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Preface

This text surveys many of the topics taught in discrete and finite math-
ematics courses. The topics chosen are widely applied in present-day
industry and, at the same time, are mathematically elegant. Chapter 1
begins with such preliminaries as sets, mathematical induction, func-
tions, and the division algorithm of algebra. Chapters 2 and 3 present
combinatorics and probability. Chapter 4 introduces the modern ap-
proach to finance; it presents the concept of arbitrage and the arbitrage
theorem and then uses them to analyze the no-arbitrage costs of options.
Chapters 5 and 6 deal with graphs and their many applications. Chap-
ter 7 introduces linear programming. Among other applications, we use
the duality theorem to derive the arbitrage theorem as well as the mini-
max theorem of game theory. Chapter 8 presents sorting and searching
techniques that are useful in computer science. Chapter 9 introduces the
subject matter of statistics, presenting both its descriptive and inferen-
tial side. Chapter 10 deals with groups and permutations.

This book can be used for a course in discrete mathematics, or for
one in finite mathematics, or for any course dealing with non–calculus-
based applied mathematics. Calculus itself is not required, and a pre-
calculus course should suffice as a prerequisite; the added mathematical
sophistication attained from studying calculus would be useful. The text
evolved from a seminar designed to introduce first-year undergraduates
with a strong quantitative bent to the possibilities inherent in mathe-
matics. Consequently, a key feature of the course, as well as of the text,
is the emphasis on interesting examples.





1. Preliminaries

1.1 Sets

A set is a collection of elements. If the set A consists of the n elements
a1, a2, . . . , an then we express this by writing

A = {a1, a2, . . . , an}.
Thus, for instance, the set consisting of all the integers between 6 and
10 is given by

B = {6, 7, 8, 9,10}.
A set can be defined either by specifying all its elements, as just shown,
or by specifying a defining property for its elements. Thus, the set B
could have been defined as

B = {integers i : |8 − i| ≤ 2}.
That is, B could have been defined as the set of all integers i such that
the distance between i and 8 is less than or equal to 2.

A set consisting of a finite number of elements is said to be a finite set,
whereas one consisting of an infinite number of elements is said to be
an infinite set. The set N of all the nonnegative integers is an example
of an infinite set. It is convenient to define the set that does not consist
of any elements; we call this the null set and denote it by ∅.

We use the notation a ∈ A to indicate that a is an element of A, and
we use the notation a /∈A to indicate that a is not a member of A.

Example 1.1a Let S be the set of all possible outcomes when a pair
of dice are rolled. By an “outcome” we mean the pair (i, j), where i is
the number of the side on which the first die lands and j is the number
of the side for the second die. Then, the set of all outcomes that result
in the sum of the dice being equal to 7 can be expressed as

S7 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6,1)}
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or, alternatively, as

S7 = {(i, j)∈ S : i + j = 7}.

If every element of A is also an element of B, then we say that A is a
subset of B and write A ⊂ B. By this definition, every set is a subset of
itself and hence, for example, A ⊂ A. Also, since there are no elements
in the null set, it follows that every element of ∅ is also an element of
A; thus, ∅ is a subset of every other set. If A ⊂ B and B ⊂ A then we
may write A = B. That is, the sets A and B are said to be equal if every
element of A is in B and every element of B is in A.

IfA and B are sets then we define the new setA∪B, called the union
of A and B, to consist of all elements that are in A or in B (or in both).
Also, we define the intersection of A and B, written either as A ∩ B or
just AB, to consist of all elements that are in both A and B.

Example 1.1b In Example 1.1a, if A is the set of all outcomes for
which the sum of the dice is 5 and if B is the set of outcomes for which
the value of the second die exceeds that of the first die by the amount 3,
then we have

A = {(1, 4), (2, 3), (3, 2), (4,1)} and B = {(1, 4), (2, 5), (3, 6)};
also,

A ∪ B = {(1, 4), (2, 3), (3, 2), (4,1), (2, 5), (3, 6)} and

AB = {(1, 4)}.
If we defineC to be the set of all outcomes whose sum is equal to 6, then
AC = ∅ because there are no outcomes whose sum is both 5 and 6.

A set is said to be a universal set if it contains (as subsets) all other sets
under consideration. Let U be a universal set. For any setA, the setAc,
called the complement of A, is defined to be the set containing all the
elements of the universal set U that are not in A.

Venn diagrams are often used to graphically represent sets. The uni-
versal set U is represented as consisting of all the points in a large rec-
tangle, and sets are represented as consisting of all the points in circles
within the rectangle. Particular sets of interest are indicated by shading
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Figure 1.1

appropriate regions of the diagram. For instance, the Venn diagrams of
Figure 1.1 indicate the sets A ∪ B, AB, and Ac.

The operation of forming unions and intersections of sets obey cer-
tain rules that are similar to the rules of algebra. We list a few of them
as follows:

Commutative laws: A ∪ B = B ∪ A, AB = BA.
Associative laws: (A ∪ B) ∪ C = A ∪ (B ∪ C), (AB)C = A(BC).
Distributive laws: (A∪B)C = AC ∪BC, AB ∪C = (A∪C)(B ∪C).
These relations are verified by showing that any element that is con-
tained in the left-hand set is also contained in the right-hand one, and
vice versa. For instance, to prove that

(A ∪ B)C = AC ∪ BC,

note that if x ∈ (A ∪ B)C then x ∈ C and x is also in either A or B. If
x ∈A, then it is in AC and so is in AC ∪ BC; similarly, if x ∈B, then
it is in BC and so is in AC ∪ BC. Thus, x ∈AC ∪ BC, showing that

(A ∪ B)C ⊂ AC ∪ BC.

To go the other way, suppose that y ∈ AC ∪ BC. Then y is either in
both A and C or in both B and C. Therefore, we can conclude that y is
in C and is in at least one of the sets A and B. But this means that y ∈
(A ∪ B)C, showing that

AC ∪ BC ⊂ (A ∪ B)C,
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Figure 1.2

and the verification is complete. (The result could also be shown by
using Venn diagrams; see Figure 1.2.)

We also define the intersection and union of more than two sets.
Specifically, for sets A1, . . . , An we define

⋃n
i=1Ai, the union of these

sets, to consist of all elements that are in A1, or in A2, or in A3, . . . , or
in An; that is,

⋃n
i=1Ai is the set of all elements that are in at least one

of the sets Ai, i = 1, . . . , n. Similarly, we define
⋂n
i=1Ai, the intersec-

tion of these sets, to consist of all elements that are in each of the sets
Ai, i = 1, . . . , n.

1.2 Summation

If we let s be the sum of the four numbers x1, x2, x3, x4 then we can
write

s = x1 + x2 + x3 + x4.

More compactly, we can use the summation notation
∑
. Using this lat-

ter notation, we write

s =
4∑
i=1

xi,

which means that s is equal to the sum of the xi values as i ranges from
1 to 4. More generally, for j ≤ n, we use the notation

s =
n∑
i=j
xi
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to mean that
s = xj + xj+1 + · · · + xn.

Example 1.2a If xi = i2, find
∑6
i=3 xi.

Solution.

6∑
i=3

xi = x3 + x4 + x5 + x6 = 9 + 16 + 25 + 36 = 86.

If S is a specified set of integers, then we use the notation
∑
i∈S
xi

to represent the sum of all the values xi that have indices in S.

Example 1.2b If S = {2, 4, 6} then
∑
i∈S
xi = x2 + x4 + x6.

Consider the sum T = ∑2
i=0 x2+i . Because T is equal to x2 + x3 + x4,

it follows that we can also express T as T = ∑4
j=2 xj . Therefore, we

see that
2∑
i=0

x2+i =
4∑
j=2

xj .

When equating the right-hand summation to the left, we say that we are
making the change of variable j = 2 + i. That is, summing the values
x2+i as i ranges from 0 to 2 is the same as summing the values xj as j
ranges from 2 to 4.

Example 1.2c Making the change of variable j = n − i in the sum-
mation

∑n
i=0 xn−i gives the equivalent sum

∑
xj as j ranges between

n and 0. That is,
n∑
i=0

xn−i =
n∑
j=0

xj .
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We are sometimes interested in numbers that are expressed in the form
xi,j, where i and j both take values in some region. A quantity that is
often of interest is the following “double sum” D = ∑n

i=1

∑m
j=1 xi,j,

where
n∑
i=1

m∑
j=1

xi,j =
n∑
i=1

( m∑
j=1

xi,j

)
.

Now arrange the numbers xi,j (i = 1, . . . , n, j = 1, . . . , m) in the fol-
lowing row–column array, which has the number xi,j in row i, column j.

x1,1 x1,2 x1,3 . . . x1,j . . . x1,m

x2,1 x2,2 x2,3 . . . x2,j . . . x2,m
...

...
...

...
...

...
...

xi,1 xi,2 xi,3 . . . xi,j . . . xi,m
...

...
...

...
...

...
...

xn,1 xn,2 xn,3 . . . xn,j . . . xn,m

Because
∑m
j=1 xi,j is just the sum of the m array elements in row i, it

follows that the double sum D is equal to the sum of the row sums. In
other words,D is equal to the sum of all the elements in the array. Since
the sum of all the array values can also be obtained by adding all the
column sums and since the sum of the values of column j is

∑n
i=1 xi,j,

we have the following result.

Proposition 1.2.1

n∑
i=1

m∑
j=1

xi,j =
m∑
j=1

n∑
i=1

xi,j .

A corollary of this proposition is the following useful result.

Corollary 1.2.1
n∑
i=1

i∑
j=1

xi,j =
n∑
j=1

n∑
i=j
xi,j .

Proof. Consider data values xi,j,where i and j both takes values from 1
to n and where xi,j = 0 when j > i. Then apply Proposition 1.2.1.
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A pictorial proof of Corollary1.2.1 is obtained by noting that its left-hand
side,

n∑
i=1

i∑
j=1

xi,j =
1∑
j=1

x1,j +
2∑
j=1

x2,j + · · · +
n∑
j=1

xn,j,

is equal to the sum of all the row sums whereas the right-hand side,

n∑
j=1

n∑
i=j
xi,j =

n∑
i=1

xi,1 +
n∑
i=2

xi,2 + · · · +
n∑
i=n
xi,n,

is the sum of all the column sums in the following array.

x1,1

x2,1 x2,2

x3,1 x3,2 x3,3
...

...
...

. . .

xn,1 xn,2 xn,3 . . . xn,n

Example 1.2d

3∑
i=1

i∑
j=1

(i − j) =
1∑
j=1

(1 − j)+
2∑
j=1

(2 − j)+
3∑
j=1

(3 − j)

= 0 + 1 + 3 = 4,

3∑
j=1

3∑
i=j
(i − j) =

3∑
i=1

(i − 1)+
3∑
i=2

(i − 2)+
3∑
i=3

(i − 3)

= 3 + 1 + 0 = 4.

Since x
∑m
j=1 yj = ∑m

j=1 xyj, it follows that

( n∑
i=1

xi

)( m∑
j=1

yj

)
=

m∑
j=1

( n∑
i=1

xi

)
yj =

m∑
j=1

n∑
i=1

xiyj .

Example 1.2e Expand (x1 + · · · + xn)2.
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Solution.
( n∑
i=1

xi

)2

=
( n∑
i=1

xi

)( n∑
j=1

xj

)

=
∑
i

∑
j

xi xj

=
∑
i

(
xi xi +

∑
j �=i
xi xj

)

=
∑
i

x2
i +

∑
i

∑
j �=i
xi xj .

For instance, the preceding yields

(x1 + x2)
2 = x2

1 + x2
2 + x1x2 + x2x1 = x2

1 + x2
2 + 2x1x2.

Similar to the notation for summations is our notation
∏

for products,

n∏
i=1

xi = x1x2 · · · xn.

Example 1.2f
4∏
i=1

i = 1 · 2 · 3 · 4 = 24.

1.3 Mathematical Induction

Suppose that we have an infinite collection of statements, denoted
S1, S2, . . . , and that we want to prove that they are all true. A proof
by mathematical induction is obtained in the following manner:

(i) first prove that S1 is true;
(ii) then show that, for any n,whenever Sn is true then Sn+1 is also true.

Once (i) and (ii) are established, then from (i) we know that S1 is true;
which implies by (ii) that S2 is true; which implies that S3 is true; and
so on. Thus, it follows that all of the Sn are true.

We now illustrate the use of mathematical induction by a series of
examples.
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Example 1.3a Prove that there are 2n subsets of a set consisting of n
elements.

Solution. In order to prove this by mathematical induction, we must
first prove it for n = 1. But this is immediate, for if the set consists of
a single element (i.e., if the set is {s}) then it has the two subsets ∅ and
{s}, where ∅ is the empty set. Thus, part (i) of the mathematical induc-
tion approach is shown. To show part (ii), assume that the result is true
for all sets of size n (this is called the induction hypothesis) and then
consider a set S of size n+1. Focus attention on one of the elements of
S, call it s, and let S ′ denote the set consisting of the n other elements
of S. Because every subset of S that does not contain s is a subset of
S ′, it follows from the induction hypothesis that there are 2n subsets of
S that do not contain s. On the other hand, since any subset of S that
contains s can be obtained by adding s to a subset of S ′, it also follows
from the induction hypothesis that there are 2n of these subsets. Thus
the total number of subsets of S is

2n + 2n = 2n(1 + 1) = 2n+1,

and the result is proved.

Example 1.3b For integer n, which is larger: 2n or n2?

Solution. Let us try a few cases:

21 = 2, 12 = 1;
22 = 4, 22 = 4;
23 = 8, 32 = 9;
24 = 16, 42 = 16;
25 = 32, 52 = 25;
26 = 64, 62 = 36.

Thus, based on this enumeration, a reasonable conjecture is that 2n >
n2 for all values of n ≥ 5. To prove this, we start by showing it to be
true when n = 5; this was demonstrated by our preceding calculations.
So now assume that, for some n (n ≥ 5),
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2n > n2.

We must show that the preceding implies that 2n+1 > (n + 1)2, which
may be accomplished as follows.

First, note that
2n+1 = 2 · 2n > 2n2,

where the inequality follows from the induction hypothesis. Hence, it
will suffice to show that, for n ≥ 5,

2n2 ≥ (n+ 1)2

or (equivalently)
2n2 ≥ n2 + 2n+ 1

or
n2 − 2n− 1 ≥ 0

or
(n− 1)2 − 2 ≥ 0

or
n− 1 ≥

√
2,

which follows because n ≥ 5.

Example 1.3c Derive a simple expression for the following function:

f(n) = 1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · · + 1

n(n+ 1)
.

Solution. Again, let us begin by calculating the value of f(n) for small
values of n, hoping to discover a general pattern that we can then prove
by mathematical induction. Such a calculation gives

f(1) = 1/2,

f(2) = 1/2 + 1/6 = 2/3,

f(3) = 2/3 + 1/12 = 3/4,

f(4) = 3/4 + 1/20 = 4/5.
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Thus, a reasonable conjecture is that

f(n) = n

n+ 1
.

Let us now prove this by induction. Since it is true when n = 1, as-
sume that it is valid also for some other n and consider f(n + 1). We
have

f(n+ 1) = 1

1 · 2
+ 1

2 · 3
+ · · · + 1

n(n+ 1)
+ 1

(n+ 1)(n+ 2)

= f(n)+ 1

(n+ 1)(n+ 2)

= n

n+ 1
+ 1

(n+ 1)(n+ 2)
(by the induction hypothesis)

= n(n+ 2)+ 1

(n+ 1)(n+ 2)

= (n+ 1)2

(n+ 1)(n+ 2)

= n+ 1

n+ 2
.

Thus, the result is established. (As in any situation where one has proven
a particulary nice result by mathematical induction, it pays to see if there
is a more direct argument that establishes and also explains the result;
see Exercise 1.18.)

Example 1.3d If one has unlimited access to five-cent and seven-cent
stamps, show that any postage value greater than or equal to 24 cents
can be exactly met.

Solution. First note that a postage of 24 can be obtained by 2 fives and
2 sevens. Now assume that for some n ≥ 24 the postage value n can be
exactly hit with a combination of five- and seven-cent stamps, and sup-
pose that we desire postage of value n+1. To obtain this exact amount,
consider the combination that adds up to n. If it contains at least 2 seven-
cent stamps, then trade 2 sevens for 3 fives to obtain the postage value
n + 1. If the combination adding to n contains at least 4 fives, replace
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them by 3 sevens to obtain the value n + 1. Thus, the result is shown
if the combination adding up to n contains either at least 2 sevens or at
least 4 fives. The alternative is that it contains at most 1 seven and at
most 3 fives; but this would imply that n ≤ 22, which is not the case.
Thus, the result is shown.

Example 1.3e Show that, for any positive integer n,

n∑
i=1

i = n(n+ 1)

2
.

Solution. We need to show that

1 + 2 + · · · + n = n(n+ 1)

2
.

This is true for n = 1, since both sides are equal to 1. So let us assume
that it is true for some integer n. To verify it for n + 1, we reason as
follows:

1 + 2 + · · · + n+ n+ 1

= n(n+ 1)

2
+ n+ 1 (by the induction hypothesis)

= (n+ 1)

(
n

2
+ 1

)

= (n+ 1)(n+ 2)

2
,

and the induction proof is complete.

Example 1.3f Verify that, for any value x �= 1 and positive integer n,

n∑
i=0

xi = 1 − xn+1

1 − x .

Solution. Let us use induction. When n = 1, the identity says that

1 + x = 1 − x2

1 − x ,
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which is true because

1 − x2 = (1 − x)(1 + x).

So assume that the identity is true for a specified n. To prove that it re-
mains true when n is increased by 1, note the following:

n+1∑
i=0

xi =
n∑
i=0

xi + xn+1

= 1 − xn+1

1 − x + xn+1 (by the induction hypothesis)

= 1 − xn+1 + xn+1 − xn+2

1 − x

= 1 − xn+2

1 − x .

Thus, the identity is also valid for n+ 1, which shows that it is true for
all n.

Example 1.3g In a round-robin tennis tournament, every pair of com-
petitors play a match. Show that if such a tournament were played with
n players then there is a labeling of the players p1, p2, . . . , pn such that

p1 beat p2, p2 beat p3, . . . , pn−1 beat pn. (1.1)

Solution. The verification is by induction. The result is immediate when
n = 2, so suppose it to be true whenever there are n players and consider
the case when there are n+ 1. Put one of the players, call her p, aside.
Then, by the induction hypothesis, there is an ordering of the other n
players such that (1.1) holds. If p did not beat any of the other n players
then

p1 beat p2, p2 beat p3, . . . , pn−1 beat pn, pn beat p.

On the other hand, if p won at least one match then, with i equal to the
smallest integer such that p beat pi,

p1 beat p2, . . . , pi−1 beat p, p beat pi, . . . , pn−1 beat pn.
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Thus the result is true whenever there are n + 1 players, which com-
pletes the induction proof.

The following result, although intuitively obvious, is quite useful.

Proposition 1.3.1 Every finite nonempty set of numbersA has a small-
est and a largest element.

Proof. We shall show by induction that A always has a smallest and a
largest element whenever A is a set of n numbers. This is true when
n = 1 (since the lone number in A is both the smallest and largest num-
ber of A), so assume it to be true for all sets of n numbers. Let A be
a set consisting of n + 1 numbers, say A = {a1, . . . , an, an+1}. Then,
by the induction hypothesis, the subset {a1, . . . , an} has a smallest and
largest element (say, ai and aj resp.). But then A has a smallest ele-
ment, namely the smaller of ai and an+1, and a largest element, namely
the larger of aj and an+1. This completes the induction and, since a fi-
nite nonempty set must contain n elements for some n, also establishes
the result.

The well-ordering property of the integers is a simple consequence of
Proposition 1.3.1.

Corollary 1.3.1 (Well-Ordering Property of Positive Integers) Every
set A containing at least one positive integer has a smallest positive in-
teger.

Proof. Let n be a positive integer in A. Any integer in A that is larger
than n cannot be the smallest positive integer in A. Hence it follows
that, if the set An = {i : i is an integer, i ∈ A, i ≤ n} has a smallest
member, then that integer is also the smallest positive integer in A. But
since An is a finite set, it has a smallest member.

We now use mathematical induction to prove a well-known mathemati-
cal result.

Proposition 1.3.2 (Hardy’s Lemma) Consider two collections of
numbers,
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a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn,

and suppose that we have to make n disjoint pairs from these collections,
each pair consisting of one a and one b. Then the sum of the products
of the members of each pair is maximized when ai is paired with bi for
each i = 1, . . . , n.

Proof. When n = 2 we must show that

a1b1 + a2b2 ≥ a1b2 + a2b1,

which is equivalent to

a2(b2 − b1) ≥ a1(b2 − b1)

or
(a2 − a1)(b2 − b1) ≥ 0;

this is true beause both factors are nonnegative. So assume that the re-
sult is true whenever there are n numbers in each collection, and suppose
now that there are n+ 1 values a1 ≤ · · · ≤ an+1 and n+ 1 values b1 ≤
· · · ≤ bn+1 to be paired up. Consider any pairing of the n + 1 a and b
values in which a1 is not paired with b1 – rather, a1 is paired with (say)
bi. Then, aside from this individual pairing, there remain nmembers of
each set to be paired up:

a2, . . . , ai, ai+1, . . . , an+1

to be paired up with

b1, . . . , bi−1, bi+1, . . . , bn+1.

By the induction hypothesis, the pairing that maximizes the sum of the
products from the remaining pairings – call this pairing M – will pair
a2 (the smallest a) with b1 (the smallest b). Thus the best pairing that
pairs up a1 with bi will also pair up a2 with b1. But by the result shown
when n = 2, it is at least as good to pair up a1 with b1 and a2 with bi
and then pair the others as does M. Thus, we need only consider pair-
ings that pair up a1 and b1; by the induction hypothesis, the best one of
this type also pairs up ai with bi for each i = 2, . . . , n+ 1, which com-
pletes the proof.
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The mathematical induction proof technique sometimes uses the follow-
ing, “strong” version of induction.

Strong Version of Mathematical Induction To prove that all the
statements S1, S2, . . . are true:

(i) prove that S1 is true;
(ii) show that, for any n, if S1, . . . , Sn are all true then Sn+1 is also true.

The strong version is valid because – once (i) and (ii) are established –
from (i) we know that S1 is true; which implies by (ii) that S2 is true;
which implies, since S1 and S2 are both true, that S3 is true; and so on.
Indeed, the strong version proof that all of the statements Sn are true
is equivalent to the standard mathematical induction proof of the state-
ments S ∗

n (n ≥ 1), where S ∗
n is the statement that S1, . . . , Sn are all true.

Example 1.3h Let a1 = 3, a2 = 7, and

an = 3an−1 − 2an−2, n = 3, 4, . . . .

Find an explicit expression for an and prove your result.

Solution. Let us start by evaluating some of the early values of an in
the hope of discovering a pattern. This yields

a1 = 3,

a2 = 7,

a3 = 21 − 6 = 15,

a4 = 45 − 14 = 31,

a5 = 93 − 30 = 63,

a6 = 189 − 62 = 127.

It is not difficult to spot that an = 2n+1 − 1 for all of the values of n
between 1 and 6. To prove that this holds for all n, assume that ak =
2k+1 − 1 for all values less than or equal to n. Then
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an+1 = 3an − 2an−1

= 3(2n+1 − 1)− 2(2n − 1)

= 3 · 2n+1 − 3 − 2n+1 + 2

= 2 · 2n+1 − 1,

which completes the induction proof since 2 · 2n+1 = 2n+2.

1.4 Functions

A real-valued function is a rule that associates a real number to every
element x of a setX. The function is symbolically represented as f, and
the value associated to the element x is designated as f(x). The set X
is called the domain of f.

Example 1.4a If X is the set of integers, then the function

f(i) = i2

associates to each integer i the value i2.

Definition Let f be a function whose domain is the set of integers.
We say that f is an increasing function if, for every integer i,

f(i + 1) ≥ f(i).

Similarly, we say that f is a decreasing function if, for every integer i,

f(i + 1) ≤ f(i).

Example 1.4b Are the following functions increasing, decreasing, or
neither?

(a) f(i) = 5i.

(b) f(i) = i2.

(c) f(i) = log(i).

(d) f(i) =
{

0 if i is even,
1 if i is odd.
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Solution. The function in (a) is increasing. The function in (b) is in-
creasing if the domain of the function is the set of nonnonegative inte-
gers; however, if the domain is the set of all integers then it is neither
increasing nor decreasing. Assuming that the domain of the function in
(c) is the set of positive integers, then the function is increasing. The
function in (d) is neither increasing nor decreasing.

If f is an increasing function on the integers, then it can be shown that

f(i) ≤ f(j) if i < j. (1.2)

One way to establish (1.2) is to note the sequence of inequalities

f(i) ≤ f(i + 1) ≤ f(i + 2) ≤ · · · ≤ f(j).

A more formal proof would be to use mathematical induction to prove
that, for all n ≥ 0,

f(n+ i) ≥ f(i).

The preceding is true when n = 1; assuming it true for n yields

f(n+ 1 + i) ≥ f(n+ i) (by the definition of an increasing function)

≥ f(i) (by the induction hypothesis),

which completes the more formal induction proof of equation (1.2).
If f and g are functions defined on the same domain X, then we say

that
f ≤ g (equivalently, g ≥ f )

if, for all x ∈X,
f(x) ≤ g(x).

Similarly, we say that
f = g

if, for all x ∈X,
f(x) = g(x).

The function that associates the same value c to every element inX is
said to be a constant function and is denoted by c. Hence, the notation
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f ≤ c

means that f(x) ≤ c for all x ∈X. A function f of the form

f(x) = a0 + a1x + a2x
2 + · · · + anxn

is said to be a polynomial function. The next example uses mathemati-
cal induction to verify a sufficient condition for a polynomial function
to be positive whenever x ≥ 1.

Example 1.4c Prove that

n∑
i=0

ai x
i > 0 for all x ≥ 1,

provided that

an > 0,

an−1 + an > 0,

an−2 + an−1 + an > 0,
...

a0 + a1 + a2 + · · · + an−1 + an > 0.

Solution. Suppose the preceding conditions on a0, . . . , an and assume
that x ≥ 1. Let

P(0) = an,
P(1) = an−1 + xan = an−1 + xP(0),
P(2) = an−2 + xan−1 + x2an = an−2 + xP(1),

...

P(j) = an−j + xan−j+1 + · · · + xjan = an−j + xP(j − 1),

j = 1, . . . , n.

Thus, the objective is to show that

P(n) > 0 if x ≥ 1.
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We will accomplish this by using mathematical induction to prove that,
for all j = 0, . . . , n,

P(j) ≥ an−j + an−j+1 + · · · + an. (1.3)

Since the RHS of (1.3) is assumed to be positive, the result would then
be proven. Equation (1.3) holds when j = 0, so assume that

P(j) ≥ an−j + an−j+1 + · · · + an > 0.

Then,

P(j + 1) = an−j−1 + xP(j)
> an−j−1 + P(j) (since P(j) > 0 and x ≥ 1)

≥ an−j−1 + an−j + an−j+1 + · · · + an
(by the induction hypothesis),

and the proof by mathematical induction is complete.

Functions on the same domain can be combined to form new functions.
For instance, if f and g are functions on the integers then so are the
functions f + g and fg, defined by

f + g(i) = f(i)+ g(i),
fg(i) = f(i)g(i).

That is, the values associated with i by the functions f + g and fg are,
respectively, f(i)+ g(i) and f(i)g(i).

Definition Let f be a function whose domain is the set of integers,
and define the function g by

g(i) = f(i)− f(i − 1).

We say that f is a convex function if g is an increasing function; that is,
f is convex if for all i,

f(i + 1)− f(i) ≥ f(i)− f(i − 1).

Similarly, we say that f is a concave function if g is a decreasing func-
tion; that is, if for all i,

f(i + 1)− f(i) ≤ f(i)− f(i − 1).
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Example 1.4d Characterize the functions of Example 1.4b as to con-
vexity and concavity.

Solution. (a) Since

f(i + 1)− f(i) = 5(i + 1)− 5i = 5,

it follows that f is both convex and concave.
(b) Since

f(i + 1)− f(i) = (i + 1)2 − i2 = 2i + 1,

it follows that f is a convex function.
(c) Note that

f(i + 1)− f(i) = log(i + 1)− log(i) = log

(
i + 1

i

)
= log

(
1 + 1

i

)
.

Since log(j) is an increasing function of j and since 1+1/i is decreas-
ing in i, it follows that log(i) is a concave function.

(d) Since f(i +1)− f(i) is equal to 1 when i is even and to −1 when
i is odd, it is neither an increasing nor a decreasing function. Hence, f
is neither convex nor concave.

Let f be a function defined on the integers (i.e., its domain is the in-
tegers). For a vector of integers x = (x1, . . . , xn), define the function
V(x) by

V(x) =
n∑
j=1

f(xj ).

Let us say that x is a feasible vector if, for a specified integer k,

n∑
j=1

xj = nk.

Consider the problem of choosing a feasible vector to maximize V(x).

Proposition 1.4.1 If f is concave, then (k, k, . . . , k) is a maximal vec-
tor. That is, for any feasible vector x = (x1, . . . , xn),

nf(k) ≥
n∑
j=1

f(xj ).
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Proof. Let x = (x1, . . . , xn) be an arbitrary feasible vector for which
not all xj are equal to k. Since

∑n
j=1(xj/n) = k, it follows that there

will be indices i and j such that xi < k < xj . As a result, since f is
concave and xj ≥ xi + 1, we have

f(xj )− f(xj − 1) ≤ f(xi + 1)− f(xi)
or (equivalently)

f(xi + 1)+ f(xj − 1) ≥ f(xi)+ f(xj ),

which shows that the vector obtained from x by increasing xi by 1, de-
creasing xj by 1, and leaving the other components as is, is a feasible
vector whose associated V value is at least as large as V(x). Repeating
this procedure produces a sequence of feasible vectors, each with an as-
sociated V value at least as large as the one preceding it. In addition,
since each successive vector y has a strictly smaller value of

∑
j|yj−k|,

it follows that this sequence will eventually end. But since it can only end
with the vector k, k, . . . , k,we see that this vector is eventually reached;
thus, its associated V value is at least as large as V(x). Since x is an ar-
bitrary feasible vector, the result is proved.

Proof of the following corollary is left as an exercise.

Corollary 1.4.1 If f is a convex function, then

min

{ n∑
j=1

f(xj ) :
n∑
j=1

xj = nk
}

= nf(k).

For any function f whose domain is the set of integers, let  f be the
function defined by

 f(i) = f(i)− f(i − 1).

Thus, “f is increasing” is equivalent to

 f ≥ 0.

Also, let
 2f =  ( f );

that is,
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 2f(i) =  f(i)− f(i−1) = f(i)−f(i−1)− [f(i−1)−f(i−2)].

Thus, “f is convex” is equivalent to

 2f ≥ 0.

1.5 The Division Algorithm

Let n and k be positive integers. Dividing n by k results in a quotient
q and remainder r, where 0 ≤ r < k. The formal statement of this is
known as Euclid’s division lemma.

Proposition 1.5.1 (Euclid’s Division Lemma) For any pair of posi-
tive integers n and k, there are unique integers q and r where 0 ≤ r <
k and

n = qk + r.

Proof. Let N denote the set of all nonnegative integers, and let

A = {i ∈ N : ik ≤ n}.

SinceA is clearly a finite nonempty set, it follows from Proposition1.3.1
that it has a largest element. Call its largest element q, and let

r = n− qk ≥ 0.

Now r < k, because if r ≥ k then

0 ≤ r − k = n− (q + 1)k,

which contradicts the fact that q is the largest element in A. Hence, we
have the representation

n = qk + r,

where 0 ≤ r < k. To prove uniqueness, suppose that there is a second
representation

n = q1k + r1,

where 0 ≤ r1 < k. It follows that

(q − q1)k = r1 − r.
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But unless q = q1, the LHS of the preceding is an integral multiple of k
whereas the absolute value of the RHS is strictly less than k. Since this
is impossible, we can conclude that q = q1,which implies from the pre-
ceding equation that r = r1. Hence, the representation is unique.

If r = 0 in the representation

n = qk + r, 0 ≤ r < k,
then we say that k is a divisor of n and that n is divisible by k.

If n and m are nonnegative integers, not both equal to 0, then we say
that d is their greatest common divisor, written as d = gcd(n,m), if:

(i) d is a divisor of both n and m; and
(ii) if c is also a divisor of n and m, then c is also a divisor of d.

Thus, the greatest common divisor of n and m is a common divisor of
n and m that is divisible by every other common divisor. We now show
that the greatest common divisor always exists.

Proposition 1.5.2 For nonnegative integers n and m, not both equal
to 0, gcd(n,m) exists.

Proof. Let Z denote the set of all the integers (positive, negative, and
0), and define

S = {nx +my : x ∈ Z, y ∈ Z}.
Since S clearly contains positive integers, it must (by the well-ordering
property) contain a smallest positive integer. Let that integer be d =
ns+mt.We will now show that d = gcd(n,m). To show that d divides
n, we use the division lemma to obtain the representation

n = qd + r, 0 ≤ r < d,
which is equivalent to

0 ≤ r = n− qd = n− q(ns +mt) = n(1 − qs)−mqt < d.
Hence r ∈ S and, since d is the smallest positive member of S, this im-
plies that r cannot be positive. Therefore r = 0 and so d divides n. By
a similar argument we show that d also divides m. Thus, d is a com-
mon divisor of n and m. In addition, if c is also a common divisor then
it must also be a divisor of d = ns +mt. Hence, d = gcd(n,m).
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To find gcd(n,m) we use Euclid’s algorithm (an algorithm is a proce-
dure for solving a problem in a finite number of well-defined steps). If
n > m, Euclid’s algorithm uses the division lemma to show that if r
is the remainder when n is divided by m then gcd(n,m) = gcd(m, r).
It then continues in this fashion until the value of the greatest common
divisor is obvious. We illustrate by an example.

Example 1.5a Suppose we want to find d = gcd(84, 544). Dividing
544 by 84 gives a quotient 6 and remainder 40; that is,

544 = 6 · 84 + 40.

Therefore, any common divisor of 84 and 544 is also a common divisor
of 84 and 40, and vice versa. As a result,

d = gcd(84, 544) = gcd(84, 40).

However,
84 = 2 · 40 + 4,

implying that d = gcd(40, 4). But

40 = 10 · 4 + 0,

yielding that d = gcd(4, 0) = 4.

Definition Any integer n ≥ 2 that has no divisors except for 1 and it-
self is said to be prime.

The following important theorem is known both as the prime factoriza-
tion theorem and as the fundamental theorem of arithmetic.

Theorem 1.5.1 (Fundamental Theorem of Arithmetic) Every integer
n > 1 is either a prime or a product of primes that, except for the order
of the prime factors, is unique.

Proof. We prove this by mathematical induction. The theorem is true
when n = 2 (since 2 is prime), so assume it to be true for all integers
from 2 through n−1, and consider n. If n is prime, then the theorem is
true for n; if n is not prime, then for integers a ≥ 2 and b ≥ 2 we have

n = ab.
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But since a and b are both less than n, it follows from the induction hy-
pothesis that each is the product of primes, thus showing that n is also
the product of primes.

To show that the prime factorization of n is unique, suppose that

n = p1 · p2 · · ·pr = q1 · q2 · · · qs,

where all the pi and qj are primes. Now, there are two cases.
Case 1: pi = qj for some i and j. In this case, dividing the LHS of

the preceding equation by pi and the RHS by qj yields

∏
k �=i
pk =

∏
k �=j
qk.

But since
∏
k �=i pk < n, it follows from the induction hypothesis that its

prime factorization must be unique. Hence r = s and so p1, . . . , pr is
just a rearrangement of q1, . . . , qs. Thus, the prime factorization for n is
unique in Case 1.

Case 2: pi �= qj for all i and j. Suppose that p1 > q1 (the argument
is similar when the inequality is reversed). Let

k = (p1 − q1)p2 · · ·pr
and note that

k = p1p2 · · ·pr − q1p2 · · ·pr
= q1 · q2 · · · qs − q1p2 · · ·pr
= q1(q2 · · · qs − p2 · · ·pr).

Thus, q1 divides k. Since k/q1 and p1 − q1 are both integers less than
n, it follows from the induction hypothesis that they can each be written
as a product of primes – say,

k

q1
= t1 · · · tb and p1 − q1 = s1 · · · sm.

Therefore,
k = s1 · · · sm · p2 · · ·pr = q1 · t1 · · · tb.

However, since k < n, it follows from the induction hypothesis that
the preceding prime factorizations must simply be rearrangements of
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each other. As a result, q1 must equal one of the sj or one of the pj .
But q1 cannot equal any of the sj, for they are the factors of p1 − q1

and q1 cannot divide p1 − q1 (since p1 and q1 are unequal primes).
Therefore, q1 must equal one of the pj, which shows that Case 2 cannot
occur. The result has already been established for Case 1, so the proof is
complete.

The prime factorization theorem yields an elegant proof of the result that√
n is irrational when n is not a perfect square.

Definition The positive integer n is said to be a perfect square if n =
k2 for some integer k.

Corollary 1.5.1 For any positive integer n,
√
n is irrational unless n

is a perfect square.

Proof. Suppose that, for integers a and b,

√
n = a

b
.

Squaring both sides shows that

a2 = nb2.

It follows by the uniqueness of prime factors that, in the prime factoriza-
tion of a2, each distinct prime factor appears an even number of times;
this holds likewise for the distinct prime factors of b2. But this means
that each of the distinct prime factors of n also appears an even num-
ber of times in its prime factorization – for otherwise there would be a
prime factor of nb2 that appears an odd number of times in its prime
factorization, which would contradict the uniqueness of the prime fac-
torization of a2. Therefore, n is a perfect square.

In fact, an almost identical proof can be use to prove a similar result for
rth roots.

Corollary 1.5.2 For positive integers n and r, n1/r is irrational unless
n = k r for some integer k.
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1.6 Exercises

Exercise 1.1 Show that the following statements are equivalent:

(a) A ⊂ B;
(b) AB = A;
(c) A ∪ B = B.

Exercise 1.2 Suppose that A and B are subsets of the universal set U .
Find simpler expressions for the following sets:

(a) A ∪ Ac;
(b) AAc;
(c) (Ac)c;
(d) A ∪ AcB;
(e) AB ∪ AcB.

Exercise 1.3 Prove DeMorgan’s laws,

(a) (A ∪ B)c = AcBc and
(b) (AB)c = Ac ∪ Bc.

Exercise 1.4 Verify that

AB ∪ C = (A ∪ C)(B ∪ C).

Exercise 1.5 If S = ⋃k
j=1Sj, give a sufficient condition so that, for

any numbers xi (i ∈ S),

∑
i∈S
xi =

k∑
j=1

∑
i∈Sj

xi.

Exercise 1.6 Evaluate
∑9
i=1 xi +

∑10
i=1 yi when xi = i3 + 4 and yi =

6 − i3.

Exercise 1.7 If xi,j = i + j 2, find
∑4
i=1

∑3
j=1 xi,j .
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Exercise 1.8 Simplify
n∑
i=1

i∑
j=1

i

j
.

Exercise 1.9 Evaluate

4∑
i=2

2i∑
j=i
(i2 − 2ij).

Exercise 1.10 Evaluate

2∑
i=1

4−i∑
j=1

j 2

i
.

Exercise 1.11 Evaluate
5∑
j=1

5∑
i=j

1

i
.

Exercise 1.12 Find an expression for
∑n
i=1 ix

i.

Hint: Start with the identity

n∑
i=1

ix i =
n∑
i=1

i∑
j=1

xi.

Exercise 1.13 With ai = i + 1 and xi = (−1)i, evaluate:

(a)
∑3
i=0 ai xi;

(b)
∏3
i=0 ai xi;

(c)
∑3
i=0(ai)

xi .

Exercise 1.14 Prove Bernoulli’s inequality,

(1 + x)n ≥ 1 + nx, x > −1.

Exercise 1.15 Show that, for any integer n ≥ 1, 5n − 1 is divisible
by 4.



30 Preliminaries

Exercise 1.16 Show that, for any integer n ≥ 1, 7n − 1 is divisible
by 6.

Exercise 1.17 Show that, for any integer n > 1, n3 − n is divisible
by 3.

Exercise 1.18 Give a direct argument to show that

1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · · + 1

n(n+ 1)
= n+ 1

n+ 2
.

Hint: What is 1
i
− 1
i+1?

Exercise 1.19 Show that

n∑
i=1

i2 = n(n+ 1)(2n+ 1)

6
, n ≥ 1.

Exercise 1.20 Show that

n∑
i=1

i3 =
( n∑
i=1

i

)2

, n ≥ 1.

Exercise 1.21 Find a general formula for 1 + 3 + 5 + · · · + (2n− 1)
and then prove it to be true by induction.

Exercise 1.22 Find a general formula for
∑n
i=1 i/(i + 1)! and then

prove it by induction. In the preceding expression, j! (called j factorial)
is defined by

j! =
j∏
i=1

i = 1 · 2 · 3 · · · j.

Exercise 1.23 Prove by mathematical induction that

1 +
n∑
i=1

ii! = (n+ 1)!, n ≥ 1.



Exercises 31

Now, prove the preceding directly by writing

n∑
i=1

ii! =
n∑
i=1

(i + 1 − 1)i! =
n∑
i=1

(i + 1)! −
n∑
i=1

i!.

Exercise 1.24 Let x1 = 1 and

xn+1 = 2xn + 1, n ≥ 1.

Find and prove a general formula for xn.

Exercise 1.25 Let x1 = 3 and

xn+1 = xn(xn + 2), n ≥ 1.

Find and prove a general formula for xn.

Exercise 1.26 LetN(n) denote the number of distinct sequences of 0s
and 1s in which no two adjacent values are both 1. EvaluateN(2), N(3),
N(4), N(5). Propose an expression for N(n) and then prove your con-
jecture by mathematical induction.

Exercise 1.27 From a set of m+1 distinct integers, show that we can
choose two whose difference is a multiple of m.

Exercise 1.28 Suppose that you have an unlimited supply of 10- and
13-cent stamps. Show that you can exactly total any postage amount
greater than or equal to 108 cents.

Exercise 1.29 Let A be a subset of a universal set U . The character-
istic function of A, denoted by fA, is defined by

fA(x) =
{

1 if x ∈A,
0 if x /∈A.

Prove the following:

(a) fAc(x) = 1 − fA(x);
(b) fA∪B(x) = fA(x)+ fB(x)− fAB(x);
(c) fAB(x) = fA(x)fB(x);
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(d) fA∪B(x) = max(fA(x), fB(x));
(e) fAB(x) = min(fA(x), fB(x)).

When is fA ≤ fB?

Exercise 1.30 If f and g are both increasing functions on the integers,
state whether (a) f + g and (b) fg are necessarily increasing. What if
both f and g are nonnegative? (That is, what if f(i) ≥ 0 and g(i) ≥ 0
for all integers i?)

Exercise 1.31 Show that, if f is convex, then −f is concave (and vice
versa).

Exercise 1.32 Prove Corollary 1.4.1.

Exercise 1.33 Show that the following function, having domain
{0,1, . . . , n− 1}, is convex:

f(j) = 1

n− j .

Exercise 1.34 Show that f(i) = ei (i = 0,1, . . . ) is convex.

Exercise 1.35 Draw a graph of a convex function that:

(a) is increasing;
(b) first decreases and then increases;
(c) first increases and then decreases.

Exercise 1.36 Repeat the preceding problem for a concave function.

Exercise 1.37 Show that if f and g are both nonnegative, increasing,
and convex functions, then fg is also convex.

Exercise 1.38 Let f and g be functions on the integers. With h = fg,
show that

 h(i) = f(i) g(i)+ g(i − 1) f(i).

Exercise 1.39 Find gcd(356,10148).
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Exercise 1.40 Find:

(a) gcd(12321, 8658)
(b) gcd(132, 473).

Exercise 1.41 If gcd(n,m) = 1 then we say that n and m are rela-
tively prime. Show that n andm are relatively prime if and only if there
are integers a and b such that

an+ bm = 1.

Exercise 1.42 If n = 73 · 54 · 35 and m = 105 · 105, find gcd(n,m).

Exercise 1.43 Show that if p is prime and is a divisor of ab then it
must also be a divisor of a or b.

Exercise 1.44 Prove Corollary 1.5.2.

Exercise 1.45 Suppose that player i had the most wins of any compe-
titior in a round-robin tournament (see Example 1.3g). Show that, for
every other player j, either i beat j or, for some k, i beat k and k beat j.



2. Combinatorial Analysis

2.1 Introduction

Many problems can be solved simply by counting the number of differ-
ent ways that a certain event can occur. In this chapter we show how
one can efficiently do the counting in a variety of situations. In Sec-
tion 2.2 we present the basic principle of counting, which is easily de-
rived and extremely useful. Permutations are considered in Section 2.3
and combinations in 2.4. In Section 2.5, we consider the number of dif-
ferent solutions of certain integral linear equalities. A counting method
based on inclusions and exclusions is presented in Section 2.6, and one
based on deriving and solving recursion equations is presented in Sec-
tion 2.7.

2.2 The Basic Principle of Counting

The following principle of counting will be basic to our work. Loosely
put, it states that if an experiment consists of two parts, the first of which
can result in any ofm possible outcomes and the second in any of n pos-
sible outcomes, then there are a total of mn possible outcomes of the
experiment.

Basic Principle of Counting Consider an experiment that consists of
two phases. If the first phase can result in any of m possible outcomes
and if, for each outcome of the first phase, there are n possible outcomes
of the second phase, then there are a total of mn possible outcomes of
the experiment.

Proof. The basic principle can be proved by enumerating all possible
outcomes of the experiment as follows:
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(1,1), (1, 2), . . . , (1, n)

(2,1), (2, 2), . . . , (2, n)

...

(m,1), (m, 2), . . . , (m, n),

where we say that the outcome is (i, j) if the first phase of the experi-
ment results in its ith possible outcome and the next phase then results
in the j th of its possible outcomes. Thus, the set of possible outcomes
can be represented in m rows, each row containing n outcomes, which
proves the result.

Example 2.2a A women’s group consists of twelve women, each of
whom has three children. If one woman and one of her children are to
be chosen, how many different choices are possible?

Solution. By regarding the choice of the woman as the outcome of the
first phase of the experiment and the subsequent choice of her child as
the outcome of the second phase, we see from the basic principle that
there are 12 · 3 = 36 possible choices.

When there are more than two phases to the experiment, the basic prin-
ciple can be generalized as follows.

Generalized Basic Principle of Counting Consider an experiment
that consists of r phases. If the first phase can result in any of n1 pos-
sible outcomes, and if for each outcome of the first phase there are n2

possible outcomes of the second phase, and if for each of the possible
outcomes of the first two phases there are n3 possible outcomes of the
third phase, and if . . . , then there are a total of n1 ·n2 · · · nr possible out-
comes of the experiment.

Example 2.2b A school planning committee consists of 3 freshmen,
4 sophomores, 4 juniors, and 5 seniors. If a subcommittee is to be
chosen that consists of one person from each class, how many choices
are possible?
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Solution. The choice of the subcommittee can be considered as the
outcome of a four-phase experiment, where phase 1 is the choice of
the freshmen member of the subcommittee, phase 2 is the choice of the
sophomore member, and so on. Hence, from the generalized version of
the basic principle of counting, it follows that there a total of 3 ·4 ·4 ·5 =
240 possible subcommittees.

Example 2.2c How many different seven-place license numbers are
possible if the first three places are to be occupied by letters and the final
four by numbers? What if no repetition of letters or numbers is allowed?

Solution. By the generalized basic principle, there are

26 · 26 · 26 · 10 · 10 · 10 · 10 = 175,760,000

possible license plates when repetitions are allowed. If repetitions are
not allowed, then there are only

26 · 25 · 24 · 10 · 9 · 8 · 7 = 78,624,000.

Example 2.2d How many different functions on n points are possible
if each functional value is either 0 or 1?

Solution. Let the points be denoted 1, 2, . . . , n. Since f(i) must have
one of two possible values, it follows from the generalized basic princi-
ple that there are a total of 2n possible functions.

2.3 Permutations

How many different ordered arrangements of the letters a, b, c are pos-
sible? By direct enumeration we see that there are six – namely, abc,
acb, bac, bca, cab, and cba. Each arrangement is known as a permu-
tation. Thus we see that there are a total of six permutations of a set of
three objects. This result could also have been obtained from the gener-
alized basic counting principle, since the first object in the permutation
is any of the three, the second can then be chosen from either of the re-
maining two, and the third object in the permutation is then the one that
remains. Thus there are 3 · 2 · 1 = 6 possible permutations.
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Suppose now that we have n objects. Reasoning in the same manner
as before, we see that there are a total of

n(n− 1)(n− 2) · · · 3 · 2 · 1 = n!
different permutations of n objects.

Example 2.3a An advanced mathematics class consists of six women
and four men. An examination is given, and the students are ranked ac-
cording to their performance. Assume that no two students obtain the
same score.

(a) How many different rankings are possible?
(b) If the women are ranked just among themselves and the men among

themselves, how many different rankings are possible?

Solution. As each ranking corresponds to a particular ordered arrange-
ment of the ten people, it follows that there are10! = 3,628,800 possible
rankings. On the other hand, since there are 6! possible rankings of the
women among themselves and 4! possible rankings of the men among
themselves, it follows from the basic principle of counting that there are
6! 4! = 17,280 possible rankings in case (b).

Example 2.3b Smith has twelve books to put on a bookshelf. Of these,
five are mathematics books, three are economics books, two are history
books, and two are language books. Smith wants to arrange these books
so that all the books dealing with the same subject are together on the
shelf. How many different arrangements are possible?

Solution. There are 5! 3! 2! 2! arrangements such that the mathemat-
ics books are first in line, the economics books are second, the history
books are third, and the language books are last. Similarly, for each
possible ordering of the subjects there are this number of different pos-
sible arrangements. Hence, as there are 4! possible orderings of the
subjects, we see that there are a total of 4! 5! 3! 2! 2! = 69,190 possible
arrangements.

The next example concerns the number of different permutations of a
set of objects when some of those objects are indistinguishable from one
another.
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Example 2.3c How many different letter arrangements can be formed
from the letters R,A,B,B,A?

Solution. First note that there are 5! permutations of the letters R,A1,

B1, B2, A2 when the two Bs and the two As are distinguished from
each other. However, consider any one of these permutations – say,
B1, A1, B2, A2, R. If we now permute theBs among themselves and the
As among themselves, then the resulting arrangement will still be of the
form BABAR. That is, each of the 2! 2! permutations

B1 A1 B2 A2 R

B2 A1 B1 A2 R

B1 A2 B2 A1 R

B2 A2 B1 A1 R

is still of the formBABAR. Hence, there are 5!/2! 2! = 30 possible let-
ter arrangements.

In general, the same reasoning as used in Example 2.3c shows that there
are

n!

n1! n2! · · · nr !
different permutations of n items, of which n1 are alike, n2 are alike,
. . . , and nr are alike, where n = ∑r

i=1ni.

Example 2.3d Suppose that we have a large collection of beads where
each bead is one of n different colors, and suppose that we want to use
the beads to make a necklace consisting of p beads. How many different
necklaces are there that use beads of at least two different colors when
p is a prime number?

Solution. A necklace can be made by first lining up p beads in a row
and then running a string through holes drilled in the center of the beads;
the ends of the string are then connected to form the necklace (see Fig-
ure 2.1).

There are np different possible color arrangements of p beads in a
row. Since n of these arrangements will consist of beads of the same
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Figure 2.1

color, it follows that there are np−n different multicolor arrangements.
However, some of these arrangements result in the same necklace. To
see how many different necklaces there are, consider any linear arrange-
ment of beads – say,

r, b, b, g, r, . . . , r,

where r stands for a red, b for a blue, and g for a green bead. If we
make the transformation of moving the first bead to the end of the line
to obtain the new arrangement

b, b, g, r, . . . , r, r,

then these two arrangements will result in the same necklace when the
ends of the string are connected. Now consider how many of these trans-
formations (obtained by moving the front end bead to the back of the
line) we can make before the original color arrangement is restored.
Let m be the smallest number of such transformations, and note that
m > 1 (since the string of beads is multicolored). It is easy to see that
the original color arrangement will be restored after (and only after) km
transformations, for any positive integer k. However, because there are
p beads in a string, it follows that the original arrangement is also ob-
tained after p transformations. Thus, p must be an integral multiple of
m, which implies (since p is prime) that m = p. Hence we can parti-
tion the np − n linear color arrangements into groups of size p, where
each arrangement in a group gives rise to the same necklace. In addi-
tion, we claim that necklaces from different groups are distinct. To see
this, note that two necklaces are identical when a rotation of one of the
necklaces transforms it into the other. However, since rotating a neck-
lace is equivalent to successive transformations of moving the first bead
to the end of the line before connecting its strings, we can conclude that
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necklaces in different groups are distinct. This shows that there are a
total of (np − n)/p different possible necklaces.

Since the number of possible necklaces of Example 2.3g must be an in-
teger, we obtain a famous result in number theory as follows.

Fermat’s Little Theorem If p is a prime number, then np − n is di-
visible by p for any integer n > 1.

2.4 Combinations

We are often interested in determining the number of different groups
of r items that can be formed from a total of n items. For instance,
how many different groups of size three can be formed from the set of
five letters A, B, C, D, E? To determine this number, note that there are
five different choices of the first member of the group, then four dif-
ferent choices for the second, and then three different choices for the
third. Hence, there are 5 ·4 ·3 different choices when the order in which
the items are selected is considered relevant. However, each group of
three – say, the group consisting of items A, B, and C – will be counted
3! times (since each of the orderings ABC, ACB, BAC, BCA, CAB,
CBA will be counted), so it follows that the total number of groups that
can be formed is

5 · 4 · 3

3 · 2 · 1
= 10.

In general, as n(n−1) · · · (n− r+1) represents the number of differ-
ent ways that a group of r items can be selected from n items when the
order of selection is considered relevant, and as each group of r items
will be counted r! times in this count, it follows that the number of dif-
ferent groups of r items that can be formed from a set of n items is

n(n− 1) · · · (n− r + 1)

r!
= n!

(n− r)! r! .

Definition For 0 ≤ r ≤ n, define
(
n

r

)
by

(
n

r

)
= n!

(n− r)! r! .
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(By convention, 0! is defined to equal 1 and so
(
n

0

) = (
n

n

) = 1. Also, we
take

(
n

r

)
to equal 0 when r > n.)

The notation
(
n

r

)
thus represents the number of different groups of r

items that can be chosen from a set of n items when the order in which
the items are selected is not considered relevant.

Example 2.4a A committee of four is to be chosen from a group of 16
people. How many different committees are possible?

Solution. There are
(

16

4

)
= 16 · 15 · 14 · 13

4 · 3 · 2 · 1
= 1,820

different committees.

Example 2.4b From a group of six women and five men, how many
different committees consisting of three women and two men can be
formed? How many can be formed if two of the women do not want to
serve together?

Solution. Since there are
(6

3

) = 20 possible groups of three women and(5
2

) = 10 possible groups of two men, it follows from the basic princi-
ple of counting that there are 200 possible committees of three women
and two men.

Supppose now that two of the women do not want to serve together.
There are

(4
3

) = 4 groups of three women not containing either of them
and

(2
1

)(4
2

) = 12 groups of three women that contain exactly one of
them, so it follows that there are a total of 16 groups of three women that
do not contain both of these women. Since there are 10 different groups
of two men, it follows from the basic principle that there are 160 possi-
ble committees in this case.

Example 2.4c A group of n components consists of m that are de-
fective (D) and n − m that are functional (F). These components are
to be lined up in such a fashion that no two defectives are next to each
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− + − + − + − + − + −
+ = functional
− = place for at most one defective

Figure 2.2

other. How many linear arrangements are possible if we do not distin-
guish among the functional components nor among the defective ones?
For instance, when n = 4 andm = 2 there are three such arrangements:
FDFD, DFDF, and DFFD.

Solution. Imagine that the n − m functional components are lined up
among themselves. If no two defectives are to be consecutive, then the
spaces between the functional components cannot contain more than
a single defective component. Therefore, we must choose m of the
n−m+1 possible positions between the n−m functional components
(see Figure 2.2) and place a defective component in each position cho-
sen. As a result, there are

(
n−m+1
m

)
possible orderings.

Example 2.4d The vector (x1, x2, . . . , xn) is said to be a word of length
n from the alphabetR = {1, . . . , r} if each xi ∈R. The distance between
the words x = (x1, . . . , xn) and y = (y1, . . . , yn) is defined to equal the
number of indices i for which xi �= yi. That is, with ρ(x, y) equal to the
distance between x and y, we have

ρ(x, y) =
n∑
i=1

I(xi, yi),

where I(x, y) is 0 when x = y and is 1 otherwise.

(a) How many n-letter words are there?
(b) How many n-letter words are within a distance k of a specified word

x? That is, how many n-letter words y are such that ρ(x, y) ≤ k?

Solution. Since each letter can be any of r possibilities, it follows from
the generalized basic principle of counting that there are r n distinct n-
letter words. To answer part (b), consider the number of n-letter words
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that are a distance i from x. There are
(
n

i

)
choices of the positions of

the i letters of x that are to be changed and then r − 1 choices for each
changed letter, so it follows that there are

(
n

i

)
(r−1)i such words. Hence,

the solution to part (b) is

k∑
i=1

(
n

i

)
(r − 1)i .

The following is a useful combinatorial identity:
(
n+ 1

i

)
=

(
n

i − 1

)
+

(
n

i

)
. (2.1)

Equation (2.1) can be proved analytically or by the following combina-
torial argument. Consider a group of n+ 1 objects and fix attention on
one of them, call it item number 1. Note that there are

(
n

i−1

)
subgroups

of size i that contain item number 1 (since such a subgroup is obtained
by choosing i − 1 of the remaining n items). Similarly, there are

(
n

i

)
subgroups of size i that do not contain item 1 (since such a subgroup is
obtained by choosing i of the remaining n items). As there are a total of(
n+1
i

)
subgroups of size i, equation (2.1) follows.

The quantity
(
n

r

)
is often called a binomial coefficient because of its

prominence in the binomial theorem.

Binomial Theorem

(x + y)n =
n∑
i=0

(
n

i

)
xiy n−i . (2.2)

We will present two proofs of the binomial theorem. The first uses
mathematical induction, whereas the second is based on combinatorial
considerations.

Induction Proof. When n = 1, equation (2.2) reduces to

x + y =
(

1

0

)
x0y1 +

(
1

1

)
x1y0 = y + x.

So assume that the equation is valid for n. Then,
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(x + y)n+1 = (x + y)(x + y)n

= (x + y)
n∑
k=0

(
n

k

)
xky n−k

=
n∑
k=0

(
n

k

)
xk+1y n−k +

n∑
k=0

(
n

k

)
xky n−k+1.

Letting i = k + 1 in the first sum and i = k in the second yields

(x + y)n+1 =
n+1∑
i=1

(
n

i − 1

)
xiy n−i+1 +

n∑
i=0

(
n

i

)
xiy n−i+1

= xn+1 +
n∑
i=1

[(
n

i − 1

)
+

(
n

i

)]
xiy n−i+1 + y n+1

= xn+1 +
n∑
i=1

(
n+ 1

i

)
xiy n−i+1 + y n+1

=
n+1∑
i=0

(
n+ 1

i

)
xiy n+1−i ,

where the next-to-last equality follows from (2.1). By mathematical in-
duction, the binomial theorem is proved.

Combinatorial Proof. Consider the product

(x1 + y1)(x2 + y2) · · · (xn + yn);

its expansion consists of the sum of 2n terms, where each term is the
product of n factors. Further, each of the 2n terms in the sum will have
as a factor exactly one of xj or yj for each j = 1, . . . , n. For instance,

(x1 + y1)(x2 + y2) = x1x2 + x1y2 + y1x2 + y1y2.

Now, how many of the 2n terms in the sum will have as factors k of the
xj and n− k of the yj? Because each term consisting of k of the xj and
n − k of the yj corresponds to a choice of a group of size k from the
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terms x1, x2, . . . , xn, it follows that there are
(
n

k

)
such terms. Thus, let-

ting xj = x and yj = y (j = 1, . . . , n), we see that

(x + y)n =
n∑
k=0

(
n

k

)
xky n−k

and the result is proved.

Example 2.4e Expand (x + y)3.

Solution.

(x + y)3 =
(

3

0

)
x0y3 +

(
3

1

)
x1y2 +

(
3

2

)
x2y1 +

(
3

3

)
x3y0

= y3 + 3xy2 + 3x2y + x3.

Example 2.4f How many subsets are there of a set consisting of n
elements?

Solution. Since there are
(
n

i

)
subsets of size i, the answer is

n∑
i=0

(
n

i

)
=

n∑
i=0

(
n

i

)
1i1n−i = (1 + 1)n = 2n.

The result could also have been obtained by assigning to each element
in the set either the value 0 or the value 1. To each assignment of val-
ues there corresponds, in an one-to-one fashion, a subset; namely, that
subset consisting of all elements having value 1. Since there are 2n pos-
sible assignments, the result follows. (It should be noted that we have
included as a subset the null set, which consists of no elements. Hence,
the number of nonempty subsets is 2n − 1.)

2.5 Counting the Number of Solutions

There are r n possible outcomes when n distinguishable balls are to be
distributed into r distinguishable urns. This follows because each ball
may be put into any of r possible urns. However, suppose now that the
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choose r − 1 of the spaces ∧
Figure 2.3

balls are indistinguishable from each other and consider how many out-
comes there are in this case. Since the balls are indistinguishable, it
follows that the outcome of the experiment of putting the n balls into r
distinguishable urns is the vector (x1, x2, . . . , xr), where xi is the num-
ber of balls that are put into urn i. Thus, the problem reduces to finding
the number of nonnegative integer-valued vectors (x1, . . . , xr) such that

x1 + x2 + · · · + xr = n.

In order to determine this number, start by considering the number of
positive integer-valued solutions of the preceding equation. Toward this
end, imagine that we have n indistinguishable items lined up and that
we want to divide them into r nonempty groups. To accomplish this,
we can select r − 1 of the n − 1 spaces between adjacent items as our
dividing points (see Figure 2.3).

For instance, let n = 6 and r = 3, and choose the two dividing points
as follows.

© © ∧ © © © ∧ ©

Then the vector obtained is x1 = 2, x2 = 3, x3 = 1. As there are(
n−1
r−1

)
possible selections of the dividing points, we obtain the following

proposition.

Proposition 2.5.1 There are
(
n−1
r−1

)
distinct positive integer-valued vec-

tors (x1, . . . , xn) satisfying

x1 + x2 + · · · + xr = n.

To obtain the number of nonnegative (as opposed to positive) solutions,
note that the number of nonnegative solutions of x1 + x2 +· · ·+ xr = n
is the same as the number of positive solutions of y1 + y2 + · · · + yr =
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n+r (this may be seen by letting yi = xi+1for i = 1, . . . , r). Therefore,
from Proposition 2.5.1 we obtain the following corollary.

Corollary 2.5.1 There are
(
n+r−1
r−1

)
distinct nonnegative integer-valued

vectors (x1, . . . , xn) satisfying

x1 + x2 + · · · + xr = n.

Example 2.5a How many distinct nonnegative integer-valued solu-
tions of x1 + x2 + x3 = 2 are possible?

Solution. There are
(4

2

) = 6 solutions: (0, 0, 2), (0, 2, 0), (2, 0, 0),
(1,1, 0), (1, 0,1), and (0,1,1).

Example 2.5b An investor has $25,000 to invest among four possi-
ble investments. Each investment must be in units of a thousand dollars.
If the entire amount is to be invested, how many different investment
strategies are possible? What if all the money need not be invested?

Solution. If we let xi denote the number of thousands of dollars to be
put into investment i (i = 1, 2, 3, 4) then, when all the money needs to
be invested, these quantities must satisfy

x1 + x2 + x3 + x4 = 25.

Hence, by Corollary 2.5.1, there are
(28

3

) = 3,276 possible investment
strategies. If not all the money needs to be invested, then (letting x5 de-
note the amount not invested) it follows that an investment strategy is a
nonnegative integer-valued vector (x1, . . . , x5) satisfying

x1 + x2 + x3 + x4 + x5 = 25.

By Corollary 2.5.1, there are now
(29

4

) = 23,751 possible investment
strategies.

2.6 The Inclusion–Exclusion Identity

For a finite setA, letN(A), called the cardinality of the setA (and often
denoted as |A|), denote the number of elements in A. The following
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identity relates the number of elements that are in either of two sets to
the number in each and the number in both:

N(A ∪ B) = N(A)+N(B)−N(AB). (2.3)

The preceding is easily established by noting that an element that is in
exactly one of the sets A and B is counted once on both sides of the
identity, whereas an element that is in both A and B adds 1 to the count
of the LHS and 1 + 1 − 1 = 1 to the count of the RHS.

An expression for the number of elements in the union of three sets
can be obtained by using (2.3) as follows:

N(A ∪ B ∪ C) = N((A ∪ B) ∪ C)
= N(A ∪ B)+N(C)−N((A ∪ B)C)
= N(A)+N(B)−N(AB)+N(C)−N(AC ∪ BC)
= N(A)+N(B)−N(AB)+N(C)

−N(AC)−N(BC)+N(ACBC)
= N(A)+N(B)+N(C)−N(AB)

−N(AC)−N(BC)+N(ABC).
By continuing in this fashion, it is not difficult to discern the general
pattern, which is given in the following proposition.

Proposition 2.6.1 (Inclusion–Exclusion Identity)

N

( n⋃
j=1

Aj

)

=
∑
N(Aj)−

∑ ∑
N(AjAk)

+
∑ ∑ ∑

N(AjAkAs)− · · · + (−1)n+1N(A1A2 · · ·An),

where the signs of the successive sums continually change. The first sum
is over all the n values of j ; the second is over all the

(
n

2

)
pairs j < k;

the third is over all the
(
n

3

)
pairs j < k < s; and so on.

Proof. The inclusion–exclusion identity can be proved either by math-
ematical induction or by the following argument. Consider any element
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that is in exactly r of the sets Aj, j = 1, . . . , n. Note that it is also in ex-
actly

(
r

2

)
of the setsAjAk (j < k) and in exactly

(
r

3

)
of the setsAjAkAs

(j < k < s) and so on. Hence, whereas such an element will be counted
once in the LHS of the identity, it will add

r −
(
r

2

)
+

(
r

3

)
− · · · =

r∑
j=1

(
r

j

)
(−1)j+1

to the count on the RHS. The result will then follow if we show that,
for r = 1, . . . , n,

1 =
r∑
j=1

(
r

j

)
(−1)j+1

or (equivalently) that

1 −
r∑
j=1

(
r

j

)
(−1)j+1 = 0

or

1 +
r∑
j=1

(
r

j

)
(−1)j+2 = 0,

which, since (−1)j+2 = (−1)j , is equivalent to

r∑
j=0

(
r

j

)
(−1)j = 0.

But the preceding follows from the binomial theorem, since

0 = (−1 + 1)r =
r∑
j=0

(
r

j

)
(−1)j .

Example 2.6a A total of 34 members of a club play tennis, 26 play
squash, and 15 play badminton. Furthermore, 20 play both tennis and
squash, 11 play both tennis and badminton, 8 play both squash and bad-
minton, and 4 play all three sports. How many club members play at
least one of these sports?

Solution. Let T, S, B denote the numbers that play tennis, squash, and
badminton, respectively. Then
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N(T ∪ S ∪ B) = N(T )+N(S)+N(B)−N(TS)
−N(TB)−N(SB)+N(TSB)

= 34 + 26 + 15 − 20 − 11 − 8 + 4

= 40.

Thus, a total of 40 club members play tennis or squash or badminton.

Example 2.6b Any permutation i1, i2, . . . , in of the numbers1, 2, . . . , n
is said to be a derangement if ij �= j for each j = 1, . . . , n. That is,
a derangement is a permutation in which none of the elements is in its
normal position. How many derangements are there?

Solution. Let us answer the preceding question by first determining the
number of permutations that are not derangements. To do so, let Aj
(j = 1, . . . , n) determine the set of all permutations i1, . . . , ij, . . . , in of
1, . . . , n for which ij = j. Since a permutation will not be a derange-
ment if and only if it is in Aj for some j, it follows that N

(⋃n
j=1Aj

)
is

the number of permutations that are not derangements. To determine its
value, we will use the inclusion–exclusion identity. Note first that there
are (n − i)! permutations that have i of their positions specified; as a
result, we see that

N(Aj) = (n− 1)!,

N(AjAk) = (n− 2)! (j < k),

N(AjAkAs) = (n− 3)! (j < k < s),

and so on. Hence, from the inclusion–exclusion identity we obtain that
the number of permutations that are not derangements is given by

N

( n⋃
j=1

Aj

)
=

(
n

1

)
(n− 1)! −

(
n

2

)
(n− 2)! + · · · + (−1)n+1

(
n

n

)
0!

=
n∑
i=1

(
n

i

)
(n− i)! (−1)i+1

= n!
n∑
i=1

(−1)i+1

i!
.
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The total number of permutations is n!, so it follows that there are

n! − n!
n∑
i=1

(−1)i+1

i!
= n!

(
1 −

n∑
i=1

(−1)i+1

i!

)

= n!
(

1 +
n∑
i=1

(−1)i+2

i!

)

= n!
n∑
i=0

(−1)i

i!

derangements.

Example 2.6c Coupon Collecting Problem Suppose that one is to col-
lect m coupons, each of which is one of n possible types. Let xi denote
the type of the ith coupon collected, and say that (x1, . . . , xm) is the out-
come of the experiment. How many outcomes are there for which at
least one coupon of each type is collected?

Solution. LetAj denote the set of outcomes for which none of the xi are
equal to j. That is, Aj is the set of outcomes in which a type-j coupon
is not obtained. Then N

(⋃n
j=1Aj

)
denotes the number of outcomes in

which a complete set is not obtained. We have

N(Aj) = (n− 1)m,

N(AjAk) = (n− 2)m (j < k),

N(AjAkAs) = (n− 3)m (j < k < s),

and so on, which follows because there are (n− i)m outcomes in which
the m coupons are restricted to come from only n − i types, i ≥ 1.
Hence, from the inclusion–exclusion identity we obtain that

N

( n⋃
j=1

Aj

)
=

n∑
i=1

(
n

i

)
(n− i)m(−1)i+1

=
n−1∑
j=0

(
n

n− j
)
j m(−1)n−j+1 (by letting j = n− i)

=
n−1∑
j=0

(
n

j

)
j m(−1)n−j+1.
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There are a total of nm outcomes, so the number of outcomes in which
a complete set is obtained is

nm −N
( n⋃
j=1

Aj

)
= nm +

n−1∑
j=0

(
n

j

)
j m(−1)n−j+2

=
n∑
j=0

(
n

j

)
j m(−1)n−j .

Whenm < n, it is impossible to obtain a complete set in the coupon col-
lecting problem, which gives rise to the following useful combinatorial
identity.

Corollary 2.6.1 If m < n, then

n∑
j=0

(
n

j

)
j m(−1)n−j = 0.

2.7 Using Recursion Equations

Suppose that we want to determine the number of different ways a cer-
tain type of procedure can be performed with n items. An approach
that is often fruitful is to let N(n) denote this quantity and then try to
derive an expression for N(n) in terms of the quantities N(i), i < n.
Starting with the value of N(1), we can use this recursion equation to
find N(2), then N(3), and so on. In so doing we are often able to dis-
cern a pattern that enables us to explicity findN(n), and even when this
is not possible the recursion approach is often a computationally effi-
cient way of evaluatingN(n).We will illustrate by a series of examples.
In Example 2.7a we solve the problem of Example 2.2d by the recursion
approach.

Example 2.7a How many subsets are there of S = {1, . . . , n}?

Solution. Let N(n) denote the number of subsets of the set {1, . . . , n},
and consider the relation between N(n) and N(n − 1). To begin, note
that the number of subsets of {1, . . . , n} is equal to the number of subsets
that do not contain the element n plus the number that do. The number
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of subsets that do not contain n is clearly equal to N(n − 1), the num-
ber of subsets of the remaining n − 1 elements. In addition, since any
subset containing the outcome n can be obtained by adding n to a sub-
set of the other n−1 elements, it also follows that there are N(n−1) of
these subsets. Hence we see that

N(n) = N(n− 1)+N(n− 1) = 2N(n− 1), n ≥ 2.

Since N(1) = 2 (the two subsets are ∅ and {1}), we obtain that

N(1) = 2,

N(2) = 2N(1) = 22,

N(3) = 2N(2) = 23.

It is now easy to see (and prove formally by mathematical induction)
that

N(n) = 2n.

Example 2.7b A “codeword” from the alphabet {0,1, 2, 3} is said to
be legitimate if it contains an even number of zeros. Thus, for instance,
the codeword 31010 is legitimate whereas 01010 is not. How many n-
letter codewords are legitimate?

Solution. LetN(n) denote the number of n-letter legitimate codewords.
Let us determine how many of these N(n) codewords start with each
value in the alphabet. If the first value is 0, then the remaining n − 1
values must constitute an (n − 1)-letter codeword with an odd number
of zeros. There are a total of 4n−1 different (n−1)-letter codewords, of
whichN(n−1) contain an even number of zeros, so it follows that there
are 4n−1−N(n−1) that contain an odd number of zeros. Thus, there are
4n−1 − N(n − 1) n-letter legitimate codewords that start with 0. Since
the number of n-letter legitimate codewords that start with 1 (or with 2
or 3) is equal to the number of (n− 1)-letter legitimate codewords, we
see that

N(n) = 4n−1 −N(n− 1)+ 3N(n− 1)

= 4n−1 + 2N(n− 1).
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Using this expression recursively – first with n = 2, then n = 3, and so
on – yields

N(2) = 4 + 2N(1),

N(3) = 42 + 2N(2) = 42 + 2 · 4 + 22N(1),

N(4) = 43 + 2N(3) = 43 + 2 · 42 + 22 · 4 + 23N(1),

N(5) = 44 + 2N(4) = 44 + 2 · 43 + 22 · 42 + 23 · 4 + 24N(1).

It is easy to see (the formal proof is left as an exercise) the pattern:
namely, that

N(n) = 4n−1 + 2 · 4n−2 + 22 · 4n−3 + · · · + 2n−2 · 4 + 2n−1N(1)

= 22n−2 + 22n−3 + · · · + 2n + 2n−1N(1)

= 2n[1 + 2 + · · · + 2n−2] + 2n−1N(1)

= 2n(2n−1 − 1)+ 2n−1N(1)

= 22n−1 − 2n + 2n−1N(1).

Since N(1) = 3, we see that

N(n) = 22n−1 + 2n−1.

An interesting combinatorial identity is obtained by noting that there
are exactly

(
n

r

)
3n−r codewords that contain r zeros. This follows be-

cause there are
(
n

r

)
locations for these zeros and each of the other n− r

digits can then be any of the other three values from the alphabet. Hence,
from the preceding formula for N(n), we obtain that

[n/2]∑
i=0

(
n

2i

)
3n−2i = 22n−1 + 2n−1,

where [n/2] denotes the largest integer less than or equal to n/2.

Example 2.7c A partition of the set S = {1, 2, . . . , n} is a set of mu-
tually exclusive nonempty subsets of S whose union is equal to S. That
is, we partition S when we split up its elements into mutually exclu-
sive subsets. If n = 1 then there is only a single partition, namely {1};
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if n = 2 then there are two possible partitions, {{1, 2}} and {{1}, {2}}. If
we let N(n) denote the number of partitions of a set S of size n, then
we can derive a recursive formula for N(n) as follows.

Focus on one of the elements of S, say element n, and let us deter-
mine the number of partitions of S for which element n is in a subset
of size k. Noting that there are

(
n−1
k−1

)
different choices of the other ele-

ments in its subset and N(n− k) ways of partitioning up the remaining
n− k elements (whereN(0) is taken to equal 1), it follows that there are
N(n− k)(n−1

k−1

)
such partitions. Hence, we see that

N(n) =
n∑
k=1

N(n− k)
(
n− 1

k − 1

)
. (2.4)

Starting with N(0) = N(1) = 1, we can recursively use the preceding
to calculate N(2), then N(3), and so on.

Example 2.7d In this example we use the recursion equation approach
to re-derive the expression given in Example 2.6b for the number of per-
mutations i1, i2, . . . , in of 1, 2, . . . , n for which ij �= j for each j =
1, . . . , n. Let N(n) denote the number of such permutations (called
derangements), and consider the number of them having i1 = 2. Such
derangements can have either:

(a) i1 = 2 and i2 = 1; or
(b) i1 = 2 and i2 �= 1.

The number of derangements of type (a) is equal to the number of
permutations i3, . . . , in of 3, . . . , n for which ij �= j (j = 3, . . . , n).
Consequently, there areN(n−2) derangements of type (a). The number
of derangements of type (b) is the number of permutations i2, i3, . . . , in
of 1, 3, . . . , n in which the j th element of the permutation is unequal
to the j th smallest of the values being permuted. Consequently, there
are N(n − 1) derangements of type (b). Therefore, there are a total of
N(n−1)+N(n−2) derangements that have i1 = 2. As there are clearly
an equal number that have i1 = j for any j = 3, . . . , n, we see that

N(n) = (n− 1)N(n− 1)+ (n− 1)N(n− 2). (2.5)

Now let F(n) be the fraction of all permutations that are derange-
ments; that is, let
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F(n) = N(n)

n!
.

The recursion equation (2.5) can be written as

n!F(n) = (n− 1)(n− 1)!F(n− 1)+ (n− 1)!F(n− 2)

= n!F(n− 1)− (n− 1)!F(n− 1)+ (n− 1)!F(n− 2)

or (equivalently) as

n![F(n)− F(n− 1)] = −(n− 1)![F(n− 1)− F(n− 2)]

or

F(n)− F(n− 1) = −1

n
[F(n− 1)− F(n− 2)].

Starting with F(1) = 0 and F(2) = 1/2, the preceding yields

F(3)− F(2) = −1

3
[F(2)− F(1)] = − 1

3!
,

F(4)− F(3) = −1

4
[F(3)− F(2)] = 1

4!
,

F(5)− F(4) = −1

5
[F(4)− F(3)] = − 1

5!
,

and so on. But this yields that

F(2) = 1/2!,

F(3) = 1/2! − 1/3!,

F(4) = 1/2! − 1/3! + 1/4!,

F(5) = 1/2! − 1/3! + 1/4! − 1/5!;

it is easy to see (and prove by induction) that, for n > 1,

F(n) = 1/2! − 1/3! + · · · + (−1)n/n!.

Therefore,

N(n) = n!
n∑
i=2

(−1)i

i!
= n!

n∑
i=0

(−1)i

i!
,

which verifies the result of Example 2.6b.
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Example 2.7e With S = {1, 2, . . . , n}, find the number of different
sets S1, . . . , Sk such that

S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ S.

Solution. Let Nk(n) be the desired number. Let us relate Nk(n) to
Nk(n − 1) by noting that any set of k increasing subsets of S can be
obtained by choosing a set of k increasing subsets of {1, 2, . . . , n − 1},
call them A1 ⊂ A2 ⊂ · · · ⊂ Ak, and then choosing a number j (j =
0, . . . , k). The k subsets of S are then obtained by adding the element
n to the largest j of these subsets. That is, if j > 0 then add n to the
subsets Ak−j+1, . . . , Ak; if j = 0, leave the subsets as is. As a result, it
follows that

Nk(n) = (k + 1)Nk(n− 1).

Starting with Nk(0) = 1 (when S has no elements, all Si must equal the
null set), we have

Nk(1) = k + 1,

Nk(2) = (k + 1)Nk(1) = (k + 1)2,

Nk(3) = (k + 1)Nk(2) = (k + 1)3;

it is easy to see that
Nk(n) = (k + 1)n.

Another way to solve this problem is to consider the number of se-
quences of sets S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ S for which Sk contains exactly
j elements. There areNk−1(j) sequences in which Sk consists of a spec-
ified set of j elements as well as

(
n

j

)
different choices of the j elements,

so it follows that there are
(
n

j

)
Nk−1(j) sequences in which Sk consists

of exactly j elements. But this implies that

Nk(n) =
n∑
j=0

(
n

j

)
Nk−1(j).

Starting with
N1(j) = 2j

(from Example 2.4f ), we obtain
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N2(n) =
n∑
j=0

(
n

j

)
2j = (2 + 1)n = 3n,

N3(n) =
n∑
j=0

(
n

j

)
3j = (3 + 1)n = 4n.

If we now take as the induction hypothesis that Nk−1(j) = kj for each
j = 0, . . . , n, it follows that

Nk(n) =
n∑
j=0

(
n

j

)
kj = (k + 1)n,

which completes the induction proof.

Example 2.7f Ballot Problem How many different linear orderings
are there of n red and m blue balls (n > m) in which there are more
red (R) than blue (B) balls among the first i for each i = 1, . . . , n+m,
considering same-colored balls to be indistinguishable from each other?
(For instance, when n = 3 andm = 2 there are two orderings: RRRBB
and RRBRB.)

Solution. Let N(n,m) denote the desired number of orderings. The
number of these orderings that have a red ball in the last position is
equal to the number of different orderings of n−1 red and m blue balls
in which there are always more red than blue balls among the first i for
each i = 1, . . . , n+m−1, so it follows that there are N(n−1, m) such
orderings. Similarly, there areN(n,m−1) orderings of the desired type
that have a blue ball in the last position. Therefore,

N(n,m) = N(n− 1, m)+N(n,m− 1). (2.6)

Starting withN(1, 0) = 1andN(i, i) = 0, equation (2.6) can be used re-
cursively to find the values ofN(n,m) for specified n andm. However,
to obtain a general formula it is more useful to work with the quantities
F(n,m), defined by

F(n,m) = N(n,m)(
n+m
n

) .
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There are
(
n+m
n

)
different linear orderings of the n red and m blue balls

(since there are that number of different choices of the n locations to put
the red balls). Hence we see that F(n,m) is the fraction of all orderings
that are of the type being considered.

Equation (2.6) can be written as
(
n+m
n

)
F(n,m) =

(
n+m− 1

n− 1

)
F(n− 1, m)

+
(
n+m− 1

n

)
F(n,m− 1)

or (equivalently)

(n+m)!
n!m!

F(n,m) = (n+m− 1)!

(n− 1)!m!
F(n− 1, m)

+ (n+m− 1)!

n! (m− 1)!
F(n,m− 1)

or

F(n,m) = n

n+mF(n− 1, m)+ m

n+mF(n,m− 1). (2.7)

We will now show, by induction on the quantity k = n + m, that the
solution to (2.7) is

F(n,m) = n−m
n+m, n ≥ m.

To begin, let Sk be the statement that F(n,m) = (n − m)/(n + m)
wheneverm ≤ n and n+m = k. Note that the formula is correct when
k = 1 (since F(1, 0) = 1 and F(1,1) = 0). Suppose now that all the
statements S1, . . . , Sk are true, and suppose that m ≤ n and n + m =
k+1. Clearly F(n,m) = 0 when n = m, so suppose that n > m. Then,
by equation (2.7),

F(n,m) = n

n+mF(n− 1, m)+ m

n+mF(n,m− 1)

= n

n+m
n−m− 1

n+m− 1
+ m

n+m
n−m+ 1

n+m− 1

= (n+m)(n−m)− n+m
(n+m)(n+m− 1)
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= (n−m)(n+m− 1)

(n+m)(n+m− 1)

= n−m
n+m

and the induction proof is complete. (Note that the second equality fol-
lows from the induction hypothesis, since n−1+m = k.) Therefore, the
number of orderings that always have more red than blue balls among
the first i (for each i = 1, . . . , n+m) is

N(n,m) = n−m
n+m

(
n+m
n

)
.

This is known as the “ballot” problem because if we consider an elec-
tion between two candidates then we can view a red ball as a ballot for
candidate A and a blue ball as a ballot for candidate B. Then N(n,m)
would represent the number of different counts of the n + m ballots, n
for A and m for B, in which A is always leading.

Example 2.7g Find the number of vectors (x1, x2, x3) where each xi
is an integer and 1 ≤ x1 ≤ x2 ≤ x3 ≤ 10.

Solution. Let us generalize the question and letNk(n) denote the num-
ber of vectors (x1, . . . , xk) such that 1 ≤ x1 ≤ x2 ≤ · · · ≤ xk ≤ n. To
obtain a recursion formula for Nk(n), consider the number of such vec-
tors in which xk = j. Since any such vector must satisfy 1 ≤ x1 ≤ x2 ≤
· · · ≤ xk−1 ≤ j, it follows that there areNk−1(j) such vectors. Since xk
must equal one of the values 1, . . . , n, we see that

Nk(n) =
n∑
j=1

Nk−1(j).

Starting with N1(n) = n, we obtain

N1(n) = n,

N2(n) =
n∑
j=1

N1(j)

=
n∑
j=1

j

= n(n+ 1)/2,
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N3(n) =
n∑
j=1

N2(j)

=
n∑
j=1

j(j + 1)

2

=
n∑
j=1

j 2

2
+

n∑
j=1

j

2

= n(n+ 1)(2n+ 1)

12
+ n(n+ 1)

4
,

where the final equality used the identity

n∑
j=1

j 2 = n(n+ 1)(2n+ 1)

6
.

Thus, the number of possible vectors of the type wanted is N3(10) =
220.

2.8 The Pigeonhole Principle

The pigeonhole principle states that if more than n objects are to be
placed in n pigeonholes then at least one pigeonhole will contain more
than one object. That this intuitively obvious result can be quite useful
is illustrated by the following examples.

Example 2.8a All 82 entering students of a certain high school take
courses in English, history, math, and science. If there are three sec-
tions of each of these four subjects, show that there are two students that
have all four classes together.

Solution. Arbitrarily number the different sections of each subject as
sections 1, 2, and 3. Now classify a student as being of type i, j, k, r
if the student is in English section i, history section j, math section k,
and science section r. Then, since there are 82 students and only 34 =
81 classifications, it follows from the pigeonhole principle that at least
two students will have the same classification.
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Figure 2.4

Example 2.8b Five points are located inside a square whose sides are
of length 2. Show that two of the points are within a distance

√
2 of each

other.

Solution. Divide up the square into four square regions of area 1, as in-
dicated in Figure 2.4. By the pigeonhole principle, it follows that at least
one of these regions will contain at least two points. The result now fol-
lows since two points in a square of radius 1 cannot be further apart then
the length of the diagonal of that square, which (by the Pythagorean the-
orem) is

√
2.

The following application of the pigeonhole principle is considered to
be classical.

Example 2.8c Show that every sequence of at least n2 + 1 distinct
numbers contains either an increasing or a decreasing subsequence of
size n+ 1.

Solution. Let the sequence be x1, . . . , xi, . . . , xN, where N ≥ n2 + 1.
Let ai and bi be, respectively, the lengths of the longest increasing and
decreasing subsequences starting with xi. If any of the ai or bi is at
least n + 1 then we are finished, so suppose that each of these values
is one of the numbers 1, 2, . . . , n. Consequently, each pair (ai, bi) can
have n2 possible values. As there are N ≥ n2 + 1 pairs, it follows from
the pigeonhole principle that at least two of the pairs have the same val-
ues. That is, for some i < j we have ai = aj and bi = bj . However, if
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xi < xj then the subsequence starting with xi and then continuing with
the longest increasing subsequence starting with xj will be an increasing
subsequence that starts with xi and is of length 1 + aj = 1 + ai, which
contradicts our assumption that ai is the length of the longest increasing
subsequence starting at xi. Similarly, if xi > xj, then the subsequence
starting with xi and continuing with the longest decreasing subsequence
beginning with xj will be an decreasing subsequence that starts with xi
and is of length 1 + bi, which is a contradiction. Thus, assuming that
there is no monotone subsequence of size n+1 leads to a contradiction,
which proves the result.

A more general (though no less obvious) version of the pigeonhole prin-
ciple states that if more than nk objects are placed in n pigeonholes, then
at least one pigeonhole will contain more than k objects.

Example 2.8d Suppose that 14 of the 48 beads of a necklace are col-
ored. Show that there is a string of seven consecutive beads of which at
least three are colored.

Solution. To begin, note that it is not possible for every string of six
consecutive beads to contain at least two that are colored. For since the
48 beads consist of eight nonoverlapping strings of six beads each, this
would require at least 16 colored beads. Thus, we can assume that there
is a string of six consecutive beads that contains fewer than two colored
ones. But this means that the remaining string of 42 beads contains more
than 12 colored ones. Consequently, if we divide these 42 beads into six
consecutive nonoverlapping strings of seven each, then it follows from
the pigeonhole principle that at least one of these nonoverlapping strings
contains more than two colored beads.

2.9 Exercises

Exercise 2.1 How many different seven-place license numbers are
possible if the first two places are for letters and the other five are for
numbers? What if no letter or number can be repeated?

Exercise 2.2 Use mathematical induction to prove the generalized
basic principle of counting.
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Exercise 2.3 A simplified model of the stock market assumes that, in
each period, the price of a stock can do one of the following: go up 1,
go down 1, or remain the same. Under this model, how many different
possible results can a stock have over a ten-day period?

Exercise 2.4 In how many ways can four boys and four girls sit in a
row?

(a) What if the boys and the girls are each to sit together?
(b) What if only the boys must sit together?
(c) What if no two people of the same sex are allowed to sit together?

Exercise 2.5 How many different letter arrangements can be made
from the letters in: (a) PEPPER; (b) FLUKE; (c) PROPOSE; (d) MIS-
SISSIPPI?

Exercise 2.6 A child has 14 blocks, of which six are black, four are
yellow, three are green, and one is yellow. If the blocks are put in a row,
how many arrangements are possible?

Exercise 2.7 If 10! = 3,628,800, then what is 11! equal to?

Exercise 2.8 How many permutations of 1, 2, . . . , 9 have exactly three
digits between 1 and 2?

Exercise 2.9 How many permutations are there of1, 2, . . . , n for which
1 precedes 2 precedes 3?

Exercise 2.10 How many permutations of1, 2, . . . , 2n have every even
number in an even-numbered position?

Exercise 2.11 How many subsets of {1, 2, . . . , 2n} contain exactly k
odd numbers?

Exercise 2.12 List how many ways five novels, four mathematics
books, and two chemistry books can be linearly arranged on a book-
shelf if all the books are distinct and:

(a) the books can be arranged in any order;
(b) the mathematics books must be together and the novels must be

together;
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(c) the novels must be together, but the other books can be arranged in
any order.

Exercise 2.13 You have twelve different postcards that you want to
send to five friends, each of whom can be sent any number of postcards.
How many different choices do you have?

Exercise 2.14 Use the definition of
(
n

i

)
to show that(

n

j

)
=

(
n

n− j
)

;

then give a combinatorial explanation for this identity.

Exercise 2.15 If p is prime, show that it divides
(
p

i

)
for every i =

1, . . . , p − 1.

Exercise 2.16 A dance class consists of 22 students, 10 women and 12
men. If five men and five women are to be chosen and then paired off,
how may results are possible?

Exercise 2.17 If 2n people are to be divided into n pairs of two each,
how many different divisions are possible?

Exercise 2.18 A student must sell two books from a collection of
six mathematics, seven science, and four economics books. Show how
many choices are possible if

(a) both books must be on the same subject;
(b) the books are to be on different subjects.

Exercise 2.19 Give a combinatorial explanation of the fact that there
are

(
n

k

)
different linear arrangements of n balls of which k are black and

n− k are white.

Exercise 2.20 Determine the number of vectors (x1, . . . , xn) such that
(i) each xi is either 0 or 1 and (ii)

n∑
i=1

xi ≥ k.

Exercise 2.21 How many vectors (x1, . . . , xk) are there for which each
xi is a positive integer such that 1 ≤ xi ≤ n and x1 < x2 < · · · < xk?
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Exercise 2.22 Give a combinatorial argument for the identity
(
n+m
r

)
=

(
n

0

)(
m

r

)
+

(
n

1

)(
m

r − 1

)
+ · · · +

(
n

r

)(
m

0

)
.

Hint: Imagine that a group of size r must be chosen from a set of n
men and m women.

Exercise 2.23 A committee of size k,with one of the committee mem-
bers designated as chairperson, is to be chosen from a set of n people.

(a) By focusing first on the choice of the committee and then on the
choice of the chair, argue that there are

(
n

k

)
k possible choices.

(b) Focusing first on nonchair committee members and then on the
chairperson, argue that there are

(
n

k−1

)
(n− k+1) possible choices.

(c) Focusing first on the choice of the chair and then on the choice of
the other committee members, argue that there are n

(
n−1
k−1

)
possible

choices.
(d) Conclude from the preceding that

k

(
n

k

)
= (n− k + 1)

(
n

k − 1

)
= n

(
n− 1

k − 1

)
.

(e) Use the factorial definition of
(
n

r

)
to verify the identity in part (d).

Exercise 2.24 The following expression is known as Fermat’s combi-
natorial identity: (

n

k

)
=

n∑
i=k

(
i − 1

k − 1

)
.

Give a combinatorial argument for this identity.
Hint: Consider the set of numbers from 1 to n. How many subsets of

size k have i as their highest-numbered member?

Exercise 2.25 An elevator starts at the basement with eight passen-
gers (not including the elevator operator) and discharges them all by the
time it reaches the top (sixth) floor. In how many ways could the opera-
tor have perceived the people leaving the elevator if all people look alike
to him? What if the eight people consisted of five women and three men
(assuming the operator could distinguish a woman from a man)?
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Exercise 2.26 Determine the number of vectors (x1, . . . , xn) such that
each xi is a nonnegative integer and

n∑
i=1

xi ≤ k.

Exercise 2.27 A total of $20,000 must be invested among four possible
opportunities. Each investment must be in integral units of $1 thousand,
and the minimal investments for the opportunities are $2, $2, $3, and $4
thousand, respectively. State how many different investment strategies
are possible if:

(a) an investment must be made in each opportunity;
(b) investments must be made in at least three of the four opportunities.

Exercise 2.28 All thirteen staff members in a United Nations office
in New York know at least one of the languages French, Spanish, or
German. Ten of them know Spanish, seven know German, six know
French, five know both Spanish and German, four know both Spanish
and French, and three know both French and German.

(a) How many know all three languages?
(b) How many know exactly two of the three languages?
(c) How many know exactly one of the three languages?

Exercise 2.29 A system is composed of five components, each of
which is either working or failed. Consider an experiment that con-
sists of observing the status of each component, and let the outcome
of the experiment be given by the vector (x1, x2, x3, x4, x5), where xi
is equal to 1 if component i is working or equal to 0 if component i
failed.

(a) How many outcomes are possible?
(b) Suppose that the system will work if components 1 and 2 are both

working, or if components 2 and 3 are both working, or if compo-
nents 1, 3, and 5 are all working. Let W be the set of all outcomes
for which the system works. How many outcomes are inW?

Exercise 2.30 Find the number of positive integers less than or equal
to 1,000 that are divisible by 3, 5, or 7.



68 Combinatorial Analysis

Exercise 2.31 In Example 2.6c, letN(n,m) denote the number of out-
comes in which at least one coupon of each type is collected. Derive the
recursion equation

N(n,m) =
m∑
j=1

(
m

j

)
N(n− 1, m− j).

Exercise 2.32 In Example 2.7b, show by mathematical induction that

N(n) = 22n−1 + 2n−1.

Exercise 2.33 Use the recursion equation (2.4) to derive the number
of partitions of a set consisting of four elements.

Exercise 2.34 Derive a recursion equation for the number of strings
of 0s and 1s of length n in which the substring 0, 0 never appears. Use
your equation to find the desired number when n = 8.

Hint: How many such strings begin with 0? How many with 1?

Exercise 2.35 Derive a recursion for the number of subsets of the set
{1, 2, . . . , n} that do not contain consecutive integers, and then use it to
find the answer when n = 7.

Hint: How many such subsets have j as their largest element?

Exercise 2.36 Consider a tournament of n contestants in which the
outcome of the tournament is an ordering of these contestants (ties are
allowed). That is, the outcome partitions the players into groups, with
the first group consisting of the players that tied for first place, the next
group being those that tied for the next best position, and so on. Let
N(n) denote the number of different possible outcomes. For instance,
N(2) = 3 because – in a tournament with two contestants – each player
could be uniquely first or the players could tie for first place.

(a) List all possible outcomes when n = 3.
(b) WithN(0) defined to equal 1, argue (without any computations) that

N(n) =
n∑
i=1

(
n

i

)
N(n− i).

Hint: How many outcomes are there in which i players tie for
last place?
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(c) Show that the formula of part (b) is equivalent to

N(n) =
n−1∑
i=1

(
n

i

)
N(i).

(d) Use the preceding to find N(3) and N(4).

Exercise 2.37 For any permutation i1, i2, . . . , in of 1, 2, . . . , n, we say
that the ordered pair (i, j) is an inversion of the permutation if i < j
and j precedes i in the permutation. Let Nk(n) denote the number of
permutations of 1, 2, . . . , n that have exactly k inversions. Argue that

Nk(n+ 1) = Nk(n)+Nk−1(n+ 1).

Exercise 2.38 Say that an n-digit sequence of 0s and1s is acceptable if
it has the property that each 0 in the sequence is next to at least one other
0, and let A(n) denote the number of such sequences. Thus A(1) = 1,
since the only acceptable one-digit sequence is 1; and A(2) = 2, since
the acceptable two-digit sequences are 1,1 and 0, 0.

(a) Find A(3).
(b) With A(0) defined to equal 1, show that

A(n) = 1 + A(n− 1)+
n∑
i=3

A(n− i)

for n ≥ 3.
Hint: How many acceptable sequences have their first 1 appear-

ing in position i?
(c) Show that, for n ≥ 3,

A(n+ 1) = 2A(n)− A(n− 1)+ A(n− 2).

(d) Find A(8).

Exercise 2.39 From a set of 121 female mice, show that there must
either be (i) a set of twelve mice consisting of daughter, mother, grand-
mother, great-grandmother, . . . or (ii) a set of eleven mice no one of
which is the mother of any other.

Exercise 2.40 If 46 pigeons are put into 10 pigeonholes, show that,
for some i, there are at least i pigeons in pigeonhole number i.



3. Probability

3.1 Probabilities and Events

Consider an experiment and let S, called the sample space, be the set
of all possible outcomes. If there arem possible outcomes of the exper-
iment, then we will generally number them 1 through m, and so S =
{1, 2, . . . , m}. (However, when dealing with specific examples, we will
usually give more descriptive names to the outcomes.)

Example 3.1a (i) Let the experiment consist of the flipping of a coin,
and let the outcome be the side that lands face up. Thus, the sample
space of this experiment is

S = {h, t},

where the outcome is h if the coin shows heads and t if it shows tails.
(ii) If the experiment consists of rolling a pair of dice and the outcome

is the pair (i, j), where i is the value that appears on the first die and j
the value on the second, then the sample space consists of the following
36 outcomes:

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6).

(iii) If the experiment consists of a horse race of r horses (numbered
1, 2, 3, . . . , r) and the outcome is the order of finish of these horses, then
the sample space is
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S = {all orderings of the numbers 1, 2, 3, . . . , r}.
For instance, if r = 4, then the outcome is (1, 4, 2, 3) if the number-1
horse comes in first, number 4 comes in second, number 2 comes in
third, and number 3 comes in fourth.

Consider again an experiment with the sample space S = {1, 2, . . . , m}.
We will now suppose that there are numbers p1, . . . , pm with

pi ≥ 0, i = 1, . . . , m, and
m∑
i=1

pi = 1

and such that pi is the probability that i is the outcome of the exper-
iment.

Example 3.1b In Example 3.1a(i), the coin is said to be fair or un-
biased if it is equally likely to land on heads as on tails. Thus, for a fair
coin we would have that

ph = pt = 1/2.

If the coin were biased such that heads were twice as likely to appear as
tails, then we would have

ph = 2/3, pt = 1/3.

If an unbiased pair of dice were rolled in Example 3.1a(ii), then all pos-
sible outcomes would be equally likely and so

p(i,j) = 1/36, 1 ≤ i ≤ 6, 1 ≤ j ≤ 6.

If r = 3 in Example 3.1a(iii), then we suppose that we are given the six
nonnegative numbers that sum to 1:

p1,2,3, p1,3,2, p2,1,3, p2,3,1, p3,1,2, p3,2,1,

where pi,j,k represents the probability that horse i comes in first, horse
j second, and horse k third.

Any set of possible outcomes of the experiment is called an event. That
is, an event is a subset of S, the set of all possible outcomes. For any
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event A, we say that A occurs whenever the outcome of the experiment
is a point in A. If we let P(A) denote the probability that the event A
occurs, then we can determine it by using the equation

P(A) =
∑
i∈A
pi. (3.1)

Note that this implies

P(S) =
∑
i

pi = 1. (3.2)

That is, the probability that the outcome of the experiment is in the sam-
ple space is equal to 1, which – since S consists of all possible outcomes
of the experiment – is the desired result.

Example 3.1c Suppose that the experiment consists of rolling a pair
of fair dice. If A is the event that the sum of the dice is equal to 7, then

A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6,1)}
and

P(A) = 6/36 = 1/6.

If we let B be the event that the sum is 8, then

P(B) = p(2,6) + p(3,5) + p(4,4) + p(5,3) + p(6,2) = 5/36.

In a horse race between three horses, if we let A denote the event that
horse number 1 wins then A = {(1, 2, 3), (1, 3, 2)} and

P(A) = p1,2,3 + p1,3,2.

For any event A, let Ac, called the complement of A, be the event con-
taining all those outcomes in S that are not in A. That is, Ac occurs if
and only if A does not. Since

1 =
∑
i

pi

=
∑
i∈A
pi +

∑
i /∈A
pi

= P(A)+ P(Ac),
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we see that
P(Ac) = 1 − P(A). (3.3)

That is, the probability that the outcome is not in A is 1 minus the
probability that it is in A. The complement of the sample space S is the
null event ∅, which contains no outcomes. Since ∅ = Sc, we obtain
from equations (3.2) and (3.3) that

P(∅) = 0.

Events are just subsets of the sample space S, so ifA andB are events
then their union A ∪ B is the event consisting of all outcomes that are
either in A or in B. Their intersection AB (sometimes written A ∩ B)
is the event consisting of all outcomes that are both in A and in B.

Example 3.1d Let the experiment consist of rolling a pair of dice. If
A is the event that the sum is 10 and B is the event that both dice land
on even numbers greater than 3, then

A = {(4, 6), (5, 5), (6, 4)} and B = {(4, 4), (4, 6), (6, 4), (6, 6)}.

Therefore,

A ∪ B = {(4, 4), (4, 6), (5, 5), (6, 4), (6, 6)},
AB = {(4, 6), (6, 4)}.

For any events A and B, we can write

P(A ∪ B) =
∑
i∈A∪B

pi,

P(A) =
∑
i∈A
pi,

P(B) =
∑
i∈B
pi.

Since every outcome in both A and B is counted twice in P(A)+P(B)
and only once in P(A∪B), we obtain the following result, often called
the addition theorem of probability.
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Proposition 3.1.1

P(A ∪ B) = P(A)+ P(B)− P(AB).

Thus, the probability that the outcome of the experiment is either in A
or in B is equal to the probability that it is in A plus the probability that
it is in B minus the probability that it is in both A and B.

If AB = ∅, we say that A and B are mutually exclusive or disjoint.
That is, events are mutually exclusive if they cannot both occur. Since
P(∅) = 0, it follows from Proposition 3.1.1 that, whenA and B are mu-
tually exclusive,

P(A ∪ B) = P(A)+ P(B).

3.2 Probability Experiments Having Equally
Likely Outcomes

For many experiments it is natural to assume that all outcomes in the
sample space are equally likely to occur. That is, if the sample space is
S = {1, . . . , m} then it is often natural to suppose that pi = 1/m for i =
1, . . . , m. As a result, for any event A we have

P(A) =
∑
i∈A
pi = |A|

m
,

where |A| is the number of outcomes in A. In other words, if each out-
come is equally likely, then the probability that the outcome is in A is
equal to the ratio of the number of outcomes of S that are in A to the
number of outcomes in S.

Example 3.2a If a pair of fair dice is rolled, what is the probability
that the sum of the dice is one of the values 2, 3, or 12?

Solution. If A is the event that the sum is 2, 3, or 12, then

A = {(1,1), (1, 2), (2,1), (6, 6)}.
Therefore,

P(A) = 4/36 = 1/9.
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Example 3.2b A five-card poker hand is said to be a “full house” if
three of its cards are the same denomination and the other two are the
same denomination. (That is, a full house is three of a kind plus a pair.)
If you are dealt five cards from a well-shuffled deck of 52 playing cards,
what is the probability that you are dealt a full house?

Solution. Let us assume that, in a well-shuffled deck, all
(52

5

)
hands

are equally likely. To determine the number of these hands that are full
houses, note first that there 13 possible choices for the denomination of
the three of a kind and, for a given choice of denomination, there are

(4
3

)
choices of the three cards of that denomination. Also, given the choice
of the denomination of the trio, there are 12 possible choices for the de-
nomination of the pair, and then

(4
2

)
choices of the two cards. Thus, we

see that

P(full house) = 13 · (4
3

) · 12 · (4
2

)
(52

5

) ≈ 0.0014.

Our next example illustrates that probability results can be quite surpris-
ing when initially encountered.

Example 3.2c If n people are present in a room, what is the probabil-
ity that no two of them celebrate their birthday on the same day of the
year? How large need n be so that this probability is less than 1/2?

Solution. Each person can celebrate his or her birthday on any one of
365 days, so there are (365)n possible outcomes. (We assume here that
nobody was born on February 29.) The number of these outcomes that
result in no identical birthdays is 365 ·364 ·363 · · · (365− (n−1)). This
can be seen by noting that there will be no matches if the first birthday
is any of the 365 days, the next birthday is then any of the remaining
364 days, the next any of the remaining 363 days, and so on. Assuming
that each outcome is equally likely, we have that

P(no birthday matches) = 365 · 364 · 363 · · · (365 − (n− 1))

365n
.

People are often surprised to hear that this probability is less than 1/2
when n = 23. That is, if there are 23 (or more) people in a room then
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the probability that at least two of them share the same birthday exceeds
1/2. This appears surprising, since 23 seems small in comparison with
365. However, every pair of individuals has probability 365/(365)2 =
1/365 of sharing the same birthday, and in a group of 23 people there
are

(23
2

) = 253 distinct pairs. Looked at this way, the result no longer
seems surprising.

Example 3.2d If three balls are randomly drawn from a bowl that con-
tains seven white and five black balls, what is the probability that one
of the drawn balls is white and the other two black?

Solution. If we regard the order in which the balls are selected as being
relevant, then the sample space consists of 12 · 11 · 10 = 1,320 distinct
outcomes. Furthermore, there are 7 · 5 · 4 = 140 outcomes in which
the first ball selected is white and the other two black, as well as the
same number of outcomes for which the second ball is white and the
others black, and the same number for which the third is white and the
others black. Hence, assuming that “randomly drawn” means that each
of the outcomes in the sample space is equally likely to occur, the de-
sired probability is

3 · 140

1,320
= 7

22
.

This problem could also have been solved by regarding the outcome
of the experiment as the unordered set of balls drawn. From this point
of view, there are

(12
3

)
outcomes in the sample space, with

(7
1

)(5
2

)
of

these outcomes resulting in the selection of one white and two black
balls. Now each set of three balls corresponds to 3! outcomes when the
order of selection is noted. Hence, if all outcomes are assumed to be
equally likely when the order of selection is taken into account, they
should remain equally likely when the order is no longer considered rel-
evant. Using this latter representation of the experiment thus shows that
the desired probability is

(7
1

)(5
2

)
(12

3

) = 7

22
,

which (of course) agrees with the previously obtained answer.
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Example 3.2e A committee of four is to be selected from a group of
six men and twelve women. If the selection is random, what is the prob-
ability that the committee consists of two men and two women?

Solution. Assuming that the selection being “random” means that each
of the

(18
4

)
possible committees is equally likely to be selected, the de-

sired probability is (6
2

)(12
2

)
(18

4

) = 11

34
.

3.3 Conditional Probability

Suppose that each of two teams is to produce an item, and that the two
items produced will be rated as either acceptable or unacceptable. The
sample space of this experiment will then consist of the following four
outcomes:

S = {(a, a), (a, u), (u, a), (u, u)},

where, for example, (a, u)means that the first team produced an accept-
able item and the second team an unacceptable one. Suppose that the
probabilities of these outcomes are as follows:

P(a, a) = 0.54,

P(a, u) = 0.28,

P(u, a) = 0.14,

P(u, u) = 0.04.

If we are given the information that exactly one of the items produced
was acceptable, what is the probability that it was the one produced by
the first team? To determine this probability, consider the following rea-
soning. Given that there was exactly one acceptable item produced, it
follows that the outcome of the experiment was either (a, u) or (u, a).
Since the outcome (a, u) was initially twice as likely as the outcome
(u, a), it should remain twice as likely given the information that one of
them occurred. Therefore, the probability that the outcome was (a, u)
is 2/3, whereas the probability that it was (u, a) is 1/3.
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Let A = {(a, u), (a, a)} denote the event that the item produced by
the first team is acceptable, and let B = {(a, u), (u, a)} be the event that
exactly one of the produced items is acceptable. The probability that the
item produced by the first team was acceptable given that exactly one of
the produced items was acceptable is called the conditional probability
of A given that B has occurred, and is denoted as

P(A|B)
A general formula for P(A|B) is obtained by an argument similar to the
one just given. Namely, if the eventB occurs, then in order for the event
A to occur it is necessary that the occurrence be a point in both A and
B; that is, it must be inAB. Now, since we know that B has occurred, it
follows that B can be thought of as the new sample space, and hence the
probability that the event AB occurs will equal the probability of AB
relative to the probability of B. That is,

P(A|B) = P(AB)

P(B)
. (3.4)

Example 3.3a A coin is flipped twice. Assuming that all four points
in the sample space S = {(h, h), (h, t), (t, h), (t, t)} are equally likely,
what is the conditional probability that both flips land on heads, given
that:

(a) the first flip lands on heads;
(b) at least one of the flips lands on heads?

Solution. Let A = {(h, h)} be the event that both flips land on heads;
let B = {(h, h), (h, t)} be the event that the first flip lands on heads; and
let C = {(h, h), (h, t), (t, h)} be the event that at least one of the flips
lands on heads. We have the following solutions:

P(A|B) = P(AB)

P(B)

= P({(h, h)})
P({(h, h), (h, t)})

= 1/4

2/4

= 1/2
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and

P(A|C) = P(AC)

P(C)

= P({(h, h)})
P({(h, h), (h, t), (t, h)})

= 1/4

3/4

= 1/3.

Many people are initially surprised that the answers to parts (a) and (b)
are not identical. To understand why the answers are different, note first
that – conditional on the first flip landing on heads – the second one is
still equally likely to land on either heads or tails and so the probabil-
ity in part (a) is 1/2. On the other hand, knowing that at least one of
the flips lands on heads is equivalent to knowing that the outcome is not
(t, t). Thus, given that at least one of the flips lands on heads, there re-
main three equally likely possibilities – namely (h, h), (h, t), and (t, h).
This shows that the answer to part (b) is 1/3.

It follows from equation (3.1) that

P(AB) = P(B)P(A|B). (3.5)

That is, the probability that both A and B occur is the probability that
B occurs multiplied by the conditional probability that A occurs given
that B occurred; this result is often called the multiplication theorem of
probability.

Example 3.3b Suppose that two balls are to be withdrawn, without re-
placement, from an urn that contains nine blue and seven yellow balls.
If each ball withdrawn is equally likely to be any of the balls in the urn
at the time, what is the probability that both withdrawn balls are blue?

Solution. Let B1 and B2 denote, respectively, the events that the first
and second balls withdrawn are blue. Now, given that the first ball with-
drawn is blue, the second ball is equally likely to be any of the remaining
15 balls, of which 8 are blue. Therefore,P(B2|B1) = 8/15.AsP(B1) =
9/16, we see that
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P(B1B2) = 9

16

8

15
= 3

10
.

The preceding could also have been obtained as follows:

P(B1B2) =
(9

2

)
(16

2

) = 3

10
.

The conditional probability ofA, given thatB has occurred, is not gener-
ally equal to the unconditional probability ofA. In other words, knowing
that the outcome of the experiment is an element ofB generally changes
the probability that it is an element of A. (What if A and B are mutu-
ally exclusive?) In the special case where P(A|B) is equal to P(A), we
say that A is independent of B. Because

P(A|B) = P(AB)

P(B)
,

we see that A is independent of B if

P(AB) = P(A)P(B). (3.6)

This relation is symmetric in A and B, so it follows that, whenever A
is independent of B, B is also independent of A – that is, A and B are
independent events.

Example 3.3c Suppose that each item produced by a firm is, indepen-
dently of the quality of other items, of acceptable quality with probability
0.99. Find the probability that two successively produced items are both
of acceptable quality.

Solution. LetAi be the event that item i is of acceptable quality. Then,
by independence,

P(A1A2) = P(A1)P(A2) = 0.992 = 0.9801.

3.4 Computing Probabilities by Conditioning

Suppose that B1, B2, . . . , Bn are mutually exclusive events whose union
is the sample space S. That is, exactly one of these events must occur.
Then, for any event A, we can write
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A =
⋃
i

ABi.

Since the events ABi are all mutually exclusive, the preceding yields
that

P(A) =
n∑
i=1

P(ABi)

=
n∑
i=1

P(A|Bi)P(Bi). (3.7)

Equation (3.7) shows thatP(A), the probability of eventA, is a weighted
average of the conditional probabilities of A given Bi for i = 1, . . . , n,
with P(A|Bi) weighted by the probability that Bi occurs. It shows how
we can compute the probability of A by first “conditioning” on which
of the events Bi occurs.

Example 3.4a A bin contains three different types of disposable flash-
lights. The probability that a type-1 flashlight will give over 100 hours
of use is 0.7; the corresponding probabilities for type-2 and type-3 flash-
lights are 0.4 and 0.3, respectively. If 20% of the flashlights in the bin
are type-1, 30% are type-2, and 50% are type-3, what is the probability
that a randomly chosen flashlight will give more than 100 hours of use?

Solution. Let A denote the event that the chosen flashlight will give
over 100 hours of use, and let Bi be the event that a type-i flashlight is
chosen, i = 1, 2, 3. To compute P(A), we condition on the type of the
chosen flashlight and so obtain

P(A) = P(A|B1)P(B1)+ P(A|B2)P(B2)+ P(A|B3)P(B3)

= (0.7)(0.2)+ (0.4)(0.3)+ (0.3)(0.5) = 0.41.

There is a 41% chance that the flashlight will last for over 100 hours.

Example 3.4b Consider the following game played with an ordinary
deck of 52 playing cards. The cards are shuffled and then turned over
one at a time. At any time, the player can guess that the next card to be
turned over will be the ace of spades; if it is, then the player wins. In ad-
dition, the player is said to win if the ace of spades has not yet appeared
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when only one card remains and no guess has yet been made. What is a
good strategy, and what is a bad strategy?

Solution. Every strategy has probability 1/52 of winning! To show
this, we will use induction to prove the stronger result that, for an n-
card deck that contains the ace of spades, the probability of winning is
1/n no matter what strategy is employed. Since this is clearly true for
n = 1, assume it to be true for an (n− 1)-card deck, and now consider
an n-card deck. Fix any strategy, and let p denote the probability that
this strategy guesses that the first card is the ace of spades. Given that it
does, then the player’s probability of winning is 1/n. On the other hand,
if the strategy does not guess that the first card is the ace of spades, then
the probability that the player wins is the probability that the first card
is not the ace of spades (i.e., (n − 1)/n) multiplied by the conditional
probability of winning given that the first card is not the ace of spades.
But this latter conditional probability is equal to the probability of win-
ning when using an (n−1)-card deck containing a single ace of spades;
it is thus, by the induction hypothesis, 1/(n− 1). Hence, given that the
strategy does not guess the first card, the probability of winning is

n− 1

n

1

n− 1
= 1

n
.

Thus, conditioning on whether the first card is guessed shows that

P {win} = 1

n
p + 1

n
(1 − p) = 1

n
,

which completes the induction.

Example 3.4c Best Prize Problem Suppose that we are to be pre-
sented with n distinct prizes in sequence. After being presented with a
prize, we must immediately decide whether to accept it or to reject it and
consider the next prize. The only information we are given when decid-
ing whether to accept a prize is the relative rank of that prize compared
to ones already seen. For instance, when the fifth prize is presented, we
learn how it ranks among the five prizes aready seen. Suppose that once
a prize is rejected it is lost, and that our objective is to maximize the
probability of obtaining the best prize. Assuming that all n! possible or-
derings of the prizes are equally likely, how well can we do?
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Solution. Rather surprisingly, we can do quite well. To see this, fix a
value k (0 ≤ k < n) and consider the strategy that rejects the first k
prizes and then accepts the first prize to appear thereafter that is better
than each of the first k. Let W be the event that the best prize is ob-
tained (and so the player wins) when this strategy is employed. Also,
for i = 1, . . . , n, let Bi be the event that the best prize is the one in po-
sition i. Exactly one of the events Bi (i = 1, . . . , n) must occur and so,
upon conditioning on which event does occur, we obtain

P(W ) =
n∑
i=1

P(W |Bi)P(Bi)

= 1

n

n∑
i=1

P(W |Bi). (3.8)

The final equality follows because the best prize is equally likely to be
in any of the n positions and so P(Bi) = 1/n for all i. Now, since we
are employing the strategy of rejecting the first k prizes, it follows that
there is no chance of obtaining the best prize if it is among the first k.
Consequently,

P(W |Bi) = 0 if i ≤ k. (3.9)

On the other hand, if the best prize is in position i, where i > k, then
the best prize will be selected if the best of the first i−1 prizes is among
the first k (for then none of the prizes in positions k+1, k+ 2, . . . , i−1
would be selected). However, conditional on the best prize being in po-
sition i, it is easy to see that all possible orderings of the other prizes
remain equally likely, which implies that each of the first i −1 prizes is
equally likely to be the best of that batch. Hence, we obtain that

P(W |Bi) = k

i − 1
if i > k. (3.10)

Equations (3.8), (3.9), and (3.10) then yield

P(W ) = k

n

n∑
i=k+1

1

i − 1

= k

n

n−1∑
j=k

1

j
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= k

n

[ n−1∑
j=1

1

j
−
k−1∑
j=1

1

j

]

≈ k

n
[log(n− 1)− log(k − 1)]

= k

n
log

(
n− 1

k − 1

)

≈ k

n
log

(
n

k

)
,

where we have used the approximation

n∑
j=1

1

j
≈ log(n).

But we see from the preceding that, if we choose k so that

k

n
≈ 1

e
,

then

P(W ) ≈ 1

e
.

That is, the strategy that lets approximately the fraction 1/e of all prizes
go by, and then accepts the first one thereafter that is the best yet seen,
has probability approximately equal to 1/e ≈ 0.37 of obtaining the best
prize.

Suppose again that the events Bi (i ≥ 1) are mutually exclusive events
whose union is the sample space. Suppose that an event A occurs and
we want to determine which of the Bj also occurred. We have

P(Bj |A) = P(ABj)

P(A)

= P(A|Bj)P(Bj )∑
i P(A|Bi)P(Bi) . (3.11)

Equation (3.11) is known as Bayes’ formula.
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Example 3.4d Suppose in Example 3.4a that the flashlight lasted over
100 hours. What is the conditional probability that it was a type-j flash-
light for j = 1, 2, 3?

Solution. The probability is obtained by using Bayes’ formula. Using
the notation of Example 3.4a, we have

P(Bj |A) = P(ABj)

P(A)

= P(A|Bj)P(Bj )
0.41

.

Thus,

P(B1|A) = (0.7)(0.2)/0.41 = 14/41,

P(B2|A) = (0.4)(0.3)/0.41 = 12/41,

P(B3|A) = (0.3)(0.5)/0.41 = 15/41.

For instance, whereas the initial probability that a type-1 flashlight is
chosen is only 0.2, the information that the chosen flashlight has lasted
over 100 hours raises the probability of this event to 14/41 ≈ 0.341.

3.5 Random Variables and Expected Values

Numerical quantities whose values are determined by the outcome of
the experiment are called random variables. For instance, the sum ob-
tained when rolling dice, or the number of heads that result from a series
of coin flips, are random variables. Since the value of a random variable
is determined by the outcome of the experiment, we can assign proba-
bilities to each of its possible values.

Example 3.5a Let the random variable X denote the sum when a pair
of fair dice are rolled. The possible values of X are 2, 3, . . . ,12, and
they have the following probabilities:

P {X = 2} = P {(1,1)} = 1/36,

P {X = 3} = P {(1, 2), (2,1)} = 2/36,

P {X = 4} = P {(1, 3), (2, 2), (3,1)} = 3/36,
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P {X = 5} = P {(1, 4), (2, 3), (3, 2), (4,1)} = 4/36,

P {X = 6} = P {(1, 5), (2, 4), (3, 3), (4, 2), (5,1)} = 5/36,

P {X = 7} = P {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6,1)} = 6/36,

P {X = 8} = P {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} = 5/36,

P {X = 9} = P {(3, 6), (4, 5), (5, 4), (6, 3)} = 4/36,

P {X = 10} = P {(4, 6), (5, 5), (6, 4)} = 3/36,

P {X = 11} = P {(5, 6), (6, 5)} = 2/36,

P {X = 12} = P {(6, 6)} = 1/36.

Example 3.5b Consider n flips of a coin, and suppose that the succes-
sive flips are independent and that each flip results in heads with proba-
bility p. The random variableX, equal to the total number of heads that
occur, is called a binomial random variable with parameters n and p.
To determine the probabilities attached to the possible values ofX, con-
sider any outcome of the n flips that has a total of i heads and n− i tails.
For instance, consider the outcome h, h, . . . , h, t, t, . . . , t, in which the
first i flips result in heads and the others in tails. Since each flip is inde-
pendent and results in heads with probability p, this outcome will arise
with probability

p · p · · ·p · (1 − p) · · · (1 − p) = pi(1 − p)n−i .

Indeed, it is easy to see that each outcome that has a total of i heads and
n− i tails will also occur with probability pi(1−p)n−i . Since there are(
n

i

)
outcomes that have a total of i heads (most easily seen by noting

that each such outcome is determined by the choice of which set of i of
the n flips are to land on heads), it follows that

P {X = i} =
(
n

i

)
pi(1 − p)n−i , i = 0,1, . . . , n.

As a check, note that

n∑
i=0

P {X = i} =
n∑
i=0

(
n

i

)
pi(1 − p)n−i

= (p + 1 − p)n (by the binomial theorem)

= 1.
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Consider again an experiment with sample space S = {1, 2, . . . , m} and
probabilities pi (i = 1, . . . , m). For a random variable X, we let X(i)
represent the value of X when i is the outcome of the experiment.

Definition The expected value of X, denoted E[X], is defined by

E[X] =
∑
i∈S
X(i)pi =

m∑
i=1

X(i)pi.

Alternative names for E[X] are the expectation or the mean of X.

Example 3.5c If X is the number of heads obtained when two fair
coins are flipped, then

X(h, h) = 2, X(h, t) = X(t, h) = 1, X(t, t) = 0;

hence

E[X] = 2(1/4)+ 1(1/4)+ 1(1/4)+ 0(1/4) = 1.

If a and b are constants then, since the random variable aX+b assumes
the value aX(i) + b when i is the outcome of the experiment, it fol-
lows that

E[aX + b] =
∑
i∈S

[aX(i)+ b]pi

= a
∑
i∈S
X(i)pi + b

∑
i∈S
pi

= aE[X] + b. (3.12)

Suppose that the set of possible values of X is {x1, . . . , , xn}. We can
also express E[X] as a weighted average of these values. To do so, par-
tition the sample space S into the sets Sj (j = 1, . . . , n), where Sj is the
set of all outcomes of the experiment that result in X taking value xj ;
that is,

Sj = {i : X(i) = xj }.

We can now express E[X] as follows:
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E[X] =
∑
i∈S
X(i)pi

=
∑
i∈⋃

j Sj

X(i)pi (since S = ⋃
j Sj )

=
n∑
j=1

∑
i∈Sj
X(i)pi (since the Sj are disjoint)

=
n∑
j=1

∑
i∈Sj

xjpi

=
n∑
j=1

xj
∑
i∈Sj
pi

=
n∑
j=1

xjP {X = xj }.

Thus, we have proven the following.

Proposition 3.5.1

E[X] =
n∑
j=1

xjP {X = xj }.

In words, Proposition 3.5.1 states thatE[X] is a weighted average of the
possible values of X, where the weight given to a value is equal to the
probability that X assumes that value.

Example 3.5d Let the random variable X denote the amount that we
win when we make a certain bet. Find E[X] if there is a 60% chance
that we lose 1, a 20% chance that we win 1, and a 20% chance that we
win 2.

Solution.
E[X] = −1(0.6)+ 1(0.2)+ 2(0.2) = 0.

Thus, the expected amount that is won on this bet is equal to 0. A bet
whose expected winning is equal to 0 is called a fair bet.
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Example 3.5e A random variable X that is equal to 1 with probabil-
ity p, and to 0 with probability 1 − p, is said to be a Bernoulli random
variable with parameter p. Its expected value is

E[X] = 1(p)+ 0(1 − p) = p.

Example 3.5f Utility Suppose that you must choose one of two possi-
ble actions, each of which can result in any of n consequences, denoted
as C1, . . . , Cn. Suppose that if the first action is chosen, then conse-
quence i will result with probability pi (i = 1, . . . , n), whereas if the
second action is chosen, then consequence i will result with probabil-
ity qi (i = 1, . . . , n), where

∑n
i=1pi = ∑n

i=1 qi = 1. The following
approach can be used to determine which action to choose.

It starts by assigning numerical values to the different consequences
in the following manner. First, identify the least and the most desirable
consequence, call them c and C respectively; give the consequence c
the value 0 and give C the value 1. Now consider any of the other n− 2
consequences, say Ci. To value this consequence, imagine that you are
given the choice between either receiving Ci or of taking part in a ran-
dom experiment that either earns you consequence C with probability
u or consequence c with probability 1 − u. Clearly your choice will
depend on the value of u. If u = 1 then the experiment is certain to re-
sult in consequence C; since C is the most desirable consequence, you
will clearly prefer the experiment to receiving Ci. On the other hand, if
u = 0 then the experiment will result in the least desirable consequence,
namely c, so in this case you will clearly prefer the consequence Ci to
the experiment. Now, as u decreases from 1 down to 0, it seems reason-
able that your choice will at some point switch from the experiment to
the certain return ofCi, and at that critical switch point you will be indif-
ferent between the two alternatives. Take that indifference probability
u as the value of the consequence Ci. In other words, the value of Ci is
that probability u such that you are indifferent between either receiving
the consequence Ci or taking part in an experiment that returns conse-
quence C with probability u or consequence c with probability 1 − u.
We call this indifference probability the utility of the consequence Ci,
and we designate it as u(Ci).

To determine which action is superior, we need to evaluate each
one. Consider the first action, which results in consequence Ci with
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probability pi, i = 1, . . . , n. We can think of the result of this action as
being determined by a two-stage experiment. In the first stage, one of
the values 1, . . . , n is chosen according to the probabilities p1, . . . , pn;
if value i is chosen, you receive consequence Ci. However, since Ci is
equivalent to obtaining consequence C with probability u(Ci) or con-
sequence c with probability 1 − u(Ci), it follows that the result of the
two-stage experiment is equivalent to an experiment in which either con-
sequence C or c is obtained, with C being obtained with probability

n∑
i=1

piu(Ci).

Similarly, the result of choosing the second action is equivalent to taking
part in an experiment in which either consequence C or c is obtained,
with C being obtained with probability

n∑
i=1

qiu(Ci).

Since C is preferable to c, it follows that the first action is preferable to
the second action if

n∑
i=1

piu(Ci) >

n∑
i=1

qiu(Ci).

In other words, the value of an action can be measured by the expected
value of the utility of its consequence, and the action with the largest ex-
pected utility is most preferable.

An important result is that the expected value of a sum of random vari-
ables is equal to the sum of their expected values.

Proposition 3.5.2 For random variables X1, . . . , Xk,

E

[ k∑
j=1

Xj

]
=

k∑
j=1

E[Xj ].

Proof. Because the random variable
∑k
j=1Xj will take on the value∑k

j=1Xj(i) when i is the outcome of the experiment, it follows that
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E

[ k∑
j=1

Xj

]
=

∑
i∈S

( k∑
j=1

Xj(i)

)
pi

=
k∑
j=1

∑
i∈S
Xj(i)pi

=
k∑
j=1

E[Xj ].

Example 3.5g Suppose that n trials are performed, and that the j th
trial is a success with probability pj (j = 1, . . . , n). If X represents the
number of successes in these trials, then we can easily determine E[X]
by using the representation

X =
n∑
j=1

Xj,

whereXj is defined to equal 1 if trial j is a sucess and 0 otherwise. This
equality yields

E[X] =
n∑
j=1

E[Xj ]

=
n∑
j=1

pj,

where the final equality used the result of Example 3.5d.

Example 3.5h Suppose that n balls are randomly selected, without re-
placement, from an urn containing N balls of which m are white. Find
the expected number of white balls chosen.

Solution. Let X denote the number of white balls selected. Also, let

Xj =
{

1 if the j th ball selected is white,
0 otherwise,

and note that

X =
n∑
j=1

Xj .
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Since each of the N balls is equally likely to be the j th one selected, it
follows that Xj is a Bernoulli random variable with parameter

p = P {Xj = 1} = m

N
.

Hence, from Example 3.5e,

E[Xj ] = m

N

and thus
E[X] = nm

N
.

The random variables X1, . . . , Xn are said to be independent if proba-
bilities concerning a subset of them are unchanged by information as to
the values of the others.

Example 3.5i Suppose that k balls are to be randomly chosen from
a set of N balls of which n are red. Let Xi equal 1 if the ith ball cho-
sen is red and 0 if it is black. Then X1, . . . , Xn would be independent
if each selected ball is replaced before the next selection is made, and
they would not be independent if each selection is made without replac-
ing previously selected balls. (Why not?)

Whereas the average of the possible values of X is indicated by its ex-
pected value, its “spread” is measured by its variance.

Definition The variance of X, denoted by Var(X), is defined by

Var(X) = E[(X − E[X])2].

In other words, the variance measures the average square of the differ-
ence between X and its expected value.

Example 3.5j Find Var(X) when X is a Bernoulli random variable
with parameter p.

Solution. As shown in Example 3.5e, E[X] = p. Hence we see that

(X − E[X])2 =
{
(1 − p)2 with probability p,

p2 with probability 1 − p.
It follows that
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Var(X) = E[(X − E[X])2]

= (1 − p)2p + p2(1 − p)
= p − p2.

If a and b are constants, then

Var(aX + b) = E[(aX + b − E[aX + b])2]

= E[(aX − aE[X])2] (by equation (3.12))

= E[a2(X − E[X])2]

= a2 Var(X). (3.13)

Although it is not generally true that the variance of the sum of ran-
dom variables is equal to the sum of their variances, this is true when
the random variables are independent.

Proposition 3.5.3 If X1, . . . , Xk are independent random variables,
then

Var

( k∑
j=1

Xj

)
=

k∑
j=1

Var(Xj ).

Example 3.5k Find the variance of X, a binomial random variable
with parameters n and p.

Solution. Recalling that X represents the number of successes in n in-
dependent trials, each of which is a success with probability p, we can
represent it as

X =
n∑
j=1

Xj,

where Xj is defined to equal 1 if trial j is a sucess and 0 otherwise.
Hence,

Var(X) =
n∑
j=1

Var(Xj )

=
n∑
j=1

p(1 − p) (by Example 3.5j)

= np(1 − p).

The square root of the variance is called the standard deviation.
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3.6 Exercises

Exercise 3.1 When typing a report, a certain typist makes i errors with
probability pi (i ≥ 0), where

p0 = 0.20, p1 = 0.35,

p2 = 0.25, p3 = 0.15.

What is the probability that the typist makes

(a) at least 4 errors;
(b) at most 2 errors?

Exercise 3.2 A family picnic scheduled for tomorrow will be post-
poned if it is either cloudy or rainy. If the probability that it will be
cloudy is 0.40, the probability that it will be rainy is 0.30, and the prob-
ability that it will be both rainy and cloudy is 0.20, then what is the
probabilty that the picnic will not be postponed?

Exercise 3.3 If two people are randomly chosen from a group of eight
women and six men, what is the probability that

(a) both are women;
(b) both are men;
(c) one is a man and the other a woman?

Exercise 3.4 A club has 120 members, of whom 35 play chess, 58 play
bridge, and 27 play both chess and bridge. If a member of the club is
randomly chosen, what is the conditional probability that she

(a) plays chess given that she plays bridge;
(b) plays bridge given that she plays chess?

Exercise 3.5 Cystic fibrosis (CF) is a genetically caused disease. A
child that receives a CF gene from each of its parents will develop the
disease either as a teen-ager or before and will not live to adulthood. A
child that receives either zero or one CF gene will not develop the dis-
ease. If an individual has a CF gene, then each of his or her children
will independently receive that gene with probability 1/2.
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(a) If both parents possess the CF gene, what is the probability that their
child will develop cystic fibrosis?

(b) What is the probability that a 30-year old who does not have cys-
tic fibrosis, but whose sibling died of that disease, possesses a CF
gene?

Exercise 3.6 Two cards are randomly selected from a deck of 52 play-
ing cards. What is the conditional probability they are both aces, given
that they are of different suits?

Exercise 3.7 If A and B are independent, show that so are

(a) A and Bc;
(b) Ac and Bc.

Exercise 3.8 You have asked a friend to water a sick plant while you
are on vacation. Without water, it will die with probability 0.7; with
water, it will die with probability 0.1. You are 90% certain that your
friend will remember to water the plant.

(a) What is the probability that the plant will be alive when you return?
(b) If it is dead, what is the probability that your friend forgot to water

it?

Exercise 3.9 A cancer diagnostic test is 95% accurate both on those
that do and those that do not have the cancer. If 0.4% of the popula-
tion unknowingly has the cancer, what is the probability that a randomly
chosen person who tests positive actually has the cancer?

Exercise 3.10 An insurance company estimates that the probability
that a certain event will occur in the coming year is p. A customer wants
to purchase an insurance policy that will return the amountR if the event
occurs. How much should the insurance company charge for such a pol-
icy in order that its expected profit be 20% of R?

Exercise 3.11 A gambling book recommends the following “winning
strategy” for the game of roulette. It recommends that the gambler bet
1 on red. If red appears (which has probability 18/38 of occurring) then
the gambler should take his profit of 1 and quit. If the gambler loses this
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bet, then he should then make a second bet of size 2 and then quit. Let
X denote the gambler’s winnings.

(a) Find P {X > 0}.
(b) Find E[X].

Exercise 3.12 Four buses carrying 152 students from the same school
arrive at a football stadium. The buses carry (respectively) 39, 33, 46,
and 34 students. One of the 152 students is randomly chosen; let X de-
note the number of students who were on the bus of the selected student.
One of the four bus drivers is also randomly chosen; let Y be the number
of students who were on that driver’s bus.

(a) Which do you think is larger, E[X] or E[Y ]?
(b) Find E[X] and E[Y ].

Exercise 3.13 There are k different types of coupons, and each one ob-
tained will independently be of type i with probability pi, i = 1, . . . , k.
Find the expected number of different types that are contained in a set
of n coupons.

Exercise 3.14 A group of n people throw their hats into the center of
a room. The hats are scrambled and each person chooses one. If each
then puts the selected hat on his or her head, what is the expected num-
ber that are wearing their own hat?

Exercise 3.15 Two players play a tennis match, which ends when one
of the players has won two sets. Suppose that each set is equally likely
to be won by either player, and that the results from different sets are
independent. Find (a) the expected value and (b) the variance of the
number of sets played.

Exercise 3.16 A lawyer must decide whether to charge a fixed fee of
$5,000 or take a contingency fee of $25,000 if she wins the case (and 0
if she loses). She estimates that her probability of winning is 0.30. De-
termine the mean and standard deviation of her fee if

(a) she takes the fixed fee;
(b) she takes the contingency fee.
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4.1 Interest Rates

If you borrow the amount P (called the principal) which must be repaid
at time T along with simple interest at rate r per time T, then the amount
to be repaid at time T is

P + rP = (1 + r)P .
That is, you must repay both the principal P and the interest, equal to
the principal times the interest rate. For instance, if you borrow $100
which is to be repaid after one year with a simple interest rate of 5% per
year (i.e., r = 0.05), then you will have to repay $105 at the end of the
year.

Example 4.1a Suppose that you borrow an amount P that is to be re-
paid after one year along with interest at a rate r per year compounded
semiannually. What does this mean? How much is owed in a year?

Solution. In order to answer this, it is necessary to know that having
your interest compounded semiannually means that after half a year you
will be charged simple interest at the rate of r/2 per half-year; that inter-
est is then added on to your principal, which is again charged interest at
rate r/2 for the second half-year period. In other words, after six months
you owe

P(1 + r/2).

This is then regarded as the new principal for another six-month loan at
interest rate r/2. Hence, at the end of the year you will owe

P(1 + r/2)(1 + r/2) = P(1 + r/2)2.

Example 4.1b If you borrow $1,000 for one year at an interest rate of
8% per year that is to be compounded quarterly, how much do you owe
at the end of the year?
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Solution. An interest rate of 8% that is compounded quarterly is equiv-
alent to paying simple interest at a rate of 2% per quarter year, with each
additional quarter charging interest not only on the original principal but
also on the interest that has accrued up to that point. Thus, after one
quarter you owe

1,000(1 + 0.02);
after two quarters you owe

1,000(1 + 0.02)(1 + 0.02) = 1,000(1 + 0.02)2;
after three quarters you owe

1,000(1 + 0.02)2(1 + 0.02) = 1,000(1 + 0.02)3;
and after four quarters you owe

1,000(1 + 0.02)3(1 + 0.02) = 1,000(1 + 0.02)4 = 1,082.40.

Example 4.1c Many credit-card companies charge interest at a yearly
rate of 18% compounded monthly. If the amount P is charged at the be-
ginning of a year, how much is owed at the end of the year if no previous
payments have been made?

Solution. Such a compounding is equivalent to paying simple interest
every month at a rate of 18/12 = 1.5% per month, with the accrued in-
terest then added to the principal owed during the next month. Hence,
after one year you will owe

P(1 + 0.015)12 = 1.1956P.

If the interest rate r is compounded then, as we have seen in Examples
4.1b and 4.1c, the amount of interest actually paid is greater than if we
were paying simple interest at rate r. The reason, of course, is that in
compounding we are being charged interest on the interest that has al-
ready been computed in previous compoundings. In these cases, we call
r the nominal interest rate, and we define the effective interest rate, call
it reff, by

reff = amount repaid at the end of a year − P
P

.
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For instance, if the loan is for one year at a nominal interest rate r that is
to be compounded quarterly, then the effective interest rate for the year
is

reff = (1 + r/4)4 − 1.

Thus, in Example 4.1b the effective interest rate is 8.24% whereas in
Example 4.1c it is 19.56%. Since

P(1 + reff) = amount repaid at the end of a year,

the payment made in a one-year loan with compound interest is the same
as if the loan called for simple interest at rate reff per year.

Suppose now that we borrow the principal P for one year at a nominal
interest rate of r per year, compounded continuously. Now, how much
is owed at the end of the year? Of course, before answering this we must
decide on an appropriate definition of “continuous” compounding. Note
that, if the loan is compounded at n equal intervals in the year, then the
amount owed at the end of the year is P(1+ r/n)n. Thus, since it is rea-
sonable to suppose that continuous compounding refers to the limit of
the preceding as n grows larger and larger, the amount owed at time 1 is

P lim
n→∞(1 + r/n)n = Per,

where e, the base of the natural logarithm, is defined by

e = lim
n→∞(1 + 1/n)n

and is approximately given by e ≈ 2.71828 . . . .

Example 4.1d If a bank offers interest at a nominal rate of 5% com-
pounded continuously, what is the effective interest rate per year?

Solution. The effective interest rate is

reff = Pe0.05 − P
P

= e0.05 − 1 ≈ 0.05127.

That is, the effective interest rate is 5.127% per year.

If the amount P is borrowed for t years at a nominal interest rate of r
per year compounded continuously, then the amount owed at time t is
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Pert . This is seen by interpreting the interest rate as being a continu-
ous compounding of a nominal rate of tr per time t; hence, the amount
owed at time t is

P lim
n→∞(1 + rt/n)n = Pert .

4.2 Present Value Analysis

Suppose that one can both borrow and loan money at a nominal rate r
that is compounded periodically. Under these conditions, what is the
present worth of a payment of v dollars that will be made at the end of
period i? Since a bank loan of v(1+ r)−i would require a payoff of v at
period i, it follows that the present value of a payoff of v to be made at
time period i is v(1 + r)−i .

The concept of present value enables us to compare different income
streams to see which is preferable.

Example 4.2a Suppose that you are to receive payments (in thousands
of dollars) at the end of each of the next five years. Which of the fol-
lowing three payment sequences is preferable?

A. 12, 14, 16, 18, 20;
B. 16, 16, 15, 15, 15;
C. 20, 16, 14, 12, 10.

Solution. If the present nominal interest rate is r compounded yearly,
then the present value of the sequence of payments xi (i = 1, 2, 3, 4, 5)
is

5∑
i=1

(1 + r)−ixi;

the sequence having the largest present value is preferred. It thus fol-
lows that the superior sequence of payments depends on the interest rate.
If r is small, then the sequence A is best since its sum of payments is
the highest. For a somewhat larger value of r, the sequence B would be
best because – although the total of its payments (77) is less than that of
A (80) – its earlier payments are larger than are those of A. For an even
larger value of r, the sequence C, whose earlier payments are higher
than those in either A or B, would be best. Table 4.1 gives the present
values of these payment streams for three different values of r.
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Table 4.1: Present Values

Payment Sequence

r A B C

0.1 59.21 58.60 56.33
0.2 45.70 46.39 45.69
0.3 36.49 37.89 38.12

It should be noted that the payment sequences can be compared ac-
cording to their values at any specified time. For instance, if we compare
them according to their time-5 values, then we would determine which
sequence of payments yields the largest value of

5∑
i=1

(1 + r)5−ixi = (1 + r)5
5∑
i=1

(1 + r)−ixi;

this is the same sequence choice as before.

Example 4.2b Suppose that one takes a mortgage loan for the amount
L that is to be paid back over nmonths with equal payments of A at the
end of each month. The interest rate for the loan is r per month, com-
pounded monthly.

(a) In terms of L, n, and r, what is the value of A?
(b) After payment has been made at the end of month j, how much ad-

ditional loan principal remains?
(c) How much of the payment during month j is for interest and how

much is for principal reduction? (This is important because some
contracts allow for the loan to be paid back early and because the
interest part of the payment is tax-deductible.)

Solution. The present value of the n monthly payments is

A

1 + r + A

(1 + r)2 + · · · + A

(1 + r)n

= A

1 + r
[

1 + 1

1 + r +
(

1

1 + r
)2

+ · · · +
(

1

1 + r
)n−1]
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= A

1 + r
1 − (

1
1+r

)n
1 − 1

1+r

= A

r
[1 − (1 + r)−n].

Since this must equal the loan amount L, we see that

A = Lr

1 − (1 + r)−n = L(α − 1)αn

αn − 1
, (4.1)

where
α = 1 + r.

For instance, if the loan is for $100,000, to be paid back over 360 months
at a nominal yearly interest rate of 0.09 compounded monthly, then r =
0.09/12 = 0.0075 and the monthly payment (in dollars) would be

A = 100,000(0.0075)(1.0075)360

(1.0075)360 − 1
= 804.62.

Let Rj denote the remaining amount of principal owed after the pay-
ment at the end of month j, j = 0, . . . , n. To determine these quantities,
note that if one owes Rj at the end of month j then the amount owed
immediately before the payment at the end of month j +1 is (1+ r)Rj ;
one then pays the amount A, so it follows that

Rj+1 = (1 + r)Rj − A = αRj − A.

Starting with R0 = L, we obtain:

R1 = αL− A,
R2 = αR1 − A

= α(αL− A)− A
= α2L− (1 + α)A,

R3 = αR2 − A
= α(α2L− (1 + α)A)− A
= α3L− (1 + α + α2)A.

In general, we obtain
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Rj = αjL− A(1 + α + · · · + αj−1)

= αjL− Aα
j − 1

α − 1

= αjL− Lαn(αj − 1)

αn − 1
(from (4.1))

= L(αn − αj )
αn − 1

, j = 0, . . . , n.

Let Ij and Pj denote (respectively) the amounts of the payment at the
end of month j that are for interest and for principal reduction. Then,
since Rj−1 was owed at the end of the previous month, we have

Ij = rRj−1

= L(α − 1)(αn − αj−1)

αn − 1

and

Pj = A− Ij

= L(α − 1)

αn − 1
[αn − (αn − αj−1)]

= L(α − 1)αj−1

αn − 1
.

As a check, note that
n∑
j=1

Pj = L.

It follows from the preceding that the amount of principal repaid in sub-
sequent months increases by the factor α = 1 + r. For example, in a
$100,000 loan for 30 years at a nominal interest rate of 9% per year com-
pounded monthly, only $54.62 of the $804.62 paid during the first month
goes toward reducing the principal of the loan; the remainder is interest.
In each succeeding month, the amount of the payment that goes toward
principal increases by the factor 1.0075.

Example 4.2c An individual who plans to retire in 20 years has de-
cided to put an amountA in the bank at the beginning of each of the next
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240 months, after which she will withdraw $1,000 at the beginning of
each of the following 360 months. Assuming a nominal yearly interest
rate of 6% compounded monthly, how large does A need to be?

Solution. Let r = 0.06/12 = 0.005 be the monthly interest rate. With
β = 1

1+r , the present value of all her deposits is

A+ Aβ + Aβ2 + · · · + Aβ239 = A1 − β240

1 − β .

Similarly, if W is the amount withdrawn in the following 360 months,
then the present value of all these withdrawals is

Wβ240 +Wβ241 + · · · +Wβ599 = Wβ2401 − β360

1 − β .

Thus she will be able to fund all withdrawals (and have no money left
in her account) if

A
1 − β240

1 − β = Wβ2401 − β360

1 − β .

WithW = 1,000 and β = 1/1.005, this gives

A = 360.99.

That is, saving $361 a month for 240 months will enable her to with-
draw $1,000 a month for the succeeding 360 months.

4.3 Pricing Contracts via Arbitrage

4.3.1 An Example in Options Pricing

Suppose that the nominal interest rate is r, and consider the following
model for purchasing a stock at a future time at a fixed price. Let the
present price (in dollars) of the stock be 100 per share, and suppose we
know that, after one time period, its price will be either 200 or 50 (see
Figure 4.1). Suppose further that, for any y, at a cost of cy you can pur-
chase at time 0 the option to buy y shares of the stock at time 1 at a price
of 150 per share. Thus, for instance, if you purchase this option and the
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Figure 4.1: Possible Stock Prices at Time 1

stock rises to 200, then you would exercise the option at time 1 and re-
alize a gain of 200 −150 = 50 for each of the y options purchased. On
the other hand, if the price of the stock at time 1 is 50, then the option
would be worthless. In addition to the options, you may also purchase x
shares of the stock at time 0 at a cost of of 100x, and each share would
be worth either 200 or 50 at time 1.

We will suppose that both x and y can be positive, negative, or zero.
That is, you can either buy or sell both the stock and the option. For in-
stance, if x were negative then you would be selling −x shares of stock,
yielding you an initial return of −100x; you would then be responsible
for buying and returning −x shares of the stock at time 1 at a (time-1)
cost of either 200 or 50 per share. (When you sell a stock that you do
not own, we say that you are selling it short.)

We are interested in the appropriate value of c, the unit cost of an op-
tion. Specifically, we will show that, unless c = [100 − 50(1+ r)−1]/3,
there is a combination of purchases that will always result in a positive
gain. To show this, suppose that at time 0 we

(a) purchase x units of stock, and
(b) purchase y units of options,

where x and y (both of which can be either positive or negative) are to
be determined. The cost of this transaction is 100x + cy; if this amount
is positive, then it should be borrowed from a bank, to be repaid with in-
terest at time 1; if it is negative, then the amount received, −(100x+cy),
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should be put in the bank to be withdrawn at time 1. The value of our
holdings at time 1 depends on the price of the stock at that time and is
given by

value =
{

200x + 50y if the price is 200,
50x if the price is 50.

This formula follows by noting that, if the stock’s price at time 1 is 200,
then the x shares of the stock are worth 200x and the y units of options
to buy the stock at a share price of 150 are worth (200 − 150)y. On the
other hand, if the stock’s price is 50, then the x shares are worth 50x
and the y units of options are worthless. Now, suppose we choose y so
that the value of our holdings at time 1 is the same no matter what the
price of the stock at that time. That is, we choose y so that

200x + 50y = 50x

or
y = −3x.

Note that y has the opposite sign from x; thus, if x > 0 and so x shares
of the stock are purchased at time 0, then 3x units of stock options are
also sold at that time. Similarly, if x is negative, then −x shares are sold
and −3x units of stock options are purchased at time 0.

Thus, with y = −3x, the value of our holdings at time 1 is

time-1 value of holdings = 50x

no matter what the value of the stock. As a result, if y = −3x it fol-
lows that, after paying off our loan (if 100x + cy > 0) or withdrawing
our money from the bank (if 100x + cy < 0), we will have gained the
amount

gain = 50x − (100x + cy)(1 + r)
= 50x − (100x − 3xc)(1 + r)
= (1 + r)x[3c − 100 + 50(1 + r)−1].

Thus, if 3c = 100 − 50(1+ r)−1 then the gain is 0; on the other hand, if
3c �= 100−50(1+ r)−1 then we can guarantee a positive gain (no matter
what the price of the stock at time 1) by letting x be positive when 3c >
100−50(1+r)−1 and letting x be negative when 3c < 100−50(1+r)−1.
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For instance, if (1 + r)−1 = 0.9 and the cost per option is c = 20,
then purchasing one share of the stock and selling three units of options
initially costs us 100 − 3(20) = 40, which is borrowed from the bank.
However, the value of this holding at time 1 is 50 whether the stock price
rises to 200 or falls to 50. Using 40(1 + r) = 44.44 of this amount to
pay our bank loan results in a guaranteed gain of 5.56. Similarly, if the
cost of an option is 15, then selling one share of the stock (x = −1) and
buying three units of options results in an initial gain of 100 − 45 = 55,
which is put into a bank to be worth 55(1 + r) = 61.11 at time 1. The
value of our holding at time 1 is −50, so a guaranteed profit of 11.11 is
attained. A sure-win betting scheme is called an arbitrage. Thus, for
the numbers considered, the only option cost c that does not result in an
arbitrage is c = (100 − 45)/3 = 55/3.

4.3.2 Other Examples of Pricing via Arbitrage

The type of option we have been considering is known as a call option
because it gives one the option of calling for the stock at a specified
price, known as the exercise price. An American style call option al-
lows the buyer to exercise the option at any time up to the expiration
time, whereas a European style call option can only be exercised at the
expiration time. Although it might seem that, because of its additional
flexibility, the American style option should be worth more, it turns out
that it is never optimal to exercise a call option early; thus, the two styles
of options have identical worths. We now prove this result.

Proposition 4.3.1 One should never exercise an American style call
option before its expiration time t.

Proof. Suppose that the present price of the stock is S; that you own an
option to buy one share of the stock at a fixed price K; and that the op-
tion expires after an additional time t. If you exercise the option then
you will realize the amount S−K. However, consider what would tran-
spire if, instead of exercising the option, you sell the stock short and
then purchase the stock at time t, either by paying the market price at
that time or by exercising your option and paying K, whichever is less
expensive. Under this strategy, you will initially receive S and will then
have to pay the minimum of the market price and the exercise price K
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after an additional time t. Clearly this dominates receiving S and imme-
diately paying out K.

In addition to call options there are also put options on stocks. These
give their owners the option of putting a stock up for sale at a specified
price. An American style put option allows the owner to put the stock up
for sale – that is, to exercise the option – at any time up to the expiration
time of the option. A European style put option can only be exercised
at its expiration time. Contrary to the situation with call options, it may
be advantageous to exercise a put option before its expiration time and
so the American style put option may be worth more than the European.
The absence of arbitrage implies a relationship between the price of a
European put option having exercise price K and expiration time t and
the price of a call option on that stock that also has exercise priceK and
expiration time t. This is known as the put–call option parity formula.

Proposition 4.3.2 Let C be the price of a call option that enables its
holder to buy one share of a stock at an exercise price K at time t; also,
let P be the price of a European put option that enables its holder to sell
one share of the stock for the amount K at time t. Let S be the price of the
stock at time 0. Then, assuming that interest is continuously discounted
at a nominal rate r, either

S + P − C = Ke−rt

or there is an arbitrage opportunity.

Proof. If
S + P − C < Ke−rt ,

then we can effect a sure win by initially buying one share of the stock,
buying one put option, and selling one call option. This initial payout
of S + P − C is borrowed from a bank to be repaid at time t. Let us
now consider the value of our holdings at time t. There are two cases,
depending on S(t), the stock’s market price at time t. If S(t) ≤ K then
the call option we sold is worthless and we can exercise our put option
to sell the stock for the amount K. On the other hand, if S(t) > K then
our put option is worthless and the call option we sold will be exercised,
forcing us to sell our stock for the price K. Thus, in either case we will
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realize the amountK at time t. SinceK > ert(S+P −C), we can pay
off our bank loan and realize a positive profit in all cases.

When
S + P − C > Ke−rT ,

we can make a sure profit by reversing what we did in the previous case.
Namely, we now sell one share of stock, sell one put option, and buy
one call option. We leave the details of the verification in this case as an
exercise.

The arbitrage principle also determines the relationship between the
present price of a stock and the contracted price to buy the stock at a
specified time in the future. Our next two examples are related to these
so-called forwards contracts.

Example 4.3a Forwards Contracts Let S be the present market price
of a specified stock. In a forwards agreement, one agrees at time 0 to
pay F at time t for one share of the stock that will be delivered at time
t. That is, one contracts a price for the stock, which is to be delivered
and paid for at time t. We will now give an arbitrage argument to show
that, if interest is continuously discounted at the nominal interest rate r,
then in order for there to be no arbitrage opportunity we must have

F = Sert .
To see why the preceding must hold, suppose that instead

F < Sert .

Then a sure win is obtained by selling the stock at time 0, with the un-
derstanding that you will buy it back at time t. Put the sale proceeds S
into a bond that matures at time t and, in addition, buy a forwards con-
tract for delivery of one share of the stock at time t. Thus, at time t you
will receive Sert from your bond. From this, you pay F to obtain one
share of the stock, which you then return to settle your obligation. You
thus end with a positive profit of Sert − F. On the other hand, if

F > Sert

then you can guarantee a profit of F − Sert by simultaneously selling a
forwards contract and borrowing S to purchase the stock. At time t you
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will receive F for your stock, out of which you repay your loan amount
of Sert .

When one purchases a share of a stock in the stock market, one is pur-
chasing a share of ownership in the entity that issues the stock. On the
other hand, the commodity market deals with more concrete objects:
agricultural items like oats, corn, and wheat; energy products like crude
oil and natural gas; metals such as gold, silver, and platinum; animal
parts such as hogs, pork-bellies, and beef; and so on. Almost all ac-
tivity on the commodities market is involved with contracts for future
purchases and sales of the commodity. Thus, for instance, you could
purchase a contract to buy natural gas in 90 days for a price that is spec-
ified today. (Such a futures contract differs from a forwards contract in
that, although both require payment in full when delivery is taken, in
futures contracts one also settles up on a daily basis depending on the
change of the price of the futures contract on the commodity exchange.)
You could also write a futures contract that obligates you to sell gas at
a specified price at a specified time. Most people that play the com-
modities market never have actual contact with the commodity. Rather,
people that buy a futures contract most often sell that contract before the
delivery date.

The relationship given in Example 4.3a does not hold for futures con-
tracts in the commodity market. For one thing, if F > Sert and you
purchase the commodity (say, crude oil) to sell back at time t, then you
will incur additional costs related to storing and insuring the oil. Also,
when F < Sert , to sell the commodity for today’s price you must be
able to deliver it immediately.

One of the most popular types of future contracts involves currency
exchanges. The following example deals with this topic.

Example 4.3b The New York Times gives the following listing for the
price of a German mark (or DM):

• today – 0.5906;
• 90-day forward – 0.5921.

In other words, you can purchase 1 DM today at the price of $0.5906.
You can also sign a contract to purchase 1 DM in 90 days at a price, to
be paid on delivery, of $0.05921. Why are these prices different?
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Solution. One might suppose that the difference is caused by the mar-
ket’s expectation of the worth in 90 days of the German DM relative to
the U.S. dollar. However, it turns out that the entire price differential is
due to the different interest rates in Germany and in the United States.
Suppose that interest in both countries is continuously compounded at
nominal yearly rates: ru in the United States and rg in Germany. Let S
denote the present price of one DM, and let F be the price for a futures
contract to be delivered at time t. (The example considers the special
case where S = 0.5906, F = 0.5921, and t = 90/365.) We now argue
that, in order for there not to be an arbitrage opportunity, we must have

F = Se(ru−rg)t .

To see why, suppose first that

Fergt > Serut .

To obtain a sure win, borrow S dollars to be repaid at time t. Use these
dollars to buy 1 DM, which is used in turn to buy a German bond that
matures at time t. (Thus, at time t you will have ergt German marks and
you will owe an American bank Serut dollars.) Also, write a contract to
sell ergt German marks at time t for a total price of Fergt dollars. Then,
at time t you sell your German marks for Fergt dollars, use Serut of this
to pay off your American debt, and end with a profit of Fergt − Serut .

Suppose now that
Fergt < Serut ;

then you can obtain a sure win by reversing the preceding operation as
follows. At time 0, buy a futures contract to purchase ergt DM at time t;
borrow 1 DM from a German bank and sell it for S dollars, which you
then use to buy an American bond maturing at time t. Thus, at time t you
will have Serut dollars; use Fergt of it to pay for your futures contract.
This gives you ergt marks, which you then use to retire your German
bank loan debt. Hence, you end with a profit of Serut − Fergt .

4.4 The Arbitrage Theorem

Consider an experiment whose set of possible outcomes is {1, 2, . . . , m},
and suppose that n wagers concerning this experiment are available. If
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the amount x is bet on wager i, then the amount xri(j) is received if
the outcome of the experiment is j (j = 1, . . . , m). In other words, ri(·)
is the “return function” for a unit bet on wager i. The amount bet on a
wager is allowed to be positive, negative, or zero.

A betting strategy is a vector x = (x1, x2, . . . , xn), with the interpre-
tation that x1 is bet on wager 1, x2 is bet on wager 2, . . . , xn is bet on
wager n. If the outcome of the experiment is j, then the return from the
betting strategy x is given by

return from x =
n∑
i=1

xiri(j).

The following result, which is known as the arbitrage theorem, states
that either there exists a probability vector p = (p1, p2, . . . , pm) on the
set of possible outcomes of the experiment under which the expected
return of each wager is equal to 0, or else there exists a betting strategy
that yields a positive win for each outcome of the experiment.

Theorem 4.4.1 (Arbitrage Theorem) Exactly one of the following is
true: Either

(a) there is a probability vector p = (p1, p2, . . . , pm) for which
m∑
j=1

pjri(j) = 0 for all i = 1, . . . , n,

or else
(b) there is a betting strategy x = (x1, x2, . . . , xn) for which

n∑
i=1

xiri(j) > 0 for all j = 1, . . . , m.

IfX is the outcome of the experiment, then the arbitrage theorem states
that either there is a set of probabilities (p1, p2, . . . , pm) such that if

P {X = j} = pj for all j = 1, . . . , m

then
E[ri(X)] = 0 for all i = 1, . . . , n,

or else there is a betting strategy that leads to a sure win. In other words,
either there is a probability vector on the outcomes of the experiment
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that results in all bets being fair, or else there is a betting scheme that
guarantees a win.

A proof of the arbitrage theorem, using the duality theorem of linear
programming, will be presented in Section 7.3.

Example 4.4a In some situations, the only type of wagers allowed are
ones that choose one of the outcomes i (i = 1, . . . , m) and then bet that
i is the outcome of the experiment. The return from such a bet is often
quoted in terms of odds. If the odds against outcome i are oi (often
expressed as “oi to 1”), then a one-unit bet will return either oi if i is
the outcome of the experiment or −1 if i is not the outcome. That is,
a one-unit bet on i will either win oi or lose 1. The return function for
such a bet is given by

ri(j) =
{
oi if j = i,
−1 if j �= i.

Suppose that the odds o1, o2, . . . , om are quoted. In order for there not to
be a sure win, there must be a probability vector p = (p1, p2, . . . , pm)

such that, for each i (i = 1, . . . , m),

0 = Ep[ri(X)] = oipi − (1 − pi).
That is, we must have

pi = 1

1 + oi .

Since the pi must sum to 1, this means that the condition for there not
to be an arbitrage is that

m∑
i=1

1

1 + oi = 1.

This means that if
∑m
i=1(1 + oi)−1 �= 1 then a sure win is possible.

For instance, suppose there are three possible outcomes and the quoted
odds are as follows.

Outcome Odds

1 1
2 2
3 3
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That is, the odds against outcome 1 are 1 to 1; they are 2 to 1 against
outcome 2 and they are 3 to 1 against outcome 3. Since

1

2
+ 1

3
+ 1

4
= 13

12
�= 1,

a sure win is possible. One possibility is to bet −1 on outcome 1 (so you
either win 1 if the outcome is not 1 or you lose 1 if the outcome is 1) and
also bet −0.7 on outcome 2 (so you either win 0.7 if the outcome is not
2 or you lose 1.4 if it is 2) and −0.5 on outcome 3 (so you either win 0.5
if the outcome is not 3 or you lose 1.5 if it is 3). If the experiment results
in outcome 1 then you win −1 + 0.7 + 0.5 = 0.2; if it results in out-
come 2, you win 1− 1.4 + 0.5 = 0.1; if it results in outcome 3, you win
1+ 0.7 −1.5 = 0.2. Hence, in all cases you win a positive amount.

Example 4.4b Let us reconsider the option pricing example of Sec-
tion 4.3.1, where the initial price of a stock is 100 and the price after one
period is assumed to be either 200 or 50. At a cost of c per share, we
can purchase at time 0 the option to buy the stock at time 1 for the price
of 150. For what value of c is no sure win possible?

Solution. In the context of this section, the outcome of the experiment
is the value of the stock at time 1; thus, there are two possible outcomes.
There are also two different wagers: to buy (or sell) the stock, and to
buy (or sell) the option. By the arbitrage theorem, there will be no sure
win if there are probabilities (p,1 − p) on the outcomes that make the
expected present value return equal to zero for both wagers.

The present value return from purchasing one share of the stock is

return =
{

200(1 + r)−1 − 100 if the price is 200 at time 1,

50(1 + r)−1 − 100 if the price is 50 at time 1.

Hence, if p is the probability that the price is 200 at time 1, then

E[return] = p
[

200

1 + r − 100

]
+ (1 − p)

[
50

1 + r − 100

]

= p 150

1 + r + 50

1 + r − 100.

Setting this equal to zero yields that
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p = 1 + 2r

3
.

Therefore, the only probability vector (p,1 − p) that results in a zero
expected return for the wager of purchasing the stock hasp = (1+2r)/3.

In addition, the present value return from purchasing one share of the
option is

return =
{

50(1 + r)−1 − c if the price is 200 at time 1,
−c if the price is 50 at time 1.

Hence, when p = (1 + 2r)/3, the expected return of purchasing one
option share is

E[return] = 1 + 2r

3

50

1 + r − c.

Thus, it follows from the arbitrage theorem that the only value of c for
which there will not be a sure win is

c = 1 + 2r

3

50

1 + r ,

that is, when

c = 50 + 100r

3(1 + r) ,

which is in accord with the result of Section 4.3.1.

The absence of arbitrage does not usually result in a unique value for the
cost of an option in a one-period problem. Indeed, it does only when we
suppose that there are only two possible specified values of the option
at the exercise time. This is illustrated by our next example.

Example 4.4c Consider Example 4.4b, but now suppose that the pres-
ent value of the price at time 1 can be any one of the values 50, 200, and
100. That is, we now allow for the possibility that the present value of
the price of the stock at time 1 is unchanged from its initial price. Again,
suppose that we want to price an option to purchase the stock at time 1
for the fixed price of 150. For simplicity, let the interest rate r equal
zero. The arbitrage theorem states that there will be no guaranteed win
if there are nonnegative numbers p50, p100, p200 that sum to 1 and are
such that the expected gains if one purchases the stock (or the option)
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are zero when pi is the probability that the stock’s price at time 1 is i
for i = 50,100, 200. Letting Gs denote the gain at time 1 from buying
one share of the stock and letting S(1) be the present value of the price
of the stock at time 1, we have that

Gs =



100 if S(1) = 200,
0 if S(1) = 100,
−50 if S(1) = 50.

Hence,
E[Gs] = 100p200 − 50p50.

Also, if c is the cost of the option then the gain from purchasing one
option is

Go =
{

50 − c if S(1) = 200,
−c if S(1) = 100 or S(1) = 50.

Therefore,

E[Go] = (50 − c)p200 − c(p50 + p100)

= 50p200 − c.

Equating both E[Gs] and E[Go] to zero shows that the conditions for
the absence of arbitrage are that there be probabilities and a cost c such
that

p200 = 1

2
p50 and c = 50p200.

The first of these two equalities implies that p200 ≤ 1/3, so it follows
that, for any value of c satisfying 0 ≤ c ≤ 50/3, we can find proba-
bilities that make both buying the stock and buying the option fair bets.
Therefore, no arbitrage is possible for any option cost in the interval
[0, 50/3].

4.5 The Multiperiod Binomial Model

Let us now consider a stock option scenario in which there are n peri-
ods and where the nominal interest rate is r per period. Let S(0) be the
initial price of the stock, and for i = 1, . . . , n let S(i) be its price at i
time periods later. Suppose that S(i) is either uS(i − 1) or dS(i − 1),
where d < 1 + r < u. That is, going from one time period to the next,
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the price either goes up by the factor u or down by the factor d. Suppose
also that, at time 0, an option may be purchased that enables one to buy
the stock after n periods have passed for the amount K. In addition, the
stock may be purchased and sold anytime within these n time periods.

Let Xi equal 1 if the stock’s price goes up by the factor u from period
i −1 to i, and let it equal 0 if that price goes down by the factor d. That
is,

Xi =
{

1 if S(i) = uS(i − 1),
0 if S(i) = dS(i − 1).

The outcome of the experiment can now be regarded as the value of the
vector (X1, X2, . . . , Xn). From the arbitrage theorem it follows that, in
order for there not to be an arbitrage opportunity, there must be proba-
bilities on these outcomes that make all bets fair. That is, there must be
a set of probabilities

P {X1 = x1, . . . , Xn = xn}, xi = 0,1, i = 1, . . . , n,

that make all bets fair. Now consider the following type of bet. First
choose a value of i (i = 1, . . . , n) and a vector (x1, . . . , xi−1) of 0s and
1s, and then observe the first i − 1 changes. If Xj = xj for each j =
1, . . . , i − 1, immediately buy one unit of stock and then sell it back
the next period. If the stock is purchased, then its cost at time i − 1 is
S(i − 1); the time-(i − 1) value of the amount obtained when it is sub-
sequently sold at time i is either (1 + r)−1uS(i − 1) if the stock goes up
or (1 + r)−1dS(i − 1) if it goes down. Therefore, if we let

α = P {X1 = x1, . . . , Xi−1 = xi−1}

denote the probability that the stock is purchased and let

p = P {Xi = 1 | X1 = x1, . . . , Xi−1 = xi−1},

then the expected gain on this bet (in time-(i − 1) units) is

α[p(1 + r)−1uS(i − 1)+ (1 − p)(1 + r)−1dS(i − 1)− S(i − 1)].

Consequently, the expected gain on this bet will be zero, provided that

pu

1 + r + (1 − p)d
1 + r = 1

or, equivalently, that
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p = 1 + r − d
u− d .

In other words, the only probability vector that results in an expected
gain of zero for this type of bet has

P {Xi = 1 | X1 = x1, . . . , Xi−1 = xi−1} = 1 + r − d
u− d .

Since x1, . . . , xn are arbitrary, this implies that the only probability vec-
tor on the set of outcomes that results in all these bets being fair is the
one that takes X1, . . . , Xn to be independent random variables with

P {Xi = 1} = p = 1 − P {Xi = 0}, i = 1, . . . , n, (4.2)

where

p = 1 + r − d
u− d .

Given these probabilities, it can be shown that any bet on buying stock
will have zero expected gain. Hence it follows from the arbitrage theo-
rem that either the cost of the option must equal the expectation of the
present (i.e., the time-0) value of owning it under the foregoing prob-
abilities, or else there will be an arbitrage opportunity. So assume that
the Xi are independent 0-or-1 random variables with a common proba-
bility p of being equal to 1, and note that this implies that their sum –
call it Y, equal to the number of theXi that are equal to 1 – is a binomial
random variable with parameters n and p. Now, in going from period
to period, the stock’s price is its old price multiplied by either u or by
d. As a result, Sn, the stock’s price after n periods, can be expressed as

S(n) = uYd n−YS(0),

where Y = ∑n
i=1Xi is a binomial random variable with parameters n

and p. The value of owning the option after n periods have elapsed is
(Sn−K)+, which is defined to equal Sn−K when this quantity is non-
negative or zero when it is negative. Therefore, the present value of the
option is

(1 + r)−n(S(n)−K)+

and so the expectation of the present value of owning the option is
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(1 + r)−nE[(S(n)−K)+ ]

= (1 + r)−nE[(S(0)uYd n−Y −K)+ ]

= (1 + r)−n
n∑
i=0

(
n

i

)
pi(1 − p)n−i(S(0)uid n−i −K)+.

Thus, the only option cost C that does not result in an arbitrage is

C = (1 + r)−n
n∑
i=j

(
n

i

)
pi(1 − p)n−i(S(0)uid n−i −K), (4.3)

where j is the smallest integer satisfying

S(0)ujd n−j > K.

Let B̄n,a(k) denote the probability that a binomial random variable
with parameters n and a is greater than or equal to k; that is,

B̄n,a(k) =
n∑
i=k

(
n

i

)
ai(1 − a)n−i .

If we set
s = up

up + d(1 − p) = up

1 + r
then we can write equation (4.3) as

C = S(0)B̄n,s(j)−K(1 + r)−nB̄n,p(j).
Summing up, we have shown the following.

Proposition 4.5.1 For the n-period model in which the price of the
stock during any period is equal to its price the previous period multi-
plied either by u or by d, let S(0) be the initial price and let r be the
interest rate per period. If C is the cost of an option to purchase the stock
after n time periods at a fixed price K, then there is an arbitrage unless

C = S(0)B̄n,s(j)−K(1 + r)−nB̄n,p(j), (4.4)

where

p = 1 + r − d
u− d , s = up

1 + r ,
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B̄n,a(k) =
n∑
i=k

(
n

i

)
ai(1 − a)n−i ,

and where
j = min{i : S(0)uid n−i > K}.

4.5.1 The Black–Scholes Option Pricing Formula

Suppose now that we desire to price an option to purchase stock at time
t for a priceK when the price of the stock changes continuously in time.
One approach to this problem is first to break up the time interval from 0
to t into n subintervals of lengths t/n. If we then suppose that the price
of the stock, in going from one subinterval to the next, either increases
by the factor eσ

√
t/n or decreases by the factor e−σ

√
t/n for some positive

value σ, then we have the n-period model with

u = eσ
√
t/n, d = e−σ

√
t/n,

and with the one-period interest rate rt/n. Let C(n) denote the nonarbi-
trage cost (as given by equation (4.4)) of the option in this n-period prob-
lem. If we now let n grow larger and larger, then the n-period problem
will become closer and closer to the continuous time problem. It turns
out that, as we let n increase,C(n) converges to the valueC(∞) given by

C(∞) = S(0)8(σ√t + b)−Ke−rt8(b), (4.5)

where

b = rt − σ 2 t/2 − log(K/S(0))

σ
√
t

and where 8(x) is the standard normal distribution function of statis-
tics, defined by

8(x) = 1√
2π

∫ x

−∞
e−y

2/2 dy

and equal to the probability that a standard normal random variable is
less than x.

Equation (4.5) is known as the Black–Scholes option pricing formula.
The limiting process (as we divide the time interval from 0 to t into more
and more subintervals) is known as geometric Brownian motion, and σ
is a measure of the volatility of this process.
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4.6 Exercises

Exercise 4.1 What is the effective interest rate when the nominal in-
terest rate of 10% is

(a) compounded semiannually;
(b) compounded quarterly;
(c) compounded continuously?

Exercise 4.2 The doubling rule states that if one earns interest at a
nominal rate of s percent per year compounded annually, then it will
take approximately 70/s years for your funds to double. Give a justifi-
cation for this rule, and see how well it works when

(a) s = 7;
(b) s = 10.

Exercise 4.3 If you receive 5% interest compounded yearly, approxi-
mately how many years will it take for your money to quadruple? What
if you were earning only 4%?

Exercise 4.4 How much do you need to invest at the beginning of
each of the next 60 months to amass a value of $100,000 at the end of
60 months, given that the annual nominal interest rate will be fixed at
6% and will be compounded monthly?

Exercise 4.5 The yearly cash flows of an investment are

−1,000, −1,200, 800, 900, 800.

Is this a worthwhile investment for someone who can both borrow and
save money at the yearly interest rate of 6%?

Exercise 4.6 Consider two possible sequences of end-of-year returns,

20, 20, 20, 15, 10, 5 and 10, 10, 15, 20, 20, 20.

Which sequence is preferable if the interest rate, compounded annually,
is (a) 3%; (b) 5%; (c) 10%?
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Exercise 4.7 Suppose it is known that the price of a certain security
after one period will be one of the values s1, . . . , sk. What should be the
cost of an option to purchase the security at time 1 for the price K if
K < min si?

Exercise 4.8 Let C be the price of a call option to purchase a security
whose present price is S. Argue that C ≤ S.

Exercise 4.9 LetP be the price of a put option to sell a security, whose
present price is S, for the amount K. Which of the following are true?

(a) P ≤ S;
(b) P ≤ K.

Exercise 4.10 Let P be the price of a put option to sell a security,
whose present price is S, for the amount K. Argue that

P ≥ Ke−rt − S,
where t is the exercise time and r is the interest rate.

Exercise 4.11 Consider an experiment with three possible outcomes
and odds as follows.

Outcome Odds

1 1
2 2
3 5

Is there a betting scheme that results in a sure win?

Exercise 4.12 Consider an experiment with four possible outcomes,
and suppose that the quoted odds for the first three of these outcomes
are as follows.

Outcome Odds

1 2
2 3
3 4
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What must be the odds against outcome 4 if there is to be no possible
arbitrage when one is allowed to bet both for and against any of the
outcomes?

Exercise 4.13 Repeat Exercise 4.11 when the odds are

Outcome Odds

1 2
2 2
3 2

Exercise 4.14 Suppose, in Exercise 4.11, that one is also allowed to
choose any pair of outcomes i �= j and bet that the outcome will be
either i or j. What should the odds be on these three bets if an arbitrage
opportunity is to be avoided?

Exercise 4.15 In Example 4.4a, show that if

m∑
i=1

1

1 + oi �= 1

then the betting scheme

xi = (1 + oi)−1

1 − ∑m
i=1(1 + oi)−1, i = 1, . . . , m,

will always yield a gain of exactly 1.

Exercise 4.16 In Example 4.4b, suppose that one also has the option
of purchasing a put option that allows its holder to put the stock for sale
at the end of one period for a price of 150. Determine the value of P, the
cost of the put, if there is to be no arbitrage; then show that the resulting
call and put prices satisfy the put–call option parity formula.

Exercise 4.17 Suppose that, in each period, the cost of a security
either goes up by a factor of 2 or down by a factor of 1/2 (i.e., u = 2
and d = 1/2). If the initial price of the security is 100, determine the
no-arbitrage cost of a call option to purchase the security at the end of
two periods for a price of 150.



5. Graphs and Trees

5.1 Graphs

A graph consists of a set of elements V called vertices (or nodes) and
a set A of pairs of distinct vertices called edges (or arcs). It is usual to
represent such a system graphically by drawing circles for vertices and
drawing lines between vertices i and j when (i, j) is an edge. For in-
stance, the graph having V = {1, 2, 3, 4, 5, 6} and A = {(1, 2), (1, 4),
(1, 5), (2, 3), (2, 5), (3, 5), (5, 6)} is represented in Figure 5.1.

It should be noted the edges have no direction – for instance, the edge
(1, 3) can also be written as (3,1) – and also that we allow neither edges
from a vertex to itself nor multiple edges connecting the same pair of
vertices.

A sequence of vertices i, i1, i2, . . . , ik, j for which (i, i1), (i1, i2), . . . ,
(ik−1, ik), (ik, j) are all edges is called a path from vertex i to vertex j.
Figure 5.2 shows a path from vertex 1 to vertex 6.

A path i, i1, i2, . . . , ik, i from a vertex back to itself in which all of the
edges (i, i1), (i1, i2), . . . , (ik−1, ik), (ik, i) are distinct is called a cycle;
see Figure 5.3.

We say that vertices i and j communicate either if i = j or if there
is a path between i and j. We use the symbol i ←→ j to denote that i
and j communicate. The proof of the following is left as an exercise.

Proposition 5.1.1 If i ←→ j and j ←→ k then i ←→ k.

If i and j communicate then we say that they are in the same compo-
nent. It is a consequence of Proposition 5.1.1 that any two components
are either identical or disjoint. For consider two components and sup-
pose that vertex i is in one of them and j in the other. Now either these
components are disjoint or they have at least one vertex in common. But
if they do have a vertex (say, k) in common then, since i and j both com-
municate with k, it follows from Proposition 5.1.1 that they communicate
with each other, implying that the two components are identical. Thus,
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Figure 5.1: A Graph

Figure 5.2: A Path from 1 to 6: 1, 2, 3, 5, 6

Figure 5.3: A Cycle: 1, 2, 5,1
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Figure 5.4: A Graph with Three Components

nonidentical components are disjoint, which implies that the vertices of
a graph can be partitioned into disjoint components. For instance, Fig-
ure 5.4 illustrates a graph consisting of three components.

A graph with a single component is said to be connected. That is, a
graph is connected if, for all pairs of vertices i �= j, there is a path con-
necting i and j. The graph illustrated by Figure 5.1 is connected whereas
the one in Figure 5.4 is not. By convention, a graph with a single vertex
is connected.

Proposition 5.1.2 A graph on n vertices that has more than
(
n−1

2

)
edges

is connected.

Proof. Consider a graphGwith n vertices that is not connected, and let
i and j be vertices such that there is no path from i to j. Let S denote
the set consisting of vertex i and all other vertices for which there is a
path from i to that vertex. Note that if |S| denotes the number of ver-
tices in S then, since i ∈ S and j /∈ S, 1 ≤ |S| ≤ n−1. Now if s ∈ S and
r /∈ S then (s, r) is not an edge of the graph. For if it were then there
would be a path from i to r (contradicting the fact that r /∈ S) – namely,
the path that goes from i to s and then into r. As a result, if we let N
denote the number of pairs of vertices that are not edges of G, then

N ≥ |S|(n− |S|) ≥ min
1≤k≤n−1

k(n− k) = n− 1.

Hence, as there are a total of
(
n

2

)
possible edges, it follows that
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Figure 5.5: The Complete Graph on Four Vertices

number of edges of G =
(
n

2

)
−N

≤
(
n

2

)
− (n− 1)

= (n− 1)

(
n

2
− 1

)

=
(
n− 1

2

)
.

The graph with vertex set V = {1, . . . , n} whose edges are all of the
(
n

2

)
pairs (i, j), i �= j, is called the complete graph on V. Figure 5.5 shows
the complete graph on the vertices {1, 2, 3, 4}.

The degree of vertex i is the number of edges of type (i, j), that is,
the number of edges that connect i with another vertex. For instance, in
the complete graph of n vertices, each vertex has degree n − 1. A ver-
tex having degree 1 is called a leaf. Let d(i) be the degree of vertex i.
The graph of Figure 5.1 has two leaves, vertices 4 and 6; the degrees of
the other vertices are d(1) = 3, d(2) = 3, d(3) = 2, and d(5) = 4.

5.2 Trees

A tree is a connected graph without any cycles. Figure 5.6 presents trees
having one, two, three, four, and five vertices.
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Figure 5.6: Trees

The following theorem is fairly apparent.

Theorem 5.2.1 A graph with n vertices is a tree if and only if it has
n− 1 edges and no cycles.

Proof. Suppose first that the graph is a tree, and note that if we remove
an edge from the tree then, since a tree has no cycles, there will no longer
be a path between the vertices of the removed edge. Hence, removing
an edge from a tree results in a graph having two components, each of
which is without a cycle. If we now remove a second edge then, by the
same reasoning, what remains is a graph with three components, each
of which is without a cycle. Continuing, we see that after we have re-
moved n−1 edges, what remains is a graph with n components; that is,
one without any more edges.

To go the other way, suppose we have a set of n−1 edges that does not
contain any cycles. Starting with a graph consisting of n components –
that is, consisting of the n vertices and no edges – add these n−1 edges
one at a time. Since each added edge must be between vertices in differ-
ent components (for otherwise it would result in a cycle), it follows that
each added edge decreases the number of components by one. Thus,
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Figure 5.7: All Trees When n = 2 and n = 3

after the (n−1)th edge has been added, the graph has only one compo-
nent and no cycles; in other words, it is a tree.

Recall that the degree of a vertex is the number of edges of which it is part,
and letD be the sum of the degrees of all the vertices of a graph. Each ad-
ditional edge of a graph adds two to the count ofD (since it increases the
degrees of both of its endpoint vertices), so it follows thatD is equal to
twice the number of edges of the graph. Hence,D = 2(n−1)when the
graph is a tree. Since every vertex in a tree with n > 1 vertices has a pos-
itive degree (since the tree is connected), at least two of the vertices must
be leafs. Otherwise, there would be n−1 or more nonleafs and, since the
degree of each nonleaf is at least 2, the sum of the degrees would thus ex-
ceed 2(n−1),which is not the case. Thus, we have shown the following.

Proposition 5.2.1 Every tree has at least two leaves.

Let us now consider the problem of determining how many trees there
are when V = {1, 2, . . . , n}. Figure 5.7 depicts all the trees when n = 2
and n = 3. The following result gives the number of distinct trees.

Proposition 5.2.2 (Cayley’s Theorem) There are nn−2 trees on a ver-
tex set of size n.

To prove Cayley’s theorem we first use Corollary 2.7.2 to obtain the fol-
lowing combinatorial identity.

Lemma 5.2.1

nn−2 =
n−1∑
j=0

(
n

j

)
j n−2(−1)n−j+1.
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Proof. Corollary 2.7.2 implies that

n∑
j=0

(
n

j

)
j n−2(−1)n−j+1 = 0,

which is equivalent to the identity stated in the lemma.

Proof of Cayley’s Theorem. For a set B, let N(B) denote the number
of elements of B. Also, let t(n) denote the number of trees on a set of
n vertices. Our proof is by induction on n. As the result is true when
n = 1 and n = 2, assume that it is true whenever the vertex set is of
size smaller than n. Now consider the vertex set V = {1, . . . , n}, where
n > 2. Let Li denote the set of trees on V for which vertex i is a leaf,
i = 1, . . . , n. Since every tree has at least one leaf, we obtain from the
inclusion–exclusion rule that

t(n) = N(L1 ∪ L2 ∪ · · · ∪ Ln)
=

∑
i

N(Li)−
∑
i<j

∑
N(LiLj )+ · · ·

+ (−1)n+1N(L1 · · ·Ln). (5.1)

A tree with vertex i as a leaf can be thought of as consisting of a (sub)tree
on the other n− 1 vertices plus an edge that connects vertex i to any of
the n− 1 vertices in the (sub)tree. Hence, it follows that

N(Li) = (n− 1)t(n− 1).

Similarly, a tree in which i and j are both leaves is equivalent to a tree
on the other n − 2 vertices plus two additional edges, one connecting
i to any of the n − 2 vertices and the other connecting j to any them.
Thus,

N(LiLj ) = (n− 2)2 t(n− 2).

Indeed, the same argument gives the general result that the number of
trees for which each of k specified vertices is a leaf is (n− k)kt(n− k).
Note that the first summation in equation (5.1) is over n terms, the sec-
ond is over

(
n

2

)
terms, the third over

(
n

3

)
terms, and so on. From the

preceding we therefore have that
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t(n) =
n−1∑
k=1

(
n

k

)
(n− k)kt(n− k)(−1)k+1.

Using the induction hypothesis, we obtain that

t(n) =
n−1∑
k=1

(
n

k

)
(n− k)k(n− k)n−k−2(−1)k+1

=
n∑
k=1

(
n

k

)
(n− k)n−2(−1)k+1 (since n > 2)

=
n−1∑
j=0

(
n

n− j
)
j n−2(−1)n−j+1 (letting j = n− k)

=
n−1∑
j=0

(
n

j

)
j n−2(−1)n−j+1

= nn−2,

where the final equality follows from Lemma 5.2.1.

5.3 The Minimum Spanning Tree Problem

Suppose that we are to construct a communications network among n
locations and that the cost of building a direct link between locations i
and j is c(i, j) > 0. The requirements on the network are that enough
links must be constructed so that any pair of locations can communi-
cate, possibly through intermediary locations. In other words, regarding
the links built as being edges of a graph connecting the n locations (ver-
tices), we desire to construct the cheapest connected graph. Since all
costs are positive, it makes no sense to allow any cycles; thus, the cheap-
est connected graph will be a tree. The problem of finding the cheapest
such tree is known as the minimum spanning tree problem.

The greedy algorithm for the minimum spanning tree problem con-
structs the edges in sequence as follows: at each stage, build the cheapest
edge that – when added to the already constructed graph – does not re-
sult in a cycle.
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Figure 5.8: Adding (2, 5), the Cheapest Edge, Would Result in a Cycle

Example 5.3a Suppose that the costs for constructing a link between
vertices i and j are as follows:

1 2 3 4 5 6 7 8 9

1 3.6 4.8 5.2 2.5 3.9 6.2 7.0 5.4
2 8.1 7.6 3.8 3.7 5.1 4.4 6.2
3 2.4 6.0 5.8 7.7 9.2 10
4 8.0 3.7 6.5 7.0 6.9
5 4.0 5.5 6.6 7.7
6 8.1 8.8 5.9
7 5.7 5.6
8 7.3

The greedy algorithm starts by building the cheapest edge, namely (3, 4)
at cost 2.4; then the next cheapest, namely (1, 5) at cost 2.5; then (1, 2)
at cost 3.6; then (4, 6) at cost 3.7 (choosing among same-priced edges
is arbitrary); and then (2, 6) at cost 3.7. The next cheapest edge is (2,5);
however, since its addition would result in a cycle (see Figure 5.8), it is
not included and instead we go on to the next cheapest, and so on until
a tree is obtained (see Figure 5.9 for the resulting tree).
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Figure 5.9: The Minimal Cost Spanning Tree

Figure 5.10: Adding an Edge to a Tree; Then Removing an Edge
from the Resulting Cycle

We will show that the greedy algorithm is optimal. However, before
doing so, let us note that if we add a new edge to a tree then the result-
ing graph contains a cycle; and if we subsequently delete any edge of
this cycle, another tree results (see Figure 5.10).

Proposition 5.3.1 The greedy algorithm results in a minimal cost span-
ning tree.
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Proof. Let g1, g2, . . . , gn−1 denote a possible sequence of greedy edges
in order of appearance. (If edge costs are not all distinct then there are
different possible greedy edge sequences.) Consider any other spanning
tree T ; we will show that the cost of the greedy tree is less than or equal
to that of T . In order to show this, let gk denote the first greedy edge
that is not in T . That is, T contains g1, . . . , gk−1 but not gk. Add edge
gk to the tree T ; this results in a cycle that contains at least one non-
greedy edge (since the greedy edges do not contain a cycle). If we now
remove a nongreedy edge of the cycle, what remains is a tree that con-
tains the first k greedy edges. However, since gk is the cheapest edge
that does not form a cycle when added to the first k − 1 greedy edges,
it follows that gk is at least as cheap as the nongreedy edge that was re-
moved (since that edge and the first k − 1 greedy edges are in T and so
do not form a cycle). Hence the new tree, which has the first k greedy
edges, is at least as cheap as T . Repeating this argument shows that the
tree composed of the n−1 greedy edges is at least as cheap as T ; since
T was arbitrary, this completes the proof.

5.4 Cliques and Independent Sets

A set of k vertices of a graph is called a clique of size k if all the
(
k

2

)
un-

ordered vertex pairs from this set are edges of the graph. For instance,
the vertices 1, 2, 3, 4 of the graph depicted in Figure 5.11 constitute a
clique of size 4. A clique of size 3 is called a triangle. For instance, any
three of the vertices 1, 2, 3, 4 of the graph depicted in Figure 5.11 form
a clique of size 3.

The following proposition gives a sufficient condition for a graph to
contain a triangle.

Proposition 5.4.1 A graph with 2m vertices and m2 + 1 edges neces-
sarily contains a triangle.

Proof. The proof is by induction onm. It is true whenm = 1 because a
graph with two vertices cannot have two edges. So assume that a graph
with 2m vertices and m2 + 1 edges necessarily contains a triangle, and
consider a graph of 2(m+1) vertices and (m+1)2 +1 edges. Select an
edge of this graph, say (i, j), and let N denote the number of edges of
the graph that do not connect to either i or j. There are two cases:
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Figure 5.11: A Graph with a Clique of Size 4

(1) N > m2;
(2) N ≤ m2.

In case (1), we have that there are more than m2 edges among the 2m
vertices not equal to i or j. By the induction hypothesis this implies that
there is a triangle among these vertices. In case (2), since the graph has
(m+ 1)2 + 1 edges, it follows that

number of edges involving either i or j = (m+ 1)2 + 1 −N
≥ (m+ 1)2 + 1 −m2

= 2m+ 2.

Upon subtracting the edge (i, j), we see in case (2) that at least 2m+1
edges go from either i or j to one of the other 2m vertices. But this im-
plies that at least one of the other 2m vertices is connected to both i and
j, thus showing that there is also a triangle in case (2).

To show that the critical number m2 + 1 in Proposition 5.4.1 cannot be
improved upon, consider a graph consisting of 2m vertices andm2 edges
that is obtained by (i) partitioning the 2m vertices into two groups of
size m each and then (ii) having edges between every pair of vertices
that are not in the same group and no edges between vertices in the same
group. Since every set of three vertices contains at least two that are in
the same group, it follows that those two do not have an edge and so the
three vertices do not form a triangle (see Figure 5.12).
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Figure 5.12: A Graph with 2mVertices, m2 Edges, and No Triangles (m = 3)

Remark. Our proof of Proposition 5.4.1 made use of the pigeonhole
principle introduced in Section 2.8, which states that if r objects are to
be placed in s pigeonholes then, when r > s, at least one pigeonhole
will contain more than one object. This self-evident result can be ex-
tremely useful in graph theory, as indicated by our next example.

Example 5.4a In a graph with n vertices, show that at least two of the
vertices have the same degree.

Solution. There are two cases: either all of the vertices have a posi-
tive degree, or there is a vertex having degree 0. In the former case,
the possible degrees of the n vertices are 1, . . . , n−1, which implies by
the pigeonhole principle that at least two of the vertices have the same
degree. (Imagine that the vertices are the objects and that each vertex
is to be put in pigeonhole number i, i = 1, . . . , n − 1, if it has degree
i.) In the latter case there is an isolated vertex (the one with degree 0)
and so the possible degrees of the n vertices are 0,1, . . . , n − 2. Thus,
there are again only n− 1 possible degrees for the n vertices and so the
pigeonhole principle yields that at least two vertices will have the same
degree.

If G is a graph then its complement graph, denoted Gc, is the graph
whose vertices are the vertices of G but where (i, j) is an edge of Gc

if and only if it is not an edge of G. Figure 5.13 presents a graph and
its complement. It should be noted that the complement of the comple-
ment is the original graph.
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Figure 5.13: A Graph and Its Complement

A set of vertices S of a graph is said to be an independent set if no pair
of vertices in S constitute an edge. Cliques and independent sets are re-
lated through the complement graph concept in that S is a clique of G
if and only if S is an independent set of Gc.

The number of vertices in the largest independent set is called the in-
dependence number of the graph and is denoted by α(G). LetAi denote
the set of all vertices adjacent to i; that is,

Ai = {j : (i, j) is an edge of G}.
The number of elements in Ai is d(i), the degree of vertex i. The fol-
lowing proposition gives a lower bound on the independence number of
a graph in terms of the degrees of its vertices.

Proposition 5.4.2 For a graph having n vertices,

α(G) ≥
n∑
i=1

1

d(i)+ 1
.

In proving this proposition we will use a technique known as the prob-
abilistic method, which involves the introduction of randomness into a
nonrandom problem so as to enable the use of results from probability
theory.

Proof. Let R = (R1, . . . , Rn) denote a random permutation of the
numbers 1, 2, . . . , n; that is, R is equally likely to be any of the n!
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permutations. Now define an independent set of vertices S as follows.
Let i ∈ S if, in the permutation R, i appears before any of the elements
in Ai. To show that S is an independent set we note that, if i ∈ S and
(i, j) is an edge, then i appears before j in the permutation R and so
j /∈ S (since i ∈Aj and j does not appear before i). Thus, S is an inde-
pendent set. Let |S| denote the number of elements in S. Since E[|S|]
is a weighted average of the possible values of |S|, each of which is less
than or equal to α(G), it follows that

α(G) ≥ E[|S|].

However, setting

Ii =
{

1 if i ∈ S,
0 if i /∈ S,

we have

|S| =
n∑
i=1

Ii.

Using the result that the expected value of the sum of random variables
is equal to the sum of the expected values, the preceding equation yields

E[|S|] =
n∑
i=1

E[Ii]

=
n∑
i=1

P {i ∈ S}

=
n∑
i=1

1

d(i)+ 1
,

where the final equality follows because each of the d(i)+1 values, con-
sisting of i and the d(i) values inAi, are equally likely to appear first in
the permutation R, implying that the probability that i appears before
any of the vertices in Ai is 1/(d(i) + 1). Since α(G) ≥ E[|S|], the re-
sult is proven.

Let G be a graph with n vertices, and let dc(i) be the degree of vertex i
inGc. Then, since every pair (i, j), j �= i, is an edge in eitherG orGc

(but not both), it follows that
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dc(i)+ d(i) = n− 1.

Thus, from Proposition 5.4.2 we obtain that

α(Gc) ≥
n∑
i=1

1

n− d(i) .

Since an independent set of Gc corresponds to a clique in G, the pre-
ceding inequality yields the following proposition.

Proposition 5.4.3 If G is a graph with n vertices, then

maximal clique size in G ≥
n∑
i=1

1

n− d(i) .

The following corollary is of some independent interest.

Corollary 5.4.1 If G has n vertices and a edges, then

maximal clique size in G ≥ n2

n2 − 2a
.

Proof. Since the sum of the vertex degrees is twice the number of edges,
the hypothesis implies that

n∑
i=1

d(i) = 2a.

Hence, using Proposition 5.4.3, we have that

maximum clique size

≥
n∑
i=1

1

n− d(i)

≥ min

{ n∑
i=1

1

n− xi :
n∑
i=1

xi = 2a, 0 ≤ xi < n
}
. (5.2)

We may use the convexity of the function f(x) = 1
n−x (0 ≤ x < n)

along with the continuous analog of Corollary 1.4.1 to show that the
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minimal value of (5.2) occurs when all xi = 2a/n. This proves the
result.

Corollary 5.4.1 implies the following generalization of Proposition 5.4.1.

Corollary 5.4.2 (Turan’s Theorem) A graph with m(k − 1) vertices
and

(
k−1

2

)
m2 + 1 edges contains a clique of size k.

Proof. With n = m(k − 1) and a = (
k−1

2

)
m2 + 1, it follows that

2a = (k − 1)(k − 2)m2 + 1 = n2 k − 2

k − 1
+ 1> n2 k − 2

k − 1
.

Hence,
n2

n2 − 2a
>

n2

n2 − n2 k−2
k−1

= k − 1,

which implies (from Proposition 5.4.1) that there is a clique of size k.

Remark. Turan’s theorem is sharp in the sense that a graph withm(k−1)
vertices and

(
k−1

2

)
m2 edges need not contain a clique of size k. For take

m(k − 1) vertices that are partitioned into k − 1 subsets of size m each,
and consider a graph having these vertices and having edges between
every pair of vertices that are in different subsets. An edge can be chosen
by first selecting two of the k−1 subsets and then selecting one of them
vertices from each of these subsets, so it follows that there are

(
k−1

2

)
m2

edges. However, since there are only k − 1 subsets, we have that every
set of k vertices will contain at least two that are in the same subset; as
these two vertices will not be connected by an edge, the set of k vertices
will not be a clique.

The probabilistic method, which we used to prove Proposition 5.4.2, is
very useful in graph theory. The following example provides another
illustration.

Example 5.4b A round-robin tournament involving n contestants is
one in which each of the

(
n

2

)
pairs of contestants play each other ex-

actly once, with the outcome on any play being that one member of the
pair wins and the other loses. Let the players be numbered 1, 2, . . . , n.
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The permutation j1, j2, . . . , jn is called a Hamiltonian permutation if j1

beats j2, j2 beats j3, . . . , and jn−1 beats jn. A problem of interest is to
determine the largest possible number of Hamiltonian permutations.

For instance, if n = 3 and if one of the players (say, number 1) beats
the other two players and 2 beats 3, then 1, 2, 3 will be the only Hamil-
tonian permutation. On the other hand, if each player wins once, there
will be three Hamiltonian permutations. (For instance, if 1 beats 2, 2
beats 3, and 3 beats 1, then 1, 2, 3 and 2, 3,1 and 3,1, 2 are all Hamil-
tonian permutations.) Hence, for n = 3, the largest possible number of
Hamiltonian permutations is three. Although there is no simple expres-
sion for the number of Hamiltonian permutations in the general case, we
will now use the probabilistic method to show that, for any n, there is a
possible outcome of the tournament for which there are at least n!/2n−1

Hamiltonian permutations.
To verify the preceding claim, let us suppose in any game played that

each of the two participants is equally likely to win and that the out-
comes from different games are independent. If we let X denote the
number of Hamiltonian permutations that result, then X is a random
variable whose set of possible values is the set of all possible numbers
of Hamiltonian permutations that can result from a round-robin tour-
nament of n players. Since E[X] is a weighted average of its set of
possible values, it follows that at least one of these possible values is at
least as large as E[X]. To compute E[X], imagine that we have num-
bered the n! different permutations of 1, 2, . . . , n; call them permutation
1, . . . , permutation n!. Now, let

Ii =
{

1 if permutation i is a Hamiltonian,
0 otherwise,

and note that

X =
n!∑
i=1

Ii.

As a result,

E[X] =
n!∑
i=1

E[Ii].

However,

E[Ii] = P {permutation i is a Hamiltonian}
= (1/2)n−1,
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where the final equality is true because the probability that any permuta-
tion (say, j1, j2, . . . , jn) is a Hamiltonian permutation is the probability
that j1 beats j2 multiplied by the probability that j2 beats j3,multiplied
by the probability that j3 beats j4, and so on. But since each of these
probabilities is 1/2, the preceding equation follows. Consequently, we
obtain that

E[X] = n!

2n−1
,

which shows that there is at least one outcome of the round-robin tour-
nament that results in at least n!/2n−1 Hamiltonian permutations.

5.5 Euler Graphs

A cycle is said to be an Euler cycle (sometimes called an Euler closed
path) if it is a cycle that passes through every edge of the graph exactly
once. A graph that possesses an Euler cycle is called an Euler graph.
For instance, the graph on the left side of Figure 5.14 is an Euler graph
whereas the one on the right side is not. (Why not?)

The following proposition characterizes Euler graphs.

Proposition 5.5.1 A connected graph with at least one vertex is an
Euler graph if and only if the degree of every vertex is even.

Proof. Suppose first that the graph has an Euler cycle – say, i, i1, i2, . . . ,
ik, i. Because every edge of the graph is accounted for in this cycle, we
can count the degree of each vertex by adding the number of edges
that go into the vertex to the number that go out of the vertex. How-
ever, every time the cycle enters one of the vertices ij (ij �= i) it then
leaves it, adding 2 to its degree count. As a result, the degree of each
of these vertices is even. Similarly, aside from the initial and final
edges, which both add 1 to the degree count of vertex i, every other
encounter of i adds 2 to this count. Thus the degree of vertex i is also
even.

Suppose now that the graph is connected and the degree of each ver-
tex is an even number. Starting at any vertex, move along any edge
to the next vertex and put a mark on the edge that you have just tra-
versed. From then on, move along an unmarked edge that emanates
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Figure 5.14: An Euler Graph and a Non-Euler Graph

from the vertex you are presently at, and mark that edge. Since there
are only a finite number of edges, at some point you will have to stop
because there are no unmarked edges connected to the vertex you are
at. Consider the vertex where you end. Note that, for any vertex dif-
ferent from the initial one, every time you enter and then leave that
vertex you mark two of the edges connected to it; since it has an even
number of such edges, it follows that there are still an even number of
unmarked edges connected to it. As a result, it is not possible that you
could enter one of these vertices and then be unable to leave it. Thus,
the final vertex must be the initial one and so we have generated a cy-
cle. If this cycle encompasses all the edges of the graph then we have
found an Euler cycle. If not, then the vertices of the graph consisting of
the unmarked edges will all have even degrees, so we can start at one
of those vertices and repeat the process to obtain a second cycle, and
so on.

Thus, whenever each vertex of a graphG has an even degree, we can
partition the edges of G into (say, r) cycles such that each edge of G is
contained in exactly one of these cycles and no cycle contains the same
edge more than once. We will now argue by induction that, if such a
graph is connected, it must be an Euler graph. As this is true by defini-
tion when r = 1, assume it is true whenever we can partition the edges
into r −1 such cycles, and suppose now thatG can be partitioned into r
cycles. Let C1 be one of the r cycles. Since G is connected, it follows
that at least one of the vertices in C1 must also be a vertex of at least
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Figure 5.15: Combining Two Cycles Having a Common Vertex

one of the other cycles. That is, for some vertices i, j, k there must be a
cycle Cs (s �= 1) such that

(i, j)∈C1, (j, k)∈Cs.
But then (see Figure 5.15) C1 and Cs together form a single cycle that
passes through each of its edges exactly once, and so G can be repre-
sented as a connected graph consisting of r−1 such cycles. This implies
(by the induction hypothesis) that G is an Euler graph, and the proof is
complete.

5.6 Exercises

Exercise 5.1 Prove Proposition 5.1.1.

Exercise 5.2 Is there a graph with five vertices whose respective de-
grees are 2, 2, 3, 3, 3?

Exercise 5.3 If d(i) ≥ 2 for all vertices i, show that the graph con-
tains a cycle.

Exercise 5.4 How many distinct graphs having vertex set V =
{1, 2, . . . , n} are possible? How many have exactly k edges?

Exercise 5.5 The distance between two vertices i �= j, call it d(i, j),
is defined to be the length of the shortest i-j path in the graph, where
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the length of a path is defined to be the number of edges it contains. If
there is no i-j path, define the distance to be infinite. With d(i, i) = 0,
show that for any vertices i, j, k we have

d(i, j) ≤ d(i, k)+ d(k, j).

Exercise 5.6 Consider a collection of sets {S1, . . . , Sr}. Associated
with this collection is the intersection graph whose vertices are 1, . . . , r
and which has (i, j) as an edge, provided that Si and Sj have a nonempty
intersection. Draw the intersection graph if r = 5 and

(a) S1 = {a, b, c, d};
(b) S2 = {c, e};
(c) S3 = {a, e, g};
(d) S4 = {a, b, e};
(e) S5 = {d}.

Exercise 5.7 Show that a graph having n vertices, n−1 edges, and no
cycles is a tree.

Exercise 5.8 A system of roads connecting eight different locations
must be built. The distances (in miles) between each pair of locations
is as follows.

2 3 4 5 6 7 8

1 13 21 9 7 18 20 15
2 9 18 12 26 23 11
3 26 17 25 19 10
4 7 16 15 9
5 9 11 8
6 6 10
7 5

Assuming that the total cost is proportional to the sum of the distances
of the roads constructed, what is the cheapest solution?

Exercise 5.9 A mining company is about to start operations at six min-
ing camps. The company wants to construct a series of roads so that each
camp is reachable from every other camp. It the cost of construction is c
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Figure 5.16

dollars per mile of construction and the distances between these camps
are as follows, find the optimal solution.

2 3 4 5 6

1 5 2 9 12 7
2 14 5 8 1
3 4 6 21
4 17 3
5 13

Exercise 5.10 Consider the following approach for finding a minimum
cost spanning tree. Start with the complete graph; at each stage, find a
cycle and remove the most expensive edge of that cycle; stop when there
no longer exists any cycles. Does this approach work?

Exercise 5.11 How many distinct minimum spanning trees does the
graph in Figure 5.16 possess?

Exercise 5.12 Another algorithm for finding a minimal spanning tree
is known as Prim’s algorithm. At each stage of the algorithm, X is a
set of vertices and T is the cheapest set of edges that connect vertices
in X. The final value of T will be the minimal cost spanning tree. The
algorithm proceeds as follows:

(1) Let X = {1} and T = ∅ (i.e., T is the null set).
(2) Choose the cheapest edge (i, j) such that i ∈X and j /∈X.
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(3) Let X = X ∪ {j} and T = T ∪ {(i, j)}.
(4) If X �= V, return to step (1).

In words, at each stage the algorithm chooses the cheapest edge that
connects a vertex of the edges so chosen with a new vertex. Prove that
Prim’s algorithm finds a minimal cost spanning tree.

Exercise 5.13 Apply Prim’s algorithm to the graph of Exercise 5.8.

Exercise 5.14 Suppose that one edge of a graph is colored blue and
that each of the other edges is colored either red or green. Show that
either:

(a) there is a cycle in which no edge is green; or
(b) there is a cycle in which no edge is red.

Exercise 5.15 Let Gc be the complement of the graph G.

(a) If G has n vertices and m edges, how many edges does Gc have?
(b) Describe the complement of the complete graph.
(c) What is the complement of Gc?
(d) If G is connected, show that Gc is not connected.

Exercise 5.16 The diameter of G is the maximum distance between
two vertices inG. Show that, if the diameter ofG is greater than 3, then
the diameter of Gc is less than 3.

Exercise 5.17 A path that uses all the edges of a graph – but does not
end where it began – is called a semi-Eulerian path. Show that a con-
nected graph contains a semi-Eulerian path if and only if it has exactly
two vertices of odd degree.

Exercise 5.18 If each of the vertices of a graphG can be colored with
any of k different colors in such a way that every two adjacent vertices
have a different color, we say that the graph is k-colorable. (Vertices
i and j are said to be “adjacent” if (i, j) is an edge.) The smallest k
for which a graph is k-colorable is called its chromatic number, usually
designated as χ(G).

(a) If Kn is the complete graph on n vertices, what is χ(Kn)?
(b) What is χ(T ) when T is a tree with n vertices?
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(c) The circuit graphZn is the graph with vertex set {1, . . . , n} and edge
set {(1, 2), (2, 3), . . . , (n− 1, n), (n,1)}. What is χ(Zn)?

Exercise 5.19 There is no simple algorithm for finding the chromatic
number of a graph, but the following (known as the “greedy” algorithm)
can be used to obtain an upper bound. To begin, arbitarily order the ver-
tices of the graph – say the ordering is v1, . . . , vm. Then proceed as
follows.

• Use color 1 on vertex v1, and set c(1) = 1.
• If (v1, v2) is not an edge, use color 1 on v2 and set c(2) = 1; otherwise

use color 2 and set c(2) = 2.
• For i > 1,use color r on vertexvi and set c(i) = r,where r is the small-

est positive integer not in the set {c(j) : j < i, (vi, vj ) is an edge}.
• Continue until all vertices have been colored, and note how many col-

ors are needed.

(a) Show, by constructing an example along with a vertex order, that the
greedy algorithm may give an answer that is larger than the chro-
matic number.

(b) Show that, for at least one ordering of the vertices, the greedy algo-
rithm gives the chromatic number.

Exercise 5.20 Every member of a certain organization belongs to sev-
eral committees, and a schedule of committee meetings is to be drawn
up. Each committee is to meet exactly once, but any two commit-
tees with at least one member in common cannot meet at the same
time. Show that determining the minimal number of meeting times
required is equivalent to finding the chromatic number of a certain
graph.

Exercise 5.21 What is the relation between the chromatic number and
the maximum clique size of a graph?

Exercise 5.22 Recall that a set of vertices W of a graph G is said to
be an independent set if no two of the vertices in the set are adjacent;
α(G), the independence number ofG, is defined as the size of a largest
independent set. Find the independence number of the graph depicted
in Figure 5.15.
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Exercise 5.23 If the graph G has n vertices, show that

α(G) ≥ n

χ(G)
,

where χ(G) is the chromatic number of G.

Exercise 5.24 If d(i) ≤ d for all vertices i, argue that

χ(G) ≤ d + 1,

where χ(G) is the chromatic number of the graph G.

Exercise 5.25 Suppose we havem colors that can be used to color the
vertices of a tree with n > 1 vertices. Show that, subject to the con-
dition that any vertices joined by an edge must have a different color,
there are m(m− 1)n−1 different colorings possible.

Hint: Use mathematical induction.



6. Directed Graphs

6.1 Directed Graphs

A graph whose edges are assumed to have a direction is called a directed
graph, or more simply a digraph. The edge (i, j) in a directed graph
is interpreted as going from vertex i into vertex j, and it is graphically
represented by drawing an arrow from vertex i to vertex j. Figure 6.1
presents a directed graph.

As with an undirected graph, any sequence of vertices i, i1, i2, . . . ,
ik, j for which (i, i1), (i1, i2), . . . , (ik, j) are all edges is said to be a
path from vertex i to vertex j. For instance, 1, 2, 3, 6 is a path from 1 to
6 for the digraph of Figure 6.1.

6.2 The Maximum Flow Problem

Consider a directed graph with vertex set V and edge set A. Suppose
that there are two distinguished vertices, the source vertex s and the sink
vertex t, and suppose that there are no edges that either go into s or out
of t. For each edge (i, j), suppose that a nonnegative integer c(i, j),
called the “capacity” of the edge, is specified. The problem of interest
is to flow a commodity from s to t according to the following rules:

(1) the amount of flow that can be sent along any edge is less than or
equal to the capacity of that edge (the capacity constraint);

(2) for any vertex i not equal to s or t, the amount that is flowed into
i must equal the amount that is flowed out of i (the conservation
constraint).

Our objective is to determine the maximal amount that can be sent from
s to t and the flow that achieves it.

For the directed graph given in Figure 6.2, the edge numbers on the
upper graph represent the capacities; those on the lower graph represent
a possible flow along that edge. Note that each edge flow value is less
than or equal to the edge capacity and that, except for the source and
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Figure 6.1: Directed Graph with

A = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 6), (4, 3), (4, 5), (5, 6)}

Figure 6.2: Edge Capacities and a Feasible Flow

sink vertices, the total amount of flow into each vertex is equal to the
total flow out of that vertex.

Let us introduce some notation. For sets of verticesU andV, let (U, V )
denote the set of edges that go from a vertex of U to one of V. That is,
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Figure 6.3: An s-t Cut with X = {s, 2, 4}

(U, V ) = {(i, j)∈ A : i ∈U, j ∈V }.
Also, for a function g(i, j) defined on the edges of the graph, let

g(U, V ) =
∑

(i,j)∈(U,V )
g(i, j)

denote the sum of the g(i, j), summed over all the edges that go from a
vertex in U to one in V.

Using the preceding notation, our objective is to find nonnegative edge
flow values f(i, j) so as to

max
f
v(f ),

subject to
f(i, j) ≤ c(i, j)

and
f(i,V ) = f(V, i), i �= s, t,

where v(f ) = f(s,V ) = f(V, t) is the amount that f flows from s to t.
An important concept in finding a maximal flow is that of an s-t cut.

LetX be a set of vertices and let X̄ be the complementary set of remain-
ing vertices. If s ∈X and t ∈ X̄ then we say that (X, X̄) is an s-t cut. In
other words, an s-t cut is a set of edges that go from a set of vertices that
includes s to the set of remaining vertices that includes t. A useful way
of thinking about an s-t cut is to imagine that a river runs through the
network, with the vertices in X on one side of the river and those in X̄
on the other side. For instance, Figure 6.3 depicts an s-t cut with X =
{s, 2, 4} for the graph of Figure 6.2. The edge numbers represent a flow.
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Since f(X, X̄) is the total flow from the s side to the t side of the cut
and f(X̄,X) is the total amount that flows back, it follows that the net
amount flowing across the cut is f(X, X̄) − f(X̄,X). From the con-
servation condition, it follows that this must equal the value of the flow
(see Figure 6.3). That is, we have the following proposition.

Proposition 6.2.1 For any s-t cut (X, X̄) and flow f,

v(f ) = f(X, X̄)− f(X̄,X).

As an instance of Proposition 6.2.1 we observe that, for the flow and
s-t cut indicated in Figure 6.3, the value of the flow is clearly 7 while
f(X, X̄) = 8 and f(X̄,X) = 1.

An immediate corollary of Proposition 6.2.1 is that the value of any
flow is less than or equal the capacity of any s-t cut.

Corollary 6.2.1 For any flow f and s-t cut (X, X̄),

v(f ) ≤ c(X, X̄).

Proof. We have

v(f )= f(X, X̄)− f(X̄,X)
≤ f(X, X̄)
≤ c(X, X̄).

The first inequality follows since f is nonnegative, and the second fol-
lows since the flow along an edge is less than or equal to the edge’s
capacity.

Corollary 6.2.1 is valid for all flows; hence, for any s-t cut (X, X̄) we
have

max
f
v(f ) ≤ c(X, X̄).

As this is true for all s-t cuts, we are led to our next corollary.

Corollary 6.2.2
max
f
v(f ) ≤ min c(X, X̄),

where the minimum is over all s-t cuts (X, X̄).
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Suppose now that we can find a flow fo and an s-t cut (Xo, X̄o) such
that v(fo) = c(Xo, X̄o). Since the value of any other flow is at most
c(Xo, X̄o), it follows that fo is the maximal flow and (also from Corol-
lary 6.2.2) that (Xo, X̄o) is the minimal capacity s-t cut. It turns out that
this is always possible, resulting in the following theorem.

Theorem 6.2.1 (Max-Flow Min-Cut Theorem)

max
f
v(f ) = min c(X, X̄).

Proof. We will prove the theorem by presenting an algorithm, known
as the augmentation algorithm, for solving the maximum flow problem.
Starting with any initial integral flow f, the algorithm will at each iter-
ation either produce a new integral flow whose value is larger than the
preceding one or stop. When it stops, we will be able to determine an
s-t cut whose capacity is equal to the value of the final flow. Since we
will then have exhibited a flow and an s-t cut such that the value of the
flow is equal to the capacity of the cut, the result will follow.

Let f be any integral flow; for instance, we could start the algorithm
with the flow f(i, j) = 0, (i, j) ∈ A. Now, define the augmented di-
graph associated with the flow f in the following manner. The vertex
set V is as before, but the edge set Af now consists of all pairs of ver-
tices (i, j) for which it is possible to increase the amount that f flows
from i to j and still preserve the capacity constraint. There are two types
of edges in Af :

(1) if (i, j)∈ A and f(i, j) < c(i, j), then (i, j)∈ Af;
(2) if (j, i)∈ A and f(j, i) > 0, then (i, j)∈ Af.

In the former case we say that (i, j) is a forward edge of the augmented
digraph and in the latter case that it is a reverse edge. Thus, if f sends
flow along the edge (i, j) that is less than the capacity of that edge, then
we can increase the flow in a direct fashion by sending additional flow
along that edge. On the other hand, if f sends positive flow along the
edge (j, i) then we can (indirectly, or in a reverse fashion) increase the
amount flowed directly from i to j by decreasing the amount that is be-
ing sent along (j, i). For instance, ignoring any edges into the source
vertex s or out of the sink vertex t, the augmented digraph associated
with the flow depicted in Figure 6.2 consists of the set of edges shown
in Figure 6.4.
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Figure 6.4

Figure 6.5: An Improved Flow

Suppose now that there is a path from s to t along the edges in Af. By
increasing the flow by 1 along all of the edges in that path, either by a
direct increase if the edge is a forward edge or by decreasing the amount
sent in the opposite direction if it is a reverse edge, we obtain a new flow
f ′ such that v(f ′) = v(f )+1. For instance, increasing the flow of Fig-
ure 6.2 by sending 1 additional unit of flow along the path s,1, 3, 2, 4, t
results in the flow, of value 8, shown in Figure 6.5. (Note that the effect
of sending an additional unit of flow along the reverse edge (3, 2) is to
reduce the amount sent along (2, 3) by the amount 1.)

Thus, whenever we can find a path from s to t in the augmented di-
graph, we are able to obtain a new flow whose value is one more than its
predecessor. Since flow values are bounded by the capacity of any s-t
cut, eventually we will reach a point where we have a flow fo for which
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there is no path from s to t along the edges Afo . We claim that this flow
has the maximal possible flow value, and to prove this we will define a
cut whose capacity will be shown to equal v(fo). So suppose there is
no path from s to t along the edges Afo . Let Xo denote the set of ver-
tices consisting of s and all vertices i for which there is a path from s

to i in Afo, and let X̄o denote the remaining vertices. Since there is no
path from s to t, it follows that t ∈ X̄o.

Suppose now that i ∈Xo and j ∈ X̄o. Note that, since there is a path
from s to i but not from s to j, it follows that (i, j) /∈ Afo . (Otherwise,
there would be a path from s to j : one that goes from s to i and then
goes along the augmented edge (i, j).) Hence, if (i, j)∈ A then

fo(i, j) = c(i, j)
and if (j, i)∈ A then

fo(j, i) = 0.

From the preceding, it follows that

f(Xo, X̄o) = c(Xo, X̄o), f(X̄o, Xo) = 0.

Therefore, from Proposition 6.2.1,

v(fo) = c(Xo, X̄o),
which completes the proof.

Remark. When actually utilizing the augmentation algorithm, it is ad-
vantageous to define edge capacities of the augmented network corre-
sponding to the flow f as follows:

cf(i, j) =
{
c(i, j)− f(i, j) if (i, j) is a forward edge of Af,

f(j, i) if (i, j) is a reverse edge of Af.

In words, cf(i, j) is the amount by which the flow f can be increased
along the edge (i, j) without violating the capacity constraints. Hence,
if there is an s-t path in the augmented network then, rather than just
sending 1 additional unit of flow along this path, we can speed up the
algorithm by sending as much flow as possible – namely, the minimal
value of cf(i, j) over all edges (i, j) in the path.

Example 6.2a With the edge numbers representing the additional ca-
pacities cf(i, j), the augmented digraph of the flow given in Figure 6.5
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Figure 6.6

Figure 6.7

is shown in Figure 6.6. (Note that we ignore all reverse edges that either
go in to the source vertex s or out of the sink vertex t.) From this aug-
mented digraph we see that it is possible to send 2 additional units of
flow along the path s,1, 2, 4, t and so obtain a new flow of value 10, as
seen in Figure 6.7. The augmented digraph of this flow is shown in Fig-
ure 6.8.

Thus we can send an additional unit of flow along the path s,1, 3, t
to obtain the new flow, of value 11, as shown in Figure 6.9. The new
augmented digraph is depicted in Figure 6.10.

There is no path from s to t in the augmented digraph, so we can con-
clude that the preceding flow, whose value is 11, is optimal. Also, since
in the final augmented digraph there is no path from s to any other ver-
tex, it follows that the minimal s-t cut is
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Figure 6.8

Figure 6.9

Figure 6.10
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X = {s}, X̄ = {1, 2, 3, 4, t},
and

c(X, X̄) = c(s,1)+ c(s, 2) = 11.

Remark. Not only does the augmentation algorithm prove the max-flow
min-cut theorem, it also establishes that if the capacities are all integers
then the maximal flow can be taken to be integral. That is, there is a
maximal flow having only integer flow values f(i, j). When the ca-
pacities are rational, then we can write them all as integral multiples
of a fixed rational value r, and thus the augmentation algorithm would
yield an optimal flow with all of its values also being multiples of r.
Although our argument would need to be modified, Theorem 6.2.1 re-
mains true even when the edge capacities are arbitrary nonnegative real
numbers.

A corollary of the proof of the max-flow min-cut theorem is the graph
theoretic result known as Menger’s theorem.

Corollary 6.2.3 (Menger’s Theorem) In a directed graph, the maxi-
mum number of edge-disjoint paths from vertex s to vertex t is equal to
the minimal number of edges that need to be removed to disconnect s
and t.

Proof. Let all of the edges have flow capacity 1, and use the augmen-
tation algorithm to find an integral maximal flow. Since the flow along
each edge will either be 0 or 1, this flow can be decomposed into unit
flows along edge-disjoint paths from s to t. Also, since any collection
of (say, k) edge-disjoint paths can be used to obtain a flow of value k, it
follows that the maximum flow from s to t is equal to the maximal num-
ber of edge-disjoint paths from s to t. Moreover, any set of edges whose
removal disconnects s from t must contain an s-t cut. To see why, sup-
pose that a set of edges disconnecting s and t has been removed, and let
X denote the vertices that remain connected with s (i.e., X is the set of
vertices x for which there is a path from s to x); it is now easy to see
that all the edges in the s-t cut (X, X̄) have been removed. Therefore,
since the capacity of a cut is equal to the number of edges in that cut,
the result follows from the max-flow min-cut theorem.
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Figure 6.11: The Assignment Problem

6.3 Applications of the Maximum Flow Problem

6.3.1 The Assignment Problem

Consider a set of n people and set of n jobs to which the people are to
be assigned. Suppose that at most one person is to be assigned to each
job. Suppose further that not every person is qualified for every job, and
that the objective is to maximize the number of people that are assigned
to jobs for which they are qualified.

This problem can be solved as a maximum flow problem as follows.
The digraph has a source vertex, a vertex for each person, a vertex for
each job, and a sink vertex. There are edges, each having capacity 1,
from the source vertex to each of the people vertices. There is an edge
between person vertex i and and job vertex j if person i is qualified for
job j. Finally, there are edges, each having capacity 1, from each job
vertex to the sink vertex. The network is depicted in Figure 6.11. (A
digraph along with associated edge numbers is often called a network.)

Note that each person vertex can receive only one unit of flow; there
are only edges from a person to a job for which that person is qualified;
and at most one unit of flow can be sent out of each job. As a result,
by regarding a flow that sends one unit from person i to job j as an
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assignment of person i to job j, we see that a flow corresponds to an
assignment of people to jobs for which they are qualified. Hence the
maximum flow is just the maximum number of people that can be so
assigned.

It is interesting to consider conditions under which it is possible to as-
sign everyone. This will be the case when the maximum flow is equal to
n, so it follows from the max-flow min-cut theorem that this will hold if
the capacity of every s-t cut is at least n. To determine when this is the
case, first note that we have not yet assigned any capacities to the edges
from people to jobs. It follows that, although it is natural to let these
edge capacities equal 1 (since the flow out of a job can be at most 1), any
value larger than 1 can also be used for these edge capacities. To make
it easier to identify those cuts whose capacities could be minimal, we
will suppose that any edge from a person to a job has infinite capacity.

In order to characterize those s-t cuts that might have minimal capac-
ity, consider any s-t cut and let X denote the vertices on the s side. Let
R denote the set of people in X, and let J(R) denote the set of jobs that
can be performed by at least one member of R. Now, if any of the jobs
in J(R) are on the X̄ side of the cut then the capacity of this cut will be
infinite. So suppose that all of the vertices in J(R) are also in X. Now
consider those jobs not in J(R). Since none of the people inX are qual-
ified for any of those jobs, there are no edges from any of the vertices
in X to any of those jobs; hence, the capacity of the cut will be smallest
if those jobs are in X̄. Thus, a minimal s-t cut is of the following type:
for some set of people R,

X = {s, R, J(R)}, X̄ = {R̄, J̄(R), t},

where J̄(R) are all jobs not in J(R). Since (X, X̄) consists of edges
from s to people in R̄ and from jobs in J(R) to t, we see that the capac-
ity of a cut of this type is given by

c(X, X̄) = |R̄| + |J(R)|
= n− |R| + |J(R)|,

where |C| denotes the number of elements in the set C. It follows from
the preceding that the capacity of each s-t cut will be at least n, imply-
ing that the maximum flow will equal n if, for every set of people R,
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|J(R)| ≥ |R|.

That is, we have proven the following result.

Proposition 6.3.1 (Hall’s Theorem) It is possible to assign all n peo-
ple to jobs for which they are qualified if and only if, for every set of
people R,

|J(R)| ≥ |R|.

That is, the necessary and sufficient condition is that, for every set of peo-
ple, the number of jobs that at least one member of that set is qualified
to perform must be at least as large as the number of people in the set.

Remarks. (i) The necessity of the condition is obvious. For instance, if
there were a set of five people that together qualified for only four jobs,
then clearly they could not all be assigned. What is interesting is that
the condition is sufficient.

(ii) The way to check whether there is a perfect assignment is to
utilize the maximum flow algorithm presented in Section 6.2 to see
whether there is a flow of value n (and not by trying to check the con-
dition |J(R)| ≥ |R| for each of the 2n − 1 possible nonempty sets of
people).

Example 6.3.1a Consider the following game of solitaire played with
a standard deck of 52 cards (4 suits of 13 different denominations). The
cards are turned face up in a rectangular array of 4 rows, each row con-
sisting of 13 columns.

x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x

To win this game, you must select one card from each column so that
all 13 denominations appear among the 13 cards selected. Argue that,
no matter what the arrangement of cards, a win is always possible.

Solution. Consider the problem of assigning 13 people to 13 jobs, and
say that person i is qualified for job j if column i contains a card having
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denomination j. By considering the denomination of the card chosen
from column i in the solitaire game as being the job assignment of per-
son i, it follows that a win in solitaire corresponds to an assignment of
all 13 people to jobs for which they are qualified. By Hall’s theorem,
such an assignment is possible provided that, for any set of k people, the
number of jobs that at least one of these k is qualified to do is at least k.
But since each person is qualified for four jobs and any set of 4k cards
must contain at least one of each of k different denominations, the re-
sult follows.

6.3.2 The Tournament Win Problem

Consider a set of r teams involved in a tournament, and suppose that
teams i and j are to play a total of ni,j games between themselves,
i �= j. Each game played results in one of the teams being declared the
winner. The question of interest is if, for a given integral vector w =
(w1, . . . , wr), it is possible that team i ends up withwi wins for each i =
1, . . . , r. Since the total number of games to be played is 1

2

∑
j

∑
i ni,j

and there is one winner in each game, an obvious necessary condition
is that

W = 1

2

∑
j

∑
i

ni,j,

whereW = ∑r
i=1wi. We will suppose from here on that the preceding

condition holds.
We can analyze the tournament as a maximum flow problem by (i)

defining vertices for each pair of teams and also for each individual team
and (ii) letting the flow sent from a team-pair vertex (i, j) to a team in
the pair (say, team i) be the number of the ni,j games played by the pair
that are won by team i. More specifically, consider a network with:

(1) a source vertex s;
(2)

(
r

2

)
vertices (i, j), i < j ;

(3) r vertices i, i = 1, . . . , r;
(4) edges from s to each vertex (i, j) with respective capacities ni,j ;
(5) edges from each vertex of type (i, j) to i and to j ; and
(6) edges from each vertex i to the source vertex t with respective ca-

pacities wi.

The network is depicted in Figure 6.12.
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Figure 6.12: Network for the Tournament Win Problem

The problem is to determine if there is an integer flow of value W =∑r
i=1wi. Thus, we would solve for the maximum flow and, if its value

is W, then w is a possible win vector. It is interesting to see what the
max-flow min-cut theorem implies about when there is a flow of value
W. To make it easier to identify s-t cuts that may be minimal, let us sup-
pose that the capacities of the edges from vertices of the form (i, j) to i
(or to j) is infinite. That is, although the flow from (i, j) to j is at most
ni,j, we will allow the capacity of that edge to be ∞.

To characterize those s-t cuts that might have minimal capacity, con-
sider any s-t cut and letX denote the vertices on the s side. Let T denote
the set of teams in X̄. Consider any team pair vertex involving one of the
teams in T . If that vertex were in X then the capacity of the cut would
be ∞; thus, let us suppose that all these vertices are in X̄. Consider now
a team-pair vertex (i, j), where neither i nor j is in T, and note that
putting this vertex inX does not add anything to the capacity of the cut.
Thus, if we let

P(T ) = {(i, j) : i < j, i ∈ T or j ∈ T }

denote the set of team-pair vertices that involve at least one of the teams
in T, then it follows from the preceding that a minimal s-t cut is of the
following type: For some set of teams T,
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X = {s, T̄, (i, j) /∈P(T )}, X̄ = {t, T, (i, j)∈P(T )}.

Now, (X, X̄) consists of edges from s to team-pair vertices for which at
least one team is in T and from teams that are not in T to t. Thus, the
capacity of a cut of this type is

c(X, X̄) =
∑

(i,j)∈P(T )
ni,j +

∑
i /∈T
wi

=
∑

(i,j)∈P(T )
ni,j +W −

∑
i∈T
wi.

The capacity of every s-t cut is therefore at least W if, for every set of
teams T, ∑

(i,j)∈P(T )
ni,j ≥

∑
i∈T
wi.

That is, we have shown the following.

Proposition 6.3.2 The necessary and sufficient conditions for w to be
a possible win vector are that

r∑
i=1

wi = 1

2

∑
j

∑
i

ni,j

and, for every set of teams T,

∑
(i,j)∈P(T )

ni,j ≥
∑
i∈T
wi.

That is, for every set of teams, the number of games involving at least
one of the teams in the set must be at least as large as the total number
of wins proposed for the teams in the set.

Remark. As in the case of the assignment problem, the necessity part
of this proposition is obvious. For instance, if teams 1 and 2 were in-
volved in a total of 10 games then the result w1 = w2 = 6 is clearly not
possible. Also, for a specified vector w, we would check whether it is a
possible win vector by using the augmentation algorithm to determine
if the maximum flow of the network of Figure 6.12 is equal to

∑
i wi.
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6.3.3 The Transshipment Problem

Suppose that the vertices of a directed graphG with edge capacities are
partitioned into two subsets, S and S̄ = C. The vertices in S are the
supplier vertices and those in C are the consumer vertices of a certain
commodity. The vertex i ∈ S desires to supply the commodity at a rate
of a(i) per unit time; the vertex j ∈ C desires to receive it at a rate of
b(j) per unit time. The transshipment problem is to determine if, given
the edge capacities, it is possible to send flow through the network so
as to satisfy the requirements of all the suppliers and all the consumers.
An obvious necessary condition is that the total rate at which suppliers
desire to supply the commodity must equal the total rate at which con-
sumers desire to receive it; that is, we must have

a(S) = b(C)

where, if X is a set of vertices and g a function on vertices, g(X) =∑
i∈X g(i).
In order to solve the preceding, known as the transshipment problem,

we set up a network flow problem as follows:

• adjoin to the original network a source vertex s and a sink vertex t;
• add edges from s to each vertex i ∈ S with edge capacities a(i), re-

spectively;
• add edges from each vertex j ∈C to t with respective edge capacities
b(j);

• otherwise, leave the network as is.

In the context of this network, the problem is to determine if there is a
flow that saturates all of the edges out of s and all those in to t; in other
words, the problem is to determine if the maximum flow value is equal
to a(S). This can be determined for any specified values of the param-
eters by using the augmentation algorithm.

As always, it is of interest to interpret the max-flow min-cut theorem
in the context of this application. To do so, let Y denote any set of ver-
tices of the original graph G, let Ȳ denote the remaining vertices in G,
and consider the s-t cut

X = {s, Ȳ }, X̄ = {t, Y };
its capacity is
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c(X, X̄) = a(S ∩ Y )+ b(C ∩ Ȳ )+ c(Ȳ, Y ).
Hence, assuming that a(S) = b(C), it follows from the max-flow min-
cut theorem that all requirements can be satisfied if, for all sets of vertices
Y, the preceding is at least b(C) = b(C ∩ Ȳ )+ b(C ∩Y ). We have thus
shown the following.

Proposition 6.3.3 All requirements of the transshipment problem can
be met if and only if :

(i) a(S) = b(C); and
(ii) for every set of vertices Y,

a(S ∩ Y )+ c(Ȳ, Y ) ≥ b(C ∩ Y ).

The interpretation of condition (ii) in this proposition is that, for all sets
of vertices Y, the supply in Y plus the maximal capacity for sending the
commodity to Y from outside must be at least as large as the demand
within Y.

6.3.4 An Equipment Selection Problem

A spaceship is setting off to a distant planet and we must decide which
of m pieces of equipment {1, . . . , m} should be put on board, where
the cost of taking equipment i is the nonnegative value ci, i = 1, . . . , m.
The equipment is necessary to perform certain experiments; specifically,
there are n experiments, with the j th one requiring the set of equipment
Sj ⊂ {1, . . . , m}. If experiment j is performed, a nonnegative return Rj
is earned. The problem is determining which pieces of equipment should
be put on board the ship so as to maximize the sum of the returns ob-
tained for performing experiments minus the sum of the carrying costs
of the equipment.

Thus, the problem is to choose S ⊂ {1, 2, . . . , m} to

maximize
∑
j :Sj⊂S

Rj −
∑
i∈S
ci. (6.1)

Noting that ∑
j :Sj⊂S

Rj =
∑
j

Rj −
∑
j :Sj �⊂S

Rj,

it follows that the problem is equivalent to choosing S to
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Figure 6.13: The Maximum Flow Digraph for the Equipment
Selection Problem

minimize
∑
j :Sj �⊂S

Rj +
∑
i∈S
ci. (6.2)

In other words, the maximum of (6.1) is
∑
j Rj minus the minimum

in (6.2). Thus, the original problem can be solved by choosing a set
of equipment S so as to minimize the cost of equipment

( ∑
i∈S ci

)
plus the lost benefit of those experiments that cannot be performed( ∑

j :Sj �⊂S Rj
)
.

We now show how the preceding can be solved by setting up a max-
imum flow problem in such a way that the capacity of the minimal s-t
cut is precisely the quantity (6.2). This is accomplished by letting the
digraph have a source vertex s, a vertex for each of them pieces of equip-
ment, a vertex for each of the n possible experiments, and a sink vertex
t. There are edges from the source vertex to each of the equipment ver-
tices, with the capacity of the edge into equipment vertex i being equal
to ci, and there are edges from equipment vertex i to each experiment
vertex that requires equipment i for each i = 1, . . . , m. Finally, for each
j = 1, . . . , n there is an edge from experiment vertex ej to the sink ver-
tex with capacity Rj . The digraph is shown in Figure 6.13.

It remains to decide on the appropriate capacities of those edges going
from pieces of equipment to experiments that utilize them. Noting that
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the desired value of an s-t cut is of the form
∑
i∈S ci +

∑
j :Sj �⊂S Rj, it

is apparent that we do not want a minimal cut to contain any of edges
from equipment to experiments. Let us therefore give those edges a ca-
pacity of ∞. Let (X, X̄) be an s-t cut whose capacity might be minimal,
and let S̄ be the set of equipment on the s side of the cut. Consider any
experiment that requires a piece of equipment in S̄; if this experiment
were on the t side of the cut, then the cut would include an edge from
a piece of equipment to an experiment requiring it and so would have
infinite capacity. Therefore, all experiments that require any piece of
equipment in S̄ must also be on the s side of the cut.

Now consider any experiment, say j, that does not require any equip-
ment from S̄. Putting experiment j on the s side of the cut adds the
amount Rj to the capacity of the cut; on the other hand, putting j on the
t side of the cut does not add anything to the cut capacity. Therefore,
the cuts that might have minimal capacity are of the following type: for
some set of equipment S,

X = {s, S̄, all experiments requiring any equipment in S̄},
X̄ = {t, S, all experiments not requiring any equipment in S̄}.

Since the capacity of such a cut is

c(X, X̄) =
∑
i∈S
ci +

∑
j :Sj �⊂S

Rj,

it follows that the equipment selection problem reduces to finding the
minimal s-t cut of the digraph of Figure 6.13. This can be accomplished
by using the augmentation algorithm to find the maximum s-t flow and
the resulting minimal cut. The equipment nodes on the t side of the
minimal s-t cut are the ones that should be taken along.

Example 6.3.4a Suppose there are five pieces of equipment and four
potential experiments. The requirements and returns from the experi-
ments are as follows.

j Sj Rj

1 {1, 2} 3
2 {2, 3} 10
3 {2, 3, 4} 6
4 {4, 5} 8
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Figure 6.14

The costs of bringing the pieces of equipment are

c1 = 4, c2 = 5, c3 = 7, c4 = 1, c5 = 2.

With the unlabeled edges having capacity ∞, the network for the re-
sulting maximum flow problem is depicted in Figure 6.14. It is easy to
verify that the maximal flow has value 18 and that the minimal s-t cut
has X = {s,1, e1} (i.e., the s side of the minimal cut consists of ver-
tex s, equipment 1, and experiment 1). Thus, it is optimal to take along
equipment 2, 3, 4, 5; all experiments but the first can be performed, and
the net profit is 9.

6.4 Shortest Path in Digraphs

Suppose that for each edge (i, j) of a directed graph there is a non-
negative number d(i, j) that we sometimes interpret as the distance of
the edge (i, j) and sometimes as the cost of traveling along the edge
(i, j). Starting from a specified vertex s, we desire to find the cheap-
est paths from vertex s to each of the other vertices in the graph, where
the cost of a path is the sum of the costs of the edges in this path.
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Figure 6.15: A Directed Graph with Costs

For instance, in the directed graph depicted in Figure 6.15, interpret-
ing the numbers on the edges to represent the edge distances yields that
the length of the path 1, 2, 5, 3, 6 that goes from vertex 1 to vertex 6 is
d(1, 2)+ d(2, 5)+ d(5, 3)+ d(3, 6) = 9.

We will now present an algorithm, known as the Dijkstra algorithm,
for finding the shortest paths from vertex s to each of the other vertices
in the directed graph. At every step in the algorithm, each vertex i will
have a label d(i) that is either temporary (subject to future change) or
permanent. We will put bars over the labels to indicate when they are
permanent (e.g., d̄(i) indicates that the label on vertex i is permanent).
The labels will be shown to have the following interpretations.

• Permanent label: d̄(i) is the length of the shortest path from s to i.
• Temporary label: d(i) is the length of the shortest path from s to i that

passes only through vertices that have permanent labels.

In addition, vertices are permanently labeled in order of their proximity
to s. That is, the first vertex with a permanent label will be the closest
vertex to s, the second vertex having a permanent label will be the sec-
ond closest vertex to s, and so on.

As we describe the algorithm, we will demonstrate its application to
the graph of Figure 6.15 (with s = 1).

Step 1. Let d(s) = 0 and d(i) = ∞ for i �= s (see Figure 6.16).
Step 2. Choose the vertex having the smallest temporary label – say

it is vertex i – and make its label d(i) permanent. For each temporarily
labeled vertex j for which (i, j)∈ A, reset d(j) by
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Figure 6.16

Figure 6.17

d(j) = min{d(j), d̄(i)+ d(i, j)}
(see Figure 6.17). In this equation, d(j) on the RHS is its old value and
d(j) on the LHS is its reset value. Also, if the value of d(j) is decreased,
then add edge (i, j) and remove any other edge leading in to vertex j.

Step 3. If all the vertices have permanent labels, stop; otherwise, re-
turn to step 2 (see Figure 6.18).

Theorem 6.4.1 The Dijkstra algorithm produces the shortest (minimal-
cost) paths from vertex s to each of the other vertices.

Proof. We will prove the result by showing, at each stage of the algo-
rithm, the validity of the following:
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Figure 6.18a

(a) d̄(i) is the length of the shortest path from s to i;
(b) the vertices are permanently labeled in order of their proximity

to s;
(c) d(i) is the length of the shortest path from s to i that passes only

through vertices with permanent labels.
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Figure 6.18b

As (a), (b), and (c) are certainly true at the initial step (where s is
given a permanent label of 0), assume that they hold when there are
k permanently labeled vertices – namely, s and its k−1 nearest vertices.
Note that the minimal distance path from s to its kth nearest vertex (call
it vertex i) passes only through the k − 1 permanently labeled vertices.
For if it passes through some temporarily labeled vertex (say, vertex j)
then there would be a path from s to j that is shorter than the minimal
distance path from s to i, contradicting the assumption that i is the kth
nearest vertex. It follows that, if vertex i has the smallest temporary
label, then i is the kth nearest vertex to s and d(i) is the shortest distance
from s to i. It remains only to show that, when the distance label on i is
made permanent, the reset value of d(j) represents the minimum dis-
tance from s to j using only i and the other permanently labeled vertices
as intermediates. By the induction hypothesis this is clearly the case if
this minimum distance path does not go through vertex i. On the other
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Figure 6.19

hand, if the path does go through i, then i must be the vertex leading into
j ; for if the minimum path from s to j using only permanently labeled
vertices uses an edge from i to some other permanently labeled vertex,
then the minimal distance from s to i would be strictly less than the mini-
mal distance from s to that other vertex, contradicting the fact that i is the
farthest from s of all the permanently labeled vertices. Hence, the new
value of the minimum distance from s to j (using only i and the other
permanently labeled vertices) is as given, and the induction is complete.

To determine the minimum distance paths, define the values v(j),
j �= s, as follows. If vertex i has just been given a permanent label and
this results in a new value for d(j), reset v(j) to equal i. In other words,
at each stage of the algorithm, the shortest path from s to j using only
the permanently labeled vertices has the final edge (v(j), j). When the
algorithm stops, the shortest path from s to j is obtained by noting that
its final edge is (v(j), j), the edge preceding that is (v(v(j)), v(j)),
and so on until the edge s appears.

6.5 Exercises

Exercise 6.1 Explain how to solve the maximum flow problem when
there are vertex constraints, that is, when there are numbers mi (i ∈ V )
such that the maximal flow into vertex i cannot exceed mi.

Exercise 6.2 Find the maximum s-t flow and the s-t cut having mini-
mal capacity for the digraph whose edge capacities are as given in Fig-
ure 6.19.
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Exercise 6.3 Find the maximum s-t flow and the s-t cut having mini-
mal capacity for a digraph whose edge capacities are as follows:

c(s,1) = 10, c(s, 2) = 15, c(s, 3) = 20,

c(1, t) = 10, c(1, 4) = 5, c(2, 4) = 12,

c(3, 4) = 15, c(3, t) = 5, c(4, t) = 20.

Exercise 6.4 Find the maximal possible flow from vertex 1 to vertex
6 and the minimal cut for a digraph with vertices 1, . . . , 6 and with edge
capacities as follows:

c(1, 2) = 2, c(1, 3) = 1, c(2, 4) = 3, c(2, 5) = 2,

c(3, 2) = 2, c(3, 5) = 6, , c(3, 4) = 5,

c(4, 3) = 3, c(4, 6) = 2, c(5, 6) = 4.

Exercise 6.5 There are four types of disks: tops (t), bottoms (b), cov-
ers (c), and centers (e). A disk pack consists of 1 t, 1 b, 1 c, and 9 e.
Substitutions can be made as follows:

(a) e may serve as e, t, b, or c;
(b) t may serve as either t or c;
(c) b may serve as either b or c;
(d) c may serve only as c.

If we have 422 tops, 534 bottoms, 175 covers, and 3,979 centers, how
many disk packs can be assembled?

Exercise 6.6 Consider three digraphs having the same vertices and
edges. Let ck(i, j) denote the capacity of edge (i, j), and let Vk denote
the value of the maximal s-t flow in digraph k (k = 1, 2, 3). If

c3(i, j) = c1(i, j)+ c2(i, j),

give a relationship between V3 and V1 + V2.

Exercise 6.7 Consider the simple assignment problem with n people
and n jobs.

(a) Show that, if (for some k > 0) each person can do exactly k jobs
and each job can be done by exactly k people, then there is a way
of assigning each person to a job for which she is qualified.
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(b) Show that, if each person can do at least half the jobs and each job
can be done by at least half the people, then there is a way of as-
signing each person to a job for which she is qualified.

Exercise 6.8 In the following matrix, the rows represent teen-age boys
and the columns teen-age girls; a 1 indicates that a particular boy–girl
pair is allowed to date.

0 0 0 1 0 1
0 1 0 0 1 0
1 0 0 0 0 1
0 1 1 0 1 0
0 0 0 1 0 1
1 0 0 1 0 1

Determine the maximum number of dates that can occur on a given
evening.

Exercise 6.9 An organization of n people wants to set up m stand-
ing committees, with the j th one to consist of bj people, j = 1, . . . , m.
Suppose person i is qualified for all but is only willing to serve on at
most ai committees, i = 1, . . . , n. Use the max-flow min-cut theorem
to derive simple necessary and sufficient conditions for there to exist
a possible assignment (of people to committees) that satisfies all con-
straints.

Exercise 6.10 A square matrix is called doubly stochastic if (i) all its
entries are nonnegative and (ii) the row and column sums all equal 1.
Prove that an n×n doubly stochastic matrix contains a set of n nonzero
elements, no two of which are in the same row or column.

Hint: Relate this to the assignment problem.

Exercise 6.11 Consider the maximum flow problem when the flows
have lower bounds. That is, suppose that the capacity constraint is re-
placed by

b(i, j) ≤ f(i, j) ≤ c(i, j),

where the b(i, j) are nonnegative integers. Suppose that we have found
a feasible integral flow (i.e., an integral flow that satisfies the preceding
as well as the conservation constraint).
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(a) Explain how we can modify the augmentation algorithm to find a
maximum flow.

(b) Show that the final flow produced by the algorithm is the maximal
flow.

Hint: Show that, if f is the final flow, then there is an s-t cut X, X̄
such that

f(X, X̄) = c(X, X̄), f(X̄,X) = b(X̄,X).

Exercise 6.12 Consider a directed graph without any cycles. Explain
how you can label the vertices so that there are no edges (i, j) when
j < i.

Exercise 6.13 The complete graph in which each edge is given a direc-
tion is called a tournament. By interpreting the edge (i, j) as indicating
that player i defeated player j, such a graph can be used to model the re-
sult of a round-robin tournament. How many distinct tournament graphs
on n vertices are possible?

Exercise 6.14 In a tournament graph without any cycles, show that
there is a unique path that visits every vertex.

Exercise 6.15 The equations that follow give the distances of roads
connecting various cities. Find the shortest paths, using these roads,
from city 1 to each of the other cities.

d(1, 2) = 1, d(1, 3) = 2,

d(2, 3) = 1, d(2, 4) = 5, d(2, 5) = 2,

d(3, 4) = 2, d(3, 5) = 1, d(3, 6) = 4,

d(4, 5) = 3, d(4, 6) = 6, d(4, 7) = 8,

d(5, 6) = 3, d(5, 7) = 7,

d(6, 7) = 5, d(6, 8) = 2, d(7, 8) = 6.

Exercise 6.16 For Figure 6.20, use Dijkstra’s algorithm to find the
shortest path from vertex 1 to all other vertices.
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Figure 6.20

Exercise 6.17 Consider a digraph with vertices 1, 2, . . . , n and edge
costs d(i, j). Let a1, . . . , an be arbitrary numbers, and set

d̄(i, j) = d(i, j)+ ai − aj .

Show that the cheapest path from vertex 1 to vertex n using the edge
costs d(i, j) is also the cheapest when using the edge costs d̄(i, j).



7. Linear Programming

7.1 The Standard Linear Programming Problem

Let us begin this chapter with a pair of examples.

Example 7.1a The following investment opportunity is available from
Monday to Friday of the forthcoming week. For any amount x, if you
invest x on a day and 2x on the next day then you will receive 4x at the
beginning of the third day. The amount received at the beginning of a
day can then be used that day for starting a new investment or for con-
tinuing an ongoing investment. There are no payments received after
Friday (so one should not begin a new investment on Thursday or Fri-
day). If you invest x but cannot put down 2x on the next day then you
lose the initial investment x. For instance, starting with a fortune of 1, it
does not pay to invest more than 1/3 on day 1. For if x > 1/3 is invested
on day 1 then your remaining capital of 1 − x will not be sufficient to
enable you to invest 2x on day 2, resulting in a forfeit of the initial in-
vestment x. On the other hand, you could invest 1/3 on day 1 and 2/3
on day 2, which yields the return 4/3 at the the beginning of day 3; you
could then use that amount to begin a second investment by investing
4/9 (one third of 4/3) on day 3 and 8/9 on day 4, thus earning a return
of 16/9 on day 5. Can you do better? What is the maximal amount you
can have by the end of the week?

Solution. You can do better than 16/9. Indeed, consider the investment
stategy given by the following table, in which each row indicates the
beginning of a new investment. The numbers without parentheses indi-
cate the amount invested, and the ones in parentheses are the amounts
received.

Monday Tuesday Wednesday Thursday Friday

1/4 1/2 (1)
1/4 1/2 (1)

1/2 1 (2)
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That is, on Monday one starts an investment of 1/4. On Tuesday, 1/2
is invested to continue Monday’s investment, and 1/4 is used to start a
new investment. On Wednesday, 1 is collected from Monday’s invest-
ment; 1/2 of it is then used to fund the investment begun on Tuesday and
1/2 to begin a new investment. On Thursday, 1 is collected from the in-
vestment begun on Tuesday, and this is then used to fund the investment
begun on Wednesday. On Friday, 2 is collected from the investment be-
gun on Wednesday.

Thus, it is possible to end the week with 2. As a prelude to determin-
ing if we can do even better, let us give a mathematical formulation. To
do so, let xi ≥ 0 denote the amount of the new investment that is to be
started on day i, i = 1, 2, 3. The following table, with the final row in-
dicating the daily amounts of money that remain in savings, describes
the investment flows.

Monday Tuesday Wednesday Thursday Friday

x1 2x1 (4x1)

x2 2x2 (4x2)

x3 2x3 (4x3)

1 − x1 1 − 3x1 − x2 1 + x1 − 3x2 − x3 1 + x1 + x2 − 3x3 1 + x1 + x2 + x3

Note that such an investment scheme is possible, or feasible, provided
that the savings at the end of each day is nonnegative. Also, provided
that the investment scheme x1, x2, x3 is feasible, it results in the final
fortune 1 + x1 + x2 + x3, which is intuitive since an initial investment
of size x that is continued until payoff yields the profit 4x − x − 2x =
x. Thus, the problem is to choose x1, x2, x3 so as to

maximize 1 + x1 + x2 + x3

subject to

1 − x1 ≥ 0,

1 − 3x1 − x2 ≥ 0,

1 + x1 − 3x2 − x3 ≥ 0,

1 + x1 + x2 − 3x3 ≥ 0;
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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Table 7.1: Percentage of Nutrients in the
Different Food Types

Nutrient Food 1 Food 2 Food 3 Food 4

Protein 14 52 26 6
Fat 5 21 11 16
Carbohydrate 52 10 6 48

Example 7.1b A farm needs to purchase and combine four different
types of food to obtain a mix for its pigs. It is required that at least 24%
of the feed mix be protein, at least 12% should be fat, and exactly 32%
should be carbohydrate. In addition, the percentage of fat should not ex-
ceed 0.6 times the percentage of protein. Table 7.1 gives the percentages
of nutrient contents of the four different types of food.

If a total of five tons of food is needed, set up the problem of determin-
ing how much of each type should be purchased so that all constraints
are satisfied at a minimal total cost, given that the cost (in dollars per
ton) of the food types 1 to 4 are (respectively) 82, 144, 98, and 58.

Solution. If we let xi denote the number of tons of food item i to be
purchased, i = 1, 2, 3, 4, then the cost of the purchase is

82x1 + 144x2 + 98x3 + 58x4.

The amount of protein (in tons) in this mix would be

0.14x1 + 0.52x2 + 0.26x3 + 0.06x4,

which, to satisfy the protein requirement, would have to be at least
5(0.24) = 1.2. As similar requirements must be met for the other nutri-
ents, the mathematical problem would be to choose x1, x2, x3, x4, to

minimize 82x1 + 144x2 + 98x3 + 58x4

subject to the following constraints:

0.14x1 + 0.52x2 + 0.26x3 + 0.06x4 ≥ 1.2,

0.05x1 + 0.21x2 + 0.11x3 + 0.16x4 ≥ 0.6,

0.52x1 + 0.10x2 + 0.06x3 + 0.48x4 = 1.6,
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0.05x1 + 0.21x2 + 0.11x3 + 0.16x4

≤ 0.6[0.14x1 + 0.52x2 + 0.26x3 + 0.06x4];
x1 + x2 + x3 + x4 = 5.

Any expression of the form

c0 + c1x1 + · · · + crxr,
where c0, . . . , cr are specified constants, is said to be a linear function
of the variables x1, . . . , xr . For instance, whereas

x1 + 3x2 + 3x3

is a linear function of the variables x1, x2, x3, the expressions

x2
1 + 2x2 + x3 and x1x2 + x3

are not (the former because of the term x2
1 and the latter because of the

term x1x2). Thus, Examples 7.1a and 7.1b are both concerned with opti-
mizing (maximizing or minimizing) linear functions of certain variables
subject to linear constraints on these variables. Such optimization prob-
lems are known as linear programs.

The following optimization problem is called the standard linear pro-
gramming problem. For given constants ci (i = 1, . . . , n), bj (j =
1, . . . , m), and ai,j (i = 1, . . . , n, j = 1, . . . , m), choose x1, x2, . . . , xn

to

maximize
n∑
i=1

ci xi

subject to
n∑
i=1

ai,j xi ≤ bj, j = 1, 2, . . . , m,

xi ≥ 0, i = 1, 2, . . . , n.

A useful interpretation of the standard linear programming problem
may be obtained by imagining a company that produces n distinct items,
each of which requires a certain amount of each ofm types of resources.
Specifically, suppose that each unit of item i requires ai,j units of re-
source j (j = 1, . . . , m) for its production. Assuming that the company
earns a profit of ci per unit production of item i (i = 1, . . . , n), its
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problem is to decide how much of each item to produce so as to max-
imize its total profit, subject to the constraint that it has a total of bj
units of resource j available for each j = 1, . . . , m. If we let xi (i =
1, . . . , n) denote the number of units of item i that the company produces,
then

∑n
i=1 ci xi represents the company’s profit. Also, since producing

xi units of item i requires xiai,j units of resource j, it follows that∑n
i=1 ai,j xi represents the total amount of resource j that will be used

in producing these items. Thus, the company’s problem is choose non-
negative numbers x1, . . . , xn to maximize its profit

∑n
i=1 ci xi, subject to

the constraint that, for each resource j (j = 1, . . . , m), the amount of
resource j used up by this production program is less than or equal to
bj, the available amount of that resource. In other words, the company’s
problem is mathematically expressed by the standard linear program-
ming problem.

Whereas the preceding interpretation is quite clear when all of the
constants ai,j, bi, cj are nonnegative, it is interesting to see what the ap-
propriate interpretation is when some of them are negative. To begin,
suppose that ai,j < 0 for some i, j. In this case, each unit of item i pro-
duced requires a negative amount (ai,j ) of units of resource j ; equiva-
lently, each unit of item i produced results in an additional −ai,j units
of resource j. That is, −ai,j units of resource j are obtained as a by-
product of the production of a unit of item i. If bj < 0 then the company
is required to end up with at least −bj units of resource j. That is, it must
choose its production scheme so that at least this number of net units of
resource j is obtained. Also, if ci < 0 then the company loses −ci per
unit of item i produced (although it still may be worthwhile to produce
this type of item for the resources that are obtained from its production).

If there exist variables x1, . . . , xn that satisfy the constraints, then we
say that the standard linear programming problem is feasible; if not, we
say that it is infeasible. Software packages that solve the standard lin-
ear programming problem – by finding a solution when it exists, or by
indicating that the problem is infeasible or that it is feasible but that no
solution exists – are widely available, and we may hereafter suppose
that any problem posed in the standard form can be explicitly solved.

7.2 Transforming to the Standard Form

Many problems concerned with optimizing a linear function of variables
subject to linear constraints are not initially in the form of the standard
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linear programming problem and so must be transformed to that form.
We now indicate how this is accomplished in a variety of cases.

7.2.1 Minimization and Wrong-Way Inequality Constraints

Suppose that we want to choose nonnegative values x1, . . . , xn to

minimize
n∑
i=1

ci xi

subject to a set of standard linear constraints. Because

min
n∑
i=1

ci xi = −max
n∑
i=1

−ci xi,

the problem can be solved by considering the standard linear program

max
n∑
i=1

−ci xi,

subject to the linear constraints. A maximizing vector for this latter
problem will also be a minimizing vector for the original problem.

A similar trick can be used if a constraint in the problem is given as

n∑
i=1

ai,j xi ≥ bj .

Namely, multiplication by −1 yields the equivalent inequality

n∑
i=1

−ai,j xi ≤ −bj,

which is in standard form.
A problem with an equality constraint of the form

n∑
i=1

ai,j xi = bj

can be transformed into standard form by writing the equality constraint
as the pair of inequalities
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n∑
i=1

ai,j xi ≤ bj,

n∑
i=1

−ai,j xi ≤ −bj .

7.2.2 Problems with Variables Unconstrained in Sign

Consider a linear programming problem in which some of the xi are not
required to be nonnegative. Since any number can be treated as the dif-
ference between two nonnegative numbers, we can put such a problem
into the standard form by replacing each unconstrained variable by two
nonnegative variables whose difference is equal to the unconstrained
variable. For instance, if the problem is in standard form except that x1

is unconstrained in sign, then we can introduce a nonnegative variable
xn+1 and replace x1 by x1−xn+1. The problem becomes one of choosing
x1, . . . , xn, xn+1 to

maximize
n+1∑
i=1

ci xi

subject to
n+1∑
i=1

ai,j xi ≤ bj, j = 1, 2, . . . , m,

xi ≥ 0, i = 1, 2, . . . , n+ 1,

where
cn+1 = −c1 and an+1,j = −a1,j .

If xoi (i = 1, . . . , n + 1) is an optimal vector for this problem, then the
optimal value of x1 in the unconstrained version of the problem is x1 =
xo1 − xon+1.

Example 7.2a For a given set of data pairs wi, yi (i = 1, . . . , n), sup-
pose we want to find the straight line

y = a + bw
that best fits the data – in the sense that it minimizes the sum of the abso-
lute differences between the valuesyi and the corresponding straight-line
values a + bwi. That is, we want to choose a and b to
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minimize
n∑
i=1

|yi − a − bwi |.

If we let xi = yi − a− bwi, then the problem becomes one of choosing
a, b, x1, . . . , xn to

minimize
n∑
i=1

|xi |.

Since the xi are unconstrained in sign, let us express them as the dif-
ference between two nonnegative variables x ′

i and x ′′
i ; that is,

xi = x ′
i − x ′′

i ,

where x ′
i ≥ 0 and x ′′

i ≥ 0. Now,

|xi | ≤ x ′
i + x ′′

i ,

with equality if at most one of the values x ′
i and x ′′

i is nonzero. That is,
whereas there are many nonnegative number pairs x ′

i and x ′′
i such that

xi = x ′
i − x ′′

i , the pair that minimizes x ′
i + x ′′

i is obtained by setting

x ′
i = x+

i =
{
xi if xi ≥ 0,
0 if xi ≤ 0,

x ′′
i = x−

i =
{ −xi if xi ≤ 0,

0 if xi ≥ 0,

and, for this choice,

x ′
i + x ′′

i = |xi |.

Thus, the problem of finding the values of a and b to minimize the
sum of the absolute deviations from the straight line is one of choosing
a, b, x ′

i , x
′′
i (i = 1, . . . , n) to

minimize
n∑
i=1

(x ′
i + x ′′

i )

subject to

x ′
i − x ′′

i = yi − a − bwi, i = 1, 2, . . . , n,

x ′
i ≥ 0, x ′′

i ≥ 0, i = 1, 2, . . . , n.
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The preceding linear program can then be put in standard form by

(a) transforming it from a minimization into a maximization problem,
(b) writing each equality constraint as two inequality constraints,
(c) introducing nonnegative variables a, a ′, b, b ′ and replacing a and b

by a − a ′ and b − b ′, respectively.

7.3 The Dual Linear Programming Problem

Consider the standard linear programming problem by using the inter-
pretation of a company wanting to produce amounts of n items from a
stockpile of m types of resources. Suppose now that a trader wishes
to purchase all of the resources owned by the company. Let yj be
the price per unit of resource j that is offered by the trader, j =
1, . . . , m. Since the production of a unit of item i requires ai,j units
of resource j for each j = 1, . . . , m, it follows that the trader is of-
fering the amount

∑m
j=1 ai,j yj for the package of resources needed

to produce a unit of item i. Hence, if the trader chooses the prices
so that, for each i, this amount exceeds the profit that the company
makes from producing a unit of item i, then the company would be
better off selling its resources. Hence, as the company possesses bj
units of product j (j = 1, . . . , m), the trader will want to choose the
prices to

minimize
m∑
j=1

bjyj

subject to
m∑
j=1

ai,j yj ≥ ci, i = 1, . . . , n,

yj ≥ 0, j = 1, . . . , m.

The preceding linear programming problem is called the dual of the
standard linear programming problem. It is usual to call the initial lin-
ear program whose dual is of interest the primal linear program.

Example 7.3a Determine the dual of a primal linear program whose
variables are all unconstrained in sign. That is, find the dual of
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maximize
n∑
i=1

ci xi

subject to
n∑
i=1

ai,j xi ≤ bj, j = 1, 2, . . . , m.

Solution. Writing each xi as the difference of the nonnegative variables
xi − xn+i (i = 1, . . . , n) gives the equivalent linear program:

maximize
n∑
i=1

ci(xi − xn+i)

subject to
n∑
i=1

ai,j(xi − xn+i) ≤ bj, j = 1, 2, . . . , m,

xi ≥ 0, i = 1, 2, . . . , 2n.

If we now let

cn+i = −ci and an+i,j = −ai,j (i = 1, . . . , n),

then we can rewrite the preceding in the standard form:

maximize
2n∑
i=1

ci xi

subject to
2n∑
i=1

ai,j xi ≤ bj, j = 1, 2, . . . , m,

xi ≥ 0, i = 1, 2, . . . , 2n.

The dual linear program is thus to

minimize
m∑
j=1

bjyj

subject to
m∑
j=1

ai,j yj ≥ ci, i = 1, . . . , 2n,

yj ≥ 0, j = 1, . . . , m.
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Since an+i,j = −ai,j and cn+i = −ci for i = 1, . . . , n, it follows that
the preceding inequality constraints are equivalent to

m∑
j=1

ai,j yj ≥ ci, i = 1, . . . , n

and

−
m∑
j=1

ai,j yj ≥ −ci, i = 1, . . . , n.

Therefore, the dual program is to

minimize
m∑
j=1

bjyj

subject to
m∑
j=1

ai,j yj = ci, i = 1, . . . , n,

yj ≥ 0, j = 1, . . . , m.

In other words, when the primal variables are unconstrained in sign, the
dual linear program has equality rather than inequality constraints.

The key theoretical result of linear programming is the duality theorem,
which we state without proof.

Proposition 7.3.1 (Duality Theorem of Linear Programming) If a
standard and its dual linear program are both feasible, then they both
have optimal solutions and the maximal value of the standard is equal
to the minimal value of the dual. If either problem is infeasible, then the
other does not have an optimal solution.

Example 7.3b Suppose that a farmer has a acres of land on which he
can plant wheat and rye. Where wheat is planted the farmer will attain
a profit of either w1 per acre if the year is dry or w2 per acre if the year
is wet. Similarly, where rye is planted the farmer will attain a profit of
either r1 per acre if the year is dry or r2 per acre if the year is wet. How
many acres should be used for wheat and for rye if the farmer wants to
guarantee the largest possible profit in the coming year?
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Solution. Let x1 and x2 denote the number of acres devoted to wheat
and rye, respectively. Since the farmer’s profit will bew1x1+ r1x2 if the
year is dry and w2x1 + r2x2 if the year is wet, it follows that the largest
possible value of guaranteed profit – call it x3 – is obtained by choosing
x1, x2, x3 to

maximize x3

subject to

w1x1 + r1x2 ≥ x3,

w2x1 + r2x2 ≥ x3,

x1 + x2 ≤ a;
xi ≥ 0, i = 1, 2, 3.

The dual of this problem (the verification is left as an exercise) is to
choose y1, y2, y3 to

minimize ay3

subject to

w1y1 + w2y2 ≤ y3,

r1y1 + r2y2 ≤ y3,

y1 + y2 ≥ 1;
yi ≥ 0, i = 1, 2, 3.

Since both linear programs are easily seen to be feasible, it follows from
the duality theorem that the maximal value of the primal is equal to the
minimal value of the dual.

A consequence of the duality theorem is the arbitrage theorem noted in
Section 4.4.1. Recall that it refers to a situation in which there are n
wagers whose payoffs are determined by the outcome of an experiment
whose possible outcomes are 1, 2, . . . , m. Specifically, if you bet wager
i at level x, then you win the amount xri(j) if the outcome of the exper-
iment is j. A betting strategy is a vector x = (x1, . . . , xn), where each
xi can be positive or negative (or zero) and with the interpretation that
you simultaneously bet wager i at level xi for each i = 1, . . . , n. If the
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outcome of the experiment is j, then your winnings from the betting
strategy x are equal to

n∑
i=1

xiri(j).

Proposition 7.3.2 (Arbitrage Theorem) Exactly one of the following
is true: Either

(i) there exists a probability vector p = (p1, . . . , pm) for which

m∑
j=1

pjri(j) = 0 for all i = 1, . . . , n

or
(ii) there exists a betting strategy x = (x1, . . . , xn) such that

n∑
i=1

xiri(j) > 0 for all j = 1, . . . , m.

That is, either there exists a probability vector under which all wagers
have expected gain equal to 0, or else there is a betting strategy that
always results in a positive win.

Proof. Let xn+1 denote an amount that the gambler can be sure of win-
ning, and consider the problem of maximizing this amount. If the gam-
bler uses the betting strategy (x1, . . . , xn) then she will win

∑n
i=1 xiri(j)

if the outcome of the experiment is j. Hence, she will want to choose
her betting strategy (x1, . . . , xn) and xn+1 so as to

maximize xn+1

subject to
n∑
i=1

xiri(j) ≥ xn+1, j = 1, . . . , m.

Letting

ai,j = −ri(j), i = 1, . . . , n, an+1,j = 1,
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we can rewrite the preceding as follows:

maximize xn+1

subject to
n+1∑
i=1

ai,j xi ≤ 0, j = 1, . . . , m.

Note that the preceding linear program has c1 = c2 = · · · = cn =
0 and cn+1 = 1, upper-bound constraint values all equal to zero (i.e.,
all bj = 0), and unconstrained variables x1, . . . , xn+1. Hence, using the
results of Example 7.3a (which shows that if the primal variables are
unconstrained then the dual constraints are equality constraints), it fol-
lows that the dual of the preceding primal program is to choose variables
y1, . . . , ym so as to

minimize 0

subject to
m∑
j=1

ai,j yj = 0, i = 1, . . . , n,

m∑
j=1

an+1,j yj = 1,

yj ≥ 0, j = 1, . . . , m.

Using the definitions of the quantities ai,j gives that this dual linear pro-
gram is to

minimize 0

subject to
m∑
j=1

ri(j)yj = 0, i = 1, . . . , n,

m∑
j=1

yj = 1,

yj ≥ 0, j = 1, . . . , m.

Observe that this dual will be feasible and its minimal value will be 0 if
and only if there exists a probability vector (y1, . . . , ym) under which all
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wagers have expected return 0. The primal problem is feasible because
xi = 0 (i = 1, . . . , n+ 1) satisfies its constraints, so it follows from the
duality theorem that if the dual problem is also feasible then the opti-
mal value of the primal is 0 and thus no sure win is possible. On the
other hand, if the dual is infeasible then it follows from the duality theo-
rem that there is no optimal solution of the primal. But this implies that
0 is not the optimal solution, and thus there is a betting scheme whose
minimal return is positive. (The reason there is no primal optimal so-
lution when the dual is infeasible is because the primal is unbounded
in this case. That is, if there is a betting scheme x that gives a guaran-
teed return of at least v > 0, then cx yields a guaranteed return of at
least cv.)

7.4 Game Theory

Consider the following game played by players I and II. They are pre-
sented with a matrix of nm values ri,j, where i ranges from 1 to n and
j from 1 to m. Player I then chooses one of the values 1, . . . , n while
player II simultaneously chooses one of the values 1, . . . , m. If player I
chooses i and player II chooses j, then player I receives the amount
ri,j from player II. Such a game is called a two-person zero-sum game
since whatever is won by one of the players is lost by the other. Let us
consider a few examples.

Example 7.4a Suppose n = m = 3,with the following payoff matrix.

II

7 −4 1
I 3 5 2

0 10 −1

In this example, each player has three possible strategies. If player I
plays her strategy 1 and player II chooses his strategy 1 then player I
wins from player II the amount 7; if I chooses strategy 1 and II chooses
strategy 2 then player I wins −4 from II (i.e., II wins 4 from I in this
case); and so on.
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Example 7.4b For our next example, suppose that each player has two
possible strategies, with the payoff matrix as follows.

II

5 3
I 2 8

Since all the payoffs are positive, this game is clearly favorable to
player I.

How much are the games in the preceding examples worth to player I?
First, consider the game described in Example 7.4a and note that, by
choosing strategy 2, player I can guarantee that she will win at least 2.
Clearly the game is worth at least that amount to player I. On the other
hand, by playing his strategy 3, player II can guarantee that player I does
not win more than 2. Thus, it seems reasonable to suppose that the value
of the game to player I is 2 and that strategy 1 is optimal for player I
while strategy 3 is optimal for player II. However, the game in Exam-
ple 7.4b is not so easily analyzed. By playing her strategy 1, player I can
guarantee a win of at least 3 and so the value of the game to player I is
at least 3. On the other hand, since player II can guarantee only that I
will win no more than 5, it seems that the value of the game to player I
should be somewhat larger than 3. Thus, in this case the value of the
game to the two players appears uncertain.

The game of Example 7.4a was easy to analyze because its payoff
matrix contained a saddlepoint – namely, a value that is simultaneously
the minimum of its row (thus guaranteeing player I a win of at least that
amount by choosing that row) and the maximum of its column (thus
guaranteeing player II a loss of at most that amount by playing that col-
umn). The game of Example 7.4b does not have a saddlepoint, so its
value is unclear.

The key to determining the value of a game is to allow the play-
ers to employ randomized (also known as mixed) strategies. That is,
suppose we let the strategy of player I be a probability vector p =
(p1, p2, . . . , pn), with the interpretation that player I will play her pure
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strategy i with probability pi, i = 1, . . . , n. If player I uses this strategy
and if player II plays his pure strategy j, then player I will win

r1,j with probability p1,

r2,j with probability p2,

...

ri,j with probability pi,

...

rn,j with probability pn.

Therefore, if player I uses the mixed strategy p then her expected win-
nings if player II chooses his pure strategy j is

∑n
i=1piri,j . Hence, by

choosing the mixed strategy p, player I can guarantee that she will have
an expected win of at least

min
1≤j≤m

n∑
i=1

piri,j .

It thus follows that player I can guarantee herself an expected win of at
least v1, where

v1 = max
p

min
1≤j≤m

n∑
i=1

piri,j .

Similarly, if player II uses the mixed strategy given by the probability
vector y = (y1, . . . , ym) and if player I plays her strategy i, then player
II’s expected loss is

∑m
j=1 yj ri,j . Hence, the maximum expected loss of

player II if he uses strategy y is

max
i=1, ...,n

m∑
j=1

yj ri,j .

Therefore, player II has a strategy that guarantees that the expected win
of player I is at most v2, where

v2 = min
y

max
i=1, ...,n

m∑
j=1

yj ri,j .



Game Theory 197

We now prove that v1, the maximum of the minimal possible expected
gain of player I, and v2, the minimum of the maximal possible expected
loss of player II, are equal. This is known as the minimax theorem of
game theory.

Proposition 7.4.1 (Minimax Theorem of Game Theory)

v1 = v2.

Proof. Since adding a constant to all the payoff values ri,j will increase
both v1 and v2 by this amount, let us assume without loss of generality
that all payoffs are positive. Letting x1, . . . , xn represent a probability
vector and letting xn+1 denote the minimum possible expected return for
player I if she uses this probability vector, the maximum value of this
minimum can be obtained from the following linear program:

maximize xn+1

subject to
n∑
i=1

xiri,j ≥ xn+1, j = 1, 2, . . . , m,

n∑
i=1

xi ≤ 1, −
n∑
i=1

xi ≤ −1,

xi ≥ 0, i = 1, . . . , n+ 1.

To put the preceding linear program into standard form, define ai,j (i =
1, . . . , n+ 1, j = 1, . . . , m+ 2) by

ai,j = −ri,j, i ≤ n, j ≤ m,
an+1,j = 1, j ≤ m,
ai,m+1 = 1, i ≤ n,
ai,m+2 = −1, i ≤ n,
an+1,j = 0, j = m+ 1, m+ 2,

and let
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bj = 0, j ≤ m,
bm+1 = 1,

bm+2 = −1,

ci = 0, i ≤ n,
cn+1 = 1.

With these definitions, we see that player I’s problem of determin-
ing the mixed strategy that maximizes her minimal expected return
is equivalent to a standard linear program with n + 1 variables and
m+ 2 constraints. The dual of this standard linear program is to choose
y1, . . . , ym+2 to

minimize
m+2∑
j=1

bjyj

subject to
m+2∑
j=1

ai,j yj ≥ ci, i ≤ n+ 1,

yj ≥ 0, j ≤ m+ 2.

But substituting back the values of ai,j, bj, and ci gives that the dual
program is to choose y1, . . . , ym+2 to

minimize ym+1 − ym+2

subject to

−
m∑
j=1

ri,j yj + ym+1 − ym+2 ≥ 0, i ≤ n,

m∑
j=1

yj ≥ 1,

yj ≥ 0, j ≤ m+ 2.

Lettingw = ym+1−ym+2 and noting that (since ri,j > 0) it is not nec-
essary to consider any vectors y1, . . . , ym whose sum strictly exceeds 1
(for this would only increase the value of w), the dual can be written as
follows:
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minimize w

subject to
m∑
j=1

ri,j yj ≤ w, i ≤ n,

m∑
j=1

yj = 1,

yj ≥ 0, j ≤ m.
Thus, the dual problem is just the minimax problem that is faced by
player II. (That is, it is the mathematical statement of the problem in
which player II is trying to choose the mixed strategy that minimizes his
maximal expected loss.) Since both the primal and dual problems are
clearly feasible, the minimax theorem follows from the duality theorem
of linear programming.

7.5 Exercises

Exercise 7.1 A company produces three types of fertilizer – A, B, and
C. The production requires two different types of raw materials, with
the following table giving the amounts of the raw materials needed to
produce a ton of each type of fertilizer.

Fertilizer
Type

Raw
Material A B C

1 3 2.5 2
2 4 2 1

For example, it requires 3 units of raw material 1 and 4 units of mate-
rial 2 to produce a ton of type-A fertilizer. The selling prices (dollars
per ton) of the fertilizers is 275 for type A, 210 for type B, and 175 for
type C. Assuming that the company has 1,250 units of raw material 1 and
1,000 units of material 2, set up the problem of determining how much



200 Linear Programming

of each type of fertilizer should be produced to maximize the amount of
money received by the company.

Exercise 7.2 A company must ship its product, stored in m different
warehouses, to n different destinations. The supply at warehouse i is
si, and the demand at destination j is dj . The cost of shipping x units
of the product from warehouse i to destination j is xc(i, j). Set up the
problem of determining how many units to ship from each warehouse
to each destination – so as to meet all demands at a minimal cost – as
a linear program. Also, give the necessary and sufficient conditions for
this linear program to be feasible.

Exercise 7.3 Explain how an n-variable,m-constraint linear program-
ming problem in which one of the variables is unconstrained in sign can
be solved by solving two linear programs, each with n variables and m
constraints. Why might this method be, in general, inferior to the tech-
nique introduced in Section 7.2.2?

Hint: If all n variables are unconstrained, how many linear programs
with n variables and m constraints would have to be solved?

Exercise 7.4 The number of employees needed by the post office on
the different days of the week are as follows.

Number
Day Needed

Monday 18
Tuesday 12
Wednesday 14
Thursday 20
Friday 14
Saturday 17
Sunday 10

Employee contracts require that an employee must work five consecu-
tive days and then receive two days off. Formulate a linear program that
will enable the post office to minimize the number of employees needed
to meet its requirements.
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Exercise 7.5 At the end of each of the next four months, a customer re-
quires (respectively) 75, 100, 120, and 80 units of a certain commodity.
Production costs per unit of the commodity vary from month to month
and will be 6, 9, 5, and 7 for the next four months. Assuming that the
monthly storage cost per item is 2.5, formulate a linear program whose
solution yields the number of units to be produced in each of the next
four months so as to meet the customer’s requirements at minimal cost.

Exercise 7.6 A project entails doing tasks T1, T2, T3, T4, T5. However,
some of the tasks cannot be started before certain others have been com-
pleted. With Ti < Tj meaning that task Ti must be completed before Tj
can be undertaken, suppose that

T1 < T3, T2 < T4, T1 < T4, T3 < T5, T4 < T5.

If Cj represents the time it takes to complete task Tj once it is begun,
formulate (as a linear program) the problem of finding the minimal time
in which the project can be completed.

Exercise 7.7 Find the dual of the linear program of Exercise 7.1.

Exercise 7.8 Find the dual of the linear program of Exercise 7.2.

Exercise 7.9 Show that the dual of the dual is the original linear pro-
gram. That is, take a standard linear program, express its dual in standard
form, and then show that the dual of this latter linear program is the orig-
inal standard linear program.

Exercise 7.10 Set up a linear program that can be used to find the best
linear fit to the following set of data pairs.

x y

5 20
2 26

10 14
8 13
3 28
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Exercise 7.11 Verify that the correct dual problem is given in Exam-
ple 7.3b.

Exercise 7.12 Consider a horse race involving n horses, with oi being
the quoted odds against horse i winning the race. That is, if you bet x on
horse i then you win xoi if horse i wins or lose x if horse i loses; x can be
either positive, negative, or zero, and a negative win (loss) is a loss (win).
A betting strategy is a vector x = (x1, . . . , xn), with the interpretation
that you simultaneously place bets xi on horses i = 1, . . . , n. Assuming
that you are not allowed to have a (partial) loss of more than 1 on any bet
relating to a single horse (i.e., a positive xi cannot exceed 1 and the abso-
lute value of a negative xi cannot exceed1/oi), give a linear program that
can be used to find the strategy that guarantees the largest possible win.

Exercise 7.13 The following is a payoff matrix for a game in which
both players have three different choices.

II

3 2 −5
I 1 8 −10

5 3 −4

Tell which row player I should never choose and explain why.

Exercise 7.14 The following is a game payoff matrix.

II

12 4 8
I 23 2 0

36 1 −6

Explain why the optimal strategy for player I has p2 = 0; that is, ex-
plain why player I should never choose row 2.

Hint: What “randomization” rule is better than choosing row 2?



8. Sorting and Searching

8.1 Introduction to Sorting

Suppose we are presented with distinct values x1, x2, . . . , xn that we de-
sire to put in increasing order or (as is commonly stated) to sort. Prob-
ably the simplest sorting algorithm is to first find the smallest of these
values by comparing x1 with x2, then comparing the smaller of these two
with x3, then the smaller of those two with x4, and so on. After discov-
ering the smallest value in this manner, we then find the second smallest
value by repeating the process on the remaining n−1 values, and so on.
This method is called selection sort because it works by repeatedly se-
lecting the smallest remaining value. Generally speaking, the amount
of time that it takes an algorithm to sort a set of n values will be pro-
portional to the number of comparisons that are made. As the selection
sort always requires

(n− 1)+ (n− 2)+ · · · + 1 = n(n− 1)

2

comparisons, it follows that, for n large, approximately n2/2 compar-
isons are required.

8.2 The Bubble Sort

The bubble sort is another sorting algorithm. Starting with any initial
ordering, it sequentially passes through the elements of this ordering,
interchanging any pair that it finds out of order. That is, the first and
second values are compared and interchanged if the second is smaller;
then the new value in second position is compared with the value in the
third position and these values are interchanged if the former is larger
than the latter; then the new value in the third position is compared with
the value in the fourth position; and so on until a comparison is made
with the final value in the sequence and an interchange (if necessary)
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is made. At this point the “first pass” through the list is said to have
occurred. This process is then repeated for the new ordering, and this
continues until the values are sorted. For instance, if the initial ordering
of values is

5 3 8 7 0 9 6 4 1,

then (with the bar indicating the value that is to be compared with its im-
mediate follower) the successive orderings in the first pass are as follows:

3 5̄ 8 7 0 9 6 4 1,

3 5 8̄ 7 0 9 6 4 1,

3 5 7 8̄ 0 9 6 4 1,

3 5 7 0 8̄ 9 6 4 1,

3 5 7 0 8 9̄ 6 4 1,

3 5 7 0 8 6 9̄ 4 1,

3 5 7 0 8 6 4 9̄ 1,

3 5 7 0 8 9 4 1 9.

It is easy to see that, after the first pass, the largest value will be the final
value. As a result, the second pass does not need to consider the final
value of the sequence and so will always result in the two largest values
being in their correct positions. Similarly, the third pass through the list
need not consider the final two values and will necessarily end with the
final three values being the three largest values in the correct order, and
so on. This algorithm is known as the bubble sort because the way in
which small values move up to the front of the list is reminiscient of the
way bubbles rise in a liquid.

The bubble sort algorithm ends either when no interchanges occur in
a pass or when a total of n − 1 passes have been made. The ith pass
requires a total of n − i comparisons, so it follows that bubble sort re-
quires n− 1 + n− 2 + · · · + 1 = n(n− 1)/2 comparisons in the worst
case. If we let 1 stand for the smallest value, 2 for the second smallest,
and so on, then this worst case will occur if the initial ordering is

n, n− 1, n− 2, . . . , 3, 2,1.

However, since there is no particular reason to believe that the initial
ordering will have the elements in decreasing order of their values, it
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makes sense to consider the average number of comparisons needed
when the initial ordering is random. So, supposing that the initial order
is equally likely to be any of the n! orderings, let X denote the number
of comparisons needed by bubble sort and consider E[X], the expected
value of X. Although it is difficult to explicitly compute E[X], we will
be able to obtain bounds. First, since X ≤ n(n− 1)/2 for every initial
ordering, we have

E[X] ≤ n(n− 1)

2
. (8.1)

To obtain a bound in the other direction, we need the concept of the num-
ber of inversions of a permutation. For any permutation i1, i2, . . . , in of
1, 2, . . . , n, we say that the ordered pair (i, j) is an inversion of the per-
mutation if i < j and j precedes i in the permutation. For instance, the
permutation

2, 4, 1, 5, 6, 3

has five inversions: (1, 2), (1, 4), (3, 4), (3, 5), and (3, 6). Since the
values of each inversion pair will eventually have to be interchanged
(and thus compared), it follows that the number of comparisons made
by the bubble sort is at least as large as the number of inversions of
the initial ordering. That is, if I denotes this number of inversions,
then

X ≥ I,
which implies that

E[X] ≥ E[I ]. (8.2)

But if, for i < j, we let

I(i, j) =
{

1 if (i, j) is an inversion of the initial ordering,
0 otherwise,

then it follows that
I =

∑
j

∑
i<j

I(i, j).

Hence, using the fact that the expected value of a sum of random vari-
ables is equal to the sum of the expectations, we see that

E[I ] =
∑
j

∑
i<j

E[I(i, j)]. (8.3)
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Now, for i < j,

E[I(i, j)] = P {j precedes i in the initial ordering}.

But if the initial ordering is equally likely to be any of the n! orderings,
then it is as equally likely that i precedes j as it is that j precedes i,
implying that

E[I(i, j)] = 1/2.

Hence, since there are
(
n

2

)
pairs i, j for which i < j, from equation

(8.3) we have that

E[I ] =
(
n

2

)
2

= n(n− 1)

4
.

From (8.1), (8.2), and the preceding, we obtain

n(n− 1)

4
≤ E[X] ≤ n(n− 1)

2
.

Thus, for large n, the average number of comparisons needed by a bub-
ble sort to sort n values is roughly between n2/4 and n2/2. Therefore,
although bubble sort is more efficient than selection sort, it still requires
on the order of n2 comparisons. In order to obtain additional improve-
ment, we must consider a different type of sorting algorithm.

8.3 The Quicksort Algorithm

Suppose again that we desire to sort the values x1, x2, . . . , xn. The quick-
sort algorithm is as follows. When n = 2, the algorithm compares the
two values and puts them in the appropriate order. When n > 2, one of
the values is chosen, say it is xi, and then all of the other values are com-
pared with xi. Those smaller than xi are put in a bracket to the left of
xi, and those larger than xi are put in a bracket to the right of xi. The al-
gorithm then repeats itself on these brackets, continuing until all values
have been sorted.

For example, suppose that we desire to sort the following ten dis-
tinct values:

5 9 3 10 11 14 8 4 17 6.

One of these values is now chosen, say it is 10. We then compare each
of the other values to 10, putting those less than 10 in a bracket to the
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left of 10 and putting those greater than 10 in a bracket to the right of 10.
This gives

[5 9 3 8 4 6] 10 [11 14 17].

We now focus on a bracketed group that contains more than a single
value (say, the one to the left of the 10) and choose one of its values –
say 6 is chosen. Comparing each of the values in this bracket with 6 and
putting the smaller ones in a bracket to the left of 6 and the larger ones
in a bracket to the right of 6 gives

[5 3 4] 6 [9 8] 10 [11 14 17].

If we now consider the leftmost bracket and choose (say) the value 4 for
comparison, then the next iteration yields

[3] 4 [5] 6 [9 8] 10 [11 14 17].

This process continues until all bracketed groups contain a single value
only.

It is intuitively clear that the worst case occurs when every compari-
son value chosen is an extreme value – either the smallest or largest in
its bracket. In this worst-case scenario, it is easy to see that the number
of comparisons needed is n(n−1)/2. However, one obtains a better in-
dication of the usefulness of the quicksort algorithm by determining the
average number of comparisons needed when the comparison values are
randomly chosen. So, let us suppose that each comparison value chosen
from a bracket is equally likely to be any of the values in that bracket.
(This is equivalent to assuming that the initial ordering is random and
that the comparison value is always taken to be the first value to have been
put in the bracket.) LetX denote the number of comparisons needed. To
computeE[X],we will first expressX as the sum of other random vari-
ables in the following manner. To begin, give the following names to the
values that are to be sorted: let1denote the smallest, let 2 denote the sec-
ond smallest, and so on. Then, for 1 ≤ i < j ≤ n, let I(i, j) equal 1 if i
and j are ever directly compared, and let it equal 0 otherwise. Summing
these variables over all i < j gives the total number of comparisons:

X =
n∑
j=2

j−1∑
i=1

I(i, j),

which implies that
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E[X] = E
[ n∑
j=2

j−1∑
i=1

I(i, j)

]

=
n∑
j=2

j−1∑
i=1

E[I(i, j)]

=
n∑
j=2

j−1∑
i=1

P {i and j are ever compared}.

To determine the probability that i and j are ever compared, note that
the values i, i+1, . . . , j−1, j will initially be in the same bracket (since
all values are initially in the same bracket) and will remain in the same
bracket if the number chosen for the first comparison is not between i
and j. For instance, if the comparison number is larger than j, then all
the values i, i + 1, . . . , j − 1, j will go in a bracket to the left of the
comparison number, and if it is smaller than i then they will all go in
a bracket to the right. Thus all the values i, i + 1, . . . , j − 1, j will re-
main in the same bracket until the first time that one of them is chosen
as a comparison value. At that point, all the other values between i and
j will be compared with this comparison value. Now, if this compar-
ison value is neither i nor j then, upon comparison with it, i will go
into a left bracket and j into a right bracket; consequently i and j will
never be compared. On the other hand, if the comparison value of the
set i, i + 1, . . . , j − 1, j is either i or j, then there will be a direct com-
parison between i and j. Now, given that the comparison value is one
of the values between i and j, it follows that it is equally likely to be
any of these j − i + 1 values; thus the probability that it is either i or j
is 2/(j − i + 1). Therefore, we may conclude that

P {i and j are ever compared} = 2

j − i + 1
.

Consequently, we see that

E[X] =
n∑
j=2

j−1∑
i=1

2

j − i + 1

= 2
n∑
j=2

j∑
k=2

1

k
(by letting k = j − i + 1)
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= 2
n∑
k=2

n∑
j=k

1

k
(by interchanging the order of summation)

= 2
n∑
k=2

n− k + 1

k

= 2(n+ 1)
n∑
k=2

1

k
− 2(n− 1).

Using the approximation that, for large n,

n∑
k=2

1

k
≈ log(n),

we see (upon ignoring the linear term 2(n − 1)) that the quicksort al-
gorithm requires, on average, approximately 2n log(n) comparisons to
sort n values. For large n, this is much less than what is needed under
either selection sort or bubble sort.

8.4 Merge Sorts

Suppose we are presented with two sorted lists and are asked to merge
them into a single sorted list. To accomplish this, compare the smallest
elements of both lists, and remove the smaller of these two from its list.
Continue to repeat this operation until one of the lists is empty. The ele-
ments in the order of their removal, with the elements remaining on the
nonempty list put at the end, constitutes an ordering of all the elements.
If the sorted lists are of sizes k and m then it follows that, in the worst
case, it will take k + m − 1 comparisons to merge them into a single
sorted list.

The preceding suggests another sorting strategy. Namely, if you want
to sort 2m values, first divide them into two sets of sizem, sort each set,
and then merge them into a single sorted list. To sort each sublist we can
again divide them into two groups, then sort, and then merge. Indeed,
we may continue to subdivide the sorting problem until there are only
two items in a list; if we let M(n) denote the number of comparisons
needed to sort n elements by this merge sort method, then

M(2k) = 2k − 1 + 2M(2k−1),
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where the term 2k − 1 refers to the number of comparisons needed to
merge the two lists of size 2k−1. Using the preceding equation, we obtain

M(2k) = 2k − 1 + 2M(2k−1)

= 2k − 1 + 2[2k−1 − 1 + 2M(2k−2)]

= 2 · 2k − (1 + 2)+ 22M(2k−2)

= 2 · 2k − (1 + 2)+ 22[2k−2 − 1 + 2M(2k−3)]

= 3 · 2k − (1 + 2 + 22)+ 23M(2k−3)

...

= (k − 1) · 2k − (1 + · · · + 2k−2)+ 2k−1M(2)

= (k − 1) · 2k − (2k−1 − 1)+ 2k−1.

Therefore, we see that

M(2k) = (k − 1)2k + 1.

Now, if n = 2k then
k = log2(n).

Thus, for n large,
M(n) ≈ n log2(n).

Hence, the merge sort algorithm requires about n log2(n) comparisons
to sort n values. Although this is comparable to the number needed by
quicksort, the implementation of merge sort is more involved than that
of quicksort.

8.5 Sequential Searching

Suppose that we must determine if an item is one of the types 1, 2, . . . , n
or instead is of a different type. In addition, suppose that determining if
an item is type i requires comparison with a standard type-i item, with
the result of the comparison being that we learn whether the item is or
is not a type i. If the item is not of any of these n types then we will say
that it has type n + 1. A straightforward approach that can be used to
determine the type of an item is to select a permutation i1, i2, . . . , in of
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1, 2, . . . , n and then check in sequence whether it is type i1, or i2, . . . ,
or in. This will require a total of n checks in the worst case (where the
item is not any of the n types).

Whereas we cannot say that one permutation is better than another
from the point of view of a worst-case comparison, this is not the case
when we suppose that there are known probabilities concerning the type
of the new item. For in this latter case, permutations can be compared
according to the average number of comparisons needed to categorize
the item when the item types are checked in the order of the permutation.
It turns out that, if pi is the probability that a new item is of type i (i =
1, . . . , n,

∑
i pi ≤ 1), then the best sequential ordering is to order the

types in decreasing order of their probabilities. That is, one should first
check whether the new item is of the type having largest probability; if
not, then check if it is of the type having second largest probability, and
so on. This intuitive result is now formally proven.

Proposition 8.5.1 Suppose that the types are renumbered so that

p1 ≥ p2 ≥ · · · ≥ pn.
The expected number of comparisons needed to determine the type of a
new item is minimized by using the permutation 1, 2, . . . , n.

Proof. Let q = 1 − ∑n
i=1pi be the probability that the new item is of

type n+ 1, and consider any permutation

P = i1, . . . , ik, j, i, ik+3, . . . , in,

where i < j. That is, for i < j, the permutation P calls for checking
that an item is type j immediately before it checks that it is of type i.
Let us compare this with the permutation P ′ obtained from P by inter-
changing the positions of i and j. That is,

P ′ = i1, . . . , ik, i, j, ik+3, . . . , in.

If we let N denote the number of comparisons needed to determine the
type of a new item, then its expected value when the permutation P is
used is

EP[N ] =
k∑
r=1

rpir + (k + 1)pj + (k + 2)pi +
n∑

r=k+3

rpir + nq,
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whereas the corresponding expected value when P ′ is used is

EP ′[N ] =
k∑
r=1

rpir + (k + 1)pi + (k + 2)pj +
n∑

r=k+3

rpir + nq.

Hence,

EP[N ] − EP ′[N ] = (k + 1)pj + (k + 2)pi − (k + 1)pi − (k + 2)pj

= pi − pj
≥ 0.

Therefore, any pairwise interchange in which the smaller numbered type
is moved closer to the front will result in a new permutation whose ex-
pected number of comparisons is at least as small (and strictly smaller if
the two types have different probabilities) as the original one. Now con-
sider any permutation other than 1, 2, . . . , n. By a sequence of pairwise
interchanges, each one resulting in a new permutation whose expected
number of comparisons is at least as small as the one preceding it, we
can obtain the permutation 1, 2, . . . , n. For instance, if n = 3 then each
of the successive permutations is at least as good as the one preced-
ing it:

(3,1, 2), (1, 3, 2), (1, 2, 3).

Thus the expected number of comparisons needed when the permutation
1, 2, . . . , n is used is at least as small as under any other permutation,
which proves the result.

8.6 Binary Searches and Rooted Trees

Suppose again that we have a collection of items of the types 1, 2, . . . , n
and, moreover, that there are distinct numbers v1, . . . , vn such that each
type-i item has number vi attached to it. Suppose further that, when
a new item is compared with a type-i item, we learn not only whether
it is of this type but also, if it is not, whether its value is smaller or
larger than vi. Thus, by making use of this latter information we are
able to eliminate from consideration either all types whose value is less
than vi (when the value of the new item exceeds vi) or all types whose
value is greater than vi (when the value of the new item is less than vi).
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Under these assumptions, binary search is an efficient algorithm for de-
termining whether a new item is one of the types 1, 2, . . . , n or is a new
type.

The binary search algorithm starts by sorting the values v1, . . . , vn;
say the sorted values are

vi1, vi2, . . . , vij , . . . , vin−1, vin .

If the middle value in the sequence of sorted values is vij then the algo-
rithm compares the new item with a type-ij item. If the new item has
value vij ,we are finished; if it is greater, we next compare its value with
the middle value of the sorted values

vij+1, . . . , vin−1, vin

and, if it is less, to the middle value of the sorted values

vi1, vi2, . . . , vij−1,

and so on. For instance, if n = 8 and vi = i, then we begin by com-
paring the value of the new item to 4 (or to 5, since there is no unique
middle value in this case); if it is less than 4 we would next compare it
with 2 and, if greater, with 6 (or 7), and so on.

Say that a new item that is not any of the types 1, . . . , n is of type n+1.
Let B(n) denote the maximum number of comparisons needed by the
binary search algorithm to determine the type of a new item when there
are n known types. Suppose first that n is of the form n = 2k. After the
first comparison, if the item’s type has not been determined then it will
be known to be either new or one of at most 2k−1 specified known types.
Therefore,

B(2k) = 1 + B(2k−1).

Starting with
B(1) = 1,

we see that

B(2) = 1 + 1 = 2,

B(22) = 1 + 2 = 3,

B(23) = 1 + 3 = 4,

B(24) = 1 + 4 = 5,
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Figure 8.1: A Tree

and it is easily seen by induction that

B(2k) = k + 1.

Thus, for n large,

B(n) ≈ log2(n).

Detailed instructions for implementing the binary search algorithm
can be efficiently represented in a special type of directed graph known
as a “rooted tree.” Consider a tree (i.e., a connected graph without any
cycles); specify one of its vertices, say v0, and then give directions to
the edges so that there are paths from the specified vertex to each of the
other vertices of the tree. The resulting directed graph is called a rooted
tree, and v0 is called its root. For the original tree given in Figure 8.1,
for example, two rooted versions (with roots 1 and 4, respectively) are
shown in Figure 8.2.

When drawing a rooted tree, it is standard to place the root vertex
at the top of the tree, to place vertices adjacent to the root vertex one
level below the root, and so on. In addition, since it is understood that
the edges point downward, it is common to suppress the edge direction
arrows when drawing a rooted tree. Figure 8.3 gives the standard draw-
ings of the rooted trees of Figure 8.2.

The root vertex of a rooted tree is said to be at level 0, those vertices
on the next level are said to be at level 1, and so on. Thus the level of
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Figure 8.2: Two Rooted Trees

Figure 8.3: Standard Representations of Rooted Trees

a vertex is the length of the path from the root vertex to the vertex in
question. For instance, in the rooted tree depicted on the left side of Fig-
ure 8.3, vertex 6 is at level 3; whereas for the tree on the right side of
Figure 8.3, vertex 6 is at level 1. If (i, j) is an edge of a rooted tree, we
say that j is a child of i or that i is a parent of j. Vertices that have chil-
dren are called internal vertices, and those without are called leaves. For
the rooted tree on the left side of Figure 8.3, vertices 2, 5, 6 are leaves
and the others are internal vertices. If, for some m, each internal vertex
of a rooted tree has m children, we say that the rooted tree is an m-ary
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Figure 8.4: A Binary Tree

tree – when m = 2, a binary tree. The rooted tree of Figure 8.4 is a
binary tree.

We can use a rooted tree to represent the instruction set of a bi-
nary search. The root of the tree is the first item type that is com-
pared with the new item. If the value of the new item is less than the
value of the comparison type, then the search moves to the left child of
the comparison type, and if it has a larger value it moves to the right
child. Figure 8.5 represents the binary search of a new item when there
are 16 items and item type j has the j th smallest value. It instructs
one to first compare the new item with one of type 8; if its value is
smaller than that of a type 8 then the next comparison is made with a
type 4, and if it is larger then the next comparison is with a type 12, and
so on.

An unsuccessful search will lead to one of the external square vertices,
where the labels on these vertices give information about the unknown
value v of the item. The label i− means that v ∈ (vi−1, vi) and the label
i+ that v ∈ (vi, vi+1), where v0 = −∞ and vn+1 = ∞.

The following example demonstrates another use of rooted trees.

Example 8.6a A soccer team of 16 players and a coach use the tele-
phone calling tree of Figure 8.6 to keep the players informed about
upcoming games. The coach initiates the calls by calling three players,
each of whom then calls another set of three players, and so on.
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Figure 8.6: A Telephone Calling Tree

8.7 Exercises

Exercise 8.1 Use selection sort to sort the values

3 12 4 22 17 9 55 62 38 23 27 18 5 30 19 74 64 15.

Exercise 8.2 Use bubble sort to sort the values in Exercise 8.1.

Exercise 8.3 Use quicksort to sort the values in Exercise 8.1.

Exercise 8.4 Suppose that the values to be sorted need not be distinct –
that is, some may be equal. Describe the quicksort algorithm in this sit-
uation. How many comparisons would it take quicksort to sort n equal
values?

Exercise 8.5 A sorting algorithm is said to be stable if the original
order is preserved when all n items have equal value. Is bubble sort sta-
ble? Is quicksort? Is merge sort?

Exercise 8.6 Suppose you are given a list of numbers that is in the cor-
rect order except for a few out-of-place values. Which sorting algorithm
would you use?
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Exercise 8.7 Since quicksort works best when the comparison value
chosen is the middle value, give a way of improving it by first randomly
choosing three values before determining the comparison value.

Exercise 8.8 Devise an algorithm, in the spirit of quicksort, that can
be used to find the kth smallest of a set of n distinct numbers, k ≤ n.

Exercise 8.9 How many vertices are there in anm-ary rooted tree with
i internal vertices?

Exercise 8.10 The height of a rooted tree is the length of the longest
path of the tree (i.e., the maximal level of a vertex of the tree). Find an
upper bound on the number of leaves of a m-ary tree of height h.

Exercise 8.11 Is the telephone calling tree of Example 8.6a a 3-ary
tree? If not, how could it most easily be transformed into one?



9. Statistics

9.1 Introduction

It has become accepted that, in order to learn about something, you must
first collect data. Statistics is the art of learning from data. It is con-
cerned with the collection of data, its subsequent description, and its
analysis, which often leads to the drawing of conclusions.

9.2 Frequency Tables and Graphs

A data set having a relatively small number of distinct values can be
conveniently presented in a frequency table. For instance, Table 9.1 is
a frequency table for a data set consisting of the starting yearly salaries
(to the nearest thousand dollars) of 46 recently graduated students with
a B.S. degree in computer science.

The frequency table tells us, among other things, that the lowest start-
ing salary of $43,000 was received by four of the graduates, whereas the
highest salary of $60,000 was received by a single student. The most
common starting salary was $46,000, which was received by eight of
the students.

Data from a frequency table can be graphically represented by plot-
ting the distinct data values on the horizontal axis and indicating their
frequencies by the heights of vertical segments. The graph is called
a line graph if these segment are lines, or a bar graph if they are
given added thickness. Figure 9.1 presents a bar graph for the data of
Table 9.1.

When a data set has a large number of distinct values, we often divide
these values into groupings, or class intervals, and then plot the num-
ber of data values falling in each class interval. A bar graph plot of class
data, with the bars placed adjacent to each other, is called a histogram.
Figure 9.2 presents a histogram of a data set consisting of the lifetimes
of 200 incandescent lamps. It indicates, for example, that two of the



Frequency Tables and Graphs 221

Table 9.1

Starting
Salary Frequency

43 4
44 3
45 5
46 8
47 6
48 4
50 6
52 5
55 4
60 1

Figure 9.1: A Bar Graph of Data from Table 9.1

bulbs had lifetimes between 500 and 600 hours, five of the bulbs had
lifetimes between 600 and 700 hours, twelve of the bulbs had lifetimes
between 700 and 800 hours, and so on.

An efficient way of presenting a small to moderate-sized data set is to
use a stem-and-leaf plot. Such a plot is obtained by first dividing each
data value into two parts – its stem and its leaf. For instance, if the data
are all two digit numbers, then we could let the stem part of a data value
be its “tens” digit and let the leaf be its “ones” digit. Thus, for instance,
the value 62 would be expressed as follows.
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Figure 9.2: A Histogram of Life Data

Stem Leaf

6 2

Likewise, the two data values 62 and 67 would be represented as follows.

Stem Leaf

6 2, 7

Example 9.2a The following stem-and-leaf plot gives the scores on a
final examination in a course that used this text.

10 0
9 1, 2, 6, 6
8 0, 2, 3, 5, 5, 7, 7, 8, 9
7 0, 0, 2, 4, 5, 5, 6, 7, 8, 8
6 0, 5, 5, 8, 8
5 0, 5, 5, 7

This stem-and-leaf plot tells us, among other things, that scores ranged
from a low of 50 to a high of100, and that there were ten scores in the 70s.
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9.3 Summarizing Data Sets

In order to obtain a feel for large amounts of data, it is useful to be able to
summarize the data by some suitably chosen measures. We now present
some summarizing statistics, where a statistic is a numerical quantity
whose value is determined by the data.

9.3.1 Sample Mean, Sample Median, and Sample Mode

Three statistics that are used for describing the center of a set of data
values are the sample mean, the sample median, and the sample mode.
The sample mean of the data set consisting of the n numerical values
x1, x2, . . . , xn is the arithmetical average of these values.

Definition The sample mean, designated by x̄, is defined by

x̄ =
n∑
i=1

xi

n
.

The computation of the sample mean can often be simplified by noting
that, for constants a and b, if

yi = axi + b, i = 1, . . . , n,

then the sample mean of the data set y1, . . . , yn is

ȳ =
n∑
i=1

axi + b
n

=
n∑
i=1

axi

n
+

n∑
i=1

b

n
= ax̄ + b.

Example 9.3a The winning scores in the U.S. Master’s Golf Tourna-
ment in the years from 1982 to 1991 were as follows:

284, 280, 277, 282, 279, 285, 281, 283, 278, 277.

Find the sample mean of these scores.
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Solution. Rather than directly adding these values, it is easier to first
subtract 280 from each one to obtain the new values yi = xi − 280:

4, 0, −3, 2, −1, 5, 1, 3, −2, −3.

The arithmetic average of the transformed data set is

ȳ = 6/10,

so it follows that
x̄ = ȳ + 280 = 280.6.

Sometimes we want to determine the sample mean of a data set that
is presented in a frequency table listing the k distinct values v1, . . . , vk

having corresponding frequencies f1, . . . , fk. Such a data set consists
of n = ∑k

i=1fi observations, with the value vi appearing fi times for
each i = 1, . . . , k. Therefore, the sample mean of these n data values is

x̄ =
k∑
i=1

vifi

n
.

Rewriting this as

x̄ = f1

n
v1 + f2

n
v2 + · · · + fk

n
vk,

we see that the sample mean is a weighted average of the distinct val-
ues, where the weight given to the value vi is equal to the proportion of
the n data values that are equal to vi, i = 1, . . . , k.

Another statistic used to indicate the center of a data set is the sample
median, defined as follows. Order the values of a data set of size n from
smallest to largest. If n is odd, the sample median is the value in posi-
tion (n + 1)/2; if n is even, it is the average of the values in positions
n/2 and n/2 +1. Thus the sample median of a set of three values is the
second smallest; of a set of four values, it is the average of the second
and third smallest.

Another statistic that has been used to indicate the central tendency
of a data set is the sample mode, defined to be the value that occurs
with the greatest frequency. If no single value occurs most frequently,
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then all the values that occur at the highest frequency are called modal
values.

Example 9.3b The following frequency table gives the values obtained
in 40 rolls of a die.

Value Frequency

1 9
2 8
3 5
4 5
5 6
6 7

Find the sample mean, the sample median, and the sample mode.

Solution. The sample mean is

x̄ = (9 + 16 + 15 + 20 + 30 + 42)/40 = 3.05.

The sample median is the average of the 20th and 21st smallest values
and is thus equal to 3. The sample mode is 1, the value that occurred
most frequently.

9.3.2 Sample Variance and Sample Standard Deviation

We have presented statistics that describe the central tendencies of a
data set, yet we are also interested in ones that describe the “spread” or
variability of the data values. A statistic that could be used for this pur-
pose would be one that measures the average value of the squares of the
distances between the data values and the sample mean. This is accom-
plished by the sample variance, which for technical reasons divides the
sum of the squares of the differences by n− 1 rather than n, where n is
the size of the data set.

Definition The sample variance (call it s2) of the data set x1, . . . , xn

is defined by

s2 =
n∑
i=1

(xi − x̄)2
n− 1

.
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The following algebraic identity is often useful for computing the sam-
ple variance:

n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2
i − nx̄2.

The identity is proven as follows:

n∑
i=1

(xi − x̄)2 =
n∑
i=1

(x2
i − 2xix̄ + x̄2)

=
n∑
i=1

x2
i − 2x̄

n∑
i=1

xi +
n∑
i=1

x̄2

=
n∑
i=1

x2
i − 2nx̄2 + nx̄2

=
n∑
i=1

x2
i − nx̄2.

The computation of the sample variance can also be eased by noting
that, if

yi = a + bxi, i = 1, . . . , n,

then ȳ = a + bx̄ and so

n∑
i=1

(yi − ȳ)2 = b2
n∑
i=1

(xi − x̄)2.

That is, if s2
y and s2

x are the respective sample variances, then

s2
y = b2s2

x .

In other words, adding a constant to each data value does not change the
sample variance; whereas multiplying each data value by a constant re-
sults in a new sample variance that is equal to the old one multiplied by
the square of the constant.

Example 9.3c The following data give the worldwide number of fatal
airline accidents of commercially scheduled air transports in the years
from 1985 to 1993.
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Number of
Year Accidents

1985 22
1986 22
1987 26
1988 28
1989 27
1990 25
1991 30
1992 29
1993 24

Find the sample variance of the number of accidents in these years.

Solution. Let us start by subtracting 22 from each value to obtain the
new data set

0, 0, 4, 6, 5, 3, 8, 7, 2.

Calling the transformed data y1, . . . , y9, we have

n∑
i=1

yi = 35,
n∑
i=1

y2
i = 203.

Hence, since the sample variance of the transformed data is equal to that
of the original data, we have (upon using the algebraic identity) that

s2 = 203 − 9(35/9)2 = 66.889.

The positive square root of the sample variance is called the sample stan-
dard deviation. That is, the sample standard deviation is

s =
√√√√ n∑

i=1

(xi − x̄)2
n− 1

.

9.4 Chebyshev’s Inequality

Let x̄ and s be the sample mean and sample standard deviation of a data
set. Assuming that s > 0, Chebyshev’s inequality implies that, for any
value of k ≥ 1, at least 100(1 − 1/k2) percent of the data lie within the
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interval from x̄−ks to x̄+ks. Letting k = 3/2,we obtain from Cheby-
shev’s inequality that at least 100(5/9) = 55.56% of the data from any
data set lies within a distance 1.5s of the sample mean x̄; letting k = 2
shows that at least 75% of the data lies within 2s of the sample mean;
and letting k = 3 shows that at least 800/9 = 88.9% of the data lies
within three sample standard deviations of x̄.

If the size of the data set is specified then Chebyshev’s inequality can
be sharpened, as shown in the following formal statement and proof.

Theorem 9.4.1 (Chebyshev’s Inequality) Let x̄ and s be the sample
mean and sample standard deviation of the data set consisting of the
data x1, . . . , xn, where s > 0. Let

Sk = {i (1 ≤ i ≤ n) : |xi − x̄| < ks},
and let |Sk| denote the number of elements in the set Sk. Then, for any
k ≥ 1, |Sk|

n
≥ 1 − n− 1

nk2
> 1 − 1

k2
.

Proof.

(n− 1)s2 =
n∑
i=1

(xi − x̄)2

=
∑
i∈Sk
(xi − x̄)2 +

∑
i /∈Sk
(xi − x̄)2

≥
∑
i /∈Sk
(xi − x̄)2

≥
∑
i /∈Sk

k2s2

= k2s2(n− |Sk|),
where the first inequality follows because all terms being summed are
nonnegative; the second follows since (xi − x̄)2 ≥ k2s2 when i /∈ Sk.
Dividing both sides of the preceding inequality by nk2s2 yields that

n− 1

nk2
≥ 1 − |Sk|

n
,

and the result is proven.
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Table 9.2

Number
Day Temperature of Defects

1 24.2 25
2 22.7 31
3 30.5 36
4 28.6 33
5 25.5 19
6 32.0 24
7 28.6 27
8 26.5 25
9 25.3 16

10 26.0 14
11 24.4 22
12 24.8 23
13 20.6 20
14 25.1 25
15 21.4 25
16 23.7 23
17 23.9 27
18 25.2 30
19 27.4 33
20 28.3 32
21 28.8 35
22 26.6 24

9.5 Paired Data Sets and the Sample Correlation
Coefficient

We are often concerned with data sets that consist of pairs of values that
have some relationship to each other. If each element in such a data set
has an x-value and a y-value, then we represent the ith data point by the
pair (xi, yi). For instance, in an attempt to determine the relationship
between the daily midday temperature (measured in degrees Celsius)
and the number of defective parts produced during that day, a company
recorded the data presented in Table 9.2. For this data set, xi represents
the temperature and yi the number of defective parts produced on day i.

A useful way of portraying a data set of paired values is to plot the data
on a two-dimensional graph, with the x-axis representing the x-value
of the data and the y-axis representing the y-value. Such a plot is called



230 Statistics

Figure 9.3: Scatter Diagram

a scatter diagram. Figure 9.3 presents a scatter diagram for the data of
Table 9.2.

A question of interest concerning paired data sets is whether large
x-values tend to be paired with large y-values and small x-values with
small y-values; if this is not the case, we might then question whether
large values of one of the variables tend to be paired with small values
of the other. A rough answer to these questions can often be provided by
the scatter diagram. For instance, Figure 9.3 indicates that there appears
to be some connection between high temperatures and large numbers of
defective items. To obtain a quantitative measure of this relationship,
we will now develop a statistic that attempts to measure the degree to
which larger x-values go with larger y-values and smaller x-values with
smaller y-values.

Suppose that the data set consists of the paired values (xi, yi), i =
1, . . . , n. To obtain a statistic that can be used to measure the association
between the paired data values, let x̄ and ȳ denote the sample means of
the x-values and the y-values, respectively. Now, for data pair i, con-
sider xi − x̄, the deviation of its x-value from the x sample mean, and
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yi − ȳ, the deviation of its y-value from the y sample mean. If xi is a
large x-value, then it will be larger than the average value of all the x
and so the deviation xi − x̄ will be a positive value. Similarly, when xi
is a small x-value, the deviation xi − x̄ will be a negative value. As the
same is true for the deviations in y, we can conclude that when large
(resp. small) values of the x-variable tend to be associated with large
(resp. small) values of the y-variable the signs (either positive or nega-
tive) of xi − x̄ and yi − ȳ tend to be the same.

Now, if xi − x̄ and yi − ȳ have the same sign then their product
(xi − x̄)(yi − ȳ) will be positive. It follows that, if large x-values tend
to be paired with large y-values and small x-values with small y-values,
then

∑n
i=1(xi − x̄)(yi − ȳ) will tend to be a large positive number. In

fact, not only will all the products have a positive sign when large (small)
x-values are paired with large (small) y-values, but it also follows from
Proposition 1.3.2 (Hardy’s lemma) that the largest possible value of the
sum of paired products will be obtained when the largest xi− x̄ is paired
with the largest yi − ȳ, the second largest xi − x̄ is paired with the sec-
ond largest yi − ȳ, and so on. Conversely, it follows that when large
values of xi tend to be paired with small values of yi, the signs of xi − x̄
and yi − ȳ will be opposite and so

∑n
i=1(xi − x̄)(yi − ȳ) will be a large

negative number.
In order to determine what it means for

∑n
i=1(xi − x̄)(yi − ȳ) to be

“large,” we standardize this sum first by dividing by n − 1 and then by
dividing by the product of the two sample standard deviations. The re-
sulting statistic is called the sample correlation coefficient. That is, the
sample coefficient r of the data pairs (xi, yi), i = 1, . . . , n, is defined
by

r =
∑n
i=1(xi − x̄)(yi − ȳ)
(n− 1)sxsy

=
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n
i=1(yi − ȳ)2

.

When r > 0 we say that the sample data pairs are positively corre-
lated, and when r < 0 we say that they are negatively correlated.

We now list some properties of the sample correlation coefficient.
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Properties of r

(1) −1 ≤ r ≤ 1.
(2) If for constants a and b, with b > 0,

yi = a + bxi, i = 1, . . . , n,

then r = 1.
(3) If for constants a and b, with b < 0,

yi = a + bxi, i = 1, . . . , n,

then r = −1.
(4) If r is the sample correlation coefficient for the data pairs (xi, yi),

i = 1, . . . , n, then it is also the sample correlation coefficient for
the data pairs (a + bxi, c + dyi), i = 1, . . . , n, provided that the
constants b and d have the same sign.

Property (1) is a direct consequence of the Cauchy–Schwarz inequality,
which states that for any values ai, bi (i = 1, . . . , n),

( n∑
i=1

aibi

)2

≤
n∑
i=1

a2
i

n∑
i=1

b2
i .

(Simply let ai = xi − x̄ and bi = yi − ȳ.) The verifications of the other
properties of r are straightforward and are left as exercises.

The absolute value of the sample correlation coefficient (i.e., |r|) is a
measure of the strength of the linear relationship between the x and y
values of a data pair. A value of r equal to 1 indicates a perfect linear
relation; a value around 0.8 indicates that a linear relation gives a rela-
tively good fit to the data pairs; a value around 0.3 indicates that a linear
relation gives a relatively poor fit to the data pairs. The sign of r gives
the direction of the relation: it is positive when the linear fit points up-
ward and negative when it points downward. (The sample correlation
coefficient for the data pairs of Table 9.2 is r = 0.4189.)

9.6 Testing Statistical Hypotheses

One often collects data so as to be able to draw some inferences about
the process that generates the data. A common inference problem that
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is often considered is that of using the data to test a certain statistical
hypothesis. For instance, suppose that a manufacturing process pro-
duces items that may or may not meet certain specifications. A common
practice in such cases is to suppose that each item produced indepen-
dently fails to meet the specifications with some unknown probability p.
Suppose now that we are interested in testing the hypothesis thatp ≤ p0

for some specified probability p0. To test this hypothesis, we would ran-
domly select a sample of (say, n) items and then determine how many of
these do not meet the specifications. If k of the n did not meet the spec-
ifications, then we would want to reject the hypothesis that p ≤ p0 if
obtaining as many as k failures in n trials would be very unlikely to oc-
cur when the failure probability is less than or equal to p0. To determine
exactly how unlikely such an event would be to occur, we would deter-
mine P {X ≥ k}, where X is the random number of failures that would
occur in n independent trials when each trial is a failure with probability
p0. In other words, X is a binomial random variable with parameters n
and p0 (see Example 3.5b), and P {X ≥ k} can be explicitly determined
by using a standard program for determining probabilities for binomial
random variables. If P {X ≥ k} is sufficiently small, then the hypothe-
sis would be rejected. For example, if p0 = 0.1, n = 500, and k = 74,
then we would reject the hypothesis that the probability of a defective
item is at most 0.1 if the probability is sufficiently small that as many as
74 defective items would have occurred in 500 trials when the proba-
bility of a defective item is 0.1. Now, for a binomial random variable X
with parameters 500 and 0.1,

P {X ≥ 74} = 0.0005.

For such a small probability, the hypothesis is rejected.

9.7 Exercises

Exercise 9.1 The following is a sample of prices, rounded to the near-
est cent, charged per gallon of standard unleaded gasoline in the San
Francisco Bay area in June 1997:

137,139,141,137,144,141,139,137,144,141,143,143,141.

Represent these data in
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(a) a frequency table;
(b) a line graph.

Exercise 9.2 If a city government has a flat-rate income tax and is try-
ing to estimate its total revenue from the tax, which statistic would it
be more interested in: the sample mean or the sample median? What if
it were thinking about constructing middle-income housing and wanted
to determine the proportion of its population able to afford it?

Exercise 9.3 The sample mean and sample variance of five data val-
ues are x̄ = 104 and s2 = 4. If three of the data values are 102, 100, and
105, what are the other two values?

Exercise 9.4 An efficient way to compute the sample mean and sam-
ple variance of the data set x1, x2, . . . , xn is as follows. Let

x̄j =
∑j

i=1 xi

j
, j = 1, . . . , n,

be the sample mean of the first j data values, and let

s2
j =

∑j

i=1(xi − x̄j )2
j − 1

, j = 2, . . . , n,

be the sample variance of the first j (j ≥ 2) values. Then, with s2
1 = 0,

it can be shown that

x̄j+1 = x̄j + x̄j+1 − x̄j
j + 1

and
s2
j+1 = (1 − 1/j)s2

j + (j + 1)(x̄j+1 − x̄j )2.

(a) Use the preceding formulas to compute the sample mean and sam-
ple variance of the data values 3, 4, 7, 2, 9, 6.

(b) Verify your results in part (a) by computing as usual.
(c) Verify the given formula for x̄j+1 in terms of x̄j .
(d) Verify the given formula for s2

j+1 in terms of s2
j .

Exercise 9.5 The sample 100p percentile is that data value such that
at least 100p percent of the data are less than or equal to it and at least
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100(1 − p) percent are greater than or equal to it. If two data values
satisfy this condition, then the sample 100p percentile is the arithmetic
average of these two values.

(a) If np is not an integer, how would you determine the sample 100p
percentile?

(b) What if np is an integer?

Exercise 9.6 The sample 50th percentile is the sample median. Along
with the sample 25th (called the first quartile) and the sample 75th per-
centile (called the third quartile), it makes up the sample quartiles. Find
the sample quartiles of the data set of Table 9.1.

Exercise 9.7 The following are the grade-point averages of 30 students
recently admitted to the graduate program in the department of Industrial
Engineering and Operations Research at the University of California at
Berkeley:

3.46, 3.72, 3.95, 3.55, 3.62, 3.80, 3.86, 3.71, 3.56, 3.49,

3.96, 3.90, 3.70, 3.61, 3.72, 3.65, 3.48, 3.87, 3.82, 3.91,

3.69, 3.67, 3.72, 3.66, 3.79, 3.75, 3.93, 3.74, 3.50, 3.83.

(a) Represent the preceding data in a stem-and-leaf plot.
(b) Calculate the sample mean x̄.
(c) Calculate the sample standard deviation s.
(d) Determine the proportion of the data values that lie within x̄ ±1.5s

and compare this amount with the lower bound given by Cheby-
shev’s inequality.

(e) Determine the proportion of the data values that lie within x̄ ± 2s
and compare this amount with the lower bound given by Cheby-
shev’s inequality.

Exercise 9.8 Verify properties (2) and (3) of the sample correlation
coefficient.

Exercise 9.9 Verify property (4) of the sample correlation coefficient.

Exercise 9.10 If r is the sample correlation coefficient of the data set
(xi, yi), i = 1, . . . , n, what is the sample correlation coefficient of the
data set (xi,−yi), i = 1, . . . , n?
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Exercise 9.11 The daily temperatures specified in Table 9.2 are given
in degrees Celsius. Given that the sample correlation coefficient for the
data pairs of this table is r = 0.4189, what would it have been had the
temperature been given in degrees Fahrenheit?



10. Groups and Permutations

10.1 Permutations and Groups

A permutation f can be regarded as a function on the set {1, 2, . . . , n}
such that f(1), f(2), . . . , f(n) is a reordering of 1, 2, . . . , n. We often
represent the permutation f by the following row and column notation:

1 2 . . . n

f(1) f(2) . . . f(n)
.

For instance, the permutation f(1) = 3, f(2) = 4, f(3) = 1, f(4) = 2
is represented as

1 2 3 4
3 4 1 2

.

Interchanging the orders of the columns in this representation does not
change the permutation. For instance, the preceding permutation can
also be written as

3 4 1 2
1 2 3 4

,

meaning that f(3) = 1, f(4) = 2, f(1) = 3, and f(2) = 4.
If f and g are permutations on the set {1, 2, . . . , n}, then we define

their composition f � g to be the function such that

f � g(i) = f(g(i)).

Since g(1), . . . , g(n) is a rearrangement of 1, . . . , n and f is a permu-
tation, it follows that f(g(1)), . . . , f(g(n)) is also a rearrangement of
1, . . . , n. That is, f � g is itself a permutation.

Example 10.1a If f is the permutation

1 2 3 4
3 4 1 2

and g is the permutation
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1 2 3 4
4 2 1 3

then f � g is the permutation

1 2 3 4
2 4 3 1

.

The preceding follows because

f � g(1) = f(g(1)) = f(4) = 2,

f � g(2) = f(g(2)) = f(2) = 4,

and so on.

The set of all n! permutations on the set {1, 2, . . . , n} along with the com-
position operator is a “group,” according to the following definition.

Definition A nonempty set of elements G along with a composition
operator � between elements ofG is said to be a group if the following
conditions all hold.

(1) If g ∈G and h∈G, then g � h∈G.
(2) There is an element I of G (called the identity element) such that,

for all g ∈G,
g � I = I � g = g.

(3) For each element g ∈ G, there is an element g−1 ∈ G (called the
inverse of g) such that

g � g−1 = g−1 � g = I.

(4) For all elements f, g, h in G, the associative property

(f � g)� h = f � (g � h)
holds.

Example 10.1b (a) The set of all integers is a group when the com-
position operation is addition. The identity element of this group is the
integer 0, and the inverse of the integer n is −n.
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(b) The set of all real numbers different from 0 forms a group when
the composition operation is multiplication; 1 is the identity element,
and 1/x is the inverse of x.

To check that the set of permutations forms a group, note that if the per-
mutation I is defined by

I(i) = i, i = 1, . . . , n,

then I satisfies the conditions of the identity element. Also, if f is the
permutation

1 2 . . . n

f(1) f(2) . . . f(n)

then the permutation defined by

f(1) f(2) . . . f(n)
1 2 . . . n

is the inverse permutation f −1. In other words, f −1(i) is the value that
f maps into i; that is,

f(f −1(i)) = f −1(f(i)) = i.

Example 10.1c According to the preceding, if f is the permutation

1 2 3 4
4 3 1 2

then f −1 is the permutation

4 3 1 2
1 2 3 4

.

As a check, note that

f � f −1(1) = f(f −1(1)) = f(3) = 1,

f −1 � f(1) = f −1(f(1)) = f −1(4) = 1;
f � f −1(2) = f(f −1(2)) = f(4) = 2,

f −1 � f(2) = f −1(f(2)) = f −1(3) = 2.
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Similarly,

f �f −1(3) = f −1 �f(3) = 3, f �f −1(4) = f −1 �f(4) = 4.

To complete our verification that the set of all permutations constitutes
a group with respect to the composition operation previously defined,
we must check that condition (4) holds. To do so, let f, g, h be permu-
tations. Then

(f � g)� h(i) = (f � g)(h(i)) = f(g(h(i)))
and

f � (g � h)(i) = f(g � h(i)) = f(g(h(i))),
which verifies condition (4). Thus, the set of permutations on the set
{1, 2, . . . , n} is a group; it is called the symmetric group, denoted Sn.

Example 10.1d A group G is said to be abelian if

f � g = g � f
for all f, g ∈G. The group of integers with respect to the addition opera-
tion and the group of nonzero real numbers with respect to multiplication
are both abelian groups, but the group of permutations is not abelian.
For instance, for the permutations defined in Example 10.1a, we have
that g � f is the permutation

1 2 3 4
1 3 4 2

,

which, as seen from that example, is not equal to f � g.

Example 10.1e For a prime integer p, let Z∗
p = {1, 2, . . . , p − 1} and

consider Z∗
p along with the composition operator

i � j = ij modp.

That is, i� j is the remainder when the product of i and j is divided by
p. For instance, if p = 7 then

5 � 6 = 30 mod 7 = 2.

Show that, when p is prime, Z∗
p is an abelian group.
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Solution. We have i � j = j � i, so it suffices to show that Z∗
p is a

group. To do so, first note that if i and j are in Z∗
p then so is i � j, pro-

vided that ij �= 0 modp. But if ij = 0 modp then p divides ij, which
implies (by the prime factorization theorem) that p divides either i or j.
However, since both i and j are betweeen 1 and p − 1, it is impossible
for p to divide either of them. Therefore we conclude that i � j ∈ Z∗

p.

Clearly, 1 is the identity element.
In order to verify the associative property (i � j)� k = i � (j � k),

we will show that

(i � j)� k = ijk modp.

To show this, use Euclid’s division lemma (Proposition 1.4.1) to obtain
that there are nonnegative integers r1 and r2, both less than p, such that

ij = q1p + r1,

r1k = q2p + r2.

Hence,
(i � j)� k = r1 � k = r2.

On the other hand,

ijk = (q1p + r1)k

= q1pk + r1k

= q1pk + q2p + r2

= (q1k + q2)p + r2,

thus showing that

(i � j)� k = r2 = ijk modp.

Since
i � (j � k) = (j � k)� i = jki modp,

the associative property is verified.
It remains to show that every element in Z∗

p has an inverse. To do so,
fix i (1 ≤ i < p) and consider the function

f(j) = i � j, j = 1, . . . , p − 1.
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We claim that f(1), . . . , f(p − 1) are all distinct. For suppose that, for
some 1 ≤ j < k < p,

f(j) = f(k).
If so, then

ij = ik modp,

which implies that
i(k − j) = 0 modp.

That is, p divides i(k − j). Since p is prime, this yields that either p
divides i or p divides k − j. But i and k − j are both less than p, so
this is clearly impossible; thus, we can conclude that the p − 1 values
f(1), . . . , f(p − 1) are all distinct. Each is one of the p − 1 values
1, . . . , p−1, so it follows that each of these must be the value of exactly
one of the f(j). Thus there is a j, call it j ∗, for which f(j ∗) = 1. That
is,

i � j ∗ = 1.

Because i� j = j � i, we can conclude that j ∗ = i−1, thus completing
the verification that Z∗

p is a group.

If g is an element of a group, let

g1 = g

and, for m > 1, recursively define gm by

gm = g � gm−1.

In addition, define g−2 by

g−2 = g−1 � g−1

and, for k > 2,
g−k = g−1 � g−(k−1).

It is not difficult to show (we leave it as an exercise) that

gm � g−k = g−k � gm = gm−k,

where
g0 = I.
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Figure 10.1: Digraph of a Permutation

10.2 Permutation Graphs

A permutation on {1, 2, . . . , n} can be represented by a directed graph
with vertices {1, 2, . . . , n} and edges (i, f(i)), i = 1, . . . , n. (Note that
this directed graph allows edges from a vertex to itself.) Since f is a
permutation, it follows that there will be exactly one edge going into and
one coming out of each vertex. For a given vertex i, consider the se-
quence of vertices i, f(i), f 2(i), f 3(i), . . . whose successive pairs are
edges of the graph. Since there are only a finite number of vertices, there
will eventually be a repeat vertex in this sequence; the first one to repeat
must be vertex i, for otherwise there would be a vertex with at least two
incoming edges. Thus, vertex i (and every other vertex) will appear in
the digraph as part of a cycle.

Example 10.2a Consider the permutation

1 2 3 4 5 6 7 8
5 4 2 3 7 6 1 8

.

Figure 10.1 gives the digraph representation of this permutation. Thus,
every connected component of the permutation digraph is a cycle. As
a result, we can also represent a permutation by giving its cycles. For
instance, with the cycles denoted by the vertices within a bracket, the
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permutation of Example 10.2a can be represented as

[1 5 7] [2 4 3] [6] [8].

A useful convention is to list only the cycles of length greater than 1. We
would thus use the notation

[1 5 7] [2 4 3]

for the preceding permutation. Also, we let [1] stand for the identity ele-
ment I.

Example 10.2b The permutation f on the integers 1 through 10 given
by the cycle notation

f = [1 3 6 2] [5 10]

is the permutation

1 2 3 4 5 6 7 8 9 10
3 1 6 4 10 2 7 8 9 5

.

Note that, if i is not listed in the cycle notation for f, then f(i) = i.

A permutation having only one cycle of length greater than 1 is called a
cycle permutation.

Example 10.2c A cycle of length 2 is called a transposition. For in-
stance, the permutation transposition [i, j ] is equivalently written as

f(i) = j, f(j) = i, f(k) = k,
k �= i, k �= j.

10.3 Subgroups

If the set of elements G is a group with respect to the operation �, and
ifH is a subset ofG such thatH is also a group with respect to �, then
we say that H is a subgroup of G. The nonempty subset H will be a
subgroup provided that the following hold:
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(a) if h∈H, then h−1 ∈H ;
(b) if h∈H and r ∈H, then h� r ∈H.
To verify that (a) and (b) imply that H is a subgroup, note that (a) and
(b) together imply that I ∈H.

Condition (b) by itself suffices when G is a group with a finite num-
ber of elements.

Proposition 10.3.1 If G is a finite group then H, a nonempty subset
of G, is a subgroup if

h∈H & r ∈H �⇒ h� r ∈H.

Proof. Let h be an element of H. Then, by the condition of the propo-
sition, it follows that h, h2, h3, . . . are all elements of H. Since H is a
subset of a finite set, it too is finite, so these elements can not all be dis-
tinct. Hence there must be values k < m such that

hk = hm.
But this implies that

h−k · hk = h−k · hm

or (equivalently) that
I = hm−k,

implying that I ∈H. In addition, since

I = hm−k = h� hm−k−1,

it follows that

h−1 � I = h−1 � (h� hm−k−1) = (h−1 � h)� hm−k−1 = I � hm−k−1.

Therefore,
h−1 = hm−k−1,

which shows that h−1 ∈H and thus that H is a group.

Permutation groups are particularly important because any finite group
is isomorphic to a subgroup of a permutation group, where we say that
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two groupsG and H are isomorphic if there is a one-to-one correspon-
dence between their elements such that this correspondence is preserved
under group compositions. In other words, for each g ∈ G, there is a
matching element h ∈ H (with the matching indicated by the notation
g ←→ h) such that every element inH is matched to one and only one
element in G, and if g1 ←→ h1 and g2 ←→ h2 then

g1 � g2 ←→ h1 � h2.

Thus, the groups G and H are isomorphic if H is, in essence, the same
group as G (except that the elements have been given different names).
The concept of groups being isomorphic is important because it gives
recognition to the fact that the same abstract group can appear in many
different applications.

Proposition 10.3.2 (Cayley’s Group Isomorphic Theorem) Any finite
group G is isomorphic to a subgroup of a permutation group.

Proof. If G has n elements, then arbitrarily rename these elements as
1, 2, . . . , n. Match element j to the permutation fj, where

fj(i) = j � i.

To check that fj is a permutation, note that each of fj(1), . . . , fj(n) is
one of the n values 1, . . . , n. Thus, in order to show that fj is a permu-
tation, we need only show that these values are all distinct. If fj(i) =
fj(k) then

j � i = j � k,
implying that

j−1 � j � i = j−1 � j � k
or

i = k.

Thus, we can conclude that fj is a permutation. It remains to show that
the set of these permutations is a group and also that fj�k = fj · fk,
where we have used the symbol · to indicate the composition function
for permutations. However, this latter property implies that fj · fk is
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a member of the set of permutations {f1, . . . , fn}; since this set is con-
tained in Sn, by Proposition 10.3.1 we can conclude that {f1, . . . , fn} is a
group. Therefore, to complete the proof we need only show that fj�k =
fj · fk, which is equivalent to showing that, for each i (i = 1, . . . , n),

fj�k(i) = fj · fk(i)
or (equivalently) that

(j � k)� i = fj(k � i)
or

(j � k)� i = j � (k � i),
which follows from the associative property of groups.

The number of elements in a finite group is called the order of the group.
It follows from the proof of Proposition 10.3.1 that, if g is an element
of a finite group G, then {g, g2, g3, . . . } will be a subgroup of G. If we
define r to be the smallest value of i (i ≥ 1) such that

gi = I,
then the values in the sequence g, g2, . . . will repeat after the first r val-
ues. As a result, we can conclude that the set {g, g2, . . . , gr = I } is a
subgroup; it is called the cyclic subgroup generated by g. Since it can
be shown that each of the values g1, g2, . . . , gr are distinct, it follows
that r is equal to the number of elements of the subgroup. Since r is
the order of the subgroup generated by g, we often just say that r is the
order of the element g.

Example 10.3a Consider the set of permutations on the set {1, 2, 3},
and label its elements as follows:

I = 1 2 3,

a = 1 3 2,

b = 2 1 3,

c = 2 3 1,

d = 3 1 2,

e = 3 2 1.
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(Note that we are identifying each permutation by its lower row when
its upper row is 12 3.) The composition table for this group is given
as follows, where the elements inside the table are the products r � c
(r is the row and c is the column element, so e.g. the table yields that
a � b = d ).

I a b c d e

I I a b c d e

a a I d e b c

b b c I a e d

c c b e d I a

d d e a I c b

e e d c b a I

From the preceding table, we see that d 2 = c and d 3 = d � d 2 =
d � c = I, thus showing that the cyclic subgroup generated by d is
{d, c, I }. Similarly, we see that the cyclic subgroup generated by

I is {I },
a is {a, I },
b is {b, I },
c is {c, d, I },
d is {d, c, I },
e is {e, I }.

The following proposition is useful.

Proposition 10.3.3 Let r be the order of the group element g. If gm =
I then r is a divisor of m.

Proof. By Euclid’s division lemma, we can write

m = qr + s,
where 0 ≤ s < r. Hence,

I = gqr+s = gqr � gs = (gr)q � gs = I q � gs = I � gs = gs.

Since r is the smallest positive integer such that qr = I, the preceding
implies that s = 0 and thus that r divides m.
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Let us now consider how to determine the order of a permutation. To
begin, consider a cycle permutation f = [i1, i2, . . . , ik]. Then, ignoring
those elements that are unchanged under f, we can write

f 0 = i1 i2 i3 . . . ik−2 ik−1 ik

i1 i2 i3 . . . ik−2 ik−1 ik
,

f 1 = i1 i2 i3 . . . ik−2 ik−1 ik

i2 i3 i4 . . . ik−1 ik i1
,

f 2 = i1 i2 i3 . . . ik−2 ik−1 ik

i3 i4 i5 . . . ik i1 i2
,

f 3 = i1 i2 i3 . . . ik−2 ik−1 ik

i4 i5 i6 . . . i1 i2 i3
,

and so on. It is easy to see from this progression that the first positivem
for which f m = I is m = k. Thus, the order of a cycle permutation is
the length of the cycle. More generally, we have the following result.

Proposition 10.3.4 The order of a permutation is the least common
multiple of the lengths of its disjoint cycles.

Proof. Suppose that f is the composition of s disjoint cycles f1, f2,

. . . , fs of respective lengths n1, n2, . . . , ns. Then it is easy to see that

f m = f m1 � f m2 � · · · � f ms .

The order of fi is ni, so it follows that f mi will be the identity permuta-
tion if and only ifm is a multiple of ni. (The “only if” part follows from
Proposition 10.3.3.) Therefore, f m = I if and only ifm is a multiple of
all the cycle lengths, implying that the smallest suchm is the least com-
mon multiple.

10.4 Lagrange’s Theorem

Let H be a subgroup of the group G. For an element g ∈G, define the
set g �H by

g �H = {g � h : h∈H }.
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The set g �H is called a left coset of the group G. We will now prove
two lemmas regarding these sets.

Lemma 10.4.1 If H is a subgroup of the finite group G then, for all
g ∈G,

|g �H | = |H |,

where |S| is equal to the number of elements in the set S.

Proof. If g � h1 = g � h2, then

g−1 � (g � h1) = g−1 � (g � h2)

or (equivalently)

(g−1 � g)� h1 = (g−1 � g)� h2

or
h1 = h2.

Therefore, all of the elements g � h (h∈H ) are distinct, and the result
follows.

Lemma 10.4.2 If H is a subgroup of the finite group G then g1 �H
and g2 �H are either disjoint or identical.

Proof. Suppose these sets have an element in common, say x. Then,
for some h1 ∈H and h2 ∈H,

x = g1 � h1 = g2 � h2,

which implies, upon composition with h−1
1 , that

g1 = g2 � h2 � h−1
1 .

Hence, for any h∈H,

g1 � h = g2 � h2 � h−1
1 � h.

Since H is a group, h2 � h−1
1 � h∈H, which shows that

g1 �H ⊂ g2 �H.
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By reversing the roles of g1 and g2, we likewise obtain that

g2 �H ⊂ g1 �H.
Thus,

g1 �H = g2 �H
and the result is proven.

The preceding lemmas imply the important group theoretic result known
as Lagrange’s theorem.

Theorem 10.4.1 (Lagrange’s Theorem) If H is a subgroup of the fi-
nite group G, then |H | divides |G|. That is, the order of a subgroup
divides the order of the group.

Proof. Let k equal the number of distinct sets of the form g � H. As
these sets each contain |H | elements (by Lemma 10.4.1), are mutually
exclusive (by Lemma 10.4.2), and together contain all of the elements
of G (since g ∈ g �H ), it follows that |G| = k|H |.

Lagrange’s theorem has some interesting consequences.

Corollary 10.4.1 If G is a finite group of order n then, for any g ∈G,
gn = I.

Proof. By Lagrange’s theorem, the order of the cyclic subgroup

g, g2, . . . , gr = I
divides n. Therefore, n = rk for some k and so

gn = (gr)k = I k = I.

Corollary 10.4.2 Let G be a finite group of order n. If n is prime, then
G is cyclic and thus abelian.

Proof. IfG consists only of the identity element, then the result is true.
If not, let g (g �= I ) be an element of G and consider the cyclic sub-
group of distinct elements S = {g, g2, . . . , gr = I }. By Lagrange’s
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theorem, r divides n, which implies (since n is prime) that n = r. Thus,
G = S and the result is proved.

Example 10.4a In Example 2.2f we gave a combinatorial argument
to prove Fermat’s little theorem, which states that if p is prime and n is
not a multiple of p then np−1 −1 is divisible by p. We will now present
a second argument that uses the group of Example 10.1e along with La-
grange’s theorem. In Example 10.1e, we showed that if p is prime then
the set {1, 2, . . . , p − 1} is a group with respect to

i � j = ij modp.

The order of this group is p − 1 and the identity element is 1, so it fol-
lows from Corollary 10.4.1 that

n� n� · · · � n = 1,

where n appears p − 1 times on the LHS. Since this is equivalent to

np−1 = 1 modp,

we see that np−1−1 is divisible by p for any integer n in the group. This
gives us Fermat’s little theorem only when 1 ≤ n < p, but we could
have let the group consist of the integers kp+1, kp+2, . . . , kp+p−1,
with

i � j = (ij modp)+ kp.

The identity of this group would be kp + 1, and Corollary 10.4.1 gives
that, for any n in the group,

np−1 = kp + 1 modp.

As kp + 1 = 1 modp, Fermat’s little theorem is obtained.

Example 10.4b Fermat Numbers For some nonnegative integer m,
let p = 2m + 1 and suppose that p is prime. Now consider the group
{1, . . . , p−1} whose composition operation is multiplication modulo p,
and let o(2) be the order of 2 as a member of this group.
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Claim: o(2) = 2m. To verify the claim, note first that

22m = 1 modp

is equivalent to the statement that

22m − 1 is divisible by p,

and this follows since p = 2m + 1 and

22m − 1 = (2m − 1)(2m + 1).

Thus, with respect to the group under consideration,

22m = I ;

by Proposition 10.3.3, this implies that o(2) is a divisor of 2m. But
o(2) > m, since

2k �= 1 modp for k = 1, . . . , m.

Hence, we can conclude that o(2) = 2m. By Lagrange’s theorem, this
implies that 2m is a divisor of p − 1 = 2m, yielding (by the prime fac-
torization theorem) that m must be a multiple of 2 – say, m = 2n.

Thus we have shown that the only prime numbers of the form 2m +1
are of the type 22n +1. Numbers of this type are called Fermat numbers.
Fermat – noting that

220 + 1 = 2 + 1 = 3,

221 + 1 = 22 + 1 = 5,

222 + 1 = 24 + 1 = 17,

223 + 1 = 28 + 1 = 257,

224 + 1 = 216 + 1 = 65,537

are all prime – conjectured the possibility that all Fermat numbers are
prime. Euler, however, refuted that possibility by showing that

225 + 1 = 232 + 1 = 4,294,967,297
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is divisible by 641. Indeed, no Fermat number having n > 4 has ever
been shown to be prime. (It is presently unknown whether the Fermat
number with n = 20 is prime.)

Normal subgroups have a particular importance in group theory. They
are defined as follows.

Definition A subgroup N of the group G is said to be a normal sub-
group if, for all g ∈G,

g �N = N � g.

That is, N is normal if, for all g ∈G,

{g � h : h∈N} = {h� g : h∈N}.

10.5 The Alternating Subgroup

In this section we define the alternating subgroup of the symmetric per-
mutation group Sn. However, before doing so, we need the concepts of
even and odd permutations. We start by defining the polynomial func-
tion P(x1, . . . , xn) as

P(x1, . . . , xn) =
∏
i<j

(xi − xj ),

where the product is defined over all the
(
n

2

)
pairs i, j for which i < j.

For instance,

P(x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3).

For any permutation f ∈ Sn, let

Pf (x1, . . . , xn) = P(xf(1), . . . , xf(n)) =
∏
i<j

(xf(i) − xf(j)).

Call f even if
Pf (x1, . . . , xn) = P(x1, . . . , xn)

and call f odd otherwise. For each distinct pair i �= j, either (xi − xj )
or its negative will be one of the

(
n

2

)
products in both P(x1, . . . , xn) and

Pf (x1, . . . , xn), so it follows that
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Pf (x1, . . . , xn) = −P(x1, . . . , xn)

when f is an odd permutation.
Let S(f ), the parity sign of the permutation f, equal 1 if f is even or

−1 if f is odd. Thus,

Pf (x1, . . . , xn) = S(f )P(x1, . . . , xn).

Now, for permutations f and g,

Pf�g(x1, . . . , xn) =
∏
i<j

(xf�g(i) − xf�g(j))

= Pf (xg(1), . . . , xg(n))
= S(f )P(xg(1), . . . , xg(n))
= S(f )S(g)P(x1, . . . , xn).

Consequently, we see that

S(f � g) = S(f )S(g). (10.1)

Thus, the composition of two permutations is even when the permuta-
tions are both even or both odd, and the composition is odd when the
permutations are of opposite parity sign.

Lemma 10.5.1 For any permutation g,

S(g) = S(g−1).

Proof. Since I = g � g−1, it follows that

S(I ) = S(g)S(g−1).

As S(I ) = 1, the result follows.

Proposition 10.5.1 The set of even permutations, designated as An,
is a normal subgroup of Sn. It is called the alternating subgroup.

Proof. Equation (10.1) along with Proposition 10.3.1 shows that An is a
subgroup of Sn. To show that it is a normal subgroup, we need to show
that g�An = An�g for every permutation g. Let f ∈An, and note that
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g � f = x � g
has the solution

x = g � f � g−1.

To show that x ∈An, note that

S(x) = S(g)S(f � g−1)

= S(g)S(f )S(g−1)

= S(f ) (by Lemma 10.5.1)

= 1 (since f ∈An).

Hence x ∈ An, showing that g � An ⊂ An � g. A similar argument
gives that An � g ⊂ g � An, and the result follows.

Let f be a transposition permutation, say f = [k,m],where k < m. For
this permutation, Pf is obtainable from P upon replacing xk by xm and
xm by xk wherever they appear in P. Thus, any factor of P of the form
xi − xj (where neither i nor j is k or m) will remain unchanged. When
i < k, the product (xi − xk)(xi − xm) will remain unchanged; when
k < i < m, the product (xk − xi)(xi − xm) will also remain unchanged
(as it will be changed to (xm − xi)(xi − xk)). Thus, aside from the fac-
tor xk−xm (which is changed into its negative), the product of the other
factors of P remains unchanged. Hence, if f is a transposition permu-
tation then Pf = −P. That is, all transposition permutations are odd.

It follows from the preceding that, if f is an even permutation, then
the permutation

1 2 3 . . . n

f(2) f(1) f(3) . . . f(n)

is odd (i.e., the permutation [f(1), f(2)] � f is odd). This implies that
there are the same number of odd and even permutations. Since there
are a total of n! permutations, we obtain the following.

Proposition 10.5.2 There are n!/2 even permutations and the same
number of odd ones.

Any cycle permutation can be written as a composition of transposition
permutations. For instance,
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[1, 2, 3] = [1, 3][1, 2]

or (equivalently)

1 2 3 = 1 2 3 � 1 2 3,

2 3 1 = 3 2 1 � 2 1 3.

In general, we can write any cycle permutation [i1, i2, . . . , ik] in the fol-
lowing manner:

[i1, i2, . . . , ik] = [i1, ik] � [i1, ik−1] � · · · � [i1, i3] � [i1, i2].

Therefore, any cycle of length k can be expressed as the product of k−1
transpositions. As each transposition permutation changes the sign of
P, it follows that the sign of P remains unchanged if and only if k−1 is
even. That is, the sign of P remains unchanged if and only if the cycle
length is odd. As a result, since every permutation can be expressed as
a product of disjoint cycles, we have shown the following.

Proposition 10.5.3 A permutation is even if and only if, in its expres-
sion as the composition of disjoint cycles, there are an even number of
cycles of even length.

Another way of determining the parity (even or odd) of a permutation is
to count the number of different inversions it introduces. For a permu-
tation f, consider the sequence

f(1) f(2) . . . f(n).

We say that there are k inversions introduced by i if exactly k of the val-
ues that precede i in the foregoing sequence are greater than i. As an
example, for the permutation

1 2 3 4 5 6
4 2 1 6 5 3

we have

• 2 inversions introduced by 1,
• 1 inversion introduced by 2,
• 3 inversions introduced by 3,
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• 0 inversions introduced by 4,
• 1 inversion introduced by 5, and
• 0 inversions introduced by 6.

The total number of inversions is 2 + 1 + 3 + 0 + 1 + 0 = 7. In gen-
eral, let Vf (i) denote the number of inversions introduced by i in the
permutation f, and let

Vf =
n∑
i=1

Vf (i)

be the total number of inversions in f.
Now consider what happens when we take the composition of the

permutation f and the transposition permutation [i, j ]. For instance,
consider

1 2 3 4 5 6
4 2 1 6 5 3

� [2, 4] = 1 2 3 4 5 6
4 6 1 2 5 3

.

That is, f � [i, j ] interchanges the values of f(i) and f(j). Thus,
there is a composition of f and Vf (1) transpositions that gives a permu-
tation whose first element is 1. For instance, identifying the permutation
by the vector f(i), i = 1, . . . , n, we have

4 2 1 3 � [2, 3] � [1, 2] = 1 4 2 3.

An additional Vf (2) compositions with transpositions can be chosen to
obtain a permutation whose first two elements are 1, 2. Continuing in
this fashion shows that transpositions can be chosen so that, after Vf
compositions with these transpositions, we obtain the identity permuta-
tion I. But I is even (and so has parity sign1) whereas each transposition
is odd, implying that

1 = S(I ) = (−1)VfS(f ).

Hence, we have shown the following.

Proposition 10.5.4 The permutation f is even if it has an even number
of inversions and is odd if it has an odd number of inversions.

The following result can be proven.
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Theorem 10.5.1 (Galois’s Theorem) If n > 4, then the only normal
subgroups of An are An and {I }.

Galois’s theorem is a very important result in the history of algebra, for
it played a key part in Galois’s proof that polynomial equations of de-
gree 5 or larger are not generally solvable in terms of radicals. That is,
when n ≥ 5, equations of the form

a0 + a1x + a2x
2 + · · · + anxn = 0

cannot generally be solved by a sequence of rational operations (ad-
dition, subtraction, multiplication, and division) and the taking of nth
roots of quantities already known. However, for n ≤ 4 such equations
can be solved in terms of radicals; for instance, we have the well-known
solution

x =
−a1 ±

√
a2

1 − 4a0a2

2a0

when n = 2.

10.6 Exercises

Unless otherwise noted, assume that all elements are members of a
group.

Exercise 10.1 Show that, for elements r and s,

(a) gr+s = gr � gs;
(b) (gr)s = grs.

Exercise 10.2 Show that

(f � g)−1 = g−1 � f −1.

Exercise 10.3 Construct an example to show that, in general,

(f � g)r �= f r � gr .

Give a condition under which the preceding is true, and prove the result.
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Exercise 10.4 If r is the smallest value of i (i ≥ 1) such that gi = I,
show that g, g2, . . . , gr are distinct.

Exercise 10.5 Let Zn = {0,1, . . . , n−1}, and show that Zn is a group
with respect to the composition

x � y =
{
x + y if x + y < n,
x + y − n if x + y ≥ n.

Exercise 10.6 Give the multiplication table for the group Z4.

Exercise 10.7 Verify that the set {1, 3, 7, 9} is a group under multipli-
cation modulo 20.

Exercise 10.8 Determine which of the following sets are groups under
multiplication modulo 14:

{1, 3, 5}, {1, 3, 5, 7}, {1, 7,13}, {1, 9,11,13}.

Exercise 10.9 Give the multiplication table for S3.

Exercise 10.10 Show that all permutations in S3 are cycles. Is the
same true for those in S4?

Exercise 10.11 Draw the digraph for the permutation

1 2 3 4 5 6 7 8
4 2 1 6 8 3 5 7

.

Exercise 10.12 Show that, for f and g in Sn, f � g = g� f when g
is a transposition.

Exercise 10.13 Find the orders of the elements 0,1, 2, 3 of the group
Z4 defined in Exercise 10.5.

Exercise 10.14 Show that, if H is a nonempty subset of the groupG,
then H is a subgroup if a ∈H and b ∈H imply that a � b−1 ∈H.

Exercise 10.15 Find all subgroups of S3.
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Exercise 10.16 The center of a group G is defined to consist of all
elements g ∈G such that

g � h = h� g for all h∈G.
Show that the center of a group is a subgroup.

Exercise 10.17 If the groupsG andH are isomorphic, show that their
identity elements are matched. Then show that, if g ←→ h, we also
have g−1 ←→ h−1.

Exercise 10.18 Show that the group of integers {0,1, 2, 3} with group
composition being addition mod 4 is isomorphic to the group of integers
{1, 2, 3, 4} with group composition being multiplication mod 4.

Hint: Start by writing down the composition tables for these groups.

Exercise 10.19 Show that the group of positive real numbers with mul-
tiplication as group composition is isomorphic to the group of all real
numbers with addition as group composition.

Exercise 10.20 Let G be a cyclic group of order n. If d is a positive
divisor of n, show that G has a subgroup of order d.

Exercise 10.21 Show that the order of the group element g is equal to
the order of g−1.

Exercise 10.22 Show that a group of order pk has a subgroup of order
p when p is prime.

Exercise 10.23 Show that, in a group of order 2n, there is an element
besides the identity that is its own inverse.

Exercise 10.24 Show that {I } andG are both normal subgroups of the
group G.

Exercise 10.25 Show that the center of a group is a normal subgroup.

Exercise 10.26 If N is a normal subgroup of G and if H is any other
subgroup, show that N �H is a subgroup.
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Exercise 10.27 Show, in Exercise 10.26, that if H is also normal then
so is N �H.

Exercise 10.28 Let N be a normal subgroup of G. Show that, for f
and g in G,

(f �N)� (g �N) = (f � g)�N.

Exercise 10.29 Let Z be the group consisting of all the integers, with
� representing addition.

(a) Describe in words the set n� Z.
(b) Show that n� Z is a normal subgroup.

Exercise 10.30 Show that N is a normal subgroup of G if and only if
(i) it is a subgroup of G and (ii) for all g ∈G,

H = g �H � g−1,

where g �H � g−1 = {g � h� g−1, h∈H }.

Exercise 10.31 Find the parity (even or odd) of the permutation

1 2 3 4 5 6 7 8 9 10
4 9 7 6 8 3 1 5 10 2

(a) by using its representation as the composition of unique cycles;
(b) by counting its number of inversions.
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abelian group, 240
addition theorem of probability, 73–4
alternating subgroup, 255–6
arbitrage, 107–11
arbitrage theorem, 111–16, 191–4
arcs, see edges of graphs
associative property of groups, 237
assignment problem, 160–3, 176–7
augmentation algorithm, 154–7

ballot problem, 58–60
bar graph, 220
basic principle of counting, 34

generalized, 35
Bayes’ formula, 84
Bernoulli random variable, 89, 92–3
Bernoulli’s inequality, 29
best prize problem, 82–4
binary rooted tree, 216
binary search, 213–14
binomial coefficient, 43
binomial random variable, 86, 93
binomial theorem, 43–5
birthday problem, 75–6
Black–Scholes option formula, 120
bubble sort, 203–6

cardinality of a set, 47
Cauchy–Schwarz inequality, 232
Cayley’s group isomorphic theorem,

246–7
Cayley’s theorem, 129–31
characteristic function, 31
Chebyshev’s inequality, 227–8
chromatic number, 147, 148
clique, 134–5, 139–40
combinations, 40
communicate, 124
complement graph, 136
complement of a set, 2

complete graph, 127
component of a graph, 124
composition of permutations, 237–8
compound interest, 97–100

continuously, 99
conditional probability, 77–8, 80–5
connected graph, 126
coset, 250
coupon collecting identity, 52
coupon collecting problem, 51–2
cut, 152
cycle, 124
cycle permutation, 244
cyclic subgroup, 247, 261

DeMorgan’s laws, 28
diameter of graph, 147
digraph, see directed graph
Dijkstra algorithm, 171–5
directed graph, 150
domain of a function, 17
doubling rule, 121
dual linear program, 188–90
duality theorem of linear programming,

190

edges of a graph, 124
equipment selection problem, 167–70
Euclid’s algorithm, 25
Euclid’s division lemma, 23
Euler cycle, 141
Euler graph, 142–4
even permutation, 254–8
event, 71
expected value of a random variable,

87–8, 90–2

fair, see unbiased
Fermat numbers, 252–4
Fermat’s combinatorial identity, 66
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Fermat’s little theorem, 40, 252
finite set, 1
forwards contracts, 109–10
frequency table, 220
function, 17–23

concave, 20–2
convex, 20–3
decreasing, 17
increasing, 17
polynomial, 19

fundamental theorem of arithmetic, 25–7
futures contracts, 110

Galois’s theorem, 259
game theory, 194–9
geometric Brownian motion, 120
graph, 125
greatest common divisor, 24
greedy algorithm, 131–4
group, 238

Hall’s theorem, 162
Hamiltonian permutation, 141–2
Hardy’s lemma, 14
histogram, 220

identity element of a group, 238
inclusion–exclusion identity, 48–9
independence number, 137
independent events, 80, 95
independent random variables, 92
independent set, 137
infinite set, 1
interest rate, 97

effective, 98
nominal, 98
simple, 97

intersection graph, 145
intersection of sets, 2–4
inverse element, 238, 259
isomorphic groups, 246, 261

Lagrange’s theorem, 251–3
leaf, 127
line graph, 220
linear data fit, 186–8
linear function, 183
linear program, 178

m-ary rooted tree, 215
mathematical induction, 8–17

strong version of, 16
maximum flow problem, 150–60
max-flow min-cut theorem, 154
mean, see expected value of a random

variable
Menger’s theorem, 159
merge sort, 209–10
minimax theorem of game theory, 197–9
minimum spanning tree problem, 131–4
multiplication theorem of probability, 79

negatively correlated data pairs, 231
node, see vertex of a graph
normal subgroups, 254, 261, 262

odd permutation, 254, 256
odds, 113
options, 104–9
order of a group, 247, 248–9

partition of a set, 54–5
path, 124, 150
permutation, 36–8

derangement, 50–1, 55–6
as a function, 237–8
inversion of, 69, 205, 257–8
parity sign of, 255

permutation graph, 243
permutation group, 238–40
pigeonhole principle, 61–3, 136
positively correlated data pairs, 231
present value, 100
primal linear program, 188
probabilistic method, 138, 140–2
probability, 71–2
prime factorization theorem, see

fundamental theorem of arithmetic
prime number, 25
Prim’s algorithm, 146–7
put–call option parity formula, 108–9

quicksort algorithm, 206–9

random variables, 85
recursion equations, 52–61
rooted tree, 214–16
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root of tree, 214
round-robin tournament, 13, 33, 140–2

saddlepoint, 195
sample correlation coefficient, 231–2
sample mean, 223–4, 234
sample median, 224
sample mode, 224
sample percentile, 234–5
sample space, 71
sample standard deviation, 227
sample variance, 225–6, 234
scatter diagram, 230
selection sort, 203
sequential search, 210–12
set, 1
shortest path, 170–5
sorting, 203
standard deviation, 93
standard linear programming problem,

183–8
standard normal distribution function, 120
statistical hypothesis tests, 232–3
statistics, 220, 223
stem-and-leaf plot, 221–2
subgroup, 244–5, 260, 261

subset, 2
summation, 4–8
symmetric group, 240

tournament, 178
tournament win problem, 163–5
transposition, 244
transshipment problem, 166–7
tree, 127–31
triangle, 134–5
Turan’s theorem, 140

unbiased, 71
union of sets, 2–4
universal set, 2
utility, 89–90

variance, 92–3
Venn diagram, 2–3
vertex of a graph, 124

degree of, 127

well-ordering property of positive
integers, 14

zero-sum game, 194
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