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This Student Solution Manual provides complete solutions to all the odd-numbered problems in
Essential Mathematical Methods for the Physical Sciences. It takes students through each problem
step by step, so they can clearly see how the solution is reached, and understand any mistakes in
their own working. Students will learn by example how to select an appropriate method, improving
their problem-solving skills.
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Preface

For reasons that are explained in the preface to Essential Mathematical Methods for the
Physical Sciences the text of the third edition of Mathematical Methods for Physics and
Engineering (MMPE) (Cambridge: Cambridge University Press, 2006) by Riley, Hobson
and Bence, after a number of additions and omissions, has been republished as two slightly
overlapping texts. Essential Mathematical Methods for the Physical Sciences (EMMPS)
contains most of the more advanced material, and specifically develops mathematical
methods that can be applied throughout the physical sciences; an augmented version of
the more introductory material, principally concerned with mathematical tools rather than
methods, is available as Foundation Mathematics for the Physical Sciences. The full text
of MMPE, including all of the more specialized and advanced topics, is still available
under its original title.

As in the third edition of MMPE, the penultimate subsection of each chapter of EMMPS
consists of a significant number of problems, nearly all of which are based on topics drawn
from several sections of that chapter. Also as in the third edition, hints and outline answers
are given in the final subsection, but only to the odd-numbered problems, leaving all
even-numbered problems free to be set as unaided homework.

This book is the solutions manual for the problems in EMMPS. For the 230 plus odd-
numbered problems it contains, complete solutions are available, to both students and
their teachers, in the form of this manual; these are in addition to the hints and outline
answers given in the main text. For each problem, the original question is reproduced
and then followed by a fully worked solution. For those original problems that make
internal reference to the main text or to other (even-numbered) problems not included in
this solutions manual, the questions have been reworded, usually by including additional
information, so that the questions can stand alone. Some further minor rewording has been
included to improve the page layout.

In many cases the solution given is even fuller than one that might be expected of
a good student who has understood the material. This is because we have aimed to
make the solutions instructional as well as utilitarian. To this end, we have included
comments that are intended to show how the plan for the solution is formulated and have
provided the justifications for particular intermediate steps (something not always done,
even by the best of students). We have also tried to write each individual substituted
formula in the form that best indicates how it was obtained, before simplifying it at the
next or a subsequent stage. Where several lines of algebraic manipulation or calculus
are needed to obtain a final result, they are normally included in full; this should enable
the student to determine whether an incorrect answer is due to a misunderstanding of
principles or to a technical error.
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viii Preface

As noted above, the original questions are reproduced in full, or in a suitably modified
stand-alone form, at the start of each problem. Reference to the main text is not needed
provided that standard formulae are known (and a set of tables is available for a few of the
statistical and numerical problems). This means that, although it is not its prime purpose,
this manual could be used as a test or quiz book by a student who has learned, or thinks
that he or she has learned, the material covered in the main text.



1 Matrices and vector spaces

1.1 Which of the following statements about linear vector spaces are true? Where a statement is false,
give a counter-example to demonstrate this.

(a) Non-singular N ×N matrices form a vector space of dimension N2.
(b) Singular N ×N matrices form a vector space of dimension N2.
(c) Complex numbers form a vector space of dimension 2.
(d) Polynomial functions of x form an infinite-dimensional vector space.
(e) Series {a0, a1, a2, . . . , aN } for which

∑N
n=0 |an|2 = 1 form an N -dimensional vector space.

(f) Absolutely convergent series form an infinite-dimensional vector space.
(g) Convergent series with terms of alternating sign form an infinite-dimensional vector space.

We first remind ourselves that for a set of entities to form a vector space, they must
pass five tests: (i) closure under commutative and associative addition; (ii) closure under
multiplication by a scalar; (iii) the existence of a null vector in the set; (iv) multiplication
by unity leaves any vector unchanged; (v) each vector has a corresponding negative vector.

(a) False. The matrix 0N , the N ×N null matrix, required by (iii) is not non-singular
and is therefore not in the set.

(b) Consider the sum of

(
1 0
0 0

)
and

(
0 0
0 1

)
. The sum is the unit matrix which is not

singular and so the set is not closed; this violates requirement (i). The statement is false.
(c) The space is closed under addition and multiplication by a scalar; multiplication

by unity leaves a complex number unchanged; there is a null vector (= 0 + i0) and a
negative complex number for each vector. All the necessary conditions are satisfied and
the statement is true.

(d) As in the previous case, all the conditions are satisfied and the statement is true.
(e) This statement is false. To see why, consider bn = an + an for which

∑N
n=0 |bn|2 =

4 �= 1, i.e. the set is not closed (violating (i)), or note that there is no zero vector with unit
norm (violating (iii)).

(f) True. Note that an absolutely convergent series remains absolutely convergent when
the signs of all of its terms are reversed.

(g) False. Consider the two series defined by

a0 = 1
2 , an = 2

(− 1
2

)n
for n ≥ 1; bn = −(− 1

2

)n
for n ≥ 0.

The series that is the sum of {an} and {bn} does not have alternating signs and so closure
(required by (i)) does not hold.
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2 Matrices and vector spaces

1.3 By considering the matrices

A =
(

1 0
0 0

)
, B =

(
0 0
3 4

)
,

show that AB = 0 does not imply that either A or B is the zero matrix but that it does imply that at
least one of them is singular.

We have

AB =
(

1 0
0 0

)(
0 0
3 4

)
=
(

0 0
0 0

)
.

Thus AB is the zero matrix 0 without either A = 0 or B = 0.
However, AB = 0 ⇒ |A||B| = |0| = 0 and therefore either |A| = 0 or |B| = 0 (or

both).

1.5 Using the properties of determinants, solve with a minimum of calculation the following equations
for x:

(a)

∣∣∣∣∣∣∣∣
x a a 1
a x b 1
a b x 1
a b c 1

∣∣∣∣∣∣∣∣ = 0, (b)

∣∣∣∣∣∣
x + 2 x + 4 x − 3
x + 3 x x + 5
x − 2 x − 1 x + 1

∣∣∣∣∣∣ = 0.

(a) In view of the similarities between some rows and some columns, the property most
likely to be useful here is that if a determinant has two rows/columns equal (or multiples
of each other) then its value is zero.

(i) We note that setting x = a makes the first and fourth columns multiples of each
other and hence makes the value of the determinant 0; thus x = a is one solution to the
equation.

(ii) Setting x = b makes the second and third rows equal, and again the determinant
vanishes; thus b is another root of the equation.

(iii) Setting x = c makes the third and fourth rows equal, and yet again the determinant
vanishes; thus c is also a root of the equation.

Since the determinant contains no x in its final column, it is a cubic polynomial in x
and there will be exactly three roots to the equation. We have already found all three!

(b) Here, the presence of x multiplied by unity in every entry means that subtracting
rows/columns will lead to a simplification. After (i) subtracting the first column from each
of the others, and then (ii) subtracting the first row from each of the others, the determinant
becomes ∣∣∣∣∣∣

x + 2 2 −5
x + 3 −3 2
x − 2 1 3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
x + 2 2 −5

1 −5 7
−4 −1 8

∣∣∣∣∣∣
= (x + 2)(−40 + 7) + 2(−28 − 8) − 5(−1 − 20)

= −33(x + 2) − 72 + 105

= −33x − 33.



3 Matrices and vector spaces

Thus x = −1 is the only solution to the original (linear!) equation.

1.7 Prove the following results involving Hermitian matrices.

(a) If A is Hermitian and U is unitary then U−1AU is Hermitian.
(b) If A is anti-Hermitian then iA is Hermitian.
(c) The product of two Hermitian matrices A and B is Hermitian if and only if A and B commute.
(d) If S is a real antisymmetric matrix then A = (I − S)(I + S)−1 is orthogonal. If A is given by

A =
(

cos θ sin θ
− sin θ cos θ

)
then find the matrix S that is needed to express A in the above form.

(e) If K is skew-Hermitian, i.e. K† = −K, then V = (I + K)(I − K)−1 is unitary.

The general properties of matrices that we will need are (A†)−1 = (A−1)† and

(AB · · · C)T = CT · · · BTAT, (AB · · · C)† = C† · · · B†A†.

(a) Given that A = A† and U†U = I, consider

(U−1AU)† = U†A†(U−1)† = U−1A(U†)−1 = U−1A(U−1)−1 = U−1AU,

i.e. U−1AU is Hermitian.
(b) Given A† = −A, consider

(iA)† = −iA† = −i(−A) = iA,

i.e. iA is Hermitian.
(c) Given A = A† and B = B†.

(i) Suppose AB = BA, then

(AB)† = B†A† = BA = AB,

i.e. AB is Hermitian.
(ii) Now suppose that (AB)† = AB. Then

BA = B†A† = (AB)† = AB,

i.e. A and B commute.
Thus, AB is Hermitian ⇐⇒ A and B commute.
(d) Given that S is real and ST = −S with A = (I − S)(I + S)−1, consider

ATA = [(I − S)(I + S)−1]T[(I − S)(I + S)−1]

= [(I + S)−1]T(I + S)(I − S)(I + S)−1

= (I − S)−1(I + S − S − S2)(I + S)−1

= (I − S)−1(I − S)(I + S)(I + S)−1

= I I = I,

i.e. A is orthogonal.



4 Matrices and vector spaces

If A = (I − S)(I + S)−1, then A + AS = I − S and (A + I)S = I − A, giving

S = (A + I)−1(I − A)

=
(

1 + cos θ sin θ
− sin θ 1 + cos θ

)−1 (
1 − cos θ − sin θ

sin θ 1 − cos θ

)
= 1

2 + 2 cos θ

(
1 + cos θ − sin θ

sin θ 1 + cos θ

)(
1 − cos θ − sin θ

sin θ 1 − cos θ

)
= 1

4 cos2(θ/2)

(
0 −2 sin θ

2 sin θ 0

)
=
(

0 − tan(θ/2)
tan(θ/2) 0

)
.

(e) This proof is almost identical to the first section of part (d) but with S replaced by
−K and transposed matrices replaced by Hermitian conjugate matrices.

1.9 The commutator
[

X,Y
]

of two matrices is defined by the equation

[ X,Y ] = XY − YX.

Two anticommuting matrices A and B satisfy

A2 = I, B2 = I, [ A,B ] = 2iC.

(a) Prove that C2 = I and that [B,C] = 2iA.
(b) Evaluate [ [ [ A,B ], [ B,C ] ], [ A,B ] ].

(a) From AB − BA = 2iC and AB = −BA it follows that AB = iC. Thus,

−C2 = iCiC = ABAB = A(−AB)B = −(AA)(BB) = −I I = −I,

i.e. C2 = I. In deriving the above result we have used the associativity of matrix multipli-
cation.

For the commutator of B and C,

[ B,C ] = BC − CB

= B(−iAB) − (−i)ABB

= −i(BA)B + iAI

= −i(−AB)B + iA
= iA + iA = 2iA.

(b) To evaluate this multiple-commutator expression we must work outwards from the
innermost “explicit” commutators. There are three such commutators at the first stage.
We also need the result that [ C,A ] = 2iB; this can be proved in the same way as that
for [ B,C ] in part (a), or by making the cyclic replacements A → B → C → A in the
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assumptions and their consequences, as proved in part (a). Then we have[ [
[ A,B ], [ B,C ]

]
, [ A,B ]

] = [ [ 2iC, 2iA ], 2iC ]

= −4[ [ C,A ], 2iC ]

= −4[ 2iB, 2iC ]

= (−4)(−4)[ B,C ] = 32iA.

1.11 A general triangle has angles α, β and γ and corresponding opposite sides a, b and c. Express
the length of each side in terms of the lengths of the other two sides and the relevant cosines,
writing the relationships in matrix and vector form, using the vectors having components a, b, c
and cosα, cosβ, cos γ . Invert the matrix and hence deduce the cosine-law expressions involving α,
β and γ .

By considering each side of the triangle as the sum of the projections onto it of the other
two sides, we have the three simultaneous equations:

a = b cos γ + c cosβ,

b = c cosα + a cos γ,

c = b cosα + a cosβ.

Written in matrix and vector form, Ax = y, they become⎛⎝0 c b

c 0 a

b a 0

⎞⎠⎛⎝ cosα
cosβ
cos γ

⎞⎠ =
⎛⎝ab
c

⎞⎠ .
The matrix A is non-singular, since | A | = 2abc �= 0, and therefore has an inverse given
by

A−1 = 1

2abc

⎛⎝−a2 ab ac

ab −b2 bc

ac bc −c2

⎞⎠ .
And so, writing x = A−1y, we have⎛⎝ cosα

cosβ
cos γ

⎞⎠ = 1

2abc

⎛⎝−a2 ab ac

ab −b2 bc

ac bc −c2

⎞⎠⎛⎝ab
c

⎞⎠ .
From this we can read off the cosine-law equation

cosα = 1

2abc
(−a3 + ab2 + ac2) = b2 + c2 − a2

2bc
,

and the corresponding expressions for cosβ and cos γ .
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1.13 Determine which of the matrices below are mutually commuting, and, for those that are, demonstrate
that they have a complete set of eigenvectors in common:

A =
(

6 −2
−2 9

)
, B =

(
1 8
8 −11

)
,

C =
( −9 −10

−10 5

)
, D =

(
14 2
2 11

)
.

To establish the result we need to examine all pairs of products.

AB =
(

6 −2
−2 9

)(
1 8
8 −11

)
=
(−10 70

70 −115

)
=
(

1 8
8 −11

)(
6 −2

−2 9

)
= BA.

AC =
(

6 −2
−2 9

)( −9 −10
−10 5

)
=
(−34 −70

−72 65

)
�=
(−34 −72

−70 65

)
=
( −9 −10

−10 5

)(
6 −2

−2 9

)
= CA.

Continuing in this way, we find:

AD =
(

80 −10
−10 95

)
= DA.

BC =
(−89 30

38 −135

)
�=
(−89 38

30 −135

)
= CB.

BD =
(

30 90
90 −105

)
= DB.

CD =
(−146 −128

−130 35

)
�=
(−146 −130

−128 35

)
= DC.

These results show that whilst A, B and D are mutually commuting, none of them com-
mutes with C.

We could use any of the three mutually commuting matrices to find the common set
(actually a pair, as they are 2 × 2 matrices) of eigenvectors. We arbitrarily choose A. The
eigenvalues of A satisfy ∣∣∣∣6 − λ −2

−2 9 − λ
∣∣∣∣ = 0,

λ2 − 15λ+ 50 = 0,

(λ− 5)(λ− 10) = 0.
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For λ = 5, an eigenvector (x y)T must satisfy x − 2y = 0, whilst, for λ = 10, 4x +
2y = 0. Thus a pair of independent eigenvectors of A are (2 1)T and (1 −2)T. Direct
substitution verifies that they are also eigenvectors of B and D with pairs of eigenvalues
5, −15 and 15, 10, respectively.

1.15 Solve the simultaneous equations

2x + 3y + z = 11,

x + y + z = 6,

5x − y + 10z = 34.

To eliminate z, (i) subtract the second equation from the first and (ii) subtract 10 times the
second equation from the third.

x + 2y = 5,

−5x − 11y = −26.

To eliminate x add 5 times the first equation to the second

−y = −1.

Thus y = 1 and, by resubstitution, x = 3 and z = 2.

1.17 Show that the following equations have solutions only if η = 1 or 2, and find them in these cases:

x + y + z = 1, (i)

x + 2y + 4z = η, (ii)

x + 4y + 10z = η2. (iii)

Expressing the equations in the form Ax = b, we first need to evaluate |A| as a preliminary
to determining A−1. However, we find that |A| = 1(20 − 16) + 1(4 − 10) + 1(4 − 2) = 0.
This result implies both that A is singular and has no inverse, and that the equations must
be linearly dependent.

Either by observation or by solving for the combination coefficients, we see that for the
LHS this linear dependence is expressed by

2 × (i) + 1 × (iii) − 3 × (ii) = 0.

For a consistent solution, this must also be true for the RHSs, i.e.

2 + η2 − 3η = 0.

This quadratic equation has solutions η = 1 and η = 2, which are therefore the only
values of η for which the original equations have a solution. As the equations are linearly
dependent, we may use any two to find these allowed solutions; for simplicity we use the
first two in each case.
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For η = 1,

x + y + z = 1, x + 2y + 4z = 1 ⇒ x1 = (1 + 2α − 3α α)T .

For η = 2,

x + y + z = 1, x + 2y + 4z = 2 ⇒ x2 = (2α 1 − 3α α)T .

In both cases there is an infinity of solutions as α may take any finite value.

1.19 Make an LU decomposition of the matrix

A =
⎛⎝ 3 6 9

1 0 5
2 −2 16

⎞⎠
and hence solve Ax = b, where (i) b = (21 9 28)T, (ii) b = (21 7 22)T.

Using the notation

A =
⎛⎝ 1 0 0
L21 1 0
L31 L32 1

⎞⎠⎛⎝U11 U12 U13

0 U22 U23

0 0 U33

⎞⎠ ,
and considering rows and columns alternately in the usual way for an LU decomposition,
we require the following to be satisfied.

1st row: U11 = 3, U12 = 6, U13 = 9.
1st col: L21U11 = 1, L31U11 = 2 ⇒ L21 = 1

3 , L31 = 2
3 .

2nd row: L21U12 + U22 = 0, L21U13 + U23 = 5 ⇒ U22 = −2, U23 = 2.
2nd col: L31U12 + L32U22 = −2 ⇒ L32 = 3.
3rd row: L31U13 + L32U23 + U33 = 16 ⇒ U33 = 4.

Thus

L =
⎛⎝1 0 0

1
3 1 0
2
3 3 1

⎞⎠ and U =
⎛⎝3 6 9

0 −2 2
0 0 4

⎞⎠ .
To solve Ax = b with A = LU, we first determine y from Ly = b and then solve Ux = y

for x.
(i) For Ax = (21 9 28)T, we first solve⎛⎝1 0 0

1
3 1 0
2
3 3 1

⎞⎠⎛⎝y1

y2

y3

⎞⎠ =
⎛⎝21

9
28

⎞⎠ .
This can be done, almost by inspection, to give y = (21 2 8)T.

We can now write Ux = y explicitly as⎛⎝3 6 9
0 −2 2
0 0 4

⎞⎠⎛⎝x1

x2

x3

⎞⎠ =
⎛⎝21

2
8

⎞⎠
to give, equally easily, that the solution to the original matrix equation is x = (−1 1 2)T.
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(ii) To solve Ax = (21 7 22)T we use exactly the same forms for L and U, but the
new values for the components of b, to obtain y = (21 0 8)T leading to the solution
x = (−3 2 2)T.

1.21 Use the Cholesky decomposition method to determine whether the following matrices are positive
definite. For each that is, determine the corresponding lower diagonal matrix L :

A =
⎛⎝2 1 3

1 3 −1
3 −1 1

⎞⎠ , B =
⎛⎝ 5 0

√
3

0 3 0√
3 0 3

⎞⎠ .
The matrix A is real and so we seek a real lower-diagonal matrix L such that LLT = A. In
order to avoid a lot of subscripts, we use lower-case letters as the non-zero elements of L:⎛⎝a 0 0

b c 0
d e f

⎞⎠⎛⎝a b d

0 c e

0 0 f

⎞⎠ =
⎛⎝2 1 3

1 3 −1
3 −1 1

⎞⎠ .
Firstly, from A11, a2 = 2. Since an overall negative sign multiplying the elements of L
is irrelevant, we may choose a = +√

2. Next, ba = A12 = 1, implying that b = 1/
√

2.
Similarly, d = 3/

√
2.

From the second row of A we have

b2 + c2 = 3 ⇒ c =
√

5
2 ,

bd + ce = −1 ⇒ e =
√

2
5

(−1− 3
2

) = −
√

5
2 .

And, from the final row,

d2 + e2 + f 2 = 1 ⇒ f = (
1− 9

2− 5
2

)1/2 = √−6.

That f is imaginary shows that A is not a positive definite matrix.
The corresponding argument (keeping the same symbols but with different numerical

values) for the matrix B is as follows.
Firstly, fromA11, a2 = 5. Since an overall negative sign multiplying the elements of L is

irrelevant, we may choose a = +√
5. Next, ba = B12 = 0, implying that b = 0. Similarly,

d = √
3/

√
5.

From the second row of B we have

b2 + c2 = 3 ⇒ c = √
3,

bd + ce = 0 ⇒ e =
√

1
3 (0 − 0) = 0.

And, from the final row,

d2 + e2 + f 2 = 3 ⇒ f = (3 − 3
5 − 0)1/2 =

√
12
5 .



10 Matrices and vector spaces

Thus all the elements of L have been calculated and found to be real and, in summary,

L =

⎛⎜⎝
√

5 0 0
0

√
3 0√

3
5 0

√
12
5

⎞⎟⎠ .
That LLT = B can be confirmed by substitution.

1.23 Find three real orthogonal column matrices, each of which is a simultaneous eigenvector of

A =
⎛⎝ 0 0 1

0 1 0
1 0 0

⎞⎠ and B =
⎛⎝ 0 1 1

1 0 1
1 1 0

⎞⎠ .
We first note that

AB =
⎛⎝1 1 0

1 0 1
0 1 1

⎞⎠ = BA.

The two matrices commute and so they will have a common set of eigenvectors.
The eigenvalues of A are given by∣∣∣∣∣∣

−λ 0 1
0 1 − λ 0
1 0 −λ

∣∣∣∣∣∣ = (1 − λ)(λ2 − 1) = 0,

i.e. λ = 1, λ = 1 and λ = −1, with corresponding eigenvectors e1 = (1 y1 1)T, e2 =
(1 y2 1)T and e3 = (1 0 −1)T. For these to be mutually orthogonal requires that
y1y2 = −2.

The third vector, e3, is clearly an eigenvector of B with eigenvalue μ3 = −1. For e1 or
e2 to be an eigenvector of B with eigenvalue μ requires⎛⎝0 − μ 1 1

1 0 − μ 1
1 1 0 − μ

⎞⎠⎛⎝ 1
y

1

⎞⎠ =
⎛⎝0

0
0

⎞⎠ ;

i.e. −μ+ y + 1 = 0,
and 1 − μy + 1 = 0,

giving −2

y
+ y + 1 = 0,

⇒ y2 + y − 2 = 0,
⇒ y = 1 or −2.

Thus, y1 = 1 with μ1 = 2, whilst y2 = −2 with μ2 = −1.
The common eigenvectors are thus

e1 = (1 1 1)T , e2 = (1 −2 1)T , e3 = (1 0 −1)T .

We note, as a check, that
∑
i μi = 2 + (−1) + (−1) = 0 = Tr B.
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1.25 Given that A is a real symmetric matrix with normalized eigenvectors ei , obtain the coefficients αi
involved when column matrix x, which is the solution of

Ax − μx = v, (∗)

is expanded as x = ∑
i αie

i . Here μ is a given constant and v is a given column matrix.

(a) Solve (∗) when

A =
⎛⎝ 2 1 0

1 2 0
0 0 3

⎞⎠ ,
μ = 2 and v = (1 2 3)T.

(b) Would (∗) have a solution if (i)μ = 1 and v = (1 2 3)T, (ii) v = (2 2 3)T? Where it does,
find it.

Let x = ∑
i αie

i , where Aei = λiei . Then

Ax − μx = v,∑
i

Aαiei −
∑
i

μαiei = v,∑
i

(
λiαiei − μαiei

) = v,

αj = (ej )†v
λj − μ.

To obtain the last line we have used the mutual orthogonality of the eigenvectors. We note,
in passing, that if μ = λj for any j there is no solution unless (ej )†v = 0.

(a) To obtain the eigenvalues of the given matrix A, consider

0 = |A − λI| = (3 − λ)(4 − 4λ+ λ2 − 1) = (3 − λ)(3 − λ)(1 − λ).

The eigenvalues, and a possible set of corresponding normalized eigenvectors, are there-
fore,

for λ = 3, e1 = (0 0 1)T ;

for λ = 3, e2 = 2−1/2 (1 1 0)T ;

for λ = 1, e3 = 2−1/2 (1 −1 0)T .

Since λ = 3 is a degenerate eigenvalue, there are infinitely many acceptable pairs of
orthogonal eigenvectors corresponding to it; any pair of vectors of the form (ai, ai, bi)
with 2a1a2 + b1b2 = 0 will suffice. The pair given is just about the simplest choice
possible.

With μ = 2 and v = (1 2 3)T,

α1 = 3

3 − 2
, α2 = 3/

√
2

3 − 2
, α3 = −1/

√
2

1 − 2
.
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Thus the solution vector is

x = 3

⎛⎝0
0
1

⎞⎠+ 3√
2

1√
2

⎛⎝1
1
0

⎞⎠+ 1√
2

1√
2

⎛⎝ 1
−1
0

⎞⎠ =
⎛⎝2

1
3

⎞⎠ .
(b) If μ = 1 then it is equal to the third eigenvalue and a solution is only possible if
(e3)†v = 0.

For (i) v = (1 2 3)T, (e3)†v = −1/
√

2 and so no solution is possible.
For (ii) v = (2 2 3)T, (e3)†v = 0, and so a solution is possible. The other scalar

products needed are (e1)†v = 3 and (e2)†v = 2
√

2. For this vector v the solution to the
equation is

x = 3

3 − 1

⎛⎝0
0
1

⎞⎠+ 2
√

2

3 − 1

1√
2

⎛⎝1
1
0

⎞⎠ =
⎛⎝ 1

1
3
2

⎞⎠ .
[The solutions to both parts can be checked by resubstitution.]

1.27 By finding the eigenvectors of the Hermitian matrix

H =
(

10 3i
−3i 2

)
,

construct a unitary matrix U such that U†HU = �, where � is a real diagonal matrix.

We start by finding the eigenvalues of H using∣∣∣∣10 − λ 3i
−3i 2 − λ

∣∣∣∣ = 0,

20 − 12λ+ λ2 − 3 = 0,

λ = 1 or 11.

As expected for an Hermitian matrix, the eigenvalues are real.
For λ = 1 and normalized eigenvector (x y)T,

9x + 3iy = 0 ⇒ x1 = (10)−1/2 (1 3i)T .

For λ = 11 and normalized eigenvector (x y)T,

−x + 3iy = 0 ⇒ x2 = (10)−1/2 (3i 1)T .

Again as expected, (x1)†x2 = 0, thus verifying the mutual orthogonality of the eigenvec-
tors. It should be noted that the normalization factor is determined by (xi)†xi = 1 (and not
by (xi)Txi = 1).
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We now use these normalized eigenvectors of H as the columns of the matrix U and
check that it is unitary:

U = 1√
10

(
1 3i
3i 1

)
, U† = 1√

10

(
1 −3i

−3i 1

)
,

UU† = 1

10

(
1 3i
3i 1

)(
1 −3i

−3i 1

)
= 1

10

(
10 0
0 10

)
= I.

U has the further property that

U†HU = 1√
10

(
1 −3i

−3i 1

)(
10 3i
−3i 2

)
1√
10

(
1 3i
3i 1

)
= 1

10

(
1 −3i

−3i 1

)(
1 33i
3i 11

)
= 1

10

(
10 0
0 110

)
=
(

1 0
0 11

)
= �.

That the diagonal entries of� are the eigenvalues of H is in accord with the general theory
of normal matrices.

1.29 Given that the matrix

A =
⎛⎝ 2 −1 0

−1 2 −1
0 −1 2

⎞⎠
has two eigenvectors of the form (1 y 1)T, use the stationary property of the expression J (x) =
xTAx/(xTx) to obtain the corresponding eigenvalues. Deduce the third eigenvalue.

Since A is real and symmetric, each eigenvalue λ is real. Further, from the first component
of Ax = λx, we have that 2 − y = λ, showing that y is also real. Considered as a function
of a general vector of the form (1 y 1)T, the quadratic form xTAx can be written
explicitly as

xTAx = (1 y 1)

⎛⎝ 2 −1 0
−1 2 −1
0 −1 2

⎞⎠⎛⎝ 1
y

1

⎞⎠
= (1 y 1)

⎛⎝ 2 − y
2y − 2
2 − y

⎞⎠
= 2y2 − 4y + 4.

The scalar product xTx has the value 2 + y2, and so we need to find the stationary values
of

I = 2y2 − 4y + 4

2 + y2
.
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These are given by

0 = dI

dy
= (2 + y2)(4y − 4) − (2y2 − 4y + 4)2y

(2 + y2)2

0 = 4y2 − 8,

y = ±√
2.

The corresponding eigenvalues are the values of I at the stationary points:

for y = √
2, λ1 = 2(2) − 4

√
2 + 4

2 + 2
= 2 − √

2;

for y = −√
2, λ2 = 2(2) + 4

√
2 + 4

2 + 2
= 2 + √

2.

The final eigenvalue can be found using the fact that the sum of the eigenvalues is equal
to the trace of the matrix; so

λ3 = (2 + 2 + 2) − (2 − √
2) − (2 + √

2) = 2.

1.31 The equation of a particular conic section is

Q ≡ 8x2
1 + 8x2

2 − 6x1x2 = 110.

Determine the type of conic section this represents, the orientation of its principal axes, and relevant
lengths in the directions of these axes.

The eigenvalues of the matrix

(
8 −3

−3 8

)
associated with the quadratic form on the LHS

(without any prior scaling) are given by

0 =
∣∣∣∣8 − λ −3

−3 8 − λ
∣∣∣∣

= λ2 − 16λ+ 55

= (λ− 5)(λ− 11).

Referred to the corresponding eigenvectors as axes, the conic section (an ellipse since
both eigenvalues are positive) will take the form

5y2
1 + 11y2

2 = 110 or, in standard form,
y2

1

22
+ y2

2

10
= 1.

Thus the semi-axes are of lengths
√

22 and
√

10 ; the former is in the direction of the vector
(x1 x2)T given by (8 − 5)x1 − 3x2 = 0, i.e. it is the line x1 = x2. The other principal
axis will be the line at right angles to this, namely the line x1 = −x2.

1.33 Find the direction of the axis of symmetry of the quadratic surface

7x2 + 7y2 + 7z2 − 20yz− 20xz+ 20xy = 3.

The straightforward, but longer, solution to this problem is as follows.
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Consider the characteristic polynomial of the matrix associated with the quadratic
surface, namely,

f (λ) =
∣∣∣∣∣∣
7 − λ 10 −10

10 7 − λ −10
−10 −10 7 − λ

∣∣∣∣∣∣
= (7 − λ)(−51 − 14λ+ λ2) + 10(30 + 10λ) − 10(−30 − 10λ)

= −λ3 + 21λ2 + 153λ+ 243.

If the quadratic surface has an axis of symmetry, it must have two equal major axes
(perpendicular to it), and hence the characteristic equation must have a repeated root. This
same root will therefore also be a root of df/dλ = 0, i.e. of

−3λ2 + 42λ+ 153 = 0,

λ2 − 14λ− 51 = 0,

λ = 17 or − 3.

Substitution shows that −3 is a root (and therefore a double root) of f (λ) = 0, but that
17 is not. The non-repeated root can be calculated as the trace of the matrix minus the
repeated roots, i.e. 21 − (−3) − (−3) = 27. It is the eigenvector that corresponds to this
eigenvalue that gives the direction (x y z)T of the axis of symmetry. Its components
must satisfy

(7 − 27)x + 10y − 10z = 0,

10x + (7 − 27)y − 10z = 0.

The axis of symmetry is therefore in the direction (1 1 −1)T.
A more subtle solution is obtained by noting that setting λ = −3 makes all three of the

rows (or columns) of the determinant multiples of each other, i.e. it reduces the determinant
to rank one. Thus −3 is a repeated root of the characteristic equation and the third root is
21 − 2(−3) = 27. The rest of the analysis is as above.

We note in passing that, as two eigenvalues are negative and equal, the surface is the
hyperboloid of revolution obtained by rotating a (two-branched) hyperbola about its axis
of symmetry. Referred to this axis and two others forming a mutually orthogonal set, the
equation of the quadratic surface takes the form −3χ2 − 3η2 + 27ζ 2 = 3 and so the tips
of the two “nose cones” (χ = η = 0) are separated by 2

3 of a unit.

1.35 This problem demonstrates the reverse of the usual procedure of diagonalizing a matrix.

(a) Rearrange the result A′ = S−1AS (which shows how to make a change of basis that diagonalizes
A) so as to express the original matrix A in terms of the unitary matrix S and the diagonal matrix
A′. Hence show how to construct a matrix A that has given eigenvalues and given (orthogonal)
column matrices as its eigenvectors.

(b) Find the matrix that has as eigenvectors (1 2 1)T, (1 −1 1)T and (1 0 −1)T and
corresponding eigenvalues λ, μ and ν.

(c) Try a particular case, say λ = 3, μ = −2 and ν = 1, and verify by explicit solution that the
matrix so found does have these eigenvalues.
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(a) Since S is unitary, we can multiply the given result on the left by S and on the right by
S† to obtain

SA′S† = SS−1ASS† = (I) A (I) = A.

More explicitly, in terms of the eigenvalues and normalized eigenvectors xi of A,

A = (x1 x2 · · · xn)�(x1 x2 · · · xn)†.

Here � is the diagonal matrix that has the eigenvalues of A as its diagonal elements.
Now, given normalized orthogonal column matrices and n specified values, we can use

this result to construct a matrix that has the column matrices as eigenvectors and the values
as eigenvalues.

(b) The normalized versions of the given column vectors are

1√
6

(1 2 1)T ,
1√
3

(1 −1 1)T ,
1√
2

(1 0 −1)T ,

and the orthogonal matrix S can be constructed using these as its columns:

S = 1√
6

⎛⎝1
√

2
√

3
2 −√

2 0
1

√
2 −√

3

⎞⎠ .
The required matrix A can now be formed as S�S†:

A = 1

6

⎛⎝1
√

2
√

3
2 −√

2 0
1

√
2 −√

3

⎞⎠⎛⎝λ 0 0
0 μ 0
0 0 ν

⎞⎠⎛⎝ 1 2 1√
2 −√

2
√

2√
3 0 −√

3

⎞⎠
= 1

6

⎛⎝1
√

2
√

3
2 −√

2 0
1

√
2 −√

3

⎞⎠⎛⎝ λ 2λ λ√
2μ −√

2μ
√

2μ√
3ν 0 −√

3ν

⎞⎠
= 1

6

⎛⎝λ+ 2μ+ 3ν 2λ− 2μ λ+ 2μ− 3ν
2λ− 2μ 4λ+ 2μ 2λ− 2μ

λ+ 2μ− 3ν 2λ− 2μ λ+ 2μ+ 3ν

⎞⎠ .
(c) Setting λ = 3, μ = −2 and ν = 1, as a particular case, gives A as

A = 1

6

⎛⎝ 2 10 −4
10 8 10
−4 10 2

⎞⎠ .
We complete the problem by solving for the eigenvalues of A in the usual way. To avoid
working with fractions, and any confusion with the value λ = 3 used when constructing
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A, we will find the eigenvalues of 6A and denote them by η.

0 = | 6A − ηI |

=
∣∣∣∣∣∣
2 − η 10 −4

10 8 − η 10
−4 10 2 − η

∣∣∣∣∣∣
= (2 − η)(η2 − 10η − 84) + 10(10η − 60) − 4(132 − 4η)

= −η3 + 12η2 + 180η − 1296

= −(η − 6)(η2 − 6η − 216)

= −(η − 6)(η + 12)(η − 18).

Thus 6A has eigenvalues 6, −12 and 18; the values for A itself are 1, −2 and 3, as
expected.

1.37 A more general form of expression for the determinant of a 3 × 3 matrix A than (1.45) is given by

|A|εlmn = AliAmjAnkεijk. (1.1)

The former could, as stated earlier in this chapter, have been written as

|A| = εijkAi1Aj2Ak3.

The more general form removes the explicit mention of 1, 2, 3 at the expense of an additional
Levi–Civita symbol; the form of (1.1) can be readily extended to cover a general N ×N matrix.

Use this more general form to prove properties (i), (iii), (v), (vi) and (vii) of determinants stated in
Subsection 1.9.1. Property (iv) is obvious by inspection. For definiteness take N = 3, but convince
yourself that your methods of proof would be valid for any positive integer N .

A full account of the answer to this problem is given in the Hints and answers section at
the end of the chapter, almost as if it were part of the main text. The reader is referred
there for the details.

1.39 Three coupled pendulums swing perpendicularly to the horizontal line containing their points of
suspension, and the following equations of motion are satisfied:

−mẍ1 = cmx1 + d(x1 − x2),

−Mẍ2 = cMx2 + d(x2 − x1) + d(x2 − x3),

−mẍ3 = cmx3 + d(x3 − x2),

where x1, x2 and x3 are measured from the equilibrium points; m, M and m are the masses of the
pendulum bobs; and c and d are positive constants. Find the normal frequencies of the system and
sketch the corresponding patterns of oscillation. What happens as d → 0 or d → ∞?

In a normal mode all three coordinates xi oscillate with the same frequency and with fixed
relative phases. When this is represented by solutions of the form xi = Xi cosωt , where
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the Xi are fixed constants, the equations become, in matrix and vector form,⎛⎝cm+ d −mω2 −d 0
−d cM + 2d −Mω2 −d
0 −d cm+ d −mω2

⎞⎠⎛⎝X1

X2

X3

⎞⎠ = 0.

For there to be a non-trivial solution to these simultaneous homogeneous equations, we
need

0 =
∣∣∣∣∣∣
(c − ω2)m+ d −d 0

−d (c − ω2)M + 2d −d
0 −d (c − ω2)m+ d

∣∣∣∣∣∣
=
∣∣∣∣∣∣
(c − ω2)m+ d 0 −(c − ω2)m− d

−d (c − ω2)M + 2d −d
0 −d (c − ω2)m+ d

∣∣∣∣∣∣
= [(c − ω2)m+ d] {[(c − ω2)M + 2d] [(c − ω2)m+ d] − d2 − d2}
= (cm−mω2 + d)(c − ω2)[Mm(c − ω2) + 2dm+ dM].

Thus, the normal (angular) frequencies are given by

ω2 = c, ω2 = c + d

m
and ω2 = c + 2d

M
+ d

m
.

If the solution column matrix is X = (X1 X2 X3)T, then
(i) for ω2 = c, the components of X must satisfy

dX1 − dX2 = 0,

−dX1 + 2dX2 − dX3 = 0, ⇒ X1 = (1 1 1)T ;

(ii) for ω2 = c + d

m
, we have

−dX2 = 0,

−dX1 +
(

−dM
m

+ 2d

)
X2 − dX3 = 0, ⇒ X2 = (1 0 −1)T ;

(iii) for ω2 = c + 2d

M
+ d

m
, the components must satisfy[(

−2d

M
− d

m

)
m+ d

]
X1 − dX2 = 0,

−dX2 +
[(

−2d

M
− d

m

)
m+ d

]
X3 = 0, ⇒ X3 =

(
1 − 2m

M
1

)T

.

The corresponding patterns are shown in Figure 1.1.
If d → 0, the three oscillations decouple and each pendulum swings independently

with angular frequency
√
c.

If d → ∞, the three pendulums become rigidly coupled. The second and third modes
have (theoretically) infinite frequency and therefore zero amplitude. The only sustainable
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m

ω

2ω
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Figure 1.1 The normal modes, as viewed from above, of the coupled pendulums in
Problem 1.39.

mode is the one shown as case (b) in the figure; one in which all the pendulums swing as
a single entity with angular frequency

√
c.

1.41 Find the normal frequencies of a system consisting of three particles of massesm1 = m,m2 = μm,
m3 = m connected in that order in a straight line by two equal light springs of force constant k.
Describe the corresponding modes of oscillation.

Now consider the particular case in which μ = 2.

(a) Show that the eigenvectors derived above have the expected orthogonality properties with
respect to both the kinetic energy matrix A and the potential energy matrix B.

(b) For the situation in which the masses are released from rest with initial displacements (relative
to their equilibrium positions) of x1 = 2ε, x2 = −ε and x3 = 0, determine their subsequent
motions and maximum displacements.

Let the coordinates of the particles, x1, x2, x3, be measured from their equilibrium positions,
at which the springs are neither extended nor compressed.

The kinetic energy of the system is simply

T = 1
2m

(
ẋ2

1 + μ ẋ2
2 + ẋ2

3

)
,

whilst the potential energy stored in the springs takes the form

V = 1
2k
[
(x2 − x1)2 + (x3 − x2)2] .



20 Matrices and vector spaces

The kinetic- and potential-energy symmetric matrices are thus

A = m

2

⎛⎝1 0 0
0 μ 0
0 0 1

⎞⎠ , B = k

2

⎛⎝ 1 −1 0
−1 2 −1
0 −1 1

⎞⎠ .
To find the normal frequencies we have to solve |B − ω2A| = 0.Thus, writingmω2/k = λ,
we have

0 =
∣∣∣∣∣∣
1 − λ −1 0
−1 2 − μλ −1
0 −1 1 − λ

∣∣∣∣∣∣
= (1 − λ)(2 − μλ− 2λ+ μλ2 − 1) + (−1 + λ)

= (1 − λ)λ(−μ− 2 + μλ),

which leads to λ = 0, 1 or 1 + 2/μ.
The normalized eigenvectors corresponding to the first two eigenvalues can be found

by inspection and are

x1 = 1√
3

⎛⎝1
1
1

⎞⎠ , x2 = 1√
2

⎛⎝ 1
0

−1

⎞⎠ .
The components of the third eigenvector must satisfy

− 2

μ
x1 − x2 = 0 and x2 − 2

μ
x3 = 0.

The normalized third eigenvector is therefore

x3 = 1√
2 + (4/μ2)

(
1 − 2

μ
1

)T

.

The physical motions associated with these normal modes are as follows.
The first, with λ = ω = 0 and all the xi equal, merely describes bodily translation of

the whole system, with no (i.e. zero-frequency) internal oscillations.
In the second solution, the central particle remains stationary, x2 = 0, whilst the other

two oscillate with equal amplitudes in antiphase with each other. This motion has frequency
ω = (k/m)1/2, the same as that for the oscillations of a single mass m suspended from a
single spring of force constant k.

The final and most complicated of the three normal modes has angular frequency
ω = {[(μ+ 2)/μ](k/m)}1/2, and involves a motion of the central particle which is in
antiphase with that of the two outer ones and which has an amplitude 2/μ times as great.
In this motion the two springs are compressed and extended in turn. We also note that in
the second and third normal modes the center of mass of the system remains stationary.

Now setting μ = 2, we have as the three normal (angular) frequencies 0, � and
√

2�,
where �2 = k/m. The corresponding (unnormalized) eigenvectors are

x1 = (1 1 1)T , x2 = (1 0 −1)T , x3 = (1 −1 1)T .
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(a) The matrices A and B have the forms

A =
⎛⎝1 0 0

0 2 0
0 0 1

⎞⎠ , B =
⎛⎝ 1 −1 0

−1 2 −1
0 −1 1

⎞⎠ .
To verify the standard orthogonality relations we need to show that the quadratic forms
(xi)†Axj and (xi)†Bxj have zero value for i �= j . Direct evaluation of all the separate cases
is as follows:

(x1)†Ax2 = 1 + 0 − 1 = 0,

(x1)†Ax3 = 1 − 2 + 1 = 0,

(x2)†Ax3 = 1 + 0 − 1 = 0,

(x1)†Bx2 = (x1)† (1 0 −1)T = 1 + 0 − 1 = 0,

(x1)†Bx3 = (x1)† (2 − 4 2)T = 2 − 4 + 2 = 0,

(x2)†Bx3 = (x2)† (2 − 4 2)T = 2 + 0 − 2 = 0.

If (xi)†Axj has zero value then so does (xj )†Axi (and similarly for B). So there is no need
to investigate the other six possibilities and the verification is complete.

(b) In order to determine the behavior of the system we need to know which modes are
present in the initial configuration. Each contributory mode will subsequently oscillate
with its own frequency. In order to carry out this initial decomposition we write

(2ε −ε 0)T = a (1 1 1)T + b (1 0 −1)T + c (1 −1 1)T ,

from which it is clear that a = 0, b = ε and c = ε. As each mode vibrates with its own
frequency, the subsequent displacements are given by

x1 = ε(cos�t + cos
√

2�t),

x2 = −ε cos
√

2�t,

x3 = ε(− cos�t + cos
√

2�t).

Since � and
√

2� are not rationally related, at some times the two modes will, for all
practical purposes (but not mathematically), be in phase and, at other times, be out of phase.
Thus the maximum displacements will be x1(max) = 2ε, x2(max) = ε and x3(max) = 2ε.

1.43 It is shown in physics and engineering textbooks that circuits containing capacitors and inductors
can be analyzed by replacing a capacitor of capacitance C by a “complex impedance” 1/(iωC) and
an inductor of inductance L by an impedance iωL, where ω is the angular frequency of the currents
flowing and i2 = −1.

Use this approach and Kirchhoff’s circuit laws to analyze the circuit shown in Figure 1.2 and
obtain three linear equations governing the currents I1, I2 and I3. Show that the only possible
frequencies of self-sustaining currents satisfy either (a) ω2LC = 1 or (b) 3ω2LC = 1. Find the
corresponding current patterns and, in each case, by identifying parts of the circuit in which no
current flows, draw an equivalent circuit that contains only one capacitor and one inductor.
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LL

CC

C
I1

I2 I3

QP

RS T

U

Figure 1.2 The circuit and notation for Problem 1.43.

We apply Kirchhoff’s laws to the three closed loops PQUP , SUT S and T URT and
obtain, respectively,

1

iωC
I1 + iωL(I1 − I3) + iωL(I1 − I2) = 0,

iωL(I2 − I1) + 1

iωC
I2 = 0,

iωL(I3 − I1) + 1

iωC
I3 = 0.

For these simultaneous homogeneous linear equations to be consistent, it is necessary that

0 =

∣∣∣∣∣∣∣∣∣∣

1

iωC
+ 2iωL −iωL −iωL

−iωL 1

iωC
+ iωL 0

−iωL 0
1

iωC
+ iωL

∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣
λ− 2 1 1

1 λ− 1 0
1 0 λ− 1

∣∣∣∣∣∣ ,
where, after dividing all entries by −iωL, we have written the combination (LCω2)−1 as
λ to save space. Expanding the determinant gives

0 = (λ− 2)(λ− 1)2 − (λ− 1) − (λ− 1)

= (λ− 1)(λ2 − 3λ+ 2 − 2)

= λ(λ− 1)(λ− 3).

Only the non-zero roots are of practical physical interest, and these are λ = 1 and λ = 3.
(a) The first of these eigenvalues has an eigenvector I1 = (I1 I2 I3)T that satisfies

−I1 + I2 + I3 = 0,

I1 = 0 ⇒ I1 = (0 1 −1)T .

Thus there is no current in PQ and the capacitor in that link can be ignored. Equal currents
circulate, in opposite directions, in the other two loops and, although the link T U carries
both, there is no transfer between the two loops. Each loop is therefore equivalent to a
capacitor of capacitance C in parallel with an inductor of inductance L.
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(b) The second eigenvalue has an eigenvector I2 = (I1 I2 I3)T that satisfies

I1 + I2 + I3 = 0,

I1 + 2I2 = 0 ⇒ I2 = (−2 1 1)T .

In this mode there is no current in T U and the circuit is equivalent to an inductor of
inductance L+ L in parallel with a capacitor of capacitance 3C/2; this latter capacitance
is made up of C in parallel with the capacitance equivalent to two capacitors C in series,
i.e. in parallel with 1

2C. Thus, the equivalent single components are an inductance of 2L
and a capacitance of 3C/2.

1.45 A double pendulum consists of two identical uniform rods, each of length � and massM , smoothly
jointed together and suspended by attaching the free end of one rod to a fixed point. The system
makes small oscillations in a vertical plane, with the angles made with the vertical by the upper
and lower rods denoted by θ1 and θ2, respectively. The expressions for the kinetic energy T and the
potential energy V of the system are (to second order in the θi)

T ≈ Ml2
(

8
3 θ̇

2
1 + 2θ̇1θ̇2 + 2

3 θ̇
2
2

)
,

V ≈ Mgl
(

3
2θ

2
1 + 1

2θ
2
2

)
.

Determine the normal frequencies of the system and find new variables ξ and η that will reduce
these two expressions to diagonal form, i.e. to

a1ξ̇
2 + a2η̇

2 and b1ξ
2 + b2η

2.

To find the new variables we will use the following result. If the reader is not familiar with
it, a standard textbook should be consulted.

If Q1 = uTAu and Q2 = uTBu are two real symmetric quadratic forms and un are those column
matrices that satisfy

Bun = λnAun,

then the matrix P whose columns are the vectors un is such that the change of variables u = Pv
reduces both quadratic forms simultaneously to sums of squares, i.e.Q1 = vTCv andQ2 = vTDv,
with both C and D diagonal.

Further points to note are:
(i) that for the ui as determined above, (um)TAun = 0 if m �= n and similarly if A is replaced

by B;
(ii) that P is not in general an orthogonal matrix, even if the vectors un are normalized.
(iii) In the special case that A is the identity matrix I: the above procedure is the same as

diagonalizing B; P is an orthogonal matrix if normalized vectors are used; mutual orthogonality of
the eigenvectors takes on its usual form.

This problem is a physical example to which the above mathematical result can be applied,
the two real symmetric (actually positive-definite) matrices being the kinetic and potential
energy matrices.

A =
(

8
3 1

1 2
3

)
, B =

(
3
2 0

0 1
2

)
with λi = ω2

i l

g
.
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We find the normal frequencies by solving

0 = |B − λA|

=
∣∣∣∣∣ 3

2 − 8
3 λ −λ

−λ 1
2 − 2

3λ

∣∣∣∣∣
= 3

4 − 7
3λ+ 16

9 λ
2 − λ2

⇒ 0 = 28λ2 − 84λ+ 27.

Thus, λ = 2.634 or λ = 0.3661, and the normal frequencies are (2.634g/l)1/2 and
(0.3661g/l)1/2.

The corresponding column vectors ui have components that satisfy the following.
(i) For λ = 0.3661,(

3
2 − 8

3 0.3661
)
θ1 − 0.3661θ2 = 0 ⇒ u1 = (1 1.431)T .

(ii) For λ = 2.634,(
3
2 − 8

3 2.634
)
θ1 − 2.634θ2 = 0 ⇒ u2 = (1 −2.097)T .

We can now construct P as

P =
(

1 1
1.431 −2.097

)
and define new variables (ξ, η) by (θ1 θ2)T = P (ξ η)T. When the substitutions θ1 =
ξ + η and θ2 = 1.431ξ−2.097η ≡ αξ − βη are made into the expressions for T and V ,
they both take on diagonal forms. This can be checked by computing the coefficients of
ξη in the two expressions. They are as follows.

For V : 3 − αβ = 0, and for T :
16

3
+ 2(α − β) − 4

3
αβ = 0.

As an example, the full expression for the potential energy becomesV = Mg� (2.524 ξ 2 +
3.699 η2).

1.47 Three particles each of massm are attached to a light horizontal string having fixed ends, the string
being thus divided into four equal portions, each of length a and under a tension T . Show that for
small transverse vibrations the amplitudes xi of the normal modes satisfy Bx = (maω2/T )x, where
B is the matrix ⎛⎝ 2 −1 0

−1 2 −1
0 −1 2

⎞⎠ .
Estimate the lowest and highest eigenfrequencies using trial vectors (3 4 3)T and (3 − 4 3)T.

Use also the exact vectors
(

1
√

2 1
)T

and
(

1 − √
2 1

)T
and compare the results.

For the ith mass, with displacement yi , the force it experiences as a result of the tension
in the string connecting it to the (i + 1)th mass is the resolved component of that tension

perpendicular to the equilibrium line, i.e. f = yi+1 − yi
a

T . Similarly the force due to the
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tension in the string connecting it to the (i − 1)th mass is f = yi−1 − yi
a

T . Because the

ends of the string are fixed the notional zeroth and fourth masses have y0 = y4 = 0.
The equations of motion are, therefore,

mẍ1 = T

a
[(0 − x1) + (x2 − x1)],

mẍ2 = T

a
[(x1 − x2) + (x3 − x2)],

mẍ3 = T

a
[(x2 − x3) + (0 − x3)].

If the displacements are written as xi = Xi cosωt and x = (X1 X2 X3)T, then these
equations become

−maω
2

T
X1 = −2X1 +X2,

−maω
2

T
X2 = X1 − 2X2 +X3,

−maω
2

T
X3 = X2 − 2X3.

This set of equations can be written as Bx = maω2

T
x, with

B =
⎛⎝ 2 −1 0

−1 2 −1
0 −1 2

⎞⎠ .
The Rayleigh–Ritz method shows that any estimate λ of

xTBx
xTx

always lies between the

lowest and highest possible values of maω2/T .
Using the suggested trial vectors gives the following estimates for λ.

(i) For x = (3 4 3)T

λ = [(3, 4, 3)B (3 4 3)T]/34

= [(3, 4, 3) (2 2 2)T]/34

= 20/34 = 0.588.

(ii) For x = (3 −4 3)T

λ = [(3, −4, 3)B (3 −4 3)T]/34

= [(3, −4, 3) (10 −14 10)T]/34

= 116/34 = 3.412.

Using, instead, the exact vectors yields the exact values of λ as follows.
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(i) For the eigenvector corresponding to the lowest eigenvalue, x = (1,
√

2, 1)T,

λ = [
(1,

√
2, 1)B(1,

√
2, 1)T] /4

= [
(1,

√
2, 1)(2 − √

2, 2
√

2 − 2, 2 − √
2)T] /4

= 2 − √
2 = 0.586.

(ii) For the eigenvector corresponding to the highest eigenvalue, x = (1, −√
2, 1)T,

λ = [
(1, −√

2, 1)B(1, −√
2, 1)T] /4

= [
(1, −√

2, 1)(2 + √
2, −2

√
2 − 2, 2 + √

2)T] /4
= 2 + √

2 = 3.414.

As can be seen, the (crude) trial vectors give excellent approximations to the lowest and
highest eigenfrequencies.
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2.1 Evaluate the integral ∫ [
a(ḃ · a + b · ȧ) + ȧ(b · a) − 2(ȧ · a)b − ḃ|a|2 ] dt

in which ȧ and ḃ are the derivatives of the real vectors a and b with respect to t .

In order to evaluate this integral, we need to group the terms in the integrand so that each
is a part of the total derivative of a product of factors. Clearly, the first three terms are the
derivative of a(b · a), i.e.

d

dt
[ a(b · a) ] = ȧ(b · a) + a(ḃ · a) + a(b · ȧ).

Remembering that the scalar product is commutative, and that |a|2 = a · a, we also have

d

dt
[ b(a · a) ] = ḃ(a · a) + b(ȧ · a) + b(a · ȧ)

= ḃ(a · a) + 2b(ȧ · a).

Hence,

I =
∫ {

d

dt
[ a(b · a) ] − d

dt
[ b(a · a) ]

}
dt

= a(b · a) − b(a · a) + h

= a × (a × b) + h,

where h is the (vector) constant of integration. To obtain the final line above, we used a
special case of the expansion of a vector triple product.

2.3 The general equation of motion of a (non-relativistic) particle of mass m and charge q when it is
placed in a region where there is a magnetic field B and an electric field E is

mr̈ = q(E + ṙ × B);

here r is the position of the particle at time t and ṙ = dr/dt , etc. Write this as three separate
equations in terms of the Cartesian components of the vectors involved.

For the simple case of crossed uniform fields E = Ei, B = Bj, in which the particle starts from
the origin at t = 0 with ṙ = v0k, find the equations of motion and show the following:

27
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(a) if v0 = E/B then the particle continues its initial motion;
(b) if v0 = 0 then the particle follows the space curve given in terms of the parameter ξ by

x = mE

B2q
(1 − cos ξ ), y = 0, z = mE

B2q
(ξ − sin ξ ).

Interpret this curve geometrically and relate ξ to t . Show that the total distance traveled by the
particle after time t is given by

2E

B

∫ t

0

∣∣∣∣ sin
Bqt ′

2m

∣∣∣∣ dt ′.
Expressed in Cartesian coordinates, the components of the vector equation read

mẍ = qEx + q(ẏBz − żBy),
mÿ = qEy + q(żBx − ẋBz),
mz̈ = qEz + q(ẋBy − ẏBx).

For Ex = E, By = B and all other field components zero, the equations reduce to

mẍ = qE − qBż, mÿ = 0, mz̈ = qBẋ.

The second of these, together with the initial conditions y(0) = ẏ(0) = 0, implies that
y(t) = 0 for all t . The final equation can be integrated directly to give

mż = qBx +mv0, (∗)

which can now be substituted into the first to give a differential equation for x:

mẍ = qE − qB
(
qB

m
x + v0

)
,

⇒ ẍ +
(
qB

m

)2

x = q

m
(E − v0B).

(i) If v0 = E/B then the equation for x is that of simple harmonic motion and

x(t) = A cosωt + B sinωt,

where ω = qB/m. However, in the present case, the initial conditions x(0) = ẋ(0) = 0
imply that x(t) = 0 for all t . Thus, there is no motion in either the x- or the y-direction and,
as is then shown by (∗), the particle continues with its initial speed v0 in the z-direction.

(ii) If v0 = 0, the equation of motion is

ẍ + ω2x = qE

m
,

which again has sinusoidal solutions but has a non-zero RHS. The full solution consists
of the same complementary function as in part (i) together with the simplest possible
particular integral, namely x = qE/mω2. It is therefore

x(t) = A cosωt + B sinωt + qE

mω2
.
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The initial condition x(0) = 0 implies that A = −qE/(mω2), whilst ẋ(0) = 0 requires
that B = 0. Thus,

x = qE

mω2
(1 − cosωt),

⇒ ż = qB

m
x = ω

qE

mω2
(1 − cosωt) = qE

mω
(1 − cosωt).

Since z(0) = 0, straightforward integration gives

z = qE

mω

(
t − sinωt

ω

)
= qE

mω2
(ωt − sinωt).

Thus, since qE/mω2 = mE/B2q, the path is of the given parametric form with ξ = ωt .
It is a cycloid in the plane y = 0; the x-coordinate varies in the restricted range 0 ≤ x ≤
2qE/(mω2), whilst the z-coordinate continually increases, though not at a uniform rate.

The element of path length is given by ds2 = dx2 + dy2 + dz2. In this case, writing
qE/(mω) = E/B as μ,

ds =
[(

dx

dt

)2

+
(
dz

dt

)2
]1/2

dt

= [
μ2 sin2 ωt + μ2(1 − cosωt)2 ]1/2

dt

= [
2μ2(1 − cosωt)

]1/2
dt = 2μ| sin 1

2ωt | dt.
Thus the total distance traveled after time t is given by

s =
∫ t

0
2μ| sin 1

2ωt
′| dt ′ = 2E

B

∫ t

0

∣∣∣∣ sin
qBt ′

2m

∣∣∣∣ dt ′.
2.5 If two systems of coordinates with a common origin O are rotating with respect to each other, the

measured accelerations differ in the two systems. Denoting by r and r′ position vectors in frames
OXYZ and OX′Y′Z′, respectively, the connection between the two is

r̈′ = r̈ + ω̇ × r + 2ω × ṙ + ω × (ω × r),

where ω is the angular velocity vector of the rotation of OXYZ with respect to OX′Y′Z′ (taken as
fixed). The third term on the RHS is known as the Coriolis acceleration, whilst the final term gives
rise to a centrifugal force.

Consider the application of this result to the firing of a shell of mass m from a stationary ship
on the steadily rotating earth, working to the first order in ω (= 7.3 × 10−5 rad s−1). If the shell is
fired with velocity v at time t = 0 and only reaches a height that is small compared with the radius
of the earth, show that its acceleration, as recorded on the ship, is given approximately by

r̈ = g − 2ω × (v + gt),

where mg is the weight of the shell measured on the ship’s deck.
The shell is fired at another stationary ship (a distance s away) and v is such that the shell would

have hit its target had there been no Coriolis effect.
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(a) Show that without the Coriolis effect the time of flight of the shell would have been τ =
−2g · v/g2.

(b) Show further that when the shell actually hits the sea it is off-target by approximately

2τ

g2
[ (g × ω) · v ](gτ + v) − (ω × v)τ 2 − 1

3
(ω × g)τ 3.

(c) Estimate the order of magnitude � of this miss for a shell for which the initial speed v is
300 m s−1, firing close to its maximum range (v makes an angle of π/4 with the vertical) in a
northerly direction, whilst the ship is stationed at latitude 45◦ North.

As the earth is rotating steadily ω̇ = 0, and for the mass at rest on the deck,

mr̈′ = mg + 0 + 2ω × 0̇ +mω × (ω × r).

This, including the centrifugal effect, defines g which is assumed constant throughout the
trajectory.

For the moving mass (r̈′ is unchanged),

mg + ω × (ω × r) = mr̈ + 2mω × ṙ +mω × (ω × r),

i.e. r̈ = g − 2ω × ṙ.

Now, ωṙ � g and so to zeroth order in ω

r̈ = g ⇒ ṙ = gt + v.

Resubstituting this into the Coriolis term gives, to first order in ω,

r̈ = g − 2ω × (v + gt).

(a) With no Coriolis force,

ṙ = gt + v and r = 1
2 gt2 + vt.

Let s = 1
2 gτ 2 + vτ and use the observation that s · g = 0, giving

1
2g

2τ 2 + v · gτ = 0 ⇒ τ = −2v · g

g2
.

(b) With Coriolis force,

r̈ = g − 2(ω × g)t − 2(ω × v),

ṙ = gt − (ω × g)t2 − 2(ω × v)t + v,

r = 1
2 gt2 − 1

3 (ω × g)t3 − (ω × v)t2 + vt. (∗)

If the shell hits the sea at time T in the position r = s + �, then (s + �) · g = 0, i.e.

0 = (s + �) · g = 1
2g

2 T 2 − 0 − (ω × v) · g T 2 + v · g T ,

⇒ −v · g = T ( 1
2g

2 − (ω × v) · g),

⇒ T = −v · g
1
2g

2

[
1 − (ω × v) · g

1
2g

2

]−1

≈ τ

(
1 + 2(ω × v) · g

g2
+ · · ·

)
.
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Working to first order in ω, we may put T = τ in those terms in (∗) that involve another
factor ω, namely ω × v and ω × g. We then find, to this order, that

s + � = 1

2
g

(
τ 2 + 4(ω × v) · g

g2
τ 2 + · · ·

)
− 1

3
(ω × g)τ 3

− (ω × v)τ 2 + vτ + 2
(ω × v) · g

g2
vτ

= s + (ω × v) · g

g2
(2gτ 2 + 2vτ ) − 1

3
(ω × g)τ 3 − (ω × v)τ 2.

Hence, as stated in the question,

� = 2τ

g2
[ (g × ω) · v ](gτ + v) − (ω × v)τ 2 − 1

3
(ω × g)τ 3.

(c) With the ship at latitude 45◦ and firing the shell at close to 45◦ to the local horizontal,
v and ω are almost parallel and the ω × v term can be set to zero. Further, with v in a
northerly direction, (g × ω) · v = 0.

Thus we are left with only the cubic term in τ . In this,

τ = 2 × 300 cos(π/4)

9.8
= 43.3 s,

and ω × g is in a westerly direction (recall that ω is directed northwards and g is directed
downwards, towards the origin) and of magnitude 7 10−5 × 9.8 × sin(π/4) = 4.85 10−4

m s−3. Thus the miss is by approximately

− 1
3 × 4.85 10−4 × (43.3)3 = −13 m,

i.e. some 10–15 m to the East of its intended target.

2.7 Parameterizing the hyperboloid

x2

a2
+ y2

b2
− z2

c2
= 1

by x = a cos θ secφ, y = b sin θ secφ, z = c tanφ, show that an area element on its surface is

dS = sec2 φ
[
c2 sec2 φ

(
b2 cos2 θ + a2 sin2 θ

)+ a2b2 tan2 φ
]1/2

dθ dφ.

Use this formula to show that the area of the curved surface x2 + y2 − z2 = a2 between the planes
z = 0 and z = 2a is

πa2

(
6 + 1√

2
sinh−1 2

√
2

)
.

With x = a cos θ secφ, y = b sin θ secφ and z = c tanφ, the tangent vectors to the surface
are given in Cartesian coordinates by

dr

dθ
= (−a sin θ secφ, b cos θ secφ, 0),

dr

dφ
= (a cos θ secφ tanφ, b sin θ secφ tanφ, c sec2 φ),
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and the element of area by

dS =
∣∣∣∣ dr

dθ
× dr

dφ

∣∣∣∣ dθ dφ
= ∣∣ (bc cos θ sec3 φ, ac sin θ sec3 φ, −ab sec2 φ tanφ)

∣∣ dθ dφ
= sec2 φ

[
c2 sec2 φ

(
b2 cos2 θ + a2 sin2 θ

)+ a2b2 tan2 φ
]1/2

dθ dφ.

We set b = c = a and note that the plane z = 2a corresponds to φ = tan−1 2. The ranges
of integration are therefore 0 ≤ θ < 2π and 0 ≤ φ ≤ tan−1 2, whilst

dS = sec2 φ(a4 sec2 φ + a4 tan2 φ)1/2 dθ dφ,

i.e. it is independent of θ .
To evaluate the integral of dS, we set tanφ = sinhψ/

√
2, with

sec2 φ dφ = 1√
2

coshψ dψ and sec2 φ = 1 + 1
2 sinh2 ψ.

The upper limit for ψ will be given by � = sinh−1 2
√

2; we note that cosh� = 3.
Integrating over θ and making the above substitutions yields

S = 2π
∫ �

0

1√
2

coshψ dψ a2

(
1 + 1

2
sinh2 ψ + 1

2
sinh2 ψ

)1/2

= √
2πa2

∫ �

0
cosh2 ψ dψ

=
√

2πa2

2

∫ �

0
(cosh 2ψ + 1) dψ

=
√

2πa2

2

[
sinh 2ψ

2
+ ψ

]�
0

= πa2

√
2

[sinhψ coshψ + ψ]�0

= πa2

√
2

[ (2
√

2)(3) + sinh−1 2
√

2 ] = πa2

(
6 + 1√

2
sinh−1 2

√
2

)
.

2.9 Verify by direct calculation that

∇ · (a × b) = b · (∇ × a) − a · (∇ × b).

The proof of this standard result for the divergence of a vector product is most easily carried
out in Cartesian coordinates though, of course, the result is valid in any three-dimensional
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coordinate system.

LHS = ∇ · (a × b)

= ∂

∂x
(aybz − azby) + ∂

∂y
(azbx − axbz) + ∂

∂z
(axby − aybx)

= ax

(
−∂bz
∂y

+ ∂by

∂z

)
+ ay

(
∂bz

∂x
− ∂bx

∂z

)
+ az

(
−∂by
∂x

+ ∂bx

∂y

)
+ bx

(
∂az

∂y
− ∂ay

∂z

)
+ by

(
−∂az
∂x

+ ∂ax

∂z

)
+ bz

(
∂ay

∂x
− ∂ax

∂y

)
= −a · (∇ × b) + b · (∇ × a) = RHS.

2.11 Evaluate the Laplacian of the function

ψ(x, y, z) = zx2

x2 + y2 + z2

(a) directly in Cartesian coordinates, and (b) after changing to a spherical polar coordinate system.
Verify that, as they must, the two methods give the same result.

(a) In Cartesian coordinates we need to evaluate

∇2ψ = ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
.

The required derivatives are

∂ψ

∂x
= 2xz(y2 + z2)

(x2 + y2 + z2)2
,

∂2ψ

∂x2
= (y2 + z2)(2zy2 + 2z3 − 6x2z)

(x2 + y2 + z2)3
,

∂ψ

∂y
= −2x2yz

(x2 + y2 + z2)2
,

∂2ψ

∂y2
= −2zx2(x2 + z2 − 3y2)

(x2 + y2 + z2)3
,

∂ψ

∂z
= x2(x2 + y2 − z2)

(x2 + y2 + z2)2
,
∂2ψ

∂z2
= −2zx2(3x2 + 3y2 − z2)

(x2 + y2 + z2)3
.

Thus, writing r2 = x2 + y2 + z2,

∇2ψ = 2z[ (y2 + z2)(y2 + z2 − 3x2) − 4x4 ]

(x2 + y2 + z2)3

= 2z[ (r2 − x2)(r2 − 4x2) − 4x4 ]

r6

= 2z(r2 − 5x2)

r4
.

(b) In spherical polar coordinates,

ψ(r, θ, φ) = r cos θ r2 sin2 θ cos2 φ

r2
= r cos θ sin2 θ cos2 φ.
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The three contributions to ∇2ψ in spherical polars are

(∇2ψ)r = 1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
= 2

r
cos θ sin2 θ cos2 φ,

(∇2ψ)θ = 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
= 1

r

cos2 φ

sin θ

∂

∂θ

[
sin θ

∂

∂θ
(cos θ sin2 θ)

]
= cos2 φ

r
(4 cos3 θ − 8 sin2 θ cos θ),

(∇2ψ)φ = 1

r2 sin2 θ

∂2ψ

∂φ2

= cos θ

r
(−2 cos2 φ + 2 sin2 φ).

Thus, the full Laplacian in spherical polar coordinates reads

∇2ψ = cos θ

r
(2 sin2 θ cos2 φ + 4 cos2 θ cos2 φ

− 8 sin2 θ cos2 φ − 2 cos2 φ + 2 sin2 φ)

= cos θ

r
(4 cos2 φ − 10 sin2 θ cos2 φ − 2 cos2 φ + 2 sin2 φ)

= cos θ

r
(2 − 10 sin2 θ cos2 φ)

= 2r cos θ(r2 − 5r2 sin2 θ cos2 φ)

r4
.

Rewriting this last expression in terms of Cartesian coordinates, one finally obtains

∇2ψ = 2z(r2 − 5x2)

r4
,

which establishes the equivalence of the two approaches.

2.13 The (Maxwell) relationship between a time-independent magnetic field B and the current density J

(measured in SI units in A m−2) producing it,

∇ × B = μ0J,

can be applied to a long cylinder of conducting ionized gas which, in cylindrical polar coordinates,
occupies the region ρ < a.

(a) Show that a uniform current density (0, C, 0) and a magnetic field (0, 0, B), with B constant
(= B0) for ρ > a and B = B(ρ) for ρ < a, are consistent with this equation. Given that
B(0) = 0 and that B is continuous at ρ = a, obtain expressions for C and B(ρ) in terms of B0

and a.
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(b) The magnetic field can be expressed as B = ∇ × A, where A is known as the vector potential.
Show that a suitable A can be found which has only one non-vanishing component, Aφ(ρ), and
obtain explicit expressions for Aφ(ρ) for both ρ < a and ρ > a. Like B, the vector potential is
continuous at ρ = a.

(c) The gas pressure p(ρ) satisfies the hydrostatic equation ∇p = J × B and vanishes at the outer
wall of the cylinder. Find a general expression for p.

(a) In cylindrical polars with B = (0, 0, B(ρ)), for ρ ≤ a we have

μ0(0, C, 0) = ∇ × B =
(

1

ρ

∂B

∂φ
, −∂B

∂ρ
, 0

)
.

As expected, ∂B/∂φ = 0. The azimuthal component of the equation gives

−∂B
∂ρ

= μ0C for ρ ≤ a ⇒ B(ρ) = B(0) − μ0Cρ.

Since B has to be differentiable at the origin of ρ and have no φ-dependence, B(0)
must be zero. This, together with B = B0 for ρ > a requires that C = −B0/(aμ0) and
B(ρ) = B0ρ/a for 0 ≤ ρ ≤ a.

(b) With B = ∇ × A, consider A of the form A = (0, A(ρ), 0). Then

(0, 0, B(ρ)) = 1

ρ

(
∂

∂z
(ρA), 0,

∂

∂ρ
(ρA)

)
=
(

0, 0,
1

ρ

∂

∂ρ
(ρA)

)
.

We now equate the only non-vanishing component on each side of the above equation,
treating inside and outside the cylinder separately.

For 0 < ρ ≤ a,

1

ρ

∂

∂ρ
(ρA) = B0ρ

a
,

ρA = B0ρ
3

3a
+D,

A(ρ) = B0ρ
2

3a
+ D

ρ
.

Since A(0) must be finite (so that A is differentiable there), D = 0.
For ρ > a,

1

ρ

∂

∂ρ
(ρA) = B0,

ρA = B0ρ
2

2
+ E,

A(ρ) = 1

2
B0ρ + E

ρ
.
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At ρ = a, the continuity of A requires

B0a
2

3a
= 1

2
B0a + E

a
⇒ E = −B0a

2

6
.

Thus, to summarize,

A(ρ) = B0ρ
2

3a
for 0 ≤ ρ ≤ a,

and A(ρ) = B0

(
ρ

2
− a2

6ρ

)
for ρ ≥ a.

(c) For the gas pressure p (ρ) in the region 0 < ρ ≤ a, we have ∇p = J × B. In
component form, (

dp

dρ
, 0, 0

)
=
(

0, − B0

aμ0
, 0

)
×
(

0, 0,
B0ρ

a

)
,

with p (a) = 0.

dp

dρ
= − B

2
0ρ

μ0a2
⇒ p (ρ) = B2

0

2μ0

[
1 −

(ρ
a

)2
]
.

2.15 Maxwell’s equations for electromagnetism in free space (i.e. in the absence of charges, currents
and dielectric or magnetic media) can be written

(i) ∇ · B = 0, (ii) ∇ · E = 0,

(iii) ∇ × E + ∂B

∂t
= 0, (iv) ∇ × B − 1

c2

∂E

∂t
= 0.

A vector A is defined by B = ∇ × A, and a scalar φ by E = −∇φ − ∂A/∂t . Show that if the
condition

(v) ∇ · A + 1

c2

∂φ

∂t
= 0

is imposed (this is known as choosing the Lorentz gauge), then A and φ satisfy wave equations as
follows.

(vi) ∇2φ − 1

c2

∂2φ

∂t2
= 0,

(vii) ∇2A − 1

c2

∂2A

∂t2
= 0.

The reader is invited to proceed as follows.

(a) Verify that the expressions for B and E in terms of A and φ are consistent with (i) and (iii).
(b) Substitute for E in (ii) and use the derivative with respect to time of (v) to eliminate A from the

resulting expression. Hence obtain (vi).
(c) Substitute for B and E in (iv) in terms of A and φ. Then use the gradient of (v) to simplify the

resulting equation and so obtain (vii).

(a) Substituting for B in (i),

∇ · B = ∇ · (∇ × A) = 0, as it is for any vector A.
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Substituting for E and B in (iii),

∇ × E + ∂B

∂t
= −(∇ × ∇φ) − ∇ × ∂A

∂t
+ ∂

∂t
(∇ × A) = 0.

Here we have used the facts that ∇ × ∇φ = 0 for any scalar, and that, since ∂/∂t and ∇
act on different variables, the order in which they are applied to A can be reversed. Thus
(i) and (iii) are automatically satisfied if E and B are represented in terms of A and φ.

(b) Substituting for E in (ii) and taking the time derivative of (v),

0 = ∇ · E = −∇2φ − ∂

∂t
(∇ · A),

0 = ∂

∂t
(∇ · A) + 1

c2

∂2φ

∂t2
.

Adding these equations gives

0 = −∇2φ + 1

c2

∂2φ

∂t2
.

This is result (vi), the wave equation for φ.
(c) Substituting for B and E in (iv) and taking the gradient of (v),

∇ × (∇ × A) − 1

c2

(
− ∂

∂t
∇φ − ∂2A

∂t2

)
= 0,

∇(∇ · A) − ∇2A + 1

c2

∂

∂t
(∇φ) + 1

c2

∂2A

∂t2
= 0.

From (v), ∇(∇ · A) + 1

c2

∂

∂t
(∇φ) = 0.

Subtracting these gives − ∇2A + 1

c2

∂2A

∂t2
= 0.

In the second line we have used the vector identity

∇2F = ∇(∇ · F) − ∇ × (∇ × F)

to replace ∇ × (∇ × A). The final equation is result (vii).

2.17 Paraboloidal coordinates u, v, φ are defined in terms of Cartesian coordinates by

x = uv cosφ, y = uv sinφ, z = 1
2 (u2 − v2).

Identify the coordinate surfaces in the u, v, φ system. Verify that each coordinate surface (u =
constant, say) intersects every coordinate surface on which one of the other two coordinates (v,
say) is constant. Show further that the system of coordinates is an orthogonal one and determine its
scale factors. Prove that the u-component of ∇ × a is given by

1

(u2 + v2)1/2

(
aφ

v
+ ∂aφ

∂v

)
− 1

uv

∂av

∂φ
.

To find a surface of constant u we eliminate v from the given relationships:

x2 + y2 = u2v2 ⇒ 2z = u2 − x2 + y2

u2
.
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This is an inverted paraboloid of revolution about the z-axis. The range of z is −∞ <

z ≤ 1
2u

2.
Similarly, the surface of constant v is given by

2z = x2 + y2

v2
− v2.

This is also a paraboloid of revolution about the z-axis, but this time it is not inverted. The
range of z is − 1

2v
2 ≤ z < ∞.

Since every constant-u paraboloid has some part of its surface in the region z > 0 and
every constant-v paraboloid has some part of its surface in the region z < 0, it follows
that every member of the first set intersects each member of the second, and vice versa.

The surfaces of constant φ, y = x tanφ, are clearly (half-) planes containing the z-axis;
each cuts the members of the other two sets in parabolic lines.

We now determine (the Cartesian components of) the tangential vectors and test their
orthogonality:

e1 = ∂r

∂u
= (v cosφ, v sinφ, u),

e2 = ∂r

∂v
= (u cosφ, u sinφ, −v),

e3 = ∂r

∂φ
= (−uv sinφ, uv cosφ, 0),

e1 · e2 = uv(cosφ cosφ + sinφ sinφ) − uv = 0,

e2 · e3 = u2v(− cosφ sinφ + sinφ cosφ) = 0,

e1 · e3 = uv2(− cosφ sinφ + sinφ cosφ) = 0.

This shows that all pairs of tangential vectors are orthogonal and therefore that the
coordinate system is an orthogonal one. Its scale factors are given by the magnitudes of
these tangential vectors:

h2
u = |e1|2 = (v cosφ)2 + (v sinφ)2 + u2 = u2 + v2,

h2
v = |e2|2 = (u cosφ)2 + (u sinφ)2 + v2 = u2 + v2,

h2
φ = |e3|2 = (uv sinφ)2 + (uv cosφ)2 = u2v2.

Thus

hu = hv =
√
u2 + v2, hφ = uv.

The u-component of ∇ × a is given by

[∇ × a ]u = hu

huhvhφ

[
∂

∂v
(hφaφ) − ∂

∂φ
(hvav)

]
= 1

uv
√
u2 + v2

[
∂

∂v
(uvaφ) − ∂

∂φ
(
√
u2 + v2av)

]
= 1√

u2 + v2

(
aφ

v
+ ∂aφ

∂v

)
− 1

uv

∂av

∂φ
,

as stated in the question.
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2.19 Hyperbolic coordinates u, v, φ are defined in terms of Cartesian coordinates by

x = cosh u cos v cosφ, y = cosh u cos v sinφ, z = sinh u sin v.

Sketch the coordinate curves in the φ = 0 plane, showing that far from the origin they become
concentric circles and radial lines. In particular, identify the curves u = 0, v = 0, v = π/2 and
v = π . Calculate the tangent vectors at a general point, show that they are mutually orthogonal and
deduce that the appropriate scale factors are

hu = hv = (cosh2 u− cos2 v)1/2, hφ = cosh u cos v.

Find the most general function ψ(u) of u only that satisfies Laplace’s equation ∇2ψ = 0.

In the plane φ = 0, i.e. y = 0, the curves u = constant have x and z connected by

x2

cosh2 u
+ z2

sinh2 u
= 1.

This general form is that of an ellipse, with foci at (±1, 0). With u = 0, it is the line
joining the two foci (covered twice). As u → ∞, and cosh u ≈ sinh u the form becomes
that of a circle of very large radius.

The curves v = constant are expressed by

x2

cos2 v
− z2

sin2 v
= 1.

These curves are hyperbolae that, for large x and z and fixed v, approximate z = ±x tan v,
i.e. radial lines. The curve v = 0 is the part of the x-axis 1 ≤ x ≤ ∞ (covered twice),
whilst the curve v = π is its reflection in the z-axis. The curve v = π/2 is the z-axis.

In Cartesian coordinates a general point and its derivatives with respect to u, v and φ
are given by

r = cosh u cos v cosφ i + cosh u cos v sinφ j + sinh u sin v k,

e1 = ∂r

∂u
= sinh u cos v cosφ i + sinh u cos v sinφ j + cosh u sin v k,

e2 = ∂r

∂v
= − cosh u sin v cosφ i − cosh u sin v sinφ j + sinh u cos v k,

e3 = ∂r

∂φ
= cosh u cos v(− sinφ i + cosφ j).

Now consider the scalar products:

e1 · e2 = sinh u cos v cosh u sin v(− cos2 φ − sin2 φ + 1) = 0,

e1 · e3 = sinh u cos2 v cosh u(− sinφ cosφ + sinφ cosφ) = 0,

e2 · e3 = cosh2 u sin v cos v(sinφ cosφ − sinφ cosφ) = 0.

As each is zero, the system is an orthogonal one.
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The scale factors are given by |ei | and are thus found from:

|e1|2 = sinh2 u cos2 v(cos2 φ + sin2 φ) + cosh2 u sin2 v

= (cosh2 u− 1) cos2 v + cosh2 u(1 − cos2 v)

= cosh2 u− cos2 v;

|e2|2 = cosh2 u sin2 v(cos2 φ + sin2 φ) + sinh2 u cos2 v

= cosh2 u(1 − cos2 v) + (cosh2 u− 1) cos2 v

= cosh2 u− cos2 v;

|e3|2 = cosh2 u cos2 v(sin2 φ + cos2 φ) = cosh2 u cos2 v.

The immediate deduction is that

hu = hv = (cosh2 u− cos2 v)1/2, hφ = cosh u cos v.

An alternative form for hu and hv is (sinh2 u+ sin2 v)1/2.
If a solution of Laplace’s equation is to be a function, ψ(u), of u only, then all dif-

ferentiation with respect to v and φ can be ignored. The expression for ∇2ψ reduces
to

∇2ψ = 1

huhvhφ

[
∂

∂u

(
hvhφ

hu

∂ψ

∂u

)]
= 1

cosh u cos v(cosh2 u− cos2 v)

[
∂

∂u

(
cosh u cos v

∂ψ

∂u

)]
.

Laplace’s equation itself is even simpler and reduces to

∂

∂u

(
cosh u

∂ψ

∂u

)
= 0.

This can be rewritten as

∂ψ

∂u
= k

cosh u
= 2k

eu + e−u = 2keu

e2u + 1
,

dψ = Aeu du

1 + (eu)2
⇒ ψ = B tan−1 eu + c.

This is the most general function of u only that satisfies Laplace’s equation.
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3.1 The vector field F is defined by

F = 2xzi + 2yz2j + (x2 + 2y2z− 1)k.

Calculate ∇ × F and deduce that F can be written F = ∇φ. Determine the form of φ.

With F as given, we calculate the curl of F to see whether or not it is the zero vector:

∇ × F = (4yz− 4yz, 2x − 2x, 0 − 0) = 0.

The fact that it is implies that F can be written as ∇φ for some scalar φ.
The form of φ(x, y, z) is found by integrating, in turn, the components of F until

consistency is achieved, i.e. until a φ is found that has partial derivatives equal to the
corresponding components of F:

2xz = Fx = ∂φ

∂x
⇒ φ(x, y, z) = x2z+ g(y, z),

2yz2 = Fy = ∂

∂y
[ x2z+ g(y, z) ] ⇒ g(y, z) = y2z2 + h(z),

x2 + 2y2z− 1 = Fz = ∂

∂z
[ x2z+ y2z2 + h(z) ]

⇒ h(z) = −z+ k.
Hence, to within an unimportant constant, the form of φ is

φ(x, y, z) = x2z+ y2z2 − z.

3.3 A vector field F is given by F = xy2i + 2j + xk and L is a path parameterized by x = ct , y = c/t ,
z = d for the range 1 ≤ t ≤ 2. Evaluate the three integrals

(a)
∫
L

F dt, (b)
∫
L

F dy, (c)
∫
L

F · dr.

Although all three integrals are along the same path L, they are not necessarily of the
same type. The vector or scalar nature of the integral is determined by that of the integrand
when it is expressed in a form containing the infinitesimal dt .

(a) This is a vector integral and contains three separate integrations. We express each
of the integrands in terms of t , according to the parameterization of the integration path

41
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L, before integrating:

∫
L

F dt =
∫ 2

1

(
c3

t
i + 2 j + ct k

)
dt

=
[
c3 ln t i + 2t j + 1

2
ct2 k

]2

1

= c3 ln 2 i + 2 j + 3

2
c k.

(b) This is a similar vector integral but here we must also replace the infinitesimal dy
by the infinitesimal −c dt/t2 before integrating:

∫
L

F dy =
∫ 2

1

(
c3

t
i + 2 j + ct k

)(−c
t2

)
dt

=
[
c4

2t2
i + 2c

t
j − c2 ln t k

]2

1

= −3c4

8
i − c j − c2 ln 2 k.

(c) This is a scalar integral and before integrating we must take the scalar product of F

with dr = dx i + dy j + dz k to give a single integrand:

∫
L

F · dr =
∫ 2

1

(
c3

t
i + 2 j + ct k

)
· (c i − c

t2
j + 0 k) dt

=
∫ 2

1

(
c4

t
− 2c

t2

)
dt

=
[
c4 ln t + 2c

t

]2

1

= c4 ln 2 − c.

3.5 Determine the point of intersection P , in the first quadrant, of the two ellipses

x2

a2
+ y2

b2
= 1 and

x2

b2
+ y2

a2
= 1.

Taking b < a, consider the contour L that bounds the area in the first quadrant that is common to
the two ellipses. Show that the parts of L that lie along the coordinate axes contribute nothing to
the line integral around L of x dy − y dx. Using a parameterization of each ellipse of the general
form x = X cosφ and y = Y sinφ, evaluate the two remaining line integrals and hence find the
total area common to the two ellipses.
Note: The line integral of x dy − y dx around a general closed convex contour is equal to twice the
area enclosed by that contour.
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From the symmetry of the equations under the interchange of x and y, the point P must
have x = y. Thus,

x2

(
1

a2
+ 1

b2

)
= 1 ⇒ x = ab

(a2 + b2)1/2
.

Denoting as curve C1 the part of

x2

a2
+ y2

b2
= 1

that lies on the boundary of the common region, we parameterize it by x = a cos θ1 and
y = b sin θ1. Curve C1 starts from P and finishes on the y-axis. At P ,

a cos θ1 = x = ab

(a2 + b2)1/2
⇒ tan θ1 = a

b
.

It follows that θ1 lies in the range tan−1(a/b) ≤ θ1 ≤ π/2. Note that θ1 is not the angle
between the x-axis and the line joining the origin O to the corresponding point on the
curve; for example, when the point is P itself then θ1 = tan−1 a/b, whilst the line OP
makes an angle of π/4 with the x-axis.

Similarly, referring to that part of

x2

b2
+ y2

a2
= 1

that lies on the boundary of the common region as curve C2, we parameterize it by
x = b cos θ2 and y = a sin θ2 with 0 ≤ θ2 ≤ tan−1(b/a).

On the x-axis, both y and dy are zero and the integrand, x dy − y dx, vanishes. Simi-
larly, the integrand vanishes at all points on the y-axis. Hence,

I =
∮
L

(x dy − y dx)

=
∫
C2

(x dy − y dx) +
∫
C1

(x dy − y dx)

=
∫ tan−1(b/a)

0
[ ab(cos θ2 cos θ2) − ab sin θ2(− sin θ2) ] dθ2

+
∫ π/2

tan−1(a/b)
[ ab(cos θ1 cos θ1) − ab sin θ1(− sin θ1) ] dθ1

= ab tan−1 b

a
+ ab

(π
2

− tan−1 a

b

)
= 2ab tan−1 b

a
.

As noted in the question, the area enclosed by L is equal to 1
2 of this value, i.e. the total

common area in all four quadrants is

4 × 1

2
× 2ab tan−1 b

a
= 4ab tan−1 b

a
.
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Note that if we let b → a then the two ellipses become identical circles and we recover
the expected value of πa2 for their common area.

3.7 Evaluate the line integral

I =
∮
C

[
y(4x2 + y2) dx + x(2x2 + 3y2) dy

]
around the ellipse x2/a2 + y2/b2 = 1.

As it stands this integral is complicated and, in fact, it is the sum of two integrals. The form
of the integrand, containing powers of x and y that can be differentiated easily, makes this
problem one to which Green’s theorem in a plane might usefully be applied. The theorem
states that ∮

C

(P dx +Qdy) =
∫ ∫

R

(
∂Q

∂x
− ∂P

∂y

)
dx dy,

where C is a closed contour enclosing the convex region R.
In the notation used above,

P (x, y) = y(4x2 + y2) and Q(x, y) = x(2x2 + 3y2).

It follows that

∂P

∂y
= 4x2 + 3y2 and

∂Q

∂x
= 6x2 + 3y2,

leading to

∂Q

∂x
− ∂P

∂y
= 2x2.

This can now be substituted into Green’s theorem and the y-integration carried out imme-
diately as the integrand does not contain y. Hence,

I =
∫ ∫

R

2x2 dx dy

=
∫ a

−a
2x2 2b

(
1 − x2

a2

)1/2

dx

= 4b
∫ 0

π

a2 cos2 φ sinφ (−a sinφ dφ), on setting x = a cosφ,

= −ba3
∫ 0

π

sin2(2φ) dφ = 1
2πba

3.

In the final line we have used the standard result for the integral of the square of a sinusoidal
function.
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3.9 A single-turn coil C of arbitrary shape is placed in a magnetic field B and carries a current I . Show
that the couple acting upon the coil can be written as

M = I

∫
C

(B · r) dr − I
∫
C

B(r · dr).

For a planar rectangular coil of sides 2a and 2b placed with its plane vertical and at an angle φ to a
uniform horizontal field B, show that M is, as expected, 4abBI cosφ k.

For an arbitrarily shaped coil the total couple acting can only be found by considering that
on an infinitesimal element and then integrating this over the whole coil. The force on an
element dr of the coil is dF = I dr × B, and the moment of this force about the origin is
dM = r × F. Thus the total moment is given by

M =
∮
C

r × (I dr × B)

= I

∮
C

(r · B) dr − I
∮
C

B(r · dr).

To obtain this second form we have used the vector identity

a × (b × c) = (a · c)b − (a · b)c.

To determine the couple acting on the rectangular coil we work in Cartesian coordinates
with the z-axis vertical and choose the orientation of axes in the horizontal plane such that
the edge of the rectangle of length 2a is in the x-direction. Then

B = B cosφ i + B sinφ j.

Considering the first term in M:
(i) for the horizontal sides

r = x i ± b k, dr = dx i, r · B = xB cosφ,∫
(r · B) dr = B cosφ i

(∫ a

−a
x dx +

∫ −a

a

x dx

)
= 0;

(ii) for the vertical sides

r = ±a i + z k, dr = dz k, r · B = ±aB cosφ,∫
(r · B) dr = B cosφ k

(∫ b

−b
(+a) dz+

∫ −b

b

(−a) dz

)
= 4abB cosφ k.

For the second term in M, since the field is uniform it can be taken outside the integral as
a (vector) constant. On the horizontal sides the remaining integral is∫

r · dr = ±
∫ a

−a
x dx = 0.

Similarly, the contribution from the vertical sides vanishes and the whole of the second
term contributes nothing in this particular configuration.

The total moment is thus 4abB cosφ k, as expected.
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3.11 An axially symmetric solid body with its axis AB vertical is immersed in an incompressible fluid
of density ρ0. Use the following method to show that, whatever the shape of the body, for ρ = ρ(z)
in cylindrical polars the Archimedean upthrust is, as expected, ρ0gV , where V is the volume of the
body.

Express the vertical component of the resultant force (− ∫
p dS, where p is the pressure) on the

body in terms of an integral; note that p = −ρ0gz and that for an annular surface element of width
dl, n · nz dl = −dρ. Integrate by parts and use the fact that ρ(zA) = ρ(zB ) = 0.

We measure z negatively from the water’s surface z = 0 so that the hydrostatic pressure
is p = −ρ0gz. By symmetry, there is no net horizontal force acting on the body.

The upward force, F , is due to the net vertical component of the hydrostatic pressure
acting upon the body’s surface:

F = −n̂z ·
∫
p dS

= −n̂z ·
∫

(−ρ0gz)(2πρ n̂ dl),

where 2πρ dl is the area of the strip of surface lying between z and z+ dz and n̂ is the
outward unit normal to that surface.

Now, from geometry, n̂z · n̂ is equal to minus the sine of the angle between dl and dz
and so n̂z · n̂ dl is equal to −dρ. Thus,

F = 2πρ0g

∫ zB

zA

ρz(−dρ)

= −2πρ0g

∫ zB

zA

(
ρ
∂ρ

∂z

)
z dz

= −2πρ0g

{[
z
ρ2

2

]zB
zA

−
∫ zB

zA

ρ2

2
dz

}
.

But ρ(zA) = ρ(zB) = 0, and so the first contribution vanishes, leaving

F = ρ0g

∫ zB

zA

πρ2 dz = ρ0gV,

whereV is the volume of the solid. This is the mathematical form of Archimedes’ principle.
Of course, the result is also valid for a closed body of arbitrary shape, ρ = ρ(z, φ), but a
different method would be needed to prove it.

3.13 A vector field a is given by −zxr−3i − zyr−3j + (x2 + y2)r−3k, where r2 = x2 + y2 + z2. Estab-
lish that the field is conservative (a) by showing that ∇ × a = 0, and (b) by constructing its potential
function φ.

We are told that

a = −zx
r3

i − zy

r3
j + x2 + y2

r3
k,
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with r2 = x2 + y2 + z2. We will need to differentiate r−3 with respect to x, y and z, using
the chain rule, and so note that ∂r/∂x = x/r , etc.

(a) Consider ∇ × a, term by term:

[∇ × a]x = ∂

∂y

(
x2 + y2

r3

)
− ∂

∂z

(−zy
r3

)
= −3(x2 + y2)y

r4 r
+ 2y

r3
+ y

r3
− 3(zy)z

r4 r

= 3y

r5
(−x2 − y2 + x2 + y2 + z2 − z2) = 0;

[∇ × a]y = ∂

∂z

(−zx
r3

)
− ∂

∂x

(
x2 + y2

r3

)
= 3(zx)z

r4 r
− x

r3
− 2x

r3
+ 3(x2 + y2)x

r4 r

= 3x

r5
(z2 − x2 − y2 − z2 + x2 + y2) = 0;

[∇ × a]z = ∂

∂x

(−zy
r3

)
− ∂

∂y

(−zx
r3

)
= 3(zy)x

r4 r
− 3(zx)y

r4 r
= 0.

Thus all three components of ∇ × a are zero, showing that a is a conservative field.
(b) To construct its potential function we proceed as follows:

∂φ

∂x
= −zx

(x2 + y2 + z2)3/2
⇒ φ = z

(x2 + y2 + z2)1/2
+ f (y, z),

∂φ

∂y
= −zy

(x2 + y2 + z2)3/2
= −zy

(x2 + y2 + z2)3/2
+ ∂f

∂y
⇒ f (y, z) = g(z),

∂φ

∂z
= x2 + y2

(x2 + y2 + z2)3/2

= 1

(x2 + y2 + z2)1/2
+ −z z

(x2 + y2 + z2)3/2
+ ∂g

∂z

⇒ g(z) = c.

Thus,

φ(x, y, z) = c + z

(x2 + y2 + z2)1/2
= c + z

r
.

The very fact that we can construct a potential function φ = φ(x, y, z) whose derivatives
are the components of the vector field shows that the field is conservative.
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3.15 A force F(r) acts on a particle at r. In which of the following cases can F be represented in terms
of a potential? Where it can, find the potential.

(a) F = F0

[
i − j − 2(x − y)

a2
r

]
exp

(
− r

2

a2

)
;

(b) F = F0

a

[
zk + (x2 + y2 − a2)

a2
r

]
exp

(
− r

2

a2

)
;

(c) F = F0

[
k + a(r × k)

r2

]
.

(a) We first write the field entirely in terms of the Cartesian unit vectors using r =
x i + y j + z k and then attempt to construct a suitable potential function φ:

F = F0

[
i − j − 2(x − y)

a2
r

]
exp

(
− r

2

a2

)
= F0

a2

[
(a2 − 2x2 + 2xy) i + (−a2 − 2xy + 2y2) j

+ (−2xz+ 2yz) k
]

exp

(
− r

2

a2

)
.

Since the partial derivative of exp(−r2/a2) with respect to any Cartesian coordinate u is
exp(−r2/a2)(−2r/a2)(u/r), the z-component of F appears to be the most straightforward
to tackle first:

∂φ

∂z
= F0

a2
(−2xz+ 2yz) exp

(
− r

2

a2

)
⇒ φ(x, y, z) = F0(x − y) exp

(
− r

2

a2

)
+ f (x, y)

≡ φ1(x, y, z) + f (x, y).

Next we examine the derivatives of φ = φ1 + f with respect to x and y to see how closely
they generate Fx and Fy :

∂φ1

∂x
= F0

[
exp

(
− r

2

a2

)
+ (x − y) exp

(
− r

2

a2

)(−2x

a2

)]
= F0

a2
(a2 − 2x2 + 2xy) exp(−r2/a2) = Fx (as given),

and
∂φ1

∂y
= F0

[
− exp

(
− r

2

a2

)
+ (x − y) exp

(
− r

2

a2

)(−2y

a2

)]
= F0

a2
(−a2 − 2xy + 2y2) exp(−r2/a2) = Fy (as given).

Thus, to within an arbitrary constant, φ1(x, y, z) = F0(x − y) exp

(
− r

2

a2

)
is a suitable

potential function for the field, without the need for any additional function f (x, y).
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(b) We follow the same line of argument as in part (a). First, expressing F in terms of
i, j and k,

F = F0

a

[
z k + x2 + y2 − a2

a2
r

]
exp

(
− r

2

a2

)
= F0

a3

[
x(x2 + y2 − a2) i + y(x2 + y2 − a2) j

+ z(x2 + y2) k
]

exp

(
− r

2

a2

)
,

and then constructing a possible potential function φ. Again starting with the
z-component:

∂φ

∂z
= F0z

a3
(x2 + y2) exp

(
− r

2

a2

)
,

⇒ φ(x, y, z) = −F0

2a
(x2 + y2) exp

(
− r

2

a2

)
+ f (x, y)

≡ φ1(x, y, z) + f (x, y).

Then,
∂φ1

∂x
= −F0

2a

[
2x − 2x(x2 + y2)

a2

]
exp

(
− r

2

a2

)
= Fx (as given),

and
∂φ1

∂y
= −F0

2a

[
2y − 2y(x2 + y2)

a2

]
exp

(
− r

2

a2

)
= Fy (as given).

Thus, φ1(x, y, z) = F0

2a
(x2 + y2) exp

(
− r

2

a2

)
, as it stands, is a suitable potential function

for F(r) and establishes the conservative nature of the field.
(c) Again we express F in Cartesian components:

F = F0

[
k + a(r × k)

r2

]
= ay

r2
i − ax

r2
j + k.

That the z-component of F has no dependence on y whilst its y-component does depend
upon z suggests that the x-component of ∇ × F may not be zero. To test this out we
compute

(∇ × F)x = ∂(1)

∂y
− ∂

∂z

(−ax
r2

)
= 0 − 2axz

r4
�= 0,

and find that it is not. To have even one component of ∇ × F non-zero is sufficient to
show that F is not conservative and that no potential function can be found. There is no
point in searching further!

The same conclusion can be reached by considering the implication of Fz = k, namely
that any possible potential function has to have the form φ(x, y, z) = z+ f (x, y). How-
ever, ∂φ/∂x is known to be −ay/r2 = −ay/(x2 + y2 + z2). This yields a contradiction,
as it requires ∂f (x, y)/∂x to depend on z, which is clearly impossible.
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3.17 The vector field f has components yi − xj + k and γ is a curve given parametrically by

r = (a − c + c cos θ )i + (b + c sin θ )j + c2θk, 0 ≤ θ ≤ 2π.

Describe the shape of the path γ and show that the line integral
∫
γ

f · dr vanishes. Does this result
imply that f is a conservative field?

As θ increases from 0 to 2π , the x- and y-components of r vary sinusoidally and in
quadrature about fixed values a − c and b. Both variations have amplitude c and both return
to their initial values when θ = 2π . However, the z-component increases monotonically
from 0 to a value of 2πc2. The curve γ is therefore one loop of a circular spiral of radius c
and pitch 2πc2. Its axis is parallel to the z-axis and passes through the points (a − c, b, z).

The line element dr has components (−c sin θ dθ, c cos θ dθ, c2 dθ) and so the line
integral of f along γ is given by∫

γ

f · dr =
∫ 2π

0

[
y(−c sin θ) − x(c cos θ) + c2] dθ

=
∫ 2π

0

[−c(b + c sin θ) sin θ − c(a − c + c cos θ) cos θ + c2] dθ
=
∫ 2π

0

(−bc sin θ − c2 sin2 θ − c(a − c) cos θ − c2 cos2 θ + c2) dθ
= 0 − πc2 − 0 − πc2 + 2πc2 = 0.

However, this does not imply that f is a conservative field since (i) γ is not a closed loop,
and (ii) even if it were, the line integral has to vanish for every loop, not just for a particular
one.

Further,

∇ × f = (0 − 0, 0 − 0, −1 − 1) = (0, 0, −2) �= 0,

showing explicitly that f is not conservative.

3.19 Evaluate the surface integral
∫

r · dS, where r is the position vector, over that part of the surface
z = a2 − x2 − y2 for which z ≥ 0, by each of the following methods.

(a) Parameterize the surface as x = a sin θ cosφ, y = a sin θ sinφ, z = a2 cos2 θ , and show that

r · dS = a4(2 sin3 θ cos θ + cos3 θ sin θ ) dθ dφ.

(b) Apply the divergence theorem to the volume bounded by the surface and the plane z = 0.

(a) With x = a sin θ cosφ, y = a sin θ sinφ, z = a2 cos2 θ , we first check that this does
parameterize the surface appropriately:

a2 − x2 − y2 = a2 − a2 sin2 θ(cos2 φ + sin2 φ) = a2(1− sin2 θ) = a2 cos2 θ = z.

We see that it does so for the relevant part of the surface, i.e. that which lies above the plane
z = 0 with 0 ≤ θ ≤ π/2. It would not do so for the part with z < 0 for which x2 + y2 has
to be greater than a2; this is not catered for by the given parameterization.
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Having carried out this check, we calculate expressions for dS and hence r · dS in terms
of θ and φ as follows:

r = a sin θ cosφ i + a sin θ sinφ j + a2 cos2 θ k,

and the tangent vectors at the point (θ, φ) on the surface are given by

∂r

∂θ
= a cos θ cosφ i + a cos θ sinφ j − 2a2 cos θ sin θ k,

∂r

∂φ
= −a sin θ sinφ i + a sin θ cosφ j.

The corresponding vector element of surface area is thus

dS = ∂r

∂θ
× ∂r

∂φ

= 2a3 cos θ sin2 θ cosφ i + 2a3 cos θ sin2 θ sinφ j + a2 cos θ sin θ k,

giving r · dS as

r · dS = 2a4 cos θ sin3 θ cos2 φ + 2a4 cos θ sin3 θ sin2 φ + a4 cos3 θ sin θ

= 2a4 cos θ sin3 θ + a4 cos3 θ sin θ.

This is to be integrated over the ranges 0 ≤ φ < 2π and 0 ≤ θ ≤ π/2 as follows:∫
r · dS = a4

∫ 2π

0
dφ

∫ π/2

0
(2 sin3 θ cos θ + cos3 θ sin θ) dθ

= 2πa4

(
2

[
sin4 θ

4

]π/2
0

+
[− cos4 θ

4

]π/2
0

)

= 2πa4

(
2

4
+ 1

4

)
= 3πa4

2
.

(b) The divergence of the vector field r is 3, a constant, and so the surface integral
∫

r · dS

taken over the complete surface � (including the part that lies in the plane z = 0) is, by
the divergence theorem, equal to three times the volume V of the region bounded by �.
Now,

V =
∫ a2

0
πρ2 dz =

∫ a2

0
π(a2 − z) dz = π(a4 − 1

2a
4) = 1

2πa
4,

and so
∫
�

r · dS = 3πa4/2.
However, on the part of the surface lying in the plane z = 0, r = x i + y j + 0 k, whilst

dS = −dS k. Consequently the scalar product r · dS = 0; in words, for any point on this
face its position vector is orthogonal to the normal to the face. The surface integral over
this face therefore contributes nothing to the total integral and the value obtained is that
due to the curved surface alone, in agreement with the result in (a).
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3.21 Use the result ∫
V

∇φ dV =
∮
S

φ dS,

together with an appropriately chosen scalar function φ, to prove that the position vector r̄ of the
center of mass of an arbitrarily shaped body of volume V and uniform density can be written

r̄ = 1

V

∮
S

1
2 r

2 dS.

The position vector of the center of mass is defined by

r̄

∫
V

ρ dV =
∫
V

rρ dV.

In order to make use of the given equation, we need to find a scalar function f that is such
that ∇f = r; when this is substituted into the RHS of the above equation, the expression
for r̄ can be transformed into a surface integral, rather than a volume integral.

A suitable function for this purpose is f (r) = 1
2r

2. Writing r in this form and canceling
the constant ρ, we have, using the given general result, that

r̄V =
∫
V

∇
(

1

2
r2

)
dV =

∮
S

1
2r

2 dS.

From this it follows immediately that

r̄ = 1

V

∮
S

1
2r

2 dS.

This result provides an alternative method of finding the center of mass z̄k of the uniform
hemisphere r = a, 0 ≤ θ ≤ π/2, 0 ≤ φ < 2π . The curved surface contributes 3a/4 to z̄
and the plane surface contributes −3a/8, giving z̄ = 3a/8.

3.23 Demonstrate the validity of the divergence theorem:

(a) by calculating the flux of the vector

F = αr

(r2 + a2)3/2

through the spherical surface |r| = √
3a;

(b) by showing that

∇ · F = 3αa2

(r2 + a2)5/2

and evaluating the volume integral of ∇ · F over the interior of the sphere |r| = √
3a. The

substitution r = a tan θ will prove useful in carrying out the integration.

(a) The field is radial with

F = α r

(r2 + a2)3/2
= α r

(r2 + a2)3/2
êr .
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The total flux is therefore given by

� = 4πr2 α r

(r2 + a2)3/2

∣∣∣∣
r=a√3

= 4πa3 α 3
√

3

8a3
= 3

√
3πα

2
.

(b) From the divergence theorem, the total flux over the surface of the sphere is equal to
the volume integral of its divergence within the sphere. The divergence is given by

∇ · F = 1

r2

∂

∂r
(r2Fr ) = 1

r2

∂

∂r

(
r2 α r

(r2 + a2)3/2

)
= 1

r2

[
3αr2

(r2 + a2)3/2
− 3αr4

(r2 + a2)5/2

]
= 3αa2

(r2 + a2)5/2
,

and on integrating over the sphere, we have

∫
V

∇ · F dV =
∫ √

3a

0

3αa2

(r2 + a2)5/2
4πr2 dr, set r = a tan θ , 0 ≤ θ ≤ π

3 ,

= 12παa2
∫ π/3

0

a2 tan2 θ a sec2 θ

a5 sec5 θ
dθ

= 12πα
∫ π/3

0
sin2 θ cos θ dθ

= 12πα

[
sin3 θ

3

]π/3
0

= 12πα

√
3

8
= 3

√
3πα

2
, as in (a).

The equality of the results in parts (a) and (b) is in accordance with the divergence theorem.

3.25 In a uniform conducting medium with unit relative permittivity, charge density ρ, current density
J, electric field E and magnetic field B, Maxwell’s electromagnetic equations take the form (with
μ0ε0 = c−2)

(i) ∇ · B = 0, (ii) ∇ · E = ρ/ε0,

(iii) ∇ × E + Ḃ = 0, (iv) ∇ × B − (Ė/c2) = μ0J.

The density of stored energy in the medium is given by 1
2 (ε0E

2 + μ−1
0 B

2). Show that the rate of
change of the total stored energy in a volume V is equal to

−
∫
V

J · E dV − 1

μ0

∮
S

(E × B) · dS,

where S is the surface bounding V .

[The first integral gives the ohmic heating loss, whilst the second gives the electromagnetic energy
flux out of the bounding surface. The vector μ−1

0 (E × B) is known as the Poynting vector.]
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The total stored energy is equal to the volume integral of the energy density. Let R be its
rate of change. Then, differentiating under the integral sign, we have

R = d

dt

∫
V

(
ε0

2
E2 + 1

2μ0
B2

)
dV

=
∫
V

(
ε0E · Ė + 1

μ0
B · Ḃ

)
dV .

Now using (iv) and (iii), we have

R =
∫
V

[
ε0E · (−μ0c

2J + c2∇ × B) − 1

μ0
B · (∇ × E)

]
dV

= −
∫
V

E · J dV +
∫
V

[
ε0c

2 E · (∇ × B) − 1

μ0
B · (∇ × E)

]
dV

= −
∫
V

E · J dV − 1

μ0

∫
V

∇ · (E × B) dV

= −
∫
V

E · J dV − 1

μ0

∮
S

(E × B) · dS, by the divergence theorem.

To obtain the penultimate line we used the vector identity

∇ · (a × b) = b · (∇ × a) − a · (∇ × b).

3.27 The vector field F is given by

F = (3x2yz+ y3z+ xe−x)i + (3xy2z+ x3z+ yex)j + (x3y + y3x + xy2z2)k.

Calculate (a) directly, and (b) by using Stokes’ theorem the value of the line integral
∫
L

F · dr,
where L is the (three-dimensional) closed contour OABCDEO defined by the successive vertices
(0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 1), (1, 1, 0), (0, 1, 0), (0, 0, 0).

(a) This calculation is a piece-wise evaluation of the line integral, made up of a series of
scalar products of the length of a straight piece of the contour and the component of F

parallel to it (integrated if that component varies along the particular straight section).
On OA, y = z = 0 and Fx = xe−x ;

I1 =
∫ 1

0
xe−x dx = [−xe−x]1

0 +
∫ 1

0
e−x dx = 1 − 2e−1.

On AB, x = 1 and y = 0 and Fz = 0; the integral I2 is zero.
On BC, x = 1 and z = 1 and Fy = 3y2 + 1 + ey;

I3 =
∫ 1

0
(3y2 + 1 + ey) dy = 1 + 1 + 1

2e.

On CD, x = 1 and y = 1 and Fz = 1 + 1 + z2;

I4 =
∫ 0

1
(1 + 1 + z2) dz = −1 − 1 − 1

3 .
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On DE, y = 1 and z = 0 and Fx = xe−x ;

I5 =
∫ 0

1
xe−x dx = −1 + 2e−1.

On EO, x = z = 0 and Fy = ye0;

I6 =
∫ 0

1
ye0 dy = − 1

2 .

Adding up these six contributions shows that the complete line integral has the value
e

2
− 5

6
.

(b) As a simple sketch shows, the given contour is three-dimensional. However, it is
equivalent to two plane square contours, one OADEO (denoted by S1) lying in the plane
z = 0 and the other ABCDA (S2) lying in the plane x = 1; the latter is traversed in the
negative sense. The common segment AD does not form part of the original contour
but, as it is traversed in opposite senses in the two constituent contours, it (correctly)
contributes nothing to the line integral.

To use Stokes’ theorem we first need to calculate

(∇ × F)x = x3 + 3y2x + 2yxz2 − 3xy2 − x3 = 2yxz2,

(∇ × F)y = 3x2y + y3 − 3x2y − y3 − y2z2 = −y2z2,

(∇ × F)z = 3y2z+ 3x2z+ yex − 3x2z− 3y2z = yex.

Now, S1 has its normal in the positive z-direction and so only the z-component of ∇ × F

is needed in the first surface integral of Stokes’ theorem. Likewise only the x-component
of ∇ × F is needed in the second integral, but its value must be subtracted because of the
sense in which its contour is traversed:∫

OABCDEO
(∇ × F) · dr =

∫
S1

(∇ × F)z dx dy −
∫
S2

(∇ × F)x dy dz

=
∫ 1

0

∫ 1

0
yex dx dy −

∫ 1

0

∫ 1

0
2y × 1 × z2 dy dz

= 1

2
(e − 1) − 2

1

2

1

3
= e

2
− 5

6
.

As they must, the two methods give the same value.



4 Fourier series

4.1 Prove the orthogonality relations that form the basis of the Fourier series representation of functions.

All of the results are based on the values of the integrals

S(n) =
∫ x0+L

x0

sin

(
2πnx

L

)
dx and C(n) =

∫ x0+L

x0

cos

(
2πnx

L

)
dx

for integer values of n. Since in all cases with n ≥ 1 the integrand goes through a whole
number of complete cycles, the “area under the curve” is zero. For the case n = 0, the
integrand in S(n) is zero and so therefore is S(0); for C(0) the integrand is unity and the
value of C(0) is L.

We now apply these observations to integrals whose integrands are the products of two
sinusoidal functions with arguments that are multiples of a fundamental frequency. The
integration interval is equal to the period of that fundamental frequency. To express the
integrands in suitable forms, repeated use will be made of the expressions for the sums
and differences of sinusoidal functions.

We consider first the product of a sine function and a cosine function:

I1 =
∫ x0+L

x0

sin

(
2πrx

L

)
cos

(
2πpx

L

)
=
∫ x0+L

x0

1

2

[
sin

(
2π(r + p)x

L

)
+ sin

(
2π(r − p)x

L

)]
dx

= 1

2
[S(r + p) + S(r − p)] = 0, for all r and p.

Next, we consider the product of two cosines:

I2 =
∫ x0+L

x0

cos

(
2πrx

L

)
cos

(
2πpx

L

)
=
∫ x0+L

x0

1

2

[
cos

(
2π(r + p)x

L

)
+ cos

(
2π(r − p)x

L

)]
dx

= 1

2
[C(r + p) + C(r − p)] = 0,

unless r = p > 0 when I2 = 1
2L. If r and p are both zero, then the integrand is unity and

I2 = L.

56
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Finally, for the product of two sine functions:

I3 =
∫ x0+L

x0

sin

(
2πrx

L

)
sin

(
2πpx

L

)
=
∫ x0+L

x0

1

2

[
cos

(
2π(r − p)x

L

)
− cos

(
2π(r + p)x

L

)]
dx

= 1

2
[C(r − p) − C(r + p)] = 0,

unless r = p > 0 when I3 = 1
2L. If either of r and p is zero, then the integrand is zero

and I3 = 0.
In summary, all of the integrals have zero value except for those in which the integrand

is the square of a single sinusoid. In these cases the integral has value 1
2L for all integers

r (= p) that are > 0. For r (= p) equal to zero, the sin2 integral has value zero and the
cos2 integral has value L.

4.3 Which of the following functions of x could be represented by a Fourier series over the range
indicated?

(a) tanh−1(x), −∞ < x < ∞;
(b) tan x, −∞ < x < ∞;
(c) | sin x |−1/2, −∞ < x < ∞;
(d) cos−1(sin 2x), −∞ < x < ∞;
(e) x sin(1/x), −π−1 < x ≤ π−1, cyclically repeated.

The Dirichlet conditions that a function must satisfy before it can be represented by a
Fourier series are:

(i) the function must be periodic;
(ii) it must be single-valued and continuous, except possibly at a finite number of finite

discontinuities;
(iii) it must have only a finite number of maxima and minima within one period;
(iv) the integral over one period of |f (x)| must converge.

We now test the given functions against these:
(a) tanh−1(x) is not a periodic function, since it is only defined for −1 ≤ x ≤ 1 and

changes (monotonically) from −∞ to +∞ as x varies over this restricted range. This
function therefore fails condition (i) and cannot be represented as a Fourier series.

(b) tan x is a periodic function but its discontinuities are not finite, nor is its absolute
modulus integrable. It therefore fails tests (ii) and (iv) and cannot be represented as a
Fourier series.

(c) | sin x|−1/2 is a periodic function of period π and, although it becomes infinite at
x = nπ , there are no infinite discontinuities. Near x = 0, say, it behaves as |x|−1/2 and its
absolute modulus is therefore integrable. There is only one minimum in any one period.
The function therefore satisfies all four Dirichlet conditions and can be represented as a
Fourier series.
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(d) cos−1(sin 2x) is clearly a multi-valued function and fails condition (ii); it cannot be
represented as a Fourier series.

(e) x sin(1/x), for −π−1 < x ≤ π−1 (cyclically repeated) is clearly cyclic (by defini-
tion), continuous, bounded, single-valued and integrable. However, since sin(1/x) oscil-
lates with unlimited frequency near x = 0, there are an infinite number of maxima and
minima in any region enclosing x = 0. Condition (iii) is therefore not satisfied and the
function cannot be represented as a Fourier series.

4.5 Find the Fourier series of the function f (x) = x in the range −π < x ≤ π . Hence show that

1 − 1

3
+ 1

5
− 1

7
+ · · · = π

4
.

This is an odd function in x and so a sine series with period 2π is appropriate. The
coefficient of sin nx will be given by

bn = 2

2π

∫ π

−π
x sin nx dx

= 1

π

{[
−x cos nx

n

]π
−π

+
∫ π

−π

cos nx

n
dx

}

= 1

π

[
−π(−1)n − (−π)(−1)n

n
+ 0

]
= 2(−1)n+1

n
.

Thus, x = f (x) = 2
∞∑
n=1

(−1)n+1

n
sin nx.

We note in passing that although this series is convergent, as it must be, it has poor (i.e.
n−1) convergence; this can be put down to the periodic version of the function having a
discontinuity (of 2π) at the end of each basic period.

To obtain the sum of a series from such a Fourier representation, we must make a
judicious choice for the value of x – making such a choice is rather more of an art than a
science! Here, setting x = π/2 gives

π

2
= 2

∞∑
n=1

(−1)n+1 sin(nπ/2)

n

= 2
∑
n odd

(−1)n+1(−1)(n−1)/2)

n
,

⇒ π

4
= 1

1
− 1

3
+ 1

5
− 1

7
+ · · · .
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4.7 For the function

f (x) = 1 − x, 0 ≤ x ≤ 1,

a Fourier sine series can be found by continuing it in the range −1 < x ≤ 0 as f (x) = −1 − x.
The function thus has a discontinuity of 2 at x = 0. The series is

1 − x = f (x) = 2

π

∞∑
n=1

sin nπx

n
. (∗)

In order to obtain a cosine series, the continuation has to be f (x) = 1 + x in the range −1 < x ≤ 0.
The function then has no discontinuity at x = 0 and the corresponding series is

1 − x = f (x) = 1

2
+ 4

π2

∑
n odd

cos nπx

n2
. (∗∗)

For these continued functions and series, consider (i) their derivatives and (ii) their integrals. Do they
give meaningful equations? You will probably find it helpful to sketch all the functions involved.

(i) Derivatives
(a) The sine series. With the continuation given, the derivative df/dx has the value −1

everywhere, except at the origin where the function is not defined (though f (0) = 0 seems
the only possible choice), continuous or differentiable. Differentiating the given series (∗)
for f (x) yields

df

dx
= 2

∞∑
n=1

cos nπx.

This series does not converge and the equation is not meaningful.
(b) The cosine series. With the stated continuation for f (x) the derivative is +1 for

−1 < x ≤ 0 and is −1 for 0 ≤ x ≤ 1. It is thus the negative of an odd (about x = 0) unit
square-wave, whose Fourier series is

− 4

π

∑
n odd

sin nπx

n
.

This is confirmed by differentiating (∗∗) term by term to obtain the same result:

df

dx
= 4

π2

∑
n odd

−nπ sin nπx

n2
= − 4

π

∑
n odd

sin nπx

n
.

(ii) Integrals
Since integrals contain an arbitrary constant of integration, we will define F (−1) = 0,

where F (x) is the indefinite integral of f (x).
(a) The sine series. For −1 ≤ x ≤ 0,

Fa(x) = F (−1) +
∫ x

−1
(−1 − x) dx = −x − 1

2x
2 − 1

2 .

For 0 ≤ x ≤ 1,

Fa(x) = F (0) +
∫ x

0
(1 − x) dx = − 1

2 + [
x − 1

2x
2
]x

0 = x − 1
2x

2 − 1
2 .
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This is a continuous function and, like all indefinite integrals, is “smoother” than the
function from which it is derived; this latter property will be reflected in the improved
convergence of the derived series. Integrating term by term we find that its Fourier series
is given by

Fa(x) = 2

π

∫ x

−1

∞∑
n=1

sin nπx ′

n
dx ′

= 2

π

∞∑
n=1

[
−cos nπx ′

πn2

]x
−1

= 2

π2

∞∑
n=1

(−1)n − cos nπx

n2

= −1

6
− 2

π2

∞∑
n=1

cos nπx

n2
,

a series that has n−2 convergence. Here we have used the result that
∑∞
n=1(−1)nn−2 =

−π2/12.
(b) The cosine series. The corresponding indefinite integral in this case is

Fb(x) = x + 1
2x

2 + 1
2 for − 1 ≤ x ≤ 0,

Fb(x) = x − 1
2x

2 + 1
2 for 0 ≤ x ≤ 1,

and the corresponding integrated series, which has even better convergence (n−3), is given
by

1

2
(x + 1) + 4

π3

∑
n odd

sin nπx

n3
.

However, to have a true Fourier series expression, we must substitute a Fourier series for
the x/2 term that arises from integrating the constant ( 1

2 ) in (∗∗). This series must be
that for x/2 across the complete range −1 ≤ x ≤ 1, and so neither (∗) nor (∗∗) can be
rearranged for the purpose. A straightforward calculation (see Problem 4.25 part (b), if
necessary) yields the poorly convergent sine series

x = 2
∞∑
n=1

(−1)n+1

nπ
sin nπx,

and makes the final expression for Fb(x)

1

2
+

∞∑
n=1

(−1)n+1

nπ
sin nπx + 4

π3

∑
n odd

sin nπx

n3
.

As will be apparent from a simple sketch, the first series in the above expression dominates;
all of its terms are present and it has only n−1 convergence. The second series has alternate
terms missing and its convergence ∼ n−3.



61 Fourier series

4.9 Find the Fourier coefficients in the expansion of f (x) = exp x over the range −1 < x < 1. What
value will the expansion have when x = 2?

Since the Fourier series will have period 2, we can say immediately that at x = 2 the series
will converge to the value it has at x = 0, namely 1.

As the function f (x) = exp x is neither even nor odd, its Fourier series will contain
both sine and cosine terms. The cosine coefficients are given by

an = 2

2

∫ 1

−1
ex cos(nπx) dx

= [
cos(nπx) ex

]1
−1 +

∫ 1

−1
nπ sin(nπx) ex dx

= (−1)n(e1 − e−1) + [
nπ sin(nπx) ex

]1
−1

−
∫ 1

−1
n2π2 cos(nπx) ex dx

= 2(−1)n sinh 1 − n2π2an,

⇒ an = 2(−1)n sinh 1

1 + n2π2
.

Similarly, the sine coefficients are given by

bn = 2

2

∫ 1

−1
ex sin(nπx) dx

= [
sin(nπx) ex

]1
−1 −

∫ 1

−1
nπ cos(nπx) ex dx

= 0 + [−nπ cos(nπx) ex
]1
−1 −

∫ 1

−1
n2π2 sin(nπx) ex dx

= 2(−1)n+1nπ sinh 1 − n2π2bn,

⇒ bn = 2(−1)n+1nπ sinh 1

1 + n2π2
.

4.11 Consider the function f (x) = exp(−x2) in the range 0 ≤ x ≤ 1. Show how it should be continued
to give as its Fourier series a series (the actual form is not wanted) (a) with only cosine terms, (b)
with only sine terms, (c) with period 1 and (d) with period 2.

Would there be any difference between the values of the last two series at (i) x = 0, (ii) x = 1?

The function and its four continuations are shown as (a)–(d) in Figure 4.1. Note that in
the range 0 ≤ x ≤ 1, all four graphs are identical.

Where a continued function has a discontinuity at the ends of its basic period, the series
will yield a value at those end-points that is the average of the function’s values on the
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(a) (b) (c) (d)

00 00 11 421

Figure 4.1 The continuations of exp(−x2) in 0 ≤ x ≤ 1 to give: (a) cosine terms
only; (b) sine terms only; (c) period 1; (d) period 2.

two sides of the discontinuity. Thus for continuation (c) both (i) x = 0 and (ii) x = 1 are
end-points, and the value of the series there will be (1 + e−1)/2. For continuation (d),
x = 0 is an end-point, and the series will have value 1

2 (1 + e−4). However, x = 1 is not a
point of discontinuity, and the series will have the expected value of e−1.

4.13 Consider the representation as a Fourier series of the displacement of a string lying in the interval
0 ≤ x ≤ L and fixed at its ends, when it is pulled aside by y0 at the point x = L/4. Sketch the
continuations for the region outside the interval that will

(a) produce a series of period L,
(b) produce a series that is antisymmetric about x = 0, and
(c) produce a series that will contain only cosine terms.
(d) What are (i) the periods of the series in (b) and (c) and (ii) the value of the “a0-term” in (c)?
(e) Show that a typical term of the series obtained in (b) is

32y0

3n2π2
sin
nπ

4
sin
nπx

L
.

Parts (a), (b) and (c) of Figure 4.2 show the three required continuations. Condition (b) will
result in a series containing only sine terms, whilst condition (c) requires the continued
function to be symmetric about x = 0.

(d) (i) The period in both cases, (b) and (c), is clearly 2L.
(ii) The average value of the displacement is found from “the area under the triangular

curve” to be ( 1
2Ly0)/L = 1

2y0, and this is the value of the “a0-term”.
(e) For the antisymmetric continuation there will be no cosine terms. The sine term

coefficients (for a period of 2L) are given by

bn = 2
2

2L

∫ L

0
f (x) sin(nkx) dx, where k = 2π/2L = π/L.

Here use has been made of the antisymmetry about x = 0 of both f (x) and the sine
functions. However, because of the change in analytic form of f (x) between x < L/4 and
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(a)

(b)

(c)

0

0

0

0

L

L

L

L 2L

2L

2L

Figure 4.2 Plucked string with fixed ends: (a)–(c) show possible mathematical
continuations; (b) is antisymmetric about 0 and (c) is symmetric.

x > L/4, the integral will have to be split into two parts. Thus

bn = 2y0

L

[∫ L/4

0

4x

L
sin(nkx) dx +

∫ L

L/4

(
4

3
− 4x

3L

)
sin(nkx) dx

]
= 8y0

3L2

[∫ L/4

0
3x sin(nkx) dx +

∫ L

L/4
(L− x) sin(nkx) dx

]
= 8y0

3L2

{[
−3x cos(nkx)

nk

]L/4
0

+
∫ L/4

0

3 cos(nkx)

nk
dx

+
[
−L cos(nkx)

nk

]L
L/4

+
[
x cos(nkx)

nk

]L
L/4

−
∫ L

L/4

cos(nkx)

nk
dx

}
.

Evaluation of the remaining integrals then yields

bn = 8y0

3L2

{
−3L cos(nπ/4)

4n(π/L)
− 0 +

[
3 sin(nkx)

n2k2

]L/4
0

− L cos(nπ)

n(π/L)

+ L cos(nπ/4)

n(π/L)
+ L cos(nπ)

n(π/L)
− L cos(nπ/4)

4n(π/L)
−
[

sin(nkx)

n2k2

]L
L/4

}

= 8y0

3L2

[
3L2 sin(nπ/4)

n2π2
− L2 sin(nπ)

n2π2
+ L2 sin(nπ/4)

n2π2

]
= 32y0

3n2π2
sin
(nπ

4

)
.

A typical term is therefore

32y0

3n2π2
sin
(nπ

4

)
sin
(nπx
L

)
.

We note that every fourth term (n = 4m with m an integer) will be missing.
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4.15 The Fourier series for the function y(x) = |x| in the range −π ≤ x < π is

y(x) = π

2
− 4

π

∞∑
m=0

cos(2m+ 1)x

(2m+ 1)2
.

By integrating this equation term by term from 0 to x, find the function g(x) whose Fourier series
is

4

π

∞∑
m=0

sin(2m+ 1)x

(2m+ 1)3
.

Using these results, determine, as far as possible by inspection, the form of the functions of which
the following are the Fourier series:

(a)

cos θ + 1

9
cos 3θ + 1

25
cos 5θ + · · · ;

(b)

sin θ + 1

27
sin 3θ + 1

125
sin 5θ + · · · ;

(c)

L2

3
− 4L2

π2

[
cos

πx

L
− 1

4
cos

2πx

L
+ 1

9
cos

3πx

L
− · · ·

]
.

[You may find it helpful to first set x = 0 in the quoted result and so obtain values for So =∑
(2m+ 1)−2 and other sums derivable from it.]

First, define

S =
∑

all n�=0

n−2, So =
∑
odd n

n−2, Se =
∑

even n�=0

n−2.

Clearly, Se = 1
4S.

Now set x = 0 in the quoted result to obtain

0 = π

2
− 4

π

∞∑
m=0

1

(2m+ 1)2
= π

2
− 4

π
So.

Thus, So = π2/8. Further, S = So + Se = So + 1
4S; it follows that S = π2/6 and, by

subtraction, that Se = π2/24.
We now consider the integral of y(x) = |x| from 0 to x.

(i) For x < 0,
∫ x

0
|x| dx =

∫ x

0
(−x) dx = −1

2
x2.

(ii) For x > 0,
∫ x

0
|x| dx =

∫ x

0
x dx = 1

2
x2.

Integrating the series term by term gives

πx

2
− 4

π

∞∑
m=0

sin(2m+ 1)x

(2m+ 1)3
.
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Equating these two results and isolating the series gives

4

π

∞∑
m=0

sin(2m+ 1)x

(2m+ 1)3
= 1

2x(π − x) for x ≥ 0,

= 1
2x(π + x) for x ≤ 0.

Questions (a)–(c) are to be solved largely through inspection and so detailed working is
not (cannot be) given.

(a) Straightforward substitution of θ for x and rearrangement of the original Fourier
series give g1(θ) = 1

4π( 1
2π − |θ |).

(b) Straightforward substitution of θ for x and rearrangement of the integrated Fourier
series give g2(θ) = 1

8πθ(π − |θ |).
(c) This contains only cosine terms and is therefore an even function of x. Its average

value (given by the a0 term) is 1
3L

2. Setting x = 0 gives

f (0) = L2

3
− 4L2

π2

(
1 − 1

4
+ 1

9
− · · ·

)
= L2

3
− 4L2

π2
(So − Se)

= L2

3
− 4L2

π2

(
π2

8
− π2

24

)
= 0.

Setting x = L gives

f (L) = L2

3
− 4L2

π2

(
−1 − 1

4
− 1

9
− · · ·

)
= L2

3
− 4L2

π2
(−S) = L2.

All of this evidence suggests that f (x) = x2 (which it is).

4.17 Find the (real) Fourier series of period 2 for f (x) = cosh x and g(x) = x2 in the range −1 ≤ x ≤ 1.
By integrating the series for f (x) twice, prove that

∞∑
n=1

(−1)n+1

n2π2(n2π2 + 1)
= 1

2

(
1

sinh 1
− 5

6

)
.

Since both functions are even, we need consider only constants and cosine terms. The
series for x2 can be calculated directly or, more easily, by using the result of the final part
of Problem 4.15 with L set equal to 1:

g(x) = x2 = 1

3
+ 4

π2

∞∑
n=1

(−1)n

n2
cosπnx for −1 ≤ x ≤ 1.
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For f (x) = cosh x,

a0 = 2

2
2
∫ 1

0
cosh x dx = 2 sinh(1),

an = 2

2
2
∫ 1

0
cosh x cos(nπx) dx

= 2

[
cosh x sin(nπx)

nπ

]1

0

− 2
∫ 1

0

sinh x sin(nπx)

nπ
dx

= 0 + 2

[
sinh x cos(nπx)

n2π2

]1

0

− an

n2π2
.

Rearranging this gives

an = (−1)n2 sinh(1)

1 + n2π2
.

Thus,

cosh x = sinh(1)

(
1 + 2

∞∑
n=1

(−1)n

1 + n2π2
cos nπx

)
.

We now integrate this expansion twice from 0 to x (anticipating that we will recover a
hyperbolic cosine function plus some additional terms). Since sinh(0) = sin(mπ0) = 0,
the first integration yields

sinh x = sinh(1)

(
x + 2

∞∑
n=1

(−1)n

nπ(1 + n2π2)
sin nπx

)
.

For the second integration we use cosh(0) = cos(mπ0) = 1 to obtain

cosh(x) − 1 = sinh(1)

(
1

2
x2 + 2

∞∑
n=1

(−1)n+1

n2π2(1 + n2π2)
[cos(nπx) − 1]

)
.

However, this expansion must be the same as the original expansion for cosh(x) after a
Fourier series has been substituted for the 1

2 sinh(1)x2 term. The coefficients of cos nπx
in the two expressions must be equal; in particular, the equality of the constant terms
(formally cos nπx with n = 0) requires that

sinh(1) − 1 = 1

2
sinh(1)

1

3
+ 2 sinh(1)

∞∑
n=1

(−1)n+2

n2π2(1 + n2π2)
,

i.e.

∞∑
n=1

(−1)n+1

n2π2(n2π2 + 1)
= 1

2

(
1

sinh 1
− 5

6

)
,

as stated in the question.
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4.19 Demonstrate explicitly for the odd (about x = 0) square-wave function that Parseval’s theorem is
valid. You will need to use the relationship

∞∑
m=0

1

(2m+ 1)2
= π2

8
.

Show that a filter that transmits frequencies only up to 8π/T will still transmit more than 90% of
the power in a square-wave voltage signal of period T .

As stated in the solution to Problem 4.7, and in virtually every textbook, the odd square-
wave function has only the odd harmonics present in its Fourier sine series representation.
The coefficient of the sin(2m+ 1)πx term is

b2m+1 = 4

(2m+ 1)π
.

For a periodic function of period L whose complex Fourier coefficients are cr , or whose
cosine and sine coefficients are ar and br , respectively, Parseval’s theorem for one function
states that

1

L

∫ x0+L

x0

|f (x)|2dx =
∞∑

r=−∞
|cr |2

= (
1
2a0
)2 + 1

2

∞∑
r=1

(a2
r + b2

r ),

and therefore requires in this particular case, in which all the ar are zero and L = 2, that

1

2

∞∑
m=0

16

(2m+ 1)2π2
= 1

2

∞∑
n=1

b2
n = 1

2

∫ 1

−1
| ± 1|2 dx = 1.

Since
∞∑
m=0

1

(2m+ 1)2
= π2

8
,

this reduces to the identity

1

2

16

π2

π2

8
= 1.

The power at any particular frequency in an electrical signal is proportional to the square
of the amplitude at that frequency, i.e. to |bn|2 in the present case. If the filter passes only
frequencies up to 8π/T = 4ω, then only the n = 1 and the n = 3 components will be
passed. They contribute a fraction(

1

1
+ 1

9

)
÷ π2

8
= 0.901

of the total, i.e. more than 90%.
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4.21 Find the complex Fourier series for the periodic function of period 2π defined in the range −π ≤
x ≤ π by y(x) = cosh x. By setting x = 0 prove that

∞∑
n=1

(−1)n

n2 + 1
= 1

2

( π

sinhπ
− 1

)
.

We first note that, although cosh x is an even function of x, e−inx is neither even nor
odd. Consequently it will not be possible to convert the integral into one over the range
0 ≤ x ≤ π . The complex Fourier coefficients cn (−∞ < n < ∞) are therefore calculated
as

cn = 1

2π

∫ π

−π
cosh x e−inx dx

= 1

2π

∫ π

−π

1

2

(
e−inx+x + e−inx−x) dx

= 1

4π

[
e(1−in)x

1 − in
]π

−π
+ 1

4π

[
e(−1−in)x

−1 − in
]π

−π

= 1

4π

(1 + in)(−1)n(2 sinhπ) − (1 − in)(−1)n(−2 sinhπ)

1 + n2

= (−1)n4 sinh(π)

4π(1 + n2)
.

Thus,

cosh x =
∞∑

n=−∞

(−1)n sinhπ

π(1 + n2)
einx.

We now set x = 0 on both sides of the equation:

1 =
∞∑

n=−∞

(−1)n sinhπ

π(1 + n2)
,

⇒
∞∑

n=−∞

(−1)n

1 + n2
= π

sinhπ
.

Separating out the n = 0 term, and noting that (−1)n = (−1)−n, now gives

1 + 2
∞∑
n=1

(−1)n

1 + n2
= π

sinhπ

and hence the stated result.
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4.23 The complex Fourier series for the periodic function generated by f (t) = sin t for 0 ≤ t ≤ π/2,
and repeated in every subsequent interval of π/2, is

sin(t) = 2

π

∞∑
n=−∞

4ni − 1

16n2 − 1
ei4nt .

Apply Parseval’s theorem to this series and so derive a value for the sum of the series

17

(15)2
+ 65

(63)2
+ 145

(143)2
+ · · · + 16n2 + 1

(16n2 − 1)2
+ · · · .

Applying Parseval’s theorem (see Solution 4.19) in a straightforward manner to the given
equation:

2

π

∫ π/2

0
sin2(t) dt = 4

π2

∞∑
n=−∞

4ni − 1

16n2 − 1

−4ni − 1

16n2 − 1
,

2

π

1

2

π

2
= 4

π2

∞∑
n=−∞

16n2 + 1

(16n2 − 1)2
,

π2

8
= 1 + 2

∞∑
n=1

16n2 + 1

(16n2 − 1)2
,

⇒
∞∑
n=1

16n2 + 1

(16n2 − 1)2
= π2 − 8

16
.

To obtain the second line we have used the standard result that the average value of the
square of a sinusoid is 1/2.

4.25 Show that Parseval’s theorem for two real functions whose Fourier expansions have cosine and sine
coefficients an, bn and αn, βn takes the form

1

L

∫ L

0
f (x)g(x) dx = 1

4
a0α0 + 1

2

∞∑
n=1

(anαn + bnβn).

(a) Demonstrate that for g(x) = sinmx or cosmx this reduces to the definition of the Fourier
coefficients.

(b) Explicitly verify the above result for the case in which f (x) = x and g(x) is the square-wave
function, both in the interval −1 ≤ x ≤ 1.

[Note that g = g∗, and it is the integral of fg∗ that will have to be formally evaluated using the
complex Fourier series representations of the two functions.]

If cn and γn are the complex Fourier coefficients for the real functions f (x) and g(x) that
have real Fourier coefficients an, bn and αn, βn, respectively, then

cn = 1
2 (an − ibn) and γn = αn − iβn,

c−n = 1
2 (an + ibn) and γ−n = αn + iβn.
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The two functions can be written as

f (x) =
∞∑

n=−∞
cn exp

(
2π inx

L

)
,

g(x) =
∞∑

n=−∞
γn exp

(
2π inx

L

)
. (∗)

Thus,

f (x)g∗(x) =
∞∑

n=−∞
cng

∗(x) exp

(
2π inx

L

)
.

Integrating this equation with respect to x over the interval (0, L) and dividing by L, we
find

1

L

∫ L

0
f (x)g∗(x) dx =

∞∑
n=−∞

cn
1

L

∫ L

0
g∗(x) exp

(
2π inx

L

)
dx

=
∞∑

n=−∞
cn

[
1

L

∫ L

0
g(x) exp

(−2π inx

L

)
dx

]∗

=
∞∑

n=−∞
cnγ

∗
n .

To obtain the last line we have used the inverse of relationship (∗).
Dividing up the sum over all n into a sum over positive n, a sum over negative n and

the n = 0 term, and then substituting for cn and γn, gives

1

L

∫ L

0
f (x)g∗(x) dx = 1

4

∞∑
n=1

(an − ibn)(αn + iβn)

+ 1

4

∞∑
n=1

(an + ibn)(αn − iβn) + 1

4
a0α0

= 1

4

∞∑
n=1

(2anαn + 2bnβn) + 1

4
a0α0

= 1

2

∞∑
n=1

(anαn + bnβn) + 1

4
a0α0,

i.e. the stated result.
(a) For g(x) = sinmx, βm = 1 and all other αn and βn are zero. The above equation

then reduces to

1

L

∫ L

0
f (x) sin(mx) dx = 1

2
bn,

which is the normal definition of bn. Similarly, setting g(x) = cosmx leads to the normal
definition of an.
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(b) For the function f (x) = x in the interval −1 < x ≤ 1, the sine coefficients are

bn = 2

2

∫ 1

−1
x sin nπx dx

= 2
∫ 1

0
x sin nπx dx

= 2

{[−x cos nπx

nπ

]1

0

+
∫ 1

0

cos nπx

nπ
dx

}

= 2

{
(−1)n+1

nπ
+
[sin nπx

n2π2

]1

0

}
= 2(−1)n+1

nπ
.

As stated in Problem 4.19, for the (antisymmetric) square-wave function βn = 4/(nπ) for
odd n and βn = 0 for even n.

Now the integral

1

L

∫ L

0
f (x)g∗(x) dx = 1

2

[∫ 0

−1
(−1)x dx +

∫ 1

0
(+1)x dx

]
= 1

2
,

whilst

1

2

∞∑
n=1

bnβn = 1

2

∑
n odd

4

nπ

2(−1)n+1

nπ
= 4

π2

∑
n odd

1

n2
= 4

π2

π2

8
= 1

2
.

The value of the sum
∑
n−2 for odd n is taken from So in the solution to Problem 4.15.

Thus, the two sides of the equation agree, verifying the validity of Parseval’s theorem in
this case.
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5.1 Find the Fourier transform of the function f (t) = exp(−|t |).
(a) By applying Fourier’s inversion theorem prove that

π

2
exp(−|t |) =

∫ ∞

0

cosωt

1 + ω2
dω.

(b) By making the substitution ω = tan θ , demonstrate the validity of Parseval’s theorem for this
function.

As the function |t | is not representable by the same integrable function throughout the
integration range, we must divide the range into two sections and use different explicit
expressions for the integrand in each:

f̃ (ω) = 1√
2π

∫ ∞

−∞
e−|t | e−iωt dt

= 1√
2π

∫ ∞

0
e−(1+iω)t dt + 1√

2π

∫ 0

−∞
e(1−iω)t dt

= 1√
2π

(
1

1 + iω + 1

1 − iω
)

= 1√
2π

2

1 + ω2
.

(a) Substituting this result into the inversion theorem gives

exp−|t | = 1√
2π

∫ ∞

−∞

2√
2π (1 + ω2)

eiωt dω.

Equating the real parts on the two sides of this equation and noting that the resulting
integrand is symmetric in ω, shows that

exp−|t | = 2

π

∫ ∞

0

cosωt

(1 + ω2)
dω,

as given in the question.
(b) For Parseval’s theorem, which states that∫ ∞

−∞
|f (t)|2 dt =

∫ ∞

−∞
|f̃ (ω)|2 dω,

72
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we first evaluate ∫ ∞

−∞
|f (t)|2 dt =

∫ 0

−∞
e2t dt +

∫ ∞

0
e−2t dt

= 2
∫ ∞

0
e−2t dt

= 2

[
e−2t

−2

]∞

0

= 1.

The second integral, over ω, is∫ ∞

−∞
|f̃ (ω)|2 dω = 2

∫ ∞

0

2

π(1 + ω2)2
dω, set ω equal to tan θ ,

= 4

π

∫ π/2

0

1

sec4 θ
sec2 θ dθ

= 4

π

∫ π/2

0
cos2 θ dθ = 4

π

1

2

π

2
= 1,

i.e. the same as the first one, thus verifying the theorem for this function.

5.3 Find the Fourier transform of H (x − a)e−bx , where H (x) is the Heaviside function.

The Heaviside function H (x) has value 0 for x < 0 and value 1 for x ≥ 0. Write H (x −
a)e−bx = h(x) with b assumed > 0. Then,

h̃(k) = 1√
2π

∫ ∞

−∞
H (x − a)e−bx e−ikx dx

= 1√
2π

∫ ∞

a

e−bx−ikx dx

= 1√
2π

[
e−bx−ikx

−b − ik
]∞

a

= 1√
2π

e−bae−ika

b + ik = e−ika
e−ba√

2π

b − ik
b2 + k2

.

This same result could be obtained by setting y = x − a, finding the transform of e−bae−by ,
and then using the translation property of Fourier transforms.

5.5 By taking the Fourier transform of the equation

d2φ

dx2
−K2φ = f (x),

show that its solution, φ(x), can be written as

φ(x) = −1√
2π

∫ ∞

−∞

eikx f̃ (k)

k2 +K2
dk,

where f̃ (k) is the Fourier transform of f (x).
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We take the Fourier transform of each term of

d2φ

dx2
−K2φ = f (x)

to give

1√
2π

∫ ∞

−∞

d2φ

dx2
e−ikx dx −K2φ̃(k) = 1√

2π

∫ ∞

−∞
f (x) e−ikx dx.

Since φ must vanish at ±∞, the first term can be integrated twice by parts with no
contributions at the end-points. This gives the full equation as

−k2φ̃(k) −K2φ̃(k) = f̃ (k).

Now, by the Fourier inversion theorem,

φ(x) = 1√
2π

∫ ∞

−∞
φ̃(k) eikx dk

= − 1√
2π

∫ ∞

−∞

f̃ (k) eikx

k2 +K2
dk.

Note
The principal advantage of this Fourier approach to a set of one or more linear differen-
tial equations is that the differential operators act only on exponential functions whose
exponents are linear in x. This means that the derivatives are no more than multiples of
the original function and what were originally differential equations are turned into alge-
braic ones. As the differential equations are linear the algebraic equations can be solved
explicitly for the transforms of their solutions, and the solutions themselves may then be
found using the inversion theorem. The “price” to be paid for this great simplification is
that the inversion integral may not be tractable analytically, but, as a last resort, numerical
integration can always be employed.

5.7 Find the Fourier transform of the unit rectangular distribution

f (t) =
{

1 |t | < 1,
0 otherwise.

Determine the convolution of f with itself and, without further integration, determine its transform.
Deduce that ∫ ∞

−∞

sin2 ω

ω2
dω = π,

∫ ∞

−∞

sin4 ω

ω4
dω = 2π

3
.

The function to be transformed is unity in the range −1 ≤ t ≤ 1 and so

f̃ (ω) = 1√
2π

∫ 1

−1
1 e−iωt dt = 1√

2π

[
e−iω − eiω

−iω
]

= 2 sinω√
2πω

.
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Denote by p(t) the convolution of f with itself and, in the second line of the calculation
below, change the integration variable from s to u = t − s:

p(t) ≡
∫ ∞

−∞
f (t − s)f (s) ds =

∫ 1

−1
f (t − s) 1 ds

=
∫ t−1

t+1
f (u)(−du) =

∫ t+1

t−1
f (u)du.

It follows that

p(t) =
{

(t + 1) − (−1) 0 > t > −2

1 − (t − 1) 2 > t > 0
=
{

2 − |t | 0 < |t | < 2,

0 otherwise.

The transform of p is given directly by the convolution theorem [which states that if h(t),
given by h = f ∗ g, is the convolution of f and g, then h̃ = √

2π f̃ g̃] as

p̃(ω) =
√

2π
2 sinω√

2πω

2 sinω√
2πω

= 4√
2π

sin2 ω

ω2
.

Noting that the two integrals to be evaluated have as integrands the squares of functions
that are essentially the known transforms of simple functions, we are led to apply Parseval’s
theorem to each. Applying the theorem to f (t) and p(t) yields∫ ∞

−∞

4 sin2 ω

2πω2
dω =

∫ ∞

−∞
|f (t)|2 dt = 2 ⇒

∫ ∞

−∞

sin2 ω

ω2
= π,

and
∫ ∞

−∞

16

2π

sin4 ω

ω4
dω =

∫ 0

−2
(2 + t)2 dt +

∫ 2

0
(2 − t)2 dt

=
[

(2 + t)3

3

]0

−2

−
[

(2 − t)3

3

]2

0

= 8

3
+ 8

3
,

⇒
∫ ∞

−∞

sin4 ω

ω4
dω = 2π

3
.

5.9 By finding the complex Fourier series for its LHS show that either side of the equation

∞∑
n=−∞

δ(t + nT ) = 1

T

∞∑
n=−∞

e−2πnit/T

can represent a periodic train of impulses. By expressing the function f (t + nX), in which X is a
constant, in terms of the Fourier transform f̃ (ω) of f (t), show that

∞∑
n=−∞

f (t + nX) =
√

2π

X

∞∑
n=−∞

f̃

(
2nπ

X

)
e2πnit/X.

This result is known as the Poisson summation formula.
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Denote by g(t) the periodic function
∑∞
n=−∞ δ(t + nT ) with 2π/T = ω. Its complex

Fourier coefficients are given by

cn = 1

T

∫ T

0
g(t) e−inωt dt = 1

T

∫ T

0
δ(t) e−inωt dt = 1

T
.

Thus, by the inversion theorem, its Fourier series representation is

g(t) =
∞∑

n=−∞

1

T
einωt =

∞∑
n=−∞

1

T
e−inωt =

∞∑
n=−∞

1

T
e−i2nπt/T ,

showing that both this sum and the original one are representations of a periodic train of
impulses.

In this result,

∞∑
n=−∞

δ(t + nT ) = 1

T

∞∑
n=−∞

e−2πnit/T ,

we now make the changes of variable t → ω, n → −n and T → 2π/X and obtain

∞∑
n=−∞

δ

(
ω − 2πn

X

)
= X

2π

∞∑
n=−∞

einXω. (∗)

If we denote f (t + nX) by fnX(t) then, by the translation theorem, we have f̃nX(ω) =
einXωf̃ (ω) and

f (t + nX) = 1√
2π

∫ ∞

−∞
f̃nX(ω) eiωt dω

= 1√
2π

∫ ∞

−∞
einXωf̃ (ω) eiωt dω,

∞∑
n=−∞

f (t + nX) = 1√
2π

∫ ∞

−∞
f̃ (ω) eiωt

∞∑
n=−∞

einXω dω, use (∗) above,

= 1√
2π

∫ ∞

−∞
f̃ (ω) eiωt

2π

X

∞∑
n=−∞

δ

(
ω − 2πn

X

)
dω

=
√

2π

X

∞∑
n=−∞

f̃

(
2πn

X

)
ei2πnt/X.

In the final line we have made use of the properties of a δ-function when it appears as a
factor in an integrand.
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5.11 For a function f (t) that is non-zero only in the range |t | < T/2, the full frequency spectrum f̃ (ω)
can be constructed, in principle exactly, from values at discrete sample points ω = n(2π/T ). Prove
this as follows.

(a) Show that the coefficients of a complex Fourier series representation of f (t) with period T can
be written as

cn =
√

2π

T
f̃

(
2πn

T

)
.

(b) Use this result to represent f (t) as an infinite sum in the defining integral for f̃ (ω), and hence
show that

f̃ (ω) =
∞∑

n=−∞
f̃

(
2πn

T

)
sinc

(
nπ − ωT

2

)
,

where sinc x is defined as (sin x)/x.

(a) The complex coefficients for the Fourier series for f (t) are given by

cn = 1

T

∫ T/2

−T/2
f (t) e−i2πnt/T dt.

But, we also know that the Fourier transform of f (t) is given by

f̃ (ω) = 1√
2π

∫ ∞

−∞
f (t) e−iωt dt = 1√

2π

∫ T/2

−T/2
f (t) e−iωt dt.

Comparison of these two equations shows that cn = 1
T

√
2πf̃

(
2πn
T

)
.

(b) Using the Fourier series representation of f (t), the frequency spectrum at a general
frequency ω can now be constructed as

f̃ (ω) = 1√
2π

∫ T/2

−T/2
f (t) e−iωt dt

= 1√
2π

∫ T/2

−T/2

[ ∞∑
n=−∞

1

T

√
2πf̃

(
2πn

T

)
ei2πnt/T

]
e−iωt dt

= 1

T

∞∑
n=−∞

f̃

(
2πn

T

) 2 sin

(
2πn

2
− ωT

2

)
2πn

T
− ω

=
∞∑

n=−∞
f̃

(
2πn

T

)
sinc

(
nπ − ωT

2

)
.

This final formula gives a prescription for calculating the frequency spectrum f̃ (ω) of
f (t) for any ω, given the spectrum at the (admittedly infinite number of) discrete values
ω = 2πn/T . The sinc functions give the weights to be assigned to the known discrete
values; of course, the weights vary as ω is varied, with, as expected, the largest weights
for the nth contribution occurring when ω is close to 2πn/T .
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5.13 Find the Fourier transform specified in part (a) and then use it to answer part (b).

(a) Find the Fourier transform of

f (γ, p, t) =
{
e−γ t sinpt t > 0,

0 t < 0,

where γ (> 0) and p are constant parameters.
(b) The current I (t) flowing through a certain system is related to the applied voltage V (t) by the

equation

I (t) =
∫ ∞

−∞
K(t − u)V (u) du,

where

K(τ ) = a1f (γ1, p1, τ ) + a2f (γ2, p2, τ ).

The function f (γ, p, t) is as given in part (a) and all the ai, γi (> 0) and pi are fixed parameters.
By considering the Fourier transform of I (t), find the relationship that must hold between a1

and a2 if the total net chargeQ passed through the system (over a very long time) is to be zero
for an arbitrary applied voltage.

(a) Write the given sine function in terms of exponential functions. Its Fourier transform
is then easily calculated as

f̃ (ω, γ, p) = 1√
2π

∫ ∞

0

e(−γ−iω+ip)t − e(−γ−iω−ip)t

2i
dt

= 1√
2π

1

2i

( −1

−γ − iω + ip + 1

−γ − iω − ip
)

= 1√
2π

p

(γ + iω)2 + p2
.

(b) Since the current is given by the convolution

I (t) =
∫ ∞

−∞
K(t − u)V (u) du,

the convolution theorem implies that the Fourier transforms of I , K and V are related by
Ĩ (ω) = √

2π K̃(ω) Ṽ (ω) with, from part (a),

K̃(ω) = 1√
2π

[
a1p1

(γ1 + iω)2 + p2
1

+ a2p2

(γ2 + iω)2 + p2
2

]
.

Now, by expressing I (t ′) in its Fourier integral form, we can write

Q(∞) =
∫ ∞

−∞
I (t ′) dt ′ =

∫ ∞

−∞
dt ′
∫ ∞

−∞

1√
2π
Ĩ (ω) eiωt

′
dω.
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But
∫∞
−∞ eiωt

′
dt ′ = 2πδ(ω) and so

Q(∞) =
∫ ∞

−∞

1√
2π
Ĩ (ω) 2πδ(ω) dω

= 2π√
2π
Ĩ (0) =

√
2π

√
2π K̃(0) Ṽ (0)

= 2π
1√
2π

[
a1p1

γ 2
1 + p2

1

+ a2p2

γ 2
2 + p2

2

]
Ṽ (0).

ForQ(∞) to be zero for an arbitrary V (t), we must have
a1p1

γ 2
1 + p2

1

+ a2p2

γ 2
2 + p2

2

= 0,

and so this is the required relationship.

5.15 A linear amplifier produces an output that is the convolution of its input and its response function.
The Fourier transform of the response function for a particular amplifier is

K̃(ω) = iω√
2π(α + iω)2

.

Determine the time variation of its output g(t) when its input is the Heaviside step function.

This result is immediate, since differentiating the definition of a Fourier transform (under
the integral sign) gives

i
df̃ (ω)

dω
= i√

2π

∂

∂ω

(∫ ∞

−∞
f (t) e−iωt dt

)
= −i2√

2π

∫ ∞

−∞
tf (t) e−iωt dt,

i.e. the transform of tf (t).
Since the amplifier’s output is the convolution of its input and response function, we will

need the Fourier transforms of both to determine that of its output (using the convolution
theorem). We already have that of its response function.

The input Heaviside step function H (t) has a Fourier transform

H̃ (ω) = 1√
2π

∫ ∞

−∞
H (t) e−iωt dt = 1√

2π

∫ ∞

0
e−iωt dt = 1√

2π

1

iω
.

Thus, using the convolution theorem,

g̃(ω) =
√

2π
iω√

2π (α + iω)2

1√
2π

1

iω

= 1√
2π

1

(α + iω)2

= i√
2π

∂

∂ω

(
1

α + iω
)

= i
∂

∂ω

{
F
[
e−αtH (t)

]}
= F

[
te−αtH (t)

]
,



80 Integral transforms

where we have used the “library” result to recognize the transform of a decaying expo-
nential in the penultimate line and the result proved above in the final step. The output of
the amplifier is therefore of the form g(t) = te−αt for t > 0 when its input takes the form
of the Heaviside step function.

5.17 [This problem can only be attempted if Problem 5.16 of the main text has been studied.]

For some ion–atom scattering processes, the spherically symmetric potential V (r) of the previous
problem may be approximated by V = |r1 − r2|−1 exp(−μ|r1 − r2|). Show, using the result of the
worked example in Subsection 5.1.9, that the probability that the ion will scatter from, say, p1 to p′

1
is proportional to (μ2 + k2)−2, where k = |k| and k is as given in part (c) of the previous problem.

As shown in Problem 5.16, the Fourier transform of a spherically symmetric potential
V (r) is given by

Ṽ (k) = 1

(2π)3/2k

∫ ∞

0
4πV (r)r sin kr dr.

The ion–atom interaction potential in this particular example is V (r) = r−1 exp(−μr). As
this is spherically symmetric, we may apply the result to it. Substituting for V (r) gives

M ∝ Ṽ (k) ∝ 1

k

∫ ∞

0

e−μr

r
r sin kr dr

= 1

k
Im

∫ ∞

0
e−μr+ikr dr

= 1

k
Im

[ −1

−μ+ ik
]

= 1

k

k

μ2 + k2
.

Since the probability of the ion scattering from p1 to p′
1 is proportional to the modulus

squared ofM , the probability is ∝ |M|2 ∝ (μ2 + k2)−2.

5.19 Find the Laplace transforms of t−1/2 and t1/2, by setting x2 = ts in the result∫ ∞

0
exp(−x2) dx = 1

2

√
π.

Setting x2 = st , and hence 2x dx = s dt and dx = s dt/(2
√
st), we obtain∫ ∞

0
e−st

√
s

2
t−1/2 dt =

√
π

2
,

⇒ L
[
t−1/2 ] ≡

∫ ∞

0
t−1/2 e−st dt =

√
π

s
.
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Integrating the LHS of this result by parts yields

[
e−st 2t1/2

]∞
0 −

∫ ∞

0
(−s) e−st 2t1/2 dt =

√
π

s
.

The first term vanishes at both limits, whilst the second is a multiple of the required
Laplace transform of t1/2. Hence,

L
[
t1/2

] ≡
∫ ∞

0
e−st t1/2 dt = 1

2s

√
π

s
.

5.21 Use the properties of Laplace transforms to prove the following without evaluating any Laplace
integrals explicitly:

(a) L
[
t5/2

] = 15
8

√
πs−7/2;

(b) L [ (sinh at)/t ] = 1
2 ln [(s + a)/(s − a)] , s > |a|;

(c) L [ sinh at cos bt ] = a(s2 − a2 + b2)[(s − a)2 + b2]−1[(s + a)2 + b2]−1.

(a) We use the general result for Laplace transforms that

L
[
tnf (t)

] = (−1)n
dnf̄ (s)

dsn
, for n = 1, 2, 3, . . . .

If we take n = 2, then f (t) becomes t1/2, for which we found the Laplace transform in
Problem 5.19:

L
[
t5/2

] = L
[
t2 t1/2

] = (−1)2 d
2

ds2

(√
πs−3/2

2

)
=

√
π

2

(
−3

2

)(
−5

2

)
s−7/2 = 15

√
π

8
s−7/2.

(b) Here we apply a second general result for Laplace transforms which states that

L
[
f (t)

t

]
=
∫ ∞

s

f̄ (u) du,

provided limt→0[f (t)/t] exists, which it does in this case.

L
[

sinh(at)

t

]
=
∫ ∞

s

a

u2 − a2
du, u > |a|,

= 1

2

∫ ∞

s

(
1

u− a − 1

u+ a
)
du

= 1

2
ln

(
s + a
s − a

)
, s > |a|.
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(c) The translation property of Laplace transforms can be used here to deal with the
sinh(at) factor, as it can be expressed in terms of exponential functions:

L [ sinh(at) cos(bt) ] = L
[

1
2e
at cos(bt)

]− L
[

1
2e

−at cos(bt)
]

= 1

2

s − a
(s − a)2 + b2

− 1

2

s + a
(s + a)2 + b2

= 1

2

(s2 − a2)2a + 2ab2

[(s − a)2 + b2][(s + a)2 + b2]

= a(s2 − a2 + b2)

[(s − a)2 + b2][(s + a)2 + b2]
.

The result is valid for s > |a|.

5.23 This problem is concerned with the limiting behavior of Laplace transforms.

(a) If f (t) = A+ g(t), where A is a constant and the indefinite integral of g(t) is bounded as its
upper limit tends to ∞, show that

lim
s→0

sf̄ (s) = A.

(b) For t > 0, the function y(t) obeys the differential equation

d2y

dt2
+ a dy

dt
+ by = c cos2 ωt,

where a, b and c are positive constants. Find ȳ(s) and show that sȳ(s) → c/2b as s → 0.
Interpret the result in the t-domain.

(a) From the definition,

f̄ (s) =
∫ ∞

0
[A+ g(t)] e−st dt

=
[
Ae−st

−s
]∞

0

+ lim
T→∞

∫ T

0
g(t) e−st dt,

sf̄ (s) = A+ s lim
T→∞

∫ T

0
g(t) e−st dt.

Now, for s ≥ 0, ∣∣∣∣ lim
T→∞

∫ T

0
g(t) e−st dt

∣∣∣∣ ≤
∣∣∣∣ lim
T→∞

∫ T

0
g(t) dt

∣∣∣∣ < B, say.

Thus, taking the limit s → 0,

lim
s→0

sf̄ (s) = A± lim
s→0

sB = A.

(b) We will need

L
[

cos2 ωt
] = L

[
1
2 cos 2ω + 1

2

] = s

2(s2 + 4ω2)
+ 1

2s
.
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Taking the transform of the differential equation yields

−y ′(0) − sy(0) + s2ȳ + a[−y(0) + sȳ] + bȳ = c

[
s

2(s2 + 4ω2)
+ 1

2s

]
.

This can be rearranged as

sȳ =
c

(
s2

2(s2 + 4ω2)
+ 1

2

)
+ sy ′(0) + asy(0) + s2y(0)

s2 + as + b .

In the limit s → 0, this tends to (c/2)/b = c/(2b), a value independent of that of a and
the initial values of y and y ′.

The s = 0 component of the transform corresponds to long-term values, when a steady
state has been reached and rates of change are negligible. With the first two terms of the
differential equation ignored, it reduces to by = c cos2 ωt , and, as the average value of
cos2 ωt is 1

2 , the solution is the more or less steady value of y = 1
2c/b.

5.25 The function fa(x) is defined as unity for 0 < x < a and zero otherwise. Find its Laplace transform
f̄ a(s) and deduce that the transform of xfa(x) is

1

s2

[
1 − (1 + as)e−sa] .

Write fa(x) in terms of Heaviside functions and hence obtain an explicit expression for

ga(x) =
∫ x

0
fa(y)fa(x − y) dy.

Use the expression to write ḡa(s) in terms of the functions f̄ a(s) and f̄ 2a(s), and their derivatives,
and hence show that ḡa(s) is equal to the square of f̄ a(s), in accordance with the convolution
theorem.

From their definitions,

f̄a(s) =
∫ a

0
1 e−sx dx = 1

s
(1 − e−sa),∫ a

0
x fa(x) e−sx dx = −df̄a

ds
= 1

s2
(1 − e−sa) − a

s
e−sa

= 1

s2

[
1 − (1 + as)e−sa] . (∗)

In terms of Heaviside functions,

f (x) = H (x) −H (x − a),

and so the expression for ga(x) = ∫ x
0 fa(y)fa(x − y) dy is∫ ∞

−∞
[H (y) −H (y − a)] [H (x − y) −H (x − y − a)] dy.

This can be expanded as the sum of four integrals, each of which contains the common
factors H (y) and H (x − y), implying that, in all cases, unless x is positive and greater
than y, the integral has zero value. The other factors in the four integrands are generated
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analogously to the terms of the expansion (a − b)(c − d) = ac − ad − bc + bd:∫ ∞

−∞
H (y)H (x − y) dy

−
∫ ∞

−∞
H (y)H (x − y − a) dy

−
∫ ∞

−∞
H (y − a)H (x − y) dy

+
∫ ∞

−∞
H (y − a)H (x − y − a) dy.

In all four integrals the integrand is either 0 or 1 and the value of each integral is equal to
the length of the y-interval in which the integrand is non-zero.
� The first integral requires 0 < y < x and therefore has value x for x > 0.
� The second integral requires 0 < y < x − a and therefore has value x − a for x > a

and 0 for x < a.
� The third integral requires a < y < x and therefore has value x − a for x > a and 0

for x < a.
� The final integral requires a < y < x − a and therefore has value x − 2a for x > 2a

and 0 for x < 2a.

Collecting these together:
x < 0 ga(x) = 0 − 0 − 0 + 0 = 0,
0 < x < a ga(x) = x − 0 − 0 + 0 = x,

a < x < 2a ga(x) = x − (x − a) − (x − a) + 0 = 2a − x,
2a < x ga(x) = x − (x − a) − (x − a) + (x − 2a) = 0.

Consequently, the transform of ga(x) is given by

ḡa(s) =
∫ a

0
xe−sx dx +

∫ 2a

a

(2a − x)e−sx dx

= −
∫ 2a

0
xe−sx dx + 2

∫ a

0
xe−sx dx + 2a

∫ 2a

a

e−sx dx

= − 1

s2

[
1 − (1 + 2as)e−2sa]+ 2

s2

[
1 − (1 + as)e−sa]

+ 2a

s
(e−sa − e−2sa)

= 1

s2
(1 − 2e−sa + e−2sa)

= 1

s2
(1 − e−as)2 = [f̄a(s)]

2,

which is as expected. In order to adjust the integral limits in the second line, we both
added and subtracted ∫ a

0
(−x)e−sx dx.

In the third line we used the result (∗) twice, once as it stands and once with a replaced
by 2a.



6 Higher-order ordinary differential equations

6.1 A simple harmonic oscillator, of mass m and natural frequency ω0, experiences an oscillating
driving force f (t) = ma cosωt . Therefore, its equation of motion is

d2x

dt2
+ ω2

0x = a cosωt,

where x is its position. Given that at t = 0 we have x = dx/dt = 0, find the function x(t). Describe
the solution if ω is approximately, but not exactly, equal to ω0.

To find the full solution given the initial conditions, we need the complete general solution
made up of a complementary function (CF) and a particular integral (PI). The CF is
clearly of the form A cosω0t + B sinω0t and, in view of the form of the RHS, we try
x(t) = C cosωt +D sinωt as a PI. Substituting this gives

−ω2C cosωt − ω2D sinωt + ω2
0C cosωt + ω2

0D sinωt = a cosωt.

Equating coefficients of the independent functions cosωt and sinωt requires that

−ω2C + ω2
0C = a ⇒ C = a

ω2
0 − ω2

,

−ω2D + ω2
0D = 0 ⇒ D = 0.

Thus, the general solution is

x(t) = A cosω0t + B sinω0t + a

ω2
0 − ω2

cosωt.

The initial conditions impose the requirements

x(0) = 0 ⇒ 0 = A+ a

ω2
0 − ω2

,

and ẋ(0) = 0 ⇒ 0 = ω0B.

Incorporating the implications of these into the general solution gives

x(t) = a

ω2
0 − ω2

(cosωt − cosω0t)

= 2a sin[ 1
2 (ω + ω0)t ] sin[ 1

2 (ω0 − ω)t ]

(ω0 + ω)(ω0 − ω)
.

For ω0 − ω = ε with |ε|t � 1,

x(t) ≈ 2a sinω0t
1
2εt

2ω0 ε
= at

2ω0
sinω0t.

85
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Thus, for moderate t , x(t) is a sine wave of linearly increasing amplitude.
Over a long time, x(t) will vary between ±2a/(ω2

0 − ω2) with sizeable intervals between
the two extremes, i.e. it will show beats of amplitude 2a/(ω2

0 − ω2).

6.3 The theory of bent beams shows that at any point in the beam the “bending moment” is given
by K/ρ, where K is a constant (that depends upon the beam material and cross-sectional shape)
and ρ is the radius of curvature at that point. Consider a light beam of length L whose ends,
x = 0 and x = L, are supported at the same vertical height and which has a weight W suspended
from its center. Verify that at any point x (0 ≤ x ≤ L/2 for definiteness) the net magnitude of the
bending moment (bending moment = force × perpendicular distance) due to the weight and support
reactions, evaluated on either side of x, isWx/2.

If the beam is only slightly bent, so that (dy/dx)2 � 1, where y = y(x) is the downward
displacement of the beam at x, show that the beam profile satisfies the approximate equation

d2y

dx2
= −Wx

2K
.

By integrating this equation twice and using physically imposed conditions on your solution at x = 0
and x = L/2, show that the downward displacement at the center of the beam isWL3/(48K).

The upward reaction of the support at each end of the beam is 1
2W .

At the position x the moment on the left is due to
(i) the support at x = 0 providing a clockwise moment of 1

2Wx.
The moment on the right is due to
(ii) the support at x = L providing an anticlockwise moment of 1

2W (L− x);

(iii) the weight at x = 1
2L providing a clockwise moment ofW ( 1

2L− x).
The net clockwise moment on the right is therefore W ( 1

2L− x) − 1
2W (L− x) =

− 1
2Wx, i.e. equal in magnitude, but opposite in sign, to that on the left.
The radius of curvature of the beam is ρ = [ 1 + (−y ′)2 ]3/2/(−y ′′), but if |y ′| � 1 this

simplifies to −1/y ′′ and the equation of the beam profile satisfies

Wx

2
= M = K

ρ
= −K d

2y

dx2
.

We now need to integrate this, taking into account the boundary conditions y(0) = 0 and,
on symmetry grounds, y ′( 1

2L) = 0:

y ′ = −Wx
2

4K
+ A, with y ′( 1

2L) = 0 ⇒ A = WL2

16K
,

y ′ = W

4K

(
L2

4
− x2

)
,

y = W

4K

(
L2x

4
− x3

3
+ B

)
, with y(0) = 0 ⇒ B = 0.

The center is lowered by

y( 1
2L) = W

4K

(
L2

4

L

2
− 1

3

L3

8

)
= WL3

48K
.



87 Higher-order ordinary differential equations

Note that the derived analytic form for y(x) is not applicable in the range 1
2L ≤ x ≤ L;

the beam profile is symmetrical about x = 1
2L, but the expression 1

4L
2x − 1

3x
3 is not

invariant under the substitution x → L− x.

6.5 The function f (t) satisfies the differential equation

d2f

dt2
+ 8

df

dt
+ 12f = 12e−4t .

For the following sets of boundary conditions determine whether it has solutions, and, if so, find
them:

(a) f (0) = 0, f ′(0) = 0, f (ln
√

2) = 0;
(b) f (0) = 0, f ′(0) = −2, f (ln

√
2) = 0.

Three boundary conditions have been given, and, as this is a second-order linear equation
for which only two independent conditions are needed, they may be inconsistent. The plan
is to solve it using two of the conditions and then test whether the third one is compatible.

The auxiliary equation for obtaining the CF is

m2 + 8m+ 12 = 0 ⇒ m = −2 or m = −6

⇒ f (t) = Ae−6t + Be−2t .

Since the form of the RHS, Ce−4t , is not included in the CF, we can try it as the particular
integral:

16C − 32C + 12C = 12 ⇒ C = −3.

The general solution is therefore

f (t) = Ae−6t + Be−2t − 3e−4t .

(a) For boundary conditions f (0) = 0, f ′(0) = 0, f (ln
√

2) = 0:

f (0) = 0 ⇒ A+ B − 3 = 0,

f ′(0) = 0 ⇒ −6A− 2B + 12 = 0,

⇒ A = 3
2 , B = 3

2 .

Hence, f (t) = 3
2e

−6t + 3
2e

−2t − 3e−4t .

Recalling that e−(ln
√

2) = 1/
√

2, we evaluate

f (ln
√

2) = 3

2

1

8
+ 3

2

1

2
− 3

1

4
= 3

16
�= 0.

Thus the boundary conditions are inconsistent and there is no solution.
(b) For boundary conditions f (0) = 0, f ′(0) = −2, f (ln

√
2) = 0, we proceed as

before:

f (0) = 0 ⇒ A+ B − 3 = 0,

f ′(0) = 0 ⇒ −6A− 2B + 12 = −2,

⇒ A = 2, B = 1.

Hence, f (t) = 2e−6t + e−2t − 3e−4t .
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We again evaluate

f (ln
√

2) = 2
1

8
+ 1

2
− 3

1

4
= 0.

This time the boundary conditions are consistent and there is a unique solution as given
above.

6.7 A solution of the differential equation

d2y

dx2
+ 2

dy

dx
+ y = 4e−x

takes the value 1 when x = 0 and the value e−1 when x = 1. What is its value when x = 2?

The auxiliary equation,m2 + 2m+ 1 = 0, has repeated rootsm = −1, and so the general
CF has the special form y(x) = (A+ Bx)e−x .

Turning to the PI, we note that the form of the RHS of the original equation is contained
in the CF, and (to make matters worse) so is x times the RHS. We therefore need to take
x2 times the RHS as a trial PI:

y(x) = Cx2e−x, y ′ = C(2x − x2)e−x, y ′′ = C(2 − 4x + x2)e−x.

Substituting these into the original equation shows that

2Ce−x = 4e−x ⇒ C = 2

and that the full general solution is given by

y(x) = (A+ Bx)e−x + 2x2e−x.

We now determine the unknown constants using the information given about the solution.
Since y(0) = 1, A = 1. Further, y(1) = e−1 requires

e−1 = (1 + B)e−1 + 2e−1 ⇒ B = −2.

Finally, we conclude that y(x) = (1 − 2x + 2x2)e−x and, therefore, that y(2) = 5e−2.

6.9 Find the general solutions of

(a)
d3y

dx3
− 12

dy

dx
+ 16y = 32x − 8,

(b)
d

dx

(
1

y

dy

dx

)
+ (2a coth 2ax)

(
1

y

dy

dx

)
= 2a2,

where a is a constant.

(a) As this is a third-order equation, we expect three terms in the CF.
Since it is linear with constant coefficients, we can make use of the auxiliary equation,

which is

m3 − 12m+ 16 = 0.
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By inspection, m = 2 is one root; the other two can be found by factorization:

m3 − 12m+ 16 = (m− 2)(m2 + 2m− 8) = (m− 2)(m+ 4)(m− 2) = 0.

Thus we have one repeated root (m = 2) and one other (m = −4) leading to a CF of the
form

y(x) = (A+ Bx)e2x + Ce−4x.

As the RHS contains no exponentials, we try y(x) = Dx + E for the PI. We then need
16D = 32 and −12D + 16E = −8, giving D = 2 and E = 1.

The general solution is therefore

y(x) = (A+ Bx)e2x + Ce−4x + 2x + 1.

(b) The equation is already arranged in the form

dg(y)

dx
+ h(x)g(y) = j (x)

and so needs only an integrating factor to allow the first integration step to be made. For
this equation the IF is

exp

{∫
2a coth 2ax dx

}
= exp(ln sinh 2ax) = sinh 2ax.

After multiplication through by this factor, the equation can be written

sinh 2ax
d

dx

(
1

y

dy

dx

)
+ (2a cosh 2ax)

(
1

y

dy

dx

)
= 2a2 sinh 2ax,

d

dx

(
sinh 2ax

1

y

dy

dx

)
= 2a2 sinh 2ax.

Integrating this gives

sinh 2ax
1

y

dy

dx
= 2a2

2a
cosh 2ax + A,

⇒ 1

y

dy

dx
= a coth 2ax + A

sinh 2ax
.

Integrating again, ln y = 1

2
ln(sinh 2ax) +

∫
A

sinh 2ax
dx + B

= 1

2
ln(sinh 2ax) + A

2a
ln(| tanh ax|) + B,

⇒ y = C(sinh 2ax)1/2 (| tanh ax|)D.
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The indefinite integral of (sinh 2ax)−1 appearing in the fourth line can be verified by
differentiating y = ln | tanh ax| in the form y = 1

2 ln(tanh2 ax) and recalling that

cosh ax sinh ax = 1

2
sinh 2ax.

6.11 The quantities x(t), y(t) satisfy the simultaneous equations

ẍ + 2nẋ + n2x = 0,

ÿ + 2nẏ + n2y = μẋ,

where x(0) = y(0) = ẏ(0) = 0 and ẋ(0) = λ. Show that

y(t) = 1
2μλt

2
(
1 − 1

3nt
)

exp(−nt).

For these two coupled equations, in which an “output” from the first acts as the “driv-
ing input” for the second, we take Laplace transforms and incorporate the boundary
conditions:

(s2x̄ − 0 − λ) + 2n(sx̄ − 0) + n2x̄ = 0,

(s2ȳ − 0 − 0) + 2n(sȳ − 0) + n2ȳ = μ(sx̄ − 0).

From the first transformed equation,

x̄ = λ

s2 + 2ns + n2
.

Substituting this into the second transformed equation gives

ȳ = μsx̄

(s + n)2
= μλs

(s + n)2(s + n)2

= μλ

(s + n)3
− μλn

(s + n)4
,

⇒ y(t) = μλ

(
t2

2!
e−nt − nt3

3!
e−nt

)
, from the look-up table,

= 1

2
μλt2

(
1 − nt

3

)
e−nt ,

i.e. as stated in the question.

6.13 Two unstable isotopes A and B and a stable isotope C have the following decay rates per atom
present: A → B, 3 s−1; A → C, 1 s−1; B → C, 2 s−1. Initially a quantity x0 of A is present but
there are no atoms of the other two types. Using Laplace transforms, find the amount of C present
at a later time t .
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Using the name symbol to represent the corresponding number of atoms and taking
Laplace transforms, we have

dA

dt
= −(3 + 1)A ⇒ sĀ− x0 = −4Ā

⇒ Ā = x0

s + 4
,

dB

dt
= 3A− 2B ⇒ sB̄ = 3Ā− 2B̄

⇒ B̄ = 3x0

(s + 2)(s + 4)
,

dC

dt
= A+ 2B ⇒ sC̄ = Ā+ 2B̄

⇒ C̄ = x0(s + 2) + 6x0

s(s + 2)(s + 4)
.

Using the “cover-up” method for finding the coefficients of a partial fraction expansion
without repeated factors, e.g. the coefficient of (s + 2)−1 is [ (−2 + 8)x0 ]/[ (−2)(−2 +
4) ] = −6x0/4, we have

C̄ = x0(s + 8)

s(s + 2)(s + 4)
= x0

s
− 6x0

4(s + 2)
+ 4x0

8(s + 4)

⇒ C(t) = x0
(
1 − 3

2e
−2t + 1

2e
−4t
)
.

This is the required expression.

6.15 The “golden mean”, which is said to describe the most aesthetically pleasing proportions for the
sides of a rectangle (e.g. the ideal picture frame), is given by the limiting value of the ratio of
successive terms of the Fibonacci series un, which is generated by

un+2 = un+1 + un,
with u0 = 0 and u1 = 1. Find an expression for the general term of the series and verify that the
golden mean is equal to the larger root of the recurrence relation’s characteristic equation.

The recurrence relation is second order and its characteristic equation, obtained by setting
un = Aλn, is

λ2 − λ− 1 = 0 ⇒ λ = 1
2 (1 ± √

5).

The general solution is therefore

un = A

(
1 + √

5

2

)n
+ B

(
1 − √

5

2

)n
.
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The initial values (boundary conditions) determine A and B:

u0 = 0 ⇒ B = −A,
u1 = 1 ⇒ A

(
1 + √

5

2
− 1 − √

5

2

)
= 1 ⇒ A = 1√

5
.

Hence, un = 1√
5

[(
1 + √

5

2

)n
−
(

1 − √
5

2

)n]
.

If we write (1 − √
5)/(1 + √

5) = r < 1, the ratio of successive terms in the series is

un+1

un
=

1
2 [ (1 + √

5)n+1 − (1 − √
5)n+1 ]

(1 + √
5)n − (1 − √

5)n

=
1
2 [ 1 + √

5 − (1 − √
5)rn ]

1 − rn

→ 1 + √
5

2
as n → ∞;

i.e. the limiting ratio is the same as the larger value of λ.
This result is a particular example of the more general one that the ratio of successive

terms in a series generated by a recurrence relation tends to the largest (in absolute
magnitude) of the roots of the characteristic equation. Here there are only two roots, but
for an N th-order relation there will be N roots.

6.17 The first few terms of a series un, starting with u0, are 1, 2, 2, 1, 6,−3. The series is generated by
a recurrence relation of the form

un = Pun−2 +Qun−4,

where P and Q are constants. Find an expression for the general term of the series and show that,
in fact, the series consists of two interleaved series given by

u2m = 2
3 + 1

3 4m,

u2m+1 = 7
3 − 1

3 4m,

for m = 0, 1, 2, . . . .

We first find P andQ using

n = 4 6 = 2P +Q,
n = 5 − 3 = P + 2Q, ⇒ Q = −4 and P = 5.

The recurrence relation is thus

un = 5un−2 − 4un−4.
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To solve this we try un = A+ Bλn for arbitrary constants A and B and obtain

A+ Bλn = 5A+ 5Bλn−2 − 4A− 4Bλn−4,

⇒ 0 = λ4 − 5λ2 + 4

= (λ2 − 1)(λ2 − 4) ⇒ λ = ±1,±2.

The general solution is un = A+ B(−1)n + C2n +D(−2)n.
We now need to solve the simultaneous equations for A, B, C and D provided by the

values of u0, . . . , u3:

1 = A+ B + C +D,
2 = A− B + 2C − 2D,

2 = A+ B + 4C + 4D,

1 = A− B + 8C − 8D.

These have the straightforward solution

A = 3

2
, B = −5

6
, C = 1

12
, D = 1

4
,

and so

un = 3

2
− 5

6
(−1)n + 1

12
2n + 1

4
(−2)n.

When n is even and equal to 2m,

u2m = 3

2
− 5

6
+ 4m

12
+ 4m

4
= 2

3
+ 4m

3
.

When n is odd and equal to 2m+ 1,

u2m+1 = 3

2
+ 5

6
+ 4m

6
− 4m

2
= 7

3
− 4m

3
.

In passing, we note that the fact that both P andQ, and all of the given values u0, . . . , u4,
are integers, and hence that all terms in the series are integers, provides an indirect proof
that 4m + 2 is divisible by 3 (without remainder) for all non-negative integersm. This can
be more easily proved by induction, as the reader may like to verify.

6.19 Find the general expression for the un satisfying

un+1 = 2un−2 − un
with u0 = u1 = 0 and u2 = 1, and show that they can be written in the form

un = 1

5
− 2n/2√

5
cos

(
3πn

4
− φ

)
,

where tanφ = 2.
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The characteristic equation (which will be a cubic since the recurrence relation is third
order) and its solution are given by

λn+1 = 2λn−2 − λn,
λ3 + λ2 − 2 = 0,

(λ− 1)(λ2 + 2λ+ 2) = 0 ⇒ λ = 1 or λ = −1 ± i.

Thus the general solution of the recurrence relation, which has the generic form Aλn1 +
Bλn2 + Cλn3, is

un = A+ B(−1 + i)n + C(−1 − i)n

= A+ B 2n/2ei3πn/4 + C 2n/2ei5πn/4.

To determine A, B and C we use

u0 = 0, 0 = A+ B + C,
u1 = 0, 0 = A+ B 21/2ei3π/4 + C 21/2ei5π/4

= A+ B(−1 + i) + C(−1 − i),
u2 = 1, 1 = A+ B 2ei6π/4 + C 2ei10π/4 = A+ 2B(−i) + 2C(i).

Adding twice each of the first two equations to the last one gives 5A = 1. Substituting
this into the first and last equations then leads to

B + C = −1

5
and − B + C = 2

5i
,

from which it follows that

B = −1 + 2i

10
=

√
5

10
ei(π−φ)

and C = −1 − 2i

10
=

√
5

10
ei(π+φ),

where tanφ = 2/1 = 2.
Thus, collecting these results together, we have

un = 1

5
+ 2n/2

√
5

10
(ei3πn/4ei(π−φ) + ei5πn/4ei(π+φ))

= 1

5
− 2n/2

√
5

10
(ei3πn/4e−iφ + e−i3πn/4eiφ)

= 1

5
− 2n/2

√
5

10

[
2 cos

(
3πn

4
− φ

)]
= 1

5
− 2n/2√

5
cos

(
3πn

4
− φ

)
,

i.e. the form of solution given in the question.
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6.21 Find the general solution of

x2 d
2y

dx2
− x dy

dx
+ y = x,

given that y(1) = 1 and y(e) = 2e.

This is Euler’s equation and can be solved either by a change of variables, x = et , or by
trying y = xλ; we will adopt the second approach. Doing so in the homogeneous equation
(RHS set to zero) gives

x2 λ(λ− 1)xλ−2 − x λxλ−1 + xλ = 0.

The CF is therefore obtained when λ satisfies

λ(λ− 1) − λ+ 1 = 0 ⇒ (λ− 1)2 = 0 ⇒ λ = 1 (repeated).

Thus, one solution is y = x; the other linearly independent solution implied by the repeated
root is x ln x (see a textbook if this is not known).

There is now a further complication as the RHS of the original equation (x) is contained
in the CF. We therefore need an extra factor of ln x in the trial PI, beyond those already
in the CF. (This corresponds to the extra power of t needed in the PI if the transformation
to a linear equation with constant coefficients is made via the x = et change of variable.)
As a consequence, the PI to be tried is y = Cx(ln x)2:

x2

[
2C

ln x

x
+ 2C

x

]
− x

[
Cx

2 ln x

x
+ C(ln x)2

]
+ Cx(ln x)2 = x.

This implies that C = 1
2 and gives the general solution as

y(x) = Ax + Bx ln x + 1
2x(ln x)2.

It remains only to determine the unknown constants A and B; this is done using the two
given values of y(x). The boundary condition y(1) = 1 requires thatA = 1, and y(e) = 2e
implies that B = 1

2 ; the solution is now completely determined as

y(x) = x + 1
2x ln x(1 + ln x).

6.23 Prove that the general solution of

(x − 2)
d2y

dx2
+ 3

dy

dx
+ 4y

x2
= 0

is given by

y(x) = 1

(x − 2)2

[
k

(
2

3x
− 1

2

)
+ cx2

]
.

This equation is not of any plausible standard form, and the only solution method is to
try to make it into an exact equation. If this is possible the order of the equation will be
reduced by one.
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We first multiply through by x2 and then note that the resulting factor 3x2 in the
second term can be written as [ x2(x − 2) ]′ + 4x, i.e. as the derivative of the function
multiplying y ′′ together with another simple function. This latter can be combined with
the undifferentiated term and allow the whole equation to be written as an exact equation:

d

dx

[
x2(x − 2)

dy

dx

]
+ 4x

dy

dx
+ 4y = 0,

d

dx

[
x2(x − 2)

dy

dx

]
+ d(4xy)

dx
= 0,

⇒ x2(x − 2)
dy

dx
+ 4xy = k.

Either by inspection or by use of the standard formula, the IF is (x − 2)/x4 and leads to

d

dx

[
(x − 2)2

x2
y

]
= k(x − 2)

x4
,

⇒ (x − 2)2

x2
y = k

(
− 1

2x2
+ 2

3x3

)
+ c,

⇒ y = 1

(x − 2)2

(
−k

2
+ 2k

3x
+ cx2

)
.

6.25 Find the Green’s function that satisfies

d2G(x, ξ )

dx2
−G(x, ξ ) = δ(x − ξ ) with G(0, ξ ) = G(1, ξ ) = 0.

It is clear from inspection that the CF has solutions of the form e±x . The other pair
of solutions that may suggest themselves are sinh x and cosh x, but these are merely
independent linear combinations of the same two functions.

As both boundary conditions are given at finite values of x (rather than at x → ±∞)
and both are of the form y(x) = 0, it is more convenient to work with those particular
linear combinations of ex and e−x that vanish at the boundary points. The only common
linear combination of these two functions that vanishes at a finite value of x is a sinh
function. To construct one that vanishes at x = x0 the argument of the sinh function must
be made to be x − x0. For the present case the appropriate combinations are

sinh x = 1

2
(ex − e−x) and sinh(1 − x) =

(e
2

)
e−x −

(
1

2e

)
ex.

Thus, with 0 ≤ ξ ≤ 1, we take

G(x, ξ ) =
{
A(ξ ) sinh x x < ξ,

B(ξ ) sinh(1 − x) x > ξ.
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The continuity requirement onG(x, ξ ) at x = ξ and the unit discontinuity requirement on
its derivative at the same point give

A sinh ξ − B sinh(1 − ξ ) = 0

and − B cosh(1 − ξ ) − A cosh ξ = 1,

leading to

A sinh ξ cosh(1 − ξ ) + A cosh ξ sinh(1 − ξ ) = − sinh(1 − ξ ),

A[ sinh(ξ + 1 − ξ ) ] = − sinh(1 − ξ ).

Hence,

A = −sinh(1 − ξ )

sinh 1
and B = −sinh ξ

sinh 1
,

giving the full Green’s function as

G(x, ξ ) =

⎧⎪⎪⎨⎪⎪⎩
−sinh(1 − ξ )

sinh 1
sinh x x < ξ,

−sinh ξ

sinh 1
sinh(1 − x) x > ξ.

6.27 Show generally that if y1(x) and y2(x) are linearly independent solutions of

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0,

with y1(0) = 0 and y2(1) = 0, then the Green’s function G(x, ξ ) for the interval 0 ≤ x, ξ ≤ 1 and
with G(0, ξ ) = G(1, ξ ) = 0 can be written in the form

G(x, ξ ) =
{
y1(x)y2(ξ )/W (ξ ) 0 < x < ξ,

y2(x)y1(ξ )/W (ξ ) ξ < x < 1,

whereW (x) = W [y1(x), y2(x)] is the Wronskian of y1(x) and y2(x).

As usual, we start by writing the general solution as a weighted sum of the linearly
independent solutions, whilst leaving the possibility that the weights may be different for
different x-ranges:

G(x, ξ ) =
{
A(ξ )y1(x) + B(ξ )y2(x) 0 < x < ξ,

C(ξ )y1(x) +D(ξ )y2(x) ξ < x < 1.

Imposing the boundary conditions and using y1(0) = y2(1) = 0,

0 = G(0, ξ ) = A(ξ )y1(0) + B(ξ )y2(0) ⇒ B(ξ ) = 0,

0 = G(1, ξ ) = C(ξ )y1(1) +D(ξ )y2(1) ⇒ C(ξ ) = 0.
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The continuity requirement onG(x, ξ ) at x = ξ and the unit discontinuity requirement on
its derivative at the same point give

A(ξ )y1(ξ ) −D(ξ )y2(ξ ) = 0,

A(ξ )y ′
1(ξ ) −D(ξ )y ′

2(ξ ) = −1,

leading to

A(ξ )[ y1y
′
2 − y2y

′
1 ] = y2 ⇒ A(ξ ) = y2(ξ )

W (ξ )
,

D(ξ ) = y1(ξ )

y2(ξ )
A(ξ ) = y1(ξ )

W (ξ )
.

Thus,

G(x, ξ ) =
{
y1(x)y2(ξ )/W (ξ ) 0 < x < ξ,

y2(x)y1(ξ )/W (ξ ) ξ < x < 1.

This result is perfectly general for linear second-order equations of the type stated and
can be a quick way to find the corresponding Green’s function, provided the solutions that
vanish at the end-points can be identified easily. Problem 6.25 is a particular example of
this general result.

6.29 The equation of motion for a driven damped harmonic oscillator can be written

ẍ + 2ẋ + (1 + κ2)x = f (t),

with κ �= 0. If it starts from rest with x(0) = 0 and ẋ(0) = 0, find the corresponding Green’s function
G(t, τ ) and verify that it can be written as a function of t − τ only. Find the explicit solution when
the driving force is the unit step function, i.e. f (t) = H (t). Confirm your solution by taking the
Laplace transforms of both it and the original equation.

The auxiliary equation is

m2 + 2m+ (1 + κ2) = 0 ⇒ m = −1 ± iκ,
and the CF is x(t) = Ae−t cos κt + Be−t sin κt .

Let

G(t, τ ) =
{
A(τ )e−t cos κt + B(τ )e−t sin κt 0 < t < τ,

C(τ )e−t cos κt +D(τ )e−t sin κt t > τ.

The boundary condition x(0) = 0 implies that A = 0, and

ẋ(0) = 0 ⇒ B(−e−t sin κt + κe−t cos κt) = 0 ⇒ B = 0.

Thus G(t, τ ) = 0 for t < τ .
The continuity of G at t = τ gives

Ce−τ cos κτ +De−τ sin κτ = 0 ⇒ D = −C cos κτ

sin κτ
.
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The unit discontinuity in the derivative of G at t = τ requires (using s = sin κτ and
c = cos κτ as shorthand)

Ce−τ (−c − κs) +De−τ (−s + κc) − 0 = 1,

C
[
−c − κs − c

s
(−s + κc)

]
= eτ ,

C(−sc − κs2 + cs − κc2) = seτ ,

giving

C = −e
τ sin κτ

κ
and D = eτ cos κτ

κ
.

Thus, for t > τ ,

G(t, τ ) = eτ

κ
(− sin κτ cos κt + cos κτ sin κt)e−t

= e−(t−τ )

κ
sin κ(t − τ ).

This form verifies that the Green’s function is a function only of the difference t − τ and
not of t and τ separately.

The explicit solution to the given equation when f (t) = H (t) is thus

x(t) =
∫ ∞

0
G(t, τ )f (τ ) dτ

=
∫ t

0
G(t, τ )H (τ ) dτ , since G(t, τ ) = 0 for τ > t ,

= 1

κ

∫ t

0
e−(t−τ ) sin κ(t − τ ) dτ

= e−t

κ
Im

∫ t

0
eτ+iκ(t−τ ) dτ

= e−t

κ
Im

[
eiκt eτ−iκτ

1 − iκ
]τ=t
τ=0

= e−t

κ
Im

[
et − eiκt
1 − iκ

]
.

Now multiplying both numerator and denominator by 1 + iκ to make the latter real gives

x(t) = e−t

κ(1 + κ2)
Im [ (et − eiκt )(1 + iκ) ]

= e−t

κ(1 + κ2)
[ κ(et − cos κt) − sin κt ]

= 1

1 + κ2

(
1 − e−t cos κt − 1

κ
e−t sin κt

)
.
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The Laplace transform of this solution is given by

x̄ = 1

1 + κ2

(
1

s
− s + 1

(s + 1)2 + κ2
− 1

κ

κ

(s + 1)2 + κ2

)
= (s + 1)2 + κ2 − s(s + 1) − s

(1 + κ2)s[ (s + 1)2 + κ2 ]

= 1

s[ (s + 1)2 + κ2 ]
.

The Laplace transform of the original equation with the given initial conditions reads

[ s2x̄ − 0s − 0 ] + 2[ sx̄ − 0 ] + (1 + κ2)x̄ = 1

s
,

again showing that

x̄ = 1

s[ s2 + 2s + 1 + κ2 ]
= 1

s[ (s + 1)2 + κ2 ]
,

and so confirming the solution reached using the Green’s function approach.

6.31 Find the Green’s function x = G(t, t0) that solves

d2x

dt2
+ α dx

dt
= δ(t − t0)

under the initial conditions x = dx/dt = 0 at t = 0. Hence solve

d2x

dt2
+ α dx

dt
= f (t),

where f (t) = 0 for t < 0. Evaluate your answer explicitly for f (t) = Ae−βt (t > 0).

It is clear that one solution, x(t), to the homogeneous equation has ẍ = −αẋ and is
therefore x(t) = Ae−αt . The equation is of second order and therefore has a second
solution; this is the trivial (but perfectly valid) x is a constant. The CF is thus x(t) =
Ae−αt + B.

Let

G(t, t0) =
{
Ae−αt + B, 0 ≤ t ≤ t0,
Ce−αt +D, t > t0.

Now, the initial conditions give

x(0) = 0 ⇒ A+ B = 0,

ẋ(0) = 0 ⇒ −αA = 0 ⇒ A = B = 0.

Thus G(t, t0) = 0 for 0 ≤ t ≤ t0.
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The continuity/discontinuity conditions determine C and D through

Ce−αt0 +D − 0 = 0,

−αCe−αt0 − 0 = 1, ⇒ C = −e
αt0

α
and D = 1

α
.

It follows that G(t, t0) = 1

α
[ 1 − e−α(t−t0) ] for t > t0.

The general formalism now gives the solution of

d2x

dt2
+ αdx

dt
= f (t)

as

x(t) =
∫ t

0

1

α
[ 1 − e−α(t−τ ) ]f (τ ) dτ.

With f (t) = Ae−βt this becomes

x(t) =
∫ t

0

1

α
[ 1 − e−α(t−τ ) ]Ae−βτ dτ

= A

α

∫ t

0
(e−βτ − e−αte(α−β)τ ) dτ

= A

[
1 − e−βt
αβ

− e−βt − e−αt
α(α − β)

]
= A

[
α − β − αe−βt + βe−αt

βα(α − β)

]
= A

[
α(1 − e−βt ) − β(1 − e−αt )

βα(α − β)

]
.

This is the required explicit solution.

6.33 Solve

2y
d3y

dx3
+ 2

(
y + 3

dy

dx

)
d2y

dx2
+ 2

(
dy

dx

)2

= sin x.

The only realistic hope for this non-linear equation is to try to arrange it as an exact
equation! We note that the second and fourth terms can be written as the derivative of a
product, and that adding and subtracting 2y ′y ′′ will enable the first term to be written in a
similar way. We therefore rewrite the equation as

d

dx

(
2y
d2y

dx2

)
+ d

dx

(
2y
dy

dx

)
+ (6 − 2)

dy

dx

d2y

dx2
= sin x,

d

dx

(
2y
d2y

dx2

)
+ d

dx

(
2y
dy

dx

)
+ d

dx

[
2

(
dy

dx

)2
]

= sin x.
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This second form is obtained by noting that the final term on the LHS of the first equation
happens to be an exact differential. Thus the whole of the LHS is an exact differential and
one stage of integration can be carried out:

2y
d2y

dx2
+ 2y

dy

dx
+ 2

(
dy

dx

)2

= − cos x + A.

We now note that the first and third terms of this integrated equation can be combined as
the derivative of a product, whilst the second term is the derivative of y2. This allows a
further step of integration:

d

dx

(
2y
dy

dx

)
+ 2y

dy

dx
= − cos x + A,

d

dx

(
2y
dy

dx

)
+ d(y2)

dx
= − cos x + A,

⇒ 2y
dy

dx
+ y2 = − sin x + Ax + B,

d(y2)

dx
+ y2 = − sin x + Ax + B.

At this stage an integrating factor is needed. However, as the LHS consists of the sum
of the differentiated and undifferentiated forms of the same function, the required IF is
simply ex . After multiplying through by this, we obtain

d

dx

(
exy2

) = −ex sin x + Axex + Bex,

⇒ y2 = e−x
[
C +

∫ x

(B + Au− sin u)eu du

]
= Ce−x + B + A(x − 1) − 1

2 (sin x− cos x).

The last term in this final solution is obtained by considering

∫ x

eu sin u du = Im
∫ x

e(1+i)u du

= Im

[
e(1+i)u

1 + i
]x

= Im
[

1
2 (1 − i)e(1+i)x]

= 1
2e
x(sin x− cos x).
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6.35 Confirm that the equation

2x2y
d2y

dx2
+ y2 = x2

(
dy

dx

)2

(∗)

is homogeneous in both x and y separately. Make two successive transformations that exploit this
fact, starting with a substitution for x, to obtain an equation of the form

2
d2v

dt2
+
(
dv

dt

)2

− 2
dv

dt
+ 1 = 0.

By writing dv/dt = p, solve this equation for v = v(t) and hence find the solution to (∗).

The “net-power” (weight) of x in each of the terms is 2 − 2 = 0, 0, 2 − 2 = 0, i.e. they
are all equal (to zero) and the equation is homogeneous in x. Similarly for y, the weights
are 2, 2 and 2; and so the equation is also (separately) homogeneous in y.

Using the homogeneity in x, set x = et with
d

dx
= e−t

d

dt
. The equation then reads

2e2t ye−t
d

dt

(
e−t
dy

dt

)
+ y2 = e2t

(
e−t
dy

dt

)2

,

2yet
(
e−t
d2y

dt2
− e−t dy

dt

)
+ y2 = e2t e−2t

(
dy

dt

)2

,

2y
d2y

dt2
− 2y

dy

dt
+ y2 =

(
dy

dt

)2

.

Now using the homogeneity in y, set y = ev with

dy

dt
= dy

dv

dv

dt
= ev

dv

dt
and

d2y

dt2
= d

dt

(
ev
dv

dt

)
= ev

dv

dt

dv

dt
+ ev d

2v

dt2

and obtain

2ev
[
ev
(
dv

dt

)2

+ ev d
2v

dt2

]
− 2ev ev

dv

dt
+ e2v = e2v

(
dv

dt

)2

.

Canceling e2v all through, this reduces to

2
d2v

dt2
+
(
dv

dt

)2

− 2
dv

dt
+ 1 = 0.

Since v does not appear in this equation undifferentiated, write dv/dt = p, obtaining

2
dp

dt
+ p2 − 2p + 1 = 0 ⇒ dp

dt
= − 1

2 (p − 1)2.
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This is separable:

dp

(p − 1)2
= − 1

2dt ⇒ (p − 1)−1 = + 1
2 t + A.

Rewriting p as dv/dt , we now have

dv

dt
− 1 = 1

1
2 t + A

⇒ v − t = 2 ln
(
A+ 1

2 t
)+ B.

Resubstituting for v and t now gives

ln y = 2 ln(A+ 1
2 ln x) + B + ln x,

⇒ y = x(C +D ln x)2,

where C = AeB/2 and D = 1
2e
B/2.



7 Series solutions of ordinary differential
equations

7.1 Find two power series solutions about z = 0 of the differential equation

(1 − z2)y ′′ − 3zy ′ + λy = 0.

Deduce that the value of λ for which the corresponding power series becomes an N th-degree
polynomial UN (z) is N (N + 2). Construct U2(z) and U3(z).

If the equation is imagined divided through by (1 − z2) it is straightforward to see that,
although z = ±1 are singular points of the equation, the point z = 0 is an ordinary point.
We therefore expect two (uncomplicated!) series solutions with indicial values σ = 0 and
σ = 1.

(a) σ = 0 and y(z) = ∑∞
n=0 anz

n with a0 �= 0.
Substituting and equating the coefficients of zm,

(1 − z2)
∞∑
n=0

n(n− 1)anz
n−2 − 3

∞∑
n=0

nanz
n + λ

∞∑
n=0

anz
n = 0,

(m+ 2)(m+ 1)am+2 −m(m− 1)am − 3mam + λam = 0,

gives as the recurrence relation

am+2 = m(m− 1) + 3m− λ
(m+ 2)(m+ 1)

am = m(m+ 2) − λ
(m+ 1)(m+ 2)

am.

Since this recurrence relation connects alternate coefficients am, and a0 �= 0, only the
coefficients with even indices are generated. All such coefficients with index higher than
m will become zero, and the series will become an N th-degree polynomial UN (z), if
λ = m(m+ 2) = N(N + 2) for some (even) m appearing in the series; here, this means
any positive even integer N .

To construct U2(z) we need to take λ = 2(2 + 2) = 8. The recurrence relation gives a2

as

a2 = 0 − 8

(0 + 1)(0 + 2)
a0 = −4a0 ⇒ U2(z) = a0(1 − 4z2).

(b) σ = 1 and y(z) = z
∑∞
n=0 anz

n with a0 �= 0.
Substituting and equating the coefficients of zm+1,

(1 − z2)
∞∑
n=0

(n+ 1)nanz
n−1 − 3

∞∑
n=0

(n+ 1)anz
n+1 + λ

∞∑
n=0

anz
n+1 = 0,

(m+ 3)(m+ 2)am+2 − (m+ 1)mam − 3(m+ 1)am + λam = 0,

105
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gives as the recurrence relation

am+2 = m(m+ 1) + 3(m+ 1) − λ
(m+ 2)(m+ 3)

am = (m+ 1)(m+ 3) − λ
(m+ 2)(m+ 3)

am.

Again, all coefficients with index higher than m will become zero, and the series will
become an N th-degree polynomial UN (z), if λ = (m+ 1)(m+ 3) = N (N + 2) for some
(even) m appearing in the series; here, this means any positive odd integer N .

To construct U3(z) we need to take λ = 3(3 + 2) = 15. The recurrence relation gives
a2 as

a2 = 3 − 15

(0 + 2)(0 + 3)
a0 = −2a0.

Thus,

U3(z) = a0(z− 2z3).

7.3 Find power series solutions in z of the differential equation

zy ′′ − 2y ′ + 9z5y = 0.

Identify closed forms for the two series, calculate their Wronskian, and verify that they are linearly
independent. Compare the Wronskian with that calculated from the differential equation.

Putting the equation in its standard form shows that z = 0 is a singular point of the equation
but, as −2z/z and 9z7/z are finite as z → 0, it is a regular singular point. We therefore
substitute a Frobenius-type solution,

y(z) = zσ
∞∑
n=0

anz
n with a0 �= 0,

and obtain
∞∑
n=0

(n+ σ )(n+ σ − 1)anz
n+σ−1

− 2
∞∑
n=0

(n+ σ )anz
n+σ−1 + 9

∞∑
n=0

anz
n+σ+5 = 0.

Equating the coefficient of zσ−1 to zero gives the indicial equation as

σ (σ − 1)a0 − 2σa0 = 0 ⇒ σ = 0, 3.

These differ by an integer and may or may not yield two independent solutions. The larger
root, σ = 3, will give a solution; the smaller one, σ = 0, may not.

(a) σ = 3.
Equating the general coefficient of zm+2 to zero (with σ = 3) gives

(m+ 3)(m+ 2)am − 2(m+ 3)am + 9am−6 = 0.
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Hence the recurrence relation is

am = − 9am−6

m(m+ 3)
,

⇒ a6p = − 9

6p (6p + 3)
a6p−6 = − a6p−6

2p (2p + 1)
= (−1)pa0

(2p + 1)!
.

The first solution is therefore given by

y1(x) = a0z
3

∞∑
n=0

(−1)n

(2n+ 1)!
z6n = a0

∞∑
n=0

(−1)n

(2n+ 1)!
z3(2n+1) = a0 sin z3.

(b) σ = 0.
Equating the general coefficient of zm−1 to zero (with σ = 0) gives

m(m− 1)am − 2mam + 9am−6 = 0.

Hence the recurrence relation is

am = − 9am−6

m(m− 3)
,

⇒ a6p = − 9

6p (6p − 3)
a6p−6 = − a6p−6

2p (2p − 1)
= (−1)pa0

(2p)!
.

A second solution is thus

y2(x) = a0

∞∑
n=0

(−1)n

(2n)!
z6n = a0 cos z3.

We see that σ = 0 does, in fact, produce a (different) series solution. This is because the
recurrence relation relates an to an+6 and does not involve an+3; the relevance here of
considering the subscripted index “m+ 3” is that “3” is the difference between the two
indicial values.

We now calculate the Wronskian of the two solutions, y1 = a0 sin z3 and y2 = b0 cos z3:

W (y1, y2) = y1y
′
2 − y2y

′
1

= a0 sin z3(−3b0z
2 sin z3) − b0 cos z3(3a0z

2 cos z3)

= −3a0b0z
2 �= 0.

The fact that the Wronskian is non-zero shows that the two solutions are linearly indepen-
dent.

We can also calculate the Wronskian from the original equation in its standard form,

y ′′ − 2

z
y ′ + 9z4y = 0,

as

W = C exp

{
−
∫ z −2

u
du

}
= C exp(2 ln z) = Cz2.

This is in agreement with the Wronskian calculated from the solutions, as it must be.



108 Series solutions of ordinary differential equations

7.5 Investigate solutions of Legendre’s equation at one of its singular points as follows.

(a) Verify that z = 1 is a regular singular point of Legendre’s equation and that the indicial equation
for a series solution in powers of (z− 1) has a double root σ = 0.

(b) Obtain the corresponding recurrence relation and show that a polynomial solution is obtained
if � is a positive integer.

(c) Determine the radius of convergence R of the σ = 0 series and relate it to the positions of the
singularities of Legendre’s equation.

(a) In standard form, Legendre’s equation reads

y ′′ − 2z

1 − z2
y ′ + �(�+ 1)

1 − z2
y = 0.

This has a singularity at z = 1, but, since

−2z(z− 1)

1 − z2
→ 1 and

�(�+ 1)(z− 1)2

1 − z2
→ 0 as z → 1,

i.e. both limits are finite, the point is a regular singular point.
We next change the origin to the point z = 1 by writing u = z− 1 and y(z) = f (u).

The transformed equation is

f ′′ − 2(u+ 1)

−u(u+ 2)
f ′ + �(�+ 1)

−u(u+ 2)
y = 0

or − u(u+ 2)f ′′ − 2(u+ 1)f ′ + �(�+ 1)f = 0.

The point u = 0 is a regular singular point of this equation and so we set f (u) =
uσ
∑∞
n=0 anu

n and obtain

−u(u+ 2)
∞∑
n=0

(σ + n)(σ + n− 1)anu
σ+n−2

− 2(u+ 1)
∞∑
n=0

(σ + n)anu
σ+n−1 + �(�+ 1)

∞∑
n=0

anu
σ+n = 0.

Equating to zero the coefficient of uσ−1 gives

−2σ (σ − 1)a0 − 2σa0 = 0 ⇒ σ 2 = 0;

i.e. the indicial equation has a double root σ = 0.
(b) To obtain the recurrence relation we set the coefficient of um equal to zero for

general m:

−m(m− 1)am − 2(m+ 1)mam+1 − 2mam − 2(m+ 1)am+1 + �(�+ 1)am = 0.

Tidying this up gives

2(m+ 1)(m+ 1)am+1 = [�(�+ 1) −m2 +m− 2m]am,

⇒ am+1 = �(�+ 1) −m(m+ 1)

2(m+ 1)2
am.
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From this it is clear that, if � is a positive integer, then a�+1 and all further an are zero and
that the solution is a polynomial (of degree � ).

(c) The limit of the ratio of successive terms in the series is given by

∣∣∣∣an+1u
n+1

anun

∣∣∣∣ =
∣∣∣∣u[�(�+ 1) −m(m+ 1)]

2(m+ 1)2

∣∣∣∣ → |u|
2

as m → ∞.

For convergence this limit needs to be < 1, i.e. |u| < 2. Thus the series converges in a
circle of radius 2 centered on u = 0, i.e. on z = 1. The value 2 is to be expected, as it
is the distance from z = 1 of the next nearest (actually the only other) singularity of the
equation (at z = −1), excluding z = 1 itself.

7.7 The first solution of Bessel’s equation for ν = 0 is

J0(z) =
∞∑
n=0

(−1)n

n!�(n+ 1)

( z
2

)2n
.

Use the derivative method to show that

J0(z) ln z−
∞∑
n=1

(−1)n

(n!)2

(
n∑
r=1

1

r

)( z
2

)2n

is a second (independent) solution.

Bessel’s equation with ν = 0 reads

zy ′′ + y ′ + zy = 0.

The recurrence relations that gave rise to the first solution, J0(z), were (σ + 1)2a1 = 0 and
(σ + n)2an + an−2 = 0 for n ≥ 2. Thus, in a general form as a function of σ , the solution
is given by

y(σ, z) = a0z
σ

{
1 − z2

(σ + 2)2
+ z4

(σ + 2)2(σ + 4)2
− · · ·

+ (−1)nz2n

[(σ + 2)(σ + 4) . . . (σ + 2n)] 2
+ · · ·

}
.

Setting σ = 0 reproduces the first solution given above.
To obtain a second independent solution, we must differentiate the above expression

with respect to σ , before setting σ equal to 0:

∂y

∂σ
= ln z J0(z) +

∞∑
n=1

da2n(σ )

dσ
zσ+2n at σ = 0.
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Now
da2n(σ )

dσ

∣∣∣∣
σ=0

= d

dσ

{
(−1)n

[(σ + 2)(σ + 4) . . . (σ + 2n)] 2

}
σ=0

= (−1)n(−2)

[. . .]3

(
[. . .]

σ + 2
+ [. . .]

σ + 4
+ · · · + [. . .]

σ + 2n

)
= (−2)(−1)n

[. . .]2

n∑
r=1

1

σ + 2r

= −2(−1)n

22n(n!)2

n∑
r=1

1

2r
, at σ = 0.

Substituting this result, we obtain the second series as

J0(z) ln z−
∞∑
n=1

(−1)n

(n!)2

(
n∑
r=1

1

r

)( z
2

)2n
.

This is the form given in the question.

7.9 Find series solutions of the equation y ′′ − 2zy ′ − 2y = 0. Identify one of the series as y1(z) = exp z2

and verify this by direct substitution. By setting y2(z) = u(z)y1(z) and solving the resulting equation
for u(z), find an explicit form for y2(z) and deduce that∫ x

0
e−v

2
dv = e−x

2
∞∑
n=0

n!

2(2n+ 1)!
(2x)2n+1.

(a) The origin is an ordinary point of the equation and so power series solutions will be
possible. Substituting y(z) = ∑∞

n=0 anz
n gives

∞∑
n=0

n(n− 1)anz
n−2 − 2

∞∑
n=0

nanz
n − 2

∞∑
n=0

anz
n = 0.

Equating to zero the coefficient of zm−2 yields the recurrence relation

am = 2m− 2

m(m− 1)
am−2 = 2

m
am−2.

The solution with a0 = 1 and a1 = 0 is therefore

y1(z) = 1 + 2z2

2
+ 22z4

(2)(4)
+ · · · + 2nz2n

2n n!
+ · · ·

=
∞∑
n=0

z2n

n!
= exp z2.

Putting this result into the original equation,

(4z2 + 2) exp z2 − 2z 2z exp z2 − 2 exp z2 = 0,

shows directly that it is a valid solution.
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The solution with a0 = 0 and a1 = 1 takes the form

y2(z) = z+ 2z3

3
+ 22z5

(3)(5)
+ · · · + 2n 2n n! z2n+1

(2n+ 1)!
+ · · ·

=
∞∑
n=0

n! (2z)2n+1

2(2n+ 1)!
.

(b) We now set y2(z) = u(z)y1(z) and substitute it into the original equation. As they
must, the terms in which u is undifferentiated cancel and leave

u′′ exp z2 + 2u′(2z exp z2) − 2zu′ exp z2 = 0.

It follows that

u′′

u′ = −2z ⇒ u′ = Ae−z
2 ⇒ u(x) = A

∫ x

e−v
2
dv.

Hence, setting the two derived forms for a second solution equal to each other, we have

∞∑
n=0

n! (2x)2n+1

2(2n+ 1)!
= y2(x) = y1(x)u(x) = ex

2
A

∫ x

e−v
2
dv.

For arbitrary small x, only the n = 0 term in the series is significant and takes the value
2x/2 = x, whilst the integral is A

∫ x 1 dv = Ax. Thus A = 1 and the equality

∫ x

0
e−v

2
dv = e−x

2
∞∑
n=0

n! (2x)2n+1

2(2n+ 1)!

holds for all x.

7.11 For the equation y ′′ + z−3y = 0, show that the origin becomes a regular singular point if the
independent variable is changed from z to x = 1/z. Hence find a series solution of the form
y1(z) = ∑∞

0 anz
−n. By setting y2(z) = u(z)y1(z) and expanding the resulting expression for du/dz

in powers of z−1, show that y2(z) is a second solution with asymptotic form

y2(z) = c

[
z+ ln z− 1

2 + O

(
ln z

z

)]
,

where c is an arbitrary constant.

With the equation in its original form, it is clear that, since z2/z3 → ∞ as z → 0, the
origin is an irregular singular point. However, if we set 1/z = ξ and y(z) = Y (ξ ), with

dξ

dz
= − 1

z2
= −ξ 2 ⇒ d

dz
= −ξ 2 d

dξ
,
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then

−ξ 2 d

dξ

(
−ξ 2 dY

dξ

)
+ ξ 3Y = 0,

ξ 2 d
2Y

dξ 2
+ 2ξ

dY

dξ
+ ξY = 0,

Y ′′ + 2

ξ
Y ′ + 1

ξ
Y = 0.

By inspection, ξ = 0 is a regular singular point of this equation, and its indicial equation
is

σ (σ − 1) + 2σ = 0 ⇒ σ = 0, −1.

We start with the larger root, σ = 0, as this is “guaranteed” to give a valid series solution
and assume a solution of the form Y (ξ ) = ∑∞

n=0 anξ
n, leading to

∞∑
n=0

n(n− 1)anξ
n−1 + 2

∞∑
n=0

nanξ
n−1 +

∞∑
n=0

anξ
n = 0.

Equating to zero the coefficient of ξm−1 gives the recurrence relation

am = −am−1

m(m+ 1)
⇒ am = (−1)m

(m+ 1) (m!)2
a0

and the series solution in inverse powers of z,

y1(z) = a0

∞∑
n=0

(−1)n

(n+ 1) (n!)2 zn
.

To find the second solution we set y2(z) = f (z)y1(z). As usual (and as intended), all terms
with f undifferentiated vanish when this is substituted in the original equation. What is
left is

0 = f ′′(z)y1(z) + 2f ′(z)y ′
1(z),

which on rearrangement yields

f ′′

f ′ = −2y ′
1

y1
.

This equation, although it contains a second derivative, is in fact only a first-order equation
(for f ′). It can be integrated directly to give

ln f ′ = −2 ln y1 + c.
After exponentiation, this equation can be written as

df

dz
= A

y2
1 (z)

= A

a2
0

(
1 − 1

2 × 12 z
+ 1

3 × 22 z2
− · · ·

)−2

= A

a2
0

[
1 + 1

z
+ O

(
1

z2

)]
,

where A = ec.
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Hence, on integrating a second time, one obtains

f (z) = A

a2
0

(
z+ ln z+ O

(
1

z

))
,

which in turn implies

y2(z) = A

a2
0

[
z+ ln z+ O

(
1

z

)]
a0

(
1 − 1

2z
+ 1

12z2
− · · ·

)
= c

[
z+ ln z− 1

2
+ O

(
ln z

z

)]
.

This establishes the asymptotic form of the second solution.

7.13 The origin is an ordinary point of the Chebyshev equation,

(1 − z2)y ′′ − zy ′ +m2y = 0,

which therefore has series solutions of the form zσ
∑∞

0 anz
n for σ = 0 and σ = 1.

(a) Find the recurrence relationships for the an in the two cases and show that there exist polynomial
solutions Tm(z):
(i) for σ = 0, when m is an even integer, the polynomial having 1

2 (m+ 2) terms;
(ii) for σ = 1, when m is an odd integer, the polynomial having 1

2 (m+ 1) terms.
(b) Tm(z) is normalized so as to have Tm(1) = 1. Find explicit forms for Tm(z) for m = 0, 1, 2, 3.
(c) Show that the corresponding non-terminating series solutions Sm(z) have as their first few terms

S0(z) = a0

(
z+ 1

3!
z3 + 9

5!
z5 + · · ·

)
,

S1(z) = a0

(
1 − 1

2!
z2 − 3

4!
z4 − · · ·

)
,

S2(z) = a0

(
z− 3

3!
z3 − 15

5!
z5 − · · ·

)
,

S3(z) = a0

(
1 − 9

2!
z2 + 45

4!
z4 + · · ·

)
.

(a) (i) If, for σ = 0, y(z) = ∑∞
n=0 anz

n with a0 �= 0, the condition for the coefficient
of zr in

(1 − z2)
∞∑
n=0

n(n− 1)anz
n−2 − z

∞∑
n=0

nanz
n−1 +m2

∞∑
n=0

anz
n

to be zero is that

(r + 2)(r + 1)ar+2 − r(r − 1)ar − rar +m2ar = 0,

⇒ ar+2 = r2 −m2

(r + 2)(r + 1)
ar .

This relation relates ar+2 to ar and so to a0 if r is even. For ar+2 to vanish, in this
case, requires that r = m, which must therefore be an even integer. The non-vanishing
coefficients will be a0, a2, . . . , am, i.e. 1

2 (m+ 2) of them in all.
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(ii) If, for σ = 1, y(z) = ∑∞
n=0 anz

n+1 with a0 �= 0, the condition for the coefficient
of zr+1 in

(1 − z2)
∞∑
n=0

(n+ 1)nanz
n−1 − z

∞∑
n=0

(n+ 1)anz
n +m2

∞∑
n=0

anz
n+1

to be zero is that

(r + 3)(r + 2)ar+2 − (r + 1)rar − (r + 1)ar +m2ar = 0,

⇒ ar+2 = (r + 1)2 −m2

(r + 3)(r + 2)
ar .

This relation relates ar+2 to ar and so to a0 if r is even. For ar+2 to vanish, in this
case, requires that r + 1 = m, which must therefore be an odd integer. The non-vanishing
coefficients will be, as before, a0, a2, . . . , am−1, i.e. 1

2 (m+ 1) of them in all.
(b) For m = 0, T0(z) = a0. With the given normalization, a0 = 1 and T0(z) = 1.
For m = 1, T1(z) = a0z. The required normalization implies that a0 = 1 and so

T0(z) = z.
For m = 2, we need the recurrence relation in (a)(i). This shows that

a2 = 02 − 22

(2)(1)
a0 = −2a0 ⇒ T2(z) = a0(1 − 2z2).

With the given normalization, a0 = −1 and T2(z) = 2z2 − 1.
For m = 3, we use the recurrence relation in (a)(ii) and obtain

a2 = 12 − 32

(3)(2)
a0 = −4

3
a0 ⇒ T3(z) = a0

(
z− 4z3

3

)
.

For the required normalization, we must have a0 = − 1
3 and consequently that T3(z) =

4z3 − 3z.
(c) The non-terminating series solutions Sm(z) arise when σ = 0 butm is an odd integer

and when σ = 1 with m an even integer. We take each in turn and apply the appropriate
recurrence relation to generate the coefficients.

(i) σ = 0, m = 1, using the (a)(i) recurrence relation:

a2 = 0 − 1

(2)(1)
a0 = − 1

2!
a0, a4 = 4 − 1

(4)(3)
a2 = − 3

4!
a0.

Hence,

S1(z) = a0

(
1 − 1

2!
z2 − 3

4!
z4 − · · ·

)
.

(ii) σ = 0, m = 3, using the (a)(i) recurrence relation:

a2 = 0 − 9

(2)(1)
a0 = − 9

2!
a0, a4 = 4 − 9

(4)(3)
a2 = 45

4!
a0.

Hence,

S3(z) = a0

(
1 − 9

2!
z2 + 45

4!
z4 + · · ·

)
.
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(iii) σ = 1, m = 0, using the (a)(ii) recurrence relation:

a2 = 1 − 0

(3)(2)
a0 = 1

3!
a0, a4 = 9 − 0

(5)(4)
a2 = 9

5!
a0.

Hence,

S0(z) = a0

(
z+ 1

3!
z3 + 9

5!
z5 + · · ·

)
.

(iv) σ = 1, m = 2, using the (a)(ii) recurrence relation:

a2 = 1 − 4

(3)(2)
a0 = − 3

3!
a0, a4 = 9 − 4

(5)(4)
a2 = −15

5!
a0.

Hence,

S2(z) = a0

(
z− 3

3!
z3 − 15

5!
z5 − · · ·

)
.



8 Eigenfunction methods for
differential equations

8.1 By considering 〈h|h〉, where h = f + λg with λ real, prove that, for two functions f and g,

〈f |f 〉〈g|g〉 ≥ 1
4 [〈f |g〉 + 〈g|f 〉]2.

The function y(x) is real and positive for all x. Its Fourier cosine transform ỹc(k) is defined by

ỹc(k) =
∫ ∞

−∞
y(x) cos(kx) dx,

and it is given that ỹc(0) = 1. Prove that

ỹc(2k) ≥ 2[ỹc(k)]2 − 1.

For any |h〉 we have that 〈h|h〉 ≥ 0, with equality only if |h〉 = |0〉. Hence, noting that λ
is real, we have

0 ≤ 〈h|h〉 = 〈f + λg|f + λg〉 = 〈f |f 〉 + λ〈g|f 〉 + λ〈f |g〉 + λ2〈g|g〉.
This equation, considered as a quadratic inequality in λ, states that the corresponding
quadratic equation has no real roots. The condition for this (“b2 < 4ac”) is given by

[〈g|f 〉 + 〈f |g〉]2 ≤ 4〈f |f 〉〈g|g〉, (∗)

from which the stated result follows immediately. Note that 〈g|f 〉 + 〈f |g〉 is real and its
square is therefore non-negative.

The given datum is equivalent to

1 = ỹc(0) =
∫ ∞

−∞
y(x) cos(0x) dx =

∫ ∞

−∞
y(x) dx.

Now consider

ỹc(2k) =
∫ ∞

−∞
y(x) cos(2kx) dx

= 2
∫ ∞

−∞
y(x) cos2 kx −

∫ ∞

−∞
y(x) dx,

⇒ ỹc(2k) + 1 = 2
∫ ∞

−∞
y(x) cos2 kx.

In order to use (∗), we need to choose for f (x) and g(x) functions whose product will
form the integrand defining ỹc(k). With this in mind, we take f (x) = y1/2(x) cos kx and
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g(x) = y1/2(x); we may do this since y(x) > 0 for all x. Making these choices gives(∫ ∞

−∞
y cos kx dx +

∫ ∞

−∞
y cos kx dx

)2

≤ 4
∫ ∞

−∞
y cos2 kx dx

∫ ∞

−∞
y dx,(∫ ∞

−∞
2y cos kx dx

)2

≤ 4
∫ ∞

−∞
y cos2 kx dx × 1,

4ỹ2
c (k) ≤ 4

∫ ∞

−∞
y cos2 kx dx.

Thus,

ỹc(2k) + 1 = 2
∫ ∞

−∞
y(x) cos2 kx ≥ 2[ỹc(k)]2

and hence the stated result.

8.3 Consider the real eigenfunctions yn(x) of a Sturm–Liouville equation

(py ′)′ + qy + λρy = 0, a ≤ x ≤ b,
in which p(x), q(x) and ρ(x) are continuously differentiable real functions and p(x) does not
change sign in a ≤ x ≤ b. Take p(x) as positive throughout the interval, if necessary by changing
the signs of all eigenvalues. For a ≤ x1 ≤ x2 ≤ b, establish the identity

(λn − λm)
∫ x2

x1

ρynym dx = [
yn p y

′
m − ym p y ′

n

]x2

x1
.

Deduce that if λn > λm then yn(x) must change sign between two successive zeros of ym(x).

[The reader may find it helpful to illustrate this result by sketching the first few eigenfunc-
tions of the system y ′′ + λy = 0, with y(0) = y(π) = 0, and the Legendre polynomials Pn(z) for
n = 2, 3, 4, 5.]

The function p (x) does not change sign in the interval a ≤ x ≤ b; we take it as positive,
multiplying the equation all through by −1 if necessary. This means that the weight
function ρ can still be taken as positive, but that we must consider all possible functions
for q(x) and eigenvalues λ of either sign.

We start with the eigenvalue equation for yn(x), multiply it through by ym(x) and then
integrate from x1 to x2. From this result we subtract the same equation with the roles of n
andm reversed, as follows. The integration limits are omitted until the explicit integration
by parts is carried through:∫

ym(p y ′
n)

′ dx +
∫
ymq yn dx +

∫
ymλnρyn dx = 0,∫

yn(p y
′
m)′ dx +

∫
ynq ym dx +

∫
ynλmρym dx = 0,∫ [

ym(p y ′
n)

′ − yn(p y ′
m)′
]
dx + (λn − λm)

∫
ymρyn dx = 0,[

ymp y
′
n

]x2

x1
−
∫
y ′
mp y

′
n dx − [

ynp y
′
m

]x2

x1

+
∫
y ′
np y

′
m dx + (λn − λm)

∫
ymρyn dx = 0.
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Hence

(λn − λm)
∫
ymρyn dx = [

ynp y
′
m − ymp y ′

n

]x2

x1
. (∗)

Now, in this general result, take x1 and x2 as successive zeros of ym(x), where m is
determined by λn > λm (after the signs have been changed, if that was necessary). Clearly
the sign of ym(x) does not change in this interval; let it be α. It follows that the sign of
y ′
m(x1) is also α, whilst that of y ′

m(x2) is −α. In addition, the second term on the RHS of
(∗) vanishes at both limits, as ym(x1) = ym(x2) = 0.

Let us now suppose that the sign of yn(x) does not change in this same interval and is
always β. Then the sign of the expression on the LHS of (∗) is (+1)(α)(+1)β = αβ. The
first (+1) appears because λn > λm.

The signs of the upper- and lower-limit contributions of the remaining term on the RHS
of (∗) are β(+1)(−α) and (−1)β(+1)α, respectively, the additional factor of (−1) in the
second product arising from the fact that the contribution comes from a lower limit. The
contributions at both limits have the same sign, −αβ, and so the sign of the total RHS
must also be −αβ.

This contradicts, however, the sign of +αβ found for the LHS. It follows that it was
wrong to suppose that the sign of yn(x) does not change in the interval; in other words, a
zero of yn(x) does appear between every pair of zeros of ym(x).

8.5 Use the properties of Legendre polynomials to solve the following problems.

(a) Find the solution of (1 − x2)y ′′ − 2xy ′ + by = f (x) that is valid in the range −1 ≤ x ≤ 1 and
finite at x = 0, in terms of Legendre polynomials.

(b) Find the explicit solution if b = 14 and f (x) = 5x3. Verify it by direct substitution.

[Explicit forms for the Legendre polynomials can be found in any textbook. In Mathematical
Methods for Physics and Engineering, 3rd edition, they are given in Subsection 18.1.1.]

(a) The LHS of the given equation is the same as that of Legendre’s equation and
so we substitute y(x) = ∑∞

n=0 anPn(x) and use the fact that (1 − x2)P ′′
n − 2xP ′

n =
−n(n+ 1)Pn. This results in

∞∑
n=0

an[b − n(n+ 1)]Pn = f (x).

Now, using the mutual orthogonality and normalization of the Pn(x), we multiply both
sides by Pm(x) and integrate over x:

∞∑
n=0

an[b − n(n+ 1)] δmn
2

2m+ 1
=
∫ 1

−1
f (z)Pm(z) dz,

⇒ am = 2m+ 1

2[b −m(m+ 1)]

∫ 1

−1
f (z)Pm(z) dz.

This gives the coefficients in the solution y(x).
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(b) We now express f (x) in terms of Legendre polynomials,

f (x) = 5x3 = 2
[

1
2 (5x3 − 3x)

]+ 3[x] = 2P3(x) + 3P1(x),

and conclude that, because of the mutual orthogonality of the Legendre polynomials, only
a3 and a1 in the series solution will be non-zero. To find them we need to evaluate∫ 1

−1
f (z)P3(z) dz = 2

2

2(3) + 1
= 4

7
;

similarly,
∫ 1
−1 f (z)P1(z) dz = 3 × (2/3) = 2.

Inserting these values gives

a3 = 7

2(14 − 12)

4

7
= 1 and a1 = 3

2(14 − 2)
2 = 1

4
.

Thus the solution is

y(x) = 1

4
P1(x) + P3(x) = 1

4
x + 1

2
(5x3 − 3x) = 5(2x3 − x)

4
.

Check:

(1 − x2)
60x

4
− 2x

30x2 − 5

4
+ 140x3 − 70x

4
= 5x3,

⇒ 60x − 60x3 − 60x3 + 10x + 140x3 − 70x = 20x3,

which is satisfied.

8.7 Consider the set of functions, {f (x)}, of the real variable x defined in the interval −∞ < x < ∞,
that → 0 at least as quickly as x−1, as x → ±∞. For unit weight function, determine whether each
of the following linear operators is Hermitian when acting upon {f (x)}:

(a)
d

dx
+ x; (b) − i d

dx
+ x2; (c) ix

d

dx
; (d) i

d3

dx3
.

For an operator L to be Hermitian over the given range with respect to a unit weight
function, the equation∫ ∞

−∞
f ∗(x)[Lg(x)] dx =

{∫ ∞

−∞
g∗(x)[Lf (x)] dx

}∗
(∗)

must be satisfied for general functions f and g.

(a) For L = d

dx
+ x, the LHS of (∗) is∫ ∞

−∞
f ∗(x)

(
dg

dx
+ xg

)
dx = [

f ∗g
]∞
−∞ −

∫ ∞

−∞

df ∗

dx
g dx +

∫ ∞

−∞
f ∗xg dx

= 0 −
∫ ∞

−∞

df ∗

dx
g dx +

∫ ∞

−∞
f ∗xg dx.
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The RHS of (∗) is

∫ ∞

−∞

{
g∗(x)

(
df

dx
+ xf

)
dx

}∗
=
{∫ ∞

−∞
g∗ df
dx
dx

}∗
+
{∫ ∞

−∞
g∗xf dx

}∗

=
∫ ∞

−∞
g
df ∗

dx
dx +

∫ ∞

−∞
gxf ∗ dx.

Since the sign of the first term differs in the two expressions, the LHS �= RHS and L is not
Hermitian. It will also be apparent that purely multiplicative terms in the operator, such
as x or x2, will always be Hermitian; thus we can ignore the x2 term in part (b).

(b) As explained above, we need only consider

∫ ∞

−∞
f ∗(x)

(
−i dg
dx

)
dx = [−if ∗g

]∞
−∞ + i

∫ ∞

−∞

df ∗

dx
g dx

= 0 + i
∫ ∞

−∞

df ∗

dx
g dx

and

∫ ∞

−∞

{
g∗(x)

(
−i df
dx

)
dx

}∗
= i

∫ ∞

−∞
g
df ∗

dx
dx.

These are equal, and so L = −i d
dx

is Hermitian, as is L = −i d
dx

+ x2.

(c) For L = ix
d

dx
, the LHS of (∗) is

∫ ∞

−∞
f ∗(x)

(
ix
dg

dx

)
dx = [

ixf ∗g
]∞
−∞ − i

∫ ∞

−∞
x
df ∗

dx
g dx − i

∫ ∞

−∞
f ∗g dx

= 0 − i
∫ ∞

−∞
x
df ∗

dx
g dx − i

∫ ∞

−∞
f ∗g dx.

The RHS of (∗) is given by

∫ ∞

−∞

{
g∗(x)ix

(
df

dx

)
dx

}∗
= −i

∫ ∞

−∞
gx
df ∗

dx
dx.

Since, in general, −i ∫∞
−∞ fg

∗ dx �= 0, the two sides are not equal; therefore L is not
Hermitian.

(d) Since L = i
d3

dx3
is the cube of the operator −i d

dx
, which was shown in part (b) to

be Hermitian, it is expected that L is Hermitian. This can be verified directly as follows.
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The LHS of (∗) is given by

i

∫ ∞

−∞
f ∗ d

3g

dx3
dx =

[
if ∗ d

2g

dx2

]∞

−∞
− i

∫ ∞

−∞

df ∗

dx

d2g

dx2
dx

= 0 − i
[
df ∗

dx

dg

dx

]∞

−∞
+ i

∫ ∞

−∞

d2f ∗

dx2

dg

dx
dx

= 0 + i
[
d2f ∗

dx2
g

]∞

−∞
− i

∫ ∞

−∞

d3f ∗

dx3
g dx

= 0 +
{∫ ∞

−∞
ig∗ d

3f

dx3
dx

}∗
= RHS of (∗).

Thus L is confirmed as Hermitian.

8.9 Find an eigenfunction expansion for the solution with boundary conditions y(0) = y(π) = 0 of the
inhomogeneous equation

d2y

dx2
+ κy = f (x),

where κ is a constant and

f (x) =
{
x 0 ≤ x ≤ π/2,
π − x π/2 < x ≤ π.

The eigenfunctions of the operator L = d2

dx2
+ κ are obviously

yn(x) = An sin nx + Bn cos nx,

with corresponding eigenvalues λn = n2 − κ .
The boundary conditions, y(0) = y(π) = 0, require that n is a positive integer and that

Bn = 0, i.e.

yn(x) = An sin nx =
√

2

π
sin nx,

where An (for n ≥ 1) has been chosen so that the eigenfunctions are normalized over the
interval x = 0 to x = π . Since L is Hermitian on the range 0 ≤ x ≤ π , the eigenfunctions
are also mutually orthogonal, and so the yn(x) form an orthonormal set.

If the required solution is y(x) = ∑
n anyn(x), then direct substitution yields the result

∞∑
n=1

(κ − n2)anyn(x) = f (x).

Following the usual procedure for analysis using sets of orthonormal functions, this implies
that

am = 1

κ −m2

∫ π

0
f (z)ym(z) dz
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and, consequently, that

y(x) =
∞∑
n=1

√
2

π

sin nx

κ − n2

√
2

π

∫ π

0
f (z) sin(nz) dz.

It only remains to evaluate

In =
∫ π

0
sin(nx)f (x) dx

=
∫ π/2

0
x sin nx dx +

∫ π

π/2
(π − x) sin nx dx

=
[−x cos nx

n

]π/2
0

+
∫ π/2

0

cos nx

n
dx

+
[−(π − x) cos nx

n

]π
π/2

+
∫ π

π/2

(−1) cos nx

n
dx

= −π
2

cos(nπ/2)

n
(1 − 1) +

[sin nx

n2

]π/2
0

−
[sin nx

n2

]π
π/2

= 0 + (−1)(n−1)/2

n2
(1 + 1) for odd n and = 0 for even n.

Thus,

y(x) = 4

π

∑
n odd

(−1)(n−1)/2

n2(κ − n2)
sin nx

is the required solution.

8.11 The differential operator L is defined by

Ly = − d

dx

(
ex
dy

dx

)
− 1

4e
xy.

Determine the eigenvalues λn of the problem

Lyn = λne
xyn 0 < x < 1,

with boundary conditions

y(0) = 0,
dy

dx
+ 1

2y = 0 at x = 1.

(a) Find the corresponding unnormalized yn, and also a weight function ρ(x) with respect to which
the yn are orthogonal. Hence, select a suitable normalization for the yn.

(b) By making an eigenfunction expansion, solve the equation

Ly = −ex/2, 0 < x < 1,

subject to the same boundary conditions as previously.

When written out explicitly, the eigenvalue equation is

− d

dx

(
ex
dy

dx

)
− 1

4e
xy = λexy, (∗)
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or, on differentiating out the product,

exy ′′ + exy ′ + (
λ+ 1

4

)
exy = 0.

The auxiliary equation is

m2 +m+ (
λ+ 1

4

) = 0 ⇒ m = − 1
2 ± i√λ.

The general solution is thus given by

y(x) = Ae−x/2 cos
√
λx + Be−x/2 sin

√
λx,

with the condition y(0) = 0 implying that A = 0. The other boundary condition requires
that, at x = 1,

− 1
2Be

−x/2 sin
√
λx + √

λBe−x/2 cos
√
λx + 1

2Be
−x/2 sin

√
λx = 0,

i.e. that cos
√
λ = 0 and hence that λ = (n+ 1

2 )2π2 for non-negative integral n.
(a) The unnormalized eigenfunctions are

yn(x) = Bne
−x/2 sin

(
n+ 1

2

)
πx

and (∗) is in Sturm–Liouville form. However, although yn(0) = 0, the values at the upper
limit in

[
y ′
mp yn

]1
0 are yn(1) = Bne

−1/2(−1)n, p(1) = e1 and y ′
m(1) = − 1

2Bme
−1/2(−1)m.

Consequently,
[
y ′
mp yn

]1
0 �= 0 and SL theory cannot be applied. We therefore have to find a

suitable weight function ρ(x) by inspection. Given the general form of the eigenfunctions,
ρ has to be taken as ex , with the orthonormality integral taking the form

Inm =
∫ 1

0
ρ(x)yn(x)y∗

m(x) dx

= BnBm

∫ 1

0
exe−x/2 sin

[(
n+ 1

2

)
πx
]
e−x/2 sin

[(
m+ 1

2

)
πx
]
dx

=
{

0 for m �= n,
1
2BnBm for m = n.

It is clear that a suitable normalization is Bn = √
2 for all n.

(b) We write the solution as y(x) = ∑∞
n=0 anyn(x), giving as the equation to be solved

−ex/2 = Ly = L
∞∑
n=0

anyn(x)

=
∞∑
n=0

an[λnρ(x)yn(x)]

=
∞∑
n=0

an
(
n+ 1

2

)2
π2ex

√
2e−x/2 sin

[(
n+ 1

2

)
πx
]

⇒ −1 =
∞∑
n=0

an
(
n+ 1

2

)2
π2√2 sin

[(
n+ 1

2

)
πx
]
.
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After multiplying both sides of this equation by sin
(
m+ 1

2

)
πx and integrating from 0 to

1, we obtain

am

∫ 1

0
sin2 (m+ 1

2

)
πx dx = −1(

m+ 1
2

)2
π2

√
2

∫ 1

0
sin
(
m+ 1

2

)
πx dx,

am

2
= −1(

m+ 1
2

)2
π2

√
2

∫ 1

0
sin
(
m+ 1

2

)
πx dx

= 1(
m+ 1

2

)2
π2

√
2

[
cos

(
m+ 1

2

)
πx(

m+ 1
2

)
π

]1

0

,

am = −
√

2(
m+ 1

2

)3
π3
.

Substituting this result into the assumed expansion, and recalling that Bn = √
2, gives as

the solution

y(x) = −
∞∑
n=0

2(
n+ 1

2

)3
π3
e−x/2 sin

(
n+ 1

2

)
πx.

8.13 By substituting x = exp t , find the normalized eigenfunctions yn(x) and the eigenvalues λn of the
operator L defined by

Ly = x2y ′′ + 2xy ′ + 1
4y, 1 ≤ x ≤ e,

with y(1) = y(e) = 0. Find, as a series
∑
anyn(x), the solution of Ly = x−1/2.

Putting x = et and y(x) = u(t) with u(0) = u(1) = 0,

dx

dt
= et ⇒ d

dx
= e−t

d

dt

and the eigenvalue equation becomes

e2t e−t
d

dt

(
e−t
du

dt

)
+ 2ete−t

du

dt
+ 1

4
u = λu,

d2u

dt2
− du

dt
+ 2

du

dt
+
(

1

4
− λ

)
= 0.

The auxiliary equation to this constant-coefficient linear equation for u is

m2 +m+ ( 1
4 − λ) = 0 ⇒ m = − 1

2 ± √
λ,

leading to

u(t) = e−t/2
(
Ae

√
λ t + Be−

√
λ t
)
.

In view of the requirement that u vanishes at two different values of t (one of which is
t = 0), we need λ < 0 and u(t) to take the form

u(t) = Ae−t/2 sin
√−λ t with

√−λ 1 = nπ, i.e. λ = −n2π2,
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where n is an integer. Thus

un(t) = Ane
−t/2 sin nπt or, in terms of x, yn(x) = An√

x
sin(nπ ln x).

Normalization requires that

1 =
∫ e

1

A2
n

x
sin2(nπ ln x) dx =

∫ 1

0
A2
n sin2(nπt) dt = 1

2A
2
n ⇒ An = √

2.

To solve

Ly = x2y ′′ + 2xy ′ + 1
4y = 1√

x
,

we set y(x) = ∑∞
n=0 anyn(x). Then the equation becomes

Ly =
∞∑
n=0

an(−n2π2)yn(x) =
∞∑
n=0

−n2π2an

√
2√
x

sin(nπ ln x) = 1√
x
.

Multiplying through by ym(x) and integrating, as with ordinary Fourier series,

∫ e

1

2an
x

sin(nπ ln x) sin(mπ ln x) dx = − 1

n2π2

∫ e

1

√
2 sin(mπ ln x)

x
dx.

The LHS of this equation is the normalization integral just considered and has the value
amδmn. Thus

am = −
√

2

m2π2

∫ e

1

sin(mπ ln x)

x
dx

= −
√

2

m2π2

[− cos(mπ ln x)

mπ

]e
1

= −
√

2

m3π3
[1 − (−1)m]

=
⎧⎨⎩− 2

√
2

m3π3
for m odd,

0 for m even.

The explicit solution is therefore

y(x) = − 4

π3

∞∑
p=0

sin[(2p + 1)π ln x]

(2p + 1)3
√
x

.
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8.15 In the quantum mechanical study of the scattering of a particle by a potential, a Born-approximation
solution can be obtained in terms of a function y(r) that satisfies an equation of the form

(−∇2 −K2)y(r) = F (r).

Assuming that yk(r) = (2π )−3/2 exp(ik · r) is a suitably normalized eigenfunction of −∇2 corre-
sponding to eigenvalue k2, find a suitable Green’s functionGK (r, r′). By taking the direction of the
vector r − r′ as the polar axis for a k-space integration, show that GK (r, r′) can be reduced to

1

4π2|r − r′|
∫ ∞

−∞

w sinw

w2 − w2
0

dw,

where w0 = K|r − r′|.
[This integral can be evaluated using contour integration and gives the Green’s function explicitly
as (4π |r − r′|)−1 exp(iK|r − r′|).]

Given that yk(r) = (2π)−3/2 exp(ik · r) satisfies

−∇2yk(r) = k2yk(r),

it follows that

(−∇2 −K2)yk(r) = (k2 −K2)yk(r).

Thus the same functions are suitable eigenfunctions for the extended operator, but with
different eigenvalues.

Its Green’s function is therefore (from the general expression for Green’s functions in
terms of eigenfunctions)

GK (r, r′) =
∫

1

λ
yk(r)y∗

k(r′) dk

= 1

(2π)3

∫
exp(ik · r) exp(−ik · r′)

k2 −K2
dk.

We carry out the three-dimensional integration in k-space using the direction r − r′ as the
polar axis (and denote r − r′ by R). The azimuthal integral is immediate. The remaining
two-dimensional integration is as follows:

GK (r, r′) = 1

(2π)3

∫ ∞

0

∫ π

0

exp(ik · R)

k2 −K2
2πk2 sin θk dθk dk

= 1

(2π)2

∫ ∞

0

∫ π

0

exp(ikR cos θk)

k2 −K2
k2 sin θk dθk dk

= 1

(2π)2

∫ ∞

0

exp(ikR) − exp(−ikR)

ikR(k2 −K2)
k2 dk

= 1

2π2R

∫ ∞

0

k sin kR

k2 −K2
dk
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= 1

2π2R

∫ ∞

0

w sinw

w2 − w2
0

dw, where w = kR and w0 = kR,

= 1

4π2R

∫ ∞

−∞

w sinw

w2 − w2
0

dw.

Here, the final line is justified by noting that the integrand is an even function of the
integration variable w.



9 Special functions

9.1 Use the explicit expressions

Y 0
0 =

√
1

4π , Y 0
1 =

√
3

4π cos θ,

Y±1
1 = ∓

√
3

8π sin θ exp(±iφ), Y 0
2 =

√
5

16π (3 cos2 θ − 1),

Y±1
2 = ∓

√
15
8π sin θ cos θ exp(±iφ), Y±2

2 =
√

15
32π sin2 θ exp(±2iφ),

to verify for � = 0, 1, 2 that

�∑
m=−�

∣∣Ym� (θ, φ)
∣∣2 = 2�+ 1

4π

and so is independent of the values of θ and φ. This is true for any �, but a general proof is more
involved. This result helps to reconcile intuition with the apparently arbitrary choice of polar axis
in a general quantum mechanical system.

We first note that, since every term is the square of a modulus, factors of the form
exp(±miφ) never appear in the sums. For each value of �, let us denote the sum by S�.
For � = 0 and � = 1, we have

S0 =
0∑

m=0

∣∣Ym0 (θ, φ)
∣∣2 = 1

4π
,

S1 =
1∑

m=−1

∣∣Ym1 (θ, φ)
∣∣2 = 3

4π
cos2 θ + 2

3

8π
sin2 θ = 3

4π
.

For � = 2, the summation is more complicated but reads

S2 =
2∑

m=−2

∣∣Ym2 (θ, φ)
∣∣2

= 5

16π
(3 cos2 θ − 1)2 + 2

15

8π
sin2 θ cos2 θ + 2

15

32π
sin4 θ

= 5

16π
(9 cos4 θ − 6 cos2 θ + 1 + 12 sin2 θ cos2 θ + 3 sin4 θ)
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= 5

16π
[6 cos4 θ − 6 cos2 θ + 1 + 6 sin2 θ cos2 θ + 3(cos2 θ + sin2 θ)2]

= 5

16π
[6 cos2 θ(− sin2 θ) + 1 + 6 sin2 θ cos2 θ + 3] = 5

4π
.

All three sums are independent of θ and φ, and are given by the general formula
(2�+ 1)/4π . It will, no doubt, be noted that 2�+ 1 is the number of terms in S�, i.e.
the number of m values, and that 4π is the total solid angle subtended at the origin by all
space.

9.3 Use the generating function for the Legendre polynomials Pn(x) to show that∫ 1

0
P2n+1(x) dx = (−1)n

(2n)!

22n+1n!(n+ 1)!

and that, except for the case n = 0, ∫ 1

0
P2n(x) dx = 0.

Denote
∫ 1

0 Pn(x) dx by an. From the generating function for the Legendre polynomials,
we have

1

(1 − 2xh+ h2)1/2
=

∞∑
n=0

Pn(x)hn.

Integrating this definition with respect to x gives

∫ 1

0

dx

(1 − 2xh+ h2)1/2
=

∞∑
n=0

(∫ 1

0
Pn(x) dx

)
hn,

[−(1 − 2xh+ h2)1/2

h

]1

0

=
∞∑
n=0

anh
n,

1

h
[(1 + h2)1/2 − 1 + h] =

∞∑
n=0

anh
n.

Now expanding (1 + h2)1/2 using the binomial theorem yields

∞∑
n=0

anh
n = 1

h

[
1 +

∞∑
m=1

1/2Cmh
2m − 1 + h

]
= 1 +

∞∑
m=1

1/2Cmh
2m−1.

Comparison of the coefficients of hn on the two sides of the equation shows that all a2r are
zero except for a0 = 1. For n = 2r + 1 we need 2m− 1 = n = 2r + 1, i.e. m = r + 1,
and the value of a2r+1 is 1/2Cr+1.
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Now, the binomial coefficient 1/2Cm can be written as

1/2Cm =
1
2

(
1
2 − 1

)(
1
2 − 2

) · · · ( 1
2 −m+ 1

)
m!

,

= 1(1 − 2)(1 − 4) · · · (1 − 2m+ 2)

2m m!

= (−1)m−1 (1)(1)(3) · · · (2m− 3)

2m m!

= (−1)m−1 (2m− 2)!

2m m! 2m−1 (m− 1)!

= (−1)m−1 (2m− 2)!

22m−1m! (m− 1)!
.

Thus, setting m = r + 1 gives the value of the integral a2r+1 as

a2r+1 = 1/2Cr+1 = (−1)r
(2r)!

22r+1 (r + 1)! r!
,

as stated in the question.

9.5 The Hermite polynomials Hn(x) may be defined by

�(x, h) = exp(2xh− h2) =
∞∑
n=0

1

n!
Hn(x)hn.

Show that

∂2�

∂x2
− 2x

∂�

∂x
+ 2h

∂�

∂h
= 0,

and hence that the Hn(x) satisfy the Hermite equation,

y ′′ − 2xy ′ + 2ny = 0,

where n is an integer ≥ 0.
Use � to prove that

(a) H ′
n(x) = 2nHn−1(x),

(b) Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0.

With

�(x, h) = exp(2xh− h2) =
∞∑
n=0

1

n!
Hn(x)hn,

we have

∂�

∂x
= 2h�,

∂�

∂h
= (2x − 2h)�,

∂2�

∂x2
= 4h2�.

It then follows that

∂2�

∂x2
− 2x

∂�

∂x
+ 2h

∂�

∂h
= (4h2 − 4hx + 4hx − 4h2)� = 0.
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Substituting the series form into this result gives

∞∑
n=0

(
1

n!
H ′′
n − 2x

n!
H ′
n + 2n

n!

)
hn = 0,

⇒ H ′′
n − 2xH ′

n + 2nHn = 0.

This is the equation satisfied by Hn(x), as stated in the question.
(a) From the first relationship derived above, we have that

∂�

∂x
= 2h�,

∞∑
n=0

1

n!
H ′
n(x)hn = 2h

∞∑
n=0

1

n!
Hn(x)hn,

⇒ 1

m!
H ′
m = 2

(m− 1)!
Hm−1, from the coefficients of hm.

Hence, H ′
n(x) = 2nHn−1(x).

(b) Differentiating result (a) and then applying it again yields

H ′′
n = 2nH ′

n−1 = 2n 2(n− 1)Hn−2.

Using this in the differential equation satisfied by the Hn, we obtain

4n(n− 1)Hn−2 − 2x 2nHn−1 + 2nHn = 0.

This gives

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0

after dividing through by 2n and changing n → n+ 1.

9.7 For the associated Laguerre polynomials, carry out the following:

(a) Prove the Rodrigues’ formula

Lmn (x) = exx−m

n!

dn

dxn
(xn+me−x),

taking the polynomials to be defined by

Lmn (x) =
n∑
k=0

(−1)k
(n+m)!

k!(n− k)!(k +m)!
xk.

(b) Prove the recurrence relations

(n+ 1)Lmn+1(x) = (2n+m+ 1 − x)Lmn (x) − (n+m)Lmn−1(x),

x(Lmn )′(x) = nLmn (x) − (n+m)Lmn−1(x),

but this time taking the polynomial as defined by

Lmn (x) = (−1)m
dm

dxm
Ln+m(x)

or the generating function.
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(a) It is most convenient to evaluate the nth derivative directly, using Leibnitz’ theorem.
This gives

Lmn (x) = exx−m

n!

n∑
r=0

n!

r!(n− r)!
dr

dxr
(xn+m)

dn−r

dxn−r
(e−x)

= exx−m
n∑
r=0

1

r!(n− r)!
(n+m)!

(n+m− r)!x
n+m−r (−1)n−re−x

=
n∑
r=0

(−1)n−r

r!(n− r)!
(n+m)!

(n+m− r)!x
n−r .

Relabeling the summation using the new index k = n− r , we immediately obtain

Lmn (x) =
n∑
k=0

(−1)k
(n+m)!

k!(n− k)!(k +m)!
xk,

which is as given in the question.
(b) The first recurrence relation can be proved using the generating function for the

associated Laguerre functions:

G(x, h) = e−xh/(1−h)

(1 − h)m+1
=

∞∑
n=0

Lmn (x)hn.

Differentiating the second equality with respect to h, we obtain

(m+ 1)(1 − h) − x
(1 − h)m+3

e−xh/(1−h) =
∑

nLmn h
n−1.

Using the generating function for a second time, we may rewrite this as

[(m+ 1)(1 − h) − x]
∑

Lmn h
n = (1 − h)2

∑
nLmn h

n−1.

Equating the coefficients of hn now yields

(m+ 1)Lmn − (m+ 1)Lmn−1 − xLmn = (n+ 1)Lmn+1 − 2nLmn + (n− 1)Lmn−1,

which can be rearranged and simplified to give the first recurrence relation.
The second result is most easily proved by differentiating one of the standard recurrence

relations satisfied by the ordinary Laguerre polynomials, but with n replaced by n+m.
This standard equality reads

xL′
n+m(x) = (n+m)Ln+m(x) − (n+m)Ln−1+m(x).

We convert this into an equation for the associated polynomials,

Lmn (x) = (−1)m
dm

dxm
Ln+m(x),

by differentiating it m times with respect to x and multiplying through by (−1)m. The
result is

x(Lmn )′ +mLmn = (n+m)Lmn − (n+m)Lmn−1,
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which immediately simplifies to give the second recurrence relation satisfied by the
associated Laguerre polynomials.

9.9 By initially writing y(x) as x1/2f (x) and then making subsequent changes of variable, reduce
Stokes’ equation,

d2y

dx2
+ λxy = 0,

to Bessel’s equation. Hence show that a solution that is finite at x = 0 is a multiple of
x1/2J1/3( 2

3

√
λx3).

With y(x) = x1/2f (x),

y ′ = f

2x1/2
+ x1/2f ′ and y ′′ = − f

4x3/2
+ f ′

x1/2
+ x1/2f ′′

and the equation becomes

− f

4x3/2
+ f ′

x1/2
+ x1/2f ′′ + λx3/2f = 0,

x2f ′′ + xf ′ + (λx3 − 1
4 )f = 0.

Now, guided by the known form of Bessel’s equation, change the independent variable to
u = x3/2 with f (x) = g(u) and

du

dx
= 3

2
x1/2 ⇒ d

dx
= 3

2
u1/3 d

du
.

This gives

u4/3 3

2
u1/3 d

du

(
3

2
u1/3 dg

du

)
+ u2/3 3

2
u1/3 dg

du
+
(
λu2 − 1

4

)
g = 0,

3

2
u5/3

(
3

2
u1/3 d

2g

du2
+ 1

2
u−2/3 dg

du

)
+ 3

2
u
dg

du
+
(
λu2 − 1

4

)
g = 0,

9

4
u2 d

2g

du2
+ 9

4
u
dg

du
+
(
λu2 − 1

4

)
g = 0,

u2 d
2g

du2
+ udg

du
+
(

4

9
λu2 − 1

9

)
g = 0.

This is close to Bessel’s equation but still needs a scaling of the variables. So, set 2
3

√
λu ≡

μu = v and g(u) = h(v), obtaining

v2

μ2
μ2 d

2h

dv2
+ v

μ
μ
dh

dv
+
(
v2 − 1

9

)
h = 0.

This is Bessel’s equation and has a general solution

h(v) = c1J1/3(v) + c2J−1/3(v),

⇒ g(u) = c1J1/3
(

2
√
λ

3 u
)+ c2J−1/3

(
2
√
λ

3 u
)
,

⇒ f (x) = c1J1/3
(

2
√
λ

3 x
3/2
)+ c2J−1/3

(
2
√
λ

3 x
3/2
)
.
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For a solution that is finite at x = 0, only the Bessel function with a positive subscript can
be accepted. Therefore the required solution is

y(x) = c1x
1/2J1/3( 2

√
λ

3 x
3/2).

9.11 The complex function z! is defined by

z! =
∫ ∞

0
uze−u du for Re z > −1.

For Re z ≤ −1 it is defined by

z! = (z+ n)!

(z+ n)(z+ n− 1) · · · (z+ 1)
,

where n is any (positive) integer > −Re z. Being the ratio of two polynomials, z! is analytic
everywhere in the finite complex plane except at the poles that occur when z is a negative integer.

(a) Show that the definition of z! for Re z ≤ −1 is independent of the value of n chosen.
(b) Prove that the residue of z! at the pole z = −m, wherem is an integer> 0, is (−1)m−1/(m− 1)!.

(a) Letm and n be two choices of integer withm > n > −Re z. Denote the corresponding
definitions of z! by (z!)m and (z!)n and consider the ratio of these two functions:

(z!)m
(z!)n

= (z+m)!

(z+m)(z+m− 1) · · · (z+ 1)

(z+ n)(z+ n− 1) · · · (z+ 1)

(z+ n)!

= (z+m)!

(z+m)(z+m− 1) · · · (z+ n+ 1) × (z+ n)!

= (z+m)!

(z+m)!
= 1.

Thus the two functions are identical for all z, i.e the definition of z! is independent of the
choice of n, provided that n > −Re z.

(b) From the given definition of z! it is clear that its pole at z = −m is a simple one.
The residue R at the pole is therefore given by

R = lim
z→−m(z+m)z!

= lim
z→−m

(z+m) (z+ n)!

(z+ n)(z+ n− 1) · · · (z+ 1)
(integer n is chosen > m)

= lim
z→−m

(z+ n)!

(z+ n)(z+ n− 1) · · · (z+m+ 1)(z+m− 1) · · · (z+ 1)

= (−m+ n)!

(−m+ n) · · · (−m+m+ 1)(−m+m− 1) · · · (−m+ 1)

= 1

[−1] [−2] · · · [−(m− 1)]

= (−1)m−1 1

(m− 1)!
,

as stated in the question.
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9.13 The integral

I =
∫ ∞

−∞

e−k
2

k2 + a2
dk, (∗)

in which a > 0, occurs in some statistical mechanics problems. By first considering the integral

J =
∫ ∞

0
eiu(k+ia) du

and a suitable variation of it, show that I = (π/a) exp(a2) erfc(a), where erfc(x) is the comple-
mentary error function.

The fact that a > 0 will ensure that the improper integral J is well defined. It is

J =
∫ ∞

0
eiu(k+ia) du =

[
eiu(k+ia)

i(k + ia)

]∞

0

= i

k + ia .

We note that this result contains one of the factors that would appear as a denominator
in one term of a partial fraction expansion of the integrand in (∗). Another term would
contain a factor (k − ia)−1, and this can be generated by

J ′ =
∫ ∞

0
e−iu(k−ia) du =

[
e−iu(k−ia)

−i(k − ia)

]∞

0

= −i
k − ia .

Now, actually expressing the integrand in partial fractions, using the integral expressions
J and J ′ for the factors, and then reversing the order of integration gives

I = 1

2a

∫ ∞

−∞

(
ie−k

2

k + ia − ie−k
2

k − ia

)
dk

= 1

2a

∫ ∞

−∞
e−k

2
dk

∫ ∞

0
eiu(k+ia) du+ 1

2a

∫ ∞

−∞
e−k

2
dk

∫ ∞

0
e−iu(k−ia) du,

⇒ 2aI =
∫ ∞

0
du

∫ ∞

−∞
e−k

2+iuk−ua dk +
∫ ∞

0
du

∫ ∞

−∞
e−k

2−iuk−ua dk

=
∫ ∞

0
du

∫ ∞

−∞
e−(k−iu/2)2−u2/4−ua dk

+
∫ ∞

0
du

∫ ∞

−∞
e−(k+iu/2)2−u2/4−ua dk

= 2
√
π

∫ ∞

0
e−u

2/4−ua du,

using the standard Gaussian result. We now complete the square in the exponent and set
2v = u+ 2, obtaining

2aI = 2
√
π

∫ ∞

0
e−(u+2a)2/4+a2

du,

= 2
√
π

∫ ∞

a

e−v
2
ea

2
2dv.
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From this it follows that

I =
√
π

a
2ea

2

√
π

2
erfc(a) = π

a
ea

2
erfc(a),

as stated in the question.

9.15 Prove two of the properties of the incomplete gamma function P (a, x2) as follows.

(a) By considering its form for a suitable value of a, show that the error function can be expressed
as a particular case of the incomplete gamma function.

(b) The Fresnel integrals, of importance in the study of the diffraction of light, are given by

C(x) =
∫ x

0
cos

(π
2
t2
)
dt, S(x) =

∫ x

0
sin
(π

2
t2
)
dt.

Show that they can be expressed in terms of the error function by

C(x) + iS(x) = A erf

[√
π

2
(1 − i)x

]
,

where A is a (complex) constant, which you should determine. Hence express C(x) + iS(x) in
terms of the incomplete gamma function.

(a) From the definition of the incomplete gamma function, we have

P (a, x2) = 1

�(a)

∫ x2

0
e−t t a−1 dt.

Guided by the x2 in the upper limit, we now change the integration variable to y = +√
t ,

with 2y dy = dt , and obtain

P (a, x2) = 1

�(a)

∫ x

0
e−y

2
y2(a−1) 2y dy.

To make the RHS into an error function we need to remove the y-term; to do this we
choose a such that 2(a − 1) + 1 = 0, i.e. a = 1

2 . With this choice, �(a) = √
π and

P
(

1
2 , x

2
) = 2√

π

∫ x

0
e−y

2
dy,

i.e. a correctly normalized error function.
(b) Consider the given expression:

z = A erf

[√
π

2
(1 − i)x

]
= 2A√

π

∫ √
π(1−i)x/2

0
e−u

2
du.
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Changing the variable of integration to s, given by u = 1
2

√
π (1 − i)s, and recalling that

(1 − i)2 = −2i, we obtain

z = 2A√
π

∫ x

0
e−s

2π(−2i)/4

√
π

2
(1 − i) ds

= A(1 − i)
∫ x

0
eiπs

2/2 ds

= A(1 − i)
∫ x

0

[
cos

(
πs2

2

)
+ i sin

(
πs2

2

)]
ds

= A(1 − i) [C(x) + iS(x)].

For the correct normalization we need A(1 − i) = 1, implying that A = (1 + i)/2.
Now, from part (a), the error function can be expressed in terms of the incomplete

gamma function P (a, x) by

erf(x) = P
(

1
2 , x

2
)
.

Here the argument of the error function is 1
2

√
π (1 − i)x, whose square is − 1

2πix
2, and so

C(x) + iS(x) = 1 + i
2

P

(
1

2
,− iπ

2
x2

)
.
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10.1 Determine whether the following can be written as functions of p = x2 + 2y only, and hence
whether they are solutions of

∂u

∂x
= x

∂u

∂y
.

(a) x2(x2 − 4) + 4y(x2 − 2) + 4(y2 − 1);
(b) x4 + 2x2y + y2;
(c) [x4 + 4x2y + 4y2 + 4]/[2x4 + x2(8y + 1) + 8y2 + 2y].

As a first step, we verify that any function of p = x2 + 2y will satisfy the given equation.
Using the chain rule, we have

∂u

∂p

∂p

∂x
= x

∂u

∂p

∂p

∂y
,

⇒ ∂u

∂p
2x = x

∂u

∂p
2.

This is satisfied for any function u(p), thus completing the verification.
To test the given functions we substitute for y = 1

2 (p − x2) or for x2 = p − 2y in each
of the f (x, y) and then examine whether the resulting forms are independent of x or y,
respectively.

(a) f (x, y) = x2(x2 − 4) + 4y(x2 − 2) + 4(y2 − 1)

= x2(x2 − 4) + 2(p − x2)(x2 − 2) + p2 − 2p x2 + x4 − 4

= x4(1 − 2 + 1) + x2(−4 + 2p + 4 − 2p) − 4p + p2 − 4

= p2 − 4p − 4 = g(p).

This is a function of p only, and therefore the original f (x, y) is a solution of the PDE.
Though not necessary for answering the question, we will repeat the verification, but

this time by substituting for x rather than for y:

f (x, y) = x2(x2 − 4) + 4y(x2 − 2) + 4(y2 − 1)

= (p − 2y)(p − 2y − 4) + 4y(p − 2y − 2) + 4(y2 − 1)

= p2 − 4py + 4y2 − 4p + 8y + 4yp − 8y2 − 8y + 4y2 − 4

= p2 − 4p − 4 = g(p);
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i.e. it is the same as before, as it must be, and again this shows that f (x, y) is a solution
of the PDE.

(b) f (x, y) = x4 + 2x2y + y2

= (p − 2y)2 + 2y(p − 2y) + y2

= p2 − 4p y + 4y2 + 2p y − 4y2 + y2

= (p − y)2 �= g(p).

As this is a function of both p and y, it is not a solution of the PDE.

(c) f (x, y) = x4 + 4x2y + 4y2 + 4

2x4 + x2(8y + 1) + 8y2 + 2y

= p2 − 4p y + 4y2 + 4yp − 8y2 + 4y2 + 4

2p2 − 8p y + 8y2 + 8yp + p − 16y2 − 2y + 8y2 + 2y

= p2 + 4

2p2 + p = g(p).

This is a function of p only and therefore f (x, y) is a solution of the PDE.

10.3 Solve the following partial differential equations for u(x, y) with the boundary conditions given:

(a) x
∂u

∂x
+ xy = u, u = 2y on the line x = 1;

(b) 1 + x ∂u
∂y

= xu, u(x, 0) = x.

(a) This can be solved as an ODE for u as a function of x, though the “constant of
integration” will be a function of y. In standard form, the equation reads

∂u

∂x
− u

x
= −y.

By inspection (or formal calculation) the IF for this is x−1 and the equation can be
rearranged as

∂

∂x

(u
x

)
= −y

x
,

⇒ u

x
= −y ln x + f (y),

u = 2y on x = 1 ⇒ f (y) = 2y,

and so u(x, y) = xy(2 − ln x).

(b) This equation can be written in standard form, with u as a function of y:

∂u

∂y
− u = −1

x
,
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for which the IF is clearly e−y , leading to

∂

∂y

(
e−yu

) = −e
−y

x
,

⇒ e−yu = e−y

x
+ f (x),

u(x, 0) = x ⇒ f (x) = x − 1

x
.

Substituting this result, and multiplying through by ey , gives u(x, y) as

u(x, y) = 1

x
+
(
x − 1

x

)
ey.

10.5 Find solutions of

1

x

∂u

∂x
+ 1

y

∂u

∂y
= 0

for which (a) u(0, y) = y and (b) u(1, 1) = 1.

As usual, we find p (x, y) from

dx

x−1
= dy

y−1
⇒ x2 − y2 = p.

(a) On x = 0, p = −y2 and

u(0, y) = y = (−p )1/2 ⇒ u(x, y) = [−(x2 − y2)]1/2 = (y2 − x2)1/2.

(b) At (1, 1), p = 0 and

u(1, 1) = 1 ⇒ u(x, y) = 1 + g(x2 − y2),

where g is any function that has g(0) = 0.
We note that in part (a) the solution is uniquely determined because the boundary values

are given along a line, whereas in part (b), where the value is fixed at only an isolated
point, the solution is indeterminate to the extent of a loosely determined function. This is
the normal situation, though it is modified if the boundary line in (a) happens to be one
along which p has a constant value.

10.7 Solve

sin x
∂u

∂x
+ cos x

∂u

∂y
= cos x (∗)

subject to (a) u(π/2, y) = 0 and (b) u(π/2, y) = y(y + 1).

As usual, the CF is found from

dx

sin x
= dy

cos x
⇒ y − ln sin x = p.
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Since the RHS of (∗) is a factor in one of the terms on the LHS, a trivial PI is any function
of y only whose derivative (with respect to y) is unity, of which the simplest is u(x, y) = y.
The general solution is therefore

u(x, y) = f (y − ln sin x) + y.

The actual form of the arbitrary function f (p) is determined by the form that u(x, y) takes
on the boundary, here the line x = π/2.

(a) With u(π/2, y) = 0:

0 = f (y − 0) + y ⇒ f (p ) = −p
⇒ u(x, y) = ln sin x − y + y = ln sin x.

(b) With u(π/2, y) = y(y + 1):

y(y + 1) = f (y − 0) + y ⇒ f (p ) = p2

⇒ u(x, y) = (y − ln sin x)2 + y.

10.9 If u(x, y) satisfies

∂2u

∂x2
− 3

∂2u

∂x∂y
+ 2

∂2u

∂y2
= 0

and u = −x2 and ∂u/∂y = 0 for y = 0 and all x, find the value of u(0, 1).

If we are to find solutions to this homogeneous second-order PDE of the form u(x, y) =
f (x + λy), then λ must satisfy

1 − 3λ+ 2λ2 = 0 ⇒ λ = 1
2 , 1.

Thus u(x, y) = g(x + 1
2y) + f (x + y) ≡ g(p1) + f (p2).

On y = 0, p 1 = p 2 = x and

−x2 = u(x, 0) = g(x) + f (x), (∗)

0 = ∂u

∂y
(x, 0) = 1

2g
′(x) + f ′(x).

From (∗), − 2x = g′(x) + f ′(x).

Subtracting, 2x = − 1
2g

′(x).

Integrating, g(x) = −2x2 + k ⇒ f (x) = x2 − k, from (∗).

Hence, u(x, y) = −2
(
x + 1

2y
)2 + k + (x + y)2 − k

= −x2 + 1
2y

2.

At the particular point (0, 1) we have u(0, 1) = −02 + 1
2 (1)2 = 1

2 .
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10.11 In those cases in which it is possible to do so, evaluate u(2, 2), where u(x, y) is the solution of

2y
∂u

∂x
− x ∂u

∂y
= xy(2y2 − x2)

that satisfies the (separate) boundary conditions given below.

(a) u(x, 1) = x2.
(b) u(1,

√
10) = 5.

(c) u(
√

10, 1) = 5.

To find the CF, u(x, y) = f (p ), we set

dx

2y
= −dy

x
⇒ x2 + 2y2 = p.

The point (2, 2) corresponds to p = 22 + 2(22) = 12.
For a PI we try u(x, y) = Axnym:

2Anxn−1ym+1 − Amxn+1ym−1 = 2xy3 − x3y,

which has a solution, n = m = 2 with A = 1
2 . Thus the general solution is

u(x, y) = f (x2 + 2y2) + 1
2x

2y2.

(a) We must find the function f that makes u(x, 1) = x2. This requires f to satisfy

x2 = u(x, 1) = f (x2 + 2) + 1
2x

2

⇒ f (p) = 1
2 (p − 2)

⇒ u(x, y) = 1
2 (x2 + 2y2 − 2) + 1

2x
2y2

= 1
2 (x2 + x2y2 + 2y2 − 2).

From which it follows that u(2, 2) = 1
2 (4 + 16 + 8 − 2) = 13.

(b) With u(1,
√

10) = 5: At the point (1,
√

10) the value of p is 1 + 2(10) = 21. As the
“boundary” consists of just this one point, it is only at the points that have p = 21 that the
value of u(x, y) can be known. Since for the point (2, 2) the value of p is 12, the value of
u(2, 2) cannot be determined.

(c) With u(
√

10, 1) = 5: At the point (
√

10, 1) the value of p is 10 + 2(1) = 12. Since
for (2, 2) it is also 12, the value of u(2, 2) can be determined and is given by f (12) +
1
2 (4)(4) = 5 + 8 = 13.

10.13 Find the most general solution of
∂2u

∂x2
+ ∂2u

∂y2
= x2y2.

The complementary function for this equation is the solution to the two-dimensional
Laplace equation and [either as a general known result or from substituting the trial form
h(x + λy) which leads to λ2 = −1 and hence to λ = ±i] has the form f (x + iy) + g(x −
iy) for arbitrary functions f and g.

It therefore remains only to find a suitable PI. As f and g are not specified, there are
infinitely many possibilities and which one we finish up with will depend upon the details
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of the approach adopted. When a solution has been obtained it should be checked by
substitution.

As no PI is obvious by inspection, we make a change of variables with the object of
obtaining one by means of an explicit integration. To do this, we use as new variables the
arguments of the arbitrary functions appearing in the CF.

Setting ξ = x + iy and η = x − iy, with u(x, y) = v(ξ, η), gives(
∂

∂ξ
+ ∂

∂η

)(
∂v

∂ξ
+ ∂v

∂η

)
+
(
i
∂

∂ξ
− i ∂
∂η

)(
i
∂v

∂ξ
− i ∂v
∂η

)
=
(
ξ + η

2

)2 (
ξ − η

2i

)2

,

(1 − 1)
∂2v

∂ξ 2
+ (2 + 2)

∂2v

∂ξ∂η
+ (1 − 1)

∂2v

∂η2
= − 1

16
(ξ 2 − η2)2,

∂2v

∂ξ∂η
= − 1

64
(ξ 2 − η2)2.

When we integrate this we can set all constants of integration and all arbitrary functions
equal to zero as any solution will suffice:

∂2v

∂ξ∂η
= − 1

64
(ξ 4 − 2ξ 2η2 + η4),

∂v

∂η
= − 1

64

(
ξ 5

5
− 2ξ 3η2

3
+ ξη4

)
,

v = − 1

64

(
ξ 5η

5
− 2ξ 3η3

9
+ ξη5

5

)
.

Re-expressing this solution as a function of x and y (noting that ξη = x2 + y2) gives

u(x, y) = 1

(64)(45)
[10ξ 3η3 − 9ξη(ξ 4 + η4)]

= 1

(64)(45)
[10(x2 + y2)3 − 18(x2 + y2)(x4 − 6x2y2 + y4)]

= x2 + y2

(64)(45)
(10x4 + 20x2y2 + 10y4 − 18x4 + 108x2y2 − 18y4)

= x2 + y2

(64)(45)
(128x2y2 − 8x4 − 8y4)

= 1

360
(15x4y2 − x6 + 15x2y4 − y6).

Check

Applying
∂2

∂x2
+ ∂2

∂y2
to the final expression yields

1

360
[15(12)x2y2 − 30x4 + 30y4 + 30x4 + 15(12)x2y2 − 30y4] = x2y2,

as it should.



144 Partial differential equations

10.15 The non-relativistic Schrödinger equation,

−
−h2

2m
∇2u+ V (r)u = i−h

∂u

∂t
,

is similar to the diffusion equation in having different orders of derivatives in its various terms;
this precludes solutions that are arbitrary functions of particular linear combinations of variables.
However, since exponential functions do not change their forms under differentiation, solutions in
the form of exponential functions of combinations of the variables may still be possible.

Consider the Schrödinger equation for the case of a constant potential, i.e. for a free particle,
and show that it has solutions of the form A exp(lx +my + nz+ λt), where the only requirement
is that

−
−h2

2m

(
l2 +m2 + n2) = i−hλ.

In particular, identify the equation and wavefunction obtained by taking λ as −iE/−h, and l, m and n
as ipx/−h, ipy/−h and ipz/−h, respectively, whereE is the energy and p the momentum of the particle;
these identifications are essentially the content of the de Broglie and Einstein relationships.

For a free particle we may omit the potential term V (r) from the Schrödinger equation,
which then reads (in Cartesian coordinates)

−
−h2

2m

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
= i−h

∂u

∂t
.

We try u(x, y, z, t) = A exp(lx +my + nz+ λt), i.e. the product of four exponential
functions, and obtain

−
−h2

2m
(l2 +m2 + n2)u = i−hλu.

This equation is clearly satisfied provided

−
−h2

2m
(l2 +m2 + n2) = i−hλ.

With λ as −iE/−h, and l, m and n as ipx/−h, ipy/−h and ipz/−h, respectively, where E is the
energy and p is the momentum of the particle, we have

−
−h2

2m

(
−p

2
x

−h2 − p2
y

−h2 − p2
z

−h2

)
= E,

which can be written more compactly as E = p2/2m, the classical non-relativistic rela-
tionship between the (kinetic) energy and momentum of a free particle.

The wavefunction obtained is

u(r, t) = A exp

[
i
−h

(pxx + pyy + pzz− Et)
]

= A exp

[
i
−h

(p · r − Et)
]
,
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i.e. a classical plane wave of wave number k = p/−h and angular frequency ω = E/−h
traveling in the direction p/p.

10.17 An incompressible fluid of density ρ and negligible viscosity flows with velocity v along a thin,
straight, perfectly light and flexible tube, of cross-sectionAwhich is held under tension T . Assume
that small transverse displacements u of the tube are governed by

∂2u

∂t2
+ 2v

∂2u

∂x∂t
+
(
v2 − T

ρA

)
∂2u

∂x2
= 0.

(a) Show that the general solution consists of a superposition of two waveforms traveling with
different speeds.

(b) The tube initially has a small transverse displacement u = a cos kx and is suddenly released
from rest. Find its subsequent motion.

(a) This is a second-order equation and will (in general) have two solutions of the form
u(x, t) = f (x + λt), where both λ satisfy

λ2 + 2vλ+
(
v2 − T

ρA

)
= 0 ⇒ λ = −v ±

√
v2 − v2 + T

ρA
≡ −v ± α,

and gives (minus) the speed of the corresponding profile. Thus the general displacement
consists of a superposition of waveforms traveling with speeds v ∓ α.

(b) Now u(x, 0) = a cos kx and u̇(x, 0) = 0, where the dot denotes differentiation with
respect to time t . Let the general solution be given by

u(x, t) = f [x − (v + α)t] + g[x − (v − α)t],

with a cos kx = f (x) + g(x)

and 0 = −(v + α)f ′(x) − (v − α)g′(x).

We differentiate the first of these with respect to x and then eliminate the function f ′(x):

−ka sin kx = f ′(x) + g′(x),

−ka(v + α) sin kx = (v + α − v + α)g′(x),

g′(x) = −ka(v + α)

2α
sin kx,

⇒ g(x) = v + α
2α

a cos kx + c,

⇒ f (x) = α − v
2α

a cos kx − c.
Now that the forms of the initially arbitrary functions f (x) and g(x) have been determined,
it follows that, for a general time t ,

u(x, t) = α − v
2α

a cos[kx − k(v + α)t] + α + v
2α

a cos[kx − k(v − α)t]

= a

2
2 cos(kx − kvt) cos kαt + va

2α
2 sin(kx − kvt) sin(−kαt)

= a cos[k(x − vt)] cos kαt − va

α
sin[k(x − vt)] sin kαt.



146 Partial differential equations

10.19 In an electrical cable of resistance R and capacitance C, each per unit length, voltage signals obey
the equation ∂2V/∂x2 = RC∂V/∂t . This (diffusion-type) equation has solutions of the form

f (ζ ) = 2√
π

∫ ζ

0
exp(−ν2) dν, where ζ = x(RC)1/2

2t1/2
.

It also has solutions of the form V = Ax +D.

(a) Find a combination of these that represents the situation after a steady voltage V0 is applied at
x = 0 at time t = 0.

(b) Obtain a solution describing the propagation of the voltage signal resulting from the application
of the signal V = V0 for 0 < t < T , V = 0 otherwise, to the end x = 0 of an infinite cable.

(c) Show that for t � T the maximum signal occurs at a value of x proportional to t1/2 and has a
magnitude proportional to t−1.

(a) Consider the given function

f (ζ ) = 2√
π

∫ ζ

0
exp(−ν2) dν, where ζ = x(RC)1/2

2t1/2
.

The requirements to be satisfied by the correct combination of this function and V (x, t) =
Ax +D are (i) that, at t = 0, V is zero for all x, except x = 0 where it is V0, and (ii) that,
as t → ∞, V is V0 for all x.

(i) At t = 0, ζ = ∞ and f (ζ ) = 1 for all x �= 0.
(ii) As t → ∞, ζ → 0 and f (ζ ) → 0 for all finite x.
The required combination is therefore D = V0 and −V0f (ζ ), i.e.

V (x, t) = V0

⎡⎣1 − 2√
π

∫ 1
2x(CR/t)1/2

0
exp(−ν2) dν

⎤⎦ .
(b) The equation is linear and so we may superpose solutions. The response to the input
V = V0 for 0 < t < T can be considered as that to V0 applied at t = 0 and continued,
together with −V0 applied at t = T and continued. The solution is therefore the difference
between two solutions of the form found in part (a):

V (x, t) = 2V0√
π

∫ 1
2 x[CR/(t−T )]1/2

1
2 x(CR/t)1/2

exp
(−ν2) dν.

(c) To find the maximum signal we set ∂V/∂x equal to zero. Remembering that we are
differentiating with respect to the limits of an integral (whose integrand does not contain
x explicitly), we obtain

1

2

(
CR

t − T
)1/2

exp

[
− x2CR

4(t − T )

]
− 1

2

(
CR

t

)1/2

exp

[
−x

2CR

4t

]
= 0.

This requires (
t − T
t

)1/2

= exp

[
− x2CR

4(t − T )
+ x2CR

4t

]
= exp

[
x2CR(−t + t − T )

4t(t − T )

]
.
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For t � T , we expand both sides:

1 − 1

2

T

t
+ · · · = 1 − T x2CR

4t2
+ · · ·,

⇒ x2 ≈ 2t

CR
⇒ ν = 1

2

√
2t

CR

(
CR

t

)1/2

= 1√
2
.

The corresponding value of V is approximately equal to the value of the integrand,
evaluated at this value of ν, multiplied by the difference between the two limits of the
integral. Thus

Vmax ≈ 2V0√
π

exp(−ν2)
x
√
CR

2

[
1

(t − T )1/2
− 1

t1/2

]
≈ 2V0√

π
e−1/2 x

√
CR

2

1

2

T

t3/2

= V0T e
−1/2

√
2π t

.

In summary, for t � T the maximum signal occurs at a value of x proportional to t1/2

and has a magnitude proportional to t−1.

10.21 Consider each of the following situations in a qualitative way and determine the equation type, the
nature of the boundary curve and the type of boundary conditions involved:

(a) a conducting bar given an initial temperature distribution and then thermally isolated;
(b) two long conducting concentric cylinders, on each of which the voltage distribution is specified;
(c) two long conducting concentric cylinders, on each of which the charge distribution is specified;
(d) a semi-infinite string, the end of which is made to move in a prescribed way.

We use the notation

A
∂2u

∂x2
+ B ∂2u

∂x∂y
+ C ∂

2u

∂y2
+D∂u

∂x
+ E∂u

∂y
+ Fu = R(x, y)

to express the most general type of PDE, and the following table

Equation type Boundary Conditions

hyperbolic open Cauchy
parabolic open Dirichlet or Neumann
elliptic closed Dirichlet or Neumann

to determine the appropriate boundary type and hence conditions.

(a) The diffusion equation κ
∂2T

∂x2
= ∂T

∂t
hasA = κ ,B = 0 andC = 0; thusB2 = 4AC

and the equation is parabolic. This needs an open boundary. In the present case, the initial
heat distribution (at the t = 0 boundary) is a Dirichlet condition and the insulation (no
temperature gradient at the external surfaces) is a Neumann condition.
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(b) The governing equation in two-dimensional Cartesians (not the natural choice for
this situation, but this does not matter for the present purpose) is the Laplace equation,
∂2φ

∂x2
+ ∂2φ

∂y2
= 0, which has A = 1, B = 0 and C = 1 and therefore B2 < 4AC. The

equation is therefore elliptic and requires a closed boundary. Since φ is specified on the
cylinders, the boundary conditions are Dirichlet in this particular situation.

(c) This is the same as part (b) except that the specified charge distribution σ determines
∂φ/∂n, through ∂φ/∂n = σ/ε0, and imposes Neumann boundary conditions.

(d) For the wave equation
∂2u

∂x2
− 1

c2

∂2u

∂t2
= 0, we have A = 1, B = 0 and C = −c−2,

thus making B2 > 4AC and the equation hyperbolic. We thus require an open boundary
and Cauchy conditions, with the displacement of the end of the string having to be specified
at all times – this is equivalent to the displacement and the velocity of the end of the string
being specified at all times.

10.23 The Klein–Gordon equation (which is satisfied by the quantum-mechanical wavefunction �(r) of
a relativistic spinless particle of non-zero mass m) is

∇2�−m2� = 0.

Show that the solution for the scalar field �(r) in any volume V bounded by a surface S is unique
if either Dirichlet or Neumann boundary conditions are specified on S.

Suppose that, for a given set of boundary conditions (� = f or ∂�/∂n = g on S), there are
two solutions to the Klein–Gordon equation, �1 and �2. Then consider �3 = �1 −�2,
which satisfies

∇2�3 = ∇2�1 − ∇2�2 = m2�1 −m2�2 = m2�3

and

either �3 = f − f = 0, or
∂�3

∂n
= g − g = 0 on S.

Now apply Green’s first theorem with the scalar functions equal to �3 and �∗
3:∫ S

�∗
3
∂�3

∂n
dS =

∫
V

[�∗
3∇2�3 + (∇�∗

3) · (∇�3)] dV,

⇒ 0 =
∫
V

(m2|�3|2 + |∇�3|2) dV,

whichever set of boundary conditions applies. Since both terms in the integrand on the
RHS are non-negative, each must be equal to zero. In particular, |�3| = 0 implies that
�3 = 0 everywhere, i.e. �1 = �2 everywhere; the solution is unique.
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11.1 Solve the following first-order partial differential equations by separating the variables:

(a)
∂u

∂x
− x ∂u

∂y
= 0; (b) x

∂u

∂x
− 2y

∂u

∂y
= 0.

In each case we write u(x, y) = X(x)Y (y), separate the variables into groups that each
depend on only one variable, and then assert that each must be equal to a constant, with
the several constants satisfying an arithmetic identity.

(a)
∂u

∂x
− x ∂u

∂y
= 0,

X′Y − xXY ′ = 0,
X′

xX
= Y ′

Y
= k ⇒ lnX = 1

2kx
2 + c1, lnY = ky + c2,

⇒ X = Aekx
2/2, Y = Beky,

⇒ u(x, y) = Ceλ(x2+2y), where k = 2λ.

(b) x
∂u

∂x
− 2y

∂u

∂y
= 0,

xX′Y − 2yXY ′ = 0,
xX′

X
= 2yY ′

Y
= k ⇒ lnX = k ln x + c1,

lnY = 1
2k ln y + c2,

⇒ X = Axk, Y = Byk/2,

⇒ u(x, y) = C(x2y)λ, where k = 2λ.

11.3 The wave equation describing the transverse vibrations of a stretched membrane under tension T
and having a uniform surface density ρ is

T

(
∂2u

∂x2
+ ∂2u

∂y2

)
= ρ

∂2u

∂t2
.

149
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Find a separable solution appropriate to a membrane stretched on a frame of length a and width b,
showing that the natural angular frequencies of such a membrane are given by

ω2 = π2T

ρ

(
n2

a2
+ m2

b2

)
,

where n and m are any positive integers.

We seek solutions u(x, y, t) that are periodic in time and have u(0, y, t) = u(a, y, t) =
u(x, 0, t) = u(x, b, t) = 0. Write u(x, y, t) = X(x)Y (y)S(t) and substitute, obtaining

T (X′′YS +XY ′′S) = ρXYS′′,

which, when divided through by XYS, gives

X′′

X
+ Y ′′

Y
= ρ

T

S ′′

S
= −ω

2ρ

T
.

The second equality, obtained by applying the separation of variables principle with
separation constant −ω2ρ/T , gives S(t) as a sinusoidal function of t of frequency ω, i.e.
A cos(ωt) + B sin(ωt).

We then have, on applying the separation of variables principle a second time, that

X′′

X
= λ and

Y ′′

Y
= μ, where λ+ μ = −ω

2ρ

T
. (∗)

These equations must also have sinusoidal solutions. This is because, since u(0, y, t) =
u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0, each solution has to have zeros at two different
values of its argument. We are thus led to

X = A sin(p x) and Y = B sin(q x), where p2 = −λ and q2 = −μ.

Further, since u(a, y, t) = u(x, b, t) = 0, we must have p = nπ/a and q = mπ/b, where
n and m are integers. Putting these values back into (∗) gives

−p2 − q2 = −ω
2ρ

T
⇒ π2

(
n2

a2
+ m2

b2

)
= ω2ρ

T
.

Hence the quoted result.

11.5 Denoting the three terms of ∇2 in spherical polars by ∇2
r , ∇2

θ , ∇2
φ in an obvious way, evaluate ∇2

r u,
etc. for the two functions given below and verify that, in each case, although the individual terms
are not necessarily zero their sum ∇2u is zero. Identify the corresponding values of � and m.

(a) u(r, θ, φ) =
(
Ar2 + B

r3

)
3 cos2 θ − 1

2
.

(b) u(r, θ, φ) =
(
Ar + B

r2

)
sin θ exp iφ.
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In both cases we write u(r, θ, φ) as R(r)�(θ)�(φ) with

∇2
r = 1

r2

∂

∂r

(
r2 ∂

∂r

)
, ∇2

θ = 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
, ∇2

φ = 1

r2 sin2 θ

∂2

∂φ2
.

(a) u(r, θ, φ) =
(
Ar2 + B

r3

)
3 cos2 θ − 1

2
.

∇2
r u = 1

r2

∂

∂r

(
2Ar3 − 3B

r2

)
� =

(
6A+ 6B

r5

)
� = 6u

r2
,

∇2
θ u = R

r2

1

sin θ

∂

∂θ
(−3 sin2 θ cos θ) = R

r2

(−6 sin θ cos2 θ + 3 sin3 θ

sin θ

)
= R

r2
(−9 cos2 θ + 3) = −6u

r2
,

∇2
φu = 0.

Thus, although ∇2
r u and ∇2

θ u are not individually zero, their sum is. From ∇2
r u = �(�+

1)u = 6u, we deduce that � = 2 (or −3) and from ∇2
φu = 0 that m = 0.

(b) u(r, θ, φ) =
(
Ar + B

r2

)
sin θ eiφ .

∇2
r u = 1

r2

∂

∂r

(
Ar2 − 2B

r

)
�� =

(
2A

r
+ 2B

r4

)
�� = 2u

r2
,

∇2
θ u = R�

r2

1

sin θ

∂

∂θ
(sin θ cos θ) = R�

r2

(− sin2 θ + cos2 θ

sin θ

)
= − u

r2
+ cos2 θ

sin2 θ

u

r2
,

∇2
φu = R�

r2 sin2 θ

∂2

∂φ2
( eiφ) = − u

r2 sin2 θ
.

Hence,

∇2u = 2u

r2
− u

r2
+ cos2 θ

sin2 θ

u

r2
− u

r2 sin2 θ
= u

r2

(
1 + cos2 θ − 1

sin2 θ

)
= 0.

Here each individual term is non-zero, but their sum is zero. Further, �(�+ 1) = 2 and
so � = 1 (or −2), and from ∇2

φu = −u/(r2 sin θ) it follows that m2 = 1. In fact, from the
normal definition of spherical harmonics, m = +1.



152 Solution methods for PDEs

11.7 If the stream function ψ(r, θ ) for the flow of a very viscous fluid past a sphere is written as
ψ(r, θ ) = f (r) sin2 θ , then f (r) satisfies the equation

f (4) − 4f ′′

r2
+ 8f ′

r3
− 8f

r4
= 0.

At the surface of the sphere r = a the velocity field u = 0, whilst far from the sphere ψ �
(Ur2 sin2 θ )/2.

Show that f (r) can be expressed as a superposition of powers of r , and determine which powers
give acceptable solutions. Hence show that

ψ(r, θ ) = U

4

(
2r2 − 3ar + a3

r

)
sin2 θ.

For solutions of

f (4) − 4f ′′

r2
+ 8f ′

r3
− 8f

r4
= 0

that are powers of r , i.e. have the form Arn, n must satisfy the quartic equation

n(n− 1)(n− 2)(n− 3) − 4n(n− 1) + 8n− 8 = 0,

(n− 1)[n(n− 2)(n− 3) − 4n+ 8] = 0,

(n− 1)(n− 2)[n(n− 3) − 4] = 0,

(n− 1)(n− 2)(n− 4)(n+ 1) = 0.

Thus the possible powers are 1, 2, 4 and −1.
Sinceψ → 1

2Ur
2 sin2 θ as r → ∞, the solution can contain no higher (positive) power

of r than the second. Thus there is no n = 4 term and the solution has the form

ψ(r, θ) =
(
Ur2

2
+ Ar + B

r

)
sin2 θ.

On the surface of the sphere r = a both velocity components, ur and uθ , are zero. These
components are given in terms of the stream functions, as shown below; note that ur is
found by differentiating with respect to θ and uθ by differentiating with respect to r .

ur = 0 ⇒ 1

a2 sin θ

∂ψ

∂θ
= 0 ⇒ Ua2

2
+ Aa + B

a
= 0,

uθ = 0 ⇒ −1

a sin θ

∂ψ

∂r
= 0 ⇒ Ua + A− B

a2
= 0,

⇒ A = − 3
4Ua and B = 1

4Ua
3.

The full solution is thus

ψ(r, θ) = U

4

(
2r2 − 3ar + a3

r

)
sin2 θ.



153 Solution methods for PDEs

11.9 A circular disc of radius a is heated in such a way that its perimeter ρ = a has a steady temperature
distribution A+ B cos2 φ, where ρ and φ are plane polar coordinates and A and B are constants.
Find the temperature T (ρ, φ) everywhere in the region ρ < a.

This is a steady state problem, for which the (heat) diffusion equation becomes the Laplace
equation. The most general single-valued solution to the Laplace equation in plane polar
coordinates is given by

T (ρ, φ) = C ln ρ +D +
∞∑
n=1

(An cos nφ + Bn sin nφ)(Cnρ
n +Dnρ−n).

The region ρ < a contains the point ρ = 0; since ln ρ and all ρ−n become infinite at that
point, C = Dn = 0 for all n.

On ρ = a

T (a, φ) = A+ B cos2 φ = A+ 1
2B(cos 2φ + 1).

Equating the coefficients of cos nφ, including n = 0, gives A+ 1
2B = D, A2C2a

2 = 1
2B

and AnCnan = 0 for all n �= 2; further, all Bn = 0. The solution everywhere (not just on
the perimeter) is therefore

T (ρ, φ) = A+ B

2
+ Bρ2

2a2
cos 2φ.

It should be noted that “equating coefficients” to determine unknown constants is justified
by the fact that the sinusoidal functions in the sum are mutually orthogonal over the range
0 ≤ φ < 2π .

11.11 The free transverse vibrations of a thick rod satisfy the equation

a4 ∂
4u

∂x4
+ ∂2u

∂t2
= 0.

Obtain a solution in separated-variable form and, for a rod clamped at one end, x = 0, and free at
the other, x = L, show that the angular frequency of vibration ω satisfies

cosh

(
ω1/2L

a

)
= − sec

(
ω1/2L

a

)
.

[At a clamped end both u and ∂u/∂x vanish, whilst at a free end, where there is no bending moment,
∂2u/∂x2 and ∂3u/∂x3 are both zero.]

The general solution is written as the product u(x, t) = X(x)T (t), which, on substitution,
produces the separated equation

a4X
(4)

X
= −T

′′

T
= ω2.

Here the separation constant has been chosen so as to give oscillatory behavior (in the
time variable). The spatial equation then becomes

X(4) − μ4X = 0, where μ = ω1/2/a.
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The required auxiliary equation is λ4 − μ4 = 0, leading to the general solution

X(x) = A sinμx + B cosμx + C sinhμx +D coshμx.

The constants A, B, C and D are to be determined by requiring X(0) = X′(0) = 0 and
X′′(L) = X′′′(L) = 0.

At the clamped end,

X(0) = 0 ⇒ D = −B,
X′ = μ(A cosμx − B sinμx + C coshμx − B sinhμx),

X′(0) = 0 ⇒ C = −A.
At the free end,

X′′ = μ2(−A sinμx − B cosμx − A sinhμx − B coshμx),

X′′′ = μ3(−A cosμx + B sinμx − A coshμx − B sinhμx),

X′′(L) = 0 ⇒ A(sinμL+ sinhμL) + B(cosμL+ coshμL) = 0,

X′′′(L) = 0 ⇒ A(− cosμL− coshμL) + B(sinμL− sinhμL) = 0.

Cross-multiplying then gives

− sin2 μL+ sinh2 μL = cos2 μL+ 2 cosμL coshμL+ cosh2 μL,

0 = 1 + 2 cosμL coshμL+ 1,

−1 = cosμL coshμL,

cosh

(
ω1/2L

a

)
= − sec

(
ω1/2L

a

)
.

Because sinusoidal and hyperbolic functions can all be written in terms of exponential
functions, this problem could also be approached by assuming solutions that are (exponen-
tial) functions of linear combinations of x and t (as in Chapter 10). However, in practice,
eliminating the t-dependent terms leads to involved algebra.

11.13 A string of length L, fixed at its two ends, is plucked at its mid-point by an amount A and then
released. Prove that the subsequent displacement is given by

u(x, t) =
∞∑
n=0

8A

π2(2n+ 1)2
sin

[
(2n+ 1)πx

L

]
cos

[
(2n+ 1)πct

L

]
,

where, in the usual notation, c2 = T/ρ.
Find the total kinetic energy of the string when it passes through its unplucked position, by

calculating it in each mode (each n) and summing, using the result

∞∑
0

1

(2n+ 1)2
= π2

8
.

Confirm that the total energy is equal to the work done in plucking the string initially.
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We start with the wave equation:

∂2u

∂x2
− 1

c2

∂2u

∂t2
= 0

and assume a separated-variable solution u(x, t) = X(x)S(t). This leads to

X′′

X
= 1

c2

S ′′

S
= −k2.

The solution to the spatial equation is given by

X(x) = B cos kx + C sin kx.

Taking the string as anchored at x = 0 and x = L, we must have B = 0 and k constrained
by sin kL = 0 ⇒ k = nπ/L with n an integer.

The solution to the corresponding temporal equation is

S(t) = D cos kct + E sin kct.

Since there is no initial motion, i.e. Ṡ(0) = 0, it follows that E = 0.
For any particular value of k, the constants C and D can be amalgamated. The general

solution is given by a superposition of the allowed functions, i.e.

u(x, t) =
∞∑
n=1

Cn sin
nπx

L
cos

nπct

L
.

We now have to determine the Cn by making u(x, 0) match the given initial configuration,
which is

u(x, 0) =

⎧⎪⎨⎪⎩
2Ax

L
for 0 ≤ x ≤ L

2
,

2A(L− x)

L

L

2
< x ≤ L.

This is now a Fourier series calculation yielding

CnL

2
=
∫ L/2

0

2Ax

L
sin
nπx

L
dx +

∫ L

L/2

2A(L− x)

L
sin
nπx

L
dx

= 2A

L
J1 + 2AJ2 − 2A

L
J3,
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with

J1 =
[
−xL
nπ

cos
nπx

L

]L/2
0

+
∫ L/2

0

L

nπ
cos

nπx

L
dx

= − L2

2πn
cos

nπ

2
+ L2

n2π2
sin
nπ

2
,

J2 =
∫ L

L/2
sin
nπx

L
dx = − L

nπ

[
cos

nπx

L

]L
L/2

= − L

nπ

[
(−1)n − cos

nπ

2

]
,

J3 =
[
−xL
nπ

cos
nπx

L

]L
L/2

+
∫ L

L/2

L

nπ
cos

nπx

L
dx

= L2

2πn
cos

nπ

2
− L2

nπ
(−1)n − L2

n2π2
sin
nπ

2
.

Thus

J1 − J3 = − 2L2

2πn
cos

nπ

2
+ L2

nπ
(−1)n + 2L2

n2π2
sin
nπ

2

= −LJ2 + 2L2

n2π2
sin
nπ

2
,

and so it follows that

CnL

2
= 2A

L
(J1 − J3 + LJ2) = 2A

2L

n2π2
sin
nπ

2
.

This is zero if n is even and Cn = 8A(−1)(n−1)/2/(n2π2) if n is odd. Write n = 2m+ 1,

m = 0, 1, 2, . . ., with C2m+1 = 8A(−1)m

(2m+ 1)2π2
.

The final solution (in which m is replaced by n, to match the question) is thus

u(x, t) =
∞∑
n=0

8A(−1)n

π2(2n+ 1)2
sin

[
(2n+ 1)πx

L

]
cos

[
(2n+ 1)πct

L

]
.

The velocity profile derived from this is given by

u̇(x, t) =
∞∑
n=0

8A(−1)n

π2(2n+ 1)2

(−(2n+ 1)πc

L

)
× sin

[
(2n+ 1)πx

L

]
sin

[
(2n+ 1)πct

L

]
,
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giving the energy in the (2n+ 1)th mode (evaluated when the time-dependent sine function
is maximal) as

E2n+1 =
∫ L

0

1
2ρu̇

2
n dx

=
∫ L

0

ρ

2

(8A)2c2

L2(2n+ 1)2π2
sin2 (2n+ 1)πx

L

= 32A2ρc2

L2(2n+ 1)2π2

L

2
.

Therefore

E =
∞∑
n=0

E2n+1 = 16A2ρc2

π2L

∞∑
n=0

1

(2n+ 1)2
= 2A2ρc2

L
.

When the mid-point of the string has been displaced sideways by y (� L), the net
(resolved) restoring force is 2T [y/(L/2)] = 4Ty/L. Thus the total work done to produce
a displacement of A is

W =
∫ A

0

4Ty

L
dy = 2TA2

L
= 2ρc2A2

L
,

i.e. the same as the total energy of the subsequent motion.

11.15 Prove that the potential for ρ < a associated with a vertical split cylinder of radius a, the two halves
of which (cosφ > 0 and cosφ < 0) are maintained at equal and opposite potentials ±V , is given
by

u(ρ, φ) = 4V

π

∞∑
n=0

(−1)n

2n+ 1

(ρ
a

)2n+1
cos(2n+ 1)φ.

The most general solution of the Laplace equation in cylindrical polar coordinates that is
independent of z is

T (ρ, φ) = C ln ρ +D +
∞∑
n=1

(An cos nφ + Bn sin nφ)(Cnρ
n +Dnρ−n).

The required potential must be single-valued and finite in the space inside the cylinder
(which includes ρ = 0), and on the cylinder it must take the boundary values u = V for
cosφ > 0 and u = −V for cosφ < 0, i.e the boundary-value function is a square-wave
function with average value zero. Although the function is antisymmetric in cosφ, it is
symmetric in φ and so the solution will contain only cosine terms (and no sine terms).

These considerations already determine that C = D = Bn = Dn = 0, and so have
reduced the solution to the form

u(ρ, φ) =
∞∑
n=1

Anρ
n cos nφ.
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On ρ = a this must match the stated boundary conditions, and so we are faced with a
Fourier cosine series calculation. Multiplying through by cosmφ and integrating yields

Ama
m 1

2
2π = 2

∫ π/2

0
V cosmφ dφ + 2

∫ π

π/2
(−V ) cosmφ dφ

= 2V

[
sinmφ

m

]π/2
0

− 2V

[
sinmφ

m

]π
π/2

= 2V

m

(
sin
mπ

2
+ sin

mπ

2

)
= (−1)(m−1)/2 4V

m
for m odd, = 0 for m even.

Writing m = 2n+ 1 gives the solution as

u(ρ, φ) = 4V

π

∞∑
n=0

(−1)n

2n+ 1

(ρ
a

)2n+1
cos(2n+ 1)φ.

11.17 Two identical copper bars are each of length a. Initially, one is at 0 ◦C and the other at 100 ◦C; they
are then joined together end to end and thermally isolated. Obtain in the form of a Fourier series an
expression u(x, t) for the temperature at any point a distance x from the join at a later time t . Bear
in mind the heat flow conditions at the free ends of the bars.

Taking a = 0.5 m estimate the time it takes for one of the free ends to attain a temperature of
55 ◦C. The thermal conductivity of copper is 3.8 × 102 J m−1 K−1 s−1, and its specific heat capacity
is 3.4 × 106 J m−3 K−1.

The equation governing the heat flow is

k
∂2u

∂x2
= s

∂u

∂t
,

which is the diffusion equation with diffusion constant κ = k/s = 3.8 × 102/3.4 × 106 =
1.12 × 10−4 m2 s−1.

Making the usual separation of variables substitution shows that the time variation is
of the form T (t) = T (0)e−κλ

2t when the spatial solution is a sinusoidal function of λx.
The final common temperature is 50 ◦C and we make this explicit by writing the general
solution as

u(x, t) = 50 +
∑
λ

(Aλ sin λx + Bλ cos λx)e−κλ
2t .

This term having been taken out, the summation must be antisymmetric about x = 0 and
therefore contain no cosine terms, i.e. Bλ = 0.

The boundary condition is that there is no heat flow at x = ±a; this means that ∂u/∂x =
0 at these points and requires

λAλ cos λx|x=±a = 0 ⇒ λa = (n+ 1
2 )π ⇒ λ = (2n+ 1)π

2a
,
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where n is an integer. This corresponds to a fundamental Fourier period of 4a. The solution
thus takes the form

u(x, t) = 50 +
∞∑
n=0

An sin
(2n+ 1)πx

2a
exp

(
− (2n+ 1)2π2κt

4a2

)
.

At t = 0, the sum must take the values +50 for 0 < x < 2a and −50 for −2a < x < 0.
This is (yet) another square-wave function – one that is antisymmetric about x = 0 and has
amplitude 50. The calculation will not be repeated here but gives An = 200/[(2n+ 1)π],
making the complete solution

u(x, t) = 50 + 200

π

∞∑
n=0

1

2n+ 1
sin

(2n+ 1)πx

2a
exp

(
− (2n+ 1)2π2κt

4a2

)
.

For a free end, where x = a and sin[(2n+ 1)πx/2a] = (−1)n, to attain 55 ◦C needs

∞∑
n=0

(−1)n

2n+ 1
exp

(
− (2n+ 1)2 π2 1.12 × 10−4

4 × 0.25
t

)
= 5π

200
= 0.0785.

In principle this is an insoluble equation but, because the RHS � 1, the n = 0 term alone
will give a good approximation to t :

exp(−1.105 × 10−3t) ≈ 0.0785 ⇒ t ≈ 2300 s.

11.19 For an infinite metal bar that has an initial (t = 0) temperature distribution f (x) along its length,
the temperature distribution at a general time t can be shown to be given by

u(x, t) = 1√
4πκt

∫ ∞

−∞
exp

[
− (x − ξ )2

4κt

]
f (ξ ) dξ.

Find an explicit expression for u(x, t) given that f (x) = exp(−x2/a2).

The given initial distribution is f (ξ ) = exp(−ξ 2/a2) and so

u(x, t) = 1√
4πκt

∫ ∞

−∞
exp

[
− (x − ξ )2

4κt

]
exp

(
−ξ

2

a2

)
dξ.

Now consider the exponent in the integrand, writing 1 + 4κt

a2
as τ 2 for compactness:

exponent = −ξ
2τ 2 − 2ξx + x2

4κt

= − (ξτ − xτ−1)2 − x2τ−2 + x2

4κt

≡ −η2 + x2τ−2 − x2

4κt
, defining η,

with dη = τ dξ√
4κt

.
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With a change of variable from ξ to η, the integral becomes

u(x, t) = 1√
4πκt

exp

(
x2τ−2 − x2

4κt

)∫ ∞

−∞
exp(−η2)

√
4κt

τ
dη

= 1√
π

1

τ
exp

(
x2 1 − τ 2

4κt τ 2

) √
π

= a√
a2 + 4κt

exp

(
− x2

a2 + 4κt

)
.

In words, although it retains a Gaussian shape, the initial distribution spreads symmetri-
cally about the origin, its variance increasing linearly with time (a2 → a2 + 4κt). As is
typical with diffusion processes, for large enough times the width varies as

√
t .

11.21 In the region −∞ < x, y < ∞ and −t ≤ z ≤ t , a charge-density wave ρ(r) = A cos qx, in the
x-direction, is represented by

ρ(r) = eiqx√
2π

∫ ∞

−∞
ρ̃(α)eiαz dα.

The resulting potential is represented by

V (r) = eiqx√
2π

∫ ∞

−∞
Ṽ (α)eiαz dα.

Determine the relationship between Ṽ (α) and ρ̃(α), and hence show that the potential at the point
(0, 0, 0) is given by

A

πε0

∫ ∞

−∞

sin kt

k(k2 + q2)
dk.

Poisson’s equation,

∇2V (r) = −ρ(r)

ε0
,

provides the link between a charge density and the potential it produces.
Taking V (r) in the form of its Fourier representation gives ∇2V as

∂2V (r)

∂x2
+ ∂2V (r)

∂y2
+ ∂2V (r)

∂z2
= eiqx√

2π

∫ ∞

−∞
(−q2 − α2)Ṽ (α)eiαz dα,

with the −q2 arising from the x-differentiation and the −α2 from the z-differentiation;
the ∂2V/∂y2 term contributes nothing.

Comparing this with the integral expression for −ρ(r)/ε0 shows that

−ρ̃(α) = ε0(−q2 − α2)Ṽ (α).

With the charge-density wave confined in the z-direction to −t ≤ z ≤ t , the expression
for ρ(r) in Cartesian coordinates is (in terms of Heaviside functions)

ρ(r) = Aeiqx[H (z+ t) −H (z− t)].
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The Fourier transform ρ̃(α) is therefore given by

ρ̃(α) = 1√
2π

∫ ∞

−∞
A[H (z+ t) −H (z− t)] e−iαz dz

= A√
2π

∫ t

−t
e−iαz dz

= A√
2π

e−iαt − eiαt

−iα
= A√

2π

2 sinαt

α
.

Now, V (x, 0, z) = eiqx√
2π

∫ ∞

−∞

ρ̃(α)

ε0(q2 + α2)
eiαz dα

= eiqx√
2π

∫ ∞

−∞

eiαz

ε0(q2 + α2)

A√
2π

2 sinαt

α
dα,

⇒ V (0, 0, 0) = A

πε0

∫ ∞

−∞

sinαt

α(α2 + q2)
dα,

as stated in the question.

11.23 Find the Green’s function G(r, r0) in the half-space z > 0 for the solution of ∇2� = 0 with �
specified in cylindrical polar coordinates (ρ, φ, z) on the plane z = 0 by

�(ρ, φ, z) =
{

1 for ρ ≤ 1,
1/ρ for ρ > 1.

Determine the variation of �(0, 0, z) along the z-axis.

For the half-space z > 0 the bounding surface consists of the plane z = 0 and the
(hemi-spherical) surface at infinity; the Green’s function must take zero value on these
surfaces. In order to ensure this when a unit point source is introduced at r = y, we must
place a compensating negative unit source at y’s reflection point in the plane. If, in cylindri-
cal polar coordinates, y = (ρ, φ, z0), then the image charge has to be at y′ = (ρ, φ,−z0).
The resulting Green’s function G(x, y) is given by

G(x, y) = − 1

4π |x − y| + 1

4π |x − y′| .

The solution to the problem with a given potential distribution f (ρ, φ) on the z = 0 part
of the bounding surface S is given by

�(y) =
∫
S

f (ρ, φ)

(
−∂G
∂z

)
ρ dφ dρ,
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the minus sign arising because the outward normal to the region is in the negative z-
direction. Calculating these functions explicitly gives

G(x, y) = − 1

4π[ρ2 + (z− z0)2]1/2
+ 1

4π[ρ2 + (z+ z0)2]1/2
,

∂G

∂z
= z− z0

4π[ρ2 + (z− z0)2]3/2
− (z+ z0)

4π[ρ2 + (z+ z0)2]3/2
,

− ∂G

∂z

∣∣∣∣
z=0

= − −2z0

4π[ρ2 + z2
0]3/2

.

Substituting the various factors into the general integral gives

�(0, 0, z0) =
∫ ∞

0
f (ρ)

2z0

4π[ρ2 + z2
0]3/2

2π ρ dρ

=
∫ 1

0

z0 ρ

(ρ2 + z2
0)3/2

dρ +
∫ ∞

1

z0

(ρ2 + z2
0)3/2

dρ

= −z0
[
(ρ2 + z2

0)−1/2]1

0 +
∫ π/2

θ

z2
0 sec2 u

z3
0 sec3 u

du,

where, in the second integral, we have set ρ = z0 tan u with dρ = z0 sec2 u du and θ =
tan−1(1/z0). The integral can now be obtained in closed form as

�(0, 0, z0) = − z0

(1 + z2
0)1/2

+ 1 + 1

z0
[ sin u ]π/2θ

= 1 − z0

(1 + z2
0)1/2

+ 1

z0
− 1

z0(1 + z2
0)1/2

.

Thus the variation of � along the z-axis is given by

�(0, 0, z) = z(1 + z2)1/2 − z2 + (1 + z2)1/2 − 1

z(1 + z2)1/2
.

11.25 Find, in the form of an infinite series, the Green’s function of the ∇2 operator for the Dirichlet
problem in the region −∞ < x < ∞, −∞ < y < ∞, −c ≤ z ≤ c.

The fundamental solution in three dimensions of ∇2ψ = δ(r) is ψ(r) = −1/(4πr).
For the given problem, G(r, r0) has to take the value zero on z = ±c and → 0 for

|x| → ∞ and |y| → ∞. Image charges have to be added in the regions z > c and z < −c
to bring this about after a charge q has been placed at r0 = (x0, y0, z0) with −c < z0 < c.
Clearly all images will be on the line x = x0, y = y0.

Each image placed at z = ξ in the region z > c will require a further image of the same
strength but opposite sign at z = −c − ξ (in the region z < −c) so as to maintain the
plane z = −c as an equipotential. Likewise, each image placed at z = −χ in the region
z < −c will require a further image of the same strength but opposite sign at z = c + χ
(in the region z > c) so as to maintain the plane z = c as an equipotential. Thus successive
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image charges appear as follows:

−q 2c − z0 −2c − z0

+q −3c + z0 3c + z0

−q 4c − z0 −4c − z0

+q etc. etc.

The terms in the Green’s function that are additional to the fundamental solution,

− 1

4π
[(x − x0)2 + (y − y0)2 + (z− z0)2]−1/2,

are therefore

− (−1)

4π

∞∑
n=2

{
(−1)n

[(x − x0)2 + (y − y0)2 + (z+ (−1)nz0 − nc)2]1/2

+ (−1)n

[(x − x0)2 + (y − y0)2 + (z+ (−1)nz0 + nc)2]1/2

}
.

11.27 Determine the Green’s function for the Klein–Gordon equation in a half-space as follows.

(a) By applying the divergence theorem to the volume integral∫
V

[
φ(∇2 −m2)ψ − ψ(∇2 −m2)φ

]
dV,

obtain a Green’s function expression, as the sum of a volume integral and a surface integral, for
the function φ(r′) that satisfies

∇2φ −m2φ = ρ

in V and takes the specified form φ = f on S, the boundary of V . The Green’s function,
G(r, r′), to be used satisfies

∇2G−m2G = δ(r − r′)

and vanishes when r is on S.
(b) When V is all space, G(r, r′) can be written as G(t) = g(t)/t , where t = |r − r′| and g(t) is

bounded as t → ∞. Find the form of G(t).
(c) Find φ(r) in the half-space x > 0 if ρ(r) = δ(r − r1) and φ = 0 both on x = 0 and as r → ∞.

(a) For general φ and ψ we have∫
V

[
φ(∇2 −m2)ψ − ψ(∇2 −m2)φ

]
dV =

∫
V

[
φ∇2ψ − ψ∇2φ

]
dV

=
∫
V

∇ · (φ∇ψ − ψ∇φ) dV

=
∫
S

(φ∇ψ − ψ∇φ) · n dS.
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Now take φ as φ, with ∇2φ −m2φ = ρ and φ = f on the surface S, and ψ as G(r, r′)
with ∇2G−m2G = δ(r − r′) and G(r, r′) = 0 on S:∫

V

[φ(r)δ(r − r′) −G(r, r′)ρ(r)] dV =
∫
S

[f (r)∇G(r, r′) − 0] · n dS,

which, on rearrangement, gives

φ(r′) =
∫
V

G(r, r′)ρ(r) dV +
∫
S

f (r)∇G(r, r′) · n dS.

(b) In the following calculation we start by formally integrating the defining Green’s
equation,

∇2G−m2G = δ(r − r′),

over a sphere of radius t centered on r′. Having replaced the volume integral of ∇2G with
the corresponding surface integral given by the divergence theorem, we move the origin
to r′, denote |r − r′| by t ′ and integrate both sides of the equation from t ′ = 0 to t ′ = t :∫

V

∇2G dV −
∫
V

m2G dV =
∫
V

δ(r − r′) dV,∫
S

∇G · n dS −m2
∫
V

G dV = 1,

4πt2
dG

dt
−m2

∫ t

0
G(t ′)4πt ′2 dt ′ = 1, (∗)

4πt2G′′ + 8πtG′ − 4πm2t2G = 0, from differentiating w.r.t. t ,

tG′′ + 2G′ −m2tG = 0.

With G(t) = g(t)/t ,

G′ = − g
t2

+ g′

t
and G′′ = 2g

t3
− 2g′

t2
+ g′′

t
,

and the equation becomes

0 = 2g

t2
− 2g′

t
+ g′′ − 2g

t2
+ 2g′

t
−m2g,

0 = g′′ −m2g,

⇒ g(t) = Ae−mt , since g is bounded as t → ∞.

The value of A is determined by resubstituting into (∗), which then reads

4πt2
(

−Ae
−mt

t2
− mAe−mt

t

)
−m2

∫ t

0

Ae−mt
′

t ′
4πt ′2 dt ′ = 1,

−4πAe−mt (1 +mt) − 4πAm2

(
− te

−mt

m
+ 1 − e−mt

m2

)
= 1,

−4πA = 1,
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making the solution

G(r, r′) = −e
−mt

4πt
, where t = |r − r′|.

(c) For the situation in which ρ(r) = δ(r − r1), i.e. a unit positive charge at r1 =
(x1, y1, z1), and φ = 0 on the plane x = 0, we must have a unit negative image charge at
r2 = (−x1, y1, z1). The solution in the region x > 0 is then

φ(r) = − 1

4π

(
e−m|r−r1|

|r − r1| − e−m|r−r2|

|r − r2|
)
.



12 Calculus of variations

12.1 A surface of revolution, whose equation in cylindrical polar coordinates is ρ = ρ(z), is bounded
by the circles ρ = a, z = ±c (a > c). Show that the function that makes the surface integral
I = ∫

ρ−1/2 dS stationary with respect to small variations is given by ρ(z) = k + z2/(4k), where
k = [a ± (a2 − c2)1/2]/2.

The surface element lying between z and z+ dz is given by

dS = 2πρ [(dρ)2 + (dz)2]1/2 = 2πρ (1 + ρ ′2)1/2 dz

and the integral to be made stationary is

I =
∫
ρ−1/2 dS = 2π

∫ c

−c
ρ−1/2ρ (1 + ρ ′2)1/2 dz.

The integrand F (ρ ′, ρ, z) does not in fact contain z explicitly, and so a first integral of the
EL equation, symbolically given by F − ρ ′∂F/∂ρ ′ = k, is

ρ1/2(1 + ρ ′2)1/2 − ρ ′
[

ρ1/2ρ ′

(1 + ρ ′2)1/2

]
= A,

ρ1/2

(1 + ρ ′2)1/2
= A.

On rearrangement and subsequent integration this gives

dρ

dz
=
(
ρ − A2

A2

)1/2

,∫
dρ√
ρ − A2

=
∫

dz

A
,

2
√
ρ − A2 = z

A
+ C.

Now, ρ(±c) = a implies both that C = 0 and that a − A2 = c2

4A2
. Thus, writing A2 as k,

4k2 − 4ka + c2 = 0 ⇒ k = 1
2 [a ± (a2 − c2)1/2].

The two stationary functions are therefore

ρ = z2

4k
+ k,

166



167 Calculus of variations

with k as given above. A simple sketch shows that the positive sign in k corresponds to a
smaller value of the integral.

12.3 The refractive index n of a medium is a function only of the distance r from a fixed pointO. Prove
that the equation of a light ray, assumed to lie in a plane throughO, traveling in the medium satisfies
(in plane polar coordinates)

1

r2

(
dr

dφ

)2

= r2

a2

n2(r)

n2(a)
− 1,

where a is the distance of the ray from O at the point at which dr/dφ = 0.
If n = [1 + (α2/r2)]1/2 and the ray starts and ends far from O, find its deviation (the angle

through which the ray is turned), if its minimum distance from O is a.

An element of path length is ds = [(dr)2 + (r dφ)2]1/2 and the time taken for the light
to traverse it is n(r) ds/c, where c is the speed of light in vacuo. Fermat’s principle then
implies that the light follows the curve that minimizes

T =
∫
n(r) ds

c
=
∫
n(r ′2 + r2)1/2

c
dφ,

where r ′ = dr/dφ. Since the integrand does not contain φ explicitly, the EL equation
integrates to (see Problem 12.1)

n(r ′2 + r2)1/2 − r ′ nr ′

(r ′2 + r2)1/2
= A,

nr2

(r ′2 + r2)1/2
= A.

Since r ′ = 0 when r = a, A = n(a)a2/a, and the equation is as follows:

a2n2(a)(r ′2 + r2) = n2(r)r4,

r ′2 = n2(r)r4

n2(a)a2
− r2,

⇒ 1

r2

(
dr

dφ

)2

= n2(r)r2

n2(a)a2
− 1.

If n(r) = [1 + (α/r)2]1/2, the minimizing curve satisfies(
dr

dφ

)2

= r2(r2 + α2)

a2 + α2
− r2

= r2(r2 − a2)

a2 + α2
,

⇒ dφ

(a2 + α2)1/2
= ± dr

r
√
r2 − a2

.
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By symmetry,

�φ

(a2 + α2)1/2
≡ φ final − φ initial

(a2 + α2)1/2

= 2
∫ ∞

a

dr

r
√
r2 − a2

, set r = a coshψ

= 2
∫ ∞

0

a sinhψ

a2 coshψ sinhψ
dψ

= 2

a

∫ ∞

0
sechψ dψ, set eψ = z

= 2

a

∫ ∞

1

z−1 dz
1
2 (z+ z−1)

= 2

a

∫ ∞

1

2 dz

z2 + 1

= 4

a

[
tan−1 z

]∞
1

= 4

a

(π
2

− π

4

)
= π

a
.

If the refractive index were everywhere unity (α = 0), �φ would be π (no deviation).
Thus the deviation is given by

π

a
(a2 + α2)1/2 − π.

12.5 Prove the following results about general systems.

(a) For a system described in terms of coordinates qi and t , show that if t does not appear explicitly
in the expressions for x, y and z (x = x(qi, t), etc.) then the kinetic energy T is a homogeneous
quadratic function of the q̇i (it may also involve the qi). Deduce that

∑
i q̇i(∂T /∂q̇i) = 2T .

(b) Assuming that the forces acting on the system are derivable from a potential V , show, by
expressing dT /dt in terms of qi and q̇i , that d(T + V )/dt = 0.

To save space we will use the summation convention for summing over the index of
the qi .

(a) The space variables x, y and z are not explicit functions of t and the kinetic energy,
T , is given by

T = 1
2 (αxẋ2 + αyẏ2 + αzż2)

= 1

2

[
αx

(
∂x

∂qi
q̇i

)2

+ αy
(
∂y

∂qj
q̇j

)2

+ αz
(
∂z

∂qk
q̇k

)2
]

= Amnq̇mq̇n,

with

Amn = 1

2

(
αx
∂x

∂qm

∂x

∂qn
+ αy ∂y

∂qm

∂y

∂qn
+ αz ∂z

∂qm

∂z

∂qn

)
= Anm.
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Hence T is a homogeneous quadratic function of the q̇i (though the Amn may involve the
qi). Further,

∂T

∂q̇i
= Ainq̇n + Amiq̇m = 2Amiq̇m

and q̇i
∂T

∂q̇i
= 2q̇iAmiq̇m = 2T .

(b) The Lagrangian is L = T − V , with T = T (qi, q̇i) and V = V (qi). Thus

dT

dt
= ∂T

∂qi
q̇i + dT

dq̇i
q̈i and

dV

dt
= ∂V

∂qi
q̇i . (∗)

Hamilton’s principle requires that

d

dt

(
∂L

∂q̇i

)
= ∂L

∂qi
,

⇒ d

dt

(
∂T

∂q̇i

)
= ∂T

∂qi
− ∂V

∂qi
. (∗∗)

But, from part (a),

2T = q̇i
∂T

∂q̇i
,

d

dt
(2T ) = q̈i

∂T

∂q̇i
+ q̇i d

dt

(
∂T

∂q̇i

)
= q̈i

∂T

∂q̇i
+ q̇i ∂T

∂qi
− q̇i ∂V

∂qi
, using (∗∗),

= dT

dt
− dV

dt
, using (∗).

This can be rearranged as

d

dt
(T + V ) = 0.

12.7 In cylindrical polar coordinates, the curve (ρ(θ ), θ, αρ(θ )) lies on the surface of the cone z = αρ.
Show that geodesics (curves of minimum length joining two points) on the cone satisfy

ρ4 = c2[β2ρ ′2 + ρ2],

where c is an arbitrary constant, but β has to have a particular value. Determine the form of ρ(θ )
and hence find the equation of the shortest path on the cone between the points (R,−θ0, αR) and
(R, θ0, αR).

[You will find it useful to determine the form of the derivative of cos−1(u−1).]

In cylindrical polar coordinates the element of length is given by

(ds)2 = (dρ)2 + (ρ dθ)2 + (dz)2,
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and the total length of a curve between two points parameterized by θ0 and θ1 is

s =
∫ θ1

θ0

√(
dρ

dθ

)2

+ ρ2 +
(
dz

dθ

)2

dθ

=
∫ θ1

θ0

√
ρ2 + (1 + α2)

(
dρ

dθ

)2

dθ, since z = αρ.

Since the independent variable θ does not occur explicitly in the integrand, a first integral
of the EL equation is√

ρ2 + (1 + α2)ρ ′2 − ρ ′ (1 + α2)ρ ′√
ρ2 + (1 + α2)ρ ′2

= c.

After being multiplied through by the square root, this can be arranged as follows:

ρ2 + (1 + α2)ρ ′2 − (1 + α2)ρ ′2 = c

√
ρ2 + (1 + α2)ρ ′2,

ρ4 = c2[ρ2 + (1 + α2)ρ ′2].

This is the given equation of the geodesic, in which c is arbitrary but β2 must have the
value 1 + α2.

Guided by the hint, we first determine the derivative of y(u) = cos−1(u−1):

dy

du
= −1√

1 − u−2

−1

u2
= 1

u
√
u2 − 1

.

Now, returning to the geodesic, rewrite it as

ρ4 − c2ρ2 = c2β2ρ ′2,

ρ(ρ2 − c2)1/2 = cβ
dρ

dθ
.

Setting ρ = cu,

uc2(u2 − 1)1/2 = c2β
du

dθ
,

dθ = β du

u(u2 − 1)1/2
,

which integrates to

θ = β cos−1

(
1

u

)
+ k,

using the result from the hint.
Since the geodesic must pass through both (R,−θ0, αR) and (R, θ0, αR), we must have

k = 0 and

cos
θ0

β
= c

R
.
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Further, at a general point on the geodesic,

cos
θ

β
= c

ρ
.

Eliminating c then shows that the geodesic on the cone that joins the two given points is

ρ(θ) = R cos(θ0/β)

cos(θ/β)
.

12.9 You are provided with a line of length πa/2 and negligible mass and some lead shot of total mass
M . Use a variational method to determine how the lead shot must be distributed along the line if
the loaded line is to hang in a circular arc of radius a when its ends are attached to two points at the
same height. Measure the distance s along the line from its center.

We first note that the total mass of shot available is merely a scaling factor and not a
constraint on the minimization process.

The length of string is sufficient to form one-quarter of a complete circle of radius a,
and so the ends of the string must be fixed to points that are 2a sin(π/4) = √

2a apart.
We take the distribution of shot as ρ = ρ(s) and have to minimize the integral∫
gy(s)ρ(s) ds, but subject to the requirement

∫
dx = a/

√
2. Expressed as an integral

over s, this requirement can be written

a√
2

=
∫ s=πa/4

s=0
dx =

∫ πa/4

0
(1 − y ′2)1/2 ds,

where the derivative y ′ of y is with respect to s (not x).
We therefore consider the minimization of

∫
F (y, y ′, s) ds, where

F (y, y ′, s) = gyρ + λ
√

1 − y ′2.

The EL equation takes the form

d

ds

(
∂F

∂y ′

)
= ∂F

∂y
,

λ
d

ds

(
−y ′√

1 − y ′2

)
= gρ(s),

−λy ′√
1 − y ′2

=
∫ s

0
gρ(s ′) ds ′ ≡ gP (s),

since y ′(0) = 0 by symmetry.
Now we require P (s) to be such that the solution to this equation takes the form of an

arc of a circle, y(s) = y0 − a cos(s/a). If this is so, then y ′(s) = sin(s/a) and

−λ sin(s/a)

cos(s/a)
= gP (s).
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When s = πa/4, P (s) must have the value M/2, implying that λ = −Mg/2 and that,
consequently,

P (s) = M

2
tan

( s
a

)
.

The required distribution ρ(s) is recovered by differentiating this to obtain

ρ(s) = dP

ds
= M

2a
sec2

( s
a

)
.

12.11 A general result is that light travels through a variable medium by a path that minimizes the travel
time (this is an alternative formulation of Fermat’s principle). With respect to a particular cylindrical
polar coordinate system (ρ, φ, z), the speed of light v(ρ, φ) is independent of z. If the path of the
light is parameterized as ρ = ρ(z), φ = φ(z), show that

v2(ρ ′2 + ρ2φ′2 + 1)

is constant along the path.
For the particular case when v = v(ρ) = b(a2 + ρ2)1/2, show that the two Euler–Lagrange

equations have a common solution in which the light travels along a helical path given by φ =
Az+ B, ρ = C, provided that A has a particular value.

In cylindrical polar coordinates with ρ = ρ(z) and φ = φ(z),

ds =
[

1 +
(
dρ

dz

)2

+ ρ2

(
dφ

dz

)2
]1/2

dz.

The total travel time of the light is therefore given by

τ =
∫

(1 + ρ ′2 + ρ2φ′2)1/2

v(ρ, φ)
dz.

Since z does not appear explicitly in the integrand, we have from the general first integral
of the EL equations for more than one dependent variable that

(1 + ρ ′2 + ρ2φ′2)1/2

v(ρ, φ)
− 1

v

ρ ′2

(1 + ρ ′2 + ρ2φ′2)1/2
− 1

v

ρ2φ′2

(1 + ρ ′2 + ρ2φ′2)1/2
= k.

Rearranging this gives

1 + ρ ′2 + ρ2φ′2 − ρ ′2 − ρ2φ′2 = kv(1 + ρ ′2 + ρ2φ′2)1/2,

1 = kv(1 + ρ ′2 + ρ2φ′2)1/2,

⇒ v2(1 + ρ ′2 + ρ2φ′2) = c, along the path.

Denoting (1 + ρ ′2 + ρ2φ′2) by (∗∗) for brevity, the EL equations for ρ and φ are, respec-
tively,

ρφ′2

v(∗∗)1/2
− (∗∗)1/2

v2

∂v

∂ρ
= d

dz

[
ρ ′

v(∗∗)1/2

]
, (1)

and − (∗∗)1/2

v2

∂v

∂φ
= d

dz

[
ρ2φ′

v(∗∗)1/2

]
. (2)
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Now, if v = b(a2 + ρ2)1/2, the only dependence on z in a possible solution φ = Az+ B
with ρ = C is through the first of these equations. To see this we note that the square
brackets on the RHSs of the two EL equations do not contain any undifferentiated
φ-terms and so the derivatives (with respect to z) of both are zero. Since ∂v/∂φ is also
zero, equation (2) is identically satisfied as 0 = 0. This leaves only (1), which reads

CA2

b(a2 + C2)1/2(1 + 0 + C2A2)1/2
− (1 + 0 + C2A2)1/2bC

b2(a2 + C2)(a2 + C2)1/2
= 0.

This is satisfied provided

A2(a2 + C2) = 1 + C2A2,

i.e. A = a−1.

Thus, a solution in the form of a helix is possible provided that the helix has a particular
pitch, 2πa.

12.13 The Schwarzchild metric for the static field of a non-rotating spherically symmetric black hole of
massM is given by

(ds)2 = c2

(
1 − 2GM

c2r

)
(dt)2 − (dr)2

1 − 2GM/(c2r)
− r2 (dθ )2 − r2 sin2 θ (dφ)2.

Considering only motion confined to the plane θ = π/2, and assuming that the path of a small
test particle is such as to make

∫
ds stationary, find two first integrals of the equations of motion.

From their Newtonian limits, in which GM/r , ṙ2 and r2φ̇2 are all � c2, identify the constants of
integration.

For motion confined to the plane θ = π/2, dθ = 0 and the corresponding term in the
metric can be ignored. With this simplification, we can write

ds =
{
c2

(
1 − 2GM

c2r

)
− ṙ2

1 − (2GM)/(c2r)
− r2φ̇2

}1/2

dt.

Writing the terms in braces as {∗∗}, the EL equation for φ reads

d

dt

( −r2φ̇

{∗∗}1/2

)
− 0 = 0,

⇒ r2φ̇

{∗∗}1/2
= A.

In the Newtonian limit {∗∗} → c2 and the equation becomes r2φ̇ = Ac. Thus, Ac is a
measure of the angular momentum of the particle about the origin.

The EL equation for r is more complicated but, because ds does not contain t explicitly,
we can use the general result for the first integral of the EL equations when there is more

than one dependent variable: F −
∑
i

q̇i
∂F

∂q̇i
= k. This gives us a second equation as
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follows:

F − ṙ ∂F
∂ṙ

− φ̇ ∂F
∂φ̇

= B,

{∗∗}1/2 + ṙ

{∗∗}1/2

ṙ

[1 − (2GM)/(c2r)]
+ φ̇

{∗∗}1/2
r2φ̇ = B.

Multiplying through by {∗∗}1/2 and canceling the terms in ṙ2 and φ̇2 now gives

c2 − 2GM

r
= B

{
c2 − 2GM

r
− ṙ2

[1 − (2GM)/(c2r)]
− r2φ̇2

}1/2

.

In the Newtonian limits, in which GM/r , ṙ2 and r2φ̇2 are all � c2, the equation can be
rearranged and the braces expanded to first order in small quantities to give

B =
(
c2 − 2GM

r

){
c2 − 2GM

r
− ṙ2

[1 − (2GM)/(c2r)]
− r2φ̇2

}−1/2

,

cB = c2 − 2GM

r
+ c2GM

c2r
+ c2ṙ2

2c2
+ c2r2φ̇2

2c2
+ · · · ,

= c2 − GM

r
+ 1

2
(ṙ2 + r2φ̇2) + · · · ,

which can be read as “total energy = rest mass energy + gravitational energy + radial and
azimuthal kinetic energy”. Thus Bc is a measure of the total energy of the test particle.

12.15 Determine the minimum value that the integral

J =
∫ 1

0
[x4(y ′′)2 + 4x2(y ′)2] dx

can have, given that y is not singular at x = 0 and that y(1) = y ′(1) = 1. Assume that the Euler–
Lagrange equation gives the lower limit.

We first set y ′(x) = u(x) with u(1) = y ′(1) = 1. The integral then becomes

J =
∫ 1

0
[x4(u′)2 + 4x2u2] dx. (∗)

This will be stationary if (using the EL equation)

d

dx
(2x4u′) − 8x2u = 0,

8x3u′ + 2x4u′′ − 8x2u = 0,

x2u′′ + 4xu′ − 4u = 0.

As this is a homogeneous equation, we try u(x) = Axn, obtaining

n(n− 1) + 4n− 4 = 0 ⇒ n = −4, or n = 1.
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The form of y ′(x) is thus

y ′(x) = u(x) = A

x4
+ Bx with A+ B = 1.

Further,

y(x) = − A

3x3
+ Bx2

2
+ C.

Since y is not singular at x = 0 and y(1) = 1, we have that A = 0, B = 1 and C = 1
2 ,

yielding y(x) = 1
2 (1 + x2). The minimal value of J is thus

Jmin =
∫ 1

0
[x4(1)2 + 4x2(x)2] dx =

∫ 1

0
5x4 dx = [

x5]1

0 = 1.

12.17 Find an appropriate but simple trial function and use it to estimate the lowest eigenvalue λ0 of
Stokes’ equation

d2y

dx2
+ λxy = 0, y(0) = y(π) = 0.

Explain why your estimate must be strictly greater than λ0.

Stokes’ equation is an SL equation with p = 1, q = 0 and ρ = x. For the given boundary
conditions the obvious trial function is y(x) = sin x. The lowest eigenvalue λ0 ≤ I/J ,
where

I =
∫ π

0
py ′2 dx =

∫ π

0
cos2 x dx = π

2

and J =
∫ π

0
ρy2 dx =

∫ π

0
x sin2 x dx

=
∫ π

0

1
2x(1 − cos 2x) dx

=
[
x2

4

]π
0

−
[
x

2

sin 2x

2

]π
0

+ 1

2

∫ π

0

sin 2x

2
dx

= π2

4
.

Thus λ0 ≤ ( 1
2π)/( 1

4π
2) = 2/π .

However, if we substitute the trial function directly into the equation we obtain

− sin x + 2

π
x sin x = 0,

which is clearly not satisfied. Thus the trial function is not an eigenfunction, and the actual
lowest eigenvalue must be strictly less than the estimate of 2/π .
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12.19 A drum skin is stretched across a fixed circular rim of radius a. Small transverse vibrations of the
skin have an amplitude z(ρ, φ, t) that satisfies

∇2z = 1

c2

∂2z

∂t2

in plane polar coordinates. For a normal mode independent of azimuth, in which case z =
Z(ρ) cosωt , find the differential equation satisfied by Z(ρ). By using a trial function of the form
aν − ρν , with adjustable parameter ν, obtain an estimate for the lowest normal mode frequency.

[The exact answer is (5.78)1/2c/a.]

In cylindrical polar coordinates, (ρ, φ), the wave equation

∇2z = 1

c2

∂2z

∂t2

has azimuth-independent solutions (i.e. independent of φ) of the form z(ρ, t) =
Z(ρ) cosωt , and reduces to

1

ρ

d

dρ

(
ρ
dZ

dρ

)
cosωt = −Zω

2

c2
cosωt,

d

dρ

(
ρ
dZ

dρ

)
+ ω2

c2
ρZ = 0.

The boundary conditions require that Z(a) = 0 and, so that there is no physical disconti-
nuity in the slope of the drum skin at the origin, Z′(0) = 0.

This is an SL equation with p = ρ, q = 0 and weight function w = ρ. A suitable trial
function is Z(ρ) = aν − ρν , which automatically satisfies Z(a) = 0 and, provided ν > 1,
has Z′(0) = −νρν−1|ρ=0 = 0.

We recall that the lowest eigenfrequency satisfies the general formula

ω2

c2
≤

∫ a

0
[(pZ′)2 − qZ2] dρ∫ a

0
wZ2 dρ

.

In this case

ω2

c2
≤

∫ a

0
ρ ν2ρ2ν−2 dρ∫ a

0
ρ(aν − ρν)2 dρ

=

∫ a

0
ν2ρ2ν−1 dρ∫ a

0
(ρa2ν − 2ρν+1aν + ρ2ν+1) dρ
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= (ν2a2ν)/2ν

a2ν+2

2
− 2a2ν+2

ν + 2
+ a2ν+2

2ν + 2

= 1

a2

ν(ν + 2)(2ν + 2)

(ν + 2)(2ν + 2) − 4(2ν + 2) + 2(ν + 2)

= (ν + 2)(ν + 1)

νa2
.

Since ν is an adjustable parameter and we know that, however we choose it, the resulting
estimate can never be less than the lowest true eigenvalue, we choose the value that
minimizes the above estimate. Differentiating the estimate with respect to ν gives

ν(2ν + 3) − (ν2 + 3ν + 2) = 0 ⇒ ν2 − 2 = 0 ⇒ ν = √
2.

Thus the least upper bound to be found with this parameterization is

ω2 ≤ c2

a2

(
√

2 + 2)(
√

2 + 1)√
2

= c2

2a2
(
√

2 + 2)2 ⇒ ω = (5.83)1/2 c

a
.

As noted, the actual lowest eigenfrequency is very little below this.

12.21 For the boundary conditions given below, obtain a functional �(y) whose stationary values give
the eigenvalues of the equation

(1 + x)
d2y

dx2
+ (2 + x)

dy

dx
+ λy = 0, y(0) = 0, y ′(2) = 0.

Derive an approximation to the lowest eigenvalue λ0 using the trial function y(x) = xe−x/2. For
what value(s) of γ would

y(x) = xe−x/2 + β sin γ x

be a suitable trial function for attempting to obtain an improved estimate of λ0?

Since the derivative of 1 + x is not equal to 2 + x, the given equation is not in self-adjoint
form and an integrating factor for the standard form equation,

d2y

dx2
+ 2 + x

1 + x
dy

dx
+ λy

1 + x = 0,

is needed. This will be

exp

{∫ x 2 + u
1 + u du

}
= exp

{∫ x
(

1 + 1

1 + u
)
du

}
= ex(1 + x).

Thus, after multiplying through by this IF, the equation takes the SL form

[(1 + x)exy ′]′ + λexy = 0,

with p(x) = (1 + x)ex , q(x) = 0 and ρ(x) = ex .
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The required functional is therefore

�(y) =
∫ 2

0 [(1 + x)exy ′2 + 0] dx∫ 2
0 y

2ex dx
,

provided that, for the eigenfunctions yi of the equation,
[
yip(x)y ′

j (x)
]2

0
= 0; this condition

is automatically satisfied with the given boundary conditions.
For the trial function y(x) = xe−x/2, clearly y(0) = 0 and, less obviously, y ′(x) =

(1 − 1
2x)e−x/2, making y ′(2) = 0. The functional takes the following form:

� =
∫ 2

0 (1 + x)ex
(
1 − 1

2x
)2
e−x dx∫ 2

0 x
2e−xex dx

=
∫ 2

0 (1 + x)
(
1 − 1

2x
)2
dx∫ 2

0 x
2 dx

=
∫ 2

0

(
1 − x2 + 1

4x
2 + 1

4x
3
)
dx

8/3

= 3

8

(
2 − 3

4

8

3
+ 16

16

)
= 3

8
.

Thus the lowest eigenvalue is ≤ 3
8 .

We already know that xe−x/2 is a suitable trial function and thus y2(x) = sin γ x can be
considered on its own. It satisfies y2(0) = 0, but must also satisfy y ′

2(2) = γ cos(2γ ) = 0.
This requires that γ = 1

2 (n+ 1
2 )π for some integer n; trial functions with γ of this form

can be used to try to obtain a better bound on λ0 by choosing the best value for n and
adjusting the parameter β.

12.23 The unnormalized ground-state (i.e. the lowest-energy) wavefunction of the simple harmonic oscil-
lator of classical frequency ω is exp(−αx2), where α = mω/2−h. Take as a trial function the
orthogonal wavefunction x2n+1 exp(−αx2), using the integer n as a variable parameter, and apply
either Sturm–Liouville theory or the Rayleigh–Ritz principle to show that the energy of the second
lowest state of a quantum harmonic oscillator is ≤ 3−hω/2.

We first note that, for n a non-negative integer,∫ ∞

−∞
x2n+1e−αx

2
e−αx

2
dx = 0

on symmetry grounds and so confirm that the ground-state wavefunction, exp(−αx2), and
the trial function, ψ2n+1 = x2n+1 exp(−αx2), are orthogonal with respect to a unit weight
function.

The Hamiltonian for the quantum harmonic oscillator in one dimension is given by

H = −
−h2

2m

d2

dx2
+ k

2
x2.
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This means that to prepare the elements required for a Rayleigh–Ritz analysis we will need
to find the second derivative of the trial function and evaluate integrals with integrands of
the form xn exp(−2αx2). To this end, define

In =
∫ ∞

−∞
xne−2αx2

dx, with recurrence relation In = n− 1

4α
In−2.

Using Leibnitz’ formula shows that

d2ψ2n+1

dx2
= [

2n(2n+ 1)x2n−1 + 2(2n+ 1)(−2α)x2n+1

+ (4α2x2 − 2α)x2n+1] e−αx2

= [
2n(2n+ 1)x2n−1 − 2(4n+ 3)αx2n+1 + 4α2x2n+3] e−αx2

.

Hence, we find that 〈H 〉 is given by

−
−h2

2m

∫ ∞

−∞
x2n+1e−αx

2 d2ψ2n+1

dx2
dx + k

2

∫ ∞

−∞
x2x4n+2e−2αx2

dx

= −
−h2

2m

[
2n(2n+ 1)I4n − 2(4n+ 3)αI4n+2 + 4α2I4n+4

]+ k

2
I4n+4

= I4n+2

{
−

−h2

2m

[
2n(2n+ 1)4α

4n+ 1
− 2(4n+ 3)α + 4α2(4n+ 3)

4α

]
+ k(4n+ 3)

8α

}
,

where we have used the recurrence relation to express all integrals in terms of I4n+2.
This has been done because the denominator of the Rayleigh–Ritz quotient is this (same)
normalization integral, namely∫ ∞

−∞
ψ∗

2n+1ψ2n+1 dx = I4n+2.

Thus, the estimate E2n+1 = 〈H 〉/I4n+2 is given by

E2n+1 = −
−h2
α

2m

(
16n2 + 8n− 16n2 − 16n− 3

4n+ 1

)
+ k(4n+ 3)

8α

=
−h2
α

2m

8n+ 3

4n+ 1
+ k(4n+ 3)

8α
.

Using ω2 = k

m
and α = mω

2−h
then yields

E2n+1 =
−hω
4

(
8n+ 3

4n+ 1
+ 4n+ 3

)
=

−hω
2

8n2 + 12n+ 3

4n+ 1
.

For non-negative integers n (the orthogonality requirement is not satisfied for non-integer
values), this has a minimum value of 3

2
−hω when n = 0. Thus the second lowest energy

level is less than or equal to this value. In fact, it is equal to this value, as can be shown by
substituting ψ1 into Hψ = Eψ .
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12.25 The upper and lower surfaces of a film of liquid, which has surface energy per unit area (surface
tension) γ and density ρ, have equations z = p(x) and z = q(x), respectively. The film has a
given volume V (per unit depth in the y-direction) and lies in the region −L < x < L, with
p(0) = q(0) = p(L) = q(L) = 0. The total energy (per unit depth) of the film consists of its
surface energy and its gravitational energy, and is expressed by

E = 1
2ρg

∫ L
−L (p2 − q2) dx + γ ∫ L−L [(1 + p′2)1/2 + (1 + q ′2)1/2

]
dx.

(a) Express V in terms of p and q.
(b) Show that, if the total energy is minimized, p and q must satisfy

p′2

(1 + p′2)1/2
− q ′2

(1 + q ′2)1/2
= constant.

(c) As an approximate solution, consider the equations

p = a(L− |x|), q = b(L− |x|),
where a and b are sufficiently small that a3 and b3 can be neglected compared with unity. Find
the values of a and b that minimize E.

(a) The total volume constraint is given simply by

V =
∫ L

−L
[p(x) − q(x)] dx.

(b) To take account of the constraint, consider the minimization of E − λV , where λ is an
undetermined Lagrange multiplier. The integrand does not contain x explicitly and so we
have two first integrals of the EL equations, one for p(x) and the other for q(x). They are

1

2
ρg(p2 − q2) + γ (1 + p′2)1/2 + γ (1 + q ′2)1/2 − λ(p − q) − p′ γp′

(1 + p′2)1/2
= k1

and

1

2
ρg(p2 − q2) + γ (1 + p′2)1/2 + γ (1 + q ′2)1/2 − λ(p − q) − q ′ γ q ′

(1 + q ′2)1/2
= k2.

Subtracting these two equations gives

p′2

(1 + p′2)1/2
− q ′2

(1 + q ′2)1/2
= constant.

(c) If

p = a(L− |x|), q = b(L− |x|),
the derivatives of p and q only take the values ±a and ±b, respectively, and the volume
constraint becomes

V =
∫ L

−L
(a − b)(L− |x|) dx = (a − b)L2 ⇒ b = a − V

L2
.
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The total energy can now be expressed entirely in terms of a and the given parameters, as
follows:

E = 1

2
ρg

∫ L

−L
(a2 − b2)(L− |x|)2 dx + 2γL(1 + a2)1/2 + 2γL(1 + b2)1/2

= 1

2
ρg(a2 − b2)

2L3

3
+ 2γL(1 + 1

2a
2 + 1 + 1

2b
2) + O(a4) + O(b4)

≈ ρgL3

3

[
a2 − (

a − V
L2

)2
]

+ 2γL
[
2 + 1

2a
2 + 1

2

(
a − V

L2

)2
]

= ρgL3

3

(
2aV

L2
− V 2

L4

)
+ 2γL

(
2 + a2 − aV

L2
+ V 2

2L4

)
.

This is minimized with respect to a when

2ρgL3V

3L2
+ 4γLa − 2γLV

L2
= 0,

⇒ a = V

2L2
− ρgV

6γ
,

⇒ b = − V

2L2
− ρgV

6γ
.

As might be expected, | b | > | a | and there is more of the liquid below the z = 0 plane
than there is above it.



13 Integral equations

13.1 Solve the integral equation ∫ ∞

0
cos(xv)y(v) dv = exp(−x2/2)

for the function y = y(x) for x > 0. Note that for x < 0, y(x) can be chosen as is most convenient.

Since cos uv is an even function of v, we will make y(−v) = y(v) so that the complete
integrand is also an even function of v. The integral I on the LHS can then be written as

I = 1

2

∫ ∞

−∞
cos(xv)y(v) dv = 1

2
Re

∫ ∞

−∞
eixvy(v) dv = 1

2

∫ ∞

−∞
eixvy(v) dv,

the last step following because y(v) is symmetric in v. The integral is now
√

2π × a Fourier
transform, and it follows from the inversion theorem for Fourier transforms applied to

1

2

∫ ∞

−∞
eixvy(v) dv = exp(−x2/2)

that

y(x) = 2

2π

∫ ∞

−∞
e−u

2/2e−iux du

= 1

π

∫ ∞

−∞
e−(u+ix)2/2e−x

2/2 dx

= 1

π

√
2π e−x

2/2

=
√

2

π
e−x

2/2.

Although, as noted in the question, y(x) is arbitrary for x < 0, because its form in this
range does not affect the value of the integral, for x > 0 it must have the form given. This
is tricky to prove formally, but any second solution w(x) has to satisfy∫ ∞

0
cos(xv)[y(v) − w(v)] dv = 0

for all x > 0. Intuitively, this implies that y(x) and w(x) are identical functions.
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13.3 Convert

f (x) = exp x +
∫ x

0
(x − y)f (y) dy

into a differential equation, and hence show that its solution is

(α + βx) exp x + γ exp(−x),

where α, β, γ are constants that should be determined.

We differentiate the integral equation twice and obtain

f ′(x) = ex + (x − x)f (x) +
∫ x

0
f (y) dy,

f ′′(x) = ex + f (x).

Expressed in the usual differential equation form, this last equation is

f ′′(x) − f (x) = ex , for which the CF is f (x) = Aex + Be−x.
Since the complementary function contains the RHS of the equation, we try as a PI
f (x) = Cxex :

Cxex + 2Cex − Cxex = ex ⇒ β = C = 1
2 .

The general solution is therefore f (x) = Aex + Be−x + 1
2xe

x .
The boundary conditions needed to evaluate A and B are constructed by considering

the integral equation and its derivative(s) at x = 0, because with x = 0 the integral on the
RHS contributes nothing. We have

f (0) = e0 + 0 = 1 ⇒ A+ B = 1

and f ′(0) = e0 + 0 = 1 ⇒ A− B + 1
2 = 1.

Solving these yields α = A = 3
4 and γ = B = 1

4 and makes the complete solution

f (x) = 3
4e
x + 1

4e
−x + 1

2xe
x.

13.5 Solve for φ(x) the integral equation

φ(x) = f (x) + λ
∫ 1

0

[(
x

y

)n
+
(y
x

)n]
φ(y) dy,

where f (x) is bounded for 0 < x < 1 and − 1
2 < n <

1
2 , expressing your answer in terms of the

quantities Fm = ∫ 1
0 f (y)ym dy.

(a) Give the explicit solution when λ = 1.
(b) For what values of λ are there no solutions unless F±n are in a particular ratio? What is this

ratio?

This equation has a symmetric degenerate kernel, and so we set

φ(x) = f (x) + a1x
n + a2x

−n,
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giving

φ(x) − f (x)

λ
=
∫ 1

0

(
xn

yn
+ yn

xn

)
[ f (y) + a1y

n + a2y
−n ] dy

= xn
∫ 1

0

f (y)

yn
dy + x−n

∫ 1

0
ynf (y) dy + a1x

n

+ a2x
−n + a1x

−n
∫ 1

0
y2n dy + a2x

n

∫ 1

0
y−2n dy

= xn
(
F−n + a1 + a2

1 − 2n

)
+ x−n

(
Fn + a2 + a1

2n+ 1

)
.

This is consistent with the assumed form of φ(x), provided

a1 = λ

(
F−n + a1 + a2

1 − 2n

)
and a2 = λ

(
Fn + a2 + a1

2n+ 1

)
.

These two simultaneous linear equations can now be solved for a1 and a2.
(a) For λ = 1, the equations simplify and decouple to yield

a2 = −(1 − 2n)F−n and a1 = −(1 + 2n)Fn,

respectively, giving as the explicit solution

φ(x) = f (x) − (1 + 2n)Fnx
n − (1 − 2n)F−nx−n.

(b) For a general value of λ,

(1 − λ)a1 − λ

1 − 2n
a2 = λF−n,

− λ

1 + 2n
a1 + (1 − λ)a2 = λFn.

The case λ = 0 is trivial, with φ(x) = f (x), and so suppose that λ �= 0. Then, after
being divided through by λ, the equations can be written in the matrix and vector form
Aa = F: ⎛⎜⎜⎝

1

λ
− 1 − 1

1 − 2n

− 1

1 + 2n

1

λ
− 1

⎞⎟⎟⎠
(
a1

a2

)
=
(
F−n
Fn

)
.

In general, this matrix equation will have no solution if |A| = 0. This will be the case if(
1

λ
− 1

)2

− 1

1 − 4n2
= 0,

which, on rearrangement, shows that λ would have to be given by

1

λ
= 1 ± 1√

1 − 4n2
.

We note that this value for λ is real because n lies in the range − 1
2 < n <

1
2 . In fact

−∞ < λ < 1
2 . Even for these two values of λ, however, if either Fn = F−n = 0 or the
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matrix equation ⎛⎜⎜⎝± 1√
1 − 4n2

− 1

1 − 2n

− 1

1 + 2n
± 1√

1 − 4n2

⎞⎟⎟⎠
(
a1

a2

)
=
(
F−n
Fn

)

is equivalent to two linear equations that are multiples of each other, there will still be a
solution. In this latter case, we must have

Fn

F−n
= ∓

√
1 − 2n

1 + 2n
.

Again we note that, because of the range in which n lies, this ratio is real; this condition
can, however, require any value in the range −∞ to ∞ for Fn/F−n.

13.7 The kernel of the integral equation

ψ(x) = λ

∫ b

a

K(x, y)ψ(y) dy

has the form

K(x, y) =
∞∑
n=0

hn(x)gn(y),

where the hn(x) form a complete orthonormal set of functions over the interval [a, b].

(a) Show that the eigenvalues λi are given by

|M − λ−1I| = 0,

where M is the matrix with elements

Mkj =
∫ b

a

gk(u)hj (u) du.

If the corresponding solutions are ψ (i)(x) = ∑∞
n=0 a

(i)
n hn(x), find an expression for a(i)

n .
(b) Obtain the eigenvalues and eigenfunctions over the interval [0, 2π] if

K(x, y) =
∞∑
n=1

1

n
cos nx cos ny.

(a) We write the ith eigenfunction as

ψ (i)(x) =
∞∑
n=0

a(i)
n hn(x).

From the orthonormality of the hn(x), it follows immediately that

a(i)
m =

∫ b

a

hm(x)ψ (i)(x) dx.

However, the coefficients a(i)
m have to be found as the components of the eigenvectors a(i)

defined below, since the ψ (i) are not initially known.
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Substituting this assumed form of solution, we obtain
∞∑
m=0

a(i)
m hm(x) = λi

∫ b

a

∞∑
n=0

hn(x)gn(y)
∞∑
l=0

a
(i)
l hl(y) dy

= λi
∑
n,l

a
(i)
l Mnlhn(x).

Since the {hn} are an orthonormal set, it follows that

a(i)
m = λi

∑
n,l

a
(i)
l Mnlδmn = λi

∞∑
l=0

Mmla
(i)
l ,

i.e. (M − λ−1
i I)a(i) = 0.

Thus, the allowed values of λi are given by |M − λ−1I| = 0, and the expansion coefficients
a(i)
m by the components of the corresponding eigenvectors.

(b) To make the set {hn(x) = cos nx} into a complete orthonormal set we need to add
the set of functions {ην(x) = sin νx} and then normalize all the functions by multiplying
them by 1/

√
π . For this particular kernel the general functions gn(x) are given by gn(x) =

n−1√π cos nx.
The matrix elements are then

Mkj =
∫ 2π

0

1√
π

cos ju

√
π

k
cos ku du = π

k
δkj ,

Mkν =
∫ 2π

0

1√
π

sin νu

√
π

k
cos ku du = 0.

Thus the matrix M is diagonal and particularly simple. The eigenvalue equation reads
∞∑
j=0

(π
k
δkj − λ−1

i δkj

)
a

(i)
j = 0,

giving the immediate result that λk = k/π with a(k)
k = 1 and all other a(k)

j = a(k)
ν = 0. The

eigenfunction corresponding to eigenvalue k/π is therefore

ψ (k)(x) = hk(x) = 1√
π

cos kx.

13.9 For f (t) = exp(−t2/2), use the relationships of the Fourier transforms of f ′(t) and tf (t) to that of
f (t) itself to find a simple differential equation satisfied by f̃ (ω), the Fourier transform of f (t), and
hence determine f̃ (ω) to within a constant. Use this result to solve for h(t) the integral equation∫ ∞

−∞
e−t(t−2x)/2h(t) dt = e3x2/8.

As a standard result,

F
[
f ′(t)

] = iωf̃ (ω),
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though we will not need this relationship in the following solution.
From its definition,

F [ tf (t) ] = 1√
2π

∫ ∞

−∞
tf (t) e−iωt dt

= 1

−i
d

dω

(
1√
2π

∫ ∞

−∞
f (t) e−iωt dt

)
= i

df̃

dω
.

Now, for the particular given function,

f̃ (ω) = 1√
2π

∫ ∞

−∞
e−t

2/2 e−iωt dt

= 1√
2π

[
e−t

2/2 e−iωt

−iω

]∞

−∞
+ 1√

2π

∫ ∞

−∞

te−t
2/2 e−iωt

−iω dt

= 0 − 1

iω
i
df̃

dω
.

Hence,

df̃

dω
= −ωf̃ ⇒ ln f̃ = − 1

2ω
2 + k ⇒ f̃ = Ae−ω

2/2, (∗)

giving f̃ (ω) to within a multiplicative constant. Now, we are also given∫ ∞

−∞
e−t(t−2x)/2 h(t) dt = e3x2/8,

⇒
∫ ∞

−∞
e−(t−x)2/2 ex

2/2 h(t) dt = e3x2/8,

⇒
∫ ∞

−∞
e−(x−t)2/2 h(t) dt = e−x

2/8. (∗∗)

The LHS of (∗∗) is a convolution integral, and so applying the convolution theorem for
Fourier transforms and result (∗), used twice, yields

√
2πAe−ω

2/2h̃(ω) = F
[
e−(x/2)2/2

]
= Ae−(2ω)2/2,

⇒
√

2π h̃(ω) = e−3ω2/2 = e−(
√

3ω)2/2,

⇒ h(t) = 1√
2πA

e−(t/
√

3)2/2 = 1√
2πA

e−t
2/6.

We now substitute in (∗∗) to determine A:∫ ∞

−∞
e−(x−t)2/2 1√

2πA
e−t

2/6 dt = e−x
2/8,

1√
2πA

∫ ∞

−∞
e−2t2/3 ext e−x

2/2 ex
2/8 dt = 1,

1√
2πA

∫ ∞

−∞
exp

[
−2

3

(
t − 3x

4

)2
]
dt = 1.
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From the normalization of the Gaussian integral, this implies that

1√
2πA

= 2√
2π

√
3
,

which in turn means A = √
3/2, giving finally that

h(t) =
√

2

3π
e−t

2/6.

13.11 At an international “peace” conference a large number of delegates are seated around a circular
table with each delegation sitting near its allies and diametrically opposite the delegation most
bitterly opposed to it. The position of a delegate is denoted by θ , with 0 ≤ θ ≤ 2π . The fury
f (θ ) felt by the delegate at θ is the sum of his own natural hostility h(θ ) and the influences on
him of each of the other delegates; a delegate at position φ contributes an amount K(θ − φ)f (φ).
Thus

f (θ ) = h(θ ) +
∫ 2π

0
K(θ − φ)f (φ) dφ.

Show that if K(ψ) takes the form K(ψ) = k0 + k1 cosψ then

f (θ ) = h(θ ) + p + q cos θ + r sin θ

and evaluate p, q and r . A positive value for k1 implies that delegates tend to placate their
opponents but upset their allies, whilst negative values imply that they calm their allies but infuriate
their opponents. A walkout will occur if f (θ ) exceeds a certain threshold value for some θ . Is this
more likely to happen for positive or for negative values of k1?

Given thatK(ψ) = k0 + k1 cosψ , we try a solution f (θ) = h(θ) + p + q cos θ + r sin θ ,
reducing the equation to

p + q cos θ + r sin θ

=
∫ 2π

0
[k0 + k1(cos θ cosφ + sin θ sinφ)]

× [h(φ) + p + q cosφ + r sinφ] dφ

= k0(H + 2πp) + k1(Hc cos θ +Hs sin θ + πq cos θ + πr sin θ),

where H = ∫ 2π
0 h(z) dz, Hc = ∫ 2π

0 h(z) cos z dz and Hs = ∫ 2π
0 h(z) sin z dz.

Thus, on equating the constant terms and the coefficients of cos θ and sin θ , we have

p = k0H + 2πk0p ⇒ p = k0H

1 − 2πk0
,

q = k1Hc + k1πq ⇒ q = k1Hc

1 − k1π
,

r = k1Hs + k1πr ⇒ r = k1Hs

1 − k1π
.
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And so the full solution for f (θ) is given by

f (θ) = h(θ) + k0H

1 − 2πk0
+ k1Hc

1 − k1π
cos θ + k1Hs

1 − k1π
sin θ

= h(θ) + k0H

1 − 2πk0
+ k1

1 − k1π

(
H 2

c +H 2
s

)1/2
cos(θ − α),

where tanα = Hs/Hc.
Clearly, the maximum value of f (θ) will depend upon h(θ) and its various integrals,

but it is most likely to exceed any particular value if k1 is positive and ≈ π−1. Stick with
your friends!

13.13 The operator M is defined by

Mf (x) ≡
∫ ∞

−∞
K(x, y)f (y) dy,

where K(x, y) = 1 inside the square |x| < a, |y| < a and K(x, y) = 0 elsewhere. Consider the
possible eigenvalues of M and the eigenfunctions that correspond to them; show that the only
possible eigenvalues are 0 and 2a and determine the corresponding eigenfunctions. Hence find the
general solution of

f (x) = g(x) + λ
∫ ∞

−∞
K(x, y)f (y) dy.

From the given properties of K(x, y) we can assert the following.
(i) No matter what the form of f (x), Mf (x) = 0 if |x| > a.
(ii) All functions for which both

∫ a
−a f (y) dy = 0 and f (x) = 0 for |x| > a are eigen-

functions corresponding to eigenvalue 0.
(iii) For any function f (x), the integral

∫ a
−a f (y) dy is equal to a constant whose value is

independent of x; thus f (x) can only be an eigenfunction if it is equal to a constant, μ, for
−a ≤ x ≤ a and is zero otherwise. For this case

∫ a
−a f (y) dy = 2aμ and the eigenvalue

is 2a.
Point (iii) gives the only possible non-zero eigenvalue, whilst point (ii) shows that

eigenfunctions corresponding to zero eigenvalues do exist.
Denote by S(x, a) the function that has unit value for |x| ≤ a and zero value otherwise;

K(x, y) could be expressed as K(x, y) = S(x, a)S(y, a). Substitute the trial solution
f (x) = g(x) + kS(x, a) into

f (x) = g(x) + λ
∫ ∞

−∞
K(x, y)f (y) dy.

This gives

g(x) + kS(x, a) = g(x) + λ
∫ ∞

−∞
K(x, y)[ g(y) + kS(y, a) ] dy,

kS(x, a) = λS(x, a)
∫ a

−a
g(y) dy + λk 2aS(x, a).
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Here, having replaced K(x, y) by S(x, a)S(y, a), we use the factor S(y, a) to reduce the
limits of the y-integration from ±∞ to ±a. As this result is to hold for all x we must have

k = λG

1 − 2aλ
, where G =

∫ a

−a
g(y) dy.

The general solution is thus

f (x) =
⎧⎨⎩g(x) + λG

1 − 2aλ
for |x| ≤ a,

g(x) for |x| > a.

13.15 Use Fredholm theory to show that, for the kernel

K(x, z) = (x + z) exp(x − z)
over the interval [0, 1], the resolvent kernel is

R(x, z; λ) = exp(x − z)[(x + z) − λ( 1
2x + 1

2z− xz− 1
3

)]
1 − λ− 1

12λ
2

,

and hence solve

y(x) = x2 + 2
∫ 1

0
(x + z) exp(x − z) y(z) dz,

expressing your answer in terms of In, where In = ∫ 1
0 u

n exp(−u) du.

We calculate successive values of dn andDn(x, z) using the Fredholm recurrence relations:

dn =
∫ b

a

Dn−1(x, x) dx,

Dn(x, z) = K(x, z)dn − n
∫ b

a

K(x, z1)Dn−1(z1, z) dz1,

starting from d0 = 1 and D0(x, z) = (x + z)ex−z. In the first iteration we obtain

d1 =
∫ 1

0
(u+ u)eu−u du = 1,

D1(x, z) = (x + z)ex−z(1) − 1
∫ 1

0
(x + u)ex−u(u+ z)eu−z du

= (x + z)ex−z − ex−z
∫ 1

0
[xz+ (x + z)u+ u2] du

= ex−z
[

1
2 (x + z) − xz− 1

3

]
.
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Performing the second iteration gives

d2 =
∫ 1

0
eu−u

(
u− u2 − 1

3

)
du = 1

2 − 1
3 − 1

3 = − 1
6 ,

D2(x, z) = (x + z)ex−z(− 1
6

)
−2

∫ 1

0
(x + u)ex−ueu−z

[
1
2 (u+ z) − uz− 1

3

]
du

= ex−z
{− 1

6 (x + z) − 2
[
x
(

1
4 + z

2 − z
2 − 1

3

)+ (
1
6 + z

4 − z
3 − 1

6

)]}
= ex−z

{− 1
6 (x + z) − 2

[− x
12 − z

12

]} = 0.

SinceD2(x, z) = 0, d3 = 0,D3(x, z) = 0, etc. Consequently bothD(x, z; λ) and d(λ) are
finite, rather than infinite, series:

D(x, z; λ) = (x + z)ex−z − λ[ 1
2 (x + z) − xz− 1

3

]
ex−z,

d(λ) = 1 − λ+ (− 1
6

) λ2

2!
= 1 − λ− 1

12 λ
2.

The resolvent kernel R(x, z; λ), given by the ratio D(x, z; λ)/d(λ), is therefore as stated
in the question.

For the particular integral equation, λ = 2 and f (x) = x2. It follows that

d(λ) = 1 − 2 − 4
12 = − 4

3 and D(x, z : λ) = (
2xz+ 2

3

)
ex−z.

The solution is therefore given by

y(x) = f (x) + λ
∫ 1

0
R(x, z; λ)f (z) dz

= x2 + 2
∫ 1

0

(
2xz+ 2

3

)
z2ex−z

− 4
3

dz

= x2 −
∫ 1

0
(3xz3 + z2)ex−z dz

= x2 − (3xI3 + I2)ex.
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14.1 Find an analytic function of z = x + iy whose imaginary part is

(y cos y + x sin y) exp x.

If the required function is f (z) = u+ iv, with v = (y cos y + x sin y) exp x, then, from
the Cauchy–Riemann equations,

∂v

∂x
= ex(y cos y + x sin y + sin y) = −∂u

∂y
.

Integrating with respect to y gives

u = −ex
∫

(y cos y + x sin y + sin y) dy + f (x)

= −ex
(
y sin y −

∫
sin y dy − x cos y − cos y

)
+ f (x)

= −ex(y sin y + cos y − x cos y − cos y) + f (x)

= ex(x cos y − y sin y) + f (x).

We determine f (x) by applying the second Cauchy–Riemann equation, which equates
∂u/∂x with ∂v/∂y:

∂u

∂x
= ex(x cos y − y sin y + cos y) + f ′(x),

∂v

∂y
= ex(cos y − y sin y + x cos y).

By comparison, f ′(x) = 0 ⇒ f (x) = k,

where k is a real constant that can be taken as zero. Hence, the analytic function is given
by

f (z) = u+ iv = ex(x cos y − y sin y + iy cos y + ix sin y)

= ex[ (cos y + i sin y)(x + iy) ]

= ex eiy(x + iy)

= zez.

The final line confirms explicitly that this is a function of z alone (as opposed to a function
of both z and z∗).

192



193 Complex variables

14.3 Find the radii of convergence of the following Taylor series:

(a)
∞∑
n=2

zn

ln n
, (b)

∞∑
n=1

n!zn

nn
,

(c)
∞∑
n=1

znnln n, (d)
∞∑
n=1

(
n+ p
n

)n2

zn, with p real.

In each case we consider the series as
∑
n anz

n and apply the formula

1

R
= lim
n→∞ |an|1/n

derived from considering the Cauchy root test for absolute convergence.

(a)
1

R
= lim
n→∞

(
1

ln n

)1/n

= 1, since − n−1 ln ln n → 0 as n → ∞.

Thus R = 1. For interest, we also note that at the point z = 1 the series is

∞∑
n=2

1

ln n
>

∞∑
n=2

1

n
,

which diverges. This shows that the given series diverges at this point on its circle of
convergence.

(b)
1

R
= lim
n→∞

(
n!

nn

)1/n

.

Since the nth root of n! tends to n as n → ∞, the limit of this ratio is that of n/n, namely
unity. Thus R = 1 and the series converges inside the unit circle.

(c)
1

R
= lim
n→∞

(
nln n)1/n = lim

n→∞ n
(ln n)/n

= lim
n→∞ exp

[
ln n

n
ln n

]
= exp(0) = 1.

Thus R = 1 and the series converges inside the unit circle. It is obvious that the series
diverges at the point z = 1.

(d)
1

R
= lim
n→∞

[(
n+ p
n

)n2]1/n

= lim
n→∞

(
n+ p
n

)n
= lim
n→∞

(
1 + p

n

)n
= ep.

Thus R = e−p and the series converges inside a circle of this radius centered on the origin
z = 0.
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14.5 Determine the types of singularities (if any) possessed by the following functions at z = 0 and
z = ∞:

(a) (z− 2)−1, (b) (1 + z3)/z2, (c) sinh(1/z),
(d) ez/z3, (e) z1/2/(1 + z2)1/2.

(a) Although (z− 2)−1 has a simple pole at z = 2, at both z = 0 and z = ∞ it is well
behaved and analytic.

b) Near z = 0, f (z) = (1 + z3)/z2 behaves like 1/z2 and so has a double pole there. It
is clear that as z → ∞ f (z) behaves as z and so has a simple pole there; this can be made
more formal by setting z = 1/ξ to obtain g(ξ ) = ξ 2 + ξ−1 and considering ξ → 0. This
leads to the same conclusion.

(c) As z → ∞, f (z) = sinh(1/z) behaves like sinh ξ as ξ → 0, i.e. analytically. How-
ever, the definition of the sinh function involves an infinite series – in this case an infinite
series of inverse powers of z. Thus, no finite n for which

lim
z→0

[ znf (z) ] is finite

can be found, and f (z) has an essential singularity at z = 0.
(d) Near z = 0, f (z) = ez/z3 behaves as 1/z3 and has a pole of order 3 at the origin.

At z = ∞ it has an obvious essential singularity; formally, the series expansion of e1/ξ

about ξ = 0 contains arbitrarily high inverse powers of ξ .
(e) Near z = 0, f (z) = z1/2/(1 + z2)1/2 behaves as z1/2 and therefore has a branch point

there. To investigate its behavior as z → ∞, we set z = 1/ξ and obtain

f (z) = g(ξ ) =
(

ξ−1

1 + ξ−2

)1/2

=
(

ξ

ξ 2 + 1

)1/2

∼ ξ 1/2 as ξ → 0.

Hence f (z) also has a branch point at z = ∞.

14.7 Find the real and imaginary parts of the functions (i) z2, (ii) ez, and (iii) coshπz. By considering
the values taken by these parts on the boundaries of the region x ≥ 0, y ≤ 1, determine the solution
of Laplace’s equation in that region that satisfies the boundary conditions

φ(x, 0) = 0, φ(0, y) = 0,

φ(x, 1) = x, φ(1, y) = y + sinπy.

Writing fk(z) = uk(x, y) + ivk(x, y), we have

(i) f1(z) = z2 = (x + iy)2

⇒ u1 = x2 − y2 and v1 = 2xy,

(ii) f2(z) = ez = ex+iy = ex(cos y + i sin y)

⇒ u2 = ex cos y and v2 = ex sin y,

(iii) f3(z) = coshπz = coshπx cosπy + i sinhπx sinπy

⇒ u3 = coshπx cosπy and v3 = sinhπx sinπy.

All of these u and v are necessarily solutions of Laplace’s equation (this follows from
the Cauchy–Riemann equations), and, since Laplace’s equation is linear, we can form
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any linear combination of them and it will also be a solution. We need to choose the
combination that matches the given boundary conditions.

Since the third and fourth conditions involve x and sinπy, and these appear only in v1

and v3, respectively, let us try a linear combination of them:

φ(x, y) = A(2xy) + B(sinhπx sinπy).

The requirementφ(x, 0) = 0 is clearly satisfied, as isφ(0, y) = 0. The conditionφ(x, 1) =
x becomes 2Ax + 0 = x, requiring A = 1

2 , and the remaining condition, φ(1, y) = y +
sinπy, takes the form y + B sinhπ sinπy = y + sinπy, thus determiningB as 1/ sinhπ .

With φ a solution of Laplace’s equation and all of the boundary conditions satisfied,
the uniqueness theorem guarantees that

φ(x, y) = xy + sinhπx sinπy

sinhπ

is the correct solution.

14.9 The fundamental theorem of algebra states that, for a complex polynomial pn(z) of degree n, the
equation pn(z) = 0 has precisely n complex roots. By applying Liouville’s theorem, which reads

If f (z) is analytic and bounded for all z then f is a constant,

to f (z) = 1/pn(z), prove that pn(z) = 0 has at least one complex root. Factor out that root to obtain
pn−1(z) and, by repeating the process, prove the fundamental theorem.

We prove this result by the method of contradiction. Suppose pn(z) = 0 has no roots in
the complex plane, then fn(z) = 1/pn(z) is bounded for all z and, by Liouville’s theorem,
is therefore a constant. It follows that pn(z) is also a constant and that n = 0. However, if
n > 0 we have a contradiction and it was wrong to suppose that pn(z) = 0 has no roots; it
must have at least one. Let one of them be z = z1; i.e. pn(z), being a polynomial, can be
written pn(z) = (z− z1)pn−1(z).

Now, by considering fn−1(z) = 1/pn−1(z) in just the same way, we can conclude that
either n− 1 = 0 or a further reduction is possible. It is clear that n such reductions are
needed to make f0 a constant, thus establishing that pn(z) = 0 has precisely n (complex)
roots.

14.11 The function

f (z) = (1 − z2)1/2

of the complex variable z is defined to be real and positive on the real axis for −1 < x < 1. Using
cuts running along the real axis for 1 < x < +∞ and −∞ < x < −1, show how f (z) is made
single-valued and evaluate it on the upper and lower sides of both cuts.

Use these results and a suitable contour in the complex z-plane to evaluate the integral

I =
∫ ∞

1

dx

x(x2 − 1)1/2
.

Confirm your answer by making the substitution x = sec θ .
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As usual when dealing with branch cuts aimed at making a multi-valued function into a
single-valued one, we introduce polar coordinates centered on the branch points. For f (z)
the branch points are at z = ±1, and so we define r1 as the distance of z from the point
1 and θ1 as the angle the line joining 1 to z makes with the part of the x-axis for which
1 < x < +∞, with 0 ≤ θ1 ≤ 2π . Similarly, r2 and θ2 are centered on the point −1, but
θ2 lies in the range −π ≤ θ2 ≤ π .

With these definitions,

f (z) = (1 − z2)1/2 = (1 − z)1/2(1 + z)1/2

= [
(−r1eiθ1 )(r2e

iθ2 )
]1/2

= (r1r2)1/2ei(θ1+θ2−π)/2.

In the final line the choice between exp(+iπ) and exp(−iπ) for dealing with the minus
sign appearing before r1 in the second line was resolved by the requirement that f (z)
is real and positive when −1 < x < 1 with y = 0. For these values of z, r1 = 1 − x,
r2 = 1 + x, θ1 = π and θ2 = 0. Thus,

f (z) = [ (1 − x)(1 + x) ]1/2 e(π+0−π)/2 = (1 − x2)1/2ei0 = +(1 − x2)1/2,

as required.
Now applying the same prescription to points lying just above and just below each of

the cuts, we have

x > 1, y = 0+ r1 = x − 1 r2 = x + 1 θ1 = 0 θ2 = 0

⇒ f (z) = (x2 − 1)1/2ei(0+0−π)/2 = −i(x2 − 1)1/2,

x > 1, y = 0− r1 = x − 1 r2 = x + 1 θ1 = 2π θ2 = 0

⇒ f (z) = (x2 − 1)1/2ei(2π+0−π)/2 = i(x2 − 1)1/2,

x < −1, y = 0+ r1 = 1 − x r2 = −x − 1 θ1 = π θ2 = π

⇒ f (z) = (x2 − 1)1/2ei(π+π−π)/2 = i(x2 − 1)1/2,

x < −1, y = 0− r1 = 1 − x r2 = −x − 1 θ1 = π θ2 = −π
⇒ f (z) = (x2 − 1)1/2ei(π−π−π)/2 = −i(x2 − 1)1/2.

To use these results to evaluate the given integral I , consider the contour integral

J =
∫
C

dz

z(1 − z2)1/2
=
∫
c

dz

zf (z)
.

Here C is a large circle (consisting of arcs �1 and �2 in the upper and lower half-planes,
respectively) of radiusR centered on the origin but indented along the positive and negative
x-axes by the cuts considered earlier. At the ends of the cuts are two small circles γ1 and γ2

that enclose the branch points z = 1 and z = −1, respectively. Thus the complete closed
contour, starting from γ1 and moving along the positive real axis, consists of, in order,
circle γ1, cut C1, arc �1, cut C2, circle γ2, cut C3, arc �2 and cut C4, leading back to γ1.
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On the arcs �1 and �2 the integrand is O(R−2) and the contributions to the contour
integral → 0 as R → ∞. For the small circle γ1, where we can set z = 1 + ρeiφ with
dz = iρeiφ dφ, we have∫

γ1

dz

z(1 + z)1/2(1 − z)1/2
=
∫ 2π

0

iρeiφ

(1 + ρeiφ)(2 + ρeiφ)1/2(−ρeiφ)1/2
dφ,

and this → 0 as ρ → 0. Similarly, the small circle γ2 contributes nothing to the contour
integral. This leaves only the contributions from the four arms of the branch cuts. To relate
these to I we use our previous results about the value of f (z) on the various arms:

on C1, z = x and
∫
C1

=
∫ ∞

1

dx

x[ −i(x2 − 1)1/2 ]
= iI ;

on C2, z = −x and
∫
C2

=
∫ 1

∞

−dx
−x[ i(x2 − 1)1/2 ]

= iI ;

on C3, z = −x and
∫
C3

=
∫ ∞

1

−dx
−x[ −i(x2 − 1)1/2 ]

= iI ;

on C4, z = x and
∫
C1

=
∫ 1

∞

dx

x[ i(x2 − 1)1/2 ]
= iI.

So the full contour integral around C has the value 4iI . But, this must be the same as
2πi times the residue of z−1(1 − z2)−1/2 at z = 0, which is the only pole of the integrand
inside the contour. The residue is clearly unity, and so we deduce that I = π/2.

This particular integral can be evaluated much more simply using elementary methods.
Setting x = sec θ with dx = sec θ tan θ dθ gives

I =
∫ ∞

1

dx

x(x2 − 1)1/2

=
∫ π/2

0

sec θ tan θ dθ

sec θ (sec2 θ − 1)1/2
=
∫ π/2

0
dθ = π

2
,

and so verifies the result obtained by contour integration.

14.13 The following is an alternative (and roundabout!) way of evaluating the Gaussian integral.

(a) Prove that the integral of [exp(iπz2)]cosecπz around the parallelogram with corners ±1/2 ±
R exp(iπ/4) has the value 2i.

(b) Show that the parts of the contour parallel to the real axis give no contribution when R → ∞.
(c) Evaluate the integrals along the other two sides by putting z′ = r exp(iπ/4) and working in

terms of z′ + 1
2 and z′ − 1

2 . Hence by letting R → ∞ show that∫ ∞

−∞
e−πr

2
dr = 1.
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Re z

Im z

π/4
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2−1

2

R

R
L1L2

Figure 14.1 The parallelogram contour used in Problem 14.13.

The integral is

∫
C

eiπz
2
cosecπz dz =

∫
C

eiπz
2

sinπz
dz

and the suggested contour C is shown in Figure 14.1.
(a) The integrand has (simple) poles only on the real axis at z = n, where n is an integer.

The only such pole enclosed by C is at z = 0. The residue there is

a−1 = lim
z→0

zeiπz
2

sinπz
= 1

π
.

The value of the integral around C is therefore 2πi × (π−1) = 2i.
(b) On the parts of C parallel to the real axis, z = ±Reiπ/4 + x ′, where − 1

2 ≤ x ′ ≤ 1
2 .

The integrand is thus given by

f (z) = 1

sinπz
exp

[
iπ
(± Reiπ/4 + x ′)2

]
= 1

sinπz
exp

[
iπ
(
R2eiπ/2 ± 2Rx ′eiπ/4 + x ′2

) ]
= 1

sinπz
exp

[
−πR2 ± 2πiRx ′

√
2

(1 + i) + iπx ′2
]

= O
(
exp[−πR2 ∓ √

2πRx ′]
)

→ 0 as R → ∞.

Since the integration range is finite (− 1
2 ≤ x ′ ≤ 1

2 ), the integrals → 0 as R → ∞.
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(c) On the first of the other two sides, let us set z = 1
2 + reiπ/4 with −R ≤ r ≤ R. The

corresponding integral I1 is

I1 =
∫
L1

eiπz
2
cosecπz dz

=
∫ R

−R

exp
[
iπ
(

1
2 + reiπ/4)2

]
sin
[
π
(

1
2 + reiπ/4) ] eiπ/4 dr

=
∫ R

−R

eiπ/4 exp(iπreiπ/4) exp(iπr2i)eiπ/4

cos(πreiπ/4)
dr

=
∫ R

−R

i exp(iπreiπ/4)e−πr
2

cos(πreiπ/4)
dr.

Similarly (remembering the sense of integration), the remaining side contributes

I2 = −
∫ R

−R

i exp(−iπreiπ/4)e−πr
2

− cos(πreiπ/4)
dr.

Adding together all four contributions gives

0 + 0 +
∫ R

−R

i[ exp(iπreiπ/4) + exp(−iπreiπ/4) ]e−πr
2

cos(πreiπ/4)
dr,

which simplifies to ∫ R

−R
2ie−πr

2
dr.

From part (a), this must be equal to 2i as R → ∞, and so
∫ ∞

−∞
e−πr

2
dr = 1.
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Many of the problems in this chapter involve contour integration and the choice of a suit-
able contour. In order to save the space taken by drawing several broadly similar contours
that differ only in notation, the positions of poles, the values of lengths or angles, or other
minor details, we make reference to Figure 15.1 which shows a number of typical contour
types.

15.1 In the method of complex impedances for a.c. circuits, an inductance L is represented by a complex
impedance ZL = iωL and a capacitance C by ZC = 1/(iωC). Kirchhoff’s circuit laws,∑

i

Ii = 0 at a node and
∑
i

ZiIi =
∑
j

Vj around any closed loop,

are then applied as if the circuit were a d.c. one.
Apply this method to the a.c. bridge connected as in Figure 15.2 to show that if the resistance

R is chosen as R = (L/C)1/2 then the amplitude of the current IR through it is independent of the
angular frequency ω of the applied a.c. voltage V0 e

iωt .
Determine how the phase of IR , relative to that of the voltage source, varies with the angular

frequency ω.

Omitting the common factor eiωt from all currents and voltages, let the current drawn
from the voltage source be (the complex quantity) I and the current flowing from A to D
be I1. Then the currents in the remaining branches are AE : I − I1, DB : I1 − IR and
EB : I − I1 + IR .

Applying
∑
i ZiIi = ∑

j Vj to three separate loops yields

loop ADBA iωL I1 + 1

iωC
(I1 − IR) = V0,

loop ADEA iωL I1 + R IR − 1

iωC
(I − I1) = 0,

loop DBED
1

iωC
(I1 − IR) − iωL (I − I1 + IR) − R IR = 0.

200
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Figure 15.1 Typical contours for use in contour integration.
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Figure 15.2 The inductor–capacitor–resistor network for Problem 15.1.
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Now, denoting (LC)−1 by ω2
0 and choosing R as (L/C)1/2 = (ω0C)−1, we can write these

equations as follows: (
1 − ω2

ω2
0

)
I1 − IR = iωCV0,

−I +
(

1 − ω2

ω2
0

)
I1 + i ω

ω0
IR = 0,

ω2

ω2
0

I +
(

1 − ω2

ω2
0

)
I1 +

(
−1 + ω2

ω2
0

− i ω
ω0

)
IR = 0.

Eliminating I from the last two of these yields(
1 + ω2

ω2
0

)(
1 − ω2

ω2
0

)
I1 −

(
iω

ω0
+ 1

)(
1 − ω2

ω2
0

)
IR = 0.

Thus,

IR =
1 + ω2

ω2
0

1 + i ω
ω0

I1 = ω2
0 + ω2

ω0(ω0 + iω)

ω2
0(iωCV0 + IR)

ω2
0 − ω2

.

After some cancellation and rearrangement,(
ω2

0 − ω2) IR = ω0(ω0 − iω)(iωCV0 + IR),

(iωω0 − ω2) IR = ω0ω(iω0 + ω)CV0,

and so

IR = ω0CV0
iω0 + ω
iω0 − ω = ω0CV0

(iω0 + ω) (−iω0 − ω)

(iω0 − ω)(−iω0 − ω)

= ω0CV0
ω2

0 − ω2 − 2iωω0

ω2
0 + ω2

.

From this we can read off

|IR| = ω0CV0

[(
ω2 − ω2

0

)2 + 4ω2ω2
0

]1/2

ω2
0 + ω2

= ω0CV0, i.e. independent of ω,

and

φ = phase of IR = tan−1 −2ωω0

ω2
0 − ω2

.

Thus IR (which was arbitrarily and notionally defined as flowing from D to E in the
equivalent d.c. circuit) has an imaginary part that is always negative but a real part that
changes sign as ω passes through ω0. Its phase φ, relative to that of the voltage source,
therefore varies from 0 when ω is small to −π when ω is large.
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15.3 For the function

f (z) = ln

(
z+ c
z− c

)
,

where c is real, show that the real part u of f is constant on a circle of radius c cosech u centered on
the point z = c coth u. Use this result to show that the electrical capacitance per unit length of two
parallel cylinders of radii a, placed with their axes 2d apart, is proportional to [cosh−1(d/a)]−1.

From

f (z) = ln

(
z+ c
z− c

)
= ln

∣∣∣∣z+ c
z− c

∣∣∣∣+ i arg

(
z+ c
z− c

)
,

we have that

u = ln

∣∣∣∣z+ c
z− c

∣∣∣∣ = 1

2
ln

(x + c)2 + y2

(x − c)2 + y2
⇒ e2u = (x + c)2 + y2

(x − c)2 + y2
.

The curve upon which u(x, y) is constant is therefore given by

(x2 − 2cx + c2 + y2)e2u = x2 + 2xc + c2 + y2.

This can be rewritten as

x2(e2u − 1) − 2xc(e2u + 1) + y2(e2u − 1) + c2(e2u − 1) = 0,

x2 − 2xc
e2u + 1

e2u − 1
+ y2 + c2 = 0,

x2 − 2xc coth u+ y2 + c2 = 0,

which, in conic-section form, becomes

(x − c coth u)2 + y2 = c2 coth2 u− c2 = c2cosech2u.

This is a circle with center (c coth u, 0) and radius |c cosech u|.
Now consider two such circles with the same value of |c cosech u|, equal to a, but

different values of u satisfying c coth u1 = −d and c coth u2 = +d. These two equations
imply that u1 = −u2, corresponding physically to equal but opposite charges −Q and +Q
placed on identical cylindrical conductors that coincide with the circles; the conductors
are raised to potentials u1 and u2.

We have already established that we need c coth u2 = d and c cosech u2 = a. Dividing
these two equations gives cosh u2 = d/a.

The capacitance (per unit length) of the arrangement is given by the magnitude of the
charge on one conductor divided by the potential difference between the conductors that
results from the presence of that charge, i.e.

C = Q

u2 − u1
∝ 1

2u2
= 1

2 cosh−1(d/a)
,

as stated in the question.
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15.5 By considering in turn the transformations

z = 1
2c(w + w−1) and w = exp ζ,

where z = x + iy,w = r exp iθ , ζ = ξ + iη and c is a real positive constant, show that z = c cosh ζ
maps the strip ξ ≥ 0, 0 ≤ η ≤ 2π , onto the whole z-plane. Which curves in the z-plane correspond
to the lines ξ = constant and η = constant? Identify those corresponding to ξ = 0, η = 0 and
η = 2π .

The electric potential φ of a charged conducting strip −c ≤ x ≤ c, y = 0, satisfies

φ ∼ −k ln(x2 + y2)1/2 for large values of (x2 + y2)1/2,

with φ constant on the strip. Show that φ = Re [−k cosh−1(z/c)] and that the magnitude of the
electric field near the strip is k(c2 − x2)−1/2.

We first note that the combined transformation is given by

z = c

2
(eζ + e−ζ ) = c cosh ζ ⇒ ζ = cosh−1 z

c
.

The successive connections linking the strip in the ζ -plane and its image in the z-plane
are

z = c cosh ζ = c cosh(ξ + iη)

= c cosh ξ cos η + ic sinh ξ sin η, with ξ > 0, 0 ≤ η ≤ 2π ,

reiθ = w = eζ = eξ eiη, with the strip as 1 < r < ∞, 0 ≤ θ ≤ 2π ,

x + iy = z = c

2
(w + w−1)

= c

2
[ r(cos θ + i sin θ) + r−1(cos θ − i sin θ) ]

= c

2

(
r + 1

r

)
cos θ + i c

2

(
r − 1

r

)
sin θ.

This last expression for z and the previous specification of the strip in terms of r and θ
show that both x and y can take all values, i.e. that the original strip in the ζ -plane is
mapped onto the whole of the z-plane. From the two expressions for z we also see that
x = c cosh ξ cos η and y = c sinh ξ sin η.

For ξ constant, the contour in the xy-plane, obtained by eliminating η, is

x2

c2 cosh2 ξ
+ y2

c2 sinh2 ξ
= 1, i.e. an ellipse.

The eccentricity of the ellipse is given by

e =
(
c2 cosh2 ξ − c2 sinh2 ξ

c2 cosh2 ξ

)1/2

= 1

cosh ξ
.

The foci of the ellipse are at ± e× the major semi-axis, i.e. ±1/ cosh ξ × c cosh ξ = ±c.
This is independent of ξ and so all the ellipses are confocal.
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Similarly, for η constant, the contour is

x2

c2 cos2 η
− y2

c2 sin2 η
= 1.

This is one of a set of confocal hyperbolae.
(i) ξ = 0 ⇒ y = 0, x = c cos η.

This is the finite line (degenerate ellipse) on the x-axis, −c ≤ x ≤ c.
(ii) η = 0 ⇒ y = 0, x = c cosh ξ .

This is a part of the x-axis not covered in (i), c < x < ∞. The other part, −∞ < x < −c,
corresponds to η = π .

(iii) This is the same as (the first case) in (ii).
Now, in the ζ -plane, consider the real part of the function F (ζ ) = −kζ , with k real. On

ξ = 0 [ case (i) above ] it reduces to Re {−ikη}, which is zero for all η, i.e. a constant. This
implies that the real part of the transformed function will be a constant (actually zero) on
−c ≤ x ≤ c in the z-plane.

Further,

(x2 + y2)1/2 = (c2 cosh2 ξ cos2 η + c2 sinh2 ξ sin2 η)1/2

≈ 1
2ce

ξ for large ξ,

⇒ ξ ≈ ln(x2 + y2)1/2 + fixed constant.

Hence,

Re {−kζ } = −kξ ≈ −k ln(x2 + y2)1/2 for large (x2 + y2)1/2.

Thus, the transformation

F (ζ ) = −kζ → f (z) = −k cosh−1 z

c

produces a function in the z-plane that satisfies the stated boundary conditions (as well as
satisfying Laplace’s equation). It is therefore the required solution.

The electric field near the conducting strip, where y = 0 and z2 = x2, can have no
component in the x-direction (except at the points x = ±c), but its magnitude is still
given by

E = | f ′(z) | =
∣∣∣∣− k√

z2 − c2

∣∣∣∣ = k

(c2 − x2)1/2
.

15.7 Prove that if f (z) has a simple zero at z0 then 1/f (z) has residue 1/f ′(z0) there. Hence evaluate∫ π

−π

sin θ

a − sin θ
dθ,

where a is real and > 1.

If f (z) is analytic and has a simple zero at z = z0 then it can be written as

f (z) =
∞∑
n=1

an(z− z0)n, with a1 �= 0.
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Using a binomial expansion,

1

f (z)
= 1

a1(z− z0)

(
1 +

∞∑
n=2

an

a1
(z− z0)n−1

)

= 1

a1(z− z0)
(1 + b1(z− z0) + b2(z− z0)2 + · · · ),

for some coefficients, bi . The residue at z = z0 is clearly a−1
1 .

But, from differentiating the Taylor expansion,

f ′(z) =
∞∑
n=1

nan(z− z0)n−1,

⇒ f ′(z0) = a1 + 0 + 0 + · · · = a1,

i.e. the residue = 1

a1
can also be expressed as

1

f ′(z0)
.

Denote the required integral by I and consider the contour integral

J =
∫
C

dz

a − 1

2i
(z− z−1)

=
∫
C

2iz dz

2aiz− z2 + 1
,

whereC is the unit circle, i.e. contour (c) of Figure 15.1 withR = 1. The denominator has
simple zeros at z = ai ± √−a2 + 1 = i(a ± √

a2 − 1). Since a is strictly greater than
1, α = i(a − √

a2 − 1) lies strictly inside the unit circle, whilst β = i(a + √
a2 − 1) lies

strictly outside it (and need not be considered further).
Extending the previous result to the case of h(z) = g(z)/f (z), where g(z) is analytic at

z0, the residue of h(z) at z = z0 can be seen to be g(z0)/f ′(z0). Applying this, we find that
the residue of the integrand at z = α is given by∣∣∣∣ 2iz

2ai − 2z

∣∣∣∣
z=α

= iα

ai − ai + i√a2 − 1
= α√

a2 − 1
.

Now on the unit circle, z = eiθ with dz = i eiθ dθ , and J can be written as

J =
∫ π

−π

i eiθ dθ

a − 1

2i
( eiθ − e−iθ )

=
∫ π

−π

i(cos θ + i sin θ) dθ

a − sin θ
.

Hence,

I = −Re J = −Re 2πi
i(a − √

a2 − 1)√
a2 − 1

= 2π

(
a√
a2 − 1

− 1

)
.
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Although it is not asked for, we can also deduce from the fact that the residue at z = α is
purely imaginary that ∫ π

−π

cos θ

a − sin θ
dθ = 0,

a result that can also be obtained by more elementary means, when it is noted that the
numerator of the integrand is the derivative of the denominator.

15.9 Prove that ∫ ∞

0

cosmx

4x4 + 5x2 + 1
dx = π

6

(
4e−m/2 − e−m) for m > 0.

Since, when z is on the real axis, the integrand is equal to

Re
eimz

(z2 + 1)(4z2 + 1)
= Re

eimz

(z+ i)(z− i)(2z+ i)(2z− i) ,

we consider the integral of f (z) = eimz

(z+ i)(z− i)(2z+ i)(2z− i) around contour (d) in

Figure 15.1.
As |f (z)| ∼ |z|−4 as z → ∞ and m > 0, all the conditions for Jordan’s lemma to hold

are satisfied and the integral around the large semi-circle contributes nothing. For this
integrand there are two poles inside the contour, at z = i and at z = 1

2 i. The respective
residues are

e−m

2i 3i i
= ie−m

6
and

e−m/2
3i
2 (− i

2 ) 2i
= −2ie−m/2

3
.

The residue theorem therefore reads∫ ∞

−∞

eimx

4x4 + 5x2 + 1
dx + 0 = 2πi

(
ie−m

6
− 2ie−m/2

3

)
,

and the stated result follows from equating real parts and changing the lower integration
limit, recognizing that the integrand is symmetric about x = 0 and so the integral from 0
to ∞ is equal to half of that from −∞ to ∞.

15.11 Using a suitable cut plane, prove that if α is real and 0 < α < 1 then∫ ∞

0

x−α

1 + x dx

has the value π cosecπα.

As α is not an integer, the complex form of the integrand f (z) = z−α

1 + z is not single-

valued. We therefore need to perform the contour integration in a cut plane; contour (f)
of Figure 15.1 is a suitable contour. We will be making use of the fact that, because the
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integrand takes different values on γ1 and γ2, the contributions coming from these two
parts of the complete contour, although related, do not cancel.
The contributions from γ and � are both zero because:

(i) around γ , |zf (z)| ∼ z z−α

1
= z1−α → 0 as |z| → 0, since α < 1;

(ii) around �, |zf (z)| ∼ z z−α

z
= z−α → 0 as |z| → ∞, since α > 0.

Therefore, the only contributions come from the cut; on γ1, z = xe0i , whilst on γ2,
z = xe2πi . The only pole inside the contour is a simple one at z = −1 = eiπ , where the
residue is e−iπα. The residue theorem now reads

0 +
∫ ∞

0

x−α

1 + x dx + 0 −
∫ ∞

0

x−αe−2πiα

1 + xe2πi
dx = 2πi e−iπα,

⇒ (1 − e−2πiα)
∫ ∞

0

x−α

1 + x dx = 2πi e−iπα.

This can be rearranged to read∫ ∞

0

x−α

1 + x dx = 2πi e−iπα

(1 − e−2πiα)
= 2πi

eiπα − e−iπα = π

sinπα
,

thus establishing the stated result.

15.13 By integrating a suitable function around a large semi-circle in the upper half plane and a small
semi-circle centered on the origin, determine the value of

I =
∫ ∞

0

(ln x)2

1 + x2
dx

and deduce, as a by-product of your calculation, that∫ ∞

0

ln x

1 + x2
dx = 0.

The suggested contour is that shown in Figure 15.1(e), but with only one indentation γ
on the real axis (at z = 0) and with R = ∞. The appropriate complex function is

f (z) = (ln z)2

1 + z2
.

The only pole inside the contour is at z = i, and the residue there is given by

(ln i)2

i + i = (ln 1 + i(π/2))2

2i
= −π

2

8i
.

To evaluate the integral around γ , we set z = ρ eiθ with ln z = ln ρ + iθ and dz =
iρ eiθ dθ ; the integral becomes∫ 0

π

ln2 ρ + 2iθ ln ρ − θ2

1 + ρ2e2iθ
iρ eiθ dθ , which → 0 as ρ → 0.
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Thus γ contributes nothing. Even more obviously, on �, |zf (z)| ∼ z−1 and tends to zero
as |z| → ∞, showing that � also contributes nothing.

On γ+, z = xei0 and the contribution is equal to I .
On γ−, z = xeiπ and the contribution is (remembering that the contour actually runs

from x = ∞ to x = 0) given by

I− = −
∫ ∞

0

(ln x + iπ)2

1 + x2
eiπ dx

= I + 2iπ
∫ ∞

0

ln x

1 + x2
dx − π2

∫ ∞

0

1

1 + x2
dx.

The residue theorem for the complete closed contour thus reads

0 + I + 0 + I + 2iπ
∫ ∞

0

ln x

1 + x2
dx − π2 [tan−1 x

]∞
0 = 2πi

(−π2

8i

)
.

Equating the real parts ⇒ 2I − 1
2π

3 = − 1
4π

3 ⇒ I = 1
8π

3.
Equating the imaginary parts gives the stated by-product.

15.15 Prove that
∞∑

−∞

1

n2 + 3
4n+ 1

8

= 4π.

Carry out the summation numerically, say between −4 and 4, and note how much of the sum comes
from values near the poles of the contour integration.

In order to evaluate this sum, we must first find a function of z that takes the value of the
corresponding term in the sum whenever z is an integer. Clearly this is

1

z2 + 3
4z+ 1

8

.

Further, to make use of the properties of contour integrals, we need to multiply this function
by one that has simple poles at the same points, each with unit residue. An appropriate
choice of integrand is therefore

f (z) = π cotπz

z2 + 3
4z+ 1

8

= π cotπz(
z+ 1

2

)(
z+ 1

4

) .
The contour to be used must enclose all integer values of z, both positive and negative
and, in practical terms, must give zero contribution for |z| → ∞, except possibly on the
real axis. A large circle C, centered on the origin (see contour (c) in Figure 15.1) suggests
itself.
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As |zf (z)| → 0 on C, the contour integral has value zero. This implies that the residues
at the enclosed poles add up to zero. The residues are

π cot
(− 1

2π
)

− 1
2 + 1

4

= 0 at z = − 1
2 ,

π cot
(− 1

4π
)

− 1
4 + 1

2

= −4π at z = − 1
4 ,

∞∑
n=−∞

1(
n+ 1

2

)(
n+ 1

4

) at z = n, −∞ < n < ∞.

The quoted result follows immediately.
For the rough numerical summation we tabulate n, D(n) = n2 + 3

4n+ 1
8 and the nth

term of the series, 1/D(n):

n D(n) 1/D(n)

−4 13.125 0.076
−3 6.875 0.146
−2 2.625 0.381
−1 0.375 2.667

0 0.125 8.000
1 1.875 0.533
2 5.625 0.178
3 11.375 0.088
4 19.125 0.052

The total of these nine terms is 12.121; this is to be compared with the total for the entire
infinite series (of positive terms), which is 4π = 12.566. It will be seen that the sum is
dominated by the terms for n = 0 and n = −1. These two values bracket the positions on
the real axis of the poles at z = − 1

2 and z = − 1
4 .

15.17 By considering the integral of (
sinαz

αz

)2
π

sinπz
, α <

π

2
,

around a circle of large radius, prove that

∞∑
m=1

(−1)m−1 sin2mα

(mα)2
= 1

2
.

Denote the given function by f (z) and consider its integral around contour (c) in
Figure 15.1.
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As |z| → ∞, sinαz ∼ eα|z|, and so f (z) ∼ |z|−2e2α|z|e−π |z| = z−2e(2α−π)|z|, and, since
α < 1

2π , |zf (z) dz| → 0 as |z| → ∞ and the integral around the contour has value zero
for R = ∞.

The function f (z) has simple poles at z = n, where n is an integer, −∞ < n < ∞. The
pole at z = 0 is only a first-order pole as the term in parentheses → 1 as z → 0 and has
no singularity there. It follows that the sum of the residues of f (z) at all of its poles is
zero. For n �= 0, that residue is

π
(sin nα

nα

)2
(
d(sinπz)

dz

∣∣∣∣
z=n

)−1

=
(sin nα

nα

)2 1

cosπn

= (−1)n
(sin nα

nα

)2
.

For n = 0 the residue is 1.
Since the general residue is an even function of n, the sum for −∞ < n ≤ −1 is equal

to that for 1 ≤ n < ∞, and the zero sum of the residues can be written

1 + 2
∞∑
n=1

(−1)n
(sin nα

nα

)2
= 0,

leading immediately to the stated result.

15.19 Find the function f (t) whose Laplace transform is

f̄ (s) = e−s − 1 + s
s2

.

Consider first the Taylor series expansion of f̄ (s) about s = 0:

f̄ (s) = e−s − 1 + s
s2

=
(
1 − s + 1

2s
2 + · · · )− 1 + s
s2

∼ 1

2
+ O(s).

Thus f̄ has no pole at s = 0, and λ in the Bromwich integral can be as small as we wish
(but > 0). When the integration line is made part of a closed contour C, the inversion
integral becomes

f (t) =
∫
C

e−sest − est + sest
s2

ds.

For t < 0, all the terms → 0 as Re s → ∞, and so we close the contour in the right
half-plane, as in contour (h) of Figure 15.1. On �, s times the integrand → 0, and, as
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the contour encloses no poles, it follows that the integral along L is zero. Thus f (t) = 0
for t < 0.

For t > 1, all terms → 0 as Re s → −∞, and so we close the contour in the left
half-plane, as in contour (g) of Figure 15.1. On �, s times the integrand again → 0, and,
as this contour also encloses no poles, it again follows that the integral along L is zero.
Thus f (t) = 0 for t > 1, as well as for t < 0.

For 0 < t < 1, we need to separate the Bromwich integral into two parts (guided by
the different ways in which the parts behave as |s| → ∞):

f (t) =
∫
L

e−sest

s2
ds +

∫
L

(s − 1)est

s2
ds ≡ I1 + I2.

For I1 the exponent is s(t − 1); t − 1 is negative and so, as in the case t < 0, we close the
contour in the right half-plane [ contour (h) ]. No poles are included in this contour, and
we conclude that I1 = 0.

For I2 the exponent is st , indicating that (g) is the appropriate contour. However,
(s − 1)/s2 does have a pole at s = 0 and that is inside the contour. The integral around �
contributes nothing (that is why it was chosen), and the integral along L must be equal to
the residue of (s − 1)est/s2 at s = 0. Now,

(s − 1)est

s2
=
(

1

s
− 1

s2

)(
1 + st + s2t2

2!
+ · · ·

)
= − 1

s2
+ 1

s
(1 − t) + · · · .

The residue, and hence the value of I2, is therefore 1 − t . Since I1 has been shown to have
value 0, 1 − t is also the expression for f (t) for 0 < t < 1.

15.21 Use contour (i) in Figure 15.1 to show that the function with Laplace transform s−1/2 is (πx)−1/2.

[For an integrand of the form r−1/2 exp(−rx), change variable to t = r1/2.]

With the suggested contour no poles of s−1/2esx are enclosed and so the integral of
(2πi)−1s−1/2esx around the closed curve must have the value zero. It is also clear that the
integral along � will be zero since Re s < 0 on �.

For the small circle γ enclosing the origin, set s = ρ eiθ , with ds = iρ eiθ dθ , and
consider

lim
ρ→0

∫ 2π

0
ρ−1/2e−iθ/2 exp(xρ eiθ )iρ eiθ dθ.

This → 0 as ρ → 0 (as ρ1/2).
On the upper cut, γ1, s = reiπ and the contribution to the integral is

1

2πi

∫ 0

∞

e−iπ/2

r1/2
exp(rxeiπ )eiπ dr,

whilst, on the lower cut, γ2, s = re−iπ , and its contribution to the integral is

1

2πi

∫ ∞

0

eiπ/2

r1/2
exp(rxe−iπ )e−iπ dr.
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Combining the two (and making both integrals run over the same range) gives

− 1

2πi

∫ ∞

0

2i

r1/2
e−rx dr = − 1

π

∫ ∞

0

1

t
e−t

2x2t dt , after setting r = t2,

= − 2

π

√
π

2
√
x
.

Since this must add to the Bromwich integral along L to make zero, it follows that the
function with Laplace transform s−1/2 is (πx)−1/2.
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16.1 By shading or numbering Venn diagrams, determine which of the following are valid relationships
between events. For those that are, prove the relationship using de Morgan’s laws.

(a) (X̄ ∪ Y ) = X ∩ Ȳ .
(b) X̄ ∪ Ȳ = (X ∪ Y ).
(c) (X ∪ Y ) ∩ Z = (X ∪ Z) ∩ Y .
(d) X ∪ (Y ∩ Z) = (X ∪ Ȳ ) ∩ Z̄.
(e) X ∪ (Y ∩ Z) = (X ∪ Ȳ ) ∪ Z̄.

For each part of this question we refer to the corresponding part of Figure 16.1.
(a) This relationship is correct as both expressions define the shaded region that is both

inside X and outside Y .
(b) This relationship is not valid. The LHS specifies the whole sample space apart from

the region marked with the heavy shading. The RHS defines the region that is lightly
shaded. The unmarked regions of X and Y are included in the former but not in the latter.

(c) This relationship is not valid. The LHS specifies the sum of the regions marked 2,
3 and 4 in the figure, whilst the RHS defines the sum of the regions marked 1, 3 and 4.

(d) This relationship is not valid. On the LHS, Y ∩ Z is the whole sample space apart
from regions 3 and 4. So X ∪ (Y ∩ Z) consists of all regions except for region 3. On the
RHS, X ∪ Ȳ contains all regions except 3 and 7. The events Z̄ contain regions 1, 6, 7 and
8 and so (X ∪ Ȳ ) ∩ Z̄ consists of regions 1, 6 and 8. Thus regions 2, 4, 5 and 7 are in one
specification but not in the other.

(e) This relationship is valid. The LHS is as found in (d), namely all regions except
for region 3. The RHS consists of the union (as opposed to the intersection) of the two
subregions found in (d) and thus contains those regions found in either or both of X ∪ Ȳ
(1, 2, 4, 5, 6 and 8) and Z̄ (1, 6, 7 and 8). This covers all regions except region 3 – in
agreement with those found for the LHS.

For the two valid relationships, their proofs using de Morgan’s laws are:

(a) (X̄ ∪ Y ) = ¯̄X ∩ Ȳ = X ∩ Ȳ ,
(e) X ∪ (Y ∩ Z) = X ∪ (Ȳ ∪ Z̄) = (X ∪ Ȳ ) ∪ Z̄.

Here we have also used the result that the complement of the complement of a set is the
set itself.

214
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Figure 16.1 The Venn diagrams used in Problem 16.1.

16.3 A and B each have two unbiased four-faced dice, the four faces being numbered 1, 2, 3 and 4.
Without looking, B tries to guess the sum x of the numbers on the bottom faces of A’s two dice
after they have been thrown onto a table. If the guess is correct B receives x2 euros, but if not he
loses x euros.

Determine B’s expected gain per throw of A’s dice when he adopts each of the following
strategies:

(a) he selects x at random in the range 2 ≤ x ≤ 8;
(b) he throws his own two dice and guesses x to be whatever they indicate;
(c) he takes your advice and always chooses the same value for x. Which number would you

advise?

We first calculate the probabilities p(x) and the corresponding gains g(x) = p(x)x2 −
[1 − p(x)]x for each value of the total x. Expressing both in units of 1/16, they are as
follows:

x 2 3 4 5 6 7 8

p(x) 1 2 3 4 3 2 1
g(x) −26 −24 −4 40 30 0 −56

(a) If B’s guess is random in the range 2 ≤ x ≤ 8 then his expected return is

1

16

1

7
(−26 − 24 − 4 + 40 + 30 + 0 − 56) = − 40

112
= −0.36 euros.
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(b) If he picks by throwing his own dice then his distribution of guesses is the same as
that of p(x) and his expected return is

1

16

1

16
[1(−26) + 2(−24) + 3(−4) + 4(40) + 3(30) + 2(0) + 1(−56)]

= 108

256
= 0.42 euros.

(c) If B chooses y, then his expected return is

h(y) = p(y)y2 −
∑
x �=y

p(x)x.

An additional line in the table (in the same units) would read h(x), −74, −56, −20, 40,
46, 32, −8. You should not advise B, but take his place, guess “6” each time, and expect
an average profit of 46/16 = 2.87 euros per throw.

16.5 Two duelists, A and B, take alternate shots at each other, and the duel is over when a shot (fatal or
otherwise!) hits its target. Each shot fired by A has a probability α of hitting B, and each shot fired
by B has a probability β of hitting A. Calculate the probabilities P1 and P2, defined as follows, that
A will win such a duel: P1, A fires the first shot; P2, B fires the first shot.

If they agree to fire simultaneously, rather than alternately, what is the probability P3 that A will
win, i.e. hit B without being hit himself?

Each shot has only two possible outcomes, a hit or a miss. P1 is the probability thatA will
win when it is his turn to fire the next shot, and he is still able to do so (event W ). There
are three possible outcomes of the first two shots: C1, A hits with his shot; C2, A misses
but B hits; C3, both miss. Thus

P1 =
∑
i

Pr(Ci) Pr(W |Ci)

= [α × 1] + [(1 − α)β × 0] + [(1 − α)(1 − β) × P1]

⇒ P1 = α

α + β − αβ .

When B fires first but misses, the situation is the one just considered. But if B hits with
his first shot then clearly A’s chances of winning are zero. Since these are the only two
possible outcomes of B’s first shot, we can write

P2 = [β × 0] + [(1 − β) × P1] ⇒ P2 = (1 − β)α

α + β − αβ .

When both fire at the same time there are four possible outcomes Di to the first round:
D1, A hits and B misses; D2, B hits but A misses; D3, they both hit; D4, they both miss.
If getting hit, even if you manage to hit your opponent, does not count as a win, then

P3 =
∑
i

Pr(Di) Pr(W |Di)

= [α(1 − β) × 1] + [(1 − α)β × 0] + [αβ × 0] + [(1 − α)(1 − β) × P3].
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This can be rearranged as

P3 = α(1 − β)

α + β − αβ = P2.

Thus the result is the same as if B had fired first. However, we also note that if all that
matters to A is that B is hit, whether or not he is hit himself, then the third bracket takes
the value αβ × 1 and P3 takes the same value as P1.

16.7 An electronics assembly firm buys its microchips from three different suppliers; half of them are
bought from firm X, whilst firms Y and Z supply 30% and 20%, respectively. The suppliers use
different quality-control procedures and the percentages of defective chips are 2%, 4% and 4% for
X, Y and Z, respectively. The probabilities that a defective chip will fail two or more assembly-line
tests are 40%, 60% and 80%, respectively, whilst all defective chips have a 10% chance of escaping
detection. An assembler finds a chip that fails only one test. What is the probability that it came
from supplier X?

Since the number of tests failed by a defective chip are mutually exclusive outcomes
(0, 1 or ≥ 2), a chip supplied by X has a probability of failing just one test given by
0.02(1 − 0.1 − 0.4) = 0.010. The corresponding probabilities for chips supplied by Y
and Z are 0.04(1 − 0.1 − 0.6) = 0.012 and 0.04(1 − 0.1 − 0.8) = 0.004, respectively.

Using “1” to denote failing a single test, Bayes’ theorem gives the probability that the
chip was supplied by X as

Pr(X|1) = Pr(1|X) Pr(X)

Pr(1|X) Pr(X) + Pr(1|Y ) Pr(Y ) + Pr(1|Z) Pr(Z)

= 0.010 × 0.5

0.010 × 0.5 + 0.012 × 0.3 + 0.004 × 0.2
= 50

94
.

16.9 A boy is selected at random from amongst the children belonging to families with n children. It is
known that he has at least two sisters. Show that the probability that he has k − 1 brothers is

(n− 1)!

(2n−1 − n)(k − 1)!(n− k)!
,

for 1 ≤ k ≤ n− 2 and zero for other values of k. Assume that boys and girls are equally likely.

The boy has n− 1 siblings. Let Aj be the event that j − 1 of them are brothers, i.e. his
family contains j boys and n− j girls. The probability of event Aj is

Pr(Aj ) =
n−1Cj−1

(
1
2

)n−1∑n
j=1

n−1Cj−1
(

1
2

)n−1 = (n− 1)!

2n−1(j − 1)!(n− j )!
.

If B is the event that the boy has at least two sisters, then

Pr(B|Aj ) =
{

1 1 ≤ j ≤ n− 2,
0 n− 1 ≤ j ≤ n.
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Now we apply Bayes’ theorem to give the probability that he has k − 1 brothers:

Pr(Ak|B) = 1 Pr(Ak)∑n−2
j=1 1 Pr(Aj )

,

for 1 ≤ k ≤ n− 2. The denominator of this expression is the sum 1 = ( 1
2 + 1

2 )n−1 =∑n
j=1

n−1Cj−1
(

1
2

)n−1
, but omitting the j = n− 1 and the j = n terms, and so is equal

to

1 − (n− 1)!

2n−1 (n− 2)! 1!
− (n− 1)!

2n−1 (n− 1)! 0!
= 1

2n−1

[
2n−1 − (n− 1) − 1

]
.

Thus,

Pr(Ak|B) = (n− 1)!

2n−1(k − 1)!(n− k)!

2n−1

2n−1 − n = (n− 1)!

(2n−1 − n)(k − 1)!(n− k)!
,

as given in the question.

16.11 A set of 2N + 1 rods consists of one of each integer length 1, 2, . . . , 2N, 2N + 1. Three, of lengths
a, b and c, are selected, of which a is the longest. By considering the possible values of b and c,
determine the number of ways in which a non-degenerate triangle (i.e. one of non-zero area) can
be formed (i) if a is even, and (ii) if a is odd. Combine these results appropriately to determine the
total number of non-degenerate triangles that can be formed using three of the 2N + 1 rods, and
hence show that the probability that such a triangle can be formed from a random selection (without
replacement) of three rods is

(N − 1)(4N + 1)

2(4N2 − 1)
.

Rod a is the longest of the three rods. As no two are the same length, let a > b > c. To
form a non-degenerate triangle we require that b + c > a, and, in consequence, 4 ≤ a ≤
2N + 1.

(i) With a even. Consider each b (< a) in turn and determine how many values of c
allow a triangle to be made:

b Values of c Number of c values

a − 1 2, 3, · · · , a − 2 a − 3
a − 2 3, 4, · · · , a − 3 a − 5
· · · · · · · · ·

1
2a + 1 1

2a 1

Thus, there are 1 + 3 + 5 + · · · + (a − 3) possible triangles when a is even.
(ii) A table for odd a is similar, except that the last line will read b = 1

2 (a + 3), c = 1
2 (a −

1) or 1
2 (a + 1), and the number of c values = 2. Thus there are 2 + 4 + 6 + · · · + (a − 3)

possible triangles when a is odd.
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To find the total number n(N) of possible triangles, we group together the cases a = 2m
and a = 2m+ 1, where m = 1, 2, . . . , N . Then,

n(N) =
N∑
m=2

[1 + 3 + · · · + (2m− 3)] + [2 + 4 + · · · + (2m+ 1 − 3)]

=
N∑
m=2

2m−2∑
k=1

k =
N∑
m=2

1
2 (2m− 2)(2m− 1) = ∑N

m=2 2m2 − 3m+ 1

= 2
[

1
6N(N + 1)(2N + 1) − 1

]− 3
[

1
2N (N + 1) − 1

]+N − 1

= N

6
[2(N + 1)(2N + 1) − 9(N + 1) + 6]

= N

6
(4N2 − 3N − 1) = N

6
(4N + 1)(N − 1).

The number of ways that three rods can be drawn at random (without replacement) is
(2N + 1)(2N)(2N − 1)/3! and so the probability that they can form a triangle is

N(4N + 1)(N − 1)

6

3!

(2N + 1)(2N )(2N − 1)
= (N − 1)(4N + 1)

2(4N2 − 1)
,

as stated in the question.

16.13 The duration (in minutes) of a telephone call made from a public call-box is a random variable T .
The probability density function of T is

f (t) =
⎧⎨⎩

0 t < 0,
1
2 0 ≤ t < 1,

ke−2t t ≥ 1,

where k is a constant. To pay for the call, 20 pence has to be inserted at the beginning, and a further
20 pence after each subsequent half-minute. Determine by how much the average cost of a call
exceeds the cost of a call of average length charged at 40 pence per minute.

From the normalization of the PDF, we must have

1 =
∫ ∞

0
f (t) dt = 1

2
+
∫ ∞

1
ke−2t dt = 1

2
+ ke−2

2
⇒ k = e2.

The average length of a call is given by

t̄ =
∫ 1

0
t

1

2
dt +

∫ ∞

1
t e2e−2t dt

= 1

2

1

2
+
[
te2e−2t

−2

]∞

1

+
∫ ∞

1

e2 e−2t

2
dt = 1

4
+ 1

2
+ e2

2

[
e−2t

−2

]∞

1

= 3

4
+ 1

4
= 1.

Let pn = Pr{ 1
2 (n− 1) < t < 1

2n}. The corresponding cost is cn = 20n.
Clearly, p1 = p2 = 1

4 and, for n > 2,

pn = e2
∫ n/2

(n−1)/2
e−2t dt = e2

[
e−2t

−2

]n/2
(n−1)/2

= 1

2
e2(e − 1)e−n.
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The average cost of a call is therefore

c̄ = 20

[
1

4
+ 2

1

4
+

∞∑
n=3

n
1

2
e2(e − 1)e−n

]
= 15 + 10e2(e − 1)

∞∑
n=3

ne−n.

Now, the final summation might be recognized as part of an arithmetico-geometric series
whose sum can be found from the standard formula

S = a

1 − r + rd

(1 − r)2
,

with a = 0, d = 1 and r = e−1, or could be evaluated directly by noting that as a geometric
series,

∞∑
n=0

e−nx = 1

1 − e−x .

Differentiating this with respect to x and then setting x = 1 gives

−
∞∑
n=0

ne−nx = − e−x

(1 − e−x)2
⇒

∞∑
n=0

ne−n = e−1

(1 − e−1)2
.

From either method it follows that
∞∑
n=3

ne−n = e

(e − 1)2
− e−1 − 2e−2

= e − e + 2 − e−1 − 2 + 4e−1 − 2e−2

(e − 1)2
= 3e−1 − 2e−2

(e − 1)2
.

The total charge therefore exceeds that of a call of average length (1 minute) charged at
40 pence per minute by the amount (in pence)

15 + 10e2(e − 1)
3e−1 − 2e−2

(e − 1)2
− 40 = 10(3e − 2) − 25e + 25

e − 1
= 5e + 5

e − 1
= 10.82.

16.15 A tennis tournament is arranged on a straight knockout basis for 2n players, and for each round,
except the final, opponents for those still in the competition are drawn at random. The quality of the
field is so even that in any match it is equally likely that either player will win. Two of the players
have surnames that begin with “Q”. Find the probabilities that they play each other

(a) in the final,
(b) at some stage in the tournament.

Let pr be the probability that before the rth round the two players are both still in the
tournament (and, by implication, have not met each other). Clearly, p1 = 1.

Before the rth round there are 2n+1−r players left in. For both “Q” players to still be
in before the (r + 1)th round, Q1 must avoid Q2 in the draw and both must win their
matches. Thus

pr+1 = 2n+1−r − 2

2n+1−r − 1

(
1

2

)2

pr.
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(a) The probability that they meet in the final is pn, given by

pn = 1
2n − 2

2n − 1

1

4

2n−1 − 2

2n−1 − 1

1

4
· · · 22 − 2

22 − 1

1

4

=
(

1

4

)n−1

2n−1

[
(2n−1 − 1)(2n−2 − 1) · · · (21 − 1)

(2n − 1)(2n−1 − 1) · · · (22 − 1)

]
=
(

1

4

)n−1

2n−1 1

2n − 1

= 1

2n−1(2n − 1)
.

(b) The more general solution to the recurrence relation derived above is

pr = 1
2n − 2

2n − 1

1

4

2n−1 − 2

2n−1 − 1

1

4
· · · 2n+2−r − 2

2n+2−r − 1

1

4

=
(

1

4

)r−1

2r−1

[
(2n−1 − 1)(2n−2 − 1) · · · (2n+1−r − 1)

(2n − 1)(2n−1 − 1) · · · (2n+2−r − 1)

]
=
(

1

2

)r−1 2n+1−r − 1

2n − 1
.

Before the rth round, if they are both still in the tournament, the probability that they will
be drawn against each other is (2n−r+1 − 1)−1. Consequently, the chance that they will
meet at some stage is

n∑
r=1

pr
1

2n−r+1 − 1
=

n∑
r=1

(
1

2

)r−1 2n+1−r − 1

2n − 1

1

2n−r+1 − 1

= 1

2n − 1

n∑
r=1

(
1

2

)r−1

= 1

2n − 1

1 − ( 1
2 )n

1 − 1
2

= 1

2n−1
.

This same conclusion can also be reached in the following way.
The probability that Q1 is not put out of (i.e. wins) the tournament is ( 1

2 )n. It follows
that the probability that Q1 is put out is 1 − ( 1

2 )n and that the player responsible is Q2

with probability [1 − ( 1
2 )n]/(2n − 1) = 2−n. Similarly, the probability that Q2 is put out

and that the player responsible is Q1 is also 2−n. These are exclusive events but cover
all cases in which Q1 and Q2 meet during the tournament, the probability of which is
therefore 2 × 2−n = 21−n.
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16.17 This problem is about interrelated binomial trials.

(a) In two sets of binomial trials T and t , the probabilities that a trial has a successful outcome are P
and p, respectively, with corresponding probabilities of failure of Q = 1 − P and q = 1 − p.
One “game” consists of a trial T , followed, if T is successful, by a trial t and then a further trial
T . The two trials continue to alternate until one of the T -trials fails, at which point the game
ends. The score S for the game is the total number of successes in the t-trials. Find the PGF for
S and use it to show that

E[S] = Pp

Q
, V [S] = Pp(1 − Pq)

Q2
.

(b) Two normal unbiased six-faced dice A and B are rolled alternately starting with A; if A shows
a 6 the experiment ends. If B shows an odd number no points are scored, one point is scored
for a 2 or a 4, and two points are awarded for a 6. Find the average and standard deviation of
the score for the experiment and show that the latter is the greater.

(a) This is a situation in which the score for the game is a variable-length sum, the length
N being determined by the outcome of the T -trials. The probability that N = n is given
by hn = PnQ, since n T -trials must succeed and then be followed by a failing T -trial.
Thus the PGF for the length of each “game” is given by

χN (t) ≡
∞∑
n=0

hnt
n =

∞∑
n=0

PnQtn = Q

1 − P t .

For each permitted Bernoulli t-trial,Xi = 1 with probabilityp andXi = 0 with probability
q; its PGF is thus �X(t) = q + pt . The score for the game is S = ∑N

i=1Xi and its PGF
is given by the compound function

 S(t) = χN (�X(t))

= Q

1 − P (q + pt) ,

in which the PGF for a single t-trial forms the argument of the PGF for the length of each
“game”.

It follows that the mean of S is found from

 ′
S(t) = QPp

(1 − Pq − Ppt)2
⇒ E[S] =  ′

S(1) = QPp

(1 − P )2
= Pp

Q
.

To calculate the variance of S we need to find  ′′
S(1). This second derivative is

 ′′
S(t) = 2QP 2p2

(1 − Pq − Ppt)3
⇒  ′′

S(1) = 2P 2p2

Q2
.

The variance is therefore

V [S] =  ′′
S(1) + ′

S(1) − [ ′
S(1)]2

= 2P 2p2

Q2
+ Pp

Q
− P 2p2

Q2

= Pp(Pp +Q)

Q2
= Pp(P − Pq +Q)

Q2
= Pp(1 − Pq)

Q2
.
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(b) For die A: P = 5
6 andQ = 1

6 giving χN (t) = 1/(6 − 5t).

For die B: Pr(X = 0) = 3
6 , Pr(X = 1) = 2

6 and Pr(X = 2) = 1
6 giving�X(t) = (3 + 2t +

t2)/6.
The PGF for the game score S is thus

 S(t) = 1

6 − 5
6 (3 + 2t + t2)

= 6

21 − 10t − 5t2
.

We need to evaluate the first two derivatives of  S(t) at t = 1, as follows:

 ′
S(t) = −6(−10 − 10t)

(21 − 10t − 5t2)2
= 60 + 60t

(21 − 10t − 5t2)2

⇒ E[S] =  ′
S(1) = 120

62
= 10

3
= 3.33,

 ′′
S(t) = 60

(21 − 10t − 5t2)2
− 2(60 + 60t)(−10 − 10t)

(21 − 10t − 5t2)3

⇒  ′′
S(1) = 60

36
− 2(120)(−20)

(6)3
= 215

9
.

Substituting the calculated values gives V [S] as

V [S] = 215

9
+ 10

3
−
(

10

3

)2

= 145

9
,

from which it follows that

σS =
√
V [S] = 4.01, i.e. greater than the mean.

16.19 A point P is chosen at random on the circle x2 + y2 = 1. The random variable X denotes the
distance of P from (1, 0). Find the mean and variance of X and the probability that X is greater
than its mean.

With O as the center of the unit circle and Q as the point (1, 0), let OP make an angle θ
with the x-axisOQ. The random variableX then has the value 2 sin(θ/2) with θ uniformly
distributed on (0, 2π), i.e.

f (x) dx = 1

2π
dθ.

The mean of X is given straightforwardly by

〈X〉 =
∫ 2

0
Xf (x) dx =

∫ 2π

0
2 sin

(
θ

2

)
1

2π
dθ = 1

π

[
−2 cos

θ

2

]2π

0

= 4

π
.

For the variance we have

σ 2
X = 〈X2〉 − 〈X〉2 =

∫ 2π

0
4 sin2

(
θ

2

)
1

2π
dθ − 16

π2
= 4

2π

1

2
2π − 16

π2
= 2 − 16

π2
.
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When X = 〈X〉 = 4/π , the angle θ = 2 sin−1(2/π) and so

Pr(X > 〈X〉) =
2π − 4 sin−1 2

π

2π
= 0.561.

16.21 The number of errors needing correction on each page of a set of proofs follows a Poisson distribution
of mean μ. The cost of the first correction on any page is α and that of each subsequent correction
on the same page is β. Prove that the average cost of correcting a page is

α + β(μ− 1) − (α − β)e−μ.

Since the number of errors on a page is Poisson distributed, the probability of n errors on
any particular page is

Pr(n errors) = pn = e−μ
μn

n!
.

The average cost per page, found by averaging the corresponding cost over all values of
n, is

c = 0p0 + αp1 +
∞∑
n=2

[α + (n− 1)β]pn

= αμe−μ + (α − β)
∞∑
n=2

pn + β
∞∑
n=2

npn.

Now,
∑∞
n=0 pn = 1 and, for a Poisson distribution,

∑∞
n=0 npn = μ. These can be used to

evaluate the above, once the n = 0 and n = 1 terms have been removed. Thus

c = αμe−μ + (α − β)(1 − e−μ − μe−μ) + β(μ− 0 − μe−μ)

= α + β(μ− 1) + e−μ(αμ− α + β − μα + μβ − μβ)

= α + β(μ− 1) + e−μ(β − α),

as given in the question.

16.23 The probability distribution for the number of eggs in a clutch is Po(λ), and the probability that
each egg will hatch is p (independently of the size of the clutch). Show by direct calculation that
the probability distribution for the number of chicks that hatch is Po(λp).

Clearly, to determine the probability that a clutch produces k chicks, we must consider
clutches of size n, for all n ≥ k, and for each such clutch find the probability that exactly
k of the n chicks do hatch. We then average over all n, weighting the results according to
the distribution of n.

The probability that k chicks hatch from a clutch of size n is nCkp
kqn−k , where

q = 1 − p. The probability that the clutch is of size n is e−λλn/n!. Consequently, the
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overall probability of k chicks hatching from a clutch is

Pr(k chicks) =
∞∑
n=k
e−λ

λn

n!
nCk p

k qn−k

= e−λpkλk
∞∑
n=k

(λq)n−k

n!

n!

k! (n− k)!
, set n− k = m,

= e−λ
(λp)k

k!

∞∑
m=0

(λq)m

m!

= e−λ
(λp)k

k!
eλq

= e−λp(λp)k

k!
,

since q = 1 − p. Thus Pr(k chicks) is distributed as a Poisson distribution with parameter
μ = λp.

16.25 Under EU legislation on harmonization, all kippers are to weigh 0.2000 kg and vendors who
sell underweight kippers must be fined by their government. The weight of a kipper is normally
distributed with a mean of 0.2000 kg and a standard deviation of 0.0100 kg. They are packed in
cartons of 100 and large quantities of them are sold.

Every day a carton is to be selected at random from each vendor and tested according to one of
the following schemes, which have been approved for the purpose.

(a) The entire carton is weighed and the vendor is fined 2500 euros if the average weight of a kipper
is less than 0.1975 kg.

(b) Twenty five kippers are selected at random from the carton; the vendor is fined 100 euros if the
average weight of a kipper is less than 0.1980 kg.

(c) Kippers are removed one at a time, at random, until one has been found that weighs more than
0.2000 kg; the vendor is fined 4n(n− 1) euros, where n is the number of kippers removed.

Which scheme should the Chancellor of the Exchequer be urging his government to adopt?

For these calculations we measure weights in grammes.
(a) For this scheme we have a normal distribution with mean μ = 200 and s.d. σ = 10.

The s.d. for a carton is
√

100 σ = 100 and the mean weight is 20 000. There is a penalty if
the weight of a carton is less than 19 750. This critical value represents a standard variable
of

Z = 19 750 − 20 000

100
= −2.5.

The probability that Z < −2.5 = 1 −�(2.5) = 1 − 0.9938 = 0.0062. Thus the average
fine per carton tested on this scheme is 0.0062 × 2500 = 15.5 euros.

(b) For this scheme the general parameters are the same but the mean weight of the
sample measured is 5000 and its s.d. is

√
25 (10) = 50. The Z-value at which a fine is
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imposed is

Z = (198 × 25) − 5000

50
= −1.

The probability that Z < −1.0 = 1 −�(1.0) = 1 − 0.8413 = 0.1587. Thus the average
fine per carton tested on this scheme is 0.1587 × 100 = 15.9 euros.

(c) This scheme is a series of Bernoulli trials in which the probability of success is
1
2 (since half of all kippers weigh more than 200 and the distribution is normal). The
probability that it will take n kippers to find one that passes the test is qn−1p = ( 1

2 )n. The
expected fine is therefore

f =
∞∑
n=2

4n(n− 1)

(
1

2

)n
= 4

2
(

1
4

)(
1
2

)3 = 16 euros.

The expression for the sum was found by twice differentiating the sum of the geometric
series

∑
rn with respect to r , as follows:

∞∑
n=0

rn = 1

1 − r ⇒
∞∑
n=1

nrn−1 = 1

(1 − r)2

⇒
∞∑
n=2

n(n− 1)rn−2 = 2

(1 − r)3

⇒
∞∑
n=2

n(n− 1)rn = 2r2

(1 − r)3
.

There is, in fact, little to choose between the schemes on monetary grounds; no doubt
political considerations, such as the current unemployment rate, will decide!

16.27 A practical-class demonstrator sends his 12 students to the storeroom to collect apparatus for an
experiment, but forgets to tell each which type of component to bring. There are three types, A, B
and C, held in the stores (in large numbers) in the proportions 20%, 30% and 50%, respectively,
and each student picks a component at random. In order to set up one experiment, one unit each of
A and B and two units of C are needed. Let Pr(N ) be the probability that at least N experiments
can be set up.

(a) Evaluate Pr(3).
(b) Find an expression for Pr(N ) in terms of k1 and k2, the numbers of components of types A and
B, respectively, selected by the students. Show that Pr(2) can be written in the form

Pr(2) = (0.5)12
6∑
i=2

12Ci (0.4)i
8−i∑
j=2

12−iCj (0.6)j .

(c) By considering the conditions under which no experiments can be set up, show that
Pr(1) = 0.9145.
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(a) To make three experiments possible the 12 components picked must be three each of
A and B and six of C. The probability of this is given by the multinomial distribution as

Pr(3) = (12)!

3! 3! 6!
(0.2)3(0.3)3(0.5)6 = 0.06237.

(b) Let the numbers of A, B and C selected be k1, k2 and k3, respectively, and consider
when at least N experiments can be set up. We have the obvious inequalities k1 ≥ N ,
k2 ≥ N and k3 ≥ 2N . In addition k3 = 12 − k1 − k2, implying that k2 ≤ 12 − 2N − k1.
Further, k1 cannot be greater than 12 − 3N if at least N experiments are to be set up, as
each requires three other components that are not of type A. These inequalities set the
limits on the acceptable values of k1 and k2 (k3 is not a third independent variable). Thus
Pr(N) is given by

12−3N∑
k1≥N

12−2N−k1∑
k2≥N

(12)!

k1! k2! (12 − k1 − k2)!
(0.2)k1 (0.3)k2 (0.5)12−k1−k2 .

The answer to part (a) is a particular case of this with N = 3, when each summation
reduces to a single term.

For N = 2 the expression becomes

Pr(2) =
6∑

k1≥2

8−k1∑
k2≥2

(12)!

k1! k2! (12 − k1 − k2)!
(0.2)k1 (0.3)k2 (0.5)12−k1−k2

= (0.5)12
6∑
i=2

8−i∑
j=2

(12)! (0.2/0.5)i

i! (12 − i)!
(12 − i)! (0.3/0.5)j

j ! (12 − i − j )!

= (0.5)12
6∑
i=2

12Ci (0.4)i
8−i∑
j=2

12−iCj (0.6)j .

(c) No experiment can be set up if any one of the following four events occurs: A1 =
(k1 = 0),A2 = (k2 = 0),A3 = (k3 = 0) andA4 = (k3 = 1). The probability for the union
of these four events is given by

Pr(A1 ∪ A2 ∪ A3 ∪ A4) =
4∑
i=1

Pr(Ai) −
∑
i,j

Pr(Ai ∩ Aj ) + · · · .

The probabilities Pr(Ai) are straightforward to calculate as follows:

Pr(A1) = (1 − 0.2)12, Pr(A2) = (1 − 0.3)12,

Pr(A3) = (1 − 0.5)12, Pr(A4) = 12C1(1 − 0.5)12(0.5).

The calculation of the probability for the intersection of two events is typified by

Pr(A1 ∩ A2) = [1 − (0.2 + 0.3)]12

and Pr(A1 ∩ A4) = 12C1[1 − (0.2 + 0.5)]11(0.5)1.
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A few trial evaluations show that these are of order 10−4 and can be ignored by comparison
with the larger terms in the first sum, which are (after rounding)

4∑
i=1

Pr(Ai) = (0.8)12 + (0.7)12 + (0.5)12 + 12(0.5)11(0.5)

= 0.0687 + 0.0138 + 0.0002 + 0.0029 = 0.0856.

Since the probability of no experiments being possible is 0.0856, it follows that
Pr(1) = 0.9144.

16.29 The continuous random variables X and Y have a joint PDF proportional to xy(x − y)2 with
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Find the marginal distributions for X and Y and show that they are
negatively correlated with correlation coefficient − 2

3 .

This PDF is clearly symmetric between x and y. We start by finding its normalization
constant c:∫ 1

0

∫ 1

0
c(x3y − 2x2y2 + xy3) dx dy = c

(
1

4

1

2
− 2

1

3

1

3
+ 1

2

1

4

)
= c

36
.

Thus, we must have that c = 36.
The marginal distribution for x is given by

f (x) = 36
∫ 1

0
(x3y − 2x2y2 + xy3) dy

= 36
(

1
2x

3 − 2
3x

2 + 1
4x
)

= 18x3 − 24x2 + 9x,

and the mean of x by

μX = x̄ =
∫ 1

0
(18x4 − 24x3 + 9x2) dx = 18

5
− 24

4
+ 9

3
= 3

5
.

By symmetry, the marginal distribution and the mean for y are 18y3 − 24y2 + 9y and 3
5 ,

respectively.
To calculate the correlation coefficient we also need the variances of x and y and their

covariance. The variances, obviously equal, are given by

σ 2
X =

∫ 1

0
x2(18x3 − 24x2 + 9x) dx − (

3
5

)2

= 18

6
− 24

5
+ 9

4
− 9

25

= 900 − 1440 + 675 − 108

300
= 9

100
.

The standard deviations σX and σY are therefore both equal to 3/10.
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The covariance is calculated next; it is given by

Cov [X, Y ] = 〈XY 〉 − μXμY
= 36

∫ 1

0

∫ 1

0
(x4y2 − 2x3y3 + x2y4) dx dy − 3

5

3

5

= 36

5 × 3
− 72

4 × 4
+ 36

3 × 5
− 9

25

= 12

5
− 9

2
+ 12

5
− 9

25

= 120 − 225 + 120 − 18

50
= − 3

50
.

Finally,

Corr [X, Y ] = Cov [X, Y ]

σX σY
= − 3

50
3
10

3
10

= −2

3
.

16.31 Two continuous random variables X and Y have a joint probability distribution

f (x, y) = A(x2 + y2),

whereA is a constant and 0 ≤ x ≤ a, 0 ≤ y ≤ a. Show thatX and Y are negatively correlated with
correlation coefficient −15/73. By sketching a rough contour map of f (x, y) and marking off the
regions of positive and negative correlation, convince yourself that this (perhaps counter-intuitive)
result is plausible.

The calculations of the various parameters of the distribution are straightforward (see
Problem 16.29). The parameter A is determined by the normalization condition:

1 =
∫ a

0

∫ a

0
A(x2 + y2) dx dy = A

(
a4

3
+ a4

3

)
⇒ A = 3

2a4
.

The two expectation values required are given by

E[X] =
∫ a

0

∫ a

0
Ax(x2 + y2) dx dy

= 3

2a4

(
a5

4 × 1
+ a5

2 × 3

)
= 5a

8
, (E[Y ] = E[X]),

E[X2] =
∫ a

0

∫ a

0
Ax2(x2 + y2) dx dy

= 3

2a4

(
a6

5 × 1
+ a6

3 × 3

)
= 7a2

15
.

Hence the variance, calculated from the general result V [X] = E[X2] − (E[X])2, is

V [X] = 7a2

15
−
(

5a

8

)2

= 73

960
a2,
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and the standard deviations are given by

σX = σY =
√

73

960
a.

To obtain the correlation coefficient we need also to calculate the following:

E[XY ] =
∫ a

0

∫ a

0
Axy(x2 + y2) dx dy

= 3

2a4

(
a6

4 × 2
+ a6

2 × 4

)
= 3a2

8
.

Then the covariance, given by Cov [X, Y ] = E[XY ] − E[X]E[Y ], is evaluated as

Cov [X, Y ] = 3

8
a2 − 5a

8

5a

8
= −a

2

64
.

Combining this last result with the standard deviations calculated above, we then obtain

Corr [X, Y ] = −(a2/64)√
73
960 a

√
73

960 a

= −15

73
.

As the means of bothX and Y are 5
8a = 0.62a, the areas of the square of side a for which

X − μX and Y − μY have the same sign (i.e. regions of positive correlation) are about
(0.62)2 ≈ 39% and (0.38)2 ≈ 14% of the total area of the square. The regions of negative
correlation occupy some 47% of the square.

However, f (x, y) = A(x2 + y2) favors the regions where one or both of x and y are
large and close to unity. Broadly speaking, this gives little weight to the region in which
both X and Y are less than their means, and so, although it is the largest region in area,
it contributes relatively little to the overall correlation. The two (equal area) regions of
negative correlation together outweigh the smaller high probability region of positive
correlation in the top right-hand corner of the square; the overall result is a net negative
correlation coefficient.
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17.1 A group of students uses a pendulum experiment to measure g, the acceleration of free fall, and
obtains the following values (in m s−2): 9.80, 9.84, 9.72, 9.74, 9.87, 9.77, 9.28, 9.86, 9.81, 9.79,
9.82. What would you give as the best value and standard error for g as measured by the group?

We first note that the reading of 9.28 m s−2 is so far from the others that it is almost certainly
in error and should not be used in the calculation. The mean of the ten remaining values is
9.802 and the standard deviation of the sample about its mean is 0.04643. After including
Bessel’s correction factor, the estimate of the population s.d. is σ = 0.0489, leading to a
s.d. in the measured value of the mean of 0.0489/

√
10 = 0.0155. We therefore give the

best value and standard error for g as 9.80 ± 0.02 m s−2.

17.3 The following are the values obtained by a class of 14 students when measuring a physical quantity
x: 53.8, 53.1, 56.9, 54.7, 58.2, 54.1, 56.4, 54.8, 57.3, 51.0, 55.1, 55.0, 54.2, 56.6.

(a) Display these results as a histogram and state what you would give as the best value for x.
(b) Without calculation, estimate how much reliance could be placed upon your answer to (a).
(c) Data books give the value of x as 53.6 with negligible error. Are the data obtained by the

students in conflict with this?

(a) The histogram in Figure 17.1 shows no reading that is an obvious mistake and there
is no reason to suppose other than a Gaussian distribution. The best value for x is the
arithmetic mean of the 14 values given, i.e. 55.1.

(b) We note that 11 values, i.e. approximately two-thirds of the 14 readings, lie within
±2 bins of the mean. This estimates the s.d. for the population as 2.0 and gives a standard
error in the mean of ≈ 2.0/

√
14 ≈ 0.6.

(c) Within the accuracy we are likely to achieve by estimating σ for the sample by eye,
the value of Student’s t is (55.1 − 53.6)/0.6, i.e. about 2.5. With 14 readings there are 13
degrees of freedom. From standard tables for the Student’s t-test, C13(2.5) ≈ 0.985. It is
therefore likely at the 2 × 0.015 = 3% significance level that the data are in conflict with
the accepted value.

[ Numerical analysis of the data, rather than a visual estimate, gives the lower value
0.51 for the standard error in the mean and implies that there is a conflict between the data
and the accepted value at the 1.0% significance level. ]

231
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mean = 55.1

50 55 60

2 estσ

Figure 17.1 Histogram of the data in Problem 17.3.

17.5 A population contains individuals of k types in equal proportions. A quantity X has mean μi
amongst individuals of type i and variance σ 2, which has the same value for all types. In order to
estimate the mean of X over the whole population, two schemes are considered; each involves a
total sample size of nk. In the first the sample is drawn randomly from the whole population, whilst
in the second (stratified sampling) n individuals are randomly selected from each of the k types.

Show that in both cases the estimate has expectation

μ = 1

k

k∑
i=1

μi,

but that the variance of the first scheme exceeds that of the second by an amount

1

k2n

k∑
i=1

(μi − μ)2.

(i) For the first scheme the estimator μ̂ has expectation

〈μ̂〉 = 1

nk

nk∑
j=1

〈xj 〉,

where

〈xj 〉 = 1

k

k∑
i=1

μi for all j ,
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since the k types are in equal proportions in the population. Thus,

〈μ̂〉 = 1

nk

nk∑
j=1

1

k

k∑
i=1

μi = 1

k

k∑
i=1

μi = μ.

The variance of μ̂ is given by

V [μ̂] = 1

n2k2
nk V [x]

= 1

nk
(〈x2〉 − μ2)

= 1

nk

(
1

k

k∑
i=1

〈x2
i 〉 − μ2

)
,

again since the k types are in equal proportions in the population.
Now we use the relationship σ 2 = 〈x2

i 〉 − μ2
i to replace 〈x2

i 〉 for each type, noting that
σ 2 has the same value in each case. The expression for the variance becomes

V [ μ̂ ] = 1

nk

[
1

k

k∑
i=1

(
μ2
i + σ 2

)− μ2

]

= σ 2 − μ2

nk
+ 1

nk2

k∑
i=1

(μi − μ+ μ)2

= σ 2 − μ2

nk
+ 1

nk2

k∑
i=1

[
(μi − μ)2 + 2μ(μi − μ) + μ2 ]

= σ 2 − μ2

nk
+ 1

nk2

k∑
i=1

(μi − μ)2 + 0 + kμ2

nk2

= σ 2

nk
+ 1

nk2

k∑
i=1

(μi − μ)2.

(ii) For the second scheme the calculations are more straightforward. The expectation
value of the estimator μ̂ = (nk)−1∑k

i=1〈xi〉 is

〈μ̂〉 = 1

nk

k∑
i=1

nμi = 1

k

k∑
i=1

μi = μ,

whilst the variance is given by

V [ μ̂ ] = 1

n2k2

k∑
i=1

V [ 〈xi〉 ] = 1

n2k2

k∑
i=1

nσ 2
i = 1

k2

kσ 2

n
= σ 2

kn
,

since σ 2
i = σ 2 for all i.
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Comparing the results from (i) and (ii), we see that the variance of the estimator in the
first scheme is larger by

1

nk2

k∑
i=1

(μi − μ)2.

17.7 According to a particular theory, two dimensionless quantities X and Y have equal values. Nine
measurements ofX gave values of 22, 11, 19, 19, 14, 27, 8, 24 and 18, whilst seven measured values
of Y were 11, 14, 17, 14, 19, 16 and 14. Assuming that the measurements of both quantities are
Gaussian distributed with a common variance, are they consistent with the theory? An alternative
theory predicts that Y 2 = π2X; are the data consistent with this proposal?

On the hypothesis that X = Y and both quantities have Gaussian distributions with a
common variance, we need to calculate the value of t given by

t = w̄ − ω
σ̂

(
N1N2

N1 +N2

)1/2

,

where w̄ = x̄1 − x̄2, ω = μ1 − μ2 = 0 and

σ̂ =
[
N1s

2
1 +N2s

2
2

N1 +N2 − 2

]1/2

.

The nine measurements of X have a mean of 18.0 and a value for s2 of 33.33. The
corresponding values for the seven measurements of Y are 15.0 and 5.71. Substituting
these values gives

σ̂ =
[

9 × 33.33 + 7 × 5.71

9 + 7 − 2

]1/2

= 4.93,

t = 18.0 − 15.0 − 0

4.93

(
9 × 7

9 + 7

)1/2

= 1.21.

This variable follows a Student’s t-distribution for 9 + 7 − 2 = 14 degrees of freedom.
Interpolation in standard tables gives C14(1.21) ≈ 0.874, showing that a larger value of
t could be expected in about 2 × (1 − 0.874) = 25% of cases. Thus no inconsistency
between the data and the first theory has been established.

For the second theory we are testing Y 2 against π2X; the former will not be Gaussian
distributed and the two distributions will not have a common variance. Thus the best we
can do is to compare the difference between the two expressions, evaluated with the mean
values of X and Y , against the estimated error in that difference.

The difference in the expressions is (15.0)2 − 18.0π2 = 47.3. The error in the difference
between the functions of Y and X is given approximately by

V (Y 2 − π2X) = (2Y )2 V [Y ] + (π2)2 V [X ]

= (30.0)2 5.71

7 − 1
+ (π2)2 33.33

9 − 1
= 1262 ⇒ σ ≈ 35.5.
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The difference is thus about 47.3/35.5 = 1.33 standard deviations away from the theoret-
ical value of 0. The distribution will not be truly Gaussian but, if it were, this figure would
have a probability of being exceeded in magnitude some 2 × (1 − 0.908) = 18% of the
time. Again no inconsistency between the data and theory has been established.

17.9 During an investigation into possible links between mathematics and classical music, pupils at a
school were asked whether they had preferences (a) between mathematics and English, and (b)
between classical and pop music. The results are given below.

Classical None Pop

Mathematics 23 13 14
None 17 17 36
English 30 10 40

Determine whether there is any evidence for

(a) a link between academic and musical tastes, and
(b) a claim that pupils either had preferences in both areas or had no preference.

You will need to consider the appropriate value for the number of degrees of freedom to use when
applying the χ2 test.

We first note that there were 200 pupils taking part in the survey. Denoting no academic
preference between mathematics and English by NA and no musical preference by NM,
we draw up an enhanced table of the actual numbers mXY of preferences for the various
combinations that also shows the overall probabilities pX and pY of the three choices in
each selection.

C NM P Total pX

M 23 13 14 50 0.25
NA 17 17 36 70 0.35
E 30 10 40 80 0.40
Total 70 40 90 200
pY 0.35 0.20 0.45

(a) If we now assume the (null) hypothesis that there are no correlations in the data and
that any apparent correlations are the result of statistical fluctuations, then the expected
number of pupils opting for the combination X and Y is nXY = 200 × pX × pY. A table
of nXY is as follows:

C NM P Total

M 17.5 10 22.5 50
NA 24.5 14 31.5 70
E 28 16 36 80
Total 70 40 90 200
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Taking the standard deviation as the square root of the expected number of votes for each
particular combination, the value of χ2 is given by

χ2 =
∑

all XY combinations

(
ni −mi√

ni

)2

= 12.3.

For an n× n correlation table (here n = 3), the (n− 1) × (n− 1) block of entries in
the upper left can be filled in arbitrarily. But, as the totals for each row and column are
predetermined, the remaining 2n− 1 entries are not arbitrary. Thus the number of degrees
of freedom (d.o.f.) for such a table is (n− 1)2, here 4 d.o.f. From tables, a χ2 of 12.3 for
4 d.o.f. makes the assumed hypothesis less than 2% likely, and so it is almost certain that
a correlation between academic and musical tastes does exist.

(b) To investigate a claim that pupils either had preferences in both areas or had no
preference, we must combine expressed preferences for classical or pop into one set
labeled PM meaning “expressed a musical preference”; similarly for academic subjects.
The correlation table is now a 2 × 2 one and will have only one degree of freedom. The
actual data table is

PM NM Total pX

PA 107 23 130 0.65
NA 53 17 70 0.35
Total 160 40 200
pY 0.80 0.20

and the expected (nXY = 200pXpY) one is

PM NM Total

PA 104 26 130
NA 56 14 70
Total 160 40 200

The value of χ2 is

χ2 = (−3)2

104
+ (3)2

26
+ (3)2

56
+ (−3)2

14
= 1.24.

This is close to the expected value (1) of χ2 for 1 d.o.f. and is neither too big nor too
small. Thus there is no evidence for the claim (or for any tampering with the data!).
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17.11 A particle detector consisting of a shielded scintillator is being tested by placing it near a particle
source whose intensity can be controlled by the use of absorbers. It might register counts even in
the absence of particles from the source because of the cosmic ray background.

The number of counts n registered in a fixed time interval as a function of the source strength s
is given as:

source strength s: 0 1 2 3 4 5 6
counts n: 6 11 20 42 44 62 61

At any given source strength, the number of counts is expected to be Poisson distributed with mean

n = a + bs,
where a and b are constants. Analyze the data for a fit to this relationship and obtain the best values
for a and b together with their standard errors.

(a) How well is the cosmic ray background determined?
(b) What is the value of the correlation coefficient between a and b? Is this consistent with what

would happen if the cosmic ray background were imagined to be negligible?
(c) Do the data fit the expected relationship well? Is there any evidence that the reported data “are

too good a fit”?

Because in this problem the independent variable s takes only consecutive integer values,
we will use it as a label i and denote the number of counts corresponding to s = i by
ni . As the data are expected to be Poisson distributed, the best estimate of the variance
of each reading is equal to the best estimate of the reading itself, namely the actual
measured value. Thus each reading ni has an error of

√
ni , and the covariance matrix N

takes the form N = diag(n0, n1, . . . , n6), i.e. it is diagonal, but not a multiple of the unit
matrix.

The expression for χ2 is

χ2(a, b) =
6∑
i=0

(
ni − a − bi√

ni

)2

(∗).

Minimization with respect to a and b gives the simultaneous equations

0 = ∂χ2

∂a
= −2

6∑
i=0

ni − a − bi
ni

,

0 = ∂χ2

∂b
= −2

6∑
i=0

i(ni − a − bi)
ni

.

As is shown more generally in textbooks on numerical computing (e.g. William H.
Press et al., Numerical Recipes in C, 2nd edn (Cambridge: Cambridge University
Press, 1996), Sect. 15.2), these equations are most conveniently solved by defining the
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quantities

S ≡
6∑
i=0

1

ni
, Sx ≡

6∑
i=0

i

ni
, Sy ≡

6∑
i=0

ni

ni
,

Sxx ≡
6∑
i=0

i2

ni
, Sxy ≡

6∑
i=0

ini

ni
, � ≡ SSxx − (Sx)

2.

With these definitions (which correspond to the quantities calculated and accessibly stored
in most calculators programmed to perform least-squares fitting), the solutions for the best
estimators of a and b are

â = SxxSy − SxSxy
�

,

b̂ = SxyS − SxSy
�

,

with variances and covariance given by

σ 2
a = Sxx

�
, σ 2

b = S

�
, Cov(a, b) = −Sx

�
.

The computed values of these quantities are: S = 0.38664; Sx = 0.53225; Sy = 7; Sxx =
1.86221; Sxy = 21; � = 0.43671.

From these values, the best estimates of â, b̂ and the variances σ 2
a and σ 2

b are

â = 4.2552, b̂ = 10.061, σ 2
a = 4.264, σ 2

b = 0.8853.

The covariance is Cov(a, b) = −1.2187, giving estimates for a and b of

a = 4.3 ± 2.1 and b = 10.06 ± 0.94,

with a correlation coefficient rab = −0.63.
(a) The cosmic ray background must be present, since n(0) �= 0, but its value of about

4 is uncertain to within a factor of 2.
(b) The correlation between a and b is negative and quite strong. This is as expected

since, if the cosmic ray background represented by a were reduced towards zero, then b
would have to be increased to compensate when fitting to the measured data for non-zero
source strengths.

(c) A measure of the goodness-of-fit is the value of χ2 achieved using the best-fit
values for a and b. Direct resubstitution of the values found into (∗) gives χ2 = 4.9.
If the weight of a particular reading is taken as the square root of the predicted (rather
than the measured) value, then χ2 rises slightly to 5.1. In either case the result is almost
exactly that “expected” for 5 d.o.f. – neither too good nor too bad. There are five degrees of
freedom because there are seven data points and two parameters have been chosen to give a
best fit.
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17.13 The following are the values and standard errors of a physical quantity f (θ ) measured at various
values of θ (in which there is negligible error):

θ 0 π/6 π/4 π/3
f (θ ) 3.72 ± 0.2 1.98 ± 0.1 −0.06 ± 0.1 −2.05 ± 0.1

θ π/2 2π/3 3π/4 π

f (θ ) −2.83 ± 0.2 1.15 ± 0.1 3.99 ± 0.2 9.71 ± 0.4

Theory suggests that f should be of the form a1 + a2 cos θ + a3 cos 2θ . Show that the normal
equations for the coefficients ai are

481.3a1 + 158.4a2 − 43.8a3 = 284.7,

158.4a1 + 218.8a2 + 62.1a3 = −31.1,

−43.8a1 + 62.1a2 + 131.3a3 = 368.4.

(a) If you have matrix inversion routines available on a computer, determine the best values and
variances for the coefficients ai and the correlation between the coefficients a1 and a2.

(b) If you have only a calculator available, solve for the values using a Gauss–Seidel iteration and
start from the approximate solution a1 = 2, a2 = −2, a3 = 4.

Assume that the measured data have uncorrelated errors. The quoted errors are not all
equal and so the covariance matrix N, whilst being diagonal, will not be a multiple of the
unit matrix; it will be

N = diag(0.04, 0.01, 0.01, 0.01, 0.04, 0.01, 0.04, 0.16).

Using as base functions the three functions h1(θ) = 1, h2(θ) = cos θ and h3(θ) = cos 2θ ,
we calculate the elements of the 8 × 3 response matrix Rij = hj (θi). To save space we
display its 3 × 8 transpose:

RT =
⎛⎝1 1 1 1 1 1 1 1

1 0.866 0.707 0.500 0 −0.500 −0.707 −1
1 0.500 0 −0.500 −1 −0.500 0 1

⎞⎠ .

Then

RTN−1 =
⎛⎝25 100 100 100 25 100 25 6.25

25 86.6 70.7 50 0 −50 −17.7 −6.25
25 50.0 0 −50.0 −25 −50 0 6.25

⎞⎠
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and

RTN−1R = RTN−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 0.866 0.500
1 0.707 0
1 0.500 −0.500
1 0 −1
1 −0.500 −0.500
1 −0.707 0
1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎝481.25 158.35 −43.75

158.35 218.76 62.05
−43.75 62.05 131.25

⎞⎠ .
From the measured values,

f = (3.72, 1.98, −0.06, −2.05, −2.83, 1.15, 3.99, 9.71)T,

we need to calculate RTN−1f, which is given by

⎛⎝25 100 100 100 25 100 25 6.25
25 86.6 70.7 50 0 −50 −17.7 −6.25
25 50.0 0 −50 −25 −50 0 6.25

⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.72
1.98

−0.06
−2.05
−2.83

1.15
3.99
9.71

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

i.e. (284.7, −31.08, 368.44)T.
The vector of LS estimators of ai satisfies RTN−1Râ = RTN−1f. Substituting the forms

calculated above into the two sides of the equality gives the set of equations stated in the
question.

(a) Machine (or manual!) inversion gives

(RTN−1R)−1 = 10−3

⎛⎝ 3.362 −3.177 2.623
−3.177 8.282 −4.975
2.623 −4.975 10.845

⎞⎠ .
From this (covariance matrix) we can calculate the standard errors on the ai from the
square roots of the terms on the leading diagonal as ±0.058, ±0.091 and ±0.104. We can
further calculate the correlation coefficient r12 between a1 and a2 as

r12 = −3.177 × 10−3

0.058 × 0.091
= −0.60.

The best values for the ai are given by the result of multiplying the column
matrix (284.7, −31.08, 368.44)T by the above inverted matrix. This yields (2.022,
−2.944, 4.897)T to give the best estimates of the ai as

a1 = 2.02 ± 0.06, a2 = −2.99 ± 0.09, a3 = 4.90 ± 0.10.
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(b) Denote the given set of equations by Aa = b and start by dividing each equation by
the quantity needed to make the diagonal elements of A each equal to unity; this produces
Ca = d. Then, writing C = I − F yields the basis of the iteration scheme,

an+1 = Fan + d.

We use only the simplest form of Gauss–Seidel iteration (with no separation into upper
and lower diagonal matrices).

The explicit form of Ca = d is⎛⎝ 1 0.3290 −0.0909
0.7239 1 0.2836

−0.3333 0.4728 1

⎞⎠⎛⎝a1

a2

a3

⎞⎠ =
⎛⎝ 0.5916

−0.1421
2.8072

⎞⎠
and

F =
⎛⎝ 0 −0.3290 0.0909

−0.7239 0 −0.2836
0.3333 −0.4728 0

⎞⎠ .
Starting with the approximate solution a1 = 2, a2 = −2, a3 = 4 gives as the result of the
first ten iterations

a1 a2 a3

2.000 −2.000 4.000
1.613 −2.724 4.419
1.890 −2.563 4.633
1.856 −2.824 4.649
1.943 −2.804 4.761
1.947 −2.899 4.781
1.980 −2.907 4.827
1.987 −2.944 4.842
2.000 −2.953 4.861
2.005 −2.969 4.870
2.011 −2.975 4.879

This final set of values is in close agreement with that obtained by direct inversion; in fact,
after 18 iterations the values agree exactly to three significant figures. Of course, using
this method makes it difficult to estimate the errors in the derived values.






