could be represented
uniquely as (−1)γ 5γ

′
, where γ was defined to the modulus 2 and γ ′ to the modulus

1
2φ(2

k) = 2k−2. Again, Dirichlet used Gauss’s result to define the characters modulo
powers of 2 by

wγ (w′)γ
′
, where w2 = 1 and (w′)2

k−2 = 1.
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Dirichlet noted that the number of such characters was

2k−1 = φ(2k).
Next, Dirichlet defined characters modulo

m= 2kpk1
1 p

k2
2 · · ·pkll .

He considered an integer n relatively prime to m and assumed

n= (−1)γ 5γ
′
(mod2k) and n= gγn,jj (modp

kj

j )

where gj was the generator of the relatively prime residue classes modulo p
kj

j . Then
he gave the value of an arbitrary character at n modulo m as

wγ (w′)γ
′
w
γn,1
1 w

γn,2
2 · · ·wγn,l

l . (26.109)

Here wj was a root of w(p−1)pj−1

j − 1 = 0 and there were

φ(m)=m
∏
p|m

(
1− 1

p

)
such characters. Dirichlet showed that with this general definition of a character, the
product formula (26.107) would continue to hold. The operative idea behind the product
formula was the multiplicative property of characters.

26.13 Exercises

1. Show that

1− 1

35
+ 1

55
− 1

75
+ 1

95
− etc. = 5π5

1536
,

1+ 1

36
+ 1

56
+ 1

76
+ 1

96
+ etc. = π6

960
,

1− 1

37
+ 1

57
− 1

77
+ 1

97
− etc. = 61π7

184320
,

1+ 1

38
+ 1

58
+ 1

78
+ 1

98
+ etc. = 17π8

161280
.

See Eu. I-14, p. 81.
2. Express Newton’s series (26.11) as a DirichletL-series. Do the same with Euler’s

series (26.39) and (26.41).
3. Divide Takebe’s series

1

2
(arcsinx)2 = x2

2
+ 2

3
· x

4

4
+ 2 · 4

3 · 5
x6

6
+ 2 · 4 · 6

3 · 5 · 7
x8

8
+·· ·
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by
√

1− x2 and integrate term by term over (0,1) to obtain

π 2

6
= 1+ 1

22
+ 1

32
+ 1

42
+·· · .

See Eu. I-14, p. 184.
4. Show that

1+ 1

224
+ 1

324
+ 1

424
+ 1

524
+ etc. = 223

1 · 2 · 3 · · ·25
· 1181820455

546
π24,

1+ 1

226
+ 1

326
+ 1

426
+ 1

526
+ etc. = 225

1 · 2 · 3 · · ·27
· 76977927

2
π 26.

See Eu. I-14, p. 185.
5. Prove Eisenstein’s formula:

eβπi
∞∑
σ=0

(−1)σ

(σ +β)1−q = �(q)

(2π)q
(
eqπi/2 + e−2βπi−qπi/2) ∞∑

σ=0

e−σβ·2πi

(σ + 1
2 )
q
.

See Weil (1989a).
6. Prove that

1− πx

tanπx
=

∞∑
n=1

(−1)n−1 22nB2nπ
2n

(2n)! x2n.

Combine this with (26.31) to derive Euler’s formula (26.34). See Eu. I-10, p. 325.
7. Prove that for |a|<π and 0< s < 1,

∞∑
k=0

(−1)k
(

1

((2k+ 1)π + a)s −
1

((2k+ 1)π − a)s
)

= 1

�(s)sin sπ

2

∞∑
k=1

(−1)k−1 sinka

k1−s .

Deduce the functional equation for L(s)=∑∞
k=0(−1)k(2k+ 1)−s .

See Malmsten (1849). Carl Malmsten became professor of mathematics in
Uppsala in 1841; during his career, he made significant contributions to the
development of the Swedish mathematical tradition. See Gårding (1994).

8. Prove Goldbach’s formula

1+ 1

23
(1+ 1

2
)+ 1

33
(1+ 1

2
+ 1

3
)+·· · = π4

72
.

See Fuss (1968), p. 197.
9. Prove Euler’s formula

1+ 1

25
(1+ 1

23
)+ 1

35
(1+ 1

23
+ 1

33
)+·· · = π8

16 · 3 · 25 · 7 .

See Fuss (1968), p. 190.
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10. Prove Euler’s formula (26.55). See Fuss (1968), pp. 181–182.
11. Use the generating function for Bernoulli numbers to show that

(a) cot u=∑∞
k=0(−1)k22k B2k

(2k)! u
2k−1,

(b) tan u=∑∞
k=1(−1)k−122k(22k− 1) B2k

(2k)! u
2k−1,

(c) sec u=∑∞
k=0E2k

u2k

(2k)! ,

where E2k = 22k+2(2k)!
π2k+1

(
1− 1

32k+1
+ 1

52k+1
− 1

72k+1
+·· ·

)
,

(d) cscu= 1
u
+∑∞

k=1(−1)k−12(22k−1 − 1) B2k
(2k)! u

2k−1.

Note that the E2k are called Euler numbers. The results in (a) and (d) were
explicitly used by Euler in several papers; (b) and (c) are implicitly contained in
Eu. I-17, pp. 384–420 (published 1775).

12. Show that for t = s− 1/2 and 0< s < 1,∫ 1

0

xs−1 − x−s
1− x dx =−π tan πt.

Euler took successive derivatives of both sides with respect to s and set s = 1/2
or t = 0. Verify that after taking the first derivative and setting s = 1/2, the
result is ∫ 1

0

2 ln x

1− x
dx

x1/2
=−π2,

or
∫ 1

0

ln y

1− y2
dy =−π

2

8
.

More generally show that∫ 1

0

(ln y)2k−1

1− y2
dy = (−1)k(22k− 1)

B2k

4k
π2k. (26.110)

Euler wrote down the formulas for k = 1,2 and 3. See Eu. I-17, p. 406.
13. Show that for t = s− 1

2 and 0< s < 1∫ 1

0

xs−1 + x−s
1+ x dx = π sec π t.

Use the method of the previous problem and the series for sec u in exercise 11
to prove the formula for Euler numbers∫ 1

0

(ln y)2k

1+ y2
dy = E2kπ

2k+1

22k+2
.

Euler computed the Euler numbers E2k for k = 0,1,2,3,4 to obtain
1,1,5,61,1385, respectively. See Eu. I-17, pp. 401, 405.
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14. Let P = ∫ 1
0
y(ln y)2k−1

1−y2 dy, and let Q denote the integral in (26.110). Observe that

Q±P =
∫ 1

0

(ln y)2k−1

1∓ y dy,

P = 1

22k

∫ 1

0

(ln y)2k−1

1− y dy.

Deduce that ∫ 1

0

(ln y)2k−1

1− y dy = (−1)k
B2k

4k
(2π)2k,∫ 1

0

(ln y)2k−1

1+ y dy = (−1)k(22k−1 − 1)
B2k

2k
π2k.

Euler gave this argument in Eu. I-17, pp. 406–407.
15. Show that ∫ 1

0
ym(ln y)2k−1 dy = �(2k)

m2k
.

From this, compute the ζ andL-series values
∑∞

n=1 1/n2k,
∑∞

n=1(−1)n/n2k, and∑∞
n=1(−1)n−1/(2n− 1)2k−1. In 1737 Euler used integration to exactly evaluate∑∞
n=1 1/n2 but he regretted that the method did not extend to k ≥ 2. In 1774, he

finally found what he was looking for. See Eu. I-17, pp. 428–451.

26.14 Notes on the Literature

Euler’s early papers on
∑

1/n2 are in Eu. I-14. Some of the most important are:
“De Summis Serierum Reciprocarum,” 1734–1735, “De Summis Serierum Recipro-
carum ex Potestatibus Numerorum Naturalicum Ortarum Dissertatio Altera, …,” 1743,
“Demonstration de la somme de cette suite 1+ 1

4 + 1
9 + 1

16 + 1
25 + 1

36+ etc.,” 1743, and
“De Seriebus quibusdam Considerationes,” 1740. In the first paper listed here, Euler
summed the series given in the equations (26.4) through (26.12) and several more by
using equation (26.1). By the time he wrote the second paper, he had found proofs of
the product formulas for sinx and cosx as well as the resulting partial fractions expan-
sions; he used these to sum ζ(2n). Euler used the integral calculus to sum

∑
1/n2 in the

third paper. This paper was republished in the Bibliotheca Mathematica (1907–1908)
with a commentary by Paul Stäckel. Stäckel gave an account of Euler’s work on this
problem and his communications with the Bernoullis on this and related questions,
included in Eu. I-14. In the fourth paper, Euler worked out the connection between∑

1/n2k and the Bernoulli numberB2k. The infinite product for ζ(n) is on pp. 243–244
of Eu. I-14. Goldbach’s correspondence with Euler on double-zeta values can be found
on pp. 160–208 of Fuss (1968).

N. Bernoulli’s paper on
∑

1/n2 appeared in the Petersburg Academy publication in
1747, though it was received in 1738 and had that publication date; see N. Bernoulli
(1738). Euler’s letter of July 30, 1738, with the improvement on N. Bernoulli’s
derivation, is in Eu. 4A-2, pp. 230–236. Dirichlet’s evaluation of L(χ,1), and his
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theory of characters is given on pp. 316–329 of Dirichlet (1969). Riemann’s deriva-
tion of the functional equation for the zeta function is contained in his paper on
prime numbers, “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse” in
Riemann (1990), pp. 177–185. An English translation of this paper appears in Edwards
(2001), pp. 299–305. For a discussion of some recent work on multizeta values, see
Borwein, Bailey, and Girgensohn (2004), Eie (2009), and Varadarajan (2006). Horiuchi
(1994) discusses Takebe’s Tetsujutsu Sankei of 1722. For Eisenstein’s derivation of the
functional equation, see Weil (1989a).
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The Hypergeometric Series

27.1 Preliminary Remarks

The hypergeometric series and associated functions are among the most important in
mathematics, partly because they cover a large class of valuable special functions as
either particular cases or as limiting cases. More importantly, because they have the
appropriate degree of generality, very useful transformation formulas and other relations
can be proved about them. The hypergeometric series is defined by

F(a,b,c,x)= 2F1

(
a,b

c
;x

)
= 1+ a · b

1 · c x+
a(a+ 1) · b(b+ 1)

1 · 2 · c(c+ 1)
x2 +·· · . (27.1)

The expressions involved can be written more briefly if we adopt the modern notation
for the shifted factorial:

(a)n = a(a+ 1) · · ·(a+n− 1) forn≥ 1, (a)0 = 1. (27.2)

Thus, F(a,b,c,x)= 2F1

(
a,b

c
;x

)
=

∞∑
n=0

(a)n(b)n

n!(c)n xn. (27.3)

The subscript notation in F was introduced in the twentieth century when similar
series with varying numbers of parameters, such as a,b,c, were considered. Note the
following examples of hypergeometric series in Gauss’s notation:

(1− x)−α = F(α,1,1,x); log
1+ x
1− x = 2x F(1/2,1,3/2,x2);

ex = lim
a→∞ F(1,1,1,x/a); Jα(x)=

(x/2)α

�(α+ 1)
lim

a,b→∞
F(a,b,α+ 1,−x2/4ab).

Historically, hypergeometric series occurred not only in the study of power series but
also as inverse factorial series in finite difference theory. James Stirling, in particular,
employed them in the approximate summation of series and in this connection also
discovered special cases of important transformation formulas. However, in 1778, Euler
first introduced the hypergeometric series in the form (27.1). He proved that the series

547
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satisfied the second-order differential equation:

x(1− x)d
2F

dx2
+ (c− (a+ b+ 1)x)

dF

dx
− abF = 0, (27.4)

and then used this equation to prove an important transformation formula:

F(a,b,c,x)= (1− x)c−a−bF (c− a,c− b,c,x). (27.5)

The binomial factor can be moved to the left-hand side, as (1− x)a+b−c. When this is
expanded as a series and multiplied by the hypergeometric function on the left-hand
side, the coefficients of xn on the two sides give the identity

n∑
k=0

(a)k(b)k(a+ b− c)n−k
k!(c)k(n− k)! = (c− a)n(c− b)n

n!(c)n or (27.6)

n∑
k=0

(−n)k(a)k(b)k
k!(c)k(1+ a+ b− c−n)k =

(c− a)n(c− b)n
(c)n(c− a− b)n , (27.7)

or in the following modern notation, whose meaning is obvious from (27.7):

3F2

( −n,a,b
c,1+ a+ b− c−n ;1

)
= (c− a)n(c− b)n
(c)n(c− a− b)n . (27.8)

Observe that this identity is formally equivalent to (27.5).
In 1797, Johann Friedrich Pfaff (1765–1825) proved Euler’s transformation (27.5)

by giving an inductive proof of (27.8). Pfaff was among the leading mathematicians
in Germany during the late eighteenth and early nineteenth centuries; he was the for-
mal thesis advisor for Gauss. His results on second-order differential equations were
inspired by Euler, whose work on this topic appeared in his three volumes on the
integral calculus. Euler’s work on series provided the starting point for the German
combinatorial school founded by C. F. Hindenburg (1741–1808), of which Pfaff was
a member. Pfaff’s formula (27.8) is very useful for evaluating certain types of sums of
products of binomial coefficients occurring in combinatorial problems. In order to save
this identity and some other of Pfaff’s results from oblivion, Jacobi referred to it in a
paper of 1845. We remark that Jacobi was interested in the history of mathematics and
consistently attempted to give credit to the original discoverer of a concept or formula.
In spite of Jacobi’s efforts, this identity was forgotten for many years. In 1890, it was
finally rediscovered and published by L. Saalschütz, with whose name it was associ-
ated for many years. In the 1970s, Askey noticed Jacobi’s reference and renamed it the
Pfaff-Saalschütz identity. Pfaff could not have foreseen that in the 1990s, his method
of proving (27.8) would become the foundation of George Andrews’s general method
for proving hypergeometric identities useful in computer algebra systems. Pfaff also
found the terminating form of another important hypergeometric transformation:

F(a,b,c,x)= (1− x)−aF (a,c− b,c,x/(x− 1)). (27.9)
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Note that Pfaff took the parameter a to be a negative integer so that the series on both
sides were finite. Pfaff derived this formula from a study of the differential equation

x2(a+ bxn) d
2y

dx2
+ x(c+ exn) dy

dx
+ (f +gxn)y =X,

where X was a function of x. Euler earlier discussed the homogeneous form of this
equation in his book on the integral calculus. Note that Newton’s transformation (11.4)
is a particular case of (27.9), obtained by taking a= 1, b= 1/2, c= 3/2, and x =−t2.
Stirling’s formula (11.13), obtained by equating the series in (11.31) and (11.32), can
also be derived from (27.9) by taking a=−1 and x = 1/m. It is possible that Pfaff was
motivated to study the series in (27.9) by Hindenburg’s 1781 work on the following
problem: For given numbers α and β, transform a series ay+by2+cy3+·· · to a series
of the form

Ay

α+βy + By2

(α+βy)2 +
Cy3

(α+βy)3 +·· · ;

thus, determine A, B, C,. . . in terms of a, b, c, . . ..
Gauss was the first mathematician to undertake a systematic and thorough study of

the hypergeometric function. His treatment of the subject appeared in a paper of 1812.
It is possible that Gauss was introduced to the topic when he visited Helmstedt in 1799
to use the university library and rented a room in Pfaff’s home. One imagines this to
be very likely, since Gauss and Pfaff took walks together every evening and discussed
mathematics. Gauss does not refer to earlier work on hypergeometric series so it is hard
to determine what he had learned from others. The two most notable features of Gauss’s
contributions to hypergeometric series were his use of contiguous relations to derive
the basic formulas and his determination of the conditions for the convergence of the
series. Some of his unpublished work shows that he wanted to build the foundation
of analysis on a rigorous theory of limits, for which purpose he carefully defined the
concepts of superior and inferior limits of sequences.

Gauss defined functions contiguous to F(a,b,c,x) as those functions arising from
it when the first, second or third parameter a,b,c was increased or diminished by
one while the other three remained the same. Gauss may have seen the importance of
contiguous functions by reading Stirling’s 1730 Methodus. He found that there was a
linear relation betweenF(a,b,c,x) and any two contiguous functions; such an equation

is now called a contiguous relation. Clearly there would be
(

6
2

)
= 15 such relations,

and Gauss listed all of them in the first section of his 1812 paper. From these relations
he derived continued fractions expansions of ratios of hypergeometric functions, his
fundamental summation formula for F(a,b,c,1), and the differential equation for
F(a,b,c,x). He derived the latter in the second (unpublished) part of his paper. In this
part, Gauss derived transformation formulas in the same manner as Euler before him,
except that he also gave examples of quadratic transformations. For example:

F
(
a,b,a+ b+ 1/2,4x− 4x2

)= F (2a,2b,a+ b+ 1/2,x) . (27.10)

Gauss treated a,b,c, and x as complex variables and in this connection he pointed out
that it was necessary to exercise care when dealing with values of x outside the circle of
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convergence of the series. Thus, when x was changed to 1−x in (27.10), the left-hand
side would remain unchanged, leading to the evidently contradictory result that

F(2a,2b,a+ b+ 1/2,x)= F(2a,2b,a+ b+ 1/2,1− x). (27.11)

Gauss called this result a paradox and his explanation, from the unpublished portion
of his paper, is highly interesting, showing that as early as 1812 he was thinking of
analytic continuation of functions:

To explain this, it ought to be remembered that proper distinction should be made between the two
significations of the symbol F , viz., whether it represents the function whose nature is expressed
by the differential equation [(27.4)], or simply the sum of an infinite series. The latter is always
a perfectly determinate quantity so long as the fourth element lies between −1 and +1, and care
must be taken not to exceed these limits for otherwise it is entirely without any meaning. On
the other hand, according to the former signification, it [F ] represents a general function which
always varies subject to the law of continuity if the fourth element vary continuously whether
you attribute real values or imaginary values to it, provided you always avoid the values 0 and 1.
Hence it is evident that in the latter sense, the function may for equal values of the fourth element
(the passage or rather the return being made through imaginary quantities) attain unequal values of
which that which the series F represents is only one, so that it is not at all contradictory that while
some one value of the functionF(a,b,a+b+1/2,4y−4yy) is equal toF(2a,2b,a+b+1/2,y)
the other value should be equal to F(2a,2b,a+ b+ 1/2,1− y) and it would be just as absurd to
deduce thence the equality of these values as it would be to conclude, that since Arc. sin 1

2 = 30o,
Arc. sin 1

2 = 150o,30o = 150o. – But if we take F in the less general sense, viz. simply as the
sum of the series F , the arguments by which we have deduced (27.10), necessarily suppose y
to increase from the value 0 only up to the point when x[= 4y − 4yy] becomes = 1, i.e. up to
y = 1/2. At this point, indeed, the continuity of the series P = F(a,b,a+ b+ 1/2,4y− 4yy) is
interrupted, for evidently dP

dy
jumps suddenly from a positive (finite) value to a negative. Thus in

this sense equation (27.10) does not admit of being extended outside the limits y = 1/2−√
1/2

up to y = 1/2. If preferred, the same equation can also be put thus: –

F

(
a,b,a+ b+ 1

2
,x

)
= F

(
2a,2b,a+ b+ 1

2
,

1−√
1− x

2

)
.

Again, Gauss’s letter of December 18, 1811, to his friend F. W. Bessel (1784–1846)
shows how far he had advanced in developing a theory of functions of complex
variables:

What should we make of
∫
φx.dx for x = a + bi? Obviously, if we’re to proceed from clear

concepts, we have to assume that x passes, via infinitely small increments (each of the form
α + iβ), from that value at which the integral is supposed to be 0, to x = a + bi and that then
all the φx.dx are summed up. In this way the meaning is made precise. But the progression of x
values can take place in infinitely many ways: Just as we think of the realm of all real magnitudes
as an infinite straight line, so we can envision the realm of all magnitudes, real and imaginary,
as an infinite plane wherein every point which is determined by an abscissa a and an ordinate b
represents as well the magnitude a+ bi. The continuous passage from one value of x to another
a + bi accordingly occurs along a curve and is consequently possible in infinitely many ways.
But I maintain that the integral

∫
φx.dx computed via two different such passages always gets

the same value as long as φx =∞ never occurs in the region of the plane enclosed by the curves
describing these two passages. This is a very beautiful theorem, whose not-so-difficult proof I will
give when an appropriate occasion comes up. It is closely related to other beautiful truths having
to do with developing functions in series. The passage from point to point can always be carried
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out without ever touching one where φx =∞. However, I demand that those points be avoided
lest the original basic conception of

∫
φx.dx lose its clarity and lead to contradictions. Moreover

it is also clear from this how a function generated by
∫
φx.dx could have several values for the

same values of x, depending on whether a point where φx =∞ is gone around not at all, once,
or several times. If, for example, we define log x via

∫
1
x
dx starting at x = 1, then arrive at log x

having gone around the point x = 0 one or more times or not at all, every circuit adds the constant
+2πi or −2πi; thus the fact that every number has multiple logarithms becomes quite clear.

Thus in 1811, Gauss had a clear conception of complex integration and had discov-
ered Cauchy’s integral theorem, published by Cauchy in 1825. He had also begun to
understand the reason for a function being multivalued; this understanding informed
Gauss’s comments on (27.11). It is possible that Gauss was motivated to study quadratic
transformations by his discovery during the mid-1790s of the connection between the
arithmetic-geometric mean and the complete elliptic integral. This integral is defined by

K(k)=
∫ π

2

0

dθ√
1− k2 sin2 θ

= π

2
F

(
1

2
,

1

2
,1,k2

)
.

In his unpublished paper, Gauss also computed two independent solutions of the hyper-
geometric equation in the neighborhood of 0, 1, and ∞. He obtained explicit formulas
linearly relating a solution in the neighborhood of one of these points with two indepen-
dent solutions in the neighborhood of another point. As an example, consider Gauss’s
result

F(a,b,c,x)= �(c)�(b− a)
�(c− a)�(b)(−x)

−aF (a,a+ 1− c,a+ 1− b,1/x)

+ �(c)�(a− b)
�(a)�(c− b)(−x)

−bF (b,b+ 1− c,b+ a− a,1/x) .

The functions on the right-hand side were solutions in the neighborhood of infinity.
Gauss also considered the case where the parameter c was an integer so that the second
independent solution involved a logarithmic term. Euler was also aware of this situation.
Gauss went further by showing that the digamma function,ψ(x)≡�′(x)/�(x), defined
in the first part of his paper, could be employed to obtain an expression for the second
solution.

Gauss’s paper was quite influential, especially among German mathematicians, who
produced much important research on this topic in the next three or four decades. In
1833, as part of his doctoral dissertation, P. C. O. Vorsselman de Heer gave the integral
representation

F(a,b,c,x)=
∫ 1

0 t
b−1(1− t)c−b−1(1− xt)−adt∫ 1

0 t
b−1(1− t)c−b−1dt

. (27.12)

Note that the integral in the denominator is the beta integral, evaluated by Euler, equal
to �(b)�(c−b)/�(c). This integral representation of F(a,b,c,x) was independently
found by Kummer and published a few years later in his long memoir on hypergeometric
functions. However, in a posthumous paper, Jacobi attributed this formula to Euler,
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though it seems that it does not appear explicitly in Euler’s work. However, Euler did
give an integral representation of a solution of a differential equation closely related to
the hypergeometric equation; this may have been Jacobi’s reason for the attribution.

In 1828, the Danish mathematician Thomas Clausen (1801–1885) obtained a sig-
nificant result of a different kind. Clausen was born to poor farming people and did not
learn to read or write until the age of 12. He encountered many difficulties due to his
humble origins. But Gauss thought highly of him, and Clausen’s abundant mathemat-
ical talent was eventually recognized. He considered the square of a hypergeometric
series and found for c= a+ b+ 1/2

(F (a,b,c,x))2 ≡
(

2F1

(
a,b

c
;x

))2

= 3F2

(
2a,2b,a+ b

2a+ 2b,a+ b+ 1
2

;x
)
, (27.13)

where
∞∑
n=0

(a)n(b)n(c)n

n!(d)n(e)n x
n ≡ 3F2

(
a,b,c

d,c
;x

)
.

In 1836, Ernst Kummer (1810–1893) published the first major work on hypergeo-
metric functions after Gauss. He rediscovered much of the material in the unpublished
portion of Gauss’s paper, including quadratic transformations. In fact, these transfor-
mations are implicitly contained in Gauss’s published paper. Kummer also found some
results for 3F2 functions, including the existence of three-term contiguous relations
when x = 1. Kummer was trained as a high school teacher; he taught at that level
1831–1841. In 1834, while serving a year in the army, he communicated some papers
in analysis to Jacobi who is reported by E. Lampe to have commented: “There we are;
now the Prussian musketeers even enter into competition with the professors by way of
mathematical works.” However, Jacobi was impressed with the work done by Kummer
under difficult circumstances and wrote in his reply, “If you think that I could be of
any help with obtaining an academic position, I would be happy to offer my humble
services – less because I think that you would need them, or that they would be signif-
icant, but as a token of my great respect for your talent and your works.” Dirichlet and
Jacobi worked to find Kummer a university position. He became a professor at Breslau
in 1842 and moved to Berlin in 1855, when Dirichlet vacated his chair there to take up
the position at Göttingen left open by Gauss’s death.

In the 1840s, Jacobi wrote some interesting results on hypergeometric series. In the
posthumous paper mentioned earlier, he showed that the sequence of hypergeometric
polynomials F(−n,b,c,x) where n = 0, 1, 2, . . . , were orthogonal with respect to
a suitable distribution. Following Euler, he also worked out how definite integrals
could be employed to study solutions of the hypergeometric equation. In another paper,
he applied the symbolic method to obtain some known transformation formulas for
hypergeometric functions.

In a paper of 1857, Bernhard Riemann took a very different approach to hypergeo-
metric functions as part of his new theory of functions of a complex variable. Riemann
gave the foundation of this theory in his famous doctoral dissertation of 1851.An impor-
tant idea first given in this work and later applied to the theory of abelian functions,
hypergeometric functions, and the zeta function was that a complex analytic function
was to a large extent determined by the nature and location of its singularities. The
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singularities of the hypergeometric equation are at 0, 1, and ∞. In his 1857 paper,
Riemann considered the more general case where the singularities of a function were
at three distinct values a,b, and c. He axiomatically defined a set of functions, called
P functions, satisfying certain properties in the neighborhood of the three singularities,
but without reference to the hypergeometric function or equation. Riemann showed
that P functions were solutions of a second-order differential equation reducible to the
hypergeometric equation when the singular points were 0, 1, and ∞.He also developed
a very simple transformation theory forP functions by means of which one could derive
a large number of relations among hypergeometric functions with little calculation.

We have seen that Gauss emphasized the fact that the hypergeometric series repre-
sented a hypergeometric function in only a small part of the domain of definition of the
function. Moreover, the function was multivalued. Perhaps unable to develop a theory
of complex variables to treat the hypergeometric function to his satisfaction, Gauss held
back publication of the second part of his paper on the subject. Riemann saw Gauss’s
full paper in 1855, after Gauss’s death. Surely this problem left pending by Gauss pro-
vided Riemann with great motivation for his landmark 1857 paper. Riemann also had
a strong interest in mathematical physics; as he mentioned in the introduction to his
paper, the hypergeometric function had numerous applications in physical and astro-
nomical researches. After 1857, Riemann continued his investigations on the theory of
ordinary differential equations with algebraic coefficients. His lectures and writings on
the topic were published posthumously and eventually led to the formulation of what
is now known as the Riemann–Hilbert problem.

Felix Klein (1849–1925) was one of the earliest mathematicians to understand and
propagate the ideas of Riemann. In 1893, he gave a course of lectures on Riemann’s
theory of hypergeometric functions. Interestingly, a decade later, the English math-
ematician E. W. Barnes (1874–1953) presented an alternative development of the
hypergeometric function, based on the complex analytic technique of the Mellin
transform, making use of Cauchy’s calculus of residues.

R. H. Mellin (1854–1935) was a Finnish mathematician who studied analysis first
under Mittag–Leffler in Stockholm and then with Weierstrass in Berlin. He started
teaching in 1884 at what was later named the Technical University of Finland. He
founded a tradition of research in complex function theory in Finland, continued by
mathematicians such as Ernst Lindelöf, Frithiof and Rolf Nevanlinna, and Lars V.
Ahlfors. Mellin gave a general formulation of the Mellin transform in an 1895 treatise
on the gamma and hypergeometric functions. For a function f (x) integrable on (0,∞),
the Mellin transform is defined by

F(s)=
∫ ∞

0
xs−1f (x)dx. (27.14)

If f (x) = O(x−a+ε) as x → 0+ and f (x) = O(xb−ε) as x → +∞, for ε > 0 and
a < b, then the integral converges absolutely and defines an analytic function in the
strip a < Re s < b. Mellin gave the inversion formula:

f (x)= 1

2πi

∫ c+∞i

c−∞i
x−sF (s)ds, a < c < b. (27.15)
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In particular, we have the pair of formulas (stated without convergence conditions) very
useful in analytic number theory:

�(s)=
∫ ∞

0
xs−1e−xdx and e−x = 1

2πi

∫ c+∞i

c−∞i
�(s)x−sds. (27.16)

In fact, Riemann had already used the Mellin transform in his famous paper on
the distribution of primes. Other particular cases of the transform were derived by
others, including Mellin himself, before he stated the general formula. The second for-
mula in (27.16) was apparently first discovered by the French mathematician Eugène
Cahen in 1893. His thesis on the Riemann zeta function and its analogs contains
several interesting results on Dirichlet series, though some of these were not rigor-
ously proved until more than a decade later. Cahen followed Riemann in taking the
Mellin transforms of a function analogous to the theta function to obtain functional
equations for the corresponding Dirichlet series. He considered some analogs of the
theta function:

∞∑
n=1

(
n

p

)
e−n

2πx/p,

∞∑
n=1

n

(
n

p

)
e−n

2πx/p,

∞∑
n=1

σ1(n)

n
e−2nπx

where
(
n

p

)
denoted the Legendre symbol and σ1(n) the sum of the divisors of n.

Cahen employed the first sum when p ≡ 1 (mod 4), and the second when p≡3
(mod 4).

E. W. Barnes studied at Trinity College, Cambridge, from 1893 to 1896. Most of his
mathematical work was done in the period 1897–1910 on the double gamma function,
hypergeometric functions and Mellin transforms, and the theory of entire functions. In
1915 Barnes left Cambridge to pursue his second career. He was ordained in 1922 and
appointed to the Bishopric of Birmingham in 1924, an office he held until 1952.

Barnes’s starting point was the observation that from Euler’s integral representation,
and by expanding (1− xt)−a as a series, the Mellin transform of the hypergeometric
function would be∫ ∞

0
xs−1F(a,b,c,−x)dx = �(c)

�(a)�(b)

�(s)�(a− s)�(b− s)
�(c− s) , (27.17)

for min (Rea,Reb) > Res > 0. This suggested the integral representation for the
hypergeometric function:

�(a)�(b)

�(c)
F (a,b,c,x)= 1

2πi

∫ k+∞i

k−∞i

�(s)�(a− s)�(b− s)
�(c− s) (−x)−sds, (27.18)

where min (Rea,Reb) > k > 0 and c �= 0,−1,−2, . . . . This is Barnes’s integral for
the hypergeometric function and provides the basis for an alternative development of
these functions. A precise statement of the integral formula requires conditions on the
path of integration.
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27.2 Euler’s Derivation of the Hypergeometric Equation

We follow Euler’s notation as it is easy to understand and his derivation is quite short
and straightforward. Euler let s denote the hypergeometric series (27.1). Then

∂(xc∂s)= abxc−1 + ab

1 · c (a+ 1)(b+ 1)xc+·· ·

∂(xas)= axa−1 + ab

1 · c (a+ 1)xa+·· · .
Note that, for the sake for brevity, he frequently suppressed ∂x. Now

∂(xb+1−a∂(xas))= abxb−1 + ab

1 · c (a+ 1)(b+ 1)xb+·· ·
= xb−c∂(xc∂s),

or ∂(axbs+ xb+1∂s)= xb−c(cxc−1∂s+ xc∂∂s)
or a(bxb−1s+ xb∂s)+ (b+ 1)xb∂s+ xb+1∂∂s = cxb−1∂s+ xb∂∂s.

Dividing by xb−1, he got the hypergeometric equation

x(1− x)∂∂s+ (c− (a+ b+ 1)x)∂s− abs = 0. (27.19)

Euler gave an equally simple proof of the transformation formula. He showed that
s= (1−x)nz also satisfied a second-order differential equation with the hypergeometric
form when n= c−a−b. He started by taking the logarithmic derivative of s to obtain

∂s

s
= ∂z

z
− n∂x

1− x . (27.20)

The derivative of this equation was

∂∂s

s
− (∂s)2

s2
= ∂∂z

z
− (∂z)2

zz
− n(∂x)2

(1− x)2 . (27.21)

We remark that Euler wrote ∂s2 for (∂s)2. He then squared (27.20) to get

(∂s)2

s2
= (∂z)2

z2
− 2n∂x∂z

z(1− x) +
nn(∂x)2

(1− x)2 .

He added this equation to (27.21) to get

∂∂s

s
= ∂∂z

z
− 2n∂x∂z

z(1− x) +
n(n− 1)(∂x)2

(1− x)2 . (27.22)

When (27.20) and (27.22) were applied to the hypergeometric equation (27.19), he
could write

x(1− x)∂∂z
z

− 2nx∂x∂z

z
+ (c− (a+ b+ 1)x)

∂z

z

+n(n− 1)x(∂x)2

1− x − n(c− (a+ b+ 1)x)∂x

1− x − ab= 0. (27.23)
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Next, the two terms with 1−x in the denominator, the second of which had a suppressed
∂x, combined to form

n((n+ a+ b)x− c)
1− x .

When n+ a+ b= c, the factor 1− x canceled. For this n, (27.23) was reduced to

x(1− x)∂∂z+[c+ (a+ b− 2c− 1)x]∂z− (c− a)(c− b)z= 0, (27.24)

an equation of the hypergeometric type. Thus,

z= F(c− a, c− b, c, x)= (1− x)a+b−cF (a, b, c, x). (27.25)

This proved Euler’s transformation (27.5).

27.3 Pfaff’s Derivation of the 3F2 Identity

We have already noted that equation (27.25) is equivalent to Pfaff’s identity (27.7).
Pfaff gave a very interesting proof of this, given here in modern notation using shifted
factorials. Let

Sn(a,b,c)=
n∑
j=0

(−n)j (a)j (b)j
j !(c)j (1−n+ a+ b− c)j .

Then, by a simple calculation,

Sn(a,b,c)−Sn−1(a,b,c)

=
n∑
j=0

(
(−n)j (a)j (b)j

j !(c)j (1−n+ a+ b− c)j −
(1−n)j (a)j (b)j

j !(c)j (2−n+ a+ b− c)j
)

= −(1+ a+ b− c)ab
c(1+ a+ b− c−n)(2+ a+ b− c−n)Sn−1(a+ 1,b+ 1,c+ 1). (27.26)

By induction, the recurrence (27.26), combined with the initial value S0(a,b,c) = 1,
uniquely determines Sn(a,b,c). Pfaff could easy verify that

σn(a,b,c)= (c− a)n(c− b)n
(c)n(c− a− b)n

satisfied the same recurrence relation and initial condition, proving his formula (27.7).
This formula is quite useful and important, though this does not seem to have been

realized until the twentieth century when it found applications to the evaluation of
combinatorial sums of products of binomial coefficients. In this connection, the Chinese
mathematician Li Shanlan (1811–1882) is of historical interest. He was trained in the
Chinese mathematical tradition, though later in life he came to learn about Western
works on algebra, analytic geometry, and calculus. At the age of 8, he studied the
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ancient Chinese text Jiuzhang Suanshu, and six years later he read a Chinese translation
of the first six books of Euclid’s Elements. Soon after that, he studied Chinese works
on algebra and trigonometry. Eventually he became interested in the summation of
finite series. He made some interesting discoveries involving Stirling numbers, Euler
numbers and other numbers and series of combinatorial significance, contained in his
work Duoji Bilei. This may be translated as “Heaps Summed Using Analogies”; heaps
refer to finite sums. In this work, Li Shanlan developed and generalized the concepts
and formulas of earlier researchers such as Wang Lai (1768–1813) and Dong Youcheng
(1791–1823). Li Shanlan presented the following summation formula:

k∑
j=0

(
k

j

)2(
n+ 2k− j

2k

)
=

(
n+ k
k

)2

. (27.27)

This formula was brought to the notice of the Hungarian mathematician Paul Turán
(1910–1976) in 1937. He gave a proof using Legendre polynomials, published in 1954.
This aroused the curiosity of other mathematicians, and it was established that the
combinatorial sum (27.27) could be written as(

n+ 2k
2k

)
3F2

(−k,−k,−n
1,−n− 2k

;1

)
,

and therefore (27.27) could be derived from Pfaff’s formula. Jacobi’s perceptive effort
to prevent this formula from being forgotten provides further evidence of his insight
into formulas and his stature as an algorist. As another application of Pfaff’s identity,
note that it can be written as

n∑
k=0

(−n)k(a)k(b)k
k!(c)k(−n+ 1+ a+ b− c)k =

(c− a)n
n!nc−a−1

· (c− b)n
n!nc−b−1

· n!n
c−1

(c)n
· n!n

c−a−b−1

(c− a− b)n .

When n→∞ and Re (c− a− b) > 0, by (23.2), we obtain Gauss’s 2F1 summation
mentioned earlier as (23.11):

F(a,b,c,1)= �(c)�(c− a− b)
�(c− a)�(c− b), (27.28)

though we do not know whether Gauss was aware of this derivation.

27.4 Gauss’s Contiguous Relations and Summation Formula

The contiguous relations can be given in compact form if we use the following notation
for contiguous functions:

F = F(a,b,c,x), F (a+)= F(a+ 1,b,c,x), etc.
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Gauss wrote down all of the fifteen contiguous relations connecting F with two
functions contiguous to it. Here we give four examples:

(c− 2a− (b− a)x)F + a(1− x)F (a+)− (c− a)F (a−)= 0, (27.29)

(c− a− b)F + a(1− x)F (a+)− (c− b)F (b−)= 0, (27.30)

(c− a− 1)F + aF(a+)− (c− 1)F (c−)= 0, (27.31)

c(c− 1− (2c− a− b− 1)x)F + (c− a)(c− b)xF (c+)− c(c− 1)(1− x)F (c−)= 0.
(27.32)

From the fifteen relations, one may obtain other relations in which more than one
parameter is changed by one or more; we give a relation presented by Gauss, where
our notation has the obvious meaning.

F(b+,c+)−F = a(c− b)x
c(c+ 1)

F (a+,b+,c+ 2). (27.33)

Gauss proved relations (27.30) and (27.31): First, let

M = (a+ 1)n−1(b)n−1

n!(c)n .

Then the coefficients of xn in F,F (b−),F (a+),F (c−), and xF(a+) would be

a(b+n− 1)M, a(b− 1)M,(a+n)(b+n− 1)M,

a(b+n− 1)(c+n− 1)M

c− 1
, n(c+n− 1)M,

respectively. To obtain (27.31), it was therefore sufficient for him to check that

a(c− a− 1)(b+n− 1)+ a(a+n)(b+n− 1)− a(b+n− 1)(c+n− 1)= 0.

Equation (27.30) can be proved in a similar manner; equation (27.33) can also be proved
by the direct method. Gauss found his formula (27.28) for F(a,b,c,1) by taking x = 1
in (27.32) to obtain

F(a,b,c,1)= (c− a)(c− b)
c(c− a− b) F (a,b,c+ 1,1). (27.34)

Note that he proved the convergence of the series for Re (c−a−b)> 0; thus, the series
on the right-hand side also converged. By repeated application of this equation he got

F(a,b,c,1)= (c− a)n(c− b)n
(c)n(c− a− b)n F (a,b,c+n,1). (27.35)



27.5 Gauss’s Proof of the Convergence of F(a,b,c,x) for c− a− b > 0 559

Gauss could then express the right-hand side of the equation in terms of the gamma
function, just as we obtained (27.28); he then let n→∞ to get the result.

27.5 Gauss’s Proof of the Convergence of F(a,b,c,x) for c− a− b > 0

Gauss’s proof of this important result was based on the formula

(β−α− 1)

(
1+ α

β
+ α(α+ 1)

β(β+ 1)
+·· ·+ (α)k

(β)k

)
= β− 1− (α)k+1

(β)k
. (27.36)

This summation formula follows immediately from the following relation; although
Gauss did not state it explicitly, he knew it well from his numerous calculations with
hypergeometric series.

(α)k

(β)k−1
− (α)k+1

(β)k
= (β−α− 1)

(α)k

(β)k
. (27.37)

A simple algebraic calculation is sufficient to check this relation. The idea was to write
a hypergeometric term as a difference of two terms. It is interesting that in 1978, Bill
Gosper showed the tremendous effectiveness of this approach in the summation of series
of hypergeometric type. Gosper’s method is now one of the fundamental algorithms
used to sum such series. Now note that the ratio of the (n+1)th term over the nth term
of the series F(a,b,c,x) (omitting x) is

(a+n)(b+n)
(1+n)(c+n) =

n2 + (a+ b)n+ ab
n2 + (c+ 1)n+ c . (27.38)

We take a, b, c real, though the argument also applies to complex values. Gauss proved,
more generally, that if the ratio of the consecutive terms in a series was

nλ+Anλ−1 +Bnλ−2 +Cnλ−3 +·· ·
nλ+ anλ−1 + bnλ−2 + cnλ−3 +·· · (27.39)

and A− a was a negative quantity with absolute value greater than unity, then the
series converged. And when this result is applied to the special case of F(a,b,c,x), it
follows from (27.38) that the hypergeometric series converges for c+1−a−b > 1 or
c− a− b > 0. To prove the theorem, write the series, for which the ratio of terms is
given by (27.39), asM1+M2+M3+·· · .We remark that Gauss did not use subscripts;
he wrote the series asM+M ′ +M ′′ + · · · . Now since a >A+1, there is a sufficiently
small number h such that a− h > A+ 1, or a− h− 1 > A. Now observe that if the
fraction (27.39) is multiplied by n

n−1−h , we have

n

n− 1−h
Mn+1

Mn

= nλ+1 +Anλ+·· ·
nλ+1 + (a−h− 1)nλ+·· · .



560 The Hypergeometric Series

If n is large enough, the last ratio is less than 1. Suppose this true for n≥N . Then

|MN+1|< N − 1−h
N

|Mn|,

|MN+2|< N −h
N + 1

|Mn+1|< (N −h− 1)(N −h)
N(N + 1)

|MN |,

· · ·

|MN+k|< (N −h− 1)(N −h) · · ·(N −h− 1+ k− 1)

N(N + 1) · · ·(N + k− 1)
|MN |.

Hence,

|MN |+ |MN+1|+ · · ·+ |MN+k|

= |MN |
(

1+ N −h− 1

N
+ (N −h− 1)(N −h)

N(N + 1)
+·· ·+ (N −h− 1)k

(N)k

)
= |MN |

h

(
N − 1− (N −h− 1)k+1

(N)k

)
,

where the last equation follows from (27.36). The term (N−h−1)k+1
(N)k

tends to zero as
k→∞ because

lim
k→∞

(N −h− 1)k+1

(N)k
= lim

k→∞

(
k!kN
(N)k

)(
(N −h)k
k!kN−h

)
N −h− 1

kh
.

Now the first two expressions in parentheses have the limit �(N)/�(N − h), while
limk→∞(N −h− 1)/kh = 0. Thus, Gauss proved that

∞∑
k=N

|Mk|< N − 1

h
|MN |,

and the convergence of
∑∞

n=1Mn followed. Observe that Gauss’s method leads to a
great refinement of the ratio test.

27.6 Gauss’s Continued Fraction

Gauss derived an important continued fraction from the contiguous relation (27.33).
He set

G(a,b,c,x)= F(a,b+ 1,c+ 1,x)

F (a,b,c,x)
, so that

F(a+ 1,b,c+ 1,x)

F (a,b,c,x)
= F(b,a+ 1,c+ 1,x)

F (b,a,c,x)
=G(b,a,c,x).

Then, dividing (27.33) by F(a,b+ 1,c+ 1,x), he obtained

1− 1

G(a,b,c,x)
= a(c− b)
c(c+ 1)

xG(b+ 1,a,c+ 1,x),
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or

G(a,b,c,x)= 1

1− a(c−b)
c(c+1) xG(b+ 1,a,c+ 1,x)

. (27.40)

This process could be continued:

G(b+ 1,a,c+ 1,x)= 1

1− (b+1)(c+1−a)
(c+1)(c+2) xG(a+ 1,b+ 1,c+ 2,x)

,

and thus G(a,b,c,x)= 1

1−
α0x

1−
β1x

1−
α1x

1−
β2x

1− ·· · , (27.41)

where

αn = (a+n)(c+n− b)
(c+ 2n)(c+ 2n+ 1)

and βn = (b+n)(c+n− a)
(c+ 2n− 1)(c+ 2n)

. (27.42)

Gauss mentioned an important particular case: when b= 0. In that case,

G(a,0,c− 1,x)= F(a,1,c,x), (27.43)

and the formulas in (27.42) took the form

αn = (a+n)(c+n− 1)

(c+ 2n− 1)(c+ 2n)
and βn = n(c+n− 1− a)

(c+ 2n− 2)(c+ 2n− 1)
. (27.44)

For a = 1 and c= 3
2 and x = t2, Gauss had

log
1+ t
1− t =

2t

1−
1
3 t

2

1−
2·2
3·5 t

2

1−
3·3
5·7 t

2

1− ·· · .

This continued fraction played a fundamental role in Gauss’s theory of numerical
integration.

27.7 Gauss: Transformations of Hypergeometric Functions

Gauss found solutions of the hypergeometric equation other thanF(α,β,γ,x) and also
used the hypergeometric equation to obtain transformation formulas, just as Euler had
done. Note that Gauss used the symbols α,β, and γ and employed a,b for variables
in a different context. We shall follow that practice here. He set x = 1 − y in the
hypergeometric equation to get

(y− yy) ddP
dy2

+ (α+β+ 1− γ − (α+β+ 1)y)
dP

dy
−αβP = 0.

Clearly, P = F(α,β,α + β + 1 − γ,y) was a solution of this equation and hence
F(α,β,α+β+1−γ,1−x) would be an independent solution of the hypergeometric
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equation. Gauss noted that any solution of the hypergeometric equation must be a
linear combination of these two. He then looked for solutions of the form P = xµP ′

by substituting this expression for P in the equation. He observed that the equation for
P ′ was of the hypergeometric form when µ = 0 or µ = 1− γ . In the latter case, the
equation for P ′ was

(x− xx) ddP
′

dx2
+ (2− γ − (α+β+ 3− 2γ )x)

dP ′

dx
− (α+ 1− γ )(β+ 1− γ )P ′ = 0.

Thus,

P = x1−γ F (α+ 1− γ,β+ 1− γ,2− γ,x)
= (1− x)γ−α−βx1−γ F (1−α,1−β,2− γ,x)

would be another solution of the original hypergeometric equation. Observe that the
last step followed from an application of Euler’s transformation (27.5). It then followed
that there existed constants M and N such that

F(α,β,α+β+ 1− γ,1− x)=MF(α,β,γ,x)
+Nx1−γ (1− x)γ−α−βF (1−α,1−β,2− γ,x).

Gauss determined after three pages of interesting calculations that

M = �(α+β+ 1− γ )�(1− γ )
�(α+ 1− γ )�(β+ 1− γ ) and N = �(α+β+ 1− γ )�(γ − 1)

�(α)�β)
.

We observe that the case in which α is a negative integer was given by Pfaff in 1797.
In this case, the second term is zero because �(α) appears in the denominator. Gauss
remarked that this formula was useful for computational purposes. Clearly, a series
would converge more rapidly for x between 0 and 1/2 than for x between 1/2 and 1.
A formula of this type could be applied to convert a slowly convergent series to two
more rapidly convergent ones. But Gauss cautioned that this formula would not be
applicable if the series to be transformed was such that the third parameter minus the
sum of the first two turned out to be an integer. He then went on to show that if this
occurred, the formula could be modified by the use of hisP function and the logarithm.
He explicitly worked out the formula for the elliptic integral F(1/2,1/2,1,1− x).

Gauss also found solutions at infinity. He set x = 1/y and then P = yµP ′ and
observed that P ′ was hypergeometric when µ= α or β. Thus, he obtained P as

x−αF (α,α+ 1− γ,α+ 1−β,1/x) or x−βF (β,β+ 1− γ,β+ 1−α,1/x).
He then expressed F(α,β,γ,x) as a linear combination of these solutions.

Gauss derived another general transformation formula by taking x = y/(y − 1) in
the hypergeometric equation and then P = (1−y)µP ′, so that another hypergeometric
equation would be obtained when µ= α or β. This gave the necessary result:

F(α,β,γ,x)= (1− y)αF (α,γ −β,γ,y)

= (1− x)−αF
(
α,γ −β,γ, x

x− 1

)
.
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In 1797 Pfaff published this result for the case in which α was a negative integer.
Gudermann proved the generalization in 1830. Three years later, P. E. O. Vorsselman
de Heer noted in his thesis that Euler’s transformation could be obtained when the
preceding transformation was applied to itself; Kummer also observed this fact.

In the published part of his 1812 paper, Gauss found the values of the coefficients
in the expansion

(aa+ bb− 2abcosφ)−n =A+ 2A′ cosφ+ 2A′′ cos 2φ+ 2A′′′ cos 3φ+·· · (27.45)

in terms of hypergeometric series. He noted that

A(p) = 1

a2n

(
n+p− 1

p

)(
b

a

)p
F

(
n,n+p,p+ 1,

bb

aa

)
= 1

(aa+ bb)n
(
n+p− 1

p

)(
ab

aa+ bb
)p

×F
(
n+p

2
,
n+p+ 1

2
,p+ 1,

4aabb

(aa+ bb)2
)

= 1

(a± b)2n
(
n+p− 1

p

)(
ab

(a± b)2
)p
F

(
n+p,p+ 1

2
,n+ 1

2
,

±4ab

(a± b)2
)
.

(27.46)

Note that Euler studied the series (27.45) in a 1749 memoir on the perturbation of plan-
etary orbits and in 1766 Lagrange found the first series for A(p) in (27.46). This series
and its coefficients have been studied intensively, both analytically and numerically,
and Gauss’s interest in them was evident. If we take a = 1 and x = b2, the second
equation in (27.46) gives

(1+ x)n+pF (n,n+p,p+ 1,x)= F
(
n+p

2
,
n+p+ 1

2
,p+ 1,

4x

(1+ x)2
)
. (27.47)

This is an example of a quadratic transformation because the variable on one side is x,
or it could be a fractional linear transformation of x, while the variable on the right-
hand side involves x2. It is very likely that equation (27.47) led Gauss to study such
transformations in the second (unpublished) part of his paper. He set x= 4y/(1+y)2 in
the hypergeometric equation and thenP = (1+y)2αQ to find that the equation satisfied
by Q was

(1+ y)(y− y2)
d2Q

dy2
+ (
γ − (4β− 2γ )y+ (γ − 4α− 2)y2

) dQ
dy

− 2α(2β− γ + (2α+ 1− γ )y)Q= 0.

Now note that when β = α+1/2,1+y is a common factor in this equation. We remark
that equation (27.47) guided Gauss in the substitutions for x,P and β. We next have
Q= F(2α,2α+ 1− γ,γ,y) and finally

(1+ y)2αF (2α,2α+ 1− γ,γ,y)= F (
α,α+ 1/2,γ,4y/(1+ y)2) . (27.48)
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27.8 Kummer’s 1836 Paper on Hypergeometric Series

Kummer independently rediscovered Gauss’s unpublished results on hypergeometric
functions, including the quadratic transformations. Of course, he was familiar with
Gauss’s published paper and with the work of Euler, Pfaff, Jacobi, and Gudermann on
this topic. Kummer took a general approach. He set out to determine all functions of z
and w of x such that y =wF(α′,β ′,γ ′,z) satisfied the equation

y ′′ + (γ − (α+β+ 1)x)y ′ −αβy = 0

and α′,β ′,γ ′ were linear combinations of α,β,γ . He found z to be a fractional linear
transformation (ax+ b)/(cx+ d) and that w could be taken to be

x1−γ , (1− x)γ−α−β, x1−γ (1− x)γ−α−β, or 1.

Specifically, z could be any one of the six fractional linear transformations serving to
permute the values 0, 1, and ∞. These would be

z= x,z= 1− x,z= 1/x,z= 1/(1− x),z= x/(x− 1),z= (x− 1)/x.

When z= x, he obtained the four forms

F(α,β,γ,x), (1− x)γ−α−βF (γ −α,γ −β,γ,x),

x1−γ F (α− γ + 1,β− γ + 1,2− γ,x),
x1−γ (1− x)γ−α−βF (1−α,1−β,2− γ,x).

Thus, he obtained twenty-four solutions of the hypergeometric equation and determined
the linear relation among any three of them.

Kummer may have become interested in quadratic transformations after studying
Gauss’s published equation (27.46). His interest in elliptic integrals may have provided
him with further motivation to study these transformations. It was clear to Kummer,
as it was to Gauss, that quadratic transformations existed when the parameters α,β,γ
in F(α,β,γ,x) satisfied certain relations. So Kummer considered the linear relations
among the parameters leading to such transformations. In this way, he rediscovered
Gauss’s results as well as new ones. For example, he obtained

F(α,β,2β,x)= (1−x)β−α
(

1− x

2

)α−2β
F

(
β− α

2
,

2β−α+ 1

2
,β+ 1

2
,

(
x

2− x
)2

)
.

Note that by applying Euler’s transformation to the right-hand side, we get the simpler
form

F(α,β,2β,x)=
(

1− x

2

)−α
F

(
α

2
,
α+ 1

2
,β+ 1

2
,

(
x

2− x
)2

)
.
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This and Gauss’s transformation (27.48) are the two basic quadratic transformations;
from these, the others can be obtained by using fractional linear transformations or the
three-term relations among the different solutions of the hypergeometric equation. At
the end of his paper, Kummer commented on the more general hypergeometric series

1+ α ·β ·λ
1 · γ · ν x+

α(α+ 1) ·β(β+ 1) ·λ(λ+ 1)

1 · 2 · γ (γ + 1) · ν(ν+ 1)
x2 +·· · .

He wrote that he was unable to obtain general transformation formulas for this function,
although he had several for the case x = 1. As an example, he presented

∞∑
k=0

(α)k(β)k(λ)k

k!(γ )k(ν)k = �(ν)�(ν+ γ −α−β−λ)
�(ν−λ)�(ν+ γ −α−β)

∞∑
k=0

(γ −α)k(γ −β)k(λ)k
k!(γ )k(ν+ γ −α−β)k .

(27.49)

He observed that, in general, this series could not be summed in terms of the gamma
function, but when λ= 1 and ν = 2(α+β− γ + 1), then its value would be

(α+β− γ + 1)(γ − 1)

(α− γ + 1)(β− γ + 1)

(
�(γ − 1)�(α+β− γ + 1)

�(α)�(β)
− 1

)
. (27.50)

Recall that Stirling discovered a particular case of Kummer’s transformation where
λ= 1 and ν = β+ 1; see (11.40).

27.9 Jacobi’s Solution by Definite Integrals

Euler gave a method of solving differential equations using definite integrals. He applied
it to solve several second-order differential equations, including one related to the
hypergeometric equation. Jacobi worked out the specific details of the method for
the hypergeometric equation and showed how to obtain the twenty-four solutions of
Kummer. Jacobi started with the observation that for

V = uβ−1(1−u)γ−β−1(1− xu)−α, (27.51)

x(1− x) d
2V

dx2
+ (γ − (α+β+ 1)x)

dV

dx
−αβV =−α d

du

(
u(1−u)
1− xu V

)
=−αuβ(1−u)γ−β(1− xu)−α−1.

Hence, y = ∫ 1
0 V du would be a solution of the hypergeometric equation for β > 0 and

γ −β > 0 because

−α
∫ 1

0
d

(
u(1−u)
1− xu V

)
=−αu(1−u)

1− xu V
]1

0

=−αuβ(1−u)γ−β(1− xu)−α−1

]1

0

= 0.

The expressionuβ(1−u)γ−β(1−xu)−α−1 also vanished atu=±∞whenγ −α−1< 0.
So if g and h were a pair of the values 0, 1,±∞, then, Jacobi observed, the integral
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y = ∫ h
g
V du would be a solution of the hypergeometric equation under suitable

conditions on α,β,γ .
Jacobi also considered a solution of the form y = ∫ ε/x

g
V du where ε was a constant.

When this y was substituted in the hypergeometric equation, Jacobi obtained

−(γ −β− 1)εβ(1− ε)1−αx1−γ (x− ε)γ−β−2 +αgβ(1−g)γ−β(1− xg)−α−1.

The expression involving ε vanished for ε = 1 when 1− α > 0, so for y = ∫ 1/x
g
V du

to be a solution, Jacobi required that 1−α > 0. Taking x to be positive, Jacobi had the
six solutions:

• y = ∫ 1
0 V du, when β and γ −β were positive;

• y = ∫ −∞
0 V du, when β and α+ 1− γ were positive;

• y = ∫∞
1 V du, when γ −β and α+ 1− γ were positive;

• y = ∫ 1/x
0 V du, when β and 1−α were positive;

• y = ∫∞
1/x V du, when α+ 1− γ and 1−α were positive;

• y = ∫ 1/x
1 V du, when γ −β and 1−α were positive.

Jacobi then noted that the integral
∫ 1

0 u
λ(1 − u)µ(1 − au)ν du was in fact a constant

times the series F(−ν,λ+1,λ+µ+2,a). This series could be derived by expanding
(1 − au)ν by the binomial expansion and then performing term-by-term integration.
Also, note that the last five integrals could actually be obtained by a suitable substitution
in the first one. For example, to go from

∫ 1
0 V du to

∫ −∞
0 V du, set u= v−1

v
. Then

y =
∫ −∞

0
V du= (−1)βx−α

∫ 1

0
vα−γ (1− v)β−1

(
1− v

x− 1

x

)−α
dv.

The corresponding hypergeometric series would be

F

(
α,α+ 1− γ,α+β+ 1− γ, x− 1

x

)
.

In this manner, Jacobi represented the six integrals as hypergeometric functions:

• F(α,β,γ,x), substitution u= v;
• x−αF

(
α,α+ 1− γ,α+β+ 1− γ, x−1

x

)
, substitution u= v−1

v
;

• x−αF
(
α,α+ 1− γ,α+ 1−β, 1

x

)
, substitution u= 1

v
;

• x−βF
(
β,β+ 1− γ,β+ 1−α, 1

x

)
, substitution u= v

x
;

• x1−γ F (α+ 1− γ,β+ 1− γ,2− γ,x), substitution u= 1
xv

;
• xα−γ (1−x)γ−α−βF (

γ −α,1−α,γ +1−α−β, x−1
x

)
, substitutionu= 1

x+(1−x)v .

Jacobi then observed that, other than the identity, the fractional linear transformations
mapping 0, 1 to itself could be given as

u= 1− v, u= v

1− x+ vx
, u= 1− v

1− vx
.



27.10 Riemann’s Theory of Hypergeometric Functions 567

Then V du was, respectively,

(1− x)−αvγ−β−1(1− v)β−1

(
1− xv

x− 1

)−α
dv,

(1− x)−βvβ−1(1− v)γ−β−1

(
1− xv

x− 1

)α−γ
dv,

(1− x)γ−α−βvγ−β−1(1− v)β−1(1− vx)α−γ dv.

Observe that we have y = ∫ 1
0 V du as a constant times each of the four expressions:

F(α,β,γ,x)= (1− x)−αF
(
α,γ −β,γ, x

x− 1

)
= (1− x)−βF

(
γ −α,β,γ, x

x− 1

)
= (1− x)γ−α−βF (γ −α,γ −β,γ,x).

Similarly, there are four expressions with each of the six integral solutions, yielding
Kummer’s twenty-four solutions.

27.10 Riemann’s Theory of Hypergeometric Functions

Kummer showed that the twenty-four solutions of the hypergeometric equation could
be expressed as hypergeometric series in x,1−x, 1/x,1−1/x, 1

1−x ,
1

1−1/x multiplied
by suitable powers of x and/or 1 − x. He also gave the relations among any three
overlapping solutions. In a paper of 1857, Riemann reversed this process, starting with
a set of functions with three properties; these properties in turn uniquely determined
the functions up to a constant factor, as well as the differential equation of which these
functions were the complete set of solutions. He denoted by

P


a b c

α β γ x

α′ β ′ γ ′


any function satisfying the three properties:

• For all values of x except a, b, c, called branch points, P was single valued and
finite.

• Between any three branches P ′, P ′′, P ′′′ of this function, there was a linear
homogeneous relation with constant coefficients,

C ′P ′ +C ′′P ′′ +C ′′′P ′′′ = 0.

• The function could be written in the form

CαP
α+Cα′Pα′, CβP (β)+Cβ ′P (β ′), CγP (γ )+Cγ ′P (γ ′),
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where Cα, Cα′, · · ·Cγ ′ were constants and

(x− a)−αP (α), (x− a)−α′P (α′)

were single valued near x = a and nonvanishing and finite at x = a; a similar
requirement would hold for

(x− b)−βP (β), (x− b)−β ′P (β ′) at x = b
and for (x− c)−γ P (γ ), (x− c)−γ ′P (γ ′) at x = c.

Moreover, α−α′, β −β ′, γ − γ ′ were not integers and α+α′ +β +β ′ + γ +
γ ′ =1.

It follows immediately from the definition of P that if x ′ is a fractional linear
transformation of x mapping a, b, c to a′, b′, c′, then

P


a b c

α β γ x

α′ β ′ γ ′

= P

a′ b′ c′

α β γ x ′

α′ β ′ γ ′

 (27.52)

Here recall that every conformal mapping of C∪ {∞} is of the form

x ′ = λx+µ
δx+ ν , where λν−µδ = 1.

We can therefore choose a′, b′, c′ to be 0,∞, 1. It is also clear from the definition of
the Riemann P function that

(
x− a
x− b

)δ
P


a b c

α β γ x

α′ β ′ γ ′

= P


a b c

α+ δ β− δ γ x

α′ + δ β ′ − δ γ ′

 ;

xδ(1− x)εP


0 ∞ 1
α β γ x

α′ β ′ γ ′


= P


0 ∞ 1

α+ δ β− δ− ε γ + ε x

α′ + δ β ′ − δ− ε γ ′ + ε.

 . (27.53)

Following Riemann, we write P

(
α β γ

α′ β ′ γ ′ x
)

when the first row is 0 ∞ 1. We

may immediately write the relations
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P

(
0 a 0

1− c b c− a− b x

)
= (1− x)−aP

(
0 a 0

1− c c− b b− a
x

x− 1

)
= x−aP

(
0 a 0

b− a 1− c+ b c− a− b
1

x

)
= (1− x)c−a−bP

(
0 c− a 0

1− c c− b a+ b− c x

)
.

(27.54)

Riemann also studied contiguous relations satisfied by the P functions. Following
Gauss, he used these relations to find the differential equation satisfied by P . In fact,
Riemann worked out the details only for the case γ = 0, sufficient for his purpose.
Felix Klein’s student Erwin Papperitz (1857–1938) presented the general case in 1889.

Riemann found that the equation satisfied by P

(
α β 0
α′ β ′ γ ′ x

)
was

(1− x) d2y

d log x2
− (α+α′ + (β+β ′)x)

dy

d log x
+ (αα′ −ββ ′x)y = 0.

He showed quite easily from this equation that

F(a,b,c,x)= const.P

(
0 a 0

1− c b c− a− b x

)
.

Moreover, the Pfaff and Euler transformations follow from this equation and (27.54).
Riemann’s work on the hypergeometric equation led to important developments

in the theory of linear differential equations. Riemann himself foresaw some of these
developments, though he did not publish his ideas. In 1904, James Pierpont wrote about
this aspect of nineteenth-century mathematics: “A particular class of linear differential
equations of great importance is the hypergeometric equation; the results obtained by
Gauss, Kummer, Riemann, and Schwarz relating to this equation have had the greatest
influence on the development of the general theory. The great extent of the theory of
linear differential equations may be estimated when we recall that within its borders
it embraces not only almost all the elementary functions, but also the modular and
automorphic functions.”

27.11 Exercises

1. Verify (27.50).
2. Show that y = (arcsin x)2/2 satisfies the differential equation

(1− x2)
d2y

dx2
− x dy

dx
− 1 = 0.

Deduce Takebe’s formula

1

2
(arcsin x)2 =

∞∑
n=0

22n(n!)2
(2n+ 2)! x

2n+2.
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Prove Clausen’s 1828 observation that this formula is a particular case of
his formula (27.13). See Clausen (1828). Also see Eu. 14, pp. 156–186 and
the correspondence of Euler and Johann Bernoulli on this topic: Eu. 4A-2,
pp.161–262.

3. Prove the following examples mentioned in Gauss’s 1812 paper on hypergeo-
metric series.

sin nt = n sin t F

(
1

2
n+ 1

2
,−1

2
n+ 1

2
,

3

2
,sin2 t

)
;

sin nt = n sin t cos t F

(
1

2
n+ 1,−1

2
n+ 1,

3

2
,sin2 t

)
;

cos nt = F
(

1

2
n,−1

2
n,

1

2
,sin2 t

)
;

cos nt = cos t F

(
1

2
n+ 1

2
,−1

2
n+ 1

2
,

1

2
,sin2 t

)
.

See Gauss (1863–1927), vol. 3, p. 127.
4. Show that

et = 1

1−
t

1+
1
2 t

1−
1
6 t

1+
1
6 t

1−
1

10 t

1+
1

10 t

1− ·· ·

t = sin t cos t

1−
1·2
1·3 sin2 t

1−
1·2
5·7 sin2 t

1−
3·4
5·7 sin2 t

1−
3·4
7·9 sin2 t

1− .

See Gauss (1863–1927), vol. 3, pp. 136–137.
5. Show that

F (2,4,9/2,x)= (1− x)− 3
2F (5/2,1/2,9/2,x) .

Gauss stated this without proof in the Ephemeridibus Astronomicis Berolinen-
sibus 1814, p. 257. He gave a proof in the unpublished second part of his paper.
See Gauss (1863–1927), vol. 3, p. 209.

6. Set x = 1 − y in the hypergeometric differential equation and from its form
deduce thatF(a,b,a+b+1−c,1−x) is another solution of the hypergeometric
equation. See Gauss (1863–1927), vol. 3, p. 208.

7. Show that when x = y/(y− 1), the hypergeometric equation changes to

(1− y)(y− y2)
d2F

dy2
+ (1− y)(c+ (a+ b− c− 1)y)

dF

dy
+ abF = 0.

In this equation set F = (1− y)µG to show that G satisfies

(1− y)(y− y2)
d2G

dy2
+ (1− y)(c+ (a+ b− c− 1)y− 2µy)

dG

dy

+(
(ab−µ(a+ b− c− 1)y)+ (µ2 −µ)y)G= 0.
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Show that when µ= a or µ= b, then the coefficient ofG is divisible by (1−y)
and thus deduce that

F(a,b,c,x)= (1− x)−aF (a,c− b,c,x/(x− 1)) .

This is Gauss’s proof of Pfaff’s transformation. See Gauss (1863–1927), vol. 3,
pp. 217–218.

8. Set x = 4y− 4y2. Show that the hypergeometric equation takes the form

(y−y2)
d2F

dy2
+ (c− (4a+4b+2)y+ (4a+4b+2)y2)

1

1− 2y

dF

dy
−4abF = 0.

Next, show that the fraction in the middle term is removed by putting c =
a+ b+ 1

2 .Also deduce that

F

(
a,b,a+ b+ 1

2
,4y− 4y2

)
= F

(
2a,2b,a+ b+ 1

2
,y

)
.

It was by this example that Gauss illustrated the multivaluedness of the
hypergeometric function. See Gauss (1863–1927), vol. 3, pp. 225–227.

9. Prove Kummer’s transformation (27.49) and its corollary (27.50). Kummer
stated these formulas without proof at the end of his 1836 paper. See Kummer
(1975), vol. 2, pp. 75–166.

10. Prove Euler’s continued fraction formula

βx

γ

2F1(−α, β+ 1; γ + 1,−x)
2F1(−α; β; γ ; −x) = βx

γ − (α+β+ 1)x
+ (β+ 1)(α+ γ + 1)x

γ + 1− (α+β+ 2)x

+ (β+ 2)(α+ γ + 2)x

γ + 2− (α+β+ 3)x
+·· · .

See Eu. I-14 pp. 291–349.
11. Prove Ramanujan’s integral formula∫ ∞

0
xs−1(φ(0)−φ(1)x+φ(2)x2 −·· ·)dx = π

sin sπ
φ(−s).

See Berndt (1985–1998), part I, pp. 295–307. See also Hardy (1978), pp. 186–
190; he relates this formula of Ramanujan with a 1914 interpolation theorem of
F. Carlson, useful in proving hypergeometric formulas.

12. Use the following outline to determine when the square of a hypergeometric
function

y =
∞∑
n=0

(α)n(β)n

n!(γ )n xn takes the form z=
∞∑
n+0

(α′)n(β ′)n(δ′)n
n!(γ ′)n(ε ′)n

xn.
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(i) Show that when the hypergeometric equation is multiplied by x and then
differentiated, the result is

(x3 − x2)
d3y

dx3
+ ((α+β+ 4)x2 − (y+ 2)x)

d2y

dx2

+((2α+ 2β+αβ+ 2)x− γ ) dy
dx

+αβy = 0.

(ii) Show that z satisfies the differential equations

(x3 − x2)
d3z

dx3
+ ((3+α′ +β ′ + δ′)x2 − (1+ γ ′ + ε ′)x) d

2z

dx2

+(1+α′ +β ′ + δ′ +α′β ′ +α′δ′ +β ′δ′)x− γ ′ε ′)
dz

dx
+α′β ′δ′z= 0.

(iii) Show that if z= y2, then the equation in (ii) becomes

(x3 − x2)2y
d3y

dx3
+ ((3+ a′)x2 − (1+ d ′)x)2y d

2y

dx2

+ ((1+ a′ + b′)x− e′)2y dy
dx

+ c′y2

+ 6(x3 − x2)
dy

dx
· d

2y

dx2
+ 2((3+ a′)x2 − (1+ d ′)x)

(
dy

dx

)2

= 0,

where a′ = α′ + β ′ + δ′, b′ = α′β ′ + α′δ′ + β ′δ′, c′ = α′β ′δ′, d ′ = ε ′ +
γ ′, e′ = ε ′γ ′.

(iv) Multiply the hypergeometric equation by 2yA
x

+B dy

dx
and equation (i) by

2y and add the two equations. Compare the resulting equation with (iii),
and deduce that

γ = α+β+ 1/2, A= 2α+ 2β− 1, B = b′, a′ = 3α+ 3β,

b′ = 2α2 + 8αβ+ 2β2, c′ = 4(α+β)αβ, d ′ = 3γ − 1, e′ = (2γ − 1)γ.

(v) Deduce that α′ = 2α, β ′ = 2β, δ′ = α+β, γ ′ = γ, ε ′ = 2γ − 1.
(vi) Conclude that(

2F1

(
α,β,

α+β+ 1/2
; x

))2

= 3F2

(
2α,2β,α+β

α+β+ 1/2,2α+ 2β
; x

)
.

See Clausen (1828).

27.12 Notes on the Literature

The translation of the quotation from Gauss is taken from D. Kikuchi’s translation of
Gauss’s two-part paper, included in Memoirs on Infinite Series, an 1891 publication of
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the Tokio [sic] Mathematical and Physical Society. Robert Burckel’s English transla-
tion of Gauss’s letter to Bessel is from Remmert (1991), pp. 167–168. Euler’s paper,
“Specimen transformationis singularis serierum,” (Eu. I-16-2, pp. 41–55) contains his
work on the hypergeometric equation. For Gauss’s papers on the hypergeometric series,
see Gauss (1863–1927), vol. 3, pp. 125–162 and 206–229. Discussions of Gauss’s con-
vergence test, including observations illustrating that Gauss’s work on this topic was
far ahead of its time, are available in Bressoud (2007) and Knopp (1990).

For Kummer’s papers on hypergeometric series, see Kummer (1975), vol. 2,
pp. 75–166. Jacobi’s musketeer remark appeared in Lampe’s obituary of Kummer;
see Kummer (1975), vol. 1, p. 18. For more on Jacobi’s remark and for his letter, see
Pieper’s entertaining “A Network of Scientific Philanthropy” (2007). Jacobi’s paper,
“Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe,” was
edited and published by Heine in 1859, eight years after Jacobi’s death. See Jacobi
(1969), vol. 6, pp. 184–202. Jacobi wrote other papers on the hypergeometric series;
this one elaborated on Euler’s important idea of solving a differential equation by
definite integrals.

Riemann’s 1857 paper defined the P function and mentioned Gauss in the title;
see Riemann (1990), pp. 99–115. In 1859, perhaps influenced by the work of Jacobi
mentioned above, Riemann gave a course of lectures in which he defined the P func-
tion by means of a complex integral. See Riemann (1990), pp. 667–691. The reader
may read more on Li Shanlan and other Chinese mathematicians in Martzloff (1997),
pp. 341–350. Also see Turán (1990), vol. 1, pp. 743–747 on Li Shanlan and a proof of
his formula. For the quote from his recently republished article, see Pierpont (2000).
For a history of the hypergeometric series, see Dutka (1984).



28

Orthogonal Polynomials

28.1 Preliminary Remarks

Orthogonal polynomials played an important role in the nineteenth-century
development of continued fractions, hypergeometric series, numerical integration, and
approximation theory; in the twentieth century, they additionally contributed to progress
in the moment problem and in functional analysis. However, orthogonal polynomials
may not have received recognition proportional to their significance, leading Barry
Simon to dub them “the Rodney Dangerfield of analysis.” Nevertheless, when Paul
Nevai edited the proceedings of a 1989 conference on this subject, he stamped on the
dedication page, “I love orthogonal polynomials.”

A sequence of polynomials pn(x), n = 0, 1, 2, . . . , is said to be orthogonal with
respect to a weight function w(x) over an interval (a,b) where −∞≤ a < b≤∞, if∫ b

a

pn(x)pm(x)w(x)dx =Anδmn, (28.1)

where An �= 0. In a paper on probability written in the early 1770s, Lagrange defined
a sequence of polynomials containing as special cases the Legendre polynomials.
Denoted by Pn(x), the Legendre polynomials are obtained when a = −1, b = 1 and
w(x) ≡ 1, in (28.1). Lagrange gave a three-term recurrence relation for his sequence
of polynomials; for the particular case of Legendre polynomials, this recurrence
amounted to

(2n+ 1)xPn(x)= (n+ 1)Pn+1(x)+nPn−1(x) (28.2)

n= 1, 2, 3, . . . , P0(x)= 1, P1(x)= x.
In a paper of 1785 on the attraction of spheroids of revolution, Legendre defined the
polynomials now bearing his name by the expansion

(1− 2cosθy+ y2)−1/2 = 1+P1(cosθ)y+P2(cosθ)y2 +P3(cosθ)y3 +·· · . (28.3)

In this memoir, Legendre needed only the polynomials of even degree and he explic-
itly presented P2(cosθ), P4(cosθ), P6(cosθ), and P8(cosθ). We note his first two

574
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examples:

P2(cosθ)= 3

2
cos2 θ − 1

2
; P4(cosθ)= 5 · 7

2 · 4 cos4 θ − 3 · 5
2 · 4 2cos2 θ + 1 · 3

2 · 4 . (28.4)

In the second volume of his Exercices de calcul intégral of 1817, Legendre gave the
orthogonality relation and an expression for the general Pn(x). Legendre polynomials
played an important role in the celestial mechanics of Laplace, Legendre, and others.

Gauss used Legendre polynomials in his 1814 paper on numerical integration,
extending the work of Newton and Cotes. But Gauss did not refer to the earlier work
on these polynomials; rather, he conceived of Legendre polynomials as an outgrowth
of his work in hypergeometric series. The groundbreaking approach and methodology
taken by Gauss in this paper led to important advances in nineteenth-century numerical
analysis. Briefly summarizing Gauss, we suppose

∫ d
c
y(x)dx is to be computed. Let

points a(= a0), a1, . . . ,an be chosen in [c,d] and let the corresponding values of y at
these points be y0, y1, . . . ,yn. Set

f (x)= (x− a)(x− a1)(x− a2) . . . (x− an). (28.5)

Note that the nth degree Lagrange-Waring polynomial

zn(x)=
n∑
k=0

f (x)yk

f ′(ak)(x− ak) (28.6)

passes through (ak,yk), k = 0, 1, . . . ,n, and therefore interpolates y(x); thus, we may
write y(x)= zn(x)+ rn(y). Then∫ d

c

y(x)dx =
n∑
k=0

λkyk+Rn(y), (28.7)

where

λk =
∫ d

c

f (x)dx

f ′(ak)(x− ak) and Rn(y)=
∫ d

c

rn(y)dx. (28.8)

It is clear that if y(x) is a polynomial of degree ≤ n, then y(x) = zn(x) and hence
Rn(y)= 0. In the Newton–Cotes scheme, the points a0, a1, . . . ,an were equally spaced.
Gauss considered whether he could prove Rn(y)= 0 for a larger class of polynomials
by varying the nodes a, a1, . . . ,an. Since there were n+1 points to be varied, he wanted
the class of polynomials, for which Rn(y)= 0, to consist of all polynomials of degree
≤ 2n+ 1; indeed, he succeeded in proving this. In short, his argument began with the
observation that

Rn

(
1

t − x
)
=Rn

(
1

t
+ x

t2
+ x2

t3
+·· ·

)
=

∞∑
k=0

Rn(x
k)

tk+1
. (28.9)
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His problem was to choose a, a1, . . . ,an so that Rn(xk) = 0 for k = 0, 1, . . . ,2n+ 1;
then he could write

Rn

(
1

t − x
)
=O

(
1

t2n+3

)
, t→∞. (28.10)

When [c,d] = [−1,1], from his results on hypergeometric functions, Gauss had∫ 1

−1

dx

t − x = ln
1+ 1/t

1− 1/t
= 2

t−
1/3

t−
2 · 2/(3 · 5)

t−
3 · 3/(5 · 7)

t− ·· · . (28.11)

He also knew that the (n+ 1)th convergent of this continued fraction was a rational
function Sn(t)/Pn+1(t), where Sn was of degree n and Pn+1 of degree n+1. Moreover,
this rational function approximated the continued fraction up to the order t−2n−3. So
Gauss factorized Pn+1(t) and wrote Sn(x)/Pn+1(x) as a sum of partial fractions:

Sn(x)

Pn+1(x)
=

n∑
k=0

λk

x− ak . (28.12)

He then easily showed that by using these a, a1, . . . ,an and λ, λ1, . . . ,λn, he
would obtain the result. Gauss explicitly wrote down the polynomials Pn+1(x) for
n = 0, 1, 2, . . . ,6; we can see they are Legendre polynomials of degrees 1 to 7,
although Gauss did not make this observation. Instead, he gave the hypergeometric
representations of the polynomials Pn+1 and of the remainder

ln
1+ 1/t

1− 1/t
− Sn(t)

Pn+1(t)
.

At the end of the paper, he computed the zeros of the Legendre polynomials of degree
seven and less with the corresponding λ. He used these results to compute the integral∫
dx/ ln x over the interval x= 100000 to x= 200000. Note that Gauss was well aware

that
∫ x

2 dt/ ln t gave a good approximation for the number of primes less than x.
In a paper of 1826, Jacobi pointed out that Gauss’s proof ultimately depended on

the orthogonality of Pn+1(x). To see this, suppose y(x) is a polynomial of degree at
most 2n+ 1. Then y(x)= q(x)Pn+1(x)+ r(x), where q(x) and r(x) are polynomials
of degree at most n. Next note that∫ 1

−1
y(x)dx =

∫ 1

−1
q(x)Pn+1(x)dx+

∫ 1

−1
r(x)dx.

The first integral on the right-hand side vanishes by the orthogonality of Pn+1(x), and
the second integral can be exactly computed by the Newton–Cotes method because the
degree of r(x) is not greater than n. In fact, Jacobi did not start his reasoning process
with the Legendre polynomial; at that time he may not have known of the earlier work
of Legendre, Laplace, and others on Legendre polynomials. His argument produced
these polynomials, their orthogonality, and the byproduct that

Pn(x)= 1

2nn!
dn

dxn
(x2 − 1)n. (28.13)
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Interestingly enough, Rodrigues and Ivory had already independently discovered this
useful and important formula for Legendre polynomials. In 1808, Olinde Rodrigues
enrolled in the Lycée Impérial, later named Lycée Louis-LeGrand and where Galois
also studied. After graduating in 1812, he was admitted to the Université de Paris,
submitting a doctoral thesis on the attraction of spheroids in 1815. Unfortunately, the
haphazard journal in which his memoir on this subject was published produced only
three volumes from 1814 to 1816. This partly explains why Rodrigues’s work and the
formula for Legendre polynomials, in particular, were not noticed. For several decades,
the result was referred to as the formula of Ivory and Jacobi. In 1865, Hermite finally
pointed out Rodrigues’s paper; Cayley referred to it in a different context in 1858.

James Ivory (1765–1842) was an essentially self-taught Scottish mathematician
whose interest was mainly in applied areas. He received much recognition, but perhaps
suffered from depression, curtailing his career; in a letter to MacVey Napier he declared,
“I believe on the whole I am the most unlucky person that ever existed.” Most of
Ivory’s inspiration was drawn from the work of the French mathematicians Laplace,
Legendre, and Lagrange; his papers contain several references to Laplace’s book on
celestial mechanics. Ivory published (28.13) in a 1824 paper on the shape of a revolving
homogeneous fluid mass in equilibrium; he derived the formula from a result in his
earlier 1812 paper on the attraction of a spheroid. In his 1824 paper, Ivory remarked
on the formula, “From this very simple expression, the most remarkable properties of
the coefficients of the expansion of 1/f , are very readily deduced.” Here f refers to
the expression (1− 2cos θy+ y2)1/2.

The Irish mathematician Robert Murphy (1806–1843), mentioned in chapter 20, had
a brief mathematical career during which he published papers on integral equations,
operator theory, and algebraic equations. He was perhaps the first to understand the
significance of orthogonality; in a series of papers on integral equations in the early
1830s, Murphy considered the following problem: Suppose

φ(x)=
∫ 1

0
txf (t)dt, x = 0, 1, 2, . . . .

Determine the function f (t) from the function φ(x). One of the simplest results he
stated in this connection was that if φ(x) was of the form A

x
+ B

x2 + C

x3 + ·· · , then
f (t) would be given by 1/t multiplied by the coefficient of 1/x in φ(x) · t−x . As an
extension of the previously stated problem, Murphy considered the determination of
f (t) from a knowledge ofφ(x) for a finite number of values of x, say x= 0, 1, . . . ,n−1.
The simplest case is when φ(x) = 0 and this leads to the Legendre polynomials as
solutions for f (t). Murphy called such functions reciprocal rather than orthogonal. He
also considered cases where t was replaced by ln t , and this led him to the Laguerre
polynomials

Tn(u)= e−u

n! · d
n

dun
(uneu), n= 0, 1, 2, . . . .

He proved their orthogonality and found their generating function by applying the
Lagrange inversion formula. Recall that a century before this, D. Bernoulli and Euler
had studied these Laguerre polynomials; Bernoulli computed the zeros of several of
them by his method of recurrent series.
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It may be fair to say that Pafnuty Chebyshev was the creator of the theory of orthog-
onal polynomials and its applications. In an important paper of 1855, Chebyshev
introduced and studied discreet orthogonal polynomials. This and later papers were
associated with the areas of continued fractions, least squares approximations, interpo-
lation, and approximate quadrature. Later in his career, Chebyshev’s excellent students,
includingA.A. Markov and E. I. Zolotarev, continued his work in these and other areas.

28.2 Legendre’s Proof of the Orthogonality of His Polynomials

In his Exercices, Legendre used the generating function for Legendre polynomials to
offer an elegant and short proof of their orthogonality. Note that Legendre denoted
Pn(x) by Xn, but we use the more modern notation. He started with the generating
function

(1− 2xy+ y2)−1/2 =
∞∑
n=0

Pn(x)y
n,

where |x| ≤ 1 and |y|< 1, and considered the integral

I =
∫ 1

−1

( ∞∑
n=0

Pn(x)r
nyn

)( ∞∑
m=0

Pm(x)y
m/rm

)
dx (28.14)

=
∫ 1

−1

dx√
(1− 2xry+ r2y2)(1− 2xy

r
+ y2

r2 )

.

He set

x = 1+ r2y2 − z2

2ry

to obtain

I =−1

2

∫ 1−ry

1+ry

dz√
(z2 − 1+ r2 + y2 − r2y2)

= ln
(
−z+√

(z2 − 1+ r2 + y2 − r2y2)
)∣∣∣∣1−ry

1+ry

= ln(−1+ ry+ r − y)− 1

2
ln(−1− ry+ r + y)

= ln
1+ y
1− y = 2+ 2

3
y2 + 2

5
y4 + 2

7
y6 +·· ·+ 2

2n+ 1
y2n+·· · .

Comparing this expression with the integral (28.14), he obtained orthogonality:∫ 1

−1
Pn(x)Pm(x)dx = 2

2n+ 1
δmn. (28.15)
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He also used the generating function to obtain

Pn(x)= 1 · 3 · 5 · · ·(2n− 1)

1 · 2 · 3 · · ·n xn− 1 · 3 · · ·(2n− 3)

1 · 2 · (n− 2)

xn−2

2
+·· · . (28.16)

28.3 Gauss on Numerical Integration

Gauss started his 1814 paper with a discussion of the Newton–Cotes method for numer-
ical integration. Let [0,1] be the interval and let a, a1, a2, . . . ,an be n+1 points in that
interval. Set

f (x)= (x− a)(x− a1)(x− a2) . . . (x− an)
= xn+1 + c1x

n+ c2x
n−1 +·· ·+ cn+1. (28.17)

Lety be a function to be integrated over [0,1] and lety(= y0), y1, y2, . . . ,yn be its values
at a = a0, a1, a2, . . . ,an, respectively. The Lagrange-Waring interpolating polynomial
of degree n for y is then given by

g(x)= f (x)y

f ′(a)(x− a) +
n∑
k=1

f (x)yk

f ′(ak)(x− ak) =
n∑
k=0

f (x)yk

f ′(ak)(x− ak) . (28.18)

The Newton–Cotes method then consists in integrating the interpolating polynomial:

∫ 1

0
y dt =

n∑
k=0

λkyk+Rn(y) (28.19)

where λk =
∫ 1

0

f (x)dx

f ′(ak)(x− ak) , k = 0,1, . . .n, (28.20)

and Rn(y) is the remainder. This remainder is zero when y is a polynomial of degree
at most n. Gauss asked whether it was possible to choose a, a1, . . . ,an in such a way
that the remainder would be zero for polynomials of degree at most 2n+ 1, with the
points a, a1, . . . ,an no longer equally spaced as in the Newton–Cotes procedure. Gauss
observed that since f (a)= 0, he had

f (x)

x− a = xn+1 − an+1 + c1(x
n− an)+·· ·+ cn(x− a)
x− a

= xn+ xn−1a+ xn−2a2 +·· ·+ an
+ c1x

n−1 + c1x
n−2a+·· ·+ c1a

n−1

+·· · .
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Hence, after rearranging terms,∫ 1

0

f (x)

x− a dx = a
n+ c1a

n−1 + c2a
n−2 +·· ·+ cn

+ 1

2
(an−1 + c1a

n−2 +·· ·+ cn−1)

+ 1

3
(an−2 + c1a

n−3 +·· ·+ cn−2)

+·· ·

+ 1

n
(a+ c1)

+ 1

n+ 1
. (28.21)

Here Gauss noted that the nonnegative powers of x in the product(
xn+1 + c1x

n+·· ·+ cn+1

)(1

x
+ 1

2x2
+ 1

3x3
+·· ·

)
=−f (x) ln

(
1− 1

x

)
(28.22)

gave the terms on the right-hand side of (28.21) when x = a. So he could write

−f (x) ln(1− 1/x)= T1(x)+T2(x), (28.23)

whereT1(x)was the polynomial or principal part of−f (x) ln(1−1/x); then, by (28.20),

T1(ak)=
∫ 1

0

f (x)

x− ak dx = λkf
′(ak), k = 0,1, . . . ,n. (28.24)

Denoting Rn(xm) by km, Gauss used (28.19) to obtain

n∑
k=0

λka
m
k = 1

m+ 1
− km, m= 0,1,2, . . . . (28.25)

It followed that
n∑
k=0

λk

x− ak =
n∑
k=0

λk

x

(
1− ak

x

)−1 =
n∑
k=0

(
λk

x
+ λkak

x2
+ λka

2
k

x3
+·· ·

)

= (1− k0)
1

x
+
(

1

2
− k1

)
1

x2
+
(

1

3
− k2

)
1

x3
+
(

1

4
− k3

)
1

x4
+·· ·

= − ln

(
1− 1

x

)
−
(
kn+1

xn+2
+ kn+2

xn+3
+·· ·

)
. (28.26)

In the last equation, Gauss used the fact that kj = 0 for j = 0, 1, . . . ,n; Gauss then had
to determine conditions on f (x) so that kj = 0 for j = n+1, n+2, . . . ,2n as well. By
(28.23) and (28.24), he could deduce that

T1(x)= f (x)
n∑
k=0

λk

x− ak .
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This was possible because both sides were polynomials of degree n, equal for n+ 1
values of x, given by a0, a1, a2, . . . ,an. Thus, by (28.23) and (28.26), it followed that

f (x)

(
kn+1

xn+2
+ kn+2

xn+3
+ kn+3

xn+4
+·· ·

)
= T2(x). (28.27)

Gauss used this analysis to findf (x) of small degrees. For example, whenn= 0,f (x)=
x+ c1, he had to consider

(x+ c1)

(
1

x
+ 1

2x2
+ 1

3x3
+·· ·

)
.

For the coefficient of 1
x

to be zero, he required that c1 + 1/2 = 0 or c1 = −1/2. For
n = 1, f (x) = x2 + c1x + c2, and the coefficients of 1/x and 1/x2 in the expansion
−f (x) ln(1−1/x) then had to be zero. He could then write the equations for c1 and c2:

c2 + 1

2
c1 + 1

3
= 0 and

1

2
c2 + 1

3
c1 + 1

4
= 0.

Thus, c1 = −1 and c2 = 1/6 and so the polynomial was x2 − x + 1/6. Gauss then
changed the variable so that the interval of integration became [−1,1]. In this case, he
had to choose the polynomial U(x) of degree n+ 1 so that

1

2
U(x) ln

1+ 1/x

1− 1/x
=U(x)

(
1

x
+ 1

3x2
+ 1

5x3
+·· ·

)
=U1(x)+U2(x)

had appropriate negative powers of x with zero coefficients. In fact, the zeros u of U
were related to zeros a of f by u = 2a− 1; U1 and U2 corresponded to T1 and T2 of
equation (28.23). With this change of variables, the polynomials for n= 1, 2, 3 were
x, x2 − 1/3, and x3 − 3x/5. Note that these are the Legendre polynomials of the first
three degrees, normalized so that they are monic.

Gauss proceeded to give a method using continued fractions in order to quickly
determine the polynomials f (x). From his paper on hypergeometric functions, he had
the expression

φ(x)= 1

2
ln
x+ 1

x− 1
= 1

x−
12/3

x−
22/3 · 5
x−

32/5 · 7
x− ·· · . (28.28)

He then showed that if the nth convergent of his continued fraction was Pn(x)/Qn(x),
then

φ(x)− Pn(x)

Qn(x)
=O

(
1

x2n+1

)
.

From this he could conclude that if Qn(x) was monic, then

Qn+1(x)=U(x) and Pn+1(x)=U1(x).

In this manner, Gauss completely solved his problem. Observe that the points ak,
k = 0, 1, . . . ,n are the zeros of the Legendre polynomials and that the numbers λk
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could be obtained from
Pn+1(x)

Qn+1(x)
=

n∑
k=0

λk

x− ak ,

so that λk = Pn+1(ak)/Q
′
n+1(ak).

28.4 Jacobi’s Commentary on Gauss

In the introduction to his 1826 paper on Gauss’s new method of approximate quadrature
Jacobi remarked that the simplicity and elegance of Gauss’s results led him to believe
that there was a simple and direct way of deriving them. The object of his paper was
to present such a derivation, making use of his work from his doctoral dissertation
on the Lagrange-Waring interpolation formula. Jacobi proceeded, in his usual lucid
style, to show that Gauss’s numerical integration method was effective because of its
use of orthogonal polynomials. Abbreviating Jacobi’s work for convenience, suppose
φ(x) =∏n

k=1(x − xk), where the xi are distinct and suppose f (x) is a polynomial of
degree ≤ n− 1. Then

f (x)

φ(x)
= A1

x− x1
+ A2

x− x2
+·· ·+ An

x− xn ,

where ak = lim
x→xk

(x− xk)f (x)
φ(x)

= lim
x→xk

(x− xk)f (x)
φ(x)−φ(xk) =

f (xk)

φ′(xk)
.

So if x1, x2, . . . ,xn are the interpolation points, then any polynomial f (x) of degree at
most n− 1 can be expressed by the formula

f (x)=
n∑
k=1

f (xk)φ(x)

φ′(xk)(x− xk) ,

attributed by Jacobi to Lagrange. The integral of such a polynomial is given exactly by
the Newton–Cotes formula. On the other hand, if the degree of f is greater than n−1,
then divide f (x) by φ(x) to get

f (x)

φ(x)
= V (x)+ U(x)

φ(x)
,

where U(x) and V (x) are polynomials and the degree of U is less than or equal to
n− 1. Now assume with Jacobi that

f (x)= a+ a1x+ a2x
2 +·· ·+ anxn+ an+1x

n+1 +·· ·+ a2nx
2n+·· · and

1

φ(x)
= A1

xn
+ A2

xn+1
+·· ·+ An+1

x2n
+·· · .

Then

V (x)= anA1 + an+1(A1x+A2)+ an+2(A1x
2 +A2x+A3)+·· ·

+ a2n−1(A1x
n−1 +A2x

n−2 +·· ·+An)+·· · .
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Jacobi observed that according to Newton’s method, to compute
∫ 1
−1f (x)dx, one would

substitute U(x) for f (x) and the error would be

,=
∫
f (x)dx−

∫
U dx =

∫
φ(x)V dx.

He then noted that the expression for V did not involve a1, a2, . . . ,an−1 and hence the
error, ,, would be independent of these coefficients of f . The question was whether
φ could be chosen so that the error would be independent of an, an+1, etc. Clearly, if∫
φxk = 0, for k= 0, 1, . . . , l, then,would also be independent of an, an+1, . . . ,an+l−1.

Since
∫
(φ(x))2dx > 0, the value of l could be at most n− 1. Thus if,

∫
φxk = 0, for

k= 0, 1, . . . ,n−1, then
∫
f (x)dx was exact for polynomials of degree ≤ 2n−1. This

meant that φ(x) should be a constant multiple of the Legendre polynomial of degree n
and Jacobi had succeeded in showing that orthogonality lay at the root of the Gaussian
method of numerical integration.

28.5 Murphy and Ivory: The Rodrigues Formula

Robert Murphy’s discussion of orthogonal polynomials appeared in his two publica-
tions on the inverse method of definite integrals of 1833 and 1835, written in 1832
and 1833, and in his 1833 treatise on physics. He considered the integral φ(x) =∫ 1

0 f (t)t
xdt and determined the form of the polynomial f (t) such thatφ(x)was zero for

x = 0, 1, . . . ,n− 1. He let

f (t)= 1+A1t +A2t
2 +·· ·+Antn, so that

φ(x)= 1

x+ 1
+ A1

x+ 2
+ A2

x+ 3
+·· ·+ An

x+n+ 1
= P

Q
, (28.29)

whereQ= (x+1)(x+2) · · ·(x+n+1) and P was a polynomial of degree at most n.
To find an expression for f (t) when φ(x)= 0 for x = 0, 1, . . . ,n− 1, Murphy argued
that P would have the form cx(x− 1) · · ·(x−n+ 1). Thus,

1

x+ 1
+ A1

x+ 2
+ A2

x+ 3
+·· ·+ An

x+n+ 1
= cx(x− 1) · · ·(x−n+ 1)

(x+ 1)(x+ 2) · · ·(x+n+ 1)
.

Multiplying both sides by x + k and then setting x = −k for k = 1, . . . ,n+ 1, he got
the result

c= (−1)n, A1 =−n
1
· n+ 1

1
, A2 = n(n− 1)

1 · 2 · (n+ 1)(n+ 2)

1 · 2 , etc.
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Hence,

f (t)= 1− n

1
· n+ 1

1
t + n(n− 1)

1 · 2 · (n+ 1)(n+ 2)

1 · 2 t2 −·· ·

= dn

dtn

(
tn
(
1−nt + n(n−1)

1·2 t2 −·· ·))
1 · 2 · 3 · · · ·n

= 1

1 · 2 · · ·n
dn

dtn

(
t (1− t))n,

completing Murphy’s proof of the Rodrigues formula.
Now Ivory’s proof involved differential equations. He showed that Pk(x), the kth

Legendre polynomial, satisfied the equation

(k−n)(k+n+ 1)(1− x2)n
dnPk

dxn
+ d

dx

(
(1− x2)n+1 d

n+1

dxn+1
Pk

)
= 0.

Ivory presented this result in his 1812 paper. Twelve years later, unaware of Rodrigues’s
earlier work, he observed that by a repeated use of this equation, he could obtain the
Rodrigues formula. He set

φn = (1− x2)n
dn

dxn
Pk and φ0 = Pk

so that φ0 + 1

k(k+ 1)

d

dx
φ1 = 0,

φ1 + 1

(k− 1)(k+ 2)

d

dx
φ2 = 0,

· · ·

φk−1 + 1

1 · 2k
d

dx
φk = 0.

Thus,

φ0 = (−1)k

1 · 2 · 3 · · ·2k
dk

dxk

(
(1− x2)k

dk

dxk
Pk

)
.

Now, from (28.16), he could deduce dk

dxk
Pk = 1 ·3 ·5 · · ·(2k−1), and therefore he could

write the required result,

Pk(x)= (−1)k

2 · 4 · 6 · · ·2k
dk

dxk
(1− x2)k.

Also mentioned in chapter 29 on q-series, Olinde Rodrigues employed differential
equations to obtain his formula in 1815; in fact, he referred to Ivory’s 1812 paper. Still,
note that Rodrigues has priority in this matter, since Ivory did not work out his final
result until 1824.
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28.6 Liouville’s Proof of the Rodrigues Formula

In 1837, Ivory and Jacobi published a joint paper in Liouville’s journal, containing a
proof of the Rodrigues formula, using Lagrange inversion. They were both unaware that
the French mathematician Rodrigues had already published his result in 1815, albeit
in an obscure journal. This interesting collaboration took place at the suggestion of
Jacobi, who wrote to Ivory that, since they had independently obtained the Rodrigues
formula, they could publish a joint paper to broadcast this result in France, where it
was unknown. In the same issue of his journal, Liouville published an alternate, more
transparent proof, in fact similar to one published by Jacobi almost ten years earlier.
Liouville started by reproducing Legendre’s result that∫ 1

−1
xmxn dx = 2

2n+ 1
δmn,

where xm denoted the Legendre polynomial of degree m. Liouville then observed that
xn was a polynomial of exact degree n, and hence any nth degree polynomial had to be
a linear combination of the polynomials x0, x1, . . . ,xn. He let y be any polynomial of
degree n− 1, so that for some constants A0,A1, . . . ,An−1

y =A0 +A1x1 +A2x2 +·· ·+An−1xn−1.

From this, he had

dny = 0,
∫ 1

−1
yxn dx = 0.

Since dny = 0, repeated integration by parts yielded∫ x

−1
yxn dt = y

∫ x

−1
xn dt − y ′

∫ x

−1

∫ t

−1
xn dt1 dt + y ′′

∫ x

−1

∫ t

−1

∫ t1

−1
xn dt2 dt1 dt

+·· ·+ (−1)n−1y(n−1)

∫ x

−1

∫ t

−1
· · ·

∫ tn−2

−1
xn dtn−1 dtn−2 · · ·dt.

Because the left-hand side was zero for x = 1, and y was an arbitrary polynomial of
degree n− 1, for x = 1 he obtained∫ x

−1
xn dt = 0,

∫ x

−1

∫ t

−1
xn dt1 dt = 0, · · · ,

∫ x

−1

∫ t

−1
· · ·

∫ tn−2

−1
xn dtn−1 dtn−2 · · ·dt = 0.

Liouville denoted the polynomial of degree 2n in the last equation by φ(x), or,

φ(x)=
∫ x

−1

∫ t

−1
· · ·

∫ tn−2

−1
xn dtn−1 dtn−2 · · ·dt.

Then φ(1) = φ′(1) = ·· · = φ(n−1)(1) = 0. This implied that (x − 1)n was a factor of
φ(x). Since it was obvious that φ(−1) = φ′(−1) = ·· · = φ(n−1)(−1) = 0, he could
conclude that (x+ 1)n was also a factor; hence, (x2 − 1)n was a factor of φ(x). Also,
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φ(x) was of degree 2n, so, clearly, φ(x)=D(x2 −1)n for a constantD. Therefore, for
some constant Hn,

xn =Hn d
n

dxn
(x2 − 1)n

=Hn
(
(x+ 1)n

dn

dxn
(x− 1)n+ n

1
· d
dx
(x+ 1)n

dn−1

dxn−1
(x− 1)n+·· ·

)
.

Observe that Liouville applied Leibniz’s formula for the nth derivative of a product.
Now note that, except for the first, every term in this expression was zero at x = 1, so
that he could write

xn(1)= 1 · 2 · 3 · · ·n · 2nHn.
Note also that, for x = 1, the generating function of the Legendre polynomials is

(1− 2xz+ z2)−1/2 = (1− z)−1 = (1+ z+ z2 +·· ·).
So Liouville could conclude that xn(1)= 1, and Hn = 1/(n!2n), proving the result.

Liouville also proved that a function f (x) could be expanded in terms of xn. He first
set

F(x)=
∞∑
n=0

2n+ 1

2
· xn ·

∫ 1

−1
f (x)xn dx.

Multiplying both sides by xn and integrating over (−1,1), he obtained∫ 1

−1
(F (x)−f (x))xn dx = 0, and therefore

∫ 1

−1

(
F(x)−f (x))y dx = 0

for an arbitrary polynomial y. Liouville took y = xn to get∫ 1

−1
(F (x)−f (x))xn dx = 0, n= 0, 1, 2, . . . .

He then concluded that f (x)= F(x) and the result was proved.
To show that his conclusion was justified, Liouville also derived the additional

theorem that if f (x) was continuous and finite on [a,b] and
∫ b
a
xnf (x)dx = 0 for

n = 0, 1, 2, . . . , then f (x) = 0 on [a,b]. His proof applied only to those functions
having a finite number of changes of sign in the interval [a,b], though he failed to
remark on this. He began his proof by assuming the geometrically evident proposition
that if f (x) was always nonnegative in [a,b] and

∫ b
a
f (x)dx = 0, then f (x) had to be

identically zero. We remark that Cauchy’s ideas on integrals and continuity from the
1820s can be applied to provide an effective proof of this assumption. Next, Liouville
supposed that f (x) changed sign at the values x1, x2, . . . ,xn inside [a,b]. He letψ(x)=
(x − x1)(x − x2) · · ·(x − xn), and noted that f (x)ψ(x) would have no changes of
sign in [a,b] and that

∫ b
a
ψ(x)f (x)dx = 0. He could conclude f (x)ψ(x) ≡ 0 and

f (x)≡ 0, giving him the required result. A modern proof of the proposition might use
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the Weierstrass approximation theorem, but that was not stated until some decades later.
Moreover, observe that ideas such as uniform convergence had not been discovered in
Liouville’s time. In fact, he did not even clarify the type of interval he was working
with and had to explicitly state that f (x) was finite, or bounded, at all points.

28.7 The Jacobi Polynomials

In his significant 1859 posthumously published paper, “Untersuchungen über die
Differentialgleichung der hypergeometrischen Reihe,” edited by Heine, Jacobi used
the hypergeometric differential equation to derive a Rodrigues-type formula for hyper-
geometic polynomials. These polynomials are now referred to as Jacobi polynomials,
and Jacobi further showed them to be orthogonal with respect to the beta distribution.
In this paper, Jacobi also obtained the generating function for Jacobi polynomials by an
application of the Lagrange inversion formula. Note that Jacobi polynomials are in fact
generalizations of Legendre polynomials. It is hard to determine exactly when Jacobi
discovered these polynomials. In the 1840s, he published some papers on hypergeo-
metric functions and related topics, but remarks of Kummer indicate that Jacobi had
studied these functions even earlier than that. Jacobi started his investigations with the
observation that if y satisfied the hypergeometric differential equation, then

x(1− x)y(2)+ (c− (a+ b+ 1)x)y ′ − aby = 0,

x(1− x)y(3)+ (c+ 1− (a+ b+ 3)x)y(2)− (a+ 1)(b+ 1)y ′ = 0,

x(1− x)y(4)+ (c+ 2− (a+ b+ 5)x)y(3)− (a+ 2)(b+ 2)y(2) = 0,

· · ·
x(1− x)y(n+1)+ (

c+n− 1− (a+ b+ 2n− 1)x
)
y(n)

−(a+n− 1)(b+n− 1)y(n−1) = 0. (28.30)

To understand why these equations follow one after the other, note that, in Gauss’s
notation, if

y = F(a,b,c,x), then y ′ = (ab/c)F (a+ 1, b+ 1, c+ 1, x).

(In more modern notation, one might write y as 2F1

(
a,b

c
;x

)
.) The parameters

a, b, c change to a + 1, b+ 1, c+ 1, respectively, when one takes the derivative of
a hypergeometric function. Following Jacobi, multiply (28.30) by

xc+n−2(1− x)a+b−c+n−1

and rewrite it as

d

dx

(
xn(1− x)nMy(n))= (a+n− 1)(b+n− 1)xn−1(1− x)n−1My(n−1),
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where M = xc−1(1− x)a+b−c. By iteration, he had

dn

dxn

(
xn(1− x)nMy(n))= a(a+ 1) · · ·(a+n− 1)b(b+ 1) · · ·(b+n− 1)My.

Next Jacobi took b=−n, so that y = F(−n,a,c,x) would be a polynomial of degree
n; then y(n) was a constant and the equation became

F(−n,a,c,x)= x1−c(1− x)c+n−a
c(c+ 1) · · ·(c+n− 1)

dn

dxn
[xc+n−1(1− x)a−c].

Replacing a by a+n, he obtained the Rodrigues-type formula

Xn = F(−n,a+n,c,x)= x1−c(1− x)c−a
c(c+ 1) · · ·(c+n− 1)

dn

dxn
[xc+n−1(1− x)a+n−c].

Jacobi used the Lagrange inversion formula to find the generating function of the
polynomials Xn; for ξ = 1− 2x and (c)n denoting the shifted factorial:

∞∑
n=0

(c)n

n! h
nXn =

x1−c(1− x)c−a
(
h− 1+√

1− 2hξ +h2
)c−1(

h+ 1−√
1− 2hξ +h2

)a−c
(2h)a−1

√
1− 2hξ +h2

.

He then used the hypergeometric differential equation to prove the orthogonality rela-
tion for Xn when c > 0 and a + 1 − c > 0. Observe that the latter conditions were
necessary for the convergence of the integrals. He then let

Jm,n =
∫ 1

0
XmXnx

c−1(1− x)a−c dx.

Since Xn satisfied the differential equation

x(1− x)X′′
n+ (c− (a+ 1)x)X′

n =−n(n+ a)Xn,
he could deduce that

−n(n+ a)Jm,n =
∫ 1

0
Xm

d

dx
[xc(1− x)a+1−cX′

n]dx

=
∫ 1

0
Xn

d

dx
[xc(1− x)a+1−cX′

m]dx =−m(m+ a)Jm,n.

Thus, taking m �= n, he had Jm,n = 0. When m= n, then integration by parts yielded

n(n+ a)Jm,n =
∫ 1

0
X′
nX

′
nx
c(1− x)a+1−cdx.
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Since X′
m and X′

n were again hypergeometric polynomials, this relation implied that

(n− 1)(n+ a+ 1)
∫ 1

0
X′
mX

′
nx
c(1− x)a+1−cdx =

∫ 1

0
X′′
mX

′′
nx

c+1(1− x)a+2−cdx.

Now X(n)n was a constant so a repeated application of this formula finally produced a
beta integral, computable in terms of gamma functions. The eventual result was then

Jn,n = n!
a+ 2n

(�(c))2�(a− c+n+ 1)

�(a+n)�(c+n) .

The polynomials Xn are the Jacobi polynomials, except for a constant factor. In more
modern notation, taking c = α + 1 and a = α + β + 1 in the expression for Xn, the
Jacobi polynomials may be expressed as

P (α,β)(ξ) : = (α+ 1)n
n! F(−n, n+α+β+ 1, α+ 1, (1− ξ)/2)

= (−1)n
(1− ξ)−α(1+ ξ)−β

2n
dn

dξn
[(1− ξ)n+α(1+ ξ)n+β].

Thus, observe that the orthogonality relation would hold over [−1,1] with respect to
the beta distribution (1− x)α(1+ x)β for α, β >−1.

Jacobi briefly noted that for x = (1− ξ)/2,

(1− 2hξ +h2)−c =
∞∑
n=o
hnYn,

where

Yn = 2c(2c+ 1) · · ·(2c+n− 1)

n! F

(
−n,2c+n, 2c+ 1

2
,x

)

= 4nc(c+ 1) · · ·(c+n− 1)

(2c+n)(2c+n+ 1) · · ·(2c+ 2n− 1)

[x(1− x)] 1
2 (1−2c)

n! (28.31)

× dn

dxn
[x(1− x)] 1

2 (2c+2n−1).

We now designate the Yn as ultraspherical or Gegenbauer polynomials:

Yn :=Ccn(ξ)=
(2c)n

(c+ 1/2)n
P (c−1/2,c−1/2)
n (ξ),

where (a)n denotes the shifted factorial a(a + 1) · · ·(a + n− 1). Gegenbauer poly-
nomials, named after the Austrian mathematician Leopold Gegenbauer (1849–1903),
student of Weierstrass and Kronecker, are special cases of Jacobi polynomials. They
occur when the parameters α and β are equal, and they are of great independent interest.
Note that the above generating function for the ultraspherical polynomials is different
from the generating function obtained from the one for the Jacobi polynomials.
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28.8 Chebyshev: Discrete Orthogonal Polynomials

P. L. Chebyshev introduced discrete orthogonal polynomials into mathematics in his
1855 article, “Sur les fractions continues.” His work in this area, like many of his
other efforts, was motivated by practical problems for which he sought effective solu-
tions. Chebyshev made frequent use of orthogonal polynomials, continuous as well as
discrete, and he was probably the first mathematician to emphasize their importance
and applicability to problems in both pure and applied mathematics. Chebyshev was
greatly influenced in this connection by the papers of Gauss and Jacobi on numer-
ical integration. Chebyshev studied at Moscow University from 1837 to 1841 where
N. D. Brashman instructed him in practical mechanics, motivating some of Chebyshev’s
later work. In 1846, Chebyshev wrote a master’s thesis on a topic in probability; this
subject also became his lifelong interest. Chebyshev’s 1855 paper laid the foundation
for his work on orthogonal polynomials. In presenting his work, we at times follow
the notation given by N. I. Akhiezer in his article on Chebyshev’s work. This notation
more clearly reveals the dependence of certain quantities on the given variables.

Chebyshev began his paper by stating the problem in rather general and vague terms:
SupposeF(x) is approximately known forn+1 values x= x0, x1, . . . ,xn, and thatF(x)
can be represented by a polynomial of degree m≤ n,

a+ bx+ cx2 +·· ·+ gxm−1 +hxm.
Find the value of F(x) at x = X so that the errors in F(x0), F (x1), . . . ,F (xn) have
minimal influence onF(X). From a practical standpoint, the problem makes good sense.
For example, the values of some function y = F(x) may be obtained by observation
for x = x0, x1, . . . ,xn. These values would have experimental errors so that yi �F(xi).
Thus, F(x) is a polynomial of degree m ≤ n and the problem is to determine F(x)
in such a way that the errors of observation have the least influence. In more specific
terms, Chebyshev stated the problem: Find a polynomial F(x) of the form

F(x)= µ0λ0(x)y0 +µ1λ1(x)y1 +·· ·+µnλn(x)yn, (28.32)

where λi(x) are unknown polynomials of degree≤m andµi > 0 are weights associated
with observed values yi subject to the following two conditions: The identity

f (X)= µ0λ0(X)f (x0)+µ1λ1(X)f (x1)+·· ·+µnλn(X)f (xn) (28.33)

must hold for any polynomial of degree at most m; and one must minimize the sum

W(X)= µ0

(
λ0(X)

)2 +µ1

(
λ1(X)

)2 +·· ·+µn
(
λn(X)

)2
. (28.34)

Thus,W(X) had to be minimized with respect to the constraints of (28.33), equivalent
to the m+ 1 conditions

Xk = µ0λ0(X)x
k
0 +µ1λ1(X)x

k
1 +·· ·+µnλn(X)xkn, (28.35)

for k = 0, 1, . . . ,m. Then Chebyshev applied the method of Lagrange multipliers with
λ0, λ1, . . . ,λn as the variables and with l0(X), l1(X), . . . , lm(X) as them+1 multipliers.
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This gave him the n+ 1 relations

∂W

∂λi
− ∂

∂λi

m∑
k=0

lk(X)
(
µ0λ0x

k
0 +·· ·+µnλnxkn −Xk

)= 0,

or 2λi(X)= l0(X)+ l1(X)xi +·· ·+ lm(X)xmi , (28.36)

for i = 0, 1, . . . ,m+ 1. Chebyshev wrote that the whole difficulty boiled down to
solving this system of equations. He denoted the polynomial on the right-hand side of
equation (28.36) by 2Km(X,xi), obtaining

Km(X,x)= 1

2

m∑
k=0

lk(X)x
k. (28.37)

Thus, Chebyshev’s problem was to find an expression for λi(X) = Km(X,xi),
i = 0, 1, . . . ,n. Note that the constraints (28.35) could be written as

n∑
i=0

µiKm(X,xi)x
k
i =Xk, k = 0, 1, . . . ,m. (28.38)

These relations implied that the polynomials Km(X,xi) should be such that, for some
function A(X),

n∑
i=0

µiKm(X,xi)

x− xi − 1

x−X = A(X)

xm+2
+·· · . (28.39)

Note that this relation could be rewritten as

Km(X,x)

n∑
i=0

µi

x− xi −N(X,x)−
1

x−X = A(X)

xm+2
+·· · (28.40)

with N(X,x) a polynomial of degree m− 1 in x. Of course, this was made possible
by the elementary relation that if g(x) is a polynomial of degree m, then there is a
polynomial h(x) of degree m− 1 such that

g(x)

x− xi = h(x)+
g(xi)

x− xi .

Here Chebyshev considered an additional but related problem: Find a polynomialψm(x)
of degree m and a polynomial πm(x) of degree at most m− 1 so that

ψm(x)

n∑
i=0

µi

x− xi −πm(x)=O
(

1

xm+2

)
. (28.41)
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Chebyshev’s study of Gauss’s paper on numerical integration showed him that the
answer lay in the continued fraction expansion

n∑
i=0

µi

x− xi =
1

q1+
1

q2+
1

q3+ ·· · 1

qn+1
, (28.42)

where qm = Amx +Bm were linear functions for m = 1, 2, . . . . In fact, the mth (m ≤
n+ 1) convergent was the rational function πm(x)/ψm(x), producing the polynomials
required in (28.41). Chebyshev proved that

λi(x)=Km(x,xi)= (−1)m
ψm+1(x)ψm(xi)−ψm(x)ψm+1(xi)

x− xi . (28.43)

He then derived another relation for λi(x) by using the three-term relation for ψm(x)
obtained from the continued fraction

ψm+1(x)= qm+1ψm(x)+ψm−1(x)

= (Am+1x+Bm+1)ψm(x)+ψm−1(x).

When this was substituted in (28.43) he could obtain, after simplification,

(−1)mλi(x)=
(
Am+1ψm(x)ψm(xi)− ψm(x)ψm−1(xi)−ψm(xi)ψm−1(x)

x− xi
)
.

Repeating this process m times, he got

(−1)mλi(x)=
m∑
j=0

(−1)m−jAj+1ψj(xi)ψj (x)

= ψm+1(x)ψm(xi)−ψm(x)ψm+1(xi)

x− xi . (28.44)

This important relation is usually called the Christofell-Darboux formula; they obtained
it in a similar way, but Chebyshev published the formula more than a decade earlier.
When he substituted the value of λi(x) in (28.44) in (28.32), Chebyshev had

F(x)=
n∑
i=0

 m∑
j=0

(−1)jAj+1ψj(xi)ψj (x)

µiF (xi). (28.45)

He then set F(x)=ψm(x) and equated the coefficients ofψk(x) on both sides to obtain
the orthogonality relation

(−1)kAk+1

n∑
i=0

µiψk(xi)ψm(xi)= δkm, (28.46)

and in particular

Ak+1 = (−1)k∑n

i=0µiψ
2
k (xi)

. (28.47)
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So his final result was expressed as

λi(x)=
∑m

k=0µkψk(xi)ψk(x)∑n

i=0µkψ
2
k (xi)

. (28.48)

Chebyshev concluded his paper by stating and proving two results on least squares.
For the first result, he supposed V to be a polynomial of degree m with the coefficient
of xm the same as that of ψm(x). He then showed that the sum

∑n

i=0µiV
2(xi) had the

least value when V =ψm(x). To prove this, Chebyshev set

V =A0ψ0(x)+·· ·+Am−1ψm−1(x)+ψm(x) and then

n∑
i=0

µiV
2(xi)=

n∑
i=0

µi
(
A0ψ0(xi)+·· ·+Am−1ψm−1(xi)+ψm(xi)

)2
.

For a minimum, the derivatives with respect to the Aj should be zero. Thus,

2
n∑
i=0

µiψj (xi)
(
A0ψ0(xi)+Am−1ψm−1(xi)+ψm(xi)

)= 0, j = 0, . . . ,m− 1.

An application of the orthogonality relation (28.46) gave

Aj

n∑
i=0

µi|ψ2
j (xi)= 0, j = 0, 1, . . . ,m− 1.

This implied Aj = 0, j = 0, 1, . . . ,m− 1, and hence V =ψm(x). In his second result,
Chebyshev proved that

n∑
i=0

µi

F(xi)− m∑
j=0

Ajψj(xi)

2

(28.49)

was a minimum when

Aj =
∑n

i=0µiψj (xi)F (xi)∑n

i=0µiψ
2
j (xi)

.

He once more took the derivatives of (28.49) with respect toAj, j = 0, . . . ,m to obtain

2
n∑
i=0

µiψj (xi)

F(xi)− m∑
j=0

Ajψj(xi)

= 0, j = 0, 1, . . . ,m.

Again using the orthogonality relation (28.46), these equations reduced to

n∑
i=0

µiψj (xi)F (xi)−Aj
n∑
i=0

µiψ
2
j (xi)= 0, j = 0, 1, . . . ,m,

implying the required result.
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28.9 Chebyshev and Orthogonal Matrices

In his 1855 paper, before the theory of matrices was formally developed, Chebyshev
gave a very interesting construction of an orthogonal matrix, noting that in a paper of
1771, Euler also constructed such squares. However, after 1855, Chebyshev did not
develop this topic further. Chebyshev defined the function

Ok(xi)=√
αiψk(xi), i,k = 0, 1, . . . ,n

where αi = µi/
n∑
j=0

µjψ
2
j (xi).

He then considered the square tableau

O0(x0) O0(x1) · · · O0(xn)

O1(x0) O1(x1) · · · O1(xn)
...

...
...

On(x0) On(x1) · · · On(xn).

(28.50)

From the orthogonality relation (28.46), he deduced that the sum of the squares of the
terms in each row and in each column was one. Also, in any two rows or columns, the
sum of the products of their corresponding terms would be zero.

28.10 Chebyshev’s Discrete Legendre and Jacobi Polynomials

In his 1864 paper “Sur l’interpolation,” Chebyshev took µi = 1 and xi = i for
i = 0, 1, . . . ,n− 1 with µ defined as previously. See equations (28.41) and (28.42).
Then the polynomialsψ0(x), ψ1(x), ψ2(x), . . . were the denominators in the continued
fraction expansion of

1

x
+ 1

x− 1
+ 1

x− 2
+·· ·+ 1

x−n+ 1
.

By (28.46), these in turn satisfied the relations
n∑
i=0

ψl(i)ψm(i)= 0 for m< l. (28.51)

Chebyshev found a Rodrigues-type formula for ψk(x), where the differential operator
was replaced by the finite difference operator. His two-step approach was exactly the
discrete analog of the method employed by Jacobi in his paper on numerical integration.
In the first step, Chebyshev proved that if there was a polynomial f (x) of degree l
such that

n∑
i=0

f (i)ψm(i)= 0 for m< l,

then there existed a constantC such thatf (x)=Cψl(x).For the second step, he showed
that the polynomial of degree l given by

f (x)=,lx(x− 1) · · ·(x− l+ 1)(x−n)(x−n− 1) · · ·(x−n− l+ 1)
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satisfied the required condition. Thus, he had the Rodrigues-type formula ψl(x) =
Clf (x), where Cl was a constant.

Chebyshev also gave an interesting interpolation formula in terms of ψl(x). He
supposed u0, u1, . . . ,un−1 to be the values of a function u at x = 0, 1, . . . ,n− 1. The
interpolation formula would then be expressed as

u=
∑n−1

i=0 ui

n
+ 3

∑n−1
i=0 (i+ 1)(n− i− 1),ui

12n(n2 − 12)
,x(x−n)

+ 5
n−1∑
i=0

(i+ 1)(i+ 2)(n− i− 1)(n− i− 2),2ui

(2!)2n(n2 − 12)(n2 − 22)
(28.52)

×,2x(x− 1)(x−n)(x−n− 1)+·· · .
Interestingly, in an 1858 paper, “Sur une nouvelle série,” Chebyshev took the points as
x1 = h, x2 = 2h, . . . , xn= nh such that the orthogonal polynomials could be expressed
in the form

ψl(x)=Cl,l(x−h)(x− 2h) · · ·(x− lh)(x−nh−h) · · ·(x−nh− lh).
The formula corresponding to (28.52) would then be written

u= 1

n

∑
ui + 3

∑
i(n− i),ui

12n(n2 − 12)h2
,(x−h)(x−nh−h)

+ 5

∑
i(i+ 1)(n− i)(n− i− 1),2ui

(2!)2n(n2 − 12)(n2 − 22)h4
(28.53)

×,(x−h)(x− 2h)(x−nh−h)(x−nh− 2h)+·· · .
Chebyshev observed that if he set h= 1/n in his interpolation formula (28.53) and let
n→ ∞, he obtained a series in terms of Legendre polynomials. On the other hand, if
he set h= 1/n2 and let n→∞, he arrived at the Maclaurin series expansion! At the
end of the paper, Chebyshev made the insightful remark that one might use discrete
orthogonal polynomials to approximate the sum

∑n

i=1F(ih), just as Gauss had used
Legendre polynomials for numerical integration.

Chebyshev appears to have independently discovered the Jacobi polynomials. He
gave the generating function and proved orthogonality for these polynomials in an 1870
paper based on the work of Legendre. Chebyshev there proved that if

F(s,x)= (1+ s+√
1− 2sx+ s2)−γ (1− s+√

1− 2sx+ s2)−µ√
1− 2sx+ x2

=
∞∑
n=0

Tn(x)s
n, then

∫ 1

−1
F(s,x)F (t,x)(1− x)µ(1+ x)γ dx
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was purely a function of st. This gave the orthogonality of Tn(x) with respect to the
beta distribution (1 − x)µ(1 + x)γ . Note that the Tn(x) are the Jacobi polynomials,
generalizing the Legendre polynomials. On the basis of this work, in 1875 Chebyshev
defined the discrete Jacobi polynomials. He also showed that his interpolation formulas
could be applied to problems in ballistics.

28.11 Exercises

1. Show that ∫ 1

−1

1

x−u
du√

1−u2
= π√

x2 − 1
= π

x−
1

2x−
1

2x− ·· · .

Show also that the denominators of the convergents of the continued fractions
are cosφ, cos2φ, . . . , where x = cosφ. See Chebyshev (1899–1907), vol. 1,
pp. 501–508, especially p. 502.

2. Let d be the greatest integer in n/2, where n is a positive integer. Show that the
ultraspherical polynomials Cλn satisfy the relation

Cλn =
d∑
k=0

(λ)n−k(λ−µ)k(n+µ− 2k)

k!µ(µ+ 1)n−k
C
µ

n−2k(x),

where for any quantity a, (a)k denotes the shifted factorial a(a + 1) · · ·(a +
k− 1). See Gegenbauer (1884).

3. Suppose n unit charges are distributed at x1,x2, . . . ,xn inside the interval (−1,1)
and that there is an extra charge α > 0 at −1 and another, β > 0, at +1. The
electrostatic energy would be given by

L=
∑

1≤i<j≤n
log

1

|xi − xj | +α
n∑
i=1

log
1

|1+ xi | +β
n∑
i=1

log
1

|1− xi | .

Show that L is minimum when x1,x2, . . . ,xn are zeros of a polynomial φ(x)
satisfying the differential equation

(1− x2)φ′′ + 2
(
α−β− (α+β)x)φ′(x)+n(n+ 2α+ 2β− 1)φ = 0.

Show that φ is a constant multiple of the Jacobi polynomial P (β,α)(x). See
Stieltjes (1993), vol. 2, pp. 79–80. Note that these volumes have two sets of page
numbers; we refer to the bottom numbers. See also the interesting commentary
of Walter Van Assche in vol. 1, particularly pp. 13–16.

4. Show that∫ ∞

x

e−t

t
dt = e−x

x+ 1−
1

x+ 3−
1

(x+ 5)/4−
1/22

(x+ 7)/9−
1/32

(x+ 9)/16− ·· · .
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Denote the mth convergent by e−xφm(x)/fm(x). Then show that

xf ′
n(x)= nfn(x)−n2fn−1(x),

fn+1(x)= (x+ 2n+ 1)fn(x)−n2fn−1(x),∫ 0

−∞
exfn(x)fm(x)dx = (n!)2δmn.

See Laguerre (1972), vol. 1, pp. 431–35.
5. Show that

1

(n− k)!
dn−k

dxn−k
(
x2 − 1

)n = (x2 − 1)k

(n+ k)!
dn+k

dxn+k
(
x2 − 1

)n
.

See Rodrigues (1816).
6. Show that if z= cosx, then

di−1(1− z2)(2i−1)/2

dzi−1
= (−1)i−13 · 5 · · ·(2i− 1)

sin ix

i
;

di(1− z2)(2i−1)/2

dzi
dz= (−1)i−13 · 5 · · ·(2i− 1)cos ix dx.

See Jacobi (1969), vol. 6, pp. 90–91.

28.12 Notes on the Literature

For the quote from Ivory, see Craik (2000). Gauss (1863–1927), vol. 3, pp. 163–196,
contains his paper on numerical integration. Goldstine’s (1977) very interesting book on
the history of numerical analysis gives a thorough and readable account of Gauss’s work;
see pp. 224–232. For Legendre’s proof of orthogonality, see Legendre (1811–1817),
vol. 2, pp. 249–250. See Jacobi (1969), vol. 6, pp. 3–11, for his 1826 commentary on
Gauss’s paper. Ivory and Jacobi (1837) is their joint paper published in the then newly
founded Liouville’s Journal. This journal gave Liouville the opportunity to review many
papers before they appeared in print, and then react to them. For example, the paper of
Ivory and Jacobi stimulated Liouville to write his two short notes (1837a) and (1837b)
in the same volume of his journal. Ivory (1812) and (1824), taken together, contain his
derivation of the Rodrigues formula. Altmann and Ortiz (2005) is completely devoted
to the work of Rodrigues in and outside of mathematics. See particularly the articles by
Grattan-Guinness and Askey in this book. See Murphy (1833) and (1835) for his two
long papers on definite integrals and orthogonal polynomials.

See Chebyshev (1899–1907), vol. 1, pp. 203–230, for his 1855 paper on continued
fractions and discrete orthogonal polynomials. See pp. 541–560 for his paper on dis-
crete Legendre polynomials; pp. 1–8 of the second volume present Chebyshev’s proof
of the orthogonality of the Jacobi polynomials. See also N. I. Akhiezer’s readable and
insightful commentary on Chebyshev’s work on continued fractions in Kolmogorov and
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Yushkevich (1998). Steffens (2006) gives a fairly comprehensive history of Chebyshev
and his students’ contributions to orthogonal polynomials and approximation theory.
Simon’s remark on orthogonal polynomials is the first sentence of Simon (2005).
Nevai (1990) is a collection of interesting papers on orthogonal polynomials and their
numerous applications.
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q-Series

29.1 Preliminary Remarks

The theory of q-series in modern mathematics plays a significant role in partition
theory and modular functions as well as in some aspects of Lie algebras and statistical
mechanics. This subject began quietly, however, with two combinatorial problems
posed in a September 1740 letter from Phillipe Naudé (1684–1747) to Euler. Naudé,
a mathematician of French origin working in Berlin, asked how to find the number of
ways in which a given number could be expressed as the sum of a fixed number, first
of distinct integers and then without the requirement that the integers in the sum be
distinct.

As an example of both these problems, 7 can be expressed as a sum of three distinct
integers in one way, 1+2+4; whereas it can be expressed as a sum of three integers in
four ways: 1+ 1+ 5, 1+ 2+ 4, 1+ 3+ 3, 2+ 2+ 3. Euler received Naudé’s letter in
St. Petersburg, just before he moved to Berlin. Within two weeks, in a reply to Naudé,
Euler outlined a solution, and soon after that he presented a complete solution to the
PetersburgAcademy. In 1748, he devoted a whole chapter to this topic in his Introductio
in Analysin Infinitorum. The essential idea in Euler’s solution was that the coefficient
of qkxm in the series expansion of the infinite product

f (q,x)= (1+ qx)(1+ q2x)(1+ q3x) · · · (29.1)

gave the number of ways of writing k as a sum of m distinct positive integers. Euler
used the functional relation

f (q,x)= (1+ qx)f (q,qx) (29.2)

to prove that

f (q,x)=
∞∑
m=0

qm(m+1)/2xm

(1− q)(1− q2) · · ·(1− qm) . (29.3)

599
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He noted that

1

(1− q)(1− q2) · · ·(1− qm)
= (1+ q+ q1+1 +·· ·)(1+ q2 + q2+2 +·· ·) · · ·(1+ qm+ qm+m+·· ·)

=
∞∑
n=0

anq
n, (29.4)

where the middle product showed that an, the coefficient of qn, was the number of ways
of writing n as a sum of integers chosen from the set 1,2, . . . ,m. This implied that the
coefficient of qkxm on the right-hand side of (29.3) was the number of ways of writing
k−m(m+ 1)/2 as a sum of integers from the set 1,2, . . . ,m. Thus, Euler stated the
theorem: The number of different ways in which the number n can be expressed as
a sum of m different numbers is the same as the number of different ways in which
n−m(m+ 1)/2 can be expressed as the sums of the numbers 1,2,3, . . . ,m.

For the second problem, Euler used the product

g(q,x)=
∞∏
n=1

(1− qnx)−1 (29.5)

and obtained the corresponding series and theorem in a similar way. Euler here used
functional relations to evaluate the product as a series, just as he earlier employed
functional relations to evaluate the beta integral as a product. Of course, this method
goes back to Wallis.

Euler also considered the case x = 1. In that case (in modern notation), we have

∞∏
n=1

(1− qn)−1 = (1+ q+ q1+1 +·· ·)(1+ q2 + q2+2 +·· ·)(1+ q3 + q3+3 +·· ·) · · ·

=
∞∑
n=0

p(n)qn, (29.6)

where p(n) is the number of partitions of n, or the number of ways in which n can
be written as a sum of positive integers. For example, p(4)= 5 because 4 has the five
partitions

1+ 1+ 1+ 1, 2+ 1+ 1, 2+ 2, 3+ 1, 4.

The product in (29.6) also led Euler to consider its reciprocal,
∏∞
n=1(1 − qn). He

attempted to expand this as a series but it took him nine years to completely resolve
this difficult problem. In his first attempt, he multiplied a large number of terms of the
product to find that

∞∏
n=1

(1− qn)= 1− q− q2 + q5 + q7 − q12 − q15 + q22 + q26 − q35 − q40 + q51 +·· · .
(29.7)
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He quickly found a general expression for the exponents,m(3m±1)/2. He most prob-
ably did this by considering the differences in the sequence of exponents; note that the
sequence of exponents is

0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, . . . .

Observe that the sequence of differences is then

1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, . . . .

The pattern of this sequence suggests that one should group the sequence of exponents
into two separate sequences, first taking the exponents of the odd-numbered terms
and then the exponents of the even-numbered terms. For example, the sequence of
exponents of the odd-numbered terms is 0, 2, 7, 15, 26, 40, . . . , and their differences
are 2, 5, 8, 11, 14, . . . . Since the differences of these differences are 3 in every case,
we may apply the formula of Zhu Shijie and Montmort (11.23) in order to perceive that
the (n+ 1)th term of the sequence of odd-numbered exponents will be given by

0+ 2n+ 3n(n− 1)/2 = n(3n+ 1)/2.

Similarly, the nth term in the sequence of even-term exponents is n(3n− 1)/2. In the
Introductio, Euler wrote, “If we consider this sequence with some attention we will
note that the only exponents which appear are of the form (3n2 ±n)/2 and that the sign
of the corresponding term is negative when n is odd, and the sign is positive when n is
even.” Thus, Euler made the conjecture

∞∏
n=1

(1− qn)=
∞∑

m=−∞
(−1)mqm(3m+1)/2 = 1+

∞∑
m=1

(−1)mqm(3m±1)/2, (29.8)

and finally found a proof of this in 1750. He immediately wrote Goldbach about the
details of the proof, explaining that it depended on the algebraic identity:

(1−α)(1−β)(1− δ)etc. = 1−α−β(1−α)− γ (1−α)(1−β)
− δ(1−α)(1−β)(1− γ )− etc.

This identity is easy to check, since the first three terms on the right-hand side add up to

1−α−β(1−α)= (1−α)(1−β),
and when this is added to the fourth term, we get

(1−α)(1−β)− γ (1−α)(1−β)= (1−α)(1−β)(1− γ )
and so on. An interesting feature of the series (29.8) is that the exponent of q is a
quadratic in m, the index of summation. Surprisingly, series of this kind had already
appeared in 1690 within Jakob Bernoulli’s works on probability theory, but he was
unable to do much with them. Over a century later, Gauss initiated a systematic study
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of these series. Entry 58 of Gauss’s mathematical diary, dated February 1797, gives a
continued fraction expansion of one of Bernoulli’s series:

1− a+ a3 − a6 + a10 −·· ·

= 1

1+ a

1+ a2 − a
1+ a3

1+ a4 − a2

1+ a5

1+ etc.

(29.9)

Gauss added the comment, “From this all series where the exponents form a series of
the second order are easily transformed.” About a year later, he raised the problem of
expressing 1+ q+ q3 + q6 + q10 + ·· · as an infinite product. Gauss came upon series
of this type around 1794 in the context of his work on the arithmetic-geometric mean.
This latter work was absorbed into his theory of elliptic functions. Series (29.8) and
(29.9) are actually examples of the special kind of q-series called theta functions. Theta
functions also arose naturally in Fourier’s 1807 study of heat conduction.

Unfortunately, Gauss did not publish any of his work on theta or elliptic func-
tions, and it remained for Abel and Jacobi to independently rediscover much of this
work, going beyond Gauss in many respects. Around 1805–1808, Gauss began to view
q-series in a different way. For example, his 1811 paper on q-series dealt with a gen-
eralization of the binomial coefficient and the binomial series. In particular, he defined
the Gaussian polynomial

(m,µ)= (1− qm)(1− qm−1)(1− qm−2) · · ·(1− qm−µ+1)

(1− q)(1− q2)(1− q3) · · ·(1− qµ) . (29.10)

Note that Gauss wrote x instead of q. Observe that as q→ 1

(m,µ)→
(
m

µ

)
. (29.11)

This work led to an unexpected byproduct: an evaluation of the Gauss sum
∑n−1

k=0 e
2πik2/n

where nwas an odd positive integer. This sum had already appeared naturally in Gauss’s
theory of the cyclotomic equation xn−1= 0, to which he had devoted the final chapter
of his 1801 Disquisitiones Arithmeticae. There Gauss had computed the square of the
Gauss sum, but he was unable to determine the correct sign of the square root. Already
in 1801, he knew that it was important to find the exact value of the sum; he expended
considerable effort over the next four years to compute the Gauss sum, and it was
a complete surprise for him when the result dropped out of his work on q-series. In
September 1805, he wrote his astronomer friend, Wilhelm Olbers,

What I wrote there [Disqu. Arith. section 365] . . . , I proved rigorously, but I was always annoyed
by what was missing, namely, the determination of the sign of the root. This gap spoiled whatever
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else I found, and hardly a week may have gone by in the last four years without one or more
unsuccessful attempts to unravel this knot - just recently it again occupied me much. But all the
brooding, the searching, was to no avail, and I had sadly to lay down my pen again. A few days
ago, I finally succeeded - not by my efforts, but by the grace of God, I should say. The mystery
was solved the way lightning strikes, I myself could not find the connection between what I knew
previously, what I investigated last, and the way it was finally solved.

He recorded these events in his diary:

(May 1801) A method for proving the first fundamental theorem has been found by means of a
most elegant theorem in the division of the circle, thus

∑ sin
cos

nn

a
P =+

√
a√
a

∣∣∣∣ 0
+√

a

∣∣∣∣ 0
0

∣∣∣∣+√
a

0
(29.12)

according as a≡ 0, 1, 2, 3 (mod 4) substituting for n all numbers from 0 to (a−1). (August 1805)
The proof of the most charming theorem recorded above, May 1801, which we have sought to
prove for 4 years and more with every effort, at last perfected.

Conceptually, this was a major achievement, since it served to connect cyclotomy with
the reciprocity law. Gauss may have initially considered the polynomial

∑m

k=0(m,k)x
k

as a possible analog of the finite binomial series. In any case, he expressed the sum as a
finite product when x = −1 and when x = √

q, and these formulas finally yielded
the correct value of the Gauss sum. It is interesting to note that the polynomial∑m

k=0(m,k)x
k played a key role in Szegő’s theory of orthogonal polynomials on the

unit disc.
Gauss found the appropriate q-extension of the terminating binomial theorem, per-

haps around 1808, but he did not publish it. In 1811, Heinrich A. Rothe (1773–1841)
first published this result in the preface of his Systematisches Lehrbuch der Arithmetik
as the formula

m∑
k=0

1− qm
1− q · 1− qm−1

1− q2
· · · · · 1− qm−k+1

1− qk · qk(k+1)/2xm−kyk

= (x+ y)(x+ qy) · · ·(x+ qk−1y). (29.13)

Although this was the most important result in the book, Rothe excluded it from the body
of text, apparently in order to keep the book within the size required by the publisher.
Gauss’s paper and Rothe’s formula indicated a direction for further research on q-series
relating to the extension of the binomial theorem. This path was not pursued until the
1840s, except for Schweins’s Analysis of 1820. This work presented a q-extension of
Vandermonde’s identity (29.58).

In the 1820s, Jacobi investigated q-series in connection with his work on theta
functions, a byproduct of his researches on elliptic functions. His most remarkable
discovery in this area was the triple product identity. Jacobi’s famous Fundamenta
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Nova of 1829 stated the formula as

(1+ qz)(1+ q3z)(1+ q5z) · · ·
(

1+ q

z

)(
1+ q3

z

)(
1+ q5

z

)
· · ·

=
1+ q (z+ 1

z

)+ q4
(
z2 + 1

z2

)
+ q9

(
z3 + 1

z3

)
+·· ·

(1− q2)(1− q4)(1− q6)(1− q8) · · · . (29.14)

Jacobi regarded this identity as his most important formula in pure mathematics. He
gave several very important applications. In one of these, he derived an identity, giving
the number of representations of an integer as a sum of four squares. In another, he
obtained an important series expression for the square root of the period of some elliptic
functions, allowing him to find a new derivation of the following transformation of a
theta function, originally due to Cauchy and Poisson:

1+ 2
∞∑
n=1

e−n
2πx = 1√

x

(
1+ 2

∞∑
n=1

e−n
2π/x

)
. (29.15)

Jacobi also published a long paper on those series whose powers are quadratic forms;
the triple product identity formed the basis for this. In the 1820s, when Gauss learned of
Jacobi’s work, he informed Jacobi that he had already found (29.14) in 1808. Legendre,
on very friendly terms with Jacobi, refused to believe that Gauss had anticipated his
friend. In a letter to Jacobi, Legendre wrote, “Such outrageous impudence is incredible
in a man with enough ability of his own that he should not have to take credit for other
people’s discoveries.” Then again, Legendre had had his own priority disputes with
Gauss with regard to quadratic reciprocity and the method of least squares.

In the early 1840s, papers on q-series appeared in quick succession by Cauchy in
France and Eisenstein, Jacobi, and E. Heine in Germany. As a second-year student
at Berlin in 1844, Eisenstein presented twenty-five papers for publication to Crelle’s
Journal. One of them, “Neuer Beweis und Verallgemeinerung des binomischen
Lehrsatzes,” began with the statement and proof of the Rothe-Gauss theorem; it then
applied Euler’s approach to the proof of the binomial theorem to obtain a version of
the q-binomial theorem. Some details omitted by Euler in his account were treated in
Eisenstein’s paper.

Jacobi and Cauchy stated and proved the q-binomial theorem in the form

1+ v−w

1− q z+
(v−w)(v− qw)
(1− q)(1− q2)

z2 + (v−w)(v− qw)(v− q2w)

(1− q)(1− q2)(1− q3)
z3 +·· ·

= (1−wz)(1− qwz)(1− q2wz)(1− q3wz) · · ·
(1− vz)(1− qvz)(1− q2vz)(1− q3vz) · · · . (29.16)

The idea in this proof was the same as the one used by Euler to prove (29.3), clearly
a particular case. Jacobi also went on to give a q-extension of Gauss’s 2F1 summation
formula.At that time, it was natural for someone to consider the q-extension of a general
2F1 hypergeometric series; E. Heine did just that, and we discuss his work in chapter 30.
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29.2 Jakob Bernoulli’s Theta Series

It is interesting that the series with quadratic exponents, normally arising in the theory
of elliptic functions, occurred in Bernoulli’s work in probability. In 1685, he proposed
the following two problems in the Journal des Sçavans:

Let there be two players A and B, playing against each other with two dice on the condition that
whoever first throws a 7 will win. There are sought their expectations if they play in one of these
orders:

1. A once, B once, A twice, B twice, A three times, B three times, A four times, B four times,
etc.

2. A once, B twice, A three times, B four times, A five times, etc.

In his Ars Conjectandi, Bernoulli wrote that in May 1690, when no solution to this
problem had yet appeared, he communicated a solution to Acta Eruditorum. In the first
case, Bernoulli gave the probability for A to win as

1−m+m2 −m4 +m6 −m9 +m12 −m16 +m20 −m25 + etc. (29.17)

In the second case, the probability for A to win was

1−m+m3 −m6 +m10 −m15 +m21 −m28 +m36 −m45 + etc. (29.18)

In both cases,m= 5/6. To make the quadratic exponents explicit, write the two series as

1+
∞∑
n=1

mn(n+1)−
∞∑
n=1

mn
2

and
∞∑
n=0

(−1)nmn(n+1)/2.

Bernoulli remarked that the summation of these series was difficult because of the
unequal jumps in the powers ofm. He noted that numerical approximation to any degree
of accuracy was easy and for m = 5/6, the value of the second series was 0.52393;
we remark that this value is inaccurate by only one in the last decimal place. Jakob
Bernoulli was very interested in polygonal and figurate numbers; in fact, he worked
out the sum of the reciprocals of triangular numbers. Here he had series with triangular
and square numbers as exponents. Gauss discovered a way to express these series as
products. Euler found the product expansion of a series with pentagonal numbers as
exponents.

29.3 Euler’s q-series Identities

In response to the problems of Naudé, Euler proved the two identities:

(1+ qx)(1+ q2x)(1+ q3x)(1+ q4x) · · ·

= 1+ q

1− q x+
q3

(1− q)(1− q2)
x2 +·· ·+ qm(m+1)/2

(1− q) · · ·(1− qm) x
m+·· · ,

(29.19)
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1

(1− qx)(1− q2x)(1− q3x) · · ·

= 1+ q

1− q x+
q2

(1− q)(1− q2)
x2 +·· ·+ qm

(1− q) · · ·(1− qm) x
m+·· · . (29.20)

Euler’s argument for the first identity was outlined in the opening remarks of this
chapter. His proof of his second identity ran along similar lines. We here follow Euler’s
presentation from his Introductio, noting that Euler wrote x for our q and z for our x.
Note also that the term q-series came into use only in the latter half of the nineteenth
century, appearing in the works of Cayley, Rogers, and others. Jacobi may possibly
have been the first to use the symbol q in this context, though he did not use the term
q-series. Euler let Z denote the infinite product on the left of (29.20) and he assumed
that Z could be expanded as a series:

Z = 1+Px+Qx2 +Rx3 +Sx4 +·· · . (29.21)

When x was replaced by qx in Z, he got

1

(1− q2x)(1− q3x)(1− q4x)
= (1− qx)Z.

Making the same substitution in (29.21), he obtained

(1− qx)Z = 1+Pqx+Qq2x2 +Rq3x3 +Sq4x4 +·· · . (29.22)

When the series for Z was substituted in (29.22) and the coefficients of the various
powers of x were equated, the result was

P = q

1− q , Q= Pq

1− q2
, R = Qq

1− q3
, S = Rq

1− q4
, etc.

and this proved (29.20).

29.4 Euler’s Pentagonal Number Theorem

Pentagonal numbers can be generated by the exponentsm(3m±1)/2 in Euler’s formula
(29.8)

∞∏
n=1

(1− xn)= 1+
∞∑
m=1

(−1)mxm(3m±1)/2. (29.23)

This identity is often referred to as the pentagonal number theorem. Euler’s proof is
elementary and employs simple algebra in an ingenious way; we present it almost
exactly as it appeared in Euler’s June 1750 letter to Goldbach. He began with the
algebraic identity mentioned earlier

(1−α)(1−β)(1− δ)(1− γ ) etc.

= 1−α−β(1−α)− δ(1−α)(1−β)− γ (1−α)(1−β)(1− δ)−·· · .
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From this he had

(1− x)(1− x2)(1− x3)(1− x4)(1− x5) etc. = S

= 1− x− x2(1− x)− x3(1− x)(1− x2)− x4(1− x)(1− x2)(1− x3)− etc.

He set S = 1− x−Axx, where

A= 1− x+ x(1− x)(1− x2)+ x2(1− x)(1− x2)(1− x3)+ etc.

Multiplying out by the factor 1− x in each term, he obtained

A= 1− x − x2(1− x2) − x3(1− x2)(1− x3)− etc.

+ x(1− x2)+ x2(1− x2)(1− x3)+ x3(1− x2)(1− x3)(1− x4)+ etc.

= 1− x3 − x5(1− x2) − x7(1− x2)(1− x3)− etc.

He set A= 1− x3 −Bx5, where

B = 1− x2 + x2(1− x2)(1− x3)+ x4(1− x2)(1− x3)(1− x4)+ etc.

After multiplying out by the factor 1− x2, appearing in each term of B, he arrived at

B = 1− x2 − x4(1− x3) − x6(1− x3)(1− x4)− etc.

+ x2(1− x3)+ x4(1− x3)(1− x4)+ x6(1− x3)(1− x4)(1− x5)+ etc.

= 1− x5 − x8(1− x3) − x11(1− x3)(1− x4)− etc.

Euler then set B = 1 − x5 − x8C, where C = 1 − x3 + x3(1 − x3)(1 − x4) +
x6(1− x3)(1− x4)(1− x5)+ etc. Multiplying out by 1− x3,

C = 1− x3 − x6(1− x4) − x9(1− x4)(1− x5)− etc.

+ x3(1− x4)+ x6(1− x4)(1− x5)+ x9(1− x4)(1− x5)(1− x6)+ etc.

= 1− x7 − x11(1− x4) − x15(1− x4)(1− x5)− etc.

When this process was continued, he got

C = 1− x7 − x11D, D = 1− x9 − x14E, E = 1− x11 − x17F.

This completed Euler’s proof. To describe it more succinctly, write S = P0, A = P1,

B = P2, C = P3 and so on. If he had completed the inductive step, Euler would have
shown that

Pn−1 = 1− x2n−1 − x3n−1Pn, where (29.24)

Pn =
∞∑
k=0

xkn(1− xn)(1− xn+1) · · ·(1− xn+k). (29.25)
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Since Euler’s method of proving (29.24) is useful in establishing other identities in
q-series, we describe it in the general situation. The first step is to break up each term
of Pn into two parts

xkn(1− xn+1) · · ·(1− xn+k)− x(k+1)n(1− xn+1) · · ·(1− xn+k);
in the second step, take the second (negative) part and add it to the first part of the next
term of Pn:

−x(k+1)n(1− xn+1) · · ·(1− xn+k)+ x(k+1)n(1− xn+1) · · ·(1− xn+k+1)

=−x(k+2)n+k+1(1− xn+1) · · ·(1− xn+k).
It can now be seen that

Pn = 1− x2n+1 − x3n+2
∞∑
k=0

xk(n+1)(1− xn+1) · · ·(1− xn+1+k)

= 1− x2n+1 − x3n+2Pn+1,

proving (29.24) by induction. Euler’s method was used by Gauss, and then in 1884
Cayley applied it to prove an interesting identity of Sylvester; Rogers and Ramanujan
independently employed the idea to prove the Rogers–Ramanujan identities. Recently,
Andrews has further developed this method.

A repeated application of (29.24) converts the infinite product in (29.23) to the
required sum:

(1− x)(1− x2)(1− x3)(1− x4) · · ·
= 1− x− x2(1− x3)+ x2+5(1− x5)− x2+5+8(1− x7)+·· ·

+(−1)n−1x2+5+···+3n−4(1− x2n−1)+ (−1)nx2+5+···+3n−1(1− x2n+1)+·· ·
= 1− (x+ x2)+ (x5 + x7)− (x12 + x15)+·· ·+ (−1)n

(
x
n(3n−1)

2 + x n(3n+1)
2

)
+·· · .

As Euler noted, this series can also be written as

· · ·+ x26 − x15 + x7 + x0 − x1 + x5 − x12 +·· · =
∞∑

n=−∞
(−1)nxn(3n−1)/2.

This result of Euler was quite remarkable and its proof ingenious; it made quite an
impression on the young Gauss who continued Euler’s work in new directions.

29.5 Gauss: Triangular and Square Numbers Theorem

We saw Euler’s algebraic virtuosity in his proof of the pentagonal number theorem.
It is therefore interesting to see Gauss’s extremely skillful performance in his similar
evaluation of series with triangular and square numbers as exponents. Gauss too divided
each term of an appropriate series into two parts and added the second part of each term
to the first part of the next term. These formulas for triangular and square exponents
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are particular cases of the triple product identity. Gauss knew this, but he liked his
ingenious calculations enough to make a brief note of his method in a paper published
only in his collected works, “Zur Theorie der transscendenten Functionen Gehörig.”
He gave a proof of the formula

1− x
1+ x · 1− xx

1+ xx · 1− x3

1+ x3
· 1− x4

1+ x4
· etc. = 1− 2x+ 2x4 − 2x9 + 2x16 − etc. for |x|< 1.

Gauss started with the series:

P = 1+
∞∑
k=1

xkn

1+ xn ·
(1− x2n+k)(1− xn+1)(1− xn+2) · · ·(1− xn+k−1)

(1+ xn+1)(1+ xn+2)(1+ xn+3) · · ·(1+ xn+k)

Q= xn

1+ xn +
x2n

1+ xn ·
1− xn+1

1+ xn+1
+ x2n

1+ xn ·
1− xn+1

1+ xn+1
· 1− xn+2

1+ xn+2
+ etc.

R = P −Q.
He evaluated R in two different ways. First, he subtracted the kth term in Q from the
kth term in P for each k to get

R = 1

1+ xn +
n∑
k=1

xkn

1+ xn ·
(1− xn)(1− xn+1) · · ·(1− xn+k−1)

(1+ xn+1)(1+ xn+2) · · ·(1+ xn+k) . (29.26)

He denoted this series for R by φ(x,n). To find another series for R, Gauss subtracted
the kth term in Q from the (k+ 1)th term in P for each k to get

R = 1− x2n+1

1+ xn+1
− x2n+2

1+ xn+1
· 1− xn+1

1+ xn+2
− x2n+3

1+ xn+1
· 1− xn+1

1+ xn+2
· 1− xn+2

1+ xn+3
− etc.

He concluded from this relation that

R = 1− x2n+1 ·φ(x,n+ 1) or

φ(x,n)= 1− x2n+1 ·φ(x,n+ 1).

Gauss noted that the relation was true for n≥ 1, and for such n

φ(x,n)= 1− x2n+1 + x4n+4 − x6n+9 + x8n+16 − etc.

Note that the series P, Q, and R with n ≥ 1 are absolutely convergent and that the
terms can be rearranged. When n = 0, the series for P and Q are divergent and care
must be exercised. It is clear from the definition of φ(x,n) given by (29.26) that
φ(x,0)= 1/2. For clarity, we now employ notation not used by Gauss. Letp1,p2,p3, . . .

and q1,q2,q3, . . . denote the consecutive terms of P and Q when n= 0. Then

φ(x,0)= lim
m→∞((p1 − q1)+ (p2 − q2)+·· ·+ (pm− qm))

= lim
m→∞(p1 + (p2 − q1)+ (p3 − q2)+·· ·+ (pm− qm−1))− lim

m→∞qm.
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Gauss denoted the second limit, limm→∞ qm, by T and called it the last term of the series
Q, with n= 0. He observed that the first limit could be expressed as 1−xφ(x,1). Thus,
he had T = 1− xφ(x,1)−φ(x,0) or

φ(x,0)= 1− xφ(x,1)−T = 1− x+ x4 − x9 + x16 −·· ·−T .
From the definition of T , Gauss could see that

T = 1

2

1− x
1+ x · 1− xx

1+ xx · 1− x3

1+ x3
· · · ,

and since φ(x,0)= 1/2, Gauss finally had

2T = 1− x
1+ x · 1− xx

1+ xx · 1− x3

1+ x3
· · · = 1− 2x+ 2x4 − 2x9 + 2x16 −·· · .

He gave an abbreviated form of the argument for the series with triangular numbers.
We reproduce Gauss’s calculation exactly:

P1 = 1− x2n+2

1− xn+1
+ xn · 1− x2n+4 · 1− xn+2

1− xn+1 · 1− xn+3

+ x2n · 1− x2n+6 · 1− xn+2 · 1− xn+4

1− xn+1 · 1− xn+3 · 1− xn+5
+ etc.

Q1 = xn · 1− xn+2

1− xn+1
+ x2n · 1− xn+2 · 1− xn+4

1− xn+1 · 1− xn+3

+ x3n · 1− xn+2 · 1− xn+4 · 1− xn+6

1− xn+1 · 1− xn+3 · 1− xn+5
+ etc.

R1 = 1− xn
1− xn+1

+ xn · 1− xn · 1− xn+2

1− xn+1 · 1− xn+3
+ x2n · 1− xn · 1− xn+2 · 1− xn+4

1− xn+1 · 1− xn+3 · 1− xn+5
+ etc.

where R1 was obtained by subtractingQ1 termwise from P1. Gauss denoted this series
for R1 as ψ(x,n). Then, by subtracting the kth term of Q1 from the (k+ 1)th term of
P1, Gauss had

R1 = 1+ xn+1 + x2n+3 · 1− xn+2

1− xn+3
+ x2n+3 · xn+2 · 1− xn+2 · 1− xn+4

1− xn+3 · 1− xn+5
+ etc.

= 1+ xn+1 + x2n+3ψ(x,n+ 2)=ψ(x,n),
when n≥ 1. Therefore,

ψ(x,n)= 1+ xn+1 + x2n+3 + x3n+6 + x4n+10 + etc.

In the case n= 0, ψ(x,0)= 0. Moreover,

ψ(x,0)= 1+ x+ x3ψ(x,2)− 1− x2

1− x · 1− x4

1− x3
· 1− x6

1− x5
etc.

Hence, the required result followed:

1− x2

1− x · 1− x4

1− x3
· 1− x6

1− x5
· · · = 1+ x+ x3 + x6 + x10 + etc.
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29.6 Gauss Polynomials and Gauss Sums

In his paper of 1811, Gauss defined the q-extension of a binomial coefficient by

(m,µ)= (1− qm)(1− qm−1)(1− qm−2) · · ·(1− qm−µ+1)

(1− q)(1− q2)(1− q3) · · ·(1− qµ) . (29.27)

He noted the easily verified formula

(m,µ+ 1)= (m− 1,µ+ 1)+ qm−µ−1(m− 1,µ). (29.28)

Note that it follows from this that (m,µ) is a polynomial in q when m is a positive
integer. These polynomials are now called Gaussian polynomials and are extensions

of the binomial coefficients

(
m

µ

)
.We remark that we are using the familiar symbol q,

although Gauss used x.
Let us now see how Gauss evaluated the polynomial

∑m

µ=0(m,µ)x
µ for x =−1 and

x =√
q. For x =−1, Gauss used (29.28) to show that

f (q,m)= 1− (m,1)+ (m,2)− (m,3)+ (m,4)−·· ·
satisfied the functional relation

f (q,m)= (1− qm−1)f (q,m− 2). (29.29)

Since f (q,0)= 1 and f (q,1)= 0, Gauss deduced that

f (q,m)= (1− q)(1− q3) · · ·(1− qm−1), formeven,

= 0, formodd. (29.30)

For x =√
q, Gauss wrote

F(q,m)= 1+ q1/2(m,1)+ q(m,2)+ q3/2(m,3)+·· ·
= qm/2 + q(m−1)/2(m,1)+ q(m−2)/2(m,2)+ q(m−3)/2(m,3)+·· · . (29.31)

Note that the second (finite) series is identical to the first one, but is in reverse order.
Gauss then multiplied the second series by q(m+1)/2, and added the result to the first
series, yielding

(1+ q(m+1)/2)F (q,m)= 1+ q1/2(m,1)+ q(m,2)+ q3/2(m,3)+·· ·
+ q1/2 · qm+ q · qm−1(m,1)+ q3/2 · qm−2(m,2)+·· ·

= 1+ q1/2(qm+ (m,1))+ q((m,2)+ qm−1(m,1))

+ q3/2((m,3)+ qm−2(m,2))+·· · .
By (29.28), he concluded that (1+q(m+1)/2)F (q,m)=F(q,m+1); since F(q,0)= 1,
he had the required result

F(q,m)= (1+ q1/2)(1+ q)(1+ q3/2) · · ·(1+ qm/2). (29.32)
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Gauss used formulas (29.30) and (29.32) to show that

n−1∑
k=0

e2πik2/n = 1+ i−n
1+ i−1

√
n. (29.33)

We note that the expression on the left side is called a quadratic Gauss sum. He
proved this formula in four separate exhaustive cases: for n= 0,1,2,3 (mod 4). Gauss
explained how to convert the expression F(q,m) into a Gauss sum. He set q1/2 =−y−1

so that

F(y−2,m)= 1− y−1 1− y−2m

1− y−2
+ y−2 (1− y−2m)(1− y−2m+2)

(1− y−2)(1− y−4)
−·· · . (29.34)

He then set m= n− 1 and took y to be a primitive root of yn− 1 = 0, to get

1− y−2m

1− y−2
= 1− y2

1− y−2
=−y2 ; 1− y−2m+2

1− y−4
=−y4 ; 1− y−2m+4

1− y−6
=−y6 · · · .

Thus, he found

F(y−2,m)= 1+ y−1 · y2 + y−2 · y2 · y4 + y−3 · y2 · y4 · y6 +·· ·
= 1+ y+ y4 + y9 +·· ·+ y(n−1)2 . (29.35)

Observe that for y = e2πi/n, the expression (29.35) was the Gauss sum. From (29.32)
and (29.35), it followed that

1+ y+ y4 + y9 +·· ·+ y(n−1)2 = (1− y−1)(1+ y−2)(1− y−3) · · ·(1± y−n+1),

(29.36)

when y was a primitive root of yn − 1 = 0. Gauss showed that when y = e2πi/n, the
product in (29.36) reduced to the expression on the right-hand side of (29.33). The case
n = 4s + 2 is elementary. In fact, for this case Gauss observed that for any primitive
root y,y2s+1 =−1, so that y(2s+1)2 =−1. Moreover, for any integer t ,

y(2s+1+t)2 = y(2s+1)2+(4s+2)t+t2 =−yt2 .
Therefore, by cancellation of terms, Gauss found the sum (29.35) to be zero. Turning
to the case n= 4s, Gauss applied (29.36) to evaluate (29.33). Now y(2s+t)2 = yt2, and
hence

1+ y+ y4 +·· ·+ y(n−1)2 = 2(1+ y+ y4 +·· ·+ y(2s−1)2). (29.37)

By taking m = 1
2n− 1 = 2s − 1 in (29.34) and using the calculations leading up to

(29.36), Gauss had

1+ y+ y4 +·· ·+ y(2s−1)2 = (1− y−1)(1+ y−2)(1− y−3) · · ·(1− y−2s+1). (29.38)
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Then y2s = −1, and hence 1 + y−2k = −y2s−2k(1 − y−2s+2k). He applied this to the
product in (29.38), so that by (29.37)

F ≡ 1+ y+ y4 +·· ·+ y(n−1)2

= 2(−1)s−1ys
2−s(1− y−1)(1− y−2) · · ·(1− y−2s+1). (29.39)

Again, from the fact that 1− y−k =−y−k(1− y−4s+k), Gauss got

(1− y−1)(1− y−2)(1− y−3) · · ·(1− y−2s+1)

= (−1)2s−1y−2s2+s(1− y−2s−1)(1− y−2s−2)(1− y−2s−3) · · ·(1− y−4s+1). (29.40)

Therefore, by (29.39) and (29.40)

F = 2(−1)3s−2y−s
2
(1− y−2s−1)(1− y−2s−2) · · ·(1− y−4s+1). (29.41)

Next, Gauss took the product of (29.39) and (29.41) and multiplied by 1 − y−2s to
obtain

(1− y−2s)F 2 = 4(−1)4s−3y−s(1− y−1)(1− y−2) · · ·(1− y−4s+1). (29.42)

So Gauss could conclude that F 2 = 2ysn = ±2in, since y2s = −1 or ys = ±i. Note
that Gauss also made use of the fact that the product

(1− y−1)(1− y−2) · · ·(1− y−4s+1)

was equal to n, because y−1, . . . ,y−4s+1 were all the nontrivial nth roots of unity. By
taking square roots, Gauss obtained

F = 1+ y+ y4 +·· ·+ y(n−1)2 =±(1+ i)√n. (29.43)

To determine the sign when y = e2πi/n, Gauss set y = p2 in (29.38) and used pn =−1
to get

F = 2(1+pn−2)(1+p−4)(1+pn−6)(1+p−8) · · ·(1+p−n+4)(1+p2).

He rewrote this equation as

F = 2(1+p2)(1+p−4)(1+p6) · · ·(1+p−n+4)(1+pn−2)

and observed that 1+p±2k = 2p±k cos(kπ/n), finally concluding that

F = 22sps cos
π

n
cos

2π

n
cos

3π

n
· · ·cos

(2s− 1)π

n
.

Now ps = cos π4 + i sin π

4 = (1+ i)/√2 and since all the cosine values were positive,
Gauss determined that the sign in (29.43) was positive. This concluded his proof of the
case n= 4s. The other two cases of (29.33), where n is odd, or n= 4s+ 1 or 4s+ 3,
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are the most important because they lead to the proof of the quadratic reciprocity
theorem. For these cases, Gauss first gave a detailed derivation using (29.30), although
he indicated that (29.32) could also serve the purpose. So it remained for Gauss to
prove that the Gauss sum in (29.33) was equal to

√
n when n was of the form 4m+ 1,

and equal to i
√
n when n took the form 4m+ 3. He took n= s+ 1 where s was even,

x was a primitive root of xn− 1 = 0, and q = x−2. Then

1− qs−j
1− qj+1

= 1− x−2(s−j)

1− x−2j−2
= 1− x−2(n−1−j)

1− x−2j−2
= 1− x2j+2

1− x−2j−2
=−x2(j+1)

and the Gaussian polynomial was given by

(s,k)= (−1)kx2(1+2+···+k−1) = (−1)kxk(k−1).

Using this in (29.30), he had

n∑
k=1

xk(k−1) = (1− x−2)(1− x−6) · · ·(1− x−2(n−2))

= x 1
4 (n−1)2(x− x−1)(x3 − x−3) · · ·(xn−2 − x−(n−2)). (29.44)

Since x was an nth root of unity and since

1

4
(n− 1)2 + k(k− 1)= 1

4
(n2 − 2n+ (2k− 1)2),

x
1
4 (n−1)2+k(k−1) = x 1

4 (n−(2k−1))2 = x(e−k)2, where n+ 1 = 2e.

Thus Gauss could rewrite (29.44) as

W ≡
n−1∑
k=0

xk
2 = (x− x−1)(x3 − x−3) · · ·(xn−2 − x−(n−2)). (29.45)

We note that Gauss also worked out a derivation of this formula using (29.32). Now
xn−2 − x−(n−2) =−(x2 − x−2) etc. implied that

W = (−1)
n−1

2 (x2 − x−2)(x4 − x−4) · · ·(xn−1 − x−n+1). (29.46)

By multiplying (29.45) and (29.46), he obtained

W 2 = (−1)
n−1

2 (x− x−1)(x2 − x−2)(x3 − x−3) · · ·(xn−1 − x−n+1).

When n was of the form 4s+1, the factor (−1)
n−1

2 became +1 and when n was of the
form 4s+ 3, it became −1. Thus, he obtained

W 2 =±x 1
2 (n−1)n(1− x−2)(1− x−4) · · ·(1− x−2(n−1)).

Using an argument similar to the one for (29.43), Gauss concluded thatW =±n, where
the + sign applied to n= 4s+1 and the − sign to 4s+3. Note that Gauss had already
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arrived at this point in 1801, but by a different route. The problem remaining in 1805
was to choose the correct sign for the square root to obtain W . To find that, Gauss set
x = e2πi/n in (29.45) to get

W = (2i) n−1
2 sin

2π

n
sin

6π

n
· · ·sin

2(n− 2)π

n
.

Whether n= 4s+1 or n= 4s+3, Gauss saw that there were clearly s negative factors
in the sine product. Thus, Gauss could conclude that W = √

n for n = 4s + 1 and
W = i√n for n= 4s+ 3.

29.7 Gauss’s q-Binomial Theorem and the Triple Product Identity

Gauss wrote a paper “Hundert Theoreme über die neuen Transscendenten,” but he did
not publish it. In this paper, he derived a form of the terminating q-binomial theorem.
He then wrote the result in a symmetric form and by an ingenious argument derived the
triple product identity. We follow Gauss’s notation and proof: He stated the terminating
q-binomial theorem in the form

1+ an− 1

a− 1
t + an− 1 · an− a

a− 1 · aa− 1
t t + an− 1 · an− a · an− aa

a− 1 · aa− 1 · a3 − 1
t3 + etc.

= (1+ t)(1+ at)(1+ aat) · · ·(1+ an−1t). (29.47)

Recall that we would write q instead of a. To prove the formula inductively, he denoted
the sum as T and multiplied it by (1+ ant) to obtain a series of the same form with n
changed to n+ 1. The reader may work out this calculation. Gauss next observed that
by taking T = θ(n), one could see that T (1+ ant)= θ(n+ 1). Thus, the terminating
q-binomial theorem was proved inductively.

To prove the triple-product identity, he wrote his result in a symmetric form. He took
n even, set y = a n−1

2 t and x2 = a to transform (29.47) into

1+ 1− xn
1− xn+2

x

(
y+ 1

y

)
+ 1− xn

1− xn+2
· 1− xn−2

1− xn+4
· x4

(
yy+ 1

yy

)
+ 1− xn

1− xn+2
· 1− xn−2

1− xn+4
· 1− xn−4

1− xn+6
· x9

(
y3 + 1

y3

)
+·· ·

= 1− xx
1− xn+2

· 1− x4

1− xn+4
· 1− x6

1− xn+6
· · · · · 1− xn

1− x2n

· (1+ xy)(1+ x3y) · · · · · (1+ xn−1y)

(
1+ x

y

)
·
(

1+ x3

y

)
· · · · ·

(
1+ xn−1

y

)
. (29.48)
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Next, he took |x| < 1, so that xn → 0 as n→ ∞. The result was the triple product
identity:

1+ x(y+ y−1)+ x4(yy+ y−2)+ x9(y3 + y−3)+·· ·
= (1− xx)(1− x4)(1− x6) · · ·(1+ xy)(1+ x3y)(1+ x5y) (29.49)

· · ·(1+ xy−1)(1+ x3y−1)(1+ x5y−1) · · · .
Now let us examine the algebraic steps Gauss used to get the required symmetric form
(29.48). Note that the last term in the left-hand side of (29.47) was an(n−1)/2tn = yn.
Combining the first and last terms of the sum, then the second to the last but one, and
so on, he arrived at

1+ yn+ 1− an
1− a t

(
1+ yn−2

)+ 1− an
1− a · 1− an−1

1− aa · att (1+ yn−4)+·· ·

+ 1− an
1− a · 1− an−1

1− aa · · · 1− a 1
2 n+2

1− a 1
2 n−1

· a 1
2

(
1
2 n−1

)(
1
2 n−2

)
t

1
2 n−1(1+ yy)

+ 1− an
1− a · 1− an−1

1− aa · · · 1− a 1
2 n+1

1− a 1
2 n

· a 1
2 · 1

2 n· 1
2 n−1t

1
2 n.

He set a = x2, denoted the last term by A and took it out as a common factor to get

A

(
1+ 1− xn

1− xn+2
· x(y+ y−1)+ 1− xn

1− xn+2
· 1− xn−2

1− xn+4
x4(yy+ y−2)

+ 1− xn
1− xn+2

· 1− xn−2

1− xn+4
· 1− xn−4

1− xn+6
· x9(y3 + y−3)+·· ·

)
,

where A could be written as

1− xn+2

1− xx · 1− xn+4

1− x4
· 1− xn+6

1− x6
· · · 1− x2n

1− xn · y
1
2 n

x
1
4 nn
.

He rewrote the product (1+ t)(1+ at)(1+ aat) · · ·(1+ an−1t) as(
1+ y

xn−1

)(
1+ y

xn−3

)
· · ·

(
1+ y

x

)
(1+ yx)(1+ yx3) · · ·(1+ yxn−1).

To complete the calculations necessary for the symmetric form (29.48), it was sufficient
for Gauss to observe that the first half of the product could be rewritten as

y
1
2 n

x
1
4 nn

(
1+ xn−1

y

)(
1+ xn−3

y

)
· · ·

(
1+ x

y

)
.

It is interesting to note that the triple product formula (29.49) contains a plethora of
important special cases. Euler’s pentagonal numbers identity follows on taking x= q3/2

and y = −q1/2. Gauss’s formula for triangular numbers, derived earlier, follows by
taking x = q1/2 and y = q1/2.
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It is surprising that Gauss did not publish his work related to the triple product.
Gauss’s 1811 paper correctly noted the significance of the Gaussian polynomial (m,µ)
and later work of Rodrigues, P. MacMahon, and others revealed the combinatorial
import of the Gaussian polynomial and its generalization. In addition, Gaussian poly-
nomials played an important role in Cayley and Sylvester’s development of invariant
theory. It remained for Jacobi to rediscover the triple product formula and use it in his
theory of elliptic functions.

29.8 Jacobi: Triple Product Identity

In his work in the theory of elliptic functions, Jacobi encountered numerous infinite
products, a large number of which were particular cases of the product side of the
triple-product identity. And the product side of this identity was composed of two
infinite products, first elucidated by Euler, of the form (29.1). Because Jacobi wished
to convert his products in elliptic function theory into series, it was only natural for him
to start with Euler’s formula (29.3). Change q to q2 and x to z/q to get

(1+ qz)(1+ q3z)(1+ z5z)(1+ q7z) · · ·

= 1+ qz

1− q2
+ q4z2

(1− q2)(1− q4)
+ q9z3

(1− q2)(1− q4)(1− q6)
+·· · .

Jacobi then multiplied this equation by one in which z was replaced by 1/z, to obtain

(1+ qz)(1+ q3z)(1+ q5z) · · ·(1+ q/z)(1+ q3/z)(1+ q5/z) · · ·

= 1+ qz

1− q2
+ q4z2

(1− q2)(1− q4)
+ q9z3

(1− q2)(1− q4)(1− q6)
+·· ·

×
(

1+ q

1− q2

1

z
+ q4

(1− q2)(1− q4)

1

z2
+ q9

(1− q2)(1− q4)(1− q6)

1

z3
+·· ·

)
.

Jacobi observed that the coefficient of zn + 1/zn in the product on the right-hand
side was

qnn

(1− q2)(1− q4) · · ·(1− q2n)

×(1+ q2

1− q2
· q2n

1− q2n+2
+ q8

(1− q2)(1− q4)
· q4n

(1− q2n+2)(1− q2n+4)

+ q18

(1− q2)(1− q4)(1− q6)
· q6n

(1− q2n+2)(1− q2n+4)(1− q2n+6)
+·· ·). (29.50)

It seems that Jacobi had some trouble simplifying this expression and this delayed him
for quite a while. But he succeeded in resolving the problem by proving that

∞∏
n=1

(1− qnz)−1 =
∞∑
n=1

qn
2
zn

(1− q)(1− q2) · · ·(1− qn)(1− qz) · · ·(1− qnz) . (29.51)
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He replaced q by q2 and then set z= q2n to sum the series in (29.50). He thus found the
coefficient of zn+ 1

zn
to be qnn/

(
(1− q2) · · ·(1− q2n)

)
. This proved the triple product

identity. To prove (29.51), Jacobi assumed that the product on the left-hand side could
be expressed as a sum of terms of the form Anz

n/((1− qz) · · ·(1− qnz)) . For An,
he applied the standard procedure of changing z to qz to get a functional relation.
Obviously, the difficult point here was to conceive of that form of the series in which
the variable z would also appear in the denominator. Neither Euler nor Gauss came up
with such a series.

Jacobi’s formula (29.51) is very interesting. Note that the product on the left-hand
is the same as the product in Euler’s second formula (29.20) but the series on the right,
though similar in appearance, has an additional factor in the denominator of each term
of the sum. Jacobi may have asked whether it was possible to directly transform one
series into the other. This suggests a transformation theory of q-series similar to that
for hypergeometric series. Heinrich Eduard Heine (1821–1881) paved the way for the
study of transformations of q-series in his 1846 theory of the q-hypergeometric series.
We also note that in 1843, Cauchy gave a generalization of (29.51).

29.9 Eisenstein: q-Binomial Theorem

Eisenstein’s “Neuer Beweis und Verallgemeinerung des binomischen Lehrsatzes” was
one of three papers he submitted to Crelle’s Journal in May 1844. In this paper, he
proved the general q-binomial theorem, although Eisenstein wrote p instead of q, and
deduced from it the ordinary binomial theorem. His proof was based on an idea of
Euler and employed the multiplication of series. Eisenstein did not refer to Euler, but
mentioned Dirichlet and Ohm, who may have discussed Euler’s idea in their lectures.
Eisenstein first proved the finite case of the q-binomial theorem. For this he defined for
a positive integer α,

φ(x,α)= (1+ x)(1+ qx)(1+ q2x) · · ·(1+ qα−1x). (29.52)

He proved Rothe’s formula without reference to Rothe:

φ(x,α)=
α∑
t=0

Atx
t , (29.53)

where At = qα− 1

q− 1
· q

α−1 − 1

q2 − 1
· · · q

α−t+1 − 1

qt − 1
q

1
2 t (t−1). (29.54)

Note that this was done in the standard way by using the relation

(1+ qαx)φ(x,α)= (1+ x)φ(qx,α).
Eisenstein stated the general q-binomial theorem in the form

φ(x,α)≡
∞∑
t=0

Atx
t = (1+ x)(1+ qx)(1+ q2x) · · ·

(1+ qαx)(1+ qα+1x)(1+ qα+2x) · · · , (29.55)
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where |q|< 1, and α was any number. To prove this, he first wished to show that

φ(x,α+β)= φ(x,α)φ(qαx,β). (29.56)

For this purpose, he demonstrated that

Ct =At +At−1B1q
α+At−2B2q

2α+·· ·+Btqtα, (29.57)

where Bt and Ct were obtained from (29.54) by replacing α by β and α by α + β,
respectively. He noted that (29.56) and (29.57) were clearly true when α and β were
positive integers. Eisenstein then set u= qα and v = qβ and observed that both sides
of (29.57) were equal for infinitely many values of u and v, and thus (29.57) was
identically true. At this point, Eisenstein noted that the proof could be completed in
the usual manner and referred to Dirichlet and Ohm. From chapter 4, one may see that
Eisenstein intended to use (29.56) to prove (29.55) for all integers α, and then for all
rational numbers, and finally (by continuity) for all real α.

29.10 Jacobi’s q-Series Identity

In 1845, Jacobi proved the q-binomial theorem and obtained an extension of the Van-
dermonde identity, as well as an extension of Gauss’s 2F1 summation formula. Recall
Gauss’s summation formula:

∞∑
n=0

(a)n(b)n

n!(c)n = �(c)�(c− a− b)
�(c− a)�(c− b)

when Re(c − a − b) > 0. Note that when a = −m, a negative integer, we have
Vandermonde’s identity

m∑
n=0

(−m)n(b)n
n!(c)n = (c− b)m

(c)m
. (29.58)

This identity is not difficult and follows immediately from the Gregory–Newton inter-
polation formula; it can also be obtained by multiplying two binomial series and
equating coefficients. As Richard Askey has pointed out, around 1301, the Chinese
mathematician Chu Shih-Chieh (also Zhu Shijie) discovered two equations; when they
are combined, they yield this identity. Vandermonde found it in 1772.

In Jacobi’s notation, the q-binomial theorem was stated as

[w,v] ≡ 1+ v−w

1− x z+
(v−w)(v− xw)
(1− x)(1− x2)

z2 + (v−w)(v− xw)(v− x2w)

(1− x)(1− x2)(1− x3)
z3 +·· ·

= (1−wz)(1− xwz)(1− x2wz)(1− x3wz) · · ·
(1− vz)(1− xvz)(1− x2vz)(1− x3vz) · · · . (29.59)

Let φ(z) denote the product. In his proof, Jacobi assumed that

φ(z)= 1+A1z+A2z
2 +A3z

3 +A4z
4 +·· ·
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and observed that φ(z) satisfied the functional relation

φ(z)−φ(xz)= vφ(z)−wφ(xz).

Thus, the coefficients A1, A2, A3, . . . satisfied the equations

(1− x)A1 = v−w, (1− x2)A2 = (v− xw)A1, (1− x3)A3 = (v− x2w)A2, · · · .
By induction, this gives the desired result.

Now note that from the product expression for [w,v] it is easy to see that
[w,v][v,1] = [w,1]. If the corresponding series are substituted in this equation and
the coefficient of zp equated on the two sides, then the result is a q-extension of the
Chu-Vandermonde identity. Jacobi wrote that he saw this result in Schweins’s Analysis:

(1−w)(1− xw)(1− x2w) · · ·(1− xp−1w)

(1− x)(1− x2)(1− x3) · · ·(1− xp)

=
p∑
k=0

(v−w)(v− xw) · · ·(v− xk−1w)

(1− x)(1− x2) · · ·(1− xk) · (1− v)(1− xv) · · ·(1− xp−k−1v)

(1− x)(1− x2) · · ·(1− xp−k) . (29.60)

Note that the empty products occurring in the sum have the value 1. Now, it is possible
to prove Gauss’s formula from the Chu-Vandermonde identity, but it is not easy, and
such a proof was not known in Jacobi’s time. But in a beautiful argument, Jacobi used
(29.60), the q-extension of Vandermonde, to prove a q-extension of Gauss’s formula.
He divided both sides of the equation by the first term on the right-hand side, to get
(after a change of variables)

(1−u)(1− xu)(1− x2u) · · ·(1− xp−1u)

(1− r)(1− xr)(1− x2r) · · ·(1− xp−1r)

= 1+
p∑
k=1

(−1)k
(u− r)(u− xr) · · ·(u− xk−1r)

(1− x)(1− x2) · · ·(1− xk)

× (1− x
p)(1− xp−1) · · ·(1− xp−k+1)

(1− r)(1− xr) · · ·(1− xk−1r)
xk(k−1)/2. (29.61)

Jacobi stated the extension of Gauss’s formula in the form

1+ (1− s)(1− t)
(1− x)(1− r) r +

(1− s)(x− s)(1− t)(x− t)
(1− x)(1− x2)(1− r)(1− xr) r

2

+ (1− s)(x− s)(x2 − s)(1− t)(x− t)(x2 − t)
(1− x)(1− x2)(1− x3)(1− r)(1− xr)(1− x2r)

r3 +·· ·

= (1− sr)(1− tr)
(1− r)(1− str) ·

(1− xsr)(1− xtr)
(1− xr)(1− xstr) ·

(1− x2sr)(1− x2tr)

(1− x2r)(1− x2str)
· · · · . (29.62)
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He showed that when t = xp, and p = 0,1,2, . . . , this was reduced to the identity
(29.61). Thus, (29.62) was true for an infinite number of values of t and, by symmetry,
for an infinite number of values of s. He then observed that

(1− sr)(1− tr)
(1− r)(1− str) = 1+ c1r + c2r

2 + c3r
3 +·· ·

where c1, c2, c3, . . . were polynomials in s and t . This implied that the product on the
right-hand side of (29.62) was of the form

(1+c1r+c2r
2 +c3r

3 +·· ·) · (1+c1xr+c2x
2r2 +·· ·) · (1+c1x

2r+c2x
4r2 +·· ·) · · · .

This product would then be of the form 1+b1r+b2r
2+b3r

3+·· · ,where b1, b2, b3, . . .

were polynomials in s and t . To complete the proof, Jacobi wrote the left-hand side
of (29.62) in powers of r as 1+ k1r + k2r

2 + ·· · , so that k1, k2, . . . were polynomials
in s and t . Jacobi concluded that bi = ki because it held for an infinite number of
values of s and t . This completed the proof of (29.62). Jacobi also observed, without
giving a precise definition, that the products on the right-hand sides of (29.62) could
be considered q-analogs of the gamma functions in Gauss’s formula. Very soon after
this, Heine obtained a nearly correct definition.

29.11 Cauchy and Ramanujan: The Extension of the Triple Product

In 1843,Augustin-Louis Cauchy published an important paper containing the first state-
ment and proof of the general q-binomial theorem and an extension of the triple product
identity. To be clear and succinct in stating the results of Cauchy and Ramanujan, we
introduce the following modern notation: Let

(a;q)n = (1− a)(1− aq) · · ·(1− aqn−1), forn≥ 1,

= 1, forn= 0,

= 1

(1− q−1a)(1− q−2a) · · ·(1− q−na) , forn≤ 0.

And (a;q)∞ = (1 − a)(1 − qa)(1 − q2a) · · · . Using this notation, the q-binomial
theorem can be stated as

∞∑
n=0

(a;q)n
(q;q)n x

n = (ax;q)∞
(x;q)∞ .

For convergence we require |x|< 1, |q|< 1. Cauchy’s extension of the triple product
identity can now be stated for 0< |bx|< 1:

∞∑
n=−∞

(a
b
;q

)
n

bnxn = (ax;q)∞
(
q

ax
;q)∞ (q;q)∞

(bx;q)∞
(
bq

a
;q)∞ .

Here, Cauchy failed to find the better result, called the Ramanujan 1ψ1 sum, generalizing
the q-binomial theorem as well as the triple product identity. G. H. Hardy found this
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theorem without proof in Srinivasa Ramanujan’s (1887–1920) notebooks and published
them in his 1940 lectures on Ramanujan’s work. This formula provides the basis for the
study of bilateral q-series.

Ramanujan’s theorem can be stated as

∞∑
n=−∞

(a;q)n
(b;q)n x

n = (ax;q)∞(q/ax;q)∞(q;q)∞(b/a;q)∞
(x;q)∞(b/ax;q)∞(b;q)∞(q/a;q)∞ ,

where |q|< 1 and |b/a|< |x|< 1.

29.12 Rodrigues and MacMahon: Combinatorics

Olinde Rodrigues and Percy Alexander MacMahon made important contributions to
combinatorial problems connected with Gaussian polynomials and their generaliza-
tions. Olinde Rodrigues (1794–1851) was a French mathematician whose ancestors
most probably left Spain, fleeing the persecution of the Jews. He studied at the Lycée
Impérial in Paris and then at the new Université de Paris. He published six mathematical
papers during 1813–16, one of which contains his well-known formula for Legendre
polynomials. He did not pursue an academic career, perhaps because of religious dis-
crimination. In fact, he apparently gave up mathematical research for over two decades,
returning to it in 1838; he then produced papers on combinatorics and an important
work on rotations.

Rodrigues’s theorem from 1839 gave the generating function for the number of
permutations Z(n,k) of n distinct objects with k inversions; this was the number of
permutations a1,a2, . . . ,an, of 1,2,3, . . . ,n with k pairs (ai,aj ), such that i < j and
ai > aj . The values of k range from 0 to n(n− 1)/2. To find the generating function
of Z(n,k), Rodrigues argued that Z(n,k) was the number of integer solutions of the
equation

x0 + x1 + x2 +·· ·+ xn−1 = k,
where 0≤ xi ≤ i for i= 0,1, . . . ,n−1. This implied that theZ(n,k)was the coefficient
of tk in the product

(1+ t)(1+ t + t2)(1+ t + t2 + t3) · · ·(1+ t + t2 +·· ·+ tn−1).

As immediate corollaries, Rodrigues had

Z(n,0)+Z(n,1)+·· ·+Z(n,n− 1)= n!,
Z(n,0)−Z(n,1)+Z(n,2)−·· ·+ (−1)n−1Z(n,n− 1)= 0.

The first relation also answered a question posed by Stern on the sum of all the inversions
in the permutations of n letters. Note that we can write Rodrigues’s result as

n(n−1)/2∑
k=0

Z(n,k)qk = (1− q)(1− q2) · · ·(1− qn)
(1− q)n . (29.63)
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Then, we see that the expression on the right-hand side is the q-extension of n!.
In 1913, MacMahon found another important way of classifying permutations

by defining the greater index of a permutation. For a permutation a1,a2, . . .an of
1,2,3, . . .n, MacMahon defined the greater index to be the sum

∑n−1
i=1 λ(ai), where

λ(ai) = i if ai > ai+1, and λ(ai) = 0 otherwise. Let G(n,k) denote the number of
permutations for which the greater index is equal to k. MacMahon proved that

n(n−1)/2∑
k=0

G(n,k)qk = (1− q)(1− q2) · · ·(1− qn)
(1− q)n . (29.64)

This immediately gave him the result

G(n,k)=Z(n,k). (29.65)

In fact, MacMahon proved his theorems even more generally, for permutations of
multisets. In a multiset, the elements need not be distinct. For example, 1m12m2 . . . rmr

denotes a multiset with m1 ones, m2 twos, and so on. The concepts of inversion and
greater index can be extended in an obvious way to multisets. So ifZ(m1,m2, . . . ,mr;k)
and G(m1,m2, . . .mr;k) denote the number of permutations with k inversions and the
number of permutations with greater index k, then MacMahon had∑

Z(m1,m2, . . . ,mr;k)qk =
∑

G(m1,m2, . . . ,mr;k)qk

= (1− q)(1− q2) · · ·(1− qm1+m2+···+mr )
(1− q) · · ·(1− qm1)(1− q) · · ·(1− qm2) · · ·(1− q) · · ·(1− qmr ) . (29.66)

Note that when r = 2, the expression on the right is the Gaussian polynomial
(m1 +m2,m1), in Gauss’s notation. Just as the Gaussian polynomial is the q-binomial
coefficient, we can see that (29.66) is the q-multinomial coefficient.

MacMahon (1854–1929) studied at the military academy at Woolwich. He became a
lieutenant in 1872, captain in 1881, and major in 1889. He returned to Woolwich as an
instructor in 1882. This teaching post, along with his friendship with the mathematician
George Greenhill, set the scene for MacMahon to exercise his mathematical talents.
Starting in the early 1880s, he contributed numerous important papers to the subject
of combinatorics and related topics, including symmetric functions and invariants. He
was also a fast arithmetical calculator and constructed a table of partitions of integers up
through 200. By studying this table, Ramanujan was able to discover the arithmetical
properties of the partition function. MacMahon’s calculations played a crucial role in
Ramanujan’s research, influential even today.

29.13 Exercises

1. Prove Bernoulli’s formulas (29.17) and (29.18) for the probabilities to win.
2. Prove Euler’s first identity (29.19).
3. For (m,µ) defined by (29.27), prove Gauss’s formulas (29.28), (29.29), and

(29.30).
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4. Following F. H. Jackson, set [α] = 1−qα
1−q , [n]! = [1][2] · · · [n], and

(1− x)(−α) =
∞∑
k=1

(
(1− qkx)/(1− qk+αx)) .

Show that

(1− x)(−α) = 1+ [α]
[1]! x+

[α][α+ 1]
[2]! qx2 + [α][α+ 1][α+ 2]

[3]! q3x3 +·· · .

See Jackson (1910).
5. Let u′(x)≡,u(x)= u(x)−u(qx)

x−qx and ,−1u(x)≡ ∫
u(x)dqx. Show that

(a)
∫
(x)u′(x)dqx = u(x)v(x)−

∫
u(qx)v′(x)dqx.

(b) (i) ,(1− x)(n+1) = [n+ 1](1− qx)(n).
(ii)

∫
xm(1− qx)(n)dqx =− xm

[n+1] (1− x)(n+1)+ [m]
[n+1]

∫
xm−1

(1− qx)(n+1)dqx.
(iii)

∫ 1
0 x

m(1− qx)(n)dqx = [m]
[n+1]

∫ 1
0 x

m−1(1− qx)(n+1)dqx

= �q(m+ 1)(�q(n+ 1)

�q(m+n+ 2)
≡ Bq(m+ 1,n+ 1).

(iv)
∫ 1

0 t
β−1(1− qt)(γ−β−1)(1− qαtx)αdqt

= Bq(β,γ −β)
(

1+ (1− qα)(1− qβ)
(1− q)(1− qγ

)
x

+ (1− q
α)(1− qα+1)(1− qβ)(1− qβ+1)

(1− q)(1− q2)(1− qγ )(1− qγ+1)
x2 +·· · .

(c)

1+ (1− qα)(1− qβ)
(1− q)(1− qγ ) q

γ−α−β

+ (1− qα)(1− qα+1)(1− qβ)(1− qβ+1)

(1− q)(1− q2)(1− qγ )(1− qγ+1)
q2(γ−α−β)+·· ·

= Bq(β,γ −α−β)
Bq(β,γ −β) .

(d)
∫∞

0
tm−1

(1+qy)(l+m) dqt =
�q(m)�q (l)

�q (m+l) , provided l +m is an integer. See Jackson
(1910).
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6. Prove Cauchy’s formula

(ax;q)∞
(bx;q)∞ =

∞∑
n=0

(b− a)(bq− a) · · ·(bqn−1 − a)q

n
2


xn

(q;q)n(bx;q)n .

See Cauchy (1882–1974), vol. 8, series 1, pp. 42–50.
7. Prove Ramanujan’s quintuple product identity

H(x)≡
∞∏
n=1

(1− qn)(1− xqn)(1− qn−1/x)(1− x2q2n−1)(1− q2n−1/x2)

=
∞∑

n=−∞
(x3n− x−3n−1)qn(3n+1)/2.

One method of proof is to assume H(x) = ∑∞
n=−∞ c(n)x

n. Then compute
H(qx)/H(x) and H(1/x)/H(x) to determine c(n) in terms of c(0). To find
c(0), specialize x. This formula was discovered several times. It is possible that
Weierstrass was aware of it, since it follows from a three-term relation for sigma
functions, a part of elliptic functions theory, presented by Weierstrass in his lec-
tures. This formula appears explicitly in a 1916 book on elliptic functions by
R. Fricke. Again, Ramanujan found it around that same time and made exten-
sive use of it. In this exercise, we name the formula after Ramanujan. For a
detailed history of the formula and several proofs, see Cooper (2006). Also see
the remarks in Berndt (1985–98), Part III, p. 83.

8. Prove the septuple product identity of Farkas and Kra:

(1+ x)(1− x)2
∞∏
n=1

(1− qn)2(1− qnx)(1− qn/x)(1− qnx2)(1− qn/x2)

=
∞∑
−∞
(−1)nq(5n

2+n)/2
( ∞∑

−∞
(−1)nq(5n

2+3n)/2x5n+3 +
∞∑
−∞
(−1)nq(5n

2−3n)/2x5n

)

−
∞∑
−∞
(−1)nq(5n

2+n)/2
( ∞∑

−∞
(−1)nq(5n

2+n)/2x5n+2 +
∞∑
−∞
(−1)nq(5n

2−n)/2x5n+1

)
.

This result generalizes the quintuple product identity. For a proof, see Farkas
and Kra (2001), p. 271.

29.14 Notes on the Literature

For Jakob Bernoulli’s series arising from probability theory, see Bernoulli (2006),
translated with an extensive introduction by Sylla, pp. 176–180. Note that Bernoulli
presented four problems leading to theta series in his Ars Conjectandi, but two of these
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had appeared earlier, in his 1685 paper. Hald (1990) gives a translation of the problems
contained in this paper. Euler published his first paper on the partition of integers in
1741; it can be found in Eu. I-2, pp. 163–193. He gave a longer treatment of this work
in chapter 16 of his Introductio; see Euler (1988). Euler conjectured the pentagonal
number theorem at the end of his 1741 paper, but published a proof nine years later;
see Eu. I-2, pp. 254–294. See Fuss (1968), vol. I, pp. 522–524 for Euler’s June 1750
letter to Goldbach, containing his proof.

The charming English translation of the excerpt from Gauss’s letter to Olbers was
taken from Bühler (1981), p. 31, and the diary translation is from Dunnington (2004),
p. 481. See Gauss (1863–1927), vol. 3, pp. 437–439 for his theorem concerning trian-
gular and square numbers and pp. 461–464 for his proof of the triple product identity.
Remmert (1998), p. 29, gives the translated quotation from Legendre’s letter, on Gauss’s
claim that he knew the triple product identity. For Gauss’s evaluation of the quadratic
Gauss sum, see Gauss (1981), pp. 467–481. Also see Patterson (2007). For more papers
on related topics, see Goldstein, Schappacher, and Schwermer (2007). Jacobi first pub-
lished his proof of the triple product identity in his Fundamenta Nova of 1829, laying the
foundations of a new theory of elliptic functions; see Jacobi (1969), vol. l, pp. 232–234.
For his version of the q-binomial theorem and the extension of Gauss’s summation, see
Jacobi (1969), vol. 6, pp. 163–171. Eisenstein (1975), vol. 1, pp. 117–121 is a reprint
of his paper on the q-binomial theorem.

See Rodrigues (1839) for inversions in permutations, and see MacMahon (1978),
vol. l, pp. 508–563 for his results. Also see Altmann and Ortiz (2005) for more infor-
mation about Rodrigues. For recent developments and proofs connected with the triple
product identity, see Andrews (1986), pp. 63–64, Foata and Han (2001), and Wilf
(2001). Askey (1975) discusses the discovery of Chu on pp. 59–60.
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Partitions

30.1 Preliminary Remarks

We have seen how the theory of partitions originated with Philip Naudé’s problems to
Euler, who used generating functions to solve them. Euler employed the same idea to
prove the following remarkable theorem:

The number of different ways a given number can be expressed as the sum of different whole
numbers is the same as the number of ways in which that same number can be expressed as the
sum of odd numbers, whether the same or different.

For example, the number of ways six can be expressed as a sum of different whole
numbers is four:

6, 5+ 1, 4+ 2, 3+ 2+ 1.

And six can be expressed as a sum of odd numbers in the following four ways:

5+ 1, 3+ 3, 3+ 1+ 1+ 1, 1+ 1+ 1+ 1+ 1+ 1.

To prove this in general, Euler gave the generating function for the number of partitions
with distinct parts:

(1+ q)(1+ q2)(1+ q3)(1+ q4)(1+ q5)(1+ q6) · · · .
Observe that 4 is the coefficient of q6 in the power series expansion of this product, for
q6 can be obtained as q6,q5q,q4q2, and q3q2q. On the other hand, Euler noted that the
generating function for odd parts was

1

(1− q)(1− q3)(1− q5) · · · = (1+q+q
1+1 +·· ·)(1+q3 +q3+3 +·· ·)(1+q5 +·· ·).

To prove the theorem, Euler showed that the generating functions and therefore the
coefficients of their series expansions were identical:

(1+ q)(1+ q2)(1+ q3)(1+ q4) · · · = 1− q2

1− q · 1− q4

1− q2
· 1− q6

1− q3
· 1− q8

1− q4
· · ·

627
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= 1

1− q · 1

1− q3
· 1

1− q5
· · · . (30.1)

We noted earlier that in 1742 Euler conjectured and eight years later he proved the
pentagonal number theorem

∞∏
n=1

(1− qn)=
∞∑

n=−∞
(−1)nqn(3n−1)/2. (30.2)

Though Euler did not give a combinatorial interpretation of this identity,A. M. Legendre
found one and included it in the 1830 edition of his number theory book. To understand
Legendre’s interpretation, consider how q6 would arise in the power series expansion
of the infinite product

(−q)(−q2)(−q3)=−q6, (−q)(−q5)=+q6, (−q2)(−q4)=+q6, (−q6)=−q6.

When the partition of 6 contains an odd number of parts (e.g., 6 = 1+ 2+ 3) then a
corresponding −1 is contributed to the coefficient of q6 in the series. When the number
of parts is even, then +1 is contributed. Hence the coefficient of q6 in the series is 0.
Thus, if we denote by pe(n),p0(n) the number of partitions of n with an even/odd
number of distinct parts, then Legendre’s theorem states that

pe(n)−p0(n)= (−1)m, when n=m(3m± 1)/2,

= 0, when n �=m(3m± 1)/2.

Even before Euler, Leibniz once enquired of Johann Bernoulli whether he had
considered the problem of finding the number of partitions of a given number.
Leibniz thought the problem was important and mentioned its connection with
the number of monomial symmetric functions of a given degree. For example,
the partitions of three, 3,2 + 1,1 + 1 + 1, correspond to the symmetric functions∑
a3,

∑
a2b,

∑
abc. However, it seems that neither Leibniz nor Bernoulli pursued

this topic any further.
After Euler, J. J. Sylvester (1814–1897) was the next mathematician to make

major contributions to the theory of partitions. Sylvester entered St. John’s College,
Cambridge, in 1833 and came out as Second Wrangler in 1837. The great applied math-
ematician George Green was fourth. Sylvester, of Jewish heritage, was unwilling to sign
the thirty-nine articles; consequently, he was unable to take a degree, to obtain a fellow-
ship, or to compete for one of the Smith’s prizes. It was only in 1855 that he received
a professorship of mathematics at the Royal Military Academy at Woolwich. Unfortu-
nately, in 1870 he was retired early from this position, when his mathematical creativity
was at its peak. In 1875, when Johns Hopkins University was founded in Baltimore,
Sylvester was elected the first professor of mathematics (1876–83). Sylvester enjoyed a
happy and productive late career in Baltimore; he there founded the American Journal of
Mathematics whose first volume appeared in 1878. Moreover, Sylvester very success-
fully trained a number of excellent mathematicians, inaugurating serious mathematical
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research in America. It is not surprising that many of these American mathematicians
contributed to the theory of partitions, since research in that topic required abundant
ingenuity but minimal background.

Sylvester’s interest in partitions arose fairly early. In 1853, he published a paper on
his friend Cayley’s quick method for determining the degree of a symmetric function
expressed as a polynomial in elementary symmetric functions. For that purpose, Cayley
had employed a result Sylvester attributed to Euler: “to wit, that the number of ways
of breaking up a number n into parts is the same, whether we impose the condition
that the number of parts in any partitionment shall not exceedm, or that the magnitude
of any one of the parts should not exceed m.” To understand this last result, consider
that the generating function for the number of partitions of an integer into at most m
parts, with each part ≤ n, can be inductively demonstrated to be equal to the Gaussian
polynomial

(1− qm+n)(1− qm+n−1) · · ·(1− qm+1)

(1− qn)(1− qn−1) · · ·(1− q) .

This polynomial remains unchanged when m and n are interchanged; hence follows
the result used by Sylvester. The Gaussian polynomial also cropped up in the work of
Cayley and Sylvester in invariant theory. As we shall see in chapter 34, they related
the coefficients of the polynomial to the number of independent seminvariants. Cayley
and Sylvester took an interest in partitions as a result of their researches on invariants.
Though they both contributed to partition theory, Sylvester made the subject his own
domain by establishing fundamental ideas and producing new researchers, in the form
of his students.

Agraphical proof of Euler’s theorem would start out by representing a given partition
as a graph. For example, write the partition 5+ 2+ 1 of eight as

• • • • •
• •
•

and then enumerate by columns. Thus, one obtains the conjugate partition 3 + 2 +
1 + 1 + 1 of eight. It is immediately clear that if we have a partition of an integer
N into n parts of which the largest is m, then its conjugate is a partition of N into
m parts of which the largest is n. This at once gives us the theorem: The number of
partitions of any integer N into exactly n parts with the largest part m and the number
of partitions of N into at most n parts with the largest part at most m both remain the
same when m and n are interchanged. The proof of this theorem using the generating
function method is less illuminating, illustrating the power of the graphical method.
Sylvester remarked that he learned the technique from its originator, N. M. Ferrers.
In a footnote to his paper, Sylvester wrote, “I learn from Mr Ferrers that this theorem
was brought under his cognizance through a Cambridge examination paper set by
Mr Adams of Neptune notability.” Here Sylvester was referring to the astronomer John
Couch Adams, discoverer of Neptune.

It was within this very concrete graphical method that Sylvester and his Ameri-
can students, including Fabian Franklin, William Durfee, and Arthur Hathaway, made
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their original and important contributions to the theory of partitions. It is interest-
ing to note that the other significant results obtained by American mathematicians at
around the same time were in abstract algebra. At that time, this too was a topic requir-
ing a minimal amount of background knowledge, unlike subjects such as the theory
of abelian functions. Early American results in abstract algebra included Benjamin
Peirce’s (1809–1880) paper on linear associative algebras dating from 1869, published
posthumously in 1881 by his son Charles Saunders Peirce (1839–1914) in Sylvester’s
new journal. B. Peirce introduced the important concepts of nilpotent and idempotent
elements and the paper starts with his famous dictum “Mathematics is the science which
draws necessary conclusions.” C. S. Peirce added an appendix to the paper, proving a
significant theorem of his own on finite dimensional algebras over the real numbers. In
modern language, the theorem states: The only division algebras algebraic over the real
numbers are the fields of real and complex numbers and the division ring of quarternions.

The German mathematician G. Frobenius (1849–1917) also discovered this theorem
at about the same time as Peirce, though he published it in 1877. The Frobenius-
Peirce theorem and Franklin’s beautiful proof of Euler’s pentagonal number theorem
are the earliest major contributions by Americans to mathematics. We shall see details
of Franklin’s work later in this chapter; concerning C. S. Peirce, we simply note that
he made outstanding contributions to mathematical logic and to some aspects of phi-
losophy. The systematic philosopher Justus Buchler, who edited Peirce’s philosophical
writings, stated in the introduction, “Even to the most unsympathetic, Peirce’s thought
cannot fail to convey something of lasting value. It has a peculiar property, like that
of the Lernean hydra: discover a weak point, and two strong ones spring up beside it.
Despite the elaborate architectonic planning of its creator, it is everywhere uncompleted,
often distressingly so. There are many who have small regard for things uncompleted,
and no doubt what they value is much to be valued. In his quest for magnificent array, in
his design for a mighty temple that should house his ideas, Peirce failed. He succeeded
only in advancing philosophy.”

After the researches of Sylvester and his young American students, P. A. MacMahon
(1854–1929) dominated the topic of partitions. One of MacMahon’s results was con-
nected with Ramanujan’s 1910 rediscovery of two identities, first found by Rogers in
the 1890s during his work on q-series:

∞∑
m=0

qm
2

(q;q)m =
∞∏
m=0

(
1− q5m+1

)−1 (
1− q5m+4

)−1
, (30.3)

∞∑
m=0

qm(m+1)

(q;q)m =
∞∏
m=0

(
1− q5m+2

)−1 (
1− q5m+3

)−1
. (30.4)

In 1913, Srinivasa Ramanujan communicated these identities to G. H. Hardy, although
by this time Rogers’s work was forgotten. Ramanujan had no proof; Hardy unsuccess-
fully sought a proof, showing the identities to his colleagues. MacMahon was among
those who saw the formulas. An expert in symmetric functions, invariant theory, par-
titions, and combinatorics, he had known Sylvester and his work. Thus, it was natural
that MacMahon conceived of an interpretation of the identities in terms of partitions.
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By expanding (1− q5m+1)−1 and (1− q5m+4)−1 as geometric series, the coefficient of
qn in the expression on the right-hand side of the first identity is clearly equivalent to
the number of partitions of n into parts ≡ 1 or 4 (mod 5). For the left-hand side, observe
that

m2 = (2m− 1)+ (2m− 3)+·· ·+ 5+ 3+ 1,

or the sum of the first m odd parts. We can find a partition of n if n−m2 is partitioned
into at most m parts with the largest part added to 2m− 1, the next to 2m− 3 and so
on. The parts in this partition of n differ by at least 2. Moreover, the partitions of n
associated with a specific m are enumerated by

qm
2

(1− q)(1− q2) · · ·(1− qm),

and the sum of these terms yields all the partitions of this form. We therefore have
MacMahon’s theorem, presented in his 1915 Combinatory Analysis: The number of
partitions of n in which the difference between any two parts is at least 2, equals the
number of partitions of n into parts ≡ 1 or 4 (mod 5). We note that in MacMahon’s own
statement of the theorem, instead of specifying that the parts differ by at least 2, he wrote
that there were neither repetitions nor sequences. In a similar way, the second identity
states: The number of partitions of n in which the least part is ≥ 2 and the difference
between any two parts is at least 2, is equal to the number of partitions of n into parts
≡ 2 or 3 (mod 5). This arises out of the relation m(m+ 1)= 2+ 4+ 6+·· ·+ 2m.

Several proofs of the Rogers–Ramanujan identities have been given and they have
been generalized both combinatorially and analytically. Issai Schur independently dis-
covered the Rogers–Ramanujan identities and their partition theoretic interpretation;
in 1917 he gave two proofs, one of which was combinatorial. However, as Hardy wrote
in 1940, it is only natural to seek an argument that sets up a one-to-one correspondence
between the two sets of partitions. No such bijective proof was known in Hardy’s
time, and it was not until 1981 that Adriano Garsia and Stephen Milne, working on the
foundation established by Schur, published a proof of the MacMahon–Schur theorem,
equivalent to the Rogers–Ramanujan identities. We note that Schur’s combinatorial
proof also motivated Basil Gordon’s 1961 partition-theoretic generalization. See the
exercises.

Issai Schur (1875–1941) was born in Russia but studied at the University of Berlin
under Georg Frobenius who had a great influence on him. Schur made fundamental
contributions to representation theory, to the related theory of symmetric functions,
and also to topics in analysis such as the theory of commutative differential operators.
A great teacher, he founded an outstanding school of algebra in Berlin. Dismissed from
his chair by the Nazi government, he took a position in 1938 at the Hebrew University
in Jerusalem.

Garsia and Milne’s bijective proof of the Rogers–Ramanujan identities is based on
their involution principle: LetC =C+∪C−, whereC+∩C− = φ, be the disjoint union
of two finite components C+ and C−. Let α and β be two involutions on C, each of
whose fixed points lie in C+. Let Fα (resp Fβ) denote the fixed-point set of α (resp
β). Suppose α(C+−Fα)⊂C− and α(C−)⊂C+ and similarly β(C+−Fβ)⊂C− and
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β(C−)⊂ C+. Then a cycle of the permutation ,= αβ contains either fixed points of
neither α nor β, or exactly one element of Fα and one of Fβ . This powerful involution
principle has been successfully applied to several q-series identities. Garsia and Milne’s
proof of Rogers–Ramanujan was very long but soon afterward David Bressoud and
Doron Zeilberger found a shorter proof.

Now observe that in Euler’s theorem the parts are distinct and hence differ by at least
one, whereas in MacMahon’s theorem the parts differ by at least two. If we denote by
qd,m(n) the number of partitions of n into parts differing by at least d, each part being
greater than or equal to m, the Euler and MacMahon theorems take the form

qd,m(n)= pd,m(n),
where pd,m(n) is the number of partitions of n into parts taken from a fixed set Sd,m.
H. L. Alder observed that for d = 1, m could be taken to be any positive integer. In
fact, the number of partitions of n into distinct parts, with each part ≥ m, was equal
to the number of partitions of n into parts taken from the set {m,m+ 1, . . . ,2m− 1,
2m+ 1,2m+ 3, . . . }.

In 1946 D. H. Lehmer proved for m= 1, and in 1948 Alder proved for the general
case: The number qd,m(n) is not equal to the number of partitions of n into parts taken
from any set of integers whatsoever unless d = 1 or d = 2, m= 1,2. Now the generating
function for qd,m(n) is easily seen to be

∞∑
k=0

qmk+dk(k−1)/2

(1− q)(1− q2) · · ·(1− qk) , (30.5)

while the generating for partitions with parts from a fixed set {a1,a2,a3, . . . } is
1/

∏∞
k=1(1− qak ). Alder’s proof consisted in showing that no matter how the ak were

chosen, the two generating functions could not be equal for the values of m and d
excluded by the theorem.

When MacMahon interpreted the Rogers–Ramanujan identity in terms of partitions,
Hardy and Ramanujan may have been spurred to examine the asymptotic behavior of
p(n), the number of partitions of n. MacMahon assisted them in this work by construct-
ing a table of p(n) for n = 1,2, . . . ,200. We later consider the impact of this on the
work of Hardy and Ramanujan. For now, we note that this table was created by means
of Euler’s formula

p(n)= p(n− 1)+p(n− 2)−p(n− 5)−p(n− 7)+·· ·

+ (−1)m−1p

(
n− 1

2
m(3m− 1)

)
− (−1)m−1p

(
n− 1

2
m(3m+ 1)

)
· · · .

(30.6)

Note that p(k)= 0 for k negative. This formula is quite efficient for numerical work.
Ramanujan enjoyed numerical computation and could do it with unusual rapidity and
accuracy. It is therefore interesting that in his obituary notice of Ramanujan, Hardy
wrote, “There is a table of partitions at the end of our paper . . . . This was, for the
most part, calculated independently by Ramanujan and Major MacMahon; and Major
MacMahon was, in general, slightly the quicker and more accurate of the two.”
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J. E. Littlewood once remarked that every positive integer was one of Ramanujan’s
personal friends. Thus, Ramanujan noticed in the tables something missed by others,
the arithmetical properties of partitions. In his 1919 paper on partitions he wrote,

On studying the numbers in this table I observed a number of curious congruence properties,
apparently satisfied by p(n). Thus

(1) p(4), p(9), p(14), p(19), . . . ≡ 0 (mod5),

(2) p(5), p(12), p(19), p(26), . . . ≡ 0 (mod7),

(3) p(6), p(17), p(28), p(39), . . . ≡ 0 (mod11),

(4) p(24), p(49), p(74), p(99), . . . ≡ 0 (mod25),

(5) p(19), p(54), p(89), p(124), . . . ≡ 0 (mod35),

(6) p(47), p(96), p(145), p(194), . . . ≡ 0 (mod49),

(7) p(39), p(94), p(149), . . . ≡ 0 (mod55),

(8) p(61), p(138), . . . ≡ 0 (mod77),

(9) p(116), . . . ≡ 0 (mod121),

(10) p(99), . . . ≡ 0 (mod125).

From these data I conjectured the truth of the following theorem: If δ= 5a7b11c and 24λ≡ 1 (mod
δ) then

p(λ),p(λ+ δ),p(λ+ 2δ), . . . ≡ 0 (modδ).

Ramanujan gave very simple proofs of p(5m+ 4)≡0 (mod 5) and p(7m+ 5)≡0
(mod 7), using only Euler’s pentagonal number theorem and Jacobi’s formula for∏∞
n=1(1− qn)3. Ramanujan’s further efforts, to prove p(25m+ 24)≡ 0 (mod 25) and

p(49m+ 47) ≡ 0 (mod 49), led him deeper into the theory of modular functions. In
particular, he found the following two remarkable identities:

p(4)+p(9)q+p(14)q2 +·· · = 5
{(1− q5)(1− q10)(1− q15) · · · }5

{(1− q)(1− q2)(1− q3) · · · }6
(30.7)

p(5)+p(12)q+p(19)q2 +·· · = 7
{(1− q7)(1− q14)(1− q21) · · · }3

{(1− q)(1− q2)(1− q3) · · · }4

+49q
{(1− q7)(1− q14)(1− q21) · · · }7

{(1− q)(1− q2)(1− q3) · · · }8
. (30.8)

The rest of Ramanujan’s conjecture concerning the divisibility of the partition function
by 5a7b11c is not completely correct. In 1934, on the basis of the extended tables for
p(n) constructed by Hansraj Gupta, Sarvadaman Chowla observed that p(243)was not
divisible by 73, though 24 ·243 ≡ 1 (mod 73). However, p(243) is divisible by 72. The
correct reformulation of Ramanujan’s conjecture would state: Let δ = 5a7b11c,δ′ =
5a7b

′
11c, where b′ = b, if b = 0,1,2, and b′ = &(b+ 2)/2', if b > 2. If 24λ≡ 1 (mod

δ), then
p(λ+nδ)≡ 0 (modδ′), n= 0,1,2, . . . . (30.9)

In an unpublished manuscript, Ramanujan outlined a proof of his conjecture for
arbitrary powers of 5. He may have had a proof for the powers of 7 as well, since he
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apparently began writing it down. George N. Watson’s proof of Ramanujan’s conjec-
ture for powers of 5 is identical with the one contained in the unpublished manuscript.
Watson also gave a proof of the corrected version for the powers of 7. In 1967,
A. O. L. Atkin provided a proof for powers of 11, based on work of Joseph Lehner from
the 1940s. Atkin and Lehner’s proofs require the use of modular equations, a topic in
which Ramanujan was a great expert. It is remarkable that he was able to conjecture an
essentially correct result on so little numerical evidence, especially in higher powers.

The fact that p(5n+ 4) ≡ 0 (mod 5) suggests that partitions of 5n+ 4 should be
divisible into five classes with the same number of partitions in each class. Freeman
Dyson got this idea around 1940 when he was in high school; as a second year student
at Cambridge University, he found a way of making this division. For this purpose,
he defined the concept of the rank of a partition: the largest part minus the number of
parts. He checked this concept, applying it to the three cases p(4),p(9), and p(14) and
found it accurate; he also found that it worked for p(5) and p(12). He conjectured its
truth for all p(5n+ 4) and for p(7n+ 5), but was unable to prove it. A decade later,
Atkin and Peter Swinnerton–Dyer found a proof involving combinatorial arguments
combined with ideas from modular function theory. Mock theta functions also made an
appearance; Atkin and Swinnerton–Dyer rediscovered and used a number of identities
for mock theta functions. Unbeknownst to them and the rest of the world, these identities
were contained in Ramanujan’s lost notebook, buried under a mountain of paper on the
floor of Watson’s study.

The rank of a partition can be defined graphically as the signed difference between
the number of nodes in the first row and number of nodes in the first column. Consider
the ranks of the partitions of 5:

Partition Rank

5 5-1 ≡ 4 (mod7)
4+1 4-2 ≡ 2 (mod7)
3+2 3-2 ≡ 1 (mod7)
3+1+1 3-3 ≡ 0 (mod7)
2+2+1 2-3 ≡ 6 (mod7)
2+1+1+1 2-4 ≡ 5 (mod7)
1+1+1+1+1 1-5 ≡ 3 (mod7).

Dyson found that the concept of rank failed to classify the partitions of 11n+ 6; he
conjectured the existence of a crank for this purpose. Almost half a century later, a day
after the 1987 Centenary Conference at the University of Illinois, celebrating the work
of Ramanujan, Andrews and Frank G. Garvan discovered the crank: The crank of a
partition is the largest part in the partition if it has no ones; otherwise, it is the number
of parts greater than the number of ones, minus the number of ones. A nice property
of the crank is that it works for 5, 7, and 11. Amazingly, Ramanujan discovered the
generating functions for both the rank and the crank, and his results can again be found
in his lost notebook, though he did not refer to these concepts.

Concerning the congruence properties of partitions, Ramanujan wrote, “It appears
that there are no equally simple properties for any moduli involving primes other



30.1 Preliminary Remarks 635

than these three.” As we shall see, Ramanujan’s intuition has been shown to be correct.
However, in the late 1960s,Atkin found some more complicated congruences involving
other primes. For example, he showed that

p(113.13n+ 237)≡ 0 (mod13),

p(233.17n+ 2623)≡ 0 (mod17).

Atkin used computers to do the numerical work necessary for constructing these exam-
ples. In fact, Atkin was among the pioneers in the use of computers for number theory
research. Concerning this aspect of his work, he wrote, “it is often more difficult to dis-
cover results in this subject than to prove them, and an informed search on the machine
may enable one to find out precisely what happens.” Atkin’s aim was to understand
partition identities, including Ramanujan’s, from the more general viewpoint of modu-
lar function theory. His student Margaret Ashworth (1944–73) shared this perspective,
although her researches were halted much too soon. Thus, Atkin and Ashworth did not
succeed in fully developing their approach.Atkin himself made important contributions
to the theory of modular forms and in 1970, Atkin and Lehner conceived the funda-
mental idea of new forms. These are eigenforms for Hecke operators, on the space of
cusp forms for Hecke subgroups of the modular group. In fact, it was only recently that
Ken Ono developed a theory of the kind Atkin may have been seeking. In 2000, Ono
was able to prove that for any prime l ≥ 5, there exist infinitely many congruences of
the form p(An+B)≡ 0 (mod l). Soon after this, Scott Ahlgren extended the congru-
ence to the case in which l is replaced by lk. Subsequently, Ono and Ahlgren jointly
extended these results and wrote a historical essay explaining that their work “provides
a theoretical framework which explains every known partition function congruence.”
Ono and Ahlgren based their work on results in modular forms from the 1960s and
1970s due to Goro Shimura, Jean-Pierre Serre, and Pierre Deligne.

Confirming another conjecture of Ramanujan, in 2003 Ahlgren and Matthew Boylan
proved that if l is prime and 0 ≤ β ≤ l is any integer for which

p(ln+β)≡ 0 (mod l) for all n≥ 0,

then (l,β)ε{(5,4), (7,5), (11,6)}.
We note that all these cases of simple congruence were found by Ramanujan; his
intuition that no other cases exist has been verified. In 2005, Karl Mahlburg succeeded
in extending the partition congruences to the crank function. Let M(m,N,n) be the
number of partitions of nwhose rank equalsm(modN). Mahlburg’s theorem states that
for every prime l≥ 5 and integer i ≥ 1, there are infinitely many nonnested arithmetical
progressions An+B such that simultaneously for every 0 ≤m≤ lj − 1

M(m,lj ,An+B)≡ 0 (mod li).

It is clear from the definition of M that

p(n)=M(0,N,n)+M(1,N,n)+·· ·+M(N − 1,N,n).

Therefore, Mahlburg’s theorem implies the corresponding result for p(n).
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MacMahon and Hardy greatly admired Ramanujan’s generating function for
p(5n + 4). A number of proofs of this and the generating function for p(7n + 5)
have subsequently been found. A recent proof by Hershel Farkas and Irwin Kra is
based on the theory of Riemann surfaces and theta functions. In the final year of his
life, Ramanujan introduced a new type of series, mock theta functions. These q-series,
convergent in |q| < 1, also have connections with the theory of partitions, although
Ramanujan’s motivation was to study their asymptotic properties as q approached a
root of unity. Ramanujan noted that the asymptotic behavior of theta series such as

∞∑
n=0

qn
2
/((1− q)(1− q2) · · ·(1− qn))2

and
∞∑
n=0

qn
2
/((1− q)(1− q2) · · ·(1− qn))

could be expressed in a neat and closed exponential form as q approached roots of unity.
He conceived mock theta functions as those series with similar asymptotic properties,
without being theta functions. He gave seventeen examples of mock theta functions,
dividing them into four groups, named mock theta functions of orders 3, 5, 5, and 7.
One of the third-order functions he mentioned was defined by

f (q)= 1+ q

(1+ q)2 +
q4

(1+ q)2(1+ q2)2
+·· · .

He noted that when q =−e−t and t→ 0

f (q)+
√
π

t
exp

(
π 2

24t
− t

24

)
→ 4.

Ramanujan also stated a few identities connecting some of these functions with each
other. For example, he mentioned the third-order function

χ(q)= 1+ q

1− q+ q2
+ q4

(1− q+ q2)(1− q2 + q4)
+·· ·

and the relation 4χ(q)−f (q)= (1− 2q3 + 2q12 −·· ·)2
(1− q)(1− q2)(1− q3) · · · .

After Ramanujan, G. N. Watson (1886–1965) was the first to study these functions. The
title of his 1936 paper on this topic, “The Final Problem: An Account of the Mock Theta
Functions,” was borrowed from an Arthur Conan Doyle story. In this paper, Watson
introduced three new third-order functions, and proved identities such as

f (q)

∞∏
n=1

(1− qn)= 1+ 4
∞∑
n=1

(−1)nqn(3n+1)/2

1+ qn .

Watson employed the identities to show that the third-order mock theta functions had
the asymptotic properties asserted by Ramanujan and that they were not theta functions.
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A year later, Watson proved that the fifth-order functions listed by Ramanujan had the
asymptotic properties; he did not succeed in showing that they were not theta functions.
Watson’s proofs of some of the identities were long, and he wrote that he counted the
number of steps in the longest to be twenty-four instead of the thirty-nine he had hoped
for as a student of John Buchan.

Watson’s papers motivated Atle Selberg (1917–2007) to prove asymptotic formulas
for seventh-order functions. Selberg had been drawn to a study of Ramanujan’s work by
a 1934 article by Carl Störmer in a periodical of the Norwegian Mathematical Society.
The next year, Selberg started reading Ramanujan’s Collected Papers. In 1987, he
described his impressions: “So I got a chance to browse through it for several weeks.
It seemed quite like a revelation – a completely new world to me, quite different from
any mathematics book I had ever seen – with much more appeal to the imagination,
I must say. And frankly, it still seems very exciting to me and also retains that air of
mystery which I felt at the time. It was really what gave the impetus which started my
own mathematical work. I began on my own, experimenting with what is often referred
to as q-series and identities and playing around with them.”

In the 1960s, Andrews began his extensive work on mock theta functions. His work
was further facilitated by his 1976 discovery of Ramanujan’s Lost Notebook in the
Trinity College library of Cambridge University. For example, among myriad formulas
in this notebook, Ramanujan gave ten identities for the fifth-order functions. In 1987,
Andrews and Garvan showed that these ten identities could be reduced to two conjec-
tures on partitions. To state these conjectures, letRa(n) denote the number of partitions
of nwith rank congruent to a (mod 5). The first conjecture stated that for every positive
integer n, R1(5n)−R0(5n) was equal to the number of partitions of n with unique
smallest part and all other parts less than or equal to the double of the smallest part.
The second stated that 2R2(5n+ 3)−R1(5n+ 3)−R0(5n+ 3)− 1 was equal to the
number of partitions of nwith unique smallest part and all other parts less than or equal
to one plus the double of the smallest part. A year later Dean Hickerson proved these
conjectures.

We mention in passing that as a byproduct of his work on mock theta functions,
Andrews discovered the identity

( ∞∑
n=0

q

(
n+ 1

2

))3

=
∞∑
n=0

2n∑
j=0

q
2n2+2n−

(
j + 1

2

)
(1+ q2n)

(1− q2n+1)
.

An immediate consequence of this formula is that every positive integer can be
expressed as a sum of at most three triangular numbers. This theorem was first stated
by Fermat, who said he had a proof. The first published proof appeared in Gauss’s
Disquisitiones.

Though mock theta functions were shown to have connections with several areas
of mathematics, it was not clear how they fit into any known general framework. The
work of Sander Zwegers, Don Zagier, Ken Ono, and Kathrin Bringmann, 2002–2007,
has shown that Ramanujan’s twenty-two mock theta functions are examples of infinite



638 Partitions

families of weak Maass forms of weight 1/2. This understanding has led to further new
results.

30.2 Sylvester on Partitions

In 1882, Sylvester collected together the investigations he and his students had done on
partitions dating from 1877–1882 and published them in his newly founded journal as
a long paper, “A Constructive Theory of Partitions, Arranged in Three Acts, an Interact
and an Exodion.” He presented Franklin’s proof of Euler’s pentagonal number theorem
(30.2). Sylvester placed the smallest part at the top of his graphical representation. We
present the proof in his own words, illustrating his habit of using periods very sparingly.

If a regular graph represent a partition with unequal elements, the lines of magnitude must con-
tinually increase or decrease. Let the annexed figures be such graphs written in ascending order
from above downwards:

• •
• • •
• • • • • (A)

• • • • • •
• • • • • • •

• •
(B) • • •

• • • • • •
• • • • • • •

• • • (C)

• • • •
• • • • • •
• • • • • • •

In (A) and (B) the graphs may be transformed without altering their content or regularity by
removing the nodes at the summit and substituting for them a new slope line at the base. In C
the new slope line at the base may be removed and made to form a new summit; the graphs so
transformed will be as follows:

• • •
• • • • •
• • • • • • • (A′)

• • • • • • • •

(B ′) • • •
• • • • • • •
• • • • • • • •

• •
• • • (C ′)

• • • •
• • • • •
• • • • • •
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A′ and B ′ may be said to be derived from A, B by a process of contraction, and C ′ from C by
one of protraction.

Contraction could not now be applied toA′ andB ′, nor protraction toC ′ without destroying the
regularity of the graph; but the inverse processes may of course be applied, namely, of protraction
to A′ and B ′ and contraction to C ′, so as to bring back the original graph A,B,C.

In general (but as will be seen not universally), it is obvious that when the number of nodes
in the summit is inferior or equal to the number in the base-slope, contraction may be applied,
and when superior to that number, protraction: each process alike will alter the number of parts
from even to odd or from odd to even, so that barring the exceptional cases which remain to
be considered where neither protraction nor contraction is feasible, there will be a one-to-one
correspondence between the partitions of n into an odd number and the partitions of n into an even
number of unrepeated parts; the exceptional cases are those shown below where the summit meets
the base-slope line, and contains either the same number or one more than the number of nodes in
that line; in which case neither protraction nor contraction will be possible, as seen in the annexed
figures which are written in regular order of succession, but may be indefinitely continued:

• • • • •
• • •

• • •
• • • •

• • •
• • • •
• • • • •

• • • •
• • • • •
• • • • • •

• • • •
• • • • •
• • • • • •
• • • • • • •

• • • • •
• • • • • •
• • • • • • •
• • • • • • • •

for the protraction process which ought, for example, according to the general rule, to be applicable
to the last of the above graphs, cannot be applied to it, because on removing the nodes in the slope
line and laying them on the summit, in the very act of so doing the summit undergoes the loss of
a node and is thereby incapacitated to be surmounted by the nodes in the slope, which will have
not now a less, but the same number of nodes as itself; and in like manner, in the last graph but
one, the nodes in the summit cannot be removed and a slope line be added on containing the same
number of nodes without the transformed graph ceasing to be regular, in fact it would take the
form

• •
• • • • • •
• • • • • • •
• • • • • • •

and so the last graph transformed according to rule [by protraction] would become:

• • • •
• • • •
• • • • •
• • • • • •
• • • • • • •

which, although regular, would cease to represent a partition into unlike numbers. The excepted
cases then or unconjugate partitions are those where the number of parts being j , the successive
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parts form one or the other of the two arithmetical series

j, j + 1, j + 2, . . . , 2j − 1 or j + 1, j + 2, . . . , 2j,

in which cases the contents are 3j2−j
2 and 3j2+j

2 respectively, and consequently since in the product
of 1− x · 1− x2 · 1− x3 · · · the coefficient of xn is the number of ways of composing n with an
even less the number of ways of composing it with an odd number of parts, the product will be

completely represented by
∑∞

j=−∞(−1)j x
3j2+j

2 .

Sylvester’s student Durfee introduced the important concept of the Durfee square for
the purpose of studying self-conjugate graphs. These graphs remain unchanged when
rows of nodes are changed to columns. Sylvester gave the partition of 27= 7+7+4+
3+ 2+ 2+ 2 as an example; it has the self-conjugate graph as shown below.

• • • • • • •
• • • • • • •
• • • •
• • •
• •
• •
• •

Note that the largest square in this graph is of size 3× 3 in the upper left corner and
the remaining nodes form two graphs with nine nodes each, partitioned into identical
partitions, 3+ 2+ 2+ 2, provided the nodes on the right-hand side of the square are
read column-wise. The number of partitions of 9 in which the largest part is at most 3
is the coefficient of

x9 in
1

(1− x)(1− x2)(1− x3)
,

and this is the same as the coefficient of

x18 in
1

(1− x2)(1− x4)(1− x6)
.

Sylvester applied this analysis to find the number of self-conjugate partitions of n. He
considered all the partitions that could be dissected into a square of sizem2. The number
of such partitions would be the coefficient of

xn−m
2

in
1

(1− x2)(1− x4) · · ·(1− x2m)

or the coefficient of

xn in
xm

2

(1− x2)(1− x4) · · ·(1− x2m)
.
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Thus, the number of self-conjugate partitions of nwas the coefficient of xn in the series

1+ x

1− x2
+ x4

(1− x2)(1− x4)
+ x9

(1− x2)(1− x4)(1− x6)
+·· · .

There is yet another manner in which a self-conjugate partition can be dissected: by
counting the number of nodes in the m angles or bends, as Sylvester called them.
Thus, for the self-conjugate partitions of 27, there are three bends. The outermost right
angle has thirteen nodes; the second has eleven; and the third three. It is easy to see
that the number of nodes in each right angle of a self-conjugate partition will always
be an odd number. Moreover, different right angles in the same partition will have
different numbers of nodes. Thus, the number of self-conjugate partitions of n will be
the coefficient of xn in (1+ x)(1+ x3)(1+ x5) · · · . Therefore

∞∏
n=0

(1+ x2n+1)=
∞∑
n=0

xn
2

(1− x2)(1− x4) · · ·(1− x2n)
.

Sylvester generalized this analysis of self-conjugate partitions by introducing an addi-
tional parameter a, whose exponent registered the number of parts in a partition,
concluding that the coefficient of xnaj in (1 + ax)(1 + ax3) · · ·(1 + ax2j−1) · · · was
the same as in

xj
2
aj

(1− x2)(1− x4) · · ·(1− x2j )
.

Thus, he had Euler’s formula

∞∏
n=0

(1+ ax2n+1)=
∞∑
n=0

xn
2
an

(1− x2)(1− x4) · · ·(1− x2n)
,

but by a combinatorial argument. By means of a Durfee square analysis, Sylvester
also obtained the identity needed by Jacobi to complete his proof of the triple product
identity. Thus, in Jacobi’s formula

∞∏
n=1

1

(1− aqn) =
∞∑
m=0

qm
2
am

(1− q)(1− q2) · · ·(1− qm) ·
1

(1− aq)(1− aq2) · · ·(1− aqm),

the factor
qm

2
am

(1− q)(1− q2) · · ·(1− qm)
accounted for the square and the nodes to the right of it, while

1

(1− aq)(1− aq2) · · ·(1− aqm)
did the same for the nodes and the number of rows below the square. It is an interesting
and instructive exercise to work out the details. Sylvester demonstrated that graphical
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analysis could also be used as a tool for the discovery of new identities. As an example,
he presented

∞∑
n=0

(1+ ax)(1+ ax2) · · ·(1+ axn−1)(1+ ax2n)anxn(3n−1)/2

(1− x)(1− x2) · · ·(1− xn) =
∞∏
m=1

(1+axn). (30.10)

Briefly, Sylvester considered all partitions with distinct parts to account for the product
on the right-hand side. To obtain the series on the left-hand side, he considered a graph
of an arbitrary partition of n with distinct parts. He supposed that the Durfee square
(the largest square of nodes in the upper left corner) had θ 2 nodes. Again, there were
two subgraphs, called by Sylvester appendages: one to the right of the square with
either θ or θ −1 rows and with unrepeated parts; and one below the square with j − θ
rows and with unrepeated parts. Moreover, since the parts were distinct, Sylvester
observed that the subgraph below the square had the largest part, at most θ or θ − 1,
depending on whether the subgraph to the right had θ or θ − 1 rows. In the first case,
because 1+ 2+ ·· ·+ θ = θ(θ + 1)/2, the number of distributions was the coefficient
of xn−θ2

aj−θ in

x(θ
2+θ)/2

(1− x)(1− x2) · · ·(1− xθ) · · ·(1+ ax)(1+ ax
2) · · ·(1+ axθ);

in the second case, it was the coefficient of xn−θ2
aj−θ in

x(θ
2−θ)/2

(1− x)(1− x2) · · ·(1− xθ−1)
· (1+ ax)(1+ ax2) · · ·(1+ axθ−1).

By adding these two expressions, Sylvester obtained the θ th term of his series and
this proved the formula. Note that Euler’s pentagonal number theorem follows from
Sylvester’s formula when one takes a=−1. Sylvester commented, “Such is one of the
fruits among a multitude arising out of Mr. Durfee’s ever-memorable example of the
dissection of a graph (in the case of a symmetrical one) into a square, and two regular
graph appendages.”

30.3 Cayley: Sylvester’s Formula

In 1882, Sylvester’s mathematical correspondent and comrade, Cayley, responded to
his friend’s great paper on partitions by showing how the “very beautiful formula”
(30.10) could be proved by an interesting analytic method. He expressed the series side
of the formula as

U= 1+P +Q(1+ ax)+R(1+ ax)(1+ ax2)

+S(1+ ax)(1+ ax2)(1+ ax3)+·· · (30.11)
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where

P = (1+ ax2)xa

1
, Q= (1+ ax4)x5a2

1 · 2 ,

R = (1+ ax6)x12a3

1 · 2 · 3 , S = (1+ ax8)x22a4

1 · 2 · 3 · 4 , etc. (30.12)

where the numbers in bold 1,2,3,4, . . . denoted 1 − x, 1 − x2, 1 − x3, 1 − x4, . . . .

Cayley observed that the x exponents 1,5,12,22, . . . were the pentagonal numbers
(3n2 −n)/2. Cayley then set

P ′ = ax2

1
, Q′ = ax3

1
+ a2x7

1 · 2 , R
′ = ax4

1
+ a2x9

1 · 2 + a3x15

1 · 2 · 3 , etc.

where the x exponents were

2; 3, 3+ 4; 4, 4+ 5, 4+ 5+ 6; etc.

He then noted that it was easily verified that

1+P = (1+ ax)(1+P ′),

1+P ′ +Q= (1+ ax2)(1+Q′),

1+Q′ +R = (1+ ax3)(1+R′),

1+R′ +S = (1+ ax4)(1+S ′), etc.

Cayley concluded from these relations that

U÷ (1+ ax)= 1+P ′ +Q+R(1+ ax2)+S(1+ ax2)(1+ ax3)+·· · ,
U÷ (1+ ax)(1+ ax2)= 1+Q′ +R+S(1+ ax3)+T (1+ ax3)(1+ ax4)+·· · ,
U÷ (1+ ax)(1+ ax2)(1+ ax3)= 1+R′ +S+T (1+ ax4)+·· · ,

and so on. When this was done infinitely often, the right-hand side would become 1,
giving Cayley the complete proof of Sylvester’s theorem.

Andrews pointed out that Cayley’s method is more easily understood in terms of
Euler’s method of proving the pentagonal number theorem. In Sylvester’s series, take
the factor 1+ aq2n in the (n+ 1)th term, counting 1 as the first term, and split it into
two parts:

1+ ax2n = 1− xn+ xn(1+ axn). (30.13)

Interestingly, this breaks the (n+ 1)th term into two parts, so that one can associate
the second part of the term with the first part of the succeeding term. The result of this
association is

(1+ ax)(1+ ax2) · · ·(1+ axn−1)(1+ axn)xnanxn(3n−1)/2

(1− x)(1− x2) · · ·(1− xn)

+ (1+ ax)(1+ ax
2) · · ·(1+ axn)an+1x(n+1)(3n+2)/2

(1− x)(1− x2) · · ·(1− xn)
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= (1+ ax) · (1+ ax
2) · · ·(1+ axn)

(1− x) · · ·(1− xn) · anxn(3n+1)/2(1+ ax2n+1). (30.14)

Now observe that the factor multiplying 1 + ax is the (n+ 1)th term of Sylvester’s
series except that a has been replaced by ax. So, if we denote Sylvester’s series by
f (a), then by (30.14) we have

f (a)= (1+ ax)f (ax)
= (1+ ax)(1+ ax2)f (ax2)

= (1+ ax)(1+ ax2)(1+ ax3) · · · .

Note that for convergence we would require |x|< 1, and therefore xn → 0 as n→∞.
This implies

lim
n→∞f (ax

n)= f (0)= 1.

We note that Gauss also used this method on various occasions and that it is possible that
Cayley rediscovered Euler’s method. We shall see in the next section how Ramanujan
made brilliant use of this technique to prove the Rogers–Ramanujan identities.

30.4 Ramanujan: Rogers–Ramanujan Identities

Ramanujan discovered a new proof of the Rogers–Ramanujan identity after he saw
Rogers’s original proof, presented chapter 31. Ramanujan communicated the proof
to Hardy in a letter of April 1919 and Hardy had it published in a 1919 paper. In
this paper, Hardy also included another proof, sent by Rogers to MacMahon in October
1917. Ramanujan’s proof started with a series very similar to Sylvester’s series (30.10):

G(x)= 1+
∞∑
n=1

(−1)nx2nqn(5n−1)(1− xq2n)
(1− xq)(1− xq2) · · ·(1− xqn−1)

(1− q)(1− q2) · · ·(1− qn) .

(30.15)
He split this series into two parts, exactly as Cayley had done with Sylvester’s series,
by applying

1− xq2n = 1− qn+ qn(1− xqn)
to transform (30.15) into

G(x)=
∞∑
n=1

x2n−2q(5n
2−9n+4)/2(1− x2q2(2n−1))

(1− xq) · · ·(1− xqn−1)

(1− q) · · ·(1− qn−1)
, (30.16)

where the empty product when n= 1 was set equal to 1. Ramanujan then set

H(x)= G(x)

1− xq −G(xq)
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and used the value of G(x) from (30.16) and of G(xq) from (30.15) to obtain

H(x)= xq− x2q3

1− q
(
(1− q)+ xq4(1− xq2

)
+ x4q11(1− xq2)

(1− q)(1− q2)

(
(1− q2)+ xq7(1− xq3)

)
− x6q24(1− xq2)(1− xq3)

(1− q)(1− q2)(1− q3)

(
(1− q3)+ xq10(1− xq4)

)+·· · .

Again, as in Cayley’s argument, Ramanujan associated the second part of each term
with the first part of the succeeding term to arrive at the relation

H(x)= xq(1− xq2)G(xq2) or

G(x)= (1− xq)G(xq)+ xq(1− xq)(1− xq2)G(xq2).

Setting

F(x)= G(x)

(1− xq)(1− xq2)(1− xq3) · · · ,
Ramanujan obtained the relation

F(x)= F(xq)+ xqF(xq2). (30.17)

He observed that it readily followed that

F(x)= 1+ xq

1− q + x2q4

(1− q)(1− q2)
+ x3q9

(1− q)(1− q2)(1− q3)
+·· · . (30.18)

Note that we can derive this last equation from

F(x)= 1+A1(q)x+A2(q)x
2 +A3(q)x

3 +·· · .
Applying (30.17), he obtained

An(q)= q2n−1

1− qnAn−1(q), n= 1,2,3, . . . ,

where A0(q)= 1. This implied (30.18). Ramanujan obtained the required identities by
taking x = 1 and x = q in (30.18). For x = 1, he got

1+ q

1− q + q4

(1− q)(1− q2)
+·· · = G(1)

(1− q)(1− q2)(1− q3) · · ·
= 1− q2 − q3 + q9 + q11 −·· ·
(1− q)(1− q2)(1− q3) · · · .

The series can be converted to a product by the triple product identity and the result
follows.
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30.5 Ramanujan’s Congruence Properties of Partitions

Ramanujan was the first mathematician to study the divisibility properties of the par-
tition function. In a paper published in 1919, he gave fairly simple proofs of the
congruence relations p(5m+ 4)≡ 0 (mod 5) and p(7m+ 5)≡ 0 (mod 7). He started
with Euler’s generating function for p(n),

q

(1− q)(1− q2)(1− q3) · · · =
∞∑
n=1

p(n− 1)qn, (30.19)

and observed that the first congruence would follow if the coefficient of q5m on the
right-hand side were divisible by 5. Thus, it was sufficient to show that the same was
true for the coefficient of q5m in

q(1− q5)(1− q10)(1− q15) · · ·
(1− q)(1− q2)(1− q3) · · · = q(1− q5)(1− q10) · · ·

{(1− q)(1− q2) · · · }5
{(1− q)(1− q2) · · · }4.

Ramanujan then noted that 1− q5m ≡ (1− qm)5 (mod5) and hence

(1− q5)(1− q10)(1− q15) · · ·
{(1− q)(1− q2)(1− q3) · · · }5

≡ 1 (mod5).

Thus, to prove that p(5m+ 4)≡ 0 (mod 5), it was enough to show that the coefficient
of q5m in

q{(1− q)(1− q2)(1− q3) · · · }4

= q{(1− q)(1− q2)(1− q3) · · · }3(1− q)(1− q2)(1− q3) · · ·

= q
∞∑
m=0

(2m+ 1)qm(m+1)/2
∞∑

n=−∞
(−1)nqn(3n+1)/2

was divisible by 5. Observe that in the last step, Ramanujan used Jacobi’s identity and
Euler’s pentagonal number theorem. Jacobi’s identity can be derived from the triple
product identity. He then noted that the exponent of q in the double sum was divisible
by 5 when

1+ m(m+ 1)

2
+ n(3n+ 1)

2
≡ 0 (mod5) or

8+ 4m(m+ 1)+ 4n(3n+ 1)≡ 0 (mod5) or

(2m+ 1)2 + 2(n+ 1)2 ≡ 0 (mod5) .

Ramanujan noted that (2m+ 1)2 ≡ 0,1,4 (mod5) and 2(n+ 1)2 ≡ 0,2,3 (mod5).
So when the exponent of q was a multiple of 5, then 2m+ 1 ≡ 0 (mod5) and n+
1 ≡ 0 (mod5). Since the coefficient of this power of q was 2m+ 1, a multiple of 5,
Ramanujan’s proof was complete. He gave a similar proof for the congruence modulo
7; see the exercises.

In the same paper, Ramanujan outlined a proof of (30.7). He intended to publish more
details at a later date, but his premature death made this impossible. However, he wrote
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notes giving these details, later found and published as part of in his lost notebook. In
fact, this proof used only the pentagonal number theorem, Jacobi’s identity

∞∏
n=1

(1− qn)3 =
∞∑
m=0

(−1)m(2m+ 1)qm(m+1)/2 (30.20)

and fifth roots of unity. By the pentagonal number theorem:

∞∏
n=1

(1− qn/5)=
∞∑

n=−∞
(−1)nqn(3n+1)/10. (30.21)

Partition the series into five parts according to whether n ≡ 0,±1,±2 (mod 5). For
example, for n≡ 0 (mod 5), we have n= 5m and the part of the series corresponding
to these values of n would be given by

∞∑
m=−∞

(−1)mqm(15m+1)/2.

Note that the subseries corresponding to n = 5m− 1 can once again be expressed a
product:

−
∞∑

m=−∞
(−1)mq(5m−1)(15m−2)/10 = − q1/5

∞∑
m=−∞

(−1)mq5m(3m−1)/2

= − q1/5
∞∏
n=1

(1− q5n).

Thus, (30.21) can be written as

∞∏
n=1

(1− qn/5)=
∞∑

m=−∞
(−1)mqm(15m+1)/2 +

∞∑
m=−∞

(−1)mq(3m−1)(5m−2)/2

+ q2/5

( ∞∑
m=−∞

(−1)mq(3m+2)(5m+1)/2 −
∞∑

m=−∞
(−1)mqm(15m+7)/2

)

− q1/5
∞∏
n=1

(1− q5n).

Dividing by
∏∞
n=1(1− q5n) gives

∞∏
n=1

(
1− qn/5
1− q5n

)
= ξ1 − q1/5 − ξq2/5, (30.22)

where ξ and ξ1 are power series in q. Ramanujan applied Jacobi’s identity to show that
ξξ1 = 1. So cube both sides of (30.22) and use Jacobi’s identity (30.20) to get∑∞

n=0(−1)n(2n+ 1)qn(n+1)/10∏∞
n=1(1− q5n)3

= (
ξ1 − q1/5 − ξq2/5

)3
. (30.23)
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Since the exponent of q, given by n(n+1), is either 0, 2, or 6 (mod 10), it follows that
no power of q is of the form 2/5+ an integer. This implies that the term

3q2/5ξ1 − 3ξ 2
1 ξq

2/5 = 3q2/5ξ1(1− ξξ1)

on the right-hand side of (30.23) must be zero. This implies that ξ1 = ξ−1, and we can
write

∞∏
n=1

(
1− q5n

1− qn/5
)
= 1

ξ−1 − q1/5 − ξq2/5
. (30.24)

Consider the expression λ−1 −λ− 1, where λ= ξq1/5w, and w is a fifth root of unity.
Observe that if λ−1 −λ= 1, then by an elementary calculation λ−5 −λ5 = 11. Thus,

ξ−5 − 11q− ξ 5q2 =
4∏
k=0

(
ξ−1 − q1/5wk− ξq2/5w2k

)
.

It is now easy to check by long division that

∞∏
n=1

(
1− q5n

1− qn/5
)
=

ξ−4 − 3qξ + q1/5(ξ−3 + 2qξ 2)+ q2/5(2ξ−2 − qξ)+ q3/5(3ξ−1 + qξ 4)+ 5q4/5

ξ−5 − 11q− q2ξ 5
.

Now multiply across by q1/5 and replace q1/5 by q1/5e2πik/5, k= 1,2,3,4 to obtain five
identities. Next, apply

q1/5
∞∏
n=1

(1− qn/5)−1 =
∞∑
n=1

p(n− 1)qn/5

and add the five identities to get

∞∏
n=1

(1− q5n)

∞∑
n=0

p(5n+ 4)qn = 5

ξ−5 − 11q− q2ξ 5
.

By replacing q1/5 by e2πik/5q1/5, k = 0,1,2,3,4 and multiplying the five equations
together, Ramanujan arrived at

∞∏
n=1

(
1− q5n

1− qn
)6

= 1

ξ−5 − 11q− q2ξ 5
.

Combining this with the previous equation gives the necessary result.
In his paper, Ramanujan also noted that

ξ−1 =
∞∏
n=0

(1− q5n+2)(1− q5n+3)

(1− q5n+1)(1− q5n+4)
. (30.25)
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This can be proved by using (30.24), the pentagonal number theorem and the quintuple
product identity. Ramanujan observed in his paper that (30.7) implied thatp(25m+24)
was divisible by 25. He argued that by (30.7),

p(4)x+p(9)x2 +p(14)x3 +·· ·
5((1− x5)(1− x10)(1− x15) · · ·)4

= x

(1− x)(1− x2)(1− x3) · · ·
(1− x5)(1− x10)(1− x15) · · ·
((1− x)(1− x2)((1− x3) · · ·)5 ,

and since the coefficient of x5n on the right-hand side was a multiple of 5, it followed
that p(25m+ 24) was divisible by 25. It is interesting to see how Ramanujan used
(30.25) to compute the Rogers–Ramanujan continued fraction as well as the generating
function for p(5m+ 4).

30.6 Exercises

1. Prove that the number of partitions of n into parts not divisible by d is equal
to the number of partitions of n of the form n = n1 + n2 + ·· · + ns , where
ni ≥ ni+1 and ni ≥ ni+d−1 + 1. See Glaisher (1883). James Whitehead Lee
Glaisher (1848–1928) single-handedly edited two journals for over forty years:
Messenger of Mathematics and Quarterly Journal. The Messenger carried the
first published papers of many English mathematicians and physicists of the
late nineteenth century, including H. F. Baker, E. W. Barnes, W. Burnside,
G. H. Hardy, J. J. Thompson, and J. Jeans. Glaisher published almost four hun-
dred papers, many of them in his own journals. G. H. Hardy wrote in his obituary
notice, “He wrote a great deal of very uneven quality, and he was ‘old fashioned’
in a sense which is most unusual now; but the best of his work is really good.” This
best work included results in number theory and, in particular, the representation
of numbers as sums of squares. See vol. 7 of Hardy (1966–1979).

2. Complete the following number theoretic proof, due to Glaisher, of Euler’s the-
orem that the number of partitions of n into odd parts equals the number of
partitions of n into distinct parts. Let

n= f1 · 1+f3 · 3+·· ·+f2m−1 · (2m− 1).

Here f1,f3, . . . represent the number of times 1,3, . . . , respectively, occur in
the partition of n into odd parts. Now write f1,f3, . . . in powers of two: f1 =
2a1 + 2a2 +·· ·+ 2al , f3 = 2b1 + 2b2 +·· ·+ 2bl , . . . . Then

n= 2a1 + 2a2 +·· ·+ 2al + 2b1 · 3+ 2b2 · 3+·· ·+ 2bl · 3+·· ·+ 2r1 · (2m− 1)

+·· ·+ 2rs · (2m− 1)

gives a partition of n into distinct parts. See Glaisher (1883).
3. Show that the number of partitions of n into odd parts, where exactly k dis-

tinct parts appear, is equal to the number of partitions of n into distinct parts,
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where exactly k sequences of consecutive integers appear. Show that this cor-
respondence is one-to-one. This result was published by Sylvester in 1882. See
Sylvester (1973), vol. 4, p. 45.

4. Let pk,r(n) denote the number of partitions of n into parts not congruent to 0,
±r (mod 2k+ 1), where 1 ≤ r ≤ k. Let qk,r (n) denote the number of partitions
of n of the form n = n1 + n2 + ·· · + ns where n1 ≥ ni+1, ni ≥ ni+k−1 + 2 and
with 1 appearing as a part at most r − 1 times. Prove that then

pk,r(n)= qk,r (n).

See Gordon (1961).
5. Prove that if pm(n) denotes the number of partitions of n with rank m, then

∞∑
n=1

pm(n)q
n = 1

(q,q)∞

∞∑
n=1

(−1)n−1
(
q

1
2 n(3n−1)− q 1

2 n(3n+1)
)
q |m|n.

See Atkin and Swinnerton–Dyer (1954).
6. Derive Szekeres’s combinatorial interpretation of the Rogers–Ramanujan con-

tinued fraction. Let B(n.k), n≥ 1, k ≥ 0 represent the number of sequences of
integers b1 ≤ b2 ≤ ·· ·≤ bn=nwith bi > i for 1≤ i < n and b1+b2+·· ·+bn−1 =
(n2)+ k. Observe that B(n,k) = 0 for 0 ≤ k < n− 1 and for k > (n2). Also note
that B(n,n− 1)= B (n,(n2))= 1, B(1,0)= 1. Now show that

x

1+
qx

1+
q2x

1+ ·· · =
∑

0≤n−1≤k
(−1)n+1B(n,k)xnqk.

See Szekeres (1968). George Szekeres (1911–2005) was trained as a chemical
engineer in Hungary but his association with Paul Erdős, Esther Klein, and Paul
Turán turned his interest to mathematics. In 1935, Erdős and Szekeres wrote
a paper laying the foundation of Ramsey theory. This arose out of Szekeres’s
efforts to solve a problem (proposed by Klein who later became his wife): For
all n there exists N such that for any N points in a plane there are n which
form a convex n-gon. Szekeres and his family escaped to China from the Nazi
government in Germany and moved to Australia after the war. His presence gave
a boost to the development and teaching of mathematics in Australia where he
was greatly admired.

7. Andrews gave an interpretation of the Rogers–Ramanujan continued fraction
different from Szekeres’s. Let

C(q)= 1+ q

1+
q2

1+ ·· · =
∑
m≥0

cmq
m.

Also let Bk,a(n) denote the number of partitions of n of the form n = b1 + b2

+·· ·+bs , where bi ≥ bi+1, bi−bi+k−1 ≥ 2 and at most a−1 of the bi are equal
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to one. Then prove that

c5m = B37,37(m)+B37,13(m− 4),

c5m+1 = B37,32(m)+B37,7(m− 6),

c5m+2 =−(
B37,23(m− 1)+B37,2(m− 8)

)
,

c5m+3 =−(
B37,28(m)+B37,22(m− 1)

)
,

c5m+4 =−(
B37,17(m− 2)+B37,8(m− 5)

)
.

Show that it follows that, in particular, c2 = c4 = c9 = 0 and that the remaining
cn satisfy

c5m > 0, c5m+1 > 0, c5m+2 < 0, c5m+3 < 0, c5m+4 < 0.

See Andrews (1981).
8. Prove Ramanujan’s result that p(7m+5)≡ 0 (mod7) by the following method.

Square Jacobi’s identity to obtain

x2
∞∏
n=1

(1− xn)6

=
∞∑

µ=−∞

∞∑
ν=−∞

(−1)µ+ν(2µ+ 1)(2ν+ 1)x2+ 1
2µ(µ+1)+ 1

2 ν(ν+1).

Now show that the coefficient of x7n in the sum is divisible by 49. Next observe
that

(1− x7)/(1− x)7 ≡ 1 (mod7)

and deduce that the coefficient of x7n in x2/
∏∞
n=1(1−xn) is a multiple of 7. See

Ramanujan (2000), p. 212.
9. For a partition π of n, let λ(π) denote the largest part of π ; let µ(π) denote the

number of ones in π ; and let ν(π) denote the number of parts of π larger than
µ(π). The crank c(π) is defined as

c(π)= λ(π) if µ(π)= 0; c(π)= ν(π)−µ(π) if µ(π) > 0.

LetM(m,n) denote the number of partitions of nwith crankm. Then prove that

∞∑
m=−∞

∞∑
n=0

M(m,n)amqn = (q;q)∞
(aq;q)∞(q/a;q)∞ .

See Andrews and Garvan (1988).

30.7 Notes on the Literature

Euler’s theorem on the number of partitions with distinct parts is in Euler (1988),
pp. 275–276. For Hardy’s remark on MacMahon’s calculating prowess, see Ramanujan
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(2000), p. xxxv. For Ramanujan’s papers, see Ramanujan (2000); his 1919 paper on
the arithmetic properties of partitions can be seen on pp. 210–213. Berndt has added a
seventy-page commentary at the end of this book, where the reader will find references
to the work on the rank and crank of a partition. See Ramanujan (1988) for some of his
recently discovered work. See p. 238 for his proof of (30.7). Sylvester (1973), vol. 4,
pp. 1–83 is a reprint of his 1882 paper. See especially pp. 11–12. For his expressions of
indebtedness to Ferrers, see vol. 1, p. 597 and vol. 3, p. 683. See Cayley (1889–1898),
vol.12, pp. 217–219 for his paper on Sylvester’s formula.

The Selberg quote is from Selberg (1989), vol. 1, p. 696. Alder (1969) gives a
history of partition identities. See also Ahlgren and Ono (2001) for a history of the
arithmetic properties of the partition function. The theory of modular forms has been
extensively used in recent years to study the partition function; K. Ono and his students
and collaborators have been leaders in this area. Modular forms are also important
in the study of many arithmetical problems. For example, Fermat’s last theorem is a
consequence of the Shimura–Taniyama conjecture. See Shimura (2008) for an account
of how he arrived at this conjecture. ForAtkin’s remarks on finding results mechanically,
see Atkin (1968), p. 564.



31

q-Series and q-Orthogonal Polynomials

31.1 Preliminary Remarks

In the early nineteenth century, q-series proved their worth with their broad applicability
to number theory, elliptic and modular functions, and combinatorics. Nevertheless, as
late as 1840, no general framework for the study of q-series had been established;
although q-series had been used to solve problems in other areas, it had not become a
subject of its own. Finally,q-series came into its own when it was viewed as an extension
of the hypergeometric series. In the 1840s Cauchy, Eisenstein, Jacobi, and Heine each
presented the q-binomial theorem for general exponents. In 1846, Jacobi wrote a paper
stating a q-extension of Gauss’s 2F1 summation formula. His interesting proof was
based on Schweins’s q-extension of the Chu-Vandermonde identity, a terminating form
of Gauss’s summation. The latter result gave the value of the series in terms of gamma
functions. So Jacobi suggested a q-analog of �(a):

U(q,a)= (1− q)(1− q2)(1− q3) · · ·
(1− qa+1)(1− qa+2)(1− qa+3) · · · . (31.1)

It is interesting that at the end of his 1846 paper, Jacobi wrote a lengthy historical
note mentioning the 1729 letter from Euler to Goldbach, containing Euler’s description
of his discovery of the gamma function by the use of infinite products. Jacobi had
a keen interest in the history of mathematics, and some of his papers contain very
helpful historical information. With Jacobi’s work, the stage was set to obtain the
q-extension of the hypergeometric series and this was soon accomplished by Heinrich
Eduard Heine (1821–1881) who studied in Göttingen under Gauss and Stern and in
Berlin under Dirichlet. Heine received his doctoral degree under the supervision of
Dirksen and Ohm in 1842. He then spent a year in Königsberg with Jacobi and Franz
Neumann. It is most likely that Jacobi encouraged Heine to work on hypergeometric
series and its q-extension; Heine later edited a posthumous paper of Jacobi on this
subject.

In his 1847 paper defining the q-hypergeometric series, Heine developed properties
of the series φ(α,β,γ,q,x) defined by

653
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1+ (1− qα)(1− qβ)
(1− q)(1− qγ ) x+

(1− qα)(1− qα+1)(1− qβ)(1− qβ+1)

(1− q)(1− q2)(1− qγ )(1− qγ+1)
x2 +·· · . (31.2)

Observe that as q→ 1−, this series converges term by term to

1+ α ·β
1 · γ x+

α(α+ 1) ·β(β+ 1)

1 · 2 · γ (γ + 1)
x2 + . . . ,

the hypergeometric series F(α,β,γ,x). Heine took many results from Gauss’s 1812
paper on hypergeometric series and extended them to the q-series φ. He listed the
contiguous relations for φ, from which he derived continued fractions expansions for
ratios of q-hypergeometric series, and he gave a very simple proof of the q-binomial
theorem. The notationU(q,a) for the gamma function analog is also due to Heine, and
as an analog of Gauss’s F(a,b,c,1) sum, he presented

φ(α,β,γ,q,qγ−α−β)= U(q,γ − 1)U(q,γ −α−β− 1)

U(q,γ −α− 1)U(q,γ −β− 1)
. (31.3)

Heine applied theq-binomial theorem to obtain an important transformation now known
as Heine’s transformation:

(1− qγ x)(1− qγ+1x) · · ·
(1− qβx)(1− qβ+1x) · · ·

(
1+ (1− qα)(1− qβx)

(1− q)(1− qγ x) · z

+ (1− qα)(1− qα+1)(1− qβx)(1− qβ+1x)

(1− q)(1− q2)(1− qγ x)(1− qγ+1x)
· z2 +·· ·

)
= (1− qαz)(1− qα+1z) · · ·

(1− z)(1− qz) · · ·
(

1+ (1− qγ−β)(1− z)
(1− q)(1− qαz) · qβx

+ (1− qγ−β)(1− qγ−β+1)(1− z)(1− qz)
(1− q)(1− q2)(1− qαz)(1− qα+1z)

· q2βx2 +·· ·
)
.

(31.4)

He also defined a q-difference operator and found the second-order difference equation
of which the hypergeometric equation was a limiting case. However, he did not define
a q-integral.

The origin of the transformation (31.4) remained a puzzle; to which result in hyper-
geometric series did this correspond? C. Johannes Thomae (1840–1921) answered this
question. Thomae studied at the University of Halle and was inspired by Heine to devote
himself to function theory. Thomae moved to Göttingen in 1862 with the intention of
working under Riemann who soon fell seriously ill. Thomae stayed on and in 1864,
he earned his doctoral degree under Schering, one of the editors of Gauss’s papers.
Thomae then returned to teach at Halle for a few years before moving to Freiburg and
then to Jena. Thomae wrote his paper on Heine’s series in 1869 while at Halle. In this
paper he defined the q-integral and showed that Heine’s transformation was actually
the q-extension of Euler’s integral representation of the hypergeometric series. Thomae
defined the q-integral by ∫ xqn

x

f (x)
,x

x(q− 1)
=

n−1∑
s=0

f (xqs). (31.5)
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He explained that the integral was the inverse of the difference operator

,f (x)= f (xq)−f (x), (31.6)

also noting that it was better to define the q-gamma, or more correctly, the q-V
function by

V(α,q)= (1− q)−α U(q,α). (31.7)

Indeed, with this definition,

V(α,q)= 1− qα
1− q ·V(α− 1,q), (31.8)

and V(α,q)→ V(α) = �(α + 1) as q → 1−. He also observed that the q-binomial
theorem was equivalent to∫ q∞

1
sα p(β,sq),s =−V(α,q)V(β,q)

V(α+β+ 1,q)
, (31.9)

where p(β,x)= (1− x)(1− xq)(1− xq2) · · ·
(1− xqβ)(1− xqβ+1)(1− xqβ+2) · · · . (31.10)

Moreover, he noted that as q → 1−, formula (31.9) reduced to Euler’s beta integral
formula ∫ 1

0
sα(1− s)β ds = V(α)V(β)

V(α+β+ 1)
.

About forty years later, the able amateur mathematician Frank Hilton Jackson
(1870–1960) redefined the q-integral and the q-gamma function. He took the q-integral
to be the inverse of the q-derivative

,q φ(x)= φ(qx)−φ(x)
qx− x , (31.11)

so that the q-integral amounted to∫ a

0
f (x)dqx =

∞∑
n=0

f (aqn)(aqn− aqn+1). (31.12)

The reader may observe that the expression on the right is the Riemann sum for the
division points a, aq, aq2, . . . on [0,a]. Note that Fermat integrated xm/n, wherem and
n were integers, by first evaluating its q-integral and then letting q → 1−. Jackson’s
notation for the q-gamma, �q(x), is still in use; he set

�q(x)=V(x− 1,q). (31.13)

Jackson was a British naval chaplain; he apparently had a little difficulty in publishing
some of his earlier works because their significance was not quite clear to referees. Jack-
son’s lifelong program was to systematically develop the theory of q-hypergeometric
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(or basic hypergeometric) series by proving analogs of summation and transformation
formulas for generalized hypergeometric series. Jackson conceived of q as the base of
the series, analogous to the base of the logarithm. His terminology is now widely used.
In recent years, Vyacheslav Spiridonov has worked out another important and produc-
tive generalization of hypergeometric functions, elliptic hypergeometric functions. A
formal series,

∑∞
−∞ cn, is called an elliptic hypergeometric series if cn+1/cn = h(n),

where h(n) is some elliptic function of n ∈ C.
Leonard James Rogers (1862–1933) gave a new direction to q-series theory through

his researches in the early 1890s. Rogers studied at Oxford where his father was a pro-
fessor of political economy. As a boy, Rogers was tutored in mathematics by A. Griffith,
an Oxford mathematician with a strong interest in elliptic functions. Rogers’s earliest
work was in reciprocants, a topic in invariant theory. The second half of Sylvester’s
1886 Oxford lectures on this subject were devoted to the work of Rogers. Around this
same time, Rogers’s interest turned to analysis and to the topic in which he did his most
famous work, theta series and products and, more generally, q-series. In his Royal Soci-
ety obituary notice of Rogers, A. L. Dixon recalled attending an 1887 course of lectures
at Oxford in which Rogers manipulated q-series and products with great skill. In the
period 1893–95, after a study of Heine’s 1878 Kugelfunctionen, Rogers published four
important papers on q-extensions of Hermite and ultraspherical polynomials. In his
book, Heine included extra material, printed in smaller type, on basic hypergeometric
series, clearly expecting that the q-extensions of some results in the book would be
important and fruitful. Rogers showed that Heine was right. Rogers was initially struck
by a lack of symmetry in Heine’s transformation formula. In order to present Rogers’s
work succinctly and with transparency, we introduce some modern notation different
from that of Rogers, though he also employed abbreviations. Let

(x)n ≡ (x;q)n = (1− x)(1− qx)(1− q2x) · · ·(1− qn−1x),

n= 1,2,3, . . . ,∞. (31.14)

We observe that Rogers wrote xn for 1−qn−1x; xn! for (x)n; and (x) for (x)∞. We now
replace qα, qβ , qγ in Heine’s formula (31.4) by a, b, c and write it as

φ(a,bx,cx,q,z)= (bx)∞(az)∞
(cx)∞(z)∞

φ(c/b,z,az,q,bx).

Here, φ(a,b,c,q,x)=
∞∑
n=0

(a)n(b)n

(q)n(c)n
xn. (31.15)

After reparametrization, we can write Heine’s transformation as

φ(a,b,c,q,x)= (ax)∞(b)∞
(x)∞(c)∞

φ(c/b,x,ax,q,b). (31.16)

Perhaps Rogers’s earlier work on invariant theory had made him sensitive to symmetry,
so as a first step he wrote the transformation in symmetric form. He observed that, by
the symmetry in a and b and also by a reapplication of Heine’s transformation, he
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obtained two results from (31.16):

φ(a,b,c,q,x)= (bx)∞(c/b)∞
(x)∞(c)∞

φ(b,abx/c,bx,q,c/b), (31.17)

φ(a,b,c,q,x)= (abx/c)∞
(x)∞

φ(c/a,c/b,c,q,abx/c). (31.18)

Rogers set a = µe−iθ , b = γ e−iθ , c = µγ , and x = λeiθ , observing that the last three
formulas implied that

ψ(λ,µ,γ,q,θ)= (λeiθ )∞(µγ )∞φ(µe−iθ ,γ e−iθ ,µγ,q,λeiθ )
was symmetric in λ, µ, γ and in θ and −θ . He then went on to define a q-extension of
the Hermite polynomials An(θ) by the relation

P(t)≡ 1∏∞
n=0(1− 2tqn cosθ + t2q2n)

=
∞∑
n=0

An(θ)

(q)n
tn. (31.19)

In a later paper, Rogers defined a q-extension of the ultraspherical or Gegenbauer
polynomials and denoted it by Ln(θ), using the equation

P(t)

P (λt)
≡

∞∏
n=0

(
1− 2λtqn cosθ +λ2t2q2n

1− 2tqn cosθ + t2q2n

)
=

∞∑
n=0

Ln(θ)

(q)n
tn. (31.20)

In connection with the q-Hermite polynomials, Rogers raised the question: Suppose

a0 + a1A1(θ)+ a2A2(θ)+·· · = b0 + 2b1 cosθ + 2b2 cos2θ +·· · .
How are the coefficients a0, a1, a2, . . . and b0, b1, b2, . . . related to each other? He
solved the problem and then applied the solution to the function

∞∏
n=1

(
1+ 2qn−1/2 cosθ + q2n−1

)
.

From the triple product identity, the Fourier cosine expansion of this function was
already known; Rogers found the expansion in terms ofAr(θ), and in particular, he got

a0 =
∞∑
n=0

qn
2

(q)n
, a1 = q1/2

1− q
∞∑
n=0

qn(n+1)

(q)n
.

When he expressed a0, a1 in terms of the bs, he obtained a series convertible to prod-
ucts by the triple product identity. The final results emerged as the Rogers–Ramanujan
identities. Recall that we gave Ramanujan’s derivation of these formulas in chapter 30.
Although Rogers discovered these remarkable identities in 1894, they remained unno-
ticed until Ramanujan rediscovered them without proof. Then, in 1917, quite by chance,
Ramanujan came across Rogers’s paper while browsing through old journals. The ensu-
ing correspondence between Ramanujan and Rogers led them both to new proofs of the
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identity now known by their names. Somewhat surprisingly, around 1980, the physicist
R. J. Baxter rediscovered the Rogers–Ramanujan identities in the course of his work
on the hard hexagon model.

Rogers left unanswered the question of the orthogonality of his q-extensions of the
Hermite and ultraspherical polynomials. He had found three-term recurrence relations
for these polynomials, but it was not until the 1930s that these relations were widely
understood to imply that the polynomials were orthogonal with respect to some positive
weights. Consider the statement of the spectral theorem for orthogonal polynomials:
Suppose that a sequence of monic polynomials {Pn(x)} with real coefficients satisfies
a three-term recurrence relation

x Pn(x)= Pn+1(x)+αnPn(x)+βnPn−1(x), n≥ 1, (31.21)

with P0(x) = 1, P1(x) = x − α0, αn−1 real and βn > 0. Then there exists a distribu-
tion function µ, corresponding to a positive and finite Borel measure on the real line,
such that ∫ ∞

−∞
Pm(x)Pn(x)dµ(x)= ζnδm,n, (31.22)

where ζn = β1β2 · · ·βn. (31.23)

The converse is also true and straightforward to prove. This theorem is sometimes
known as Favard’s theorem since Jean Favard (1902–1965) published a proof in the
Comptes Rendus (Paris) in 1935. However, the theorem appeared earlier in the works
of O. Perron, M. Stone, and A. Wintner. In fact, J. Meixner applied this theorem to his
work on orthogonal polynomials, with a reference to a 1934 result of Perron. Stieltjes’s
famous 1895 paper on continued fractions also contains a result yielding the spectral
theorem, when combined with Riesz’s representation theorem. It is unlikely that Rogers
was aware of Stieltjes’s work. We note that A. L. Dixon wrote of Rogers that he had
only a vague notion of the work of other mathematicians. Probably an abstract result
such as the spectral theorem for orthogonal polynomials would not have interested
Rogers who loved special functions and formulas. He would have wanted to use the
actual weight function, needed for computational purposes.

The Hungarian mathematician Gabor Szegő (1895–1985) took the first step toward
finding an explicit weight function. Szegő studied in Hungary and Germany under Fejér,
Frobenius, and Hilbert. His most famous book, Problems and Theorems in Analysis,
was originally written in German in 1924, in collaboration with George Pólya. Szegő
made significant contributions to orthogonal polynomials, on which he also wrote a
very influential book first published in 1939. He founded the study of orthogonality on
the unit circle; for a probability measure α(θ), he defined this orthogonality by∫ 2π

0
φn(e

iθ )φm(eiθ )dα(θ)= 0, m �= n,

where φn(z)=
n∑
k=0

ak,nz
k.
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Szegő was the first to appreciate the general program Rogers had in mind, as opposed to
its specific though very important corollaries, such as the Rogers–Ramanujan identities.
Rogers’s papers inspired Szegő to discover the first nontrivial example of orthogonal
polynomials on the circle, where

ak,n = (−1)kq−k/2
(1− qn)(1− qn−1) · · ·(1− qn−k+1)

(1− q)(1− q2) · · ·(1− qk) .

Here note the connection with the Gaussian polynomial. Recall also that Gauss had
expressed φ(−q) and φ(

√
q) as finite products and evaluated the general quadratic

Gauss sum from these expressions. Szegő found that the weight function f (θ)dθ =
dα(θ) in this case was

f (θ)=
∞∑

n=−∞
qn

2/2einθ ,

and he applied the triple product identity to prove it. The weight function for Rogers’s
q-Hermite polynomial is also a theta function; the proof of orthogonality in that case
also uses the triple product identity.

The q-ultraspherical polynomials were independently rediscovered by Feldheim and
I. L. Lanzewizky in 1941. The Hungarian mathematician Ervin Feldheim (1912–1944)
studied in Paris, since he was not admitted to the university in Budapest. His the-
sis was in probability theory but on his return to Hungary he contributed important
results to the classical theory of orthogonal polynomials. One of these results was con-
tained in a letter to Fejér written by Feldheim shortly before his tragic death at the
hands of the Nazis. The letter was later found by Paul Turán, who described the inci-
dent, “Thus the letter had been resting among Fejér’s letters for some 15 years. . . .
On the next day I received a letter from Szegő, in which he raised just a prob-
lem solved in Feldheim’s letter! I sent this letter to Szegő and he published it with
applications.”

The origin of Feldheim and Lanzewizky’s papers was the work of Fejér on a gener-
alization of Legendre polynomials; this generalization also included the ultraspherical
polynomials. Feldheim and Lanzewizky wished to determine those generalized Leg-
endre polynomials that were also orthogonal. They used the spectral theorem and
found conditions under which the generalized Legendre polynomials satisfied the
appropriate three-term recurrence relation. At the end of his paper, Feldheim raised
the problem of determining the weight or distribution function for orthogonality but
was unable to resolve the question. Earlier works of Stieltjes and Markov could have
helped him here, and from a remark in his paper, it seems that he may have been
aware of their work. We should remember, however, that Feldheim was working under
extremely difficult circumstances during the war. So, like Rogers himself, Feldheim
and Lanzewizky did not give the relevant orthogonality relations and, in fact, they did
not write the polynomials as q-extensions of the ultraspherical polynomials. Around
1980, Richard Askey and Mourad Ismail finally established the explicit orthogonality
relation.
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In his paper containing the Rogers–Ramanujan identities, Rogers also observed that
the series

χ(λ2)= 1+ λ2q2

1− q + λ4q6

(1− q)(1− q2)
+·· · (31.24)

satisfied the relation

χ(λ2)−χ(λ2q)= λ2q2χ(λ2q2). (31.25)

This can be easily verified and implies the continued fraction expansion

χ(λ2)

χ(λ2q)
= 1

1+
λ2q2

1+
λ2q3

1+
λ2q4

1+ ·· · . (31.26)

This is now known as the Rogers–Ramanujan continued fraction because Ramanujan
rediscovered and went much farther with it. In his first letter to Hardy, of January 16,
1913, Ramanujan stated without proof that

1

1+
e−2π

1+
e−4π

1+
e−6π

1+ ·· · =
√

5+√
5

2
−

√
5+ 1

2

e2π/5, (31.27)

1

1−
e−π

1+
e−2π

1−
e−3π

1+ ·· · =
√

5−√
5

2
−

√
5− 1

2

eπ/5, (31.28)

and that 1
1+

e−π
√
n

1+
e−2π

√
n

1+
e−3π

√
n

1+ · · · could be exactly determined if n were any positive
rational quantity. In his next letter of February 27, 1913, Ramanujan wrote

If F(x)= 1

1+
x

1+
x2

1+
x3

1+ ·· · , then{√
5+ 1

2
+ e−2α/5F(e−2α)

}{√
5+ 1

2
+ e−2β/5F(e−2β)

}
= 5+√

5

2

with the condition αβ = π2, . . . . This theorem is a particular case of a theorem on the continued
fraction

1

1+
ax

1+
ax2

1+
ax3

1+ ·· · ,
which is a particular case of the continued fraction

1

1+
ax

1+ bx+
ax2

1+ bx2+
ax3

1+ bx3+ ·· · ,

which is a particular case of a general theorem on continued fractions.

Hardy was very impressed with Ramanujan’s results on continued fractions. Concerning
formulas (31.27) and (31.28) he wrote, “I had never seen anything in the least like them
before. A single look at them is enough to show that they could only be written down
by a mathematician of the highest class. They must be true because, if they were not
true, no one would have had the imagination to invent them.”
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31.2 Heine’s Transformation

Heine proved his transformation for the q-hypergeometric series by a judicious appli-
cation of the q-binomial theorem. He proved the q-binomial theorem by the use of
contiguous relations; as we mentioned in exercise 13 of chapter 4, Gauss may have
employed this method to prove the binomial theorem. Heine required the contiguous
relation

φ(α+ 1,β,γ,q,x)−φ(α,β,γ,q,x)= qαx 1− qβ
1− qγ φ(α+ 1,β,γ,q,x) (31.29)

and the q-difference relation

φ(α,β,γ,q,x)−φ(α,β,γ,q,qx)= (1− qα)(1− qβ)
1− qγ xφ(α+ 1,β+ 1,γ + 1,q,x).

(31.30)

Note that the second relation is the analog of the derivative equation

d

dx
F(a,b,c,x)= a · b

c
F (a+ 1,b+ 1,c+ 1,x).

Heine then supposed that β = γ = 1 so that he had the q-binomial series

φ(α,x)= φ(α,1,1,q,x)= 1+ 1− qα
1− q x+

(1− qα)(1− qα+1)

(1− q)(1− q2)
x2 +·· · . (31.31)

By (31.29),

φ(α+ 1,x)= 1

1− qαx φ(α,x). (31.32)

Combined with (31.30), this produced

φ(α,x)= 1− qαx
1− x φ(α,qx)= (1− qαx)(1− qα+1x) · · ·(1− qα+nx)

(1− x)(1− qx) · · ·(1− qnx) φ(α,qn+1x).

(31.33)

The q-binomial theorem followed, since it was assumed that |q|< 1 and

φ(α,qn+1x)→ φ(α,0)= 1 as n→ 0.

Then, to obtain the transformation formula (31.32), Heine started with the series

S = 1+ (1− qα)(1− qβx)
(1− q)(1− qγ x) z+

(1− qα)(1− qα+1)(1− qβx)(1− qβ+1x)

(1− q)(1− q2)(1− qγ x)(1− qγ+1x)
z2 +·· · ,

(31.34)

where he assumed |q| < 1, |x| < 1, and |z| < 1 for convergence. He multiplied both
sides by φ(γ − β,qβx) and used the product expression for this function, from the
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q-binomial theorem, to get

φ(γ −β,qβx)S = φ(γ −β,qβx)+ 1− qα
1− q z ·φ(γ −β,qβ+1x)

+ (1− qα)(1− qα+1)

(1− q)(1− q2)
z2 ·φ(γ −β,qβ+2x)+·· · .

(31.35)

In the next step, Heine expanded each of the φ on the right as series. We here employ
the abbreviated notation given in (31.14).

1+ (qγ−β;q)1
(q;q)1 · qβx+ (qγ−β;q)2

(q;q)2 · q2βx2 +·· ·

+ z
(
(qα;q)1
(q;q)1 + (qγ−β;q)1

(q;q)1 · (q
α;q)1
(q;q)1 q

β+1x+ (qγ−β;q)2
(q;q)2 · (q

α;q)1
(q;q)1 q

2β+2x2 +·· ·
)

+ z2

(
(qα;q)2
(q2;q)2 + (qγ−β;q)1

(q;q)1 · (q
α;q)2
(q;q)2 · qβ+2x+·· ·

)
+·· · .

He changed the order of summation and used the q-binomial theorem to obtain

φ(α,z)+ (qγ−β;q)1
(q;q)1 · qβx ·φ(α,qz)+ (qγ−β;q)2

(q;q)2 · q2βx2φ(α,q2z)+·· ·

= φ(α,z)
(

1+ (qγ−β;q)1(z;q)1
(q;q)1(qαz;q)1 · qβx+ (qγ−β;q)2(z;q)2

(q;q)2(qαz;q)2 · q2βx2 +·· ·
)
.

Finally, Heine substituted this expression into the right-hand side of (31.35) and replaced
φ(α,z) and φ(γ −β,qβx) by their product expressions, to arrive at the transformation
(31.4). Heine found the q-extension of Gauss’s summation of F(α,β,γ,1) by taking
x = 1, z= qγ−α−β in his transformation:

φ(α,β,γ,qγ−α−β)

= (qβ;q)∞(qγ−β;q)∞
(qγ ;q)∞(qγ−α−β;q)∞ ·φ(γ −α−β,1,1,qβ)

= (qγ−α;q)∞(qγ−β;q)∞
(qγ ;q)∞(qγ−α−β;q)∞ .

(31.36)

Note that this derivation is analogous to the method used to derive Gauss’s formula
from Euler’s integral for the hypergeometric function. This suggests that Heine’s trans-
formation is the q-analog of Euler’s integral formula; indeed, recall that Thomae proved
this after defining the q-integral.

31.3 Rogers: Threefold Symmetry

Rogers applied his knowledge and experience of elliptic functions and invariant theory
to develop the theory of q-Hermite and q-ultraspherical polynomials. From invariant
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theory, he brought a sense of symmetry and expertise in applying infinite series/products
of operators. We may recall that in the first half of the nineteenth century, Arbogast,
Français, Murphy, D. Gregory, and Boole made extensive use of operational calcu-
lus. Cayley and Sylvester appropriated these methods for invariant theory. Then, in
the 1880s, J. Hammond and P. MacMahon applied these techniques to combinatorial
and invariant theoretic problems. It is interesting to observe Rogers’s use of algebra,
combinatorics and analysis as he conceived of and solved new problems in analysis.
In his second paper of 1893, Rogers converted Heine’s transformation into an equation
with threefold symmetry. He showed that the function

ψ(λ,µ,ν,q,θ)= φ(µe−iθ ,νe−iθ ,µν,q,λeiθ )(λeiθ )∞(µν)∞ (31.37)

was symmetric in λ, µ, and ν, and also symmetric in θ and −θ . He then set

χ(λ,µ,ν,q,θ)= ψ(λ,µ,ν,q,θ)

P (λ)P (µ)P (ν)
, where (31.38)

P(λ)=
∞∏
n=0

(1− 2λqn cosθ +λ2q2n)−1 = 1

(λeiθ )∞(λe−iθ )∞
. (31.39)

In his 1847 paper, Heine discussed such products; for particular values of λ they are
ubiquitous in elliptic function theory. Rogers defined a q-extension of the Hermite
polynomials Ar(θ) as the coefficient of λr/(q)r in the series expansion of P(λ):

P(λ)=
∞∑
r=0

Ar(θ)

(q)r
λr . (31.40)

From Euler’s expansion, Rogers had

1

(λeiθ )∞(λe−iθ )∞
=

(
1+ λeiθ

1− q + λ2e2iθ

(q)2
+·· ·

)(
1+ λe−iθ

1− q + λ2e−2iθ

(q)2
+·· ·

)
.

(31.41)

Hence Rogers obtained his expression for the q-Hermite polynomial:

Ar(θ)=
r∑
n=0

(q)re
iθ(r−2n)

(q)n(q)r−n
=

r∑
n=0

(q)r cos(r − 2n)θ

(q)n(q)r−n
. (31.42)

Note that the last step followed because Ar(θ) was an even function of θ . In his 1894
paper, Rogers noted the three-term recurrence relation for Ar(θ):

2cosθAr−1(θ)=Ar(θ)+ (1− qr−1)Ar−2(θ). (31.43)

He obtained it as a consequence of the relation

P(λq)= (1− 2λcosθ +λ2)P (λ), (31.44)

or
∞∑
r=0

Ar(θ)λ
rqr

(q)r
= (1− 2λcosθ +λ2)

∞∑
r=0

Ar(θ)λ
r

(q)r
. (31.45)
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In his 1893 paper, Rogers raised the problem of expanding χ(λ,µ,ν,q,θ) in (31.38)
as a series in q-Hermite polynomials. The series would take the form A0 +A1H1 +
A2H2 +·· · and the problem was to determineHr . He showed thatHr , a homogeneous
symmetric function of degree r in λ, µ, and ν, was the coefficient of kr in the series
expansion of

1/((kλ)∞(kµ)∞(kν)∞). (31.46)

Rogers gave an interesting proof of this expansion and we sketch it very briefly. He
observed that for the function χ defined by (31.38),

δλχ = δµχ = δνχ, (31.47)

where δ was the difference operator defined by

δqf (x)= (f (x)−f (qx))/x. (31.48)

From (31.47), he was able to deduce that

δλHr(λ,µ,ν)= δµHr(λ,µ,ν)= δµHr(λ,µ,ν). (31.49)

He denoted the coefficient of λαµβνγ inHr by aα,β,γ . Note that α+β+γ = r. Rogers
next showed that (31.49) implied the recurrence relations

(1− qα+1)aα+1,β,γ = (1− qβ+1)aα,β+1,γ = (1− qγ+1)aα,β,γ+1. (31.50)

Combined with the initial condition ar,0,0 = 1/(q)r , these relations uniquely defined the
coefficients. At this point, Rogers remarked that because of uniqueness it was sufficient
to produce a set of coefficients satisfying these conditions. He then quickly demon-
strated that the coefficient of kr in the series expansion of (31.46) was a homogeneous
symmetric function of degree r in λ, µ, and ν whose coefficients satisfied the same
initial condition and recurrence relations (31.50). This proved his result, though he gave
no indication of how arrived at (31.46).

Rogers noted some interesting and important particular cases of his theorem. When
λ= 0, he had

(µν)∞
P(µ)P (ν)

= 1+A1(θ)H1(µ,ν)+A2(θ)H2(µ,ν)+·· · , (31.51)

where Hr(µ,ν) was the coefficient of kr in

1

(kµ)∞(kν)∞
=

(
1+ kµ

1− q + k2µ2

(q)2
+·· ·

)(
1+ kν

1− q + k2ν2

(q)2
+·· ·

)
. (31.52)

SoHr(µ,ν)= µr + (q)r

(q)1(q)r−1
µr−1ν+ (q)r

(q)2(q)r−2
µr−2ν2 +·· ·+ νr . (31.53)

We note that when µ= x and ν = 1,

Hr(x)= xr + (q)r

(q)1(q)r−1
xr−1 + (q)r

(q)2(q)r−2
xr−2 +·· ·+ 1. (31.54)
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These polynomials Hr(x) are now called Rogers–Szegő polynomials, because Szegő
proved the orthogonality ofHr(−x/√q) with respect to a suitable measure on the unit
circle. When µ= xeiθ and ν = xe−iθ in (31.51), Rogers got

∞∏
n=0

(x2)∞
(1− 2xqn cos(θ +φ)+ x2q2n)(1− 2xqn cos(θ −φ)+ x2q2n)

=
∞∑
n=0

An(θ)An(φ)

(q)n
xn .

(31.55)

This result is now known as the q-Mehler formula. Rogers also applied (31.51) to prove
the useful linearization formula for q-Hermite polynomials:

Am(θ)An(θ)

(q)m(q)n
=

min(m,n)∑
k=0

Am+n−2k(θ)

(q)k(q)m−k(q)n−k
. (31.56)

Rogers also noted that, by definition, Ar(π/2) was the coefficient of kr/(q)r in
∏
(1+

k2q2n)−1, and hence

Ar(π/2)= (−1)r(1− q)(1− q3) · · ·(1− qr−1) r even ,

= 0 r odd.

Recall that Gauss evaluated Gauss sums from this result; see the formula (29.30). Thus,
though Rogers may not have known it, this result is due to Gauss.

31.4 Rogers: Rogers–Ramanujan Identities

In order to derive the Rogers–Ramanujan identities, Rogers expandedP(λ) as a Fourier
series and as a series in the q-Hermite polynomials. He then found a relation between
the coefficients in these two series, yielding the famous identities. In his 1894 paper,
Rogers raised and solved the problem: Suppose a function f (θ) is expanded as a Fourier
cosine series and as a series in q-Hermite polynomials An(θ):

f (θ)= a0 + a1A1(θ)+ a2A2(θ)+·· · = b0 + 2b1 cosθ + 2b2 cos2θ +·· · . (31.57)

Express the coefficient an in terms of a series of bj and, conversely, bn in terms of a
series of aj . Rogers found that

bn = an+ 1− qn+2

1− q an+2 + (1− qn+4)(1− qn+3)

(1− q)(1− q2)
an+4

+ (1− qn+6)(1− qn+5)(1− qn+4)

(1− q)(1− q2)(1− q3)
an+6 +·· · .

(31.58)
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For the converse, he gave a0, a1 in terms of series of b, but for the general case he
merely described the method by which the an could be obtained for higher values of n.
He had

a0 = b0 − (1+ q)b2 + q(1+ q2)b4 −·· ·+ (−1)rqr(r−1)/2(1+ qr)b2r + . . . , (31.59)

(1− q)a1 = (1− q)b1 − (1− q3)b3 + q(1− q5)b5 −·· ·
+ (−1)rqr(r−1)/2(1− q2r+1)b2r+1 +·· · . (31.60)

The derivation of (31.58) was simple. Rogers substituted the expression (31.42) for
An(θ) in terms of coskθ on the left side of (31.57) and then equated the coefficients of
cosnθ on both sides. He noted the formula only for even n, but the method also yields
the case for odd n. Rogers’s method for finding (31.59) and (31.60) was quite elaborate
and he did not give the general formula. In his third paper of 1893, on the expansion
of infinite products, Rogers supposed

f (θ)=C0 +C1A1(θ)+C2A2(θ)+·· ·

to be given. He then asked how to find K0, K1, K2, . . . in the expansion

f (θ)∏∞
n=0(1− 2λqn cosθ +λ2q2n)

=K0 +K1A1(θ)+K2A2(θ)+·· · . (31.61)

Rogers expressed the result symbolically, in terms of the difference operator

δλφ(λ)= φ(λ)−φ(λq)
λ

:

K0 +K1x+K2x
2 +·· · = 1

(xλ)∞(xδλ)∞
(C0 +C1λ+C2λ

2 +·· ·). (31.62)

Note that he used an infinite product in the operator δλ.
In his 1894 paper containing the Rogers–Ramanujan identities, Rogers applied

(31.62) to find the q-Hermite expansion of

P(λ)=
∞∏
n=0

(1− 2λqn cosθ +λ2q2n). (31.63)

He noted that for an analytic function φ

1

(xδλ)∞
φ(λ)= 1

(λδx)∞
φ(x). (31.64)
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He verified this by taking the special value φ(λ)= λm. Since

δλλ
m = (1− qm)λm−1, (31.65)

1

(xδλ)∞
λm =

∞∑
n=0

xnδnλ

(q)n
λm =

m∑
n=0

xnλm−n(1− qm) · · ·(1− qm−n+1)

(q)n

=
m∑
n=0

λnxm−n(1− qm) · · ·(1− qn+1)

(q)m−n

= 1

(λδx)∞
xm .

Therefore, (31.62) could be rewritten as

K0 +K1x+K2x
2 +·· · = 1

(λx)∞
· 1

(λδx)∞
(C0 +C1x+C2x

2 +·· ·),

or C0 +C1x+C2x
2 +·· · = (λδx)∞(λx)∞(K0 +K1x+·· ·). (31.66)

Rogers then argued that if f (θ)= P(λ)=C0 +C1A1(θ)+·· · , then

K0 +K1A1(θ)+·· · = 1.

Substituting this value in (31.66) gave him

C0 +C1x+C2x
2 +·· · = (λδx)∞(λx)∞

=
(

1− λδx

1− q + qλ2δ2
x

(1− q)(1− q2)
− . . .

)(
1− λx

1− q + qλ2x2

(1− q)(1− q2)
− . . .

)
.

The last step made use of Euler’s special case of the q-binomial theorem. Rogers applied
(31.65) with λ replaced by x in the last expression to conclude that the coefficient Cr
of xr was

(−1)rqr(r−1)/2λr

(q)r

∞∑
s=0

λ2sqrs+s(s−1)

(q)s
.

This gave the q-Hermite expansion of P(λ). Changing λ to −λq yielded

(1+ 2λq cosθ +λ2q2)(1+ 2λq2 cosθ +λ2q4) · · ·

= χ(λ2)+ qλ

1− q χ(λ
2q)A1(θ)+ q3λ2

(q)2
χ(λ2q2)A2(θ)+ q6λ3

(q)3
χ(λ2q3)A3(θ)+·· · ,

(31.67)

where

χ(λ2)= 1+ λ2q2

1− q + λ4q6

(1− q)(1− q2)
+ λ6q12

(1− q)(1− q2)(1− q3)
+·· · . (31.68)



668 q-Series and q-Orthogonal Polynomials

From the triple product identity, Rogers knew the Fourier cosine expansion of the
product in (31.67) when λ= 1/

√
q:

(1+ 2q1/2 cosθ + q)(1+ 2q3/2 cosθ + q3) · · ·

= 1

(q)∞
(1+ 2q1/2 cosθ + 2q2 cos2θ + 2q9/2 cos3θ +·· ·).

He therefore setλ= 1/
√
q in (31.67) and applied (31.59) and (31.60). Thus, the Rogers–

Ramanujan identities were discovered. From (31.59) he obtained

a0 = χ(1/q)= 1+ q

1− q + q4

(1− q)(1− q2)
+ q9

(1− q)(1− q2)(1− q3)
+·· ·

= 1

(q)∞

(
1− (1+ q)q2 + (1+ q2)q9 − (1+ q3)q21 +·· ·

)
= 1

(q)∞

(
1+

∞∑
m=1

(−1)mqm(5m±1)/2

)
.

(31.69)

The sum could be evaluated by the triple product identity

(x)∞(q/x)∞(q)∞ =
∞∑

n=−∞
(−1)nqn(n−1)/2xn.

Replacing q by q5 and setting x = q2 yielded

(q2;q5)∞(q3;q5)∞(q5;q5)∞ = 1+
∞∑
n=1

(−1)nqn(5n±1)/2.

So the right-hand side of the equation (31.69) was reduced to

(1− q2)(1− q7) · · ·(1− q3)(1− q8) · · ·(1− q5)(1− q10) · · ·
(1− q)(1− q2)(1− q3) · · ·

= 1

(1− q)(1− q4)(1− q6)(1− q9) · · · =
∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
.

This completed the proof of the first identity. Similarly,

(1− q)a1 = q1/2

(
1+ q2

1− q + q6

(1− q)(1− q2)
+ q12

(1− q)(1− q2)(1− q3)
+·· ·

)
= 1

(q)∞

(
(1− q)q1/2 − (1− q3)q9/2 + (q− q6)q25/2 −·· ·

)
.
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In this way, he obtained the second identity

1+ q2

1− q + q6

(1− q)(1− q2)
+·· ·

= 1

(q)∞
(1− q− q4 + q7 + q13 − q18 −·· ·)

=
∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
.

(31.70)

To prove (31.62), Rogers observed that since

1∏∞
n=0(1− 2λqn cosθ +λ2q2n)

= 1+ λ

1− qA1(θ)+ λ2

(1− q)(1− q2)
A2(θ)+·· · ,

the linearization formula (31.56) for An(θ) implied that the left-hand side of (31.62)
was a product of series inAn(θ) and therefore was itself such a series. He also observed
that the linearization of Am(θ)An(θ) contained a term independent of θ only when
m= n, and in that case this term would be (q)n. Hence, he had

K0 =C0 +C1λ+C2λ
2 +·· · . (31.71)

From the difference relation

δλ

(
1

P(λ)

)
= 1

λ

(
1

P(λ)
− 1

P(λq)

)
= 1− (1− 2λcosθ +λ2)

λP (λ)
= 2cosθ −λ

P (λ)
,

Rogers obtained

δλ(K0 +K1A1(θ)+K2A2(θ)+·· ·)= (C0 +C1A1 +·· ·)2cosθ −λ
P (λ)

= (2cosθ −λ)(K0 +K1A1(θ)+·· ·).
He equated the coefficients of Ar on both sides and applied the recurrence relation

Ar+1 + (1− qr)Ar−1 = 2cosθ Ar to conclude

(1− qr+1)Kr+1 = λKr −Kr−1 + δλKr. (31.72)

He showed inductively that (31.72) implied

Kr =Hr(λ,δλ)K0, (31.73)

where Hr was defined as in (31.53). For r = 0, (31.72) gave him

(1− q)K1 = (λ+ δλ)K0 =H1(λ,δλ)K0.
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He assumed the result true up to r so that (31.72) could be written as

(1− qr+1)Kr+1 = (λ+ δλ)Hr(λ,δ)K0 −Hr−1(λ,δ)K0. (31.74)

He noted that whenm+n= r , the coefficient of λmδnλ inHr(λ,δλ) was 1/(q)m(q)r−m.
He defined the operator η by ηf (λ)= f (qλ), so that

δλλ
mδnλf (λ)= λm−1δnλf (λ)−λm−1qmηδnλf (λ)

= λm−1δnλf (λ)− qm(λm−1δnλf (λ)−λmδn+1
λ f (λ))

= (1− qm)λm−1δnf (λ)+ qmλmδn+1
λ f (λ).

The first term in the last expression cancelled with the term containing λm−1δnλ in
Hr−1(λ,δλ). So (31.73) implied that

(1− qr+1)Kr+1 =
∑(

qm

(q)m(q)r−m
+ 1

(q)m−1(q)r−m+1

)
λmδn+1

λ K0

= (1− qr+1)
∑ λmδr+1−m

λ

(q)m(q)r+1−m
K0

= (1− qr+1)Hr+1(λ,δλ)K0.

Thus (31.73) was proved. Moreover, by (31.71), Rogers had

C0 +C1A1 +C2A2 +·· ·
P(λ)

= (1+H1(λ,δλ)A1 +H2(λ,δλ)A2 +·· ·)

× (C0 +C1λ+C2λ
2 +·· ·).

This meant, remarked Rogers, that K0 +K1x+K2x
2 +·· · was equal to

(1+ xH1(λ,δλ)+ x2H2(λ,δλ)+·· ·)(C0 +C1λ+C2λ
2 +·· ·)

= 1

(xλ)∞(xδλ)∞
(C0 +C1λ+C2λ

2 +·· ·). (31.75)

This completed the proof of (31.62).

31.5 Rogers: Third Memoir

Rogers defined q-ultraspherical polynomials and derived some of their properties in
his 1895 memoir. His definition used their generating function

P(λx)

P (x)
=

∞∑
n=0

Ln(θ)

(q)n
xn. (31.76)

He obtained the recurrence relation

Lr − 2cosθ ·Lr−1(1−λqr−1)+Lr−2(1− qr−1)(1−λ2qr−2)= 0
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from the equation

P(λx)

P (x)
(1− 2x cosθ + x2)= P(λqx)

P (qx)
(1− 2λx cosθ +λ2x2). (31.77)

He observed that by the q-binomial theorem,

(λxeiθ )∞
(xiθ )∞

=
∞∑
n=0

(λ)n

(q)n
xneinθ ;

an expression for Ln(θ) could be obtained by multiplying this series with the series
for (λxe−iθ )∞/(xe−iθ )∞. He also noted the following particular cases: when λ = 0,
Lr =Ar ;

when λ= q, Lr = (q)r sin(r + 1)θ

sin θ
; when λ→ 1,

1−λqr
1−λ Lr → (q)r · 2cosrθ.

For yet another noteworthy result, Rogers supposed Mr to be the same function of µ
as Lr of λ:

P(µx)/P (x)= 1+
∑

Mrx
r/(q)r . Then

Lr

(q)r
=

∑
0≤s≤r/2

Mr−2s(1− qr−2sµ)

(q)r−2s

(µ−λ)(µ− qλ) · · ·(µ− qs−1λ)(λ)r−s
(q)s(µ)r−s+1

.

(31.78)

Secondly, Rogers gave a formula now known as the linearization formula: For s ≤ r

LrLs

(q)r(q)s
=

s∑
t=0

(1−λqr+s−2t )Lr+s−2t (λ)s−t (λ)t (λ)r−t (λ2)r+s−t
(λ2)r+s−2t (q)s−t (q)t (q)r−t (λ)r+s−t+1

. (31.79)

Note that the modern definition of the q-ultraspherical polynomial Cn(cosθ;λ|q) is
slightly different:

P(x)

P (λx)
=

∞∑
n=0

Cn(cosθ;λ|q)xn. (31.80)

31.6 Rogers–Szegő Polynomials

Rogers found q-extensions for two systems of orthogonal polynomials, but he did not
prove their orthogonality; Szegő was the first to take a significant step in that direction.
He considered polynomials orthogonal on the unit circle. In a 1921 paper he showed
how to associate polynomials orthogonal on −1 ≤ x ≤ 1 of weight function w(x) with
polynomials orthogonal on the unit circle of weight function f (θ)= w(cosθ)|sin θ |.
However, Szegő had been able to find only a few simple examples; in 1926, Rogers’s
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work motivated him to discover that the polynomials

φn(z)= a
n∑
k=0

(q)n

(q)k(q)n−k
(−q−1/2z)k,

where a = (−1)nqn/2√
(q)n

,

were orthogonal on the unit circle with respect to the weight function

f (θ)= |D(eiθ )|2 andD(z)=√
(q)∞ (−q1/2z)∞.

Szegő proved this by first observing that by the triple product identity

f (θ)=
∞∑

n=−∞
qn

2/2einθ ;

hence,
1

2π

∫ 2π

0
f (θ)e−inθ dθ = qn2/2, n= 0,±1,±2, . . . . (31.81)

He then took φn(z)=∑n

k=0 akz
k to determine ak, by requiring the relations

1

2π

∫ 2π

0
f (θ)φn(z)zk dθ = 0, z= eiθ , k = 0,1, . . . ,n− 1. (31.82)

By (31.81), equation (31.82) gave
∑n

s=0 asq
(s−k)2/2 = 0 or

n∑
s=0

asq
−sk+s2/2 = 0, k = 0,1, . . . ,n− 1. (31.83)

To solve this system of equations, Szegő recalled the Rothe–Gauss formula

(1+ qx)(1+ q2x) · · ·(1+ qnx)=
n∑
s=0

(q)n

(q)s(q)n−s
qs(s+1)/2xs.

He took x =−q−k−1 to get

n∑
s=0

(q)n

(q)s(q)n−s
(−1)sq−s(k+1/2)+s2/2 = 0, k = 0,1, . . . ,n− 1. (31.84)

By comparing (31.83) and (31.84), he concluded that

as = a(−1)s
(q)n

(q)s(q)n−s
q−s/2, s = 0,1, . . . ,n.

The factor a was then chosen so that

1

2π

∫ 2π

0
f (θ) |φn(z)|2 dθ = 1.
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We note that the triple product identity can be applied to also obtain the orthogonality of
the q-Hermite polynomials An(θ). The orthogonality relation here would be given by

1

2π

∫ π

0
Am(θ)An(θ) |(e2iθ )∞|2 dθ = δmn

(qn+1)∞
. (31.85)

31.7 Feldheim and Lanzewizky: Orthogonality of
q-Ultraspherical Polynomials

The work of Feldheim and Lanzewizky arose out of the papers of Fejér and Szegő
on some questions relating to generalized Legendre polynomials. To define Fejér’s
generalized Legendre polynomial, let

f (z)= a0 + a1z+ a2z
2 +·· · (31.86)

be analytic in a neighborhood of zero with real coefficients. Then

|f (reiθ )|2 =
∞∑
n=0

anr
neinθ

∞∑
n=0

anr
ne−inθ

=
∞∑
n=0

rn
n∑
k=0

an−kakei(n−2k)θ

=
∞∑
n=0

rn
n∑
k=0

an−kak cos(n− 2k)θ.

The last step is valid because the left-hand side is real and the coefficients are real. The
polynomials pn(x) defined by

pn(cosθ)=
n∑
k=0

akan−k cos(n− 2k)θ, (31.87)

where x = cosθ , are the Fejér–Legendre polynomials; they have properties similar to
those of Legendre polynomials. For example, Fejér and Szegő proved that under certain
conditions on the coefficients,pn(x) hadn zeros in the interval (−1,1) and that the zeros
ofpn(x) andpn+1(x) separated each other. Feldheim and Lanzewizky showed that these
polynomials were orthogonal when f (z) in (31.86) was the q-binomial series. Their
result was stated in a different form, and they did not give the orthogonality relation.
Feldheim used the theorem: For a sequence of polynomials Pn(x) (n= 0,1,2, . . . ) to
be orthogonal, it is necessary and sufficient that the recurrence relation

2bnxPn(x)= Pn+1(x)+λnPn−1(x) (n≥ 1,λn > 0) (31.88)

hold true. Feldheim substituted (31.87) in (31.88) and applied the trigonometric iden-
tity 2xTn(x) = Tn+1(x)+ Tn−1(x) where Tk(x) = coskθ , x = cosθ . He then wrote
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(31.88) as

bn

n∑
k=0

akan−k

(
Tn−2k+1(x)+Tn−2k−1(x)

)

=
n+1∑
k=0

akan−k+1Tn−2k+1(x)+λn
n−1∑
k=0

akan−k−1Tn−2k−1(x),

or, with a−1 = 0,

bn

n∑
k=0

(akan−k+ ak−1an−k+1)Tn−2k+1(x)=
n+1∑
k=0

(akan−k+1 +λnak−1an−k)Tn−2k+1(x).

By equating coefficients,

bn(akan−k+ ak−1an−k+1)= akan−k+1 +λnak−1an−k.

Dividing by ak−1an−k and setting bn = an+1/an, Feldheim obtained

λn = bn(bk−1 + bn−k)− bk−1bn−k, k = 1,2, . . . ,n. (31.89)

He considered the three equations, obtained when k = n, n− 1, and n− 2:

λn = bn(bn−1 + b0)− bn−1b0 = bn(bn−2 + b1)− bn−2b1 = bn(bn−3 + b2)− bn−3b2.

He initially set b0 = 0, since b0 could be arbitrarily chosen, and solved for bn to obtain

bn = b1bn−2

b1 + bn−2 − bn−1
= b2bn−3

b2 + bn−3 − bn−1
. (31.90)

With n replaced by n− 1, (31.90) gave

bn−1 = b1bn−3

b1 + bn−3 − bn−2
.

Solving for bn−3 produced

bn−3 = bn−1(bn−2 − b1)

bn−1 − b1
and therefore

bn−3 − bn−1 = bn−1(bn−2 − bn−1)

bn−1 − b1
and then

bn = b2bn−1(bn−2 − b1)

b2(bn−1 − b1)+ bn−1(bn−2 − bn−1)
= b2bn−1(bn−2 − b1)

bn−1(b2 + bn−2 − bn−1)− b1b2

= b1bn−2

b1 + bn−2 − bn−1
.

The last equation was simplified to

(b2 − b1)(bn−2 − bn−1)bn−1bn−2 = b1b2(bn−2 − bn−1)(bn−1 − b1), n= 3,4,5, . . . .
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From these relations, Feldheim expressed the value of bn in the simpler form

bn = b2
1b2

b1b2 − (b2 − b1)bn−1
, n= 1,2,3, . . . . (31.91)

Considering the general case where b0 was not necessarily zero, he noted that since
b0 and b1 could be arbitrarily chosen, all the bk in (31.91) could then be replaced by
bk− b0. Feldheim then rewrote this relation as

βn = c

c−βn−1
= 1

1− βn−1
c

, β0 = 1, β1 = 1, n= 1,2,3, . . . (31.92)

where βn = bn− b0

b1 − b0
and c= b2 − b0

b2 − b1
.

To solve the Riccati difference equation (31.92), Feldheim expanded δn = 1−βn/c as
the continued fraction

δn = Rn

Sn
= 1− 1/c

1−
1/c

1− ·· · 1/c

1− ,

so that Rn and Sn satisfied the recurrence relation

tn = tn−1 − 1

c
tn−2 (31.93)

with initial condition R0 = 1, S0 = 1; R1 = 1−1/c, S1 = 1. The linear equation (31.93)
was solved by the quadratic

x2 − x+ 1/c= 0 to obtain x =
√
c±√

c− 4

2
√
c

.

For real solutions, it was required that c ≥ 4 so that Feldheim could set c = 4cosh2 ξ .
Then

Rn = (1+ tanh ξ)n+2 − (1− tanh ξ)n+2

2n+2 tanh ξ
, Sn = (1+ tanh ξ)n+1 − (1− tanh ξ)n+1

2n+1 tanh ξ
.

He substituted these values for δn and βn to arrive at

bn = b1 + (b1 − b0)
sinh(n− 1)ξ

sinh(n+ 1)ξ
, n= 0,1,2, . . . , (31.94)

where ξ ≥ 0, and b0 and b1 were arbitrary. Feldheim applied this to (31.89) to show that
λn > 0 if b1 > b0. Thus, he found the orthogonal generalized Legendre polynomials.
He also observed that he could obtain the ultraspherical polynomials as special cases.

Lanzewizky’s paper was very brief and gave only statements of his results. In his
first theorem, he noted that if Cn = an/an−1, then Cn satisfied the difference equation

Cn+1 = C1Cn−C2Cn−1

C1 +Cn−C2 −Cn−1
, n= 3,4,5, . . . . (31.95)
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He presented the solution to this difference equation as

Cn+1 =C2 + (C2 −C1)
Un−2(ξ)

Un(ξ)
, where (31.96)

ξ = 1

2

√
C3 −C1

C3 −C2
and Un(ξ)= sin(n+ 1)arccosξ

sin arccosξ
. (31.97)

For orthogonality, he required either that ξ ≥ 1 and −ξ < C1/2C2 < 1; or that ξ = iη
with η > 0 and −η2 <C1/2C2 < 1; he observed that for 0< ξ < 1, orthogonality was
not possible.

Askey has pointed out that it is more convenient to write the solution of the difference
equation (31.95) as

Cn = α(1−βqn−1)

1− qn , (31.98)

where α, β are real constants and |q| ≤ 1. For |q|< 1, we get

an

a0
=C1 ·C2 · · ·Cn = αn (1−β)(1−βq) · · ·(1−βq

n−1)

(1− q)(1− q2) · · ·(1− qn) , (31.99)

and hence f (reiθ )= a0

∑ (β)n

(q)n
αnrneinθ ,

where |αr|< 1 for convergence. Orthogonality is obtained if

(1− qn+1)(1−β2qn)

(1−βqn)(1−βqn+1)
> 0.

So one may take α = 1, yielding

pn(cosθ)=
n∑
k=0

(β)k(β)n−k
(q)k(q)n−k

cos(n− 2k)θ. (31.100)

These are the q-ultraspherical polynomials denoted by Cn(x;β|q) with x = cosθ .
In 1977, Richard Askey and James Wilson derived explicit orthogonality rela-

tions for some basic hypergeometric orthogonal polynomials. These relations included
the orthogonality relation for the q-ultraspherical polynomials of Rogers. But it was
later, upon reading Rogers’s papers, that Askey recognized the full significance of the
q-ultraspherical polynomials. Jointly with Mourad Ismail, he worked out the properties
of these polynomials and discovered various methods for deriving their orthogonality
relation: ∫ 1

−1
Cn(x;β|q)Cm(x;β|q)wβ(x)

dx√
1− x2

= 2π(1−β)
1−βqn · (β

2)n

(q)n
· (β)∞(βq)∞
(β2)∞(q)∞

δmn, 0< q < 1 ,

(31.101)
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where wβ(cosθ)= (e2iθ )∞(e−2iθ )∞
(βe2iθ )∞(βe−2iθ )∞

, −1< β < 1. (31.102)

Interestingly, one of these methods employed Ramanujan’s summation formula, paral-
leling the use of the triple product identity in the derivation of the orthogonality relation
for the q-Hermite polynomials.

31.8 Exercises

1. Show that

1

1− x + z

1− qx + z2

1− q2x
+·· · = 1

1− z +
x

1− qz +
x2

1− q2z
+·· · .

See Heine (1847).
2. Show that

n−1∏
m=0

U
(
qn, a− m

n

)
= cU(q,na),

where c=
(
(1− qn)(1− q2n)(1− q3n) · · ·)n
(1− q)(1− q2)(1− q3) · · · .

See Heine (1847).
3. Let

φ(q)=
∞∏
n=0

(1−q5n+1)−1(1−q5n+4)−1, ψ(q)=
∞∏
n=0

(1−q5n+2)−1(1−q5n+3)−1

and then prove that

(a)φ(q)=
∞∏
n=1

(1+ q2n) ·
∞∑
n=0

qn
2

(1− q4)(1− q8) · · ·(1− q4n)
,

(b)φ(q4)=
∞∏
n=1

(1− q2n−1) ·
∞∑
n=0

qn
2

(q)2n
,

(c)ψ(q)=
∞∏
n=1

(1+ q2n) ·
∞∑
n=0

qn(n+2)

(1− q4) · · ·(1− q4n)
.

See Rogers, (1894) pp. 330–331.
4. Following Rogers, define Br(θ) by

∞∏
n=1

(1+ 2xqn cosθ + x2q2n)=
∞∑
n=0

Bn(θ)

(q)n
xn.
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Demonstrate that

(a)

B2n(θ)= qn(n+1) (q)2n

(q)n(q)n

(
1+ 1− qn

1− qn+1
· 2q cos2θ

+ (1− qn)(1− qn−1)

(1− qn+1)(1− qn+2)
· 2q4 cos4θ +·· ·

)

(b)

B2n+1(θ)= q(n+1)2 (q)2n+1

(q)n(q)n+1

(
2cosθ + 1− qn

1− qn+1
· 2q2 cos3θ

+ (1− qn)(1− qn−1)

(1− qn+2)(1− qn+3)
· 2q6 cos5θ +·· ·

)

(c)

(q)∞

( ∞∑
n=0

q−n/2Bn(θ)
(q)n

)
= 1+ 2

∞∑
n=1

qn/2 cosnθ.

See Rogers (1917), pp. 315–316.
5. Replace 2cos2kθ by

(−1)k(1+ qk)qk(k−1)/2

in the expression for B2n(θ) in exercise 4(a) and denote the result β2n. Likewise,
let β2n+1 denote the result of replacing 2cos(2k+ 1)θ by

(−1)k(1− q2k+1)qk(k−1)/2

in 4(b). Show that

(a)β2n+1 = qn+1(1− q2n+1)β2n,

(b)β2n+2 = qn+1 1− q2n+2

1− qn+1
β2n+1.

In exercise 4(c), equate terms containing even multiples of θ , and replace these
cosines as indicated earlier in this exercise. Show that this process leads to

1

(q)∞
(1− q2 − q3 + q9 + q11 −·· ·)= 1+ β2q

−1

(q)2
+ β4q

−2

(q)4
+·· ·

= 1+ q

1− q + q4

(q)2
+ q9

(q)3
+·· · .

Prove that the cosines of odd multiples of θ lead to the second Rogers–Ramanujan
identity. See Rogers (1917), pp. 316–317. In the 1940s, W. N. Bailey eluci-
dated the underlying structure of Rogers’s method. In the 1980s, G. E. Andrews
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developed Bailey’s idea into a powerful tool to handle q-series and mock theta
functions. Andrews named this method Bailey chains and around the same time,
P. Paule independently realized the significance of Bailey’s method. SeeAndrews
(1986).

6. Show that

∞∏
n=0

(
1− qn+1

1− qnx
)
= 1− q

1− x + q · x− q
(1− x)(1− qx)(1− q

3)

+ q4 · (x− q)(x− q2)

(1− x)(1− qx)(1− q2x)
(1− q5)+·· · .

Consider the cases x = 0, x = q1/2 and x =−1. Prove that

∞∑
n=1

cnqn

1− qn =
∞∑
n=1

cnqn
2

1− qn +
∞∑
n=1

c(n+1)qn(n+1)

1− cqn .

See Rogers (1893a), p. 30.

31.9 Notes on the Literature

See Turán (1990), vol. 3, p. 2626, for the quotation concerning Feldheim; see
Hardy (1978) for his quote on Ramanujan. Heine (1847) contains his work on the
q-hypergeometric series. For the work of Rogers mentioned in the text, see our refer-
ences to his seven papers, dating from 1893 to 1917, at the end of the book. Feldheim
(1941) and Lanzewizky (1941) present their work on the orthogonality of the general-
ized Legendre polynomials of Fejér. For Szegő’s 1926 paper, “Ein Beitrag zur Theorie
der Thetafunktionen,” see pp. 795–805 of Szegő (1982). Also see Askey’s commentary
in Szegő (1982), pp. 806–811. For Askey and Ismail on the orthogonality relations for
the q-ultraspherical polynomials, see their paper in Cheney (1980), pp. 175–182. See
Andrews (1986) for an interesting and detailed discussion, with good references, of the
work of Heine, Thomae, Rogers, and Ramanujan.



32

Primes in Arithmetic Progressions

32.1 Preliminary Remarks

One of the great theorems of number theory states that any arithmetic progression
l, l + k, l + 2k, . . . , where l and k are relatively prime, contains an infinite number
of primes. Euler conjectured this result for the particular case l = 1, probably in the
1750s, though it appeared in print much later. It appears that the general form of this
conjecture first appeared in Legendre’s 1798 book on number theory. Then in 1837,
Dirichlet proved the case with k prime and he published a demonstration of the general
result three years later. Interestingly, the germ of the central idea in Dirichlet’s proof
came from Euler. Note that in a paper of 1737, Euler used the formula

1+ 1

2
+ 1

3
+ 1

4
+·· · = 1(

1− 1
2

)(
1− 1

3

)(
1− 1

5

) · · · (32.1)

to prove that the series of the reciprocals of primes
∑

1/p was divergent. Of course,
this implied that the number of primes was infinite. It is obvious that the series and
product in Euler’s formula are divergent but, as discussed in chapter 26, this defect
is easy to remedy. Euler studied numerous Dirichlet series and their infinite products,
including

π

4
= 1− 1

3
+ 1

5
− 1

7
+·· · = 1(

1− 1
3

)(
1+ 1

5

)(
1− 1

7

)(
1− 1

11

)(
1+ 1

13

) · · · , (32.2)

where the primes of the form 4n+ 3 appeared with a negative sign and those of the
form 4n+ 1 had a positive sign. This led him to the series

1

3
− 1

5
+ 1

7
+ 1

11
− 1

13
− 1

17
+ 1

19
+·· · . (32.3)

In a letter of October 28, 1752, to Goldbach, Euler wrote that he had found the sum of this
series to be approximately 0.334980, implying that the series

∑
1/p and

∑
1/q, where

p and q were primes of the form 4n+1 and 4n+3, respectively, were both divergent.
Euler’s results were published in a posthumous paper of 1785, also containing the
conjecture mentioned previously.

680
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In the second edition of his 1808 book on number theory, Legendre gave an incorrect
proof of Dirichlet’s theorem. Legendre was not known for taking heed of the criticism
of others and the flawed proof was again included in the 1830 third edition of his book.
In his papers of 1837 and 1838 on this topic, Dirichlet pointed out that Legendre’s
proof depended upon an ingenious lemma and showed that Legendre’s proof of the
lemma was inadequate. Dirichlet unsuccessfully tried to prove the lemma, writing that
he found the lemma at least as difficult to prove as the theorem deduced from it. In
1859, Athanase Dupré (1808–1869) published his proof that Legendre’s lemma was
false, for which he was awarded half the 1858 Gran Prix from the French Academy of
Sciences.

In his 1837 paper presented to the Berlin Academy, Dirichlet wrote that he based
his ideas on Euler’s Introductio in Analysin Infinitorum. He expressed the sum of
the reciprocals of the primes in the given arithmetic progression as an appropriate
linear combination of the logarithms of the p − 1 L-series arising from the p − 1
characters modulo p. He then had to prove the divergence of this expression, based on
the divergence of the series corresponding to the trivial character, lnL0(1). Then, in
order to maintain the singularity of L0(1), he had to show that the values Lk(1) did not
vanish. For L-series arising from complex characters, Dirichlet was easily able to do
this. However, it was much more difficult to prove that the L-series produced by the
real character, defined by the Legendre symbol, did not vanish. To tackle this problem,
Dirichlet first reduced the infinite series to a finite sum and considered two cases of
primes: those of the form 4m+ 3, and then 4m+ 1. The first case was relatively easy;
for the second case, he used a result on Pell’s equation, from the Disquisitiones. The
appearance of Pell’s equation may have alerted Dirichlet to the connection between
L-functions for real characters and quadratic forms. In fact, this allowed him to prove
in 1840 that the class number of the binary quadratic forms of a given determinant could
be evaluated in terms of the value of the L-function at 1, implying that the function did
not vanish.

With these papers, based on Euler’s work on series, Dirichlet established analytic
number theory as a distinct new branch of mathematics; he applied infinite series to
the derivation of the class number formula, to the problem of primes in an arithmetic
progression, and to the evaluation of Gauss sums, leading to a proof of the quadratic
reciprocity law. Interestingly, Gauss wrote Dirichlet in 1838 that he had worked with
similar ideas around 1801, but he regretted not finding the time to develop and publish
them. Indeed, Gauss’s unpublished papers included an incomplete manuscript partially
outlining the theory of the class number formula.

We parenthetically note that the ancient Babylonians considered particular cases
of Pell’s equation x2 − ny2 = 1, where n is a non-square positive integer; in India,
Brahmagupta in the 600s and Bhaskara in the 1100s gave procedures for solving it.
William Brouncker can be credited with giving a general method for its solution in a
1657 letter to Wallis, in response to a challenge from Fermat; Lagrange finally gave a
rigorous derivation in 1766.

Dirichlet’s proof of the nonvanishing of the L-series was somewhat roundabout,
but a more direct proof was published by the Belgian mathematician Charles de la
Vallée Poussin (1866–1962) in his 1896 paper “Démonstration simplifiée du théorème
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de Dirichlet.” Vallée Poussin took theL-functions to be functions of a complex variable
and then employed analytic function theory to give his elegant proof. Interestingly, he
made use of a construction also given by Dirichlet. Vallée Poussin, who made many
contributions to various areas of analysis, studied at the university at Louvain under
L.-P. Gilbert, whom he succeeded as professor of mathematics at the age of 26.

As early as 1861–62, Hermann Kinkelin of Basel studied L-functions of complex
variables, proving their functional relation for characters modulo a prime power. And
in 1889 Rudolf Lipschitz, using the Hurwitz zeta function, proved the latter result
for general Dirichlet characters. In papers published between 1895 and 1899, Franz
Mertens gave proofs of the nonvanishing of the L-series by elementary methods, that
is, without the use of quadratic forms or functions of a complex variable. One of these
proofs used a technique from an 1849 paper of Dirichlet on the average behavior of the
divisor function. This result now has many elementary proofs, but the simplest may be
due to Paul Monsky in 1994, based on the earlier elementary proof of A. Gelfond and
Yuri Linnik, published in 1962.

32.2 Euler: Sum of Prime Reciprocals

In his 1737 paper “Variae Observationes circa Series Infinitas,” Euler showed that the
sum of the reciprocals of primes

1

2
+ 1

3
+ 1

5
+ 1

7
+ 1

11
+ 1

13
+ etc.

was of infinite magnitude and was, moreover, the logarithm of the harmonic series

1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ etc.

Taking the logarithm of (32.1), Euler got

ln

(
1+ 1

2
+ 1

3
+ 1

4
+·· ·

)
=− ln

(
1− 1

2

)
− ln

(
1− 1

3

)
− ln

(
1− 1

5

)
−·· ·

= 1

2
+ 1

3
+ 1

5
+·· ·+ 1

2

(
1

22
+ 1

32
+ 1

52
+·· ·

)
+ 1

3

(
1

23
+ 1

33
+ 1

53
+·· ·

)
+·· ·

≡A+ 1

2
B+ 1

3
C+·· · .

He could express this relation as

eA+
1
2B+ 1

3C+ 1
4D+ etc. = 1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ etc.
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He then observed that since the harmonic series diverged to ∞ and the series B,C,D,
etc. were finite, the series

1

2
B+ 1

3
C+ 1

4
D+ etc.

was negligible and hence

eA = 1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ etc.

By taking the logarithm of both sides, he obtained his result:

1

2
+ 1

3
+ 1

5
+ 1

7
+ 1

11
+ 1

13
+ 1

17
+ etc.

= ln

(
1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ etc.

)
Euler then noted that the harmonic series summed to ln∞ and hence the sum of the
reciprocals of the primes was ln ln∞. To understand this, recall that

∑n

k=1 1/k ∼ lnn.

32.3 Dirichlet: Infinitude of Primes in an Arithmetic Progression

In 1758–59, Waring and Simpson, starting with f (x)=∑∞
n=0 anx

n, used roots of unity
to obtain an expression for

∑∞
n=0 amn+lx

n. In other words, they used characters of
the additive group Zm to extract from the power series the subsequence of terms in
an arithmetic progression. Since the L-functions were multiplicative, Dirichlet had to
define and use characters of the multiplicative group. An additional complication for
Dirichlet was that he had to work with the logarithm of the L-functions and therefore
had to prove their nonvanishing. In the case where m = p was a prime, using some
results of Gauss, he found an intricate proof of this fact, published in his 1837 paper
“Beweiss des Satzes, dass jede unbegrenzte arithmetische Progression . . .”. Dirichlet
supposed p to be a prime and setUk = e2πik/(p−1), k= 0,1, . . . ,p−1. He let Lk denote
the L-function defined by the product

Lk(s)=V
(

1− wγq

qs

)−1

, where w =Uk = e2πik/(p−1),

and the product was taken over all primes q �= p. Recall that in the chapter on L-series,
γq was defined by means of a generator of the multiplicative cyclic group of the integers
modulo p. Then

logLk =
∑ wγq

qs
+ 1

2

∑ w2γq

q2s
+ 1

3

∑ w3γq

q3s
+·· · .

To extract the primes in the arithmetic progression identical to 1 modulo p, Dirichlet
first observed that for any integer h

1+Uhγ +U2hγ +·· ·+U(p−2)hγ =
{
p− 1, hγ ≡ 0 (mod p− 1),

0 hγ �= 0 (mod p− 1).
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It followed that

log(L0L1 · · ·Lp−2)= (p− 1)

(∑ 1

qs
+ 1

2

∑ 1

q2s
+ 1

3

∑ 1

q3s
+·· ·

)
, (32.4)

where the primes q in the first sum satisfied q ≡ 1 (mod p); those in the second sum
satisfied q2 ≡ 1 (mod p); those in the third q3 ≡ 1 (mod p); and so on. The second
and later sums were convergent for s ≥ 1; to show that

∑
1/q was divergent, Dirichlet

had to focus on the behavior of L0, L1, . . . ,Lp−2 as s→ 1+. Dirichlet first expressed
the series as an integral; he calculated that for any positive real number k,

S = 1

k1+ρ +
1

(k+ 1)1+ρ
+ 1

(k+ 2)1+ρ
+·· ·

= 1

�(1+ρ)
∫ 1

0
logρ(1/x)

xk−1

1− x dx

= 1

ρ
+ 1

�(1+ρ)
∫ 1

0

(
xk−1

1− x − 1

log(1/x)

)
logρ(1/x)dx.

He observed that the integral was convergent as ρ → 0+. Note that since the series
L0(s) is given by

∑
1/ms where the sum is over all integers m not divisible by p,

Dirichlet could write

L0(1+ρ)=
p−1∑
m=1

∞∑
l=0

1

(m+ lp)1+ρ .

Next, he applied the foregoing integral representation for the series to obtain

∞∑
l=0

1

(m+ lp)1+ρ = 1

p1+ρ

∞∑
l=0

1

(m
p
+ l)1+ρ = 1

p
· 1

ρ
+φ(ρ)

where φ(ρ) had a finite limit as ρ→ 0+. So Dirichlet could conclude that

L0(1+ρ)= p− 1

p
· 1

ρ
+φ(ρ),

where limp→0+ φ(ρ) was finite. This implied that logL0(1+ ρ) behaved like − logρ
as ρ→ 0+. Dirichlet also showed that the series L1(1), L2(1), . . . ,Lp−2(1) were con-
vergent. Thus, if Lj(1) �= 0 for j = 1,2, . . . ,p−2, then the product L0L1 · · ·Lp−2 had
to diverge as ρ→ 0+, and the series

∑
1/q for q ≡ 1 (mod p) would also diverge.

This proved that there existed an infinity of primes of the form pl+ 1.
Dirichlet found a simple proof that for j �= p−1

2 , Lj (1) �= 0. For such a j, Up−1−j �=
Uj ; Dirichlet therefore considered the product LjLp−1−j . Recall that

Lj(s)= 1

�(s)

∫ 1

0

1
x
f (x)

1− xp logs−1(1/x)dx =ψ(s)+χ(s)√−1.

Dirichlet noted that Lj(s) was differentiable for s > 0, and hence by the mean value
theorem he had

ψ(1+ρ)=ψ(1)+ρψ ′(1+ δρ), χ(1+ρ)= χ(1)+ρχ ′(1+ ερ),
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where 0< δ < 1 and 0< ε < 1. Since Lp−1−j (s) was the complex conjugate of Lj(s),
he got

Lp−1−j (s)Lj (s)=ψ2(s)+χ2(s).

Next, ifLj(1)= 0, thenLp−1−j (1)= 0. This implied thatψ(1)= 0 and χ(1)= 0. Thus,

logLj(1+ρ)Lp−1−j (1+ρ)= logρ2
(
ψ ′2(1+ δρ)+χ ′2(1+ ερ)

)
=−2log

1

ρ
+ log(ψ

′2(1+ δρ)+χ ′2(1+ ερ)).

These calculations implied that if Lj(1)= 0 for j �= p−1
2 , then

logL0LjLp−1−j =− log
1

ρ
+φ(ρ),

and the term on the left-hand side tended to−∞ as ρ→ 0+. Clearly, log(L0L1 · · ·Lp−2)

was positive from (32.4) so Dirichlet had come to a contradiction. This completed the
proof for complex characters.

Dirichlet then dealt with the difficult case in which j = p−1
2 . In this case, ω

p−1
2 =

eπi =−1 and hence the character and the series Lp−1
2

were real and given by

Lp−1
2
(s)=

∞∑
n=1

(
n

p

)
1

ps
.

Recall Dirichlet’s results from the L-series chapter: When p ≡ 3 (mod 4),∑(
n

p

)
1

n
= π

p
√
p
(
∑

b−
∑

a),

and when p ≡ 1 (mod 4),∑(
n

p

)
1

n
= 1√

p
log

∏
sin(bπ/p)∏
sin(aπ/p)

,

where a and b were quadratic residues and nonresidues, respectively, modulo p. For
p ≡ 3 (mod 4), Dirichlet noted that

∑
a+

∑
b=

p−1∑
m=1

m= p(p− 1)

2
= an odd integer.

Hence for p ≡ 3 (mod 4),
∑
b−∑

a could not be zero and Lp−1
2
(1) �= 0. For p ≡ 1

(mod 4), Dirichlet used a result Gauss proved in section 357 of his Disquisitiones. This
important result in cyclotomy stated that

2
∏
a

(
x− e2πia/p

)= Y −Z√p, 2
∏
b

(
x− e2πib/p

)= Y +Z√p, (32.5)
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where Y and Z were polynomials in x with integral coefficients; hence, Gauss had

Y 2 −pZ2 = 4
p−1∏
k=1

(
x− e2πik/p

)= 4
xp− 1

x− 1
.

Dirichlet set g = Y (1), h = Z(1) so that g and h were integers and g2 − ph2 = 4p;
he could conclude that g was divisible by p. He could then set g = pk to obtain
h2−pk2 =−4. Since p could not divide 4, he could write that h �= 0. Next, when x = 1
in (32.5), he got

2
∏
a

(
1− e2πia/p

)= 2
p+1

2 (−1)
p−1

4 eπi
∑
a a

∏
a

eπia/p− e−πia/p
2i

= 2
p+1

2 (−1)
p−1

4 +∑
a
∏
a

sin(aπ/p)= 2
p+1

2

∏
a

sin(aπ/p).

Note that this last equation depends on the fact that when p is of the form 4n+ 1, a
and p− a are both quadratic residues, and the residues can be grouped in pairs. There
are p−1

4 such pairs, and it follows that∑
a

a =
∑
b

b= 1

4
p(p− 1).

Similarly, 2
∏
b

(
1− e2πib/p

)= 2
p+1

2

∏
b

sin(bπ/p),

and thus, because h �= 0, ∏
b sin(bπ/p)∏
a sin(aπ/p)

= k
√
p+h

k
√
p−h �= 1.

This proved thatLp−1
2
(s) did not vanish at s = 1 and also that the number of primes ≡ 1

(mod p) was infinite. To show that the number of primes ≡m (mod p) was infinite,
Dirichlet gave a modified argument. He considered the sum

logL0 +U−γm logL1 +U−2γm logL2 +·· ·+U−(p−2)γm logLp−2

= (p− 1)

(∑ 1

q1+ρ +
1

2

∑ 1

q2+2ρ
+ 1

3

∑ 1

q3+3ρ
+·· ·

)
,

where the primes q in the first sum satisfied q ≡m (mod p) and those in the kth sum
satisfiedqk≡m (mod p). Since he had already proved that logL1, logL2, . . . , logLp−2

were finite as ρ→ 0+ and that logL0 behaved like log(1/ρ), Dirichlet could conclude
that, when the sum was taken over primes ≡m mod p,

∑
1/q diverged.

32.4 Class Number and Lχ(1)

In a paper of 1838 published in Crelle’s Journal, “Sur l’usage des séries infinies dans la
théorie des nombres,” Dirichlet worked out some particular cases of his class number
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formula. In this formula, he expressed the class number in terms ofLχ(1), a necessarily
nonvanishing quantity. In order to give a definition of class number, we first observe that
for a,b,c integers, b2 − ac is called the determinant or discriminant of the quadratic
form ax2 + 2bxy + cy2. Two quadratic forms with the same determinant are in the
same class if a linear substitution x = αx ′ +βy ′ and y = γ x ′ + δy ′ with αγ −βδ = 1
transforms one quadratic form into the other. This basic definition can be traced to
Lagrange. In addition, Lagrange proved that there was a finite number of such classes
(called the class number) for a given negative discriminant. Note that Lagrange worked
with b instead of 2b.

In his 1838 paper, Dirichlet considered quadratic forms of determinant −q with
q prime. He separated his proof into the two cases q = 4ν + 3 and q = 4ν + 1; we
present Dirichlet’s proof of the former case. He denoted by f the primes for which the
discriminant −q was a quadratic residue and by g the primes for which it was not:(

− q
f

)
=

(
f

q

)
= 1,

(
−q
g

)
=

(
g

q

)
=−1.

He then considered the L-series relations∏ 1

1− 1/f s
∏ 1

1− 1/gs
=

∑ 1

ns
,

∏ 1

1− 1/f s
∏ 1

1+ 1/gs
=

∑(
n

q

)
1

ns
,

∏ 1

1− 1/f 2s

∏ 1

1− 1/g2s
=

∑ 1

n2s
,

where the n were odd numbers not divisible by q. He deduced that∑ 1
ns
·∑(

n

q

)
1
ns∑ 1

n2s

=
∏ 1+ 1/f s

1− 1/f s
=

∏(
1+ 2

f s
+ 2

f 2s
+ 2

f 3s
+·· ·

)
=

∑ 2µ

ms
,

(32.6)

where the summation was over odd integers m divisible only by primes of the type f ;
µwas the number of distinct primes f by whichmwas divisible. Dirichlet denoted the
inequivalent quadratic forms of determinant −q by

ax2 + 2bxy+ cy2, a′x2 + 2b′xy+ c′y2, . . .

and then observed that articles 180, 155, 156, and 105 of Gauss’s Disquisitiones
implied that

2
∑ 2µ

ms
=

∑ 1

(ax2 + 2bxy+ cy2)s
+
∑ 1

(a′x2 + 2b′xy+ c′y2)s
+·· · , (32.7)

where the summation on the right was taken over positive as well as negative values
of x and y relatively prime to one another. From this Dirichlet deduced that

2
∑ 1

ns
·
∑(

n

q

)
1

ns
=

∑ 1

n2s
·
∑ 1

(ax2 + 2bxy+ cy2)s
+·· · . (32.8)
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Without giving details, Dirichlet remarked in this paper that “by means of geometric
considerations” it could be proved that∑ 1

n2(1+ρ) ·
∑ 1

(ax2 + 2bsy+ cy2)1+ρ
∼ q− 1

2q
√
q
· π
ρ
, ρ→ 0+. (32.9)

Thus, given h different inequivalent forms of determinant −q, that is, if h were the
class number, then the right-hand side of (32.8) could be expressed as

h(q− 1)

2q
√
q

· π
ρ
, ρ→ 0+. (32.10)

On the other hand, since ∑ 1

ns
=

(
1− 1

2s

)(
1− 1

qs

)
ζ(s),

he had ∑ 1

n1+ρ ∼ q− 1

2q
· 1

ρ
as ρ→ 0+. (32.11)

He applied (32.10) and (32.11) to (32.8) and found a special case of his famous class
number formula

h= 2
√
q

π

∑(
n

q

)
1

n
. (32.12)

This formula expressed the class number in terms of the value of an L-series at s = 1.
Since the class number had to be at least one, the series had a nonzero value. In 1840,
Dirichlet published a proof along similar lines of this result for arbitrary negative
determinants. Recall that Dirichlet made liberal use of results from Gauss in his proofs;
his contemporaries reported that his copy of the Disquisitiones was never kept on the
shelf, but on his writing table, and that it always accompanied him on his travels.
Through his lectures on number theory, published by Dedekind, Dirichlet made the
work of Gauss accessible to all his students.

32.5 De la Vallée Poussin’s Complex Analytic Proof of Lχ(1) �= 0

Before he published his famous work on the distribution of primes, de la Vallée Poussin
published a paper presenting a simpler proof of Dirichlet’s theorem on primes in arith-
metic progressions, observing that his proof was more natural since it did not depend
on the theory of quadratic forms. In this paper, presented to the Belgian Academy in
1896, de la Vallée Poussin defined Lχ(s), where χ was a character modulo an integer
M , as a function of a complex variable s. By a simple argument, he showed that for
the principal character χ0, Lχ0(s) was an analytic function for Re s > 0, except for a
simple pole at s = 1. On the other hand, for any nonprincipal character, the correspond-
ing L-function was analytic for Re s > 0 with no exception. De la Vallée Poussin’s
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proof thatLχ(1) �= 0 employed a function similar to one constructed by Dirichlet in his
discussion of quadratic forms of negative discriminant. He let χ be a real nonprincipal
character; he let q1 denote primes for which χ(q1) = 1 and let q2 denote primes for
which χ(q2)=−1. He set

ψ(s)= Lχ(s)Lχ0(s)

Lχ0(2s)
.

Then, for Re s > 1, he observed that

ψ(s)=
∏ 1+ q−s1

1− q−s1

=
∏
(1+ 2q−s1 + 2q−2s

1 +·· ·)=
∞∑
n=1

an

ns
,

where an≥ 0. In addition, sinceLχ0(2s) had a pole at s= 1/2, he deduced thatψ(s)= 0
at s = 1/2. Vallée Poussin also observed that there was at least one prime q1. If not,
thenψ(s)= 1 for Re s > 1 and by analytic continuationψ(1/2)= 1. This contradicted
ψ(1/2)= 0, and hence an > 0 for some n in

∑
an/n

s .
In order to obtain a proof by contradiction, Vallée Poussin next assumed that

Lχ(s)=0 at s = 1, so that this zero would cancel the pole of Lχ0(s) at s = 1 and
Lχ(s)Lχ0(s) would be analytic for Re s > 0. Again for Re s > 1, the derivatives of
ψ(s) were given by

ψ(m)(s)= (−1)m
∞∑
n=1

an(logn)m

ns
, m= 1,2,3, . . . .

He let a > 0 so that ψ(1+ a+ t) had radius of convergence greater than a+ 1/2 and

ψ(1+ a+ t)=ψ(1+ a)+ tψ ′(1+ a)+ t2

2!ψ
′′(1+ a)+·· · .

Denoting (−1)mψ(1+ a) by Am, it was clear that Am > 0 and for t =−(a+ 1/2)

ψ(1/2)=ψ(1+ a)+ (a+ 1/2)A1 + (a+ 1/2)2

2! A2 +·· · .

Sinceψ(1/2)= 0 and the all the terms on the right were positive, Vallée Poussin arrived
at the necessary contradiction.

32.6 Gelfond and Linnik: Proof of Lχ(1) �= 0

Gelfond and Linnik’s proof thatLχ(1) �= 0 for any real nonprincipal characterχ modulo
m was presented in their 1962 book. They made the observation that if φ denoted the
Euler totient function and T (n)=∑n

k=1χ(k), then for any positive integer N

|T (N)−T (n− 1)|< φ(m) and

∣∣∣∣∣
N∑
k=n

χ(k)

k

∣∣∣∣∣< 2φ(m)

n
. (32.13)
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Note that the second inequality follows by partial summation. Gelfond and Linnik
defined the function

U(x)=
∞∑
n=1

χ(n)xn

1− xn =
∞∑
n=1

(∑
d|n
χ(d)

)
xn (32.14)

and showed that

U(x) >
1

2
√

1− x . (32.15)

They then proved that if Lχ(1)= 0, then

U(x)=O
(

ln
1

1− x
)
. (32.16)

Clearly, (32.15) and (32.16) were in contradiction to one another, indicating that the
assumptionLχ(1)= 0 had to be false. Next, to prove (32.15), Gelfond and Linnik made
the important observation that

fn ≡
∑
d|n
χ(d)=

s∏
k=1

(1+χ(pk)+·· ·+χνk (pk)) ,
(
n= pν1

1 p
ν2
2 · · ·pνss

)
.

Since χ(p)= 1,−1, or 0, it followed that fn ≥ 0. Then, if n were a square, all the νk
would be even and each of the s factors of fn would be ≥ 1. Thus, fn ≥ 1 when n was
a square. Hence, with 1> x > 1/2,x > x0

U(x) >

∞∑
n=1

xn
2 =

∫ ∞

1
xt

2
dt +O(1)

= 1√− lnx

∫ ∞

0
e−t

2
dt +O(1)=

√
π

2
√− lnx

+O(1)

=
√
π

2

1

(− ln(1− (1− x))1/2 +O(1) >
1

2
√

1− x .

We note that Gelfond and Linnik set x > x0 for some x0 such that the inequalities would
hold. To prove (32.16), they set

Sn =
∞∑
k=n

χ(k)

k
, S1 =Lχ(1);

R1(x)=U(x)− Lχ(1)

1− x

=
∞∑
n=1

χ(n)
xn

1− xn −
∞∑
n=1

χ(n)

n

xn

1− xn +
∞∑
n=1

(Sn−Sn+1)
xn

1− x − Lχ(1)

1− x

=
∞∑
n=1

χ(n)

(
xn

1− xn −
xn

n(1− x)
)
−

∞∑
n=0

Sn+1x
n. (32.17)
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To see how they arrived at the last equation, observe that

1

1− x

( ∞∑
n=1

(Sn−Sn+1)x
n−Lχ(1)

)

= 1

1− x

(
S1x+

∞∑
n=1

Sn+1x
n(1− x)−S1

)
=−

∞∑
n=0

Sn+1x
n.

Next, by (32.13), Sn=O(1/n), and hence they could write the second sum in (32.17) as

∞∑
n=0

Sn+1x
n =O

( ∞∑
n=1

xn

n

)
=O

(
ln

1

1− x
)
.

By an application of Abel’s summation by parts to the first sum in (32.17), they got∣∣∣∣∣
∞∑
n=1

χ(n)

(
xn

1− xn −
xn

n(1− x)
)∣∣∣∣∣

=
∣∣∣∣∣

∞∑
n=1

(T (n)−T (n− 1))

(
xn

1− xn −
xn

n(1− x)
)∣∣∣∣∣

=
∣∣∣∣∣

∞∑
n=1

T (n)

(
xn

1− xn −
xn

n(1− x) −
xn+1

1− xn+1
+ xn+1

(n+ 1)(1− x)
)∣∣∣∣∣

<
φ(m)

1− x
∞∑
n=1

∣∣∣∣ xn

1+ x+·· ·+ xn−1
− xn+1

1+ x+·· ·+ xn −
xn

n(n+ 1)
− (1− x)xn

n+ 1

∣∣∣∣
<
φ(m)

1− x
∞∑
n=1

(
xn

1+ x+·· ·+ xn−1
− xn+1

1+ x+·· ·+ xn −
xn

n(n+ 1)

)

+φ(m)
∞∑
n=1

xn

n+ 1

=2φ(m)
∞∑
n=1

xn

n+ 1
=O

(
ln

1

1− x
)
.

Note that the final inequality was possible because the expression in the first sum was
positive; then, since the series was telescoping, it would sum to xn(1− x)/(n+ 1). It
then followed from (32.17) that if Lχ(1)= 0, then U(x)=O (

ln 1
1−x

)
; this completed

the proof.

32.7 Monsky’s Proof That Lχ(1) �= 0

In 1994, Paul Monsky showed that Gelfond’s proof of Lχ(1) �= 0 could be consider-
ably simplified. Use of the strong result (32.15) turned out to be avoidable. Observe
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that limx→1−U(x) = ∞, because U(x) >
∑∞

n=1 x
n2

. Monsky demonstrated that if
Lχ(1) vanished, then U(x) was bounded. This contradiction proved the result. His
simplification took place in the first sum, R1(x), in (32.17), where

R1(x)=−
∞∑
n=1

(
χ(n)

n(1− x) −
χ(n)xn

1− xn
)
≡−

∞∑
n=1

χ(n)

1− x bn.

Monsky first showed that b1 ≥ b2 ≥ b3 ≥ ·· · . He noted that

bn− bn+1 = 1

n(n+ 1)
− xn

(1+ x+·· ·+ xn−1
)(1+ x+·· ·+ xn).

Then, by the inequality of the arithmetic and geometric means

1+ x+·· ·+ xn−1 ≥ nx(n−1)/2 ≥ nxn/2 and

1+ x+·· ·+ xn ≥ (n+ 1)xn/2.

Hence, bn ≥ bn+1. Applying Abel’s partial summation, Monsky wrote

∞∑
n=1

χ(x)

1− x bn ≤
φ(m)b1

1− x = φ(m). (32.18)

He next assumed that Lχ(1)= 0, and this implied U(x)= R1(x); but (32.18) in turn
implied that limx→1−U(x) could not be infinite. Thus, he got a contradiction to prove
the result.

32.8 Exercises

1. Investigate Chebyshev’s assertion in an 1853 letter to Fuss that

lim
c→0

(
e−3c− e−5c+ e−7c+ e−11c− e−13c− e−17c+ e−19c+ e−23c−·· ·)

diverges to +∞. See Chebyshev (1899–1907), vol. 1, p. 697. See also Hardy
(1966–1978), vol. 2, pp. 42–49, where Hardy and Littlewood derive it from the
extended Riemann hypothesis for the series 1−s − 3−s + 5−s − 7−s + ·· · . Note
the editor’s comment on this result on p. 98.

2. Let χ be a real nonprincipal character modulom, and let f (n)=∑
χ(d), where

the sum is over all divisors d of n. Show that if

G(x)=
∑
n≤x
f (n)/

√
n, then lim

x→∞G(x)=∞.

Show also that

G(x)= 2
√
xL(1,χ)+O(1) .

Conclude that if Ł(1,χ) �= 0, a contradiction ensues. See Mertens (1895).
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3. Suppose χ is a primitive character mod d, that is, there does not exist a proper
divisor m of d such that χ(a) = χ(b) whenever a ≡ b and ab is prime to d.
Define the Gauss sum G(χ) by

G(χ)=
d∑
a=1

χ(a)e2πia/d .

Prove that

χ(n)G(χ)=
d∑
a=1

χ(a)e2πina/d .

This result is due to Vallée Poussin (2000), vol. 1, pp. 358–362; he also defined
the concept of a primitive character.

4. Define the Euler polynomials En(t) by the relation

2etx

1+ ex =
∞∑
n=0

En(t)

n! xn.

Let χ be a primitive character (mod d) and let k be a positive integer such that
χ(−1)= (−1)k. Prove that if q is the greatest integer in (d− 1)/2, then

(k− 1)!
(2πi)k

G(χ)L(k, χ)= 1

2(2k−χ(2))
q∑
a=1

χ(a)Ek−1(2a/d).

This formula is due to Shimura (2007), p. 35; in this book, Shimura observed
that most books and papers give only one result on the values of the Dirichlet
L-function; Shimura derived several new formulas for these values, including
the foregoing example. For a discussion of Shimura’s well-known conjecture
related to Fermat’s theorem, see Gouvêa (1994) and Shimura (2008).

5. Prove that if the set of positive integers is partitioned into a disjoint union of two
nonempty subsets, then at least one of the subsets must contain arbitrarily long
arithmetic progressions. This result was conjectured by I. Schur and proved in
1927 by van der Waerden, who studied under E. Noether. The reader may enjoy
reading the proof in Khinchin (1998), a book originally written in 1945 as a letter
to a soldier recovering from his wounds. In 1927, van der Waerden’s theorem was
a somewhat isolated result, but it has now become a part of Ramsey theory, an
important area of combinatorics. See Graham, Rothschild, and Spencer (1990).
Robert Ellis’s algebraic methods in topological dynamics also have applications
to this topic. See Ellis, Ellis, and Nerurkar (2000).

6. Prove that the primes contain arbitrarily long arithmetic progressions. For this
result of Ben Green and Terrence Tao, see Green’s article in Duke and Tschinkel
(2007).
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32.9 Notes on the Literature

See Eu. I-14, pp. 242–244 for Euler’s theorem on the sum of the reciprocals of the
primes. Dirichlet (1969), vol. I, pp. 313–342 is a reprinting of his 1837 paper in which
he proved a particular case of his famous theorem on primes in arithmetic progressions.
Pp. 357–74 reproduce a particular case of his theorem on the class number of quadratic
forms; see pp. 360–364 for the material presented in the text. De la Vallée Poussin
(2000), vol. 1, pp. 187–222, contains his proof of the theorem on primes in arithmetic
progressions; see pp. 208–213 for his proof of the nonvanishing ofL(1,χ). For Gelfond
and Linnik’s proof of this result, see their book originally published in 1962, an English
translation of which appeared in 1966, pp. 46–47. Monsky (1994) provides the simpli-
fied version of this proof. A historical account of the topic of this chapter was given
by Littlewood’s student Davenport (1980). This book was very influential because of
its treatment of the large sieve, a relatively new topic at the time of first publication in
1967. The extensive notes in each chapter refer to numerous papers and books on this
and related topics.



33

Distribution of Primes: Early Results

33.1 Preliminary Remarks

Prime numbers appear to be distributed among the integers in a random way. Mathe-
maticians have searched for a pattern or patterns in the sequence of primes, discovering
many interesting features and properties of primes and sequences of primes, but many
fundamental questions remain outstanding. In the area of prime number distribution,
even apparently very elementary results can be enlightening. For example, in 1737,
Euler proved that the series

∑
1/p, where p is prime, was divergent. He also knew that∑∞

n=1 1/n2 was convergent. By combining these results, one may see that the prime
numbers are more numerous than the square numbers. Thus, for large enough x, we
expect that π(x), the number of primes less than or equal to x, satisfies π(x) >

√
x. In

fact, extending this type of reasoning, we may expect that

π(x) > x1−δ (33.1)

for any δ > 0 and x correspondingly large enough. Recall that, in fact, Euler had a fairly
definite idea of how the series of prime reciprocals diverged:∑

1/p = ln(ln∞). (33.2)

From this, it can easily be shown, by means of a nonrigorous, probabilistic argument,
that the density of primes in the interval (1,x) is approximately 1/ lnx. In 1791 or
1792, when he was about 15 years old, Gauss conjectured just this result.

Gauss never published anything on the distribution of primes but in 1849 he wrote
a letter to the astronomer J. F. Encke giving some insight into his thought in this area.
Gauss recounted that he had started making a table of prime numbers from a very
young age, noting the number of primes in each chiliad, or interval of a thousand. As
a consequence of this work, around 1792 he wrote the following remark in the margin
of his copy of J. C. Schulze’s mathematical tables:

Primzahlen untera (=∞) a

la
.

695
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We may understand this to mean that

lim
x→∞

π(x)

x/ lnx
= 1. (33.3)

This is the prime number theorem. Let us see how Gauss may have come to this
conclusion. Consider the following table:

x π(x) π(x)/x

10 4 0.4
100 25 0.25

1000 168 0.168
10000 1229 0.1229

100000 9592 0.09592
1000000 78498 0.078498

Look at the column for π(x)/x. If we divide 0.4, the number in the first row, by 2, 3,
4, 5, 6, then we get approximately the numbers in the second, third, fourth, fifth, and
sixth rows. The result is even nicer if we change the 0.4 to 0.5 and then do the division.
So if we write π(x)/x as 1/f (x), then f (x) has the property that f (10n)= nf (10) for
n= 2,3,4,5,6. This calculation strongly suggests that f (x) is the logarithmic function.
Moreover, 1/f (10) = 0.4 and ln 10 = 2.3; this may have led Gauss to his conjecture
that f (x)= lnx.

In his letter to Encke, Gauss suggested the approximation π(x)≈ ∫ x
2
dt

ln t . In fact, he
gave the following table of values forπ(x) and the corresponding values of the integral:

x π(x)
∫ x

2
dt

ln t error
500000 41556 41606.4 +50.4

1000000 78501 79627.5 +126.5
1500000 114112 114263.1 +151.1
2000000 148883 149054.8 +171.8
2500000 183016 183245.0 +229.0
3000000 216745 216970.6 + 225.6.

Observe that there are inaccuracies in this table. Gauss made mistakes in his extensive
calculations of primes, but the number of his mistakes is surprisingly small. For exam-
ple, his value of the number of primes less than a million was overestimated by three,
while he underestimated those under three million by 72.

In an 1810 letter to the astronomer Olbers, F. W. Bessel (1784–1846) mentioned the
logarithmic integral, now defined by

li(x)= lim
ε→0

(∫ 1−ε

0
+
∫ x

1+ε

)
dt

ln t
=

∫ x

2

dt

ln t
+ 1.0451. (33.4)

Gauss had already computed this integral for several values of x and Bessel noted in his
letter that he learned from Gauss thatπ(4,000,000)= 33,859, while the corresponding
value of the logarithmic integral was 33,922.621995.

In his 1798 book on number theory, Legendre made a similar conjecture: that
x/(A lnx+B) was a good approximation of π(x) for suitable A and B. In the second
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edition of his book, published in 1808, he gave the values A= 1 and B =−1.08366.
Gauss observed in his letter to Encke that as the value of x was made larger, the value of
B must likewise increase. However, Gauss was unwilling to conjecture thatB→−1 as
x→∞. It is interesting to note that while Gauss was writing these thoughts to Encke,
the Russian mathematician Chebyshev was developing his ideas on prime numbers,
showing that if B tended to a limit as x→∞, then the limit had to be −1.

In 1849, the Russian Academy of Sciences published a collection of Euler’s papers
on number theory. In 1847, the editor, Viktor Bunyakovski, solicited Chebyshev’s
participation in this project, thereby arousing his interest in number theory. Thus, in
1849 Chebyshev defended his doctoral thesis on theory of congruences, one of whose
appendices discussed the number of primes not exceeding a given number. He there
expressed doubt about the accuracy of Legendre’s formula. He then went on to prove
that if n was any fixed nonnegative integer and ρ was a positive real variable, then the
sum

x=∞∑
x=2

(
π(x+ 1)−π(x)− 1

lnx

)
lnn x

x1+ρ , (33.5)

considered as a function of ρ, approached a finite limit as ρ → 0. We mention that
Chebyshev wrote φ(x) for π(x). From this theorem, he deduced that x

π(x)
− lnx could

not have a limit other than −1 as x→∞. He then observed that this result contradicted
Legendre’s formula, under which the limit was given as −1.08366.

Chebyshev wrote a second paper on prime numbers in 1850. This important work was
apparently motivated by Joseph Bertrand’s conjecture that for all integers n > 3, there
was at least one prime between n and 2n− 2. In 1845, Bertrand used this conjecture
to prove a theorem on symmetric functions. In group theoretic terms, the theorem
states that the index of a proper subgroup of the symmetric group Sn is either 2 or
≥ n. Chebyshev proved Bertrand’s conjecture using Stirling’s approximation. He also
showed that the series

∑
p 1/(p lnp) converged. The results he obtained implied the

double inequality

0.92129<
π(x)

x/ lnx
< 1.10555. (33.6)

In a paper of 1881, Sylvester used Chebyshev’s analysis to give improved bounds,
obtaining 0.95695 for the lower bound and 1.04423 for the upper bound. Though
Schur and others have succeeded in narrowing the gap between the bounds, it appears
that Chebyshev’s methods cannot be developed to give a proof of the prime number
theorem. We note that, in order to prove Bertrand’s conjecture, Chebyshev defined two
arithmetical functions of interest even today:

θ(x)=
∑
p≤x

lnp (33.7)

ψ(x)= θ(x)+ θ(x1/2)+ θ(x1/3)+ θ(x1/4)+·· · . (33.8)
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In fact, Chebyshev proved the inequalities

Ax− 5

2
lnx− 1<ψ(x) <

6

5
Ax+ 5

4ln 6
ln2 x+ 5

4
lnx+ 1, (33.9)

where A= ln

(
21/231/351/5

301/30

)
= 0.92129202 . . . .

He then used these inequalities to indicate a method for obtaining the result for π(x),
though he did not give the results explicitly. Chebyshev also proved that if limx→∞
ψ(x)/x existed, its value was 1. Note that this implies that if limx→∞ π(x)

x/ lnx exists, then
this limit too must be 1.

At the end of his paper, Sylvester noted that for a proof of the prime number theorem,
“we shall probably have to wait until some one is born into the world as far surpassing
Tchebycheff in insight and penetration as Tchebycheff has proved himself superior in
these qualities to the ordinary run of mankind.” Chebyshev’s elementary but powerful
methods formed the basis of a new topic, elementary methods in analytic number
theory, and also served as motivation for Alphonse de Polignac (1826–1863) and Franz
Mertens (1840–1927) to firmly establish this new subject. In 1874, Mertens showed
that Chebyshev’s results could be used to obtain asymptotic formulas for the series∑

p≤x
lnp/p and

∑
p≤x

1/p.

Thus, he proved the following refinement of a result of de Polignac:∑
p≤x

lnp

p
= lnx+O(1), (33.10)

where O(1) denoted a quantity bounded as x→∞.Mertens also gave a more precise
formulation of Euler’s 1737 result (33.2):∑

p≤x

1

p
= ln lnx+C+O

(
1

lnx

)
, (33.11)

where C = γ −
∞∑
k=2

1

k

∑
p

1

pk
(33.12)

and γ denoted Euler’s constant.
In his famous paper of 1859, Riemann introduced ideas through which the prime

number theorem would eventually be proved. Riemann’s interest in prime number
theory was not surprising, surrounded as he was by great researchers in this field.
Riemann began his paper by mentioning Gauss, Euler, and his good friend and teacher
Dirichlet, writing that their attention to the subject would surely justify its further study.
He did not mention Chebyshev, but he was familiar with the work of Chebyshev to
whom he sent a copy of his paper. Also, we know that as a student Riemann studied
Legendre’s number theory book very carefully. Moreover, Dirichlet stated in a note of
1838 that his analytic methods for studying primes could provide a proof of Legendre’s
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conjecture related to the prime number theorem; Dirichlet, however, did not publish
any ideas in this direction.

Riemann based his investigation of π(x) on Euler’s product formula

ζ(s)=
∞∑
n=1

1/ns =
∏
p

(1−p−s)−1.

His innovation here was to take s to be a complex variable with Res > 1. He then
defined ζ(s) as a contour integral, thereby extending its domain to the whole complex
plane, except for the pole at s = 1. He used the Euler product to show that

logζ(s)

s
=

∫ ∞

1
f (x)x−s−1dx, Res > 1, (33.13)

where f (x)= F(x)+ 1

2
F(x1/2)+ 1

3
F(x1/3)+·· · . (33.14)

We here write log because complex variables are involved. Riemann defined F(x) as
the number of primes less than x when x was not prime; but when x was a prime,

F(x)= F(x+ 0)+F(x− 0)

2
.

Thus, Riemann’s F(x) was essentially π(x). He obtained the integral representation
for f (x) by a method we now call Mellin inversion. Actually, he applied the Fourier
inversion to get

f (y)= 1

2πi

∫ a+∞i

a−∞i

logζ(s)

s
ysds, a > 1. (33.15)

To evaluate this integral, Riemann defined the entire function

ξ(s)= (s− 1)V(s/2)π−s/2ζ(s), (33.16)

where V(s)= s�(s). He then obtained an infinite product (or Hadamard product) for
ξ(s), given by

ξ(s)= ξ(0)
∏
ρ

(1− s/ρ). (33.17)

To use this formula effectively in (33.15), one must first understand the distribution of
the zeros ρ. It is easy to show that 0≤Reρ ≤ 1. It follows from the functional equation
for ζ(s) that if ρ is a zero, then so is 1−ρ. Riemann then observed that the number of
roots ρ whose imaginary parts lay between 0 and some value T was approximately

T

2π
log

T

2π
− T

2π
, (33.18)

where the relative error was of the order 1/T . He sketched a one-sentence proof of this
result and added that the estimate for the number of zeros with Reρ = 1/2 was about
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the same as in (33.18). He remarked that it was very likely, though his passing attempts
to prove it had failed, that all the roots had Re ρ = 1/2. This is the famous Riemann
hypothesis.

By combining (33.15) and (33.17), and assuming the truth of his hypothesis, Riemann
derived the formula

f (x)= li(x)−
∑
α

(
li(x

1
2+αi)+ li(x

1
2−αi)

)
+
∫ ∞

x

1

t2 − 1

dt

t log t
+ logξ(0), (33.19)

where the sum
∑

α was taken over all positive α such that 1
2 + iα was a zero of ξ(s).

Note that ξ(0)= 1/2, though due to some confusion in Riemann’s notation, he obtained
a different value.

In the final remarks in his paper, Riemann noted first that F(x) (or π(x)) could be
obtained from f (x) by the inversion

F(x)=
∞∑
m=1

µ(m)

m
f (x1/m),

where µ(m) was the Möbius function. We remark that Riemann did not use the brief
notation µ(m). He also noted that the approximation F(x) = li(x) was correct only
to an order of magnitude x1/2, yielding a value somewhat too large, while better
approximation was given by

li(x)− 1

2
li(x

1
2 )− 1

3
li(x

1
3 )− 1

5
li(x

1
5 )+ 1

6
li(x

1
6 )−·· · . (33.20)

Apart from the Riemann hypothesis, the most difficult part of Riemann’s paper was
his factorization of ξ(s). Indeed, Weierstrass had to develop his theory of product repre-
sentations of entire functions before even the simpler aspects of ξ(s) could be tackled.
Then in 1893, Jacques Hadamard (1865–1963) worked out the theory of factorization
of entire functions of a finite order and applied it to ξ(s). That set the stage for his 1896
proof of the prime number theorem. Briefly, Hadamard first proved that ζ(s) had no
zeros on the line Res = 1. Then, using earlier ideas of Cahen and Halphen, he applied
Mellin inversion to an integral of a weighted average, say A(x), of Chebyshev’s arith-
metical function θ(x). From this inversion, Hadamard derived the asymptotic behavior
of A(x) and this in turn yielded the asymptotic behavior of θ(x), that

lim
x→∞

θ(x)

x
= 1.

This proved the prime number theorem. It is interesting that in an 1885 letter to Hermite,
Stieltjes claimed to have a proof of the Riemann hypothesis. Aware of this claim,
Hadamard remarked that since Stieltjes had not published his proof, he himself would
put forward a proof of the simpler result.

Also in 1896, C. J. de la Vallée-Poussin published his own proof of the prime number
theorem (PNT), based on similar ideas. After these proofs appeared, research on the
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prime number theorem centered around efforts to simplify the proof and to understand
its logical structure. E. Landau, G. H. Hardy, J. E. Littlewood, and N. Wiener were
the main contributors to this endeavor. In 1903, Landau found a new proof of the
prime number theorem, not dependent on Hadamard’s theory of entire functions or
on the functional relation for the zeta function. Landau required only that ζ(s) could
be continued slightly to the left of Res = 1. This method could be extended to the
Dedekind zeta function for number fields and Landau used it to state and prove the
prime ideal theorem.

Hardy, Littlewood, and Wiener explicated the key role of Tauberian theorems in
prime number theory. It became clear from their work that the prime number theorem
was equivalent to the statement that ζ(1+ it) �= 0 for real t . On the basis of this result,
Hardy expected that the zeta function would play a crucial role in any proof of the PNT.
But two years after Hardy’s death, Atle Selberg and Paul Erdős found an elementary
proof of the PNT, obviously without zeta function theory.

33.2 Chebyshev on Legendre’s Formula

Recall that Euler proved the divergence of
∑

p 1/p, where p was prime, by comparing
it with ln(

∑∞
n=1 1/n). In his 1849 paper, Chebyshev followed up on this work, proving

in his first theorem the existence of the limit

lim
ρ→0

(∑
p

lnp

p1+ρ −
∞∑
k=2

1

kρ+1

)
(33.21)

and, more generally, of the limit after taking derivatives with respect to ρ,

lim
ρ→0

(∑
p

lnn p

p1+ρ −
∞∑
k=2

lnn−1 k

kρ+1

)
, n= 1, 2, 3, . . . . (33.22)

In order to obtain information about π(x), the number of primes less than x, he wrote
the series in (33.22) as

∞∑
x=2

(
π(x+ 1)−π(x)− 1

lnx

)
lnn x

x1+ρ . (33.23)

Then since
1

lnx
−
∫ x+1

x

dt

ln t
=O

(
1

x

)
as x→∞,

Chebyshev deduced the important corollary of the existence of the limit

lim
ρ→0

∞∑
x=2

(
π(x+ 1)−π(x)−

∫ x+1

x

dt

ln t

)
lnn x

x1+ρ . (33.24)
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From this, Chebyshev proceeded to derive his second theorem: For any positive real
number α, any positive integer n, and for infinitely many integer values of x,

π(x) >

∫ x

2

dt

ln t
− αx

lnn x
(33.25)

and with the same conditions on α and n, for infinitely many integer values of x,

π(x) <

∫ x

2

dt

ln t
+ αx

lnn x
. (33.26)

Using (33.25) and (33.26), Chebyshev could state his remarkable result that if

lim
x→∞π(x)/

∫ x

2

dt

ln t

(
or lim

x→∞
π(x)

x/ ln x

)
existed, then its value had to be 1. Of course, he was unable to show existence here,
and that was the essence of the PNT. From (33.25) and (33.26), he also deduced that if

lim
x→∞

(
x

π(x)
− lnx

)
existed, then it had to be −1. He supposed the limit to be L, so that there would exist
an N such that for x >N ,

L− ε < x

π(x)
− ln x < L+ ε.

But by (33.25), there would be an infinite number of integers x >N such that

x∫ x
2

dt

ln t − αx

lnn x

− ln x > L− ε,

or L+ 1<
x− (ln x− 1)

(∫ x
2

dt

ln t − αx

lnn x

)∫ x
2

dt

ln t − αx

lnn x

+ ε. (33.27)

Similarly, (33.26) implied an inequality in the other direction. At this point, Chebyshev
remarked that by a principle of differential calculus (now called l’Hôpital’s rule), the
expression on the right-hand side of (33.27) could be made arbitrarily small as x became
large, so that the result followed. He also remarked that this theorem determined that
the limit of x

π(x)
− ln x as x went to infinity, was −1, contradicting Legendre, who

predicted the limit would be −1.08366.
Chebyshev’s proof of (33.26) was similar to his argument for (33.25). He first sup-

posed (33.26) to hold for only a finite number of positive integers x so that there would
be an integer a larger than en and larger than the largest integer x for which (33.26)
would hold. Then for x > a

π(x)−
∫ x

2

dt

ln t
≥ αx

lnn x
,

n

lnx
< 1. (33.28)
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Chebyshev showed that in this case the series in (33.24) would diverge, a contradiction
proving the result. To demonstrate this divergence, he used Abel’s summation by parts:

s∑
x=a+1

ux(vx+1 − vx)= usvs+1 −uava+1 −
s∑

x=a+1

vx(ux −ux−1).

He took

vx = π(x)−
∫ x

2

dt

ln t
, ux = lnn s

x1+p ,

so that

s∑
x=a+1

(
π(x+ 1)−π(x)−

∫ x+1

x

dt

ln t

)
lnn x

x1+ρ

=
(
π(s+ 1)−

∫ s+1

2

dt

ln t

)
lnn s

s1+ρ −
(
π(a+ 1)−

∫ a+1

2

dt

ln t

)
lnn a

a1+ρ

−
s∑

x=a+1

(
π(x)−

∫ x

2

dt

ln t

)(
lnn x

x1+ρ −
lnn(x− 1)

(x− 1)1+ρ

)
.

By the mean value theorem,

lnn x

x1+ρ −
lnn(x− 1)

(x− 1)1+ρ
=

(
n

ln(x− θ) − (1+ρ)
)

lnn(x− θ)
(x− θ)2+ρ ,

where 0< θ < 1 and θ depended on x. The sum in the previous expression then took
the form

s∑
x=a+1

(
π(x)−

∫ x

2

dt

ln t

)(
1+ρ− n

ln(x− θ)
)

lnn(x− θ)
(x− θ)2+ρ . (33.29)

Then for x > a,

1+ρ− n

ln(x− θ) > 1− n

lna
,

and by (33.28)

π(x)−
∫ x

2

dt

ln t
≥ αx

lnn x
≥ α(x− θ)

lnn(x− θ) .

Observe that Chebyshev could derive the last inequality because x

lnn x was an increasing
function. Therefore, he could see that the sum (33.29) was greater than

α
(

1− n

lna

) s∑
x=a+1

1

(x− θ)1+ρ .

Chebyshev thus arrived at a contradiction: when s → ∞, he had the infinite series
(33.24) diverging as ρ→ 0.
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Chebyshev’s proof of the existence of the limit (33.21), his first theorem mentioned
earlier, made use of the formula found in Euler and Abel:∫ ∞

0

e−x

ex − 1
xρdx =

∫ ∞

0
e−2x(1+ e−x + e−2x +·· ·)xρdx

=
∞∑
m=2

∫ ∞

0
e−mxxρdx =

∞∑
m=2

1

m1+ρ

∫ ∞

0
e−xxρdx. (33.30)

To show that the limit (33.21) existed, Chebyshev rewrote the sums contained in it as

d

dρ

(∑
p

ln

(
1− 1

p1+ρ

)
+
∑
p

1

p1+ρ

)

+ d

dρ

(
lnρ−

∑
p

ln

(
1− 1

p1+ρ

))
+
( ∞∑
m=1

1

m1+ρ −
1

ρ

)
, (33.31)

and proved that each of the three expressions in parentheses was finite as ρ → 0.
He proved the more general result for (33.22), by showing that the derivatives of
those expressions also had finite limits. Using (33.30), Chebyshev rewrote the third
expression in (33.31) as a ratio of two integrals:

∞∑
m=2

1

m1+ρ −
1

ρ
=

∫∞
0

(
1

ex−1 − 1
x

)
e−xxρdx∫∞

0 e−xxρdx
. (33.32)

He noted that these integrals converged as ρ→ 0 and that the derivatives of (33.32) con-
tained expressions of the form

∫∞
0

(
1

ex−1 − 1
x

)
e−xxρ(lnx)kdx or

∫∞
0 e−xxρ(lnx)kdx;

these integrals also had finite limits as ρ→ 0. To show that the middle expression in
(33.31),

lnρ−
∑
p

ln

(
1− 1

p1+ρ

)
,

was finite as ρ→ 0, Chebyshev employed the Euler product

∞∑
m=1

1

m1+ρ =
∏
p

(
1− 1

p1+ρ

)−1

.

After taking the logarithm of both sides and adding lnρ to each side, he had

lnρ−
∑
p

ln

(
1− 1

p1+ρ

)
= ln

((
1+

∞∑
m=2

1

m1+ρ

)
ρ

)

= ln

(
1+ρ+

( ∞∑
m=2

1

m1+ρ −
1

ρ

)
ρ

)
. (33.33)

Noting the expression on the right-hand side, Chebyshev thus proved the existence of
the limit of the left-hand side as well as the limits of all its derivatives, as ρ→ 0. It is
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even simpler to show that the first expression in (33.31), and all its derivatives, have a
finite limit as ρ→ 0. This proves Chebyshev’s first theorem.

At the end of his 1849 paper, Chebyshev followed Legendre in assuming the prime
number theorem to prove that

1

2
+ 1

3
+ 1

5
+·· ·+ 1

x
= ln lnx+ c, (33.34)

where x was a very large prime and cwas finite. Chebyshev corrected the corresponding
formula in Legendre, who had ln(ln x − 0.08366) on the right-hand side. Chebyshev
also suggested a similar change in Legendre’s formula for the product(

1− 1

2

)(
1− 1

3

)(
1− 1

5

)
· · ·

(
1− 1

x

)
=

{
c0/ ln x in Chebyshev,
c0/(ln x− 0.08366) in Legendre.

(33.35)

In 1874, Mertens proved, without assuming the then-unproved PNT, that c0 = e−γ ,
where γ was Euler’s constant. Thus, Mertens’s result implies

∏
p≤x

(
1− 1

p

)−1

= eγ ln x+O(1). (33.36)

An approximate value of eγ is 1.781, whereas, presumably on numerical evidence,
Gauss gave the value of the constant to be 1.874.

33.3 Chebyshev’s Proof of Bertrand’s Conjecture

In his second memoir on prime numbers, Chebyshev proved Bertrand’s conjecture,
making effective and original use of Stirling’s approximation. In the course of his dis-
cussion of the series for the logarithm of n!, he was led to define two related arithmetical
functions θ(x) and ψ(x):

θ(x)=
∑
p≤x

ln p, ψ(x)=
∑
pn≤x

ln p, (33.37)

where p was prime. Chebyshev immediately noted the clear relation between the two:

ψ(x)= θ(x)+ θ(√x)+ θ( 3√
x)+ θ( 4√

x)+·· · . (33.38)

Keeping in mind the preceding definitions and a result first noted by Legendre,

n! =
∏
p≤n
p&n/p'+&n/p2'+&n/p3'+···, (33.39)

Chebyshev observed that if T (x)= ln &x'!, then

T (x)=ψ(x)+ψ(x/2)+ψ(x/3)+·· · . (33.40)
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Next, he set a = &x' so that, by Stirling’s formula,

T (x)= ln a!< 1

2
ln 2π + a ln a− a+ 1

2
ln a+ 1

12a
,

T (x)= ln(a+ 1)!− ln(a+ 1) >
1

2
ln 2π + (a+ 1) ln(a+ 1)− (a+ 1)− 1

2
ln(a+ 1).

Thus,

1

2
ln 2π + x ln x− x− 1

2
ln x < T (x) <

1

2
ln 2π + x ln x− x+ 1

2
ln x+ 1

12x
.

(33.41)

From these bounds for T (x), Chebyshev obtained bounds for ψ(x). Of course, one
might obtain an expression forψ(x) in terms of T (x) from (33.40) by means of Möbius
inversion. However, Chebyshev chose to work with the sum

T (x)−T (x/2)−T (x/3)−T (x/5)+T (x/30). (33.42)

He showed that when the value of T (x), taken from (33.40), was substituted in (33.42),
the result was the alternating series

ψ(x)−ψ(x/6)+ψ(x/7)−ψ(x/10)

+ψ(x/11)−ψ(x/12)+ψ(x/13)−ψ(x/15)+·· · . (33.43)

He observed that, in general, the coefficient of ψ(x/n) would be

+1 ifn= 30m+ k, k = 1,7,11,13,17,19,23,29; (33.44)

0 ifn= 30m+ k, k = 2,3,4,5,8,9,14,16,21,22,25,26,27,28; (33.45)

−1 ifn= 30m+ k, k = 6,10,12,15,18,20,24; (33.46)

−1 ifn= 30m+ 30. (33.47)

Note here that the series (33.43) was alternating and that the absolute values of terms
were nonincreasing, making the sum of the series less than the first term and greater
than the sum of the first two terms. Thus, Chebyshev could conclude that

ψ(x)−ψ(x/6)≤ T (x)−T (x/2)−T (x/3)−T (x/5)+T (x/30)≤ψ(x).
An application of the two inequalities (33.41) then yielded

Ax− 5

2
lnx− 1< T (x)−T (x/2)−T (x/3)−T (x/5)+T (x/30) < Ax+ 5

2
lnx,

where A= ln
(
21/231/351/5/301/30

)= 0.92129202 . . . . (33.48)
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In this way, Chebyshev obtained the two inequalities

ψ(x) > Ax− 5

2
ln x− 1 and ψ(x)−ψ(x/6) < Ax+ 5

2
lnx. (33.49)

The first inequality determined a lower bound for ψ(x); Chebyshev obtained an upper
bound from the second inequality by employing an interesting trick. He set

f (x)= 6

5
Ax+ 5

4ln 6
ln2 x+ 5

4
lnx

and by a simple calculation obtained

f (x)−f (x/6)=Ax+ 5

2
ln x.

Therefore, by the second inequality

ψ(x)−ψ(x/6) < f (x)−f (x/6) or ψ(x)−f (x) < ψ(x/6)−f (x/6).
Replacing x by x/6,x/62, . . . ,x/6m successively, he got

ψ(x)−f (x) < ψ(x/6)−f (x/6) < ψ(x/62)−f (x/62) < · · ·
<ψ(x/6m+1)−f (x/6m+1).

Takingm to be the largest integer for which x/6m≥ 1, x/6m+1 would have to lie between
1/6 and 1. Therefore,

ψ(x/6m+1)−f (x/6m+1) < 1 and

ψ(x)−f (x) < 1 or ψ(x) < f (x)+ 1.

Thus, ψ(x) <
6

5
Ax+ 5

4ln 6
ln2 x+ 5

4
lnx+ 1. (33.50)

Chebyshev obtained bounds for θ(x) from those of ψ(x). He observed that (33.38)
implied that

ψ(x)−ψ(√x)= θ(x)+ θ( 3√
x)+ θ( 5√

x)+·· ·

ψ(x)− 2ψ(
√
x) < θ(x) < ψ(x)−ψ(√x). (33.51)

He concluded from the bounds for ψ(x) in (33.49) and (33.51) that

Ax− 12

5
Ax1/2 − 5

8ln 6
ln2 x− 15

4
lnx− 3< θ(x)

<
6

5
Ax−Ax1/2 + 5

4ln 6
ln2 x+ 5

2
lnx+ 2. (33.52)

With the help of these inequalities, Chebyshev was able to prove Bertrand’s conjecture.
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Chebyshev argued that if there were exactly m primes between the numbers l and
L, then θ(L)− θ(l) could be expressed as the sum of the logarithms of these primes
and hence

m ln l < θ(L)− θ(l) < m lnL or (33.53)

θ(L)− θ(l)
lnL

<m<
θ(L)− θ(l)

ln l
. (33.54)

He denoted the upper and lower bounds of θ(x) in (33.52) by θI (x) and θII (x), respec-
tively, and noted that by the last inequality, m was greater than k = θII (L)− θI (l).
Substituting the values of θII (L) and θI (l) and solving for l, Chebyshev obtained

l = 5

6
L− 2L1/2 − 25ln2L

16A ln 6
− 5

6A

(
25

4
+ k

)
lnL− 25

6A
(33.55)

and observed that between l and L there were more than k primes. He then took k = 0
and saw that there had to be at least one prime between

l = 5

6
L− 2L1/2 − 25ln2L

16A ln 6
− 125

24A
lnL− 25

6A
and L. (33.56)

Finally, he remarked that for L = 2a− 3 and a > 160, the value of l in (33.56) was
larger than a, and hence there was a prime between a and 2a−3. Since the conjecture
could be confirmed to hold for values of a ≤ 160, this completed the proof. In 1919,
Ramanujan published a similar but very brief proof of Bertrand’s conjecture. It may
also be of interest to note that in 1932, when Paul Erdős was only 18 years of age, he
found a proof quite similar to Ramanujan’s.

Chebyshev closed his paper by giving bounds for π(x), the number of primes less
than x. He derived these bounds as a corollary to an interesting theorem on series:
Supposing that for large enough x, F(x)/ lnx was positive and decreasing, the series

F(2)+F(3)+F(5)+F(7)+F(11)+F(13)+·· ·
converged if and only if the series

F(2)

ln 2
+ F(3)

ln 3
+ F(4)

ln 4
+ F(5)

ln 5
+ F(6)

ln 6
+·· ·

converged. Clearly, this theorem implied the convergence of the series
∑

p 1/(p lnp).
In fact, Chebyshev showed that the sum of the series lay between 1.53 and 1.73. To
prove this theorem, Chebyshev took α,β,γ, . . . ,ρ to be prime numbers between the
integers l and L. Then he defined U by

S = F(2)+F(3)+F(5)+·· ·+F(α)+F(β)+F(γ )+·· ·F(ρ)
= S0 +F(α)+F(β)+F(γ )+·· ·+F(ρ)= S0 +U.
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Since θ(x)− θ(x− 1)= ln x for prime x, and = 0 for composite x, Chebyshev could
conclude that

U = θ(l)− θ(l− 1)

ln l
F (l)+ θ(l+ 1)− θ(l)

ln(l+ 1)
F (l+ 1)

+θ(l+ 2)− θ(l+ 1)

ln(l+ 2)
F (l+ 2)+·· ·+ θ(L)− θ(L− 1)

lnL
F(L).

He then applied summation by parts to obtain

U = − θ(l− 1)
F (L)

ln l
+
(
F(l)

ln l
− F(l+ 1)

ln(l+ 1)

)
θ(l)+

(
F(l+ 1)

ln(l+ 1)
− F(l+ 2)

ln(l+ 2)

)
θ(l+ 1)

+·· ·+
(
F(L)

lnL
− F(L+ 1)

ln(L+ 1)

)
θ(L)+ F(L+ 1)

ln(L+ 1)
θ(L). (33.57)

He took l large enough that F(x) lnx was positive and increasing in l−1 ≤ x ≤L+1
and obtained the inequalities

θII (l− 1)
F (l)

ln l
− θI (l− 1)

F (l)

ln l
+

L∑
x=l
F (x)

θii(x)− θII (x− 1)

lnx
< U

< θI (l− 1)
F (l)

ln l
− θII (l− 1)

F (L)

ln l
+

L∑
x=l
F (x)

θI (x)− θI (x− 1)

lnx
. (33.58)

Chebyshev noted that

θII (x)− θII (x− 1)

=A− 12

5
A(

√
x−√

x− 1)− 5

8ln 6
(ln2 x− ln2(x− 1))

− 15

4
(lnx− ln(x− 1))

and that this expression was bounded as x→∞. For example,

√
x−√

x− 1 =√
x−√

x

(
1− 1

x

)1/2

≈ 1

2
√
x
→ 0, x→∞, and

lnx− ln(x− 1)= ln
x− 1

x
= ln

(
1− 1

x

)
→ 0 as x→∞.

By a similar analysis with θI (x)−θI (x−1), he noted that the two inequalities in (33.58)
implied the theorem. Chebyshev obtained the bounds for π(x) by taking F(x)= 1 and
l = 2 in (33.58):

θII (1)

ln 2
− θI (1)

ln 2
+

L∑
x=2

θII (x)− θII (x− 1)

lnx
< π(x)

<
θI (1)

ln 2
− θII (1)

ln 2
+

L∑
x=2

θI (x)− θI (x− 1)

lnx
.



710 Distribution of Primes: Early Results

33.4 De Polignac’s Evaluation of
∑

p≤x
lnp
p

Inspired by the work of Chebyshev, in the 1850s, Alphonse de Polignac published a
number of papers in the Comptes Rendus and Liouville’s Journal. Though his work
was largely lacking in rigor, in 1857 de Polignac gave a fairly good proof of∑

p≤x

lnp

p
= lnx+ ε,

where ε was a quantity small compared to lnx. In fact, his proof implies that ε is
bounded. Now by Chebyshev’s work∑

pm≤x
lnp =

∑
p≤x

(⌊
x

p

⌋
+
⌊
x

p2

⌋
+
⌊
x

p3

⌋
+·· ·

)
lnp.

De Polignac denoted the left-hand side by lnFo(x) and &x/pk' by E
(
x/pk

)
. He let n

be the largest integer such that pn ≤ x. Then

n∑
k=1

⌊
x

pk

⌋
>

n∑
k=1

x

pk
−

n∑
k=1

1, and

n∑
k=1

⌊
x

pk

⌋
<

n∑
k=1

x

pk
= x

p− 1
− x

pn(p− 1)
.

Therefore,

x
∑
p≤x

lnp

p− 1
− x

∑
p≤x

lnp

pn(p− 1)
>

∑
pm≤x

lnp

> x
∑
p≤x

lnp

p− 1
− x

∑
p≤x

lnp

pn(p− 1)
− lnx.

De Polignac then argued that
∑

pm≤x lnp=∑
n≤x lnn= x lnx+ terms of smaller order,

and
∑ lnp

p−1 was of the same order as
∑ lnp

p
. Moreover,

∑
p≤x

lnp
pn(p−1) was bounded, so

that the required result followed from the two inequalities. In 1874, Franz Mertens,
aware of de Polignac’s work, but motivated by Chebyshev’s second paper, proved that∑

p≤x
(lnp)/p = lnx+O(1).

33.5 Mertens’s Evaluation of
∏
p≤x

(
1− 1

p

)−1

According to Mertens, his interest in evaluating
∏
p≤x

(
1− 1

p

)
arose from the useful

formulas he had seen in the third edition of Legendre’s Théorie des nombres. Legendre’s
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formulas stated without rigorous proof that for some constants A and C,∑
p≤G

1

p
= ln(lnG− 0.08366)+C, and

∏
p≤G

(
1− 1

p

)
= A

lnG− 0.08366
.

Mertens proved the results ∑
p≤G

1

p
= ln lnG+ γ −H + δ, (33.59)

where H =
∞∑
k=2

1

k

∑
p

1

pk
and δ <

4

ln(G+ 1)
+ 2

G lnG
; and (33.60)

∏
p≤G

(
1− 1

p

)−1

= eγ+δ′ lnG, (33.61)

where δ′ <
4

ln(G+ 1)
+ 2

G lnG
+ 1

2G
. (33.62)

He began by observing that Dirichlet and Chebyshev had shown that for ρ > 0,

ζ(1+ρ)= 1+ (ρ)
ρ

,

where (ρ) denoted a quantity tending to 0 as ρ→ 0. It followed from this and Euler’s
product for ζ(1+ρ) that

ln
1

ρ
+ (ρ)= ln ζ(1+ρ)=−

∑
p

ln(1− 1/p1+ρ)

=
∑
p

1

p1+ρ +
1

2

∑
p

1

p2+2ρ
+ 1

3

∑
p

1

p3+3ρ
+·· · .

Mertens could then easily conclude that∑
p

1

p1+ρ = ln
1

ρ
−H + (ρ). (33.63)

He proceeded to complete the proof of (33.59) by showing that∑
p>G

1

p1+ρ = ln
1

ρ
− ln lnG− γ + δ+ (ρ), (33.64)

where |δ|< 4

ln(G+ 1)
+ 2

G lnG
.
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He set f (x)=∑
p≤x

lnp
p
. Then summation by parts gave him

∑
p>G

1

p1+ρ =
∞∑

n=G+1

f (n)−f (n− 1)

nρ lnn

= − f (G)

(G+ 1)ρ ln(G+ 1)
+

∞∑
n=G+1

f (n)

(
1

np lnn
− 1

(n+ 1)ρ ln(n+ 1)

)
.

Next set f (n) = lnn+Dn. Recall that de Polignac had shown that Dn was small
compared to lnn, but Mertens required that Dn be bounded. This was easily achieved.
Mertens showed that Dn < 2 by computing bounds explicitly, as Chebyshev had done
in his work on primes. Now observe that

lnn

(
1

nρ lnn
− 1

(n+ 1)ρ ln(n+ 1)

)
= 1

nρ
− 1

(n+ 1)ρ
− ln

(
1− 1

n+1

)
(n+ 1)ρ ln(n+ 1)

= 1

nρ
− 1

(n+ 1)ρ
+ 1

(n+ 1)1+ρ ln(n+ 1)

+ λ

2n(n+ 1)1+ρ ln(n+ 1)
,

where 0< λ < 1. Applying this in the previous series and after cancellation of terms,
he had ∑

p>G

1

p1+ρ =
∞∑

n=G+1

1

n1+ρ lnn
+R, (33.65)

where

R = ln(G+ 1)−f (G)
(G+ 1)ρ ln(G+ 1)

− 1

(G+ 1)1+ρ ln(G+ 1)
+λ

∞∑
n=G+1

1

2n(n+ 1)1+ρ ln(n+ 1)

+
∞∑

n=G+1

Dn

(
1

nρ lnn
− 1

(n+ 1)ρ ln(n+ 1)

)
.

It is easy to show thatR=O (
1

lnG

)
and, in fact, Mertens proved that |R|< 4

ln(G+1)+ 1
G lnG .

To estimate the sum
∑

1/(n1+ρ lnn), first note that

∞∑
n=G+1

1

n1+t =
G−t

t
−R′, (33.66)

where R′ = 1+ t
2

∞∑
n=G+1

1

n2+t +
(1+ t)(2+ t)

2 · 3
∞∑

n=G+1

1

n3+t +·· · .

To prove (33.66), observe that the binomial expansion of (1−1/(n+1))−t immediately
implies

1

tnt
− 1

t (n+ 1)t
= 1

(n+ 1)1+t
+ 1+ t

2

1

(n+ 1)2+t
+ (1+ t)(2+ t)

2 · 3
1

(n+ 1)3+t
+·· · .
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The required result followed when this formula was summed from n =G to n =∞.
Now integrating (33.66) from ρ to 1, obtain

∞∑
n=G+1

1

n1+ρ lnn
−

∞∑
n=G+1

1

n2 lnn
=

∫ 1

ρ

G−t

t
dt −

∫ 1

ρ

R′ dt

=
∫ ∞

ρ lnG

dx

ex − 1
−
∫ ∞

ρ lnG

(
1

ex − 1
− e−x

x

)
dx

−
∫ ∞

1

G−x

x
dx−

∫ 1

ρ

R′ dt.

The first integral in this expression could be written as∫ ∞

ρ lnG

e−x

1− e−x dx = ln(1− e−x)
∣∣∣∞
ρ lnG

=− ln(1−G−ρ);

the second one, by Gauss’s formula (23.72) for ψ(1)= �′(1)/�(1)=−γ , would be∫ ∞

0
−
∫ ρ lnG

0

(
1

ex − 1
− e−x

x

)
dx = γ + (ρ).

Also

− ln(1−G−ρ)= ln
1

ρ
− ln lnG+ (ρ),

so that
∞∑

n=G+1

1

n1+ρ lnn
= ln

1

ρ
− ln lnG− γ −

∫ ∞

1
G−x dx

x
+

∞∑
n=G+1

1

n2 lnn

−
∫ 1

ρ

R′ dt + (ρ).

Next, ∫ 1

ρ

R′ dt <
∫ 1

0

( ∞∑
n=G+1

1

n2+t +
∞∑

n=G+1

1

n3+t +·· ·
)
dt

<

∞∑
n=G+1

(
1

n2 lnn
− 1

n3 lnn

)
+

∞∑
n=G+1

(
1

n3 lnn
− 1

n4 lnn

)
+·· ·

<

∞∑
n=G+1

1

n2 lnn
<

∞∑
n=G+1

(
1

(n− 1) ln(n− 1)
− 1

n lnn

)
<

1

G lnG

and
∫ ∞

1

G−x

x
dx <

1

G lnG
.

Hence,
∞∑

n=G+1

1

n1+ρ lnn
= ln

1

ρ
− ln lnG− γ + λ

G lnG
+ (ρ).
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When combined with (33.65), this gave (33.64). Mertens’s version of Legendre’s for-
mula for

∑
p≤G

1
ρ

followed from this, (33.64), and (33.63). Mertens’s formula for the
product was an easy corollary.

In 1926, Hardy commented on Mertens’s proof: “The proof is rather difficult to seize
or to remember, since it depends on a combination of the method of Tchebycheff on the
one hand and the theory of Dirichlet’s series on the other, and it may be worth while
to give an alternative proof.” Hardy himself provided two proofs, the first published in
1927 using an integral analog of Littlewood’sTauberian theorem, and the second in 1935
using the analog of the simpler Tauber’s theorem. Hardy’s proofs are quite interesting,
but we note that if Mertens’s proof is recast in terms of the Stieltjes integral, a very
simple proof of (33.64) emerges; note that the latter is the only complex argument in
the proof. To begin this short proof, first observe that∑

p≥G+1

1

p1+ρ =
∫ ∞

G+1
xρ lnx df (x),

where f (x)=∑
p≤x(lnp)/p= lnx+ε, |ε| ≤ 3. Then integration by parts and an easy

calculation produce∑
p≥G+1

1

p1+ρ = (1+ ερ)
∫ ∞

ln(G+1)

e−ρu

u
du+O

(
1

lnG

)
.

Then by Gauss’s formula for �′(1), (23.72), this integral can be evaluated as∫ ∞

ρ ln(G+1)

e−x

x
dx = −

∫ ∞

0
+
∫ ρ ln(G+1)

0

(
1

ex − 1
− e−x

x

)
dx+

∫ ∞

ρ ln(G+1)

1

ex − 1
dx

= γ + (ρ)+ ln(1− (G+ 1)ρ)

= γ + (ρ)+ ln
1

ρ
+ ln ln(G+ 1)+ (ρ).

This proves (33.64) so that the proof of Mertens’s formula can now be completed as
before.

33.6 Riemann’s Formula for π(x)

Riemann’s eight-page paper of 1859, containing his formula for the number of primes
less than a given number x, was actually an outline of a research program for the
advancement of the theory of distribution of primes. He proved very few statements in
this paper, but clearly set forth his conjectures and how some of them might be verified.
It took fifty years of development in complex analysis to prove the first approxima-
tion of his formula, the prime number theorem. Almost a century after Riemann’s
paper appeared, Hardy’s student and Oxford professor Edward Titchmarsh wrote, “The
memoir in which Riemann first considered the zeta-function has become famous for
the number of ideas it contains which have since proved fruitful, and it is by no means
certain that these are even now exhausted.”
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Recall that Dirichlet and Chebyshev employed Mellin transforms to study prime
numbers, but that they limited themselves to real variables. Riemann’s great innovation
was to employ complex variables. He expressed the Mellin transform of his arithmetic
function f (x) defined by (33.14) in terms of the zeta function; then by Mellin inversion,
he expressed f (x) as an integral in the complex plane. This made it possible to apply
the powerful machinery of complex integration. Riemann observed that if

p−s = s
∫ ∞

p

x−s−1dx, p−2s = s
∫ ∞

p2
x−s−1dx, . . .

were to be used in

logζ(s)=−
∑
p

log(1−p−s)=
∑
p

p−s + 1

2

∑
p

p−2s + 1

3

∑
p

p−3s +·· · ,

he got
logζ(s)

s
=

∫ ∞

1
f (x)x−s−1dx, Res > 1.

He then applied the Fourier inversion formula to obtain an integral expression for f (x):

f (y)= 1

2πi

∫ a+∞i

a−∞i

logζ(s)

s
ysds, a > 1.

Riemann set

ξ(s)=V
( s

2

)
(s− 1)π−s/2ζ(s), (33.67)

and by using (33.17), he obtained

logζ = s

2
logπ − log(s− 1)− logV(s/2)+

∑
α

log (1− s/ρ)+ logξ(0).

Riemann noted, however, that when this expression was used in the integral for f (y),
the integral became divergent. So he applied integration by parts to get

f (s)=− 1

2πi

1

logx

∫ a+∞i

a−∞i

d(logζ(s)/s)

ds
xsds.

Next he observed that

− logV(s/2)= lim
m→∞

(
m∑
n=1

log(1+ s/2n)− s

2
logm

)
and therefore

− d

ds
(logV(s/2))/s =

∞∑
n=1

d

ds
(log(1+ s/2n))/s.

Hence, every term in the expression for f (s), except for the term

1

2πi

1

logx

∫ a+∞i

a−∞i

1

ss
logξ(0)xsds = logξ(0),
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took the form

± 1

2πi

1

logx

∫ a+∞i

a−∞i

d

ds
((log(1− s/β))/s)xsds.

To evaluate this integral, Riemann observed that

d

dβ
((log(1− s/β))/s)= 1

(β− s)β .

Thus, for Re(s−β) > 0, he had

− 1

2πi

d

dβ

∫ a+∞i

a−∞i

log(1− s/β)
s

xsds = − 1

2πi

∫ a+∞i

a−∞i

xsds

(β− s)β = xβ

β

=
{∫ x

∞ t
β−1dt, when Re β < 0,∫ x

0 t
β−1dt, when Re β > 0.

Riemann could then conclude that

1

2πi

1

logx

∫ a+∞i

a−∞i

d

ds

(
log(1− s/β)

s

)
xsds

= − 1

2πi

∫ a+∞i

a−∞i

log(1− s/β)
s

xsds

=
{∫ x

∞
tβ−1

log t dt, when Re β < 0,∫ x
0
tβ−1

log t dt, when Re β > 0.

Note that it was clear that∫ x

0

tβ−1

log t
dx =

∫ xβ

0

du

logu
= li(xβ).

By using these results in the expression for f (x), Riemann obtained his famous formula

f (x)= li(x)−
∑
β

(li(xβ)+ li(x1−β))+
∫ ∞

x

1

t2 − 1

dt

t log t
+ logξ(0).

In writing this formula, Riemann assumed the truth of the Riemann hypothesis. He
wrote β = 1

2 + iα, and 1−β = 1
2 − iα, so that the expression in the sum appeared as

li
(
x

1
2+iα

)
+ li

(
x

1
2−iα

)
.

One may verify that the integral evaluations as sketched by Riemann are indeed correct,
and/or consult Harold Edwards’s book, offering a detailed discussion of Riemann’s
paper.
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33.7 Exercises

1. Using Chebyshev’s notation, show that for T (x)= ln&x'!− 2ln&x/2'!
ψ(x)−ψ(x/2)≤ T (x)≤ψ(x)−ψ(x/2)+ψ(x/3).

Apply Stirling’s approximation to prove that T (x) < 3x/4 for x > 0 and T (x) >
2x/3 for x > 300. Use this to show that ψ(x) < 3x/2. Now show that ψ(x)−
2ψ(

√
x)≤ θ(x)≤ψ(x) and, therefore,

ψ(x)−ψ(x/2)+ψ(x/3)≤ θ(x)+ 2ψ(
√
x)− θ(x/2)+ψ(x/3) (33.68)

< θ(x)− θ(x/2)+ x/2+ 3
√
x. (33.69)

Apply these results to show that

θ(x)− θ(x/2) > x/6− 3
√
x for x > 300.

Show that this proves Bertrand’s conjecture for x ≥ 162. Finally, show that

π(x)−π(x/2) > (x/6− 3
√

3)/ lnx for x > 300.

See Ramanujan (2000), pp. 208–209.
2. Let C(m,n) denote the binomial coefficient m choose n, that is, the number of

ways of choosing n objects out of m distinct objects. Show that the exponent of
a prime p in C(2n,n) is given by

∞∑
k=1

(&2n/pk'− 2&n/pk').

Show that
d = &2n/pk'− 2&n/pk' ≤ 1,

that d = 1 for
√

2n < p ≤ 2n, and that d = 0 for p > 2n and for 2n/3<p < n.
Use these results to conclude that

C(2n,n)≤
∏
p≤√

2n

(2n)
∏

√
2n<p≤2n/3

p
∏

n<p≤2n

p.

Note that if Bertrand’s conjecture is false for some n, then

C(2n,n)≤ (2n)
√

2n
∏

√
2n<p≤2n/3

p. (33.70)

3. Show that 2nC(2n,n) > 4n. Prove that for a ≥ 5, C(2a,a) < 4a−1 and that∏
a<p<2a ≤C(2a,a). Use the last two inequalities to show that

∏
10<p<n p < 4n.

Combine these results with (33.70) to show that if Bertrand’s conjecture is false
then we get a contradiction. See Erdős (1932). Paul Erdős (1913–1996) founded
many aspects of combinatorics and popularized this area of mathematics by
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continuously traveling all over the world and collaborating with hundreds of
mathematicians.

4. Let φ(1) = 1 and let φ(n), n > 1, be the number of numbers less than n and
prime to n. Let F(t)=∑

1≤n≤t φ(t). Prove that F(t)= 3t2/π 2 +O(t ln t). See
Mertens (1874b), pp. 290–292.

5. Show that the integral �(s)= ∫∞
0 xs−1e−x dx has the inversion

e−x = 1

2πi

∫ a+i∞

a−i∞
�(x)x−s ds, a > 0, Rex > 0.

See Cahen (1894).
6. Prove Ramanujan’s formula∫ ∞

0

cosπx2

sinhπx
sin(2πtx)dx = coshπt − cosπt2

2sinhπt
.

Use this formula to show that for −3< Res < 4, we have

�(s)

2s
(1− 2s)(1− 21−s)ζ(s)

=−
∫ ∞

0

[(π
2

)s−1
�(s)sin

πs

2
x−s + xs−1

] sin2
(
x2

2π

)
sinhx

dx .

See Ramanujan (2000), p. 64, for his formula. For the other formula, see Mustafy
(1966).

7. Show that for ξ(s) defined by (33.67) and for 0< Res < 1, λ > 0,∫ 1

0
u−1/2k(λ,u)

(
us−1/2 +u1/2−s) du= 1

2
B(s)ξ(s)

(
λs/2−1/4 +λ1/4−s/2) ,

where B(s)= π−1/2

4
�
(
− s

2

)
�

(
s− 1

2

)
,

φ(λ,u)=
∫ ∞

0

(
λ1/4e−πx

2uλ+λ−1/4e−πx
2u/λ

) x dx

e2πx − 1
,

k(λ,u)= 1

4π

(
λ1/4 +λ−1/4

)−uφ(λ,u2).

Prove also that k(λ,u) > 0 for 0 ≤ u≤ 1, and that a number s0 = σ0 + it0 with
0< σ0 < 1 is a zero of ξ(s) if and only if for every λ > 0∫ 1

0
u−1/2k(λ,u)

(
us0−1/2 +u1/2−s0)du= 0.

See Mustafy (1972). Ashoke Kumar Mustafy had a thirty-year career in
the Indian Administrative Service, including as Vice Chancellor of Lucknow
University during 1973–75. In spite of his heavy administrative duties, he worked
on mathematics six to seven hours per day and had time to discuss mathematics
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with a young boy like the author. Mustafy hoped that his result would be useful
in proving the Riemann hypothesis; indeed, in this connection he communicated
with André Weil who wrote that he found Mustafy’s work promising.

33.8 Notes on the Literature

For a history of the prime number theorem, see Goldstein (1973) and Bateman and
Diamond (1996). These two papers have been reprinted in Anderson, Katz, and Wilson
(2009). Goldstein’s paper also contains a translation of Gauss’s letter to Encke. Bessel’s
letter to Olbers may be found on p. 238 of Erman (1852), vol. 1. Sylvester (1973),
vol. 3, p. 545, contains the quotation concerning Chebyshev. For the latter’s work on
prime numbers, see Chebyshev (1899–1907), vol. 1, pp. 29–70. See Smith (1959),
pp. 127–48, for an English translation of some parts of Chebyshev’s two papers on
primes. Delone (2005), an English translation by R. Burns of Delone’s Russian original
of 1947, gives a detailed commentary on Chebyshev’s papers and a discussion of the
major contributions to number theory of St. Petersburg mathematicians in the period
1847–1947. See de Polignac (1857) and Mertens (1874ba) for the results on

∑
(lnp)/p

and
∑

1/p. For Hardy’s proofs of Mertens’s theorems, see his two notes in Hardy
(1966–1979), vol. 2, pp. 210–12 and 230–33. The quote concerning the proof of Mertens
is on p. 210. Riemann (1990), pp. 177–185, has a reprint of his 1859 paper. Edwards
(2001) presents a detailed and fascinating discussion of this paper and some of its
consequences. Narkiewicz (2000) offers an excellent exposition of the development of
the prime number theorem and provides a comprehensive list of references. Titchmarsh
and Heath-Brown (1986), p. 254, has the quote on Riemann’s paper.
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Invariant Theory: Cayley and Sylvester

34.1 Preliminary Remarks

The invariant theory of forms, with forms defined as homogeneous polynomials in
several variables, was developed extensively in the nineteenth century as an important
branch of algebra but with very close connections to algebraic geometry. Several ideas
and methods of invariant theory were influential in diverse areas of mathematics: topics
as concrete as enumerative combinatorics and the theory of partitions and as general
as twentieth-century abstract commutative algebra.

George Boole, the highly original British mathematician, may be taken as the founder
of invariant theory, though early examples of the use of invariance can be found in the
works of Lagrange, Laplace, and Gauss. Boole had almost no formal training in math-
ematics, but he carefully studied the work of great mathematicians, including Newton,
Lagrange, and Laplace. In a paper on analytic geometry written in 1839, Boole took
the first tentative steps toward the idea of invariance, but he gave a clearly formulated
definition in his 1841 “Exposition of a General Theory of Linear Transformations.” He
wrote that he found his inspiration in Lagrange’s researches on the rotation of rigid
bodies, contained in the 1788 Mécanique analytique. Lagrange’s result is most eco-
nomically described in terms of matrices, a concept developed in the 1850s by Cayley.
In modern terms, Lagrange’s problem was to diagonalize a 3×3 symmetric matrix A;
Lagrange expressed this in terms of binary quadratic forms. Given a quadratic form
xtAx, with x a three vector, the problem would be to find a matrixP such thatPP t = I ,
the identity matrix, and P tAP is a diagonal matrix. This means that if x1,x2,x3 are the
components of x, y1,y2,y3 of y = P tx, and λ1,λ2,λ3 are the diagonal entries in the
diagonal matrix, then

xtAx = λ1y
2
1 +λ2y

2
2 +λ3y

2
3 , (34.1)

x2
1 + x2

2 + x2
3 = y2

1 + y2
2 + y2

3 . (34.2)

It is not surprising that this result of Lagrange also served as the starting point of
the spectral theory of matrices. Cauchy, Weierstrass, and Frobenius were the primary
developers of this aspect of matrix theory. But Boole took a different turn; he con-
sidered a homogeneous polynomial of degree n in m variables and applied a linear

720
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transformation to the variables to obtain a new homogeneous polynomial of degree n
inm variables. He wished to determine the relations between the coefficients of the two
polynomials. Boole’s method may perhaps be best understood by studying his simplest
example. Let Q= ax2

1 + 2bx1x2 + cx2
2 be a binary quadratic form. Set its two partial

derivatives equal to zero and then eliminate the variables x1 and x2. Thus,

2ax1 + 2bx2 = 0 and 2bx1 + 2cx2 = 0. (34.3)

Elimination of the variables x1, x2 gives

θ(Q)= b2 − ac= 0 . (34.4)

Now apply the linear transformation

x1 = py1 + qy2 x2 = ry1 + sy2, (34.5)

where p, q, r , s are real numbers with ps− qr �= 0, to get a new quadratic form R =
Ay2

1 +2By1y2 +Cy2
2 . A calculation similar to the previous one gives θ(R)=B2 −AC.

Boole pointed out that

θ(R)= (ps− qr)2 θ(Q); (34.6)

the quantity ps−qr is the determinant of the linear transformation (34.5). In addition,
the degrees of the homogeneous polynomials θ(Q) and θ(R) are defined as equal to the
degree of each term, in this case 2.

More generally, Boole showed that, with Qn a homogeneous polynomial of degree
n in m variables, if Rn was the polynomial obtained after the application to Qn of a
linear transformation with determinant E, and if θ(Qn) and θ(Rn) were obtained by
the elimination process described earlier, then

θ(Rn)=Eγn/m θ(Qn) . (34.7)

Here γ represented the degree of θ(Rn) and θ(Qn). In the 1841 paper, Boole stated but
did not prove this theorem, though he gave a few examples to illustrate it. He indicated a
proof in a paper appearing four years later. Note that the polynomial θ(Qn) is termed an
invariant because it satisfies the relation (34.7). Sylvester introduced the term invariant
in a long paper on the subject published in 1853, and he coined many other terms used
in invariant theory.

At the end of the second part of his 1841 paper, Boole wrote that mathematicians
should find invariant theory a fertile area for research and discovery. Indeed, Boole’s
paper had an immediate impact on Cayley who, upon reading it in 1844, wrote to Boole
of his enthusiasm for this new area of mathematics. Cayley was then a recent graduate
of Cambridge University and had published an 1843 paper on determinants in which
he introduced the concept of hyperdeterminants or multidimensional determinants. In
a paper of 1844, “On the Theory of Linear Transformations,” Cayley applied these
hyperdeterminants to generate new invariants. Cayley’s work arose out of his efforts to
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generalize some well-known results. For example, the invariant ac− b2 for the binary
quadratic was known to be the determinant∣∣∣∣a b

b c

∣∣∣∣ ,
while the invariant abc+2fgh−ah2−bg2−cf 2 for the ternary quadratic ax2

1 +bx2
2 +

cx2
3 + 2f x1x2 + 2gx1x3 + 2hx2x3 was the determinant∣∣∣∣∣∣

a f g

f b g

g h c

∣∣∣∣∣∣ . (34.8)

The first fact was already contained in Boole; Cayley presented the second invariant
in his paper. As an example of the role of hyperdeterminants, so named by Cayley in
1845, he considered the multilinear form∑

αijkl xiyizkwl ,

where the indices i, j , k, l assumed only the values 1 and 2. Each of the four pairs of
variables (x1,x2), (y1,y2), (z1,z2), (w1,w2) could then be linearly transformed by 2×2
matrices. So the multilinear form corresponded to a 2× 2× 2× 2 matrix and Cayley
used hyperdeterminants to compute an invariant for this form. He then specialized the
multilinear form by setting x1 = y1 = z1 =w1 = x and x2 = y2 = z2 =w2 = y; he then
identified the coefficients to get the binary quartic

u= ax4 + 4bx3y+ 6cx2y2 + 4dxy3 + ey4 , (34.9)

where a = α1111, b = α2111 = α1211 = α1121 = α1112, and so on. By making a similar
identification in the invariant for the multilinear form, he obtained the second-degree
invariant for the binary quartic:

I1 = ae− 4bd+ 3c2. (34.10)

Cayley realized that his result was different from Boole’s invariant θ(u); he communi-
cated his result to Boole, who pointed out that there was also an invariant of the third
degree:

I2 = ace− b2e− ad2 − c3 + 2bcd .

Cayley in turn showed that his invariant as well as Boole’s third-order invariant could
most easily be derived by a method Boole had explained in his very first paper, written
in 1839. Boole then informed Cayley of yet another result, obtained by trial and error:

θ(u)= I 3
1 − 27I 2

2 . (34.11)

This relation shows that the three invariants θ(u), I 3
1 , I

2
2 were linearly dependent.

Cayley was intrigued by this result and computed invariants with still greater fervor,
though by means of new methods.
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Boole soon abandoned invariant theory in favor of analysis and logic; because of the
unwieldy computational difficulties of hyperdeterminants, Cayley also gave up using
them to find invariants. Perhaps surprisingly, Gelfand, Kapranov, and Zelevinsky redis-
covered and promoted the study of hyperdeterminants. In their 1994 Discriminants,
Resultants, and Multidimensional Determinants, they wrote that although hyperdeter-
minants had been largely abandoned for 150 years, they found them to be important
in their attempt to construct a general theory of hypergeometric functions in several
variables.

However, the relation (34.11) suggested to Cayley and Sylvester an important prob-
lem, and they began work on it in the 1850s: Determine invariants I1, I2, . . . , Is of
a binary quantic such that all other invariants would be of the form P(I1,I2, . . . , Is),
for some polynomial P . The English mathematicians Arthur Cayley (1821–1895) and
J. J. Sylvester were mathematical friends, reminding us of Euler and Goldbach before
them and Hardy and Littlewood after them. Cayley and Sylvester met in 1847 as law
students; they remained close friends for almost fifty years until Cayley’s death, meet-
ing as frequently as possible and exchanging hundreds of letters and hand-delivered
notes. Both algebraists, they often worked simultaneously on the same topic. One may
ask why they published no joint work. First, Cayley was a reserved and reticent person,
while Sylvester was extremely ebullient and volatile. Moreover, Sylvester exhibited
a strong need to maintain strict mathematical priority, both for himself and others.
For example, in 1882 Sylvester wrote a paper on partitions, divided into a number of
distinct sections, each with its own heading and authorship, indicating whether that
portion of the argument should be credited to himself or to his student Franklin. In spite
of the apparent separateness of their work, Cayley and Sylvester’s mutual support and
motivation surely led each of them to more progress than they might have achieved
separately. E. T. Bell aptly labeled Cayley and Sylvester the invariant twins; we remark
that they must have been fraternal twins.

In order to look at the work of Cayley and Sylvester after 1850, we give some
definitions in slightly modernized form, largely following Hilbert’s notation, presented
in his 1897 lectures, published in 1993. Cayley and Sylvester worked primarily on
invariants of binary quantics. These are polynomials in two variables, of the form

f (x1,x2)= a0x
n
1 +

(
n

1

)
a1x

n−1
1 x2 +

(
n

2

)
a2x

n−2
1 x2

2 +·· ·+ anxn2 . (34.12)

Suppose the linear transformation (34.5) with determinant δ = ps − qr �= 0 converts
f (x1,x2) into

A0y
n
1 +

(
n

1

)
A1y

n−1
1 y2 +

(
n

2

)
A2y

n−2
1 y2

2 +·· ·+Anyn2 . (34.13)

An invariant I off (x1,x2) is then a polynomial in the coefficients a0, a1, . . . , an, denoted
by I (a0,a1, . . . ,an), such that for some integer p

I (A0,A1, . . . ,An)= δpI (a0,a1, . . . ,an) , (34.14)
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where A0, A1, . . . , An are given by (34.13). Next, a covariant of f (x1,x2), denoted
by C(a0,a1, . . . ,an,x1,x2), is defined as a polynomial in a0, a1, . . . , an and in x1, x2,
such that

C(A0,A1, . . . ,An,y1,y2)= δpC(a0,a1, . . . ,an,x1,x2) , (34.15)

with A0, A1, . . . , An again defined by (34.13).
Within this notation, the invariant of the quadratic form is a2

1 −a0a2; for the quartic
form, the invariants mentioned earlier would be

I1 = a0a4 − 4a1a3 + 3a2
2 and I2 = a0a2a4 − a2

1a4 − a0a
2
3 − a3

2 + 2a1a2a3.

Two of these invariants are homogeneous polynomials of degree 2 and the third is of
degree 3. If the coefficient ak is assigned a weight k, then the weight of each term in
a2

1 − a0a2 can be given the value 2 by adding the weights in each product. Thus, this
invariant is said to be of weight 2. Similarly, the weights of the other two invariants are
4 and 6. Note also that the invariant a2

1 −a0a2 is the discriminant of the quadratic form
while I 3

1 −27I 2
2 is the discriminant of the quartic form. In a similar way, the cubic form

discriminant given by

a2
0a

2
3 − 3a2

1a
2
2 + 4a3

1a3 + 4a0a
3
2 − 6a0a1a2a3

is an invariant of that form, of degree 4 and weight 6.
In his 1854 paper, “An Introductory Memoir upon Quantics,” Cayley showed that

all invariants of (34.12) were homogeneous polynomials of a given degree, say θ , and
weight p, identical to the integer in equation (34.14), and that the relation of these
quantities was determined by

nθ = 2p . (34.16)

Indeed, this paper included a similar result for covariants. Cayley also found a com-
putationally simpler way of generating invariants by means of differential operators.
Interestingly, Cayley later noted that as early as the 1840s, he had observed that(

a
∂

∂b
+ 2b

∂

∂c

)
(b2 − ac)= 0 ,

and this then led him to consider such operators even in connection with his researches
on hyperdeterminants. So in 1854, Cayley defined the two operators

U= a0
∂

∂a1
+ 2a1

∂

∂a2
+ 3a2

∂

∂a3
+·· ·+nan−1

∂

∂an
, (34.17)

O = na1
∂

∂a0
+ (n− 1)a2

∂

∂a1
+ (n− 2)a3

∂

∂a2
+·· ·+ an ∂

∂an−1
. (34.18)

He showed that an invariant I of (34.12) satisfied the equations

UI = 0 and OI = 0 . (34.19)
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In fact, a seminvariant is defined as a homogeneous and isobaric (each term of the same
weight) polynomial S satisfying US = 0,

Sylvester also conceived of the idea of the differential operator and published it
before Cayley in an 1852 paper, “On the Principles of the Calculus of Forms.” In this
paper, Sylvester noted that he had discovered the differential operator before Cayley
communicated it to him. He also remarked that the German mathematician Siegfried
Aronhold, “as I collect from private information, was the first to think of the application
of this method to the subject.” It is probable, however, that Cayley has actual priority
in this matter.

Cayley and Sylvester each proved that every seminvariant I (a0,a1, . . . ,an) of degree
θ and weight p would be an invariant under the condition nθ = 2p. They generalized
this to covariants and it became their favorite method of producing invariants and
covariants, of various degrees and weights. Cayley’s “Second Memoir upon Quantics”
gave a combinatorial method for computing the number of invariants of degree θ and
weight p by solving the equation

US(a0,a1, . . . ,an)=
∑

αk0k1···knUa
k0
0 a

k1
1 · · ·aknn = 0 . (34.20)

Now the number of terms of the form a
k0
0 a

k1
1 · · ·aknn that are homogeneous of degree

θ and weight p is equal to the number of nonnegative integer solutions of the two
equations:

k0 + k1 +·· ·+ kn = θ , (34.21)

k1 + 2k2 +·· ·+nkn = p . (34.22)

Letωn(θ,p) denote this number. When theU operator is applied, we get terms of degree
θ and weight p−1. So equation (34.20) consists of ωn(θ,p−1) equations in ωn(θ,p)
variables. Cayley conjectured that the equations were independent and proceeded on
this certainty. With this assumption, he was able to prove that the number of invariants
of degree θ and weight p for a form of f (x1,x2) of degree n= 2p/θ would be given
by ωn(θ,p)−ωn(θ,p− 1).

Observe that the number of solutions of equation (34.22) is the number of partitions
of p, where each part is at most n. This connection between the number of invariants
and the number of partitions probably led Cayley and Sylvester in the mid-1850s
to investigate partitions; Sylvester gave a course of lectures on the subject in 1857.
Interestingly, in 1878 during his later career at Johns Hopkins, Sylvester was able to
prove Cayley’s conjecture of independence, while he was again working intensely on
partitions with his students. This proof implied that ωn(θ,p) was the coefficient of xp

in the Gaussian polynomial(
1− xn+1

)(
1− xn+2

) · · ·(1− xn+θ)
(1− x)(1− x2) · · ·(1− xθ) . (34.23)

We observe parenthetically this in turn implies that the Gaussian polynomial is uni-
modal; recall that a polynomial a0 +a1x+a2x

2 +·· ·+anxn is called unimodal if there
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exists an integer m≤ n such that

a0 ≤ a1 ≤ a2 ≤ ·· · ≤ am ≥ am+1 ≥ am+2 ≥ ·· · ≥ an . (34.24)

In his second memoir, Cayley also considered the problem of determining the fun-
damental invariants of a binary quantic. He presented the list of such invariants for
quadratic through the sextic forms, but due to an error in reasoning he believed that
binary forms of order seven and more did not have a finite basis, that is, that there did
not exist a finite number of invariants I1,I2, . . . , Is of a form such that every invariant
of that form could be written as a polynomial in these s invariants. This mistake was
not corrected until the German mathematician Paul Gordan proved in 1868 that the
covariants, and hence also the invariants, of any binary quantic had a finite basis. This
was later extended by Hilbert to covariants ofm-ary quantics in a very important paper
published in 1890. In spite of repeated attempts, Sylvester and Cayley failed to prove
Gordan’s theorem by their own methods.

It is very interesting to recognize the origins of German invariant theory in number
theory and algebraic geometry. Since Fermat, binary quadratic forms had been studied
in number theory. In the 1770s, in order to study such forms, Lagrange applied linear
transformations such as in (34.5), except that he took the values p, q, r , and s to be
integers. In this context, Gauss mentioned equation (34.6) in article 158 of his 1801
Disquisitiones. He did not go beyond the observation that the determinant θ(R) of the
form R divided by the determinant of the form θ(Q)was a square, (ps−qr)2. Then in
1844, while studying number theoretic properties of the binary cubic, Eisenstein found
the invariant

a2
0a

2
3 − 3a2

1a
2
2 + 4a3

1a3 + 4a0a
3
2 − 6a0a1a2a3. (34.25)

In the same year, L. O. Hesse (1811–1874), a student of Jacobi, defined the important
covariant

∂2Q

∂x2
1

∂2Q

∂x2
2

−
(
∂2Q

∂x1x2

)2

(34.26)

for any binary quantic. He introduced this covariant in order to study critical points of
curves. More generally, for any homogeneous polynomial f of degreem in n variables
x1, x2, . . . , xn, he defined the determinant∣∣∣∣ ∂2f

∂xi ∂xj

∣∣∣∣. (34.27)

Also note that in 1841, Jacobi published an important paper on functional determi-
nants, defining the Jacobian and drawing attention to this area of study. The determinant
(34.27) is now called the Hessian, a name given by Sylvester; in 1949, Hesse’s student,
Siegfried Aronhold (1819–1894), who also studied with Jacobi and Dirichlet, initiated
the symbolic algebraic approach for studying invariants and covariants that character-
ized German invariant theory until Hilbert took it in a different direction in the 1880s.
Clebsch and Gordan made use ofAronhold’s approach; Paul Gordan (1837–1912), who
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wrote his thesis in Berlin under Kummer and had as his only doctoral student the great
Emmy Noether, mastered the symbolic method and thereby proved that the invariants
and covariants of a binary quantic had a finite basis.

The problem of extending Gordan’s result to forms in n variables was very difficult
to tackle using the existing algorithmic methods. In 1890, Hilbert introduced new
methods and solved the problem. Hilbert’s proof depended on his lemma concerning
solutions of a system of linear Diophantine equations. He proved the existence of a finite
number of solutions of a special kind. This approach lent his theorem a nonconstructive
character. Thus, Gordan is said to have commented, “That is not mathematics; that is
theology!” Three years later, Hilbert gave a different proof, dependent on what is now
known as the Hilbert basis theorem; it has now been reformulated in terms of ideals:
If I ⊆ K(x1,x2, . . . ,xn) is any ideal in the ring of polynomials in n variables with
coefficients in the field K , then there exists a finite number of polynomials f1, f2, . . . ,
fm in I such that for all f in I

f =A1f1 +A2f2 +·· ·+Amfm (34.28)

for some polynomialsA1,A2, . . . ,Am in the ring. With the development of the machinery
of Gröbner bases, Hilbert’s second method of proof has become computationally quite
significant.

Hilbert’s work became the foundation for the development of commutative algebra
in the twentieth century; it paved the way leading toward the abstract point of view in
algebra and to the recent computational methods of ideal theory. In the area of commu-
tative algebra, the chess champion Emanuel Lasker (1868–1941) in 1905 established
the main facts behind the primary decomposition of ideals. Another important contribu-
tor to the theory of rings of polynomials was F. S. Macaulay (1862–1937), Littlewood’s
teacher of mathematics at St. Paul’s School in London. Although he was an excellent
mathematical researcher, Macaulay remained a secondary school teacher throughout
his career. In a famous 1921 paper, “Idealtheorie in Ringbereichen,” Emmy Noether
pioneered the abstract approach to ring theory. It is interesting that while Gordan had
an algorithmic and concrete approach to mathematics, his student became one of the
founding stars of the abstract and conceptual approach to mathematics.

Although we do not go into detail on the topic, it may be worthwhile to com-
ment briefly on the origins and development of elimination theory. Invariant theorists
and mathematicians working with rings of polynomials in several variables found the
method of elimination useful in various contexts. Boole made liberal application of
elimination theory to produce invariants, and the topic led to the development of sev-
eral aspects of algebra and algebraic geometry. Remarkably, in the twenty-first century,
Eric Feron, an aerospace engineer, saw fit to translate Étienne Bézout’s 1779 book on
elimination theory as applied to polynomials in several variables, Théorie général des
équations algébriques. In 2006 Feron wrote in the translator’s foreword:

Translating Bézout’s research centerpiece became necessary to me after attending an illuminating
presentation made by Pablo Parrilo at MIT sometime around 2002. His presentation was devoted to
polynomially constrained polynomial optimization via sum-of-square arguments. It was illuminat-
ing because much of sum-of-square optimization methods rely on (i) using polynomial multipliers,
and (ii) considering the various monomials appearing in the polynomial expressions as independent
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variables, resulting in interesting algorithmic simplifications. Such was also Bézout’s approach
when dealing with systems of polynomial equations. I decided I needed to investigate the matter
in more detail, by reading Bézout’s work and writing the present translation.

Étienne Bézout (1730–1783) became interested in mathematics by studying Euler, and
he made many practical mathematical applications, including a six-volume course for
the French artillery. His most original investigations involved the analysis of polynomial
equations in many variables. Bézout’s theorem on the number of intersection points of
two plane algebraic curves is a direct consequence of his researches.

Even before Bézout, elimination was used in the seventeenth and eighteenth centuries
to derive the discriminant of a polynomial or the resultant of two polynomials. In fact,
the word resultant was used to signify the result obtained after elimination. The resultant
R(f,g) of two polynomials is a polynomial in the coefficients of f and g, and assuming
that the coefficients of the highest powers of f and g do not vanish, then R(f,g)= 0 if
and only if f and g have a common root. In 1665–66, Newton calculated the resultant
of two cubics by computing various symmetric functions of the roots, including sums
of powers. He wrote out all the thirty-four terms of the resultant. In his published work
on algebra, he eliminated the variable from the two equations by a different method.

It is an interesting coincidence that at about this same time, Seki Takakazu
(1642–1708) was also thinking about the problem of elimination. Seki was a pioneer
in the development of algebra in Japan; he joined with his student, Takebe Katahiro,
to lay the foundation of early Japanese mathematics, or Wasan. Around 1670, Seki
presented a method of obtaining the resultant by using determinants. Given two poly-
nomial equations of degree n, he first converted them into n equations, each of degree
n−1. He then applied a method that amounted to computing the n by n determinant so
obtained. He explained the details of his method by taking small values of n, at least up
to n= 4. And Zhu Shijie investigated resultants in the thirteenth century. As for deter-
minants, Chinese mathematicians had earlier used them to solve simultaneous linear
equations and the Japanese mathematicians of the seventeenth and eighteenth centuries
were familiar with this aspect of Chinese algebra. Seki’s method was rediscovered by
Bézout. Consider their method for eliminating the x term from two cubics:

f = a1x
3 + b1x

2 + c1x+ d1, g = a2x
3 + b2x

2 + c2x+ d2 .

The three quadratic polynomials obtained from f and g would be a2f − a1g, (a2x+
b2)f −(a1x+b1)g, and (a2x

2+b2x+c2)f −(a1x
2+b1x+c1)g. The 3×3 determinant

formed by the coefficients of the three quadratics would then be the resultant.
Euler and Lagrange and others contributed to elimination theory in the eighteenth

century; in the nineteenth century, Sylvester and Cayley were deeply interested in the
topic, especially for its connection with invariant theory. The resultant of two binary
quantics, for example, was their simultaneous invariant. In 1840, Sylvester published
“A Method of Determining by Mere Inspection the Derivatives from Two Equations
of Any Degree,” giving the modern expression of the resultant of two polynomials of
degrees m and n, respectively, as an m+ n by m+ n determinant. He explained the
general rule and illustrated it by computing the 4× 4 determinant obtained in the case
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of two quadratics. Since the computation of determinants is generally tedious, it is
interesting to read the remark at the end of Sylvester’s paper:

Through the well-known ingenuity and kindly proferred help of a distinguished friend, I trust to be
able to get a machine made for working Sturm’s theorem, and indeed all problems of derivation,
after the method here expounded; on which subject I have a great deal more to say, than can be
inferred from this or my preceding papers.

The distinguished friend was surely Charles Babbage who at that time was develop-
ing his analytical engine to carry out repetitive numerical and algebraic calculations.
Babbage was assisted in his endeavor by Ada Lovelace, the daughter of Lord Byron.

Cayley published several papers on elimination theory, reworking and simplifying
the methods of earlier writers but also making very original contributions. The com-
ments of Gelfand, Kapranov, and Zelevinsky in this connection are worth noting. In
their book, they write that in a short paper of 1848, Cayley “outlined a general method
of writing down the resultant of several polynomials in several variables. We were very
surprised to find that Cayley introduced in this note several fundamental concepts of
homological algebra: complexes, exactness, Koszul complexes, and even the invari-
ant now sometimes called the Whiteside torsion or Reidemeister–Franz torsion of an
exact complex. The latter invariant is a natural generalization of the determinant of a
square matrix (which itself was a recent discovery back in 1848), so we prefer to call it
the determinant of a complex. Using this terminology, Cayley’s main result is that the
resultant is the determinant of the Koszul complex.”

Elimination theory suffered a decline as Emmy Noether’s abstract approach came
to the forefront. Algebraic algorithms had to be reworked into this new context. Thus,
in his 1946 book on the foundations of algebraic geometry, André Weil constructed an
abstract device intended to finally make elimination theory superfluous. However, alge-
braic equations in many variables are also studied by engineers, for whom the abstract
approach is not ideal. Moreover, Shreeram Abhyankar, protesting Weil’s attempt to
eliminate elimination theory, pointed out that some useful mathematical information
could be lost in a nonconstructive method. Weil might well agree, and this may be
indicated by his exposition of Eisenstein and Kronecker’s work on the constructive
development of elliptic functions. And so elimination theory continues to flourish. A
renewed interest in finding efficient algorithms has produced new methods such as
Gröbner bases.

34.2 Boole’s Derivation of an Invariant

In his two-part paper published in 1841, “Exposition of a General Theory of Linear
Transformations,” Boole argued that the concept of an invariant could be useful in alge-
bra. He gave a method for the derivation of an invariant of a general form, of degree
n and in m variables. Although the method was not of great use in the further devel-
opment of invariant theory, it is interesting to observe Boole’s originality in arriving
at this important concept. We follow Boole closely; he supposed hn and Hn were nth
degree homogeneous functions of m variables x1, x2, . . . , xm expressible linearly in
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terms of m variables y1, y2, . . . , ym. He also supposed that

hn(x1,x2, . . . ,xm)= h′n(y1,y2, . . . ,ym),

Hn(x1,x2, . . . ,xm)=H ′
n(y1,y2, . . . ,ym),

(34.29)

where h′n and H ′
n were also homogeneous functions of degree n. In addition, Boole

wrote these relations in the simple form

q = r and Q=R, (34.30)

respectively. He differentiated both sides of the second equation with respect to y1,
y2, . . . , ym, and by means of the chain rule he got

∂Q

∂x1

∂x1

∂y1
+ ∂Q

∂x2

∂x2

∂y1
+·· ·+ ∂Q

∂xm

∂xm

∂y1
= ∂R

∂y1
,

∂Q

∂x1

∂x1

∂y2
+ ∂Q

∂x2

∂x2

∂y2
+·· ·+ ∂Q

∂xm

∂xm

∂y2
= ∂R

∂y2
,

...

∂Q

∂x1

∂x1

∂ym
+ ∂Q

∂x2

∂x2

∂ym
+·· ·+ ∂Q

∂xm

∂xm

∂ym
= ∂R

∂ym
.

(34.31)

We note that Boole did not use the modern partial derivative notation; he wrote dQ

dx1
for

∂Q

∂xi
and similarly for the other derivatives. Boole then assumed the linear relationship

x1 = λ1y1 +λ2y2 +·· ·+λmym
x2 = µ1y1 +µ2y2 +·· ·+µmym
...

xm = ρ1y1 +ρ2y2 +·· ·+ρmym ,

(34.32)

so that he could replace ∂x1/∂y1, ∂x2/∂y1, . . . by λ1, λ2, . . . . He argued that since the
values λ1, λ2, . . . , µ1, µ2, . . . were finite, the equations

∂Q

∂x1
= 0 ,

∂Q

∂x2
= 0 , · · · , ∂Q

∂xm
= 0 (34.33)

implied that

∂R

∂y1
= 0 ,

∂R

∂y2
= 0 , · · · , ∂R

∂ym
= 0 . (34.34)

He observed that, since the determinant of the linear transformation (34.32) could be
zero, (34.34) did not imply (34.33).

Boole denoted by θ(Q) the expression obtained when the variables were eliminated
from the polynomials

∂Q

∂x1
,
∂Q

∂x2
, . . . ,

∂Q

∂xm
.
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To eliminate x from two polynomials of degreen, he suggested the Euclidean algorithm.
Initially, he had m polynomials in m variables. He could eliminate, for example, x1

from the first two, and then from the second and third, and so on until there were
m− 1 polynomials in m− 1 variables. A repetition of this method produced m− 2
polynomials inm−2 variables. Ultimately, he had all the variables eliminated, obtaining
an expression θ(Q) containing only the constants. Thus, if ∂Q

∂xi
= 0, i = 1, . . . ,n, he had

θ(Q)= 0. Moreover, since (34.33) implied (34.34), he also had θ(R)= 0; and a similar
relation of mutual dependence also existed between θ(q) and θ(r).

More generally, Boole combined the two relations in (34.30) into one relation of the
form Q+hq =R+hr . In this case, if h was such that

θ(Q+hq)= 0 , (34.35)

then an analogous relation

θ(R+hr)= 0 (34.36)

would also be satisfied. Next, Boole let ν be the number of terms in the homoge-
neous polynomials q, r , Q, R and denoted the coefficients in these polynomials by a1

a2, . . . , aν , b1, b2, . . . , bν , A1, A2, . . . , Aν , B1, B2, . . . , Bν , respectively. Then θ would
be a polynomial φ in ν unknowns, and he could write θ(Q)= φ(A1,A2, . . . ,Aν) .Now
from (34.35) and (34.36), Boole reasoned that for any h for which

φ(A1 +ha1,A2 +ha2, . . . ,Aν +haν)= 0 , (34.37)

he must also have

φ(B1 +hb1,B2 +hb2, . . . ,Bν +hbν)= 0 . (34.38)

The expression on the left-hand side of (34.37) was a polynomial in h where the
term independent of h would be φ(A1,A2, . . . ,Aν)= θ(Q), and the coefficient of the
highest power of h would be φ(a1,a2, . . . ,an)= θ(q). If the polynomial was divided
across by this coefficient, the resulting monic polynomial would be identical with
the monic polynomial obtained after the same procedure was applied to the left-hand
side of (34.38). Since the coefficients of the polynomials could also be seen as Taylor
coefficients, Boole could deduce that

θ(Q)

θ(q)
= θ(R)

θ(r)
, and (34.39)

(
a1

∂

∂A1
+ a2

∂

∂A2
+·· ·+ aν ∂

∂Aν

)λ
θ(Q)

θ(q)

=
(
b1

∂

∂B1
+ b2

∂

∂B2
+·· ·+ bν ∂

∂Bν

)λ
θ(R)

θ(r)
. (34.40)
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As an example, Boole noted the simple case

ax2 + 2bxy+ cy2 = a′x ′2 + 2b′x ′y ′ + c′y ′2 ,
Ax2 + 2Bxy+Cy2 =A′x ′2 + 2B ′x ′y ′ +C ′y ′2 .

The results corresponding to (34.39) and (34.40) were

AC−B2

ac− b2
= A′C ′ −B ′2

a′c′ − b′2 , (34.41)

aC− 2bB+ cA
ac− b2

= a′C ′ − 2b′B ′ + c′A′

a′c′ − b′2 . (34.42)

From (34.39) and at the conclusion of the first part of his paper, Boole arrived at the
result that gave rise to algebraic invariant theory:

θ(Q)

θ(R)
= θ(q)

θ(r)
=E .

Boole maintained that E could not depend on the coefficients in Q and R (or q and
r). Thus, it must depend only on the coefficients appearing in the linear transformation
(34.32). Boole wrote that he had foundE to be an appropriate power of the determinant
of the linear transformation (34.32), illustrating this by means of the binary quadratic
and the cubic. He then went on to state the theorem contained in equation (34.7); this
in turn led to the definition of an invariant. In a paper of 1844, Boole gave details of a
proof and gave the value of γ in (34.7) as m(n− 1)m−1.

Near the end of the second part of his 1841 paper, Boole wrote that “Linear trans-
formations have hitherto been chiefly applied to the purpose of taking away from a
proposed homogeneous function, those terms which involve the products of the vari-
ables. . . . [T]he transformations, besides being linear, are understood to represent a
geometrical change of axes.” He went on to say that linear transformation could be
applied to purely algebraic problems without geometric considerations. As an exam-
ple he posed the problem: “To transform the function, ax3 + 3bx2y + 3cxy2 + dy3,

to the form a′x ′3 + d ′y ′3, a′ and d ′ being given, and the transformation unrestricted
by any other condition than that of linearity.” After solving this problem by means of
his method, he applied it to the solution of a cubic equation with the comment, “The
doctrine of linear transformations may be elegantly applied to the solution of algebraic
equations.” In this connection, Cayley, well aware that a general quintic could not be
solved in radicals, corresponded with Boole concerning the solution of a quintic and
found that invariants could shed some light on their solution.

It is interesting that in 1930, as a schoolboy of 16, Mark Kac solved the cubic by an
independently discovered method similar to Boole’s solution. Kac wrote the cubic as
a difference of two cubes, each of which was a linear function of the variable:

x3 +px+ q =A(x+m)3 −B(x+n)3 .
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By equating the coefficients of x, he found that A = n/(n−m) and B = m/(n−m)
and that m and n were solutions of the quadratic equation

y2 + 3q

p
y− 1

3
p = 0 ;

from this, he was able to derive Cardano’s formula. Kac’s paper was published in
a Polish mathematics journal for students and because of this achievement he went
on to become a mathematician. Luckily, the journal’s editor had been unaware of
Boole’s work.

34.3 Differential Operators of Cayley and Sylvester

By the early 1850s, Cayley and Sylvester had discovered several elementary properties
of invariants of binary quantics. They knew, for example, that these variants were
homogeneous and isobaric polynomials satisfying certain partial differential equations.
They found these equations independently, though Sylvester was the first to publish
them in 1852, and they used them as important tools as their work in invariant theory
progressed. We present Sylvester’s derivation of the partial differential operators, with
a slight change in notation, especially in our use of subscripts. Following Sylvester
closely, suppose that

φ = a0x
n
1 +na1x

n−1
1 x2 + 1

2
n(n− 1)a2x

n−2
1 x2

2 +·· ·+ anxn2 (34.43)

is a binary quantic and that I (a0,a1, . . . ,an) is an invariant ofφ. To derive the differential
equation, use the special linear transformation

x1 = y1 + ey2 , x2 = y2 (34.44)

to obtain the quantic

a0(y1 + ey2)
n+

(
n

1

)
a1(y1 + ey2)

n−1y2 +·· ·+
(
n

k

)
ak(y1 + ey2)

n−kyk2 +·· ·+ anyn2

=A0y
n
1 +

(
n

1

)
A1y

n−1
1 y2 +·· ·+

(
n

k

)
Aky

n−k
1 yk2 +·· ·+Anyn2 ,

where A0 = a0, A1 = a1 + ea0, A2 = a2 + 2ea1 + e2a0. Note that in general,

Ak = ak+
(
k

1

)
eak−1 +

(
k

2

)
e2ak−2 +·· ·+ eka0 . (34.45)

Since the determinant of the linear transformation is 1, it follows from the definition
(34.14) of an invariant that

I (A0,A1, . . . ,An)= I (a0,a1, . . . ,an) . (34.46)
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Let,ak=Ak−ak and,I = I (A0,A1, . . . ,An)−I (a0,a1, . . . ,an). By Taylor’s theorem
in several variables

0 =,I =
∑
k≥1

1

k!
(
,a0

∂

∂a0
+,a1

∂

∂a1
+,a2

∂

∂a2
+·· ·

)k
I

=
∑
k≥1

1

k!
(
ea0

∂

∂a1
+ (2ea1 + e2a0)

∂

∂a2
+·· ·

)k
I .

Since this is true for every value of e, the coefficient of every power of e must be zero.
In particular, the coefficient of the first power of e gives

UI ≡
(
a0
∂

∂a1
+ 2a1

∂

∂a2
+ 3a2

∂

∂a3
+·· ·+nan−1

∂

∂an

)
I = 0 . (34.47)

As Sylvester pointed out, this differential equation could also be obtained by taking the
derivative of (34.46) with respect to e and applying the chain rule:

0 = ∂I

∂A0

∂A0

∂e
+ ∂I

∂A1

∂A1

∂e
+·· ·+ ∂I

∂An

∂An

∂e

=A0
∂I

∂A1
+ 2A1

∂I

∂A2
+·· ·+nAn−1

∂I

∂An
.

Similarly, apply the transformation

x1 = y1, x2 = ey1 + y2 (34.48)

to get the other differential equation

OI ≡
(
na1

∂

∂a0
+ (n− 1)a2

∂

∂a1
+·· ·+ an ∂

∂an−1

)
= 0 . (34.49)

The operators U and O defined by (34.47) and (34.49) turned out to be quite impor-
tant in invariant theory; Cayley and Sylvester made considerable use of them in their
researches. The corresponding operators for covariants, defined by (34.15), are given by

(
U− x2

∂

∂x1

)
C = 0, (34.50)

(
O− x1

∂

∂x2

)
C = 0 . (34.51)

To prove that invariants are homogeneous and isobaric polynomials, take another
special linear transformation

x1 = e1y1, x2 = e2y2. (34.52)
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In this case, the quantic is transformed to

a0e
n
1y

n
1 +

(
n

1

)
a1e

n−1
1 e2y

n−1
1 y2 +·· ·+

(
n

k

)
ake

n−k
1 ek2y

n−k
1 yk2 +·· ·+ anen2yn2

=A0y
n
1 +

(
n

1

)
A1y

n−1
1 y2 +·· ·+

(
n

k

)
Aky

n−k
1 yk2 +·· ·+Anyn2 ,

where A0 = a0e
n
1 ,A1 = a1e

n−1
1 e2, . . . , Ak = aken−k1 ek2.

Now suppose

I = (a0,a1, . . . ,an)=
∑

αs0s1···sna
s0
0 a

s1
1 · · ·asnn .

Since the determinant δ of the transformation (34.52) is e1e2, we have by definition
(34.14)

I (A0,A1, . . . ,An)= I (a0e
n
1,a1e

n−1
1 e2, . . . ,ane

n
2)

=
∑

αs0s1···sna
s0
0 e

ns0
1 a

s1
1 e

(n−1)s1
1 e

s2
2 · · ·askk e(n−k)sk1 e

ksk
2 · · ·asnn ensnn

=
∑

αs0s1···sna
s0
0 a

s1
1 · · ·asnn ens0+(n−1)s1+···+(n−k)sk+···sn−1

1 e
s1+···+ksk+···+nsn
2

= δpI (a0,a1, . . . ,an)= ep1 ep2
∑

αs0s1···sna
s0
0 a

s1
1 · · ·asnn .

Equating the coefficients of as00 a
s1
1 · · ·asn yields

ns0 + (n− 1)s1 +·· ·+ (n− k)sk+·· ·+ sn−1 = p, (34.53)

s1 + 2s2 +·· ·+ ksk+·· ·+nsn = p . (34.54)

By adding these equations, one obtains

n(s0 + s1 +·· ·+ sn)= 2p . (34.55)

This in turn implies that an invariant I is homogeneous of degree θ = s0 + s1 +·· ·+ sn.
If we define the weight of ak to be k, then the weight of as00 a

s1
1 · · ·asnn will be given by

equation (34.54); this means that I is isobaric of weight p.
In his 1856 memoir, using the same method, Cayley proved a similar result for

covariants. Suppose the covariant is given by

C(a0,a1, . . . ,an,x1,x2)=C0x
m
1 +C1

(
m

1

)
xm−1

1 x2 +·· ·+Cmxm2 . (34.56)

Following the procedure we have presented, one may conclude that the coefficients
C0, C1, . . . , Cm are homogeneous in a0, a1, . . . , an and are of the same degree; call
the degree θ . Each coefficient is isobaric, and the weights of the coefficients are given
by Ci = p+ i, i = 0,1, . . . ,m. The weight p of the coefficient C0 is called the weight
of the covariant and the integer m in (34.56) is called the order of the covariant. The
argument yielding these results on covariants also shows that

m= nθ − 2p . (34.57)



736 Invariant Theory: Cayley and Sylvester

Cayley also used the differential equations (34.50) and (34.51) satisfied by the covariant
to derive important relations among coefficients of a covariant. For example, from the
equation

OC = x1
∂C

∂x2
,

where C is given by (34.56) and O is the differential operator (34.49), we have

OC0x
m
1 +

(
m

1

)
OC1x

m−1
1 x2 +·· ·+

(
m

k

)
OCkx

m−k
1 xk2 +·· ·+OCmxm2

=
(
m

1

)
C1x

m
1 + 2

(
m

2

)
C2x

m−1
1 x2 +·· ·

+ (k+ 1)

(
m

k+ 1

)
Ck+1x

m−k
1 xk2 +·· ·+mCmx1x

m−1
2 .

Equating coefficients produces the relations

OCk = (m− k)Ck+1, k = 0,1, . . . ,m. (34.58)

The first m of these equations imply the relations

Ck = 1

m(m− 1) · · ·(m− k+ 1)
OkC0, k = 1,2, . . . ,m. (34.59)

Since all the coefficients C1, C2, . . . , Cm of the covariant C can be obtained from C0,
Sylvester called C0 the source of the covariant.

By using the other differential equation for the covariant C, (34.50), Cayley derived
the equations

UCk = kCk−1, k = 0,1, . . . ,m. (34.60)

In particular, the source satisfied the differential equation UC0 = 0. Cayley and
Sylvester named any homogeneous and isobaric function P of a0, a1, . . . , an a semi-
invariant, or seminvariant, if it was annihilated byU, that is,UP = 0. Thus, the source
of a covariant turned out to be a seminvariant. Clearly, not all seminvariants are invari-
ants. But Cayley pointed out that if a seminvariant of degree θ and weight p satisfied
equation (34.55), that is, nθ = 2p, then the seminvariant would also be an invariant.

34.4 Cayley’s Generating Function for the Number of Invariants

Cayley’s ambition was to develop an algorithm capable of producing all the invariants
of a given binary form. In this pursuit, it was important for him to determine the number
of seminvariants of given degree and weight. By 1856, he had discovered a beautiful
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connection between this problem and Gaussian polynomials. Recall that if I is any
seminvariant of degree θ and weight p, and

I =
∑

αs0s1···sna
s0
0 a

s1
1 · · ·asnn , then

s0 + s1 +·· ·+ sn = θ; s1 + 2s2 +·· ·+nsn = p .
Next let N(n,θ,p) denote the number of seminvariants with given n, θ , and p, and let
ωn(θ,p) denote the number of integer solutions of the two previous equations for sk,
with the constraint that sk ≥ 0. The differential operator U, when applied to I , keeps
the degree of each term the same but reduces the weight by one. Note that

UI =
∑

αs0s1···snUa
s0
0 a

s1
1 · · ·asnn = 0 . (34.61)

The number of terms in (34.61) is ωn(θ,p− 1), and the coefficient of each of these
terms is zero. This implies that there are ωn(θ,p− 1) homogeneous linear equations
for ωn(θ,p) quantities. In his second memoir of 1856, Cayley correctly assumed that
these equations were independent and concluded that

N(n,θ,p)= ωn(θ,p)−ωn(θ,p− 1) . (34.62)

Cayley was unable to prove his assumption but was so certain of its correctness that he
based his invariant theory upon it. Sylvester provided a proof in 1878. Cayley argued
that it was obvious that the number ωn(θ,p) would turn out to be the coefficient of
xpzθ in the series expansion of

1

(1− z)(1− xz)(1− x2z) · · ·(1− xnz) . (34.63)

Indeed, this is not difficult to see if we expand by the geometric series:

(1+ z+ z2 +·· ·)(1+ xz+ x2z2 +·· ·) · · ·(1+ xnz+ x2nz2 +·· ·).
Clearly, the coefficient of xpzθ will be equal to the number of nonnegative integer
solutions of the two equations involving s0, s1, . . . , sn.

Summarizing Cayley’s work in obtaining the invariants for forms of low degree, we
observe that in 1855 he expanded the generating function (34.63) for ωn(θ,p):

1

(1− z) · · ·(1− xnz) = 1+G1(x)z+G2(x)z
2 +G3(x)z

3 +·· · . (34.64)

To see the connection with Gaussian polynomials, change z to xz to get

1

(1− xz) · · ·(1− xn+1z)
= 1+G1(x)xz+G2(x)x

2z2 +G3(x)x
3z3 +·· · . (34.65)

The two equations (34.64) and (34.65) imply

(1− z)(1+G1z+G2z
2 +·· ·+Gmz

m+·· ·)
= (1− xn+1z)(1+G1xz+·· ·+Gmx

mzm+·· ·) .
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Now equate the coefficients of zm on both sides to get

Gm−Gm−1 =Gmx
m−Gm−1x

m+n or

Gm(x)= (1− xm+n)
1− xm Gm−1

= (1− xm+n)(1− xm+n−1) · · ·(1− xn+1)

(1− xm)(1− xm−1) · · ·(1− x) .

(34.66)

Thus,Gm(x) is a Gaussian polynomial and the coefficient of xp in the polynomialGθ(x)

givesωn(θ,p). Now Cayley realized that the number of seminvariantsN(n,θ,p) could
be expressed as the difference between the coefficients of xp and xp−1 in the Gaussian
polynomial Gθ(x), and this difference gave the number of invariants of degree θ and
weight p provided that nθ = 2p. Note that N(n,θ,p) is the coefficient of xp in

(1− xθ+1)(1− xθ+2) · · ·(1− xθ+n)
(1− x2)(1− x3) · · ·(1− xθ) . (34.67)

Also observe that for invariants with weight p = nθ/2, ωn(θ,nθ/2) and ωθ(n,nθ/2)
are equal because they both turn out to be the coefficient of xnθ/2 in

(1− x)(1− x2) · · ·(1− xθ+n)
(1− x) · · ·(1− xθ)(1− x) · · ·(1− xn) .

This immediately implies that

N(n,θ,nθ/2)=N(θ,n,nθ/2) , (34.68)

a result, known as Hermite’s reciprocity theorem, established by Hermite in 1852 by a
different method. Sylvester noted that this theorem was equivalent to stating that the
number of partitions of any number p into at most m parts, with each part at most n,
equaled the number of partitions of p into at most n parts, with each part at most m.

Cayley proceeded by applying these results to determine the full invariant systems
for forms of degree n= 2,3,4,5,6. For example, by (34.67), when n= 4, the number
of independent invariants of degree θ would be the coefficient of x2θ in

(1− xθ+1)(1− xθ+2)(1− xθ+3)(1− xθ+4)

(1− x2)(1− x3)(1− x4)
.

Observe that in order to find the coefficient of x2θ , we must retain numerator terms
of degree 2θ or less; this means that we should determine the coefficient of x2θ in the
power series expansion of

1− xθ+1(1+ x+ x2 + x3)

(1− x2)(1− x3)(1− x4)
= 1

(1− x2)(1− x3)(1− x4)
− xθ · x
(1− x)(1− x2)(1− x3)

.

This would be the same as the coefficient of x2θ in

1/
(
(1− x2)(1− x3)(1− x4)

)



34.4 Cayley’s Generating Function for the Number of Invariants 739

minus the coefficient of xθ in

x/
(
(1− x)(1− x2)(1− x3)

)
or minus the coefficient of x2θ in

x2/
(
(1− x2)(1− x4)(1− x6)

)
.

Thus, we need the coefficient of x2θ in

(1+ x3 − x2)/
(
(1− x2)(1− x4)(1− x6)

)
.

We may drop the odd power term x3; then, we need the coefficient of x2θ in

1/
(
(1− x4)(1− x6)

)
or of xθ in

1

(1− x2)(1− x3)
= (1+ x2 + x4 +·· ·)(1+ x3 + x6 +·· ·) . (34.69)

This implies that the number of independent invariants of degree θ is equal to the
number of integer solutions of 2m+ 3n = θ . Clearly, in each case θ = 2 or θ = 3,
there is exactly one invariant, called I2 or I3. For nonnegative integers m1 and n1, if
2m1 +2n1 = θ , then Im1

2 I
n1
3 is an invariant of degree θ . It is easy to see that all linearly

independent invariants of a given degree can be produced by this method. Hence, I2

and I3 generate the full invariant system of a binary form, or quantic, of order 4.
Cayley also showed how the differential operators could be used to determine the

invariants I2 and I3. For instance, for I2, since it is of degree 2, it must be of weight 4
by the relation nθ = 2p. The binary form of degree 4 has coefficients a0, a1, a2, a3, a4;
therefore, the weight 4 and degree 2 monomials are a0a4, a1a3, and a2

2 . To find an
invariant I of degree 2 and weight 4, Cayley could set

I =Aa0a4 +Ba1a3 +Ca2
2

and then determine A, B, C by solving the differential equationUI = 0, whereU was
defined by (34.47). One may easily check that

Ua0a4 = 4a0a3, Ua1a3 = a0a3 + 3a1a2, Ua
2
2 = 4a1a2.

Thus, from
UI = (4A+B)a0a3 + (3B+ 4D)a1a2 = 0,

Cayley had B =−4A and C = 3A. Hence, there was only one independent invariant
in this case, given by

I2 = a0a4 − 4a1a3 + 3a2
2 ; (34.70)

one may check that the equation OI = 0, from (34.49), is also satisfied. A similar
calculation would determine the invariant of degree 3 and weight 6:

I3 = a0a2a4 − a0a
2
3 − a2

1a4 + 2a1a2a3 − a3
2 . (34.71)
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Cayley’s result for n= 5 was that the number of independent invariants of degree θ
was the coefficient of xθ in

1− x6 + x12

(1− x4)(1− x6)(1− x8)
,

or the coefficient of xθ in

1− x36

(1− x4)(1− x8)(1− x12)(1− x18)
. (34.72)

This allowed Cayley to conclude that there were no invariants of odd degree, but that
there was one irreducible invariant of degree 4, one of degree 8, one of 12, and one
of 18. However, these were connected by an equation of degree 36, that is, the square
of the invariant of degree 18 was a polynomial function of the other three. Sylvester
called such a relation a syzygy. Cayley attributed this result to Hermite. In fact, before
studying Hermite’s work, Cayley had thought that the degrees of the invariants of order
5 binary forms had to be divisible by 4.

In the case of n= 7, Cayley made a conceptual error. He stated that the number of
independent invariants of degree θ was equal to the coefficient of xθ in

1− x6 + 2x8 − x10 + 5x12 +·· ·
(1− x4)(1− x6)(1− x8)(1− x12)

,

where the numerator was equal to

(1− x6)(1− x8)−2(1− x10)(1− x12)−5(1− x14)−5 · · · ,
and where the series of factors did not terminate. Hence, he mistakenly concluded that
the invariants did not have a finite basis. Gordan proved this to be incorrect.

34.5 Sylvester’s Fundamental Theorem of Invariant Theory

The counting method for finding the fundamental invariants, and Cayley’s conjecture
in particular, were called into question when Cayley’s mistake became evident. But in
1878, Sylvester succeeded in proving this basic result:

N(n,θ,p)= ωn(θ,p)−ωn(θ,p− 1) .

In his spirited style, his paper began:

I am about to demonstrate a theorem which has been waiting proof for the last quarter of a century
and upwards. It is the more necessary that this should be done, because the theorem has been
supposed to lead to false conclusions, and its correctness has consequently been impugned . . . but
the theorem itself is perfectly true, as I shall show by an argument so irrefragable that it must be
considered for ever hereafter safe from all doubt or cavil. It lies at the basis of the investigations
begun by Professor Cayley in his Second Memoir upon Quantics, which it has fallen to my lot,
with no small labour and contention of mind, to lead to a happy issue, and thereby to advance
the standards of the Science of Algebraical Forms to the most advanced point that has hitherto
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been reached. The stone that was rejected by the builders has become the chief corner-stone of the
building.

We follow Sylvester’s reasoning very closely, but present it in slightly streamlined form.
The proof depends on Sylvester’s lemma that for a seminvariant F(a0,a1, . . . ,an) of
degree θ and weight p,

η= nθ − 2p ≥ 0 . (34.73)

To prove the lemma, begin with the observation that ifU is any homogeneous, isobaric
polynomial of degree θ and weight p, then

(UO−OU)U = (nθ − 2p)U . (34.74)

This was well-known when Sylvester wrote his paper, but he presented an argument:

UO−OU
= na0

∂

∂a0
+ 2(n− 1)a1

∂

∂a1
+ 3(n− 2)a2

∂

∂a2
+·· ·+ (n− 1)an−1

∂

∂an−1

−na1
∂

∂a1
− 2(n− 1)a2

∂

∂a2
−·· ·− 2(n− 1)an−1

∂

∂an−1
−nan ∂

∂an

= na0
∂

∂a0
+ (n− 2)a1

∂

∂a1
+ (n− 4)a2

∂

∂a2
+·· ·

− (n− 2)an−1
∂

∂an−1
−nan ∂

∂an
. (34.75)

If αs0s1···sna
s0
0 a

s1
1 · · ·asnn is any monomial in U , then (34.75) implies that

(UO−OU)U = n
(
a0
∂

∂a0
+ a1

∂

∂a1
+·· ·+ an ∂

∂an

)
U

− 2

(
a1
∂

∂a1
+ 2a2

∂

∂a2
+·· ·+nan ∂

∂an

)
U

=
∑

αs0s1···sn(nθ − 2p)as00 a
s1
1 · · ·asnn

= (nθ − 2p)U = ηU .
So UO−OU≡ η. Moreover,

UO2 −O2U= (UO−OU)O+O(UO−OU).
Since the differential operator O raises the weight by 1, we see that

(UO−OU)OU = (nθ − 2(p+ 1))OU = (η− 2)OU . (34.76)

Hence, UO2 −O2U= (η− 2)O+ηO = 2(η− 1)O .

By induction one can show that

UOr −OrU= r(η− r + 1)Or−1 . (34.77)
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For a seminvariant F , UF = 0; and so

UOrF = r(η− r + 1)Or−1F . (34.78)

To conclude the proof of Sylvester’s lemma, suppose that η is negative. In that case,
|r(η− r + 1)|, for r = 1,2,3, . . . forms an increasing sequence of nonzero integers.
NowOkF = 0 for some k≤ nθ−p+1. To understand this statement, note thatF ,OF ,
O2F , . . . have weights p, p + 1, p + 2, . . . , but also have the same degree θ , and the
greatest possible weight of any homogeneous polynomial of degree θ is nθ , attained
by aθn . Thus, p+ k ≤ nθ +1. So let r be the value of k such thatOrF = 0. By (34.77),
this implies Or−1F = 0. It then follows that UOr−1F = 0, and hence Or−2F = 0.
A repeated application of this procedure gives ηF = 0 or F = 0; hence, η cannot be
negative, proving the lemma. Sylvester also showed by induction that

UqOqF = η(2η− 2)(3η− 6) · · ·(qη− (q2 − q))F
= q!(η(η− 1)(η− 2) · · ·(η− q+ 1))F .

(34.79)

Now we are equipped to prove Cayley’s conjecture. Let Dn(p,θ) denote the number
of linearly independent seminvariants of degree θ and weight p so that the conjecture
can be formulated as

Dn(p,θ)= ωn(p,θ)−ωn(p− 1,θ)≡,n(p,θ) . (34.80)

Observe that this equality holds if the ωn(θ,p − 1) equations satisfied by αs0s1···sn
in (34.61) are independent. In any case, we have Dn(p,θ) ≥ ,n(p,θ). Note that
Dn(0,θ)= ωn(0,θ) since both sides equal 1. It is also clear that

Dn(p,θ)+Dn(p− 1,θ)+·· ·+Dn(0,θ)

≥,n(p,θ)+,n(p− 1,θ)+·· ·+,n(0,θ)

= ωn(p,θ) .
(34.81)

If equality holds in this situation, then we see thatDn(w,θ)=,n(w,θ) for all weights
w ≤ p. Since, for given n and θ , the weight w satisfies the inequality nθ −2w ≥ 0, we
have w ≤ nθ/2. So the largest value of the weight would be nθ/2 when nθ is even,
and it would be (nθ − 1)/2 when nθ is odd. Let p stand for the maximum weight.
Also let [p], [p− 1], [p− 2], etc., denote semivariants of degree θ in variables a0,
a1, . . . , an and of weights p, p − 1, p − 2, etc., respectively. Then the number of
linearly independent [p]s would be given by Dn(p,θ), and the number of linearly
independent [p− 1]s would be Dn(p− 1,θ), and so on. So choose a set of Dn(p,θ)

independent [p]s,Dn(p−1,θ−1) independent [p−1]s, etc. From this set construct a
new set S in which all the forms have the same weight p. This can be done by applying
the operator Oq to the Dn(p − q,θ) forms [p − q], since the weights of the forms
Oq[p− q] are all p.

To prove that this set S of forms of weight p is linearly independent, we first show
that any one set of Oq[p− q] is independent; if not, then the members Oq[p− q] of
the set are connected by a linear equation. Apply the operator Uq to this equation. By
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(34.79), UqOq[p− q] is a nonzero constant multiple of [p− q]. But this contradicts
the independence of the [p− q]s. Thus, we have shown that the subset consisting of
Oq[p−q] is independent. Now suppose that a linear relation holds among/between any
number of subsets of the formOq[p−q] for whichm is the largest value of q. Operate
on this linear equation by Um. For q < m, this operation will introduce quantities of
the form Um−q[p− q], but these will in fact vanish because [p− q] is a seminvariant
and is hence annihilated by U. Thus, only forms of the type [p−m] will remain after
the application of Um. This again gives us a contradiction because the seminvariants
[p−m] were chosen to be independent. We can therefore conclude that the set S is
linearly independent. Therefore, the number of elements in S cannot exceed ωn(p,θ).
By construction, the number of elements of S is given by

Dn(p,θ)+Dn(p− 1,θ)+·· ·+Dn(0,θ) .

Hence, this sum is less than or equal to ωn(p,θ). Therefore, by (34.81), equality holds
and we have proved Cayley’s conjecture.

Sylvester’s comments on his proof suggest that he may have been a keen student
of Kant and valued mathematics as a creative endeavor. He wrote that his proof was
accomplished “by aid of a construction drawn from the resources of the Imaginative
reason, and founded on the reciprocal properties that have just been exhibited by the
famous O and U.” Later in the paper, he argued that proofs of this type showed that
mathematics belonged among the liberal arts. “Whether we look to the advances made
in modern geometry, in modern integral calculus, or in modern algebra, in each of these
a free handling of the material employed is now possible, and an almost unlimited scope
left to the regulated play of the fancy.”

34.6 Hilbert’s Finite Basis Theorem

David Hilbert (1862–1943) was one of the most influential mathematicians of his
time. He is famous for advocating an abstract, structural approach to mathematical
problems, though his work on invariant theory had its algorithmic aspect. Hilbert studied
at Königsberg and attended lectures given by the outstanding teacher and number
theorist Heinrich Weber (1842–1913). In 1882, Weber and Dedekind collaborated on
an important paper in algebraic geometry, in which they presented Riemann surface
theory from an algebraic perspective. It is clear that this work influenced Hilbert’s later
approach to invariant theory. We note parenthetically that Weber wrote a three-volume
work on algebra, useful even today.

Hilbert proved his basis theorem for the general situation, beginning with any number
of m-ary forms or quantics. In his 1890 paper, Hilbert employed a theorem of Max
Noether, father of Emmy, to prove the basic lemma upon which he built his theory: If
F1, F2, F3, . . . is an infinite sequence of forms, that is, homogeneous polynomials in n
variables x1, x2, . . . , xn with coefficients in a field, then there exists an integer m such
that every form in the sequence can be expressed as

F =A1F1 +A2F2 +·· ·+AmFm , (34.82)

where A1, A2, . . . , Am are appropriate forms in the same n variables.
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Using this lemma, Hilbert demonstrated that from an arbitrary collection of forms
in n variables one can always choose a finite number such that every form in the
collection is a linear combination of the chosen forms, as in (34.82). Hilbert proved
this by contradiction, assuming the result false. Let F1 �= 0 be a form in the collection
and let F2 be a form in the collection, but not expressible as A1F1. By our assumption,
F2 exists. Now let F3 be a form not expressible as A1F1 +A2F2. Again, F3 exists by
supposition. In this way, we construct a sequence of forms F1, F2, F3, . . . for which no
number m exists to satisfy (34.82). This contradicts Hilbert’s lemma. We remark that
in more modern books, this theorem is formulated in terms of polynomial ideals.

Hilbert’s basis theorem for invariants states that there exists a finite number of
invariants I1, . . . , Im of a binary quantic or form Q such that any invariant of Q is
some polynomial function of I1, . . . , Im. To prove this using Hilbert’s reasoning, let
S denote the set of all invariants of Q. Though our treatment of this theorem is for
only one form, note that Hilbert did not restrict himself to one form Q, but to a finite
number of them. His conclusion on the finite basis for the simultaneous invariants is a
generalization of the result for one form. Now these invariants are homogeneous and
isobaric polynomials in the n+1 variables a0, a1, …,an, the coefficients of the quantic.
Hence there exist m invariants I1, I2, . . . , Im such that every invariant I in S can be
written as

I =Q1I1 +·· ·+QmIm . (34.83)

Now the formsQ1,Q2, . . . ,Qm can be chosen to be isobaric in a0,a1, . . . ,an, but they
need not be invariants. To get invariants fromQ1,Q2, . . . ,Qm, Hilbert constructed an
operator using O and U:

L= 1− O

1!
U

2! +
O2

2!
U2

3! −
O3

3!
U3

4! + · · · . (34.84)

This operator has the property that if F is any homogeneous and isobaric polynomial
in a0, a1, . . . , an, of degree θ1 and weight p1, such that nθ1 −2p1 = 0, then LF is either
zero or an invariant. We shall present the proof of this property of the operator L after
we have deduced Hilbert’s theorem from it. For this purpose, apply L to (34.83) to get

LI = I = (LQ1)I1 +·· ·+ (LQm)Im . (34.85)

This follows from the easily proved facts that for any invariant I ,LI = I andL(QI)=
(LQ)I . We must now show that LQi is either an invariant or zero. Since I , I1, . . . ,
Im in (34.85) are invariants, they satisfy the degree and weight condition nθ −2p= 0,
though them+1 invariants may have differing weights and degrees. Thus, the isobaric
forms Q1, Q2, . . . , Qm also satisfy the condition nθ − 2p = 0. Hence LQ1, LQ2, . . . ,
LQm must each be either zero or an invariant. Clearly, all of them cannot be zero for
then I would be zero. Thus, the nonzero LQ1, LQ2, . . . , LQm are members of the set
S of invariants, and can once again be expressed in terms of I1, I2, . . . , Im. However,
the LQi terms are of lower degree than I and the process will therefore terminate and
every invariant I will be a polynomial in I1, I2, . . . , Im.
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Hilbert did not bother to write down a proof of the required property of L. In his
1895 book on the algebra of quantics, Edwin Elliott, Sylvester’s student at Oxford, gave
a simple proof using the Cayley–Sylvester relation (34.74). Let G be a form in a0, a1,
. . . , an with η = nθ − 2p ≥ 0. The weights of UG, U2G, U3G, . . . are p− 1, p− 2,
p− 3, . . . , respectively, and hence the quantities corresponding to η become η+ 2,
η+ 4, η+ 6, . . . , respectively. Thus, from (34.74) and (34.77), we have the relations

UOG−OUG= ηG,
UO2UG−O2U2G= 2(η+ 1)G,

...

UOrUr−1G−OrUrG= r(η+ r − 1)Or−1Ur−1G.

Multiply the first equation by 1/η, the second by −1/(2η(η+ 1)), . . . , the rth by

(−1)r−1/
(
r!η(η+ 1) · · ·(η+ r − 1)

)
,

and so on. Add the resulting equations to obtain

UO

{
1

1 ·η − 1

2!η(η+ 1)
OU+ 1

3!η(η+ 1)(η+ 2)
O2U2 −·· ·

}
G=G. (34.86)

This sum is finite sinceUp+1G vanishes. Now replaceG byUF where F is an isobaric
form in a0, a1, . . . , an of weight p+ 1, and write (34.86) as

U

{
1− 1

1 ·ηOU+ 1

1 · 2 · η(η+ 1)
O2U2 − 1

3!η(η+ 1)(η+ 2)
O3U3 +·· ·

}
F = 0 .

(34.87)

Now substitute p for p+ 1, enabling us to write η ≥−2 and η+ 2 ≥ 0. So if F is of
weight p, we replace η by η+ 2 in (34.87) to get

U

{
1− 1

1 · (η+ 2)
OU+ 1

2!(η+ 2)(η+ 3)
O2U2 −·· ·

}
F = 0 .

Therefore, when η = nθ − 2p = 0, we have U(LF) = 0, and this means that LF is
either an invariant or is identically zero.

We note that in his doctoral thesis of 1885, Hilbert introduced the operator L, and
other similar operators. He explained that L served as a generalization of transvection,
an older method of producing covariants. The subject of Hilbert’s dissertation was
special binary forms determined by algebraic differential equations and he mainly
applied them to spherical functions. He took up this topic at the suggestion of his
advisor at Königsberg, Ferdinand Lindemann (1852–1939), who is known for proving
the transcendence of π .
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34.7 Hilbert’s Nullstellensatz

Hilbert’s aim in his 1893 paper on invariants was to subsume invariant theory under the
general theory of algebraic function fields. This led him to a deeper proof of the basis
theorem and to the creation of important new ideas fundamental to the development of
twentieth-century commutative algebra and algebraic geometry. This proof of the basis
theorem satisfied Gordan’s requirement in that it be algorithmic. We briefly discuss one
of Hilbert’s important results, now known as the Nullstellensatz.

Hilbert proved that for any form or quantic, or system of forms, there existed a finite
number of invariants I1, I2, . . . , Ik such that any other invariant I satisfied an algebraic
equation

Im+G1I
m−1 +G2I

m−2 +·· ·+Gm = 0 , (34.88)

whereG1,G2, . . . ,Gm were integral rational functions of I1, I2, . . . , Ik. By homogeneity,
the functions G1, G2, . . . , Gn could not have a constant term. With this result in hand,
Hilbert considered forms whose coefficients had numerical values such that all the
invariants I1, I2, . . . , Ik became zero, meaning that the value of all the invariants was
zero, since by (34.88), Im = 0, or I = 0. Hilbert called a form null if all its invariants
were zero.

The converse of this theorem is of interest. Suppose I1,I2, . . . , Ik are invariants such
that their vanishing implies the vanishing of all other invariants of that form or quantic.
Hilbert showed that under these conditions, any invariant I of this quantic satisfied an
equation of the type (34.88). Hilbert based his proof of this converse on the result now
known as the Hilbert Nullstellensatz:

Suppose f1, f2, . . . , fm are m homogeneous polynomials in x1, x2, . . . , xn, and
suppose F1, F2, F3, . . . are homogeneous polynomials in the same variables, such that
they vanish for any values of the variables for which f1, . . . , fm all vanish. Then one
can find an integer r such that every product V(r) of r arbitrary functions from the
sequence F1, F2, F3, . . . can be represented in the form

V(r) = a1f1 + a2f2 +·· ·+ amfm ,
where a1, a2, . . . , am are appropriately chosen homogeneous polynomials in x1,
x2, . . . , xn.

34.8 Exercises

1. Suppose the binary cubic form is

q = ax3 + 3bx2y+ 3cxy2 + dy3.

Show that
θ(q)= (ad− bc)2 − 4(b2 − ac)(c2 − bd).

See Boole (1841).
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2. Suppose the ternary quadratic form is

q = ax2 + by2 + cz2 + 2dyz+ 2exz+ 2f xy.

Show that
θ(q)= abc+ 3def − (ad2 + be2 + cf 2).

See Boole (1841).
3. Let q = ax4 + 4bx3y+ 6cx2y2 + 4dxy3 + ey4. Show that

θ(q)= a3e3 − 6ab2d2e− 12a2bde2 − 18a2c2e2 − 27a2d4 − 27b4e2

+ 36b2c2d2 + 54a2cd2e+ 54ab2ce2 − 54ac3d2 − 54b2c3e− 64b3d3

+ 81ac4e+ 108abcd3 + 108b3cde− 180abc2de .

See Boole (1844a).
4. Prove Sylvester’s 1877 generalization of Taylor’s theorem: Suppose f is a

function of a, b, c, . . . and f1 is the same function of

a1 = a, b1 = b+ ah, c1 = c+ 2bh+ ah2, d1 = d+ 3ch+ 3bh2 + ah3, . . . ,

and let U represent the operator

a
∂

∂b
+ 2b

∂

∂c
+ 3c

∂

∂d
+·· · .

Then f1 = f +U.f h+ (U.)2f h2

1 · 2 + (U.)3f h3

1 · 2 · 3 +·· · .
Thus, f1 = f if and only if Uf = 0. According to Sylvester, this last statement
makes the theorem important in the calculus of invariants. See Sylvester (1973),
vol. 3, pp. 88–92.

5. Find the independent invariants of degrees 4 and 8 for a binary form of order 5.
See Cayley (1889–98), vol. 2, pp. 250–275.

6. Show that a binary quantic has exactly two linearly independent seminvariants
of degree 5 and weight 5. See Elliott (1964), p. 132.

7. Show that a binary form of order 4n+2 has a covariant of the second order and
third degree. See Elliott (1964), p. 157. Elliott attributes this result to Hermite.

34.9 Notes on the Literature

See Boole (1841) and (1844a) for his papers leading to the concept of an invariant. See
Cayley (1889–98), vol. 2, for his early memoirs on invariants and for his researches
on partitions. See especially his second memoir, pp. 265–267. For the quote on the
connection of Cayley’s work with homological algebra, see p. 4 of Gelfand, Kapranov,
and Zelvinsky (1994). Sylvester’s 1852 paper, “On the Principles of the Calculus of
Forms,” can be found in Sylvester (1973), vol. 1, pp. 328–363. He discussed the differ-
ential operators on pp. 352–362 and mentioned Aronhold on pp. 351–352. See vol. 3,
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pp. 117–126 for Sylvester’s paper, “Proof of the Hitherto Undemonstrated Fundamental
Theorem of Invariants.” The quotations in the text are taken from pp. 117–118 and 123.

For Hilbert’s results discussed in the text, see Hilbert (1970), vol. 2, pp. 199–257 and
287–344. English translations of these papers appear in Hilbert (1978), pp. 143–301.
See Corry (2004) for the role of invariant theory in the development of the structural
method in algebra. He also elaborates on the influence of Dedekind on Hilbert and
E. Noether. For Kac’s very early work on the cubic, see Kalman (2009).

K. Parshall’s article in Rowe and McCleary (1989), vol. 1, pp. 157–206, gives a
history of nineteenth-century invariant theory before Hilbert. Crilly’s (2006) biography
presents the development of Cayley’s mathematical thought with interesting details,
especially in connection with invariant theory. The reader may also enjoy Hilbert’s
(1993) lectures, given in 1897; the first sixty pages cover the work of Cayley and
Sylvester. See also Elliott (1964); the first edition of 1895 presented a very readable
exposition of nineteenth-century invariant theory in English, but it did not include the
symbolic method of the German school. The 1903 book by Grace and Young (1965)
filled this need. For recent works on invariant theory incorporating the classical methods
of Cayley and Sylvester, see Olver (1999) and Sturmfels (2008).



35

Summability

35.1 Preliminary Remarks

The subject of summability theory encompasses the variety of methods for averaging
sequences, series, and integrals; it also includes the relationships among the various
methods. This topic originated in the attempts to assign a value to the sum of a divergent
series. Guido Grandi (1671–1742) made one of the earliest attempts, giving the sum of
the series 1− 1+ 1− 1+·· · to be 1/2 by setting x = 1 in the formula

1

1+ x = 1− x+ x2 − x3 +·· · .

In a letter to Christian Wolf, published in 1713, Leibniz reasoned that since the sum of
the first n terms of 1− 1+ 1− 1+ ·· · would be 0 or 1 depending on whether n was
even or odd, the values 0 and 1 would occur with equal frequency, and hence 1/2 was
the most probable value of the sum. This method amounts to taking the limit of the
averages of the partial sums assigned to the series 1−1+1−1+·· · as the number of
terms gets larger and larger. Note also that 1−x+x2 −x3 +·· · may be seen as a type
of weighted average of 1− 1+ 1− 1+ ·· · . Newton also dealt with divergent series,
although in unpublished work. A significant example is his transformation formula,
now named after Euler,

∞∑
n=0

Anx
n+1 =

∞∑
n=0

yn+1,nA0,

where y = x/(1 − x). Newton discovered this transformation in 1684, but it unfor-
tunately remained unpublished for almost three centuries. He used it to evaluate the
alternating series for ln(1 + x) and for arctanx, taking the absolute value of x to be
greater than 1. Newton explained that this transformation could be applied to convert
an alternating divergent series to a convergent one; then, the value of the divergent
series would be given by the corresponding value of the convergent series. From this
we can see that Newton’s ideas on divergent series were groundbreaking.

Between 1720 and 1740, de Moivre, Stirling, Euler, and Maclaurin gained signifi-
cant, though partial, insights into divergent asymptotic series. Their method, based on

749
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the Euler–Maclaurin summation formula, was to begin with a finite series and con-
vert it to an infinite asymptotic series, yielding an excellent numerical approximation
of the finite series. Interestingly, in the twentieth century, Ramanujan also used the
Euler–Maclaurin formula in an attempt to construct a theory for summing divergent
series.

Euler and Lagrange also made considerable use of divergent series in their work,
though Euler’s work was clearly more incisive. In 1749, Euler gave a brilliant
application of summability by defining

1n− 2n+ 3n− 4n+·· · = lim
x→1−

(1nx− 2nx2 + 3nx3 −·· ·). (35.1)

He used this to discover the functional relation for the zeta function. Recall that Euler’s
initial motivation may have been to study the series on the left, hoping it would illumi-
nate the problem of summing the zeta value ζ(2n+ 1) where n was a positive integer.
By generalizing (35.1), we may say that Euler defined the sum of the series

∑∞
n=0 an

by the equation

∞∑
n=0

an = lim
x→1−

∞∑
n=0

anx
n. (35.2)

We have seen that in 1826 Abel proved that if
∑
an was convergent, then (35.2) would

hold. For this reason we say that if the value of the limit in (35.2) is taken to be L,
then the series

∑
an is Abel-summable or A-summable to L. Thus, although Euler

defined this summability method, it is named after Abel. As a matter of fact, when n
is a positive even integer, then the value of the series on the left-hand side of (35.1)
sums to 0. Ironically, Abel called this situation “horrible” and quoted Horace: “Risum
teneatis, amici.” [Hold your laughter, friends.]

Interestingly, in the 1820s, Poisson applied Abel summability to the convergence of
Fourier series. Recall that Fourier claimed in his famous 1807 memoir and other works
that an arbitrary function could be expanded as a Fourier series; though he presented
several ingenious arguments in favor of this proposition, he did not provide a real proof.
In a paper published in 1820, Poisson attempted to demonstrate that the Fourier series
of a continuous function converged to that function by showing that

lim
r→1−

(
1

2
a0 +

∞∑
n=1

(an cosnθ + bn sinnθ)rn
)
= f (θ), (35.3)

where an and bn were the Fourier coefficients of a continuous function f (θ). Poisson
showed that the expression within parentheses in (35.3) could be expressed as

P(r,θ)= 1

2π

∫ 2π

0

1− r2

1− 2r cos(θ −φ)+ r2
f (φ)dφ ,

now called the Poisson integral. He then gave an argument that as r approached 1, the
integral approached f (θ), but this argument was full of gaps. But even had Poisson’s
proof of (35.3) been complete, he undermined it from the beginning by falsely assuming
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the converse of Abel’s theorem. Recall that Cauchy made a similar error at around the
same time. Tauber and Littlewood later established that the converse of Abel’s theorem
required a growth condition on the coefficients. Cauchy,Abel, and others concluded that
divergent series had no sum, effectively banishing this topic for nearly fifty years. It was
only after the theory of convergent series was established on a sound footing, through
the efforts of Gauss, Cauchy, Abel, Dirichlet, and Weierstrass, that mathematicians
could confidently address the summability of divergent series.

The German mathematician Ferdinand Georg Frobenius (1849–1917) initiated the
modern theory of summability by proving the first theorem establishing a relation
between two different methods of summation. In a short paper of 1880 he showed that
if sn =∑n

k=0 ak and

s0 + s1 +·· ·+ sn
n+ 1

→ S as n→∞, (35.4)

then lim
x→1−

∞∑
n=0

anx
n = S.

This theorem explained why Grandi and Leibniz obtained the same value for the sum
of the series 1−1+1−1+·· · . Frobenius was a student of Weierstrass, and he initially
worked in differential equations and their series solutions. He branched out into number
theory and algebra with particular emphasis on groups. In answering a question of
Dedekind on group determinants, Frobenius created and developed the topic for which
he is best known, group representation theory. Two years after Frobenius’s important
paper, Otto Hölder (1859–1937), who also studied with Weierstrass, extended that work.
He defined

H(r+1)
n = H

(r)

0 +H(r)

1 +·· ·+H(r)
n

n+ 1
, r = 0,1,2, . . . , (35.5)

where H(0)
k = sk. He pointed out that there were sequences s0, s1, s2, . . . for which the

limit (35.4) did not exist but such that there was an integer r for which the limn→∞H(r)
n

existed. Thus, such a series
∑
an is said to be (H,r) summable. Moreover, Hölder

proved that if limn→∞H(r)
n = S, then limx→1−

∑∞
n=0 anx

n = S.
The Italian mathematician Ernesto Cesàro (1859–1906), in spite of financial and

other challenges, managed to learn mathematics from a number of good teachers, obtain
positions in Italian universities, and publish prolifically in differential geometry and
number theory. He studied under Eugène Catalan in Liège and spent a year in Paris
attending lectures by Hermite and Gaston Darboux. He had wide interests, including
mathematical physics. In 1890, Cesàro gave an important application of the summability
method (35.4), shedding light on a classical question on products of infinite series:
Suppose that

∑
an=A and

∑
bn=B, and let the Cauchy product of these two series be∑

cn, where cn= a0bn+a1bn−1+·· ·+anb0. When does the Cauchy product converge?
Cesàro proved that even when the product did not converge, the limit of the arithmetic
means of the partial sums of the product would converge to AB. In other words, if
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Cn = c0 + c1 +·· ·+ cn then

C0 +C1 +·· ·+Cn
n

→AB as n→∞. (35.6)

Note that Cesàro’s theorem generalized Abel’s theorem that if
∑
an = A,∑bn = B,

and
∑
cn =C, then AB =C. In today’s terminology, we would say that a series

∑
an

is Cesàro summable or (C,1) summable to S if (35.4) holds true. We may also say that
the Cauchy product of two series converging to A and B is Cesàro summable to AB.
Cesàro next extended his result to not necessarily convergent series: If

An =
n∑
k=0

ak, Bn =
n∑
k=0

bk, Cn =
n∑
k=0

ck and

∑n

k=0Ak

n+ 1
→A,

∑n

k=0Bk

n+ 1
→ B as n→∞, then∑n

k=0Ck

n+ 1
→AB as n→∞.

Cesàro also defined a more general form of convergence, starting with(
k+n
n

)
An,k = an+

(
k+ 1

1

)
an−1 +·· ·+

(
k+n
n

)
a0. (35.7)

He defined a series
∑
an as summable (today we say (C,k) summable) toA if there was

a k such that limn→∞An,k =A. Note that it is not necessary for k to be a nonnegative
integer. Since we can write(

k+ j
j

)
= (k+ 1)(k+ 2) · · ·(k+ j)

j ! ,

we may take k to be a real number >−1.
In 1900, the Hungarian mathematician Lipót Fejér (1880–1959) delivered a big

boost to the Cesàro summability method by proving that the Fourier series of any
continuous function was (C,1) summable to the function. It is interesting that Fejér’s
result arose out of an earlier attempt to solve the Dirichlet problem for the unit circle: For
a continuous function f (θ) on the unit circle, determine a harmonic function φ(x,y)=
O(r,λ) inside the unit disk such that O(r,λ) tends to f (θ) as reiλ approaches eiθ

from inside the unit disk. Note that φ(x,y) would be harmonic if it satisfied Laplace’s
equation

∂2φ

∂x2
+ ∂2φ

∂y2
= 0. (35.8)

In 1870, Carl Neumann (1832–1925), son of Franz Neumann and one of the founders of
the Mathematische Annalen, made an attempt at solving this problem by means of the
harmonic function determined by the Poisson integralP(r,θ). He used Poisson’s result,
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that P(r,θ) tended to f (θ) as r→ 1−. Recall, however, that the proof given by Poisson
was incomplete; this in turn undermined Neumann’s proof. As a third year student
at the Technical University in Hungary, Fejér spent 1899–1900 in Berlin, attending
lectures by L. Fuchs, Schwarz, and Frobenius, all students of Weierstrass. Fejér learned
of Neumann’s attempt from Schwarz, who in 1871 had solved the Dirichlet problem
by an alternative method. Examining the gap in Neumann’s proof, Fejér proved the
(C,1) summability of the Fourier series of a continuous function. This result, combined
with Frobenius’s theorem that (C,1) summability implied Abel summability, mended
Poisson’s proof. As a corollary, Fejér obtained the theorem that a continuous function
could be uniformly approximated by trigonometric polynomials on a closed interval.
Since the sine and cosine functions could be approximated by their Taylor polynomials,
he further deduced Weierstrass’s theorem on the uniform approximation of continuous
functions by polynomials.

Similar to his first mathematical efforts, a number of Fejér’s later papers presented
elegant solutions to interesting but circumscribed problems, where both the problems
and the solutions had significant implications in several areas. While a professor at
Budapest, he had a broad influence on the development of mathematics in Hungary.
His mathematical style, his outgoing personality, and his wide-ranging cultural interests
attracted many good students, including Erdős, Pólya, Szegő, Turán, and von Neumann.

The Austrian mathematician Alfred Tauber (1866–1942) gave a new direction to
summability theory with a result on a converse of Abel’s theorem on series. He proved
that if

∑
an was Abel-summable to A and nan → 0 (or an = o(1/n)) as n→∞, then∑

an =A. Tauber also proved an Abel summable series
∑
an to be convergent if and

only if

a1 + 2a2 +·· ·+nan
n

→ 0 as n→∞. (35.9)

In a paper of 1907, the German analytic number theorist Edmund Landau (1877–1938)
extended Tauber’s theorem to series of the form

∑∞
n=1 ane

−λnx , where λ1 < λ2 < · · ·
and λn →∞ as n→∞. Note that this covers power series as well as Dirichlet series.
Landau also proved an integral analog of Tauber’s theorem: If

J (x)=
∫ ∞

1
f (t)t−x dt→A as x→ 0 (35.10)

and f (t)= o
(

1

t ln t

)
as t→∞, (35.11)

then J (0)=
∫ ∞

1
f (t)dt =A. (35.12)

Recall that in 1749, Euler attempted to use Abel summability to prove the functional
equation for the zeta function. In 1906, Landau vindicated Euler’s efforts by proving that
the Abel sum of the series

∑∞
n=1(−1)n−1/ns yielded the value (1−21−s)ζ(s), obtained

by the analytic continuation of the zeta function. In this work, Landau employed an 1898
result of the Finnish mathematician Hjalmar Mellin. Landau, a student of Frobenius,
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also introduced the one-sided Tauberian condition on the coefficients of series, espe-
cially applicable in number theory. In 1903, Landau derived the prime number theorem
without using Hadamard’s theory of entire functions of finite order and a year later, he
obtained an important generalization of Picard’s theorem on entire functions. Concern-
ing Landau’s 1927 Vorlesungen über Zahlentheorie, Hardy wrote, “This remarkable
work is complete in itself; he does not assume . . . even a little knowledge of number-
theory or algebra. It stretches from the very beginning to the limits of knowledge, in
1927, of the ‘additive,’ ‘analytic,’ and ‘geometric’ theories.”

The preliminary summability results of Frobenius, Cesàro, Fejér, Tauber, and Landau
laid the foundation for a cohesive theory of summability with wide applicability. The
British mathematicians G. H. Hardy (1877–1947) and J. E. Littlewood (1885–1977)
were the first to fully understand the potential and scope of this mathematical the-
ory. Hardy’s many mathematical contributions included the circle method, discovered
jointly with Ramanujan in their work on the asymptotic theory of partitions; and the
concept of maximal functions, developed in collaboration with Littlewood. His influ-
ence was felt as much through his teaching as in his research. He helped raise British
standards of teaching in analysis by publishing his 1908 A Course of Pure Mathematics,
still in print today. In his preface to the 1937 edition of this book, Hardy remarked that
if he were to rewrite the book, “I should not write (to use Prof. Littlewood’s simile)
like ‘a missionary talking to cannibals,’ but with decent terseness and restraint.” Hardy
enjoyed mathematical collaboration, and his association with Littlewood was one of
the most productive in the history of mathematics. They published over one hundred
joint papers in analysis and analytic number theory. According to Harald Bohr, the
Hardy–Littlewood collaboration was based on four rules:

1. When one wrote to the other, it was completely indifferent whether what they wrote was
right or wrong.

2. When one received a letter from the other, he was under no obligation whatsoever to read
it, let alone answer it.

3. Although it did not really matter if they both simultaneously thought about the same detail,
still, it was preferable that they should not do so.

4. It was quite indifferent if one of them had not contributed the least bit to the contents of a
paper under their common name.

Although both Hardy and Littlewood lived on the Trinity College grounds, within one or
two hundred yards of one another, and ate their meals in the same dining hall, their rules
suggest that most of their communications were via the written word. Littlewood, unlike
Hardy, had an interest in applied mathematics. In collaboration with Mary Cartwright
(1900–1998), he also made important contributions to nonlinear differential equations
and topological dynamics. Concerning Littlewood, V. I. Arnold wrote: “In mathematics
he was a direct successor of Newton and Poincaré, doing research even on artillery
ballistics. I was surprised to discover his estimates of the time of preservation of an
adiabatic invariant in a Hamiltonian system . . . . It is even more surprising that the
‘theory of chaos’in dynamical systems, including ‘Smale’s horseshoe,’had been already
developed and published by Littlewood.”

In a 1909 paper, Hardy showed that if
∑
an was (C,1) summable to S and an =

O(1/n) then
∑
an converged to S. He noted that by combining this result with Fejér’s
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(C,1) summability of the Fourier series of a continuous function f (x), one obtained
Dirichlet’s theorem on Fourier series. Take f (x) to be monotonic, and apply the second
mean value theorem∫ 2π

0
f (x)cosnx dx = f (0)

∫ ξ

0
cosnx dx+f (2π)

∫ 2π

ξ

cosnx dx

to see that the Fourier coefficients areO(1/n). Hardy was not successful in his attempt to
prove the more general result that if

∑
an was Abel summable to S and an =O(1/n),

then
∑
an = S. In fact, he thought the result could well be false. He suggested the

problem to his former student Littlewood, who succeeded in solving it in the affirmative.
In his “A Mathematical Education,” Littlewood gave an account of his discovery of
the proof. Surprisingly, as he grappled with the problem, he forgot that Hardy had
already proved the Cesàro–Tauber theorem. In 1911, during his attempt to reprove
this, he discovered the derivatives theorem. Note that in intuitive terms, the derivatives
theorem states that the orders of magnitude of two derivatives of a function restrict
the order of magnitude of the intermediate derivatives. Hardy and Littlewood made
considerable use of this concept in their early work. But, as they mentioned in a paper
of 1914, Hadamard had already proved the derivatives theorem and had published it in
an 1897 paper on waves. Indeed, A. Kneser also independently obtained the theorem
in the same year. Littlewood stated his Abel–Tauber theorem in the general form that
included Dirichlet series:

If 0< λ1 < λ2 < · · ·< λn →∞ as n→∞,

lim
n→∞

∞∑
n=1

ane
−xλn = S, (35.13)

and |an|<K(λn−λn−1)/λn for a constantK, (35.14)

then
∞∑
n=1

an = S.

Observe that when λn = n, the sum in (35.13) reduces to a power series, whereas when
λn = lnn, one gets a Dirichlet series. Littlewood’s condition |an| = O(1/n) is quite
natural, since is it is easy to see that under this condition, if

∑
anx

n oscillates finitely
as x→ 1−, then so does the sequence

∑n

k=1 ak as n→∞. In fact, Littlewood pointed
out that the condition |an| = o(1/n) implied the much stronger result: that the limits of
oscillation of

∑
anx

n as x→ 1− and of
∑n

k=1 ak as n→∞were the same. These results
must have suggested to him that in order for Abel summability to imply convergence,
a weaker condition would suffice.

In an interesting 1910 paper, Landau proved Hardy’s (C,1) summability theorem
with a weaker one-sided Tauberian condition nan ≥ −K , where K was a constant.
He mentioned that one-sided Tauberian arguments had been used by Hadamard and
de la Vallée Poussin in their proofs of the prime number theorem (PNT). In a 1913
paper, Hardy and Littlewood proved a one-sided extension of Littlewood’s theorem: If
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an ≥ 0, α > 0, and

lim
x→1−

(1− x)α
∞∑
n=0

anx
n =A, (35.15)

then lim
n→∞

∑n

k=0 ak

nα
= A

�(1+α) . (35.16)

Hardy and Littlewood soon saw that this theorem had important implications in prime
number theory. They showed that

lim
ξ→0+

ξ

∞∑
n=1

W(n)e−nξ = 1, (35.17)

and since W(n) ≥ 0, the hypothesis of their theorem, given by (35.15), was true with
α = 1, x = e−ξ , an =W(n), and A= 1. Recall that when n is a positive integer power
of a prime p, W(n)= lnp; otherwise, it is 0. Next, by (35.16)

lim
n→∞

1

n

n∑
k=1

W(k)= 1. (35.18)

It was well-known that (35.18) was equivalent to the PNT, and to prove (35.17) Hardy
and Littlewood needed the fact that with s = σ + it ,ζ(s) had no zeros on σ = 1 and
satisfied a very mild growth condition for large t and 1 ≤ σ ≤ 2. This growth condition
was so weak that they concluded that there should be a proof of the PNT requiring
only ζ(1+ it) �= 0 for real t . In looking for such a proof, they investigated the Lambert
summability method. Note that a series

∑
an is Lambert summable to S if

lim
x→1−

(1− x)
∞∑
n=1

nan
xn

1− xn = S. (35.19)

In a paper written in 1919, Hardy and Littlewood proved that Lambert summability
implied Abel summability. From this theorem they could easily derive a result equiv-
alent to the PNT. Unfortunately, this did not give a new proof of the PNT because
to prove their Lambert summability theorem, they had used the fact that, with µ the
Möbius function,

g(n)=
n∑

m=1

µ(m)

m
=O

(
1

(lnn)2

)
. (35.20)

Thus, they relied on a result a little deeper than the PNT, since the PNT is equivalent
to g(n)= o(1) as n→∞. Though they failed to offer another proof of the PNT, their
work set the stage for Wiener.

In 1928, Norbert Wiener (1894–1964) found a method to directly handle Lambert
summability. Wiener received his doctoral degree from Harvard University at the age of
18 with a thesis in logic. He then spent a part of 1913 at Cambridge University to study
under Bertrand Russell who advised him to study mathematics and physics, especially
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the papers of Einstein and Niels Bohr on relativity, Brownian motion and quantum
theory. Wiener was greatly impressed and influenced by Hardy’s course on real and
complex variables and all of this bore fruit about a decade later. Wiener was a professor
at M.I.T. from 1919 to his death in 1964. He interacted vigorously with his engineering
colleagues. The electrical engineering department requested that he provide a rigorous
basis for Heaviside’s operational methods. This work led Wiener to a very fruitful study
of a generalized harmonic analysis. He encountered a technical problem in his harmonic
analysis research: Show that for a class of nonnegative functions f (t)

lim
T→∞

1

T

∫ T

0
f (t)dt = lim

ε→0

2

πε

∫ ∞

0
f (t)

sin2 εt

t2
dt. (35.21)

At this point in his researches, in 1926, Wiener was visiting Göttingen, as was his friend,
the English mathematician A. E. Ingham. Wiener learned from Ingham that his problem
was Tauberian in nature and that Hardy and Littlewood had worked on similar problems.
Wiener corresponded with Hardy on this question but finally decided to follow his
own approach, using Fourier transforms. In his autobiography, I Am a Mathematician,
Wiener wrote that he also consulted Toeplitz’s student R. Schmidt, who had published
an important paper on Tauberian theory in 1925. Wiener had hoped to collaborate
with Schmidt on this problem, for there was a connection in their approaches, but this
collaboration did not work out. However, Schmidt suggested that, since his own method
had failed for Lambert summability and the PNT, Wiener might test his own approach
in those cases. Wiener was soon able to discover a comprehensive method, covering
all known Tauberian results.

To get a sense of Wiener’s work, begin by writing the Abel sum of
∑
an in the form

A= lim
r→1−

(1− r)
∞∑
n=0

snr
n = lim

x→∞
1

x

∞∑
n=0

sne
−n/x. (35.22)

With this, we have another form of the Hardy–Littlewood theorem: If

lim
x→∞

1

x

∞∑
n=0

sne
−n/x =A and sn =O(1), then lim

x→∞
1

x

∑
n≤x
sn =A. (35.23)

Now we can write the integral analog: If F(t) is bounded and

lim
x→∞

1

x

∫ ∞

0
e−t/xF (t)dt =A, then lim

x→∞
1

x

∫ x

0
F(t)dt =A. (35.24)

Note that the first limit in (35.24) is a weighted average of the function F(t) where the
weight function is given by e−t/x . More generally, let the weight function be expressed
as G(t/x) so that the integral takes the form∫ ∞

0
G(t/x)F (t)dt =

∫ ∞

−∞
eu−yG(eu−y)F (ey)dy =

∫ ∞

−∞
K1(u− y)f (u)du, (35.25)
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after applying the change of variables t = eu, x = ey, F (eu)= f (u), eu−yG(u− y)=
K1(u−y). Wiener could then pose the very general question: Given a bounded function
f (u) and kernelK1 integrable over (−∞,∞), under what conditions does the equation

lim
y→∞

∫ ∞

−∞
K1(u− y)f (u)du=A

∫ ∞

−∞
K1(u)du (35.26)

imply

lim
y→∞

∫ ∞

−∞
K2(u− y)f (u)du=A

∫ ∞

−∞
K2(u)du (35.27)

for a different integrable kernel K2? To determine a simple condition on K1, Wiener
assumed that K2 was a convolution of K1 with an integrable function R, that is

K2(y)=
∫ ∞

−∞
K1(y−u)R(u)du. (35.28)

Now note that the Fourier transform converts a convolution of two functions to the
ordinary product of the transforms of the two functions. So, where K̂ denotes the
Fourier transform of K ,

K̂2 = K̂1 · R̂. (35.29)

The beauty of this relation is that it allows us to determine R̂ at all points if for all x

K̂1(x)=
∫ ∞

−∞
e−ixtK1(t)dt �= 0. (35.30)

This was Wiener’s now-famous condition, that the existence of the first average would
imply the existence of the second. In his 1932 paper “Tauberian Theorems,” Wiener
stated two forms of this theorem. Note that he wrote Lp for Lp. The first version of
Wiener’s Tauberian theorem: Let f (x) be a bounded measurable function, defined over
(−∞,∞). Let K1(x) be a function in L1, and let

1√
2π

∫ ∞

−∞
K1(x)e

−iux dx �= 0 (35.31)

for all real u. Let

lim
x→∞

∫ ∞

−∞
f (ξ)K1(ξ − x)dξ =A

∫ ∞

−∞
K1(ξ)dξ. (35.32)

Then if K2(x) is any function in L1,

lim
x→∞

∫ ∞

−∞
f (ξ)K2(ξ − x)dξ =A

∫ ∞

−∞
K2(ξ)dξ. (35.33)
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Conversely, letK1(ξ) be a function of L1, and let
∫∞
−∞K1(ξ)dξ �= 0. Let (35.32) imply

(35.33) wheneverK2(x) belongs toL1 and f (x) is bounded. Then (35.31) holds. In his
initial 1928 form of the theorem, Wiener required a growth condition O(1/ξ 2) at ±∞
for the kernels K1(ξ) and K2(ξ). In the 1932 version, he refined his theory by means
of his well-known theorem on absolutely convergent Fourier series: If a nonvanishing
function f has an absolutely convergent Fourier series, then 1/f has an absolutely
convergent Fourier series. Although this was a difficult result, it emerged less than a
decade later as a corollary of I. M. Gelfand’s work on commutative Banach algebras.
Wiener stated a second general theorem, directly applicable to infinite series, involving
Stieltjes integrals; he derived a form of the PNT from this result. Thus, Wiener got his
second Tauberian theorem: Let f (x) be a function of limited total variation over every
finite range, and let ∫ y+1

y

|df (x)| (35.34)

be bounded in y. Let K1(x) be a continuous function in L1, and let

∞∑
k=−∞

maxk≤x≤k+1|K1(x)| . (35.35)

converge. Now assume

1√
2π

∫ ∞

−∞
K1(x)e

iux dx �= 0 (−∞< u<∞) (35.36)

and lim
x→∞

∫ ∞

−∞
K1(ξ − x)df (ξ)=A

∫ ∞

−∞
K1(ξ)dξ. (35.37)

If K2(x) is a continuous function in L1 satisfying the condition (35.35), then

lim
x→∞

∫ ∞

−∞
K2(ξ − x)df (ξ)=A

∫ ∞

−∞
K2(ξ)dξ. (35.38)

Note that Wiener also stated a converse of this theorem. Then in 1938, H. R. Pitt
(1914–2005) formulated a simple theorem containing both Wiener theorems as corol-
laries. Pitt took undergraduate courses from Hardy and Littlewood at Cambridge in
the 1930s. After graduation in 1936, he studied under Wiener at M.I.T. In his 1938
paper “General Tauberian Theorems,” Pitt proved: Suppose K(x) ∈ L1(−∞,∞) and
its Fourier transform K̂(t) does not vanish for any real t . If f (x) is bounded, slowly
oscillating, that is

f (y)−f (x)→ 0 when y > x, x→∞, y− x→ 0, (35.39)

and
∫ ∞

−∞
K(x− t)f (t)dt→A

∫ ∞

−∞
K(x)dx,

then f (x)→A as x→∞.
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The Serbian mathematician Jovan Karamata (1902–1967) also made an important
contribution to Tauberian theory. In 1930, he published a two-page proof of the Hardy–
Littlewood theorem, that Abel summability with a one-sided condition implied Cesàro
summability. Karamata’s proof used only the Weierstrass approximation theorem to
prove his main result that if an ≥ 0 and

∑
an was Abel summable to s, then for every

Riemann integrable function g(x),

lim
x→1−

(1− x)
∞∑
n=0

anx
ng(xn)= s

∫ 1

0
g(t)dt. (35.40)

This elegant proof took researchers in Tauberian theory completely by surprise, since up
to that time all the proofs of the Hardy–Littlewood theorem had required a fair amount
of machinery. Karamata graduated from the University of Belgrade in 1925, where
he came under the influence of Mihailo Petrović (1868–1943) who had studied at the
École Normale in Paris under Hermite, Poincaré, and Picard. Petrović brought to Serbia
the spirit of scientific research he learned in France. By the time he met Karamata, he
had ceased to do mathematical research but he advised Karamata to study the latest
mathematical discoveries. Karamata regarded himself as self-taught and would say that
his teacher in classical analysis was Pólya and Szegő’s Aufgaben und Lehrsätze aus
der Analysis, published in 1925. In fact, the topic of Karamata’s doctoral thesis was
the development of Weyl’s work on the uniform distribution of sequences x1,x2,x3, . . .

in the interval (0,1). We observe that Weyl’s theorems were given as a set of five
problems in Pólya and Szegő’s book. The first of these problems was to show that
a sequence x1,x2,x3, . . . in (0,1) was uniformly distributed if and only if for every
Riemann integrable function f

lim
n→∞

f (x1)+f (x2)+·· ·+f (xn)
n

=
∫ 1

0
f (x)dx. (35.41)

One may compare this with Karamata’s theorem. Again, it is interesting to note that,
following their section on uniform distribution, Pólya and Szegő’s book posed a problem
requiring the use of Weyl’s formula as well as Frobenius’s theorem on summability.
Karamata also introduced the important concept of a regularly varying function.

35.2 Fejér: Summability of Fourier Series

In 1900, L. Fejér made an application of (C,1) summability to Fourier series by proving
that the Fourier series of f was (C,1) summable to (f (x+ 0)+f (x− 0))/2 at every
point where f (x ± 0) existed. He assumed that f was bounded and integrable on
[0,2π ]. Recall that the Fourier coefficients are given by

an = 1

π

∫ 2π

0
f (t)cos nt dt, bn = 1

π

∫ 2π

0
f (t)sin nt dt
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and that the nth partial sum of a Fourier series is given by

sn(x)= 1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx)

= 1

2π

∫ 2π

0
f (t)dt +

n∑
k=1

1

π

∫ 2π

0
f (t)cos k(t − x)dt.

Fejér began his proof with the observation that

σn−1 = 1

2
+ cos θ +·· ·+ cos(n− 1)θ = 1

2

cos(n− 1)θ − cos nθ

1− cos θ
;

hence,
σ0 +σ1 +·· ·+σn−1

n
= 1

2n

1− cos nθ

1− cos θ
= 1

2n

(
sin (nθ/2)

sin (θ/2)

)2

.

Thus, for the arithmetic mean of the partial sums, he had

Sn(x)= s0(x)+ s1(x)+ s2(x)+·· ·+ sn−1(x)

n

= 1

nπ

∫ π−x/2

−x/2
f (x+ 2u)

(
sin nu

sin u

)2

du.

Fejér immediately perceived that this integral was simpler than the one found by
Dirichlet for the partial sum sn(x) because the kernel sin2 ν/sin2u was always
nonnegative, unlike the corresponding kernel in Dirichlet’s integral sin(2n−1)u/sin u.
Fejér first considered the case where f was continuous at x. He let ε > 0, so that there
existed a δ > 0 such that

|f (x+h)−f (x)|< ε for |h| ≤ δ.
We note that Fejér’s notation interchanged ε and δ. He next wrote the integral for Sn(x)
in three parts:

Sn(x)= 1

2nπ

∫ x−δ

0

1− cos n(t − x)
1− cos(t − x) f (t)dt

+ 1

2nπ

∫ x+δ

x−δ

1− cos n(t − x)
1− cos(t − x) f (t)dt

+ 1

2nπ

∫ 2π

x+δ

1− cos n(t − x)
1− cos(t − x) f (t)dt.

He assumed |f (t)| ≤ M in [0,2π ]. Then the absolute values of the first and third
integrals were bounded by 2M/n(1− cos δ). For the second integral, the positivity of
the term multiplying f (t) implied that∫ x+δ

x−δ

1− cos n(t − x)
1− cos(t − x) f (t)dt = (f (x)+η)

∫ x+δ

x−δ

1− cos n(t − x)
1− cos(t − x) dt,
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where |η|< ε. Fejér then noted that

1

2nπ

∫ 2π

0

1− cos n(t − x)
1− cos(t − x) dt = 1.

Hence,
1

2nπ

∫ x+δ

x−δ

1− cos n(t − x)
1− cos(t − x) dt

= 1−
(

1

2nπ

∫ x−δ

0

1− cos n(t − x)
1− cos(t − x) dt +

1

2nπ

∫ 2π

x+δ

1− cos n(t − x)
1− cos(t − x) dt

)
.

He observed that each of the last two integrals was less that 2/n(1− cos δ). With all
this information, he could conclude that for n large enough

|Sn(x)−f (x)|< 2ε.

This proved Fejér’s theorem for the case in which f was continuous at x. Assuming
only the existence of the limits f (x − 0) and f (x + 0), Fejér broke the integral for
Sn(x) into two parts:

I1(x)= 1

2nπ

∫ x

0

1− cos n(t − x)
1− cos(t − x) f (t)dt ,

I2(x)= 1

2nπ

∫ 2π

x

1− cos n(t − x)
1− cos(t − x) f (t)dt.

Then by a similar argument

lim
n→∞I1(x)= 1

2
f (x− 0), lim

n→∞I2(x)= 1

2
f (x+ 0).

Fejér went on to observe that if f (x)was everywhere continuous, then Sn(x) converged
uniformly to f (x). He also noted the following immediate corollaries of his theorem:

• If the Fourier series converges at a point of continuity of a function, then its sum
is the value of the function at that point.

• A continuous function on a closed interval is a uniform limit of a sequence of
polynomials. This is Weierstrass’s approximation theorem.

• Poisson’s integral yields a solution for Dirichlet’s problem for the circle.

Hermann A. Schwarz was the first to prove the third result. He felt that a proof by
Fourier series was probably not possible. As noted before, Fejér’s motivation in the
discovery of his theorem was to provide a proof using Fourier series.

Hardy recognized that his Tauberian theorem on (C,1) summability, combined with
Fejér’s theorem, immediately yielded a result on Fourier series: If the Fourier coeffi-
cients of a continuous function f are an=O(1/n) and bn=O(1/n), the Fourier series
of f at x converges to f (x). Hardy then reasoned that since the Fourier coefficients
of a periodic function f of bounded variation satisfied an = O(1/n), bn = O(1/n),
then the Fourier series of a such a function converged to 1

2 (f (x + 0)+ f (x − 0)). In
fact, this is the classical Dirichlet-Jordan theorem. Further, observe that since Cesàro
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summability implies Abel summability, it follows that for f as in Fejér’s theorem,
we have

lim
r→1−

(
1

2
a0 + (a1 cos x+ b1 sin x)r + (a2 cos 2x+ b2 sin 2x)r2 +·· ·

)
= 1

2

(
f (x+ 0)+f (x− 0)

)
.

This equation simplifies to

lim
r→1−

(
1

2π

∫ 2π

0

1− r2

1− 2r cos(x− t)+ r2
f (t)dt

)
= 1

2

(
f (x+ 0)+f (x− 0)

)
.

When Hilbert saw Fejér’s work, he requested Fejér to attempt a proof of a similar
theorem for the Laplace series where a function f (θ,φ) was expanded in terms of
surface harmonics. Fejér was unsuccessful in this effort for some years. Finally, while
looking at a book on Bessel functions, he saw F. G. Mehler’s integral formula for
Legendre polynomials:

Pn(cosθ)= 2

π

∫ π

θ

sin(2n+ 1)(t/2)√
2(cosθ − cos t)

dt, 0< θ < π.

With the help of this result, in 1908 Fejér was able to prove that the Laplace series
of a bounded integrable function was (C,2) summable to the function at any point of
continuity. In 1913, H. Gronwall proved that (C,2) could be replaced by (C,1).

35.3 Karamata’s Proof of the Hardy–Littlewood Theorem

Karamata’s short proof of Littlewood’s theorem and the more general Hardy–
Littlewood theorem relied on Weierstrass’s approximation theorem. Karamata used
it in the following form: For any Riemann integrable function g(x) on (0,1) and every
ε > 0 there exist two polynomials p(t) and P(t) such that

p(t)≤ g(t)≤ P(t) for 0 ≤ t ≤ 1 (35.42)

∫ 1

0

(
P(t)−p(t))dt ≤ ε. (35.43)

Karamata did not give the details of the proof of this result. It can be proved, however,
by first taking g(t) to be a continuous function. By Weierstrass’s theorem, there are
polynomials p(t) and P(t) differing by at most ε/4 from g(t)− ε/4 and g(t)+ ε/4,
respectively, for all t ∈ [0,1]. Clearly, the required result follows for g(t) continuous.
We next take g(t) to be piecewise continuous, and the result follows because g(t) can
be approximated by continuous functions. Finally, for any Riemann integrable function
g(t), there are step functions m(t) and M(t) such that m(t)≤ f (t)≤M(t) and∫ 1

0

(
M(t)−m(t))dt < ε/2.
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Karamata’s theorem: If an ≥−K, with K ≥ 0 independent of n and

(1− x)
∞∑
n=0

anx
n →A as x→ 1−,

then (1− x)
∞∑
n=0

ang(x
n)xn →A

∫ 1

0
g(t)dt

for every Riemann integrable function g(t).
In Karamata’s proof, it was obviously sufficient to take K = 0, for he could replace

an by an+K . Karamata then supposed g(x)= xα, α ≥ 0. Then he had

(1− x)
∞∑
n=0

ang(x
n)xn = (1− x)

∞∑
n=0

anx
(α+1)n

= (1− x)
1− xα+1

(1− xα+1)

∞∑
n=0

anx
(α+1)n → A

α+ 1
=A

∫ 1

0
tα dt,

as x→ 1−. It followed by linearity that for every polynomial P(x)

(1− x)
∞∑
n=0

anP (x
n)xn →A

∫ 1

0
P(t)dt.

He could next apply (35.42) and (35.43) because an was positive; Karamata’s theorem
followed.

To derive the Hardy–Littlewood theorem, Karamata set x = e−1/n and let g(t) be the
piecewise continuous function

g(t)=
{

0 0 ≤ t < 1/e,

1/t 1/e≤ t ≤ 1.

He then arrived at g(xm)=0 for m>n,g(xm)xm=1 for m≤n, and
∫ 1

0 g(t)dt=1,
thereby reducing his theorem to the Hardy–Littlewood theorem. In other words,
given the one-sided Tauberian condition an ≥−K , if the Abel sum of

∑∞
n=0 anx

n was
A, then the Cesàro sum of

∑
an was also A.

35.4 Wiener’s Proof of Littlewood’s Theorem

Littlewood’s Tauberian theorem of 1910 was the first difficult and deep Tauberian result
to be proved. It is therefore interesting to see how Wiener derived this theorem from
his general theorem. We restate Littlewood’s result:

If lim
y→1−

∞∑
n=0

any
n = s and n|an|<K, then

∞∑
n=0

an = s.

The first step in Wiener’s proof was to express
∑
any

n as an integral. For that purpose he
showed that s(x)=∑

n≤x an was bounded for 0≤ x <∞. By hypothesis,
∑∞

n=0 ane
−n/x
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was bounded for 0 ≤ x <∞ and (using n|an|<K)

|s(x)−
∞∑
n=0

ane
−n/x | = |

∑
n≤x
an(1− e−n/x)−

∑
n>x

ane
−n/x |

≤
∑
n≤x

K

n
· n
x
+
∑
n>x

K

n
e−n/x

≤ 2K +K
∫ ∞

x

e−u/x
du

u

≤ 3K +K
∫ ∞

1
e−u

du

u
= constant.

This showed that s(x) was bounded so that he had

∞∑
n=0

ane
−nx =

∫ ∞

0−
e−ux ds(u)=

∫ ∞

0
xe−uxs(u)du.

Hence, s = lim
x→0+

∫ ∞

0
xe−uxs(u)du= lim

ξ→∞

∫ ∞

−∞
e−ξ e−e

η−ξ
s(eη)eη dη.

So Wiener set K1(ξ)= e−ξ e−e−ξ and observed that∫ ∞

−∞
K1(ξ)dξ =

∫ ∞

−∞
e−ξ e−e

−ξ
dξ =

∫ ∞

0
e−x dx = 1.

Thus, lim
ξ→∞

∫ ∞

−∞
K1(ξ −η)s(eη)dη= s

∫ ∞

−∞
K1(ξ)dξ and

1√
2π

∫ ∞

−∞
K1(ξ)e

−iuξ dξ = 1√
2π

∫ ∞

0
xiue−x dx = 1√

2π
�(1+ iu) �= 0.

Therefore, K1(ξ) satisfied the hypotheses, (35.31) and (35.32), of his first Tauberian
theorem. Wiener then chose K2(ξ) in such a manner that he obtained the (C,1)
summability of

∑
an to s. He set

K2(ξ)=
{

0 ξ < 0,

e−ξ ξ > 0,

so that by his first Tauberian theorem,

s = s
∫ ∞

0
e−ξ dξ = s

∫ ∞

−∞
K2(ξ)dξ = lim

ξ→∞

∫ ∞

−∞
K2(ξ −η)s(eη)dη

= lim
ξ→∞

∫ ξ

−∞
eη−ξ s(eη)dη= lim

x→∞
1

x

∫ x

0
s(y)dy.

Note that by applying Hardy’s theorem that (C,1) summability together with an =
O(1/n) implies convergence, the Hardy–Littlewood theorem follows. However,



766 Summability

Wiener included a simple argument to prove Hardy’s theorem: For λ > 0,

s = (1+λ)s− s
λ

= lim
x→∞

1

λx

(∫ (1+λ)x

0
s(y)dy−

∫ x

0
s(y)dy

)
= lim

x→∞
1

λx

∫ (1+λ)x

x

s(y)dy = lim
x→∞

(
s(x)+ 1

λx

∫ (1+λ)x

x

(s(y)− s(x))dy
)
.

The condition an =O(1/n) then implied the necessary result:∣∣∣∣ 1

λx

∫ (1+λ)x

x

(s(y)− s(x))dy
∣∣∣∣≤ 1

λx

∫ (1+λ)x

x

∑
x<n<y

K

n
dy

≤
&(1+λ)x'∑
&x'+1

K

&x' ≤ &λx'K
&x' < 2λK,

for sufficiently large x. Hence limx→∞ |s(x)−s|< 2λK; or, because λwas an arbitrary
positive number, limx→∞ |s(x)−s| = 0.This completed Wiener’s proof of Littlewood’s
theorem.

35.5 Hardy and Littlewood: The Prime Number Theorem

In their 1921 paper, “On a Tauberian Theorem for Lambert Series . . .,” Hardy and
Littlewood gave a very simple proof of the PNT based on the result that Lambert
summability implied Abel summability. As we mentioned before, their proof of the
Lambert summability theorem employed a result, due to Landau, stronger than the
PNT. Thus, although they did not produce a new proof, their derivation of the PNT
insightfully reveals its Tauberian character. In this derivation, Hardy and Littlewood
employed a number-theoretic result describing the average behavior of the arithmetic
function d(n), the number of divisors of n. Dirichlet first proved this result by his
ingenious hyperbola method in an 1849 paper on the average behavior of arithmetic
functions.

Hardy and Littlewood first showed that the series

∞∑
n=1

W(n)− 1

n

was Lambert summable to −2γ , where γ was Euler’s constant. Note here that the
Lambert series could be written as

f (y)= y
∞∑
n=1

(
W(n)− 1

)
e−ny

1− e−ny = y
∞∑
n=1

(
W(n)− 1

)
e−ny(1+ e−ny + e−2ny +·· ·)

= y
∞∑
n=1

cne
−ny, where cn =

∑
d|n

(
W(d)− 1

)= ln n− d(n).
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Next, they observed that
n∑
i=1

ci = ln n!−
n∑
i=1

d(i).

To estimate the logarithmic term, they applied Stirling’s formula and to estimate the
second term they used the Dirichlet divisor theorem:

n∑
i=1

d(i)= n ln n+ (2γ − 1)n+O(√n).

These calculations gave them

1

n

n∑
i=1

ci ∼−2γ asn→∞.

By Frobenius’s theorem, the last result implied that

lim
y→∞f (y)= lim

y→∞y
∞∑
n=1

cne
−ny =−2γ.

This proved the Lambert summability of
∑∞

n=1
W(n)−1
n

. Hence, by their theorem that
Lambert summability implies Abel summability, the series was Abel summable to
−2γ . It was also clear that (W(n)− 1)/n≥−1. Moreover, Hardy and Littlewood had
earlier extended Littlewood’s theorem and this extension showed that this one-sided
Tauberian condition was sufficient to obtain the ordinary convergence of

∑∞
n=1

W(n)−1
n

.
Recall that by (35.9), the convergence of

∑
an implied that

a1 + 2a2 +·· ·+nan
n

→ 0 asn→∞.

For ak = W(k)−1
k

, the last condition translated to

W(1)− 1+W(2)− 1+·· ·+W(n)− 1

n
→ 0 as n→∞

or

lim
N→∞

1

N

N∑
n=1

W(n)= 1.

and this was equivalent to the prime number theorem.
In his 1971 paper, “The Quickest Proof of the Prime Number Theorem,” Littlewood

observed that in 1918 he and Hardy proved (35.17). He pointed out that though they had
earlier proved the Tauberian theorem (with the one-sided condition mentioned above)
necessary to deduce the quickest proof, they did not mention the PNT in their 1918
paper. We note that it was this Tauberian theorem for which Karamata gave his nice
proof, described by Littlewood as “highly sophisticated.”
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35.6 Wiener’s Proof of the PNT

In his work on the Tauberian theorem, one of Wiener’s fundamental aims was to prove
the prime number theorem by means of Lambert summability. Thus, he wished to
determine the behavior of

∑
n≤x W(n) as x→∞ from the behavior of

∞∑
n=1

W(n)
xn

1− xn as x→ 1−.

First, Wiener observed that

∞∑
n=1

W(n)
xn

1− xn =
∞∑
n=1

xn
∑
m|n
W(m)=

∞∑
n=1

xn lnn

=
∞∑
n=1

lnn
xn− xn+1

1− x =
∞∑
n=1

xn+1

1− x (ln(n+ 1)− lnn)

= x

1− x
∞∑
n=1

ln

(
1+ 1

n

)
xn = x

1− x
∞∑
n=1

(
1

n
+O

(
1

n2

))
xn

= x

1− x

(
ln

1

1− x +
∞∑
n=1

O

(
1

n2

)
xn

)
.

Note that the second line used summation by parts. Wiener next set x = e−ξ and
multiplied by −ξ to obtain

∞∑
n=1

W(n)
ξe−nξ

e−nξ − 1
= ξe−ξ

1− e−ξ
(

ln(1− e−ξ )−
∞∑
n=1

O

(
1

n2

)
e−nξ

)
.

It followed from the right-hand side that as ξ→ 0+, the series behaved like ln ξ . Wiener
therefore worked with the differentiated series. Upon differentiating the last equation,
he arrived at

∞∑
n=1

W(n)
d

dnξ

nξe−nξ

e−nξ − 1
=

∞∑
n=1

W(n)
e−2nξ − e−nξ +nξe−nξ

(e−nξ − 1)2

= e−ξ − e−2ξ − ξe−ξ
(1− e−ξ )2

(
ln(1− e−ξ )+

∞∑
n=1

O

(
1

n2

)
e−nξ

)

+ ξe−ξ

1− e−ξ
(

e−ξ

1− e−ξ +
∞∑
n=1

O

(
1

n

)
e−nξ

)
=O(1)(O(ln ξ)+O(1))

+ (
1+O(ξ))(1

ξ
+O(1)+O(ln ξ)

)
= 1/ξ +O(ln ξ),
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as ξ → 0+. Thus, he had

lim
ξ→0+

ξ

∞∑
n=1

W(n)
e−2nξ − e−nξ +nξe−nξ

(e−nξ − 1)2
= 1.

Wiener wrote the sum as a Stieltjes integral so that he could apply his second Tauberian
theorem. Toward that end, he set

g(y)=
&ey'∑
n=1

W(n)

n
,

so that the previous equation containing the limit took the form

1 = lim
ξ→0+

∫ ∞

0
ηξ
e−2ηξ − e−ηξ +ηξe−ηξ

(e−ηξ − 1)2
dg(lnη)

= lim
x→∞

∫ ∞

−∞

ey−x(e−2ey−x − e−ey−x + ey−xe−ey−x )
(e−ey−x − 1)2

dg(y).

To understand the next step, compare the last expression with the corresponding
expression in Wiener’s theorem. On this basis, we can see how Wiener next wrote

K1(x)= e−x(e−2e−x − e−e−x + e−xe−e−x )
(e−e−x − 1)2

and then ∫ ∞

−∞
K1(x)dx =

∫ ∞

0

e−2ξ − e−ξ + ξe−ξ
(e−ξ − 1)2

dξ =
∫ ∞

0

d

dξ

ξe−ξ

e−ξ − 1
dξ

= lim
ξ→0+

ξe−ξ

1− e−ξ = 1.

Thus, he hadA= 1 in the hypothesis of his theorem. One may check thatK1(x) satisfies
(35.35) and since g(y) is monotomic,∫ n+1

n

|dg(x)| =
∫ n+1

n

dg(x).

Moreover, the latter expression is bounded for −∞<n<∞. Finally, Wiener had only
to check that the Fourier transform of K1(x) did not vanish. So he computed

1√
2π

∫ ∞

−∞
K1(x)e

−iux dx = 1√
2π

∫ ∞

0

d

dξ

(
ξe−ξ

e−ξ − 1

)
ξ iu dξ

= lim
λ→0+

1√
2π

∫ ∞

0

d

dξ

(
ξe−ξ

e−ξ − 1

)
ξ iu+λ dξ.
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Integration by parts converted the last expression to

lim
λ→0+

iu+λ√
2π

∫ ∞

0

ξ iu+λe−ξ

1− e−ξ dξ = lim
λ→0+

iu+λ√
2π

∫ ∞

0
ξ iu+λ

∞∑
n=1

e−nξ dξ

= lim
λ→0+

λ+ iu√
2π

∞∑
n=1

�(λ+ 1+ iu)
nλ+1+iu

= lim
λ→0+

λ+ iu√
2π

ζ(λ+ 1+ iu)�(λ+ 1+ iu)

= iuζ(1+ iu)�(1+ iu).

The work of Hadamard and de la Vallée Poussin showed that ζ(1+ iu) did not vanish
for any real u, and hence the Fourier transform of K1(x) did not vanish.

Finally, Wiener had to choose K2(x) appropriately so that he got the PNT in the

form limN→∞
(∑N

n=1W(n)
)
/N = 1. Note that in this application, K2(x) had to be

continuous; it could not be the piecewise continuous function

K2(x)=
{

0, x < 0,

e−x, x > 0,

although, if allowed, this would have yielded the result immediately. So Wiener defined
two continuous functions

K21(x)=


0, x <−ε,
x+ ε
ε
, −ε ≤ x < 0,

e−x, 0 ≤ x,

K22(x)=


0, x < 0,
x

ε
e−ε, 0 ≤ x < ε,

e−x, ε ≤ x.

Here he verified that∫ ∞

−∞
K21(x)dx = 1+ ε/2 and

∫ ∞

−∞
K22(x)dx = e−ε(1+ ε/2).

Wiener’s second Tauberian theorem then implied

1+ ε/2 = lim
x→∞

∫ ∞

−∞
K21(x− y)dg(y)

= lim
x→∞

(∫ ∞

−∞
ey−x dg(y)+

∫ x+ε

x

ε− y+ x
ε

dg(y)

)
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≥ lim
x→∞

∫ x

−∞
ey−x dg(y)= lim

N→∞
1

N

∫ N

0
ηdg(lnη)

= lim
N→∞

1

N

N∑
n=1

W(n), and (35.44)

e−ε(1+ ε/2)= lim
x→∞

∫ ∞

−∞
K22(x− y)dg(y)

= lim
x→∞

(∫ x−ε

∞
ey−x dg(y)+

∫ x

x−ε

x− y
ε

e−ε dg(y)
)

= lim
x→∞

(∫ x

−∞
ey−x dg(y)−

∫ x

x−ε

(
ey−x − x− y

ε
e−ε

)
dg(y)

)

≤ lim
x→∞

∫ x

∞
ey−x dg(y)= lim

N→∞

1

N

N∑
n=1

W(n). (35.45)

Note that in the above calculation, one may use the fact that

ey−x − x− y
ε

e−ε ≥ 0 for x− ε ≤ y ≤ x.
Wiener let ε→ 0 in the inequalities (35.44) and (35.45) to get

1 ≥ lim
N→∞

1

N

N∑
n=1

W(n) and 1 ≤ lim
N→∞

1

N

N∑
n=1

W(n).

These inequalities implied that limN→∞ 1
N

∑N

n=1W(n) existed and was equal to 1. This
proof of the PNT used only one property of the zeta function: that it did not vanish on
the line consisting of points with real part equal to 1.

35.7 Kac’s Proof of Wiener’s Theorem

The basic principle behind Wiener’s Tauberian theorem is simple but penetrating. Mark
Kac illustrated this insight by producing a short proof of the 1928 form of Wiener’s the-
orem. This proof uses only Fubini’s theorem and the uniqueness of Fourier transforms;
like Wiener’s 1928 theorem, it is powerful enough to produce the PNT as a consequence.

Kac’s theorem: Suppose

K1(x) ∈L1(−∞,∞), x2K1(x) ∈L1(−∞,∞) and

k1(ξ)=
∫ ∞

−∞
K1(x)e

iξx dx �= 0, −∞< ξ <∞.
If m(y) is a bounded measurable function such that for all x∫ ∞

−∞
K1(x− y)m(y)dy = 0,

then m(y)= 0 almost everywhere.
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In proving this theorem, Kac realized that the condition x2K1(x) ∈ L1 implied that
k1(ξ) was twice continuously differentiable. Thus, let O be the set of all twice con-
tinuously differentiable functions with compact support. Since k1(ξ) �= 0 for all ξ , it
follows that every φ ∈O is of the form k1ψ for some ψ ∈O. In short, k1O=O. Let
φ ∈O and let F be the Fourier transform of φ; that is, let

F(x)=
∫ ∞

−∞
φ(ξ)eixξ dξ.

Becauseφ has compact support,F(x) is defined for all x ∈C andF ′(x) exists. Hence,F
is an entire function, andφ can be chosen such thatF is not identically zero. Thus,F has
only a countable number of zeros. SinceF ∈L1(−∞,∞) and |F(x)||k1(x−y)||m(y)|is
integrable as a function of two variables (x,y), we can apply Fubini’s theorem and
change the order of integration:

0 =
∫ ∞

−∞
F(x)

(∫ ∞

−∞
K1(x− y)m(y)dy

)
dx

=
∫ ∞

−∞
m(y)

(∫ ∞

−∞
K1(x− y)F (x)dx

)
dy

=
∫ ∞

−∞
m(y)

(∫ ∞

−∞
k1(ξ)φ(ξ)e

iξy dξ

)
dy.

Because k1O=O, we can conclude that for all φ ∈O, we have

0 =
∫ ∞

−∞
m(y)

(∫ ∞

−∞
φ(ξ)eiξy dξ

)
dy.

NowO is closed under translation so that we can replace φ(ξ) by φ(ξ −α) and change
variables to arrive at

0 =
∫ ∞

−∞
m(y)

(∫ ∞

−∞
φ(ξ)eiξy dξ

)
eiαy dy,

for all real α. By the definition of F , this gives

0 =
∫ ∞

−∞
m(y)F (y)eiαy dy

for all real α; and the uniqueness of Fourier transforms implies m(y)F (y) = 0 for
almost all y. Since F can be chosen to have countably many zeros, we conclude that
m(y)= 0 almost everywhere.

35.8 Gelfand: Normed Rings

Wiener derived the final form of his Tauberian theorem by means of his famous theorem
on nonvanishing and absolutely convergent Fourier series. About ten years later, in
1941, Izrail Gelfand provided a short and elegant derivation of this theorem, based on
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his theory of normed rings. In this effort, Gelfand utilized an abstract formulation of the
Fourier transform, now known as the Gelfand transform. In a short note published in
1939, Gelfand developed the elements of the theory of commutative Banach algebras.
These are algebras B over the complex numbers, containing a multiplicative identity
e; such algebras are complete with respect to a norm || ||, such that ||e|| = 1 and
||xy|| ≤ ||x|| · ||y|| for x and y in B; thus, Gelfand named them normed rings. In
two further short notes published in the same year, Gelfand gave applications of his
theory to absolutely convergent Fourier series and integrals and to the ring of almost
periodic functions. Gelfand used the work of Wiener and Pitt on absolutely convergent
Fourier series and integrals as a springboard in his construction of Banach algebras.
He succeeded in obtaining short proofs of the Wiener-Pitt results by revealing their
essentially algebraic character.

In his two-page fundamental paper of 1939, Gelfand denoted a normed ring, or
commutative Banach algebra, by R and observed as his first theorem that any maximal
ideal M was closed in R. His third theorem, now called the Gelfand–Mazur theorem,
stated that R/M was isomorphic to the field of complex numbers. This theorem orig-
inated with the 1918 result of Alexander Ostrowski (1893–1986), student of Landau
and Klein, that a complete Archimedean field is isomorphic to either the field of real
numbers or the field of complex numbers. In 1938 this was generalized by Stanislaw
Mazur (1905–1981), student of Stefan Banach, who proved that a normed associative
real division algebra was isomorphic to the field of real numbers, or to the field of
complex numbers, or to the noncommutative field of quarternions. In his 1941 paper
“Normierte Ringe,” Gelfand gave a beautiful proof of the particular case of Mazur’s
theorem he needed. This proof employed Liouville’s theorem that a bounded entire
function is a constant.

Gelfand was then able to associate with each x ∈ R a complex number x(M), to
obtain a complex valued function on the set of all maximal ideals of R. He defined a
topology on the set of maximal ideals to make the set into a compact Hausdorff space
and the functions x(M) continuous. In his 1941 paper, Gelfand also noted the easily
proved result that x(M)≤ ||x||. This depended on the lemma that for the multiplicative
identity e and any y ∈ R, if ||e+ y|| < 1, then y was invertible. In fact, it is easily
verified that

y−1 =−(e+ (e+ y)+ (e+ y)2 +·· ·). (35.46)

Now observe that if x(M) = λ ∈ C, then x = λe+ z where z ∈M . Assume λ �= 0,
because if λ = 0, then the inequality |x(M)| ≤ ||x|| is obvious. Then for y = z/λ,
we have

|x(M)|
||x|| = λ

||λe+ z|| =
1

||e+ y|| ≤ 1,

because if ||e+ y||< 1, then y would be invertible and not be in M .
We now have the result needed to understand Gelfand’s simple proof of Wiener’s

theorem on nonvanishing absolutely convergent Fourier series. He let R be the
set of all functions f (t) = ∑∞

n=−∞ ane
int such that

∑∞
n=−∞ |an| < ∞; he then let
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||f || = ∑∞
n=−∞ |an|. This gave R the structure of a commutative Banach algebra.

Gelfand argued that for any maximal ideal M and eit ∈ R, eit (M) was some complex
number a. He then obtained

|eit (M)| = |a| ≤ ||eit || = 1, and 1/|a| ≤ ||e−it || = 1,

and hence a = eit0 for some real number t0. This meant that any trigonometric polyno-
mial

∑N

n=−N ane
int corresponded to the number

∑N

n=−N ane
int0 . And since the mapping

R→ R/M was continuous, to every function f (t) ∈ R, there corresponded a num-
ber f (t0). Therefore, the maximal ideal M consisted of all functions f (t) such that
f (t0)= 0. It followed that if a function f (t) did not vanish at any point, then f (t) was
not a member of any maximal ideal of R. Gelfand could then conclude that f (t) had
an inverse in R, proving the theorem. Gelfand’s proof of the Gelfand–Mazur theorem,
that R′ =R/M is isomorphic to C, began by supposing that x ∈R′ and x �= λe for any
complex number λ. Then (x−λe)−1 exists for every λ. Moreover,

lim
h→0

(x− (λ+h)e)−1 − (x−λe)−1

h
=−(x−λe)−2,

and |λ−1| ||(e− x/λ)−1||→ 0 as λ→∞, (35.47)

since, for |λ| > ||x||, equation (35.46) implies that ||(e− x/λ)−1|| ≤ 1/(1− ||x/λ||).
Hence, for any multiplicative linear functional φ :R→C , that is, φ(xy)= φ(x)φ(y),
the function φ((x − λe)−1) is a bounded entire function and therefore a constant. By
(35.47), this constant must be zero. It follows that (x−λe)−1 is zero and the theorem
is proved by the contradiction:

e= (x−λe)−1(x−λe)= 0.

F. Riesz, S. Mazur, and others studied normed rings before Gelfand, but Gelfand’s
concept of the space of maximal ideals unified several isolated earlier results and opened
up new avenues for further research. In fact, the space of maximal ideals became
important in algebraic geometry also, though in that area Alexander Grothendieck
showed that the space of prime ideals produced better results.

In 1930, Gelfand (1913–2009) moved to Moscow from Odessa without completing
his secondary education. He had studied mathematics on his own from an early age; his
lack of books spurred him to great creativity.At the age of 15, for example, he discovered
the Euler–Maclaurin formula. He studied a textbook on differential calculus and Taylor
series, but he had no book on the integral calculus. While investigating the problem
of the area under y = xn, he was led to consider the sums 1n + 2n + ·· · +mn. He
soon found the Euler–Maclaurin formula and the generating function for the Bernoulli
numbers by means of the Taylor series. In a similar way, he discovered Newton’s
formula for the sums of powers symmetric functions. In Moscow, he worked in odd
jobs such as doorkeeper at the Lenin Library, while also teaching mathematics. The great
Russian mathematician A. N. Kolmogorov (1903–1987) took an interest in Gelfand,
who very soon found himself lecturing at the Moscow State University and studying
with Kolmogorov who directed him to problems in functional analysis. This resulted
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in Gelfand’s 1935 thesis, “Abstract Functions and Linear Operators.” The theory of
commutative normed rings was the subject of his 1938 doctoral thesis.

Gelfand made major contributions to several areas of mathematics such as represen-
tation theory, differential equations, computational mathematics, and biocybernetics.
At the age of 80, in collaboration with M. Kapranov and A. Zelevinsky, he was starting
to develop a theory of hypergeometric functions of many variables. Though he was
unable to bring this work to perfection, he had seen the importance of such a theory
when he was much younger. For example, in his 1956 lecture “On Some Problems of
Functional Analysis,” he gave his thoughts on the matter:

It is known that almost all the special functions of one variable to be met with in mathematical
physics may be obtained from the general hypergeometric function of Gauss by a suitable choice
of parameters. These same functions appear as elements of representations of the simplest classical
groups, namely the groups of rotations of the sphere and of the Lobacevskii plane. This connection
lies in the nature of the matter, since the special functions make their appearance by way of
considerations connected with this or that invariance of a problem under transformations of a
space. Hence it is natural to construct the theory of hypergeometric functions of several variables,
relying on results and methods of the theory of the representations of compact or locally compact
Lie groups. It is thus necessary so to construct the theory of hypergeometric functions that it
should contain the theory of general spherical functions, connected with the representations of
semi-simple groups.

35.9 Exercises

1. Prove that if A1, A2, A3, . . . ,An, . . . is a sequence such that the difference
An+1 − An converges to a limit A as n → ∞, then An/n converges to the
same limit. Cauchy stated and proved this result in his Analyse algébrique;
See Cauchy (1989) or Bradley and Sandifer (2009), pp. 35 and 42. Show that
this result implies that if a series

∑
an converges to A, then it converges (C,1)

to A.
2. Prove the theorem of Frobenius that Cesàro summability implies Abel summa-

bility. Observe that

∞∑
n=0

anx
n = (1− x)2

∞∑
n=0

(A0 +·· ·+An)xn,

where An =∑n

k=0 ak. See Frobenius (1880).
3. Prove Borel’s theorem that ordinary convergence implies Borel summability,

that is, if an →A as n→∞, then

e−x
∞∑
n=0

anx
n/n!→A as x→∞.

See Hardy (1949), p. 80.
4. Show that the condition in the second theorem of Tauber given by (35.9) is

implied by the condition nan → 0 as n→∞. See Tauber (1897).
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5. Prove Cesàro’s theorem that if
∑
an =A and

∑
bn =B and Cn = c0 +c1 +c2 +

·· ·+ cn, where cn = a0bn+ a1bn−1 +·· ·+ anb0, then

C0 +C1 +·· ·+Cn
n+ 1

→AB asn→∞.

See Cesàro (1890).
6. Suppose a(x) and b(x) are continuous functions. Prove that if∫ ∞

0
a(x)dx =A,

∫ ∞

0
b(x)dx = B,

then lim
x→∞

1

x

∫ x

0
dt

∫ t

0
du

∫ u

0
a(w)b(u−w)dw =AB.

Next, deduce that if
∫∞

0 dx
∫ x

0 a(t)b(x− t)dt is convergent, then its value isAB.
7. If

∫∞
0 a(x)dx =A, ∫∞

0 b(x)dx = B, |xa(x)|<K, and |xb(x)|<K,

then
∫ ∞

0
dx

∫ x

0
a(t)b(x− t)dt =AB.

The theorems in this and the previous exercise are due to Hardy. See Hardy
(1966–1979), vol. 6, pp. 210–212.

8. In 1971, at the age of 86 and in memory of his student Harold Davenport (1907–
1969), Littlewood gave a short proof of the PNT depending on the following
known results:

• The Hardy–Littlewood theorem of which Karamata gave a two-page
proof;

• The functional equation of the zeta function;
• The Cahen–Mellin integral for e−y in terms of the gamma function;
• The Dirichlet series for −ζ ′(s)/ζ(s) when Re s > 1;
• The complex zeros ρ of ζ(s) have a real part between 0 and 1;
• ζ ′(s)/ζ(s)=O(log t)+ s∑ρ 1/(ρ(s−ρ));
• For s = −1 + it, ζ ′(s)/ζ(s) = O

(
tA
)
, where A is a positive absolute

constant; Littlewood remarked that A would not necessarily have the
same value from one occurrence to the next;

• IfN(T ) denotes the number of zeros of ρ = β+ iγ with 0 ≤ γ ≤ T , then
N(T )=O(T A).

Note that the last result is extremely weak and far more is and was known about
N(T ), but Littlewood did not require a stronger result. First prove Littlewood’s
first lemma: Given a large positive T0, there is a T , with AT0 < T <AT0, such
that ζ ′(s)/ζ(s)=O(T A) for s = σ + iT , −1≤ σ ≤ 2. The corresponding result
for s = σ − iT follows by symmetry. Next, demonstrate Littlewood’s second
lemma that for

y > 0, −2πi
∑

W(n)e−ny =
∫ 2+i∞

2−i∞
�(s)

ζ ′(s)
ζ(s)

y−s ds .
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From this, Littlewood deduced the PNT in one page. Show how this can be done.
See Littlewood (1982), vol. 2, pp. 951–955.

9. Show that ζ(s) has no zeros when the real part of s is one. The original proofs
of Hadamard and de la Valée Poussin were slightly more complicated than later
proofs. See Titchmarsh and Heath–Brown (1986), p. 48.

35.10 Notes on the Literature

See Ore (1974), p. 97 for the quote in Latin from Abel. Consult Fejér (1970), vol. 1
for his work on Cesàro summability. Arnold (2007), pp. 115–116, contains his remarks
on Littlewood. Some readers may be interested in Arnold’s insightful comments on a
number of noted mathematicians, including his assessment of S. Kovalevskaya, that
her originality has been much underestimated by the mathematical community. In this
connection, also see Cooke (1984). See Littlewood (1982) for his papers on Tauberian
theory and Hardy (1966–1979), vol. 6, for their joint work on this subject. Hardy (1937),
mentioned in this chapter in connection with the missionary remark, is an excellent
calculus text and it has been in print for over one hundred years. Wiener (1976–1985),
vol. 2, contains his paper on Tauberian theory and its applications. Wiener (1958)
consists of a course of lectures given at Cambridge University on Fourier transforms
and their applications; it includes his proof of Littlewood’s theorem and of the PNT,
presented in our text. Hardy gave his remarks on Landau’s book in Landau’s obituary
notice; see Hardy (1966–1979), vol. 7.

An interesting account of Wiener’s contributions to mathematics can be found in
the AMS Bulletin, vol. 72, 1, part II. See especially the article by Levinson explaining
Wiener’s progression from harmonic analysis to Tauberian theory. Masani (1990) is
a comprehensive biography of Wiener, discussing his mathematical work, its myriad
applications, the development of his thought, and good references. Karamata (1930)
gives the proof presented in the text. In his original paper submitted for publication,
Karamata introduced the concept of majorizability to obtain a new condition for the
convergence of Abel summable series. This idea sheds light on Karamata’s proof,
but that portion of the paper was removed by E. Landau before he communicated it
for publication. See Nikolić (2009). For a helpful history of summable series, from
their origins through the 1920s, including a good bibliography, see Tucciarone (1973).
Korevaar (2004) is an encyclopedic treatment of Tauberian theory, covering a century of
developments, with numerous historical comments and references. See Gelfand (1987),
vol. 1 for his early papers on normed rings; this volume also contains his lecture on
functional analysis with the quote given in the text.
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Elliptic Functions: Eighteenth Century

36.1 Preliminary Remarks

In 1847, Jacobi wrote to Fuss that Euler had been motivated to found elliptic function
theory by reading Count Fagnano’s Produzioni Matematiche. Indeed, in the work of the
then unknown Fagnano, Euler discovered the key to the apparently intractable elliptic
integral. Giulio Carlo Fagnano (1682–1766) studied theology and philosophy in Rome
but avoided mathematics, though he was encouraged to study it. Many years later, after
reading Malebranche’s Concerning the Search for Truth, he taught himself mathematics
with great devotion, and from 1714 to 1720, he published some interesting papers on
integrals in little-known Italian journals. In 1718 he published his now-famous paper
on dividing the lemniscate into several equal parts. His results were not noted at first,
but were brought to light by an interesting chain of events. In the early 1740s, Fagnano
was consulted concerning the possible instability of the dome of St. Peter’s. In 1750,
in compensation for his help, Fagnano’s collected papers were published at the order
of Pope Benedict XIV. Fagnano then applied for membership in the Berlin Academy.
Euler was assigned the task of evaluating the quality of the mathematical portion of
Fagnano’s papers. Euler was intrigued by Fagnano’s results on the lemniscatic integral∫

dx√
1−x4

; these results inspired some of Euler’s most brilliant work on integral calculus,

laying the foundation for the theory of elliptic integrals and functions. It goes without
saying that Fagnano was admitted to the Academy.

The early work of Jakob and Johann Bernoulli on the lemniscatic integral
∫

dx√
1−x4

led Fagnano to investigate the topic. The equation of the lemniscate is given in cartesian
coordinates by

(x2 + y2)2 = a2(x2 − y2) (36.1)

and in polar coordinates by

r2 = a2 cos2θ, (36.2)

where a is a constant. The graph of the lemniscate resembles the symbol for infinity,
the diameter of one side given by r = a when θ = 0. For convenience, take a = 1. The

778
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cartesian coordinates x and y are then given by

2x2 = r2 + r4, (36.3)

2y2 = r2 − r4, (36.4)

where 0 ≤ r ≤ 1. A simple calculation shows that if s denotes the arclength of the
lemniscate, then

ds = dr√
1− r4

,

or

s(r)=
∫ r

0

dt√
1− t4 . (36.5)

The lemniscate appeared in Jakob Bernoulli’s solution to his own 1691 problem
on the shape of an elastic band constrained by its own weight. Johann Bernoulli later
encountered the same curve when he asked how to find a curve such that the time taken
to traverse it was proportional to the distance from a fixed point. Jakob Bernoulli opined
that the lemniscatic integral could not be evaluated in terms of the inverse trigonometric,
logarithmic, or rational functions. However, he offered the series expansion∫ 1

0

dt√
1− t4 =

∞∑
n=0

1 · 3 · 5 · · ·(2n− 1)

n!2n(4n+ 1)
, (36.6)

obtained by expanding the denominator by the binomial theorem and integrating term
by term. The Bernoullis also investigated the problem of bisecting the arcs of curves
such as the parabolic spiral.

Fagnano’s most famous accomplishment was to bisect an arc of a lemniscate and
trisect and quinsect the full arc from r = 0 to r = 1. His methods were such that these
procedures could actually be accomplished using a straight edge and compass. His
proofs were based on obtaining appropriate changes of variables and on transforming
lemniscatic integrals into other lemniscatic integrals. For example, he found that if

t = 1

r

√
1±

√
1− r4, then (36.7)

dr√
1− r4

=
√

2dt√
1+ t4 ; (36.8)

and if

u
√

2√
1−u4

= 1

r

√
1−

√
1− r4, then (36.9)

dt√
1− r4

= 2du√
1−u4

. (36.10)
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In order to better understand (36.7), write it as

r2 = 2t2

1+ t4 . (36.11)

Fagnano may have made this substitution on the basis of a similar transformation

r2 = 2t

1+ t2 , (36.12)

used to rationalize the integrand for arscine: arcsin x = ∫ x
0

dr√
1−r2

. Note that from the

substitution given by (36.12), we have

dr√
1− r2

= 2dt

1+ t2 . (36.13)

It was thus natural for Fagnano to consider (36.11), even though it did not rationalize
the integrand, so that he instead obtained (36.8). To understand (36.9), compare it with
(36.7) to get

t2 = 2u2

1−u4
. (36.14)

Making this substitution is only reasonable, since it produces

dt√
1+ t4 =

√
2du√

1−u4
. (36.15)

This means that if substitutions (36.11) and (36.14) are applied successively, the result
is (36.10). Moreover, the relationship between r and u can be expressed by

r2 = 4u2(1−u4)

(1+u4)2
. (36.16)

Thus, any arc in the first quadrant of a lemnisate, with an endpoint at the origin, can
be bisected using straight edge and compass. See this by observing that the arclength
of the lemniscate is given by (36.5) and that the arclength corresponding to the radius
vector r is double the arclength given by u, where r and u are related by (36.16). One
may check that r and u can be obtained from one another by solving only quadratic
equations. Also recall that one may use (36.3) and (36.4) to obtain the coordinates of
the points from the radius vector. This shows that we have geometric constructibility.

Fagnano’s use of
√

2dt/
√

1+ t4 in (36.8) may seem peculiar, since this expression
does not appear to take the form of an arclength of a lemniscate. Watson and Siegel
have both explained this very nicely in terms of later ideas due to Gauss and Abel. Set
t = eiπ/4v in (36.11) so that

r2 = 2iv2

1− v4
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and

dr√
1− r4

= (1+ i)dv√
1− v4

. (36.17)

Moreover, by (36.14)

v2 = −2iu2

1−u4
and (36.18)

dv√
1− v4

= (1− i)du√
1−u4

. (36.19)

Now note that these transformations produce points on the lemniscate, but they are
imaginary points. Thus, Siegel points out that (36.17) and (36.19) are examples of
“complex multiplication” of the lemniscatic integral and, when applied successively,
produce the bisection. Indeed, Fagnano was familiar with the use of complex numbers
in integrals; he discovered that∫

dt

1+ t2 = log

(
1+ it
1− it

)1/2i

,

a result also published by Johann Bernoulli in 1702. Fagnano noted the amusing
particular case

π = 2i log

(
1− i
1+ i

)
.

Upon reading Fagnano, Euler perceived that the doubling of the arclength of the lem-
niscate corresponded to the double angle formula for the sine function. This in turn was
a particular case of the addition formula for the sine function. Thus, he gradually under-
stood that Fagnano’s transformation formulas might be particular cases of an addition
formula for elliptic integrals. Euler’s earlier efforts to evaluate these integrals in terms
of elementary functions having reached a dead end, he sensed in the work of Fagnano
an innovative and productive direction for the theory of elliptic integrals.

Consider Euler’s state of mind when he began reading Fagnano. As a student of
Johann Bernoulli, he knew that the integral

∫
dt/

√
1− t4 could probably not be eval-

uated in terms of logarithms or inverse trigonometric functions. Then in 1738, he
reproved Fermat’s theorem that the equation z2 = x4 − y4 had no nontrivial integer
solutions. Note that this was one result in number theory for which Fermat wrote down
a proof! Now the substitution (36.12), rationalizing dt/

√
1− t2, also provided the

rational solutions of z2 = 1−x2 or the integer solutions of z2 = y2 −x2. Euler realized
that dt/

√
1− t4 could not be rationalized by substitution, since that would imply that

Fermat’s equation could have integer solutions, a contradiction.
Here note that Euler was well aware of the connection between Diophantine

equations of the form y2 = ax2 + bx + c and the integration of expressions of the
form

√
ax2 + bx+ c. In a 1723 letter to Goldbach, Daniel Bernoulli made specific

mention of this connection and so did Johann Bernoulli in his integral calculus lec-
tures, published in the 1740s, long after he delivered them. See chapter 13, section 8
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in this connection. Thus, it is safe to assume that Euler was aware that the elliptic
integral could not be evaluated in terms of elementary functions. He was searching
for a new path, and found it in Fagnano, upon whom he heaped praise. Within a few
weeks of receiving Fagnano’s Produzioni Matematiche, Euler gave a favorable report
to the Berlin Academy, including some of his own reflections. He soon wrote a paper
reworking and generalizing Fagnano’s results and then went on to publish several more
papers, which now fill two volumes of his Opera Omnia.

Euler’s papers and letters to Goldbach indicate that he saw a close connection
between

∫
dt/

√
1− t2 and

∫
dt/

√
1− t4. In fact, Euler’s May 30, 1752 letter to

Goldbach mentioned that

dx√
1− xx = dy√

1− yy (36.20)

had the complete integral

yy+ xx = cc+ 2xy
√
(1− cc), while (36.21)

dx√
1− x4

= dy√
1− y4

(36.22)

had the complete integral

yy+ xx = cc+ 2xy
√
(1− c4)− ccxxyy. (36.23)

Now from (36.16) we see that∫ r

0

dt√
1− t4 = 2

∫ u

0

dt√
1− t4 (36.24)

when

r = 2u
√

1−u4

1+u4
. (36.25)

The corresponding result for the arcsine function is∫ r

0

dt√
1− t2 = 2

∫ u

0

dt√
1− t2 (36.26)

when

r = 2u
√

1−u2. (36.27)

These two relations are equivalent to the double angle formula for sinx, that is, sin 2x=
2sinx cosx. And this is in turn a particular case of the addition formula

sin(x+ y)= sin x cos y+ cos x sin y.
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Next write this in terms of integrals as∫ u

0

dt√
1− t2 +

∫ v

0

dt√
1− t2 =

∫ z

0

dt√
1− t2 for z= u

√
1− v2 + v

√
1−u2. (36.28)

Recall that Euler thought that he could view Fagnano’s bisection of the lemniscatic arc
as a particular case of a possible addition formula for the lemniscatic function. In 1752,
Euler found the required addition formula:

s(u)+ s(v)= s(r), r = u
√

1− v4 + v
√

1−u4

1+u2v2
, (36.29)

where s(u) was the lemniscatic integral defined by (36.5). To understand the method
by which Euler obtained (36.29), note first that upon integrating (36.20), one obtains

arcsinx = arcsiny± arcsin c= arcsin(y
√

1− c2 ± c
√

1− y2).

The last equation implies that the complete integral of (36.20) is

x = y
√

1− c2 ± c√1− y2.

This is actually the addition formula for the sine function, also given by (36.28), and it
is equivalent to the complete integral (36.21) from Euler’s letter. In a similar manner,
Euler derived the addition formula for the lemniscatic function (36.29) by solving
equation (36.23) for x or for y. None of his papers on this topic give an account of how
he found the complete integral; they merely verify that the differential dx/

√
1− x4

remained invariant under the transformation obtained by solving (36.23) for y in terms
of x.

Euler also extended (36.29) to the more general quartic P(x)= 1+mx2 +nx4. He
proved that the complete integral of

dx√
P(x)

= dy√
P(y)

turned out to be the equation

−nc2x2y2 + x2 + y2 = c2 + 2xy
√

1+mc2 +nc4,

where c was an arbitrary constant. Upon solving for y, one obtained

y = x
√
P(c)± c√P(x)

1−nc2x2
.

Euler also obtained the addition formula for the case in which P(x) was the general
quarticA+2Bx+Cx2 +2Dx3 +Ex4. By means of a fractional linear transformation,
he reduced the general quartic to the particular case 1+mx2+nx4. The slight drawback
in Euler’s technique was that it introduced complex coefficients, whereas he intended
to use only real coefficients. This lacuna was filled by Legendre in a paper of 1793.
Euler proved these results on the addition formula during the 1750s; during the next
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twenty years, he went on to prove similar results for elliptic integrals of the second and
third kinds, to use terminology introduced by Legendre.

This body of Euler’s results brought the theory of elliptic integrals to prominence, not
only in the context of the integral calculus and Diophantine equations, but also in areas
of applied mathematics such as elasticity and dynamics, where numerical evaluations
were paramount. Since elliptic integrals could not be evaluated in terms of elementary
functions, numerical methods were sought. The early work of Jakob Bernoulli showed
this to be a tough problem. His 1694 paper discussed the elastic curve defined by

f (x)=
∫ x

0

t2 dt√
1− t4 (36.30)

with arclength s(x) given by (36.5). Bernoulli determined the intervals within which the
values of f (1) and s(1)would have to fall. In a 1704 paper, Bernoulli was able use series
methods to specify these values within shorter intervals: 1.3088173<s(1)< 1.3152635
and 0.5983546<f (1) < 0.6004034. But Bernoulli’s hypergeometric series (36.6) did
not converge rapidly enough, so that these values were not too accurate. Then, in his
Methodus Differentialis, James Stirling produced a vastly better evaluation, correct to
fifteen decimal places.

Recall that Stirling’s book contained several methods for transforming hypergeo-
metric and other series into more rapidly convergent series. In proposition 11 of his
book, he applied a specific method to Bernoulli’s hypergeometric series, obtaining:∫ 1

0

dx√
1− x4

= 1.31102877714605987 and (36.31)∫ 1

0

x2 dx√
1− x4

= 0.59907011736779611. (36.32)

Incidentally, it was a source of pride to Euler when he found, through his 1737 work
on the elastic curve, that the product of these two integrals was exactly π/4. To get
this result today, one would evaluate the beta integrals in terms of the gamma function.
And it is interesting that soon after 1737, Euler found this method of evaluating in
terms of the gamma function. Euler also used the series method to obtain numerical
approximations of some elliptic integrals. Again, these results were not accurate to
many decimal places because the series did not converge rapidly enough. Using the
transformation of integrals, Lagrange, Legendre, and Gauss found better methods, also
of great theoretical significance. But these methods owed a debt to the work of John
Landen.

In 1771, John Landen presented a fundamental transformation of elliptic integrals;
he elaborated on this result in another paper published four years later. He stated his
problem in geometric terms, expressing the length of the arc of any hyperbola in terms
of two elliptic arcs. The Landen transformation can be stated as the theorem: If sin(2φ−
θ)= k sin θ , then

(1+ k)
∫ θ

0
(1− k2 sin2u)−1/2 du= 2

∫ φ

0

(
1− 4k

(1+ k)2 sin2u

)−1/2

du. (36.33)
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We note the important particular case

(1+ k)
∫ π

0
(1− k2 sin2 θ)−1/2 dθ = 2

∫ π/2

0

(
1− 4k

(1+ k)2 sin2 θ

)−1/2

dθ. (36.34)

In Legendre’s notation

K(k)=
∫ π/2

0
(1− k2 sin2 θ)−1/2 dθ (36.35)

so that (36.34) can be expressed as

K

(
2
√
k

1+ k

)
= (1+ k)K(k). (36.36)

This last result is also referred to as Landen’s (quadratic) transformation. This and
Euler’s addition formula were the two pillars on which the early theory of elliptic
integrals and functions was constructed. Mittag-Leffler wrote, “Landen does not seem,
however, to have fully understood the value of his discovery.”

But Lagrange quickly grasped the applicability of Landen’s transformation to the
numerical approximation of elliptic integrals, and in this connection, he discovered the
concept of the arithmetic-geometric mean of two numbers. In 1784–1785, Lagrange
presented these ideas in the Turin Academy journal under the title “Sur une nouvelle
méthode de calcul intégral.” Lagrange was then a member of the Berlin Academy,
but was born in Turin and was a founder of its academy. Consequently, he was quite
interested in the growth of the Turin Academy and published several papers in its
journal. In his paper, Lagrange expressed Landen’s transformation in the elegant form:
If p > q > 0,

p′ = p+√
p2 − q2, q ′ = p−√

p2 − q2 (36.37)

and

R(p,q,y)=√
(1±p2y2)(1± q2y2), y ′ = yR/(1± q2y2), (36.38)

then

dy

R
= dy ′

R′ , (36.39)

whereR′ =R(p′,q ′,y ′). He also observed that p= (p′ +q ′)/2, the arithmetic mean of
p′ and q ′, and that q =√

p′q ′, the geometric mean of p′ and q ′. He used these relations
to define two sequences. Let p0 =p,q0 = q with p>q and for any positive or negative
integer n set

pn = pn−1 +
√
p2
n−1 − q2

n−1, qn = pn−1 −
√
p2
n−1 − q2

n−1, (36.40)

or

pn = pn+1 + qn+1

2
, qn =√

pn+1qn+1. (36.41)
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These relations define the bilateral sequence

. . .p−1, q−1, p0, q0, p1, q1, . . . .

In the positive direction, for increasing n, the qn terms tend to zero and pn terms tend
to infinity. So for the purpose of approximate evaluation of the integral, whose form
did not change by (36.39), Lagrange took qn = 0 for large enough n. This reduced the
elliptic integral to

∫
dx/

√
1±p2

nx
2, an exactly computable integral. In the negative

direction, Lagrange observed that the arithmetic means p−n and the geometric means
q−n had the same limit, because p−n−q−n→ 0 as n→∞. Thus, for sufficiently large
n, the elliptic integral could be approximately evaluated from the exactly computable
integral

∫
dx/(1±p2

−nx
2).

Apparently Lagrange did not enjoy numerical calculation as much as Newton, Stir-
ling, and Euler did, so he did not actually apply his method to find approximate values
for elliptic integrals. This was left to Legendre, who effectively used iterated forms of
(36.33) and (36.34) to construct numerical tables of such integrals.

We mention in passing that Euler used results obtainable from the addition formula
to study Diophantine equations of the form y2 = p(x) where p(x) was a polynomial
of degree four with integer coefficients. Since Euler did not note the connection with
elliptic integrals, we are not certain that he was aware of it. In 1834, Jacobi reviewed
some of these papers of Euler and on that basis, he concluded that Euler knew of
this relationship. In a similar way, Euler as well as Lagrange employed quadratic (or
second-order) transformations (isogenies) to study the special Diophantine equations
z2 = x4 ± y4 and z2 = 2x4 − y4. This may be one reason that Lagrange did not refer
to Landen in his 1784–85 paper on elliptic integrals. Another reason, of course, is that
mathematicians in the eighteenth century were not in the habit of giving an exhaus-
tive list of references. Thus, Mittag-Leffler assumed that Landen and Lagrange had
independently discovered the Landen transform. In fact, on January 3, 1777, Lagrange
wrote to his friend Condorcet that he had seen Landen’s 1775 paper containing the
theorem reducing the problem of the rectification of arcs of ellipses to a problem of
hyperbolic arcs. Lagrange wrote that he found this a singular result and that he had
not yet verified it. Apparently, he found the time to study Landen and went on to dis-
cover the arithmetic-geometric mean and its use in numerical evaluation of integrals.
It is remarkable that he did not do more with it. Perhaps he was already beginning
to lose interest in mathematical research. After 1785, he produced no further original
mathematical results, though he did publish important and influential books, including
Mécanique analytique of 1788 and Fonctions analytiques of 1797.

36.2 Fagnano Divides the Lemniscate

In 1691, Jakob Bernoulli observed that the arc length of the parabolic spiral (a− r)2 =
2abθ was given by

s =
∫ √

1+ r2(a− r)2
a2b2

dr ,



36.2 Fagnano Divides the Lemniscate 787

and that the integrand was an even function of 1
2a− r . Therefore, he had∫ 1

2 a

1
2 a−c

=
∫ 1

2 a+c

1
2 a

.

He could then conclude that the length of the arc of the spiral joining the points cor-
responding to r = 1

2a − c and r = 1
2a equaled the length of the arc from r = 1

2a to
r = 1

2a+ c, the two arcs were incongruent.
Fagnano extended this and other of Bernoulli’s results to arcs of other curves,

including the lemniscate, given by

(x2 + y2)2 = x2 − y2 or r2 = cos 2θ.

In 1718, Fagnano published his two-part work on the division of the lemniscate. In the
first part he stated that if

u=
√

1− z2

√
1+ z2

, then (36.42)∫
dz√

1− z4
=

∫
− du√

1−u4
. (36.43)

Fagnano’s statement of this result took an apparently more general form, but we can
obtain it from this one by replacing u and z by u/a and z/a, where a is a constant. He
observed that the result could be proved by differentiating (36.42) and substituting in
(36.43). As an immediate consequence of this theorem, it was clear that

u2z2 +u2 + z2 − 1 = 0 (36.44)

was an integral of the equation

dz√
1− z4

=± du√
1−u4

. (36.45)

As mentioned earlier, Euler noticed this fact very quickly. We can write the theorem in
modern form as ∫ z

0

dt√
1− t4 =

∫ 1

u

dt√
1− t4 , (36.46)

when u and z are related by (36.42) or (36.44). This means that in Figure 36.1, if
O,P,Q, andA denote points on the lemniscate corresponding to the values 0, z,u and
1 of the radius vector, then arc OP = arc QA in length.

In the last section of part one of his paper, Fagnano observed that the full lemniscatic
arc OA would be bisected if the points P and Q coincided. This would happen when
z= u and then (36.44) would imply

z4 + 2z2 − 1 = 0, or z= u=
√√

2− 1.
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O

P
Q

A

z u

Figure 36.1. Fagnano’s lemniscate.

Thus, this constructible number would express the distance between the point of
bisection and the origin.

Fagnano started the second part of the paper on the division of the lemniscate with
the theorem: If

x =
√

1∓√
1− z4

z
, then (36.47)

±dz√
1− z4

= dx
√

2√
1+ x4

. (36.48)

His proof consisted of the observations that

dx = ±dz
√

1∓√
1− z4

z2
√

1− z4
,

√
1+ x4

√
2

=
√

1∓√
1− z4

z2
.

Note that in (36.48) the differential on the right-hand side is apparently not a lemniscatic
differential. So Fagnano stated another theorem: If

x = u
√

2√
1−u4

, then (36.49)

du√
1−u4

= 1√
2
× dx√

1+ x4
. (36.50)

Once again, his proof simply noted that differentiating (36.49) resulted in

dx√
2
= du√

1−u4
× 1+u4

1−u4
,

and that (36.49) also implied

√
1+ x4 = 1+u4

1−u4
.
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By combining these theorems, he obtained the result on the duplication of the
lemniscatic arc starting at the origin: If

u
√

2√
1−u4

= 1

z

√
1−

√
1− z4, then (36.51)

dz√
1− z4

= 2du√
1−u4

. (36.52)

Note that if P corresponds to z and Q to u, and if z and u are related by (36.51), then
(36.52) shows that arc OP = 2 arc OQ. This means that if the value of z is given,
then u can be obtained by taking square roots and conversely. Hence, duplication and
bisection can be done by straight edge and compass. Fagnano made the observation
that (36.51) was equivalent to the relation

z= 2u
√

1−u4

1+u4
. (36.53)

Recall that Euler saw this result as the extension of the double angle formula for arcsine,
and it was perhaps this result that led him to the addition formula for the lemniscatic
integral.

Fagnano trisected the full arcOA of the lemniscate by combining (36.42) and (36.43)
with (36.51) and (36.52). To obtain the trisection in a simpler form, he presented another
transformation: If

√
1− t4
t
√

2
= 1

z

√
1−

√
1− z4, then (36.54)

dz√
1− z4

=− 2dt√
1− t4 . (36.55)

He then noted that he could obtain a point of trisection by setting t = z and that the

trisection point would be given by t = 4
√

2
√

3− 3. One may check that for t = z,
(36.54) simplifies to the equation t8 + 6t4 − 3 = 0, and that 2

√
3− 3 is a solution of

x2 + 6x− 3 = 0.
Fagnano went on to work out how the arcOA could be divided into five equal parts.

He did not write down the details, but, based on his trisection method, the method
would probably begin by taking points on the lemniscate for which the distances from
the origin are t,z,v, and u such that arc Ot = 2 arc Oz, arc Oz = 2 arc Ov, and arc
Ov = arc uA. Fagnano’s formulas give the relations connecting t with z, z with v, and
v with u. Finally, if we take t = u, then we get arc Ot = 4/5 arc uA and the equation
for t reduces to

t24 + 50t20 − 125t16 + 300t12 − 105t8 − 62t4 + 5 = 0.

Although Fagnano did not publish this equation, it is likely that he obtained and solved
it. Gauss derived the equation, and it is explicitly given in his collected works. The
twenty-fourth degree polynomial has factors

t8 − 2t4 + 5 and t8 + (26± 12
√

5)t4 + 9± 4
√

5,
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where we choose either both plus signs or both minus signs. Note that the first poly-
nomial has only complex roots, but the real roots of the other two polynomials can
be expressed in terms of square roots and are therefore constructible. The quinsection
may be obtained by solving the polynomial with both negative signs. Fagnano stated
the corollary that the quadrant of the leminscate could be divided algebraically into
a number of equal parts if that number were of the form 2 × 2m,3 × 2m,5 × 2m for
any positive integer m. He wrote that this was a “new and singular property” of his
curve.

36.3 Euler: Addition Formula

Although Euler quickly perceived the importance of Fagnano’s work on the lemniscatic
integral, he could not at first locate any fundamental guiding principle among the large
number of apparently ad hoc transformations applied somewhat randomly. It took him
a little while to discover the required unifying ideas: the addition formula and the
complete integral for the equation

mdx√
1− x4

= ndy√
1− y4

. (36.56)

It appears that Euler spotted a hint: Fagnano’s result that

(x2 + 1)(y2 + 1)= 2 or x2y2 + x2 + y2 − 1 = 0

actually gave a special integral of the preceding differential equation, whenm= n= 1.
In his first paper on this topic, presented to the Academy in 1752, Euler gave some
preliminary results on this hint. But soon after this, as his letter to Goldbach indicated,
he discovered the general algebraic integral and published it in his 1756–57 paper. In
the first theorem of this paper, Euler took m = n = 1 and stated that the differential
equation

dx√
1− x4

= dy√
1− y4

(36.57)

had the complete integral

xx+ yy+ ccxxyy = cc+ 2xy
√
(1− c4). (36.58)

Here note that by taking c= 1, one obtains Fagnano’s result (36.44).
Euler argued that taking the differential of (36.58) gave

x dx+ y dy+ ccxy(x dy+ y dx)= (x dy+ y dx)
√
(1− c4),

and hence

dx(x+ ccxyy− y
√
(1− c4))+ dy(y+ ccxxy− x

√
(1− c4))= 0. (36.59)
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He solved (36.58) as a quadratic in y (and then in x), choosing the signs of the square
roots so that y = c when x = 0 to get

y = x
√
(1− c4)+ c√(1− x4)

1+ ccxx and x = y
√
(1− c4)− c√(1− y4)

1+ ccyy .

These equations implied that

x+ ccxyy = y
√
(1− c4)− c√(1− y4),

y+ ccxxy− x
√
(1− c4)= c

√
(1− x4).

Euler substituted these relations in (36.59) to obtain

−cdx
√
(1− y4)+ cdy

√
(1− x4)= 0.

This was equivalent to (36.57), and the theorem was proved. Euler then noted that this
theorem was equivalent to the formula∫ u

0

dt√
1− t4 +

∫ c

0

dt√
1− t4 =

∫ x

0

dt√
1− t4

where

x = u
√
(1− c4)+ c√(1−u4)

1+ c2u2
.

This was the famous addition formula for the lemniscatic integral and it generalized
Fagnano’s duplication formula obtained by taking u = c. Thus, Euler saw that the
transformation that left the differential dx/

√
1− x4 invariant also provided the addition

formula.
Euler then considered the more general differential dx/

√
1+mx2 +nx4 and proved

in a similar way that it remained invariant under the transformation

cc− xx− yy+nccxxyy+ 2xy
√
(1+mcc+nc4)= 0.

This in turn yielded an appropriate addition formula for this more general elliptic
integral.

36.4 Cayley on Landen’s Transformation

Landen’s exposition of his transformation is not easy to read; in fact, G. N. Watson
aptly described it as “clumsy.” However, Cayley’s 1876 text (reprinted in 1895) on
elliptic functions, described in his preface as “founded upon Legendre’s Traité des
fonctions elliptiques and upon Jacobi’s Fundamenta Nova, and Memoirs by him in
Crelle’s Journal,” presents Landen’s work in more felicitous notation and in such a
manner as to outline its geometric underpinnings and make clear its essential and
useful features.
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A

O

B

P

Q

P'

Figure 36.2. Cayley’s diagram for Landen’s transformation.

Summarizing Cayley, with reference to Figure 36.2, we begin by taking a pointP on
the circle with centerO and another pointQ, on the diameterAB. SetQA= a, QB =
b, AQ̂P = φ1, AB̂P = φ so thatAÔP = 2φ. Now let a1 = (a+b)/2, b1 =

√
ab, c1 =

(a− b)/2. Then OA=OB =OP = a1, OQ= a1 − b= (a− b)/2 = c1,

QP sinφ1 = a1 sin 2φ,

QP cosφ1 = c1 + a1 cos 2φ,

QP 2 = c2
1 + 2c1a1 cos 2φ+ a2

1

= 1

2
(a2 + b2)(cos2φ+ sin2φ)+ 1

2
(a2 − b2)(cos2φ− sin2φ)

= a2 cos2φ+ b2 sin2φ.

Therefore,

sinφ1 = a1 sin 2φ√
a2 cos2φ+ b2 sin2φ

and cosφ1 = c1 + a1 cos 2φ√
a2 cos2φ+ b2 sin2φ

, (36.60)

a2
1 cos2φ1 + b2

1 sin2φ1 = a2
1(a cos2φ+ b sin2φ)2

a2 cos2φ+ b2 sin2φ
.

A simple calculation produces

sin(2φ−φ1)= 1

2
· (a− b)sin 2φ√
a2 cos2φ+ b2 sin2φ

, (36.61)

cos(2φ−φ1)= 1

a1
·
√
a2

1 cos2φ+ b2
1 sin2φ.
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Take a point P ′ on the circle close enough to P so that we can regard PP ′ as tangent
to the circle. An elementary geometric argument shows that

PQdφ1 = PP ′ sinP ′P̂Q= 2a1dφ cos(2φ−φ1).

This is equivalent to

2dφ√
a2 cos2φ+ b2 sin2φ

= dφ1√
a2

1 cos2φ1 + b2
1 sin2φ1

. (36.62)

Thus, if φ and φ1 are related by (36.61) and 0 ≤ φ ≤ π/2, then∫ φ

0

dt√
a2 cos2 t + b2 sin2 t

= 1

2

∫ φ1

0

dt√
a2

1 cos2 t + b2
1 sin2 t

. (36.63)

In particular,∫ π/2

0

dt√
a2 cos2 t + b2 sin2 t

= 1

2

∫ π

0

dt√
a2

1 cos2 t + b2
1 sin2 t

=
∫ π/2

0

dt√
a2

1 cos2 t + b2
1 sin2 t

. (36.64)

Using the notation of Legendre, we set

k2 = 1− b2

a2
, k′ = b

a
and k2

1 = 1− b2
1

a2
1

.

Then (36.63) can be written as∫ φ

0

dt√
1− k2 sin2 t

= 1

2

a

a1

∫ φ1

0

dt√
1− k2

1 sin2 t

= 1

2
(1+ k1)

∫ φ1

0

dt√
1− k2

1 sin2 t

. (36.65)

This is in fact Landen’s transformation (36.33). To see this, compare the first equations
in (36.60) and (36.61) to get

sin(2φ−φ1)= k1 sinφ1. (36.66)

Now (36.33) follows from (36.65) by noting that 4k1/(1+ k1)
2 = k2.

Finally, we observe that if we write y = sinφ1 and x = sinφ, then (36.66) can be
expressed as the quadratic transformation

y = (1+ k′)x√1− x2

√
1− k2x2

, (36.67)
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and (36.62) takes the form

(1+ k1)dy√
(1− y2)(1− k2

1y
2)

= 2dx√
(1− x2)(1− k2x2)

. (36.68)

36.5 Lagrange, Gauss, Ivory on the agM

Lagrange was the first mathematician to observe the connection between the arithmetic
geometric mean (agM) and elliptic integrals. His 1784–85 result (36.39) essentially
expressed this connection. He made this discovery as he pursued a numerical method
for evaluating elliptic integrals, and he did not further investigate the concept of the
agM. In his 1818 paper on astronomy, Gauss gave a formula relating the agM of two
positive real numbers with an elliptic integral and he worked out an extensive theory
on this topic, but published very little of it. Gauss denoted the agM of two positive
numbers a and b, with a ≥ b, as M(a,b). He considered the sequence

a1 = a+ b
2
, b1 =

√
ab, a2 = a1 + b1

2
, b2 =

√
a1b1, etc., (36.69)

and noted that

b≤ b1 ≤ b2 ≤ ·· · ≤ bn ≤ ·· · ≤ an ≤ ·· · ≤ a1 ≤ a.
He observed that if a = b, then an = bn for all n. On the other hand, if a > b, then

an− bn
an−1 − bn−1

= an−1 − bn−1

4(an+ bn) = an−1 − bn−1

2(an−1 + bn−1)+ 4bn

and hence

an− bn < an−1 − bn−1

2
<
a− b

2n
. (36.70)

Consequently, the increasing sequence bn and the decreasing sequence an converged
to the same number denoted by M(a,b).

Gauss also noted the simple properties of M(a,b) given by the equations

M(a,b)=M(a1,b1) and M(na,nb)= nM(a,b) for any realn > 0. (36.71)

From these equations he deduced a number of relations; for instance, for x= 2t/(1+t2),
he had

M(1+ x,1− x)=M
(

1,
1− t2
1+ t2

)
= 1

1+ t2M(1− t
2,1+ t2). (36.72)

Gauss’s theorem, published in 1818 but proved much earlier, stated that

1

M(a,b)
= 2

π

∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

. (36.73)
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To see how Lagrange’s transformation implies this theorem of Gauss, denote the integral
in (36.73) by I (a,b) and set x = (cot θ)/b to get

I (a,b)= 2

π

∫ ∞

0

dx√
(1+ a2x2)(1+ b2x2)

. (36.74)

Recall Lagrange’s result (36.39), that if

x = y
√

1+ a2
1y

2

1+ b2
1y

2
, then (36.75)

dx√
(1+ a2x2)(1+ b2x2)

= dy√
(1+ a2

1y
2)(1+ b2

1y
2)
. (36.76)

When this result is applied to (36.74), we see that

I (a,b)= I (a1,b1). (36.77)

Upon iteration, we conclude that if c=M(a,b), then

I (a,b)= I (an,bn)= I (c,c)= 2

π

∫ ∞

0

dx

1+ c2x2
= 1

c
.

This proves Gauss’s theorem. Note that (36.64) is identical to (36.77).
Gauss derived (36.73) by means of a different transformation. He set

sin θ = 2a sin θ ′

(a+ b)cos2 θ ′ + 2a sin2 θ ′
= 2a sin θ ′

a+ b+ (a− b)sin2 θ ′

and observed that (36.73) would follow. Jacobi provided more details on this trans-
formation in section 38 of his Fundamenta Nova, published a decade after Gauss’s
paper. Since Jacobi was pursuing other threads, his presentation is not as direct as
that in Cayley’s 1876 treatise. Following Cayley, replace sin θ and sin θ ′ by y and x,
respectively, to write Gauss’s substitution as

y = (1+ k)x
1+ kx2

, k = a− b
a+ b . (36.78)

This is the form in which Gauss’s transformation is often presented, particularly in
connection with the transformation theory of elliptic functions. One then perceives that
proving the relation I (a,b)= I (a1,b1) is equivalent to showing that

dy√
(1− y2)(1−λ2y2)

= (1+ k)dx√
(1− x2)(1− k2x2)

, (36.79)

where λ= 2
√
k/(1+ k).
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To prove (36.79), let D = 1+ kx2, the denominator of y in (36.78). Then

1− y = (1− x)(1− kx)/D,
1+ y = (1+ x)(1+ kx)/D,

1−λx = (1−√
kx)/D,

1+λx = (1+√
kx)/D.

Consequently,√
(1− y2)(1−λ2y2)= (1− kx2)

√
(1− x2)(1− k2x2)D2

dy = (1+ k)(1− kx2)dx/D2.

The last two formulas imply (36.79), and we have another proof of Gauss’s theorem.
Gauss gave yet another proof, by means of power series, though he did not publish it.

We reproduce Gauss’s proof, but we use subscript and factorial symbols where Gauss
did not. In this derivation, he assumed that M(1+ x,1− x) had a series expansion so
that he could write

1

M(1+ x,1− x) =A0 +A1x
2 +A2x

4 +A3x
6 +·· · , A0 = 1.

Using (36.72), he had

2t

1+ t2 +A1

(
2t

1+ t2
)3

+A2

(
2t

1+ t2
)5

+·· · = 2t (A0 +A1t
4 +A2t

8 +·· ·).

He equated the coefficients of powers of t to obtain the relations

A0 = 1,

0 = 1− 4A1,

A1 = 1− 12A1 + 16A2,

0 = 1− 24A1 + 80A2 − 64A3,

A2 = 1− 40A1 + 240A2 − 448A3 + 256A4, etc.

Unlike earlier mathematicians, he also presented the general nth relation

M = 1− 4A1
n(n− 1)

2! + 16A2
(n+ 1)n(n− 1)(n− 2)

4!
− 64A3

(n+ 2)(n+ 1)n(n− 1)(n− 2)(n− 3)

6! + · · · ,
with the remark that M = 0 when n was even and M = A(n−1)/2 when n was odd; in
other words, M was the (n+ 1)/2th term of the series A0,A1,A2, . . .. Taking 0 = 0
as the 0th equation, and abbreviating and labeling the equations as [0], [1], [2], . . ., he
wrote down the equations

12[2]− 02[0], 22[3]− 12[1], 32[4]− 22[2], 42[5]− 32[3], 52[6]− 42[4], . . . .
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In general, for the nth equation he had

n2N − (n− 1)2L= (2n− 1)

(
1− 22A1

3n2 − 3n+ 2

2! + 24A2
n(n− 1)(5n2 − 5n+ 6

4!
)

− (2n− 1)

(
26A3

(n+ 1)n(n− 1)(n− 2)(7n2 − 7n+ 12)

6! + · · ·
)
.

(36.80)

Gauss observed in a footnote thatL andN were equal toA(n−2)/2 andAn/2, respectively,
when n was even, and zero when n was odd. In another footnote, he wrote that the
derivation connected with the forms n2N − (n− 1)2L was explained in article 162
of his Disquisitiones Arithmeticae. It may be of interest to note that in that article,
Gauss discussed the problem of determining all transformations of the formX= α′x+
β ′y, Y = γ ′x+ σ ′y, given one known transformation X = αx+βy, Y = γ x+ σy of
AX2 + 2BXY +CY 2 to ax2 + 2bxy+ cy2.

Continuing the proof, let k = 2l− 1. Gauss wrote the lth term of the expression in
(36.80) (without the factor 2n− 1) as

±2k−1A(k−1)/2

(
n+ k−5

2

)(
n+ k−7

2

) · · ·(n− k−3
2

)
(kn2 − kn+ (k2 − 1)/4)

(k− 1)! . (36.81)

We note that the sign is plus when l− 1 is even and minus when l− 1 is odd. Gauss
then divided each such term into two parts and added the second part of one term to
the first part of the succeeding term. As a first step in this process, he observed that

kn2 − kn+ k2 − 1

4
= k

(
n− k− 1

2

)(
n+ k− 3

2

)
+ (k− 1)3

4
.

Using this, he could express the term (36.81) as a sum of two terms

±
(

2k−1k2A(k−1)/2

(
n+ k−3

2

)(
n+ k−1

2

) · · ·(n− k−1
2

)
k!

)

+
(

2k−1A(k−1)/2
n+ k−5

2 · · ·n− k−3
2

(k− 2)! ·
(
k− 1

2

)2
)
.

When he added the second part of this expression to the first part of the succeeding
expression, he obtained

2k−1

(
n+ k−3

2

)(
n+ k−5

2

) · · ·(n− k−1
2

)
k!

(
(k+ 1)2A(k+1)/2 − k2A(k−1)/2

)
.
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Thus, he could express (36.80) as

n2N − (n− 1)2L= (2n− 1)

(
(A0 − 22A1)− 4

n(n− 1)

2!3 (32A1 − 42A2)

)
+ (2n− 1)

(
42 (n+ 1)n(n− 1)(n− 2)

4!5 (52A2 − 62A3)

)
− (2n− 1)

(
43 (n+ 2)(n+ 1) · · ·(n− 2)(n− 3)

6!7
× (72A3 − 62A2)+·· ·

)
.

To clarify the general result implied by this procedure, Gauss wrote the first few special
cases:

0 = 1− 4A1

4A1 − 1 = 3(1− 4A1)− 4(9A1 − 16A2)

0 = 5(1− 4A1)− 20(9A1 − 16A2)+ 16(25A2 − 36A3)

16A2 − 9A1 = 7(1− 4A1)− 56(9A1 − 16A2)+ 112(25A2 − 36A3)

− 65(49A3 − 64A4) etc.

Thus, he found that

A1 = 12

22
, A2 = 32

42
A1 = 12 · 32

22 · 42
, A3 = 12 · 32 · 52

22 · 42 · 62
, . . . ,

and in general

An = 12 · 32 · · ·(2n− 1)2

22 · 42 · · ·(2n)2 .

Gauss then related 1/M(1 + x,1 − x) with the elliptic integral by evaluating the
following integral as a series:

1

π

∫ π

0
(1− x2 cos2 θ)−1/2 dθ = 1

π

∫ π

0

(
1+ 1

2
x2 cos2 θ + 1

2
· 3

4
x4 cos4 θ +·· ·

)
dθ

= 1+ 12

22
x2 + 12 · 32

22 · 42
x4 +·· · . (36.82)

Since the series for the integral and the agM were the same, he concluded that

1

M(1+ x,1− x) =
2

π

∫ π/2

0

dθ√
1− x2 sin2 θ

.

Finally, one may see that by taking x =√
1− b2/a2, we have Gauss’s formula (36.73).

In a 1796 paper, James Ivory gave an interesting new method to prove the formula

K

(
2
√
x

1+ x
)
= (1+ x)K(x), (36.83)
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where K(x) = 2
π

∫ π/2
0 dθ/

√
1− x2 cos2 θ . Legendre was the first to prove this result,

for the purpose of numerically evaluating complete elliptic integrals; his proof used
the Landen transformation. In his paper, Ivory did not mention the agM and, indeed,
he may not have been aware of its significance even if he had noticed it in Lagrange’s
1785 paper. In the cover letter accompanying his paper, Ivory explained that his aim
was to present a simple method for obtaining the expansion

(a2 + b2 − 2abcosφ)n =A+B cosφ+C cos2φ+·· · . (36.84)

Ivory started with the relation sin(ψ −φ)= c sinψ , took its fluxion (derivative), and
simplified to get

φ̇ =
√

1− c2 sin2ψ − ccosψ√
1− c2 sin2ψ

ψ̇.

He performed an elementary calculation to show that the numerator could be expressed
as

√
1+ c2 − 2ccosφ. This led him to the equation

φ̇√
1+ c2 − 2ccosφ

= ψ̇√
1− c2 sin2ψ

. (36.85)

He then set

c′ = 1−√
1− c2

1+√
1− c2

(36.86)

to find that √
1− c2 sin2ψ =

√
1+ c′2 + 2c′cos2ψ

1+ c′ .

Thus, he could express (36.85) in the form

φ̇√
1+ c2 − 2ccosφ

= (1+ c′)ψ̇√
1+ c′2 + 2c′ cos2ψ

. (36.87)

Ivory’s contribution was a new method for evaluating the integrals∫ π

0

dφ√
1+ c2 − 2ccosφ

=
∫ π

0

(1+ c′)dψ√
1+ c′2 + 2c′ cos2ψ

. (36.88)

First, he observed that by the binomial theorem

(1+ c2 − 2ccosφ)−1/2 = (1− ceiφ)−1/2(1− ce−iφ)−1/2

=
(

1+ 1

2
ceiφ + 1 · 3

2 · 4c
2e2iφ +·· ·

)
×

(
1+ 1

2
ce−iφ + 1 · 3

2 · 4c
2e−2iφ +·· ·

)
. (36.89)

Ivory then noted that multiplying these two series gave him the cosine expansion when
n=−1/2 in (36.84) . This showed that the value of the integral on the left-hand side
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of (36.88) was simply the constant A. Since the constant term A was easy to evaluate
from the product of the two series, he could express equation (36.88) as∫ π

0

dφ√
1+ c2 − 2ccosφ

= 1+ 12

22
c2 + 12 · 32

22 · 42
c4 +·· ·

= (1+ c′)
(

1+ 12

22
c′2 + 12 · 32

22 · 42
c′4 +·· ·

)
. (36.90)

Observe that this proves (36.83).
Ivory remarked that c′ was smaller than c; as an example, he pointed out that when

c= 4/5, then c′ = 1/4. Thus, (36.90) was very useful for computational purposes. Ivory
noted, as Legendre had done before him, that the formula’s computational effectiveness
was greatly improved by iteration. Now note that (36.90) can be expressed as a quadratic
transformation of hypergeometric functions:

F(1/2,1/2,1,c2)= (1+ c′)F (1/2,1/2,1,c′2),
where c′ is given by (36.86). Gauss may have been motivated to study quadratic
transformations of hypergeometric functions because of this and similar results.

We have discussed two different quadratic transformations of elliptic integrals. We
can rewrite Landen’s transformation (36.33) in the form: If λ= 2

√
k/(1+k),λ2+λ′2 =

1, and z= (1+λ′)y√(1− y2)/
√
(1−λ2y2), then

(1+ k)dz√
(1− z2)(1− k2z2)

= 2dy√
(1− y2)(1− k2y2)

.

This is one quadratic transformation and the other is Gauss’s transformation given by
the equations (36.78) and (36.79). It is easy to check that if these transformations are
applied one after the other, we get the duplication of the elliptic integral:

dz√
(1− z2)(1− k2z2)

= 2dx√
(1− x2)(1− k2x2)

,

z= 2x
√

1− x2
√

1− k2x2/(1− k2x4).

36.6 Remarks on Gauss and Elliptic Functions

Gauss wrote in an 1816 letter to his friend Schumacher that he rediscovered the
arithmetic-geometric mean in 1791 at the age of 14. From 1791 until 1800, Gauss
made a series of discoveries advancing the theory of elliptic integrals and functions
to new and extraordinary heights. Among his great achievements in this area were the
inversion of the elliptic integral and the consequent discovery of double periodicity and
the development of elliptic functions as power series and as double products, leading to
series and product expansions in terms of trigonometric functions. This in turn brought
him to the discovery of the theta functions and the triple product identity. The initial
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motivation behind Gauss’s work on elliptic functions was the problem of the division of
the lemniscate. Gauss solved the problem by means of complex multiplication of elliptic
functions. Finally, in 1800, he extended his youthful work on the arithmetic-geometric
mean by considering the agM of two complex numbers. He found that the agM in this
case was countably many-valued, and his attempts to find a relation among the values
led him deeper into the theory of theta and modular functions. In this connection, Gauss
discovered an important transformation of theta functions:

∞∑
k=−∞

e−α(k+w)2 =
√
π

α

∞∑
k=−∞

e−
n2π2
α +nωπi .

It is remarkable that Gauss published very little of these groundbreaking theories,
although they surely rank among his greatest discoveries in pure mathematics. Perhaps
he wished to first develop a coherent theory of functions of complex variables. Con-
sider the fact that, though he initially discovered double periodicity through a formal
use of complex numbers, his 1800 work defined an elliptic function by means of a
ratio of two theta functions. His early definition of an elliptic function by means of the
inversion of an elliptic integral would require the concept and careful use of analytic
continuation, not then developed. We note that Gauss’s 1811 letter to Bessel shows
that he was making inroads into the mysteries of complex variables. The unpublished
portion of Gauss’s 1812 paper on hypergeometric series also gives some indication
of his understanding of analytic continuation. However, it seems that after 1805–06,
Gauss never found the time to completely develop his ideas in number theory, ellip-
tic functions, or complex variables. From 1801 onward, he researched applied topics
such as astronomy, geodesy, telegraphy, magnetism, crystallography, and optics. Of
course, mathematical problems in these areas led him to interesting and important
discoveries such as the method of least squares, trigonometric interpolation, numer-
ical integration, the technique of fast Fourier transforms, and the theory of curved
surfaces.

Thus, Gauss never wrote up a detailed account of his researches on elliptic functions,
though he wrote a substantial amount on theta functions. In his fragmentary notes on
elliptic functions, one may see some of the main results but usually there are no details
of the methods he employed. However, in a letter to Schumacher, Gauss wrote that
Abel’s first paper on the theory of elliptic functions followed the same path he himself
had trod in 1798 and that Abel’s work relieved him of the burden of publishing that part
of his work. He wrote a similar letter to Crelle and the entries in Gauss’s diary from
the period 1797–1800 bear out these assertions.

Gauss’s investigations relating to elliptic functions, the agM, and theta functions
took place during 1791–1800, the critical period when he was maturing into a most
formidable mathematical mind. Gauss’s early interest in mathematics was kindled by his
association with Johann Bartels (1769–1836), a teacher’s assistant at the school Gauss
attended. Gauss was 11 years old when he and Bartels studied infinite series and the bino-
mial theorem. Bartels later became professor of mathematics at the University of Kazan
where he taught the great Russian mathematician N. I. Lobachevsky (1793–1856), one
of the discoverers of non-Euclidean geometry. Having become known as a promising
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student, in 1791 Gauss met the Duke of Braunschweig and was presented with a table
of logarithms by the minister of state. Greatly impressed with the genius of Gauss,
the Duke provided financial support for Gauss to attend the Collegium Carolinum in
Braunschweig (Brunswick). Entering the Collegium in 1792, Gauss became accom-
plished in languages and began studying the works of Newton, Euler, and Lagrange.
He was impressed by Euler’s pentagonal number theorem:

∞∏
n=1

(1− xn)=
∞∑

n=−∞
(−1)nxn(3n−1)/2.

This result led him to investigate series whose exponents were square or triangular
numbers. Gauss is reported to have said that in 1794 he knew the connection between
such series and the agM. This is very likely because the series identities needed for this
question could be easily proved by methods Gauss had seen in the works of Euler. To
state the identities, set A(x)=∑

xn
2

and B(x)=∑
(−1)nxn

2
where the sums are over

all integers. Then

A(x)+B(x)= 2A(x4), (36.91)

A2(x)+B2(x)= 2A2(x2), (36.92)

A(x)B(x)= B2(x2). (36.93)

The first identity is almost obvious; the second can be proved by first observing that
the coefficient of xn in A2(x) is the number of ways n can be expressed as a sum of
two integer squares and then noting that this is the same as the number of ways 2n can
be expressed as a sum of two integer squares. The third identity is a consequence of
the first two because

A(x)B(x)= (A(x)+B(x))2/2− (A2(x)+B2(x))/2

= 2A2(x4)−A2(x2)= B2(x2).

It follows from (36.91 ) and (36.93) that the arithmetic mean and geometric mean of
A2(x) and B2(x) are A2(x2) and B2(x2). This kind of reasoning must have been very
familiar to Gauss in 1794, both from his investigations in collaboration with Bartels
and from his study of Euler’s Introductio. Gauss wrote up his results connecting series
with the agM at a later date. In that manuscript, he derived the properties of the series
by means of their product representations obtained from the triple product identity.

In 1794–95, Gauss does not seem to have been aware of the connection of these series
or the agM with elliptic integrals. Then in October 1795, with the continued support
of the Duke, Gauss registered as a student at the University of Göttingen where he had
access to an excellent library. For example, in early 1796 he borrowed many volumes of
the Mémories de l’Académie de Berlin from the library. The volumes contained several
works of Lagrange on number theory, algebra, and other mathematical topics. Gauss
first mentioned elliptic integrals in his mathematical diary on September 9, 1796. He
gave the power series expansion of the inverse of the elliptic integral

∫
(1−x3)−1/2 dx;

he found it by Newton’s reversion of series method. A few days later, he noted the
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series for the inverse of the more general integral
∫
(1− xn)−1/2 dx. In January 1797,

his interest in elliptic integrals became more serious. His notes indicate that he had
already studied Stirling and Euler on this topic. He noted in his January 7 entry in the
diary that

∫ √
sinx dx = 2

∫
yy dy√
1− y4

,

∫ √
1

sinx
dx = 2

∫
dy√

1− y4
, yy = sin

cos
x,

and a day later he recorded that he had started investigating the elastic curve depending
on

∫
(1−x4)−1/2 dx. Later he crossed out the words “elastic curve” and replaced them

with “lemniscate.” In order to understand the reason for this change in point of view,
we note that Gauss started his mathematical diary in March 1796 when he discovered
the principles underlying the problem of dividing the circle into n equal parts. In
particular, this problem required a study of the polynomials obtained when sin(nx)
and cos(nx) were expressed in terms of sinx and cosx. Note that the sine or cosine
function can be defined in terms of the inverse of the integral

∫
dx/

√
1− x2. Around

March 1797, Gauss found that in order to divide the lemniscate into n equal parts, he
had to study the properties of the lemniscatic function, defined as the inverse of the
integral

∫
dx/

√
1− x4.

On March 19, Gauss observed in his diary that the division of the lemniscate into n
parts led to an algebraic equation of degree n2. In fact, this follows from the addition
formula for the lemniscatic integral. However, it appears from his September 1796 note
that he was already thinking in terms of the inverse of the integral

∫
dx/

√
1− x4. If

we denote the inverse by sl x, then we see that he had discovered that sl(nx) could
be expressed as a rational function of sl x and that the numerator was a polynomial
of degree n2 in sl x. Since only n solutions correspond to real division points, this
discovery showed him that a majority of the solutions of the equation of degree n2 had
to be complex. It is possible that this led him to make an imaginary substitution in the
integral

∫
dx/

√
1− x4, and this in turn led him to the discovery of the double periodicity

of the lemniscatic function. In his undated diary entry between March 19 and March 21,
Gauss noted that the lemniscate was geometrically divisible into five equal parts. This is
a remarkable statement; it shows that Gauss had not only found double periodicity but
had also found an example of complex multiplication of elliptic functions. We note that
in general, an elliptic function φ(x) has two fundamental periods whose ratio must be a
complex number. Moreover, for any integern, the addition formula for elliptic functions
shows that φ(nx) is a rational function of φ(x). However, in the case where the ratio of
the fundamental periods is a root of a quadratic with rational coefficients, there exists
a complex number α such that φ(αx) can be expressed as a rational function of φ(x).
In this situation, we say that φ(x) permits complex multiplication by α. Apparently, in
1828 Abel was the first to study this phenomenon. It is not clear to what extent Gauss
had investigated complex multiplication, but he certainly used it in connection with
dividing the lemniscate into n equal parts, at least when n= 5. To be able to show that a
fifth part of the lemniscatic curve could be obtained by geometric construction, Gauss
had to solve two appropriate quadratic equations. The surviving fragments of Gauss’s
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work on this problem do not contain these equations, but they can be found in Abel’s
first paper on elliptic functions.

Abel noted that 5 = (2+ i)(2− i), and that for y = φ(x)≡ sl(x),

φ((2+ i)x)= yi 1− 2i− y4

1− (1− 2i)y4
≡ z, (36.94)

φ(5x)= φ((2− i)(2+ i)x)=−zi 1+ 2i− z4

1− (1+ 2i)z4
. (36.95)

We note that Abel here used complex multiplication of φ by 2± i. Next, using (36.95)
to solve the equation φ(5x)= 0, he had to first solve z4 = 1+ 2i, and then solve

yi
1− 2i− y4

1− (1− 2i)y4
= (1+ 2i)1/4. (36.96)

Solve the latter by dividing the previous equation by the conjugate equation

−yi 1+ 2i− y4

1− (1+ 2i)y4
= (1− 2i)1/4 (36.97)

to obtain a quadratic in y4. Note that all the equations can be solved by appropriate
quadratic equations.

In his notes from this period, Gauss defined the lemniscatic sine and cosine functions
by the equations

sin lemn

(∫ x

0
dt/

√
1− t4

)
= x, cos lemn

(
1

2
ω−

∫ x

0
dt/

√
1− t4

)
= x,

where ω = ∫ 1
0 (1 − t4)−1/2 dt . Gauss sometimes abbreviated sine lemn and cos lemn

as s and c. We use the more common sl and cl. By an application of Euler’s addition
formula for elliptic integrals, Gauss found the addition formulas for the elliptic functions
sl and cl:

1 = ss+ cc+ sscc, (36.98)

sl(a± b)= sc′ ∓ ss ′
1∓ scs ′c′ , (36.99)

cl(a± b)= cc′ ∓ ss ′
1± ss ′cc′ , (36.100)

where s = sl(a),s ′ = sl(b) and c,c′ are similarly defined. He employed these formulas
to express sl(nφ) and cl(nφ) in terms of sl(φ) and cl(φ). By a formal change of variables
t = iu, Gauss obtained

i

∫ x

0
(1− t4)−1/2 dt =

∫ ix

0
(1−u4)−1/2 du,

or, in terms of the lemniscatic functions:

sl(iy)= isl(y), cl(iy)= 1/cl(y).
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Thus, with (36.99), he had the formula for complex arguments

sl(a+ ib)= sl(a)+ isl(b)cl(a)cl(b)

cl(b)− isl(a)sl(b)cl(a)
. (36.101)

Gauss used these formulas to determine that the periods of sl were 2ω and 2iω. The
ratio of the periods would then be i =√−1, a root of the quadratic equation x2+1= 0,
so that complex multiplication by

√−1 was possible. Gauss also found that the zeros
and poles of sl(φ) were of the form (m+ in)ω and ((m+ 1/2)+ i(n+ 1/2))ω, where
m,n ∈ Z. These results allowed him to express the lemniscatic function as a quotient
of two entire functions

sl(φ)= M(φ)

N(φ)
, (36.102)

whereM andN were double infinite products. Gauss’s diary entry for March 29, 1797
confirms that by that time he was aware of all these results. In the same entry, he gave
numerical evidence that logN(ω) agreed with π/2 to six decimal places and noted that
a proof would be an important advance in analysis. Gauss’s fragmentary notes from
this period also show that he had found the significant formula

M(φ)4 +N(φ)4 =N(2φ). (36.103)

He also wrote, perhaps based on numerical evidence, that

M(ω/2)=N(ω/2). (36.104)

Subsequent entries in Gauss’s diary suggest that he abandoned his intensive study
of elliptic functions for a year. The ninety-second entry, written July 1798, concerned
the lemniscatic function; he noted that he had “found out the most elegant things
exceeding all expectations and that by methods which open to us a whole new field
ahead.” According to his notes, his result was

sl(φ)= P(φ)/Q(φ), where (36.105)

P(φ)= ω

π
s

(
1+ 4ss

(eπ − e−π)2
)(

1+ 4ss

(e2π − e−2π)2

)(
1+ 4ss

(e3π − e−3π)2

)
· · · ,

(36.106)

Q(φ)=
(

1− 4ss

(eπ/2 − e−π/2)2
)(

1− 4ss

(e3π/2 − e−3π/2)2

)
·
(

1− 4ss

(e5π/2 − e−5π/2)2

)
· · · . (36.107)

From Abel, we may surmise that Gauss used the product formula for sinx to trans-
form the products M and N into new products expressed in terms of the variable
s = sin(πφ/ω). Gauss also gave the equations connecting M and N with P and Q:

M(ψω)= eπψψ/2P(ψω), N(ψω)= eπψψ/2Q(ψω). (36.108)
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These are particular cases of Weierstrass’s relations connecting his sigma function with
the theta function. Note that when ψ = 1, s = sin(πψ) = sinπ = 0 and Q(ω) = 1.
Therefore, N(ω)= eπ/2; thus, Gauss resolved the questions he raised the year before.

In the summer of 1798, Gauss discovered another important set of relations, the
significance of which is better understood by observing that for s = sinψπ ,

1+ 4s2/(enπ − e−nπ )2 = 1+ 4s2e−2nπ/(1− e−2nπ )2

= (1− 2e−2nπ cos2ψπ + e−4nπ )/(1− e−2nπ )2

= (1− e−2nπe2iψπ )(1− e−2nπe−2iψπ )/(1− e−2nπ )2.

This equation converts the previous product for P(ψω) to

P(ψω)= ω

π
sinψπ

∞∏
n=1

(1− e−2nπe2iψπ )(1− e−2nπe−2iψπ )/(1− e−2nπ )2. (36.109)

Similarly, the product for Q can be rewritten as

Q(ψω)=
∞∏
n=1

(1+ e−(2n−1)πe2iψπ )(1+ e−(2n−1)πe−2iψπ )/(1− e−(2n−1)π )2. (36.110)

From these results, Gauss found the Fourier series expansion of sl(φ):

sl(ψω)= π

ω

4

eπ/2 + e−π/2 sinψπ − π

ω

4

e3π/2 + e−3π/2
sin 3ψπ +·· · . (36.111)

He also found Fourier series for logQ(ψω), logP(ψω), logsl(ψω), etc. For example,

logQ(ψω)=−1

2
log2+ π

12
+ 2

eπ − e−π cos2ψπ − 1

2

2

e2π − e−2π
cos4ψπ +·· · .

(36.112)

Note that products (36.109) and (36.110) are theta products revealing the form of the
product representation for a general theta function.

It appears that Gauss had reached this point in his researches on the lemniscatic
function by the end of summer 1798. And on September 28, he completed his studies
at Göttingen and departed for Braunschweig. From a letter to his great friend Wolfgang
Bolyai, we learn that Gauss was uncertain of his financial future. Note that Bolyai’s son
was the noted János Bolyai, discoverer of non-Euclidean geometry. Gauss’s financial
uncertainty remained until the end of the year when the Duke guaranteed him further
support, suggesting that Gauss earn a doctoral degree in mathematics. Gauss accom-
plished this by submitting a thesis to the University of Helmstedt on the fundamental
theorem of algebra, work he had completed a year earlier. He noted in his diary, “Proved
by a valid method that equations have imaginary roots.” In a later addendum to this
diary entry, from October 1798, Gauss wrote that this method was published August
1799 as his dissertation; he received his degree in July 1799 on the recommendation of
Johann Friedrich Pfaff (1765–1825). Gauss was then free to continue his mathematical
researches with the Duke’s financial assistance. This increased after Gauss turned down
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an offer from St. Petersburg in 1802 and continued until he was appointed director of
the observatory at the University of Göttingen where he remained to the end of his life.

In spite of his financial insecurity during the fall of 1798, Gauss’s creativity did
not abate. In October 1798, Gauss noted, “New things in the field of analysis opened
up to us, namely, investigation of a function etc.” Gauss had earlier found the Fourier
expansion of P/Q, but he was excited now to discover the Fourier expansions of the
functions P and Q themselves:

P(ψω)= 23/4

√
π

ω
(e−π/4 sinψπ − e−9π/4 sin 3ψπ + e−25π/4 sin 5ψπ −·· ·) (36.113)

and

Q(ψω)= 2−1/4

√
π

ω
(1+ 2e−π cos2ψπ + 2e−4π cos4ψπ +·· ·). (36.114)

As consequences, he noted

1− 2e−π + 2e−4π − 2e−9π +·· · =
√
ω

π
, (36.115)

e−π/4 + e−9π/4 + e−25π/4 +·· · = 1

2

√
ω

π
, (36.116)

√
ω

π
= 0.91357913815611682140724259.

He found this last value by computing 2e−π/4 to thirty-nine decimal places. Note that
(36.115) in fact gives the period of the lemniscatic function as a theta series value.

By comparing the products for P andQ in (36.109) and (36.110) with the series for
P and Q in (36.113) and (36.114), we see that by 1798 Gauss knew the triple product
identity. In fact, to derive the series from the product, one requires not only the triple
product identity but also an additional formula. Gauss could have derived this from
what he already knew. First consider how the factor e−π/4 arises in the series for P .
The addition formula (36.101) implies Gauss’s observation that

sl
(
ωψ + ω

2
+ i ω

2

)
= −i

sl(ωψ)
. (36.117)

Here we mention that Jacobi used a similar formula in his Fundamenta Nova. We also
note that

eiπ(ψ+1/2+i/2) = ie−π/2eiψπ .
When these two relations are applied to the formulas (36.105), (36.109), and (36.110),
the result after a simple calculation for q = e−π is that

4πe−π/2

ω
·

∞∏
n=1

(
1− q2n

1+ q2n−1

)2

= ω

π

∞∏
n=1

(
1+ q2n−1

1− q2n

)2

.
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This simplifies to
2π

ω
e−π/4 =

∞∏
n=1

(
1+ q2n−1

1− q2n

)2

.

When the value π/ω from this equation is substituted in (36.109), we arrive at

P(ψω)= 2e−π/4 sinψπ
∞∏
n=1

(1− e−2nπe2iψπ )(1− e−2nπe−2iψπ )/(1+ e−(2n−1)π )2.

Here observe that the factor e−π/4 is accounted for. After applying the triple product
identity to this equation, we obtain the series

P(ψω)= 2e−π/4
∑∞

n=0(−1)ne−n(n+1)π sin(2n+ 1)ψ∏∞
n=1(1− e−2nπ )(1+ e−(2n−1)π )

. (36.118)

Since n(n+ 1)+ 1/4 = (2n+ 1)2, we see that this is Gauss’s series except for the
infinite product in the denominator. To eliminate this term, we apply Gauss’s relations
(36.103), (36.104), and (36.108) to get

P(ω/2)=Q(ω/2)= 2−1/4.

Setting ψ = 1/2 and using the last relation in (36.109) and (36.110), we find

2−1/4 = π

ω

∞∏
n=1

(1+ e−2nπ )2/(1+ e−(2n−1)π )2,

2−1/4 =
∞∏
n=1

(1− e−(2n−1)π )2/(1+ e−(2n−1)π )2.

From these two equations, a few lines of calculation yield

21/4

√
ω

π
=

∞∏
n=1

1

(1− e−2nπ )(1+ e−(2n−1)π )
.

Ultimately, we obtain Gauss’s series (36.113) when we apply this equation to (36.118).
Obtain series (36.114) similarly.

Although the triple product identity is difficult to prove ab initio, Gauss gave at
least two documented proofs of this kind, thought to date from approximately 1808.
However, it is possible that Gauss could have proved the triple product identity in
1798 by assuming Euler’s pentagonal number theorem and in that case the proof would
have been straightforward, the necessary technique having been established by Euler.
Consider the product in the numerator of Q(ψω) in (36.110). For convenience, set
q = e−π and x = e2iψπ , so that the product becomes

f (x)=
∞∏
n=1

(1+ q2n−1x)(1+ q2n−1/x). Then
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f (q2x)=
∞∏
n=1

(1+ q2n+1x)(1+ q2n−3/x)

= 1+ 1/qx

1+ qx f (x)= 1

qx
f (x).

Now let f (x)=∑∞
−∞ anx

n so the previous equation becomes

∞∑
n=−∞

anx
n = qx

∞∑
n=−∞

anq
2nxn =

∞∑
n=−∞

anq
2n+1xn+1.

By equating the coefficients of xn, we see that

an(q)= an−1(q)q
2n−1 = an−2(q)q

2n−1+2n−3 = a0(q)q
n2
.

Hence

∞∏
n=1

(1+ q2n−1x)(1+ q2n−1/x)= a0(q)

∞∑
n=−∞

qn
2
xn. (36.119)

These simple calculations appear in Gauss’s notes of 1799. Now to employ Euler’s
pentagonal number theorem

∞∏
n=1

(1−pn)=
∞∑

n=−∞
(−1)npn(3n+1)/2, (36.120)

we set q = p3/2 and x =−p1/2 in (36.119) to get

∞∏
n=1

(1−p3n−1)(1−p3n−2)= a0(q)

∞∑
n=−∞

(−1)npn(3n+1)/2. (36.121)

Comparing (36.120) and (36.121), we arrive at

a0(q)= 1/
∞∏
n=1

(1−p3n)= 1/
∞∏
n=1

(1− q2n)

and this proves the triple product identity.
After his remarkable work of 1798, Gauss’s journal entry of May 30, 1799, connected

the agM with the lemniscatic integral: “We have proved that the arithmetic-geometric
mean of 1 and

√
2 is π/ω to 11 places, which thing being proved a new field will

certainly be opened up.”
We derive the agM of

√
2 and 1 from some previously mentioned formulas of Gauss.

By taking ψ = 1 in (36.114), we get

21/2

√
ω

π
= 1+ 2e−π + 2e−4π + 2e−9π +·· · .
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In terms of the functions A and B in (36.91) and (36.93), the previous formula and
(36.115) imply that

A2(e−π)= 21/2ω/π, and B2(e−π)= ω/π.
When this is combined with the fact that A2(x2) and B2(x2) are the arithmetic and
geometric means, respectively, of A2(x) and B2(x), it follows that the agM of

√
2 and

1 is π/ω. This means that, if in 1795 Gauss knew the connection of the two series
∑
xn

2

and
∑
(−1)nxn

2
with the agM, then in 1799 he had a proof of the result quoted from

the diary. Since he enjoyed numerical computation, he also verified this result to eleven
places. Felix Klein and Ludwig Schlesinger, the editors of Gauss’s mathematical diary,
have remarked that the May 30 entry could represent a conclusion or a conjecture. It is
very likely that it was a conclusion and that when he spoke of a new field, Gauss had in
mind a generalization to any two real numbers a and b instead of the pair 1,

√
2. As we

have seen, Lagrange had already found this generalization in 1785. Gauss published
his work in an astronomical paper of 1818, where he wrote that he discovered the result
before he saw the paper of Lagrange.

It appears that up to 1798, Gauss did not investigate elliptic functions beyond the
lemniscatic function, but with his discovery of the connection between the agM and

the elliptic integral
∫ π/2

0 dθ/
√
a2 cos2 θ + b2 sin2 θ , he began to explore the inversion

of more general elliptic integrals. This culminated with his May 6, 1800 journal entry:
“We have led the theory of transcendental quantities:∫

dx√
(1−αxx)(1−βxx)

to the summit of universality.” Gauss’s notes show that he used the agM to define two
theta functions whose ratio he demonstrated to be the elliptic function inverting the
integral. Gauss’s approach to elliptic functions as ratios of theta functions was the same
as the point of view taken by Jacobi in his 1836 Königsberg lectures. Gauss started
with the integral ∫

du√
(1+µµsin2u)

= φ =ψω
and set

µ= tanv,
π

M
√
(1+µµ) =

π cosv

M cosv
= ω, π

µM
√
(1+ 1

µµ
)
= π cosv

M sinv
= ω′.

Note that Gauss denoted the agM of
√
(1+µ2) and 1 by

M(
√
(1+µ2),1)≡M√

(1+µµ), so that

M cosv =M(1,cosv) and M sinv =M(1,sinv).

Note also that the Lagrange-Gauss agM theorem implied that

ω

2
=

∫ π/2

0

du√
(1+µ2 sin2u)

=
∫ 1

0

dx√
((1− x2)(1+µ2x2))

,
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ω′

2
= 1

µ

∫ π/2

0

du√
(1+ 1

µ2 sin2u)
= 1

µ

∫ 1

0

dx√
(1− x2)(1+ 1

µ2 x
2)
.

Gauss then wrote the elliptic function as

S(ψω)= π

µω

(
4sinψπ

e(ω
′/2ω)π + e−(ω′/2ω)π − 4sin 3ψπ

e(3ω
′/2ω)π + e−(3ω′/2ω)π +·· ·

)
= T (ψω)

W(ψω)
,

where the theta functions T and W were defined by the series

W(ψω)=√
M cosv(1+ 2e−ω

′π/ω cos2ψπ + 2e−4ω′π/ω cos4ψπ +·· ·),
T (ψω)=√

cotv
√
M cosv(2e−ω

′π/4ω sinψπ − 2e−9ω′π/4ω sin 3ψπ +·· ·).
To demonstrate that his elliptic function was actually the inversion of his original elliptic
integral, he effectively showed that if∫ u

0

dt√
(1+µµsin2 t)

= φ,

then s(φ) = sinu. Without giving details, he next wrote down the zeros of W and T
and extended to this elliptic function all the results he had obtained for the lemniscatic
function.

36.7 Exercises

1. Show that if t =√
1−u2/

√
1+u2, then∫

−dt
√

1+ t2√
1− t2 −

∫
du

√
1+u2

√
1−u2

= t3
√

1− t4
1+ t4 +u3

√
1−u4

1+u4
.

See Fagnano (1911), vol. 2, p. 453.
2. Show that the complete integral of dx/

√
(f +gx3)= dy/√(f +gy3) is given

by

f (x2 + y2)+g2c2x2y2/(4f )−gcxy(x+ y)− 2f xy−gc2(x+ y)− 2f c= 0.

See Eu. I-20, p. 78.
3. Let (x,y)=∏∞

n=1(1+x2n−1y)(1+x2n−1/y) and [x] =∏∞
n=1(1−xn). Show that

(x,αy) · (x,y/α)= ((x2,α2) · (x2,y2)+xαy(x2,α2x2)(x2,x2y2)) · [x4]2/[x2]2.
See Gauss, (1863–1927), vol. 3, p. 458.

4. Let ∞∏
n=1

(1+ x2n−1y)(1+ x2n−1/y)= Fx
∞∑

m=−∞
xm

2
(ym+ y−m),
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and let [x] be defined as in the problem above. Show that

(a)

Fx = (1− x)2(1− x2)2(1− x3)2 · · ·
1− 2x+ 2x4 − 2x9 +·· · = [x]2

[x2]2 ·
1

1− 2x+ 2x4 − 2x9 +·· · ,

(b)

Fx = (1+ x2)(1+ x6)(1+ x10) · · ·
1− 2x4 + 2x16 − 2x36 +·· · = [x4]2

[x2][x8] ·
1

1− 2x4 + 2x16 −·· · ,

(c)

[x2]Fx = [x8]Fx4 = [x32]Fx16 = [x128]Fx64 = etc. = 1,

(d)

1− 2x+ 2x4 −·· · = [x]2
[x2] =

1− x
1+ x · 1− x2

1+ x2
· 1− x3

1+ x3
· · · ,

(e)

1+ 2x+ 2x4 +·· · = [x2]5
[x]2[x4]2 = 1+ x

1− x · 1− x2

1+ x2
· 1+ x3

1− x3
· · · .

See Gauss, (1863–1927), vol. 3, pp. 446–447. Observe that this was one of
Gauss’s proofs of the triple product identity.

5. Set

Px = 1+ 2
∞∑
n=1

xn
2
, Qx = 1+ 2

∞∑
n=1

(−1)nxn
2
, Rx = 2

∞∑
n=1

x(2n−1)2/4.

Note that we would write Px = P(x), etc. Show that

(a) Rx = 2x1/4[x4]2/[x2],
(b) Px ·Qx = (Qxx)2; Px ·Rx = (R√x)2/2,
(c) Px+Qx = 2P(x4); Px−Qx = 2R(x4); (Px)2 − (Qx)2 = 2(Rxx)2,
(d) Px+ iQx = (1+ i)Q(ix); Px− iQx = (1− i)P (ix),
(e) (Px)2 + (Qx)2 = 2(Pxx)2; (Px)4 − (Qx)4 = (Rx)4,
(f) The arithmetic geometric mean of (Px)2, (Qx)2 is always 1,
(g) ∫ 2π

0

dθ√
((Px)4 cos2 θ + (Qx)4 sin2 θ)

= 2π.

We note that Gauss wrote cosθ2 for cos2 θ , etc. See Gauss (1863–1927), vol. 3,
pp. 465–467.
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6. Show that

(1+ 2x+ 2x4 + 2x9 +·· ·)4 = 1+ 8x

1− x + 16xx

1+ xx + 24x3

1− x3
+ 32x4

1+ x4
+·· ·

= 1+ 8x

(1− x)2 +
8xx

(1+ xx)2 +
8x3

(1− x3)2
+ 8x4

(1+ x4)2
+·· · .

See Gauss (1863–1927), vol. 3, p. 445.
7. Show that

1+
(

1

2

)3

+
(

1 · 3
2 · 4

)3

+
(

1 · 3 · 5
2 · 4 · 6

)3

+ c · · · = 2

(
ω̃

π

)2

,

where
ω̃

2
=

∫ 1

0

dz√
(1− z4)

.

See Gauss (1863–1927), vol. 3, p. 425.
8. This exercise gives a proof of the transformation formula for a theta function,

first published by Cauchy and Poisson. See chapter 37, section 11. Gauss worked
out the details given here in a paper published only long after his death.

(a) Expand T =∑∞
k=−∞ e

−α(k+ω)2 as a Fourier series

T =A0 + 2
∞∑
n=1

An cosnωP ,

where An =
∫ 1

0
T cosnωP dω and P = 2π.

(b) Show that

An =
∫ ∞

−∞
e−αωω cosnωP dω= e− nnπi

α

√
π

α
.

(c) Conclude that

∞∑
k=−∞

e−α(k+ω)
2 =

√
π

α
· e−αωω ·

∞∑
k=−∞

e−
ππ
α (k+ αωi

π )2 .

See Gauss (1863–1927), vol. 3, pp. 436–437.

36.8 Notes on the Literature

Fagnano (1911) is a reprint of his Produzioni Matematiche. See pp. 293–297, 304–313
of vol. 2 for material on the lemniscate. This volume contains several more articles by
Fagnano on the integral calculus and on the lemniscatic calculus.
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The proof of the addition formula for the elliptic integral given here is from
Euler’s 1756 paper “De Integratione Aequationis Differentialis mdx/

√
(1− x4) =

mdy/
√
(1− y4).” See Eu. I-20, pp. 63–67. Volumes 20–21 contain the papers of Euler

providing the foundation for the theory of algebraic functions and their integrals. Of
course, Euler dealt only with the integrals arising from the algebraic equation y2 =p(x),
where p(x) was of degree 4.

See Landen (1771) and (1775) for his original contributions to elliptic integrals. Our
exposition is based largely on Cayley (1895), pp. 327–330. Cayley’s book contains a
good account of Jacobi’s Fundamenta Nova, elaborating the transformation theory of
elliptic integrals of Landen, Legendre, and Gauss.

Lagrange’s 1784–1785 paper on the elliptic integral and the agM is in Lagrange
(1867–1892) vol. 2, pp. 251–312. See Ivory (1796) for his series evaluation of the
complete elliptic integral of the first kind. Gauss’s extensive work on the agM and his
work on elliptic functions in general can be found in Gauss (1863–1927), vols. 3 and 10.
Gauss’s determination of the series for 1/M(1+ x,1− x) appears on pp. 367–369 of
vol. 3. Pieper (1998) suggests that Gauss discovered the triple product identity between
April and June 1800. He has also pointed out that this identity can be proved easily
by applying Euler’s pentagonal number theorem. Berggren, Borwein, and Borwein
(1997) contains a number of interesting papers on the agM and its application to the
computation of π .

There are several interesting historical accounts of the theory of elliptic functions and
integrals. Weil (1983) deals with Euler’s work on this topic and its relation to Diophan-
tine equations. Varadarajan (2006) gives a brief analysis of Euler in terms of Riemann
surfaces of genus one. Watson (1933) gives a very entertaining and detailed mathe-
matical exposition of Fagnano, Landen, and Ivory’s contributions to elliptic integrals.
Watson also wrote without giving a reference that Jacobi called December 23, 1751
the birthday of elliptic functions. Later, André Weil observed, “According to Jacobi,
the theory of elliptic functions was born between the twenty-third of December 1751,
and the twenty-seventh of January 1752.” See Weil (1983), p. 1. Ozhigova (2007), first
published in 1988, (also reprinted in Bogolyubov, Mikhailov, and Yushkevich (2007))
refers to Jacobi’s 1847 letter to Fuss, saying on p. 55 that Euler’s study of Fagnano inau-
gurated the subject of elliptic functions. We observe that in his October 24, 1847 letter
to Euler’s great-grandson P. H. Fuss, Jacobi strongly recommended the publication of
Euler’s papers, arguing that they were very important to the advancement of science.
As further support for his point, Jacobi mentioned that by reading of the minutes of the
Berlin Academy, he discovered a critical date in the history of mathematics: when the
Academy assigned Euler the task of refereeing Count Fagnano’s mathematical work.
Jacobi then stated that Euler’s evaluation of these papers served to found the theory of
elliptic functions. See Stäckel and Ahrens (1908), p. 23.

Cox (1984) contains a fascinating and enlightening resumé of Gauss’s remarkable
work on the agM of two complex numbers. He shows that Gauss may have had sig-
nificant ideas on the modular group and some of its subgroups and their fundamental
domains. The reader may wish to read this paper before reading Gauss’s somewhat frag-
mentary original papers on the topic. Mittag-Leffler (1923) and Almkvist and Berndt
(1988) are both interesting papers. The first is an insightful account of work on elliptic
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functions and integrals from 1718 to 1870; the second focuses on topics related to
the quadratic transformation and the agM. The first chapter of Siegel (1969), vol. 1
contains perceptive remarks concerning Fagnano and Euler on the addition formula.
Bühler (1981) and Dunnington (2004) are well-written biographies of Gauss. Bühler
has more mathematical exposition, but the value of Dunnington is enhanced by the
inclusion of an English translation with commentary by J. J. Gray of Gauss’s diary; we
have made use of this translation in the text.



37

Elliptic Functions: Nineteenth Century

37.1 Preliminary Remarks

The eighteenth century saw two major new results in elliptic functions: the addition
formula of Euler and the second-order transformation of Landen and Lagrange. Gauss
discovered yet another quadratic transformation, in connection with his proof that
the agM of two positive numbers could be represented by an elliptic integral. These
transformations changed the parameters in the elliptic integrals, without changing their
basic form. In fact, Gauss went well beyond this elementary transformation theory, and
before the end of the eighteenth century he had greatly refined elliptic function theory.
He did not publish his work; it was rediscovered by Abel and Jacobi in the 1820s.

Adrien–Marie Legendre was the main contributor to elliptic integrals in the period
between Lagrange and Abel. He reduced any elliptic integral

∫
A(x)dx/

√
R(x), where

R(x) was a fourth-degree polynomial in x and A(x) was a rational function in x and
R(x), to integrals of three kinds:

F(k,x)=
∫ x

0

dt√
(1− t2)(1− k2t2)

, (37.1)

E(k,x)=
∫ x

0

√
1− k2t2√
1− t2 dt, and (37.2)

V(n,k,x)=
∫ x

0

dt

(1+nx2)
√
(1− x2)(1− k2x2)

. (37.3)

Legendre published two major works on elliptic integrals: Exercices de calcul intégral
in 1811, and the three-volume Traité des fonctions elliptiques in 1825–1828. The first
volume of the latter presented the received eighteenth-century theory of elliptic inte-
grals with some improvements and additions; the second volume gave extensive and
long-useful numerical tables, constructed by Legendre’s own methods. At the age of
seventy-five, upon learning of the more advanced results of Abel and Jacobi, Legendre
did his best to give a flattering exposition of their work, and this was the topic of the
third volume.

816
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Legendre (1752–1833) studied at the College Mazarin in Paris, where he received
an excellent education. Apparently, Legendre wished to be remembered for his works
alone and not much is known of his personal life. In fact, it was only recently discov-
ered that the portrait by which he had been identified for a century was actually that of
an unrelated politician named Louis Legendre. Thus, the only portrait now available
is a sketched caricature made by Julien–Léopold Boilly. Legendre’s research on his
two favorite subjects, number theory and elliptic functions, was immediately super-
seded after his books appeared. Nevertheless, Legendre’s name became permanently
associated with several mathematical objects, including the Legendre polynomials, the
Legendre symbol, and the Legendre differential equation. Though he studied elliptic
functions for almost forty years, Legendre apparently never considered inverting the
integral.Abel was the first to publish this idea, inaugurating a great advance in this topic.

The mathematical career of Niels HenrikAbel began in 1821 with his attempt to solve
the general quintic equation. His mathematics professors at the University of Christiania
could find no errors in Abel’s solution and communicated it to Ferdinand Degen in
Copenhagen. Though Degen could not find the mistake, he made two suggestions: that
Abel apply his method to specific examples, since that could reveal hidden errors; and
that he abandon the sterile subject of algebraic equations to exercise his brilliance in the
more fruitful subject of elliptic integrals. Degen’s advice led Abel to find the mistake
in his work and eventually to prove the impossibility of solving the quintic in radicals.
He also began to work on elliptic integrals, and it is fairly certain that by 1823 he had
inverted the elliptic integral to rediscover elliptic functions. We recall that Gauss had
already done this without publishing it. Moreover, the problem of the division of elliptic
functions carried Abel deeper into the theory of algebraic equations and ultimately to
his famous theorem on solvable equations. In this manner, Abel found an extremely
productive connection between elliptic functions and the theory of algebraic equations.

Abel’s first work on elliptic functions, the first part of “Recherches sur les fonctions
elliptiques,” appeared in Crelle’s Journal in September 1827. In this paper he defined
the elliptic function φα = x when

α =
∫ x

0

dt√
(1− c2t2)(1+ e2t2)

. (37.4)

He showed that φα was a meromorphic function with two independent periods, 2w and
2iw̃, given by

w = 2
∫ 1/c

0

dx√
(1− c2x2)(1+ e2x2)

, w̃ = 2
∫ 1/e

0

dx√
(1− e2x2)(1+ c2x2)

. (37.5)

He then gave a new proof for the addition formula for elliptic functions and used it to
expressφ(nα), wherenwas an integer, as a rational function ofφα,f α=√

(1−c2φ2α),
and Fα =√

(1+ e2φ2α). This was analogous to expressing sin(nx) as a polynomial
in sinx and cosx = √

(1 − sin2 x). With n an odd integer, he noted that the rational
function could be written as xp(x)/q(x), where p and q were polynomials in x = φα
and of degree n2 − 1. Abel next showed that the solution of the equation p(x) = 0,
whose roots were
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φ

(
aw+ ibw̃

n

)
,

for integers a and b, depended on an equation of degree n+ 1 which could be solved
algebraically only in particular cases.

In the second part of his “Recherches,” Abel applied his theory to the division of
the lemniscate. Recall that Fagnano divided the full arc of the lemniscate in the first
quadrant into two, three, and five equal parts. In his Disquisitiones, without reference
to Fagnano, Gauss stated that the theory he had constructed for the division of a circle
into n equal parts could be extended to the lemniscate, but he never gave details on this.
In the case of the circle, Gauss was able to simplify the problem, so that he had only to
prove that cos(2π/n) could be expressed in terms of square roots, when n was a prime
of the form 2k + 1. He did this by showing that cos(2π/n) satisfied an appropriate
algebraic equation of degree (n− 1)/2 = 2k−1.

Thus, in order to extend Gauss’s theory to the lemniscate, Abel had to find the
division point by working with sl(w/n), where 2w was the period of the lemniscatic
function. However, note that sl(w/n) satisfies an equation of degree n2 − 1, and this
cannot be a power of 2, except when n= 3. This drawback would apparently suggest
that Gauss’s theory for the circle could not be extended to the case of the lemniscate.
But Abel found a resolution to this roadblock by discovering complex multiplication
of elliptic functions.

The primes expressible as 2k + 1, except for 3, take the form 4m+ 1 and can be
written as sums of two squares, 4m+ 1 = a2 + b2, where a+ b is odd. Abel used this
fact to solve the problem of dividing the lemniscate into n= 4m+1 parts. He showed
that the complex number sl(w/(a + ib)) was the solution to an equation of degree
n−1 = 4m with coefficients of the form c+ id, where c and d were rational numbers.
To prove this, he used the addition formula for slα to first prove that sl((a+ ib)α) could
be expressed as a rational function xp(x)/q(x),x = slα, where p(x) and q(x) were
polynomials of degree n−1. Next, he employed the Lagrange resolvent, just as Gauss
had done for the cylotomic case, to show that sl(w/(a + ib)) could be evaluated by
means of only square roots, providing n was of the form 2k + 1. Abel pointed out that
the value of sl(w/n) could then be found by means of square roots and so this value
was constructible by straight edge and compass. The second part of the “Recherches”
also dealt with the transformation of elliptic functions, but on this topic Jacobi had
published earlier than Abel.

Carl Gustav Jacob Jacobi (1804–1851) studied at the University of Berlin, though he
largely preferred to study on his own, especially Euler’s works. His interest in elliptic
integrals was aroused by the quadratic transformations in Legendre’s Exercices de
calcul intégral. In June 1827, Jacobi communicated a short note to the Astronomische
Nachrichten giving two cubic transformations and two fifth-order transformations of
elliptic integrals.

In fact, in 1825 Legendre had already discovered this cubic transformation, though it
was published in Traité des fonctions elliptiques of 1827. Heinrich Schumacher, editor
of the Astronomiche Nachrichten, noted that Jacobi did not refer to Legendre’s book,
though this was not surprising, since Jacobi had not seen Legendre’s work at the time.
In any case, Jacobi also had the new result on the fifth-order transformation. Then in
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August 1827, Jacobi communicated to Schumacher a general odd-order transformation,
allowing the division of an elliptic integral into an arbitrary odd number of parts.
Unfortunately, Jacobi included no proof, and so Schumacher consulted his friend Gauss
about the correctness of the results. Gauss replied that the results were correct but asked
Schumacher not to communicate with him further on this topic. Gauss himself was
planning to publish his twenty-five-year-old results on elliptic functions and wished to
avoid priority disputes.

Schumacher published Jacobi’s notes but urged him to supply the proofs as soon as
possible. Legendre saw the paper and was eager to see the proofs. Jacobi told Legendre
that he had only guessed the theorem for odd-order transformations; in November
1827 he was able to derive a proof by means of the inversion of elliptic integrals.
Meanwhile, in September, the first part of Abel’s “Recherches” had appeared. It is
curious that Jacobi did not refer to Abel’s paper and avoided the question of whether
he had borrowed any idea from Abel. However, in letters to Legendre, Jacobi heaped
praise on Abel’s groundbreaking work. In 1828, the second part of the “Recherches”
was published, in which Abel added an appendix explaining how his own results could
prove Jacobi’s theorem. Jacobi’s proof was published after Abel had written the second
part of his paper. Christoffer Hansteen reported that when Abel saw Jacobi’s inversion
of the elliptic integral without reference to him, he was visibly shocked. In fact, Abel
wrote in a letter to Bernt Holmboe that he published his “Transformations des fonctions
elliptiques” in order to supercede Jacobi; he called the paper his “knockout” of Jacobi.
In 1828, Gauss wrote Schumacher that Abel’s “Recherches” had relieved him of the
duty of writing up a third of his investigations on elliptic functions. The other two thirds
consisted of the arithmetic-geometric mean and the elliptic modular and theta functions.

Abel’s early and tragic death in 1829 cut short the rivalry betweenAbel and Jacobi. In
that same year, Jacobi published the results of two years’ labor on elliptic functions, in
his Fundamenta Nova. This work presented an extensive development of transformation
theory and applied it to the derivation of series and product representations of elliptic
functions, their moduli, and periods. The problem of converting products into series
led Jacobi to the discovery of the triple product identity, though Gauss had anticipated
him. In fact, these series and products were theta functions; thus, Jacobi had discovered
that elliptic functions could be expressed as quotients of theta functions.

Jacobi earned his doctoral degree from Berlin with a thesis on partial fractions in
1825 and a year later he took a position at Königsberg. Because of his sharp wit and
tongue, Jacobi might have faced obstacles to advancement. However, he gained quick
recognition from French mathematicians and Legendre in particular, who had presented
Jacobi’s work to the French Academy in 1827. Finally, with the publication of the Fun-
damenta Nova, Jacobi became known as one of the most outstanding mathematicians
in Europe. In a paper of 1835, Jacobi proved two important theorems on functions of
one variable: First, he showed that such a function could not have two fundamental
periods whose ratio was real; secondly, he showed that such a function could have
only two fundamental periods whose ratio was complex. He argued that the functions
would otherwise have arbitrarily small periods, a condition he assumed to be absurd.
Jacobi had not yet conceived of an analytic function, but when Weierstrass and Cauchy
later confirmed his assumption, the proof relied on the fact that the zeros of analytic
functions were isolated.
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Using a suggestion from Hermite that he use Fourier series, Joseph Liouville (1809–
1882) in 1844 reproved Jacobi’s first theorem. This work initiated Liouville’s definitive
theory of elliptic functions. According to Weierstrass, this work was very important,
though Liouville published little of it; Weierstrass also criticized Briot and Bouquet for
publishing Liouville’s ideas without giving him sufficient credit. Liouville’s innovation
was to define elliptic functions as doubly-periodic functions, rather than as inverses of
integrals. He showed that doubly-periodic functions could not be bounded and, in fact,
had to have at least two simple poles. Except for two short notes, he did not publish these
results, but in 1847 he began a series of lectures on this topic. These lectures were first
published in 1880 by the longtime editor of Crelle’s Journal, Carl Borchardt (1817–
1880), who in 1847 had attended the lectures. Reportedly, Borchardt also showed the
notes to Jacobi and informed Liouville that Jacobi was extremely impressed. A typeset
manuscript of these lectures, said by Weierstrass to have been taken from the notes
of Borchardt, was found among Dirichlet’s papers after his death in 1859. Apparently,
Liouville had intended to publish the notes in his own journal, but had perhaps asked
his friend Dirichlet to review the proofs. Why did Liouville not see to it that the proofs
were published? This sequence of events remains a mystery, even after Jesper Lützen’s
comprehensive and detailed book on Liouville, published in 1990. It is interesting to
note that the book by Liouville’s students, Briot and Bouquet, started with Liouville’s
approach, but proved the results by using the complex analytic methods of Cauchy and
Laurent. Many standard textbooks of today make use of these methods.

At about the same time as Liouville, Gotthold Eisenstein (1823–1852) provided yet
another important approach to elliptic functions. Eisenstein was dissatisfied with the
inversion of the elliptic integral in Abel and Jacobi. He observed that, since integrals
defined single-valued functions, the periodicity of their inverses must be problematic.
Eisenstein was a number theorist of extraordinary vision. He viewed the theory of
periodic functions as inseparable from number theory. In fact, in 1847 he published
a 120-page treatise in Crelle’s Journal, developing a new basis for elliptic function
theory, using double series and double products; this approach was well suited for
number theoretic applications. The Weierstrass elliptic function ℘(z) first appeared in
this work. Although this paper was soon republished in a collection of Eisenstein’s
papers, with a foreword by no less a personage than Gauss, it unfortunately did not
receive recognition in the nineteenth century. In the preface to his 1975 book Elliptic
Functions According to Eisenstein and Kronecker, André Weil brought this paper to
the attention of the mathematical community. He wrote:

It is not merely out of an antiquarian interest that the attempt will be made here to resurrect them
[Eisenstein’s ideas]. Not only do they provide the best introduction to the work of Hecke; but we
hope to show that they can be applied quite profitably to some current problems, particularly if
they are used in conjunction with Kronecker’s late work which is their natural continuation.

Weil’s treatment of Eisenstein is thorough and insightful as well as easily available.
Thus, the reader may profitably consult Weil for Eisenstein’s 1847 work.

Eisenstein’s objection to the inversion of the elliptic integral was addressed by
Cauchy in the 1840s and then by Riemann in the 1850s. Cauchy had been vigorously
developing the theory of complex integration since 1814; this work provided him with
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the tools necessary to address this problem. Riemann was familiar with Cauchy’s work,
but he added his original idea of a Riemann surface to study Abelian, and in particular
elliptic, functions.

37.2 Abel: Elliptic Functions

Abel’s great paper of 1827, “Recherches sur les fonctions elliptiques,” was published
in two parts in volumes two and three of Crelle’s Journal. In this paper, Abel defined
an elliptic function as the inverse of the elliptic integral

α =
∫ x

0

dx√
(1− c2x2)(1+ e2x2)

, 0 ≤ x ≤ 1/c. (37.6)

He expressed x as a function of α and set x = φα. He noted that α was positive and
increasing as x moved from 0 to 1/c, and set

w

2
=

∫ 1/c

0

dx√
(1− c2x2)(1+ e2x2)

. (37.7)

Thus, φα was positive and increasing in 0 ≤ α ≤w/2 and

φ(0)= 0, φ(w/2)= 1/c.

Moreover, since α changed sign when x was changed to −x, he had φ(−α)=−φ(α).
Abel then formally changed x to ix without a rigorous justification, just as Euler,
Laplace, and Poisson had done earlier. Now in an 1814 paper published in 1827 and in
papers published as early as 1825, Cauchy discussed functions of complex variables in
a more systematic manner. Abel could have employed Cauchy’s ideas to give a more
rigorous foundation of his theory of elliptic functions. It is possible that Abel was not
aware of this aspect of Cauchy’s work. In any case, with the above change of variables,
Abel set

xi = φ(βi), where β =
∫ x

0

dx√
(1+ c2x2)(1− e2x2)

, (37.8)

and observed that β was real and positive for 0 ≤ x ≤ 1/e. He then set

w̃

2
=

∫ 1/e

0

dx√
(1− e2x2)(1+ c2x2)

, (37.9)

so that −iφ(βi) was positive for 0 ≤ β ≤ w̃/2; he also had

φ (w̃i/2)= i/e. (37.10)

Abel then defined two auxiliary functions

f α =
√

1− c2φ2α, (37.11)

Fα =
√

1+ e2φ2α, (37.12)
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and noted that when c and e were interchanged, f (αi) and F(αi) were transformed
into F(α) and f (α), respectively,

At this point, Abel observed that φ(α) was already defined for −w/2 ≤ α ≤ w/2,
and φ(βi) for −w̃/2 ≤ β ≤ w̃/2; next he wished to define φ for all complex numbers.
In order to achieve this, Abel employed the addition formula for φ:

φ(α+β)= φα ·fβ ·Fβ+φβ ·f α ·Fα
1+ e2c2φ2α ·φ2β

. (37.13)

He also stated the addition formulas for the auxiliary functions f α and Fα, remarking
that these formulas could be deduced from the results in Legendre’s Exercices but he
wanted to give an alternative derivation. He first deduced the easily proved formulas
for the derivatives:

φ′α = f α ·Fα, f ′α =−c2φα ·Fα and F ′α = e2φα ·f α.
Abel then let r designate the right-hand side of (37.13) and showed that

dr

dα

= (1− e2c2φ2αφ2β)[(e2 − c2)φαφβ+f αfβFαFβ]− 2e2c2φαφβ(φ2α+φ2β)

(1+ e2c2φ2αφ2β)2
.

By symmetry in α and β, Abel concluded that

dr

dα
= dr

dβ
.

He observed that this partial differential equation implied that r =ψ(α+β) for some
function ψ . Moreover, since φ(0)= 0, f (0)= 1, F (0)= 1, he set β = 0 in the expres-
sion for r on the right-hand side of (37.13) and found that r = φα. But r = ψα when
β = 0. So he had φα =ψα or φ =ψ . This proved the addition formula.

Abel deduced the periodicity of φ from the addition formula. He first set β =±w/2
and β =±w̃i/2 in (37.13). Observing that f (±w/2)= 0, and F(±w̃i/2)= 0, he then
obtained the formulas

φ(α±w/2)=±φ(w/2)f α/Fα =±f α/(cFα),
φ(α± w̃i/2)=±φ(w̃i/2)Fα/f α =±iFα/(ef α).

These results implied that

φ
(w

2
+α

)
= φ

(w

2
−α

)
, (37.14)

φ

(
w̃

2
i+α

)
= φ

(
w̃

2
i−α

)
, (37.15)

φ
(
α± w

2

)
φ

(
α+ w̃

2
i

)
=± i

ce
. (37.16)
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Replacing α by α+w/2 in (37.14), and α by α+ w̃i/2 in (37.15), Abel found

φ(α+w)= φ(−α)=−φα, (37.17)

φ(α+ w̃i)=−φα. (37.18)

By means of these formulas, he defined φα and φ(αi) for all real α and then by
the addition formula (37.13) he obtained φ(α + βi) for any complex value α + βi.
Moreover, from (37.17) and (37.18), it followed thatφwas doubly-periodic with periods
2w and 2w̃i:

φ(2w+α)=−φ(w+α)= φα,
φ(2w̃i+α)=−φ(w̃i+α)= φα.

Abel also determined the zeros and poles ofφ. For example, from (37.16) he obtained

φ

(
w

2
+ w̃i

2

)
= 1

0
.

Then by (37.17) and (37.18),

φ[(m+ 1/2)w+ (n+ 1/2)w̃i] = 1

0
,

when m and n were integers. Then with a little more work, Abel showed that (m+
1/2)w + (n+ 1/2)w̃i were all the poles of φ. Similarly, he showed that mw + nw̃i
were all the zeros of φ.

37.3 Abel: Infinite Products

Recall that one way of deriving the infinite product for sinx is to express sin(2n+1)x
by means of the addition theorem as a polynomial of degree 2n+ 1 in sinx, factorize
this polynomial, and then take the limit as n tends to infinity. Abel applied a similar
procedure to obtain the product for φx. Abel deduced from the addition formula that
for a positive integer n,

φ(n+ 1)β =−φ(n− 1)β+ 2φ(nβ)fβ ·Fβ
1+ c2e2φ2(nβ)φ2β

.

After some further calculation, he proved by induction that

φ(2nβ)= φβ.fβ.Fβ.T , φ(2n+ 1)β = φβ.T1,

where T and T1 were rational functions of (φβ)2. He then wrote

φ(2n+ 1)β = P2n+1

Q2n+1
, (37.19)
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where P2n+1 and Q2n+1 were polynomials of degree (2n + 1)2 and 4n(n + 1),
respectively. He noted that the roots of P2n+1 = 0 were clearly given by

x = (−1)m+µφ
(
β+ m

2n+ 1
w+ µ

2n+ 1
w̃i

)
, (37.20)

for −n≤m, µ≤ n; by setting β = α/(2n+ 1), the roots were

x = (−1)m+µφ
(

α

2n+ 1
+ mw+µw̃i

2n+ 1

)
.

Abel next expressed φ(2n+1)β as a sum and as a product of terms of the form (37.20).
His method was similar to Euler’s derivation in the Introductio in Analysin Infinitorum,
where Euler expressed sin(2n+ 1)x as a product of terms of the form sin

(
x+ mπ

2n+1

)
.

See chapter 16, section 4 in this connection. Abel wrote

P2n+1 =Ax(2n+1)2 +·· ·+Bx,
Q2n+1 =Cx(2n+1)2−1 +·· ·+D,

so that by (37.19), he had

(Ax(2n+1)2 +·· ·+Bx)= φ(2n+ 1)β.(Cx(2n+1)2−1 +·· ·+D).
He observed that the highest-power term had coefficient A, the second highest term
had coefficient −φ(2n+ 1)β.C, and the last term was −φ(2n+ 1)β.D. Then, since
the roots of the equation were given by (37.20), the sum of the roots could be obtained
from the coefficient of the second highest term and the product of the roots from the
last term. Thus, he had the equations

φ(2n+ 1)β = A

C

n∑
m=−n

n∑
µ=−n

(−1)m+µφ
(
β+ mw+µw̃i

2n+ 1

)
(37.21)

= A

D

n∏
m=−n

n∏
µ=−n

φ

(
β+ mw+µw̃i

2n+ 1

)
. (37.22)

Abel set β = w
2 + w̃

2 i+α, and let α→ 0 to determine

A

C
= 1

2n+ 1
. (37.23)

He then let β→ 0, to obtain

(2n+ 1)= A

D

n∏
m=1

φ2

(
mw

2n+ 1

) n∏
µ=1

φ2

(
µw̃i

2n+ 1

)

×
n∏

m=1

n∏
µ=1

φ2

(
mw+µw̃i

2n+ 1

)
φ2

(
mw−µw̃i

2n+ 1

)
. (37.24)
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This gave him an expression forA/D and he substituted it back in (37.22). To simplify
the resulting product, he applied a consequence of the addition formula:

φ(β+α)φ(β−α)
φ2α

=−
1− φ2β

φ2α

1− φ2β

φ2
(
α+w

2 + w̃
2 i

) .

Thus, Abel obtained

φ(2n+ 1)β = (2n+ 1)φβ
n∏

m=1

Nm,0

Rm,0

n∏
µ=1

N0,µ

R0,µ

n∏
m=1

n∏
µ=1

Nm,µ

Rm,µ
· N̄m,µ
R̄m,µ

, (37.25)

where Nm,µ = 1− φ2β

φ2
(
mw+µw̃i

2n+1

) , N̄m,µ = 1− φ2β

φ2
(
mw−µw̃i

2n+1

) , (37.26)

Rm,µ = 1− φ2β

φ2
(

w
2 + w̃

2 i+ mw+µw̃i
2n+1

) ,
R̄m,µ = 1− φ2β

φ2
(

w
2 + w̃

2 i+ mw−µw̃e
2n+1

) .
He then set β = α/(2n+ 1), let n→∞, and used the formula

lim
n→∞

φ2(α/(2n+ 1))

φ2(λ/(2n+ 1))
= α2

λ2

to obtain an infinite product for φα. Abel carried out several pages of calculations to
show that the limiting procedure was valid and that the product converged to φα. It is
not clear that Abel’s justification was complete. Anyhow, Abel obtained the formula

φα = α
∞∏
m=1

(
1− α2

(mw)2

)
·

∞∏
µ=1

(
1+ α2

(µw̃)2

)

×
∞∏
m=1

 ∞∏
µ=1

 1− α2

(mw+µw̃i)2

1− α2((
m− 1

2

)
w+

(
µ− 1

2

)
w̃i

)2



×
∞∏
µ=1

 1− α2

(mw−µw̃i)2

1− α2((
m− 1

2

)
w−

(
µ− 1

2

)
w̃i

)2


 . (37.27)

Recall that in 1797 Gauss obtained a similar formula for the particular case of the
lemniscatic function. Abel then expressed (37.27) in terms of sines, just as Gauss had
done in 1798. This and other similarities in their work led Gauss to remark that Abel
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followed the same steps as he did in 1798. Abel next rewrote the double product in
(37.27):

∞∏
m=1

∞∏
µ=1

1+ (α+mw)2

µ2w̃2

1+
(
α+

(
m− 1

2

)
w
)2

(
µ− 1

2

)2
w̃2

·
1+ (α−mw)2

µ̃2w̃2

1+
(
α−

(
m− 1

2

)
w
)2

(
µ− 1

2

)2
w̃2

·


1+

(
m− 1

2

)2
w2(

µ− 1
2

)2
w̃2

1+ m2w2

µ2w̃2


2

.

Then by means of the product for sinx given by

sinx = x
∞∏
µ=1

(
1− x2

µ2π2

)
,

and using the addition formula for sine given by

sin(a− b).sin(a+ b)= sin2 a− sin2 b,

he obtained

φα = w̃

π

s

i

∞∏
m=1

1− s2/A2
m

1− s2/B2
m

where

s = sin(απi/w̃), Am = sin(mwπi/w̃), Bm = cos((m− 1/2)wπi/w̃).

Finally, by the use of φ(iα)= iφα, he obtained his product formula:

φα = w

π
sin
απ

w

∞∏
m=1

1+ 4sin2(απ/w)

(emw̃π/w−e−mw̃π/w)2

1− 4sin2(απ/w)

(e(2m−1)w̃π/(2w)+e−(2m−1)w̃π/(2w))2

. (37.28)

Abel also used the series (37.21) to obtain various other formulas, including

φ
(αw

2

)
= 4π

w

(
eπ/2

1+ eπ sin
απ

2
− e3π/2

1+ e3π
sin

3απ

2
+ e5π/2

1+ e5π
sin

5απ

2
−·· ·

)
.

37.4 Abel: Division of Elliptic Functions and Algebraic Equations

In his 1827 paper, Abel considered Gauss’s algebraic theory on the division of periodic
functions and extended it to the division of doubly-periodic functions. To understand
Abel’s motivation, recall that from a study of Viète, Newton determined that for an odd
number n, sinnx could be expressed as a polynomial of degree n in sinx. Note that a
similar result holds for cosnx. Gauss proved that these polynomials could be solved
algebraically; Euler and Vandermonde had earlier done this for values of n up to eleven.
Abel determined from the addition theorem that for a positive integer n,φ(2n+1)αwas
a rational function of φα such that the numerator took the form xR(x2), where R was
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a polynomial of degree n(2n+2) and x = φα. His problem was to find out whether R
could be solved algebraically, that is, by radicals. He discovered that he could employ
Lagrange resolvents, an idea due to Waring, Vandermonde, and Lagrange, as Gauss
had also done. However, Abel’s problem was more complicated than Gauss’s and took
him deeper into the theory of equations.

As a mathematical aside, we briefly discuss Abel’s related contributions to the theory
of equations. His work in elliptic function theory gave him glimpses into the nature
of algebraically solvable equations. In particular, he sought to determine solvability
in terms of the structure of the roots of the equation. In an 1826 letter to Crelle, Abel
stated a result on the form of the roots of a solvable quintic. He later generalized this
result to irreducible equations of prime degree, published posthumously in the first
edition of his collected papers of 1837. This paper contained the remarkable theorem
that an irreducible equation of prime degree was solvable by radicals if and only if
all its roots were rational functions of any two of the roots. Galois rediscovered this
theorem a few years later, but his work arose out of a study of those permutations
of the roots preserving algebraic relations among the roots. Because the group theory
of algebraic equations, developed by Galois, gained recognition before Abel’s theory,
based on structure of roots, Abel’s theorems have now become recast and known in
terms of groups. It might be fruitful to make a parallel study of the two approaches.

Recall that Abel proved that φ(2n+ 1)β was a rational function of x = φβ whose
numerator took the form xR(x2) where R was a polynomial of degree n(2n+ 2).
Abel then proved the important theorem that the solutions of R = 0 depended on the
solutions of a certain equation of degree 2n+ 2 with coefficients that were rational
functions of c and e. He proceded to demonstrate that if the latter equation could be
solved by radicals, then so could R = 0. He went on to observe that, in general, this
equation was not solvable by radicals but could be solved in particular cases, such as
for e= c, e=√

3c, e= (2±√
3)c, etc. The case e= c corresponded to the lemniscatic

function and had already been discussed in Gauss’s unpublished work, at least in special
cases.

Abel’s proof of this theorem was lengthy. We present a brief summary, using his
notation. First note that by (37.25) and the fact that the zeros of φ occur at mw+ inw̃,
it follows that the solutions of R = 0 must be given by

r = φ2

(
mw± iµw̃i

2n+ 1

)
.

By periodicity of φ, the number of different values of r can be reduced to the n(2n+2)
values given by

rν = φ2

(
νw

2n+ 1

)
, rν,m = φ2

(
ν
mw+ iw̃

2n+ 1

)
, (37.29)

where 1 ≤ ν ≤ n, 0 ≤m≤ 2n. Now let w′ denote any quantity of the form mw+ iµw̃
and define ψ by the equation

ψ

(
φ2

(
w′

2n+ 1

))
= θ

(
φ2

(
w′

2n+ 1

)
, φ2

(
2w′

2n+ 1

)
, . . . , φ2

(
nw′

2n+ 1

))
, (37.30)
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where θ is a rational symmetric function of then quantities. It is clear from the definition
of ψ that

ψ

(
φ2

(
νw′

2n+ 1

))
=ψ

(
φ2

(
w′

2n+ 1

))
, 1 ≤ ν ≤ n. (37.31)

In particular,

ψrν =ψr1; ψrν,m =ψr1,m, 1 ≤ ν ≤ n. (37.32)

The aforementioned equation of degree 2n+ 2 can be given by

(p−ψr1)(p−ψr1,0)(p−ψr1,1) · · ·(p−ψr1,2n)
= q0 + q1p+ q2p

2 +·· ·+ q2n+1p
2n+1 +p2n+2. (37.33)

It is easy to see that q0,q1, . . . ,q2n+1 are rational functions of c and e. Note that the sum
of the kth powers of the roots of (37.33) are symmetric functions of the n(2n+2) roots
rν and rν,m of R = 0, where rν and rν,m are given by (37.29). To see this, observe that

(ψr1)
k = 1

n
[(ψr1)k+ (ψr2)k+·· ·+ (ψrn)k],

(ψr1,m)
k = 1

n
[(ψr1,m)k+ (ψr2,m)k+·· ·+ (ψrn,m)k], 0 ≤m≤ 2n,

and

(ψr1)
k+ (ψr1,0)k+ (ψr1,1)k+·· ·+ (ψr1,2n)k

= 1

n

[
(ψr1)

k+ (ψr2)k+·· ·+ (ψrn)k
]

+ 1

n

[
(ψr1,0)

k+ (ψr2,0)k+·· ·+ (ψrn,0)k
]

. . . . . . . . .

+ 1

n

[
(ψr1,2n)

k+ (ψr2,2n)k+·· ·+ (ψrn,2n)k
]
.

Since the coefficients of the polynomial R are rational functions of c and e, we may
now conclude that each sum of the kth powers of the roots of the polynomial (37.33) is
a rational function of c and e. Since the power sum symmetric functions form a basis
for the symmetric functions, it follows that q0,q1, . . . ,q2n+1 are rational functions of c
and e.

Next, we show that if p = ψr1 and q = θr1 are rational symmetric functions of
r1, r2, . . . , rn, then q can be determined in terms of p. Note that a similar result holds
for ψr1,m and θr1,m. For k = 0,1, . . . ,2n+ 1, set

sk = (ψr1)kθr1 + (ψr1,0)kθr1,0 +·· ·+ (ψr1,2n)kθr1,2n. (37.34)



37.4 Abel: Division of Elliptic Functions and Algebraic Equations 829

We prove that sk can be expressed as a rational function of c and e. Note that

(ψr1)
kθr1 = (ψrν)kθrν = 1

n
[(ψr1)kθr1 + (ψr2)kθr2 +·· ·+ (ψrn)kθrn];

(ψr1,m)
kθr1,m = (ψrν,m)kθrν,m = 1

n
[(ψr1,m)kθr1,m+·· ·+ (ψrn,m)kθrn,m].

When these values are substituted in (37.34), we observe that sk is a symmetric rational
function of the roots of R= 0; therefore, sk, k= 0,1, . . . ,2n+1, are rational functions
of c and e. We can apply Cramer’s rule to solve these equations for θr1,θr1,0, . . . ,θr1,2n
in terms of rational functions of ψr1, . . . ,ψr1,2n. This result in turn implies that the
coefficients of the equation

(r − r1)(r − r2) · · ·(r − rn)= rn+pn−1f r
n−1 +pn−2r

n−2 +·· ·+p1r +p0 (37.35)

can be determined by the equation (37.33). There are 2n+ 1 additional equations of
degree n with roots r1,ν, . . . , rn,ν for 0 ≤ ν ≤ 2n; the coefficients of these equations are
also determined by (37.33).

In this way, Abel reduced the problem of solving the equation R = 0 of degree
n(2n± 2) to that of solving 2n+ 2 equations of the form (37.35). We demonstrate by
means of the Lagrange resolvent (Gauss’s method for solving the cyclotomic equation)
that the solutions of these equations can be expressed in terms of the solutions to (37.33).
Let

φ2

(
w′

2n+ 1

)
, φ2

(
2w′

2n+ 1

)
, . . . , φ2

(
nw′

2n+ 1

)
denote the solutions of (37.35), where w′ stands for w or mw+ iw̃. By a theorem of
Gauss, there exists a number α generating the numbers 1,2, . . . ,2n (modulo 2n+ 1).
Then by the periodicity of φ, the set

φ2(ε), φ2(αε), φ2(α2ε), . . . , φ2(αn−1ε),

where ε = w′/(2n + 1), represents all the solutions of (37.35). We omit Abel’s
straightforward proof of this result.

Now let θ denote any imaginary root of θn−1= 0, and define the Lagrange resolvent

ψ(ε)= φ2(ε)+φ2(αε)θ +φ2(α2ε)θ2 +·· ·+φ2(αn−1ε)θn−1. (37.36)

It is clear that ψ(ε) is a rational function of φ2(ε), expressible as ψ(ε)= χ(φ2(ε)
)
. By

a simple calculation involving roots of unity, we can show that

ψ(αmε)= θ−mψ(ε) or ψ(ε)= θmχ(φ2(αmε)).

This implies that (ψε)n = [χ(φ2(αmε))]n. Taking m = 0,1, . . . ,n− 1 and adding we
arrive at

n(ψε)n = [
χ
(
φ2(ε)

)]n+ [
χ
(
φ2(αε)

)]n+·· ·+ [
χ
(
φ2(αn−1ε)

)]n
.
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The expression on the right is a rational symmetric function of φ2ε, φ2(αε), . . . ,φ2

(αn−1ε). That is, it is a rational symmetric function of the roots of (37.35). Therefore,
(φε)n = v is a rational function of p0,p1, . . . ,pn−1 and

n
√

v = φ2ε+ θφ2(αε)+ θ2φ2(α2ε)+·· ·+ θn−1φ2(αn−1ε). (37.37)

Note also thatv is a rational function of the roots of (37.33); so if (37.33) can be solved by
radicals, then v can be expressed in terms of radicals. By changing θ to θ 2,θ 3, . . . ,θn−1

and denoting the corresponding values of v by v2,v3, . . . ,vn−1, we have

n
√

vk = φ2(ε)+ θkφ2(αε)+·· ·+ θk(n−1)φ2(αn−1ε), k = 1,2, . . . ,n− 1. (37.38)

When these n− 1 equations are combined with the equation

−pn−1 = φ2(ε)+φ2(αε)+·· ·+φ2(αn−1ε),

we can easily solve these n linear equations to get

φ2(αmε)= 1

n
(−pn−1 + θ−m n

√
v1 + θ−2m n

√
v2 +·· ·+ θ−(n−1)m n

√
vn−1), (37.39)

form= 0,1, . . . ,n−1. It can also be shown that sk = n
√

vk/( n
√

v1)
k is a rational function

of p0,p1, . . . ,pn−1. For this purpose, it is sufficient to check that sk is unchanged by
ε→ αmε. This gives us Abel’s final formula for φ2(αmε):

φ2(αmε)= 1

n

(
−pn−1 + θ−mv

1
n + s2θ−2mv

2
n +·· ·+ sn−1θ

−(n−1)mv
n−1
m

)
, (37.40)

form= 0,1, . . . ,n−1. This implies that if v can be expressed in terms of radicals, then
R = 0 can be solved by radicals.

37.5 Abel: Division of the Lemniscate

Recall Abel’s remark that in the case e/c = 1, the division points φ2
(
kw′

2n+1

)
could be

obtained by solving an algebraic equation by radicals. When e= c= 1, Abel’s integral
(37.6) is reduced to

α =
∫ x

0

dx√
1− x4

, or x = φα. (37.41)

It is easy to check that
φ(αi)= i φα and (37.42)

w/2 = w̃/2 =
∫ 1

0

dx√
1− x4

. (37.43)

Abel applied the addition formula to show that for m+µ odd and x = φδ,
φ(m+µi)δ = xψ(x2), (37.44)
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for some rational function ψ . Then by changing δ to iδ and using (37.42), he obtained
φ(m+µi)δ = xψ(−x2), or ψ(−x2)=ψ(x2). He therefore concluded that

φ(m+µi)δ = x · T
S
, (37.45)

where T and S were polynomials in powers of x4. This very significant result showed
that the elliptic functionφδ permitted complex multiplication, that is,φ(m+µi)δ could
be expressed as a rational function of φδ. As an example, he noted that

φ(2+ i)δ = ix · 1− 2i− x4

1− (1− 2i)x4
, (37.46)

a result proved by Gauss in an unpublished work, wherein he also divided the lemniscate
into 5 = (2+ i)(2− i) parts.

Abel showed how (37.45) could be applied to the problem of dividing the lemniscate
into 4ν+ 1 parts. By Fermat’s theorem on sums of two squares, Abel could write

α2 +β2 = 4ν+ 1 = (α+ iβ)(α− iβ),
where α+β was odd. With m= α,µ= β, and δ = w/(α+ iβ), he could use (37.45)
to obtain x = φ(δ) as a root of T = 0. By using the periodicity of φ and the addition
formula, Abel proved that

±φ
(

w

α+ iβ
)
, ±φ

(
2w

α+ iβ
)
, . . . ,±φ

(
α2 +β2 − 1

2
· w

α+βi
)

comprised all the roots of the polynomial T . By setting T (x)=R(x2), he obtained

φ2(δ), φ2(2δ), φ2(3δ), . . . ,φ2(2νδ) (37.47)

as all the roots ofR= 0. Next,Abel once again applied Gauss’s method. He first showed
that for a primitive root εmodulo 4ν+1=α2+β2, the setφ2(εmδ), m=0,1, . . . ,2ν−1,
was equal to the set given in (37.47). He then referred to the method of Lagrange
resolvents to conclude that

φ2(εmδ)= 1

2ν

(
A+ θ−m · v 1

2ν + s2θ−2m · v 2
2ν +·· ·+ s2ν−1θ

−(2ν−1)m · v 2ν−1
2ν

)
, (37.48)

where θ was an imaginary root of θ 2ν − 1 = 0, and v, sk were determined by the
expressions

v = [
φ2(δ)+ θ ·φ2(εδ)+ θ2 ·φ2(ε2δ)+·· ·+ θ2ν−1 ·φ2(ε2ν−1δ)

]2ν
, (37.49)

sk = φ2(δ)+ θk ·φ2(εδ)+·· ·+ θ(2ν−1)k ·φ2(ε2ν−1δ)

[φ2(δ)+ θ ·φ2(εδ)+·· ·+ θ2ν−1 ·φ2(ε2ν−1δ)]k , (37.50)

A= φ2(δ)+φ2(εδ)+·· ·+φ2(ε2ν−1δ). (37.51)

Moreover, the expressions (37.49), (37.50), and (37.51) could be written as rational
functions of the coefficients of R = 0. Recall that the coefficients of R = 0 took the
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form a+bi with a,b rational. Thus, v, sk and A were of the form c+ id, with c and d
rational.

Abel then noted that if 4ν+1= 1+2n, then 2ν= 2n−1 and the values in (37.48) could
be computed by repeatedly taking square roots. Thus, the values of φ

(
mw/(α+ iβ))

could be evaluated by taking square roots; hence, by applying the addition formula,
the value of φ(w/(4ν + 1)) could be so determined. This proved the result that the
lemniscate could be geometrically divided into 2n + 1 parts, when this was a prime
number. Recall that in his Disquisitiones, Gauss had stated that this was true.

37.6 Jacobi’s Elliptic Functions

In his Fundamenta Nova, Jacobi presented a detailed account of his theory of elliptic
functions. He inverted the elliptic integral

u=
∫ φ

0

dφ√
1− k2 sin2φ

=
∫ x

0

dx√
(1− x2)(1− k2x2)

by defining the function x = sin amu, where φ = amu, calling φ the amplitude of u.
He noted that, in general, any trigonometric function of φ, such as cosφ = cos amu,
tanφ = tan amu, could be defined in this manner. Jacobi worked mainly with the
functions sinφ, cosφ, and

,amu=
√

1− k2 sin2 amu= d amu

du
.

Following Gudermann, we employ modern notation for these functions: snu, cnu, and
dnu. When we emphasize dependence on modulus k, we write sn(u,k), cn(u,k), and
dn(u,k). The complementary modulus k′, defined by k2 + k′2 = 1, is also important.
Legendre denoted by K the complete elliptic integral obtained by taking x = 1 in the
preceding integral; he denoted the corresponding complete integral for the modulus k′

by K ′.
Jacobi listed the addition theorems and related identities, results he obtained directly

from those of Euler and Legendre:

sn(u+ v)= (snucnvdnv+ snv cnudnu)/D,

cn(u+ v)= (cnucnv − snudnusnvdnv)/D,

dn(u+ v)= (dnudnv − k2snucnusnv cnv)/D,

sn(u+ v)sn(u− v)= (sn2u − sn2v)/D,

where D = 1− k2sn2usn2 v.

Jacobi then extended the domain of the elliptic functions by applying the transformation,
later called Jacobi’s imaginary transformation:

sinφ = i tanψ. (37.52)
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This implied cosφ = secψ and dφ = idψ/cosψ and

dφ√
1− k2 sin2φ

= idψ√
cos2ψ + k2 sin2ψ

= idψ√
1− k′k′ sin2ψ

.

Jacobi used this to write

sin am(iu,k)= i tan am(u,k′),

cos am(iu,k)= sec am(u,k′),

tan am(iu,k)= i sin am(u,k′),

and other similar formulas. From these results, Jacobi deduced that sn(u,k) had periods
4K and 2iK ′; cn(u,k) had periods 4K and 2K + 2iK ′; and dn(u,k) had periods 2K
and 4iK ′. Moreover, in a period parallelogram, snu had zeros at u= 0 and at u= 2K
and had poles at iK ′ and 2K + iK ′. Jacobi had similar results for cnu and dnu.

We note an application of Jacobi’s imaginary transformation to the quadratic trans-
formations discussed earlier. This will provide an introduction to the higher-order
transformations appearing in the next two sections. Recall that Landen’s quadratic
transformation

y = (1+ k′)x√1− x2

√
1− k2x2

(37.53)

produces the differential relation

dy√
(1− y2)(1−λ2y2)

= (1+ k′)dx√
(1− x2)(1− k2x2)

, (37.54)

where λ= (1−k′)/(1+k′) or, in other words, k= 2
√
λ/(1+λ). This algebraic relation

between the moduli λ and k is called a modular equation. By means of this relation, we
may write (37.54) as

(1+λ)dy√
(1− y2)(1−λ2y2)

= 2dx√
(1− x2)(1− k2x2)

. (37.55)

If we integrate the differential on the right-hand side from 0 to 1, we get 2K . However, as
x increases from 0 to 1/

√
1+ k′, y increases from 0 to 1; and as x continues to increase

to 1, y decreases from 1 to 0. Thus, if W denotes the complete integral corresponding
to the modulus λ, we get the equation

2(1+λ)W= 2K or K = (1+λ)W. (37.56)

Now note that the second quadratic transformation of Gauss

z= (1+λ)y
1+λy2

(37.57)

produces the differential relation

dz√
(1− z2)(1− γ 2z2)

= (1+λ)dy√
(1− y2)(1−λ2y2)

, (37.58)
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where γ = 2
√
λ/(1+ λ). We can therefore take γ = k and apply (37.55) followed by

(37.58) to obtain duplication:

dz√
(1− z2)(1− k2z2)

= 2dx√
(1− x2)(1− k2x2)

.

One of Jacobi’s earliest discoveries was that there were, similarly, two cubic transfor-
mations, and when these were applied consecutively, they produced triplication. He
then extended this to general odd order transformations.

Jacobi’s imaginary transformation (37.52) when written in terms of x and y amounts
to setting

x = iX√
1−X2

and y = iY√
1−Y 2

. (37.59)

When these expressions for x and y are substituted in Landen’s transformation (37.53),
we obtain, after simplification, Gauss’s form of the transformation:

Y√
1−Y 2

= (1+ k′)X√
1−X2)(1− k2X2)

or Y = (1+ k′)X
1+ k′X2

.

Moreover, the differential relation (37.55) converts to

(1+λ)dY√
(1−Y 2)(1−λ2Y 2)

= 2dX√
(1−X2)(1− k′2X2)

.

Observe that, since X and Y increase simultaneously from 0 to 1, this relation can be
written in terms of complete integrals:

2K ′ = (1+λ)W′.

Dividing this equation by (37.56) gives another form of the modular relation, also used
by Legendre:

2K ′

K
= W′

W
. (37.60)

As one might expect, when Jacobi’s imaginary transformation is applied to Gauss’s
transformation, one obtains Landen’s transformation, except that k and λ are converted
to their complements k′ and λ′. These results also carry over to general transformations.

37.7 Jacobi: Cubic and Quintic Transformations

In a letter of June 13, 1827, Jacobi communicated to Schumacher, editor of the
Astronomische Nachrichten, two cubic and two quintic transformations. Jacobi’s first
result stated: If we set

sinφ =
sinψ

(
ac+ (

a−c
2

)2
sin2ψ

)
cc+ a−c

2 · a+3c
2 sin2ψ

, (37.61)
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we obtain

dφ√
a3c− a−c

2

(
a+3c

2

)3
sin2φ

= dψ√
c3a− (

a−c
2

)3 a+3c
2 sin2ψ

. (37.62)

If, in addition,

sinψ =
sin θ

(
−3ac+ (

a+3c
2

)2
sin2 θ

)
aa− 3 a−c2 · a+3c

2 sin2 θ
and (37.63)

χ = a− c
2c

(
a+ 3c

2a

)3

, (37.64)

then we have
dφ√

1−χ sin2φ
= 3dθ√

1−χ sin2 θ
. (37.65)

Note that (37.61) and (37.63) are Jacobi’s two cubic transformations, and when applied
in succession, they produce the triplication (37.65) for the modulus k2 = χ , given by
(37.64).

Jacobi’s second result stated: If we set a3 = 2b(1+ a+ b) and

sinφ = sinψ(1+ 2a+ (aa+ 2ab+ 2b)sin2ψ + bb sin4ψ)

1+ (aa+ 2a+ 2b)sin2ψ + b(b+ 2a)sin4ψ
, (37.66)

we get∫
dφ√

(a− 2b)(1+ 2a)2 − (2− a)(b+ 2a)2 sin2φ
=

∫
dψ√

a− 2b− bb(2− a)sin2ψ
.

Also, if

α = 2− a
1+ 2a

,

β =−b+ 2a

1+ 2a
· 2− a
a− 2b

,

χ = 2− a
a− 2b

·
(
b+ 2a

1+ 2a

)2

,

sinψ = sin θ(1+ 2α+ (αα+ 2αβ+ 2β)sin2 θ +ββ sin4 θ)

1+ (αα+ 2α+ 2β)sin2 θ +β(β+ 2α)sin4 θ
, (37.67)

then we have ∫
dφ√

1−χ sin2φ
= 5

∫
dθ√

1−χ sin2 θ
. (37.68)

Here (37.66) and (37.67) are Jacobi’s quintic transformations, and they together produce
the quinsection given by (37.68).

In his April 12, 1828 letter to Legendre, Jacobi wrote that he found (37.63) and
(37.67) by trial and error. But he explained that he had found the cubic and quintic
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transformations (37.61) and (37.66) on the basis of the general algebraic theory of
transformations he had developed in March 1827. For this theory, he considered the
transformation y = U/V , where U and V were polynomials in x differing in degree
by at most one, and such that

dy√
Y

= 1

M

dx√
X
, (37.69)

whereX and Y were quartics in x and y, respectively, andM was a constant depending
on the constants in X and Y . In particular, he took X = (1− x2)(1− k2x2) and Y =
(1− y2)(1−λ2y2). By substituting y =U/V in (37.69), he obtained the relation

dy√
(1− y2)(1−λ2y2)

=
(
V dU

dx
−U dV

dx

)
dx√

(V 2 −U 2)(V 2 −λ2U 2)
.

He noted that if U and V were of degree p, the numerator of the expression on the
right was a polynomial of degree 2p− 2, while the expression inside the radical was
of degree 4p. Moreover, since for any number α,

(V −αU)dU
dx

− d(V −αU)
dx

U = V dU
dx

−U dV
dx
,

it followed that if any of the factors V ±U, V ± λU in the denominator had a square
factor (1− βx)2, then 1− βx was a factor of the numerator polynomial. Thus, if the
denominator was of form T 2X, where X was a quadratic and T was of degree 2p−2,
then

M = T

V dU

dx
−U dV

dx

was a constant depending only on the constants in X and Y . Jacobi noted that the
problem of finding y = U/V was determinate because U/V had 2p+ 1 constants of
which 2p−2 could be determined by requiring that (V 2−U 2)(V 2−λ2U 2)=T 2X. This
left three undetermined constants, and that number could not be reduced because x could
be replaced by (a+ bx)/(1+ dx), resulting in a similar relation. Thus, he looked for
polynomials U and V such that V +U = (1+x)AA, V −U = (1−x)BB, V +λU =
(1 + kx)CC, V − λU = (1 − kx)DD. He also noted that y was an odd function of
x, and hence U = xF(x2) and V = φ(x2). Moreover, the equation (37.69) remained
invariant when y was replaced by 1/(λy) and x by 1/(kx). This observation allowed
him to determine explicit algebraic relations between k,λ, and the coefficients of U
and V . In particular, it was possible to obtain for small values of p (the degree of U )
the explicit algebraic relations satisfied by k and λ. These relations are called modular
equations. So if either k or λ is given, the other can be found as one of the roots of this
equation. The value of M can also be determined. It can be proved that if p is an odd
prime, then the modular equation is irreducible and of order p+1. Thus, for a given k,
there are p+ 1 different values of λ and each one leads to a distinct transformation of
order p. We note that Legendre and Jacobi took k2 to be between 0 and 1. The modular
equation gave p+ 1 values of λ of which two were real, one greater than k and the
other less than k. Jacobi denoted the smaller value by λ and the larger by λ1; he called
the transformation with the smaller λ the first transformation and the other the second
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transformation. He noted that when the two transformations were applied one after the
other, the result was a multiplication by p of the differential. So if y = U/V was the
first transformation and z=U1/V1 the second, then

dz√
(1− z2)(1− k2z2)

= pdx√
(1− x2)(1− k2x2)

.

Jacobi worked out the algebraic theory of transformations only for the cubic and quintic
cases; he needed the theory of elliptic functions to develop the higher-order transfor-
mations. He called this the transcendental theory of transformations. He may have
obtained from Abel the idea of the elliptic function as the inverse of an elliptic integral,
though he unfortunately never discussed this question. Jacobi did not go deeply into
modular equations; the algebraic theory of modular equations was developed, starting
in the 1850s, by Betti, Brioschi, Hermite, and Kronecker.

In the Fundamenta Nova, Jacobi gave details of how he found the first cubic trans-
formation. First set a/c = 2α+ 1 in (37.61). Then the transformation would take the
form: If

y = x(2α+ 1+α2x2)/(1+α(α+ 2)x2), then (37.70)

dy√
(1− y2)(1−λ2y2)

= (2α+ 1)dx√
(1− x2)(1− k2x2)

, (37.71)

where k2 = α3(2+α)/(2α+ 1) and λ2 = α(2+α)3/(2α+ 1)3.
Recall that since U = xF(x2) and V = φ(x2), to derive this cubic transformation,

Jacobi could take
V = 1+ bx2 and U = x(a+ a1x

2).

He then assumed that A was of the form 1+αx so that

V +U = (1+ x)AA= 1+ (1+ 2α)x+α(2+α)x2 +ααx3.

By equating the powers of x, he had

b= α(2+α), a = 1+ 2α, and a1 = α2.

Note that this gives the preceding cubic transformation (37.70). To find the algebraic
relation satisfied by k and λ, he changed x into 1/(kx) and y into 1/(λy) in (37.70) to
get

λx
(
(2α+ 1)α2 +α4x2

)
α2 +α3(α+ 2)x2

= kx
(
α(α+ 2)+ k2x2

)
α2 + (2α+ 1)k2x2

.

By equating coefficients of various powers of x, Jacobi found

k2 = α3(2+α)
2α+ 1

, λ2 = k6

α8
= α

(
2+α

2α+ 1

)3

.

The complementary moduli were then given by

k′2 = 1− k2 = (1−α)(1+α)3
2α+ 1

, λ′2 = (1+α)(1−α)3
(2α+ 1)3

.
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Observe that this immediately gives the modular equation
√
kλ+√

k′λ′ = 1.Moreover,
he noted that with D = 1+α(α+ 2)x2,

1− y = (1− x)(1−αx)2/D, 1+ y = (1+ x)(1+αx)2/D,
1−λy = (1− kx)(1− kx/α)2/D, 1+λy = (1+ kx)(1+ kx/α)2/D,

and hence he arrived at the transformation (37.71):

dy√
(1− y2)(1−λ2y2)

= (2α+ 1)dx√
(1− x2)(1− k2x2)

.

Jacobi wrote the modular equation in a slightly different form, by setting k1/4 = u and
λ1/4 = v, to get

u4 − v4 + 2uv(1−u2v2)= 0. (37.72)

He showed how to obtain the second transformation from this modular equation. He
first wrote (37.70) in terms of u and v by observing that k3/λ= α4 or α = u3/v. Then
(37.70) and (37.71) could be rewritten as

y = v(v+ 2u3)x+u6x3

v2 + v3u2(v+ 2u3)x2
; (37.73)

dy√
(1− y2)(1− v8y2)

= v+ 2u3

v

dx√
(1− x2)(1−u8x2)

. (37.74)

Jacobi then observed that the modular equation remained unchanged when u and v
were changed to −v and u, respectively. This gave him the second transformation

z= u(u− 2v3)y+ v6y3

u2 +u3v2(u− 2v3)y2
; (37.75)

dz√
(1− z2)(1−u8z2)

= u− 2v3

u

dy√
(1− y2)(1− v8y2)

. (37.76)

By the modular equation(
v+ 2u3

v

)(
u− 2v3

u

)
= 2(u4 − v4)+uv(1− 4u2v2)

uv
=−3,

he obtained triplication formula

dz√
(1− z2)(1−u8z2)

= −3dx√
(1− x2)(1−u8x2)

.

To get +3 instead of −3, it was sufficient to change z to −z.
In the case of the quintic transformation, Jacobi set

V = 1+ b1x
2 + b2x

4, U = x(a1 + a2x
2 + a3x

4), A= 1+αx+βx2.
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From the equation V +U = (1+ x)AA, he found

b1 = 2α+ 2β+αα, b2 = β(2α+β),
a1 = 1+ 2α, a2 = 2β+αα+ 2αβ, a3 = ββ.

He gave the details in section 15 of his Fundamenta. He presented the modular equation
in the form

u6 − v6 + 5u2v2(u2 − v2)+ 4uv(1−u4v4)= 0.

In 1858, Hermite used this relation to solve a quintic equation, just as Viète solved a
cubic by means of trigonometric functions.

37.8 Jacobi’s Transcendental Theory of Transformations

Euler, Legendre, and others were aware of the fact that the addition formula for elliptic
integrals solved the problem of the multiplication or division of an elliptic integral
by an integer. In transformation theory, the multiplication was accomplished in two
steps. The first step was to apply a transformation that gave a new elliptic integral with
a modulus λ2 smaller than the original modulus k2. This was followed by a second
transformation serving to increase the modulus. Jacobi discovered these facts about
transformation theory by the summer of 1827, at least in the cases of the cubic and
quintic transformations. To develop the theory in general, he had to invert the elliptic
integral and work with elliptic functions. In his December 1827 paper, however, he
gave only the first transformation because he did not define elliptic functions of a
complex variable. It was after he introduced complex periods in the spring of 1828
that he was able to develop the complete transformation theory as presented in his
Fundamenta Nova. He explained how the two transformations arose and also the manner
in which they were related to the complementary transformations. To obtain a glimpse
of the general theory, we consider the cubic transformation in some detail from the
transcendental viewpoint. For the most part, we follow the exposition from Cayley’s
Elliptic Functions. It can be shown by means of the addition formula for the elliptic
function x = sn (u,k) that if z= sn (3u,k), then

z=
3x

(
1− x2

a2
1

)(
1− x2

a2
2

)(
1− x2

a2
3

)(
1− x2

a2
4

)
(1− k2a2

1x
2)(1− k2a2

2x
2)(1− k2a2

3x
2)(1− k2a2

4x
2)
, (37.77)

where a1 = sn
4K

3
, a2 = sn

4iK ′

3
, a3 = sn

4K + i4K ′

3
, a4 = sn

−4K + i4K ′

3
.

Also, it follows from a formula of Legendre that a1,a2,a3,a4 are the roots of

3− 4(1+ k2)x2 + 6k2x4 − k4x8 = 0.

Note that Legendre knew that (37.77) was an integral of the differential equation

dz√
(1− z2)(1− k2z2)

= 3dx√
(1− x2)(1− k2x2)

. (37.78)
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Now from Jacobi’s algebraic theory presented in the previous section, it follows that
the first transformation has the form

y =
x

M

(
1− x2

a2
1

)
1− k2a2

1x
2
, (37.79)

whereM is to be determined. Recall that Jacobi required the existence of a polynomial
A such that V −U = (1− x)A2 where y =U/V . This means that the value x = 1 can
be required to correspond to y = 1. Taking these values for x and y in (37.79), we see
that

M =− 1− a2
1

a2
1(1− k2a2

1)
and

1− y =
(
(1− k2a2

1x
2)− x

M

(
1− x2

a2
1

))/
D,

where D = 1− k2a2
1x

2. We can rewrite the numerator of 1− y as

(1− x)
(

1−
(

1

M
− 1

)
x− x2

Ma2
1

)
.

Now let A= 1− x/f so that, for consistency, we require that

1−
(

1

M
− 1

)
x− x2

Ma2
1

= 1− 2

f
x+ x2

f 2
.

Equating coefficients, we get

2

f
=−1− k2a4

1

1− a2
1

and
1

f 2
=− 1

Ma2
1

= 1− k2a2
1

1− a2
1

. (37.80)

These relations are consistent because, by the addition formula and periodicity of snu,

sn
8K

3
=−sn

4K

3
= 2sn (4K/3)cn (4K/3)dn (4K/3)

1− k2sn4 (4K/3)
,

or 2
√

1− a2
1

√
1− k2a2

1 =−(1− k2a4
1).

Hence,
1+ y = (1+ x)(1+ x/f )2/D.

The next step is to determine λ by using the invariance of the transformation (37.79)
under the change x to 1/(kx) and y to 1/(λy). This gives

λ=M2k3a4
1 =

k3(1− a2
1)

2

(1− k2a2
1)

2
.

Note that since a1 is real, we have 1− a2
1 < 1− k2a2

1 and λ is smaller than k. It is also
easy to check that

1−λy = (1− kx)(1− kf x)2/D; 1+λy = (1+ kx)(1+ kf x)2/D. (37.81)
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It follows that
Mdy√

(1− y2)(1−λ2y2)
= dx√

(1− x2)(1− k2x2)
. (37.82)

Then, by means of an algebraic calculation, obtain
√
λk+√

λ′k′ = 1.
Now for the second transformation, we require that if it is applied after the first, we

get triplication. Note that (37.79) implies (37.82). Therefore, we want a transformation

z=
3My

(
1− y2

θ2

)
1−λ2θ 2y2

(37.83)

such that
dz√

(1− z2)(1− k2z2)
= 3Mdy√

(1− y2)(1−λ2y2)
. (37.84)

Thus, (37.78) must hold in this case. Next note that if the value of y given by (37.79)
when substituted in (37.83) were to produce (37.77), then (37.78) would hold true.
Moreover, it can be shown that if we take θ =−a2a3a4/(Ma

2
1), then

1− y

θ
=

(
1− x

a2

)(
1− x

a3

)(
1− x

a4

)/
D,

1−λθy = (1− ka2x)(1− ka3x)(1− ka4x)
/
D,

and there are similar formulas for 1 + y/θ, 1 + λθy where the sign of x is changed.
So this value of θ in (37.83) indeed produces the desired result (37.84). Moreover θ is
related to λ as a1 to k, that is, θ is a solution of

3− 4(1+λ2)θ2 + 6λ2θ4 −λ4θ8 = 0.

In fact, it can be shown that θ may be taken to be the purely imaginary value

a2 = sn (4iK ′/3).

This implies that θ2 is real and negative and that (37.83) is a real transformation.
Transformations similar to (37.79), wherein a1 is replaced by a3 or a4, contain complex
numbers.

In general, for an odd integer n, Jacobi gave the transformation formulas in the form

y =
x

M

∏n

s=1

(
1− x2

sn22sw

)
∏n

s=1

(
1− k2(sn22sw)x2

) ,
where

w = m1K +m2iK
′

n
.

Denoting the denominator on the right-hand side by D, he showed that under the
conditions

λ= kn
n∏
s=1

sn4 (K − 2sw), (37.85)
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λ′ = k′n/
n∏
s=1

dn4(2sw), M = (−1)(n−1)/2
n∏
s=1

((sn(K − 2sw))/sn(2sw))2,

the following expressions for 1− y, 1+ y, 1− λy, 1+ λy were consistent with each
other and with the expression for y:

(1− y)D = (1− x)
n∏
s=1

(
1− x

sn(K − 2sw)

)2

,

(1+ y)D = (1+ x)
n∏
s=1

(
1+ x

sn(K − 2sw)

)2

,

(1−λy)D = (1− kx)
n∏
s=1

(
1− kxsn(K − 2sw)

)2
,

(1+λy)D = (
1+ kx)

n∏
s=1

(1+ kxsn(K − 2sw)
)2
.

These equations implied the differential equation (37.84). He also rewrote the
transformation formulas in the form

sn
( u
M
,λ

)
= snu

M

(
n∏
s=1

(
1− sn2u

sn2(2sw)

))
÷D, (37.86)

cn
( u
M
,λ

)
= cnu

(
n∏
s=1

(
1− sn2u

sn2(K − 2sw)

))
÷D,

dn
( u
M
,λ

)
= snu

(
n∏
s=1

(1− k2sn2(K − 2sw)sn2u)

)
÷D,

where D =
n∏
s=1

(
1− k2sn2(2sw)sn2u

)
, and snu= sn(u,k).

The real transformations corresponded to the cases w =K/n and w′ = iK ′/n. Then,
by applying the imaginary transformation, Jacobi obtained the transformations for
the moduli w′ and λ′. This meant that the transformation for K/n, that is the first
transformation, was converted to the form of the second transformation, arising from
iK ′/n.

Jacobi obtained the relation between the complete integrals K and W by observing
that for w=K/n the least positive value for which sn(u/M,λ) vanished in (37.86) was
given by u/M = 2W, while on the right-hand side it was given by u= 2K/n. Hence,

2MW= 2K

n
or

K

nM
=W. (37.87)

Note that this relation came from the first transformation, since w was taken to beK/n.
Jacobi denoted the value ofM byM1 in the second transformation, where w was taken
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to be iK ′/n. Since sn2(2sw) was negative in this case, Jacobi noted that the smallest
value of u for which the right-hand side of (37.86) vanished was given by u = 2K .
Hence, he obtained

2M1W1 = 2K or
K

M1
=W1. (37.88)

On the other hand, the transformations for the complementary moduli gave Jacobi the
relations

W′ = K ′

M
and W1 = K ′

nM1
. (37.89)

The first relation combined with (37.87) produced the modular equation

W′

W
= nK

′

K
,

while the second together with (37.88) gave

K ′

K
= nW

′
1

W1
.

Jacobi also found transformations easily derivable from the first and second trans-
formations; he named these supplementary transformations and used them to obtain
product expansions for elliptic functions. For example, he started with the second
transformation

sn

(
u

M1
,λ1

)
= snu

M1

(
n∏
s=1

(
1− sn2u

sn2(2siK ′/n)

))

÷
n∏
s=1

(
1− sn2u

sn2((2s− 1)iK ′/n)

)
, (37.90)

where snu= sn(u,k). He changed k into λ so that λ1 then changed to k. Denoting the
new value of M1 by M ′, he had the relations

M1 = K

W1
, M ′ = W

K
= 1

nM
, or n= 1

MM ′ .

Then, replacing u by u/M in the transformation obtained after changing k to λ, he
reached his first supplementary transformation

sn(nu,k)= nMsn
( u
M
,λ

)
N
/
D (37.91)

where N =
n∏
s=1

(
1− sn2(u/M,λ)

sn2(2siW′/n,λ)

)

and D =
n∏
s=1

(
1− sn2(u/M,λ)

sn2((2s− 1)iW′/n,λ)

)
.

Similarly, Jacobi had formulas for the functions sn and dn.
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37.9 Jacobi: Infinite Products for Elliptic Functions

In 1828–29, Jacobi obtained his initial infinite products for the elliptic functions sn, cn,
and dn.To do this, he took his ordern supplementary transformations for these functions,
such as (37.91) for sn, and let the integer n tend to infinity. He noted that since k2 was
less than 1, it followed that kn tended to zero and hence by equation (37.85) λ = 0,
am(u, λ)= u, and sn(θ,λ)= sin θ . This then implied that the corresponding complete
integral W was equal to π/2. Moreover, since by (37.87) and (37.89) W=K/nM and
W′ =K ′/M , it followed that

nM = 2K

π
,

W′

n
= K ′

nM
= πK ′

2K
. (37.92)

Jacobi also had

am(u/(nM), λ)= am(u/(nM), 0)= u/(nM)= πu/(2K)
and he set

sn(u/M, λ)= sin(πu/(2K))= y.
Replacing nu by u in (37.91), he let n→∞ to obtain the product formula:

snu= 2Ky

π

(
1− y2

sin2 iπK ′/K

)(
1− y2

sin2 2iπK ′/K

)(
1− y2

sin2 3iπK ′/K

)
· · ·(

1− y2

sin2 iπK ′/(2K)

)(
1− y2

sin2 3iπK ′/(2K)

)(
1− y2

sin2 5iπK ′/(2K)

)
· · ·
.

In a similar way, he got

cnu=√
1− y2

(
1− y2

cos2(πiK ′/K)

)(
1− y2

cos2(2πiK ′/K)

)(
1− y2

cos2(3πiK ′/K)

)
· · ·(

1− y2

sin2(πiK ′/(2K))

)(
1− y2

sin2(3πiK ′/(2K))

)(
1− y2

sin2(5πiK ′/(2K))

)
· · ·
,

(37.93)
and

dnu=
(

1− y2

cos2(πiK ′/(2K))

)(
1− y2

cos2(3πiK ′/(2K))

)(
1− y2

cos2(5πiK ′/(2K))

)
· · ·(

1− y2

sin2(πiK ′/(2K))

)(
1− y2

sin2(3πiK ′/(2K))

)(
1− y2

sin2(5πiK ′/(2K))

)
· · ·
. (37.94)

Recall that Abel obtained his similar product formula (37.28) for φα using a different
method. Jacobi then set e−πK ′/K = q, u= 2Kx/π , and y = sinx to obtain

sin
mπiK ′

K
= qm− q−m

2i
= i(1− q2m)

2qm
, (37.95)

cos
mπiK ′

K
= qm+ q−m

2
= 1+ q2m

2qm
, (37.96)

1− y2

sin2 mπiK ′
K

= 1+ 4q2m sin2 x

(1− q2m)2
= 1− 2q2m cos2x+ q4m

(1− q2m)2
, (37.97)

1− y2

cos2 mπiK ′
K

= 1− 4q2m sin2 x

(1+ q2m)2
= 1+ 2q2m cos2x+ q4m

(1+ q2m)2
. (37.98)
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He was then able to rewrite the products as

sn
2Kx

π
= 2AK

π
sin x

· (1− 2q2 cos 2x+ q4)(1− 2q4 cos 2x+ q8)(1− 2q6 cos 2x+ q12) · · ·
(1− 2q cos 2x+ q2)(1− 2q3 cos 2x+ q6)(1− 2q5 cos 2x+ q10) · · ·

cn
2Kx

π
= B cos x

· (1+ 2q2 cos 2x+ q4)(1+ 2q4 cos 2x+ q8)(1+ 2q6 cos 2x+ q12) · · ·
(1− 2q cos 2x+ q2)(1− 2q3 cos 2x+ q6)(1− 2q5 cos 2x+ q10) · · ·

dn
2Kx

π
=C

· (1+ 2q cos 2x+ q2)(1+ 2q3 cos 2x+ q6)(1+ 2q5 cos 2x+ q10) · · ·
(1− 2q cos 2x+ q2)(1− 2q3 cos 2x+ q6)(1− 2q5 cos 2x+ q10) · · · .

Here

A=
{
(1− q)(1− q3)(1− q5) · · ·
(1− q2)(1− q4)(1− q6) · · ·

}2

,

B =
{
(1− q)(1− q3)(1− q5) · · ·
(1+ q2)(1+ q4)(1+ q6) · · ·

}2

,

C =
{
(1− q)(1− q3)(1− q5) · · ·
(1+ q)(1+ q3)(1+ q5) · · ·

}2

.

Jacobi set x = π

2 and observed that since snK = 1 and dnK = √
1− k2 sn2K =√

1− k2 = k′,
k′ =C · C =C2 or C =√

k′ .

To rewrite these formulas in a more useful form, he changed x to x+ iπK ′
2K in the first

equation, so that by the addition formula

sn

(
2Kx

π
+ iK ′

)
= 1

k sn 2Kx
π

;

cos 2

(
x+ i πK

′

2K

)
= e2ix−πK ′/K + e−2ix+πK ′/K

2
= 1

2

(
qe2ix + 1

q
e−2ix

)
;

ei(x+iπK
′/(2K)) =√

q eix .

Note that the first product formula could be written as

sn
2Kx

π
= 2AK

π

(
eix − e−ix

2i

)
· (37.99)

(1− q2e2ix)(1− q2e−2ix)(1− q4e2ix)(1− q4e−2ix) · · ·
(1− qe2ix)(1− qe−2ix)(1− q3e2ix)(1− q3e−2ix) · · · . (37.100)
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Observe that after applying x→ x+ i πK ′
2K , the formula would become

1

k sn 2Kx
π

= 2AK

π

(√
qeix − 1√

q
e−ix

2i

)
· (37.101)

(1− q3e2ix)(1− qe−2ix)(1− q5e2ix)(1− q3e−2ix) · · ·
(1− q2e2ix)(1− e−2ix)(1− q4e2ix)(1− q2e−2ix) · · · . (37.102)

Multiply equations (37.100) and (37.102) to obtain Jacobi’s result

1

k
= 1√

q

(
AK

π

)2

or A= π 4
√
q√

kK
.

Jacobi then set x = π

2 in (37.100) and applied C =√
k′ to get

1 = 2AK

π

{
(1+ q2)(1+ q4)(1+ q6) · · ·
(1+ q)(1+ q3)(1+ q5) · · ·

}2

= 2
√
k′AK
πB

.

Jacobi was then in a position to rewrite the products:

sn
2Kx

π
= 2q1/4

√
k

sin x
(1− 2q2 cos 2x+ q4)(1− 2q4 cos 2x+ q8) · · ·
(1− 2q cos 2x+ q2)(1− 2q3 cos 2x+ q6) · · · , (37.103)

cn
2Kx

π
=

√
k′

k
· 2q1/4 cosx(1+ 2q2 cos2x+ q4)(1+ 2q4 cos2x+ q8) · · ·

(1− 2q cos2x+ q2)(1− 2q3 cos2x+ q6) · · · , (37.104)

dn
2Kx

π
=√

k′ · (1+ 2q cos2x+ q2)(1+ 2q3 cos2x+ q6) · · ·
(1− 2q cos2x+ q2)(1− 2q3 cos2x+ q6) · · · . (37.105)

Thus, from the products for A, B, and C, Jacobi had infinite products for 2K
π

, k′ and k:

2K

π
=

{
(1− q2)(1− q4)(1− q6) · · ·
(1− q)(1− q3)(1− q5) · · ·

}2

·
{
(1+ q)(1+ q3)(1+ q5) · · ·
(1+ q2)(1+ q4)(1+ q6) · · ·

}2

,

k′ =
{
(1− q)(1− q3)(1− q5) · · ·
(1+ q)(1+ q3)(1+ q5) · · ·

}4

,

k = 4
√
q

{
(1+ q2)(1+ q4)(1+ q6) · · ·
(1+ q)(1+ q3)(1+ q5) · · ·

}4

.

After obtaining 2K
π

as an infinite product, Jacobi applied the triple product identity to
express this product as a theta series:√

2K

π
= 1+ 2q+ 2q4 + 2q9 + 2q16 +·· · . (37.106)

This formula laid the basis for Jacobi’s results on the sums of squares, two of which
reproved theorems of Fermat.
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37.10 Jacobi: Sums of Squares

In 1750, Euler suggested that problems on sums of squares could most naturally be
studied through the series whose powers were squares. In his 1828 work on elliptic
functions, Jacobi followed Euler’s suggestion, with great success. Though primarily
an analyst, Jacobi had a strong interest in number theory, leading him to perceive that
his famous formula (37.106) could be employed to obtain Fermat’s theorems on sums
of two and four squares. In fact, Jacobi also found analytic formulas implying results
for sums of six and eight squares. He arrived at all these results, including (37.106),
through his product expansions of the doubly-periodic elliptic functions. Recall that in
an analogous manner, Euler evaluated the zeta values at the even integers by means of
the infinite product expansions of the singly periodic trigonometric functions.Also note
that the period K of the elliptic function was obtained as a value of a theta function,
while, as in the Madhava–Leibniz formula, the period π of a trigonometric function
was expressed as a value of an L-function.

To derive the formulas necessary to work with sums of squares, Jacobi first took the
logarithmic derivatives of the product expansions for the elliptic functions sn, cn, and
dn. First note

log(1− 2qm cos 2x+ q2m)= log (1− qme2ix)+ log (1− qme−2ix)

=−
∞∑
l=1

qlm cos 2lx

l
.

Combining this relation with the geometric series 1 − ql + q2l − ·· · = 1
1+ql gives us

Jacobi’s formulas; he simply wrote them down without details:

logsn
2Kx

π
= log

{
2 4
√
q√
k

sin x

}
+ 2q cos 2x

1+ q + 2q2 cos 4x

2(1+ q2)
+ 2q3 cos 6x

3(1+ q3)
+·· · ,

logcn
2Kx

π
= log

{
2 4
√
q

√
k′

k
cos x

}
+ 2q cos 2x

1− q + 2q2 cos 4x

2(1+ q2)
+ 2q3 cos 6x

3(1− q3)
+·· · ,

logdn
2Kx

π
= log

√
k′ + 4q cos 2x

1− q2
+ 4q3 cos 6x

3(1− q6)
+ 4q5 cos 10x

5(1− q10)
+·· · .

To obtain the derivatives of these formulas, Jacobi observed that

d

dx
logsn(2Kx/π)= 2k′K

π

cn(2Kx/π)

cn(K − 2Kx/π)
, (37.107)

− d

dx
logcn(2Kx/π)= 2K

π
· sn(2Kx/π)

sn(K − 2Kx/π)
, (37.108)

− d

dx
logdn(2Kxπ)= 2k2K

π
sn(2Kx/π)sn(K − 2Kx/π). (37.109)
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Thus, he obtained

2k′K
π

· cn 2Kx
π

cn(K − 2Kx
π
)
= cot x− 4q sin 2x

1+ q − 4q2 sin 4x

1+ q2
− 4q3 sin 6x

1+ q3
−·· · ,

2K

π
· sn 2Kx

π

sn (K − 2Kx
π
)
= tan x+ 4q sin 2x

1− q + 4q2 sin 4x

1+ q2
+ 4q3 sin 6x

1− q3
+·· · ,

2k2K

π
sn

2Kx

π
sn (K − 2Kx

π
)= 8q sin 2x

1− q2
+ 8q3 sin 6x

1− q6
+ 8q5 sin 10x

1− q10
+·· · .

Note that when x = π/4 in the second equation, we get the Lambert series for 2K/π :

2K

π
= 1+ 4q

1− q − 4q3

1− q3
+ 4q5

1− q5
−·· · .

Also, the derivative of the second equation at x = 0 gives us the Lambert series for the
square of 2K/π : (

2K

π

)2

= 1+ 8q

1− q + 16q2

1+ q2
+ 24q3

1− q3
+·· · .

By further manipulation of the products, using differentiation and series expansions,
Jacobi obtained formulas for the cubes and fourth powers, as given in sections 40–42
of his Fundamenta Nova:(

2K

π

)3

= 1+ 16
∞∑
n=1

n2qn

1+ q2n
− 4

∞∑
n=1

(−1)n−1 (2n− 1)2q2n−1

1− q2n−1
, (37.110)

(
2K

π

)4

= 1+ 16
∞∑
n=1

n3qn

1+ (−1)n−1qn
. (37.111)

The reader may observe that by expressing the Lambert series in the last four equations
as power series in q, we obtain the number of representations of an integer as the sum
of two, four, six, and eight squares.

In the final paragraph of his Fundamenta, Jacobi gave a number theoretic interpre-
tation of his analytic formula for the sums of four squares, but he did not write down
interpretations for the other formulas. In 1865, Henry Smith gave these explicitly, in
sections 95 and 127 of his report on number theory:

The number of representations of any uneven (or unevenly even) number by the form x2 + y2 is
the quadruple of the excess of the number of its divisors of the form 4n+1, above the number of
its divisors of the form 4n+ 3.

The number of representations of any number N as a sum of four squares is eight times the
sum of its divisors if N is uneven, twenty-four times the sum of its uneven divisors if N is even.

The number of representations of any numberN as a sum of six squares is 4
∑
(−1)(δ−1)/2(4δ′2−

δ2), δ denoting any uneven divisor ofN, δ′ its conjugate divisor. In particular ifN ≡ 1,mod 4, the
number of representations is 12

∑
(−1)(δ−1)/2; if N ≡−1, mod 4, it is −20

∑
(−1)(δ−1)/2δ2.

The number of representations of any uneven number as a sum of eight squares is sixteen times
the sum of the cubes of its divisors; for an even number it is sixteen times the excess of the cubes
of the even divisors above the cubes of the uneven divisors.
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In his July 1828 paper in Crelle’s Journal, Jacobi gave a beautiful application of
(37.106) to derive a very efficient proof of the transformation formula for a theta
function: √

1

x
= 1+ 2e−πx + 2e−4πx + 2e−9πx + 2e−16πx +·· ·

1+ 2e−π/x + 2e−4π/x + 2e−9π/x + 2e−16π/x +·· · . (37.112)

Cauchy found this in 1817, and Poisson did so in 1823, though Jacobi referred only to
Poisson. Jacobi observed that if the moduli k and k′ were interchanged, thenK andK ′

would also be interchanged. Thus, with x =K ′/K , (37.106) implied√
2K ′

π
= 1+ 2e−π/x + 2e−4π/x + 2e−9π/x + 2e−16π/x + 2e−25π/x +·· · .

Dividing (37.106) by this equation gave him the required transformation. As we shall
see in the next section, in 1836 Cauchy applied (37.112) to evaluate a Gauss sum, and
in 1840 he provided a more succinct argument.

It is interesting to note that Euler foresaw, albeit vaguely, Jacobi’s manner of proof
for the four squares theorem and the importance of the transformation of the theta
function. In a letter to Goldbach of August 17, 1750, Euler discussed the series

1− x+ x4 − x9 + x16 − x25 +·· · .
He wrote that he had approximately evaluated to several decimal places this series
for values of x close to 1, a remarkable calculation since the series is very slowly
convergent. He commented that it would be very useful if a method could be found
for efficiently summing the series for such values. And the transformation of theta
functions accomplishes just this task. Moreover, in the same letter Euler mentioned
Fermat’s remarkable theorem that every number could be expressed as a sum of three
triangular numbers, four squares, five pentagonal numbers, and so on. He remarked
that the most natural way to prove this proposition might be to show that the coefficient
of every power of x must be positive in the series:

(1+ x+ x3 + x6 +·· ·)3, (1+ x+ x4 + x9 +·· ·)4, and so on.

37.11 Cauchy: Theta Transformations and Gauss Sums

Cauchy’s 1817 derivation of his transformation of the theta function depended upon
the theorem now known as the Poisson summation formula. Cauchy was the first to
discover this result, and he did so in the course of his work on the theory of waves.
For the Poisson summation formula, consult chapter 25 on the Euler–Maclaurin series.
Independent of Fourier’s earlier work, Cauchy also discovered the reciprocity of the
Fourier cosine transform, given by

f (x)=
√

2

π

∫ ∞

0
φ(t)cos tx dt; φ(x)=

√
2

π

∫ ∞

0
f (t)cos tx dt.
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He gave his summation formula in the form of the relation

√
α
∑

f (nα)=√
β
∑

φ(nβ),

where αβ = 2π , and the summation was taken over all integers. Cauchy obtained his
transformation formula by setting f (x) equal to the function he called the reciprocal
function, e−x2/2, and then setting φ(x) = e−x2/2 in the summation formula. He then
took α =√

2a and β =√
2b and stated the transformation as

a1/2

(
1

2
+ e−a2 + e−4a2 + e−9a2 +·· ·

)
= b1/2

(
1

2
+ e−b2 + e−4b2 +·· ·

)
(37.113)

when ab= π. (37.114)

Note that (37.113) describes the transformation of the theta function (or theta constant)

∞∑
n=−∞

eπin
2τ

under the mapping τ →−1/τ .
Cauchy applied a very interesting idea to evaluate Gauss sums from (37.113). Taking

n to be an integer, he set τ = 2
n
+ i α2

π
in the transformation formula, and let α→ 0. The

asymptotic behavior of the two sides of the formula then yielded the result. Note that
the theta function is analytic in the upper half plane and every point of the real line is
a singular point.

In 1840, Cauchy published his quadratic Gauss sum evaluation in Liouville’s Journal.
He noted that (37.113) could be rewritten as

a

(
1

2
+ e−a2 + e−4a2 +·· ·

)
=√

π

(
1

2
+ e−π2/a2 + e−4π2/a2 +·· ·

)
.

For a = α, an infinitely small number, this reduced to

α

(
1

2
+ e−α2 + e−4α2 +·· ·

)
=√

π/2.

Cauchy remarked that this step could be verified by the fact that the limit as α→ 0 of
the product

α
(

1+ e−α2 + e−4α2 +·· ·
)

was the integral ∫ ∞

0
e−x

2
dx =√

π/2.

With n a positive integer and a2 =−2π
√−1/n , b2 = nπ√−1/2, Cauchy could obtain

e−(n+k)
2a2 = e−k2a2; (37.115)

e−(2m)
2b2 + e−(2m+1)2b2 = 1+ e−nπ

√−1/2. (37.116)
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He then set a2 = α2 − 2π
√−1/n and b2 = β2 + nπ√−1/2 where α and β were

infinitely small numbers and where 2β = nα. The last condition was needed to satisfy
the requirement ab = π . After substituting these values of a2 and b2 in (37.113), he
multiplied the equation by nα = 2β and remarked that the result was

a1/2,= b1/2(1+ e−nπ
√−1/2), (37.117)

where , was the Gauss sum

,= 1+ e 2π
√−1
n + e4· 2π

√−1
n +·· ·+ e(n−1)2· 2π

√−1
n . (37.118)

From (37.117) and (37.114) Cauchy completed his evaluation:

,= π1/2

a

(
1+ e−nπ

√−1/2
)

= n1/2

2
(1+√−1)(1+ e−nπ

√−1/2). (37.119)

To see why (37.117) holds true, we note that by (37.115)

nα(e−a
2 + e−4a2 + e−9a2 +·· ·)= nα

n∑
k=1

e2πik2/n

∞∑
s=0

e−(k+sn)
2α2
. (37.120)

Moreover, nα

∞∑
s=0

e−(k+sn)
2α2 =

∫ ∞

0
e−x

2
dx =√

π/2,

and hence the expression (37.120) equals ,
√
π/2. And, by using (37.116), we can

show that

2β(1+ e−b2 + e−4b2 + e−9b2 +·· ·)= (1+ e−nπ
√−1/2)

√
π/2.

Thus, Cauchy’s equation (37.117) is verified.
In the first part of his 1859 Report on the Theory of Numbers, Smith noted that

Cauchy’s method could be applied to derive the more general reciprocity relation for
Gauss sums. He set

ψ(k,n)=
n−1∑
s=0

e2πiks2/n

and took

a2 = α2 − 2mπi

n
, b2 = β2 + niπ

2m
, i =√−1

in (37.113) to find the reciprocity relation

ψ(m,n)= 1

4

√
n

m
(1+ i)ψ(−n,4m). (37.121)

He also observed that from ψ(−4ν,4m) = 4ψ(−ν,m) and (37.121), it followed
that

ψ(m,4ν)= 2

√
ν

m
(1+ i)ψ(−ν,m),
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so that the case with even n would depend upon the case with odd n.
Henry John Stephen Smith, son of an Irish lawyer, studied at Oxford, where math-

ematics was not then popular. He independently read in detail the number theoretic
work of Gauss, Dirichlet, Eisenstein, Jacobi, Kummer, and others; he became the most
outstanding British number theorist of the nineteenth century. An active member of the
British Association for the Advancement of Science, he wrote his well-known report
on number theory for the association. The report covered developments in number the-
ory up to the 1850s. In spite of his important researches in number theory and elliptic
functions, he worked alone without a following and was mostly ignored in his lifetime.
Smith is most noted for his 1867 work was on the representation of numbers as sums
of squares. Although it established Eisenstein’s unproved theorems on sums of five and
seven squares, this important paper remained unnoticed. In fact, as late as 1883, the
Paris Academy offered a prize for the proof of Eisenstein’s results. Fortunately, this
brought Smith’s work to the notice of mathematicians and also succeeded in gaining
some prominence for the 18-year-old Hermann Minkowski (1864–1909), who offered
his own highly original paper on the topic.

37.12 Eisenstein: Reciprocity Laws

Even before his great 1847 paper laying the foundations for a new theory of elliptic
functions, Eisenstein usedAbel’s formulas to make some original applications of elliptic
functions to number theory. In 1845, Eisenstein published “Application de l’algèbre à
l’arithmétique transcendante,” in which he used circular and elliptic functions to prove
the quadratic and biquadratic reciprocity laws. We review some of the then-known
number theoretic results results upon which Eisenstein based his work: Let p be an
odd prime. Following Gauss, divide the residues modulo p, namely 1,2, . . . ,p − 1,
into two classes: r1, r2, . . . , r p−1

2
and −r1,−r2, . . . ,−r p−1

2
, so that every residue falls

into exactly one class. Eisenstein took one class to be 1,2, . . . , p−1
2 . Note that then

−1,−2, . . . ,−p−1
2 are identical (mod p) to p− 1,p− 2, . . . , p+1

2 . A number a, prime
to p, is called a quadratic residue modulo p if the equation

x2 ≡ a (mod p) (37.122)

has a solution; otherwise, a is a quadratic nonresidue. Eisenstein used a result of Euler
now known as Euler’s criterion: A number a, prime to p, is a quadratic residue if and
only if

a
p−1

2 ≡ 1(mod p). (37.123)

From Fermat’s theorem, ap−1 ≡ 1 (mod p), and hence a
p−1

2 ≡±1 (mod p). With this,
Euler’s criterion can be proved: If a satisfies (37.122), then (37.123) follows by Fermat’s
theorem. From the fact that there are exactly p−1

2 quadratic residues (mod p), it follows

that x
p−1

2 ≡ 1 (mod p) has at least p−1
2 solutions. However, the equation of degree p−1

2

has at most p−1
2 solutions. Hence, these comprise all the solutions.
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To state the law of quadratic reciprocity, we define the Legendre symbol
(
a

p

)
by the

equation

a
p−1

2 ≡
(
a

p

)
(mod p). (37.124)

Note that if a is a multiple of p, then we set
(
a

p

)
= 0. The law of quadratic reciprocity

states that if p and q are odd primes, then(
p

q

)(
q

p

)
= (−1)

p−1
2 · q−1

2 . (37.125)

Note that (37.125) is equivalent to the statement that if q is a quadratic residue (mod
p), then p is a quadratic residue (mod q) except when both p and q are of the form
4n+ 3. In the latter case, q is a quadratic residue (mod p), if and only if p is not a
quadratic residue (mod q).

To begin his proof of the law of quadratic reciprocity, Eisenstein let r denote a
number in 1,2, . . . , p−1

2 . Then

qr ≡±r ′(mod p), (37.126)

where r ′ was also contained in 1,2, . . . , p−1
2 . Eisenstein observed that since sine was

an odd periodic function,

sin
2πqr

p
=±sin

2πr ′

p
. (37.127)

Therefore (37.126) could be rewritten as

qr ≡ r ′ sin(2πqr/p)

sin(2πr ′/p)
(mod p). (37.128)

Substituting the (p− 1)/2 different values of r in this equation and multiplying, he
obtained

q(p−1)/2Vr ≡Vr ′
(p−1)/2∏
k=1

sin(2πqk/p)

sin(2πk/p)
(mod p). (37.129)

Eisenstein saw that Vr and Vr ′ were identical and concluded that

q(p−1)/2 ≡
(p−1)/2∏
k=1

sin(2πqk/p)

sin(2πk/p)
(mod p). (37.130)

Note that by Euler’s criterion, Eisenstein had found a trigonometric expression for the

Legendre symbol
(
q

p

)
. By reversing the roles of p and q, he obtained

p(q−1)/2 ≡
(q−1)/2∏
l=1

sin(2πpl/q)

sin(2πl/q)
(mod q). (37.131)
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At this juncture, Eisenstein employed Euler’s factorization

sinpx

sinx
= (−1)

p−1
2

2p−1

(p−1)/2∏
k=1

(
sin2 x− sin2 2πk

p

)
,

to conclude that the product on the right side of (37.131) equaled

C

(p−1)/2∏
k=1

(q−1)/2∏
l=1

(
sin2 2πl

q
− sin2 2πk

p

)
, (37.132)

where C = (−1)
p−1

2 · q−1
2

2(p−1)(1−1)/2
.

For Euler’s factorization, see chapter 16, sections 4 and 5. Next, by symmetry, Eisenstein
had a similar product for (37.130) with the same constant C, but with factors of the
form

sin2 2πk

p
− sin2 2πl

q
.

Thus, each factor in (37.132) was the negative of the corresponding factor in the product
for the expression in (37.130) and the number of such factors was (p−1)

2 · q−1
2 . So

Eisenstein could obtain the product in (37.131) by multiplying the product in (37.130)

by (−1)
p−1

2 · q−1
2 . Therefore, employing Euler’s criterion, Eisenstein had the reciprocity

law (
p

q

)
·
(
q

p

)
= (−1)

p−1
2 · q−1

2 .

Eisenstein gave a similar proof of the biquadratic (quartic) reciprocity law, but used
the lemniscatic function instead of the sine function. Again, we consider the backdrop
to his work. Even while he was working on the Disquisitiones Arithmeticae, Gauss
started thinking about extending quadratic reciprocity to cubic and quartic residues.
It appears that he very quickly realized that to state these reciprocity laws he had to
extend the field of rational numbers by cube roots and fourth roots of unity. It is not
clear when Gauss found the law of biquadratic or quartic reciprocity. On October 23,
1813, his mathematical diary noted, “The foundation of the general theory of biquadratic
residues which we have sought for with utmost effort for almost seven years but always
unsuccessfully at last happily discovered the same day on which our son is born.”
Strangely, in a letter of April 1807 to Sophie Germain (1776–1831), Gauss had made a
similar claim, challenging her to determine the cubic and quartic residue character of 2.
Perhaps he discovered the theorem in 1807 and proved it in 1813. In any case, Germain
obtained some good results on this problem; she found the quartic character of −4. And
Gauss wrote that, especially given the obstacles to women working in mathematics, he
was very impressed with her accomplishments. However, Germain’s main contribution
to number theory was in connection with Fermat’s last theorem; she discovered and
applied the Germain primes p such that 2p+ 1 was also prime.

Gauss published two papers on biquadratic reciprocity, in 1828 and 1832. The first
paper contained a thorough treatment of the biquadratic character of 2 with respect
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to a prime p = 4s + 1. Note that by Euler’s criterion, −1 is then a quadratic residue
(mod p); further, p can be expressed as a2 + b2. Gauss denoted the two solutions of
x2 ≡ −1 (mod p) by f and −f . He also took a to be odd and b to be even, and he
took their signs such that a ≡ 1 (mod 4) and b ≡ af (mod p). His theorem stated that

2 satisfied 2
p−1

4 ≡ 1, f − 1,−f (mod p) where b/2 was of the form 0, 1, 2, 3, (mod
4), respectively.

In his second paper, Gauss proved that wherem andnwere integers, the ring Z[√−1]
consisting of m+ ni, was a unique factorization domain. In 1859, Smith commented
on this result that “By thus introducing the conception of imaginary quantity into
arithmetic, its domain, as Gauss observes, is indefinitely extended; nor is this extension
an arbitrary addition to the science, but is essential to the comprehension of many
phenomena presented by real integral numbers themselves.” It is clear from Gauss’s
second paper that since primes of the form 4s + 1, where s is a positive integer, can
be expressed as a sum of two squares, a2 + b2 = (a+ ib)(a− ib), they are not prime
in the ring Z[i]. However, primes of the form 4s + 3 cannot be factored in Z[i]. We
see, therefore, that there are three classes of primes in Z[i]: (a) primes of the form
ik(4s+3); (b) primes of the form a+ ib such that their norm,N(a+ ib)= a2 +b2, is a
prime of the form 4s+1 in Z; (c) the primes ik(1+ i), whose norm is 2. Letm= a+ ib
be a prime such that a+ b is an odd integer and N(m)= p. In this case, any number
n, not a multiple of m in Z[i], leaves p− 1 possible residues when divided by m. For
suchm and n, the quartic symbol ( n

m
)4 takes the values ±1 and ±i and is today defined

by ( n
m

)
4
= np−1

4 (modm).

To prove quartic reciprocity, Eisenstein divided the p−1 residues into four classes,
with (p− 1)/4 residues in each class, such that when r was in one class, ir,−r,−ir
each fell into a different one of the other classes. He noted that for any n in Z[i]

nr ≡ r ′, ir ′, −r ′, −ir ′ (modm), (37.133)

where r ′ was in the same class as r . He set

w = 4
∫ 1

0

dx√
(1− x4)

.

Then by the periodicity of the lemniscatic function sl z, for m prime, Eisenstein had

sl(nrw/m)

sl(r ′w/m)
= 1, i,−1, or − i,

corresponding to the four cases in (37.133). Hence in all cases,

nr ≡ r ′ sl(nrw/m)

sl(r ′w/m)
(modm).

From this he got the formula analogous to (37.130),

n(p−1)/4 ≡
∏
r

sl(nrw/m)

sl(rw/m)
(modm). (37.134)
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To obtain a formula with m and n interchanged, Eisenstein chose n to be another
complex prime c+ id with c+ d odd and norm q. He divided the residues of non-
multiples of n into four classes represented by ρ, iρ,−ρ,−iρ and concluded that

m(q−1)/4 ≡
∏
ρ

sl(mρw/n)

sl(ρw/n)
(mod n). (37.135)

Gauss defined the concept of a primary number so that he could express his results
in unambiguous form. A number c+ id, where c+ d was odd, was called primary if
d was even and c+ d − 1 was evenly even (that is, divisible by 4). This definition
was adopted by Eisenstein. We remark by the way that Gauss also suggested a slightly
different definition of a primary number, useful in some circumstances; this definition
was employed by Dirichlet. It is easy to show and Gauss of course knew that c+ id,
with c+ d odd, was primary if and only if c+ id ≡ 1(mod2+ 2i). It follows that the
product of primary numbers is primary and that the conjugate of a primary number is
primary. In his work on the division of the lemniscate, Abel showed that for a primary
number m

sl(mw/4)= 1.

He also proved that
sl(mv)

slv
= φ(x4)

ψ(x4)
, (37.136)

where x = slv and where φ(x) and ψ(x) were polynomials of degree (p− 1)/4. See
equation (37.45). Eisenstein improved on this by proving thatψ(x) in (37.136) satisfied

ψ(x)= iνx p−1
4 φ(1/x) (37.137)

for some integer ν; he also showed that whenmwas primary, ν = 0. To prove (37.137),
he noted that y = xφ(x4)/ψ(x4) satisfied the differential equation

dy√
1− y4

= mdx√
1− x4

. (37.138)

He set y = 1/η, x = 1/(iµξ)where µwas an integer yet to be determined. This change
of variables converted (37.138) to

iµ dη√
(η4 − 1)

= mdξ√
(ξ 4 − 1)

. (37.139)

Eisenstein took µ such that (37.139) would be equivalent to

d η√
(1−η4)

= mdξ√
(1− ξ 4)

and concluded

η= iµ ξψ(1/ξ
4)

φ(1/ξ 4)
;
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this immediately implied (37.137). Thus, by (37.136) and (37.137) he obtained

sl(mv)= x φ(x4)

iνxp−1φ(1/x4)
. (37.140)

Eisenstein next set v =w/4, so that slv = 1 and for primarym, sl(mv)= 1. Thus, form
primary in (37.137), he had 1 = i−ν. He then assumed that n was also a primary prime
so that

sl(nv)

slv
= f (x4)

xq−1f (1/x4)
,

where f (x) was a polynomial of degree (q− 1)/4. He set

α = sl(
rw

m
), β = sl(

ρw

n
),

so that the solutions of φ(x4)= 0 were of the form ±α,±iα and those of f (x4)= 0
were of the form ±β,±iβ. Thus, he arrived at

sl(mv)

slv
= V(x4 −α4)

V(1−α4x4)
,

sl(nv)

sl(v)
= V(x4 −β4)

V(1−β4x4)
.

When he combined these formulas with (37.134) and (37.135), he obtained

n(p−1)/4 ≡ V(α4 −β4)

V(1−β4α4)
(modm),

m(p−1)/4 ≡ V(β4 −α4)

V(1−α4β4)
(mod n).

Eisenstein observed that since there were p−1
4 · q−1

4 factors in the products, the
fundamental theorem on biquadratic residues followed immediately.

Eisenstein studied the polynomial φ(x) in even greater detail later in his 1845 paper
“Beiträge zur Theorie der elliptischen Functionen, I.” For primary m, he proved that

φ(x)= xp−1 +A1x
p−5 +·· ·+m,

and showed that all the coefficients A1,A2, . . . ,m were divisible by m. Then, in 1850,
he published a paper using a generalization of what we now call Eisenstein’s criterion
to prove the irreducibility of φ(x). Suppose f (x) = a0x

n+ a1x
n−1 + ·· · + an, where

aj ∈ Z[i]. Also suppose m is a prime in Z[i] such that m divides a1, . . . ,an, but does
not divide a0, andm2 does not divide an. Then f (x) is irreducible over Z[i]. Eisenstein
included a statement and proof of this theorem in an 1847 letter to Gauss. But in 1846,
Theodor Schönemann, a student of Jacobi and of the Swiss geometer Jakob Steiner,
published this theorem for the case where Z[i] was replaced by Z; this particular case
is now known as Eisenstein’s criterion. Eisenstein acknowledged this work in his 1850
paper.
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37.13 Liouville’s Theory of Elliptic Functions

Liouville’s contributions to this topic are mainly contained in his lectures, published
by Borchardt in 1880. However, as we mentioned earlier, Liouville began to grapple
with elliptic functions as early as the 1840s. We briefly discuss his early thoughts,
contained in his numerous notebooks. When Hermite remarked to Liouville that one
could use Fourier series to prove Jacobi’s theorem on the ratio of two independent
periods of a function, Liouville was apparently motivated to prove this and wrote it up
in his notebook on August 1, 1844. A few pages later he included a more direct proof,
supposing that f had real periods α and α′, independent over the rationals. Then, using
the fact that α was a period, he noted that f had a Fourier expansion

f (x)=
∑

Aj cos

(
2jπx

α
+ εj

)
.

Since α′ was also a period, he had

Aj cos

(
2jπx

α
+ εj

)
=Aj cos

(
2jπx

α
+ εj + 2jπα′

α

)
.

Thus, Liouville concluded that either Aj = 0 or 2jπα′/α = 2mπ , where m was an
integer. The last equation implied that α and α′ were commeasurable, or dependent
over the rationals.

These ideas soon led to the statement and proof of the theorem now famous as
Liouville’s theorem, that a bounded entire function is a constant. He first proved this
for doubly-periodic functions, using Fourier series. He then extended it to functions
bounded on the Riemann sphere. Assuming the result for periodic functions, he proved
the extension by taking an analytic function f (z) and assuming |f (z)| ≤ M for all
z. Then the function f (snz), f composed with the Jacobi elliptic function, would
be a doubly-periodic bounded function and hence a constant. Liouville noted that an
application of this theorem was that every algebraic equation had to have a root. He
argued that if p(x) was a polynomial and 1/p(x) did not become infinite for any
complex x, then the same would be true for 1/p(snx), and this was a contradiction.
It is interesting that though Liouville never published this application, it is usually the
first one to be given in textbooks.

Liouville also proved that an elliptic function could not have only one simple pole.
He noted that, on the other hand, if there were two simple poles, then the function
would reduce to the usual elliptic function. In this connection, Liouville showed in his
notebooks that if φ had two simple poles, α and β, then there would be a constant D
such that

u= (
φ(α+ x)−D)+ (

φ(α− x)−D)
was a solution to (

du

dx

)2

= a+ bu+ cu2 + du3 + eu4 .
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This meant that u was the inverse of the elliptic integral:

x =
∫

du√
a+ bu+ cu2 + du3 + eu4

.

The following theorems of Liouville on elliptic functions commonly appear in
modern treatments of the topic:

• The number of poles equals the number of zeros, counting multiplicity.
• The sum of the zeros minus the sum of the poles (in a period parallelogram) is

a period of the function.
• The sum of the residues is equal to zero. Liouville proved this for functions with

only two poles.
• A doubly-periodic function with only one simple pole does not exist.

Liouville wrote that within his new approach, “integrals which have given rise to the
elliptic functions and even moduli disappear in a way, leaving only the periods and the
points for which the functions become zero or infinite.” This important new principle,
that a function may be largely defined by its singularities, was greatly extended by
Riemann in his remarkable works on functions of a complex variable.

We present Liouville’s proofs based on Borchardt’s notes. Liouville considered
a doubly-periodic function φ(z) with periods 2w and 2w′ so that its values were
completely defined by its values in the region

z= z0 +uw+u′w′, −1 ≤ u≤ 1, −1 ≤ u′ ≤ 1 .

We would now refer to this region as the period parallelogram Pz0 . Liouville then
assumed that z = α, z = α1, z = α2, . . . , z = αn−1 were the n roots of the equation
φ(z)=±∞ in this region. Then there would exist constants G,G1, . . . ,Gn−1 so that

φ(z)−
{
G

z−α + G1

z−α1
+ G2

z−α2
+·· ·+ Gn−1

z−αn−1

}
(37.141)

was finite at α1,α2, . . . ,αn. In the case where there were multiple roots, so that the (say
i) values αp,αq, . . . ,αs coincided, the sum of simple fractions

Gp

z−αp + Gq

z−αq +·· ·+ Gs

z−αs
had to be replaced by

Gp

z−αp + Gq

(z−αp)2 +·· ·+ Gs

(z−αp)i . (37.142)

Liouville designated the sum of the fractions as the fractional part of φ(z) and denoted
it by [φ(z)]. He noted that this fractional part played an important role in the calculus of
residues, and he showed that a doubly-periodic function without a fractional part was a
constant. Liouville did not refer to poles, but we would now say that a doubly-periodic
function must have poles. Note that in (37.141) all the poles are simple and in (37.142),
αp is a pole of order i.
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Liouville next proved that there could be no doubly-periodic function with a frac-
tional part, [φ(z)] = G

z−α . In other words, there did not exist a doubly-periodic function
with just one simple pole in the period parallelogram. To prove this, Liouville set
z−α = t so that the fractional part at α would be given by

[φ(z)]α = [φ(α+ t)]0 = G

t
.

Similarly, [φ(α− t)]0 =−G
t
,

so that [φ(α+ t)+φ(α− t)]0 = 0 ,

and therefore φ(α + t)+ φ(α − t) = 2c, where c was a constant. Liouville then set
f (t)= φ(α+ t)− c, to get f (t)=−f (−t). Since 2w and 2w′ were periods of f , he
obtained

f (w)=−f (−w)=−f (−w+ 2w)=−f (w)= 0, (37.143)

f (w′)= 0 , f (w+w′)= 0 . (37.144)

He then defined a new function F(t)= f (t)f (t +w), noting that this function had no
singularities; the zeros canceled with the poles, based on (37.143) and (37.144). This
implied that there were constants k, k′, and k′′ such that

f (t)f (t +w)= k, f (t)f (t +w′)= k′, f (t)f (t +w+w′)= k′′. (37.145)

Liouville changed t to t +w in the third equation, obtaining

f (t +w)f (t +w′)= k′′ .
Finally, multiplying the first two equations and dividing by the fourth he arrived at(

f (t)
)2 = k k′

k′′
.

This implied that φ(z) was a constant and the result was proved.
Liouville then gave a simple construction of a doubly-periodic function with periods

2w and 2w′ and poles at α and β. He set

φ(z)=
∞∑

i=−∞
f (z+ 2iw′), where

f (z)= 1

cos π

w
(z−h)− cos π

w
h′

and α = h+h′, β = h−h′.

Liouville next analyzed the zeros of an elliptic function. He observed that a doubly-
periodic function φ(z), with poles at α and β, could not have only one simple zero
because its reciprocal would have one simple pole, an impossibility. He then showed
that φ(z) could not have three zeros. Supposing a and b to be two of the zeros, he
took another function ψ(z) with periods 2w and 2w′ and poles at a and b. He also
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set ψ1(z) = ψ(z)−ψ(α) . Clearly, ψ1(z)φ(z) had only one pole at β, implying that
ψ1(z)φ(z)= constant. Now if φ had another zero at c, then ψ1 would have a pole at
c. This contradiction proved that φ(z) had zeros only at a and b. Liouville also proved
that if two functions φ(z) and φ1(z) had the same periods with simple poles at α and
β, then there existed constants c, c′, such that φ1(z)= cφ(z)+ c′. To prove this he set

[φ(z)] = G

z−α + H

z−β , [φ1(z)] = G1

z−α + H1

z−β , (37.146)

so that [Gφ1(z)−G1φ(z)] = GH1 −G1H

z−β .

Hence, the result:
Gφ1(z)−G1φ(z)= constant . (37.147)

Liouville proceded to prove that for a doubly-periodic function φ, the sum of the
zeros was equal to the sum of the poles, modulo some period of the function. He
assumed that φ had poles at α and β, so that φ(α+β − z) also had poles at α and β.
Hence, by the previous result,

φ(z)= cφ(α+β− z)+ c′ .
Replacing z by α+β− z, he got the relation

φ(α+β− z)= cφ(z)+ c′ ,
and by subtraction

(1+ c)(φ(z)−φ(α+β− z))= 0 .

Liouville noted that if c=−1, then

φ(z)+φ(α+β− z)= c′ .
To prove this impossible, he set z = α+β

2 + t , and φ
(
α+β

2 + t)− 1
2c

′ = f (t), so that
f (t)=−f (−t). From this and seeing that 2w and 2w′ were periods of f (t), it followed
that

f (0)= f (w)= f (w′)= f (w+w′)= 0 .

Since f could not have four roots, he obtained the required contradiction and therefore

φ(z)= φ(α+β− z) .
By taking the reciprocal of φ, Liouville saw that φ(z)= φ(a+b− z). He thus arrived
at the relation

φ(z)= φ(α+β− z)= φ(α+β− a− b+ z)
and concluded that

α+β = a+ b+ 2mw+ 2m′w′ .
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Liouville went on to show that any doubly-periodic function could be written in
terms of functions of the form φ. He presented the details for functions with simple
poles. Suppose ψ is a function with periods 2w and 2w′ and

[ψ(z)] = A

z−α + A1

z−α1
+ A2

z−α2
+·· · .

Denote by φ(z;α,α1) the function with the same periods as ψ and with simple poles
at α and α1 and let

[φ(z;α,α1)] = G1

z−α − G1

z−α1
,

[φ(z;α1,α2)] = G2

z−α1
− G2

z−α2
,

[φ(z;α2,α3)] = G3

z−α2
− G3

z−α3
and so on.

Then

[ψ(z)] = B1 [φ(z;α,α1)]+B2 [φ(z;α1,α2)]+B3 [φ(z;α2,α1)]+·· ·

with B1 = A

G1
, B2 = A+A1

G2
, B3 = A+A1 +A2

G3
, etc.

Thus,

ψ(z)= B+B1φ(z;α,α1)+B2φ(z;α,α2)+B3φ(z;α,α3)+·· · .
This theorem was then employed to prove that any doubly-periodic function had exactly
as many zeros as poles. Here let φ(z;α,β;a,b) denote a function with periods 2w, 2w′;
poles atα,β; zeros at a, b, withα+β= a+b. Suppose also thatψ(z) is doubly-periodic
with poles at z= α,α1, . . . ,αn−1 and zeros at z= a,a1,a2, . . . ,ai−1. If i < n, Liouville
arbitrarily chose n− i−1 numbers ai,ai+1, . . . ,an−2 and determined b,b1, . . . ,bn−2 by
the system of equations

b= α+α1 − a ,
b1 = α2 + b− a1 ,

b2 = α3 + b1 − a2 ,

...

bn−2 = αn−1 + bn−3 − an−2 .

He next defined w(z) as

φ(z;α,α1;a,b) ·φ(z;α2,b;a1,b1) ·φ(z;a3,b1;a2,b2) ·φ(z;an−1,bn−3;an−2,bn−2)

and noted that w(z) had poles at

α,α1,α2, . . . ,αn−1
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and zeros at

a,a1,a2, . . . ,an−2,bn−2.

If i < n, then the function w(z)
ψ(z)

had no poles but had zeros at ai, . . . ,an−2,bn−2, an

impossibility. Similarly, for i >n, he took the function ψ(z)

w(z)
to get a similar contradiction.

Thus, i = n, ψ(z) = cw(z), and ψ(z) had as many zeros as poles. Also, since ψ had
zeros at z= a,a1,a2, . . . ,an−1 and w(z) had zeros at z= a,a1, . . . ,an−2,bn−2, he could
conclude that bn−2 = an−1. Liouville substituted these values in his system of equations
to arrive at

α+α1 +α2 +·· ·+αn−1 = a+ a1 + a2 +·· ·+ an−1 .

This implied that the sum of the zeros differed from the sum of the poles by
2mw+2m′w′, wherem andm′ were integers. In the applications, Liouville derived the
differential equation and addition formula satisfied by a function φ with simple poles
at α and β. He also explained how to obtain the Abel and Jacobi elliptic functions from
his general results.

37.14 Exercises

1. If φ is the cosine transform of f , then
√
α
(
f (α)−f (3α)−f (5α)+f (7α)+f (9α)−·· ·)

=√
β
(
φ(β)−φ(3β)−φ(5β)+·· ·),

where αβ = π/4; and for αβ = π/6
√
α
(
f (α)−f (5α)−f (7α)+f (11α)+f (13α)−·· ·)

=√
β
(
φ(α)−φ(5α)−φ(7α)+·· ·),

where the integers 1, 5, 7, 11, 13, . . . are prime to 6. See Ramanujan (2000),
p. 63.

2. Let ω/2 denote the complete lemniscatic integral
∫ 1

0 dx/
√

1− x4. Show that
then

ω

4π
= eπ/2

eπ − 1
− e3π/2

e3π − 1
+ e5π/2

e5π − 1
−·· · ,

ω2

4π 2
= eπ/2

eπ + 1
− 3e3π/2

e3π + 1
+ 5e5π/2

e5π + 1
−·· · .

See Abel (1965), vol. 1, p. 351.
3. For f (α) and F(α) defined by (37.11) and (37.12), and ω by (37.7), show that

f
(αω

2

)
= 4π

ω

(
cos(απ/2)

eπ/2 − e−π/2 −
cos(3απ/2)

e3π/2 − e−3π/2
+ cos(5απ/2)

e5π/2 − e−5π/2
−·· ·

)
,

F
(αω

2

)
= 4π

ω

(
cosh(απ/2)

eπ/2 − e−π/2 − cosh(3απ/2)

e3π/2 − e−3π/2
+ cosh(5απ/2)

e5π/2 − e−5π/2
−·· ·

)
.
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4. Consider the equation

dy/
√
(1− y2)(1− e2y2)=√−ndx/

√
(1− x2)(1− e2x2).

Show that if n = 3, then e satisfies the equation e2 − 2
√

3e = 1; and if n = 5,
then e satisfies e3 − 1− (5+ 2

√
5)e(e− 1)= 0. Kronecker called these values

of e singular moduli. See Abel (1965), vol. 1, pp. 379–384.
5. Show that if the equation

dy/
√
(1− c2y2)(1− e2y2)= a dx/

√
(1− c2x2)(1− e2x2)

admits of an algebraic solution in x and y, then a is necessarily of the form
µ′ + √−µ when µ and µ′ are rational and µ is positive. For such values of
a, the moduli e and c can be expressed in radicals. See Abel (1965), vol. 1,
pp. 425–428. Kronecker made a deep study, related to algebraic number theory,
of complex multiplication. For a historical discussion of this topic, see Vlăduţ
(1991). Also see Takase (1994).

6. Show that the functions θ and θ1 below satisfy ∂2f/∂x2 = 4∂f/∂ω:

θ(x)= 1− 2e−ω cos2x+ 2e−4ω cos4x− 2e−9ω cos6x+·· · ,
θ1(x)= 2e−ω/4 sinx− 2e−9ω/4 sin 3x+ 2e−25ω/4 sin 5x−·· · .

See Jacobi (1969), vol. 1, p. 259.
7. Jacobi defined the theta functions (with q = e−πK ′/K ):

T

(
2Kx

π

)
= 1− 2q cos2x+ 2q4 cos4x− 2q9 cos6x+·· · ,

H

(
2Kx

π

)
= 2q1/4 sinx− 2q9/4 sin 3x+ 2q25/4 sin 5x−·· · .

Show that for u= 2Kx/π , we have

T(u+ 2K)=T(−u)=T(u), H(u+ 2K)=H(−u)=−H(u);
T(u+ 2iK ′)=−eπ(K ′−iu)/KT(u), H(u+ 2iK ′)=−eπ(K ′−iu)/KH(u);

snu=H(u)/(√kT(u)), cnu=√
k′H(u+K)/(√kT(u)).

See Jacobi (1969), vol. 1, pp. 224–231.
8. Let w= 2mω+2nω′, wherem and n are integers and let τ =ω′/ω, with Imτ �= 0.

Note that σ ′ denotes the derivative of σ . Define the Weierstrass sigma function
by

σ(u)= u
∏′

m,n

(
1− u

w

)
eu/w+u2/(2w2),

where the product is taken over all m and n except m= n= 0. Show that

σ(u)= e2ηωv2 2ω

π
sinvπ

∏
n

(
(1− 2h2n cos2vπ +h4n)/(1−h2n)2

)
,
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where v = u/(2ω) h= eτπi, η= π2/(12ω)+∑
csc2nτπ . Show also that

σ(u± 2ω)=−e±2η(u±ω)σ (u), η= σ ′(ω)/σ(ω),

σ (u± 2ω′)=−e±2η′(u±ω′)σ (u), η′ = σ ′(ω′)/σ (ω′).

Prove Legendre’s relation ηω′ − ωη′ = πi/2, when Imτ > 0. See Schwarz
(1893), pp. 5–9; note that these are Schwarz’s notes of Weierstrass’s lectures.

9. Set ℘(u) = −d2(logσ(u))/du2. Show that ℘ ′(ω) = ℘ ′(ω′) = ℘ ′(ω+ω′) = 0.
Set ℘(ω)= e1, ℘ (ω+ω′)= e2, ℘ (ω

′)= e3 and show that

(℘ ′(u))2 = 4(℘ (u)− e1)(℘ (u)− e2)(℘ (u)− e3).

Also prove that

℘(u)−℘(v)=−σ(u+ ν)σ (u− v)/
(
σ 2(u)σ 2(v)

)
,

℘ (u± v)=−℘(u)−℘(v)−
(
(℘ ′(u)∓℘ ′(v)/(℘ (u)−℘(v))

)2

.

The last result is the addition formula for Weierstrass’s℘-function. See Schwarz
(1893), pp. 10–14.

10. Let k2 = (e2 − e3)/(e1 − e3). Set

σ1(u)= e−ηuσ (ω+u)/σ(ω),σ3(u)= e−η
′
uσ (ω′ +u)/σ(ω′).

Prove that

σ(u)/σ3(u)= sn(
√
e1 − e3 ·u,k)/√e1 − e3 and

σ1(u)/σ3(u)= cn(
√
e1 − e3 ·u,k)/√e1 − e3.

See Schwarz (1893), pp. 30–35.

37.15 Notes on the Literature

Euler’s letter to Goldbach may be found in Fuss (1968), pp. 530–532. Abel’s elliptic
functions papers from Crelle’s Journal have been republished in vol. 1 of Abel (1965).
See pp. 262–388 for his “Recherches.” C. Houzel’s article in Laudal and Piene (2004)
summarizes Abel’s mathematical work, mostly in elliptic functions, within 150 pages.
See Jacobi (1969), vol. 1, for his work on elliptic functions. See Smith (1965b) for
his number theory report; the quotation on Gauss’s use of complex numbers in number
theory may be found on p. 71. Eisenstein (1975), vol. 1, pp. 291–298 contains the paper
on quadratic and quartic reciprocity. The history of the Schönemann–Eisenstein crite-
rion is discussed in the interesting and historically informative books by Lemmermeyer
(2000) and Cox (2004). The entertaining book by Dörrie (1965), on p. 118, attributes
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the criterion to Schönemann alone. Liouville (1880) presents his theory of elliptic
functions. A fascinating discussion of the origin and development of Liouville’s ideas
on this topic is available in Lützen (1990). Consult Prasad (1933) for an interesting
account of the work of Abel and Jacobi in elliptic functions. For Ramanujan’s prolific
work on modular equations, see Berndt’s helpful summary in Andrews, Askey, Berndt,
et al. (1988).
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Irrational and Transcendental Numbers

38.1 Preliminary Remarks

The ancient Greek mathematicians were aware of the existence of irrational numbers;
Eudoxus gave his theory of proportions to deal with that awkward situation. The Greeks
also considered the problem of constructing a square with area equal to that of a circle.
Later generations of mathematicians probably began to suspect that this was not pos-
sible; they were possibly almost certain that π was not rational. The sixteenth-century
Indian mathematician and astronomer, Nilakantha, wrote in his Aryabhatiyabhasya,
“If the diameter, measured using some unit of measure, were commensurable with
that unit, then the circumference would not allow itself to be measured by means
of the same unit so likewise in the case where the circumference is measurable by
some unit, then the diameter cannot be measured using the same unit.” He gave no
indication of a proof in any of his works. It appears that the first proof of the irra-
tionality of π was presented to the Berlin Academy by the Swiss mathematician
J. H. Lambert (1728–1777) in a 1766 paper. He demonstrated that if x �= 0 was a
rational number, then tanx was irrational. He deduced this from the continued fraction
expansion

tan v = 1

v− 1

3

v
+ 1

5
v
−·· · .

Then, since tanπ/4 = 1, it followed that π was irrational. Lambert’s work was based
on some results of Euler, who was a colleague of Lambert for about two years at the
Berlin Academy. Later, in his 1794 book on geometry, Legendre gave a completely
rigorous and concise presentation of Lambert’s proof. In particular, he showed that the
continued fraction

867
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m

n+ m1

n1 +
m2

n2 +
m3

n3 +·· ·

,

wheremi,ni were nonzero integers, converged to an irrational number whenmi/ni < 1
for all i beyond some i0. Legendre went a little further than Lambert by observing that
the continued fraction for tan x also implied that π 2 was irrational.

A century before Lambert, James Gregory tried to prove that π was transcendental.
Since he was starting from scratch, it is not surprising that Gregory failed. C. Goldbach
and D. Bernoulli carried on a correspondence in the 1720s, in which they mentioned
that the series they had discovered could not represent rational numbers or even roots
of rational numbers. Thus, a letter of Bernoulli dated April 28, 1729, commented,
concerning the series

log
m+n
n

= m

n
− n2

2m2
+ n3

2m3
− n4

4m4
+·· · , (m,n positive integers, m< n),

“[N]ot only can it not be expressed in rational numbers, but it cannot be expressed in
radical or irrational numbers either.” Unfortunately, he had to admit to Goldbach that
he had no proof; a proof of the transcendence of this number follows from a theorem
proved by Ferdinand Lindemann in 1882. Goldbach’s reply to Bernoulli contained the
remark that it was not known whether, in general, the number

∞∑
n=1

1

n2 + p

q
n

could be expressed as a root of a rational number. Note that, for example, when p =
2, q = 1, the sum is 3/2, while with p = 1, q = 2, the sum is 4 log(e/2). Goldbach
was probably aware of the first result; though he may not have noticed it, he could
have derived the second result from Brouncker’s series for log2. Observe that the
second result can also be derived from the Euler–Maclaurin summation formula or
from Mengoli’s inequalities, (25.40). In a later letter of October 20, Goldbach wrote,
“Here follows a series of fractions, such as you requested whose sum is neither rational
nor the root of any rational number:

1

10
+ 1

100
+ 1

10000
+ 1

100000000
+ etc .

The general term is
1

102x−1 .
′′

Neither Goldbach nor Bernoulli could suggest any method for attacking these prob-
lems. In 1937, Kurt Mahler proved a more general theorem, as a consequence of
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which Goldbach’s number was necessarily transcendental. In 1938, Rodion Kuzmin
(1891–1949) also gave a proof of the transcendence of Goldbach’s number

In his 1748 book, Introductio in Analysin Infinitorum, Euler made some insightful
remarks on the values of the logarithm function, “Since the logarithms of numbers
which are not powers of the base are neither rational nor irrational, it is with justice
that they are called transcendental quantities.” He did not clearly define his meaning
of irrational, but from his examples we gather that he meant numbers expressible by
radicals. A clear definition of a transcendental number was given by Legendre in his
1794 book: “It is probable that the number π is not even comprised among algebraic
irrationals, that is, it cannot be the root of an algebraic equation of a finite number of
terms whose coefficients are rational, but it seems very difficult to prove this proposition
rigorously.”

The first mathematician to rigorously prove the existence of transcendental numbers
was Liouville. In 1840, he published two notes showing that e and e2 could not be
solutions of a quadratic equation. The 1843 publication by P. H. Fuss of the Euler,
Goldbach, and Bernoulli correspondence further aroused Liouville’s interest in tran-
scendental numbers. He read a note on continued fractions to the French Academy in
1844. Given that a continued fraction was the root of an algebraic equation with integral
coefficients (in modern terminology, an algebraic number), he gave the condition the
terms of such a continued fraction had to satisfy. In a subsequent paper in the Comptes
Rendus, he presented his famous criterion for a number to be algebraic of degree n: If
x was such a number, then there existed an A> 0 such that for all rational p

q
�= x,∣∣∣∣x− p

q

∣∣∣∣ > A

qn
.

He noted an almost immediate consequence of this:

1

l
+ 1

l(2!)
+ 1

l(3!)
+·· ·+ 1

l(n!)
+·· ·

was a transcendental number, for l > 1 any integer.
It is clear that Liouville was attempting to prove the transcendence of e and it must

have pleased him that his younger friend Hermite did so in 1873. Hermite used the
basic identity ∫

e−zF (z)dz=−e−zγ (z),

where F(z) and γ (z) were polynomials. Note that his can be proved by integration by
parts and depends on the fact that d

dz
e−z =−e−z. By means of this formula, Hermite

defined certain polynomials with integer coefficients and employed them to obtain
simultaneous rational approximations of ex , for certain integer values of x. These in
turn were sufficient to show that, except for the trivial cases, there could be no equation
of the form

ez0N0 + ez1N1 +·· ·+ eznNn = 0, (38.1)
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when z0,z1, . . . ,zn andN0,N1, . . . ,Nn were all integers. We note that in the last portion
of his paper, Hermite used his method to obtain the rational approximations

e= 55291

21344
, e2 = 158452

12344
.

He left the problem of proving the transcendence of π to others. And soon afterwards,
in 1883, Ferdinand Lindemann used Hermite’s methods to prove this. Lindemann’s
theorem was a generalization of Hermite’s: If z0,z1, . . . ,zn were distinct algebraic
numbers and N0,N1, . . . ,Nn were algebraic and not all zero, then equation (38.1)
could not hold. The equation 1+ eiπ = 0 implied the transcendence of π . Lindemann
argued that if π were algebraic, then by the preceding theorem, 1 + eiπ could not
equal zero. Lindemann’s theorem also implied that when x �= 0 was algebraic, then
all the numbers ex , arcsinx, tanx, sin−1 x, and tan−1 x were transcendental. More-
over, if x was not equal to one, then logx was transcendental. Lindemann’s proof was
somewhat sketchy, but in 1885 Weierstrass gave a completely rigorous proof. In par-
ticular, he noted that Lindemann’s theorem followed readily from the particular case in
which N0,N1, . . . ,Nn were integers. A number of mathematicians, including Hilbert,
Hurwitz, Markov, Mertens, Sylvester, and Stieltjes improved and streamlined the proofs
of Hermite and Lindemann without introducing any essentially new methods or results.

In his famous 1900 lecture at Paris, David Hilbert (1862–1943) gave a list of
twenty-three problems for future mathematicians; the seventh of these was to prove the
transcendence of certain numbers:

I should like, therefore, to sketch a class of problems which, in my opinion, should be attacked
as here next in order. That certain special transcendental functions, important in analysis, take
algebraic values for certain algebraic arguments, seems to us particularly remarkable and worthy
of thorough investigation. Indeed, we expect transcendental functions to assume, in general, tran-
scendental values for even algebraic arguments; and, although it is well known that there exist
integral transcendental functions, which even have rational values for all algebraic arguments,
we shall still consider it highly probable that the exponential function eiπz, for example, which
evidently has algebraic values for all rational arguments z, will on the other hand always take
transcendental values for irrational algebraic values of the argument z. We can also give this state-
ment a geometrical form, as follows: If, in an isosceles triangle, the ratio of the base angle to
the angle at the vertex be algebraic but not rational, the ratio between base and side is always
transcendental. In spite of the simplicity of this statement and of its similarity to the problems
solved by Hermite and Lindemann, I consider the proof of this theorem very difficult; as also the
proof that The expression αβ , for an algebraic base α and an irrational algebraic exponent β,
e.g., the number 2

√
2, or eπ = i−2i , always represents a transcendental or at least an irrational

number. It is certain that the solution of these and similar problems must lead us to entirely new
methods and to a new insight into the nature of special irrational and transcendental numbers.

Hilbert’s last comment has certainly turned out to be true. The resolution of Hilbert’s
seventh problem in the 1930s by the efforts of A. O. Gelfond and T. Schneider and
the work of C. L. Siegel, the latter more directly inspired by that of Hermite and
Lindemann, have initiated an era of tremendous growth and development in the theory
of transcendental numbers. Hilbert himself was not very hopeful of a proof of his
theorem within his lifetime, a theorem, as we have seen, also stated by Euler. Hilbert
thought, in fact, that the Riemann hypothesis would be proved first.
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The Russian mathematician Aleksandr O. Gelfond (1906–1968) took the first impor-
tant step toward a proof of the Hilbert–Euler conjecture. He was a colleague at Moscow
University of I. I. Privalov, whose influence in complex analysis is evident in Gelfond’s
work. Gelfond was a student of Aleksandr Khinchin who in 1922–23 studied the metri-
cal properties of continued fractions, in which he obtained important results. Khinchin
attracted several researchers to a whole range of problems in analytic number theory
through his 1925–1926 seminar on this subject at Moscow. Gelfond’s early work was
influenced by a result in analytic functions due to Pólya: If an entire function assumes
integral values for positive rational integral values of its argument and its growth is
restricted by the inequality

|f (z)|<C2α|z|, α < 1,

then it must be a polynomial. Roughly speaking, this means that a transcendental entire
function taking integral values at integers must grow at least as fast as 2z. Concerning
the connection of this result with transcendental numbers, in his Transcendental and
Algebraic Numbers, first published in Russian in 1952, Gelfond wrote,

There is a very essential relationship between the growth of an entire analytic function and the
arithmetic nature of its values for an argument which assumes values in a given algebraic field. If
we assume in this connection that the values of the function also belong to some definite algebraic
field, where all the conjugates of every value do not grow too rapidly in this field, then this at
once places restriction on the growth of the function from below, in other words, it cannot be too
small. This situation and its analogues for meromorphic functions can be used with success to
solve transcendence problems. The first theorem concerning the relationship between the growth
and the arithmetic value of a function was the Pólya theorem.

Hardy, Landau, and Okada successively managed to produce a streamlined proof of
this result. We briefly sketch the argument, showing that very old ideas on interpolation
have continued to play a role in function theory and transcendence theory. First, prove
that if an entire function f (z) satisfies

lim
r→∞

logM(r,f )

r
< log2,

then f (0)+ z,f (0)+ z(z− 1)

2! ,2f (0)+ z(z− 1)(z− 2)

3! ,3f (0)+·· ·
converges uniformly to f (z) in any finite region of the plane. Note that this is the
Briggs–Harriot–Gregory–Newton interpolation series. Thus, if f (z) is of exponential
type less than log2, then f (z) is represented by the interpolation series and can be
evaluated at z=−1:

f (−1)= f (0)−,f (0)+,2f (0)−·· · .
The convergence of the series implies that |,nf (0)|< 1 for n > N . Moreover, since
,nf (0) is an integer when f (0),f (1),f (2), . . . are all integers, we may conclude that
,nf (0)= 0 for n >N . Thus, f (z) is a polynomial and Pólya’s theorem is proved.

In 1929, Gelfond took a step closer to solving Hilbert’s problem when he used this
type of interpolation series to obtain a key transcendence theorem: For α �= 0,1 and
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algebraic, α
√−p is transcendental when p is a nonsquare positive integer. In particular,

2
√−2 and (−1)−i = eπ are transcendental numbers. Gelfond gave details of only the

particular case that eπ is transcendental. We present an outline of Gelfond’s proof. First
enumerate the Gaussian integers m+ in as a sequence z0,z1,z2, . . . , where one term
precedes another if its absolute value is smaller; if the absolute values are the same, then
the term with the smaller argument comes first. Then expand eπz as an interpolation
series ∞∑

n=0

An(z− z0) · · ·(z− zn−1),

where, by Cauchy’s theorem, An can be expressed as

n∑
k=0

eπzk

Bk
, where Bk =

n∏
j=0
j �=k

(zk− zj ).

This interpolation series converges to eπz because of the relatively slow growth of the
function and the relatively high density of the interpolation points. Now if Un is the
least common multiple of B0,B1, . . . ,Bn, then, by the distribution of the primes of the
form 4n+ 1 and 4n+ 3, it can be established that

|Un| = e(n logn)/2+O(n) and |Un/Bk| = eO(n).
If one assumes that eπ is algebraic, then these estimates can be used to show that either
An = 0 or that

|UnAn|> e−O(n).
However, from the Cauchy integral for An, it follows that

|UnAn|< e(−n logn)/2+O(n).

The two inequalities contradict one another for large enough n, unless An = 0 for all n
larger than some value. Thus, one may argue that the interpolation series is finite and
hence is a polynomial. This is a contradiction, so that Gelfond could conclude that his
assumption that eπ was algebraic was false, proving his result.

In 1930, R. Kuzmin showed that, with some modifications in Gelfond’s proof, one
could prove the transcendence of α

√
p, with α and p as before. One implication of this

was that 2
√

2 was transcendent, as Hilbert and Euler had conjectured. Since for general
algebraic numbers β (in αβ), it was no longer possible to find useful upper bounds
for Un, a generalization along these lines was difficult. However, in 1933 K. Boehle
was able to prove by this method that if α �= 0,1 and β was an irrational algebraic
number of degree n≥ 2, then at least one of the numbers α,αβ,αβ

2
, . . . ,αβ

n−1
had to be

transcendental. Carl Ludwig Siegel (1896–1981), who had been a student of Landau
at Göttingen, also succeeded in proving Kuzmin’s result after seeing Gelfond’s proof
of the transcendence of α

√−p. But Siegel did not publish his proof in spite of Hilbert’s
suggestion that he do so. Siegel also made important and very original contributions to
the theory of quadratic forms and to modular forms in several variables. His interest in
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the history of mathematics led him to study Riemann’s cryptic unpublished notes on
the zeta function and to discover the Riemann–Siegel formula.

Though the method of Gelfond did not generalize to αβ , it suggested new lines of
research. Gelfond himself applied it to a new proof of Lindemann’s theorem; in 1943,
his student A. V. Lototskii used it to show that certain infinite products represented
irrational numbers; and in 1932 Siegel showed that if g2 and g3 were algebraic numbers,
then at least one period of the Weierstrass ℘ function, satisfying the equation,

℘ ′(z)2 = 4℘(z)3 −g2℘(z)−g3,

was transcendental. In particular, if ℘(z) allowed complex multiplication, then both
periods were transcendental. Siegel’s student, Theodor Schneider (1911–1988), devel-
oped improved methods, allowing him to prove in 1935 that both periods were
transcendental and even their ratio was transcendental, except when ℘(z) permitted
complex multiplication.

In 1934, Gelfond published a new method by which he obtained the complete proof
of Hilbert’s seventh problem. This proof made use of complex analysis, but some
years later Gelfond and Linnik gave an interesting elementary proof of a special case,
without recourse to analysis, except for Rolle’s theorem. In his proof of the seventh
problem, Gelfond assumed the result false. Thus, he posited that there existed algebraic
numbers α, β,where α �= 0, 1 and β was not rational but αβ = λwas algebraic. On this
assumption, there existed algebraic numbers α and β such that β = logλ/ logα was an
algebraic irrational number. He then constructed a function

f (z)=
N∑
k=0

N∑
m=0

Ck,m α
kzλmz =

∑
k,m

Ck,me
(ak+bm)z (a = logα, b= logλ),

whereN was a suitably chosen large integer.Also, theCk,m were such that their absolute
values and the absolute values of their conjugates were less than e2N2

. Note that f (z)
could not be identically zero because b/a had to be irrational; moreover, the derivative
of order s could be expressed as

f (s)(z)= as
N∑
k=0

N∑
m=0

Ck,m(k+βm)sαkzλmz.

Gelfond proved that if αβ was an algebraic number, then it was possible to choose
the (N + 1)2 nonzero algebraic numbers Ck,m such that f (s)(z)= 0 at z = 0,1, . . . , r2
for 0 ≤ s ≤ r1, where r1 was the greatest integer in N 2/ logN and r2 was the greatest
integer in log logN . All this then implied that f (z) had zeros of sufficiently high order
at 0,1, . . . , r2. By an ingenious argument using Cauchy’s integral formula, Gelfond
then showed that f (z) had a zero of even higher order at z = 0—in fact, of order at
least (N + 1)2 + 1. Thus, he could conclude that the nonzero algebraic numbers Ck,m
satisfied the equations

a−sf (s)(0)=
N∑

k,m=0

Ck,m(k+βm)s = 0, 0 ≤ s ≤ (N + 1)2.
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Taking the first (N + 1)2 equations, he obtained a system of equations with a
Vandermonde determinant that had to be zero; this could happen if and only if there
were integers

m1, k1; m2, k2 such that βm1 + k1 = βm2 + k2.

This relation yielded the conclusion that β was rational, a contradiction to Gelfond’s
assumption, so that the theorem was proved.

In 1934, Schneider obtained an independent solution of Hilbert’s seventh problem.
His interest in transcendental numbers was aroused by a lecture of Siegel, who subse-
quently gave him a list from which to choose a dissertation topic. Schneider selected
a problem on transcendental numbers; he reported, “After a few months, I gave him a
work of six pages and then was told by Siegel that the work contained the solution of
Hilbert’s seventh problem.” Schneider’s proof was different in details from Gelfond’s,
but it too depended on the construction of an auxiliary function with a large number
of zeros at specific points. In fact, both these mathematicians had adopted this tech-
nique from a previous work of Siegel on transcendence questions related to the values
of Bessel functions. One may go further back and observe that in his proof of the
transcendence of e, Hermite had also constructed a function of this kind!

Siegel’s work of 1929 introduced another important method in the theory of tran-
scendental numbers. Recall that Hermite’s work depended on the fact that d

dx
ex = ex .

It was not until 1929, when Siegel published his paper on E-functions, that this idea
was generalized to prove the transcendence of values of functions satisfying linear
differential equations. E-functions are entire functions

∞∑
n=0

an

n! z
n,

where an are algebraic numbers satisfying certain arithmetic conditions. First, for
any ε > 0, an and all its conjugates are O(nεn) as n → ∞ and second, the least
common denominator of a0,a1, . . . ,an is also O(nεn). Siegel considered a system of
homogeneous linear differential equations of the first order

y ′k =
m∑
l=1

Qkl(x)yl , for (k = 1, . . . ,m),

where the Qkl(x) were rational functions with coefficients in a number field K . To
obtain transcendence results, Siegel required that some products of powers of the
E-function E1,E2, . . . ,Em, in fact, solutions of this system, satisfy a normality condi-
tion. Siegel formalized the concept of normality in his 1949 book; its meaning was only
implicit in his 1929 paper. In spite of the fact that this condition was difficult to verify,
thereby limiting the scope of its application, Siegel was able to employ it to rederive
the classical theorem of Lindemann (and Weierstrass). He also proved a new theorem
on the transcendence of a class of numbers related to the Bessel function: Observing
that

Kλ(x)=
∞∑
n=0

(−1)n

n!(λ+ 1) · · ·(λ+n)
(x

2

)n
(λ �= −1,−2, . . . ),
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one may verify that Kλ is an E-function and satisfies the differential equation

y ′′ + (2λ+ 1)/xy ′ + y = 0.

Siegel’s theorem states that if λ is a rational number, λ �= ± 1
2 ,−1,± 3

2 ,−2, . . . , and
α �= 0 an algebraic number, then Kλ(α) and K ′

λ(α) are algebraically independent.
Note that complex numbers ζ1,ζ2, . . . , ζn are called algebraically independent if for
every nonzero polynomial P(x1, . . . ,xn), in n variables with rational coefficients, we
have P(ζ1, . . . , ζn) �= 0. Otherwise, the ζj are algebraically dependent. Thus, if several
numbers are algebraically independent, then each of them is transcendental. Therefore,
Kλ(α) and K ′

λ(α) are transcendental. Also, since the Bessel function Jλ(x) may be
expressed as

1

�(λ+ 1)

(x
2

)λ
Kλ(x),

it follows that except for x = 0, all the zeros of Jλ(x) and J ′
λ(x) are transcendental

numbers.
From his theorem, Siegel obtained the transcendence of certain continued fractions

by noting that

i
√
x
Kλ(2i

√
x)

K ′
λ(2i

√
x)

= λ+ 1+ x

λ+ 2+ x

λ+ 3+ . . . .
Thus, Siegel’s theorem implied that when 2λ was not an odd integer, the continued
fraction was transcendental for every nonzero algebraic x. But when 2λ was an odd
integer, Lindemann’s theorem entailed the transcendence of the continued fraction.
Siegel took the special case, when λ= 0 to obtain a nice result: the transcendence of

1+ 1

2+ 1

3+ . . . .
Siegel obtained the Lindemann-Weierstrass theorem using his method: Take algebraic
numbersa1, . . . ,am linearly independent over the rational number field.TheE-functions
are Ek(x) = eakx, (k = 1, . . . ,m), and the µ power products take the form eρkx (k =
1, . . . ,µ) with µ different algebraic numbers ρk. The system of equations takes the
form y ′k = ρkyk (k = 1, . . . ,µ); verifying the normality condition in this case reduces
to proving that any equation

P1(x)e
ρ1x +·· ·+Pµ(x)eρµx = 0,

where Pi(x) are polynomials, implies that P1 = 0, . . . ,Pµ = 0. This is easy to show,
and the Lindemann theorem follows from Siegel’s theorem.

Siegel described the historical background to his work:

Lambert’s work was generalized by Legendre who considered the power series

y = fα(x)=
∞∑
n=0

xn

n!α(α+ 1) · · ·(α+n− 1)
(α �= 0,−1,−2, . . . )
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satisfying the linear differential equation of second order y ′′ +αy ′ = y. He obtained the continued
fraction expansion

y

y ′
= α+ x

α+ 1+ x

α+ 2+·· ·
and proved the irrationality of y/y ′ for all rational x �= 0 and all rational α �= 0,−1,−2, . . . . In the
special case α = 1/2 we have y = cosh(2

√
x),y ′ = sinh(2

√
x)/

√
x, so that Legendre’s theorem

contains the irrationality of (tga)/a for rational a2 �= 0. In more recent times, Stridsberg proved
the irrationality of y and of y ′, separately, for rational x �= 0 and rational α �= 0,−1, . . . , and
Maier showed that neither y nor y ′ is a quadratic irrationality. Maier’s work suggested the idea
of introducing more general approximation forms which enabled me to prove that the numbers y
and y ′ are not connected by any algebraic equation with algebraic coefficients, for any algebraic
x �= 0 and any rational α �= 0,±1/2,−1,±3/2, . . . . The excluded case of an integer α+ 1

2 really
is an exception, since then the function fα(x) satisfies an algebraic differential equation of first
order whose coefficients are polynomials in x with rational numerical coefficients; this follows
from the explicit formulas

fk+ 1
2
= 1

2
· 3

2
· · ·

(
k− 1

2

)
Dk cosh(2

√
x),

f 1
2 −k =

(−1)kxk+ 1
2

1
2 · 3

2 · · ·(k− 1
2 )
Dk+1 sinh(2

√
x) (k = 0,1,2, . . . ).

For instance, in caseα= 1
2 , the differential equation is y2−xy ′2 = 1. In the excluded case, however,

Lindemann’s theorem shows that y and y ′ are both transcendental for any algebraic x �= 0.

Due to the difficulty in verifying the normality condition, only these examples involv-
ing the exponential function and the Bessel function were obtained by this method
between the publication of Siegel’s paper in 1929 and his book in 1949. Finally, in
1988, F. Beukers, W. D. Brownwell, and G. Heckmann applied differential Galois the-
ory to obtain a more tractable equivalent of the normality condition. They were able
to verify the normality condition for a large class of hypergeometric functions. In their
theory, the algebraic relations between the solutions of differential equations could be
studied by means of the classification of linear algebraic groups. We note that the work
of E. Vessiot, G. Fano, and E. Picard on linear differential equations during the late
nineteenth century provided the foundation for differential Galois theory. Starting in
1948, E. Kolchin’s work, itself based on the earlier 1932 book of J. F. Ritt, brought
differential Galois theory to maturity.

In the period 1953–1959, Andrei Shidlovskii (1915–2007), student of Gelfond and
teacher of V. A. Oleinikov, made major advances in the theory of E-functions. In
1954, he was able to replace Siegel’s normality condition with a certain irreducibility
condition, enabling him to work with some E-functions satisfying third- or fourth-
order linear differential equations. A year later, he obtained stronger results; we give
definitions before stating one of his theorems. Functions f1(z),f2(z), . . . ,fm(z) are
homogeneously algebraically independent over C(z) if P(f1(z), . . . ,fm(z)) �= 0 for
every nonzero homogeneous polynomial in m variables with coefficients in C(z).
Similarly, complex numbers w1, . . . ,wm are said to be homogeneously algebraically
independent over the field of algebraic numbers ifP(w1, . . . ,wn) �= 0 for every nonzero
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homogeneous polynomial P with algebraic numbers as coefficients. Now suppose

y ′k =
m∑
i=1

Qk,iyi (k = 1, . . . ,m), Qk,i ∈ C(z), (38.2)

and suppose T (z) is the least common denominator of all the m2 rational functions
Qk,i . Shidlovskii’s theorem may then be stated as: Let f1(z),f2(z), . . . ,fm(z) be a set
ofE-functions that satisfy the system of equations (38.2) and are homogeneously alge-
braically independent over C(z), and let ζ be an algebraic number such that ζT (ζ ) �= 0.
Then the numbers f1(ζ ), . . . ,fm(ζ ) are homogeneously algebraically independent.

We may get an idea of the mathematical tradition within which Gelfond, Shidlovskii,
and their students did their work by reading Mikhail Gromov’s comments on his expe-
rience as a student in Russia: “There was a very strong romantic attitude toward science
and mathematics: the idea that the subject is remarkable and that it is worth dedicating
your life to. . . . that is an attitude that I and many other mathematicians coming from
Russia have inherited.” The accounts of the Gelfand seminars in Moscow, by Gromov,
Landis and others, describe this attitude. The seminars extended to many hours of
enthusiastic, colorful, and passionate discussion.

During the 1960s, Alan Baker, a student of Harold Davenport, effected another
important and very productive development in transcendental number theory. He proved
a substantial generalization of the Gelfond-Schneider theorem of 1934. We may state
the latter in the form: If α and β are nonzero algebraic numbers and logα and logβ are
independent over the rationals, then for any nonzero algebraic numbers α1 and β1,

α1 logα+β1 logβ �= 0.

In 1939, Gelfond obtained an explicit lower bound for |α1 logα+β1 logβ| in terms of
the degrees and height of the four algebraic numbers. In a paper of 1948, Yuri Linnik
and Gelfond pointed out that if a lower bound could be obtained for a similar three-term
sum, then it would follow that the number of imaginary quadratic fields of class number
one was finite; note that this result was one case within Gauss’s class number problem.
In 1966, Baker began to study this question by means of linear forms in logarithms. In
that year, he established that if α1,α2, . . . ,αn were nonzero algebraic numbers such that
logα1, logα2, . . . , logαn were independent over the rationals, then 1, logα1, . . . , logαn
would be independent over the field of algebraic numbers.As a corollary, Baker obtained
the generalization of the Gelfond-Schneider theorem: If α1,α2, . . . ,αn are algebraic but
not 0 or 1; and if β1,β2, . . . ,βn are algebraic numbers such that 1,β1,β2, . . . ,βn are
linearly independent over the rationals, then αβ1

1 α
β2
2 · · ·αβnn is transcendental. Baker also

found an effectively computable lower bound for the absolute values of a nonvanishing
linear form

|β0 +β1 logα1 +·· ·+βn logαn| .
This result was applicable to a number of outstanding number theory problems, includ-
ing Gauss’s class number problem. But some of these number theoretic problems were
also solved by other methods. In 1967, H. M. Stark solved the class number one prob-
lem by means of the theory of modular functions. Two years later, he published another
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paper, explaining that Kurt Heegner’s 1952 solution of this problem was essentially
sound. In constructing his proof, Heegner, a secondary school teacher, had made use
of his deep understanding of Heinrich Weber’s work on modular functions. Perhaps
Heegner took it for granted that his readers would be equally familiar with Weber; this
may have rendered his proof opaque. Indeed, Serre remarked that he found the paper
very difficult to understand.

It is remarkable that mathematicians have managed to learn so much about transcen-
dental numbers, for they have very strange properties. For example, transcendental
numbers do not behave well under the usual algebraic operations. Moreover, even
though it is true that if a number can be approximated sufficiently well by rational
numbers, it must be transcendental, there nevertheless exist transcendental numbers
that are not able to be approximated even as well as some quadratic irrational numbers.
Indeed, Weil has stated that a preliminary version of Siegel’s 1929 paper ended with
the remark: “Ein Bourgeois, wer noch Algebra treibt! Es lebe die unbeschkränte Indi-
vidualität der transzendenten Zahlen! [It’s a bourgeois, who still does algebra! Long
live the unrestricted individuality of transcendental numbers!]”

38.2 Liouville Numbers

In a paper of 1851, based on earlier work, Liouville constructed his transcendental
numbers by proving that if x was the root of an irreducible polynomial of degree n> 1
with integer coefficients

f (x)= axn+ bxn−1 +·· ·+ gx+h,

then there existed a constant A> 0 such that |x−p/q|> 1
Aqn

for all rational numbers
p/q. Although the absolute value sign was not in use at that time, Liouville made
his meaning clear. To prove this theorem, Liouville supposed that x,x1,x2, . . . ,xn−1

comprised all the roots of f (x)= 0 so that

f

(
p

q

)
= a

(
p

q
− x

)(
p

q
− x1

)
· · ·

(
p

q
− xn−1

)
.

He then set

f (p,q)= qnf (p/q)= apn+ bpn−1q+·· ·+hqn
so that he could write∣∣∣∣pq − x

∣∣∣∣= |f (p,q)|
qn

∣∣∣a(p
q
− x1

)(
p

q
− x2

)
· · ·

(
p

q
− xn

)∣∣∣ .
Next, since n > 1, f (p,q) was a nonzero integer, so that |f (p,q)| ≥ 1. Moreover,∣∣∣∣a(x1 − p

q

)(
x2 − p

q

)
· · ·

(
xn− p

q

)∣∣∣∣
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was bounded by a maximum value for values of p/q in a neighborhood of x (of, say,
radius 1). Liouville denoted that maximum by A. It then became clear that∣∣∣∣pq − x

∣∣∣∣> 1

Aqn

so that the proof was complete. Note that for points p/q outside the radius 1 around
x, one has |p/q − x|> 1, so that the result holds. Liouville went on to show that the
result was valid even when n= 1. In that case, f (x)= ax+ b= 0 and so

p

q
− x = ap+ bq

aq
.

If x �= p/q, then ap+ bq �= 0, and∣∣∣∣pq − x
∣∣∣∣≥ 1

aq
= 1

Aq
.

Liouville used his theorem to produce examples of transcendental numbers. He argued
that a given number x could not be algebraic unless there was a constant A such that
|p/q− x|> 1

Aqn
. He took x to be defined by the series

x = 1

l
+ 1

l2!
+ 1

l3!
+ · · ·+ 1

lm!
+ · · · ,

where l was an integer ≥ 2. He let the partial sum up to the term whose denominator
was lm! be p/q, so that q = lm!. Liouville then observed that

x− p

q
= 1

l(m+1)! +
1

l(m+2)! + · · · ≤ 2

l(m+1)! =
2

qm+1
.

This inequality followed from the series

1

l(m+1)!

(
1+ 1

lm+1
+ 1

l(m+1)(m+2)
+·· ·

)
<

1

l(m+1)!

(
1+ 1

2
+ 1

22
+·· ·

)
= 2

l(m+1)! .

By increasing m, he saw that for any fixed A and n he could not obtain x − p/q >
1/(Aqn), thus proving that x was transcendental. Liouville also noted the more general
case; if he took

x = k1

l
+ k2

l2!
+ k3

l3!
+ · · ·+ km

lm!
+ · · · ,

where k1,k2, . . . ,km, . . . were nonzero integers bounded by a constant, then x would
be transcendental. He gave the example in which l could take the value 10 and the km
could then take values between 1 and 9 inclusive. As an example of a slightly different
kind, he considered

x = 1

l
+ 1

l4
+ 1

l9
+·· ·+ 1

lm
2 +·· · .

For q = lm2
,

x− p

q
= 1

l(m+1)2
+·· ·< 2

l2m+1q
;
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therefore, x could not be a root of a first-degree equation with rational coefficients and
was hence irrational.

38.3 Hermite’s Proof of the Transcendence of e

In his 1873 paper “Sur la fonction exponentielle,” Hermite gave two proofs that e was
transcendental. We give his second and more rigorous proof, following his notation for
the most part, except that in some places we employ the matrix notation, not explicitly
used by Hermite. About fifteen years before Hermite gave his proof, Cayley introduced
the matrix notation and some of the elementary algebraic properties of matrices. It was
some time, however, before the usefulness of matrices was generally recognized. We
first sketch the structure of Hermite’s argument. Take a relation of the form

ez0N0 + ez1N1 +·· ·+ eznNn = 0, (38.3)

where z0,z1, . . . ,zn are distinct nonnegative integers and N0,N1, . . . ,Nn are any inte-
gers. It is clear that unless all theN are zero, e is an algebraic number. Hermite defined
a set of n(n+ 1) numbers ηij , i = 0,1, . . . ,n and j = 1, 2, . . . ,n, by the equation

ηij =
1

(m− 1)!
∫ zj

z0

e−zf m(z)
z− zi dz, (38.4)

where m was some positive integer and

f (z)= (z− z0)(z− z1)(z− z2) · · ·(z− zn) . (38.5)

He showed that the numbers ηij got arbitrarily small asm became large. To demonstrate
this fact, Hermite’s reasoning was that since e−z was always positive, for any continuous
functions F(z), he had∫ Z

z0

e−zF (z)dz= F(ξ)
∫ Z

z0

e−z dz= F(ξ)(e−z0 − e−Z) ,
where ξ lay between z0 and Z, the limits of integration. By choosing Z = zj and

F(z)= f m(z)

(m− 1)!(z− zi) ,

he obtained

ηij =
f m−1(ξ)

(m− 1)!
f (ξ)

ξ − zi
(
e−z0 − e−zj ) .

This proved that ηij → 0 asm→∞. Thus, the (n+1)×nmatrix η= (
ηij
)
, with ηij the

element in the ith row and the j th column, depends on m. Denote this dependence by
η(m). Hermite determined a relation between η(m) and η(m− 1) giving, by iteration,
a relation between η(m) and η(1). Let us write the first relation as

η(m)=T(m)η(m− 1), (38.6)
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where T(m) is an n+ 1×n+ 1 matrix depending on z0,z1, . . . ,zn. Thus,

η(m)=T(m)T(m− 1) · · ·T(2)η(1),
and we write (following Hermite) the element in the ith row and j th column of the
matrix T as θ(j, i) where i and j run from 0 to n. Hermite showed that the θs were
integers and that

detT(k)=
∏

0≤i<j≤n
(zi − zj )2, for k = 2, . . . ,m. (38.7)

He then obtained an explicit expression for the elements of η(1) in a suitable form: Let
ζ denote any one of z0,z1, . . . ,zn. He set

F(z)= f (z)

z− ζ and∫
e−zF (z)dz=−e−zγ (z), (38.8)

where γ (z)= F(z)+F ′(z)+F ′′(z)+·· ·+F (n)(z). Hermite noted that if

f (z)= zn+1 +p1z
n+p2z

n−1 +·· ·+pn+1,

then F(z)= zn+ (ζ +p1)z
n−1 + (ζ 2 +p1ζ +p2)z

n−2 +·· · , (38.9)

and the coefficients of the two polynomials were integers. From this he could conclude
that

γ (z)=O(z,ζ )= zn+φ1(ζ )z
n−1 +φ2(ζ )z

n−2 +·· ·+φn(ζ ), (38.10)

with φi(ζ ) a monic polynomial in ζ of degree i and with integer coefficients. We may
letO denote the matrix with entryO(zj ,zi) in the ith row and j th column where i and
j run from 0 to n. Again, these entries must be integers and detO= detT. From (38.8)
and (38.10), he then had∫ Z

z0

e−zf (z)
z− ζ dz= e−z0O(z0,ζ )− e−ZO(Z,ζ ). (38.11)

This equation gave Hermite the required values of the entries of η(1). For the final step,
let X =T(m). . .T(2)O so that elements ηij of η(m) are given by

ηij = e−z0Xi0 − e−zj Xij , (38.12)

where the integers Xij are the entries of X. Note that (38.12) gives rational
approximations of ezj−z0 for j running from 1 to n. Now, by (38.3) and (38.12),

ez1ηi1N1 + ez2ηi2N2 +·· ·+ eznηinNn
= e−z0 (ez1N1 + ez2N2 +·· ·+ eznNn)Xi0
− (Xi1N1 +Xi2N2 +·· ·+XinNn)

=−(Xi0N0 +Xi1N1 +Xi2N2 +·· ·+XinNn) .
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Hermite argued that, since the Xij and the Ni were integers, the term on the right-hand
side was an integer, but the term on the left-hand side could be made arbitrarily small
because of the ηij . Therefore, he concluded that

Xi0N0 +Xi1N1 +·· ·+XinNn = 0 , i = 0,1, . . . ,n.

We can write this system of equations asXN = 0, where the components of the vector
N are N0,N1, . . . ,Nn. Since detX = (detT)m−1 detO = (detT)m �= 0, we must have
N = 0. This completes our outline of Hermite’s proof.

Now let us see how Hermite obtained the basic formulas (38.6) and (38.7). To prove
(38.6), Hermite showed that∫ Z

z0

e−zf m+1(z)

z− ζ dz=mθ(z0,ζ )

∫ Z

z0

e−zf m(z)
z− z0

dz+mθ(z1,ζ )

∫ Z

z0

e−zf m(z)
z− z1

dz

+·· ·+mθ(zn,ζ )
∫ Z

z0

e−zf m(z)
z− zn dz, (38.13)

where θ(z,ζ ) was of the form

θ(z,ζ )= zn+α1(ζ )z
n−1 +α2(ζ )z

n−2 +·· ·+αn(ζ ), (38.14)

with α1(ζ ),α2(ζ ), . . . ,αn(ζ ) monic polynomials in ζ , with integer coefficients, and
where Z and ζ took values in z0,z1, . . . ,zn. For this, he needed the auxiliary formula
that there existed polynomials θ(z) and θ1(z) of degree n, such that∫

e−zG(z)f (z)
z− ζ dz=

∫
e−zG(z)θ1(z)

f (z)
dz− e−zG(z)θ(z), (38.15)

where G(z) = (
f (z)

)m
. After taking the derivative of (38.15) and multiplying across

by f (z)/G(z), he had only to determine θ1(z) and θ(z) so that

f (z)

z− ζ f (z)= θ1(z)+
[

1− G′(z)
G(z)

]
f (z)θ(z)−f (z)θ ′(z). (38.16)

He set z= zi in this equation, and got 0 = θ1(zi)−mf ′(zi)θ(zi) or

θ1(zi)=mf ′(zi)θ(zi) , i = 0,1, . . . ,n. (38.17)

Once the values θ(zi) were found, the n+ 1 values determined the polynomials θ1(z)

and θ(z). To this end, he divided equation (38.16) by f (z) to get

f (z)

z− ζ = θ1(z)

f (z)
+
[

1− G′(z)
G(z)

]
θ(z)− θ ′(z). (38.18)

Next, by (38.17), the fractional part of
[
1− G′(z)

G(z)

]
θ(z) canceled with θ1(z)

f (z)
; and hence to

determine θ(z), Hermite had to consider only the polynomial part of
[
1− G′(z)

G(z)

]
θ(z).

So he supposed
θ(z)= α0z

n+α1z
n−1 +α2z

n−2 +·· ·+αn.
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By taking the logarithmic derivative of G(z), he obtained

G′(z)
G(z)

= m

z− z0
+ m

z− z1
+·· ·+ m

z− zn =
s0

z
+ s1

z2
+ s3

z3
+·· · , (38.19)

where si =m(zi0 + zi1 +·· ·+ zin). Thus, comparing the coefficients of the polynomials
on the two sides of (38.18) and using (38.9), he got the relations

1 = α0,

ζ +p1 = α1 −α0(s0 +n),
ζ 2 +p1ζ +p2 = α2 +α1(s0 +n− 1)−α0s1,

...

These equations yielded the required coefficients of θ(z):

α0 = 1,

α1 = ζ +p1 + s0 +n,
α2 = ζ2 + (s0 +n− 1)ζ1 + (s0 +n)(s0 +n− 1)+ s1,
...

where ζ2 = ζ 2 +p1ζ +p2, ζ1 = ζ +p1. Thus, αi was shown to be a monic polynomial
of degree i in ζ , and Hermite could write

θ(z)= θ(z,ζ )= zn+α1(ζ )z
n−1 +α2(ζ )z

n−2 +·· ·+αn(ζ ). (38.20)

But in order to derive (38.13), Hermite set the limits of integration in (38.15) from z0

to Z, where Z was one of the values z0,z1, . . . ,zn; he arrived at∫ Z

z0

e−zG(z)f (z)
z− ζ dz=

∫ Z

z0

e−zG(z)
θ1(z)

f (z)
dz. (38.21)

By (38.17),

θ1(z)

f (z)
= mθ(z0)

z− z0
+ mθ(z1)

z− z1
+·· ·+ mθ(zn)

z− zn , (38.22)

and then, in order to recognize the dependence on ζ , he wrote, as in (38.20), θ(zi)=
θ(zi,ζ ). And when (38.22) was substituted in (38.21), he got (38.13).

Now, in order to prove (38.7), observe that from (38.20), detT can obtained by
multiplying the determinants∣∣∣∣∣∣∣∣∣

zn0 zn−1
0 . . . 1

zn1 zn−1
1 . . . 1

...
... . . .

...

znn zn−1
n . . . 1

∣∣∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣∣∣

1 1 . . . 1
α1(z0) α1(z1) . . . α1(zn)
...

... . . .
...

αn(z0) αn(z1) . . . αn(zn)

∣∣∣∣∣∣∣∣∣ ,
completing Hermite’s proof of (38.7).
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38.4 Hilbert’s Proof of the Transcendence of e

In 1893, Felix Klein presented a series of lectures at the University of Chicago, including
Hilbert’s new and very efficient proof of the transcendence of e. Hilbert’s elegant proof
was based on ideas of Lindemann, Weierstrass, and Paul Gordan. To begin the proof,
take ρ to be a positive integer, and set

I = zρ [(z− 1)(z− 2) · · ·(z−n)]ρ+1 e−z.

Suppose e is not transcendental. Then we may set a,a1,a2, . . . ,an to be integers such
that

a+ a1e+ a2e
2 +·· ·+ anen = 0.

Then

a

ρ!
∫ ∞

0
I dz+ a1e

ρ!
∫ ∞

1
I dz+ a2e

2

ρ!
∫ ∞

2
I dz+·· ·+ ane

n

ρ!
∫ ∞

n

I dz

+
(
a1e

ρ!
∫ 1

0
I dz+ a2e

2

ρ!
∫ 2

0
I dz+·· ·+ ane

n

ρ!
∫ n

0
I dz

)
= 0, (38.23)

or P1 +P2 = 0, where P2 is the sum inside the parentheses and P1 is the part outside.
In the term

ake
k

ρ!
∫ ∞

k

I dz,

with k ≥ 1, contained in P1, change z to z+ k. We then have

ake
k

ρ!
∫ ∞

0
e−(z+k)zρ+1(z+k)ρ(z+k−1)ρ+1 · · ·(z+1)ρ+1(z−1)ρ+1 · · ·(z+k−n)ρ+1 dz

= ak

ρ!
∫ ∞

0
e−zzρ+1

∑
tmz

m dz,

where
∑
tmz

m is a polynomial in z with integer coefficients. Take one term in the sum,
and evaluate as a gamma integral to get

aktm

ρ!
∫ ∞

0
e−zzρ+m+1 dz= aktm(ρ+m+ 1)!

ρ! .

Therefore,
ake

k

ρ!
∫ ∞

k

I dz

is an integer divisible by ρ+ 1. The first term a

ρ!
∫∞

0 I dz in P1 is easily seen to be

±a (n!)ρ+1 (modρ+ 1),

and hence
P1 =±a (n!)ρ+1 (modρ+ 1).
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Take ρ + 1 to be a large prime so that a (n!)ρ+1 is not divisible by ρ + 1. Notice that
we can obviously choose a �= 0, if e is algebraic. As for P2, we can make it as small as
we like. But a (n!)ρ+1 is a nonzero integer, contradicting (38.23), and hence e cannot
be algebraic. Note that Hermite’s original proof still has the advantage that it obtains
rational approximations of e raised to integer powers.

38.5 Exercises

1. Show that the sum of Goldbach’s series is given exactly by

∞∑
1

1

n2 + p

q
n
= q

p

(
ψ

(
p

q

)
+ γ + q

p

)
,

where ψ(x) is Gauss’s digamma function. Observe that the value of ψ(p/q)
may be explicitly calculated for integer values of p and q, as Goldbach used
them. See the results of Gauss, (23.69), (23.70), (23.71).

2. Suppose λ is a rational number not equal to a negative integer. Let

φλ(z)=
∞∑
n=0

zn

(λ+ 1)n

and let ξ be a nonzero algebraic number. Show that φλ(ξ) is transcendental.
Siegel stated this result without proof in his 1929 paper. The first published
proof is due to Shidlovskii, dating from 1954. See Shidlovskii (1989), p. 185.

3. Suppose that theE-functionsf1(z), . . . ,fm(z) are algebraically independent over
C(z) and form a solution of the system of linear differential equations

y ′k =Qk,0 +
m∑
i=0

Qk,iyi, k = l, . . . ,m; Qk,i ∈ C(z).

Let ξ be an algebraic number such that ξT (ξ) �= 0, with T (ξ) as defined earlier.
Show that under these conditions, the numbersf1(ξ), . . . ,fm(ξ) are algebraically
independent. See Shidlovskii (1989), p. 123.

4. Let

f (z)=
∞∑
n=0

z2n .

Show that if α is algebraic and 0 < |α| < 1, then f (α) is transcendental. This
result is due to Kurt Mahler (1903–1985); though mostly self-taught, he regarded
himself as a student of Siegel in his research. For this and other results, see the
paper by J. H. Loxton and A. J. van der Poorten in Baker and Masser (1977),
pp. 211–226.

5. Show that if

f1(z)=
∞∑
n=0

z2n and f2(z)=
∞∑
n=0

z3n,
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then for any two algebraic numbers α1, α2 in 0< |z|< 1, f1(α1) and f2(α2) are
algebraically independent. See Kubota (1977).

6. Show that for an algebraic number β �= 0,1, the two numbers defined by
the hypergeometric series F(1/2, 1/2, 1, β) and F(−1/2, 1/2, 1, β) are alge-
braically independent over the rationals. See Chudnovsky and Chudnovsky
(1988).

7. Show that if α is algebraic and 0< |α|< 1, the theta series
∑

n≥0α
n2

is transcen-
dental. Recall that Liouville had shown this number to be irrational for α= 1/l,
where l was an integer > 1. See Nesterenko (2006) in Bolibruch, Osipov, and
Sinai (2006).

38.6 Notes on the Literature

The quote from Nilakantha is a translation from Yushkevich (1964). Liouville (1851)
contains Liouville’s construction of transcendental numbers; see Lützen (1990),
pp. 511–526 for a very interesting history of Liouville’s work on these numbers.
Hermite’s proof of the transcendence of e was published in four parts in the Comptes
Rendus (Paris) in 1873. It was reprinted in Hermite (1905–1917), vol. III, pp. 150–181.
An English translation of a portion of Hermite’s paper may be found in Smith (1959),
vol. I, pp. 97–106. Hilbert (1970), vol. I, pp. 1–4, is a reprint of Hilbert’s short proofs of
the transcendence of e and π . These proofs were also presented by Felix Klein (1911),
as lecture seven of his 1893 Evanston lectures. For the proof of the transcendence of
e, see Klein (1911), pp. 53–55. Gelfond’s quote concerning the relation between ana-
lytic functions and transcendental numbers may be found on p. 97 of Gelfond (1960);
this work also contains some historical remarks on transcendental numbers. For earlier
history, see Lützen (1990).

The English translations of the excerpts from the letters of Daniel Bernoulli and
Goldbach were taken from Lützen (1990), pp. 513–514. See Yandell (2002), p. 404,
for the quotation from Hilbert; see p. 199 for Schneider’s remarks on how he realized
that he had worked out Hilbert’s seventh problem. Yandell gives an entertaining pop-
ular account of Hilbert’s problems and those who made contributions to the solutions.
See also Browder (1976) to read articles by experts on mathematical developments
connected with Hilbert’s problems (up to 1975). Siegel (1949), pp. 31–32 gives his
historical remarks quoted in the text. The interview with Gromov by Raussen and Skau
(2010) contains his comments on the Russian mathematical tradition; for the quote,
see p. 392. For more on Russian mathematicians, see Zdravkovska and Duren (1993);
and for an amusing description of Gelfand’s seminar at Moscow by E. M. Landis,
see pp. 68–69. Weil’s quotation concerning Siegel and transcendental numbers can be
found in Weil (1992), p. 53. For the theory of E-functions, related to material in this
chapter, see Siegel (1949) and Shidlovskii (1989), nicely translated by Koblitz. See
also articles in Baker (1988), one by Beukers and one by Beukers and Wolfart.
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Value Distribution Theory

39.1 Preliminary Remarks

Value distribution theory addresses the problem of measuring the solution set of the
equation f (z)= b, where f is some analytic function in some domain D and b is any
complex number. For example, when f is a polynomial of degree n, the fundamental
theorem of algebra, proved by Gauss and others, states that f (z)= b has n solutions for
a given b. The converse of this is an easier proposition. Algebraists since Descartes and
Harriot recognized the important property of polynomials, that if a1,a2, . . . ,an were a
finite sequence of numbers, then there would be a polynomial of degree n, (x − a1)

(x−a2) · · ·(x−an), with zeros at exactly these numbers. After Euler found the infinite
product factorization of the trigonometric and other functions, mathematicians could
raise the more general question of the existence of a function with an infinite sequence
a1,a2,a3, . . . as its set of zeros. Of course, it was almost immediately understood that
the product

∏∞
n=1(x−an) might not converge; in special instances such as the gamma

function, the proper modification was also determined, in order to ensure convergence.
Gauss and Abel treated infinite products with some care in their work on the gamma
and elliptic functions. But the answer to the general question had to wait for the devel-
opment of the foundations of the theory of functions of a complex variable. In fact,
Weierstrass, one of the founders of this theory, published an important 1876 paper
dealing with the problem.

Karl Weierstrass (1815–1897) studied law at Bonn University, but after four years
he failed to get a degree. With Christoph Gudermann as his mathematics teacher,
Weierstrass became a Gymnasium teacher in 1841. Gudermann was a researcher in
the area of power series representation of elliptic functions, and Weierstrass in turn
made power series the basic technique in his work in complex analysis. His great
accomplishment was the construction of a theory of Abelian functions; the 1854 pub-
lication of the first installment of his theory, secured him a professorship at Berlin.
Weierstrass was a great teacher and had many great students, including H. A. Schwarz,
G. Cantor, Leo Königsberger, and Sonya Kovalevskaya, whom he held in high regard.
The Mathematics Genealogy Project counts his mathematical descendants as 16,585;
the author would be included in that number. In order to lay a firm foundation for
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his theories, Weierstrass carefully developed the basic concepts of infinite series and
infinite products.

Weierstrass took a sequence {an} such that lim
n=∞|an| = ∞ was the only limit point.

Note that if c is a finite limit point of the sequence, then a nonconstant function with
zeros at {an} cannot be analytic at c. And since a polynomial f (x) is analytic at every
finite x, it is reasonable to require that our function be analytic in the complex plane;
Weierstrass called such a function an entire function and specified that lim

n→∞|an|=∞. He

observed Cauchy’s result that in the case of a finite number of zeros, an entire function
f with zeros at a1,a2,a3, . . . ,an would take the form f (x)= eg(x)∏n

k=1(x−ak), with g
an entire function. Note that it is now standard practice to denote a complex variable by
z or w but Weierstrass used x. Weierstrass noted that for infinite sequences, one might
make the product conditionally convergent by arranging the factors in a particular
order, but this was not possible in general. As an example, he gave the product always
divergent for x �= 0:

(1+ x)
(

1+ x

2

)(
1+ x

3

)
· · · .

Now, as we have seen in chapter 23, the reciprocal of the gamma function has zeros at
the negative integers and by Euler’s definition, attributed by Weierstrass to Gauss,

1

�(x)
=

∞∏
n=1

{(
1+ x

n

)(n+ 1

n

)−x}
or

1

�(x)
=

∞∏
n=1

{(
1+ x

n

)
e−x log( n+1

n )
}
.

In this context, instead of ln z, we use the notation logz, the logarithm of a com-
plex number z; this is a multivalued function whose principal value is such that for
x > 0, logx = lnx. Next, note that F. W. Newman had explicitly observed that con-
vergence required the exponential factor e−x/n. Although Weierstrass may not have
been familiar with Newman’s paper, he wrote that the product for 1/�(x) directed
him toward a method for achieving convergence. He realized that with each factor
(1+ x/an) it was necessary to include an exponential factor

ex/an+
1
2 (x/an)

2+···+ 1
mn
(x/an)

mn
,

where mn was chosen in such a way that the product converged. For this purpose,
Weierstrass defined the primary factors

E(x,0)= (1− x) and E(x,m)= (1− x)e∑m
r=1(x

r /r) , m= 1,2,3, . . . .

Since

1− x = elog(1−x) = e−∑∞
r=1(x

r /r) for |x|< 1 ,
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he had

E(x,m)= e−∑∞
r=1 x

m+r /(m+r) for |x|< 1 .

Thus,mn could be chosen so that for any fixed x, the series
∑∞

n=1 |x/an|mn+1 converged.
In fact, note that mn = n would work, since |x/an|n < (1/2)n as long as |an| > 2|x|.
Also, because lim

n→∞|an| =∞, this inequality would be valid for all but a finite number

of an. Weierstrass proved that

∞∑
n=1

logE

(
x

an
,mn

)

converged absolutely and uniformly in any disk |x| ≤R, and so did the product

∞∏
n=1

E

(
x

an
,mn

)
.

This product was an entire function with zeros at exactly a1,a2,a3, . . . .
The French mathematician Edmond Laguerre (1834–1886) used Weierstrass’s

product to classify transcendental entire functions according to their genus, just as
polynomials may be classified by their degree. He defined a product to be of genus
m if the integer mn in each primary factor was a fixed integer m. Thus, a product of
genus 0 is of the form

∏∞
n=1(1 − x/an) while a product of genus 1 takes the form∏

(1−x/an)e−x/an . As we have seen in a different context, Laguerre was motivated by
a desire to extend to transcendental functions the classical results on polynomials of
Descartes, Newton, and others. Recall that in the course of discovering his extension of
the Descartes rule of signs, Newton showed that if a polynomial with real coefficients
c0 + c1x+ c2x

2 +·· ·+ cnxn had all roots real, then

(r + 1)(n− r + 1)cr+1cr−1 ≤ r(n− r)c2
r , r = 1,2, . . . ,n− 1 ;

the inequality would be strict when all roots were not equal. Note that by taking n
infinite, we have the inequalities

(r + 1)cr+1cr−1 < rc
2
r , r = 1,2,3, . . . .

Laguerre raised the question: Given a transcendental entire function f (x)=∑∞
n=0 cnx

n

with all real roots and real coefficients, will the coefficients satisfy these inequalities?
In a paper of 1882, he showed that the result was true for f (x) of genus 0 or 1. In
the same year, he proved that, given a sequence of circles |x| = rn → ∞, such that
f ′(x)/(xnf (x)) went to zero as rn → ∞, then f (x) was of genus n. Laguerre also
investigated the relationship between the zeros of a function of genus 0 or 1, with real
zeros, and the zeros of its derivative.
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In an 1883 paper on entire functions, Poincaré looked for a connection between the
growth of a function and its genus p. He proved that for every ε > 0,

lim
x→∞|f (x)|/eε|x|p+1 = 0,

and if f (x)=
∞∑
n=0

cnx
n, then

lim
n→∞cn�

(
n+ ε+ 1

p+ 1

)
= 0.

These results suggested that in order to measure growth of a function, one required a
concept more refined than its genus. Consider the case of a monic polynomial g(x) of
degree n. For large x, |g(x)| behaves like |x|n. So if M(r,g) is the maximum value of
|g(x)| on |x| = r , then

lim
r→∞

logM(r,g)

log r
= n.

In 1896, Émile Borel defined the order ρ of a transcendental entire function f :

ρ = lim
r→∞

log logM(r,f )

log r
,

a concept implicitly contained in Hadamard’s earlier work on the Riemann zeta function.
Now Riemann had introduced the entire function

ξ(s)= �(1+ s/2)(s− 1)π−s/2ζ(s) (39.1)

and by a brilliantly intuitive argument obtained its product formula. Hadamard’s work
on entire functions was motivated by the desire to provide justification for some of
Riemann’s results.

Jacques Hadamard (1865–1963) studied at the École Normale where his teachers
included the outstanding mathematicians J. Tannery, Hermite, Picard, P. Appell, and G.
Goursat. Hadamard wrote his doctoral thesis on the Taylor series of complex analytic
functions, deriving results on the relation of the coefficients with the location of the
singularities and with the radius of convergence. In his report on the thesis, Picard
wrote that the abstract results appeared to lack practical value; Hermite suggested that
Hadamard look for applications. Fifty years later, Hadamard recalled, “At that time,
I had none [no applications] available. Now, between the time my manuscript was
handed in and the day when the thesis was defended, I became aware of an important
question which had been proposed by the Académie des Sciences as a prize subject; and
precisely the results in my thesis gave the solution of that question. I had been led solely
by my feeling of the interest of the problem and it led me the right way.” The problem
posed by the Académie was to prove Riemann’s unproved assertions. Hadamard used
his result on the relation between the coefficients and the growth of the function to
prove that the exponent of convergence of the zeros of the function in (39.1) was at
most 1. This effectively established Riemann’s product formula for ξ(s).
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Hadamard’s 1893 work implicitly contained the factorization theorem for functions
of finite order: If f (z) is of order ρ, then

f (z)= zkP (z)eQ(z) ,
where Q(z) is a polynomial of degree q ≤ ρ and P(z) is a product of genus p ≤ ρ.
Moreover, the order of P(z) is equal to the exponent of convergence ρ1 of the zeros zn
of P and ρ1 ≤ ρ. Note that the exponent of convergence is the infimum of the positive
numbers α such that

∑∞
n=1 |zn|−α converges. The work of Hadamard and Borel also

implied a formula connecting the coefficients cn of the Taylor series expansion of an
entire function with the order of the function. In 1902, this was explicitly stated by the
Finnish mathematician Ernst Lindelöf, son of Lorenz Lindelöf (1870–1946), a student
of Mellin, as the relation

ρ = lim
n→∞

−n logn

log |cn| .

Lindelöf’s interest in entire functions was aroused by his contact with Hadamard and
others when he stayed in Paris in 1893–94 and then in 1898–99. When he returned to
the University of Helsingfors in Finland, Lindelöf communicated this interest to his
students, including Frithiof and Rolf Nevanlinna, who made fundamental contributions
to the value distribution theory of meromorphic functions. Rolf Nevanlinna (1895–
1980) founded value distribution theory as a quantitative generalization of Picard’s
theorem.

Charles-Émile Picard (1856–1941) proved that for an entire function f (x), the
equation f (x)= a had a solution for every complex number a with at most one excep-
tion. The value of ex is never 0, illustrating that exceptions might exist. Picard proved
this in 1879 by an ingenious application of the multivalued inverse of the elliptic mod-
ular function k2(τ ), earlier studied by Abel, Jacobi, Hermite, Schwarz, and others.
Speaking at his Jubilee celebration of 1936, Hadamard praised Picard’s teaching as
masterly. Referring to Picard’s theorem, Hadamard addressed his teacher: “All math-
ematicians know, on the other hand, what a marvelous stimulus for research your
mysterious and disconcerting theorem on entire functions was, and still is, because
the subject has lost nothing of its topicality. I can say that I owe to it a great part of
the inspiration of my first years of work.” Indeed, Picard went on to extend his result
to functions with an essential singularity. This theorem is a vast generalization of the
Sokhotskii–Casorati–Weierstrass theorem that every complex number is a limit of the
values assumed by a function in any neighborhood of an essential singularity.

Now in the case of a polynomial f (x) of degree n, for every a, the equation f (x)= a
has n roots, counting multiplicity. Picard’s theorem predicts that for a transcendental
entire function f (x), the equation f (x)= a has an infinite number of solutions with at
most one exceptional number a. It was then natural to seek a more precise measure of
the number of solutions, or to inquire about their density. In 1896, Borel proved that,
for entire functions of finite order, if f was of nonintegral order ρ, then the exponent
of convergence of the zeros of f −a equaled ρ for all complex numbers a. If f was of
integral order ρ, then the same result would hold with at most one exceptional value of
a, in which case the exponent of convergence was less than ρ.
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With the development of complex function theory, attempts were made to prove
Picard’s theorem without using elliptic modular functions. Borel, Landau, Bloch and
R. Nevanlinna found such proofs, opening up new paths in function theory and making
the topic among the most popular in the mathematics of the early twentieth century. In
working with meromorphic functions, Nevanlinna’s difficulty in extending the results
for entire functions to meromorphic functions was the lack of a concept corresponding
to the maximum modulus of a function. Interestingly, in 1899, Jensen derived the basic
formula for obtaining this expanded concept. He proved that if f was meromorphic in
|z| ≤ r with zeros at aj and poles at bk inside |z|< r , then

log |f (0)| = 1

2π

∫ 2π

0
log |f (r eiφ)|dφ−

∑
log

r

|aj | +
∑

log
r

|bk| ,

where sums were taken over all the zeros and all the poles respectively. Jensen thought
that the formula might be important in studying the zeros of the Riemann zeta function
and in particular in the proof of the Riemann hypothesis. In fact, Jensen’s formula was
useful in simplifying proofs of results in both prime number theory and entire functions.

In 1925, R. Nevanlinna defined the analog of the maximum modulus, the charac-
teristic function of a meromorphic function f , as the sum of two functions: the mean
proximity function, measuring the average closeness of f to a given complex number
a; and the counting function, measuring the frequency with which f assumed the value
a. In the same year, he went on to prove two fundamental theorems on the characteristic
function, and his brother F. Nevanlinna recast them in a geometric context. The latter
approach was further developed and extended in 1929 by T. Shimizu; by LarsAhlfors in
papers of the 1930s; and in 1960 by S. S. Chern. In the 1980s, Charles Osgood and Paul
Vojta observed a close analogy between Nevanlinna theory and Diophantine approx-
imation. The clarification and precise delineation of this analogy has had important
consequences for both topics.

It is somewhat surprising that Jacobi had already found Jensen’s result in 1827. Jacobi
stated it only for polynomials, but as Landau pointed out, his argument can be extended
to the general case. Jacobi used Fourier series to obtain his formula and was inspired by
the work of Marc-Antoine Parseval (1755–1836) in Lagrange series. Parseval derived
formulas for roots of equations in terms of definite integrals. Jacobi carried this program
further by finding integral expressions for sums of powers of any number of roots of an
equation, given in increasing order. Incidentally, Jacobi mentioned in his paper that as
early as 1777, Euler had discovered the “Fourier coefficients”; Riemann was apparently
not aware of this fact when he wrote his 1853 thesis on trigonometric series.

39.2 Jacobi on Jensen’s Formula

Jacobi took a polynomial f (x) = a + bx + cx2 + ·· · + xp with real coefficients and
defined

log(U 2 +V 2)= φ
(
r e+x

√−1
)
+φ

(
r e−x

√−1
)
,
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where φ(x)= logf (x). He denoted the zeros of f by α′,α′′,α′′′, . . . ,α(p). These were
taken in increasing order of absolute values, and Jacobi considered three separate cases:
(i) r greater than all the roots, (ii) r less than all the roots, and (iii) r between α(k) and
α(k+1). His formula is stated as

1

2π

∫ π

−π
log(U 2 +V 2)dx =


p log r2 in the first case,

loga2 in the second case,

k log r2 + log(α(k+1))2 + log(α(k+2))2 +·· ·+ log(α(p))2

in the third case.

(39.2)

Summarizing Jacobi’s argument, suppose φ(x) = log(a + bx + cx2 + ·· · + xp),
where the coefficients a,b,c, . . . of the pth degree polynomial are real. Let (x − α′)
(x − α′′)(x − α′′′) · · ·(x − α(p)) represent the factorization of the polynomial. Since
the polynomial has real coefficients, the complex roots appear in conjugate pairs. It is
clear that

φ(r e+x
√−1)+φ(r e−x

√−1)

= log
{
(a+ br cosx+ cr2 cos2x+·· ·+ rp cospx)2

+(br sinx+ cr2 sin 2x+·· ·+ rp sinpx)2
}
.

Denote the expression inside the chain brackets by U 2 +V 2 so that

U 2 +V 2 =



a2 + b2r2 + c2r4 +·· ·+ r2p,

+ 2r cosx(ab+ bcr2 + cdr4 +·· ·),
+ 2r2 cos2x(ac+ bdr2 + cer4 +·· ·),
+ 2r2 cos3x(ad+ ber2 + cf r4 +·· ·),
+ ·· · .

(39.3)

Now if f (x)= a+ bx + cx2 + dx3 + ·· · , then the values of the Fourier integrals for
f (reix) are given by

a2 + b2r2 + c2r4 + d2r6 +·· · = 1

2π

∫ π

−π
f
(
r e+x

√−1
)
f
(
r e−x

√−1
)
dx ,

ab+ bcr2 + cdr4 + der6 +·· · = 1

2πr

∫ π

−π
f
(
r e+x

√−1
)
f
(
r e−x

√−1
)

cosx dx ,

ac+ bdr2 + cer4 + df r6 +·· · = 1

2πr2

∫ π

−π
f
(
r e+x

√−1
)
f
(
r e−x

√−1
)

cos2x dx ,

· · · .
(39.4)

Note that U 2 +V 2 = f (r e+x√−1)f (r e−x
√−1) and (39.3) gives the Fourier expansion

of this function so that the Fourier coefficients can be computed by (39.4). We also
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have

log(r e
√−1x −α′)= log r e

√−1x + log

(
1− α′

r
e−

√−1x

)
when r > |α′| ,

= log(−α′)+ log
(

1− r

α′ e
√−1x

)
when |α′|> r .

The logarithms on the right-hand sides can be expanded as a series by

− log(1− t)= t + 1

2
t2 + 1

3
t3 + 1

4
t4 +·· · , |t |< 1 .

Jacobi used the above facts to give the series expansions for log(U 2 +V 2):
1.) With r greater than the absolute values of all the roots:

p log r2 − 2
p∑
1

(
α

r
cosx+ α2

2r2
cos2x+ α3

3r3
cos3x+ α4

4r4
cos4x+·· ·

)
.

2.) With r smaller than the absolute values of all the roots:

loga2 − 2
p∑
1

(
r

α
cosx+ r2

2α2
cos2x+ r3

3α3
cos3x+ r4

4α4
cos4x+·· ·

)
,

where a is the constant term in the polynomial f (x).
3.) When |α(k)|< r < |α(k+1)|:

k log r2 − 2
k∑
1

(
α

r
cosx+ α2

2r2
cos2x+ α3

3r3
cos3x+ α4

4r4
cos4x+·· ·

)

+ 2
p∑
k+1

(
1

2
logα2 − r

α
cosx− r2

2α2
cos2x− r3

2α3
cos3x− r4

4α4
cos4x−·· ·

)
,

where, as Jacobi explained,
∑n

mψ(α) denoted the sum of the quantities

ψ(α(m)),ψ(α(m+1)), . . . ,ψ(α(n)).

Jacobi integrated the series for log(U 2 +V 2) over the interval (−π,π) to obtain∫ π

−π
log(U 2 +V 2)dx

in the three cases. All the cosine terms vanished, and he obtained the formula (39.2).
Jacobi also found formulas for

∑k

1α
n and

∑p

k+1
1
αn

in terms of the nth Fourier
coefficients of log(U 2 +V 2) and arctanV/U .

39.3 Jensen’s Proof

Jensen’s 1899 rediscovery of Jacobi’s formula succeeded in connecting the modulus
of an analytic function with its zeros, and this occurred at just the right moment to fill
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a need in the theory of analytic functions. Jensen himself mentioned the possibility of
applying his result to a proof of the Riemann hypothesis. Though he apparently did not
pursue this topic further, and though his work has not as yet made a significant dent in
the Riemann hypothesis, his formula is fundamental for the theory of entire functions.
His proof, similar in some respects to Jacobi’s, started with the formula

log
∣∣∣1− z

a

∣∣∣=−
∞∑
ν=1

rν

2ν

(
eνθi

aν
+ e−νθi

aν

)
, r = |z|< |a|,

= log
r

|a| −
∞∑
ν=1

1

2νrν
(
aνe−νθi + aνeνθi) , r > |a|.

By integrating, he obtained

1

2π

∫ 2π

0
log

∣∣∣1− z

a

∣∣∣ dθ ={
log r

|a| , for r > |a|,
0, for r < |a| . (39.5)

Next he supposed f (z) to be meromorphic in |z| ≤ r with zeros at a1,a2,a3, . . . ,an and
poles at b1,b2, . . . ,bm in |z| < r and with no singularities on |z| = r . Then he could
express f (z) in the form

f (z)= f (0)
∏n

k=1

(
1− z

ak

)
∏m

k=1

(
1− z

bk

) ef1(z) , (39.6)

where f1(z)=
∞∑
ν=1

Bν z
ν for |z| ≤ r . (39.7)

He took the real part of the logarithm of each side of (39.6), integrated over (0,2π),
and applied (39.5) to get

1

2π

∫ 2π

0
log |f (r eiθ )|dθ = log |f (0)|+ log rn−m

|b1||b2| · · · |bm|
|a1||a2| · · · |an| .

Note that the constant term in f1 is zero, and hence there is no contribution from the
integral of f1.

39.4 Bäcklund Proof of Jensen’s Formula

The Finnish mathematician R. J. Bäcklund, a student of Ernst Lindelöf, is credited with
using a conformal mapping to prove Jensen’s theorem in 1916 or 1918. This proof first
assumed g(z) to be analytic without zeros in |z| ≤R and used Cauchy’s integral formula
to compute logg(0) as an integral. Then for a function f with zeros at a1,a2, . . . ,an in
|z| ≤R, consider a new function with no zeros in |z| ≤R:

g(z)= f (z) R
2 − a1 z

R(z− a1)
· R

2 − a2 z

R(z− a2)
· · · R

2 − an z
R(z− an) . (39.8)
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Since ∣∣∣∣ R2 − ak z
R(z− ak)

∣∣∣∣= 1 for |z| =R,

we have

|g(Reiθ )| = |f (Reiθ )| .

To fill out the details, start with Cauchy’s integral formula

logg(0)= 1

2πi

∫
|w|=R

log g(w)
dw

w
= 1

2π

∫ 2π

0
log g(Reiθ )dθ . (39.9)

Now apply the expression for g in (39.8) and take the real part to find that

log
|f (0)|Rn

|a1||a2| · · · |an| =
1

2π

∫ 2π

0
log |f (Reiθ )|dθ .

This proof considered only analytic functions, but if one takes the case where f (z) has
poles at b1,b2, . . . ,bm, one need merely multiply the right-hand side of (39.8) by

R(z− b1)

R2 − b1 z
· R(z− b2)

R2 − b2 z
· · · R(z− bm)
R2 − bm z

to obtain the result. Although it is difficult to ascertain exactly where Bäcklund gave
this proof, we note that the use of the conformal mapping

R2 − a z
R(z− a)

is a beautiful and efficient innovation because it vanishes at z = a and its value on
|z| =R is 1.

39.5 R. Nevanlinna’s Proof of the Poisson–Jensen Formula

Rolf Nevanlinna gave an important extension of Jensen’s formula; this result became the
foundation of his theory of meromorphic functions. Suppose f (x) is a meromorphic
function in |x| ≤ ρ (0 < ρ <∞) with zeros and poles at ah (h = 1, . . . ,µ) and bk
(k = 1, . . . ,ν), respectively. Let x = r eiφ , f (x) �= 0, ∞, and r < ρ. Then

log |f (r eiφ)| = 1

2π

∫ 2π

0
log |f (ρ eiθ )| ρ2 − r2

ρ2 + r2 − 2ρr cos(θ −φ) dθ

−
µ∑
n=1

log

∣∣∣∣ ρ2 − an x
ρ(x− an)

∣∣∣∣+ ν∑
k=1

log

∣∣∣∣∣ ρ2 − bk x
ρ(x− bk)

∣∣∣∣∣ . (39.10)
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Nevanlinna called this the Poisson–Jensen formula, and his proof employed Green’s
formula ∫

�

(
U
∂V

∂n
−V ∂U

∂n

)
ds =−

∫
�

(U ,V −V ,U)∂σ . (39.11)

Here U and V are twice continuously differentiable functions in a connected domain
G with boundary � formed by a finite number of analytic arcs. The symbol, denotes
the Laplacian and ∂

∂n
represents the derivative in the direction normal to the boundary

but pointing to the interior of G.
Take U to be a real-valued function u(z) harmonic in G∪� except for logarithmic

singularities at z= c1,c2, . . . ,cp, so that

u(z)= λk log |z− ck|+uk(z) ,
where λk is real, and uk is continuous at z= ck. Now let V = g(z,x), where g denotes
Green’s function for the domain G with the singularity at an interior point z= x. This
function is completely defined by the two conditions: The sum g(z,x)+ log |z− x| is
harmonic at all points interior to the domainG; also, g(z,x) vanishes on the boundary
�. Green’s formula (39.11), discussed in our chapter 19, can be applied to U and V
as chosen earlier if the points ck and x are excluded by means of small circles around
these points. Then, when the radii of these circles are allowed to tend to zero after the
application of Green’s formula, we get

u(x)= 1

2π

∫
�

u(z)
∂ g(z,x)

∂n
ds−

p∑
k=1

λk g(ck,x). (39.12)

Nevanlinna then took a meromorphic function f in the domain G with zeros at
ah (h = 1, . . . ,µ) and poles at bk (k = 1, . . . ,ν). Then the function u(z) = log |f (z)|
satisfied the conditions for (39.12) to hold so that he had

log |f (x)| = 1

2π

∫
�

log |f (z)| ∂ g(z,x)
∂n

ds−
µ∑
h=1

g(an,x)+
ν∑
k=1

g(bk,x) . (39.13)

Nevanlinna noted that this important formula permitted him to compute the modulus,
|f |, at any point insideG by using its values on the boundary ofG and the location of
the poles and zeros of f insideG. He tookG to be a circle of radius ρ about the origin
so that Green’s function would be given by

g(z,x)= log

∣∣∣∣ ρ2 − x z
ρ(x− z)

∣∣∣∣ .
By substituting this g, with z= ρ eiθ and x = r eiθ , in (39.13), Nevanlinna obtained his
Poisson-Jensen formula (39.10).

Further, to obtain Jensen’s formula, he took x= 0 in (39.10), assuming that f (0) �= 0
or ∞. Note that a slight modification was necessary in the cases f (0) = 0 or ∞.
Thus, if

f (x)= cλxλ+ cλ+1x
λ+1 +·· · ,
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and if cλ �= 0, then f had to be replaced by x−λf . He therefore had

log |f (0)| = 1

2π

∫ 2π

0
log |f (ρ eiθ )|dθ −

µ∑
h=1

ρ

|ah| +
ν∑
k=1

ρ

|bk| . (39.14)

In his 1964 book on meromorphic functions, W. K. Hayman noted that the idea in the
Bäcklund proof could be extended to yield a simple derivation of the Poisson–Jensen
formula. Let g be an analytic function without zeros or poles in |z|<R. Now note that
the mapping

w = R(ζ − z)
R2 − zζ

maps the disk |ζ | ≤R conformally onto the unit disk and takes the point ζ = z to w= 0.
This gave Hayman

dw

w
= d ζ

ζ − z +
zdζ

R2 − zζ = (R2 −|z|2)dζ
(R2 − zζ )(ζ − z) .

so that the result of Cauchy’s theorem,

logg(0)= 1

2πi

∫
|w|=R

log g(w)
dw

w
,

could be replaced by

logg(z)= 1

2πi

∫
|ζ |=R

log g(ζ )
(R2 −|z|2)dζ
(R2 − zζ )(ζ − z) .

Taking real parts of this formula and setting z= r eiθ and ζ =Reiφ ,

log
∣∣g(r eiθ )∣∣= 1

2π

∫ 2π

0
log

∣∣g(Reiφ)∣∣ (R2 − r2)dφ

R2 − 2Rr cos(θ −φ)+ r2
.

Following the Bäcklund approach, Hayman took

g(ζ )= f (ζ )
µ∏
k=1

(
R(ζ − bk)
R2 − bk ζ

) ν∏
k=1

(
R2 − ak ζ
R(ζ − ak)

)
,

and the Poisson-Jensen formula followed.

39.6 Nevanlinna’s First Fundamental Theorem

In his 1913 thesis, Georges Valiron (1884–1955), student of Émile Borel and teacher
of Laurent Schwartz, expressed the sums on the right-hand side of (39.14) as integrals
by means of the counting functions n(r,0) and n(r,∞). These functions denote the
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number of zeros and poles, counting multiplicity, of f (x) in |x| ≤ r . To efficiently
implement Valiron’s idea, Nevanlinna applied the Stieltjes integral to get∑

log
ρ

|ah| =
∫ ρ

0
log

ρ

r
d n(r,0)

=
∫ ρ

0

n(r,0)

r
dr and

∑
log

ρ

|bk| =
∫ ρ

0

n(r,∞)
r

dr .

He could then express (39.14) in the form

log |f (0)| = 1

2π

∫ 2π

0
log |f (ρ eiθ )|dθ −

∫ ρ

0

n(r,0)

r
dr +

∫ ρ

0

n(r,∞)
r

dr . (39.15)

Nevanlinna went on to write this in symmetric form, where he had the large values of
the function on one side and the small values on the other. For that purpose, he set

log+α = logα , α ≥ 1 ,

= 0 , 0 ≤ α < 1 ,

so that for x > 0, logx = log+ x − log+ 1/x. He then defined the mean proximity
function

m(ρ,f )= 1

2π

∫ 2π

0
log+ |f (ρeiθ )|dθ

and the function

N(ρ,f )=
∫ ρ

0

n(r,∞)
r

dr .

Thus, he was able to rewrite (39.15) as

log |f (0)| =m(ρ,f )−m(ρ,1/f )+N(ρ,f )−N(ρ,1/f ),

or T (ρ,f )= T (ρ,1/f )+ log |f (0)| , (39.16)

where T (ρ,f )=m(ρ,f )+N(ρ,f ) .
Note that the term m(ρ,f ) is an average of log |f | on |z| = ρ for large values of |f |,
while the term N(ρ,f ) deals with the poles. So T (ρ,f ) acts as a measure of the large
values of |f | in |z| ≤ ρ, while T (ρ,1/f ) does the same for the small values of |f |. The
function T (ρ,f ) has been named the Nevanlinna characteristic function, and it plays
a fundamental role in the theory of meromorphic functions.

In the preceding formulation, we considered small and large values of f . More
generally, Nevanlinna considered values of f close and/or equal to any fixed number
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a by defining

N(r,a)=N
(
r,

1

f − a
)
=

∫ r

0

n(t,a)

t
dt, (39.17)

m(r,a)=m
(
r,

1

f − a
)
= 1

2π

∫ 2π

0
log+

∣∣∣∣ 1

f (r eiθ )− a
∣∣∣∣ dθ, (39.18)

T

(
r,

1

f − a
)
=m(r,a)+N(r,a) . (39.19)

By a simple argument, he showed that

|T (r,f )−T (r,f − a)| ≤ log+ |a|+ log2 .

Combining this inequality with Jensen’s formula (39.16), Nevanlinna arrived at his first
fundamental theorem:

T

(
r,

1

f − a
)
= T (r,f )− log |f (0)− a|+ ε(r,a) , (39.20)

|ε(r,a)| ≤ log+ |a|+ log2 .

Additionally, he proved that N(r,a) and T
(
r, 1
f−a

)
were increasing convex functions

of log r . The result for N(r,a) followed from (39.17), since

dN(r,a)

d log r
= n(r,a) . (39.21)

Nevanlinna’s proof for the convexity of T (r,1/(f − a))was rather lengthy, but in 1930
Henri Cartan obtained a simpler proof by first showing that

T (r,f )= 1

2π

∫ 2π

0
N(r,eiθ )dθ + log+ |f (0)| . (39.22)

Since this immediately implied that

d T (r,f )

d log r
= 1

2π

∫ 2π

0
n(r,eiθ )dθ,

the theorem was proved.
Note that the characteristic function T (r,f ) was Nevanlinna’s analog of the maxi-

mum modulus logM(r,f ), long sought after by complex function theorists. Recall that
the logarithm of the maximum modulus, logM(r,f ), was one of the essential objects in
the study of entire functions; it was investigated by Hadamard, Borel, E. Lindelöf, and
others. The efforts to extend the theory of entire functions to meromorphic functions
required a suitable analog of logM(r,f ) and Nevanlinna provided just that. Inciden-
tally, in 1896 Hadamard proved that logM(r,f ) was a convex function of log r; this is
usually known as the Hadamard three circles theorem.
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39.7 Nevanlinna’s Factorization of a Meromorphic Function

By use of the Poisson–Jensen formula, Nevanlinna was able to present a simple form
of a canonical factorization of meromorphic functions of finite order. He gave this
proof in the third chapter of his book, Le théorème de Picard–Borel, and we outline
his argument. Note that a function meromorphic in the complex plane is said to be of
order ρ if ρ = lim

r→∞(logT (r,f )/ log r).

Nevanlinna stated the theorem: Suppose f (x) is a meromorphic function of finite
order with zeros and poles at a1,a2, . . . and b1,b2, . . . , respectively. Let q be a integer
such that

lim
r=∞

T (r)

rq+1
= 0 . Then

f (x)= xα e∑q
0 cνx

ν

lim
ρ=∞

∏
|aν |<ρ

(
1− x

aν

)
e
x
aν

+···+ 1
q

(
x
aν

)q
∏

|bν |<ρ
(

1− x

bν

)
e
x
bν

+···+ 1
q

(
x
bν

)q ,

where α is an integer.
To prove this, assuming f (0) �= 0, Nevanlinna differentiated the Poisson–Jensen

formula q+ 1 times to get

Dq+1 log f (x)=
∑
|aµ|<ρ

(−1)qq!
(x− aµ)q+1

−
∑
|bν |<ρ

(−1)qq!
(x− bν)q+1

+Sρ(x)+Tρ(x),

where

Sρ(x)= q!
∑
|aµ|<ρ

(
aµ

ρ2 − aµx
)q+1

− q!
∑
|bν |<ρ

(
bν

ρ2 − bνx

)q+1

,

Iρ(x)= (q+ 1)!
2π

∫ 2π

0
log

∣∣f (ρ eiθ )∣∣ 2ρ eiθ dθ

(ρ eiθ − x)q+1
.

He then showed that Sρ(x) and Iρ(x) uniformly converged to zero for |x| ≤ r as ρ→∞.
Taking this for granted, we have

Dq+1 logf (x)= (−1)q+1q! lim
ρ→∞

 ∑
|bν |<ρ

(
1

x− bν
)q+1

−
∑
|aµ|<ρ

(
1

x− aµ
)q+1

 .
Because of the uniform convergence, he could integrate q+ 1 times to get

logf (x)=
q∑
0

cνx
ν + lim

ρ=∞

∑
|aµ|<ρ

[
log

(
1− x

aµ

)
+ x

aµ
+·· ·+ 1

q

(
x

aµ

)q ]

−
∑
|bν |<ρ

[
log

(
1− x

bν

)
+ x

bν
+·· ·+ 1

q

(
x

bν

)q ]
.

The result follows after exponentiation, since in case f (0)= 0, f (0) can be replaced
by f (x)/xα for a suitable positive integer α.
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39.8 Picard’s Theorem

In his 1953 A Mathematician’s Miscellany, later published with additional material as
Littlewood’s Miscellany, J. E. Littlewood raised and answered the question: “whether
a dissertation of 2 lines could deserve and get a Fellowship.” He answered in the
affirmative, giving examples, including Picard’s theorem for which there was a one-line
statement and a one-line proof:

(Theorem.) An integral [entire] function f (z) never 0 or 1 is a constant. (Proof.) exp {iU(f (z))}
is a bounded integral function.

Littlewood explained that τ =U(w)was the inverse of the modular function w= k2(τ ),
arising in the theory of elliptic functions. The function k2(τ ) gave an analytic map
from the half-plane {τ εC : Imτ > 0} onto C\{0,1}. Although the inverse U was
many-valued, for any branch of it, U(f (z)) extended analytically to give an entire
function from C into {τ εC : Imτ > 0}. Note further that this argument implies that
exp{iU(f (z))} is a bounded analytic function; hence, by Liouville’s theorem, it is a
constant. Therefore, f is a constant. This was Picard’s proof, but recall that in 1879, the
study of the inverse of the modular functionUwas not well-established. So Picard used
some care to prove that it was possible to define a single-valued branch of U(f (z)) on
the complex plane. Littlewood imagined what a referee’s report could have been:

Exceedingly striking and a most original idea. But, brilliant as it undoubtedly is, it seems more
odd than important; an isolated result, unrelated to anything else, and not likely to lead anywhere.

It was clearly difficult to foresee the large number of interesting developments of
complex function theory that would arise from Picard’s theorem.

39.9 Borel’s Theorem

Recall the Hadamard–Borel factorization theorem: An entire function of finite order
f (z) can be written in the form zkP (z)eQ(z), where Q(z) is a polynomial and P(z) is
the canonical product constructed from the zeros of f . Note here that the order of the
entire function P(z) is equal to the exponent of convergence of the zeros of f . We may
deduce from this theorem, since eQ(z) is of integral order, that if f is of nonintegral
order ρ, then the order of P(z)must be ρ. This in turn implies that for an entire function
f (z) of nonintegral order ρ and any complex number x, the exponent of convergence
of the zeros of f (z)−x is also ρ. In keeping with the notation of Weierstrass, Valiron,
and Nevanlinna, we sometimes employ x to represent a complex number or variable.
In 1900, Borel showed that for entire functions of integral order ρ, the exponent of
convergence of the zeros of f (z)−x was equal to ρ except for at most one value of x.
These exceptions became known as the Borel exceptional values.

Outlining Borel’s proof, first suppose a and b are two exceptional values of x. Then
by Hadamard’s thereom

f (z)− a = zα1 P1(z)e
Q1(z) and f (z)− b= zα2 P2(z)e

Q2(z), (39.23)
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where Q1 and Q2 are polynomials of degree ρ and P1 and P2 are canonical products
of order less than ρ. By subtracting the equations and multiplying by e−Q2 , we have

zα1P1e
Q1−Q2 = zα2P2 + (b− a)e−Q2 .

The term on the right-hand side has order equal to ρ and hence the polynomialQ1−Q2

must be of degree ρ. Now differentiate the equation

zα1P1e
Q1 − zα2P2e

Q2 = b− a
to get (

zα1P1Q
′
1 + (zα1P1)

′)eQ1 − (
zα2P2Q

′
2 + (zα2P2)

′)eQ2 = 0 .

The coefficients of eQ1 and eQ2 are entire functions of order less than ρ, since the order
of the derivative does not exceed the order of the function. So we can factorize these
coefficients by the Hadamard–Borel theorem to obtain

zα3P3e
Q3eQ1 − zα4P4e

Q4eQ2 = 0 ,

where Q3 and Q4 are polynomials of degree at most ρ− 1, with P3 and P4 canonical
products of orders less than ρ. Now rewrite the last equation as

eQ1−Q2+Q3−Q4 ≡ zα4−α3P4

/
P3.

The degree of the polynomial Q1 −Q2 +Q3 −Q4 is ρ, and hence the left-hand side
is an entire function of order ρ. On the other hand, the order of the function on the
right-hand side is less than ρ. This contradiction proves the theorem.

39.10 Nevanlinna’s Second Fundamental Theorem

In a paper of 1925, in what is now called his second fundamental theorem, R. Nevanlinna
gave a far-reaching generalization of Picard’s theorem. Nevanlinna’s result showed that
the termN(r,a)was the dominant part of the characteristic function and that most of the
roots of the equation f (z)= a were simple. In his influential 1929 book on the Picard–
Borel theorem, he discussed his theorem. He supposed f (x) to be a meromorphic
function and z1,z2, . . . ,zq (q ≥ 3) distinct complex numbers, finite or not. Then

(q− 2)T (r,f ) <
q∑
ν=1

N(r,zν)−N1(r)+S(r), (39.24)

where N1(r)=N(r,1/f ′)+ (2N(r,f )−N(r,f ′))

and where the expression S satisfied:
1. For any positive number λ,∫ r

r0

S(t)

tλ+1
dt =O

(∫ r

r0

logT (t,f )

tλ+1
dt

)
. (39.25)
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2. Moreover,

S(r) <O (logT (r,f )+ log r) (39.26)

except for a set of finite linear measure. And if f (x) was of finite order, that is,

lim
r→∞

log T (r,f )

log r
<∞, then

S(r)=O(log r) (39.27)

without restriction.
The proof of this theorem is lengthy and requires the computation of several esti-

mates, the most important of which shows that m(r,f ′/f ) is in general negligible in
comparison with T (r,f ). For this quantity Nevanlinna proved that

m(r,f ′/f )=O (log (r T (r,f ))) ,

except on a set of finite linear measure when f is of infinite order, and

m(r,f ′/f )=O(log r),

without restriction, when f is of finite order.
To derive Picard’s theorem, suppose f is an entire function that does not assume the

values a and b. Take q = 3 and z1 = a, z2 = b, and z3 =∞ in (39.24) and since N1(r)

is positive, we have T (r,f ) < S(r) , contradicting (39.26). Thus, Picard’s theorem is
proved.

Nevanlinna combined the two fundamental theorems to derive an elegant extension
of Picard’s theorem. By the first fundamental theorem

lim
r=∞

m(r,a)+N(r,a)
T (r,f )

= 1 .

He set

δ(a)= lim
r=∞

m(r,a)

T (r,f )
= 1− lim

r=∞
N(r,a)

T (r,f )
,

and by the second fundamental theorem

q∑
ν=1

δ(aν)≤ 2 .

Observe that from this, Borel’s theorem can be deduced. If a is a Borel exceptional
value of an entire function, the reader may easily verify that δ(a)= 1 and that δ(∞)= 0.
By the preceding inequality, we know that there cannot be more than one exceptional
value, completing the derivation.
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39.11 Exercises

1. Suppose that all the roots of

f (x)= a0 + a1x+ a2x
2 +·· ·+ anxn

are real and that θ(x) is an entire function of genus 0 or 1. Suppose also that
θ(x) is real for real x and all its zeros are real and negative. Prove that all the
roots of

g(x)= a0θ(0)+ a1θ(1)x+·· ·+ anθ(n)xn

are real; in fact, that f (x) and g(x) have the same number of positive zeros and
the same number of negative zeros. See Laguerre (1972), vol. 1, p. 201.

2. Show that if f (z)=∑
anz

n is an entire function of finite order ρ, then

ρ = lim sup
n→∞

n logn

log(1/|an|) .

See Lindelöf (1902).
3. Let f (z)=∑

anz
n be an entire function of finite order and let

m(r)= max(|an|rn), n= 0,1,2, . . . .

Prove that

lim
r→∞

logM(r,f )

logm(r,f )
= 1.

See Valiron (1949), p. 32.
4. Let f (z) be of finite order ρ and of finite type τ = limr→∞ logM(r)

rρ
. If

L= lim sup
r→∞

r−ρn(r,f ) and l = lim inf
r→∞ r−ρn(r,f ),

then Lel/L ≤ eρτ. See Shah (1948) and Boas (1954), p. 16. Swarupchand
Mohanlal Shah (1905–1996) received his appointment at Aligarh Moslem Uni-
versity (India) from André Weil, who served there as department head from 1931
to 1933. In 1942, Shah received his Ph.D. from the University of London under
Hardy’s student Titchmarsh. Returning to Aligarh, Shah served as head of the
department from 1953 to 1958 when he reached the mandatory retirement age in
India; he then took up a second mathematics career in the United States. He taught
for more than twenty years in the United States, at Kansas and at Kentucky. Shah
published hundreds of papers in complex analysis and gave a boost to a number
of young mathematicians by encouraging them and collaborating with them.

5. Show that if a �= 0 and f (x)= a+a1x+·· · is analytic at the origin, then there is
a number L, depending only on a and a1, such that if f (x) is analytic in the disk
|x| < L, then f (x) must take the value 0 and/or 1 somewhere in the disk. See
Landau (1904). In 1905, Constantin Carathéodory found an expression for L in
terms of the fundamental branch of the inverse of the elliptic modular function.
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Carathéodory used what is now called Schwarz’s lemma, a result he extracted
from Schwarz’s work; he showed its importance, thereby elevating it to the status
of an important lemma. Georg Pick then generalized this lemma.

6. Suppose f (z) is meromorphic and has only a finite number of poles, and that
f (z),f (l)(z) have only a finite number of zeros for some l ≥ 2. Show that then

f (z)= P1(z)e
P2(z)

P3(z)
,

with P1,P2,P3 polynomials. Further, if f (z) and f (l)(z) have no zeros, then
either f (z)= eAz+B or else f (z)= (Az+B)−n. This result is due to J. Clunie.
See Hayman (1964), p. 67.

7. Let f (z) be a meromorphic function of order ρ, where 0≤ ρ ≤ 1/2; δ(a,f ) > 0
when ρ = 0 and δ(a,f )≥ 1− cosπρ when ρ > 0. Show that then a is the only
deficient value of f (z); in particular, a meromorphic function of order zero can
have at most one deficient value. This result is due to the German mathematician
Oswald Teichmüller (1913–1943) for functions with positive poles and negative
zeros; to the Russian mathematician A. A. Goldberg for the general case. See
Hayman (1964), p. 114.

39.12 Notes on the Literature

Weierstrass gave a rigorous treatment of infinite products in his 1876 work Zur
Theorie der eindeutigen analytischen Functionen. See Weierstrass (1894–1927), vol. 2,
pp. 76–101. For proofs of Jensen’s formula, see Jacobi (1969), vol. 6, pp. 12–20, and
Jensen (1899); also see Bäcklund (1918) in this connection. Picard (1879) contains his
theorem on the number of exceptional values of entire functions. For Borel’s theorem,
see Valiron (1949), pp. 72–73; also consult Borel (1900). Material on the Nevanlinna
characteristic function and his two fundamental theorems may be found in his 1929
book, republished as Nevanlinna (1974). Neuenschwander (1978a) gives a history of
the Casorati-Weierstrass theorem. Cartan’s proof and Hayman’s proof are both pre-
sented in Hayman (1964). See Cherry and Ye (2001), M. Ru (2001), and Bombieri
and Gubler (2006) for treatments of the remarkable analogy between the Diophantine
equations and value distribution or Nevanlinna theory. This parallel has been worked
out in some detail and has led to significant advances in both areas. See the charming
and witty book of Littlewood (1986), p. 40, for his amusing comments on Picard’s the-
orem. Littlewood (1986) was edited with a foreword by his friend Béla Bollobás, and it
contains a reprint of Littlewood’s 1953 A Mathematician’s Miscellany, along with pho-
tographs and some additional material. Hadamard’s account of finding applications of
his thesis results can be found on p. 56 of Maz’ya and Shaposhnikova (1998), translated
by P. Basarab–Horwath; the Hadamard quote on Picard’s theorem is on p. 36.
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Univalent Functions

40.1 Preliminary Remarks

Weierstrass constructed a theory of functions using power series as the basic object,
in contrast with Riemann, who studied analytic functions as mappings, specifically
conformal mappings. The Bieberbach conjecture was rooted in these dual aspects of
analytic function theory; it simultaneously viewed a function as a mapping and as a
series. Thus, Bieberbach considered conformal mappings, such as those studied by
Riemann, and then speculated on the magnitude of the coefficients, assuming the first
two to be zero and one, respectively. A function f analytic in a domainD, an open and
connected subset of the complex plane, is called univalent in D if it does not assume
any value more than once. A univalent function f maps D conformally onto its image
domain f (D). Riemann was the first to study conformal mappings in the context
of complex function theory. In his 1851 doctoral dissertation, he stated his famous
theorem, now called the Riemann mapping theorem, that any simply connected proper
subdomain D of the complex plane could be conformally mapped onto the unit disk
|z| < 1. Note here that the mapping must be one-to-one and analytic. This mapping
f is unique if we require that for a given point z0 in the domain D, f (z0) = 0 and
f ′(z0) > 0. Observe that since the inverse of a univalent function is also univalent, it
is of interest to consider functions univalent on the unit disk. We denote by S the set of
normalized univalent functions on the unit disk, that is, univalent functions for which
f (0)= 0 and f ′(0)= 1. The Taylor expansion of f would take the form

f (z)= z+ a2z
2 + a3z

3 +·· ·+ anzn+·· · . (40.1)

In a paper of 1916, Ludwig Bieberbach (1886–1982) proved that |a2| ≤ 2 and then, in
a footnote, conjectured that |an| ≤ n. Attempts to prove this conjecture led to valuable
developments in the theory of analytic functions of one variable, lending it additional
significance. The functional analyst Louis de Branges’s 1984 proof of this conjecture
concluded an era in the theory of functions, comparable, albeit on a smaller scale, to the
350-year era in number theory brought to an end by Andrew Wiles’s 1994 resolution
of Fermat’s problem.

907
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Riemann gave a sketch of a proof of his mapping theorem, but in 1871 his student,
F. Emil Prym, found a flaw in his line of reasoning, apart from Riemann’s use of an
unproved variational principle rigorously established by Hilbert only a half century
later. Note that George Green had made use of this principle in his famous work of
1828 on electricity and magnetism. In spite of its shaky foundations, however, the
significance of Riemann’s mapping theorem was immediately recognized. In 1867,
Dirichlet’s student Elwin B. Christoffel (1829–1900) showed that the upper half plane
could be conformally mapped onto polygonal regions by means of functions defined by
integrals. Note that the upper half plane may be mapped onto the unit disk by a fractional
linear transformation. About two years later, Christoffel’s result was independently
rediscovered by H.A. Schwarz. In the 1870s, Carl Neumann and Schwarz used potential
theoretic methods to prove the mapping theorem for regions bounded by analytic arcs.
In the years around 1900, Hilbert brought renewed attention to the Riemann mapping
problem and its generalization, the uniformization theorem, with the statement of his
twenty-second problem and with his proofs of the Dirichlet principle.

In 1907, Paul Koebe (1882–1945) and Henri Poincaré proved the uniformization
theorem that every simply connected Riemann surface was conformal to one of the
three: the unit disk, the complex plane, or the extended complex plane. Poincaré’s
work was a continuation of methods and ideas he had developed in the early 1880s,
when he established the theory of Fuchsian and Kleinian groups and the related theory
of automorphic functions. Felix Klein played an equally important role in this devel-
opment. In fact, Klein and Poincaré corresponded regularly in 1881–82 while creating
these theories by differing approaches and techniques. In one of his proofs of the uni-
formization theorem, Koebe showed that the set S of normalized univalent functions
was a normal family. Now a family F of analytic functions defined on a domain D is
called normal if every sequence of functions fn in F has a subsequence converging
uniformly on each compact subset ofD. The concept of a normal family is due to Paul
Montel (1876–1975), a student of Borel and Lebesgue. In a June 1935 letter to Zermelo,
Carathéodory discussed the history of this concept:

The word and the notion “normal family” comes from Montel, who had shaped it around 1904.
This notion has emerged from a further development of the Weierstrass double-series theorem
stemming from Stieltjes (around 1895). If one notes that for all analytic functions f (z), which
are regular for |z| < 1 and satisfy the condition |f (z)| < 1 there, all coefficients of the power
series a0 + a1z+ ·· · = f (z) are uniformly limited, it follows that from every set {f (z)} of such
functions one can choose a uniformly convergent sequence on every circle |z| ≤ r < 1. This led
Montel to give the name “normal families” to all sets of functions which possess an analogous
property. So, one was able to show that all functions which are regular in a domain G and are
�= 0, 1 constitute a normal family; the Picard theorem follows on from here easily. The notion
of the limiting oscillation which allows us to speak of families that are normal in a point comes
from me.

Constantin Carathéodory (1873–1950) was a German mathematician of Greek
descent. He initially studied engineering at the Military School of Belgium and was
involved with the construction of the Assiut dam in Egypt. Abandoning his engineering
career due to an increasing attraction to mathematics, Carathéodory attended H. A.
Schwarz’s Berlin colloquia; he received his doctoral degree from Göttingen in 1904
under Minkowski for a thesis on the calculus of variations; his peripatetic career was
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then spent at a number of institutions in Germany, Greece, and the United States. Hans
Rademacher was his 1916 student at Göttingen. Carathéodory’s interest in function
theory was aroused when Pierre Boutroux, nephew of H. Poincaré, visited Göttin-
gen in 1905. Boutroux was then trying to simplify E. Borel’s recent proof of Picard’s
theorem on entire functions and discussed this problem with Carathéodory. In his
autobiographical notes, Carathéodory recalled this encounter:

Boutroux had noticed that his proof was successful only because in the case of conformal mappings
there was a remarkable rigidity, which, by the way, he was not able to put into formulae. Boutroux’s
discovery did not let me rest and six weeks later I was able to prove Landau’s sharpening of the
Picard theorem in a few lines by using the theorem which is today called the lemma of Schwarz.
I produced this theorem with the help of Poisson’s integral; only through Erhard Schmidt, whom
I had informed of my findings, did I learn not only that the theorem already exists in the work of
Schwarz, but also that it can be gained by absolutely elementary means. Indeed, the proof, which
Schmidt informed me about, cannot be improved. Thus, I gained a further field of activity apart
from the calculus of variations.

Schmidt’s proof of Schwarz’s lemma, a form of which was used by Schwarz in 1869
for his proof of the Riemann mapping theorem, is the one usually found in com-
plex analysis textbooks. It was Carathéodory, however, who revealed the importance
of the lemma by giving several significant applications of it. It is due to his efforts
that Schwarz’s lemma and its generalizations became so useful in complex function
theory.

In his important 1912 paper, Carathéodory applied Schwarz’s lemma to prove a
result on kernel convergence, a key concept within geometric function theory. Suppose
G1,G2, . . . ,Gn, . . . is an infinite sequence of simply connected domains in the complex
plane, containing the origin but not coinciding with the whole complex plane. Suppose
also that fn(z) is a conformal mapping of the unit disk onto the domain Gn with
fn(0)= 0 and f ′

n(0) > 0. Carathéodory’s theorem related the geometric behavior of the
domainsGn with the analytic behavior of the functionsfn; this result was later employed
by Löwner (Loewner) to develop his parametric method for the study of univalent
functions. Carathéodory applied it to determine the boundary behavior of conformal
mappings. As he wrote in his letter to Hilbert in connection with this theorem, “A first
application of this theorem is, for instance, the proof of continuity of the conformal
mapping as a function of its boundary, even if the boundary is a non-analytic curve and
the Cauchy theorem cannot be applied.” To state Carathéodory’s convergence theorem,
first suppose the origin is an interior point of

⋂
Gn; then the kernel of the sequence

{Gn} is defined as the largest domain G containing the origin such that each compact
subset ofG is contained in everyGn, with the possible exception of a finite number of
Gn. Note that it is easy prove thatG exists. Next, if the origin is not an interior point of⋂
Gn, then the kernel is defined byG= {0}. The sequence {Gn} is said to converge to

the kernelG if every subsequence of {Gn} hasG as kernel. When convergence occurs,
either G = {0} or G is simply connected. Also, let {fn} be a sequence of univalent
functions on the unit disk with fn(0)= 0 and f ′

n > 0; moreover, let fn map the unit disk
to Gn. On this basis, the theorem states that a sequence of functions {fn} converges
uniformly on compact subsets of the unit disk to a function f if and only if {Gn}
converges to the kernel G �= C. If convergence occurs, then either G= {0}, in which
case f = 0, orG �= {0}, in which case f is a conformal mapping from the unit disk toG.
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To prove this theorem, Carathéodory used Schwarz’s lemma combined with Koebe’s
one-quarter theorem. The latter theorem was not fully proved until Bieberbach did so
in 1916; for Carathéodory’s convergence theorem, Koebe’s weaker result, for some
positive constant not necessarily 1/4, was sufficient.

Carathéodory’s results were used a decade later by Löwner to construct his paramet-
ric theory of univalent functions. The Czech mathematician Karel Löwner (1893–1968)
was a student of Georg Pick, and his name was later spelled Karl Löwner and then,
after emigration to America, Charles Loewner. He studied in the German section of
the University of Prague, writing his thesis in 1917 on convex conformal mappings
under the direction of Pick, who himself did notable work in complex analysis. Pick’s
invariant form of the Schwarz lemma appears in several books on geometric function
theory. Note that Pick was a student of Weierstrass’s student Königsberger. Löwner’s
thesis contained interesting results on the growth of convex univalent functions and
their derivatives. He also proved that the Bieberbach conjecture would hold for the
subclass of convex univalent functions, and in fact, |an| ≤ 1. In an important paper
of 1923, Löwner developed a powerful method for dealing with the class of univalent
functions. Bieberbach was very impressed by this method and inserted “I” (i.e., part I)
in the title of Löwner’s paper, implying that Löwner should work further in this area;
unfortunately, Löwner did not return to the coefficient problem. In his paper, he defined
a subset S1 of S consisting of single slit mappings, univalent functions mapping the
unit disk onto the complex plane minus one analytic Jordan arc extending to infinity.
Using Carathéodory’s theorem, he showed that S1 was a dense subset of S in the topol-
ogy defined by uniform convergence on compact subsets. Next, he proved that any
function in S1 could be obtained from the identity mapping by a series of successive
infinitesimal transformations. He gave a fairly simple differential equation to effect this
transformation; in fact, he gave two forms of this equation, one of which he himself
used to prove that |ai | ≤ i for i = 2, 3; the other form was used by de Branges to derive
the complete result.

An alternative approach to the coefficient problem for univalent functions, using
area inequalities, was initiated in a 1914 paper by the Swedish-American mathemati-
cian Thomas Hakon Gronwall (1877–1932); Bieberbach’s work was an independent
discovery of the same idea. This method would play a part in the development of uni-
valent functions and in the proof of the Bieberbach conjecture. Gronwall received his
doctoral degree under Mittag–Leffler, but also learned from mathematicians such as
H. von Koch, I. Fredholm, and E. Phragmén. He received an engineering degree from
Berlin in 1902 and then worked at various steel works in the United States. In 1912 he
returned to his first love and in the next two years published almost two dozen papers
ranging over the topics of Fourier series, analytic functions, conformal mappings, and
special functions. Consequently, he was invited to Princeton as an instructor in 1913,
and was promptly promoted. Gronwall soon left Princeton to take up a number of other
pursuits, but not before J. W. Alexander (1888–1971), the famous topologist, had com-
pleted his thesis on univalent functions under him. In fact,Alexander had been a protégé
of O. Veblen (1880–1960) and had already published couple of papers in topology when
Veblen suggested that he do his thesis in analysis under Gronwall. Apparently, Veblen
feared that topology might be a passing fad!
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In 1916, Bieberbach rediscovered one of Gronwall’s area inequalities and employed
it to prove his theorem on the second coefficient in the Taylor expansion of a normalized
univalent function. In this paper, he also obtained a result on the growth of a univa-
lent function; he later used this to prove that |an| =O(n2). Then in 1923, Littlewood
improved on this, showing that the order of the nth coefficient had to be n. Seven years
later, Littlewood made another significant contribution to this topic in collaboration
with his pupil Paley. R. E. A. C. Paley (1907–1933), graduated from Trinity College
in 1929. He wrote his dissertation under Littlewood on nondifferentiable functions and
was elected to a Trinity Fellowship in 1930. He was quickly blossoming into one of the
leading British mathematicians of his generation when his life was cut short by a skiing
accident in the Rocky Mountains. In his very brief career, he published almost thirty
papers in several aspects of analysis and collaborated with such outstanding mathemati-
cians as Littlewood, N. Wiener, and A. Zygmund. Littlewood and Paley proved that the
coefficients of any odd univalent function in S are bounded by a constant independent
of the function. More precisely, for all F ∈ S, and

F(z)= z+ c3z
3 + c5z

5 +·· · , (40.2)

there exists an abslolute constantA independent ofF such that |c2n+1| ≤A. In a footnote
they observed, “No doubt the true bound is by A= 1.” This conjecture makes sense in
light of an earlier result of I. I. Privalov, that A = 1 for odd starlike functions. A set
E ⊂C is called starlike with respect to a point w0 ∈E if the line segment joining w0 to
every point w ∈E lies entirely in E. A starlike function is a conformal mapping of the
unit disk onto a domain starlike with respect to the origin. This conjecture implied the
Bieberbach conjecture, but it was proved false in 1933 by the Hungarian mathematicians
M. Fekete and G. Szegő. They used Löwner’s theory to establish that

|c5| ≤ 1

2
+ e−2/3 = 1.013 . . . , (40.3)

and that the inequality was sharp. A modification of the Paley–Littlewood conjecture
was suggested by a result of the French mathematician Jean Dieudonné (1906–1992).
Dieudonné, a founding member of the Bourbaki group, proved in 1931 that if an odd
univalent function is real on the real axis, then

|c2n−1|+ |c2n+1| ≤ 2, and |c3| ≤ 1 . (40.4)

Then in 1936, M. S. Robertson applied the method of Fekete to prove that

|c3|+ |c5| ≤ 2 , (40.5)

even when F(z) was not real on the real axis. Combining this with Dieudonné’s result,
Robertson conjectured that the Littlewood–Paley conjecture was true on the average
for an odd univalent function:

n∑
k=1

|c2k−1|2 ≤ n. (40.6)
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Observe that this implies the Bieberbach conjecture: If f ∈ S is given by (40.1), and
the odd function F(z)= (f (z2))1/2 by (40.2), then the relation between the coefficients
of these two functions is given by

an = c1c2n−1 + c3c2n−3 +·· ·+ c2n−1c1, n≥ 1. (40.7)

De Branges’s proof of the Bieberbach conjecture in actuality demonstrated a more
general result, Milin’s conjecture; this concerned the logarithmic coefficients of the
univalent function. Thus, de Branges’s method did not directly yield Bieberbach’s
conjecture. We note that logarithmic coefficients in connection with univalent functions
were first considered by Helmut Grunsky (1904–1986). Grunsky was an excellent
analyst with a long and varied career; Ahlfors remarked that his thesis on extremal
problems in conformal mappings was “a truly remarkable piece of work.” In 1939,
while at Berlin, Grunsky showed that an analytic function

g(z)= z+ b0 + b1

z
+·· ·

in a neighborhood of ∞ would extend to an injective and analytic function in the disk
|z|> 1 (i.e. g ∈>), if and only if its Grunsky coefficients, defined by

log
g(z)−g(ζ )
z− ζ =−

∞∑
k=1

∞∑
l=1

bklz
−kζ−l , (40.8)

satisfied the Grunsky inequalities∣∣∣∣ ∞∑
k=1

∞∑
l=1

bklxkxl

∣∣∣∣≤ ∞∑
k=1

|xk|2
k
, (40.9)

where {xk} was a sequence of complex numbers. Clearly, the Grunsky coefficients
provided a characterization of the property of univalence. Grunsky’s proof of the the-
orem employed contour integration and was not difficult, although the expressions of
the Grunsky coefficients bkl in terms of the coefficients bk of g were very complicated.
Perhaps this is one reason that the effectiveness of Grunsky’s inequality was not noticed
until around 1960 when it was used by Z. Charzynski and M. Schiffer to reprove the
result that |a4| ≤ 4. In 1955, Schiffer and P. R. Garabedian had already proved |a4| ≤ 4
by means of a powerful variational technique developed by Schiffer in the 1930s. Soon
after the work of Charzynski and Schiffer, a generalization of Gronwall’s area theo-
rem in terms of the Grunsky coefficients was noted by a number of mathematicians,
including J. A. Jenkins, Milin, and C. Pommerenke. Schiffer had already made this
observation in 1948. For Pommerenke’s formulation, let g ∈>, and let x1, x2, . . . , xm
be complex numbers not all zero. Then

∞∑
k=1

∣∣∣∣ m∑
l=1

bklxl

∣∣∣∣2 ≤ m∑
k=1

1

k
|xk|2 , (40.10)

where equality holds if and only if the area of C\g(|z|> 1), that is, the complement of
the image of |z|> 1, is zero. Note that whenm=∞, (40.10) and (40.9) are equivalent.
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In a 1964 paper, I. M. Milin applied the area method to study the properties of
{An(ζ )}, defined by

log
z− ζ

F (z)−F(ζ ) =
∞∑
n=1

An(ζ )z
−n , (40.11)

where F ∈ >. Soon after this, I. E. Bazilevich worked directly with log(f (z)/z) and
proved an interesting inequality about its coefficients. In his account of the motivations
behind his conjecture, Milin wrote, “In this way I developed the conviction that the
property of univalence reveals itself rather simply through area theorems or other
methods in the form of restrictions on the coefficients of the logarithmic function
(40.11) and log f (z)

z
= 2

∑∞
n=1 γnz

n, and that it is necessary to construct an ‘apparatus of
exponentiation’ to transfer the restrictions from logarithmic coefficients to coefficients
of the functions themselves.”

It was with this in mind that in 1966, N. A. Lebedev and Milin worked out the
exponential inequality: If

∑∞
k=1Akz

k is an arbitrary power series with positive radius
of convergence and

exp

( ∞∑
k=1

Akz
k

)
=

∞∑
k=0

Dkz
k,

then
n−1∑
k=0

|Dk|2 ≤ nexp

{
1

n

n−1∑
ν=1

ν∑
k=1

(
k|Ak|2 − 1

k

)}
.

Now note that if we write (f (z)/z)1/2 =∑
c2n+1z

2n+1, then(
f (z)

z

)1/2

= exp

(
1

2
log

f (z)

z

)
implies that for γn, as defined in Milin’s quotation,

∞∑
n=0

c2n+1z
n = exp

{ ∞∑
n=1

γnz
n

}
. (40.12)

Applying the Lebedev-Milin inequality, we obtain

n−1∑
k=0

|c2k+1|2 ≤ nexp

{
1

n

n∑
ν=1

ν∑
k=1

(
k|γk|2 − 1

k

)}
. (40.13)

Milin observed this inequality in 1970 in the course of writing his book on univalent
functions. He perceived that if the inequalities

n∑
ν=1

ν∑
k=1

(
k|γk|2 − 1

k

)
≤ 0 , n= 1,2,3, . . . , (40.14)

were true, then Robertson’s conjecture (and hence Bieberbach’s conjecture) followed
from (40.13). For Koebe’s function fθ(z), given by (40.24), |γk| = 1/k so that equality
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holds in (40.14). Milin did not state (40.14) as a conjecture in his book, although he
had evidence to support it. For instance, inspired by a result of Pommerenke, Milin
obtained the equality

n∑
k=1

|γk|2 ≤
n∑
k=1

1

k
+ δ , δ < 0.312 . (40.15)

It was in a 1971 paper that A. Z. Grinshpan, with the approval of Lebedev and Milin,
referred to inequality (40.14) as Milin’s conjecture.

Lebedev, Milin, E. G. Emelyanov, and Grinshpan were members of the Leningrad or
St. Petersburg school of geometric function theory. In 1984, these mathematicians and
other members of the Leningrad Seminar joined together and exerted considerable effort
to reformulate in classical form de Branges’s proof of the Milin conjecture, making it
more accessible to the community of geometric function theorists.The Leningrad school
was founded by G. M. Goluzin (1906–1952). Goluzin entered Leningrad University
in 1924 and remained there in various capacities until his death. He was appointed
professor of mathematics in 1938, and from then on he led the seminar and built
up a school of function theorists. Goluzin made major contributions to the theory
of univalent functions and developed a variation on Schiffer’s technique of interior
variations, applying it to several problems and deriving a number of deep results. In
an early paper, he applied Löwner’s parametric method to obtain a sharp bound on
|argf ′(z)| for f ∈ S. Another easily stated theorem of Goluzin is that |an|< 3

4 en, an
improvement on Littlewood; of course, he derived the Goluzin inequality: If g ∈>, zν
lie in the set |z|> 1 and γν ∈ C, ν = 1,2, . . . ,n, then∣∣∣∣ n∑

µ=1

n∑
ν=1

γµγν log
g(zµ)−g(zν)
zµ− zν

∣∣∣∣≤ n∑
µ=1

n∑
ν=1

γµγν log
1

1− (zµzν)−1
. (40.16)

We observe that this inequality can be derived from Grunsky’s; conversely, this
implies Grunsky. In 1972, the American mathematician C. H. FitzGerald exponen-
tiated Goluzin’s inequality to obtain what is now called FitzGerald’s inequality,
from which he derived several coefficient inequalities. For example, he showed that

|an| <
√

7
6n < 1.081n, and in 1978, D. Horowitz, using the same method, made an

improvement, obtaining

|an|<
(

1,659,164,137

681,080,400

)1/14

n≈ 1.0657n.

Until de Branges, this was the best result on the Bieberbach conjecture for all n.

40.2 Gronwall: Area Inequalities

In his 1914 paper, Gronwall derived results on the growth of a univalent function and
its derivative. These depended on the measure of the area of the image of a disk under
the conformal transformation given by the univalent function. Gronwall gave two main
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applications of this idea. In the first, he assumed f (x)=∑∞
n=1 anx

n to be univalent and
the area of the image of the unit disk under f to be at most A. Then for |x| ≤ r < 1, he
showed that

|f (x)| ≤
√
A

π

√
log

1

1− r2
.

He used the change of variables formula for an integral to conclude that the area A(r)
of the image of the disk |x| ≤ r < 1 was

A(r)=
∫ r

0
dρ

∫ 2π

0
|f ′(ρeiθ )|2ρdθ = π

∞∑
n=1

n|an|2r2n. (40.17)

Note that

f ′(ρeiθ )=
∞∑
n=1

nanρ
n−1

and term by term integration is possible because of absolute convergence. From (40.17)
Gronwall concluded, after letting r tend to one, that

π

∞∑
n=1

n|an|2 ≤A. (40.18)

Using (40.18),

|f (x)| ≤
∞∑
n=1

|an|rn,

and the Cauchy–Schwarz inequality, he found the required result:

|f (x)|2 ≤
∞∑
n=1

n|an|2
∞∑
n=1

r2n

n
= A

π
log

1

1− r2
.

For the second application, Gronwall considered a function

f (x)= 1/x+
∞∑
n=1

anx
n,

where, without the term 1/x, the series converged for |x| < 1. Such series had been
discussed earlier, but Gronwall derived an important inequality for them, called the
area theorem. For this purpose, it is convenient to let z= 1/x and consider the class >
of functions

g(z)= z+ b0 + b1

z
+ b2

z2
+·· · , (40.19)
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analytic and one-to-one in |z| > 1 except for a simple pole at ∞ with residue 1. For
these functions, Gronwall proved that

∞∑
n=1

n|bn|2 ≤ 1 . (40.20)

To verify this, he again applied the area method. He did not give all the details, but one
may apply Green’s theorem to see that if the closed curve Cr is the image of |z| = r > 1
under g(z), then it encloses a positive area

0<
1

2

∫ 2π

0
g(reiθ )g′(reiθ )reiθ dθ

= π
{
r2 −

∞∑
n=1

n|bn|2r−2n

}
.

(40.21)

The necessary inequality follows by letting r→ 1+.

40.3 Bieberbach’s Conjecture

In 1916, apparently unaware of Gronwall’s earlier work, Bieberbach reproved the area
theorem and deduced his inequality for the second coefficient of functions in the set S of
normalized univalent functions. To achieve this, he used an idea he called Faber’s trick:
Supposing f is a function in S, then F(z)= (f (z))1/2 is an odd univalent function. To
prove this, observe that f (z) vanishes only at z= 0 and hence a single valued branch
of the square root can be chosen in

F(z)= z(1+ a2z
2 + a3z

4 +·· ·)1/2.
Clearly, F(z) is odd. It is univalent because if F(z1) = F(z2), then f (z2

1) = f (z2
2);

moreover, the univalence of f (z) implies z1 = ±z2. If z1 = −z2, then F(z1) =
F(z2) = −F(z1). This implies F(z1) = 0 or z1 = 0, proving the result. To apply the
area theorem, Bieberbach noted that

F(z)= z+ 1

2
a2z

3 +·· · ,

and used F(z) to construct a function g(z) in the class >:

g(z)= 1

F(1/z)
= z− 1

2
a2

1

z
+·· · = z+

∞∑
n=1

bnz
−n.

Hence, by (40.20), he obtained |b1| ≤ 1 or |a2| ≤ 2. In a footnote, Bieberbach went on
to conjecture that |an| ≤ n for the coefficients of a normalized univalent function on the
unit disk. He was able to verify Koebe’s conjecture that the image of the open unit disk
under any f ∈ S would always contain a circle of radius 1/4 with the origin as center.
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More precisely, he showed that if f (z) �=w in |z|< 1, then |w| ≥ 1/4 (an improvement
on Koebe). This was an immediate corollary of the bound for a2. For if f (z) �=w, then

wf (z)

w−f (z) = z+
(
a2 + 1

w

)
z2 +·· · ∈ S

and hence ∣∣∣∣a2 + 1

w

∣∣∣∣≤ 2 ,

∣∣∣∣ 1

w

∣∣∣∣≤ 2+|a2| ≤ 4 or |w| ≥ 1/4. (40.22)

The example (often called Koebe’s function)

f (z)= z

(1− z)2 = z+ 2z2 + 3z3 +·· ·+nzn+·· · , (40.23)

or more generally

fθ(z)= z

(1− eiθ z)2 = z+ 2eiθ z2 + 3e2iθ z3 +·· ·+ne(n−1)θ zn+·· · , (40.24)

shows that |a2| = 2 actually occurs for functions in S. We can also write (40.23) as

w = f (z)= 1

4

(
1+ z
1− z

)2

− 1

4
.

From this representation, it is easy to see that f (z) maps |z| < 1 conformally onto
the w-plane cut from − 1

4 to −∞ along the negative real axis. Note that f (z) �= − 1
4 in

|z|< 1. Moreover, because fθ(z)= e−iθ f (zeiθ ), this function maps |z|< 1 conformally
onto the w-plane cut radially from − 1

4e
−iθ to −∞e−iθ .

In this paper, Bieberbach obtained another important result on the growth of a
normalized univalent function f (z):

r

(1+ r)2 ≤ |f (z)| ≤ r

(1− r)2 , |z| = r, (0< r < 1). (40.25)

40.4 Littlewood: |an| ≤ en

In 1923, Littlewood proved that Bieberbach’s conjecture was correct up to the order of
magnitude. His paper with the result given in the title of this section appeared in 1925.
Littlewood derived his inequality for the coefficients an from the inequality,

1

2π

∫ 2π

0
|f (reiθ )|dθ < r

1− r , 0< r < 1, (40.26)

where f ∈ S. He considered the univalent function

φ(z)= (f (z2))1/2 = z+ b3z
3 +·· ·
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and by (40.25) concluded that

|φ(teiθ )| ≤ t/(1− t2).

This result in turn implied that φ transformed |z| ≤ t < 1 to a region whose area A(t)
was less that πt2/(1− t2)2. He combined this with the equation

π

∞∑
n=1

n|bn|2t2n =
∫ t

0
r dr

∫ 2π

0
|φ′(reiθ )|2 dθ =A(t)

to derive the inequality

∞∑
n=1

n|bn|2t2n−1 ≤ t/(1− t2)2.

Integrating from 0 to r < 1, he obtained

∞∑
n=1

|bn|2r2n ≤ r2/(1− r2).

He next observed that the series on the left-hand side of this inequality was given by

1

2π

∫ 2π

0
|φ(reiθ )|dθ = 1

2π

∫ 2π

0
|f (r2e2iθ )|dθ = 1

2π

∫ 2π

0
|f (r2eiψ |dψ.

At this point, to derive the necessary result for an, Littlewood could apply Cauchy’s
formula, with r = 1− 1

n
, to obtain

|an| = 1

2π

∣∣∣∣∫|z|=r f (z)zn+1
dz

∣∣∣∣ ≤ 1

2πrn

∫ 2π

0
|f (reiθ )|dθ ≤ 1

rn−1(1− r) ,

≤
(

1+ 1

n− 1

)n−1

n < en.

(40.27)

In the same paper, Littlewood also showed that if M(r,f ) denoted the maximum of
|f (z)| on the circle |z| = r , and f was univalent, then for λ > 1/2

1

2π

∫ π

−π
|f (reiθ )|λdθ ≤Aλρλ(1−ρ)−2λ+1. (40.28)

40.5 Littlewood and Paley on Odd Univalent Functions

Littlewood and Paley stated their main theorem of 1932: If

f (z)= z+ a3z
3 + a5z

5 +·· ·
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is an odd univalent function, then there is an absolute constant A, such that |an| ≤A.
To prove this result, they used Bieberbach’s growth theorem for univalent functions,
an inequality from Littlewood’s 1925 paper, and a new inequality given by

1

2π

∫ π

−π
|σ ′(ρeiθ )|2dθ ≤Cρ−1(1−ρ)−1M2(ρ1/2,σ ), (40.29)

whereC denoted a constant and σ was in S, the set of normalized univalent functions. In
their proof of this, they assumed thatσ(z)= z+c2z

2+c3z
3+·· · and applied Gronwall’s

formula to conclude that the area of the image of |z|< ρ under σ was given by

π
∑

n|cn|2ρ2n ≤ πM2(ρ,σ ).

Using this they arrived at the required result:

2π
∑

n2|cn|2ρ2n ≤ 2πMax(nρn)
∑

n|cn|2ρn

≤ Aρ

1−ρAM
2(ρ1/2,σ ),

for some absolute constant A. We note that in Littlewood and Paley’s paper, every
absolute constant was denoted by the same symbol,A. We shall follow their convention.
They constructed two other univalent functions related to f (z), defined by the relations

φ(z)= (
f (

√
z)
)2 = z+ 2a3z

2 +·· · ,

ψ(z)=(
f (z3)

)1/3 = z+ 1

3
a3z

7 +·· · .

They proved the univalence of φ(z) by noting that φ(z)=w implied f (
√
z)=±√

w.
They reasoned that since f was odd, only a pair of equal and opposite values were
possible for

√
z, and hence only one value was possible for z. They also used a simple

argument to demonstrate ψ(z) to be univalent.
To prove their theorem, Littlewood and Paley applied Cauchy’s theorem to the

coefficients of f ′(z):

|nan| ≤ ρ−n+1

2π

∫ π

−π
|f ′(ρeiθ )|dθ.

Thus, it was sufficient for them to show that∫ π

−π
|f ′(ρeiθ )|dθ < A/(1−ρ). (40.30)

They noted that by combining (40.30) with the inequality for nan, ρ = 1− 1/n, they
obtained the required inequality for an. To prove (40.30), they observed that since
f (z)=ψ3(z1/3), it followed that for z= ρeiθ ,

1

2π

∫ π

−π
|f ′(z)|dθ = 1

6π

∫ 3π

−3π
|f ′(z)|dθ = ρ−2/3

6π

∫ 3π

−3π
|ψ2(z1/3ψ ′(z1/3)dθ.
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On applying the Cauchy–Schwarz inequality to the last integral, they found

1

2π

∫ π

−π
|f ′(z)|dθ ≤ ρ−2/3

(
1

6π

∫ 3π

−3π
|ψ(z1/3)|4dθ

)1/2(
1

6π

∫ 3π

−3π
|ψ ′(z1/3)|2dθ

)1/2

.

(40.31)

Denoting the two integrals on the right byP andQ, respectively, and applying |ψ(z)|4 =
|φ(z2)|2/3 combined with the change of variables t = 2θ , they estimated

P = 1

12π

∫ 6π

−6π
|φ(ρ2eit )|2/3dt = 1

2π

∫ π

−π
< Aρ4/3(1−ρ2)−1/3. (40.32)

The last inequality followed from Littlewood’s inequality (40.28). To estimateQ, they
first used (40.29) to arrive at

Q= 1

2π

∫ π

−π
|ψ ′(ρ1/3eit )|2dt ≤Aρ−1/3(1−ρ1/3)−1M2(ρ1/3,ψ). (40.33)

An application of the growth estimate toM2(ρ1/3,ψ)would not produce the necessary
result, so they used ψ3(z1/3)= φ1/2(z2) to get

M2(ρ1/3,ψ)=M2(ρ2,φ1/6) < ρ2/3(1−ρ2)−2/3.

Combining this with (40.33), they obtained

Q<Aρ1/3(1−ρ1/3)−1(1−ρ2)−2/3 <A(1−ρ)−5/3.

Taking this inequality with (40.32) and (40.31) gave the required result:

1

2π

∫ π

−π
|f ′(ρeiθ )|dθ < Aρ−2/3ρ2/3(1−ρ2)−1/6(1−ρ)−5/6 <A(1−ρ)−1.

This completed their ingenious proof that the coefficients of odd univalent functions
were bounded.

40.6 Karl Löwner and the Parametric Method

Carathéodory’s theorem was used a decade later by Löwner to construct his parametric
theory of univalent functions. To describe Löwner’s method, we must first define slit
mappings. A single-slit mapping is a function mapping a domain conformally onto the
complex plane minus a single Jordan arc. Löwner showed that such mappings were
dense in S, the set of all conformal mappings of the unit disk with f (0) = 0 and
f ′(0)= 1. More exactly, for each f ∈ S, there exists a sequence of single-slit mappings
fn ∈ S such that fn → f uniformly on compact subsets of the unit disk.

We follow Duren’s presentation to summarize the argument from Löwner’s 1923
paper. It is sufficient to consider functions f mapping the unit disk onto a domain
bounded by a (closed) analytic Jordan curve because, for any f ∈ S, the function
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f (rz), 0< r < 1, is also univalent with the required image and fr(z)= 1
r
f (rz)∈ S. By

letting f → 1−, we get functions fr ∈ S such that fr → f uniformly on compact subsets
of the unit disk. So assume that f ∈ S maps the unit disk onto a domainG bounded by
an analytic Jordan curve C. Choose a point w0 ∈C and let � be any Jordan curve from
∞ to w0. Denote by �n the Jordan curve consisting of � followed by a part ofC joining
w0 to a point wn ∈ C. Let Gn represent the complement of �n in the complex plane,
and let gn map the unit disk ontoGn with gn(0)= 0 and g′n(0) > 1. We note that such a
function gn exists, by the Riemann mapping theorem. Now choose a sequence of points
wn ∈C such that wn→w0 and �n ⊂ �n+1. ThenG is the kernel of the sequence {Gn}.
By Carathéodory’s kernel convergence theorem, we must have gn → f uniformly on
compact subsets of the unit disk and, by Cauchy’s theorem, g′n(0)→ f ′(0)= 1. Hence,
fn = gn/g

′
n(0) is a sequence of single-slit mappings converging to f uniformly on

compact subsets of the unit disk. Thus, we conclude with Löwner that the single-slit
mappings are dense in S.

Now suppose f ∈ S is a single-slit mapping taking the unit disk onto a domain G,
the complement of a Jordan arc� extending from a point w0 in the complex plane to∞.
Also suppose that w =ψ(t), 0 ≤ t < T , is a continuous, one-to-one parametrization of
� withψ(0)=w0. Let�t denote that part of� fromψ(t) to ∞, and letGt represent the
complement of �t . Let gt(z)= g(z, t) be the conformal mapping of the unit disc onto
Gt , with g(0, t)= 0 and g′(0, t)= γ (t) > 0, so that g(z, t) has the series expansion

gt(z)= g(z, t)= γ (t)
{
z+ c1(t)z

2 + c2(t)z
3 +·· ·

}
, (40.34)

where g(z,0)= f (z). By an application of the Schwarz lemma, γ (t) may be seen to
be a monotonically increasing function of t . Thus, by reparametrization, we can take
γ (t)= et . Moreover, T will then be ∞. So we can write

gt(z)= g(z, t)= et
{
z+

∞∑
n=2

bn(t)z
n

}
, 0 ≤ t <∞ , (40.35)

in what is called the standard parametrization. Löwner then considered the family of
mappings

ft(z)= g−1
t (f (z))= e−t

{
z+

∞∑
n=2

an(t)z
n

}
, 0 ≤ t <∞ . (40.36)

It is easy to see that the functions ft map the unit disk onto the unit disk minus an arc
extending inward from the boundary, and that etft ∈ S. By using the growth estimates
of Bieberbach and Gronwall, he was able to conclude that

lim
t→∞e

tft (z)= f (z) . (40.37)

And it is obvious that f0(z)= z, the identity function. So the function etft (z) starts at
the identity function f (z)= z and ends at f (z) ∈ S as t→∞. Löwner determined the



922 Univalent Functions

differential equation satisfied by this one parameter family of functions,

∂ ft

∂ t
=−ft 1+χ(t)ft

1−χ(t)ft , (40.38)

where χ(t) was a continuous complex valued function with |χ(t)| = 1, 0 ≤ t <∞.
He also gave the equation satisfied by the family of functions gt(z). By (40.36),
gt(ft (z)) = f (z). Setting ζ = ft(z), we have gt(ζ ) = f (z); take the derivative with
respect to t to get

∂gt

∂ζ

∂ζ

∂t
+ ∂gt

∂t
= 0.

When this is substituted in (40.38), the result is the differential equation for gt(z):

∂gt

∂t
= ∂gt

∂z
z

1+χ(t)z
1−χ(t)z , 0 ≤ t <∞ , (40.39)

where g0(z)= f (z) and lim
t→∞gt(z)= z.

Löwner applied his parametric method to the Bieberbach conjecture. In his paper he
deduced only that |a2| ≤ 2 and |a3| ≤ 3. Bieberbach suggested that Löwner call his paper
part I of a work in progress, since it was clear that he had a general method applicable
to the coefficient problem. To understand Löwner’s derivation of the inequalities for
the second and third coefficients, note that since the class of univalent functions S is
invariant under rotation, it is sufficient to prove that Re(a3) ≤ 3. Now substitute the
series (40.36) for ft into the differential equation (40.38) and equate the coefficients of
z2 and z3 on both sides to get the two relations

a′2(t)=−2e−tχ(t) and (40.40)

a′3(t)=−2e−2t [χ(t)]2 − 4e−tχ(t)a2(t) . (40.41)

Since a2(0) = 0, and lim
t→∞an(t) = an, where an is the nth Taylor coefficient of the

univalent function f ∈ S, we may integrate equation (40.40) to get

a2 =
∫ ∞

0
a′2(t)dt =−2

∫ ∞

0
e−tχ(t)dt; (40.42)

and hence

|a2| ≤ 2
∫ ∞

0
e−t dt = 2 because |χ(t)| = 1.

Substituting (40.40) into (40.41) then produces

a′3(t)= 2a2(t)a
′
2(t)− 2e−2t [χ(t)]2 ; (40.43)

integrate to obtain

a3 = 4

(∫ ∞

0
χ(t)e−t dt

)2

− 2
∫ ∞

0
χ2(t)e−2t dt .
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We next set χ(t)= eiθ(t) to get

Re(a3)= 4

{(∫ ∞

0
cosθ(t)e−t dt

)2

−
(∫ ∞

0
sin θ(t)e−t dt

)2

−
∫ ∞

0
cos2 θ(t)e−2t dt

}
+ 1 .

By the Cauchy–Schwarz inequality

(∫ ∞

0
cosθ(t)e−t dt

)2

≤
∫ ∞

0
cos2 θ(t)e−t dt

∫ ∞

0
e−t dt ≤

∫ ∞

0
cos2 θ(t)e−t dt ,

so that

Re(a3) < 4
∫ ∞

0
cos2 θ(t)

(
e−t − e−2t

)
dt + 1

< 4
∫ ∞

0

(
e−t − e−2t

)
dt + 1 = 3 .

Löwner also wrote down expressions for a′n(t) and then, after integration, the
expressions for an(t). However, these are generally too complex to be conveniently
utilized.

40.7 De Branges: Proof of Bieberbach’s Conjecture

In proving the Bieberbach conjecture, by first proving the Milin conjecture, de Branges
applied Löwner’s theory of 1923. Though it may appear that Löwner’s theory could
have been applied at any time, it was not until Milin’s contribution that there was
a route connecting Löwner to Bieberbach; recall that Milin stated his conjecture for
logarithmic coefficients only in 1971. De Branges’s great insight was to use special
functions to prove Milin’s conjecture.And it took the boldness of an independent thinker
such as de Branges to make such an attempt. As we have mentioned, de Branges was
a functional analyst. He had developed the theory of square summable power series
within that context and wished to apply it to various problems, including the Bieberbach
conjecture. His extensive functional analytic machinery, so useful to his insights and
manner of thought, proved to be a roadblock for others attempting to understand his
proof. In the spring of 1984, de Branges presented his proof to the members of the
Leningrad (St. Petersburg) geometric function theory seminar. The members of the
seminar generously expended a good deal of effort to help him simplify it and express
it in classical form. This version of the proof was soon written up by Milin and published
as a preprint by the Steklov Institute in Leningrad. FitzGerald and Pommerenke used
this preprint to obtain further technical simplifications, also independently found by de
Branges. It is the simplified form of the proof that we shall discuss here.
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Consider the logarithmic coefficients of the function gt(z) defined by equation
(40.35). Thus,

log

(
g(z, t)

etz

)
=

∞∑
k=1

ck(t)z
k , |z|< 1 , (40.44)

with 0 ≤ t <∞, and ck(0) = 2γk, where 2γk are the logarithmic coefficients of the
function f ∈ S. Here recall that g(z, t) = gt(z). If equation (40.44) is differentiated
with respect to t and then z and the results are substituted in (40.39) and simplified,
we get

1+
∞∑
n=1

c′n(t)z
n = 1+χ(t)z

1−χ(t)z
(

1+
∞∑
n=1

ncn(t)z
n

)

=
(

1+ 2χ(t)z+ 2χ(t)2z2 +·· ·
)(

1+
∞∑
n=1

ncn(t)z
n

)
.

(40.45)

Equate the coefficients of zn on both sides to get the differential equations satisfied by
the coefficients cn(t):

c′n(t)= 2χ(t)n+ncn(t)+ 2
n−1∑
m=1

χ(t)n−mmcm(t), n= 1,2, . . . . (40.46)

Note that this is a differential equation for logarithmic coefficients; recall that Löwner
had obtained similar differential equations for the coefficients of gt(z), although they
quickly became unwieldy when one tried to solve for them inductively. To prove Milin’s
conjecture, de Branges made effective use of these differential equations, by introducing
some special functions. Recall the Milin conjecture:

n∑
m=1

(
m|cm(0)|2 − 4

m

)
(n−m+ 1)≤ 0 , n= 1,2,3, . . . .

De Branges defined a function

φ(t)=
n∑

m=1

(
m|cm(t)|2 − 4

m

)
τn,m(t) , (40.47)

where certain properties were required of τn,m(t), including

τn,m(0)= n−m+ 1 , m= 1, 2 , . . . , n. (40.48)

Now, if we can choose τn,m(t), such that φ′(t) ≥ 0 and φ(∞) = 0, then we would
automatically have φ(0)≤ 0, Milin’s conjecture. To compute φ′(t), first set

b0(t)= 0, bm(t)=
n∑

m=1

mcm(t)χ(t)
−m, m= 1, 2, . . . (40.49)
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and set

τn,n+1(t)≡ 0, for 0 ≤ t <∞, (40.50)

so that, by a straightforward calculation,

φ′(t)=
n∑

m=1

(|bm− bm−1|2 − 4
) τ ′n,m
m

+
n∑

m=1

(
2|bm|2 + 4Re(bm)

)(
τn,m− τn,m+1

)
.

(40.51)

This expression for φ′(t) takes a very simple form if the functions τn,m(t) satisfy the
difference differential equation

τn,m− τn,m+1 =−τ
′
n,m

m
− τ ′n,m+1

m+ 1
. (40.52)

In that case,

φ′(t)=−
n∑

m=1

|bm+ bm−1 + 2|2 τ
′
n,m

m
, (40.53)

and Milin’s conjecture is proved, provided that de Branges’s system of functions τn,m
satisfying (40.48), (40.50), and (40.52) also satisfy

τ ′n,m(t)≤ 0 , 0 ≤ t <∞ , m= 1,2, . . . ,n . (40.54)

Thus, from these equations we must determine the form of the functions τn,m(t). We
may solve successively for τn,n, τn,n−1, and so on. So by (40.48), (40.50), and (40.52),
we may write

τn,n =−τ
′
n,n

n
or

τn,n(t)=Ae−nt = e−nt ,
because τn,n(0)= 1. Next we solve

τ ′n,n−1

n− 1
+ τn,n−1 = 2e−nt

to get

τn,n−1(t)=−2(n− 1)e−nt + 2ne−(n−1)t .

Note that in general we obtain

τn,m(t)=m
n−m∑
k=0

(−1)k(2m+ k+ 1)k(2m+ 2k+ 2)n−m−k
(m+ k)k!(n−m− k)! e−(m+k)t , (40.55)

when m= 1,2, . . . ,n, since τn,n+1 ≡ 0.
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Now recall that the truth of thenth Milin inequality implies the truth of the Bieberbach
conjecture for the (n+1)th coefficient. Thus, to show that |a2| ≤ 1, it is enough to check
that τ ′1,1(t) = −e−t is negative, and this fact is obvious. For the third coefficient, we
need to check the derivatives of two polynomials in e−t :

τ2,1(t)=−2e−2t + 4e−t and τ2,2(t)= e−2t .

Observe that their derivatives are

4e−t (e−t − 1)≤ 0 and − 2e−2t < 0 (for 0 ≤ t <∞),
respectively. Hence, |a3| ≤ 3. In this manner, de Branges verified the Bieberbach con-
jecture up to the sixth coefficient, although the computations for the last two cases were
complicated. At this point in early February 1984, the stage was set for de Branges to
request his colleague at Purdue, Walter Gautschi, a numerical analyst with an interest in
special functions, to check the calculations by computer. Gautschi was swamped with
work at the time, but he was unable to resist the challenge; he attended de Branges’s
seminar and reported, “I was immediately struck by the clarity, freshness, and ele-
gance of Louis’ talk and began to appreciate how those inequalities came about. To my
delight, they could be written in terms of orthogonal polynomials – currently a subject
very much on my mind.” Gautschi developed the necessary algorithms and managed to
verify the Milin conjecture up to n= 30. Wondering if the inequalities could be proved
analytically, he consulted Richard Askey. It turned out Askey and George Gasper had
proved a slightly more general inequality less than a decade earlier.

As it turned out, τ ′n,m(t) could be expressed as a sum of Jacobi polynomials:

τ ′n,m(t)=−me−mt
n−m∑
k=0

P
(2m,0)
k (1− 2e−t ) . (40.56)

In a 1976 paper, Askey and Gasper had proved that for any real α >−1,

n∑
k=0

P
(α,0)
k (x)≥ 0 , −1 ≤ x ≤ 1 . (40.57)

This immediately implied de Branges’s inequalities: τ ′n,m(t)≤ 0 for 0 ≤ t <∞. Askey
and Gasper’s investigation of these sums of Jacobi polynomials arose out of their
study of several classical inequalities for trigonometric functions. Their insight was that
the correct generalization for these classical inequalities was in the context of Jacobi
polynomials, within which the powerful machinery of hypergeometric functions could
be applied.

One proof of the Askey–Gasper inequality employed a theorem of Clausen on the
square of a 2F 1 hypergeometric function and also a connection coefficient result of
Gegenbauer. Note that we have stated these results in the exercises of chapters 27
and 28. This second result is also known as the Gegenbauer-Hua formula. Askey has
pointed out that Gegenbauer’s formula having been forgotten, Hua rediscovered it in
the course of his work in harmonic analysis, carried out in the 1940s and 1950s. Note
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that Askey also rediscovered this formula in the 1960s. Hua Loo–Keng (1910–1985)
taught himself mathematics, and by the age of 19, he was writing papers; these came
to the notice of a professor at Qinghua University in Beijing. Hua was consequently
appointed to a position at that university, and his career was launched. In 1936, he
traveled to Cambridge to work with Hardy, Littlewood, and Davenport on problems in
additive number theory. Later, he did research in several complex variables, automor-
phic functions, and group theory. His wide interests helped him lead the development
of modern mathematics in China; in fact, in the 1960s, he turned his attention to mathe-
matical problems with immediate practical applicability. Hua’s student, Chen Jing–Run
(1933–1996) made important contributions to the Goldbach conjecture.

40.8 Exercises

1. Show that if 0 ≤ t ≤ 1 and α >−2, then

3F 2

(−n,n+α+ 2, (α+ 1)/2
(α+ 3)/2,α+ 1

; t
)
> 0.

See the article by Askey and Gasper in Baernstein (1986).
2. Show that if

|a1| ≥
∞∑
i=2

|ai |, then the function
∞∑
n=1

anz
n/n

maps the interior of the unit circle upon a star-shaped region with center at the
origin.

3. Show that, with the same condition on the coefficients as in exercise 2, the
function

∑∞
n=1 anz

n/n2 maps the interior of the unit circle upon a convex region.
See Alexander (1915) for this and for exercise 2.

4. Prove that if f is an analytic mapping of the unit disk into itself and if z,z1,z2

are in the unit disk, then

|f (z1)−f (z2)|
|1−f (z1)f (z2)|

≤ |z1 − z2|
|1− z1z2| ;

|f ′(z)|
1−|f (z)|2 ≤ 1

1−|z|2 .

Since the Poincaré metricds= 2|dz|/(1−|z|2)defines a noneuclidean length ele-
ment (infinitesimal) in the unit disk, these inequalities may be interpreted to mean
that the analytic mapping f decreases the noneuclidean distance between two
points and the noneuclidean length of an arc. This invariant form of Schwarz’s
lemma is due to Georg Pick; see Pick (1915).

5. This exercise and the next mention results in geometric function theory, taking
a direction different from that discussed in the text. If � is a finitely generated
Kleinian group with region of discontinuityU, thenU/� is of finite type. Read
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the proof of this theorem in Ahlfors (1982), vol. 2, pp. 273–290. Note that this
proof has a gap, later filled by Lipman Bers and Ahlfors himself. The theory of
Kleinian groups was initiated by Poincaré. A nice history of this topic is given by
Gray (1986). Poincaré (1985), translated into English by Stillwell, offers many
important papers of Poincaré in this area and also provides a useful introduction
by putting the papers into historical perspective and relating their results to some
modern work. For Poincaré’s pioneering work on topology, the reader may enjoy
the article by Karanbir S. Sarkaria in James (1999), pp. 123–167.

6. If a Kleinian group is generated by N elements, then Area (U/�)≤ 4π(N −1)
andU/� has at most 84(N−1) components. Bers proved this theorem in 1967;
read a proof in Bers (1998), vol. 1, pp. 459–477.

40.9 Notes on the Literature

The quotations concerning Carathéodory are in Georgiadou (2004); see p. 63 for the
Schwarz lemma, p. 75 for the letter to Hilbert, and p. 82 for the remarks on the history of
the idea of normal families. For the quotation from Milin, see his article in Baernstein
(1986). See Gronwall (1914) for his proof of the area theorem and Bieberbach (1916) for
the conjecture and the proof of the Koebe one-quarter theorem. Loewner (1988) (also
spelled Löwner), pp. 45–64, contains a reprint of his paper on differential equations
and his proof of |a3| ≤ 3.The reader may also enjoy reading his 1917 paper on univalent
functions mapping the unit disk to a convex region; see pp. 1–18. Littlewood (1982),
vol. II, pp. 963–1004, especially pp. 980–981, gives his result that the Bieberbach
conjecture holds true up to the order of magnitude; his paper with Paley can be found
on pp. 1046–1048. De Branges (1985) contains the proof of the Bieberbach conjecture.
Several papers deal with historical aspects of the conjecture and proof. See the relevant
articles in Baernstein (1986), especially the riveting account by Gautschi, Askey’s
amusing and informative note, and de Branges’s own report, recounting his experience
in Russia. Also see Fomenko and Kuzmina (1986). Pommerenke (1985) and FitzGerald
(1985) contain the reactions to the proof by two experts in univalent function theory.
The books of Hayman (1994) and Gong (1999) present proofs of the conjecture. Duren
(1983) is an extremely readable book with clear exposition and explanation of results
on univalent functions; it was written just before the conjecture was proved. To read
Hua’s proof of the Hua–Gegenbauer formula, consult the elegant book by Hua (1981),
pp. 38–39. For Askey’s mention of Hua’s and his own rediscovery of the Gegenbauer
formula, and an account of his work with Gasper, see Schoenberg (1988), vol. 1, p. 192.
For a history of the Riemann mapping theorem, see Gray (1994). The comments of
Ahlfors on Grunsky’s thesis may be found in Ahlfors (1982), vol. 1, pp. 493–501.



41

Finite Fields

41.1 Preliminary Remarks

Finite fields are of fundamental importance in pure as well as applied mathematics.
Applications to coding, combinatorial design, and switching circuits have been made
since the mid-1900s. Gauss himself first conceived of the theory of finite fields between
1796 and1800, although he published very little of his work in this area, so that it did
not exert the influence it might have. Gauss’s work arose in the context of divisibility
problems in number theory. The origins of these questions may, in turn, be traced
to the work of Fermat who pursued the topic in the course of tackling a problem on
perfect numbers posed to him by the amateur mathematician Frénicle de Bessy, through
Mersenne. This question boiled down to showing that 237 −1 was not prime. In a letter
to Frénicle dated October 18, 1640, Fermat wrote that a prime p would divide an− 1
for some n dividing p − 1; this is now called Fermat’s little theorem. Moreover, if
N = nm, where n was the smallest such number, then p would also divide aN −1. The
second part of the result is easy to understand by observing that

aN − 1 = amn− 1 = (an− 1)
(
a(m−1)n+ a(m−2)n+·· ·+ an+ 1

)
.

Fermat intended to write a treatise on his number theoretic work, but never did so.
Because Fermat failed to publish his proofs, Euler had to rediscover them; this

effort, like many of his projects, stretched over decades. He investigated the structure
of the set of integers modulo a prime p, among many other questions. He conjectured
but did not completely prove that there existed an integer a such that a,a2, . . . ,ap−1

modulo p produced the integers 1,2, . . . ,p− 1, though not in that order. In modern
terminology, letting Zp denote the integers modulo p, and setting Z×

p =Zp−{0}, then
Euler’s conjecture was that Z×

p would be cyclic. This was proved in full in the 1790s by
Gauss and published in his Disquisitiones Arithmeticae. Euler worked with Z[x], the
ring of polynomials with coefficients in Z, as did Lagrange. In 1768, Lagrange proved
the basic theorem that any such polynomial of degree m would have at most m roots
modulo p.

Gauss was able to delve deeply into the theory of the ring of polynomials over
finite fields when he perceived that the number theoretic properties of this ring were

929
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analogous to those of the ring of integers; the irreducible polynomials here played the
role of the prime numbers. Gauss proved the fundamental theorem that every irreducible
polynomial P(x) �= x of degree m in Zp[z] must divide Xp

m−1 − 1 in Zp[x]. Gauss
also gave a formula for the number of irreducible polynomials of degree m. In his
derivation, he applied Möbius inversion without an explicit statement of the general
formula. In 1832, August Möbius (1790–1868), a student of Pfaff and Gauss, published
this formula, although it was not much noted. In fact, in 1857, Dedekind and Liouville
published proofs of the inversion formula without reference to Möbius.

Also during the period 1796–1800, Gauss studied the Galois theory of cyclotomic
extensions of the field Zp by explicitly constructing the subfields of the splitting field
of the polynomial xν−1 over Zp, where ν was a positive integer not divisible by p. He
saw this theory as analogous to his cyclotomic theory over the field of rational numbers.
Gauss applied his results to obtain a new proof of the law of quadratic reciprocity. He
intended to include his work on the extensions of finite fields as the eighth section of
his 1801 Disquisitiones, but omitted it to make room for his theory of binary quadratic
forms, completed after 1798. In fact, binary quadratic forms occupied more than half
of the published book, so that Gauss could include in the text only references to his
unpublished work on finite fields.

In 1830, Galois published his theory of algebraic extensions of finite fields by using
numbers analogous to complex numbers, known in the nineteenth century as Galois
imaginaries. These numbers were required in order to extend the field Zp. For example,
if a polynomial F(x) of degree ν was irreducible over Zp, then Galois assumed i to
be the imaginary solution of F(x) = 0; he then showed that the set consisting of the
pν expressions a0 + a1i + ·· · + aν−1i

ν−1 could be given the structure of a field and
that F(x) could be completely factored in this field. It is interesting to note that Gauss
preferred to avoid imaginary roots. For example, in the unpublished eighth section of
the Disquisitiones, he wrote:

It is clear that the congruence ξ ≡ 0 does not have real roots if ξ has no factors of dimension
one; but nothing prevents us from decomposing ξ , nevertheless, into factors of two, three or more
dimensions, whereupon, in some sense, imaginary roots could be attributed to them. Indeed, we
could have shortened incomparably all our following investigations, had we wanted to introduce
such imaginary quantities by taking the same liberty some more recent mathematicians have taken;
but nevertheless, we have preferred to deduce everything from [first] principles. Perhaps, we shall
explain our view on this matter in more detail on another occasion.

In 1845, T. Schönemann, unaware of Galois’s work, published a paper on algebraic
extensions of Zp. By application of his theory, he partially recovered Kummer’s result
on the factorization of a prime q �= p in the cyclotomic field generated by a pth root of
unity. Schönemann also applied his theory to prove the irreducibility of the cyclotomic
polynomial xq−1 + xq−2 + ·· · + x + 1. In 1857, Dedekind began to develop a theory
of finite fields, in order to generalize Kummer’s theory of ideals in cyclotomic fields
and to place it on a firm logical foundation. In 1871, Dedekind published his first
version of this generalization as his theory of algebraic numbers. In this work, given
a polynomial irreducible over the rational numbers, he delineated the relation between
the factorization of this polynomial modulo p and the prime ideal factorization of the
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ideal generated by p in the number field arising out of the polynomial. We remark
that Dedekind was familiar with the work of Schönemann and of Galois. Note that
Galois’s 1830 paper was republished by Liouville in the 1840s and that J. A. Serret’s
1854 algebra book discussed the work of Galois in detail.

Richard Dedekind (1831–1916) was the Ph.D. student of Gauss and mathematical
friend of Dirichlet. Dedekind performed the valuable service of editing the works of
Riemann and Gauss and the lectures of Dirichlet. In his 1857 paper, Dedekind carefully
showed that results in elementary number theory, including Fermat’s theorem of Euler’s
generalization that aφ(m) ≡ 1 mod m, with a and m relatively prime, could be carried
over to the ring of polynomials over finite fields. Dedekind also stated and proved
the corresponding law of quadratic reciprocity. In 1902, Hermann Kühne proved the
general reciprocity theorem in Fq[x], a finite field with q = pm elements. This theorem
was rediscovered in 1925 by Friedrich K. Schmidt, and then again in 1932 by Leonard
Carlitz. The reciprocity laws are more easily proved for polynomials in Fq[x] than
for integers. In 1914, Heinrich Kornblum (1890–1914), student of Landau, further
developed this analogy by defining L-functions for Fp[x] and proving an analog of
Dirichlet’s theorem on primes in arithmetic progressions. Unfortunately, Kornblum
was killed in World War I, but Landau published the work in 1919. It may also be
of interest to note that Gauss used the zeta function for Zp[x] to find a formula for
the number of irreducible polynomials of degree n, although he did not express it
in such terms. Gauss’s formula implies that if (n) denotes the number of irreducible
polynomials of degree n, then

(n)− pn

n
=O

(
pn/2

n

)
.

If we set x = pn, then n= logp x, and we may express the last relation as

(n)= x

logp x
+O

( √
x

logp x

)
.

Note the similarity in appearance between this equation and the conjectured form of
the number of primes less than x, following from the unproven Riemann hypothe-
sis on the nontrivial zeros of the Riemann zeta function. Note that in 1973, Pierre
Deligne established the Riemann hypothesis for the zeta function of smooth projective
varieties over finite fields. He based his proof on the novel framework for algebraic
geometry created by Alexander Grothendieck and his collaborators, including Deligne.
Weil conjectured this theorem in 1949, so that it was also known as Weil’s con-
jecture. Even earlier, special cases of the Riemann hypothesis over finite fields had
been proved; Emil Artin (1898–1962) presented the earliest example in 1921, when
he defined and studied the zeta function of a quadratic extension of the field Zp(x)

and proved the Riemann hypothesis for that case. Artin’s advisor, Gustav Herglotz
(1881–1953), proposed the problem after reading Kornblum’s posthumously published
thesis.
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41.2 Euler’s Proof of Fermat’s Little Theorem

In 1736, in his second paper on number theory, Euler presented an inductive proof of
Fermat’s theorem. He stated the result that if ap− a is divisible by p, then (a+ 1)p−
(a+ 1) is also divisible by p. To see this, consider that by the binomial theorem,

(a+ 1)p = ap+ p

1
ap−1 + p(p− 1)

1 · 2 ap−2 +·· ·+ p

1
a+ 1 or

(a+ 1)p− ap− 1 = p

1
ap−1 + p(p− 1)

1 · 2 ap−2 +·· ·+ p

1
a .

The right-hand side has p as a factor in each term, and therefore p divides the left-hand
side

(a+ 1)p− ap− 1 = (a+ 1)p− (a+ 1)− ap+ a .
This implies the required result, that if p divides ap−a, it must also divide (a+1)p−
(a+1). Since the result is true for a= 1, it is true for all positive integers a. Moreover,
if p does not divide a, then since p divides a(ap−1 − 1), we obtain the result that p
divides ap−1 − 1.

For Euler’s multiplicative proof of Fermat’s theorem, we follow the concise presen-
tation in Gauss’s Disquisitiones. Suppose a prime p does not divide a positive integer
a. Then there are at most p−1 different remainders when 1,a,a2, . . . are divided by p.
So let am and an have the same remainder withm>n. Then am−n−1 is divisible by p.
Let t be the least integer such that p divides at −1. If t = p−1, our proof is complete.
If t �=p−1, then 1,a,a2, . . . ,at−1 have t distinct remainders when divided by p. Thus,
we can choose an integer b, not divisible by p and not among 1,a,a2, . . . ,at−1 modulo
p, and consider the numbers b,ab,a2b, . . . ,at−1b. Each of these numbers also leaves a
different remainder after division by p and each of these is different from the previous
set of remainders. Hence, we have 2t ≤ p−1 remainders. If 2t = p−1, then our proof
is complete. If not, then we can continue the process until some multiple of t is p− 1.
This completes the proof of the theorem.

41.3 Gauss’s Proof that Z×
p Is Cyclic

In one of his two proofs that Z×
p is cyclic, Gauss used a theorem of Lagrange: Assuming

A �≡ 0 modulo p, the congruence

Axm+Bxm−1 +Cxm−2 +·· ·+Mx+N ≡ 0 (modp)

has at mostm noncongruent solutions. Gauss presented a proof of this result, similar to
that of Lagrange but more succinct. It is easy to see that a congruence of degree 1 has
at most one solution. Assume, with Gauss, that m is the lowest degree for which the
result is false; then m ≥ 2. Suppose that the preceding congruence has at least m+ 1
roots, α,β,γ, . . . , where 0 ≤ α < β < γ < · · · ≤ p− 1. Now set y = x+α so that the
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congruence takes the form

A′tm+B ′ym−1 +C ′ym−2 +·· ·+M ′y+N ′ ≡ 0 (modp).

Note that this congruence has at least m+1 solutions 0,β−α,γ −α, . . . . Since y ≡ 0
is a solution, we must have N ′ ≡ 0. Thus,

y(A′ym−1 +B ′ym−2 +C ′ym−3 +·· ·+M ′)≡ 0 (modp).

If y is replaced by any of the m values β − α,γ − α, . . . , then the identity is satisfied
but y is not zero. This means that the m values β − α,γ − α, . . . are solutions of the
m− 1 degree congruence

A′ym−1 +B ′ym−2 +C ′ym−3 +·· ·+M ′ ≡ 0, (A′ ≡A �≡ 0) .

This contradicts the statement that m is the least integer for which the result is false,
proving the theorem. Gauss thought that this theorem was significant; in his Disquisi-
tiones he discussed its history, pointing out that Euler had found special cases, Legendre
had given it in his dissertation, and Lagrange had been the first to state and prove it.

Gauss used this result to prove the proposition that there always exist primitive
(p− 1)th roots of unity modulo p. Suppose that p− 1 = aαbβcγ · · · , where a,b,c, . . .
are distinct primes. The first step is to show the existence of integers A,B,C, . . . of
orders aα,bβ,cγ , . . . respectively. Note that by Lagrange’s theorem given above, the
congruence

x(p−1)/a ≡ 1 (modp)

has at most (p−1)/a solutions. Hence there is an integer g, 1≤ g≤p−1, not a solution
of the congruence. Now let h be an integer, 1 ≤ h≤ p−1, congruent to g(p−1)/aα . It is
clear that ha

α ≡ 1 (mod p), but that no power d less that aα will give hd ≡ 1. This is
because d must take the form aj with j < k, so thathd = g(p−1)/aα−j �≡ 1 by the definition
of g. We may take A to be h and similarly find B,C, . . . . We can now show that the
order of y =ABC · · · is p−1. To see this, suppose, without loss of generality, that the
order of y divides (p− 1)/a. Since bβ,cγ , . . . also divide (p− 1)/a, it follows that

1 ≡ y(p−1)/a ≡A(p−1)/aB(p−1)/aC(p−1)/a · · · ≡A(p−1)/a (modp).

This implies that aα divides (p− 1)/a, an impossibility. Thus, the theorem is proved.
This argument of Gauss can be extended to arbitrary finite fields. By a different argu-
ment, Gauss showed that the number of primitive roots of unity modulo p was equal
to φ(p− 1).

41.4 Gauss on Irreducible Polynomials Modulo a Prime

To count the number of irreducible polynomials of a given degree modulo a prime p,
Gauss started with the observation that the number of monic polynomials (mod p)

xn+Axn−1 +Bxn−2 +Cxn−3 +·· ·
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was pn, because each of the n coefficients A,B,C, . . . would take exactly p values

0,1,2, . . . ,p− 1.

Thus, there were p polynomials of degree 1, all irreducible. Gauss then remarked that
it followed from the theory of combinations that the number of (monic) reducible
degree-two polynomials was p(p+1)/2. So the number of irreducible ones would be
given by

p2 −p(p+ 1)/2 = (p2 −p)/2 .

To determine the irreducible polynomials of higher degree, Gauss devised a notation and
method. He let (a) denote the number of irreducible polynomials of degree a and (aα)
the number of polynomials of degree αa factorizable into α irreducible polynomials of
degreea. Gauss represented the number of polynomials of degreeα+2β+3γ +·· · with
α factors of degree 1, β factors of degree 2, γ factors of degree 3, etc. by (1α2β3γ 4δ · · ·).
It followed that

(1α2β3γ 4δ · · ·)= (1α)(2β)(3γ )(4δ) · · · .

Again, Gauss remarked that the theory of combinations implied that

(aα)= (a)

1
· [(a)+ 1]

2
· [(a)+ 2]

3
· · · [(a)+α− 1]

α
.

Though Gauss did not bother, it is not difficult to prove this: Letp1(x),p2(x), . . . ,p(a)(x)

be the irreducible polynomials of degree a. In a factorization of a polynomial of degree
αa, let yi factors bepi(x), i= 1,2, . . . , (a). Then (aα)will be the number of nonnegative
solutions of the equation

y1 + y2 +·· ·+ y(a) = α .

Solving this equation yields the same value given by Gauss. He then noted that

p = (1),
p2 = (12)+ (2),
p3 = (13)+ (1 · 2)+ (3),
p4 = (14)+ (12 · 2)+ (1 · 3)+ (22)+ (4),

and so on. Using the formula for (aα), he found the following eight values:

(1)= p,
(2)= (p2 −p)/2 ,
(3)= (p3 −p)/3 ,

(4)= (p4 −p2)/4 ,

(5)= (p5 −p)/5 ,
(6)= (p6 −p3 −p2 +p)/6 ,

(7)= (p7 −p)/7 ,
(8)= (p8 −p4)/8 .
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Solving these equations led him to:

p = (1),
p2 = 2(2)+ (1),
p3 = 3(3)+ (1),
p4 = 4(4)+ 2(2)+ (1),

p5 = 5(5)+ (1),
p6 = 6(6)+ 3(3)+ 2(2)+ (1),
p7 = 7(7)+ (1),
p8 = 8(8)+ 4(4)+ 2(2)+ (1) .

These results then suggested to Gauss that

pn = α(α)+β(β)+ γ (γ )+ δ(δ)+·· · ,
where α,β,γ,δ, . . . were all the divisors of n. He sketched a proof, using generating
functions.Although there are a few missing lines in Gauss’s manuscript, it is not difficult
to fill in the details. He wrote that the product(

1

1− x
)(1)( 1

1− x2

)(2)( 1

1− x3

)(3)
· · · (41.1)

could be developed into the series

1+Ax+Bx2 +·· · = P , (41.2)

whereA=p, B =p2,C =p3, . . . . Then by taking the logarithmic derivative of (41.1),
he got

x dP

P dx
= (1)x

1− x + 2(2)x2

1− x2
+ 3(3)x3

1− x3
+·· · . (41.3)

The required result followed after expanding the terms as an infinite series and equating
coefficients. Gauss gave no details, but to prove (41.2), let f denote a monic irreducible
polynomial. Since pn is the number of monic polynomials of degree n, we see that by
unique factorization of polynomials

1

1−px = 1+px+p2x2 +·· ·+pnxn+·· · (41.4)

=
∞∑
n=0

(number of monic polynomials of degree n)xn

=
∏
f

(
1+ xdegf + xdegf 2 +·· ·

)
=

∏
f

(
1− xdegf

)−1

=
∞∏
d=1

(
1− xd)−(d) ,
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where the notation
∏
f stands for the product over all irreducible polynomials. This

proves Gauss’s assertion that product (41.1) equals the series (41.2). Now by (41.3)

px

1−px =
n∑
d=1

d(d)xd

1− xd =
∞∑
n=1

(∑
d|n
d(d)

)
xn .

Gauss then equated the coefficients of xn on each side to get

pn =
∑
d|n
d(d) . (41.5)

He then inverted this formula to get (n) in terms of pn, stating that if n= aαbβcγ · · ·
where a,b,c, . . . were distinct primes, then

n(n)= pn−
∑

pn/a+
∑

pn/ab−
∑

pn/abc+·· · . (41.6)

Gauss wrote that, for example, when n= 36, he had

36(36)= p36 −p18 +p12 +p6 .

As a corollary of (41.6), Gauss observed that if n= aα, with a prime, then

pn ≡ pn/a (modn) .

And for α = 1 and a prime to p, the result was

pa−1 ≡ 1 (moda) .

Note that it is also easy to see from (41.6) that n(n) > 0. Thus, there are irreducible
polynomials of every degree n. Gauss gave no proof of the inversion (41.6) of (41.5).
This means that Gauss knew the Möbius inversion formula before 1800 when he wrote
up his researches on polynomials over the integers modulo p; Möbius’s paper appeared
in 1832.

41.5 Galois on Finite Fields

Although the French mathematician Évariste Galois’s (1811–1832) research career
lasted less than four years, his accomplishments have had lasting value and importance.
Galois’s premature death came about as a result of a tragic duel, the cause of which
is not fully understood, but was possibly related to Galois’s political activities. In his
number theory report of 1859–66, Smith wrote on Galois:

His mathematical works are collected in Liouville’s Journal, vol. xl. p. 381. Obscure and fragmen-
tary as some of these papers are, they nevertheless evince an extraordinary genius, unparalleled,
perhaps, for its early maturity, except by that of Pascal. It is impossible to read without emotion the
letter in which, on the day before his death and in anticipation of it, Galois endeavours to rescue
from oblivion the unfinished researches which have given him a place for ever in the history of
mathematical science.
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Galois published his first paper in 1828 on purely periodic continued fractions, a topic
studied by Euler and Lagrange in the 1760s. Euler had shown that a periodic continued
fraction would satisfy a quadratic equation with integer coefficients. Lagrange proved
the more difficult converse, that a quadratic irrational number, a number satisfying a
quadratic equation with integer coefficients, could be expressed as a periodic contin-
ued fraction. Galois explicitly proved a theorem implicitly in Lagrange: For integers
a0,a1, . . . ,an, if the continued fraction

a0 + 1

a1+
1

a2+ ·· · 1

an+
1

a0+ ·· · 1

an+
1

a0+ ·· ·

is a solution of a polynomial equation with integer coefficients, then the continued
fraction

− 1

an+
1

an−1+ ·· · 1

a0+
1

an+ ·· · 1

a0+
1

an+ ·· ·

is also a solution of the same polynomial equation.
From a very early age, Galois had plans to develop the theory of algebraic extensions

of fields. In this context, in 1830 Galois wrote his paper “Sur la théorie des nombres,”
rediscovering Gauss’s unpublished results in this area and creating the theory of finite
fields. Galois started with an equation F(x)= 0 modulo p, with F(x) having integer
coefficients and irreducible modulo p. Note that by this he meant that there could not
exist polynomials φ(x), ψ(x), and χ(x) with integer coefficients such that

φ(x) ·ψ(x)= F(x)+pχ(x) .
After the initial portion of the paper, Galois omitted the modulo p, writing simply
F(x) = 0. This means that he was assuming that the coefficients of the polynomials
were taken from the finite field, integers modulo p. Galois argued that since F(x) was
irreducible, the equation F(x) = 0 had no solutions in integers (more precisely and
in modern terms, no solutions in the finite field). He supposed F to be of degree ν
and denoted by i an imaginary solution of F(x)= 0. Galois explained this imaginary
solution by drawing an analogy with complex numbers. He let α denote any one of the
pν − 1 expressions

a+ a1i+ a2i
2 +·· ·+ aν−1i

ν−1 , (41.7)

wherea,a1,a2, . . . ,aν−1 took values in the finite field, that is,ai = 0,1, . . . ,p−1, though
all the as could not be zero. Then α,α2,α3, . . . would all be expressions of the form
(41.7), since if the degree of i were ν or higher, thenF(x)= 0 could be used to express iν

in the form (41.7). Next, since there were onlypν−1 different such expressions, Galois
had αk = αl for two different integers k and l, or αl(αk−l−1)= 0 (for k > l). From the
irreducibility of F , Galois arrived at αk−l = 1. Letting n be the least positive integer
such that αn= 1, Galois noted that 1,α,α2, . . . ,αn−1 were distinct; moreover, if β were
another expression of the form (41.7), then β,βα, . . . ,βαn−1 would be n additional
elements distinct from each other and from the αj . Moreover, if 2n<pν−1, then there
would be yet another element in (41.7) distinct from the known 2n elements. Because
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this process could be continued, Galois concluded that n divided pν −1, meaning that
αp

ν−1 = 1 for every α of the form (41.7). This is Galois’s generalization of Fermat’s
theorem. Here Galois also observed that by the known methods of number theory (in
fact, by Gauss’s published argument outlined earlier), there was a primitive root α for
which n= pν − 1. Moreover, any primitive root had to satisfy a congruence of degree
ν irreducible modulo p.

Note that Galois’s generalization of Fermat’s theorem implied that all members of
(41.7), including 0, were roots of the polynomial xp

ν − x. And every irreducible F(x)
would divide xp

ν − x modulo p. We now continue to follow Galois. Because

(F (x))p
n = F (

xp
n)

(modp),

the roots of F(x) = 0 had to be i, ip, ip
2
, . . . , ip

ν−1. Thus, he saw that all the roots of
xp

ν = x were polynomials in any root α of an irreducible polynomial of degree ν.
To find all the irreducible factors of xp

ν − x, he factored out all polynomials dividing
xp

µ − x for µ < ν. The remaining product of polynomials was then a product of
irreducible polynomials of degree ν. Galois pointed out that, since each of their roots
was expressible in terms of a single root, these were obtainable through Gauss’s method.
Recall that Galois did not write modulo p repeatedly because he saw the coefficients
of F to be elements of the finite field Zp.

Galois then gave an example in which p = 7 and ν = 3. He here showed how to
find the generator α of the multiplicative group of this field, as well as the irreducible
polynomial equation satisfied by α. He noted that x3−2 was an irreducible polynomial
of degree 3 modulo 7 and hence the roots of x73 − x would be a+ a1i + a2i

2 where
a,a1,a2 took values 0,1, . . . ,6 and i3 = 2. Galois denoted i by 3

√
2 and then wrote the

roots as

a+ a1
3
√

2+ a2
3
√

4.

To find a primitive root of x73 − x, Galois noted that 73 − 1 = 2 · 32 · 19, so that he
needed primitive roots of the three equations:

x2 = 1 , x32 = 1 , x19 = 1 .

He observed that x = −1 was a primitive root of the first equation. He cleverly
noted that

x32 − 1 = (x3 − 1)(x3 − 2)(x3 − 4) (mod7) ,

so that where i3 = 2, iwas a primitive root of the second equation. For the third equation,
Galois took x = a+ a1i so that

(a+ a1i)
19 = 1 .

Expanding by the binomial theorem, referred to by Galois as Newton’s formula, and
employing

am(p−1) = 1 , a
m(p−1)
1 = 1 , i3 = 2 , p = 7 ,
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he reduced the expression modulo 7 to

3
[
a− a4a3

1 + (a5a2
1 + a2a5

1)i
2
]= 1 ,

so that 3a− 3a4a3
1 = 1 , a5a2

1 + a2a5
1 = 0 .

Galois saw that these two equations were satisfied (modulo 7) by a=−1 and a1=1.
He therefore concluded that −1 + i was a primitive root of x19 = 1. Thus, the
product i − i2 of the three primitive roots, −1, i, and −1+ i, was a primitive root of
x73−1 = 1. By eliminating i from

i3 = 2 and α = i− i2 ,
he obtained the irreducible equation for the primitive root α,

α3 −α+ 2 = 0 .

Thus, α would generate all the nonzero elements of a finite field of 73 members. Galois
ended his paper with the observation that an arbitrary polynomial F(x) of degree n has
n real or imaginary roots. The real roots, assuming no multiple roots, could be found
from the greatest common divisor of F(x) and xp−1 −1. Note that this can be obtained
by means of the Euclidean algorithm. And the imaginary roots of degree 2 could be
obtained from the greatest common divisor of F(x) and xp

2−1 − 1; this process could
clearly be continued.

41.6 Dedekind’s Formula

With his characteristic systematic approach, in his paper of 1857, Dedekind explained
how to develop the theory of polynomials over finite fields such that the analogy with
the ring of integers was completely clear. We present just one formula from his paper,
deriving an elegant expression for the product of all irreducible polynomials of degree
d. The arguments given by Galois showed that ifFd(x)was the product of all irreducible
polynomials of degree d, then

xp
n − x =

∏
d|n
Fd(x) .

By the multiplicative form of the Möbius inversion formula, a proof of which Dedekind
provided, since it was not generally known in 1857, he obtained

Fn(x)=
(xp

n − x)∏(
xp

n/ab − x
)
· · ·∏(

xp
n/a − x)∏(

xp
n/abc − x) · · · .

Here a,b,c, . . . denoted the distinct prime divisors of n. Thus,∏(
xp

n/a − x
)
=

(
xp

n/a − x
)(
xp

n/b − x
)(
xp

n/c − x
)
· · · .
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With the use of the Möbius function µ, Dedekind’s formula can now be written as

Fn(x)=
∏
d|n

(
xp

n/d − x
)µ(d)

.

Note that Möbius stated his inversion formula for a sum; Dedekind extended it to cover
a product. We observe that the symbol µ for the Möbius function was introduced by
Mertens in 1874.

41.7 Exercises

1. Let P be a monic irreducible polynomial in R = Zp[x], and let |P | denote the
number of elements in R/P . Set

ζR(s)=
∏
(1−|P |−s)−1,

where the product is taken over all monic irreducible polynomials in R.
Determine ζR(s) and compare your result with equation (41.4).

2. The last entry in Gauss’s diary, dated July 9, 1814, reads (in translation):

I have made by induction the most important observation that connects the theory of
biquadratic residues most elegantly with the lemniscatic functions. Suppose a + bi is a
prime number, a−1+bi divisible by 2+2i, the number of all solutions to the congruence

1 ≡ xx+ yy+ xxyy (mod a+ bi),
including x =∞, y =±i, x =±1, y =∞ is = (a− 1)2 + bb.

Prove Gauss’s theorem. Note that the diary was discovered in 1897 and pub-
lished in 1903. See Ireland and Rosen (1982), pp. 166–168, where a proof using
Gauss and Jacobi sums is given. In 1921, Herglotz gave the first proof of Gauss’s
last entry by using complex multiplication of elliptic functions. Chapter 10 of
Lemmermeyer (2000) gives an excellent discussion of this topic, including use-
ful historical notes. See also Weil (1979), vol. 3, p. 298, for some perceptive
historical remarks, pointing out the connection between Gauss’s diary entry and
the lemniscatic function.

3. Let p be an odd prime, and let Q, R be irreducible polynomials of degrees π
and ρ in Zp[x]. With f any polynomial in this ring, let (f/Q) denote the unique
element of Z×

p such that

f (|Q|−1)/2 = (f/Q) (modQ).

Show that (
R

Q

)(
Q

R

)
=

(−1

p

)πρ
.

See Dedekind (1930), vol. I, pp. 56–59, for a proof of this analog of the law of
quadratic reciprocity.
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4. Generalize the Euler totient function φ to the ring Zp[x]; state and prove a
formula analogous to φ(m)=m(1−1/p1) · · ·(1−1/pk), wherep1, . . . ,pk com-
prise all the distinct prime factors of the positive integerm. See Dedekind (1930),
vol. I, pp. 50–51.

5. State a generalization of Dirichlet’s theorem on primes in an arithmetic progres-
sion to the ring Fq[x], where Fq is a finite field with q = pn elements, p a prime.
Rosen (2002) offers a statement and a proof of this theorem and a reference to
Kornblum’s paper. Compare Rosen’s proof with that of Kornblum.

6. Let q = pn and a0,a1, . . . ,ar be nonzero elements of Fq . Let n0,n1, . . . ,nr be
positive integers, and let di denote the greatest common divisor of q−1 and ni .
Let N1 represent the number of solutions in Fq of the equation

a0x
n0
0 + a1x

n1
1 +·· ·+ arxnrr + 1 = 0.

Prove that

|N1 − qr | ≤ (d0 − 1) · · ·(dr − 1)qr/2.

See Weil (1979), vol. I, pp. 399–410. On the basis of some of his earlier theo-
rems and this result, Weil made four conjectures for zeta functions of smooth
projective varieties over a finite base field; see pp. 409–410 for a statement of
these conjectures, one of which was the Riemann hypothesis.

7. Define the Ramanujan τ(n) function by the formula

q

∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.

Assuming the convergence of the series and the product, show that

∞∑
n=1

τ(n)n−s =
∏
p

(
1− τ(p)p−s +p11−2s

)−1
,

where the product is over all the primes. This result was conjectured by Ramanu-
jan and proved in 1917 by Louis J. Mordell (1888–1972). See Hardy (1978),
pp. 161–165. Ramanujan also conjectured that |τ(p)| ≤ 2p11/2. This was
deduced by Pierre Deligne from his 1974 proof of the characteristic p Riemann
hypothesis.

41.8 Notes on the Literature

Euler’s additive proof of Fermat’s theorem using the binomial theorem may be found
in Eu. I-2, pp. 33–37. See Eu. I-2, pp. 493–518, for the paper containing Euler’s mul-
tiplicative proof. The proof in the text may be found in articles 49 and 50 of Gauss’s
Disquisitiones, reprinted in Gauss (1863–1927), vol. 1, pp. 40–42. Gauss (1966) is an
English translation of the Disquisitiones. For Lagrange’s theorem, see section 42 of
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the Disquisitiones, pp. 34–35 of Gauss (1863–1927), and for the proof that the multi-
plicative group of integers modulo p is cyclic, see section 55, pp. 44–46. Dedekind’s
formula on the product of irreducible polynomials of degree n appears in Dedekind
(1930), vol. 1, pp. 65–66. For Galois’s paper on finite fields, see Galois (1897),
pp. 15–23. The quote from Smith about Galois may be seen in Smith (1965b), p. 149.
The quotation from Gauss may be found in Gauss (1863–1927), vol. 2, p. 217; the trans-
lation in the text is by Günther Frei (2007), p. 180; Frei gives an excellent treatment
of Gauss’s researches in finite fields. See Katz (1976) for a brief sketch of Deligne’s
proof of Weil’s conjecture. Roquette (2002) and (2004) give the early history of the
characteristic p Riemann hypothesis.
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